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1
Introduction

I
ntroductions to books are often boring; introductions to scientific texts are
invariably so, with a few notable exceptions – and the present case is not one
of them. But, alas, they are still quite useful. So be warned and keep reading:
at least, every effort has been made for it to be short.

This thesis deals with a number of selected questions concerning the equilibrium
properties and the phase behavior of colloidal dispersions, using both theory – in-
cluding analytical and numerical methods from the physics of the liquid state – and
computer simulation. The point of view adopted is the one of a theoretical physicist,
thereby several low-level details have been neglected in favor of general and (whenever
possible) simple models. As a consequence, an emphasis is placed on the notion of
effective interaction in a complex fluid, which permeates or underlies most of the work
here reported.

Colloidal dispersions, or simply colloids, are a kind of “ultra divided matter”
(quoting the Nobel prize winner Pierre-Gilles de Gennes [33]) which has gained a broad
scientific and industrial interest in the last few decades. The birth of colloid science
dates back to the second half of the nineteenth century and is generally associated
with the name of the Scottish chemist Thomas Graham. Graham, performing some
dirty-hand experiments like most great scientists of that time, noticed that some
substances (e.g. sugar and simple salts) diffused quite quickly through parchments
or animal membranes, and formed crystals when dried; other substances (e.g. gum
arabic, albumen), on the contrary, diffused rather slowly and did not form crystals
when dried. He termed the former class of substances crystalloids, the latter colloids
(which, after the Greek word for glue – κόλλα – means “sticky stuff”) [53]. In the
attempt to separate the two classes, he also laid the foundations of the process of
dialysis.

Later on Graham’s classification based on the formation of crystals turned out to
be inconsistent and was dropped; the term colloid, nevertheless, managed to survive
and, contrary to its etymology, ended up to include substances that are not sticky at
all according to common experience. In the modern vocabulary, colloid designates a
system in which finely divided particles, which are approximately 1 to 1000 nanome-
ters in size, are dispersed within a continuous medium in a manner that prevents their
coagulation or rapid settling. The aforementioned range of dimensions, which serves
merely as a crude indication, makes the dispersed particles quite big if compared to
the size of the atoms or molecules making up the dispersing medium but, at the same
time, assures that they are small enough to undergo Brownian motion [93] as a con-
sequence of the thermal agitation of the medium itself.∗ Both the dispersed particles

∗If this were not the case, colloids would rather look like a bunch of stones thrown in a bowl of
water – not so interesting to be studied.
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and the dispersing medium may be solid, liquid or gas; this thesis will mainly deal
with dispersions of solid particles in a liquid medium, which are properly termed sols.

Why all this fuzz about colloids? One sometimes encounters in the literature or
in textbooks the claim that colloids permeate almost every aspect of life; although
it might be the case, like most hyperboles it should be taken with care: after all, we
do not live in a colloidal world – solids, fluids and gases are still the most abundant
forms of matter on the planet. Nevertheless, it is indubitable that many substances
of daily use fall in the category. If you ever drinked a glass of milk, then you had the
chance to appreciate the taste of a colloidal dispersion (more precisely, an emulsion)
of butterfat globules within a water-based liquid. You certainly recall with pleasure
(or maybe not, depending on your attitude in taking a bath) having played as a child
with a dispersion of air bubbles in water – a foam.† And if you happened to live
in Cape Race, Newfoundland (Canada), one of the foggiest places in the world with
an average of over one hundred and fifty foggy days per year [73], you surely would
know much about dispersions of water droplets and ice crystals suspended in the air.
These were just but a few prototypes; shaving cream, mayonnaise, jelly, smoke, ink
and paint are other familiar examples of colloidal dispersions [64].

If you still cannot decide whether colloid science is worth studying (and funding),
the following excerpt from a 1921 book [8] should dissipate any residual doubt:

At first sight colloid chemistry may not seem to be an important branch
of chemistry, either theoretically or technically; but this opinion changes
when we consider that a knowledge of colloid chemistry is essential to
anybody who really wishes to understand about: cement, bricks, pottery,
porcelain, glass, enamels; oils, greases, soaps, candles; glue, starch and
adhesives; paint, varnishes, lacquers; rubber, celluloid and other plastics;
leather, paper, textiles; filaments, casts, pencils and crayons; inks; roads,
foundry cores, coke, asphalt; graphites, patines; zinc, phosphorus, sodium
and aluminium; contact sulphuric acid, hardened oils, etc; beer, ale and
wine; cream, butter, cheese and casein products; cooking, washing, dye-
ing, printing; ore flotation, water purification, sewage disposal; smoke pre-
vention; photography; wireless telegraphy, illuminants; comets; pharmacy;
physiology. In other words, colloid chemistry is the chemistry of every-day
life.

Feel free to substitute colloid science for colloid chemistry (the author was of course a
chemist); although it might appear somewhat extreme, the previous statement surely
leaves an impression. Almost a century has passed since that book was first published
and it is indisputable that colloid science still plays a major role in the paint, food,
cosmetic, pharmaceutical and agricultural industry [129].

Another field where colloid science finds a fertile ground is biology, especially in a
number of sub-fields ranging from biochemistry to biophysics and biotechnology [15,
42]. It would be impossible to give here a comprehensive list of applications; suffice
it to say that concepts such as the colloid osmotic pressure of blood exist [19, 76]
and that many scientists around the world struggle daily to understand how to make
crystals suitable for X-ray diffraction out of colloidal protein solutions [40, 116].

†If you prefer a tastier example, take the cream out of the aforementioned glass of milk and whip
it in a mixer.
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COLLOIDS AND PHYSICS

Despite the wide range of applications just highlighted, this would not be the thesis
of a physicist if colloids did not have some intrinsic interest for the physical sciences
themselves, and indeed they do: colloidal dispersions have frequently proved a valuable
playground for testing ideas in thermodynamics, condensed matter and statistical
physics. After all, they provided one of the greatest insights ever in the modern theory
of matter, whose atomic nature gained widespread consensus only after the works of
Einstein and Perrin on Brownian motion were published [58]. Nowadays, colloids are
exploited both as magnified models of traditional atomic and molecular systems and
as building blocks for genuinely novel materials.

In the former context, they respond to a very frustrating feeling anyone with an in-
terest in condensed matter sooner or later experiences: we know a lot about atoms and
their properties, we might even be capable of extraordinarily precise predictions about
their behavior – but we cannot see them.‡ On the contrary, most colloids have dimen-
sions that easily fall in the range of operation of a common optical microscope; by
exploiting the confocal setup one can even track single particles in three-dimensional
space with high precision over large time scales [109]. Luckily colloids can be made
to interact just as atoms or molecules do – of course you have to neglect any quan-
tum effect, since their size firmly roots them in the classical world, and allow for
much slower dynamics. Thus, a colloidal system can be found in all the traditional
phases of atomic matter, or better still, their blown-up, slowed-down, easily observable
counterparts [55]. A remarkable difference separates colloids from atomic or molec-
ular substances: the yield stress of the former (when they have one) is appreciably
smaller. Consequently, they are easily deformed by applied forces or external fields:
not surprisingly, they belong to the broad class of systems known collectively as soft
matter.§

Atoms and molecules, after a while, can become rather dull objects to play with:
their interaction was fixed by mother nature a long time ago and we have but to
live with it. Colloidal dispersions, on the contrary, offer an unprecedented freedom: a
plethora of techniques for tuning the interaction amongst their constituents is at our
disposal so that it can vary, just to name a few, from hard-sphere-like to long-range
repulsive to short-range attractive [18, 81]. As the interaction departs from the one
typical of atomic and molecular systems, novel features appear in the properties of the
material; what is more, one might even think about engineering a suitable interaction
so that a wished for property arises. Owing to this freedom, the equilibrium phase
diagram of a colloidal material can be very different and far richer if compared with the
one of a simple atomic system. For example, a short-range attraction destabilizes the
liquid phase and instead promotes an isostructural solid-solid transition [79, 56, 22];
competition between attraction and repulsion may result in the formation of cluster
fluids and microphases [3, 124, 85]; anisotropic and likely complex interactions can
promote – among others – lamellar, columnar, smectic and nematic phases [1, 134, 67].

Non-equilibrium and flow properties of colloidal dispersions (a lengthy discussion
of which would enter us into the perilous realms of viscoelasticity and rheology) can be
singular and of great practical interest as well, as you might happen to know if you ever

‡Some experienced reader may object that modern microscopy techniques such as atomic force
microscopy and scanning tunneling microscopy do possess sub-nanometer resolution capable of imag-
ing single atoms; that is true, but here seeing designates the natural process involving light impinging
on your eye.

§Other substances belonging to to the same class include polymers, surfactants, liquid crystals
and granular materials.
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poured corn starch in a bowl full of water [43] or played with Silly Putty
TM

.¶ Last but
not least, since colloidal particles have dimensions comparable to the wavelength of
visible light, they serve as building blocks for materials with unique optical properties
such as photonic crystals [141, 135].

INTERACTIONS: HOW DO THEY COME ABOUT?

The fundamental interest in colloidal dispersions partly stems from the tunable nature
of the interaction amongst their constituents. To understand how this freedom comes
about and which kind of tunability we are referring to, it is advisable to stress two
major points: (i) colloidal dispersions are nearly always multicomponent systems, the
various components often spanning a wide range of mass, length and characteristic
time scales; (ii) one usually focuses on a subset of them – more often the heaviest,
biggest and slowest – and seeks for a description of the system in terms of those
alone. Indeed as long as average, equilibrium properties are concerned the selected
components do behave as if they were alone in the system and interacted via an
effective potential energy which maintains memory of the collective, average effect of
the neglected species.

This is not an uncommon operation in physics, reflecting a natural search for
simplicity. For example, when considering a single molecule in which both electrons
and nuclei wiggle around, the masses of the two species are so different that on the
typical time scale of the nuclear motion the electrons will very rapidly relax to the
instantaneous ground state configuration. Thus, it becomes possible to decouple the
two dynamics: the nuclei move according to an effective potential energy function
determined by solving the electronic ground state problem for each possible nuclear
configuration.‖ The same line of reasoning applies to a colloidal dispersion; solely, since
the number of particles involved is way higher (it is indeed in the order of Avogadro’s
number, NA ∼ 1023), we must speak the language of thermodynamics. If we consider
the bulkiest particles of the dispersion we may assume that on the typical time scale
of their motion the other species relax very rapidly to the state of thermodynamic
equilibrium, the big particles appearing to them as fixed external objects. Thus as
long as the properties of the bulky component are concerned the other species may
be neglected, provided an effective interaction between the big particles is introduced
reflecting the instantaneous equilibrium free energy of the remainder of the system.
This effective interaction, being sensible to the full details of the composition of the
dispersion, is open for a high degree of customization. We stress that the approach
just outlined is necessarily approximated if one is interested in dynamical quantities
and transport coefficients, but it is in principle exact with regard to the equilibrium
properties.

The former hand-waving arguments can be given a sound basis in the framework
of statistical mechanics [60]. In this context, a colloidal dispersion is described as a
complex fluid made up of a given number nc of components. Each component k, with
1 ≤ k ≤ nc, comprises a number of particles whose instantaneous configuration is
specified by a set Γk of suitably chosen coordinates – which may include the number
of particles itself – incorporating any kind of degree of freedom (e.g. translational, ro-
tational, vibrational) we consider pertinent for the complete description of the system.
A function U(Θ), the argument denoting the union of the sets Γk, associates an en-
ergy to each permissible configuration. Upon the choice of the appropriate statistical

¶Technically, the latter is a silicone polymer – the Dow CorningR© Dilatant Compound 3179 –
and not a colloid, but it serves nicely to illustrate viscoelasticity.

‖This is called the adiabatic, or Born-Oppenheimer, approximation.
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ensemble bound to a set Λ of independent thermodynamic variables, the equilibrium
properties of the system are encoded in the partition function

Z(Λ) = TrΘ F(U(Θ),Λ) , (1.1)

the trace operator Tr· and the function F(·, ·) depending on the ensemble adopted. If
we focus on a particular component, say k = 1 without loss of generality, and assume
that the trace operator can be factored we may write

Z(Λ) = Tr′Γ1

[

Tr′′Θ\Γ1
F(U(Θ),Λ)

]

= Tr′Γ1
G(Γ1,Λ) , (1.2)

where the primes have been introduced to stress that the corresponding operators
differ from the initial one. The function G(Γ1,Λ) implicitly defines an effective inter-
action among the particles of the selected species, which in general will depend both
on the instantaneous configuration of the particles and on the thermodynamic state
of the system.∗∗ Note that the previous definition holds even if we focus on more than
one component at a time (retaining, say, the degrees of freedom contained in Γ1 and
Γ2) and regardless of their nature: they need not be the bulkiest or biggest ones, as
the qualitative argument introduced earlier in the text seemed to suggest. In practice,
however, the concept of effective interaction proves a handy tool mostly if applied to
systems characterized by particles spanning a wide range of size and mass scales and
when focusing on the high end of that range: otherwise, the result might turn out to
be so complex to be completely useless. Thankfully, colloidal dispersions show all the
necessary features for this abstraction to be fruitfully applied [18].

PARTICLE DEPLETION, CHARGE SCREENING AND CRITICAL CASIMIR EF-

FECT

We conclude this survey by introducing a number of notable phenomena taking place
in colloidal dispersions and leading to effective interactions which will play a major
role in the remainder of the thesis.

Consider a room overcrowded with people wandering around erratically in all
directions (and, of course, they do not mind bumping into other people or objects –
packed-up dancers in a disco club could serve as a nice example): if you wait long
enough, you will find that most of the objects contained in the room lie lumped
together or rest near the walls, since in this way the space available for the people
to move in is maximized. Similarly, consider a colloidal dispersion made up of small
particles wiggling around ceaselessly as a consequence of their thermal agitation: if a
number of big particles are added to it, they will experience a short-range, attractive
force striving to push them together. This is termed depletion interaction, since it
originates from the fact that the volume of the container inaccessible to the small
particles, i.e. the volume from which they are depleted, becomes smaller if the big
particles stick together or to the walls, just as the restless dancers in the previous
example gain free space by pushing together the objects found in their way. The first
historical record of a depletion interaction, later to become paradigmatic, is linked
to the names of Sho Asakura and Fumio Oosawa as they considered in 1954 the
effective attraction arising between two bodies in a solution of macromolecules [5]. By

∗∗The exact definition of the effective interaction depends on the form of the operator Tr′Γ1
; for

example, if the number of particles N1 of the selected species is not fluctuating (so that N1 ∈ Λ)
and Tr′Γ1

∝
∫

dΓ1, then Z(Λ) coincides with the canonical partition function of a system of particles

interacting through an effective potential Ueff
1 (Γ1,Λ) proportional to log G(Γ1,Λ), which is indeed

some kind of equilibrium free energy of the neglected components.
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approximating the macromolecules to non-interacting spheres having diameter d, in
a remarkable two-column article they provided (amongst other results) a formula for
the force acting between two big spheres of diameter D immersed in the solution:

F (r) =

{

−(π/4) p0 {(D + d)2 − r2} D < r < D + d ,

0 r > D + d ,
(1.3)

r being the centre-to-centre distance between the spheres and p0 the osmotic pressure
of the macromolecules. The force is attractive, has a maximum when the spheres are
touching and decreases towards zero as the surface-to-surface distance approaches
the size of the macromolecules. In real systems the ratio d/D, which characterizes the
range of the attraction, can be as low as a few percentage points: in these cases, one
often speaks of a sticky interaction.†† A distinct feature of systems presenting short-
range attractive interactions is a metastable gas-liquid transition, often associated
with arrested gel or glassy phases [27, 86]; depletion forces are also believed to play a
role in a number of biological organization processes [89].

Other phenomena of primary relevance in colloidal science stem from the ubiqui-
tous presence of electric charges. A colloidal particle, when placed in a solvent, usually
develops an electric charge owing to ionization of dissociable groups on its surface or
adsorption of ions already present in the solution. Were it not for the presence of mo-
bile ions, the energy of interaction between charged spherical colloids would adhere to
the familiar long-range Coulomb law, and statistical physicists would be spared many
a headache. Unfortunately, the electrical state of a charged colloid and its interac-
tion with other charged surfaces depend crucially on the distribution of mobile ions
around it emerging from the competition of electrostatics and thermal motion [96].
The resulting charge distribution, at least in the simplest model conceivable, is made
up of two layers, the first being the charge firmly bound to the surface of the particle,
the other the charge distributed more or less diffusely within the solution in contact
with the surface: this layer contains an excess of counterions (ions opposite in sign to
the fixed charge) and has a deficit of co-ions (ions having the same sign as the fixed
charge). Due to the screening effect of the diffuse layer, as one walks away from the
particle, the electrostatic potential φ decays much faster than it would do in the pres-
ence of the fixed charge alone; sufficiently far from the surface, it is well represented
by a Yukawa form [17]:

φ(r) ∝ exp [−κ(r − a)]

r/a
, (1.4)

r being the distance from the center of the particle and a its radius. The quantity
κ−1 defines the characteristic length over which the electrostatic potential brought
about by the particle decays: it is a property of the electrolytic solution alone – the
larger the ionic strength, the more effective the screening. The energy of interaction
of two charged, spherical colloids follows from the electrostatic potential; as long as a
superposition approximation of the respective ionic clouds holds, it inherits the simple
Yukawa form and decays over the same length scale. Thus, by controlling the amount
of mobile ions floating around, for example by the addition of a salt to the dispersion,
one can tune the range of the electrostatic interaction in a precise and reproducible
manner. Screened Coulomb interactions, unless the regime of complete screening is
enforced, are invariably at work in colloidal dispersions, even when other kinds of
interactions prevail.

††To get a grasp of the length scales involved, think about a normal-sized billiard ball coated with
a millimeter-thick layer of adhesive tape.
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A third class of effective interactions, which ends this short review, is of a com-
pletely different origin, since it has roots in the realm of critical phenomena accompa-
nying second-order phase transitions [131]. When fluctuating fields are confined be-
tween two surfaces, effective long-range forces arise: the most famous example is the
quantum-electrodynamical Casimir force due to the vacuum fluctuations of the elec-
tromagnetic field being confined to the space separating two conducting, uncharged
metal plates [29]. A thermodynamic analogue of the quantum-electrodynamical ef-
fect exists: it is called the critical Casimir force and has been first described by
Michael E. Fisher and Pierre-Gilles de Gennes in 1978 [47]. The critical Casimir force
acts between two surfaces immersed in a fluid when the latter is close to a criti-
cal point; it originates from the thermal fluctuations of the order parameter for the
phase transition being confined in the thin liquid layer separating the two surfaces.
Forces belonging to this class are generally weak (tens to hundreds of femto-Newton)
and only recently a direct measurement of their intensity has become possible [59].
Nonetheless, the high degree of tunability both in strength and sign (attraction or
repulsion) may be harnessed to serve dedicated purposes in colloidal dispersions and
in micro-mechanical devices [130, 7, 74]. As a further bonus, critical Casimir forces
are to a good extent universal, that is independent – at least in theory – of the specific
nature of the underlying critical system.

SCOPE AND OVERVIEW OF THE THESIS

We conclude the introduction by summarizing the contents of the thesis. Its structure
does not follow any particular plan, since the subjects discussed, although all related
to the field of colloidal physics, are heterogeneous and not necessarily connected. The
aim was to explore diverse areas in the field facing questions as they were raised by
experimental evidence or simple curiosity.

Previously in the text it was stated that interesting phenomena arise in colloidal
dispersions when short-range, attractive forces due to the depletion mechanism act.
In Chapter 2 we seek an analytic, thermodynamically consistent method to obtain
the equilibrium properties of a system of sticky hard spheres.

In Chapter 3 we proceed with our investigation of the depletion interaction. Prompted
by experimental evidence, we ponder on the departure from the simple Asakura-
Oosawa picture brought about by the presence of electric charges in the system.

Chapter 4 develops a general framework capable of describing both the depletion
interaction and the critical Casimir force. Stimulated again by experimental results,
we show that the two are not completely different phenomena but instead two ends
of a continuum.

Finally, Chapter 5 is devoted to an analysis of the effect of polydispersity, that is
a stochastic variation in size and charge, on the freezing transition of a collection
of charged hard spheres. This is accomplished by means of Monte Carlo simulation
techniques.





2
Self-Consistent Ornstein-Zernike

Approximation for a System

of Sticky Hard Spheres

ABSTRACT

We propose an approximate method to obtain the equilib-
rium properties of a system of hard spheres with surface ad-
hesion, seeking an improvement upon the well known Percus-
Yevick solution. Assuming the direct correlation function to
vanish beyond the range of the potential, in the sticky limit
the thermodynamics of the system are seen to depend on a
single scalar parameter varying with the density and the ef-
fective temperature. In order for thermodynamic consistency
to be ensured, this parameter must satisfy a certain nonlin-
ear differential equation that we derive and attempt to solve
numerically. A pronounced sensitivity to the boundary condi-
tions suggests that the self-consistent approach is inadequate
for the class of sticky interparticle potentials.
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I
n Chapter 1 we introduced the depletion mechanism as a means to induce an
effective, short-range attraction among colloidal particles. The general idea can
be put into action in a number of ways. For example, when a certain amount
of a non-adsorbing polymer is added to a colloidal dispersion, the chains of

the polymer fold into spherical coils acting as depletion agents [119]. Moreover, by
playing with the temperature and composition of the solvent and with the molecular
weight of the polymer, the size of the coils and, hence, the range of the depletion
interaction can be readily adjusted; often as not, it is a small fraction of the size of
the particles. A notable effect of the depletion-induced attraction is the appearance
in the equilibrium phase diagram of the dispersion of a possibly metastable region
in which two fluid phases with different density coexist [66], a phenomenon entirely
similar to the liquid-vapor phase coexistence taking place in simple gases.

A short-range, attractive interaction is naturally defined by an energy scale ǫ,
expressing the depth of the potential well in units of the thermal energy, and by a
length scale δ, corresponding to the range of the attraction in units of the typical size
of the colloids. As long as δ ≪ 1 the specific shape of the potential, when observed
with a level of detail appropriate for the colloidal particles, gets somewhat blurred
and thus plays a minor role: indeed, the thermodynamic state of the fluid is much
more sensitive to quantities that measure the overall strength of the potential such as
the second virial coefficient.∗ This is often expressed with the mantra “all short-range
potentials are equivalent”; in fact they are not, nonetheless it is a common practice to
compare two such potentials on the basis of their virial coefficients, partly in the spirit
of the extended law of corresponding states conjectured by Noro and Frenkel [95].

