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Abstract

The elastic behaviour and the structural evolutcdnmicroporous materials compressed
hydrostatically in a pressure-transmitting fluie airastically affected by the potential crystaieiu
interaction, with a penetration of new molecule®tigh the zeolitic cavities in response to applied
pressure. In this manuscript, the principal mecddrasithat govern thie-behaviour of zeolites with
and without crystal-fluid interaction are descriped the basis of previous experimental findings
and computational modelling studies.

When no crystal-fluid interaction occurs, the eféeaf pressure are mainly accommodated by
tilting of (quasi-rigid) tetrahedra around O atothat behave as hinges. Tilting of tetrahedra is the
dominant mechanisms at low-miéregime, whereas distortion and compression ofhetira
represent the mechanisms which usually dominatentdenighP regime. One of the most common
deformation mechanisms in zeolitic framework is timerease of channels ellipticity. The
deformation mechanisms are dictated by the topoégionfiguration of the tetrahedral framework;
however, the compressibility of the cavities istcoled by the nature and bonding configuration of
the ionic and molecular content, resulting in diéf@ unit-cell volume compressibility in isotypic
structures.

The experimental results pertaining to compressiofpenetrating” fluids, and thus with
crystal-fluid interaction, showed that not all theolites experience B-induced intrusion of new
monoatomic species or molecules from Bigansmitting fluids. For example, zeolites withllve
stuffed channels at room conditioresq, natural zeolites) tend to hinder the penetrabbmew
species through the zeolitic cavities. Several aldeis govern the sorption phenomena at high
pressure, among those: the “free diameters” ofrdmaework cavities, the chemical nature and the
configuration of the extra-framework populatiore fhartial pressure of the penetrating molecule in
the fluid (if mixed with other non-penetrating molges), the rate dP-increase, the surface/volume

ratio of the crystallites under investigations, theperature at which the experiment is conducted.
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An overview of the intrusion phenomena of monoatospecies€.g, He, Ar, Kr), small
(e.g, HO, CQ) and complex molecules, along with tReénduced polymerization phenomena,
(e.g, CHj, GH4, CHeO, GHeO,, BNHg, electrolytic MgC}:21H,0 solution) is provided, with a

discussion of potential technological and geoldgimalications of these experimental findings.

Keywords: zeolites, porous materials, high pressure, comitmiégs sorption phenomena, crystal-

fluid interaction

Introduction

“Microporous materials” are a class of compountdaracterized by open-structures with
cavities smaller than 20 A in diameter. Cavitideetthe form of channels or cages. Materials with
pores larger than 20 A are the so-called “mesoporoaterials”. Zeolites are the most common (in
Nature) and most used (in industrial processes)aparous materials. The structure of natural and
synthetic zeolites is usually built up by a framekwof SiO,-AlO4-POs-tetrahedra. The extra-
framework population consists of polar moleculesgarticular HO) and monovalent or divalent
cations, which are commonly exchangeable. In hgdrazeolites, dehydration occurs at
temperatures lower than 400°C and is a usually rsdde (and spontaneous) process. The
tetrahedral framework may be interrupted by (OHgfups, which occupy tetrahedral apexes that
are not shared with adjacent tetrahedra (Coomlas. €t997). The general formula for common
Si/Al-zeolites is as follows: ML™y [Al x+2y)Sin-x+2y)O2n]- MH2O (where M: monovalent cations;
L**: divalent cations; usually < n).

The microporous nature of zeolites governs the fowin properties of this class of
materials: the selective (and spontaneous) catichage capacity, the catalytic activity (mainly
promoted by Brgnsted acid sites), Tienduced reversible hydration/dehydration processesthe
most-recently discovere-induced sorption of molecules. These propertiage hmade natural or
synthetic zeolites an object of attention for agloseries of applications, spanning from soll
enhancement(g, zeolites are used as slow release fertilizaerayeéas where environmental issues
are of concern), environmental remediation, wateatment, animal feeding, biomedical and
veterinary applicationse(g, drug delivery systems), cements and concreteslugtion, gas
separation, catalysis in the petroleum induseg( almost all the world’s gasoline is produced
using zeolites) and nuclear-waste processig,(Komarneni 1985, Mumpton 1999, Kall6 2001,
Maxwell and Stork 2001, Ming and Allen 2001, Bidhak 2003, Ackley et al. 2003, Colella 2011,
Gatta et al. 2016a). In this light, zeolites arevadays considered as an important bulk commodity:

3
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the world production of natural zeolites in 2016svedoout 2.8 million of tons (price: 100-230 dollar
per ton) and the consumption of synthetic zeohktes approximately 1.6 million of tons (U.S.
Geological Survey 2017). World reserves of nataegllites have never been estimated. However,
only in the U.S.A., resources are expected to agabrd0 trillion tons for zeolite-rich deposits (U.S
Geological Survey 2017).

The peculiar behavior of zeolites at non-ambiemidtons,e.g.at high temperature (H or
at high pressure (P, led to a large number af situ experiments over the last 60 years. More
specifically, many experiments were devoted to hikbavior of zeolites in response to applied
temperature: the mechanisms Binduced dehydration, cation migration and reareangnt of
extra-framework populations have been investigat@dnsively, mainly byn situ single-crystal or
powder X-ray/neutron-diffractione(g, Bish and Carey 2001; Pabalan and Bertetti 2@ddiciani
2006 and references thereirij situ experiments on zeolites at high pressure have theea only
in the last 15-20 years, mainly for technical diities, allowing the description of) the
compressional behavior (and phase stability) aspoase to the applied pressure, along withPthe
induced deformation mechanisms at the atomic feale Gatta 2008, 2010a, 2010b and references
therein),ii) P-induced penetration of new molecules and its spwading volume expansiog.(,
Lee et al. 2002a, 2002h),) P-induced variation of the ionic conductivity of Zgées (e.g, Secco
and Huang 1999; Rutter et al. 200@), andP-induced amorphization processesy( Gillet et al.
1996; Huang and Havenga 2001; Rutter et al. 200&a¥es et al. 2003; Gulin-Gonzales and
Suffritti 2004; Goryainov 2005).

The HP-behavior of a zeolite compressed in a fluid isstically dependent on the potential
crystal-fluid interaction. Gatta (2008, 2010a) a@dtta and Lee (2014) described the relation
between compressibility and microporosity, the fearark flexibility (through deformation
mechanisms at the atomistic level), and the differrole played by framework.€., Si/Al-
ordering, different cross-linking of the “buildingock unit”) and extra-framework configuration
(i.e., nature of cations and absorbed molecules, ieaience, ionic radii, coordination number) on
the behavior of zeolites when no crystal-fluid matgion occurs. The aim of this work is a
comparative analysis, on the basis of previoushlipbied data, of the different behavior of zeolites
(natural or synthetic) when compressed in “peniegatand in “non-penetratingP-transmitting
fluids (sensuGatta 2008). More specifically, the effects ofsta}-fluid interaction on the elastic
behavior and on the structure rearrangement oftesalill be described, along with their potential
geological and technological implications.
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Experimental methods

The majority of than situ high-pressure experiments on zeolites have beea dg single-
crystal and powder X-ray diffraction, as wells &Raman spectroscopy, using the so-called
Merrill-Basset-type diamond-anvil cell (DAC) (Mdirand Bassett 1974; Miletich et al. 2000);
only a few experiments have been performedhksitu neutron powder diffraction, using the large-
volume Paris-Edinburgh presse(, Besson et al. 1992; Colligan et al. 2005; Seryod#tial. 2005).

HP-experiments with a DAC are usually conducted witie sample compressed
hydrostatically in a-transmitting fluid. P-transmitting media can be stable in the liquidsolid
state at ambient conditions, or can be gaseoumhbieat conditions and then liquefied at IGw-
before the loading of the DAC, or loaded into Bhehamber at high® by means of a gas-loading
device. The chemical nature and the behaviourePttransmitting fluid can play an important role
in the HP-experiments on zeolites (Gatta 2008, 2010a; Argell. 2007; Gatta and Lee 201B).
fluids can interact or not with the sample. Bediuke potential crystal-fluid interaction, which will
be extensively described below, it is highly ddsigao ensure that the stress applied to the sample
is homogeneous,e. without any differential stress or induced sheaais (Miletich et al. 2000;
Angel et al. 2007). A hydrostatic medium cannotpsup shear stresses, simply because it has no
shear strength. Non-hydrostatic stresses genemhtamiogeneous strain in the crystal and, as a
consequence, (sample) diffraction peaks broadenmitiga reduction of the signal-to-noise ratio. In
addition, non-hydrostatic conditions can modify t@mpressional patterns of a given material
(deduced on the basis of the unit-cell parametansitvon withP) and can also suppress or promote
phase transitions, including the promotionPeinduced amorphization phenomermag(, Decker et
al. 1979; Kenichi 1999; Haines et al. 2001; Macletral. 2003; Resel et al. 2004). Zeolites are
relatively soft materials, and the occurrence ofiateric stress usually has a dramatic impact on
their behaviour at high pressure.

For experiments on zeolites at high pressure ilA& DP-calibration has mainly been done
by the so-called ruby fluorescence methoel,(detecting the shift in the;Rmission line of ruby
chips included in the compression chamlbeuncertainty: £ 0.05 GPa, Mao et al. 1986). A farth
method, especially used for single-crystal expenisieis based on the compressibility pattern of
quartz (.e., with quartz used as an internal standard in thmptession chambeP-uncertainty:
<0.01 GPa, Angel et al. 1997). For the few expenitabyin situ neutron diffraction with the large-
volume press, lead as an internal standard (Calleal. 2005) or the calibration curve of the ILL
hydraulic-press loads. P (Seryotkin et al. 2005) have been used.

