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Abstract 

 

The continued increase of the demand for agricultural crops is responsible of a strong 

environmental deterioration due to soil fragmentation as well as, to a massive use of fertilizers 

uses that pollute both water and terrestrial ecosystems. In the future, this demand will growth up 

more and more. This explain why is crucial to find a new approach and new technologies to 

achieve greater yields with a lower environmental impact.  

Biochar is a solid material obtained from a process called pyrolysis characterized by a thermal 

transformation of biomass at high temperature and in the absence of oxygen. This mineral 

transformation attributes to biochar a skeletal structure that looks like a carbon sponge, which 

allows a higher water retention. The addition of biochar to the soil reduces leaching of 

ammonium compared to untreated soil due to its characteristic sponge structure and recently, it 

has been observed that also the total nitrates/nitrites, ammonia and nitrogen content and the 

nitrogen fixation rate are affected.  

The aim of this work is investigate some morphological and molecular response of plants treated 

with biochar. For this purpose, two of the most important crop species and one model specie have 

been tested: 1) Solanum lycopersicum (Cherry tomato of Pachino vr), 2) Vitis vinifera 

(Chardonnay cv) and 3) Arabidopsis thaliana. 

Concerning Cherry tomato cultivar, the plant treated with biochar has shown an interesting 

modification of seedling and fruit traits – especially in the case of fruit quality. 

In regard to Vitis vinifera, positive effects have been detected in both experiments (pot and field 

treatments) with biochar, improving the root length in pot experiment while the radial root 

growth in field experiment.  

Finally, in Arabidopsis, biochar addition has induced positive effects in all the parameters 

measured under normal watering regime. In the case of seedlings affected by water stress, the 

presence of biochar seemed to inhibit strongly the plants growth. 

Data obtained in this work throw light upon some of the most important aspects of plant nutrition 

and development. They indicate how those are modified in presence of biochar. 

However, further studies are necessary to validate the effect of biochar as soil amendment for 

crop yield increase. The long-term aim is to use biochar to reduce soil degradation and to 

decrease the amount of fertilizers with a beneficial effect on environmental pollution.  
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Riassunto 

 

La continua domanda di colture agricole è altamente correlata a un forte impatto ambientale 

dovuto alla frammentazione del suolo e agli usi di fertilizzazione che inquinano sia gli ecosistemi 

dell'acqua che degli ecosistemi terrestri. In futuro, la domanda di colture agricole crescerà sempre 

di più e questo implica un ulteriore importante impatto sull'ambiente. Al fine di evitare il 

deterioramento di una situazione già complicata, nel prossimo futuro sarà cruciale trovare nuovi 

approcci e tecnologie per ottenere maggiori rendimenti con minori impatti ambientali globali. 

Il biochar è un materiale solido ottenuto da un processo chiamato pirolisi caratterizzato da una 

trasformazione termica della biomassa ad alta temperatura e in assenza di ossigeno. Questa 

trasformazione minerale attribuisce al biochar una struttura scheletrica che sembra una spugna di 

carbonio, che consente un’elevata ritenzione idrica. L'aggiunta di biochar al suolo riduce la 

perdita di ammonio rispetto al terreno non trattato a causa della sua caratteristica struttura a 

spugna. 

Lo scopo di questo lavoro è studiare una certa risposta morfologica e molecolare delle piante 

trattate con biochar. A tal fine, sono state testate due delle specie di colture più importanti e una 

specie di modello: 1) Solanum lycopersicum (pomodoro ciliegio di Pachino vr), 2) Vitis vinifera 

(Chardonnay cv) e 3) Arabidopsis thaliana. Per quanto riguarda la cultivar di pomodoro ciliegio, 

le piante trattate con biochar hanno mostrato un elevato valore di tutti i tratti morfometrici e dei 

tratti riguardanti la frutta - in particolare i tratti qualitativi. 

Per quanto riguarda la Vitis vinifera, sono stati rilevati effetti positivi in entrambi gli esperimenti 

(in vaso e in campo) dove la presenza di biochar ha migliorato la lunghezza radicale solo 

nell'esperimento in vaso mentre, nell'esperimento in campo, ha migliorato fortemente il diametro 

radicale. 

