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Abstract

Model-based development is particularly promising in the area of real-time and
embedded systems, since it potentially increases the level of automatism and de-
creases the possible defects, improving the e�ciency of the process and the quality
of the product.

Model based approaches are e�ectively supported by notations such as SysML,
a modeling language for Systems Engineering that has been recently adopted by
the Object Management Group (OMG). SysML is of industrial origin, and it is
likely that it will be widely adopted in industry for the development of real-time
and embedded systems. Potential obstacles to the adoption of the language on a
large scale are the lack of a methodology that drives the modeling activities and
the full support for the de�nition of temporal aspects.

The main goal of this PhD work concerns the de�nition of model-based method-
ological guidelines to the usage of SysML for the analysis and speci�cation of
requirements and the early modeling of real-time systems.
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Chapter 1

Introduction

System development requires that the quality of both the production process and
the resulting products are guaranteed. Quality can be obtained by means of
methodologies, notations and tools that support the development. The adoption
of these means by industry requires that they are accessible, easy to use and
cost-e�ective.

Nowadays, model-based approaches represent an attractive solution for the
software industry. Models lead software engineers to dominate the intrinsic com-
plexity of systems by abstracting away from useless details, and by allowing de-
signers/analysts to focus on the most relevant features. Moreover, models are usu-
ally platform independent, thus keeping application development separate from
the underlying platform technology in the early stages of the lifecycle, and easing
the porting. Whenever su�ciently expressive modeling languages are used, mod-
els can also be processed for various purposes, such as to validate and/or verify
properties, to generate code, to generate test cases, etc.

In the last years several languages have been speci�cally de�ned to provide
e�ective notations to support model-based methodologies. For instance, the Uni-
�ed Modeling Language (UML) [57, 56] has achieved the status of standard for
modeling (general purpose) software applications.

UML provides several mechanisms to extend the language in order to satisfy
special purpose modeling requirements. For instance, many UML Pro�les have
been speci�cally de�ned to improve the basic expressive capabilities of the lan-
guage and to support the speci�cation of special purpose systems such as real-time
and embedded systems.

The Object Management Group (OMG) has recently adopted SysML [53]
(System Modeling Language) as a modeling language for Systems Engineering.
SysML is a UML Pro�le that tries to overcome some of the weaknesses that arise
when modeling systems with relevant non software parts. SysML is based on a
subset of UML 2 [57, 56] and introduces new features that are expected to better
support speci�cation, analysis, design, veri�cation, and validation of systems that
include hardware, software, data, personnel, procedures, and facilities. SysML has
been de�ned with the cooperation of industry leaders in the �elds of Information
and Communication Technologies, Avionics, Automotive and Academia. SysML
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fully supports model-based speci�cation and analysis, design, veri�cation and
validation techniques of a broad range of systems, thus it is likely that it will be
widely adopted in industry. Moreover, it provides innovative features to better
address the speci�cation of requirements.

Since real-time and embedded systems are not comprised uniquely of software,
but tend to involve hardware, devices, and often people, SysML is a natural
candidate to support the development of this type of systems. Nevertheless,
since SysML was released recently, there is still little evidence of its suitability to
e�ectively support the development of real-time embedded systems.

Similarly to UML, SysML does not provide an adequate support for de�n-
ing temporal properties. Moreover, currently there are no proposals concerning
development methodologies based on SysML. The literature reports just a few
experiences in using the language, but they mainly focus on describing the nature
and the role of SysML diagrams, rather than suggesting methodological guide-
lines.

The main goal of this PhD work concerns the de�nition of a SysML based
approach to the analysis of requirements and the early modeling of real-time and
embedded systems. The aim is to help the modeler using SysML for organizing
requirements and for de�ning a high level abstract model of the system.

1.1 The proposed solution

A �rst step towards the de�nition of a SysML based approach to requirements
analysis consists in identifying the concepts and the type of use that such language
has to support. Such requirements are addressed by the model for requirements
and speci�cations of Gunter et al. [26], which introduces the artefacts underly-
ing requirements analysis techniques and describes the relationships among such
artefacts.

The choice of adopting such model is motivated by the fact that it is a sound
and rigorous approach to requirements analysis and speci�cations, and it is inde-
pendent from speci�c engineering aspects such as languages and notations to be
used.

The model is essentially based on the following artifacts:

• the problem domain, which describes the behavioral and structural charac-
teristics of the world where the problem is located.

• the requirements, i.e., the description of the user needs with respect to
the solution of the problem, in other words the expectations of the user
concerning the behavior of the problem domain after the implementation
and deployment of the system.

• the machine domain, i.e, a model of the system that satis�es the require-
ments.

The main goal of the modeling activity consists of the speci�cation of a ma-
chine that, once connected to the environment of the problem, satis�es the re-
quirements.
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Starting from these basic concepts, we propose an approach that consists in
using speci�c SysML diagrams and elements for describing di�erent aspects of the
requirements, the problem domain and the machine domain. According to the
SysML speci�cations, the language can also be combined with other notations in
order to de�ne properties that SysML alone cannot express. Since the support
provided by SysML for expressing temporal properties is poor, this possibility
is exploited by embedding, into SysML models, properties that are expressed
in TRIO [23], a formal language for the speci�cation and analysis of real-time
systems.

Although the resulting modeling approach drives the analyst from the level
of identifying the problem to the one of de�ning the speci�cation, it does not
provide any hint for approaching the analysis of complex problems, for which
the passage from the identi�cation to the speci�cation is not direct. Moreover,
consider that most of the realistic problems are too complex for being handled as a
single problem and a further analysis activity is required. Such activity consists in
structuring the complex problem as a collection of subproblems that are simpler
to describe and to solve and in composing their descriptions in order to move
towards the solution of the complete problem.

The Problem Frames approach proposed by Jackson in [37] is a requirements
analysis methodology based on the principle of problem decomposition. The ap-
proach is built on the reference model of Gunter and provides all the method-
ological guidelines that are necessary for approaching the analysis of complex
problems.

The approach of Jackson is based on the following concepts

• domain, a physical entity of the environment where the problem is located.

• phenomenon, an internal property of a domain.

• requirement, the user expectation with regard to the solution of the prob-
lem expressed in terms of relationships among the internal phenomena of
domains.

• machine speci�cation, the speci�cation of the behavior of the machine that
once connected with the other domains of the problem satis�es the require-
ments.

The core of this analysis technique is to recursively decompose a problem
into simpler sub-problems until the identi�ed sub-problems are of the simple type
de�ned by some frames. A problem frame characterizes a class of elementary
problems for which domain types and interfaces are known, and for which basic
frame concerns, i.e., guidelines that must be addressed to go towards the solution
of the problem, are provided.

In [37] Jackson de�nes �ve basic problem frames, by describing the shape of
the problems and their concerns. Although only �ve basic frames are proposed,
additional frames can be proposed. Notice that, according to Jackson, Prob-
lem Frames provide a context in which previously captured experiences can be
e�ectively exploited for the analysis of other problems [36]. The application of
Problem Frames to the analysis of complex problems is a way to evaluate whether
other basic frames need to be de�ned.
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Although the Problem Frames approach provides guidelines for driving the
analyst through the di�erent activities of system analysis, and a great interest for
the technique was shown by the requirements engineering research community, at
present the approach is not widely used in industry.

Problem Frames are usually presented in literature by means of simple case
studies that aim at illustrating particular aspects of the approach. Case studies
of realistic complexity are still missing. Notice that the empirical evidence of
the applicability of the technique to realistic problems may represent a �rst step
towards its application in industrial processes.

A further weakness that hinders the adoption of the technique in industry
concerns the lack of an e�ective notation and tools that support the approach.
Jackson proposes a simple notation to describe only parts of the structural char-
acteristics of a problem but does not support the de�nition of the behavioral
aspects.

Several papers [43, 8] discussed the integration of UML with Problem Frames
in order to provide a more e�ective notation to the Problem Frames methodology.
The results of this integration showed that although the combination improves
the e�ectiveness and usability of Problem Frames, UML does not support the
approach at the correct abstraction level.

We propose a combined approach to requirements analysis that combines
SysML with the methodological guidelines of Problem Frames.

SysML performs better than UML since it provides constructs to support
modeling at the correct level of abstraction and since it overcomes some of the
weaknesses of UML.

The approach consists of �ve main activities:

• Requirements de�nition, during which the user requirements are introduced
by means of informal descriptions

• Context analysis, which consists in the analysis of the problem and identi-
�cation and description of the problem domains and shared phenomena

• Domain de�nition, which consists in connecting the domains among them
by de�ning the structural organization of the whole system.

• Domain re�nement, which consists in de�ning the relevant behavioral prop-
erties of the domains

• Requirements re�nement, during which the informal requirements are pre-
cisely speci�ed by using a formal notation.

All these activities are supported by means of SysML diagrams and constructs.
Both the modeling language and the requirements engineering approach take

advantage from the combined approach. From the point of view of SysML, the
modeling language is enriched with a sound requirements engineering approach,
while from the Problem Frame perspective, the analysis approach is supported by
an expressive notation.

A �rst step towards the validation of the approach is to test its e�ectiveness by
applying it to the modeling of the catalogue of basic Problem Frames proposed in
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[37]. Such catalogue is composed of a simple case study for each of the �ve basic
frames. Although the intrinsic complexity of the proposed problems is relatively
low, such basic frames play a fundamental role, since the whole decomposition
process aims at reducing complex problems to a set of simple problems that
should �t these frames.

In order to complete the validation of the approach and to test its scalability,
we apply it to the modeling of a case study of industrial complexity. The adopted
case study concerns the modeling of a controller for a four way intersection system.

1.2 Organization

This thesis is organized as follows:

• Chapter 2 introduces the fundamental characteristics of SysML, describing
its main constructs and its diagrams. Some simple examples are used to
clarify the role and the use of SysML constructs and diagrams. Notice that
this chapter provides a reference for all the subsequent uses of the language.

• Chapter 3 proposes a set of guidelines for using SysML for the requirements
analysis of real-time system. The guidelines are based on the reference model
for requirements and speci�cation of Gunter et al. [26]. This chapter also
describes the application of the approach to the modeling of the Generalized
Railroad Crossing (GRC) problem [30], a well known benchmark for real-
time systems.

• Chapter 4 introduces the Problem Frames approach. It describes the basic
concepts of the approach as well as its notational support and methological
issues concerning the application of the approach to the analysis and struc-
turing of problems. The chapter provides a reference for all the subsequent
uses of the approach.

• Chapter 5 illustrates how Problem Frames can be used for the requirements
analysis of a case study of industrial complexity that concerns a system for
monitoring the transportation of dangerous goods. This chapter, besides
showing the application of the approach to the decomposition of a complex
problem, discusses the identi�cation of two new basic frames.

• Chapter 6 describes the combined approach for requirements analysis and
structuring based on Problem Frames and SysML. More speci�cally, it pro-
poses a set of guidelines for using speci�c SysML diagrams and constructs as
a notational support to di�erent activities of the Problem Frames approach.
The chapter also illustrates the application of the guidelines to the analysis
of a simple case study concerning a sluice gate irrigation system.

• Chapter 7 proposes a �rst step towards the validation of the combined ap-
proach, more speci�cally it describes the application of the approach to the
basic frames catalogue proposed by Jackson in [37].
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• Chapter 8 aims at testing the scalability of the combined approach. It
proposes the modeling of a case study of industrial complexity concerning a
controller for a four way intersection system supporting multiple operating
modes. This chapter shows how it is possible to dominate the intrinsic
complexity of a real problem by applying the decomposition techniques, and
how it is possible to model the single subproblems and how such subproblems
can be recomposed to get the general description of the requirements and
machine speci�cations of the complete problem.

• Chapter 9 draws some conclusions by summarizing the main results and by
discussing plans for future works.

1.3 Publications

Part of the material presented in this PhD thesis has already been published:

• A preliminary form of the guidelines and of the case study presented in
Chapter 3 are published in [14].

• The application of the Problem Frame approach to the modeling of the
requirements of the system for monitoring dangerous goods transportation
described in Chapter 5 are published in [12].

• The combined approach Problem Frames - SysML illustrated in Chapter 6
has been published in [13].

• The application of the combined approach for the modeling of the catalogue
of basic Problem frame has been published in a preliminary form in [11].
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SysML

In the last years the practices to describe systems are moving from the usage of
document centric approaches towards model centric solutions.

In a document centric approach, activities such as requirements description,
speci�cation, system design, development, and testing are usually performed by
independent work groups and described into distinct documents with di�erent
ad hoc notations. Some problems may arise in the communication among such
groups, due to inconsistent descriptions and to the partial view of the system
under development.

A model centric approach exploits the usage of a unique model that describes
numerous aspects and properties of the system under development. Moreover,
such description is performed by using a unique notation. The shared under-
standing of system requirements and design provides some bene�ts. For instance,
it favors the validation of requirements and the identi�cation of risks. The usage
of a central model helps in managing complex system development since it favors
the separation of concerns via multiple views of the integrated model. Moreover,
it facilitates impact analysis of requirements, design changes and it supports in-
cremental development. Finally, a model centric approach favors early veri�cation
and validation of properties de�ned on the model thus diminishing the e�ects of
errors at the last development phases. As a result, the adoption of a model cen-
tric approach improves the overall design quality by reducing errors and ambiguity
and the risk of inconsistent descriptions.

A model centric approach needs to be supported by an e�ective notation that
has to describe in a expressive and intuitive way all the properties and the as-
pects of the system under development. In 2003, the Object Management Group
(OMG) expressed the requirements for such notation in the UML for Systems En-
gineering Request for Proposal [64]. Since the Uni�ed Modeling Language (UML)
[57, 56] was an a�rmed standard notation that supported software development,
the goal of the request was to extend such language by providing it with the
notational elements that are needed to support Systems Engineering activities.

The resulting extended notation was intended to support the modeling of a
broad range of systems, including hardware, software, data, personnel, procedures,
and facilities. Moreover, it had to support the analysis, speci�cation, design, and
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veri�cation of complex systems by describing the involved system properties in
a precise and e�cient manner. Finally, the notation was intended to favor the
communication among the various participants and stakeholders involved in the
description of the system.

The Systems Modeling Language (SysML) [53] is a new general purpose lan-
guage that was expressly de�ned to satisfy the requirements imposed by the UML
for System Engineering Request for Proposal. SysML is based on UML 2, more
speci�cally, it reuses a subset of the elements of UML 2 and provides innova-
tive elements to support the requirements imposed by the Request For Proposal
(RFP).

SysML is designed to provide e�ective constructs for modeling a wide range of
system engineering problems. The language supports the speci�cation, analysis,
design, veri�cation and validation of systems that may include hardware, software,
information, processes, personnel, and facilities.

Figure 2.1: Diagram Taxonomy

SysML is a visual modeling language that provides a graphical notation with
(informal) semantics and di�erent types of diagrams, which can be used to de-
scribe both the behavioral and the structural aspects of a system. The variety of
diagrams and a very rich notation allow designers to show in a quite intuitive way
the relationships among the di�erent elements involved in a model. As shown in
Figure 2.1, most of the diagrams are inherited from UML and are adopted with-
out any change. Other diagrams are adapted so that they are compatible with
the new constraints de�ned by SysML. Moreover, completely new diagrams are
de�ned to extend the language in order to fully support system modeling.

In what follows, a short overview of the most important SysML constructs is
provided. First of all structural elements, i.e., the elements used to de�ne static
properties of a system, are introduced; then dynamic elements, i.e., the constructs
used to de�ne the behavioral aspects are described; �nally, cross cutting elements
are presented.

A very simple example concerning a control system is used to introduce some
of the basic elements of the SysML notation.
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2.1 Structural elements

In this section the main SysML constructs supporting the de�nition of the static
aspects of a system are introduced.

2.1.1 Block

Blocks are the basic structural units for system description. A block is a collection
of features that describe di�erent aspects of an element of a system. Blocks
support the de�nition of both structural and behavioral properties; they are used
to represent the state of an element, and which operations or activities such
element may exhibit. Blocks may be recursively composed of other Blocks, and
such a mechanism is used to describe the structure of hierarchical systems.

More speci�cally, blocks are characterized by intrinsic properties named Block-
Properties that specify:

• Part: A block may be composed of instances of other blocks. A property of
a block may refer to an element of a system that is contained in the block
itself. In SysML block instances are named Parts. Parts are used to show
the components of the system.

• Reference: A property of a block may refer to an element of a system that
is not directly contained in the block itself. References are used to share
common information across multiple elements of a model.

• Value: A value property is used to represent a measurable characteristic of
a block. A value property may be characterized by a unit and dimension.

• Port: A property used to represent the types of interactions that can occur
between blocks.

• Constraint: A property used to constrain other Block, Reference, Value and
Port properties.

• Operation: A service that can be requested from a Part to e�ect behavior.
An operation has a signature that de�nes the formal parameters.

BlocksProperties are used to de�ne information about the system state and
behavior, and can be used also to de�ne the relationships among the elements at
any level of the structure associated with a system. Blocks can be associated with
one another by means of the following types of relationships:

• Dependency: A relationship between two blocks in which a change to the
properties of one element a�ects the properties of the other one.

• ReferenceAssociation: A relationship between two blocks that speci�es a
connection among their instances.

• PartAssociation: A relationship used to complement the de�nition of a Part
property, in which a block is connected to other blocks owned by the block
itself.
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• SharedAssociation: A relationship used to complement the de�nition of a
Reference property, in which a block is connected to other external blocks
not directly owned by the block itself.

• Generalization: A relationship between a more general block and a more
speci�c one. The extended block is fully consistent with the properties of
the more general one (it inherits all its properties), and provides additional
properties.

• BlockNamespace Containment: Used to represent that blocks are de�ned in
the namespace of a containing block.

2.1.2 Additional Structural Types

Besides Blocks, SysML provides additional constructs to represent fundamental
structural properties of a system.

ValueTypes de�ne values that express information about a system. Values
may be used to type properties (Value properties), operation parameters and
other SysML elements. ValueTypes may include a dimension and a measure unit
associated with the values.

DataTypes are types characterized by pure values. DataTypes includes both
primitive types and enumeration types.

Signals represent asynchronous stimula occurring between instances of blocks.
A Signal is a generalizable element type and is de�ned independently from the
classes handling it.

2.1.3 Port

Ports are interaction points between a Block or a Part and the environment
through which data and signals are exchanged. Ports are BlockProperties, hence,
they are part of the de�nition of a Block. Morever, they are connected with one
another by means of connectors. SysML introduces two di�erent kinds of Ports
named Standard Port and Flow Port.

Standard Port

Standard Ports are used to specify interaction points through which a Block
provides/requires a set of services to/from its environment. A Standard Port
is a communication point that receives or sends signals. Receiving or sending
signals may correspond to the invocation of services. In such a case, services
are de�ned by means of operations and are collected into interfaces that can be
either provided or required by a Block. Standard Ports are commonly used in
the context of service oriented architectures for the speci�cation of synchronous
communication mechanisms.

FlowPort

Flow Ports are used to specify which kind of item may �ow between a Block
and its environment. The speci�cation of what can �ow is done by associating a
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FlowProperty or a FlowSpeci�cation with the FlowPort. A FlowProperty spec-
i�es the type (Block, ValueType, DataType or Signal) of a single element that
�ows from/to the port and a FlowDirection property (in/out/inout), which spec-
i�es whether such element enters or leaves the port. FlowSpeci�cation de�nes an
input/output characterized by a set of FlowProperties. Notice that FlowProp-
erties involved in the de�nition of a FlowSpeci�cation may be characterized by
di�erent types of elements and by di�erent FlowDirections.

Flow Ports are categorized into Atomic and Non-Atomic FlowPort depending
on whether they are characterized by a FlowProperty or by a FlowSpeci�cation,
respectively.

2.1.4 Constraint Block

A Constraint block is an extended block that contains the de�nition of a property
that constrains the properties of one or more elements of a system. Constraints
are characterized by a ConstraintProperty, i.e., a BlockProperty characterized
by a textual expression that predicates on a set of variables named Constraint
parameters. SysML does not prescribe the usage of any speci�c language to
express ConstraintProperties. Properties can be de�ned by using natural language
or formal/mathematical languages. The modeler is free to adopt the language that
he/she considers the most suited for the modeling context.

A Constraint block de�nes a generic form of constraint that can be used in
multiple contexts. In fact, Constraint blocks are de�ned independently from the
modeling system: they are used by allocating the parameters of their instances
to the properties of domains.

2.1.5 Diagrams

The structure of systems is de�ned by using the previously introduced constructs
within Package Diagrams pkg, Block De�nition Diagrams bdd, Internal Block
Diagrams ibd and Parametric Diagrams par.

Package diagrams pkgs are used to organize the model by partitioning the
model into packageable elements and establishing relationships between the pack-
ages and/or model elements within the package. SysML Package diagrams also
allow the modeler to de�ne Views and ViewPoints. A Viewpoint is a speci�ca-
tion of the rules for the de�nition and the usage of a view for the purpose of
addressing a set of stakeholder concerns, while a View is a representation of the
system from a certain viewpoint. pkgs provide mechanisms to group model el-
ements into name spaces, favoring the reuse of blocks and solving homonymity
problems. Other packages may access or import model elements de�ned in a pkg.
The package diagram in Figure 2.2 shows the de�nition of a View that imports
elements from existing packages and comforms with a given Viewpoint named
AnalysisViewpoint.

Block De�nition Diagrams describe the system hierarchy by introducing the
blocks that represent the system components and the existent relationships among
them, such as composition, association, specialization.

bdds support the de�nition of Blocks, DataTypes, ValueTypes, Constraint
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Figure 2.2: Package diagram example

Blocks. All these elements may be de�ned by specifying all their internal prop-
erties. For instance, a Block can be de�ned as equipped with FlowPorts or
StandardPorts, while ValueTypes may provide the de�nition of the Unit and
Dimension that are associated with their value. Moreover, all these elements
are graphically represented by an ad hoc notation in the bdd. bdds also sup-
port the speci�cation of di�erent types of relationships among such elements such
as Dependencies, ReferenceAssociations, PartAssociations, SharedAssociations,
Generalizations and BlockNameSpace Containment.

Internal block diagrams describe the internal structure of a block in terms of
its properties, and connectors. More speci�cally, since Parts, Values, References,
and Ports are BlockProperties associated with a block, they may be shown within
ibds. Binding connectors among such elements re�ect the relationships de�ned
in the bdd where their types are de�ned.

bdds and ibds are an extension of the UML Class Diagrams and UML Compos-
ite Structure Diagrams, respectively. Such diagrams allow a modeler to separate
the de�nition of model elements from their e�ective usage. In fact, all the ele-
ments de�ned in a bdd are provided with the de�nition of the properties that will
characterize their instances shown in ibds.

As an example, consider the bdd shown in Figure 2.3 and the ibd of Figure
2.4. The bdd describes the Blocks composing the package System shown in Figure
2.2, while the ibd shows the internals of the Block ControlSystem introduced in
the bdd.

Figure 2.3: Block De�nition diagram example
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Figure 2.4: Internal Block diagram example

Parametrics diagrams are an extended type of ibd that are used to allocate the
parameters of Constraint Blocks to system elements properties. Such properties
are the same that can be shown in a ibd, hence, a par is similar to an ibd, with
the exception that the only connectors that may be shown are binding connectors
connected to constraint parameters. pars and ibds share a similar function in
the modeling process, in fact, Constraints Blocks are de�ned in bdds like other
Blocks and are used in pars.

Figure 2.5: Parametric diagram example

An example of constraint de�nition and allocation is shown in Figure 2.5. More
speci�cally, the �gure reports a bdd that de�nes a Constraint Block named Lin-
earAmpli�er, and a par that shows the usage of such constraint. The constraint
is instantiated and its parameters (x, y and k) are allocated to internal parts of
the Ampli�er. Namely, y = amp.input, k = amp.factor and x = amp.output. As
a result, amp.output is constrained to be equal to amp.input times amp.factor.

2.2 Behavioral elements

In this section the main SysML constructs supporting the de�nition of the behav-
ioral aspects of a system are introduced.

2.2.1 Activity

Activities are fundamental constructs provided by SysML to support the behavior
speci�cation. Activities take a set of input data and use them to produce a set
of output data. Activities are composed of basic Actions, which represent the
basic unit of behavior speci�cation. Basic Actions include CallBehaviorAction,
AcceptEventAction and SendSignalAction.
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Behavioral modeling concerns the identi�cation of the activities and their basic
actions, besides the identi�cation of their inputs, outputs, and conditions for
coordinating their execution.

In SysML activities are Blocks, and their instances are executions. Whenever
an instance of an activity is created, the activity starts its execution. Moreover
when an instance of an Activity is destroyed, the activity stops its execution.
Notice that in both cases the vice versa is also guaranteed.

Since Activities are blocks, they can be de�ned in Block De�nition Diagrams.
Moreover, the same types of relationships that are used in a bdd for standard
Blocks can also be used for Activities. Whenever a Composition relationships
is de�ned among two Activity blocks, implicit constraints on the execution of
such activities are also imposed. More speci�cally, in case the execution of the
activity involved in the composition relationship terminates, the execution of the
contained activity is also stopped. Moreover, in case an instance of the container
activity is created, also an instance of the contained one is de�ned, and both
are executed. A Composition relationships can be de�ned between two activities
whenever an activity invokes another activity.

Activities may receive input data, and during their execution they may provide
output data. Data processed by activities are represented by means of ObjectN-
odes, instances of Blocks, DataTypes or ValueTypes that specify the items that
�ow through the activities during their execution. ObjectNodes are de�ned in
bdds and may be linked to Activity Blocks by using Associations.

ObjectNodes may �ow between activities at di�erent rates. SysML provides
constructs to specify the rate at which entities �ow among activities. Rate speci-
�es the number of ObjectNodes that �ow through activities per time interval (it
does not refer to the rate at which the value changes over time). The de�nition
of both Discrete and Continuous �ows is supported. Continuous rate is a special
case where the increment of time between items approaches zero.

SysML allows a modeler to express di�erent behaviors associated with the
processing of ObjectsNodes. Items can be either bu�erized or not bu�erized,
moreover special policies may be de�ned, e.g., to specify whether the arrival of a
new item overrides the previous one.

The control on the execution of activities is carried out by sending control val-
ues. Control Values are managed by Control Operators, i.e., logical operators that
are used to enable or disable actions. Control Values may trigger the execution
of activities, and may also block the execution of running activities.

2.2.2 Diagrams

SysML provides Activity Diagrams (act), Sequence Diagrams (seq), State Ma-
chine Diagram (stm) and Use Case Diagram (uc), to support the de�nition of the
behavioral aspects of systems.

Although di�erent types of diagrams are introduced, all of them share the
same behavioral constructs.

State Machine diagrams (seq) are used to describe behaviors in terms of sys-
tems states and transitions. A State is a period of the life of an instance of a
Block during which such instance satis�es some conditions, performs some ac-
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tions or waits for some events. A transition is a relationship between two states
that speci�es that an instance in the �rst state will enter the second state and
will perform speci�c actions when given event will occur and a given condition is
satis�ed.

stms describe possible sequences of states and actions through which the el-
ement instances can proceed as a reaction to discrete events such as operation
invocations.

Figure 2.6: State Machine diagram example

As an example, consider the stm of Figure 2.6 that shows the four internal
states of the Block Actuator, and de�nes the transitions triggered by timed con-
ditions, by external events named cmd1 and cmd2, and by events named evt1,
evt2, evt3 and evt4 generated by the action ProcessAct1 and ProcessAct2 at the
end of their processing (the generation of the events is not speci�ed by the current
diagram, here the events are simply referred to). Whenever the states Process-
ing1 and Processing2 are reached, the actions ProcessAct1 and ProcessAct2 are
executed.

Activity Diagrams (act) are used to describe the control �ow and the data
�ow among actions. Activities are de�ned by composing basic Actions. Such
composition is based on operators, such as InitialNode, FinalNode, DecisionNode,
MergeNode, ForkNode, JoinNode, which support the de�nition of the data �ow
and the control �ow among the involved actions.

An act can be considered as a special case of a state diagram in which all
the states are actions and the transitions are triggered by the completion of the
actions in the source state. The purpose of this diagram is to focus on �ows driven
by internal processing, as opposed to state machine diagrams where the evolution
is driven by external events.

A simple example of act is shown in Figure 2.7. The act describes the behavior
of the Block Controller. The Action Elaborate is triggered by a Signal named
Input and by an ObjectNode Value, the action generates an output that depending
on its value may cause the generation of signals named Cmd1 or Cmd2.

As in UML, Sequence Diagrams describe the control �ow between actors and
systems or between parts of a system. sds de�ne interactions among instances of
blocks. sds are characterized by two dimensions: the vertical dimension represents
time, while the horizontal one shows the instances of blocks that are involved in the
interaction. Interactions are sets of messages that are exchanged by the involved
instances.
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Figure 2.7: Activity diagram example

The life time of the block instances is represented by Lifelines, while the exe-
cution time associated with the execution of a given action performed by a block
instance is represented by ExecutionSpeci�cation bars. sds provide constructs
to support the speci�cation of complex interaction forms. InteractionUse is used
to specify that a part of an Interaction is described by an externally de�ned Se-
quence diagram. While CombinedFragment introduces interaction operators that
contrain the sequence of messages that characterizes an interaction. More specif-
ically, Interaction operators include: Weak sequencing (seq), Alternatives (alt),
Option (opt), Break (break), Parallel (par), Sctrict Sequencing (strict), Loop
(loop), Critical Region (critical), Negative (neg), Assertion (assert), Ignore (ig-
nore) and Consider (consider). Each operator in turn requires speci�c operands.
For instance, the Option combination fragment is used to model a sequence that
will occur only if a certain condition (speci�ed by the interaction operand) is
satis�ed. In other words, opt is used to model simple -if then- statements.

Messages involved in the de�nition of interactions may represent asynchronous
signals passed between blocks instances, synchronous invocations of an activity,
or return values. Moreover special types of messages such as CreationEvent and
DestructionEvent are used to create an instance of a block that will be involved
in the interaction, and to terminate a lifeline, respectively.

Additional constructs such as DurationConstraint and TimeConstraint can be
used to constrain the duration of the message forwarding, and the sending and
receiving time of messages, respectively.

A simple example of Sequence diagram is shown in Figure 2.8. The sd shows
the basic interactions among instances of Detector, Controller and Actuator. De-
tector sends a Signal Input to Controller, which in turn elaborates the Signal
and depending on the result of the elaboration sends a Signal Cmd1 or Cmd2 to
Actuator.

Use Case Diagrams (ucs) are used to describe the usage of systems. ucs specify
the use cases (i.e., a collection of functionalities) of the system, and the actors that
interact with one of more of these use cases. Actors represent a taxonomy of user
types or external systems. Besides introducing actors and use cases, ucs support
the de�nition of relationships among them. Relationships include Generalizations
between actors, and Generalizations, Extends, and Includes between use cases,
and Communication between actors and use cases.

More speci�cally, actors are connected to use cases via Communications. Gen-
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Figure 2.8: Sequence diagram example

eralizations between use cases provide a mechanism to specify variants of the base
use case, while generalizations establish compatibility between actors: a special-
ization of actor A can participate in all the use cases as A. Include provides
a mechanism for factoring out common functionalities which are shared among
multiple use cases. Extend provides a mechanisms to de�ne optional function-
alities, which extend the base use case at de�ned extension points under certain
conditions.

Figure 2.9: Use Case diagram example

The simple example of Use Case diagram in Figure 2.9 shows the basic use
cases of the block Actuator and the actor, that is the Controller, that accesses
them.
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2.3 Crosscutting constructs

In this section constructs supporting the de�nition of both the structural and
behavioral aspects of a system are introduced.

2.3.1 Allocations

Allocation is the term used by system engineers to denote the mapping of elements
onto the various structures of a model. Allocations can provide an e�ective mean
for navigating the model by establishing cross relationships, and ensuring that
the various parts of the model are properly integrated. The allocation mechanism
is based on the de�nition of the relationship Allocate.

Allocate is a dependency relationship that is used for associating elements of
di�erent types at an abstract level. The relationship is used for assessing model
consistency and anticipating future design choices.

Behavior allocation relates to the system engineering concept of separation of
concerns. It is required that two independent models of functions and structure
exist. Then a mapping between elements of such models can be de�ned by in-
troducing an allocate relationships that specify, for the interested activity, which
block provides it.

Flow allocation maps �ows de�ned in behavioral behavioral diagrams into
�ows de�ned in structural representations.

Finally, structure allocation supports the separate de�nition of logical and
physical representations of a system. Representations at an abstract level are
mapped into representations at a more concrete level.

A further construct named AllocateActivityPartition is used to allocate the
elements represented in an Activity diagram to structural elements. More specif-
ically, the Actions within the partition must result in an Allocate dependency
between the Activity used by the Action and the element that the partition rep-
resens.

2.3.2 Requirements

Requirements specify properties that must be satis�ed by the system under de-
velopment. Requirements may a�ect di�erent aspects of the system. More specif-
ically: structural requirements specify the static properties of the system to de-
velop; functional requirements describe the functionalities that the system must
exhibit; while non functional requirements involve the de�nition of properties such
as performance or temporal aspects.

