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Abstract. The aim of the paper is to study an optimal control problem on infinite horizon
for an infinite dimensional integro-differential equation with completely monotone kernels, where we
assume that the noise enters the system when we introduce a control. We start by reformulating the
state equation into a semilinear evolution equation which can be treated by semigroup methods. The
application to optimal control provides other interesting results and requires a precise description of
the properties of the generated semigroup. The main tools consist in studying the differentiability
of the forward-backward system with infinite horizon corresponding with the reformulated problem
and the proof of existence and uniqueness of mild solutions to the corresponding Hamilton Jacobi
Bellman (HJB) equation.

Key words. Abstract integro-differential equation; Analytic semigroup; Backward Stochastic
differential equations; Elliptic PDEs; Hilbert spaces; Mild Solutions

AMS subject classifications. 45D05, 93E20, 60H30

1. Introduction. In recent years, many investigations have been carried out
concerning HJB equations in connection with optimal control of nonlinear infinite
dimensional stochastic systems. This paper attempts to use this approach to an
infinite horizon control problem where the dynamics of the system is perturbed by
the memory term. In this section we briefly outline the main steps of our construction;
this is meant as a guideline for the reader, who will find in later sections all the details.
Our starting point is a controlled stochastic Volterra equation of the form

d
dt

∫ t
−∞ a(t− s)u(s)ds = Au(t) + f(u(t))

+g [ r(u(t), γ(t)) + Ẇ (t) ], t ∈ [0, T ]

u(t) = u0(t), t ≤ 0

(1.1)

for a process u in a Hilbert space H, where W (t), t ≥ 0 is a cylindrical Wiener process
defined on a suitable probability space (Ω,F , (Ft)t≥0,P) with values into a (possibly
different) Hilbert space Ξ; the kernel a is completely monotonic, locally integrable and
singular at 0; A is a linear operator which generates an analytic HJB semigroup; f is a
Lipschitz continuous function from H into itself; g is a bounded linear mapping from
H into L2(Ξ, H) (the space of Hilbert-Schmidt operators from Ξ to H). The function
r is a bounded Borel measurable mapping from H × U into Ξ, with U ⊆ U . Hence
the control is modellized by the predictable process γ with values in some specified
subset U (the set of control actions) of a third Hilbert space U . We notice that the
control enters the system together with the noise. This special structure is imposed
by our techniques. However the presence of the operator r allows more generality.

The optimal control problem that we wish to treat in this paper consists in min-
imizing the functional cost

J(u0, γ) = E
∫ ∞

0

e−λt`(u(t), γ(t))dt, (1.2)
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where ` : H × U → R is a given real continuous and bounded function and λ is any
positive number.

Our first task is to provide a semigroup setting for the problem, by the state
space setting first introduced by Miller in [24] and Desch and Miller [15] and recently
revised, for the stochastic case, in Homan [20], Bonaccorsi and Desch [4], Bonaccorsi
and Mastrogiacomo [5]. Within this approach, equation (1.1) is reformulated into an
abstract evolution equation without memory on a different Hilbert space X. Namely,
we rewrite equation (1.1) as

dx(t) = Bx(t)dt+ (I −B)P f(Jx(t))dt

+(I −B)Pg(r(Jx(t), γ(t))dt+ dW (t))

x(0) = x,

(1.3)

where the initial datum x is obtained from u0 by a suitable transformation. Moreover,
B is the infinitesimal generator of an analytic semigroup etB on X. P : H → X is
a linear mapping which acts as a sort of projection into the space X. J : D(J) ⊂
X → H is an unbounded linear functional on X, which gives a way going from x to
the solution to problem (1.1). In fact, it turns out that u has the representation

u(t) =

{
Jx(t), t > 0,

u0(t), t ≤ 0.

For more details, we refer to the original papers [4, 20]. Further, the optimal con-
trol problem, reformulated into the state setting X, consists in minimizing the cost
functional

J(x, γ) = E
∫ ∞

0

e−λt`(Jx(t), γ(t))dt

(where the initial condition u0 is substituted by x and the process u is substituted
by Jx). It follows that γ is an optimal control for the original Volterra equation if
and only if it is an optimal control for that state equation (1.3). We stress that our
approach has the advantage that it naturally links the solution of a Volterra equation
to a Markov process; this has important developments in view of the application to
optimal control problems for Volterra equations.

To our knowledge, this paper is the first attempt to study optimal control prob-
lems for stochastic Volterra equations on an unbounded interval time horizon. In
order to handle the control problem we introduce the weak reformulation; in this
setting we wish to perform the standard program of synthesis of the optimal control,
by proving the so-called fundamental relation for the value function and then solving
in the weak sense the closed loop equation. The main step is to study the stationary
HJB equation corresponding with our problem. In our case, this is given by

Lv(x) = λv(x)− ψ(x,∇v(x)(I −B)Pg(Jx)), x ∈ X, (HJB)

where L is a second order operator and coincides with the infinitesimal generator of
the Markov semigroup corresponding to the process x, ψ is the Hamiltonian of the
problem, defined in terms of ` and λ a positive number. Here ∇h(x) ∈ H? denotes
the Gâteaux derivative at point x ∈ H and ∇2h is the second Gâteaux derivative,
identified with an element of L(H) (the vector space of linear and continuous func-
tionals on H). Equations of type HJB have been studied by probabilistic approach in
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several finite dimensional situations [10, 14, 25, 26] and extended in infinite dimension
by Fuhrman and Tessitore [19]. In particular, an equation like HJB is studied without
any nondegeneracy assumption on g and a unique Gâteaux differentiable mild solution
to HJB is found by an approach based on backward stochastic differential equations
(BSDEs).

In this paper we study the HJB equation through the BSDE techniques initiated
by Fuhrman and Tessitore in [19] and Hu and Tessitore [21]. In particular, the BSDE
corresponding with our problem is given by

dY (τ, x) = λY (τ, x)dt− ψ(x(τ ;x), Z(τ, x))dt+ Z(τ, x)dW (τ), τ ≥ 0 (BSDE)

together with a suitable growth condition (which substitutes the final condition of the
finite horizon case). In the above formula, x(·;x) is the solution of the equation (1.3)
starting from x ∈ X at time t = 0.

The main difficulty, in our case, is due to the presence of unbounded terms such
as (I −B)Pg, which forces us to prove extra regularity for the solution to HJB.

Our purpose is to prove that the solution of (BSDE) exists and it is unique for
any positive λ and that the mild solution of the (HJB) equation is given in terms of
the solution of the (BSDE). In particular, if we set v(x) := Y (0, x), it follows that v
is the mild solution of (HJB). As noted above, in our case it is not enough to prove
that v is once (Gâteaux) differentiable to give sense to equation HJB. Indeed the
occurrence of the term ∇v(·)(I −B)P , together with the fact that P maps H into an
interpolation space of D(B), forces us to prove that the map h 7→ ∇v(x)(I −B)θP [h]
for suitable θ ∈ (0, 1) extends to a continuous map on H. To do that we start proving
that this extra regularity holds, in a suitable sense, for the state equation (1.3) and
then that it is conserved if we differentiate in Gâteaux sense the backward equation
with respect to the process x. On the other side, we can prove that if the map
h 7→ ∇v(x)(I − B)θ[h] extends to a continuous function on H, then the processes
t 7→ v(x(t;x)) and W admit joint quadratic variation in any interval [t, T ] and this is
given by ∫ T

t

∇v(x(τ ;x))(I −B)Pg dτ.

This result is standard and is done by an application of the Malliavin calculus (on a
finite time horizon).

We can then come back to the control problem, and using the probabilistic repre-
sentation of the unique mild solution to equation (HJB) we easily show the existence
of an optimal feedback law.

The paper is organized as follows: in the next section we give some useful notation
and we introduce the main assumptions on the coefficients of the problem. In Section 4
we reformulate the problem into a semilinear abstract evolution equation and we study
the properties of leading operator. In Section 5 we prove the first main result of the
paper: we determine the existence and uniqueness of the solution of the reformulated
equation (1.3). In Section 6 we turn back to the original Volterra equation (1.1) in
order to establish even in this case the existence and uniqueness of the solutions. In
Section 7 we give some properties of the forward equation corresponding with the
reformulated uncontrolled problem. In Section 8 we study the existence, uniqueness
and properties of the backward stochastic equation (BSDE). In Section 9 we proceed
with the study of the HJB equation and, finally, in Section 10 we employ the results
proved in the preceding sections in order to perform the standard synthesis of the
optimal control.
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2. Volterra equations. Integro partial differential equations are widely used in
literature for modeling those economic processes where the output of an endogenous
or exogenous variable depends not only on its value at the present time, but also on its
values at previous time points. In particular, we recall the applications in economic
growth theory (see for instance [29, 30]) and fractional diffusion-wave equations which
also have economic interpretation (as suggested, for example, in [31, 32]). This last
kind of equation are modeled after

∂α

∂tα
u(t, x) = b

∂2

∂x2
u(t, x),

where α is a parameter describing the order of the fractional derivative, that is taken
in the sense of Caputo fractional derivative. Although theoretically α can be any
number, we consider here only the case 0 < α < 1; notice that for α = 1 the above
equation represents the standard diffusion equation. The fractional derivative of u of
order α is

∂α

∂tα
u(t) =

d

dt

∫ t

0

g1−α(t− s)u(s) ds

where gβ is the fractional derivative kernel gβ(t) = 1
Γ(β) t

β−1. This kernel is continuous,

locally integrable on R+ and it is completely monotone. There has been a growing
interest to investigate this equation, for various reasons; we quote from [2], among
others, “modeling of anomalous diffusive and subdiffusive systems” and “description
of fractional random walks”.

2.1. A motivating example. Next example shows an application of (1.1) to
the theory of economic growth. Because growth theorists are principally interested in
the long-term economic performances, the typical analysis performed is asymptotic,
therefore requiring the study of infinite time horizon optimization problems (see for
example, [3, Chapter 2]).