In the real world the range of the depletion-induced attraction cannot be reduced
at will: a lower bound exists connected with the unavoidable roughness affecting
the surface of the particles.† In the ideal world of physical models, instead, nothing
prevents the range to become infinitesimal; for the effect of the potential not to
disappear altogether, its energy scale must at the same time become infinite. If this is
done in such a way that the second virial coefficient attains a finite value, the sticky
hard sphere model (or hard spheres with surface adhesion) is born. The model was
introduced in 1968 [14] by the Australian physicist Rodney James Baxter – later to
become most renown for his work on exactly solved models in statistical mechanics
– and is defined as a system of identical spherical particles interacting through a
pairwise additive potential energy function taking the following form:

βvτ (r) =











+∞ 0 ≤ r < 1

− log
[

(1 + δ−1)/(12τ)
]

1 ≤ r ≤ 1 + δ

0 r > 1 + δ

; (2.1)

in the previous definition, and also in the remainder of this chapter, the particle
diameter is taken as the unit of length, r is the center-to-center distance between the
pair of particles, β = 1/kBT , with kB Boltzmann’s constant and T the temperature,
is the inverse thermal energy and the so called sticky limit, corresponding to δ → 0+,
is understood. The positive parameter τ , quantifying the stickiness of the potential,
plays the role of a dimensionless effective temperature: when it is infinite a system of
hard spheres is recovered; as it is lowered the adhesion between the particles first sets

∗We recall that the second virial coefficient is an easily accessible quantity characterizing the
departure of a fluid from the ideal gas model and is proportional to the volume integral of the Mayer
function of the potential; see Ref. [60].

†For example, one cannot expect micrometer-sized silica or latex colloids to experience an effective
attraction due to the depletion of water molecules, since the volume of the region from which the
latter are depleted is nearly independent of the position of the colloids.
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in and then becomes stronger. The corresponding second virial coefficient

B2(τ) = −1

2

∫

dr (e−βvτ (r) − 1) = BHS
2

(

1− 1

4τ

)

(2.2)

reflects the same behavior, attaining the hard sphere value BHS
2 at infinite effective

temperature and becoming more and more negative as τ is reduced. Following the
conjecture of universality introduced earlier in the text, expression (2.2) is commonly
used to map an attractive potential with a short but nonvanishing range onto the
sticky hard sphere model [114]. The puzzling numerical factor multiplying the effec-
tive temperature in the definition (2.1) is by no means essential nor it simplifies the
expressions later to be reported: although it could easily be dropped, it is retained
for the sake of consistency with the original definition.

The sticky limit was devised by Baxter as a matter of mathematical convenience:
he was looking for a simple model showing a liquid-vapor phase transition which was
amenable to an analytic, although approximate, solution in the contest of the theory of
correlation functions in simple liquids. Even if the model, as we will summarize later,
has a perfectly regular solution in the Percus-Yevick approximation and has also been
the subject of extensive simulation studies [126, 72, 91], the singularity embedded in its
very definition should instigate a mild feeling of suspicion. In fact, twenty-three years
after the appearance of the model George Stell and G. O. Williams discovered that
the latter from a rigorous statistical mechanical point of view is thermodynamically
unstable whenever the number of particles is greater than eleven [133]. However, the
state of affairs is less serious than it might seem: the instability arises from a number
of rather fancy particle configurations that are readily destroyed by the slightest
amount of polydispersity in the system. Therefore, the sticky hard sphere model and
its approximate analytical solution still remain a valuable tool for the interpretation
of the phase diagram of colloidal dispersions subject to short-range, depletion-induced
interparticle interactions.

2.1 THE PERCUS-YEVICK SOLUTION

As we mentioned earlier, Baxter was able to solve his newly introduced model making
use of the Percus-Yevick integral equation, a popular approximation from the theory
of simple liquids [57] which was known to yield fairly good results when applied to a
system of hard spheres without adhesion.

For a uniform fluid consisting of particles interacting via central forces, the to-
tal correlation function h(r) may be defined in terms of the pair radial distribution
function as

h(r) = g(r)− 1 . (2.3)

In addition, the direct correlation function c(r) may be defined by the Ornstein-
Zernike relation [99]

h(r) = c(r) + ρ

∫

dr′ h(r′) c(|r − r′|) , (2.4)

where ρ is the particle number density. In terms of these functions the Percus-Yevick
approximation can be expressed as

c(r) = {1− exp[βv(r)]} g(r) , (2.5)

v(r) being the interparticle potential. Note that c(r) vanishes whenever v(r) does,
that is the direct correlation function has the same range as the interparticle potential.
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Figure 2.1: Phase diagram of the sticky hard sphere model in the Percus-Yevick approxima-
tion. Full line: spinodal from the energy route; dashed line: spinodal from the compressibility
route (note that it exists only to the right of the critical point). For the sake of comparison,
the symbols show the phase boundary of the liquid-vapor phase transition according to the
Monte Carlo simulation data reported in Ref. [91].

When the definition (2.1) is inserted in the previous equations and after taking the
sticky limit it can be shown [14, 9] that the correlation functions depend on a single
real parameter λPY given by the following expression:

λPY = (6− τ + τη−1)−
[

(6− τ + τη−1)2 − 6(1 + 2η−1)
]1/2

, (2.6)

where η = (π/6)ρ represents the packing fraction of the system and the result is phys-
ically admissible only when λPY < 2 + η−1. From this single parameter the complete
thermodynamics of the system follows; for example, the inverse isothermal compress-
ibility as determined by the sum rule involving the direct correlation function [57]
equals

χ−1
PY

=
∂βPPY

∂ρ
= a2

PY
, aPY =

1 + 2η

(1− η)2
− λPYη

1− η
, (2.7)

whereas the Helmholtz free energy per particle departs from the hard-sphere value
according to the relation

βAPY

N
=
βAHS

N
− η

∫ +∞

τ

dτ ′ λPY/τ
′ . (2.8)

Starting from either Equation (2.7) or Equation (2.8) one can obtain the phase di-
agram of the sticky hard sphere model in the Percus-Yevick approximation:‡ in the
former case one speaks about the compressibility route, whereas in the latter case
the energy route is pursued. Of particular interest is the spinodal line, i.e. the locus
of vanishing inverse isothermal compressibility which bounds the region where the
system becomes unstable with respect to local density fluctuations that eventually

‡Of course we are not referring to the complete phase diagram, since the Percus-Yevick approxi-
mation, similarly to all the approaches based on the Ornstein-Zernike relation (2.4), is entirely blind
to any phase transition – such as freezing – that breaks the translational and rotational symmetry
of the system.
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lead to the liquid-vapor phase separation. Along the compressibility route it follows
readily from

χ−1
PY

= 0 , (2.9)

while along the energy route it is defined by the requirement

∂2

∂η2

[

η
βAPY

N

]

= 0 . (2.10)

If the Percus-Yevick relation (2.5) were exact, the two routes would yield identical
results; instead, they prove thermodynamically inconsistent, as Figure 2.1 attests. In
the same figure, the boundary of the domain of liquid-vapor phase coexistence as
determined by Monte Carlo simulations is shown: at the very least, the three curves
ought to meet at the critical point, but manifestly they do not. This state of affairs
seriously hinders the adoption of the Percus-Yevick approximation for the quantitative
interpretation of experimental data and thus limits its usefulness. It is our purpose
here to find out if enforcing the consistency between the compressibility route and
the energy route would eventually lead to a better approximation.

2.2 ENFORCING THERMODYNAMIC CONSISTENCY

First of all, we drop the Percus-Yevick relation (2.5) in favor of the more general
assumption that the direct correlation function c(r) vanishes beyond the range of the
interparticle potential:

c(r) = 0 for r > 1 + δ . (2.11)

The latter hypothesis does not define a unique approximation, but instead identifies
an entire class of closures of the Ornstein-Zernike equation (2.4) among which the
Percus-Yevick is but a particular case. This class has already been investigated in the
literature; see for example Gazzillo and Giacometti [51]. Remarkably, in the sticky
limit the differences among the various closures are drastically reduced, all being
included in a common parameter λ, and the direct correlation function acquires a
fixed form:

c(r) =

{

−ηλ
r

− a2 + η
[

6(a+ b)2 − aλ
]

r − ηa2

2
r3
}

θ(1− r)+ λ

12
δD(r−1) ; (2.12)

in the previous expression θ(·) designates the step function, δD(·) is Dirac’s delta
function and the quantities a and b are so defined:

a =
1 + 2η

(1− η)2
− λη

1− η
, (2.13a)

b = − 3η

2(1− η)2
+

λη

2(1− η)
. (2.13b)

The thermodynamic state of the fluid is entirely determined by the value of the
parameter λ, which is a function of the packing fraction η and the effective temper-
ature τ ; moreover, it bears a simple relation to the contact value of cavity function
y(r) = g(r) eβvτ (r), which is known to be regular and continuous even at the hard-core
diameter r=1 or where the interparticle potential has other discontinuities:

λ = τ−1y(1) . (2.14)
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The compressibility sum rule applied to Equation (2.12) gives for the inverse isother-
mal compressibility

χ−1 = 1− ρ

∫

dr c(r) = a2 , (2.15)

whereas following Baxter et al. [143] the Helmholtz free energy per particle departs
from the hard-sphere value according to

βA

N
=
βAHS

N
− η

∫ +∞

τ

dτ ′ λ/τ ′ . (2.16)

Note that the Percus-Yevick results (2.7) and (2.8) are particular cases of Equa-
tions (2.15) and (2.16) respectively.

In order for the thermodynamic properties of the fluid deduced from the isothermal
compressibility χ and from the Helmholtz free energy A to coincide for all state points
(η, τ), the following thermodynamic identity ought to be satisfied (which is not in the
Percus-Yevick approximation):

χ−1 = η
∂2

∂η2

[

η
βA

N

]

. (2.17)

The previous expression, once Equations (2.15) and (2.16) are taken into account, is an
integro-differential equation constraining the as yet unknown parameter λ. Defining
an inverse dimensionless temperature

t = τ−1 , (2.18)

upon differentiating both sides of the identity with respect to t and rearranging terms,
an equivalent partial differential equation is found:

2a

1− η
t λ̇ = (η2λ)′′ , (2.19)

where the dot means differentiation with respect to t, whereas the prime denotes
differentiation with respect to η.

Before attempting a solution of the equation, a remark is appropriate. The strategy
we pursued, which entails fixing the form of a correlation function of the fluid so
that it contains a free state-dependent parameter to be determined by imposing the
consistency between two different routes to thermodynamics, falls in the class of
the so called self-consistent Ornstein-Zernike approximations (SCOZAs). Therefore
the idea is not original (it has indeed been applied in the past to a broad range of
systems [78, 63, 115, 123]), nonetheless this is to our knowledge the first documented
attempt to apply the SCOZA technique to the sticky hard sphere model.

2.3 AN ATTEMPTED NUMERICAL SOLUTION

Equation (2.19) lacks an analytic solution, hence we resort to a numerical method.
For this purpose, it is convenient to define the auxiliary quantity

Λ = η2λ (2.20)

by means of which the consistency equation becomes

D−1Λ̇ = Λ′′ ; D−1 = 2t

[

1 + 2η

η2(1− η)3
− Λ

η3(1− η)2

]

. (2.21)
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This is a quasilinear diffusion equation with a state-dependent diffusion coefficient
D in which t and η play the role of a timelike variable and a spacelike variable,
respectively. An efficient, implicit predictor-corrector scheme for the resolution of
equations of the latter kind exists; a detailed description can be found in the appendix
of Ref. [107].

For the problem to be completely specified, Equation (2.21) must be comple-
mented with suitable boundary conditions. The high temperature behavior, that is t
approaching zero, is needed as an initial condition to start the integration. Although
in this limit the system reverts to a hard sphere model and is perfectly regular, the
numerical scheme cannot be initiated from t = 0 since corresponding to this value
the equation is singular due to the diffusion coefficient becoming infinite. Instead we
start from a small but not null t0 > 0 using as an initial condition the first-order
approximation

Λ(t0, η) ≈ t0ψ(η) , (2.22)

where the η-dependent term must satisfy the corresponding asymptotic form of Equa-
tion (2.21):

2

[

1 + 2η

η2(1− η)3

]

ψ = ψ′′ . (2.23)

The latter is a Fuchsian differential equation [4] whose indicial equation has two
integer roots, r=−1, 2: therefore, a unique solution exists analytic in a neighborhood
of η=0 that can be expressed in the form ψ(η)=

∑∞
n=2 anη

n. The coefficients of the
series expansion are completely determined by Frobenius method and the requirement
a2=1, which follows through Equation (2.14) from the property [51]

lim
η→0

y(1) = 1 . (2.24)

We verified a posteriori that the numerically computed solution of Equation (2.21)
is virtually independent of the particular choice of the initial inverse temperature t0
as long as the latter is sufficiently small and the initial solution is set according to
Equation (2.23).

As the inverse temperature is increased from the initial value t0, the numerical
integration scheme proceeds by computing the solution on a grid of η-points belonging
to an interval [ηL, ηH]; boundary conditions at both ends must be provided. The low
density boundary poses no problem: setting ηL=0, the property (2.24), together with
the relations (2.14) and (2.20), imply

Λ(t, ηL) = 0 for all t . (2.25)

The high density behavior is more problematic: as it is not known beforehand, a
certain amount of arbitrariness exists both in the value of the function Λ at the
boundary and in the position ηH of the boundary itself. This is a problem common
to all the approximations belonging to the SCOZA class: the usual way out consists
in using another type of approximation to set the boundary. Since there is not any
obvious recipe for singling out a specific high density boundary condition, a natural
requirement is that the results at low and intermediate densities should not depend
on the detailed form of such a condition, or on the packing fraction ηH at which it
is imposed. Previous studies of fluids with short-range interparticle potentials within
the SCOZA framework [115, 123] showed that for this to happen the boundary might
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Figure 2.2: The inverse isothermal compressibility of the sticky hard sphere fluid plotted
against the packing fraction as found within the SCOZA approach with a high density
boundary condition computed in the Percus-Yevick approximation. The different lines show
the effect of changing the position ηH of the boundary. The effective temperature is set
according to Monte Carlo simulations [91] at the almost critical value τ = 0.11.

have to be set close to or even beyond close-packing (ηCP = π
√
2/6), which is in fact

unphysical but perfectly legal as long as the equations are concerned.
In the present case an obvious choice for the high density boundary condition is

the Percus-Yevick approximation (2.6):

Λ(t, ηH) = η2
H
λPY for all t ; (2.26)

another popular alternative, namely the high-temperature perturbative expansion [98,
57] using as a reference system the hard sphere model, is not feasible here since it
yields a null perturbation to first order. The outcome of integrating Equation (2.21)
with a Percus-Yevick high density boundary is shown in Figure 2.2, where the inverse
isothermal compressibility of the fluid χ−1 is plotted against the packing fraction
η corresponding to different choices of the position ηH of the boundary; all curves
refer to the same effective temperature τ = 0.11, which is close to the critical one
according to Monte Carlo simulations [91]. The end result is quite disappointing: the
compressibility is seen to depend noticeably on the position of the boundary. For
the solution to be deemed reliable the various curves, at least for ηH greater than a
certain threshold, ought to lie near one another – a requirement that is manifestly not
satisfied. We also notice that some of the lines are not even consistent with τ = 0.11
being close to the expected critical temperature of the model. Since we do not see at
the moment any other reasonable choice to estimate the high density boundary apart
from the Percus-Yevick approximation, we are in a kind of dead end.

One may object that this situation does not represent by itself a failure of the
SCOZA equation (2.21), but merely attests our ignorance of the real boundary con-
dition: if the latter were known, the equation might as well give consistent results. To
elaborate further on this point, we seek a method to solve the equation that does not
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Figure 2.3: The radius of convergence of the formal series (2.27), estimated by means of the
ratio convergence test, plotted as a function of the packing fraction of the fluid. The horizontal
dotted line marks the value of the inverse temperature corresponding to the critical point
according to Monte Carlo simulations [91].

require the high density boundary to be specified. Let us suppose that the unknown
function Λ can be expressed as a power series of the inverse temperature t

Λ(t, η) =
∞
∑

n=1

tnϕn(η) , (2.27)

where the constant term has been omitted since the function must vanish in the limit
of infinite temperature. Owing to the previous definition the SCOZA equation is seen
to be equivalent to an infinite set of ordinary differential equations:

ϕ′′
n = 2n

[

1 + 2η

η2(1− η)3

]

ϕn −
[

2

η3(1− η)2

] n−1
∑

j=1

j ϕj ϕn−j , n = 1, 2, . . . ; (2.28)

note that corresponding to n = 1 Equation (2.23) is recovered. Although the set is
infinite, it merely contains backward references: for this reason, the equations can be
solved in a sequential fashion up to any desired order n̄. Moreover, to compute the
solution of any one equation in the set, say number k, only the low density behavior
of the function ϕk, that is the value of the function and its first two derivatives at
η=0, needs to be specified as an initial condition. Luckily, results of exact diagram-
matic expansions [51] show that only a small subset (specifically k<6) of the initial
conditions are not vanishing and also provide an estimate for the nonzero values.

If one proceeds along this route a formal, approximated solution of the consistency
equation (2.21) can be obtained up to any desired accuracy (compatibly with numer-
ical truncation errors due to a finite machine precision) in the form of a sequence of
coefficients ϕ1, . . . , ϕn̄. Unfortunately, as Figure 2.3 attests, once the coefficients are
plugged back into the power series (2.27) the radius of convergence tR corresponding
to most values of the packing fraction η comes out way too small for the series to
have any practical use in this form. Although the situation is disappointing, it is not
uncommon: a power series obtained as a formal solution of a differential equation may
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Figure 2.4: The inverse isothermal compressibility of the sticky hard sphere fluid plotted as
a function of the inverse temperature along the η = 0.25 isochore. The compressibility route
of the Percus-Yevick approximation (dashed line) predicts the compressibility to become
infinite at t ≈ 12 (that is τ ≈ 0.08, see also Figure 2.1). According to the solution of the
SCOZA equation evaluated by means of the Borel summation method (full line), the isochore
does not cross the spinodal line at all.

easily turn out to be divergent. In those cases, one can try a resummation technique
in the attempt to provide an analytic meaning to such a divergent series. Accord-
ingly, as a last resort we now apply the Borel summation formula [70] to the power
series (2.27).

For this purpose, we define the regularized power series

Λ̃(s, η) =

∞
∑

n=1

sn

n!
ϕn(η) (2.29)

that has an improved radius of convergence due to the factorial term in the denomi-
nator, then we correct for this term by means of the Laplace integral

ΛB(t, η) = t−1

∫ +∞

0

ds e−s/t Λ̃(s, η) . (2.30)

Where the original series is convergent, the two functions Λ and ΛB are in fact identi-
cal; the latter, however, yields a finite value in a much larger domain. If one is willing
to trust the Borel sum ΛB in this enlarged region, then a puzzling result is found: the
liquid-vapor phase transition disappears from the phase diagram, at least correspond-
ing to reasonable values of the packing fraction and the temperature. In Figure 2.4,
for example, the inverse isothermal compressibility of the fluid is plotted against the
inverse temperature along the η = 0.25 isochore: while the compressibility route of the
Percus-Yevick approximation predicts the compressibility to become infinite around
τ ≈ 0.08, according to the solution of the SCOZA equation evaluated by means of
the Borel summation method the compressibility stays finite even if the tempera-
ture is lowered further. This is clearly at odds with both routes of the Percus-Yevick
approximation and with the results of Monte Carlo simulations (recall Figure 2.1).
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2.4 CONCLUSIONS

Our investigation was prompted by the lack of a theory that would account quanti-
tatively for the liquid-vapor phase transition in a system of sticky hard spheres: the
various routes to the thermodynamics of the fluid starting from the well known and
highly cited Percus-Yevick approximation are inconsistent with each other and agree
only qualitatively with the results of computer simulation. Following the documented
success of the self-consistent Ornstein-Zernike approximation in a number of systems,
we wondered whether enforcing thermodynamic consistency within a class of general-
ized Percus-Yevick approximations for the sticky hard sphere fluid would eventually
lead to an improvement upon the standard Percus-Yevick solution. After struggling
with the ensuing partial differential equation, we conclude that the answer is negative:
the self-consistent Ornstein-Zernike approach proves inadequate for a system with a
sticky interparticle potential. Indeed, if the equation is solved directly a pronounced
sensitivity to the high density boundary condition renders the solution unreliable;
if, on the contrary, the equation is turned into a set of ordinary differential equa-
tions and the low density behavior alone is imposed, the liquid-vapor phase transition
disappears altogether.

Stating that the SCOZA approach is inadequate is merely an observation and does
not shed any light on the reason behind the fact. In the light of the results of Stell and
Williams [133] briefly mentioned in the introduction of the chapter, one may wonder if
the failure must be attributed to the approximation or to the model itself that, we re-
call, is strictly speaking ill-defined if a class of problematic configurations of particles
is not ruled out. Can it be that the (possibly more accurate) self-consistent Ornstein-
Zernike approach exposes the malicious effect of the divergent clusters, which are
simply neglected in the Percus-Yevick approximation? This is improbable, since the
two approximations are quite similar in their handling of the correlation functions of
the fluid. What we deem most probable, instead, is that the failure is a combined
effect of the approximate closure (2.11) and the consistency requirement (2.17). In-
deed, the closure is likely to miss a number of singular features that show up in the
real correlation functions [87]: the isothermal compressibility, being dependent on the
volume integral of the direct correlation function, inherits this flaw. On the contrary,
the Helmholtz free energy of the fluid only depends on the contact value of the cavity
function: when the requirement of thermodynamic consistency is imposed, it has to
compensate for the contributions missing in the compressibility, unnaturally pushing
away the liquid-vapor phase boundary. We stress that this is at the moment a mere,
untested hypothesis.





3
Coulomb Enhancement of

the Depletion Interaction

ABSTRACT

We study how the effective depletion force induced on
spherical colloids by a fluid of smaller particles departs
from the paradigmatic Asakura-Oosawa model when elec-
tric charges are present both on the colloids and the deple-
tant particles. Upon modeling the system as a binary mix-
ture with screened-Coulomb repulsive interparticle interac-
tions, we apply the hypernetted-chain integral equation to
derive the effective pair potential characterizing an equiva-
lent one-component system containing the colloids alone. The
Coulomb repulsion triggers two distinct effects, namely an
increase in the osmotic pressure of the depletant and a con-
densation of the depletant particles near the surface of the
colloids, which contribute in contrasting ways to the effective
potential. By postulating a high structural charge on the col-
loids, an enhancement of the depletion force is predicted. A
consistent semi-quantitative interpretation of experimental
data corroborates the analysis.
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Q
uerying a bibliographic database for the number of citations to the mid-
fifties article by Sho Asakura and Fumio Oosawa [5], a remarkable quantity is
found.∗ This testifies that their simple and clever analysis of the interaction
between two bodies immersed in a solution of macromolecules is almost

universally invoked when some kind of depletion effect is at work, at least as a first
approximation used to develop a qualitative feeling about the phase behavior of the
physical system. However, quite often the assumption of ideality of the depletant
underlying the Asakura-Oosawa result may be poorly met, resulting in too crude
an approximation to be satisfied with. What is more, the two distinctive features of
the Asakura-Oosawa picture, namely (i) that the range of the effective interaction
is precisely equal to the size of the macromolecules, and (ii) that the interaction is
always attractive, with a strength linear in the macromolecules concentration, might
require a substantial revision if the assumption of ideality is dropped. This is the main
reason behind the need for a theory of the depletion effect in correlated depletants.