SysML provides a construct named Requirement (a stereotype of UML Class)
to represent text based requirements. Requirement are characterized by two prop-
erties named id and text. The former is used to assign a unique identi�er to a
requirement, while the latter is the textual description of the properties. Notice
that SysML does not force the usage of any particular language to express prop-
erties, hence the modeler is free to adopt the language that he/she considers the
most suited for his/her needs.

SysML also provides relationships to relate requirements to other requirements
and to modeling elements.
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Containment relationships support the de�nition of composite requirements.
Exploiting such relationships, a complex requirement can be described as com-
posed of multiple sub-requirements. A recursive usage of the relationship supports
the de�nition of requirements hierarchies.

DeriveReqt is a dependency relationship between two requirements that spec-
i�es that a certain requirement (the client) is derived from another one (the
supplier). Notice that no formal semantics is associated with the term Derive.

Copy is a dependency relationship between two requirements (a client and a
supplier) that speci�es that the textual description of the client requirement is
a copy of the textual description of the supplier. Copy relationships are de�ned
to support requirements re-use across several projects. In fact, in order to avoid
inconsistent identi�cation of requirements that come from di�erent projects, local
copies are de�ned, and a new id is associated with each copy.

Satisfy is a relationship between a requirement and a system element. Such
relationship speci�es that the system design element is intended to satisfy the
requirement.

TestCase is a method for verifying whether a requirement is satis�ed. In
SysML, a test case is intended to be used as a general mechanism to represent
any of the veri�cation methods for inspection, analysis or test. TestCase is char-
acterized by a verdict property that speci�es the veri�cation result.

Verify is a relationship between a requirement and the TestCase that veri-
�es whether a system ful�lls the requirement. In this case the supplier is the
Requirement while the client is the TestCase.

Re�ne is a relationship between a model element and a requirement. It can be
used to specify that the model element, that is the client, re�nes the requirement,
the supplier. As an example, the textual description of a functional requirement
may be re�ned by means of Activity diagrams. Re�ne can also be used to specify
the opposite situation, that is, it can be used to express that the textual descrip-
tion of a requirement re�nes a less �ne grained model element.

2.3.3 Pro�les and Model Libraries

A Pro�le is a stereotyped package that contains mechanisms to de�ne model ele-
ments customized for a speci�c domain. Model elements are extended version of
metaclasses de�ned in external metamodels. Their customization exploits the us-
age of extension mechanisms such as Stereotypes, Tagged values and Constraints.
A Stereotype is a new type of model element that extends an existing type or
meta-class. A Tagged value is an explicit de�nition of a property as a name-value
pair, while a Constraint is a semantic condition on model elements.

SysML provides the following additional relationships to support the de�nition
of Pro�le and Model Libraries:

• Extension is a relationship between a Metaclass and a Stereotype, and spec-
i�es that the Stereotype extends the properties of the Metaclass.

• Generalization is a relationship between two stereotypes, and speci�es that
one stereotype inherits the characteristics of the other one and extends them
by providing additional properties.
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• Pro�leApplication is a dependency relationship between a package and a
Pro�le, and speci�es that the Package uses the elements that are collected
in the Pro�le.

• MetamodelReference is a dependency relationship between a Pro�le and a
Metamodel, and speci�es that the Pro�le refers to elements that are de�ned
in the Metamodel.

SysML also supports the de�nition of Model Libraries, that is, stereotyped pack-
ages that contain model elements which are intended to be reused by other pack-
ages. Notice that a Model library di�ers from a Pro�le since it does not extend the
metamodel. For instance, let us consider the real-time domain. In such context
a model library could provide the dimensions and unit for managing time, while
a pro�le could extends the metamodel by introducing innovative constructs like
clocks, durations and intervals, to support the de�nition of temporal properties.

2.3.4 Diagrams

Allocation is supported by di�erent types of constructs and can be applied to the
elements shown by di�erent types of diagrams. Allocation are de�ned in bdds
and ibds by using two BlockProperties named allocatedFrom and allocatedTo.
In case of behavioral allocation, a property named allocatedTo can be added to
the compartment of Actions shown in an Activity Diagram. Activity partitions
can be de�ned by tracing swimlanes that allocate actions de�ned in an Activity
Diagram to a certain model element.

Alternatively to all the proposed mechanisms, stereotyped comments allocat-
edFrom and allocatedTo can be applied to all types of model elements in all struc-
tural and behavioral diagrams. Notice that no ad hoc diagram type is de�ned to
support Allocation.

As an example, consider the act diagrams shown in Figure 2.10. Such dia-
grams express the allocation of the action Elaborate to the block Controller by
means of three di�erent notations: Diagram a) by means of the BlockProperty
allocatedTo, Diagram b) by means of an element AllocateActivityPartition, and
Diagram c) by means of a stereotyped annotation.

The de�nition of requirements is supported by a dedicated diagram named
Requirement Diagram (req). reqs contain both the de�nition of Requirements
and the relationships that can be de�ned among them. In case of relationships
that involve a model element and a Requirement, model elements can be shown
in the diagram as well.

A simple example of Requirement diagram is shown in Figure 2.11. The basic
requirements de�ned in the diagram describe the structure of the whole control
system and the basic behavior of the block Controller.

The de�nition of Pro�le and Model Libraries is supported by Package dia-
grams and Block De�nition Diagrams. The former are used to specify any type of
relationship that can be de�ned between elements that are represented by stereo-
typed packages, i.e., Metamodel, Pro�le and Model Library. The latter is used to
introduce the de�nition of new Stereotypes, Tagged Values and Constraints.
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a)

b)

c)

Figure 2.10: Allocation examples

Figure 2.11: Requirement diagram example





Chapter 3

Modeling real-time systems

with SysML

This chapter proposes a model-based approach exploiting SysML for the analy-
sis of requirements and the early modeling of real-time and embedded systems.
More speci�cally, it introduces methodological guidelines to help the analyst to
organize requirements and to de�ne an abstract model of the system. Successful
developments strongly depend on the early stages of requirements organization.
Moreover, early models properly support the de�nition of the basic aspects at the
abstraction level needed to support the development phase.

An additional goal of this work is to test the e�ectiveness of SysML in modeling
temporal aspects. In order to evaluate the proposed modeling approach and the
language capabilities, SysML is used to model one of the best known benchmarks
for real-time systems: the generalized railroad crossing (GRC) problem [29].

The chapter is organized as follows: Section 3.1 illustrates the methodological
guidelines for modeling real-time systems using SysML. Section 3.2 introduces the
GRC problem. Section 3.3 presents the GRC SysML model. Section 3.4 discusses
the e�ectiveness of SysML, and identi�es some qualities and limitations. Finally,
Section 3.5 presents the most relevant related work.

3.1 Methodological guidelines to the use of SysML

The System Modeling Language (SysML) is a visual modeling language that pro-
vides a graphical notation based on di�erent types of diagrams and that can be
used to describe both the structural and the behavioral aspects of a system [54].
Most of the diagrams are inherited from UML, even though new diagrams are
de�ned to extend the language in order to fully support system modeling.

SysML supports a model-centric approach to the de�nition of systems. The
modeling process is carried out through several complex activities performed by
di�erent actors (e.g., analysts, designers and testers) that cooperate in order to
de�ne the whole system. Such actors can take advantage of the single notation
provided by SysML to describe the di�erent artefacts built during system de�ni-
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tion, thus easing communications and facilitating the common understanding of
the system.

SysML is intended to be methodology independent [54] and therefore it is pos-
sible to use it in the context of di�erent approaches and methodologies. This chap-
ter presents methodological guidelines based on the reference model by Gunter et
al. [26] for the de�nition of hybrid1 and real-time systems.

3.1.1 Requirements speci�cation

This section describes the requirements speci�cation phase, concentrating on the
nature of the requirements analysis and description. Given a software development
problem, the following types of artefacts are introduced:

• The Problem Domain, which speci�es some given, established properties of
the environment where the result of the development �i.e., the machine�
will operate. These descriptions, concerning both structural and behavioral
aspects, are �indicative�, that is, they are (generally) given and cannot be
modi�ed.

• The Machine Domain, which speci�es the target of the development activity,
which is the �nal artefact that we aim at releasing to the user. Notice that
the machine includes both hardware and software components, although
often hardware is given and the development only addresses (a part of) the
software components.

• The Requirements, which specify the user expectations concerning the be-
havior of the `system'. Requirements are given by means of �optative� de-
scriptions.

The main goal of the modeling activity consists in the speci�cation of a ma-
chine that �once integrated in the environment where the problem lies� satis�es
the user requirements.

According to Gunter's reference model, the Machine Speci�cation describes
the intersection of the Machine Domain and the Problem Domain, where the
interaction takes place. In fact, the Machine Domain and the Problem Domain
share phenomena, such as events, states, data, information, etc.

The Machine Speci�cation is a rigorous description of the structural and be-
havioral properties of the Machine. At the problem de�nition level, the behavior
of the machine is speci�ed by taking into account only the shared phenomena
(i.e., no internal details of the machine have to be mentioned).

SysML supports the de�nition of system requirements through a new type of
dedicated diagram, named Requirements Diagram (req).

The basic building block of Requirements Diagrams is the requirement, which
is de�ned as a stereotype2 of a UML Class. Each requirement element comprises

1A hybrid system is a dynamic system that exhibits both continuous and discrete dynamic
behavior

2Notice that SysML, being de�ned as an extension of a part of the UML meta-model, uses
the same extension mechanisms provided by UML (e.g., tagged values, stereotypes and pro�les).
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an identi�er and a textual description to informally provide the semantics of the
requirement block.

The language also allows the modeler to de�ne relations among requirements
and between requirements and other elements of the model. In particular, SysML
introduces a derivation relation (as an extension of UML dependency) and a
containment relation (as an extension of UML association). The containment
relation is used to decompose complex requirements into sets of simpler ones.
The derive relation is used to state that a requirement is derived from another
one; however it has not a formal semantics and can be used to show extensions of
properties.

As a result, SysML Requirements Diagrams can be seen as a sort of hypertexts,
with derivation and containment relations playing the role of links. Requirements
Diagrams can specify structural and behavioral characteristics, as well as features
that must be provided or constraints that must be satis�ed. Nevertheless, the
precise nature of every requirement is not represented explicitly, that is, it must
be inferred from the textual description.

In order to model requirements concepts according to the reference model by
Gunter et al. we introduce the following stereotypes : User-Requirements, Pro-
blem-Domain-Requirements and Machine-Spec-Requirements, to characterize
Requirement blocks.

The overall system requirements can be viewed as the union of the description
of the Problem domain, the User requirements and the Machine speci�cation.
Figure 3.1 sketches the proposed requirements classi�cation, while an example of
req diagram is reported in Figure 3.5.

Figure 3.1: The support for requirements de�nition provided by SysML



26 CHAPTER 3. MODELING REAL-TIME SYSTEMS WITH SYSML

Requirements
[requirements diagrams]

Constraints
[parametric diagrams]

Structure
[block definition diagrams,
internal block diagrams]

Behaviour
[activity diagrams,

use cases,
state machines,

sequence diagrams]

Satisfied by Satisfied by

Redefined by

Allocated toAllocated to

Allocated to

Figure 3.2: The SysML proposed modeling approach

3.1.2 Methodological guidelines

The model of requirements based exclusively on a Requirements Diagram is just a
little more than structured text. Such description is generally not even su�cient
to guarantee the basic properties of requirements (completeness, consistency, etc.).
Thus, we need a more precise and detailed description of the environment, the
user requirements and the machine speci�cation, in which both the structural and
the behavioral aspects are de�ned.

In order to address this issue SysML provides di�erent types of diagrams and
constructs.

The choice of which constructs or diagrams to use in the de�nition of a re-
quired property is mainly related to the characteristics of the requirement itself.
A complex requirement (characterized by an hybrid nature) can be recursively
decomposed into simpler homogeneous structures. As a result of such decomposi-
tion we obtain elementary properties whose nature can be structural, behavioral
or transversal, i.e., associated with both static and dynamic elements.

Figure 3.2 shows how SysML diagrams can be used to describe properties
according to their nature. Block De�nition Diagrams and Internal Block Diagrams
allow one to re�ne the de�nition of structural requirements. Activity Diagrams,
State Machine Diagrams, Use Case Diagrams and Sequence Diagrams support the
de�nition of the behavior of a system. Moreover, Parameter Diagrams describe
cross-cutting constraints that possibly concern both structural and behavioral
elements of the system. In fact, the expressiveness of constraints largely depends
on the language used to write them.

The proposed requirements speci�cation approach is composed of the following
activities:

1. Re�ne the elements of the Requirements Diagram classi�ed as Problem--
Domain-Requirements and Machine-Spec-Requirement into precise de-
scriptions of their structure. This is done by de�ning a bdd in which a block
is introduced for each element of the Requirement diagram that de�nes both
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structural and behavioral aspects. Moreover an ibd describing the architec-
ture of the whole system is introduced by instantiating each block de�ned
in the bdd. Note that also some aspects of the machine structure need to be
modeled. In fact, there are many problems that require that the machine
�keeps track� of what is happening in the environment. For this purpose,
the machine builds an internal �model� of the environment. This situation
is well described by the �model building frame� in [37]. Therefore, bdds and
ibds are often used to describe the internal models of the machines.

2. Describe the behavior of the blocks previously de�ned in the bdd. This can
be done by de�ning activities by means of activity blocks in a bdd, and
providing for each block an Activity Diagram, or by de�ning a State Machine
Diagram that describes the internal state evolution. Activity Diagrams
are used whenever behaviors involve more than one block or whenever it
is necessary to specify a �ow of data among blocks and activities. State
Machine Diagrams are used when the behavior is associated with a single
block, and it can be described by means of state evolution.

3. Re�ne the User-Requirement to describe the desired behavior of the envi-
ronment. This can be done by using bdd, act and stm as described in the
previous step. Usually, there is no need to use any structural description,
since in general user requirements concern the properties of the environment,
already described in the model of the problem domains.

Notice that although we presented the requirement speci�cation activities as
a sequence of steps, the process may be iterative, with frequent adjustments and
re�nements involving also the Requirements Diagram.

Following the proposed guidelines the modeler has to describe elementary
properties by means of the diagrams provided by the language. This activity leads
him/her to organize the de�nition in several diagrams, each of which providing a
view on an aspect of the same property. The usage of cross cutting diagrams and
constructs allows the modeler to logically compose in a unique model the involved
parts. For instance, an activity can be decomposed into subactivities that can be
allocated to di�erent structural components.

3.1.3 Real-time aspects

Temporal properties, like any other kind of non functional properties, can be
informally expressed by means of Requirements Diagrams as introduced in the
previous section. Temporal requirements can be either imposed by the user or
given characteristics of (some of) the problem domains that are contained in
the system environment. In either case the analyst needs to re�ne the informal
properties expressed by means of textual descriptions.

SysML inherits the time modeling capabilities of UML and therefore it does
not provide any speci�c construct for expressing temporal properties. Like in
UML, time is considered a single aspect of behavioral modeling. Concepts such
as time and duration are expressed by means of metaclasses of the SimpleTime

package, which provides also actions to observe the passing of time. SimpleTime
features do not support distributed models, in other words, the package can be
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used only for the speci�cation of systems characterized by a unique centralized
time model that is shared by all the components of the system. This weakness
can be partly justi�able in the case of the UML basic pro�le, since it is not
meant for the de�nition of real-time system and most of the speci�ed models
are not characterized by time dependent behaviors. However, this cannot be
accepted in the case of SysML, since such modeling language is designed for
system engineering.

This limitation is particularly onerous in the advanced phases of the develop-
ment process and may a�ect schedulability analysis, simulation and veri�cation
activities.

UML overcomes this weakness by introducing several pro�les that extend the
expressive capabilities of its basic version. Some of them, like the UML Pro-
�le for Schedulability, Performance and Time (SPT) [51] and the UML Pro�le
for Modeling Quality of Service and Fault Tolerance Characteristics and Mech-
anisms [50] have been approved by OMG as o�cial UML extensions to express
temporal aspects.

SysML has been released only recently, and no o�cial pro�le has been proposed
yet. Moreover, pro�les are usually design oriented, thus they do not support the
requirements analysis phase at the correct level of abstraction.

As an alternative to pro�les, the communities of analysts and modelers pro-
posed mechanisms and notations that aim at re�ning the semantics of particular
elements of a model using formal methods. Several approaches to de�ne tem-
poral properties have been proposed in the literature. Some of them, such as
Timed automata [2], use an operational style; others, such as TCTL [1] logic, use
a descriptive style.

However, SysML does not natively support the usage of any speci�c approach,
and does not suggest to use any speci�c language to express temporal properties.

On one hand the lack of supported notations could be considered a weakness of
the language; but on the other hand, the independence from any speci�c method-
ology and language allows the modeler to use the speci�cation techniques he/she
considers the most suitable for the project. For instance, in the development of
critical systems the modeler could prefer formal notations that enable the appli-
cation of formal methods in order to increase the con�dence in the correctness of
the system. On the contrary, informal notation could be used in the development
of less critical systems.

Our approach exploits SysML Constraint blocks to express temporal proper-
ties. More speci�cally, constraints are introduced and attached to model elements
in Parametric Diagrams.

The properties in constraint blocks can be written using di�erent languages.
We propose to use TRIO, a �rst order logic language augmented with a temporal
domain, arithmetic operators and temporal operators, since it is widely known in
the community of real-time analysts and since it has been applied to the speci�-
cation of several real-time and safety critical systems [9].

A detailed explanation of TRIO formulas and temporal operators can be found
in [23].
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3.2 The GRC problem

The Generalized Railroad Crossing problem was proposed in 1993 by Heitmeyer
[29] as a general benchmark for the development of real-time systems. Since then,
it has been used extensively to test several formalisms, methodologies and tools
aimed at easing the development of real-time systems [30, 29]. The problem is
quite simple, yet it exposes time constraints we usually �nd in hard real-time
systems.

3.2.1 The de�nition

The system to be developed operates a gate at a railroad crossing. The railroad
crossing I lies in a region of interest R (see Figure 3.3). Trains travel over R on K
tracks in both directions. Trains may proceed at di�erent speeds, and can even
pass each other. Only one train per track is allowed to be in R at any moment.
Sensors indicate when each train enters and exits regions R and I. A gate function
g from the real-time domain to the real interval [0,90] describes the state of the
gate according to the inclination of the bar, g(t)=0 indicating that the bar is down
(gate closed) and g(t)=90 indicating that the bar is up (gate open). A sequence of
occupancy intervals is also de�ned, where each occupancy interval is the maximal
time interval during which one or more trains are in I.

The problem is to develop a system to operate the crossing gate that satis�es
the following two properties:

• Safety Property: The gate is closed during all occupancy intervals.

• Utility Property: The gate is open whenever this is possible without violat-
ing the safety property, and according to the features of the gate. For in-
stance, when the last train in the crossing leaves and no train is approaching,
the gate must open. The utility property is required, since a permanently
closed gate would satisfy the safety property.

Figure 3.3: The railroad crossing regions

Notice that Figure 3.3 shows trains going in only one direction. We adopt this
simpli�cation, since it has been shown that the solution of this simpli�ed problem
can be trivially extended to the general case.
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3.2.2 Towards the solution of the GRC problem

Let us introduce the relevant points in the interest region (see Figure 3.4):

• point RI indicates the position of the entrance sensor;

• point RO indicates the position of the exit sensor;

• point II indicates the position of the sensor that detects trains entering
region I.

Therefore, RI-RO de�nes zone R and II-RO de�nes zone I.

Figure 3.4: Annotated GRC

A set of temporal constants describes maximum and minimum times for cross-
ing the various zones, as well as the gate opening and closing times:

• dm and dM: minimum and maximum time taken by a train to cross RI-II
zone;

• hm and hM: minimum and maximum time taken by a train to cross zone I
(i.e., II-RO zone);

• g is the time taken by the bars of the gate for moving from the completely
open to the completely closed position (or vice versa).

As a consequence, point X is de�ned as follows: when a train enters zone X-
II it is time to start closing the gate, in order to ensure that the bars will be
completely lowered when the train arrives at II (i.e., when the train enters the
crossing zone I, or II-RO). Zones RI-X and X-RO are also referred to as Safe zone
and Critical zone, respectively. The exact position of X depends on the speed of
each train, which is not known precisely. Thus the system cannot determine the
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right moment when a given train is at point X. However, it is clear that if the
system is safe for the fastest train, it is safe also for other trains. In order to have
the gate closed when the fastest trains arrive at II, we must begin to close the
gate dm-g seconds after the train entered region R. In this way when the fastest
trains arrive at II the bars will be down and the crossing will be safe.

In order to satisfy the safety property, the bars can be raised only when both
the crossing zone and the critical zone are empty. Similarly, in order to guarantee
the utility property, the system must start opening the gate as soon as the critical
zone and the crossing zone become empty.

3.3 Modeling the GRC with SysML

This section presents the application of the proposed guidelines to the GRC prob-
lem. According to the described approach, we start structuring the informal
requirements descriptions provided by the user by means of a SysML Require-
ments Diagram(req). Then, requirements are re�ned into a more structured and
precise way. Initially the structural aspects of problem and machine domains are
introduced by means of bdd and ibd that de�ne properties associated with do-
mains, their internal composition and interconnections. Then, behavioral aspects
of the components of the environment and of the machine are described by means
of bdd, act, stm and par diagrams. Finally, User requirements are de�ned by
means of Constraint Blocks and par diagrams using formal notations.

3.3.1 Requirements de�nition

The �rst activity consists in organizing requirements in a req diagram. The
informal properties provided in Section 3.2 are taken into account and organized
in the req diagram reported in Figure 3.5.

The main goal of modeling is the de�nition of a control system that operates
a gate at a railroad crossing, and is represented by the RailroadCrossingSpe-

cification requirement.
The initial informal description presents the whole system as composed of sen-

sors, a gate, tracks partitioned in regions, and trains. All these elements, following
the previously introduced criteria, represent the problem domains, while the con-
troller is the machine, that is the target of the speci�cation activity. Properties
associated with problem domains are de�ned by means of Problem-Domain-Re-
quirement elements, while properties associated with the machine are expressed
using Machine-Spec-Requirement elements.

Additional properties express the expectations of the user concerning the be-
havior of the system. Such properties are expressed by means of User-Requi-
rements elements. According to the previous descriptions, the GRC problem
introduces two user requirements: the UtilityProperty and SafetyProperty.

3.3.2 Structural aspects

According to our guidelines, modeling initially focuses on the description of the
structural aspects of the environment where the �machine� will be integrated. This
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Figure 3.5: The Requirements Diagram for the GRC
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activity is similar to the de�nition of an architecture for a software system [22],
although in this case the subject is the problem domain and the �components�
have a physical nature (trains, tracks, gate, etc.).

The Block De�nition Diagram representing the GRC structure is built starting
from the Requirements Diagram of Figure 3.5.

The system is modeled as a single block recursively decomposed into blocks
down to the basic elements of the structure. Each block de�nes a collection of
features, properties, and operations that characterize part of the system.

The modeling activity starts identifying domains. More speci�cally, all the el-
ements classi�ed as Problem-Domain-Requirements and Machine-Spec-Requi-

rements characterized by both structural and behavioral aspects are described
by introducing homonymous blocks in the bdd.

Besides identifying domains and de�ning the corresponding blocks, we also
analyze the textual requirements and re�ne the bdd accordingly. For instance,
the Requirements Diagram speci�es that the controller receives data from three
sensors and sends commands to the gate. This is represented in the bdd by
equipping the Controller block with three input �ow ports of type SensorDa-

ta and a standard port labeled ctrlGP. The latter needs to be connected to an
interface in order to operate the gate. Such interface, named GateI, is provided
by block Gate and de�nes the raise and lower commands that can be used to
operate the gate.

The Sensor block owns an attribute that identi�es the track on which it is
positioned, and is characterized by an output �ow port of type SensorData. A
sensor generates SensorData signals, which are sent through the port. A Sen-

sorData signal contains attributes that identify the originating sensor.

The Block De�nition Diagram is shown in Figure 3.6.

System architecture

Once the structural elements have been de�ned, we have to show how the instances
of these components are interconnected.

The instances of blocks previously de�ned in Figure 3.6 are connected ac-
cording to the information reported in the Requirements Diagram; the resulting
system architecture is shown in Figure 3.7.

A Gate instance labeled gate and providing the interface GateI is directly
connected to ctrl, an instance of the Controller block that requires interface
GateI. Three instances of the Sensor block are connected to ctrl through �ow
ports of type SensorData. For each track i (with 1 ≤ i ≤ K) we have three sen-
sors labelled RIS[i], ROS[i] and IIS[i]. RIS[i] is the sensor at the beginning
of the region of interest R, IIS[i] is the sensor at the beginning of the crossing
zone I and ROS[i] is the sensor at the end of the crossing zone of the i-th track.
Each sensor produces SensorData signals, indicating on which track the sensor
operates and the position of the sensor on the track. For example, the RIS[i]

sensor generates a SensorData signal characterized by an attribute trackID=i

and an attribute sensorID=RIS, thus indicating that the sensor is placed on the
i-th track, at the entrance of the safe region.
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Figure 3.6: The Block De�nition Diagram for the railroad crossing system
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Figure 3.7: The Internal Block Diagram for the block RailroadCrossing

Structural decomposition

Domains are complex structures that may be decomposed into simpler ones. Ac-
cording to the proposed methodology, both the domain decomposition and the
de�nition of internal properties are represented by means of bdd and ibd.

Figure 3.8 presents both the bdd that describes the internal structure of
Controller, and the ibd that shows the internal architecture of such block.

The Controller block de�nes a set of attributes that are used to keep track
of the state of the regions. The CCR attribute represents the number of trains
currently in the critical region, while CIR represents the number of trains in the
region of interest. Other attributes de�ne constant values, such as the minimum
and the maximum time required to cross a speci�c region (dm, dM, hm, hM) and
the maximum number of tracks that compose the system (K).

The Controller block is composed by blocks of type TrackState and Gate-

State that represent local models of the tracks and of the gate, respectively.
Notice that altought CCR and CIR attributes are enough to keep track of the
current state of the regions monitored by the controller, the usage of local models
of the tracks and of the gate improves the analysis activities of the controller.

Block TrackState represents the current state of a track. Since we are not
interested in the exact position of trains, the position is de�ned in an abstract way:
out of region R, in RI-X, in X-II, in II-RO. The position of the train is determined
according to the information provided by the sensors, and taking into account the
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�owing of time. According to the speci�cations, there will be K instances of this
block.

Each TrackState object receives signals from all the sensors connected to the
controller and changes its state whenever the signal comes from a sensor positioned
on the track it represents. Notice that (since we are still in the speci�cation stage)

Figure 3.8: The structure of the Controller block

the GateState and TrainState do not need to be concretely implemented in the
Controller machine. They represent just abstract knowledge about the domain.
In other words, they are just a sort of summary of the sequences of domain
events that are generated in the environment and viewed by the machine. This is
perfectly coherent with the model building frame [37] and the idea that a machine
has often to incorporate a model of the environment in which it has to operate.

3.3.3 Behavioral aspects

Next step consists in specifying the behavior of the structural elements introduced
in the bdd (of Figure 3.7) according to the textual descriptions de�ned in the Re-
quirements Diagram. In particular, we address both the indicative descriptions of
the behavior of the problem domain and the optative descriptions of the required
behavior of the domain and of the machine.

First we identify an element in the static description (e.g., one of the blocks
in Figure 3.7); then we look into the Requirements Diagram in order to retrieve
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the information concerning the behavior of the element; �nally we describe such
behavior using the diagrams provided by SysML.

Domain descriptions

The re�nement starts from the elements of the environment, whose behavior is
usually well understood and fairly stable.

Figure 3.9: State Machine Diagram for the block Gate

Gate The behavior of the gate is described by means of a state machine. The
gate block is introduced in the bdd of Figure 3.6, and its behavior is informally
described in the Requirements Diagram (Figure 3.5) and is re�ned by the state
machine described in Figure 3.9.

The meaning of most of the states and transitions is straightforward. When
the gate is closed (i.e., the bar is down), and a raise command is received, the
bars start to move upwards. If a lower signal occurs when the gate is still opening,
the bars must start to move down immediately: this is modeled by a transition to
state InvertedDown. According to the problem de�nition the bar will reach the
closed position after a time equal to the time it has been opening. This behavior
is expressed referring to the time when such events occurred.

SysML provides the keywords ReceiveTime and SendTime to indicate the
time when an event was issued and received, respectively. We need to indicate to
which of the instances of raise or lower signal we refer, since we are interested
in the lower event occurred while the gate was in state Going_Up, not to the one
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occurred while in Up state. SysML provides a labeling mechanism that can be used
to identify individual transition instances. State Machine Diagrams represent
transition types, and therefore every transition may occur several times.Thus,
in the State Machine Diagram of Figure 3.9, we extended SysML syntax and
semantics by applying labels to transitions, so that we can always refer to the
last occurrence of a transition. Thus, the transition from InvertedDown to Down

occurs after a period equal to the interval between the last raise command and
the last lower command.

When the gate is in the state Up, and a lower command is received, the
bars start to move downwards. If a raise signal occurs when the gate is still
closing, the bars must start to move up. This is described by a transition to state
InvertedUp.

The states InvertedUp and InvertedDown require some additional remarks.
The state InvertedDown can be reached as a consequence of a lower command
sent by the controller whenever a train reaches the critical region while the gate
is opening. The state InvertedUp, should never be reached as a consequence of
a command sent by the controller. In fact, according to the user requirements,
the gate is closing only when a train has just entered the critical region: in this
situation the controller should not command the gate to start reopening. The
State Machine Diagram for the Controller block (see Figure 3.17) will prevent
the gate from entering the state InvertedUp. Therefore, the state machine in
Figure 3.9 must be considered the description of the generic behavior of a gate as
part of the environment.3

Figure 3.10: Activities allocated to train de�ned by means of a Block De�nition
Diagram

Train&Sensors The modeling activity goes on specifying the behavior of trains.
Notice that we are interested in the abstract view of trains provided by sensors
that allows the controller to maintain a model of the states of the trains.

The behavior of the trains is described by means of Block De�nition, Activity
and State Machine Diagrams. Figure 3.10 shows a bdd that de�nes the activities

3Notice that, for the sake of simplicity, the proposed state machine does not support double
inversion mechanisms.
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allocated to the Train block, while Figure 3.13 introduces an act diagram that
speci�es the control �ow among the basic activities that determine the behavior
of trains.

Figure 3.11: The Activity Diagram that de�nes the basic behavior of sensors

Figure 3.12: The State Machine Diagram that models the basic behavior of the
train

The trains simply move through the region of interest and the crossing zone;
when a train moves from a zone to another, a Pass signal is generated. All the
movements between adjacent regions are modeled by means of the MovingTo-

Sensor activity shown in Figure 3.13 and Figure 3.14. MovingToSensor speci�es
that the time to cross a region is bounded by two prede�ned values.

Whenever MovingToSensor is invoked, and T time instants passed since the
invocation, then the train has reached the end of the region and a Pass event
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Figure 3.13: The Activity diagram that describes the behavior of trains
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Figure 3.14: The Activity diagrams that describes the action MovingToSensor

is generated. Sensors react to such events by generating SensorData, which are
made available to the rest of the system. Sensors behavior is described by the act
diagram shown in Figure 3.11. SensorData models the shared phenomena occur-
ring between the environment (the trains) and the machine (i.e., the controller).

The de�nition of the behavior of the trains is completed by the State Machine
Diagram shown in Figure 3.12. A train is characterized by three states: at the
beginning it is out the region of interest, then it reaches the region of interest and
after crossing the critical zone it leaves the railroad crossing. The state machine
shows the association of the current state with the activities that it is performing.
Whenever a train reaches the Out_of_zone state, the Moving to the region of

interest activity is executed. The activity terminates causing the generation of
a Pass signal that will be captured and handled by the sensors along the track
where the train is traveling.

The state machine shown in Figure 3.12 allows one to simulate the behavior
of trains along the tracks of the railroad crossing.The execution of these ma-
chines causes the generation of Pass signals that once captured by sensors are
transformed into SensorData signals, which in turn can trigger speci�c internal
behaviors of the controller, like counting the number of trains in each zone of the
region of interest, or monitoring the current state of the tracks.

Machine speci�cation

Machine speci�cation starts with the identi�cation of the properties de�ned in
the Requirements Diagram of Figure 3.5 directly associated with the controller.

The Requirements Diagram provides the �rst indications concerning the be-
havior of the machine (it receives data from the sensors and sends commands to
the gate). Then the behavioral descriptions are re�ned by Block De�nition, State
Machine and Activity Diagrams.

The bdd shown in Figure3.15 introduces the basic activities allocated to the
Controller block, while the act diagram of Figure 3.16 speci�es the control �ow
that determines the controller behavior.

The Activity Diagram provides an explicit representation of the interactions of
the machine with the surrounding environment. The squared boxes on the border
of the diagram shown in Figure 3.16 represent incoming data from the sensors
�ow ports ctrlIISP, ctrlRISP and ctrlROSP (see the Internal Block Diagram in
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Figure 3.15: Activities concurring the de�nition of the controller's behavior

Figure 3.7). Notice that each port is connected to K sensors (one sensor for each
track). This property derives from the structural characteristics of the problem
domain, as described in the ibd of Figure 3.7 and in the Requirements Diagram
(Figure 3.5).

