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Abstract

Wearable devices tracking our fitness activities and health status, smart home technologies sup-
porting home automation services, smart city technologies improving quality and performance
of urban services. These are just some examples of Internet-connected “things” clearly prov-
ing that the Internet of Things (IoT) is already upon us, impacting our every-day lives. The
promise of IoT is making the world smarter, more profitable, autonomous, more connected and
more efficient. So far, IoT has already been applied to several environments: healthcare, man-
ufacturing, retail, buildings, cities, automative, transportation, energy etc. Indeed, according
to the IHS Markit, as of 2018, number of connected IoT devices has reached 27 billion.1

However, challenges posed by IoT have also increased with its popularity. As such, among
others, challenges on data privacy, security, and limited decentralization of IoT systems intro-
duce major threats for the future of IoT [140, 117]. Given that, in this thesis, we focus on data
privacy and security issues in IoT under the decentralized model.

In the first part of the thesis, we focus on data privacy issues. In a typical IoT scenario
individuals’ privacy can easily be violated due to the high volume of managed personal data.
Particularly, confidential information about individuals may be revealed to unauthorized par-
ties, or, combination of different data may lead to infer sensitive information about individuals.
In addition to those issues, in a decentralized IoT scenario, where IoT devices (i.e. smart
objects) share data with each other, privacy protection is even more challenging as it is more
difficult to control how data are combined and used by smart objects where future operations
on data are unknown. Therefore, first challenge that we take in this thesis is enhancing data
privacy in IoT with a user-centric model. First, we propose a privacy enforcement framework
for centralized IoT systems. Then, we extend it for decentralized IoT systems. In this model,
compliance check of user individual privacy preferences is performed directly by smart objects.

Decentralization, if coupled with proper security mechanisms, would have many advantages
over centralized infrastructures for IoT, such as, among others: better privacy guarantees for
data owners, more resilient and secure systems, improved interoperability between services, con-
certed and autonomous operations. Notably, blockchain is a promising decentralized platform
due to its ability to achieve distributed consensus [128] and with it’s intrinsic security features
to ensure data integrity. Given that, we shift our focus to address issues related to security and
decentralization of IoT systems with blockchain based systems. At this purpose, we first deal
with security issues in IoT, as resource constrained IoT devices do not employ strong security

1cdn.ihs.com/www/pdf/IoT_ebook.pdf
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mechanisms and they are easy targets for attackers. One of the most relevant attack is when
attackers take advantage of the vulnerabilities of IoT devices, and compromise them to add
them to botnets, that are collection of compromised internet computers controlled by attackers.
Then, attackers use their botnets for their malicious purposes, such as performing Distributed
Denial of Service (DDoS) attacks. Moreover, to increase attacks’ success chance and resilience
against defence mechanisms, modern botnets have often a decentralized P2P structure, which
makes them harder to detect. In order to deal with this problem, we take a first step to-
wards detecting P2P botnets in IoT, by proposing AutoBotCatcher. AutoBotCatcher exploits
a Byzantine Fault Tolerant (BFT) blockchain, in order to perform collaborative and dynamic
botnet detection by collecting and auditing IoT devices’ network traffic flows as blockchain
transactions. Secondly, we take the challenge to decentralize IoT, and design a hybrid block-
chain architecture for IoT, by proposing Hybrid-IoT. In Hybrid-IoT, subgroups of IoT devices
form PoW blockchains, referred to as PoW sub-blockchains. Connection among the PoW sub-
blockchains employs a BFT inter-connector framework. We focus on the PoW sub-blockchains
formation, guided by a set of guidelines based on a set of dimensions, metrics and bounds.
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Chapter 1

Introduction

The Internet, one of the greatest inventions of humankind, started out as a government funded
defense project in 1962 and evolved to ARPANET in 1969, and significantly, this opened the
way to innovate. In early 90’s Internet saw Tim Berners-Lee’s invention of World Wide Web
(WWW) [18] to merge networked information retrieval and hyper-text documents. With many
more inventions over last decades, the Internet has experienced a great success. Indeed, today
Internet is evolved into a huge network that has many services, such as: e-commerce web-sites,
online social networks, personal web blogs, news media sites, and so on.

The Internet, as a tool, opened a way to generate new technologies and inventions for
engineers and researchers. In 1982, a group of graduate students came up with the idea of
connecting their building’s soda machine to the Internet in order to check whether the machine
is empty or sodas are cold before going to the machine to buy a soda.1 Necessity was the mother
of invention as we learned from the famous english proverb2, and the Internet was the enabling
tool for the invention. According to many sources, this is considered as the very first example
of a new kind of devices, which we call today Internet of Things, or short IoT. Yet, the term
IoT was coined way later by British inventor Kevin Ashton3. Roughly, the term IoT refers
to the network of physical objets, so called things, such as sensors, RFIDs or various kinds of
physical devices that are able communicate with each other, server or cloud over Internet. IoT
transforms physicals objects from being traditional to smart, by enabling them to see, hear, and
perform tasks, by letting them to share information with each other [4]. Indeed, the promise of
IoT is making various environments smarter, efficient, more connected and autonomous with
intelligent decision making [4].

In the last decade, we have witnessed a great growth of IoT. Indeed, according to the IHS
Markit, as of 2018, number of IoT devices is over 27 billion. Moreover, IoT devices have already
been everyday objects in our daily lives with wearable devices, smart home applications, smart
cities and so on. IoT has also been applied to several industries, such as food processing, agri-
culture, healthcare, environmental monitoring, transportation and logistics, mining production

1ibm.com/blogs/industries/little-known-story-first-iot-device
2In original it is first used by William Horman in his book Volgar in Latin as:"Mater artium necessitas".
3rfidjournal.com/articles/view?4986
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CHAPTER 1. INTRODUCTION 12

monitoring, security surveillance and so on [42]. As suggested by its growth in number of de-
vices and many use cases, as also stated by the US National Intelligence Council [98], IoT is
certainly one of the disruptive technologies today.

Despite its potential, many use cases, great growth, and many futuristic ideas for its future,
IoT also comprises important challenges. Some of the key challenges are, among others: data
privacy, security, and decentralization of IoT systems [140, 117, 4]. In this thesis, we deal with
data privacy and security issues in IoT to support IoT to reach it’s full potential. In doing that,
we take decentralization as main approach and model, as we believe it will play fundamental
role in future IoT systems. In the following, we describe the main motivations behind dealing
with on data privacy and security issues of IoT, and why decentralization matters for IoT.

Data privacy issues in IoT

IoT is impacting our every-day lives with many applications that process personal and confiden-
tial data, such as wearable devices that track fitness activities and health status of individuals.
With extensive number of IoT devices that are collecting and processing personal and confiden-
tial data, naturally, individuals privacy protection arises as a major challenge to overcome. In
fact, data privacy issues in IoT has been widely investigated in the literature [86, 103, 140, 117].
Moreover, there are also data protection regulatory laws and frameworks, such as European
Union General Data Protection Regulation (GDPR) [106]. In order to ensure European Union
citizens’ personal data protection GDPR introduces data protection principles and data sub-
jects’ rights [84]. As stated by GDPR, data subjects should be given more transparency on
how their data is processed and they should be in charge of their personal data that refers to
any information related to an identifiable person.4

First issue related to data privacy in IoT is revealing personal information to unauthorized
parties/data consumers. Second privacy issue arises due to further processing of data. In that,
sensitive information of data owners may be inferred through data analytics processes (e.g. data
joins, aggregations). For example, by joining and combing data related to movements, heart
beats and breath rate, it is possible to infer possible psychological disorders due to insomnia.
Privacy issues get even more complicated when we consider a decentralized IoT scenario where
devices are able to process and share data with each other. Indeed, in such a scenario, we do not
have prior knowledge about how data are going to be shared and processed. Therefore, third
issue on data privacy is protecting data owners’ privacy even in unknown future use of data.
For example, walked distance and number of steps sensed by a smart watch can be combined
to infer individual’s height information with some approximation. Starting from the height
information and by combining it with weight information sensed by a smart scale one can infer
body mass index of individuals. As such, future operations performed over data may introduce
additional privacy violations, thus privacy of the users should be enforced in the future use of
their data.

4eugdpr.org/the-regulation/gdpr-faqs
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Security issues in IoT

Device vendors do not take security as primary goal in producing IoT devices [9], in order to
produce IoT devices quickly to catch market trends and protect their business profits. However,
this made IoT an amplifying platform for cyberattacks, where malicious parties can easily take
control of IoT devices [140, 117, 9]. Threats caused by compromised IoT devices present serious
security issues for online services’ security, such as: attackers may control compromised devices
for their malicious purposes and form malicious botnets, or steal confidential information stored
by devices. We focus on malicious botnet threat due to their relevance and huge destructive
effects on victims. A malicious botnet is a collection of compromised Internet computers being
controlled remotely by attackers for malicious and illegal purposes, such as performing cyber-
attacks (e.g.,Distributed Denial of Service (DDOS) attacks)[132]. Typically, attackers try to
infect as many devices as possible in order to increase power and effect of their attacks. Indeed,
in 2016 the Mirai malware [8] infected many IoT devices in order to perform DDOS attacks by
generating extensive amount of Internet traffic (more than 1 tbps).

Why decentralization matters?

Today, most of the IoT systems are centralized cloud based computing infrastructures. However,
centralized IoT infrastructures present a number of drawbacks to IoT. Such drawbacks are,
among others: high cloud server maintenance costs, weak adoption and support for time-critical
IoT applications, security issues (e.g., Single Point of Failure (SPoF)). Moreover, different
parties (device vendors, service providers) have to trust each other or another third party in
order to collaborate in centralized systems. This limits the interoperability between different
IoT applications and services.

On the other hand, decentralization, if achieved, would have many advantages over cen-
tralized infrastructures. The most prominent outcomes of decentralizing IoT is achieving dis-
tributed consensus among IoT devices, and if properly governed it will improve security of IoT
systems, and, providing better privacy guarantees to the users with effective data protection
mechanisms. With that, IoT devices are able to perform concerted and autonomous operations,
which increases data utility of IoT systems due to enhanced data processing and information
generation. Moreover, amount of data transferred to the cloud for processing and cloud main-
tenance costs are reduced in decentralized systems. The last but not the least, decentralization
would be instrumental to improve security and privacy of the managed data by assuring data
security and accountability, and eliminating SPoF problem of centralized systems.

Decentralized IoT systems have to be able to process high throughput of transactions and
scale to many peers in achieving consensus without a trusted central authority. Therefore, IoT
decentralization requires frameworks that employ scalable and performant distributed consen-
sus among peers. Lack of such frameworks has been a bottleneck against successful decen-
tralization of many domains including IoT. But, rise of Bitcoin [92], the peer-to-peer digital
currency, has the potential for paradigm shift in decentralization. Particularly, invention of
blockchain as underlying technology of Bitcoin, has opened a way to overcome distributed
consensus bottlenecks in a decentralized setting for large scale applications. Fundamentally,



CHAPTER 1. INTRODUCTION 14

blockchain is the concept of a distributed ledger maintained by a peer-to-peer network and it
allows peers of a p2p network to reach consensus without needing a central authority and es-
tablishing trust. Moreover, blockchain employs cryptographic techniques, such as; asymmetric
cryptography and hashing, enables to ensure integrity of the blockchain data structure (cfr.
Chapter 2 for background information on blockchain). Given that, we consider blockchain as
a promising decentralization platform. Therefore, we use blockchain technology as a tool in
designing decentralized IoT systems.

1.1 Thesis Objective

By referencing to the above discussed motivations, we formulate our objective as follows:

OBJECTIVE: Establish and develop alternative architectures, frameworks,
and models to enhance individuals privacy in IoT scenarios and improve
security of IoT systems, especially under decentralized model, that are
efficient and practical.

A notable challenge in enhancing data privacy and security in IoT under decentralized
model is developing lightweight and scalable decentralized solutions. In fact, decentralization
comes with a cost, as it might introduce additional complexity and overhead, especially when
considering cases that require distributed consensus. Therefore, in this thesis, in addition
to challenges related to enhancing data privacy and security, we also deal with the intrinsic
challenge of making lightweight and scalable decentralized systems for IoT. To this end, we use
blockchain technology as decentralization tool.

1.2 Terminology

We provide definitions to the key concepts that are used in this thesis for reader’s convenience.
These definitions are mainly given based on the common understanding in the literature, but
are also related to how they are used in this dissertation.

• Data: Information generated by IoT devices.

• Smart objects: IoT devices that are not only able to sense data, but also able to
processes and aggregate data, and interact with other IoT devices.

• Privacy: Individuals’ right to control how their data could be shared with others (e.g.
third party data consumers).

• Security: Protection of data from disclosure, alteration, destruction and loss [116].

• Data owner: Owner of the IoT device that generates data.
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• Blockchain: A distributed data structure shared across peers of a p2p network. Block-
chain data structure is secured using cryptography to protect integrity of its records. We
provide background on blockchain technology in in Chapter 2.

1.3 Main Contributions

In summary, this thesis provides the following main research contributions:

• A core framework to enforce user’s privacy in centralized IoT systems with low overhead.
For this framework, we design a novel privacy preference model, which allows to handle
privacy with a user-centric approach. Particularly, with their privacy preferences users
are able to state: which portion of their personal data can be accessed and how these
data can be combined; and what can not be inferred from their data through any kind of
analytics processes. Experimental results show the efficiency of the proposed enforcement
mechanism.

• An extension of the above mentioned core framework for decentralized IoT smart objects
with low overhead. The novel problem that this framework tackles is privacy enforcement
without a centralized reference monitor. In order to solve this problem, we leverage on
the privacy model developed for the core framework extend it to deal with decentralized
ecosystems. In contrast, the enforcement mechanism leverages on ad hoc-designed se-
curity meta-data, called Privacy-Enhanced Attribute Schema (PEAS), attached to each
piece of data for decenralized privacy enforcement. Privacy preference compliance check
is performed before data are going to be released to the third party data consumers. The
proposed framework has been tested on different scenarios, and the obtained results show
the feasibility of our approach.

• Architectural design of the first blockchain-based botnet detection architecture for IoT,
called AutoBotCatcher. AutoBotCatcher performs dynamic and collaborative botnet de-
tection and prevention for IoT with dynamic community detection methodology. In Auto-
BotCatcher, a blockchain is exploited to enable multiple parties to collaborate for botnet
detection without needing to trust each other or a central server/database. Moreover,
blockchain is exploited to model the botnet detection process as a set of shared application
states of parties collaborating in botnet detection.

• Hybrid blockchain architecture to decentralize and secure IoT, called Hybrid-IoT. Hybrid-
IoT exploits Proof of Work (PoW) blockchains to achieve distributed consensus among
operations performed by IoT devices. By virtue of that, in Hybrid-IoT, IoT devices are
able to collectively and autonomously execute their operations by forming their machine
to machine (m2m) communications in form of blockchain transactions. This also guar-
antees accountability and security of the stored data. To measure performance of the
PoW blockchains (i.e., transaction throughputs) we define a set of PoW blockchain-IoT
integration metrics. We also provide a measurement study of the performance of PoW
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blockchains in IoT, subject to the PoW blockchain-IoT integration metrics. We test
performance and security of the proposed approach.

1.4 Thesis Organization

The dissertation is organized into eight chapters, briefly described in the following:

Chapter 2: Background - Blockchain

In this chapter, we first provide background information on the cryptography techniques used
in blockchains, then we present blockchain, and, finally, we introduce the consensus problem
and consensus protocols employed by blockchain.

Chapter 3: Literature Review

We review the literature on proposals dealing with data privacy in IoT, botnet detection, and
blockchain based systems for IoT.

Chapter 4: Enhancing User Privacy in IoT

In this chapter, we present the core framework to enforce user’s privacy in centralized IoT
systems.

Chapter 5: Decentralizing Privacy Enforcement in IoT

In this chapter, we present the enhanced privacy enforcement framework, that is tailored to
enforce user’s privacy in decentralized IoT systems consisting smart objects.

Chapter 6: Blockchain-based P2P Botnet Detection for IoT

In this chapter, we present AutoBotCatcher, a blockchain-based P2P botnet detection mecha-
nism for IoT.

Chapter 7: Hybrid Blockchain Architecture for IoT

In this chapter, we present Hybrid-IoT, a hybrid blockchain architecture for IoT.

Chapter 8: Conclusions

In this chapter, to sum-up this thesis, we discuss main arguments and contributions. This
chapter outlines the future plan as well.
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Chapter 2

Background

The work conducted on this thesis is on enhancing data privacy and security of IoT systems
under the decentralized model. Given that, in this section, we provide background information
on architecture models and protocols for IoT (ie. Section 2.1). On the other hand, towards the
thesis, we exploited different technologies and tools. The most significant one, among others, is
the blockchain technology, as we use it to design a P2P botnet detection framework (Chapter
6), and a hybrid blockchain architecture for IoT (Chapter 7). Therefore, in this chapter (ie.
Section 2.2) we also provide the background information on blockchain technology.

2.1 IoT Architectures and Protocols

In this section we provide an overview about architecture models for IoT systems in Section
2.1.1 and commonly used protocols in IoT in Section 2.1.2.

2.1.1 IoT Architectures

Despite some efforts to generate a reference IoT architecture (e.g. IoT-A [31]), there is no de
facto architecture model for IoT. Yet, by reviewing relevant works on the literature, such as
[138, 11, 73, 57, 4], we present common patterns in IoT architectures. As such, the basic IoT
architecture is the 5 layered model as presented in [4] and [73], that includes following layers:
Object (Perception) Layer where IoT devices exist, Object Abstraction (Network) Layer where
IoT data are securely transferred (e.g. ZigBee, RFID) and managed by cloud computing or
data management systems, Service Management (Middleware) Layer where data generated by
heterogenous IoT devices are processed, decisions made, services are paired and delivered to
the requesters, Application Layer where services provided to customers, and Business Layer
where overall systems are managed with a business model.

An important aspect in discussing architecture models for IoT is the group of elements
that are required to deliver the functionality of IoT systems. According to [4], the six main
elements for IoT are: Identification, refers to naming and matching IoT services and devices;
Sensing, refers to gathering data from the physical world within the network; Communication,
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refers connecting IoT devices together securely to deliver smart services; Computation, refers
processing of the IoT data and represents brain of the IoT application; Services, refers to IoT
applications’ services for customers or other services; and Semantics, refers to ability to extract
knowledge smartly to provide required services.

There are two types of IoT architectures: centralized and decentralized. These architectures
differentiate mainly in the way how they handle computation, services and communication
elements of IoT systems. In the following, we provide background information on centralized
and decentralized IoT architectures.

Centralized IoT Architectures

In centralized IoT architectures, IoT devices are linked to a central hub, such as server or
cloud, which is used to provide backend services to smart devices [141]. In centralized IoT
architectures, the main objective of IoT devices is sensing data from physical world around
them. Then, they share sensed data with the central hub.The central hub performs operations
related to computation, services and semantics elements of IoT systems, such as real-time
analysis, event processing and management, data management, decision taking etc. To sum
up, in centralized IoT architectures objectives of IoT devices are limited, and operations that
require processing and data storage are left to the central hub. In the following we briefly
discuss cloud computing based IoT systems as example to centralized IoT architectures.

Cloud-based IoT Systems. Essentially, the amount of data generated by IoT systems are
huge and often referred as big data. Many IoT scenarios, such as smart grid, health monitoring
etc., requires to perform real-time analytics, processing, and decision taking on such big data
generated by IoT platforms. Cloud computing offers a new way to manage and process big
data generated in IoT scenarios [4] and currently vast majority of IoT applications are based
on cloud-based solutions. In cloud-based architectures, data sensed and sent by IoT devices are
pooled at a single or geographically distributed cloud infrastructures. Where, they process data
generated by IoT devices, generate services for IoT applications, take decision according to the
stored data, and provide services to the users and customers when demanded. There are many
cloud platforms that are in use today, such as Amazon Web Services1 and IBM Watson IoT2.
In addition, academic literature offers several works that propose cloud based IoT systems such
as [2, 53, 74, 95, 90], where cloud computing have been used to store, process and manage IoT
data for various applications scenarios.

Despite their wide usage, centralized systems systems have many drawbacks for IoT. In this
thesis, the most relevant drawbacks addressed are data privacy and security issues of centralized
IoT systems that are discussed in Chapter 1.

Decentralized IoT Architectures

Decentralized IoT architectures are essentially decentralized systems of cooperating smart ob-
jects. Such smart objects are able, not only to sense data, but also to interact with other objects

1aws.amazon.com/iot
2ibm.com/internet-of-things
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and to aggregate data sensed through different sensors. This allows smart objects to locally
create new knowledge, that could be used to make decisions, such as quickly trigger actions on
environments, if needed. Smart objects are very heterogeneous in terms of data sensing and
data processing capabilities. Some of them can only sense data, others can perform basic or
complex operations on them. Such a scenario enacts the transition from the Internet of Things
to the Internet of Everything, a new definition of IoT seen as a loosely coupled, decentralized
system of cooperating smart objects, which leverages on alternative architectural patterns with
regards to the centralized cloud-based one. Where, unlike centralized IoT architectures, com-
putation and service elements of IoT platforms are also objectives of such smart objects. As
such, devices perform some operations over sensed data and take decisions, depending their
computation and storage capabilities. How the communication elements handled is also dif-
ferent than centralized architectures, since smart objects share their data with other smart
objects, maybe autonomously, provided that they are able to convert and understand each
other’s communication protocols (i.e. with the help of a middleware layer). In the following,
we briefly discuss fog computing as an example to decentralized IoT architectures.

Fog computing. Fog computing is a distributed computing paradigm that extends cloud to
the edge of the network [21], where extensive amount of heterogeneous decentralized and ubiq-
uitous IoT devices and gateways communicate and cooperate with each other in the network to
perform computation and storage tasks [129]. Fog computing is not an alternative to the cloud
computing, it is a supplementary paradigm that improves localization of services and reduces
amount data transferred to the cloud, thus it acts as a bridge between smart devices and large-
scale cloud computing and storage services [4]. Specifically, in fog computing devices at different
hierarchical levels are equipped with "intelligence" to examine whether an application request
requires the intervention of the cloud computing tier or not. It also has the potential to reduce
delay in delivering services to end users due to localization of services with close proximity. In
fact, as measured in [113], as number of latency-sensitive IoT services increase, fog computing
outperforms cloud computing by decreasing overall latency of the services. Specifically, in [113]
Sarkar et al. showed that, in an environment where 50% of applications are requesting real-
time services, fog computing compared to cloud computing reduces the overall service latency
by 50.09%. The fog play important role in many IoT scenarios, such as connected vehicles,
smart grids, wireless sensor and actuator networks [21]. Additionally, academic literature offers
interesting proposals that make use of fog computing in IoT applications such as [126, 62, 1].

Given smart objects’ increasing storage, communication and computing capabilities in par-
allel to the Moore’s Law, we can expect to see increase in number of decentralized IoT systems
[125]. Despite their potential and benefits, as described in Chapter 1, decentralized systems
face many new challenges on assuring data privacy and security are addressed in this thesis.

2.1.2 IoT Protocols

Thanks to adopted protocols by available IoT devices, IoT is a very heterogenous domain.
Therefore, in order to increase interoperability of IoT services and applications, various work-
ing groups and consortiums from many groups, such as Institute of Electrical and Electronics
Engineers (IEEE), European Telecommunications Standards Institute (ETSI), International
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Telecommunication Union-Telecommunication (ITU-T) and Internet Engineering Task Force
(IETF), are working to generate standardized protocols that remove gaps between different
protocols. In the following we present some prominent examples of such efforts through pro-
tocol standardization, namely The Constrained Application Protocol (CoAP), Message Queue
Telemetry Transport (MQTT), The Internet Protocol version 6 (IPv6) and IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPAN).

The Constrained Application Protocol (CoAP)

The IETF Constrained RESTful Environments (CoRE) working group generated CoAP [115,
22] with aim to make Hypertext Transfer Protocol ’s (HTTP) Representational State Transfer
(REST) paradigm available to restrained IoT devices and networks. Given that, CoAP protocol
stack is similar to, but less complex than, the HTTP protocol stack [22], and like HTTP it is
a application layer protocol. Since it shares the REST architecture with the HTTP protocol,
CoAP is capable of interacting with several device types easily. In order to reduce complexity
of HTTP, CoAP uses User Datagram Protocol (UDP) as transport layer protocol rather than
Transmission Control Protocol (TCP) used by HTTP.

On top of the UDP, CoAP deals with asynchronous nature of interactions and the re-
quest/response interactions [115]. Moreover, for applications that require security CoAP can
be used on top of Datagram Transport Layer Security (DTLS) that protects confidentiality
and integrity of message contents [22]. Where, device may adopt different security levels that
are divided into four modes [115] as following: NoSec mode where DTLS is disabled so there
is no protocol level security; PreSharedKey mode where DTLS is enabled and there is a list of
shared keys (keys include a list of nodes can be used to communicate); RawPublicKey mode
where DTLS is enabled and device has a asymmetric key without a certificate; and, Certificate
mode where DTLS is enabled and device has a asymmetric key with a certificate signed by
some common trust root. CoAP is also capable of carrying different types of payload and it
integrates different data model types such as XML and JSON.

Message Queue Telemetry Transport (MQTT)

MQTT is a lightweight publish/subscribe messaging protocol that was invented in 1999 by
Andy Stanford-Clark of IBM and Arlen Nipper of Arcom [130] and in 2013 it became an
OASIS standard. MQTT is suitable for low-bandwidth, unreliable and high-latency networks
and is designed for constrained devices.3 MQTT’s publish/subscribe model has three main
components: publisher, subscriber and broker [4]. By taking the subscriber role IoT devices
subscribe to their interest of topics published by publishers. When a publisher publishes a
message, MQTT transfers the message via broker to every IoT device that has subscribed the
topic of the published message.

Unlike CoAP, MQTT works on top of TCP/IP protocol. For applications that require to
take security measurements, MQTT connections can be complemented with Transport Layer

3mqtt.org/faq



CHAPTER 2. BACKGROUND 22

Security (TLS). Even though MQTT runs on TCP/IP protocol suite rather than more light-
weight UDP, it is designed to be low overhead, and thanks to its publish/subscribe model,
subscribers do not respond to messages they have received from a publisher topic they have
subscribed [68]. Therefore lower network bandwidths and less device resources are used. More-
over, as it runs over TCP/IP, it attempts to ensure some degree of assurance of delivery, even
in unreliable networks.

The Internet Protocol version 6 (IPv6)

IPv6 was developed by IETF as new version of the Internet Protocol as the successor of the IPv4.
IPv6 has been standardized by IETF in July 2017 with the publication of RFC8200. In order
to solve problems related to the depletion of unallocated addresses in IPv4 address space, IPv6
expanded the address size 32 bytes of IPv4 to 128 bytes, and thus is able to support much greater
number of addresses and more levels of address hierarchy [44]. In addition to that, in order to
reduce IPv6 header packets’ network bandwidth consumption and packet processing cost, some
of the fields included in IPv4 header has been dropped. By using Security Architecture for the
Internet Protocol defined in RFC4301 [72], IPv6 packets’ integrity and confidentiality can be
protected. In addition to that, IPv6 packets can be also protected with upper layer protocols
such as TLS and Secure Shell (SSH) [44].

IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN)

In 2007, IETF’s 6LowPAN working group defined 6LowPAN protocol to enable IPv6 packets
to be carried on top of low power wireless networks, specifically IEEE 802.15.4, to apply the
Internet Protocol (IP) to the constrained and small devices [89]. Thanks to 6LoWPAN, existing
network architecture can be used and constrained devices can easily connect to other IP based
networks without proxies and translation gateways [114]. Due to complexity and performance
reasons, the most common transport protocol used with 6LoWPAN is the UDP [114]. In
6LoWPAN, the necessity of configuration servers DHCP and NAT is eliminated. Moreover,
6LoWPAN implementations can easily fit into 32K flash memory [89]. Given that, in 6LoWPAN
overhead for the most common packets are much less than other protocols [89].

2.2 Blockchain Technology

The term blockchain has been first used to define the underlying technology of the first digital
currency (aka cryptocurrency) called Bitcoin4. Bitcoin is proposed by a person or group using
pseudonym Satoshi Nakamoto in 2008 [92]. Main invention of Bitcoin was its ability to remove
any trust relation to perform money transfers.

In essence, blockchain is a cryptographically secure distributed data structure shared across
the peers of the p2p network, where trust among peers to achieve consensus between peers.
In this section we provide an overview about blockchain technology, specifically by focusing

4bitcoin.org
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on the parts that will be needed later. First, in order to lay the foundation of important
concepts, we provide background information on cryptography techniques used by blockchains
in Section 2.2.1. Then in Section 2.2.2, we elaborate the discussion on the blockchain technology.
In Section 2.2.3 we introduce the consensus problem and discuss consensus methodologies of
blockchains. Finally, in Section 2.2.4, we present three blockchain platforms relevant to this
thesis.

2.2.1 Cryptography

Cryptography is the study, with a long history, of mathematical techniques related to the infor-
mation security (e.g. data integrity, authentication, data confidentiality) [71]. Cryptographic
techniques lays the foundation for many modern security tools, such as encryption techniques,
digital signatures etc. From distributed systems point of view, it is probably the key enabling
technology for protecting security of the distributed systems [6]. In fact, as a distributed
system, blockchain technology makes extensive use of cryptographic techniques. Thus, let us
review and introduce some of the most fundamental cryptography concepts that are relevant
to the blockchain technology, namely; asymmetric cryptography, digital signatures, and hash
functions.

Asymmetric cryptography (Public key cryptography)

Asymmetric cryptography algorithms use a pair of keys, namely; public key and private key,
where each component of the pair are used to verify the other and to perform two counter-
part cryptographic operations (e.g. encryption - decryption) [116]. Private key is the secret
component of the asymmetric key pair, which is essentially meant to be known only by the
owner of it as a secret information. On the other hand, public key is the public component of
the asymmetric key pair where owner can disclose it to the any part that she wishes. As an
example use case of to asymmetric cryptography algorithms relevant to the blockchain, let us
consider encryption-decryption algorithms. Let us assume, a user U1 wishes to send message m
to user U2 securely, meaning that by assuring integrity and and confidentiality of the message.
Let us also assume U1 has the asymmetric cryptography key set, respectively public key and
private key, Pb1 and Pr1, and U2 has Pb2 and Pr2. In order to send m securely, U1 encrypts m
with the receiver’s public key Pb2 with an encryption algorithm that U2 is aware of (e.g. RSA
algorithm [107]), and then sends the message to the U2. The caveat that ensures confidentiality
of the message is: only way to decrypt this encrypted message is using Pr2, which we assume
only U2 has.

Digital signatures

In above example scheme, if U1 also uses his private key Pr1 in encrypting m, authenticity and
integrity of the message is also ensured, as U2 can decrypt it by using public key Pb1 and thus,
she can be sure that this message has been generated by U1 and has not been modified on the
way (as it would require to have Pb1 to encrypt modified message m). This is an example of the
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methodology known as digital signatures, and is an application of asymmetric cryptography.
The basic idea of the digital signatures is that, they can be created by only one, but can be
read by everyone [6].

Hash functions

Essentially, hashing refers to mapping larger domains to smaller ranges [71]. In cryptography
domain, hash functions are used to ensure data integrity, where they map a variable length
string to fixed-length string [116]. Conceptually a good hashing algorithm never has collusions,
meaning that there is no pair of inputs that would let algorithm to generate same hashed
output. In this thesis, we assume that considered hashing algorithms are collusion-free. Today,
algorithms belonging to Secure Hash Algorithms (SHA) family, such as SHA-2 are widely used
by blockchain protocols such as Bitcoin. Hash functions are extensively used in blockchain
systems to ensure integrity of the data structure by connecting blocks to each other in chain
structure (explained in detail below). In addition to that, Proof of Work blockchains (explained
in detail below), uses hash functions as proof of work functions.

2.2.2 Blockchain

Blockchain relies on the concept of a distributed ledger maintained by a peer-to-peer network
[128]. Novelty of the blockchain technology lies in its ability to achieve coordination and veri-
fication of individual activities carried out by different parties without a centralized authority
or trusted third party, that allows decentralization of application execution with concerted and
autonomous operations.

In blockchain, transactions transfer information (i.e., data packets) between peers. They
have a unique identifier (transaction-id), input data, and are bundled into data chunks, referred
to as blocks. Block generator peers of the blockchain broadcast blocks by exploiting public-key
cryptography. Blocks are recorded in the blockchain with an exact order.

Briefly, a block contains: a set of transactions; a timestamp; a reference to the preceding
block that identifies the block’s place in the blockchain; an authenticated data structure (e.g.,
a Merkle tree) to ensure block integrity.5 The block height is block’s distance to the genesis
block, which has the height 0. An example blockchain containing four blocks is presented in
Figure 2.1.

Blockchains can be classified into two groups as public and permissioned according to their
way of regulating peers’ participation in blockchain operations. Particularly, in public block-
chains, any peer can read and write to the blockchain, meaning that anyone can participate in
the consensus process. Whereas, in permissioned blockchains, only a set of previously identified
peers can write to the blockchain and participate in the consensus, and, read rights may be
public or limited to pre-identified peers.

5Block structure varies in different blockchain protocols, here we list the most common elements.
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Figure 2.1: An example blockchain with 4 blocks

Stale blocks

Blockchains may have forks, aka different branches in the chain structure, due to malicious
manipulations or propagation delays. The longest fork of the blockchain is accepted as the
main branch (for rest of the thesis we refer blocks included to the main blockchain as genuine
blocks), and remains as the agreed [128]. In general, blocks in shorter forks do not included in
the blockchain and they referred as stale blocks, and transactions in stale blocks are considered
as unprocessed by the network.

Smart contracts

Modern blockchains employ deterministic and self-executing contractual clauses called smart
contracts. The smart contract concept was first introduced by Szabo in [124] as: "a com-
puterized transaction protocol that executes the terms of a contract". Smart contracts are
executable scripts stored forever in the blockchain, where nobody can modify or control them.
They have unique address on the blockchain, and their clauses can be triggered by peers via
sending transactions to execute them.

2.2.3 Consensus

In essence, any kind of distributed system includes a set of processes (i.e. abstract units that
are able to perform computations) and in order to execute properly it seeks to achieve some
kind of cooperation among these processes [28]. Consensus is a form of agreement among set
of processes. Processes use consensus to agree on a common result value after their operation
[28]. In a distributed setting, achieving consensus between a set of processes is not an easy
objective, considering the fact that anyone of processes may fail or crash, communication
among processes may be delayed or even blocked (i.e. due to network latency and/or network
partition), or some of processes may act maliciously and not follow the protocol. In the
literature consensus problem has been widely studied [76, 77, 32, 83, 28], and many different
models and systems has been proposed with various fault model abstractions of processes.
Please refer to [28] for broad discussion on processes in distributed systems, consensus problem,
and different consensus models.
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Consensus Protocols

As blockchains are essentially distributed systems, consensus problem is one of the most
fundamental problems that must be handled by blockchain protocols. In fact, different
participants in the blockchain have to achieve consensus on the latest state of the ledger
in order to achieve coordination on the processes that they perform on the ledger. There
are different methodologies to achieve consensus in the blockchain, we explain the related
consensus protocols in the following.

Proof of Work (PoW) protocols. As introduced by Back in HashCash [14], PoW
consensus mechanisms rely on the condition of doing some computation that requires to use
hardware resources and energy to prove legitimacy of the performed operation. Parallel to
that, in blockchains using PoW-based consensus protocols (for the rest of the thesis we will
refer such blockchains as PoW blockchains), such as Bitcoin [92], block generators have to solve
a cryptographic puzzle to generate a valid block. Roughly, main mechanism of the PoW is as
follows: upon forming a new block, block generators add a nonce to the block and take hash of
the block; if the hash value satisfies the predefined threshold, then they can seal the block and
publish it to the blockchain network. Block generation operation is called mining and block
generators are referred as miners. In PoW consensus, it is hard to generate a block, however
it is easy to confirm its validity once it is generated. The main virtue of PoW is preventing
instant block generation to reduce conflicts such as double spending and sybil attacks.

PoW consensus protocols requires to have a system where majority (i.e. one-half plus one
of all peers) of the mining power follows the protocol, aka are honest peers. If majority is not
honest, malicious miners may be able to generate malicious blocks (i.e. blocks that consist
bogus transactions) more frequently than the honest minority and have the longest branch of
the blockchain, which violates correctness of the consensus. Therefore, throughout this thesis,
we assume that in PoW blockchains, at least more than one-half of the total mining power of
the blockchain is honest.

PoW is a probabilistic consensus method, meaning that possibility of a block or transaction
being in the correct branch of the blockchain increases with the more blocks added to the
blockchain as confirmations. Indeed, it is harder for an attacker to generate more blocks to
form an alternative branch of the blockchain when the genuine blockchain is longer as each
block requires to solve PoW puzzle.

Byzantine Fault Tolerant (BFT) protocols. Let us first briefly describe the concepts
called Byzantine processes and Byzantine Fault Tolerance. Byzantine processes are malicious
processes that may fail arbitrarily in any possible way from it’s algorithm and task [28]. For
example, Byzantine processes may not follow the protocol that they have assigned to, they
may stop responding, they may reject connection request, they may selectively drop messages
or they may lie and propagate false information and so on. A distributed system designed to
be BFT must be able to operate correctly and achieve consensus in existence of such arbitrary
behaving processes. In order to achieve BFT consensus, it is a very-well known fact that, in
an asynchronous network (where messages between processes may delay for unbounded times),
the best we can do is to assume that at most less than one-thirds of the all processes are
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Byzantine. If this assumption does not hold, simply the processes in the distributed system
can not achieve the consensus. Therefore, throughout this thesis, whenever we refer to BFT
consensus protocols, we are intrinsically assuming that Byzantine processes in the system are
less than one-thirds of the total process amount.

Today, various blockchain protocols exploit BFT consensus methodologies (for the rest of
the thesis, we will refer such blockchains as BFT blockchains), such as Hyperledger [7] and
Tendermint [26]. Such protocols depend on state replication between block generators. In
BFT blockchains, a block generator selected (via some leader election algorithm) to process
transactions and generate blocks for the next round (i.e. for certain time period or number
of blocks). Then, all blocks are broadcasted to all other block generators, which are entitled
to check validity and correctness of the block generated by the leader of that round. Block
generators add a block to their local copy of the blockchain, aka replication, if at least two-
thirds plus one of the block generators have approved correctness of that block. Different BFT
blockchains apply different algorithms in broadcasting, verification and signing of the blocks.

We want to underline that, there are other protocols that are gaining popularity in the
blockchain space, such as Proof of Stake (PoS) protocols. In PoS consensus model, block
generator selection depends on part of peers’ wealth that they have voted as their stake in the
block generator selection process. We will not dive deep into PoS blockchains, as they are not
used in this thesis.

Comparison of PoW and BFT protocols

In this thesis, we exploit blockchains for IoT, where scalability is a fundamental concern for
successful integration. Therefore, we will compare PoW and BFT blockchains according to
their scalability.

For blockchain-based systems, scalability should be considered under two dimensions,
namely, scalability in terms of transaction throughput and scalability in terms of number of
peers that are participating in the consensus process. First scalability dimension is an important
parameter showing the performance of the blockchain system, whereas latter is an important
parameter in assessing decentralization degree of the blockchain system.

Unluckily those scalability dimensions contradict each other when it comes to PoW and
BFT blockchains. Particularly, BFT blockchains can maintain a relative high throughput. For
example, BFT Tendermint consensus protocol [26] is able to process thousands of transactions
per second. However, BFT blockchains can scale to few dozens of block generators. Whereas
PoW blockchains are able to maintain a relative low throughput while scaling to thousands
of nodes in achieving consensus. Therefore, we are combining PoW and BFT blockchains as
hybrid blockchain architecture to design a scalable blockchain system.

2.2.4 Blockchain platforms

There are many blockchain platforms with different capabilities and properties that are in use
today. We briefly discuss those relevant to this thesis.
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Blockchain technology has been first introduced with Bitcoin, that is essentially an abstract
protocol [92] to perform peer to peer trustless electronic cash payments. Bitcoin uses a Proof of
Work protocol (described in Section 2.3) to achieve consensus. Essentially, Bitcoin is a public
blockchain, however permissioned Bitcoin blockchains can be generated for testing and devel-
opment purposes. Bitcoin protocol employs a scripting language, that is non-Turing complete,
which consists of byte opcodes that are specifying operation types. Where, transactions can
only be generated using the operations in the opcode set. There are many libraries in various
programming languages (e.g., C, C++, Java, Javascript) that allow to generate applications
for Bitcoin blockchain. However, operations that can be performed with libraries are limited
to the opcode set of the Bitcoin.

Ethereum is a second generation blockchain protocol that fundamentally presents a gener-
alized and decentralized state transition machine [136]. Similar to Bitcoin, initial version of
the Ethereum blockchain also uses Proof of Work protocol to achieve consensus, however Proof
of Stake protocol is under development for future releases.6 Ethereum blockchain is a public
blockchain, but the protocol also allows to generate permissioned Ethereum blockchains with
different consensus paradigms, such as Proof of Authority. Ethereum achieves generalization
by employing the smart contract concept with a Turing complete programming language called
Solidity7. With this, blockchain technology gains much broader applicability to many different
domains such as IoT, automative, media, marketing, etc.

Another popular blockchain platform is Hyperledger Fabric, which is one of the Hyperledger8

projects hosted by the Linux Foundation. Fabric supports smart contracts like Ethereum. Ad-
ditionally Fabric allows smart contracts to be written in any general purpose language (e.g.
Java, Golang and Node) to run distributed applications without dependency on a native cryp-
tocurrency. Unlike Bitcoin and Ethereum, Fabric is a framework for deploying permissioned
blockchains. Fabric uses a special kind of Byzantine Fault Tolerant protocol to achieve consen-
sus, where blockchain transactions are first executed, then ordered and verified.

6github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
7solidity.readthedocs.io
8hyperledger.org



Chapter 3

Literature Review

In this chapter, we review related work that are dealing with data privacy and security issues
of IoT systems, and also work that apply blockchain technology to IoT. To this end, first, in
Section 3.1 we explore work dealing with privacy issues in the IoT domain. Afterwards, in
Section 3.2 we survey work performing botnet detection. Finally, in Section 3.3, we review
previous work that apply blockchain to IoT and also work that target to improve scalability of
blockchain protocols.

3.1 Privacy for IoT

In recent years, privacy in the IoT domain have been deeply investigated, with the results that
various approaches have been proposed for dealing with different aspects of privacy. In this
section, we provide an overview of those proposals that are more related to this thesis. In
particular, we focus on those approaches that enforce, in some ways, users’ privacy. However,
we also have to note that literature offers several interesting proposals that, like our framework,
deal with the problem of decentralized policy enforcement. All these efforts have been done in
domains different from IoT but they deserve to be cited. In the following, we summarized work
in these two directions.

3.1.1 Enforcement of users’ privacy in the IoT domain

We start noticing that relevant efforts have been done with the aim of granting/denying accesses
to data sensed through IoT devices. In general, these grants are regulated according to a
predefined set of rules (e.g., access control policies). So far different access control models have
been exploited in the IoT domain: role based access control (RBAC) (e.g., [82], [16]); capability
based access control (CapBAC) (e.g., [121]); attribute based access control (ABAC) (e.g., [118],
[142]), and access control models based on semantic rules (e.g., [33]).

Recently, blockchain has been gaining interest as overlay framework to perform access con-
trol [46, 48, 100, 99, 102]. For instance, [100] and [99] introduces a blockchain based access
control framework called FairAccess to meet security and privacy needs of IoT. In FairAccess,

29



C
H

A
P

T
E

R
3
.

L
IT

E
R

A
T

U
R

E
R

E
V

IE
W

30

Reviewed Decentralized Privacy preference Tailored Control on future Check compliance

approaches architecture support for IoT use of data with consumers policies

[82], [16], [121], [118], [142], [33] ✓/ ✗ ✗ ✓ ✗ ✓

[46, 48, 100, 99, 102] ✓/ ✗ ✗ ✓ ✗ ✓

[127] ✗ ✓ ✓ ✗ ✓

[123] ✗ ✗ ✓ ✗ ✗

[23] ✗ ✓ ✓ ✗ ✓

[120] ✗ ✗ ✓ ✗ ✗

[65] ✗ ✗ ✓ ✗ ✗

[49] ✗ ✓ ✓ ✗ ✗

[85] ✗ ✗ ✓ ✗ ✗

[119] ✓ ✓ ✓ ✓ ✗

[145], [61] ✓ ✗ ✗ ✗ ✗

[25], [20] ✓ ✗ ✗ ✗ ✓

Approach in Chapter 4 ✗ ✓ ✓ ✓ ✓

Approach in Chapter 5 ✓ ✓ ✓ ✓ ✓

Table 3.1: Features of the considered state-of-art approaches. If the approach contains the feature: "✓".
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blockchain is used to keep track and validity of access transactions among autonomous organi-
zations in a distributed manner. To this end, FairAccess introduces new blockchain transaction
types to grant, get, delegate, and revoke access rights to resources. Similarly, in [48], blockchain
based architecture is used to manage data privacy and security of smart vehicles. Whereas,
[46] proposes a blockchain architecture to protect security and privacy of data generated by
IoT devices on smart home example. Also in [102] blockchain is used as a central enabler for
access authorizations in IoT, which supports variety of access control models.

Although these proposals are instrumental to control how users’ personal data are used,
and thus, in some sense, to protect users’ privacy, they do not make users able to provide their
own preferences on how their data have to be used and distributed. As such, users’ privacy
depends on how access control rules are specified. Thus, they do not give users ability to have
a full control on how data have to be processed (e.g., accessed, aggregated, released).

User’s privacy preferences have been considered in [127], which proposes a framework avoid-
ing inference of personal data due to data fusion. Users specify their privacy preferences in
terms of a level of confidentiality associated with each data. The proposed framework consists of
a central unit, called Personal Data Manager (PDM), that manages personal data collected by
different devices, playing thus the role of a gateway between users and third party applications.
A further module, called Adaptive Interface Discovery Service (AID-S), computes the risk of
inference associated with a data disclosure, via probabilistic models and learning algorithms
(e.g., RST, KNN, Bayes Filter, HMM etc.). Based on this risk value, AID-S recommends op-
timal privacy settings to users to reduce the privacy risks. Similar to our proposal, also this
approach considers user’s perspective, but only in stating the confidentiality level of personal
data. Moreover, this approach does not enforce privacy of the user against data inferences in a
decentralized setting and thus it is not able to pose more limitations on possible data fusions.

Compliance of user’s privacy preferences with third party’s privacy policies have been con-
sidered in [23]. Here, it has been proposed an application for mobile phones that supports
customers in making privacy decisions. Privacy preferences are automatically generated ac-
cording to the result of a questionnaire filled by users. Proposed mechanism acts as a privacy
compliance mediator between the corporate and the user, with use of privacy policies of the
corporate which are attached to the RFID tag of the product, and privacy preferences of the
user stored in her mobile phone. The application informs the user whether his/her privacy
preferences complies with the corporate’s privacy policies. This is a limited approach, as it is
only valid for an application scenario, and only valid for known queries.

Similar to our approach, other proposals have targeted smart environments (e.g., smart
home and smart city systems) with the aim of protecting users’ privacy. In [120], authors
address the security and privacy problems of IoT smart home at the network level, that is, by
monitoring network activities of IoT devices to detect suspicious behaviors. In [65], a privacy
and security model for smart homes is presented, where risk analysis is performed on smart
automation system, and, based on this they identified central concepts of their privacy and
security model. An external entity, called Security Management Provider (SMP) has been
proposed. SMP can add access control rules to protect specific IoT devices or can apply
dynamic policies to change access control rules depending on the context (e.g., the family
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members being present or absent from the house). Similarly in [49], a context-aware adaptive
approach for devices that access location-based services is proposed. Privacy is enforced by an
agent, which derives location information through context analysis on network-based services
and reacts to context variations. Moreover, software defined networking (SDN) technology
is used to block/quarantine IoT devices in the smart home network, based on their network
activities. This proposals aims at protecting privacy of the user by limiting access on data
through an external entity, i.e., SMP, with the use of context information. However, those
approaches have limitations, as they do not allow users to define privacy preferences on how
their data might be used in an decentralized scenario.

In [85], a two layered architecture is proposed for protecting users’ privacy in smart city ap-
plications. A trusted layer is designed to store real identities of individuals that can be processed
only by the platform’s components, without disclosing the identities to the outside world. In
contrast, an untrusted second layer only makes generic, unidentifiable and identity-independent
information available to external applications. Even if this proposal protects personal data, this
is enforced only inside the trusted layer, without considering future operations that may be done
on the released data to infer new sensitive information. Moreover, users are not able to set and
enforce their own privacy preferences.

3.1.2 Decentralized policy enforcement

A notable example of decentralized privacy management is represented by the sticky policy
approach [101]. According to this approach user privacy preferences are strictly associated
(sticky) with users’ data. [101] describes the core mechanisms required for managing sticky
policies, along with Public Key Infrastructure (PKI) and encryption methodologies to attach
sticky policies with data as well as to enforce them. [24] presents a distributed enforcement
approach for sticky policies that permits data to be disseminated across heterogeneous hardware
and software environments without pre-existing trust relationships. Also, [119] presents a sticky
policy approach to manage the access to IoT resources by allowing users to set and manage
access control policies on their own data. In this approach, sticky policies allow to define: owner
of the data; purposes for which the data can be used; a timestamp that points out the validity;
and constraints which represent the rules for filtering the data with obligations and restrictions.
Even though sticky policy approach has the goal of decentralized enforcement of user privacy
preferences, it is only limited to traditional privacy preference model with retention, purpose
etc. Moreover, sticky policy approaches use encryption mechanisms to enhance privacy, which
add extra level of complexity and demand higher resources from the devices.

However, we have to note that cryptographic solutions have been often used to enforce
distributed access control in several domains, like online social networks (e.g., [30, 66]), or
cloud infrastructure (e.g., [133, 109]). In the following we focus on efforts done in wireless
sensor networks, as these are more relevant for the IoT domain. For instance, [145] presents a
distributed privacy preserving access control scheme designed for network of sensor nodes owned
by different users, connected via a network, and managed via an offline certificate authority.
In the proposed scheme, access control is regulated exploiting tokens that users have to pre-
buy from the network owner before entering the sensor network. Users can query sensor data
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with unspent tokens and sensor nodes are subject to validate the token and grant appropriate
amount of requested data. The scheme makes use of blind signatures in token generation, which
ensures that tokens are publicly verifiable yet they are unlikable to user identities. Similarly
to the previous cited work, [61] presents a distributed protocol for achieving privacy-preserving
access control for sensor networks by exploiting a ring signature scheme. To query sensor nodes,
a user needs to build a ring signature along with the query command and send them together to
sensor nodes. However such approaches do not consider privacy preferences of the data owner.

Literature offers also works dealing with composition of heterogeneous access control poli-
cies. These have been done with the goal of composing a set of access control policies into a
single one [25, 20]. For instance, [25] proposes a semantic framework for policy composition
without committing to a specific access control model. Access control policies are modelled as
four valued predicates. Similarly, [20] proposes an algebra for constructing security policy from
different policies.

Table 3.1 presents a summary of the main features of the approaches reviewed in this section
and their comparison with our privacy enforcement approaches presented in Chapters 4 and 5.
As presented in the table, all above-mentioned proposals do not completely address challenges
arisen in IoT ecosystems. It is fundamental to give users more control on data management
within IoT platforms and control future uses of data to achieve proper privacy protection.

3.2 Botnet detection systems

In this section, we review the related work for P2P botnet detection, as we propose AutoBot-
Catcher, a P2P blockchain based botnet detection framework, in Chapter 6. In recent years,
vast amounts of work has been devoted to P2P botnet detection. In general, botnet detection
methodologies can be categorized into two groups: host-based and network-based approaches.
Host-based approaches require the monitoring of all hosts, which is impractical for the IoT
domain. Therefore, we focus on network-based approaches, which in turn can be classified into
two groups, discussed in the following. Table 3.2 presents a summary of the main features of
the approaches reviewed in this section and their comparison with AutoBotCatcher presented
in Chapters 6.

Network traffic signature based approaches

Literature offers many work that classify hosts based on their network traffic behaviour. In gen-
eral, these approaches exploit supervised/unsupervised machine learning techniques to identify
whether hosts are benign or malicious [56, 143, 67, 110, 104, 144, 93, 88, 59]. In machine learn-
ing based approaches, an algorithm is trained with the samples of network traffic, in order to
detect malicious network traffic. For example, in [144], a statistical network traffic fingerprint-
ing approach that is using unsupervised machine learning techniques to identify P2P activity
and to group hosts participate in malicious P2P traffic is proposed. Entelecheia, proposed in
[59], aims to detect in bots in their waiting stage by exploiting their social behaviour. Specifi-
cally, Entelecheia uses network traffic signatures to create a graph of likely malicious flows and
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perform graph mining steps to to cluster and label botnet nodes. In [110], Saad et al. uses five
different machine learning algorithm to extract features from the observed benign and botnet
network traffic, and use that features for botnet detection. PeerSark, proposed in [93], is a port
and protocol oblivious conversation-based approach to detect P2P botnet traffic. However,
in a dynamic network, botmasters can randomize botnet traffic by changing communication
frequency, packet sizes, etc. As such, network traffic signatures learned by machine learning
approaches may not be robust enough to identify bots [139], which would eventually make such
approaches ineffective.

Moreover, some of the proposed approaches, such as [56, 88], rely on deep packet inspec-
tion techniques (DPI) to analyze network packet contents. Particularly, BotMiner proposed in
[56], groups hosts that share similar communication patterns in performing malicious activities.
More recently, BotDetector proposed in [88], leverages on DPI techniques to monitor informa-
tion recorded on HTTP headers is proposed. However, these checks can be bypassed through
encryption of C&C channels. Moreover, DPI based approaches are computationally expensive.
Given that, we conclude that network traffic signature based approaches are not suitable for
dynamic and evolving IoT environments.

Group and community behavior based approaches

Some works use group and community behaviour analysis for botnet detection [39, 139, 91, 149].
As an example, similarly to us, [39] exploits mutual contacts extracted from network traffic
flow of hosts, in order to identify bots in a P2P network. [39] executes dye-pumping algorithm,
where iteratively pumps dye to the nodes in the mutual contacts graph through a coefficient
called dye-attraction to send more dye to the nodes that are more likely to be bots, and,
algorithm picks the nodes with more dye than a threshold. Whereas [139] collects network
flow records at the edge routers of a campus network, and performs group level behaviour
analysis on network traffic flow with Support Vector Machine (SVM) to label P2P bot clusters.
Botgrep [91] is a network graph structure based botnet detection method that uses data mining
techniques for bot detection. The graph is structured according to the information on node
pair communications as communication graph. Botgrep partitions the communication graph
into smaller pieces as localized communication graphs. However, these approaches are able
to detect only previously known bot types. Therefore, they are not suitable for IoT, where
new botnets emerge frequently [75]. Differently, PeerHunter [149] exploits Louvain method to
perform network flow level community behaviour analysis on mutual contacts graph, without
relying on previously known bot types. Yet, PeerHunter performs static botnet detection on
the collected network traffic flow data, which is inadequate for a dynamic and evolving IoT
environment that requires dynamic botnet detection.

