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Abstract. There are several possible applications of quantum electrodynamics
in dielectric media which require a quantum description for the electromagnetic
field interacting with matter fields. The associated quantum models can refer
to macroscopic electromagnetic fields or, in alternative, to mesoscopic fields
(polarization fields) describing an effective interaction between electromagnetic
field and matter fields. We adopt the latter approach, and focus on the
Hopfield model for the electromagnetic field in a dielectric dispersive medium
in a framework in which space-time dependent mesoscopic parameters occur,
like susceptibility, matter resonance frequency, and also coupling between
electromagnetic field and polarization field. Our most direct goal is to describe
in a phenomenological way a space-time varying dielectric perturbation induced
by means of the Kerr effect in nonlinear dielectric media. This extension of
the model is implemented by means of a Lorentz-invariant Lagrangian which,
for constant microscopic parameters, and in the rest frame, coincides with the
standard one. Moreover, we deduce a covariant scalar product and provide a
canonical quantization scheme which keeps into account the constraints implicit
in the model. Examples of viable applications are indicated.

PACS numbers: 03.70.+k,03.65.-w,42.50.Ct

Submitted to: Physica Scripta

Keywords : Hopfield model, relativistic covariance, quantum theory.

http://arxiv.org/abs/1411.7866v2


The Hopfield model revisited: Covariance and Quantization 2

1. Introduction

A longstanding field of investigation for quantum field
theory is represented by pair creation in external fields
or by moving boundaries. We limit ourselves to quote
a couple of seminal papers which were published at the
birth of modern quantum field theory [1, 2]. We are
mainly interested in photon pair creation associated
with variations of the dielectric constant in a dielectric
medium, which has been a subject of important inves-
tigations, as e.g. a series of papers by Schwinger con-
cerning a possible relation between dynamical Casimir
effect and sonoluminescence [3]. In this paper, instead
of quantizing phenomenologically the electromagnetic
field in presence of a dielectric medium (see e.g. [4]), we
delve into a less phenomenological situation in which
dielectric properties are modeled as in the Hopfield
model: the electromagnetic field interacts with a set
of oscillators reproducing sources for dispersive prop-
erties of the electromagnetic field in matter [5, 6, 7, 8].
We refer to a more general situation where electric
susceptibility, resonance frequencies of the electromag-
netic field and also the coupling between electromag-
netic field and oscillators (the latter ones can be identi-
fied with the mesoscopic polarization fields) depend on
space-time variables. In this respect, we can refer our
approach to other models which generalize the Hop-
field model, see [9, 10, 11], but we stress that we don’t
take into account absorption in our paper. The latter
assumption is reasonable as far as emission phenomena
we are interested in are not too near the absorption re-
gion, and the focus is pair-creation. Any framework
including absorption would imply a much more tricky
approach (cf. e.g. [9, 10, 11]).

In order to corroborate the physical interest of
our model and its canonical quantization, we recall
that, by means of the Kerr effect, it is possible to in-
duce dielectric perturbations which propagate in the
dielectric medium. These perturbations represent in-
homogeneities which arise as a consequence of intense
laser pulse propagating in a dielectric medium (see e.g.
[12]). As a result of microscopic interactions, involved
in non-linear electrodynamics, a mean motion of a di-
electric perturbation with a different refractive index
occurs. Instead of attempting immediately a first prin-
ciple study on this subject, i.e. instead of working out
a microscopic model for this case, we begin considering
a semi-phenomenological approach, in which we adopt

a Lagrangian model which would be ‘first principle-
based’ apart for the appearance in the Lagrangian of
a (phenomenological) contribution to the refractive in-
dex arising from the Kerr effect. Interesting results
can be still deduced from this framework, as well as a
well-defined route for quantizing the model. Our aim
is to get a model which allows to deal with sufficiently
general situations of interest, as e.g. the ones created
by means of the Kerr effect: traveling dielectric pertur-
bations moving with different laws of motions should
be allowed. For example, a uniformly moving perturba-
tion (which is characteristic of the Kerr effect), but also
an accelerating one and even a rotating one, each of
which represents a very interesting benchmark for pho-
ton pair creation in external fields (or under changing
external conditions). For situations covering the uni-
formly moving case, its relation with analogue gravity
framework and for experimental measure of Hawking
radiation, see e.g. [13, 14, 15, 16, 17, 18, 19]. Thus
our approach allows as well the cases where a different
space-time evolution is taken into account. As a con-
sequence of microscopic interactions, modified electric
susceptibility, proper frequency and coupling constant
between electric field and polarization are postulated
to occur, which are meant to reproduce a suitable be-
haviour of the refractive index perturbation.
In the actual construction of the model, we can re-
fer to the aforementioned traveling perturbations, but,
in order to be even much more general, we can allow
a generic behavior for the susceptibility χ(t, x, y, z),
which is a scalar function of the space-time coordi-
nates. Moreover, we allow an analogous nature also
for ω0(t, x, y, z), the latter being the proper frequency
of the matter oscillators. As e.g. in [9, 10, 11], we
generalize the coupling between electric field and po-
larization field(s), in our case by introducing a scalar
function g(t, x, y, z) which plays the role of coupling.

The only reasonable constraint we impose are
that asymptotically in time χ, ω, g are constant, for
obtaining well-defined particle states IN and OUT.
Moreover, we can allow couplings with N oscillators,
in such a way that we can manage with N different
susceptibilities, resonances and couplings.
There are two further features of our model which
are very important: relativistic covariance and
quantization in a covariant gauge. Covariance is
fundamental for gettting rid of any ambiguity in actual
calculations, and in order to respect a fundamental
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requirement for a physical model. We stress that
these are per sè interesting contributions to the
microscopically-grounded works on the subject of
electromagnetic field in dielectric media, because a
covariant generalization is presented and its canonical
quantization in a covariant gauge is performed.
Covariance, as is known, and is confirmed since the
original work by Minkowski [20] and e.g. by [21, 22],
is not simply a speculative exercise in the picture at
hand, but allows to get the correct behavior of physical
quantities when changing from a inertial observer to
another one. An important example is represented by
a uniformly travelling perturbation v =const moving
along the x-direction, where we can use covariance
for passing to the comoving frame, where the theory
is static, and where physical interpretation of the
scattering process is much more perspicuous [23].
It is also worth mentioning a longstanding series of
studies concerning electrodynamics of moving media,
where covariance of the formalism plays a key-role.
We limit ourselves to quote some seminal papers [24,
25, 26, 27], where phenomenological electrodynamics is
adopted (ref. [27] is explicitly devoted to the dispersive
case). In particular, [24] and [26] are also important
references for the dielectric models in analogue gravity
[28]. See also [29], where a covariant model for moving
(homogeneous) dispersive dielectric media is studied
and quantized in the Coulomb gauge.
As to quantization, we can provide a scheme of
constrained quantization where all subtleties of the
theory are taken into account (see e.g. [30, 31]), and
still covariance plays an important role for obtaining
consistent quantization rules which would not be so
clearly stated otherwise. As far as dispersive effects
are not involving magnetic properties of the material,
we can also consider that our model, for constant
dielectric susceptibility, represents an improvement of
the phenomenological model studied in [32].
It is worth mentioning that a very general and
interesting picture is provided in [11], where the
susceptibility is a tensor field depending on space
and time. Absorption is also included by means
of a bath of oscillators whose interactions with the
electromagnetic field originate dissipative effects. Still,
as a novelty with respect to the aforementioned picture,
we develop a formalism leaving room for covariance and
also quantization in a covariant gauge, which are not
treated therein.

