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Abstract. We consider transport properties for a non-homogeneous persistent

random walk, that may be viewed as a mean-field version of the Lévy-Lorentz

gas, namely a 1-d model characterized by a fat polynomial tail of the distribution

of scatterers’ distance, with parameter α. By varying the value of α we have

a transition from normal transport to superdiffusion, which we characterize by

appropriate continuum limits.
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1. Introduction

Persistent random walks were first introduced by Fürth and Taylor [1, 2] almost a

century ago, as a model for particle diffusion by discontinuous movements: in their

simplest version they consist of random walkers with nearest neighbour jumps, where

the walker has a probability t of jumping in the same direction and a probability r = 1−t

of reversing the direction of motion. Even in this quite simple formulation we perceive

that what makes such walks nontrivial is the presence of correlated steps. The basic

properties of the time evolution of a localized initial distribution were derived in different

ways: see for instance [3, 4, 5, 6], to which we refer the reader for a more detailed early

bibliography. A few results will be mentioned in the following sections.

Persistent random walks have been recognized as a natural model for a number of

relevant settings, from long-chain polymers [7], to chemotaxis [8], to active matter [9, 10].

Many of the associated statistical properties remain largely unexplored, particularly

when homogeneity is violated: this comes to no surprise, since, even in standard random
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walks few results are known when transition probabilities do not share translational

invariance of the lattice (see the discussion in [11]).

A particular persistent random walk model that attracted recently much interest is

the so called Lévy-Lorentz gas, originally formulated in [12]: the lattice of integers

is populated by randomly placed scatterers separated by distances whose probability

distribution decays, for large separations, with a fat (Lévy) tail

µ(ξ) ∼ ξ−(1+α). (1)

In the quenched (non-equilibrium -see next section for details-) version [13, 14] a single

(typical) realization of the distribution of scatterers is considered. Here one is interested

in the distributions of particles (initially concentrated at the origin), assuming that

they propagate with constant velocity, unless they reach a scatterer, where they are

reflected or transmitted with equal probabilities. This amounts to assign a transmission

coefficient t = 1/2 to all sites where a scatterer is present, and t = 1 at otherwise.

The corresponding annealed model [12, 15] considers then the probability distribution

of particles averaged over disorder realizations (positions of the scatterers).

We introduce in this paper a 1d model of a non-homogeneous persistent random

walk that arises when we consider an averaged Lévy-Lorentz gas: namely we assign

a distribution of local reflection and transmission coefficients obtained (prior to let

particles evolve) by an average over distribution of scatterers (such an average yields

nontrivial, non translational invariant, coefficients for configurations where a scatterer

is always placed at the origin). The result will be a non-homogeneous persistent random

walk, whose transport properties are the issues at stake in our work. In particular we

will show, with the help of a continuum approximation, that a non-trivial anomalous

diffusive regime appear below α = 1:

〈x2
t 〉 ∼

{
t

2

1+α 0 < α < 1

t 1 < α < 2
(2)

We remark that besides theoretical interest, and the wealth of applications that

persistent walks exhibit, a further motivation to investigate such models comes from

the experimental realizations (in 3d) of a very closely related system, the so called Lévy

glass [16].

The paper is organized as follows: in section 2 we briefly review the Lévy-Lorentz gas,

with a focus on transport properties, and then we introduce the persistent random walk

that is the main object of our paper; in section 3 we then discuss normal and anomalous

transport properties that our model exhibits for different values of α; finally in section

4 we summarize our findings.

2. 1d Lévy-Lorentz gas and the averaged model

2.1. The Lévy-Lorentz gas

As we already mentioned the model is defined in two steps: first we distribute scatterers

on a one dimensional lattice, separating them with distances chosen independently
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according to a fat tailed probability distribution

µ(n) =
1

ζ(1 + α) · n(1+α)
n ≥ 1 (3)

where α ∈ (0, 2); notice that in this range the variance of the distance between

neighbouring scattering sites diverges, while in the restricted range 0 < α < 1 also

the first moment is infinite. Then the stochastic dynamics is determined by choosing

a starting site, and let walkers (with unit absolute velocity) initially jump to the right

or the left with equal probability. At later times each walker maintains the direction of

motion until it finds a scatterer: at such events direction is preserved or reversed with

equal probability 1/2.