Denote by k(t, x) the capital stock held by a household located at x at date t.
Without capital mobility, the unique way for the household to increase k(t, x) is by
consuming less, thus saving more and using this saving to invest more. If we allow to
capital to flow across space, k(t, x) is affected by the net flows of capital to a given
location or space interval. Capital spatio-temporal dynamics are described by the
integro-differential parabolic equations: capital stock at (t, x) depends on the produc-
tivity, saving and investment capacity of individuals established at x and on trade as
well. The following Volterra equation generalizes the budget constraint introduced in
[7] and takes into account the memory effects affecting economic growth as described
in [29, 30, 31, 32]. It is assumed that individuals are distributed homogeneously along
the unit circle in the plane, denoted by T. Using polar coordinates T can be described
as the set of spatial parameters θ ∈ [0, 2π] with θ = 0 and θ = 2π being identified.
Capital is mobile along the circle T, and its dynamics is characterized by the inclusion

of the special term ∂2

∂θ2 k(t, θ). This term takes into account the aggregate resource
constraint of all the households distributed across space. In particular it is linked to
the flow of capital from rich to poor regions. The total production at θ at time t is
simply y(t, θ) = f(k(t, θ)), for a function f satisfying suitable assumptions (see [7]
for more details) while the influence of consumption, savings, investment capacity of
individuals are summarized through the presence of a nonlinear capital dependent,
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stochastically perturbed, source h. We thus consider the following dynamics:

∂

∂t

∫ t

−∞
c(t− s)k(s, θ)ds− ∂2

∂θ2
k(t, θ) = f(k(t, θ)) + h(t, θ), (t, θ) ∈ R+ × T

(2.1)

k(0, θ) = k0(θ) > 0, θ ∈ T, (2.2)

k(t, 0) = k(t, 2π) = 0, t ∈ R+. (2.3)

We assume that h has the following form:

h(t, θ) = σγ(t) + σβ̇(t).

Here σ ∈ R, γ acts as the control on the system and takes into account the contribution
of savings, investments and consumption to the capital motion. Moreover β is a real
Wiener processes.

Problem (2.1) is a non-linear dynamical system and k(t, θ) is not, in general, a
Markov process, since its future development depends on the whole history. With the
choice c(t) = gβ(t) = 1

Γ(1−β) t
−β , the above equation reads Dβk(t) = ∆k(t) + h(t),

where Dβ is the fractional derivative of order β (compare [27]).
Provided an initial distribution of physical capital k0(·), a typical economic prob-

lem is to look for a control γ in order to maximize the total discounted welfare or
utility of all the individuals present in the space considered over an infinite time hori-
zon (as proposed, among the others, by [1]). A benchmark problem is to maximize
the functional

J(k0, γ) = E
∫ +∞

0

e−λtu(γ(t), k(t))dtdθ. (2.4)

over all admissible bounded γ and differentiable, bounded u : R× R+ → R.
The above example will be solved in Section 10.1, where we shall see how it fits

into our setting and which kind of solution this problem admits.

3. Notations and main assumptions. The norm of an element x of a Banach
space E will be denoted by |x|E or simply |x| if no confusion is possible. If F is
another Banach space, L(E,F ) denotes the space of bounded linear operators from
E to F , endowed with the usual operator norm.

The letters Ξ, H, U will always denote Hilbert spaces. Scalar product is denoted
〈 · , · 〉, with a subscript to specify the space, if necessary. All Hilbert spaces are
assumed to be real and separable.

By a cylindrical Wiener process with values in a Hilbert space Ξ, defined on a
probability space (Ω,F ,P), we mean a family (W (t))t≥0 of linear mappings from Ξ
to L2(Ω), denoted ξ 7→ 〈ξ,W (t)〉 such that

1. for every ξ ∈ Ξ, (〈ξ,W (t)〉)t≥0 is a real (continuous) Wiener process;
2. for every ξ1, ξ2 ∈ Ξ and t ≥ 0, E(〈ξ1,W (t)〉〈ξ2,W (t)〉) = 〈ξ1, ξ2〉.

(Ft)t≥0 will denote the natural filtration of W , augmented with the family of
P-null sets. The filtration (Ft)t≥0 satisfies the usual conditions. All the concepts of
measurability for stochastic processes refer to this filtration. By B(Γ) we mean the
Borel σ-algebra of any topological space Γ.

In the sequel we will refer to the following class of stochastic processes with values
in a Hilbert space K:
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1. Lp(Ω;L2(0, T ;K)) defines, for T > 0 and p ≥ 1, the space of equivalence
classes of progressively measurable processes y : Ω× [0, T )→ K, such that

|y|pLp(Ω;L2(0,T ;K)) := E

[∫ T

0

|y(s)|2Kds

]p/2
<∞.

Elements of Lp(Ω;L2(0, T ;K)) are identified up to modification.
2. Lp(Ω;C([0, T ];K)) defines, for T > 0 and p ≥ 1, the space of equivalence

classes of progressively measurable processes y : Ω × [0, T ) → K, with con-
tinuous paths in K, such that the norm

|y|pLp(Ω;C([0,T ];K)) := E

[
sup
t∈[0,T ]

|y(t)|pK

]

is finite. Elements of Lp(Ω;C([0, T ];K)) are identified up to indistinguisha-
bility.

We also recall notation and basic facts on a class of differentiable maps acting
among Banach spaces, particularly suitable for our purposes (we refer the reader to
Fuhrman and Tessitore [18] or Ladas and Lakshmikantham [22, Section 1.6] for details
and properties). Let now X,Y, V denote Banach spaces. We say that a mapping
F : X → V belongs to the class G1(X,V ) if it is continuous, Gâteaux differentiable
on X, and its Gâteaux derivative ∇F : X → L(X,V ) is strongly continuous.

The last requirement is equivalent to the fact that for every h ∈ X the map
∇F (·)h : X → V is continuous. Note that ∇F : X → L(X,V ) is not continuous in
general if L(X,V ) is endowed with the norm operator topology; clearly, if it happens,
then F is Fréchet differentiable on X. It can be proved that if F ∈ G1(X,V ), then
(x, h) 7→ ∇F (x)h is continuous from X × X to V ; if, in addition, G is in G1(V,Z),
then G(F ) is in G1(X,Z) and the chain rule holds: ∇(G(F ))(x) = ∇G(F (x))∇F (x).
When F depends on additional arguments, the previous definitions and properties
have obvious generalizations.

Moreover, we assume the following.

Hypothesis 3.1.
1. The kernel a : (0,∞) → R is completely monotonic, locally integrable, with

a(0+) = +∞. The singularity in 0 shall satisfy some technical conditions
that we make precise in Section 4.

2. A : D(A) ⊂ H → H is a sectorial operator in H. Thus A generates an
analytic semigroup etA.

3. The function f : H → H is continuous and continuously Gâteaux differen-
tiable; moreover there exist a constant L > 0 such that

|f(u)− f(v)| ≤ L|u− v|, u, v ∈ H;

4. The mapping g belongs to L2(Ξ, H) (the space of Hilbert-Schmidt operators
from Ξ to H);

5. The function r : H × U → Ξ is Borel measurable and there exists a positive
constant C > 0 such that

|r(u1, γ)− r(u2, γ)| ≤ C|u1 − u2|, u1, u2 ∈ H, γ ∈ U ;

|r(u, γ)|Ξ ≤ C, u ∈ H, γ ∈ U .
6



6. The process (W (t))t≥0 is a cylindrical Wiener process defined on a complete
probability space (Ω,F , (Ft)t≥0,P) with values in the Hilbert space Ξ.

Remark 3.2. We notice that the assumption 3.1(3) implies that the Gateaux
derivative of f is bounded, that is

‖∇uf(u)‖L(H) ≤ C, u ∈ H.

The initial condition satisfies a global exponential bound as well as a linear growth
bound as t→ 0:

Hypothesis 3.3.
1. There exist M1 > 0 and ω > 0 such that |u0(t)| ≤M1e

ωt for all t ≤ 0;
2. There exist M2 > 0 and τ > 0 such that |u0(t) − u0(0)| ≤ M2|t| for all

t ∈ [−τ, 0];
3. u0(0) ∈ Hε for some ε ∈ (0, 1/2). Here Hε denotes the interpolation space of

order ε between H and D(A), i.e. Hε = (H,D(A))ε.

Concerning the cost functional ` we make the following general assumptions:
Hypothesis 3.4. The function ` : H × U → R is continuous and bounded.
We consider the following notion of weak solution for the Volterra equation (1.1).
Definition 3.5. We say that a process u = (u(t))t≥0 is a weak solution to

equation (1.1) if u is an adapted, p-mean integrable (for any p ≥ 1), continuous
H-valued predictable process and the identity∫ t

−∞
a(t− s)〈u(s), ζ〉Hds = 〈ū, ζ〉H +

∫ t

0

〈u(s), A?ζ〉Hds

+

∫ t

0

〈f(u(s)), ζ〉ds+

∫ t

0

〈g r(u(s), γ(s)), ζ〉Hds+ 〈gW (t), ζ〉

holds P-a.s. for arbitrary t ≥ 0 and ζ ∈ D(A?), with A? being the adjoint of the
operator A and

ū =

∫ 0

−∞
a(−s)u0(s)ds.

4. The analytical setting. A completely monotone kernel a : (0,∞)→ R is a
continuous, monotone decreasing function, infinitely often derivable, such that

(−1)n
dn

dtn
a(t) ≥ 0, t ∈ (0,∞), n = 0, 1, 2, . . .

By Bernstein’s Theorem [27, pag. 90], a is completely monotone if and only if there
exists a positive measure ν on [0,∞) such that

a(t) =

∫
[0,∞)

e−κtν(dκ), t > 0.

From the required singularity of a at 0+ we obtain that ν([0,+∞)) = a(0+) =
+∞ while for s > 0 the Laplace transform â of a verifies

â(s) =

∫
[0,+∞)

1

s+ κ
ν(dκ) < +∞.
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We introduce the quantity

α(a) = sup

{
ρ ∈ R :

∫ ∞
c

sρ−2 1

â(s)
ds <∞

}
and we make the following assumption:

Hypothesis 4.1. α(a) > 1/2.
Remark 4.2. The function a(t) = e−ωttα−1, where ω > 0, is an example of

completely monotone kernel, with Laplace transform â(s) = Γ[α] (ω + s)−α; an easy
computation shows that α(a) = 1 − α, hence we satisfy assumption 4.1 whenever we
take α ∈ (0, 1

2 ).
Remark 4.3. It is known from the theory of deterministic Volterra equations that

the singularity of a helps smoothing the solution. We notice that α(a) is independent
of the choice of c > 0, and this quantity describes the behavior of the kernel near 0; by
this way we ensure that smoothing is sufficient to keep the stochastic term tractable.

Under the assumption of complete monotonicity of the kernel, a semigroup ap-
proach to a type of abstract integro-differential equations encountered in linear vis-
coelasticity was introduced in [15] and extended to the case of Hilbert space valued
equations in [4]. In order to simplify the exposition we quote from [4] the main result
concerning the derivation of the state equation (1.3).