2. A covariant form for the Hopfield model

In the following, we take into consideration the
electromagnetic field Lagrangian which is apt for a
dispersive lossless dielectric medium, as in Hopfield
model [5, 6, 7]. A further field, representing material

polarization, is introduced and coupled to the free
electromagnetic field as follows:

Lem : =
1

8π

(

1

c
Ȧ+∇ϕ

)2

− 1

8π
(∇ ∧A)

2

+
1

2χω2
0

(

Ṗ2 − ω2
0P

2
)

− g

2c

(

P · Ȧ+ Ȧ ·P
)

− g

2
(P · ∇ϕ+∇ϕ ·P) .

As an example, a traveling perturbation is described by
introducing χ(x−vt, y, z), ω0(x−vt, y, z), g(x−vt, y, z).
Only a first-principle introduction of the Kerr effect,
like e.g. the one obtained by introducing a fourth
power of P would require substantial modifications
(because of the non-linear term), but we do not pursue
this problem herein.
In order to pursue a more standard calculation for in-
ferring particle creation, we introduce a covariant gen-
eralization of the Hopfield model in 3+1 dimensions:
this would make easier to find out an inner product
with respect to which one could calculate the Bogoli-
ubov coefficients in order to check if particle creation
occurs in the standard way. The problem consists, of
course, in finding a covariant form for the polariza-
tion part of the Hopfield Lagrangian. This is not a so
trivial task. The main problem is represented by the
kinetic part of the polarization field Lagrangian; with
this aim, let us introduce vµ as the 4-velocity of the
bulk dielectric medium (we mean the velocity of the
dielectric sample, not the one of the dielectric pertur-
bation). Then, the covariant lagrangian density is:

L = − 1

16π
FµνF

µν − 1

2χω2
0

[(vρ∂ρPµ)(v
σ∂σP

µ)]

+
1

2χ
PµP

µ − g

2c
(vµPν − vνPµ)F

µν . (1)

Minkowski metric ηµν is chosen with the standard
signature for quantum field theory: (+,−,−,−). The
latter model appears to be the principal candidate in
our consideration, because it provides a field equation
for Pµ which, for constant χ, gives rise e.g. in
the eikonal approximation to the correct covariant
dispersion relation.
We have introduced a 4-vector in order to describe
the polarization field in a covariant form. We have
introduced, as a consequence, also the component P0

of the field, which is absent in the rest frame. Actually,
this new component is not an independent one, it
depends on the spatial components, as can be easily
ascertained by constructing the 4-vector corresponding
to the standard polarization field, see e.g. [22, 33].
Indeed, the following condition has to be implemented:

vµPµ = 0, (2)

which is required at the level of the classical theory for
the polarization vector. Note that in the rest frame,
where vµ = (c, 0, 0, 0), the above condition amounts
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to P0 = 0. We assume this condition too. It is
worth mentioning that this condition is the correct
one for our harmonic oscillator field P coupled to the
electromagnetic field, regardless of its specific nature
of polarization field.
As to the field equations, in the case of the
electromagnetic field we obtain

− 1

4π
∂νF

νµ − vν∂ν

(g

c
Pµ

)

+ vµ∂ν

(g

c
P ν

)

= 0, (3)

and for the polarization field we have

− vα∂α

(

1

χω2
0

)

vβ∂βP
ν − 1

χ
P ν +

g

c
vρF

ρν = 0. (4)

By contracting with vµ the equation for the electro-
magnetic field and taking into account (2) we get
∂µ(E

µ + 4π g
cP

µ) = 0, where Eµ := vνF
νµ. This

is just the Gauss law for the electric induction field
Dµ := Eµ + 4π g

cP
µ. This is the right condition

to identify Pµ as a polarization field and is required
by compatibility among the transversality condition
and the equations of motion. It is also useful to
define the induction tensor Gµν , which is such that
Dν = vµG

µν , Hµ = 1
2v

νǫµνρσG
ρσ := 1

2v
νǫµνρσF

ρσ =
Bµ. Notice that, in absence of free charges and cur-
rents, Gauss law and Ampere law are summarized by
the equation ∂µG

µν = 0, which, contracted with vν ,
amounts to ∂µ(E

µ + 4π g
cP

µ) = 0.
It is also easy to realize that, by introducing the
Φµ := (Aµ, Pµ), whose first four components coincide
with Aµ and the remaining four components coincide
with Pµ ‡ we obtain a field theory which is quadratic
in Φµ.

3. Conserved scalar product for the model

We can now determine the conserved scalar product
associated to the covariant Hopfield model. The first
step in order to determine the scalar product is to
complexify the fields. The complexified lagrangian
density becomes:

Lcov
em = − 1

16π
F ∗
µνF

µν − 1

2χω2
0

[

(vρ∂ρP
∗
µ )(v

σ∂σP
µ)

− ω2
0P

∗
µP

µ
]

− g

2c
P ∗
µvρF

ρµ − g

2c
PµvρF ∗

ρµ. (5)

A symmetry of (5) is Aµ 7→ eiφAµ, Pµ 7→ eiφPµ, A
∗
µ 7→

e−iφA∗
µ, P ∗

µ 7→ e−iφP ∗
µ , where φ is a constant phase.

The associated conserved quantity can be computed by
means of the usual Noether method. The computation
is immediate and gives the conserved current:

J µ =
i

2

[

1

4π
F ∗µνAν +

1

χω2
0

vρ∂ρP
∗σPσv

µ

− g

c
(P ∗µvρ − P ∗ρvµ)Aρ − c.c.

]

. (6)

‡ Φµ is the direct sum of Aµ and Pµ.

Indeed, a direct computation shows that on the
solutions of the equations of motion J µ satisfies
∂µJ µ = 0. Thus, the standard argument shows that
on any spacelike slice Σt the quantity Q :=

∫

Σt
J 0d3x

does not depend from t. This defines a conserved
(Hermitian) quadratic form Q on Φµ = (Aµ, Pµ):

Q((Aµ, Pµ)) =
i

2

∫

Σt

[

1

4π
F ∗0νAν +

1

χω2
0

vρ∂ρP
∗σPσv

0

− g

c
(P ∗0vρ − P ∗ρv0)Aρ − c.c.

