
UNIVERSITÀ DEGLI STUDI DELL’INSUBRIA
DIPARTIMENTO DI INFORMATICA E COMUNICAZIONE

Dottorato di Ricerca in Informatica
XXIII Ciclo – 2007-2010

Ph.D. Thesis

Kripke Semantics and Tableau Procedures
for Constructive Description Logics

Loris Bozzato

Advisor:
Prof. Mauro Ferrari

Supervisor of the Doctoral program:
Prof. Gaetano Aurelio Lanzarone



Dedicated to my wonderful family.



Abstract

In this work we present the decidable constructive description logic KALC: the logic is
based on a Kripke-style semantics for the language of the description logic ALC and it is
directly inspired by the Kripke semantics for first order intuitionistic logic. We study the
constructive properties of this logic and its relations with classical semantics. Then, by
means of an example, we show how its semantics is suitable for the description of incom-
plete and dynamic knowledge. We then introduce a tableau calculus for this logic and we
prove its completeness with respect to KALC semantics. Most notably, by proving the
completeness and termination results for such calculus, we obtain an effective proof search
algorithm for our logic. We also study the relations of KALC with our previous proposals
for constructive description logics, with first order intuitionistic logic and with well-known
intuitionistic multi-modal logics. We conclude by presenting an application for a different
constructive semantics for KALC in the context of Semantic Web services composition.
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1

Introduction

1.1 Description logics

Description logics (DLs) [Baader and Nutt(2003)] are a family of logical based knowl-
edge representation formalisms, which are currently becoming particularly known
for their applications. Description logics are born from the need of a logical charac-
terization for non-logic and network based knowledge representation systems, such
as frame systems [Minsky(1981)] and semantic networks [Brachman(1979)]. From a
formal point of view, description logics are expressive though decidable fragments
of classical first order logic: in fact, the actual research on description logics is re-
garded to originate from the study [Brachman and Levesque(1984)] of the central
question of the relation between expressivity and complexity of such fragments.

The study of formal properties of description logics has been developed in
parallel with the investigation of implementation and optimization for their rea-
soning problems. Many of the advancements in description logics expressivity
have been driven by their need in applications. Indeed, because of their well
defined semantics and the efficient ways of reasoning they support, description
logics are nowadays at the basis of many relevant applications: most notably, de-
scription logics represent the logical base of the ontology representation languages
for the Semantic Web, like the W3C standard language OWL (Web Ontology Lan-
guage) [van Harmelen and McGuinness(2004), Patel-Schneider et al.(2009)].

Intuitively, description logics represent knowledge about a domain by means of
two basic representation elements, concepts and roles. Concepts represent classes of
objects (or, more precisely, individuals), while roles are used to express binary rela-
tionships between objects. For example, the concept Human can be used to represent
the set of all human beings while the role hasChild could represent the relation be-
tween parent and son.

So, concept and roles represent the elementary descriptions of the language:
complex descriptions are obtained by combining concept and roles by means of
logical operators. We can distinguish two kinds of such operators: concept construc-
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1 – Introduction

tors and role restrictions. Concept constructors can be used to represent the usual
boolean set operators between concepts, as conjunction (u), disjunction (t) and
negation (¬). For example, C t D describes the concept obtained by the union of
two concepts C and D. Roles restrictions build new concepts by means of roles, ba-
sically by restricting the types of possible relationships involving elements of such
concepts. Some typical role restrictions are universal restriction (∀), existential restric-
tion (∃) and number restriction (>): as an example, the concept ∀R.C represents the
set of individuals such that, if any object is related to them by the role R, then this
must belong to the concept C.

The semantics of description logics (in the case of descriptive semantics) is based
on the set theoretical interpretation of classical first order logics and supports the
intuitive definitions given above: concepts are interpreted as subsets of a given non
empty set (the domain of the interpretation) while roles are interpreted as binary
relations (set of pairs) over the domain. The semantics of complex concepts is based
on the valuation of operators: for example, as noted above, concept constructors are
interpreted as the usual set operations over the sets denoted by concepts.

The number and combination of operators defines a specific description logic
and determines its expressivity and the complexity of reasoning over its represen-
tations. The addition of new constructors to the base operators is, in general, moti-
vated by knowledge representation needs: such additions are directly related to the
study on the decidability and complexity of the resulting logics. The minimal de-
scription logic languages can be identified with the family of the description logic
AL (attributive language). The most relevant extension of the AL logic is ALC (at-
tributive language with complements): this logic is usually considered as the reference
basic description logic, since it is the smallest description logic closed under every
boolean connective and for which complete inference algorithms are known. The
basic description logicALC is presented in the following chapters: in fact, this logic
is the base for our studies on constructive description logics.

A set of descriptions for a given domain forms a knowledge base. A knowledge
base is constituted by two components: a TBox, that represents the terminological
knowledge of the domain, and an ABox, describing the assertional knowledge of the
representation. In other words, the TBox contains the definitions (axioms) for con-
cepts used in the descriptions of the knowledge base, while the ABox introduces
information (assertions) about individuals in terms of membership to concepts and
roles. In general, TBox axioms are composed by concept definitions as C ≡ D, de-
scribing the necessary and sufficient conditions for the membership to a concept,
and concept inclusions as C v D, which only define necessary membership condi-
tions. For example, in our TBox we can state:

Human ≡ Mant Woman Father v Parent

The ABox assertions can be simply divided in concept assertions, in the form a : C,
and role assertions, in the form (a, b) : R, respectively stating that the individual
denoted by a belongs to the concept C and that a and b are related by the role R.
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1 – Introduction

For example, in our ABox we can assert knowledge about the individuals adam and
abel as follows:

adam:Father (adam, abel):hasChild

Reasoning tasks for description logics can also be divided in tasks for the TBox
and tasks for the ABox. The main reasoning problems for the TBox are concept
satisfiability, i.e. checking if a concept can be instantiated in a given TBox, and
concept subsumption, i.e. the problem to determine the inclusion of two complex
concepts. On the other hand, the most relevant reasoning services for the ABox
include ABox consistency, i.e. the test for satisfiability for assertions of an ABox
with respect to a given TBox, and instance checking, i.e. the task to determine if a
given individual belongs to a complex concept or a role.

1.2 Constructive description logics

Apart from the formal study of description logics languages and applications,
many approaches to extend the formalism of description logics have been pro-
posed. Part of these approaches aim at extending the expressivity of DLs, while
others propose ways to use DLs and their features in relation to other formalisms
and logical systems. In particular, since description logics are restrictions of the
classical first order logic, their semantics corresponds to a classical reading of de-
scriptions for concepts and individuals. Thus, some of the extensions to DLs substi-
tute their classical semantics with non-classical interpretations, such as interpreta-
tions from fuzzy logic and extensions with modal operators [Baader et al.(2003b)].
As can be easily understood, these different interpretations of DL descriptions aim
at modeling knowledge domains and problems that can hardly be treated in the
context of a classical semantics.

In this context, it can also be interesting to study interpretations of descrip-
tion logics based on constructive logics [Troelstra(1977)]. In general, a construc-
tive reading of DLs is useful in domains with possibly dynamic and incomplete
knowledge. This view is supported by the model theoretical features of construc-
tive semantics which allows the representation of stages of information and truth
evidence. Moreover, constructive reinterpretations of description logics are sig-
nificant in the context of computer science, since they allow to take advantage of
the computational properties of their formulas and proofs, see e.g. [Goad(1980),
Miglioli and Ornaghi(1981)]. In particular, such properties mainly come from the
Curry-Howard isomorphism [Howard(1980)] and its relations to the formulas-as-types
and proofs-as-programs paradigms: thanks to these connections, it is possible to
draw from the constructive tradition of program synthesis and type systems defi-
nition also in the DLs scenario.

The idea of a combination of description logics and constructive logics, that
we can call constructive description logics, is still quite recent: only few works have
proposed constructive semantics for DLs, starting from different motivations. We
give a brief account of the most relevant works of this area in the following section.
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1 – Introduction

1.2.1 Current approaches and motivations

In the following, we present the main approaches to constructive description logics
and we detail the motivations for their proposal.

de Paiva approach: translations of ALC in constructive logics

One of the first proposals to the definition of a constructive description logic is pre-
sented in [de Paiva(2005)]. The paper motivates the study of constructive descrip-
tion logics as useful to extend proof-theoretical methods (in particular the Curry-
Howard isomorphism) to description logics. The proposal defines three construc-
tive reinterpretations of ALC, based on translations from ALC into known con-
structive systems. In particular, the proposal exploits the known translations of
ALC in first order logic and in the multimodal logic Km. By these translations, con-
structive semantics for ALC are given as translations into a fragment of first order
intuitionistic logic (presented with respect to its standard Kripke semantics) and
into two different systems for Km.

Odintsov and Wansing approach: constructive paraconsistent semantics forALC

Other early proposals for the definition of constructive DLs are the formalizations
introduced in [Odintsov and Wansing(2003), Odintsov and Wansing(2008)] for in-
consistency tolerant paraconsistent description logics: the idea is that construc-
tive semantics provide a tool to represent inconsistent data or incomplete infor-
mation. In [Odintsov and Wansing(2003)] three different constructive paraconsis-
tent semantics for ALC are presented: the idea is to substitute the classical se-
mantics for the description logic with the one for N4, a four valued paraconsistent
logic [Almukdad and Nelson(1984)]. This is obtained at different levels in the three
translations: the first of these, CALCC, is mainly obtained from ALC by substi-
tuting subsumption with intuitionistic implication and classical negation with a
constructive negation. In the semantics of CALCC, every element of the domain
is seen as an “individual at a state” and individuals are related by an accessibility
relation � whenever they represent the same element at a different state of knowl-
edge: this interpretation, that can be easily compared to the usual Kripke-style
semantics for intuitionistic and modal logics, leads to a constructive interpretation
of implications and negations and to typical constructive properties as the disjunc-
tion property. The other two logics proposed in this paper are called CALCN4 and
CALCN4d. The semantics of both logics is derived as translations to QN4, the first
order variant of the N4 logic. CALCN4d adds duality of quantifiers with respect to
the constructive negation and allows to prove a direct correspondence with the de-
cidable modal logic FS [Fischer Servi(1981), Fischer Servi(1984)]: this implies the
decidability of the positive fragment of this logic. Sound and complete tableaux
calculi for each of the three logics are presented in [Odintsov and Wansing(2003)].
Those calculi are inspired to the usual calculi for intuitionistic and multimodal K
logics and allow to solve the reasoning problems for the two logics. The calculi are

4



1 – Introduction

reviewed in the second paper [Odintsov and Wansing(2008)], where the authors
provide a tableaux based decision procedure for CALCC, the only logic among the
three which is elementary decidable, and they study its complexity.

Mendler and Scheele approach: Kripke semantics with fallible entities

Another work centered on the proposal of a constructive interpretation for DLs and
the study of its applications is [Mendler and Scheele(2010)]. As in the case of the
previous proposal, the motivation of this work resides in the treatment of partial
information and consistency under abstraction. In particular, the authors consider
the issue of evolving and dynamic knowledge, in which entities represent abstract
individuals with changing properties. In such context, the static vision of classi-
cal Open World Assumption (OWA) can not support the idea of knowledge refine-
ment: on the other hand, the representation of stages of information provided by
constructive semantics can be used to model this idea of Evolving OWA. The paper
proposes a constructive version ofALC, called cALC, which is essentially based on
a Kripke semantics. Similarly to [Odintsov and Wansing(2003)], entities are seen as
states of knowledge or as partial descriptions of individuals: thus, the semantics
of cALC extends the classical semantics by adding a pre-order �I on the elements
of the domain. Most notably, interpretations of cALC also include a set ⊥I of falli-
ble entities: these elements represent contradictory abstract individuals and they can
express maximal elements with respect to the partial order or undefined role fillers.
This semantics definition allows to prove some constructive properties of cALC as
the omission of the excluded middle or the distributivity of quantifiers over the
disjunction. Two calculi for cALC are proposed, a Hilbert-style proof system and
a tableau calculus, both sound and complete with respect to the presented seman-
tics. Finite model property for the logic and decidability of the calculi are proved
via completeness of the tableau procedure. An application of cALC in the context
of data streams for auditing has been presented in [Mendler and Scheele(2009)].

Hofmann and Kaneiwa approaches

The works presented in [Hofmann(2005), Kaneiwa(2005)] represent two “minor”
proposals in which a constructive interpretation of DLs is seen more as a formal tool
than as the central theme of their study. In [Kaneiwa(2005)] different interpretations
for constructive negation are introduced to model several notions of negative infor-
mation. This is done by defining two different extensions to the descriptive seman-
tics of ALC with different interaction between constructive and classical negation:
the paper also provides a sound tableaux algorithm for satisfiability in the new se-
mantics. A similar semantics has recently been proposed in [Kamide(2010)] for the
definition of a paraconsistent version of ALC. The proposal in [Hofmann(2005)]
is centered on the study of proof-theoretical properties rather than constructive se-
mantics. The paper introduces a polynomial-time decision procedure for subsump-
tion derived as a variant of Gentzen sequent calculus. The procedure is proved to
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be sound and complete with respect to descriptive and fixpoint semantics for DLs
and to meet typical properties of sequent calculi as the cut elimination property.

BCDL

Given the former approaches, in the current sections we resume our previous pro-
posals in the context of constructive description logics and we motivate the work
presented in the following chapters.

One of the most interesting aspects of constructive logics by the point of view of
computer science, as already noted, is the possibility of giving a computational in-
terpretation of their proofs. This idea is studied in our proposal for BCDL
[Bozzato et al.(2007), Ferrari et al.(2010a)], a constructive reinterpretation for ALC
based on an information terms semantics. The base structure of this constructive se-
mantics are information terms: intuitively, an information term is a structured object
that constructively justifies the validity of a formula in a classical model. This se-
mantics can be seen as an implementation of the BHK (Brower-Heyting-Kolmogorov)
interpretation of logical connectives and as a generalization of realizability interpre-
tations. Differently from the previous works, such semantics allows to preserve the
classical reading of description logic formulas. A simple proof theoretical charac-
terization for BCDL by a sound and complete natural deduction calculus is pre-
sented in [Ferrari et al.(2010a)]. The calculus allows to prove the constructive prop-
erties of BCDL as the disjunction property and the explicit definability property. Such
calculus provide a computational interpretation of its proofs, following the proofs-
as-programs paradigm: the proved formula is seen as a goal while its proofs repre-
sent programs to solve it. Starting from the properties of this constructive seman-
tics and the natural notion of state encoded by information terms, we have also pro-
posed in [Bozzato et al.(2009a)] an initial formalization for an action language based
on an information terms semantics for ALC: even in this quite limited formalism,
information terms semantics has shown its advantages by giving a way to build
states obtained by actions application and to trace reasons for state inconsistency.

KALC∞

We provided a second constructive interpretation for ALC, that we call KALC∞

[Bozzato et al.(2009b), Villa(2010)], which, however, can be seen only as partially
related to BCDL. KALC∞ provides a Kripke-style semantics for ALC based on
possibly infinite posets which is related to the Kripke semantics for first order intu-
itionistic logic. Differently from the similar semantics presented in [de Paiva(2005)],
which can be seen as a direct translation in DLs of the standard intuitionistic Kripke
semantics, we impose a condition on the form of the admitted models: namely, ev-
ery state must be followed by a classical world, i.e. a state in which concepts are
interpreted under the classical semantics for ALC. Such condition seems to be es-
sential to obtain the Finite Model Property (and thus decidability) for our logic: this
semantical condition can be characterized by an axiom schema that represent the
equivalent in the description logics context of the well-known Kuroda principle for
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first order logic. In [Bozzato et al.(2009b)] we also presented a sound and complete
tableaux calculus for KALC∞, inspired to the ones for intuitionistic and Kuroda
logic. The calculus features an efficient treatment of duplications on implicative
formulas, useful for the development of an efficient decision procedure forKALC∞

and to compare to tableaux procedures for classical description logics.

1.2.2 Motivations of the thesis

In the definition of constructive description logics suitable for effective use in ap-
plications, the essential problem regards guaranteeing their decidability. Indeed,
after using constructive semantics to represent partial or incomplete information,
to be able to solve and implement constructive versions of the usual description
logic reasoning problems needed to perform inferences on such representations, it
is necessary to provide at least decidable procedures for such problems.

Following this motivation, in order to obtain a decidable constructive DL, in this
work we introduce a different Kripke-style semantics for ALC: the logic based on
this semantics, that will be the central formalism analyzed in this thesis, is called
KALC. In a nutshell, KALC presents a constructive semantics for ALC based
on finite Kripke models: over this semantics, we can formulate a tableau calcu-
lus with an effective algorithm for proof search. We can show that KALC meets
the disjunction property and, differently from other proposals as [de Paiva(2005)],
KALC consistency agrees with the classical consistency of ALC. Moreover, as we
present by means of some examples, its Kripke semantics allows the representa-
tion of dynamic and incomplete knowledge. The idea is that a Kripke model can
be considered as a set of worlds, representing states of knowledge, partially or-
dered by their information content. This permits to express partial and incomplete
states of knowledge which can increase in time in the context of the Open World
Assumption. Reasoning problems in KALC can be formulated exactly as in their
classical counterparts for ALC and, as shown by such examples, they also assume
a constructive meaning. Most notably, the proof search algorithm forKALC can be
directly used to solve these reasoning problems, thus showing their decidability in
our logic.

In the following chapters, after some preliminary definitions in Chapter 2 for
the basic presentation of the classical version of ALC, we introduce the syntax and
semantics of KALC and we discuss its constructive properties and application in
the representation of dynamic knowledge. Afterwards, the tableau calculus TK for
KALC is introduced and its soundness with respect to KALC semantics is proved.
The study of completeness and termination results give rise to the subsequent defi-
nition of the tableaux procedure associated with the calculus. The complexity prop-
erties of such procedure are discussed in the following section. In Chapter 4 we
then study the logic properties of KALC, specifically the relations of KALC with
our previous proposals and with other intuitionistic multi-modal logics. Finally, in
Chapter 5 we present an application of an information terms semantics for KALC
in the context of Semantic Web services composition.
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2

Preliminaries

In this chapter we introduce the notation and main definition for the formalisms
which we refer to in the following chapters: the description logic ALC and the
propositional and first order intuitionistic logics Int and QInt.

2.1 Description logic ALC
We begin by introducing the language of the basic description logic ALC and its
classical semantics [Baader et al.(2003a), Schmidt-Schauß and Smolka(1991)]. The
formalization forALC that we present is the one introduced in [Bozzato et al.(2007),
Ferrari et al.(2010a)] and it forms the base for the constructive extensions that we
discuss in the following chapters.

The language L of ALC is based on the following denumerable sets: the set NR
of role names, the set NC of concept names, the set NI of individual names. A concept C
is an expression of the kind:

C ::= A | ¬C | C u C | C t C | ∃R.C | ∀R.C

where A ∈ NC and R ∈ NR.
Let VAR be a denumerable set of individual variables; the formulas of L are defined

according to the following grammar:

H ::= ⊥ | (s, t) : R | t : C | C

where s, t ∈ NI∪ VAR, R ∈ NR and C is a concept. We write H ∈ L to mean that H is
a formula of L and we write L′ ⊇ L to mean that the language L′ is an extension
of L, namely L′ includes the same roles, concepts and individual names of L.

An atomic formula of L is a formula of the kind⊥, (s, t) : R or t : A, where R ∈ NR
and A ∈ NC. A negated formula is a formula of the kind t : ¬C with C a concept. A
simple formula is either a negated or an atomic formula. A formula is closed if it does
not contain variables: in other words, a formula is closed if it is “grounded” with
elements s, t ∈ NI.

8



2 – Preliminaries

A concept formula is a formula of the kind t : C or C, with C a concept. A universal
formula is a formula of the kind C with C a concept: universal formulas intuitively
represent axioms that hold on every element of the domain. A role formula is a
formula of the kind (t, s) : R with R ∈ NR.

We define the concept inclusion relation (subsumption) C v D as ¬C t D. We
remark that in the classical setting C→D is equivalent to ¬C t D, thus the impli-
cation constructor is usually left out from ALC presentation.

A knowledge base K in ALC is a pair K = (T ,A) consisting of a TBox T and an
ABox A, where:

– A TBox T is a finite set of terminological axioms in the form C v D or C ≡ D,
where C, D are concepts and C ≡ D is an abbreviation for C v D and D v C.

– An ABox A is a finite set of closed concept and role assertions of the kind t : C or
(t, s) : R, where R ∈ NR and t, s ∈ NI.

We also distinguish two kinds of TBoxes on the base of the axioms they contain:
in particular, it is usual to recognize different forms of TBoxes for complexity and
decidability reasons [Baader and Nutt(2003)].

Definition 2.1
We say that a TBox T is acyclic iff it holds that:

1. T only contains inclusions A v C, with A an atomic concept.

2. Let us say that the atomic concept A directly uses A′ in T iff, for some A v C ∈
T , A′ is a subformula of C and let uses be the transitive closure of the “directly
uses” relation. Then, no concept occurring in T uses itself.

A TBox T is general whenever T is not limited by the previous restrictions.

We denote with N a finite subset of individual names NI. We write LN to denote
the language of the concept and role formulas in which the occurring individual
names belong to N .

A classical model (interpretation) M for L is a pair (DM, ·M), where DM is a
non-empty set (the domain of M) and ·M is a valuation map such that:

– for every c ∈ NI, cM ∈ DM;

– for every A ∈ NC, AM ⊆ DM;

– for every R ∈ NR, RM ⊆ DM ×DM.

A non atomic concept C is interpreted by a subset CM of DM as follows:

– (¬A)M = DM \ AM

– (A u B)M = AM ∩ BM

– (A t B)M = AM ∪ BM

9



2 – Preliminaries

– (∃R.A)M = { d ∈ DM | ∃d′ ∈ DM s.t. (d, d′) ∈ RM and d′ ∈ AM }

– (∀R.A)M = { d ∈ DM | ∀d′ ∈ DM, (d, d′) ∈ RM implies d′ ∈ AM }

An assignment on a model M is a map θ : VAR → DM. If t ∈ NI ∪ VAR, tM,θ is the
element of DM denoting t in M w.r.t. θ, namely: tM,θ = θ(t) if t ∈ VAR, tM,θ = tM

if t ∈ NI. A formula H isALC-valid inMw.r.t. θ, and we writeM, θ |= H, if H 6= ⊥
and one of the following conditions holds:

– M, θ |= t : C iff tM,θ ∈ CM;

– M, θ |= (s, t) : R iff (sM,θ , tM,θ) ∈ RM;

– M, θ |= C iff CM = DM.

We write M |= H iff M, θ |= H for every assignment θ. Note that, given a concept
C of L, M |= C iff M |= x : C, with x any variable. If Γ is a set of formulas, M |= Γ
means thatM |= H for every H ∈ Γ. We say that H is anALC-logical consequence of
Γ, and we write Γ |= H, iff, for every M and every θ, M, θ |= Γ implies M, θ |= H.

With respect to a TBox T , we say that a model M satisfies an axiom if:

M |= C v D iff CM ⊆ DM M |= C ≡ D iff CM = DM

With respect to an ABox A, we say that a model M satisfies an assertion if:

M |= a : C iff aI ∈ CM M |= (a, b) : R iff (aM, bM) ∈ RM

A model M satisfies a TBox T iff M |= H for every H ∈ T . Similarly, M satisfies
an ABox A iff M |= H for every H ∈ A. We also say that M satisfies a knowledge
base K = (T ,A) iff M satisfies T ∪A.

Over this formalization for ALC, we can state some of the typical problems on
description logics. Given a knowledge base K = (T ,A):

– Concept satisfiability: a concept C is satisfiable w.r.t. K iff there exists a model M
of K such that CM 6= ∅;

– Concept subsumption: given two concepts C and D, D subsumes C w.r.t. K iff
K |= C v D;

– Instance checking: given an individual name t and a concept C, the individual t is
an instance of the concept C w.r.t. K iff K |= t : C.

2.2 Propositional intuitionistic logic Int

In this section, we introduce the syntax and Kripke semantics for the propositional
intuitionistic logic Int.

10
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We consider the propositional language PL based on a denumerable set of
propositional variables PV , the logical connectives ¬, ∧, ∨, → and the logical con-
stants > and ⊥. The formulas of propositional intuitionistic logic are expression of
the form:

F ::= ⊥ | > | p | ¬F | F ∧ F | F ∨ F | F→F

where p ∈ PV is a propositional variable. Writing formulas we assume that ¬
binds stronger than ∧ and ∨, which in turn are stronger than →.

In the following we recall the main definitions about Kripke semantics for Int: we
refer to [Chagrov and Zakharyaschev(1997)] for further details. Kripke semantics is
based on partial orders: intuitively, the elements of the ordering, also called worlds,
can be seen as states of knowledge. An interpretation is assigned to each world, i.e.,
every world justifies a subset of the closed atomic formulas of the language. The
knowledge acquired in each world is monotonic, in the sense that if a closed atomic
formula is known to be true at a world α, it preserves its truth in all the worlds that
follow α in the partial order. Thus, moving from one world to one of its successors,
our knowledge on atomic facts can only increase.

Formally, a partially ordered set (poset) is a pair (P,≤), where:

– P is a non-empty set (possibly infinite);

– ≤⊆ P × P is a partial order relation over P, that is a reflexive, transitive and
antisymmetric relation.

If the poset contains a minimum ρ, we call (P,≤) a poset with root ρ.
The interpretation of propositional intuitionistic logic given by Kripke models can

be defined as follows:

Definition 2.2 (Propositional intuitionistic Kripke model)
A propositional intuitionistic Kripke model is a quadruple

K = 〈 P,≤, ρ,  〉,

where (P,≤) is a poset with root ρ and  is a binary relation called forcing relation
between elements of P and formulas of PL, satisfying the following properties:

– for every α, β ∈ P and p ∈ PV , α  p and α ≤ β imply β  p;

– α  >;

– α  ⊥ does not hold;

– α  F1 ∧ F2 iff α  F1 and α  F2;

– α  F1 ∨ F2 iff α  F1 or α  F2;

– α  F1→F2 iff for every β ∈ P such that α ≤ β, β  F1 implies that β  F2;

– α  ¬F iff for every β ∈ P such that α ≤ β, β  F does not hold.