A first and much studied generalization of the Asakura-Oosawa result addresses
depletants whose particles possess a core, so that the dispersion can be assimilated to
a binary mixture comprising “big” (the colloids) and “small” (the particles making up
the depletant) hard spheres. In such a model the effective colloid-colloid pair poten-
tial, despite retaining its distinctive attractive character at short surface-to-surface
separation, develops an oscillating tail that extends well beyond the range set by
the small particle diameter, so that domains of attraction and repulsion alternate as
the colloids are moved apart. This oscillatory behavior is a distinguishing feature of
the effective interaction brought about by correlations in the depletant and becomes
more and more pronounced the higher the packing fraction of the small spheres is.
This scenario has been independently and consistently confirmed by computer sim-
ulation [21, 36], approximate theories [88], density functional theory [52, 117], and
experiments [31, 119, 16]. If one were to ask if the presence of the cores enhances or
hinders the depletion mechanism compared to the ideal Asakura-Oosawa model, the
answer would not be definite. Indeed, while at low density a hard-sphere depletant
may be regarded as an almost ideal fluid with an improved osmotic pressure, hence
pushing the colloids towards each other in a more effective way, beyond a certain
density packing effects become dominant, and the repulsive shoulders in the potential
eventually take over.

As a further step towards a comprehensive theory that could be applied to a
broad range of colloidal dispersions, a soft tail beyond the hard core may be con-
sidered both in the depletant self-interaction and in the colloid-depletant interaction.
Unfortunately, in this context the understanding of the physical processes at work and
the predictive power of the theory are not as well established as in the previous case,
nor the investigations as numerous. Experiments by Tohver and coworkers [138, 137]
indicate that a colloidal dispersion can actually be stabilized against flocculation by
the addition of a sufficient amount of highly-charged nanoparticles, a phenomenon
completely opposite to what one would expect for neutral nanoparticles through the
usual depletion mechanism. The effect has been confirmed by independent groups by
means of computer simulation [82] and integral equations [69], which showed that a
strong repulsion between the “depletant” particles causes the latter to accumulate
near the surface of the neutral (or less charged) colloids, thus leading to an effec-
tive colloid-colloid repulsion. A broader spectrum of possibilities was found by Louis
and coworkers [84], who investigated how the effective force between two big colloidal
spheres in a sea of smaller spheres depends on the basic big-small and small-small

∗1266 citing articles in the period 1985-2010, according to the Web of Science R© database.
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interactions. The latter were taken of the hard-core Yukawa type and several com-
binations of attraction and repulsion were studied by means of computer simulation
and theory. From their work and a closely-related investigation by Egorov [41], the
following trends emerge. Adding a colloid-depletant repulsion enhances the depletion
attraction among the colloids, since the density of the depletant in the vicinity of the
colloids is reduced; the effect is further enhanced by an additional depletant-depletant
attraction. Conversely, the presence of a colloid-depletant attraction causes the accu-
mulation of the depletant around the colloids, which in turn makes the colloid-colloid
effective force more repulsive; the phenomenon is strongly enhanced by the addition
of a depletant-depletant repulsion but, quite surprisingly, also by the addition of a
depletant-depletant attraction, which combines with the colloid-depletant attraction
to trigger again an increase of the density of the depletant close to the colloids (a
phenomenon termed by the authors “repulsion through attraction”). The previous
description surely makes clear that the situation is quite involved: the effective force
experienced by the colloids depends noticeably on the relative sign and magnitude of
the basic interactions.

The investigation presented in this chapter deals with a phenomenon that could
instead be described as “attraction through repulsion”. In particular, we show that
in a binary mixture of hard spheres interacting through repulsive hard-core Yukawa
potentials – a model for a colloidal dispersion where both the colloids and the particles
of the depletant bear a surface charge of like sign – a substantial enhancement of the
depletion attraction over the ideal Asakura-Oosawa picture may result. The main
goal is to explain a set of experimental results obtained by Piazza and Buzzaccaro,
who actually prompted this work. We start by reviewing the essential features of the
experiment, referring the reader interested in the details to the published article [26].

3.1 EXPERIMENTAL EVIDENCE

The measurements were performed on aqueous suspensions of spherical particles made
of the Hyflon R© MFA fluoropolymer, with an average radius of 90 nm and a polydis-
persity of about 4%, as ascertained by dynamic light scattering. The surface of MFA
latex particles bears a negative charge, mostly due to the to the presence of trapped
fluorinated surfactant used in the emulsion polymerization [105] and, possibly, to
added ionic stabilizers. Although no detailed proprietary information is released by
the producing company, so that a reliable estimate of the amount of charge is not
available, the latter is expected to be significant, as is directly witnessed by the high
intrinsic stability of the dispersions in the presence of a substantial amount of added
salt. Apart from the high intrinsic surface charge, MFA polymer colloids were chosen
for their unique material and optical properties, including: (i) a very low average re-
fractive index, which minimizes multiple scattering effects in optical measurements;
(ii) a partially crystalline structure, that enables the local particle concentration to be
probed accurately through depolarized light scattering; (iii) a high material density,
that allows a precise measurement of the particle volume fraction in the suspensions
and also makes equilibrium sedimentation experiments much less time-consuming
than for other common colloidal latices.

Most of the experiments were performed using as a depletion agent sodium do-
decyl sulfate (SDS), a simple anionic surfactant whose physical properties are well
known [30]. Beyond a critical micellar concentration that depends on the ionic strength
of the solution, SDS forms negatively-charged globular micelles with a pretty constant
hydrodynamic radius a ≃ 2.5 nm. Their aggregation number, that also corresponds
to the structural charge in units of the elementary charge, is around 80-110, vary-
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Figure 3.1: Minimum amount of Triton X-100, expressed in terms of the micelle volume
fraction Φs, required to phase-separate a MFA suspension at a particle volume fraction
Φ = 0.01, as a function of the ionic strength I. The same data are plotted as a function of
the Debye-Hückel screening length in the double-log inset, with a power law fit. Reproduced
from Ref. [26].

ing by no more than 10% in the whole range of experimental conditions sampled.
In order to make a connection with the Asakura-Oosawa regime, a limited number
of measurements was also performed with sodium dodecyl sulfate replaced by Triton
X-100, a widely used non-ionic surfactant representing, to a fair approximation, an
almost-ideal uncharged depletion agent.

Two classes of measurements, involving different physical processes, were carried
out at room temperature: (i) depletion-induced colloid phase separation, and (ii)
colloid sedimentation.

In the first series of experiments, upon fixing the colloid volume fraction and the
ionic strength of the solution – which sets the amplitude and range of the electrostatic
interactions – the concentration of the surfactant was gradually increased until fast
aggregation and settling of the colloids took place in the dispersion. The latter was
interpreted as a spinodal decomposition triggered by an effective, depletion-induced
attraction pushing the colloids together: accordingly, the minimum amount of sur-
factant necessary for the process to be initiated provides an indirect measure of the
efficiency of the attraction. The experiment was repeated varying the ionic strength,
so that the dependence of the effective force on the amount of electrostatic coupling
in the system could be mapped out. The results obtained using as a depletion agent
Triton X-100 and SDS are presented in Figure 3.1 and 3.2, respectively. In order to
make a comparison between the two systems, note that the variables labeling the
axes of the two figures, although being different, are closely related: the amount of
salt appearing on the horizontal axis of Figure 3.2 may be converted to the ionic
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Figure 3.2: Minimum amount of SDS, expressed in terms of the surfactant mass per unit
volume cs, required to phase-separate a MFA suspension at a particle volume fraction Φ =
0.02, as a function of the amount of added NaCl salt. State points where sedimentation
profiles have been measured are shown as open dots. The data are plotted in the double-log
inset as a function of the Debye-Hückel screening length, with a power-law fit. Reproduced
from Ref. [26].

strength, as in Figure 3.1, by simply adding a constant (which is in fact the critical
micellar concentration of SDS) accounting for charged surfactant molecules not bound
to micelles; likewise, the concentration of SDS expressed in terms of mass per unit
volume may be easily converted to micelle volume fraction – the equivalent quantity
used for Triton X-100 – by multiplication by a constant (the volume per unit mass of
SDS micelles).

In the case of the uncharged depletant (Triton X-100), an increase in the elec-
trostatic coupling, that is a lowering of the ionic strength, merely renders the direct
colloid-colloid repulsion longer ranged, while the colloid-surfactant and surfactant-
surfactant interactions are unaffected: accordingly, the depletion attraction weakens
and a greater amount of surfactant is needed to trigger phase separation. This is just
plain common sense. On the contrary, when using as a depletion agent the charged
surfactant (SDS), the outcome is precisely reversed: in this case the electrostatic re-
pulsion between each pair of particles in the system enhances the effective attraction
experienced by the colloids. This is not readily justified with a “back of the envelop”
calculation: remember that in the experiments cited earlier in the introduction highly-
charged nanoparticles would instead stabilize the suspension against aggregation. This
suggests that the end result stems from a delicate balance of the basic interactions in
the mixture.

Before turning to the theoretical modelling, we briefly summarize in Figure 3.3
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Figure 3.3: Main body: compressibility factor Z = βΠ/n of the colloidal suspension, where
Π is the (osmotic) pressure, β the inverse thermal energy and n the number density of the
colloids, plotted as a function of the colloid packing fraction Φ. The ionic strength is fixed
at 20 mM and several values of the surfactant concentration cs, corresponding to the four
state points along the vertical line in Figure 3.2, are considered. Each curve is fitted by the
EOS of the Baxter model [14], and the best fit values of the stickiness parameter τ are given
in the legend. The corresponding sedimentation profiles are shown in the inset. Reproduced
from Ref. [26].

the second class of experiments performed by Piazza and Buzzaccaro: by measuring
with optical techniques the equilibrium sedimentation profile of the dispersion, the
full equation of state of the colloidal particles, which provides a more quantitative
characterization of the effective interaction, could be computed for a number of se-
lected state points. The data have been fitted with the analytical expression of the
equation of state of a system of adhesive hard spheres, derived from the Baxter solu-
tion of the Percus-Yevick integral equation by use of the compressibility route ([14],
see also Chapter 2). Each curve is labeled by the stickiness parameter τ : we see that
this simple model is able to reproduce moderately well the experimental equations of
state within the uncertainties of the data. The agreement is however less satisfactory
than the one obtained in Ref. [27] in conditions of high salt concentration, probably
indicating that in the present case the features of the interparticle interaction poten-
tial are only partly captured by the simplified adhesive hard sphere model. The fitted
values for τ should then be considered just as indicative; nonetheless, they will be
valuable for an assessment of the model that we are about to develop.
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3.2 THEORETICAL ANALYSIS

We now attempt an interpretation of the experimental results in the framework of
classical statistical mechanics and liquid state theory, starting from a microscopic
description of the colloidal suspension. The system is modeled as a binary mixture of
charged particles – colloids and micelles – dispersed in an electrolyte. The mixture
is then mapped onto a one-component fluid model by defining an effective colloid-
colloid interaction mediated by the micelles. This step is accomplished by use of the
hypernetted-chain equation from the theory of simple liquids. Finally, the equation
of state and phase portrait of the effective one-component fluid are determined and
compared with the experimental data.

3.2.1 Electrostatic interactions and model system

We consider a homogeneous dispersion of colloids and micelles in an electrolyte at
room temperature. Here and in the following the subscripts b and s will denote quan-
tities related to the colloids (the “big” species) and the micelles (the “small” species)
respectively, whereas the Greek indices µ and ν will be used to refer either species.
Both the colloids and the micelles are represented as charged hard spherical particles
with diameter σµ, radius aµ = σµ/2 and number density nµ carrying a net nega-
tive charge −Zµe, e being the elementary charge. Considering the colloids as charged
hard spheres is a standard procedure, while, within the DLVO picture, the intermicel-
lar interaction should also include dispersion forces. However, according to previous
studies [30] induced dipole-dipole forces become relevant only at relatively high ionic
strengths: in most of the experimentally investigated range of salt concentration,
Coulomb repulsion dominates. Therefore, to minimize the number of parameters in
the model, micelles are considered as charged spheres, neglecting dispersion forces.

Electrostatic interactions in colloidal dispersions are deeply affected by screening
from mobile charges in the solution, which include: (i) positive and negative ions
resulting from the dissolution of a salt of bulk molar concentration csalt; (ii) the critical
micellar concentration (cmc) contribution due to free SDS surfactant molecules; (iii)
positive counterions released by the colloids and the micelles. In the following we
will neglect the colloid counterions because their contribution is always negligible at
the concentrations we investigated. The relevant parameter governing the amount of
mobile charges is the ionic strength I which, for monovalent ions, is given by (in moles
per unit volume)

I = csalt + cmc +
Zeff
s ns
2NA

, (3.1)

where NA is the Avogadro number and Zeff
s is the number of mobile counterions

released by each micelle. The structure of the counterion cloud around a charged
particle and the resulting screened Coulomb interaction between two charged spheres
in solution is a classical problem of statistical physics [17] which has been studied by
several approaches over the years, ranging from numerical simulations, to Poisson-
Boltzmann equation or phenomenological approaches. A key quantity characterizing
the screening cloud at a surface is the inverse Debye length κ, defined as

κ =
√

8π lBNAI (3.2)

where is lB the Bjerrum length

lB =
βe2

ǫ
, (3.3)
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β is the inverse thermal energy and ǫ is the relative permittivity of the solvent.†

The extent of screening of a charged sphere of radius a embedded in an electrolyte
is then expressed by the dimensionless ratio κa between the sphere radius and the
Debye length. In the parameter range of the experiments, this dimensionless quantity
is always comparable or larger than unity for both micelles and colloids, showing that
the Debye length is the smallest length-scale in our problem.

The electrostatic potential of a single charged particle embedded in an electrolyte
is usually expressed in a dimensionless form φ(r), by use of the thermal potential
1/βe. The geometry of the screening cloud is governed by the Poisson-Boltzmann
equation with a boundary condition at the sphere surface defined by the structural
charge Zstr, quantifying the amount of charge attached to the surface:

dφ(r)

dr

∣

∣

∣

∣

r=a

= −Zstr lB/a
2 . (3.4)

For Zstr ≫ 1 and κa & 1, the screening cloud is dominated by non-linear effects close
to the surface of the sphere: the phenomenon of ion condensation takes place in this
region and the running charge quickly drops from the bare value (Zstr) to a much
smaller limit (Zeff) which depends only on the sphere radius [17]:

Zeff ∼ 4

(

a

lB

)

. (3.5)

This effective charge therefore represents an estimate of the amount of mobile ions in
the screening cloud around the sphere of radius a. Beyond this non-linear region, the
solution of the Poisson-Boltzmann equation is well represented by a simple Yukawa
form

φDH(r) = y
exp[−κ(r − a)]

r/a
(3.6)

with an amplitude y weakly depending on the parameter κa & 1 and approaching
y = 4 for sufficiently large structural charge: the amplitude y provides the effec-
tive surface potential which, in a Debye-Hückel approach, reproduces the asymptotic
behavior of the solution to the full Poisson-Boltzmann equation. In Figure 3.4 this
distinctive behavior of the counterion cloud is illustrated for a representative choice
of the parameters.

The previous discussion on the behavior of the screening cloud suggests that, for
high structural charge and κa & 1, the electrostatic interactions between two spheres
at center-to-center distance r can be represented in a simple Debye-Hückel form

βvDH(r) =
a

2lB
y2

exp[−κ(r − σ)]

r/σ
. (3.7)

provided the surface-to-surface distance r−σ is larger than the size of the condensed
counterionic shell, where non-linear effects prevail. We will therefore model the micelle
through a purely repulsive interaction vss(r) comprising hard sphere exclusion and
Coulomb repulsion, represented in the Yukawa form (3.7). To corroborate this choice,
we directly evaluated the electrostatic interaction between two spheres with a uni-
form charge Zstr on their surface, by numerical integration of the Poisson-Boltzmann
equation in cylindrical symmetry. The results are shown in the inset of Figure 3.4 for

†The dielectric permittivity is the only parameter which contains the properties of the solvent,
considered as an incompressible continuum medium.
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Figure 3.4: Main body: numerical solution of the Poisson Boltzmann equation in spherical
symmetry for large structural charge Zstr → ∞ and κa = 2 (full line). The Yukawa form
(3.6) representing the asymptotic decay at large distances is also shown (dashed line), with
an amplitude y ≈ 4.7; the limiting value y = 4 would be approached for κa ≫ 1. Inset:
comparison between the electrostatic interaction between two spheres with radius as = 2.5
nm and structural charge Zstr = 80 obtained by numerical solution of the Poisson-Boltzmann
equation (symbols) and the corresponding Yukawa potential (3.7) (full line).

a choice of the parameters appropriate to model SDS micelles in a solution with two
different salt concentrations. The effective interaction is well represented by a simple
Yukawa form with amplitude y determined by a simple matching condition on the
decay of the electrostatic potential of a single sphere given by Equation (3.6).

In order to validate these theoretical expectations, we asked Piazza and Buzzac-
caro to perform additional experiments on a solution of SDS micelles alone. Indeed,
following the seminal work by Corti and Degiorgio [30], accurate light scattering mea-
surements at low micelle concentration allow one to extract the dimensionless virial
coefficient B̄s

2, directly related to the screened intermicellar interaction by

B̄s
2 = 12σ−3

s

∫ +∞

0

dr r2 [1− exp (−βvss(r))] . (3.8)

The experimental data are shown in Figure 3.5 together with previous results avail-
able in the literature [30, 136]. To convert the directly accessible SDS weight fraction
into a micelle number density, and then to the micelle volume fraction Φs =

π
6nsσ

3
s ,

it is necessary to estimate the micelle specific volume v̄. Neutron scattering data re-
ported in Ref. [24] suggest v̄ ∼ 1.5 ± 0.2 cm3/g, which we will consistently adopt
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Figure 3.5: Experimentally determined dimensionless virial coefficients of SDS in water
solution at different salt concentrations as a function of κas. Full dots: this work; open
dots from Ref. [136]; open triangles form Ref. [30]. Theoretical results (full line) obtained
via Equation (3.8) by modeling the system as a hard sphere Yukawa fluid. The choice of
parameters is discussed in the text.

in the comparison between theoretical results and experiments. The micelle proper-
ties entering our model potential (3.7) are just radius and effective surface potential
ys, which we derive from known properties of SDS micelles in the following way: (i)
the aggregation number as a function of the ionic strength is deduced from neutron
scattering data [24]; (ii) the structural charge Zstr follows directly attributing a single
negative charge to each molecule; (iii) numerical integration of the Poisson-Boltzmann
equation for each ionic strength provides the parameter ys determining the amplitude
of the Debye-Hückel potential (3.7); (iv) the particle radius is assumed to grow with
the ionic strength as the cubic root of the aggregation number: this keeps the spe-
cific volume v̄ constant. The agreement between our simplified theoretical model and
different sets of experimental data of Figure 3.5 is rather good except at the highest
ionic strengths, where dispersion forces are expected to play a relevant role.

The electrostatic energy of interaction of two colloidal particles, whose radii are
much larger than the screening length, is usually modeled within Derjaguin approxi-
mation [64, 96] as

βvbb(r) =
ab
2lB

y2b log [1 + exp (−κ(r − σb))] (3.9)

in the physically accessible region r > σb. On the basis of the previously discussed
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arguments, we again expect that provided the colloidal charge is high enough, the
parameter yb will be close to its limiting value yb ≈ 4.

Finally, the colloid-micelle interaction, besides the exclusion due to the hard cores,
is again determined by the geometry of the screening cloud. The resulting repulsive
potential turns out to play an important role in the phase diagram of our model:
on physical grounds, we expect a strong, almost hard-sphere, Coulomb repulsion at
distances of the order of the Debye length, followed by a softer repulsion at larger
distances, well represented by a Yukawa form:

βvbs(h) =
abas
lB

ybys
exp(−κh)
ab + as + h

, h
.
= r − ab − as , (3.10)

where h is the distance between the surfaces of the two particles. An analytical expres-
sion embodying both the strong short range repulsion at h . κ−1 and the Yukawa tail
is provided by the Hogg-Healy-Fuerstenau form [61] giving the electrostatic energy of
interaction of two particles with different radii at constant surface charge:

βvbs(h) =
ab as

4lB(ab + as + h)

[

4ybys atanh(e
−κh)−(y2b+y

2
s ) log

(

1− e−2κh
)

]

. (3.11)

It should be stressed that the model we are considering is not intended as a fully
quantitative description of the physical system, due to the crude representation of the
colloid-micelle suspension as a mixture of charged hard spheres and to the adopted
approximation in the description of the screening effects. Nevertheless, we expect that
this theoretical framework is able to capture the essential nature of the interactions
and to reproduce the key features seen in the experiments.

3.2.2 Generalities on effective interactions

When dealing with mixtures whose components are very asymmetric in size, it is
customary to map the system onto an equivalent one-component fluid, which is often
far easier to deal with, comprising particles of the larger species interacting via an
effective potential accounting for the indirect contributions from the neglected com-
ponents. The reduction of a binary mixture to a one-component system is performed
by a partial trace in phase space over the degrees of freedom of the particles belong-
ing to the smaller species. More precisely, let H be the configurational energy of the
mixture:

H(R, r) = Hbb(R) +Hss(r) +Hbs(R, r) , (3.12)

where R = {Ri}i=1...Nb
and r = {ri}i=1...Ns

are the set of coordinates of the big and
the small particles respectively, and the interactions are assumed as pairwise additive:

Hbb(R) =

Nb
∑

i<j

vbb(|Ri −Rj |) , (3.13a)

Hss(r) =

Ns
∑

i<j

vss(|ri − rj |) , (3.13b)

Hbs(R, r) =

Nb
∑

i=1

Ns
∑

j=1

vbs(|Ri − rj |) . (3.13c)

In the semi-grand ensemble, where the number Nb of the big particles and the fugacity
zs of the small particles are fixed, the free energy is expressed as

exp[−βF (Nb, zs, V )] = TrR,r exp[−βH] , (3.14)
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where V is the volume of the system, the temperature dependence is implied and the
trace denotes the statistical average appropriate for the ensemble. By partitioning the
trace over the degrees of freedom of the two species the free energy can be written as:

exp[−βF ] = TrR exp[−βHeff ] , (3.15)

where Heff is an effective Hamiltonian depending on the coordinates of the big par-
ticles alone. It comprises the sum of two terms:

Heff = Hbb +Ω(Nb, zs, V ; R) , (3.16)

the first accounting for the direct interactions, the second being the thermodynamic
potential of a fluid of small particles in the external field imposed by a fixed configu-
ration of the big ones:

exp[−βΩ] = Trr exp[−β(Hss +Hbs)] . (3.17)

It has been shown [37, 38, 39] that the potential Ω can be decomposed in a series of
n-body terms w(i), so that the effective Hamiltonian takes the following form:

Heff = H(0)(Nb, zs, V ) +

Nb
∑

i<j

[

vbb(Rij) + w(2)(Rij ; zs)
]

+

Nb
∑

i<j<k

w(3)(Rijk; zs) + . . .

