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ABSTRACT

We use full three-body scattering experiments to study the ejection of hypervelocity stars (HVSs) by massive
black hole binaries (MBHBs) at the centers of galaxies. Ambient stars drawn from aMaxwellian distribution unbound
to the binary are expelled by the gravitational slingshot. Accurate measurements of thermally averaged hardening,
mass ejection, and eccentricity growth rates (H, J, and K ) for MBHBs in a fixed stellar background are obtained by
numerical orbit integration from initial conditions determined by Monte Carlo techniques. Three-body interactions
create a subpopulation of HVSs on nearly radial orbits, with a spatial distribution that is initially highly flattened in
the inspiral plane of the MBHB, but becomes more isotropic with decreasing binary separation. The degree of anisot-
ropy is smaller for unequal mass binaries and larger for stars with higher kick velocities. Eccentric MBHBs produce a
more prominent tail of high-velocity stars and break planar symmetry, ejecting HVSs along a broad jet perpendicular
to the semimajor axis. The jet two-sidedness decreases with increasing binary mass ratio, while the jet opening angle
increases with decreasing kick velocity and orbital separation. The detection of a numerous population of HVSs in
the halo of the Milky Way by the next generation of large astrometric surveys such as Gaia may provide a unique
signature of the history, nature, and environment of the MBH at the Galactic center.

Subject headinggs: black hole physics — methods: numerical — stellar dynamics

1. INTRODUCTION

Massive black holes (MBHs) are a ubiquitous component of
nearby galaxy nuclei (e.g., Magorrian et al. 1998), and galaxies
experience multiple hierarchical mergers during their lifetime.
Following the merger of two halo+MBH systems of comparable
mass (‘‘major mergers’’), dynamical friction is known to effec-
tively drag in the satellite halo (and its MBH) toward the center
of the more massive progenitor; this will lead to the formation
of a bound MBH binary (MBHB) in the violently relaxed core of
the newly merged stellar system (Begelman et al. 1980). Even in
the case of unequal-mass mergers, gas cooling appears to facili-
tate the pairing process by increasing the resilience of the com-
panion galaxy to tidal disruption (Kazantzidis et al. 2005). It is
expected then that many galaxies will host wideMBHBs during
cosmic history (e.g., Volonteri et al. 2003). As the binary sepa-
ration decays, the effectiveness of dynamical friction slowly de-
clines because distant stars perturb the binary’s center of mass but
not its semimajor axis. The bound pair then loses orbital energy
by capturing stars passing in its immediate vicinity and ejecting
them at much higher velocities (‘‘gravitational slingshot’’).

It was first pointed out by Hills (1988) that the tidal breakup
of binary stars by a MBH at the Galactic center may eject one
member of the binary with velocities �1000 km s�1. Such ‘‘hy-
pervelocity stars’’ (HVSs) are also produced by three-body inter-
actions between ambient stars with low angular momentum orbits
and a ‘‘hard’’ MBHB, i.e., a binary whose binding energy per unit
mass exceeds the star specific kinetic energy. Assuming Sgr A�

to be one component of a MBHB, Yu & Tremaine (2003) es-
timated the number of HVSs expected within the solar radius to
be �103. Brown et al. (2005) reported the first discovery of a
HVS (with aGalactic rest-frame velocity in excess of 700 km s�1)
in the Galactic halo. This and five more HVSs, recently discov-

ered byHirsch et al. (2005) and Brown et al. (2006a, 2006b), are
all consistent with a Galactic center origin, while an ejection from
the LMC is more plausible for the seventh HVS currently known
(Edelmann et al. 2005). Holley-Bockelmann et al. (2005) have
proposed that the anomalously fast intracluster planetary nebulae
identified in the Virgo Cluster by Arnaboldi et al. (2004) may also
be associated with close three-body interactions with a MBHB
at the center of M87. Unbound HVSs travel with velocities so
extreme that dynamical ejection from a relativistic potential is
the most plausible origin, and they are becoming increasingly
recognized as an important tool for understanding the history,
nature, and environment of nuclear MBHs.
Stars expelled by a MBHB are expected to form a subpop-

ulation with very distinct kinematics (e.g., Quinlan 1996, here-
after Q96), as well as spatial structure (Zier & Biermann 2001).
The phase-space distribution of HVSs ejected by an intermediate-
mass black hole (IMBH) inspiralling into Sgr A� has been re-
cently studied analytically by Levin (2005). Stars bound to Sgr A�

and drawn from an isotropic cusp are ejected in a burst lasting a
few dynamical friction timescales; most stars are expelled iso-
tropically if the inspiral is circular, or in a broad ‘‘jet’’ aligned
with the IMBH velocity at pericenter if the inspiral is eccentric
(Levin 2005). Yet most HVSs are produced during the phases
of the inspiral that cannot be modeled analytically. This is the
first paper in a series aimed at a detailed numerical study of the
interaction of MBHBs with their dense stellar environment. We
use here full three-body scattering experiments of the ejection
of background stars by MBHBs at the center of galaxies to ad-
dress the kinematic properties of HVSs. Ambient stars drawn
from a Maxwellian distribution unbound to the binary are ex-
pelled by the gravitational slingshot. Reaction rates are obtained
by numerical orbit integration from initial conditions determined
byMonte Carlo techniques. The plan of the paper is as follows. In
x 2, we describe our suite of three-body scattering experiments.
In x 3, we present accurate measurements of the binary hardening,
mass ejection, and eccentricity growth rates for MBHBs embed-
ded in a fixed stellar background, reproducing Q96’s classical
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results. In x 4, we discuss the detailed kinematic properties of the
ejected subpopulation. Finally, we present our conclusions in x 5.