11
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The relation α  F may be read “F is true at a world α” or, more concisely, “α forces
F”. We denote with α 1 F the fact that α  F does not hold.

A formula F is valid in a model K = 〈P,≤, ρ, 〉, denoted K  F, iff α  F for
every α ∈ P (or equivalently if ρ  A). We say that a formula F is Int-valid iff it
is valid in every Kripke model for Int. Let ModInt be the class of all propositional
Kripke models, then we define:

Int = { F | F is a formula of PL and, for every K ∈ ModInt, K  F }

In other words, we identify the logic Int as the set of formulas valid in all Kripke
models.

A relevant property of Kripke models is the monotonicity property: if a given
formula F is forced at a world α of a Kripke model K, then it is forced in all the
worlds β ∈ P such that α ≤ β. This means that all of the knowledge is preserved
between subsequent worlds and it can only increase monotonically.

Proposition 2.3 (Monotonicity property)
Let K = 〈P,≤, ρ, 〉 be a propositional intuitionistic Kripke model, α ∈ P and F be
a formula. If α  F in K, then β  F in K for every β ∈ P such that α ≤ β. 2

The proposition can be easily proved by induction on the structure of the formula
F and the inductive definition of the forcing relation.

A typical constructive property of Int semantics is the Disjunction Property (DP),
which can be stated as follows:

Proposition 2.4 (Disjunction Property)
If F1 ∨ F2 ∈ Int, then either F1 ∈ Int or F2 ∈ Int. 2

In other words, whenever a disjunctive formula F1 ∨ F2 is valid in Int, then we can
prove that at least one between F1 and F2 is valid in Int.

Given the definitions for Int semantics, we can now provide a Hilbert-style cal-
culus for intuitionistic propositional logic. A detailed description of Hilbert-style
calculi can be found in [Kleene(1952)]. The Hilbert-style calculus HInt for proposi-
tional intuitionistic logic consists of the axioms and rules listed in Figure 2.1. We as-
sume the usual definitions and conventions for Hilbert-style calculi [Kleene(1952)]:
in particular, a proof of HInt is a finite sequence of formulas where every formula
is either an axiom or it is obtained by a rule application on previous formulas of
the sequence.

It is well known that HInt is sound and complete with respect to Int semantics:
in other words, the set of formulas provable in HInt coincides with Int, the set of
all Int-valid formulas [Chagrov and Zakharyaschev(1997)].

2.3 First order intuitionistic logic QInt

We can now extend the definitions for intuitionistic logic and its Kripke semantics
to the first order case [Smorynski(1973)]. We call QInt the resulting first order
intuitionistic logic.

12
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Axioms for conjunction:

Ax1 : A u B→A
Ax2 : A u B→B
Ax3 : A→ (B→ (A u B))

Axioms for disjunction:

Ax4 : A→A t B
Ax5 : B→A t B
Ax6 : (A→C)→ ((B→C)→ (A t B→C))

Axioms for implication:

Ax7 : A→ (B→A)
Ax8 : (A→ (B→C))→ ((A→B)→ (A→C))

Axiom for intuitionistic contradiction:

Ax9 : ⊥→A
Ax10 : A u ¬A→⊥

Rules:
A A→B

MP
B

Figure 2.1: Axioms and rules of HInt

A signature Σ = 〈C,F ,R〉 consists of the denumerable sets of constant symbols
C, function symbols F and predicate symbols R. The intersection of these elements
must be empty and we consider predicates in R or function symbols in F to have
arity greater than zero.

The language of first order intuitionistic logic FL is built starting from a denu-
merable set of variables V , the logical constants > and ⊥, the logical connectives ∧,
∨, ¬ and→, the quantifiers ∃ and ∀ and the auxiliary symbols ‘(’ and ‘)’. A term is
defined as:

– every variable x ∈ V is a term;

– every constant symbol c ∈ C is a term;

– if f ∈ F is a function symbol with arity n and t1, . . . , tn are terms, then also
f (t1, . . . , tn) is a term.

13
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First order formulas are defined according to the following syntax:

F ::= ⊥ | > | p(t1, . . . , tn) |
¬F | F ∧ F | F ∨ F | F→F | ∃x.F(x) | ∀x.F(x)

where t1, . . . , tn are terms, p ∈ R is a predicate symbol and x ∈ V is a variable.
Formulas of the kind p(t1, . . . , tn) with p ∈ R and t1, . . . , tn terms are called atomic
formulas. A substitution σ is any function from variables to terms. We denote with tσ
and Fσ respectively, the term and the formula obtained by simultaneously replac-
ing every free occurrence of a variable x with σ(x). We assume the usual considera-
tions on substitutions in the first order context, see e.g. [Kleene(1952)] for a detailed
discussion. A term is closed if it has no free variables. Analogously, a formula is
closed if it does not contain free variables. We say that σ is a closing substitution for a
tuple t1, . . . , tn of terms if t1σ, . . . , tnσ is a tuple of closed terms. Analogously, σ is a
closing substitution for a formula F if Fσ is a closed formula.

Kripke models for QInt have to be extended from the propositional case to
treat the interpretation of first order formulas (and in particular the interpretation
of terms) in every state of the poset.

Definition 2.5 (First order intuitionistic model)
A first order intuitionistic Kripke model is a quintuple

K = 〈 P,≤, ρ,D,  〉

where:

– (P,≤) is a poset with root ρ;

– D is a function associating to every element α ∈ P a non empty set D(α) such
that α, β ∈ P and α ≤ β implies D(α) ⊆ D(β);

–  is a relation called forcing relation between elements in P and closed formulas
of FL that satisfies the following definition:

– for p(t1, . . . , tn) and for every β ∈ P such that α ≤ β and d1, . . . , dn ∈ D(α), if
α  p(d1, . . . , dn), then β  p(d1, . . . , dn);

– α  F1 ∧ F2 iff α  F1 and α  F2;

– α  F1 ∨ F2 iff α  F1 or α  F2;

– α  F1→F2 iff for every β ∈ P such that α ≤ β, β  F1 implies that β  F2;

– α  ¬F iff for every β ∈ P such that α ≤ β, β 1 F;

– α  ∃x.F(x) iff there exists a ∈ D(α) such that α  F(a);

– α  ∀x.F(x) iff for every β ∈ P such that α ≤ β and for every b ∈ D(β),
β  F(b).

14
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Axioms for existential quantifier:

Ax11 : A(t/x)→∃x.A(x)
∗Ax12 : ∀x.(A(x)→B)→ (∃x.A(x)→B)

Axioms for universal quantifier:

Ax13 : ∀x.A(x)→A(t/x)
∗Ax14 : ∀x.(B→A(x))→ (B→∀x.A(x))

Rules: A(x)
GEN

∀x.A(x)

* x does not appear in the free variables of B

Figure 2.2: Axioms and rules of HQInt for quantifiers

Given a model K = 〈P,≤, ρ,D, 〉, α ∈ P and an open formula F of FL, α  F iff,
for every β ∈ P such that α ≤ β and for every closed substitution σ, β  Fσ. As
in the propositional case, a formula F is valid in the model K, and we write K  F,
iff α  F for every α ∈ P (or ρ  F), while F is QInt-valid iff it is valid in every
model for QInt. We identify the logic QInt with the set of all of its valid formulas.
Formally, let ModQInt be the class of all first order Kripke models, then we can state:

QInt = { F | F is a formula of FL and, for every K ∈ ModQInt, K  F }

By the semantics definition, the monotonicity property is naturally preserved in the
first order case.

Proposition 2.6 (Monotonicity property)
Let K = 〈P,≤, ρ,D, 〉 be a first order intuitionistic Kripke model, α ∈ P and F be
a closed formula. If α  F in K, then β  F in K for every β ∈ P such that α ≤ β. 2

We can also prove that QInt meets the Disjunction Property: moreover, the first
order intuitionistic logic meets another constructive property known as Explicit De-
finability Property (ED).

Proposition 2.7 (Disjunction Property)
If F1 ∨ F2 ∈ QInt, then either F1 ∈ QInt or F2 ∈ QInt. 2

Proposition 2.8 (Explicit Definability Property)
If ∃x.F(x) ∈ QInt, then there exists some term t for which F(t) ∈ QInt. 2

Intuitively the explicit definability property states that, whenever ∃x.F(x) is a valid
formula of QInt, then we can always find a term t verifying the validity of F(t).

15
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We can now extend the Hilbert-style calculus HInt presented for propositional
intuitionistic logic to the first order formalization of QInt. We call HQInt the re-
sulting calculus: the calculus HQInt is obtained by adding the axioms and rules
listed in Figure 2.2, necessary for the treatment of quantifiers, to the ones already
shown in Figure 2.1. As in the propositional case, HQInt is complete with respect to
QInt: the set of formulas provable in HQInt coincides with the set of all QInt-valid
formulas [Smorynski(1973)].
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KALC

In this chapter we introduce the constructive description logic KALC. This logic
is based on the language of ALC and relies on a Kripke-style semantics which cor-
responds to a reformulation of the Kripke semantics for first-order intuitionistic
logic. We provide a sound, complete and terminating tableau calculus for KALC
which allow us to state the decidability of the usual reasoning problems for our
constructive semantics. In the following sections we firstly present the syntax and
semantics of KALC and we discuss the properties of our constructive interpreta-
tion. Over this foundation, we then introduce the tableau calculus TK for KALC
and we prove its soundness: completeness is a consequence of the termination
proof that we give in the following section. The chapter concludes with a discus-
sion on the complexity of the tableau procedure derived by the calculus. Some of
the results introduced in this chapter are presented in [Bozzato et al.(2010)].

3.1 KALC syntax and semantics

We introduce the language L of KALC. It coincides with the language of ALC
given in the Preliminaries minus some modifications. In particular, concept defini-
tions include implication as a concept constructor while the falsum is now repre-
sented as a concept. Finally, subsumptions are defined as formulas of L.

Formally, concepts C,D and formulas H of L are defined as follows:

C, D ::= ⊥ | A | C u D | C t D | C → D | ∃R.C | ∀R.C
H ::= (c, d) : R | c : C | C v D

where c, d ∈ NI, A ∈ NC and R ∈ NR. Note that ¬C is not defined as a constructor of
the language, but, as usual in non-classical logics, we write ¬C as an abbreviation
for C → ⊥.

Given a finite N ⊆ NI, we write LN to denote the language of formulas of L in
which the occurring individual names belong to N .

17
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A KALC-model for LN is a quadruple

K = 〈 P,≤, ρ, ι 〉

where:

– (P,≤) is a finite poset with minimum element ρ;

– ι is a function associating with every α ∈ P a model ι(α) = (Dα, ·α) for LN such
that, for every α ≤ β, the following holds:

(K1) Dα ⊆ Dβ;

(K2) for every c ∈ N , cα = cβ;

(K3) for every A ∈ NC, Aα ⊆ Aβ;

(K4) for every R ∈ NR, Rα ⊆ Rβ.

In the following we refer to elements α of P as worlds of K. Intuitively, consistently
with the usual reading of Kripke models, worlds of K represent states of knowledge
that can be updated or refined by the ≤ relation: we note that conditions (K1)–(K4)
settle that the knowledge is monotonic. Moreover, we note that the set P of such
worlds is finite by definition.

Given K = 〈P,≤, ρ, ι〉 and α ∈ P, we denote with Lα the language obtained by
adding to the individual names of LN every element d ∈ Dα and setting dα = d.
We assume that N ∩ Dα = ∅ for every α ∈ P. Note that, by Condition (K1),
α ≤ β implies Lα ⊆ Lβ. We remark that such introduction of a language for every
world of a KALC-model is just a technical machinery needed for the treatment of
quantifiers: in fact, this is simply a way to directly name individuals of the domain
in the syntax of formulas.

Let α be a world of K and H a formula of Lα; we inductively define the forcing
relation α  H as follows:

– α  c : A, where A ∈ NC or A = ⊥, iff cα ∈ Aα;

– α  (c, d) : R where R ∈ NR, iff (cα, dα) ∈ Rα;

– α  c : C u D iff α  c : C and α  c : D;

– α  c : C t D iff α  c : C or α  c : D;

– α  c : C → D iff, for every β ≥ α, β  c : C implies β  c : D;

– α  c : ∃R.C iff there is d ∈ Dα such that α  (c, d) : R and α  d : C;

– α  c : ∀R.C iff, for every β ≥ α and d ∈ Dβ, β  (c, d) : R implies β  d : C;

– α  C v D iff, for every β ≥ α and c ∈ Dβ, β  c : C implies β  c : D.
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We remark that, differently from ALC, the logical connectives are not interdefin-
able; e.g., C→D is not equivalent to ¬C t D. As for negation, being ¬C an abbre-
viation for C → ⊥, we get

α  c : ¬C iff for every β ≥ α, β 1 c : C

By conditions (K1)–(K4) the forcing relation satisfies the monotonicity property,
which explains the monotonic increase of knowledge along the ≤ relation between
worlds:

Proposition 3.1 (Monotonicity property)
Let K = 〈P,≤, ρ, ι〉 be a KALC-model, α ∈ P and H be a formula of Lα. Then,
α  H implies β  H for every β ≥ α.

Proof: The assertion follows by induction on the structure of the formula H. We
only discuss some of the most relevant cases, while the other cases directly follow
by the induction hypothesis.

If H = c : A with A = ⊥ or A ∈ NC, the assertion directly follows from condition
(K3) on the definition of K. Moreover, by condition (K4), the same holds if H =
(c, d) : R where R ∈ NR.

If H = c : C→D, suppose that α  H but there exists a β ≥ α such that β 1 H.
This means that there exists a γ ≥ β such that γ  c : C but γ 1 c : D. This is an
absurd, since by definition and by the fact that γ ≥ α this would imply that α 1 H
against our assumptions.

If H = C v D, suppose that α  H but there exists a β ≥ α such that β 1 H.
This means that there exists a γ ≥ β and c ∈ Dγ such that γ  c : C but γ 1 c : D.
This is an absurd, since by definition and by the fact that γ ≥ α it would hold that
that α 1 H against our assumptions. 2

Moreover, we can show the relation between the interpretation of implication and
subsumption by the following property.

Proposition 3.2
Let K = 〈P,≤, ρ, ι〉 be a KALC-model and α ∈ P. Then, α  C v D iff for every
β ≥ α and c ∈ Dβ, β  c : C→D.

Proof: Let us suppose that there exists β ≥ α and c ∈ Dβ such that β 1 c : C→D.
Thus, there must exist a γ ≥ β such that γ  c : C and γ 1 c : D. Thus we have
that α 1 C v D.

On the other hand, let us suppose that α 1 C v D. Then there exists a γ ≥ α
and d ∈ Dγ such that γ  d : C but γ 1 d : D. That is, γ 1 d : C → D and the
assertion is proved. 2

Given a KALC-model K = 〈P,≤, ρ, ι〉 for LN , we say that a formula H of LN is
valid in K, and we write K  H if α  H for every α ∈ P (or equivalently if ρ  H).
A formula H is KALC-valid if H is valid in every KALC-model for LN . Finally, H
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is satisfiable in KALC iff there exists a KALC-model K = 〈P,≤, ρ, ι〉 and α ∈ P such
that α  H in K.

A final world φ of K is a maximal element of (P,≤): that is, for every α ∈ P,
φ ≤ α implies φ = α. Note that φ 1 H implies φ  ¬H. As a consequence, in φ
any formula c : C t ¬C is valid, as in classical models for ALC, hence a final world
represents a state of complete knowledge.

In particular, we can define the relation between classical models for ALC and
final states of KALC models by the following considerations. Given an ALC-
model M for L, let us consider the KALC-model

KM = 〈 {ρ}, {(ρ, ρ)}, ρ, ι 〉

where ι(ρ) = M. It is easy to check that KM is equivalent to M in the following
sense: for every closed formula H ∈ L

M |= H iff ρ  H in KM

Hence, if H does not hold in anALC-modelM, KM is a countermodel for H. Thus,
we get that the set of formulas of LN , valid in every KALC-model is a subset of
the ALC-valid formulas. In this sense, KALC is classically consistent.

On the other hand, the final elements of a KALC-model essentially coincide
with classical interpretations. Indeed, given a KALC-model K = 〈P,≤, ρ, ι〉 and a
final element φ ∈ P, letMφ = ι(φ). It is easy to check that, for every closed formula
H of Lφ

Mφ |= H iff φ  H in K

The following proposition also holds:

Proposition 3.3
If c : C ∈ L is valid in ALC, then c : ¬¬C is valid in KALC.

Proof: Let us suppose that c : ¬¬C is not valid inKALC. Then there exists aKALC-
model K′ = 〈P,≤, ρ, ι〉 and a world α ∈ P such that α 1 c : ¬¬C. By semantics
definition, there exists β ∈ P such that β ≥ α and β  c : ¬C. This implies that, for
every γ ∈ P with γ ≥ β, γ 1 c : C. Since every KALC-model is finite, there exists a
final world φ ∈ P such that φ ≥ β and φ 1 c : C. If we define, as above, Mφ = ι(φ),
it holds that Mφ 6|= c : C which implies that c : C is not valid in ALC. 2

We can also state the following result with respect to satisfiability:

Proposition 3.4
A formula H ∈ LN is satisfiable in KALC iff H is satisfiable in ALC.

Proof: Given H satisfiable in KALC, then there exists K = 〈P,≤, ρ, ι〉 and a world
α ∈ P such that α  H in K. Since P is finite, there exists a final world φ ≥ α such
that φ  H in K. If we define as above the classical model Mφ = ι(φ), we have that
Mφ |= H, meaning that H is satisfiable in ALC.
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On the other hand, if H is satisfiable inALC then there exists anALC-modelM
such that M |= H. Defining, as above, the KALC-model KM = 〈{ρ}, {(ρ, ρ)}, ρ, ι〉
with ι(ρ) = M, we immediately obtain that ρ  H, which shows that H is satisfi-
able in KALC. 2

We now introduce the notion of KALC-logical consequence, denoted by |=k , which
allows us to represent in KALC the usual inference problems for DLs. Let F be a
set of formulas, by α  F we mean that α  H for every H ∈ F . Given a formula
H, the relation F|=k H holds iff for every K = 〈P,≤, ρ, ι〉 and α ∈ P, if α  F
then α  H. By the above discussion, it follows that if F|=k H then H is a logical
consequence of F as understood inALC. Thus,KALC-logical consequence refines
the corresponding notion for ALC.

In the context of KALC, we assume that TBoxes are only composed of concept
inclusions of the form C v D. The inference problems for KALC are formulated as
given forALC by referring to the |=k relation. Given a knowledge baseK = (T ,A):

– Concept satisfiability: C is satisfiable w.r.t. K iff K ∪ {q : C}6|=k q : ⊥, with q not
occurring in A.

– Concept subsumption: D subsumes C w.r.t. K iff K|=k C v D.

– Instance checking: c : C is entailed by K iff K|=k c : C.

In the next example we show how our semantics allows us to represent partial and
incomplete information and supports constructive reasoning.

Example 1 (Auditing)
We reconsider the auditing example of [Mendler and Scheele(2010)]. Let us con-
sider the knowledge base defined by the following ABox A:

a:Company (a,b):hasCustomer b:Insolvent

b:Company (a,c):hasCustomer d : ¬Insolvent
c:Company (b,c):hasCustomer a : D → CW

d:Company (c,d):hasCustomer

where D is the concept:

∃hasCustomer.(Insolventu ∃hasCustomer.¬Insolvent)

In A, the concept CW stands for “Credit Worthy” and the formula a : D → CW states
that if the company a has an insolvent customer ins which in turn can rely on at
least one non-insolvent customer nins, then a can be trusted as CW. Here and in
Figure 3.1, I abbreviates Insolvent.
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Figure 3.1: The model K

In ALC the assertion a:CW is entailed by A. To prove this, let M be any model
of A. We first show that a : D holds in M. Since tertium non datur classically holds,
inM the customer c is either insolvent or not insolvent. Let us consider the worlds
φ2 and φ1 in Figure 3.1 representing the two possibilities; in both cases, we can find
out the clients ins and nins required by D: ins = c and nins = d in the former case,
ins = b and nins = c in the latter. Since a : D → CW holds in M, it follows that
a : CW holds in M. Thus, in ALC the company a is trusted as CW though we have
not any knowledge about the identity of the customers ins and nins.

On the contrary, in KALC the information in A does not enable to assert that
a is CW. The point is that we have not enough knowledge on c, thus neither “c
is insolvent” nor “c is not insolvent” can be asserted (indeed, in a future world c
might become insolvent). This can be formalized in KALC semantics as follows.
Let N = {a, b, c, d} and let us consider the Kripke model K = 〈P,≤, ρ, ι〉 for LN in
Figure 3.1, consisting of the root ρ and two final worlds φ1 and φ2 such that:

– for every α ∈ P, Dα = N and, for every z ∈ N , zα = z.

– atomic concepts and roles are interpreted as follows:

World Company Insolvent CW hasCustomer

ρ N {b} ∅ { (a, b), (a, c), (b, c), (c, d) }
φ1 N {b} {a} { (a, b), (a, c), (b, c), (c, d) }
φ2 N { b, c } {a} { (a, b), (a, c), (b, c), (c, d) }

Since φ1  c : ¬Insolvent and φ2  c : Insolvent we have that

ρ 1 c : Insolvent ρ 1 c : ¬Insolvent

hence ρ 1 c : Insolventt¬Insolvent. Note that, b and c are the only individuals
such that

(a, b) ∈ hasCustomerρ b ∈ Insolventρ (b, c) ∈ hasCustomerρ
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but ρ 6 c : ¬Insolvent. It follows that in ρ we can not find out for a the customers
ins and nins required by the concept D, hence ρ 1 a : D. Since

φ1  a : CW φ2  a : CW

we have ρ  a : D → CW. To sum up, ρ  A and ρ 1 a : CW; we conclude that a : CW
is not a KALC-logical consequence of A. Observe that the final worlds correspond
to the two possible way of acquiring a complete knowledge about the insolvency
of c: clearly, in the final worlds a must be CW. 3

We conclude the discussion on Kripke semantics by remarking thatKALC satisfies
the Disjunction Property (DP): in particular, we can prove that the property holds
when assuming a set of a specific kind of formulas in the premises ofKALC-logical
consequences, which can be seen as the counterpart in the description logics context
of Harrop formulas [Troelstra(1973a)].

We define the Harrop concepts of L as concepts of L with the following form:

H ::= ⊥ | A | H u H | C → H | ∀R.H

with A ∈ NC, R ∈ NR and C any concept. The Harrop formulas of L are formulas
K ∈ L defined by the following grammar:

K ::= (c, d) : R | c : H | C v H

with c, d ∈ NI, R ∈ NR, H a Harrop concept and C any concept.

Proposition 3.5 (Disjunction Property)
Let F be a set of Harrop formulas of L, then F|=k c : C1 t C2 implies F|=k c : C1 or
F|=k c : C2.

Proof: Let us suppose that F|=k c : C1 t C2, but F 6|=k c : C1 and F 6|=k c : C2. Then by
definition, there exist two KALC-models:

K1 = 〈P1,≤1, ρ1, ι1〉 K2 = 〈P2,≤2, ρ2, ι2〉

such that ρ1  F and ρ2  F , but ρ1 1 c : C1 and ρ2 1 c : C2.
We show that we can construct a KALC-model from K1 and K2 that contradicts

the hypothesis. Let us assume, without loss of generality, that:

NI∩
⋃

α∈P1

Dα = NI∩
⋃

α∈P2

Dα = ∅

That is, we assume that individual names of NI do not appear as elements of any
Dα in K1 and K2. Let K = 〈P,≤, ρ, ι〉 be the structure defined as follows:

P = { (1, α) | α ∈ P1 } ∪ { (2, α) | α ∈ P2 } ∪ {ρ}

with ρ a new element and

≤= { (ρ, α) | α ∈ P } ∪ {(α, β) ∈ P× P | α = (i, γ), β = (i, γ′) with γ ≤i γ′}

Let α ∈ P, the model ι(α) = (Dα, ·α) is defined as follows:
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– if α = (i, γ) for some γ ∈ Pi, then let mα : NI∪Dγ → Dγ be the function defined
as follows:

mα(d) =
{

d if d ∈ Dγ

dγ if d ∈ NI

We define:

– Dα = Dγ ∪ NI;

– for every t ∈ NI, tα = t;

– for A ∈ NC and d ∈ Dα, d ∈ Aα iff mα(d) ∈ Aγ;

– for R ∈ NR and d, e ∈ Dα, (d, e) ∈ Rα iff (mα(d), mα(e)) ∈ Rγ.

– if α = ρ, we define:

– Dρ = NI;

– for every t ∈ NI, tρ = t

– for A ∈ NC, Aρ = (Aρ1 ∪ Aρ2) ∩ NI;

– for R ∈ NR, Rρ = (Rρ1 ∪ Rρ2) ∩ (NI× NI).

Let M be the family of all the functions in {mα | α ∈ P \ {ρ}}. We note that M has
the following property:

(P1) if α = (i, α′) and β = (i, β′) in P \ {ρ} with (i, α′) ≤ (i, β′), then for every
d ∈ Dα′ ∪ NI, mα(d) = mβ(d).

This holds since, if d ∈ Dα′ then d ∈ Dβ′ and we have that mα(d) = mβ(d) = d. On
the other hand, if d ∈ NI then, by definition of each model Ki, it holds dα′ = dβ′ :
this implies that mα(d) = (d)α′ = (d)β′ = mβ(d).

