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Abstract

Wearable devices tracking our fitness activities and health status, smart home technologies sup-
porting home automation services, smart city technologies improving quality and performance
of urban services. These are just some examples of Internet-connected “things” clearly prov-
ing that the Internet of Things (IoT) is already upon us, impacting our every-day lives. The
promise of IoT is making the world smarter, more profitable, autonomous, more connected and
more e&cient. So far, IoT has already been applied to several environments: healthcare, man-
ufacturing, retail, buildings, cities, automative, transportation, energy etc. Indeed, according
to the IHS Markit, as of 2018, number of connected IoT devices has reached 27 billion.1

However, challenges posed by IoT have also increased with its popularity. As such, among
others, challenges on data privacy, security, and limited decentralization of IoT systems intro-
duce major threats for the future of IoT [140, 117]. Given that, in this thesis, we focus on data
privacy and security issues in IoT under the decentralized model.

In the first part of the thesis, we focus on data privacy issues. In a typical IoT scenario
individuals’ privacy can easily be violated due to the high volume of managed personal data.
Particularly, confidential information about individuals may be revealed to unauthorized par-
ties, or, combination of di%erent data may lead to infer sensitive information about individuals.
In addition to those issues, in a decentralized IoT scenario, where IoT devices (i.e. smart
objects) share data with each other, privacy protection is even more challenging as it is more
di&cult to control how data are combined and used by smart objects where future operations
on data are unknown. Therefore, first challenge that we take in this thesis is enhancing data
privacy in IoT with a user-centric model. First, we propose a privacy enforcement framework
for centralized IoT systems. Then, we extend it for decentralized IoT systems. In this model,
compliance check of user individual privacy preferences is performed directly by smart objects.

Decentralization, if coupled with proper security mechanisms, would have many advantages
over centralized infrastructures for IoT, such as, among others: better privacy guarantees for
data owners, more resilient and secure systems, improved interoperability between services, con-
certed and autonomous operations. Notably, blockchain is a promising decentralized platform
due to its ability to achieve distributed consensus [128] and with it’s intrinsic security features
to ensure data integrity. Given that, we shift our focus to address issues related to security and
decentralization of IoT systems with blockchain based systems. At this purpose, we first deal
with security issues in IoT, as resource constrained IoT devices do not employ strong security

1cdn.ihs.com/www/pdf/IoT_ebook.pdf
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mechanisms and they are easy targets for attackers. One of the most relevant attack is when
attackers take advantage of the vulnerabilities of IoT devices, and compromise them to add
them to botnets, that are collection of compromised internet computers controlled by attackers.
Then, attackers use their botnets for their malicious purposes, such as performing Distributed
Denial of Service (DDoS) attacks. Moreover, to increase attacks’ success chance and resilience
against defence mechanisms, modern botnets have often a decentralized P2P structure, which
makes them harder to detect. In order to deal with this problem, we take a first step to-
wards detecting P2P botnets in IoT, by proposing AutoBotCatcher. AutoBotCatcher exploits
a Byzantine Fault Tolerant (BFT) blockchain, in order to perform collaborative and dynamic
botnet detection by collecting and auditing IoT devices’ network tra&c flows as blockchain
transactions. Secondly, we take the challenge to decentralize IoT, and design a hybrid block-
chain architecture for IoT, by proposing Hybrid-IoT. In Hybrid-IoT, subgroups of IoT devices
form PoW blockchains, referred to as PoW sub-blockchains. Connection among the PoW sub-
blockchains employs a BFT inter-connector framework. We focus on the PoW sub-blockchains
formation, guided by a set of guidelines based on a set of dimensions, metrics and bounds.
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Chapter 1

Introduction

The Internet, one of the greatest inventions of humankind, started out as a government funded
defense project in 1962 and evolved to ARPANET in 1969, and significantly, this opened the
way to innovate. In early 90’s Internet saw Tim Berners-Lee’s invention of World Wide Web
(WWW) [18] to merge networked information retrieval and hyper-text documents. With many
more inventions over last decades, the Internet has experienced a great success. Indeed, today
Internet is evolved into a huge network that has many services, such as: e-commerce web-sites,
online social networks, personal web blogs, news media sites, and so on.

The Internet, as a tool, opened a way to generate new technologies and inventions for
engineers and researchers. In 1982, a group of graduate students came up with the idea of
connecting their building’s soda machine to the Internet in order to check whether the machine
is empty or sodas are cold before going to the machine to buy a soda.1 Necessity was the mother
of invention as we learned from the famous english proverb2, and the Internet was the enabling
tool for the invention. According to many sources, this is considered as the very first example
of a new kind of devices, which we call today Internet of Things, or short IoT. Yet, the term
IoT was coined way later by British inventor Kevin Ashton3. Roughly, the term IoT refers
to the network of physical objets, so called things, such as sensors, RFIDs or various kinds of
physical devices that are able communicate with each other, server or cloud over Internet. IoT
transforms physicals objects from being traditional to smart, by enabling them to see, hear, and
perform tasks, by letting them to share information with each other [4]. Indeed, the promise of
IoT is making various environments smarter, e&cient, more connected and autonomous with
intelligent decision making [4].

In the last decade, we have witnessed a great growth of IoT. Indeed, according to the IHS
Markit, as of 2018, number of IoT devices is over 27 billion. Moreover, IoT devices have already
been everyday objects in our daily lives with wearable devices, smart home applications, smart
cities and so on. IoT has also been applied to several industries, such as food processing, agri-
culture, healthcare, environmental monitoring, transportation and logistics, mining production

1ibm.com/blogs/industries/little-known-story-first-iot-device
2In original it is first used by William Horman in his book Volgar in Latin as:"Mater artium necessitas".
3rfidjournal.com/articles/view?4986
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CHAPTER 1. INTRODUCTION 12

monitoring, security surveillance and so on [42]. As suggested by its growth in number of de-
vices and many use cases, as also stated by the US National Intelligence Council [98], IoT is
certainly one of the disruptive technologies today.

Despite its potential, many use cases, great growth, and many futuristic ideas for its future,
IoT also comprises important challenges. Some of the key challenges are, among others: data
privacy, security, and decentralization of IoT systems [140, 117, 4]. In this thesis, we deal with
data privacy and security issues in IoT to support IoT to reach it’s full potential. In doing that,
we take decentralization as main approach and model, as we believe it will play fundamental
role in future IoT systems. In the following, we describe the main motivations behind dealing
with on data privacy and security issues of IoT, and why decentralization matters for IoT.

Data privacy issues in IoT

IoT is impacting our every-day lives with many applications that process personal and confiden-
tial data, such as wearable devices that track fitness activities and health status of individuals.
With extensive number of IoT devices that are collecting and processing personal and confiden-
tial data, naturally, individuals privacy protection arises as a major challenge to overcome. In
fact, data privacy issues in IoT has been widely investigated in the literature [86, 103, 140, 117].
Moreover, there are also data protection regulatory laws and frameworks, such as European
Union General Data Protection Regulation (GDPR) [106]. In order to ensure European Union
citizens’ personal data protection GDPR introduces data protection principles and data sub-
jects’ rights [84]. As stated by GDPR, data subjects should be given more transparency on
how their data is processed and they should be in charge of their personal data that refers to
any information related to an identifiable person.4

First issue related to data privacy in IoT is revealing personal information to unauthorized
parties/data consumers. Second privacy issue arises due to further processing of data. In that,
sensitive information of data owners may be inferred through data analytics processes (e.g. data
joins, aggregations). For example, by joining and combing data related to movements, heart
beats and breath rate, it is possible to infer possible psychological disorders due to insomnia.
Privacy issues get even more complicated when we consider a decentralized IoT scenario where
devices are able to process and share data with each other. Indeed, in such a scenario, we do not
have prior knowledge about how data are going to be shared and processed. Therefore, third
issue on data privacy is protecting data owners’ privacy even in unknown future use of data.
For example, walked distance and number of steps sensed by a smart watch can be combined
to infer individual’s height information with some approximation. Starting from the height
information and by combining it with weight information sensed by a smart scale one can infer
body mass index of individuals. As such, future operations performed over data may introduce
additional privacy violations, thus privacy of the users should be enforced in the future use of
their data.

4eugdpr.org/the-regulation/gdpr-faqs
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Security issues in IoT

Device vendors do not take security as primary goal in producing IoT devices [9], in order to
produce IoT devices quickly to catch market trends and protect their business profits. However,
this made IoT an amplifying platform for cyberattacks, where malicious parties can easily take
control of IoT devices [140, 117, 9]. Threats caused by compromised IoT devices present serious
security issues for online services’ security, such as: attackers may control compromised devices
for their malicious purposes and form malicious botnets, or steal confidential information stored
by devices. We focus on malicious botnet threat due to their relevance and huge destructive
e%ects on victims. A malicious botnet is a collection of compromised Internet computers being
controlled remotely by attackers for malicious and illegal purposes, such as performing cyber-
attacks (e.g.,Distributed Denial of Service (DDOS) attacks)[132]. Typically, attackers try to
infect as many devices as possible in order to increase power and e%ect of their attacks. Indeed,
in 2016 the Mirai malware [8] infected many IoT devices in order to perform DDOS attacks by
generating extensive amount of Internet tra&c (more than 1 tbps).

Why decentralization matters?

Today, most of the IoT systems are centralized cloud based computing infrastructures. However,
centralized IoT infrastructures present a number of drawbacks to IoT. Such drawbacks are,
among others: high cloud server maintenance costs, weak adoption and support for time-critical
IoT applications, security issues (e.g., Single Point of Failure (SPoF)). Moreover, di%erent
parties (device vendors, service providers) have to trust each other or another third party in
order to collaborate in centralized systems. This limits the interoperability between di%erent
IoT applications and services.

On the other hand, decentralization, if achieved, would have many advantages over cen-
tralized infrastructures. The most prominent outcomes of decentralizing IoT is achieving dis-
tributed consensus among IoT devices, and if properly governed it will improve security of IoT
systems, and, providing better privacy guarantees to the users with e%ective data protection
mechanisms. With that, IoT devices are able to perform concerted and autonomous operations,
which increases data utility of IoT systems due to enhanced data processing and information
generation. Moreover, amount of data transferred to the cloud for processing and cloud main-
tenance costs are reduced in decentralized systems. The last but not the least, decentralization
would be instrumental to improve security and privacy of the managed data by assuring data
security and accountability, and eliminating SPoF problem of centralized systems.

Decentralized IoT systems have to be able to process high throughput of transactions and
scale to many peers in achieving consensus without a trusted central authority. Therefore, IoT
decentralization requires frameworks that employ scalable and performant distributed consen-
sus among peers. Lack of such frameworks has been a bottleneck against successful decen-
tralization of many domains including IoT. But, rise of Bitcoin [92], the peer-to-peer digital
currency, has the potential for paradigm shift in decentralization. Particularly, invention of
blockchain as underlying technology of Bitcoin, has opened a way to overcome distributed
consensus bottlenecks in a decentralized setting for large scale applications. Fundamentally,
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blockchain is the concept of a distributed ledger maintained by a peer-to-peer network and it
allows peers of a p2p network to reach consensus without needing a central authority and es-
tablishing trust. Moreover, blockchain employs cryptographic techniques, such as; asymmetric
cryptography and hashing, enables to ensure integrity of the blockchain data structure (cfr.
Chapter 2 for background information on blockchain). Given that, we consider blockchain as
a promising decentralization platform. Therefore, we use blockchain technology as a tool in
designing decentralized IoT systems.

1.1 Thesis Objective

By referencing to the above discussed motivations, we formulate our objective as follows:

OBJECTIVE: Establish and develop alternative architectures, frameworks,
and models to enhance individuals privacy in IoT scenarios and improve
security of IoT systems, especially under decentralized model, that are
e!cient and practical.

A notable challenge in enhancing data privacy and security in IoT under decentralized
model is developing lightweight and scalable decentralized solutions. In fact, decentralization
comes with a cost, as it might introduce additional complexity and overhead, especially when
considering cases that require distributed consensus. Therefore, in this thesis, in addition
to challenges related to enhancing data privacy and security, we also deal with the intrinsic
challenge of making lightweight and scalable decentralized systems for IoT. To this end, we use
blockchain technology as decentralization tool.

1.2 Terminology

We provide definitions to the key concepts that are used in this thesis for reader’s convenience.
These definitions are mainly given based on the common understanding in the literature, but
are also related to how they are used in this dissertation.

• Data: Information generated by IoT devices.

• Smart objects: IoT devices that are not only able to sense data, but also able to
processes and aggregate data, and interact with other IoT devices.

• Privacy: Individuals’ right to control how their data could be shared with others (e.g.
third party data consumers).