(3.18)

where Rij and Rijk denote sets of two and three coordinates respectively. H(0) is
called the volume term and accounts for that part of the free energy of the small
particles which does not depend on the position of the big ones. The pair term is the
sum of the direct potential vbb and the indirect contribution w(2) induced by the small
spheres. Three-body and higher order terms are of indirect origin and entirely due
to the species integrated out; in many cases, especially when the asymmetry between
the two components is very large, they can be neglected to a good approximation [83].
The volume term is often neglected as well, since it has a simple form linear in the
volume and in the number of big particles resulting in innocuous shifts in the pressure
and chemical potential which do not affect phase behavior [39].

The one-component fluid with Hamiltonian Heff and the original mixture share
the same structure, as far as correlations between the big particles are concerned. For
example, S(k) = Sbb(k), where the first is the structure factor of the one-component
system, whereas the second is the analogous quantity in the mixture. Thermodynamic
properties are preserved as well, so that any instability in the mixture shows up in the
one-component picture too. These are the main points justifying the approach based
on effective interactions.

3.2.3 Effective potential from HNC equations: method and validation

Determination of the effective potential by direct computation of the partition sum
in Equation (3.17) is often not viable; a common alternative is to obtain the free
energy of the small particles at fixed configuration of the big ones, possibly with a
certain degree of approximation, using other tools such as density functional theory
or perturbation theory. Here we employ an approach based on integral equations from
the theory of simple liquids leading directly to the pair term of the effective potential.
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It is known that in a homogeneous one-component fluid the zero density limit of
the radial distribution function equals the Boltzmann factor of the two-body term in
the interaction potential [57]; the same property holds in the mixture:

lim
nb→0

gbb(r;nb, zs) = exp{−β[vbb(r) + w(2)(r; zs)]}
.
= exp[−βV eff(r; zs)] ,

(3.19)

where gbb is the radial distribution function of the large particles and we defined V eff

as the two-body term of the effective potential. Thus, the latter is known once the
correlations between the particles in the mixture are calculated at the pair level. To
obtain the correlations, we consider the Ornstein-Zernike relations for the mixture [57]
in the limit of vanishing density of the large particles:

hss(r) = css(r) + nrs [css ∗ hss](r) , (3.20a)

hbs(r) = cbs(r) + nrs [cbs ∗ hss](r) , (3.20b)

hbb(r) = cbb(r) + nrs [cbs ∗ hbs](r) ; (3.20c)

here, hµν = gµν − 1 and cµν are the sets of total and direct correlation functions, the
symbol ∗ denotes the three-dimensional product of convolution and nrs is the so-called
reservoir density of the small particles, defined as the density of particles in a system
comprising the small species alone in osmotic equilibrium with the mixture at a given
composition.

Let us briefly discuss the role of the reservoir. In real experiments, it is natural to
fix the composition of the mixture, specifying both densities nb and ns. This means
that, in the semi-grand ensemble (3.14), the fugacity zs of the small species has to be
chosen so that the mean number density of particles equals the experimental value.
From standard thermodynamics, the connection between the two quantities is

ns(zs, nb) = −zs
V

∂βF

∂zs
. (3.21)

The limiting procedure in Equation (3.19) is carried out at fixed fugacity of the small
particles; consequently, the density appearing in the Ornstein-Zernike relations (3.20)
corresponds to the prescribed fugacity in the absence of large particles:

nrs (zs) = lim
nb→0

ns(zs, nb) . (3.22)

This is the definition of the reservoir density. The exact relation between ns and nrs
is nontrivial, as manifest from Equation (3.21); however, an asymptotic result can be
derived:

ns
nrs

= 1 +O(nbσ
3
b) , (3.23)

so that in the regime of low volume fraction of the large particles (Φb = π
6nbσ

3
b) the

two quantities are nearly equal. In all the experiments performed by Piazza and Buz-
zaccaro involving depletion-induced colloid aggregation – whose results are displayed
in Figures 3.1 and 3.2 – the volume fraction of the colloids never exceeds 0.02: accord-
ingly, in the following we will neglect the correction terms and directly compare the
actual, experimentally-measured micelle density to the small-sphere reservoir density
entering the Ornstein-Zernike equations.
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Figure 3.6: Comparison of the effective potential as computed from the HNC equations and
simulation data from Ref. [84]. Big particles behave as hard spheres with diameter σbb,
whereas b-s and s-s pair interactions have a hard-core Yukawa form with contact values ǫµν ,
hard-core diameters σµν and inverse decay lengths κµν . The strengths of the Yukawas are
varied across the various runs (for details see the reference); the other parameters are fixed
as follows: σss = σbb/5, σbs = (σbb + σss)/2, κss = 15/σbb and κbs = 6/σbb; the packing
fraction of the small particles is Φs = 0.1. The symbols denote simulation data, whereas the
lines are the results of HNC calculations.

We supplement the Ornstein-Zernike equations (3.20) with the hypernetted-chain
(HNC) closure [57]:

log gµν(r) = −βvµν(r) + hµν(r)− cµν(r) . (3.24)

The procedure to compute the pair term of the effective potential can be summarized
as follows: (i) first, equation (3.20a) is solved, together with its closure, to obtain the
correlation function hss of the small particles alone; (ii) the result is then inserted into
Equation (3.20b) to get the mixed correlation functions hbs and cbs; (iii) finally, the
sought-for quantity w(2) follows from Equations (3.20c), (3.19) and (3.24):

−βw(2)(r; zs) = nrs (zs) [cbs ∗ hbs](r) . (3.25)

Equations (3.20a) and (3.20b) are solved numerically by means of a simple iterative
scheme [94], and convolutions are computed in Fourier space using a FFT algorithm.

To validate the method, we compare in Figure 3.6 the pair term of the effective po-
tential as obtained from simulations in Ref. [84] with the results of HNC calculations:
the agreement is good, especially when both small-small and big-small interactions
are repulsive (as in the case of interest).

3.2.4 Thermodynamic properties and phase behavior of the dispersion

Once the term w(2) is known, the effective pair potential V eff – which depends para-
metrically on the small-sphere reservoir density nrs through the fugacity zs – can be
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computed by means of Equation (3.19). Then, the thermodynamic properties of the
equivalent fluid comprising the big particles alone can be obtained. When dealing
with short-ranged interactions in colloidal systems, the Noro-Frenkel extended law of
corresponding states is usually invoked: the compressibility factor is a universal func-
tion of the reduced temperature, density and of the reduced second virial coefficient
B̄b

2 , but is largely independent of the specific shape of the potential [95]. Thus, the
properties of the system of interest can be mapped onto those of an adhesive hard
sphere fluid with a stickiness parameter τ corresponding to the given B̄b

2 [14]. As may
be recalled from Chapter 2, values of τ close to zero signal strong adhesion between
the big particles, whereas large values point out a behavior akin to hard spheres. The
reduced second virial coefficient of the big particles and the stickiness parameter are
defined by (see also Equation (2.2)):

B̄b
2 = 12σ−3

b

∫ +∞

0

dr r2
{

1− exp
[

−βV eff(r;nrs )
]}

; (3.26)

τ =
1

4− B̄b
2

. (3.27)

The adhesive hard sphere model has been extensively investigated in the past and its
phase diagram is by now well known leading, via the Noro-Frenkel scaling, to a simple
way to investigate the thermodynamic properties of this class of systems.

If the experimentally observed aggregation of the colloidal particles is interpreted
as a thermodynamic instability driven by the divergence of the isothermal compress-
ibility, then the experimental transition points shown in Figures 3.1 and 3.2 should
correspond to the spinodal boundary at the given colloid volume fraction (Φb = 0.01
in the former case, Φb = 0.02 in the latter). As may be recalled by looking at Fig-
ure 2.1, in the adhesive hard sphere model points of the spinodal line at such a low
density have not been directly investigated by numerical methods, while analytical
approximations, like the Percus-Yevick solution, are not reliable. However, by extrap-
olating the Monte Carlo simulation data in Ref. [91] we can approximately locate the
transition points at a stickiness parameter in the range (0.04− 0.08).

3.2.5 Comparison with experimental data

We now turn to the evaluation of the effective colloid-colloid interaction which orig-
inates within the model discussed in Section 3.2.1, and make connection with the
experiments. Since depletion effects in interacting mixtures have been already con-
sidered in other systems, as described in the introduction of the chapter, let us start
by pointing out a number of differences between the present case and the works pre-
viously cited: (i) in Refs. [84, 82, 69] the big particles behave as pure hard spheres,
whereas here an additional electrostatic repulsion is considered; (ii) the big-small in-
teraction in the present model is repulsive, while in Ref. [82] is taken as attractive;
(iii) in contrast with Refs. [84, 69], the amplitudes of the bare interactions cannot be
varied independently in our model, since they exhibit a mutual dependence on the
set of parameters.

We first consider the case of vanishing charge of the depletant, appropriate for
describing charged MFA colloids in non-ionic surfactant, for which the experimental
results depicted in Figure 3.1 apply. Due to the uncertainties in the modeling of the
interactions between Triton micelles, we limit our investigation to the simplest case
of ideal depletant, by neglecting excluded-volume and dispersion forces among the
small particles. Thus, the effective interaction equals the sum of an attractive, salt-
independent Asakura-Oosawa term and the repulsive screened potential (3.9); the
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Figure 3.7: Reservoir density of an ideal depletant required to induce an effective colloid-
colloid interaction with a prescribed stickiness parameter τ (see Eq. (3.27)) as a function of
salt concentration. The parameters are fixed as follows: σb = 180 nm, as = 4.2 nm, yb = 0.4
in order to mimic the MFA-Triton system whose phase behavior is depicted in Figure 3.1,
although we do not attempt a quantitative interpretation of experimental data.

amount of surfactant required to drive phase separation is expected to rise as the salt
concentration is lowered, as clearly seen in the experiments. This behavior is indeed
consistently reproduced in the simple AO/Coulomb system, as shown in Figure 3.7.
We stress that this minimal model is intended merely as an exemplification of the
simple and intuitive features of the effective potential in the presence of the uncharged
depletant: we do not attempt any quantitative interpretation of the experimental data.
The remainder of the discussion will instead focus on a more thorough analysis of the
unexpected features brought about by the charged depletant.

We thus turn to the model relevant for MFA colloids in the presence of SDS ionic
depletant. In Figure 3.8 we show how the effective interaction is affected by the surface
potential ys of the small particles, for a fixed choice of the other parameters. When ys
is small, the interaction has a weak attractive well, while at small distances the direct
Coulomb repulsion between the colloids prevails.‡ As ys is increased, several features
appear: (i) the effective potential becomes more and more attractive, witnessing strong
adhesion of the colloids; (ii) a repulsive barrier, whose height increases with the charge,
develops in correspondence to higher values of the separation between the particles;
(iii) secondary maxima and minima appear for even larger distances. The deepening
of the attractive well can be understood in a naive mechanical picture of the depletion
mechanism: once two big particles are close enough, the pressure exerted by the sea of
small particles, increasing with the charge, has to be overcome for them to be pulled
apart. The growth of the barrier is due to an increase in correlations between the two
species, as can be appreciated by looking at the mixed pair distribution function in
the inset of the figure: if the charge of the small particles is raised, they accumulate
more and more in the proximity of the big ones; since the overlapping of such charged
clouds costs energy, the approach of two big particles is disfavored. This behavior

‡Even if the particles have a hard core, we do not see the oscillatory behavior typical of hard-sphere
mixtures since the packing fraction of the depletant is low.
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Figure 3.8: Effective colloid-colloid interaction for different surface potential of the small
particles, the other parameters being fixed at as = 2.5 nm, csalt = 20 mM, yb = 4, Φr

s =
0.05. Distances are expressed in units of the diameter of the small particles. In the inset, the
big-small pair distribution function is shown.

has already been described in the literature: it is termed “accumulation repulsion”
in Ref. [84] and “nanoparticle haloing” in Refs. [137, 82, 69]. Our results confirm the
previous observations and provide an independent evidence for the phenomenon. In
the present case the accumulation takes place at a certain distance from the surface
of the big particles and not right at contact: this is due to the unbound character of
the potential (3.11), which prevents the touching of a big particle with a small one.
We performed analogous calculations replacing the potential with a simple hard-core
Yukawa having finite value at contact: in that case, accumulation happened right on
the surface of the big particles and the repulsive barrier shifted towards contact as
well, in agreement with Ref. [84].

In Figure 3.9 the dependence of the stickiness parameter of the effective potential
on the ionic strength of the solution and on the density of the small particles is shown.
To correctly evaluate the ionic strength, according to Equation (3.1), we included the
contribution due to the counterions released by the micelles by use of Equation (3.5)
to estimate the number of counterion per micelle. Lowering the salt concentration,
the bare electrostatic interactions become longer-ranged and the effective potential
becomes more attractive, leading to a smaller τ : this trend is consistently seen in
the investigated range of parameter space. The plot in Figure 3.9 also shows that, at
fixed ionic strength, raising the volume fraction of the small particles always causes
the effective potential to become more attractive§: as before, this agrees with the ex-
perimental evidence. By using the previously discussed value v̄ = 1.5 cm3/g for the

§This remains true until a high-concentration regime is entered, not depicted in the figure nor
sampled in the experiments, where the trend reverses due to correlation and packing effects of the
small particles.



38 ENHANCED DEPLETION

0 50 100 150 200

csalt (mM)

10−3

10−2

10−1

100

101

st
ic
k
in
es
s
p
ar
am

et
er
,
τ

Φr

s
= 0.03

0.04

0.05

0.1 0.2 0.3 0.4 0.5 0.6
τ

0.5

0.6

0.7

ct
h s
/c

e
x
p

s

Figure 3.9: Stickiness parameter τ of the effective colloidal one-component fluid as a func-
tion of the ionic strength of the solution at several volume fractions of the small particles.
The inset shows the ratio between the theoretical estimate cths and the experimental cexps

surfactant concentration corresponding to a given τ . Details in the text.

specific volume of SDS micelles, we can directly compare these results with the exper-
imentally determined equations of state of Figure 3.3. The curves shown in Figure 3.9
provide the “theoretical” micelle concentration cths corresponding to a given value of
the stickiness parameter τ . In the inset we plot the ratio between this estimate, which
follows from the analytical representation of the effective interaction between colloids
mediated by the micelles, and the experimental concentration cexps appearing in Fig-
ure 3.3. It is apparent that the theoretical estimates consistently underestimate the
experimental results. The discrepancy may be partly attributed to the approximate
representation of the experimental equations of state by the Baxter form: as already
pointed out, the data shown in Figure 3.3 suggest that the equation of state cannot be
accurately represented in terms of an adhesive hard sphere model. However, to obtain
a fully satisfactory agreement, we should also improve our modeling of electrostatic
effects, particularly when strong asymmetries both in size and charge are present in
the system.

The dependence of τ on the physically accessible quantities (csalt, cs) has been
evaluated from our effective colloid potential via Equation (3.27) at different ionic
strengths and surfactant concentrations. The results of the predicted transition line,
evaluated for τ = 0.02 and τ = 0.04, are shown in Figure 3.10 together with the
experimental data of Figure 3.2. While the behavior at low ionic strengths is well
reproduced, the theoretical curve seems to saturate before the experimental data at
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Figure 3.10: Comparison between the experimental transition line and the loci of diverging
compressibility from the mapping onto the Baxter model. The SDS concentration beyond
which the colloids aggregate is shown as a function of the amount of salt added to the
dispersion. The two curves correspond to to different values of the critical τ in the Baxter
model.

high salt concentration¶ and, consistently with the previous analysis of the equation
of state, our model overestimates the attraction between colloids. Due to the uncer-
tainties in the parameters and the gross simplifications of the adopted model only a
semi-quantitative agreement can be obtained. However, the experimentally observed
trend is clearly present also in our model which in fact displays an enhanced tendency
towards colloid aggregation when the electrostatic repulsion is poorly screened, that
is at low ionic strength. This behavior is indeed robust and does not depend on the
fine tuning of the model parameters.

3.3 CONCLUSIONS

The experiments performed by Piazza and Buzzaccaro and their theoretical interpre-
tation presented in this chapter display new and unexpected features in the phase dia-
grams of colloidal suspensions in the presence of an interacting depletant. In charged
surfactants, the repulsive potential can be modified by the addition of salt whose
role is to screen the structural charge of the surfactant. The Coulomb interaction
gives rise to a larger pressure in the micellar solution but, at the same time, favors
the accumulation of micelles near the colloids, leading to increasing correlations and
then to more structured effective colloid-colloid interactions. In the region of param-
eter space experimentally investigated, the net result is an enhanced depletion force,
whereby a small amount of surfactant is able to trigger instability among colloids
leading to particle phase separation. An accurate modeling of the colloidal suspension
should include many physico-chemical details which affect both micelle-micelle and
micelle-colloid interactions. However, an extremely simple model including only elec-
trostatic effects allows to reproduce the experimentally observed trends. A consistent

¶Dispersion forces between SDS micelles, which have been neglected, may play a role in this
regime.
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semi-quantitative interpretation of the virial coefficients, the equations of state and
of the transition points as a function on the ionic strength can be achieved, with no
fitting parameters, by requiring a large structural charge on the colloids. The compe-
tition between screened Coulomb repulsion and depletion attraction leads to smooth
effective colloid-colloid interactions depending quite sensitively on variations in the
electrolyte properties. By tuning the ionic strength, it is then possible to enhance
or inhibit colloidal aggregation, leading to a direct way to tailor phase diagrams of
colloidal suspensions.



4
On the Continuity between the

Depletion Interaction and the

Critical Casimir Effect

ABSTRACT

We develop a theoretical framework that aims to describe
on a common basis the depletion interaction and the critical
Casimir effect. Using the methods of density functional the-
ory we derive a formally exact expression for the energy of
interaction of two parallel walls immersed in a fluid with ar-
bitrary interparticle interactions. Our result holds even in the
neighbourhood of a critical point of the fluid, where the lat-
ter is strongly correlated. The density functional approach
is already known to give accurate results when applied to
the class of the depletion interactions. By performing a long-
wavelength analysis of the density fluctuations and using a
scaling form of the free energy of the fluid in the critical re-
gion, we show that it also accounts quantitatively for the
scaling behavior of the critical Casimir force that is usu-
ally derived along the critical isochore by means of field-
theoretical methods; as a bonus, we are able to compute
the scaling behavior off the critical isochore as well. We ar-
gue that depletion-induced and critical-Casimir forces have
a common origin and merge continuously as the thermody-
namic state of the host fluid is varied. Experimental evidence
supports our findings.
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T
he main characters in this chapter are the depletion interaction and the
critical Casimir force. The former is surely familiar, since it formed the
subject of most of the previous discussion. The latter, on the contrary, was
barely mentioned in the prologue and thus deserves a brief introduction.

The critical Casimir force belongs to the class of fluctuation-induced phenomena,
the most famous of which is arguably the quantum-electrodynamical Casimir-Polder
force [29] first predicted in 1948. In this well-known example two parallel, uncharged,
conducting plates are pushed together by an attractive force arising from the confine-
ment of the quantum vacuum fluctuations of the electromagnetic field. But fluctua-
tions are not a prerogative of quantum field theory: according to statistical physics any
condensed-matter system, for instance a fluid, is perpetually affected by the thermal
agitation brought about by the atomic and molecular motion. As a consequence, the
properties of the fluid – let us think about the density just to clarify things – fluctuate
in space and time. The length scale of the spatial fluctuations, namely the correla-
tion length ξ, is usually in the order of the molecular diameter σ, hence extremely
small if compared to the extent of a macroscopic sample. Any fluctuation-induced
effect is bound to the same scale and disappears at larger ones; in addition, as long
as ξ ∼ σ, one expects the effect to depend heavily on the details of the intermolecular
interaction.

However, there are cases in which the fluctuations become relevant and detectable
even at scales much larger then the molecular one. For instance, if the fluid has a
critical point associated with a second-order phase transition, then as the latter is
approached a collective behavior emerges which causes the system to become corre-
lated over a macroscopic length scale. Moreover, as the correlation length grows much
larger than the molecular diameter, the thermodynamic properties of the system free
themselves from the details of the microscopic interaction. This leads to the concept
of universality, which is undoubtedly the cornerstone of the theory of critical phe-
nomena [131]. For example, in all systems belonging to the three-dimensional Ising
universality class, including most classical fluids, the correlation length diverges as
the critical temperature Tc is approached (along the critical isochore) according to
the very same power law

ξ ∼ ξ0 |1− T/Tc|−ν , (4.1)

where ν ≈ 0.63 is a so-called critical exponent characterizing the scaling behavior of
the class and ξ0 a non-universal amplitude. The physical quantity whose fluctuations
are magnified upon approaching the critical point might differ from system to system
and is properly called the order parameter. We will later base our discussion on a
fluid undergoing a liquid-vapor phase transition, for which the order parameter is the
particle density.

The previous remarks suggest that any force arising from the confinement of ther-
mal fluctuations in a fluid – a phenomenon also named after Casimir due to its
connection with the electrodynamical effect – despite being usually negligible in non-
critical conditions, may become not only relevant, but also universal as the critical
regime is entered. Indeed, a pair of plates placed a distance h apart inside a fluid
are subject to a fluctuation-induced force per unit area F that, provided ξ, h ≫ σ,
adheres to the general law

F (h) =
kBT

h3
Θ(h/ξ) , (4.2)

where kB is Boltzmann’s constant, T is the temperature and Θ(·) is the so-called
scaling function for the critical Casimir effect in planar geometry [59]. This function



MECHANICAL PRELUDE 43

is universal in the sense that it depends only on certain gross features of the boundary
conditions imposed by the plates.

Depletion interactions and fluctuation-induced forces are generally believed to
bear little relation to one another and, as such, they are approached with quite
different methods. In the former case microscopic models and liquid state theories,
either based on distribution functions or density functionals, are employed. In the
latter case the approach is often more abstract. Indeed, the general form (4.2) was
first derived in 1978 by Michael Fisher and Pierre Gilles de Gennes using finite-size
scaling arguments [47]. Moreover, the calculation of the scaling function is usually
done, by virtue of the universality property, with reference to a fictitious three-
dimensional Ising model using either field-theoretical methods [75] or Monte Carlo
simulations [139, 140]. This situation is sort of odd, since both interactions are in the
end solvent-mediated effects issuing from the confining of a fluid between two surfaces.
Therefore, we believe that the critical Casimir effect can be fruitfully described using
the same microscopic approach usually employed when dealing with the depletion in-
teraction. What is more, we believe that the Casimir effect is just a kind of depletion
“gone critical”. We now embark in the search for a common description of the two
effects.