We can now verify that K is indeed a KALC-model:

– the set P is finite by definition;

– if α, β ∈ P and α ≤ β then, by definition, Dα ⊆ Dβ;

– for every α, β ∈ P, by definition, it holds that tα = tβ, for t ∈ NI;

– let α ≤ β with α 6= β. If α = ρ and β = (i, γ), then by definition we have that, for
every A ∈ NC, Aρ = Aβ and, for every R ∈ NR, Rρ = Rβ;

Now let us suppose that α = (i, γ) and β = (i, δ). Let A ∈ NC and d ∈ Dα:
then d ∈ Aα iff mα(d) ∈ Aγ. Given that Aγ ⊆ Aδ, this holds if mα(d) ∈ Aδ and,
by (P1), iff mβ(d) ∈ Aδ. Thus this holds iff d ∈ Aβ: this implies that Aα ⊆ Aβ.
Let R ∈ NR and d, e ∈ Dα: then (d, e) ∈ Rα iff (mα(d), mα(e)) ∈ Rγ. Given that
Rγ ⊆ Rδ, this holds if (mα(d), mα(e)) ∈ Rδ and, by (P1), iff (mβ(d), mβ(e)) ∈ Rδ.
Thus the fact holds iff (d, e) ∈ Rβ: this implies that Rα ⊆ Rβ.

We can prove the following property:
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(P2) For every α = (i, γ) ∈ P \ {ρ} and every H ∈ Lα, α  H iff γ  H.

We first note that, by definition, Lα = Lγ. The assertion can be proved by cases
on the structure of the formula H: we only give the proof for some of the relevant
cases.

Let H = (d, e) : R with R ∈ NR. Then, α  (d, e) : R iff (dα, eα) ∈ Rα. By
definition, this holds iff (mα(dα), mα(eα)) ∈ Rγ. The fact holds iff (dγ, eγ) ∈ Rγ and
thus iff γ  (d, e) : R.

Let H = d : C: we can show the assertion by induction on the definition of the
concept C. If H = t : A with A ∈ NC or A = ⊥, then α  d : A iff dα ∈ Aα. By
definition, this holds iff mα(dα) ∈ Aγ. We have that mα(dα) = dγ: thus this holds iff
dγ ∈ Aγ and finally iff γ  d : A.

Let H = d : C → D. Let us suppose that α 1 d : C → D: then there exists a
β ∈ P such that α ≤ β and β  d : C but β 1 d : D. If β = (i, γ′), by induction
hypothesis we have that γ′  d : C but γ′ 1 d : D: this implies that γ 1 d : C→D.
On the other hand, suppose that γ 1 d : C→D. Then there exists γ′ ∈ Pi such that
γ ≤ γ′ and γ′  d : C but γ′ 1 d : D. By induction hypothesis, (i, γ′)  d : C and
(i, γ′) 1 d : D, which implies α 1 d : C→D.

Let H = d : ∀R.C. If α 1 d : ∀R.C, then there exists β ∈ P and e ∈ Dβ such
that α ≤ β, β  (d, e) : R and β 1 e : C. If β = (i, γ′), by induction hypothesis we
have that γ′  (d, e) : R but γ′ 1 e : C which implies γ 1 d : ∀R.C. On the other
hand, suppose that γ 1 d : ∀R.C. Then there exists a γ′ ∈ Pi and e ∈ Dγ′ such
that γ ≤ γ′, γ′  (d, e) : R and γ′ 1 e : C. By induction hypothesis, we have that
(i, γ′)  (d, e) : R but (i, γ′) 1 e : C which implies α 1 d : ∀R.C.

Let H = C v D. Suppose that α 1 C v D. Then there exists β ∈ P and d ∈ Dβ

with α ≤ β such that β  d : C but β 1 d : D. Let β = (i, γ′). By the induction
hypothesis γ′  d : C but γ′ 1 d : D. This implies γ 1 C v D. On the other hand,
suppose that γ 1 C v D. Then there exists a γ′ ∈ Pi and d ∈ Dγ′ with γ ≤ γ′ such
that γ′  d : C but γ′ 1 d : D. By induction hypothesis over concept formulas, we
have that (i, γ′)  d : C and (i, γ′) 1 d : D. This implies α 1 C v D.

Now, we can show the following property:

(P3) For every Harrop formula K ∈ L, ρ  K iff ρ1  K and ρ2  K.

This can be shown by cases on the structure of the Harrop formula K.
Let K = (c, d) : R. Then by construction we have that Rρ = (Rρ1 ∩ Rρ2) ∩ (NI×

NI) and the assertion immediately follows.
Let K = c : H with H an Harrop concept: we show the assertion by induction

on the structure of H. For H = ⊥ the assertion holds by definition.
For H = A with A ∈ NC, by construction we have that Aρ = (Aρ1 ∩ Aρ2) ∩ NI

thus the assertion immediately follows.
For H = H1 u H2, we have that ρ  c : H1 u H2 iff ρ  c : H1 and ρ  c : H2.

By induction hypothesis, this holds iff ρi  c : H1 and ρi  c : H2 for i ∈ {1, 2} and
this holds iff ρi  c : H1 u H2 for i ∈ {1, 2}.
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For H = C → H′, let us suppose that ρi  c : C → H′ for each i ∈ {1, 2},
but ρ 1 c : C → H′. Then there exists α ∈ P with α ≥ ρ such that α  c : C
but α 1 c : H′. If α = ρ then, by induction hypothesis, for an i ∈ {1, 2} it holds
ρi 1 c : H′. Moreover, since α ≤ (i, ρi), we have that (i, ρi)  c : C which implies,
by (P1), that ρi  c : C. This implies ρi 1 c : C → H′, which contradicts our
hypothesis. If α 6= ρ then there exists i ∈ {1, 2} and γ ∈ Pi such that (i, γ)  c : C
and (i, γ) 1 c : H′. By (P1) this implies that ρi 1 c : C → H′, which contradicts
our hypothesis. Now let us suppose that ρ  c : C → H′ but ρi 1 c : C → H′ for
at least an i ∈ {1, 2}. Then there exists γ ∈ P with γ ≥ ρi such that γ  c : C but
γ 1 c : H′. By (P1) we have that (i, γ)  c : C and (i, γ) 1 c : H′. This implies that
ρ 1 c : C→H′, against our assumptions.

For H = ∀R.H′, let us suppose that ρ 1 c : ∀R.H′. Then there exist α ≥ ρ
and δ ∈ Dα such that α  (c, d) : R but α 1 d : H′. If α = ρ then, by induction
hypothesis, we have that there exists i ∈ {1, 2} such that ρi  (c, d) : R and ρi 1 d :
H′. Thus, ρi 1 c : ∀R.H′. If α 6= ρ then there exist i ∈ {1, 2} and γ ∈ Pi such that
α = (i, γ): by (P1) we have that γ  (c, d) : R and γ 1 d : H′, thus ρi 1 c : ∀R.H′.
On the other hand, let ρi 1 c : ∀R.H′ for at least an i ∈ {1, 2}. Then there exist
γ ∈ Pi and d ∈ Dγ such that γ  (c, d) : R and γ 1 d : H′. By (P1) we have that
(i, γ)  (c, d) : R and (i, γ) 1 d : H′ and this implies ρ 1 c : ∀R.H′.

Let K = C v H′. Let us suppose that ρ 1 C v H′. Then there exist α ∈ P
with α ≥ ρ and d ∈ Dα such that α  d : C but α 1 d : H′. If α = ρ, then
by induction hypothesis over Harrop concepts we have that there exists i ∈ {1, 2}
such that ρi 1 d : H′. Moreover, as ρ ≤ ρi implies (i, ρi)  d : C, by (P1) we have
that ρi  d : C. Thus it follows that ρi 1 C v H′. If α 6= ρ, then there exist i ∈ {1, 2}
and γ ∈ Pi such that (i, γ)  d : C and (i, γ) 1 d : H′. By (P1) we deduce that
γ  d : C but γ 1 d : H′: thus, it follows that ρi 1 C v H′. On the other hand, if
there is a i ∈ {1, 2} such that ρi 1 C v H′, then there exists a γ ∈ Pi with ρi ≤ γ
and d ∈ Dγ such that γ  d : C but γ 1 d : H′. By (P1), it follows that (i, γ)  d : C
but (i, γ) 1 d : H′: thus, we have that ρ 1 C v H′.

Finally, we can prove our main assertion as follows: since ρ1  F and ρ2  F
with F a set of Harrop formulas, by (P3) we have that ρ  F . Moreover, given that
ρ1 1 c : C1 and ρ2 1 c : C2, by (P2) it holds that (1, ρ1) 1 c : C1 and (2, ρ2) 1 c : C2,
thus ρ 1 c : C1 and ρ 1 c : C2. Then ρ 1 c : C1 t C2. This is an absurd, since we
assumed that F|=k c : C1 t C2. 2

The usual formulation of the Disjunction Property holds in KALC as a corollary of
the previous proposition, by assuming an empty set of formulas in the premises of
the logical consequence.

Corollary 3.6 (Disjunction Property)
|=k c : C1 t C2 implies |=k c : C1 or |=k c : C2. 2

We also note that, as an immediate consequence of the Disjunction Property, tertium
non datur does not hold in KALC, albeit it is a valid principle in ALC.
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3.2 The tableau calculus TK
In this section we introduce the tableau calculus TK for KALC and we prove its
properties with respect to KALC semantics. This calculus is defined inspiring to
tableau calculi for classical and intuitionistic logics: as in the case for these calculi,
TK is a goal oriented refutation calculus which proofs are built by decomposing
sets of signed formulas. For a detailed presentation of tableaux calculi and their
customary notation, we refer the reader to [Smullyan(1968), Fitting(1983)].

The tableau calculus TK works on signed formulas W = S(H), with H a formula
of L and S a sign in {T, F, Ts}. Formally:

W ::= T((c, d) : R) | F(c : C) | T(c : C) | Ts(c : C) | T(C v D)

Given a set of formulas F and a sign S , S(F ) denotes the set of signed formulas
S(H) such that H ∈ F .

Semantics of signed formulas is obtained by extending the interpretation of for-
mulas with the meaning of each sign. Given a KALC-model K = 〈P,≤, ρ, ι〉, a
world α ∈ P and a signed formula W, α realizes W in K, and we write K, α � W, iff:

– W = T(H) and α  H.

– W = F(H) and α 1 H.

– W = Ts(H) and, for every β ∈ P such that α < β, K, β � T(H).

The signs T and F represent the notion of known and unknown formula and are
customary in the presentation of tableau calculi [Fitting(1983)]. On the other hand,
the sign Ts is new to our calculus and refers to the successors of a world. In particu-
lar, Ts(H) is realized in a world α if T(H) holds in every successor of α. We remind
that it is not required T(H) to hold in α. We also remark that K, α � Ts(c : ⊥) iff α
is final.

By the monotonicity property (Proposition 3.1), we get that T-signed formulas
are persistent: formally, if α, β ∈ P and α ≤ β, then K, α � T(H) implies K, β � T(H).
On the other hand, F-signed formulas are not persistent: however, we can say that
they are “downward” persistent, in the sense that if α, β ∈ P and α ≤ β, then
K, β � F(H) implies K, α � F(H).

Given a set of signed formulas ∆, we write K, α � ∆ if K, α � W for every W ∈ ∆.
We say that ∆ is realizable if K, α � ∆ for some K and α.

The relations among realizability, KALC-logical consequence and ALC-logical
consequence are stated by the following theorem:

Theorem 3.7
Let F be a set of formulas and q an individual name not in F .

(i) F|=k c : C iff the set T(F ) ∪ {F(c : C)} is not realizable.

(ii) F|=k C v D iff the set T(F ) ∪ {F(q : C → D)} is not realizable.
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(iii) H is an ALC-logical consequence of F iff T(F ) ∪ {Ts(c : ⊥), F(H)} is not
realizable.

(iv) c : C is an ALC-logical consequence of F iff F|=k c : ¬¬C.

Proof:

(i) Suppose that S = T(F ) ∪ {F(c : C)} is realizable. Then there exist a model
K′ and a world γ of K′ such that K′, γ � S. This implies that γ  F and
γ 1 c : C. This is an absurd, since assuming F|=k c : C implies that for every
model K and world α of K, if α  F then α  c : C.

On the other hand, let us suppose thatF 6|=k c : C. This implies that there exists
a model K′ and a world γ of K′ such that γ  F and γ 1 c : C. However, since
S is not realized, for every model K and world α of K, α 1 F or α  c : C: that
is, if α  F then α  c : C. This contradicts the previous hypothesis, thus the
assertion is proved.

(ii) Suppose that S = T(F ) ∪ {F(q : C → D)} is realizable. Then there exists a
model K′ and a world γ of K′ such that K′, γ � S, that is γ  F and γ 1 q :
C → D. However, by assuming F|=k C v D we have that for every model
K and world α of K, if α  F then α  C v D. This implies that, for every
c ∈ Dα and β ≥ α, β  c : C implies β  c : D. This is an absurd, since this
implies that, for every c ∈ Dα, α  c : C → D against the previous assertions.

On the other hand, let us suppose that F 6|=k C v D. Then there exists a model
K′ and a world γ of K′ such that γ  F and γ 1 C v D: thus there exist a
world β of K′ and a d ∈ Dβ such that β ≥ γ and β  d : C but β 1 d : D.
This implies that β 1 d : C → D: however, since S is not realizable, for every
model K and world α of K, α 1 F or α  q : C → D. This is an absurd since
this would imply that, for every individual name q not occurring in F , α  F
implies α  q : C → D.

(iii) Suppose that S = T(F ) ∪ {Ts(c : ⊥), F(H)} is realizable. Then there exist a
KALC-model K and a world φ of K such that φ  F and φ 1 H with φ a final
state of K. Consider the model:

Mφ = (Dφ, ·φ)

As we previously discussed, Mφ represents a classical ALC-model. More-
over, for every formula K ∈ Lφ, Mφ |= K iff φ  K. Thus we have Mφ |= F
butMφ 6|= H: this contradicts our assumption thatF |= H, thus the assertion
is proved.

On the other hand, suppose that F 6|= H. This implies that there exists an
ALC-model M such that M |= F but M 6|= H. Let us define the structure

KM = 〈{ρ}, {(ρ, ρ)}, ρ, ι〉
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with ι(ρ) = M. As we previously discussed KM is a KALC-model and, for
every formula K ∈ Lρ, M |= K iff ρ  K in KM. Thus, ρ is final in KM and
ρ  F but ρ 1 H. However, given that S is not realizable, we have that for
every KALC-model K and world α of K, if α is final, then α  F implies
α  H. This is an absurd, thus the assertion is proved.

(iv) Suppose that F 6|=k c : ¬¬C. Then there exists a KALC-model K and a world
α of K such that α  F and α 1 c : ¬¬C. This means that there exists a world
β of K with β ≥ α such that β  c : ¬C: that is, for every γ of K with γ ≥ β, it
holds that γ  F but γ 1 c : C. Given that everyKALC-model is finite, there
always exists a φ ≥ β that is final and φ 1 c : C. As in the previous case, we
can consider the ALC-model:

Mφ = (Dφ, ·φ)

Thus we have Mφ |= F but Mφ 6|= c : C: since this contradicts our assump-
tion that F |= c : C, the assertion is proved.

On the other hand, suppose that F 6|= c : C. Then there exists an ALC-model
M such that M |= F but M 6|= c : C. As above, we can define the KALC-
model

KM = 〈{ρ}, {(ρ, ρ)}, ρ, ι〉

with ι(ρ) = M. We have that ρ  F but ρ 1 c : C and, since ρ is final,
ρ 1 c : ¬¬C. This is an absurd, since by the hypothesis that F|=k c : ¬¬C we
have that, for every KALC-model K and α of K, α  F implies α  c : ¬¬C.

2

The rules of the tableau calculus TK are shown in Figure 3.2. The rules of TK have
the form:

∆

∆1 | . . . | ∆n

r

where we call ∆ the premise of the rule r, and ∆1, . . . , ∆n are the consequences of r.
Every rule applies to a set of signed formulas, but only acts on the signed formula
W explicitly indicated in the premise. In the rules F→, T→, F∀ we define the set ∆s
as follows:

∆s = {T(H) | T(H) ∈ ∆ } ∪ {T(H) | Ts(H) ∈ ∆ }

We remark that K, α � ∆ implies K, β � ∆s for every β > α. The application of
the rules Tv, F∃ and T∀ is constrained by the presence of the additional formula
T(c : A) or T((c, d) : R) in the premises. In the rules we write ∆, W as a shorthand
for ∆ ∪ {W}. If ∆, W is the premise of a rule, we assume W 6∈ ∆.

In the rules T∃ and F∀, q is a fresh individual name. Formulas of the kind

F(c : ∃R.C) T(c : ∀R.C) T(A v C)
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∆, T(c : C u D)

∆, T(c : C), T(c : D)
Tu

∆, F(c : C u D)

∆, F(c : C) | ∆, F(c : D)
Fu

∆, T(c : C t D)

∆, T(c : C) | ∆, T(c : D)
Tt

∆, F(c : C t D)

∆, F(c : C), F(c : D)
Ft

∆, F(c : C → D)

∆, T(c : C), F(c : D) | ∆s, T(c : C), F(c : D)
F→

∆, T(c : C → D)

∆, T(c : D) | ∆, F(c : C), Ts(c : D) | ∆s, F(c : C), Ts(c : D)
T→

∆, T(c : A), T(A v C)

∆, T(c : A), T(A v C), T(c : C)
Tv

∆, T(c : ∃R.C)

∆, T((c, q) : R), T(q : C)
T∃∗

∆, T((c, d) : R), F(c : ∃R.C)

∆, T((c, d) : R), F(c : ∃R.C), F(d : C)
F∃

∆, T((c, d) : R), T(c : ∀R.C)

∆, T((c, d) : R), T(c : ∀R.C), T(d : C)
T∀

∆, F(c : ∀R.C)

∆, T((c, q) : R), F(q : C) | ∆s, T((c, q) : R), F(q : C)
F∀∗

∗q does not occur in the premise

Figure 3.2: Rules of TK
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must be duplicated in rule application to guarantee the completeness: in other
words, these signed formulas are repeated in the consequences of their respective
rules, thus the rules can be applied indefinitely many times. We call these formu-
las dup-formulas. Note that in the intuitionistic case the treatment of T →-rule is
problematic and requires duplications [Avellone et al.(1999)] while in TK duplica-
tions are avoided by the introduction of the sign Ts. The same problem, in general,
also appears on the treatment of subsumption: however, in our case this problem
is prevented by the limitation on the form of TBox formulas.

A set ∆ clashes iff:

{ F(c : C), T(c : C) } ⊆ ∆ or T(c : ⊥) ∈ ∆

Clearly, a clashing set is not realizable.
A proof table for ∆ is a finite tree τ such that:

– the root of τ is ∆;

– given a node ∆′ of τ, the successors of ∆′ in τ are the sets in the consequences
of an instance of a rule having ∆′ as premise.

If all the leaves of τ clash, τ is a closed proof table for ∆. If there exists a closed proof
table for ∆, then we say that ∆ is provable in TK. We say that ∆ is consistent iff ∆ is
not provable.

Before proving soundness and completeness of the calculus, we give some ex-
amples of proofs.

Example 2
Let H = C t ¬C. Since c : H is valid in ALC, by Theorem 3.7 the formula c : ¬¬H
is valid in KALC. We show a proof of c : ¬¬H, recalling that ¬D = D → ⊥ in
KALC. The proof-tree is displayed according to standard notation used in tableau
systems [Fitting(1983)]. In the proof we underline the clashing formulas, we abbre-
viate with X a clashing set and we label with an integer the formulas treated by the
rules when needed.

F(c : ¬¬H)
F→

T(c : ¬H), F(c : ⊥)
T→

T(c : ⊥), F(c : ⊥) | F(c : H)1, Ts(c : ⊥), F(c : ⊥) | F(c : H)2, Ts(c : ⊥)
Ft1,Ft2

X | F(c : C), F(c : ¬C)3, Ts(c : ⊥), F(c : ⊥) | ∆ = F(c : C), F(c : ¬C)4, Ts(c : ⊥)
F→3

X | F(c : C), T(c : C), Ts(c : ⊥), F(c : ⊥) | T(c : C), F(c : ⊥), T(c : ⊥) | ∆
F→4

X | X | X | F(c : C), T(c : C), F(c : ⊥), Ts(c : ⊥) | T(c : C), F(c : ⊥), T(c : ⊥)

Note that, if Ts(c : ⊥) ∈ ∆, then ∆s clashes. In this case, in applying one of the rules
F →, T → and F∀ to ∆, we can drop out the rightmost set in the conclusion: thus, a
proof table for ∆, Ts(c : ⊥) resembles an ALC proof table. 3
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An interesting axiom schema that can be proved to be valid in KALC is a reformu-
lation of the Kuroda principle for first order logic

∀x.¬¬H(x)→¬¬∀x.H(x)

which is a well-known principle in the constructive logic literature [Gabbay(1981),
Troelstra(1973b)]. In the description logics setting, the principle can be restated as

(Kur) ∀R.¬¬A→¬¬∀R.A

We will discuss in more detail the role of this axiom schema and its reformulation
in the context of modal logics in Chapter 4.

Example 3
The following proof table exhibits a proof of a general instance of Kur.

F(c : ∀R.¬¬A→¬¬∀R.A)
F→

T(c : ∀R.¬¬A), F(c : ¬¬∀R.A)
F→

T(c : ∀R.¬¬A), T(c : ¬∀R.A)
T→

T(c : ∀R.¬¬A), T(c : ⊥) | T(c : ∀R.¬¬A), F(c : ∀R.A), Ts(c : ⊥)
F∀

X

∣∣∣∣ T(c : ∀R.¬¬A), T((c, q) : R),
F(q : A), Ts(c : ⊥)

∣∣∣∣ T(c : ∀R.¬¬A), T((c, q) : R),
F(q : A), T(c : ⊥)

T∀

X

∣∣∣∣ T(c : ∀R.¬¬A), T((c, q) : R),
F(q : A), Ts(c : ⊥), T(q : ¬¬A)

∣∣∣∣ X

T→

X

∣∣∣∣ T(c : ∀R.¬¬A), T((c, q) : R),
F(q : A), Ts(c : ⊥), T(q : ⊥)

∣∣∣∣ T(c : ∀R.¬¬A), T((c, q) : R),
F(q : A), Ts(c : ⊥), F(q : ¬A)

∣∣∣∣ X

F→

X | X
∣∣∣∣ T(c : ∀R.¬¬A), T((c, q) : R),

F(q : A), T(c : ⊥), T(q : A)

∣∣∣∣ T(c : ∀R.¬¬A), T((c, q) : R),
F(q : A), Ts(c : ⊥), T(q : A)

∣∣∣∣ X

3

3.3 Soundness of TK
By the definition of TK, we can prove its soundness with respect to KALC: we
prove the result by showing that given a realizable set of signed formulas ∆, then
∆ is consistent w.r.t. TK.

Lemma 3.8
Let ∆ be a set of signed formulas, K = 〈P,≤, ρ, ι〉 a KALC-model such that K, α �

∆, with α ∈ P, and r a rule of TK applicable to ∆. Then, there is a set ∆′ in the
consequence of r and β ∈ P such that K, β � ∆′.
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Proof: The assertion can be proved by cases on the rule r: we only discuss some of
the relevant cases.

Let W = T(c : C t D) and let us assume K, α � ∆, W. Then it holds that α  c :
C t D and, by definition of the semantics, α  c : C or α  c : D. Supposing that
α  c : C, then K, α � T(c : C) and the assertion holds. The other case is similar,
since we obtain K, α � T(c : D).

Let W = T(c : C → D) and let us assume K, α � ∆, W. If K, α � T(c : D), the
assertion holds. Otherwise, it holds that K, α � F(c : C). Given that K is finite,
there exists β ≥ α such that K, β � F(c : C) and K, β � Ts(c : C), which implies
K, β � Ts(c : D). If β = α, then K, β � ∆. Otherwise it holds that K, β � ∆s and the
assertion is proved.

Let W = F(c : C → D) and let us assume K, α � ∆, W. Then, it holds that
α 1 c : C → D and thus, by definition, there exists a β ≥ α such that K, β � T(c : C)
and K, β � F(c : D). If β = α, then K, β � ∆. Otherwise it holds that K, β � ∆s and
the assertion is proved.

Let W = F(c : ∀R.C) and let us assume K, α � ∆, W. Then, by definition, there
exists a β ≥ α and a q ∈ Dβ such that K, β � T((c, q) : R) but K, β � F(q : C). If
β = α, then K, β � ∆. Otherwise it holds that K, β � ∆s and the assertion is proved.

Let W = T(A v C) and let us assume K, α � ∆, T(A v C) and K, α � T(c : A).
By definition, given that α  A v C, then for every β ≥ α and d ∈ Dβ it holds that
K, β � T(d : A) implies K, β � T(d : C). As K, α � T(c : A), then K, α � T(c : C)
and the assertion holds. 2

By the previous lemma we directly deduce the Soundness Theorem:

Theorem 3.9 (Soundness)
Let ∆ be a set of signed formulas. If ∆ is realizable, then ∆ is consistent.

Proof: Suppose that ∆ is not consistent: then ∆ is provable and there exists a closed
proof table τ for ∆. If, by absurd, ∆ is realizable, then by the previous lemma there
must be a leaf ∆ f of τ such that ∆ f is realizable: this is a contradiction, since any ∆ f
is a clashing set. Thus, ∆ is not realizable, and this concludes the proof. 2

3.4 Completeness and termination of TK
In this section we prove the completeness of TK and we provide a decision proce-
dure for KALC based on TK. We prove that the result holds for acyclic TBoxes and
in the next section we discuss the complexity of the procedure.

Given a set of signed formulas ∆ we say that ∆ is acyclic iff the set of A v C
such that T(A v C) ∈ ∆ is an acyclic TBox, as defined in Definition 2.1. Note that,
according to Theorem 3.7, to solve the inference problems w.r.t. an acyclic TBox is
equivalent to decide the realizability of an acyclic set.

Thus the completeness result is shown as follows: given a finite acyclic consis-
tent set ∆, we show how we can build in finite time a countermodel for ∆, i.e. a
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Kripke model K(∆) = 〈P,≤, ρ, ι〉 such that K(∆), ρ � ∆. The following sections
detail the steps and components of the construction.