• Security: Protection of data from disclosure, alteration, destruction and loss [116].

• Data owner: Owner of the IoT device that generates data.
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• Blockchain: A distributed data structure shared across peers of a p2p network. Block-
chain data structure is secured using cryptography to protect integrity of its records. We
provide background on blockchain technology in in Chapter 2.

1.3 Main Contributions

In summary, this thesis provides the following main research contributions:

• A core framework to enforce user’s privacy in centralized IoT systems with low overhead.
For this framework, we design a novel privacy preference model, which allows to handle
privacy with a user-centric approach. Particularly, with their privacy preferences users
are able to state: which portion of their personal data can be accessed and how these
data can be combined; and what can not be inferred from their data through any kind of
analytics processes. Experimental results show the e&ciency of the proposed enforcement
mechanism.

• An extension of the above mentioned core framework for decentralized IoT smart objects
with low overhead. The novel problem that this framework tackles is privacy enforcement
without a centralized reference monitor. In order to solve this problem, we leverage on
the privacy model developed for the core framework extend it to deal with decentralized
ecosystems. In contrast, the enforcement mechanism leverages on ad hoc-designed se-
curity meta-data, called Privacy-Enhanced Attribute Schema (PEAS), attached to each
piece of data for decenralized privacy enforcement. Privacy preference compliance check
is performed before data are going to be released to the third party data consumers. The
proposed framework has been tested on di%erent scenarios, and the obtained results show
the feasibility of our approach.

• Architectural design of the first blockchain-based botnet detection architecture for IoT,
called AutoBotCatcher. AutoBotCatcher performs dynamic and collaborative botnet de-
tection and prevention for IoT with dynamic community detection methodology. In Auto-
BotCatcher, a blockchain is exploited to enable multiple parties to collaborate for botnet
detection without needing to trust each other or a central server/database. Moreover,
blockchain is exploited to model the botnet detection process as a set of shared application
states of parties collaborating in botnet detection.

• Hybrid blockchain architecture to decentralize and secure IoT, called Hybrid-IoT. Hybrid-
IoT exploits Proof of Work (PoW) blockchains to achieve distributed consensus among
operations performed by IoT devices. By virtue of that, in Hybrid-IoT, IoT devices are
able to collectively and autonomously execute their operations by forming their machine
to machine (m2m) communications in form of blockchain transactions. This also guar-
antees accountability and security of the stored data. To measure performance of the
PoW blockchains (i.e., transaction throughputs) we define a set of PoW blockchain-IoT
integration metrics. We also provide a measurement study of the performance of PoW
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blockchains in IoT, subject to the PoW blockchain-IoT integration metrics. We test
performance and security of the proposed approach.

1.4 Thesis Organization

The dissertation is organized into eight chapters, briefly described in the following:

Chapter 2: Background - Blockchain

In this chapter, we first provide background information on the cryptography techniques used
in blockchains, then we present blockchain, and, finally, we introduce the consensus problem
and consensus protocols employed by blockchain.

Chapter 3: Literature Review

We review the literature on proposals dealing with data privacy in IoT, botnet detection, and
blockchain based systems for IoT.

Chapter 4: Enhancing User Privacy in IoT

In this chapter, we present the core framework to enforce user’s privacy in centralized IoT
systems.

Chapter 5: Decentralizing Privacy Enforcement in IoT

In this chapter, we present the enhanced privacy enforcement framework, that is tailored to
enforce user’s privacy in decentralized IoT systems consisting smart objects.

Chapter 6: Blockchain-based P2P Botnet Detection for IoT

In this chapter, we present AutoBotCatcher, a blockchain-based P2P botnet detection mecha-
nism for IoT.

Chapter 7: Hybrid Blockchain Architecture for IoT

In this chapter, we present Hybrid-IoT, a hybrid blockchain architecture for IoT.

Chapter 8: Conclusions

In this chapter, to sum-up this thesis, we discuss main arguments and contributions. This
chapter outlines the future plan as well.
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Chapter 2

Background

The work conducted on this thesis is on enhancing data privacy and security of IoT systems
under the decentralized model. Given that, in this section, we provide background information
on architecture models and protocols for IoT (ie. Section 2.1). On the other hand, towards the
thesis, we exploited di%erent technologies and tools. The most significant one, among others, is
the blockchain technology, as we use it to design a P2P botnet detection framework (Chapter
6), and a hybrid blockchain architecture for IoT (Chapter 7). Therefore, in this chapter (ie.
Section 2.2) we also provide the background information on blockchain technology.

2.1 IoT Architectures and Protocols

In this section we provide an overview about architecture models for IoT systems in Section
2.1.1 and commonly used protocols in IoT in Section 2.1.2.

2.1.1 IoT Architectures

Despite some e%orts to generate a reference IoT architecture (e.g. IoT-A [31]), there is no de
facto architecture model for IoT. Yet, by reviewing relevant works on the literature, such as
[138, 11, 73, 57, 4], we present common patterns in IoT architectures. As such, the basic IoT
architecture is the 5 layered model as presented in [4] and [73], that includes following layers:
Object (Perception) Layer where IoT devices exist, Object Abstraction (Network) Layer where
IoT data are securely transferred (e.g. ZigBee, RFID) and managed by cloud computing or
data management systems, Service Management (Middleware) Layer where data generated by
heterogenous IoT devices are processed, decisions made, services are paired and delivered to
the requesters, Application Layer where services provided to customers, and Business Layer
where overall systems are managed with a business model.

An important aspect in discussing architecture models for IoT is the group of elements
that are required to deliver the functionality of IoT systems. According to [4], the six main
elements for IoT are: Identification, refers to naming and matching IoT services and devices;
Sensing, refers to gathering data from the physical world within the network; Communication,
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refers connecting IoT devices together securely to deliver smart services; Computation, refers
processing of the IoT data and represents brain of the IoT application; Services, refers to IoT
applications’ services for customers or other services; and Semantics, refers to ability to extract
knowledge smartly to provide required services.

There are two types of IoT architectures: centralized and decentralized. These architectures
di%erentiate mainly in the way how they handle computation, services and communication
elements of IoT systems. In the following, we provide background information on centralized
and decentralized IoT architectures.

Centralized IoT Architectures

In centralized IoT architectures, IoT devices are linked to a central hub, such as server or
cloud, which is used to provide backend services to smart devices [141]. In centralized IoT
architectures, the main objective of IoT devices is sensing data from physical world around
them. Then, they share sensed data with the central hub.The central hub performs operations
related to computation, services and semantics elements of IoT systems, such as real-time
analysis, event processing and management, data management, decision taking etc. To sum
up, in centralized IoT architectures objectives of IoT devices are limited, and operations that
require processing and data storage are left to the central hub. In the following we briefly
discuss cloud computing based IoT systems as example to centralized IoT architectures.

Cloud-based IoT Systems. Essentially, the amount of data generated by IoT systems are
huge and often referred as big data. Many IoT scenarios, such as smart grid, health monitoring
etc., requires to perform real-time analytics, processing, and decision taking on such big data
generated by IoT platforms. Cloud computing o%ers a new way to manage and process big
data generated in IoT scenarios [4] and currently vast majority of IoT applications are based
on cloud-based solutions. In cloud-based architectures, data sensed and sent by IoT devices are
pooled at a single or geographically distributed cloud infrastructures. Where, they process data
generated by IoT devices, generate services for IoT applications, take decision according to the
stored data, and provide services to the users and customers when demanded. There are many
cloud platforms that are in use today, such as Amazon Web Services1 and IBM Watson IoT2.
In addition, academic literature o%ers several works that propose cloud based IoT systems such
as [2, 53, 74, 95, 90], where cloud computing have been used to store, process and manage IoT
data for various applications scenarios.

Despite their wide usage, centralized systems systems have many drawbacks for IoT. In this
thesis, the most relevant drawbacks addressed are data privacy and security issues of centralized
IoT systems that are discussed in Chapter 1.

Decentralized IoT Architectures

Decentralized IoT architectures are essentially decentralized systems of cooperating smart ob-
jects. Such smart objects are able, not only to sense data, but also to interact with other objects

1aws.amazon.com/iot
2ibm.com/internet-of-things
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and to aggregate data sensed through di%erent sensors. This allows smart objects to locally
create new knowledge, that could be used to make decisions, such as quickly trigger actions on
environments, if needed. Smart objects are very heterogeneous in terms of data sensing and
data processing capabilities. Some of them can only sense data, others can perform basic or
complex operations on them. Such a scenario enacts the transition from the Internet of Things
to the Internet of Everything, a new definition of IoT seen as a loosely coupled, decentralized
system of cooperating smart objects, which leverages on alternative architectural patterns with
regards to the centralized cloud-based one. Where, unlike centralized IoT architectures, com-
putation and service elements of IoT platforms are also objectives of such smart objects. As
such, devices perform some operations over sensed data and take decisions, depending their
computation and storage capabilities. How the communication elements handled is also dif-
ferent than centralized architectures, since smart objects share their data with other smart
objects, maybe autonomously, provided that they are able to convert and understand each
other’s communication protocols (i.e. with the help of a middleware layer). In the following,
we briefly discuss fog computing as an example to decentralized IoT architectures.

Fog computing. Fog computing is a distributed computing paradigm that extends cloud to
the edge of the network [21], where extensive amount of heterogeneous decentralized and ubiq-
uitous IoT devices and gateways communicate and cooperate with each other in the network to
perform computation and storage tasks [129]. Fog computing is not an alternative to the cloud
computing, it is a supplementary paradigm that improves localization of services and reduces
amount data transferred to the cloud, thus it acts as a bridge between smart devices and large-
scale cloud computing and storage services [4]. Specifically, in fog computing devices at di%erent
hierarchical levels are equipped with *intelligence* to examine whether an application request
requires the intervention of the cloud computing tier or not. It also has the potential to reduce
delay in delivering services to end users due to localization of services with close proximity. In
fact, as measured in [113], as number of latency-sensitive IoT services increase, fog computing
outperforms cloud computing by decreasing overall latency of the services. Specifically, in [113]
Sarkar et al. showed that, in an environment where 50< of applications are requesting real-
time services, fog computing compared to cloud computing reduces the overall service latency
by 50.09<. The fog play important role in many IoT scenarios, such as connected vehicles,
smart grids, wireless sensor and actuator networks [21]. Additionally, academic literature o%ers
interesting proposals that make use of fog computing in IoT applications such as [126, 62, 1].

Given smart objects’ increasing storage, communication and computing capabilities in par-
allel to the Moore’s Law, we can expect to see increase in number of decentralized IoT systems
[125]. Despite their potential and benefits, as described in Chapter 1, decentralized systems
face many new challenges on assuring data privacy and security are addressed in this thesis.

2.1.2 IoT Protocols

Thanks to adopted protocols by available IoT devices, IoT is a very heterogenous domain.
Therefore, in order to increase interoperability of IoT services and applications, various work-
ing groups and consortiums from many groups, such as Institute of Electrical and Electronics
Engineers (IEEE), European Telecommunications Standards Institute (ETSI), International
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Telecommunication Union-Telecommunication (ITU-T) and Internet Engineering Task Force
(IETF), are working to generate standardized protocols that remove gaps between di%erent
protocols. In the following we present some prominent examples of such e%orts through pro-
tocol standardization, namely The Constrained Application Protocol (CoAP), Message Queue
Telemetry Transport (MQTT), The Internet Protocol version 6 (IPv6) and IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPAN).

The Constrained Application Protocol (CoAP)

The IETF Constrained RESTful Environments (CoRE) working group generated CoAP [115,
22] with aim to make Hypertext Transfer Protocol ’s (HTTP) Representational State Transfer
(REST) paradigm available to restrained IoT devices and networks. Given that, CoAP protocol
stack is similar to, but less complex than, the HTTP protocol stack [22], and like HTTP it is
a application layer protocol. Since it shares the REST architecture with the HTTP protocol,
CoAP is capable of interacting with several device types easily. In order to reduce complexity
of HTTP, CoAP uses User Datagram Protocol (UDP) as transport layer protocol rather than
Transmission Control Protocol (TCP) used by HTTP.

On top of the UDP, CoAP deals with asynchronous nature of interactions and the re-
quest/response interactions [115]. Moreover, for applications that require security CoAP can
be used on top of Datagram Transport Layer Security (DTLS) that protects confidentiality
and integrity of message contents [22]. Where, device may adopt di%erent security levels that
are divided into four modes [115] as following: NoSec mode where DTLS is disabled so there
is no protocol level security; PreSharedKey mode where DTLS is enabled and there is a list of
shared keys (keys include a list of nodes can be used to communicate); RawPublicKey mode
where DTLS is enabled and device has a asymmetric key without a certificate; and, Certificate
mode where DTLS is enabled and device has a asymmetric key with a certificate signed by
some common trust root. CoAP is also capable of carrying di%erent types of payload and it
integrates di%erent data model types such as XML and JSON.

