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Abstract

In this work, a mathematical and numerical approach for the solution of the 2D Navier-Stokes
equations for incompressible fluid flow problems is investigated. A new flux conservative tech-
nique for the solution of the elliptic part of the equations is formulated.
In the new model, the non linear convective terms of the momentum equations are approxi-
mated by means of characteristics and the spatial approximations, of equal order, are obtained
by polynomials of degree two. The advancing in time is afforded by a fractional step method
combined with a suitable stabilization technique so that the Inf-Sup condition is respected.
In order to keep down the computational cost, the algebraic systems are solved by an iterative
solver (Bi-CGSTAB) preconditioned by means of Schwarz additive scalable preconditioners.
The properties of the new method are verified carrying out several numerical tests. At first,
some elliptic, parabolic and convective-diffusive problems are solved and discussed, then the
results of some time dependent and stationary 2D Navier-Stokes problems (in particular the
well known benchmark problem of the natural convection in a square cavity) are discussed and
compared to those found in the literature.
Another, potentially very important application of the numerical tools developed, regards the
solution of 1D Shallow-Water equations. In fact the use of the fractional steps scheme for
advancing in time and the finite elements (of different polynomial degrees) for the spatial ap-
proximation, makes the above mentioned approach computationally profitable and convenient
for real applications. The efficiency and accuracy of the numerical model have been checked
by solving a theoretical test.
Finally, a brief description of the software suitably developed and used in the tests conclude
the thesis.

Keywords: 2D Navier-Stokes, fractional step, finite element, equal order, stabilization,
flux conservation, Schwarz preconditioner, 1D Shallow-Water





Riassunto

In questo lavoro è investigato un approccio matematico numerico per la risoluzione delle
equazioni 2D di Navier-Stokes per problemi di fluidi incomprimibili ed è formulata una nuova
tecnica per la conservazione dei flussi matematici nella risoluzione della parte ellittica delle
equazioni.
Nel nuovo modello i termini convettivi non lineari delle equazioni della quantità di moto sono
approssimati con le caratteristiche e l’approssimazione spaziale è eseguita con polinomi di grado
due sia per la velocità che per la pressione. L’avanzamento temporale è compiuto secondo un
metodo ai passi frazionari includendo opportune tecniche di stabilizzazione, cos̀ı da rispettare
la condizione Inf-Sup.
Il costo computazionale è mantenuto limitato risolvendo i sistemi algebrici con un solutore
iterativo (Bi-CGSTAB) e precondizionandoli per mezzo di precondizionatori scalabili del tipo
di Schwarz additivo.
Le proprietà del nuovo metodo sono verificate risolvendo numerosi test numerici. All’inizio sono
risolti e discussi alcuni problemi ellittici, parabolici e convettivo-diffusivi. Successivamente i
risultati di alcuni problemi 2D di Navier-Stokes, sia transitori che stazionari (tra cui in parti-
colare il ben noto problema della convezione naturale in una cavità quadrata), sono discussi e
confrontati con quelli reperibili nella letteratura scientifica.
Un’altra applicazione, potenzialmente molto importante, degli schemi numerici sviluppati riguarda
la risoluzione delle equazioni 1D del moto delle acque basse (Shallow-Water equations). Infatti
l’uso dello schema ai passi frazionari per l’avanzamento temporale e l’uso di elementi finiti (di
grado polinomiale differente) per l’approximazione spaziale, fa s̀ı che il nuovo approcio sia com-
putazionalmente vantaggioso ed adatto anche allo studio del trasporto di inquinanti passivi nei
corsi d’acqua. L’efficienza ed accurattezza del modello numerico sono state verificate risolvendo
un test teorico con soluzione analitica nota.
Nell’ ultima parte della tesi è riportata una breve descrizione del software in cui sono imple-
mentate le tecniche sopradescritte e utilizzate nei casi numerici.

Parole chiave : 2D Navier-Stokes, passi frazionari, elementi finiti, egual ordine pressione-
velocità, stabilizzazione, conservazione dei flussi, precondizionatore di Schwarz, 1D Shallow-
Water





Introduction

Motivation

Numerical modeling has become nowadays an important subject in applied mathematics and
in several aspects of technical and industrial activity. Particularly in fluid dynamics, the in-
compressible Navier-Stokes equations are by now widely accepted as a mathematical model for
incompressible viscous fluid flows.
Since a large amount of numerical methods has been already developed for solving fluid dy-
namic problems, we considered useful to reserve an important part of the thesis to an extensive
review of the existing literature. In fact, the aim of the work was to develop new stable FE
approaches for the solution of 2D incompressible Navier-Stokes equations and of 1D Shallow-
Water equations, taking particularly into account the accuracy of the numerical solutions and
the computational efficiency of the mathematical models.
In detail, at first the most popular FD schemes for advancing in time, included the fractional
step ones, and the high order FE spatial approximations for solving 2D elliptic, parabolic and
convective-diffusive partial differential equations was studied; then we used the best techniques
(in our opinion) for solving the 2D Navier-Stokes equations and the 1D Shallow-Water equa-
tions. In spite of appearances, is possible for elliptic problems to find a connection between
saddle-point and discontinuous finite element methods so that we decided to develop and to
analyze the continuous version of one of the discontinuous Galerkin methods analyzed that is,
due to its simple formulation, the Baumann-Oden method.
We decided to use for the spatial approximation piecewise polynomials of degree two so that
in our new scheme we are able to impose the continuity of the numerical fluxes by construc-
tion. Unfortunately, the new scheme is not conservative according to the classical definition,
however it could be generalized so that a scheme generally conservative, like those named finite
volume-elements (FVE) could be obtained.
The solution of elliptic problems requires the solution of an algebraic system and this is, gen-
erally, computationally expensive. In order to reduce as most as possible this effort (in fact
in transient fluid dynamic problems the solution of elliptic problems can be repeated several
times, also hundred or thousand), it is widespread to use preconditioned iterative solvers. As
the stiffness matrices of the conservative FE are not symmetric, we decided to use the well
known Bi-CGSTAB solver preconditioned by a Schwarz preconditioner.
The additive two level Schwarz preconditioners that we build and used were derived from the
theory of multi-domains methods with overlapping and have the scalability property.
In order to heuristically verify the properties of the new method, some numerical tests, with
or without preconditioners, by conservative or traditional FE, were carried out.
Some tables reporting the error norms and the estimate order of accuracy have been build and
by means of them we were able to deduce that (of course) the traditional FE solutions respect
the theoretical order of accuracy while the conservative FE solutions seem not have an optimal
order of accuracy. A theoretical analysis of this was not carried out, but remembering that
in elliptic problems the Galerkin weak formulation guaranties the orthogonality of the error
with respect to the spaces to which belong the numerical solutions, it is not surprising that the
continuity constraint imposed on the numerical fluxes breaks the above property.
In the solution of transient convection-diffusion problems a particular attention has to be de-
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voted to the convective terms. In the past years, in order to guarantee stability and strong
consistency, many approaches have been formulated; one of them is the so called characteristic
method. This method gives an easy and accurate approximation of the convective terms (par-
ticularly in 2D problems) reducing the convection-diffusion equation to a parabolic equation.
Its most appealing property is the unconditioned stability in linear problems.
Some numerical tests, both for parabolic and convective-diffusive equations, were carried out
and the results suitably evaluated.
The second part of this thesis is dedicated to the solution of the two very important and pop-
ular fluid dynamics problems: the 2D Navier-Stokes and 1D Shallow-Water equations.
Apparently the two physical phenomena described by the two systems of equations are very
different; in fact the first one represents an incompressible fluid flow problem while the second
one a long wave problem, but both are transient problems and have unknown variables the
velocity and pressure (even if, actually, in the Shallow-Water equations the hypothesis of hy-
drostatic pressure allows the “substitution ”of the pressure by the elevation of the free surface).
Keeping in mind this and considering the obvious differences between the problems (in particu-
lar that the first one is 2D while the second one is 1D), we decided to use the same approach for
advancing in time and for approximating the convective term, i.e. the fractional step and the
characteristic techniques. In this way, at each time instant of the marching technique, the most
expensive computational effort was reduced to the solution of algebraic systems stemming from
the elliptic problems that we have extensively discussed previously. Both the numerical models
(2D Navier-Stokes and 1D Shallow-Water equations) have approximation of first order in time,
while the spatial approximation for velocity and pressure for the 2D Navier-Stokes equations is
second order and second order for unit width discharge and first order for elevation for the 1D
Shallow-Water equations. Another very important aspect of our approach regards the choice
of equal order approximation for Navier-Stokes equations; in fact, the non respect of Inf-sup
condition requires to use a suitable stabilization technique. Recently, has been presented in lit-
erature a method, simple enough from an algorithm point of view, for stabilizing the solutions
in presence of equal order choice. We adopted, after the suitable modifications, this method in
our models and, at our knowledge, numerical models with the features described thus far have
not been published yet.
Not existing for Shallow-Water equations a condition similar to the Inf-Sup, but knowing by
numerical experiences that solutions of equal order are unstable also for Shallow-Water prob-
lems, we decided to use polynomials basis functions of degree two for unit width discharge and
degree one for elevation. In order to check the efficiency of our models, we solved some numer-
ical tests with known analytical solutions both for Navier-Stokes and Shallow-Water problems;
moreover, for the Navier-Stokes equations, we solved also a well known benchmark problem
and compared our results with those found in literature.
The efficiency and the low computational cost of the numerical model for Shallow-Water make
it a promising tool for the prediction of distribution of pollutants in rivers and basins.

Thesis outline

Chapter 1 starts with the derivation of the mathematical model for fluid flow problems. We
discuss possible types of boundary conditions which are useful in fluid flow. We shortly recall
known well posedness results for the Navier-Stokes equations and we announce the effective
problem to be solved. Moreover, definitions of some functional spaces to be used throughout
the thesis is given. We present standard approach for the approximation of the Navier-Stokes
equations and finally some classical spatial discretization method are addressed.

In Chapter 2, we present the Galerkin FE method for the solution of Poisson equation. In
addition we make an overview of some discontinuous Galerkin FE methods for elliptic prob-
lems as well as a short presentation of the finite volume-element method. Finally, a new
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conservative method for elliptic equations resembling the discontinuous Galerkin method is
introduced, followed by numerical results generated by this new method with a comparison
with results obtained from the traditional Galerkin finite element method.

Chapter 3 mainly treats the Schwarz domain decomposition approach. We present the Schwarz
approach as a mathematical tool for solving elliptic type problems, like Poisson equation. On
the other hand, we present the Schwarz overlapping approach as an efficient preconditioner for
solving algebraic linear systems and known theoretical results are given. The reasons for choos-
ing Schwarz overlapping additive preconditioner are given followed by a short application of the
multi-domain approach to other problems. Finally an efficient algorithm for the construction
of the Schwarz preconditioner and its application to the test problems of chapter 2 are provided.

In Chapter 4, we review some numerical approaches for the solution of the time dependent
parabolic problem with known theoretical results as well as for time dependent convection dif-
fusion problem. Moreover, the characteristic Galerkin method is presented and finally a new
fractional approach for solving linear convection diffusion equation is given; some results by
some numerical tests are presented. This scheme in the next chapter will be used for the solu-
tion to the 2D incompressible Navier-Stokes equations and for the solution of the temperature
equation.

Chapter 5 is devoted to our new stabilized approach. At first the fractional step for the advanc-
ing in time of 2D incompressible Navier Stokes equations is developed. Then we shortly review
the Inf-Sup condition and some stabilized methods, followed by our equal order stabilized ap-
proach at the algebraic level. Numerical tests are thus presented to verify the effectiveness
and the efficiency of this new approach. We consider two different problems with non trivial
known solutions: they are the two dimensional unsteady flow of decaying vortices and the lid
driven cavity flow. The aim is to test the convergence behavior of the new method by the
maximum and square error norms that can be computed because the exact solution is known.
Then we consider a real problem that is the benchmark flow problem of natural convection in
a square cavity where no analytic solution is known. The aim here is to compare the results of
the new method to literature values in order to compare our method to well established schemes.

Chapter 6 is devoted to the solution of 1D Shallow-Water equations by a numerical approach
similar to that used for 2D Navier-Stokes equations. Also for this problem a numerical test
with analytical solution has been solved and the results discussed.

Chapter 7 contains a brief description of the software TRIANGLE-ANVI-ELFICS-ROTINS-
GNUPLOT in which the method and algorithms from chapters 2-5 are implemented and by
which the results of the tests were provided.





Chapter 1

The mathematical model

1.1 Incompressible Navier Stokes equations

We denote the Cartesian spatial coordinates by X = (x, y, z) = {xi}di=1, d ∈ {2, 3} and the
time by t. The vectorial operator of spatial derivative is denoted by ∇ = {∂xi}di=1 where ∂ξ is
the spatial derivative with respect to ξ. The scalar operator of partial derivative usually called
divergence operator is devoted by div = ∇· = ∑d

i=1 ∂xi. We consider a viscous incompressible
fluid and we assume its density ρ and dynamic viscosity µ are dependent on space and time.
Within a fixed spatial domain Ω ⊂ R

d, and during the time interval (0, T ), i.e for (X, t) ∈
Ω × (0, T ), the distribution of the velocity field u = u(X, t) = (ui)

d
i=1 and the pressure field

p = p(X, t) of the fluid is modeled by the incompressible Navier Stokes equations given in their
non conservative form :

ρ∂t(u) + ρ(u · ∇)u−∇· (2µD(u)) +∇p = f in Ω× (0, T ) (1.1)

∇·u = 0 in Ω× (0, T ) (1.2)

where (D(u))i,j =
1
2(∇u+∇uT ) = 1

2 (
∂ui
∂xj

+
∂uj
∂xi

)1≤i,j≤d is the deformation rate or strain tensor

also called the symmetric gradient of u and f denotes a volumetric force as for instance gravi-
tation. Equation (1.1) enforces the conservation of momentum while equation (1.2) guarantees
the incompressibility constraint equivalent to the conservation of volume. We say that a fluid
is incompressible if the volume of any sub-domain V ⊂ Ω remains constant for all times t > 0,
i.e ∫

V(t)

dx =

∫

V

dx for all t > 0

We note that ∇·u is the trace of the deformation tensor (D(u)). The last two terms of the left
hand side of equation (1.1) can also be written as −∇·T(u, p) where

T(u, p) = 2µ(D(u))− pI

is the stress tensor and I = (δij)1≤i,j≤d denotes the unit tensor. We can also write the divergence
of a tensor S:

(∇·S)i =
d∑

k=1

∂xksik

For a detailed derivation of tensor and justification of this model see [76].
Generally when solving real problems, to make complete the formulation, we have:

• To add a (or several) convection diffusion equation (equations) for a (or several) scalar
variable (variables) , e.g. for temperature T given by

ρ
∂T

∂t
+ u·∇T−∇· (k∇T) = S in Ω× (0, T ) (1.3)
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Figure 1.1: Perspective view of a physical flow .

where k is the thermal conductivity

• To take into account, for d = 3, the free surface evolution, because when the fluid is
flowing, a part of its boundary is changing in time due to the presence of some externals
forces such as the wind. Denoting by ϕ(x, y, t) the free surface, its evolution should satisfy
the cinematic equation

w =
∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y
(1.4)

see Figure 1.1

• To include a turbulence model, e.g. K−ε which are exactly two more convection diffusion
equations to be solved. We refer to [80, 81] for a detailed description of the K− ε model.

Finally the flow model has also to be completed with suitable initial and boundary conditions.
For the initial conditions, it is clear that an initial velocity field u0 is necessary:

u|t=0 = u0 in Ω

For the boundary conditions, different possibilities are presented in Subsection 1.1.1 .

1.1.1 Boundary conditions

We partition the boundary ∂Ω of Ω into a finite number n of subsets γi, i = 1, . . . n. In order for
the Navier-Stokes equations to be well-posed, suitable boundary conditions need to be specified
on each subset γi. Many different types of boundary conditions are possible in principle; also
the kind of boundary condition can vary from point to point on the boundary, but at any
given point only one boundary condition can be specified. We refer to [113] for an extensive
enumeration of these possibilities and consider just the following ones.

Dirichlet boundary conditions

Generally, Dirichlet boundary conditions prescribe a velocity field g
D

u = g
D

on γi (1.5)

They are usually applied to impose an inflow velocity profile g
D
, or to model a wall moving

with velocity g
D
. In the latter case, they are also called no-slip boundary conditions as they

impose the fluid not to slip but to stick at the wall.
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Neumann boundary conditions

Neumann boundary conditions prescribes a force g
N

per unit area as the normal components
of the stress tensor

T(u, p)·n = 2µ(D(u))·n − p·n = g
N

on γi

where n is the outer unit normal on γi. Neumann boundary conditions are used to model a
given force per unit area on the boundary γi, often with g

N
= 0 for what is called free outflow.

For vanishing velocity gradients, the force g
N

corresponds to the pressure on the boundary.
Usually, Neumann boundary conditions specify a flux condition on the boundary. See also [64]
for more details about the interpretation and implication of this type of boundary conditions.

Mixed boundary conditions

Mixed boundary conditions combines Dirichlet boundary conditions in the normal direction n
for velocity with null components of the stress tensor in the tangential direction(s) τ :

u·n = g
D
·n on γi

(T(u, p)·n)· τ = (2µD(u)·n)· τ = 0 on γi ∀τ : τ ·n = 0

In particular, when gD = 0 we talk about free slip boundary conditions.

Mixed Robin boundary conditions

Sometimes, a smooth transition from slip to no-slip boundary conditions is desired. This
can be realized by imposing Dirichlet boundary conditions in the normal direction as for the
slip boundary conditions and to replace the boundary conditions in the tangential direction
by Robin boundary conditions, as a linear combination of Dirichlet and Neumann boundary
conditions :

u·n = g
D

on γi (1.6)

(ωCτu+ (1− ω)(T(u, p)·n)· τ = ωCτu+ (1− ω)(2µD(u)·n)· τ = ωCτgD· τ on γi (1.7)

∀τ : τ ·n = 0 (1.8)

Here, ω ∈ [0, 1] depends on the actual flow problem. For ω = 0, we have free slip conditions
whereas for ω = 1, we have no-slip boundary conditions. In practice, ω can be a smooth
function of space and time with values in [0, 1] allowing thus a smooth transition between the
two cases. This holds for g

D
= 0 but transition boundary conditions cover also the general

Dirichlet case for g
D
6= 0 and ω = 1. The weight Cτ depends on the velocity field and the force

per unit area. This particular type of boundary conditions has been studied in more details in
[67].

1.2 Well-posedness

In this part, we consider some important issues regarding the question of well-posedness of the
problems described by the mathematical model equations, and of existence and uniqueness of
their solutions. A global existence result for the coupled problem (1.1) − (1.2) with f = ρg
has been proven by Lions [85]. This proof requires Ω to be a smooth, bounded, connected
open subset of Rd, and that homogeneous Dirichlet boundary conditions ( i.e with g

D
= 0) are
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imposed on the whole boundary. If ρ0, the initial data u0 and the source data f satisfy

ρ0 ≥ 0 a.e. in Ω

ρ0 ∈ L∞(Ω)

ρ0u0 ∈ (L2(Ω))d

ρ0|u0|2 ∈ L1(Ω)

f ∈ (L2(Ω× (0, T )))d

then, there exist global solutions which satisfy

ρ ∈ L∞(Ω× (0, T ))

u ∈ (L2(0, T ; H1
0(Ω)))

d

ρ|u|2 ∈ L∞(0, T ; L1(Ω))

∇u ∈ L2(Ω × (0, T ))

ρ ∈ C([0,∞],Ls(Ω)) ∀ s ∈ [1,∞)

These solutions are called weak solutions and nothing more than the above weak statements
are known. Specifically nothing is known about the regularity of the pressure field p. We note
that the pressure is not uniquely defined; in fact if (u, p) is a solution of (1.1) then (u, p + c),
c ∈ R is also a solution of the same equation. When Dirichlet boundary conditions are specified
on the entire boundary ∂Ω, gD has to satisfy the compatibility condition

∫

∂Ω

g
D
·nds = 0

otherwise the solution of the problem couldn’t respect the incompressibility constraint. These
solutions are also called solution “ à la Leray” by analogy with the classical global existence
results for the homogeneous incompressible Navier-Stokes problems obtained by Leray in [77,
78, 79]. However, if ρ0 > 0 then it is proven [85] that there is a short time smooth solution to
which all weak solutions are equal.
This situation is not very satisfactory, however it does not prevent us from developing well posed
numerical models approximating the mathematical models and providing solutions which are
in good agreement with physical observations.
We assume in what follows that the density of the fluid ρ is a positive constant and so the
kinematic viscosity ν = µ(ρ)/ρ is also constant.

1.3 Problem to be solved

Motivations

Generally when solving the 3D incompressible Navier-Stokes equations, we have to deal at each
time instant and all together with :

• 3 momentum equations for the velocity field u

• 1 equation for the incompressibility for p

• 1 equation for the energy eventually written in term of the temperature

• 1 or more equations for turbulence models
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• and 1 cinematic equation for the free surface.

Of course, the numerical solution of such system is difficult and heavy, in particular if we are
interested in the development and in the test of new numerical tools. For this reason, we
are going to consider only the 2 dimensional counter part of the incompressible Navier-Stokes
equations. In this case, there is no more the presence of the free surface evolution and of the
turbulence models. Therefore we are looking for the distribution of the two components of the
velocity field u(u(x, y, t), v(x, y, t)) and the pressure field p(x, y, t) so that the equations in non
conservative form are :

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− µ(

∂2u

∂x2
+
∂2u

∂y2
) +

∂p

∂x
= fu in Ω× (0, T) (1.9)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
− µ(

∂2v

∂x2
+
∂2v

∂y2
) +

∂p

∂y
= fv in Ω× (0, T) (1.10)

∂u

∂x
+
∂v

∂y
= 0 in Ω× (0, T) (1.11)

⊕ suitable B.C ⊕ I.C , (1.12)

where ρ is constant and p = p
ρ .

We note that the two momentums equations can be seen as two non linear convection-diffusion
equations where the non linear hyperbolic part is a convection (advection) type equation
whereas the elliptic part is of Poisson type operator. Since we are in presence of a time
dependent problem, it is necessary to choose a strategy in order to advance in time. This will
be the object of the section 1.4 where we are giving known results.

1.4 Time advancing by finite difference

The system of equations (1.9) − (1.11) can be advance in time by suitable finite difference
scheme. To start, we partition the time- interval [0, T ] into N subintervals [tn, tn+1] of measure
∆t = T

N with t0 = 0 and tN = T . If we consider the single-step scheme [113], then at each
time level tn+1 = (n+ 1)∆t, n = 0, 1, · · · ,N − 1 the system becomes :

un+1 − un

∆t
+ un+1

θ ·∇un+1
θ − µ∇· (∇un+1

θ ) +∇pn+1 = fn+1
θ

(1.13)

∇·un+1 = 0 (1.14)

with un+1
θ := θun+1 + (1− θ)un, and fn+1

θ
:= f(θtn+1 + (1− θ)tn) for 0 ≤ θ ≤ 1. This scheme

is second order accurate with respect to ∆t if θ = 1
2 , while it is only of first order accurate

for all the other values of θ. We note that accuracy is measured in H1- norm for each velocity
component and L2- norm for pressure. When θ = 1, the scheme is fully implicit and require
the solution of a nonlinear system at every time increment. The nonlinearity can be overcome
by a second order Newton-Raphson iterative method [113] or a GMRES iterative method, see
Brown and Saad [23]. We note that a second order backward differentiation scheme is obtained

by setting θ = 1 in (1.13) and by replacing the first order backward difference un+1−un

∆t by

the two step second order one 3un+1−4un−un−1

2∆t . However this scheme requires larger storage
compared with the single-step second order Crank-Nicolson method. Moreover, it needs an
additional second order initialization u1.
In order to avoid the implicit scheme, one can resort implicit methods by linearizing the mo-
mentum equations (1.13) by Newton method and performing only one iteration at each time
step giving rise to a semi implicit method as :

un+1 − un

∆t
+ un·∇un+1 − µ∇· (∇un+1) +∇pn+1 = fn+1 (1.15)

∇·un+1 = 0 (1.16)
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In addition, we mention that when θ = 0, the scheme is fully explicit and the convective
term in this particular case is completely linear. Moreover, it is important to note that the
incompressibility and the pressure have the same time increment level otherwise it can result
to a divergence of the solution.
Other semi-implicit approaches requires a fully explicit treatment of the nonlinear term. An
illustration is provided by the following second-order scheme which approximates the linear
terms by the Crank-Nicolson method and the nonlinear (convective ) one by the explicit Adams-
Bashforth method. From [113], it is given by :

{
2
∆t(u

n+1 − un) + 3
2u

n·∇un − 1
2u

n−1·∇un−1 + µ∇· (∇un+1) +∇pn+1 +∇pn = fn+1 + fn

∇·un+1 = 0
(1.17)

for n = 1, 2, · · · N − 1, providing a suitable initialization of u1.
This discretization is second order accurate with respect to ∆t providing the data and the
solutions are smooth enough with respect to the variable. It can be noted that the system
(1.17) is often used when the spatial approximation is based on the spectral collocation method,
as the latter can take advantage of explicit evaluation of the nonlinear terms. Therefore in this
case, the method is stable under the condition ∆t = O(N−2), N being the polynomial degree
of the vector unknown field.
Others semi implicit scheme, that of Gunzberger [51], is formulated as follows:

1

∆t
(
3

2
un+1 − 2un +

1

2
un−1) + u∗·∇u∗ +∇pn+1 + µ∇· (∇un+1) = fn+1

∇·un−1 = 0

where u∗ := 2un − un−1 and u−1 = 0.
This scheme is based on a backward difference formula which is second order accurate in time,
is conditionally stable and moreover, Baker, Dougalis and Karakashian proved in [15] that the

stability is restricted to ∆t = O(h
4
5 ).

Generally, when adopting a semi-implicit scheme, the final problem obtained is of Stokes type,
hence the necessity to give well-known theorems related to the Stokes problem. This is the aim
of the section 1.5.

1.5 The Stokes problem

Let us consider the Stokes problem given in this form :

αu− ν∆u+∇p = f in Ω ⊂ R
d, d = 2, 3 (1.18)

∇·u = 0 in Ω (1.19)

u = 0 on ∂Ω (1.20)

where α ≥ 0 and ν > 0 are given constants, f : Ω −→ R
d is a given function, while u : Ω −→ R

d

and p : Ω −→ R are problem unknowns. Without loss of generality, we consider homogeneous
boundary conditions. We give some definitions and results about the Sobolev spaces.

1.5.1 Some definitions and results about Sobolev spaces

We give the following definition of the Sobolev space Hm(Ω).

Definition 1.1. Given m integer ≥ 0, the Sobolev space Hm(Ω) is defined as

Hm(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω),∀|α| ≤ m}
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where Dαv represents a partial derivative taken in the sense of distribution,

Dαv =
∂αv

∂xα1
1 · · · ∂xαd

d

, |α| = α1 + · · ·+ αd

On this space, the norm is given by

‖v‖2Hm(Ω) =
∑

k≤m

|v|2k,Ω

where
|v|2k,Ω =

∑

|α|=k

|Dαv|2L2(Ω)

The space L2(Ω) is then H0(Ω) while H(div,Ω) is a subset of H1(Ω). We define the space

Hdiv := {v ∈ (L2(Ω))d/div v = 0 in Ω, v·n = 0 on ∂Ω} (1.21)

Then as norm in Hdiv, we choose the H1(Ω)-semi-norm |· | .

Definition 1.2. Let ϕ : Rd → R be a continuous function. We define its support as the closure
of the set {x ∈ R

d such that ϕ(x) 6= 0}.

Definition 1.3. We define D(Ω) the space of infinitely differentiable functions having compact
support, i.e vanishing outside a bounded open subset Ω′ ⊂ Ω which has a positive distance from
the boundary ∂ Ω of Ω.

We give the so-called Poincaré inequality.

Theorem 1.4. (Poincaré inequality). Assume that Ω is bounded connected open set of Rd and
that Σ is a (non-empty) Lipschitz continuous subset of the boundary ∂Ω. Then there exists a
constant CΩ > 0 such that ∫

Ω

v2(x)dx ≤ CΩ

∫

Ω

|∇v(x)|2dx (1.22)

for each v ∈ H1
Σ(Ω), where H1

Σ(Ω) := {v ∈ H1(Ω) | v = 0 on Σ}.

Under the assumption that ∂Ω is Lipschitz continuous and using the density of C∞(Ω̄)
in H1(Ω) it is proven that the following Green formula holds: for w, v ∈ H1(Ω),

∫

Ω

(Djw)vdx = −
∫

Ω

wDjvdx+

∫

∂Ω

wvnjdγ, j = 1, · · · , d, (1.23)

where Dj denoted the partial derivative ∂
∂xj

. Also, if w ∈ H(div; Ω) and v ∈ H1(Ω), we have

∫

Ω

(divw)vdx = −
∫

Ω

w·∇vdx+

∫

∂Ω

(w·n)vdγ. (1.24)

Mathematical formulation and analysis

Assume f ∈ (L2(Ω))d and set Υ := {v ∈ D(Ω) / div v = 0} and V := (H1
0(Ω))

d which is
a Hilbert space. From the system (1.18)-(1.20) and using Green theorem (1.23), the weak
formulation is obtained

α(u, v) + ν(∇u,∇v)− (p, divv) = (f , v) ∀ v ∈ (D(Ω))d (1.25)

and therefore,
α(u, v) + ν(∇u,∇v) = (f , v) ∀ v ∈ Υ (1.26)
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Defining the space
Vdiv := {v ∈ V / div v = 0}

which is a closed subspace of V and by virtue of Poincaré inequality [113], it is a Hilbert space
for the norm

‖v‖ := ‖∇v‖0
It follows that the bilinear form

a(u, v) := α(u, v) + ν(∇u,∇v), u, v ∈ Vdiv (1.27)

is coercive over Vdiv × Vdiv.
On the other hand the application v → (f, v) is linear and continuous over Vdiv. Hence, by
Lax-Milgram lemma, the problem

find u ∈ Vdiv : a(u, v) = (f, v) ∀ v ∈ Vdiv (1.28)

has a unique solution.
The two following results are proved in Girault and Raviart [56] and [113] respectively.

Lemma 1.5. Let Ω be a bounded domain in R
d with a Lipschitz continuous boundary and let

L be and element of V′ (i.e, a linear continuous functional on V). Then L vanishes identically
on Vdiv if and only if there exists a function p ∈ L2(Ω) such that

L = (p, div v) ∀ v ∈ V (1.29)

moreover, (1.29) defines a unique function p up to an additive constant.

Theorem 1.6. Let Ω be a bounded domain in R
d with a Lipschitz continuous boundary and

for each f ∈ (L2(Ω))d, let u be the solution to the system (1.18)-(1.20). Then there exists a
function p ∈ L2(Ω) which is unique up to an additive constant such that

a(u, v)− (p, div v) = (f , v) ∀ v ∈ V .

If we define the Hilbert space Q = L2
0(Ω) with

L2
0(Ω) := {q ∈ L

2(Ω) /

∫

Ω

q = 0} (1.30)

and the bilinear form
b(v, q) := −(q, div v), v ∈ V, q ∈ Q (1.31)

then, the weak formulation of the Stokes problem becomes

find u ∈ V, p ∈ Q, a(u, v) + b(v, p) = (f , v) ∀ v ∈ V (1.32)

b(u, q) = 0 ∀q ∈ Q (1.33)

Equation (1.33) ensures that div u = 0 almost everywhere as div u ∈ Q and it is orthogonal to
all functions of Q.

Remark 1.7. It is proven in Teman [131] and Glowinksi and Le Tallec [54] that if we consider
the Lagrangian functional

L(v, q) :=
1

2
a(v, v) + b(v, q)− (f , v), v ∈ V, q ∈ Q

then the solution (u, p) of the Stokes problem (1.32)-(1.33) is a saddle-point of the above func-
tional i.e

L(u, p) = min
v∈V

max
q∈Q

L(v, q)

and conversely.
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Galerkin approximation of Stokes problem

We introduce two families of finite dimensional subspaces Vh ⊂ V and Qh ⊂ Q depending on h.
Hence the discrete problem of the system (1.32)-(1.33) is given by:

find uh ∈ Vh, ph ∈ Qh : a(uh, vh) + b(vh, ph) = (f, vh) ∀ vh ∈ Vh (1.34)

b(uh, qh) = 0 ∀ qh ∈ Qh (1.35)

Let set Zh = {vh ∈ Vh : (qh, vh) = 0} for each qh ∈ Qh then Zh is the space of discrete
divergence-free functions associated with the finite dimensional spaces.
Hence the bilinear form a(· , · ) is coercive in Zh as it is coercive in V and Zh is a subspace of V
i.e there exits C1 > 0 such that

a(uh, uh) ≥ C1‖uh‖2, ∀ uh ∈ Zh

The bilinear form a(·, ·) is also continuous by using the Poincaré inequality, there exists C2 > 0
such that

|a(uh, vh)| ≤ C2‖uh‖‖vh‖ ∀ vh ∈ Zh, qh ∈ Qh

Also the bilinear form b(·, ·) is continuous on V× Q i.e

|b(uh, qh)|≤ δ‖uh‖‖qh‖
Remark 1.8. The spaces Vh and Qh should enjoy the following compatibility, Inf-Sup or
Ladyzhenskaya-Babus̃ka-Brezzi, condition :
There exits β > 0 such that

∀qh ∈ Qh,∃ uh ∈ Vh : uh 6= 0, (qh, div uh) ≥ β‖uh‖‖qh‖
i.e

inf
qh∈Qh

sup
uh∈Vh

b(uh, qh)

‖uh‖H1(Ω)‖qh‖L2(Ω)
≥ C4 .

Algebraic interpretation

We denote by Nh andMh the dimension of Zh and Qh respectively and by {ϕ
j
/ j = 1, · · · , Nh}

and {ψl/l = 1, · · ·Mh} the bases for Zh and Qh respectively.
Define uh =

∑Nh

j=1 ujϕj, ph =
∑Mh

l=1 plψl Then the linear system associated to the problem

(1.34)-(1.35) becomes
(
A BT

B O

)(
u
p

)
=

(
F
O

)
(1.36)

where A ∈ R
Nh×Nh is the symmetric and positive definite matrix such that Ai,j = a(ϕj , ϕi), B

is a rectangular Mh ×Nh matrix with bl,i := b(ϕi, ψl) and f i = (f, ϕ
i
).

If we set S =

(
A BT

B O

)
the system SX = T whose dimension is Nh+Mh can be solve with

respect to the Inf-Sup condition since the global matrix S is non singular.
The matrix A derives from the bilinear form a(· , · ) hence it is invertible and so we obtain

u = A−1(F −BT p) (1.37)

If we substitute (1.37) into the second equation of (1.36) we obtain

BA−1BT p = BA−1F (1.38)

Therefore p exists if and only if the matrix BA−1BT is invertible, that means the matrix B has
maximum rank; but since the Inf-Sup condition is satisfied, then the matrix B has maximum
rank and so we can determined the pressure. In order words, if the base functions are well
chosen, then the matrix B has maximum rank and S is invertible.
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1.6 Operator splittings for a general problem

An exhaustive analysis of the operator splittings methods is formulated in many books and
paper like [24, 25, 130, 113, 57] and find application in a wide class of problems.
They are often used to achieve the solution of stationary boundary value problems as steady
state of corresponding time dependent problems. This underlines the assumption that the
spatial differential operator can be split into a sum of two or more components of simpler
structure which are successively integrated in time producing less complicated equations.
Let us consider a problem of the form

dϕ

d t
+ Lϕ = ψ, t > 0 (1.39)

where L is a matrix that arises from the spatial discretization of a differential operator, ac-
counting also for the boundary conditions, ψ is the corresponding right hand side and ϕ the
unknown solution.
Without loss of generality, we assume that L is the sum of two components only

L = L1 + L2 (1.40)

each of them being independent of the time variable. In literature there exists a theory for
splitting methods only for the case in which

both L1 and L1 are positive (or non-negative) definite . (1.41)

It is important to mention that quite often, the splitting is not operated at the algebraic level
as done in (1.40), but rather at the differential stage

L = L1 + L2 (1.42)

that is the differential operator itself. The operator-splittings of fractional step methods is
even more fascinating than the other since it is based on physical considerations : L1 and L2

may have specific physical meaning, such as in the case of diffusion and transport processes.
The mathematical difficulty however is that (1.42) generally requires a splitting between the
boundary conditions as well, in order for endowing both L1 and L2 with consistent boundary
data.

Now set t0 = 0 and tn+1 = tn +∆ t for n ≥ 0. We take as ϕ0 a convenient approximation
of the initial data u0. Then, the Yanenko splitting is





ϕn+
1
2 − ϕn

τ
+ L1ϕ

n+ 1
2 = 0

ϕn+1 − ϕn+
1
2

τ
+ L2ϕ

n+1 = ψn
(1.43)

for n ≥ 0 and τ = ∆ t. This method is based on a couple of implicit problems, is first order
accurate with respect to ∆ t provided that the problem data is sufficiently smooth. In fact, by
eliminating ϕn+

1
2 , we obtained

ϕn+1 − ϕn

τ
+ Lϕn+1 = ψn +∆ tL1(ψ

n − L2ϕ
n+1)

It has been proven in [89] under restriction (1.41), that the splitting scheme (1.43) is uncondi-
tionally stable.

Remark 1.9. When L is the Laplace operator in two dimensions and Li is the discrete coun-
terpart of the second derivative ∂2

∂ x2i
, i = 1, 2, the scheme (1.43) produces a classical alternating

direction method.
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A three step splitting method is given by





ϕn+
1
4 − ϕn

τ
+ L1ϕ

n+ 1
4 = ψn+

1
2

ϕn+
1
2 − ϕn+

1
4

τ
+ L2ϕ

n+ 1
2 = 0

ϕn+1 − ϕn

2τ
+ Lϕn+ 1

2 = ψn+
1
2

(1.44)

where τ = ∆ t
2 and ψn+

1
2 refers to the intermediate time-level tn+ 1

2
= tn +

∆ t
2 . This method is

well-known as the predictor-corrector method.
It provides a guess ϕn+

1
2 which is first order accurate for the solution at tn+ 1

2
through two

implicit equations, while the second order corrector produces the new solution ϕn+1 explicitly.

Remark 1.10. • This method is second order accurate in time. In fact, by eliminating
ϕn+

1
4 in the first equation of (1.44) and inserting it in the second equation of (1.44), we

obtain

ϕn+
1
2 − ϕn

∆ t
+

1

2
Lϕn+ 1

2 +
∆ t

4
L1L2ϕ

n+ 1
2 =

1

2
ψn+

1
2

and using the third equation in (1.44) to express Lϕn+ 1
2 , it comes

ϕn+
1
2 =

1

2
(ϕn+1 − ϕn)− (∆ t)2

4
L1L2ϕ

n+ 1
2

and as a consequence we obtain the relation

ϕn+1 − ϕn

∆ t
+ L(ϕ

n+1 + ϕn

2
) = ψn+

1
2 +

(∆ t)2

4
LL1L2ϕ

n+ 1
2

but since

ϕn+
1
2 = (I +

∆ t

2
L2)

−1(I +
∆ t

2
L1)

−1)(ϕn +
∆ t

2
ψn+

∆ t
2 )

= ϕn +O(∆ t)

we obtain finally

ϕn+1 − ϕn

∆ t
+ L(ϕ

n+1 + ϕn

2
) = ψn+

1
2 +

(∆ t)2

4
LL1L2ϕ

n +O(∆ t)3

which is the Crank-Nicolson scheme up to O(∆ t)2 .

• Marchuk proved in [89] that the predictor-corrector scheme is unconditionally stable pro-
vided (1.41) holds .

Another splitting method is that of Peaceman and Rachford given by





ϕn+
1
2 − ϕn

τ
+ L1ϕ

n+ 1
2 = ψn+

1
2 −L2ϕ

n

ϕn+1 − ϕn+
1
2

τ
+ L2ϕ

n+1 = ψn+
1
2 −L1ϕ

n+ 1
2

(1.45)

with τ = ∆ t
2 .
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Remark 1.11. • This scheme is second order accurate since by eliminating ϕn+
1
2 , the first

equation of (1.45) gives

(
1

τ
+ L1)ϕ

n+ 1
2 =

1

τ
ϕn + ψn+

1
2 − L2ϕ

n (1.46)

and the second equation of (1.45) gives

(
1

τ
+ L2)ϕ

n+1 − ψn+
1
2 = (

1

τ
− L1)ϕ

n+ 1
2 (1.47)

Therefore, by multiplying (1.46) by 1
τ −L1 and (1.47) by 1

τ + L1 and summing, it comes

ϕn+1 − ϕn

∆ t
+

L
2
(ϕn+1 + ϕn) = ψn+

1
2 − (∆ t)2

4
L1L2(

ϕn+1 − ϕn

∆ t
)

• If Li are suitable approximations of the second order derivative ∂2

∂ xi
, this scheme is un-

conditionally stable .

A method similar to the previous one is that of Douglas and Rachford. It is given by




ϕn+
1
2 − ϕn

τ
+ L1ϕ

n+ 1
2 = ψn −Lϕn

ϕn+1 − ϕn+
1
2

τ
+ L2ϕ

n+1 = L2ϕ
n

(1.48)

with τ = ∆ t .

Remark 1.12. • This scheme is only first order accurate in time since by eliminating
ϕn+

1
2 , it comes

ϕn+1 − ϕn

∆ t
+ Lϕn+1 = ψn − (∆ t)2L1L2(

ϕn+1 − ϕn

∆ t
)

• It is unconditionally stable [89] even when generalized to the case L = L1+L2+L3, with

Li a suitable approximation of ∂2

∂ xi
.

A generalization of the schemes (1.45) and (1.48) is given by the Il’in method





ϕn+
1
2 − ϕn

τ
+ L1ϕ

n+ 1
2 = ψn+

1
2 − L2ϕ

n

ϕn+1 − ϕn+
1
2

τ
+ L2(ϕ

n+1 − ϕn) = ρϕn
ϕn+

1
2 − ϕn

τ

(1.49)

with τ = ∆ t
1+ρ and ρ ∈ (−1, 1] is a parameter.