2. SCATTERING EXPERIMENTS

Consider a binary of massM ¼ M1 þM2 (M2 � M1), reduced
mass � ¼ M1M2 /M , and semimajor axis a, orbiting in the x-y
plane in a background of stars of mass m�. In the case of a light
intruder withm�TM2, the problem is greatly simplified by set-
ting the center of mass of the binary at rest at the origin of the
coordinate system. It is then convenient to define an approxi-
mated dimensionless energy change C and angular momentum
change B in a single binary-star interaction as (Hills 1983)

C ¼ M

2m�

�E

E
¼ a�E�

G�
; ð1Þ

and

B ¼ � M

m�

�Lz

Lz
¼ M

�

�Lz�
Lz

; ð2Þ

where �E /E is the fractional increase (decrease if negative) in
the orbital specific binding energy E ¼ �GM /(2a), �Lz /Lz is
the fractional change in orbital specific angular momentum Lz ¼
GMa(1� e2)½ �1=2, and �E� and �Lz� are the corresponding
changes for the interacting star. Conservation of total energy
and angular momentum lead to the following expression for the
change in orbital eccentricity e,

�e ¼ (1� e2)

2e

2m�

M
(B� C ): ð3Þ

The quantitiesB andC are of order unity and are derived by three-
body scattering experiments that treat the star-binary encounters
one at a time (Hut&Bahcall 1983; Q96). For each encounter one
solves nine coupled, second-order differential equations,

r̈i ¼ �G
X
i6¼j

mj ri � rj
� �
ri � rj
�� ��3 ; ð4Þ

supplied by 18 initial conditions ri(t ¼ 0), ṙi(t ¼ 0). The in-
coming star is moved from r ¼ 1 to ri ¼ 1010�/Mð Þ1=4a on a
Keplerian orbit about a point massM. At ri, the force induced by
the quadrupole moment of the binary is 10 orders of magnitude
smaller than the total force acting on the star at a distance a, and
numerical integration starts. The initial conditions define a point
in a nine-dimensional parameter space given by

1. The mass ratio q ¼ M2 /M1 of the binary.
2. The eccentricity of the binary e.
3. The mass of the star m�.
4. The asymptotic initial speed of the incoming field star

v � vj j.
5. The impact parameter at infinity b (the distance at which

the star would pass the binary if it fell no attraction).
6. Four angles: � and � describing the initial direction of the

impact,  its initial orientation, and � the initial binary phase.

A significant star-binary energy exchange (i.e., characterized by
a dimensionless energy change C > 1) occurs only for v/Vc <
M2 /Mð Þ1=2, where Vc ¼ GM /að Þ1=2 is the binary orbital velocity
(the relative velocity of the two holes if the binary is circular,
see, e.g., Saslaw et al. 1974; Mikkola & Valtonen 1992). We

sample this quantity in the range 3 ; 10�3 M2 /Mð Þ1=2< v/Vc <
30 M2 /Mð Þ1=2 with 80 logarithmically equally spaced grid points.
Note that varying the incoming velocity at a fixed Vc is equivalent
to varying the binary separation a at a fixed v.When averaged over
a Maxwellian distribution, the range of v/Vc sampled in our ex-
periments therefore probes the slingshot mechanism over about
four decades in binary separation.

Each scattering experiment requires five random numbers. The
impact parameter is related to the star pericenter distance rp by

b2 ¼ r 2p 1þ 2GM

rpv2

� �
: ð5Þ

For each incoming velocity the impact parameter is randomly
sampled according to an equal probability distribution in b2

(equivalent to a probability weight proportional to b), in an in-
terval corresponding to a range in scaled pericenter distance rp /a
of ½0; 5�. In a number of test cases, we have extended this range to
½0; 10�, finding little differences in the measured hardening rates.
The velocity angles � and � are randomly generated to reproduce
a uniform density distribution over a spherical surface centered
in the origin of coordinate system, while the orientation angle  
is chosen from a uniform distribution in the range ½0; 2��. The
probability distribution of the binary phase � is sampled by
weighting randomly selected angles according to the time spent
by the binary in any given phase range. Given a set of initial con-
ditions, we integrate the system of differential equations (eq. [4])
using the most recent version of the subroutine DOPRI5,3 which
is based on an explicit Runge-Kutta method of order 4(5) due to
Dormand & Prince (1978). A complete description of the in-
tegrator can be found in Hairer et al. (1993).