Message Queue Telemetry Transport (MQTT)

MQTT is a lightweight publish/subscribe messaging protocol that was invented in 1999 by
Andy Stanford-Clark of IBM and Arlen Nipper of Arcom [130] and in 2013 it became an
OASIS standard. MQTT is suitable for low-bandwidth, unreliable and high-latency networks
and is designed for constrained devices.3 MQTT’s publish/subscribe model has three main
components: publisher, subscriber and broker [4]. By taking the subscriber role IoT devices
subscribe to their interest of topics published by publishers. When a publisher publishes a
message, MQTT transfers the message via broker to every IoT device that has subscribed the
topic of the published message.

Unlike CoAP, MQTT works on top of TCP/IP protocol. For applications that require to
take security measurements, MQTT connections can be complemented with Transport Layer

3mqtt.org/faq
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Security (TLS). Even though MQTT runs on TCP/IP protocol suite rather than more light-
weight UDP, it is designed to be low overhead, and thanks to its publish/subscribe model,
subscribers do not respond to messages they have received from a publisher topic they have
subscribed [68]. Therefore lower network bandwidths and less device resources are used. More-
over, as it runs over TCP/IP, it attempts to ensure some degree of assurance of delivery, even
in unreliable networks.

The Internet Protocol version 6 (IPv6)

IPv6 was developed by IETF as new version of the Internet Protocol as the successor of the IPv4.
IPv6 has been standardized by IETF in July 2017 with the publication of RFC8200. In order
to solve problems related to the depletion of unallocated addresses in IPv4 address space, IPv6
expanded the address size 32 bytes of IPv4 to 128 bytes, and thus is able to support much greater
number of addresses and more levels of address hierarchy [44]. In addition to that, in order to
reduce IPv6 header packets’ network bandwidth consumption and packet processing cost, some
of the fields included in IPv4 header has been dropped. By using Security Architecture for the
Internet Protocol defined in RFC4301 [72], IPv6 packets’ integrity and confidentiality can be
protected. In addition to that, IPv6 packets can be also protected with upper layer protocols
such as TLS and Secure Shell (SSH) [44].

IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN)

In 2007, IETF’s 6LowPAN working group defined 6LowPAN protocol to enable IPv6 packets
to be carried on top of low power wireless networks, specifically IEEE 802.15.4, to apply the
Internet Protocol (IP) to the constrained and small devices [89]. Thanks to 6LoWPAN, existing
network architecture can be used and constrained devices can easily connect to other IP based
networks without proxies and translation gateways [114]. Due to complexity and performance
reasons, the most common transport protocol used with 6LoWPAN is the UDP [114]. In
6LoWPAN, the necessity of configuration servers DHCP and NAT is eliminated. Moreover,
6LoWPAN implementations can easily fit into 32K flash memory [89]. Given that, in 6LoWPAN
overhead for the most common packets are much less than other protocols [89].

2.2 Blockchain Technology

The term blockchain has been first used to define the underlying technology of the first digital
currency (aka cryptocurrency) called Bitcoin4. Bitcoin is proposed by a person or group using
pseudonym Satoshi Nakamoto in 2008 [92]. Main invention of Bitcoin was its ability to remove
any trust relation to perform money transfers.

In essence, blockchain is a cryptographically secure distributed data structure shared across
the peers of the p2p network, where trust among peers to achieve consensus between peers.
In this section we provide an overview about blockchain technology, specifically by focusing

4bitcoin.org
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on the parts that will be needed later. First, in order to lay the foundation of important
concepts, we provide background information on cryptography techniques used by blockchains
in Section 2.2.1. Then in Section 2.2.2, we elaborate the discussion on the blockchain technology.
In Section 2.2.3 we introduce the consensus problem and discuss consensus methodologies of
blockchains. Finally, in Section 2.2.4, we present three blockchain platforms relevant to this
thesis.

2.2.1 Cryptography

Cryptography is the study, with a long history, of mathematical techniques related to the infor-
mation security (e.g. data integrity, authentication, data confidentiality) [71]. Cryptographic
techniques lays the foundation for many modern security tools, such as encryption techniques,
digital signatures etc. From distributed systems point of view, it is probably the key enabling
technology for protecting security of the distributed systems [6]. In fact, as a distributed
system, blockchain technology makes extensive use of cryptographic techniques. Thus, let us
review and introduce some of the most fundamental cryptography concepts that are relevant
to the blockchain technology, namely; asymmetric cryptography, digital signatures, and hash
functions.

Asymmetric cryptography (Public key cryptography)

Asymmetric cryptography algorithms use a pair of keys, namely; public key and private key,
where each component of the pair are used to verify the other and to perform two counter-
part cryptographic operations (e.g. encryption - decryption) [116]. Private key is the secret
component of the asymmetric key pair, which is essentially meant to be known only by the
owner of it as a secret information. On the other hand, public key is the public component of
the asymmetric key pair where owner can disclose it to the any part that she wishes. As an
example use case of to asymmetric cryptography algorithms relevant to the blockchain, let us
consider encryption-decryption algorithms. Let us assume, a user U1 wishes to send message m
to user U2 securely, meaning that by assuring integrity and and confidentiality of the message.
Let us also assume U1 has the asymmetric cryptography key set, respectively public key and
private key, P b1 and P r1, and U2 has P b2 and P r2. In order to send m securely, U1 encrypts m
with the receiver’s public key P b2 with an encryption algorithm that U2 is aware of (e.g. RSA
algorithm [107]), and then sends the message to the U2. The caveat that ensures confidentiality
of the message is: only way to decrypt this encrypted message is using P r2, which we assume
only U2 has.

Digital signatures

In above example scheme, if U1 also uses his private key P r1 in encrypting m, authenticity and
integrity of the message is also ensured, as U2 can decrypt it by using public key P b1 and thus,
she can be sure that this message has been generated by U1 and has not been modified on the
way (as it would require to have P b1 to encrypt modified message m). This is an example of the
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methodology known as digital signatures, and is an application of asymmetric cryptography.
The basic idea of the digital signatures is that, they can be created by only one, but can be
read by everyone [6].

Hash functions

Essentially, hashing refers to mapping larger domains to smaller ranges [71]. In cryptography
domain, hash functions are used to ensure data integrity, where they map a variable length
string to fixed-length string [116]. Conceptually a good hashing algorithm never has collusions,
meaning that there is no pair of inputs that would let algorithm to generate same hashed
output. In this thesis, we assume that considered hashing algorithms are collusion-free. Today,
algorithms belonging to Secure Hash Algorithms (SHA) family, such as SHA-2 are widely used
by blockchain protocols such as Bitcoin. Hash functions are extensively used in blockchain
systems to ensure integrity of the data structure by connecting blocks to each other in chain
structure (explained in detail below). In addition to that, Proof of Work blockchains (explained
in detail below), uses hash functions as proof of work functions.

2.2.2 Blockchain

Blockchain relies on the concept of a distributed ledger maintained by a peer-to-peer network
[128]. Novelty of the blockchain technology lies in its ability to achieve coordination and veri-
fication of individual activities carried out by di%erent parties without a centralized authority
or trusted third party, that allows decentralization of application execution with concerted and
autonomous operations.

In blockchain, transactions transfer information (i.e., data packets) between peers. They
have a unique identifier (transaction-id), input data, and are bundled into data chunks, referred
to as blocks. Block generator peers of the blockchain broadcast blocks by exploiting public-key
cryptography. Blocks are recorded in the blockchain with an exact order.

Briefly, a block contains: a set of transactions; a timestamp; a reference to the preceding
block that identifies the block’s place in the blockchain; an authenticated data structure (e.g.,
a Merkle tree) to ensure block integrity.5 The block height is block’s distance to the genesis
block, which has the height 0. An example blockchain containing four blocks is presented in
Figure 2.1.

Blockchains can be classified into two groups as public and permissioned according to their
way of regulating peers’ participation in blockchain operations. Particularly, in public block-
chains, any peer can read and write to the blockchain, meaning that anyone can participate in
the consensus process. Whereas, in permissioned blockchains, only a set of previously identified
peers can write to the blockchain and participate in the consensus, and, read rights may be
public or limited to pre-identified peers.

5Block structure varies in di!erent blockchain protocols, here we list the most common elements.
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Figure 2.1: An example blockchain with 4 blocks

Stale blocks

Blockchains may have forks, aka di%erent branches in the chain structure, due to malicious
manipulations or propagation delays. The longest fork of the blockchain is accepted as the
main branch (for rest of the thesis we refer blocks included to the main blockchain as genuine
blocks), and remains as the agreed [128]. In general, blocks in shorter forks do not included in
the blockchain and they referred as stale blocks, and transactions in stale blocks are considered
as unprocessed by the network.

Smart contracts

Modern blockchains employ deterministic and self-executing contractual clauses called smart
contracts. The smart contract concept was first introduced by Szabo in [124] as: *a com-
puterized transaction protocol that executes the terms of a contract*. Smart contracts are
executable scripts stored forever in the blockchain, where nobody can modify or control them.
They have unique address on the blockchain, and their clauses can be triggered by peers via
sending transactions to execute them.

2.2.3 Consensus

In essence, any kind of distributed system includes a set of processes (i.e. abstract units that
are able to perform computations) and in order to execute properly it seeks to achieve some
kind of cooperation among these processes [28]. Consensus is a form of agreement among set
of processes. Processes use consensus to agree on a common result value after their operation
[28]. In a distributed setting, achieving consensus between a set of processes is not an easy
objective, considering the fact that anyone of processes may fail or crash, communication
among processes may be delayed or even blocked (i.e. due to network latency and/or network
partition), or some of processes may act maliciously and not follow the protocol. In the
literature consensus problem has been widely studied [76, 77, 32, 83, 28], and many di%erent
models and systems has been proposed with various fault model abstractions of processes.
Please refer to [28] for broad discussion on processes in distributed systems, consensus problem,
and di%erent consensus models.
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Consensus Protocols

As blockchains are essentially distributed systems, consensus problem is one of the most
fundamental problems that must be handled by blockchain protocols. In fact, di%erent
participants in the blockchain have to achieve consensus on the latest state of the ledger
in order to achieve coordination on the processes that they perform on the ledger. There
are di%erent methodologies to achieve consensus in the blockchain, we explain the related
consensus protocols in the following.

Proof of Work (PoW) protocols. As introduced by Back in HashCash [14], PoW
consensus mechanisms rely on the condition of doing some computation that requires to use
hardware resources and energy to prove legitimacy of the performed operation. Parallel to
that, in blockchains using PoW-based consensus protocols (for the rest of the thesis we will
refer such blockchains as PoW blockchains), such as Bitcoin [92], block generators have to solve
a cryptographic puzzle to generate a valid block. Roughly, main mechanism of the PoW is as
follows: upon forming a new block, block generators add a nonce to the block and take hash of
the block; if the hash value satisfies the predefined threshold, then they can seal the block and
publish it to the blockchain network. Block generation operation is called mining and block
generators are referred as miners. In PoW consensus, it is hard to generate a block, however
it is easy to confirm its validity once it is generated. The main virtue of PoW is preventing
instant block generation to reduce conflicts such as double spending and sybil attacks.

PoW consensus protocols requires to have a system where majority (i.e. one-half plus one
of all peers) of the mining power follows the protocol, aka are honest peers. If majority is not
honest, malicious miners may be able to generate malicious blocks (i.e. blocks that consist
bogus transactions) more frequently than the honest minority and have the longest branch of
the blockchain, which violates correctness of the consensus. Therefore, throughout this thesis,
we assume that in PoW blockchains, at least more than one-half of the total mining power of
the blockchain is honest.

PoW is a probabilistic consensus method, meaning that possibility of a block or transaction
being in the correct branch of the blockchain increases with the more blocks added to the
blockchain as confirmations. Indeed, it is harder for an attacker to generate more blocks to
form an alternative branch of the blockchain when the genuine blockchain is longer as each
block requires to solve PoW puzzle.

Byzantine Fault Tolerant (BFT) protocols. Let us first briefly describe the concepts
called Byzantine processes and Byzantine Fault Tolerance. Byzantine processes are malicious
processes that may fail arbitrarily in any possible way from it’s algorithm and task [28]. For
example, Byzantine processes may not follow the protocol that they have assigned to, they
may stop responding, they may reject connection request, they may selectively drop messages
or they may lie and propagate false information and so on. A distributed system designed to
be BFT must be able to operate correctly and achieve consensus in existence of such arbitrary
behaving processes. In order to achieve BFT consensus, it is a very-well known fact that, in
an asynchronous network (where messages between processes may delay for unbounded times),
the best we can do is to assume that at most less than one-thirds of the all processes are
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Byzantine. If this assumption does not hold, simply the processes in the distributed system
can not achieve the consensus. Therefore, throughout this thesis, whenever we refer to BFT
consensus protocols, we are intrinsically assuming that Byzantine processes in the system are
less than one-thirds of the total process amount.