3.4.1 Labelled graphs

Our construction is inspired to the standard technique used for ALC satisfiabil-
ity [Baader and Nutt(2003)] based on graph expansion. In our case, a labelled graph
G refers to a world α of the countermodel K(∆) under construction and it is a rep-
resentation of the structure of its associated model ι(α). In particular:

– the nodes of G form the domain Dα of α;

– the labelled arcs (c, d, R) of G, where c, d are nodes of G and the label R is a role
name, define the interpretation of R in α;

– each node c is associated with a finite set of signed formulas S(c : C), represent-
ing the concept formulas that must be realized in α.

To get this, we repeatedly apply the following transformation rules on G:

1. Firstly, we apply to G expansion rules as in the standard construction of a down-
ward saturated set. We call expanded graph the graph Exp(G) obtained at the end
of this step. Exp(G) completely describes a world α of K(∆).

2. Let Ge be an expanded graph describing a world α. We give rules to compute
the successor graphs G ′ of Ge so that the expanded graphs Exp(G ′) will be all the
immediate successors of α in K(∆).

We need some care to guarantee the termination. We partition the formulas asso-
ciated with a node in primary and secondary formulas. Roughly speaking, primary
formulas drive the graph construction: at every step a primary formula or a TBox
axiom is selected and the graph is expanded according to the chosen formula. The
formulas already considered are collected in the set of secondary formulas, which
are no longer considered during the expansion. Dup-formulas require an ad-hoc
treatment to avoid infinite loops: for every dup-formula we store the individual
names already considered in the expansion procedure, so to apply dup-formula
rules at most once for each individual name. The TBox formulas can be seen as
“global constraints” on G: they are not affected by the transformation rules, thus
we take them apart.

Thus, we can formally define labelled graphs as follows:

Definition 3.10 (Labelled graph)
A labelled graph G is a structure of the kind

G = 〈 N , E , PF, SF, TB, DF 〉

where:
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– N is the set of nodes, with N a finite subset of NI.

– E is the set of labelled edges (c, d, R), with c, d ∈ N and R ∈ NR.

– PF and SF are functions associating with every node c ∈ N a finite set of signed
formulas S(c : C), called the primary and secondary formulas of c respectively.

– TB is the set T(T ) = {T(H) |H ∈ T }, with T a finite acyclic TBox.

– DF is a function mapping a dup-formula to a finite set of nodes.

Given a graph G, we also define the sets FORM(G) and FORM∗(G) as:

FORM(G) =
⋃

c∈N PF(c) ∪ {T((c, d) : R) | (c, d, R) ∈ E } ∪ TB

FORM∗(G) = FORM(G) ∪ ⋃
c∈N SF(c)

In the following we assume that at any step of the countermodel construction a
graph G satisfies the following properties:

(G1) FORM(G) is consistent.

(G2) The following closure properties hold:

– If T(c : C u D) ∈ SF(c), then {T(c : C), T(c : D)} ⊆ FORM∗(G).

– If F(c : C u D) ∈ SF(c), then F(c : C) ∈ FORM∗(G) or F(c : D) ∈ FORM∗(G).

– If T(c : C t D) ∈ SF(c), then T(c : C) ∈ FORM∗(G) or T(c : D) ∈ FORM∗(G).

– If F(c : C t D) ∈ SF(c), then {F(c : C), F(c : D)} ⊆ FORM∗(G).

– If T(c : C → D) ∈ SF(c), then T(c : D) ∈ FORM∗(G) or {F(c : C), Ts(c : D)} ⊆
FORM∗(G).

– If F(c : C → D) ∈ SF(c), then {T(c : C), F(c : D)} ∈ FORM∗(G).

– If T(c : ∃R.C) ∈ SF(c), then there is (c, q, R) ∈ E s.t. T(q : C) ∈ FORM∗(G).

– If W = F(c : ∃R.C) ∈ PF(c) and d ∈ DF(W), then F(d : C) ∈ FORM∗(G).

– If W = T(c : ∀R.C) ∈ PF(c) and d ∈ DF(W), then T(d : C) ∈ FORM∗(G).

– If F(c : ∀R.C) ∈ SF(c), then there is (c, q, R) ∈ E s.t. F(q : C) ∈ FORM∗(G).

– If W = T(A v C) ∈ TB and c ∈ DF(W) with T(c : A) ∈ PF(c), then T(c : C) ∈
FORM∗(G).

Intuitively, the previous conditions guarantee that every step of our construction
maintains the consistency of the graphs. Moreover, for every formula considered
in their expansion, graphs are closed with respect to the application of the rules
of the calculus: that is, the closure properties assure that the result of each step is
retained in the formulas of the graph. It is easy to check that the transformation
rules provided in the following sections preserve these properties.
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3.4.2 Starting graph G∆

Let ∆ be a finite acyclic consistent set of signed formulas. The countermodel con-
struction for ∆ begins from the starting graph G∆

G∆ = 〈 N∆, E∆, PF∆, SF∆, TB, DF∆ 〉

where:

– N∆ is the set of individual names occurring in ∆;

– E∆ is the set of (c, d, R) such that T((c, d) : R) ∈ ∆;

– PF∆(c) is the set of S(c : A) ∈ ∆;

– SF∆ and DF∆ map any element to the empty set;

– TB is the set of T(A v C) ∈ ∆.

One can easily check that G∆ satisfies the properties (G1) and (G2).

3.4.3 Expansion of a graph G
Let G = 〈N , E , PF, SF, TB, DF〉 be a finite graph and W ∈ FORM(G). Expansion rules
are defined in Figure 3.3. Given W, the corresponding expansion rule transforms G
in a new graph

G ′ = 〈 N ′, E ′, PF′, SF′, TB, DF′ 〉

In the rules, SW denotes the sign of W. Note that we only indicate the components
of the graph that are actually modified: that is, if an element E of G is not men-
tioned, it is understood that the corresponding element E′ of G ′ coincides with E.
Note also that, in some cases rules have no effect: for example, in the case W =
F(c : C → D) the graph is not modified if the set (∆ \ {W}) ∪ {T(c : C), F(c : D)}
is not consistent.

We repeatedly apply expansion rules to G until no rule is applicable. We will
discuss in Section 3.4.7 that the construction actually terminates. Let Exp(G) denote
the expanded graph

Ge = 〈 Ne, Ee, PFe, SFe, TB, DFe〉

obtained at the end of the expansion step.
Let Mod(Ge) be the model (Dα, ·α) for LNe representing a world α such that:

– Dα = Ne;

– for every c ∈ Ne, cα = c;

– for every A ∈ NC, Aα is the set of c such that T(c : A) ∈ PFe(c);

– for every R ∈ NR, Rα is the set of pairs (c, d) such that (c, d, R) ∈ Ee.
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Formula Expansion rule

W = T(c : C u D)
W = F(c : C t D)

PF′(c) = (PF(c) \ {W}) ∪ { SW(c : C), SW(c : D) }
SF′(c) = SF(c) ∪ {W}

W = F(c : C u D)
W = T(c : C t D)

If (∆ \ {W}) ∪ { SW(c : C) } is consistent then
PF′(c) = (PF(c) \ {W}) ∪ { SW(c : C) }
SF′(c) = SF(c) ∪ {W}

else
PF′(c) = (PF(c) \ {W}) ∪ { SW(c : D) }
SF′(c) = SF(c) ∪ {W}

W = F(c : C → D) If (∆ \ {W}) ∪ {T(c : C), F(c : D) } is consistent then
PF′(c) = (PF(c) \ {W}) ∪ {T(c : C), F(c : D) }
SF′(c) = SF(c) ∪ {W}

W = T(c : C → D) If (∆ \ {W}) ∪ {T(c : D)} is consistent then
PF′(c) = (PF(c) \ {W}) ∪ {T(c : D) }
SF′(c) = SF(c) ∪ {W}

else if (∆ \ {W}) ∪ {F(c : C), Ts(c : D)} is consistent then
PF′(c) = (PF(c) \ {W}) ∪ { F(c : C), Ts(c : D) }
SF′(c) = SF(c) ∪ {W}

W = T(c : ∃R.C) Let q 6∈ N
N ′ = N ∪ {q} E ′ = E ∪ { (c, q, R) }
PF′(c) = PF(c) \ {W} PF′(q) = {T(q : C) }
SF′(c) = SF(c) ∪ {W} SF′(q) = ∅

W = F(c : ∀R.C) Let q 6∈ N
If (∆ \ {W}) ∪ {T((c, q) : R), F(q : C) } is consistent then
N ′ = N ∪ {q} E ′ = E ∪ { (c, q, R) }
PF′(c) = PF(c) \ {W} PF′(q) = { F(q : C) }
SF′(c) = SF(c) ∪ {W} SF′(q) = ∅

W = F(c : ∃R.C)
W = T(c : ∀R.C)

Let d ∈ N such that (c, d, R) ∈ E and d 6∈ DF(W)
PF′(d) = PF(d) ∪ { SW(d : C) }
DF′(W) = DF(W) ∪ {d}

W = T(A v C) Let c ∈ N \DF(W)
If T(c : A) ∈ PF(c) then

PF′(c) = PF(c) ∪ {T(c : C) }
DF′(W) = DF(W) ∪ {c}

Figure 3.3: Expansion rules

37



3 – KALC

Formula Successor graph

W = F(c : C → D)
W = T(c : C → D)

N ′ = N E ′ = E DF′ = DFs
PF′(c) = (PF(c))s ∪RW PF′(d) = (PF(d))s for every d 6= c
SF′(c) = (SF(c))s ∪ {W} SF′(d) = (SF(d))s for every d 6= c

where RF(c:C→D) = {T(c : C), F(c : D)}
and RT(c:C→D) = {F(c : C), Ts(c : D)}

W = F(c : ∀R.C) Let q 6∈ N
N ′ = N ∪ {q} E ′ = E ∪ { (c, q, R) } DF′ = DFs
PF′(q) = { F(q : C) } PF′(d) = (PF(d))s for every d ∈ N
SF′(c) = (SF(c))s ∪ {W} SF′(q) = ∅
SF′(e) = (SF(e))s for every e ∈ N \ {c}

Figure 3.4: Successor rules

3.4.4 Successor of an expanded graph

After the expansion step, that intuitively builds a world in the construction of a
countermodel, the successor rules are then applied to define the immediate succes-
sors of such world.

Let G be an expanded graph and let W be a formula of FORM(G). The successor
graph of G generated by W is the graph

G ′ = 〈 N ′, E ′, PF′, SF′, TB, DF′ 〉

defined according to the rules in Figure 3.4. In the rules, DFs(Z) = DF(Z) if Z =
T(H), otherwise DFs(Z) = ∅.

3.4.5 Countermodel construction

Using the previous definitions, we can now show how to define a finite construc-
tion of a countermodel for a realizable set of formulas.

The countermodel for ∆

K(∆) = 〈 P, ≤, ρ, ι 〉

is built as follows:

– Exp(G∆) belongs to P and it is the root ρ of K(∆);

– Let α = Gα ∈ P and let G1,. . . , Gm be all the successors of Gα. Then, the graphs

Exp(G1), . . . , Exp(Gm)

belong to P and are the immediate successors of α in K(∆);

– ≤ is the reflexive and transitive closure of the immediate successor relation;

– For every α = Exp(G) ∈ P, ι(α) = Mod(Exp(G)).
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3.4.6 Concepts and formulas measures

The following properties are needed to prove the finiteness of every expanded
graph Ge in the countermodel construction. Let C be a concept, the depth of C,
denoted by depth(C), measures the maximum nesting depth of quantifiers in C.
Formally:

– depth(A) = 0, with A an atomic concept.

– depth(C� D) = max{depth(C), depth(D)}, for � ∈ {u,t,→}.

– depth(∃R.C) = depth(∀R.C) = depth(C) + 1.

We extend the definition to signed formulas as follows:

– depth(T((c, d) : R)) = 0.

– depth(S(c : C)) = depth(C).

– depth(T(C v D)) = max{depth(C), depth(D)}.

Given a finite set of signed formulas ∆, we define

depth(∆) = max{depth(H) | H ∈ ∆ }

Let
T = {T(A1 v C1), . . . , T(An v Cn) }

be an acyclic TBox. We assume that the Aj are pairwise distinct. This assumption
does not imply a loss in generality, since we could rewrite any pair of formulas
with equal subsumer concept as a single formula: for example, the formulas

T(A v C1) T(A v C2)

can be restated as T(A v C1 u C2).
Given an atomic concept A, we define the degree of A with respect to T , denoted

by dgT (A), as follows:

– If A 6∈ {A1, . . . , An}, we set dgT (A) = 0.

– Let A = Aj, let A′
1, . . . , A′

k be all the atomic concepts occurring in Cj and assume
that dgT (A′

1), . . . , dgT (A′
k) have already been defined. Then:

dgT (A) = 1 + max{dgT (A′
1), . . . , dgT (A′

k)}

Since T is acyclic, dgT (A) is defined for every atomic concept A. Intuitively,
dgT (A) corresponds to the maximum depth of applications of the rule T v in a
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branch of a proof table for {T(c : A)} ∪ T . For example, according to this intuitive
explanation, given the following TBox:

A v A1 u A2 u A3

A1 v B1 A2 v B2 A3 v B3

we have that:
dgT (B1) = dgT (B2) = dgT (B3) = 0

dgT (A1) = dgT (A2) = dgT (A3) = 1

dgT (A) = 2

We notice that, for every atomic concept A, dgT (A) ≤ |T |.
We extend the definition of dgT to signed role and concept formulas as follows:

– dgT (T((c, d) : R)) = 0.

– dgT (S(c : C)) = max{dgT (A) | A ∈ NC and A occurs in C }.

We remark that we do not need to extended the definition to signed TBox formulas
of the kind T(A v C). Given a set of signed formulas ∆, we define

dgT (∆) = max{dgT (H) | H ∈ ∆ }

Given a concept C, its size ‖C‖ represents the number of concept constructors oc-
curring in C. Formally, we define it as follows:

– ‖A‖ = 0 for A ∈ NC or A = ⊥;

– ‖C1 u C2‖ = ‖C1 t C2‖ = ‖C1→C2‖ = ‖C1‖+ ‖C2‖+ 1;

– ‖∃R.C′‖ = ‖∀R.C′‖ = ‖C′‖+ 1.

We extend the definition to signed formulas as follows:

– ‖T((c, d) : R)‖ = 0;

– ‖S(c : C)‖ = ‖C‖;

– ‖T(C v D)‖ = ‖C‖+ ‖D‖+ 1.

Given a set of signed formulas ∆, we define its size ‖∆‖ as

‖∆‖ = ∑
H∈∆

‖H‖

Given a concept C, we define the set Sub(C) of subconcepts occurring in C as:

– Sub(A) = A, for A ∈ NC or A = ⊥;

– Sub(C� D) = {C� D} ∪ Sub(C) ∪ Sub(D), for � ∈ {u,t,→};
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– Sub(QR.C) = {QR.C} ∪ Sub(C), for Q ∈ {∃, ∀}.

We extend this definition to signed formulas as follows:

– Sub(T((c, d) : R)) = ∅;

– Sub(S(c : C)) = Sub(C);

– Sub(T(C v D)) = Sub(C) ∪ Sub(D).

Given a set of signed formulas ∆,

Sub(∆) =
⋃

W∈∆

Sub(W)

3.4.7 Completeness and termination proof

From the previous definitions we are now able to prove that the proposed proce-
dure is complete with respect to the semantics of KALC and that it is terminating.
The termination proof allow us to assert that KALC is decidable. Let

G = 〈 N , E , PF, SF, TB, DF 〉

be a finite graph, let ∆ = FORM(G), and let Exp(G) be an expanded graph

Ge = 〈 Ne, Ee, PFe, SFe, TB, DFe 〉

To simplify the presentation, we consider the graph Ĝe having nodes Ne and edges
Ee \ E . In other words, we only consider new edges that have been generated
through the expansion of Ge. Note that Ĝe is a forest, whereas Ge might contain
cycles deriving from the edges originally contained in G. More precisely, the nodes
of N are the roots of the trees in Ĝe. The parent of a new node c ∈ Ne \ N is the
only b ∈ N such that c is a successor of b in Ĝe, namely there exists in Ĝe an edge
(b, c, R). The children of c ∈ N are all the successors of c in Ĝe.

The following results, which are based on these considerations, provide us with
an upper bound for Ne.

(P1) Let c ∈ Ne. Then, the number of children of c in Ĝe is at most |Sub(∆)|.

Proof: Let d be a successor of c in Ĝe. Then, d is generated by a signed formula W
of the form T(c : ∃R.C) or F(c : ∀S.D). More precisely, in the construction of Ge we
get a graph G ′ such that W belongs to PF′(c). In both cases, the concepts ∃R.C or
∀S.D must belong to Sub(∆), hence c has at most |Sub(∆)| successors. 2

A path π of Ĝe is a sequence (c1, . . . , cn) of nodes ofNe such that, for every 1 < j ≤ n,
cj is a successor of cj−1 in Ĝe. The length of π, we denote with length(π), is n. We
denote with FORM(c) the set PF(c) ∪ SF(c).
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(P2) Let c ∈ Ne, dgTB(FORM(c)) = h, depth(FORM(c) ∪ TB) = d and let π be a
path of Ĝe starting from c. Then, length(π) ≤ (h + 1)(d + 1).

Proof: We prove (P2) by induction on h. If h = 0, then in the construction of π in Ge
the expansion rule for formulas of the kind T(A v C) has never been applied; this
implies length(π) ≤ depth(FORM(c)), from which the assertion follows. Let h > 0
and suppose

π = (c, c2, . . . , cn)

with n > d + 1 (if n ≤ d + 1, (P2) trivially holds). We can split π into:

π1 = (c, . . . , cd+1) and π2 = (cd+1, . . . , cn)

Since depth(FORM(c)) ≤ d, the formulas in FORM(cd+1) are not obtained by de-
composing formulas in FORM(c), but must be subformulas of formulas of TB. By
definition of dgTB, it follows that

dgTB(FORM(cd+1)) < h

Let d′ = depth(FORM(cd+1)); by the induction hypothesis and being d′ ≤ d, we get

length(π2) ≤ h(d + 1)

It follows that length(π) ≤ (d + 1) + h(d + 1), hence

length(π) ≤ (h + 1)(d + 1)
2

By the previous properties we can prove the following result, which provides an
upper bound for the number of nodes of the expanded graph.

(P3) Let k = |Sub(∆)|, d = depth(∆) and n = |TB|. Then:

|Ne| ≤ |N | k
(n+1)(d+1) − 1

k− 1

Proof: The graph Ĝe is composed by |N | trees τ1, . . . , τm, each having as root a node
of N . Each tree τj has degree at most k = |Sub(∆)| by (P1) and height at most
(n + 1)(d + 1) by (P2). Since a k-ary complete tree of height h contains kh−1

k−1 nodes,
the above upper bound follows. 2

By the previous properties, it follows that Ge does not contain infinite paths starting
from a node c0 ∈ Ne \ N .

Lemma 3.11
Let G ′ be obtained by applying to G one of the rules of Figure 3.3 and Figure 3.4
defined by W. Then, one of the following facts holds:

(1) FORM(G ′) is obtained by replacing W with one or more formulas W ′ such that
‖W ′‖ < ‖W‖, possibly substituting Ts with T and discharging the F-formulas.

42



3 – KALC

(2) If W is a dup-formula, FORM(G ′) = FORM(G) ∪ {W ′}, with ‖W ′‖ < ‖W‖, and
DF(W) ⊂ DF′(W).

Proof: We simply note that Point (1) applies to the expansion and successor rules for
non dup-formulas. As can be easily verified by cases, in these rules for any newly
added formula W ′ it holds that ‖W ′‖ < ‖W‖.

In the case of dup-formulas Point (2) holds. In fact, after the application of the
rule for W = F(c : ∃R.C) and W = T(c : ∀R.C) it holds that

FORM(G ′) = FORM(G) ∪ {W ′ = SW(d : C)}

with (c, d, R) ∈ E and ‖W ′‖ < ‖W‖; moreover

DF′(W) = DF(W) ∪ {d}

After the application of the rule for W = T(A v C) it holds that

FORM(G ′) = FORM(G) ∪ {W ′ = T(d : C)}

with T(d : A) ∈ PF(d) and ‖W ′‖ < ‖W‖; also in this case

DF′(W) = DF(W) ∪ {d}
2

Let ∆ = FORM(G) and Exp(G) = Ge. We can now give a measure for FORM∗(Ge)
by giving a measure of the number of applications of the expansion rules to ∆ and
the size of formulas added by each rule. Let d-Sf(∆) be the set of dup-subformulas
of ∆ and nd-Sf(∆) be the set of non dup-subformulas of ∆. Obviously, we have:

|d-Sf(∆)| ≤ ‖∆‖ and |nd-Sf(∆)| ≤ ‖∆‖

We can show that:

(P4) The expansion rules for non dup-formulas add at most ‖∆‖ formulas to
FORM(Ge).

Proof: Every rule for non dup-formulas is applied at most once for every element of
nd-Sf(∆): thus we have at most ‖∆‖ applications of such rules during the expan-
sion of Ge. By Lemma 3.11, every application of such rules to a formula H can lead
to the addition to FORM(Ge) of one or more subformulas H′ of H with ‖H′‖ < ‖H‖:
since there exist at most ‖∆‖ of such subformulas, the application of every possible
expansion rule to Ge adds ‖∆‖ formulas to FORM(Ge) at most. 2

(P5) The expansion rules for dup-formulas add at most |Ne| · ‖∆‖ formulas to
FORM(Ge).

Proof: By their definition, for every dup-formula in d-Sf(∆), the corresponding rule
is applied at most one time for every node in Ne (indeed, the map DF is used to
control that each dup-formula is applied at most once for each individual name).
Hence, the expansion rules for dup-formulas are applied at most |Ne| · ‖∆‖ times
in the expansion of Ge. By Lemma 3.11, every application of such rules to a formula
H can lead to the addition to FORM(Ge) of a single subformula H′ of H: then, the
application of dup-formulas can at most add |Ne| · ‖∆‖ formulas to FORM(Ge). 2
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By the previous properties, we can conclude the finiteness of the expanded graph:

Lemma 3.12
Given a finite labelled graph G, Exp(G) is finite.

Proof: First of all, Ne and Ee are finite: this directly follows from (P3) and the finite-
ness of N and E .

Moreover, by the properties (P4) and (P5), we have that FORM(Ge) is finite since
the number of formulas added by expansion rules is finite and the number of rule
applications is bounded. Similarly, we can show that, for every c ∈ Ne, SFe(c) is
finite, since every application of the expansion rules adds at most one formula to
the secondary formulas of Ge: hence, we have that FORM∗(Ge) is finite. We remark
that, obviously, also the map DFe is finite since it is defined between dup-formulas
in FORM∗(Ge) and finite subsets of Ne, both of which are proved to be finite from
our previous considerations. 2

By now, we have proved that every expanded graph can be constructed in finite
time: in the following we prove that the number of worlds in K(∆) is finite.

Let us assume the following facts:

(A1) Given an expanded graph Gα, consider the graph

Gβ = Exp(G ′α)

where G ′α is obtained from Gα by applying one of the successor rules of Fig-
ure 3.4. In the countermodel construction, the world β = Gβ represents an
immediate successor of the world α = Gα.

(A2) Let us assume that G ′α is obtained from Gα by the application of the rule asso-
ciated with the signed formula W over the individual name c:

W = S(c : C)

Consider the graph Ĝβ, having nodes in Nβ and edges Eβ \ Eα. Then, in Ĝβ

the node c is the root of a tree τc. The nodes in Ĝβ can be partitioned as
Nα ∪ {c} ∪Nc where:

– Nα are the nodes of Gα different from c.

– Nc are the new nodes generated in the construction of Gβ. In particular,
they are the descendant of c in the tree τc and they are generated either
by the expansion steps towards Gβ or by the application of the successor
rule on W.

(A3) Let
∆α =

⋃
d∈Nα

PFα(d)

with PFα the primary formulas map associated with Gα. Note that, as Gα is an
expanded graph, ∆α only contains:
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Gα G ′α . . . G ′ . . . Gβ
W F

Figure 3.5: Assumptions for Proposition 3.13

– signed dup-formulas of the kind F(d : ∃R.C′) and T(d : ∀R.C′);

– signed atomic formulas;

– Ts-formulas, i.e. signed formulas of the form Ts(d : C′);

– signed formulas of the kind S(d : C′ → D′) or F(d : ∀R.C′).

(A4) Let
G ′ = 〈 N ′, E ′, PF′, SF′, TB, DF′ 〉

be one of the graphs obtained in the expansion of G ′α, during the construction
of Gβ. Moreover, let us assume that G ′ is obtained by applying an expansion
rule on the signed formula F.

We represent in Figure 3.5 the succession of steps leading the construction of Gβ

from Gα. In the figure we depict expanded graphs Gα and Gβ with thick borders
and gray background. We distinguish successor rules applications from expansion
rules applications with a thicker arrow line. Arrow labels, when present, describe
the formula over which the rule is applied.

We can prove the following facts:

Proposition 3.13
Using the assumptions (A1) – (A4), it holds that:

1. Let Z = S(c : D) ∈ PF′(c) in G ′. Then, one of the following properties holds:

(i) Z ∈ PFα(c) or Z = T(c : D) with Ts(c : D) ∈ PFα(c);

(ii) ‖Z‖ < ‖∆α‖;

(iii) dgTB(Z) < dgTB(∆α).

2. Let d be a descendant of c in τc and let V = S(d : D) ∈ PF′(d) in G ′. Then, one
of the following properties holds:

(i) ‖V‖ < ‖∆α‖;

(ii) dgTB(V) < dgTB(∆α).

Proof:

1. Let G ′ = G ′α, that is no expansion rule has been applied on G ′α. Then PF′(c) is
equal to PFα(c) minus the formulas modified in the application of the succes-
sor rule on W. In particular, this application modifies PFα(c) by adding one or
more formulas W ′, discharging F-formulas and substituting Ts-formulas with
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the corresponding T-formulas. In the case of the modified Ts-formulas and the
remaining formulas of PFα(c), the assertion holds for Point (i). In the case of the
newly added formulas W ′, the assertion holds by Point (ii), since by Lemma 3.11
we have that ‖W ′‖ < ‖W‖ and W ∈ PFα(c).