Blockchain-based botnet detection approach

Blockchain technology might be a solution to the problems faced by relevant works proposed
in the literature. In fact, to enable multiple parties to collaborate for botnet detection, by
designing AutoBotCatcher (Chapter 6) we chose to use blockchain rather than a centralized
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Reviewed Decentralized Dynamic Working on Tailored for Multi-party Blockchain

approaches architecture bot detection encrypted payload IoT collaboration based

[56] ✗ ✗ ✗ ✗ ✗ ✗

[143] ✗ ✗ ✓ ✗ ✗ ✗

[67] ✗ ✗ ✓ ✗ ✗ ✗

[110] ✗ ✗ ✗ ✗ ✗ ✗

[104] ✗ ✓ ✓ ✗ ✗ ✗

[144] ✗ ✗ ✓ ✗ ✗ ✗

[93] ✗ ✓ ✓ ✗ ✗ ✗

[88] ✓ ✓ ✓ ✓ ✗ ✗

[59] ✗ ✓ ✓ ✗ ✗ ✗

[39] ✗ ✓ ✓ ✗ ✗ ✗

[139] ✗ ✓ ✓ ✗ ✗ ✗

[91] ✗ ✗ ✓ ✗ ✗ ✗

[149] ✗ ✗ ✓ ✗ ✗ ✗

AutoBotCatcher ✓ ✓ ✓ ✓ ✓ ✓

Table 3.2: Features of the considered state-of-art approaches. If the approach contains the feature: "✓".



CHAPTER 3. LITERATURE REVIEW 36

system given the benefits blockchain might bring. Thanks to its distributed consensus protocol
1, blockchain platform does not require a central trusted party to validate the correct execu-
tion of the collaborative process (aka botnet detection), and ensure transparency on collected
snapshots of communities of IoT devices overcoming the possible lack of trust among parties
involved in the botnet detection (see Section 2.2.2). Moreover, as a state transition machine,
blockchain lets us model the whole botnet detection process as a set of shared application states
(aka states of parties collaborating in the botnet detection). This allows AutoBotCatcher to
perform dynamic and collaborative botnet detection on large number of IoT devices.

3.3 Decentralizing IoT with Blockchain

Blockchain is a promising technology to achieve decentralization, as it allows to achieve dis-
tributed consensus among different parties without needing to trust each other or a central
server/database. In the literature, there are few instances of application of blockchain to IoT.
Let us provide an overview of these proposals, as we propose Hybrid-IoT, a hybrid blockchain
architecture for IoT, in Chapter 7. However, we also have to note that literature offers some
interesting proposals that deal with the problem of scalability of PoW blockchains. All these
efforts have been done in domains different from IoT, but they deserve to be cited.In the
following, we summarized works in these two directions.

Blockchain for IoT

In the literature, there are few instances of application of blockchain to IoT. One application
of blockchain to IoT is [15], where a blockchain platform for industrial IoT (BPIIoT) has
been proposed. BPIIoT exploits smart contracts to develop a decentralized manufacturing
applications of cloud based manufacturing (CBM). In that, IoT devices run blockchain services
and contain blockchain wallets for sending transactions to the smart contracts. Smart contracts
have also been exploited in [64] in order to manage smart meter data. Likewise, in [78] a
blockchain based system has been proposed to manage firmware updates of IoT devices. [60]
exploits blockchain to store access control data, as a data storage system in a multi-tier IoT
architecture. In [5], blockchain and smart contracts are used to secure authorization requests
to IoT resources. The above mentioned works make use of blockchain to either execute smart
contracts or perform application specific tasks, but not to decentralize IoT systems and achieve
autonomous application execution.

[47] proposes a blockchain architecture for IoT containing two layers, namely: smart home
layer (centrally managed private ledgers) and a overlay layer (public blockchain). Resource
constrained devices form private ledgers in smart home layer, that are centrally managed by
constituent nodes. Group of constituent nodes select a cluster head operating in the overlay
network. It relies on distributed trust algorithms to eliminate computational overhead from
IoT devices due to PoW solving task. However, the proposed architecture does not help with

1With the assumption that more than two-thirds of the block generators are honest.
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the decentralization of IoT. In fact, IoT devices are centrally managed and connected to one
constituent node that does not take part in the distributed consensus.

Differently from previous works, the Tangle2 protocol implements a global distributed ledger
for IoT by using Directed Acyclic Graph generated by transactions as a blockchainless approach.
Tangle is designed as a cryptocurrency for IoT to make micro-payments possible, it does not
provide an architecture or data structure to decentralize IoT and it is not Turing complete to
allow scripting and smart contracts.

Blockchain scalability

In the literature, limitations related to scalability of PoW blockchains have been widely studied
[43, 40] and different methodologies have been proposed to overcome such limitations [79, 122,
50, 13]. One notable approach is using block Decentralized Acyclic Graphs as reconstruction of
classical longest chain protocols [79, 122]. Another significant proposal is Bitcoin-NG protocol
[50] by Eyal et al. Bitcoin-NG protocol proposes use of two types of blocks in the Bitcoin
blockchain, namely; key blocks and microblocks, to achieve higher transaction throughput.
Differently, [13] Back et al. proposes the use of multiple interoperable blockchains, referred to
as pegged sidechains, to allow assets in different ledgers to be transferred between each other.

In [13], Back et al. proposed to use multiple interoperable blockchains, referred to as
pegged sidechains, to allow assets in different ledgers to be transferred between each other.
This approach uses multiple interoperable blockchains, referred to as sidechains.Even though
this approach aims to scalability performance improvement, the main purpose of the pegged
sidechain approach is to allow users to transfer their assets in different blockchains.

Likewise, in [45], a blockchain architecture that is containing private ledgers managed cen-
trally, a public overlay blockchain, and cloud infrastructure is proposed. Resource constrained
devices form private ledgers, that are centrally managed by constituent nodes. Group of con-
stituent nodes select a cluster head that is operating in the overlay network. Transaction
validation is done via distributed trust. The proposed architecture does not help with the
decentralization of IoT. In fact, IoT devices are centrally managed and connected to one con-
stituent node that does not take part in the distributed consensus.

2iota.org/IOTA_Whitepaper.pdf



Chapter 4

Enhancing User Privacy in IoT

Internet of Things (IoT) applications aim at improving our every-day lives in a variety of forms.
However, the acceptance of IoT services is hindered by customers perceived risks, and due to
the high volume of collected personal data, as well as by trust in organizations providing the
services. In fact, as discussed in the Chapter 1, privacy is considered as a major concern [86]
in IoT.

In general, with some differences, privacy laws of many countries such as European Union’s
GDPR [106] impose that any stakeholder collecting users’ personal data has to make available
the adopted privacy policies, commonly provided in the form of a legal statement that declares
how data are collected, used and disclosed to third parties. In order to gain a service, then, the
interested users have to check privacy policies in place at the service provider site and accept
them (or eventually partially accept them). However, it is not easy for the average user of IoT
applications to make a conscious decision since it is very difficult to have a clear understanding
of what the service provider privacy policies mean in terms of personal data disclosure.

As presented in Chapter 3.1, recent research efforts tried to address privacy issues (e.g.,
[123], [23], [96], [65], [49]). User privacy has also been the subject of intensive research in
domains complementary to IoT. For instance, recent research efforts have focused on the web
domain (e.g., [17]), BigData analytics systems (e.g., [37]), NoSQL datastores (e.g., [36]), data
stream management systems (e.g., [29]), and RFID technology (e.g., [54]). However, these
proposals do not completely address the new challenge posed by IoT ecosystems. In fact, due
to the complexity of the data flows among IoT devices and back-end systems, users easily lose
the control on how their data are distributed and processed. This is even made worse by the
lack of an effective control on how data generated by different IoT devices are combined to infer
new information on individuals. In contrast, we believe that it is fundamental to give users
more control on data management within IoT platforms.

In order to cope with this challenge, we present a core framework which aims at enhanc-
ing user control on personal data usage within IoT platforms. The proposed privacy frame-
work consists of a novel model supporting the specification of privacy preferences regulating
data analysis within IoT environments, and related enforcement mechanisms. The problem
addressed by the proposed framework is preventing inference of sensitive and confidential in-

38
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formation about the user that resulted from the aggregation of data generated by various IoT
devices of user. Particularly, we believe that it is important to make users able to express their
own privacy preferences on how their data have to be managed, generally expressed in terms of
well-established concepts in the context of privacy management, like: purpose of the usage of
personal data, time of retention of personal data in the stakeholder system, disclosure to third
parties, etc. The framework has been designed to operate in a reference IoT platform with a
general architecture that easily fits numerous IoT systems. The key contribution of this work
is twofold. On the one hand it supports novel privacy preferences tailored for the IoT domain,
which constrain: 1) which portion of users personal data can be accessed and how these data
can be combined, and 2) what cannot be derived from users data by analytics processes. On
the other hand, in order to enhance user control, it supports the automatic definition of new
privacy preferences for regulating the processing of new data generated by analytics processes.
We would like to note that, we are aware that an average owner of an IoT device may not
be able to set his/her privacy preferences due to lack of technical capabilities and knowledge.
Indeed, as future work we plan to improve usability of the framework by designing tools to help
them set their privacy preferences.

The remainder of this chapter is organized as follows: Section 4.1 discusses key requirements
for the privacy framework definition; Section 4.2 briefly presents the reference IoT platform
which can host the framework; Section 4.3 introduces the privacy preference model; Section
4.4 discusses the automatic generation of new privacy preferences; Section 4.5 presents the
proposed enforcement mechanisms; and Section 4.6 assesses the enforcement overhead.

4.1 Requirements

Let us now consider two key requirements related to the definition of the envisaged privacy
framework.

The first requirement, consists in making users able to state which pieces of their data,
possibly generated by different devices, can be jointly accessed, composed or aggregated for given
purposes. As an example, referring to the domain of fitness IoT applications, a user may want
to avoid that personal data, like weight and height, could be jointly accessed with fitness data,
like movements, as this could lead to infer information on the physical state.

However, these types of restrictions are not enough. In fact, as an average user could not
figure out the potential risks of combining data of different devices as he/she could not be
aware of what new information can be inferred, thus failing in setting these constraints. As an
example, a user might not be aware that, by combing data related to movements, heart beats
and breath rate, possible psychological disorders due to insomnia can be inferred. Therefore,
we believe that individuals should explicitly state what cannot be inferred from their data about
them, by any analytics process. For instance, referring to the previous example, a user may
want to forbid that his/her movements are used to infer psychological diseases.

A second challenging requirement is related to the management of new derived data. Indeed,
although the above-mentioned features help one to regulate the derivation of new data, they
fail in controlling how these new data will be managed. Indeed, these new data could flow
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through other analytics processes with purposes different from the one authorized for the process
originating them. Moreover, these processes could in turn infer additional new knowledge about
individuals, on which the user loses control. As such, to make the user able to have some
control also on new data, we see the need of the automatic definition of privacy preferences for
new derived data. These new preferences have to be defined taking into account the privacy
preferences of owners of each single piece of data used for computing the new derived data.

Example 1 Let us consider a scenario with a smart scale, a step counter that also calculates
the walked distance, and a fitness watch with a heart rate monitor and movements sensors, and
let us assume that privacy preferences are specified for the data generated by all these devices.
The walked distance and the number of steps reveal the average step length, which in turn, with
some approximation allows inferring the individual height. Starting from height and weight one
can infer the body mass index of the individual, which is new inferred information not directly
sensed by any IoT device. Since no privacy preference has been specified for these new derived
data, a process that combines the body mass index with heart beats and movements data could
infer information related to the individual physical state. In order to avoid undesired inferences,
the processing of the body mass index, needs to be regulated by privacy preferences derived from
those specified for the data generated by the smart scale and the step counter.

4.2 The reference IoT platform

The main purpose of the framework is making users able to set and enforce their privacy
preferences in a centralized IoT scenario. In the following, we present the subjects of this
scenario and reference IoT platform that we consider.

Subjects. We consider two types of subjects, namely, data owners and data consumers.
Data owner is the user that owns the IoT device generating data. We assume that data owners
define individual privacy preferences over their data in order to control how their data are
distributed and processed. In contrast, data consumers consume raw or processed data from
IoT systems. We assume that data consumers adopt privacy practices that specify how the
consumer will use the users’ data.

The reference IoT platform. Once the IoT privacy language/model is defined, we have
the further challenge to envisage how the defined mechanism for enforcing privacy preferences
against stakeholder privacy policies can fit in the IoT ecosystem. As this purpose, we target a
platform whose general architecture represent a variety of IoT systems. The platform, shown in
Figure 4.1, consists of a few components supporting communication, analysis and enforcement.
This platform represents a centralized scenario, where data processing and privacy enforcement
performed by a central entity. In the reference IoT platform that message broker, Complex
event process (CEP) system and the privacy preference enforcement monitor are deployed in
the cloud. This platform represents a centralized scenario, where data processing and privacy
enforcement performed by a central entity.

Communication features are mainly in charge of a message broker, namely a component
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Figure 4.1: Reference IoT platform

acting as a message passing server, through which, by means of different protocols (e.g., MQTT1

etc.), IoT devices publish their data, and consumers subscribe to access available data. In the
reference IoT platform we assume that the broker publishes only data sensed from IoT devices,
each of which refers to a single user.

The analysis features are supported by analytics tools. The reference platform targets a
CEP system, as CEPs provide analysis toolkit tailored for the IoT domain (e.g., see [34]).
Sensed data are forwarded by the message broker to the CEP as append-only streams of tuples,
where registered queries analyze, combine and aggregate them generating new output data.2

We assume that all data tuples in a stream have the same scheme, and we also assume that
each stream is associated with a single device.

Finally, the enforcement monitor (see Figure 4.1) implements the enforcement mechanisms
of the proposed privacy framework. This module has to analyze every consumer request and
decide if his/her privacy policy satisfies the privacy preferences specified for the accessed data
on the basis of the proposed model. These requests can be a simple demand for accessing raw
data generated by a device, as well as complex queries to be addressed to the CEP.

4.3 The privacy preference model

In this section, we introduce the core elements required for the specification and enforcement
of privacy preferences.

1http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/
2CEP queries are an example of possible implementation of the above mentioned analytics processes.
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Figure 4.2: Example of data category tree

Figure 4.3: Example of purpose tree

4.3.1 Data categories and purposes

A first key feature of our privacy preferences is the ability to regulate data analysis on the basis
of data categories, specifying the type of information conveyed by data streams. Categories are
hierarchically organized into a tree structure, where data belonging to a category dc implicitly
belong to all categories that have been directly or indirectly specialized by dc. In what follows,
we denote with C the set of adopted data categories, whereas CtC denotes the data category
tree of C. A data category is therefore modelled as a pair 〈 id, pc 〉, where id is the category
identifier, whereas pc is the identifier of the category in CtC which is specialized by dc, if any,
or it is set to ⊥, if the category is the root of CtC .

Categories can range from general ones, possibly denoting heterogeneous data (e.g., personal
data) to fine grained ones, modelling data represented by single attributes of a data stream
(e.g., heart beats). The proposed model does not constrain the categories to be used and system
administrators are free to classify data on the basis of application scenarios requirements. For
instance, in [35] we have proposed the data categories identifier, quasi identifier, sensitive and
generic, which have been derived from the analysis of privacy legislation and the literature
on privacy aware data publishing. The category sensitive refers to data, such as political
preferences, religious creed, employment status, and health conditions, which reveal sensitive
information of individuals private life. The category identifier refers to data that reveal the
identity of data subjects, whereas the category quasi identifier refers to a set of data which
linked to external data allow identifying the individual to whom these data are referring to.
Finally, the category generic groups all data that do not belong to the previously considered
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categories. We believe that the above mentioned categories are general enough to be used in
a variety of IoT scenarios, as they can be easily specialized or generalized to meet scenario
dependent requirements. For instance, Figure 4.2 shows how such categories can be specialized
for the domain of sport and fitness IoT applications.

The second element of our model are the purposes which are used to specify the reasons for
which data generated by user devices can be accessed and analyzed. The collection of all the
purposes defined for an application scenario forms the scenario purpose set, denoted in what
follows as P. Like data categories also purposes are hierarchically organized into a tree, referred
to as the purpose tree PtP . A purpose p is modelled as a pair 〈pid, pa〉, where pid is the
identifier of p, whereas pa is set to the identifier of the direct ancestor of p into the purpose
tree, or ⊥, if p does not descend from any other purpose. Figure 4.3 shows an example of the
purpose tree.

System administrators define the purpose set and data category set related to a given
application scenario, as well as the related trees, and classify the data flowing throughout the
platform assigning a data category to each stream attribute.

4.3.2 Privacy preferences

Privacy preferences are specified for each user device, and regulate the access and processing
of the data stream generated by such a device. They are fine-grained in the sense that they
regulate the access at the level of each single attribute. In particular, they first specify, through
purposes, the reasons for which data streams can be analyzed, and those for which the access
is explicitly prohibited. This second case is particularly useful for specifying exceptions when
purposes are organized into a tree. We model this by a privacy preference component, denoted
as intended purposes, formally defined as follows.

Definition 1 (Intended purpose) An intended purpose ip is a pair 〈Aip, Exc〉, where Aip
(allowed intended purposes) is a set of purposes belonging to P and Exc (exceptions) is a set of
purpose elements that descend from elements in Aip. ip authorizes the access for all purposes
that descend from3 the elements in Aip except for those that descend from any element of Exc.

Example 2 Let us suppose to specify an intended purpose ip wrt the purpose tree in Figure
4.3, which authorizes the access for the purposes that descend from marketing and analysis,
except for those that descend from direct. According to Def. 1, ip is defined as 〈{marketing,
analysis}, {direct}〉.

Besides intended purposes, a privacy preference specified for a target attribute a of a data
stream allows one to specify the data categories that can be jointly accessed with those asso-
ciated with a for a given purpose. This is formalized through the definition of a joint access
constraint.

3Hereafter we assume this relationship as reflexive, meaning that every element descend from itself.
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Definition 2 (Joint access constraint) Let a be an attribute of a data stream and let c be
the data category associated a. A joint access constraint jac for a is a tuple 〈Adc, Exc, ip〉,
where Adc (allowed data categories) is a set of data categories belonging to C, Exc is a set of
data categories that specialize elements in Adc, and ip is an intended purpose. jac specifies that
the categories that descend from those specified in Adc can be jointly accessed with c for the
purposes authorized by ip, except for those that descend from any element in Exc.

It is worth noting that the ip component of jac specializes the homonymous component
of the privacy preferences in that, in order to grant the joint access, the authorized purposes
implied by the specification of jac.ip must not be disjoint by those implied by pp.ip.4

Example 3 Let us consider the data categories in Figure 4.2, and let us consider an attribute
a classified as Physical state. Suppose to define the following joint access constraint for a:
jac=〈{sensitive, identifier, fitness}, {health}, 〈{third-party}, ∅〉〉. jac authorizes the joint access
of a with data classified as sensitive, identifier or fitness, except for data classified as health for
any purpose descending from third-party.

A privacy preference protects target data combining together intended purposes and joint
access constraints. Additionally, it allows specifying a set of categories that should not be
derived from the accessed data, independently from the type of access that is performed (e.g.,
joint or simple). For instance, from the analysis of movements, heart-beats and blood pressure
one could infer that the individual to whom these data refer to could suffer from any circu-
latory disease. As such, users may want to avoid that apparently generic data, such as their
movements, could be used to infer their physical state.

Definition 3 (Privacy preference) A privacy preference pp is a tuple 〈a, ip, jac, cdc〉, where
a is an attribute of a data stream, ip specifies the intended purposes for which a can be collected
and used, jac specifies a joint access constraint, whereas cdc is a set of data categories belonging
to Dc, which denotes the set of categories which cannot be derived from a.5

Example 4 Let us now suppose to specify a privacy preference pp that protects the attribute
heart-beats to which the category Physical state has been assigned. pp is specified in such a
way to integrate the intended purpose ip and joint access constraint jac introduced in Ex. 2
and 3, and to forbid the derivation of health related data, that is, pp=〈heart-beats, 〈{marketing,
analysis}, {direct}〉, 〈{sensitive, identifier}, {health}, 〈{third-party}, ∅〉〉,{health}〉. Thus, pp
grants the access to heart-beats for the purposes Marketing, Analysis, Third-party, TPostal and
TEmail, the joint access with other data provided that jac is satisfied, and, finally, forbids using
heart-beats in any inference process that derives health data.

The considered privacy preference model mainly focuses on the new privacy components
tailored for the IoT domain (i.e., consumer identities, joint access constraints, and category

4The consistency of the specification of ip with jac.ip is verified at privacy preference specification time.
5The categories are those in cdc and their descendants in the category tree.
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derivation constraints). However, it is relevant to note that the model can be easily extended
to support also preferences on additional components used in common privacy practices, like:
data retention, aka how long data can be stored in the information system of consumers, third-
party data sharing options. More precisely, these additional preferences could be verified before
data release by matching these preferences against corresponding statements in the consumer
privacy policy. Moreover, it is important to highlight that the additional elements that we
have introduced to cope with the new issues that IoT scenario poses, (i.e., consumer identities,
joint access constraints, and category derivation constraints) are not mandatory. This provides
flexibility to vendors to decide whether to adhere only to common privacy practices or to exploit
the extended privacy preferences so as to provide users with a more complete control on their
personal data.

4.4 Privacy Preferences for new derived data

In this section we propose an approach to automatically generate new privacy preferences for
new generated data. In order to present the approach we first overview the query model and
its operators so as to highlight which kind of new data the privacy preferences have to deal
with.

4.4.1 Query model

A variety of query languages have been proposed for CEPs, but no de-facto standard language
has emerged so far. However, most of the existing languages share the same set of core operators.
As such, we consider a CEP with queries modelled as a loop-free directed graph, where nodes
are SQL-like operators that are incrementally performed on streams, and edges indicates the
flow that tuples follow through the graph. According to this query model, each single operator
(node) modifies the stream entering the operator generating a new internal stream, which will
be further modified by other operators in the graph till being composed into the final output
stream. Hereafter we consider the following operators:

• IN, which conveys a data stream, containing tuples modelling data sensed by owner
device, to other query operators;

• OUT, which returns the final data stream resulting from executing all query operators in
the graph on the input streams;

• σ, which selects only those tuples of the stream entering the operator that satisfy given
selection criteria;

• π, which generates a stream resulting from the projection and possible combination of
attributes of the entering stream;

• ✶, which performs the join of two data streams on the basis of an equality condition of a
pair of attributes;
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• Σ, which executes given aggregate functions over windows of data items of the stream
entering the operator.

Operators σ, IN, and OUT do not generate any new data, as they do not change the schema
of the stream entering the operator. In contrast, operators π and Σ might create new data.
Indeed, standard SQL π allows specifying new attributes as combination of attributes of the
entering stream. For instance, a derived attribute steps can be specified as walking-steps +
up-steps, where walking-steps, up-steps are attributes belonging to the stream received as input
by π. Similar for Σ, which allows specifying new attributes resulting from the aggregation of
multiple instances of a target attribute. For instance, Σ could derive the average heart beats
as avg(heart-beats).

A separate discussion is deserved for the ✶ operator, which executes the equi-join of two
streams. ✶ returns a stream whose schema is defined as the union of the attributes of the two
streams received as input, except for the attributes referred to within the equality condition, of
which only one copy is included. For instance, let us suppose to execute the join of the stream
S1 with attributes name, height, and weight, with the stream S2, with attributes user, heart-
beats, walk-steps specifying user=name as join condition. The derived stream is composed of
the attributes height, weight, steps, heart-beats and a copy of name / user. Although ✶ does
not create any new data, it merges into a unique attribute (i.e., the one over which the join is
computed) two attributes, which might be regulated by different privacy preferences.

Example 5 As an example, let us suppose to execute the equi-join of the data streams generated
by the fitness watches owned by Bob and Mary on attribute position which is included in both
the streams. Bob and Mary specify different privacy preferences for their data as well as for
position. More precisely, let us suppose that Bob specifies a privacy preference that grants
the access to position for the intended purpose ipB

6=〈{Analysis},∅〉, whereas Mary for the
intended purpose ipM=〈{Admin},∅〉. In addition, let us suppose that Bob specifies the jac
constraint jacB=〈{Generic, Sensitive},{Identifier, Quasi-identifier},〈{Marketing},∅〉〉, whereas
Mary jacM=〈{General},{Identifier},〈{Direct},∅〉〉. Finally, let us suppose that neither Bob nor
Mary specify any cdc constraint, thus, cdcB = cdcM = ∅. The attribute position of the output
stream resulting from the execution of ✶ should specify a privacy preference resulting from the
composition of preferences specified by Mary and Bob.

4.4.2 Composed privacy preferences

As above-pointed out, with the exception of σ, IN, and OUT, all other operators return a stream
that might contain new attributes defined on the basis of a selection of attributes, denoted as
At, belonging to the stream(s) entering the operator. In defining privacy preferences for these
new attributes we decided to consider the privacy preferences defined for each attribute in At, so
that every preference specified by the user to which this new data might refer to are considered.
As such, the new privacy preference for a derived attribute da is defined by composition of the

6Hereafter we denotes the components of Bob and Mary privacy preferences using the subscript B and M,
respectively.
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privacy preferences of any attribute a in At. For instance, for the above mentioned example
related to the operator π, At = {walking-steps, up-steps}. The privacy preference of steps is
thus derived by the composition of the preferences specified for walking-steps and up-steps.

In defining this composition, we have adopted a conservative approach, that is, we define the
new privacy preference in such way that each derived component (i.e., ip, jac, cdc) is satisfied
iff all corresponding components in the preferences associated with any attribute a in At are
also satisfied. The following formalizes this composition.

Definition 4 (Composed privacy preferences) Let P and C be the purpose and data cat-
egory set of the considered application scenario, and let PtP and CtC be the related purpose
and category tree, respectively. Let da be an attribute belonging to the output stream generated
by an operator op, and let At be the set of attributes from which da is derived. The privacy
preference pp of da is derived as follows:

• Intended purpose component ip is defined as:

– Aip (allowed intended purposes) is the intersection of the purposes implied by
the ip’s allowed intended purposes of all attributes in At, that is: ip.Aip =⋂

a∈At

⋃
p∈a.pp.ip.Aip p

↓, where p↓ denotes a set composed of p and all purposes de-
scending from p in PtP .

– Exc (exceptions for the intended purposes) is the union of the ip’s exceptions of the
privacy preferences specified for At attributes, that is: ip.Exc =

⋃
a∈At a.pp.ip.Exc

• Joint access constraint jac is defined as:

– - Adc (allowed data categories) is the intersection of the jac’s allowed data categories
of all attributes in At, that is: jac.Adc =

⋂
a∈At

⋃
c∈a.pp.jac.Adc c

↓, where c↓ denotes
the set composed of c and all categories that descend from c within CtC .