When ρ = 0 ( or ρ = 1), (1.49) is the scheme (1.48) with ψn+
1
2 instead of ψn at the right hand

side (and (1.45) respectively).

By eliminating ϕn+
1
2 one obtains

ϕn+1 − ϕn

∆ t
+ L( 1

1 + ρ
ϕn+1 +

ρ

1 + ρ
ϕn) = ψn+

1
2 − (∆ t)2

(1 + ρ)2
L1L2(

ϕn+1 − ϕn

∆ t
) .

Remark 1.13. It is of second order accurate for ρ = 1 (in this case it coincides with the
Peaceman-Rachford scheme) and first other in the other cases.

In conclusion, different kinds of operator splitting can be applied to a given problem, but
for an optimal choice, it should take into account the nature of the physical processes involved
in the whole problem.



§ 7 Fractional step methods for Navier-Stokes problem 17

1.7 Fractional step methods for Navier-Stokes problem

Let us now consider the time dependent Navier-Stokes problem that reads




∂ u

∂ t
− ν∆u+ (u·∇)u+∇ p = f in QT := (0, T )× Ω

div u = 0 in QT := (0, T )× Ω

u = 0 on ΣT := (0, T )× ∂Ω

u |t=0 = u0 in Ω

(1.50)

where f = f(t, x) and Ω is an open bounded domain of R2 (with d= 2) and ∂ Ω is its boundary.
For w, z, v ∈ V = (H1

0(Ω))
2, we define

aj(w, v) := ν

∫

Ω

DjwDjv

c̃j(w; z, v) :=
1

2

2∑

i=1

∫

Ω

wj [vjDjzj − ziDjvi]

where j = 1, 2. We set (u·∇)u :=
∑2

i=1Diu. The external force field is also split as
f =

∑2
j=1 f j, ν is the kinematic viscosity µ/ρ .

Therefore, a three step method consists for each n = 0, 1, · · · N − 1:

• Find u
n+ 1

3
h ∈ Vh such that

1

∆ t
(u
n+ 1

3
h − unh, vh) + a1(u

n+ 1
3

h , vh) + c̃1(u
n
h;u

n+ 1
3

h , vh) = (f
n+ 1

3
1,∗ , vh) ∀ vh ∈ Vh (1.51)

where (· , · ) is the scalar product in (L2(Ω))2 and for each vector g ∈ (L2(QT )
2 we set

gn+
1
2

∗
:=

1

∆ t

tn+1∫

tn

g(t)d t

• Then find u
n+ 2

3
h ∈ Vh such that

1

∆ t
(u
n+ 2

3
h − u

n+ 1
3

h , vh) + a2(u
n+ 2

3
h , vh) + c̃2(u

n+ 1
3

h ;u
n+ 2

3
h , vh) = (f

n+ 1
3

2,∗ , vh) ∀ vh ∈ Vh

(1.52)

• Then find the unique solution un+1
h ∈Wh to the problem by

(un+1
h , wh) = (u

n+ 2
3

h , wh) ∀ wh ∈Wh (1.53)

where Wh is a subspace of Vh which constitutes a suitable approximation of Vdiv.

The existence and uniqueness for both (1.51) and (1.52) follow positiveness since c̃j(z; v, v) = 0
for each z, v ∈ V, j = 1, 2. Equation (1.53) states that un+1

h is the L2-orthogonal projection of

u
n+ 2

3
h onto Wh that is

un+1
h = Phu

n+ 2
3

h

with Ph : Vh → Wh the orthogonal projection operator with respect to the scalar product of
(L2(Ω))2. The fractional step (1.51)-(1.53) is well known as the projection method [113].

Remark 1.14. • This scheme is unconditionally stable in the norm of (L2(Ω))2



18 The mathematical model CAP. 1

• If the time step ∆ t = O(h2) holds, one has

∆ t

N−1∑

n=0

‖un+1
h ‖21 ≤ C (1.54)

• When (1.54) holds, it is proved in [130, 131] that the scheme is convergent .

Another approach [113] that makes use of two (rather than three) steps (and written in its

continuous version) consists to define two sequences of vector functions un+
1
2 , un+1 and a se-

quence of scalar function qn+1 recursively given as:
u0 := u0 and for n = 0, 1, · · · N − 1





1

∆ t
(un+

1
2 − un)− ν∆un+

1
2 + (un+

1
2 ·∇)un+

1
2 +

1

2
(div un+

1
2 )un+

1
2 = fn+

1
2

∗
in Ω

un+
1
2 ·n = 0 on ∂ Ω

(1.55)





1

∆ t
(un+1 − un+

1
2 ) +∇ qn+1 = 0 in Ω

div un+1 = 0 in Ω

un+1·n = 0 on ∂ Ω

(1.56)

where n is the unit outward normal vector on ∂ Ω. The solution of this problem based on least
squares approach has been made in [50].
The existence of a scalar qn+1 is a consequence of the so-called Helmholtz decomposition prin-
ciple. It states that any function v ∈ (L2(Ω))2 can be uniquely represented as v = w +∇ q,
where w ∈ Hdiv and q ∈ H1(Ω). But

∫
Ω z·∇ q = 0 for each z ∈ Hdiv and therefore w = Pdiv v,

where Pdiv is the orthogonal projection operator from (L2(Ω))2 onto Hdiv . Hence since w ∈ Hdiv,
q turns out to be the solution of the Neumann problem





∆ q = div u in Ω

∂ q

∂ n
= u·n on ∂ Ω

which defines q up to an additive constant.
It is proven in [130] that the scalar function qn+1(x) does approximate the pressure p(tn+1, x)
in a weak sense.
Therefore from (1.55)-(1.56) we have

∂qn+1

∂ n
= ∇ qn+1·n = 0 on ∂ Ω (1.57)

since both un+1·n and un+
1
2 ·n vanish on ∂ Ω, therefore it comes

∆ qn+1 =
1

∆ t
div un+

1
2 (1.58)

and
∂ qn+1

∂ n
= 0 on ∂ Ω.

The function qn+1 satisfies a Poisson problem with homogeneous Neumann boundary condition.

Remark 1.15. This method represents correctly the velocity field in many field problems of
physical interest [53].
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For n = 0, 1, · · · ,N − 1, the scheme can be rewritten in the equivalent form





1

∆ t
(un+

1
2 − un−

1
2 )− ν∆un+

1
2 + (un+

1
2 ·∇)un+

1
2 +

1

2
(div un+

1
2 )un+

1
2 +∇ qn = fn+

1
2

∗
in Ω

un+
1
2 = 0 on ∂ Ω

(1.59)





∆ qn+1 =
1

∆ t
div un+

1
2

∂ qn+1

∂ n
= 0 on ∂ Ω

(1.60)

providing the initializations u−
1
2 := u0 and q0 = 0 .

Remark 1.16. The velocity and the pressure of the scheme (1.59)-(1.60) is proven to be
convergent [113] at the first order with respect to ∆ t in the norms (L2(Ω))2 and of dual space
of H1(Ω)∩L2

0(Ω) respectively. Moreover, with respect to the norms of (H1(Ω))2 and L2(Ω), the

convergence is at the order of (∆ t)
1
2 .

Other fractional step methods for the Navier-Stokes equations are formulated in many
papers and books like [50, 115, 119].

1.8 Advancing time to be used

We will pay attention to the nonlinear convective term of the momentum equation of the
problem (1.9)-(1.11). In fact we will use the semi-Lagrangian method that computes the values
of the variables of interest at the foot of the trajectory.
Assume for instance that, we have the equation

D(F )

Dt
= Ψ (1.61)

where D
Dt(· ) represents the total derivative, then a semi-Lagrangian off-centered scheme is :

Fn+1 − Fntr = ∆t(αΨn+1 + (1− α)Ψntr) with 0 ≤ α ≤ 1 (1.62)

where the foot index tr shows that the relevant variable is calculated at the foot of the trajectory
by an interpolation process. The application of a similar approximation to the momentum
equation (1.9) - (1.10) gives, with α = 1

un+1 − un(Xtr) = ∆t{ν∆u−∇ p+ f}n+1 (1.63)

Therefore, by the following approach, the difficulties inherent to the non linearity are overcome
and the stability is granted under mild conditions since the method of characteristics is un-
conditionally stable. We will review the characteristics method latter in the thesis. Now the
algorithm is organized as follows:

• A provisional velocity ũ is computed by the momentum equation neglecting the divergence
free constraint and considering a guessed pressure pn and updated boundary conditions
BCn+1 :

ũ−∆t∆ũ = un(Xtr) + ∆t(−∇pn + fn+1)
⊕

BCn+1 (1.64)

• A Poisson equation for the pressure correction p̃ is written taking into account incom-
pressibility and applying the divergence operator to the provisional velocity ũ

−∆p̃ = − 1

∆t
∇· ũ (1.65)
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• The adjourned values of the velocity and pressure are obtained updating the provisional
values:

un+1 = ũ−∆t∇p̃ , pn+1 = pn + p̃ . (1.66)

Since the incompressibility has been imposed at the second step, the updated velocity field
un+1 is divergence free.
Therefore, the most expensive computational kernels are reduced to elliptic problems. Hence,
the necessity to develop a spatial approximation able to solve effectively elliptic problems and
this will be the aim of the next chapter. We conclude this chapter by reviewing classical spatial
discretizations that are the classical finite difference method and the finite volume method.

1.9 Spatial discretization

Previously, we recalled some approximations of the derivatives of a function by finite differ-
ence schemes (e.g. in the approximation of the temporal derivative) in the following, a brief
introduction of two classical numerical methods used in computational fluid dynamics will be
presented.

1.9.1 Classical finite difference (FD) method

A problem which arises often in numerical analysis is the approximation of the derivative of a
function f(x) on a given interval [a, b].
An approach to it consists of introducing in [a, b] n+ 1 nodes {xk, k = 0, · · · , n}, with x0 = a,
xn = b and xk+1 = xk + h, k = 0, · · · , n− 1 where h = (b− a)/n. Then f ′(xi) is approximated
using the nodal values f(xk) as

f ′(xi) ≃
m′∑

k=−m′

βkf(xi−k) (1.67)

where {βk} ∈ R are m + m′ + 1 coefficients to be determined.An issue of the choice of the
scheme (1.67) is the computational efficiency. In fact, if m 6= 0, determining the values {ui}
requires the solution of a linear system.
The set of nodes which are involved in constructing the derivative of f at a certain node, is
called the stencil. The band of the matrix associated with the system (1.67) will increase as
the stencil gets larger.
In order to generate a formula like (1.67), the basic idea consists of resorting to the definition
of the derivative. Therefore if f ′(x) exists, then

f ′(xi) = lim
h→0+

f(xi + h)− f(xi)

h
. (1.68)

By replacing the limit with the finite incremental ratio, we obtain the approximation

u
′FD
i =

f(xi+1)− f(xi)

h
, 0 ≤ i ≤ n− 1 . (1.69)

The relation (1.69) is a special case of (1.67) by setting m = 0, β−1 = 1, β0 = −1, β1 = 0.
The right side of the (1.69) is well known as the forward finite difference and the approximation
that is being used corresponds to replacing f ′(xi) with the slope of the straight line passing
through the point (xi, f(xi)) and (xi+1, f(xi+1)) as shown in Figure 1.2. To estimate the error
of the approximation, it is sufficient to expand the Taylor’s series obtaining

f(xi+1) = f(xi) + hf ′(xi) +
h2

2
f ′′(ξi) with ξi ∈ (xi, xi+1) .
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Figure 1.2: Finite difference approximation of f ′(xi): backward (solid line), forward (dashed
line) and centered (pointed line).

If we assume that f is regular, then

f ′(xi)− u
′FD
i = −h

2
f ′′(ξi) . (1.70)

Instead of (1.69), we can employ a centered incremental ratio, yielding the following approxi-
mation

u
′CD
i =

f(xi+1)− f(xi−1)

2h
, 1 ≤ i ≤ n− 1 . (1.71)

The scheme (1.71) is a special case of (1.67) by setting m′ = 1, β−1 = 1
2 , β0 = 0, β1 = −1

2 .
The right side of (1.71) is called the centered finite difference and geometrically amounts to
replacing f ′(xi) with the slope of the straight line passing through the points (xi−1, f(xi−1))
and (xi+1, f(xi+1)) see Figure 1.2. By using the Taylor expansion, we get

f ′(xi)− u
′CD
i = −h

2

6
f ′′′(ξi) . (1.72)

Hence the formula (1.71) provides a second -order approximation to f ′(x) with respect to h.
Using a similar procedure, we derive a backward finite difference scheme

u
′BD
i =

f(xi)− f(xi−1)

h
, 1 ≤ i ≤ n, (1.73)

which is affected by the following error

f ′(xi)− u
′BD
i =

h

2
f ′′(ξi) (1.74)

so that the parameters in (1.67) are m′ = 1, β−1 = 0, β0 = 1 and β1 = −1.
Higher order schemes as well as finite difference approximations of higher order derivatives of
f can be constructed using suitable Taylor’s expansions.
If f ∈ C4([a, b]), the approximation of f ′′ is given by

f ′′(xi) =
f(xi+1)− 2f(xi) + f(xi−1)

h2
− h2

24
(f (4)(xi + θih) + f (4)(xi + ωih)), 0 < θi, ωi < 1

(1.75)
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Therefore, the following centered finite difference scheme can be derived

u
′′

i =
f(xi+1)− 2f(xi) + f(xi−1)

h2
, 1 ≤ i ≤ n− 1 (1.76)

whose error is given by

f ′′(xi)− u′′i = −h
2

24
(f (4)(xi + θih) + f (4)(xi + ωih)) , (1.77)

thus the formula (1.76) provides a second-order approximation to f ′′(xi) with respect to h. In
reality, the existence of f (4) is necessary to have an estimation of the error and not to build
the finite difference formula for f ′′.

1.9.2 Finite volume (FV) method

The term finite volume method was invented by Jameson [65] for the discretization of the full
potential equation of compressible gas dynamics, ∇· (ρ∇φ) = 0 where ρ = ρ(|∇φ|) is given by
Bernouilli’s equation. However, the actual method was in use earlier [90] for this problem and
similar schemes were widely used much earlier for modeling neutron diffusion. The basic idea is
to exploit the divergence form of the equation by integrating it over a finite volume and using
Gauss’s theorem to convert the result into surface integral which is then discretized. In general
the finite volume can be distinguished by the following criteria:

1) the geometric shape of the finite volume,

2) the position of the unknowns (“problem variables”) with respect to the finite volume,

3) the approximation of the boundary (line in 2D) or surface (in 3D) integrals.

Especially, the second criterion divides the finite volume into two larges classes: the first class
is the cell-centered finite volume approach pioneered by Jameson and his co-workers [68]. Here
the mesh values of the unknowns are associated with the center of the cells so that to calculate
the fluxes integral on the edges involves values of the unknown function in points belonging
to the volumes closed to the referred volume. The second class is the cell-vertex finite volume
approach associated to the name of Ni [100], the unknowns are held at the vertices, thus the
trapezium rule is used along the edge to calculate the fluxes integral, see Figure 1.3. In order
to apply the finite volume technique a partition of the domain Ω is necessary. There are two
possibilities. The difference between them is whether the problem variables are assigned to
the finite volume or, fixed some points for the problem variables, associated control volumes
are then defined. Actually, there is another class which consists to associate average normal
and tangential fluxes with each edge, but extra consistency relations are needed to generate a
sufficient number of equations and this approach has not so far formed as practical solutions.

Assets of finite volume methods

• Flexibility with respect to the geometry of the domain Ω, eventually applying a numerical
transformation to the physical domain and to the analytical equations

• Admissibility of unstructured grids (important for adaptive methods)

• Easy assembling when constructing the algebraic system

• Respect of the conservation principle for what concerns some important physical variables
(like energy for instance). This is important in the numerical solution of differential prob-
lems with discontinuous coefficients or in the solution of convection-diffusion problems
dominated by the convective term
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Figure 1.3: The finite volume cell, with the cell-centered × and the cell-vertex • mesh points.

• Easy linearization of nonlinear problems (Newton’s method)

• Simple discretization of boundary conditions especially a “natural” treatment of Neu-
mann or mixed boundary conditions

• No restriction of the spatial dimension d of the domain Ω.

Drawbacks of the finite volume method

• Difficulties in the design of higher order methods

• Possible complex task in the construction of some classes or type of control volumes (in
particular for domains variating in time)

• Difficulties in the mathematical analysis (stability, convergence,· · · ).





Chapter 2

Solution of elliptic problems

2.1 The finite element (FE) method for the Poisson equation

In engineering and scientific computing, the finite element method, beginning in 1906, is one of
the most important and powerful computational tools for numerical solutions of partial differ-
ential equations. It not only provides a systematic procedure for computer implementations,
but also shows versatility for dealing with problems with complex geometrical shape, loads and
boundary conditions. Because of the outstanding features of the finite element method and
the advent of high-speed computers, the finite element method has become more and more
important for numerical solution of partial differential equations by which most engineering
and scientific problems are defined. The essential concept of the finite element method is
first to assume an approximation of the unknown function in an appropriate N−dimensional
space such as φ =

∑N
i=1 ΛiBi where Λi(i = 1, 2, · · · , N) are coefficients to be determined and

Bi(i = 1, 2, · · · , N) are the basis functions (or shape functions) and to use an approximation
method, such as the weighted residual method or the Galerkin method to determine the set
{Λi}N1 such that a residual with respect to the approximation can be reduced to an acceptable
tolerance. The common feature of the existing methods for determining {Λj}N1 leads to an
algebraic system which can be solved by a suitable solver (direct or iterative). In what follows,
we are going to review known results in finite elements.
Let Ω be a bounded domain in R

2 with a Lipschitz continuous boundary ∂Ω and the outward
normal n to the boundary. Without loss of generality, we consider the following homogeneous
Dirichlet problem for the Poisson equation:
Given f ∈ L2(Ω), find u ∈ H2(Ω) such that

−∆u = f in Ω (2.1)

u = 0 on ∂Ω (2.2)

In order to study the problem (2.1)-(2.2), we have to give its weak formulation, that is the
formulation in the sense of distributions. Let us consider an arbitrary test function v. We
multiply equation (2.1) by v, integrate the result over Ω, and obtain

(f, v) =

∫

Ω

fv

= −
∫

Ω

∇· (∇u)v =

∫

Ω

∇u·∇v −
∫

∂Ω

∇u·nv =

∫

Ω

∇u·∇v
(2.3)

where (· , · ) is the scalar product in L2(Ω). The equality sign at the second line of (2.3) is
obtained by integration by parts using the integral theorem of Gauss. The boundary integral
vanishes because v = 0 holds on ∂Ω. Therefore, the weak formulation consists in finding
u ∈ V = H1

0(Ω) such that
a(u, v) = (f, v) ∀v ∈ V (2.4)
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with a(u, v) =
∫
Ω ∇u·∇v.

Existence of the weak solution

The space H1
0(Ω) is a closed subspace of the Hilbert space H1(Ω), hence H1

0(Ω) is also a Hilbert
space.
The application v 7→ ‖∇v‖L2(Ω) is a norm in H1

0(Ω). In fact, ‖∇v‖ = 0 ⇒ ∇u = 0 that is v =
C, where C is constant but since v ∈ H1

0(Ω), it comes that C = 0 and thus v = 0. We have
also this Poincaré inequality:

there exists C > 0 such that ‖v‖L2(Ω) ≤ C‖∇v‖L2(Ω) ∀v ∈ L2(Ω) (2.5)

Proof. We give the proof of the Poincaré inequality (2.5). By contradiction, assume that there
exists a sequence (un) in H1

0(Ω) such that

1

n
‖un‖L2(Ω) ≥ ‖∇un‖L2(Ω) ∀ n ≥ 1 (2.6)

Taking vn = un

‖un‖L2(Ω)
, we have that vn ∈ H1

0(Ω) and ‖vn‖L2(Ω) = 1 and ‖vn‖H1(Ω) ≤ 1+ 1
n ≤ 2.

Hence, by Rellick-Kondrachov theorem and the fact that H1
0(Ω) is a closed subset of H1(Ω),

there exists a subsequence of vn, called again vn and a function v ∈ H1
0(Ω) such that vn → v in

L2(Ω) and ∇vn → 0 in D′

(Ω).
On the other hand, vn → v in L2(Ω) implies vn → v in D′

(Ω), which implies also ∇vn → ∇v in
D′

(Ω) since the derivative operator ∇ is continuous from D′

(Ω) to D′

(Ω). By uniqueness of the
limit, it follows that ∇v = 0, therefore v = C since Ω is connected. Therefore, since v ∈ H1

0(Ω)
lead to v = 0. Finally, we have 1 ≤ ‖vn‖H(Ω) → 0 as n → ∞ which is a contradiction. Hence
the result i.e ‖u‖H1

0(Ω) = ‖∇u‖L2(Ω).

Therefore, the bilinear form a(· , · ) is continuous in H1
0(Ω)×H1

0(Ω) with respect to the norm
‖· ‖H1

0(Ω) = ‖∇‖L2(Ω) . In fact

|a(u, v)| = |
∫

Ω

∇u·∇v| ≤ ‖∇u‖L2(Ω)· ‖∇u‖L2(Ω) ≤M‖u‖H1
0(Ω)‖v‖H1

0(Ω) ∀u, v ∈ H1
0(Ω)

i.e
M := constant : |a(u, v)| ≤M‖u‖H1

0(Ω)‖v‖H1
0(Ω) ∀u, v ∈ H1

0(Ω) (2.7)

The bilinear form a(· , · ) is coercive. In fact

a(u, u) =

∫

Ω

∇u·∇u ≥ ‖∇u‖2L2(Ω) ≥ α‖u‖2H1
0(Ω) ∀u ∈ H1

0(Ω)

i.e
a(u, u) ≥ α‖u‖2H1

0(Ω) (2.8)

The linear functional v 7→
∫
Ω fv is continuous since

|
∫

Ω

fv| ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ C‖f‖L2(Ω)‖v‖H1
0(Ω) ≤ C ′‖v‖H1

0(Ω)

i.e

|
∫

Ω

fv| ≤ C ′‖v‖H1
0(Ω)

We conclude by Lax-Milgram lemma that there exists a solution to the variational problem
(2.4).
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Uniqueness of the weak solution

Lemma 2.1. The weak solution to the weak problem (2.4) is unique.

Proof. Let u1, u2 be two weak solutions, i.e

a(u1, v) =

∫

Ω

fv, ∀ v ∈ V

a(u2, v) =

∫

Ω

fv, ∀ v ∈ V

by subtraction, it follows that

a(u1 − u2, v) = 0 for all v ∈ V

choosing v = u1 − u2 implies a(u1 − u2, u1 − u2) = 0 and consequently u1 = u2 because a(. , . )
is positive definite .

2.1.1 The discrete problem

Let Ih a partition of Ω into closed triangles K (that is including the boundary ∂K) with the
following properties:

• Ω̄ = ∪K∈IhK

• For K,K ′ ∈ Ih,K 6= K ′

int(K) ∩ int(K ′) = ∅
where int(K) denotes the open triangle (without the boundary ∂K)

• If K 6= K ′ but K ∩K ′ 6= ∅, then K ∩K ′ is either a point or an edge common to K and
K ′.

We define the finite element space:

Vh := {v ∈ V : v|K ∈ Pk(K) ∀K ∈ Ih} ⊂ V = H1
0(Ω) (2.9)

where Pk are polynomials of degree ≤ k.
The discrete problem consists in:

finding uh ∈ Vh :

∫

Ω

∇uh·∇v =

∫

Ω

fv ∀vh ∈ Vh

or in a more general setting

find uh ∈ Vh : a(uh, v) = (f, v) ∀v ∈ Vh . (2.10)

Convergence property

The study of the convergence requires to consider the variational formulation (2.4) and the
discrete problem (2.10). Let a(., .) be the bilinear form. It is symmetric and, if we denotes
e := u− uh the error, then the important relation

a(e, v) = 0 for all v ∈ Vh (2.11)

is satisfied. To obtain this relation it is sufficient to consider (2.4) for v ∈ Vh ⊂ V and then to
subtract the result from the discrete problem (2.10).
Since a(., .) is symmetric and positive definite, i.e a(u, v) = a(v, u), a(u, u) ≥ 0, a(u, u) = 0 ⇐⇒
u = 0 then the error is orthogonal to the space Vh with respect to the scalar product a.
The relation (2.11) is often called the orthogonality of the error, in fact the element uh ∈ Vh
with minimal distance to u ∈ V with respect to the induced norm ‖· ‖a is characterized by
(2.11) .
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Lemma 2.2. The discrete solution uh according to (2.10) is stable in the following sense:

‖uh‖ ≤ 1

α
‖f‖ independently of h, where ‖f‖ := sup{ (f, v)

‖v‖ | v ∈ V, v 6= 0 } . (2.12)

Proof. If uh = 0, there is nothing to prove. If uh 6= 0, from a(uh, v) = (f, v) for all v ∈ Vh, it
follows that

α‖uh‖2 ≤ a(uh, uh) = (f, uh) ≤
|(f, uh)|
‖uh‖

‖uh‖ ≤ ‖f‖‖uh‖

Then, dividing this relation by α‖uh‖, we get the desired result. We note also that the approx-
imation property (2.12) holds up to a constant .

We give also Céa’s lemma.

Lemma 2.3. Assume (2.7)-(2.8), then the following error estimate for the discrete problem
holds:

‖u− uh‖ ≤ M

α
min{ ‖u− v‖ | v ∈ Vh } .

Proof. If ‖u− uh‖ = 0, then the assertion is true. Otherwise, let v ∈ Vh be arbitrary, by using
error equation (2.11) and uh − v ∈ Vh, a(u− uh, uh − v) = 0.
Therefore, using (2.8) we have

α‖u− uh‖2 ≤ a(u− uh, u− uh) = a(u− uh, u− uh) + a(u− uh, uh − v)

= a(u− uh, u− v)

Furthermore, by means of (2.7), we obtain

α‖u− uh‖2 ≤ a(u− uh, u− v) ≤M‖u− uh‖‖u− v‖ for arbitrary v ∈ Vh

Thus, by dividing by α‖u−uh‖ we obtain the result. In general, in order to get an asymptotic
error estimate in h, it is sufficient to estimate the best approximation error of Vh that is
min{ ‖u− v‖ | v ∈ Vh} .

Remark 2.4. By means of the Céa’s lemma, it is possible to define the strong consistency
property of the finite element schemes. In particular we can affirm that the methods with this
property guarantee the optimal approximation (having fixed the partition Ih and the polynomial
degree k) .

We give the following approximation property.

Property 2.5. Let u ∈ H1
0(Ω) be the exact solution of the weak formulation (2.4) and uh ∈

Vh its finite element approximation using continuous piecewise polynomials of degree k ≥ 1.
Assume also that u ∈ Hs(Ω) for some s ≥ 2. Then the following error estimate holds

‖u− uh‖H1(Ω) ≤
M

α
Chl|u|Hl+1(Ω) (2.13)

where l = min(k, s − 1). Under the same assumptions, we have also

‖u− uh‖L2(Ω) ≤ Chl+1|u|Hl+1(Ω) . (2.14)

The proof of these approximations is referred to [110]. The estimate (2.13) shows that
the method is convergent i.e., approximation error tends to zero as h → 0 and the order of
convergence is l in H1(Ω) norm and l + 1 in L2(Ω) norm respectively. We also see that there
is no convenience in increasing the degree k of the finite element approximation if the solution
u is not sufficiently smooth. In this case l is called a regularity threshold. An alternative to
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gain accuracy in any case is to reduced the step size h. When the exact solution u has the
minimum regularity (s = 1), the Cèa’s lemma ensures that the finite element method is still
convergent since as h → 0 the subspace Vh is dense into V. However the estimate (2.13) is
no longer valid so that it is not possible to establish the order of convergence of the numerical
method H1(Ω) norm. We summarize in the table 2.1 the orders of convergence of the finite
element for k = 1, · · · , 4 and s = 1, · · · , 5.

k s = 1 s = 2 s = 3 s = 4 s = 5

1 only convergence h1 h1 h1 h1

2 only convergence h1 h2 h2 h2

3 only convergence h1 h2 h3 h3

4 only convergence h1 h2 h3 h4

Table 2.1: Order of convergence with respect to ‖· ‖H1(Ω) of the FE method as a function of k
(degree of polynomials) and s (the Sobolev regularity of the solution u).

2.1.2 Interpolation operator and error

In order to define the interpolation operator, it is primordial to identify the degrees of freedom
and the shape functions. In fact it is an operator defined on the space of continuous functions
and valued in the finite elements spaces. We consider the finite element space Xk

h which is the
space of continuous functions defined in Ω such that the restriction in each element K of the
triangulations Ih are polynomials of degree ≤ k. For the space Xk

h and for each v ∈ C0(Ω) we
can set

Ikh(v) :=

Nh∑

i=1

v(ai)ϕi (2.15)

where ai are the nodes on Ω, ϕi are the corresponding shape functions. The interpolant Ikh(v)
is the unique function in Xk

h which takes the same values of the given function v at all the
nodes ai.
We have the following interpolation error from [113]:

Theorem 2.6. Let Ih be a family of triangulations and assume that
m = 0 or 1, l = min(k, s− 1) ≥ 1. Then there exists a constant C, independent of h, such that

|v − Ikh(v)|m,Ω ≤ C hl+1−m|v|l+1,Ω ∀ v ∈ Hs(Ω) . (2.16)

The proof of this result can be found in [113].
In the next section 2.1.3, we assume Ω = [a, b] and in this case Xkh is the space of continuous
function over [a, b] whose restriction on each subdivisions Ij are polynomials of degree ≤ k.

2.1.3 Generation of the shape functions in the 1D case

We now focus to an important issue that consists to generate suitable basis functions ϕj for
the finite element space Xkh in the special cases k = 1 and k = 2. The point consists to
choose appropriately a set of degrees of freedom for each element Ij of the partition Ih i.e, the
parameters which permit uniquely identifying a function Xkh. Therefore, the generic function
uh can be written as

uh(x) =
n∑

i=0

uiϕi(x)

where {ui} denotes the set of the degrees of freedom of uh and the basis functions ϕi (also
called shape functions) are assumed to satisfy the Lagrange interpolation property
ϕi(xj) = δi,j for i, j = 0, · · · , n where δi,j is the Kronecker symbol.
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Figure 2.1: Basis functions of X1
h associated with internal and boundary nodes.

Shape functions of the space X1
h

The space Xkh consists of continuous and piecewise linear functions over the partition Ih. Since
a unique straight line passes through two distinct nodes, the number of degrees of freedom
for uh is equal to the number n + 1 of nodes in the partition. Thus, n + 1 shape functions
ϕi, i = 0, · · · , n are needed to completely span the space X1

h. The most natural choice for
ϕi, i = 1, · · · , n − 1 is

ϕi(x) =





x−xi−1

xi−xi−1
, for xi−1 ≤ x ≤ xi

xi+1−x
xi+1−xi

, for xi ≤ x ≤ xi+1

0 elsewhere.

(2.17)

Thus the basis function ϕi is piecewise linear over Ih, its value is 1 at the node xi and 0 at all
the other nodes of the partition. Its support (i.e, the subset of [a, b] where ϕi is not vanishing)
consists of the union of the intervals Ii and Ii+1 if 1 ≤ i ≤ n − 1, while it coincides with the
intervals I1 (respectively In) if i = 0 (resp i = n). The Figure 2.1 shows the plots of ϕi, ϕ0

and ϕn. For any interval Ii = [xi−1, xi], i = 1, · · · , n, the two basis functions ϕi and ϕi−1

can be regarded as the images of two “reference” shape functions ϕ̂0 and ϕ̂1 (defined over the
reference interval [0, 1]) through the linear affine mapping φ : [0, 1] → Ii.

x = φ(ξ) = xi−1 + ξ(xi − xi−1), i = 1, · · · , n (2.18)

Defining ϕ̂0(ξ) = 1 − ξ, ϕ̂1(ξ) = ξ, the two shape functions ϕi and ϕi+1 can be constructed
over the interval Ii as (see Figure 2.2)

ϕi−1(x) = ϕ̂0(ξ(x)), ϕi(x) = ϕ̂1(ξ(x))

where ξ(x) =
x−xi−1

xi−xi−1

Remark 2.7. • The elements Ii, i = 1, · · · , n do not need to have constant length h (this
is different in respect to what happens for the classical FD method)

• The basis function ϕ0(x) and ϕn(x) have analytical expressions like (2.17)1 and (2.17)2
respectively .
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Figure 2.2: Linear affine mapping ϕ from the reference interval [0, 1] to the generic interval Ii
of the partition .

Shape functions of the space X2
h

The generic function uh ∈ X2
h is a piecewise polynomial of degree two over each interval Ii. It

can be uniquely determined when three of its values at three distinct points of Ii are assigned
and traditionally the third node is the middle point of the element Ii. In order to ensure
continuity of uh over [a, b] the degrees of freedom are thus equal to 2n + 1. In this case, it is
convenient to label the degrees of freedom and the corresponding nodes in the partition starting
from x0 = 0 until x2n = 1 in such a way that the midpoints of each interval correspond to the
nodes with odd index while the endpoints of each interval correspond to the nodes with even
index.
The explicit expression of the single shape function is

(i even) ϕi(x) =





(x−xi−1)(x−xi−2)
(xi−xi−1)(xi−xi−2)

for xi−2 ≤ x ≤ xi,

(xi+1−x)(xi+2−x)
(xi+1−xi)(xi+2−xi)

for xi ≤ x ≤ xi+2,

0 elsewhere

(2.19)

(i odd) ϕi(x) =





(xi+1−x)(x−xi−1)
(xi+1−xi)(xi−xi−1)

for xi−1 ≤ x ≤ xi+1,

0 elsewhere

(2.20)

Each basis function enjoys the property that ϕi(xj) = δi,j, i, j = 0, · · · , 2n.
The shape functions for X2

h on the reference interval [0, 1] are

ϕ̂0(ξ) = (1− ξ)(1− 2ξ), ϕ̂1(ξ) = 4(1− ξ)ξ, ϕ̂2(ξ) = ξ(2ξ − 1) (2.21)

and they are shown in Figure 2.3.
As in the case of piecewise linear finite elements of X1

h, the shape functions (2.19) and (2.20)
are the images of (2.21) through the affine mapping (2.18).
We notice that the support of the basis function ϕ2i+1 associated with the midpoint x2i+1

coincides with the interval to which the midpoint belongs. Due to its shape, ϕ2i+1 is usually
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Figure 2.3: Shape functions of X2
h on the reference interval .

referred to as bubble function. A procedure analogous to that examined in this section can be
used in principle to construct a basis for every subspace Xkh with k being arbitrary. However,
it is important to remember that an increase in the degree k of the polynomial gives rise to an
increase of the number of the degrees of freedom and, consequently, of the computational cost
required for the solution of the final linear system.

2.1.4 Generation of the shape functions in 2D case

Of course, the representation of the shape functions in the 2D case is not as easy as in the 1D
case, thus we choose a graphic representation of the space X1

h and a more accurate definition
of the X2

h space (in fact this space will be used later for carrying out numerical experiences).
The extension in 2D of the representation of a shape function of X1

h can be seen properly in

Figure 2.4: Shape function of X1
h and its support .

the Figure 2.4.

Shape functions of the space X2
h

Suppose we have six nodes Pi of coordinates (xi, yi), i = 1, · · · , 6 on the boundary of each
triangle K, eventually also with curved edges, belonging to the partition of the domain Ω in
the physical space (x, y) and that with each node Pi is associated a basis function ϕi(x, y),
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Figure 2.5: Element K of the physical space transformed in reference element K̂ of the trans-
formed space .

polynomial of second degree. Moreover we suppose to define a correspondence, given by

x =

6∑

i=1

ϕixi

y =
6∑

i=1

ϕiyi

between K and K̂, the reference element belonging to the transformed space (ξ, η) (see Figure
2.5). Then we can define the six basis functions with respect to each node in the reference
space and they are:

ϕ1(ξ, η) = 2 ξ2 − ξ

ϕ2(ξ, η) = 2 η2 − η

ϕ3(ξ, η) = 2 z2 − z

ϕ4(ξ, η) = 4 ξ η

ϕ5(ξ, η) = 4 η z

ϕ6(ξ, η) = 4 ξ z

with the relations
6∑

i=1

ϕi = 1

z = 1− ξ − η .

In order to build some terms necessary to the numerical integration process, we compute the
constants

a1 = 4(x1 + x3 − 2x6), a2 = 4(x3 + x4 − x5 − x6), a3 = −x1 − 3x3 + 4x6

b1 = 4(y1 + y3 − 2 y6), b2 = 4(y3 + y4 − y5 − y6), b3 = −y1 − 3 y3 + 4 y6

c1 = 4(x3 + x4 − x5 − x6), c2 = 4(x2 + x3 − 2x5), c3 = −x2 − 3x3 + 4x5

d1 = 4(y3 + y4 − y5 − y6), d2 = 4(y2 + y3 − 2 y5), d3 = −y2 − 3 y3 + 4 y5 ,

then the Jacobian of the isoparametric transformation is :

J =

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
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where
∂x

∂ξ
= a1 ξ + a2 η + a3

∂y

∂ξ
= b1 ξ + b2 η + b3

∂x

∂η
= c1 ξ + c2 η + c3

∂y

∂η
= d1 ξ + d2 η + d3 .

An exhaustive analysis of the finite element methods is referred to books such as [28, 71, 110,
137].

2.2 Discontinuous Galerkin (DG) finite elements methods

Reed and Hill [116] in 1973 introduced the first discontinuous Galerkin method for hyperbolic
equations. It was used for second order elliptic problems by Douglas-Dupont [36] and fourth
order problems by Baker [10]. Later on, the method has been abandoned because of the
large matrix of its algebraic system, but has got a great revival some ten years ago mainly by
Cockburn-Shu [31, 32, 33, 34] and also for an application to problems where the elliptic part is
not dominant such as strongly advection-dominated equations and very thin Reissner-Mindlin
plates [7]. Our interest in this section is the application of the DG method for problems where
the elliptic part is important. We suggest [3] for an unified and complete presentation of the
DG method for elliptic problems.
Among the most important aims that motivated the used of DG to partial differential equations,
we could quote:

• Local conservation properties

• Mesh adaptation on irregular grids

• hp-Adaptivity with locally varying polynomial degrees

• Multi-domain approaches

• High-order extension of the finite volume methods

• Ease of implementing h-refinement with hanging nodes

• Ease of implementing p-refinement with locally varying p

For elliptic problems, the DG methods were formulated by using penalty methods.

2.2.1 Enforcing Dirichlet boundary condition through penalties

In 1968, Lions [82] used the penalty formulation for enforcing the Dirichlet boundary conditions;
for instance, by considering −∆ω = f in Ω and ω = g on ∂Ω where f is taken in L2(Ω) and

g ∈ H− 1
2 (∂Ω). He regularized the above problem by replacing the Dirichlet boundary condition

by the approximate boundary condition ω+ µ−1∂ω

∂n
= g where µ≫ 1 is a penalty parameter.

He also proved that for each µ > 0, there is a unique solution u of the problem so that when
µ goes to infinity, this solution converges to the solution ω of the original problem. The weak
regularized form of the above problem is to find ω ∈ H1(Ω) such that

∫

Ω

∇ω·∇vdx+

∫

∂Ω

µ(ω − g)ds =

∫

Ω

fvdx ∀v ∈ H1(Ω) .
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Aubin [6] for the problem above, in the finite difference framework, proved convergence to the
exact solution provided the penalty parameter µ goes to infinity as the discretization parameter
h goes to zero, that is when µ is of the order of h−1+ǫ for arbitrary small ǫ > 0.
In the finite element context, Babuška [9], for the same problem, with homogeneous boundary

conditions (g = 0), obtained a convergence rate of order h
2k+1

3 in the energy norm, when the

penalty parameter µ is taken to be of the order of h−
(2k+1)

3 , where k represents the degree of
the polynomials considered. The lack of optimality in the order of convergence is due to the
lack of consistency of the weak regularized formulation. In fact, the exact solution ω does not
satisfy the weak regularized formulation, it rather satisfies

∫

Ω

∇ω·∇vdx−
∫

∂Ω

∂ω

∂n
vds +

∫

∂Ω

µ(ω − g)vds =

∫

Ω

fvdx ∀ v ∈ H1(Ω) .

Nitsche’s formulation

The penalty parameter has been included also in the Nitsche’s formulation [99] but without
introducing any consistency error. His formulation is:

∫

Ω

∇ω·∇vdx−
∫

∂Ω

∂ω

∂n
vds−

∫

∂Ω

ω
∂v

∂n
ds+

∫

∂Ω

µ(ω − g)vds =

∫

Ω

fvdx−
∫

∂Ω

g
∂v

∂n
ds ∀v ∈ H1(Ω)

for any weighting value µ. He proved that when µ is taken as αh−1 where h is the element size
and α is a sufficiently large constant, the discrete solution converges to the exact solution with
optimal order in H1 ( i.e O(hk)) and L2 (i.e O(hk+1) where k is the degree of the polynomial
used. Let’s give the primal and the flux formulation of the DG methods.

2.2.2 The flux and the primal formulation

We consider the model problem
−∆u = f in Ω

u = 0 on ∂Ω
(2.22)

where Ω is assumed to be convex polygonal domain and f is given in L2(Ω).
In order to obtain the DG methods, we first rewrite the problems as a first order system

σ = −∇u
∇·σ = f in Ω

u = 0 on ∂Ω

Multiplying these equations by test function τ and v respectively and integrating by parts on
a subset K of Ω, the weak formulation is given:

∫

K

σ· τ dx =

∫

K

u∇· τ dx−
∫

∂K

uτ ·nK ds

−
∫

K

σ·∇v dx =

∫

K

fv dx−
∫

∂K

σ·nKv ds
(2.23)

where nK is the unit outward normal to ∂K.
Let us assume that a triangulation Ih = {K} of Ω. We define
Vh := {v ∈ L2(K) : v|K ∈ P(K) ∀ K ∈ Ih}
Σh := {τ ∈ [L2(K)]2 : τ |K ∈ Σ(K) ∀ K ∈ Ih}
where P(K) = Pk(K) is the space of polynomial functions of degree ≤ k on K and Σ(K) =
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Figure 2.6: Adjacent elements K−, K+ and interior edge e.