The behaviour of a given material at high presssinesually described on the basis of its

compression pattern (based on the evolution otitfiecell parameters witR) and of its structural
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rearrangements at the atomic scale (by structtireereents based on the intensity data collected at
high pressure). About zeolites, the compressiorhbbiour is usually well describable by situ
powder or single-crystal experiments. On the otinend, whereas the quality of théPHingle-
crystal data is usually good enough for structuefihements, the quality of powder data is often
not sufficient, and this has led to an intensive o computational modelling techniques — for
example, ‘rigid unit mode’ (RUM) / geometric appohes, classical force-field methodologieis,
initio structural optimizations and molecular dynamicawations — as a complementary tool to
unravel the structure evolution at the atomisti@leas described below. As a matter of fact,redl t
experiments in a DAC provided intensities, of theadd peaks, usually affected by a series of
phenomena. Among those, the most critical arebtsen attenuation due to the absorption of the
DAC components, parasitic diffraction of the crilata components of the DAC (especially
diamond anvils, their support plates and metal gdskshadowing effects due to the DAC
components (especially gasket and DAC steel baglg), Miletich et al. 2005). For zeolites, which
are usually materials with constituents with poowray diffraction properties, the adsorption
phenomena are likely the most impacting on the dagdity. In addition, in powder experiments an
additional phenomenon usually occurs: the prefeoreshtation of crystallites, as common effect of

uniaxial loads.

Computational modeling

The impressive evolution of High Performance Conmgut(HPC) resources in the last
decade, coupled with the concomitant developmenthebretical chemistry, has fostered the
application of computational techniques to a broateégory of problems in zeolite science (Van
Speybroeck et al. 2015). Theoretical tools ar¢éiqadarly precious in the study of events occurring
at extreme conditions €.g. high-temperature or high-pressurei.e. in cases where obtaining
experimental data at atomistic resolution or dimgtdences of complex phenomena is often very
difficult. In this contribution, we will focus on igh-pressure investigations, underlining how
modeling, in direct conjunction with experiment,ncde used not only to aid structural
determinations when refinement of crystallograpthéta is problematic, but also as a powerful
predictive tool able to inspire the design and guiak fabrication of new zeolite materials through
the use of high pressure. Nowadays, the scoperopuatational approaches in exploring pressure
effects on open-framework silicates goes well belytran that of providing the positions of the
atoms in the unit cell starting from no empiricdligsed information (Woodley and Catlow 2008).

Nevertheless, structural elucidation performadsilico” over the past two decades has fostered a

6
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substantial advance of our understanding about tlmse materials respond to compression,
highlighting a key role of the guest species — rmalles and cations - in guiding the deformation of
the zeolite framework as a consequence of theegppliessure.

Computational approaches used in zeolite modeliag be categorized into three broad
groups, based on the way in which the electronigctire and interatomic interactions of the
system are represented and calculated: i) ‘rigitl mmode’ models and their extensions - namely,
template-based geometrical approaches; ii) clddsicze-field technigues — basically, Monte Carlo
(MC) and molecular dynamics (MD) approaches; dgiantum mechanical methodologies (a.k.a.
“ab initio” or “first principles”).

The first category accounts solely for the strohgeteractions in the system — covalent
bonding and steric exclusion — and is constitutedhle “flexibility-centred” methods. As they are
based on simplified physical models, not only tlaeg computationally fast and convenient, but
they can also help interpreting experimental datida theoretical results at higher levels of tlyeor
Application of these methods can provide valualbigspal insight on the investigated phenomena,
which is especially important in the high-presssitedies of zeolites ((Sartbaeva et al. 2006, 2008;
Wells et al. 2011). Specifically, the ‘rigid umibde' (RUM) model (Giddy et al. 1993, Hammonds
et al. 1994, Dove et al 2000), treats the zeddt@hedra as fundamental, rigid, interacting usnid
analyzes the flexibility of the structure in re@pal space. Harmonic constraints are applied to the
vertices of the tetrahedra, in order to penalizesigparation of two adjacent units. RUMs, in which
the polyhedra move as rigid bodies, without undexg@ny distortion of their internal geometry,
appear at zero frequency and are particularly lisefidentify pressure-induced phase transitions.
The template-based geometric analysis approachlgWwehkl. 2002, Sartbaeva et al. 2006, Wells
and Sartbaeva, 2012, Wells and Sartbaeva 2015¢anh works in the real-space and considers
both the atomic positions, and a set of geomettigaplates reproducing the bonding pattern of
groups of atoms — tetrahedra, in the case of esolit is a more flexible approach, in the senaé th
there are still harmonic constraints - which conr@aaems to the vertices of the tetrahedral template
- but, unlike in RUM, tetrahedra are not forceddoystruction to match exactly the input geometry.
Rather, the templates and the atomic positionstaratively relaxed in order to minimize mutual
mismatches and avoid overlap between non-bondedsatBy using this method, distortions from
idealized geometry of the polyhedral templates banreadily visualized and quantified. This
approach, implemented in the GASP code and recestlgwed (Wells and Sartbaeva 2012, Wells
and Sartbaeva 2015), has been successfully usefafoework materials (Sartbaeva and Wells
2012) . In particular, geometric simulations endkie define an inherently geometrical feature of

the zeolite framework: the “flexibility window” (Staeva et al. 2006, Wells et al 2015) - i.e. the
7
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interval of unit-cell parameters in which the zeolietrahedral units can maintain their ideal shape
This important concept and its usefulness in amadypressure-induced transformations will be
discussed in the following Section, together witme applications to high-pressure studies of
zeolites.

Methods belonging to the second family are rootedassical statistical mechanics, and the
interatomic interactions are modeled by effectiveeptials (Sanders et al 1984; Demontis et al
1987; Demontis et al 1988; Demontis et al 1990; Hder et al 1995). The parameters of the
effective potentials are determined by fitting krgets of either experimental or higher-level
computational data (see.g. Gabrieli et al 2014; Gabrieli et al 2016). In theidy of zeolite
materials, the most popular methods are Monte Q&4{©) and Molecular Dynamics (MD) (Allen
and Tildesley 1987; Demontis and Suffritti 1991erkel and Smit 1996). In the former one, the
phase space of the system is sampled stochastamaityrding to a given statistical ensemble, and
physical quantities — such as energies, bond daisgrtell parameters - are calculated by averaging
over the sampled configurations. In MD, atoms a&gresented as classical particles obeying the
Newton equations of motion, thus generating a dtajg; physical quantities are obtained by
averaging over simulation time. Another widespreguproach is grand-canonical MC, which
allows to simulate systems with a variable humidgpasticles. This technique was applied to the
study of the pressure-induceg®intrusion in hydrophobic silicalite-1 and LTA s aeported by
Desbiens et al. (2005) and Coudert et al (2009)d-adso to the screening of zeolite structures for
two important industrial processes: the purificatiof ethanol obtained from biomasses and
isomerization of heavy alkanes in petroleum refjniboth performed under moderate pressure
conditions (Bai et al. 2015).

While MD can follow the time evolution of a system to hanosecond scales, with MC it is
possible to sample configurations not easily entared along a standard trajectory. Nonetheless,
both of them allow to simulate systems of largezesicompared to quantum-mechanical
calculations. They are normally applied to zeoliath large unit cells and to dynamic processes
such as adsorption, intrusion, and diffusion ofrafxamework species (seeg. Smit et al. 2008;
Combariza et al. 2013, Balestra et al. 2015, GetizéSevillano et al. 2016; Viani et al. 2016).
Although a few examples of first-principles MD aigglions are available - such as the site-to-site
H,O diffusion in a partially dehydrated zeolite (Geii et al. 2004a) — classical MD still remains
the method of choice for these kind of problems.dEéal with temperature-induced or pressure-
induced structural changes, special techniquesasetlable — for example, constant-pressure
molecular dynamics (MD) (Andersen 1980) or the iRalo-Rahman approach (Parrinello and

Rahman 1980; Parrinello and Rahman 1981), whered@arameters are considered as additional
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dynamical variables, so that the simulation boxaliswed to deform. However, very often the
system must cross a significant energy barriethose cases, the phase transition becomes very
unlikely in the accessible simulation time. To aaene this problem, free-energy minimisation
techniques were devised (Gale 1997); they wereieh@.g.,to the monoclinic-to-orthorhombic
phase transition in MFI zeolite at high temperat{@eau-Crespo et al. 2002). In another powerful
approach, named metadynamics, (Laio and Parri@éld2; Martonak et al 2003) penalty functions
prevent the simulation from visiting again previgusampled configurations. Some examples of
application to zeolites are the temperature-indueednstructive phase transition from anhydrous
Li-ABW to eucryptite (Ceriani et al. 2004b), ancethimulation of pressure-induced amorphization
in B-eucryptite at 3 GPa (Narayanan et al. 2013). &l#tter case, simulations revealed that the
amorphization mechanism, at the atomistic levahstsied in the tilting and distortion of tetrahedra
centered at Al/Si sites, accompanied by changethenAl coordination and disordering of Li
cations.

In the third category of computational approachies,electronic structure of the system is
described quantum-mechanically (“from first prinegd) eithervia quantum chemistry methods —
i.e., by solving the time independent Schrodinger gqonafor the electronic wavefunction - or
through Density Functional Theory (DFT) approachésere the energy as an unique functional of
the electronic density. Since the exact form offthmetional is unknown, approximated expressions
are adopted (Parr and Yang 1989). In the simplest the local density approximation (LDA), the
exchange correlation energy functional is calcalateing the expression of a homogeneous gas of
free electrons. To model zeolites, more accuratectional forms are used, which include
dependency from the gradient of the density andkai@vn as Generalized Gradient (GGA)
approximations €.g, Becke 1988; Perdew 1986; Lee et al 1988; Pergleal 1996; Wu 2006;
Perdew et al 2008). Hybrid functionals, which congbDFT with Hartree-Fock exchange.d.,
Becke 1993; Adamo and Barone 1999) can also betediofhey are more accurate but more
demanding than pure-DFT functionals. Also, an apjppmate treatment of dispersion effects -
particularly crucial for modeling.g.the sorption of hydrocarbons in zeolites - mayirisduced
through the use of long range correctiorgg( Grimme 2006; Tkachenko and Scheffler 2009;
Grimme 2011).