]

d3x. (7)

This gives the conserved scalar product by means of
the usual polarization formula. Then we obtain the
conserved scalar product:

((((Aµ, Pµ)|||(Ãµ, P̃µ))))

=
i

2

∫

Σt

[

1

4π
F ∗0νÃν +

1

χω2
0

vρ∂ρP
∗σP̃σv

0

−g

c
(P ∗0vρ − P ∗ρv0)Ãρ −

1

4π
F̃ 0νA∗

ν

− 1

χω2
0

vρ∂ρP̃
σP ∗

σv
0 +

g

c
(P̃ 0vρ − P̃ ρv0)A∗

ρ

]

d3x. (8)

This scalar product is very important in relation to the
quantization of the model. Indeed, it allows to define
positive and negative norm states for the solutions of
the field equations, i.e. it allows to define in a proper
way particles and antiparticles respectively. A proper
quantization for the model is discussed in the following
section.
For example, if χ(t,x) = χ0, ω0(t,x) = ω0, g(t,x) = 1
and we work in the lab frame, the scalar product among
plane waves (with on shell momenta)

(Aµ, Pµ) = (Aµe−iωt+ik·x,

− i
χ0

ω2
0 − ω2

ω

c
Aµe−iωt+ik·x), (9)

and

(Ãµ, P̃µ) = (Ãµe−iω̃t+ik̃·x,

− i
χ0

ω2
0 − ω̃2

ω̃

c
Ãµe−iω̃t+ik̃·x), (10)

where Aµ, Ãµ in (9) and in (10) stand for constant
4-vectors representing the amplitude of the respective
plane waves, is

((((Aµ, Pµ)|||(Ãµ, P̃µ))))

=
ω

c

[

1

4π
+

χ0ω
2
0

(ω2
0 − ω2)2

]

A∗ · Ã δ(3)(k − k̃), (11)

where Aµ = (0,A) and Ãµ = (0, Ã).

4. Quantization of the covariant model

The introduction of the condition (2) amounts to a
constraint to be imposed on the system. This affects
also the quantization of the covariant Hopfield model,
in the sense that the covariant form of the Heisenberg
commutation relations has to be consistent with the
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constraints of the theory.
As to the electromagnetic part of the Lagrangian,
the procedure we follow slightly departs from what
could be considered as standard, e.g. the usual
quantization under covariant gauge conditions like the
Lorentz gauge ∂µA

µ = 0, and where a Gupta-Bleuler
formalism (see e.g. [34]) can be adopted in order to
get rid of spurious degrees of freedom, leaving only
transverse (physical) ones. Instead, we follow the Dirac
approach in which all first-class constraints which are
associated with the gauge freedom are first reduced to
second-class ones by means of suitable explicit gauge-
fixing terms in the Lagrange formalism, and then
quantized [35, 36]. Constraints are then implemented
operatorially, rather than in a weak sense (as in the
Gupta-Bleuler approach). See e.g. [30, 31, 37, 38].
In order to perform a complete quantization of the
full Hopfield covariant model, in a covariant gauge,
we have to take into account both the electromagnetic
part and the polarization part of the Lagrangian.
Both these parts require a suitable implementation of
the constraints. We can add the constraints to the
covariant Lagrangian, thus obtaining:

Lc := − 1

16π
FµνF

µν − 1

2χω2
0

[(vρ∂ρPµ)(v
σ∂σP

µ)]

+
1

2χ
PµP

µ − g

2c
(vµPν − vνPµ)F

µν

+B(∂µA
µ) +

ξ

2
B2 + λ(vµP

µ), (12)

where B plays the usual role of auxiliary hermitian
scalar field, also known as B-field [41, 30], and ξ is a
constant which is useful for reproducing various gauge
conditions (the so-called Rξ-gauges). The equations of
motions are

− 1

4π
∂νF

νµ − vν∂ν

(g

c
Pµ

)

+ vµ∂ν

(g

c
P ν

)

+∂µB = 0, (13)

−vα∂α

(

1

χω2
0

)

vβ∂βP
ν − 1

χ
P ν +

g

c
vρF

ρν

+λvµ = 0, (14)

∂νA
ν + ξB = 0. (15)

Furthermore, as far as the conjugate momenta are
concerned, we obtain:

∂Lc

∂∂tA0
= : Π0

A =
B

c
, (16)

∂Lc

∂∂tAi
= : Πi

A = − 1

4πc
(∂0Ai − ∂iA0)

− g

c2
(v0P i − viP 0), (17)

∂Lc

∂∂tB
= : πB = 0, (18)

∂Lc

∂∂tPµ
= : Πµ

P = − 1

χω2
0c

v0vσ∂σP
µ, (19)

∂Lc

∂∂tλ
= : πλ = 0. (20)

As to the classical Hamiltonian density, according to
the standard procedure we have:

H = (∂tA
µ)ΠA µ + (∂tP

µ)ΠP µ − Lc + uπλ

+ yπB + z(Π0
A − B

c
)

= 2πc2(Πi
A)

2 +
1

16π
FijF

ij + cA0(∂iΠA i)

+ 4πg(v0Pi − viP0)ΠA i − c
vk

v0
(∂kP

µ)ΠP µ

− χω2
0c

2

2(v0)2
ΠP µΠ

µ
P − 1

2χ
PµP

µ +
2πg2

c2
(v0Pi − viP0)

2

+
g

2c
(viPj − vjPi)F

ij −B(∂iA
i)− ξ

2
B2

− λ(vµP
µ) + uπλ + yπB + z(Π0

A − B

c
). (21)

In our model there are three primary constraints
πB ,Π

0
A − B/c, πλ. From the analysis of

Poisson brackets of the primary constraints with the
Hamiltonian we can find the following complete set of
constraints:

Γ1 = πB , (22)

Γ2 = Π0
A − B

c
, (23)

Γ3 = vµP
µ, (24)

Γ4 = vµΠ
µ
P , (25)

Γ5 = λ, (26)

Γ6 = πλ. (27)

We have taken into account that all functions of
the constraints giving rise to the same submanifold
Γi = 0, i = 1, 2, 3, 4, 5, 6 are to be considered
equivalent, and this allows us to get the former
simplified expressions for Γ4,Γ5. See also [31, 30].
Γ1,Γ2,Γ6 represent primary second-class constraints of
the theory, and they appear explicitly in the expression
of our constrained Hamiltonian defined above. We
provide in the following some more details of the
calculations.
In order to be more explicit, we get

{πB, H} = ∂iA
i + ξB +

z

c
, (28)

{Π0
A −B,H} = − c∂iΠAi − y, (29)

{πλ, H} = − vµP
µ, (30)

which represent the Poisson brackets with the primary
second-class constraints. The first equation (28) fixes
z and is the same one obtains in QED [30], and
implies the same conditions. The second equation
(29) determines y. The third equation (30) introduces
a second-class second-stage constraint. Its Poisson
bracket with the Hamiltonian is

{vµPµ, H} = −χω2
0c

2

(v0)2
vµΠ

µ
P − c

vk

v0
∂k(vµP

µ) (31)

which, on the sub manifold defined by the above
constraints amounts to requiring vµΠ

µ
P = 0, which is
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then a second-class third-step constraint. Its Poisson
bracket with the Hamiltonian is

{vµΠµ
P , H} =

1

χ
vµP

µ + c
vk

v0
(∂kδ)(vµΠ

µ
P ) + vµvµλ, (32)

which, on the submanifold of the previous constraints
implies λ = 0. At this point we have a complete set of
constraints, because

{λ,H} = u (33)

simply fixes u = 0. See also below.