Today, various blockchain protocols exploit BFT consensus methodologies (for the rest of
the thesis, we will refer such blockchains as BFT blockchains), such as Hyperledger [7] and
Tendermint [26]. Such protocols depend on state replication between block generators. In
BFT blockchains, a block generator selected (via some leader election algorithm) to process
transactions and generate blocks for the next round (i.e. for certain time period or number
of blocks). Then, all blocks are broadcasted to all other block generators, which are entitled
to check validity and correctness of the block generated by the leader of that round. Block
generators add a block to their local copy of the blockchain, aka replication, if at least two-
thirds plus one of the block generators have approved correctness of that block. Di%erent BFT
blockchains apply di%erent algorithms in broadcasting, verification and signing of the blocks.

We want to underline that, there are other protocols that are gaining popularity in the
blockchain space, such as Proof of Stake (PoS) protocols. In PoS consensus model, block
generator selection depends on part of peers’ wealth that they have voted as their stake in the
block generator selection process. We will not dive deep into PoS blockchains, as they are not
used in this thesis.

Comparison of PoW and BFT protocols

In this thesis, we exploit blockchains for IoT, where scalability is a fundamental concern for
successful integration. Therefore, we will compare PoW and BFT blockchains according to
their scalability.

For blockchain-based systems, scalability should be considered under two dimensions,
namely, scalability in terms of transaction throughput and scalability in terms of number of
peers that are participating in the consensus process. First scalability dimension is an important
parameter showing the performance of the blockchain system, whereas latter is an important
parameter in assessing decentralization degree of the blockchain system.

Unluckily those scalability dimensions contradict each other when it comes to PoW and
BFT blockchains. Particularly, BFT blockchains can maintain a relative high throughput. For
example, BFT Tendermint consensus protocol [26] is able to process thousands of transactions
per second. However, BFT blockchains can scale to few dozens of block generators. Whereas
PoW blockchains are able to maintain a relative low throughput while scaling to thousands
of nodes in achieving consensus. Therefore, we are combining PoW and BFT blockchains as
hybrid blockchain architecture to design a scalable blockchain system.

2.2.4 Blockchain platforms

There are many blockchain platforms with di%erent capabilities and properties that are in use
today. We briefly discuss those relevant to this thesis.
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Blockchain technology has been first introduced with Bitcoin, that is essentially an abstract
protocol [92] to perform peer to peer trustless electronic cash payments. Bitcoin uses a Proof of
Work protocol (described in Section 2.3) to achieve consensus. Essentially, Bitcoin is a public
blockchain, however permissioned Bitcoin blockchains can be generated for testing and devel-
opment purposes. Bitcoin protocol employs a scripting language, that is non-Turing complete,
which consists of byte opcodes that are specifying operation types. Where, transactions can
only be generated using the operations in the opcode set. There are many libraries in various
programming languages (e.g., C, C==, Java, Javascript) that allow to generate applications
for Bitcoin blockchain. However, operations that can be performed with libraries are limited
to the opcode set of the Bitcoin.

Ethereum is a second generation blockchain protocol that fundamentally presents a gener-
alized and decentralized state transition machine [136]. Similar to Bitcoin, initial version of
the Ethereum blockchain also uses Proof of Work protocol to achieve consensus, however Proof
of Stake protocol is under development for future releases.6 Ethereum blockchain is a public
blockchain, but the protocol also allows to generate permissioned Ethereum blockchains with
di%erent consensus paradigms, such as Proof of Authority. Ethereum achieves generalization
by employing the smart contract concept with a Turing complete programming language called
Solidity7. With this, blockchain technology gains much broader applicability to many di%erent
domains such as IoT, automative, media, marketing, etc.

Another popular blockchain platform is Hyperledger Fabric, which is one of the Hyperledger8

projects hosted by the Linux Foundation. Fabric supports smart contracts like Ethereum. Ad-
ditionally Fabric allows smart contracts to be written in any general purpose language (e.g.
Java, Golang and Node) to run distributed applications without dependency on a native cryp-
tocurrency. Unlike Bitcoin and Ethereum, Fabric is a framework for deploying permissioned
blockchains. Fabric uses a special kind of Byzantine Fault Tolerant protocol to achieve consen-
sus, where blockchain transactions are first executed, then ordered and verified.

6github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
7solidity.readthedocs.io
8hyperledger.org



Chapter 3

Literature Review

In this chapter, we review related work that are dealing with data privacy and security issues
of IoT systems, and also work that apply blockchain technology to IoT. To this end, first, in
Section 3.1 we explore work dealing with privacy issues in the IoT domain. Afterwards, in
Section 3.2 we survey work performing botnet detection. Finally, in Section 3.3, we review
previous work that apply blockchain to IoT and also work that target to improve scalability of
blockchain protocols.

3.1 Privacy for IoT

In recent years, privacy in the IoT domain have been deeply investigated, with the results that
various approaches have been proposed for dealing with di%erent aspects of privacy. In this
section, we provide an overview of those proposals that are more related to this thesis. In
particular, we focus on those approaches that enforce, in some ways, users’ privacy. However,
we also have to note that literature o%ers several interesting proposals that, like our framework,
deal with the problem of decentralized policy enforcement. All these e%orts have been done in
domains di%erent from IoT but they deserve to be cited. In the following, we summarized work
in these two directions.

3.1.1 Enforcement of users’ privacy in the IoT domain

We start noticing that relevant e%orts have been done with the aim of granting/denying accesses
to data sensed through IoT devices. In general, these grants are regulated according to a
predefined set of rules (e.g., access control policies). So far di%erent access control models have
been exploited in the IoT domain: role based access control (RBAC) (e.g., [82], [16]); capability
based access control (CapBAC) (e.g., [121]); attribute based access control (ABAC) (e.g., [118],
[142]), and access control models based on semantic rules (e.g., [33]).

Recently, blockchain has been gaining interest as overlay framework to perform access con-
trol [46, 48, 100, 99, 102]. For instance, [100] and [99] introduces a blockchain based access
control framework called FairAccess to meet security and privacy needs of IoT. In FairAccess,
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approaches architecture support for IoT use of data with consumers policies

[82], [16], [121], [118], [142], [33] 3/ 7 7 3 7 3

[46, 48, 100, 99, 102] 3/ 7 7 3 7 3

[127] 7 3 3 7 3

[123] 7 7 3 7 7

[23] 7 3 3 7 3

[120] 7 7 3 7 7

[65] 7 7 3 7 7

[49] 7 3 3 7 7

[85] 7 7 3 7 7

[119] 3 3 3 3 7

[145], [61] 3 7 7 7 7

[25], [20] 3 7 7 7 3

Approach in Chapter 4 7 3 3 3 3

Approach in Chapter 5 3 3 3 3 3

Table 3.1: Features of the considered state-of-art approaches. If the approach contains the feature: *3*.
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blockchain is used to keep track and validity of access transactions among autonomous organi-
zations in a distributed manner. To this end, FairAccess introduces new blockchain transaction
types to grant, get, delegate, and revoke access rights to resources. Similarly, in [48], blockchain
based architecture is used to manage data privacy and security of smart vehicles. Whereas,
[46] proposes a blockchain architecture to protect security and privacy of data generated by
IoT devices on smart home example. Also in [102] blockchain is used as a central enabler for
access authorizations in IoT, which supports variety of access control models.

Although these proposals are instrumental to control how users’ personal data are used,
and thus, in some sense, to protect users’ privacy, they do not make users able to provide their
own preferences on how their data have to be used and distributed. As such, users’ privacy
depends on how access control rules are specified. Thus, they do not give users ability to have
a full control on how data have to be processed (e.g., accessed, aggregated, released).

User’s privacy preferences have been considered in [127], which proposes a framework avoid-
ing inference of personal data due to data fusion. Users specify their privacy preferences in
terms of a level of confidentiality associated with each data. The proposed framework consists of
a central unit, called Personal Data Manager (PDM), that manages personal data collected by
di%erent devices, playing thus the role of a gateway between users and third party applications.
A further module, called Adaptive Interface Discovery Service (AID-S), computes the risk of
inference associated with a data disclosure, via probabilistic models and learning algorithms
(e.g., RST, KNN, Bayes Filter, HMM etc.). Based on this risk value, AID-S recommends op-
timal privacy settings to users to reduce the privacy risks. Similar to our proposal, also this
approach considers user’s perspective, but only in stating the confidentiality level of personal
data. Moreover, this approach does not enforce privacy of the user against data inferences in a
decentralized setting and thus it is not able to pose more limitations on possible data fusions.

Compliance of user’s privacy preferences with third party’s privacy policies have been con-
sidered in [23]. Here, it has been proposed an application for mobile phones that supports
customers in making privacy decisions. Privacy preferences are automatically generated ac-
cording to the result of a questionnaire filled by users. Proposed mechanism acts as a privacy
compliance mediator between the corporate and the user, with use of privacy policies of the
corporate which are attached to the RFID tag of the product, and privacy preferences of the
user stored in her mobile phone. The application informs the user whether his/her privacy
preferences complies with the corporate’s privacy policies. This is a limited approach, as it is
only valid for an application scenario, and only valid for known queries.

Similar to our approach, other proposals have targeted smart environments (e.g., smart
home and smart city systems) with the aim of protecting users’ privacy. In [120], authors
address the security and privacy problems of IoT smart home at the network level, that is, by
monitoring network activities of IoT devices to detect suspicious behaviors. In [65], a privacy
and security model for smart homes is presented, where risk analysis is performed on smart
automation system, and, based on this they identified central concepts of their privacy and
security model. An external entity, called Security Management Provider (SMP) has been
proposed. SMP can add access control rules to protect specific IoT devices or can apply
dynamic policies to change access control rules depending on the context (e.g., the family
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members being present or absent from the house). Similarly in [49], a context-aware adaptive
approach for devices that access location-based services is proposed. Privacy is enforced by an
agent, which derives location information through context analysis on network-based services
and reacts to context variations. Moreover, software defined networking (SDN) technology
is used to block/quarantine IoT devices in the smart home network, based on their network
activities. This proposals aims at protecting privacy of the user by limiting access on data
through an external entity, i.e., SMP, with the use of context information. However, those
approaches have limitations, as they do not allow users to define privacy preferences on how
their data might be used in an decentralized scenario.

In [85], a two layered architecture is proposed for protecting users’ privacy in smart city ap-
plications. A trusted layer is designed to store real identities of individuals that can be processed
only by the platform’s components, without disclosing the identities to the outside world. In
contrast, an untrusted second layer only makes generic, unidentifiable and identity-independent
information available to external applications. Even if this proposal protects personal data, this
is enforced only inside the trusted layer, without considering future operations that may be done
on the released data to infer new sensitive information. Moreover, users are not able to set and
enforce their own privacy preferences.

3.1.2 Decentralized policy enforcement

A notable example of decentralized privacy management is represented by the sticky policy
approach [101]. According to this approach user privacy preferences are strictly associated
(sticky) with users’ data. [101] describes the core mechanisms required for managing sticky
policies, along with Public Key Infrastructure (PKI) and encryption methodologies to attach
sticky policies with data as well as to enforce them. [24] presents a distributed enforcement
approach for sticky policies that permits data to be disseminated across heterogeneous hardware
and software environments without pre-existing trust relationships. Also, [119] presents a sticky
policy approach to manage the access to IoT resources by allowing users to set and manage
access control policies on their own data. In this approach, sticky policies allow to define: owner
of the data; purposes for which the data can be used; a timestamp that points out the validity;
and constraints which represent the rules for filtering the data with obligations and restrictions.
Even though sticky policy approach has the goal of decentralized enforcement of user privacy
preferences, it is only limited to traditional privacy preference model with retention, purpose
etc. Moreover, sticky policy approaches use encryption mechanisms to enhance privacy, which
add extra level of complexity and demand higher resources from the devices.