The e�ect of the signals from sensors on the state of the controller is speci�ed
by the activities DecCIR, DecCCR, which decrement counters CIR and CRR respec-
tively, and by activities IncCIR and IncCCR, which increment them. Counters CIR
and CCR (which are part of the state of the Controller, see Figure 3.6) represent
the number of trains in the critical region and in the crossing region, respectively.
Therefore, the values of these attributes have to change only when trains enter or
exit the zones of the region of interest.

Notice that exiting the region of interest corresponds to exiting the critical
region and therefore both events are detected by sensor ROS. Conversely, while the
entrance in the region of interest is detected by sensor RIS, no sensor is positioned
at the beginning of the critical region. As a consequence, the controller assumes
that a train is entering the critical zone (dm-g) seconds after it entered in the
interest region. This is expressed by specifying that the receipt of signal RI from
sensor RIS causes the execution of action Arriving that waits for (dm-g) seconds
before activating IncCCR4. In a similar way when signal RO is received from sensor
ROS, action Leaving is triggered and DecCIR is immediately executed.

Notice that the State Machine Diagram of Figure 3.17 refers to events Arriving
and Leaving5 in order to synchronize the behavior speci�ed by the Activity Dia-
gram with the behavior speci�ed by the state machine.

According to the UserRequirements reported in the Requirements Diagram,
the controller has to react properly to external events, in order to operate the gate

4Notice that transmission latencies and reaction times of the components are not taken into
account for the sake of simplicity

5According to SysML semantics the execution of a send signal action such as Arriving or
Leaving generates an event having the same name
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Figure 3.16: The Activity Diagram that describes the controller's behavior
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Figure 3.17: The State Machine Diagram for the Controller block
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Figure 3.18: CheckRaise and CheckLower activities behaviors
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according to the position of trains. This is speci�ed in the Activity Diagram in
Figure 3.16 by indicating that data from sensors ROS and RIS triggers the execu-
tion of the activities CheckRaise and CheckLower respectively. These activities
determine whether the gate has to be lowered or raised, according to the values of
CIR and CCR. Actually, the Activity Diagram speci�es that two control cycles are
performed: 1) the updating of CCR is followed by the decision whether to lower
(raise) the gate bar, 2) the lower (raise) command is issued, if it is the case.

Since the decision whether to raise or lower the gate bar is crucial, we need to
specify the decision activities as clearly as possible. For this purpose we describe
CheckRaise and CheckLower activities by means of the dedicated Activity Dia-
grams reported in Figure 3.18, where inner activities and �ows are described. For
instance, from the detail of the CheckRaise activity it is possible to see that the
raise control value is enabled when the gate bar is down and CCR is equal to zero.

Notice that the controller interacts with the other components of the system
in order to satisfy the user requirements.

Initially the critical region is empty and the gate is open. Whenever a train
enters the critical zone the counter CCR is incremented. Whenever a train exits the
critical zone the counter CCR is decremented. If a train arrives while the critical
zone is empty the state is changed to non-empty, and a lower command is sent
to the gate. When the last train leaves the critical zone, the state is changed to
empty, and a raise command is sent to the gate.

Synchronizing local models

According to the previously introduced modeling strategies, the controller exploits
local models to keep track of the current state of the tracks.

More speci�cally, the state is modeled by means of a State Machine Diagram.

Figure 3.19 reports the State Machine Diagram of TrackState. It speci�es
that a train traveling along the track is initially out of the region of interest, then
�coherently with the Activity Diagram of Figure 3.13� it passes sensor RIS and
enters region R. The involved sensor sends the signal RI, which is an instance of
the block SensorData with attributes sensorID set to RIS and trackID set to
the track number on which the sensor is located. All the instances of TrackState
receive RI, but only the instance having attribute trackID equal to RI.trackID

reacts, setting the state to Train_in_SafeZone. dm-g seconds after entering the
safe zone, the train enters the critical zone: this happens only for the fastest
trains, but it is safe to consider that all the trains reach point X dm-g seconds
after entering the safe zone. This transition is modeled by means of the after

statement provided by UML [57] and inherited by SysML.

The next step consists in specifying that the train enters region I not earlier
than g seconds nor later than dM-(dm-g) seconds after entering the critical zone.
Like UML, SysML does not provide any means to specify that a transition is
bound to occur in a given time range. In order to express such constraints we
introduce the state Train_Close_to_Crossing and the state Error. Note that
these states are introduced to address the limits of the language. For instance,
Error indicates that the behavior of the system deviated from the speci�cation.
In the design phase the Error state will be replaced with some exception handling
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state, for the sake of robustness.

In case a train reaches point II exactly after it has been in the critical zone
for g seconds, it directly goes into the Train_Crossing state, without passing
through the state Train_Close_to_Crossing. Notice that in order to express this
property it is necessary to extend the SysML syntax of conditions. In particular,
we need to specify the occurrence of an event at a given time while plain SysML
does not allow conditions to reference events.

Figure 3.19: State Machine Diagram for the TrackState block

Re�ning behavioral descriptions

Taking advantage of SysML capabilities, advanced behavioral properties associ-
ated with Controller are de�ned by means of a bdd comprising Constraint

blocks. Such blocks are allocated to model elements using par diagrams.

Figure 3.20 reports the Block De�nition Diagram where the invariant proper-
ties of the Controller block are de�ned using constraint blocks, and using TRIO
as speci�cation language.

The controller is required to act according to the number of trains in the
various regions. The attributes CCR and CIR of the Controller block de�ned
in Figure 3.6 represent the number of trains in the critical and in the crossing
zones, respectively. More precisely, these attributes represent the knowledge of
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Figure 3.20: De�nition of invariant properties for the Controller block

the controller about the number of trains in the mentioned zones. It is neces-
sary to specify how this knowledge is kept coherent with the real situation of the
tracks. For this purpose the constraint IncDecCounterInvariant is introduced
(Figure 3.20). The property IncDecCounterInvariant states that the C counter
� initially zero � is incremented whenever an IncC event occurs and decremented
whenever a DecC event occurs, otherwise the value of the counter remains un-
changed. The property is expressed in TRIO as follows:

UpToNow_e(C=i) and IncC -> Becomes(C=i+1)

UpToNow_e(C=i) and DecC -> Becomes(C=i-1)

UpToNow_e(C=i) and not IncC and not DecC -> Until(IncC or DecC, C=i)

The �rst part of the TRIO clause states that if C was equal to i immediately
before now, then C is incremented if an event IncC is occurring now, the second
part of the TRIO clause states that if C was equal to i immediately before now,
then C is decremented if an event DecC is occurring now, while (the third part)
it remains unchanged if neither IncC nor DecC is occurring. This applies for
every i in the (0 .. K-1) range (K being the number of tracks). Note that the
behavior for C>K, or for C=K and IncC is not speci�ed (constraints in Figure 3.20).
In fact, specifying these cases is not necessary, since it will never be the case
that on N tracks there are more than N trains. Notice that in real cases we
should consider the possibility that malfunctioning sensors report the passage of
nonexistent trains, thus making C greater than K. However, modeling faults is out
of the scope of the chapter.

Figure 3.21 reports the Parametric Diagram that speci�es how the constraints
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Figure 3.21: The Parametric Diagram which shows the allocation of the properties
of the Controller block
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de�ned in Figure 3.20 are used.

3.3.4 Re�ning User Requirements

The model described so far correctly de�nes the gate controller but does not
formally express the safety property. We need to re�ne the safety requirement
(reported in the Requirements Diagram) so that when there is at least one train
in the crossing zone I, the gate is closed.

Also in this case the safety and utility requirements are de�ned as constraints
in the bdd reported in Figure 3.22, and their usage is speci�ed in the Parametric
Diagram of Figure 3.23.

Figure 3.22: The Utility and Safety properties

The safety condition can be written in TRIO in a quite straightforward way:

Zone_I_occupied -> Down

The Parametric Diagram in Figure 3.23 indicates that Zone_I_occupied corre-
sponds to the NotEmpty::Crossing_occupied state of the controller, while Down
refers to the Down state of the gate.
Thus, the combination of the speci�cations reported in Figures 3.22 and 3.23
requires that when the crossing is occupied the gate must be down.

Note that in the Parametric Diagram in Figure 3.23 Zone_I_occupied is con-
nected with a state of the representation of the interest region contained in the
controller, rather than with the state of the real interest region. This is a sound
simpli�cation since we are modeling the GRC under the assumption that every-
thing works well and no fault occurs, there is no di�erence between reality and
its representation in the controller.

The utility condition can be expressed in TRIO as follows:

Lasted(Empty and not Arriving, g) -> Open
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Figure 3.23: Safety and utility properties allocated to the Controller states
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The TRIO formula states that if for g time units the critical zone was empty,
the gate must be open. The critical zone is empty if the crossing is empty and no
train passed point X (Arriving).

As a conclusion, notice that it was quite easy to embed satisfactory formal
speci�cations into SysML diagrams.

3.4 A �rst assessment on SysML

SysML represents a big step forward in modeling systems; it implements most
of the requirements contained in the original request of proposals submitted to
OMG in 2003 (see [64]).

In our opinion, SysML is better than UML 2 for modeling embedded and real-
time systems. As an example, let us consider a type of system that usually has
both real-time and embedded features, such as control systems. The communi-
cations among the components of such systems usually require continuous �ows
of information. UML does not allow modeling continuous data �ows. On the
contrary, SysML provides constructs to describe streams of data and continuous
activities, which can be used to adequately model continuous systems [5].

SysML provides the extension mechanisms inherited from UML: tagged values,
stereotypes and pro�les. According to UML 2 speci�cations [57], a pro�le de�nes
limited extensions to a reference meta-model with the purpose of adapting it to
a speci�c platform or domain. In order to achieve this purpose a pro�le de�nes
constraints on the meta-classes of the meta-model that it aims at extending. The
extensions are de�ned by means of stereotypes built around the original meta-
classes. This mechanism is quite limited, since it does not allow a modeler to
rede�ne the semantics of the elements described by means of meta-classes of the
original meta-model. As an example, the mechanisms provided by UML are not
powerful enough to change the semantics of the transitions in the State Machine
Diagrams as required in [19] or the semantics of the interactions in the sequence
diagrams as advocated in [20]. In both cases changes must be de�ned by directly
manipulating the UML meta-model.

We did not use a pro�le (e.g., a temporal pro�le) to model the GRC; instead,
we used the basic pro�le of SysML. There are two main reasons for this choice:
one is that at the moment no timing pro�les are available for SysML, the second
is that we were interested in studying the basic capabilities of SysML and how
the modeling process could take advantage of the usage of a formal notation.

Focusing the attention on the usage of the standard constructs and diagrams
we found the inadequacy of the State Machine Diagrams to model strict timing
information. In fact, the run-to-completion semantics inherited from UML pro-
vides state machines with a bu�er to handle the incoming events; every event
is dealt with when the machine has �nished consuming the previous one. The
consumption of an event can trigger a transition that executes in a non null time.
While this behavior is acceptable in the implementation of a system, it is unsuited
to model the time requirements and to carry out the analysis of a system. For
this purpose instantaneous and possibly simultaneous transitions are needed, as
well as the ability to deal with time intervals. Timed Statecharts [40] are suitable
to express precise time constraints (see [17], [18] and [19], where the problem
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is speci�cally addressed). Since the syntax and the graphical aspect of Timed
Statecharts are very similar to those of SysML state machines, the State Machine
Diagrams presented in the previous sections could be interpreted according to
the semantics of Timed Statecharts: in this case we could assert that the model
represents correctly the time behavior of the system.

However, we must consider that SysML supports both the operational model-
ing style (e.g., via State Machine Diagrams) and the declarative style (via Con-
straints). SysML does not feature a proper temporal logic (or analogous formal-
ism) to express time constraints. Although SysML does not prevent the use of
any formal language to express constraints, the availability of a standard formal
language would be useful, especially considering that UML constraint language
OCL does not support the speci�cation of timing issues, and it lacks many of
the needed features (see [44] for an OCL proposal of extension with time related
features). In practice, modelers have to employ a language like TRIO [23] to rep-
resent time constraints. Currently no UML pro�le fully satis�es the requirements
posed by real-time systems modeling. Moreover SysML lacks constructs (either
built in or made available by pro�les) to de�ne real-time systems; nevertheless
this limit can be easily overcome (as done in the previous sections) by introduc-
ing the usage of an external (possibly formal) language. Although this solution
could cause practical problems (e.g., the SysML tools may not understand con-
straints written in the �foreign� language), it is fully compliant with the de�nition
of SysML and can be applied for the de�nition of system properties by means of
parametric constraints.

A �nal remark is that resource management and consumption, which are very
important features when dealing with embedded systems, are not directly ad-
dressed. On the positive side, the bu�ered behavior of each activity in Activity
Diagrams can be disabled, in order to model activities that do not bu�er incoming
data. In SysML it is even possible to constrain the rate of incoming or outgo-
ing data that activities can accept (thus preventing bu�ering). These features
are relevant for embedded systems since bu�ers can consume large amounts of
resources.

3.5 Related work

SysML is a recent notation for software and system modeling (the �nal speci�ca-
tion was released in May 2006 [53]). Hardly any methodological guide concerning
how to use the language has been proposed yet. The literature reports just a few
experiences in using SysML. For instance, some whitepapers are available from
Artisan, describing systems like a house heating system [48] or a waste treatment
plant [28]. However, these papers are mainly meant to describe the nature and
the role of diagrams, rather than suggesting methodological guidelines.

We proposed some preliminary methodological guidelines, involving the inte-
gration of concepts from the Problem Frames approach into the modeling pro-
cesses based on SysML. The work reported in [13] addresses the usage of problem
frames in a SysML based modeling environment: on one hand SysML is used as
the notation to represent problem frames, on the other hand methodological is-
sues from the problem frame approach are incorporated into the SysML modeling
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process.

Concerning the speci�cation of HW-SW systems, there are several proposals
that �although not related to SysML� cast some light on the requirements
speci�cation activity. A compendium of the system engineering practices can be
found in [31].

As far as the ability to model time-dependent issues is concerned, it could be
possible to exploit SysML extension mechanisms to de�ne speci�c constructs for
the real-time domain; however, no such pro�le has been proposed for standardiza-
tion yet. Since SysML is a UML Pro�le, we expect that the System engineering
community will adapt to SysML some of the pro�les originally proposed for UML.
In the rest of this section we shortly describe the most important ones.

The OMG standard UML pro�le for Schedulability, Performance and Time
Speci�cation (SPT) [51] takes advantage of a complex time annotation mechanism
that enables di�erent kinds of analysis. After annotating a model, analysts can
carry out quantitative analysis applying Rate Monotonic Analysis techniques or
techniques based on classical queuing theory [25]. In SPT time is a quanti�able
resource, moreover the pro�le introduces concepts like instant and duration, and
also constructs to make reference to physical time such as timers and clocks. SPT
is designed for UML 1.4, thus it cannot be directly imported and used in the UML
2 based SysML.

The UML Pro�le for Modeling Quality of Service and Fault Tolerance Charac-
teristics and Mechanisms (QoS&FT) [50] is another OMG standard pro�le that,
like SPT, supports the speci�cation of non functional properties with advanced
annotation mechanisms. Several types of annotations can be de�ned and used
to deal with di�erent problem domains. Apparently, its generic nature makes
QoS&FT an ideal solution for di�erent types of systems, but unfortunately it
has some de�ciencies. For instance, QoS&FT does not allow de�ning variables
in complex real-time expressions. Moreover, the annotation de�nition process is
cumbersome and requires the creation of components outside the current model.

Other pro�les try to overcome the limits of SPT and QoS&FT. Among these,
the OMEGA pro�le [24] aims at de�ning a rigorous semantics for the constructs
used to specify complex temporal properties. However, the OMEGA pro�le is not
a standard.

OMG and the ProMarte team are currently working at the de�nition of the
UML Pro�le for Modeling and Analysis of Real-time and Embedded systems
(MARTE) [55]. MARTE promises to fully support the model-driven development
of real-time and embedded systems. It de�nes the foundations for model-based
descriptions, providing the support required from the speci�cation to the detailed
design phase. MARTE introduces constructs to annotate models with the infor-
mation required to perform performance and schedulability analysis. A stable
standardized version of MARTE is not yet available. Since SysML and MARTE
share common goals, it is expected that OMG will release guidelines for the usage
of MARTE in SysML models.

Besides pro�les, there are other mechanisms for rede�ning the semantics of
particular elements of the meta-model using formal methods.

Languages like OCL/RT[7, 21, 62] and OTL[44] are used to specify properties
of (sets of) elements of UML diagrams. Constraints and properties are expressed
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by means of a temporal logic and are associated with elements of UML models
as annotations. Another technique is based on ArchiTRIO [15, 60, 61], a formal
language based on high order logic that integrates Object Oriented and UML-
based concepts. The language supports the de�nition of both structural and
behavioral properties by means of axioms and theorems. As a result we get a
UML model composed of elements whose semantics is formally de�ned by the
logical language. Other techniques feature an operational style. As an example,
in [20] High Level Petri Nets are used to formally de�ne the semantics of scenarios
via Timed Petri Nets, while in [17] the run to completion semantics of the state
machines is substituted with the Timed Automata semantics in order to deal with
time dependent behaviors.

Being formal, all these notations support di�erent types of veri�cation meth-
ods. For instance, OCL/RT and OTL allow an analyst to apply lightweight
veri�cation techniques based on model checking; ArchiTRIO allows the analyst
to apply theorem proving techniques taking advantage of translations in PVS,
while classical reachability methodologies can be carried out for High Level Petri
Nets. Although such methodologies support the de�nition of expressive and veri-
�able models, they do not comply with the UML standard, depending on ad hoc
non-UML speci�cation or veri�cation tools.

As a system oriented language, SysML should prove e�ective in modeling em-
bedded system. During the last years, dedicated UML pro�les have been de�ned
and used as system design languages for the de�nition of Systems on Chips (SoC)
[46, 67, 68]. These pro�les provide a high level system abstraction layer to the
design process of SoC systems. The modeling process takes advantage of the syn-
ergies between UML and dedicated SoC modeling languages like SystemC [24]
or VHDL [59]. The same components de�ned at system level are extended and
re�ned at a lower level. In addition, models enriched with dedicated constructs
allow the system engineer to automatically obtain code skeletons. In the litera-
ture it is easy to �nd several papers describing the relationships between UML
and SystemC [6, 49, 63, 66], and between UML and VHDL [3, 47].

SysML appears as a natural evolution of the aforementioned UML-based nota-
tions and techniques. In fact , SysML integrates most of the constructs previously
de�ned by the afore mentioned pro�les. It natively integrates basic concepts like
blocks (the HW/SW components in the embedded context). It de�nes �ow ports
that describe the interaction points among the components, and depict HW/SW
signal �ows. It provides an easy mechanism for integrating formal notations. It
provides cross cutting constructs (like the requirements) that allow the modeler
to apply a full model-centric approach to the de�nition of a system.

As a consequence, the SoC design process could take advantage of the usage
of SysML.





Chapter 4

Problem Frames

Traditionally, software development has focused on mechanisms and abstractions
that are useful in designing and implementing software applications. Only little
attention was paid to the problems that such programs are intended to solve.
Hence, the software development can be de�ned traditionally solution oriented.

Solution oriented approaches are suited to be applied to a small set of prob-
lems, i.e., only to those that were previously analysed, described and classi�ed.
Such approaches focus on �nding innovative solutions and possibly on improving
previously proposed ones.

Instead, Problem analysis approaches like the one introduced by Jackson in
[37], focus on investigating and describing the context of problems, analysing their
internal characteristics, identifying the concerns and the di�culties that need to
be addressed when trying to solve those.

For Jackson [37]:

Problem analysis takes you from the level of identifying the problem to
the level of making the descriptions needed to solve it.

Although such explanation introduces the goal of the approach, it must not be
considered as a de�nition of an approach. In fact, real problems are complex and
cannot be handled directly by means of a single step. Complex problems need to
be decomposed into subproblems that are simpler to solve so that the resulting
subproblems can be faced separately. Finally, a general description of the whole
problem is achieved by composing the single small problems.

Problem analysis approaches are essentially composed of two distinct activi-
ties: the former, named context analysis, focuses on the de�nition of the charac-
teristics of the problem to be solved, while the latter, named structural analysis,
focuses on the decomposition of the original problem into simpler subproblems.

The rest of the chapter shortly introduces a problem analysis and structuring
approach named Problem Frames (PFs) proposed by Jackson in [37].

The whole approach is based on the concept of Problem frame:

A problem frame de�nes the shape of a problem by capturing the char-
acteristics and interconnections of the parts of the world it is concerned
with, and the concerns and di�culties that are likely to arise.
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PFs analyse complex realistic problems by decomposing them into subproblems
that correspond to known problem frames. Problem frames are at the basis of
both context and structural problem analysis and aim at looking outwards to the
world where the problem is found, hence, hindering the usage of solution oriented
processes.

4.1 The problem and the world

According to the problem frames approach, a software development problem is �a
need for a useful machine�, while the solution of the problem is �the construction
of a suitable machine to satisfy the need� [32]. Such a need consists in the envi-
ronment of the useful machine described in terms of what is given and what is
desired. [16].

Requirements represent what is desired, i.e., a set of properties that are not
directly owned by the world but are desired by the user. On the contrary, given
properties are a set of intrinsic characteristics of the world not depending on the
behavior of the machine.

According to the PFs approach, a �rst analysis of the problem is operated
by identifying the basic constituent parts of the world where the problem is lo-
cated, named problem domains, and the target of the development process, named
machine domain1.

The machine is phisically represented by HW and SW components, while
problem domains are physical components of the world where the problem is
located and are a�ected by the behavior of the machine.

Domains (both problem domains and machine domains) consist of phenomena,
i.e., intrinsic characteristic of the world where the problem is located, and com-
municate by means of interfaces. Interfaces can be considered as a place where
domains partially overlap, so that the phenomena in the interface are shared
phenomena that allow connection and communication between distinct domains.
Generally one domain controls a set of shared phenomena while other domains
have visibility of those phenomena.

An interface that connects a problem domain to the machine is called a speci�-
cation interface. The goal of the requirements analyst is to develop a speci�cation
of the behavior that the machine must exhibit at its interface in order to satisfy
the user requirements.

The basic philosophy of PFs is based on the concept that requirements are
about relationships in the real world, not about functions that the software system
must perform. Rather, the desired relationships in the real world are achieved
with the help of the machine connected to problem domains.

However, in the requirements analysis phase, the machine is only speci�ed as
far as its role in the real world is concerned. For this purpose, only the interface
between the machine and the problem domain needs to be speci�ed, while the
machine internals are left unspeci�ed (they will be addressed in the design phase).

1For the sake of simplicity, in the rest of the description machine domain is simply referred
to as machine
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4.1.1 Phenomena

Phenomena may represent basic constituent elements of domains, elements that
may a�ect the behavior of domains, or internal properties concerning both struc-
tural and behavioral aspects of domains. Jackson proposes six types of basic
phenomena named Event, Entity, Value, State, Truth and Role. Depending on
their characteristics, such phenomena are organized into two distinct categories:
individuals, which represent stand alone primitive elements, and relations, which
represent relations between individuals.

• Events. An event is an indivisible and instantaneous individual happen-
ing, that occurs at some point in time. Events are assumed not to occur
simultaneously. Hence, an order relation can be de�ned among the events
occurring in a problem.

• Entities. An entity is an individual whose properties may change over time.
Entities in turn may a�ect other types of phenomena. For instance entities
may generate events.

• Values. A value is an individual that exists outside time and cannot change.

• States. A state is a relation between an entity and a value. Such relation
may change over time.

• Truths. A truth is a relation between individuals that cannot change over
time.

• Roles. A role is a relationship between an event and an individual that
participates in de�ning or listening to it.

Phenomena can be organized also depending on the role they play with respect
to the domains which they a�ect or by which they are controlled.

• Causal. Causal phenomena are phenomena that are caused or controlled
by domains, and that in turn may cause other phenomena. They include
events, roles, and states relating entities.

• Symbolic. Symbolic phenomena symbolize other phenomena and the rela-
tionships among them. They include values, truths and states.

4.1.2 Domains

Domains are the basic structural elements of a problem. Depending on their role
and their nature, domains can be classi�ed into the following classes: machine,
designed, given.

• Machine. A machine domain is the HW component that provides the run-
time execution environment for the software application that will represent
the solution of the problem.

• Designed. A designed problem domain is the physical representation of an
entity that need to be designed. The modeler is free to specify the properties
of such domains.
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• Given. A given problem domain is the physical representation of an entity
whose properties are given and cannot be changed.

Domains, regardless of their role and nature, can be thought of as aggregation
of phenomena.

Depending on their characteristics, problem domains can be classi�ed into
causal, biddable and lexical domains.

• Causal. Causal domains are the ones characterized by properties that in-
clude predictable causal relationships among their internal causal phenom-
ena. Causal domains may control or be a�ected by the shared phenomena
at the interface with other domains. Notice that in case a causal domain is
connected to a machine domain, the causal relationships among the inter-
nal causal phenomena of the domain allow one to evaluate the e�ect of the
behavior of the machine at the interface with the domain.

• Biddable. Biddable domains are the ones characterized by the lack of pre-
dictable causal relationships among its phenomena. They represent enti-
ties whose behavior cannot be forced by any phenomena. As an example,
biddable domains often represent people, since their behavior cannot be
predicted, and they cannot be obliged to perform any actions.

• Lexical. Lexical domains are the ones composed of symbolic phenomena
representing data. Lexical domains may be a�ected by causal phenomena
that trigger the access to the owned symbolic phenomena. As a consequence,
lexical domains can be thought of as a special type of causal domains. As
an example consider a data repository. In such case, the repository can be
represented by means of a lexical domain, while data by means of symbolic
phenomena. The access to data is regulated by read/write commands, i.e.,
causal phenomena controlled by external domains.

4.1.3 Interfaces

Domains interact by means of interfaces and shared phenomena. Interfaces can
be viewed of as a collection of phenomena shared among two or more domains.
Shared phenomena, in turn, represent phenomena that are controlled by one of the
domains involved by the interface, and are observed by the one or more domains.

Notice that interfaces are abstractions on the actual form of interaction be-
tween two domains. An interface does not specify the communication direction,
which can be inferred by identifying the controller and observer domains of the
shared phenomena. Moreover, the communication through an interface can be
bidirectional, i.e., given two domains A and B connected by means of an interface
composed of several phenomena, there can be phenomena controlled by A and
observed by B and viceversa.

4.2 Descriptions

The problem analysis process at the basis of the Problem Frames approach is
essentially based on the description of di�erent aspects of a problem.
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Problem Frames provides three basic types of descriptions:

• the description of the properties of the problem domains

• the speci�cation of the requirements of the problem

• the speci�cation of the behavior at the interface of the machine

4.2.1 Domain properties

Problem domains are characterized by structural and behavioral properties that
express existing relations among their internal phenomena. The description of
such properties are said indicative, since they indicate the objective true about
the domains, that is what is truth regardless of the behavior of the machine.

4.2.2 Requirements

Requirements are properties that are not directly owned by the problem domain,
and they represent the wishes of the user with respect to the solution of the
problem.

Jackson states that requirements are optative description, in the sense that
they describe the options that the user has chosen. The aim of the PFs approach
is to show how the machine domain, once connected to the problem domains, is
able to satisfy the requirements.

Requirements are properties that refer to internal characteristics of the prob-
lem domains. More speci�cally, Requirements predicate on the internal phenom-
ena of the problem domains. Requirements may refer to phenomena that are not
shared among domains; moreover, they cannot directly refer to the phenomena of
the machine.

4.2.3 Machine speci�cation

The machine speci�cation is a collection of properties that describes the desired
behavior of the machine at the interface with the problem domains. It is a de-
scription on the shared phenomena at the interface, consistent with the properties
of the world and satis�able by appropriate actions of the machine.

Similarly to requirements, also the machine speci�cation is an optative de-
scription.

4.3 Notational support

The Problem Frame approach is supported by two types of diagrams named Con-
tex diagram and Problem diagram. The former describes the context in which
the problem is set, while the latter includes also the relationships between the
domains and the requirements of the problem, respectively.
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4.3.1 Context diagrams

The context diagram shows the various problem domains in the application do-
main, their connections, and the machine and its connections to the problem
domains.

Figure 4.1: Domain types

Domains are represented by means of a notation that explicitely expresses
their role and nature (see Figure 4.1). For a given problem, a context diagram
explicitely de�nes which domain is the machine domain, and among the remaining
problem domains which ones are given and which ones are designed. Interfaces
are represented by means of connections among two or more domains. Notice
that such connections are labelled, and the meaning of each label is speci�ed in a
legend that de�nes the shared phenomena involved in the de�nition.

Figure 4.2: A simple Context diagram

Figure 4.2 reports an example of a Context diagram.
Notice that context diagrams simply describe the structural characteristics of

the world where the problem is located. They do not express anything neither
about the behavioral aspects of domains nor about the requirements.

4.3.2 Problem diagrams

A Problem diagram can be thought of as an extended Context diagram.
With respect to Context diagrams, the most important enhancement refers

to the notational support for representing requirements. Requirements are repre-
sented by means of a textual description contained into a dotted oval. A dotted
connection between the requirement oval and the single domains is de�ned be-
tween the requirement oval and the domains involved by the requirement de�ni-
tion. Requirements predicate on internal phenomena of problem domains. Such
phenomena may be simply referred to (indicative description) or constrained (op-
tative description) by requirements. Constraints are represented by means of
dashed arrows that connect the oval to the interested domain, while references
are represented by means of a dashed line between the oval and the domains.
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Figure 4.3: The notation to express the role of a domain

The notational elements used to represent the nature and the role of the do-
mains are the same provided by Context diagrams, but in addition the user can
also indicate behavioral aspects by means of dedicated elements that represent
Causal, Biddable and Given domains (see Figure 4.3). Nevertheless, notice that
this notation is not mandatory, and is used by Jackson only to illustrate the role
of domains in the de�nition of basic Problem Frames.

Domain interfaces and shared phenomena are represented by means of con-
nections and a legend. Interfaces are represented by labelled connections between
domains, while the legend, which extends the one of Context diagrams, provides
information that indicate, for each shared phenomena, which domain controls it.

Figure 4.4: A simple Problem diagram

Figure 4.4 reports a simple example of Problem diagram. In order to bet-
ter clarify the usage of requirements references and constraints, consider that a
requirement property of the problem described in Figure 4.4 may indicate that
phenomenon3, controlled by Domain2, is characterized by a value that depends on
(optative description) the value of phenomenon4, which is controlled by Domain1.
Notice that, by means of the machine, such requirement de�nes a dependency be-
tween the phenomena of distinct domains.

Problem diagrams represent a starting description for problem analysis.

4.4 Problem frames

A Problem Frame is a description of a recognizable class of problems. Prob-
lem Frames can be viewed as problem patterns, since they propose identi�able
problem classes by expressing the characteristics of their domains, interfaces and
requirements.

Jackson considers that real problems can be decomposed into subproblems that
belong to the same problem frame classes. In case of a successfull decomposition,
the resulting subproblems are much simpler than the starting problem. As a
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consequence it is necessary to identify recurrent problem patterns.
A problem pattern de�nes:

• the decomposition of the problem world into a set of domains interacting
among them.

• the characterization of the problem domains according to their physical
behavioral properties.

• the characterization of the domains interfaces according to the types of
phenomena that are shared by means of such interfaces.

• the characterization of the requirements and of their relations with problems
domains.

Jackson identi�es �ve problem frames [37].

• Required behavior. The problem is the de�nition of a machine that controls
some part of the physical world by satisfying certain given conditions

• Commanded behavior. The problem is the de�nition of a machine that
controls some part of the physical world according to the commands that
are issued by an operator.

• Information display. The problem is the de�nition of a machine that obtains
information from some part of the physical world and provides information
in a required form to other parts of the world according to certain given
rules.

• Simple workpieces. The problem is the de�nition of a machine that creates
and handles a certain class of artefacts.

• Transformation. The problem is the de�nition of a machine that trans-
forms some input data organized into a certain format into another format
according to certain rules.

Each of the proposed frames has its own problem frame diagram and is char-
acterized by its own requirements, domain properties and role. In the following a
short overview of the most important features of each basic frame is provided.

4.4.1 Required behavior

The frame Required behavior captures the following idea:

There is some part of the physical world whose behavior is to be con-
trolled so that it satis�es certain conditions. The problem is to build
a machine that imposes that control [37].

The problem is described by means of the Problem diagram shown in Figure
4.5.

The world is composed of a causal problem domain named Controlled domain,
and a machine domain, named Control machine, which represent the machine to
be built.
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Figure 4.5: Required behavior: problem frame diagram

Controlled domain and Control Machine communicate by means of an inter-
face characterized by two sets of shared phenomena named C1 and C2. Notice
that the phenomena C1 are controlled by Control machine, while C2 by Con-
trolled domain. Such problem domain is also characterized by a further set of
internal phenomena named C3.

The requirements Required behavior constrain the internal phenomena C3 of
Controlled domain.

4.4.2 Commanded behavior

The Commanded behavior frame represents a class of problems that captures the
following idea:

There is some part of the physical world whose behavior is to be con-
trolled in accordance with commands issued by an operator. The prob-
lem is to build a machine that will accept the operator's commands
and impose the control accordingly [37].

The basic frame is described by means of the Problem diagram shown in Figure
4.6.