Figure 2.7: trace of v on ∂K.

[Pk(K)]2.
The discrete formulation becomes : find uh ∈ Vh and σh ∈ Σh such that for all K ∈ Ih we have

∫

K

σh· τ dx =

∫

K

uh∇· τ dx−
∫

∂K

ûK τ ·nK ds ∀ τ ∈ Σh(K) (2.24)

−
∫

K

σh·∇v dx =

∫

K

fv dx−
∫

∂K

σ̂K ·nKv ds ∀ v ∈ Vh(K) (2.25)

where the numerical fluxes σ̂K and ûK are approximations of σ = −∇u and of u respectively
on the boundary K. Equations (2.24)-(2.25) is the flux formulation that must be completed by
expressing the numerical fluxes σ̂K and ûK in terms of σh, uh and of the boundary conditions.
In order to obtain the primal formulation, we need to introduce some notations. Let e be an
interior edge that is shared by elements K+ and K−. We define the unit normal vectors n+

and n− on e pointing exterior to K+ and K− respectively, see Figure 2.6. On Figure 2.7, v+

is the interior trace of v on ∂K taken from within K and v− is the exterior trace of v on ∂K
taken from outside K. We have the following operator:
jumps operator [q] := q+n+ + q−n− for scalar function q and [ϕ] := ϕ+n+ + ϕ−n− for vector
function ϕ e ∈ ξ0h, where ξ

0
h is the set of interior edges e.

Average operator:{q} = 1
2(q

+ + q−), for scalar function q and {ϕ} = 1
2(ϕ

+ + ϕ−) for vector
function ϕ on e ∈ ξ0h.

Remark 2.8. The jump [q] of the scalar function q is a vector parallel to the normal and the
jump [ϕ] of the function ϕ is a scalar quantity.

Remark 2.9. The functional spaces Vh(K) and Σh(K) have to respect a compatibility condition
similar to that seen for Stokes problem.
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Writing the flux formulation (2.24)-(2.25) over all the elements, we obtain
∫

Ω

σh· τ dx =

∫

Ω

uh∇h· τ dx−
∑

K∈Ih

∫

∂K

ûK τ ·nK ds ∀ τ ∈ Σh (2.26)

−
∫

Ω

σh·∇hv dx =

∫

Ω

fv dx−
∑

K∈Ih

∫

∂K

σ̂K ·nKv ds ∀ v ∈ Vh (2.27)

where ∇hv and ∇h· τ are functions whose restriction to each element K ∈ Ih are equal to ∇v
and ∇· τ respectively and û = û(uh), σ̂ = σ̂(uh, σh) are numerical fluxes chosen in a suitable
way (see later).
The following crucial formula, relating the functions q and ϕ with the jump functions [q] and
[ϕ] and the average functions {q} and {ϕ}, is valid:

∑

K∈Ih

∫

∂K

q ϕnK ds =

∫

Γ

[q]{ϕ} ds+
∫

Γ0

{q} [ϕ] ds (2.28)

where Γ is the union of all the edges of K and Γ0 the union of edges of K internal to Ω.
We give the proof of the crucial formula (2.28) for q = v and ϕ = τ .

Proof. Let ξh the set of all edge e of K. We have

∑

K∈Ih

∫

∂K

vτ ·nK
︸ ︷︷ ︸

I

ds =
∑

e∈ξh

∫

e

[v]{τ} ds+
∑

e∈ξ0
h

∫

e

{v}[τ ]

︸ ︷︷ ︸
II

ds

but

II =
∑

e∈ξ0
h

∫

e

([v]· {τ}+ {v}· [τ ])

︸ ︷︷ ︸
III

ds+
∑

e∈∂Ω

∫

e

vτ ·n ds

on internal edges e ∈ ξ0h; since n
+ = −n− moreover we have

∫

e

([v]· {τ}+ {v}· [τ ]) ds = 1

2

∫

e

(v+ − v−)(τ+ + τ−)·n+ + (v+ + v−)(τ+ − τ−)·n+ ds

=
1

2

∫

e

(2v+τ+·n+ − 2v−τ−·n+) ds

=

∫

e

(v+τ+·n+ + v−τ−n−) ds

Summing with respect to all the edges e ∈ ξ0h, we obtain the desired result.

Applying the identity (2.28) to (2.26) and (2.27) , it comes
∫

Ω

σh· τ dx =

∫

Ω

uh∇h· τ dx−
∫

Γ

[û]· {τ} ds−
∫

Γ0

{û}[τ ] ds ∀ τ ∈ Σh (2.29)

−
∫

Ω

σh·∇hv dx+

∫

Γ

{σ̂}· [v] ds+
∫

Γ0

[σ̂]{v} ds =
∫

Ω

fv dx ∀ v ∈ Vh (2.30)

Using the classical Green formula
∫

Ω

uh∇h· τ dx = −
∫

Ω

∇huh· τ dx+
∑

K

∫

∂K

uhτ ·n ds
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Note: From here on, we will indicate by
∑

e both the expressions
∑

e∈ξh
and

∑
e∈ξ0

h
assigning

to the reader the work to suitably fix the right choice.
The discrete problem (2.29)- (2.30) can be rewritten as: find uh ∈ Vh, σh ∈ Σh such that
∀ τ ∈ Σh, ∀ v ∈ Vh∫

Ω

σh· τ dx =

∫

Ω

∇huh· τ dx−
∑

e

∫

e

[û− uh]· {τ} ds −
∑

e

∫

e

{û− uh}[τ ] ds (2.31)

−
∫

Ω

σh·∇hv dx =

∫

Ω

fv dx−
∑

e

∫

e

[v]· {σ̂} ds −
∑

e

∫

e

{v̂}[σ̂] ds (2.32)

providing the assumption that ∇(Vh) ⊂ Σh.
Taking τ = −∇hv in (2.31) and summing the equations (2.31) and (2.32), we obtain

∫

Ω

∇huh·∇hv dx+
∑

e

∫

e

[û− uh]· {∇hv} ds+
∑

e

∫

e

{û− uh}[∇hv] ds =

∫

Ω

fv dx−

∑

e

∫

e

[v]· {σ̂} ds−
∑

e

∫

e

{v̂}[σ̂] ds
(2.33)

An important issue consists to make a choice of the numerical fluxes. If we express the numerical
fluxes û and σ̂, more precisely, taking û = û(uh) and σ̂ = σ̂(uh,∇huh), we obtain

Bh(uh, vh) =

∫

Ω

fv dx ∀ v ∈ Vh (2.34)

with

Bh(uh, vh) :=

∫

Ω

∇huh·∇hv dx+
∑

e

∫

e

([û− uh]· {∇hv}+ {σ̂}· [v]) ds+

∑

e

∫

e

({û− uh}[∇hv] + [σ̂]{v}) ds.
(2.35)

(2.34) is called the primal formulation of the method and the bilinear form Bh(· , · ) the primal
form.

2.2.3 Choices of numerical fluxes

Some choices of the fluxes take the form û = û(uh) and σ̂ = σ̂(uh, σh), but they require some
considerations.

The non-stabilized interior penalty method

In this case, taking û = {uh} on e ∈ ξ0h, and û = 0 on e ⊂ ∂Ω, we have [û− uh] = −[uh], and
{û− uh} = 0.
On the other hand, by taking on every edge σ̂ = −{∇huh}, we have [σ̂] = 0, and {σ̂} =
−{∇huh}.
Therefore, inserting these into (2.35) it comes

∫

Ω

∇huh·∇hv dx−
∑

e

∫

e

[uh]· {∇hv} ds−
∑

e

∫

e

[v]· {∇huh} ds =
∫

Ω

fv dx (2.36)

which is the non stabilized version of the interior penalty method see [5, 36, 135]. The discrete
problem is given as

find uh ∈ Vh : Bh(uh, v) =

∫

Ω

fv dx ∀ v ∈ Vh
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where the bilinear form Bh(·, ·) is the left hand side of (2.36).

Remark 2.10. This formulation is symmetric and the final algebraic system obtained is also
symmetric.

The stabilized interior penalty method

If we take the numerical flux û as û = {uh} on e ∈ ξ0h and û = 0 on e ∈ ∂Ω, the jump operator
[û−uh] = −[uh] and its average operator {û−uh} = 0; moreover, if we take the numerical flux
σ̂ as σ̂ = −{σhuh}+ c|e|−1[uh] on every edge, then the jump operator [σ̂] = 0 and its average
operator {σ̂} = −{∇huh}+ c|e|−1[uh] . Inserting this choice of the numerical fluxes into (2.35),
it comes
∫

Ω

∇huh·∇hv dx−
∑

e

∫

e

[v]· {∇huh} ds−
∑

e

∫

e

[uh]· {∇hv} ds+c
∑

e

|e|−1

∫

e

[uh]· [v] ds =
∫

Ω

fv dx

(2.37)
which is the the stabilized interior penalty method see [5, 36, 135].

Remark 2.11. • The last term of left hand side of (2.37) is the penalty term where c is a
constant “big enough”

• This formulation is symmetric and the final algebraic matrix obtained is also symmetric.

The discrete problem is given

find uh ∈ Vh : Bh(uh, v) =

∫

Ω

fv dx ∀ v ∈ Vh

where the bilinear form Bh(· , · ) is the left hand side of (2.37).

The Baumann-Oden method

Another choice of the fluxes are the following: take on the boundary of each element
û = {uh} + nK [uh] on e ∈ ξ0h, û = 0 on e ⊂ ∂Ω. Then from this choice of the numerical flux
we have [û − uh] = 2[uh] − [uh] = [uh] and {û − uh} = 0; on the same time, taking on every
edge σ̂ = −{∇huh} for this choice of σ̂, we have [σ̂] = 0 and {σ̂} = −{∇huh}. Therefore, the
relations (2.34) and (2.35) become

∫

Ω

∇huh·∇hv dx−
∑

e

∫

e

[v]· {∇huh} ds+
∑

e

∫

e

[uh]· {∇hv} ds =
∫

Ω

fv dx (2.38)

that is the Baumann-Oden method [18].
The discrete form can be written:

find uh ∈ Vh : Bh(uh, v) =

∫

Ω

fv dx ∀ v ∈ Vh

where the bilinear form Bh(· , · ) is the left hand side of (2.38).

Remark 2.12. This scheme is not symmetric and so give a stiffness matrix non symmetric.

Remark 2.13. If conforming finite elements are used, then there are some terms of (2.38)
which automatically annihilate; due to the simple formulation of (2.38), we decided to use it to
define a finite element approach with conservation of numerical fluxes.
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The stabilized Baumann-Oden method

By taking on the boundary of each element K the numerical flux û = {uh}+nK [uh] on e ∈ ξ0h,
û = 0 on e ∈ ∂Ω then [û − uh] = 2[uh] − [uh], and {û − uh} = 0; if we take the numerical
flux σ̂ = −{∇huh}+ c|e|−1[uh], then [σ̂] = 0 and {σ̂} = −{∇huh}+ c|e|−1[uh]. Inserting these
fluxes into (2.35), we obtain

∫

Ω

∇huh·∇hv dx−
∑

e

∫

e

[v]· {∇huh} ds+
∑

e

∫

e

[uh]· {∇hv} ds+
∑

e

c|e|−1

∫

e

[uh]· [v] ds =
∫

Ω

fv dx

(2.39)
which is the stabilized version of the Baumann-Oden method, see Rivière-Wheeler-Girault
[117].
The discrete problem is given:

finduh ∈ Vh : Bh(uh, v) =

∫

Ω

fv dx ∀ v ∈ Vh

where the bilinear form Bh(· , · ) is the left hand side of (2.39).

Remark 2.14. The last term in the bilinear form of (2.39) is the penalty term that stabilizes
the formulation with the penalty constant c “big enough”.

The incomplete interior penalty Galerkin (IIPG) method

If we take on the boundary of each element K then numerical flux û = {uh} + 1
2nK [uh] on

e ∈ ξ0h and û = 0 on e ⊂ ∂Ω, then the jump [û − uh] = [uh] − [uh] = 0 and the average
{û − uh} = 0; meantime, taking on every edge the numerical flux σ̂ = −{∇huh} + c|e|−1[uh],
then the jump operator [σ̂] = 0 and the average operator {σ̂} = −{∇huh} + c|e|−1[uh]. Thus
the relation (2.35) take the form

∫

Ω

∇huh·∇hv dx−
∑

e

∫

e

[v]· {∇huh} ds+
∑

e

c|e|−1

∫

e

[uh]· [v] ds =
∫

Ω

fv dx (2.40)

which is the incomplete interior penalty Galerkin method of Sun-Wheeler [129].
The discrete form consists to:

find uh ∈ Vh : Bh(uh, v) =

∫

Ω

fv dx ∀ v ∈ Vh

where the bilinear form Bh(· , · ) is the left hand side of (2.40).

The method of Heinrich

If we set {v}β = βv++(1−β)v− where v+ and v− correspond to a given choice of an orientation
on e, and choosing the numerical flux û = {uh}(1−β) on e ∈ ξ0h, and û = 0 on e ∈ ∂Ω, then
the jump operator [û − uh] = −[uh] and its average operator {û − uh} = {uh}(1−β) − {uh};
moreover, if we take the numerical flux σ̂ = −{∇huh}β + c|e|−1[uh] on every edge, then the
jump operator [σ̂] = 0 and its average operator {σ̂} = −{∇huh} + c|e|−1[uh]. Inserting these
numerical fluxes into the relation (2.35), it comes

∫

Ω

∇huh·∇hv dx−
∑

e

∫

e

[v]· {∇huh} ds−
∑

e

∫

e

[uh]· {∇hv} ds+c
∑

e

|e|−1

∫

e

[uh]· [v] ds =
∫

Ω

fv dx

(2.41)
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which is the Heinrich method [63]. The discrete form is written:

finduh ∈ Vh : Bh(uh, v) =

∫

Ω

fv dx ∀ v ∈ Vh

where the bilinear form Bh(· , · ) is the left hand side of the (2.41).

Remark 2.15. The last term in the bilinear form of (2.41) is the stabilizing term where c is
a penalty constant “big enough” .

2.2.4 Other choices of the numerical fluxes

There are some formulations of σ̂ that depends only on σh. When one of these choices is made,
we have to obtain σh from the equation

∫

Ω

σh· τ dx = −
∫

Ω

∇huh· τ dx−
∑

e

∫

e

[û− uh]· {τ} ds−
∑

e

∫

e

{û− uh}[τ ] ds (2.42)

and substitute it into

−
∫

Ω

σh·∇hv dx =

∫

Ω

fv dx−
∑

e

∫

e

[v]· {σ̂} ds−
∑

e

∫

e

{v̂}[σ̂] ds (2.43)

But some definitions are needed in order to proceed.

Definition 2.16. We define the lifting R, l such that ∀ v ∈ Vh, R([v]) ∈ Σh , l({v}) ∈ Σh.
Then we have ∫

Ω

R([v])· τ dx = −
∑

e

∫

e

[v]· {τ} ds ∀ τ ∈ Σh

∫

Ω

l({v})· τ dx = −
∑

e

∫

e

{v}· [τ ] ds ∀ τ ∈ Σh

By means of this definition we can write σh = −∇huh+R([û]−uh)+l({û−uh}). Substituting
this expression of σh into the equation (2.43), we obtain the discrete formulation:

find uh ∈ Vh : Bh(uh, v) =

∫

Ω

fv dx ∀ v ∈ Vh (2.44)

where

Bh(uh, v) :=

∫

Ω

∇huh·∇hv dx−
∫

Ω

R([û− uh])·∇hv dx −

∫

Ω

l({û− uh})·∇hv dx+
∑

e

∫

e

{σ̂}· [v] ds +

∑

e

∫

e

[σ̂]{v} ds

≡
∫

Ω

∇huh·∇hv dx+
∑

e

∫

e

[û− uh]· {∇hv} ds +

∑

e

∫

e

{û− uh}[∇hv] ds +
∑

e

∫

e

{σ̂}· [v] ds +

∑

e

∫

e

[σ̂]{v} ds

(2.45)

The formulation (2.44) with (2.45) is the base of the method of Bassi-Rebay.
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The first Bassi-Rebay method

If the numerical flux û is taken such that û = {uh} on e ∈ ξ0h, and û = 0 on ∂Ω, then the
jump operator [û−uh] = [uh] and the average operator {û−uh} = 0; on the other hand, if the
numerical flux σ̂ on every edge is taken as σ̂ = {σh}, then the jump operator [σ̂] = 0 and its
average operator {σ̂} = {σh} . By consequence, σh = −∇huh −R([uh]). But we have

∑

e

∫

e

{σ̂}· [v] ds = −
∑

e

∫

e

{∇huh}· [v] ds−
∑

e

∫

e

{R([uh])}· [v] ds

=

∫

Ω

∇huh·R([v]) dx+

∫

Ω

R([uh])·R([v]) dx

and substituting in the bilinear form (2.45) gives this first Bassi-Rebay formulation [21]:

find uh ∈ Vh :

∫

Ω

[∇huh +R([uh])]· [∇hv +R([v])] dx =

∫

Ω

fv dx ∀ v ∈ Vh (2.46)

or equivalently
∫

Ω

∇huh·∇hv dx−
∑

e

∫

e

{∇huh}· [v] ds −
∑

e

∫

e

[uh]· {∇hv} ds +

∫

Ω

R([uh])·R([v]) dx =

∫

Ω

fv dx ∀ v ∈ Vh .

(2.47)

Remark 2.17. The first Bassi-Rebay formulation (2.46) is unstable.

The second Bassi-Rebay method

The second Bassi-Rebay formulation is the stabilized version of the first Bassi-Rebay formula-
tion. It requires to define a strain correction re on the edges e of Ih.

Definition 2.18. The strain correction re is such that ∀ v ∈ Vh, re ∈ Σh and
∫

Ω

re([v])· τ +
∑

e

∫

e

[v]· {τ} = 0 ∀ τ ∈ Σh .

From this definition we have re([v]) = R([v]). If now we take for the numerical flux û as
û = {uh} on e ∈ ξ0h and û = 0 on e ⊂ ∂Ω, then the jump operator [û − uh] = −[uh] and
the average operator {û − uh} = 0; on the other hand, taking on every edge the numerical
flux σ̂ as σ̂ = −{∇huh} + c re([uh]), the jump operator [σ̂] = 0 and its average operator
σ̂ = −{∇huh}+ c{re([uh])}. Thus the second Bassi-Rebay method is given [22]:

find uh ∈ Vh :

∫

Ω

∇huh·∇hv dx−
∑

e

∫

e

[v]· {∇huh} ds −
∑

e

∫

e

[uh]· {∇hu} ds +

c
∑

e

∫

e

re([uh])· re([v]) ds =
∫

Ω

fv dx ∀ v ∈ Vh ,

(2.48)

where the last integral in the left hand side is the stabilization term with the penalty weighting
function c.

Remark 2.19. The difference between this second Bassi-Rebay method and the interior penalty
method is the choice of the stabilizing term. More frequently, the weighting function c is taken
as ηeh

−1 on each e ∈ ξh with ηe positive number.
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2.2.5 Convergence of the DG

The studies of the convergence requires two useful tools that are the trace and the inverse
inequalities.

Lemma 2.20. Trace inequality (Agmon [4], Arnold [5]) .
Let D be a polygonal and let e be an edge of D. For a function ϕ ∈ H1(D) it holds: ∃Ct > 0 ,
only depending on the minimum angle of D, such that

‖ϕ‖0,e ≤ Ct(|e|−1‖ϕ‖20,D + |e||ϕ|21,D)
1
2 .

We give the proof of this trace inequality in 1D.

Proof. Let’s take D = [0, h]. Then by the first fundamental theorem of calculus, we have

ϕ2(x) = ϕ2(0) +

x∫

0

dϕ2(t) = ϕ2(0) + 2

x∫

0

ϕ(t)ϕ
′

(t)dt

hence ϕ2(0) = ϕ2(x) − 2
∫ x
0 ϕ(t)ϕ

′

(t)dt. Integrating both term of the equality from 0 to h, it
comes

hϕ2(0) =

h∫

0

ϕ2(x) dx− 2

h∫

0

x∫

0

ϕ(t)ϕ
′

(t) dtdx

≤ ‖ϕ‖20,D + 2h‖ϕ‖0,D |ϕ|1,D
≤ ‖ϕ‖20,D + ‖ϕ‖20,D + h2|ϕ|21,D since 2ab ≤ a2 + b2

then dividing by h , we have

ϕ2(0) ≤ 2h−1‖ϕ‖20,D + h|ϕ|21,D

hence the result.

Lemma 2.21. Inverse inequality (Nitsche [99]).
Let D be a polygon of diameter hD and let P be a polynomial on D. Then ∃ Cinv > 0, only
depending on the minimum angle of D and the degree of P , such that:

|P |1,D ≤ Cinvh
−1
D ‖P‖0,D . (2.49)

We give the proof in 1D .

Proof. Let us consider the intervals D = [0, h] and D̂ = [0, 1]. We set ϕ̂(x̂) := ϕ(hx̂) ≡ ϕ(x)
∀x̂ ∈ D̂ with x = hx̂. Then dx = hdx̂ and ϕ

′

(x) = h−1ϕ̂
′

(x̂) Therefore

h∫

0

(ϕ
′

(x))2dx = h−2

h∫

0

(ϕ̂
′

(x̂))2dx

= h−1

1∫

0

(ϕ̂
′

(x̂))2dx̂

On the other hand, for a polynomial ϕ̂, we have

1∫

0

(ϕ̂
′

(x̂))2dx̂ ≤ Ck

1∫

0

(ϕ̂(x̂))2dx̂
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where Ck is a constant depending on the degree k of the polynomial, hence

h∫

0

(ϕ
′

(x))2dx ≤ h−1Ck

1∫

0

(ϕ̂(x̂))2dx̂ ≤ h−1Ckh
−1

h∫

0

(ϕ(x))2dx

and so

|ϕ|21,D ≤ Ckh
−2‖ϕ‖20,D .

We will give the proof of the continuity and the coercivity of the stabilized interior penalty
method with respect to a suitable norm.
We define the space: V(h) = Vh +H2(Ω) ∩H1

0(Ω) ⊂ H2(Ih) endowed with the norm

|‖v|‖2 = |v|21,h +
∑

K∈Ih

h2K |v|22,h +
∑

e∈ξh

‖[v]‖20,e ∀ v ∈ V(h) (2.50)

where

|v|21,h =
∑

K∈Ih

|v|21,K .

We have seen that the bilinear form of the stabilized Interior Penalty method is (see 2.37):

Bh(u, v) :=

∫

Ω

∇hu·∇hv dx−
∑

e∈ξh

∫

e

[v]· {∇hu} ds−
∑

e∈ξ0
h

∫

e

[u]· {∇hv} ds+
∑

e∈ξh

c|e|−1

∫

e

[u]· [v] ds

We want to show that this bilinear form is continuous, that is :

∃ Cb > 0 such that ∀ u, v ∈ V(h), Bh(u, v) ≤ Cb|‖u|‖ |‖v|‖

Proof. We have ∀ u, v ∈ V(h)

∫

Ω

∇hu·∇hv dx ≤ |u|1,h· |v|1,h ≤ |‖u|‖|‖v|‖

using, the Cauchy-Schwarz inequality (
∑
aibi ≤ (

∑
a2i )

1
2 (
∑
b2i )

1
2 ) in the second term of the

bilinear form, we have

∑

e

∫

e

[u]· {∇hv} ds =
∑

e

∫

e

|e|− 1
2 [u]· |e| 12{∇hv} ds

≤ (
∑

e

|e|−1‖[u]‖20,e)
1
2 (
∑

e

|e| ‖{∇hv}‖20,e)
1
2

similarly, the third term in the bilinear form gives

∑

e

∫

e

[v]· {∇hu} ds =
∑

e

∫

e

|e|− 1
2 [v]· |e| 12 {∇hu} ds

≤ (
∑

e

|e|−1‖[v]‖20,e)
1
2 (
∑

e

|e| ‖{∇hu}‖20,e)
1
2

the last term of the bilinear form gives

∑

e

1

|e|

∫

e

[u][v] ds ≤ (
∑

e

1

|e|‖[u]‖
2
0,e)

1
2 (
∑

e

1

|e| ‖[v]‖
2
0,e)

1
2
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now, using the trace inequality, we have

‖{∇hu}‖0,e ≤ Ct(|e|−1|u|21,K + |e| |u|22,K)
1
2

Therefore, the third term of the bilinear form becomes

∑

e

∫

e

[v]· {∇hu} ds ≤ (
∑

e

|e|−1‖[v]‖20,e)
1
2 (
∑

e

|e|Ct(|e|−1|u|21,K + |e| |u|22,K))
1
2

≤ (
∑

e

|e|−1‖[v]‖20,e)
1
2 (
∑

e

Ct|u|21,K +
∑

e

Ct|e|2 |u|22,K)
1
2

≤ C|‖v|‖|‖u|‖

similarly the second term of the bilinear form using the same trace inequality gives

∑

e

∫

e

[u]· {∇hv} ds ≤ C|‖u|‖|‖v|‖

Therefore, putting everything together, we have

Bh(u, v) ≤ Cb|‖u|‖|‖v|‖ ∀u, v,∈ V(h)

We also show the coercivity of the bilinear form (2.37). Before we give the definition:

Definition 2.22. v → (|v|21,h +
∑

e∈ξh
‖[v]‖20,e)

1
2 be a norm for analyzing the coercivity of the

bilinear form restricted to v ∈ Vh. This norm on Vh and the one of (2.50) are equivalent on
V(h).

Proof of the coercivity:

Proof. ∀ v ∈ Vh,

Bh(v, v) = |v|21,h − 2
∑

e

∫

e

[v]· {∇hv}+ c
∑

e

1

|e| ‖[v]‖
2
,e

By using the trace and the inverse inequality, we have: for every v ∈ Vh

‖∇hv‖0,e ≤ Ct(|e|−1|v|21,K + |e| |v|22,K)
1
2

≤ Ct(|e|−1|v|21,K + |e| |e|−2C2
k |v|21,K)

1
2

≤ Ct(1 + C2
k)

1
2 |e|− 1

2 |v|1,K
≤ CtCinv|e|−

1
2 |v|1,K with Cinv = (1 + C2

k)
1
2

applying the Cauchy Schwarz and the arithmetic-geometric mean inequality for every ǫ > 0, it
comes

−2
∑

e

∫

e

[v]· {∇hv} = −2
∑

e

∫

e

|e|− 1
2 [v] |e| 12 {∇hv}

≥ −2C∗(
∑

e

1

2
‖[v]‖20,e)

1
2 |v|1,h

≥ −C∗ǫ
∑

e

1

e
‖[v]‖20,e −

C∗

ǫ
|v|21,h
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Table 2.2: Properties of some DG methods

Method consistency stability condition H1 L2

Interior penalty Yes Yes c0 > c∗ hp hk+1

Baumann-Oden(k=1) Yes × - × ×
Baumann-Oden(k=2) Yes × - hk hk

BAssi-Rebay Yes Yes - [hk] [hk+1]

Therefore the bilinear form becomes

Bh(v, v) = |v|21,h − 2
∑

e

∫

e

[v]· {∇hv}+ c
∑

e

1

|e| ‖[v]‖
2
,e

≥ (1− C∗

ǫ
)|v|21,h + (C − C∗ǫ)

∑

e

1

|e| ‖[v]‖
2
0,e ∀ v ∈ Vh .

Hence, it is sufficient to take C > C2
∗ .

For the analysis for the consistency and the approximation of stabilized interior penalty
method (and other methods), we referred to [3].
In Table 2.2 are summarized some properties of the most important methods previuosly anal-
ysed: consistency, stability, theoretical requirement on c0 = infe c for stability and rates of
convergences on H1 and in L2 norms.

Another important method that ensures the local conservation properties is the finite vol-
ume element method which is the object of the next section. We will give a short overview of
this method.

2.3 The finite volume-element (FVE) method

Introduced in [88], the finite volume-element method is a discretization technique for partial
differential equations posed in divergence form. After having partitioned the domain Ω in a
finite set of volumes, it uses in each volume an integral formulation of the problem restricting the
approximating functions to a finite element space. The FVE is closely related to the so-called
control volume finite element method (CVFEM) introduced at the beginning of the eighties
in mechanical engineering literature [19] (tailored especially to composite grid applications).
Initially the FVE was developed to provide an effective discretization scheme in the context of
multilevel adaptative methods based on local and global uniform grids [96]. We note that these
methods are especially well suited for use in the framework of fluid flows because the resulting
stencils are simple, in fact a local subproblem defined on a local grid can be treated as if it was
separated from the the original problem using suitables boundary conditions. As a combination
of the FE and the FV methods, the FVE uses the flexibility of the FE techniques and the
conservative properties of the FV methods. Therefore, the two basic choices for FVE are the
finite element space Sh and the finite set of volumes Vh. There are two different possibilities to
build Vh volumes. In the first one, after having chosen some points (the futures vertexes of the
triangles) inside Ω and on ∂Ω and after having made a Delaunay triangulation, by these points,
the related Voronöı tessellation [113] gives the desired partition of Ω. We remember that the
boundary of each volume Vh is made by connecting with a straight line the circumcenter of
the triangles having common vertex P and requiring that each edge of the polygonal boundary
is orthogonal to an edge of a pair of adjacent triangles (see Figure 2.8). We note that these
circumcenters do not lie outside the triangle by virtue of the assumption of the definition of
the triangulation that no triangle has an internal angle greater that 90 degree. In the second
approach of Donald type, in every triangle the centroid substitutes the circumcenter so that
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Figure 2.8: Example of control volume Vh of Voronöı type (shadow region) relevant to the
point P (•) .

the edges of the polygonal boundary are no more orthogonal to the triangle edges (see Figure
2.9). We referred to these books and papers [44, 29, 30] for more development and more details

Figure 2.9: Example of control volume Vh of Donald type (shadow region) .

on the FVE method. We are now presenting a new conservative method for elliptic problems
in computational fluids dynamics resembling the discontinuous Galerkin finite element method
[69].

2.4 New conservative finite element method

As our final aim is to solve the 2D Navier-Stokes equations, the conservation of the fluxes is
a very important property that the numerical scheme should satisfy. This property becomes
fundamental if we think of a possible extension to 3D problems [38]. The key idea of this
method is that we wish to apply conservation of the mathematical fluxes with respect to the
original elements generated and not with respect to the dual mesh (that one composed by
Voronöı or Donald polygonals). In order to present the method, we will assume considering
the typical Poisson problem of finding u, solution of

{
−∆u = f in Ω

u = 0 on ∂Ω
(2.51)
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Figure 2.10: Pair of adjacent triangles with common edge e.

where Ω is a two dimensional domain with Lipschitz continuous boundary ∂Ω. Let Ih be a
suitable triangulation of Ω i.e Ih = {K}.
We wish to find the solution uh in the functional space Sh ⊂ H1(Ω) and wish also the test
functions to belong to the same functional space. Therefore, the weak formulation consists to
find uh ∈ Sh such that

a(uh, sh) = (f, sh) ∀ sh ∈ Sh (2.52)

where

a(uh, sh) =
∑

K

(∇uh,∇sh)K −
∑

∂K

(
∂uh
∂n

, sh)∂K

,

(f, sh) =
∑

K

∫

K

fshdK

and (·, ·)K denotes the inner scalar product.
Keeping in mind the local conservation of the mathematical fluxes at the edges of the K
elements, we are led into looking for a solution uh ∈ Sh to the following system

∑

K∈Ih

∫

K

∇uh · ∇shdK −
∑

e∈∂K

∫

e

∂uh
∂n

sh|Kde =
∑

K∈Ih

∫

K

fshdK, ∀ sh ∈ Sh (2.53)

∑

e∈∂K

(q · n|K+ + q · n|K−, sh|K+)e = 0 ∀ q ∈ H(div,K) (2.54)

whereK+ andK− are adjacent triangle, see Figure (2.10) and H(div,K) = {v ∈ L2(K) | div v ∈
L2(K)}. For more specifications of this functional space, we referred to [87].

Remark 2.23. The equations (2.53) can be interpreted like a hybrid saddle point approach see
Quarteroni-Valli [113].

Remark 2.24. The equations (2.54) enforces the flux conservation on inter-element edges.
This formulation differs from the hybrid method by the conservation property and also by the
fact that we are seeking only the function uh, while the hybrid method is mainly interested on
the function uh and the gradient vector ∇uh.
Remark 2.25. The space H1(Ω) does not take into account that the assigned Dirichlet boundary
conditions are homogeneous. Actually this choices makes possible the approach (2.54) that
guarantees the conservation property of mathematical fluxes, also for other kind of boundary
conditions.

Remark 2.26. If we use for the uh approximation the space X2
h (i.e. 2D polynomials of degree

two), then the continuity of the mathematical fluxes (represented in (2.52) by the Neumann
term ∂uh

∂n |∂K) on the ∂K edges internal to Ω, can be imposed. This continuity property allows
a good approximation of the numerical fluxes (see section 2.4.1), an easy imposition of the
conservation property and a consistent assignment of all kinds of boundary conditions.
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2.4.1 Algebraic description

In order to describe the structure of the algebraic system arising from the discretization of
system (2.53)-(2.54) we have considered the standard Galerkin finite element formulation by
taking basis functions ϕ as traditional 2D polynomials of second degree with six nodes on the
boundary (see Figure 2.11) and considering the macro elements (see Figure 2.12).

Figure 2.11: Element with six nodes (2D second degree polynomial) .

Figure 2.12: A macroelement.

In fact, for each pair of elements of the macroelement (2.53) is written as

∑

K

[∇uI · ∇ϕI dKI −
∫

∂KI

(
∂u

∂n
)IϕI d∂KI ] =

∑

KI

∫

KI

fϕI dKI ∀ϕ

i.e
∑

K

[

6∑

i=1

uIi

∫

KI

∇ϕIi · ∇ϕIj , dKI −
6∑

i=1

uIi

∫

∂KI

(
∂ϕIi
∂x

· nIx +
∂ϕIi
∂y

· nIy)ϕIj d ∂KI ] =

∑

K

[
6∑

i=1

f Ii

∫

KI

ϕIiϕ
I
j dK

I ], ∀ j = 1, · · · , 6

i.e.,

∑

K

[

6∑

i=1

uIi

∫

KI

∇ϕIi · ∇ϕIj dKI +

6∑

i=1

uIIi

∫

∂KI

(
∂ϕIIi
∂x

· nIIx +
∂ϕIIi
∂y

· nIIy )ϕIj d ∂K
I ] =

∑

K

[

6∑

i=1

f Ii

∫

KI

ϕIiϕ
I
j dK

I ], ∀ j = 1, · · · , 6
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(by applying the local conservation properties (2.53)), thus

AKu+ B∂Ku = MKf . (2.55)

In (2.55),

AK :=
∑

K

∫

K

∇ϕi · ∇ϕj dK is the stiffness matrix ,

MK :=
∑

K

∫

K

ϕiϕj dK is the mass matrix,

and

B∂K :=
∑

K

∫

∂KI

(
∂ϕIIi
∂x

· nIIx +
∂ϕIIi
∂y

· nIIy )ϕIj d∂K
I

is the final matrix obtained by assembling each 6 × 9 local matrix of each pair of elements

resulting from the term
∫
∂KI (

∂ϕII
i

∂x · nIIx +
∂ϕII

i

∂y · nIIy )ϕIj d∂K
I due to the application of the con-

servation of the mathematical fluxes. n = (nx, ny) are the components of the outward normal
at the edges of each element considered.
The matrices AK , MK and B∂K are computed using the Gauss quadrature formula in the ref-
erence element evaluated at seven integration points (vertices, mid-edges and centroid points).
The transformation from the general triangle to the reference element is an isoparametric one;
this choice of course is not compulsory in particular if we use triangles with straight edges (like
those used in the numerical tests). The assembling of local matrices can be easily understood if
one considers the macro element formed by a triangle KI and its three adjacent triangles KII ,
KIII , KIV . Each central element of the macro element has a contribution due to the local
Neumann term of a 6 × 9 local matrix repeated three times corresponding to its three edges.
Performing this strategy element by element, we obtain a balance of the number of equations
with respect to the number of unknowns. Denoting by Nh the total number of degrees of
freedom in the triangulation Ih, the system of equations (2.53)-(2.54) can be written as

Ahuh = bh (2.56)

where Ah = AK + B∂K is the global non singular and non symmetric stiffness matrix, uh the
point value of the numerical solution at the nodes and bh = MKf is the suitable final right hand
side. We note that the final global matrix Ah and the final right hand side bh does not take
into account boundary conditions. In section 2.4.2, we explain the insertion of the boundary
conditions.

Remark 2.27. It is the matrix B∂K that leads to the non-symmetry of the global matrix Ah

The algebraic system (2.56) can be solved by a Gauss direct solver or by a Bi-CGSTAB
iterative solver.

2.4.2 Treatment of boundary conditions

Dirichlet boundary conditions

The Dirichlet boundary conditions are treated by means of this process: after constructing the
global matrix Ah that involves all the nodes of the domain, put 1 in the diagonal position of
all the nodes belonging to the Dirichlet boundary and 0 in the remaining position in the same
rows, then assign the Dirichlet values in the corresponding positions of the right hand side
vector bh.
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Neumann boundary conditions

Let eN be an edge that belongs to the Neumann boundary and ∂u
∂n |node1, ∂u∂n |node2 ∂u

∂n |node3 the
three Neumann values at the three nodes of the edge eN (two vertices and their mid-edge). We
make this approximations:

∫

eN

∂u

∂n
ϕdeN ∼=

∫

eN

(
∂u

∂n
|node1×h1(x, y)+

∂u

∂n
|node2×h2(x, y)+

∂u

∂n
|node3×h3(x, y))ϕdeN (2.57)

where h1(x, y), h2(x, y), h3(x, y) are suitable 2nd degree polynomials passing through the
nodes of edge eN ; then we evaluate the integral (2.57) in the segment [−1, 1] by a seven points
Gauss formula. The results of this integral is a local vector of six positions corresponding to
the six test functions that have to be added in the right positions of the final right hand side
vector bh.

Remark 2.28. A suitable code has been written (in Fortran 90) in order to verify the cor-
rectness and efficiency of our numerical approach. More information about the code will given
later.

2.4.3 Numerical results

In order to check the accuracy of this method and the correctness of the computer code, we
chose the analytical solution of the Poisson problem (2.51) given by

u(x, y) = xy(1− x)(1− y)

f(x, y) = 2(x− x2 + y − y2)

All the computations were performed in Ω = [0, 1]2. We computed the L∞ and L2 error norms
generated by the new conservative approach and by a traditional finite element approach. Some
comparisons among these norms are in the Tables 2.3 and 2.4.
Two different kinds of boundary conditions have been considered. The homogeneous Dirichlet
boundary conditions for the Test 2.4.3.1 and the mixed boundary conditions (Dirichlet on the
vertical sides and Neumann on horizontal sides) for the Test 2.4.3.2. We use a Gauss direct
solver for the solution of the algebraic system (2.56). In the following Tables, as aforementioned,
Nh denotes the total number of nodes with respect to each domain considered. Four different
discretizations have been considered.

Test 2.4.3.1

Table 2.3: Homogeneous Dirichlet boundary condition
Conservative FE Traditional FE

Nh L∞-norm L2-norm L∞-norm L2-norm

49 1.431E − 2 1.561E − 2 3.720E − 4 7.119E − 4
81 7.073E − 3 1.210E − 2 3.855E − 4 6.269E − 4
137 5.186E − 3 4.080E − 3 8.120E − 5 1.945E − 4
169 5.687E − 3 7.610E − 3 5.230E − 5 1.498E − 4
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Test 2.4.3.2

Table 2.4: Mixed boundary conditions
Conservative FE Traditional FE

Nh L∞-norm L2-norm L∞-norm L2-norm

49 2.095E − 2 2.585E − 2 7.949E − 3 1.406E − 2
81 7.932E − 3 1.509E − 2 6.734E − 3 1.675E − 2
137 6.563E − 3 1.460E − 2 5.903E − 3 8.170E − 3
169 6.461E − 3 9.297E − 3 8.832E − 4 1.059E − 3

2.5 Conclusions of the chapter

Checking Tables 2.3 and 2.4 and making the comparison with the error norms, it appears that
the conservative finite element method is convergent but, unfortunately, the new scheme is
not conservative according to the classical definition; however it could be generalized so that
a scheme genuinely conservative, like those named finite volume-elements, could be obtained.
We have verified heuristically the conservation property by solving some numerical tests. We
underline that the conservation property of the fluxes is respected by construction and that a
2D FE able to guarantee the continuity of the fluxes is the eighteen quintic C1 finite element.

If the algebraic system (2.56) is not preconditioned, its solution could be time consuming
and since we are aiming to solve the 2D Navier-Stokes equations, an optimal sophisticated
preconditioner is recommended. We choose the additive Schwarz overlapping domain decom-
positions approach as preconditioner for the algebraic system. This is the object of the next
chapter.



Chapter 3

Domain decomposition methods

3.1 Introduction

Historically they were used for solving problems with PDEs defined on domains of general
form and had a renewed interest with parallel computing (in particular for distributed memory
computers). The idea on which they are based is the subdivision of the original problem defined
in Ω in some subproblems, each defined in Ωi, such that

⋃
iΩi = Ω and

⋃
iui = u. The most

important properties of the methods are:

• The flexibility that allows the solution of the original problem taking into account also
the eventual local physical situations

• The possibility to solve problems of dimension smaller than that of the original one
reducing the computing time

• The possibility to use iterative solvers for the solutions of the algebraic systems using
multi-domains techniques in order to generate preconditioning (in particular with scalable
processes).