4.1 MECHANICAL PRELUDE

We consider a pair of parallel, infinite plates (or walls, we will use the two terms inter-
changeably) placed a distance h apart inside a generic fluid made up of particles with
diameter σ. Due to symmetry reasons, the situation is effectively one-dimensional:
the only relevant direction is the one orthogonal to the plates, that will be taken as
the z axis. The origin is fixed at the midpoint between the two plates, so that they
are positioned at z = ±h/2. For the plates to have any detectable effect on the fluid
(and viceversa) an interaction between each plate and a generic particle in the fluid,
depending on the distance d of the particle from the plate, must exist. We denote
by wL(d) and wR(d) the interaction with the left and right wall respectively, and we
assume for convenience that they are both even, continuous and differentiable; apart
from that, they can be rather different, so that we do not impose any left-right sym-
metry to the problem. The total external potential acting on a generic fluid particle
is then

φh(z) = wL

(

z +
h

2

)

+ wR

(

z − h

2

)

, (4.3)

where the subscript emphasizes that it depends parametrically on the position of the
plates. The wall-particle interaction will be taken as short-ranged:

wL,R(d) = 0 , |d| > d0 , (4.4)

with a range d0 in the order of the particle diameter σ; this is indeed reasonable if the
two plates do not bear a net electric charge. Moreover, we assume that the distance
between the plates is such that no particle feels the presence of both at the same time:

h > 2d0 ∼ σ . (4.5)

This requirement, on the contrary, has no particular physical significance: it is merely
a matter of convenience, since it simplifies considerably the expressions later to be
derived. Note, however, that as a consequence our results, even before any approxi-
mation is made, will not formally hold for distances between the plates comparable
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with or smaller than the size of a fluid particle. This might seem a serious drawback,
since depletion forces are especially relevant at such length scales. However, the flaw
is readily amended: it is well known that the methods we are going to use, based on
microscopic density functionals, are apt to describe accurately the plate-plate effective
interaction even in the regime h . σ [121]. Since we focus instead on showing that
by the same methods the scaling form of the long-range, critical Casimir force is also
recovered, we willingly trade the validity of the theory in the aforementioned interval
in favor of an overall-gained simplicity. If this is done, the external potential (4.3)
acting on the particles separates as

φh(z) =

{

wL

(

z + h
2

)

z < 0 ,

wR

(

z − h
2

)

z > 0 .
(4.6)

The force experienced by the two walls is readily found by a simple mechanical
argument. A generic fluid particle i, with a plate-orthogonal position zi, exerts on
either wall an instantaneous force

fLi = w′
L

(

zi +
h

2

)

, fRi = w′
R

(

zi −
h

2

)

, (4.7)

where the prime denotes differentiation with respect to the spatial coordinate. Hence,
the total average forces per unit surface FL and FR acting on the left and right wall
respectively are

FL(h) =

∫ 0

−∞

dz ρh(z)w
′
L

(

z +
h

2

)

, (4.8a)

FR(h) =

∫ +∞

0

dz ρh(z)w
′
R

(

z − h

2

)

, (4.8b)

where ρh(z) is the equilibrium, statistically-averaged number density of the fluid par-
ticles. The condition of macroscopic, mechanical equilibrium in the fluid can be stated
in terms of the normal component p⊥ of the pressure tensor∗ as [122]

dp⊥(z)

dz
= −ρh(z)φ′h(z) =

{

−ρh(z)w′
L

(

z + h
2

)

z < 0 ,

−ρh(z)w′
R

(

z − h
2

)

z > 0 .
(4.9)

Equations (4.8) and (4.9) together lead to the simple and intuitive result

FL(h) = p⊥(−∞)− p⊥(0) ,

FR(h) = p⊥(0)− p⊥(+∞) ;
(4.10)

in other words, the force per unit area exerted on a wall just depends on the differ-
ence between the normal pressure evaluated at the midpoint between the walls and
the same quantity evaluated at infinity. We stress that the previous result holds irre-
spective of the thermodynamic state of the fluid and, if extrapolated beyond the lower
bound (4.5), it gives the correct Asakura-Oosawa limit. Moreover, since far from the
walls the normal pressure must approach the bulk value p0:

p⊥(−∞) = p⊥(+∞) = p0 , (4.11)

∗In the slab geometry considered here, the pressure tensor has the diagonal form (p‖, p‖, p⊥), the
component p⊥ corresponding to the direction perpendicular to the walls.
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we see that the two forces are equal in magnitude and opposite in direction:

FR(h) = −FL(h)
.
= F (h) , (4.12)

where we elected the force acting on the right wall as the representative fluctuation-
induced force F (h). According to the chosen convention a negative force means attrac-
tion between the walls, whereas a positive force indicates repulsion. Finally, although
F (h) is given exactly by Equation (4.8b), it may as well be written in the more
symmetric form

F (h) =
1

2

∫ +∞

−∞

dz ρh(z)

[

w′
R

(

z − h

2

)

− w′
L

(

z +
h

2

)]

. (4.13)

4.2 DENSITY FUNCTIONAL METHODS

In order for the previous equation to be of any avail the equilibrium density profile
ρh(z) of the fluid must be computed. This is most easily done within the density
functional formulation of the statistical mechanics of inhomogeneous fluids [57]. We
work in a grand-canonical ensemble at fixed chemical potential µ, so that a one-to-one
correspondence exists between the external potential due to the presence of the walls
and the equilibrium density profile of the fluid. This property, together with the form
of Equation (4.13), implies that the force per unit surface F (h) may be expressed
solely in terms of ρh(z), without explicit reference to the particle-wall potential.

The fundamental link between the external potential and the equilibrium density
profile is provided by the grand potential functional ωh[n(z)], which depends on a
trial density profile n(z). Owing to the particular geometry of the problem, we define
all thermodynamic potentials per unit cross-sectional area along the z direction. The
grand potential functional may then be written in terms of the intrinsic Helmholtz
free energy functional a[n(z)] as

ωh[n(z)] = a[n(z)] +

∫ +∞

−∞

dz n(z)

[

wL

(

z +
h

2

)

+ wR

(

z − h

2

)

− µ

]

. (4.14)

The basic result of density functional theory states that the grand potential functional
is minimized by the equilibrium density profile, and the minimum coincides with the
actual grand potential Ωh of the system:

ωh[n(z)] ≥ ωh[ρh(z)] = Ωh for all n(z) ; (4.15)

The minimization of the functional translates into the equation

δa[n(z)]

δn(z)

∣

∣

∣

∣

n(z)=ρh(z)

+ wL

(

z +
h

2

)

+ wR

(

z − h

2

)

= µ , (4.16)

that has to be solved for ρh(z) with the two asymptotic boundary conditions

lim
z→−∞

ρh(z) = lim
z→+∞

ρh(z) = n0 , (4.17)

n0 being the bulk, unperturbed density of the fluid far from the walls. Note that the
bulk density and the chemical potential are not independent, since they are related
by the thermodynamic identity

µ =
δa[n(z)]

δn(z)

∣

∣

∣

∣

n(z)=n0

=
∂f(n)

∂n

∣

∣

∣

∣

n=n0

, (4.18)
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where we denote by f(n) the Helmholtz free energy per unit volume of the homoge-
neous fluid as a function of its density.†

Equation (4.16) allows, as we predicted, to eliminate any explicit reference to the
wall-particle interaction from the expression (4.13) of the force, leading to

F (h) =
1

2

∫ +∞

−∞

dz sgn(z) ρ′h(z)

[

δa[n(z)]

δn(z)

∣

∣

∣

∣

n(z)=ρh(z)

− µ

]

, (4.19)

where sgn(z) = |z|/z is the sign function. Although the latter is discontinuous, the
integrand in Equation (4.19) is a continuous function since the quantity within square
brackets vanishes upon approaching z = 0.

As a further remark, note that owing to the minimum condition (4.16) the deriva-
tive of the grand potential Ωh with respect to the interplate distance h is

dΩh

dh
= −1

2

∫ +∞

−∞

dz ρh(z)

[

w′
R

(

z − h

2

)

− w′
L

(

z +
h

2

)]

= −F (h) . (4.20)

In other words, the contribution to the grand potential of the system ascribable to
the concurrent presence of the two walls simply equals the minimum, quasi-static
work that one has to perform to bring the walls from infinite distance to their actual
position.

4.3 LONG-WAVELENGTH ANALYSIS

The key ingredient missing to put all the machinery devised in the previous sections
to work is an expression for the intrinsic Helmholtz free energy functional a[n(z)],
which embodies the properties of the fluid. Since we aim to describe a force F (h) due
to fluctuations happening on a length scale much larger than the individual particle
size σ, we adopt a functional apt to represent long-wavelength density modulations. In
particular, we choose a local density approximation plus a square gradient correction:

a[n(z)] =

∫ +∞

−∞

dz

[

b

2
|n′(z)|2 + f(n(z))

]

, (4.21)

where the prime denotes as usual differentiation with respect to the spatial coordinate
and f(n) is the Helmholtz free energy per unit volume of the homogeneous fluid
already introduced. The parameter b measures the stiffness of the fluid with respect
to variations in the density. Clearly this functional is inadequate to describe the strong
oscillations taking place close to a wall, nevertheless it correctly takes into account the
overall monotonic decay of the density profile over distances much larger than σ. In
order to get further physical insight on the structure of the functional we may switch
to the language of correlation functions: the form (4.21) then corresponds to a small-
wavevector truncation of the direct correlation function c(r) of the homogeneous fluid

ĉ(q) = ĉ(0)− b

kBT
q2 , (4.22)

where the hat denotes the three-dimensional Fourier transform.‡ As a consequence,
the stiffness parameter b is proportional to the second moment of the correlation

†We drop the temperature dependence of the free energy for notational convenience.
‡This can be checked by recalling that the direct correlation function is the second functional

derivative of the excess Helmholtz free energy (divided by −kBT ) with respect to the density profile.
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function:

b =
kBT

6

∫

dr r2 c(r) . (4.23)

Note for later reference that b is dimensionally an energy times a length raised to
the fifth power. We finally observe that the structure of Equation (4.21) is consistent
with the long-wavelength limit of accurate density functionals commonly used in the
literature [32].

If the intrinsic Helmholtz free energy functional is inserted into Equation (4.19)
and the boundary conditions (4.17) are taken into account, the expression of the force
acting on the walls may be written as

F (h) = [f(n0)− f(ρh(0))]− µ [n0 − ρh(0)] +
b

2
[ρ′h(0)]

2
. (4.24)

Thus, the force can be expressed solely in terms of the Helmholtz free energy of
the homogeneous fluid, the bulk fluid density, and the equilibrium density profile
evaluated, together with its first spatial derivative, at the midpoint between the two
plates. Note the connection with Equation (4.10). In the previous expression the
spatial derivative of the density profile appears squared, which implies that the force
is correctly invariant under a reflection about the z = 0 plane. If the density profile
itself is invariant under the same operation, that is if the two walls are alike, the last
term in Equation (4.24) vanishes.

The minimum condition (4.16) characterizing the equilibrium density profile, once
the particular form of the Helmholtz free energy functional is taken into account,
becomes

−bρ′′h(z) +
∂f(n)

∂n

∣

∣

∣

∣

n=ρh(z)

+ wL

(

z +
h

2

)

+ wR

(

z − h

2

)

= µ . (4.25)

Where the wall-particle potential vanishes, that is to say in each of the three spatial
intervals Ii

I0 =

(

−∞, −h
2
− d0

)

,

I1 =

(

−h
2
+ d0,

h

2
− d0

)

,

I2 =

(

h

2
+ d0, +∞

)

,

(4.26)

the previous equation has a first integral Ci:

b

2
[ρ′h(z)]

2
+ Γ(ρh(z)) = Ci , Γ(n)

.
= µn− f(n) . (4.27)

In particular, we see from Equation (4.24) that in the central interval the constant is
closely related to the force acting on the walls, so that the first integral may there be
rewritten as

b

2
[ρ′h(z)]

2
+Π(ρh(z)) = F (h) , z ∈ I1 , Π(n)

.
= Γ(n)− Γ(n0) . (4.28)

Interestingly, this statement is formally equivalent to the conservation of mechanical
energy in the one-dimensional motion of a fictitious particle with mass b in an external
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potential Π. Since the latter is a linear function of a free energy density and hence
is likely to be smooth and regular, the equilibrium density profile is expected to be
smooth and regular as well in the interval I1 – the same of course holds for z ∈ I0, I2.
Conversely, for |z±h/2| < d0 the density profile may vary wildly as a consequence of
the interaction with the walls. We may define in the enlarged interval Ī1 = [−h/2, h/2]
a smoothed equilibrium density profile ̺h(z) as the unique solution to Equation (4.25)
in the absence of any wall-particle potential that coincides with the wall-dependent
equilibrium density profile ρh(z) in the interval I1. We may then define the two wall
contact densities nc

L
, nc

R
as

nc
L
= ̺h

(

−h
2

)

, nc
R
= ̺h

(

+
h

2

)

, (4.29)

so that they are a kind of smooth extrapolation (in the sense defined above) to the
surface of the walls of the equilibrium density profile. Note that as such they are
functions of the bulk density n0 and of the distance between the walls h.

Owing to the previous definitions the calculation of the fluctuation-induced force
acting on the walls can be restated as a boundary value problem. For later convenience,
we re-express any density variable n in terms of the deviation δn = n− n0 from the
bulk value n0, so that the the pseudo-potential Π takes the alternative form

Π̃(δn) = Π(n0 + δn) = δn
∂f(n)

∂n

∣

∣

∣

∣

n=n0

− f(n0 + δn) + f(n0) . (4.30)

Accordingly, an implicit relation between F and h is provided in terms of the wall
contact densities nc

L
, nc

R
by the boundary value problem



































b

2
[δn′(z)]

2
+ Π̃(δn(z)) = F , z ∈

[

−h
2
,
h

2

]

,

δn

(

−h
2

)

= δnc
L
,

δn

(

+
h

2

)

= δnc
R
,

(4.31)

whose solution is the deviation from the bulk of the smoothed equilibrium density
profile, that is ̺h(z)− n0.

4.4 DEPLETION AT CRITICALITY

In the critical region the free energy of a homogeneous, simple fluid, when expressed in
terms of two suitably-chosen scaling fields related to the density n and the temperature
T , may be written in a universal form [131]. The first scaling field ε can be chosen as
the reduced temperature

ε =
T − Tc
Tc

, (4.32)

where Tc is the critical temperature of the fluid. The choice of the second field u
can be, on the contrary, rather subtle. In a lattice fluid model, where particle-hole
symmetry holds, it simply measures the distance of the density from the critical one:
u = n− nc. This indeed makes sense, since in this simple case the coexistence curve
is symmetric about the critical isochore; the latter also coincides, above Tc, with the
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locus n̄(T ) of the maxima of the isothermal susceptibility χT :

χT

.
=

(

∂2f(T, n)

∂n2

)−1

,
∂3f(T, n)

∂n3

∣

∣

∣

∣

n=n̄(T )

= 0 . (4.33)

In a real fluid the coexistence curve can be noticeably skewed, so that the critical
isochore and the locus n̄(T ) do not coincide, although they both end at the critical
point [142]. The vanishing of the scaling field u, whatever its definition, identify pre-
cisely the line n̄(T ), which is the most natural direction of approach to the critical
point, namely the one dictated by the shape of the coexistence curve and the sym-
metry of the free energy itself. In the following we will consider a scaling field linear
in the density of the fluid, so that necessarily

u(T, n) = n− n̄(T ) . (4.34)

That this is a sensible choice, besides being the simplest, can be checked at the mean-
field level, in which case a power expansion of the free energy about the locus of the
maxima of the susceptibility naturally leads to a scaling form depending on a field u
defined in accordance to Equation (4.34).

With the two scaling fields just defined and adopting the notation of Pelissetto
and Vicari [102], the free energy density f(T, n) may be written in the critical region
as

f(T, n) = f(T, n̄(T )) + kBT a11 ε
2−α Ψ

(

b1 u(T, n) ε
−β
)

, (4.35)

where α, β are the critical exponents governing the divergence of the specific heat and
the shape of the coexistence curve, respectively; Ψ(·) is a universal scaling function;
a11, b1 are non-universal metric factors with the dimensions of the inverse of a volume
and of a volume, respectively.

In order for the long-wavelength analysis developed in Section 4.3 to hold in the
critical region, the stiffness constant b must stay finite and approximately constant
upon approaching the critical point. Strictly speaking this is not the case, since the
Fisher exponent η is positive and not null in three dimensions, so that the direct
correlation function c(r) has at criticality the asymptotic behavior [46]

c(r) ∼ r−5+η , r → +∞ , (4.36)

causing the second moment (4.23) to be infinite. However, a reliable estimate for the
exponent is η ≈ 0.04 and we can safely disregard such a weak singularity if we are
not exceedingly close to the critical point. Therefore, in the following we explicitly set
η = 0.

The scaling behavior of the free energy suggests that in the critical region it is
advantageous to express the various physical variables in terms of rescaled, adimen-
sional quantities. For this purpose we build using the stiffness constant b, the metric
factors b1 and a11, the reduced temperature ε and the thermal energy kBT

� a scaling particle density Ds
.
= (b1)

−1 εβ ;

� a scaling energy density Es
.
= E0 ε

2−α , E0 = kBT a11;

� a scaling length Ls
.
= L0 ε

−ν , L0 =
√

b
b21 a11 kBT

, where ν = 2β = (2− α)/3 is

the critical exponent governing the divergence of the correlation length ξ of the
fluid along the line u = 0.
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The first two definitions are a natural consequence of the scaling form of the free
energy. It is also perfectly sensible to define the scaling length Ls so that it scales
as the correlation length of the fluid, and the factor L0 is just the simplest constant
with the right dimensions that can be obtained by combining all the aforementioned
dimensional factors. Note, however, that using the relation (4.22) it can be shown
that b coincides with the ratio (f+)2/C+, where f+ and C+ are the amplitudes
governing the divergence of the correlation length and of the isothermal susceptibility,
respectively, as the critical point is approached along the path defined by u = 0.
Moreover, from the definition (4.35) of the free energy readily follows that (C+)−1 =
b21 a11 kBT , hence L0 = f+ and the scaling length Ls corresponds exactly to the
temperature-dependent correlation length of the fluid on the reference line n̄(T ):

Ls(T ) = ξ(T, n̄(T )) , u(T, n̄(T )) = 0 . (4.37)

Using the scaling constants just defined, we substitute the old, dimensional quan-
tities with adimensional scaling variables in accordance with the following scheme:

n0 7−→ x
.
= u(T, n0)/Ds ,

δn 7−→ ϕ
.
= δn/Ds ,

Π̃ 7−→ P
.
= Π̃/Es ,

F 7−→ σ
.
= F/Es ,

z 7−→ s
.
= z/Ls ,

h 7−→ κ
.
= h/Ls .

(4.38)

The rescaled pseudo-potential P can be expressed in terms of the scaling function Ψ(·)
of the free energy as

P(ϕ;x) = ϕΨ′(x)−Ψ(x+ ϕ) + Ψ(x) . (4.39)

Owing to the previous definitions, the boundary value problem (4.31) acquires in the
critical region the form



























1

2

(

dϕ(s)
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+ P(ϕ(s);x) = σ , s ∈
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2
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κ

2

]

,

ϕ
(

−κ
2

)

= δnc
L
/Ds = b1(n

c
L
− n0) ε

−ν ,

ϕ
(

+
κ

2

)

= δnc
R
/Ds = b1(n

c
R
− n0) ε

−ν .

(4.40)

Note that thanks to the rescaling the differential equation is now free from any fluid-
specific parameter.

To get an intuitive grasp on the behavior of the solutions to this equation it is
convenient to revert again to the mechanical analogy already introduced in Section 4.3:
if time is substituted for the variable s and a spatial coordinate is substituted for the
rescaled density ϕ, the differential problem (4.40) may be thought to describe the one-
dimensional motion of a point particle with unit mass under the effect of the pseudo-
potential P and with total, conserved mechanical energy σ. From the definition (4.39)
the following properties of the pseudo-potential may be derived, irrespective of the
value of the scaling variable x:

P(0;x) = 0 ,

Pϕ(0;x) = 0 ,

Pϕϕ(ϕ;x) = −Ψ′′(x+ ϕ) < 0 for all ϕ ,

(4.41)
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Figure 4.1: Schematic depiction of the mechanical analogy presented in the text. P is the
potential energy determining the one-dimensional motion of a point particle with unit mass;
σ is the total, conserved mechanical energy; ϕ̄± are turning points in the case of negative
total energy; the motion both starts and ends at infinity.

where the subscript indicates differentiation and the third property ensures thermody-
namic stability of the fluid. The shape of the function P(ϕ;x) is therefore as depicted
pictorially in Figure 4.1. Moreover, the two boundary conditions in (4.40) are pushed
to infinity as the critical temperature is approached, the sign depending on the relative
magnitude of the density at contact and the bulk density. Therefore, asymptotically
close to the critical point and owing to the left-right symmetry of the force only three
distinct types of boundary conditions are possible, which we indicate schematically
by “++”, “−−” and “+−”. In the mechanical analogy, they correspond to the following
scenarios:

� ++ , −− : the particle comes from ±∞, bounces off the potential at ϕ = ϕ̄±

and then returns back to infinity;

� +− : the particle travels from −∞ to +∞ (or the other way round) without
any reflection from the potential.

Looking at Figure 4.1 we see that the former case is compatible with a negative
“total mechanical energy” σ, whereas the latter requires σ to be positive. Without
performing any calculation we thus deduce the very general property that symmetric
boundary conditions correspond to an attractive force, while asymmetric boundary
conditions imply repulsion. The two reflection points ϕ̄± in the case σ < 0 are defined
by

P(ϕ̄±;x) = σ , σ < 0 . (4.42)

Reversing the definitions (4.38) we get an expression for the actual force per unit
surface acting on the walls:

F = Es σ = E0 ε
2−ασ = E0 ε

3νσ = E0 L
3
0

κ3σ

h3
. (4.43)
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Surprisingly, the system-dependent factors concealed in the constants E0 and L0

combine to give a universal amplitude ratio g+4 [102]:

E0 L
3
0 = kBT a11 (f

+)3 =
kBT

g+4
; (4.44)

in three dimensions g+4 ≈ 23.6. Consequently, the force may be expressed in the form

F (h) =
kBT

h3
ΘB (h/Ls;x) , ΘB(κ;x)

.
=
κ3σB(κ;x)

g+4
, (4.45)

where ΘB denotes a universal scaling function that does not involve any system-specific
dimensional constant, but depends solely on the type B of the boundary conditions,
with B ∈ {++,−−,+−}. This is precisely the form expected for the critical Casimir
force on the basis of finite-size scaling arguments as first predicted by Fisher and de
Gennes [47]. We then conclude that the same mechanism which gives rise to standard
depletion effects in non critical fluids, very well described by the density functional
approach we have been using, is responsible for the critical Casimir force when critical
fluctuations set in.