Now, let us assume, without loss of generality, that Z is a formula added to
PF′(c) in the last expansion step of G ′: we proceed by induction on the form of
the formula F.

Let F = T(A′ v C′), then Z = T(c : C′). We have that c /∈ DF′α(F) and T(c :
A′) ∈ PF′(c) in G ′. Since Gα is an expanded graph, T(c : A′) /∈ PFα(c) but it
is obtained during the expansion of G ′α either by decomposing W or a formula
T(c : B) with T(c : B) or Ts(c : B) in PFα(c). Hence, in both cases dgTB(Z) <
dgTB(∆α).

Let F = S(c : C′ uD′) or F = S(c : C′ tD′), then Z = S(c : C′) or Z = S(c : D′).
By the form of ∆α, F can only be generated from a previous rule application over
W or a formula T(c : B) with T(c : B) or Ts(c : B) in PFα(c). In both cases, we
have that ‖Z‖ < ‖∆α‖ or dgTB(Z) < dgTB(∆α).

Let F = F(c : C′ → D′), then Z = T(c : C′) or Z = F(c : D′). Note that
F /∈ PFα(c), since it would be discharged by the application of the successor rule
on W. Then, F is generated from a previous rule application over W or a formula
T(c : B) with T(c : B) or Ts(c : B) in PFα(c). Hence, in both cases ‖Z‖ < ‖∆α‖
or dgTB(Z) < dgTB(∆α).

Let F = T(c : C′→D′), then Z ∈ {T(c : C′), F(c : C′), Ts(c : D′)}. If F ∈ PFα(c)
then F 6= W and, since Gα is a fully expanded graph, Z /∈ PFα(c): this implies
that ‖Z‖ < ‖F‖ and thus ‖Z‖ < ‖∆α‖. Otherwise, if F /∈ PFα(c), then F is
generated from a previous rule application over W or a formula T(c : B) with
T(c : B) or Ts(c : B) in PFα(c). Hence ‖Z‖ < ‖∆α‖ or dgTB(Z) < dgTB(∆α).

Let F = F(d : ∃R.C′) or F = T(d : ∀R.C′) with (d, c, R) ∈ E ′, then Z = SW(c :
C′). Since edges of the kind (d, c, R) are not generated during any of the steps
of the construction of Gβ, then (d, c, R) ∈ Eα and F is a formula generated by a
previous expansion step on a formula T(d : B) with T(d : B) or Ts(d : B) in ∆α.
Thus, we have that ‖Z‖ < ‖∆α‖ or dgTB(Z) < dgTB(∆α).

2. Let G ′ = G ′α, that is no expansion rule has been applied on G ′α. Then PF′(d) 6= ∅
only if W = F(c : ∀R.C): in this case, PF′(d) = {F(d : C)}. Hence, by definition,
‖V‖ < ‖W‖ and thus ‖V‖ < ‖∆α‖.

Now, let us assume, without loss of generality, that V is a formula added to
PF′(d) in the last expansion step of G ′: we proceed by induction on the form of
the formula F.

Let F = T(A′ v C′), then V = T(d : C′). We have that d /∈ DF′α(F) and
T(d : A′) ∈ PF′(c) in G ′. Since d /∈ Nα, T(d : A′) /∈ ∆α but it is obtained during
the expansion of G ′α by decomposing W or a formula T(c : B) with T(c : B) or
Ts(c : B) in PFα(c). Hence, in both cases dgTB(V) < dgTB(∆α).
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Let F = S(d : C′ u D′) or F = S(d : C′ t D′), then V = S(d : C′) or V = S(d :
D′). By the form of ∆α, F can only be generated from a previous rule application
over W or a formula T(c : B) with T(c : B) or Ts(c : B) in PFα(c). In both cases,
we have that ‖V‖ < ‖∆α‖ or dgTB(V) < dgTB(∆α). We also note that the cases
for F = S(d : C′→D′) are similar.

Let F = T(q : ∀R.C′) or F = F(q : ∃R.C′) with q in τc and (q, d, R) ∈ E ′,
then V = SW(d : C′). Every element q of τc either is c or is generated in the
construction of Gβ: thus F is a dup-formula of PFα(c) or it is generated by a
previous step on a formula over the individual name c, that is W or a formula
T(c : B) with T(c : B) or Ts(c : B) in ∆α. Thus, we have that ‖V‖ < ‖∆α‖ or
dgTB(V) < dgTB(∆α).

Let F = T(q : ∃R.C′) or F = F(q : ∀R.C′) with q in τc, then V = SW(d : C′). Note
that this is the expansion step in which the individual d is introduced in N ′.
As above, since every element q of τc is c or it is generated in the construction
of Gβ, then F is a formula generated by a previous step on a formula over the
individual name c, that is W or a formula T(c : B) with T(c : B) or Ts(c : B) in
∆α. Hence, ‖V‖ < ‖∆α‖ or dgTB(V) < dgTB(∆α).

2

From these properties, one can prove that the depth of α in K(∆) is bounded. In-
tuitively, Proposition 3.13 defines a well-founded measure that monotonically de-
creases from a graph to its successors.

We now state the main results of this section.

Lemma 3.14
Let ∆ be a finite acyclic consistent set of signed formulas.

(i) The model K(∆) is finite.

(ii) Let α = Mod(Gα) be a world of K(∆). Then, K(∆), α � FORM∗(Gα).

(iii) K(∆), ρ � ∆.

Proof:

(i) The assertion directly follows by Lemmas 3.11, 3.12 and Proposition 3.13. In
fact, for every α ∈ P, ι(α) = Mod(Gα) is finite by Lemma 3.12. Moreover,
from Lemma 3.11 and Proposition 3.13, if β ∈ P is a successor of α, passing
from the set of formulas of Gα to the set of Gβ, there is at least a formula for
which one between its size and degree w.r.t. TB decreases. Given that the
starting set ∆ is finite, this implies that it is not possible to build an infinite
sequence of successors.

(ii) The fact can be shown by proving that W ∈ FORM∗(Gα) implies K(∆), α � W.
We show this by cases on the structure of the formula W and by induction on
the definition of concept for concept formulas.
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Let W = T((c, d) : R). Thus W ∈ {T((c, d) : R) | (c, d, R) ∈ Eα}. By definition,
Rα is the set of (c, d) such that (c, d, R) ∈ Eα, thus it holds that K(∆), α � W.

Let W = T(c : A) with A ∈ NC. Note that, by the definition of expansion
rules, atomic formulas of this kind can only appear in PF(c). By the definition
of Mod(Gα), Aα is the set of c such that T(c : A) ∈ PFα(c): it follows that
K(∆), α � W. For the same reasons, if W = F(c : A), W ∈ PFα(c): given that
by (G1) FORM(Gα) is consistent, T(c : A) /∈ PFα(c), and hence K(∆), α � W.

Let W = F(c : ⊥). Then as above, W can only appear in PF(c). Given that,
by (G1) FORM(Gα) is consistent, T(c : ⊥) /∈ PFα(c), and hence K(∆), α � W.

Let W = T(c : C u D) or W = F(c : C t D). By (G2) and the expansion
rules for W, {SW(c : C),SW(c : D)} ⊆ FORM∗(Gα). By induction hypothesis,
K(∆), α � SW(c : C) and K(∆), α � SW(c : D) and hence K(∆), α � W.

Let W = T(c : C t D) or W = F(c : C u D). By (G2) and the expansion rules
for W, SW(c : C) ∈ FORM∗(Gα) or SW(c : D) ∈ FORM∗(Gα). By induction
hypothesis K(∆), α � SW(c : C) or K(∆), α � SW(c : D), hence K(∆), α � W.

Let W = F(c : C→D). By (G2) and the expansion rules for W, if W ∈ SF(c),
{T(c : C), F(c : D)} ⊆ FORM∗(Gα). By induction hypothesis, K(∆), α � T(c :
C) and K(∆), α � F(c : D), which implies K(∆), α � W. On the other hand, if
W ∈ PF(c), by the successor rule for W, there exists a world β > α such that
W ∈ SFβ(c) and, as in the previous case, K(∆), β � W. Hence, K(∆), α � W.

Let W = T(c : C → D). By (G2) and the expansion rules for W, if W ∈
SF(c), {T(c : D)} ⊆ FORM∗(Gα) or {F(c : C), Ts(c : D)} ⊆ FORM∗(Gα). By
induction hypothesis, K(∆), α � T(c : D) or K(∆), α � F(c : C), Ts(c : D),
which in both cases imply K(∆), α � W. If W ∈ PF(c), by the successor rule
for W, there exists a world β > α such that W ∈ SFβ(c) and, as in the previous
case, K(∆), β � W. Hence, K(∆), α � W.

Let W = T(c : ∃R.C). By (G2) and the expansion rules for W, there exists
q ∈ Nα such that (c, q, R) ∈ Eα and T(q : C) ∈ FORM∗(Gα). This implies that
there exists q ∈ Dα such that K(∆), α � T((c, q) : R) and K(∆), α � T(q : C)
and hence K(∆), α � W.

Let W = F(c : ∃R.C) or W = T(c : ∀R.C). By (G2) and the expansion rules
for W, for every β ≥ α and every d ∈ DFβ(W), SW(d : C) ∈ FORM∗(Gβ).
As a result, by induction hypothesis, for every β ≥ α and d ∈ Dβ, such that
K(∆), β � T((c, d) : R), it holds K(∆), β � SW(d : C) and hence K(∆), α � W.

Let W = F(c : ∀R.C). By (G2) and the expansion rules for W, if W ∈ SF(c),
there exists (c, q, R) ∈ Eα such that {F(q : C)} ⊆ FORM∗(Gα). It follows that
there exists q ∈ Dα such that K(∆), α � T((c, q) : R) and K(∆), α � F(q : C).
By definition, this implies K(∆), α � W. On the other hand, if W ∈ PF(c), by
the successor rule for W, there exists a world β > α such that W ∈ SFβ(c)
and, as in the previous case, K(∆), β � W. Hence, it holds that K(∆), α � W.
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Let W = T(A v C). Then, W ∈ TB: by (G2) and the expansion rules for W,
for every world β ≥ α and every c ∈ DFβ(W), if T(c : A) ∈ PFβ(c), then
T(c : C) ∈ FORM∗(Gβ). As a result, by induction hypothesis, for every β ≥ α

and c ∈ Dβ, K(∆), β � T(c : A) implies K(∆), β � T(c : C). Hence, it holds
that K(∆), α � W.

(iii) Since ∆ ⊆ FORM(G0), by Point (ii) we get K(∆), ρ � ∆.

2

By the previous lemma and by the Soundness Theorem, we conclude:

Theorem 3.15 (Completeness)
Let ∆ be a finite acyclic set of signed formulas. ∆ is realizable iff ∆ is consistent. 2

The countermodel construction procedure can be used to decide the realizability of
an acyclic ∆. Indeed, one tries to build K(∆) by applying the transformation rules
in all possible ways; by Lemma 3.11, the search space is finite. If all the attempts
fail, yielding to a clashing set PF(c), ∆ is not consistent (Lemma 3.14), hence it is
not realizable (Theorem 3.15). In this case, the failed branches correspond to the
branches of a closed proof table for ∆.

In the following example we show how to use such procedure to build a coun-
termodel from a set of realizable signed formulas.

Example 4 (Countermodel construction)
Let us consider again the ABox A of Example 1:

a:Company (a,b):hasCustomer b:Insolvent

b:Company (a,c):hasCustomer d : ¬Insolvent
c:Company (b,c):hasCustomer a : D → CW

d:Company (c,d):hasCustomer

where D is the concept:

∃hasCustomer.(Insolventu ∃hasCustomer.¬Insolvent)

We show how our procedure can build a countermodel for the set ∆ = T(A) ∪
{F(a:CW)}, proving that a:CW is not a KALC-logical consequence of A. In fact, at
the end of the construction, we obtain the finite countermodel K given in Exam-
ple 1.

We start the construction by defining the starting graph

G∆ = 〈 N∆, E∆, PF∆, SF∆, ∅, DF∆ 〉

where:

– N∆ = N = {a, b, c, d};
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– E∆ = {(a, b, R), (a, c, R), (b, c, R), (c, d, R)} with R = hasCustomer;

– PF∆ is defined by the map:

a 7→ {T(a:Company), T(a:D→CW), F(a:CW) }
b 7→ {T(b:Company), T(b:Insolvent) }
c 7→ {T(c:Company) }
d 7→ {T(d:Company), T(d:¬Insolvent) }

– SF∆ and DF∆ map every element of N∆ to the empty set.

We now proceed to expand the initial graph to the expanded graph Exp(G∆) = G ′∆
that represents the root of our final countermodel. Following the conditions on the
expansion rules, a possible application sequence is:

– Let W = T(a:D→CW): we fall in the second case, thus F(a:D) and Ts(a:CW) are
added to PF(a);

– Let

W = F(a:∃hasCustomer.(Insolventu ∃hasCustomer.¬Insolvent))

For t ∈ {b, c}, F(t : Insolvent u ∃hasCustomer.¬Insolvent) is added to PF(t)
and DF(W) = {b, c};

– Let
W = F(b:Insolventu ∃hasCustomer.¬Insolvent)

We fall in the second case, thus the formula F(b:∃hasCustomer.¬Insolvent) is
added to PF(b);

– Let
W = F(c:Insolventu ∃hasCustomer.¬Insolvent)

We can choose the first case, thus the formula F(c:Insolvent) is added to PF(c);

– Let
W = F(b:∃hasCustomer.¬Insolvent)

The rule adds F(c:¬Insolvent) to PF(c) and DF(W) = {c}.

The expansion stops here, since trying to apply the rules for F(c:¬Insolvent)
or T(d:¬Insolvent) would violate the consistency conditions in the definition of
these rules. The obtained expanded graph

G ′∆ = 〈 N ′
∆, E ′∆, PF′∆, SF′∆, ∅, DF′∆ 〉

is composed as follows:
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– N ′
∆ = N∆, E ′∆ = E∆;

– PF′∆ is defined by the map:

a 7→ {T(a:Company), F(a:CW), F(a:D), Ts(a:CW) }
b 7→ {T(b:Company), T(b:Insolvent), F(b:∃hasCustomer.¬Insolvent)}
c 7→ {T(c:Company), F(c:Insolvent), F(c:¬Insolvent) }
d 7→ {T(d:Company), T(d:¬Insolvent) }

– SF′∆ is defined by the map:

a 7→ {T(a:D→CW) }
b 7→ { F(b:Insolventu ∃hasCustomer.¬Insolvent) }
c 7→ { F(c:Insolventu ∃hasCustomer.¬Insolvent) }
d 7→ ∅

– DF′∆(F(a:D)) = {b, c} and DF′∆(F(b:∃hasCustomer.¬Insolvent)) = {c}.

We continue the construction of the countermodel by identifying the successors of
the expanded graph: there are only two formulas in FORM(G ′∆) that lead to the
application of successor rules, namely

W = T(d:¬Insolvent) and W = F(c:¬Insolvent)

We call G1 and G2 the corresponding successor graphs.
After their expansion, the graphs Exp(G1) = G ′1 and Exp(G2) = G ′2 look as

follows:

– N ′
1 = N ′

2 = N∆;

– E ′1 = E ′2 = E∆;

– DF′1 = DF′2 = (DF′∆)s;

– For G ′1, its primary and secondary formulas are defined by:

PF′1 : a 7→ {T(a:Company), T(a:CW) }
b 7→ {T(b:Company), T(b:Insolvent) }
c 7→ {T(c:Company) }
d 7→ {T(d:Company), Ts(d:⊥), F(d:Insolvent) }

SF′1 : a 7→ {T(a:D→CW) }
b 7→ ∅

c 7→ ∅

d 7→ {T(d:¬Insolvent) }
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– For G ′2, its primary and secondary formulas are defined by:

PF′2 : a 7→ {T(a:Company), T(a:CW) }
b 7→ {T(b:Company), T(b:Insolvent) }
c 7→ {T(c:Company), T(c:Insolvent), F(c:⊥), }
d 7→ {T(d:Company), Ts(d:⊥), F(d:Insolvent) }

SF′2 : a 7→ {T(a:D→CW) }
b 7→ ∅

c 7→ { F(c:¬Insolvent) }
d 7→ {T(d:¬Insolvent) }

Note that these graphs do not lead to the construction of further successors. It is
easy to check that the model K(∆) constructed by the above graphs coincides with
the model K inspected in Example 1 and that it is indeed a countermodel for the
initial assertion. 3

3.4.8 Tableau procedure

We can write in form of an algorithm the intuitive procedure described at the end
of the previous section: the decision procedure REAL for realizability is presented
in Figure 3.6. The presentation of our algorithm is inspired to the ones provided
in [Tobies(2001)] for classical DLs.

The procedure REAL takes as input an acyclic set of signed formulas ∆ and
answers whether this set is “realizable” or “not realizable”. REAL first builds the
starting graph G∆ and calls the sub-procedure CONS to decide the consistency (and
thus the realizability) of G∆. The procedure CONS represents the actual steps for
the construction of each graph G of the countermodel. The first loop in CONS rep-
resents the expansion step: expansion rules of Figure 3.3 are applied to G until a
clash is found or no more rules are applicable. Whenever a clash is found, the pro-
cedure answers that the set of formulas associated with G is “inconsistent”. After
the expansion step, if no clashes are found, the procedure continues by applying to
G the successor rules of Figure 3.4. Each iteration builds a successor graph G ′ and
recursively calls CONS on this new graph: if any successor G ′ is found to contain
a clash, then the procedure returns “inconsistent”. If no one of the previous steps
leads to a clash, then CONS answers that the formulas of the graph are “consistent”.

We remark that this algorithm coincides with the countermodel construction
procedure described in the previous sections. The procedure begins by building
the starting graph corresponding to the set ∆, it applies exhaustively every possible
expansion rule to its formulas and explores the successors of the graph, applying re-
cursively the expansion. However, note that REAL does not return the constructed
countermodel in the case that ∆ is realizable: the purpose of the algorithm is just to
verify the realizability of the given set of formulas.
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REAL(∆){
N∆ = { c | S(c : D) ∈ ∆ };
E∆ = { (c, d, R) | T((c, d) : R) ∈ ∆ };
PF∆(c) = { S(c : D) | S(c : D) ∈ ∆ and c ∈ N∆ };
TB = {T(A v C) | T(A v C) ∈ ∆ };
SF∆ = DF∆ = ∅;

G∆ = 〈N∆, E∆, PF∆, SF∆, TB, DF∆〉;
if( CONS(G∆) == “inconsistent” ) then return “not realizable”;
else return “realizable”;

}

CONS(G){
while ( exp-rules can be applied ) and ( PF clash-free ) do begin

pick W ∈ FORM(G);
G = exp-rules(W,G);

end

if ( PF contains a clash ) then return “inconsistent”;

while ( succ-rules can be applied ) do begin
pick W ∈ FORM(G);
G ′ = succ-rules(W,G);
if ( CONS(G ′) == “inconsistent” ) then return “inconsistent”;

end

return “consistent”;
}

Figure 3.6: Tableau procedure for TK
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3.5 Discussion on complexity

After proving the completeness of our procedure, we can now briefly discuss the
complexity issues of reasoning in KALC. First of all, we highlight the relation
between KALC and Int stated by the following result.

Proposition 3.16
Given a formula c : D ∈ L such that D does not contain occurrences of quantifiers,
|=k c : D iff D ∈ Int. 2

This proposition can be shown by providing a straightforward translation of for-
mulas and models between KALC and Int. From this fact and well-known results
on the decision of Int [Statman(1979)], we can immediately draw the following
hardness result:

Theorem 3.17
KALC realizability is PSPACE-hard. 2

Now, if we could formulate an algorithm for KALC realizability that is complete
with respect to the proposed proof search strategy and which space cost is polyno-
mial in the size of the initial set of formulas, we would obtain that realizability in
KALC is PSPACE-complete.

However, consistently to what happens in the case of classical reasoning for
ALC [Tobies(2001)], if we follow the proposed procedure and exhaustively expand
every graph in the construction of a countermodel, then the number of nodes in
each expanded graph (and the formulas associated to them) can be exponential in
the size of the initial set of formulas. A proof of this fact can be seen in the bound
given in Property (P3) of Section 3.4.7.

On the other hand, we conjecture that we can adopt a proof strategy similar to
the trace technique [Schmidt-Schauß and Smolka(1991), Tobies(2001)] for ALC sat-
isfiability: we expand graphs of the countermodel one path at a time, searching
for clashes only among formulas for each path. By Property (P2) we know that
the length of each path is polynomial in the maximum depth and degree w.r.t. the
TBox of the starting set of formulas: thus if we could expand graphs only consid-
ering one path at a time, we would obtain a PSPACE procedure. Our intuition is
supported by the following proof, which shows a form of independence between
paths.

Proposition 3.18 (Path independence)
Given a graph G = 〈N , E , PF, SF, TB, DF〉, an expansion or successor rule r on W =
S(c : D) ∈ PF(c) and d ∈ N with d 6= c or (c, d, R) /∈ E , then:

– if r is an expansion rule, its application never directly leads to a clash on PF(d);

– if r is a successor rule, its application directly leads to a clash on PF(d) only if
Ts(d : ⊥) ∈ PF(d);
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Proof: The assertion is proved by cases on the form of the rule r and the formula W.
If r is an expansion rule and W = S(c : C u D),S(c : C t D),S(c : C→D), the

application of r adds at most formulas of the kind SW(c : C) to PF(c): this implies
that r can never generate a clash on an individual d 6= c.

If r is an expansion rule and W = T(c : ∃R.C), F(c : ∀R.C), the application of r
adds at most formulas of the kind SW(q : C) to PF(q) with q /∈ N a new individual.
Thus, r can never generate a clash on an individual d ∈ N .

If r is an expansion rule and W = F(c : ∃R.C), T(c : ∀R.C), the application of
r adds at most formulas of the kind SW(q : C) to PF(q) with (c, q, R) ∈ E . Thus,
the application of such rules for dup-formulas can not lead to a direct clash on an
individual d with (c, d, R) /∈ E .

If r is a successor rule, all of the formulas of PF(d) with d ∈ N are modified.
In both the cases of W = S(c : C → D) and W = F(c : ∀R.C), the considerations
of their counterpart in expansion rules holds for PF(c) and PF(q), with q /∈ N .
However, for any d ∈ N with d 6= c, the rules define PF′(d) = (PF(d))s, thus if
a formula Ts(d : H) belongs to PF(d), then T(d : H) ∈ PF′(d). Given that any
formula of the kind F(d : H) ∈ PF(d) is discharged in the application or r, the only
way to obtain a clash on d is the case in which Ts(d : ⊥) ∈ PF(d), which would
imply T(d : ⊥) ∈ PF′(d). 2

Thus, a PSPACE algorithm forKALC realizability should proceed as follows: given
a graph, expand each path searching for a clash; if the graph does not contain a
formula of the kind Ts(d : ⊥), meaning that the graph does not represent a fi-
nal world, then apply each possible successor rule and proceed recursively on the
successor graphs.

Despite these intuitive considerations, formulating and proving that this strat-
egy is in fact complete is complicated by the necessity of a combinatoric study on
the interactions between the rules of the calculus, showing that such strategy cov-
ers all of the possible correct ways to expand graphs. In particular it is necessary
to understand the interaction between expansion rules and successor rules: while
the former ones can be described in proof theory as invertible rules, that is the order
of their application does not affect the success of the proof, the latter ones are non-
invertible rules, as their application can remove formulas relevant for the discovery
of clashes in a proof branch. We also note that such formulation of the calculus
using non-invertible rules is indeed related to the fact that our logic is based on an
intuitionistic semantics: in the classical tableau calculi forALC every rule is invert-
ible, thus we can apply them with any suitable strategy without losing any relevant
information.
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Relations with other logics

In this section we study the logic of KALC and its relations with some other logics.
In particular, we discuss the relations of KALC with its variant KALC∞, which
admits infinite posets, and the logic IALC∞, a direct translation in the description
logic context of the first order intuitionistic semantics. We then discuss the relations
with QInt and the intuitionistic multi-modal logic FSn.

4.1 Concept formulas and the logic LogKALC
In this section we are interested in studying the logic of KALC that is the set of
purely logical formulas valid in KALC semantics. To do this we need to consider
formulas independently from their non-logical features. To this aim we introduce
the language Lc that differ from L only in the definition of formulas. Formally
formulas H of Lc are defined according to the following grammar:

H ::= (c, d) : R | c : C | C

where c, d ∈ NI, R ∈ NR and C is a concept of Lc. We call concept formulas of Lc the
formulas of the kind C with C a concept. KALC-models for Lc are defined exactly
as the models for L.

Given a concept formula H of Lc, a KALC-model K = 〈P,≤, ρ, ι〉 for Lc and
α ∈ P, H is valid in (the world) α of K, and we write α  H, iff the following holds:

– α  H iff, for every β ∈ P with α ≤ β and for every d ∈ Dβ, β  d : H.

The concept formula H is valid in K, and we write K  H, iff α  H for every α ∈ P
(or, equivalently, if ρ  H).

We remark that, according to the previous definitions, we have that, given C, D
two concepts, α  C→D iff α  C v D. Hence in Lc implicative concept formulas
represent subsumptions.
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Now, let us denote with ModKALC the class of all KALC-models. We define the
logic of KALC as the set of concept formulas valid in every KALC model, that is:

LogKALC = {H | H concept formula of Lc and, for every K ∈ ModKALC , K  H}

4.2 Intuitionistic description logic IALC∞

Now we present a Kripke semantics for ALC that is directly obtained by adapting
the semantics provided for the first order formulation of intuitionistic logic QInt to
the description logic context. We call IALC∞ the resulting logic: the introduction
of such logic is useful to the subsequent comparison with the logic for KALC.