We can define the matrix {Cij} whose entries are
Cij := {Γi,Γj}, where {, } stay for the Poisson brack-
ets. In particular, restoring the dependence on space-
time variables (time is fixed), with x = (t,x), we get
the following non-zero entries: {Γ1(t,x),Γ2(t,y)} =
δ(3)(x − y)/c, {Γ3(t,x),Γ4(t,y)} = vµv

µδ(3)(x −
y), {Γ5(t,x),Γ6(t,y)} = δ(3)(x − y). Let us explicit
the Dirac brackets as provided from the theory of con-
strained systems:

{A,B}D = {A,B} − {A,Γi}C−1
ij {Γj ,B}. (34)

We recall that, in a less synthetic form, in the
previous formula one has to take into account
that, by introducing collective symbols for phase-
space variables {Xl} = {Aµ, Pµ, B, λ}, {Π̄l} =
{Πµ

A,Π
µ
P , πB, πλ}, we get:

{A,B} =

∫

d3z

(

δA
δXl(t, z)

δB
δΠ̄l(t, z)

− δA
δΠ̄l(t, z)

δB
δXl(t, z)

)

,

{A,Γi}C−1
ij {Γj,B}

=

∫

d3ud3w{A,Γi(t,u)}C−1
ij (u,w){Γj(t,w),B};(35)

a summation convention on repeated indices is
understood. One can also determine the Lagrange
multipliers u, y, z that appear for primary second-class
constraints Γ1,Γ2,Γ6 in the constrained Hamiltonian,
as shown in our previous discussion. It is now easy to
show that the following Dirac brackets hold true:

{Aµ(t,x),Πν
A(t,y)}D := ηµνδ(3)(x− y), (36)

{Pµ(t,x),Πν
P (t,y)}D

:=

(

ηµν − 1

vρvρ
vµvν

)

δ(3)(x − y), (37)

{B(t,x), πB(t,y)}D := 0, (38)

{λ(t,x), πλ(t,y)}D := 0, (39)

which represent the basic ingredients for the quantiza-
tion. Indeed, according to Dirac quantization scheme,
we have to impose on quantum operators:

[X̂ l(t,x), ˆ̄Πk(t,y)] := i~{X l(t,x), Π̄k(t,y)}D. (40)

Moreover, constraints Γi = 0, i = 1, . . . , 6, are
implemented as operators (cf. [30], in particular p.
132):

π̂B = 0, (41)

Π̂0
A =

B̂

c
, (42)

vµP̂
µ = 0, (43)

vµΠ̂
µ
P = 0, (44)

λ̂ = 0, (45)

π̂λ = 0. (46)

As to the Hamiltonian, we have

H =

∫

d3x
[

2πc2(Πi
A)

2 +
1

16π
FijF

ij + cA0(∂iΠA i)

+ 4πg(v0Pi − viP0)ΠA i − c
vk

v0
(∂kP

µ)ΠP µ

− χω2
0c

2

2(v0)2
ΠP µΠ

µ
P − 1

2χ
PµP

µ +
2πg2

c2
(v0Pi − viP0)

2

+
g

2c
(viPj − vjPi)F

ij −B(∂iA
i)− ξ

2
B2

− λ(vµP
µ) + uπλ + yπB + z(Π0

A − B

c
)
]

. (47)

As we are dealing with a model in which only second
class primary constraints appear, we can also explicit
the Lagrange multipliers as functions of the canonical
variables. By taking into account our previous
analysis, we can limit our attention only to y, z, which
display the only non-trivial behaviour, and replace
y = −c∂iΠAi (cf. (29)), z = −c(∂iA

i + ξB) (cf. (28))
in (47). (We recall that u = 0 = λ).
It is interesting to note that, according to (45),(46),
λ and its conjugate variable πλ are ‘expelled’ by
constrained quantization, in the sense that they are
reduced both to the zero operator. We can provide
the following interpretation. Condition (2) holds true
as a consequence of the antisymmetric character of
the induction tensor Gµν defined at the end of sec.
2. Indeed, we easily get vνD

ν = vνvµG
µν = 0,

which, being Dµ := Eµ + 4π g
cP

µ, and being vµE
µ :=

vµvνF
νµ = 0, necessarily implies also vµP

µ = 0.
This condition is then preserved by quantization. This
fact corroborates the previous results concerning the
quantization of the model.

4.1. Scalar product and constraints

We notice that we have introduced in our setting
constraints even in the Lagrangian approach. As
a consequence, we have to take into account how
the scalar product (8) is modified because of the
constraints. After complexification of the constrained
Lagrangian Lc, we find that it appears only a further
term in the scalar product: if (Aµ, Pµ, B, λ) stays for
the direct sum of Aµ, Pµ, B, λ, we get

((((Aµ, Pµ, B, λ)|||(Ãµ, P̃µ, B̃, λ̃))))
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=
i

2

∫

Σt

[

1

4π
F ∗0νÃν +

1

χω2
0

vρ∂ρP
∗σP̃σv

0

−g

c
(P ∗0vρ − P ∗ρv0)Ãρ −

1

4π
F̃ 0νA∗

ν

− 1

χω2
0

vρ∂ρP̃
σP ∗

σv
0 +

g

c
(P̃ 0vρ − P̃ ρv0)A∗

ρ

−(B∗Ã0 − B̃A0∗)
]

d3x. (48)

Notice that, assuming the same fields as in (11), we
still obtain the same result.
It is also important to point out that the former scalar
product can be found as follows. We introduce the
phase-space vectors ({X l}, {Π̄l}), to be intended again
as a direct sum, by using the symplectic form:

Ω := i

[

0 110×10

−110×10 0

]

, (49)

where 110×10 stays for the identity matrix 10 × 10.
Then we can define the following scalar product:

〈({X l}, {Π̄l}), ({X̃ l}, { ˜̄Πl})〉
:=

∫

({X∗l, Π̄∗
l }) · Ω({X̃ l}, { ˜̄Πl})d3x, (50)

where · stays for the usual Euclidean scalar product.
Then, by taking into account the definitions for Π̄l

one gets the same result as in (48). This is the
extension to a canonical quantization scheme and
to 3+1 dimensions of the results obtained for 1+1
dimensions in [18].
It is also possible to introduce the operator H̃ such
that the Hamiltonian in (47) can be written as follows
(see e.g. [39]):

H =
1

2
(({X l}, {Π̄l}), H̃({X l}, {Π̄l}))

=
1

2

∫

({X∗l, Π̄∗
l }) · H̃({X̃ l}, { ˜̄Πl})d3x (51)

which is such that, by defining Ψ := ({X l}, {Π̄l}), one
obtains the Hamiltonian equations in the form

Ψ̇ = −iΩ(∇ΨH) = −iΩH̃Ψ, (52)

where ∇Ψ = ({∂Xl}, {∂Π̄l
}) It is also evident that, due

to the trivialization of λ and πλ, we can restrict our
considerations to a 9× 9 dimensional phase space in a
straightforward way.