3.2 Multi-domain techniques

In the literature, there are three fundamental paradigms for multi-domain techniques :

3.2.1 Fictitious domain (or domain embedding) methods

This is one of the earliest ideas closely related to multi-domain. The leading motivation is that
whenever a problem needs to be solved on domain Ω having complicated boundary, it may be
useful to embed it into a larger domain Ω′ of simpler shape, say for instance a rectangle, then
solving a problem of similar type therein (see Figure 3.1). For the theory of the method and
other developments, we suggest these references [13, 70, 91, 92, 94].

Figure 3.1: Fictitious domain.
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Figure 3.2: Disjoint partition.

Figure 3.3: Overlapping sub-domain.

3.2.2 Disjoint partitions

In this case the domain Ω is partitioned into two non-overlapping sub-domains Ω1 and Ω2

see Figure 3.2. This multi-domain technique is based on the iteration by sub-domain meth-
ods based on transmission conditions at the interface, with various interface conditions like:
Dirichlet-Neumann, Neumann-Neumann or Robin ones. An application of this technique to
the generalized Stokes problem will be seen in section 3.7.1.

3.2.3 Overlapping sub-domains

The Schwarz approach is undoubtedly the earliest example of a domain decomposition approach
for partial differential equations. It was introduced in 1869 by Schwarz [125]; however, among
others, let us also mention the early contributions of Sobolev [127], Mikhlin [93] and Matsokin
and Nepomnyaschikh [95]. In this case the domain Ω is subdivided in two or more overlapping
sub-domains Ω1 and Ω2 see Figure 3.3. For some reasons that will be explained further, we
will use the overlapping Schwarz method as our multi-domain technique. Other material can
be found in the following books [111, 114] and papers [107, 112].

3.3 Usefulness of multi-domain techniques

Multi-domain techniques are very useful for some important reasons including the ability to deal
with problems with a partial differential equation, with a system of PDEs, with different PDEs
in different regions of the domain Ω. This is the case for example of the viscous-inviscid flow
interactions in boundary layers, molecular-continuous state of flow in the upper atmosphere,
etc. They allow also the use of various kinds of spatial approximation methods, for example the
finite difference method, the finite element method, the finite volume method and the spectral
collocation method. The next section recalls some important tools and objects we will regularly
deal with.
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3.4 Solution of algebraic systems

3.4.1 Direct and iterative methods

Direct methods

Given an n× n real matrix A and a real n-vector b, the problem considered consists to find:

x belonging to R
n such that Ax = b (3.1)

Equation (3.1) is a linear system, A is the coefficient matrix, b is the right-hand side vector
and x is the unknowns vector. Then, the existence and uniqueness of the solution to (3.1) is
ensured if one of the following conditions holds:

1. A is invertible

2. rank(A) = n

3. The homogeneous system Ax = 0 admits only the null solution.

The solution of (3.1) is formally provided by Cramer’s rule

xj =
∆j

det(A)
, j = 1, 2, · · · , n (3.2)

where ∆j is the determinant of the matrix obtained by substituting the j−th column of A with
the right hand side b. But this formula is of little practical use because, if the determinants
are evaluated by the following recursive relation

det(A) =

{
a11 if n = 1∑n

j=1∆ijaij for n > 1
(3.3)

known as the Laplace rule, the computational effort of Cramer’s rule is of order (n+ 1)! flops
and therefore turns out to be unacceptable even for small dimensions of A (a computer able
to perform 109 flops per second would take 9.6 × 1047 years to solve a linear system of only
50 equations). This is why alternatives to Cramer’s rule have been developed. They are
called direct methods if they yield the solution of the system in a finite number of steps and
iterative methods if they require (theoretically) an infinite number of steps. Iterative methods
will be addressed in the next sub-subsection. Solving a linear system by a numerical method
invariably leads to the introduction of rounding errors. Only stable methods can keep away the
propagation of such errors from polluting the accuracy of the solution. Informations relevant
to this can be given by the condition number of a matrix A ∈ C

n×n defined as

K(A) = ‖A‖‖A−1‖ (3.4)

where ‖ · ‖ is an induced matrix norm.
We have these definitions.

Definition 3.1. Let A be a square matrix of order n of real or complex entries: the number
λ ∈ C is called an eigenvalue of A if there exits a non null vector x ∈ C

n such that Ax = λx.
The vector x is the eigenvector associated with the eigenvalue λ and the set of the eigenvalues
of A is called the spectrum of A, denotes by σ(A). The maximum module of the eigenvalues of
A is called the spectral radius of A and is denoted by

ρ(A) = max
λ∈σ(A)

|λ|
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In general, K(A) depends on the choice of the norm; if Kp(A) denotes the condition number
of A in the p− norm, then for p = 2, it can be proven that

K2(A) = ‖A‖2‖A−1‖2 =
σ1(A)

σn(A)
(3.5)

where σ1(A)(resp σn(A)) are the maximum (resp the minimum) singular values of A. As a
consequence of relation 3.5, in the case the matrices are symmetric and positives definite, we
have

K2(A) =
λmax
λmin

= ρ(A)ρ(A−1)

and λmax(resp λmin(A))are the maximum (resp minimum) eigenvalues of A. An increase in the
condition number produces a higher sensitivity of the solution of the linear system to change
in the data. Due to rounding errors, a numerical method for solving (3.1) does not provide
the exact solution but only an approximate one which satisfies a perturbed system; this means
that a numerical method yields an exact solution x+ δx of the perturbed system

(A + δA)(x + δx) = b + δb (3.6)

The most popular direct methods are the Gaussian elimination method (GEM) and the Lower-
upper ( LU) factorization. The Gaussian elimination method aims at reducing the system (3.1)
to an equivalent system (that is having the same solution) of the form Ux = b̂, where U is an
upper triangular matrix and b̂ is an updated of right side vector. The latter system can then be
solved by the backward substitution process. Moreover, the GEM is equivalent to performing
a factorization of the matrix A into a product of two matrices A = LU with U = A(n) where
A(n) is the n− th transformation of the original matrix. The computational effort, about 2n3

3
flops, is spent overall in the elimination procedure. A thorough discussion on this method can
be found in the books [111, 123].

Iterative methods

The basic idea of iterative methods is to construct a sequence of vectors x(k) that enjoy the
property of convergence

x = lim
k→∞

xk (3.7)

and x the solution to (3.1). In practice, one of the stopping criteria of the iterative process is
the minimum value of n such that ‖xn − x‖ < ǫ, where ǫ is a fixed tolerance and ‖ · ‖ is any
convenient vector norm. To start with, we consider an iterative method of the form:

given x(0), xk+1 = Bxk + f, k ≥ 0 (3.8)

where B is an n× n square matrix called the iteration matrix and f a vector depending on the
right-hand side and x0 the initial guess.

Definition 3.2. An iterative method of the form (3.8) is said to be consistent with (3.1) if f
and B are such that x = Bx+ f equivalently, f = (I− B)A−1b.

Theorem 3.3. Let (3.8) be a consistent method. Then the sequence of vector x(k) converges
to the solution of (3.1) for any choice of x(0) if and only if ρ(B) < 1.

A general technique to devise consistent iterative methods is based on an additive splitting
of the matrix A of the form A = P−N where P and N are two suitable matrices and P is non
singular. Later we will see that P is called preconditioning matrix or preconditioner. Precisely,
given x(0), one can compute x(k) for k ≥ 1, solving the system

Px(k+1) = Nx(k) + b, k ≥ 0 (3.9)
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The iteration matrix of method (3.9) is B = P−1N, while f = P−1b. Alternatively (3.9) can be
written in the form

x(k+1) = x(k) + P−1r(k), (3.10)

where

r(k) = b−Ax(k), (3.11)

denotes the residual vector at step k.
The Jacobi and Gauss-Seidel iterations are both of the form Px(k+1) = Nx(k) + b = (P −
A)x(k) + b in which A = P−N is the splitting of A, P = D for the Jacobi and P = D− E for
the Gauss-Seidel, where D is the diagonal counterpart of A and E being the lower triangular
counterpart of A. The iteration matrix of the Jacobi method is given by BJ = I − D−1A. In
the Gauss-Seidel method, the associated iteration matrix is BGS = (D − E)−1F in which F is
the upper triangular counterpart of the original matrix A. Another kind of iterative method is
the stationary Richardson method. It is defined as :

x(k+1) = x(k) + αP−1r(k), k ≥ 0 (3.12)

α being a relaxation (or acceleration) parameter. The iteration matrix in this case is BR(α) =
I− αP−1A. We note that the Jacobi and Gauss-Seidel methods can be regarded as stationary
Richardson methods with P taking the same value as previously mentioned and α = 1 in both
cases.

3.5 Convergence estimates

The following results from [111] give some convergence estimates of previously mentioned meth-
ods.

Theorem 3.4. For any nonsingular matrix P, the Richardson method (3.12) converges if and
only if

2ℜeλi
α|λi|2

> 1, ∀i = 1, · · · , n (3.13)

where λi ∈ C are the eigenvalues of P−1A .

Theorem 3.5. Assume P is a nonsingular matrix and that P−1A has positive real eigenvalues,
ordered in such a way that λ1 ≥ λ2 ≥ · · · ≥ λn > 0. Then, the stationary Richardson method
(3.12) is convergent if and only if 0 < α < 2

λ1
. Moreover, letting

αopt =
2

λ1 + λn

the spectral radius of the iteration matrix BR(α) is minimum if α = αopt, with

ρopt = min
α

[ρ(BR(α))] =
λ1 − λn
λ1 + λn

.

3.5.1 Preconditioner

Lack of robustness is a widely recognized weakness of the traditional iterative solvers. This
drawback alters the acceptance of iterative methods in industrial application despite their
intrinsic appeal for very large linear systems. Both the efficiency and the robustness of iterative
techniques can be improved by using preconditioning. Introduced in the Section 3.4.1, roughly
speaking, a preconditioner is any form of implicit or explicit modification of the original linear
system which make it “easier”to solve by a given iterative method. For example, scaling all
rows of a linear system to make the diagonal elements equal to one is an explicit form of
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preconditioning. The resulting system can be solved by a Krylov subspace method [120] and
may require fewer steps to converge than that of the original system (although this is not
guaranteed). All the methods we have seen before can be written (cast) in the form (3.8) so
that they can be regarded as being methods for solving the system

(I− B)x = f = P−1b. (3.14)

On the other hand since B = P−1N, system (3.1) can be reformulated as

P−1Ax = P−1b. (3.15)

(3.15) being the preconditioned system and P being the preconditioning matrix or left precon-
ditioner. There are point preconditioners and block preconditioners depending on whether they
are applied to the single entries of A or to a blocks of a partition of A. Since the preconditioner
acts on the spectral radius of the iteration matrix, it is useful to pick-up for a given linear
system, an optimal preconditioner; this could be defined as a preconditioner which is able to
make the number of iterations required for convergence independent of the size of the system
and also, able to make preconditioning operations inexpensive to apply to an arbitrary vector.
In order to fix the ideas, in what follows, it is convenient to consider that the problem at hands
is solved by means of a FE method.

3.5.2 Restriction and prolongation operators

Figure 3.4: Overlapping subdivision of the domain Ω with more than one layer of overlap.

We assume the domain Ω is subdivided into two sub-domains Ω1 and Ω2. Let I1 and I2
be the indices of the nodes in the interior of Ω1 and Ω2 respectively. Obviously, if Nh is the
number of internal nodes of Ω and I the set of all indices from 1 to Nh, then we have that I1
and I2 form an overlapping subdivision of I, i.e I1 ∪ I2 = I, I1 ∩ I2 6= ∅. If n1 and n2 indicate
the number in I1 and I2 respectively, due to overlap n1 + n2 > Nh. Now, order the indices in
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Figure 3.5: Overlapping subdivision of the domain with only one layer of overlap.

such a way that those corresponding to the nodes internal to Ω1 but not internal to Ω2 are first
memorized and then take the remaining ones. Let A1 and A2 denote the principal sub-matrices
of A formed by the first n1 rows and columns and the last n2 rows and columns, respectively
see Figure 3.6. Then A1 is the stiffness matrix for the sub-domain Ω1 and A2 that of Ω2. They

Figure 3.6: Subdivision of the stiffness matrix.

are related to the global stiffness matrix A of Ω by the algebraic relation

A1 = R1AR
T
1 , A2 = R2AR

T
2 (3.16)

where RT
i and Ri, i = 1, 2 are the extension and the restriction matrices respectively. More

precisely, RT
i is a Nh×ni matrix whose action extends by 0 a vector of nodal values in Ωi; that

means that, given a sub-vector vi of length ni of nodal values, we have

(RT
i v

i)j =

{
vij for j ∈ Ii

0 for j ∈ I \ Ii
(3.17)

In other words, RT
1 is a matrix in which n1 rows and columns form the identity matrix, whereas

the entries of the last Nh − n1 rows are all 0 see Figure 3.7.
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The transpose Ri of R
T
i is a restriction matrix whose action restricts a vector v of dimension

Nh to a vector of length ni by preserving the entries with indice belonging to Ii. Thus finally,
Riv is the sub-vector of nodal values of v in the interior of Ωi

Figure 3.7: Extension matrices.

3.6 Solution of a Poisson equation

3.6.1 The Schwarz approach

To start, we consider the 2D domain Ω with a Lipschitz boundary ∂Ω as decomposed in two
overlapping sub-domains Ω1 and Ω2 as shown for example in Figure 3.8. In Ω, we wish to solve
by FE technique the linear elliptic PDE

−∆u = f in Ω

u = 0 on ∂Ω
(3.18)

where f is a given function in L2(Ω), ∆ :=
∑2

j=1DjDj is the Laplace operator and Dj

Figure 3.8: Example of overlapping subdivisions where Ω1,2 = Ω1 ∩ Ω2.

denotes the partial derivative with respect to xj , j = 1, 2. Let note that Ω, Ω1 and Ω2 do not
include their boundaries. Also let Ω = Ω ∪ ∂Ω denote the closure of the domain. The artificial
boundaries Γi are the part of the Ωi boundary that is interior to Ω (see Figure 3.8). The rest of
the sub-domain boundaries are denoted by ∂Ωi \Γi. We have Γ1 := ∂Ω1 ∩Ω2, Γ2 := ∂Ω2 ∩Ω1,
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Ω1,2 := Ω1 ∩ Ω2 (see Figure 3.8). In order to describe the classical alternating (or the original
form of) Schwarz method, we introduce the notations: uki denotes the approximate solution on
Ωi after k iterations and u1

k|Γ2 is the restriction of uk1 to Γ2; similarly u2
k|Γ1 is the restriction

of uk2 to Γ1 (more precisely, since uki are not necessarily continuous functions, ui
k|Γj

is the trace

of uki on Γj). Now let u0 be an initialization function defined in Ω and vanishing on ∂Ω and set
û02 := u0|Γ1 . Therefore, the classical Schwarz approach consists to define two sequences ûk+1

1

and ûk+1
2 for k ≥ 0 and to solve iteratively for k = 0, 1, · · · , the boundary value problem





−∆ûk+1
1 = f in Ω1

ûk+1
1 = ûk2 on Γ1

ûk+1
1 = 0 on ∂Ω1\Γ1

(3.19)

for ûk+1
1 . This is followed by the solution of the boundary value problem





−∆ûk+1
2 = f in Ω2

ûk+1
2 = ûk+1

1 on Γ2

ûk+1
2 = 0 on ∂Ω2\Γ2

(3.20)

for ûk+1
2 . For the reasons that will be specified next, this approach is named of multiplicative

kind.
On the other hand, if we set û01 := u0|Γ2 and û02 := u0|Γ1 , we could make the two steps
independent of each other by solving





−∆ûk+1
1 = f in Ω1

ûk+1
1 = ûk2 on Γ1

ûk+1
1 = 0 on ∂Ω1\Γ1

(3.21)

and 



−∆ûk+1
2 = f in Ω2

ûk+1
2 = ûk1 on Γ2

ûk+1
2 = 0 on ∂Ω2\Γ2

(3.22)

Thus, in each half-step of the classical Schwarz method, we solve an elliptic boundary value
problem on the sub-domain Ωi with the given homogeneous boundary value on the true bound-
ary ∂Ωi∩∂Ω, and the previous approximate solution on the interior boundary Γi. This approach
is called of additive kind.
The alternating Schwarz method (3.19)-(3.20) and (3.21)-(3.22) converges to the solution u of
(3.18) provided some mild assumptions on the sub-domains Ω1 and Ω2 are satisfied. Precisely,
there exist C1, C2 ∈ (0, 1) such that for all k ≥ 0,

‖u|Ω1 − ûk+1
1 ‖L∞(Ω1) ≤ C1C2‖u− û0‖L∞(Γ1) (3.23)

‖u|Ω2 − ûk+1
2 ‖L∞(Ω2) ≤ C1C2‖u− û0‖L∞(Γ2) (3.24)

The error reduction constants C1 and C2 can be quite close to one if the overlapping region
Ω1,2 is thin. The proof of estimates (3.23),(3.24) can be obtained via the maximum principle
(see for example Kantorovich and Krylov [72] and Lions [84]).

Weak formulation of the Schwarz approach

In the following, we formulate the Schwarz approach in a weak way. This requires the introduc-
tion of Sobolev spaces and to take into account their inherent properties that are very important
in order to analyze the convergence behavior of the domain decomposition algorithms. We will
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not dwell here on this argument and we refer the interested reader to the comprehensive presen-
tation of this theory that can be found, for example, in Lions and Magenes [87]. By integrating
by parts in Ω, the weak formulation of (3.18) consists to find u ∈ V such that

a(u, v) = (f, v), ∀v ∈ V (3.25)

with

(f, v) :=

∫

Ω

fv

a(u, v) := (∇u,∇v)
H1(Ω) := {v ∈ L2(Ω) | Djv ∈ L2(Ω), j = 1, 2}
H1

0(Ω) := {v ∈ H1(Ω) | v|∂Ω = 0}
V := H1

0(Ω)

and v|∂Ω denotes the trace of v (that is its restriction) on ∂Ω. The norm of H1(Ω) will be denoted

by ‖ · ‖1,Ω while ‖ · ‖0,Ω will indicate the norm of L2(Ω). We recall that ‖v‖0,Ω = (v, v)
1
2 , while

‖v‖1,Ω = (‖v‖20,Ω +
∑2

j=1 ‖Djv‖20,Ω)
1
2 for each v ∈ H1(Ω). The Poincaré inequality states that

there exists a constant CΩ > 0 such that

∫

Ω

v2 ≤ CΩ

∫

Ω

2∑

j=1

(Djv)
2 ∀v ∈ H1

0(Ω).

Therefore, the norm ‖v‖1,Ω is equivalent to the norm ‖∇v‖0,Ω for all v ∈ H1
0(Ω). We can not say

that the same result is true for functions that vanish only on an open and non-empty subset Σ
of ∂Ω. We also recall that the trace space of H1(Ω) on the boundary ∂Ω is denoted by H

1
2 (∂Ω).

In an analogous way, the trace on an open and non-empty subset Σ ⊂ ∂Ω is indicated by
H

1
2 (Σ). The trace operator from H1(Ω) to H

1
2 (∂Ω) is surjective and continuous; that is there

exists C∗
Ω

‖v|∂Ω‖ 1
2
,∂Ω ≤ C∗

Ω‖v‖1,Ω, ∀v ∈ H1(Ω)

where ‖ ·‖ 1
2
,∂Ω denotes the norm in H

1
2 (∂Ω). Finally, it can be shown that there exist injective,

linear and continuous extension operators from H
1
2 (∂Ω) to H1(Ω).

Now, the weak formulation of the Schwarz method for the homogeneous Dirichlet boundary
value problem associated with it can be stated as follows : set as before, V := H1

0(Ω),
V0
i := H1

0(Ωi \ Γi), i = 1, 2, and V ∗
1 = Ω \Ω1 and V ∗

2 = Ω \ Ω2 respectively.

Therefore, (3.19), (3.20) reads : given u0 ∈ V, solve for each k ≥ 0

wk1 ∈ V0
1 : a1(w1

k, v1) = (f, v1)Ω1 − a1(u
k, v1), ∀v1 ∈ V0

1

uk+
1
2 = uk + w̃k1

and

wk2 ∈ V0
2 : a2(w

k
2 , v2) = (f, v2)Ω2 − a2(u

k+ 1
2 , v2), ∀v2 ∈ V0

2

uk+1 = uk+
1
2 + w̃k2

(3.26)

where w̃ki denotes the extension of wki by 0 in V ∗
i . Similarly, method (3.21),(3.22) is obtained

by solving

wk1 ∈ V0
1 : a1(w1

k, v1) = (f, v1)Ω1 − a1(u
k, v1), ∀v1 ∈ V0

1

wk2 ∈ V0
2 : a2(w

k
2 , v2) = (f, v2)Ω2 − a2(u

k, v2), ∀v2 ∈ V0
2

uk+1 = uk + w̃k1 + w̃k2

(3.27)
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The proof that these weak formulations are equivalent to the original ones (3.19),(3.20) and
(3.21),(3.22) is obtained via the verification of the following relations :

uk+
1
2 =

{
ûk+1
1 in Ω1

ûk2 in Ω \ Ω1

, uk+1 =

{
ûk+1
2 in Ω2

ûk+1
1 in Ω \ Ω2

(3.28)

and

uk+1 =





ûk+1
1 in Ω \ Ω2

ûk+1
1 + ûk+1

2 − ûk in Ω1,2

ûk+1
2 in Ω \ Ω1

(3.29)

The Schwarz method as a projection

The concept of projection is important for developing an understanding of domain decomposi-
tion methods. Before defining projection, we introduce the objects we are dealing with and the
way the angles and distances are measured. Assume we are given a vector space V with an in-
ner product a(·, ·). For instance, V may be the usual Euclidean space R

N and a(u, v) = uTAv,
where A is a symmetric, positive definite matrix; that is, all of its eigenvalues are real posi-
tives. Associated with the inner product a(·, ·) is the a-norm defined by ‖u‖a =

√
a(u, u). The

norm measures in some sense, the length of the vector u. The norm ‖u − v‖a measures the
distance between the two vectors u and v. The standard Euclidean inner product is simply
uTv, that is A = I, the identity operator. Also, the standard Euclidean norm is given by

‖u‖2 =
√
uTu =

√∑n
i=1 u

2
i . Let V1 be a subspace of V and e be an element of V. A very

natural question is to find the element in V1 that is ”closest ” to e ; that is which element
e1 ∈ V1 minimizes the distances between e and e1. We formally define the projection of e onto
the subspace V1, in the inner product a(·, ·) by

e1 = Pe = arg inf
v∈V1

‖e− v‖a (3.30)

There is a very convenient alternative definition of e1 = Pe given by the following :

find e1 ∈ V1 so that a(e1, v) = a(e, v), ∀v ∈ V1 (3.31)

or equivalently, a(e1 − e, v) = 0, ∀v ∈ V1. This is another way of saying that e1 − e is
orthogonal, in the a(·, ·) inner product, to all elements of V1.

Theorem 3.6. The solution of (3.31) is the minimizer of (3.30).

Proof.

‖e1 − e‖2a = a(e1 − e, e1 − e)

= a(e1 − e, v − e) ∀v ∈ V1

≤ ‖e1 − e‖a · ‖v − e‖a ∀v ∈ V1 .

Therefore, by dividing through ‖e1 − e‖a, we obtain

‖e1 − e‖a ≤ ‖v − e‖a ∀v ∈ V1

.

In the special case that e ∈ V1 the projection of e is exactly e, that is , e1 = pe = e.

Theorem 3.7. When V = R
N and V1 is the span of columns of RT, then the projection may

be written as the matrix
P = RT(RART)−1RA

.
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Proof. Since any element in V1 is a linear combination of the columns of RT, e1 = RTẽ1 for
some ẽ1, similarly, v = RTṽ. Inserting this into (3.31) gives

a(e1, v) = eT1 Av

= (RTẽ1)
TARTṽ

= ẽT1 RAR
Tṽ

and

a(e, v) = eTARTṽ ∀ ṽ ∈ span(RT)

thus from (3.31)

ẽT1 RAR
Tṽ = eTARTṽ

and applying the transpose operator and the symmetric property of A we obtain

(RART)ẽ1 = RAe

or ẽ1 = (RART)−1RAe which implies Pe = e1 = RTẽ1 = RT(RART)−1RAe.

We recall that our aim is to express the projection formulation of the Schwarz methods.

Theorem 3.8. The classical Schwarz method (3.26) can be written

uk+1 = uk +QmG(f − Luk) ,

where Qm, G and L are suitable operators.

Proof. For each v ∈ V0
1, we have

a(uk+
1
2 − uk, v) = a(w̃k1 , v) = a(wk1 , v|Ω1)

= (f, v|Ω1)Ω1 − a1(u
k, v|Ω1)

= (f, v)− a(uk, v)

= a(u− uk, v)

and for the second equation

a(uk+1 − uk+
1
2 , v) = a(u− uk+

1
2 , v), ∀v ∈ V0

2

Therefore, the sequences uk+
1
2 and uk+1 satisfy :

uk+
1
2 − uk = P0

1(u− uk)

uk+1 − uk+
1
2 = P0

2(u− uk+
1
2 )

(3.32)

where P0
i , i = 1, 2 is the orthogonal projection of V onto V0

i with respect to the scalar product
induced by the bilinear form a(·, ·); that is, for any w ∈ V, it holds that

P0
iw ∈ V0

i : a(P
0
iw − w, v) = 0, ∀ v ∈ V0

i

At each half-step, the corrections calculated are uk+
1
2 − uk and uk+1 − uk+

1
2 , and thus the

projections of the error onto the subspace H1
0(Ω1) and H1

0(Ω2). Let denote by I the identical
operator, by Si, i = 1, 2 the (non-dense) immersion of V0

i into V (that is, Siv = v for each
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v ∈ V0
i ) and by STi its transpose operator; that is, the (non injective) map from V′(the dual

space of V) into (V0
i )

′ (the dual space of V0
i ) by

< STi F, v >=< F,Siv >, ∀F ∈ V′, v ∈ V0
i (3.33)

If we set Pi := SiP
0
i : V → V, then from (3.32) it follows that

uk+
1
2 = (I− P1)u

k + P1Gf

= uk + P1G(f − Luk)
(3.34)

and

uk+1 = (I− P2)u
k+ 1

2 + P2Gf

= uk+
1
2 + P2G(f − Luk+

1
2 )

(3.35)

where G is the resolvent operator associated with the Poisson problem (3.18); that is
G = (L)−1 = (−∆)−1, L the Laplace operator and in particular Gf = u. Therefore, the
alternating multiplicative Schwarz method (3.26) becomes

uk+1 = (I− P2)[(I− P1)u
k + P1Gf ] + P2Gf

= (I− P1)(I− P2)u
k + (I− P2)P1Gf + P2Gf

= uk +Qm(Gf − uk) = uk +QmG(f − Luk),

(3.36)

where
Qm := P1 + P2 − P1P2. (3.37)

Remark 3.9. The definition of multiplicative Schwarz method for (3.26) is due to the presence
of the term P1P2 in (3.37).

Theorem 3.10. The alternating additive Schwarz method (3.27) can be written as

uk+1 = uk +QaG(f − Luk) ,

where Qa, G and L are suitable operators.

Proof. As previously seen w̃k1 = P0
1(u− uk), w̃k2 = P0

2(u− uk). Therefore

uk+1 = (I− P1 − P2)u
k + (P1 + P2)Gf

= uk +Qa(Gf − uk) = uk +QaG(f − Luk)
(3.38)

where
Qa := P1 + P2 . (3.39)

Now concerning the error equations for the Schwarz method (3.26), it results from (3.34) -
(3.35) that

u− uk+
1
2 = (I− P1)(u− uk)

u− uk+1 = (I− P2)(u− uk+
1
2 )

(3.40)

Introducing the error ek := u− uk, the previous relations yield the recursion formula :

ek+1 = (I− P2)(I− P1)e
k ∀ k ≥ 0 (3.41)

This relation is the basis of the convergence proof of uk to u in H1(Ω) that will be seen in the
next section. In the same way, using (3.38) for the Schwarz method (3.27), it holds that

ek+1 = (I− P1 − P2)e
k, ∀k ≥ 0 (3.42)
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3.6.2 One level Schwarz

We assume the domain Ω is discretized by conforming finite elements methods (see [27]). Let
Vh denote a finite dimensional subspace of H1

0(Ω). A Galerkin finite element approximation to
(3.25) is defined as follows:

find uh ∈ Vh : a(uh, vh) = (f, vh), ∀vh ∈ Vh. (3.43)

The unknowns of the finite dimensional problem (3.43) are given by the point values of uh
at the finite element nodes aj. In fact, denoting by Nh, the total number of nodes and by
ϕj the basis functions of Vh, there is a unique function in Vh satisfying ϕj(ai) = δij for each
i, j = 1, · · · , Nh and the function uh ∈ Vh can be represented through

uh(x) =

Nh∑

j=1

uh(aj)ϕj(x) . (3.44)

Introducing the notation

u := {uh(aj)}j=1,··· ,Nh
(3.45)

and

f := {(f, ϕj)}j=1,··· ,Nh
(3.46)

problem (3.43) can be written as

Au = f . (3.47)

The matrix A is called the finite element stiffness matrix and is given by

Alj := a(ϕj , ϕl), l, j := 1, · · · , Nh (3.48)

The stiffness matrix A is positive definite; that is, for any vh ∈ R
Nh , vh 6= 0, (Avh, vh) > 0,

where (·, ·) denotes the Euclidean scalar product. Indeed, let vh ∈ Vh be the function defined
as vh(x) =

∑Nh

j=1 vjϕj(x) then

(Avh, vh) =

Nh∑

l,j=1

vla(ϕj , ϕl)vj

= a(vh, vh) ≥ 0

and (Avh, vh) = 0 if and only if vh = 0. In particular, it follows that any eigenvalue of A has a
positive real part.

Remark 3.11. Since the bilinear form a(·, ·) is symmetric, it follows that A is also symmetric.

Remark 3.12. Another important remark concerns the condition number

K2(A) := ‖A‖2‖A−1‖2 =

√
λmax(ATA)

√
λmin(ATA)

. (3.49)

In the symmetric case, we have the simplified relation

K2(A) =
λmax(A)

λmin(A)

and it can be proved that K2(A) = 0(h−2), being h the characteristic parameter of the partition
of Ω.
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Following (3.26), the alternating (multiplicative) Schwarz method at the discrete level is:
given u0h ∈ Vh, solve for each k ≥ 0

wk1,h ∈ V0
1,h : a1(w

k
1,h, v1,h) = (f, v1,h)Ω1 − a1(u

k
h, v1,h), ∀v1,h ∈ V0

1,h

u
k+ 1

2
h = ukh + w̃k1,h

wk2,h ∈ V0
2,h : a2(w

k
2,h, v2,h) = (f, v2,h)Ω2 − a2(u

k+ 1
2

h , v2,h) ∀v2,h ∈ V0
2,h

(3.50)

where w̃ki,h is the finite element function that extends wki,h by 0 in Ω \ Ωi, and ai denotes the

restriction of a to Ωi. V0
i,h is the finite dimensional subspace of H1

0(Ωi). In the same way can
be define the additive Schwarz method (3.27) at the finite element level.
The algebraic form of the alternating (multiplicative) Schwarz method follows immediately
from (3.34) and (3.35) upon replacing the operators with the corresponding matrices.

uk+
1
2 = uk +RT

1 A
−1
1 R1(f −Auk)

uk+1 = uk+
1
2 +RT

2 A
−1
2 R2(f −Auk+

1
2 ) .

(3.51)

Replacing f with Au, these equations can be written as

uk+
1
2 = uk + P1,h(u− uk) = (I− P1,h)u

k + P1,hu

uk+1 = uk+
1
2 + P2,h(u− uk+

1
2 ) = (I− P2,h)u

k+ 1
2 + P2,hu ,

(3.52)

where we have introduced the discrete projection operators Pi,h := RT
i A

−1
i RiA, i = 1, 2.

Lemma 3.13. The matrices Pi,h are symmetric and non negative definite with respect to the
A− scalar product

(w, v)A := (Aw, v), ∀ w, v ∈ R
Nh (3.53)

which is induced by the symmetric and positive definite stiffness matrix A. Moreover, Pi,h is
the orthogonal projection in the A−scalar product onto the subspace spanned by the rows of RT

i .

Proof. If we set

Qi := RT
i A

−1
i Ri = Pi,hA

−1, i = 1, 2 (3.54)

then the correction cki := Qi(f − Auk) is such that Pi,h(u − uk) = cki ; that is cki is the closest
vector to the error u− uk in the subspace spanned by the rows of RT

i .

In a compact form, the multiplicative Schwarz method reads

uk+1 = uk + (Q1 +Q2 −Q2AQ1)(f −Auk)

= uk + [I− (I− P2,h)(I− P1,h)]A
−1(f −Auk) .

(3.55)

Similarly, the additive Schwarz method becomes

uk+1 = uk + (Q1 +Q2)(f −Auk) . (3.56)

The generalization to M sub-domains, M > 2, is straightforward. Setting Pi,h := RT
i A

−1
i RiA,

Qi := Pi,hA
−1, i = 1, · · · ,M , the multiplicative Schwarz method becomes

uk+
i
M = (I− Pi,h)u

k+ i−1
M + Pi,hu

= uk+
i−1
M +RT

i A
−1
i Ri(f −Auk+

i−1
M ), i = 1, · · · ,M

(3.57)
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and the additive Schwarz method reads

uk+1 = (I−
M∑

i=1

Pi,h)u
k +

M∑

i=1

RT
i A

−1
i Rif

= uk + (
M∑

i=1

Qi)(f −Auk) .

(3.58)

The error equation for the multiplicative case takes the form

ek+1 = u− uk+1 = (I− PM,h) · · · (I− P1,h)(u− uk) (3.59)

and for the additive case:

ek+1 = u− uk+1 = (I−
M∑

i=1

Pi,h)(u− uk) . (3.60)

For what concerns the additive Schwarz method withM sub-domains let’s introduce the matrix

Pas = (

M∑

i=1

Qi)
−1 (3.61)

and nothing that

P−1
as A =

M∑

i=1

Pi,h (3.62)

the one level additive Schwarz method can be regarded as a fixed-point problem for the following
support

Pas := (

M∑

i=1

RT
i A

−1
i Ri)

−1 = (

M∑

i=1

Qi)
−1 (3.63)

so that the preconditioned matrix of the system (3.47) becomes

P−1
as A =

M∑

i=1

Pi,h = Qa . (3.64)

As suggested by (3.58), the additive Schwarz method is simply a Richardson method for (3.47)
with preconditioner Pas for A. Since Pas is symmetric and positive definite, the convergence of
the preconditioned system can be more effectively accelerated by the conjugate gradient (CG)
method [120], which converges faster than the Richardson method does. Therefore, by using
the CG method, the convergence rate is : (see for example [58])

‖uk − u‖A ≤ 2(

√
K(P−1

as A)− 1
√

K(P−1
as A) + 1

)‖u0 − u‖A (3.65)

where ‖v‖A =
√

(v, v)A is the norm associates with the scalar product (v,w)A introduced
in (3.53). Concerning the condition number K(P−1

as A), denoting as usual by H the maximum
diameter of the sub-domains Ωi, i = 1, · · · ,M and by βH the linear measure of the overlapping
region between two adjacent sub-domains (0 < β ≤ 1), the following estimate holds :

K(P−1
as A) ≤ C

1

βH
(3.66)

where C is a constant possibly dependent on the coefficients of the Laplace operator, see [42, 43].
By relation (3.66), the condition number depends on the number of sub-domains for a given
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amount of overlap, thus when the number of sub-domains is getting greater, the preconditioned
system is not scalable (that is the number of iterations required to obtain the convergence is
dependent on the number of sub-domains). The reason is the lack of communications among
sub-domains “distant”, since the only communication between sub-domains is through overlap
region. We will see in the next section how the two level Schwarz solves this drawback.

3.6.3 The colouring technique

Contrary to the additive Schwarz method, the multiplicative method has very little potential
for parallel implementation. Since, many sub-domains do not have to share any grid point,
a strategy of sub-domain colouring can adopted to allow a simultaneous and independently
update of subsets of equations by (3.57)(see Figure 3.9 for an example). The colouring is such

Figure 3.9: sub-domain colouring with four colours.

that no two overlapping sub-domains have the same colour. The number of parallel processors
that may be used is given by the number of sub-domains in a given colour. A thorough
discussion of this technique can be found in [124].

3.6.4 Two level Schwarz methods

In the previous section, we have seen that the convergence rate of the preconditioned iterative
Schwarz methods deteriorates when the number of sub-domains becomes large. This is due
to the lack of informations among distant sub-domains. The two level method overcomes this
drawback by introducing a coarse global mesh over the whole domain in order to guarantee a
mechanism of global communication among all sub-domains. This involves the smoothing of
the original (fine) problem and the definition of an auxiliary (coarse) problem on an embedded
mesh that is coarser than the original one. In this case, the preconditioner for the original
problem is obtained as a superposition of the solution of an auxiliary problem on a coarser grid
and a smoother on the original grid. The abstract formulation of the problem is the following.
Consider two finite dimensional problems, the original one

find uh ∈ Vh : ah(uh, vh) = (fh, vh), ∀ vh ∈ Vh (3.67)

and the auxiliary one

find uH ∈ VH : aH(uH , vH) = (fH , vH), ∀ vH ∈ VH (3.68)

where ah(·, ·) and aH(·, ·) are bilinear forms on Vh and VH respectively.
Given a basis ϕj , j = 1, · · · , Nh of Vh and a basis ψl, l = 1, · · · , NH of VH , we construct the
matrices

(Ah)sj := ah(ϕj , ϕs)

(AH)ml := aH(ψl, ψm)

The two spaces Vh and VH are related by an operator Ih : VH → Vh. Basically, Ih is the linear
interpolation from the coarse grid to the fine grid and its representation is RT the prolongation
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operator (see section 3.5.2); h and H are the maximum diameter of the fine and coarse grid
respectively. Two different adjoint operators can be associated with Ih :

{
ITh : Vh → VH

(IThwh, vH)VH
= (wh, IhvH)Vh

∀wh ∈ Vh, vH ∈ VH
(3.69)

and {
JTh : Vh → VH

aH(J
T
hwh, vH) = ah(wh, JhvH),∀wh ∈ Vh, vH ∈ VH

(3.70)

In the matrix form, the last definition gives AHJ
T
h = IThAh, thus J

T
h = A−1

H IThAh. A precondi-
tioner Ph for Ah can be constructed in the following way :

P−1
h := Q−1

H +Q−1
h , Q−1

h = IhA
−1
H ITh (3.71)

where QH is any convenient symmetric positive definite matrix simpler than Ah itself. The
preconditioned matrix becomes P−1

h Ah = IhJ
T
h +Q−1

H Ah.
Now how to generate a coarse grid for Schwarz? As usual, the technique for constructing an
overlapping decomposition of Ω into M sub-domains Ω1, · · · ,ΩM consist to assume that a non
overlapping partition w1, · · · , wM of Ω is available. One possibility is to choose each subregion
wi as an element from the coarse finite element triangulation of Ω of size H. Next, each wi
is extended to a larger domain Ωi, consisting of all points in Ω at a distance not larger than
βH from wi with 0 < β ≤ 1. The restriction and extension matrices, Ri and RT

i as well
as the local matrices are defined accordingly. Assuming the fine grid of diameter size h is a
refinement of the coarse grid of size H, we denote by RT

H , the interpolation map of coarse grid
functions to the fine grid functions. By using piecewise-linear elements, RT

H interpolates the
nodal values from the coarse grid (of wi) to all the vertices of the fine grid. Its transpose RH
is a weighted restriction map. The corresponding stiffness matrix AH on the coarse mesh is
given by AH = RHAhR

T
H .

In conclusion, we have, see (3.63),

Q−1
h =

M∑

i=1

RT
i A

−1
i Ri, Q−1

H = RT
HA

−1
H RH

where the index i refers to the ith sub-domain, i = 1, · · · ,M and the indexH refers to the coarse
grid (where the subdomains play the role of elements). Thus, the resulting preconditioner is :

P−1
cas := (

M∑

i=0

RT
i A

−1
i Ri)

−1 (3.72)

where we have set for notational convenience R0 := RH and A0 := AH .

3.6.5 Convergence estimates

We have seen that the alternating Schwarz method presented in the last section furnishes a pair
of sequences uk and uk+

1
2 that converge to the solution u of the Dirichlet boundary problem.

The original proof from Lions [83] is based on a weak formulation and not on the maximum

principle, like the classical one. We recall, see (3.40), that the sequences uk and uk+
1
2 generated

by the multiplicative Schwarz method satisfies

u− uk+
1
2 = (I− P1)(u− uk)

u− uk+1 = (I− P2)(u− uk+
1
2 )
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where, for i = 1, 2, Pi = SiP
0
i , Si is the immersion of V0

i := {v ∈ V | v = 0 in Ω \ Ωi } into
V := H1

0(Ω) and P0
i is the orthogonal projection of V onto V0

i with respect to the bilinear forms
(3.26). Let us denote by ‖ · ‖ the norm associated with the form a(·, ·) which is equivalent
to the usual norm of H1(Ω). Moreover, for any pair of vectors spaces W1 and W2, denote by
W1 ⊕W2 their direct sum; namely the vector space of all elements w that can be written in a
unique way as the sum of an element in W1 and W2.

Theorem 3.14. Assume that Ω is a bounded domain in R
2, with a Lipschitz boundary ∂Ω. If

V0
1 ⊕V0

2 = V, then both uk and uk+
1
2 converge to u in H1

0(Ω) as k → ∞.