Figure 4.6: Commanded behavior: problem frame diagram

The world is composed of two problem domains named Operator and Con-
trolled domain and by a machine domain named Control machine. Operator is a
Biddable domain, while Controlled domain is a Causal one.

Operator communicates with Control machine by means of a dedicated in-
terface. More speci�cally, Operator sends commands represented by the set of
shared phenomena named E4.

Control machine is also connected to Controlled domain. Such domains com-
municate by means of two sets of shared phenomena named C1 and C2, re-
spectively. Control machine controls the set of phenomena C1 while Controlled
domain controls the phenomena C2. Controlled domain is also composed of a
further group of internal phenomena named C3.
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The requirement Commanded behavior constrains the value of the internal
phenomena C3 according to the commands E4 that Operator sends to Control
machine.

4.4.3 Information display

The Information display frame represents a class of problems that �ts with the
following idea:

There is some part of the physical world about whose states and be-
havior certain information is continuously needed. The problem is to
build a machine that will obtain this information from the world and
present it at the required place in the required form [37].

The frame is described by means of the Problem diagram shown in Figure 4.7.

Figure 4.7: Information display: problem frame diagram

The world is composed of two problem domains named Display and Real world,
and by a machine domain named Information machine. Both Display and Real
world are causal domains and are directly connected to Information machine by
means of two dedicated interfaces.

Information machine receives information from Real world represented by
means of the causal shared phenomena C1, elaborates such information and sends
visualization commands to Display. Notice that such commands are represented
by means of the group of shared phenomena E2 controlled by Information ma-
chine.

The requirements Display Real world predicate on two groups of internal phe-
nomena of the domains Real world and Display. More speci�cally, symbolic inter-
nal phenomena named Y4 of Display are constrained with respect to the causal
phenomena C3 of Real world.

4.4.4 Simple workpieces

The frame Simple workpieces captures the following idea:

A tool is needed to allow a user to create and edit a certain class
of computer-processable text or graphic objects, or similar structures,
so that they can be subsequently copied, printed, analysed, or used in
other ways. The problem is to build a machine that can act as this
tool [37].
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Figure 4.8: Simple workpieces: problem frame diagram

The frame is described by means of the Problem diagram shown in Figure 4.8.
The world is composed of a machine domain named Editing tool, a biddable

domain User, and a lexical domain Workpieces.
User sends commands, represented by means of the causal shared phenomena

E3, to Editing tool. Editing tool is connected to Workpieces by means of an
interface characterized by the shared phenomena Y2 and E1. E1 is a group of
causal phenomena controlled by Editing tool representing the commands that the
machine sends to Workpieces to modify its current state, while Y2 is a set of
symbolic phenomena representing the internal state of the domain.

The requirements Command e�ects constrain the internal state of Workpieces
on the basis of the commands provided by User to Editing tool. More speci�cally,
Y4 is a group of symbolic internal phenomena of Workpieces, while the causal
phenomena E3 are the same set of phenomena that User sends to Editing tool.

4.4.5 Transformation

The frame Transformation �ts with the following idea:

There are some given computer-readable input �les whose data must
be transformed to give certain required output �les. The output data
must be in a particular format, and it must be derived from the input
data according to certain rules. The problem is to build a machine
that will produce the required outputs from the inputs [37].

The frame is described by means of the Problem diagram shown in Figure 4.9.

Figure 4.9: Transformation: problem frame diagram

The world is composed of a machine domain named Transform machine, and
by two lexical domain named Inputs and Outputs, respectively. Inputs is con-



68 CHAPTER 4. PROBLEM FRAMES

nected to the machine domain by means of an interface, and provides to Trans-
form machine some information concerning its internal state represented by the
group of shared phenomena Y1. Transform machine controls a group of symbolic
phenomena named Y2 shared with Outputs.

The requirements IO relation constrain the internal state of the domain Out-
puts with respect to the internal state of Inputs. Notice that the state of these
domains is represented by means of two additional group of symbolic phenomena
named Y3 and Y4.

Y1 may or may not be the same phenomena as Y3 ; in the same way Y2 may
be or may not be the same phenomena as Y4. As a general rule they are likely to
be di�erent, since the machine should deal with more detailed phenomena while
the requirement should refer to more abstract phenomena [37].

4.5 Concerns

In the Problem Frame approach the analyst that has to de�ne a machine speci�-
cation that satis�es the requirements of the problem.

According to Gunter et al. [26] the formal criterion for reaching a successful
development is the proof of the following implication:

machine specification ∧ domain properties⇒ requirement

More speci�cally, in case the machine behavior complies with the description of
the machine speci�cation, and the behavior of the domains satis�es the description
of the domain properties, then the requirements will be satis�ed.

The analyst has to make descriptions of all the artifacts, and he/she has to
�t them together into a correctness argument. Such argument must show that
the proposed machine will ensure that the requirement is satis�ed in the problem
domain.

Notice that requirements, machine speci�cation and domain properties have to
be separately described. The approach does not specify any notational support for
these activities, hence the analyst is free to use the notation that he/she considers
the most suited for the modeling purposes.

The goal of frame concern is to identify the descriptions that are needed and
specify how such description must �t together.

Jackson in [37] proposes a di�erent frame concern for each of the previously
introduced basic problem frames. As an example consider the frame concern of
the Commanded behavior frame. The requirements specify which commands of
the operator are sensible and which e�ects they should cause on the controlled
domain in case they were feasible, i.e., if these e�ects are allowed and realizable
in the current state of the controlled domain.

The informal process that drives an analyst to show that the machine satis�es
the requirements is described by means of Problem diagrams enriched with com-
ments that describe speci�c phases of the behavior of the involved domains (see
Figure 4.10).

In addition to the Frame concern, each problem frame also de�nes a few Spe-
ci�c concerns that describe additional properties that must be addressed in order
to reach an acceptable solution.
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Figure 4.10: Commanded behavior frame concern

• Initialization. The initialization concern de�nes the initial state of the prob-
lem context in which the machine will run. The analyst has to specify the
initial state of the machine and of the problem domains. If the developer
does not consider such states, the machine behavior could not satisfy the
requirements.

• Reliability. Both Causal and Biddable domains are, in general, unreliable,
since there is no guarantee that they conform with the domain properties
that are de�ned for a problem. The reliability concern deals with the pos-
sibilities of failure.

• Breakage. The breakage concern aims at identifying the sequences of oper-
ations that may damage problems domains, and ensuring that the machine
always avoid them.

The proposed concerns are some of the most general ones introduced by Jack-
son in [37]. Notice that the set of basic problem frames proposed by Jackson
is not necessarily complete, i.e., it is possible to identify problems that require
basic frames di�erent from the proposed ones. As a consequence, also the set of
concerns may grow in size.

4.6 Frame �avours

Problem frames provide a very high level classi�cation of problem domains and
phenomena, that needs to be re�ned for a more rigorous problem analysis. Frame
�avours address such issue by providing more detailed descriptions from di�erent
points of view. Each description insists on a di�erent set of domains and events,
and it takes into accounts only the characteristics that are relevant to the view.
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Jackson in [37] proposes some �avours:

• Static �avour. Static �avours are descriptions of the internal structural
characteristics of static domains. A domain can be considered static in case
it has no time dimension, it does not generate events and does not change
autonomously its state. Usually, static �avours are used for the description
of lexical and causal domains.

• Dynamic �avour. Dynamic �avours are behavioral descriptions that a�ect
dynamic domain interactions in a relatively local way. An important charac-
teristic of a dynamic domain is its capacity to tolerate externally controlled
events of which only some can cause changes in the domain state.

• Control �avour. Control �avours are behavioral descriptions that a�ect
domains with numerous internal states. The �avour provides a valid support
for the classication of the states and other domain characteristics.

• Informal �avour. Informal �avours are descriptions that a�ect informal
domain, i.e., domains for which any formalization of phenomena and rela-
tions is approximative. The �avour guides the analyst towards a reliable
description of informal domains. The �avour operates by designating a set
of ground terms, and suggesting how to use them for descriptions.

• Conceptual �avour. Conceptual �avours are descriptions that a�ect domains
representing abstract conceptual entities. The �avour allows the analyst to
consider such entities as concrete entities for which it is possible to express
relations.

Each of the proposed �avours requires di�erent notations to support the de-
scriptions.

4.7 Frame Variants

Frame variants are analysis artefacts that extends the description capabilities
of problem frames and frame �avours. Typically, variants add domains to the
problem context of a basic frame or modify the control properties of some of its
interfaces.

Frame variants extends the main concerns of the basic frames by allowing one
to deal with problems that cannot �t directly in the original basic frames.

Jackson in [37] propose four variants:

• Description variant. The description variant adds a description domain to
the original basic problem frames. A description domain is a lexical domain
that describes some aspects of the requirements or of the domains of a
problem. A description variant is represented in Problem diagrams by means
of a dedicated notational element (see Figure 4.11). A description domain
can be phisically connected to the machine to indicate that the machine uses
such description to determine the behavior to be imposed on other domains.
A description domain can be also connected to problem domains; in such
case the description domain describes the connected problem domain.
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Figure 4.11: A description variant of the Required behavior frame

• Operator variant. The operator variant add an operator domain to the
original basic problem frame. The operator modi�es the behavioral aspects
of the original frames by imposing innovative rules in a control problem.
Notice that the frame Controlled behavior can be considered an operator
variant of Required behavior.

• Connection variant. The connection variant introduces a connection domain
between the machine and a problem domain of the original basic frame. In
fact, in an ideal case the machine is directly interfaced with the real world,
but often the machine requires a dedicated domain to communicate with
the rest of the world. This variant introduces a connection domain, i.e., a
domain whose properties and behavior a�ect the other problem domains.

• Control variant. The control variant modi�es the control characteristics
of the interface phenomena of a basic problem frame. The variant a�ects
shared phenomena typed as events. It allows one to express which events
have to occur, when it has to occur, and which individuals have to partici-
pate in the event.

Notice that multiple variants can be applied at the same time to the same problem
frame.

4.8 Problem decomposition

Most problems are too complex to be modeled as basic problem frames. Real
world problems are usually hard to understand, analyse and solve. The key to
dominate problem size and complexity is represented by decomposition.

Notice that decomposition represents not only an approach to reach the solu-
tion of a problem, but also a process that helps the analyst to understand and
analyse the problem itself.

Decomposition is a divide et impera approach to the solution of a problem.
The initial complex problem is analysed and simpler and smaller sub-problems are
derived from the original one. The solution of each sub-problem will contribute
to the solution of the whole problem.



72 CHAPTER 4. PROBLEM FRAMES

Decomposition aims at reducing problem to a set of sub-problems that �t ba-
sic problem frames. Decomposition consists in projecting the original problem
into sub-problems. The projection mechanism is at the basis of the whole de-
composition process. A projected sub-problem is characterized by requirements,
machine, problem domains and interfaces that are a subset of their counterpart in
the original problem. The application of projection generates sub-problems that
may partially share requirements, domains, phenomena and interfaces. In other
words sub-problems may share some parts.

Jackson indicates several principles that may help the analyst when decom-
posing a problem.

• Subproblems are complete. The analyst has to consider each sub-problem
as a complete problem characterized by its own problem diagram, machine
domain, problem domains and requirements. Each sub-problem is indepen-
dent from the other ones and must be faced separately.

• Parallel structure. Each sub-problem is a projection of the original full-
problem. The analyst has to consider the sub-problem as �tting into a
parallel structure (rather than a hierarchical structure). The overall problem
description is obtained by composing the description of all the sub-problems
that parallelely describe di�erent aspects of the general problem.

• Concurrency. The analyst has to take into account the relationships among
the subproblems and how they overlap and interact.

• Composite problem frames. The analyst has to take into account compos-
ite frames, i.e., recurrent classes of problems characterized by a standard
decomposition into basic subproblems.

Once the sub-problems are identi�ed, analysed and solved, their solution has
to be used to recompose the solution of the original problem.

Problem composition is a critical activity; as an example, in [34], Jackson
states that

Problem complexity arises from the interactions of (a problem's) sub-
problems and of their solution, both as a problem structure and as a
solution structure.

Such interaction can occur whenever multiple sub-problems share a problem
domain or a machine domain. The correctness of the composition is the subject
of composition concerns [37]:

• Con�ict. In case two property descriptions refer to the same elements, they
can be inconsistent. Inconsistency may a�ect both indicative or optative de-
scriptions. The concerns aim at guiding the analyst to the con�ict resolution
by introducing priority criteria.

• Interference. Two subproblems interfere whenever one of the problem causes
change in a problem domain that is inspected by the other problem. The
concern aims at introducing mechanisms for mutual exclusion of atomic
changes and inspections.
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• Scheduling. In case two problems interfere and their interference cannot be
addressed by means of atomic operations, the concern aims at resolving the
interference by scheduling the operations.

Composition concerns are motivated by the fact that, in problem projection,
the division of requirements may cause some information concerning the sub-
problem interactions to be lost.

4.9 Final remarks

This chapter provided a very high level introduction to Problem Frames. The
reader interested to a complete and detailed presentation should refer to the Jack-
son's web site 2, which provides numerous references to articles, books and papers
that describe in depth the requirements analysis approach.

In addition to the initial proposal of Jackson, numerous authors have re-
searched Problem Frames by providing the requirements engineering community
with interesting results in the areas of principles, techniques, processes and seman-
tics of Problem Frames. A roadmap of Problem Frames research was proposed
by Cox et al. in [16].

At present open area of research on Problem Frames mainly concern:

• the identi�cation of new basic problem frames. The basic frames proposed
by Jackson represent a starting set that need to be expanded.

• the proposal of an e�ective notation. The notation proposed by Jackson
is more suited to illustrate the concepts proposed by the approach rather
than to support software development in industrial processes. Moreover, the
notation is not complete since it does not support the de�nition of behavioral
aspects. All these limits hinder the usage of Problem Frames in industry.

• the application of the approach to case studies from the real world. The
case studies presented by Jackson in his book [37], as well as the examples
illustrated in numerous papers in the literature simply illustrate particular
aspects of the requirements analysis approach. Thus the application of
this approach to real world case studies is still missing. Notice that such
application, besides being an e�ective instrument to validate the scalability
of the approach, may also provide several hints for identifying new basic
frames.

• the de�nition of approaches to compose the solution to sub-problems. The
ability to compose solutions allows one to take a set of decomposed re-
quirements, to provide individual solution to such requirements and then
to address the overall system requirements by recomposing solutions [41].
Innovative approaches, like the one proposed in [41], aim at de�ning com-
position techniques that try to overcome the di�culties that arise when
recomposing inconsistent requirements.

2http://www.jacksonworkbench.co.uk/stevefergspages/pfa/index.html
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• the de�nition of tools that support the whole analysis approach. At present
no tool supporting the Problem Frame method has been de�ned yet. This
lack, which may also be reconducted to the lack of an e�ective notation,
hinders the application of the approach in industrial processes.



Chapter 5

Applying Problem Frames

This chapter discusses the application of the problem frame methodology to the
speci�cation of the requirements of a system in charge of monitoring the trans-
portation of dangerous goods (namely, petrol and other types of fuels) by trucks.

The project aimed at developing a �rst experimental version of the system, to
be used to monitor a relatively small set of trucks (initially ten, expected to grow
to about one hundred during the experimentation period) in the italian region of
Lombardia (the region of northern Italy including Milan and about 24,000 Km2
wide). The system is expected to provide �remen, police and rescue squads with
timely and precise data in case of accidents involving trucks carrying dangerous
loads.

The goal of the chapter is to show that using problem frames in the develop-
ment process of industrial software (of a rather critical nature) is not only possible,
but brings relevant bene�ts in terms of easing the achievement of a fairly complete
and clear comprehension of requirements in the early phases of the project.

The chapter is organized as follows: in Section 5.1 the requirements of the
monitor system are described informally; Section 5.2 describes the problem do-
mains and the shared phenomena; the main system requirements are modeled by
means of problem frames in Section 5.3; �nally Section 5.4 illustrates the lessons
learned.

5.1 Informal System Requirements

In Italy the vast majority of goods (including dangerous ones) are transported
on roads by trucks. The constant presence of potentially dangerous loads on the
roads is worrying, because of worsening tra�c conditions, because the roads often
go through areas that are densely populated, and even because trucks full of fuel
could be a target for terrorists.

For all these reasons, the national authority for transportation decided to
start a program aimed at controlling the transportation of dangerous goods on
the roads. The �rst step was to create an ICT system to monitor the trucks
carrying dangerous loads. For this purpose, a pilot project was started in the
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region of Lombardy, which is the most critical from the point of view of tra�c,
population density and amount of dangerous goods circulating on the roads.

Figure 5.1: Visualization of mission data and alarms

5.1.1 The Requirements

The project has to exploit an already existing infrastructure, created by the com-
panies that own the trucks. In fact, trucks are equipped with an on-board device
(a special purpose little computer) that reads the state of the truck and the load
from ad hoc sensors and communicates these data via GPRS to a central server.
In particular, the data provided by the on-board device include: the position and
speed of the truck, the temperature and pressure of the load, the amount of fuel on
board, and any speci�c critical events (crash, upset). The data collection infras-
tructure was created by the transport company for several purposes: to support
invoicing, to perform optimizations, to check the correctness of spills.

One of the constraints for the project was that it was not simply possible
to change the existing infrastructure. In practice, the only possible modi�cation
concerned the format of the transmitted data. Noticeably, it was not possible
to change the data refresh and communication frequency: data are transmitted
by every truck approximately every minute (except for critical events, which are
communicated immediately).

The �rst requirement for the system was thus to collect the data transmitted
by the trucks and to store them in a database, in order to make the data available
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Figure 5.2: The geographical display
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for querying.
A second requirement concerned the management of the 'Mission Identi�cation

Code' (MIC). In fact, when the project was started a new law was going to be
activated, concerning the transportation of dangerous goods. This new law -in
the part involving fuels- requires the creation of a mission document describing
the planned journey of the trucks, the type and amount of fuels transported,
and where it is going to be delivered. Every single mission has to be identi�ed
by a MIC. Therefore, the computer system was required to store the mission
document and to identify the traveling trucks by means of their MIC1. Mission
documentation is provided by the truck company, while the MIC is assigned by
the monitoring system. This implied that the system provided an interface to
the truck company, and that this interface should allow the users to input the
required data in the most e�cient way, in order to make the activities required
to support the monitor system as inexpensive as possible for the company. In
Figure 5.1 the data of the selected mission are displayed on the left hand side,
while in the center the list of ongoing missions is reported.

A third requirement concerned the tracking of truck positions on a geographic
display. It was required that the GPS coordinates provided by the truck were
fed to the Geographic system (already in use at the Supervision and Control
Center) in order to display the position of trucks on the maps (which were also
already available). The geographic display of the released prototype is shown in
Figure 5.2.

Another requirement, probably the most important, was that the system had
to immediately notify alarms and potentially dangerous situations. Di�erent types
of alarms were identi�ed:

1. Some events, like the crash and the upset, are reported by the truck and
are simply recognized as alarms by the system.

2. Some states of the load or the truck are considered as alarms: in these cases
it is the system that detects the alarm on the basis of the raw data provided
by the truck.

3. Some alarm conditions depend (also) on the position of the truck. For
instance, high speed in ana uninhabited area or the temperature too high
in a gallery are recognized as alarm conditions. In some cases the system
has to consider the data from multiple trucks. For instance, the presence of
three or more trucks in a long gallery is an alarm.

In Figure 5.1 the alarms are displayed in the bottom part of the window (a
single alarm, highlighted in yellow, is reported). Finally, the system had to be
able to answer queries from the operator concerning the situation of every known
truck.

It is quite relevant that the system had to notify alarms only to the opera-
tor, while calling for the intervention of �remen, police, etc. was not among the
responsibilities of the system. In fact, the system had to be installed in the Super-
vision and Control Centare of the Civil Protection Agency, where the operators
alert and coordinate all the organizations required for managing the emergency.

1This means that the same truck will be associated with di�erent MICs at di�erent times
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The system had to be used as a prototype, to gain knowledge about several
issues including the reliability and accuracy of the transmitted data, the usability,
reliability and scalability of the system, the de�nition of the alarms, etc.

It is interesting to note that the main goal of the prototype was -as it is often
the case- to test the requirements, i.e., to check whether additional or di�erent
requirements should be taken into account for the �nal version of the system.

5.1.2 The Origins of Requirements

The requirements and domain information were provided by multiple sources.

Truck companies had already determined the information that were collected
on board and transmitted. The information were available in the technical doc-
umentation; in particular, the documentation of the transmission protocol con-
tained all the relevant information.

The requirements concerning the mission data and the MIC were provided by
the regulations and directives coming from the national authority for transporta-
tions.

The geographic display and the maps of the region were provided by the civil
protection. Region Lombardia required that the existing geographic infrastructure
were reused, in order to limit the cost of the development.

The requirement concerning the use of a database was originated by two con-
siderations. One is technical: data concerning the position of trucks had to be
available when needed, and trucks cannot be queried, therefore the only possible
solution is to store the received data. The other consideration is that future uses
of the system will possibly require historic data, therefore the users demanded
that all the received data were collected in a database.

The rest of the requirements, i.e. those concerning the tracking and display of
trucks, the detection of alarms and the queries to be supported, were expressed
by the civil protection personnel. The actual requirements were determined by
the needs of the civil protection (to know the position and contents of trucks)
and the available data, and the existing infrastructure. The existence of similar
systems (e.g., a system monitoring the position of �re extinguisher planes and he-
licopters) provided reference models on which new requirements could be de�ned
and evaluated by comparison.

5.2 The model of requirements

The problem diagram of the monitor system is reported in Figure 5.3. The On-
board computer, Sensors and Truck and Load domains are given (the company
which owns the Truck is not willing to modify them). The On-board computer
acts as an interface to the system; they are reported to express the connection
between the real world and what is reported and monitored.

Phenomena labelled as 'a' are controlled by the On-board computer and made
visible to the Monitor machine. They are described in Table 5.1.

The asterisk indicates that multiple instances of the data can be present: for
instance a set of data for each type of fuel, or for each tank.
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Figure 5.3: The problem diagram for the monitor system

Table 5.1: Truck and load data

Message Attributes

Direction&Speed speed, direction
OnBoardComputerOn time, (type_of_fuel, total_qty)*
OnBoardComputerO� time, (type_of_fuel, total_qty)*
Load time, progressive, (tank_id, type_of_fuel, qty,

temperature)*
Unload start_time, end_time, progressive,

type, �nal_total_qty, planned_qty,
acual_unloaded_qty, (tank_id, unloaded_qty,
temperature)*

OpenClose OpenClose: Boolean
Completely_empty Completely_empty: boolean
Over�ow Over�ow: Boolean
ManualInput Code (enumerative)
TankState (tank_id, type_of_fuel, qty)*
Event Code(enumerative)
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In addition to the attributes described above, each message includes the MIC,
the position, the plate of the trailer on which the transmitter is located, the
observation time and the transmission time.

Phenomena labelled as 'b' are: Tcc!MissionDocument and MM!MIC. The lat-
ter is the Mission Identi�cation Code produced by the Monitor Machine, the
former is composed of several data, the most relevant of which are illustrated in
Table 5.2.

Table 5.2: Mission data

Datum Attributes

Freight company Name
Client Name
Vehicle Plate
Driver Name
Origin Address, date

Destination* Address, type of fuel, qty

Phenomena labelled as 'c' are controlled by the Monitor machine and written
into the Database. The set of phenomena 'c' is given by the union of phenomena
'a' and phenomena 'b'. In practice: all the available data about the trucks, their
loads and journeys have to be stored into the database. In addition, phenomena
c include MM!alarms, i.e., the alarms computed by the Monitor Machine that are
also stored in the database.

Phenomena labelled as 'd' are: Op!queries, MM!data, MM!alarmNoti�cations,
Op!commands. The commands issued by the operator are meant to clear alarms,
to retrieve data concerning trucks and/or alarms, or to perform con�gurations or
other operations such as scrolling, zooming, etc.: the latter are not considered
here (also because they were already supported by the available SW platform).

Phenomena labelled as 'e' are: MM!displayCommands. The Monitor machine
sends commands and coordinates to the geographic display to get the trucks
displayed.

Phenomena labelled as 'f' are: MM!geographicAnnotations and Ma!geographic-
Data. The former are de�nitions (e.g., of critical areas) that are input by the
operator through the machine. The latter are the actual maps.

Phenomena labelled as 'g' are essentially equivalent to Ma!geographicData.
Phenomena labelled as 'h' are the visualizations (GD!graphicRepresentation)

of the truck situation as available in the database.
Phenomena observed and constrained by the requirements are not described

here. They will be described later, together with the problem frames for which
they are relevant.

5.3 The PFs based model of requirements

The main requirements for the system are the following:

• Collect and store mission data / provide MIC;
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• Collect and store data from truck;

• Tracking and display;

• Answer queries;

• Edit maps / danger areas;

• Detect alarms, store them and notify them, textually and geographically.

Each of these requirements was studied and modeled in terms of problem
frames. In some cases a problem frame composition was needed to model the
requirements.

Since most of the user did not have the background needed to understand and
e�ectively use problem frames, the approach was used only in the 'background',
i.e., they were not used during the discussion with the users. It would have made
necessary to present and explain problem frames to the stakeholders, at a cost
that was not compatible with the budget.

The design and implementation of the system was based on textual documents
that were written having in mind the characterization of the system in terms of
frames.

This section illustrates how the requirements for the monitor system are ex-
pressed by problem frames.

5.3.1 Store/Collect Mission Data and Provide MIC

It is required that the mission data -provided by the truck company clerk- are
stored in the database, after having been checked for completeness and correct-
ness. Note that the usage of a database is imposed by the user requirements.
Then, the system computes the MIC as a function of the provided data, stores it
in the database, and returns it to the user.

Figure 5.4: The Problem diagram for the Collect and store mission data / provide
MIC requirement

The �rst part of the requirement can be quite clearly classi�ed as a workpiece
problem. The rest of the problem can be seen as part of the same workpiece
problem frame if it is acceptable that: a) the workpiece is formed also by data
derived from those provided by the user, and b) a return value is possible. Overall,
these conditions seem acceptable, and the requirement can therefore be classi�ed
as a workpiece problem frame.
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As in any workpiece frame, the requirements state that the content of the
database (p) as resulting from the data and commands (c) provided by the Mon-
itor Machine as a consequence of editing commands (b) are correct with respect
to the same commands (o=b). The requirements also contain consistency rules
for the database contents. For instance, the quantity of loaded or unloaded fuel
must be non negative and less than the maximum capacity of the truck.

5.3.2 Collect and store data from truck

Figure 5.5: The workpiece Problem diagram for the �Collect and store data from
truck� requirement

The requirement states the fact that Monitor Machine receives data from the
On-board Computer must be interpreted as an order to store the same data in
the database. The machine checks the syntactic and semantic correctness of the
data, then correct data are stored.

Figure 5.6: The problem diagram for the truck and its driver and devices, with
indicative requirements

The requirement can thus be seen as a workpiece frame:

1. commands and data from the On-board Computer (a) are analyzed with
respect to their meaningfulness and viability,

2. they are converted into commands and data (c) to send to the database

3. the database receives and interprets such commands by generating contents
(p), which must be coherent with commands (n=a).
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There is a di�erence with respect to the traditional workpiece frame described
in [37]: in this case, the domain originating the commands is not, strictly speaking,
a biddable one. However, from the point of view of the monitor machine, the
truck can issue any command at any time; moreover, transmission and sensor
errors occur quite frequently. Overall, the behavior of the on board computer
perceived by the monitor machine is quite close to a biddable one.

The requirements described above refer only to the data provided by the on
board device of the truck, since the only responsibility of the monitor system is
to store the data that it receives and recognizes as correct. However, we are also
interested in the correspondence of such data to real world phenomena. We are in-
terested in storing a representation of phenomena of the real world, hence we need
to extend the problem diagram by including the description of such phenomena
and of the domains that control those. Figure 5.6 reports the resulting problem
diagram that introduces a model of the truck and its devices. The requirements
specify the properties of the reported data (a) with respect to the real situation,
given by the state of the truck and load (k) and the manual inputs from the driver
(i).

5.3.3 Tracking and Display

The tracking and display requirements state that data referring to speed and
position have to be displayed on a map, so that the operator can be visually
informed about the position, speed and direction of every truck. The problem
corresponds to a display frame.

Figure 5.7: The Display Problem diagram for the �Tracking and display� require-
ment

Commands are sent to the Geographic Display according to the data from
the database. This is the only responsibility of the machine, since the geographic
display is actually an existing machine that is able to interpret the coordinate
and movement data and perform a suitable visualization.

The problem is more complex than the usual display frame, since we explicitly
represented that the display uses the Maps to interpret the commands and to
perform the visualization used by the Operator.
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5.3.4 Alarm detection and noti�cation

The requirement states that the state must be examined and alarm conditions
must be evaluated accordingly, whenever new data from the trucks arrive. In
practice, alarms are functions of the data stored in the database. This can be
seen as a transformation problem: alarm data are derived from the state data.

The Problem diagram is shown in Figure 5.8, where the alarm rules that
determine alarm conditions are modeled explicitly as a con�gurable domain (the
editing of the Alarm rules is a workpiece problem). Note that here the database
plays both the role of data source and destination.

Figure 5.8: The Problem diagram for the �Alarm detection� requirement with
con�gurable alarm rules

Alarm detection is only the �rst part of the requirement. Alarms once detected
must be immediately noti�ed to the operator. The noti�cation has to be both
textual (a message is displayed on the operator's console) and graphical (the
involved truck is highlighted on the geographic display). The complete problem
diagram for the requirement is shown in Figure 5.9.

Figure 5.9: The problem diagram for the �Alarm detection and noti�cation� re-
quirement

The problem can be represented as the composition of three problem frames:

1. The alarm identi�cation and storage problem is a Transformation problem,
as discussed above.

2. The alarm textual noti�cation is a Display problem. The requirements are
very simple: the data describing the alarm have to be shown as they are, the
only elaboration consisting in using a background colour corresponding to
the severity of the alarm. In Figure 5.9 the domains involved are, besides the
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machine, the Database and the Operator. The latter domain is supposed to
include a simple display (a causal domain) that is able to visualize textual
data.

3. The alarm graphical noti�cation is a distinct and independent Display prob-
lem, involving the database as observed element and the geographic display
as the display domain. In Figure 5.9 the domains involved are, besides the
machine, the Database and the Geographic display.

5.3.5 Map Annotation

Another system requirement states that the operator can annotate the existing
maps by de�ning dangerous zones or road intervals (e.g., corresponding to gal-
leries). In practice the user is allowed to annotate the maps by de�ning areas and
specifying their properties. This is a workpiece problem (with the Operator being
a biddable domain, and the Maps a lexical domain); the diagram is reported in
Figure 5.10.

Figure 5.10: The workpiece Problem diagram for the �Map editing� requirement

However, the annotation of maps requires a precise and sophisticated feedback
from the user. It must be possible for the user to see on the map the de�ned
area and its boundaries and properties, in order to verify that the area has been
properly de�ned. Therefore, the representation of the requirement is not complete
without the speci�cation of the feedback provided by the geographic display, which
can be modeled as a display problem (the diagram is given in Figure 5.11, where
the Maps domain plays the role of data supplier, and the Geographic Display is
the data displayer).

Figure 5.11: The problem diagram for the �Map editing visual feedback� require-
ment
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The complete diagram for the map editing requirement, including the geo-
graphic visualization feedback, is given in Figure 5.12.

Figure 5.12: The problem diagram for the �Map editing visual feedback� require-
ment

5.4 Lessons learned

In general, the problem frames approach proved to be suitable for modeling most
of the requirements of the monitor system.

However, considering the possibility of using problem frames in an industrial
context, methodological guidelines are needed. In fact, the current de�nition of
problem frames and the available documentation sometimes leave the analyst with
doubts about the correct way of representing problems via problem frames. For
example when considering the user needs (i.e., the requested functionality) rather
than the machine responsibility (i.e., what the system is supposed to do) results
in di�erent problem frames. In the monitor system the dilemma may arise when
considering the map editing requirement: the user needs the annotated maps
visualized, thus it seems to be a display problem, but the machine has to convert
the editing actions into commands for the display, thus it could be regarded as
a transformation problem. Good documentation and guidelines could solve these
types of doubts and make the adoption of problem frames easier.

A second issue is that in some cases no problem frame seems to match the given
requirements, even relatively simple ones. Consider for instance the requirement
which states that the operator can query the database about the situation of the
trucks. The problem diagram is reported in Figure 5.13.

Figure 5.13: The problem diagram for the �answer queries� requirement
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Although the diagram in Figure 5.13 is quite simple, it is di�cult to �nd a
problem frame -among those proposed in [37]- that matches with this problem.
This is probably due to the fact that requirements involve the usage of a database,
which is a lexical domain.

Considering the PFs proposed in the literature, the Simple Information Answer
[36][35] models a similar problem, but with a relevant di�erence: the object of the
enquiry is the real world, while we want to read from a lexical domain. Since we
have to retrieve information from a database, which is a lexical domain, we propose
a new problem frame, which we name Data Repository Enquiry, to stress that
the source of information is a lexical domain. The problem frame is represented
in Figure 5.14.