4.2. Construction of physical states and physical

operators

In this subsection, we delve into the problem of
constructing physical states and observables in our
canonical approach in covariant gauges. As well-
known, the price to be paid for covariance is the
appearance of negative norm states, and also of zero-
norm ones. As in QED, one has to face with the
problem of non-physical states, which have to be
eliminated from the physical spectrum. Also the
Fano diagonalization procedure has to be revisited

in view of the particular gauge conditions. In the
standard approach to quantum electrodynamics, the
calculation of the S-matrix requires several ingredients.
Lacking a clear and well-defined way to implement
a full non-perturbative quantum field theory in the
Heisenberg representation, a perturbative approach is
implemented in the interaction representation, where
the fields evolve as free fields (i.e. their evolution
is prescribed by the free field Hamiltonian H0). A
delicate interplay of the interacting (renormalizable)
theory with asymptotic free fields occurs (cf. e.g. [30]
for the case of QED). Asymptotic free fields (IN and
OUT fields) satisfy canonical commutation relations
and their creation and annichilation operators satisfy
free-field commutation rules. In the present case, in
order to simplify a bit our picture, we limit ourselves to
the homogeneous dielectric medium, without losses and
without dielectric perturbations e.g. induced by means
of the Kerr effect. This is not a so crude limitation,
as in region asymptotically far from the traveling
dielectric perturbation, homogeneity can be assumed
to be preserved. Within the given approximation,
we assume a quantization strategy which goes parallel
to the one of [40], i.e. we quantize the fields as
free, with the coupling g = 0, and then perform
a Fano diagonalization for the physical part of the
Hamiltonian (with g 6= 0). We expect that the
procedure is consistent with the original commutation
relations for the fields, as is in [40] (cf. also [9]).
Furthermore, we wish to avoid any problem with the
dipole ghost (see e.g. [41]) so we impose the Feynman
gauge ξ = 4π in what follows. See also the following
section.
We start from the polarization field. It is a vector field
with four components, so a priori it would involve four
degrees of freedom. Still, the transversality condition
vµPµ = 0 (2) reduces to three the degrees of freedom
which are actually available. This is also evident
from (37), which in the rest frame reduces identically
to zero. Indeed, the set of eight fields {Pµ, ∂0Pµ}
represents a complete but not independent set of initial
conditions, because (2) allows to express P0, ∂0P0 as a
function of the set {Pi, ∂0Pi} which is both complete
and independent. We can choose, in particular, a set
of polarization vectors eµλ, λ = 1, 2, 3, such that

3
∑

λ=1

eµλe
ν
λ = ηµν − vµvν

vρvρ
, (53)

which can be easily implemented. See below. As to
Pµ, we have

Pµ =

3
∑

λ=1

∫

d4p
1

Np
δ(DR)

[

eµλbλ(p)e
ipx + h.c.

]

, (54)

where DR indicates the free field dispersion relation,
and Np is a suitable normalization factor. Our choice
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for the basis is {eµ1 , eµ2 , v
µ

c −pµ c
ω}, where ω = vµpµ and

eµλ = (0, eλ), λ = 1, 2, (55)

in such a way that, for λ = 1, 2 it holds eλ · e′λ = δλλ′ ,
and

vµe
µ
λ = 0, (56)

pµe
µ
λ = 0, (57)

where pµ is the wave-vector, as usual. The third
polarization is orthogonal to eµ1 , e

µ
2 , and also to

vµ. For the operators bλ(p) the following canonical
commutation relations (CCR) hold:
[

bλ(p), b
†
λ′ (q)

]

= δλλ′δ(3)(p− q). (58)

For the electromagnetic field and the auxiliary
field B quantization requires some more efforts. We
can introduce a further set of polarization vectors
ēµλ, λ = 0, 1, 2, 3 and of operators aλ(p) such that

Aµ =

3
∑

λ=0

∫

d4p
1

Wp
δ(DR)

[

ēµλaλ(p)e
ipx + h.c.

]

, (59)

where Wp is a suitable normalization. Usually, one
imposes

3
∑

λ=0

ēµλē
ν
λ = ηµν . (60)

In particular, one may choose the set of polarization
vectors { vµ

c , eµ1 , e
µ
2 , e

µ
3}, where eµλ, λ = 1, 2, 3 satisfy

(53). Still, purposefully, in order to allow a more
direct comparison with common literature and with
[30], we use the Gitman-Tyutin basis we costruct in
the following. Furthermore, in this section, and only
in this section, we choose vµ = γ(c, 0, 0, v). We choose
eµλ, λ = 1, 2 as in the case of the polarization field.
The third polarization can be chosen e.g. as follows
(cf. [30]) in the case of the electromagnetic field:

eµ3 = −i
1

|p|p
µ, p0 = |p|. (61)

It is also useful to choose

eµ0 = −i
1

2|p|(|p|,−p). (62)

Our choices are the same as in [30], apart from a
slightly different normalization of both the vectors. We
shall indicate the basis

{−i
1

2|p|(|p|,−p), eµ1 , e
µ
2 ,−i

1

|p|p
µ} (63)

as the Gitman-Tyutin basis. We stress that in this
basis

eµ0e
ν
0ηµν = 0 = eµ3e

ν
3ηµν , (64)

and

eµ0e
ν
3ηµν = −1. (65)

We also get, in the case of the auxiliary field B,

B =

∫

d4p
1

Sp
δ(DR)

[

β(p)eipx + h.c.
]

, (66)

where Sp is a suitable normalization. We remark that
both Aµ and B are considered as free fields, and then
DR is a free field dispersion relation. Furthermore,
the equation of motion for B (15) implies that we can
reduce to four the overall degrees of freedom for the
fields Aµ, B, and then only four operators in the set
aλ, β, with λ = 0, 1, 2, 3 are independent. We choose,
in analogy with the discussion in [30] (sec. 4.2 therein),

a0(p) = β(p). (67)

Commutation relations are the same as in [30] , as we
are using the same basis for the electromagnetic sector
of our model. We find

[β(p), β†(q)] = 0, (68)

and

[a3(p), β
†(q)] = −δ(3)(p− q), (69)

and also

[aλ(p), β
†(q)] = 0, λ = 1, 2. (70)

Also, we find the following commutation brackets for
aλ(p), λ = 1, 2, 3:
[

aλ(p), a
†
λ′(q)

]

= δλλ′δ(3)(p− q). (71)

All other commutation relations are equal to zero. In
particular, it holds
[

a3(p), a
†
3(q)

]

= 0, (72)

consistently with [30]. We point out that in the
Gitman-Tyutin basis, and in the Feynman gauge,
one may recover the above commutation relations by
first recovering the functional relations between the
creation-distruction operators and the fields and their
conjugate momenta. Cf. eg. chapter 7 in [42], in par-
ticular subsection 7.3.1 therein. We also recall that, a
different choice of the basis with respect to the Gitman-
Tyutin one, leads to different operators ãλ, ã

†
λ, which

are linearly related (by means of a unitary transforma-
tion) to the ones of the Gitman-Tyutin basis. More-
over, the same commutation relations as above can be
found also in a gauge with ξ 6= 4π [30].