– Exc (exception) is the union of the jac’s exceptions specified for all attributes in At,
that is: jac.ip.Exc =

⋃
a∈At a.pp.jac.ip.Exc;

– ip (jac intended purposes) is defined following the same criteria of intended
purposes, that is: jac.ip.Aip =

⋂
a∈At

⋃
p∈a.pp.jac.ip.Aip p

↓, and jac.ip.Exc =⋃
a∈At a.pp.jac.ip.Exc.

• The category derivation constraint cdc is defined as the union of prohibited data categories
specified in the privacy preferences of all attributes in At, that is: cdc =

⋃
a∈At a.pp.cdc

Example 6 Let us newly consider the scenario introduced in Ex. 5, and let us consider the
derivation of the privacy preferences to be assigned to the derived attribute position. On the basis
of Def. 4, the ip component of the composed privacy preference is 〈{Analysis},∅〉, as Analysis
descends from Admin within PtP (see Figure 4.3). Similarly, according to PtP and CtC in Fig
4.2 and 4.3, the derived jac component is 〈{Generic, Sensitive},{Identifier, Quasi-identifier},
〈{Direct},∅〉〉, whereas component cdc is set to ∅ as neither Bob nor Mary constrain what can
be inferred from the processing of position.
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4.5 Enforcement

A key element of the framework depicted in Figure 4.1 is the module in charge of privacy
preference enforcement. Given a query q with a set of streams {S1,. . . ,Sn} as input, the
goal of the enforcement is granting the q execution only if the privacy policy specified by
the consumer submitting q satisfies the privacy preferences specified by owners of all devices
generating S1,. . . , Sn.7 Query compliance relies on the verification that each single operator
in q complies with the privacy preferences specified for the accessed attributes of the data
stream(s) received as input. In performing this check we need to consider that, except for IN,
all operators receive as input data stream(s) generated by other operators in the graph, which
can be characterized by new defined attributes as well as by attributes originating from the
input streams. The privacy preferences associated with any new derived data are specified by
the Privacy-enhanced schema of the stream, an enforcement artifact that keeps track of the
privacy metadata of each internal stream. In the remainder of this section we first describe
the rationale of query operators compliance, and then we propose an enforcement mechanism
performing the a query compliance verification.

4.5.1 Query operators compliance

Let q be a query which is submitted for execution for access purpose ap. Given an attribute
at, we denote with at.pp the privacy preference specified for at.

Definition 5 (Query operator compliance) Let op be an operator in the query graph of
q, let oS1 . . . oSn be the internal streams entering op, and let AtoSi

be the attributes of oSi

accessed by op. op complies with the privacy preferences of oS1 . . . oSn iff for each attribute
at ∈

⋃n
i=1AtoSi

for which a privacy preference has been specified: (i) ap complies with the
intended purposes ip specified within at.pp; and (ii) op complies with the joint access constraint
jac and the category derivation constraint cdc of at.pp.

Let us now focus on the compliance of op with the privacy preference specified for an
accessed attribute at. Let us start to look at purpose compliance. Let P be the purpose set of
the considered application scenario, PtP be the related purpose tree, and let ip be the intended
purpose component of at.pp specified on P. Let us denote with p↓ a set composed of p and
all p descendants in PtP . The set of purposes implied by ip, denoted with ~ip, is given by⋃

p∈ip.Aip p
↓ \

⋃
p′∈ip.Exc p

′↓.

Definition 6 (Purpose compliance) Let op be an operator of q, let at be an attribute of a
stream accessed by op, and let pp be the privacy preference specified for at. op complies with
the intended purposes ip of at.pp iff ap ∈ ~ip

Example 7 Let us assume that a query q which implements the analysis described in Ex. 1 is
submitted for access purpose TPostal (see Figure 4.3). Let us here consider the compliance of

7We recall that we assume that each stream contains only data generated by a single device, owned by a unique
user.
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an operator π of q, which projects the attributes heart-beats, movements and userid originated
by the fitness watch (see Ex. 1), with the privacy preferences pp specified for heart-beats. In
particular, let us start to assess the compliance of q’s access purpose TPostal with the intended
purpose ip of heart-beats’s privacy preference, supposing that ip matches the specification in Ex.
2. Since TPostal descends from Marketing but not from Direct, according to Def. 6, it complies
with ip.

Let us now consider the satisfiability of the joint access constraint jac of at.pp. Let C be
the the data category set of the considered application scenario, and let CtC be the related
data category tree. Let us denote with c↓ (c↑) the set of all categories that directly or indirectly
specialize (generalize) a data category c within CtC . The set of categories implied by jac is
composed of all categories that descend from the catagories in jac.Adc which do not descend
from any category of jac.Exc. More precisely, ~jac =

⋃
c∈jac.Adc c

↓ \
⋃

c′∈jac.Exc c
′↓.

Let As be the set of attributes that are accessed by op and let pp be the privacy preference
specified for an attribute at ∈ As. We say that op satisfies the joint access constraint jac of pp,
iff all the data categories associated with the attributes in As\at belong to the set of categories
implied by jac, and ap complies with the intended purpose component ip of jac. Let us denote
with at.dc the set of data categories specified for at. The set of categories implied by at.dc,
denoted with at.~dc, is composed of all categories c in at.dc and all categories that generalize c
within CtC , i.e., ~at.dc =

⋃
c∈dc c

↑

Definition 7 (Jac satisfiability) Let op be an operator of q, let at be an attribute of a stream
accessed by op, and let pp be the privacy preference specified for at. op satisfies the joint access
constraint jac of at.pp iff ∀a ∈ (As \ {at}) → ∀c ∈ a. ~dc → c ∈ at.pp. ~jac) ∧ ap ∈ jac.~ip

Example 8 Let us consider again the scenario in Ex. 7, and let us now evaluate whether
π satisfies the jac constraint of heart-beats’s privacy preference, assuming that this constraint
matches the one presented in Ex. 3. jac grants the joint access of heart-beats with data classified
as identifier, fitness or sensitive, except for health data, for access purposes that descend from
Third-party (see Figure 4.3). Let us now assume that movements has been classified as fitness,
whereas userid as identifier (see Figure 4.2). The categories of the accessed attributes are
implied by jac, and since the access purpose TPostal descends from Third-party, we derive that
jac is satisfied.

Let us finally consider the satisfiability of the cdc constraint of at.pp, which specifies the
data categories that cannot be derived from the processing of at. The enforcement of these
constraints require to know the data categories that could be derived when given operations
are executed on at. As an example, as mentioned in Section 4.1, combing data related to
movements, heart beats and breath rate, it is possible to infer that the referred individual
could suffer from psychological disorders due to insomnia. More precisely, on the basis of the
average observed data, one could estimate whether the referred individuals: 1) sleep well and
thus are supposed to be in a good health status, 2) have a poor sleep quality, and thus may
suffer from chronic tiredness and low concentration, 3) or they do not sleep enough and thus
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may suffer from mental disorders or serious pathologies. We assume that information related
to possible data inferences is provided by domain experts or data mining tools that calculates
association rules among data categories. The inferences are specified by means of derivation
paths, which model a set of data categories, which composed or aggregated by means of given
operators allow deriving data potentially related to the user to whom the data protected by
the privacy preferences refer to. Derivation paths represent possible inferences that can be
performed within an application scenario.

Definition 8 (Derivation path) A derivation path dp specified wrt C is a tuple 〈 Ac, fn, op,
dc 〉, where Ac is a set of data categories of C, fn refers to a function / operation that can be
executed by an operator op of type Σ / π, 8 and dc specifies a derived data category belonging
to C.

Example 9 Let us suppose to define a derivation path dp specifying that the knowledge of
average movements, heart beats and breath rate allows deriving health state: dp=〈{movements,
heart-beats, breath-rate}, avg, Σ, health〉.

Let SoAC be the union of the data categories associated with the attributes accessed by
q and let Dp be the set of derivation paths specified for the target application scenario. The
set of data categories which on the basis of cdc cannot be derived, hereafter denoted as ~cdc, is
composed of all C categories that specialize those referred to within cdc, i.e., ~cdc =

⋃
c∈cdc c

↓.

Definition 9 (Cdc satisfiability) Let op be an operator of q, let at be an attribute of a stream
accessed by op, and let pp be the privacy preference specified for at. op satisfies the category
derivation constraint cdc of at.pp, iff it does not exist any derivation path dp within Dp such
that: 1) op corresponds to the operator referred to by dp.op, 2) the function/operation specified
by dp.fn corresponds to the one performed by op (e.g., +, avg, etc.) denoted as op.fn, 3) the set
of accessed data categories specified with dp.Ac is included in SoAC, and 4) the implied category
referred to by dc is among the categories implied by cdc, i.e., iff ∄dp ∈ Dp|dp.op = op∧dp.fn =
op.fn ∧ dp.Ac ⊆ SoAC ∧ dp.dc ∈ pp. ~cdc.

Example 10 Let us consider again Ex.7 and 8, and let us now check whether π satisfies the
cdc constraint {Health} assuming that Dp uniquely consists of the derivation path in Ex. 9. The
derivation path in Ex. 9 does not match the processing activities of π as the referred operators
are different, thus the constraint is satisfied.

4.5.2 Query compliance analysis

Let us now focus on the enforcement mechanism. In order to keep track of the privacy meta-
data associated with any internal stream of a query graph, which are required to evaluate the
compliance of each operator, we introduce a structure denoted privacy enhanced schema.

8These are the only operators that generate new data.
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Definition 10 (Privacy enhanced schema) Let C and CtC be the data category set and
related data category tree of the considered scenario. The privacy enhanced schema pes of an
internal stream is a pair 〈sid, As〉, where sid is the stream identifier, whereas As is a set of
tuples 〈id, dc, pp〉, each specifying privacy metadata related to an attribute of the considered
stream. More precisely, id denotes the referred attribute, dc specifies the categories of id selected
from C, whereas pp specifies the privacy preference of id.

The privacy enhanced schemas of the internal streams can be straightforwardly derived
traversing the query graph and applying the composition criteria presented in Def. 4 for each
operator. However, due to space limitations, we do not present here the derivation mechanism.

Query compliance is verified when all the query operators comply with the privacy pref-
erences specified for the accessed data. For presentation purposes let us introduce a basic
notation to represent query operators, thus modeling an operator op as a tuple 〈tp, Pa, inS1,
inS2, outS, pOp1, pOp2〉, where: tp models the type of operation performed by op, Pa models
op’s input parameters, inS1, inS2 and outS model the privacy enhanced schemas of the streams
received as input and generated by op, respectively, and pOp1, pOp2 model the operators that
generate the streams processed by op. Finally, let us denote with op.cmp a component cmp of
op.

Compliance analysis is orchestrated by function compliesWith, whose pseudocode is shown
in Algorithm 1, which traverse the query graph in post order, analyzing operator by operator.
The analysis of a query q starts invoking compliesWith on operators OUT of q for q ’s access
purpose ap.

Algorithm 1: compliesWith(op, ap)

1 if op.tp==IN then
2 Return true;
3 rOp1= compliesWith(op.pOp1, ap);
4 if op.pOp2 6=⊥ then
5 rOp2= compliesWith(op.pOp2, ap);
6 cmp=checkOp(op.pOp1.outS, op.pOp2.outS, op, ap);
7 Return cmp∧rOp1∧rOp2;

8 else if Op = ✶ then
9 cmp=checkOp(op.pOp1.outS, ⊥, op, ap);

10 Return cmp∧rOp1;

The compliance of an operator op is evaluated by function checkOp, shown in Algorithm
2, which is invoked on the privacy enhanced schema of the streams received as input by op
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whenever a node is visited (see line 6 and 9 of Algorithm 1).

Algorithm 2: checkOp(peS1, peS2, op, ap)

1 refAs=∅;
2 if op.tp=OUT then
3 refAs=peS1.As;
4 else
5 refAs=

⋃
rAt∈op.Pa

⋃
at∈rAt.As (σ(id=at)op.inS1.As)∪(σ(id=at)op.inS2.As);

6 Return checkIp(refAs,’ip’,ap) ∧ checkJacCdc(refAs,op,ap);

checkOp, on the basis of the operation type performed by op, the input parameters Pa of op
and the privacy enhanced schema of the streams entering op, derives the set refAs of attributes
accessed by op and the respective privacy metadata. Then, it invokes the functions checkIp and
checkJacCdc which verify whether op complies with the privacy preferences of the attributes in
refAs. The compliance of an operator op is verified by separately checking the components of
the privacy preferences specified for the accessed attributes (collected with refAs in Algorithm
2), which are derived on the basis of the operator type. More precisely, checkOp evaluates the
components ip, jac and cdc of the privacy preferences of all the attributes referred to within
the input parameters Pa of operators of type σ, Σ, ✶ and π, and the whole set of attributes
characterizing the privacy enhanced schema of the input stream of an operator OUT. Indeed,
any attribute referred to within Pa is accessed for deriving the corresponding operator output
stream, and any attribute in the input stream of OUT is projected to the output stream. The
compliance checks for the privacy preferences of the derived attributes are handled by functions
checkIp and checkJacCdc.More precisely, checkIp verifies the compliance of the access purpose
ap of q with the intended purposes specified for the attributes in refAs, thus verifying if ap is
among the purposes implied by each ip component, implementing the check in Def. 6. The
pseudocode of checkIp is presented in Algorithm 3. Similarly, function checkJacCdc, defined
on the basis of Def. 7 and 9, verifies whether the jac and cdc constraints associated with the
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attributes in refAs are satisfied. The pseudocode of checkJacCdc is presented in Algorithm 4.

Algorithm 3: checkIp(As, iptp, ap)

1 ipCmp=true;
2 for each at∈As do
3 switch ctp do
4 case ip do

5 ipCmp=ipCmp∧(ap∈at.pp.~ip);
6 break ;

7 case jac do

8 ipCmp=ipCmp∧(ap∈at.pp.jac.~ip);
9 break;

10 Return ipCmp;

Algorithm 4: checkJacCdc(refAs, op, ap)

1 jacCmp=true;
2 cdcCmp=true;
3 SoAC=∅;
4 for at∈refAs do
5 oAt=refAs\at;
6 SoAC=SoAC∪at.dc↑;
7 for a∈oAt do

8 jacCmp=jacCmp∧(∀c∈a.dc↑→c∈at.pp. ~jac);

9 jacCmp=jacCmp∧checkIp(refAs,’jac’,ap);
10 SoDP=σ(op=op.fn∧Ac⊆SoAC)Dp;

11 for at∈refAs do
12 for dp∈SoDP do

13 cdcCmp=cdcCmp∧(dp.dc 6⊆at.pp. ~cdc);

14 Return jacCmp∧cdcCmp;

4.6 Performance Analysis

In this section we experimentally evaluate the performance of the proposed privacy preferences
enforcement mechanism, within a scenario where a monitor implementing them is connected
with Streambase 7.6,9 a known commercial CEP system [41]. In particular, given a Streambase
query Q, serialized as an XML document, we measure the time required by our monitor to verify
whether the privacy practice of the consumer submitting the query satisfies all the privacy
preferences associated with the streams entering Q.

Our experiments have been run on an Intel Core-i5 PC with 6 GB RAM, and the monitor
prototype has been implemented with Java SE Development Kit 8u73. The experiments have

9http://www.streambase.com/
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been carried out with synthetic data. More precisely, data streams have been generated as
composed of 3 attributes, each of which associated with a different privacy preference. Privacy
preferences have been defined in such a way that their components refer random elements of
the Data Category and Purpose sets, which, in turn, have been populated with synthetic data.
In this scenario, we ran two main experiments, which, under different settings, show how the
performances scale on varying the query and domain complexity.

4.6.1 Experiment 1 - Time overhead varying query complexity

Acknowledging that query complexity can affect the performance of the enforcement mech-
anism, our first experiment measures the time overhead for a benchmark of 10 queries with
different number and type of operators. We note that complexity of queries varies based on
the number and type of involved operators. The considered queries are characterized in the left
part of Table 4.1.

For this experiment, we prefixed the number of elements in the Data Category Set (C), the
Purpose Set (P ) and the Derivation Path Set (Dp) as : 100 categories, 30 purposes and 10
derivation paths. More precisely, aligned with the order of magnitude in [27], we populated P

with 30 purposes, whereas in order to have enough data categories to cover a variety of domain,
we populated C with 100 elements, finally, we specified 10 derivation paths as we consider this
as an acceptable amount of possible data inferences. We believe that this case could represent
common use scenarios. Purpose and Data Category trees have been randomly generated on
the basis of the respective sets, limiting the maximum number of children that each node can
have as 3.

Figure 4.4 shows the time required by the monitor to analyze each query. The overall time
is given by the duration of three enforcement phases: 1) the Query Parsing, which handles the
parsing of the XML document encoding the query to be verified; 2) the PES Derivation, which
derives the privacy-enhanced schema of all internal streams; and lastly, 3) the Compliance
Analysis, which evaluates query compliance.

The execution times of all phases increase linearly with the growth of queries complexity. It
is worth noting that the Query Parsing phase, which only implements preliminary configuration
activities, takes a longer time than the 2 phases implementing the enforcement mechanism.
Overall the execution times is always very short even in the worst case (less than 0.1 sec). This
shows that our approach does not give too much overhead to the system even with complex
queries.

4.6.2 Experiment 2 - Time overhead varying domain complexity

In this experiment we evaluate the impact of Data Category and Purpose Set on the time
overhead, by varying the cardinality of these sets in a benchmark of 10 scenarios.

The right part of Table 4.1 characterize the benchmark wrt the Purpose Set (P ) and Data
Category Set (C) cardinality. The size of the Derivation Path Set has been fixed to 10.10

10We fixed Derivation Path Set cardinality, as we have observed that variance of this parameter does not
significantly impact the execution time
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Figure 4.4: Experiment 1 Results

Figure 4.5 shows the time required by the proposed monitor to evaluate the compliance of
query q5 (see Table 4.1) in each scenario. The execution time of PES Derivation and Compliance
Analysis rises with the increase of Data Category and Purpose Sets cardinality. This behavior
is imputable to the complexity of search operations on Data Category and Purpose Trees. In
contrast, query parsing time keeps constant since the same query is used for all scenarios.

As in previous experiment, the overhead is low even in the worst case (less than 0.1 sec).
Overall, even considering that enforcement checks are performed before the query is registered
into the CEP, we conclude that the proposed mechanism enforces privacy with a negligible
overhead.
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Table 4.1: Experiments configuration

Experiment 1 Experiment 2

Query Operations Scenario |P | |C|

q1 1 π, 1 σ, 1 ✶, 1 Σ s1 100 100
q2 2 π, 2 σ, 2 ✶, 2 Σ s2 200 200
q3 3 π, 3 σ, 3 ✶, 3 Σ s3 300 300
q4 4 π, 4 σ, 5 ✶, 4 Σ s4 400 400
q5 5 π, 5 σ, 5 ✶, 5 Σ s5 500 500
q6 6 π, 6 σ, 6 ✶, 6 Σ s6 600 600
q7 7 π, 7 σ, 8 ✶, 7 Σ s7 700 700
q8 8 π, 8 σ, 8 ✶, 8 Σ s8 800 800
q9 9 π, 9 σ, 9 ✶, 9 Σ s9 900 900
q10 10 π, 10 σ, 10 ✶, 10 Σ s10 1000 1000

Figure 4.5: Experiment 2 Results



Chapter 5

Decentralizing Privacy Enforcement

for IoT

Rise of smart objects enact transition from centralized cloud-based IoT systems to decentralized
IoT systems of cooperating smart objects. Decentralization, if not properly governed, might
imply loss of control over the data, with consequences on individual privacy, as discussed in
Chapter 1. In this chapter, we focus on the challenging issue of designing a decentralized
privacy enforcement mechanism, where compliance check of user individual privacy preferences
is performed directly by smart objects, rather than by a central entity. Restrictions on devices’
capabilities let us discard existing proposals for decentralized access control (e.g., [121, 118, 82,
61]), as these heavily rely on cryptographic primitives.

Previously, in Chapter 4, we addressed the problem of specifying and enforcing privacy
preferences in the IoT scenario, but for a centralized architecture, that is, a scenario where
devices have only the capability to sense data and send them to a data center for being ana-
lyzed. Whereas decentralized privacy enforcement scenario requires to address new important
research challenges. Particularly, in decentralized setting smart objects have to perform pri-
vacy enforcement operations as they are part of data processing scheme. However, considering
various types of data and data processing operations and heterogeneous processing capabilities
of smart objects it is a challenging endeavour. To address these challenges, in this chapter,
we extend the privacy preference model proposed in Chapter 4, by designing a set of privacy
meta-data that are used by smart objects for locally checking privacy preferences and for locally
enforcing user privacy preferences at smart object level. Smart objects are thus able to derive
privacy meta-data for newly created data items, keep track of the operations performed over
data items, denoted as history, in order to ease the privacy preference enforcement, and, fi-
nally, check compliance of the privacy policy of the data consumer with the privacy preferences
of data items. To the best of our knowledge this is the first work proposing a decentralized
enforcement of privacy preferences able to work locally at smart object level.

Acknowledging that embedding the enforcement mechanism into smart objects might imply
some overhead, we have extensively tested the proposed framework. In doing the experiments,
we have considered several scenarios, by varying the complexity of the privacy preferences,

57



CHAPTER 5. DECENTRALIZING PRIVACY ENFORCEMENT FOR IOT 58

smart object networks, and evaluated queries. The experiments allow us to asses the feasibility
of the proposed approach in a variety of application domains.

The remainder of this chapter is organized as follows. Section 5.1 describes the system model
and design assumptions of the proposed privacy preserving framework. Section 5.2 presents
the enhanced privacy model and proposed enforcement mechanism. Experimental results are
illustrated in Section 5.3.

5.1 System model and assumptions

The privacy enforcement mechanism relies on some privacy meta-data encoding user privacy
preferences, data categories, and data history generated by smart objects.Similar to the core
framework presented in Chapter 4, we assume that data generated by smart objects are mod-
elled as data streams, and smart objects are able to perform SQL-like operations on streaming
data. In the following, we present the system model and our design assumptions.

5.1.1 System model

We consider a decentralized IoT system consisting of data owners, consumers and smart objects.
We assume data owners specify privacy preferences over their data to control how their data

are distributed and processed and data consumers adopt privacy practices to specify how they
will use the users’ data, as defined in Chapter 4.

Smart objects are extremely heterogeneous regarding their capabilities and roles in the
IoT ecosystem and this also impacts the privacy checks they can perform. Since the proposed
privacy preserving mechanism aims at working at the smart object level, we have first to detail
which kind of IoT devices we are targeting. In particular, we need to classify smart objects
based on their capabilities so as to assign to each of them a possible role, and corresponding
function in the proposed decentralized privacy preference enforcement mechanism. In the IoT
domain, device capabilities are extremely heterogeneous. On the basis of several standard-
ization recommendations from different organizations [131, 105], we propose a smart objects
taxonomy based on the object smartness, aka abilities in sensing and processing individual
data, as follows:

– First Level of Smartness: at this level, devices have a very limited capacity, being able
only to act as basic sensors, for sensing data from the environment.

– Second Level of Smartness: at the second level, devices have a limited capacity and
computing power, making them only able to perform basic operations by their own, like
projection and selection, which do not require window-based processes that are working
on tuples organized as sliding windows, such as join or aggregation. These devices might
be virtual or physically manufactured, e.g., a field-programmable gate array (FPGA) or
hard-coded devices.
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– Third Level of Smartness: at this level, we group those devices that have enough capacity
and computing power for performing complex operations by their own, including window-based
operations.

According to this taxonomy, a smart object (SO) may play three different roles in the
proposed decentralized privacy enforcement:1

– Sensing Smart Objects: the main objective of this type of smart objects is sensing data
from the environment. Typically, a smart object with a first level of smartness will play this role.

– Processor Smart Objects: this type of smart objects aim at creating new information
from sensed data by performing operations over them. Complexity of these operations depends
on the smartness level of the object. As such, a smart object with second or third level of
smartness will be able to play this role.

– Consumer Smart Objects: a smart object playing this role is in charge of verifying user
privacy preferences before sending data to consumers. This process is called privacy preference
compliance (see Section 5.2.3 for more details). Such role can be taken by SOs with third level
of smartness (e.g., gateway devices, such as Dell Edge Gateways or HPE Edgeline Gateways).

Example 11 Throughout the chapter, we will use as an example a smart home system. We
assume that the smart home is equipped with a smart heating and electricity usage control sys-
tems. The smart heating system is built on top of a network of smart objects able to sense
temperature values from several rooms, adjust temperature, if needed, and share data with the
heating company. The smart electricity usage system relies on a network of smart objects able
to sense electricity usage data, locally compute usage trends, and send them to the electricity
distribution company (see Figure 5.1). In this scenario, sensing smart objects are those devices
used for measuring electricity usage and sensing room temperature, whereas processor smart
objects are those used to locally aggregate data sensed by sensing SOs, with the purpose of gen-
erating trends of electricity usage as well as average rooms temperature. Finally, smart objects
sending collected information to electricity and heating system companies can be categorized as
consumer smart objects, as their main role is to send data to consumers.

5.1.2 Security assumptions

Security vulnerabilities, if not properly addressed and prevented, may allow adversaries to
damage correct execution of IoT systems and the proposed privacy preserving mechanism. In
designing the privacy preserving mechanism, we have assumed that smart objects conduct a
set of defence strategies to protect the IoT system from security threats and attacks. Let
us first define the adversary model. We assume that an adversary is capable to block and
intercept communication, and is also able to overhear, inject and delete messages exchanged

1We postpone the reader to Section 5.2 for details about processes and algorithms implemented for each role.
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Figure 5.1: Smart home scenario

between smart objects, as well as analyze communication patterns. Moreover, we assume that
sensing and processor SOs are susceptible to be compromised by adversaries and thus can
act maliciously, whereas consumer SOs are honest, i.e., they behave as expected according
to the proposed algorithms. This assumption is based on the conjecture that IoT gateway
devices, such as Dell Edge Gateways2, or HPE Edgeline Gateways3 hosting consumer SOs
are securely produced by their manufacturers and have high resources. Indeed, as stated by
[10], a vulnerability in the hardware of such devices will inevitably threat the whole system.
Therefore, we assume that device manufactures will do their best in designing secure gateway
devices. Given the adversary model, the privacy preserving mechanism relies on the following
defense techniques that are assumed to be conducted by smart objects:

Network monitoring and intrusion detection systems. We assume that consumer
SOs are complemented with network monitoring (e.g., [111]) and intrusion-detection mecha-
nisms (e.g., [81]). Because such mechanisms help to detect and reduce effects of Denial of
Service (DoS) and node compromise attacks. Indeed, as our approach relies on machine to ma-
chine communication among smart objects in which the operations of one smart object, e.g.,
meta-data generation and update, mostly depend on the data sent by another smart object,
DoS attacks may affect the correct execution of the protocols. Furthermore, compromised and
malicious processor SOs can alter the derivation of new privacy meta-data with the result of not
correctly enforcing privacy requirements of the data owners. By virtue of equipping consumer
SOs with intrusion detection mechanisms, we assume that consumer SOs analyze the network

2dell.com/us/business/p/edge− gateway
3hpe.com/emeaeurope/en/servers/edgeline− iot− systems
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and detect compromised and infected devices acting maliciously or violating policies.
Lightweight encryption and authentication mechanisms. We also assume that all

smart objects are equipped with encryption mechanisms (such as [146, 135]) that make use of
lightweight cryptographic primitives (e.g., hash, nonce, etc), and thus able to encrypt the data
and the meta-data before sending them. In such a way, that data cannot be disclosed and
privacy meta-data cannot be compromised during the communication.