Infine, per quanto riguarda Arabidopsis, i semenzali hanno mostrato come l'aggiunta di biochar 

nel terreno ha indotto effetti positivi in tutti i parametri considerati ma solo sotto il regime di 

irrigazione normale mentre, sotto condizioni di stress idrico, la presenza di biochar inibiva 

fortemente la crescita delle piante. 

In conclusione, i dati ottenuti nel presente lavoro sono stati un passo iniziale verso la 

comprensione dei meccanismi coinvolti tra l'interazione tra il biochar – suolo e – lo sviluppo 

della pianta. 

Tuttavia, ulteriori studi sono necessari per convalidare l'effetto del biochar come emendamento 

del terreno per l'aumento delle produzioni agricole. L'obiettivo a lungo termine è quello di 

utilizzare il biochar in modo tale da ridurre il degrado del suolo e per diminuire la quantità di 

fertilizzanti utilizzati negli ultimi anni, con un conseguente effetto benefico sull'inquinamento.
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Chapter I 
 

Introduction 

 
In the XX century, characterized by the global population expansion, the demand of agricultural 

crops is dramatically growing resulting in an increase of intensive use of land, which in turn 

cause the soil quality deterioration and the need of higher amount of fertilizer inputs (Tilman et 

al. 2011). As consequence, in the last decade, this massive use of fertilizers caused pollution of 

water and terrestrial ecosystems (Sachs et al. 2010). Therefore, it is crucial for the next future, to 

find new solutions to obtain greater yields with lower global environmental impacts. Biochar may 

play an important role for this purpose. Indeed, it is produced by the heat plant biomass in the 

absence of oxygen (pyrolysis) and its structure, similar to a sponge, allows higher water retention. 

In several research study, has been observed how its additions to the soil affects positively the 

total nitrates/nitrites, ammonia and other compounds content improving the quality and the 

structure of soil and consequently, the increase of agricultural crops yield (Rondon et al., 2007; 

Van Zwieten et al., 2008). 

 
 
1.1 Effect due to climate change and Biochar use as possible environmental restoration 

 

In the last decades, the exponential social and economic growth due to the industrialization has 

increased the gas emissions into the atmosphere, which is now considered as the main factor 

responsible for climate change and its related disastrous effects on the environment. 

Management strategies for the building soil organic matter (SOM) have been considered as 

possible measures to mitigate global change (Lal, 2004; Smith et al., 2008). As for example the 

reducing of SOM susceptibility to the decomposition seems to decrease the release of CO2 in the 

atmosphere (Powlson et al., 2011). Another measure could be produce biochar by the heating of 

plant biomass in the absence of oxygen (pyrolysis) and then store it in agricultural or forest lands 

(Laird et al., 2009). 
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Figure 1.1 Biochar power to mitigate climate change; adopted from www.pronatura.org site 

 

The International Biochar Initiative (IBI) promotes ubiquitous use of biochar as a soil 

amendment, it advocates for inclusion of provisions favourable to biochar use in national and 

international polices aimed to mitigate global change effects, promoting also biochar 

commercialization, and aspiring to a global system that sequesters 2.2 Gt C/yr by 2050 

(International Biochar Initiative, 2013). 

Currently in literature there are discordant opinions about the positive biochar effects; for 

example, some researchers believe that biochar could have adverse effects on environment by 

releasing toxic substances such as heavy metals into soil or by reducing the pesticides efficiency 

(Kookana et al., 2011). 

 

1.2 Biochar properties 

 

Biochar is a highly porous carbon that, if added to soil, could improve soil quality by reducing 

biomass emissions. Due to its aromatic structure, biochar is resistant to decomposition and could 

therefore account for a significant portion of all carbon present into the soil (Kuhlbusch et al., 

1996). Biochar addition to the soil promotes food safety and soil biodiversity, improves the 

quality and amount of water in the soil, reduces the leaching of nutrients and so it improves the 

availability of nutrients and reduces environmental pollution from chemicals (Figure 1.2) 

(Yamato et al., 2006). 
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Figure 1.2 Global biochar effects: atmospheric and soil benefits; adopted from www.bettercarbonsolutions.com site 

 

Moreover, cation exchange capacity (CEC) of biochar is consistently higher than that of the soil 

(Lehmann et al., 2003; Liang et al., 2006). 