We will see that this approach allows us to treat the case of semilinear, stochastic
integral equations; we start for simplicity with the equation

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) + f̄(t), t ∈ [0, T ]

u(t) = u0(t), t ≤ 0,

(4.1)

where f̄ belongs to L1(0, T ;H) and u0 satisfies Hypothesis 3.3. A weak solution of
equation (4.1) is defined as follows:

Definition 4.1. We say that a function u ∈ L1([0, T ];H) is a weak solution to
equation (4.1) if u satisfies the identity∫ t

−∞
a(t− s)〈u(s), ζ〉Hds = 〈ū, ζ〉H +

∫ t

0

〈u(s), A?ζ〉Hds+

∫ t

0

〈f̄(s), ζ〉ds

for arbitrary t ∈ [0, T ] and ζ ∈ D(A?), with A? being the adjoint of the operator A
and

ū =

∫ 0

−∞
a(−s)u0(s)ds.

In order to solve (4.1), we start from the following identity, which follows by Bern-
stein’s theorem:∫ t

−∞
a(t− s)u(s) ds =

∫ t

−∞

∫
[0,+∞)

e−κ(t−s) ν(dκ)u(s)ds =

∫
[0,+∞)

x(t, κ) ν(dκ)

where we introduce the state variable

x(t, κ) =

∫ t

−∞
e−κ(t−s)u(s) ds. (4.2)
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Formal differentiation yields

∂

∂t
x(t, κ) = −κx(t, κ) + u(t), (4.3)

while the integral equation (4.1) can be rewritten as∫
[0,+∞)

(−κx(t, κ) + u(t)) ν(dκ) = Au(t) + f̄(t). (4.4)

Now, the idea is to use equation (4.3) as the state equation, with Bx = −κx(κ) + u,
while (4.4) enters in the definition of the domain of B.

In the following we want to give a formal description of the arguments above by
introducing the suitable state space X for x(t, ·) and suitable operators.

Definition 4.2. Let X denote the space of all Borel measurable functions y :
[0,+∞)→ H such that the seminorm

‖ỹ‖2X :=

∫
[0,+∞)

(κ+ 1)|y(κ)|2H ν(dκ)

is finite. We shall identify the classes y with respect to equality almost everywhere
in ν.

Definition 4.3. We let the operator Q : L1((−∞, 0];H)→ L∞([0,+∞);H,dν)
be given by

x(0, κ) = Qu0(κ) =

∫ 0

−∞
e−κsu0(s) ds. (4.5)

The operator Q maps the initial value of the stochastic Volterra equation to the
initial value of the abstract state equation. Different initial conditions of the Volterra
equation generate different initial conditions of the state equation. It has been proved
in [4, Lemma 3.16] that Q maps L1(−∞, 0;H)∩L∞(−∞, 0;H) into X. In particular,
Hypothesis 3.3 is necessary in order to have a greater regularity on the inial value of
the state equation. In fact in this case [4, Lemma 3.16 (3)]) shows that Qu0 belongs
to Xη for η ∈ (0, 1

2 ).
Remark 4.4. We stress that under our assumptions we are able to treat, for

instance, initial conditions for the Volterra equation of the following form

u0(t) =

{
0, t ∈ (−∞,−δ);
ū t ∈ [−δ, 0]

provided ū has a suitable regularity.

We introduce a rigorous definition for the leading operator of the reformulated
state equation (4.4).

Definition 4.4. Let x ∈ X and u ∈ H. We define the operators J̃ : D(J̃) ⊂
X → X by

D(J̃) : =

{
x ∈ X : ∃u ∈ Hs.t.

∫
[0,∞)

(κ+ 1)|κx(κ)− u|2ν(dκ) < +∞

}
J̃x := u;
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B : D(B) ⊂ X → X

D(B) :=

{
x ∈ D(J̃)|J̃x ∈ D(A),

∫
[0,∞)

−κx(κ) + J̃x(κ)ν(dκ) = AJ̃x

}
(Bx)(κ) := −κx(κ) + J̃x

and P : H → X

(Pu)(κ) :=
1

κ+ 1
R(â(1), A)u,

R(â(1), A) being the resolvent R(â(1), A) := (â(1)−A)−1.
We quote from [4] the main result concerning the state space setting for stochastic

Volterra equations in infinite dimensions and the properties of the linear operators
introduced above.

Theorem 4.5 (State space setting). Let A, a, W , α(a) be as in Hypotheses 3.1
and 4.1; choose numbers η ∈ (0, 1), θ ∈ (0, 1) such that

η >
1

2
(1− α(a)), θ <

1

2
(1 + α(a)), θ − η > 1

2
. (4.6)

Let X, Q, B, J̃ be defined as in Definitions 4.2, 4.3 and 4.4. Then
1) the operator B : D(B) ⊂ X → X is a densely defined sectorial operator

generating an analytic semigroup etB;
2) the operator J̃ : D(B) → D(A) is onto and admits a unique extension J

as a continuous linear operator J : Xη → H, where Xη denotes the real
interpolation space Xη := (X,D(B))η,2;

3) the linear operator P maps H continuously into Xθ.
Proof. The assertion of the theorem can be proved by following [4, Section 3].
Our idea is to rewrite the semilinear inhomogeneous integral equation (4.1) into

an abstract evolution equation on the state space X, by using the linear operators
introduced above. More precisely, equation (4.1) can be reformulated as

x′(t) = Bx(t)dt+ (I −B)P f̄(t), t ≥ 0

x(0) = Qu0.
(4.7)

Since B is the generator of an analytic semigroup in X, we can give a meaning to the
solution of (4.7) in a mild sense as

x(t) = e(t−s)Bx(0) +

∫ t

s

e(t−σ)B(I −B)P f̄(σ)dσ. (4.8)

In the following we will explore the relation between the abstract state space and
Problem (4.1).

Theorem 4.6. We assume Hypotheses 3.1 (i-iii), 3.3, f̄ ∈ L1(0, T ;H) and let
X,Q,B, P be defined as in Definition 4.2, 4.3, 4.4 and J as in Theorem 4.5 (ii);
choose numbers η ∈ (0, 1), θ ∈ (0, 1) such that

η >
1

2
(1− α(a)), θ <

1

2
(1 + α(a)), θ − η > 1

2
.

Set x = Qu0. If x given by (4.8) is the solution in mild sense of the abstract Cauchy
problem (4.7), then the following assertions hold:

10



1. x(t) ∈ L1
loc([0,∞);Xη), thus Jx(t) is well defined almost everywhere, and

Jx ∈ L1
loc([0,∞);H);

2. The function u : [0,∞)→ H, defined by

u(t) =

{
u0(t), if t < 0,

Jx(t) if t ≥ 0,
(4.9)

is the unique weak solution of (4.1).
Proof. The result is a direct consequence of [4, Theorem 2.7]. We notice that

in the aforementioned result the authors prove the existence and uniqueness of an
integrated solution, which is, clearly also a weak solution (compare [4, Definition 2.6]
and Definition 4.1 above).

It is remarkable that B generates an analytic semigroup, since in this case we
have a powerful theory of optimal regularity results at our disposal. In particular,
besides the interpolation spaces Xθ, we may construct the extrapolation space X−1,
which is the completion of X with respect to the norm ‖x‖−1 := ‖(B − I)−1x‖X .

Under some additional conditions it is possible to prove the exponential stability
of the semigroup etB . As we will see, this is especially needed in the study of the
optimal control problem with infinite horizon. In particular we impose the following:

Hypothesis 4.5. There exists σ > 0 such that the function eσta(t) is completely
monotonic.
Consequently, we obtain that B is of negative type.

Proposition 4.6. The real parts of the spectrum of B are bounded by some
ω0 < 0. Consequently the semigroup etB decays exponentially.

Proof. We proceed as in Bonaccorsi and Desch [4]. All we need to show is that 0
is in the resolvent set of B. Once this is proved, we obtain that the spectral bound
is negative since the spectrum is confined to a sector. Now we notice that â(s) exists
in the set C \ (−∞,−σ] and 0 is in the resolvent set of A, by assumption. Moreover,
we can give the explicit expression of R(s,B), which is

[R(s,B)x](κ) =
1

s+ κ

[
x(κ) +R(sâ(s))

∫
[0,∞)

κ

s+ κ
x(κ)ν(dκ)

]
(the calculation is straightforward and can be found in [4, Lemma 3.5]). Then it is
easily seen that R(s,B) can be extended to a neighborhood of 0.

The semigroup etB extends to X−1 and the generator of this extension, that we
denote B−1, is the unique continuous extension of B to an isometry between X and
X−1. See for instance [16, Definition 5.4] for further details.

Remark 4.7.
1. In the sequel, we shall always denote the operator with the letter B, even

in case where formally B−1 should be used instead. This should cause no
confusion, due to the similarity of the operators.

2. We notice that the interpolation spaces Xγ , γ ∈ (0, 1) and the domains of
fractional powers of B are linked by the following inclusion

D((−B)γ+ε) ⊂ Xγ , ε > 0,

(see [13, Proposition A.15]). Hence, if x is any element of Xγ , γ ∈ (0, 1), we
can find sufficiently small ε > 0 such that

‖x‖γ ≤ ‖x‖D((−B)γ+ε) = ‖(I −B)γ+εx‖X .

11



We will frequently make use of the above inequality in the following, especially
when we need to prove that an element of X is, instead in Xη.

3. We notice that, since B − ω0 is the infinitesimal generator of the analytic
semigroup of contraction (e−ω0tetB)t≥0 on X with 0 ∈ ρ(B − ω0), we have
that Xθ = (D(−B)θ) for any α ∈ (0, 1) and there exists M > 0 such that

‖(B − ω0)e−ω0tetB‖L(Xθ,Xη) ≤Mt−1+θ−η, t ≥ 0.

Moreover, the norm in Xθ is equivalent to the norm x 7→ ‖(−B)θx‖X on
D((−B)θ). The above properties and estimate are well explained in [20, pgg.
23,25 Theorems 1.4.27, Lemma 1.4.15, Corollary 1.4.30(ii)]. For more details
see also [23, pages 114, 97, 120, Theorems 4.3.5, 4.2.6, Corollary 4.3.12]. We
assume, for simplicity, that ω0 > −1, so that the same estimate holds with
B − I instead of B − ω0, i.e.