Several functionals have been proposed over tlaesyeand new ones are continuously
developed. In this rapidly evolving scenario, banalking plays a crucial role to ensure that the
choice of functional would be appropriate for tlyggtem under investigation. Benchmarking studies
are generally designed to identify a functionaldagroup of functionals) able to model a given set

of physical quantities -e.g. cell parameters, bond distances and angles, mhedtand elastic
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properties — for a series of zeolite types by adhgea reasonable compromise between accuracy
and cost. In this respect, dispersion-corrected J@#ctionals perform particularly well, as it
emerges from a series of recent benchmarks. Sualedebenchmark studies were performed both
on hybrid functionals (Go6ltl and Hafner 2012; Gdtlal 2012; Coudert 2013; Roman-Roman and
Zicovich-Wilson 2015) and on GGA functionals usixgensive databases of experimental data on
aluminosilicate (Fischer 2015; Fischer et al 20B8jukhanov et al 2017) and neutral framework
zeolites (Fischer 2016, Fischer 2017).

First principles methodologies can properly ddsethe breaking and forming of chemical
bonds occurringe.g, in chemical reactions, or in reconstructive ghimansitions, but imply a high
computational overhead. Fortunately, the crystalliattice of zeolites can be modeled by using
either periodic-DFT (see, e.g., Marx and Hutter200tero Arean et al 2008; Ballone et al 2002)
or periodic ab initio methods (Pisani 1996; PisafB9; Dovesi et al 2005; Larin et al 2005;
Demichelis et al 2010), where a simulation box arelterized by a given atomic content,
correspondinge.g.to the crystallographic unit cell of the studiedtarial - is replicated in the three
dimensions forming an infinite lattice. Tensoriahemes for ab initio calculations of elastic
properties (bulk modulus, shear modulus, Poisstio,retc.) at high pressure have been also
implemented (see e.g. Erba et al. 2017) — anddestegarnets and other minerals (Erba et al.
2014a, 2014b).

While standard (static) quantum chemical methods aecurately describe a limited number of
atoms, classical approaches are more appropriateafo extended zeolite system. These
methodologies can be combined giving rise to hylidntum mechanics /molecular mechanics
(QM/MM) (seee.g.Bludsky et al 2005; Morpurgo 2015); hybrid abimiDFT variants have also
been proposed (seeg. Tuma and Sauer 2004; Tuma and Sauer 2006; Pieciai 2016). Other
approaches aimed at bridging the gap betweengiistiples and classical descriptions are based
on the partitioning of the total electron densityamg individual subsystems (Wesolowski and
Warshel 1993, Tabacchi et al. 2005, Maertzke e2@09; De Silva and Wesolowski 2012), which
maintains an accuracy level suitable for modekng dye-zeolite hybrid composites (Zhou et al.
2013). There are, however, situations where bajhamtum-mechanical treatment of the electronic
structure and a description of thermal effectsti@atomic motion are needed. These requirements
can be satisfied by the first principles molecudgnamics (FPMD) approach, originally proposed
by Car and Parrinello (Car and Parrinello 1985; Remnd Madden 1990; Marx and Hutter 2009).

FPMD enables to study the time evolution of a systeith first-principles accuracy,
because the forces on the atoms at each MD tinpeaste obtained using a quantum mechanical

description of the electrons. More commonly, thecebnic structure is treated with DFT (Marx
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and Hutter 2009), even though wavefunction-baseidms of this technique exist as well. The Car-
Parrinello scheme for FPMD defines a fictitious aymcal system in which the potential energy
surface depends on both the nuclear and the etéctdegrees of freedom (Car and Parrinello
1985). The electronic wavefunction coefficients grepagated in time as classical degrees of
freedom, and their dynamics generates at each 8tep the correct adiabatic electronic
configuration corresponding to the new ionic posi§. Hence, if at the beginning of the simulation
the electronic orbitals correspond to the grouramtestthey will follow the motion of nuclei
adiabatically, and remain in that state as theeaarctonfiguration evolves in time. However, the
dynamical parameters (fictitious electronic masd &ime step) have to be chosen so that the
transfer of energy between ions and electronsps wery small during the simulation (Remler and
Madden 1990). This condition is easily satisfiedsystems with a large energy gap, such as
zeolites.

FPMD has been implemented using different typebasiis sets (Marx and Hutter 2009;
Lippert et al. 1999; VandeVondele et al. 2005), egnplane waves (PW), projector augmented
waves (PAW), and localized functions (VandeVondsdlal. 2005). Periodic boundary conditions
are generally adopted in all cases. In applicatitmszeolites, this implies the capability of
describing the full crystal from first principlethus properly reproducing the flexibility propegie
of the framework — which are especially importamtgoverning the response of zeolites to an
applied pressure. Whereas the direct simulatiora giressure-induced phase transition would
require variable cell parameters, in many otheegasis convenient to held the cell parameters
fixed at the values experimentally determineds@ath pressure conditions (where available),
which are known to be very accurate. Importantly,constraints — either symmetry restraints or
“frozen” nuclear positions - are normally imposedthe atoms in the simulation cell, which are
thus left free to move according to their own ptisdrenergy surface determined by the interatomic
interactions.

FPMD simulations, due to their high computationadtc are limited to elapsed times of the
order of tens of ps, which are too short to obsaxtevated events such ag).chemical reactions,
or reconstructive phase transitions. Such processebe considered rare events on the FPMD time
scale. To address these problems, rare-event sgiplihniques have been developed, such as the
above mentioned metadynamics (Laio and Parrinédl@22 Barducci et al. 2011). In the case of
zeolites, the FPMD extension of metadynamics (lamnat al. 2003) has been mainly applied to
study activated processes occurring at high tenyrerae.g. the methanol-to-olefin process
catalyzed by H-SAPO-34 (De Wispelaere et al. 20Hs)] the fabrication of zeolite hybrid

functional materials (Calzaferri et al. 2003; Caale 2016) through the intrusion of dye molecules
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inside the one-dimensional channels of zeolite ab@cchi et al. 2016). Other popular statistical
sampling methods are the so-called “bluemoon” ebgeCarter et al. 1988), the “transition path
sampling" (Dellago et al. 1999) or the "nudged tidasand” (Jonsson et al. 1998; Sheppard et al.
2012). In all cases, a basic knowledge of the hehaf the system at equilibrium conditions -
which may generally be obtained via exploratorywations — is needed. Considering the rapid
and continuous increase in computing power, it t@yoreseen that these methods will become
useful tools in the prediction of the high-presdoebavior of zeolite materials.

High-pressure behavior without any crystal-fluid interaction

In order to describe theRdbehavior of a zeolite without any interferenceled P-fluid, the
sample (polycrystalline or single crystal) is copgsed in a “non-penetrating®-transmitting
medium gensuGatta 2008): a fluid made by molecules which canpenetrate through the
structure cavities in response to the applied presdJsually, the mix methanol:.ethanol = 4:1,
glycerol, isopropanol, perfluorether, fluorinerty warious grades of silicone-oils are used as
nominally non-penetrating-transmitting fluids (Angel et al. 2007; Gatta 2088tz et al. 2009).

Simulation or structure refinements showed thatnefpgmework materials accommodate
the volume compression mainly biting, distortion andcontractionof the primary building units:
the tetrahedralilting of tetrahedra occurs around the bridging oxygematthat act as “hinges”; as
a consequence, this mechanism does not genertigidis of the tetrahedra, but changes the inter-
tetrahedral T-O-T angles witR. Distortion of tetrahedra is reflected by changes in the intra
tetrahedral O-T-O angles, preserving the average Gond length Contraction of tetrahedra is
expressed by compression of the T-O bond distanTisng, distortion and contraction of
tetrahedra act simultaneously at any pressure. Hewvdilting is an energetically less-costly
mechanism if compared to distortion or contractiamd this corroborates the experimental
evidence that tilting is the dominant mechanismoat-P regime, whereas distortion and then
contraction become dominant at higher pressurenwvitting cannot accommodate the effect of
pressure efficiently any further (Gatta 2010a; &athd Lee 2014). In other words, there is a
hierarchy of the deformation mechanisms (Gatta aldnd this is independent on the nature of the
cations in tetrahedral coordinatioa.§, Si, Al, P, Be, B,...). As a matter of fact, atdeap to 3-5
GPa, tetrahedra behave as “rigid-units” at least fwst approximatione.g, the estimated fictive
bulk modulus (defined a¥ppto = -Vo(OP/OV)po10 = 1Brota Where Bpoto is the volume
compressibility coefficient at ambient conditiorns) SiO, is 580(24) GPa (Zhang et al. 1998).
Significantly, the rigid-unit behavior is fully spprted by available atomistic data obtained from

FPMD simulations, and may also hold at above tl@Pa threshold. For example, the Si and Al
12
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tetrahedral units of the zeolite gismondine undergiome contractions of only 0.05% and 0.08%
respectively at 7.6 GPa (Betti et al. 2007). Moexothe above mentioned hierarchy of deformation
mechanisms is further corroborated by recent &tfignamics calculations on a low-silica zeolite
with LTA framework (Gulin-Gonzales et al 2016).