Some studies (Rondon et al., 2007; Van Zwieten et al., 2008) attribute the positive plant response 

to the effects of biochar on nutrients availability and to its ability in increasing or maintaining soil 

pH through calcination. Furthermore, the dark-colored biochar mixed with soil changes the soil-

surface albedo with consequent variation of soil temperature (Meyer et al. 2012) which alters the 

rate of root growth and development (Figure 1.3).  

The influence of biochar on roots may induce variation in plant biomass and fruit production.  
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Figure 1.3 Raw material color change when its biochar transformation occurs; adopted from www.charchive.org site 

 

Hossain et al. (2010) reports that the biochar presence into the soil could also reduce heavy 

metals absorption from the soil, whereas other authors suggest that biochar increases soil fertility 

(Van Zwieten et al., 2008), crops yield (Yamato et al., 2006) and improves the fertility of sandy 

soil. Nevertheless, the debate regarding biochar properties is still intense and this fact explains the 

interest of the international scientific community for this topic. In particular, there is a 

considerable interest of the possibility to use biochar to store CO2 in the soil. 

In Italy, research involving biochar started in 2007 when the first papers about its effect when 

used as amendment in the fields- and on the lab started to be published. In the light of the first 

confirmations and promising results, in 2012, the ICHAR Association initiated a process aimed at 

the Italian recognition of biochar as a common fertilizer for agriculture. Since then, a number of 

reports, ministerial hearings, and protocol revisions have been published so that today, at a 

distance of 5 years, it becomes more and more concrete the possibility that biochar exits from its 

experimental state to be recognized (and appreciated) for its benefits in favor of agro-industrial, 

agro-food, economy. Moreover, a more recent development of biochar research starts to 

investigate its role in mitigating climate change effect through immobilization of carbon for long 

periods. 
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1.2.1 The biochar discovery 

 

Plant biomass conversion to biochar is a process which has been known for a number of years 

(Seifritz et al., 1993), but few were the studies regarding its use as soil amendment. The 

discovery of biochar as soil amendment it took place when it was observed that the dark soil 

(called “dark earth” or “preta earth” by the locals) that characterizes the Amazon basin was 

provided by a considerable fertility (Figure 1.4). 

 

 

Figure 1.4 Different poor soil profile (left) and dark earth soil (to the right) of the Amazon rainforest; adopted from www.biochar.org site 
 
 

Normally Amazonian soil is very poor in nutrients due to leaching, but this negative event is 

almost completely absent in the dark earth which it can be considered a soil that has been a 

stabilized for millennia (Kurt, 2013). This soil presents today fertile properties down to 2 meters 

below soil -surface. However, despite the attempt done to date, formation of preta earth it is still 

unclear and therefore it is unknown its generation has been an intentional or unintentional event 

(Heckenberger et al 2003, Meggers 2003, Stokstad 2003). Glaser and Birk (2012) have suggested 

that two hypotheses remains acceptable: a) an intentional generation of the dark earth to improve 

soil quality in home gardens, and b) an unintentional generation through casual deposition in the 

soil of biological materials such as: bones, stools, ashes, organic materials incompletely 

incinerated and other waste. 
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1.2.2 The production of biochar: pyrolysis process 

 

Pyrolysis is a chemical decomposition of biomass that is carried out in the absence or limited 

presence of oxygen at a range of temperature comprised between 300 ° C (slow pyrolysis) and 

500 ° C (fast pyrolysis) (Bridgwater et al., 2007). The parental material used is plant material and 

organic waste, with a humidity not exceeding 30%. 

During pyrolysis (Figure 1.5), complex molecules are splitted into simpler molecules such as gas 

(syngas), liquid (bio-oil) and carbon material (biochar) (Mohan et al., 2006). 