It is worthwhile to note that the assumption of theorem 3.14 is always satisfies, provided
Ω = Ω1 ∪Ω2, (see [83]). Under the slightly more restrictive assumption V0

1 ⊕V0
2 = V, which is

satisfied for a large class of subdomains Ω1 and Ω2, then the following theorem is an estimate
of the rate of convergence. We need

Lemma 3.15. If V0
1 ⊕V0

2 = V, then there exists a constant C0 ≥ 1 such that

‖v‖ ≤ C0(‖P1v‖2 + ‖P2v‖2)
1
2 ∀v ∈ V . (3.73)

Then the convergence result is the following:

Theorem 3.16. If V0
1⊕V0

2 = V, then the iteration operators (I−P1)(I−P2) and (I−P2)(I−P1)
are contractions in H1

0(Ω) with respect to the norm induced by the bilinear form a(·, ·) of (3.26).

As a consequence of this theorem, the convergence of the alternating Schwarz process takes
place with a geometric rate, more precisely, setting K0 := (1− C−2

0 )
1
2 , we have

‖ek+1‖ = ‖(I− P2)(I− P1)e
k‖

≤ K0‖ek‖ ≤ Kk+1
0 ‖e0‖

and analogously,

‖ek+ 1
2‖ = ‖(I− P1)(I− P2)e

k+ 1
2 ‖

≤ Kk+1
0 ‖e 1

2 ‖ = Kk+1
0 ‖(I− P1)e

0‖
≤ Kk+1

0 ‖e0‖

Convergence of the two level method

We assume that the fine grid Ih and the coarse grid IH underlying problems (3.67) and (3.68)
respectively are comparable, i.e., for any Kh ∈ Ih and KH ∈ IH with Kh∩KH 6= ∅, there exist
two positive constant C0 and C1 such that

C0diamKH ≤ diamKh ≤ C1diamKH . (3.74)

• If then the two grids are quasi uniform and of comparable size (i.e C0 , C1 ≃ 1), by
using either block-Jacobi or a symmetric block Gauss-Seidel iteration as a smoother, the
preconditioner Pcas is uniformly optimal for the operator Ah (the spectrum of P−1

casAh is
uniformly bounded with respect to h)

• If instead IH is genuinely coarser than Ih, which means that there exist triangles Kh and
KH , Kh ∩ KH 6= ∅ for which (3.74) holds only for extremely small C0, then the above
smoothers are no longer sufficient to guarantee that Pcas is uniformly optimal for Ah
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• However, if the smoothing is based on the overlapping Schwarz method Qh given by
the symmetric multiplicative preconditioner, see (3.55), or Qh is given by the additive
preconditioner, see (3.63), then P−1

cas is uniformly optimal provided the coarse grid IH is
comparable with the sub-domain partition. This means that there exist positive constants
Ĉ0 and Ĉ1 such that for each KH ∈ IH such that KH ∩ Ωi 6= ∅, it holds

Ĉ0diamKH ≤ diamΩi ≤ Ĉ1diamKH .

The proof of these two results can be found in [20] and the reference therein. In particular, it
is underlined that the spectrum of P−1

casAh is bounded independently of h and H if the linear
measure β of the overlapping region is kept proportional to H, say, given by βH. In addition,
the convergence of the iterative procedures is poor for very small values of β, but improves
rapidly when the overlap increases. In [114], it is reported that the relation (3.66) is satisfied
with Pcas equal to (3.72) and that the preconditioner Pcas is scalable.

3.6.6 Why use a Schwarz preconditioner?

It is well known that in the elliptic problems the preconditioners based on non overlapping
techniques do not always converge. As the final aim of this work is the formulation of a new
method for the numerical solution of a PDE system (i.e. 2D Navier-Stokes equations), method
in which the computational kernels reduced to elliptic problems, it seems very convenient to
use overlapping additive Schwarz preconditioner for solving the algebraic systems. In the next
section of this chapter, we deal with some applications of multi-domain methods to problems
where the iterations are based on transmission conditions at interfaces and finally, we provide
some numerical experiments.

3.7 Application of multi-domain methods to other problems

3.7.1 The generalized Stokes problem

We consider the generalized Stokes problem [112] :
{

ασ + div u = g in Ω

αu− aµ∆u+ β∇σ = f in Ω,
(3.75)

where α, β, a and µ are positive constants, f and g are given functions and Ω is an open
domain of Rm (m = 2 or 3). The meaning of the various constant and functions appearing
in (3.75) depends on what physical problem the model system (3.75) stands for. Here, it
represents an intermediate step of the linearization process for the full Navier-Stokes equations
for compressible flows. The vector variable u denotes the velocity field, the scalar function σ is
the logarithm of the density, f , g, a and β are known at previous time-level, α is the inverse of
the time-step, and µ is an average of the dynamic viscosity. Several sets of boundary condition
render (3.75) a mathematically well posed boundary value problem. Among these, we consider
those supplementing (3.75) in the simulation of external flows around an airfoil. In this case,
the computational domain Ω is the complement of the airfoil profile, truncated in the far field
by the boundary Γ∞. ΓB is the boundary of the solid body and by Γ−

∞ ≡ {x ∈ R
m| x ∈

∂Ω \ΓB, u∞ ·n < 0}, Γ+
∞ ≡ ∂Ω \ (ΓB ∪Γ−

∞) is the inflow and the out flow external boundaries
respectively. Clearly u∞ and n denote the free stream velocity and the unit outward normal
vector to ∂Ω respectively.
The boundary conditions we are considering take the following form

u = 0 on ΓB

u = u∞ on Γ−
∞

S(u, σ) ≡ aµ
∂u

∂n
− βσn = 0 on Γ+

∞,

(3.76)
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Figure 3.10: The computational domain for the flow around and airfoil.

where (∂u∂n) ≡ ∑
j(∂jui)nj, j = 1, · · · ,m. We emphasize that a Dirichlet condition can be

imposed on σ on Γ−
∞, while m conditions are enforced on Γ+

∞. The last condition in (3.76)
expresses the vanishing of both normal and shear stresses given respectively by aµ ∂u∂n · n − βσ

and aµ ∂u∂n · τ s, (s = 1, · · · ,m− 1).
In order to show that problem (3.75) - (3.76) is well posed, it requires its variational formulation.
We define V0 ≡ {v ∈ H1(Ω) | v = 0 on Γ−

∞ ∪ ΓB}, Σ0 ≡ L2(Ω). We recall that Hk(Ω) denotes
the Sobolev space of measurable functions whose distributional derivatives of order less or equal
than k belong to the space L2(Ω) (see, e.g., Lions-Magenes [87]). The norm in this space will
be denoted by ‖ · ‖k. The weak formulation of the problem (3.75) with boundary condition
(3.76) is the following: we choose for simplicity u∞ = 0, then find u ∈ V0, σ ∈ Σ0 such that





∫

Ω

(ασ + div u)ϕdΩ =

∫

Ω

gϕdΩ ∀ ϕ ∈ Σ0

∫

Ω

(αu v + aµ∇u·∇v − βσdiv v) dΩ =

∫

Ω

fv dΩ ∀ v ∈ V0 .

(3.77)

If it is not otherwise specified, the integrals are extended to the whole domain Ω. Consider the
bilinear form on V0 × Σ0

A[(u, σ), (v, ϕ)] ≡
∫

Ω

(αβσϕ + βdiv uϕ+ αu v + aµ∇u · ∇v − βσdiv v) dΩ (3.78)

which is associated to the weak problem (3.77). It is easily seen that A is continuous and
coercive in V0 × Σ0, since

A[(u, σ), (u, σ)] = αβ‖σ‖20 + α‖u‖20 + aµ‖∇u‖20 . (3.79)

Therefore, by Lax-Milgram lemma, for each f ∈ L2(Ω), g ∈ L2(Ω), the weak problem (3.77)
admits a unique solution and we have the following estimate

α‖u‖20 + 2aµ‖∇u‖20 + αβ‖σ‖20 ≤ α−1(‖f‖20 + β‖g‖20) . (3.80)

Our aim is to give a correct domain decomposition procedure for the solution of problem (3.75)
and (3.76). We assume for simplicity that u∞ = 0, and the computational domain is subdivided
into two subdomains as indicated in Figure 3.11 . We define

V1 ≡ { v ∈ H1(Ω1) | v = 0 on Γ−
∞}

V0,1 ≡ { v ∈ V1 | v = 0 on Γ}
V2 ≡ { v ∈ H1

0(Ω2) | v = 0 on ΓB}
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Figure 3.11: The sub-domain decomposition of the computational domain of Figure 3.10 .

and consider the multi-domain problem:
find u1 ∈ V1, σ

1 ∈ L2(Ω1), u
2 ∈ V2, σ

2 ∈ L2(Ω2) such that

∫

Ω1

(ασ1 + div u1)ϕdΩ =

∫

Ω1

gϕdΩ ∀ ϕ ∈ L2(Ω1)

∫

Ω1

(αu1v + aµ∇u1·∇v − βσ1div v) dΩ =

∫

Ω1

fv dΩ, ∀ v ∈ V0,1

u1 = u2 on Γ∫

Ω2

(ασ2 + div u2)ψ dΩ =

∫

Ω2

gψ dΩ ∀ ψ ∈ L2(Ω2)

∫

Ω2

(αu2w + aµ∇u2·∇w − βσ2div w) dΩ =

∫

Ω2

fw dΩ, ∀ w ∈ H1
0(Ω2)

∫

Ω2

(αu2R2χ+ aµ∇u2·∇R2χ− βσ2div R2χ) dΩ =

∫

Ω2

fR2χdΩ +

∫

Ω1

fR1χdΩ−

∫

Ω1

(αu1R1χ+ aµ∇u1·∇R1χ− βσ1div R1χ) dΩ ∀ χ ∈ H
1
2 (Γ),

(3.81)

where R1 and R2 are any possible pair of (continuous) operators from H
1
2 (Γ) to V1 and V2

which satisfy Rkχ = χ on Γ, k = 1, 2. From (3.81)6, it follows that S(u
1, σ1) = S(u2, σ2) on Γ.

Theorem 3.17. The weak problem (3.77) and its multi-domain formulation (3.81) are equiv-
alent.

Proof. Let (u, σ) be a solution to the weak problem (3.77); then we set uk ≡ u|Ωk
,

σk ≡ σ|Ωk
, k = 1, 2. Then obviously uk and σk is a solution to the multi-domain problem.

Conversely, let uk and σk (k = 1, 2) be a solution to the multi-domain formulation. Since
u1 = u2 on Γ, we define

u ≡
{
u1 in Ω1

u2 in Ω2

, σ ≡
{
σ1 in Ω1

σ2 in Ω2

(3.82)

and we have u ∈ V0, σ ∈ Σ0, then the equation (3.77)1 of the weak formulation is satisfied since∫
Ω(ασ + div u)ϕdΩ =

∑
k

∫
Ωk

(ασk + div uk)ϕdΩk =
∫
Ω gϕdΩ, ∀ ϕ ∈ L2(Ω). Now, we take

v ∈ V0 and set χ ≡ v|Γ ∈ H
1
2 (Γ). Let us define Rχ ∈ V0 such that Rχ = Rkχ in Ωk, v

k ∈ V0
(k = 1, 2) as vk|Ωk

= v|Ωk
−Rkχ and vk|Ω/Ωk

= 0, that is v1 = 0 in Ω2, v
2 = 0 in Ω1. We note
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that v1|Ω1 ∈ V0,1 and v2|Ω2 ∈ H1
0(Ω2) and that v = v1 + v2 +Rχ. Thus we get

∫

Ω

(αuv + aµ∇u·∇v − βσdiv v) dΩ =
∑

k

∫

Ωk

(αukvk + aµ∇uk·∇vk − βσkdiv vk) dΩk +

∑

k

∫

Ωk

(αukRkχ+ aµ∇uk·∇Rkχ− βσkdiv Rkχ) dΩk

=
∑

k

∫

Ωk

f(vk +Rkχ) dΩk

=

∫

Ω

fv dΩ

where we have used (3.81)2, (3.81)5 and (3.81)6 .

In order to make the above domain decomposition method appealing in view of numerical
computation, an iterative procedure can allow the resolution of the two subproblems, one within
Ω1 and the other in Ω2. It is the following: given an initial guess for u at the interface Γ, then
go from step m− 1 to the next step m by solving the two following problems :

• Within Ω1, solve a problem like (3.75) with the boundary conditions





u1m = u∞ on Γ−
∞

S(u1m, σ
1
m) = 0 on Γ+

∞

u1m = θmu
2
m−1 + (1− θm)u

1
m−1θ on Γ ,

(3.83)

θm being a positive acceleration parameter that is determined in order to ensure (and
possibly, to accelerate) the convergence of the iterative scheme

• Then in Ω2, solve a problem like (3.75) with the boundary conditions
{
S(u2m, σ

2
m) = S(u1m, σ

1
m) on Γ

u2m = 0 on ΓB .
(3.84)

We give the weak formulation of the iterative procedure which is very important in the study
of the convergence. Let’s define the bilinear forms

a1[(u
1, σ1), (v, ϕ)] ≡

∫

Ω1

(βασ1ϕ+ βdiv u1ϕ+ αu1v + aµ∇u1·∇v − βσ1div v) dΩ (3.85)

a2[(u
2, σ2), (w,ψ)] ≡

∫

Ω2

(βασ2ψ + βdiv u2ψ + αu2w + aµ∇u2·∇w − βσ2div w) dΩ , (3.86)

which are continuous and coercive on H1(Ωk) × L2(Ωk), k = 1, 2. We remark however that
these forms are not symmetric, hence they don’t define a scalar product in H1(Ωk) × L2(Ωk).

Then define the extension operator Ek : H
1
2 (Γ) → Vk × L2(Ωk) in the following way :





E1χ ∈ V1 × L2(Ω1)

a1[E1χ, (v, ϕ)] = 0 ∀ v ∈ V0,1, ϕ ∈ L2(Ω1)

(E1χ)1|Γ = χ

(3.87)





E2χ ∈ V2 × L2(Ω2)

a2[E2χ, (w,ψ)] = 0 ∀ w ∈ H1
0(Ω2), ψ ∈ L2(Ω2)

(E2χ)1|Γ = χ .

(3.88)
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Then the iterative scheme introduced in (3.83), (3.84) can be reformulated in a variational form
in the following way : solve for m ≥ 1, u1m ∈ V1, σ

1
m ∈ L2(Ω1),

{
a1[(u

1
m, σ

1
m), (v, ϕ)] = (f, v) + β(g, ϕ) ∀ v ∈ V0,1, ϕ ∈ L2(Ω1)

u1m|Γ = θmu
2
m−1|Γ + (1− θm)u

1
m−1|Γ ≡ gm−1 on Γ

(3.89)

and u2m ∈ V2, σ
2
m ∈ L2(Ω2),





a2[(u
2
m, σ

2
m), (w,ψ)] = (f,w) + β(g, ψ)∀ v ∈ H1

0(Ω2), ψ ∈ L2(Ω2)

a2[(u
2
m, σ

2
m), E2χ] = (f, (E2χ)1) + β(g, (E2χ)2)− a1[(u

1
m, σ

1
m), E1χ] + (f, (E1χ)1)+

β(g, (E1χ)2) ∀ χ ∈ H
1
2 (Γ) ,

(3.90)
where (· , · ) denotes the scalar product in L2(Ω1) or L2(Ω2) and the initial guess g0 can be

arbitrarily chosen in H
1
2 (Γ). Here θm is a positive relaxation parameter which will be determined

in the sequel in such a way that the scheme converges. We can remark that (3.90) is equivalent
to the following problem u2m ∈ V2 , σ2m ∈ L2(Ω2),

{
a2[(u

2
m, σ

2
m), (w,ψ)] = (f,w) + β(g, ψ)−

a1[(u
1
m, σ

1
m), E1(w|Γ)] + (f,E1(w|Γ)1) + β(g,E1(w|Γ)2) ∀w ∈ V2, ψ ∈ L2(Ω2) .

Obviously, the right hand side is a continuous linear functional on V2 × L2(Ω2) .

3.7.2 The inviscid generalized Stokes problem

We consider now the inviscid counterpart of the generalized Stokes problem (3.75) which is

{
ασ + div u = g

αu+ β∇σ = f .
(3.91)

It is obtained by setting µ = 0 in (3.75). The boundary conditions associated to problem (3.91)
are namely

u · n = u∞ · n on Γ−
∞

u · n = 0 on ΓB

σ = 0 on Γ+
∞ .

(3.92)

The weak formulation in this case consists to find (u, σ) such that (u−w∞) ∈W0 and σ ∈ S0,
where w∞ ∈ L2(Ω) with div w∞ ∈ L2(Ω) is such that w∞ · n = u∞ · n on Γ−

∞ and w∞ · n = 0
on ΓB,

W0 ≡ { v ∈ L2(Ω) | div v ∈ L2(Ω), v · n = 0 on Γ−
∞ ∪ ΓB}

S0 ≡ {s ∈ H1(Ω) | s = 0 on Γ+
∞}

(3.93)

and (u, σ) satisfies





∫

Ω

(ασ + div u)ϕdΩ =

∫

Ω

gϕ dΩ , ∀ϕ ∈ L2(Ω)

∫

Ω

(αu v − βσdiv v) dΩ =

∫

Ω

fv dΩ , ∀ v ∈W0

(3.94)



CAP. 3 Domain decomposition methods 77

Now, the multi-domain formulation in the case u∞ = 0 of the inviscid generalized Stokes
problem is the following : define

W1 ≡ { v ∈ L2(Ω1) | div v ∈ L2(Ω1), v · n = 0 on Γ−
∞ }

W0,1 ≡ { v ∈W1 | v · n = 0 on Γ }
W2 ≡ { v ∈ L2(Ω2) | div v ∈ L2(Ω2), v · n = 0 on ΓB }
W0,2 ≡ { v ∈W2 | v · n = 0 on Γ }
S1 ≡ {σ ∈ H1(Ω1) | σ = 0 on Γ+

∞ }
S2 ≡ H1(Ω2) ,

then, find u1 ∈W1, σ
1 ∈ S1, u

2 ∈W2, σ
2 ∈ S2 such that

∫

Ω1

(ασ1 + div u1)ϕdΩ =

∫

Ω1

gϕdΩ , ∀ ϕ ∈ L2(Ω1)

∫
(αu1v − βσ1div v) dΩ =

∫

Ω1

fv dΩ , ∀ v ∈W0,1

u1 · n = u2 · n on Γ∫

Ω2

(ασ2 + div u2)ψ dΩ =

∫

Ω2

gψ dΩ , ∀ ψ ∈ L2(Ω2)

∫

Ω2

(αu2w − βσ2div w) dΩ =

∫

Ω2

fw dΩ, ∀ w ∈W0,2)

∫

Ω2

(αu2R2χ− βσ2div R2χ) dΩ =

∫

Ω2

f R2χdΩ+

∫

Ω1

f R1χdΩ −

∫

Ω1

(αu1R1χ− βσ1div R1χ) dΩ , ∀ χ ∈ H
1
2 (Γ) ,

(3.95)

where R1 and R2 are any possible pair of (continuous) operators from H− 1
2 (Γ) to W1 and W2

respectively which satisfy Rkχ = χ on Γ, k = 1, 2, (n is the unit normal vector to Γ which is
directed from Ω1 to Ω2).
In the same way as the procedure used in the viscous case, we show that (3.91) and (3.92)
are equivalent to (3.95). The only point that needs to be specified here is about the matching
conditions on Γ. Since u1 ·n = u2 ·n on Γ (see (3.95)3), then it follows that the function u built
up as in (3.82) belongs to the spaceW0 defined in (3.93). On the other hand, the last condition
in (3.93) states that σ1 = σ2 on Γ, hence if we construct σ as in (3.82), such a function belongs
to the space S0 defined in (3.93).
Also as in the viscous case, let us introduce now a suitable iterative procedure for the solution
of the multidomain problem. At each step, we proceed as follows :

• In Ω1, solve (3.91) with the boundary conditions




u1m · n = u∞ · n on Γ−
∞

σ1m = 0 on Γ+
∞

u1m · n = θmu
2
m−1 · n+ (1− θm)u

1
m−1 · n on Γ

(3.96)

• Then in Ω2, solve the problem (3.91) with the following boundary conditions :
{

σ2m = σ1m on Γ

u2m · n = 0 on ΓB .
(3.97)
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We continue by just underlying the differences between this case and the viscous case. We
define at first the following bilinear forms

b1[(u
1, σ1), (v, ϕ)] ≡

∫

Ω1

(βασ1ϕ+ βdiv u1ϕ+ αu1v − βσ1div v) dΩ (3.98)

b2[(u
2, σ2), (w,ψ)] ≡

∫

Ω2

(βασ2ψ + βdiv u2ψ + αu2w − βσ2div w) dΩ (3.99)

which correspond to (3.85) and (3.86) in the degenerate case µ = 0. It can be shown that these
forms are continuous in H(div ; Ωk) ≡ {u ∈ L2(Ωk) | div u ∈ L2(Ωk) } × L2(Ωk), but they are

not coercive. Then define the (continuous) operators Fk : H− 1
2 (Γ) → Wk ×Sk in the following

way : F1χ ∈ W1 × S1 ,

{
b1[F1χ, (v, ϕ)] = 0 ∀ v ∈ W0,1 , ϕ ∈ L2(Ω1),

(F1χ)1|Γ · n = χ,
(3.100)

and F2χ ∈ W2 × S2 ,

{
b2[F2χ, (w,ψ)] = 0 ∀w ∈ W0,2 , ψ ∈ L2(Ω2),

(F2χ)1|Γ · n = χ.
(3.101)

3.7.3 Convergence estimates

For the viscous and the inviscid cases, we have the following theorems, proved in [112].

Theorem 3.18. There exists a positive constant θ∗ ∈ ]0, 1] such that, if sup θm < θ∗ and
inf θm > 0, then the sequences u1m, u

2
m, σ

1
m, σ

2
m converge to the solution u1, u2, σ1, σ2 of

problem (3.81). Convergence is in the H1(Ω)-norm for velocity and L2(Ω)-norm for density.

Theorem 3.19. There exists a positive constant θ∗ ∈]0, 1] such that, if sup θm < θ∗ and
inf θm > 0, then the sequences u1m, u

2
m ,σ1m, σ

2
m converge to the solution u1, u2, σ1, σ2 of

problem (3.95). Namely, we have that ukm and div ukm convergence in L2(Ωk) to u
k and div uk,

respectively, and that σkm converges in H1(Ωk) to σ
k.

3.8 Numerical experiences

We provide some numerical experiments to illustrate the performance of the overlapping addi-
tive Schwarz preconditioner.

Description of the preconditioner

Assume at first that our computational domain Ω is subdivided into a finite number of non-
overlapping sub-domains Ωi see Figure 3.12. Then for all the nodes belonging to the internal
boundary of each sub-domains Ωi, we find all the elements which have these nodes in common
and add theses elements to each non-overlapping sub-domains Ωi considered. After adding
these elements, for each non-overlapping sub-domain Ωi we obtain a new sub-domain which
is an overlapping sub-domain called Ω̃i see Figure 3.13. In fact, in the Figure 3.13, the union
of the two coloured regions is the overlapping sub-domain Ω̃i with respect to the initial non-
overlapping sub-domain Ωi. The darker region represents the strip of overlapping. Whenever
the overlapping sub-domain Ω̃i is obtained, we have to apply the following algorithm in order
to have the desired preconditioner. We have:



CAP. 3 Domain decomposition methods 79

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 3.12: Nonoverlapping subdomain Ωi .
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Figure 3.13: Overlapping sub-domain Ω̃i .

• To construct the vector Ii of the position of all the node of Ω̃i in A, where A represents
the final matrix of the algebraic system (the general stiffness matrix). As our aim is to
define a new approach for the solution of the Navier-Stokes equations, the matrix A will
represent the matrix of the algebraic system when solving
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2 for the intermediate velocity field

2 for the updated pressure field

2 for the correction velocity field

2 for the temperature field

• To construct Ri and RT
i , respectively restriction and extension operator

• To compute Ai = RiAR
T
i the local sub-matrix with respect to each overlapping sub-

domain Ω̃i (the dimension of Ai is given by the node’s number of Ω̃i)

• To make the Incomplete Lower-Upper (ILU) factorization for each local sub-matrix Ai
and use this factorization to compute the approximated inverse matrix A−1

i of the local
sub-matrix Ai

• To compute Ti = RT
i A

−1
i Ri the preconditioner matrix with respect to each local sub-

matrix Ai (the dimension of Ti is the same as A)

• To compute Pi = TiA, the preconditioned matrix with respect to each local sub-matrix
Ai .

• To compute P =
∑M

i=0 Pi (respectively Q =
∑M

i=0Ti) the final preconditioned matrix
(respectively the final preconditioner) desired, where M being the number of all the
overlapping sub-domains, plus the coarse mesh

• To compute the final right hand term by the product Qb = c; at this point we have trans-
formed the initial algebraic system Auh = b in the equivalent well-conditioned system
Puh = c.

Remark 3.20. The coarse mesh is obtained using the sub-domains Ωi, in particular knowing
the number ni of vertices of the polygonal boundary ∂Ωi of Ωi we subdivide each Ωi in the
union of ni − 2 “big” triangles. Theses big triangles are easily obtained fixing the attention
on a vertex Ve of the ni vertices of ∂Ωi and drawing the diagonals of the polygon ∂Ωi starting
from the vertex Ve (see Figure 3.14). Finally, the coarse mesh is obtained by the union of all
the big triangles of all the sub-domains Ωi.

Figure 3.14: Sub-domain Ωi and its big triangles.

Implementation and results

We have implemented the preconditioner and have tested its efficiency solving the same prob-
lems of the tests of chapter 2 section 2.4 using the Bi-CGSTAB and the preconditioned additive
Schwarz Bi-CGSTAB iterative methods. We note that the inversion of all the local sub-matrices
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by means of ILU factorization have been performed taking the fill-in parameter equal to the
maximum number of nodes belonging to the support of each basis functions of Ω̃i. With the
fixed tolerance (1.E − 13), we obtained the same accuracy reported in Tables 2.3 and 2.4. We
denote by NSC the total number of sub-domains plus the coarse mesh.
In the following Tables we denote by:

• iter(Ah) the number of iterations without using the Schwarz additive preconditioner

• iter(PcasAh) the number of iterations using the Schwarz additive preconditioner

• K(Ah) the condition number of the matrix not preconditioned

• K(PcasAh) the condition number of the matrix preconditioned with the Schwarz additive
preconditioner.

Test 3.8.1

We have considered the problem of the Test 2.4.3.1 and have reported in the Table 3.1 the
number of iterations of the algebraic system when using the non-symmetric matrix Ah with
and without the additive Schwarz preconditioner obtained in the new conservative FE case with
10 sub-domains(coarse mesh included). Also, we have reported in the table 3.2 (respectively
Table 3.3) the number of iterations and the condition number of the symmetric matrix Ah of
the traditional FE case, when it is not preconditioned and when it is preconditioned using 10
(respectively 5) sub-domains (coarse mesh included).

Table 3.1: Iteration number with NSC = 10 .

Conservative FE
Nh 6= iter(Ah) 6= iter(PcasAh)

49 26 16
81 52 22
137 54 25
169 36 22

Table 3.2: Iteration and condition numbers with NSC = 10 .

Traditional FE
Nh 6= iter(Ah) K(Ah) 6= iter(PcasAh) K(PcasAh)

49 16 1.842E + 1 13 3.266E + 0
81 32 1.702E + 1 16 6.586E + 0
137 35 1.534E + 1 15 1.628E + 1
169 24 6.336E + 1 17 1.304E + 1

Table 3.3: Iteration and condition numbers with NSC = 5 .

Traditional FE
Nh 6= iter(Ah) K(Ah) 6= iter(PcasAh) K(PcasAh)

81 32 1.702E + 1 18 8.330E + 0
137 35 5.134E + 1 17 2.025E + 1
169 24 6.336E + 1 17 1.512E + 1
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Test 3.8.2

We have considered the problem of the Test 2.4.3.2 and have reported in Table 3.4 the number
of iterations when using the non-symmetric matrix Ah with and without the additive Schwarz
preconditioner obtained in the new conservative FE with 10 sub-domains (coarse mesh in-
cluded). Also, we have reported in Table 3.5 (respectively Table 3.6) the iteration and the
condition numbers of the symmetric matrix Ah in the traditional FE case when it is not pre-
conditioned and when it is preconditioner using 10 (respectively 5) sub-domains (coarse mesh
included) .

Table 3.4: Iteration number with NSC = 10 .

Conservative FE
Nh 6= iter(Ah) 6= iter(PcasAh)

49 42 23
81 76 39
137 99 44
169 70 49

Table 3.5: Iteration and condition numbers with NSC = 10 .

Traditional FE
Nh 6= iter(Ah) K(Ah) 6= iter(PcasAh) K(PcasAh)

49 34 4.530E + 1 15 5.854E + 0
81 49 4.732E + 1 17 1.025E + 1
137 61 1.254E + 2 19 3.649E + 1
169 47 1.580E + 2 19 5.405E + 1

Table 3.6: Iteration and condition numbers with NSC = 5 .

Traditional FE
Nh 6= iter(Ah) K(Ah) 6= iter(PcasAh) K(PcasAh)

81 49 4.732E + 1 20 1.732E + 1
137 61 1.254E + 2 18 4.233E + 1
169 47 1.580E + 2 18 3.277E + 1

Remark 3.21. Checking Tables (3.2), (3.3), (3.5), (3.6), in the case of the traditional FE, we
conclude that the theoretically foreseen scalability property is respected.

Remark 3.22. It has been demonstrated [1] that in presence of a non symmetric matrix Ah
of the system (2.56), the scalability property of the Schwarz preconditioner is respected by the
symmetric part of Ah under suitable conditions.

3.9 Conclusions of the chapter

• Using the Bi-CGSTAB solver with stopping criteria of the residual value ≤ 10E − 13,
the numerical solution coincides with the one obtained by the Gauss method up to eight
decimal digit

• The error norms of solutions of chapters 2 and 3 are equals up to eight decimal digit
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• The fluxes conservation is guaranteed independently of the number of sub-domains

• The accuracy of the solution is independent of the sub-domains decompositions (scala-
bility property)

• The Schwarz preconditioner reduces substantially (in particular for symmetric matrices)
the number of iterations necessary to obtain the desired accuracy.





Chapter 4

Parabolic and convection diffusion
problems

This chapter is devoted to the approximation of the second order parabolic and convection-
diffusion equations. We will present a short review of the theory concerning the existence and
uniqueness to these initial boundary value problems; then we will conclude by presenting our
advancing time scheme for the solution of convection diffusion problems since it is one of the
equations involved in the solution of the 2D Navier-Stokes equations that we are interested in.

4.1 Initial boundary value problems and weak formulation

Let us assume that Ω is a bounded domain in R
2 with Lipschitz boundary. We consider a

second order differential operator L given by:

Lu := −
2∑

i,j=1

Di(ai,jDju) +

2∑

i=1

[Di(biu) + ciDiu] + a0u (4.1)

We give these two definitions.

Definition 4.1. The operator L is elliptic if there exists a constant α0 > 0 such that

2∑

i,j=1

ai,j(x)ξiξj ≥ α0|ξ|2 (4.2)

for each ξ ∈ R
2 and for almost every x ∈ Ω.

Definition 4.2. The operator
∂

∂t
+ L (4.3)

is said to be parabolic if L is elliptic.

We note that the coefficients of the operator L (namely ai,j , bi, ci and a0) do not depend
on t. An example is provided by the heat equation ∂u

∂t −∆u = f in which L = −∆.
We indicate by Bu = g any of the boundary conditions considered in Chapter 1. In order
to simplify the discussion, we will consider only the case of Dirichlet homogeneous boundary
condition, that is u = 0 on ΣT := (0, T ) × ∂Ω.
Since the problem contains the time derivative operator, an initial condition has to be intro-
duced in order to determine the solution u. Thus, the following initial boundary value problem
holds:

∂u

∂t
+ Lu = f in QT := (0, T ) × Ω

u = 0 on ΣT := (0, T ) × ∂Ω

u|t=0 = u0 on Ω ,

(4.4)
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where f = f(t, x), and u0 = u0(x) are given data.
We give a weak formulation of the problem. We denote V := H1

0(Ω). We also denote by
L2(0, T ;V) the space

L2(0, T ;V) := { u : (0, T ) → V : u is measurable and

T∫

0

‖u(t)‖21 dt <∞ }

and similarly we define C0([0, T ]; L2(Ω)).
The weak formulation of (4.4) is the following: given f ∈ L2(QT ) and u0 ∈ L2(Ω), find
u ∈ L2(0, T ;V) ∩ C0([0, T ]; L2(Ω)) such that

d

dt
(u(t), v) + a(u(t), v) = (f(t), v) ∀ v ∈ V

u(0) = u0

(4.5)

where (· , · ) denotes the scalar product in L2(Ω), the bilinear form a(· , · ) is

a(w, v) :=

∫

Ω

[

2∑

i,j=1

ai,jDjwDiv −
2∑

i=1

(biwDiv + civDiw) + a0w · v].

In the case L = −∆, we have a(w, v) =
∫
Ω∇w·∇v dx .

4.1.1 Mathematical analysis

Several methods can be used to prove the existence and uniqueness of a solution to (4.5). We
are presenting the one based on the Faedo-Galerkin approach with suitable energy estimates.
Let us assume that the bilinear form a(· , · ) is continuous and satisfies the G̊arding inequality
(sometimes also named weakly coerciveness) that is:

there exists two constants α > 0 and λ ≥ 0 : a(v, v) + λ‖v‖20 ≥ α‖v‖21 ∀ v ∈ V . (4.6)

More often it is satisfied taking λ = 0, that means the bilinear form a(· , · ) is strongly coercive,
this is for example the case of the heat equation aforementioned. Let us notice that all norms
refer to the space variables, i.e., ‖· ‖k is the norm in the Sobolev space Hk(Ω) for k ≥ 0. In
general, the inequality (4.6) is satisfied for all the boundary conditions mentioned in Chapter
1 provided that for each i, j = 1, , 2, the coefficients ai,j, bi, ci and a0 of the operator L belong
to L∞(Ω). In fact using (4.2), we have

a(v, v) =

∫

Ω

[
∑

i,j

ai,jDiv ·Djv −
∑

i

(bi − ci)vDiv + a0v
2] dΩ

≥ β0‖Dv‖20 − ‖b− c‖L∞(Ω)‖Dv‖0‖v‖0 + ‖a0‖L∞(Ω)‖v‖20
but using this arithmetic-geometric mean inequality for each ǫ > 0

‖Dv‖0‖v‖0 ≤ ǫ‖Dv‖20 +
1

4ǫ
‖v‖20

It follows that (4.6) holds choosing for instance

λ > C
1

α0
(‖b− c‖L∞(Ω) − ‖a0‖L∞(Ω))

where C = C(2,Ω) is a suitable constant.
We have this existence theorem.
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Theorem 4.3. Assume that the bilinear form a(· , · ) is continuous in V × V and that (4.6) is
satisfied with λ = 0. Then given f ∈ L2(QT ) and u0 ∈ L2(Ω), there exists a unique solution
u ∈ L2(0, T ;V)∩C0([0, T ]; L2(Ω)) to (4.5). Moreover, ∂u∂t ∈ L2(0, T ;V′) and the energy estimate

‖u(t)‖20 + α

t∫

0

‖u(τ)‖21dτ ≤ ‖u0‖20 +
1

α

t∫

0

‖f(τ)‖20dτ (4.7)

holds for each t ∈ [0, T ].

Proof. We are going to construct an approximate sequence solving suitable finite dimensional
problems. Since V is a closed subspace of the Hilbert space H1(Ω), it is a separable Hilbert
space. Let {φj}j≥1 be a complete orthonormal basis in V and define VN := span{φ1, · · · , φN}.
We consider the approximate problem: for each t ∈ [0, T ], find uN (t) ∈ VN such that

d

dt
(uN (t), φj) + a(uN (t), φj) = (f(t), φj), ∀ j = 1, · · · , N, t ∈ (0, T )

uN (0) = uN0 := PN (u0) =

N∑

s=1

ρsφs

(4.8)

where PN is the orthogonal projection in L2(Ω) on VN , hence the vector ρ is the solution of the
linear system Mρ = (u0, φj), M being the mass matrix Mjs := (φj , φs). Since {φj}, j = 1, · · · , N
is a basis for VN , the equation in (4.8) is therefore satisfied for each vN ∈ VN .
Writing uN (t) =

∑N
s=1C

N
s (t)φs, (4.8) is equivalent to solving

M
d

dt
CN(t) + ACN (t) = F (t)

MCN (0) = C0

(4.9)

where for i, j = 1, · · · , N , Ai,j := a(φj , φi), Fi(t) := (f(t), φi), C0,i := (u0, φi). Since M is
positive definite, we find a unique solution CN to (4.9). Since F ∈ L2(0, T ), it follows that
CN ∈ H1(0, T ) i.e uN ∈ H1(0, T ;V). Choosing uN (t) in (4.8) as a test function, we have

(
d

dt
uN (t), uN (t)) + a(uN (t), uN (t)) = (f(t), uN (t))

and therefore, using (4.6) it comes

1

2

d

dt
‖uN (t)‖20 + α‖uN (t)‖21 ≤ ‖f(t)‖0‖uN (t)‖0.

Applying the arithmetic-mean inequality for each ǫ > 0 it comes

1

2

d

dt
‖uN (t)‖20 + α‖uN (t)‖21 ≤ ǫ‖uN (t)‖20 +

1

ǫ
‖f(t)‖20.

Integrating over (0, τ), τ ∈ (0, T ], it comes by taking ǫ = α

‖uN (τ)‖20 + 2α

τ∫

0

‖uN (t)‖21dt ≤ ‖u0‖20 + 2α

τ∫

0

‖uN (t)‖20dt+
2

α

τ∫

0

‖f(t)‖20dt

i.e

‖uN (τ)‖20 + 2α[

τ∫

0

(‖uN (t)‖21 − ‖uN (t)‖20)dt] ≤ ‖u0‖20 +
2

α

τ∫

0

‖f(t)‖20dt
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i.e

‖uN (τ)‖20 + 2α

τ∫

0

‖DuN (t)‖20dt ≤ ‖u0‖20 +
2

α

τ∫

0

‖f(t)‖20dt

and we obtain

‖uN (τ)‖20 +C1α

τ∫

0

‖uN (t)‖21dt ≤ ‖u0‖20 + C2
1

α

τ∫

0

‖f(t)‖20dt (4.10)

Thus the sequence uN is bounded in L∞(0, T ; L2(Ω)) ∩ L2(0, T ;V). Hence by the compact
embedding theorem, there exists a subsequence (still denoted by uN ) which converges to the
weak star topology of L∞(0, T ; L2(Ω)) and weakly in L2(0, T ;V) (see [136]). This means that
there exists u ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ;V) such that

T∫

0

(uN (t), ϕ(t))dt −→
T∫

0

(u(t), ϕ(t))dt as N → ∞

for each ϕ ∈ L1(0, T ; L2(Ω)) and

T∫

0

(∇uN (t), φ(t))dt −→
T∫

0

(∇u(t), φ(t))dt as N → ∞

for each φ ∈ L2(0, T ; L2(Ω)). In order to pass to the limit in (4.8), we take Ψ ∈ C1([0, T ]) with
Ψ(T ) = 0. By multiplying (4.8) by Ψ and integrating by parts over (0, T ), the first term at the
left hand side gives (since Ψ(T ) = 0)

T∫

0

(
du

dt
(t), φj)Ψdt = −

T∫

0

(uN (t), φj)
dΨ

dt
(t)dt− (uN0 , φj)Ψ(0)

Since uN0 converges in L2(Ω) to u0, by choosing arbitrarily N and passing to the limit in (4.8),
we finally obtain

−
T∫

0

(u(t), φj)
dΨ

dt
(t)dt−(u0, φj)Ψ(0)+

T∫

0

a(u(t), φj)Ψ(t)dt =

T∫

0

(f(t), φj)Ψ(t)dt, ∀ j = 1, · · · , N .

(4.11)
Since the linear combinations of φj are dense in V, we can also write (4.11) for each v ∈ V.
Moreover, taking Ψ ∈ D(0, T ), (4.11) is nothing else that (4.5). Thus we have constructed a
solution u ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ;V) of problem (4.5).
It remains to show that u(0) = u0 and ∂u

∂t ∈ L2(0, T ;V′). Let us recall in fact that from the
latter result it follows that u ∈ L2(0, T ;V) ∩H1(0, T ;V′) thus u ∈ C0([0, T ]; L2(Ω)) see [86].
Now we prove that u(0) = u0. From (4.5), we have that (u(t), v) ∈ H1(0, T ), hence it is
a continuous function on [0, T ]. Multiplying (4.5) by Ψ ∈ C1([0, T ]) with Ψ(T ) = 0 and
integrating by parts it comes

−
T∫

0

(u(t), v)
dΨ

dt
(t)dt− (u(0), v)Ψ(0) +

T∫

0

a(u(t), v)Ψ(t)dt =

T∫

0

(f(t), v)Ψ(t)dt ∀ v ∈ V

thus, taking Ψ(0) = 1, we get (u(0) − u0, v) = 0 ∀ v ∈ V this implies that u(0) = u0.
Finally from (4.5) it follows that

∂u

∂t
+ Lu = f (4.12)
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in the sense of distributions of QT . Since Lu ∈ L2(0, T ;V′) we find that ∂u
∂t ∈ L2(0, T ;V′).

The uniqueness of the solution is a consequence of (4.7) which is indeed an a-priori estimate
for any solution u ∈ L2(0, T ;V) ∩H1(0, T ;V′) to (4.5). Rewriting (4.5) as

〈∂u
∂t

(t), v〉 + a(u(t), v) = (f(t), v) ∀ v ∈ V

where 〈· , · 〉 denotes the duality pairing between V′ and V. Taking v = u(t), it follows from
(see for instance [86] or [131]) that

1

2

d

dt
‖u(t)‖20 + a(u(t), u(t)) = (f(t), u(t))

and thus (4.7) is obtained by proceedings as in the proof of (4.10).

Remark 4.4. To prove the existence of a solution an approach based on the semi-group theory
can be used, in which the solution u to (4.4) is formally given by

u(t) = exp(−tA)u0 +
t∫

0

exp(−(t− s)A)f(s) ds (4.13)

where A represents a suitable “realization”of L with the associated boundary condition u = 0
on ∂Ω. We refer to [102] for details on this approach.