Tilting of tetrahedra can be observed in all the-ékperiments on zeolites, whose structure
refinements or simulations are available. A comnediect of tilting is the deformation of the
secondary building units (SBU) of the zeolitic fremorks, which are represented by “open forms”
(e.g, 4-, 5-, 6-, 8-, 10- or 12-membered rings ofae&dra) or “3D closed formsé(g, double 6-
membered rings, sD1o units of the “fibrous zeolites group”1d020 units of the “heulandite group”;
Baerlocher et al. 2007). Usually, tilting of teteglna produces a continuous rearrangement of the
structure, reflected by a monotonic unit-cell voRi@ompression. It is common, for example, to
observe that the ellipticity of the zeolitic chalminds to increase monotonically wiRhvia tilting
of the tetrahedra that confine the channels, witremy “inversion” (Gatta and Lee 2006); an
“inversion” in ellipticity at highP usually leads to a phase transition. More compgexhe
description of the response, at the atomic scdleeolites with secondary building units made by
3D closed forms, which behave as “rigid block-uhas a first approximation: at high pressure,
their structures respond first by rotation of tH&Us, followed by SBUs compression (but keeping
the tetrahedra undeformed), and finally by deforomator compression of the tetrahedra
themselves. The first two mechanisms are subslignbiased on tilting, and are very efficient to
accommodate the effect of pressure at low-medRiregime. Two examples in this respect are
those of the “fibrous zeolites group” (NAT, THO,d&DI framework type; SBU: sD;o or 4=1
unit; Baerlocher et al. 2007) and of the “heulamdjtoup” (HEU framework type; SBU:1d0O2 Or
4-4=1 unit; Baerlocher et al. 2007). All fibrousotites studied at higR- (i.e., natrolite, scolecite,
thomsonite, edingtonite) show a similar deformatioachanism in response to applied pressure:
cooperative rotation (anti-rotation) of the SBU abthe axis of the SBU-chains, which in turn
gives rise to the compression of the 8-memberegsrohannels (parallel to the SBU chain axis),
with an increase of their ellipticity (Gatta 2006atta and Wells 2004; Gatta et al. 2016b). In
fibrous zeolites, the estimated fictive bulk modubf the SBU is approximately twice those of the
zeolites {.e., ~115 GPa for the SBuUs. ~43 GPa for natrolite, ~55 GPa for scolecite, &Fa for
thomsonite and ~59 for edingtonite) (Gatta 2003)e Tdentical framework topology of natrolite
and scoleciteife., NAT, Baerlocher et al. 2007) allowed also tocspate about the role played by
the extra-framework population on the compressibealvior of isotypic materials: the framework
topology control the main deformation mechanismstliis case: cooperative anti-rotation of the

SBU by tilting of tetrahedra), but the channel pagan (.e., ionic radius of cations, valence, and
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their bonding configuration) controls the comprbgy of the cavities, with a resulting different
compressibility of unit-cell volume. In additionibfous zeolites provide further experimental
evidence: ordering of the Si/Al in the tetrahedniéés does not influence structure compressibility,
which is virtually identical in orthorhombic (fullgrdered Si/Al distribution) and tetragonal (highly
disordered Si/Al distribution) edingtonite (Gattaaé 2004a, 2004b).

In heulandite, the corrugation (and thus the showty of the zig-zag chains of SBUSs,
parallel to [102], is the main deformation mecheamis response to applied pressure, which acts
basically by tilting of tetrahedra. Also in thissea the estimated fictive bulk modulus of the SBU
(i.e., ~63 GPa) is approx. twice that of the zeolite,(~28 GPa) (Comodi et al. 2001, Gatta et al.
2003). In general, the experimental findings onlite with closed-form SBUs show that the
compressibility of the structure is the combinefge&tfof soft channels and relatively stiff 3D SBUs
compression.

Important quantitative insight on the tilting defaation mechanism may be obtained by
investigating how the T-O-T angles evolve as atfanof increasing pressure even in structures
with “open” SBU. Interestingly, such angles wederitified to be responsible of the pressure-
induced framework modification up to 8-10 GPa om thasis of integrated experimental-
computational data collected for a series of zeslit bikitaite (BIK framework type, Ferro et al.
2002; Fois et al. 2002a; Baerlocher et al. 200dpayvaralite (YUG framework type, Fois et al.
2005a,2005b; Baerlocher et al. 2007), and gismen@@lS framework type, Betti et al. 2007,
Baerlocher et al. 2007). For example, in gismondihe average value of the T-O-T angle
decreases significantly (from 142.8° to 137.8°passing to room pressure to 7.4 GPa (Betti et al.
2007). As a general trend, the decrease of theageel-O-T angle correlates with both applied
pressure and volume contraction: namely, the higleecompression, the higher the variation of the
angle. This analysis, therefore, brings furtherpsupto the intuitive argument that the framework
responds to compression by modifying its most Bexielement, that is, the junction between
tetrahedral units.

A few representative examples can be considereddar to highlight that tilting can act as
the main deformation effect even when the satunagicone mechanism is achieved at IBwGatta
et al. (2005) and Gatta and Wells (2006) reporbgdexperiments and computational modelling,
that the framework of levyne (LEV framework typeadBlocher et al. 2007) reacts, under
compression, by tilting of tetrahedra following tvebstinct deformation mechanisms: the first
dominant atP < 1 GPa, through the cooperative rotation of tetdah belonging to the double 6-
membered rings; the secondRat 1 GPa, through compression of the 4-membered (fjogt-

unit”) between the aforementioned 6-membered riagghe double 6-membered rings have already
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reached a limit configuration & ~ 1 GPa. These two mechanisms can explain the @boam
elastic behavior of levyne, with an increase of ¢kexis length between 0-1 GPa followed by a
monotonic compression Bt> 1 GPa. Up to 5 GPa, structure refinements andlations show no
distortion or compression of the tetrahedra, agjaificant level, in levyne structure.

More recently, Comboni et al. (2017) reported the-bé¢havior of phillipsite (PHI
framework type, Baerlocher et al. 2007) up to 9RBaly anin situ single-crystal diffraction
experiment. Despite a hydrol&-transmitting fluid was usedi.¢., methanol.ethanol:water =
16:3:1), no clear evidence Bfinduced penetration of extra molecules throughziwitic cavities
was observed within th@-range investigated. However, two different compi@sal regimes
occur.Between 0.0001 and 2.0 GPa, phillipsite behavesnasnusually stiff porous material: the
refined bulk modulus i¥po 0= 89(8) GPa. Between 2.0 and 9.4 GPa, the mateniat to be
drastically softer and its bulk modulus decreasdsph o= 18.8(7) GPa. The structure refinements
proved that, aP > 2 GPa, @-induced change in the configuration of thgOHmolecules, coupled
with a change of the tilting mechanisms of the #eamork tetrahedra, gives rise to a completely
different compressional behavior. Accordingly, tbeolution of the monoclinig angle with
pressure shows two distinct trends in the two casgional regimes: with a negative slope between
0.0001-2.0 GPa, and a positive slope between 2.GGPa. The tilting of the tetrahedra, in response
to the hydrostatic compression, causes the defaymaf the 8-membered ring of tetrahedra which
confine the [010] channel and, in turn, the invamsof  vs. P trend. In this specific case, the
saturation of a tilting mechanism and the role pthipy the extra-framework population concur to a
change of the compressional behavior, withoutRdryduced phase transition.

Levyne and phillipsite are two representative exaspf zeolites which do not undergo any
P-induced phase transition, despite they experiencieange of deformation mechanisms, reflected
by a change of the unit-cell volume compressiomdtigon. The list can be extended for example to
gobbinsite (GIS framework type, Baerlocher et 802 (Gatta et al. 2010, 2012; Gatta and Lotti
2011), cancrinite (CAN framework type, Baerlocheake 2007) (Lotti et al. 2012) or nepheline (a
feldspathoid, Gatta and Angel 2007). On the othemdh some zeolites with high “framework
density” (FD, defined as the number of T atoms irolume of 1000 A Baerlocher et al. 2007) or
hydrophobic zeolites.g., zeolites nominally without any extra-framewoidpplation) tend to react
to applied pressure with phase transitions, whrehusually displacive in character, and the high-
pressure polymorphs can have distorted tetrah@drapresentative example, in this respect, is that
of zeolites of the analcime-groupe(, analcime, leucite, wairakite and pollucite; ANrarinework
type, Baerlocher et al. 2007): all these zeolitgseeence a first-order phase transition from the

high-symmetry lowP polymorph (cubic analcime and pollucite, tetragdeacite and monoclinic
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wairakite) to a triclinic high? polymorph, at relatively lovR (~1 GPa for analcime, ~2.4 GPa for
leucite, ~2.5 GPa for wairakite, ~0.7 GPa for pdte; Gatta et al. 2006, 2008, 2009a; Ori et al.
2008a). The phase transitions are fully reversifglen decompression. For analcime, in particular,
structure refinements (based on single-crystainsitg data) revealed that the main deformation
mechanisms of the P4polymorph act through deformation of the 4- anchémbered rings of
tetrahedra by tilting of the polyhedra, along witteir significant distortion. A spectacularPH
behavior with two P-induced phase transitions in all-silica ferrierdEER framework type,
Baerlocher et al. 2007) was recently reported biti led al. (2015a), byn-situ single crystal and
powder X-ray diffraction experiments, using peniigaand non-penetrating fluids. Using silicone
oil, as a polymeric non-penetratiiyfluid, the experimental data show a remarkablgilbiéty of

the ferrierite framework at high pressure with tdisplacive phase transitions, following the path
Pmnnto-P12/nl-toP2;/n1l, the first at(D.7 GPa and the second [@.24 GPa (Fig. 1). The
transitions are fully reversible. As reported byttLet al. (2015a), the two monoclinic space groups
do not share a group-subgroup relationship: thdistage phase transition requires an intermediate
structure withP-1 symmetry, as common subgroup of b&th2/nl and P2,/n11. The three
polymorphs share a virtually identical bulk compgibagity, but with a different anisotropic
compressional pattern. Also in this case, the g&iracevolution in response to applied pressure is
mainly governed by tilting, and the phase transgi@re the effect of deformation mechanisms
saturation, followed by the promotion of new ones a structure configuration which is
energetically more favourable.

Phase transitions can drive to “new materials” Wwhare industrially important: a new
zeolite ITQ-50 was obtained by compressing a syitladi-silica zeolite ITQ-29 in a DAC with a
non-penetrating>-transmitting fluid (Jorda et al 2013). As from tbeystallographic data, it was
possible to obtain only the cell parameters ofrteer material and the structure was obtained with
the aid of classical force field calculation. Rekadnly, the pressure-synthesized microporous
material showed better performances than the pgecueolite in the propene/propane separation -
an important industrial process.