We also assume that smart objects are equipped with hop by hop authentication protocols,
such as [63]. This is a a way to contrast impersonation attacks, where an adversary might aim
to seize the identity of a legitimate smart object, such as access credentials of the device, to
act on behalf of the legitimate device (e.g., injecting fake data) that may compromising privacy
preference enforcement.

Clone detection protocols. We assume that smart objects are equipped with a globally
aware distributed clone detection protocol (such as [38]). Cloned smart objects may generate
fake data and affect the correct execution of the privacy protection protocols, as well as they can
be used to disable and compromise honest smart objects and thus damage privacy enforcement.

5.2 Decentralized privacy preference enforcement

In order to assure that user privacy preferences are taken into consideration during data usage
and processing, there is the need of an enforcement mechanism whose primary goal is to verify
whether the privacy practices adopted by the entity wishing to consume the data, aka the
consumer, satisfies data owners’ privacy preferences. Privacy preferences are specified accord-
ing to the model proposed in Chapter 4, which has been designed to cope with two relevant
challenges that IoT ecosystems pose on the management of individual privacy. However, as in
decentralized settings data might be consumed by multiple consumers, we extend the privacy
preference model in Chapter 4, so as to allow data owners to specify data consumers to which
a preference applies, with a new field named consumer.

An interesting feature of the model in Chapter 4 is its ability to associate privacy prefer-
ences with new data generated by smart objects. These new privacy preferences are defined by
combining the privacy preferences specified by each owner of smart objects sensing the data
involved in the derivation process. Privacy preferences are combined by taking the most con-
servative approach so that the resulting privacy preference satisfies the constraints specified in
all the privacy preferences associated with smart objects involved in the data fusion process.
More precisely, the composed privacy preference is defined by taking the intersection of the
consumer, jac.Adc and ip.Aip elements, and the union of the jac.Exc, ip.Exc and cdc fields
of the privacy preferences involved in data fusion. In the following, let us give an example of
privacy preference composition relevant to the decentralized privacy enforcement as a part of
the running example.

Example 12 Let us consider the smart home scenario given in Example 11 and let us sup-
pose that a user, say Charlotte, has installed this smart home system in her apartment and
that she specified a privacy preference pp for the temperature data sensed by the system, as fol-
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lows: 〈temperature, {smart-home-company}, 〈{admin}, ∅〉, 〈{generic, health},∅, 〈{admin},∅〉〉,
{sensitive}〉. Let us further suppose that Charlotte also specifies a privacy preference for the elec-
tricity usage data as follows: 〈electricityUsage, {smart-home-company, electricity-company},
〈{admin},∅〉, 〈{generic},∅, 〈{admin}, ∅〉〉, ∅〉.

Let us assume that the smart home network executes an equi-join on streams containing the
electricity usage and temperature data generated by Charlotte’s smart home system on idroom
attributes, which we assume to have in both the two streams. Moreover, we assume that idroom
has associated the same privacy preferences of temperature and electricity usage in both streams.
When performing the join, there is the need to fuse together these two privacy preferences. The
composed privacy preference for idroom in the stream containing temperature data is:

〈idroom, {smart-home-company}, 〈{admin}, ∅〉, 〈{generic}, ∅, 〈{admin}, ∅〉〉, {sensitive}〉.

To make compliance check automatic, we assume that consumer privacy practices are en-
coded into privacy policies, that is, a set of statements on how the consumer will use the users’
data. Typically, a privacy policy specifies: the consumer identity (id), data attributes that
consumer wishes to consume, purpose of the data usage, release of the data to third-parties
and time of retention of the data in the consumer information system. In what follows, we fo-
cus on the purpose and consumer id components of a privacy policy/preference and the related
checks, in that they are the most important information used by the enforcement monitor. The
enforcement mechanism has to verify whether the declared purpose of data usage and id of the
consumer in the consumer’s privacy policy is compliant with the privacy preferences specified
by the users owning the smart object devices generating the data.

We handle compliance check through an aposteriori approach, that is, we perform compli-
ance check only when data are going to be shared with consumers. The main motivation is
that leaving compliance check to consumer SOs increases the possibility for data to be pro-
cessed and thus to be eventually consumed according to user privacy preferences. For instance,
let us consider the equi-join operation performed in Example 12. Let us assume that Char-
lotte’s privacy preferences for electricity usage data only allow joint access with position data
(e.g., coordinates of the individual), and let us also assume that joined streams have further
attributes, in addition to electricity usage and temperature data. In such case, the equi-join
operation in Example 12 is not compliant with Charlotte’s privacy preferences. Performing a
compliance check at this point would prevent to generate the joined stream, and further data
flows would be cut. In contrast, by an aposteriori compliance check approach attributes in
the joined streams can be further processed in the smart object network and consumers can
consume the data that would not violate the privacy preferences of the users.

In order to push privacy preference enforcement at object level, we have to first complement
the processed data with privacy meta-data that specify, for each piece of sensed or newly created
data, all information needed to enforce privacy preferences (see Figure 5.2). As an example,
the sensing smart objects have to be able to associate with each piece of sensed data the
corresponding privacy preferences specified by object owners. Moreover, processor SOs have
to be able to locally generate additional privacy preferences for the newly created or modified
data. This process requires to make processor SOs aware of how the new data have been
created (e.g., which are the operations, the input data involved in the operations, as well as,
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Figure 5.2: Privacy enforcement by SO roles

the corresponding privacy preferences). Finally, smart objects playing the role of consumer
SOs have to be able to locally perform compliance check.

We would like to underline that complementing data with privacy meta-data allows the
enforcement monitor to be executed directly on each piece of data itself. According to the
proposed framework, sensed data continuously flow through smart objects, complemented with
privacy meta-data. Smart objects perform some operations on data, such as aggregation, and
privacy meta-data update. When data arrive to consumer smart objects, these check the
compliance of the data owner privacy preferences, embedded in privacy meta-data, and the
privacy policy of the consumer. Only if privacy preferences of the data owners are satisfied,
data are sent to consumers’ data centers (e.g. server, cloud etc.). At smart object side, the
only data that has to be stored for privacy enforcement are the derivation paths, that is, set
of data inference rules needed by processor smart objects. By virtue of that, smart objects do
not need to store additional data for privacy enforcement.4

5.2.1 Privacy meta-data

To model additional privacy information, we need to add, for each attribute contained into
the original schema, three additional attributes, namely category, pp (privacy preferences), and
history.

Let us start discussing the category attribute. The category associated with an attribute is
not a static information, as data associated with an attribute might be fused with other infor-
mation, or simply modified, with the result of a change of its content and thus of its associated
data categories. To cope with these dynamic aspects, we need to trace, for each attribute,
its updated set of data categories, based on its current content. Secondly, in order to make
a consumer SO able to perform privacy preference enforcement, it has to know the privacy
preferences associated with each attribute. Such information is encoded in the additional pp
attribute. Moreover, information about every operation performed on data has to be docu-
mented alongside the data itself. Indeed, by design, compliance check is only performed by
consumer SOs, just before data are sent to the consumer (see Figure 5.2). Processor SOs are
only in charge of executing data processing and privacy meta-data generation, without caring

4We underline that the total size of the derivation paths stored by processor SOs is negligible.
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about compliance checks. As such, it might be possible that in a smart object network, a
processor SO performs an operation, e.g., a join, that breaks a jac or cdc condition. In order
to make a consumer SO able to verify if operations performed by all processor SOs satisfy
jac and cdc constraints, it has to know all operations performed on each piece of data (aka
each attribute). At this purpose, we introduce, for each attribute in the stream schema, a new
attribute, denoted as history, which contains a list of history entries, one for each operation
performed on the corresponding attribute.

This privacy meta-data are directly encoded into the original data stream schema, obtaining
thus a new schema, called Privacy-Enhanced Attribute Schema (PEAS), formally defined as
follows:

Definition 11 (Privacy-Enhanced Attribute Schema). Let S=(A1, . . . , An) be the
schema of a data stream, where A1, . . . ,An are the data stream attributes. The Privacy-
Enhanced Attribute Schema of S is defined as S=(A1, . . . ,An), such that Aj= (Aj, pp, category,
history), ∀j ∈ 1, . . . , n, where:

• pp is the privacy preference associated with attribute Aj, as defined in Definition 3;

• category is the set of data categories associated with the current value of attribute Aj;

• history is a list {HE1,. . . ,HEm}, containing an element for each operator Op, Aj has
undergone so far. HEi=(ACi, RCi), for ∀i ∈ 1, . . . ,m, where: – ACi is the set of
categories associated with attributes on which Op is executed for deriving Aj;
– RCj is the set of data categories associated with Aj after the execution of Op;

As depicted in Figure 5.2, privacy meta-data are initialized by sensing SOs, which collect
the raw data and generate the corresponding PEAS schemas. In particular, at this stage in
the PEAS schema the history field is initialized as empty, whereas the pp and category fields
contain privacy preferences and associated data category information defined by smart object
owners. Processor SOs also modify attributes of PEAS schema. In particular, as it will be
discussed in Section 5.2.2, for each processed attribute, they have to update the category field,
based on current value of the corresponding attribute as well as the history field.

Example 13 Let us refer again to Example 12, and, in particular, to attribute att containing
the temperature data of Charlotte’s smart home. Recalling the privacy preferences in Example
12, and supposing that the current temperature is 24.4 Celsius degree, the initial PEAS
generated by the sensing SO, is the following:

• att = {24.4},

• att.pp = 〈temperature, {smart-home-company}, 〈{admin}, ∅〉, 〈{generic, health}, ∅,
〈{admin}, ∅〉〉, {sensitive}〉,

• att.category = {generic},

• att.history = {∅}.
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5.2.2 PEAS generation

For each sensed data, the sensing SO has to initialize the proper PEAS, with the privacy
preferences specified by sensing SO’s owner, the initial data category of the sensed data, and
an empty history field.5 Additionally, after each operation, processor SOs should derive the
privacy preferences of the eventually newly created attribute content, as well as update the
category and history fields of each attribute involved in the operation. Hence, we assume that
processor SOs are complemented with additional logic, implementing PEAS update.

Since PEAS generation in sensing SOs is quite straightforward, in that it mainly consists in
initializing pp and category attributes with predefined values, in the following we focus on PEAS
update algorithms. PEAS update is mainly driven by the operations performed by processor
SOs. As such, we define algorithms for all query operators except for the selection operator,
as, by definition, this operator does not generate any new data, as such, no modification of
the PEAS is needed. The algorithm receives as input the performed SQL operator Op (e.g.,
avg, sum, ×, etc.) and input streams, used by the corresponding operation. In particular, we
model an SQL operator based on operations it performs on the attributes. For example, the
join of streams S1(a, b, c) and S2(a, d, e) on attribute a is modelled as two parameters: {join,
(S1.a, S2.a)}, that is, the involved attributes and the performed operation. Since, an SQL
operator Op might perform more than one operation (see, for instance, the Π operator in the
following Example 14), we formally define Op as a set {Pa1,. . . ,Pal}, where every Pai models
a single operation. As such, Pai= {Attributes,fn}, ∀ i ∈ {1, . . . , l}, where Attributes is a set
of attributes given as input to function fn when operation Pai is executed.

Example 14 Suppose that the stream resulting from the equi-join operation illustrated in Ex-
ample 12 also contains humidity data, thus resulting in S(temperature, electricityUsage, hu-
midity). Let us assume to perform on this joined stream a projection Π1 computing two val-
ues: the first obtained as multiplication of temperature and electricityUsage to estimate the
number of people in the smart home,6 and the second as execution of f() that takes as input
temperature and humidity and returns the air-quality information. Π1 is thus modeled as:
Π1 = {Pa1, Pa2}, where Pa1= {{temperature, electricityUsage}, multiplication} and Pa2=
{{temperature, humidity}, f()}.

PEAS generation algorithm exploits function derivePP(), that derives new composed pri-
vacy preferences, and function createHistoryEntry(), which creates a new history entry, based
on the parameters of the performed operation. Finally, function deriveDC() determines the
category of the new generated data given in input. To implement such a function, we assume
the presence of a set of inference rules, called derivation paths. Each derivation path associates
with a query operator and the set of categories of the data on which the operator is executed,
the category of the data resulting from the operator execution. We therefore assume that
derivation paths are present in every processor SO, so derived data category can be locally
computed.

5Since we assume that sensing smart objects are in the first level of smartness, we suppose these operations are
embedded by design into them with some kind of dedicated microcontroller or hard-coded application logic.

6For simplicity, we assume that this is possible by multiplying electricity and temperature usage.
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Example 15 Let us give an example of derivation path, by referring to the smart home sce-
nario illustrated in Figure 5.1 and by assuming that also humidity information can be sensed.
The derivation path dp1= 〈{temperature,electricityUsage}, ×, Π , sensitive 〉, specifies that
the knowledge of temperature and electricity usage allows, through the Π and × operators, the
derivation of the number of people inside the smart home. In contrast, the derivation path dp2=
〈{temperature,humidity}, f(), Π, air-quality 〉 specifies that the knowledge of temperature and
humidity usage allows derivation of air quality information, through operator Π and function
f().

For PEAS derivation, Algorithm 5 takes as input tuples s1 and s2 (if operation is not ✶

then s2 will be empty), and parameters modeling operation Π, Σ or ✶. The algorithm returns
an updated tuple, containing new attribute(s) generated by execution of the corresponding
operation given in input and containing the updated pp, category and history fields associated
with each attribute involved in the operation. In performing PEAS update for ✶ operation,
attributes of tuples s1, s2 not used by ✶ remain unchanged, and by the nature of Σ (such
as avg(), sum(), etc.), only one parameter will be present in Op.Parameters. The algorithm
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exploits previously discussed functions: derivePP() and createHistoryEntry().

Algorithm 5: PEAS Derivation(Op, s1, s2)

1 Let snew be a new stream, initialized with an empty schema;
2 Let refAttSet be the set of attributes, initialized to be empty;
3 if Op = Σ or π then
4 for each Pa ∈ Op.Parameters do
5 Let attnew be an attribute, initialized to be empty;
6 Let newData be the result of operation Pa;
7 refAttSet = Pa.Attributes;
8 attnew.name = Pa.name;
9 attnew.data = newData;

10 attnew.category = deriveDC(Op, refAttSet);
11 attnew.PP = derivePP(Op, refAttSet);
12 attnew.History =

⋃
att∈refAttSet att.History

⋃

createHistoryEntry(
⋃

a∈refAttSet a.Category, att.category);

13 snew.Attributes = snew.Attributes ∪ attnew;

14 else if Op = ✶ then
15 Let Op.Parameters={a1, a2} be the two attributes used in the Join statement;
16 Let s1.Attributes and s2.Attributes be the set of attributes contained in s1 and s2

schema, respectively;
17 Let attributeSet be a set of attributes, initialized to be empty;
18 refAttSet = a1 ∪ a2;
19 attributeSet = s1.Attributes ∪ s2.Attributes \ refAttSet;
20 a1,2.PP = derivePP(Op, refAttSet)
21 a1,2.History = a2.History

⋃
createHistoryEntry(refAttSet.category, a1.category |

a2.category );
22 snew.Attributes = attributeSet

⋃
refAttSet;

23 Return 〈snew〉;

For snew and attnew, dot notation is used in accessing their elements specified by Definition 11.

Example 16 Let us give an example of PEAS derivation by Algorithm 5 for the join of tem-
perature and electricity usage data described in Example 12. Let us assume that the PEAS of
electricity usage data has been created with the same logic given in Example 13. First, Algo-
rithm 5 stores the parameters used in the join operation into refAttSet. All attributes of the two
streams except parameters used in the join operation are stored as attributeSet to be included
in the resulting stream without any modification. Then, the algorithm performs composition of
privacy preferences for attributes in refAttSet and updates attributes in refAttSet with newly
derived privacy preferences. Then, the new history entry newHE is created by function cre-
ateHistoryEntry(), and added to the history fields of both the attributes used as parameters in
the operation. Finally, the union of the attributes used as parameters of the operation and
attributeSet are added to the resulting stream. The updated PEAS for the temperature attribute



CHAPTER 5. DECENTRALIZING PRIVACY ENFORCEMENT FOR IOT 68

is therefore:

• att = {24.4},

• att.pp = 〈temperature, {smart-home-company}, 〈{admin}, ∅〉, 〈{generic}, ∅,
〈{admin}, ∅〉〉, {sensitive}〉,

• att.category = {generic},

• att.history = {{generic, generic}, {generic}}.

5.2.3 Compliance verification

Compliance verification is the operation of verifying if constraints specified by data privacy
preferences are satisfied by the privacy policy of the consumer. These checks are performed by
consumer SOs on every piece of data passing through them. More formally, a consumer SO
receives as input a stream S and returns as output a stream S, containing only those tuples
whose attributes’ values satisfy privacy preferences of all the owners involved in the generation
of attributes’ contents. Compliance check implies three main steps: (i) checking compliance
of the consumer’s identity (i.e., consumerID) with the allowed consumers (i.e., consumer)
specified in the data privacy preference; (ii) checking compliance of the purpose (i.e., ap) of the
consumer with the intended purposes (i.e., ip) specified in the data privacy preference; and (iii)
checking compliance of the operations performed on the data (e.g., on each single attribute of
the input stream) with constraints imposed by the joint access constraint jac and the category
derivation constraint cdc.

Step (i) is straightforward in that it should only be checked that consumerID specifies the
identity of a consumer allowed to consume attribute A, that is, consumerID ∈ A.pp.consumer.
Regarding step (ii), this check is satisfied if ap specifies an allowed purpose, that is, a purpose
contained in ip or in the set of allowed purposes implied by ip, if purposes are organized into
a tree. More formally, denoting with ~ip the set of purposes implied by ip, ap complies with ip

iff ap ∈ A.pp.~ip.
For step (iii), let us first discuss compliance of joint access constraint jac for a given

attribute A with privacy preference pp. Jac states which portions of user’s personal data can
be combined/aggregated with other data, and with which consumer purpose.In order to explain
how jac is verified, let us refer to Example 14. Let us focus on the derived attribute obtained
by performing operation Pa1 of operator Π in Example 14, which computes number of people
inside the smart home as derived data. After such operation, in order to ensure compliance
of the jac of the newly derived attribute, history of the resulting attribute must be checked,
since joint access of temperature and electricity usage data may be prohibited by composed
privacy preferences. The set of categories implied by jac denoted as ~jac, is composed of all
categories that descend from the categories in jac.Adc which do not descend from any category
of jac.Exc. We say that the jac of attribute A is satisfied iff: (i) all the accessed data categories
in every history entry of A belong to the set of categories implied by ~jac, and (ii) ap complies
with the intended purpose component of jac. Formally:
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Definition 12 Jac compliance. Let pp be a privacy preference specified for attribute A.
Compliance of the pp.jac component is satisfied iff: ap ∈ jac.~ip ∧ ∀HE∈ A.history, ∀c ∈HE. ~AC
→ c ∈ A.pp. ~jac.

Let us now discuss compliance of category derivation constraint cdc for a given attribute
A with privacy preference pp, which specifies the data categories that cannot be derived from
the processing of attribute A. The set of data categories which on the basis of cdc cannot be
derived denoted as ~cdc, is composed of all categories that specialize those referred to within
cdc. Similarly to what happened for the jac component, history of the resulting attribute
must be checked, since derivation of new attributes may be performed several times, and every
derivation process has to comply with privacy preferences of the attribute. Therefore, we say
that cdc of attribute A is satisfied iff all the data categories in every history entry of A does
not belong to the set of categories implied by ~cdc. Formally:

Definition 13 Cdc compliance. Let pp be a privacy preferences specified for attribute A.
Compliance of pp.cdc is satisfied iff: ∀HE∈ A.history, ∄c ∈HE. ~RC ∧ c ∈ A.pp. ~cdc.

Consumer SOs perform compliance check for any attribute in every tuple before sharing
it with consumer. Let us present and describe our algorithm for checking compliance. As
previously discussed, jac and cdc compliance have to be ensured for every entry in the history

field of PEAS. Algorithm 6 takes as input a tuple s, the id of the consumer consumerID, and
the access purpose of the consumer ap. The algorithm returns an updated tuple, containing
attribute(s) that complies with the privacy preferences of the involved users and access purpose
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of the consumer.

Algorithm 6: complianceCheck(s, consumerID, ap)

1 Let snew be a stream, initialized as empty;
2 for each A ∈ S do
3 Let cdcF lag and jacF lag be boolean variables, initialized as true;
4 Let ipF lag and jacIpF lag be boolean variables, initialized as false;
5 if (consumerID ∈ A.pp.consumer) then

6 if (ap ∈ A.pp.~ip) then
7 ipF lag = true;

8 if (ap ∈ A.pp.jac.~ip) then
9 jacIpF lag = true;

10 for each HE ∈ A.History do
11 Let accessedCategories = HE.AC;
12 Let resultCategories = HE.RC;
13 Let jacDataF lag be a boolean variable, initialized as true;
14 for each cat ∈ accessedCategories do
15 Let flag be a boolean variable, initialized as false;

16 if cat ∈ A.pp. ~jac then
17 flag = true;
18 jacDataF lag = jacDataF lag ∧ flag;

19 for each cat2 ∈ resultCategories do
20 Let flag2 be a boolean variable, initialized as true;

21 if cat2 ⊆ A.pp. ~cdc then
22 flag2 = false;
23 cdcF lag=cdcF lag ∧ flag2;

24 jacF lag = jacDataFlag∧jacIpFlag;
25 if jacF lag=true

∧
cdcF lag=true

∧
ipF lag=true then

26 Snew = Snew

⋃
A;

27 Return 〈 Snew 〉;

For snew and attnew, dot notation is used in accessing their elements specified by Definition 11.

Example 17 Let us suppose that a processor SO performs the equi-join and projection Π1 given
in Example 16. Moreover, suppose to have the derivation paths presented in Example 15.
Algorithm 6 first checks compliance of the consumer (line 5). Let us assume that the con-
sumer entity is smart-home-company. In this case, the check returns true. Then, Algorithm 6
checks compliance of peopleCount.pp.ip and peopleCount.pp.jac.ip with the given consumer ac-
cess purpose ap (lines 6 and 8). Let us assume that the consumer has specified admin as access
purpose. In this case, the check returns true as both the purposes are admin, hence ipFlag and
jacIpFlag are set to true. Then, for both jac and cdc, Algorithm 6 checks compliance of every
history entry HE. Since peopleCount.history has two elements, the check is performed twice
(line 10). In both of them, the algorithm checks that every category cat in HE.AC belongs to
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peopleCount.pp. ~jac (line 16). In our example, as peopleCount.pp.jac allows joint access with
data belonging to category generic, jacDataF lag will remain true for both of the history en-
tries of peopleCount.History. In the next step, the logical conjunction of jacDataF lag and
jacIpFlag is done, to get jacF lag. Since both of them are true, jacF lag will be true. Similarly,
the algorithm checks that every category cat2 in HE.RC does not belong to peopleCount.pp. ~cdc

(line 21). For the first history entry, cdcF lag will remain true, as category in HE.RC is not
sensitive. For the second history entry, cdcF lag will change to false, since the category in
HE.RC is sensitive. Finally, since cdcF lag is false (line 25), attribute peopleCount is not
added to the final schema, hence it will not be shared with the consumer.

5.3 Experiments

In order to evaluate the performance and overhead of the proposed mechanism, we have imple-
mented several scenarios introduced in what follows. It is relevant to note that, as highlighted
in Table 3.1, the state-of-art approaches reviewed in Section 3.1.2 offer only a subset of the fea-
tures supported by the proposed framework. This brings us to prefer not having a performance
comparison among them.

5.3.1 Experimental scenarios

We developed four experimental scenarios to estimate the overhead at smart object and at
network level.

Processor SO I

In this scenario, we consider processor SOs of second smartness level, able only to perform
data selection and projection. In particular, we assume that processor SOs I are physically
manufactured low capability devices, with hard-coded logic.To simulate this low capability
devices, we have implemented smart objects using Freescale FRDM-K64F7 with mbed operating
system.8 This device has 256 KB RAM and ARM Cortex-M4 core. Coding has been done using
C++. Due to limited capabilities of the FRDM platform, we were not able to use real world
data. As such, in this scenario, we used synthetic data, randomly created on the FRDM
platform. We generate a tuple per second, containing a unique attribute of float data type,
with randomly assigned value.

Processor SO II

In this scenario, we assume that the processor SO is a device with third smartness level, able
to perform, in addition to selection and projection operations, also window-based operations,
such as join and aggregation. This processor SO II has been implemented on a Raspberry

7developer.mbed.org/platforms/FRDM-K64F/
8www.mbed.com/en/platform/mbed-os/
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Pi 3 Model B with Raspbian operating system, with 1GB RAM and a 1.2 GHz 64-bit quad-
core ARMv8 CPU. The implementation has been done with Java SE Development Kit 8u73.
Moreover, to implement into processor SOs II an SQL engine able to manage window-based
operations, we exploit Esper.9 We make use of the IoT-Lab testbed10 data, which provides
a very large scale infrastructure suitable for testing small wireless sensor devices and hetero-
geneous communicating objects. Each node of IoT-Lab testbed produces tuples containing a
unique attribute containing data sensed by that node. In particular, IoT-Lab provides three
hardware platforms: WSN430, M3 Nodes, and A8 Nodes. Our experiments have been run with
data transferred from M3 Nodes, where lumen level data, represented as float values, are sensed
from light-to-digital sensor ISL29020.11

Consumer SO

We implemented a smart object with third smartness level, able to check privacy preference
compliance. We adopt the same simulation and data generation strategies used for processor
SOs II (see Section 5.3.1), where compliance verification algorithm has been implemented as
an additional Java function.

Smart objects network

We recall that the aim of this experiment is to measure the overall time overhead and bandwidth
utilization implied by our enforcement mechanism on a network of smart objects. To simulate
this scenario, we should implement a real network of smart objects, where each object is
modified so as to embed the PEAS update algorithm as well as the compliance checks. However,
the lack of standard platforms on which injecting our modified smart objects makes hard to
deploy this setting. To overcome this issue, we decided to simulate a network of smart objects
by leveraging on Complex Event Processing (CEP) systems [137]. We exploit the graph-based
SQL modelling of CEP to simulate a network of objects, where every single operation in the
CEP query is interpreted as a distinct smart object. As an example, the graph-based SQL
query in Figure 5.3 can be interpreted as a network of two sensing SOs (i.e., the two INPUT
operators), four processor SOs (i.e., the join, projection, aggregation and selection operators),
and one final OUTPUT operator. This will allow us to estimate the extra time needed to
execute queries with the proposed enforcement mechanisms, as well as the extra space required
to encode the needed meta-data into each output tuple.

9www.espertech.com/esper
10www.iot-lab.info
11www.digikey.com/catalog/en/partgroup/isl29020/14151
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Figure 5.3: Graph-based SQL query

We adopted Streambase as CEP platform, as this product allows us to associate with an
SQL operator an additional function, running a Java code, that will be executed by Streambase
every time the operator processes an incoming tuple. As such, with Java SE Development Kit
8u73, we defined a set of functions implementing the PEAS update algorithms (cfr. Section
5.2). These functions have been properly associated with INPUT, Join, Selection, Projection,
and Aggregation operators of Streambase. Following this design, the compliance verification
algorithm should have been associated on the OUTPUT operator. However, since Streambase
does not allow this, we implemented a new Streambase operator, to which the function imple-
menting the compliance verification algorithm has been associated. This new defined operator
is inserted just before the OUTPUT operator finalizing the query. We have exploited the feed
simulation tool from Streambase Studio, that automatically generates and passes test data at
specified rates to INPUT operators. Data rate has been fixed to 100 tuples per second for
each stream. Number of attributes in each tuple has been regulated according to experiment
settings (see discussion on query complexity in Section 5.3.2).