‖(B − I)etB‖L(Xθ,Xη) ≤MT t
−1+θ−η, t ∈ [0, T ],

where MT is a positive constant depending only on T . In the next pages
we will make use of this inequality frequently and of the equivalence between
interpolation spaces and the domains of the fractional power of B, especially
when studying the forward equation, its differentiability and the Malliavin
regularity.

5. The state equation: existence and uniqueness. In this section, moti-
vated by the construction in Section 4, we shall establish the existence and uniqueness
result for the following stochastic uncontrolled Cauchy problem on the space X defined
in Section 4:

dx(t) = Bx(t)dt+ (I −B)Pf(Jx(t))dt

+(I −B)Pg r(Jx(t), γ(t))dt+ (I −B)Pg dW (t)

x(0) = x,

(5.1)

for 0 ≤ t ≤ T and initial condition x ∈ Xη. The above expression is only formal since
the coefficients do not belong to the state space. However, we can give a meaning to
the mild form of the equation:

Definition 5.1. We say that a continuous, X-valued, predictable process x =
(x(t))t≥0 is a (mild) solution of the state equation (1.3) if P-a.s.,

x(t) = e(t−s)Bx+

∫ t

s

e(t−σ)B(I −B)Pf(Jx(σ))dσ

+

∫ t

0

e(t−σ)B(I −B)P r(Jx(σ), γ(σ))dσ +

∫ t

s

e(t−σ)B(I −B)Pg dW (σ).

Let us state the main existence result for the solution of equation (1.3).
Theorem 5.2. Under Hypotheses 3.1, 3.3, for an arbitrary predictable process

γ with values in U , for every 0 ≤ t ≤ T and x ∈ Xη, there exists a unique adapted
process x ∈ LpF (Ω, C([0, T ];Xη)) solution of (1.3). Moreover, the estimate

E sup
t∈[0,T ]

||x(t)||pη ≤ C(1 + ||x||pη) (5.2)

holds for some positive constant C independent of T .
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Proof. The proof of the above theorem proceeds, basically, on the same lines as
the proof of Theorem 3.2 in Bonaccorsi and Mastrogiacomo [5] (2009) and is therefore
omitted.

Remark 5.3. In the following it will be also useful to consider the uncontrolled
version of equation (1.3), namely:{

dx(t) = Bx(t)dt+ (I −B)Pf(Jx(t))dt+ (I −B)Pg dW (t)

x(0) = x.
(5.3)

We will refer to (5.3) as the forward equation. We then notice that existence and
uniqueness for the above equation can be treated in an identical way as in the proof of
Theorem 5.2.

6. The controlled stochastic Volterra equation. As a preliminary step for
the sequel, we state two results of existence and uniqueness for (a special case of)
the original Volterra equation. The proofs can be found in [6, Section 2] and in [12,
Section 4].

Proposition 6.1. For any T > 0, the linear equation

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t), t ∈ [0, T ]

u(t) = 0, t ≤ 0.

(6.1)

has a unique solution u ≡ 0.

Now we deal with the existence and uniqueness of the Stochastic Volterra equation
with non-homogeneous terms. The result extends Theorem 2.14 in [4], where the case
f(t) ≡ 0 is treated, by considering the case where f is a deterministic function in
L1(0, T ;H) and g is as in Hypothesis 3.1.

Proposition 6.2. In our assumptions, let x0 ∈ Xη for some 1−α(a)
2 < η <

1
2α(a). Given the process

x(t) = etBx0 +

∫ t

0

e(t−s)B(I −B)Pf(s) ds+

∫ t

0

e(t−s)B(I −B)Pg dW (s) (6.2)

we define the process

u(t) =

{
Jx(t), t ≥ 0,

u0(t), t ≤ 0.
(6.3)

Then u(t) is a weak solution to problem

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) + f(t) + gẆ (t), t ∈ [0, T ]

u(t) = u0(t), t ≤ 0.

(6.4)

After the preparatory results stated above, here we prove that main result of
the existence and uniqueness of solutions of the original controlled Volterra equation
(1.1).
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Theorem 6.3. Assume Hypothesis 3.1 and 3.3. Let γ be an admissible control
and x be the solution to problem (1.3)) (associated with γ) in Xη with η satisfying
the assumptions of Theorem 5.2. Then the process

u(t) =

{
u0(t), t ≤ 0

Jx(t), t ∈ [0, T ]
(6.5)

is the unique solution of the stochastic Volterra equation

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) + f(t, u(t)) + g

[
r(u(t), γ(t)) + Ẇ (t)

]
, t ∈ [0, T ]

u(t) = u0(t), t ≤ 0.

(6.6)

Proof. We propose to fulfill the following steps: first, we prove that the affine
equation

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) + f(t, ũ(t)) + g

[
r(γ(t), ũ(t)) + Ẇ (t)

]
, t ∈ [0, T ]

u(t) = u0(t), t ≤ 0,

(6.7)

defines a contraction mapping Q : ũ 7→ u on the space Lp(Ω;C([0, T ];H)). Therefore,
equation (6.6) admits a unique solution.

Then we show that the process u defined in (6.5) satisfies equation (6.6). Accord-
ingly, by the uniqueness of the solution, the thesis of the theorem follows.

First step. We proceed by defining the mapping

Q : Lp(Ω;C([0, T ];H))→ Lp(Ω;C([0, T ];H))

where Q(ũ) = u is the solution of the problem

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) + g(t, ũ(t))

[
r(ũ(t), γ(t)) + Ẇ (t)

]
, t ∈ [0, T ]

u(t) = u0(t), t ≤ 0.
(6.8)

Let ũ1, ũ2 be two processes belonging to Lp(Ω;C([0, T ];H)) and take u1 = Q(ũ1)
and u2 = Q(ũ2). It follows from Proposition 6.2, that, if xi, i = 1, 2 are the processes
defined as

xi(t) = etBx+

∫ t

0

e(t−s)B(I −B)Pgr(s, ũi(s), γ(s)) ds

+

∫ t

0

e(t−s)B(I −B)Pg dW (s),

then the processes wi(t) (i = 1, 2) defined through the formula

wi(t) =

{
Jxi(t), t ∈ [0, T ]

u0(t), t ≤ 0

satisfy the stochastic Volterra equations for any t ∈ [0, T ],

d

dt

∫ t

−∞
a(t− s)wi(s) ds = Awi(t) + f(t, ũi(t)) + g

[
r(ũi(t), γ(t)) + Ẇ (t)

]
,
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with initial condition

u(t) = u0(t), t ≤ 0.

By the uniqueness of the stochastic homogeneous Volterra equation stated in Propo-
sition 6.1, we have wi = ui, i = 1, 2. Now define U(t) := u1(t)− u2(t). We have

U(t) =

{
J(x1(t)− x2(t)), t ∈ [0, T ]

0, t ≤ 0;

and

E sup
t∈[0,T ]

e−βpt|U(t)|p ≤ ‖J‖pL(Xη,H)E sup
t∈[0,T ]

e−βpt‖x1(t)− x2(t)‖pη.

The quantity on the right hand side can be treated as in Theorem 5.2 and the claim
follows.

Second step. It follows from the previous step that there exists at most a unique
solution u of problem (6.7); hence it only remains to prove the representation formula
(6.5) for u.

Let f̃(t) = f(t, Jx(t))+gr(Jx(t), γ(t)); it is a consequence of Proposition 6.2 that
u, defined in (6.5), is a weak solution of the problem

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) + f̃(t) + gẆ (t), t ∈ [0, T ]

u(t) = u0(t), t ≤ 0,

(6.9)

and the definition of f̃ implies that u is a weak solution on [0, T ] of

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) + f(t, Jx(t)) + g

[
r(Jx(t), γ(t)) + Ẇ (t)

]
, (6.10)

with initial condition

u(t) = u0(t), t ≤ 0,

which is problem (6.6).

7. The regularity of the forward equation. In this section we state some
properties of the forward equation (1.3) corresponding with our problem.

In the following, x will denote the solution of the uncontrolled equation (1.3).
Under the assumption introduced in the previous sections we can give the regular
dependence of x on the initial condition x. This result will be used later in order
to characterize the solution of the stationary HJB in terms of the solution of a suit-
able stochastic backward differential equation and, consequently, to characterize the
optimal control for our problem.

Proposition 7.1. Under Hypotheses 3.1 and 4.5, for any p ≥ 1 the following
holds:

1. The map x 7→ x(t;x) defined on Xη and with values in Lp(Ω, C([0, T ];Xη))
is continuous.
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2. The map x 7→ x(t;x) has, at every point x ∈ Xη, a Gâteaux derivative
∇xx(·;x). The map (x, h) 7→ ∇xx(·;x)[h] is a continuous map from Xη ×
Xη → Lp(Ω, C([0, T ];Xη)) and, for every h ∈ Xη, the following equation
holds P-a.s.:

∇xx(t;x)[h] = etBh+

∫ t

0

eτB(I −B)P ∇uf(Jx(τ ;x))J∇xx(τ ;x)[h]dτ.

(7.1)
Finally, P-a.s., we have

|∇xx(t;x)[h]| ≤ C‖h‖η, (7.2)

for all t > 0 and some C > 0.
Proof. Points 1 and 2 are proved, for instance, in [12, Proposition 6.2]. To prove

the (7.2) we simply notice that∥∥∥∥∫ t

0

eτB(I −B)P ∇uf(Jx(τ ;x))J∇xx(τ ;x)[h]dτ

∥∥∥∥
η

≤ |P |L(H,Xθ)‖∇uf‖L(H,H)|J |L(Xη,H)

∫ t

0

e−ωss−1−η+θ|∇xx(s;x)[h]|ds.

By application of Gronwall’s lemma we thus obtain

|∇xx(t;x)[h]| ≤ C‖h‖η, t ≥ 0, P− a.s.

where C is a positive constant independent of t and x.
As we will see later, an important point in order to study the HJB equation

corresponding with our problem is that of extending the map h 7→ ∇xx(t;x)(I −
B)1−θPg[h] - a priori defined on X1−θ - to the whole space X. This result is stated
below.

Proposition 7.2. Under assumptions 3.1 and 4.5 the map h 7→ ∇xx(t;x)(I −
B)1−θPg[h] - a priori defined on X1−θ - can be extended to the whole space X and it
is continuous from [0, T ] ×Xη ×X to L∞(Ω;C([0, T ];Xη)) for any T > 0. Finally,
there exists a constant

|∇xx(t;x)(I −B)1−θPg[h]| ≤ C‖h‖η, (7.3)

for all t ≥ 0, x ∈ Xη, h ∈ X, with C independent of t and x.
Proof. We proceed by proving that the norm of ∇xx(t;x)(I − B)1−θPg in the

space of linear operators on X is finite. In fact, taking Proposition 7.1 into account
we see that, for any h ∈ X1−θ, the process ∇xx(t;x)(I − B)1−θPg[h] satisfies the
following equation:

∇xx(t;x)(I −B)1−θ[h] = etB(I −B)1−θh

+

∫ t

0

e(t−τ)B(I −B)P ∇uf(Jx(τ ;x))J∇xx(τ ;x)(I −B)1−θ[h]dτ.