Besides the modification induced to the framewatks useful to highlight how of the
organization of the extraframework species is mediby compression. For example, the natural
zeolite bikitaite hosts in its one-dimensional amels hydrogen bonded chains ofCHmolecules,
which at room conditions display a behaviour typicd a solid phase of water at low
dimensionality — hence the name *“one-dimensional’ ie (Fois et al.1999;2001b) and an
impressive resistance towards dehydration desmibegbnot hydrogen-bonded to the framework

(Ceriani et al. 2004a)—Significantly Indeed, upmmpression, the one-dimensional ice structure
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persisted up to 5 GPa, but new hydrogen bonds veereed between the J@ chains and the
framework oxygen atoms (Ferro et al. 2002). Everrematriguingly, a similar behaviour was
found when bikitaite was compressed in penetrativ@ter-containing) medium up to 4 GPa: the
H,O chains were preserved up to the highest pressitheno intercalation of additional water
molecules (Seryotkin 2016), highlighting thus theceptional stability of this confined water
nanostructure. Actually, also the synthetic zedlicABW hosts in its monodimensional channels
the same peculiar J@ wires (Fois et al 2001a;2001b): in this case, du@x, the supramolecular
water architecture is easily disrupted when modepaessures are applied (Fois et al. 2008a).
Theoretical calculations revealed that the reasby these two similar systems display such a
different response to compression is the electolarization of the zeolite framework, which is
considerably higher in bikitaite compared to Li-ABWhus providing a greater electrostatic
stabilization to the kD chain (Fois et al. 2001a,2008a). Porous matewéls monodimensional
channel systems can host other interesting exanoplesnfined water nanostructures - such as the
H,O-triple helix in VPI-5 aluminophosphate (Fois dt2002), or the pressure-induced water
nanotube in zeolite LTL (Lee et al 2007). The iagrin the behaviour of one-dimensional channel
materials — at both standard and hiybenditions - stems from the possibility of fillingem, upon
H,O evacuation, with guest species of suitable $areexample drugs (Delle Piane et al 2014) or
luminescent molecules, giving rise to low-dimensidy systems endowed by technologically
appealing properties (semg.Calzaferri et al. 2003; Fois et al. 2005c; Manzahal. 2013; Gigli et

al. 2014; Cucinotta et al. 2014, Calzaferri 201@rt@a-Rivero et al. 2017).

The key question is: why some zeolites experighdeduced phase transitions (with no
crystal-fluid interaction) and others not? And,addition, which are the limit conditions above
which an open-framework structure undergoes a plia@sesition? Is it possible to predict a
transition pressure? The state of the art of tlwwkedge does not allow to provide an unambiguous
answer to these questions. However, the experitnmigngs aboutf-induced phase transitions in
zeolites (with no crystal-fluid interaction) appdarbe well predictable by the “flexibility window”
theory. The “flexibility window” (Sartbaeva et aR006) is a pervasive property of zeolitic
frameworks, and it defines a range of densities aiech the corner-sharing T@inits, making up
the framework, can in principle be made perfeatlyahedrali(e., a range of densities over which
the tetrahedra retain their holosymmetric shapkls Window is limited at high density by contacts
between oxygen atoms on neighbouring, T@its, and at low density by extension of the mtra
tetrahedral T-O bonds (though not, in generalimgdr T-O-T angles). Gatta et al. (2009b) reported
that the ANA cubic framework, for example, displaysarrow flexibility window: the framework

could be compressed by only 3% in volume beforeggeryatoms came into contact. The geometric
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simulations on the ANA framework (using a tetraladyeometry appropriate to the Si:Al ratio of
natural cubic analcime) (Sartbaeva et al. 200632Wkells et al. 2011), with the experimental cubic
unit-cell parameters measured at high pressurag@atal. 2006), showed that the structures are
perfectible over the whole observed range of cabiglicime, from ambient conditions up to around
1 GPa. The theoretical upper and lower limits @& flexibility window in cubic analcime were
obtained by simulations using the unit-cell pararsgbutside the range observed in the experiment.
The low-density edge of the window was found tonkar the density observed for the analcime
structure at ambient conditionise(, the ambient structure is close to maximal exter)swhereas
the high-density edge of the window on compressies near the last observed cubic structure
before the transition. Overall, tieinduced phase transition in analcime, observaabaut 1 GPa,

is well predictable on the basis of the flexibiMyndow of this structure.

High-pressure behavior with crystal-fluid interaction

“Penetrating” P-transmitting media are a class of fluid which @mtmolecules able to
penetrate, through selective sorption, into thdizecavities in response to applied pressuresThi
phenomenon implies a drastic effect on the compmesak pattern and on thé-induced
deformation mechanisms at the atomic level. Elealagdaseous media at ambient conditiong).(
helium, nitrogen, neon, argon, xenon, kripton) anghll moleculesq.g.,H,O, CQ) are potentially
penetrating media. Even some larger molecules, llysuged asP-transmitting media €.9.
methanol, ethanol, ethylene, ethylene glycol, deag) could be considered as potentially
penetrating media. Penetrability of external malesyor atoms) at high pressure is governed by
several variables, among those the most importeet tae “free diameters” of the framework
cavities, the chemical nature and the configurabbthe extra-framework population, the partial
pressure of the penetrating molecule in the fluidnjxed with other non-penetrating molecules,
e.g.P(H20) in a mixture of alchools—#D), the temperature at which the experiment is gotedl.
A given molecule can, therefore, act as a penegatnedium for some zeolites and as a non-
penetrating medium for other zeolites.

The effects of thd>-induced penetration depend on the nature of timetpsting atoms or
molecules through the zeolitic cavities, and, forc@nparative analysis, it is convenient to

distinguish among monoatomic species, small moéscahd larger molecules.

- P-induced penetration of monoatomic species

Lee et al. (2010) showed that, when compressedgundl Ar, natural natrolite (of ideal

composition NgAl 1654048 16H0, NAT framework type, Baerlocher et al. 2007) aaoorporate
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a significant amount of Ar under moderate pressangt temperature-conditionise(, 60 °C for 10

h). TheP-induced penetration of Ar gives rise to a speda@d@induced expansion of the unit-cell
volume (.e., ~6.5% larger unit-cell volume than the startmeglite) atP [13.0-3.5 GPa, with a new
Ar-bearing form of natrolite described as 1§ 1654050 16HO-6Ar. The expansion of the unit-
cell volume is governed by the expansion of theddniered ring channels along [001], where the
extra-framework population lies. The structure mefnent of NgAl16Si240g0: 16HO- 6Ar showed
that N& remains 6-coordinated, with the Ar-Na distancesjirag between 2.90-3.22 A and the Ar-
O distances at ~3.24 A. In other words, Ar intesa@ short-range van der Waals forces. Natrolite
served as an efficient host system for further arpents with monoatomic penetrating species: Xe
and Kr. Seoung et al. (2014) reported how Ag-naé&pideally AgeAl16Si40s-16H0, adsorbs
xenon into its 8-membered ring channels at 1.7 @Rh250 °C, while Agis reduced to metallic
Ag’ and possibly oxidized to A§ The sorption of Xe gives rise to an expansior8I%/% of the
unit-cell volume, with a weak interaction of Xe aAg (i.e., Ag-Xe ~3.1 A). Surprisingly, the
sorption of xenon is irreversible after pressuteage, and requires heat to desorb. Using liquid Kr
as P-transmitting fluid, Ag-natrolite adsorbs Kr at 2Z3Pa and after annealing at 250 °C, with a
partial reduction of A§to metallic AJ. The penetration phenomenon leads to a moderittealh
volume expansion (onk¢1.2% ), and appears to be fully reversible undeodgression.

In zeolites with larger cavities than those in olte, the P-induced penetration of
monoatomic species does not imply a unit-cell vaumxpansion, but rather a different
compressional behavior if compared to that obtainea non-penetrating fluid. For example, Niwa
et al. (2013) reported how the synthetic zeolitede-type A (LTA framework type, Baerlocher et
al. 2007) compressed in liquid He and Ar showsed#ht compressional patterns, which are, in
turn, different if compared to those reported fompression in liquid water (penetrating) or in
silicone oil (non-penetrating polymeric fluid). Btture refinements were not performed, leaving
open questions about the mechanisms at the atorale. sHowever, the evolution of unit-cell
volumevs. Pis sufficient to prove that the-induced penetration of He, Ar and® occurs, with a
reduction of the compressibility, if compared tattlvith a non-penetrating fluid, by 50%, 15% and
700%, respectively. The sorption of extrsCHmolecules affects dramatically the compressibdit
Linde-type A. The reduction of compressibility esfts the “pillar effect” that the new intruded
molecules generate, making the zeolitic cavitiss mpressible (not collapsible).