The definition of language, concepts and formulas of IALC∞ coincide with the
ones given for KALC. The semantics of IALC∞ is given by directly adjusting the
Kripke structures for intuitionistic first order logic to the description logic case. A
IALC∞-model for LN is a quadruple

K = 〈 P, ≤, ρ, ι 〉

where:

– (P,≤) is a poset with root ρ;

– ι is a function associating to every α ∈ P a model ι(α) = (Dα, ·α) for LN , such
that, for every α, β ∈ P with α ≤ β:

(K1) Dα ⊆ Dβ;
(K2) for every c ∈ N , cα = cβ;
(K3) for every A ∈ NC, Aα ⊆ Aβ;
(K4) for every R ∈ NR, Rα ⊆ Rβ.

In other words, KALC-models differ from IALC∞-models simply by the finiteness
of the poset on which they are defined: as in the case of QInt, IALC∞-models can
indeed have an infinite number of worlds.

The forcing relation over IALC∞-models is defined as in the case of KALC-
models. As a matter of fact, every KALC-model is also a IALC∞-model.

By using conditions (K1)–(K4) and the definition of the forcing relation, we
can prove that also IALC∞ meets the monotonicity property and the constructive
properties distinctive of the intuitionistic semantics.

Let us denote the class of all IALC∞-models with ModIALC∞ . The logic of
IALC∞ is the set of concept formulas valid in every IALC∞-model:

LogIALC∞ = {H | H concept formula of Lc and, for every K ∈ ModIALC∞ , K  H}

Note that this direct formulation of an intuitionistic semantics for description logics
is indeed analogous to the IALC logic provided in [de Paiva(2005)], aside from its
slightly different notation. However, as we discuss in the following, both of these
direct translations do not seem to be appropriate for the definition of a constructive
version of ALC.
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4.3 The logic KALC∞

In this section we present a Kripke semantics which is an extension of the one
for KALC admitting infinite sets of worlds [Bozzato et al.(2009b), Villa(2010)] and
which represents, in fact, a restriction to the semantics of IALC∞.

Given a poset (P,≤) and α ∈ P, a final element of P is a element φ ∈ P such that,
for every α ∈ P, φ ≤ α implies φ = α. Given α ∈ P we denote with Fin(α) the set
of final elements φ ∈ P such that α ≤ φ. We call K-poset any poset (P,≤) such that,
for every α ∈ P, Fin(α) 6= ∅. We remark that every finite poset is a K-poset.

A KALC∞-model for LN is a quadruple

K = 〈 P, ≤, ρ, ι 〉

where:

– (P,≤) is a K-poset with root ρ;

– ι is a function associating to every α ∈ P a model ι(α) = (Dα, ·α) for L, such that,
for every α, β ∈ P with α ≤ β:

(K1) Dα ⊆ Dβ;

(K2) for every c ∈ NI, cα = cβ;

(K3) for every C ∈ NC, Cα ⊆ Cβ;

(K4) for every R ∈ NR, Rα ⊆ Rβ.

The forcing relation is again defined as in the case of KALC-models. We remark
that every KALC-model is in particular a KALC∞-model and every KALC∞-
model is a IALC∞-model.

Now let us denote with ModKALC∞ the class of all KALC∞-models. We define
the logic of KALC∞ as the set of concept formulas valid in every KALC∞ model,
that is:

LogKALC∞ = {H | H concept formula of Lc and, for every K ∈ ModKALC∞ , K  H}

Since every KALC model is a KALC∞ model we immediately have that:

LogIALC∞ ⊆ LogKALC∞ ⊆ LogKALC

Now, let us consider the axiom-schema

Kur = ∀R.¬¬A→¬¬∀R.A

By axiom schema we mean a concept formula where role-names and concept names
are meta-variables ranging over role names of NR and concepts names of NC, respec-
tively. An instance of the axiom schema in L is obtained by replacing every role
meta-variable R with a role name of L and every concept meta-variable A with a
concept name of L.
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Dα2 = {a, b0, b1, b2} α2

Dα1 = {a, b0, b1} α1

Dα0 = {a, b0} α0

{(a, b0), (a, b1), (a, b2)} ∈ rα2 , {b0, b1} ∈ Cα2

{(a, b0), (a, b1)} ∈ rα1 , {b0} ∈ Cα1

{(a, b0)} ∈ rα0

Figure 4.1: A counter-model for Kur.

Theorem 4.1
Let K be any instance of the axiom schema Kur in L and let K = 〈P,≤, ρ, ι〉 be a
KALC∞-model for L, then ρ  K.

Proof: Let K = ∀R.¬¬A → ¬¬∀R.A and let us suppose that ρ 1 K. This implies
that there exist α ∈ P and d ∈ Dα such that α  d : ∀R.¬¬A and α 1 d : ¬¬∀R.A.
α  d : ∀R.¬¬A means that for every β ≥ α and for every d′ ∈ Dβ, β  (d, d′) : R
implies that β  d′ : ¬¬A in K. Since K is a KALC∞-model, for every final element
γ ∈ P such that α ≤ γ, γ  (d, d′) : R implies that γ  d′ : A in K.

α 1 d : ¬¬∀R.A means that there exists β ≥ α such that β  d : ¬∀R.A in K.
Since K is a KALC∞-model, for every final element γ ∈ P such that β ≤ γ, there
exists d′ ∈ Dγ such that γ  (d, d′) : R and γ  d′ : ¬A in K, a contradiction. 2

This axiom is not valid in IALC∞ semantics and the Kripke semantics presented
in [de Paiva(2005)]. Indeed, let us consider the Kripke structure

K = 〈 {αi}i∈ω, ≤, α0, ι 〉

represented in Figure 4.1 where:

– αi ≤ αj iff i ≤ j;

– For every αi:

– Dαi = {a, b0, . . . , bi};

– rαi = {(a, b0), . . . , (a, bi)};

– Cα0 = ∅ and Cαi = {b0, . . . , bi−1} for i > 0.

We note that K is not a KALC∞-model, as Fin(α0) = ∅. On the other hand K
satisfies Conditions (K1)–(K4) and belongs to the class of IALC∞-models. It is
easy to check that K is a countermodel for Kur, since

α0 1 a : ∀r.¬¬C → ¬¬∀r.C

However, we have that this principle hold for all finite IALC∞-models, that cor-
respond to finite KALC∞-models: this shows that IALC∞ fails to have the finite
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model property. Thus, according with the previous considerations, we think that
KALC∞ semantics is more appropriate than the one of [de Paiva(2005)] and than
IALC∞.

We remark that, while we proved:

LogKALC∞ ⊆ LogKALC

it is still an open issue to determine whether, as we conjecture:

LogKALC ⊆ LogKALC∞

If this is true, we can conclude that KALC = KALC∞ and that this logic meets
the finite model property, meaning that also KALC∞ is decidable. In particular, we
point out that a possible way to prove this result is by means of filtration methods
[Chagrov and Zakharyaschev(1997), Gabbay et al.(2003)] on KALC∞ models: the
idea is to obtain, for every possibly infinite KALC∞-model, its equivalent “finite
counterpart” in KALC models.

To conclude this part, we remark that the Kur axiom schema corresponds to the
first order principle ∀x.¬¬H(x)→¬¬∀x.H(x). This principle is known in the lit-
erature of constructive logics as Kuroda principle [Gabbay(1981), Troelstra(1973b)].
Adding this schema to intuitionistic first order logic QInt, we get a proper ex-
tension of QInt, that satisfies the Disjunction Property and the Explicit Definability
Property.

4.4 Relations with QInt

In this section we describe some relations between KALC∞ and the first order in-
tuitionistic logic QInt presented in Chapter 2. We begin by providing a syntactic
translation between concept formulas of Lc and first order formulas of FL. Let
Σ = 〈C,F ,R〉 be a signature in which C = F = ∅ and:

– for every Ci ∈ NC, there exists an unary predicate pi ∈ R;

– for every Ri ∈ NR, there exists a binary predicate ri ∈ R.

For every variable x ∈ V , we define the translation1 πx from concept formulas of
Lc to first order formulas of FL:

πx(Ai) = pi(x)
πx(⊥) = ⊥

πx(¬C) = ¬πx(C)
πx(C u D) = πx(C) ∧ πx(D)

1This translation is similar to the usual translation presented in [Sattler et al.(2003), de Paiva(2005)]
from ALC to the two-variable first order language L2.
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πx(C t D) = πx(C) ∨ πx(D)
πx(C→D) = πx(C)→πx(D)
πx(∃Ri.C) = ∃y.(ri(x, y) ∧ πy(C))
πx(∀Ri.C) = ∀y.(ri(x, y)→πy(C))

for Ai ∈ NC, Ri ∈ NR and pi, ri ∈ R. Given a set Γ of formulas of Lc, we define πx(Γ)
as the set {πx(H) |H ∈ Γ}.

Given a KALC∞ model K = 〈P,≤, ρ, ι〉, we define the translation π(K) to first
order intuitionistic models as follows:

π(K) = 〈 P, ≤, ρ, D, � 〉

where, for every α ∈ P, if ι(α) = (Dα, ·α), then:

– D(α) = Dα;

– if d ∈ Dα and d ∈ Aα
i , then α � pi(d) in π(K);

– if d, e ∈ Dα and (d, e) ∈ Rα
i , then α � ri(d, e) in π(K);

The definition of the relation � over complex formulas follows the usual one given
for the forcing in QInt-models. Note that, since ModKALC ⊆ ModKALC∞ , this trans-
lation also applies to KALC-models.

Let us consider the usual first order formulation of the Kuroda principle

∀x.¬¬H(x)→¬¬∀x.H(x)

and let Kur be the logic obtained adding such principle to QInt. We can easily
prove that, for every KALC∞ model K, its translation π(K) is a model of Kur. First
of all, π(K) is a QInt-model by definition: in fact, for every α, β ∈ P with α ≤ β, by
(K1) we have that D(α) ⊆ D(β); by (K3) it holds that α � pi(d) implies β � pi(d)
and the same applies to the ri binary predicates by (K4). Now, since the poset at
the base of the KALC∞-model K is not modified in the translation, also π(K) is
defined over a K-poset. Thus, we can prove a result analogous to Theorem 4.1 over
first order translations, that is:

Theorem 4.2
Let K be any instance of the first order Kuroda axiom schema and let K = 〈P,≤, ρ, ι〉
be a KALC∞-model for L, then ρ � K in π(K). 2

The proof of this result is similar to the one provided for Theorem 4.1, and it is again
based on the definition of π(K) over a K-poset. This implies that every model π(K)
is indeed a model of Kur.

We can prove the soundness of our translations with the following theorem:

Theorem 4.3
Let H ∈ Lc be a concept formula and let K be a KALC∞-model. K  H iff π(K) �
πx(H).
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Proof: The assertion can be proved by induction on the structure of the formula
H and the inductive definition of the translation: we only give some of the most
relevant cases.

If H = Ai, with Ai ∈ NC, then K  Ai iff for every β ≥ ρ and d ∈ Dβ, β  d : Ai.
This holds iff for every d ∈ Dβ, d ∈ Aβ

i : by definition of the translation on models,
this is true iff for every d ∈ Dβ, β � pi(d). The latter means that ρ � pi(x), which
in turn holds iff π(K) � pi(x) and iff π(K) � πx(Ai).

If H = C tD, then K  C tD iff K  C or K  D. By induction hypothesis, this
holds iff π(K) � πx(C) or π(K) � πx(D). This means π(K) � πx(C) ∨ πx(D),
which in turn is true iff π(K) � πx(C t D).

If H = C → D, then K  C → D iff, for every β ≥ ρ and d ∈ Dβ, β  d : C
implies β  d : D. By induction hypothesis, this holds iff π(K) � πx(C) implies
π(K) � πx(D). This can be rewritten as π(K) � πx(C)→πx(D), which in turn is
true iff π(K) � πx(C→D).

If H = ∃R.C, then K  ∃R.C iff for every β ≥ ρ and d ∈ Dβ, there exists e ∈ Dβ

such that β  (d, e) : R and β  e : C. By the definition of the translation on models,
this holds iff for every d ∈ Dβ there exists a closing substitution σ = [e/y] such that
β � ri(d, y)σ and β � πy(C)σ. This can also be rewritten as β � ∃y.(ri(x, y) ∧
πy(C)), which in turn means that π(K) � πx(∃R.C).

If H = ∀R.C, then K  ∀R.C iff for every β ≥ ρ and d, e ∈ Dβ, if β  (d, e) : R
then β  e : C. By the definition of the translation on models, this holds iff for
every d ∈ Dβ and every closing substitution σ = [e/y], β � ri(d, y)σ implies
β � πy(C)σ. This can also be rewritten as β � ∀y.(ri(x, y)→πy(C)), which in turn
is true iff π(K) � πx(∀R.C). 2

Let H be a concept formula of Lc, then if H /∈ LogKALC∞ then there exists a model
K ∈ ModKALC∞ such that K 1 H. This implies that π(K) 6� πx(H) and πx(H) 6∈
Kur. We have that πx(.) is a mapping on FL: this implies Kur ⊆ LogKALC∞ .

4.5 Relations with FSn

In this section we describe some relations between KALC, KALC∞ and the intu-
itionistic multi-modal logic FSn, which is the multi-modal version of the logic FS
[Fischer Servi(1981), Fischer Servi(1984), Gabbay et al.(2003)].

4.5.1 FSn: language and semantics

Here we consider the propositional n-modal language MLn consisting of:

– a fixed countably infinite set PV of propositional variables;

– the logical constants ⊥ (false) and > (true);

– the logical connectives ∧, ∨,→and ¬;

– the modal operators 21, . . . , 2n and 31, . . . , 3n;
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– the punctuation symbols: ’(’ and ’)’.

MLn-formulas are built as usual:

– all propositional variables and the constants ⊥ and > are MLn formulas;

– if A and B are MLn formulas then so are (A ∧ B), (A ∨ B), (A → B), ¬A, 2i A
and 3i A with i ∈ {1, . . . , n}.

We write A ∈ MLn to mean that A is a MLn-formula. To simplify notation, we
use the following standard conventions on formula representation: we assume that
¬, 2i and 3i (i ∈ {1, . . . , n}) bind stronger than ∧ and ∨ which in turn are stronger
than →, and we omit brackets that can be uniquely recovered according to this
priority of connectives.

A FSn-standard model for MLn is a structure

M = 〈 P, ≤, κ, V 〉

where:

– (P,≤) is a poset;

– κ is a function associating with every α ∈ P a structure

κ(α) = 〈∆α, Rα
1 , . . . , Rα

n 〉

where:

– ∆α is a non-empty set;

– for every i ∈ {1, . . . , n}, Rα
i is a binary relation over ∆α such that, for every

α, β ∈ P such that α ≤ β:

(FS1) ∆α ⊆ ∆β;

(FS2) for every i ∈ {1, . . . , n}, Rα
i ⊆ Rβ

i .

– V is a valuation associating with every α ∈ P and every propositional variable p,
a subset of ∆α, that is V(α, p) ⊆ ∆α.

Given a MLn-formula A, α ∈ P and w ∈ ∆α the forcing relation M, (α, w)
•
 A (or

simply (α, w)
•
 A) is defined inductively as follows:

– M, (α, w)
•
 > and M, (α, w)

•
1 ⊥;

– M, (α, w)
•
 p with p ∈ PV iff w ∈ V(α, p);

– M, (α, w)
•
 A ∧ B iff M, (α, w)

•
 A and M, (α, w)

•
 B;

– M, (α, w)
•
 A ∨ B iff either M, (α, w)

•
 A or M, (α, w)

•
 B;
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– M, (α, w)
•
 ¬A iff for all β ∈ P such that α ≤ β, M, (β, w)

•
1 A;

– M, (α, w)
•
 A → B iff for all β ∈ P such that α ≤ β, either M, (β, w)

•
1 A or

M, (β, w)
•
 B;

– M, (α, w)
•
 2i A iff, for every β ∈ P such that α ≤ β and every v ∈ ∆β such that

wRβ
i v, M, (β, v)

•
 A;

– M, (α, w)
•
 3i A iff there exists v ∈ ∆α such that wRiv and M, (α, v)

•
 A.

It is easy to prove, by induction on the structure of MLn formulas, that the forcing
relation is monotone with respect to ≤.

Now, let ModFSn be the class of all FSn-standard models, the logic of FSn is the
set of MLn formulas valid in every FSn-standard model, that is:

LogFSn
= {H | H ∈ MLn and, for every K ∈ ModFSn , K

•
 H}

4.5.2 Translations

In this section we consider the language Lc where NR contains exactly n distinct role
names, we denote with R1, . . . , Rn. We define the translation (.)† from formulas of
Lc to formulas of MLn as follows:

(Ci)† = pi for Ci ∈ NC

(C u D)† = (C)† ∧ (D)†

(C t D)† = (C)† ∨ (D)†

(C→D)† = (C)†→ (D)†

(∀R.C)† = 2i(C)†

(∃R.C)† = 3i(C)†

We remark that the above translation is a bijection from Lc to MLn. Given a set Γ
of concept formulas of Lc we denote with (Γ)† the set {(H)† | H ∈ Γ}.

Given a KALC∞-model K = 〈P,≤, ρ, ι〉 we define the translation (K)† of K as
follows:

(K)† = 〈 P, ≤, κ, V 〉

where:

– for every α ∈ P, if ι(α) = (Dα, ·α) then

κ(α) = 〈Dα, (R1)α, . . . , (Rn)α 〉
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– for every α ∈ P and for every pi ∈ PV

V(α, pi) = (Ci)α

It is easy to check that (K)† is a FSn-standard model. In particular, properties (FS1)
and (FS2) follows, respectively, from properties (K1) and (K4) of KALC-models.
Obviously, being ModKALC ⊆ ModKALC∞ , the above translation also applies to
KALC-models.

It is easy to prove, by induction on the structure of concept formulas, the fol-
lowing result:

Theorem 4.4
Let H ∈ Lc be a concept formula and let K be a KALC∞-model. Then K  H iff

(K)†
•
 (H)†. 2

Now, let H be a concept formula of Lc. If H 6∈ LogKALC∞ then there exists a model

K ∈ ModKALC∞ such that K 1 H which implies that (K)†
•
1 (H)†. Hence (H)† 6∈

LogFSn
. Since, as noticed above, (.)† is an onto mapping on MLn, this implies

LogFSn
⊆ LogKALC∞ .

Now, considering the translation (Kur)† of the Kuroda principle, we call Kur2:

Kur2 = 2i¬¬A→¬¬2i A

As proved in [Simpson(1994), Gabbay et al.(2003)] this formula can not belong to
LogFSn

2. By this fact we deduce that, while every instance of Kur2 belongs to
(LogKALC∞)†, their translations do not belong to LogFSn

. Hence:

Theorem 4.5
LogFSn

⊂ (LogKALC∞)†. 2

2Indeed, [Simpson(1994), Gabbay et al.(2003)] prove that the uni-modal version 2¬¬A→¬¬2A
of this principle does not hold in FS by showing a FS-standard counter-model for this formula. How-
ever, it is easy to adapt such a counter model to the multi-modal case.
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Services composition in KALC

In this chapter we propose an application for the constructive semantics of KALC
in the context of Semantic Web services. In brief, Semantic Web services consists
of a semantic description of the capabilities and the structure of services in the
languages of the Semantic Web. The current proposals for the representation of
Semantic Web services, as OWL-S [Martin et al.(2007)], view services as processes
with pre- and post- conditions and effects. Pre- and post- conditions describe the
requirements and output of a service, while the representation of the process asso-
ciated with a service describe the interaction with other given services.

In the following, we show how constructive description logics provide a natural
framework to represent Semantic Web services and to study the problem of service
composition, one of the main problems in the context of Web services. Intuitively,
the problem can be stated as follows:

Given a composition goal, represented as a service with pre- and post- condi-
tions, compose the available services so to satisfy the goal.

Obviously in this context the challenge is to provide tools to support the defini-
tion of the composite service or, at best, to automatize the entire composition pro-
cess. In the following sections we discuss the problem of Semantic Web services
composition in an information terms semantics for KALC. After introducing the
definitions for the constructive semantics and a sound natural deduction calcu-
lus for it, we present a calculus for the definition of services compositions and
we study its properties. Part of the work described in this chapter is presented
in [Bozzato and Ferrari(2010a), Bozzato and Ferrari(2010b)].

5.1 Information terms semantics

In the following we give an information terms semantics forKALC: we call BCDLK
the logic corresponding to this semantics. We assume the definitions for classical
model M for LN and classical validity as stated in the context of KALC.
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5 – Services composition in KALC

In order to provide a formalization for such semantics, we need to extend the
language for KALC. Let VAR be a denumerable set of individual variables. Concepts
and formulas of the language L for BCDLK are defined as follows:

C, D ::= ⊥ | A | C u D | C t D | C → D | ∃R.C | ∀R.C
H ::= (c, d) : R | c : C | C v D

where c, d ∈ NI ∪ VAR, A ∈ NC and R ∈ NR. Basically, formulas of BCDLK are
defined exactly as in the language for KALC, but variables may appear in place
of individual names. The introduction of variables in the language for BCDLK is
needed in order to model the input parameters of services in our formalization.

The constructive interpretation of BCDLK is based on the notion of information
term [Ferrari et al.(2010a)]. Intuitively, an information term α for a closed formula K
is a structured object that provides a justification for the validity of K in a classical
model, in the spirit of the BHK interpretation of logical connectives [Troelstra(1999)].
Information terms are inductively defined on the structure of the closed formulas,
starting from the constant symbol tt associated to atomic formulas. The meaning
and the correct reading of an information term is provided by the related formula.
For instance, the truthness of an existential formula c : ∃R.C in a classical modelM
can be explained by its information term (d, α), that explicitly provides the witness
d such that (cM, dM) ∈ RM and dM ∈ CM; moreover, the information term α
recursively explains why dM ∈ CM. Given N ⊆ NI and a closed formula K of LN ,
we define the set of information terms ITN (K) by induction on K as follows.

ITN (K) = {tt}, if K is a simple formula

ITN (c : C1 u C2) = { (α, β) | α ∈ ITN (c : C1) and β ∈ ITN (c : C2) }
ITN (c : C1 t C2) = { (k, α) | k ∈ {1, 2} and α ∈ ITN (c : Ck) }
ITN (c : C→D) = { φ : ITN (c : C) → ITN (c : D) }
ITN (c : ∃R.C) = { (d, α) | d ∈ N and α ∈ ITN (d : C) }
ITN (c : ∀R.C) = { φ : N → ⋃

d∈N ITN (d : C) | φ(d) ∈ ITN (d : C) }
ITN (C v D) = { φ :

⋃
d∈N ITN (d : C) → ⋃

d∈N ITN (d : D) }

Let M be a model for LN , K a closed formula of LN and η ∈ ITN (K). We define
the realizability relation M I 〈η〉K by induction on the structure of K.

M I 〈tt〉K iff M |= K

M I 〈(α, β)〉 c : C1 u C2 iff M I 〈α〉 c : C1 and M I 〈β〉 c : C2

M I 〈(k, α)〉 c : C1 t C2 iff M I 〈α〉 c : Ck

M I 〈φ〉 c : C→D iff for every α ∈ ITN (c : C) if M I 〈α〉 c : C
then M I 〈φ(α)〉 d : D

67
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M I 〈(d, α)〉 c : ∃R.C iff M |= (c, d) : R and M I 〈α〉 d : C

M I 〈φ〉 c : ∀R.C iff M |= c : ∀R.C and, for every d ∈ N ,
M |= (c, d) : R implies M I 〈φ(d)〉 d : C

M I 〈φ〉C v D iff M |= C v D and, for every d ∈ N and α ∈ ITN (d : C),
M I 〈α〉 d : C implies M I 〈φ(α)〉 d : D

If Γ is a finite set of closed formulas of LN , ITN (Γ) denotes the set of functions η
mapping each K ∈ Γ in an element η(K) ∈ ITN (K). M I 〈η〉 Γ iff, M I 〈η(K)〉K
for every K ∈ Γ.

Now, we introduce the example we refer to throughout this chapter.

Example 5 (Theory definition)
Our example is a reinterpretation in our context of the “purchase and delivery ser-
vice” example of [Traverso and Pistore(2004)]. The example presents a system com-
posed by three agents: a User, a Shipper and a Producer agent. The Shipper and
the Producer provide the User with services to request and obtain offers for the
delivery and the purchase of a product: the goal of the example is to combine the
services of the two agents in order to provide the User with a single service to re-
quest the production and shipping of a product. We begin by defining the theory
TPS that models our system.

AcceptedRequest v Request
RefusedRequest v Requestu ¬AcceptedRequest
ProduceRequest v Request
AcceptedProduceRequest v ProduceRequestu AcceptedRequest

ShippingRequest v Request
AcceptedShippingRequest v ShippingRequestu AcceptedRequest

ProduceOffer v Offer
ShippingOffer v Offer

The theory states that a request can be classified as accepted or refused by one of
the two agents: we further characterize offers, requests and accepted requests by
the agent to which they refer. To relate requests to offers and to the information
that they convey, we include in TPS the following axioms:

Offer v ∀hasCost.Price
Request v ∀hasOffer.Offer

ShippingRequest v ∀hasDestination.Location
ProduceRequest v ∀hasProduct.Product

In other words, every offer in Offer specifies its Price by the role hasCost; requests
relate to their offers by the role hasOffer; finally, a ShippingRequest contains in-
formation about the Location to where to ship by the role hasDestination and a
ProduceRequest describes the Product to buy by the role hasProduct.
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Given a finite set of individual names N , we assume to have a suitable η ∈
ITN (TPS) justifying the validity of TPS with respect to elements ofN . Note that TPS
only represents a TBox, thus information terms of its subsumptions are functions
mapping information terms of the included concept in those of the including con-
cept. If we assume to store assertions of an ABox over N in some kind of database
(e.g., a relational database or the data part of a logic program), the functions for
each of these information terms can be implemented as query prototypes (to be
instantiated with individuals of N ) over the database. 3

The compatibility between information terms and classical semantics is explained
by the following proposition.