We have this a-priori estimate:

Proposition 4.5. Assume (4.6) is satisfied with λ = 0 and that f ∈ L2(QT ), u0 ∈ V, ai,j, bi ∈
C1(Ω) and ci, a0 ∈ L∞(Ω). Then the solution u to (4.5) belongs to L∞(0, T ;V)∩H1(0, T ; L2(Ω))
and satisfies the energy estimate

sup
t∈(0,T )

‖u(t)‖21 +
T∫

0

‖∂u
∂t

(t)‖20dt ≤ Cα(‖u0‖21 +
T∫

0

‖f(t)‖20dt) (4.14)

where Cα > 0 is a constant independent of T .

The proof of this result can be found in [113].

Corollary 4.6. Assume that the solution u obtained in Proposition 4.5 satisfies

‖u(t)‖22 ≤ C(‖Lu(t)‖20 + ‖u(t)‖21) almost everywhere in [0, T ] (4.15)

then u ∈ L2(0, T ; H2(Ω)) ∩H1(0, T ; L2(Ω)) ∩ C0([0, T ];V) and satisfies the estimate

max
t∈[0,T ]

‖u(t)‖21 +
T∫

0

(‖∂u
∂t

(t)‖20 + ‖u(t)‖22)dt ≤ Cα(‖u0‖21 +
T∫

0

‖f(t)‖20dt) (4.16)

Proof. Estimate (4.16) follows from (4.15), (4.14) and (4.7), since Lu = f − ∂u
∂t . More-

over, by using an interpolation (see [86]) one has that L2(0, T ; H2(Ω)) ∩ H1(0, T ; L2(Ω)) ⊂
C0([0, T ]; H1(Ω)).

Remark 4.7. The assumption (4.15) is satisfied for homogeneous Dirichlet problem if ∂Ω ∈ C2

see [86] or if Ω is a plane convex polygonal domain see [52].

We are giving some methods of approximation to the solution to (4.5).
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4.1.2 Semi-discrete approximation by FE

A step towards the approximation of the solution to (4.5) entails the discretization of the space
variable only. It leads to a system of ordinary differential equations whose solution uh(t) is
an approximation of the exact solution for each t ∈ [0, T ]. We will focus only on the finite
element case. For other spatial discretizations such as the spectral collocation or FD methods,
we suggest the books [113] and [122] respectively. The problem by variational formulation (4.5)
leads to a semi-discrete problem by approximating the space V by a finite dimensional space
Vh. The semi-discrete problem is the following: given f ∈ L2(QT ) and u0,h ∈ Vh, a suitable
approximation of the initial datum u0 ∈ L2(Ω), for each t ∈ [0, T ], find uh(t) ∈ Vh such that

d

dt
(uh(t), vh) + a(uh(t), vh) = (f(t), vh) ∀ vh ∈ Vh, t ∈ (0, T )

u0(0) = u0,h .
(4.17)

We have assumed that Ω is a polygonal domain with Lipschitz boundary and the boundary
condition is of homogeneous Dirichlet kind and so Vh is a finite dimensional subspace of H1

0(Ω).
Writing uh(t) =

∑
j εjϕj , where {ϕj}Nh

j=1 is a basis of Vh and u0,h =
∑

j ε0,hϕj , problem (4.17)
can be written as

M
d

dt
ε(t) + Aε(t) = F (t)

ε(0) = ε0

(4.18)

where Mi,j = (Mfe)i,j := (ϕi, ϕj), Ai,j = (Afe)i,j := a(ϕj , ϕi), Fi(t) := (f(t), ϕi), i, j =
1, · · · , Nh.
Since Mfe is positive definite, there exists a unique solution ε(t) to (4.18). By repeating the
proof of Theorem (4.3), we see that the solution uh satisfies an energy estimate like (4.7)
provided u0,h converges to u0 in L2(Ω). This proves the stability of the method.
The convergence of uh to u and an estimate of the order of convergence is given by this
proposition.

Proposition 4.8. Let Ih be a regular family of triangulations and assume that piecewise-linear
or bilinear elements are used. Assume moreover that (4.6) (with λ = 0) and (4.15) are satisfied
and that f ∈ L2(QT ), u0 ∈ V, ai,j, bi ∈ C1(Ω), ci, a0 ∈ L∞(Ω). Then the solutions u and uh
to (4.5) and (4.17) respectively satisfy

‖u(t)− uh(t)‖20 + α

t∫

0

‖u(τ)− uh(τ)‖21dτ ≤ Cα,γh
2kN(u)et for each t ∈ [0, T ] , (4.19)

where α is the coerciveness constant in (4.6), N(u) is a suitable function depending on u and on
∂u
∂t , γ is the continuity constant of the bilinear form a(·, ·) and Cα,γ > 0 is a suitable constant
independent of h (the parameter characteristic of the triangulation).

Proof. From the coercivity, we can write

α‖u− uh‖2H1(Ω) ≤ a(u− uh, u− uh)

= a(u− uh, u− vh) + a(u− uh, vh − uh) ∀ vh ∈ Vh.
(4.20)

By subtraction between (4.5) and (4.17), it comes

d

dt
(u− uh, wh) + a(u− uh, wh) = (

∂(u− uh)

∂t
, wh) + a((u− uh), wh) = 0

with wh = vh − uh i.e a(u− uh, wh) = −(∂(u−uh)∂t , wh). Therefore (4.20) becomes

α‖u− uh‖21 ≤ a(u− uh, u− vh)− (
∂(u − uh)

∂t
, wh) . (4.21)

We treat separately the terms in the right hand side of (4.21).
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• Using the continuity of the bilinear form and the Young inequality, it comes

a(u− uh, u− vh) ≤ γ‖u− uh‖1‖u− vh‖1

≤ α

2
‖u− uh‖21 +

γ2

2α
‖u− vh‖21 .

• Writing wh in the form wh = (vh − u) + (u− uh), it comes

−(
∂(u− uh)

∂t
, wh) = (

∂(u− uh)

∂t
, u− vh)−

1

2

d

dt
‖u− uh‖20 .

Replacing these two results in (4.21), it comes

α‖u− uh‖21 ≤
α

2
‖u− uh‖21 +

γ2

2α
‖u− vh‖21+

(
∂(u− uh)

∂t
, u− vh)−

1

2

d

dt
‖u− uh‖20

i.e

1

2

d

dt
‖u− uh‖20 +

α

2
‖u− uh‖21 ≤

γ2

2α
‖u− vh‖21 + (

∂(u− uh)

∂t
, u− vh) .

Multiplying by two the two members and integrating in (0, t), it comes

‖(u− uh)(t)‖20 + α

t∫

0

‖(u− uh)(s)‖21 ds ≤ ‖(u− uh)(0)‖20 +
γ2

α

t∫

0

‖u(s)− vh‖21 ds +

2

t∫

0

(
∂

∂t
(u− uh)(s), u(s) − vh) ds .

(4.22)

Integrating by parts the last integral with respect to the temporal variable and using the Young
inequality, it comes

t∫

0

(
∂

∂t
(u− uh)(s), u(s)− vh) ds =

−
t∫

0

((u− uh)(s),
∂

∂t
(u(s)− vh)) ds+

((u− uh)(t), (u − vh)(t)) − ((u− uh)(0), (u − vh)(0))

≤

1

4

t∫

0

‖(u− uh)(s)‖20 ds +

t∫

0

‖ ∂
∂t

(u(s)− vh)‖20 ds+

1

4
‖(u − uh)(t)‖20 + ‖(u− vh)(t)‖20 +
‖(u− uh)(0)‖0 · ‖(u− vh)(0)‖0 .
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Therefore, (4.22) becomes

1

2
‖(u− uh)(t)‖20 + α

t∫

0

‖(u− uh)(s)‖21 ds ≤

γ2

α

t∫

0

‖u(s)− vh‖21 ds+ 2

t∫

0

‖∂(u(s)− vh)

∂t
‖20 ds +

2‖(u− vh)(t)‖20 + ‖(u− uh)(0)‖20 + 2‖(u− uh)(0)‖0‖(u− vh)(0)‖0 +

1

2

t∫

0

‖(u− uh)(s)‖20 ds .

Choosing for almost t ∈ [0, T ], vh = Ikh(u(t)), where Ikh is the finite element interpolation
operator (2.15), we find (see [108])

h‖u− Ikh(u)‖1 + ‖u− Ikh(u)‖0 ≤ Chk+1|u|k+1 .

Now we have:

F1 =
γ2

α

t∫

0

‖u(s)− vh‖21 ds ≤ C1h
2k

t∫

0

|u(s)|2k+1 ds

F2 = 2

t∫

0

‖∂(u− vh)

∂t
(s)‖20 ds ≤ C2h

2k+2

t∫

0

|∂u
∂t

(s)|2k+1 ds

F3 = 2‖(u − vh)(t)‖20 ≤ C3h
2k+2|u|2k+1

F4 = ‖(u− uh)(0)‖20 + 2‖(u− uh)(0)‖0‖(u− vh)(0)‖0 ≤ C4h
2k+2|u(0)|2k+1 .

Thus F1 + F2 + F3 + F4 ≤ Ch2kN(u), where N(u) is a suitable function depending on u and
on ∂u

∂t . Therefore, we have

1

2
‖(u− uh)(t)‖20 + α

t∫

0

‖(u− uh)(s)‖21 ds ≤ Cα,γh
2kN(u) +

1

2

t∫

0

‖(u− uh)(s)‖20 ds .

Applying the Gronwall lemma (see [108]), we obtain the a-priori error estimate :

∀ t > 0 , ‖(u− uh)(t)‖20 + 2α

t∫

0

‖u− uh‖21 ≤ Cγ,αh
2kN(u)et (4.23)

We note that the ingredients in the proof above leads to an a priori error estimate with
respect to the norm space L2(R+;V)∩ C0(R+; L2(Ω)) and for piecewise-linear polynomial only.
If we assume more regularity on the data and furthermore that suitable compatibility conditions
between the initial datum and the boundary data are satisfied at t = 0 on ∂Ω, the solution u
to (4.5) is indeed more regular. This implies in principle that the convergence of uh to u is of
higher order. An example of error estimate of higher order is given by the following proposition.

Proposition 4.9. Let Ih be a regular family of triangulations. Assume that (4.6) holds with
λ = 0 and the solution ϕ(r) of the adjoint problem

ϕ(r) ∈ V : a(v, ϕ(r)) = (r, v) ∀v ∈ V
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satisfies ϕ(r) ∈ H2(Ω) when r ∈ L2(Ω). Assume moreover that u0 ∈ Hk+1(Ω), k ≥ 1, and the
solution u to (4.5) is such that ∂u

∂t ∈ L1(0, T ; Hk+1(Ω)). Then, using piecewise-polynomials of
degree less that or equal to k in the definition of the finite element space Vh, for each t ∈ [0, T ],
the solution uh to (4.17) satisfies

‖u(t)− uh(t)‖0 ≤ ‖u0 − u0,h‖0 + Chk+1(‖u0‖k+1 +

t∫

0

‖∂u
∂t

(τ)‖k+1dτ) (4.24)

where C > 0 is a suitable constant independent of h .

We refer to [113] for the proof of the proposition.

4.1.3 Time advancing by FD

In order to have a full discretization of (4.5), we consider a uniform mesh for the time variable
t and define

tn := n∆t, n = 0, 1, · · · ,N (4.25)

∆t > 0 being the time-step and N := [T/∆T ], the integer part of T/∆T . Then we replace
the time derivative by means of suitable quotients and thus construct a sequence unh(x) that
approximates the exact solutions u(tn, x).
Let us first describe the procedure on a general system of ordinary equations

dy(t)

dt
= Ψ(t, y(t)), t ∈ (0, T )

y(0) = y0

(4.26)

The well known θ− method consists in replacing (4.26) by the following scheme: find yn such
that

1

∆t
(yn+1 − yn) = θΨ(tn+1, y

n+1) + (1− θ)Ψ(tn, y
n), n = 0, 1, · · · ,N − 1

y0 = y0

(4.27)

where θ ∈ [0, 1] is a parameter. When θ = 0 or θ = 1, the method is called forward Euler, or
backward Euler respectively while for θ = 1/2 it is named Crank-Nicolson .
Since we are considering only the finite element case, by applying the θ− scheme to the semi-
discrete approximation (4.17), we obtain the problem: find unh ∈ Vh such that

1

∆t
(un+1
h − unh, vh) + a(θun+1

h + (1− θ)unh, vh) = (θf(tn+1) + (1− θ)f(tn), vh) ∀ vh ∈ Vh

u0h = u0,h
(4.28)

for each n = 0, 1, · · · ,N − 1, having assumed that f ∈ L2(QT ).
At each time step, one has to solve the linear system

(M + θ∆tA)ξn+1 = ηn (4.29)

where ηn is known from the previous time instant. The matrices M and A are defined in (4.18)
and

un+1
h =

Nh∑

j=1

ξn+1
j ϕj

ϕj being the base functions of Vh .
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Remark 4.10. If we assume that (4.6) holds with λ = 0, the matrix (M + θ∆tA) is positive
definite. Thus (4.29) has a unique solution. Moreover, (M+θ∆tA) is symmetric if the bilinear
form is symmetric, i.e., a(z, v) = a(v, z) for each z, v ∈ V.

In order to give the stability property of unh, we need to introduce this notation. For any
function φ ∈ L2(Ω), define

‖φ‖−1,h := sup
vh∈Vh, vh 6=0

(φ, vh)

‖vh‖1
(4.30)

which is a norm on Vh since ‖φ‖−1,h ≤ ‖φ‖0 for each φ ∈ L2(Ω). This stability result holds.

Theorem 4.11. Assume that (4.6) is satisfied with λ = 0 and that the map t → ‖f(t)‖0 is
bounded in [0, T ]. When 0 ≤ θ ≤ 1/2, assume moreover that Ih is quasi-uniform family of
triangulations and that the following restriction on the time step is satisfied

∆t(1 +C3h
−2) <

2α

(1− 2θ)γ2
, (4.31)

where C3 is the constant appearing in an inverse type inequality (2.49), while α and γ are the
coerciveness and continuity constants respectively. Then unh defined in (4.28) satisfies

‖unh‖0 ≤ Cθ(‖u0,h‖0 + sup
t∈[0,T ]

‖f(t)‖0), n = 0, 1, · · · ,N , (4.32)

where Cθ > 0 is a non-decreasing function of α−1, γ and T , and is independent of N , ∆t and
h .

Proof. Take vh = θun+1
h + (1− θ)unh in (4.28). It comes that

1

2
‖un+1

h ‖20 −
1

2
‖unh‖20 + (θ − 1

2
)‖un+1

h − unh‖20 +

∆ta(θun+1
h + (1− θ)unh, θu

n+1
h + (1− θ)unh) = ∆t(θf(tn+1) + (1− θ)f(tn), θu

n+1
h + (1− θ)unh) .

Using the coerciveness assumption (4.6) for each 0 < ε ≤ 1 from Young inequality, it comes
that

‖un+1
h ‖20 − ‖unh‖20 + (2θ − 1)‖un+1

h − unh‖20 +

2(1 − ε)α∆t‖θun+1
h + (1− θ)unh‖21 ≤

∆t

2εα
‖θf(tn+1) + (1− θ)f(tn)‖2−1,h .

(4.33)

When 1/2 ≤ θ ≤ 1, the left hand side is larger than ‖un+1
h ‖20 −‖unh‖20 and in particular, we can

set ε = 1. When 0 ≤ θ < 1/2, we proceed as follows: choosing vh = un+1
h − unh in (4.28), we

find

‖un+1
h − unh‖20 = −∆t a(θun+1

h + (1− θ)unh, u
n+1
h − unh)+

∆t (θf(tn+1) + (1− θ)f(tn), u
n+1
h − unh) ≤ γ∆t ‖θun+1

h + (1− θ)unh‖1‖un+1
h − unh‖1+

∆t ‖θf(tn+1) + (1− θ)f(tn)‖−1,h‖un+1
h − unh‖1 .

(4.34)
Then, by means of an inverse type inequality (2.49), we have

‖un+1
h − unh‖0 ≤ ∆t (1 + C3h

−2)1/2[ γ‖θun+1
h + (1− θ)unh‖1 + ‖θf(tn+1) + (1− θ)f(tn)‖−1,h ] .

(4.35)
Setting for each η > 0

Kη := [ 2(1− ε)α − (1− 2θ)γ(γ + η)∆t (1 +C3h
−2) ],
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it follows

‖un+1‖20 − ‖unh‖20+
∆tKη‖θun+1

h + (1− θ)un+1
h ‖21 ≤ Cε,η∆t (1 + C3 h

−2)‖θf(tn+1) + (1− θ)f(tn)‖2−1,h .

Choosing ε and η small enough due to (4.31), we have Kη > 0 and moreover 1 + C3 h
−2 ≤ C∗

for a suitable C∗ > 0, therefore

‖un+1
h ‖20 − ‖unh‖20 ≤ Cǫ,η∆t‖θf(tn+1) + (1− θ)f(tn)‖2−1,h . (4.36)

Now let m to be a fixed index, 1 ≤ m ≤ N , by summing up from n = 0 to n = m− 1, we find

‖unh‖20 ≤ ‖u0,h‖20 + C∆t

m−1∑

n=0

‖θf(tn+1) + (1− θ)f(tn)‖2−1,h

and the result follows.

The next theorem is the error estimate between the semi-discrete solution uh(tn) and the
fully-discrete one unh for any fixed h.

Theorem 4.12. Assume that (4.6) is satisfied with λ = 0 and ∂uh
∂t (0) ∈ L2(Ω), f ∈ L2(QT )

with ∂f
∂t ∈ L2(QT ) . When 0 ≤ θ < 1/2, assume moreover that Ih is a quasi-uniform family of

triangulations and that the time-step restriction (4.31) is satisfied. Then the functions unh and
uh(t) defined in (4.28) and in (4.17) respectively satisfy

‖unh − uh(tn)‖0 ≤ Cθ∆t(‖
∂uh
∂t

(0)‖20 +
T∫

0

‖∂f
∂t

(s)‖20 )1/2 (4.37)

for each n = 0, 1, · · · ,N . When θ = 1/2, under the additional assumptions ∂2f
∂t2

∈ L(QT ) and
∂2uh
∂t2

(0) ∈ L2(Ω), the following estimate also holds

‖unh − uh(tn)‖0 ≤ C(∆t)2(‖∂
2uh
∂t2

(0)‖20 +
T∫

0

‖∂f
∂t

(s)‖20)1/2 (4.38)

for each n = 0, 1, · · · ,N . Cθ > 0 and C > 0 are non-decreasing functions of α−1, γ and T ,
and are independent of N , ∆t and h .

We refer to [113] for the proof of this theorem.

4.2 Approximation of convection-dominated problems

In practical applications, convection-diffusion equations are generally employed to describe
the transport processes involving fluid motion. With the progress in computer power, the
differential convection-diffusion equations can be studied by pursuing the numerical solutions
of their discretized counterparts. Therefore, accurate and stable numerical solutions of the
convection-diffusion equations are of vital importance. By inspecting the convection-diffusion
equations, one can find that it contains two distinct differential operators derived from their
respective physical processes: the convection and the diffusion operators. The convection
operator consists of variations (first-order spatial derivatives) of the transported variables,
which arise from fluid flow. On the other hand, the diffusion operator (represented by second-
order spatial derivatives) is due to transport at the molecular level. These two terms can be
treated separately and then combined to form the resulting discretized expression. The main
problem encountered in general on the treatment of the convective operator. We are going to
review standard methods in the approximation of the convection dominated problems.
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4.2.1 The streamline diffusion method

The streamline diffusion is the prevalent method in the numerical treatment of stationary
convection-dominated problems. The basic idea is due to Brooks and Hughes [16], who called
the method the streamline upwind Petrov-Galerkin (SUPG) method.
We describe the idea of the method for the special case of boundary value problem (4.39) under
consideration. Let Ω ⊂ R

2 denotes a bounded domain with Lipschitz continuous boundary.
Given a function f : Ω → R, a function u : Ω → R is to be determinated such that

Lu = f in Ω

u = 0 on ∂Ω
(4.39)

where Lu := −∇· (K∇u) + c·∇u+ ru with sufficiently smooth coefficients

K : Ω → R
2,2, c : Ω → R

2, r : Ω → R

We consider K(x) ≡ εI with a constant coefficient ε > 0, c ∈ C1(Ω,R2), r ∈ C(Ω), f ∈ L2(Ω).
We also assume that the inequality

r − 1

2
∇ · c ≥ r0 (4.40)

is valid in Ω, where r0 > 0 is a constant. Then the variational formulation of (4.39) reads as
follows:

find u ∈ V := H1
0(Ω) such that a(u, v) =

∫

Ω

fv dx for all v ∈ V (4.41)

where the bilinear form a(·, ·) is :

a(u, v) =

∫

Ω

[ ε∇u·∇v + c · ∇uv + ruv ] dx u, v ∈ V . (4.42)

Given a regular family of triangulations Ih, let Vh ⊂ V denote the set of continuous functions
that are piecewise polynomial of degree k ∈ N and satisfy the boundary conditions, i.e.,

Vh := { vh ∈ V | vh|K ∈ Pk(K) for all K ∈ Ih } . (4.43)

If in addition the solution u ∈ V of (4.41) belongs to the space Hk+1(Ω), we have by (2.16), the
following estimate for the interpolant Ih(u):

‖u− Ih(u)‖l,K ≤ Cinth
k+1−l
K |u|k+1,K (4.44)

for all 0 ≤ l ≤ k + 1 and all K ∈ Ih. Since the spaces Vh are of finite dimension, a so-called
inverse inequality similar to (2.49) also holds:

‖∆vh‖0,K ≤ Cinv
hK

|vh|1,K (4.45)

for all vh ∈ Vh and all K ∈ Ih. We note that it is important that the constants Cint, Cinv > 0
from (4.44) and (4.45) respectively, do not depend on u or vh and on the particular element
K ∈ Ih.
The basic idea of the streamline-diffusion method consists in the addition of suitably weighted
residuals to the variational formulation (4.42). Because of the assumption u ∈ Hk+1(Ω), k ∈ N,
the differential equation can be interpreted as an equation in L2(Ω). In particular, it is valid
on any element K ∈ Ih in the sense of distribution strong form i.e.,

−ε∆u+ c·∇u+ ru = f almost everywhere in K and for all K ∈ Ih .
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Taking an element wise defined mapping τ : Vh → L2(Ω) and multiplying the local differential
equation in L2(K) by the restriction over τ(vh) to K, then scaling by a suitable parameter
δK ∈ R and summing the results over all elements K ∈ Ih, we obtain

∑

K∈Ih

δK〈−ε∆u+ c·∇u+ ru, τ(vh)〉0,K =
∑

K∈Ih

δK〈f, τ(vh)〉0,K

Adding this relation to the equation (4.41) restricted to Vh, we see that the weak formulation
u ∈ Vh ∩Hk+1(Ω), satisfies the following variational equation:

ah(u, vh) = 〈f, vh〉h for all vh ∈ Vh

where

ah(u, vh) := a(u, vh) +
∑

K∈Ih

δK〈−ε∆u+ c.∇u+ ru, τ(vh)〉0,K ,

〈f, vh〉h = 〈f, v〉0 +
∑

K∈Ih

δK〈f, τ(vh)〉0,K .

Thus the discrete problem is the following :

find uh ∈ Vh such that ah(uh, vh) = 〈f, vh〉h for all vh ∈ Vh (4.46)

Corollary 4.13. Suppose the problems (4.41) and (4.46) have a solution u ∈ V∩Hk+1(Ω) and
uh ∈ Vh respectively. The following error equation holds:

ah(u− uh, vh) = 0 for all vh ∈ Vh . (4.47)

Remark 4.14. • In the streamline-diffusion method (SDFEM), the mapping τ used in
(4.46) is chosen as τ(vh) := c · ∇vh

• Another choice of the mapping τ is given by τ(vh) := −ε∆vh + c · ∇vh + rvh. This is the
so-called Galerkin/ Least Squares-FEM (GLS FEM) method. A detail of this approach
can be found in [62].

4.2.2 Interpretation of the additional term in the case of linear elements

If the finite element space Vh is formed by piecewise linear functions (i.e., in the above definition
(4.43) of Vh we have k = 1), we get ∆vh|K = 0 for all K ∈ Ih. If in addition there is no reactive
term (i.e., r = 0), the discrete bilinear form is

ah(uh, vh) =

∫

Ω

ε∇uh · ∇vh dx+ 〈c·∇uh, vh〉0 +
∑

K∈Ih

δK〈c·∇uh, c · ∇vh〉0,K .

Since the scalar product appearing in the sum can be rewritten as:
〈c·∇uh, c·∇vh〉0,K =

∫
K(ccT∇uh)·∇vh dx, we obtain the following equivalent representation:

ah(uh, vh) =
∑

K∈Ih

∫

K

((εI + δKcc
T )∇uh)·∇vh dx+ 〈c·∇uh, vh〉0 .

This shows that the additional term introduces an element dependent extra diffusion in the
direction of the convective field c which motivates the name of the method.
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4.2.3 Analysis of the streamline diffusion method

To start the analysis of stability and convergence properties of the streamline diffusion method,
we consider the term ah(vh, vh) for arbitrary vh ∈ Vh and the structure of the discrete bilinear
form ah(· , · ) that allows us to derive the estimate

ah(vh, vh) ≥ ε|vh|21 + r0‖vh‖20 +
∑

K∈Ih

δK〈−ε∆vh + c·∇vh + rvh, c·∇vh〉0,K . (4.48)

Theorem 4.15. We have the following stability property:

ah(vh, vh) ≥
1

2
‖vh‖2sd ∀ vh ∈ Vh ,

where ‖.‖sd is a suitable streamline diffusion norm.

Proof. To get an ellipticity estimate of a(·, ·) in (4.42), we take u = v, use the relation
2v(c·∇v) = c·∇v2, and performing an integration by parts of the middle term, we obtain

a(v, v) = ε|v|21 + 〈c·∇v, v〉0 + 〈rv, v〉0
= ε|v|21 − 〈1

2
∇· c, v2〉0 + 〈rv, v〉0

= ε|v|21 + 〈r − 1

2
∇· c, v2〉0

and using the inequality (4.40), we obtain the estimate

a(v, v) ≥ ε|v|21 + r0‖v‖20 (4.49)

and thus the estimate (4.48).
Neglecting for a moment the term c·∇vh in the sum (4.48) and using the elementary inequality
ab ≤ a2 + b2/4 for arbitrary a, b ∈ R, we get

|
∑

K∈Ih

δK〈−ε∆vh + rvh, c·∇vh〉0,K | ≤
∑

K∈Ih

{|〈−ε
√

|δK |∆vh,
√

|δK |c·∇vh〉0,K | +

|〈
√

|δK |rvh,
√

|δK |c·∇vh〉0,K |}

≤
∑

K∈Ih

{ε2|δK |‖∆vh‖20,K + |δK |‖r‖2∞,K‖vh‖20,K +
|δK |
2

‖c·∇vh‖20,K},

where ‖r‖∞,K = supK r .
By means of the inverse inequality (4.45), it follows that

|
∑

K∈Ih

δK〈−ε∆vh + rvh, c·∇vh〉0,K | ≤
∑

K∈Ih

{ε2|δK |C
2
inv

h2K
|vh|21,K +

|δK |‖r‖2∞,K‖vh‖20,K +
|δK |
2

‖c·∇vh‖20,K} .

Putting things together, we obtain

ah(vh, vh) ≥
∑

K∈Ih

{(ε− ε2|δK |C
2
inv

h2K
)|vh|21,K +

(r0 − |δK |‖r‖2∞,K)‖vh‖20,K + (δK − |δK |
2

)‖c·∇vh‖20,K}

Choosing

0 < δK ≤ 1

2
min{ h2K

εC2
inv

,
r0

‖r‖2∞,K

} , (4.50)
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we get

ah(vh, vh) ≥
ε

2
|vh|21 +

r0
2
‖vh‖20 +

1

2

∑

K∈Ih

δK‖c·∇vh‖20,K

If we define the so-called streamline-diffusion norm

‖v‖sd := {ε|v|21 + r0‖v‖20 +
∑

K∈Ih

δK‖c·∇v‖20,K} 1
2 , v ∈ V,

we obtain from the choice (4.50) that

1

2
‖vh‖2sd ≤ ah(vh, vh) for all vh ∈ Vh (4.51)

i.e., the stability property is demonstrated.

In the following, we develop some work useful for obtaining an error estimate and conver-
gence demonstration.
Since estimate (4.51) holds only on the finite element spaces Vh, let us consider the norm of
Ih(u)− uh ∈ Vh and make use of the error equation (4.47):

1

2
‖Ih(u)− uh‖2sd ≤ ah(Ih(u)− uh, Ih(u)− uh) = ah(Ih(u)− u, Ih(u)− uh) .

In particular, under the assumption u ∈ V ∩Hk+1(Ω), the following three estimates holds:

•
ε

∫

Ω

∇(Ih(u)− u)·∇(Ih(u)− uh) dx ≤ √
ε|Ih(u)− u|1‖Ih(u)− uh‖sd

≤ Cint
√
εhk|u|k+1‖Ih(u)− uh‖sd ,

• ∫

Ω

[c·∇(Ih(u)− u) + r(Ih(u)− u)](Ih(u)− uh) dx =

∫

Ω

(r −∇ · c)(Ih(u)− u)(Ih(u)− uh) dx −

∫

Ω

(Ih(u)− u)c · ∇(Ih(u)− uh) dx

≤ ‖r −∇· c‖∞‖Ih(u)− u‖0‖Ih(u)− uh‖0 +

‖Ih(u)− u‖0‖c·∇(Ih(u)− uh)‖0
≤ C{{

∑

K∈Ih

‖Ih(u)− u‖20,K}
1
2 +

{
∑

K∈Ih

δ−1
K ‖Ih(u)− u‖20,K} 1

2}‖Ih(u)− uh‖sd

≤ Chk{
∑

K∈Ih

(1 + δ−1
K )h2K |u|2k+1,K}

1
2‖Ih(u)− uh‖sd ,

and

•
|
∑

K∈Ih

δK〈−ε∆(Ih(u)− u) + c·∇(Ih(u)− u) + r(Ih(u)− u), c·∇(Ih(u)− uh)〉0,K | ≤
∑

K∈Ih

Cint
√
δK [ εhk−1

K + ‖c‖∞,Kh
k
K + ‖r‖∞,Kh

k+1
K ]×

|u|k+1,K

√
δK‖c·∇(Ih(u)− uh)‖0,K

≤ C{
∑

K∈Ih

δK [ εhk−1
K + hkK + hk+1

K ]2|u|2k+1,K}
1
2 ‖Ih(u)− uh‖sd .
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Condition (4.50), which was already required for estimate (4.51), implies that

εδK ≤ h2K
C2
inv

and so the application to the first term of the last bound leads to

|
∑

K∈Ih

δK〈−ε∆(Ih(u)− u) + c·∇(Ih(u)− u) + r(Ih(u)− u), c·∇(Ih(u)− uh)〉0,K | ≤

Chk{
∑

K∈Ih

[ ε+ δK ]|u|2k+1,K}
1
2‖Ih(u)− uh‖sd

Collecting the estimates and dividing by ‖Ih(u)− uh‖sd, we obtain the relation

‖Ih(u)− uh‖sd ≤ Chk{
∑

K∈Ih

[ ε+
h2K
δK

+ h2K + δK ]|u|2k+1,K}
1
2

Finally, the terms in the square brackets will be equilibrated with the help of condition (4.50).
We rewrite the ε−dependent term condition as

h2K
εC2

inv

=
2

C2
inv‖c‖∞,K

PeKhK

with

PeK :=
‖c‖∞,K hK

2ε

the local Péclet number, a refinement of the global Péclet number given by

Pe :=
‖c‖∞ diam(Ω)

ε
(4.52)

The following distinctions concerning PeK are convenient:

PeK ≤ 1 and PeK > 1 .

In the first case, we choose

δK = δ0PeKhK = δ1
h2K
ε
, δ0 =

2

‖c‖∞,K
δ1 ,

with appropriate constants δ0 > 0 and δ1 > 0 , respectively which are independent of K and ε.
Then we have

ε+
h2K
δK

+ h2K + δK = (1 +
1

δ1
)ε+ h2K + δ1

2PeK
‖c‖∞,K

hK ≤ C(ε+ hK) ,

where C > 0 is independent of K and ε .
In the second case, it is sufficient to choose δK = δ2hK with an appropriate constant δ2 > 0
that is independent of K and ε. Then

δK =
δ2
PeK

PeKhK =
δ2‖c‖∞,K

2PeK

h2K
ε

and

ε+
h2K
δK

+ h2K + δK = ε+ (
1

δ2
+ δ2)hK + h2K ≤ C(ε+ hK)

with C > 0 independent of K and ε.
We note that in both cases the constants can be chosen sufficiently small, independent of PeK ,
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that is the condition (4.50) is satisfied.
Finally, we obtain

‖Ih(u)− uh‖sd ≤ Chk{
∑

K∈Ih

(ε+ hK)|u|2h+1,K} 1
2

≤ Chk(ε+ h)
1
2 |u|k+1 .

Now, we are ready to formulate a theorem relevant to the convergence property and error
estimate.

Theorem 4.16. Let the parameters δK be given by

δK =




δ1
h2K
ε
, PeK ≤ 1,

δ2hK , PeK > 1,

where δ1, δ2 > 0 do not depend on K and ε and are chosen such that condition (4.50) is satisfied.
If the weak solution u of (4.41) belongs to Hk+1(Ω), then the solution uh of (4.46) converges
and satisfies the relation

‖u− uh‖sd ≤ C(
√
ε+

√
h)hk|u|k+1 ,

where C > 0 is a constant independent of ε, h and u .

Proof. By the triangle inequality, we get

‖u− uh‖sd ≤ ‖u− Ih(u)‖sd + ‖Ih(u)− uh‖sd .

We have already an estimate of the second addend. To deal with the first term, the estimates
of the interpolation error (4.44) are used directly

‖u− Ih(u)‖2sd ≤ ε|u− Ih(u)|21 + r0‖u− Ih(u)‖20 +
∑

K∈Ih

δK‖c·∇(u− Ih(u))‖20,K

≤ C2
int

∑

K∈Ih

[ εh2kK + r0h
2(k+1)
K + δK‖c‖2∞,Kh

2k
K ]|u|2k+1,K

≤ Ch2kK
∑

K∈Ih

[ ε+ h2K + δK ]|u|2k+1,K

≤ C(ε+ h)h2kK |u|2k+1 .

and ‖u− Ih(u)‖sd ≤ C(ε+ h)
1
2hk|u|k+1 . Summing the terms relevant to the two addends, we

obtain the result.

Remark 4.17. In the case of Péclet numbers PeK > 1, we have ε < 1
2‖c‖∞,KhK and thus

‖u− uh‖0 + {δ2
∑

K∈Ih

hK‖c·∇(u− uh)‖20,K} 1
2 ≤ Chk+1/2|u|k+1 .

So the L2− error norm of the solution is not optimal in comparison with the estimate of the
interpolation error

‖u− Ih(u)‖0 ≤ C hk+1|u|k+1 ,

while the L2− error of the directional derivative of u in the direction of the velocity c is optimal.
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4.2.4 The characteristic Galerkin method

We assume that Ω is bounded in R
2, with Lipschitz boundary ∂Ω, and consider the parabolic

initial-boundary value problem: for each t ∈ [0, T ] find u(t) such that

∂u

∂t
+ Lu = f in QT := (0, T ) ×Ω

u = 0 on ΣT := (0, T ) × ∂Ω

u = u0 in Ω for t = 0 ,

(4.53)

where L is the second-order elliptic operator

Lw := −ε∆w +

2∑

i=1

Di(ciw) + a0w (4.54)

With no loss of generality, we consider the case in which ε ≪ ‖c‖L∞(Ω). We also assume that
there exists two positive constant µ0 and µ1 such that

0 < µ0 ≤ µ(x) :=
1

2
div c(x) + a0(x) ≤ µ1 (4.55)

for almost every x ∈ Ω.
The method of characteristic stems from considering the non-stationary advection-diffusion
equation (4.53) from a Lagrangian instead of Eulerian point of view, and can be traced back
to Pironneau [103], Douglas and Russell [40], Ewing, Russell and Wheeler [45]. We first define
the characteristic lines associated to a vector field c = c(t, x). Being given x ∈ Ω and s ∈ [0, T ],
they are vector functions X = X(t; s, x) such that





dX

dt
(t; s, x) = c(t,X(t; s, x)) , t ∈ (0, T )

X(s; s, x) = x .
(4.56)

The existence and uniqueness of the characteristic lines for each choice of s and x hold under
mild assumptions on c, for instance c continuous in [0, T ] × Ω and Lipschitz continuous in Ω,
uniformly with respect to t ∈ [0, T ], see [59].
From a geometric point of view, X(t; s, x) provides the position at time t of a particle which
has been driven by the field c and that occupied the position x at the time s. The uniqueness
result gives in particular that

X(t; s,X(s; τ, x)) = X(t; τ, x) (4.57)

for each t, s, τ ∈ [0, T ] and x ∈ Ω. Hence X(t; s,X(s; t, x)) = X(t; t, x) = x, i.e., for fixed t and
s, the inverse function of x→ X(s; t, x) is given by y → X(t; s, y).
Therefore defining

u(t, y) := u(t,X(t; 0, y)) (4.58)

or equivalently, u(t, x) = u(t,X(0; t, x)). From (4.56) it follows that

∂u

∂t
(t, y) =

∂u

∂t
(t,X(t; 0, y)) +

2∑

i=1

Diu(t,X(t; 0, y))
dXi
dt

(t; 0, y)

= (
∂u

∂t
+ c · ∇u)(t,X(t; 0, y)) .

(4.59)

According to the notation introduced in (4.58), we can rewrite the non-stationary advection-
diffusion equation as

∂u

∂t
− ε∆u+ (div c+ a0)u = f in QT . (4.60)
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We are thus ready to discretize (4.60). The time derivative could be approximated by the
backward scheme, i.e.,

∂u

∂t
(tn+1, y) ∼=

u(tn+1, y)− u(tn, y)

∆t
. (4.61)

If we set y = X(0; tn+1, x), from (4.58) we obtained

∂u

∂t
(tn+1,X(0; tn+1, x)) ∼=

u(tn+1, x)− u(tn,X(tn; tn+1, x))

∆t
.

Denoting by Xn(x) a suitable approximation of X(tn; tn+1, x), n = 0, 1, · · · ,N−1 and by un◦Xn
an approximation of u at the point Xn, we can finally obtain the following implicit discretization
scheme for the problem (4.60): set u0 := u0, then for n = 0, 1, · · · ,N − 1 solve

un+1 − un ◦ Xn
∆t

− ε∆un+1 + [div c(tn+1) + a0]u
n+1 = f(tn+1) in Ω . (4.62)

This formulation is completed by the boundary condition un+1 = 0 on ∂Ω.
One can typically choose a backward Euler scheme also for discretizing

dX

dt
(t; tn+1, x) = c(t,X(t; tn+1, x)) . (4.63)

This produces the following approximation of X(tn; tn+1, x):

Xn(1)(x) := x− c(tn+1, x)∆t . (4.64)

We notice that Xn(1) is a second order approximation of X(tn; tn+1, x) since we are integrating

(4.63) on the time interval (tn, tn+1) which has length ∆t .
A more accurate scheme is provided by the second order Runge-Kutta scheme

Xn(2)(x) := x− c(tn+ 1
2
, x− c(tn+1, x)

∆t

2
)∆t , (4.65)

which gives a third order approximation of X(tn; tn+1, x).

Remark 4.18. It is important to verify that Xn(i)(x) ∈ Ω for each x ∈ Ω, i = 1, 2, so we can
compute un ◦ Xn(i).

If we assume that c(t, x) 6= 0 for each t ∈ [0, T ] and x ∈ ∂Ω, therefore, Xn(i)(x) = x for
x ∈ ∂Ω, i = 1, 2. If we denote by x∗ ∈ ∂Ω the point having minimal distance from x ∈ Ω, we
have

|Xn(1)(x)− x| = |c(tn+1, x)|∆t = |c(tn+1, x)− c(tn+1, x
∗)|∆t

≤ |c(tn+1)|Lip(Ω)|x− x∗| ,
where

|g|Lip(Ω) := sup
x1,x2∈Ω,x1 6=x2

|g(x1)− g(x2)|
|x1 − x2|

.

By assuming that
max
t∈[0,T ]

|c(t)|Lip(Ω)∆t < 1 , (4.66)

it follows at once that Xn(1) ∈ Ω for each x ∈ Ω and for each n = 0, 1, · · · ,N − 1.

A similar result can be obtained for Xn(2)(x).

Let now consider the second order approximation (4.64) referring to Pironneau [104] for higher
order scheme based on (4.65).