With this processes, approximately 50% of carbon contained in the original biomass source could 

be retained in the biochar, however this percentage is highly dependent on the pyrolysis process 

adopted (FAO 1985; Daud et al., 2001; Demirbas, 2001; Baldock & Smernik 2002; Lehmann et 

al., 2002; Laird, 2008). The main parameters to be considered during the pyrolysis process are: 

heating speed, highest treatment temperature, pressure, reactions residence time, reaction vessel 

pre-treatments, the flow of accessory components (nitrogen, CO2, air, steam etc.) and post-

treatments. Lua et al. (2004) have evaluated the relative importance of temperature, residence 

time, nitrogen flow, and the rate of heating provided during pyrolysis by considering the standard 

deviation and the coefficients of variation of the different physical parameters, finding that the 

main role was played from the pyrolysis temperature and, to a lesser extent, by the rate of 

heating, nitrogen flow, and residence time. 

 

 

 

Figure 1.5 Production process of biochar; adopted from www.biochar.org site 
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1.2.3 Chemical - physical properties of biochar 

 

The knowledge of the chemical-physical properties of the biochar are necessary in order to better 

understand how this material exerts its amendment potential. 

Biochar is a carbonaceous material containing aromatic hydrocarbon polycyclics with a number 

of other functional groups (Krull et al., 2009).  

 

 

 

Figure 1.6 Image of biochar structure obtained by scanning electron microscope (SEM) (Sohi et al., 2009). 

 

Its structure is highly porous and could contain detectable quantities of extractable humic and 

fulvic acid; these substances are important as mineral nutrition of plants for cation exchange and 

for the high buffering power of pH variations. The amount of humic and fulvic acid found in 

vegetable carbon depends on the temperature reached during pyrolysis (Trompowsky et al., 

2005). Obviously biochar naturally contains basic nutrients such as Nitrogen, Sulfur, Phosphorus. 

Biochar has a high degree of chemical stability which ensures its very slow degradation, and that 

it explains why carbon remains deposited in the ground (Cheng et al., 2008). Solomon et al. 

(2007) has shown that the biochar stability is due to the pyrolysis-induced anthropogenic origin 

of highly refractory aryl-C structures. Having a very heterogeneous composition of vegetable 

charcoal, biochar could exhibit on its surface different properties (hydrophilic, hydrophobic, 

acidic, basic, etc.) and thus it could interact with all the substances present in the soil in different 

ways. The variability in the chemical characteristics depends mainly on the parental material, or 

on the waste material from which it is obtained (Lua and Yang 2004). 
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As already mentioned, temperatures used for the production of vegetable charcoal are influenced 

by different characteristics; a study by Chan et al. (2009) has shown that even by starting with the 

same substrate different products with various pH, CO2, N, P concentrations (Chan et al., 2009) 

can be obtained by using different pyrolysis temperatures. The size of the biochar particles also 

varies greatly depending on the rate of water loss during dehydration; the porosity is not uniform 

but portions of different size ranging from <0.9 nm to> 50 nm can be obtained (Figure 1.6). 

Macro-pores, due to their large size, represent a habitat that can be colonized by microorganisms 

and other beneficial organisms such as mycorrhizas. Micropores, on the other hand, are involved 

in the absorption and transport of molecules present in the soil (Downie et al., 2009). All these 

properties explain why the biochar porosity and surface have important repercussions on the 

nutrients retention through the possibility to bind cations and anions (Liang et al., 2006, Chan and 

Xu 2009). In addition, within the biochar pores, carbon dioxide, ammonia and water combine to 

form ammonium bicarbonate, a potent nitrogen fertilizer. (Winsley et al., 2007). 

It is evident from what reported above that the biochar physical and chemical properties depend 

not only on the parental material but also by the production process; therefore it is very important 

to establish a regulation that certify its productive process for future marketing and utilization in 

agriculture activities. 

 

1.2.4 Biochar and root traits 

 

Roots are responsible for nutrient and water uptake from the soil but they play also the major role 

in the anchorage of the plant to the soil. 