Hence, recalling that∇xf is bounded and Proposition 4.6, we can estimate |∇xx(t;x)(I−
B)1−θPg[h]| as follows:

|∇xx(t;x)(I −B)1−θPg[h]| ≤ e−ωttθ−1

+ Cf‖J‖
∫ t

0

|∇xx(t;x)(I −B)1−θPg[h]|e−(t−τ)ω(τ − t)θ−1dτ.
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Now the bound (7.3) follows by an easy application of Gronwall’s lemma, while for
continuity, we can refer to [12, Proposition 6.2].

In the rest of the section we introduce an auxiliary space that will turn to be
useful when dealing with the formulation of the fundamental relation for the value
function of our control problem. More precisely, for any x ∈ Xθ and t ∈ [0, T ] we
introduce the space

D :=
{
h ∈ X1−θ ⊂ X : (I −B)1−θh ∈ Xη

}
, (7.4)

In the following we shall prove that the space D is dense in X.
Proposition 7.3. The space D defined in (7.4) is dense in X.
Proof. We recall that the linear operator B is densely defined (see Theorem (4.5))

and that D(B) is contained in all real interpolation spaces Xρ, ρ ∈ (0, 1). We notice
that if h ∈ D(B) we have

‖(I −B)1−θh‖η = ‖(I −B)1−θ+ηh‖X <∞.

This implies that D(B) ⊂ D so that the claim follows.

8. The backward equation on an infinite horizon. In this section we con-
sider the backward stochastic differential equation in the unknown (Y,Z):

Y (τ) = Y (T ) +

∫ T

τ

(λY (σ))− ψ(x(σ;x), Z(σ))dσ +

∫ T

τ

Z(σ)dW (σ), (8.1)

where 0 ≤ τ ≤ T < ∞, λ > 0, x(·;x) is the solution of the uncontrolled equation
(5.1) and ψ is the Hamiltonian function relative to the control problem described in
Section 1. More precisely, for x ∈ Xη, z ∈ Ξ? we have

ψ(x, z) := inf {`(Jx, γ) + z · r(Jx, γ) : γ ∈ U} . (8.2)

We require the following assumption on ψ:
Hypothesis 8.1.
1. ψ is uniformly Lipschitz continuous in z, with Lipschitz constant K, that is:

|ψ(x, z1)− ψ(x, z2)| ≤ K‖z1 − z2‖Ξ∗ .

2. supx∈X |ψ(x, 0)| := M <∞.
3. The map ψ is Gâteaux differentiable on Xη × Ξ? and the maps (x, h, z) 7→
∇xψ(x, z)[h] and (x, z, ζ) 7→ ∇zψ(x, z)[ζ] are continuous on Xη×X×Ξ? and
Xη × Ξ? × Ξ? respectively. Moreover, we have |∇xψ(x, z)[h]| ≤ C|h|, for all
h ∈ X, x ∈ Xη, z ∈ Ξ?.

The existence and uniqueness of solution to (8.1) under Hypothesis 8.1 was first
studied (even though for more general coefficients ψ) by Briand and Hu in [9] and
successively by Royer in [28]. Their result is valid when W is a finite dimensional
Wiener process but the extension to the case in which W is a Hilbert-valued Wiener
process is immediate.

In our context the result reads as follows:
Proposition 8.2. Assume Hypothesis 3.4 and 8.1. Then we have:
1. For any x ∈ Xη, there exists a solution (Y,Z) to BSDE (8.1) such that

Y is a continuous process bounded by M
λ , and Z ∈ L2(Ω;L2(0,∞; Ξ)) with

E
∫∞

0
e−2λs|Z(s)|2ds < ∞. Moreover, the solution is unique in the class

of processes (Y, Z) such that Y is continuous and uniformly bounded, and
Z belongs to L2

loc(Ω, L
2(0,∞; Ξ?)). In the following we will denote such a

solution by Y (·;x) and Z(·;x).
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2. Denoting by (Y (·;x, n), Z(·;x, n)) the unique solution of the following BSDE
(with finite horizon)

Y (τ ;x, n) =

∫ n

τ

(ψ(x(σ;x), Z(σ))− λY (σ))dσ +

∫ n

τ

Z(σ;x, n)dW (σ),

(8.3)

then |Y (τ ;x, n)| ≤ M
λ and the following convergence rate holds:

|Y (τ ;x, n)− Y (τ ;x)| ≤ M

λ
exp {−λ(n− τ)} .

Moreover,

E
∫ ∞

0

e−2λσ‖Z(σ;x, n)− Z(σ;x)‖2dσ → 0.

3. For all T > 0 and p > 1, the map x 7→ (Y (·;x)|[0,T ] , Z(·;x)|[0,T ]) is continu-

ous from Xη to the space Lp(Ω, C([0, T ];R))× Lp(Ω, L2([0, T ]; Ξ?)).

We need to study the regularity of Y (·;x). More precisely we would like to show
that Y (0;x) is Gâteaux differentiable with respect to the initial condition x and that
both Y (0;x) and ∇xY (0;x) turn out to be bounded.

The following result is one of the crucial points of the paper.

Theorem 8.3. Under Hypotheses 3.1, 4.5, 3.4 and 8.1, the map x 7→ Y (0;x) is
Gâteaux differentiable. Moreover, |Y (0;x)|+ |∇xY (0;x)| ≤ c.

Proof. The argument follows essentially the proof of [21, Theorem 3.1]. An im-
portant point is the boundedness of ∇xx(t, x)[h] (P-a.s. and for any t ≥ 0), which
was proved in Proposition 7.1. We first recall that, under our assumptions (see [18,
Proposition 5.2]), the map x 7→ (Y (t;x, n), Z(t;x, n)) considered in Proposition 8.2 is
Gâteaux differentiable from Xη to Lp(Ω;C(0, T ;R)×Lp(Ω;L2(0, T ; Ξ?)) for all p ≥ 2.
Denoting by ∇xY (t;x, n)[h],∇xZ(t;x, n)[h] the partial Gâteaux derivative with re-
spect to x in the direction h ∈ X, the processes (∇xY (t;x, n)[h],∇xZ(t;x, n)[h])t∈[0,n]

solve the equation, P-a.s.

∇xY (τ ;x, n)[h] =

∫ n

τ

(ψ(x(σ;x), Z(σ;x, n))∇xx(σ;x)[h]dσ

+

∫ n

τ

(ψ(x(σ;x), Z(σ;x, n))∇zZ(σ;x)[h]dσ

−
∫ n

τ

λ∇xY (σ;x, n)[h]dσ +

∫ n

τ

Z(σ;x, n)dW (σ),

We notice that by the assumptions made on ∇xψ,∇zψ and Proposition 7.2, we have

|∇xx(t;x)[h]| ≤ C|h| and |∇zψ(x(t;x), Z(t;x))| ≤ C.

Therefore by the same arguments based on Girsanov transform as in [8, Lemma 3.1],
we obtain

sup
t∈[0,n]

|∇xY (t;x, n)| ≤ C|h|, P− a.s.
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and, again as in the proof of [8, Lemma 3.1], applying Itô formula to e−2λt|∇xZ(t;x, n)|2,
we get:

E
∫ ∞

0

e−2λt(|∇xY (t;x, n)h|2 + |∇xZ(t;x, n)h|2)dt < C|h|2.

Let nowM2,−2λ be the Hilbert space of all couples of (Ft)t≥0-adapted processes (y, z),
where y has values in R and z ∈ Ξ?, such that

E
∫ ∞

0

e−2λt(|y(t)|2 + |z(t)|2)dt < C|h|2.

Fix now x ∈ Xη and h ∈ X. Then there exists a subsequence of

{(∇xY (t;x;n)h,∇xZ(t;x, n)h,∇xY (0;x;n)h)}

such that {(∇xY (t;x;n)h,∇xZ(t;x, n)h)} converges weakly to (U1(x, h), V 1(x, h)) in
M2,−2λ and ∇xY (0;x, n)h converges to ξ(x, h) ∈ R. Proceeding as in [21, Theorem
3.1], we see that the convergence of ∇xY (t;x;n)h is, in reality, in L2(0;T ;R) for all
T > 0 and, moreover, that limn→∞∇xY (0;x;n)h exists and coincides with the value
at 0 of the process > U(0;x)h defined by the following equation:

U(t;x)h = U(0;x)h−
∫ t

0

∇xψ(x(s;x), Z(s;x))∇xx(s;x)[h]ds

+

∫ t

0

∇zψ(x(s;x), Z(s;x))V 1(s;x)[h]dt

− λ
∫ t

0

U(s;x)hds+ V 1(s;x)[h]dW (s).

Moreover, it holds that U1(t;x)h = U(t;x)h for any fixed h ∈ X. Summarizing, we
have that U(0;x)h = limn→∞∇xY (0;x, n)h exists, it is linear and verifies U(0;x)h ≤
C|h| for every h fixed. Finally, it is continuous in x for every h fixed. Finally, for
t > 0 we have

lim
t→0

Y (0;x+ th)− Y (0;x)

t
= lim
t→0

lim
n→∞

Y (0;x+ th, n)− Y (0;x, n)

t

= lim
t→0

lim
n→∞

∫ 1

0

∇xY (0;x+ thθ)hdθ

= lim
t→0

∫ 1

0

Y (0;x+ thθ)dθ = U(0;x)h,

and the claim is proved.
Starting from the Gâteaux derivatives of Y and Z, we introduce suitable auxiliary

processes which allow us to express Z in terms of ∇Y and (I − B)1−θ and then get
the fundamental relation for the optimal control problem introduced in Section 1.
The main point is to prove that the mappings (h, x) 7→ ∇xY (t;x)(I − B)1−θPg[h]
and (h, x) 7→ ∇xZ(t;x)(I − B)1−θPg[h] are well defined as operators from X × X
respectively in L∞(Ω;C([0, T ];R)) and L∞(Ω;C([0, T ]; Ξ?)).