As the total energy of the binary star system is always neg-
ative, a bound triple system may form temporarily, but will typ-
ically dissolvewithin 10Y100 crossing times (Valtonen&Aarseth
1977). The integration is stopped if one of the following events
occurs: (a) the star leaves the sphere of radius ri with positive
total energy; (b) the integration reaches 106 time steps (correspond-
ing to between a few hundred and a thousand binary orbital
periods); or (c) the physical integration time exceeds 1010 yr.
The integration of the full three-body problem allows us to di-
rectly control the conservation of total energy and angular mo-
mentum. The code adjusts the integration step size to keep the
fractional error per step, �, in the position and velocity below a
level that was set to 10�11. This allows a total energy conservation
accuracy �E/E � 10�9 in a single orbit integration, while, for
m� /M ’ 10�7, the star energy is conserved, in a single orbit, at
level of one part in a hundred. We have also checked that our
choice of erasing from the record stars that get captured for long
times does not affect results appreciably. Abandoned integrations
involve, for the major part, encounters with stars that get captured
in very weakly bound orbits (energetically ‘‘poor’’ events) and
make many revolutions before being expelled. The fraction of
erased stars that are instead captured in tightly bound orbits (hence
energetically ‘‘rich’’) is quite small, P10�4, assuring that the
global impact of such encounters on the evolution of binary
orbital parameters is indeed negligible.

We have performed 24 sets of scattering experiments for
binary mass ratios q ¼ 1, 1/3, 1/9, 1/27, 1/81, and 1/243, and
initial eccentricities e ¼ 0:01, 0.3, 0.6, and 0.9. After each or-
bit integration the x; y; z components of v and L are stored. Each
run involves 4 ; 106 stars; we collect partial outputs after 5 ; 104

3 See http://www.unige.ch/math/folks/hairer/software.html.
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orbit integrations corresponding to a given initial speed v, cal-
culate the values of hC i and hBi averaged over orbital angular
variables, and then evaluate the hardening, eccentricity growth,
andmass ejection rates as defined in the x 3. Statistical errors are
estimated by evaluating the rates from 10 different orbit subsets,
and then computing standard deviations (see x 3).

Figure 1 shows examples of the energy exchange parameter
hC i versus the star impact parameter b in the limit vTVc, i.e.,
for a ‘‘hard’’ binary. We have defined a rescaled dimensionless
impact parameter x as in Q96 as

x � b=b0; b20 ¼ 2GMa=v2; ð6Þ

where b0 is the impact parameter at infinity leading to a star
pericenter rp ¼ a including gravitational focusing. For a circular,
equal-mass binary, hC i has a maximum for impact parameter
equal to the distance of each binary member from the center of
mass (x ’ 0:5), and then decreases reaching a constant value
hC i ’ 1 for small impact parameters. In the case of highly eccen-
tric binaries (e ¼ 0:9), the energy exchange is almost monotonic;
a star with small impact parameter interacts with the pair near
pericenter when it has maximum speed, and this results in a
large energy exchange. For circular binaries and x P 1, one finds
1:5 P hC i P 2 nearly independently of themass ratio. The peak
at x ¼ 1 for qT1 corresponds to the location of M2, as M1 is
now at rest and M2 orbits around M1 at distance a. From equa-
tion (1) it follows that stars typically experience an energy gain
proportional to the reduced mass of the binary, and inversely
proportional to the binary separation. The combination hB(x)�
C(x)i, which governs the eccentricity evolution (see eq. [12]),
is shown in Figure 2. For a circular binary hB� C i is zero in-
dependently of impact parameter, i.e., circular binaries remain
circular. If the binary is eccentric, hB� C i shows a positive
peak for impact parameters corresponding to close encounters
withM2 or with one member of an equal-mass pair. Interactions
with 0:5 P x P 2 stars tend to increase the eccentricity of the

binary, whereas stars with low impact parameter have either a
small effect (q ¼ 1/9) or can significantly decrease the eccen-
tricity (q ¼ 1). Typically, B / �Lz� assumes positive values,
i.e., scattered stars gain angular momentum along the z-axis and
will tend to corotate with the binary.

3. HARDENING IN A FIXED BACKGROUND

As described in Q96, the binary evolution in an isotropic fixed
background of stars of density � and one-dimensional velocity
dispersion � at infinity is determined by three dimensionless
quantities: the hardening rate

H ¼ �

G�

d

dt

1

a

� �
; ð7Þ

themass ejection rate (Mej is the stellar mass ejected by the binary)

J ¼ 1

M

dMej

d ln (1=a)
; ð8Þ

and the eccentricity growth rate

K ¼ de

d ln (1=a)
: ð9Þ

The average hardening rate for a Maxwellian stellar velocity
distribution f (v; �) ¼ (2��2)�3=2 exp (�v2 /2�2) is

H(�) �
Z 1

0

f (v; �)
�

v
H1(v)4�v

2 dv; ð10Þ

where

H1(v) � 8�

Z 1

0

hCix dx ð11Þ

Fig. 1.—Top:Mean energy exchange hCi as a function of dimensionless impact
parameter x for an equal-mass binary with eccentricity e ¼ 0 (solid line), 0.3 (long-
dashed line), 0.6 (short-dashed line), and 0.9 (dot-dashed line). Bottom: Same,
but for a circular binary withmass ratio q ¼ 1/3 (solid line), 1/9 (long-dashed line),
1/27 (short-dashed line), and 1/81 (dot-dashed line).