It is important to consider the particular form of
the interaction term between the polarization field and
the electromagnetic field. This term is proportional to

EµPµ. (73)

We have to take into account that Pµ is constrained by
the transversality condition with respect to the velocity
vµ (2). We can also introduce the projection operator

Pµν := ηµν − vµvν

vρvρ
, (74)
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which is such that vµPµν = 0. It is evident that
PµνPν = Pµ and PµνEν = Eµ, so that the interaction
term is transverse with respect to vµ. Furthermore,
we are considering isotropic dielectric media, where
P ∝ E. Then, we expect also that Pµ ∝ Eµ.
Moreover, from the equations of motion we have

∂µD
µ = ∂µ(E

µ + 4π
g

c
Pµ) = 0. (75)

This equation, in the homogeneous case (which
represents the asymptotic limit in the comoving frame
when a traveling perturbation is present), implies both
∂µE

µ = 0 and ∂µP
µ = 0, due to the aforementioned

constitutive equation. As a consequence, by passing to
the Fourier representation, this amounts to

pµE
µ = 0, (76)

i.e. also a transversality condition with respect to pµ

is implemented. If we introduce the further projection
operator

P̄µν := ηµν − pµpν

pρpρ
, (77)

we have also

Eµ = P̄µνEν . (78)

As a consequence, in the interaction term we have

EµP νηµν = P̄µρEρPνσPσηµν , (79)

which means that the interaction term involves only
polarizations which are transverse to both vµ and kµ.
In other terms, only physical transverse polarizations
of the polarization field and of the electromagnetic
field interact. Note that the projection operators
Pµν , P̄µν commute. The scalar polarization λ =
0, which involves only the electromagnetic field,
and the longitudinal one λ = 3, which involves
both the electromagnetic field and the polarization
field, correspond to interaction-free parts of the
field, which decouple from the physical spectrum,
as shown below. In particular, we stress that the
longitudinal component of the polarization field does
not participate to any physical process (it corresponds
to a free oscillator which has no interaction with
the electromagnetic field and that cannot enter any
asymptotic (physical) scattering state).

We follow the discussion in [30] in order to con-
struct states. As remarked above, in our framework,
we have very important simplifications to be taken into
account, due to the fact that our model is free (in terms
of path integral approach, it is Gaussian), so that we
can avoid discussing Ward identities, and also the in-
field formalism.

The space of states R is such that, given the
vacuum state

β(p)|0〉 = aλ(p)|0〉 = bλ(p)|0〉 = 0, λ = 1, 2, 3, (80)

all states are spanned by states of the form

(β†)m(a†λ)
n(b†λ)

l|0〉, λ = 1, 2, 3, (81)

where for simplicity of notation we have left implicit
the dependence on momenta of the operators and
where l,m, n ∈ N. The space R contains states with
zero norm and negative norm as well, due to the fact
that a3, a

†
3, β, β

† satisfy non-canonical commutation
relations. We can easily confirm the presence of
negative norm states as follows. Let us define

d0 :=
1√
2
(a3 + β), (82)

d3 :=
1√
2
(a3 − β). (83)

Then we obtain the commutation relations

[d0(p), d
†
0(q)] = −δ(3)(p− q), (84)

and also

[d3(p), d
†
3(q)] = δ(3)(p− q). (85)

The state d†0|0〉 has negative norm:

〈0|d0(p)d†0(p)|0〉 = −δ(3)(0). (86)

The space R is a space with indefinite metric. As
remarked in [30], this is the price to be paid in order to
get an explicit Lorentz covariance. One could consider
only the subspace R⊥ of vectors of the form

(a†λ)
n(b†λ′)

l|0〉, λ = 1, 2, λ′ = 1, 2, (87)

which has a positive definite metric (it is an Hilbert
space), but explicit covariance is lost. We also indicate
the inverse formulas

β =
1√
2
(d3 − d0), (88)

a3 =
1√
2
(d3 + d0). (89)

It is useful to define the physical space Rph, which is
spanned by vectors of the form

(β†)m(a†λ)
n(b†λ′)

l|0〉, λ = 1, 2, λ′ = 1, 2. (90)

It is a proper subspace of R, because states generated
by a†3 and by b†3 are absent. If we call R0 the subspace
spanned by vectors (90) with m 6= 0, we have

Rph = R⊥ ⊕R0. (91)

States in R0 have zero norm and are orthogonal to any
state in Rph. States in Rph can be identified also by
means of the condition

β|Ψ〉 = 0, |Ψ〉 ∈ Rph, (92)

as β commutes with any other operator except for a†3.
This condition amounts to the usual Gupta-Bleuler
condition, as it can be expressed as follow:

B̂(+)(t,x)|Ψ〉 = 0, (93)
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where B̂(+)(t,x) is the positive frequency part of the
operator B̂(t,x) (see [30] for details). The space Rph

can be described, as in [30], as a space whose non-zero
norm vectors represent physical spaces, and vectors
which differ for a zero-norm vector are physically
equivalent:

|Φ〉 ≃ |Ψ〉 ⇐⇒ (|Φ〉 − |Ψ〉) ∈ R0. (94)

We take into account the construction of physical
operators. In [30] it is shown that any physical operator
F̂ph, i.e. any operator which is associated with a
physical observable, should be such that

F̂phRph ⊂ Rph, (95)

i.e. Rph should be invariant. In particular, the

Hamiltonian Ĥ should be a physical operator, and
indeed it is. Let us suppose that |Ψ〉 ∈ Rph. Then
we have

B̂(+)(t,x)Ĥ |Ψ〉 = [B̂(+)(t,x), Ĥ ]|Ψ〉
= i~∂0B̂

(+)(t,x)|Ψ〉 = 0. (96)

This ensures that the space Rph is left invariant under

the action of the Hamiltonian Ĥ .
We point out also that, for any observable F̂ which
does not depend explicitly on time, in the Heisenberg
picture it holds

i~
∂F̂

∂t
= [F̂ , Ĥ ]. (97)

4.3. The Hamiltonian and the Interaction

Representation

In the previous subsection, we have several times
mentioned that we consider the fields as free.
Implicitly, we have referred to the interaction
representation, which is standard in quantum field
theory as far as nontrivial interaction terms appear.
There is no strict need to refer to this representation
in our case, as the theory can be dealt with exactly.
Still, there are nontrivial subtleties, which are related
to the choice of the gauge. As is known, in standard
QED the usual gauge for quantum electrodynamics
is the so called Feynman gauge, i.e. ξ = 4π. This
gauge avoids to be faced with the appearance of
the so-called ghost pole in the theory [41], which
represents a nontrivial and quite hard problem to be
dealt with. In the present case, the choice ξ = 4π
is effective only in the interaction representation, in
the sense that in the Heisenberg representation it is
not available, as it is not difficult to realize. We
defer the study in the latter representation to a future
publication, as even in the homogeneous case (i.e. no
traveling perturbation) there are many tricky formal
problems which require extensive and long calculations.
Herein, in the spirit of most books and studies in
condensed matter physics, we adopt the interaction

representation, so that field operators evolve freely, as
dictated by the free Hamiltonian operator, and states
evolve through the Dyson evolution operator which is
constructed by means of the interaction term in the
Hamiltonian. By referring to our case, we have

H0 = Hem +Hpol, (98)

where H0 is the free Hamiltonian contribution, with

Hem =

∫

d3x
[

2πc2(Πi
A)

2 +
1

16π
FijF

ij

+ cA0(∂iΠA i)−B(∂iA
i)− ξ

2
B2

]

, (99)

and

Hpol =

∫

d3x
[

−χω2
0c

2

2(v0)2
ΠP µΠ

µ
P − 1

2χ
PµP

µ

− c
vk

v0
(∂kP

µ)ΠP µ +
2πg2

c2
(M0i)