Theorem 4.19. If we suppose that

div c(t, x) + a0(x) > 0 (4.67)

then solution of (4.53) depends on the problem data for each t ∈ [0, T ] and almost every x ∈ Ω.
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Proof. In fact, by multiplying (4.62) by un+1 and integrating over Ω, one obtains

‖un+1‖20 + ε∆t‖∇un+1‖20 ≤ (‖un ◦Xn(1)‖0 +∆t‖f(tn+1)‖0)‖un+1‖0 . (4.68)

From (4.66) it also follows that the map Xn(1) is injective. Therefore, we can introduce the

change of variable y = Xn(1)(x), and setting Yn
(1)(y) := (Xn(1))

−1(y) we have

‖un ◦Xn(1)‖20 =
∫

Xn
(1)

(Ω)

[un(y)]2 ◦ Yn
(1)(y)|det(Jac Xn(1))

−1| dy . (4.69)

On the other hand,

|det(JacXn(1))(x)| ≥ 1−∆t C1 ‖Jac c(tn+1)‖L∞(Ω) > 0

for almost every x ∈ Ω, provided that

µ∗1∆t ≤ C2 , (4.70)

where

µ∗1 := max
t∈[0,T ]

‖Jac c(t)‖L∞(Ω)

and C1 > 0, 0 < C2 < C−1
1 are suitable constants. Therefore, choosing the smallest constant

C2 in (4.70), from (4.69) one has

‖un ◦ Xn(1)‖20 ≤ (1 + ∆tC3µ
∗
1)‖un‖20 . (4.71)

We note that condition (4.70) implies (4.66) if C2 is small enough. From (4.68) and (4.71) we
have

‖un+1‖20 + ε∆t‖∇un+1‖20 ≤ (‖un ◦ X(1)n‖0 +∆t‖f(tn+1)‖0)‖un+1‖0
≤ 1

2
{[‖un ◦ Xn(1)‖0 +∆t‖f(tn+1)‖0]2 + ‖un+1‖20}

by Young

2‖un+1‖20 + 2ε∆t‖∇un+1‖20 ≤ [‖un ◦ Xn(1)‖0 +∆t‖f(tn+1)‖0]2 + ‖un+1‖20

and

‖un+1‖20 + 2ε∆t‖∇un+1‖20 ≤ [‖un ◦ Xn(1)‖0 +∆t‖f(tn+1)‖0]2

and so

{‖un+1‖20 + 2ε∆t‖∇un+1‖20}
1
2 ≤ ‖un ◦ Xn(1)‖0 +∆t‖f(tn+1)‖0 ,

therefore we finally obtain for each n = 0, 1, · · · ,N − 1

(‖un+1‖20 + 2ε∆t‖∇un+1‖20)
1
2 ≤ (1 + C3µ

∗
1∆t)

1
2‖un‖0 +∆t‖f(tn+1)‖0

≤ (1 + C3µ
∗
1∆t)

n+1
2 ‖u0‖0 +∆t

n+1∑

k=1

(1 + C3µ
∗
1∆t)

n+1−k
2 ‖f(tk)‖0

≤ (‖u0‖0 + tn+1 max
t∈[0,T ]

‖f(t)‖0) exp(
C3

2
µ∗1tn+1) .

(4.72)
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The method we have described above also applies to the fully-discretized problem obtained
from (4.62) by using for example, the finite element method. The resulting scheme would read:
given u0h := u0,h ∈ Vh, for each n = 0, 1, · · · ,N − 1 find un+1

h ∈ Vh such that

1

∆t
(un+1
h − unh ◦Xn, vn)+

ε(∇un+1
h ,∇vh) + ([div c(tn+1) + a0]u

n+1
h , vh) = (f(tn+1), vh) ∀ vh ∈ Vh ,

(4.73)

where (·, ·) denotes the L2(Ω) scalar product and Vh is a suitable finite element subspace of
V = H1

0(Ω). By assuming that (4.67) and (4.70) hold and that c(t)|∂Ω = 0 for each t ∈ [0, T ],
the stability can be proven exactly as before. Pironneau [104] has shown that when Vh is
taken as the space of continuous and piecewise-linear polynomials vanishing on ∂Ω we have
that ‖u(tn)− unh‖ = O(h+∆t+ h2

∆t).
When implementing this method, some problems appear. In fact, one has to compute the
integrals (unh ◦Xn, vh), and this usually accomplished by means of a quadrature formula. Hence,
the effects of this procedure can give rise to instability phenomena see [97]. Moreover, numerical
integration requires the knowledge of the value of unh ◦ Xn at some nodal points. This means
that, for any fixed node xk, it is necessary to know which triangle K ∈ Ih contains the point
Xn(xk). Other remarks on the implementation of the method can be found in Pironneau [104]
and Priestley [106]. For some developments on the the methods of characteristics, we suggest
to the reader these papers [17, 39, 98, 105, 118, 138].

4.3 New fractional step for convection diffusion equations

4.3.1 Weak and algebraic formulation

In order to fix the ideas let us consider the equation that expresses the conservation of energy
written in term of a temperature T. It is given by

∂T

∂t
+ c · ∇T− Γ ∆T = S in Ω (4.74)

where c = (u, v) is a known velocity field, S is the source term, Γ is a known thermal diffusion
parameter and Ω is a bounded subset of R2 with Lipschitz boundary ∂Ω. We complete (4.74)
by adding initial condition

T|t=0 = T
0 (4.75)

and suitable boundary conditions (any kind specified in chapter 1 section 1.1.1). Here we
consider Dirichlet homogeneous boundaries conditions

T = 0 on ∂Ω . (4.76)

We apply the implicit discretization and the characteristics in the convective term of equation
(4.74). It comes for n = 0, · · · ,N − 1,

Tn+1 − Tn(X̃)

∆t
− Γ∆T

n+1 = S
n+1 (4.77)

where X̃ is the foot of characteristics.
Let Ih be a suitable triangulation of Ω. The weak formulation of (4.77) with (4.76) is the
following:

∫

Ω

Tn+1 − Tn(X̃)

∆t
ϕ dΩ −

∫

Ω

Γ∆T
n+1ϕdΩ =

∫

Ω

S
n+1ϕdΩ ∀ ϕ ∈ H1

0(Ω) (4.78)
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i.e. ∫

Ω

T
n+1 ϕdΩ −

∫

Ω

T
n(X̃)ϕdΩ +∆t

∫

Ω

Γ∇T
n+1 · ∇ϕdΩ =

∆t

∫

Ω

S
n+1 ϕdΩ ∀ϕ ∈ H1

0(Ω) .

(4.79)

By taking basis functions traditional 2D polynomials of second degree with six nodes on the
boundary, it comes

∑

K∈Ih

[
∑

i

T
n+1
i

∫

K

ϕi ϕj dK −∆tΓ
∑

i

T
n+1
i

∫

K

∇ϕi· ∇ϕj dK ] =

∑

K∈Ih

[
∑

i

∫

K

T
n
i (X̃)ϕiϕj dK +∆t

∑

i

S
n+1
i

∫

K

ϕi ϕj dK ] i, j = 1, · · · , Nh

(4.80)

i.e. in algebraic form:

MT
n+1 + Γ∆tATn+1 = ∆tMS

n+1 +

∫

Ω

T
n(X̃)ϕdΩ

thus

(M + Γ∆tA)Tn+1 = ∆tMS
n+1 +

∫

Ω

T
n(X̃)ϕdΩ (4.81)

where

M :=

∫

Ω

ϕi ϕj dΩ is the mass matrix

and

A :=

∫

Ω

∇ϕi · ∇ϕj dΩ is the stiffness matrix .

The application of the formulation (4.81) requires the respect of the following iterative proce-
dure [74]:

Iterative procedure

step 1) The nodal values of T are given at time instant t = tn

step 2) Given the velocity c at time instant t = tn+1

step 3) Compute
∫
Ω Tn(X̃)ϕdΩ (details of its computation in the next section)

step 4) Compute the nodal values of T at time instant t = tn+1

step 5) Go to step 1 and repeat the above procedure until the desired solution is obtained.

4.3.2 Computation of the step 3 of the iterative procedure

We have
∫
Ω Tn(X̃)ϕdΩ =

∑
K

∫
K(

∑
i T
n
i (X̃)ϕi)ϕj dK.

To compute Tn(X̃) and
∫
Ω Tn(X̃)ϕdΩ, we proceed as follows:
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Figure 4.1: Backward characteristics, foot X̃ of trajectory.

• Compute the foot of characteristic X̃ by means of one of these expressions

X̃ = X −∆t cn+1(X)

X̃ = X −∆t[ 2cn+1(X)− cn(X) ]

X̃ = X −∆t cn+1(X − ∆t

2
cn+1(X))

X̃ = X −∆t[ 2 cn+1(X − ∆t

2
cn+1(X))− cn(X − ∆t

2
cn+1(X)) ] ,

(4.82)

where X is the physical coordinate of the node of the element in the triangulation I at
time instant t = tn+1, see Figure 4.1 (the coordinate of the barycenter of the element
included)

• Find the element in the triangulation Ih that contains the foot of characteristic X̃ and
interpolate the value of T obtained at time instant t = tn that gives the nodal values T

n(X̃)

• Use a Gauss quadrature formula i.e.

∫

K

(
∑

i

T
n
i (X̃)ϕi)ϕj ∼=

7∑

l=1

(
6∑

i=1

T
n
i (X̃l)ϕi(ξl, ηl))ϕj(ξl, ηl) J(ξl, ηl)wl , i, j = 1, · · · , 6

where wl are the weights of the Gauss points, J(ξl, ηl) is the modulus of the Jacobian of the
transformation involving the element K and the reference element, all evaluated at the seven
integrations points (vertice, mid-edge and centroid points).

Remark 4.20. The computation of the foot of characteristic should be consistent with the
boundary condition considered. For instance, the foot of characteristic has always to lie inside
the physical domain Ω.

4.3.3 Conservation property

In chapter 2, it has been presented a new FE scheme by means of which, using 2D second
degree polynomials for base and test functions, is possible to guarantee the conservation of the
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mathematical fluxes in elliptic problems. As a matter of the fact the new fractional step for
convection diffusion problems can be interpreted like a classical parabolic ones (see equation
(4.77)), we decided to carry out some numerical experiences in order to heuristically verify the
efficiency of the conservative FE in parabolic problems. In the section 4.3.4, the Tables 4.8 -
4.10 show the results of the numerical tests.

Remark 4.21. We should remind that our conservative approach does not respect the equilib-
rium between source term and mathematical (numerical) fluxes. In order to obtain a method
genuinely conservative for example like those developed in the FVE framework, a generalization
of the techniques presented in [109] could be afforded.

4.3.4 Numerical tests

In order to check the accuracy of the formulation (4.81), several problems with known analytical
solutions have been considered. The computations were performed in Ω = [0, 1]2. In Tables 4.1
- 4.7, we reported the L∞ and L2 error norms generated by the numerical solutions. We have
considered in all cases Dirichlet boundary conditions. We denote by X̃1, X̃2, X̃3, X̃4, the foot
of characteristic obtained using the expression (4.82)1, (4.82)2, (4.82)3 and (4.82)4 respectively.
Let us denote by Nh the total number of nodes with respect to each domain considered, by
∆t the time increment, by Nts the number of time steps, by c = (u, v) the velocity and by
T the temperature. We define the following two expressions for the analytical velocity and
temperature:

cI = (uI , vI) such that uI = − cos(πx) sin(πy) exp(−2t)

vI = sin(πx) cos(πy) exp(−2t)

cII = (uII , vII) such that uII = − cos(πx) sin(πy)

vII = sin(πx) cos(πy)

T
I = xy(1− x)(1− y) exp(−2t)

T
II = xy(1− x)(1− y) .

Test 4.3.4.1

Table 4.1: Nh = 889, ∆t = 0.001, Nts = 10, c = cI and T = TI .

X̃ L∞− norm L2−norm

X̃1 3.281E − 4 9.416E − 4

X̃2 3.084E − 4 9.168E − 4

X̃3 3.346E − 4 9.792E − 4

X̃4 3.142E − 4 9.460E − 4
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Test 4.3.4.2

Table 4.2: Nh = 109, ∆t = 0.001, Nts = 10, c = cI and T = TI .

X̃ L∞− norm L2−norm

X̃1 2.077E − 4 4.418E − 4

X̃2 2.072E − 4 4.414E − 4

X̃3 2.078E − 4 4.420E − 4

X̃4 2.072E − 4 4.4152E − 4

Test 4.3.4.3

Table 4.3: Nh = 241, ∆t = 0.1, Nts = 10, c = cI and T = TI .

X̃ L∞− norm L2−norm

X̃1 4.523E − 4 1.140E − 3

X̃2 4.430E − 4 1.133E − 3

X̃3 4.543E − 4 1.148E − 3

X̃4 4.488E − 4 1.139E − 3

Test 4.3.4.4

Table 4.4: Nh = 241, ∆t = 0.1, Nts = 10, c = cI and T = TII .

X̃ L∞− norm L2−norm

X̃1 6.486E − 3 1.746E − 2

X̃2 6.455E − 3 1.744E − 2

X̃3 6.499E − 3 1.749E − 2

X̃4 6.164E − 3 1.466E − 2
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Test 4.3.4.5

Table 4.5: Nh = 733, ∆t = 0.0725, Nts = 10, c = cI and T = TI .

X̃ L∞− norm L2−norm

X̃1 2.760E − 4 8.901E − 4

X̃2 2.626E − 4 8.691E − 4

X̃3 2.792E − 4 9.134E − 4

X̃4 2.653E − 4 8.876E − 4

Test 4.3.4.6

Table 4.6: Nh = 457, ∆t = 0.01, Nts = 1, Nts = 25 and Nts = 50, c = cII and T = TI .

X̃ L∞− norm L2−norm

Nts = 1 X̃1 4.873E − 4 1.395E − 3

Nts = 25 X̃1 9.872E − 3 3.279E − 2

Nts = 50 X̃1 9.948E − 3 2.884E − 2

Test 4.3.4.7

Table 4.7: Nh = 457, ∆t = 0.001, Nts = 1 and Nts = 500, c = cII and T = TI .

X̃ L∞− norm L2−norm

Nts = 1 X̃1 2.571E − 4 6.010E − 4

Nts = 500 X̃1 8.310E − 3 2.400E − 2
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In order to verify the accuracy of the conservative FE scheme, we solved three problems
like (4.77) with the following known solutions u:

uI = (x+ y) exp(−t)
uII = xy(1− x)(1− y) exp(−2t)

uIII = − cos(π x) sin(π y) exp(−2 t) .

In all the computations, we assigned Dirichlet boundary conditions and chose the parame-
ters: 72 elements with Nh = 169 and ∆t = 0.005. In Tables 4.8 - 4.10 are reported the L∞

error norm values calculated by traditional (FE) and conservative finite elements (FEC) for
Nts = 2, 20, 100 and 200. Max u is the maximum value of the known solution after Nts
time steps.

Test 4.3.4.8

Table 4.8: u = uI and L∞− norm after Nts time steps.

Nts = 2 Nts = 20 Nts = 100 Nts = 200

L∞−norm by FE 4.691E − 5 7.278E − 5 5.092E − 5 3.084E − 5

L∞−norm by FEC 8.894E − 5 1.748E − 4 1.250E − 4 7.588E − 5

Max u 1.980E + 0 1.800E + 0 1.210E + 0 7.357E − 1

Test 4.3.4.9

Table 4.9: u = uII and L∞− norm after Nts time steps.

Nts = 2 Nts = 20 Nts = 100 Nts = 200

L∞−norm by FE 5.169E − 5 5.637E − 5 2.661E − 5 9.793E − 6

L∞−norm by FEC 1.438E − 3 4.604E − 3 2.223E − 3 8.215E − 4

Max u 6.120E − 2 5.117E − 2 2.200E − 2 8.450E − 3
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Test 4.3.4.10

Table 4.10: u = uIII and L∞− norm after Nts time steps.

Nts = 2 Nts = 20 Nts = 100 Nts = 200

L∞−norm by FE 2.633E − 3 2.420E − 3 1.080E − 3 4.007E − 4

L∞−norm by FEC 1.907E − 2 2.770E − 2 1.251E − 2 4.600E − 3

Max u 9.800E − 1 8.100E − 1 3.600E − 1 1.353E − 1

4.4 Conclusions of the chapter

Checking Tables 4.8-4.10 and making the comparison with the error norms, we conclude that the
conservative FE method applied to to parabolic problems keeps the conservation of numerical
fluxes (property heuristically verified), but has not an optimal order like in elliptic problems
(see Conclusions of chapter 2).



Chapter 5

Solution of Navier-Stokes equations

In this chapter, we aim to address a new numerical approach for the solution of 2D incompress-
ible Navier-Stokes problems presented in chapter 1. In particular we will present an equal-order
finite element (with second degree polynomials) fractional step method, then due to the L.B.B.
condition we will formalize at algebraic level a stabilization technique. Finally some numerical
results, with two test problems having known exact analytic solutions and a real problem that
is the natural convection in a square cavity, will be given.

5.1 Equal-order finite element and characteristic-fractional step

approach

The problem we addressed in Chapter 1 was to solve:

∂u

∂t
+ u · ∇u− µ∆u+∇p = f in Ω× (0, T ) (5.1)

∇ · u = 0 in Ω× (0, T ) (5.2)

u = 0 on ∂Ω× (0, T ) , u|t=0 = u0 in Ω× (0, T ) (5.3)

∂T

∂t
+ u · ∇T− λ∆T = S in Ω× (0, T ) (5.4)

T = 0 on ∂Ω× (0, T ) , T|t=0 = T0 in Ω× (0, T ) (5.5)

where Ω is a bounded subset of R2 with Lipschitz boundary ∂Ω.

5.1.1 Choice of functional spaces

In order to obtain a weak formulation of problem (5.1) - (5.3), we formally multiply (5.1) by a
suitable functional ψ and by integration in Ω we obtain:

∫

Ω

∂u

∂t
·ψ dΩ+

∫

Ω

[(u·∇)u]·ψ dΩ−
∫

Ω

µ∆u·ψ dΩ+

∫

Ω

∇p·ψ dΩ =

∫

Ω

f ·ψ dΩ . (5.6)

Using the Green formula we have:

−
∫

Ω

µ∆u·ψ dΩ =

∫

Ω

µ∇u · ∇ψ dΩ −
∫

∂Ω

µ
∂u

∂n
·ψ dΓ (5.7)

and ∫

Ω

∇p·ψ dΩ = −
∫

Ω

p∇·ψ dΩ+

∫

∂Ω

pψ·n dΓ . (5.8)
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Keeping into account the homogeneous boundary conditions and by substitution of the last
two relations in the momentum equation, we obtain

∫

Ω

∂u

∂t
·ψ dΩ+

∫

Ω

[(u·∇)u]·ψ dΩ+

∫

Ω

µ∇u·∇ψ dΩ−
∫

Ω

p∇·ψ dΩ =

∫

Ω

f ·ψ dΩ +

∫

∂Ω

(µ
∂u

∂n
− p n)·ψ dΓ ∀ ψ ∈ V .

(5.9)

By multiplying (5.2) by a suitable test function ϕ ∈ Q, we obtain
∫

Ω

ϕ∇·u dΩ = 0 ∀ϕ ∈ Q . (5.10)

The spaces V and Q can be chosen V := [H1
0(Ω)]

2 and Q := L2(Ω) respectively.

5.1.2 Characteristic - fractional step and weak formulation

As the momentum equation (5.1) has a non linear convective part, let us make this approxi-
mation to the convective term

∂u

∂t
+ u · ∇u =

Du

Dt
≈ ũn+

1
2 − ũn(X̃)

∆t
(5.11)

where the operator D(·)
Dt is the total derivative and X̃ is the foot of the trajectory of the

characteristic (see Chapter 4 Section 4.3).
Since we wish to use equal-order velocity pressure approximation, the velocity components and
the pressure will belong to the same approximation polynomial of degree two space.
The weak formulation of characteristic and fractional step (see chapter 1) is the following:

∫

Ω

ũn+
1
2 − un(X̃)

∆t
·ψ dΩ−

∫

Ω

µ∆ũn+
1
2 · ψ dΩ = −

∫

Ω

∇pn · ψ dΩ +

∫

Ω

fn+1·ψ dΩ ∀ψ ∈ V

(5.12)

From
un+1 − ũn+

1
2

∆t
+∇p̃n+1 = 0 with ∇·un+1 = 0 (5.13)

it comes
−∇· ũn+1 = −∆t ∆p̃n+1

which is a Poisson equation for the pressure and its weak formulation is given by

−
∫

Ω

∇· ũn+ 1
2ϕdΩ+∆t

∫

Ω

∆p̃n+1ϕdΩ = 0 ∀ϕ ∈ Q . (5.14)

where ũn+
1
2 is the provisional value of the velocity field and p̃n+1 = pn+1 − pn is the

provisional value of pressure field.
Therefore, (5.12) and (5.14) can be rewritten as

∫

Ω

ũn+
1
2 − un(X̃)

∆t
· ψ dΩ+ µ

∫

Ω

∇ũn+ 1
2 · ∇ψ dΩ = −

∫

Ω

∇pn · ψ dΩ +

∫

Ω

fn+1 · ψ dΩ ∀ψ ∈ V

(5.15)
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∫

Ω

∇p̃n+1 · ∇ϕdΩ = − 1

∆t

∫

Ω

∇· ũn+ 1
2ϕdΩ ∀ϕ ∈ Q . (5.16)

We complete this fractional step by adding the pressure correction

pn+1 = pn + p̃n+1 (5.17)

and the velocity correction

un+1 = ũn+
1
2 −∆t∇p̃n+1 . (5.18)

Rewriting this fractional step with respect to each component of the velocity field u = (u, v)
and applying the weak formulation in the velocity correction (5.18), it comes with ψ = (ψ1, ψ2)

∫

Ω

ũn+
1
2 − un(X̃)

∆t
ψ1 dΩ+ µ

∫

Ω

∇ũn+ 1
2 · ∇ψ1 dΩ = −

∫

Ω

∂pn

∂x
ψ1 dΩ+

∫

Ω

fn+1
u ψ1 dΩ (5.19)

∫

Ω

ṽn+
1
2 − vn(X̃)

∆t
ψ2 dΩ+ µ

∫

Ω

∇ṽn+ 1
2 ·∇ψ2 dΩ = −

∫

Ω

∂pn

∂y
ψ2 dΩ+

∫

Ω

fn+1
v ψ2 dΩ (5.20)

∫

Ω

∇p̃n+1 · ∇ϕdΩ = − 1

∆t

∫

Ω

(
∂ũn+

1
2

∂x
+
∂ṽn+

1
2

∂y
)ϕdΩ (5.21)

pn+1 = pn + p̃n+1 (5.22)∫

Ω

un+1ϕdΩ =

∫

Ω

ũn+
1
2ϕdΩ −∆t

∫

Ω

∂p̃n+1

∂x
ϕdΩ (5.23)

∫

Ω

vn+1ϕdΩ =

∫

Ω

ṽn+
1
2ϕdΩ −∆t

∫

Ω

∂p̃n+1

∂y
ϕdΩ (5.24)

that is the problem becomes: find (un+1, vn+1) ∈ (V1,V2) ∈ H1
0(Ω)

2 and pn+1 ∈ Q such that

1

∆t

∫

Ω

ũn+
1
2ψ1 dΩ+ µ

∫

Ω

∇ũn+ 1
2 · ∇ψ1 dΩ = −

∫

Ω

∂pn

∂x
ψ1 dΩ +

∫

Ω

fn+1
u ψ1 dΩ +

1

∆t

∫

Ω

un(X̃)ψ1 dΩ ∀ ψ1 ∈ V1

(5.25)

1

∆t

∫

Ω

ṽn+
1
2ψ2 dΩ+ µ

∫

Ω

∇ṽn+ 1
2 · ∇ψ2 dΩ = −

∫

Ω

∂pn

∂y
ψ2 dΩ+

∫

Ω

fn+1
v ψ2 dΩ +

1

∆t

∫

Ω

vn(X̃)ψ2 dΩ ∀ ψ2 ∈ V2

(5.26)

∫

Ω

∇p̃n+1 · ∇ϕdΩ = − 1

∆t

∫

Ω

(
∂ũn+

1
2

∂x
+
∂ṽn+

1
2

∂y
)ϕdΩ ∀ ϕ ∈ Q (5.27)

pn+1 = pn + p̃n+1 (5.28)
∫

Ω

un+1ϕdΩ =

∫

Ω

ũn+
1
2ϕdΩ −∆t

∫

Ω

∂p̃n+1

∂x
ϕdΩ ∀ ϕ ∈ Q (5.29)

∫

Ω

vn+1ϕdΩ =

∫

Ω

ṽn+
1
2ϕdΩ −∆t

∫

Ω

∂p̃n+1

∂y
ϕdΩ ∀ ϕ ∈ Q . (5.30)
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5.1.3 Algebraic formulation of the equal-order approximation

Let Ih = {K} be a suitable triangulation of the domain Ω. By using equal order velocity
pressure approximation (i.e., ψ1 = ψ2 = ϕ ∈ X2

h) with second degree polynomial on element
(having six nodes on the boundary), the system of equation (5.25) - (5.30) can be rewritten as
follows :

∑

K

[
1

∆t

∑

i

ũ
n+ 1

2
i

∫

K

ϕiϕj dK + µ
∑

i

ũ
n+ 1

2
i

∫

K

∇ϕi·∇ϕj dK ] =
∑

K

[
∑

i

pni

∫

K

∂ϕi
∂x

ϕj dK+

∑

i

(fn+1
i )u

∫

K

ϕiϕj dK +
1

∆t

∫

K

un(X̃)ϕj dK ]

∑

K

[
1

∆t

∑

i

ṽ
n+ 1

2
i

∫

K

ϕiϕj dK + µ
∑

i

ṽ
n+ 1

2
i

∫

K

∇ϕi·∇ϕj dK ] =
∑

K

[
∑

i

pni

∫

K

∂ϕi
∂y

ϕj dK+

∑

i

(fn+1
i )v

∫

K

ϕiϕj dK +
1

∆t

∫

K

vn(X̃)ϕj dK ]

∑

K

[
∑

i

p̃n+1
i

∫

K

∇ϕi·∇ϕj dK ] = − 1

∆t

∑

K

[
∑

i

ũ
n+ 1

2
i

∫

K

∂ϕi
∂x

ϕj dK+

∑

i

ṽ
n+ 1

2
i

∫

K

∂ϕi
∂y

ϕj dK ]

pn+1 = pn + p̃n+1

∑

K

[
∑

i

un+1
i

∫

K

ϕiϕj dK ] =
∑

K

[
∑

i

ũ
n+ 1

2
i

∫

K

ϕiϕj dK−

∆t
∑

i

p̃n+1

∫

K

∂ϕi
∂x

ϕj dK ]

∑

K

[
∑

i

vn+1
i

∫

K

ϕiϕj dK ] =
∑

K

[
∑

i

ṽ
n+ 1

2
i

∫

K

ϕiϕj dK−

∆t
∑

i

p̃n+1

∫

K

∂ϕi
∂y

ϕj dK ]

(5.31)
that is in algebraic form

1

∆t
Mũn+

1
2 + µAũn+

1
2 = −BT pn +Mfn+1

u +
1

∆t

∫

Ω

un(X̃)ϕdΩ

1

∆t
Mṽn+

1
2 + µAṽn+

1
2 = −CT pn +Mfn+1

v +
1

∆t

∫

Ω

vn(X̃)ϕdΩ

Ap̃n+1 = − 1

∆t
[ BT ũn+

1
2 +CT ṽn+

1
2 ]

pn+1 = pn + p̃n+1

Mun+1 = Mũn+
1
2 −∆tBT p̃n+1

Mvn+1 = Mṽn+
1
2 −∆tCT p̃n+1

(5.32)

where

A =
∑

K

∫

K

∇ϕi · ∇ϕj dK is the stiffness matrix,
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M =
∑

K

∫

K

ϕiϕj dK is the mass matrix,

B =
∑

K

∫

K

∂ϕi
∂x

ϕj dK is the matrix of the component along x of the gradient operator

and

C =
∑

K

∫

K

∂ϕi
∂y

ϕj dK is the matrix of the component along y of the gradient operator.

The algebraic system (5.32) can be written in a more compact form

(
1

∆t
M+ µA)ũn+

1
2 = −BT pn +Mfn+1

u +
1

∆t

∫

Ω

un(X̃)ϕdΩ

(
1

∆t
M+ µA)ṽn+

1
2 = −CT pn +Mfn+1

v +
1

∆t

∫

Ω

vn(X̃)ϕdΩ

∆tAp̃n+1 = −[ BT ũn+
1
2 +CT ṽn+

1
2 ]

pn+1 = pn + p̃n+1

Mun+1 = Mũn+
1
2 −∆tBT p̃n+1

Mvn+1 = Mṽn+
1
2 −∆tCT p̃n+1

(5.33)

5.2 The inf-sup condition and some stabilization methods

Guermond and Quartapelle in their study [55] affirm that the fractional step method based
on Poisson equation for pressure overcomes the inf-sup condition under a suitable limitations
for ∆t and for P1/P1 linear approximation; without respecting suitable temporal limitations or
for equal order P2/P2 approximation the results are unstable. Since we are using equal-order
P2/P2 approximation, a stabilization technique is needed in order to complete the formulation
(5.33).

Stabilizations methods

Among the stabilized methods widespread, we can quote the Galerkin least square (GLS)
technique [49, 47, 61], the least square method for first-order system such as [12] and the least
square for second order scheme [46, 126] and other methods [14, 41].

The orthogonal sub-scale stabilization

Codina and Soto [35] built a stabilization technique based on the definition of the “sub scale
velocities” that are responsible of the instability due to non respect of the inf-sup condition.
The algebraic terms able to govern the effects of the sub scale velocities (SSV) are obtained by:

• Imposing that the SSV satisfy a momentum like equation to which is added a suitable
function

• Orthogonalizing the space for the approximation of the SSV to the space Vh in which the
physical velocity uh has to be approximated.

This technique allows in particular to deal with convection dominated flows and to use equal-
order velocity pressure interpolations. We apply this technique to complete the formulation
(5.33).
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5.3 New algebraic stabilized method

To stabilize (5.33), we have applied the technique of Codina and Soto [35] and have added
the suitable algebraic terms to equations of the momentums and the Poisson equation of the
pressure, to get

(
1

∆t
M+ µA)ũn+

1
2 + τ(A− BTM−1

L BT )pn = −BT pn +Mfn+1
u +

1

∆t

∫

Ω

un(X̃)ϕdΩ

(
1

∆t
M+ µA)ṽn+

1
2 + τ(A− CTM−1

L CT )pn = −CTpn +Mfn+1
v +

1

∆t

∫

Ω

vn(X̃)ϕdΩ

∆tA(pn+1 − pn) + τ(A− BTM−1
L BT − CTM−1

L CT )pn+1 = −[ BT ũn+
1
2 +CT ṽn+

1
2 ]

(5.34)

where τ is a weight parameter and ML is the lumped mass matrix.
Rewriting (5.34), we obtain

(M+ µ∆tA)ũn+
1
2 = ∆t{−BT pn +Mfn+1

u − τ(A− BTM−1
L BT )pn}+

∫

Ω

un(X̃)ϕdΩ (5.35)

(M + µ∆tA)ṽn+
1
2 = ∆t{−CTpn +Mfn+1

v − τ(A− CTM−1
L CT )pn}+

∫

Ω

vn(X̃)ϕdΩ (5.36)

[(∆t+ τ)A− τ(BTM−1
L BT +CTM−1

L CT )]pn+1 = ∆tApn − [ BT ũn+
1
2 +CT ṽn+

1
2 ] . (5.37)

We still have the equation for the correction of the velocity fields

Mun+1 = Mũn+
1
2 −∆tBT p̃n+1

Mvn+1 = Mṽn+
1
2 −∆tCT p̃n+1 .

(5.38)

Let us go back in section 5.1 and consider the equation written in terms of the temperature
and its corresponding boundary conditions (5.4) - (5.5). This equation is a linear convection
diffusion that we have already treated in chapter 4 section 4.3. The formulation of this equation
was given by equation (4.81). Thus the final algebraic stabilized formulation of the problem
(5.1) - (5.5) is given by the following system (5.39) - (5.44):

(M + µ∆tA)ũn+
1
2 = ∆t{−BT pn +Mfn+1

u − τ(A− BTM−1
L BT )pn}+∫

Ω

un(X̃)ϕdΩ
(5.39)

(M + µ∆tA)ṽn+
1
2 = ∆t{−CTpn +Mfn+1

v − τ(A− CTM−1
L CT )pn}+∫

Ω

vn(X̃)ϕdΩ
(5.40)

[(∆t+ τ)A− τ(BTM−1
L BT +CTM−1

L CT )]pn+1 = ∆tApn − [ BT ũn+
1
2 +CT ṽn+

1
2 ] (5.41)

Mun+1 = Mũn+
1
2 −∆tBT p̃n+1 (5.42)

Mvn+1 = Mṽn+
1
2 −∆tCT p̃n+1 (5.43)

(M + λ∆tA)Tn+1 = ∆tMS
n+1 +

∫

Ω

T
n(X̃)ϕn+1 dΩ (5.44)
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Choice of the weight parameter τ

According to [35], the weight is given by:

τ = (c1 +
µ

h2
+ c2

|u∗|
h

)−1

where c1 and c2 are suitable constants, µ is the diffusion parameter, h the spatial mesh size
and u∗ is the velocity sub-scale. For suitable choices of c1 and c2, the L2-norm of the solutions
remains approximately the same over the elements. Based on our experience, the accuracy
of the solution is not strongly dependent of the choice of the τ parameter. Following some
numerical tests, we chose τ = 10−5. We note that from [55],the fractional step method is
convergent of order O((∆t)2) provided that ∆t ≥ chl+1, l being the velocity interpolation
degree, h the spatial mesh size and c a suitable constant.

Numerical procedure

step 1) The velocity, pressure and temperature fields are given at time t = tn

step 2) Compute the intermediate velocity field by equations (5.39) and (5.40)

step 3) Compute the pressure field at time t = tn+1 by equation (5.41)

step 4) Correct the intermediate velocity field by equations (5.42) and (5.43)

step 5) Compute the temperature field at time t = tn+1 by equation (5.44)

step 6) Go to step 1 and repeat the above procedure until the desired solution is obtained.

Algorithm aspects

The integration over the triangles is performed by means of Gaussian quadrature rule using a
seven-points formula as we used the P2 interpolation. This assures a good evaluation of all scalar
products including those which involve the characteristic terms. The Jacobian determinant, the
basis functions and the basis function derivatives at Gauss points of all elements are evaluated
once and for all at the beginning of the calculation and stored in arrays for subsequent use. The
algorithm requires us to solve large sparse linear systems of algebraic equations for velocity,
pressure and temperature. The matrices of the linear systems for the provisorial velocity
components, pressure Poisson problem, correction of the velocity components and temperature
does not change at each time level. The solution of the six linear systems (5.39)-(5.44) is
calculated by the iterative Bi-CGSTAB method; as we realized that solving the six linear
systems is similar to solving six elliptic equations at each time level, hence we used a Schwarz
overlapping additive multi-domains techniques as preconditioner. This technique has been
introduced in chapter 3. A suitable software has been developed and its description will be the
object of chapter 7.

5.4 Numerical tests: two theoretical problems

In order to verify the efficiencies of the new method, some problems were solved. We consider
a two dimensional time dependent problem introduced by Zang et al.[139] in subsection 5.4.1
and in the next paragraph, a two dimensional stationary problem by Shih et al.[128].

5.4.1 Two dimensional time dependent problem

We use the solution by Zang et al [139] for benchmarking the Navier-Stokes equations combined
with the time-stepping scheme.
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Problem Setting

We consider the following solution to the two dimensional unsteady flow of decaying vortices:

u = − cos(πx) sin(πy) exp(−2t)

v = sin(πx) cos(πy) exp(−2t)

p = −1

4
[ cos(2πx) + cos(2πy) ] exp(−4t)

where u = (u, v).
We choose the domain Ω = [0, 1]2, the viscosity µ = 1 and Dirichlet boundary conditions with
gD = u are imposed on the whole boundary ∂Ω. The Reynolds number is Re = 1 and the
maximun spatial mesh size is hmax = 0.07 The time increment used is ∆t = 0.005 and we
used 200 time steps to reach the final time instant t = 1. The weight parameter is chosen as
τ = 10−5. This flow has also been used by previous researchers such as Kim and Moin [73],
Patankar [101] and Feraudi and Pennati [48] to test the accuracy of their numerical methods
and approximations of boundary conditions. We compute the L∞− error norm of the numerical
solution (for the two components of the velocity field and for the pressure) at the final time
instant t = 1. By denoting eu, ev and ep the L∞− error norm of the two components of the
velocity and of the pressure respectively, we reported in Table 5.1 the accuracy obtained.

Table 5.1: L∞− error norm of the numerical solution.

Method eu ev ep

New method 1.397E − 5 1.588E − 5 1.141E − 2

In Figure 5.1 and Figure 5.2 are plotted the streamlines of the flow for the numerical solu-
tion uh and for the exact solution u respectively. Also in Figure 5.3 and Figure 5.5 and Figure
5.4 and Figure 5.6 are plotted the contours of the numerical solution uh and vh and analytical
solution u and v respectively.
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Figure 5.1: Streamlines of the flow of the numerical velocity uh.
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Figure 5.2: Streamlines of the flow of the analytical velocity u.

In order to check the performance of the Schwarz additive overlapping preconditioner used,
we computed and reported in Table 5.2 the condition number of the four matrices (matrices of
the provisional velocity, of the updated pressure, of the correction of the velocity and eventually
of the temperature) when they are not preconditioned K(Ah) and when they are Schwarz
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Figure 5.3: Contours of the numerical component uh.
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Figure 5.4: Contours of the analytical component u.



CAP. 5 Solution of Navier-Stokes equations 123

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1

-0.05-0.04-0.03-0.02-0.01 0 0.01 0.02 0.03 0.04 0.05z

x

y

z

-0.05
-0.04
-0.03
-0.02
-0.01
 0
 0.01
 0.02
 0.03
 0.04
 0.05

Figure 5.5: Contours of the numerical component vh.
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Figure 5.6: Contours of the analytical component v.
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Table 5.2: Condition numbers K(Ah) and K(PcasAh) of the not preconditioned and of the
preconditioned matrices, and iteration numbers 6= Iters and 6= Iters − S for the solution of
the non preconditioned and preconditioned systems.

Matrix of K(Ah) K(PcasAh) 6= Iters 6= Iters− S

ũn+
1
2 , ṽn+

1
2 8.796E + 1 2.213E + 1 67 8

pn+1 5.687E + 8 4.011E + 4 250 22
un+1, vn+1 6.238E + 0 3.623E + 0 16 5

preconditioned K(PcasAh); moreover, we collected the iteration numbers obtained using the Bi-
CGSTAB iterative method when the four aforementioned linear systems are not preconditioned
6= Iters and when they are Schwarz preconditioned 6= Iters − S. We note that by Ah, we
indicate each of the four matrices.

Results and comments

By Table 5.1, we can see that the errors of the velocity components are very low. In fact there
are of 0.01034%, 0.04355% of the maximal value of the analytical solutions. As we can note
from the Figures 5.1 - 5.6 in all the cases the numerical solution follows closely the trend of the
analytical solution.
In the Table 5.2, we see that the Schwarz additive preconditioner works well in the sense that
the condition number K(PcasAh) and the iteration number 6= Iters−S diminishes substantially
in respect to the not preconditioned counterparts.

5.4.2 Two dimensional stationary problem

We use the solution by Shih et al. [128] for benchmarking of the Navier-Stokes approximation.

Problem setting

We consider the following stationary solution to the two dimensional Navier-Stokes equations
similar to the classical lid-driven cavity flow but having known exact solution

u = 8f(x)g′(y) = 8(x4 − 2x3 + x2)(4y3 − 2y)

v = −8f ′(x)g(y) = −8(4x3 − 6x2 + 2x)(y4 − y2)

p =
8

Re
[F (x)g′′′(y) + f ′(x)g′(y) ] + 64F1(x){g(y)g′′(y)− [ g′(y) ]2}

where
f(x) = x4 − 2x3 + x2

g(y) = y4 − y2

F (y) =

∫
f(x) dx = 0.2x5 − 0.5x4 +

x3

3

F1(x) =

∫
f(x)f ′(x) dx = 0.5[ f(x) ]2

and the primes of f(x) and g(y) denote the differentiation with respect to x and y respectively.
We chose the domain Ω = [0, 1]2 and the viscosity µ = 1

Re
, where Re is the Reynolds number.

By definition,

Re =
|u|L
ν
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Table 5.3: L∞− error norm of the numerical solution Re = 1.

Method eu ev ep

New method 6.650E − 4 4.710E − 4 6.954E − 1

Shih et al . 4/1 staggered [128] 1.373E − 3 1.769E − 3 2.069E − 1

Shih et al . 5/4 staggered [128] 5.500E − 4 7.890E − 4 2.697E + 0

where L is the characteristic length of Ω and ν is the cinematic viscosity.
The boundary conditions for the velocities u and v are of Dirichlet type: zero everywhere except
at top edge where

u(x, 1) = 16(x4 − 2x3 + x2) (5.45)

Equation (5.45) indicates that u(0, 1) = 0 and u(1, 1) = 0, which eliminates the ambiguity of
specifying the corner velocities as in the classical lid-driven flow problem. The time increment
is ∆t = 0.005 and we used 200 time steps to reach the final time t = 1. The weight parameter
is chosen as τ = 10−5 for all cases.
Since we are in presence of a stationary problem, we have simulated a false transient by taking
the initial value of the velocity field as the exact analytical solution and of the pressure field as
the trivial value p = 0. We have computed the L∞− error of the numerical solution generated
by the new method and have reported it in the Tables 5.3, 5.5 and 5.7 for three different values
of Reynolds number (Re). We also reported the data error of Shih et al. [128].

Results first case: Re = 1

We plotted in Figure 5.7 and Figure 5.8 the streamlines of the numerical velocity and analyt-
ical velocity (not scaled), in Figure 5.9 the streamlines of the flow of the numerical solution
(scaled), in Figure 5.10 - 5.13 we plotted the contours of the velocity components (numerical
and analytical) for Re = 1 at the final time instant t = 1.
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Figure 5.7: Streamlines of the flow for the numerical velocity uh (not scaled) with Re = 1.
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Figure 5.8: Streamlines of the flow for the analytical velocity u (not scaled) with Re = 1.
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Figure 5.9: Streamlines of the flow for the numerical velocity uh (scaled) with Re = 1.

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1

-0.1-0.05 0 0.05 0.1 0.15 0.2 0.25z

x

y

z

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Figure 5.10: Contours of numerical component uh with Re = 1.
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Figure 5.11: Contours of analytical component u with Re = 1.

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1

-0.15-0.1-0.05 0 0.05 0.1 0.15z

x

y

z

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

Figure 5.12: Contours of numerical component vh with Re = 1.
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Figure 5.13: Contours of analytical component v with Re = 1.