Fig. 2.—Mean angular momentum minus energy exchange hB� C i pa-
rameter as a function of dimensionless impact parameter x for a binary with
eccentricity e ¼ 0 (solid line), 0.3 (long-dashed line), 0.6 (short-dashed line),
and 0.9 (dot-dashed line). Top: Equal-mass binary (q ¼ 1). Bottom: q ¼ 1/9.
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is the dimensionless hardening rate if all stars have the same
velocity v. An expression analogous to equation (10) relates the
thermally averaged eccentricity growth rate K(�) to K1(v), where

K1(v) �
(1� e2)

2e

R1
0
hB� Cix dxR1
0
hCix dx

: ð12Þ

Both H1 and K1 are independent of M and m�. Figure 3 shows
the hardening rate H versus binary separation a as derived from
our scattering experiments. As found by Q96, H is approxi-
mately constant for

a < ah ¼
GM2

4�2
: ð13Þ

Defining as ‘‘hard’’ a binary whose orbital separation is smaller
than ah, it follows then that a ‘‘hard’’ binary hardens at a constant
rate. Note that there is no explicit dependence on � once the rate
is expressed as a function of a/ah. The value of H is found to be
a decreasing function of q but increases with increasing eccen-
tricity. The latter trend can be understood from Figure 1, which
shows a significative enhancement in the energy change hC i at
small impact parameters at increasing eccentricity. Note that H
drops to zero for a k10ah. We choose the following ejection
criterion to measure the rate at which the binary ejects stars. The
binary is assumed to be embedded in a bulge of mass MB and
stellar density profile approximated by a singular isothermal
sphere (SIS). Stars are counted as ‘‘ejected’’ from the bulge if,
after three-body scattering, their velocity V far away from the
binary is greater than the escape velocity from the radius of in-
fluence of the binary, rinf � GM /(2�2). The SIS potential is
�(r) ¼ �2�2 ln (GMB /2�

2r)þ 1½ � (for r < RB ¼ GMB /2�
2),

and the escape speed from rinf is then

vesc �
ffiffiffiffiffiffiffiffiffi
�2�

p
¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln (MB=M )þ 1

p
¼ 5:5�; ð14Þ

where the second equality comes from the adopted bulgeYblack
hole mass relation M ¼ 0:0014MB (Haring & Rix 2004). Note

that this yields a more conservative ejection criterion than the
conventional choiceV > vesc ¼ 2

ffiffiffi
3

p
� adopted byQ96.4Denoting

with Fej(x; v; �) the fraction of incident stars with impact parameter
x and initial velocity v that satisfy equation (14) after a three-body
interaction, the thermally averaged ejection rate can then be written
as

J (�) � 1

H

Z 1

0

f (v; �)
�

v
4�v2 dv 4�

Z 1

0

Fejx dx: ð15Þ

We have found that the (Maxwellian averaged) ratesH, J, andK
derived from scattering experiments can be fitted to within few
percent by the following functions:

H ¼ A(1þ a=a0)
�; ð16Þ

J ¼ A(a=a0)
	 ½1þ (a=a0)


��; ð17Þ

and

K ¼ A(1þ a=a0)
� þ B: ð18Þ

The parameters of the fits to H and J are listed in Tables 1 and 2
for different binary mass ratios and circular orbits, while fit pa-
rameters to K are listed in Table 3 for different values of q and e.
The binary eccentricity growth and mass ejection rates K and
J (averaged over a Maxwellian distribution) are plotted in Fig-
ures 4 and 5 as a function of a/ah. The parameter K is close to

Fig. 3.—Binary hardening rate H (averaged over a Maxwellian velocity
distribution) vs. a/ah. Left: e ¼ 0, 0.3, 0.6, and 0.9 for q ¼ 1. Right: q ¼ 1/3, 1/9,
1/27, and 1/81 for e ¼ 0. Line style as in Fig. 1.

TABLE 1

Hardening Rate

q A a0 �

1............................ 14.55 3.48 �0.95

1/3 ........................ 15.82 4.18 �0.90

1/9 ........................ 17.17 3.59 �0.79

1/27 ...................... 18.15 3.32 �0.77

1/81 ...................... 18.81 3.87 �0.82

1/243 .................... 19.16 4.16 �0.86

Notes.—Best-fit parameters describing (see eq. [16])
the hardening rate H for a circular binary with varying
mass ratio q. The parameter a0 is given in units of ah.