2
]

, (100)

where we have defined

Mαβ := vαPβ − vβPα. (101)

The interaction term is

Hint =

∫

d3x
[g

c
M0iF

0i +
g

2c
MijF

ij
]

=

∫

d3x
[ g

2c
MµνF

µν
]

=

∫

d3x
[g

c
PµE

µ
]

. (102)

One has to take into account that, in the interaction
representation, Πi

A is considered at g = 0, so a sim-
plification in calculations occurs. Note that in (100)
the last term has been considered as a further contri-
bution to the free Hamiltonian operator, despite the
fact that it is proportional to g2. This is due to the
fact that this term ‘renormalizes’ the proper frequency
ω0 of the polarization field and, substantially, is a sort
of improvement of the standard free Hamiltonian. See
e.g. [5, 7, 40].
Furthermore, the Hamiltonian Hem can be simplified
by using the equations of motion for the electromag-
netic field: indeed, the last three terms on the solutions
of the equations of motion become

cA0(∂iΠA i)−B(∂iA
i)− ξ

2
B2

= B∂0A0 −A0∂0B +
ξ2

2
B2, (103)

and this is true both in the interaction representation
with g = 0 and in full interacting case, as a direct
inspection confirms. Then we obtain

Hem =

∫

d3x
[

2πc2(Πi
A)

2 +
1

16π
FijF

ij

+ B∂0A0 −A0∂0B +
ξ2

2
B2

]

, (104)

where one can immediately realize that the last three
terms in the free electromagnetic Hamiltonian do
contribute only to the unphysical polarizations, and
then are substantially irrelevant for the physics at hand



The Hopfield model revisited: Covariance and Quantization 11

(their role is only formal, being a consequence of the
covariance requirement, as seen).
We display the explicit expression of the Hamiltonian
in terms of creation and annihilation operators.
We recall our choices for the bases: the Gitman-
Tyutin basis (63) for the electromagnetic field, and
{eµ1 , eµ2 , vµ

c − pµ c
ω} for the polarization field. We first

fix the normalizations for the fields:

Pµ =

3
∑

λ=1

∫

d3p

(2π)3/2

√

χω2
0

2Ω0

[

eµλbλ(p)e
−ipx + h.c.

]

, (105)

where the renormalized frequency is

Ω = ω0

√

1 + 4πg2χ, (106)

and, for the electromagnetic field and the auxiliary field
we get

Aµ =

3
∑

λ=0

∫

d3p

(2π)3/2

√

(2π)

p0

[

eµλaλ(p)e
−ipx + h.c.

]

(107)

B =
1

4π

∫

d3p

(2π)3/2

√

(2π)

p0
p0

[

β(p)e−ipx + h.c.
]

. (108)

In the following, each contribution to the Hamilto-
nian is distinguished between transversal and non-
trasversal. We know that Ĥ is at most quadratic in
the creation and annihilation operators which span the
space R. Moreover, it can be written as follows:

Ĥ = Ĥph + Ĥ ′, (109)

where Ĥph corresponds to the physical part of the
Hamiltonian, which is the same as in the Coulomb
gauge (cf. [30] for QED), and involves only transverse
polarizations. Ĥ ′ is the remaining part, which involves
unphysical polarizations, which are decoupled from the
physical spectrum.
We develop our calculations for the specific case vµ =
(c, 0, 0, 0) for simplicity; we get:

Ĥem,ph =

∫

d3p p0

2
∑

λ=1

a†λ(p, t)aλ(p, t),

Ĥpol,ph =

∫

d3p Ω0

2
∑

λ=1

b†λ(p, t)bλ(p, t), (110)

for the free part, and

Ĥint,ph = i
g

c

∫

d3p

√

πχω2
0

p0Ω
cp0

2
∑

λ=1
[(

aλ(p, t)bλ(−p, t)− a†λ(p, t)b
†
λ(−p, t)

)

+
(

aλ(p, t)b
†
λ(p, t)− a†λ(p, t)bλ(p, t)

)]

. (111)

for the interaction term. We recall that the operators
aλ(p, t) in the interaction representation are related

to the ones aλ(p) in the Schroedinger and the ones
ahλ(p, t) in the Heisenberg representations as follows:

aλ(p, t) = eiĤ0taλ(p)e
−iĤ0t, (112)

ahλ(p, t) = eiĤtaλ(p)e
−iĤt. (113)

Analogous formulas hold for β(p, t), a3(p, t), bλ(p, t).
The contributions to the non-transversal (unphysical)
part of the Hamiltonian are (we omit to use explicit
arguments when no ambiguity occurs)

Ĥ ′
em =

∫

d3p

[

(

−p0
4

)

β†β

]

(114)

for the electromagnetic field, and

Ĥ ′
pol =

∫

d3p Ω0b
†
3b3 (115)

for the polarization part. For the interaction term we
get

Ĥ ′
int =

g

c

∫

d3p

√

πχω2
0

p0Ω
(

1

2
cp0

[(

β(p, t)b3(−p, t) + β†(p, t)b†3(−p, t)
)

+

(

β(p, t)b†3(p, t) + β†(p, t)b3(p, t)
)]

)

. (116)

It is important to underline that matrix elements
between physical states of the H ′ operators vanish:

〈Φ|H ′|Ψ〉 = 0, |Φ〉, |Ψ〉 ∈ Rph. (117)

Indeed, the term in b†3b3 vanishes because physical
states don’t contain any longitudinal quanta of
polarization by construction. The other terms vanish
as well. It may be interesting to point out that, in our
construction, the condition

(∂µP
µ)(+)|Ψ〉 = 0 (118)

is implemented for any |Ψ〉 ∈ Rph. This condition can
be understood as a transversality condition in a weak
sense (as only for λ = 1, 2 the polarization field imple-
ments the transversality condition automatically, with
pµe

µ
λ = 0. Cf. the discussion which follows eq. (75)).

As to the physical part, we can find a linear
canonical transformation (a Bogoliubov transforma-
tion, known as Fano transformation for this specific
model [5, 6]), which carries Ĥph into a simplified form
involving quasi-particle states αλ(p), with λ = 1, 2.
In particular, as in the original Hopfield paper [5], we
impose for λ = 1, 2

[αλ(p), Ĥph] = ω(p)αλ(p), (119)

and the corresponding commutation relations are
[

αi(p), α
†
j(q)

]

= δijδ
(3)(p− q). (120)

In this way we can recover the same dispersion relation
as for the full model, as it is easy to verify. Cf. also
[40].
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4.4. A more general setting

In concluding this section, we point out that the
above model can be easily extended to the case of
N > 1 material harmonic oscillators coupled with the
electromagnetic field. The simple substitutions Pµ 7→
Pµ
(k), with k = 1, . . . , N , ω0 7→ ω0(k), χ 7→ χ(k) and

g 7→ g(k), lead to the desired form of the Lagrangian:

Lc : = − 1

16π
FµνF

µν

−
N
∑

k=1

[

1

2χ(k)ω
2
0(k)

[

(vρ∂ρP(k)µ)(v
σ∂σP

µ
(k))

]

− 1

2χ(k)
P(k)µP

µ
(k) +

g(k)