If a more quantitative analysis is desired, the differential problem (4.40) can be
reduced to quadratures, with three distinct forms corresponding to the possible bound-
ary conditions:

++ σ < 0 , κ =
√
2

∫ +∞

ϕ̄+

dϕ (σ − P(ϕ, x))
−1/2

; (4.46a)

−− σ < 0 , κ =
√
2

∫ ϕ̄−

−∞

dϕ (σ − P(ϕ, x))
−1/2

; (4.46b)

+− σ > 0 , κ =
1√
2

∫ +∞

−∞

dϕ (σ − P(ϕ, x))
−1/2

. (4.46c)

The previous relations allow to express the rescaled force as a function of the rescaled
interplate distance and the rescaled bulk density: σ = σ(κ;x), so that the scaling
function ΘB may be computed by means of Equation (4.45). Before performing a
numerical calculation, a number of general properties concerning symmetries and
asymptotic behaviors are readily obtained. As a starting point, note that the scaling
function Ψ(·) of the free energy is even [102], therefore owing to the definition (4.39)
the pseudo-potential P is unaffected by a simultaneous change of sign of both of its
arguments:

P(−ϕ;−x) = P(ϕ;x) ; (4.47)

this also means that the turning points ϕ̄+ and ϕ̄− are related by

ϕ̄+(σ;x) = −ϕ̄−(σ;−x) , σ < 0 . (4.48)

As a consequence the scaling function ΘB, hence the Casimir force, has the following
symmetries:

Θ++(κ;−x) = Θ−−(κ;x) ,

Θ+−(κ;−x) = Θ+−(κ;x) .
(4.49)

Moreover, using the formulae (4.46) the asymptotic regime |σ|→ 0, κ→+∞ can be
evaluated, leading to the relation

|σ(κ;x)| ∼ exp
[

−κ
√

Ψ′′(x)
]

, (4.50)
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Figure 4.2: Scaling function of the fluctuation-induced force F corresponding to ++ bound-
ary conditions computed by means of Equation (4.46a) for a number of choices of the rescaled
bulk density x. The same lines apply for −− boundary conditions, provided the sign of the
scaling variable x is reversed. The symbols denote Monte Carlo simulation data for the case
x = 0 as appearing in Fig. 9 of Ref. [140]; the three sets differ in the kind of finite-size
correction applied.

which holds irrespective of the boundary conditions; the radicand is always non-
negative for reasons of thermodynamic stability. The result in turn implies that the
force F has for large h the asymptotic behavior

|F (h)| ∼ kBT

L 3
s

exp

(

− h

h∞

)

, h∞
.
= Ls/

√

Ψ′′(x) ; (4.51)

the range h∞ of the force thus scales as Ls, that is as the correlation length of the
fluid on the line defined by u = 0. In the limit of small h, on the contrary, the force is
formally divergent. This is clearly an artifact due to the extrapolation of the correct,
long range behavior to a regime where small-wavelength density fluctuations play a
major role that cannot be accounted for by the approximated functional (4.21). As a
consequence, the universal form (4.45) holds only beyond a certain cut-off distance hc
that, in the light of the hypothesis (4.5) underlying the derivation of all the previous
expressions, is at the least equal to the fluid-wall interaction range d0 (but could also
be greater). In the interval 0 < h < hc a non-universal, finite force depending on the
details of the fluid-wall interaction is expected.

Using a suitable representation of the free energy scaling function Ψ(·), for instance
the parametric representation given in [102], the scaling function ΘB of the force can be
evaluated numerically. Figure 4.2 presents the results for ++ boundary conditions
and a number of different values of the rescaled bulk density x. The case x = 0,
corresponding to a bulk density lying on the path n̄(T ), is surely the most studied
in the literature: a comparison of our result with recent Monte Carlo simulation data
computed with reference to a three-dimensional Ising model [140] shows a satisfactory
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a pseudo-color map. The function is negative in the whole plane. The dashed lines define
thermodynamic paths at constant u and h (the arrows indicate the direction of increasing
|u| or h). The same plot applies to Θ−−(κ;−x).
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Figure 4.4: Scaling function of the fluctuation-induced force F corresponding to +− bound-
ary conditions computed by means of Equation (4.46c) for a number of choices of the rescaled
bulk density x. The symbols denote Monte Carlo simulation data for the case x = 0 as ap-
pearing in Fig. 10 of Ref. [140]; the three sets differ in the kind of finite-size correction
applied.
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agreement. Note that the curve is not monotonic but instead has a minimum in κ ≈ 3:
this entails that at fixed wall-to-wall distance the attractive, fluctuation-induced force
attains a maximum not at the critical temperature, that would correspond to κ = 0,
but at a certain distance from it. The off-critical case x 6= 0 is far less represented
in the literature, to the point that we could not find any independent quantitative
data to compare our results with. Our method suggests that all the curves start with
a common value θ0 ≈ −0.6 in κ = 0, but then they soon depart in a manner that
markedly depends on the sign of the rescaled bulk density. If x is increased from
zero in the positive direction the amplitude of the scaling function rapidly decays;
contextually, the minimum flattens until the function eventually becomes monotonic.
If, on the contrary, x is pushed in the negative direction the minimum of the scaling
function grows and gradually shifts towards the origin. Therefore, it appears that the
scaling function is particularly enhanced in the region where the rescaled bulk density
has a sign opposite to the one that would be suggested by the boundary conditions.
The phenomenon is better illustrated in Figure 4.3, where the absolute value of the
scaling function Θ++ is plotted as a pseudo-color map in the x, κ plane. If one fixes
the temperature and the bulk density, which amounts to keeping x constant, the
corresponding vertical slice of the plot describes Θ++ as a function of the distance
between the walls, just as in Figure 4.2. Another family of significant paths, shown
in the plot with dashed lines, is obtained by fixing the distance h and the value of
the scaling field u: in this way one can follow the amplitude of the scaling function
at fixed interplate distance along a set of lines that in a density-temperature diagram
are parallel to the locus n̄(T ) of the maxima of the susceptibility. In either case, it is
apparent that the scaling function is quite small along all the paths corresponding to
u > 0, whereas for u < 0 it can attain significant values. Therefore, on general grounds
we expect that u ≈ 0 should mark the transition between a region where attractive
Casimir forces are negligible (u > 0) and a regime where they become relevant (u < 0).
The situation is of course reversed if −− boundary conditions apply.

Figure 4.4 shows the behavior of the scaling function in the case of asymmetric
(that is +− ) boundary conditions. The curve corresponding to x = 0 is again consis-
tent with the results of Monte Carlo simulations but, contrary to the previous case,
the scaling function is always monotonic and its amplitude constantly decays as x
departs from zero in either direction. Therefore, we expect the effects of the repulsion
between the walls (if any) to be particularly evident in the region defined by u ≈ 0.

4.5 FLUCTUATION-INDUCED COLLOIDAL AGGREGATION

Thus far we have been dealing with the fluctuation-induced force acting on a pair of
parallel, infinite plates lying inside a correlated fluid. This is clearly a highly idealized
geometry that is rarely found in practice: the experimental measurement and also the
potential technological application of the critical Casimir force require the effect to
be studied in more realistic geometries.

With regard to measurements, several experiments have been conducted to date
bearing both direct and indirect evidence of the critical Casimir force. Only a few
years after the conjecture of Fisher and de Gennes, Beysen and Estève reported that
silica colloidal particles dispersed in a fluid undergo a reversible aggregation process
when the latter is close to its critical point, a fact that can be ascribed to the de-
velopment of an attractive interaction among the particles [20]. This seminal work
was followed by a number of similar experiments involving the reversible flocculation
of silica or polystyrene spheres dispersed in a critical solvent [49, 50, 92, 68, 54]. Be
warned, however, that in all these papers no explicit mention to the critical Casimir
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force is to be found, since the experimental findings were explained in terms of cap-
illary condensation, preferential adsorption, bridging and still other closely-related
wetting phenomena. A direct measurement of the fluctuation-induced force acting
between a single colloidal sphere and a flat silica surface was achieved only recently
by Bechinger and collaborators using the technique of total internal reflection mi-
croscopy [59]. In most of the aforementioned experiments a binary mixture of water
and an organic solvent (2,6-lutidine or 3-methylpyrydine) in a thermodynamic state
close to the demixing phase transition was exploited as the underlying critical sys-
tem. This choice was ideal to highlight the phenomena taking place in the critical
region, but unfortunately could not offer any glimpse on a possible connection with
the non-critical, well-understood depletion interaction, that requires macromolecular
compounds such as polymers or amphiphiles to be induced. An experiment that poten-
tially offers such a connection was conducted in 1996 by Degiorgio and collaborators,
who noticed that in aqueous suspensions containing polymer colloids and a nonionic
amphiphile, the minimum amphiphile concentration required to induce a reversible
flocculation of the colloidal particles decreases as the temperature of the suspension
approaches the cloud point temperature of the water-amphiphile system [34]. Again,
no conscious mention to fluctuation-induced forces is to be found in the paper, since
the interest of the authors was focused on depletion phenomena.

The work described in this chapter was prompted by a re-edition of this latter
experiment recently performed by Piazza and Buzzaccaro with the precise intent of
finally bridging the gap between the two worlds [25]. Before presenting the experiment
in more detail and comparing their findings with some sensible theoretical prediction,
we had better adapt our theoretical framework to the spherical geometry suited for
colloidal particles.

4.5.1 Quasi-planar approximation

We seek an expression for the fluctuation-induced interaction between two equal-sized
spherical particles embedded in a correlated fluid. If we were to follow the same line
of reasoning that led us to the force acting on the pair of plates, we would be faced
with a rather complex task. Indeed, while in the planar case the invariance of the
system with respect to any translation in a direction parallel to the walls renders the
problem effectively one-dimensional, in the case of two spheres we would be left with
an extra dimension due to the more limited cylindrical symmetry.

Thankfully, as long as the distance of closest approach between the two spheres
– that we still denote by h with little abuse of notation – and the range of their
interaction are both small if compared to the sphere radius R, a simple approximation
due to the Soviet chemist Boris Derjaguin can be invoked. Accordingly, the energy of
interaction v of the two spheres can be written in terms of the force per unit area F
in planar geometry as [35, 97]

v(h) ≈ πR

∫ +∞

h

dh′ (h′ − h)F (h′) , h,Ls ≪ R ; (4.52)

where we recalled that the range of the force F is proportional to the correlation
length Ls. This quasi-planar approximation is commonly applied when dealing with
short-range interactions [100].

According to our long-wavelength analysis the energy of interaction acquires in the
critical regime a universal form that readily follows from the scaling behavior (4.45)
of the planar force F :

v(h) = kBT
R

h
Θ◦

B
(h/Ls;x) , (4.53)
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where Θ◦
B
is a universal scaling function governing the critical Casimir interaction of

two equal-sized spheres, given explicitly by

Θ◦
B
(κ;x)

.
= π

∫ +∞

1

dy

(

y − 1

y3

)

ΘB(κy;x) . (4.54)

We expect the range of the interaction to be comparable with the range h∞ of the
force F ; in fact, the two are equal: by inserting the asymptotic behavior (4.51) into
Equation (4.52) we obtain for large h

|v(h)| ∼ kBT
R

Ls
exp

(

− h

h∞

)

, (4.55)

independently of the boundary conditions. It is also evident that the scaling function
Θ◦

B
, hence the interaction v(h), inherit from ΘB the symmetry properties (4.49).
A numerical evaluation of the scaling function corresponding to symmetric bound-

ary conditions is presented in Figure 4.5, while Figure 4.6 depicts the function as a
pseudo-color map in the x, κ plane. Both plots are entirely similar to the ones holding
in the planar case, hence the same considerations apply.

4.5.2 A tentative phase diagram

We now attempt, on the basis of our analysis, to make an educated guess about the
stability and the phase behavior of a dispersion of colloidal spheres in a possibly crit-
ical fluid. As a starting point, we recognize that outside the critical and pre-critical
regions, where density fluctuations happen on the scale of the fluid particle diam-
eter σ, the general results we have obtained are not of much avail. This, however,
is entirely due to the long-wavelength approximation (4.21) and is not a inherent
flaw of the methods adopted. Indeed, if a free energy functional capable of handling
fluctuations on the scale σ were used, a faithful description of the sphere-sphere effec-
tive interaction would be obtained even in noncritical conditions. In that regime the
emerging interaction would be unambiguously ascribed to the depletion mechanism
and, as such, we expect it to be attractive, with a range of the order of σ and a
strength more or less proportional to the fluid bulk density n0. If a certain bulk den-
sity n̄0 is exceeded, the attraction might become strong enough to drive a reversible
flocculation or even a liquid-vapor phase separation of the colloidal spheres. Due to
the features of the depletion interaction, we also expect the quantity n̄0 to be only
mildly dependent on the temperature.

As the critical region is entered, density fluctuations spanning larger and larger
length scales appear. From a certain point on, the spatial scale of the fluctuations
becomes large enough for the long-wavelength analysis to be fully justified: accord-
ingly, the effective interaction acquires an exponentially-damped tail complying with
the universal asymptotic form (4.55). At small sphere-to-sphere separation the in-
teraction remains non-universal and retains the character of a depletion attraction
due to the ever-present correlations on the scale of the diameter σ. Since symmetric
boundary conditions apply, the tail of the interaction induced by critical fluctuations
is attractive as well; moreover, we see from Figure 4.6 that it is particularly enhanced
on one side of the line n̄(T ) ending at the critical point. The exact side on which this
happens depends on the sign of the boundary conditions: with a minimum of foresight
for the comparison to be made with the experiment, we assume the boundaries to be
of the −− kind.§ Accordingly, we expect that the region in which the attraction is

§Note that from the definition (4.29) the choice of the boundary conditions is not entirely obvious,
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most effective, possibly leading to a reversible aggregation of the colloids, lies to the
right of the curve n = n̄(T ) in a density-temperature diagram. Let us stress that this
region merely identifies the portion of the phase diagram of the host fluid in which
the scaling function of the critical Casimir force may attain significant values, and as
such does not bear a definite relation to the region in which the colloids dispersed
in the fluid possibly aggregate. In other words, the locus of the points marking the
onset of the reversible aggregation of the colloids does not necessarily coincide with
the line n̄(T ). In fact the actual energy of interaction of the colloids, given by Equa-
tion (4.53), is also proportional to the radius R of the particles, therefore we expect
that the boundary of reversible aggregation shifts in the direction of increasing fluid
density as the the radius gets smaller. The expectation is indeed borne out by the
experiment of Degiorgio and collaborators already cited [34].

To summarize, our analysis suggests a scenario in which a system dependent,
depletion-like regime merges continuously with a universal, Casimir-like behavior as
the temperature of the suspension is varied. The crossover between the two regimes
should be particularly evident if the critical density of the host fluid is significantly
smaller than the bulk density n̄0 characterizing the onset of reversible aggregation
due to pure depletion.

4.5.3 Comparison with the experiment

That is enough with the theoretical maybes and mights: we now turn to the de-
scription of the essential features of the experiment performed by Piazza and Buz-
zaccaro [25]. The experimental system consists in a aqueous suspension of spherical,
nearly monodisperse colloidal particles with an average radius R ≈ 90 nm made of the
Hyflon R© MFA fluoropolymer. The surface of the particles bears a negative charge,
mostly acquired during the process of synthesis: to screen any spurious electrostatic
effect, a sufficient amount of salt was added to the suspension after the particles had
been sterically stabilized. The nonionic surfactant C12E8 (octaethylene glycol mon-
ododecyl ether) was used as a depletion agent. Beyond its critical micellar concentra-
tion, C12E8 forms globular micelles with a diameter σ ≈ 7 nm, nearly independent of
temperature in a broad temperature range including, of course, the one experimentally
investigated; the colloid-micelle size ratio is therefore 2R/σ ≈ 25. Most interestingly,
aqueous solutions of C12E8 display a critical behavior, since they possess an inverted
miscibility gap bounded below by a critical demixing point corresponding to a temper-
ature Tc ≈ 64.5◦C. Liquid-liquid phase separation by increasing temperature is not a
uncommon feature, for it is shared by many simple mixtures as lutidine or isobutyric
acid in water. Compared to the latter, however, two aspects of the phase behavior of
C12E8 are rather peculiar: first, the temperature region where critical effects can be
detected is very wide, ranging in the tens of degrees, which is more than an order of
magnitude larger than for simple binary mixtures; second, the critical concentration
is very small, of the order of 2% in weight fraction, so that the demixing region is
very asymmetrical. Both features are particularly suited to check the predictions of
our theoretical analysis.

All experiments were performed in sterically-stabilized MFA suspensions at a par-
ticle volume fraction Φ = 0.03, in water + 250 mM NaCl, to which a variable amount
of C12E8 was added. The samples were sealed in glass ampoules with a volume of

since they are not directly related to a physical feature of the wall-particle interaction, but instead
represent an extrapolation to the surface of the walls of the equilibrium density profile. Nonetheless,
we expect that −− boundary conditions would correspond to colloidal spheres that in some sense
repel the particles of the fluid.
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Figure 4.7: Minimum amount of surfactant cs required to induce phase separation for aqueous
MFA suspensions at particle volume fraction Φ = 0.03 (full dots), in the presence of 250 mM
NaCl. The consolution curve of the surfactant solution is shown by open dots. The inset
shows cs/cc versus the reduced temperature ǫ on a semi-log scale, with a fit to the data.
Reproduced from Ref. [25].

1 cc, mounted in parallel on a frame, and immersed in a water thermostat with a
temperature setting accuracy ±0.02◦C, with a window allowing for optical inspec-
tion. The temperature was increased in small steps (in practice as small as 0.1◦C),
and the system was let thermalize for at least ten minutes between each temperature
step. For each sample a well-defined temperature T̄ , thus dependent on the amount of
surfactant added, could be identified above which a noticeable increase of turbidity of
the suspension took place, followed on the time scale of a few minutes by the appear-
ance of a settling meniscus. The process was entirely reversible: each sample returned
to a homogeneous state as soon as the temperature was lowered again beyond the
particular value T̄ . The phenomenon can be interpreted as a liquid-vapor phase sepa-
ration process driven by a spinodal instability due to emerging attractive interactions
among the colloidal particles. The same turbidimetric method was also used to find
the demixing line (or, more precisely, the cloud-point curve) of the C12E8/brine sys-
tem in the absence of particles; care was taken to check that the latter is not shifted
by the presence of the colloids, at least up to a particle volume fraction of Φ = 0.05.

The locus of the experimentally measured transition points, shown in Figure 4.7,
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is indeed consistent with the hypothetical scenario we prefigured. In noncritical con-
ditions the minimum surfactant concentration beyond which reversible aggregation of
the colloidal particles takes place is nearly independent of temperature. As the critical
region is entered, the threshold concentration diminishes, signalling an enhancement
in the sphere-sphere attractive interaction; at the same time, the locus of transition
points bends, following a path that ends close to the C12E8/water critical point. The
light scattering measurements depicted in Figure 4.8 also show that this path bears
a relation to the locus of maxima of the isothermal susceptibility. From the pattern
of the scattered intensity, the correlation length of the surfactant solution could also
be determined: in the whole range of temperatures investigated, it does not exceed
a 15% fraction of the colloid radius, therefore the Derjaguin approximation (4.52)
underlying the derivation of our theoretical scenario is fully justified.

4.6 CONCLUSIONS

We hope to have provided in this chapter solid arguments in favor of a unitary view
of the depletion interaction and the critical Casimir effect. Indeed, the two have the
same physical origin, that is the confinement of a fluid between a pair of surfaces, and
can also be described using a common formalism, namely density functional theory.
In particular, we have shown that if the adopted free energy functional correctly
incorporates the critical behavior of the host fluid, then the fluid-mediated interaction
between the two surfaces, which has a range proportional to the fluid correlation
length, naturally acquires in the critical region the universal scaling form typical of
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the critical Casimir effect. The density functional formalism is also apt to describe
correlations on the scale of the fluid particle diameter, leading in noncritical regime
to the well-known and much studied depletion interaction. Our analysis suggests that
depletion and critical Casimir phenomena are two ends of a continuum: the former
potentially transforms into the latter as the thermodynamic state of the host fluid
is varied. This view is supported by indirect experimental evidence involving the
reversible aggregation of colloidal spheres.

What is lacking at the moment is a truly microscopic approach capable of a quanti-
tative description of both regimes. Indeed, in this preliminary proof-of-concept study
with the adoption of the long-wavelength approximation we gave up any chance of
a faithful description at short wall-to-wall distance in favor of a simple expression
holding in the critical regime. The use of a more realistic free energy functional that
would eventually lead to a quantitative phase diagram to be compared with the ex-
perimental results is highly desirable. An extension to the fully critical regime that
goes beyond the Derjaguin approximation, thus allowing the correlation length to be-
come comparable with or even larger than the colloid radius, would also be extremely
interesting, as well as challenging.



5
Effect of quenched size polydispersity

on the fluid-solid transition in

charged colloidal dispersions

ABSTRACT

We perform Monte Carlo simulations to study the effect of
quenched size polydispersity on the freezing transition in
charged colloidal dispersions, modeled as repulsive hard-core
Yukawa fluids. The goal is to ascertain whether, and how, a
sufficient amount of polydispersity suppresses the crystalline
phase in favor of an amorphous solid. Two main assump-
tions are made: (i) the particle surface potential is taken as
a constant, so that size polydispersity entails charge poly-
dispersity; (ii) the particle size distribution is shared by the
fluid and the crystal, that is no particle fractionation takes
place. We perform several free energy calculations, investi-
gating different combinations of screening length and surface
potential. A consistent pattern emerges: upon increasing the
polydispersity, the freezing transition shifts towards higher
packing fractions and the density gap between the fluid and
the solid diminishes. Our results support the existence of a
terminal polydispersity above which the freezing transition
disappears, and also confirm the phenomenon of reentrant
melting.
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T
he discovery that a system of hard spheres undergoes a first-order freezing
transition is undoubtedly one of the milestones of computer simulation
applied to statistical mechanics. In the mid-1950s the existence of such
a transition was an important open question, and no convincing answer

could be given starting from first principles. Therefore, it was no surprise that at
a symposium held in 1957 at the Stevens Institute of Technology in Hoboken, New
Jersey, during a discussion led by G. E. Ulhenbeck a vote on this question taken
among prominent scientists, including several Nobel laureates, ended in a draw [103].
The hesitation of half of the audience is understandable, because the fact that purely
repulsive particles can form a stable crystal is far from obvious. The question was
finally settled in favor of the existence of a fluid-crystal transition thanks to the
seminal molecular dynamics simulations by Alder and Wainwright [2] and Monte
Carlo simulations by Wood and Jacobson [146], as well as the later and conclusive
Monte Carlo study by Hoover and Ree [62]. In more recent years, owing to notable
advances in the synthesis of colloidal particles, the existence of the phase transition
has also been confirmed by extensive experimental evidence: starting with the classic
investigation of Pusey and van Megen [111], beautiful hard-sphere crystals have been
produced and imaged countless times.

It is now widely accepted that excluded-volume interactions and repulsive short-
range forces play a major role in determining the existence of a freezing transition:
indeed, the latter is found in the high-density end of the phase diagram of most
systems containing particles with a core. This is the case, for example, of hard-core
repulsive Yukawa fluids – a widely-adopted model for charge-stabilized colloidal dis-
persions – whose phase behavior has been extensively investigated by means of Monte
Carlo simulation by Hynninen and Dijkstra [65]. They considered several combina-
tions of the amplitude and range of the Yukawa tail, and found that a crystalline
solid phase always exists beyond a certain density. The parameters of the potential
affect not only the location of the phase transition, which generally takes place at a
density lower than the one typical of hard spheres, but also the lattice structure of
the crystal, which can be either face-centered cubic (FCC) or body-centered cubic
(BCC). Their results provide a useful guide to experimentalists trying to achieve the
tunable self-assembly of charged particles into colloidal crystals.