TABLE 2

Mass Ejection Rate

q A a0 � 	 


1......................... 0.224 1.741 �10.986 �0.165 1.095

1/3 ..................... 0.201 1.784 �7.360 �0.185 1.176

1/9 ..................... 0.214 0.803 �2.738 �0.200 1.291

1/27 ................... 0.215 0.565 �1.853 �0.207 1.374

1/81 ................... 0.211 0.424 �1.319 �0.220 1.564

1/243 ................. 0.210 0.389 �1.210 �0.222 1.638

Notes.—Best-fit parameters describing (see eq. [17]) the mass ejection rate J
for a circular binary with varying mass ratio. The parameter a0 is given in units
of ah.

4 When the binary first becomes hard, only a few stars acquire a kick ve-
locity large enough to escape the host bulge. Many scattered stars will instead
return to the central region on nearly unperturbed, small-impact parameter or-
bits, and will undergo a second superelastic scattering with the binary. We will
quantify the role of these ‘‘secondary slingshots’’ in determining the hardening
of the pair in a subsequent work.
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zero for a � ah, and grows monotonically in the case of eccentric
orbits as the binary shrinks. Smaller values of q lead to larger
growth rates. In the circular case K is negligible at every sep-
aration, i.e., circular binaries remain circular. The mass ejection
rate has only a weak dependence on eccentricity and mass ratio.

It is interesting to compare our fits to those provided by Q96.
While our results for the dimensionless ratesH1 and K1 are con-
sistent with those of Q96, within the statistical errors, we have
directly fit the Maxwellian-averaged rates for ease of use. Our
choice of a different velocity threshold for ejection makes our
mass ejection rate J (�) generally lower than that of Q96. Re-
gardingH(�), limiting values for small separations are virtually
identical to those of Q96, while at a � ah the fit in Q96 is 20%
above our formula. As for the eccentricity growth rate, we have
covered a much wider region of the (q; e) parameter space, com-
pared to the limited sampling provided by Q96.

4. KINEMATICS OF HYPERVELOCITY STARS

When the MBHB separation is a P ah, only a small fraction
(P1%) of bulge stars have low angular momentum trajectories
with pericenters lying within a (the binary’s geometrical ‘‘loss
cone’’). If the loss cone is constantly refilled as the pair shrinks,
then a substantial subpopulation of suprathermal HVSs will be
produced via the gravitational slingshot. In this section we use

our scattering experiments to study the kinematic of HVSs as a
function of binary mass ratio, eccentricity, and orbital separation.

4.1. Velocity Distribution

In a scattering event, a star that startswith a low initial velocity v
passes the two MBHs at a distance �a and leaves with a gain
to its kinetic energy, V 2 ’ 2C(�/M )V 2

c ¼ ½8C�2 /(1þ q)�(ah /a)
(eq. [1]), where C depends on the impact parameter (see Fig. 1).
Figure 6 shows the average final velocity of scattered stars hV i
as a function of inverse binary separation, for different mass

TABLE 3

Eccentricity Growth Rate

e A a0 � B

q ¼ 1

0.15........................ 0.037 0.339 �3.335 �0.012

0.3.......................... 0.075 0.151 �1.548 �0.008

0.45........................ 0.105 0.088 �0.893 �0.005

0.6.......................... 0.121 0.090 �0.895 �0.008

0.75........................ 0.134 0.064 �0.544 �0.006

0.9.......................... 0.082 0.085 �0.663 �0.004

q ¼ 1/3

0.15........................ 0.082 0.042 �0.168 �0.048

0.3.......................... 0.095 0.213 �1.152 �0.012

0.45........................ 0.129 0.137 �0.655 �0.006

0.6.......................... 0.166 0.081 �0.546 �0.006

0.75........................ 0.159 0.079 �0.497 �0.010

0.9.......................... 0.095 0.122 �0.716 �0.008

q ¼ 1/9

0.15........................ 0.051 0.385 �0.891 �0.011

0.3.......................... 0.111 0.307 �1.107 �0.007

0.45........................ 0.172 0.526 �1.174 �0.016

0.6.......................... 0.181 0.251 �1.169 �0.007

0.75........................ 0.179 0.195 �0.846 �0.004

0.9.......................... 0.117 0.400 �1.170 �0.001

q ¼ 1/27

0.15........................ 0.064 0.284 �1.206 0.021

0.3.......................... 0.143 1.033 �1.537 �0.021

0.45........................ 0.212 0.722 �1.257 �0.022

0.6.......................... 0.216 0.430 �1.163 �0.014

0.75........................ 0.173 0.771 �1.934 �0.014

0.9.......................... 0.129 0.329 �1.125 �0.020

Notes.—Best-fit parameters describing (see eq. [18]) the eccentricity
growth rate K for varying initial eccentricity e and mass ratio q. The pa-
rameter a0 is given in units of ah.

Fig. 4.—Binary eccentricity growth rates as a function of binary separation
for different mass ratios. Different line styles are for e ¼ 0, 0.3, 0.6, and 0.9, as in
the top panel of Fig. 1.