2c
(vµP(k)ν − vνP(k)µ)F

µν

]

+ B(∂µA
µ) +

ξ

2
B2 +

N
∑

k=1

λ(k)(vµP
µ
(k)). (121)

At the level of the constraints, in place of Γ3,Γ4 we
get 2N constraints Γ3(k),Γ4(k), and, analogously, 2N
constraints Γ5(k),Γ6(k). Fields P

µ
(k) satisfy:

{Pµ
(k),Π

ν
P(l)

}D

:= δ(k)(l)

(

ηµν − 1

vρvρ
vµvν

)

δ(3)(x− y). (122)

5. Example: model with a v =const traveling

dielectric perturbation

Let us consider the case where the dielectric
perturbation induced by means of the Kerr effect
is traveling with constant velocity v in the lab
frame. We can also assume that dependence on
transverse coordinates y, z is absent (which means
that our dielectric perturbation is actually modelized
as a dielectric slab infinitely extended in transverse
directions). The relevance of a covariant approach is
easily appreciated by taking into account that, in the
reference frame comoving with the perturbation, one
gets a static dependence of the parameters χ, ω0, g on
x′/γ, where x′ = γ(x − vt), t′ = γ(t − v

c2x) represent
the Lorentz boost connecting lab and comoving frame.
As a consequence of this, it is easily understood that
energy is conserved in the comoving frame, i.e. it
is possible to perform a variable separation involving
the time coordinate in such a way that the energy ω′

in the comoving frame is conserved. This result is
very important and helpful in interpreting scattering in
presence of the perturbation, and amply corroborates
the relevance of a covariant approach and a consistent
quantization. In particular, it is possible to quantize
the system and to find out a scattering basis for the
quantum fields in a straightforward way, without any
problem arising because of a possible time-dependence
of the perturbation. Moreover, covariance, together
with a correct quantization, allows to find out a

conserved inner product whose associated norm is
fundamental in defining particles and antiparticles
for the given model. Note that the norm sign is
independent on the frame chosen, and then is an
invariant concept (at it should be).
A further paper is dedicated to results and analysis
about this specific model, with special reference
to the question of analogous Hawking radiation in
dielectric media [23]. We limit ourselves to point
out that, as far as the full model with the uniformly
travelling perturbation is concerned, in the lab frame
one can still implement quantization by means of
standard canonical commutation relations. Indeed, the
electromagnetic part can be quantized in the Coulomb
gauge, without any change with respect to the standard
strategy (se e.g. [5], or even [9, 10] for a more
involved model). The polarization field part does not
require a particular care in the definition of the variable
conjugate to P, which is obtained by standard tools of
Lagrangian formalism. One is lead to the following
equal time commutation relations:
[

Pi(t,x),
1

χω2
0(t,y)

∂tPj(t,y)

]

= i~δijδ
(3)(x−y).(123)

It can be easily shown that the conjugate momentum
1

χω2
0
∂tPi leads to correct Hamiltonian equations for the

polarization field.
We stress again that, in the lab, the presence of the
travelling perturbation induces an explicit dependence
on t of the total Hamiltonian of the model. This implies
that energy is not conserved in this frame, still one can
expect that some sort of conservation occurs (cf. e.g.
what happens in the case of the generalized Manley-
Rowe identities [23]). This makes the quantization in
the lab less clear and more problematic than the one
in the comoving frame.

6. Asymptotic behavior of solutions in the

comoving frame for v =const

The Hamiltonian (21) allows variables separation for
the solutions. Defining:

Aµ(x, y, z, t) = e−iωt+ikyy+ikzzaµ(x),
Pµ(x, y, z, t) = e−iωt+ikyy+ikzzpµ(x),
B(x, y, z, t) = e−iωt+ikyy+ikzzb(x),
λ(x, y, z, t) = e−iωt+ikyy+ikzzl(x) (124)

we obtain a second order system of ordinary differential
equations for the variables aµ(x), pµ(x), b(x) and l(x).
Since the equation for l(x) is l(x) = 0 we can omit
this variable from the system. The equation involving
b(x) is algebraic and can be used to simplify the other
eight. To this second order system we can associate a
first order one by introducing:

αµ(x) := ∂xa
µ(x), πµ(x) := ∂xp

µ(x),
β(x) := ∂xb(x), (125)
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then ifW (x) := (aµ(x), αµ(x), pµ(x), πµ(x)), we obtain
the following system:

W ′(x) = K16W (x), (126)

where K16 is a suitable 16× 16 operator. This can be
written asK16 = C+R(x), where C is a constant 16×16
matrix and R(x) contains the non constant part. For
simplicity, let us consider the case where only dielectric
susceptibility varies; then R(x) has the form:

R(x) :=









04 04 04 04
A4 B4 C4 D4

04 04 04 04
04 04 04 04









, (127)

where 04 is the 4 × 4 identity matrix, and A4 =

− iv0ωω2
0χ(x)

c(v1)2 I4, B4 =
ω2

0χ(x)
cv1 I4, C4 = − iv0ωχ′(x)

v1χ(x) I4,

D4 = χ′(x)
χ(x) I4, with I4 the 4× 4 identity matrix. Under

the hypothesis:
∫ ∞

a

dx|R(x)| < ∞, (128)

which physically can match very well the nature of
travelling perturbation of δχ (see e.g. the theory
displayed in [43]), we can infer that, both as x →
∞ and as x → −∞, the asymptotic behavior of
solutions is governed by the eigenvalues of C, which
implies that the basis for δχ = 0 is asymptotically a
good scattering basis also for the perturbed problem.
To be more precise: the asymptotic region solutions
are a scattering basis, and, moreover, solutions
of the full equations asymptotically behave as the
asymptotic region solutions, which then represent a
good scattering basis.

7. Conclusions

We have presented a model aimed to a semi-
phenomenological description of quantum electrody-
namics in presence of a dielectric perturbation in a
dielectric medium. The standard Hopfield model has
been made fully covariant, and its quantization proce-
dure has been discussed in detail. We stress that the
requirement of covariance is fundamental in order to
allow a proper interpretation of measurable quantities
(e.g. quantum probabilities) as viewed by different (in-
ertial) observers. E.g., in the discussion of the analogue
Hawking effect in dielectrics, a very important concep-
tual tool consists in the analysis one performs in the
comoving frame of the dielectric perturbation induced
by the Kerr effect. This request for covariance reflects
itself in a more tricky quantization procedure, which
involves both the electromagnetic field, which repre-
sents a constrained system, as any gauge theory, and,
as such, requires a special quantization procedure, and
also the polarization field, due to a further constraint
it carries into the lagrangian of the system. We have

dealt the problem both in a non-covariant approach
and in a covariant one. We have also discussed how to
identify the asymptotic behaviour of the solutions.
Our direct developments of the present work include:
1) a perturbative approach [45] for the model, 2) an ap-
plication of the aforementioned approach to the prob-
lem of photon pair creation by a helicoidal rotating di-
electric perturbation [46], 3) the nonperturbative study
of the analogue Hawking effect [23], together with the
elaboration of a simplified model reproducing the basic
features of the full Hopfield model discussed here. 4)
The description, at the perturbative level, of cosmolog-
ical analogue situations [47].
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