We reported the performance of the Schwarz overlapping preconditioner in the Table 5.4.
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Table 5.4: Condition numbers K(Ah) and K(PcasAh) of the not preconditioned and of the
preconditioned matrices, and iteration numbers 6= Iters and 6= Iters − S for the solution of
the non preconditioned and preconditioned systems for Re = 1.

Matrix of K(Ah) K(PcasAh) 6= Iters 6= Iters− S

ũn+
1
2 , ṽn+

1
2 8.796E + 1 2.213E + 1 63 9

pn+1 5.687E + 8 4.011E + 4 246 23

un+1, vn+1 6.238E + 0 3.623E + 0 16 5

Table 5.5: L∞− error norm of the numerical solution for Re = 10.

Method eu ev ep

New method 4.840E − 4 6.120E − 4 8.363E − 2

Shih et al . 4/1 staggered [128] 1.391E − 3 1.788E − 3 2.072E − 2

Shih et al . 5/4 staggered [128] 9.050E − 4 8.510E − 4 2.859E − 1

Results second case : Re = 10

For this value of Reynolds number, in Table 5.5 we report the L∞− error norm of the numerical
solution at the final instant t = 1 and contemporary the error norm of the solution of Shih et
al.[128] with two different approximations.

In the Figures 5.14 and 5.15 the streamlines of the numerical and analytical velocity (not
scaled), in Figure 5.16 the streamlines of the numerical velocity (scaled), in Figures 5.17 - 5.20
the contours of velocity components (numerical and analytical) for Re = 10 and instant t = 1.
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Figure 5.14: Streamlines of the flow for the numerical velocity uh (not scaled) for Re = 10.
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Figure 5.15: Streamlines of the flow of the analytical velocity u (not scaled) for Re = 10.
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Figure 5.16: Streamlines of the flow for the numerical velocity uh (scaled) with Re = 10.
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Figure 5.17: Contours of the numerical component uh with Re = 10.



CAP. 5 Solution of Navier-Stokes equations 133

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1

-0.1-0.05 0 0.05 0.1 0.15 0.2 0.25z

x

y

z

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Figure 5.18: Contours of the analytical component u with Re = 10.
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Figure 5.19: Contours of the numerical component vh with Re = 10.
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Figure 5.20: Contours of the analytical component v with Re = 10.

We reported the performance of the Schwarz overlapping preconditioner in for Re = 10 in
the Table 5.6.

Results third case : Re = 100

For this value of Reynolds number, we report the value of the L∞− error norm of the numerical
solution in the Table 5.7.

As in the previous case, we have in Figures 5.21 and 5.22 the plot of the streamlines of the
numerical and analytical velocity (not scaled), in Figure 5.23 the streamline of the numerical
velocity (scaled), in Figure 5.24 and Figure 5.25 - 5.27 the contours of velocity components
(numerical and analytical ) for Re = 100 at time instant t = 1.
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Table 5.6: Condition numbers K(Ah) and K(PcasAh) of the not preconditioned and precon-
ditioned matrices and iteration numbers 6= Iters and 6= Iters − S for the solution of the non
preconditioned and preconditioned systems for Re = 10.

Matrix of K(Ah) K(PcasAh) 6= Iters 6= Iters− S

ũn+
1
2 , ṽn+

1
2 1.306E + 1 4.536E + 0 24 5

pn+1 5.687E + 8 4.011E + 4 264 23

un+1, vn+1 6.238E + 0 3.623E + 0 16 5

Table 5.7: L∞− error norm of the numerical solution for Re = 100.

Method eu ev ep

New method 3.087E − 3 1.941E − 3 4.000E − 2
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Figure 5.21: Streamlines of the flow for the numerical velocity uh (not scaled) for Re = 100.
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Figure 5.22: Streamlines of the flow of the analytical velocity u (not scaled) for Re = 100.
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Figure 5.23: Streamlines of the flow for the numerical velocity uh (scaled) with Re = 100.
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Figure 5.24: Contours of the numerical component uh for Re = 100.
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Figure 5.25: Contours of the analytical component u for Re = 100.
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Figure 5.26: Contours of the numerical component vh for Re = 100.
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Figure 5.27: Contours of the analytical component v for Re = 100.
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Table 5.8: Condition numbers K(Ah) and K(PcasAh) of the not preconditioned and precon-
ditioned matrices and iteration numbers 6= Iters and 6= Iters − S for the solution of the non
preconditioned and preconditioned systems for Re = 100.

Matrix of K(Ah) K(PcasAh) 6= Iters 6= Iters− S

ũn+
1
2 , ṽn+

1
2 5.945E + 0 3.576E + 0 12 4

pn+1 5.687E + 8 4.011E + 4 259 23
un+1, vn+1 6.238E + 0 3.623E + 0 16 5

We also report for this choice of Reynolds number the performance of the Schwarz precon-
ditioner in Table 5.8.

Comments

From the Figures 5.7 - 5.27 we can check that in all cases, the numerical solutions are in good
harmony with the analytical ones, moreover it can be observed that the clockwise circulation
is very similar to the classical lid-driven recirculating flow.

5.5 Numerical tests: a real application

In this section, we consider a benchmark flow problem where no analytic solution is known,
but considered very important by the researchers. The aim is to compare our results to some
of the well established schemes present in the literature for a natural convection in a square
cavity problem.

5.5.1 Natural Convection in a square cavity

De Valh Davis provides in [37] the definition of a large number of test cases involving a two
dimensional natural convection in a square enclosure along with values for some reference
quantities.

Problem setting

The flow and the boundary conditions for this problem are shown in Figure 5.29. Figure 5.28
shows a 31× 31 nonuniform mesh which has been used for all the case considered. We wish to
examine the flow of a fluid inside a square cavity for which the top and the bottom walls are
kept to be adiabatic and the verticals walls are kept to be isothermal at temperatures Tc = −0.5
and Th = 0.5 respectively.
Initially the fluid is assumed to be at rest at temperature T = 0; then subsequently the tem-
perature at the vertical walls begins to change and the fluid is subjected to a phenomenon of
convection due to the thermal gradient. We also assumed that the fluid is incompressible such
that the Boussinesq approximation holds, that is

f = ρgα(T − Tr) . (5.46)

where α is the thermal expansion coefficient.

The flow is governed by the Rayleigh number defined as Ra =
ρgαL3cp∆T

Kν and the Prandtl
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Figure 5.28: Natural convection in a square enclosure: 31× 31 non uniform mesh.

Figure 5.29: Natural convection in a square enclosure: problem setting.

number Pr =
µ
ρ k that takes into account the characteristic of the fluid where

ρ := density

g := gravity

α := coefficient of the thermal expansion

L := length of the cavity

∆T := Th − Tc variation of the temperature

k := coefficient of thermal diffusivity

ν := cinematic viscosity

Tr := reference temperature

K := thermal conductivity

cp := specific heat at constant pressure .
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Table 5.9: Natural convection in a square enclosure: solutions generated by new method for
τ = 10−5, by De Vahl Davis [37], by Choi [26] and by Hookey [60] .

Solution Results Ra = 103 Ra = 104

New method (31 × 31 mesh grid) umax 3.614 16.243
vmax 3.670 19.231

De Vahl Davis [37] umax 3.649 16.178
vmax 3.697 19.617

Hookey and Baliga [60] (31× 31 mesh grid) umax 3.632 16.203
vmax 3.678 19.471

Choi et al. [26] (31 × 31 mesh grid) umax 3.644 16.418
vmax 3.726 19.801

Computations have been carried out for Ra = 103 and 104, for the weight parameter τ = 10−5

and Pr = 0.71.
A trivial solution (u = v = p = T = 0) has been used as initial guess for Ra = 103 and Ra = 104.

Results and comments

The umax and vmax data from the benchmark solution of De Vahl Davis [37], Hookey and
Baliga [60] and Choi et al. [26] are given in Table 5.9. The corresponding results produced by
the new method at the final time (t = 1) for the 31× 31 mesh grid are also given in Table 5.9.
Then follows the graphics obtained.

We note that Davis [37] performed numerical simulations on uniform meshes from 11× 11
to 41× 41 for Ra = 103 and Ra = 104.
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Figure 5.30: Distribution of the temperature for Ra = 103.

Figure 5.31: Distribution of the temperature for Ra = 104.
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Figure 5.32: Streamlines of the flow (scaled) for Ra = 103 .
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Figure 5.33: Streamlines of the flow (scaled) for Ra = 104 .
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Figure 5.34: Contours of the numerical component uh for Ra = 103 .
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Figure 5.35: Contours of the numerical component uh for Ra = 104 .
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Figure 5.36: Contours of the numerical component vh for Ra = 103 .
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Figure 5.37: Contours of the numerical component vh for Ra = 104 .
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Table 5.10: Condition numbers K(Ah) and K(PasAh) of the not preconditioned and of the
preconditioned matrices, and iteration numbers 6= Iters and 6= Iters − S for the solution of
the non preconditioned and of the preconditioned systems for Ra = 103 and Ra = 104.

Rayleigh number Matrix of K(Ah) K(PasAh) 6= Iters 6= Iters− S

103 ũn+
1
2 , ṽn+

1
2 1.408E + 2 6.446E + 0 61 6

103 pn+1 1.891E + 8 3.889E + 4 270 22

103 un+1, vn+1 2.903E + 1 3.880E + 0 16 5

103 Tn+1 1.909E + 2 8.638E + 0 86 8

104 ũn+
1
2 , ṽn+

1
2 1.408E + 2 6.446E + 0 59 6

104 pn+1 1.891E + 8 3.889E + 4 273 21

104 un+1, vn+1 2.903E + 1 3.880E + 0 16 5

104 Tn+1 1.909E + 2 8.638E + 0 95 8

The new method provides good results for the simulations developed and they are in good
agreement with those of the benchmark solutions of De Vahl Davis [37].
In Table 5.10 is reported the performance of the Schwarz overlapping preconditioner relevant to
this benchmark problem. As for this particular test we are using also the temperature equation,
the performance of Schwarz with respect to this equation are therefore included. All the value
where collected at the final time instant (t = 1) and we see that the Schwarz overlapping
preconditioner works well also for this benchmark problem.

5.6 Conclusions of the chapter

The results of the tests confirm that the new numerical method for solving the 2D Navier-Stokes
equations is efficient and accurate like expected (first order in time and second order in space,
both for velocity, pressure and temperature). The new technique for advancing in time, based on
a fractional step method and characteristics reduces the most expensive computational kernels
to the solution of algebraic systems stemming from elliptic problems. In order to reduce as most
as possible the computational effort, an iterative method (Bi-CGSTAB), preconditioned by an
additive Schwarz preconditioner has been used. An well-established h-adaptive techniques
based on the error estimation of the residual could be advantageously used [11].



Chapter 6

Solution of Shallow-Water equations

In this chapter, we present a new numerical method for the solution of one dimensional Shallow-
Water problem based on the fractional step scheme seen in the previuos chapter and using P2-P1
finite elements for the spatial approximation.

6.1 An environmental problem

It is well known that under the hypothesis of hydrostatic pressure, it is possible to derive from
3D Navier-Stokes equations a system of partial differential equations named Shallow Water
equations (SWE) in which the primitive unknowns are the 2D average velocity components
u = (u, v) and the elevation ξ. This last unknown represents the variation of the free surface
in respect to a reference level (see Figure 6.1).

Figure 6.1: Elevation ξ.

The field of application of the SWE is very large; in particular we can recall the study
of river and channel flows, the study of tidal water systems, the application of flood waves
subsequent to the break down of dams or of bank rivers.
In this section we will present a classical formulation of the 1D SWE aimed to the description
of the variation of the concentration relevant to chemical substances transported by the flow
of a river.
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6.2 The mathematical model

The system of partial differential equations we want to solve in conservative form, is:





∂q

∂t
+

∂

∂x
(
qq

h
)− µ

∂2q

∂x2
+ gh

∂ξ

∂x
= f

∂ξ

∂t
+
∂q

∂x
= 0

∂c1
∂t

+ u
∂c1
∂x

− Γ1
∂2c1
∂x2

+ f1c1 = s1

∂c2
∂t

+ u
∂c2
∂x

− Γ2
∂2c2
∂x2

+ f2c2 = s2

(6.1)

where q ≡ uh is the unit discharge; h = ξ + h0 is the total depth water; µ is the dispersion
coefficient; g is the gravity; c1 and c2 are the concentrations of the chemical substances; Γ1 and
Γ2 are the diffusion coefficients; f1 and f2 are the reactivity laws.

6.3 The numerical model

In the past thirty years, a large amount of papers and books have been written regarding the
solution of the SWE; in them, the spatial approximation have been afforded both by FD or FV
or FE methods while the advancing in time both by FD schemes or fractional step schemes [2].
Here, we decided to adopt for advancing in time a fractional step method very similar to that
we used for solving the Navier-Stokes equations in the previous chapter. The very important
idea behind this approach is to split the equations in order to decouple the various physical
contributions [8]. For the spatial approximation we decided in order to guarantee the stability
to use P1 elements for elevation ξ and P2 elements for unit discharge q and for c1 and c2.
Actually, at our knowledge, for the SWE does not exist a condition equivalent to the Inf-Sup
condition for the Navier- Stokes equations, however numerical experiences carried out in the
past showed the presences of instabilities if the polynomial spaces for ξ and q are chosen equal
[134]. In detail, the fractional step we used for advancing from instant tn to instant tn+1 is:

•
un =

qn

hn
, hn = h0 + ξn

•

un+
1
3 = un(x̃I) with x̃I = x−∆tun(x̄I) and x̄I = x− ∆t

2
un(x), qn+

1
3 = hnun+

1
3

(x̃I is the foot of characteristic relevant to the node with abscissa x)

•
qn+

2
3 = qn+

1
3 +∆tµ

∂2qn+
1
3

∂x2
+∆tfn+

2
3

•

ξn+1 − (∆t)2
∂

∂x
(ghn

∂ξn+1

∂x
) + ∆t

∂

∂x
(
qn+

2
3

hn
ξn+1) = ξn −∆t

∂

∂x
qn+

2
3 +∆t

∂

∂x
(
qn+

2
3

hn
ξn)

this equation for the adjourned value of ξ was derived applying the derivative ∂
∂x operator

to the equation

qn+1 − qn+
2
3 +∆tghn

∂ξn+1

∂x
− qn+

2
3

hn
(ξn+1 − ξn) = 0
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and subtracting the result to the equation

ξn+1 − ξn +∆t
∂qn+1

∂x
= 0

•
qn+1 = qn+

2
3 −∆tghn

∂ξn+1

∂x
+
qn+

2
3

hn
(ξn+1 − ξn)

•
un+1 =

qn+1

hn+1
, hn+1 = h0 + ξn+1

•
x̃II = x−∆tun+1(x̄II) and x̄II = x− ∆t

2
un+1(x)

(by x̃II we indicate the adjourned value of the characteristic foots)

•
cn+1
1 − cn1 (x̃II)

∆t
− Γ1

∂2cn+1
1

∂x2
+ fn+1

1 cn+1
1 = sn+1

1

•
cn+1
2 − cn2 (x̃II)

∆t
− Γ2

∂2cn+1
2

∂x2
+ fn+1

2 cn+1
2 = sn+1

2

Remark 6.1. The use of characteristics for the approximation of the convective terms (both
for momentum equation and for the transport equations of chemical substances) requires an
interpolation procedure of high order; this is easily obtained because of our P2 choice for q, c1
and c2 variables (we recall that we use P1 elements only for ξ variable).

6.4 Algebraic formulation

As already said, the spatial approximation is based on the Galerkin FE method; fixing the
attention on variables interested we can write:

• For the the provisional discharge qn+
2
3 :

∫

Ω

qn+
2
3ϕdΩ =

∫

Ω

qn+
1
3ϕdΩ −∆tµ

∫

Ω

∂qn+
1
3

∂x

∂ϕ

∂x
dΩ+∆t

∫

Ω

fn+
2
3ϕdΩ (6.2)

by which, indicating by Mq the mass matrix, Aq the stiffness matrix, (6.2) becomes:

Mqqn+
2
3 = Mqqn+

1
3 −∆tµAqqn+

1
3 +∆tMqfn+

2
3 (6.3)

• For the elevation ξn+1:

∫

Ω

ξn+1ψ dΩ +∆t2ghn
∫

Ω

∂ξn+1

∂x

∂ψ

∂x
dΩ+∆t

qn+
2
3

hn

∫

Ω

∂ξn+1

∂x
ψ dΩ =

∫

Ω

ξnψ dΩ

−∆t

∫

Ω

∂qn+
2
3

∂x
ψ dΩ+∆t

qn+
2
3

hn

∫

Ω

∂ξn

∂x
ψ dΩ

(6.4)

so indicating by Mξ and Mξ
L the mass and lumped mass matrices respectively, and by Aξ

the stiffness matrix, by Bξ the matrix
∫
Ω
∂ψ
∂xψ dΩ, (6.4) becomes:

[Mξ
L+(∆t)2ghnAξ+∆t

qn+
2
3

hn
(Bξ)T ]ξn+1 = Mξ

Lξ
n+∆t(

qn+
2
3

hn
Bξ)T ξn−∆t(Bξ)T qn+

2
3 (6.5)
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Remark 6.2. In this equation, the q values considered are those associated with the
boundary nodes of the elements.

Remark 6.3. The matrices Mξ, Aξ and Bξ are tridiagonal and given by:

Mξ =
l

6




2 1 0
1 4 1

. . .
. . . 1

0 1 2


 .

Aξ =
1

l




1 −1 0
−1 2 −1

. . .
. . . −1

0 −1 1


 .

Bξ =
1

2




−1 −1 0
1 0 −1

. . .
. . . −1

0 1 1


 .

where l is the length of the elements.

• For the updated value of the discharge qn+1:
∫

Ω

qn+1ϕdΩ =

∫

Ω

qn+
2
3ϕdΩ −∆tghn

∫

Ω

∂ξn+1

∂x
ϕdΩ +

qn+
2
3

hn

∫

Ω

(ξn+1 − ξn)ϕdΩ (6.6)

indicating by Mq
L the mass lumped matrix of discharge and by Cq the matrix

∫
Ω
∂ϕ
∂xϕdΩ,

(6.6) becomes:

Mq
Lq

n+1 = Mq
Lq

n+ 2
3 −∆tghn(Cξ)T ξn+1 +

qn+
2
3

hn
Mq
L(ξ

n+1 − ξn) (6.7)

Remark 6.4. In the equation (6.7), the ξ values considered are those calculated in the
boundary nodes and in the middle node of each element.

• For the c1 pollutant:
∫

Ω

cn+1
1 ϕdΩ+∆tΓ1

∫

Ω

∂cn+1
1

∂x

∂ϕ

∂x
dΩ+∆t

∫

Ω

(f1c1)
n+1ϕdΩ =

∫

Ω

cn1 (x̃)ϕdΩ +

∫

Ω

sn+1
1 ϕdΩ

(6.8)
by usual, indicating by Mc1 and by Mc1

L the mass and lumped mass matrices respectively
and by Ac1 the stiffness matrix, (6.8) becomes:

[Mc1
L +∆tΓ1A

c1 +∆tfn+1
1

Mc1
L ]cn+1

1 = Mc1
L c

n
1 (x̃II) + ∆tMc1

L s
n+1
1 (6.9)

• For the c2 pollutant, like at the previous point we have :

[Mc2
L +∆tΓ2A

c2 +∆tfn+1
2

Mc2
L ]cn+1

2 = Mc2
L c

n
2 (x̃II) + ∆tMc2

L s
n+1
2 (6.10)

Remark 6.5. The matrices Aq, Ac1 , Ac2 and Mq
L, M

c1
L , Mc2

L are the same respectively.

Thus the only matrices we have to construct are : Aq, Aξ, Mq
L, M

ξ
L, B

ξ and Cq.

Remark 6.6. We would stress that in the approach over presented, the only systems we
have to solve are of elliptic kind and are relevant only to the ξ, c1, c2 variables.

Remark 6.7. Since the final matrix of the systems 6.5 is tridiagonal, the Thomas algo-
rithm has been used for the solution of the algebraic system, while the Bi-CGSTAB solver
has been used for the systems 6.7, 6.9 and 6.10.
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6.5 A problem with an analytical solution

In order to check the correctness and the efficiency of the model developed, we solved a problem
with a known analytical function. The expression of the elevation and the discharge are similar
to that of [132] and are the following:

ξ(x, t) = 0.2 sin(
2π

3800
x) cos(

2π

3800
t)

q(x, t) = 0.9 − 0.2 cos(
2π

3800
x) sin(

2π

3800
t)

h(x, t) = 3 + ξ(x, t)

In this problem the source function f = s(x, t) :

s(x, t) = 5.686ABC + 0.3924ABC2D +
0.36ADE

3 + 0.2DC
− 0.08ADE2

3 + 0.2DC

− [0.2ABC][0.9 − 0.2BE]2

(3 + 0.2DC)2

where

A =
2π

3800
, B = cos(Ax), C = cos(At), D = sin(Ax), E = sin(At).

Two analytical solutions have also be taken for the concentrations c1 and c2:

c1(x, t) = 1 + sin(
4π

3800
x) cos(

4π

3800
t)

c2(x, t) = 1− cos(
4π

3800
x) sin(

4π

3800
)

an the source functions for the concentrations c1 and c2 are:

s1(x, t) = −F sin(Fx) sin(Ft) + uF cos(Fx) cos(Ft) + Γ1F
2 sin(Fx) cos(Ft)+

f1(1 + sin(Fx) cos(Ft))

s2(x, t) = −F cos(Fx) cos(Ft) + uF sin(Fx) sin(Ft)− Γ2F
2 cos(Fx) sin(Ft)+

f2(1− cos(Fx) sin(Ft))

where u(x, t) = q(x,t)
h(x,t) and F = 4π

3800 .

We consider the domain Ω = [0, 3800], partitioned in 950 elements of equal length; the nodes
number is 1901 for the discharge q and the pollutants c1 and c2; 951 for the elevation ξ.
The transient studied was 10800s and ∆t = 100s. The initial and boundary conditions were
obtained by the analytical solutions and we imposed Dirichlet at inflow and Neumann at outflow
for ξ, c1 and c2; while we imposed only Dirichlet at inflow for q. For physical parameters, we
choose µ = 0, g = 9.81, Γ1 = Γ2 = 0.001, f1 = 0.0000174, f2 = 0.0115. In the Table 6.1 are
indicated the ‖· ‖∞ error norm for elevation ξ, discharge q and pollutants c1 and c2 after 7200s
and 10800s. We indicated by Max val the maximum value of the analytical solution at the
corresponding time steps.

In Figures 6.2 - 6.5 are reported the distribution of analytical and numerical solutions of
elevation ξ, discharge q and concentrations c1 and c2 at time 10800s respectively. In Figures
6.6 - 7.2 are reported the time evolution of analytical and numerical solutions of elevation ξ,
discharge q and concentration c1 and c2 at node 238(x = 237) respectively.
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Table 6.1: ‖· ‖∞ error norm of the elevation, discharge and the concentrations generated by the
method after 7200s and 10800s respectively.

Solution ‖· ‖∞ error norm Max val Number of time steps

ξ 1.501E − 2 1.578E − 1 7200s
1.667E − 2 1.093E − 1 10800s

q 9.714E − 2 1.022 7200s
1.309E − 1 1.067 10800s

c1 9.908E − 3 1.245 7200s
8.448E − 2 1.401 10800s

c2 4.445E − 2 1.969 7200s
8.548E − 2 1.915 10800s

6.6 Conclusions of the chapter

The computed velocity field is sub-critical everywhere with maximum Froude number Fr =
u√
(gh)

= 0.08 and the boundary conditions imposed are coherent with the flow. The maximum

percentage of errors (see Table 6.1 and Figures 6.2 - 6.3) seem quite large, about 15% for
elevation and 12% for unit width discharge, but we have to consider the large time step ∆t =
100s used (in fact the Courant number is C = 9.5). Other numerical experiences with a smaller
delta t gave more accurate results.
Finally we would stress the efficiency and the low computational cost of the new numerical
model, the transient took 180s of elapsed time on a Sony VAIO EA series EA46FMW, that
make it a promising tool for the prediction of the distribution of chemical pollutants in a river.
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Figure 6.2: Distribution of analytical and numerical elevation ξ at t = 10800s.
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Figure 6.3: Distribution of analytical and numerical discharge q at t = 10800s.
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Figure 6.4: Distribution of analytical and numerical concentration c1 at t = 10800s.
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Figure 6.5: Distribution of analytical and numerical concentration c2 at t = 10800s.
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Figure 6.6: Time evolution of analytical and numerical elevation ξ at the node 238 (x = 237).
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Figure 6.7: Time evolution of analytical and numerical concentration c1 at node 238 (x = 237).
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Chapter 7

Software

In this chapter, we shortly present the software TRIANGLE-ANVI-ELFICS-ROTINS-GNUPLOT
in which the method and the algorithms from Chapter 2 - 6 where implemented and by which
the results of numerical tests were obtained. Actually has been also developed software for
the solution of the 1D Shallow-Water equations, but being the algorithms used very similar to
those used for the 2D Navier-Stokes problems, hase been considered convenient do not dilate
any more. In section 7.1 we give an overview of the preprocessor ANVI and TRIANGLE.
The section 7.2 presents the flow chart and a brief description of ELFICS which is a code for
the solution of elliptic equations with the two methods: traditional FE and conservative FE
eventually preconditioned by a Schwarz overlapping multi-domain approach. In section 7.2, we
present the flow chart and a brief description of ROTINS code that solves the Navier-Stokes
equations with characteristics and stabilized fractional step and we end this chapter by a short
presentation in section 7.4 of the post-processor GNUPLOT used.

7.1 Preprocessor

7.1.1 TRIANGLE

The TRIANGLE package was taken from GEOMPACK [66], a mathematical software pack-
age which contains Fortran 77 routines for the generation of two dimensional triangular and
three dimensional tetrahedral finite element meshes using efficient geometric algorithms. GE-
OMPACK currently contains routines for constructing two and three dimensional Delaunay
triangulations, decomposing a general polygonal region into simple or convex polygons, con-
structing the visibility polygon of a simple polygon from a fixed view point and other simpler
geometric algorithms. The input data are :

• RGNAME: name of the domain

• TOLIN: numerical tolerance

• ANGSPC: angle spacing parameter in radians used in controlling vertices to be considered
as an end point of a separation

• ANGTOL: angle tolerance parameter in radians used in accepting separator(s)

• KAPPA: mesh smoothing parameter belonging to [0.0,1.0]

• NMIN: parameter used to determine if a sufficiently large number of triangles are in
polygon

• NTRID: number of desired triangle

• CASE = 1: simple polygon or multiply connected polygonal region
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• CASE = 2: general polygonal region with holes and interfaces

• NCUR: number of curves internal to the domain

• MSGLVL: message level, initialize to 0, for no debugging

• NVBC: number of vertices of the boundary

GEOMPACK generates a triangulation whose principal outputs are :

• NVC: total number of triangle vertices

• NTRI: total number of elements

• VCL(1:2;1:NVC): vertices coordinates lists

• A topological table of the elements of the triangulation which is composed by the three
vertices defining each element in the triangulation

• A topological table of the adjacent elements of each element that also indicate whose
elements have an edge on the physical boundary.

Starting from the output generated by TRIANGLE, we constructed ANVI.

7.1.2 ANVI

The ANVI output was built in order to satisfy the request that each triangle has six nodes (the
vertices and the mid-edges) on proper boundary. It takes as input some output of TRIANGLE
that we list in section 7.1.1 and generates the following output :

• NNOD: total number of nodes of the domain (vertices and mid-edges included)

• VVCL(1:2; 1:NNOD): vertices and mid-edges coordinates lists that respect a well-defined
order

• A first topological table of elements that includes the mid-edge nodes

• A second topological table that identifies if the edges of each elements are internal to the
domains or on the physical boundaries.

• Total number of nodes that belong to the physical boundaries and the lists of these nodes.

These ANVI data are input used for running of ELFICS and ROTINS.
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    ELFICS  CODE

   START

 READ DATA INPUT

build the stiffness matrix  A

build the matrix of fluxes B

build the sub-domains matrices

build the coarse matrix

preconditioning of the right hand terms

preconditioning of matrices A+B

assigning  boundary conditions

application of the Bi-CGSTAB iterative solver

print result

           END 
Figure 7.1: ELFICS flow chart.

7.2 ELFICS

ELFICS is a code that was developed in Fortran 90 for the solution of elliptic equations with
traditional or conservative FE approach and where the algebraic system is solved with or with-
out the Schwarz additive overlapping multidomain preconditioner. There are many routines in
ELFICS and the most important are :

• TRANSJAC: computes the Jacobian of the transformation of each element from the
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physical space to the reference space

• STIF: computes the local stiffness matrix

• COORDAXIS: evaluates the six base functions at the seven Gauss points (vertices, mid-
edges and barycenter)

• RIGHTVEC: computes the local mass matrix and moreover, for a given source term, it
computes the local right hand side vector

• EDGENORCOM: computes the outward normal to the edges of an element

• Q1Q2TRANSFIRST: transforms the flux on the first edge of each triangle from the
general space to the first edge of the reference space when in the general space the
adjacent element has his first edge common to the element considered

• Q1Q2TRANSSECOND: transforms the flux on the first edge of each triangle from the
general space to the first edge of the reference space when in the general space the adjacent
element has his second edge common to the element considered

• Q1Q2TRANSTHIRD: transforms the flux on the first edge of each triangle from the
general space to the first edge of the reference space when in the general space the
adjacent element has his third edge common to the element considered

• Q2Q3TRANSFIRST: transforms the flux on the second edge of each triangle from the
general space to the second edge of the reference space when in the general space the
adjacent element has his first edge common to the element considered

• Q2Q3TRANSSECOND: transforms the flux on the second edge of each triangle from the
general space to the second edge of the reference space when in the general space the
adjacent element has his second edge common to the element considered

• Q2Q3TRANSTHIRD: transforms the flux on the second edge of each triangle from the
general space to the second edge of the reference space when in the general space the
adjacent element has his third edge common to the element considered

• Q3Q1TRANSFIRST: transforms the flux on the third edge of each triangle from the
general space to the third edge of the reference space when in the general space the
adjacent element has his first edge common to the element considered

• Q3Q1TRANSSECOND: transforms the flux on the third edge of each triangle from the
general space to the third edge of the reference space when in the general space the
adjacent element has his second edge common to the element considered

• Q3Q1TRANSTHIRD: transforms the flux on the third edge of each triangle from the
general space to the third edge of the reference space when in the general space the
adjacent element has his third edge common to the element considered

• DIRVALUE: assigns the Dirichlet value with respect to a node belonging to the Dirichlet
boundary

• NEWMANCONDI1: approximates the boundary conditions when the first edge of the
element considered belongs to the Neumann boundary

• NEWMANCONDI2: approximates the boundary conditions when the second edge of the
element considered belongs to the Neumann boundary

• NEWMANCONDI3: approximates the boundary conditions when the third edge of the
element considered belongs to the Neumann boundary
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The Bi-CGSTAB iterative solver was taken from the Fortran Numerical recipes [141]. The
mains routines used are :

• SPRSIN: converts a square matrix A(1 : N, 1 : N) into a row-indexed sparse storage

• LINBCG: bi-conjugate gradient solution of a sparse system.

The Schwarz overlapping preconditioner can be thought like composed by a number of module
as large as the number of the sub-domains used plus one. In fact if nsub is the number of
non overlapping sub domains, then we should have nsub + 1 submodules where the adjoined
submodule is devoted to the treatment of the coarse mesh. The principal routines for Schwarz
are:

• VERTPOL: loads the vertices coordinates of the polygon boundary of the sub-domains

• MINRECTPOL: finds the vertices coordinates of the minimum rectangle containing the
sub-domains

• TOPOSUB: searches the topological matrix of the elements included in the minimum
rectangle containing the sub-domains

• TRANSPOLYGON: computes the matrix of the transformation in a suitable reference
space in order to find the elements with one or two edges belonging to the internal
boundary of each sub-domains

• DISIREDTOPO: extracts from the general topological matrix the topological matrix of
each sub-domains

• OVERLAPTOPO: finds all the elements that belong to the strips of overlapping and
builds the final topological matrices of the overlapping sub-domains

• BARYCENTER: computes the barycenter of the big triangles of each sub-domains,

• NODEBARY: finds the closest nodes to the barycenter and keeps these nodes as nodes
of the coarse mesh

• LOCALCOARSENODE: finds all the nodes of the coarse mesh and their positions with
respect to the global numeration of the nodes of the domains.

To implement the Schwarz overlapping additive preconditioner, it was convenient to use SPARKIT
[121] which is a tool package for manipulating and working with sparse matrices and to use
also LAPACK [75] which is a linear algebra package. In SPARKIT, we use the FORMATS
module for the storage of matrices and the ITSOL module for the incomplete factorization. In
LAPACK we were interested in a storage type format called PACKET STORAGE FORMAT.
Package routines for Schwarz coming from SPARKIT and LAPACK are the following :

• DNSCR: converts a densely stored matrix into a row oriented compactly sparse matrix

• MSRCSR: converts a compressed matrix using a separated diagonal (modified sparse row
format) in the compressed sparse row format

• CSRDNS: converts a row-stored matrix into a dense one

• UPACSTORAGE: transforms an upper triangular matrix to packed storage format

• LOPACSTORAGE: transforms a lower triangular matrix to a packet storage format

• DTPTRI: computes the inverse of a triangular matrix stored in packet-format
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• ILU: computes the incomplete LU factorization with dual truncation mechanism

• LPACSTODENSE: transforms a lower triangular matrix stored into a package format
into a dense matrix

• UPACSTODENSE: transforms a triangular matrix stored into a package format into a
dense matrix.

            ROTINS  CODE

       START

     READ DATA INPUT

build the stiffness matrix A

 build the mass matrix
 build the x and y gradient matrix B  and C

 build the final stabilized matrix for velocity and pressure

 build the final matrix for temperature

build the sub-domains matrices

 build the coarse matrices
 preconditioning matrices for velocity fields

preconditioning matrices for pressure

preconditioning matrices for temperature

 assigning boundary conditions

        DO N= 1

 apply characteristic and  fractional 

 build the right hand side for velocity and pressure 

 preconditioning their right hand sides

 application of Bi-CGSTAB solver for provisional velocity

 application of Bi-CGSTAB for updating the pressure

 update the velocities

 application of Bi-CGSTAB solver updating the temperature

        END  DO

    print the results

 application of GNUPLOT for visualization

  END

Figure 7.2: ROTINS flow chart.
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7.3 ROTINS

ROTINS is the code that was developed for the solution of Navier-Stokes equations by means
of characteristics, fractional step and stabilization techniques. The implementation of ROTINS
was careful about efficiency issues and it suits parallel computer architectures inherently. It is
divided into three modules: the matrix computation module, the solutions of algebraic system
without Schwarz preconditioner module and the Schwarz overlapping additive preconditioner
module.

7.3.1 MODULE : computation of matrices

In this module, we compute all the matrices involved in the algebraic formulation (5.39)-(5.44)
and we store in a suitable file. The main routine is:

• ROTIZGENERAL: computes all the matrices of the equations of the two velocity com-
ponents, of the updated values of the pressure correction, of the correction of the velocity,
and of the updated values of the temperature equations. In order to reduce the computing
time, ROTIZGENERAL calls some of the routines that we listed in ELFICS (see Section
7.2) and in this way, all the computations are made once.

7.3.2 MODULE : solution of algebraic system without Schwarz precondi-
tioner

This module takes the matrices that have been computed in the modules of Subsection 7.3.1
and using characteristics plus the fractional step with the stabilized technique, solves at each
time instant the six algebraic systems (5.39) - (5.44) by means of iterative Bi-CGTSAB solver
without the Schwarz preconditioner. The mains routines are :

• CHARACTERICTICS: computes the foot of characteristics for all the nodes of the ele-
ments

• CHARBARYT: computes the foot of characteristics for the barycenter of the elements

• FINDTRIANGLE: finds element that at the time instant t = tn+1 contains the foot of
characteristics

• ITERPROCESS: interpolates the nodal value at the foot of characteristics using the
values obtained at the previous times instant. The values used can be the velocities field
or the temperature

• BARYCENTER: computes the barycenter of each element of the triangulations

• INITVAL: computes the initial value of the velocity field, the pressure and the tempera-
ture

• PEANROTIZFINALE: uses the previous routines and makes the advancing time, solving
each algebraic system by means of the Bi-CGSTAB iterative solver whose routines have
been already given in ELFICS.

7.3.3 MODULE : solution of algebraic system with Schwarz overlapping
preconditioner

This module is similar to the previous one 7.3.2; the most important difference between them
consisting in the use of Schwarz preconditioner. For constructing the Schwarz preconditioners
for all the six matrices necessary at the computations of the updated values relevant to the
physical variables, the routines listed in ELFICS are used. When the preconditioners are built
they are stored in a suitable file. The next step consists in using the routines :
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• PEANROTIZFINALEPRECONDITIONED: makes the advancing time and solves iter-
atively by means of the Bi-CGSTAB solvers at each time step the six algebraic systems
that are preconditioned by Schwarz

• DGECO: is taken from [141] and computes the condition number of the six matrices.

The efficiency of ROTINS is such that it can handle easily other types of partial differential
equations such as the time dependent parabolic equations and the time dependent convection
diffusion equations.

7.4 Post-processor

The graphics produced in this thesis for the test problems of chapter 5 were obtained by means
of GNUPLOT [140]. In fact, after the fixed temporal steps, ROTINS outputs the numerical
solutions for the velocity, the pressure and the temperature fields which are stored in a suitable
format in some data files. Then suitable commands of GNUPLOT are applied to obtain the
desired graphics.



Conclusions

In this thesis, a new numerical approach for the solution of 2D incompressible Navier-Stokes
equations that requires little computational effort has been addressed. The most important fea-
tures of the new model are: using polynomials of degree two (both for velocities and pressure)
in a FE spatial approximation; advancing in time by a fractional step approach in which the
non linear convective terms are approximated by characteristics, adding of suitable stabiliza-
tions techniques in order to overcome the instabilities inherent to the equal order choice. The
new technique reduces the most expensive computational kernels to the solution of algebraic
systems stemming from elliptic problems. In order to reduce as most as possible the com-
putational effort, an iterative method (Bi-CGSTAB), preconditioned by an additive Schwarz
preconditioner has been used.

The new model has been tested solving several problems, at first of elliptic, parabolic and
convective-diffusive kind, then in some time dependent and stationary Navier-Stokes problems
such as the two dimensional unsteady flow of decaying vortices and the lid driven cavity flow
having known analytical solutions, and the problem of natural convection in a square cavity.
In all the cases the results demonstrate in complete agreement with the theoretical previsions
and with the results at disposal from literature, confirming the accuracy and efficiency of the
model. The numerical schemes above mentioned (with the obvious modifications due to the
specific problem under study) have been applied for the solution of 1D Shallow-Water equa-
tions. Actually in this application, the polynomial spaces are not of equal degree, but they are
of degree one for elevation and of degree two for the discharge. Also, the model relevant to the
shallow-Water has been tested solving a problem with known analytical solution. We would
stress that the efficiency and the low computational cost of the new numerical model, make it
a promising tool for the prediction of the distribution of chemical pollutants in a river.
A suitable software has been developed for both the fluid dynamics models.

Another potentially interesting tool developed and tested in the thesis, and resembling some
techniques recently developed in the framework of discontinuous FE, is a weak formulation
of elliptic and parabolic problems able to guarantee the fluxes conservation. Unfortunately,
it appears that the conservative finite element method is convergent but not conservative ac-
cording to the classical definition; however it could be generalized so that a scheme genuinely
conservative, like those named finite volume-elements, could be obtained.

Finally, since the computational kernels are of elliptic kind, the feasibility to apply well-
established h-adaptivity techniques would be very advantageous.
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337-361, 1991.



Bibliography 171

[33] B. Cockburn and C.W. Shu, The local discontinuous Galerkin finite element method
for convection-diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463, 1998.

[34] B. Cockburn and C.W. Shu, The Runge-Kutta discontinuous Galerkin finite element
method for conservation laws V: Multidimensional systems, J. Comput. Phys., 141, 199-224,
1998.

[35] R. Codina and O. Soto, Approximation of the incompressible Navier-Stokes equations
using orthogonal subscale stabilization and the pressure segregation on anisotropic finite
element meshes, Comput. Meth. Appl. Mech. Engrg., 193, 1403-1419, 2004.

[36] J. Douglas, Jr. and T. Dupont, Interior penalty procedures for elliptic and parabolic
Galerkin methods, Lecture Notes in Physics, Vol 58, Springer-Verlag, Berlin, 1976.

[37] G. De Vahl Davis, A natural convection of air in a square cavity: a benchmark numerical
solution, Int. J. Numer. Meth. Fluids, 3, 249-264, 1983.

[38] A. Deponti, V. Pennati and L. De Biase, A fully 3D finite volume method for in-
compressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 52, 617-638, 2006.

[39] J. Donea and L. Quartapelle, An introduction to finite element methods for transient
advection problems, Computer Methods in Applied Mechanics and Engineering, North-
Holland 95, 169-203, 1992.

[40] J. Douglas, Jr. and T.F. Russell, Numerical methods for convection-dominated dif-
fusion problems based on combining the method of characteristics with finite element and
finite difference procedures, SIAM J. Numer. Anal., 19, 871-885, 1982.

[41] J. Douglas and J. Wang, An absolutely stabilized finite element method for the Stokes
problem, Math. Computat., 52, 495-508, 1989.

[42] M. Dryja and O.B. Widlund, Some domain decomposition algorithms for elliptic prob-
lems, in L. Hayes and D. Kincaid, eds., iterative methods for large linear systems, 273-291,
Academic Press, San Diego, California, 1989.

[43] M. Dryja and O.B. Widlund, Additive Schwarz methods for elliptic finite element
problems in three dimensions. In Fifth International Symposium on Domain Decomposition
Methods for Partial Differential Equations, D.E. Keyes et al. eds. SIAM, Philadelphia, 3-18,
1992.
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