However, we have to note that cryptographic solutions have been often used to enforce
distributed access control in several domains, like online social networks (e.g., [30, 66]), or
cloud infrastructure (e.g., [133, 109]). In the following we focus on e%orts done in wireless
sensor networks, as these are more relevant for the IoT domain. For instance, [145] presents a
distributed privacy preserving access control scheme designed for network of sensor nodes owned
by di%erent users, connected via a network, and managed via an o>ine certificate authority.
In the proposed scheme, access control is regulated exploiting tokens that users have to pre-
buy from the network owner before entering the sensor network. Users can query sensor data
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with unspent tokens and sensor nodes are subject to validate the token and grant appropriate
amount of requested data. The scheme makes use of blind signatures in token generation, which
ensures that tokens are publicly verifiable yet they are unlikable to user identities. Similarly
to the previous cited work, [61] presents a distributed protocol for achieving privacy-preserving
access control for sensor networks by exploiting a ring signature scheme. To query sensor nodes,
a user needs to build a ring signature along with the query command and send them together to
sensor nodes. However such approaches do not consider privacy preferences of the data owner.

Literature o%ers also works dealing with composition of heterogeneous access control poli-
cies. These have been done with the goal of composing a set of access control policies into a
single one [25, 20]. For instance, [25] proposes a semantic framework for policy composition
without committing to a specific access control model. Access control policies are modelled as
four valued predicates. Similarly, [20] proposes an algebra for constructing security policy from
di%erent policies.

Table 3.1 presents a summary of the main features of the approaches reviewed in this section
and their comparison with our privacy enforcement approaches presented in Chapters 4 and 5.
As presented in the table, all above-mentioned proposals do not completely address challenges
arisen in IoT ecosystems. It is fundamental to give users more control on data management
within IoT platforms and control future uses of data to achieve proper privacy protection.

3.2 Botnet detection systems

In this section, we review the related work for P2P botnet detection, as we propose AutoBot-
Catcher, a P2P blockchain based botnet detection framework, in Chapter 6. In recent years,
vast amounts of work has been devoted to P2P botnet detection. In general, botnet detection
methodologies can be categorized into two groups: host-based and network-based approaches.
Host-based approaches require the monitoring of all hosts, which is impractical for the IoT
domain. Therefore, we focus on network-based approaches, which in turn can be classified into
two groups, discussed in the following. Table 3.2 presents a summary of the main features of
the approaches reviewed in this section and their comparison with AutoBotCatcher presented
in Chapters 6.

Network tra!c signature based approaches

Literature o%ers many work that classify hosts based on their network tra&c behaviour. In gen-
eral, these approaches exploit supervised/unsupervised machine learning techniques to identify
whether hosts are benign or malicious [56, 143, 67, 110, 104, 144, 93, 88, 59]. In machine learn-
ing based approaches, an algorithm is trained with the samples of network tra&c, in order to
detect malicious network tra&c. For example, in [144], a statistical network tra&c fingerprint-
ing approach that is using unsupervised machine learning techniques to identify P2P activity
and to group hosts participate in malicious P2P tra&c is proposed. Entelecheia, proposed in
[59], aims to detect in bots in their waiting stage by exploiting their social behaviour. Specifi-
cally, Entelecheia uses network tra&c signatures to create a graph of likely malicious flows and
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perform graph mining steps to to cluster and label botnet nodes. In [110], Saad et al. uses five
di%erent machine learning algorithm to extract features from the observed benign and botnet
network tra&c, and use that features for botnet detection. PeerSark, proposed in [93], is a port
and protocol oblivious conversation-based approach to detect P2P botnet tra&c. However,
in a dynamic network, botmasters can randomize botnet tra&c by changing communication
frequency, packet sizes, etc. As such, network tra&c signatures learned by machine learning
approaches may not be robust enough to identify bots [139], which would eventually make such
approaches ine%ective.

Moreover, some of the proposed approaches, such as [56, 88], rely on deep packet inspec-
tion techniques (DPI) to analyze network packet contents. Particularly, BotMiner proposed in
[56], groups hosts that share similar communication patterns in performing malicious activities.
More recently, BotDetector proposed in [88], leverages on DPI techniques to monitor informa-
tion recorded on HTTP headers is proposed. However, these checks can be bypassed through
encryption of C?C channels. Moreover, DPI based approaches are computationally expensive.
Given that, we conclude that network tra&c signature based approaches are not suitable for
dynamic and evolving IoT environments.

Group and community behavior based approaches

Some works use group and community behaviour analysis for botnet detection [39, 139, 91, 149].
As an example, similarly to us, [39] exploits mutual contacts extracted from network tra&c
flow of hosts, in order to identify bots in a P2P network. [39] executes dye-pumping algorithm,
where iteratively pumps dye to the nodes in the mutual contacts graph through a coe&cient
called dye-attraction to send more dye to the nodes that are more likely to be bots, and,
algorithm picks the nodes with more dye than a threshold. Whereas [139] collects network
flow records at the edge routers of a campus network, and performs group level behaviour
analysis on network tra&c flow with Support Vector Machine (SVM) to label P2P bot clusters.
Botgrep [91] is a network graph structure based botnet detection method that uses data mining
techniques for bot detection. The graph is structured according to the information on node
pair communications as communication graph. Botgrep partitions the communication graph
into smaller pieces as localized communication graphs. However, these approaches are able
to detect only previously known bot types. Therefore, they are not suitable for IoT, where
new botnets emerge frequently [75]. Di%erently, PeerHunter [149] exploits Louvain method to
perform network flow level community behaviour analysis on mutual contacts graph, without
relying on previously known bot types. Yet, PeerHunter performs static botnet detection on
the collected network tra&c flow data, which is inadequate for a dynamic and evolving IoT
environment that requires dynamic botnet detection.

Blockchain-based botnet detection approach

Blockchain technology might be a solution to the problems faced by relevant works proposed
in the literature. In fact, to enable multiple parties to collaborate for botnet detection, by
designing AutoBotCatcher (Chapter 6) we chose to use blockchain rather than a centralized
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approaches architecture bot detection encrypted payload IoT collaboration based

[56] 7 7 7 7 7 7

[143] 7 7 3 7 7 7

[67] 7 7 3 7 7 7

[110] 7 7 7 7 7 7

[104] 7 3 3 7 7 7

[144] 7 7 3 7 7 7

[93] 7 3 3 7 7 7

[88] 3 3 3 3 7 7

[59] 7 3 3 7 7 7

[39] 7 3 3 7 7 7

[139] 7 3 3 7 7 7

[91] 7 7 3 7 7 7

[149] 7 7 3 7 7 7

AutoBotCatcher 3 3 3 3 3 3

Table 3.2: Features of the considered state-of-art approaches. If the approach contains the feature: *3*.
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system given the benefits blockchain might bring. Thanks to its distributed consensus protocol
1, blockchain platform does not require a central trusted party to validate the correct execu-
tion of the collaborative process (aka botnet detection), and ensure transparency on collected
snapshots of communities of IoT devices overcoming the possible lack of trust among parties
involved in the botnet detection (see Section 2.2.2). Moreover, as a state transition machine,
blockchain lets us model the whole botnet detection process as a set of shared application states
(aka states of parties collaborating in the botnet detection). This allows AutoBotCatcher to
perform dynamic and collaborative botnet detection on large number of IoT devices.

3.3 Decentralizing IoT with Blockchain

Blockchain is a promising technology to achieve decentralization, as it allows to achieve dis-
tributed consensus among di%erent parties without needing to trust each other or a central
server/database. In the literature, there are few instances of application of blockchain to IoT.
Let us provide an overview of these proposals, as we propose Hybrid-IoT, a hybrid blockchain
architecture for IoT, in Chapter 7. However, we also have to note that literature o%ers some
interesting proposals that deal with the problem of scalability of PoW blockchains. All these
e%orts have been done in domains di%erent from IoT, but they deserve to be cited.In the
following, we summarized works in these two directions.

Blockchain for IoT

In the literature, there are few instances of application of blockchain to IoT. One application
of blockchain to IoT is [15], where a blockchain platform for industrial IoT (BPIIoT) has
been proposed. BPIIoT exploits smart contracts to develop a decentralized manufacturing
applications of cloud based manufacturing (CBM). In that, IoT devices run blockchain services
and contain blockchain wallets for sending transactions to the smart contracts. Smart contracts
have also been exploited in [64] in order to manage smart meter data. Likewise, in [78] a
blockchain based system has been proposed to manage firmware updates of IoT devices. [60]
exploits blockchain to store access control data, as a data storage system in a multi-tier IoT
architecture. In [5], blockchain and smart contracts are used to secure authorization requests
to IoT resources. The above mentioned works make use of blockchain to either execute smart
contracts or perform application specific tasks, but not to decentralize IoT systems and achieve
autonomous application execution.

[47] proposes a blockchain architecture for IoT containing two layers, namely: smart home
layer (centrally managed private ledgers) and a overlay layer (public blockchain). Resource
constrained devices form private ledgers in smart home layer, that are centrally managed by
constituent nodes. Group of constituent nodes select a cluster head operating in the overlay
network. It relies on distributed trust algorithms to eliminate computational overhead from
IoT devices due to PoW solving task. However, the proposed architecture does not help with

1With the assumption that more than two-thirds of the block generators are honest.
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the decentralization of IoT. In fact, IoT devices are centrally managed and connected to one
constituent node that does not take part in the distributed consensus.

Di%erently from previous works, the Tangle2 protocol implements a global distributed ledger
for IoT by using Directed Acyclic Graph generated by transactions as a blockchainless approach.
Tangle is designed as a cryptocurrency for IoT to make micro-payments possible, it does not
provide an architecture or data structure to decentralize IoT and it is not Turing complete to
allow scripting and smart contracts.

Blockchain scalability

In the literature, limitations related to scalability of PoW blockchains have been widely studied
[43, 40] and di%erent methodologies have been proposed to overcome such limitations [79, 122,
50, 13]. One notable approach is using block Decentralized Acyclic Graphs as reconstruction of
classical longest chain protocols [79, 122]. Another significant proposal is Bitcoin-NG protocol
[50] by Eyal et al. Bitcoin-NG protocol proposes use of two types of blocks in the Bitcoin
blockchain, namely; key blocks and microblocks, to achieve higher transaction throughput.
Di%erently, [13] Back et al. proposes the use of multiple interoperable blockchains, referred to
as pegged sidechains, to allow assets in di%erent ledgers to be transferred between each other.

In [13], Back et al. proposed to use multiple interoperable blockchains, referred to as
pegged sidechains, to allow assets in di%erent ledgers to be transferred between each other.
This approach uses multiple interoperable blockchains, referred to as sidechains.Even though
this approach aims to scalability performance improvement, the main purpose of the pegged
sidechain approach is to allow users to transfer their assets in di%erent blockchains.

Likewise, in [45], a blockchain architecture that is containing private ledgers managed cen-
trally, a public overlay blockchain, and cloud infrastructure is proposed. Resource constrained
devices form private ledgers, that are centrally managed by constituent nodes. Group of con-
stituent nodes select a cluster head that is operating in the overlay network. Transaction
validation is done via distributed trust. The proposed architecture does not help with the
decentralization of IoT. In fact, IoT devices are centrally managed and connected to one con-
stituent node that does not take part in the distributed consensus.

2iota.org/IOTA_Whitepaper.pdf



Chapter 4

Enhancing User Privacy in IoT

Internet of Things (IoT) applications aim at improving our every-day lives in a variety of forms.
However, the acceptance of IoT services is hindered by customers perceived risks, and due to
the high volume of collected personal data, as well as by trust in organizations providing the
services. In fact, as discussed in the Chapter 1, privacy is considered as a major concern [86]
in IoT.

In general, with some di%erences, privacy laws of many countries such as European Union’s
GDPR [106] impose that any stakeholder collecting users’ personal data has to make available
the adopted privacy policies, commonly provided in the form of a legal statement that declares
how data are collected, used and disclosed to third parties. In order to gain a service, then, the
interested users have to check privacy policies in place at the service provider site and accept
them (or eventually partially accept them). However, it is not easy for the average user of IoT
applications to make a conscious decision since it is very di&cult to have a clear understanding
of what the service provider privacy policies mean in terms of personal data disclosure.

As presented in Chapter 3.1, recent research e%orts tried to address privacy issues (e.g.,
[123], [23], [96], [65], [49]). User privacy has also been the subject of intensive research in
domains complementary to IoT. For instance, recent research e%orts have focused on the web
domain (e.g., [17]), BigData analytics systems (e.g., [37]), NoSQL datastores (e.g., [36]), data
stream management systems (e.g., [29]), and RFID technology (e.g., [54]). However, these
proposals do not completely address the new challenge posed by IoT ecosystems. In fact, due
to the complexity of the data flows among IoT devices and back-end systems, users easily lose
the control on how their data are distributed and processed. This is even made worse by the
lack of an e%ective control on how data generated by di%erent IoT devices are combined to infer
new information on individuals. In contrast, we believe that it is fundamental to give users
more control on data management within IoT platforms.