In the quenched case very few results have been established, notably the central limit

theorem in the range 1 < α < 2 [13]: normal diffusion is not rigorously proven, yet no

indication of possible anomalies emerges. A different scenario has been proposed in the

annealed case where it has been suggested [15] that the second moment grows linearly

in time only for α > 3/2, while for smaller values of the exponent the behaviour is

expected to be

〈x2
t 〉 ∼

{
t
5

2
−α 1 ≤ α ≤ 3/2

t
2+2α−α

2

1+α 0 < α < 1.
(4)

The key ingredient in deriving such expression is a decomposition of the propagator into

a scaling part and a contribution for very long jumps

p(r, t) =
1

ℓ(t)
F

(
r

ℓ(t)

)
+H(r, t). (5)

The scale ℓ(t) and the long jump term H (whose space integral vanish in the long time

limit) are determined by using estimates for the associated resistance model [17]: such

a decomposition of the probability distribution has been recently considered in a wider

context [18].

2.2. The Lévy-Lorentz gas as a persistent random walk

A persistent random walk on a one dimensional lattice is defined in terms of the

quantities tj and rj, that determine for each site the probability of being transmitted

or reflected: in order to write down the evolution of the probability distribution of the

walker, it is convenient to split it according to the direction of motion in the following

way

Rj(n) = Prob ( The walker is at site j after n steps and leaves to the right )

Lj(n) = Prob ( The walker is at site j after n steps and leaves to the left ).

Here we are adopting the notation of [5] where the forward Kolmogorov equations are

written as

Rj(n+ 1) = tj · Rj−1(n) + rj · Lj+1(n)

Lj(n+ 1) = tj · Lj+1(n) + rj · Rj−1(n),
(6)
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with the choice of initial conditions:

R0(0) = L0(0) =
1

2
, Rj(0) = Lj(0) = 0 ∀j 6= 0. (7)

Given a realization Ω of the environment, the quenched Lévy-Lorentz gas consists in

assigning

rj = r · δΩ(j) tj = 1− rj , (8)

where δΩ(j) = 1 if in the realization Ω the site j is occupied by a scatterer, and δΩ(j) = 0

otherwise. In the following, we choose r = 1/2 for the sake of simplicity. Note that, as

we deal with nonequilibrium case only, for any realization δΩ(0) = 1.

The probability for a walker to be at site j after n steps will consequently be

Pj(n) = Rj(n) + Lj(n), (9)

while

Mj(n) = Rj(n)− Lj(n) (10)

gives the (rightwise) current at time n. The annealed version of the model consists

in evolving eq. (6) for a single realization, and then averaging probabilities over the

different environments; the model we introduce in this paper reverses the two operations

(which do not commute): we first average the different environments, and then we study

the evolution over such an averaged landscape: in a sense this amounts to consider mean

field evolution over a fast changing environment.

2.3. The averaged model

By averaging Eq. (8) over realizations, we get:

r̂j =
1

2
̟j, (11)

where ̟j is the probability of finding a scatterer at the position j (under the condition

that a scatterer is placed at the origin). This means (in terms of the distance probability

(3)):

̟j = µ(j) +
∑

k1+k2=j

µ(k1)µ(k2) + · · ·+ µ(1)j for j ≥ 1 (12)

̟0 = 1 (13)

In order to get the asymptotic behaviour, it is as usual convenient to introduce the

generating function:

G(z) =
∞∑

m=0

̟mz
m = 1 +

∞∑

m=1

zm
m∑

k=1

∑

l1+l2+···+lk=m

µ(l1)µ(l2) · · ·µ(lk), (14)

this easily leads to the expression

G(z) =
1

1− Gα(z)
, (15)
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where, by (3)

Gα(z) =
∞∑

n=1

µ(n)zn =
1

ζ(1 + α)
Li1+α(z), (16)

where Lis denotes the polylogarithms [19]. The asymptotic form of ̟m is thus estimated

by Tauberian theorems for power series [20], once we take into account the expression

of polylogarithms close to z = 1− [21]: the leading order is

Gα(z) ∼

{
1 + Γ(−α)

ζ(1+α)
(1− z)α for 0 < α < 1

1− ζ(α)
ζ(1+α)

(1− z) for 1 < α < 2.
(17)

The corresponding asymptotic values of having a scatterer at site n are

̟n ∼ πn =

{
α sin(πα)

π
ζ(1+α)
n1−α 0 < α < 1

ζ(1+α)
ζ(α)

1 < α < 2.
(18)

For the rest of the paper the averaged model will be the persistent random walk with

reflection coefficients r̂j = 1/2 · πj , with πj given by (18) for any value of j. The

corresponding Kolmogorov equations are thus

Rj(n+ 1) = t̂j · Rj−1(n) + r̂j · Lj+1(n)

Lj(n+ 1) = t̂j · Lj+1(n) + r̂j · Rj−1(n).
(19)

We notice, for further reference, that in the finite average 1 < α < 2 regime the

coefficients are indeed constants. Conversely, the situation is highly non trivial for

0 < α < 1, since in this case we have an effective space dependence of the reflection

probabilities: even ordinary random walks with jumping rates that break translational

invariance are known to be quite difficult to study [11, 22].