Proposition 8.4. For every p ≥ 2, β < 0, x ∈ Xη, h ∈ X there exist two
processes

{Π(t;x)[h] : t ≥ 0} and {Q(t;x)[h] : t ≥ 0}
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with Π(t;x)[h] ∈ Lp(Ω;C([0, T ];Xη)) and Q(·;x)[h] ∈ Lp(Ω;C([0, T ]; Ξ?)) for any
T > 0 and such that if x ∈ Xη, then P-a.s. the following identifications hold:

Π(t;x)[h] = ∇xY (t;x)(I −B)1−θ[h], t ≥ 0; (8.4)

Q(t;x)[h] = ∇xZ(t;x)(I −B)1−θ[h], t ≥ 0. (8.5)

Moreover, the map (x, h) 7→ Π(·;x)[h] is continuous from Xη×X to Lp(Ω;Cβ([0, T ];R))
and the map (x, h) 7→ Q(·;x)[h] is continuous from Xη ×X into Lp(Ω;Cβ([0, T ]; Ξ?))
and both maps are linear with respect to h. Finally, there exists a positive constant C
such that

E‖Π(0;x)‖ ≤ C. (8.6)

Proof. For any n ∈ N, we introduce a suitable stochastic differential equation
on [0, n] which should give a sequence (Π(n)(·;x)[h], Q(n)(·;x)[h]) of approximating
processes for (Π(·;x), Q(·;x)); more precisely, for fixed p ≥ 2, x ∈ Xη and h ∈ X we
consider the equation

Π(n)(t;x)[h] =

∫ n

t

ν(n)(t;x)[h]dt+

∫ n

t

∇zψ(x(t;x), Z(t;x))Q(n)(t;x)[h]dt

−λ
∫ n

t

Π(n)(t;x)[h]dt+ Q(n)(t;x)[h]dW (t) t ∈ [0, n]

(8.7)

where

ν(n)(t;x)[h] = 1[0,n](t)∇xψ(x(t;x), Z(t;x))∇xx(t;x)(I −B)1−θPgh.

The solution to (8.7) exists (see [12, Proposition 7.5]) and the maps x 7→ Π(n)(·;x)[h]
are continuous fromXη×X to Lp(Ω;C([0, n];Xη) andQ(n)(·;x)[h] ∈ Lp(Ω;C([0, n]; Ξ?)).
Further, if (Y (·;n, x), Z(·;n, x)) are the processes introduced in Proposition 8.2, then
the following identifications hold

Π(t;x)(n)[h] = ∇xY (t;x, n)(I −B)1−θ[h], t ∈ [0, n]; (8.8)

Q(t;x)(n)[h] = ∇xZ(t;x, n)(I −B)1−θ[h], t ∈ [0, n]; (8.9)

for any x ∈ Xη and h inX. Hence, for any n ∈ N the functions (Π(n)(t;x), Q(n)(t;x))t∈[0,n]

extend the folloqing mappings:

h 7→ ∇xY (t;x, n)(I −B)1−θPg[h] h 7→ ∇xZ(t;x, n)(I −B)1−θPg[h], t ∈ [0, n].

Moreover, we have the estimates

E sup
t∈[0,n]

‖Π(n)(t;x)‖pηe−pβt + E
(∫ n

0

e−2βr|Π(n)(r;x)[h]|2dr

)p/2
+ E

(∫ n

0

e−2βr‖Q(n)(r;x)[h]‖2Ξ?dr

)
<∞, (8.10)

for suitable β > 0. It remains to prove that the processes (Π(n)(·;x), Q(n)(·;x)) con-
verge to some pair (Π(·;x), Q(·;x)) and that the identifications (8.4) and (8.5) hold.
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For the convergence of (Π(n)(·;x), Q(n)(·;x)), we notice that (Π(n)(·;x), Q(n)(·;x))
solves a BSDE with bounded coefficients. In fact, by the assumption made on
∇xψ,∇zψ and Proposition 7.2, we have

|ν(n)(t;x)h| ≤ C|h| and |∇zψ(x(t;x), Z(t;x))| ≤ C.

Hence, following [21, Theorem 3.1] or Theorem 8.3 above, we conclude that Π(0;x)h =
limn→∞Π(n)(0;x)h exists, it is linear, verifies |Π(0;x)h| ≤ C|h| for every h fixed
and it is continuous in x for every h fixed. Finally, since on Xθ−1 the processes
(Π(n)(·;x), Q(n)(·;x)) extend the processes

(∇xY (t;x, n)(I −B)1−θ[h],∇xZ(t;x, n)(I −B)1−θ[h]),

on the same space we have

Π(0;x)h = lim
n→∞

∇xY (0;x, n)(I −B)1−θPg[h] = ∇xY (0;x)(I −B)1−θ[h].

Corollary 8.5. Setting v(x) = Y (0;x), we have that v is Gâteaux differentiable
with respect to x on Xη and the map (x, h) 7→ ∇v(x)[h] is continuous.

Moreover, for x ∈ Xη the linear operator h 7→ ∇v(x)(I − B)1−θ[h] - a priori
defined for h ∈ D - has an extension to a bounded linear operator from X into R, that
we denote by [∇v(I −B)1−θ](x).

Finally, the map (x, h) 7→ [∇v(I −B)1−θPg](x) is continuous as a mapping from
Xη ×X into R and there exists C > 0 such that

|[∇v(I −B)1−θ](x)[h]| ≤ C|h|X , (8.11)

for x ∈ Xη, h ∈ X.
Proof. First of all, we notice that Y (0;x) is deterministic, since (Ft)t≥0 is gener-

ated by the Wiener process W and Y (τ) is Fτ -adapted.
Moreover, in Theorem 8.3 we proved that the map x 7→ Y (·;x) is continuous and

Gâteaux differentiable with values in Lp(Ω;C([0, T ];R)); consequently, it follows that
x 7→ v(x) = Y (0;x) is Gâteaux differentiable with values in R.

Next, we notice that Π(0;x) = ∇xY (0;x)(I − B)1−θ[h]. The existence of the
required extension and its continuity are direct consequences of Proposition 8.4 and
estimate (8.11) follows from (8.6).

We are now in the position to give a meaning to the expression ∇xY (t;x)(I −
B)1−θ and, successively, to identify it with the process Z(t;x). To this end we quote
from [12] a preliminary result where we investigate the existence of the joint quadratic
variation of W with a process of the form {w(t,x(t)) : t ∈ [0, T ]} for a given function
w : [0, T ] ×X → R, on an interval [0, s] ⊂ [0, T ). In order to simplify the exposition
we omit the proof. We only notice that the proof requires the study of the Malliavin
derivative of x and this can be done in the same way as in [12, Section 6.1].

Proposition 8.6. Suppose that w ∈ C([0, T )×Xη;R) is Gâteaux differentiable
with respect to x, and that for every s < T there exist a constant K (possibly depending
on s) such that

|w(t, x)| ≤ K, |∇w(t, x)| ≤ K, t ∈ [0, s], x ∈ X. (8.12)

Let η and θ satisfy the conditions (4.6) in Theorem 4.5. Assume that for every t ∈
[0, T ), x ∈ Xη the linear operator k 7→ ∇w(t, x)(I −B)1−θk (a priori defined for k ∈
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D) has an extension to a bounded linear operator X → R, that we denote by [∇w(I −
B)1−θ](t, x). Moreover, assume that the map (t, x, k) 7→ [∇w(I − B)1−θ](t, x)k is
continuous from [0, T )×Xη×X into R. For t ∈ [0, T ), x ∈ Xη, let {x(t; s, x), t ∈ [s, T ]}
be the solution of equation (5.3). Then the process {w(t,x(t; s, x)), t ∈ [s, T ]} admits
a joint quadratic variation process with W j, for every j ∈ N, on every interval [s, t] ⊂
[s, T ), given by ∫ t

s

[∇w(I −B)1−θ](r,x(r; s, x))(I −B)θPgejdr.

The above result allows to identify the process Z(·;x) with [∇v(I−B)1−θ](x(·;x))(I−
B)θPg, as we can see in the result below.

Corollary 8.7. For every x ∈ Xη we have, P-a.s.

Y (t;x) = v(x(t;x)), for all t ≥ 0; (8.13)

Z(·, x) = [∇v(I −B)1−θ](x(·;x))(I −B)θPg(x(·;x)), for almost all t ≥ 0. (8.14)

Proof. We need to consider the equation (which is slightly more general than
(1.3)) 

dx(t) = Bx(t)dt+ (I −B)P f(Jx(t))dt

+(I −B)Pg(u(t))(r(Jx(t), γ(t))dt+ dW (t))

x(s) = x,

(8.15)

for t varying [s,∞). We set x(t) = x for t ∈ [0, s) and we denote by (x(t; s, x))t≥0 the
solution, to indicate dependence on x and s. By an obvious extension of the results
concerning the BSDE (8.1) stated above, we can solve the backward equation (8.1)
with x given by (8.15); we denote the corresponding solution by (Y (t; s, x), Z(t; s, x))
for t ≥ 0. Thus (Y (t;x), Z(t;x)) coincides with (Y (t; 0, x), Z(t; 0, x)) that occurs in
the statement of Proposition 8.2.

Now let us prove (8.13). We start from the well-known equality: for 0 ≤ r ≤ T ,
P-a.s.

x(t; s, x) = x(t; r,x(r; s, x)), for all t ∈ [s, T ].

It follows easily from the uniqueness of the backward equation (8.1) that P-a.s.

Y (t; s, x) = Y (t; r,x(r; s, x)), for all t ∈ [s, T ].

In particular, for every 0 ≤ r ≤ s ≤ t,

Y (t; s,x(s; r, x)) = Y (t; r, x), for t ∈ [s,∞),

Z(t; s,x(s; r, x)) = Z(t; r, x), for t ∈ [s,∞).

Since the coefficients of (8.15) do not depend on time, we have

x(·; 0, x)
(d)
= x(·+ t; t, x), t ≥ 0,

where
(d)
= denotes equality in distribution. As a consequence we obtain

(Y (·; 0, x), Z(·; 0, x))
(d)
= (Y (·+ t; t, x), Z(·+ t; t, x)), t ≥ 0,
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where both sides of the equality are viewed as random elements with values in the
space C(R+;R)× L2

loc(R+; Ξ?). In particular

Y (0; 0, x)
(d)
= Y (t; t, x),

and since they are both deterministic, we have

Y (0; 0, x) = Y (t; t, x), x ∈ Xη, t ≥ 0,

so that we arrive at (8.13).
To prove (8.14) we consider the joint quadratic variation of (Y (t;x))t∈[0,T ] and

W on an arbitrary interval [0, t] ⊂ [0, T ); from the backward equation (8.1) we deduce

that it is equal to
∫ t

0
Z(r;x)dr. On the other side, the same result can be obtained

by considering the joint quadratic variation of (v(x(t;x)))t∈[0,T ] and W . Now by an
application of Proposition 8.6 (whose assumptions hold true by Corollary 8.5) we are
led to the identity∫ t

0

Z(r;x)dr =

∫ t

0

[∇v(I −B)1−θ](r; x(r;x))(I −B)θPg(x(r;x))dr,

and (8.14) is proved.