In order to cope with this challenge, we present a core framework which aims at enhanc-
ing user control on personal data usage within IoT platforms. The proposed privacy frame-
work consists of a novel model supporting the specification of privacy preferences regulating
data analysis within IoT environments, and related enforcement mechanisms. The problem
addressed by the proposed framework is preventing inference of sensitive and confidential in-
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formation about the user that resulted from the aggregation of data generated by various IoT
devices of user. Particularly, we believe that it is important to make users able to express their
own privacy preferences on how their data have to be managed, generally expressed in terms of
well-established concepts in the context of privacy management, like: purpose of the usage of
personal data, time of retention of personal data in the stakeholder system, disclosure to third
parties, etc. The framework has been designed to operate in a reference IoT platform with a
general architecture that easily fits numerous IoT systems. The key contribution of this work
is twofold. On the one hand it supports novel privacy preferences tailored for the IoT domain,
which constrain: 1) which portion of users personal data can be accessed and how these data
can be combined, and 2) what cannot be derived from users data by analytics processes. On
the other hand, in order to enhance user control, it supports the automatic definition of new
privacy preferences for regulating the processing of new data generated by analytics processes.
We would like to note that, we are aware that an average owner of an IoT device may not
be able to set his/her privacy preferences due to lack of technical capabilities and knowledge.
Indeed, as future work we plan to improve usability of the framework by designing tools to help
them set their privacy preferences.

The remainder of this chapter is organized as follows: Section 4.1 discusses key requirements
for the privacy framework definition; Section 4.2 briefly presents the reference IoT platform
which can host the framework; Section 4.3 introduces the privacy preference model; Section
4.4 discusses the automatic generation of new privacy preferences; Section 4.5 presents the
proposed enforcement mechanisms; and Section 4.6 assesses the enforcement overhead.

4.1 Requirements

Let us now consider two key requirements related to the definition of the envisaged privacy
framework.

The first requirement, consists in making users able to state which pieces of their data,
possibly generated by di!erent devices, can be jointly accessed, composed or aggregated for given
purposes. As an example, referring to the domain of fitness IoT applications, a user may want
to avoid that personal data, like weight and height, could be jointly accessed with fitness data,
like movements, as this could lead to infer information on the physical state.

However, these types of restrictions are not enough. In fact, as an average user could not
figure out the potential risks of combining data of di%erent devices as he/she could not be
aware of what new information can be inferred, thus failing in setting these constraints. As an
example, a user might not be aware that, by combing data related to movements, heart beats
and breath rate, possible psychological disorders due to insomnia can be inferred. Therefore,
we believe that individuals should explicitly state what cannot be inferred from their data about
them, by any analytics process. For instance, referring to the previous example, a user may
want to forbid that his/her movements are used to infer psychological diseases.

A second challenging requirement is related to the management of new derived data. Indeed,
although the above-mentioned features help one to regulate the derivation of new data, they
fail in controlling how these new data will be managed. Indeed, these new data could flow
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through other analytics processes with purposes di%erent from the one authorized for the process
originating them. Moreover, these processes could in turn infer additional new knowledge about
individuals, on which the user loses control. As such, to make the user able to have some
control also on new data, we see the need of the automatic definition of privacy preferences for
new derived data. These new preferences have to be defined taking into account the privacy
preferences of owners of each single piece of data used for computing the new derived data.

Example 1 Let us consider a scenario with a smart scale, a step counter that also calculates
the walked distance, and a fitness watch with a heart rate monitor and movements sensors, and
let us assume that privacy preferences are specified for the data generated by all these devices.
The walked distance and the number of steps reveal the average step length, which in turn, with
some approximation allows inferring the individual height. Starting from height and weight one
can infer the body mass index of the individual, which is new inferred information not directly
sensed by any IoT device. Since no privacy preference has been specified for these new derived
data, a process that combines the body mass index with heart beats and movements data could
infer information related to the individual physical state. In order to avoid undesired inferences,
the processing of the body mass index, needs to be regulated by privacy preferences derived from
those specified for the data generated by the smart scale and the step counter.

4.2 The reference IoT platform

The main purpose of the framework is making users able to set and enforce their privacy
preferences in a centralized IoT scenario. In the following, we present the subjects of this
scenario and reference IoT platform that we consider.

Subjects. We consider two types of subjects, namely, data owners and data consumers.
Data owner is the user that owns the IoT device generating data. We assume that data owners
define individual privacy preferences over their data in order to control how their data are
distributed and processed. In contrast, data consumers consume raw or processed data from
IoT systems. We assume that data consumers adopt privacy practices that specify how the
consumer will use the users’ data.

The reference IoT platform. Once the IoT privacy language/model is defined, we have
the further challenge to envisage how the defined mechanism for enforcing privacy preferences
against stakeholder privacy policies can fit in the IoT ecosystem. As this purpose, we target a
platform whose general architecture represent a variety of IoT systems. The platform, shown in
Figure 4.1, consists of a few components supporting communication, analysis and enforcement.
This platform represents a centralized scenario, where data processing and privacy enforcement
performed by a central entity. In the reference IoT platform that message broker, Complex
event process (CEP) system and the privacy preference enforcement monitor are deployed in
the cloud. This platform represents a centralized scenario, where data processing and privacy
enforcement performed by a central entity.

Communication features are mainly in charge of a message broker, namely a component
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Figure 4.1: Reference IoT platform

acting as a message passing server, through which, by means of di%erent protocols (e.g., MQTT1

etc.), IoT devices publish their data, and consumers subscribe to access available data. In the
reference IoT platform we assume that the broker publishes only data sensed from IoT devices,
each of which refers to a single user.

The analysis features are supported by analytics tools. The reference platform targets a
CEP system, as CEPs provide analysis toolkit tailored for the IoT domain (e.g., see [34]).
Sensed data are forwarded by the message broker to the CEP as append-only streams of tuples,
where registered queries analyze, combine and aggregate them generating new output data.2

We assume that all data tuples in a stream have the same scheme, and we also assume that
each stream is associated with a single device.

Finally, the enforcement monitor (see Figure 4.1) implements the enforcement mechanisms
of the proposed privacy framework. This module has to analyze every consumer request and
decide if his/her privacy policy satisfies the privacy preferences specified for the accessed data
on the basis of the proposed model. These requests can be a simple demand for accessing raw
data generated by a device, as well as complex queries to be addressed to the CEP.

4.3 The privacy preference model

In this section, we introduce the core elements required for the specification and enforcement
of privacy preferences.

1http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/
2CEP queries are an example of possible implementation of the above mentioned analytics processes.



CHAPTER 4. ENHANCING USER PRIVACY IN IOT 42

Figure 4.2: Example of data category tree

Figure 4.3: Example of purpose tree

4.3.1 Data categories and purposes

A first key feature of our privacy preferences is the ability to regulate data analysis on the basis
of data categories, specifying the type of information conveyed by data streams. Categories are
hierarchically organized into a tree structure, where data belonging to a category dc implicitly
belong to all categories that have been directly or indirectly specialized by dc. In what follows,
we denote with C the set of adopted data categories, whereas CtC denotes the data category
tree of C. A data category is therefore modelled as a pair h id, pc i, where id is the category
identifier, whereas pc is the identifier of the category in CtC which is specialized by dc, if any,
or it is set to ?, if the category is the root of CtC .

Categories can range from general ones, possibly denoting heterogeneous data (e.g., personal
data) to fine grained ones, modelling data represented by single attributes of a data stream
(e.g., heart beats). The proposed model does not constrain the categories to be used and system
administrators are free to classify data on the basis of application scenarios requirements. For
instance, in [35] we have proposed the data categories identifier, quasi identifier, sensitive and
generic, which have been derived from the analysis of privacy legislation and the literature
on privacy aware data publishing. The category sensitive refers to data, such as political
preferences, religious creed, employment status, and health conditions, which reveal sensitive
information of individuals private life. The category identifier refers to data that reveal the
identity of data subjects, whereas the category quasi identifier refers to a set of data which
linked to external data allow identifying the individual to whom these data are referring to.
Finally, the category generic groups all data that do not belong to the previously considered
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categories. We believe that the above mentioned categories are general enough to be used in
a variety of IoT scenarios, as they can be easily specialized or generalized to meet scenario
dependent requirements. For instance, Figure 4.2 shows how such categories can be specialized
for the domain of sport and fitness IoT applications.

The second element of our model are the purposes which are used to specify the reasons for
which data generated by user devices can be accessed and analyzed. The collection of all the
purposes defined for an application scenario forms the scenario purpose set, denoted in what
follows as P. Like data categories also purposes are hierarchically organized into a tree, referred
to as the purpose tree P tP . A purpose p is modelled as a pair hpid, pai, where pid is the
identifier of p, whereas pa is set to the identifier of the direct ancestor of p into the purpose
tree, or ?, if p does not descend from any other purpose. Figure 4.3 shows an example of the
purpose tree.

System administrators define the purpose set and data category set related to a given
application scenario, as well as the related trees, and classify the data flowing throughout the
platform assigning a data category to each stream attribute.

4.3.2 Privacy preferences

Privacy preferences are specified for each user device, and regulate the access and processing
of the data stream generated by such a device. They are fine-grained in the sense that they
regulate the access at the level of each single attribute. In particular, they first specify, through
purposes, the reasons for which data streams can be analyzed, and those for which the access
is explicitly prohibited. This second case is particularly useful for specifying exceptions when
purposes are organized into a tree. We model this by a privacy preference component, denoted
as intended purposes, formally defined as follows.

Definition 1 (Intended purpose) An intended purpose ip is a pair hAip, Exci, where Aip
(allowed intended purposes) is a set of purposes belonging to P and Exc (exceptions) is a set of
purpose elements that descend from elements in Aip. ip authorizes the access for all purposes
that descend from3 the elements in Aip except for those that descend from any element of Exc.

Example 2 Let us suppose to specify an intended purpose ip wrt the purpose tree in Figure
4.3, which authorizes the access for the purposes that descend from marketing and analysis,
except for those that descend from direct. According to Def. 1, ip is defined as h{marketing,
analysis}, {direct}i.

Besides intended purposes, a privacy preference specified for a target attribute a of a data
stream allows one to specify the data categories that can be jointly accessed with those asso-
ciated with a for a given purpose. This is formalized through the definition of a joint access
constraint.

3Hereafter we assume this relationship as reflexive, meaning that every element descend from itself.
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Definition 2 (Joint access constraint) Let a be an attribute of a data stream and let c be
the data category associated a. A joint access constraint jac for a is a tuple hAdc, Exc, ipi,
where Adc (allowed data categories) is a set of data categories belonging to C, Exc is a set of
data categories that specialize elements in Adc, and ip is an intended purpose. jac specifies that
the categories that descend from those specified in Adc can be jointly accessed with c for the
purposes authorized by ip, except for those that descend from any element in Exc.

It is worth noting that the ip component of jac specializes the homonymous component
of the privacy preferences in that, in order to grant the joint access, the authorized purposes
implied by the specification of jac.ip must not be disjoint by those implied by pp.ip.4

Example 3 Let us consider the data categories in Figure 4.2, and let us consider an attribute
a classified as Physical state. Suppose to define the following joint access constraint for a:
jac=h{sensitive, identifier, fitness}, {health}, h{third-party}, ;ii. jac authorizes the joint access
of a with data classified as sensitive, identifier or fitness, except for data classified as health for
any purpose descending from third-party.

A privacy preference protects target data combining together intended purposes and joint
access constraints. Additionally, it allows specifying a set of categories that should not be
derived from the accessed data, independently from the type of access that is performed (e.g.,
joint or simple). For instance, from the analysis of movements, heart-beats and blood pressure
one could infer that the individual to whom these data refer to could su%er from any circu-
latory disease. As such, users may want to avoid that apparently generic data, such as their
movements, could be used to infer their physical state.

Definition 3 (Privacy preference) A privacy preference pp is a tuple ha, ip, jac, cdci, where
a is an attribute of a data stream, ip specifies the intended purposes for which a can be collected
and used, jac specifies a joint access constraint, whereas cdc is a set of data categories belonging
to Dc, which denotes the set of categories which cannot be derived from a.5

Example 4 Let us now suppose to specify a privacy preference pp that protects the attribute
heart-beats to which the category Physical state has been assigned. pp is specified in such a
way to integrate the intended purpose ip and joint access constraint jac introduced in Ex. 2
and 3, and to forbid the derivation of health related data, that is, pp=hheart-beats, h{marketing,
analysis}, {direct}i; h{sensitive, identifier}, {health}, h{third-party}, ;ii,{health}i. Thus, pp
grants the access to heart-beats for the purposes Marketing, Analysis, Third-party, TPostal and
TEmail, the joint access with other data provided that jac is satisfied, and, finally, forbids using
heart-beats in any inference process that derives health data.