Fig. 5.—Mass ejection rate J vs. a/ah. Top: e ¼ 0, 0.3, 0.6, and 0.9 for q ¼ 1.
Bottom: q ¼ 1/3, 1/9, 1/27, and 1/81 for e ¼ 0. Line style as in Fig. 1.
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ratios and eccentricities. The population includes all stars with
maximum impact parameter at infinity x � 2, corresponding to
a pericenter rp � 4a. The curves clearly follow the expected
V / ah /að Þ1=2 scaling. For ah /a k 10, most scattering events
produce HVSs that escape from the bulge. Neither the binary
mass ratio nor its eccentricity have a large effect on the average
final velocity. Larger eccentricities produce a more prominent

high-velocity tail of HVSs, as in this case the orbital velocity of
M2 close to pericenter is larger than Vc, allowing for more en-
ergetic slingshots. Our numerical experiments show that both a
small mass ratio and a large eccentricity tend to increase the
fraction of extremely energetic scattering events.

The properties of scattered stars are best described by noticing
that, when stellar ejection velocities are measured in units of
binary orbital velocity Vc, the high-velocity tail of the resulting
distribution function is actually scale-invariant, i.e., indepen-
dent of binary separation for fixed q and e. This is clearly shown
in Figure 7. Scale invariance is broken by the choice of an
absolute velocity threshold (e.g., V > vesc) that, in units of Vc, is
a decreasing function of ah /a. The high-velocity tail of the
distribution function of scattered stars can be described as a
broken power law in the range 4� P V P 3Vmax, where Vmax ¼
Vc 1þ eð Þ/ 1� eð Þ½ �1=2 / 1þ qð Þ is the velocity of the lighter black
hole at the pericenter:

f (w) ¼ A

h

w

h

� �	

1þ w

h

� �

" #�

; ð19Þ

where w � V /Vc, and h � 2qð Þ1=2 /(1þ q). Best-fitting param-
eters are given in Table 4 for different values of the eccentricity,
while the fitting formula and the scattering experiment data
are compared in Figure 8. The velocity distribution of HVSs

Fig. 6.—Average final velocity hV i of all scattered stars vs. inverse binary
separation ah /a. Top: Eccentric e ¼ 0:9 binary with q ¼ 1 (solid lines), q ¼ 1/9
(long-dashed lines), and q ¼ 1/81 (short-dashed lines). The lower set of curves
shows results for the entire population of scattered stars (defined as those with
impact parameter at infinity x � 2), while the upper set of curves shows only
HVSs with V > vesc ¼ 5:5�. The dotted line in both panels marks the value
V ¼ vesc. Bottom: Same but for q ¼ 1/9 binary with e ¼ 0 (solid lines), e ¼ 0:3
(long-dashed lines), e ¼ 0:6 (short-dashed lines), and e ¼ 0:9 (dot-dashed lines).

Fig. 7.—Differential distribution of V /Vc for all stars scattered at binary sep-
aration ah /a ¼ 1 (solid line), 10 (long-dashed line), and 100 (short-dashed line).
As the binary shrinks, the peak shifts to increasingly small values of V /Vc, since
injected stars are drawn from a thermal distribution of fixed velocity dispersion �.
Left: Binary with q ¼ 1 and e ¼ 0:9. Right: Binary with q ¼ 1/81 and e ¼ 0:9.

TABLE 4

Velocity Distribution

e A 	 
 �

0.................................. 0.236 �0.917 16.365 �0.165

0.3............................... 0.242 �1.067 11.722 �0.235

0.6............................... 0.385 �0.765 4.627 �0.726

0.9............................... 0.556 �0.599 2.375 �1.420

Note.—Best-fit parameters describing (see eq. [19]) the velocity distribution
of scattered stars with 4� P V P 3Vmax.

Fig. 8.—Differential distribution of V /Vc for all stars scattered at binary sepa-
ration ah /a ¼ 100. In each panel values are shown, right to left, for binary mass
ratios q ¼ 1, 1/9, and 1/81. Scattering experiment data are shown as solid lines,
while fitting formula results, extended up to V ¼ 3Vmax (eq. [19], and Table 4), as
dashed lines. The appropriate values of the eccentricity are labeled in each panel.
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(V > vesc) at a given binary separation is related to the mass
ejection rate by

J (a) ¼ � d(Mej=M )

da=a
¼

Z 1

vesc=Vc

f wð Þ dw: ð20Þ

Equation (20) sets the normalization constant A in equation (19).

4.2. Angular Distribution

Analytic expressions for the time-dependent phase-space dis-
tribution of stars ejected from the Galactic center as a result of
inspiral of an intermediate-mass black hole (qT1) have been
recently derived by Levin (2005). HVSs are found to follow a
characteristic angular pattern: (1) they are ejected preferentially
in the orbital plane of theMBHB, and (2) they are perpendicular
to the semimajor axis of the pair in the case of eccentric binaries.
For a given mass ratio and eccentricity, the magnitude of these
three effects is a function of orbital separation and stellar final
velocity. Energetic three-body interactions eject stars in the direc-
tion of maximum black hole orbital speed, generating a larger
anisotropy in higher velocity stars, and a positive z-component
of the stellar angular momentum. For small binary separations,
the degree of anisotropy of the ejected stars is reduced, as, in
order to generate a kick above a given V, the three-body inter-
action need not be as strong as in the case of large separation.