5.3.2 Experimental results

In executing our experiments, we considered four main characteristics that may impact the
performance of the proposed solution. These are: privacy preferences complexity, queries com-
plexity, number of sensing smart objects, and percentage of smart objects with associated
privacy preferences. However, it was not possible to test all these dimensions in each scenario
(see Table 5.1). Indeed, the experiment varying the number of sensing SOs requires to use IoT-
Lab dataset, and, as discussed in Section 5.3.1, this dataset has been used only for processor
SO II and consumer SO. Experiments have been executed by varying a single dimension and
keeping fixed the others with worst case settings. Table 5.1 presents a summary of conducted
experiments. In the following, we illustrate the results.

Varying query complexity

Processor SO I: these SOs are only able to perform σ and Π operators. Moreover, since σ

operator does not alter PEAS meta-data of processed attributes (cfr. Section 5.2), we only
considered the Π operator. We varied query complexity by increasing the number of attributes
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Tested Proc. Proc. Consumer Smart
dimensions SO I SO II SO Object

network

Varying
complexity X X X X

of PP

Varying
query X X X X *

complexity

Varying
number of X X

sensing SOs

Varying %
of sensing SOs X X

with PP

Table 5.1: Experiments: X - time overhead, X * time and bandwidth overhead

to be evaluated to perform the Π operator. We recall that, according to the adopted notation,
the Π operator is modeled as a set of parameters, each one having a set of attributes to be
evaluated. Thus, in this experiment, we have considered a Π operator with a fixed number
of parameters (i.e., 3), by varying the number of attributes in each of them. As an example,
the simplest query is defined as a Π operator with three parameters and two attributes for
each parameter. Given a stream S(a,b,c), an example of simplest query is Π(a+b),(c−b),(a×c).
Execution times of queries with different complexity levels with and without the proposed
privacy preference enforcement are illustrated in Figure 5.4. Even for the most complex queries,
time overhead is less than 0.1 ms and performance overhead is less than 7%.
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Figure 5.4: Varying query complexity - Processor SO I

Processor SO II: query complexity can be estimated by the number of operators it con-
tains. However, we have also to take into account that smart objects are constrained devices,
so not being able to perform too complex SQL-like queries like those done by DBMSs. For
instance, the processor SO II has been simulated on Raspberry Pi with only 1 GB RAM. To
cope with this limitation, we have considered two sets of queries, with different complexity. The
first set, named Simple Queries, contains queries consisting only of a Σ operator. We select this
aggregation operation as we expect it is the most common task performed by smart objects,
that is, aggregating data sensed by sensors. The second set, named Complex Queries, contains
queries performing a join of data sensed by two clusters of sensing SOs, then a projection over
joined attributes, and, finally, an aggregation (i.e., average on 10s window) on projected values.
Again this type of queries represents a typical operation for smart objects. Table 5.2 shows
query execution time with and without privacy preference enforcement. Even for the most
complex queries, the time overhead is less than 0.71 ms and performance overhead is less than
9%.
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Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query selectivity 3,5% 1,84% 0,85% 0,72% 0,55% 0,37% 0,28% 0,2% 0,15% 0,13%

Extra bits per output tuple 98 140 210 245 294 336 392 455 483 546

Bandwidth overload per hour 3440 2576 1785 1764 1617 1243 1097 910 724 709

Table 5.4: Varying query complexity - SO network - bandwidth overhead

Processor Without Proposed
SO II PP enforcement mechanism

Simple 5 ms 5.36 ms
Queries

Complex 8 ms 8.71 ms
Queries

Table 5.2: Varying query complexity - Processor SO II

Consumer SO: even if consumer SOs are not designed to perform queries, but only com-
pliance verification, we have to note that query complexity might impact the execution of this
verification. Indeed, the more complex is the query, the more operations it contains. Thus, a
complex query implies, as a consequence, more complex History fields to be evaluated by the
compliance verification algorithm. As such, the aim of this experiment is to estimate how query
complexity impacts the overhead given by compliance check. For this experiment, we used the
same queries generated for processor SO II. Results of experiments are illustrated in Table 5.3.
Even for complex queries, the time overhead is less than 0.44 ms.

Scenario Simple Complex
queries queries

Consumer SO II 0.18 ms 0.44 ms

Table 5.3: Varying query complexity - Consumer SO

Smart object network: We simulate a smart object network via a Streambase query,
where each single Streambase operator acts as a smart object. Thus, increasing query com-
plexity is like increasing the network complexity. In performing these experiments, we use a set
of 10 queries with different numbers and types of operators. In particular, the simplest query,
Q1, contains 1 π, 1 σ, 1 ✶, and 1 Σ operator, whereas the most complex query, Q10, contains
10 π, 10 σ, 10 ✶, and 10 Σ operators. Results of experiments are illustrated in Figure 5.5.
As expected, less complex queries take less time to be processed. However, even in complex
network scenarios, the system overhead is always less than 10% which is less than 12 ms.
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Figure 5.5: Varying query complexity - SO network - time overhead

Regarding bandwidth utilization, we have to note that the overhead is mainly implied by
meta-data inserted in the original tuples. We recall that these meta-data are generated and
updated by each single operator specified in the query. As such, we expect that a dimension
impacting the bandwidth utilization is the query complexity. In addition to query complexity,
another element that might impact this overhead is the query selectivity, that can be measured
as the ratio of the number of tuples entering and number of tuples returned to/from a query.
As query selectivity depends on characteristics of query operators (as an example, in the ag-
gregation operator a bigger window size implies an higher query selectivity), we have modified
the benchmark of 10 queries above described so as to tune the operators (e.g., window size in
aggregation, selection conditions in Π) to obtain an increasing selectivity.

Number of bits added into output tuple after query execution are illustrated in the second
line of Table 5.4. As expected, more complex queries increase the number of bits added to the
meta-data. However, it is relevant to note that even the most complex query consumes quite
low bandwidth, 0.546 kbits, compared to the network capabilities of devices running similar
queries (like Raspberry Pi).12

In addition to that, we want to underline that we expect that complex queries will have
higher selectivity over input tuples (see first line of Table 5.4), thus less output tuples will be
generated. Thus, on the one hand a more complex query increases the number of added bits, but
on the other hand, it decreases the number of output tuples and thus the overall bandwidth
utilization. To better explain this balance, we run an experiment simulating a smart home

12www.pidramble.com/wiki/benchmarks/networking
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scenario generating 1,000 tuples per hour, each containing a float data type attribute (e.g.,
room temperature, used electricity in kw). This implies 32 bits in each single tuple. In case
that no queries are executed, that is, all tuples are flooding the network, we have 32 kbit overall
bandwidth per hour. From the third line of Table 5.4, we can see that the overall overhead
decreases by varying query complexity, aka query selectivity. Therefore, even in the worst
case, output tuples generated by queries consume quite low bandwidth, i.e. 3.4 kbits, which
translates to overhead less than 11%.

Varying complexity of privacy preferences

We recall that a privacy preference poses a set of conditions to be verified on consumer privacy
policy, namely ip, jac, and cdc. The presence of these conditions implies checks and operations
both in the compliance verification algorithm as well as in the PEAS generation algorithms.
As such, we can see the number of conditions specified in a given pp as a dimension to measure
pp complexity. In view of this, we generated two sets of privacy preferences with two different
levels of complexity. In particular, privacy preferences in the first set, named Simple PP, have
been defined as very simple preferences with a unique condition on the intended purpose field,
and thus their compliance verification is easy to be performed. In contrast, privacy preferences
in the second set, named Full PP, have been defined with a condition on each field (i.e., ip,
jac, cdc), so as to make harder the compliance verification. More precisely, privacy preferences
have been defined in such a way that their constraints for both Simple PP and Full PP refer to
random elements of the data category and purpose trees, which, in turn, have been populated
with synthetic data. In particular, we have considered 100 elements in both the data category
and the purpose trees. This test case has been applied to all experiment scenarios, as described
in the following.

Processor SO I: since FRDM is an hard-coded device with limited capabilities, we assumed
that with each attribute in the synthetic dataset the same privacy preference is associated (i.e.,
every attribute has the same pp value). This corresponds to a scenario where the implemented
processor SO I receives as input a flow of data generated by a sensing SO owned by a single
user, as such all data are marked with the same privacy preference. However, to test how
complexity of privacy preferences impacts the local overhead of processor SO I, we run several
times these experiments, changing in each execution the privacy preferences associated with
attributes, by selecting them both from Simple PP and Full PP sets.

Processor SO II, Consumer SO, and Smart object network: differently from pro-
cessor SOs I, privacy preferences are dynamically generated and randomly assigned to each
attribute of the tuples entering in the considered smart object.

In performing these experiments we adopt the settings shown in Table 5.5, which also
presents the execution time of queries without privacy preferences (i.e., No PP), with simple
privacy preferences (Simple PP), and complex privacy preferences (Full PP). As expected,
simple privacy preferences imply less time to execute the compliance verification. However,
even with complex privacy preferences the overhead is always under 1 ms and performance
overhead is always less than 10% for every scenario.
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Scenario Settings No Simple Full
PP PP PP

Processor Complex queries 0.31 ms 0.325 ms 0.34 ms
SO I

Processor Complex queries,
SO II 10 sensing SOs 3 ms 3.10 ms 3.28 ms

100% assoc. PP

Complex queries,
Consumer SO 10 sensing SOs ∅ 0.08 ms 0.34 ms

100% assoc. PP

SO network Complex queries 10 ms 10.74 ms 10.99 ms

Table 5.5: Overhead by varying PP complexity

Varying the number of sensing SOs

Increasing the percentage of sensing SOs with an associated privacy preference will increase the
number of privacy preferences to be elaborated (i.e., by PEAS update algorithm in Processor
SO II and by compliance verification algorithm in Consumer SO). Thus, we expect that this
will impact the execution time. In performing these experiments, we executed queries in the
set Complex Queries, and we associate sensing SOs with privacy preferences taken from Full
PP set. Results of experiments are illustrated in Figure 5.8 for Processor SO II and in Figure
5.9 for Consumer SO scenarios.

More precisely, in both scenarios, we varied the number of nodes in IoT-Lab testbed (i.e.,
number of sensing SOs) from 1 to 10, as we assume this range is reasonable for scenarios like the
smart home. In performing these experiments, we executed the queries in the Complex Queries
set, described in Section 5.3.2, and we associate with each sensing SO a privacy preference
taken from the Full PP set. Results of experiments are illustrated in Figure 5.6 for processor
SO II, and in Figure 5.7 for consumer SO scenarios.
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Figure 5.6: Varying the number of sensing SOs in Processor SO II scenario

Figure 5.7: Varying the number of sensing SOs in Consumer SO scenario

As expected, for both scenarios having more nodes in the system takes more time to process.
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For processor SO II, even in the worst case where we have 10 sensing SOs, overhead is under
0.7ms, thus performance overhead is less than 9%. Compliance check performed by consumer
SOs always takes less than 0.7 ms.

Varying percentage of Sensing SOs with privacy preferences

Increasing the percentage of sensing SOs with an associated privacy preference will increase the
number of privacy preferences to be elaborated (i.e., by PEAS update algorithm in Processor
SO II and by compliance verification algorithm in Consumer SO). Thus, we expect that this
will impact the execution time. In performing these experiments, we executed queries in the
set Complex Queries, and we associate sensing SOs with privacy preferences taken from Full
PP set. Results of experiments are illustrated in Figure 5.8 for Processor SO II and in Figure
5.9 for Consumer SO scenarios.

Figure 5.8: Varying number of sensing SOs with associated a PP in Processor SO II scenario
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Figure 5.9: Varying number of sensing SOs with associated a PP in Consumer SO scenario

As expected, for both of the scenarios having less nodes with privacy preferences implies
less time to process. For Processor SO II, even in the worst case, where all nodes have an
associated privacy preference, overhead is under 0.7ms thus performance overhead is less than
9%. Compliance check performed by Consumer SO always takes less than 0.7 ms.

5.3.3 Discussion on experiments results

To test the performance of the proposed mechanism, we tested four dimensions in four scenarios,
characterized by networks of smart objects of different smartness levels and roles. In evaluating
experiment results, we focus on the time and bandwidth overheads imposed by proposed mech-
anism. More precisely, the time overhead to processor SO I, processor SO II and smart object
network is measured as the ratio of the extra time required to perform PEAS derivation (see
Algorithm 1). Experiments show that this is always less than 10%. For consumer SO, the time
overhead is estimated as the the time required to perform compliance check (see Algorithm 2).
Experiments show that this is always less than 1 ms. On the other hand, bandwidth overhead is
measured as the ratio of the bandwidth overload for privacy enforcement to the normal system
execution (for a certain period of time), which is always less than %10. Given that, both time
and bandwidth overheads given by proposed mechanism are reasonable.

We conclude that benefits of using the proposed mechanism (i.e., users’ privacy enforcement
in a decentralized setting) outweighs low performance degradation due to time and bandwidth
overheads. This proves feasibility of the proposed privacy enforcement framework.



Chapter 6

Blockchain-based P2P Botnet

Detection for IoT

Increasing popularity of IoT has made IoT devices a powerful amplifying platform for cyber-
attacks [75]. As discussed in Chapter 1, they represent a rather easy target to attackers and
the weakest link in the security chain of modern computer networks. As proof of this, a recent
study from HP found that more than 70% of IoT devices do not have passwords with sufficient
complexity and use unencrypted network services, resulting in being easy targets for attackers.1

In such a vulnerable environment, attackers can easily gain access to insecure IoT devices,
and inject malicious softwares, malwares, to control them or to steal confidential information
[112]. Today, one of the most relevant threat posed by malwares in IoT is represented by
malicious botnets.A botnet is a collection of compromised Internet computers being controlled
remotely by attackers for malicious and illegal purposes [132]. For example, some recent Dis-
tributed Denial of Services (DDoS) attacks on Krebs on Security and DYN were due to a
malware, named Mirai [8], that uses IoT devices as botnets to generate extensive amount of
network traffic, more than 1 Tbps. Additionally, such botnets have been commoditized by
malicious parties, known as booters [70], that offers DDoS as a service. Booters exploit com-
promised IoT devices to send attack packets to a target victim, in order to interrupt its service
or shut it down. Given that, botnets capable of using tens of thousands of IoT devices pose
huge threats to online services’ security and privacy.

Botnets. Let us examine in more details the main elements of botnets. Briefly, a typical
botnet consists of [132]: i) several bots, that is, infected machines running the bot executable;
ii) a Command and Control (C&C) server, able to control every bot; and iii) a botmaster,
which is the malicious party controlling the botnet via the C&C server. Early botnets followed
a centralized architecture, where the botmaster manages bots via the central C&C server. To
increase resilience of their attacks against defence mechanisms, more recent botnet architectures
evolved into decentralized P2P architectures. Today, decentralized P2P botnet topologies are
able to utilize regular bots as C&C servers [132], thus eliminating the single point of failure

1go.saas.hpe.com/l/28912/2015-07-21/32bhy3/28912/69168/IoT_Report.pdf
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problem. On the other hand, this makes P2P botnets harder to being detected and stopped,
as botmasters are able to send attack commands through various channels.

AutoBotCatcher. The design of AutoBotCatcher is driven by the consideration that
bots of a same botnet frequently communicate with each other and form communities [39,
149]. As such, the purpose of AutoBotCatcher is to dynamically analyze communities of IoT
devices, formed according to their network traffic flow (see problem statement in Section 6.1),
to detect botnets. Specifically, it is a blockchain-based P2P botnet detection mechanism for
IoT that makes use of two main actors, namely: agents and block generators (see Section
6.1 for more details). Where, agents are entitled to monitor IoT network traffic flows in their
subnets, and send collected traffic information as blockchain transactions. In contrast, by using
collected network traffic flows, block generators (i.e., trusted big entities in IoT domain) aim
at modeling mutual contact information of IoT devices (i.e., connections between IoT devices)
and generating mutual contacts graph. This graph is then exploited to detect communities (see
Section 6.2.1).

In particular, AutoBotCatcher uses Louvain method [19] to perform community detection
on mutual contacts graphs. Since mutual contact information of IoT devices evolves over
time, new snapshots of the mutual contacts graph are periodically generated. To this end,
AutoBotCatcher exploits states of a BFT blockchain in order to store snapshots of the mutual
contacts graph (see Section 6.3). Due to their ability to achieve distributed consensus in
processing high throughput of transactions, AutoBatCatcher employs BFT blockchains over
PoW blockchains. AutoBotCatcher’s BFT blockchain is a permissioned blockchain, where a
set of pre-identified block generators generate blocks and participate in the consensus process
(see Section 2.2.2). Thus, network data stored on the blockchain is only accessible to block
generators.

Discussion. In Chapter 3.2, we reviewed literature on the botnet detection systems. Specif-
ically, we classified botnet detection approaches into two groups as Network traffic signature
based approaches and Group and community behaviour based approaches. AutoBotCatcher dif-
fers from such approaches discussed in several ways. First, unlike DPI based approaches, to
perform botnet detection AutoBotCatcher requires to trace only high level meta-data about
network flow traffic (i.e., source and destination addresses), as such it is effective against en-
crypted C&C channels. Second, unlike network traffic signature based approaches, even if
botmasters randomize network traffic by changing packet sizes, communication frequency etc.,
botnet community structures do not alter, since the same set of commands has to be shared
with the same set of bots. Third, unlike other group and community behaviour based ap-
proaches, AutoBotCatcher performs dynamic community detection by exploiting blockchain,
so it is able to detect emerging and unknown botnets, and to take preventive measures against
them.

The remainder of this chapter is organized as follows. In Section 6.1, we present the con-
sidered problem statement and the main entities involved in AutoBotCatcher. We provide
background information on mutual contacts graph, and community detection approaches in
Section 6.2. In Section 6.3, we introduce the blockchain paradigm defined for AutoBotCatcher.
We detail the design of AutoBotCatcher in Section 7.3.
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6.1 System Model

In this section, we introduce the problem statement and the main entities of AutoBotCatcher.
Problem Statement. We assume to have a network of IoT devices, gateways, and some

external hosts that communicate with IoT devices (such as device vendors’ servers, cloud ser-
vices). IoT devices are connected to the Internet, they sense and process data, and communicate
with other IoT devices or external hosts. Botmasters compromise IoT devices and make them
part of their botnets for malicious purposes, such as performing DDoS attacks. On the other
hand, gateways, such as Dell Edge Gateways2, are located in network boundaries and monitor
the Internet traffic to/from IoT devices within their networks, referred to as their subnet. We as-
sume that gateways are trusted, as such, they behave as expected, and cannot be compromised
by botmasters.

AutoBotCatcher targets P2P botnets, where all bots potentially can be utilized as C&C
servers by botmasters, and performs community analysis on network traffic flows of IoT devices
to detect botnet communities. We assume that a botnet community is a group of compromised
IoT devices that frequently communicate with each other and with the same set of botmasters.
AutoBotCatcher relies on mutual contacts information of IoT devices, which refers to shared
connections between a pair of IoT devices and/or other hosts. For example, let us assume Host
A3 is connected to Host C ; given that, if Host B is also connected to Host C then Host A
and Host B share a mutual contact, that is, Host C. As discussed in [39] and [149], bots of a
P2P botnet communicate with at least one mutual contact with very high probability, there-
fore mutual contacts can be exploited for botnet detection [39]. Given that, AutoBotCatcher
exploits mutual contact information of IoT devices in performing botnet community analysis
(see Section 7.3).

Our assumptions on the threat model are as follows: IoT devices can become part of a
botnet anytime; new types of botnets may emerge in the network; botmasters encrypt C&C
channels, and therefore DPI techniques are not suitable; botnets tend to hide their operations
and botmasters try to stay as stealthy as possible [132], where botnets are able to manipulate
characteristics of bot traffic, and thus they are able to make network flow traffic signature based
defense approaches ineffective; botnets are in their waiting stage, where bots are joined to the
C&C network and wait for commands from the botmaster, thus their malicious activity may
not be easily observable. The goal of AutoBotCatcher is to dynamically identify IoT devices
and other hosts in the network that are part of botnets.

Entities. AutoBotCatcher consists of two main entity types:
– Agents: They are typically gateway devices that are deployed in the network boundaries.

AutoBotCatcher’s agents monitor network traffic flows of IoT devices in their subnet and take
actions, such as: generating network-data transactions (NTs) (see Definition 14) and forcing
infected devices to shut down. In AutoBotCatcher agents are considered trusted. As such, we
assume they behave as expected, and can not be compromised and act maliciously.

– Block Generators: This role is played by big entities in the IoT domain, such as device

2dell.com/us/business/p/edge-gateway
3Here, Host refers to both IoT devices and other hosts in the network
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vendors, Internet service providers (ISPs), security/privacy regulators, Block generators col-
laborate to achieve large-scale defense and protection from botnet threat without trusting each
other with the help of a BFT blockchain. For effective botnet detection and prevention, col-
laboration of different device vendors and ISPs is very important, as recent IoT botnets, such
as Mirai and Hajime, infected IoT products from various vendors.4 In fact, malwares behind
those botnets are adaptable to the various device architectures, such as ARM and Intel, and
to different products, and they were effective in all around the world. We assume that block
generators have enough computing and network resources available to devote to P2P botnet
detection process operations (see Section 7.3).

6.2 Background

In this section, we provide background information needed to understand the rest of the chapter.
To this end, first, we explain the mutual contacts graph concept; and then, we provide an
overview of community detection approaches.

6.2.1 Mutual Contacts Graph

In AutoBotCatcher, mutual contacts graphs are exploited as a graph based data representation
of the mutual contacts of IoT devices and other hosts in the network. We denote a mutual
contacts graph as G = (V,E), where IP addresses of IoT devices and other hosts are vertices
(V ). Vertices share an edge (E), if they have at least one mutual contact. Edges are bidirectional
and weighted, where number of mutual contacts between vertices is the weight of the edge
between them. As such, by referring to the example of mutual contacts given in Section 6.1
and assuming that there are only three hosts in the network, Hosts A, B, C are vertices in the
mutual contacts graph, where Host A and Host B share an edge with weight 1, as they share the
mutual contact Host C. In AutoBotCatcher, the whole topology of the mutual contacts graph is
represented by a 2 dimensional weighted adjacency matrix, referred to as mutual contacts matrix
(MCM), whose element MCMij indicates the number of mutual contacts between vertices i

and j. For all vertices i and j, MCMij = MCMji.
5

6.2.2 Community Detection

Bots of the same botnet use similar C&C channels and share the same messages [139, 149],
as such they are much likely to share many mutual contacts [39] than legitimate P2P hosts.
Therefore, P2P bots show community behaviours and form community structures that can
be useful for botnet detection. Given that, AutoBotCatcher performs community analysis on
mutual contacts graphs.

Community detection methodology. In AutoBotCatcher, accurate and fast detection
of communities in the mutual contacts graph is of great importance for proper botnet detection.

4symantec.com/connect/blogs/hajime-worm-battles-mirai-control-Internet-things
5This is due to the fact that mutual contact relation applies to both of the vertices.
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Literature offers several community detection approaches for systems modeled as graphs (see
[52] for more details). The main objective of these methods is to find good partitions on the
graphs as possible communities in the network. How to measure goodness of a partition is an
important concern in designing community detection methods. In general, a quality function
is used as a quantitative criterion that assigns a number to each partition of a graph to rank
partitions based on their score [52]. Notably, modularity is the most popular quality function,
where achieving high modularity translates to a better partition of the graph, thus better
community structure (for further discussion on the methodology please refer to [97]). Given
that, AutoBotCatcher exploits a modularity-based Louvain method [19], that is, an hierarchical
greedy algorithm trying to improve modularity for community detection.6 Louvain method has
many advantages that makes it a good choice for AutoBotCatcher, such as: it is faster and
achieves higher modularity than other methods; and it is able to process large networks in a
short time.7

6.3 The Blockchain Paradigm

We devote this section to explain how blockchain is used in AutoBotCatcher.
Transactions. To detect botnets, AutoBotCatcher employs community detection analysis

on the mutual contacts graph. In particular, to generate mutual contacts graphs, AutoBot-
Catcher needs to collect and analyze meta-data information about network traffic flow of IoT
devices (i.e., IP addresses). To this end, we exploit blockchain as a shared data store to audit
meta-data, which are thus modelled as blockchain transactions sent by agents to the transaction
pool, a shared data store hosted by all block generators, that holds unprocessed transactions.
Particularly, each agent is connected to one block generator to send transactions, where block
generator that receives a new transaction disseminates new transactions to other block gener-
ators.

Meta-data are encoded into network-data transaction (NT), formally defined as follows:

Definition 14 Network-data Transaction (NT). Let NetF low be the network traffic flow
defined as NetF low = (IPsrc, IPdest), where ăIPsrc and IPdest are the source’s and destina-
tion’s IP addresses, respectively. Let Deviceaddr be the unique public key of the agent that
sends the transaction, and let Tx − Pooladdr be the public key of the transaction pool that
agent is connected to send the transaction, A network-data transaction is a tuple: NT =
〈Deviceaddr, IPsrc, IPdest, Tx− Pooladdr〉

Blocks. Transactions are bundled into blocks that are generated by block generators.8 In
what follows, we symbolize a block as bm, where m represents the block number. Given that,

6Despite initially being designed for unweighted graphs, it can be easily adapted to weighted ones.
7It took 12 minutes for a network containing 39 million vertices and 783 million edges [19] with AMD dual
opteron 2.2k, 24 GB of RAM.

8Number of transactions in a block is regulated according to the block size and transaction size settings of the
blockchain protocol.
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the block structure is as follows:

bm = {NTx, . . . , NTy} (6.1)

Where, NT represents a network-data transaction, and x and y are the transaction number.
During the execution of AutoBotCatcher, one of the block generators is elected as a leader to
generate a block. Block generation interval, symbolized as τ , represents the amount of time
between consecutive block generations. Upon generation of a block, at least two-thirds of block
generators should send acknowledgements to the block generator regarding their approval on
the block.9 Once acknowledgements have been obtained and τ is expired, block generator of
the next block generates the new block.

Rounds. In AutoBotCatcher, P2P botnet analysis is periodically performed upon genera-
tion of a set of blocks. We refer to such periods as rounds. Each round takes certain amount
of time, symbolized as ∆. Value of ∆ depends on both the amount of time needed for block
generators to perform botnet detection operations on the blocks (e.g., mutual contacts graph
extraction, botnet community detection, etc.), network quality (e.g., network connection de-
lays), and blockchain protocol (e.g., transaction throughput etc.). A round is symbolized as
Γ∆t

, where ∆t is a timestamp specifying the starting time of the round. When the round Γ∆t

ends, the next round Γ∆t+1
starts. In round Γ∆t

, botnet detection is performed on NTs sent
during the previous round Γ∆t−1

. More precisely, NTs sent from timestamp ∆t−1 to timestamp
∆t (which corresponds to execution time of round Γ∆t−1

) are processed in round Γ∆t
.

State. In general, in blockchain the state notion can be used to represent financial balances
of users (e.g., Bitcoin), or, in a broader setting, it can represent anything that can be modeled
as result of the computer programs (i.e., on Ethereum blockchain [136]). In our setting, the
state is a mapping between IoT devices’ and other hosts’ IP addresses (that are subject to
botnet detection) and communities (each marked as botnet community or benign community).
In AutoBotCatcher, similar to the Ethereum protocol [136], the state is not stored on the
blockchain, rather it is maintained on an efficient Merkle tree implementation,10 such as Patricia
Merkle Trees.11 Merkle trees are hash based data structures, where each node is the hash of its
children or hash of the data, if the node is a leaf. Main benefits of using Merkle trees to store
states are: they are immutable data structures, thus we are able to secure entire system states
with cryptographic dependences; and, they allow the blockchain protocol to trivially revert to
any old state by simply altering the root hash [136].