The considered privacy preference model mainly focuses on the new privacy components
tailored for the IoT domain (i.e., consumer identities, joint access constraints, and category

4The consistency of the specification of ip with jac.ip is verified at privacy preference specification time.
5The categories are those in cdc and their descendants in the category tree.
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derivation constraints). However, it is relevant to note that the model can be easily extended
to support also preferences on additional components used in common privacy practices, like:
data retention, aka how long data can be stored in the information system of consumers, third-
party data sharing options. More precisely, these additional preferences could be verified before
data release by matching these preferences against corresponding statements in the consumer
privacy policy. Moreover, it is important to highlight that the additional elements that we
have introduced to cope with the new issues that IoT scenario poses, (i.e., consumer identities,
joint access constraints, and category derivation constraints) are not mandatory. This provides
flexibility to vendors to decide whether to adhere only to common privacy practices or to exploit
the extended privacy preferences so as to provide users with a more complete control on their
personal data.

4.4 Privacy Preferences for new derived data

In this section we propose an approach to automatically generate new privacy preferences for
new generated data. In order to present the approach we first overview the query model and
its operators so as to highlight which kind of new data the privacy preferences have to deal
with.

4.4.1 Query model

A variety of query languages have been proposed for CEPs, but no de-facto standard language
has emerged so far. However, most of the existing languages share the same set of core operators.
As such, we consider a CEP with queries modelled as a loop-free directed graph, where nodes
are SQL-like operators that are incrementally performed on streams, and edges indicates the
flow that tuples follow through the graph. According to this query model, each single operator
(node) modifies the stream entering the operator generating a new internal stream, which will
be further modified by other operators in the graph till being composed into the final output
stream. Hereafter we consider the following operators:

• IN, which conveys a data stream, containing tuples modelling data sensed by owner
device, to other query operators;

• OUT, which returns the final data stream resulting from executing all query operators in
the graph on the input streams;

• �, which selects only those tuples of the stream entering the operator that satisfy given
selection criteria;

• �, which generates a stream resulting from the projection and possible combination of
attributes of the entering stream;

• 1, which performs the join of two data streams on the basis of an equality condition of a
pair of attributes;
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• �, which executes given aggregate functions over windows of data items of the stream
entering the operator.

Operators �, IN, and OUT do not generate any new data, as they do not change the schema
of the stream entering the operator. In contrast, operators � and � might create new data.
Indeed, standard SQL � allows specifying new attributes as combination of attributes of the
entering stream. For instance, a derived attribute steps can be specified as walking-steps +
up-steps, where walking-steps, up-steps are attributes belonging to the stream received as input
by �. Similar for �, which allows specifying new attributes resulting from the aggregation of
multiple instances of a target attribute. For instance, � could derive the average heart beats
as avg(heart-beats).

A separate discussion is deserved for the 1 operator, which executes the equi-join of two
streams. 1 returns a stream whose schema is defined as the union of the attributes of the two
streams received as input, except for the attributes referred to within the equality condition, of
which only one copy is included. For instance, let us suppose to execute the join of the stream
S1 with attributes name, height, and weight, with the stream S2, with attributes user, heart-
beats, walk-steps specifying user=name as join condition. The derived stream is composed of
the attributes height, weight, steps, heart-beats and a copy of name / user. Although 1 does
not create any new data, it merges into a unique attribute (i.e., the one over which the join is
computed) two attributes, which might be regulated by di%erent privacy preferences.

Example 5 As an example, let us suppose to execute the equi-join of the data streams generated
by the fitness watches owned by Bob and Mary on attribute position which is included in both
the streams. Bob and Mary specify di!erent privacy preferences for their data as well as for
position. More precisely, let us suppose that Bob specifies a privacy preference that grants
the access to position for the intended purpose ipB

6=h{Analysis},;i, whereas Mary for the
intended purpose ipM=h{Admin},;i. In addition, let us suppose that Bob specifies the jac
constraint jacB=h{Generic, Sensitive},{Identifier, Quasi-identifier},h{Marketing},;ii, whereas
Mary jacM=h{General},{Identifier},h{Direct},;ii. Finally, let us suppose that neither Bob nor
Mary specify any cdc constraint, thus, cdcB = cdcM = ;. The attribute position of the output
stream resulting from the execution of 1 should specify a privacy preference resulting from the
composition of preferences specified by Mary and Bob.

4.4.2 Composed privacy preferences

As above-pointed out, with the exception of �, IN, and OUT, all other operators return a stream
that might contain new attributes defined on the basis of a selection of attributes, denoted as
At, belonging to the stream(s) entering the operator. In defining privacy preferences for these
new attributes we decided to consider the privacy preferences defined for each attribute in At, so
that every preference specified by the user to which this new data might refer to are considered.
As such, the new privacy preference for a derived attribute da is defined by composition of the

6Hereafter we denotes the components of Bob and Mary privacy preferences using the subscript B and M,
respectively.
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privacy preferences of any attribute a in At. For instance, for the above mentioned example
related to the operator �, At @ {walking-steps, up-steps}. The privacy preference of steps is
thus derived by the composition of the preferences specified for walking-steps and up-steps.

In defining this composition, we have adopted a conservative approach, that is, we define the
new privacy preference in such way that each derived component (i.e., ip, jac, cdc) is satisfied
i% all corresponding components in the preferences associated with any attribute a in At are
also satisfied. The following formalizes this composition.

Definition 4 (Composed privacy preferences) Let P and C be the purpose and data cat-
egory set of the considered application scenario, and let P tP and CtC be the related purpose
and category tree, respectively. Let da be an attribute belonging to the output stream generated
by an operator op, and let At be the set of attributes from which da is derived. The privacy
preference pp of da is derived as follows:

• Intended purpose component ip is defined as:

– Aip (allowed intended purposes) is the intersection of the purposes implied by
the ip’s allowed intended purposes of all attributes in At, that is: ip:Aip =T

a2At

S
p2a:pp:ip:Aip p#, where p# denotes a set composed of p and all purposes de-

scending from p in P tP .

– Exc (exceptions for the intended purposes) is the union of the ip’s exceptions of the
privacy preferences specified for At attributes, that is: ip:Exc =

S
a2At a:pp:ip:Exc

• Joint access constraint jac is defined as:

– - Adc (allowed data categories) is the intersection of the jac’s allowed data categories
of all attributes in At, that is: jac:Adc =

T
a2At

S
c2a:pp:jac:Adc c#, where c# denotes

the set composed of c and all categories that descend from c within CtC .

– Exc (exception) is the union of the jac’s exceptions specified for all attributes in At,
that is: jac:ip:Exc =

S
a2At a:pp:jac:ip:Exc;

– ip (jac intended purposes) is defined following the same criteria of intended
purposes, that is: jac:ip:Aip =

T
a2At

S
p2a:pp:jac:ip:Aip p#, and jac:ip:Exc =S

a2At a:pp:jac:ip:Exc.

• The category derivation constraint cdc is defined as the union of prohibited data categories
specified in the privacy preferences of all attributes in At, that is: cdc =

S
a2At a:pp:cdc

Example 6 Let us newly consider the scenario introduced in Ex. 5, and let us consider the
derivation of the privacy preferences to be assigned to the derived attribute position. On the basis
of Def. 4, the ip component of the composed privacy preference is h{Analysis},;i, as Analysis
descends from Admin within P tP (see Figure 4.3). Similarly, according to P tP and CtC in Fig
4.2 and 4.3, the derived jac component is h{Generic, Sensitive},{Identifier, Quasi-identifier},
h{Direct},;ii, whereas component cdc is set to ; as neither Bob nor Mary constrain what can
be inferred from the processing of position.
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4.5 Enforcement

A key element of the framework depicted in Figure 4.1 is the module in charge of privacy
preference enforcement. Given a query q with a set of streams {S1,. . . ,Sn} as input, the
goal of the enforcement is granting the q execution only if the privacy policy specified by
the consumer submitting q satisfies the privacy preferences specified by owners of all devices
generating S1,. . . , Sn.7 Query compliance relies on the verification that each single operator
in q complies with the privacy preferences specified for the accessed attributes of the data
stream(s) received as input. In performing this check we need to consider that, except for IN,
all operators receive as input data stream(s) generated by other operators in the graph, which
can be characterized by new defined attributes as well as by attributes originating from the
input streams. The privacy preferences associated with any new derived data are specified by
the Privacy-enhanced schema of the stream, an enforcement artifact that keeps track of the
privacy metadata of each internal stream. In the remainder of this section we first describe
the rationale of query operators compliance, and then we propose an enforcement mechanism
performing the a query compliance verification.

4.5.1 Query operators compliance

Let q be a query which is submitted for execution for access purpose ap. Given an attribute
at, we denote with at:pp the privacy preference specified for at.

Definition 5 (Query operator compliance) Let op be an operator in the query graph of
q, let oS1 : : : oSn be the internal streams entering op, and let AtoSi

be the attributes of oSi

accessed by op. op complies with the privacy preferences of oS1 : : : oSn i! for each attribute
at 2

Sn
i=1 AtoSi

for which a privacy preference has been specified: (i) ap complies with the
intended purposes ip specified within at.pp; and (ii) op complies with the joint access constraint
jac and the category derivation constraint cdc of at.pp.

Let us now focus on the compliance of op with the privacy preference specified for an
accessed attribute at. Let us start to look at purpose compliance. Let P be the purpose set of
the considered application scenario, P tP be the related purpose tree, and let ip be the intended
purpose component of at.pp specified on P. Let us denote with p# a set composed of p and
all p descendants in P tP . The set of purposes implied by ip, denoted with ~ip, is given byS

p2ip:Aip p# n
S

p02ip:Exc p0#.

Definition 6 (Purpose compliance) Let op be an operator of q, let at be an attribute of a
stream accessed by op, and let pp be the privacy preference specified for at. op complies with
the intended purposes ip of at.pp i! ap 2 ~ip

Example 7 Let us assume that a query q which implements the analysis described in Ex. 1 is
submitted for access purpose TPostal (see Figure 4.3). Let us here consider the compliance of

7We recall that we assume that each stream contains only data generated by a single device, owned by a unique
user.
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an operator � of q, which projects the attributes heart-beats, movements and userid originated
by the fitness watch (see Ex. 1), with the privacy preferences pp specified for heart-beats. In
particular, let us start to assess the compliance of q’s access purpose TPostal with the intended
purpose ip of heart-beats’s privacy preference, supposing that ip matches the specification in Ex.
2. Since TPostal descends from Marketing but not from Direct, according to Def. 6, it complies
with ip.

Let us now consider the satisfiability of the joint access constraint jac of at.pp. Let C be
the the data category set of the considered application scenario, and let CtC be the related
data category tree. Let us denote with c# (c") the set of all categories that directly or indirectly
specialize (generalize) a data category c within CtC . The set of categories implied by jac is
composed of all categories that descend from the catagories in jac.Adc which do not descend
from any category of jac.Exc. More precisely, ~jac =

S
c2jac:Adc c# n

S
c02jac:Exc c0#.

Let As be the set of attributes that are accessed by op and let pp be the privacy preference
specified for an attribute at 2 As. We say that op satisfies the joint access constraint jac of pp,
i% all the data categories associated with the attributes in Asnat belong to the set of categories
implied by jac, and ap complies with the intended purpose component ip of jac. Let us denote
with at.dc the set of data categories specified for at. The set of categories implied by at.dc,
denoted with at.~dc, is composed of all categories c in at:dc and all categories that generalize c
within CtC , i.e., ~at:dc =

S
c2dc c"

Definition 7 (Jac satisfiability) Let op be an operator of q, let at be an attribute of a stream
accessed by op, and let pp be the privacy preference specified for at. op satisfies the joint access
constraint jac of at:pp i! 8a 2 (As n fatg) ! 8c 2 a: ~dc ! c 2 at:pp: ~jac) ^ ap 2 jac:~ip

Example 8 Let us consider again the scenario in Ex. 7, and let us now evaluate whether
� satisfies the jac constraint of heart-beats’s privacy preference, assuming that this constraint
matches the one presented in Ex. 3. jac grants the joint access of heart-beats with data classified
as identifier, fitness or sensitive, except for health data, for access purposes that descend from
Third-party (see Figure 4.3). Let us now assume that movements has been classified as fitness,
whereas userid as identifier (see Figure 4.2). The categories of the accessed attributes are
implied by jac, and since the access purpose TPostal descends from Third-party, we derive that
jac is satisfied.