- P-induced penetration of small molecules
Experiments devoted to thieinduced penetration of small molecules are prop#i#¥ most
common. TheP-induced penetration phenomenon was firstly dismeaising water, or hydrous
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mixtures, by Hazen (1983) and Hazen and Finger4)}1 38 the basis of the significantly different
compressional pattern of a synthetic zeolite,(Linde Na-A; LTA framework type, Baerlocher et
al. 2007) in different fluids. Lee et al. (2002802b) reported the very first structure refinements
proving theP-induced sorption of extra4® molecules, from th@-transmitting fluid through the
zeolitic cavities (the so called “over-hydratiorieet”), in a natrolite and its synthetic countetpar
K16Ga16Sh4Ogo: 12H0. Natrolite, ideally N@Al16Si4048:16H0 (NAT framework type,
Baerlocher et al. 2007), transforms to; ;65124045 32H0O at ~1 GPa, doubling the number of
molecules p.f.u. of O with a consequent unit-cell volume expansion B96;-if compared to
natrolite stable at ambieRt The extra HO molecules intruded in the 8-membered ring chaarel
bonded to Na, which increases its coordination remibheP-induced over-hydration effect is
completely reversible in natrolite but not in itgnthetic counterpart ¥GasSi4Ogo- 12H:0,
suggesting that the chemical nature of extra-fraomkyand likely framework) population plays an
important role in governing the penetration revalisy. The P-induced penetration of J@ in
natrolite was described with different experimemtedthods (Colligan et al. 2005; Seryotkin et al.
2005), and it was observed in almost all the figraeolites with spectacular volume expansion
(e.g, natrolite, scolecite and thomsonigeg. Lee et al. 2002a, 2002b, 2005; Colligan et al.5200
Gatta 2005; Likhacheva et al. 2006, 2007; Seourad @013, 2015; Seryotkin et al. 2017), with the
exception of edingtonite (EDI framework type, BaeHer et al. 2007) (Gatta et al. 2004a, 2004b):
the large Ba-polyhedron fills very efficiently tBemembered ring channel along [001], which is in
an already expanded configuration if compared ® ather fibrous zeolites, hindering further
penetration of HO molecules.

The role of the cations in natrolite under supdrhtion conditions was recently explored
theoretically by investigating the-induced behaviour of Na-, Rb-, and Cs-natroliteeflleva et
al. 2013) and of the K-substituted counterpart (Keva et al. 2014). With calculations based on
density functional theory (DFT), these studies walée to reproduce approximately the critical
pressure values at which the corresponding tramsfbons were found to occur in experiments,
providing therefore valuable insight on their meropic details. Based on the modelling results,
these authors also predicted the possible formaéibhigh pressure conditions, of two isomers of
superhydrated K-NAT, with either positive or negatchain rotation angles (Kremleva et al. 2014).

An additional P-induced expansion phenomenon was observed in latibeo ideally
CaAlgSip048-NH,0O with <18 (LAU framework type, Baerlocher et al. 2007).ndsa partially
dry sample with 1260 m.p.f.u., Lee et al. (2004) showed, using a hyslRtransmitting fluid and
a powder sample, that laumontite experiences aeplvansition atP = 0.2(1) GPa, with a

spectacular unit-cell volume increase of ~2.6%. Stinecture refinements proved that the expansion
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reflects the transition to a fully hydrated formitfwl8H,O m.p.f.u.), by selective sorption of extra
H,0, which leads to the expansion of the 8-membedrefahannels along [001]. Significantly;
induced hydration in laumontite was first investegh by a computer modeling study performed
with a classical force field by White et al. (200&uch a study predicted the occurrence of full
hydration at moderate pressures, which was thefircwmd by the experiments, evidencing that,
when pressure is applied, the structural stabtifythe laumontite-type framework increases
because of the fully occupied water network.

Fibrous zeolites and (partially dehydrated) launterrepresent rare examples®induced
insertion of HO molecules with spectacular expansion of the celit-volume. Usually, the
penetration of extra ¥ molecules from thd>-fluid is not accompanied by unit-cell volume
expansion, as showag. for: the synthetic Linde-type A (ideally N#&Il1,Si;,045 -26 HO, LTA
framework type; Hazen 1983, Hazen and Finger 198kt et al. 2003, Likhacheva et al. 2009,
Niwa et al. 2013); synthetic Li-, (Na,Cs)- and CH® zeolites [(Li,Na,Cgp(Al1,SizsO06)- 44H0,
RHO framework type; Lee et al. 2001]; synthetic-sdlica zeolite Y (FAU framework type,
Colligan et al. 2004); gismondine (ideally B8&SisO3,- 16H0, GIS framework type; Ori et al.
2008b) and it synthetic K-gallosilicate counterp&+GaSi-GIS, Lee et al. 2008); boggsite (ideally
CaNagAl 10Si770102 7T0H0, BOG framework type; Arletti et al. 2010); syniibeNa-ZSM-5 (.e.
(Nay.58K0.02) (Can.18Mgo.0B80.01F €.05510.01) (Al 4.48Si01.39 O102-28.39H0, MFI framework type, Arletti
et al. 2011) and H-ZSM-5.€., (Hs gNay 1)(Al7.9 Sigg §O10236HO, MFI framework type, Quartieri
et al. 2011); all-silica ferrierite (FER framewotipe; Lotti et al. 2015a); paulingite (ideally
(K,Na,Ca 5Bay 5)10(Al 16Si3.084)-NH20, withn = 27-44, PAU framework type; Gatta et al. 2015);
synthetic AIPQ-5 (AFI-framework type; Lotti et al. 2016).

The experiment of Colligan et al. (2004), on a pusdliceous zeolite Y (FAU framework
type, Baerlocher et al. 2007), deserves a parti@ttantion. Colligan et al. (2004) compressed a
synthetic all-silica zeolite Y (FAU framework typ@) silicone oil and in methanol:ethanol:water
=16:3:1 mix using a DAC, and described itB-behavior on the basis of situ synchrotron X-ray
powder diffraction data, with Rietveld structurédmements and computational modelling. This was
probably the first experiment in which a neutratl drydrophobic zeolitic framework was used in
order to describ®-induced penetration phenomena, giving the oppdastiio examine the effect of
pressure on a porous silicate without interferemtgsto extra-framework charge-balancing cations
and their interactions with framework oxygen ato@empressed in the mixture of alcohols-water,
this zeolite shows a drastically lower compresgibithan that observed in (non-penetrating)
silicone oil. In addition, in alcohols-water mixyd distinct compressional patterns occurred, with a

changeover at 4 GPa. The Rietveld structure refamésnproved that new extra-framework sites
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occur at high pressure, modelled as partially dy foccupied by oxygen atoms of,&8 molecules.
The sum of the extra-framework site occupancieseases with pressure, and the pore filling
saturation is achieved at about 4.0 GPa. This daperimental finding allowed the authors to
explain the change of the compressional behavior tbis zeolite compressed in
methanol:ethanol:water =16:3:1 mixt) P-induced intrusion of FD molecules is the principal
process that occurs between 0.0001 and 4 GPange#dia drastically lower compressibility if
compared to that observed in silicone oi;when the filling of the pores is completed,RPat 4
GPa a new compressional pattern, with higher cossiiity, is observed and the effect of
hydrostatic compression is predominantly accomneatifly framework deformation (mainiga
tetrahedral tilting). Unfortunately, no structurefinements were performed in decompression,
leaving open questions about the reversibility loé intrusion process. With this experiment,
Colligan et al. (2004) showed how polar molecules., (H,O molecules) can be intruded in a
neutral framework in response to applied pressure.

Some experiments have been performed using liq@d & penetratind®-transmitting
fluid. Natrolite (NagAl 16Si40g0- 16.0H0), for example, transforms to
Nag6Al 16Si24080- 16H0O-8CQ at 1.5 GPa (Lee et al. 2011). The penetratiorxtheCQ molecules
through the 8-membered ring channels, running aJ6Ad], leads to an expansion of the channels
and, in turn, to a spectacular unit-cell volumer@ase by ~6.8%. The Gdearing natrolite stable
at high pressure contains ~12 wt% of £Cénd its symmetry decreases from orthorhombic (Bp.
Fdd2) to monoclinic (Sp. GICc). The intruded C@molecules give rises to a rearrangement of the
extra-framework population, with a migration of tHgO molecules toward one side of the channel.
CO, molecules interact with both Na and@® and lie in a plane almost perpendicular to the
channel direction. The structure refinements aftefecompression showed that
NagsAl 16S124080: 16H0O-8CQ is meta-stable aftedP-release (even after an equilibration time of 1
h).

Haines et al. (2010) showed that tRenduced intrusion of extra molecules of £
silicalite (MFI framework type) hinders it8-induced amorphization (at least up to 20-23 GPa),

whereas in a non-penetrating fluid this zeolitevetnb effects of amorphization at 4-5 GPa.

- P-induced penetration of complex molecules and polymerization phenomena
Santoro et al. (2013) reported the first evidericB-mmduced photo-polymerized ethylene in
the channels of silicalite (MFI framework type, Baeher et al. 2007), using single crystal and

powder of Si@-silicalite compressed in supercritical fluigiy. The penetration of £, molecules
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occurs at 0.5-1.5 GPa, and the polymerization @mpted under ultraviolet (351-364 nm)
irradiation. Experimental evidence, based on opsipactroscopy and X-ray diffraction, confirmed
that the structure of fls;-bearing silicalite, recovered at ambient presswentains single
polyethylene chains confined by the zeolitic chdsn&he GHs-bearing silicalite shows a
significant increase of its bulk modulus and densitcompared to the parental silicalite, in
response to the-induced pore-filling effect.

On the same zeolite, a further experiment was tegdry Scelta et al. (2014) devoted to the
P-induced polymerization of acetylene molecules dody-acetylene chains) through the zeolitic
cavities. The authors used a multi-methodologicppreach, based oin situ and ex-situ
measurements (by IR spectroscopy, Raman spectrpaoopX-ray diffraction), in order to describe
how with a DAC and using only high pressurel(GPa; no temperature or ultraviolet irradiatidn) i
is possible to promote the penetration and re-azgéion {ia polymerization) of GH, molecules
through the zeolite channels.

Silicalite was also selected as the zeolitic hostaf further experiment aimed to investigate
the P-induced polymerization in all-silica zeolites: $@o et al. (2015) reported tHeinduced
synthesis of all-transoid polycarbonyl [-(C=0)ti a zeolite, starting from mixtures of (solid) CO
and powder or single crystal of silicalite, comgesgs in a DAC. Using a multi-methodological
approach (based on IR, Raman, single-crystal Xddfyaction, andab initio computational
methods for calculating the vibrational spectrumpofymerised CO), the authors reported how
compressing the zeolite in solid CO, evidence offgg@etration through the zeolitic cavities with a
re-organization in a polymeric configuration weoaiid. The experimental findings indicated that
the average interaction between confined polymer8® and the host silicalite is of the van der
Waals type, and the resulting IR spectra are caivipawith the all-transoid polycarbonyl
[-(C=0)-], chains predicted by DFT studies. Tdéwesitumeasurements proved that faénduced
penetration and polymerization of CO is an irreNdesprocess. To the best of our knowledge, this
is one of the very rare examples in which Bamduced penetration of external molecules ocaurs i
a solid host compressed in a solid medium.