Figure 5.14: Problem Frame Diagram: Data repository enquiry

The information relation requirement states what answer (A) the Query ma-
chine has to produce, when it receives query E and the contents of the repository
is D.

Note that in both the Simple Information Answer and the Data Repository
Enquiry frames, the actual source of the information is the Enquirer; nevertheless,
the causal Response domain is introduced because the Enquirer is a biddable
domain, which cannot be constrained. Instead, the Response is constrained, as
shown in Figure 5.14 and discussed above.

During the requirements modeling activity, it was observed that often the
problems are composed of sequences, such that a problem triggers the following
one. For instance, the data storage in the database triggers the alarm evaluation,
which in turn triggers the alarm visualization; the annotation of maps triggers the
visualization of annotated maps, etc. This is another e�ect of the presence of a
database: in fact the access to the database divides the problem into subproblems.
Consider for instance the detection of alarms: if the requirement was just to detect
alarm on the basis of data received from trucks, then it would be a simple display
problem. Instead in the monitor system we have three subproblems: receive the
data and store them into the database, then retrieve the data from the database
and detect alarm conditions, �nally show currently active alarms. Note that the
data retrieved from the database are generally a superset of those just stored (for
instance, an alarm could involve several trucks, e.g., when they are closed to each
other). Therefore, the database plays a primary role in the problem.

Finally, we noted that some problem diagrams provide suggestions for the
design and implementation phases. The most outstanding case is given by the
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problem diagram for the �Map editing visual feedback� requirement shown in
Figure 5.12. It is possible to see that the problem �ts quite well in the Model-
View-Control pattern: the Map is the Model, the View is given by the phenomena
(labelled 'h' in Figure 5.12) shared between the Display and the Operator, the
Control is expressed by the rules that connect the commands (phenomena 'd' in
Figure 5.12) to the e�ects on the Map (phenomena 'f' in Figure 5.12) and on the
Display (phenomena 'e' in Figure 5.12). Therefore, we can conclude that a careful
analysis of the problem diagrams can not only provide indications for the design
activities, but even indicate precise design patterns.





Chapter 6

A SysML & Problem Frames

based approach

Altough the nature of SysML diagrams suggests a sequence of modeling phases
and imposes constraints on the modeling activities, SysML is not provided with
a speci�c modeling methodology. This lack is particularly relevant since SysML
o�ers linguistic means to describe and allocate requirements, but does not provide
users with any hint on how to de�ne and structure requirements nor on how to
classify the problems they represent. The guidelines based on the Reference model
for requirements speci�cation by Gunter et al. [26] proposed in Chapter 3 start
addressing such issue. The aim of this chapter is to extend those guidelines by
de�ning a requirements analysis approach based on Problem Frames [37, 33].

Problem Frames (PFs) [37, 33] drive developers to understand and describe
the problem to be solved. The PFs approach has the potential to dramatically
improve the early lifecycle phases of software projects. Nevertheless, PFs have
some limitations that hinder their application in industrial software development
processes. In particular, they are not provided with adequate linguistic support.
The modeler has to choose a suitable language to predicate about phenomena.
Moreover, the PFs approach causes a sort of �impedance mismatch� with respect
to the languages employed in the subsequent development phases. Let us consider
the quite common practice of UML-based development: in such case, PFs should
be �translated� into UML. This is an error-prone activity that makes traceability
harder and requirements more di�cult to read for developers not familiar with
PFs.

Therefore, it appears convenient to integrate modeling languages with the
PFs approach. In fact, in [43] it is explored the integration of UML with the
PFs concepts. The result was that UML-based development can be equipped
with a sound and rigorous method for requirements analysis and representation.
From the PFs point of view, the method is equipped with the linguistic support
provided by UML that is reasonably expressive and easy to use. Nevertheless,
the experimental integration of UML and PFs revealed that UML su�ers from
several limitations that hinder its usage in combination with PFs. In fact, UML
is too much design-oriented, and does not support modeling at the correct level
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of abstraction (PFs generally require a level of abstraction higher than the one
adopted by UML). For instance, UML components are the best option for mod-
eling problem domains, but UML imposes that all relations between components
are interfaces, while at the requirement level it would be preferable to express
more abstract relations (specifying interfaces implies design choices, e.g., what
component takes the initiative of �calling� the interface provided by the other
component).

Moreover, UML de�nes the OCL (Object Constraint Language) [52] to specify
properties that cannot be represented in UML diagrams. However, OCL su�ers
from several limitations that do not allow specifying many properties and require-
ments as needed. For instance, when dealing with time-dependent systems, OCL
does not allow referencing di�erent time instants in a single OCL formula (except
for attribute values before and after method execution).

SysML promises to perform better than UML with respect to the aforemen-
tioned issues. Therefore, the purpose is to integrate PFs concepts with SysML
and verify how well the linguistic constructs of SysML support PFs-based re-
quirements modeling. Although some researchers have studied how to extend
PFs based methods to the design phases, these topics are out of the scope of this
chapter. Here we address exclusively the requirements modeling phase.

The chapter is organized as follows: Section 6.1 introduces a running example
used to illustrate the approach. Section 6.3 presents the combined approach of
SysML and PFs with the help of the proposed example. Section 6.4 accounts for
related work.

6.1 The Sluice Gate example

In order to illustrate the applicability of PFs concepts in SysML modeling, the well
known problem of controlling a sluice gate [37] (Figure 6.1) is used as a running
example.

Position=0
Position=0.25

Figure 6.1: The sluice gate.

A small sluice, with a rising and a falling gate, is used in a simple irrigation
system. A computer system is needed to raise and lower the sluice gate in response
to the commands of an operator. The gate is opened and closed by rotating
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vertical screws. The screws are driven by a small motor, which can be controlled
by clockwise, anticlockwise, on and o� pulses. There are sensors both at the top
and the bottom of the gate travel: when the top sensor is active the gate is fully
open, when the bottom sensor is active, it is fully shut. The connection to the
computer consists of four pulse lines for motor control, two status lines for the
gate sensors, and a status line for each class of operator commands.

The position of the gate is de�ned as the percentage of space occupied by
the gate: when it is open Position=0, when it is closed Position=1. Finally, the
top and the bottom sensors are active when Position becomes less than 0.05 and
greater than 0.95, respectively.

The PFs diagram for the sluice gate problem as given in [37] is reported in
Figure 6.2. According to Jackson's classi�cation, the PF in Figure 6.2 is a com-
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Figure 6.2: The sluice gate commanded behavior frame.

manded behavior frame, since it identi�es a problem where �there is some part
of the physical world whose behavior is to be controlled in accordance with com-
mands issued by an operator. The problem is to build a machine that will accept
the operator's commands and impose the control accordingly� [37].

The example consists of three domains: the Sluice Controller, which is the
machine that will be developed to satisfy the requirements; the Gate & motor,
which is the domain to be controlled (it is a causal domain since its properties
include predictable causal relationship among its causal phenomena); the Sluice
Operator, which is a biddable domain indicating a user without a positive pre-
dictable behavior (that is, the user can issue commands but cannot be constrained
to act in any way).

The next step consists of addressing frame concerns, which identify the de-
scriptions that have to be provided with every problem frame. More speci�cally,
addressing frame concerns means making requirements, domain and speci�cation
descriptions �t together properly. The combination of these descriptions must
result in a `correctness argument', that is, they must provide evidence that the
proposed machine will ensure that the requirements will be satis�ed in the prob-
lem domain [37]. In the case of the commanded behavior frame, we have to assure
that only sensible and viable commands are executed. For instance, the machine
should not try to open an already open gate.

Requirements can be expressed as e�ects on the problem domain caused di-
rectly by the user's commands or by other events, such as reaching the completely
open (closed) position. According to Jackson, these e�ects can be expressed in a
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Figure 6.3: Requirements: reaction to commands and events.

rather straightforward way by means of state machines.

Note that in Figure 6.3 some transitions conditions are expressed on Position
(clause when) rather than on the sensor state. In fact, requirements generally
address the real state of the problem domain, rather than the representation of
such state that is made available to the machine. Figures 6.3 and 6.4 use the same
notation used in Jackson's book: states are divided in two regions, the upper one
contains the state invariant, i.e., the condition that holds when the state machine
is in that state; the lower one indicates the events that are ignored in the state.

The requirements reported in Figure 6.3 (taken from [37]) do not consider that
a Raise command could be issued when the gate is closing. We adopt an extended
version of these requirements, according to which in the aforementioned case the
gate should switch to the opening state. This requires a �good� behavior of the
machine, since just switching the working direction would break the motor (or
bring the domain in an unknown state as speci�ed in Figure 6.4).

Also the behavior of the problem domain can be represented by means of a
state machine, showing the states of Gate & motor, and specifying the reactions
to external commands, as well as the evolution in time of the domain. Such state
machine (taken from [37]) is reported in Figure 6.4. Note that state 5 is indicated
as �unknown�; in fact it corresponds to an undesirable situation, since it probably
involves breaking the motor and/or the gate (e.g., by trying to lower the gate
beyond the closed position). Since we are describing the problem domain, we
have to explicitly indicate this possibility, but, knowing that it should be never
reached, we do not need to explore it in detail.

According to the PFs methodology, the machine speci�cations combined with
the problem domain speci�cations, must satisfy the requirements. We could spec-
ify the behavior of the machine by means of another state machine or a set of
logic clauses. Here we skip this phase for space reasons.

6.2 Representing PFs concepts

In order to support the PFs approach, a modeling language has to satisfy a set of
requirements concerning the representation of the relevant concepts according to
the de�nition of the PFs technique [37] and semantics[27].
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Figure 6.4: Problem domain behavior.

The fundamental components of problem diagrams and problem frame dia-
grams are domains and phenomena. Therefore, the language has to be able to
represent domains and their characteristics according to the domain type (bid-
dable, causal, lexical), as well as the connections and relations between domains.

Domains are mainly characterized in terms of phenomena, which have to be
properly represented. For instance, phenomena of biddable domains are events,
while those of causal domains are states and events (generalized as causal phe-
nomena) and those of lexical domains are symbolic. For every phenomenon it
must be clearly speci�ed by which domain it is controlled and by which domains
it is visible. As far as shared phenomena are concerned, it is important that shar-
ing is represented without suggesting any communication policy, such as sending
a message or polling for an event occurrence or state change.

Notice that, the same phenomenon may exist in two forms: the real one, which
is referenced by the user requirements (e.g., when the heart rate drops below a
given threshold, the alarm must be activated), and the sensed one, which is viewed
by the machine, and is used in the machine speci�cations (e.g., when the patient
sensor indicates a low heart rate, the machine activates the alarm). The modeling
language has to be able to represent both of them, making clear which is the real
world phenomenon, and which is the one viewed at the machine interface.

Descriptions can be indicative, describing what is given and cannot be changed
when developing the solution, or optative, describing what has to be achieved by
means of the computer-based solution. Both descriptions have to be represented,
making clear their di�erences, possibly by providing di�erent representations.

In PFs, designation of phenomena grounds the problem's vocabulary in the
physical world, i.e., it provides names to describe the environment, the system
and their artefacts. Therefore a suitable vocabulary must be supported by the
modeling language in order to name phenomena.

The modeling language must also support the frame concern. Addressing
frame concerns adequately means making requirements, domain and speci�cation
descriptions �t together properly and the combination of these descriptions must
result in a correctness argument. Thus, the language has to support both the
requirements speci�cation and the representation of the correctness argument.

Finally, since complex problems may not �t into a single PF, the language has
to support their composition.
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6.3 A PFs & SysML based methodology

This section brie�y introduces how SysML supports PFs concepts, then it presents
a modeling approach based on the integration of PFs and SysML.

6.3.1 SysML support for Problem Frames

In this section the representation of PFs concepts via SysML is addressed.
First of all, problem domains can be represented by means of SysML bdds and

ibds. In fact, blocks can be used to represent domains, and stereotypes can be
used in order to denote the di�erent domains type. Ports, interfaces and signals
can be used to represent the phenomena shared between domains. Moreover,
SysML allows the modeler to distinguish events, calls, and continuous �ows of
information, so that the resulting description faithfully represents the nature of
the real world phenomena.

SysML also supports the distinction of indicative and optative descriptions.
We suggest to explicitely separate the description into distinct diagrams. If the
modeler considers preferable to keep both kinds of descriptions in a single dia-
gram, he/she should introduce stereotypes. For instance, user requirements can
be labeled �UserRequirement� while system requirements (intrinsic properties of
problem domains) �PDRequirement�.

The dynamic properties of the domains can be speci�ed by means of state
machine diagrams. When a more declarative style is preferred, �constraints� can
be de�ned and attached to the involved elements in �parametric diagrams�.

Interactions between domains (e.g., between the machine and the environ-
ment) can be modelled by means of activity diagrams.

Finally, SysML, having been conceived to model potentially complex systems,
provides (de)composition mechanisms for all diagrams and elements, thus making
possible to structure the system descriptions at di�erent levels of aggregation
and abstraction. These mechanisms can be applied in a straightforward way to
problem frames as well.

6.3.2 Approach

Our approach inherits the conceptual activities from PFs increasing its e�ective-
ness by means of a suitable notation. Moreover, it supports the integration of
formal notations for the de�nition of properties. This allows one to anticipate the
veri�cation activities at the requirements engineering time, reducing the risk of
expensive design mistakes.

The methodology is structured into the following steps:

• Problem analysis: the problem context, i.e., the world in PFs terminology, is
decomposed into domains, and shared phenomena are identi�ed. Domains
and Shared phenomena are represented by means of SysML Blocks and are
de�ned using a bdd showing the entities of the problem context.

• Problem de�nition: the domain blocks are instantiated and connected one
to another using an ibd.
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• Requirements de�nition: user requirements and properties associated with
domains are de�ned by means of req diagrams.

• Domains re�nement: domains are re�ned using SysML diagrams such as
bdd and ibd to support domains decomposition into simpler structures, and
stm, act, par and seq diagrams to de�ne behaviors.

• Requirements re�nement: user requirements are re�ned by means of par
and stm diagrams, which provide a more rigorous de�nition of the properties
informally introduced in req diagrams

Notice that such activities are not completely independent one from another
and the methodology should not be considered an ordered sequence of steps. Ex-
ploiting SysML notation, the involved diagrams provide di�erent views of the
same model and thus our methodology exploits a sort of model-centric require-
ments analysis approach.

The rest of the section discusses in more detail the above steps using the Sluice
Gate example.

Problem analysis The domains involved in the problem have to be identi-
�ed and described, so that requirements can be unambiguously associated with
domains.

Domains are represented by means of SysML Blocks, i.e, constructs su�ciently
expressive and �exible to represent both concrete physical entities and logical do-
mains. Blocks which can be annotated with stereotypes that specify their nature
(e.g., Causal, Machine, Biddable). Shared phenomena are represented by means
of SysML Ports through which data can �ow and Blocks. Standard Ports describe
event based communication, while Atomic Ports allow one to access the internal
states of Domains. Information is typed by means of Interfaces, Signals or Enu-
merations. More speci�cally, Interfaces describe events by means of operations.
Signals de�ne events characterized by complex data structures. Enumerations
represent the states of a domain. Domains and Shared phenomena are repre-
sented by means of a bdd diagram describing the entities involved in the problem
context. The resulting diagram contains 1) a system block representing the world,
which is composed of domain blocks, and 2) blocks representing the types of the
shared information. Domain blocks, in turn, de�ne the ports representing the
communication channels through which phenomena can be shared.

The domains of the Sluice Gate Controller problem are speci�ed in the (bdd)
of Figure 6.5. The whole system is de�ned by means of the SluiceGateSystem

block and its components. The SluiceOperator block describes an operator ca-
pable of sending speci�c commands. Notice that such element is biddable, in
fact we cannot constrain the behavior of the operator. The Gate&Motor block
represents the Causal Domain. Both the gate and the motor are given elements,
i.e., they are object of an indicative description. Here we indicate their char-
acteristics that will possibly be involved in the interactions with the controller.
The SluiceController represents the Machine Domain: the properties of its
interaction with the environment must be de�ned in order to satisfy the user
requirements.
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Figure 6.5: bdd, ibd: Representation of the Sluice Gate Control problem.
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All the aforementioned domains specify interaction points through which phe-
nomena can be shared. As an example, the SluiceOperator requires the Command
interface to allow the operator to issue commands by invoking the operations pro-
vided by the interface. The interface is actually provided by the Controller

block, which is able to execute the operations de�ned therein. Similarly, the
Gate&Motor block de�nes two atomic output ports that propagate the events
generated by the sensors according to the position of the gate. Moreover, the
Controller de�nes two dedicated input ports to receive noti�cation by external
sensors.

Notice that shared phenomena are speci�ed by de�ning the types associated
with ports and interfaces: for instance, the SluiceOperation signal speci�es the
nature of the commands sent from the Machine to the Gate&Motor.

Problem de�nition PFs Problem Diagrams are represented by means of ibd
diagrams that de�ne the internal organization of the system block. Such diagrams
de�ne how the domains are instantiated and connected one to another.

The ibd of Figure 6.5 describes the context of the SluiceGate problem show-
ing how the involved domains share information. Notice that it is topologi-
cally similar to the original problem diagram shown in Figure 6.2. For instance,
the SluiceOperator and the SluiceController share phenomena that are di-
rectly generated and controlled by the SluiceOperator and received by the
SluiceController. Gate&Motor and SluiceOperator domains have to satisfy
the requirements described by the UserRequirements requirement diagram.

Requirements de�nition Requirements are categorizable in two distinct classes:
1) User requirements, which specify the user expectations against the solution of
the problem, and 2) System requirements, which specify properties associated with
domains. User requirements express properties that usually involves di�erent do-
mains, speci�cally they allow one to User requirements are de�ned using a req

diagram; they are speci�ed by means of informal textual descriptions structured
in a sort of hypertext; decomposition and derivation relationships allow one to or-
ganize and re�ne requirements till reaching the desired structure and granularity
degree.

Figure 6.6 reports the req diagram of the Sluice Gate problem. In order to
satisfy user requirements, it is necessary to know the behavior of the causal parts
of the problem domain. SysML (implicitly) drives the modeler to describe in
a possibly unique requirements diagram both the problem domain and the user
requirements (i.e., both the indicative and optative descriptions).

The behavior of the causal domain Gate&Motor is constrained according to
the phenomena generated by the biddable SluiceOperator domain: for instance,
User requirements specify when commands have to be considered useless, and the
expected results in such cases. In Figure 6.6 the top-level block speci�es the user
requirements in a very abstract way, while the following re�nements describe the
e�ects of the commands that the operator can issue.

Once de�ned, User requirements have to be allocated to problem domains
by annotating the correspondent blocks of the ibd. For instance, as shown in
Figure 6.5, Gate&Motor and SluiceOperator are the involved domains.
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Figure 6.6: req: User Requirements decomposition.
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Figure 6.7: req: System Requirements decomposition.
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System requirements express properties concerning domains. As in the previ-
ous case, they can be de�ned and structured using req diagrams. SysML provides
di�erent diagrams supporting the de�nition of a system in a more precise and de-
tailed way. In this way it is possible to informally describe the world whenever
the construction of the system requires the de�nition of properties of the causal
domain. However, this is not mandatory, since req diagrams can be replaced
by other diagrams that could better support the environment description as ex-
plained in what follows.

Here we do not consider such case, since it is supposed that the Gate&Motor

domain is given and cannot be modi�ed. Therefore, the �system requirements�
in Figure 6.7 are not actual requirements, but just an informal description of the
Gate&Motor domain.

Re�ning domains descriptions Domains represent the constituent parts of
the world. They are introduced in bdd and ibd diagrams that describe the struc-
tural aspects of the problem context at an high level of abstraction. Moreover,
domains properties are possibly informally described in the req diagram that de-
�nes the System requirements. Domains descriptions are now re�ned into more
precise and detailed speci�cations.

System requirements are characterized by static and dynamic aspects, and
thus depending on their nature they have to be re�ned exploiting di�erent dia-
grams. Structural properties are de�ned by means of bdd and ibd diagrams, while
behaviors are described by means of act, stm and par diagrams. SysML, having
been conceived to model potentially complex systems, provides (de)composition
mechanisms for all diagrams and elements, thus making it possible to structure
the system descriptions at di�erent levels of aggregation and abstraction.

bdd and ibd are used to decompose domains into simpler structures. For
instance, Figure 6.8 shows the internal structure of the Gate&Motor. Domains
decomposition follows the same criteria applied for the problem de�nition (i.e.,
sub-domains are de�ned by means of Blocks in a bdd, and instantiated and used
in a ibd, where the connections are shown).

stm are used to specify in an operational style the behavior associated with a
single Block. For instance, the stm of Figure 6.9 speci�es the reactions to external
commands and the internal evolution of the Gate&Motor domain.

act are used whenever it is necessary to specify a complex behavior involving
several domains. Notice that it is possible to use act diagrams in addition to stm.
Also these diagrams feature an operational style and support the composition
of simpler activities. In our example, the coordinated behavior of the Gate and
Motor pair is speci�ed by means of an activity diagram, as shown in Figure 6.10.

Re�ning requirements The req diagrams de�ning the User requirements can
be used by the analyst to de�ne and organize requirements in an informal top-
down approach. However in order to apply automatic veri�cation techniques such
properties need to be expressed in a formal way.

Our approach does not impose the usage of a speci�c formal language for
re�ning purposes. The modeler is free to adopt the language that he/she consid-
ers most suitable to the problem. The methodology simply de�nes how formal
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Figure 6.8: bdd, ibd: Decomposition of the Gate&Motor domain.
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Figure 6.9: stm: The dynamics of the Gate and Motor
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Figure 6.10: act: The activities associated with the components of the problem
domain
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properties have to be speci�ed and integrated in the model.
bdd have to formally de�ne properties with constraint blocks. Constraints

are expressed by composition of parameters. par diagrams allocate constraints
to one or more (sub)domains. Notice that, the same approach can be used also
for re�ning domain descriptions. Figure 6.11 shows a formalization of a User
requirement (the Lower command) using TRIO, a �rst order temporal logic for
the speci�cation of real-time systems [23].

stm represent an e�ective alternative to the speci�cation of constraints. They
are particularly suitable to the de�nition of properties concerning the evolution
of blocks. Their usage is widely supported by di�erent analysis techniques that
support formal veri�cations [10]. A stm equivalent to the state machine by Jackson
reported in Figure 6.3 could de�ne the User requirements concerning the states
of the Gate block.

6.4 Related work

The proposed approach for integrating SysML and PFs can be seen from two
perspectives: 1) providing SysML with a rigorous conceptual framework and a
set of methodological guidelines, and 2) providing PFs with a suitable notation.

In the former case, there are no proposals concerning how to use the lan-
guage. In fact, the literature reports just a few experiences in using SysML. For
instance, some whitepapers are available from Artisan, describing systems like a
house heating system [48] or a waste treatment plant [28]. However, these pa-
pers describe the nature and the role of SysML diagrams, rather than suggesting
methodological guidelines.

A SysML modeling approach for real-time systems is proposed in [14]. An
experimental application of SysML in the real-time domain showed that SysML
supports well the de�nition/usage dichotomy (e.g., concerning the bdd/ibd and
bdd/par pairs), the hierarchical decomposition of behavioral and static elements,
and the usage of cross-cutting constructs (namely requirements and allocation
mechanisms). In addition, the paper discusses the limits of the language, mostly
related to the lack of formal semantics and mechanisms to extend and adapt the
language. SysML inherits the extension mechanisms provided by UML. Tagged
values, constraints and stereotypes allow the user to extend the expressiveness of
the SysML basic pro�le through the de�nition of new constructs. However, it is
not possible change the semantics of the basic constructs (for details see [14]).
However, these limits can be partially overcome by using formal languages for
de�ning constraints and properties. This possibility leads to the development of
formal methods applicable to SysML models (e.g., analysis methods and tools to
verify the correctness and the consistency of a model).

In order to put the usage of SysML in context, it should be noted that the
systemic perspective supported by SysML can address two possible situations:

• The required development concerns only the software part of the system,
the rest being given. In fact, in our example the problem is just to develop
the software machine satisfying the user requirements, while the problem
domain is completely �xed.
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Figure 6.11: bdd, par: Formal speci�cation of the Lower Command requirement.
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• The required development concerns the whole system, i.e., both the non-
software part and the software part are subject to de�nition and implemen-
tation.

The problem frames approach applies well to the former case, which is the one
usually addressed by software developers. The approach described in this chapter
also applies to such a case.

The original proposal of the PFs approach [37] already addressed the method-
ological issues of requirements engineering. On this basis, several researchers
built extensions and re�nements of the method. Some focused on the adaptation
for speci�c purposes, like web service requirements modeling [39], or e-business
modeling [4]. Others studied the transition from requirements to machine speci-
�cations [45, 65]. Jackson and co-authors also elaborated on the PFs approach in
several directions, such as de�ning the semantics of PFs [27], composing PFs [41],
and highlighting the role of PFs in software engineering [38]. However, none of
the mentioned works concerned the linguistic issues, nor the integration of PFs in
any popular model-based development practice.



Chapter 7

A SysML based PFs catalogue

According to the Problem Frames approach, complex problems need to be decom-
posed into simple problems that can be represented and solved separately.

The problem decomposition can take advantage of problem classes, i.e., given
recurrent patterns shared by di�erent problems. Jackson proposes �ve basic Prob-
lem frames [37] that di�er by their requirements, domain characteristics and frame
concern.

Basic problem frames are introduced with the idea that, at decomposition
time, once the appropriate problem frame is identi�ed, the associated analysis
method is prede�ned and easy to apply.

This chapter aims at testing the e�ectiveness of the previously approach by
applying it to the modeling of the catalogue of basic Problem Frames proposed
in [37]. Although the intrinsic complexity of the proposed problems is relatively
low, such basic frames play a fundamental role, since the whole decomposition
process of PFs aims at reducing complex problems to a set of simple problems
that should �t these frames.

Each problem frame is analysed by using the the SysML-PFs based approach
and illustrated by means of SysML diagrams that show the characteristics and the
behavior of the involved domains, the requirements and the machine speci�cation.

7.1 Required behavior: one way tra�c lights

This section presents the analysis of the One way tra�c lights problem, a simple
example proposed by Jackson in [37] to describe the Required behavior frame.

When a section of road is being repaired, it's often necessary to enforce
one way tra�c. Half of the road width is used for tra�c and half for
the repair work. The tra�c is controlled by a pair of simple portable
tra�c light units.

The repairers put one unit at each end of the one-way section, and
connect it to small computer that controls the sequence of lights. Each
unit has a Stop light and a Go light. The computer controls the lights
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by emitting RPulses and GPulses, to which the units respond by turn-
ing the lights on and o�. The regime for the lights repeats a �xed cycle
of four phases. First, for 50 seconds, both units show Stop; then,
for 120 seconds, one unit shows Stop and the other Go; then for 50
seconds both show Stop again; then for 120 seconds the unit that previ-
ously showed Go shows Stop, and the other shows Go. Then the cycle
is repeated.

The corresponding Required behavior problem frame is reported in Figure 7.1.

Figure 7.1: The one way tra�c lights controlled behavior frame

Problem context de�nition According to the proposed approach, the �rst
step of the analysis consists in identifying and describing the domains and phe-
nomena involved in the problem, and in de�ning the architecture of the problem
context.

The problem context is de�ned by means of the block de�nition diagram re-
ported in Figure 7.2.

The problem is characterized by two distinct domains: Lights controller and
Light unit. The former is a Machine domain representing the Control machine
of the Required behavior frame, while the latter is a Causal domain representing
the Controlled domain of the same basic frame. Light unit is characterized by
two Boolean attributes named Stop and Go representing the state of the red and
green lamps, respectively.

Figure 7.2: The bdd representing a Lights Controller and two Light Units

The lights controller manages the light units sending two signals of type Pulse:
RPulse to turn on the red light and GPulse for the green light. Pulses are shared
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Figure 7.3: The ibd representing the structure of the problem domain

Figure 7.4: The stm specifying the behavior of light units

phenomena controlled by the machine: they are represented in the bdd by means
of stereotyped data �owing through Flow Ports (toL1, toL2 and cmd).

The structure of the problem context is described by the ibd of Figure 7.3,
where the domains introduced in the bdd are instantiated and connected among
them through �ow ports.

Problem domain modeling The next step of the approach consists in de�ning
the behavioral aspects of the problem domains.

The light units behavior is described by the stm diagram reported in Fig-
ure 7.4. Light unit is characterized by four distinct internal states named Ro�-
Go�,RonGo�,RonGon??? and Ro�Gon representing all the combinations of the
values of Stop and Go. Notice that although RonGon??? is an internal state of
Light unit that can be reached by di�erent transitions, Light controller should pre-
vent to reach such state. State transitions depend on the external events GPulse
and RPulse received from the light controller via the �ow ports. Note that, as in
UML, whenever a state S does not have any outgoing transition labelled with an
event X, this means that event X has no e�ect in state S. For instance, if GPulse
occurs while the light unit is in state Go, it is simply dropped.

Requirements speci�cation The next step of the approach consists in the
speci�cation of the requirements.

It is required that the system of lights behaves according to a continuously
repeated cycle, which is composed of a sequence of 4 phases regulated by temporal



112 CHAPTER 7. A SYSML BASED PFS CATALOGUE

events as speci�ed by the state machine in Figure 7.5.

Figure 7.5: The stm representing the required behavior of the two light units

Notice that the stm refers to the internal state of both lights units involved.

Machine speci�cation The �nal step of the approach consists in the speci�-
cation of the machine.

The machine behavior is represented by the action Generate Pulses shown in
the act diagram of Figure 7.6.

Figure 7.6: The act diagram representing the behavior of the lights controller

Figure 7.7: The stm diagram representing the behavior of the lights controller

Notice that such description is not expressive enough to represent the speci�-
cation of the behavior and therefore it needs to be re�ned. For instance, we could
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add constraints to this black box representation or we could complement the ac-
tivity diagram with a state machine diagram, which speci�es the pulse generation
timing. The stm diagram of Figure 7.7 shows the latter.

The transitions generate signals GPulse and RPulse that are sent to the in-
terested domains via the Flow Ports toL1 and toL2.

7.2 Information display: odometer display

This section presents the Odometer display problem, a simple example proposed
by Jackson in [37] to illustrate the Information display frame.

A microchip computer is required to control a digital electronic speedome-
ter and odometer in a car.

One of the car's rear wheels generates pulses as it rotates. The com-
puter can detect these pulses and must use them to set the current
speed and total number of miles travelled in the two visible counters
on the car fascia. The underlying registers of the counters are shared
by the computer and the visible display.

With respect to the problem proposed by Jackson [37] our case is slightly
di�erent, because of the presence of a shared phenomenon that represents the
continuous tension generated by the speed sensors allocated to the wheels of the
car.

Figure 7.8: The odometer display: an information display problem frame

Problem context de�nition The system is composed of the machine Display
controller and the causal domains Car on road and Fascia display, as speci�ed by
the bdd reported in Figure 7.9.

Display Controller represents the Information machine of the Information
display frame, while Car on road and Fascia display represent the Causal domain
Real World and Display of the same pattern.

Car on road controls a phenomenon A representing the continuous tension gen-
erated by the internal speed sensors. Display Controller controls a phenomenon
B representing the commands sent to the display in order to update the current
values of both speed and amount of cumulated distance. The constraint in the
causal domain Car on road speci�es that the tension is proportional to the speed.

The problem context structure is de�ned by the ibd of Figure 7.10.
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Figure 7.9: The odometer display: problem context

Figure 7.10: The odometer display: the ibd representing the structure of the
problem context
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Problem domain modeling The behavior of the car is described in Figure 7.11
by an act diagram.

Figure 7.11: The act diagram specifying the behavior of the car

Activity Move generates a tension that is proportional to the current speed of
the car and it is allocated to the output Flow Port spB and, through this port,
it is made continuously visible to the display controller. The behavior of Move is
in�uenced by the state of the car. Move determines the current speed, which is
transformed into a tension. The behavior of the fascia display is de�ned by means
of the activity diagram in Figure 7.12.

Figure 7.12: The act diagram specifying the behavior of the display.

The internal behavior is described by means of two activities that update the
displayed speed and the displayed cumulated distance, respectively. Activities are
triggered by external signals allocated to the input Flow port spA and received
by the controller.

Requirements speci�cation Let us now specify the required value of Speed-
Count as a function of the actual Speed. The speci�cation is carried out in two
steps: �rst we de�ne the value to be displayed (STBD), then we take into ac-
count that a (given, little) delay in displaying the speed is acceptable. Since the
behavior of the display is time dependent, we choose to express it by means of
TRIO [23] formulas according to the guidelines illustrated in Chapter 3. The
following TRIO formulas de�ne STBD :
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UpToNowe(STBD(X)) and Speed(Y ) and |Y −X| ≤ K → STBD(X)

UpToNowe(STBD(X)) and Speed(Y ) and |Y −X| > K →

STBD(Z) and |Y − Z| < K

The �rst formula states that if STBD has been equal to X during an (even
very small) interval, and now speed equals Y, and the distance between X and Y
is less than the acceptable precision, then STBD must not change. The formula
de�nes two properties: that the di�erence between the displayed value and the
real value must not be greater than K, and that small changes in the actual speed
do not cause changes in the displayed value. The second formula states that if
the actual speed becomes signi�cantly di�erent from the displayed value, then
the latter must be updated with a value that makes such a di�erence less than
or equal to K. Now we de�ne the SpeedCount as a function of STBD : if the need
to display value X arises at time t, then X is actually displayed not later than
t+Delay.