Let us finally consider the satisfiability of the cdc constraint of at.pp, which specifies the
data categories that cannot be derived from the processing of at. The enforcement of these
constraints require to know the data categories that could be derived when given operations
are executed on at. As an example, as mentioned in Section 4.1, combing data related to
movements, heart beats and breath rate, it is possible to infer that the referred individual
could su%er from psychological disorders due to insomnia. More precisely, on the basis of the
average observed data, one could estimate whether the referred individuals: 1) sleep well and
thus are supposed to be in a good health status, 2) have a poor sleep quality, and thus may
su%er from chronic tiredness and low concentration, 3) or they do not sleep enough and thus
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may su%er from mental disorders or serious pathologies. We assume that information related
to possible data inferences is provided by domain experts or data mining tools that calculates
association rules among data categories. The inferences are specified by means of derivation
paths, which model a set of data categories, which composed or aggregated by means of given
operators allow deriving data potentially related to the user to whom the data protected by
the privacy preferences refer to. Derivation paths represent possible inferences that can be
performed within an application scenario.

Definition 8 (Derivation path) A derivation path dp specified wrt C is a tuple h Ac, fn, op,
dc i, where Ac is a set of data categories of C, fn refers to a function / operation that can be
executed by an operator op of type � / �, 8 and dc specifies a derived data category belonging
to C.

Example 9 Let us suppose to define a derivation path dp specifying that the knowledge of
average movements, heart beats and breath rate allows deriving health state: dp=h{movements,
heart-beats, breath-rate}, avg, �, healthi.

Let SoAC be the union of the data categories associated with the attributes accessed by
q and let Dp be the set of derivation paths specified for the target application scenario. The
set of data categories which on the basis of cdc cannot be derived, hereafter denoted as ~cdc, is
composed of all C categories that specialize those referred to within cdc, i.e., ~cdc =

S
c2cdc c#.

Definition 9 (Cdc satisfiability) Let op be an operator of q, let at be an attribute of a stream
accessed by op, and let pp be the privacy preference specified for at. op satisfies the category
derivation constraint cdc of at.pp, i! it does not exist any derivation path dp within Dp such
that: 1) op corresponds to the operator referred to by dp.op, 2) the function/operation specified
by dp.fn corresponds to the one performed by op (e.g., +, avg, etc.) denoted as op.fn, 3) the set
of accessed data categories specified with dp.Ac is included in SoAC, and 4) the implied category
referred to by dc is among the categories implied by cdc, i.e., i! @dp 2 Dpjdp:op = op^dp:fn =
op:fn ^ dp:Ac � SoAC ^ dp:dc 2 pp: ~cdc.

Example 10 Let us consider again Ex.7 and 8, and let us now check whether � satisfies the
cdc constraint {Health} assuming that Dp uniquely consists of the derivation path in Ex. 9. The
derivation path in Ex. 9 does not match the processing activities of � as the referred operators
are di!erent, thus the constraint is satisfied.

4.5.2 Query compliance analysis

Let us now focus on the enforcement mechanism. In order to keep track of the privacy meta-
data associated with any internal stream of a query graph, which are required to evaluate the
compliance of each operator, we introduce a structure denoted privacy enhanced schema.

8These are the only operators that generate new data.
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Definition 10 (Privacy enhanced schema) Let C and CtC be the data category set and
related data category tree of the considered scenario. The privacy enhanced schema pes of an
internal stream is a pair hsid, Asi, where sid is the stream identifier, whereas As is a set of
tuples hid, dc, ppi, each specifying privacy metadata related to an attribute of the considered
stream. More precisely, id denotes the referred attribute, dc specifies the categories of id selected
from C, whereas pp specifies the privacy preference of id.

The privacy enhanced schemas of the internal streams can be straightforwardly derived
traversing the query graph and applying the composition criteria presented in Def. 4 for each
operator. However, due to space limitations, we do not present here the derivation mechanism.

Query compliance is verified when all the query operators comply with the privacy pref-
erences specified for the accessed data. For presentation purposes let us introduce a basic
notation to represent query operators, thus modeling an operator op as a tuple htp, Pa, inS1,
inS2, outS, pOp1, pOp2i, where: tp models the type of operation performed by op, Pa models
op’s input parameters, inS1, inS2 and outS model the privacy enhanced schemas of the streams
received as input and generated by op, respectively, and pOp1, pOp2 model the operators that
generate the streams processed by op. Finally, let us denote with op.cmp a component cmp of
op.

Compliance analysis is orchestrated by function compliesWith, whose pseudocode is shown
in Algorithm 1, which traverse the query graph in post order, analyzing operator by operator.
The analysis of a query q starts invoking compliesWith on operators OUT of q for q ’s access
purpose ap.

Algorithm 1: compliesWith(op; ap)

1 if op:tp==IN then
2 Return true;
3 rOp1@ compliesWith(op.pOp1, ap);
4 if op.pOp2 6=? then
5 rOp2@ compliesWith(op.pOp2, ap);
6 cmp@checkOp(op.pOp1.outS, op.pOp2.outS, op, ap);
7 Return cmp^rOp1^rOp2;

8 else if Op = 1 then
9 cmp@checkOp(op.pOp1.outS, ?, op, ap);

10 Return cmp^rOp1;

The compliance of an operator op is evaluated by function checkOp, shown in Algorithm
2, which is invoked on the privacy enhanced schema of the streams received as input by op
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whenever a node is visited (see line 6 and 9 of Algorithm 1).

Algorithm 2: checkOp(peS1, peS2, op; ap)

1 refAs@;;
2 if op:tp=OUT then
3 refAs@peS1.As;
4 else
5 refAs@

S
rAt2op:Pa

S
at2rAt:As (�(id=at)op.inS1.As)[(�(id=at)op.inS2.As);

6 Return checkIp(refAs,’ip’,ap) ^ checkJacCdc(refAs,op,ap);

checkOp, on the basis of the operation type performed by op, the input parameters Pa of op
and the privacy enhanced schema of the streams entering op, derives the set refAs of attributes
accessed by op and the respective privacy metadata. Then, it invokes the functions checkIp and
checkJacCdc which verify whether op complies with the privacy preferences of the attributes in
refAs. The compliance of an operator op is verified by separately checking the components of
the privacy preferences specified for the accessed attributes (collected with refAs in Algorithm
2), which are derived on the basis of the operator type. More precisely, checkOp evaluates the
components ip, jac and cdc of the privacy preferences of all the attributes referred to within
the input parameters Pa of operators of type �, �, 1 and �, and the whole set of attributes
characterizing the privacy enhanced schema of the input stream of an operator OUT. Indeed,
any attribute referred to within Pa is accessed for deriving the corresponding operator output
stream, and any attribute in the input stream of OUT is projected to the output stream. The
compliance checks for the privacy preferences of the derived attributes are handled by functions
checkIp and checkJacCdc.More precisely, checkIp verifies the compliance of the access purpose
ap of q with the intended purposes specified for the attributes in refAs, thus verifying if ap is
among the purposes implied by each ip component, implementing the check in Def. 6. The
pseudocode of checkIp is presented in Algorithm 3. Similarly, function checkJacCdc, defined
on the basis of Def. 7 and 9, verifies whether the jac and cdc constraints associated with the
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attributes in refAs are satisfied. The pseudocode of checkJacCdc is presented in Algorithm 4.

Algorithm 3: checkIp(As; iptp; ap)

1 ipCmp@true;
2 for each at2As do
3 switch ctp do
4 case ip do

5 ipCmp@ipCmp^(ap2at.pp.~ip);
6 break ;

7 case jac do

8 ipCmp@ipCmp^(ap2at.pp.jac.~ip);
9 break;

10 Return ipCmp;

Algorithm 4: checkJacCdc(refAs; op; ap)

1 jacCmp@true;
2 cdcCmp@true;
3 SoAC@;;
4 for at2refAs do
5 oAt@refAsnat;
6 SoAC@SoAC[at.dc";
7 for a2oAt do

8 jacCmp@jacCmp^(8c2a.dc"!c2at.pp. ~jac);

9 jacCmp@jacCmp^checkIp(refAs,’jac’,ap);
10 SoDP@�(op=op:fn^Ac�SoAC)Dp;

11 for at2refAs do
12 for dp2SoDP do

13 cdcCmp@cdcCmp^(dp.dc 6�at.pp. ~cdc);

14 Return jacCmp^cdcCmp;

4.6 Performance Analysis

In this section we experimentally evaluate the performance of the proposed privacy preferences
enforcement mechanism, within a scenario where a monitor implementing them is connected
with Streambase 7.6,9 a known commercial CEP system [41]. In particular, given a Streambase
query Q, serialized as an XML document, we measure the time required by our monitor to verify
whether the privacy practice of the consumer submitting the query satisfies all the privacy
preferences associated with the streams entering Q.

Our experiments have been run on an Intel Core-i5 PC with 6 GB RAM, and the monitor
prototype has been implemented with Java SE Development Kit 8u73. The experiments have

9http://www.streambase.com/
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been carried out with synthetic data. More precisely, data streams have been generated as
composed of 3 attributes, each of which associated with a di%erent privacy preference. Privacy
preferences have been defined in such a way that their components refer random elements of
the Data Category and Purpose sets, which, in turn, have been populated with synthetic data.
In this scenario, we ran two main experiments, which, under di%erent settings, show how the
performances scale on varying the query and domain complexity.

4.6.1 Experiment 1 - Time overhead varying query complexity

Acknowledging that query complexity can a%ect the performance of the enforcement mech-
anism, our first experiment measures the time overhead for a benchmark of 10 queries with
di%erent number and type of operators. We note that complexity of queries varies based on
the number and type of involved operators. The considered queries are characterized in the left
part of Table 4.1.

For this experiment, we prefixed the number of elements in the Data Category Set (C), the
Purpose Set (P ) and the Derivation Path Set (Dp) as : 100 categories, 30 purposes and 10
derivation paths. More precisely, aligned with the order of magnitude in [27], we populated P

with 30 purposes, whereas in order to have enough data categories to cover a variety of domain,
we populated C with 100 elements, finally, we specified 10 derivation paths as we consider this
as an acceptable amount of possible data inferences. We believe that this case could represent
common use scenarios. Purpose and Data Category trees have been randomly generated on
the basis of the respective sets, limiting the maximum number of children that each node can
have as 3.

Figure 4.4 shows the time required by the monitor to analyze each query. The overall time
is given by the duration of three enforcement phases: 1) the Query Parsing, which handles the
parsing of the XML document encoding the query to be verified; 2) the PES Derivation, which
derives the privacy-enhanced schema of all internal streams; and lastly, 3) the Compliance
Analysis, which evaluates query compliance.

The execution times of all phases increase linearly with the growth of queries complexity. It
is worth noting that the Query Parsing phase, which only implements preliminary configuration
activities, takes a longer time than the 2 phases implementing the enforcement mechanism.
Overall the execution times is always very short even in the worst case (less than 0.1 sec). This
shows that our approach does not give too much overhead to the system even with complex
queries.

4.6.2 Experiment 2 - Time overhead varying domain complexity

In this experiment we evaluate the impact of Data Category and Purpose Set on the time
overhead, by varying the cardinality of these sets in a benchmark of 10 scenarios.

The right part of Table 4.1 characterize the benchmark wrt the Purpose Set (P ) and Data
Category Set (C) cardinality. The size of the Derivation Path Set has been fixed to 10.10

10We fixed Derivation Path Set cardinality, as we have observed that variance of this parameter does not
significantly impact the execution time
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Figure 4.4: Experiment 1 Results

Figure 4.5 shows the time required by the proposed monitor to evaluate the compliance of
query q5 (see Table 4.1) in each scenario. The execution time of PES Derivation and Compliance
Analysis rises with the increase of Data Category and Purpose Sets cardinality. This behavior
is imputable to the complexity of search operations on Data Category and Purpose Trees. In
contrast, query parsing time keeps constant since the same query is used for all scenarios.

As in previous experiment, the overhead is low even in the worst case (less than 0.1 sec).
Overall, even considering that enforcement checks are performed before the query is registered
into the CEP, we conclude that the proposed mechanism enforces privacy with a negligible
overhead.
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Table 4.1: Experiments con®guration

Experiment 1 Experiment 2
Query Operations Scenario jP j jCj

q1 1 � , 1 � , 1 1 , 1 � s1 100 100
q2 2 � , 2 � , 2 1 , 2 � s2 200 200
q3 3 � , 3 � , 3 1 , 3 � s3 300 300
q4 4 � , 4 � , 5 1 , 4 � s4 400 400
q5 5 � , 5 � , 5 1 , 5 � s5 500 500
q6 6 � , 6 � , 6 1 , 6 � s6 600 600
q7 7 � , 7 � , 8 1 , 7 � s7 700 700
q8 8 � , 8 � , 8 1 , 8 � s8 800 800
q9 9 � , 9 � , 9 1 , 9 � s9 900 900
q10 10 � , 10 � , 10 1 , 10 � s10 1000 1000

Figure 4.5: Experiment 2 Results