4.2.1. Latitude

Figure 9 shows h�2i as a function of binary separation, where
��/2 < � < �/2 is the latitude of ejected stars, i.e., the angle
between the star velocity vector at infinity and the binary orbital
plane. As an isotropic distribution would yield h�2i ¼ �2 /4� 2 ¼
0:467, values lower than this indicate that the ejected stars tend to
be flattened toward the binary orbital plane.We plot results for the
population of HVSs as a whole (V > vesc) and for a subset with

V > 9vesc. Note that a value h�2i ¼ 0 at large separations simply
means that no stars are ejected with a velocity exceeding the given
threshold, not that stars are actually scattered exactly in the binary
orbital plane. Higher velocity stars are more flattened into the
orbital plane, and smaller binary separations lead to a more iso-
tropic angular distributions. At a fixed mass ratio and orbital sep-
aration, more eccentric binaries eject stars in a more isotropic
fashion, while at a fixed eccentricity binaries with smaller mass
ratios produce a more isotropic distribution of HVSs.

4.2.2. Longitude

Scattered stars typically receive a kick along the direction of
maximum velocity of the MBHs. This implies that, in the case
of eccentric binaries, the spatial distribution of HVSs will form
a broad jet perpendicular to the semimajor axis. For small binary
mass ratios, the jet tends to be one-sided, sinceM1 is practically
at rest and the interaction takes place close to the pericenter
ofM2 (Levin 2005). For equal-mass binaries, we expect a two-
sided symmetric jet instead. To quantify these effects, we have
assumed that the semimajor axis coincides with the x-axis, and
that the two holes orbit counterclockwise in the x-y plane. The
M2 (M1) velocity vector at the pericenter then forms an angle
3�/2 (�/2) relative to the x-axis. Let � be the star longitude, i.e.,
the angle between the x-axis and the projection onto the orbital
plane of the star velocity vector at infinity. In the case of an
azimuthally symmetric distribution, h�i ¼ �, with relative dis-
persion �� /h�i ¼ 1/

ffiffiffi
3

p
¼ 0:58. Figure 10 shows the mean lon-

gitude of HVSs and its dispersion for an eccentric binary with
different mass ratios, as a function of ah /a, both for the whole
population of HVSs stars (V > vesc) and for a subset with V >
9vesc. In the case qT1, the jet is oriented along the velocity of
M2 at pericenter, while for q ¼ 1 the value h�i ’ � does not
denote axisymmetry but rather a two-sided jet oriented per-
pendicular to the semimajor axis (the bottom panel shows that
the angular dispersion is lower than its symmetric value). HVSs
are ejected more symmetrically as the binary shrinks, and, at

Fig. 9.—Mean value of �2 vs. ah /a for HVSs, where � is the latitude angle
between the star velocity vector at infinity and the binary orbital plane. In each
panel, the upper set of curves refers to all ejected stars (V > vesc), the lower set
of curves to stars with V > 9vesc. Top: Binary with mass ratio q ¼ 1/9 and
eccentricity e ¼ 0 (solid lines), e ¼ 0:3 (long-dashed lines), e ¼ 0:6 (short-
dashed lines), and e ¼ 0:9 (dot-dashed lines). Bottom: Eccentric binary with
e ¼ 0:9 mass ratio q ¼ 1 (solid lines), q ¼ 1/9, (long-dashed lines), and
q ¼ 1/81 (short-dashed lines).

Fig. 10.—Top: Mean longitude h�i of ejected stars as a function of orbital
separation. The binary semimajor axis lies along the x-vector, the MBHs orbit
counterclockwise in the x-y plane, and the binary eccentricity is set to 0.9. The
solid, short-dashed, and long-dashed curves show values for q ¼ 1, 1/9, and 1/81,
respectively. Thin lines: Entire population of ejected stars (V > vesc). Thick lines:
Subset of HVSs with V > 9 vesc. Bottom: Relative azimuthal dispersion �� /h�i.
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any given separations, the degree of axisymmetry increases with
decreasing kick velocity. The mean longitude angle as a function
of eccentricity is shown in Figure 11 for a MBHB binary with
q ¼ 1/9. While the population of HVSs as a whole is nearly
symmetric for all eccentricities regardless of binary separation,
the high velocity subsample shows a clear azimuthal asymmetry
for ah /a P 20 that decreaseswith decreasing separations.MBHBs
already significantly beamHVSs for e ¼ 0:3; larger eccentricities
produce similar values of h�i but at larger separations.