In AutoBotCatcher, the state of the blockchain on timestamp ∆t, symbolized as σ∆t
, con-

sists of: the snapshot of the latest version of the mutual contacts graph G∆t
, that is generated

from the network-data transactions; the set of all communities and IP addresses of hosts asso-
ciated with that communities, extracted from the mutual contacts graph by block validators,
symbolized as CommSet∆t

; and, all blocks of the blockchain. Given that, the state of the
blockchain on timestamp ∆t is represented as follows:

9If the block generator does not get approval from at least two-thirds of block generators, that block will not
be added to the blockchain, and a new block generator will be selected to generate a block.

10Exploiting Merkle trees in our blockchain setting requires a simple state database backend.
11github.com/ethereum/wiki/wiki/Patricia-Tree
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σ∆t
= (G∆t

, CommSet∆t
, [B0, . . . , Bm]) (6.2)

In Figure 6.1, we present an example of rounds and states, where each round includes
generation of three blocks.

Figure 6.1: Round and state relation

State transitions. In blockchain, state transition refers to achieving a new valid state after
executing a set of transactions on the previous state. AutoBotCatcher uses the community set
and snapshot of the mutual contacts graph of the previous blockchain state to dynamically
perform botnet community detection. Therefore, in AutoBotCatcher, a state transition occurs
upon finishing a round of botnet detection operations (see Section 7.3 for more details). Given
that, for every round Γ, one state change occurs upon execution of the set of blocks. Particularly,
upon execution of Γ∆t

, the state changes from σ∆t
to σ∆t+1

. We define the state transition as
a function of rounds, which takes previous state and new blocks as input, as follows:

σ∆t+1
= Γ (σ∆t

, [Bm, . . . , Bm+z]) (6.3)

Where σ∆t
is the previous state (see Equation 6.2), and [Bm, . . . , Bm+z] is the set of new

blocks, where m and z represent block number (see Equation 6.1).
Consensus. Blockchain protocol adopted by AutoBotCatcher uses Byzantine Fault Toler-

ant (BFT) methodology to achieve consensus. In BFT blockchain, in order to achieve consensus,
at least two-thirds of the block generators have to agree on the latest state proposed by one
of the block generators. In our setting, this translates to agree on: the same set of blocks
processed; same mutual contacts graph; and same community mapping of IoT devices.

6.4 System Architecture

AutoBotCatcher exploits a BFT blockchain as a backend module to perform dynamic and
collaborative botnet detection on large scale networks. An overview of the execution flow of
AutoBotCatcher is presented in Figure 6.2 and discussed in what follows.
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Network data pre-processing. This task is executed by agents for monitoring network
traffic flow of IoT devices and taking actions according to that. In performing such operations,
agents maintain two types of IP address lists, namely blacklist and whitelist. Blacklists contain
IP addresses that have been previously detected as part of a botnet. On the other hand,
whitelists contain predefined and trusted IP addresses,12 such as IP addresses of the vendor’s
servers, for all IoT devices in their subnet.

More precisely, an agent constantly sniffs network traffic flows of IoT devices in its subnet;
the agent does not take any action for network traffic of an IoT device with a whitelisted IP
address; for all other network traffic flows, the agent forms network flow transactions (NTs) (as
given in Definition 14), if a network flow is with a blacklisted IP address, then agent quarantines
that IoT device either by forcing it to shut down or by cutting all of its network connections.

Blockchain operations. This task is executed by block generators for the generation and
relay of blocks that include NTs. To perform these operations in a round Γ∆t

, first, one block
generator is selected to generate one or more blocks.13 That block generator takes the subset of
NTs from the transaction pool, it forms a block and broadcasts the block to all block generators.
We recall that each block has to receive approval from at least two-thirds of the block generators
in order to be valid, and to achieve consensus on its validity in a BFT blockchain setting.

Graph extraction. This task is executed by block generators, aiming at elaborating
the network traffic flow data, that is, the NTs processed in a round Γ, to generate/update
the mutual contacts graph G. Particularly in round Γ∆t

, block generators create the mutual
contacts matrix MCM∆t+1

, representing G∆t+1
that results from the state σ∆t+1

, by updating
MCM∆t

, i.e., G∆t
of state σ∆t

, with the NTs in blocks sent from ∆t−1 to ∆t.
Operations to transit from MCM∆t

to MCM∆t+1
are: updating weights of edges between

vertices that communicated in round Γ∆t
; adding vertices and edges, if new IoT devices connect

to a device network, or a new host IP address communicates with an IoT device; removing
vertices and edges, if some IoT devices or hosts do not exist anymore.

Community detection. This task, executed by block generators, performs dynamic com-
munity discovery (DCD) on the mutual contacts graph G.

AutoBotCatcher performs dynamic community detection with Louvain method on snap-
shots of the mutual contacts graphs from consecutive states of the BFT blockchain. Yet, as
presented in [12], even small changes in consecutive network snapshots may cause Louvain
method to generate two alike community structures, which would eventually cause AutoBot-
Catcher to lose track of the communities and thus degrade its execution. Therefore, to have a
more stable community structure between timestamps, AutoBotCatcher initializes the Louvain
algorithm for community detection at timestamp ∆t+1 with the communities found in ∆t as
proposed by Aynaud et al. in [12]. More precisely, in round Γ∆t

, AutoBotCatcher performs
community detection on newly extracted mutual contacts graph G∆t+1

, by feeding community
set of IoT devices, CommSet∆t

from the last state δ∆t
to Louvain method.

12We assume that hosts corresponding to IP addresses in whitelists are secure, and do not pose any threat to
IoT devices.

13For the sake of brevity, we do not detail the election process, but any leader election process performed in a
typical distributed system is suitable for our setting.
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Perturbation check. This task is performed by block generators to check updates (i.e., IP
address additions and removals) on communities that already exist in the previous timestamp.14

Particularly, for botnet communities, IP addresses of new bots are inserted to the list called
additions to blacklist, whereas IP addresses of bots that are no longer part of a botnet are
inserted to the list called removals from blacklist. Upon block generators achieve consensus on
the new state, block generators share those lists with agents (see task bot identifier).

Botnet check. Executed by block generators, this task is responsible for classifying new
communities as either botnet or benign communities. Botnet detection methodology used by
AutoBotCatcher is based on two observations: 1) bots connect with each other for command
exchange, thus they have more mutual contacts than benign communities [149]; 2) botmasters
or attack targets communicate with many nodes, referred to as pivotal nodes [134], so that
they have very high number of mutual contacts. Therefore, according to the first observa-
tion, AutoBotCatcher calculates the average number of mutual contacts per IP address for
all communities. If the result is higher than a pre-defined mutual contacts threshold θ, that
community is marked as candidate botnet community. Secondly, AutoBotCatcher checks for
pivotal nodes in candidate botnet communities. Particularly, for all IP addresses in a candidate
botnet community, AutoBotCatcher sums their rows in the mutual contacts matrix (MCM).
If one or more pivotal nodes exists in the candidate botnet community, it is marked as botnet
community by the block generator. Upon block generators achieve consensus on the new state,
block generators share IP addresses in botnet communities with next task for bot blacklisting.

Identify bots. The last task is responsible for updating the bot blacklists of agents, and
it is executed by block generators after a state change. It updates the blacklists of all IoT
devices with the help of smart contract transactions for addition and deletion of IP addresses
on agent’s local blacklists.15

14If a community changes more than a threshold φ, calculated as the ratio of total changes to number of edges
and vertices, that community will be considered as a new community, and next task will be executed on it.

15As it is not the main focus of our work, we do not detail how this mechanism works, such as transaction
structure, which is left as future work.



Chapter 7

Hybrid Blockchain Architecture for

IoT

IoT has the potential to make several environments smarter more connected, profitable, and
efficient, which typically requires the connection, concerted operation and management of a
distributed large number of loosely coupled smart devices that need to identify and trust each
other. While this should ideally map to a decentralized hardware and software platform, current
solutions are mostly based on centralized infrastructures which have many disadvantages, as
presented in Chapter 1.

Decentralization, if achieved, would have many advantages over centralized IoT infrastruc-
tures, as discussed in Chapter 1. This, from a distributed systems point of view, means achieving
distributed consensus. A promising decentralized platform for IoT is blockchain. In fact, when
it comes to IoT, blockchain can be used to store critical machine-to-machine communications,
sent as blockchain transactions, ensuring accountability and security of the stored data. It can
also provide identity and proof of provenance of IoT devices with its cryptographic functions.
While the literature offers some examples of blockchain technology in IoT, such as [15, 64, 78],
up to now there is no de facto standard solution.

Indeed, one of the biggest challenges in the integration of blockchain into IoT is scalability.
In fact, due to the massive number of devices and resource constraints, deploying blockchain in
IoT is particularly challenging. The optimal blockchain architecture has to scale to many IoT
devices (they become the peers on the blockchain network), and it should be able to process a
high throughput of transactions.

Hybrid-IoT, the platform designed in this work, exploits both PoW blockchains and BFT
protocols. First, PoW blockchains are used to achieve distributed consensus among many IoT
devices, the peers on the blockchain. To measure and qualify that, we define a set of PoW
blockchain-IoT integration metrics, and we evaluate the performance of Hybrid-IoT subject to
varying blockchain block sizes and block generation intervals, device locations, and number of
peers. Since we first observed that PoW blockchains containing few hundreds of geographically
close IoT devices have high performance (i.e., high transaction throughputs) and low block
propagation delays, the first step in Hybrid-IoT consists of generating multiple PoW block-
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chains. Those are generated according to a set of rules, referred to as sweet-spot guidelines,
that combine best practices in designing sub-blockchains. As a second step, Hybrid-IoT lever-
ages on a BFT inter-connector framework, such as Polkadot1 and Cosmos2, in order to achieve
interoperability among sub-blockchains. In this work, we only deal with the first step, that is,
analyzing the performance and security of the PoW sub-blockchain setting.

Furthermore, in Hybrid-IoT we define three roles for IoT devices according to their capa-
bilities, and test the performance of the system with a set of experiments and simulations.
Moreover, we extensively test security of our approach by acknowledging that generating sub-
blockchains may generate security vulnerabilities. We would like to note that, in designing
Hybrid-IoT we assumed that IoT devices with fixed location and network connection.

We stress that, in this work, we make extensive use of Bitcoin clients and a Bitcoin simulator
to conduct the performance analysis. The Bitcoin client approach is used to test the Hybrid-
IoT architecture and design. The real focus here is the PoW sub-blockchains design with the
sweet-spot guidelines and the type of tests and analysis performed here would not differ with
other types of PoW protocols that allow smart contracts (this would affect only the types of
transactions submitted to the peers).

In the literature, there are few papers targeting application of blockchain to IoT (cfr. Chap-
ter 3.3.1). However, application of blockchain to IoT has been mainly limited to application
specific tasks (e.g. firmware updates of IoT devices [78]), whereas the goal of our work is to
decentralize IoT by exploiting blockchain.

Limitations related to scalability of PoW blockchains have been widely studied [43, 40]
and different methodologies have been proposed to overcome such limitations [79, 122, 50, 13].
Particularly, one notable approach is using block Decentralized Acyclic Graphs as reconstruction
of classical longest chain protocols [79, 122]. Another significant proposal is Bitcoin-NG protocol
[50] by Eyal et al. Bitcoin-NG protocol proposes use of two types of blocks in the Bitcoin
blockchain, namely; key blocks and microblocks, to achieve higher transaction throughput.
Differently, [13] Back et al. proposes the use of multiple interoperable blockchains, referred to
as pegged sidechains, to allow assets in different ledgers to be transferred between each other.
We would like to underline that, Hybrid-IoT can benefit from such proposals by adopting their
methodologies to increase throughput and enhance interoperability of PoW sub-blockchains.
integration of their methodologies throughput of PoW sub-blockchains can increase.

The remainder of this chapter is organized as follows. We define PoW blockchain-IoT
integration metrics in Section 7.1. In Section 7.2, we extensively evaluate PoW blockchain-IoT
integration and define sweet-spot guidelines for sub-blockchain generation. We detail the design
of Hybrid-IoT in Section 7.3. In Section 7.4, we evaluate performance of the sub-blockchains.
Security of our approach is discussed in Section 7.5.

1polkadot.network
2cosmos.network
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7.1 PoW Blockchain-IoT Integration Metrics

We identify five relevant dimensions that an optimal blockchain PoW implementation for IoT
should be subject to: scalability, security, decentralization, efficiency as observed metrics, and
network bandwidth as a controlled parameter. In what follows, we analyze those dimensions
(see Table 7.1 for a summary).

Scalability. Scalability in IoT is the capacity to be changed in size or scale in terms of
number of devices, hardware characteristics and functional and non-functional requirements,
while maintaining quality of performance. For blockchain, this translates to have a peer to
peer network that can scale up in terms of number of peers and throughput, as number of
transactions per unit of time.

Security. Security is a critical dimension in IoT, especially considering recent large scale
attacks ,like Mirai and WannaCry.3 While in this work we do not deal with device intrusions,
the issue of data integrity for IoT devices is an important problem to be solved [80]. While
data integrity is by design preserved by a PoW blockchain, the issue of the longer chain attack
still exists [55]. In order to measure this, we consider the maximum amount of total work in
the PoW sub-blockchain as a metric.

Decentralization. Decentralization in IoT is critical to improve security and privacy and
achieve autonomous execution, as noted in Section 2. In peer-to-peer overlay networks, like
blockchains, decentralization is measured by the number of properly functioning peers [40]. In
a blockchain, a peer needs to be up to date with the most recent block before generating a
new block to be accepted by blockchain consensus. Hence, we define the metrics for measuring
decentralization as the number of functioning peers on the network. We also define a lower
bound of functioning peers, to be 90% of the total, to guarantee proper functionality of the
blockchain for its IoT application.

Efficiency. Efficiency in IoT can be defined as an optimal utilization of hardware resources
and energy. Therefore, in order to achieve that, the IoT devices on the blockchain should
optimally utilize resources and energy to maintain and progress the blockchain. Among others,
an obstacle to that is the issue of forks and stale blocks in PoW blockchains [55]. Specifically,
stale blocks do not contribute to the security of the blockchain and transactions in stale blocks
are considered as unprocessed by the network, requiring wasted effort to generate them.4 Hence,
we define our metrics for efficiency as the stale block generation ratio and we establish a upper
bound for performance to be ≈1%.

Network bandwidth. Network bandwidth is a one to one map between the IoT network
and its corresponding blockchain network. It is defined by the the IoT devices downlink and
uplink rates. For example IEEE 802.15.4 and NarrowBand-IoT standards set 250 Kbps data
transfer peak rates for machine to machine communication, whereas in LTE Cat M1 and LTE
Cat 0 standards it is 1 Mbps. In this work, in order to avoid network overloads and consequent
bottlenecks with high information traffic, we set an upper bound of 250 Kbps as total of uplink

3siliconrepublic.com/machines/iot-devices-botnets-autonomous-cars
4In Ethereum blockchain they are included to the blockchain as uncle blocks, however they do not count towards
total difficulty of the blockchain [55].
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Dimensions Metrics

Scalability ⋄ Maximum no of IoT devices as peers
⋄ Maximum transaction throughput

Security ⋄ Maximum work in the blockchain

Decentralization ⋄
90% block propagation time

block generation interval
≤ 1

Efficiency ⋄ Stale block generation rate ≈ 1%

Network bandwidth ⋄ Avg network traffic of a device ≤ 250 Kbps

Table 7.1: PoW Blockchain - IoT Integration Metrics

and downlink rates.

7.2 PoW Blockchain-IoT Integration Evaluations

In this section, we evaluate the performance of the integration of PoW blockchains in IoT,
subject to the dimensions and metrics defined in Section 7.1. To this end, we use and further
extend (by adding different device location setups) the Bitcoin simulator5 presented in [55],
(see Section 7.2.1). We perform three evaluations (see Section 7.2.2): one by varying block size
and block generation intervals (see Section 7.2.2); one by varying device location (see Section
7.2.2); one by varying the number of IoT devices (see Section 7.2.2). We present results as an
average of 5 experimental runs. We use the findings of this section to define the concept of
sweet-spot guidelines that drives the generation of sub-blockchains (see Section 7.2.3).

7.2.1 Simulator Setting

The Bitcoin simulator is built on ns-3 discrete-event network simulator. It allows to model
a Bitcoin network with a set of consensus and network parameters such as: block generation
interval; block size; number of nodes. Connections between nodes are established using point-
to-point channels, by considering latency and bandwidth as the two main characteristics (cfr.
[55] for further information). We have extended the simulator with three different device
location setups, namely the Netherlands, Europe, and World, by adopting real world network
latency data.6 In the Netherlands setup, devices are located in six cities of the Netherlands:
Alblasserdam, Amsterdam, Dronten, Eindhoven, Rotterdam and The Hague. In the Europe
setup, devices are located in six European cities: Brussels, Athens, Barcelona, Izmir, Lisbon
and Milan. Finally, in the World setup devices are located in 7 globally distributed cities:
Dhaka, Hangzhou, Istanbul, Lagos, Melbourne and San Diego. We equally distribute regular
and miner among the cities in the respective setups.

5github.com/arthurgervais/Bitcoin-Simulator
6wondernetwork.com/pings
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In order to use the simulator for our evaluations we categorize IoT devices within two roles:
miners and regular devices. The number of connections per miner device and regular device
follows the distribution as in [87]. Regular devices only check and propagate the blocks they
receive, whereas miner devices also generate new blocks. The ratio of miner over number of
nodes is set to ca 7%, with the remainder taking the role of regular devices. This is justified by
some Bitcoin statistics [87] and by the fact that we consider only a small subset of IoT devices
to have enough resources to take part in the mining process.

Network latency plays a critical role in performance due to the intrinsic nature of peer to
peer information propagation (i.e., block and transaction). Hence, to evaluate how geographical
locations of the devices affect network latency, we exploit the Netherlands, Europe, and World
device location settings of the simulator.

Bandwidth capacities of IoT devices obviously affect information propagation time in the
blockchain. To have a realistic bandwidth setup, we adopt the bandwidth benchmarks of
Raspberry Pi devices.7 Hence, we adopt an upper bandwidth limit of 100 Mbps (variations
within that limit are allowed due to connection type) and we realistically simulate bandwidth
capacities with a distribution from testmy.net.8 That results in a varying download bandwidth
between 0.1 Mbps and 100 Mbps with a 5 Mbps average, and a varying upload bandwidth
between 0.02 to 20 Mbps with a 1Mbps average.

7.2.2 Evaluation Results

Evaluation I: Block sizes and block generation intervals

We evaluate the effect of block sizes and block generation intervals with the simulator with
the Netherlands setup. We adopt a six block generation cycle with the following intervals: 10
minutes, 5 minutes, 1 minute, 30 seconds, 10 seconds, and 5 seconds. For every block generation
cycle, we vary block sizes as: 10 KB, 50 KB, 100 KB, 500 KB, 1 MB, 5 MB, 10 MB. We fix
the number of IoT devices to 250, with 18 devices with miner roles, according to the 7% ratio
in Section 7.2.1. Experiment results are presented in Table 7.2.

Network bandwidth. Not surprisingly, using bigger blocks and/or having short block
generation intervals increase the average network traffic. In that, big blocks (e.g., 5 MB)
comply with the network bandwidth metric’s bound when block generation interval is long
enough (e.g., 5m), whereas for small blocks (e.g., 10 KB) even short block generation intervals
(e.g., 5s) are suitable.

Security. Obviously, using shorter block generation intervals increases the number of blocks
generated. However, we observe that this is not proportional, especially when the block size
is bigger than 100 KB. Similarly, in experiments with 1 minute or shorter block generation
interval settings, increasing the block size decreases the number of generated blocks. This is
due to bandwidth exhaustion of devices. Therefore, according to the bounds of security metric,
using small blocks (e.g., 10 KB) in short block generation intervals (e.g., 5s) is more appropriate
to increase number of genuine blocks.

7pidramble.com/wiki/benchmarks/networking
8testmy.net/country
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Decentralization. According to the decentralization metric’s bounds, 90% block propa-
gation time should be lower than block generation interval. Due to their restricted bandwidth
capabilities, IoT devices have to spend more time to propagate big blocks, and that in turn
breaches the 90% block propagation time bound. In parallel, we observe that, when using big
blocks (e.g., 10 MB), block generation interval should be long enough (e.g., 10m) to satisfy
the decentralization lower bound. For example, when small blocks (e.g. 10 KB) are used, the
decentralization bound can be satisfied with shorter block generation intervals (e.g., 5s). There-
fore, in order to achieve decentralization, block sizes and block generation intervals should be
set carefully.

Efficiency, scalability. Short block generation intervals and/or using big blocks leads to
higher stale block rates, as bandwidth resources of IoT devices are exhausted in propagating
the blocks. In order to achieve low stale block rates, with a short block generation interval
setup, only small blocks can be used. Bigger blocks (e.g., 1 MB) can be used with long block
generation intervals. The bigger the block is, the longer block generation should be used to
satisfy the low stale block generation bound. Moreover, we observe that block sizes bigger
than 1 MB are not suitable for IoT, since it leads to high stale block rates, even with a long
block generation interval setup. Achieving a low stale block rates positively impacts transaction
throughput. In our experiments the highest throughput achieved is 30.1 transaction per second
in using 500 KB blocks with 1 minute block generation interval setting with 1.71% stale block
rate.

Findings: blocks smaller than 1 MB should be used; block generation intervals should be
as short as possible; block size and block generation intervals should be set carefully to ensure
low stale block rates and high decentralization.

Evaluation II: Device Locations

We evaluate the effect of device locations by varying the network latency among IoT devices.
In order to simulate that, we use the Bitcoin simulator with three location settings (the Nether-
lands, Europe, and World), as in Section 7.2.1. Since from Evaluation I, the optimal block size
should be less than or equal than 1 MB, the block size is fixed at 500 KB on average. We adopt
a six block generation cycle with the following intervals: 10 minutes, 5 minutes, 1 minute, 30
seconds, 10 seconds, and 5 seconds. We fix the number of IoT devices to 250, where 18 of them
are miners. Experiment results are presented in Table 7.3.

Network bandwidth, security. For all location setups, in each block generation interval
setting, average network traffic per device and number of generated genuine blocks are highly
correlated. Particularly, only 1 minute or longer block generation intervals comply with the
bound for the the network bandwidth metric (the average network traffic should be less than
250 Kbps) for all location settings. Hence, a 1 minute block generation interval is the most
suitable according to the security metric bound, since it has the highest number of genuine
blocks. With those, every locations setup shows a similar behavior.

Scalability, decentralization, efficiency. For any setup that we tried the outcome with
shortest block propagation delays, lowest stale block rates, and highest transaction through-
puts is the Netherlands setup. For example, with 1 minute block generation interval, a PoW



CHAPTER 7. HYBRID BLOCKCHAIN ARCHITECTURE FOR IOT 99

Block Block. Total Stale Genuine Stale 90% Avg Thrghpt
Size Gen. Blocks Blocks Blocks Rate Prop. Traffic (TX/s)

Intrvl(s) Delay(s) (Kbps)

10m 10.8 0.43 10.4 3% 360 276 69.3
5m 18.8 0.9 17.9 8.83% 755 723 119.5

10 MB 1m 45.6 16 26.93 35.07% 2162 21215 197.5
30s 51.2 26.6 24.6 47.99% 2412 49520 164.1
10s 57.7 41.2 16.5 71.38% 2560 151046 110.2
5s 64.2 48.2 16 75.00% 2665 273777 107.1

10m 10.2 0.26 9.9 2.6% 168 134 33.1
5m 19.9 1 18.9 5.3% 180 288 63

5 MB 1m 67.3 12.1 55.2 17.99% 1888 8718 184
30s 73.4 26.8 46.6 36.52% 2105 28528 155.5
10s 84 56.5 27.5 67.18% 2472 100255 92
5s 91.4 68.5 22.9 74.91% 2512 190671 76.4

10m 12.3 0 12.3 0% 31 26 8.2
5m 22.3 0 22.3 0% 32 53 14.9

1 MB 1m 92.4 3.4 89 3.71% 37 438 59.3
30s 165.9 8.5 157.4 5.15% 818 3243 104.9
10s 219.6 94.1 125.5 42.86% 1812 30259 83.7
5s 232.5 128.7 103.8 55.37% 2183 69059 69.2

10m 9.6 0 9.6 0% 15 13 3.2
5m 18.6 0 18.6 0% 15 26 6.2

500 KB 1m 92.1 1.6 90.5 1.71% 17 136 30.1
30s 165.2 9.2 156 5.56% 18 639 52
10s 346.5 101.4 245.1 29.25% 1665 14762 81.7
5s 350.6 161.1 189.5 45.96% 1972 41378 63.2

10m 9.3 0 9.3 0% 3.2 2 0.6
5m 23 0 23 0% 3.2 5 1.5

100 KB 1m 99 0 99 0% 3.2 27 6.6
30s 186.4 4.4 182 2.35% 3.2 54 12.1
10s 537.3 22.8 514.5 4.25% 3.4 447 34.3
5s 954.5 124.5 830 13.04% 99 7249 55.3

10m 11 0 11 0% 1.6 1 0.4
5m 18.6 0 18.6 0% 1.6 2 0.6

50 KB 1m 96.3 0 96.3 0% 1.6 14 3.2
30s 187.0 0.7 186.3 0.35% 1.6 28 6.2
10s 562.0 10.2 551.8 1.82% 1.7 84 18.4
5s 1120.4 43.4 1077 3.87% 1.8 931 35.9

10m 10.3 0 10.3 0% 0.4 0.3 0.1
5m 21.6 0 21.6 0% 0.4 0.7 0.2

10 KB 1m 101 0 101 0% 0.4 3.5 0.7
30s 193.3 0 193.3 0% 0.4 7 1.3
10s 598.6 0 598.6 0% 0.4 21 4
5s 1166.3 19.9 1146.4 1.71% 0.4 42 7.6

Table 7.2: Evaluation I: Block sizes and block generation intervals
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Block Sce. Total Stale Genuine Stale Mean Avg Thrghpt
Gen. Blocks Blocks Blocks Rate Delay Traffic (TX/s)

Intrvl(s) (s) (Kbps)

N 9.6 0 9.6 0% 7 13 3.2
10m E 9.9 0 9.9 0% 16 13 3.3

W 9.9 0 9.9 0% 20 13 3.3

N 18.6 0 18.6 0% 6 26 6.2
5m E 16.4 0 16.5 0% 13 27 5.5

W 15.5 0 15.5 0% 17 27 5.2

N 92.1 1.6 90.5 1.71% 17 136 30.1
1m E 93.6 4.8 88.8 5.14% 18 140 29.6

W 96.5 7.9 88.6 8.22% 20 140 29.5

N 165.2 9.2 156 5.56% 18 639 52
30s E 170.5 21.9 148.6 12.87% 38 527 49.5

W 169.5 23.9 145.6 14.11% 52 592 48.5

N 346.6 101.4 245.2 29.25% 314 14762 81.7
10s E 314 104.6 209.4 33.31% 355 15237 69.8

W 331 136.8 194.2 41.34% 392 16777 64.7

N 350.7 161.2 189.5 45.96% 815 41378 63.2
5s E 301.2 156 145.2 51.80% 918 43931 48.4

W 303.3 161.1 142.2 53.12% 1000 45021 47.4

Table 7.3: Evaluation II: Device Locations

blockchain using the Netherlands setup achieves a throughput of 30.1 per second and complies
with the efficiency bound (stale block rate is 1.71%) and decentralization bound (90% block
propagation time is 17 seconds). Whereas, in Europe and World settings, the block generation
interval needs to be at least 5 minutes to satisfy the same bounds. With those, both the Europe
and World setups can only achieve a throughput of 5 transaction per second.