9. The stationary HJB equation. Now we proceed as in [19]. Let us con-
sider again the solution x(t;x) of equation (1.3) and denote by (Pt)t≥0 its transition
semigroup:

Pt[h](x) = Eh(x(t;x)), x ∈ Xη, 0 ≤ t,

for any bounded measurable h : Xη → R. We notice that by the bound (5.2) this
formula is true for every h with polynomial growth. In the following Pt will be
considered as an operator acting on this class of functions.

Let us denote by L the generator of Pt:

L[h](x) =
1

2
Tr[(I −B)Pg∇2h(x)g∗p∗(I −B)∗] + 〈Bx+ (I −B)Pf(Jx),∇h(x)〉,

where ∇h and ∇2h are first and second Gâteaux derivatives of h at the point x ∈ X
(here we are identified with elements of X and L(X) respectively). This definition is
formal, since it involves the terms (I − B)Pg and (I − B)Pf which - a priori - are
not defined as elements of L(X) and the domain of L is not specified.

In this section we address the solvability of the nonlinear stationary Kolmogorov
equation:

L[v(·)](x) = λv(x)− ψ(x,∇v(x)(I −B)Pg), x ∈ X. (HJB)

This is a nonlinear elliptic equation for the unknown function v : Xη → R. We define
the notion of the solution of the (HJB) by means of the variation of constant formula:

Definition 9.1. We say that a function v : Xη → R is a mild solution of the
HJB equation (HJB) if the following conditions hold:

1. v ∈ C(Xη;R) and there exist C ≥ 0 such that |v(x)| ≤ C, x ∈ Xη;
2. v is Gâteaux differentiable with respect to x on Xη and the map (x, h) 7→
∇v(x)[h] is continuous Xη ×Xη → R;
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3. For all x ∈ Xη the linear operator k 7→ ∇v(x)(I − B)1−θk (a priori defined
for k ∈ D) has an extension to a bounded linear operator on X → R, that we
denote by [∇v(I −B)1−θ](x).
Moreover the map (x, k) 7→ [∇v(I − B)1−θ](x)k is continuous Xη ×X → R
and there exist constants C ≥ 0 such that

‖[∇v(I −B)1−θ](x)‖L(X) ≤ C, x ∈ Xη.

4. The following equality holds for every x ∈ Xη:

v(x) = e−λTPT [v](x)−
∫ T

0

e−λsPs
[
ψ([∇v(I −B)1−θ](·)(I −B)θPg

]
)(x)ds.

(9.1)

Remark 9.2. We notice that, by assumption, |ψ(x, z)| ≤ C; moreover, we saw
in the preceding sections how to give a meaning to the term

∇v(x)(I −B)Pg.

Hence if v is a function satisfying the bound required in Definition 9.1,3, we have∣∣ψ(x, [∇v(I −B)1−θ](x)(I −B)θPg)
∣∣ ≤ C

and formula (9.1) is meaningful.

Now we are ready to prove that the solution of the equation (HJB) can be defined
by means of the solution of the BSDE associated with the control problem (1.3).

Theorem 9.3. Assume Hypothesis 3.1, 3.3, 3.4 and 8.1; then there exists a
unique mild solution of the HJB equation. The solution is given by the formula

v(x) = Y (0; 0, x) = Y (t; t, x), t ≥ 0, (9.2)

where (x, Y, Z) is the solution of the forward-backward system (1.3) and (8.1).

Proof. We start by proving the existence. In particular, we prove that v, given
by (9.2), is a solution of HJB. Hence, we set:

v(x) := Y (0; 0, x).

By Corollary 8.7 the function v has the regularity properties stated in Definition 9.1.
In order to verify that equality (9.1) holds, we first fix x ∈ Xη. We notice that

ψ(·, [∇v(I −B)1−θ](·)(I −B)θPg)(x) = ψ(·, [∇Y (I −B)1−θ](·)(I −B)θPg)(x)

and we recall that

[∇v(I −B)1−θ](x(t; 0, x))(I −B)θPg = Z(t; 0, x), 0 ≤ t.

Hence

Pt
[
ψ(·, [∇v(I −B)1−θ](·)(I −B)θPg)

]
(x(t; 0, x))

= E [ψ(x(t; 0, x), Z(t; 0, x))] . (9.3)
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On the other hand, applying the Itô formula to the backward equation it gives

e−λtY (t; t, x)− e−λTY (T ; t, x) +

∫ T

t

e−λrZ(r; t, x)dW (r)

= −
∫ T

t

e−λrψ(x(r; t, x), Z(r; t, x))dr,

for any 0 ≤ t ≤ T <∞. Taking the expectation and recalling Corollary 8.7 again we
obtain

e−λtv(x) = e−λTEv(x(T ; t, x))− E
∫ T

t

e−λrψ(x(r; t, x), Z(r; t, x))dr

and substituting in the integral the expression obtained in (9.3) we get the required
equality (9.1). This completes the proof of the existence part.

Now we consider the uniqueness of the solution. Let v denote a mild solution.
We look for a convenient expression for the process v(x(r; t, x)), 0 ≤ t ≤ r ≤ T <∞.
By (9.1) and the definition of Pt, for any y ∈ X we have

v(y) = e−λ(T−t)E [v(x(T − t; 0, y))]

−
∫ T−t

0

e−λrE
[
ψ(x(r; 0, y), [∇v(I −B)1−θ](r,x(r; 0, y))(I −B)θPg)

]
dr.

(9.4)

Set y = x(t; 0, x). Then equality (9.4) rewrites as

v(x(t; 0, x)) = e−λ(T−t)E [v(x(T − t; 0,x(t; 0, x)))]

−
∫ T−t

0

e−λrE
[
ψ(x(r; 0,x(t; 0, x)), [∇v(I −B)1−θ](x(r; 0,x(t; 0, x)))(I −B)θPg)

]
dr.

Moreover, recalling that for any r ∈ [t, T ] the following equality

x(r; t,x(t; 0, x)) = x(r; 0, x)

holds P-a.s., we obtain the identity

v(x(t; 0, x)) = e−λ(T−t)E [v(x(T ; t, x))]

−
∫ T−t

0

e−λrE
[
ψ(x(r + t; 0, x), [∇v(I −B)1−θ](x(r + t; 0, x))(I −B)θPg)

]
dr.

Since x(t; 0, x) is Ft-measurable, we can replace the expectation by the conditional
expectation given Ft:

e−λtv(x(t; 0, x)) = e−λTEFt [v(x(T ; t, x))]

− EFt
[∫ T

t

e−λrψ(x(r + t; 0, x), [∇v(I −B)1−θ](x(r + t; 0, x))(I −B)θPgdr

]
,
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and, by change of variable, we get:

e−λtv(x(t; 0, x)) = e−λTEFt [v(x(T ; t, x))]

− EFt
[∫ T

t

ψ(x(r; 0, x), [∇v(I −B)1−θ](x(r; 0, x))(I −B)θPgdr

]
= EFt [ξ]

+ EFt
[∫ t

0

ψ(x(r; 0, x), [∇v(I −B)1−θ](x(r; 0, x))(I −B)θPgdr

]
,

where we have defined

ξ := e−λT v(x(T ; t, x))

−
∫ T

0

ψ(x(r; 0, x), [∇v(I −B)1−θ](x(r; 0, x))(I −B)θPg)dr.

Since we assume polynomial growth for v and ∇v, therefore ξ is square integrable.
Since (Ft)t≥0 is generated by the Wiener process W , it follows that there exists

Z̃ ∈ L2
F (Ω× [0, T ];L2(Ξ;R)) such that

EFt [ξ] = E[ξ] +

∫ t

0

Z̃(r)dW (r), t ∈ [0, T ].

An application of the Itô formula gives

v(x(t; 0, x)) = E[ξ] +

∫ t

0

eλrZ̃(r)dW (r) + λ

∫ t

0

v(x(r; 0, x)dr

+

∫ t

0

ψ(r,x(r; t, x), [∇v(I −B)1−θ](r,x(r; t, x))(I −B)θPgdr. (9.5)

We conclude that the process v(x(t; s, x)), t ∈ [s, T ] is a real continuous semimartin-
gale.

For ξ ∈ Ξ, let us define W ξ by W ξ(t) = 〈ξ,W (t)〉 and let us consider the joint
quadratic variation process of W ξ with both sides of (9.5). Applying Proposition 8.6,
we obtain, P-a.s.,∫ t

0

[∇v(I −B)1−θ](x(r; 0, x))(I −B)θPgdr =

∫ t

0

Z̃(r)dr.

Therefore, for a.a. t ∈ [0, T ], we have P-a.s. [∇v(I − B)1−θ](x(r; 0, x))(I − B)θPg =
Z̃(r), so substituting into (9.5) we obtain, for t ∈ [0, T ],

v(x(t; 0, x)) = v(x) +

∫ t

0

[∇v(I −B)1−θ](x(r; t, x))(I −B)θPgdW (r)

+

∫ t

0

λv(x(r; 0, x)dr +

∫ t

0

ψ(x(r; t, x), [∇v(I −B)1−θ](x(t; 0, x))(I −B)θPgdr.

Comparing with the backward equation (8.1) we notice that the pairs

(Y (t; 0, x), Z(t; 0, x))
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and

(v(x(t; 0, x)), [∇v(I −B)1−θ](x(r; 0, x))(I −B)θPg = Z̃(r))

solve the same equation. By uniqueness, we have Y (t; 0, x) = v(x(t; 0, x)), t ∈ [0, T ],
and setting t = 0 we obtain Y (t; t, x) = v(x).