Proposition 5.1
Let K be a closed formula of LN and let η ∈ ITN (K). For every model M, if
M I 〈η〉K, then M |= K. 2

The proposition directly follows by induction on the formula K.
The previous definition of realizability allow us to define a constructive logical

consequence relation in BCDLK:

Definition 5.2 (Constructive consequence)
Let Γ ∪ {K} be a set of closed formulas of LN . We say that K is a constructive conse-
quence of Γ, and we write Γ|=c K, iff, for every γ ∈ ITN (Γ), there exists η ∈ ITN (K)
such that, for every model M for LN , M I 〈γ〉 Γ implies M I 〈η〉K.

Thus, the relation Γ|=c K implicitly defines a map ΦN from ITN (Γ) to ITN (K) such
that, for every model M, M I 〈γ〉 Γ implies M I 〈ΦN (γ)〉K. Note that ΦN is
independent from the choice of the models. We show in the following how such
map can be defined as a computable function with respect to proofs of a natural
deduction calculus for BCDLK.

5.2 Natural deduction calculus NDK

In this section we introduce the natural deduction calculusNDK for BCDLK whose
rules are shown in Figure 5.2. We refer to [Troelstra and Schwichtenberg(1996),
Prawitz(1965)] for a detailed presentation of natural deduction calculi and their
notation: the calculus we present is adapted from the similar one provided for
BCDL in [Bozzato et al.(2007), Ferrari et al.(2010a)].

Let us briefly summarize some of the conventions we use in our calculus. We
provide introduction and elimination rules for each of the logical constants in L:
while the first ones allow to introduce the corresponding concept constructor to
the conclusion, the second ones remove the constructor from the main formula in
the premise. The rules for ¬I, tE,→ I, ∃E and ∀I allow us to discharge some of
the assumptions, which means that the conclusion does not depend on the speci-
fied assumption: we put between square brackets the discharged assumptions. The
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rules for ∃E and ∀I need a side condition on the rule parameter to guarantee their
correctness.

A proof inNDK is a finite tree whose root is the proof conclusion and whose leaves
are the proof assumptions. Each internal node in the proof tree is the consequent of a
rule of NDK, that is applied to subproofs which roots consist of the children of the
node. The depth d(π) of a proof π is defined as the depth of its proof tree, formally:

d(π) =
{

0, if π consists of an assumption introduction
max{d(π′) | π′ is an immediate subproof of π}+ 1, otherwise

We denote with π :: Γ ` K the fact that π is a proof of Γ ` K, that is a proof
of a formula K with undischarged assumptions in a set of formulas Γ. We write
Γ | BCDLK K to denote the fact that there exists a proof π :: Γ ` K in NDK.

5.2.1 Soundness for BCDLK
In the following we show that NDK is sound with respect to the information term
semantics of BCDLK.

Given a finite subset N of NI, an N -substitution σ is a map σ : VAR → N . We
extend σ to LN as usual: if c ∈ N , σc = c; for a formula K of LN , σK denotes the
closed formula of LN obtained by replacing every variable x occurring in K with
σ(x); given a set of formulas Γ, σΓ is the set of σK such that K ∈ Γ. If c ∈ N ,
σ[c/p] is the N -substitution σ′ such that σ′(p) = c and σ′(x) = σ(x) for x 6= p.
A N -substitution σ is a closing substitution for a set of formulas Γ if σΓ is a set of
closed formulas.

The proof of the soundness of NDK with respect to BCDLK is based on the
definition of the operator Φπ

N . As we show in the following sections, this operator
also provide the foundation for the computational interpretation of NDK proofs
and it will be essential in the definition of service compositions.

Let π :: Γ ` K be a proof of NDK on LN and σ a closing N -substitution. We
define a computable function:

Φπ
σ,N : ITN (σΓ) → ITN (σK)

by induction on the depth d(π) of the proof. If d(π) = 0, then π only consists of
the introduction of the assumption K and Φπ

σ,N is the identity function on ITN (σK).
If K is a simple formula, Φπ

σ,N (γ) = {tt}. If d(π) > 0, the function is defined by
cases on the last rule r applied in π:

– r = ⊥E. Then, Φπ
σ,N : ITN (σΓ) → ITN (σK) and Φπ

σ,N (γ) = η+, where η+ is an
element of ITN (σK)1.

1We note that by the definition of information terms, there exists at least one element in ITN (σK)
for any K ∈ LN , thus it is always possible to find a η+ satisfying this condition.
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Γ1··· π1

t : C

Γ2··· π2

t : ¬C
⊥I

t : ⊥

Γ··· π′

t : ⊥
⊥E

K

Γ, [t : C]
··· π′

t : ⊥
¬I

t : ¬C

C v D

Γ′··· π′

t : C
vE

t : D

Γ1··· π1

t : C1

Γ2··· π2

t : C2
uI

t : C1 u C2

Γ··· π′

t : C1 u C2
uEk k ∈ {1, 2}

t : Ck

Γ··· π′

t : Ck
tIk k ∈ {1, 2}

t : C1 t C2

Γ1··· π1

t : C1 t C2

Γ2, [t : C1]··· π2

K

Γ3, [t : C2]··· π3

K
tE

K

Γ, [t : C]
··· π′

t : D
→I

t : C→D

Γ1··· π1

t : C

Γ2··· π2

t : C→D
→E

t : D

(t, u) : R

Γ′··· π′

u : C
∃I

t : ∃R.C

Γ1··· π1

t : ∃R.C

Γ2, [(t, p) : R, p : C]
··· π2

K
∃E

K

where p ∈ VAR does not oc-
cur in Γ2 ∪ {K} and p 6= t

Γ, [(t, p) : R]
··· π′

p : C
∀I

t : ∀R.C

where p ∈ VAR, p
does not occur in Γ
and p 6= t (s, t) : R

Γ′··· π′

s : ∀R.C
∀E

t : C

Γ··· π′

t : ∀R.¬¬C
KUR

t : ¬¬∀R.C

Figure 5.1: The rules of the calculus NDK
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– r = uI. Then, Φπ
σ,N : ITN (σΓ1)× ITN (σΓ2) → ITN (σ(t : C1 u C2)) and

Φπ
σ,N (γ1, γ2) = ( Φπ1

σ,N (γ1), Φπ2
σ,N (γ2) )

– r = uEk with k ∈ {1, 2}. Then, Φπ
σ,N : ITN (σΓ) → ITN (σ(t : Ck)) and

Φπ
σ,N (γ) = Prok( Φπ′

σ,N (γ) )

where Prok is the k-projection function.

– r = tIk with k ∈ {1, 2}. Then, Φπ
σ,N : ITN (σΓ) → ITN (σ(t : C1 t C2)) and

Φπ
σ,N (γ) = ( k, Φπ′

σ,N (γ) )

– r = tE. Then, Φπ
σ,N : ITN (σΓ1)× ITN (σΓ2)× ITN (σΓ3) → ITN (σK), and

Φπ
σ,N (γ1, γ2, γ3) =

{
Φπ2

σ,N (γ2, α), if Φπ1
σ,N (γ1) = (1, α)

Φπ3
σ,N (γ3, β), if Φπ1

σ,N (γ1) = (2, β)

– r =→ I. Then, Φπ
σ,N : ITN (σΓ) → ITN (σ(t : C→D)) and[

Φπ
σ,N (γ)

]
(α) = Φπ′

σ,N (γ, α), for every α ∈ ITN (σ(t : C))

– r =→E. Then, Φπ
σ,N : ITN (σΓ1)× ITN (σΓ2) → ITN (σ(t : D)) and

Φπ
σ,N (γ1, γ2) =

[
Φπ2

σ,N (γ2)
]
(Φπ1

σ,N (γ1))

– r = ∃I. Then, Φπ
σ,N : {tt} × ITN (σΓ′) → ITN (σ(t : ∃R.C)) and

Φπ
σ,N (tt, γ′) = ( σu, Φπ′

σ,N (γ′) )

– r = ∃E. Then, Φπ
σ,N : ITN (σΓ1)× ITN (σΓ2) → ITN (σK). Let Φπ1

σ,N (γ1) = (c, α)2,
and

Φπ
σ,N (γ1, γ2) = Φπ2

σ[c/p],N (γ2, tt, α)

– r = ∀I. Then, Φπ
σ,N : ITN (σΓ) → ITN (σ(t : ∀R.C))3. Then Φπ

σ,N (γ) is the
function defined as follows: for every c ∈ N[

Φπ
σ,N (γ)

]
(c) = Φπ′

σ[c/p],N (γ, tt)

2By the side condition on p, (σ[c/p])Γ2 = σΓ2 and (σ[c/p])K = σK.
3Let c ∈ N , by the side condition on p, (σ[c/p])Γ = σΓ and (σ[c/p])t : ∀R.C = σt : ∀R.C.
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– r = ∀E. Then, Φπ
σ,N : {tt} × ITN (σΓ′) → ITN (σ(t : C)) and

Φπ
σ,N (tt, γ′) =

[
Φπ′

σ,N (γ′)
]
(σt)

– r =v E. Then, Φπ
σ,N : ITN (C v D) × ITN (σΓ′) → ITN (σ(t : D)). For φ ∈

ITN (C v D), we define

Φπ
σ,N (φ, γ′) = φ(Φπ′

σ,N (γ′))

With the following lemmas we show the soundness of NDK with respect to the
ALC-validity and realizability relations.

Lemma 5.3
Let Γ ∪ {K} ⊆ LN and let π :: Γ ` K be a proof of NDK on LN . For every model
M, if M |= Γ then M |= K. 2

The lemma can be easily proved by showing the relations of NDK with a suitable
natural deduction calculus for ALC.

Lemma 5.4
Let Γ ∪ {K} ⊆ LN , let σ be a closing N -substitution and let π :: Γ ` K be a proof
of NDK on LN . Then, for every γ ∈ ITN (σΓ) and for every model M for LN ,
M I 〈γ〉 σΓ implies M I 〈Φπ

σ,N (γ)〉 σK.

Proof: We show the lemma by induction on the depth of π. If π only consists of an
assumption introduction, then Γ = {K} and γ = γ ∈ ITN (σK). By definition, Φπ

σ,N
is the identity function, then the assertion directly follows. If d(π) > 0, then let r
be the last rule applied in π: we prove the assertion by cases on the rule r.

If r = uI, by induction hypothesis over π1 and π2:

M I 〈Φπ1
σ,N (γ1)〉 σ(t : C1) M I 〈Φπ2

σ,N (γ2)〉 σ(t : C2)

Thus, by definition:

M I 〈(Φπ1
σ,N (γ1), Φπ2

σ,N (γ2))〉 σ(t : C1 u C2)

that is M I 〈Φπ
σ,N (γ1, γ2)〉 σ(t : C1 u C2).

If r = uEk, by induction hypothesis on π′:

M I 〈Φπ′
σ,N (γ)〉 σ(t : C1 u C2)

with Φπ′
σ,N (γ) = (α, β). By definition it holds that M I 〈α〉 σ(t : C1) and M I

〈β〉 σ(t : C2). It follows that:

M I 〈Prok(Φπ′
σ,N (γ))〉 σ(t : Ck)

that is M I 〈Φπ
σ,N (γ)〉 σ(t : Ck), with k ∈ {1, 2}.
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If r = tIk, by induction hypothesis on π′:

M I 〈Φπ′
σ,N (γ)〉 σ(t : Ck)

with k ∈ {1, 2}. By definition, it holds:

M I 〈(i, Φπ′
σ,N (γ))〉 σ(t : C1 t C2)

that is M I 〈Φπ
σ,N (γ)〉 σ(t : C1 t C2).

If r = tE, by induction hypothesis on π1:

M I 〈Φπ1
σ,N (γ1)〉 σ(t : C1 t C2)

with Φπ1
σ,N (γ1) = (k, α) and k ∈ {1, 2}. Suppose k = 1: by definition, it holds

M I 〈α〉 σ(t : C1). By induction hypothesis on π2, it holds:

M I 〈Φπ2
σ,N (γ2, α)〉 σK

The case with k = 2 is similar: thus, in both cases M I 〈Φπ
σ,N (γ1, γ2, γ3)〉 σK.

If r =→ I, suppose that α is a generic element of ITN (σ(t : C)) such that M I
〈α〉 σ(t : C). By induction hypothesis on π′:

M I 〈Φπ′
σ,N (γ, α)〉 σ(t : D)

Given that, by definition, φ is defined as the function such that φ(α) = Φπ′
σ,N (γ, α)

and α has been chosen arbitrarily, by definition we have:

M I 〈φ〉 σ(t : C→D)

that is M I 〈Φπ
σ,N (γ)〉 σ(t : C→D).

If r =→E, by induction hypothesis on π1 and π2:

M I 〈Φπ1
σ,N (γ1)〉 σ(t : C) M I 〈Φπ2

σ,N (γ2)〉 σ(t : C→D)

Then, by definition:

M I 〈[Φπ2
σ,N (γ2)](Φπ1

σ,N (γ1))〉 σ(t : D)

that is M I 〈Φπ
σ,N (γ1, γ2)〉 σ(t : D).

If r = ∃I, by induction hypothesis, M I 〈tt〉 σ((t, u) : R) hence we have
M |= σ((t, u) : R). On the other hand, by induction hypothesis on π′, we have:

M I 〈Φπ′
σ,N (γ′)〉 σ(u : C)

Then, by definition:

M I 〈(σu, Φπ′
σ,N (γ′))〉 σ(t : ∃R.C)
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thus M I 〈Φπ
σ,N (tt, γ′)〉 σ(t : ∃R.C).

If r = ∃E, by induction hypothesis on π1 it holds:

M I 〈Φπ1
σ,N (γ1)〉 σ(t : ∃R.C)

with Φπ1
σ,N (γ1) = (c, α). By definition, it holdsM I 〈α〉 σ(c : C) andM |= σ((t, c) :

R). Let us consider the proof π2 and the closed N -substitution σ′ = σ[c/p]. Then,
by the assumptions on the parameter p, we have that σ′Γ = σΓ and σ′K = σK.
Hence:

M I 〈Φπ2
σ′,N (γ2, tt, α)〉 σ′K

and M I 〈Φπ
σ,N (γ1, γ2)〉 σK.

If r = ∀I, let us consider the set:

Y = {c ∈ N | cM ∈ DM and (σtM, cM) ∈ RM}

and, for any c ∈ Y, the closed N -substitution σc = σ[c/p]. By the assumptions
on the parameter p, for any c ∈ Y, σcΓ = σΓ and σc(t : ∀R.C) = σ(t : ∀R.C). By
induction hypothesis on π′, for any c ∈ Y it holds:

M I 〈Φπ′
σc,N (γ, tt)〉 σc(p : C)

We note that Φπ′
σc,N (γ, tt) = [Φπ

σ,N (γ)](c). Now, the assertion is proved if we can
show that M |= σ(t : ∀R.C): given that by Proposition 5.1 it holds M |= σΓ, by
Lemma 5.3 we have that M |= σ(t : ∀R.C).

If r = ∀E, by induction hypothesis:

M I 〈Φπ′
σ,N (γ′)〉 σ(t : ∀R.C) M I 〈tt〉 σ((s, t) : R)

By Proposition 5.1, M |= σ((s, t) : R) thus it holds:

M I 〈[Φπ1
σ,N (γ′)](σt)〉 σ(t : C)

hence M I 〈Φπ
σ,N (tt, γ′)〉 σ(t : C).

If r =v E, by induction hypothesis:

M I 〈φ〉C v D

with φ ∈ ITN (C v D). Moreover, by induction hypothesis on π′,

M I 〈Φπ′
σ,N (γ′)〉 σ(t : C)

By definition, thus it holds that:

M I 〈φ(Φπ′
σ,N (γ′))〉 σ(t : D)

that is M I 〈Φπ
σ,N (γ)〉 σ(t : D).
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If r = ⊥E, by induction hypothesis on π′, we would have that M |= ⊥, which
is obviously an absurd. Thus we deduce that it can not exist γ ∈ ITN (σΓ) such that
M I 〈γ〉 σΓ.

If r = ⊥I, the assertion holds by the observations of the previous case, since it
does not exist M such that M |= σK and M |= σ¬K.

If r = ¬I, we have that M I 〈α〉 σt : C can not hold, since this would imply
M I 〈Φπ′

σ,N (γ′, α)〉 σ(t : ⊥) and hence M |= σ(t : ⊥) by Proposition 5.1.
If r = KUR, by induction hypothesis

M I 〈Φπ′
σ,N (γ′)〉 σ(t : ∀R.¬¬C)

By semantics definition, it holds that M |= σ(t : ∀R.¬¬C). In the classical seman-
tics for ALC, one can show that this is equivalent to M |= σ(t : ¬¬∀R.C). This
implies that M I 〈tt〉 σ(t : ¬¬∀R.C) and the assertion holds. 2

From the previous lemmas, if Φπ
N = Φπ

σ,N for any N -substitution σ, we get:

Theorem 5.5
Let Γ ∪ {K} be a set of closed formulas with Γ ∪ {K} ⊆ LN and let π :: Γ ` K be a
proof of NDK on LN . Then:

(i) Γ |= K;

(ii) For every γ ∈ ITN (Γ) and for every model M for LN , M I 〈γ〉 Γ implies
M I 〈Φπ

N (γ)〉K. 2

As a direct consequence and by the definition of the constructive consequence re-
lation, the Soundness theorem can be stated as follows:

Theorem 5.6 (Soundness)
Γ | BCDLK K implies Γ|=c K. 2

We remark that the proof of the previous result by the definition of the function Φπ
N

provide us with an effective method to extract information from proofs ofNDK. In-
deed, according to the proofs-as-programs paradigm, proofs are seen as programs to
solve the problem represented by the proved formula: in other words, they rep-
resent functions transforming the information terms for premises in information
terms for the consequences.

We also note that we can easily generalize our semantics for concept conjunc-
tions and disjunctions to the n-ary case: formally, given N ⊆ NI and a closed for-
mula K ∈ LN , we can extend the definition of information term ITN (K) as follows:

ITN (c : C1 u · · · u Cn) = { (α1, . . . , αn) | αk ∈ ITN (c : Ck) for k ∈ {1, . . . , n}}
ITN (c : C1 t · · · t Cn) = { (k, α) | k ∈ {1, . . . , n} and α ∈ ITN (c : Ck) }

Given a model M of LN , we can thus extend the definition of realizability relation
for the above cases:

M I 〈(α1, . . . , αn)〉 c : C1 u · · · u Cn iff M I 〈αk〉 c : Ck for every k ∈ {1, . . . , n}
M I 〈(k, α)〉 c : C1 t · · · t Cn iff M I 〈α〉 c : Ck
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Γ1··· π1

t : C1 . . .

Γn··· πn

t : Cn
uI

t : C1 u · · · u Cn

Γ··· π′

t : C1 u · · · u Cn
uEk k ∈ {1, . . . , n}

t : Ck

Γ··· π′

t : Ck
tIk k ∈ {1, . . . , n}

t : C1 t · · · t Cn

Γ′··· π′

t : C1 t · · · t Cn

Γ1, [t : C1]··· π1

K . . .

Γn, [t : Cn]
··· πn

K
tE

K

Figure 5.2: Rules of NDK for n-ary concept constructors

According to these definitions, we can also extendNDK to treat the cases of such n-
ary constructors: the new rules are presented in Figure 5.2. We extend the definition
of the function Φπ

σ,N to consider such rules. Given π :: Γ ` K a proof of NDK on
LN and σ a closing N -substitution, if d(π) > 0, we define Φπ

σ,N on the last rule r
applied in π:

– r = uI. Then, Φπ
σ,N : ITN (σΓ1) × · · · × ITN (σΓn) → ITN (σ(t : C1 u · · · u Cn))

and
Φπ

σ,N (γ1, . . . , γn) = ( Φπ1
σ,N (γ1), . . . , Φπn

σ,N (γn) )

– r = uEk with k ∈ {1, . . . , n}. Then, Φπ
σ,N : ITN (σΓ) → ITN (σ(t : Ck)) and

Φπ
σ,N (γ) = Prok( Φπ′

σ,N (γ) )

where Prok is the k-projection function.

– r = tIk with k ∈ {1, . . . , n}. Then, Φπ
σ,N : ITN (σΓ) → ITN (σ(t : C1 t · · · t Cn))

and
Φπ

σ,N (γ) = ( k, Φπ′
σ,N (γ) )

– r = tE. Then, Φπ
σ,N : ITN (σΓ′)× ITN (σΓ1)× · · · × ITN (σΓn) → ITN (σK) and

Φπ
σ,N (γ′, γ1, . . . , γn) = Φπk

σ,N (γk, α), if Φπ′
σ,N (γ′) = (k, α)

In all of the other cases, the definition of the function is not modified.
It is easy to prove that such n-ary extensions to the semantics and the natural

deduction calculus preserve the results of Lemma 5.4 and thus the soundness of
the extended calculus. In particular, this generalization of concept constructors to
n-ary concepts is useful in the definition of service composition rules provided in
the following sections.
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5.2.2 Soundness for KALC
Given a KALC-model K = 〈P,≤, ρ, ι〉 and α ∈ P, an α-substitution is a function
σ : VAR→ NI∪Dα. Note that, by the monotonicity property, we obtain that each α-
substitution is also a β-substitution for every β ∈ P such that α ≤ β. We extend the
definition of α-substitution to formulas and sets of formulas as previously defined
for N -substitutions.

Theorem 5.7
Let Γ ∪ {K} ⊆ LN and let π :: Γ ` K be a proof of NDK on LN . Then, for every
KALC-model K = 〈P,≤, ρ, ι〉, for every α ∈ P and every α-substitution σ, α  σΓ
implies α  σK.

Proof: We prove the assertion by induction on the depth of the proof π. If d(π) = 0,
then π only consists of an assumption introduction and the assertion immediately
holds. If d(π) > 0, the proof goes by cases on the last rule r applied in π.

Let r = uI. Then by induction hypothesis, we have that Γ1|=k t : C1 and Γ2|=k t :
C2, with Γ = Γ1 ∪ Γ2. Then if α  σΓ in K then α  σ(t : C1) and α  σ(t : C2) in K,
thus α  σ(t : C1 u C2) in K and the assertion holds.

Let r = uE. Then by induction hypothesis on π′, we have that α  σΓ in K
implies α  σ(t : C1 u C2) in K. By definition of the semantics, α  σ(t : C1) and
α  σ(t : C2): thus, α  σ(t : Ck) in K for k ∈ {1, 2}.

Let r = tI. Then by induction hypothesis on π′ we have that α  σΓ in K
implies α  σ(t : Ck) in K with k ∈ {1, 2}. By definition, this implies that α  σ(t :
C1 t C2) in K.

Let r = tE. Hence Γ = Γ1 ∪ Γ2 ∪ Γ3: by induction hypothesis on π1, α  σ(t :
C1 t C2) in K. Let us assume that α  σ(t : C1) in K: then by induction hypothesis
on π2, α  σK in K. The case in which α  σ(t : C2) in K is similar: thus, in both
cases α  σK in K and the assertion is proved.

Let r =→ I. Let β be any element of P such that α ≤ β. By monotonicity
property, β  σΓ and, by induction hypothesis on π′, if β  σt : C then β  σt : D,
hence the assertion.

Let r =→ E. Hence Γ = Γ1 ∪ Γ2: by induction hypothesis, if α  σΓ, we get
that α  σ(t : C → D) and that α  σ(t : C) in K. Thus, by semantics definition,
α  σ(t : D) in K.

Let r = ∃I. Then Γ = Γ′ ∪ {(t, s) : R}: α  σΓ in K, by induction hypothesis,
implies that α  σ((t, u) : R) and α  σ(u : A) in K. Thus, by definition, it holds
that α  σ(t : ∃R.A) in K.

Let r = ∃E. Then Γ = Γ1 ∪ Γ2 ∪ {(t, p) : R, p : C} and if α  σΓ in K, by
induction hypothesis on π1, we get that α  σ(t : ∃R.C) in K. This implies that
there exists d ∈ Dα such that α  σ((t, d) : R) and α  σ(d : C) in K. Let us
consider a new α-substitution σ′ = σ[d/p]. Since p does not occur in Γ2, α  σ′Γ2
in K and by induction hypothesis we get that α  σ′K in K. Since p does not occur
in K, this implies the assertion.
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Let r = ∀I. Hence Γ = Γ′ ∪ {(t, p) : R}: if α  σΓ in K, then, by induction
hypothesis on π′, α  σ(p : C) in K. Since p does not occur in Γ, this happens for
every α-substitution σ′ such that σ′(p) = d, where d ∈ Dα and α  σ((t, d) : R) in
K. By the monotonicity property, this holds for every β ∈ P such that α ≤ β: thus
by definition α  σ(t : ∀R.C) and the assertion holds.

Let r = ∀E. Then Γ = Γ′ ∪ {(s, t) : R}: if α  σΓ in K, then by induction
hypothesis on π′ we have that α  σ(s : ∀R.A) and α  σ((s, t) : R) in K. Thus, by
semantics definition, α  σ(s : C) in K.

Let r = ⊥I. Hence Γ = Γ1 ∪ Γ2: if α  σΓ in K, by induction hypothesis on π1
and π2, this would imply that α  σ(t : C) and α  σ(t : ¬A) in K which is an
absurd. This implies that K, α  σΓ can not hold and this verifies the assertion.

Let r = ⊥E. Then by induction hypothesis on π′ we have that if α  σΓ in K
then α  σ(t : ⊥) in K. Since, for any t ∈ NI ∪ Dα, α 1 σ(t : ⊥) in K we get that
α  σΓ can not hold in K. Thus α  σK in K for every formula K of LN .

Let r = ¬I. Let β ∈ P be any element such that α ≤ β. If β  σΓ then β 1
σ(t : C) in K, otherwise by induction hypothesis we would have β  σ(t : ⊥).
Thus, β 1 σ(t : C), which implies that, if α  σΓ in K, then for every β ∈ P such
that α ≤ β it holds β 1 σ(t : C). By definition of the semantics, it holds that
α  σ(t : ¬C) in K.