A feature of colloidal dispersions that is not considered in the aforementioned
models is polydispersity, namely the fact that in real systems the particles are not
identical but instead show a degree of stochastic variation in one or more properties
(for instance size, shape or charge). That polydispersity might have a deep impact on
the freezing transition is intuitive, since the very idea of a periodic, regular lattice is
somewhat at odds with a random variation in any property of the particles. Indeed,
polydisperse system usually have different – and richer – phase diagrams if compared
to their monodisperse counterparts [127]. While a small degree of polydispersity is
expected to introduce a mere distortion in the phase boundaries, leaving the topol-
ogy of the phase diagram largely unaffected, higher degrees of polydispersity might
significantly change the phase behavior of the system, giving birth to new phases
or suppressing existing phase transitions. In this regard, a clear distinction should
be made between the general case and the case we will address, namely the one of
quenched polydispersity.

In order to elucidate this point, let us focus on the freezing transition of a fluid
whose particles are polydisperse in size. The composition of the system is quantified by
a size distribution function, which determines the probability that any given particle
has a certain diameter. The latter is also known as the parent size distribution, since it
characterizes the composition of the whole system regardless of its phase behavior. If
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the system undergoes a freezing transition, so that it separates into a fluid and a solid,
a daughter size distribution can be associated with each phase. In a general scenario,
there is no reason for the two daughters to be the same, nor they have to match the
parent distribution. For instance, on general grounds one expects the size distribution
of the solid to be narrower than the one of the fluid. However, for this to happen a
possibly substantial redistribution of the particles – called particle fractionation in
this context – must take place within the system during the phase transition. If this
is not possible, be it because particle diffusion is too low or because the dynamics of
the system slow down with the ongoing phase transition, then fractionation cannot
reach completion on experimentally-accessible timescales. The limiting case is the
one corresponding to a sudden quench of the system, that completely inhibits particle
fractionation: accordingly, the two daughter distributions are necessarily equal and
perfectly match the parent. We refer to this scenario with the expression quenched
polydispersity.

The phase behavior of polydisperse hard spheres, the cleanest polydisperse sys-
tem in which to study the freezing transition, has been the subject of extensive
investigation in the literature. One of the main questions addressed concerns the
existence of a terminal polydispersity above which no stable crystal can exist. Ex-
perimentally, the freezing transition is indeed suppressed in sufficiently polydisperse
systems [112, 110]; however, the situation is somewhat ambiguous, since the observed
behavior might also be a nonequilibrium effect due to a kinetic glass transition. This
prompted a substantial amount of theoretical [90, 10, 13, 11, 12, 125, 44] and compu-
tational [113, 144, 145, 104, 23, 71] work devoted to the determination of an accurate
equilibrium phase diagram for polydisperse hard spheres.

Conversely, to the best of our knowledge no similar effort has been devoted to poly-
disperse hard-core Yukawa fluids, a fact that motivates the present work. Therefore,
in this chapter we plan to: (i) elucidate the effect of polydispersity on the liquid-
solid phase boundary, and its dependence on the parameters of the Yukawa tail; (ii)
ascertain the existence of a terminal polydispersity above which the crystal phase
is suppressed in favor of a glassy-like state; (iii) check whether the phenomenon of
reentrant melting predicted for hard spheres [13] takes place. We tackle the problem
by performing free energy calculations via Monte Carlo simulation, which allows us
to map out the phase boundaries. We will consider only the case of quenched poly-
dispersity, since it is far easier to deal with but still retains a fair degree of practical
relevance. This crucial assumption must be stressed from the outset, since allowing
particle fractionation would surely invalidate our results.

5.1 MODEL SYSTEM

We consider a system of N spherical particles, polydisperse in size, enclosed in a
cubic box of volume V . Let ri denote the spatial coordinate of particle i, and let σi
and ai = σi/2 be its diameter and radius, respectively. The energy of the system is
taken as pairwise additive, with a pair potential vij(r) comprising a hard core plus a
repulsive Yukawa tail:

vij(r) =











+∞ when r ≤ ai + aj ,

ǫij
exp [−κ(r − ai − aj)]

r/(ai + aj)
otherwise ,

(5.1)

where r = |ri−rj | is the distance between the centers of particles i and j, and κ is the
inverse screening length setting the decay rate of the Yukawa tail. The contact value
ǫij of the pair potential is given in the context of the standard Derjaguin, Landau,
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Verwey and Overbeek (DLVO) theory by [96]

βǫij =
ZiZj

(1 + κai)(1 + κaj)

lB
ai + aj

, (5.2)

where β = 1/(kBT ), with kB Boltzmann’s constant and T the temperature, is the
inverse thermal energy; Zi and Zj are the number charges of the two particles, ex-
pressed in units of the elementary charge; lB = βe2/ε, with ε the dielectric constant
of the solvent and e the elementary charge, is the Bjerrum length.

Due both to the process of particle synthesis and to the attainment of local chem-
ical equilibrium in the suspension, the amount of charge attached to the surface of
a particle depends in general on the particle size: in other words, size polydispersity
entails charge polydispersity. The simplest hypothesis is to assume a constant surface
charge density, so that the charge is proportional to the surface area of the parti-
cle. Another important condition, which is often met in real colloidal dispersions and
therefore will be adopted in the following, is the one of constant surface potential,
which amounts to assume that the electrostatic potential on the surface of a parti-
cle is independent of its size and a constant throughout the system. In the context
of linear Poisson-Boltzmann theory, which underlies the derivation of the screened
Coulomb part in the standard DLVO potential (5.1), the electrostatic potential Ψi

on the surface of a single, isolated particle embedded in the electrolyte satisfies the
relation [96]

Ψi

βe
=

Zi

1 + κai

lB
ai
. (5.3)

If the electrostatic potential is taken as a constant, that is Ψi ≡ Ψ independent of
particle number i, Equations (5.2) and (5.3) imply

ǫij ∝ aiaj
ai + aj

, (5.4)

the constant of proportionality being the same for all pairs. If, moreover, we choose
a reference particle diameter σ̄ and call ǭ the contact value for the pair interaction
of two particles with reference size σ̄, we can express the pair interaction of any two
particles in the system in the following way:

vij(r) =







+∞ when r ≤ ai + aj ,

ǭ
(σiσj
σ̄

) exp [−κ(r − ai − aj)]

r
otherwise .

(5.5)

This will be taken as the final expression defining the energy of the system, being
conveniently characterized by the two parameters ǭ and κ, as well as the reference
particle diameter σ̄.

In order to make contact with the experiments, one can also show from Equa-
tions (5.2) and (5.3) that

βǭ = (βeΨ)2
σ̄

4lB
; (5.6)

typical values for a colloid in a low dielectric solvent at room temperature are [118]
Ψ = 25mV, lB/σ̄ = 0.01, which corresponds to βǭ ≈ 20.
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Size polydispersity

We denote the parent size distribution function by P(·), and normalize it to unity, so
that the number of particles in the whole system with a diameter lying between σ
and σ + dσ is NP(σ)dσ.∗ As is customary, we also define an index of polydispersity
p as the ratio between the standard deviation and the mean of the distribution:

p
.
=

√

E(σ2)− (E(σ))2

E(σ)
, with E(•) =

∫ +∞

0

dσ • P(σ) . (5.7)

In the following, we assume that the parent distribution has a log-normal form, with
a mean equal to the reference particle diameter σ̄:

P(σ) =
1

z
√
2π σ

exp

[

− (log(σ/σ̄) + z2/2)2

2z2

]

, z =
√

log(1 + p2) . (5.8)

No particular reason supports this choice; viable alternatives, also found in the liter-
ature, include top-hat, triangular and gamma distributions. However, once the poly-
dispersity index p is fixed we expect the results to depend not too markedly on the
shape of the parent distribution, although we did not test this hypothesis.

If phase separation into a fluid (F) and a solid (S) occurs, then to each phase
φ ∈ {F, S} a daughter size distribution dφ(·) is associated, also normalized to unity,
such that Nφdφ(σ)dσ is the number of particles with a diameter lying between σ
and σ + dσ belonging to that phase, the total number of particles in the phase being
Nφ. The daughter and parent distributions are not independent: conservation of the
number of particles requires that

NFdF(·) +NSdS(·) = NP(·) . (5.9)

The constraint of quenched polydispersity imposes a much stronger condition, forcing
both daughters to match the parent:

dF(·) = dS(·) = P(·) ; (5.10)

in this particular case, Equation (5.9) is trivially satisfied.

5.2 REMINDER ON POLYDISPERSE PHASE EQUILIBRIA

In a polydisperse system, the definition of the various thermodynamic potentials and
the conditions for two-phase equilibrium are far more complex than the ones valid in a
monodisperse system. However, the constraint of quenched polydispersity introduces
a substantial simplification, that enables the problem to be approached with the same
methods usually applied to one-component fluids. We first review the general case,
loosely following Ref. [120], then we specialize the results to the case of quenched
polydispersity.

A polydisperse system can be considered a generalization of a multicomponent
mixture; when going from a finite number of components to an infinite one, however,
several subtleties arise and care must be taken to properly define thermodynamic
quantities. The Helmholtz free energy of a homogeneous mixture with m components
is a function of the temperature T , the volume V , and the number of particles of the
various species N1, N2, . . . , Nm. In the limit of an infinite number of species the set of

∗Here and in the following, we adopt the convention whereby f(·) denotes a function as a whole,
while f(x) is the value of the function corresponding to an argument x.



68 FREEZING OF POLYDISPERSE CHARGED SPHERES

particle numbers is replaced by the product Nζ(σ), where N is the total number of
particles and ζ(·) the size distribution function.† Therefore, the Helmholtz free energy
of a polydisperse homogeneous system is a functional of the term Nζ(·) and has the
form

F (T, V ;Nζ(·)) . (5.11)

The pressure is related to the free energy by the usual thermodynamic identity

P (T, ρ; ζ(·)) = −∂F

∂V
, (5.12)

where ρ = N/V is the particle number density, while the chemical potential is defined
by means of a functional derivative:

M (T, ρ, σ; ζ(·)) = δF

δ[Nζ(σ)]
. (5.13)

Note that the chemical potential is a function of the particle diameter: in the case of
a finite mixture, this corresponds to associating a chemical potential to each species.

If the system, at fixed temperature T , departs from homogeneity separating into
a liquid and a solid, the conditions for mechanical and chemical equilibrium between
the two phases read as follows [120]:

P (T, ρF; dF(·)) = P (T, ρS; dS(·)) , (5.14a)

M (T, ρF, σ; dF(·)) = M (T, ρS, σ; dS(·)) for all σ . (5.14b)

The previous equations, when supplemented with the conservation of particle num-
bers (5.9), form the thermodynamic basis for studying two-phase equilibrium in a
polydisperse system.

A substantial simplification arises if the constraint of quenched polydispersity (5.10)
is imposed: since the size distribution function is fixed, the Helmholtz free energy re-
verts to a function of temperature, volume and number of particles:

F (T, V,N)
.
= F (T, V ;NP(·)) . (5.15)

Similarly, the dependence on ζ(σ) drops out for the pressure

P (T, ρ)
.
= −∂F

∂V
= P (T, ρ;P(·)) (5.16)

and the definition of the chemical potential for a monodisperse system is recovered:

µ(T, ρ)
.
=
∂F

∂N
=

∫

dσ P(σ)M (T, ρ, σ;P(·)) . (5.17)

Finally, the conditions for two-phase equilibrium (5.14) acquire the simple form

P (T, ρF) = P (T, ρS) , (5.18a)

µ(T, ρF) = µ(T, ρS) . (5.18b)

Owing to these simplifications, in the quenched case a standard common tangent
construction [28] applied to the Helmholtz free energy (5.15) suffices to locate the
liquid-solid phase boundary.

†The symbol ζ(·) denotes a generic size distribution function, not to be identified with the already
introduced parent and daughter distributions.
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5.3 METHODS

We now devise a strategy to compute the quenched free energy (5.15) using Monte
Carlo simulation. Before describing the details of the method, we briefly consider the
question concerning the sampling of size polydispersity during a computer simulation.
Indeed, the free energy of a polydisperse system with size distribution ζ(·) is a well-
defined quantity only in the thermodynamic limit: in any finite system the free energy
depends on the particular set of particle diameters considered, especially so if the size
of the system in not very large. We call every finite set of particle diameters drawn in
accordance to the probability measure P(·) a realization of the polydisperse system.
In order to deal with the finite extent of the system inherent to any Monte Carlo
simulation, at least two strategies are viable: either we explore different realizations
in the course of a single simulation – for instance devising moves that modify the
size of the particles – or we perform a number of different simulations corresponding
to independent realizations and then average the results a posteriori. In this chapter
we pursue the second approach: for it to be effective, the size of the system and the
number of different realizations considered must be balanced in order to ensure a good
sampling of the size distribution P(·).

5.3.1 A number of thermodynamic relations

Since free energy calculations are notoriously a time-demanding task, the number of
direct evaluations should be kept to a minimum. Ideally, at fixed temperature only one
such evaluation is needed, since the density dependence of the free energy is entirely
determined given (i) the value of the free energy at a freely-selected reference density,
and (ii) the equation of state of the system, in the form of pressure as a function of
density. Indeed, upon defining the dimensionless free energy per particle

a(T, ρ)
.
=
βF (T, V,N)

N
, (5.19)

it readily follows from Equation (5.16) that

a(T, ρ) = a(T, ρ̄) +

∫ ρ

ρ̄

d̺
βP (T, ̺)

̺2
(5.20)

for any given temperature T and reference density ρ̄. The previous expression con-
tains, in the low-density limit, a logarithmic singularity arising from the ideal gas
contribution. For numerical convenience, we split the free energy density in the sum
of an ideal term and an excess term:

a(T, ρ) = aid(T, ρ) + aex(T, ρ) , (5.21)

and consider the excess version of Equation (5.20):

aex(T, ρ) = aex(T, ρ̄) +

∫ ρ

ρ̄

d̺
βP (T, ̺)− ̺

̺2
, (5.22)

which is now free from singularities.
The ideal gas term, required to compute the full free energy, is known analytically:

for a generic polydisperse system with size distribution function ζ(·) it equals [120]

βF id (T, V ;Nζ(·))
N

=

∫

dσ ζ(σ)
{

log
[

ρ ζ(σ) (Λ(σ))
3
]

− 1
}

, (5.23)
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where Λ(σ) is the thermal de Broglie wavelength for particles with diameter σ. Defin-
ing an effective thermal wavelength Λ̄ – or, which is the same, an effective particle
mass m̄ – according to

log Λ̄
.
=

∫

dσ ζ(σ) log [Λ(σ)] , (5.24)

Equation (5.23) can be cast in the suggestive form

βF id

N
= log(ρΛ̄3)− 1 +

∫

dσ ζ(σ) log [ζ(σ)] . (5.25)

In other words, the free energy density of a polydisperse ideal gas is equal to the
free energy density of a monodisperse ideal gas comprising particles with an effective
mass m̄, plus a mixing term involving the distribution function ζ(·). Specializing the
previous expression for the parent distribution P(·), we get the ideal gas free energy
appearing in Equation (5.21):

aid(T, ρ) = log(ρΛ̄3)− 1 +

∫

dσ P(σ) log [P(σ)] . (5.26)

Note that in the case of quenched polydispersity the mixing term, being a constant
independent of density, plays no role in a two-phase equilibrium.‡ Since the thermal
wavelength Λ̄ also contributes a simple additive constant, phase equilibrium is not
even affected by the mass of the particles.

5.3.2 Fluid and solid free energy

Unless very special methods are adopted to overcome free energy barriers, fluid-like
and solid-like configurations cannot both be visited in the course of a single Monte
Carlo run. As a consequence, the equation of state cannot be computed as a whole:
depending on the initial configuration, either the fluid branch PF or the solid branch
PS is sampled. The two branches are in fact disjoint and extend in metastable regions
of the phase diagram. Each branch of the equation of state determines a corresponding
branch of the free energy – aF(T, ρ) or aS(T, ρ).

In the fluid phase the dilute limit, where the excess contribution to the free en-
ergy vanishes, can be reached from any density without incurring phase transitions;
according to Equation (5.22) the entire branch of the free energy is then determined
by the equation of state alone:

aex
F
(T, ρ) =

∫ ρ

0

d̺
βPF(T, ̺)− ̺

̺2
. (5.27)

Conversely, in the solid phase the equation of state must be supplemented with a
reference free energy density aex

S
(T, ρ̄s):

aex
S
(T, ρ) = aex

S
(T, ρ̄S) +

∫ ρ

ρ̄S

d̺
βPS(T, ̺)− ̺

̺2
. (5.28)

In order to compute the reference term a number of approaches exist. Here we adopt
the method of Frenkel and Ladd [48], also termed Einstein integration, which is to
date the most reliable technique to compute the free energy of a solid.

‡If fractionation were allowed the entropy of mixing, being different in the two phases, would
require explicit consideration.
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The method relies on thermodynamic integration along a reversible path linking
the solid of interest to the Einstein crystal – a system of non-interacting particles
attached to a set of lattice sites by harmonic springs – whose free energy can be
computed exactly. For particles interacting through a hard-core plus a tail, this path
is constructed by introducing an auxiliary energy function Uλ, depending on a coupling
parameter λ ∈ [0, 1], according to the definition

Uλ({ri}) .
= UHS({ri}) + (1− λ)Utail({ri}) + λ

α

2

N−1
∑

i=0

|ri −Ri|2 . (5.29)

In the previous expression the terms UHS and Utail contain the cores and the tails,
respectively, of the interparticle interactions; α is a spring constant common to all
particles; {ri} is the set of position vectors of the particles, and {Ri} the crystal
lattice. When λ = 0 the system reduces to the solid of interest, while in the limit
λ → 1, provided the spring constant α is chosen high enough to render the presence
of the cores immaterial, the Einstein crystal is recovered. Thermodynamic integration
gives for the free energy of the solid [108]:

aex
S
(T, ρ̄S) = − β

N

∫ 1

0

dλ

〈

α

2

N−1
∑

i=0

|ri −Ri|2 − U({ri})
〉CM

λ

+

− 3

2
log

(

2π

βα

)

− 3

2N
log

(

βα

2π

)

+
log ρ̄S

N
− 2 logN

N
− log ρ̄S + 1− log 2π

2N
,

(5.30)

where the notation 〈·〉CM

λ stands for the average value of a quantity in the NV T
ensemble with interaction energy Uλ and the constraint of fixed center of mass.§ The
free energy computed according to Equation (5.30) is subject to finite-size effects
decaying as N−1: to properly deal with this issue, one usually repeats the calculation
varying the number of particles and then extrapolates the result to the thermodynamic
limit [48, 108]. In this work we instead stick with a single calculation, relying on a
large system size, already required to properly account for particle polydispersity, to
reduce the spurious effects.

5.3.3 Algorithm

We now state the procedure used to map out the phase boundaries. First, we set the
parameters of the pair potential (5.5), choosing the dimensionless contact value βǫ
and the inverse screening length κσ̄, and the total number of particles N . Moreover,
we choose a lattice structure for the polydisperse crystal – typically, we select the
structure of the solid coexisting with the fluid in the monodisperse case, the interpar-
ticle potential being equal – and a density ρ̄S for the reference free energy evaluation.
Then, for each value of the polydispersity index p we consider, nr realizations of the
system are constructed by drawing random diameters from the log-normal distribu-
tion (5.8). The particles are initially arranged with a density ρ̄S on a regular lattice
having the pre-selected structure: this is achieved by trial and error, positioning the
particles one after another at the sites of the lattice as the random diameters are

§The constraint prevents a global translational motion of the crystal, so that the particles do
not drift away from the crystal lattice. To implement the constraint in a polydisperse system no
information on the mass of the particles is required, since as Equation (5.25) shows a common
effective mass m̄, which eventually cancels out, can be assigned to each particle.
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being drawn; as soon as an overlap occurs, the whole procedure is restarted from the
very beginning, so that the distribution P(·) is not biased. The procedure becomes
inefficient as p and ρ̄S grow, to the point that beyond a certain limit the polydisperse
crystal cannot be constructed in reasonable time. Nevertheless, we could not devise a
better algorithm.

Einstein integration is performed on the initial configuration to get the solid free
energy at the reference density. We use the same configuration to start to computation
of the solid branch of the equation of state, and, after melting the crystal, of the
fluid branch. Once all realizations of the polydisperse system have been processed,
we take averages over the different outcomes.¶ Finally, we evaluate the fluid and
solid excess free energy by means of Equation (5.27) and (5.22), respectively, and
determine the density of the coexisting phases by imposing the conditions of two-
phase equilibrium (5.18). The conversion between density and packing fraction is
performed at the end of the whole procedure by using the actual mean volume of the
particles computed over the different realizations.

5.3.4 Technical details

All the simulations are carried out in a cubic box with periodic boundary conditions
and the minimum image convention; the number of particles is chosen so that in the
solid phase an integer number of primitive lattice cells fits into the box. A spherical
cutoff is applied to the the pair potential (5.5); the cutoff radius rc is set beforehand
and kept constant during the course of a simulation: care is taken to ensure that
it never exceeds half of the box length. No tail correction is applied to compensate
for the cutoff: on the one hand, the exponential decay of the potential makes the
correction negligible if rc is chosen high enough;‖ on the other hand, polydispersity
renders the actual evaluation of the correction difficult.

Equations of state are computed by means of simulations in the NPT ensemble.
For a single branch several tens of points are sampled, and later interpolated by the
virial expansion

βP (T, ρ)− ρ

ρ2
=

M
∑

j=0

bjρ
j , (5.31)

with fitting coefficients {bj} and a degree M . 10.

To compute the reference solid free energy within the Frenkel-Ladd method, the
integral figuring in Equation (5.30) is evaluated by a numerical quadrature rule using a
total of thirty nodes. We divide the interval spanned by λ in the two sub-intervals [0−
0.2) and [0.2, 1.0], and apply to each one the 15-7 Gauss-Kronrod rule [101, 106], which
has the advantage over the commonly used Legendre rule of providing an estimate
of the error in the result. The rationale behind the splitting is that the integrand is
steeper near the left end of the interval, where the springs are less effective in confining
the particles close to the lattice sites, therefore it is convenient to concentrate the
quadrature nodes in that region. No definite recipe exists to select the value of the
spring constant α: we set it just high enough to allow the non-interacting regime to
be reached when λ = 1, a fact that we judge by comparing the average value of the
internal energy with the value expected for the harmonic potential of the springs on

¶More precisely: to compute the equations of state we perform simulations at fixed pressure and
average the resulting volumes; in the case of the Einstein integration we average the excess solid free
energies.