STBD(X)→ Futr(SpeedCount(X), t1) and t1 ≤ Delay

SpeedCount(X)→ Past(SD(X), t1) and t1 ≤ Delay

The second formula is needed to express that all the displayed values corre-
spond to the sensed speed of the car (i.e., no spurious values are displayed).

Figure 7.13: The constraint specifying speed reporting

In order to complete the speci�cation of the requirement, we have to specify
that the initial values of Speed, SpeedCount, and STBD are all zero. Since this
part of the speci�cation is rather trivial, it is not reported here. The requirements
reported above are expressed in SysML by means of the constraint reported in
Figure 7.13. The speci�cation of the requirements concerning DistCount is simi-
lar.
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Figure 7.14: The par diagram describing the allocation of the requirements Coun-
tersTravelReq to the problem domains

Machine speci�cation The machine speci�cation is in three parts. The �rst
de�nes the speed perceived by the machine (PS ): it is proportional to the Tension
received from the wheel sensors:

PS = Ck Tension

The second part de�nes how the integer speed to be displayed (PSTD) depends
on the speed perceived by the machine (PS ). The relation between PSTD and PS
is very similar to the one between STBD and Speed, described in the requirements
speci�cations:

UpToNowe(PSTD(X)) and PS(Y ) and |Y −X| ≤ K → PSTD(X)

UpToNowe(PSTD(X)) and PS(Y ) and |Y −X| > K → PSTD(X + 1)

UpToNowe(PSTD(X)) and PS(Y ) and |X − Y | > K → PSTD(X − 1)

Finally, we have to specify how the PSTBD values determine the need to
issue IndSpeed or DecSpeed signals. The following formulas state that IncSpeed
(DecSpeed) is issued whenever PSTBD increases (decreases).

ForEach(X, IncSpeed ↔ (PSTD(X) and UpToNow(PSTD(X − 1))))

ForEach(X, DecSpeed ↔ (PSTD(X) and UpToNow(PSTD(X + 1))))

Note: the speci�cation above is based on the hypothesis that the machine is
able to immediately detect when Y-X becomes greater (or less) than K. In such a
case, the new value of PSTBD is always the following (or preceding) integer. If the
machine is slower with respect to the acceleration of the car, or if K>1, then we
should change the speci�cations accordingly. The speci�cations reported above
can be included in a constraint and parameterized by means of a par diagram as
we did for the requirements in Figure 7.13 and Figure 7.14.

A fundamental task of requirements speci�cation based on problem frames
consists in addressing frame concerns. It is therefore necessary to evaluate how
well SysML models built as described above support the frame concern task.
The main steps of the process for the odometer display problem are reported
in Figure 7.15. Notice that such diagrams illustrate how the di�erent SysML
diagrams are used.
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Figure 7.15: Display frame concern

7.3 Commanded behavior: sluice gate control

This section presents the Sluice gate control problem, a simple example proposed
by Jackson in [37] to illustrate the Commanded Behavior frame.

A small sluice, with a rising and falling gate, is used in a simple
irrigation system. A computer system is needed to raise and lower the
sluice gate in response to the commands of an operator.

The gate is opened and closed by rotating vertical screws. The screws
are driven by a small motor, which can be controlled by clockwise,
anticlockwise, on and o� pulses. There are sensors at the top and
bottom of the gate travel; at the top it's fully open, at the bottom it's
fully shut.

Figure 7.16: The commanded behavior problem frame diagram for the sluice gate
controller
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Notice that although this example is the same used in the previous chapter to
illustrate the PFs-SysML based analysis approach, the problem is described by
using di�erent diagrams in order to show how SysML can be easily adapted to
di�erent modeling styles and analysis strategies.

The Problem diagram for the Sluice gate control problem is shown in Fig-
ure 7.16.

Problem context de�nition The Problem context is described by the bdd of
Figure 7.17. The digram shows the world as composed of a Machine domain
Sluice controller, by a Causal domain Gate&motor and by a Biddable domain
Sluice Operator. Notice that such domains represent instances of Control machine,
Controlled domain and Operator of the Commanded behavior frame.

The structure of the problem context is illustrated in Figure 7.18.

Figure 7.17: The sluice gate controller: context diagram

Figure 7.18: The structure of the problem domain

Problem domains modeling Gate&motor is in turn composed of other causal
domains. The bdd of Figure 7.19 de�nes the characteristics of such domains. Note
that the descriptions of the blocks are equipped with constraints that de�ne some
relevant properties of the domains.

For instance, the position of the gate as a function of the Transmission value
is de�ned by the constraint in the block Gate . Similarly, the transmission is
de�ned as a function of the state of the motor, and the state of the sensors is
de�ned as a function of the gate position.

The structure of the Gate&motor domain is described by the ibd in Fig-
ure 7.20. Commands from the controller �ow through the spA port, while the
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Figure 7.19: Elements of the Gate&Motor domain

state of the sensors that monitor the opening state of the gate is continuously
noti�ed via port spD.

Figure 7.20: The structure of the Gate&Motor domain

Domain behavioral aspects are de�ned by using act and stm diagrams. The
act diagram in Figure 7.21 de�nes the behavior of the domain Gate&motor in
terms of activities and �ows of information.

The stm diagram of Figure 7.23 provides a complementary view of the internal
behavior of the domain Gate&motor.
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Figure 7.21: The behavior of the gate and motor

Figure 7.22: The act representing the behavior of the motor

Notice that state transitions are activated by signals that come from both
internal components (e.g. the motor) and the controller machine. (i.e. allocated
to input ports). Transitions in turn trigger the execution of the activities de�ned
in the act diagram of Figure 7.21.

The behavior of the motor is described by the act diagram in Figure 7.22
and it is characterized by the activities ProvideTraction (which generates a con-
tinuous �ow of data representing the transmission of the motor to the gate),
ChechMotorState and ChangeDirection, and is regulated by the events On,
Clock, Anti and O� allocated to the spA input Flow Port. Note that the ex-
istence of unknown states (as de�ned in [37]) is speci�ed in a bdd (Figure 7.19)
for the Gate, in an act diagram (through the UnpredictableE�ect activity in Fig-
ure 7.22) for the motor.

Requirements speci�cation User requirements are speci�ed by means of the
stm diagram in Figure 7.24. The stm describes the expectations of the user in
terms of which states the gate has to reach as a consequence of the commands
issued by the sluice operator.
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Figure 7.23: The behavior of the gate and motor by means of a stm diagram



7.4. SIMPLE WORKPIECES: PARTY PLAN EDITING 123

Figure 7.24: The state machine representing user requirements

Machine speci�cation Finally the speci�cation of the machine Sluice controller
is proposed in the stm diagram shown in Figure 7.25.

Notice that such speci�cation describes how, starting from the current state
of the sensors, the commands sent by the operator are converted into command
pulses for the motor that operates the gate.

Figure 7.25: The speci�cation of the sluice gate controller

7.4 Simple workpieces: Party plan editing

This section presents the Party plan editing problem, a simple example proposed
by Jackson in [37] to illustrate the Simple workpieces frame.

Lucy and John need a system to keep track of the many parties they
give and the many guests they invite to them. They want a simple
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editor to maintain the information, which they call their party plan.
Essentially, the party plan is just a list of parties, a list of guests, and
a note of who's invited to each party. The editor will accept command-
line text input, in a very old-fashioned DOS or Unix style. To begin
with, at least, we are not concerned with presenting or printing the
information, just with creating or editing it.

The Problem diagram of the proposed problem is shown in Figure7.26.

Figure 7.26: The problem diagram for the Party plan editing problem

Problem context de�nition According to the bdd of Figure7.27, the problem
context is composed of the machine Party editor, the lexical domain Party plan
and the biddable domain John and Lucy. Party editor has to operate the data
repository Party plan according to the commands issued by John and Lucy.
Notice that Party editor is an instance of Editing tool of the Simple Workpiece
problem, while Party plan and John and Lucy are instances of Workpiece and
User, respectively.

The Problem diagram of the proposed problem is shown in Figure 7.27.
Shared phenomena are de�ned by means of interfaces and data that can �ow

through Flow Ports.
A is an interface with a set of operations that update the current state of

PartyP lan. It introduces some operations that allow the editor to add a new
party, a new guest, or to specify that a certain guest is invited to a party. It also
provides operations that allow the editor to remove guests, parties and invitations
from the party plan.

B is an interface that has been de�ned to access the internal state of the party
plan. More speci�cally, it provides operations that check whether a certain party
or guest is stored in the party plan, and an operation that veri�es whether a guest
is invited to a party.

C represents commands that can be issued by John and Lucy to Party editor.
Commands are executed into a speci�c context. Three di�erent contexts, i.e., the
party context, the guest context and the plan context are de�ned for the interpre-
tation of commands. The context can be set by means of dedicated commands.

The commands are strings compliant with the following format:

• EG gname set the current context to context of the guest named gname
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Figure 7.27: The Party plan editing problem: context diagram
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• EP pname set the current context to the context of the party named pname

• E set the current context to the context of the party plan

• G gname adds a guest named gname to the plan or Party editor to particular
party

• XG gname remove the guest named gname from the plan or from a particular
party

• pname adds a party named pname to the plan or to the set of parties to
which a particular guest is invited

• XP pname removes the party named pname from the plan or from the set of
parties to which a particular guest is invited

Problem domain modeling Party plan is characterized by an internal struc-
ture described by means of the bdd diagrams shown in Figure 7.28.

Figure 7.28: The internal structure of the problem domain Party Plan

Party plan stores a collection of guests and a collection of parties, and speci�es
for each guest a list of parties to which he/she is invited, and for each party it
speci�es the set of invited guests.

The behavioral aspects of the domain are represented by the operations, de-
�ned by the interfaces A and B, implemented by the domain block.

The speci�cation of the behavior is provided in a declarative style by means
of OCL statements. For each operation pre and post conditions are de�ned to
describe under which constraints each operation can be invoked and what are the
e�ects of their execution. Constraints involve operations of the interfaces A and
B. In the following, some of the most interesting constraints are illustrated.

In order to add a new Party to Party plan, it is necessary that such a party
has not to be already stored.

context PartyPlan::addP(String party)

pre: self.parties->forAll(p|p.name<>party)

post: self.parties->exists(p|p.name=party)

In order to specify that a certain guest is invited to a party both the guest
and the party need to be already stored.



7.4. SIMPLE WORKPIECES: PARTY PLAN EDITING 127

context PartyPlan::addInv(String guest, String party)

pre: self.parties->exists(p|p.name=party) and

self.guests->exists(g|

g.name=guest and g.invitedTo->forAll(ip|

ip.name<>party))

post: self.guests->exists(g|

g.name=guest and g.invitedTo.exists(ip|

ip.name=party))

Other properties shown in Figure 7.29 constraint the operations behavior of
the interface B that allow one to access the internal state of Party P lan.

Figure 7.29: Representation of the shared phenomena B

Requirements speci�cation The requirements specify the e�ects of the com-
mands issued by the operator on the internal state of Party P lan. The require-
ments are de�ned by means of the stm diagram shown in Figure 7.30.

Notice that requirements predicate on three di�erent aspects: 1) they establish
which commands issued by John and Lucy are not correct and therefore must be
rejected, 2) they de�ne the commands context, and 3) they de�ne the e�ect of
the commands on the internal state of Party P lan.

The admissible commands are those speci�ed by the transitions of the stm

reported in Figure 7.30. All other commands are syntactically incorrect and are
rejected.

The context of the commands is de�ned by using two variables named h and
q that store the current guest and the party context (the name of the guest and
of the party), respectively.

The commands e�ect is de�ned by using the operations de�ned in the interface
B, as they allow one to access the state of Party P lan.

Machine speci�cation The machine speci�cation is described in the stm dia-
gram of Figure 7.31. Notice that the diagram is similar to the one used for the
requirements speci�cation, except for the operations invoked to update the state
of Party P lan.
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Figure 7.30: The state machine representing the user requirements

Figure 7.31: The state machine representing the Party editor machine



7.5. TRANSFORMATION: MAILFILES ANALYSIS 129

7.5 Transformation: Mail�les analysis

This section presents the Mail�les analysis problem, a simple example proposed
by Jackson in [37] to illustrate the Transformation frame.

Fred has decided to write a program to analyse some patterns in his
email. He is interested in the average number of messages he receives
and sends in a week, the average and maximum message length, and
similar things. After some thought he has worked out that he wants
a report that contains a line for each of his correspondents. The line
shows the correspondent's name, how many days the report covers, the
number of messages received from the correspondent and their maxi-
mum and average lengths, and the same information for the messages
sent to the correspondent by Fred.

The Problem diagram for the proposed problem is shown in Figure 7.32.

Figure 7.32: The mail �le analysis transformation frame

Problem context de�nition The problem context is composed of the Machine
domain Mail analyser, and of two lexical domains respectively named Mail files
and Report. Notice that Mail analyser represents an instance of Transformmachine
of the Transformation frame, while Mailfile and Report represent instances of
the domain Inputs and Outputs.

The problem context de�nition exploits the bdd proposed in Figure 7.33.

Figure 7.33: The Mail �le analyser: context diagram
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Mail files is provided to Mail analyser through spA, and Report is generated
by the machine and sent to Mail files through the port spB.

Problem domain modeling The internal structure of the lexical domains
Mail files and Report is reported in the bdds of Figure 7.34 and Figure 7.35.

Figure 7.34: The Mail �les domain

Figure 7.35: The Report domain

Requirements speci�cation Di�erently from the Odometer display case, where
the use of the external language was constrained by the temporal aspects of the
problem, here the requirements can be expressed by means of simply static proper-
ties. Since the user requirements involve only lexical domains, which are described
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by means of bdds, it is convenient to specify such requirements using a constraint
language like OCL [52]. Let us consider the requirement fragment that states
that for every mail �le there is one (and just one) line on the report, and that
at the beginning of the line the name of the �le (corresponding to the name of
the sender) is reported. Such requirement is de�ned by means of the constraint
blocks reported in Figure 7.36.

Figure 7.36: The rules of the analysis speci�ed as a constraint

Machine speci�cation The speci�cation of the machine Mail Analyser is also
de�ned by means of an OCL statement (see Figure 7.37).

Figure 7.37: The speci�cation of the analyser

Note that the speci�cation of the machine is very similar to the de�nition
of requirements. This is not surprising, since both speci�cations concern the
relation between inputs and outputs. The requirements are expressed in terms of
phenomena that are relevant to the user (message, sender, recipient, etc.) while
the speci�cation of the machine involves physical elements (�les, lines, etc.).

7.6 Final remarks

The basic problem frames proposed by Jackson play a fundamental role in the
decomposition approach of Problem Frames. Although such frames are relatively
simple, Jackson presents basic problem frames as the �nal objective of the de-
composition approach. Moreover, Jackson associates each basic frame with a
correctness argument template that is used to determine whether a proposed so-
lution speci�cation stands in the correct relationship to the world description and
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the requirements. Such template, also referred to as frame concern, represents the
speci�cation pattern that the analyst has to apply when he/she identi�es that a
certain problem matches the characteristics of one of the proposed basic frames.

The basic problem frames proposed by Jackson are only a starting point.
Currently, as presented in Chapter 5, problem frames research is oriented to the
identi�cation and validation of further frames.

The frames of Jackson are illustrated by means of simple examples of di�er-
ent application domains. The examples proposed by Jackson cover the usage of
the main concepts of the Problem Frames approach. All types of domains and
phenomena are used in the di�erent problems.

This chapter reported the de�nition of the catalogue proposed by Jackson
using SysML. This experience represents a �rst step towards the validation of the
combined approach based on SysML and Problem Frames.

SysML was able to represent both structural and behavioral aspects of problem
domains, requirements and machine speci�cations. Further considerations on the
expressiveness of SysML and on the e�ectiveness of the combined approach will
be provided in Chapter 9.



Chapter 8

Case study

The main goal of this chapter is to show the application of the previously illus-
trated requirements analysis and speci�cation methodology in order to further
exemplify the joined application of SysML and Problem Frames. Moreover, the
chapter aims at validating the proposed approach with a case study of industrial
complexity.

This chapter presents the speci�cation of the requirements of a tra�c inter-
section light system. The intersection controller manages the tra�c lights for cars
and pedestrian tra�c at a four way intersection in a European town.

The controller reacts to events such as the pressing of a button at a crosswalk
or vehicles transit and operates four vehicle and pedestrian tra�c lights that are
positioned next to the intersection.

The overall system is a real time safety critical application: failure to operate
in a proper way can result in serious and even fatal accidents.

The requirements are presented by using the combined usage of Problem
Frames and SysML according to the approach introduced in the previous chapters.

The problem was originally presented by Pacelli et al. in [58] and revised by
Laplante in [42]. Here the requirements of the problem are furthermore adapted.
The goal of Pacelli et al. in [58] was the development of an actuated tra�c control
process, the aim of Laplante [42] was the design of the software of the intersection
controller, while the goals in this chapter concern the analysis of the requirements
and the speci�cation of the intersection controller.

8.1 System description

Intelligent tra�c management systems help to make better use of existing trans-
port routes in towns and cities where the volume of tra�c is constantly rising. The
main requirement for a tra�c controller is to maintain the highest reasonable level
of e�ciency under di�erent tra�c conditions depending on the characteristics of
the intersection.

The goal of the chapter is the speci�cation of the requirements of the tra�c
controller that operates the intersection reported in Figure 8.1.
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The intersection is composed of two approaches named NS and EW, respec-
tively. Each of the approach is partitioned into two distinct semi-approaches: the
approach NS is composed of the semi-approaches N and S, while the approach
EW of the semi-approaches E and W.

Figure 8.1: Intersection topography

Each of the approaches can be covered in two di�erent directions and is
equipped with a vehicle tra�c light and a vehicle presence detector positioned
immediately before the intersection. For the sake of simplicity consider that the
tra�c lights do not provide directional signals, hence the involved vehicles are not
allowed to curve, changing from the NS to the EW direction or viceversa.

The approaches are crossed by pedestrian crosswalks equipped with two pedes-
trian presence detectors (to be activated manually by pressing buttons) and two
pedestrian tra�c lights.

The system is also characterized by detector (one for approach) that reveal the
requests to cross the intersection of emergency vehicles like ambulances, �remen
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trucks or police cars. For safety reasons such emergency vehicles need to �nd the
green light when they reach the intersection in order to spend as little time as
possible to cross the intersection.

The system is also equipped with a console that allows an operator to manually
set the state of the tra�c lights and to con�gure the behavior of the controller.
The controller is the core component of the system. It has to coordinate the state
of the di�erent tra�c standards according to tra�c conditions and to the requests
of the pedestrians and of emergency vehicles.

The controller receives inputs from the vehicle presence detectors, the pedes-
trian presence detectors, the manual console and the emergency vehicle detectors,
and once analysed the actual state of the system it has to send commands to
change the state of the vehicle and pedestrian tra�c standards.

The intersection controller supports the following operating modes: �xed cycle,
semi actuated, fully actuated, locally controlled, and emergency preempted mode.

In the �xed cycle mode, all the operations are pretimed and preset in the
controller. The controller continuously issues a prede�ned sequence of commands
regardless of tra�c conditions and pedestrian requests. Such commands cause the
modi�cation of the states of the tra�c lights disposed along the approaches. The
duration of the states is prede�ned and preset in the controller. The combination
of the expected states of the tra�c lights after a group of commands issued by the
controller is named phase and represents a state of the intersection. The system
evolves by iterating a sequence of prede�ned phases.

The �xed cycle pedestrian actuated mode is a little variant to the previous
operating mode that considers the requests of pedestrians. In this case the se-
quence of the phases is the same of the �xed cycle mode, but the duration of the
states in which pedestrians have to wait is reduced according to the pedestrian
requests. More speci�cally, when a pedestrian has to cross a certain approach
and the corresponding tra�c light forbids the passage, he/she presses the request
button in order to anticipate the go signal.

In the semi actuated mode it is assumed that the approaches at the intersection
are characterized by di�erent priorities. As described in Figure 8.1, the semi-
approaches N and S are parts of the same arterial road, while E and W are parts
of a minor tra�c route. Accordingly, the minor approach EW receives a green
light only when tra�c is present. Motor vehicle detectors determine when vehicles
are on the minor street and the controller provides a variable amount of green
time depending on the status of the road. When no tra�c is on the minor street
or the maximum allowable service time has been reached, the green indication is
returned to the main street.

In the fully actuated mode, all phases are controlled by means of detection
mechanisms. Vehicle presence detectors are distributed along all the approaches.
The duration of the phases is determined according to the actual tra�c condition.
This mode is more e�cient than the previous ones when tra�c conditions vary
frequently over time. Notice that the duration of lights states may be a�ected by
pedestrian requests both in fully and semi actuated mode.

In the locally controlled mode, the evolution of the intersection is determined
by an operator that sends commands by means of a dedicated console. The
operator determines the duration of the green and red lights. The requests of the
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Figure 8.2: The Context diagram for the intersection controller problem
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pedestrians, as well as the signals sent by the motor vehicle detectors, are not
considered since it is supposed that the operator can see the waiting cars. This
operating mode is activated whenever an operator sends a command by using
the dedicated console and lasts until an explicit command requires to change the
operating mode.

In the preempted mode the normal control cycle (�xed cycle, semi or fully
actuated) is suspended and replaced by a speci�c sequence: the tra�c lights of all
the semi approaches of the intersection are switched to red with the exception of
the ones of the approach where the vehicle that triggered the preemption sequence
is arriving. The normal tra�c light cycle resumes after the transponder reveals
that the emergency vehicle crossed the intersection.

8.2 The context of the problem

The Context diagram of the intersection controller system is shown in Figure 8.2.
The diagram de�nes the domains of the problem and the shared phenomena
among such domains.

According to the combined PFs-SysML approach, the context of the problem
is also described by means of the Block De�nition Diagram (bdd) of Figure 8.3,
which introduces the domains and the phenomena, and the Internal Block Dia-
gram (ibd) of Figure 8.4 that shows the architecture of the problem context.

The problem context is characterized by a machine domain Intersection con-
troller, by multiple causal problem domains named Vehicle Presence Detector,
Emergency Vehicle Detector, Vehicle Tra�c Standard, Manual Override Console,
Pedestrian Tra�c Standard, Pedestrian Presence Detector and by the biddable
domains namedMotor Vehicle, Pedestrian, Tra�c Control O�cer and Emergency
Vehicle.

The causal domainVehicle Presence Detector represents a occupancy loop dis-
posed along the border of a rectangular area of a tenth of squared meters and
positioned on each semi-approach immediately before the intersection. Such de-
vices are used for indicating the presence and the passage of vehicles.

The vehicle presence detector recognizes when a motor vehicle enters or exits
its area and generates signals that specify 1) whether a motor vehicle passed the
loop, 2) whether a vehicle has been staying motionless on the device for some
period or 3) whether the device has not received signals for some period.

The domain Vehicle Presence Detector is represented in the bdd of Figure 8.3
by means of the homonymous stereotyped SysML Block �CausalDomain�.

The input signals Entry and Exit are shared phenomena controlled by Motor
Vehicle and observed by Vehicular Presence Detector. They are represented in
SysML by means of two boolean �elds named entry and exit of the �Controllable-
Phenomenon� Signal VSignal.

Motor Vehicle is represented by the stereotyped Block �Biddable Domain�.
The sharing of the phenomena Entry and Exit is de�ned by means of two Flow
Ports of type VSignal. The output Flow Port vso of the Block Motor Vehicle is
used to represent that the domain controls the phenomena, while the input port
vsi of the Block Vehicle Presence Detector is used to represent that the domain
observes the phenomena.
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The output signals NoVehicle, Queue, and Passed are shared phenomena be-
tween the domain Vehicular Presence Detector and the machine Intersection Con-
troller. They are generated by the former domain and sent to the latter in order to
notify the corresponding state of the detector. Such phenomena are represented
by means of boolean attributes of Signal VehicleRequest. The sharing of the phe-
nomena is represented by means a couple of FlowPorts of type VehicleRequest of
Blocks Vehicle Presence Detector and Vehicle.

The domain Pedestrian Presence Detector represents the button positioned
next to the pedestrian tra�c light at each end of a crosswalk. This device gives
pedestrians who wish to cross the street the ability to alert the intersection con-
troller system of their presence. The noti�cation is represented by means of a
shared phenomenon, named Press, that is controlled by Pedestrian and observed
by Pedestrian Presence Detector. The former domain is represented in SysML by
the �BiddableDomain� Block Pedestrian, while the latter by the �CausalDomain�
Block Pedestrian Presence Detector. Such phenomenon is represented by means
of the signal PSignal and by a couple of Flow Ports of the Blocks Pedestrian
Presence Detector and Pedestrian.

The noti�cation to the controller is represented by means of the shared phe-
nomenon Pressed controlled by Pedestrian Presence Detector and observed by
Intersection Controller. Such phenomenon is represented in the bdd by the signal
PedestrianRequest and by a couple of Flow Ports of the Blocks Pedestrian pres-
ence Detector and Intersection Controller. At the end of each phase the controller
sends a signal to the detector to reset its state. This is done in order to prevent
the detector to keep an already processed request across di�erent phases.

The causal domain Emergency Vehicle Transponder is a particular device ca-
pable to recognize when emergency vehicles are going to reach the intersection.
Such devices generally operate by using infrared signals, optical signals like visible
strobe lights and radio signals.

Each emergency vehicle is equipped with an emitter, a device which emits
radio pulses or visible �ashes of light or infrared pulses at a speci�ed frequency.
Receiver devices positioned next to intersection along each of the semi approaches
recognize the signal and preempt the normal cycle of tra�c lights. Once the
emergency vehicle crossed the intersection and the receiving device no longer
senses the remote triggering device, normal operations resume.

Notice that we are not interesting in describing the usage of a particular com-
munication technology, we simply focus on the communication mechanisms used
by emergency vehicles and detectors. Hence, infrared, optical or radio signals
can be represented by a phenomenon named arriving, which noti�es that a cer-
tain emergency vehicle is moving towards the intersection. Such phenomenon
is controlled by the domain Emergency Vehicle and observed by Emergency Ve-
hicle Transponder. The phenomenon is represented by means of the �Control-
lable Phenomenon� Signal EVSignal, while the involved domains by means of the
�CausalDomain� Block Emergency Vehicle Detector and the �BiddableDomain�
Block Emergency Vehicle. Similarly to the previous illustrated cases, phenomena
sharing is modeled by means of a couple of Flow Ports.
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Figure 8.3: The bdd that de�nes domains and phenomena of the intersection controller problem
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Figure 8.4: The ibd that describes the architecture of the context of the intersection controller problem
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Emergency Vehicle Transponder analyses the incoming signals and noti�es the
intersection controller whether an emergency vehicle is reaching or has crossed
the intersection. The noti�cation is expressed by means of the shared phenom-
ena arriving and passed, both controlled by Emergency Vehicle Transponder and
observed by Intersection Controller. Such phenomena are represented by means
of the �ControllablePhenomenon� Signal EVehicleRequest and by two conjugated
ports between IntersectionController and Emergency Vehicle Detector

The causal domain Vehicle Tra�c Standard represents the vehicular tra�c
lights positioned at the end of each semi approach next to the intersection, while
Pedestrian tra�c standards represents the tra�c lights that regulate the access
to each crosswalk. Such domains are represented by the �CausalDomain� Blocks
Vehicle Tra�c Standard and Pedestrian Tra�c Standard, respectively.

The tra�c lights (of both the types) are equipped with three �xed red, yellow
and green lamps and one �ashing yellow lamp. They change their state by turn-
ing on and o� the lamps according to the commands issued by the intersection
controller. Such commands are represented by means of the shared phenomena
Go, Stop, Wait, Flash, controlled by Intersection Controller and observed by
Vehicle Tra�c Standard and Pedestrian Tra�c Standard. The phenomena are
represented in the bdd of Figure 8.3 by means of the �ControllablePhenomenon�
Signal Tra�cStdCmd. Such Block is characterized by the attribute value of of
type Tra�cStdCmdType, which in turn is an enumeration of values Go, Stop,Wait
and Flash.

The intersection controller is also able to check the current state of the tra�c
lights, i.e., for each tra�c light it can check which lamps are on and which are o�.
This allows the controller to understand whether there are problems like burn out
lamps or incorrect reaction to previously issued commands. The state of the tra�c
lights is represented by means of the shared phenomena Go, Stop, Wait, Flashing
and Error. They are represented in SysML by the �ControllablePhenomenon�
Signal Tra�cStdState. Such Block is characterized by the attribute value and
errorCode. The former represents the current state of the tra�c light, and is of
type Tra�cStdStateType, that is an enumeration of the values Go, Stop, Wait,
Flash and Error. While the latter of type Tra�cStandardErrorType is used to
represent an error condition. More speci�cally, Tra�cStandardErrorType is an
enumeration of all possible combinations of the states of the lamps. By using
such information the controller is able to �nd the problem and it can react in a
proper way.

The sharing of the phenomena is expressed by means of a couple of conjugated
ports of type Tra�cStdCmd. Notice that Intersection Controller de�nes a port
for each of the pedestrian or vehicular tra�c light that it has to manage.

Manual Override Console represents a device positioned next to the intersec-
tion, which allows a tra�c control operator, represented by the domain Tra�c-
ControlO�cer to monitor the state of the intersection and to manipulate its state.
The device is equipped with several buttons and a numerical keyboard. Each but-
ton is used to send a speci�c command to the intersection controller. The console
domain is represented by the �CausalDomain� Block Manual Override Console,
while the operator by the �BiddableDomain� Block Tra�c Control O�cer.

The commands sent by the operator via the console are represented by means
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of the shared phenomena opcommands controlled by Tra�c Control O�cer and
observed by Manual Override Console. The console converts the operator com-
mands into speci�c commands for the intersection controller. Such commands
are shared phenomena commands controlled by Manual Override Console and
observed by Intersection Controller. The commands are represented by means
of the �ControllablePhenomenon� Interface OCmd, which de�nes the operations
that an operator may invoke. A detailed enumeration of such operation will be
provided in the section that illustrates the intersection controller manual mode.
In this case the sharing of the phenomena is represented by means of two Stan-
dard Ports built on the same interface OCmd. The Blocks Intersection Controller
implements the interface while Manual Override requires it.

8.3 Looking inside the domains

In this section the causal domains introduced in the previous section are further
described by considering both structural and behavioral characteristics.

Pedestrian Presence Detector The Block PedestrianPresenceDetector is char-
acterized by two input Flow Ports named ps and dc of type PSignal and Detec-
torCmd, respectively. The Block is also characterized by an output port pr of
type PedestrianRequest.

Figure 8.5: The stm that describes the behavior of the domain PedestrianPres-
enceDetector

The behavior of the domain is described by the stm diagram of Figure 8.5.
The state machine is characterized by two states. Initially, the domain is in the
state Idle, then, as soon as a pedestrian presses the button, a PSignal is generated
and received by the domain via the port ps. This signal triggers the transition
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Figure 8.6: The stm that describes the behavior of the domain VehiclePresenceDe-
tector

to the state Button Pressed. Notice that the detector does not report all the
pedestrian requests. In case a pedestrian pushes the buttons several times only
the �rst request is taken into account. Hence, in case the state machine receives
a signal PSignal when it is in the state Button Pressed, the signal is ignored.

The state machine returns to the state Idle whenever the command reset is
issued via the port dc.

Vehicle Presence Detector The Block VehiclePresenceDetector is character-
ized by an input Flow Port vs of type VSignal and an output Flow Port vr of type
VehicleRequest. It is also characterized by two internal integer attributes deltaT
and reminder that represent time intervals whose aim will be clari�ed later.

The behavior of the domain is described by means of the stm diagram shown
in Figure 8.6. The state machine is characterized by two composite states named
Idle and Busy. Idle in turn is characterized by an internal state machine composed
of the states Idle and Empty. Also the composite state Busy is characterized by
an internal state machine, which is composed of the states Idle and Queue.

At starting time the overall machine enters the state Idle. As soon as a signal
entry is received through the port vs the machine passes to the state Busy. When
the machine is in the state Busy and a signal exit is received via the port vs, it
returns to the initial state Idle and generates a passed signal that is issued via
the port vr.

Whenever the composite state Idle is entered, the internal state machine enters
the state Idle. Then, in case no signal arrives within deltaT time the internal stm
passes to the state Empty by generating the signal noVehicle that is externally
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propagated through the port vr. Then, in case no VSignal arrives within reminder
time the stm re-enters the state Empty by generating another signal noVehicle.

Similarly, whenever the composite state Busy is entered, its internal state
machine enters the state Idle. Then, by following the same criteria of the internal
state machine of the composite state Idle, signals queue can be issued via the port
vr.

Emergency Vehicle Transponder The Block EmergencyVehicleDetector is
characterized by an input Flow Port evs of type EVSignal and by an output Flow
Port evr of type EVehicleRequest. It also characterized by an Integer attribute
maxDelay representing a time interval whose usage will be speci�ed later.

Figure 8.7 reports a stm that describes the behavior of the transponder.