The same group of researchers (Santoro et al. 20i@nded their experiments on a
different zeolite with a mono-dimensional system dbfannels: the all-silica ZSM-22 (TON
framework type, Baerlocher et al. 2007). Polycrjisia ZSM-22 compressed (up to 5-10 GPa) in
(liquid) acetylene and (liquid) CO, loaded cryogely in a DAC, experiences similar phenomena
as those previously described for silicalite: th&rusion and the subsequent irreversible
polymerization of GH; (to poly-acetylene) and CO (to polycarbonyl [-(O=().
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Arletti et al. (2015) investigated the behavioraynthetic high-silica mordenite (MOR
framework type, Baerlocher et al. 2007) compreseed non-penetrating fluidi.€., silicone oil)
and a series of potentially penetrating fluids: thex methanol:ethanol:water = 16:3:1,
water:ethanol = 3:1, and ethylene glycol, ibysitu (e.g, synchrotron X-ray powder diffraction,
Raman spectroscopy) amX-situ measurementse(g, synchrotron X-ray powder diffraction, IR
spectroscopy). The experimental findings showed: thathe elastic behaviour with a non-
penetrating fluid is consistent with that previgustported (withP-induced phase transition froa
C-centered to a primitive space group &atGPa, Lotti et al. 2015bi,) the P-induced intrusion of
guest molecules, from tHefluids through the cavities of this zeolite, ocxfor all the (nominally)
penetrating fluids and at low pressure. For exangiglence of the ethylene glycol penetration was
reported already at 0.1 GPa, and this phenomenpaaap to be only partially reversible upon
decompression. Whereas methanol or ethanol camnotttuded at high pressure in Na-mordenite
(i.e., NasAls.0Sis2.0006 - 19H0), as reported by Gatta and Lee (2006) and Loti.g2015b), the
absence of the extra-framework population promtitegenetration of these molecules through the
empty channels of high-silica mordenite in respdosgpplied pressure.

More recently, Richard et al. (2016) used a contmnaof in situ Raman spectroscopy and
X-ray diffraction to investigate th-induced insertion of BNE{ammonia borane, solid at ambient
conditions) in the cavities of the hydrophobiccslite-1F (MFI framework type, Baerlocher et al.
2007). A single crystal of silicalite was comprasse a powder of BNk using a DAC. The
experimental findings showed how BRllidolecules penetrate through the cavities of theadite-
1F structure at very low- ([D.1 GPa), and the insertion leads to the appearahoew Raman
modes. Raman spectra collected at Hgbhowed how orientational disorder of the —B&hd
—-NHg3 groups, pertaining to the intruded molecules, ooeithin the P-range investigated, if
compared to the bulk ammonia borane usedP-dansmitting mediumlin situ X-ray powder
diffraction experiments showed that the comprebsilof the BNH—bearing silicalite-1F is three
times lower than that of the parental silicalite{Wfth empty cavities), in response to fhéenduced
pore-filling effect.

Very recently, Arletti et al. (2017) showed how tingdrophobic all-silica ferrierite (FER
framework type, Baerlocher et al. 2007) compressede ethanol:water = 1:3 mixture experiences
a transition between 0.8 and 1.3 GPa from the dmtmbic (Sp. Gr.Pmnr) to monoclinic
symmetry (Sp. GrP2,/n), coupled with a penetration of tiefluid molecules. The X-ray powder
diffraction data and modelling (using a dispersionrected density functional approximation)
showed that the (#D,ethanol)-bearing ferrierite, stable at high pues, is able to separate the
ethanol-water mixture into ethanol dimer wires &h@ tetramer squares (Fig. 2). The specific
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zeolite type — ferrierite - is pivotal for aehing the HO-ethanol organization in such a peculiar
two-dimensional arrangement. Ferrierite has twalpgrchannel systems of different diameter — 6-
and 10-membered rings - which are perfectly tatlol@ host, respectively, & tetrramers and
ethanol dimers. Surprisingly, the confined supraoolar organization remains stable even upon
complete pressure release, which is a key requienme view of potential technological
applications. Indeed, the intrusion of purgCHin all-silica FER was observed by Cailliez et al.
(2008) at considerable lower pressures (below GB@) using a porosimeter: such an experiment
achieved complete filling of the zeolite framewgdokit HO was reversibly extruded upon pressure
release (Cailliez et al. 2008). Notably, powderay-diffraction data indicated intrusion of,®l
molecules at comparable pressure values (0.2 GRax) Yerrierite was compressed in a DAC with
a methanol:ethanol4® = 16:3:1 mixture — in this case, the maximum fwes reached was 1.5
GPa, and BD was retained also at room conditions (Arlettiaét 2014). This suggests that
pressures higher than 0.3 GPa are instrument#héarreversible encapsulation of® and ethanol
molecules in ferrierite, ensuring thus the stapitift the supramolecular architecture of dimers and
tetramers at room conditions (Arletti et al. 2017).

Previous experiments on the same zeolites werenpeetl by Lotti et al. (2015a) on single
crystal and polycrystalline samples, using silicoigas a polymeric non-penetratifgfluid) and
methanol:ethanol:}0 = 16:3:1 mixture, ethylene glycol and 2methyl&pen-1ol (as potentially
penetrating fluids). The experiments with the po&ly penetrating media enhanced the occurrence
of P-induced intrusion of fluid molecules, with diffetephase-transition paths and compressibility
patterns. However, the disordered distribution g thaxima in the calculated residual electron
density map, obtained by single-crystal X-ray duiee refinements, did not allow to define a
unique scenario of the configuration of the intidaolecules (Lotti et al. 2015a). The starting
orthorhombic polymorph was always restored uporoagression with all the usdfluids. The
authors highlighted the differentfHoehaviour observed for single crystal and powdenme using
the sameP-fluid, along with the differenP-induced phase-transition paths in response tereifit
process kinetics (Lotti et al. 2015a).

The aforementioned experiments on all-silica dikea(MFI framework type), ZSM-22
(TON framework type), mordenite (MOR framework ty@ed ferrierite (FER framework type)
were all devoted to describe tRanduced penetration of molecular guest systenaszaolitic host.
Recently, Arletti et al. (2016) reported the bebaviof an all-silica ferrierite compressed in an
electrolytic MgC}-21H,0O solution. TheP-induced intrusion was found to occur at very 18w
(about 0.19 GPa); the phenomenon is reversiblpr@sed by the X-ray diffraction before and after

the P-induced intrusion experiment) and it is affectegd @ moderate hysteresis. The Rietveld
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refinement, based on the synchrotron diffractiotadallected aP[D.28 GPa (above the intrusion

pressure), showed that both ions an@®Hkholecules of the aqueous solution (useB-aansmitting

fluid) were intruded in the cavities, with an oréeérdistributioni) the Md" site lies at the center of

the FER cage and it is coordinated by fouOHnolecules (with partial site occupancy) in a squa

planar configurationii) the CI site is located in the 10-membered ring channatsljel to [001],

coordinated by two D molecules. Mg and Cl are partially solvated. The idealized composition

of the electrolyte guest solution in the zeolitavities is: MgC}-10H,0. At P[D.68 GPa, a phase

transition from orthorhombic (Sp. GPmnn to monoclinic (Sp. GrP2:/n) symmetry was also

observed.

Discussion and conclusions

If we consider the behaviour of zeolites when casped in penetrating and non-

penetratingP-fluids, the first general consideration we can ea&kthat thé>-induced intrusion of

new molecules through the zeolitic cavities hasastit impact of the elastic behaviour and on the

structure evolution of a given zeolite. The expemtal findings pertaining to compression in non-

penetrating fluids showed that:

1) Theflexibility observed in this class of open-framewanaterials, in response to applied

2)

or T, is based mainly on tilting of (quasi-rigid) tdtemira around O atoms that behave as
hinges. Tilting of tetrahedra is the dominant medtras at low-midP-regime, whereas
distortion and compression of tetrahedra repregentmechanisms which usually dominate
the mid-high P-regime. One of the most common deformation medmasiin zeolitic
framework, able to accommodate the effect of pmessis the increase, though without
inversion, of channels ellipticity. As we can ledmom the experiments on isotypic zeolites,
the deformation mechanisms are dictated by thelagpmal configuration of the tetrahedral
framework and are not influenced by the Si/Al/Putlisition or by the extra-framework
population. However, the compressibility of the itag is controlled by the nature and
bonding configuration of ionic and molecular corteasulting in different unit-cell volume
compressibility in isotypic structures.
The range of compressibility of zeolites is sigrafitly large, with bulk moduli ~10 Kpo 1o
< ~90 GPa. The microporosity does not necessariplyi high compressibility, as several
zeolites are stiffer than non-zeolitic rock-forminminerals €.g, quartz, feldspars,
feldspathoids, scapolites, micas; Gatta and Lee4R0h general, zeolites with stuffed
channels i(e., with an extra-framework population) are stifttian zeolites with empty
26
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channels. If the microporosity is represented bg thamework density, then the

compressibility of zeolites is not directly relatidmicroporosity.

The experimental findings pertaining to compressiompenetrating fluids, and thus with crystal-
fluid interaction, showed that not all the zeolitegperience aP-induced intrusion of new
monoatomic species or molecules from Bigansmitting fluids. For example, zeolites withllwe
stuffed channels at ambient conditioesy( natural zeolites) tend to hinder the penetratibnew
species through the channels. There must be sexaaiables that govern the sorption phenomena
at high pressure beyond the “free diameters” offthmework cavities, among those: the chemical
nature and the configuration of the extra-framewgdpulation, the partial pressure of the
penetrating molecule in the fluid (if mixed withhet non-penetrating moleculesg.P(H2O) in a
mixture of alcohols-ED), likely the rate of theP-increase, the surface/volume ratio of the
crystallites under investigations, the temperaatrevhich the experiment is conducted. As shown
by Lotti et al. (2015a), the rate of tReincrease and the surface/volume ratio of the alytsts can
play an important role in governing the crystalkdlunteraction, throughP-induced penetration
phenomena, and deserve further investigations.