We note that, as well as ejection velocity, the angular prop-
erties of scattered stars also depend on the ratio V /Vc but not on
the binary hardness ah /a. This can be clearly seen in Figure 12,

where the mean latitude and longitude angles are plotted versus
V /Vc for a binary with q ¼ 1/9 and e ¼ 0:6, at separations
a/ah ¼ 1, 0.1, and 0.01.

5. CONCLUSIONS

We have performed full three-body scattering experiments in
order to study the detailed kinematic properties of hypervelocity
stars by massive black hole binaries at the center of galaxies.
Ambient stars are drawn from aMaxwellian distribution unbound
to the binary, and are expelled by the gravitational slingshot.
Numerical orbit integration from initial conditions determined
by Monte Carlo techniques provides accurate measurements of
thermally averaged hardening, mass ejection, and eccentricity
growth rates for MBHBs in a fixed stellar background. We have
shown that binary-star interactions create a subpopulation of HVSs
on nearly radial orbits, with a spatial distribution that is initially
highly flattened in the inspiral plane of the MBHB, but become
more isotropic with decreasing binary separation. The degree of
anisotropy is smaller for unequal mass binaries and larger for
stars with higher kick velocities. Eccentric MBHBs produce a
more prominent tail of high-velocity stars and break axisymmetry,
ejecting HVSs along a broad jet perpendicular to the semimajor
axis. The jet two-sidedness decreases with increasing binary mass
ratio, while the jet opening angle increases with decreasing kick
velocity and orbital separation.

It is interesting to quantify the properties of the HVSs that
would populate the halo of the Milky Way (MW) in the presence
of a MBHB at the Galactic center. We assume that the binary
total mass is M1 þM2 ¼ 3:5 ; 106 M�, that Sgr A

� is the most
massive componentM1 of the pair, that the binary mass ratio is
q ¼ 1/81, and that the loss cone is always full. From our discus-
sion in x 4.1, we expect the small mass ratio to result in a large
number of HVSs. The pair is allowed to shrink from a ¼ ah
down to a ¼ 0:1ah due to three-body interactions, within the
allowed parameter space derived for a circular binary by Yu &
Tremaine (2003) using a variety of observational and theoret-
ical arguments. Figure 13 shows the quantity d(NHVS)/d ln a,

Fig. 11.—Same as Fig. 10, but for a binary with q ¼ 1/9 and eccentricity
e ¼ 0 (solid lines), 0.3 (long-dashed lines), 0.6 (short-dashed lines), and 0.9
(dot-dashed lines). Thin lines: Entire population of ejected stars (V > vesc).
Thick lines: Subset of HVSs with V > 9vesc.

Fig. 12.—Mean values of �2 (right scale axis) and � (left scale axis) vs. V /Vc

at different binary separations: a/ah ¼ 1 (solid lines), a/ah ¼ 0:1 (long-dashed
lines), and a/ah ¼ 0:01 (short-dashed lines). A mass ratio q ¼ 1/9 and an ec-
centricity e ¼ 0:6 are assumed.

Fig. 13.—Number of HVSs escaping the MW. The binary total mass is
M1 þM2 ¼ 3:5 ; 106 M�, and the mass ratio is q ¼ M2 /M1 ¼ 1/81. Solid line:
Binary with initial eccentricity e ¼ 0. Dot-dashed line: Binary with initial ec-
centricity e ¼ 0:9. The total number of HVSs ejected as the pair shrinks from
a ¼ ah to a ¼ ah /2 (a ¼ ah /10) is 5 ; 104 (106).
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the number of HVSs (assuming m� ¼ 1 M�) ejected per loga-
rithmic binary separation with V > 1:68vesc. The adopted ve-
locity threshold implies V > 840 km s�1 at the influence radius
of the binary; it corresponds to the escape velocity from the
center of theMWgalaxy,5 and translates within theMWpotential
to V > 450 km s�1 10 kpc away from Sgr A�.

The curves show results for different initial eccentricities; in
a self-consistent treatment of the evolution of a MBHB, we have
used the results of our scattering experiments to account for the
changing binary eccentricity as its orbit decays. As the orbital
separation decreases from ah to ah /2, we find that the total num-
ber of HVSs is 5 ; 104, for a total ejected mass of some 1:2M2,
independent of eccentricity; in the case of a circular binary the
angular distribution of such HVSs is characterized by h�2i ¼
0:3 and �� /h�i ¼ 0:58, while for an eccentric pair with e ¼ 0:9,
the latitude and azimuthal dispersions are h�2i ¼ 0:37 and

�� /h�i ¼ 0:6. In the case in which the binary separation shrinks
from the hardening radius down to a ¼ 0:1ah instead, the total
number of ejected HVSs increases by a factor of 20, to 106; a
circular binary produces an angular distribution with h�2i ¼ 0:36
and �� /h�i ¼ 0:58, while for an eccentric pair with e ¼ 0:9 we
find h�2i ¼ 0:4 and �� /h�i ¼ 0:6. The detection of a numerous
population of HVSs in the halo of the Milky Way by the next
generation of large astrometric surveys like Gaia may thus
provide a clear signature of the history, nature, and environment
of the MBH at the Galactic center.
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