Figure 8.7: The stm that describes the behavior of the domain EmergencyVehi-
cleDetector

The stm is characterized by two internal states named Idle and Busy. At
starting time, the stm enters the state Idle. The machine remains in the state
Idle until signal arriving is received on the port EVSignal. Such signal triggers
the transition to the state Busy and causes the generation of signal arriving on the
output port evr. Once entered such state, whenever signal arriving is received, a
transition �res that re-enters the state Busy. In case no input signal has received
for maxDelay, then the state machine returns to the state Idle by generating
signal passed on the output port evr.

Tra�c Standards The Block Vehicle Tra�c Standard is characterized by an
input port tsc of type Tra�cStdCmd and an output port tss of type Tra�cStd-
State. The domain is internally composed of several subdomains. More speci�-
cally, it is characterized by a controller a sensor, four lamps and four switches.

The internal composition of the domain is shown in the bdd of Figure 8.8 and
in the ibd of Figure 8.9.

The Block Switch is characterized by two input Flow Port named in and cmd of
type PowerSupply and LampSwitchCmd and an output port of type PowerSupply.
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Figure 8.8: The bdd that describes the internal components of the Block Vehicle-
Tra�cStandard
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Figure 8.9: The ibd that describes the internal architecture of the Block Vehicle-
Tra�cStandard
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Figure 8.10: The act that describes behavior of the Block Switch

LampSwitchCmd is a Signal characterized by an attribute value, an enumera-
tive on the values on and o�.

The behavior of the switch is illustrated in the act diagram of Figure 8.10.
The activity is characterized by two input and an output parameter nodes named
cmd, in and out. Notice that such nodes are allocated to the homonymous ports
of the Block Switch. Whenever a signal cmd of type LampSwitchCmd is received,
the action SupplyPower is invoked. The action receives in input a continuous �ow
of data of type PowerSupply, and once analysed the value of the last command
received, it generates a continuous �ow of PowerSupply. More speci�cally, in
case the value of the last command received is o� the amperage of out is zero,
otherwise the amperage is the same as the input.

The Block Lamp is characterized by the input port in and the output port out
both of type PowerSupply. PowerSupply is a FlowSpeci�cation that represents
the power supply for the device. It is characterized by two attributes representing
the amperage and voltage of the power supply.

Figure 8.11: The stm that describes the behavior of the Block Lamp

The behavior of a lamp is speci�ed by means of the stm diagram reported in
Figure 8.11. More speci�cally, at starting time the lamp is O�, then in case the
input amperage is di�erent from zero, the stm enters the state On. As soon as
the amperage equals zero the stm passes to the state O�. In case the lamp is in
the state On a continuous PowerSupply with a non-zero amperage is provided via
the output port out, else no amperage is provided.

The Block Sensor is characterized by four input ports of type PowerSupply
named go, stop, wait and �ashing, and by an output port out of type LampsState.
LampsState is an enumerative type that represents all the possible combination
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of states of the four lamps of the tra�c light.

Figure 8.12: The act that describes the behavior of the Block Sensor

The behavior of the sensor is described by means of the activity diagram
shown in Figure 8.12. The activity is characterized by four input parameter nodes
named go, stop, wait and �ashing of type PowerSupply and by an output node ls
of type LampsState. Depending of the amperage value of the input parameters,
the activity continuously generates a value corresponding to the actual state of
all the lamps of the tra�c light.

The Block Controller represents an internal controller of the tra�c light that
interprets the commands received on the input port tsc, and sends commands
to the switches that turn on and o� all the lamps and generate a �ow of infor-
mation that describes the current state of the tra�c light. The Block is charac-
terized by an input Flow Port cmd of type Tra�cStdComd, an input port ls of
type LampsState and four output ports of type LampSwitchCmd named toGoL,
toWaitL, toStopL and toFlashL.

The behavior of the controller is illustrated by the act diagram of Figure 8.13
and by the stm diagram of Figure 8.14. The activity shows how the input com-
mands received on the input port cmd are converted into commands to turn on
and o� every lamp of the tra�c light.

The activity is characterized by an input parameter node cmd of type Tra�c-
StdCmd and four output parameter nodes of type LampSwitchCmd named toGoL,
toWaitL, toStopL and toFlashL. Such parameters are allocated to the homony-
mous ports of the Block Controller. Whenever a command is received on the port
cmd the action Analyse is invoked. The computational e�ects of the action are
described by the post condition shown in Figure8.14.

The stm diagram shows the internal evolution of the controller depending on
the commands received by the input port.

The stm is characterized by the states Green, Yellow, Red and Flashing and
Error. At starting time the stm enters the state Flashing, then depending on the
value of the commands received via the port cmd, the stm may evolve in the other
states. Notice that for each state transition, the controller generates four signals
of type LampSwitchCmd. Three of them are characterized by the value o� while
the fourth one by the value on.
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Figure 8.13: The act that describes the behavior of the Block Controller

The controller, after issuing the commands to the lamps, checks whether the
current state of the lamps is the expected one. The control is done by invoking
the activity CheckState that is illustrated in Figure 8.15.

The activity is characterized by two input object nodes named ls of type
LampsState and lcmd of type Tra�cStdStateType. Notice that such nodes are
allocated to the homonymous ports ls and out and to the attribute lscmd, an
internal attribute of the Block Controller that stores the expected state of the
tra�c light. When invoked, the activity executes the action CheckState. Such
action receives in input a continuous �ow of information that speci�es the current
state of the lamps of the tra�c light. Then it compares the current states with the
expected one speci�ed by last command issued lcmd and generates a continuous
�ow of information by specifying the current state of the tra�c light. More
speci�cally, as speci�ed by the post condition of CheckState shown in Figure 8.15,
in case the states are compatible, the generated output state out is characterized
by the �eld value, which is set to the last command issued and by the �eld
errorCode, which is set to NoError. Otherwise value is set to error, errorCode
to the actual state of the lamps ls, and a signal Error is generated. Such signal
triggers the transition from the current state of the stm Controller to the state
Error. Notice that an error may occur in case a lamp that should be on is burn
out or in case the current combination of the lamps state is di�erent from the
expected one.
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Figure 8.14: The stm that describes the behavior of the Block Controller
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Figure 8.15: The act that describes the activity CheckState
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Figure 8.16: The stm that describes the behavior of the Block VehicleTra�cStan-
dard
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The overall behavior of the tra�c light Block is described by the stm diagram
shown in Figure 8.16. Although the stm is quite similar to the one that describes
the controller it complements such description by specifying the evolution of the
tra�c light by means of the commands received by the intersection controller.

Notice that the previously introduced diagrams that describe both the struc-
tural characteristics and the behavior of the Block VehicleTra�cStandard can also
be used also for the Block PedestrianTra�cStandard. The only di�erence consists
in di�erent allocation of the input and output parameters of the activities and of
the signals generated by the internal components. Notice that such diagrams are
not reported here since they are not particularly signi�cant.

8.4 The requirements

The �rst activity towards the analysis of the requirements of the problem consists
in sketching out the problem by specifying its Problem diagram. This allows
one to explicitely de�ne which domains control the shared phenomena. It also
allows one to specify the relationships among the problem domains and the general
requirements of the problem by de�ning which domains are constrained and which
are simply referred to, and by specifying the internal phenomena interested by
this kind of relationship.

A preliminary high level analysis of the informal description of the problem,
allows one to identify the role of the involved problem domains as well as their
interactions. The general requirements of the problem concern the state of the
tra�c lights of the approaches with respect to the operating mode and the tra�c
conditions. As a consequence, Vehicle Tra�c Standard and Pedestrian Tra�c
Standard are problem domains constrained by the general requirements of the
problem. The tra�c conditions are determined by motor vehicles, emergency
vehicles, and pedestrian, hence, the problem domains that represent such entities
a�ect the state of the intersection system. As a consequence the problem domains
Motor Vehicle, Pedestrian, and Emergency Vehicle are referred to by the general
requirements of the problem. Similarly, the domain Tra�c Control O�cer may
in�uence the current state of the intersection, hence also this domain is referred
to by the requirements.

The Problem diagram for the intersection controller problem built starting
from these preliminary considerations and from the Context diagram of Figure 8.2
is shown in Figure 8.17.

As previously introduced, the controller has to support di�erent operating
mode. Each operating mode represents a di�erent requirement for the controller.
This section illustrates the requirements of each operating mode. Moreover,a
machine speci�cation that addresses the requirements is also introduced.

8.4.1 Fixed cycle operating mode

The �xed cycle operating mode (also known as pretimed or �xed time mode), is
the simplest operating mode supported by the intersection controller.

In such a mode, all operating parameters of the signal are preset in the con-
troller, which repeatedly executes the prede�ned pattern regardless of tra�c con-
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Figure 8.17: The Problem diagram for the intersection controller problem
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Figure 8.18: The Problem diagram for the �xed cycle operating mode

ditions. Notice that such patterns are de�ned by tra�c engineers and they are
based on historical data and experience.

Up to some years ago the �xed cycle mode was the most adopted solution to
manage the motor vehicle tra�c at road intersections in di�erent countries.

The problem is described by the problem frame diagram shown in Figure 8.18.
The problem is characterized by a machine domain, Intersection Controller, and
by the causal domains Vehicle Tra�c Standard and Pedestrian Tra�c Standard.
As speci�ed by the problem frame diagram shown in Figure 8.18, such domains
share phenomena that represent the commands (go, stop, wait, �ash) that the
controller sends to the tra�c lights.

The requirements of the problem predicate on the sequences of the commands
that the intersection controller issues to the tra�c lights (both pedestrian and
vehicular) and on the scheduling of such commands by de�ning the duration of
the single phases of the intersection system.

Figure 8.19: The Fixed cycle operating mode problem �ts the Required behavior
frame

As shown in Figure 8.19, the problem is an instance of the Required behavior
frame proposed by Jackson [37]. Intersection Controller plays the role of Machine
controller, while the set composed of Vehicle Tra�c Standard and Pedestrian
Tra�c Standard the role of Controlled domain.

The requirements are described by the stm shown in Figure 8.20. At starting
time the tra�c standards of all the approaches are �ashing. At a speci�c time
of the day, speci�ed by the condition when(now=startWorkingT), the transition
to the state Stop-Go Walk-DNWalk �res. In this state, the current state of the
vehicular tra�c lights of the approach EW is Stop, the one of the approach NS is
Go, and the current state of the pedestrian tra�c lights of the approach EW is
Walk and the one of the approach NS is DNWalk.

now returns the number of milliseconds elapsed from a given date, hence in
order to represent that every day at a given time the tra�c light has to start
working, one should specify a complex time condition. First of all, it is necessary
to calculate the number of milliseconds elapsed from the 00.00 of the current
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Figure 8.20: The stm that expresses the requirements for the �xed cycle operating
mode problem
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day. This can be obtained by considering the rest of the integer division of the
current time instant now and the number of milliseconds in a day: now mod 24 ∗
60 ∗ 60 ∗ 1000 = now mod 84.600.000 Then, the trigger time has to be expressed
in milliseconds (the number of milliseconds elapsed from the 00.00 a.m). As an
example suppose that the tra�c light starts to work at 6.05 a.m. Such time
expressed in milliseconds becomes 6 ∗ 60 ∗ 60 ∗ 1000 + 5 ∗ 60 ∗ 1000 = 21.900.000.
Hence, the resulting time expression becomes now mod 84.600.000 = 21.900.000

Notice that, similar expressions strictly depend on time conditions that one
need to specify. The condition expressed on the transition should become

when(f(now) = g(initT ))

, where f and g are ad hoc functions de�ned by the tra�c engineers for speci�c
needs. Notice that, in order to keep our speci�cation as simple as possible, no
particular function is speci�ed.

The stm may evolve by passing to the state Stop-Wait Wait-DNWalk or re-
turning to the state Flashing. The �rst transition �res appNS.goD time instants
after the entrance of the state Stop-Go Walk-DNWalk. The second one �res in
case is reached endWorkingT. Notice that all the other states of the stm can be
reached by means of similar conditions. Some considerations must be expressed
about the time conditions speci�ed on the stm. AppNS.goD and AppEW.goD rep-
resent the duration of the permanency in the state Go of the tra�c lights of the
approach NS and EW, respectively. Similarly, AppNS.waitD and AppEW.waitD
represent the duration of the permanency in the state yellow, and AppNS.safetyD
and AppEW.safetyD represent the duration of the phase where all the tra�c lights
of all the approaches are in the state Stop. Notice that this duration is de�ned in
order to decrement the possibility of accidents caused by motor vehicles that start
crossing the intersection when their tra�c light is at the end of the permanency in
the state Yellow. SafetyT indicates the time required for a motor vehicle (moving
at a given speed) to cross the intersection.

As described by the stm diagram, the required behavior of the controller is
specular for the approaches. When the tra�c lights of one approach are in the
state Green, the corresponding state of the tra�c lights of the other approach is
Red.

Given an approach, the duration of the red light of its tra�c lights is given by
the sum of safetyD (of the same approach) and goD of the opposite approach.

The machine speci�cation describes the behavior that the intersection con-
troller has to follow in order to satisfy the requirements. The speci�cation is
provided in the stm diagram shown in Figure 8.21.

Notice that the stm diagrams of Figure 8.20 and Figure 8.21 are similar. They
have the same number of states and furthermore, the conditions that trigger the
transitions are the same for both machines. The main di�erence between such
stms regards the actions that are performed by the machine when the transitions
�re. As an example, when the transition from the state S1 and S2, the controller
has to issue ad-hoc commands to the tra�c lights of both approaches. It has to
send commands to set the vehicular tra�c lights of the approach NS to the state
Go, and those of the approach EW to the state Stop. This is done by generating
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Figure 8.21: The stm representing the machine speci�cation for the �xed cycle
operating mode problem
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signals of type Tra�cStdCmd, that are issued by means of the ports vtscEW,
vtscNS, ptscEW and ptscNS of IntersectionController.

8.4.2 Fixed cycle pedestrian actuated operating mode

The �xed cycle pedestrian actuated operating mode problem illustrates the homony-
mous operating mode of the intersection controller. Such operating mode is an
extended version of the previously introduced Fixed cycle. The extension consists
in considering the requests of the pedestrian in order to anticipate the passing
to the state Go of the pedestrian tra�c light that regulates the crossing of the
crosswalks.

Figure 8.22: The Problem diagram for the �xed cycle pedestrian actuated oper-
ating mode

The problem is described by the problem frame diagram shown in Figure 8.22.
The problem is characterized by a machine domain Intersection controller, by
three causal domains named Pedestrian Presence Detector, Pedestrian Tra�c
Standard and Vehicle Tra�c Standard, and by a biddable domain Pedestrian.

The requirements of the problem state that in case a pedestrian is waiting at
a crosswalk because of the pedestrian tra�c light is set to red and he/she presses
the request button, such request has to anticipate the pass to the green phase of
the involved tra�c lights.

A pedestrian may press the button in each phase of the system, but only the
requests issued when the pedestrian is waiting because of the red state of the
tra�c light at the involved crosswalk, must be considered.

As shown in Figure 8.23, the problem is an instance of the Commanded behav-
ior frame [37]: Intersection controller plays the role of Controller, while Pedes-
trian Presence Detector and Pedestrian represent the domain Operator and Ve-
hicle Tra�c Standard and Pedestrian Tra�c Standard play the role of Controlled
Domain.

The requirements are illustrated in the stm diagram shown in Figure 8.24.
The stm diagram is equivalent to the one of Figure 8.20, with the exception of
the states Stop-Go Walk-DNWalk and Go-Stop DNWalk-Walk and of the output
transitions of such states.
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Figure 8.23: The Fixed cycle pedestrian actuated operating mode problem �ts
the Controlled behavior frame

Such states are composite, i.e., each of them contains a sub-machine that
describes a particular behavior. Hence, let us consider the state Stop-Go Walk-
DNWalk. The internal state machine is composed of two states named NoPe-
dReq and PedReqNS. The �rst state represents a situation in which no pedestrian
pressed the button. When the composite state is entered, also the internal state
NoPedReq is entered and a local attributed initT is set to the current time. In
case a pedestrian sends a request by pressing the button of one of the detec-
tors of the approach, a signal of type PedestrianRequest is issued by means of
the output ports pr. Such signal triggers the transition to the internal state
PedReqNS. Once entered this state, a local attribute reqT is set to the current
time. The internal state can be left after a period speci�ed by the expression
(AppNS.goD − (reqT − initT )) ∗ k where k ∈ < and 0 < k < 1. Notice that
AppNS.goD represents the duration of the green phase, while reqT − initT the
period spent from the entrance of the composite states. Hence the expression
means that the waiting time is a percentage k of the time remaining to complete
the interval AppNS.goD. Notice that in case the internal state is exited, also the
composite state is left and the stm passes to the state Stop-Wait Wait-DNWalk.
In case no pedestrian request is received, the composite state is left by means
of the same transition used for the �xed cycle stm, i.e. the state is abandoned
after a period AppNS.goD. The other composite state Go-Stop DNWalk-Walk is
equivalent to the previous one with the exception of the allocation of the signal
that indicates the request of the pedestrians, which in this case are allocated to
the output ports of the detector positioned on the approach EW.

The machine speci�cation is described by means of the stm diagram shown
in Figure 8.25. Notice that also in this case the stm is quite similar to the one
used for describing the requirements and the machine speci�cation of the �xed
cycle operating mode problem. The di�erences consist in the allocation of the
signals that trigger the transitions and of the signals that are generated when a
transition �res. In fact, in this case, I/O signals are allocated to the input and
output ports of the Block IntersectionController. Notice that di�erently from
the previous problem the transitions between the states S7 - S2 and S4 - S5
generate a signal reset that is used to reset the state of the pedestrian detectors
as described in the previous sections by the stm diagram shown in Figure8.5.
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Figure 8.24: The stm that expresses the requirements for the �xed cycle pedestrian
actuated operating mode problem
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Figure 8.25: The stm representing the machine speci�cation for the �xed cycle
pedestrian actuated operating mode problem
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8.4.3 Semi-actuated operating mode

The semi-actuated operating mode is one of the most applied operating mode for
controllers that manage the tra�c lights at the intersection of an arterial road
and a secondary road.

This operating mode consists in providing the green signal to the road with
the lower priority only in case there are motionless vehicles that are waiting for
the green signal. Otherwise the green signal is provided to the main road.

In order to check the presence of the vehicles on the secondary street, a vehicle
presence detector is placed next to the intersection on each semi-approach of the
secondary street. Notice that, also pedestrians may in�uence the phases of the
intersection controller by pressing the request buttons of the detectors that are
placed at the end of the crosswalks of both approaches.

Figure 8.26: The Problem diagram for the semi-actuated operating mode

The semi actuated operating mode problem is illustrated in the problem frame
diagram shown in Figure 8.26. The problem is characterized by the machine
domain Intersection controller, by the causal domains Vehicle Tra�c Standard,
Pedestrian Tra�c Standard, Vehicle Presence Detector and Pedestrian Presence
Detector, and by the biddable domains Vehicle and Pedestrian.

As shown in Figure 8.27, this problem is an instance of the Commanded behav-
ior frame [37]: Intersection controller plays the role of Controller, while Pedestrian
Presence Detector, Pedestrian, Vehicle Presence Detector and Vehicle represent
the domain Operator and Vehicle Tra�c Standard and Pedestrian Tra�c Stan-
dard represent the domain Controlled Domain.

The phenomena shared by Control machine and Operator are composed of the
signals that Vehicle Presence Detector and Pedestrian Presence Detector issue to
Intersection Controller in order to notify the presence of a pedestrian or of a
vehicle. The phenomena shared by Control machine and Controlled domain are
composed of the set of commands that Intersection Controller issues to both the
vehicle and pedestrian tra�c lights.

The requirements of the problem are illustrated by means of the stm diagram
shown in Figure 8.28. According to the topology of the intersection shown in
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Figure 8.27: The semi actuated operating mode problem �ts the Controlled be-
havior frame

Figure 8.1, the approach EW is the secondary street while the approach NS is the
high priority arterial road.

Notice that the expected behavior of the system is quite similar to the one
illustrated for the �xed cycle pedestrian actuated problem. Hence, the stm is
similar to the one that de�nes the requirements of the other problem. Such stms
simply di�er for the states Stop-Go Walk-DNWalk and Go-Stop DNWalk-Walk
and for some output transitions from such states. Hence, in order to avoid the
repetition of the description, only new aspects of this mode are illustrated.

The state Stop-Go Walk-DNWalk is a composite state composed of two sub-
machines. The �rst sub-machine, which describes the processing of the pedestrian
requests, is equivalent to the one used for the requirements of the previous prob-
lem, while the second sub-machine illustrates possible states of the secondary
street. Consider that the composite state represents a condition for which the
secondary street has the red signal while the main road has the green signal.
Hence, once entered the composite state, the �rst sub-machine enters the state
NoPedReq while the second one enters the state NoVehReq. NoVehReq indicates
that the presence detector of the secondary street has not noti�ed anything yet
to the intersection controller. In case such detectors generate a signals queue
and the stm passes to the state VehReqEW. Such state indicates that there is
at least a vehicle that has been still for some time on the loop detectors of the
semi-approaches of the secondary road EW. For a detailed description of the be-
havior of the detector see the stm of Figure 8.6. The state VehReqEW is exited
appEW.ReqVWT time after the entrance. Such transition is also an output tran-
sition for the composite state Stop-Go Walk-DNWalk. Notice that such state can
be left by means of three di�erent conditions: 1)in case a pedestrian pressed the
button of a pedestrian detector, 2)in case there are vehicles on the secondary road,
and 3) in case AppNS.goD time elapsed from the entrance (where AppNS.goD is
the duration of the green phase of the approach NS).

The state Go-Stop DNWalk-Walk is another composite state composed of two
sub-machines. Such states indicate a condition for which the secondary road
has the green signal while the arterial road has the red one. As for the other
composite state, the �rst state machine handles the requests of the pedestrian
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Figure 8.28: The stm that expresses the requirements for the semi-actuated op-
erating mode problem
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Figure 8.29: The stm representing the machine speci�cation for the semi-actuated
operating mode problem
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and is equivalent to the one illustrated in the requirements of the �xed cycle
mode. The second stm keeps track of the state of the secondary road. At entry
time in the composite state, the state Idle of the second state machine is entered.
Such internal state indicates that no particular signal has been noti�ed so far by
the detector of the secondary street. In case a signal noVehicle is generated by one
of the detectors of the semi-approaches, the stm passes to the state NoVehicleE
or NoVehicleW. Then, in case no other signal is generated for appEW.NoVWT
time units, such states (and also the composite state) are exited. In case a signal
passed is generated by one of the detectors the sub-machine returns to the state
Idle. Go-Stop DNWalk-Walk can be exited in case three di�erent conditions are
satis�ed: 1) in case appEW.goD time elapsed from the entrance of the composite
state, 2) in case no vehicle has been detected for appEW.NoVWT time on one
of the semi-approaches, 3) in case a pedestrian of one of the crosswalks of the
approach EW presses the button of the presence detector.

Since the rest of the requirements is equivalent to the one of the previous
problem, they are not further illustrated.

The speci�cation of the machine are de�ned by means of the stm diagram
shown in Figure 8.29. Also in this case such stm di�ers from the one that de-
scribes the requirements exclusively for the allocation of the signals (here they are
allocated to the I/O ports of IntersectionController), and for the commands that
are issued whenever a transition �res. As in the previous problem the commands
are issued to the tra�c lights in order to change their state and to the pedestrian
detector to reset possibly pending pedestrian requests. Notice that in case a state
has multiple input transitions, the commands that are sent when such transitions
�re are the same.

8.4.4 Fully-actuated operating mode

The fully-actuated operating mode is an advanced operating mode that allows a
controller to operate the state of the tra�c lights depending on the actual tra�c
conditions. More speci�cally, depending on the tra�c conditions the duration of
the di�erent phase of the intersection are automatically regulated.

In this case the vehicular presence detectors are positioned on each semi ap-
proach next to the intersection. As in the previous problem, such detectors recog-
nize when there is no vehicle, when a vehicle is on the sensor and when a vehicle
passed the sensor.

In the fully actuated mode no priority mechanism is applied, hence, all the
streets are equally considered, and the duration of the phases are exclusively
calculated starting from the data provided by the sensors. Notice that such data
indicate the actual condition of the approaches (i.e., whether there are queues,
a regular �ow of vehicles or no vehicle along the approaches) and are also used
to calculate statistics such as the rate of vehicles that are traveling along an
approach. Moreover, consider that also in this operating mode the requests of the
pedestrian are considered and may in�uence the duration of the phases.

The Problem frame diagram that illustrates the problem is shown in Fig-
ure 8.30. Notice that such diagram is equivalent to the one that illustrates the
semi-actuated mode, hence it is not further illustrated. As shown in Figure 8.31,
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Figure 8.30: The Problem diagram for the fully actuated operating mode

also this problem is an instance of the Commanded behavior frame [37]. Since
the involved domains and phenomena are the same that were illustrated in the
previously described problem, their description is not repeated here.

The requirements of the problem are described by means of the stm diagram
shown in Figure 8.32.

Figure 8.31: The Fully actuated operating mode problem �ts the Controlled be-
havior frame
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Figure 8.32: The stm that expresses the requirements for the fully-actuated operating mode problem
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Notice that the phases of the system are the same of all the other problems, and
also the duration of most of the phases is the same. As for the other problems, the
di�erences are exclusively related to the states Stop-Go Walk-DNWalk, Go-Stop
DNWalk-Walk and to their output transitions.

Such states represent the most important phases of the whole cycle, as they
are the only phases during which the vehicles can cross the intersection. The
analysis of the tra�c conditions is centered on such states.

Let us consider the composite state Stop-Go Walk-DNWalk. This state repre-
sents a phase of the system during which the semi approaches of the road EW have
the red signal, while the ones of the street NS have the green. During this phase
the tra�c along the approach NS may have di�erent behavior. We could have
one of the semi approaches that is completely empty, while on the other one there
is a regular �ow of vehicles. In an alternative scenario both the semi-approaches
could be characterized by a queue that forbids the movement of the cars. Notice
that a combination of every possible state (queue, no vehicle or regular tra�c)
for both the semi-approaches can characterize the actual state of the whole road.

The duration of the phase is reduced in case particular conditions are veri�ed.
More speci�cally, 1) in case there is queue or 2) in case there is no vehicle on
a semi approach. This requirement is described by means of two sub-machines.
The �rst stm describes the actual state of the semi approach N, while the other
one describes the state of the semi approach S. Let us consider the �rst one. It
is composed of three states named NoVehicleN, IdleN and QueueN. IdleN repre-
sents a regular tra�c condition, while QueueN a queue condition and NoVehicleN
represents a situation with no vehicle on the semi approach. When entering the
composite state, the state IdleN is entered. The stm passes to the state QueueN in
case a signal queue is generated by the vehicle presence detector, while it passes to
the state NoVehicleN in case the detector generates the signal noVehicle. Notice
that once entered such states, whether the detector noti�es the transit of a vehicle
by generating the signal passed, the stm returns to the state IdleN. NoVehicleN
is a composite state composed of another state machine. Such a sub-machine is
used to keep track of the actual condition of the semi-approach S and is composed
of the states S1 and S2. S1 represents the condition of regular tra�c or queue
on the semi-approach S, while S2 describes the condition of no car on the semi
approach.

The submachine that describes the condition of the semi approach S is equiv-
alent to the one just presented.

Stop-Go Walk-DNWalk is composed of a third sub-machine that manages the
requests of the pedestrians at the crosswalks of the approach NS. This state
machine is equivalent to the one introduced by the semi actuated problem, hence
it is not further commented.

Stop-Go Walk-DNWalk can be exited by means of a direct output transition
(from the composite state) and output transitions of the internal states PedReqNS,
QueueN, QueueS and S2 of the composite state NoVehicleN and NoVehicleS.

Exiting from the state PedReqNS indicates that a pedestrian of the approach
NS sent the request to cross the crosswalk. At pressure time, the pedestrian has
to wait a percentage k of the time that remains before the passage to the following
phase.
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Exiting from the states QueueN and QueueS is triggered by a queue signal
generated by the vehicle detector of the opposite semi-approach. This means that
in case both the semi approaches are congested by tra�c (notice that a queue
signal is generated in case there is a vehicle motionless on the detector), the
current phase must be stopped and the system has to pass to the following one.

Exiting from the state S2 indicates the opposite situation, i.e., there has been
no vehicle on both the semi approaches for AppNS.NoVWT time units. This
indicates that in case there is no machine it is useless to keep active the current
phase, it is better to stop it and to pass to the following one.

Stop-Go Walk-DNWalk can be exited also by means of a further direct output
transition. Such transition �res AppNS.goD time units after the entrance of the
composite state. Notice that AppNS.goD represents the actual duration of the
phase and is continuously updated depending on the tra�c conditions of the
approaches.

Figure 8.33: The act diagram that describes the action StoreSignals

Figure 8.34: The act diagram that describes the action AnalyseData
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The update is performed by means of an articulated process essentially based
on the transit rate of the vehicles in both the approaches. First of all, as speci�ed
by the activity StoreSignals shown in Figure 8.33, whenever a signal of type
VehicleRequest is generated by one of the vehicle detectors, such signal is stored
in the repository SignalRepository by means of the action UpdateRepository. The
transit rate is calculated by the action AnalyseData illustrated in the act diagram
of Figure 8.34. The action receives in input 1) a value deltaT, which speci�es the
length of the period to analyse, 2) a value refT, which indicates the reference
time of the analysis, and 3) a value type, which speci�es the allocation of the
signals to be considered, i.e., it speci�es the interested semi approach. Such values
are passed to the action CalculateRate, which in turn, by means of the action
UpdateRepository, 1) counts all the signals with a timestamp t (with (refT −
deltaT ) < t ≤ refT ) generated by the detector of the speci�ed semi-approach,
2) normalizes the value with respect to a �xed interval and 3) deletes from the
repository all the signals with a timestamp t2 such that t2 ≤ refT − deltaT .

The input parameters for AnalyseData are intrinsic properties of the phase
Stop-Go Walk-DNWalk. More speci�cally, deltaT is set to the duration of the
whole phase, refT to the timestamp value at exit time from the state, and type
to the identi�er of the semi approach N or S. The actual duration of the phase
is calculated by using two attributes named entryT and NSGoActualD. The �rst
attribute is set to the current time at the entrance of Stop-Go Walk-DNWalk. The
second one is set , at exit time, to the di�erence between the current time and
the entrance time (notice that the resulting value represents the actual duration
of the phase).

Figure 8.35: The act diagram that describes the action CalculateRate

Finally, at exit time, the action CalculateRateNS is invoked in order to cal-
culate the appropriate rate for each semi approach. Such action is described by
the act diagram shown in Figure 8.35. The action is characterized by the input
nodes deltaT, and refT. Such nodes are allocated to the attribute NSActualGoD
and to the current timestamp value at the exit time from the composite state.
CalculateRateNS invokes the action AnalyseData for both the semi approaches
N and S. The resulting values rateS and rateN represent the actual tra�c rate
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condition for the whole approach NS.

Activities and state machines equivalent to the one used for the phase Stop-
Go Walk-DNWalk are used to describe the phase Go-Stop DNWalk-Walk. Such
description is not reported here.

Figure 8.36: The act diagram that describes the action UpdateTimers

Once the rates of the semi approaches of the the roads are calculated, the
actual value of expected duration of the phases Stop-Go Walk-DNWalk and Go-
Stop DNWalk-Walk are updated. This is done immediately before entering the
state Stop-Go Walk-DNWalk by invoking the action UpdateTimers. The action
is described by the act diagram shown in Figure 8.36. UpdateTimers receives
in input the rate of all the semi-approaches and invokes CalculateDuration, an
action whose e�ects are described by the annotation shown in Figure 8.36. More
speci�cally, the duration of the green phase of each approach is incremented or
decremented of a value that depends on the tra�c rates of the approaches. No-
tice that, the resulting values NSgoD and EWgoD are allocated to the value
AppNS.goD and AppEW.goD.

As for the previously described problems, the description of the machine spec-
i�cation of the fully actuate mode problem can be de�ned by means of a stm

characterized by the same states and transitions of the stm used to illustrate the
requirements. As in the case of the previously described problems, the only dif-
ferences between such stms are related to the allocation of the I/O signals (in this
case, such signals are allocated to the I/O ports of IntersectionController) and
to the commands that are issued at �ring time of each transition. Moreover, for
each state, the activities invoked by its input transitions are the same activities
invoked by the input transitions of the stm that depicts the semi-actuated mode
machine speci�cation.

Since the resulting description does not provide new aspects with respect to
the what speci�ed by the requirements, the machine speci�cation is not reported.
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8.4.5 Manual mode

This section describes the manual operating mode problem. In manual operating
mode, the control of the intersection is handed over to an operator, which issues
commands to the tra�c lights of both approaches by means of a console.

Figure 8.37: The Problem diagram for the manual operating mode problem

The operator is free to decide the duration of the green signal on the ap-
proaches of the intersection, to turn o� the tra�c lights (setting the �ashing
yellow) and to restore the tra�c lights. The phases of the intersection are the
same that were considered for all the other operating modes. Moreover notice
that the duration of the other phases is preset and cannot be changed.

The operator is also allowed to set the duration of the phases, to change the
operating mode, to set the starting and ending time of the controller.

In manual operating mode, neither the requests of the pedestrians nor the
signals of the vehicle detectors are considered.

The structure of the problem is described by means of the problem frame
diagram shown in Figure 8.37.