Findings: blockchains containing IoT devices that are geographically close to each other
achieve higher throughput with low stale block rates.

Evaluation III: Number of IoT devices

We evaluate the effect of varying the number of IoT devices with two experiment types: exper-
iment (A): we fix the PoW difficulty; experiment (B): we fix block generation interval. Each
setup is run for 100 minutes. In both types we vary the number of IoT devices from 83 to 1250
and assumed a fixed block size of 500 KB. In PoW blockchains, the block generation interval
depends on the ratio of the difficulty of the PoW puzzle over the total mining power of the sys-
tem [92]. Hence, with the PoW difficulty fixed, we vary the block generation intervals inversely
proportionally to the number of miners. On the other hand, with a fixed block generation
interval of 1 minute, the difficulty of the PoW puzzle is varied proportionally to number of
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No of Block Total Stale Genuine Stale 90% Avg Thrghpt
Miners/ Gen. Blocks Blocks Blocks Rate Delay Traffic (TX/s)
Total Intrvl(s) (s) (Kbps)

6/83 3m 29.9 0 29.9 0% 7 44 9.9

12/166 1.5m 76.7 1.3 75.4 1.9% 8 88 25.1

18/250 1m 92.1 1.6 90.5 1.71% 17 136 30.1

36/500 30s 177.7 15.6 162.1 8.8% 41 1168 54

54/750 20s 237.2 32.9 204.3 13.87% 147 3485 68.1

72/1000 15s 216.5 39.4 177.1 18.2% 291 5791 59

90/1250 12s 212 47.5 164.5 22.43% 498 8265 54.8

Table 7.4: Evaluation III: Number of IoT Devices - Experiment (A): Fixed difficulty setting

miners (the difficulty of the PoW puzzle is α for 6 miners and 15α for 90 miners).
Experiment (A). Results are in Table 7.4.
Metrics. Having more IoT devices with shorter block generation intervals leads to generate

more blocks, leading to an increase in throughput and average network traffic per device. That
causes extensive bandwidth consumption that generates long block propagation delays, which
leads to high stale block rates. Hence, experimental variations containing 83, 166 and 250
devices satisfy the efficiency, network bandwidth, and decentralization bounds. When it comes
to scalability and security bounds, scenario containing 250 devices is the optimal setups as it
produces more genuine blocks, and achieves the highest throughput and scales to more devices.

Experiment (B). Results are in Table 7.5.
Metrics. In all the experimental variations, 90% block propagation times are less than 1

minute block generation interval, thus satisfying the decentralization bound. Similarly, average
network traffic per device is less than 250 Kbps, satisfying the network bandwidth bounds
for all experimental variations. However, only experimental variations containing 83, 166 and
250 devices satisfy the efficiency bound with low stale block rates. Among them, experiment
containing 250 devices is the optimal setup according to the security and scalability bounds,
as it achieves the highest throughput and scales to more devices.

Findings: PoW blockchains containing few hundreds of IoT devices achieve higher trans-
action throughput; the optimal number of IoT devices as blockchain peers is around 250.

7.2.3 Sweet-spot Guidelines

After Evaluations I,II and III, we can conclude that PoW blockchains containing few hundreds of
IoT devices in close geographical proximity achieve the highest performance. Therefore, in order
to design a blockchain architecture for IoT, we propose to deploy multiple PoW blockchains as
sub-blockchains for IoT, organized according to pools of IoT devices. We adopt the following
guidelines, referred to as sweet-spot:

• Sub-blockchains should contain few hundreds of IoT devices.
• Sub-blockchains should contain IoT devices that are geographically close and frequently
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No of Total PoW Stale Genuine Stale 90% Avg Thrghpt
Miners/ Blocks Puzzle Blocks Blocks Rate Delay Traffic (TX/s)
Total Difficulty (s) (Kbps)

6/83 96.1 α 0,8 95.3 0.85% 13 135.76 31.7

12/166 96.3 2α 1.8 94.5 1.19% 14 133.37 31.1

18/250 92.1 3α 1.6 90.5 1.71% 17 136 30.1

36/500 93.03 6α 3.99 89.04 4.29% 26 122.99 32.86

54/750 93.41 9α 4.49 88.92 4.8% 28 102.03 29.64

72/1000 93.03 12α 4.42 88.61 4.75% 28 102.99 29.53

90/1250 92.77 15α 4.98 87.78 5.36% 39 107.01 29.26

Table 7.5: Evaluation III: Number of IoT Devices - Experiment (B): Fixed interval setting

communicating with each other.
• Block size and block generation intervals should be set to ensure low stale block rates,

and high decentralization and scattering of mining power.
• Blocks smaller than or equal to 1 MB should be used.
• Block generation interval should be as short as possible.
In the next section, we design the architecture of Hybrid-IoT, based on the sweet spot

guidelines, by leveraging on multiple PoW sub-blockchains.

7.3 Hybrid-IoT: Hybrid Blockchain Architecture for IoT

Hybrid-IoT consists of multiple PoW sub-blockchains that achieve distributed consensus among
IoT devices that are peers on the blockchain. Sub-blockchains are generated according to the
sweet-spot guidelines defined in Section 7.2.3. In order to connect the sub-blockchains, Hybrid-
IoT uses a BFT inter-connector framework (e.g., Polkadot and Cosmos) that guarantees inter-
blockchain transactions.

System execution. The transaction flow in Hybrid-IoT is as follows: transactions on the
PoW sub-blockchains are processed and included in blocks that are added to their respective
sub-blockchain upon PoW consensus; when a transaction among two distinct sub-blockchains
happens, that is picked by the BFT inter-connector framework; the BFT inter-connector frame-
work checks the transaction correctness and authenticity; after a positive response, the BFT
inter-connector framework transfers the transaction to the target sub-blockchain’s transaction
pools that hold unprocessed transactions; last, the transaction is processed and included in a
newly generated block in the respective sub-blockchain, upon PoW consensus. The reasons for
the choice of a BFT inter-connector framework lies in the intrinsic capability of BFT consensus
protocols to achieve high throughput with a low number of peers.9 Hence, that should allow

9For example, Tendermint protocol used by Cosmos network is able to process thousands of transactions per
second [26], whereas PoW sub-blockchains are able to process few dozens of transactions according to our
evaluations presented in Section 7.2.
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to connect few sub-blockchains with an adequate throughput for inter-blockchain transactions.
Moreover, by maintaining low latency in the transmission of inter-blockchain transactions, the
BFT inter-connector framework allows the connection of a new sub-blockchain without deferring
application execution. An example of Hybrid-IoT architecture containing two sub-blockchains
is shown in Figure 7.1.
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Consensus participation. Blockchains can be categorized into two groups subject to the
type of peer access control: permissioned and permissionless blockchains [147]. In permission-
less blockchains, all peers can take part in the consensus, whereas in permissioned blockchains,
only pre-defined peers can take part in the consensus process. Hybrid-IoT is a permissioned
blockchain system. This is particularly important since the sub-blockchains are based on PoW
and the nature of IoT devices can easily lead to malicious cases of majority attack [69]. Indeed,
specialized mining hardware could be easily masked as an IoT device and gain enough block
mining power to control the PoW blockchain.10

Security. While the permissioned nature of Hybrid-IoT can mitigate the risk of longer
blockchain attacks [147], IoT is still prone to those, since device capture and device cloning
attacks are not a rare occurrence [108]. Usually that would be mitigated by the difficulty of the
PoW puzzle. Indeed, in PoW blockchains, for a fixed block generation interval, the difficulty
of the PoW puzzle is set proportionally to the total mining power [92]. While the Hybrid-
IoT PoW sub-blockchains would have PoW puzzles with low difficulty (there could be only a
relatively small number of IoT devices that mine), by keeping a high block generation rate,
security vulnerabilities can be prevented (see Section 7.5).

Anomaly resilience. An important issue to consider is the so called blockchain anomaly,
presented in [94]: "a long enough delay on the delivery of messages could lead to having the
miners to seemingly agree separately on different branches containing more than k blocks each,
for any k∈N". While this is theoretically possible, in practice, in a decentralized blockchain,
like Bitcoin, it has never materialized in more than few blocks for many years.11 Hence, in
order to prevent the anomaly in Hybrid-IoT, we adopt the same degree of decentralization and
scattering of mining power as in Bitcoin. That is assured by the sweet-spot guidelines and it
can be further reinforced by the findings in [40].

Remediations. Unlike specialized PoW mining hardwares for cryptocurrencies, such as
ASICs and GPUs, IoT devices have limited hardware resources and they are widely energy-
constrained devices [42]. As such, IoT devices do not have enough hardware or energy resources
to solve very complex PoW puzzles.12 In Hybrid-IoT, the difficulty of the PoW puzzle is set
according to the hardware constraints of IoT devices. Therefore, IoT devices can still perform
their application specific tasks, such as data processing, while concurrently continue to mine
blocks.

Roles of IoT devices. IoT devices have heterogeneous capabilities, and their roles should
reflect their capabilities. Therefore, in Hybrid-IoT, we define three different roles for IoT devices
as peers on the blockchain: full peer roles ; light peer roles ; and outsider roles.

• Full peer role. IoT devices that have enough capacity and computing power to perform
complex operations, like a Raspberry Pi 3, take the full peer role. They have high resources
and run full-fledged operating systems like Raspbian. Hence, as peers on the blockchain, they
mine blocks and take part in the consensus process in the PoW sub-blockchains. In addition

10In the example case of Bitcoin, Raspberry Pi has 0.2 MH/s mining power, whereas a specialized mining device
AntMiner S has 14 TH/s mining power.

11We crawled orphan blocks through all of the Bitcoin orphan blocks presented in blockchain.info/

orphaned-blocks.
12As of late 2017, it would require more than 1000 years for a Raspberry Pi to mine a single block in Bitcoin.
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to that, full peer devices act as gateway devices to connect set of light peer devices to the
blockchain network, referred as full peer device subnet. Hence, blocks formed by a full peer
device contain its own transactions and transactions sent by its device subnet. The number
of light peer devices in the full peers’ device subnet is set according to its mining power to
guarantee fair block generation rates.

• Light peer role. IoT devices that have limited capabilities and computing power, such as
Arduino Yun, take the light peer role. They have basic operating systems like Alpine Linux,
and can connect and participate in the blockchain by performing simple tasks, such as sending
transactions. Light peer devices send transactions to the blockchain transaction pool and to the
full peer that acts as a gateway. This allows all the full peers to be aware of all the transactions
in the sub-blockchain. This acts as a double-check in case a full peer is subject to a malicious
attack.

• Outsider role. IoT devices that have very limited capabilities by being able only to act
as basic sensors, take the outsider role. They are not peers on the blockchain, but they can
connect to full peers for further data fusion (such as data aggregation). Raw data generated
by an outsider is not stored the blockchain to prevent data overload.

7.4 Performance Evaluation

In Hybrid-IoT, as per Section 7.3, light peer devices send transactions to full peer devices, and
those will include them in the newly generated blocks. Hence, full peers need to process an
heavy transactions load. Therefore, the first performance test for Hybrid-IoT is a stress test, in
which, set of light peers repeatedly sends transactions to full peers (see Section 7.4.1). Then,
we shift the focus to the different sized PoW sub-blockchains, where full peers take part in the
consensus process. Sub-blockchains can be generated with different number of full peers, which
affects the time required to achieve consensus and the way in which the full peer manages its
resources. Hence, the second type of performance test is done by varying sub-blockchain sizes
and measuring the time needed to achieve consensus and the full peers’ resource usage (see
Section 7.4.2).

7.4.1 Performance Evaluation I: Stress test

We design a DDoS attack simulation for the stress test: 20 light peers take the role of attackers;
a full peer takes the role of victim; the attack is conducted for 45 minutes. All the peers are are
virtualized with LXC (Linux Containers)13 containers and have the following configurations:

• Full peer: Ubuntu 14.04 (Trusty) O.S; 512 MB RAM memory, 10% of one Intel Core
i7 2.70 GHz CPU; 5 mbit/s ingress and egress network interface limit; bitcoind version 14.02
Bitcoin protocol’s full node. We measure CPU utilization, memory usage, and Ethernet activity
with nmon.14

13linuxcontainers.org
14nmon.sourceforge.net
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• Light peer: Alpine Linux 3.6.0 O.S; 128 MB RAM memory, 2% of one Intel Core i7 2.70
GHz CPU, 1 mbit/s ingress and egress network interface limit; Java SE; JRE 8 update 131
environment; Bitcoin protocol’s thin client model developed with bitcoinj library. We monitor
CPU usage, memory usage, and Ethernet activity with RRDtool.15

We use Bitcoin regtest16 (regression test) network to execute the stress test. The DDOS attack
is executed as follows: a number of attackers, max 20, generate a load of identical and valid
transactions of ca 225 bytes at varying frequency (from ca 2tx/s to ca 9tx/s); once the victim
receives the load it checks the transactions validity add them to the transaction pool. A load
of 108960 transactions was generated with an average of 5448 transactions per attacker. For
the sake of brevity, in the figures, we show measurements only for the first 15 minutes and only
for the CPU component (the other components have very similar trends).

Victim results. Figure 7.317 shows the CPU usage of the victim: 90% of its CPU is
exhausted by processing the attackers’ load; a similar measurement and graph is observed for
its Ethernet activity; memory usage is steady around 150 MBs. The victim manages to receive
and process over 40 transactions per second from 20 attackers. We can conclude that the victim
successfully manages to perform its blockchain duties without crashing or halting under the
heavy load from the attack (here heavy is attributed to the fact that the attackers’ resources
are exhausted).

Attacker results. Figure 7.2 shows the CPU usage of one of the attackers: nearly 100% of
the attacker’s CPU is exhausted (it is capable of processing ca 300 bit/s); there is an increase
in memory usage from 99 MB (before starting to attack) to 124 MB (during attack), utilizing
all of its memory. When one light peer takes the role of attacker, it manages a maximum of 9
transactions per second without crashing. This should help to characterize the capabilities of
a light peer to generate transaction loads, regardless of the DDoS simulation performed.

7.4.2 Performance evaluation II: Sub-blockchain size

In order to measure the sensitivity to sub-blockchain sizes, we design four sub-blockchain em-
ulation scenarios (Emulation I,II,III and IV) by varying the number of full peers in the sub-
blockchains. In Emulation I the number of full peers is 20, in Emulation II 40, in Emulation
III 100, and in Emulation IV 200. Peers are connected to each other in a round-robin way. All
the full peers are virtualized with LXC (Linux Containers)18 containers on an IBM Power 8
server19 and have the following configurations:

• Full peer: Ubuntu 14.04 (Trusty) O.S.; 512 MB RAM memory; 5% of a single Power8 3.5
GHz CPU; 5 mbit/s ingress and egress network interface limit; bitcoind version 14.02 Bitcoin
protocol’s full node. We measure CPU utilization, memory usage, and Ethernet activity (traffic

15oss.oetiker.ch/rrdtool
16bitcoin.org/en/glossary/regression-test-mode
17Legend for Figure 2; user: avg CPU utilization for Bitcoin client; system: avg CPU utilization for kernel

mode; wait: avg CPU utilization for I/O wait mode.
18linuxcontainers.org
19ibm.com/systems/power/hardware/reports/factsfeatures.html
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Figure 7.2: CPU utilization of light peer devices in Performance Evaluation I

and packets) with nmon.20

We use Bitcoin regtest (regression test) network to execute the emulations. The emulations
are executed as follows: in each emulation we submit 11.000 identical transactions (225 bytes)
to the network with one full peer; one peer submits to the remaining full peers the 5 blocks with
1 minute block generation interval; the full peers achieve consensus on the submitted blocks.
We measure resources utilization at the last peer of the round-robin from the moment at which
the submitting peer proposes the first block of the five, till the moment in which all the five
blocks are recorded on the local blockchain copy of the last round-robin peer (we refer this as
the consensus cycle in the rest of the chapter). We note that we do not employ light peers to
generate loads. This is justified by the need of measuring consensus with heavy transactions
loads. All measurements are in Table 7.6 or in the text below.

Results. We observe that the consensus cycle is longer with sub-blockchains with more
full peers as block and transaction propagation takes longer. We show in Table 7.6, that on
average, emulation scenarios with more full peers use less resources. This is because, with
sub-blockchains with more full peers, resource utilization is averaged over longer consensus
cycles.

20nmon.sourceforge.net
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Figure 7.3: CPU utilization of full peer devices in Performance Evaluation I

Metrics 20 peers 40 peers 100 peers 200 peers

Avg CPU usage 6.7% 5.2% 2.8% 2.1%

Avg Memory usage 115 MB 109 MB 109.1 MB 108.7 MB

Avg Ethernet traffic 7.9 KB/s 6.2 KB/s 3.6 KB/s 1.6 KB/s

Avg Ethernet packets 9.4/s 8.5/s 5/s 3.6/s

Table 7.6: Perf Eva II: Performance Statistics

7.5 Security Evaluation

Despite having low difficulty puzzles, sub-blockchains can prevent security vulnerabilities with
high block generation, as noted in Section 7.3. We evaluate this by simulating a set of scenarios
in which six sub-blockchain setups are compared. This is done with the help of the Bitcoin
simulator (as in Section 7.2.3) and by measuring their total work. Total work is defined as
the multiplication of the number of genuine blocks by the PoW puzzle difficulty. The sub-
blockchains are generated according to sweet-spot guidelines contain subgroups of IoT devices
that are geographically close to each other. Hence, we generate the following scenarios:

• Scenario I: 83 peers of which 6 full peers.

• Scenario II: 166 peers of which 12 full peers.
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Block Simulated PoW Puzzle Block Genuine Stale Total
Size Scenario Difficulty Interval Blocks Rate PoW

Scenario I α 30s 198.6 1.2% 198.6α
Scenario II 2α 35s 162.6 1.56% 325.2 α

100 KB Scenario III 3α 40s 133.2 1.7% 299.6α
Scenario IV 6α 6m 15.2 1.49% 91α
Scenario V 12α 7m 13.6 1.99% 163α
Scenario VI 24α 10m 9.2 1.9% 178α

Scenario I α 50s 98 1.95% 98α
Scenario II 2α 55s 74.1 1.2% 148.2α

500 KB Scenario III 3α 1m 90.5 1.71% 271α
Scenario IV 6α 10m 10.4 1.98% 62α
Scenario V 12α 11m 9.7 1.89% 117α
Scenario VI 24α 12m 8.4 1.96% 203α

Scenario I α 150s 37.5 1.3% 37.5α
Scenario II 2α 165s 34.6 1.2% 69.2 α

1 MB Scenario III 3α 3m 26.6 0% 79.8α
Scenario IV 6α 10m 10.5 0.5% 63α
Scenario V 12α 12m 8.3 0% 99α
Scenario VI 24α 13m 5.9 1.8% 141α

Table 7.7: Security Experiments’ Results

• Scenario III: 250 peers of which 18 full peers.

The scenarios above are generated using the Netherlands setup. We also generate 3 more
scenarios using the World setup to have a baseline:

• Scenario IV: 500 peers of which 36 full peers.

• Scenario V: 1.000 peers of which 72 full peers.

• Scenario VI: 2.000 peers of which 144 full peers.

We vary the difficulty of the PoW puzzle proportionally to the number of full peers (see
Table 7.7). We also assume that all the peers have the same resources. In order to evaluate
the sensitivity to block size we vary the block size with values 100KB, 500KB and 1MB. We
configure every scenario with the shortest block generation interval, in order to be compliant
with the bounds of the metrics defined in Section 7.1. We present the results in Table 7.7.

Results. As expected, Scenarios I, II and III are able to comply with the bounds of
blockchain-IoT integration metrics with shorter block generation intervals than Scenarios IV,
V, and VI, and thus they produce more genuine blocks. This trend is more prominent with
small block size settings. In fact, with 100 KB blocks, total work of Scenario I sub-blockchain
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is more than the total work of Scenario VI sub-blockchain, the latter with a twenty-four times
more difficult PoW puzzles than the former. Whereas, with 1 MB blocks, due to a simulated
limited bandwidth (inherited from the need to replicate low bandwidth IoT), block generation
intervals are longer. With 1 MB block size, total work of Scenario II sub-blockchain is more
than the Scenario IV sub-blockchain, the latter with six times more difficult PoW puzzles than
the former. Hence, we observe that with smaller blocks we can generate sub-blockchains with
less full peers without sacrificing security. We finally observe that, even with low difficulty PoW
puzzles, sub-blockchains generated according to the sweet-spot guidelines are able to have more
or comparable total work than sub-blockchains with high difficulty PoW puzzles that do not
adhere to those guidelines (the Netherlands scenarios have more work with easier PoW puzzles
than World scenarios with more difficult PoW puzzles).



Chapter 8

Conclusions

Despite being a disruptive technology that has been applied to several domains, many challenges
facing IoT. In this thesis, we address two of these challenges, namely we focused to enhance in-
dividuals privacy and improve security of IoT systems under the decentralized model. Towards
achieving this goal, first we investigated requirements that needs to be addressed. Then, we pro-
posed frameworks, models and architectures. We used different tools, programming languages,
technologies, and, best practices and ideas from different research domains. Significantly, we
extensively used blockchain technology to decentralize and improve security of IoT systems. In
the following, first we give a short summary of the work that has been presented in this thesis,
then we discuss the future work, and finally we give the concluding remarks.

8.1 Summary

We present summary of the work that has been done in this thesis chapter by chapter:

• In Chapter 4, we presented a user-centric privacy enforcement framework as a
first step to enhance user control on personal data usage in IoT platforms. The
framework gives to the users more control on how their data can be combined and
what cannot be automatically inferred from them by analytics processes operating
within an IoT platform. The framework has been designed to operate within a
reference IoT platform with a general architecture that fits numerous existing IoT
systems. The experimental evaluation of the performance has shown a negligible
overhead in all considered scenarios.

• In Chapter 5, we presented an extension of the above mentioned core framework
for decentralized privacy enforcement for IoT smart objects. The main problem
that this framework tackles is privacy enforcement without a central entity.In this
framework compliance check of user individual privacy preferences is performed
directly by smart objects. Acknowledging that embedding the enforcement mecha-
nism into smart objects implies some overhead, we extensively tested the proposed
framework on different scenarios, and the obtained results showed the feasibility of
our approach.
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• In Chapter 6, we proposed AutoBotCatcher, a blockchain based P2P botnet detec-
tion framework for IoT. AutoBotCatcher’s design was driven by the consideration
that bots of the same botnet frequently communicate with each other and form
communities. AutoBotCatcher performs community detection on network flows of
IoT devices. IoT gateway devices become peers of a BFT blockchain, and, device
vendors and security regulators take the block generator role and participate in the
consensus process. A BFT Blockchain is exploited to perform dynamic and col-
laborative network-based botnet community detection on snapshots of the mutual
contact graph of IoT devices.

• In Chapter 7, we presented Hybrid-IoT, a novel hybrid blockchain architecture
for IoT. In Hybrid-IoT, subgroups of IoT devices becomes peers on PoW sub-
blockchains, connected with a BFT inter-connector framework, such as Polkadot
or Cosmos. In this chapter, we focused and analyzed the design of the PoW sub-
blockchains by defining a set of PoW blockchain-IoT integration metrics that trans-
lates IoT issues to blockchain dimensions. The performance evaluation proved the
validity of the PoW sub-blockchain design under the defined sweet-spot guidelines.
Furthermore, we demonstrated that the sweet-spot guidelines also prevent security
vulnerabilities.

8.2 Future Works

Despite all the efforts in the literature and the results presented in this thesis, there are still
important concerns on ensuring data privacy and security of IoT systems. Thus, as a future
work, we are planning to address those concerns as follows:

• Future work on data privacy. We plan to extend the decentralized privacy en-
forcement framework presented in Chapter 5 according to several directions. First,
we plan to extend the privacy model of the proposed framework so as to support
multi-dimensional data attributes. Moreover, we recall that the proposed decentral-
ized privacy enforcement mechanism assumes the existence of a set of "derivation
paths", that is, a set of inference rules able to predict the data category resulting
from the execution of an operator. As a second future work, we aim at investigat-
ing how to derive these rules. At this purpose, we plan to exploit existing data
fusion schemes proposed for IoT domain [148, 3], where different methodologies
have been designed (e.g., probability based, artificial intelligence based) aiming at
combining data from multiple sensors to produce more accurate, more complete,
and more dependable information that could not be possible to achieve through a
single sensor [58]. These methods could be deployed in our framework to model
the data flow, and thus derivation paths. Specifically, multi-dimensional data fu-
sion algorithms, such as [3, 148], could be used to extract association rules from
data generated by subnet of sensing SOs. Third, we plan to implement a hybrid
approach for compliance check, that combines apriori and aposteriori compliance
verification, to decrease the performance overhead of the system. We also plan to
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improve usability of the system. Indeed, we are aware that an average user of an
IoT application may not be skilled enough to understand potential privacy threats
and to properly set up his/her privacy preferences. At this purpose, we plan to
investigate tools to help users in setting their privacy preferences, based on learn-
ing from their habits, as it has been previously done in other domains (e.g., Online
Social Networks [51]).

• Future work on data security. We plan to extend the blockchain-based P2P
botnet detection framework presented in Chapter 6 in many directions. First,
we plan to implement AutoBotCatcher by leveraging on BFT based Hyperledger
blockchain and exploiting its smart contracts to generate mutual contacts graphs
and to manage state changes. Second, we aim to integrate secure multi-party
computation platforms, such as Enigma [150], in order to protect privacy of the
collaborating parties, while ensuring correct botnet detection. Third we plan to
test AutoBotCatcher with several botnet examples, and, extend the current botnet
detection model with methods making use of statistical network traffic features.
Last direction in future work is to design and implement a trust management
module between agents and block generators, in order to make AutoBotCatcher
resilient against insider threats.

• Future work on IoT decentralization. We consider that integration of block-
chain technology to IoT is crucial, as achieving distributed consensus with a block-
chain helps to decentralize IoT. Therefore, we plan to extend the hybrid blockchain
architecture for IoT proposed in Chapter 7 according to several directions. First,
we plan to analyze and stress data volumes in Hybrid-IoT; identify a BFT inter-
connector framework to test the current design. Second, we plan to work on proving
the correctness of Hybrid-IoT design with properly done security proofs. Third, we
plan to implement a crash fault tolerant algorithm for the light peers, to address the
issue of a full peer subnet losing the connection to light peers in its subnet (due to
several reasons, malicious or not). Finally, we plan to analyze the energy footprint
of PoW Hybrid-IoT and design a PoW algorithm that is IoT energy friendly.

8.3 Concluding Remarks

As a researcher and enthusiast of IoT, I believe IoT is a disruptive technology and it will
have a very bright future, only if, we as researchers, can properly solve the problems facing
IoT. If we achieve this properly, IoT will be very beneficial for humankind: it will provide us
autonomous systems, smarter environments, better health and energy monitoring and more
profitable businesses.

The last but not the least, it is my hope and belief that with this thesis, I made my own
humble contribution towards advancing IoT, particularly by addressing its data privacy and
security problems under the decentralized model.
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