The re-organization of the intruded molecules imlite hosts, promoted by applied
pressure and by other variablesg( ultraviolet irradiation, moderate temperaturs),one of the
most fascinating discovery in material science dalierlast decade, with potential technological and
geological implications. The aforementioned expernits of Santoro et al. (2013, 2015, 2016),
Scelta et al. (2014), Richard et al. (2016), Arlettal. (2015, 2017) indicate new routes for dreat
hybrid host-guest composite materials, where amgamdic framework drives the formation of
organic polymer with low dimensionality, acting astable host for it. The new hybrid inorganic-
host/organic-guest materials display completelfed#int physicochemical properties if compared to
the parental zeolites, in which the interestingoerties imparted by pressure would be retained also
at standard conditions, and could be exploitedpplieations. In this fascinating perspective, a
crucial question to be addressed is whether maelggegssurese.g. below 1 GPa, might be
sufficient to induce “technologically appealingtaversible processes, such as the supramolecular
organization of simple species in complex patteanghe formation of one-dimensional polymer
chains. Avoiding the use of extreme pressures wbaldighly desirable for practical applications;
for this reason, future investigations along thesite should be aimed not only to obtain new
composites, but also to determine, or predict pit@ssure value at which the transformation would
become quantitative and irreversible. Whether suptacular organization of the included species

appears at a certain pressure onset, or if it gldavolves with increasing pressure, is just ohe
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the questions to be addressed in order to gathércolar-level knowledge, and hence control, of
these processes. A further issue to be investigatéde influence of the composition of the
transmitting media on the intrusion, organizatiaand transformation processes inside the
framework. Additionally, unravelling the moleculdetails of the pressure-driven penetration of
guest species inside the zeolite pores would bigldyhchallenging task, which would involve a
thorough study of the external surfaces of theiteeohaterial (Hendriks et al. 2017) under non-
standard conditions. In this respect, modellingl@qalay a crucial role: the behaviour of surfaces
and interfaces under high-temperature conditiorssalseady enabled to capture new phenomena
that were not directly accessible to experimentadeovation (Ceriani 2004a; Fois 2000, Fois
2010b; Tabacchi 2015b) — for example, that the mgeof zeolite pores may be enlarged by
concerted rotations of the tetrahedral units indueg the intrusion of bulky molecules (Tabacchi
2016). With this premises, we envisage that a ¢oetbexperimental and modelling endeavour to
explore the interfaces of open-framework materaldigh-pressure conditions might reveal the
occurrence of new, unexpected processes of keyamte for future advances in zeolite science
and technology.

The confinement of molecular species inside zecli@nnels at normal pressure is already a
successful strategy to build supramolecular archites: materials with innovative properties have
been fabricated by constraining molecules in aem@dl arrangement within these nanosized spaces.
The encapsulation of dyes into the monodimensiggatem of channels of zeolite L has led to
functional composites suitable for a variety of laggtions — from solar energy technology to
nanomedicine (Popovic et al. 2007; Calzaferri 20Adls et al. 2012; Cucinotta et al. 2014; Insuwan
et al. 2016; Gartzia-Rivero et al. 2017). Host—gjassemblies working as light-harvesting antenna
systems are promising materials for the field ofenole-based devices (Calzaferri et al. 2003; Fois
et al. 2010a; Martinez-Martinez et al. 2014). Thegstems usually consist of chromophores hosted
in the one-dimensional pores of zeolite L. Liketle antenna systems of natural photosynthetic
organisms, upon photon absorption, a confined dgtecunle can transfer its excitation energy to a
neighboring dye molecule, and the energy transbeticues up to the end of the supramolecular
chain, where energy could be collected (Calzafrial. 2003). To interface the artificial antenna
with other components in a working device, the tedermination should be functionalized with
suitable molecules named ‘stopcocks’ (Maas et @022, which can also be used to avoid leaking
of dye molecules from zeolite channels (Calzaf2@12; Tabacchi et al. 2015a; Cao et al. 2016;
Gartzia-Rivero et al. 2017). Based on this prirgiplighly versatile composites to be used as tailor
made devices for multiple applications have beeated, but their behaviour under non-standard

conditions is still to be explored. The study aflirpressure effects on dye-zeolite hybrids would be
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indispensable for future progress of this technpldgpm fundamental bases. Moreover, by
exploiting high pressure, the intrusion of differdands of dyes might be obtained, with the
possibility of organizing these molecules in a cterppattern determined by the topology of the
framework and by the related intermolecular inteoss, which could ultimately lead to hybrid
composites with new, unexpected opto-electronipgriies.

High-pressure effects might probably be exploited improve catalytic processes of
relevance for industrial and sustainable applicatiorhese processes may either involve zeolites
with strong Lewis acid sites— such, e.g. the tilanisilicalite TS1 catalyst (Taramasso et al 1983)
adopted in olefin epoxidation processes (Bellussalel992) - or, more commonly, moderately
hydrophilic synthetic zeolitesi.€¢., with high Si/Al ratio) having protons asxtraframework
cations (see.g.,Fois et al 2008b). These Brgnsted acid sites mfyage the intruded molecules.
These zeolites are used, for example, in the ptamuof biofuels, as catalysts for cracking and
isomerization reactions. Thanks to its frameworgotogy, exhibiting relatively small cavities,
hydrophilic ferrierite shows an impressive tramsitistate selectivity for such reactions (geg.,
Martinez et al 2011). However, just because ofstheall pore diameters, the reaction normally takes
place only on the external surface of the zecditats pore opening (Wiedemann et al. 2016). As a
consequence of this “pore-mouth catalysis”, onlysmall proportion of the catalytic sites is
actually exploited. Reasonably, moderate pressaould favour the intrusion of the reactant
molecules inside the zeolite pores, thus ecihgrnthe performances of the industrial process.
Concerning Lewis-acid catalysts, as the olefin éabon cycle involves the direct participation of
the zeolite framework as active oxygen mediatoa(fpet al 2006), it can be argued that the use of
pressure may help to lower the associated freeggrmrrier, with beneficial effects on catalysis.
Besides improving catalytic processes, high-presstfiects might be also effectively exploited to
create new zeolite structures starting from a comnezonomically convenient parent material.
Importantly, the new phases might display betterfopmances than the starting material, as
demonstrated by Jorda et al. (2013).

In this broad scenario, modelling studies play & kale. Simulations have become an
extremely versatile tool for addressing the compleehaviour of zeolites at high-pressure
conditions, and for connecting the experimentalgasured response of the system to its features at
the atomistic-detail level. Nowadays, the scopearfiputational investigations is no longer limited
to the interpretation of experimental results: tisbpuld aim at opening new routes in the various
aspects of zeolite technology. Integrated theakggperimental approaches would be instrumental

in this perspective: they are currently widely at@olpand are going to gain further momentum from
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995 the growing increase of computing power and theticoous development of faster numerical
996 algorithms.

997 Concerning the geological implications of the expental findings on the>-induced
998 crystal-fluid interaction in zeolites, it is nofffitult to consider the potential role played bylites

999 (especially Ca-bearing zeolites, like laumontiteyurid as among the main mineralogical
1000 components of the oceanic basalts and their tramsfton products, as we know by the ODP -
1001 ocean drilling project €.g, Alt et al. 1986; Sevigny et al. 1992; Yasukawa a& 2014;
1002 http://iodp.americangeosciences.org/vufind/). Feaneple, these zeolites may act as potential
1003 carrier of HO or CQ (or even HS, CH, Ar, Xe, or Kr), sorbed under the combined effett
1004 pressure and temperature during genetic and postigeconditions, which can be later released
1005 when the oceanic crust is subducted. In additiohereas it is well known the utilization of
1006 synthetic zeolites in petrochemistry.§, Vermeiren and Gilson 2009 and references thgrthe
1007 role played by natural zeolites on generation, atign and accumulation of hydrocarbons
1008 (processes that occur at moderat& conditions) is still unknown. Some zeolite-likenarals, for
1009 example melanophlogite (a polymorph of $i@ith an open-framework structure, also called
1010 chlatrasil; Tribaudino et al. 2008, 2010; Gatta et al. 2014ntain CH, CO, or N, in their
1011 structural cavities. Natural methane clathrateslids condensed at moderate pressure in which a
1012 large amount of methane is trapped within a framrewed H,O - share with zeolites the framework
1013 topologies and the host-guest structures. The ewpatal findings pertaining to theR-behaviour
1014 of zeolites can be potentially extended to cladgaFor example, methane clathrates are stable at a
1015 higher temperature than liquefied natural gas,(110-250 K), and this promotes some interest in
1016 converting natural gas into clathrates insteadsofigithe conventional liquefaction technology for
1017 transportation. The production of methane clatlsrdtem natural gas requires less energy and a
1018 smaller refrigeration plant if compared to liqueffieatural gas. Can the application of moderate
1019 pressure improve the methane clathrates condensatib a more efficient insertion of GHn the
1020 H,0O framework?
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Figure 1. Structure evolution of the all-silicarferite compressed in a non-penetrating fluid (see

text for further details).
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1602 Figure 2. Supramolecular organization of theOHand ethanol molecules inside the two-
1603 dimensional channel system of hydrophobic all-gilferrierite. The guest molecules are in ball-
1604 and-stick representation. Hydrogen bonds are shtasmiashed lines. Atom colors: H = white; C =
1605 cyan; O(ethanol) = red; O(water) = blue. The stiteeis projected in thab plane.
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