Let r =v E. Hence Γ = Γ′ ∪ {C v D} and by induction hypothesis, if α  σΓ
in K, then we have that α  C v D and α  σ(t : C) in K. Thus, by definition of the
semantics, α  σ(t : D) in K.

Let r = KUR. Then by induction hypothesis, if α  σΓ it holds that α  σ(t :
∀R.¬¬C). By definition of the semantics, and given that Kur is a KALC-valid
schema (e.g., see Example 3), we obtain that α  σ(t : ¬¬∀R.C). 2

We obtain that NDK is also sound with respect to the Kripke semantics of KALC:

Theorem 5.8 (Soundness)
Γ | BCDLK K implies Γ|=k K. 2

To conclude the discussion on the soundness of NDK, we note that we can enrich
our calculus with the following rule, that is provable to be sound with respect to
the information terms semantics of BCDLK:

Γ··· π′

t : ¬¬A
At

t : A

where A ∈ NC

While this rule is sound with respect to BCDLK and it is included in the calculus for
BCDL, in general it is not sound with respect to the Kripke semantics of KALC.
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5.3 Service specifications

We can now introduce the basic definitions for the description of systems and for
the specification of services operating on them.

A service specification (over LN ) is an expression of the form

s(x) :: P ⇒ Q

where:

– s is a label that identifies the service;

– x is the input parameter of the service (to be instantiated with an individual
name from N );

– P and Q are concepts over LN .

P is called the service pre-condition, denoted with Pre(s), and Q the service post-
condition, denoted with Post(s).

Given a service specification s(x) :: P ⇒ Q over LN we call service implementa-
tion a function

Φs :
⋃

t∈N
ITN (t : P) →

⋃
t∈N

ITN (t : Q)

We denote with the pair (s(x) :: P ⇒ Q, Φs) (or simply with (s, Φs)) a service defini-
tion over LN .

Essentially, a service definition corresponds to an effective Web service. The ser-
vice specification provides the formal description of the behavior of the service in
terms of pre- and post- conditions. The function Φs represents a formal description
of the service implementation: that is, it represents the input/output function that
the service provides.

The notion of correctness of implementations with respect to their service spec-
ifications is modeled as follows.

Definition 5.9 (Uniform solvability)
Given a language LN , a service definition (s(x) :: P ⇒ Q, Φs) over LN and a model
M for LN , Φs uniformly solves s(x) :: P ⇒ Q in M iff, for every individual name
t ∈ N and every α ∈ ITN (t : P) such that M I 〈α〉 t : P, M I 〈Φs(α)〉 t : Q.

Example 6 (Service specification)
We can now model the services provided by the Producer and Shipper agents.

DoProduceRequest(req) ::
ProduceRequest u ∃hasProduct.Product
⇒ RefusedRequest t ( AcceptedProduceRequestu
∃hasOffer.( ProduceOffer u ∃hasCost.Price ) )
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DoShippingRequest(req) ::
ShippingRequest u ∃hasDestination.Location
⇒ RefusedRequest t ( AcceptedShippingRequestu
∃hasOffer.( ShippingOffer u ∃hasCost.Price ) )

The service described by DoProduceRequest takes as input a request req specifying
the required product and must classify it according to the service post-condition:
namely, the service can answer with a refusal to the request (by classifying req in
RefusedRequest) or it can accept the request and produce an offer with a price
specified by the hasCost role. The DoShippingRequest service works in a similar
way: it takes as input the destination where to ship the product and either refuses
the request or it accepts the request providing an offer with the associated price.

In our setting, service implementations correspond to functions mapping infor-
mation terms for the pre-condition into information terms for the post-condition.
These functions formalize the behavior of the effective implementation of the Web
services. In particular, consider the implementation ΦDPR of the DoProduceRequest
service. Let req 1 be the individual name representing a request. The input of ΦDPR

is any information term

α ∈ ITN (req 1 : Pre(DoProduceRequest))

req 1 can be seen as a reference to a database record providing the information re-
quired by the service precondition and α can be seen as a structured representation
of such information. Let us suppose that

α = (tt, (book 1, tt))

This information term means that req 1 is a product request with associated pro-
duct book 1. Now, let

β = ΦDPR(α) ∈ IT(req 1 : Post(DoProduceRequest))

If β = (1, tt), this classify req 1 as refused. Otherwise β could be

(2, (tt, (off 1, (tt, (price 1, tt)))))

which classifies req 1 as accepted and specifies that there is an offer off 1 with
associated price price 1 for the requested product. The implementation ΦDSR of
DoShippingRequest acts in a similar way.

To conclude, we remark that the intended model M we use to evaluate the
correctness of the system is implicitly defined by the knowledge base of the system.
Indeed,

M I 〈α〉 req 1 : Pre(DoProduceRequest)

if and only if in our system req 1 effectively codify a request and book 1 is classified
as a product. In this case, since ΦDPR uniformly solves the service specification, we
know that

M I 〈β〉 req 1 : Post(DoProduceRequest)
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This trivially corresponds to the fact that, looking at its knowledge base, the Pro-
ducer can generate its offer. 3

The problem of service composition amounts to build a new service from a family
of implemented services. We formalize this problem in the context of an environ-
ment, that is a structure

E = 〈LN , T, η,S1, . . . ,Sn〉

where:

– T is a theory over the language LN ;

– η ∈ ITN (T);

– for every i ∈ {1, . . . , n}, Si = (si, Φi) is a service definition in LN .

Given a model M for LN we say that M is a model for E iff M I 〈η〉T and
for every i ∈ {1, . . . , n}, Φi uniformly solves si in M. A service specification s′ is
solvable in E if there exists an implementation Φ′ of s′ such that, for every model M
of LN , if M is a model for E then Φ′ uniformly solves s′ in M.

Example 7 (Composition problem definition)
Given the previous specifications, we are now ready to state the composition prob-
lem. We want to combine the services DoProduceRequest and DoShippingRequest to
provide the User with a single service to request both the production and the deliv-
ery of an object. To do this, we define a third service that composes the offers from
the two agents:

ProcessOffers(req) ::
AcceptedProduceRequest u ∃hasOffer.( ProduceOffer u ∃hasCost.Price ) u
AcceptedShippingRequest u ∃hasOffer.( ShippingOffer u ∃hasCost.Price )
⇒ AcceptedRequest u ∃hasOffer.( Offer u ∃hasCost.Price )

Let ΦPO be the implementation of ProcessOffers. We define the environment

EPS = 〈LN , TPS, η, S1, S2, S3〉

where:
S1 = (DoProduceRequest, ΦDPR)

S2 = (DoShippingRequest, ΦDSR)

S3 = (ProcessOffers, ΦPO)

The problem can be now reduced to the definition of a suitable service specification
that is solvable in such environment. 3

Now, the main point of service composition is to effectively build the implementa-
tion of the service specification starting from the environment. This problem can
be solved in two ways: the first solution consists in the definition of a composition
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language which allows the user to build up a new service starting from the envi-
ronment. The second is given by providing a method to automatically build up the
new service implementation.

The formalization of the composition problem in the framework of a construc-
tive logic allows to use the proof-theoretical properties of the logical system to sup-
port the composition problem. In the following we only concentrate on the defini-
tion of a composition language. As for the problem of automatic service compo-
sition, it can be seen as a reformulation of the program-synthesis problem, that is a
problem which has a long tradition in the constructive logics context. The program-
synthesis problem can be related to the idea of information extraction from proofs
which has already been studied in the framework of BCDL in [Bozzato et al.(2007),
Ferrari et al.(2010a)].

5.4 Composition calculus

The composition calculus we describe in this section is mainly inspired by PAP
[Miglioli et al.(1991)], a calculus which support program synthesis from proofs of
a constructive logical system. Our calculus allows to manually compose services
guaranteeing the correctness of the composed service. The main advantage of our
formalization is that service composition can be supported by an appropriate proof-
system. This tool can be used to check the correctness of rule applications and to
automatically build the proofs of the applicability conditions.

A composition over an environment E = 〈LN , T, η,S1, . . . ,Sn〉 is defined as:

s(x) :: P ⇒ Q

Π1 : s1(x) :: P1 ⇒ Q1
· · ·

Πn : sn(x) :: Pn ⇒ Qn

r

where:

– s(x) :: P ⇒ Q is a service specification over E;

– r is one of the rules of the composition calculus SC;

– For every i ∈ {1, . . . , n}, Πi : si(x) :: Pi ⇒ Qi is a service composition over E that
meets the applicability conditions of r.

The rules of the composition calculus SC and their computational interpretation (CI)
are given in Figure 5.3. In the rules, the service specification s(x) :: P ⇒ Q is
called the main sequent of the rule and represents the specification of the service to
be composed. The service specifications si(x) :: Pi ⇒ Qi are called subsequents of
the rule and represent the services involved in the composition. The sequents must
satisfy the applicability conditions (AC) of the rule. These conditions describe the
role of the subsequents in the composition of the main sequent: in order to verify
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s(x) :: A ⇒ B

s1(x) :: A1 ⇒ B1
· · ·

sn(x) :: An ⇒ Bn

AND AC

{
(ak) T, x : A | BCDLK x : Ak, k = 1, . . . , n

(b) T, x : B1 u . . . u Bn | BCDLK x : B

CI Φs(α) = Φb(Φs1(Φa1(α)), . . . , Φsn(Φan(α)))

s(x) :: A ⇒ B

s1(x) :: A1 ⇒ B1
· · ·

sn(x) :: An ⇒ Bn

CASE AC

{
(a) T, x : A | BCDLK x : A1 t . . . t An

(bk) T, x : Bk | BCDLK x : B, k = 1, . . . , n

CI Φs(α) = Φbk
(Φsk (αk)) with (k, αk) = Φa(α)

s(x) :: A ⇒ B

s1(x) :: A1 ⇒ B1
· · ·

sn(x) :: An ⇒ Bn

SEQ AC


(b1) T, x : A | BCDLK x : A1

(bk) T, x : Bk−1 | BCDLK x : Ak, k = 2, . . . , n

(c) T, x : Bn | BCDLK x : B

CI Φs(α) = Φc( Φsn ·Φbn · . . . ·Φs1 ·Φb1(α) )

s(x) :: A ⇒ B AX AC (a) T, x : A | BCDLK x : B CI Φs(α) = Φa(α)

s(x) :: A ⇒ B ENV with (s, Φs) a service defined in E

Figure 5.3: The rules of calculus SC

the correctness of compositions, the proof checker must verify the truth of such
conditions.

The composition rules have both a logical and a computational reading. The
computational interpretation (CI) of rules allow to associate with a service compo-
sition its service implementation, defined as follows: given a service composition
Π with main sequent s(x) :: P ⇒ Q, we define the function

Φs :
⋃

t∈N
ITN (t : P) →

⋃
t∈N

ITN (t : Q)

associated with s. The function is inductively defined on the last rule r applied
in Π. Here we assume the following conventions: given a subsequent s′ of the
rule r, we denote with Φs′ its computed function; given the applicability condition
(a) Γ | BCDLK x : A of the rule r we denote with Φa the operator corresponding to the
proof π :: Γ ` x : A defined according to Section 5.2.

Inspecting the rules of Figure 5.3 we can understand them as logical rules and
control structures as follows:

– The AND rule represents a u introduction on the right hand side of the specifica-
tion sequents: the services composed by this rule are seen as a parallel execution
of the sub services.
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– The CASE rule represents at elimination on the left hand side of the specification
sequent: the services composed by this rule are seen as in a case construct, in
which the applicability condition determines the executed sub-service.

– The SEQ rule represents a composition given as a sequential execution of the
sub-services and a composition of proofs under the logical reading.

– The AX rule states that the system can infer specifications provable under a suit-
able calculus for BCDLK.

– The ENV rule allows to use the specifications given in the environment E.

Let us complete our example with a sample service composition.

Example 8 (Service Composition)
Given the environment EPS defined in Example 7 and the rules of SC, we can define
a new service ProduceAndShip as the composition Π of the stated specifications:
the composition is presented in Figure 5.4. The behavior of this service is defined
as follows: using the DoRequest service (service composition Π1), it first invokes
the DoProduceRequest and the DoShippingRequest services to query the Producer
and the Shipper over the combined request req. The answer of the two is then
combined by PresentOffer (service composition Π2): by a case construct, this sub-
service either responds that the request req has been classified as refused, or it
accepts the request and generate the combined price using the ProcessOffers service.

Now, let us discuss how the composite service computes information terms
by explaining a sample execution. Let req 2 be both a ProduceRequest and a
ShippingRequest with associated product book 1 and destination my home. Then,
a call of ProduceAndShip over req 2 has as input information term

α1 = (tt, (tt, ((book 1, tt), (my home, tt))))

Following the composition, the execution of ProduceAndShip starts with the se-
quence construct and the first invoked service is DoRequest which process the infor-
mation term α1. DoRequest consists of a parallel call to the services of the Producer
and the Shipper. The first request is executed as a call to DoProduceRequest. Ac-
cording to the conditions of the AND rule, we have a proof:

π1 :: TPS, x : Pre(DoRequest) | BCDLK x : Pre(DoProduceRequest)

The corresponding operator Φπ1
N allows us to extract from α1 the information term:

(tt, (book 1, tt)) ∈ ITN (req 2 : Pre(DoProduceRequest))

Let us suppose that the Producer accepts the request and produces an offer p off
with an associated price. The offer is codified in the information term:

α2 = ΦDPR((tt, (book 1, tt))
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ProduceAndShip(req) ::
ProduceRequestu ShippingRequestu
∃hasProduct.Productu ∃hasDestination.Location⇒
RefusedRequest t ( AcceptedRequest u ∃hasOffer.( Offer u ∃hasCost.Price ) )

SEQ
Π1 : DoRequest(req) ::

ProduceRequestu ShippingRequestu
∃hasProduct.Productu ∃hasDestination.Location⇒
RefusedRequest t ( ( AcceptedProduceRequestu
∃hasOffer.( ProduceOffer u ∃hasCost.Price ) )
u ( AcceptedShippingRequestu
∃hasOffer.( ShippingOffer u ∃hasCost.Price ) ) )

AND
DoProduceRequest(req) :: ENV

ProduceRequest u ∃hasProduct.Product⇒
RefusedRequest t ( AcceptedProduceRequestu
∃hasOffer.( ProduceOffer u ∃hasCost.Price ) )

DoShippingRequest(req) :: ENV
ShippingRequest u ∃hasDestination.Location⇒
RefusedRequest t ( AcceptedShippingRequestu
∃hasOffer.( ShippingOffer u ∃hasCost.Price ) )

Π2 : PresentOffer(req) ::
RefusedRequest t ( ( AcceptedProduceRequestu
∃hasOffer.( ProduceOffer u ∃hasCost.Price ) )
u ( AcceptedShippingRequestu
∃hasOffer.( ShippingOffer u ∃hasCost.Price ) ) ) ⇒
RefusedRequest t ( AcceptedRequestu
∃hasOffer.( Offer u ∃hasCost.Price ) )

CASE
RefuseRequest(req) :: AX

RefusedRequest⇒ RefusedRequest

ProcessOffers(req) :: ENV
AcceptedProduceRequestu
∃hasOffer.( ProduceOffer u ∃hasCost.Price ) u
AcceptedShippingRequestu
∃hasOffer.( ShippingOffer u ∃hasCost.Price ) ⇒
AcceptedRequest u ∃hasOffer.( Offer u ∃hasCost.Price )

Figure 5.4: Composition of the ProduceAndShip service
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Let us assume that α2 has the following form:

α2 = (2, (tt, (p off, (tt, (p off price, tt)))))

The request to the Shipper consists in a call to DoShippingRequest with input infor-
mation term

(tt, (my home, tt))

Also in this case this information term is generated from the operator associated
with an applicability rule. As above, if the Shipper accepts the request with an
offer s off and its price, then the output information term is:

α3 = (2, (tt, (s off, (tt, (s off price, tt)))))

Now the applicability conditions of the AND composition rule, in particular the
proof:

π2 :: TPS, x : Post(DoProduceRequest) u Post(DoShippingRequest)
| BCDLK x : Post(DoRequest)

allows us to combine α2 and α3 to get an α4 ∈ ITN (req 2 : Post(DoRequest)) as
follows:

α4 = (2, ((tt, (p off, (tt, (p off price, tt)))),
(tt, (s off, (tt, (s off price, tt)))))

)

Proceeding in the sequence, the previous responses are combined by means of a call
to PresentOffer with input information term α4. By the AC of the CASE construct,
as the request has been accepted by both agents, we enter in the second of the cases
and we call ProcessOffers with input information term:

α5 = ( (tt, (p off, (tt, (p off price, tt)))),
(tt, (s off, (tt, (s off price, tt)))) )

The service combines the offers producing a composite offer ps off with its asso-
ciated price ps off price modeled by the information term:

(tt, (ps off, (tt, (ps off price, tt))))

Finally the output of PresentOffer and ProduceAndShip is:

(2, (tt, (ps off, (tt, (ps off price, tt)))))

This object states that the request has been accepted and it contains both the object
representing the composite offer (ps off) and its composite price (ps off price). 3

To conclude this section we state the result asserting the soundness of the rules
with respect to uniform solvability. Note that the proof of this theorem relies on the
generalized semantics and rules presented at the end of Section 5.2.1.
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Theorem 5.10
Let E = 〈LN , T, η,S1, . . . ,Sn〉 be an environment and let s(x) :: P ⇒ Q be the main
sequent of a composition Π over E. For every model M for L, if M is a model for
E then the function Φs extracted from Π uniformly solves s in M.

Proof: Let M be a model for E and let t ∈ N and α ∈ ITN (t : P) such that M I
〈α〉 t : P. We prove the assertion by induction on the last rule r applied in the
composition Π.

If r = AX, the composition Π only consists of an axiom introduction. By the
applicability condition (a) and Theorem 5.5, we have that M I 〈Φa(α)〉 t : B: since
by definition Φa(α) = Φs(α), this implies that Φs uniformly solves s in M.

If r = ENV, the assertion directly holds since, by definition, the service (s, Φs)
is defined in E. Since M is a model for E, Φs uniformly solves s in M.

If r = AND, by the applicability conditions (ak) for k ∈ {1, . . . , n} and Theo-
rem 5.5, since M I 〈α〉 t : A, then

M I 〈Φak(α)〉 t : Ak

Let βk = Φak(α). Since M is a model for E, this implies that

M I 〈Φsk(βk)〉 t : Bk

for every k ∈ {1, . . . , n}. Now, let γk = Φsk(βk). By semantics definition it holds
that

M I 〈(γ1, . . . , γn)〉 t : B1 u . . . u Bn

By (b) and Theorem 5.5, we have

M I 〈Φb((γ1, . . . , γn))〉 t : B

and the assertion is proved.
If r = CASE, by the applicability condition (a) and Theorem 5.5, we have that

M I 〈Φa(α)〉 t : A1 t . . . t An

Let Φa(α) = (k, αk), with k ∈ {1, . . . , n}. By semantics definition, this implies that:

M I 〈αk〉 t : Ak

Thus, since M is a model for E, it holds that

M I 〈Φsk(αk)〉 t : Bk

Let γk = Φsk(αk), then by (bk) and Theorem 5.5,

M I 〈Φbk(γk)〉 t : B

The assertion is proved by the definition of Φs.
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If r = SEQ, by the applicability condition (b1) and Theorem 5.5

M I 〈Φb1(α)〉 t : A1

Let β1 = Φb1(α). Since M is a model for E, we have that

M I 〈Φs1(β1)〉 t : B1

Let γ1 = Φs1(β1). By the application rules (bk) and Theorem 5.5, for every k ∈
{2, . . . , n} we have

M I 〈γk−1〉 t : Bk−1 implies M I 〈Φbk(γk−1)〉 t : Ak

Moreover, given that M is a model for E, for every k ∈ {2, . . . , n} we have

M I 〈βk〉 t : Ak implies M I 〈Φsk(βk)〉 t : Bk

with βk = Φbk(γk−1). We obtain that, since M I 〈β1〉 t : A1 then

M I 〈γn〉 t : Bn

Finally, by (c) and Theorem 5.5, it holds

M I 〈Φc(γn)〉 t : B

and, by the definition of Φs, the assertion is verified. 2

To conclude the chapter, we discuss some of the features of our approach with
respect to the known proposals for Semantic Web services composition and we
give some final notes on the limits and possible extensions of our calculus.

Our proposal can be classified together with the approaches which base the
composition on a pure atomic view of the services, as provided by the service profile
of OWL-S [Martin et al.(2007)]. An approach based on services profiles, which also
highlights the relationships between compositions and software synthesis, is pre-
sented in [Matskin and Rao(2002)]. The proposal uses the Structural Synthesis Pro-
gram (SSP) method [Matskin and Tyugu(2001)] to extract compositions. We notice
that SSP is based on the implicative part of the intuitionistic propositional calculus
and it can only define sequential or conditional compositions in general. Another
kind of composition depending on the formulas of service profiles can be found
in the related approaches for action formalisms and planning over description log-
ics as in [Baader et al.(2005), Calvanese et al.(2007a), Drescher and Thielscher(2007),
Miličić(2007)]. However, even classical planning techniques mostly generate se-
quential compositions achieving a goal.

On the other hand, other approaches concentrate on the process model of the
services, that is the representation of the flow of interactions that composes the ser-
vices. Among these proposals we can include approaches based on different for-
malizations for the process model of OWL-S service descriptions, such as transla-
tions to Petri Nets [Narayanan and McIlraith(2002)] and to state transition systems
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[Traverso and Pistore(2004)]. We notice, however, that many of the latter proposals
do not base their compositions on a logic representation of pre- and post- conditions
or on the function mapping inputs to outputs. Moreover, whenever a composition
of sub services is defined, this does not explicitly depend on the condition stated in
a declarative description of the composite service.

To compare our approach with the ones cited above, we remark that SC assures
that the composite service specification directly follows from composition proof.
The correctness of compositions can be checked directly by verifying the applica-
bility conditions of the rules used in the composition: moreover, our rules directly
represent common control structures, thus allowing to represent complex composi-
tions. We remark that, even if we simply detailed manual composition of services,
by implementing SC we would obtain a method for automatic composition. For an
actual implementation of our calculus we mainly need an implementation of the
information terms semantics of BCDLK and its calculus, which can be obtained by
the study of its relations with KALC and BCDL.

Note that, in accord with the original formulation of PAP [Miglioli et al.(1991)],
SC can be partly understood as a goal directed sequent calculus: however, SC is
not directly implementable as such since the proofs of the applicability conditions
are given in NDK, a forward and not goal oriented natural deduction calculus.
Moreover, the services definable with SC are more limited than the programs syn-
thesized in the original PAP: indeed, there is no way to model complex data struc-
tures as ADTs (which however seem to have little interest in the context of Web
services) and the proposed rules can not model induction and recursion. In the
case of induction, while in PAP different induction schemas can be defined on the
base of the properties of the modeled data (e.g. the usual induction schema on nat-
ural numbers), in SC we can consider to introduce induction by weaker induction
principles, as schemas based on descending chains. However, compared with the
first order formalization of PAP, it is not clear how to formalize a suitable induction
schema given the lack of free variables in services specifications.
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Conclusions

Motivated by the need of computable methods for reasoning in constructive de-
scription logics, in this work we presented the decidable logic KALC. We intro-
duced its Kripke-style semantics and studied its properties also with respect to the
classical semantics of ALC. We then proved its decidability by formulating the
sound, complete and terminating tableau calculus TK. The proof of its termina-
tion give rise to an effective tableau procedure for the decision of the constructive
reformulation of usual inference problems for description logics.

In the following, we studied the relations between KALC and other significant
logics: in particular, we described the relations with KALC∞, a variant of KALC
admitting infinite posets, first-order intuitionistic logic QInt and the multimodal
intuitionistic logic FSn.

Finally, we proposed an application for an information terms semantics for
KALC in the context of Semantic Web services composition. By formulating our
proposal for a composition calculus, we also introduced the natural deduction cal-
culus NDK: we proved that this calculus is sound with respect to KALC and its
information terms counterpart BCDLK and we explained how to obtain a compu-
tational interpretation of its proofs.

To conclude our work, we discuss some of the possible directions in which our
results can be extended and completed. First of all, we aim at completing the study
of the relations between KALC and our previous proposal KALC∞: in particular,
we conjecture that KALC ⊆ KALC∞. As pointed out in Chapter 4, if this is true
we can conclude thatKALC = KALC∞: this would imply that this logic meets the
finite model property, meaning that also KALC∞ is decidable.

Another needed investigation concerns the complexity of the proposed deci-
sion procedure. In particular we conjecture that, in the case of empty TBoxes,
the complexity of the tableau procedure has to be in PSPACE and thus compa-
rable to the complexity of classical tableau procedures for ALC. To prove such
inclusion we need to show that, for every branch of a proof tree, the number
of rules applications is polynomial in the size of the initial set of formulas. The
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question is to find a suitable upper bound for the number of individuals gener-
ated in each branch such to provide a limit to the applications of rules for dup-
formulas. As noted in the related discussion in Chapter 3, another way to ob-
tain a PSPACE tableau procedure could be to adopt a suitable variant of the trace
technique [Schmidt-Schauß and Smolka(1991)] and prove the completeness of such
strategy.

After such studies on complexity, another possible direction regards the de-
velopment of implementations for the tableau calculus TK and the composition
calculus SC. With respect to our tableaux calculus, we can also investigate its
possible extension with optimization techniques typically proposed in the con-
text of tableaux calculi for intuitionistic and constructive logics [Ferrari et al.(2009),
Ferrari et al.(2010b)].

We also plan to further investigate the relations betweenKALC and BCDL, our
constructive description logic based on information terms semantics. By this study
we could extend our decidable tableau procedure also to the alternative construc-
tive semantics of BCDL. A possible starting point in this direction consists in the
expansion and study of the natural deduction calculusNDK proposed in Chapter 5
for BCDLK.

Finally, we aim to extend the decision procedure to treat general TBoxes and
more complex role definitions as transitive and inverse role relations. In order to
achieve this, we should adopt loop-checking mechanisms such as blocking and
its variants [Horrocks et al.(2000)], commonly used in classical description logics
tableau algorithms.
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