3. Transport properties of the averaged model

3.1. The continuum limit

The continuum limit has been considered in many of the classical papers, as [3, 4, 5, 6],

our approach is close to [5]: we let x = n · δx and t = m · δt, and Taylor expand (19) up

to second order:{
R + Ṙδt+ 1

2
R̈δt2 = t̂R− t̂R′δx+ 1

2
t̂R′′δx2 + r̂L+ r̂L′δx+ 1

2
r̂L′′δx2

L+ L̇δt + 1
2
L̈δt2 = r̂R − r̂R′δx+ 1

2
r̂R′′δx2 + t̂L+ t̂L′δx+ 1

2
t̂L′′δx2,

(20)

where R = R(x, t), L = L(x, t), t̂ = t̂(x), r̂ = r̂(x), the dot stands for time derivative,

while the prime indicates spatial derivatives. Now we consider the total probability and

the flux

P (x, t) = R(x, t) + L(x, t)

M(x, t) = R(x, t)− L(x, t),
(21)

and, by adding and subtracting the identities (20) we get
{

Ṗ δt + 1
2
P̈ δt2 = −M ′δx+ 1

2
P ′′δx2

M + Ṁδt + 1
2
P̈ δt2 = (̂t− r̂)M − (̂t− r̂)P ′δx+ 1

2
(̂t− r̂)M ′′δx2.

(22)
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In order to get a closed equation for P , we have to specify a scaling limit for the

former identities. Since our focus is on the asymptotic regime, as we want to estimate

the second moment in the long time limit, we employ the diffusion approximation [5, 6],

where δx, δt → 0 by keeping D0 = δx2/δt constant (we will consider D0 = 1 in what

follows). From the second of (22), we obtain

M ′δx = −
∂

∂x

[(
1− 2̂r

2̂r

)
∂P

∂x

]
δx2 +O(δx3), (23)

and by substituting it into the first of (22) we obtain a closed equation for P

∂P

∂t
=

1

2

∂

∂x

(
Θα(x)

∂P

∂x

)
(24)

with

Θα(x) =
t̂(x)

r̂(x)
=

{
2 ζ(α)
ζ(1+α)

− 1 1 < α < 2
1−γ/|x|1−α

γ/|x|1−α 0 < α < 1,
(25)

where γ = α sin(πα)ζ(1 + α)/2π (see (18)).

We remark that there is another scaling limit in which the tail of the distribution

accounts for the ballistic peaks we will comment upon in the last section: as a matter

of fact if we put t̂ = 1 − δt/(2τ) and we let δx, δt → 0 by keeping constant δx/δt = c

we get (here we report the result only in the simplified case in which τ is constant) the

telegrapher’s equation

∂2P

∂t2
+

1

τ

∂P

∂t
= c2

∂2P

∂x2
, (26)

as observed and discussed by many authors [3, 4, 5, 6] (see also [23] for a discussion of

the relative role of different time scales in the telegrapher’s equation).

3.1.1. Second moment asymptotics

Given the diffusion equation Eq.(24) it is possible to derive the asymptotic behaviour

of the second moment.

We observe that, for for 1 < α < 2 (where a central limit theorem holds for the

quenched Lévy-Lorentz case [13], and the average distance between scatterers is finite),

we have a persistent random walk with constant transmission and reflection coefficients

and consistently the diffusion coefficient Θα/2 does not depend on space. In this regime

we have thus normal diffusion, with

〈x2
t 〉 ∼ 2Dα · t, (27)

where Dα = t̂/2̂r, as early deduced in [5]. The agreement with numerical simulations is

indeed excellent, see fig. (1).

The interesting regime is obviously the case when α ∈ (0, 1), as t̂(x) and r̂(x) are

not constant. This is reflected into a space-dependent diffusion coefficient, that decays

algebraically with the distance to the origin. In this regime, the solution of the diffusion
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Figure 1. Slope of linear growth of the second moment as obtained by numerically

evolving the forward Kolmogorov equations (19) (squares) and the analytic prediction

in terms of the diffusion constant (25). Each numerical slope has been obtained by

evolving the system up to time 215.

equation (24) may be written as [24, 25, 26] (see also [27, 28] for further discussion):

P (x, t) =
[(1 + α)1−αΛt]

−1/(1+α)

2Γ(1/(1 + α))
exp

[
−|x|1+α

(1 + α)2Λt

]
, (28)

where we have considered the leading order of (25) at large distances, and Λ = 1/(2γ).

From (28) we see that the diffusion is anomalous as the second moment is:

〈x2
t 〉 = Cα · t2/(1+α), (29)

where Cα = Γ(3/(1+α))
Γ(1/(1+α))

[(1 + α)2Λ]
2/(1+α)

.