The problem is characterized by 1) the biddable domain Tra�c Control Of-
�cer, which represents the operator that manually con�gures the state of the
intersection; 2) by the causal domain Manual Override, which represents the con-
sole used by the operator to issue commands to the intersection controller; 3)
by the machine domain Intersection Controller, which receives the commands of
the operator and propagates orders to the tra�c standards; �nally, 4) by the
causal domains Pedestrian Tra�c Standard and Vehicle Tra�c Standard, which
represent the tra�c lights of the intersection.

As shown in Figure 8.38, the problem is an instance of the Commanded be-
havior frame [37]: Intersection controller plays the role of Control machine, while
Manual Override and Tra�c Control O�cer play the role of Operator and Vehicle
Tra�c Standard and Pedestrian Tra�c Standard the role of Controlled Domain.

The phenomena shared by Control machine and Operator are composed of the
commands that Manual Override sends to Intersection Controller in response to
what speci�ed by Tra�c Control O�cer by means of the console. The phenomena
shared by Control machine and Controlled domain are the set of the commands
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Figure 8.38: The Manual operating mode problem �ts the Controlled behavior
frame

that Intersection Controller sends to the vehicle and pedestrian tra�c lights.

Figure 8.39: The stm diagram that describes the requirements of the problem
Manual operating mode

The requirements of the problem are presented by means of the stm diagram
shown in Figure 8.39.

At starting time the stm enters the state Flashing, where all the tra�c lights
(pedestrian and vehicular) are yellow �ashing. The transition to the following
phase Stop-Go DNWalk-Walk is triggered by the command NextPhase that in
turn is issued by the operator by means of the console Manual Override. The
permanency in this state completely depends on the intentions of the operator,
i.e., the intersection controller can not force the passing to the following phase.
The transition to the following phase Stop-Wait Wait-DNWalk can be triggered
exclusively by another command NextPhase. Conversely, the passage between
the phases Stop Wait Wait-DNWalk and Stop-Stop DNWalk-DNWalk as well as
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the one between Stop-Stop DNWalk-DNWalk and Go-Stop DNWalk-Walk is au-
tomatically managed by the controller. This is done in order to assure the correct
duration of transit phases that are fundamental for safety reasons. The transition
are triggered by the same temporal conditions that were used in the previously
presented operating modes.

Once entered one of the state of the stm, in case the operator decides to turn
o� the tra�c lights of all the approaches it can do it by issuing the command O�
by means of the console. This condition is expressed by means of the transitions
to the state Flashing.

The description of the remaining states of the stm is specular to the one
previously presented, hence, it is not provided here.

Figure 8.40: The stm diagram that describes the machine speci�cation of the
problem Manual operating mode

The machine speci�cation of this problem is described by means of the stm

diagram shown in Figure 8.40. As for the other problems, the stm is an extended
version of the state machine that described the requirements of the problem.
The states, representing the phases of the intersection, are the same, as well as
the transitions, which in this case are triggered by signals allocated to the ports
of the Block IntersectionController. Notice that whenever a transition �res the
commands issued to the tra�c lights are those illustrated in the other problems.
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8.4.6 Preempted mode

This section describes the emergency preempted operating mode problem. Tra�c
signal preemption is a type of system that allows the normal operation of tra�c
lights to be preempted. The most common use of these systems is to give priority
to emergency vehicles by changing tra�c signals in the path of the vehicle to
green while stopping con�icting tra�c.

Preempted systems generally operate by means of radio signal, infrared signals
or by visible strobe lights. Each emergency vehicle is equipped with an emitter, a
device that emits visible �ashes of light or radio or infrared pulses at a speci�ed
frequency. Receiver devices placed on or near intersection tra�c control devices
recognize the signal and preempt the normal cycle of tra�c lights. Once the
emergency vehicle passes through the intersection and the receiving device no
longer senses the remote triggering device, normal operation resumes [58].

Notice that whenever the preempted sequence is enable, all the requests of the
pedestrians and the signal of the vehicle detectors are ignored.

Figure 8.41: The Problem diagram for the preempted operating mode problem

The communication between the emergency vehicle and the receiver is one-
way, i.e., the emergency vehicle continuosly re-transmit its signal while the re-
ceiver communicates the presence of the vehicle to the intersection controller. No
acknowledgment message is sent back to the emergency vehicle. Moreover, the
receiver is able to distinguish whether or not there are emergency vehicles on its
approach, but it cannot understand how many vehicles are arriving.

The problem described here is related to the �rst generation of preempted
tra�c systems, which although it appears as quite primitive, are still widely used.
Nowadays, state of the art solutions exploits the usage of GPS devices, wireless
transponders, and complex full duplex communication protocols.

The problem is described by means of the Problem diagram shown in Fig-
ure 8.41. The problem is composed of 1) the biddable domain Emergency Vehicle,
representing an emergency vehicle equipped with an emitter; 2) the causal domain
Emergency Vehicle Detector, which represents the receivers of each approach; 3)
the machine domain Intersection Controller, which represents the controller that
once received the request of the emergency vehicle, enables the preempted se-
quence by issuing ad-hoc signals to the tra�c lights; �nally, 4) the causal domains
Vehicle Tra�c Standard and Pedestrian Tra�c Standard, which represents the
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tra�c lights of the intersection.

Figure 8.42: The Preempted operating mode problem �ts the Controlled behavior
frame

As shown in Figure 8.42, the problem is an instance of the Commanded be-
havior frame [37]: Intersection controller plays the role of Control Machine, while
Emergency Vehicle Detector and Emergency Vehicle play the role of Operator
and Vehicle Tra�c Standard and Pedestrian Tra�c Standard play the role of
Controlled Domain.

The phenomena shared by Control machine and Operator are composed of the
signals that Emergency Vehicle Detector issues to Intersection Controller when-
ever it receives signals from an emergency vehicle. The phenomena shared by
Control machine and Controlled domain are composed of the set of commands
that Intersection Controller sends to the tra�c lights.

The requirements of the problem are illustrated by means of the stm diagram
shown in Figure 8.43. The diagram is composed of two parallel stms: the �rst one
keeps track of the presence of emergency vehicles on the approaches, the second
one describes the phases of the preempted sequence. In order to keep track of
possibly emergency conditions in both the stm, the attributes EVNS and EVEW
are introduced, which represent whether emergency vehicles are on the approach
NS and EW, respectively.

At starting time, the �rst stm enters the state No Emergency. In this state
no emergency vehicle has not been detected yet. The state can be left under the
condition that an emergency vehicle is detected on the approach NS or EW. The
detection is performed by the detectors of the approaches, which, according to the
description provided in the stm of Figure 8.7, convert the continuously repeated
signals of the emergency vehicles in a explicit noti�cation to the controller. The
passage to the state EmergencyNS and EmergencyEW is triggered by a signal of
type EVehicleRequest characterized by the attribute arriving set to true. Such
transitions di�er for the allocation of the signals. In the �rst case the signal is
allocated to the output port of the detector of the approach NS while in the second
case to the one of the approach EW.

At �ring time of such transitions, the event startEmergency is generated in
order to notify to the second stm that the preempted sequence is enabled.

The stm may evolve by entering the state EmergencyEW/NS or returning to
the state NoEmergency.

NoEmergency is reached is case the same detector that triggered the transition
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to the current state noti�es that the no emergency vehicle is on the approach. In
this case the older operating mode is restored (by invoking again the operation
changeMode).

EmergencyEW/NS is reached in case the detector of the approach opposite to
the one that caused the entrance in the current state (etNS for the state Emer-
gencyEW, and etEW for the state EmergencyEW ) noti�es that an emergency
vehicle is arriving. The state EmergencyEW/NS represents an emergency con-
dition in which emergency vehicles are on both approaches. The state can be
exited by means of transitions to the previously described states EmergencyEW
and EmergencyNS, which may �re in case the detectors notify there is no vehicle
in their approaches.

The second stm describes the phases of the preempted sequence. At starting
time the stm enters the state No Emergency, which represents that the inter-
section controller is operating a mode di�erent from the preempted one, and no
emergency vehicle has been detected yet. In case an emergency vehicle is detected
the event startEmergency, generated by the �rst stm, triggers the output transi-
tions from the current state. Notice that all the other states can be reached by
means of a direct transition. The choice of which transition can �re strictly de-
pends on further conditions such as the approach in which the emergency vehicle
was detected, and the current phase of the intersection. As an example suppose
that the current phase is the one represented by the state Stop-Go Walk-DNWalk.
Furthermore, suppose that an emergency vehicle is detected on the approach
EW. In this situation, the �rst stm noti�es the detection by generating the event
startEmergency, and enters the state EmergencyEW. This implies that EVEW
is set to true, and, since no vehicle has not been detected yet on the approach
NS, EVNS is set to false. As a consequence the stm enters the state Stop-Go
Walk-DNWalk. The permanency in this state lasts until no emergency vehicle is
on the approach NS (notice that nothing is said about the presence on the ap-
proach EW). As a consequence the stm enters the state Stop-Wait Wait-DNWalk.
Suppose that no other emergency vehicle is detected on the approach NS. Hence,
after appNS.waitD the stm passes to the state Stop-Stop DNWalk-DNWalk, and
after appNS.safetyD of permanency, it reaches the state Go-Stop DNWalk-Walk,
i.e., the state required by the emergency vehicle. The stm remains in this state
since no emergency vehicle is detected on the approach EW. If no vehicle is de-
tected, the �rst stm returns to the state No Emergency, and generates the event
stopEmergency, which in turn triggers the transition to the state No emergency
of the current stm.

Notice that the stm does not report the state Flashing. In case the inter-
section is in this state when an emergency vehicle is detected, depending on the
approach where the vehicle is located, the stm directly passes to phase required by
the emergency vehicle (i.e., one of the states Stop-Go Walk-DNWalk or Go-Stop
DNWalk-Walk).

In case vehicles are detected on both approaches the requests are processed
adopting a temporal order criterion. More speci�cally, in case two requests come
from distinct approaches, the �rst request is served earlier.
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Figure 8.43: The stm diagram that describes the requirements of the problem Preempted operating mode
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Figure 8.44: The stm diagram that describes the machine speci�cation of the problem Preempted operating mode
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If multiple emergency vehicles are moving at the same time on both the ap-
proaches, the green phase cannot be assured for all the vehicles. However, consider
that emergency vehicles are equipped with siren and �ashing lights, hence, they
are allowed to cross the intersection also in case of red signal.

The machine speci�cation for this problem is described by means of the stm

diagram shown in Figure 8.44. Notice that such diagram is composed of two state
machines similar to the ones used to describe the requirements. The diagrams
di�er for the allocations of the signals and for the actions performed at �ring time
of the transitions. As for the requirements case, the �rst stm keeps track of the
emergency state, while the second one describes the phases and the operations
performed during the emergency. In case a vehicle is detected, the current op-
erating mode is stored in the variable oldmode and the operation changeMode is
invoked. Such operation stores all the parameters of the current mode and enables
the preempted sequence. The invocation event triggers the transitions of the sec-
ond stm, which in turn evolves according to the same criteria introduced for the
requirements. In case no vehicle is on either approach, the preempted sequence is
exited by invoking the operation changeMode, which restores the older operating
mode along with all its parameters.

8.4.7 Tra�c lights states check

This section illustrates the Tra�c lights check states problem, a problem transver-
sal to all operating modes, which is related to the possibility of having one or more
tra�c lights in a state that is di�erent from the expected one. As an example,
some problems may occur in case a lamp is burn out or some of the internal
components of a tra�c light does not work correctly.

The problem is described by the problem frame diagram shown in Figure 8.45.

It is characterized by the machine domain Intersection Controller, by the
causal problem domains Vehicle Tra�c Standard and Pedestrian Tra�c Standard.
The involved domains share two di�erent types of phenomena that represent the
current state of the tra�c lights and the commands issued by the controller,
respectively.

The internal controller of the tra�c lights performs some checks on the state
of the lamps after issuing a command. Therefore, in case of some malfunctions,
the local controllers inform the intersection controller of the error by specifying
its description (the error type).

The requirements of this subproblem states that in case a severe malfunction-
ing may compromise the safety of the system all the tra�c lights must be set to
the state yellow �ashing, while in case minor errors are detected, a description of
the encountered problem must be logged.

As shown in Figure 8.46, the problem is an instance of the Required behavior
frame [37]: Intersection controller plays the role of Control Machine, while Vehi-
cle Tra�c Standard and Pedestrian Tra�c Standard play the role of Controlled
Domain.

The phenomena shared by Control Machine and Controlled Domain directly
correspond to the set of phenomena shared by Intersection Controller and Vehicle
Tra�c Standard and by Intersection Controller and Pedestrian Tra�c Standard.
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Figure 8.45: The problem frame diagram that describes the Tra�c lights states
check problem

Figure 8.46: The Tra�c lights states check problem �ts the Required behavior
frame

The requirements are illustrated by the stm diagram of Figure 8.47.

The stm diagram uses the same states that were considered for the de�nition
of the requirements of all the previously presented operating modes. Each state
is reached when a speci�c group of signals are received by the tra�c lights of
either approach. For each state, at entry time the combination of commands
issued to the di�erent tra�c lights is stored and the actions CheckVtsStates and
CheckPtsStates are invoked.

Figure 8.48 shows the act diagram that describes the action CheckVtsStates.
The activity is characterized by four input parameter nodes named vtss1, vtss2,
vtss3 and vtss4 of type Tra�cStandardState and an input object node named
lastCmd of type Tra�cStdCmdType. Notice that vtss1, vtss2, vtss3 and vtss4 are
allocated to the output port tss of the vehicular tra�c standards vts[N], vts[S],
vts[E], vts[W], while lastCmd is allocated to the attribute ICmdV used in the stm
diagram of Figure 8.47.

At invocation time, after waiting for a certain reaction time, i.e., the mini-
mum time required for the system to update the state of the tra�c lights, the
action CheckState is invoked. The e�ects of the action are partly described by the
postcondition of Figure 8.48. Such a condition, depending on the errors revealed
by the local controller of the tra�c lights, speci�es a di�erent output value rep-
resented by the attribute alarm, an enumerative that indicates the severity of the
encountered error. In case no error is detected, the execution of the activity is
stopped. In case a minor error occurs, the activity logs the encountered problem
by invoking the action Log, while in case a safety critical error is found a signal
Alarm is generated and a description of the error is logged.

Notice that the action CheckPtsStates is equivalent to CheckVtsStates, with
the exception of the input parameters that are allocated to the states of the
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Figure 8.47: The stm diagram that depicts the requirements of the Tra�c lights
states check problem
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Figure 8.48: The act diagram that describes the action CheckVtsStates

pedestrian tra�c standards, and to the attribute lCmdP of the stm of Figure 8.47
to store the last command issued to the pedestrian tra�c lights.

The signal Alarm triggers some of the transitions of the stm diagram of Fig-
ure 8.47. More speci�cally, such signal causes the transitions from any phase
of the system to the Flashing one, where all the tra�c lights are in the state
Flashing.

The machine speci�cation is expressed by means of the stm diagram of Fig-
ure 8.49.

The stm is similar to the one used to express the requirements. The signals
that trigger the transition of the states machine are allocated to the output ports
of the Block IntersectionController. Such signals are generated by the di�erent
state machines that represent the machine speci�cation for each supported op-
erating mode. Similarly, to the requirements case, whenever a state is entered,
the activities CheckVtsStates and CheckPtsStates are invoked. Such activities
are equivalent to those used to express the requirements, with the exception of
the allocation of their parameters. A further di�erence regards the e�ects of the
transitions that are triggered by the signal Alarm. In this case, the commands
that cause the �ashing of the tra�c lights are issued by means of the output ports
vtscEW, vtscNS, ptscEW and ptscNS. In addition the operation Changemode is
invoked in order to set the manual operating mode. In fact, in case a safety crit-
ical error occurs, after setting the state of the tra�c lights to �ashing yellow, no
action can be automatically decided by the controller. A human intervention is
required on some of the components of the system.
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Figure 8.49: The stm diagram that described the machine speci�cation for the
Tra�c lights states check problem
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Figure 8.50: The Problem diagram for the Change mode problem
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8.4.8 Change mode

The intersection controller has to support multiple operating modes. All the pre-
viously introduced problems describe single operating modes of the controller. In
order to specify the general behavior of the intersection controller, it is necessary
to compose the descriptions of such sub problems.

The need of composing the descriptions comes from the necessity to change
the operating mode. In fact, the operator described in the manual operating mode
problem, besides the previously introduced operations can also issue commands
to change the current operating mode of the intersection controller.

The overall problem can be described by means of the Problem diagram shown
in Figure 8.50.

As shown in Figure 8.51, this problem is an instance of the Commanded be-
havior frame [37]: Intersection controller plays the role of Control Machine, while
Pedestrian Presence Detector, Pedestrian, Vehicle Presence Detector, Motor Ve-
hicle, Manual Override, Tra�c Control O�cer, Emergency Vehicle Detector and
Emergency Vehicle represent the domain Operator and Vehicle Tra�c Standard
and Pedestrian Tra�c Standard represent the domain Controlled Domain.

Figure 8.51: The Change mode problem �ts the Controlled behavior frame

The phenomena shared by Control machine and Operator are composed of
1) the signals that Vehicle Presence Detector, Pedestrian Presence Detector and
Emergency Vehicle Detector issue to Intersection Controller in order to notify
the presence of a pedestrian, a vehicle or an emergency vehicle, respectively;
2) the commands that Manual Override sends to Intersection Controller as a
response of what speci�ed by Tra�c Control O�cer by means of the console. The
phenomena shared by Control machine and Controlled domain are the commands
that Intersection Controller issues to the vehicle and the pedestrian tra�c lights.

The composed requirements of the problem are illustrated by means of the
stm diagram shown in Figure 8.52.
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The stm is de�ned by merging the stm of all sub-problems.
The composition is based on the following process.

• stm types identi�cation.

Two di�erent types of stm are identi�ed for the proposed sub problems.
The �rst type of machine describes the phases of the intersection, while the
second one keeps track of the current operating mode. The requirements
of all the sub-problems are described by means of a single stm of the �rst
type. The only sub problem whose requirements are described by means of
both types of sub machines is the preempted operating mode problem.

By applying this composition criterion, the overall stm of the general prob-
lem will be composed of two parallel stms.

• States de�nition.

For each stm type, one state for each distinct state of the original sub-
problems is de�ned.

Since the �rst stm describes the phases of the intersection, and the phases
are the same for all the operating modes, the resulting stm will be composed
of the same states of the stms of all sub-problems.

The second stm is exclusively introduced in the Preempted operating mode
problem. All its states are directly reported.

• Composite states analysis.

Since some of the states are composite, they contains parallel sub-machines,
and thus it is necessary to de�ne a di�erent internal stm for each of the
existing types of sub-machine used in each state of all the sub-problems.
In other words, the same criteria described at the �rst and second steps of
these guidelines are recursively applied to each composite state.

In our case there are only two composite states among all sub-problems: the
states Stop-Go Walk-DNWalk and Go-Stop DNWalk-Walk. Both of them are
characterized by the same types of stm. A �rst type of stm keeps track of
the request of the pedestrians, a second macro type considers the requests of
the vehicle presence detectors. Such type, in turn, is further specialized in
the description provided by the semi actuated and fully actuated operating
mode problems. More speci�cally, in the fully actuated operating mode, a
stm is de�ned for each semi approach in order to keep track of the current
state of the whole road. Moreover, since this mode considers the request
of the detectors of both approaches, the same stm is de�ned for both ap-
proaches (i.e., it is de�ned both for the state Stop-Go Walk-DNWalk and
Go-Stop DNWalk-Walk). In semi actuated mode, the detectors are exclu-
sively positioned along the secondary approach. As a consequence the sub-
machines of the states Stop-Go Walk-DNWalk and Go-Stop DNWalk-Walk
are di�erent, and both of them describe the current state of the secondary
approach EW.
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Figure 8.52: The stm diagram that depicts the requirements of the Mode change problem





8.4. THE REQUIREMENTS 197

As a result, four parallel stm are internally de�ned in the states Stop-Go
Walk-DNWalk and Go-Stop DNWalk-Walk of the resulting general stm.
Moreover, for each stm, all the states of the original machines are reported
in the general one.

• Inclusion of the transitions.

All the transitions de�ned in the machine of each previously introduced sub-
problem are reported in the �nal stm. The �ring condition of the resulting
transitions has to report the explicit reference to the operating modes for
which the transition was originally de�ned. In case the same transition is
de�ned for multiple operating modes, the �ring condition of the resulting
transition reports the list of the operating modes.

This process is also recursively applied to the internal stm of the composite
states.

• Inclusion of the action invocations.

All the actions that are executed in case a transition �res or in case a state
is entered or exited must be reported in the resulting general stm.

In case the action in the original problem is executed at �ring time of a
transition, in the resulting stm its execution will be regulated by the �ring
conditions of the transition. As an example considers the action Update-
Timers that is invoked at �ring time of the transition between the states
Stop-Stop DNWalk-DNWalk and Stop-Go Walk-DNWalk of the fully actu-
ated operating mode problem. The action is reported in the composite stm
by specifying a �ring condition to the transition, which must be reported
in order to assure that the action can be invoked only in case the operating
mode is the fully actuated one.

In case the action is executed at entering or exiting time of a state, in the
resulting stm the action must be equipped with a pre condition that assures
that it can be invoked only if the current operating mode is the one of the
original problem. In case the action does not a�ect the evolution of the
state machine (i.e., in case it does not generate events or modify attributes
that may trigger a transition) or in case it is not necessary to constraint its
execution, no additional pre condition is de�ned. Notice that all the actions
that can be invoked at entry and exit time of the states of the resulting stm

are not constrained.

• Merging of the states.

Some of the reported stm may report the same description, hence, they can
be merged. As an example consider the internal stm of the state Go-Stop
DNWalk-Walk. The semi-actuated operating mode problem introduces a
stm that describes the current state of the approach EW, while the fully
actuated mode problem introduces a stm for each of the semi approaches E
and W. By applying the composition criteria described at the previous steps,
all these stm are de�ned in the state Go-Stop DNWalk-Walk of the resulting
stm. Since the information reported by this stm is substantially the same,
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the stm of the semi actuated mode problem is merged with the one of the
fully actuated one. More speci�cally, the stm of the fully actuated mode
reports all the states and transitions of the semi actuated problem. Only
two transitions are not included in the stm of the fully actuated problem,
i.e., the output transitions of the state NoVehicleE and NoVehicleW. As a
consequence, the merging consists in de�ning a new output transition (the
one de�ned in the semi actuated problem) for the states NoVehicleE and
NoVehicleW.

A further requirement related to the current problem concerns the mode
change. The operator can issue commands to change the current operating mode
by means of the console. The required e�ects of the command sending are de-
scribed in the second stm of Figure 8.52 (i.e., the stm that keeps track of the
operating modes). The stm reports a transition that exits and enters the state
No Emergency, which is triggered by the invocation of the operation changeMode.
As speci�ed by the stm, the operator can change the current operating mode only
in case no emergency is under processing.

The machine speci�cation can be described by means of a stm diagram similar
to the one used to illustrate the requirements. As for the other subproblems, also
in this case the stms di�er for the allocation of the signals and for the action that
can be invoked at �ring time of the transitions.



Chapter 9

Conclusions

The general goal of this PhD work concerned the de�nition of methodological
guidelines to the usage of SysML for modeling real-time systems.

The Systems Modeling Language (SysML) [53] is a new general purpose lan-
guage expressly de�ned to satisfy the requirements imposed by the UML for Sys-
tem Engineering Request for Proposal [64] that aims at extending UML with the
notational elements needed to support systems engineering modeling purposes.

SysML does not provide any instrument to support the modeling of real-time
systems, furthermore it does not provide any modeling process (the language is
intended to be methodology independent [54]). As a consequence, methodological
guidelines are required to support speci�c modeling aims.

This goal was initially addressed in Chapter 3, where on one hand we evaluated
the capabilities of SysML as a notation for modeling systems characterized by real-
time and safety critical requirements; on the other hand, we wanted to experiment
with the application of the well known and sound concepts from the reference
model for requirements and speci�cation [26] to SysML based modeling. Namely,
we modeled the Generalized Railroad Crossing system [29], which is a reliable and
well-known benchmark for this kind of activities.

We found SysML well suited to support a model-centric requirement speci�ca-
tion, since it provides dedicated constructs to describe all the aspects of a system:
it supports the de�nition of both structural and behavioral features, and provides
constructs to describe and organize the requirements.

The language also provides cross cutting constructs that allow the modeler to
allocate behavioral elements on structural ones and vice-versa, and to relate the
elements of the model to the requirements. Despite these remarkable features, the
language is not fully satisfactory for modeling precise time requirements because
it inherits some of the weaknesses of UML 2.

In particular, in order to express time related properties, we had to use an
external language, although in the context of SysML Constraints: in fact, the
possibility to employ �foreign� languages in the de�nition of constraints is com-
pliant with the language speci�cation. By means of a formal language like TRIO
we were able to express time properties and behaviors in a rigorous way.

From a methodological point of view, it was easy to apply SysML along the
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lines indicated by the reference model for requirements and speci�cation, since
SysML provides diagrams that are well suited to cover all types of descriptions,
constraints and speci�cations that are necessary to obtain a complete, readable
and coherent speci�cation.

Although the experience introduced in Chapter 3 showed how easily the lan-
guage can be applied to manage the requirements and speci�cations, the provided
guidelines required to be systematized and extended in order to support the anal-
ysis of complex systems. This goal was addresses by proposing a requirements
analysis technique based on SysML and Problem Frames.

Problem Frames [37], introduced in Chapter 4, are a sound requirement analy-
sis approach built around the reference model for requirements and speci�cations
that aims at driving the analyst from the phase of problem description, where the
characteristics of the problem and its requirements are de�ned, to the speci�cation
of a machine that satis�es the requirements.

Although Problem Frames were proposed some years ago and a great inter-
est for the theoretical aspects of the approach has been manifested by numerous
requirement engineering research groups, the approach is scarcely adopted in in-
dustry.

Among the obstacles to the di�usion of Problem Frames there is the fact that
the applicability of the approach to industrial cases has not been convincingly
shown. In other words case studies of realistic complexity that evaluate the ap-
plicability of the approach are missing.

The work reported in Chapter 5 intended to partly address such issue by ver-
ifying the applicability of problem frames in the context of industrial software
development. For this purpose, we employed Problem Frames to model the re-
quirements of a system monitoring the transportation of dangerous goods.

The experience was generally successful: the usage of problem frames actually
allowed us to achieve a fairly complete and clear comprehension of the require-
ments of the system.

We observed that requirements analysis based on Problem Frames needs fur-
ther documentation and support in order to be successfully used in an industrial
context, where clear and easy to use methodological guidelines are required. In
particular, better documentation and examples should be made available, in order
to support the analysts in recognizing problems. Moreover, a complete catalogue
of available basic Problem Frames would be very helpful; otherwise the analyst
may have di�culty in identifying the proper frame for a given problem (see the
discussion about database querying in section 5.4).

In general, we believe that researchers should continue the development of the
Problem Frames approach, in order to let it achieve the (not far) maturity level
needed to increase its acceptance in industrial processes.

Another important weakness of Problem Frames concerns the lack of an ad-
equate linguistic support. More speci�cally, Problem Frames are not equipped
with a unique and clear way for expressing requirements; similarly, the approach
does not provide any precise guidelines to express the behavioral aspects of prob-
lem domains, the speci�cation of the machine and of the requirements. Therefore,
the modeler has to choose a suitable notation to describe both the given domain
behavior and the required behavior.
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In order to address this issue, and also in order to provide SysML with e�ective
methodological guidelines, in Chapter 6 we proposed the integration of the Prob-
lem Frames requirement analysis approach with the SysML notation. Notice that
the goal was twofold: on one hand, we de�ned sound methodological guidelines
to the usage of SysML for requirements analysis, on the other hand, we provided
an e�ective notation to the analysis approach.

The experimental application of this integrated approach showed that Problem
Frames can be e�ectively described by means of SysML diagrams and constructs,
and that Problem Frames concepts can be e�ectively supported by SysML.

A relevant bene�t of using SysML is represented by the description of the
problem domains, that are mostly composed of non-software entities; note that
this would hold even if we used a di�erent requirement analysis methodology.
SysML supports the de�nition and management of parametric constraints in a
direct way, allowing the analyst to express properties and requirements by means
of formal languages. Another important feature of SysML is the ability to deal
with continuous behavior, which often characterizes physical problem domains.
For instance, in the example presented in Chapter 6, the communication between
the motor and the gate models a physical transmission, which maintains a con-
tinuous connection between the involved domains. SysML provides constructs to
model phenomena �such as entities, signals, events, �ows, etc.� in a concise and
expressive way. This applies both to phenomena that are private to a domain and
to shared phenomena.

In the literature several works like [43, 8] propose the usage of UML for sup-
porting Problem Frames. Under all these respects, SysML showed to be more
expressive and �exible than UML. Among the limitations of UML that are over-
come by SysML there are the lack of support for modeling continuous behavior
and the di�culty of including formal speci�cations in the models.

Jackson identi�es some basic Problem Frames [37], i.e., shapes of a recurrent
class of basic problems, and proposes concerns to solve them. In [37], a simple
problem that �ts the characteristics of each basic frame is illustrated.

In order to test the e�ectiveness of the combined approach, we experimented
the modeling of the catalogue of basic Problem Frames proposed in [37].

The experience, illustrated in Chapter 7, reports the de�nition of the basic
problem frames using SysML. Although relatively limited in scope, the experi-
ence showed that SysML completely supports the de�nition of Problem Frame
concepts: we found no situation that could not be adequately expressed by means
of SysML diagrams, or by means of constraints employing suitable notations. In
particular, SysML provided a good level of abstraction for requirements analysis,
and supported, either directly or via borrowed notations, the possibility to express
real world features such as time-related issues or the continuous �ow of data.

The basic examples presented in Chapter 7 underline how the analyst can ben-
e�t from the combination of Problem Frames and SysML. The analyst may choose
several constructs and strategies to de�ne properties associated with domains, to
support the requirements or the machine speci�cation. Moreover, he/she may
adopt the constructs more suited to the analysis goals and to the adopted speci-
�cation techniques.

Altough the Problem Frames catalogue represents a �rst step towards the
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validation of the proposed approach, the intrinsic complexity of such problems
is relatively low; hence, in order to validate the scalability of the approach we
experimented the modeling of a case study of industrial complexity.

The adopted case study, illustrated in Chapter 8, concerns the modeling of a
controller for a four way tra�c intersection.

The case study allowed us to experiment the decomposition of the general
problem into several sub-problems each of which matched a basic problem frame.
The decomposition was driven by the operating modes that the intersection con-
troller had to support: each mode represented a di�erent problem to be addressed.

Once identi�ed the sub-problems, the identi�cation of the basic Problem Frames
was relatively straightforward. Some of the sub-problems directly �tted without
any adaptation the basic frames proposed by Jackson. Other problems, instead,
simply required to abstract the descriptions by aggregating groups of domains
that played a common role.

The speci�cation of the machines that solved such sub-problems were de�ned
by addressing the concerns proposed in [37] for the solution of the identi�ed basic
frames.

SysML well supported the speci�cation of all the aspects of each sub-problem.
It supported the representation of both the structural and behavioral aspects of
the problem domains as well as the speci�cation of the requirements and of the
machines. Both requirements and machines were described by means of state
machine diagrams and activity diagrams without the use of external notations.

Once all the sub-problems were identi�ed and described, and once the ma-
chine speci�cation was de�ned for each of these problems, we experimented the
recomposition of the description of the general problem.

We applied a technique to recompose the description of requirements and
machine speci�cations based on the merging of state machines. As a �nal result
we came up with a state machine composed of di�erent parts each of which was
de�ned in one or more sub-problems.

As a �nal remark, this modeling experience showed the applicability of the
technique to realistic complex problems, and we argue that this could be a �rst
step towards the de�nition of a modeling approach that can be used in industry.

A further step towards the usage of the proposed combined approach in indus-
try concerns the development of a tool supporting it. In order to achieve such goal,
we are working on a meta-model that precisely speci�es the constructs and rules
needed for creating Problem Frames models. The proposed meta-model supports
the construction of a tool and introduces both notational and methodological
concepts of Problem Frames.

Such model is open and extensible: it allows one to integrate SysML elements,
in order to support the description of the aspects of a problem that cannot be
represented by means of the Problem Frames notation.

A tool that supports the metamodel is currently under development by ex-
ploiting Eclipse technologies. At present our prototype supports the de�nition
of Problem Frames diagrams, and provides also advanced functionalities such as
diagram partitioning, problem decomposition and domain decomposition.

At present the generated tool is dedicated to support the Problem Frames
approach. We planned to fully support the combined Problem Frames - SysML
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approach by using a transformation tool that drives the migration of a Problem
Frames model to a SysML one. Such choice is motivated by the rich and complex
notation of SysML; in other words we did not intend to build an ad hoc SysML
editor, but we planned to de�ne a software module that automatically generates a
SysML model starting from a Problem Frames one compliant with the previously
mentioned meta-model. All the aspects that can be represented by means of
Problem Frames are automatically expressed in SysML, while the aspects that
cannot be directly represented with the Problem Frames can be added to the
generated model by using a dedicated SysML-based modeling IDE.
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