10. Synthesis of the optimal control. In this section we proceed with the
study of the optimal control problem associated with the stochastic Volterra equation

d
dt

∫ t
−∞ a(t− s)u(s)ds = Au(t) + f(u(t))

+g(u(t)) [ r(u(t), γ(t)) + Ẇ (t) ], t ∈ [0, T ]

u(t) = u0(t), t ≤ 0

(10.1)

for a process u with values in the Hilbert space H. Here f and r are the nonlinear
functions introduced in Hypothesis 3.1 and γ = γ(ω, t) is the control variable, which
is assumed to be an a.s. predictable real-valued processes γ Ft-adapted that satisfy
the constraint γ(t) ∈ U , P-a.s. for a.e. t ≥ 0, where U is a fixed subset of U . The
optimal control that we wish to treat consists in minimizing a cost functional of the
form

J(u0, γ) = E
∫ ∞

0

e−λt`(u(t), γ(t))dt, (10.2)

over all admissible controls where ` : H ×U → R is a given continuous and bounded
real-valued function.

We will work under assumptions 3.1 and 8.1.
To handle the control problem, we first restate equation (10.1) in an evolution

setting and we provide the synthesis of the optimal control by using the forward
backward system approach.

As it has been proved in Section 4, given a control process γ and any u0 ∈ H, we
can rewrite the problem (10.1) in the following abstract form

dx(t) = Bx(t)dt+ (I −B)f(Jx(t))dt

+(I −B)Pg(r(Jx(t), γ(t))dt+ dW (t))

x(0) = x.

(10.3)

Here X is a suitable separable Hilbert space, B is a densely defined sectorial operator
on a domain D(B) ⊂ X, P is a linear operator from H with values into a real
interpolation space Xθ (θ ∈ (0, 1)) between D(B) and X, and J is a linear operator
from Xη (η ∈ (0, 1)) into H; finally x ∈ Xη (see Theorem 4.5 for more details).

In this setting the cost functional will depend on x and γ and is given by

J(x, γ) = E
∫ ∞

0

e−λs`(Jx(s), γ(s))ds (10.4)

(with an abuse of notation we still denote the rewritten cost functional as J). We
notice that for all λ > 0 the cost functional is well defined and J(x, γ) < ∞ for all
x ∈ Xη and all a.c.s. There are different ways to give precise meaning to the above
problem; one of them is the so called weak formulation and will be specified below.

In the weak formulation the class of admissible control system (a.c.s.) is given by

the set U := (Ω̂, F̂ , (F̂t)t≥0, P̂, Ŵ , γ̂), where (Ω̂, F̂ , P̂) is a complete probability space;
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the filtration (F̂t)t≥0 verifies the usual conditions, the process Ŵ is a Wiener process

with respect to the filtration (F̂t)t≥0, and the control γ̂ is an Ft-predictable process

taking values in some subset U of X with respect to the filtration (F̂t)t≥0. With an
abuse of notation, for given x ∈ Xη, we associate to every a.c.s. a cost functional
J(x,U) given by the right side of (10.4). Although formally the same, it is important
to note that now the cost is a functional of the a.c.s. and not a functional of γ̂ alone.
Any a.c.s. which minimizes J(x, ·), if it exists, is called optimal for the control problem
starting from x at time t in the weak formulation. The minimal value of the cost is
then called the optimal cost. Finally we introduce the value function V : Xη → R of
the problem as:

V (x) = inf
γ∈U

J(x, γ), x ∈ Xη,

where the infimum is taken over all a.c.s. U.
Abstract optimal control problems on infinite horizon and in infinite dimension

have been exhaustively studied by Fuhrman and Tessitore in [18, 19] and Hu and
Tessitore in [21], compare Theorem 5.1. Within their approach, the existence of
an optimal control is related to the existence of the solution of a suitable forward
backward system (FBSDE), that is a system in which the coefficients of the backward
equation depend on the solution of the forward equation. Moreover, the optimal
control can be selected using a feedback law given in terms of the solution to the
corresponding FBSDE. In the following we adapt the theory developed by Fuhrman
and Tessitore to our problem and prove that this theory applies to stochastic Volterra
equation, provided the problem is reformulated as in Section 4.

We recall that the Hamiltonian corresponding to our control problem is given by

ψ(x, z) = inf
γ∈U
{`(Jx, γ) + z · r(Jx, γ)} , x ∈ Xη z ∈ Ξ?,

and we define the set of minimizers

Γ(x, z) = {γ ∈ U : `(Jx, γ) + z · r(Jx, γ) = ψ(x, z)} ,
t ∈ [0, T ], x ∈ Xη, z ∈ Ξ?.

(10.5)

For further use we require an additional property of the function ψ:
Hypothesis 10.1. The set Γ(x, z) is nonempty for all x ∈ Xη, z ∈ Ξ?.
Example 10.2. If U = Ξ, U is the ball {u ∈ U : |u|Ξ ≤ C} for some fixed C > 0,

r = Id and `(x, γ) = `0(|γ|α)+`1(Jx) with `0 ∈ C1(R+;R+) convex, `′0(0) > 0, α > 1,
`1 ∈ G1(H,R) with |∇`1(Jx)h| ≤ L|h| for suitable constant L > 0, and all x, h ∈ H
then by easy computations ψ is in G1(H,Ξ∗) and is uniformly Lipschitz both in x and
z (thus verifies Hypothesis 8.1). Moreover, Γ(x, z) = {−∇zψ(x, z)} turns out to be
always a singleton and a continuous function of z only.

We notice that for all λ > 0 the cost functional is well defined and J(x, γ) < ∞
for all x ∈ Xη and all a.c.s. U.

By Theorem 9.3, for all λ > 0 the stationary HJB equation relative to the above
stated problem, namely

Lv(x) = λv(x)− ψ(x,∇v(x)(I −B)Pg), x ∈ Xη, (HJB)

admits a unique mild solution, in the sense of Definition 9.1. Here L is the infinitesimal
generator of the Markov semigroup corresponding to the process x:

Lφ(x) =
1

2
Tr((I −B)Pgg∗P ∗(I −B)∗∇2φ(x)) + 〈Bx+ (I −B)Pf(x),∇φ(x)〉.
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The relevance of the HJB equation to our control problem is explained in the following
main result of this section:

Theorem 10.3. Assume Hypotheses 8.1 and 10.1 and suppose that λ > 0. Then
the following holds:

1. For all a.c.s. U := (Ω̂, F̂ , (F̂)t≥0, P̂, (Ŵt)t≥0, γ̂) we have J(x, γ) ≥ v(x).
2. The equality holds if and only if the following feedback law is verified by γ̂ and

x̂:

γ̂(t) = Γ(x̂(t), [∇v(x̂(t))(I −B)1−θ(x(t))(I −B)θPg), P̂− a.s. for a.e. t ≥ 0.
(10.6)

Finally, there exists at least an a.c.s. U verifying (10.6). In such a system,
the closed loop equation admits a solution

dx̂(t) = Bx̂(t)dt+ (I −B)Pf(x̂(t))dt+

(I −B)Pg
(
r(x̂(t),Γ(x̂(t), [∇v(x̂(t))(I −B)1−θ](I −B)θPg))dt+ dŴ (t)

)
, t ≥ 0

x̂(0) = x ∈ Xη,

(10.7)
and if γ̂(t) = Γ(x̂(t), [∇v(x̂(t))(I − B)1−θ](I − B)Pg) then the couple (γ̂, x̂)
is optimal for the control problem.

Proof. The proof follows from the same arguments used in the proof of [21,
Theorem 5.1]. Notice that in this case by Theorem 9.3 we have Z(t; s, x) = [∇v(I −
B)1−θ](t,x(t; s, x))(I − B)θPg and the role of G in [21, Theorem 5.1] is here played
by (I −B)Pg.

10.1. Application to the motivating example. We wish to apply the pre-
vious results to perform the synthesis of the optimal control described in Section 2.1:
minimize the cost functional

−J(k0, γ) = −E
∫ +∞

0

e−λt
∫ 2π

0

u(γ(t), k(t, θ))dtdθ, (10.8)

subject to

∂

∂t

∫ t

−∞
c(t− s)k(s, θ)ds− ∂2

∂θ2
k(t, θ) =

f(k(t, θ)) + σ[r(k(t, θ), γ(t)) + β̇(t)] (t, θ) ∈ R+ × T
k(0, θ) = k0(θ) > 0, θ ∈ T,
k(t, 0) = k(t, 2π) = 0, t ∈ R+.

(10.9)

The admissible controls are all a.s. predictable real-valued processes γ Ft-adapted
that satisfy the constraint γ(t) ∈ U , P-a.s. for a.e. t ≥ 0, where U is a fixed subset
of U . We take u in the expression (10.8) depending only on k and such that it is a
bounded and differentiable utility function. We take f to be the identity operator,
i.e. f(k(·)) = k(·). We also take r depending only on the control variable γ and being
given by the identity operator, i.e. r(k, γ) = γ, γ ∈ U .

The above problem falls under the scope of the general results proved in this
section letting H = L2(T), U = Ξ = R, U := [−C,C] ⊂ U for some fixed C > 0 and

W (t) = β(t), t ≥ 0. L2(T) is the set of functions φ : T→ R s.t.
∫ 2π

0
|φ(θ)|2dθ < +∞.

We define the coefficient g ∈ L2(Ξ, H) as

[g(ξ)] (θ) = σξ ξ ∈ Ξ = R.
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We also consider the differential operator associated with the dynamics (10.9),
namely

Ak(θ) =
∂2

∂θ2
k(θ).

In order to define the domain of A we recall the following spaces of real functions
defined on T:

H1(T) :=
{
k ∈ L2(T) : ∃k′ in weak sense and belongs to L2(T)

}
H2(T) :=

{
k ∈ L2(T) : ∃k′ in weak sense and belongs to H1(T)

}
Now we the take as domain of A the space D(A) := H2(T). The operator A is well-
defined on H2(T). In particular, A is closed on D(A) and is sectorial on the space H
since it corresponds to the differential operator A acting on functions φ : [0, 2π]→ R
satisfying the boundary conditions φ(0) = φ(2π) and φ′(0) = φ′(2π) (see Chapters 7
and 8, Section 3, in [11]).

With the above definitions, our problem can be written in the following form:

minimize

[
−E

∫ +∞

0

e−λt`(k(t))dt

]
over all a.c.s

subject to

∂

∂t

∫ t

−∞
c(t− s)k(s) ds−Ak(t) = f(k(t)) + g

[
γ(t) + Ẇ (t)

]
.

It is easy to verify that Hypothesis 3.1, 8.1 and 10.1 hold (see also Example 10.2).
Then Theorem 10.3 can be applied to obtain the synthesis of the optimal control in
terms of a feedback law.
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