Finally we note explicitly that the probability distribution is of the form (see (5))

P (x, t) =
1

ℓ(t)
F

(
|x|

ℓ(t)

)
(30)

where

ℓ(t) = t1/(1+α), (31)

and F(y) is a (stretched) exponential. The result is consistent with the scaling predicted

in [15], while the form of the scaling function F is different, as in the present case it

cannot contribute anomalies, due to its fast decay to zero for large arguments. Notice
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Figure 2. Asymptotic growth exponent of the second moment 〈x2
t 〉 ∼ t

γ(α): finite

time estimate deviate from theoretical prediction when α is close to 0: see section

(3.2) for a discussion about this point. Each numerical exponent has been obtained by

evolving the system up to time 218.

that in different situations, with slower decay of the scaling function, the moments may

not be determined by the scaling (31), see [29, 30]. In the present case, as discussed

in the next section, also ballistic peaks cannot influence the asymptotic growth of high

order moments, so our model is characterized by weak anomalous diffusion [31], which

means that there is a single scale ruling the behaviour of the whole moments spectrum

〈|xt|
q〉 ∼ tq/(1+α). (32)

3.2. Ballistic peaks and finite-time estimates

One feature that is not captured by the diffusion approximation, is the structure of

the tails of the propagating probability distribution: as a matter of fact in the discrete

setting, with initial conditions given by (7), Pj(n) is zero for any position j > n, and the

contribution to the front is given by walkers whose velocity never reversed up to time n.

In the present case - differently from the annealed Lévy-Lorentz model [12, 15] - such

peaks do not contribute to the asymptotic behaviour of the second moment, while they

may influence intermediate time estimates, especially as α approaches 0, as witnessed

by fig. (2).

The ballistic peak amplitude can be computed directly from the discrete model: in
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Figure 3. Asymptotic growth exponent of q-th order moment 〈|xt|
q〉 ∼ t

q·βq(α) for

some (low) values of q: low order moments are less influenced by finite time effects.

range 1 < α < 2

Pn(n) =
1

2
t̂
n, (33)

which immediately yields a purely exponential decay.

In the anomalous regime 0 < α < 1, the probability for a walker to be at j = n at

time n is

Pn(n) =
1

2

n−1∏

k=1

(
1−

1

2Λk1−α

)
, (34)

which, for large values of n can be estimated as

Pb(n) = Pn(n) ∼
1

2
exp

(
−

1

2Λα
nα

)
· exp

(
1

2Λα

)
. (35)

Such a contribution cannot modify the moments’ spectrum, due again to the presence

of a stretched exponential decay, but may be relevant for finite times, for α sufficiently

close to zero. In fig. (3) we show how such finite estimates have a smaller influence

when low order moments are computed [29], yet computations still remain problematic

when α is sufficiently close to 0. This may be qualitatively understood if we consider a

combined probability, joining the diffusive and the ballistic terms:

Peff(x, t) = Pb(x, t) + C(t)P (x, t), (36)
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where P is given by (28), while (35)

Pb(x, t) =
1

2
exp

(
−

tα

2Λα

)
· (δ(x− t) + δ(x+ t)) , (37)

while C is chosen to have a normalized probability distribution:

C(t) = 1− exp

(
−

tα

2Λα

)
. (38)

In order to get a crude estimate of the relevance of ballistic peaks for finite times, we

may evaluate the ratio:

〈x2
t 〉bal

〈x2
t 〉dif

=
exp

(
− tα

2Λα

)
t2

(
1− exp

(
− tα

2Λα

))
· Γ(3/(1+α))
Γ(1/(1+α))

[(1 + α)2Λt]2/(1+α)
. (39)

At the stopping time of our numerical simulations this ratio is small (≤ 0.005), for

0.4 . α: to get the same value of (39) for α = 0.1 we would need around 1016 iterations.

4. Conclusions

In this paper we have introduced and studied a non-homogeneous persistent random

walk, where reversal probability decreases like a power law with respect to the distance

from the starting point. This model may be viewed as a non trivial extension of

conventional persistent random walks or as the limiting case of non equilibrium Lévy-

Lorentz gas in a fast changing environment. Two different regimes are singled out, the

first characterized by normal transport, being indeed equivalent to a persistent random

walk with constant reversal probability, while the second exhibits superdiffusion, with

an exponent analytically computed via a suitable continuum limit.
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96 012415

[10] Escaff D, Toral R, Van den Broeck C and Lindenberg K A continuous-time persistent random walk

model for flocking arXiv:1803.02114

[11] Hughes B D 1995 Random Walks and Random Environments. Volume 1: Random Walks (Oxford:

Clarendon Press)

http://lanl.arxiv.org/abs/1803.02114


Non-homogeneous persistent random walks and Lévy-Lorentz gas 11
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