‖Typically, we set rc so that the pair potential is less than 10−5kBT at the cutoff.
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Id βǫ κσ̄ rc/σ̄ Lattice η0

S
N nr βασ̄2 pmax

A 20 10 3.0 FCC 0.29 5324 5 4000 0.095
B 81 10/3 5.0 BCC 0.108 4394 5 4000 0.125
C 20 10/3 4.0 BCC 0.28 4394 5 4000 0.100
D 1200 0.7 20.0 BCC 0.0029 4394 5 100 0.220

Table 5.1: Summary of the parameters characterizing the four different model systems that
have been simulated. From left to right: identifier of the model; dimensionless contact value,
inverse screening length and cutoff radius of the pair potential; lattice structure and packing
fraction of the crystalline solid coexisting with the fluid in the monodisperse case (for systems
A-C the estimate is based on the phase diagrams found in [65]; for system D the mapping
of the hard-core Yukawa model onto the point Yukawa model devised in the same article
has been applied); number of particles; number of realizations per polydispersity value over
which averages were taken; dimensionless spring constant of the Einstein crystal; maximum
value of the polydispersity for which fluid-solid coexistence could be determined.

the basis of the equipartition theorem.∗∗

The conditions of two-phase equilibrium (5.18) are handled by standard solvers
of nonlinear equations: the chemical potential µ is computed without performing
derivatives by means of the thermodynamic identity

βµ(T, ρ) = a(T, ρ) +
βP (T, ρ)

ρ
. (5.32)

Simulations are accelerated by a combination of high and low level optimizations.
A cell-list method is used to track the position of the particles: a regular grid of cells,
able to expand and shrink along with the box, is set up so that on the average a cell
contains only a few particles. The distance between each pair of cells – expressed in
units of the box length, in order to be unaffected by scaling operations – is precom-
puted at the beginning of the simulation, and a list is associated to each cell with
pointers to the other cells sorted in order of increasing distance: in this way, the set
of cells that are within the cutoff distance from any given cell can be identified at
constant computational cost without performing any additional distance calculation.
Moreover, the single-instruction, multiple-data (SIMD) extensions of Intel and AMD
processors are exploited to achieve a limited amount of low-level parallelism in the
computation of particle interactions.

5.4 RESULTS AND DISCUSSION

We now apply the procedure outlined in the previous section to a number of hard-core
Yukawa systems. Four different systems, which we label with letters from A to D, are
considered: a detailed list of the parameters defining each system can be found in
Table 5.1. We always choose as the lattice structure of the solid the one stable in the
absence of polydispersity, all other parameters being equal. It is indeed possible that
beyond a certain degree of polydispersity another structure could be favoured, but
this issue has not been addressed.

Systems A,B,C are models of micrometer-sized colloids with a surface potential
in the range 25-50 mV dispersed in a low dielectric solvent at room temperature; the
parameters were chosen to allow in the monodisperse limit a comparison with data
available in the literature [65].

∗∗If the cores do not feel each other, N−1〈βUλ〉
CM
λ should approach 3/2 as λ → 1.
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Figure 5.1: Phase diagram of hard-core Yukawa particles with βǫ = 20, κσ̄ = 10 (system A)
presented in the packing fraction (η), polydispersity (p) plane. Symbols denote the results
from Monte Carlo simulations, whereas lines serve as guides to the eye. Reentrant melting
can be seen in the upper right part of the diagram, corresponding to the two degrees of
polydispersity p = 0.093 and p = 0.095. The four state points denoted by W-Z are object of
structural analysis later in the text. In the inset, the difference between the packing fraction
of the solid and the one of the fluid across the main (that is, non-reentrant) freezing transition
is plotted as a function of the polydispersity.

System D is devised to mimic the experiments involving highly charged water-in-
oil droplets reported by Leunissen at al. [80], in which a stable crystalline solid at
extremely low packing fraction and high polydispersity was seen. No details are to
be found in the original article, but a rough analysis of the pictures therein reveals
a packing fraction in the order of 10−3 and a polydispersity as high as 20%. The
parameters of the potential are set according to the mapping of the hard-core Yukawa
model onto the point Yukawa model devised in Ref. [65] in such a way that in the
absence of polydispersity the fluid-solid transition occurs at a packing fraction of the
same order of the aforementioned estimate.

5.4.1 Phase diagrams

The phase behavior of system A is presented in the packing fraction, polydispersity
(η, p) plane in Figure 5.1. In the absence of polydispersity the phase boundaries are
fully consistent with the results of Hynninen and Dijkstra [65] (see also the column η0

S

of Table 5.1). As the polydispersity increases, two phenomena occur: (i) the freezing
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Figure 5.2: System A: difference between the chemical potential of the solid µS and the
chemical potential of the fluid µF plotted as a function of the pressure for a choice of indices
of polydispersity.

transition shifts towards higher packing fractions; (ii) the difference ∆η between the
packing fraction of the solid and the packing fraction of the fluid decreases. This
trend, made explicit in the inset of the figure, suggests the existence of a terminal
polydispersity pt corresponding to which the density gap closes (∆η = 0). The main
diagram also shows that just below pt reentrant melting takes place, that is the solid
melts upon compression.

To gain a better understanding of these features, in Figure 5.2 the difference ∆µ
between the chemical potential of the solid and the chemical potential of the fluid
is plotted as a function of the pressure for several values of the polydispersity: in
such a diagram, phase coexistence corresponds to ∆µ = 0, whereas ∆µ ≶ 0 marks
the stability of one or the other phase. For most values of the polydispersity the
curve shows only one intersection with the ∆µ = 0 axis, which marks the fluid-to-
ordered solid transition. From a certain degree of polydispersity on, however, a second
intersection appears, and a disordered, fluid-like configuration becomes favoured again
when the pressure is raised above a prescribed value. The terminal polydispersity pt
may be defined as the one corresponding to a curve tangent to the horizontal axis.
Finally, when p > pt the curve lies entirely in the region of stability of the fluid and
both the freezing transition and the reentrant melting transition disappear.††

††For polydispersities just below pt, whether a second intersection is found or not is of course
sensitive to the extent to which pressures are explored in the computation of the equation of state
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This scenario closely matches the one first predicted by Bartlett and Warren for
a hard-sphere system [13]. Although the absolute position along the vertical axis of
the curves shown in Figure 5.2 depends on the exact value of the solid free energy
at the reference density ρ̄S, and is thus prone to the numerical uncertainties inherent
to any thermodynamic integration, their shape is dictated by the equations of state
alone, that are known with a higher degree of precision. Thus, although close to the
terminal polydispersity the results might be affected by conspicuous uncertainties, we
believe that the topology of the phase diagram as depicted in Figure 5.1 is sound. The
precise identification of the terminal polydispersity pt, besides being prone to errors
for the aforementioned reasons, would cost a great computational effort. Nonetheless,
a rough estimate is readily provided: by extrapolating the curve depicted in the inset
of Figure 5.1 the terminal polydispersity can be bracketed as 0.095 < pt < 0.100.‡‡

We now discuss model system B, characterized by stronger and more long-ranged
interparticle interactions. The phase behavior is shown in Figure 5.3 as a packing
fraction-polydispersity diagram. Due to the stronger repulsion, freezing takes place
at packing fractions significantly lower then the ones typical of the previous system;
apart from that, the phase behavior is entirely similar. We stress two minor differences:
(i) within the computational effort allocated to the project, reentrant melting could
be determined only for the highest value of the polydispersity considered before the
disappearance of the freezing transition (see the caption of the figure); (ii) the solid
supports a higher degree of polydispersity than what seems possible in system A:
indeed, the terminal polydispersity can be estimated as 0.125 < pt < 0.130.

Figure 5.4 reports the phase behavior of model system C, whose parameters are
intermediate between those of A and B. Although the shape of the phase diagram is
in line with the previous two, this time the phase boundaries could not be delineated
to their full extent, nor the terminal polydispersity could be located. Indeed, beyond
p = 0.1, that is the highest value of polydispersity reported in the plot, we could not
evaluate the free energy of the solid because the procedure outlined in Section 5.3.3
failed to produce an initial crystal configuration with a density ρ̄S high enough for the
crystal to be stable against melting. We do not know whether this failure has some
relation with the approaching of the terminal polydispersity – which, judging by the
curve in the inset of Figure 5.4, seems to lie not so close – or is rather a shortcoming
of the employed algorithm. We lean towards the latter hypothesis, since as already
noticed within the current try-and-repeat strategy the time needed to build the initial
configuration grows very quickly with the size and the density of the system at high
polydispersity.

Finally, Figure 5.5 shows the phase diagram of model system D, characterized by
a highly repulsive long-ranged interparticle potential. The general trend uncovered in
the previous systems is fully confirmed even in this extreme case. Moreover, our results
confirm that an extremely dilute crystal (η ≈ 10−3) can sustain a polydispersity as
high as 20% without melting, a fact that substantiates the findings of Leunissen
et al. [80]. The terminal polydispersity is indeed quite large and can be bracketed
as 0.22 < pt < 0.23. In the range of pressures we investigated (rather limited) no
evidence was found of reentrant melting.

A comparative plot of the effects of polydispersity on the location of the fluid-solid

(for example, the curve corresponding to p = 0.090 in Figure 5.2 might cross the zero axis a second
time if extended to high enough pressures). Due to constraints on simulation time, we were able
to determine a reentrant behaviour only for p = 0.093 and p = 0.095; in any case, we expect the
phenomenon of reentrant melting to be limited to a narrow interval below pt.

‡‡Since no simulation was performed for p = 0.100, a safer upper limit, as deduced from Figure 5.2,
is pt < 0.105.
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Figure 5.3: Phase diagram of hard-core Yukawa particles with βǫ = 81, κσ̄ = 10/3 (system
B) presented in the η, p plane. Symbols and labels are the same as in Figure 5.1. Reentrant
melting at a packing fraction η ≈ 0.285 (not reported in the plot for graphical convenience)
was found corresponding to the highest degree of polydispersity reported (p = 0.125). Sim-
ulations with p = 0.130 were performed and showed that in that case a fluid-like, disordered
state is always stable with respect to the ordered solid.

transition and on the width of the coexistence region in the four model systems is
presented in Figure 5.6.

5.4.2 Microscopic structure of the polydisperse solid

A further question that can be addressed concerns the degree of microscopic order
in the polydisperse solid. The solid is initially built as a perfect crystal, with FCC
or BCC structure, but in the course of a simulation the particles are free to rear-
range themselves. Thus, despite the fact that we always see a clear thermodynamic
difference between a set of particles initially arranged as a crystalline solid and the
same set initially arranged as a disordered fluid – indeed, their equations of state
are clearly distinguishable, unless the solid melts – it is not guaranteed, especially
at high polydispersity, that the solid retains the full initial crystalline order as the
simulation proceeds. To shed some light on this issue, we consider in the phase dia-
gram of model system A the four state points W,X,Y,Z (see Figure 5.1) and analyze
the microscopic structure of the system at each point. The selected points correspond
to a value of polydispersity (p = 0.093) close to pt: W and X identify the fluid and
the solid, respectively, coexisting across the main freezing transition, whereas Y and
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Figure 5.4: Phase diagram of hard-core Yukawa particles with βǫ = 20, κσ̄ = 10/3 (system
C) presented in the η, p plane. Symbols and labels are the same as in Figure 5.1. See the
text for remarks on this figure.

Z correspond to the solid and the fluid, respectively, coexisting across the reentrant
melting transition.

The radial distribution function corresponding to state point W, computed con-
sidering all pairs of particles irrespective of their size, is depicted in the upper panel of
Figure 5.7 and shows a low degree of coordination as one expects in a fluid state. On
the contrary, the radial distribution function of the solid across the phase boundary
(state point X), reported in the lower panel, shows a much higher degree of coordi-
nation and the features typical of a crystalline arrangement. As a comparison, in the
same plot the distribution function of a monodisperse system with the same density,
whose structure is thus the one of a perfect FCC crystal, is superimposed: apart from
a certain amount of smearing due to polydispersity in the former case, the two have
the same structure. The radial distribution functions corresponding to state points Y
and Z exhibit the same features and are not shown.

As a further inquiry on the microscopic structure of the system, we perform an
analysis of the local degree of crystalline order employing the Q6 bond order pa-
rameter [132, 6, 77]. This is one of a series of order parameters that can be used to
distinguish fluid and solid domains in a system of particles, exploiting the fact that in
a solid the local environments of neighboring particles are strongly correlated, whereas
the same correlation is much less pronounced in a fluid sample. More precisely, we
associate to each particle a set of vectors – hereafter called bonds – by simply draw-
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Figure 5.5: Phase diagram of hard-core Yukawa particles with βǫ = 1200, κσ̄ = 0.7 (system
D) presented in the η, p plane. Symbols and labels are the same as in Figure 5.1. Note
the difference in the packing fraction scale between this figure and the previous three. The
highest degree of polydispersity investigated for which fluid-solid coexistence was found is
p = 0.22; simulations with p = 0.23 were performed but in that case a fluid-like, disordered
state is always stable over the ordered solid.

ing lines between the particle and each of its neighbors, and look for the degree of
correlation between the sets of bonds belonging to neighboring particles.

To this end, we project the local particle density around each particle in the sample
onto the set of spherical harmonics {Y m

l }: although an exact expansion would require
harmonics of all orders, we make the hypothesis, to be confirmed later on, that the set
of harmonics corresponding to a single, suitably chosen order l suffices for our needs.
Accordingly, we associate to each particle i a set of complex numbers {ql,m(i)}, with
m ∈ [−l, l], conforming to the prescription

ql,m(i)
.
=

1

Nnb(i)

Nnb(i)
∑

j=1

Y m
l (r̂ij) , (5.33)

where the sum runs over all the Nnb(i) neighbors of the particle – defined for instance
as the particles lying within the first minimum in the radial distribution function –
and r̂ij are the orientations of the bonds linking the particle with its neighbors.

The degree of correlation between the environments of two neighboring particles i
and j may be quantified by the following normalized scalar product, hereafter called
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Figure 5.6: Comparative plot of the effect of polydispersity in systems A-D. Symbols are the
results of Monte Carlo simulations, lines are guides to the eye. (Left panel) Relative shift
of the fluid-solid transition as a function of the polydispersity: η̄ = (ηF + ηS)/2 is the mean
packing fraction of the separated system, η̄0 is the value of the same quantity in the absence
of polydispersity. (Right panel) Difference between the packing fraction of the solid and the
packing fraction of the fluid (∆η), normalized by the value corresponding to p = 0 (∆η0),
plotted as a function of the polydispersity.

bond correlation index :

Sij
.
=

l
∑

m=−l

ql,m(i) q∗l,m(j)

(

l
∑

m=−l

|ql,m(i)|2
)1/2( l

∑

m=−l

|ql,m(j)|2
)1/2

, (5.34)

where ∗ denotes complex conjugation. Note that, owing to the property q∗l,m =
(−1)mql,−m, the latter is a real quantity.

In the upper panel of Figure 5.8 we show the histogram of the bond correlation
index Sij in two prototypical systems – a monodisperse fluid and a monodisperse FCC
crystal – for two different choices of the order l of the harmonic base (l ∈ {4, 6}).∗ We
notice that in either case the distribution in the fluid is much broader than the one
pertaining to the crystal, which is peaked towards the upper end of the horizontal
axis; moreover, the distinction is sharper when l = 6. One may also think to go
beyond this value and consider spherical harmonics of even higher order: although
this is possible, it is not advantageous, since the order parameter may become very
sensitive to fluctuations in the position of the particles, leading to a broadening of
the distribution. Therefore, in the following we will use l = 6, which enables a clear

∗The histograms have been computed with reference to monodisperse realizations of model system
A.
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Figure 5.7: Upper panel: radial distribution function of the system at the state point W in
Figure 5.1. Lower panel: radial distribution function at the state point X (full line) compared
to the radial distribution function of a monodisperse system having the same density (dashed
line).

distinction to be drawn between a fluid and a crystal and, at the same time, is low
enough to be robust against fluctuations.

In order to identify the fluid and crystal domains in the system, we pick a threshold
value S̄ for the bond correlation index and associate to each particle i the number ni
of neighboring particles for which the bond correlation index exceeds the threshold.
In other words, ni is defined as the cardinality of the set {Sij |Sij > S̄}, where the
index j runs over the neighbors of particle i; we call this latter quantity the number
of correlated neighbors. In the lower panel of Figure 5.8, we show the histogram of
ni for the two prototypical systems already considered, having fixed l = 6 and S̄ =
0.5. The distributions shown in the panel suggest that we may use the number of
correlated neighbors as a practical means to distinguish fluid-like particles from solid-
like particles, employing a threshold value n̄ in the range 5 ÷ 8; in the following we
will take n̄ = 6.†

The bond order parameter just introduced allows us to estimate the crystalline
fraction of the system, that is the fraction of solid-like particles over the total, even
in the presence of polydispersity: in particular, we apply the procedure to the four
state points W-Z in the phase diagram of model system A. The two fluid configura-

†That is, we consider a particle i solid-like if ni > n̄, otherwise it is classified as fluid-like.
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Figure 5.8: Distribution of bond order parameters in prototypical systems. Upper panel:
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FCC crystal corresponding to a couple of different choices of the order l of the (incomplete)
harmonic base. Lower panel: distribution of the number of neighbors per particle ni with
bond correlation index exceeding the threshold value S̄ = 0.5; the order of the spherical
harmonics is chosen as l = 6.

tions (state points W and Z) are obviously characterized by a low crystalline fraction,
namely 3.9% and 4.7%. Conversely, the crystalline fraction corresponding to the solid
configurations (state points X and Y) is surprisingly high: 99.4% and 97.7%, respec-
tively. This shows that the solid retains the full degree of crystalline order even close
to the terminal polydispersity. Snapshots of the system with the particles coloured
according to the bond order parameter are presented for state points W and X in
Figures 5.9 and 5.10, respectively.

5.5 CONCLUSIONS

In this chapter we studied the effect of quenched polydispersity on the freezing transi-
tion of repulsive hard-core Yukawa fluids. A theoretical analysis showed that the condi-
tions for polydisperse two-phase equilibrium reduce under the constraint of quenched
polydispersity to the equivalent conditions for a monodisperse system. Monte Carlo
simulations allowed us to map out the the phase diagram of four model systems which
span a broad spectrum of interactions, from hard-sphere-like to highly repulsive. In
all systems polydispersity shifts the freezing transition towards higher packing frac-
tions and narrows the density gap between the fluid and the solid. Our results confirm
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Figure 5.9: Snapshot of the system corresponding to state point W in Figure 5.1; polydisper-
sity is p = 0.093. Particles are colored according to their classification based on the Q6 bond
order parameter (see the text for the details): green particles are fluid-like, red particles are
solid-like. The crystalline fraction of the system is 3.9%.

Figure 5.10: Snapshot of the system corresponding to state point X in Figure 5.1; polydis-
persity is p = 0.093. Colors have the same meaning as in Figure 5.9. The crystalline fraction
equals 99.4%.
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the existence of a terminal polydispersity beyond which the freezing transition dis-
appears, so that a disordered, fluid-like configuration – which eventually may give
rise to a glassy state – is stable across the whole density range. Close to the terminal
polydispersity the phenomenon of reentrant melting takes place. Finally, an analysis
of the microscopic structure of the system showed that across the freezing transition
the polydisperse solid is fully crystalline.

We stress again that the assumption of quenched polydispersity is fundamental
for the previous results to hold. If particle fractionation could take place, the scenario
may radically change. Indeed, recent studies suggest that in this more general case
no terminal polydispersity exists, since the system can always freeze by splitting off
a solid with a narrow size distribution [45, 128].
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Summary

In this thesis I have dealt with a number of selected questions concerning the equi-
librium properties and the phase behavior of colloidal suspensions, using both theory
– including analytical and numerical methods from the physics of the liquid state –
and computer simulation. This is the work of a theoretical physicist, thereby several
low-level details have been forgotten in favor of general and (whenever possible) sim-
ple models. As a consequence, an emphasis has been placed on the notion of effective
interaction, which permeates and underlies most of the work reported herein.

In the introduction I presented the reader with an overview of colloidal suspen-
sions, motivating the broad interest they have attracted in the last few decades both
as a valuable test bench for ideas in condensed matter physics and as building blocks
for novel materials. The three classes of effective interactions that would form the
basis for the subsequent discussion – namely the depletion, screened Coulomb and
critical Casimir interaction – were also introduced.

In Chapter 2 I proposed an approximate method to obtain the equilibrium proper-
ties of a system of hard spheres with surface adhesion, seeking an improvement upon
the well known Percus-Yevick solution. Assuming the direct correlation function to
vanish beyond the range of the potential, in the sticky limit the thermodynamics of
the system are seen to depend on a single scalar parameter varying with the density
and the effective temperature. In order for thermodynamic consistency to be ensured,
this parameter must satisfy a certain nonlinear differential equation, that I derived
and attempted to solve numerically. A pronounced sensitivity to the boundary condi-
tions suggests that the self-consistent approach is inadequate for sticky interparticle
potentials.

In Chapter 3 I studied how the depletion force induced on spherical colloids by
a fluid of smaller particles departs from the paradigmatic Asakura-Oosawa model
when electric charges are present both on the colloids and the depletant particles.
Upon modeling the system as a binary mixture with screened-Coulomb repulsive in-
terparticle interactions, I applied the hypernetted-chain integral equation to derive
the effective pair potential characterizing an equivalent one-component system con-
taining the colloids alone. The Coulomb repulsion triggers two distinct effects, namely
an increase in the osmotic pressure of the depletant and a condensation of the deple-
tant particles near the surface of the colloids, which contribute in contrasting ways
to the effective potential. By postulating a high structural charge on the colloids,
an enhancement of the depletion force was predicted. A consistent semi-quantitative
interpretation of experimental data corroborates the analysis.

In Chapter 4 I developed a theoretical framework aiming to describe on a com-
mon basis the depletion interaction and the critical Casimir effect. Using the methods
of density functional theory I derived a formally exact expression for the energy of
interaction of two parallel walls immersed in a fluid with arbitrary interparticle in-
teractions. The result holds even in the neighbourhood of a critical point of the fluid,
where the latter is strongly correlated. The density functional approach is known to
give accurate results when applied to the class depletion interactions: by performing
a long-wavelength analysis of the density fluctuations and using a scaling form of the
free energy of the fluid in the critical region, I showed that it also accounts quanti-
tatively for the scaling behavior of the critical Casimir force that is usually derived
along the critical isochore by means of field-theoretical methods. As a bonus, the scal-
ing behavior off the critical isochore could be computed as well. The main result is
that depletion-induced and critical-Casimir forces have a common origin and merge
continuously as the thermodynamic state of the host fluid is varied. Experimental
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evidence supports this finding.
Finally, in Chapter 5 using Monte Carlo simulations I studied the effect of size

polydispersity on the freezing transition of charged colloidal suspensions. The goal
was to ascertain whether, and how, a sufficient amount of polydispersity suppresses
the crystalline phase in favor of an amorphous solid. The particle surface potential
was taken as a constant, so that size polydispersity entailed charge polydispersity;
moreover, the particle size distribution was the same in the fluid and the crystal, that
is particle fractionation was not allowed. I performed several free energy calculations,
investigating different combinations of screening length and surface potential. A con-
sistent pattern emerged: upon increasing the polydispersity, the freezing transition
shifts towards higher packing fractions and the density gap between the fluid and
the solid diminishes. The results support the existence of a terminal polydispersity
above which the freezing transition disappears, and also confirm the phenomenon of
reentrant melting.
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