In regard of C sequestration (Matamala et al., 2003), roots transfer photosynthetically fixed C to 

soil organic matter pools (Jackson et al., 1997). The fact that biochar amendment has important 

effects on plant growth and development derives from the interaction between biochar and roots 

(Prendergast-Miller et al., 2013) that influences considerably root activity (Laird, 2008). 

Studies aimed to investigate the interaction between biochar and roots have shown that root traits 

affected are: biomass and morphology (Prendergast-Miller et al., 2011; Brennan et al., 2014), 

nutrient root concentration (CHN), and root-association with microbes (Rondon et al., 2007). For 

example, it has been shown that root length is associated with water and/or nutrient acquisition, 

whereas root diameter is associated to biomass accumulation (Eissenstat & Yanai, 1997). 

However, reports about biochar effects on the root traits are highly variable, when not even 

contradictory, and that it explains why it is necessary to deepen our knowledge about the 

interaction between biochar amendments and roots 
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1.2.5 Biochar and soil biota 

 

Different studies have been carried out on the chemical-physical properties of the biochar and on 

the effects of its application in agronomic fields; in recent years, studies are trying to characterize 

also the biological aspect of biochar, by observing the consequences of amendment operation on 

plant populations and microbes living in the soil. To study the role of biochar influence on soil 

biota, several methods have been used, such as: total genomic DNA extraction (O'Neill, 2007; 

Grossman et al., 2010), counts of cultured microorganisms (Jackson, 1958; O'Neill et al., 2009), 

extraction of fatty acid from membrane phospholipids (PLFA) (Birk et al., 2009), coloring and 

direct observation of single biochar particles (Jackson , 1958, Pietikäinen et al., 2000; Warnock et 

al., 2007; Jin, 2010). 

In some soil treated with the biochar addition, an increase of the rate of microbial reproduction 

has been observed (Pietikäinen et al., 2000; Steiner et al., 2004). This effect could be explained 

with the observation that changes in the availability of C and nutrients could both increase and 

reduce microbial biomass, depending on the actual availability of nutrients and C, the extent of 

change and the population of microorganisms (Cheng et al. 2008). 

Kasozi et al., (2010) have discovered that the absorption of certain molecules into biochar could 

inhibit or increase microbial growth. This effect could be explained with the observation that 

fungal and bacterial populations react differently to pH variations. As for example bacteria can 

increase their biomass when pH increases to 7, while fungi may have no change in total biomass 

(Rousk et al. , 2010), or they could drastically reduce their growth to higher pH values (Rousk et 

al., 2009).This fact highlights the importance of investigating the effect of biochar amendment on 

pH variations in the soil that could affect microbial population. In fact, it has been reported that 

the type of carbon used and the pyrolysis temperature used to make biochar affects the growth of 

colonies of Gonococcus and Meningococcus (Glass & Kennett, 1939). 

 

1.2.6 Biochar effects on plant organisms 

 

Several studies aimed to investigate effects of biochar amendments on plants have focused on 

crop species grown in pot, in greenhouse, or in the field. These studies have suggested that 

biochar affects yield and productivity of the crop species investigated. Effects observed after 

biochar amendments regard particularly soil parameters (i.e, an increase in nutrient concentration, 

pH enhancement, reduction of total leaching, etc.) and the resident soil flora and fauna. 
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In Colombia, the amendment of soil with vegetable charcoal has led to a considerable increase in 

Zea mays yield, which went from 24% (in the second year) to 140% (in the fourth year) 

compared to an control plants grown in absence of biochar (Major et al., 2010). The same 

remarkable increase in crop yield was observed when adjusting an orchard in the Mediterranean 

basin before cultivating Triticum durum (Vaccari et al., 2011). 

While some authors attribute the benefits obtained after biochar addition to its fertilizer power 

and to an increase of nitrogen availability, other authors suggest that its beneficial effect is related 

to its buffering power and to the ability to make alkaline pH the main cause of improved plant 

growth conditions (Van Zwieten et al., 2008; Yamato et al., 2006). Moreover, Ahmad et al. 

(2012) highlighted that pH alkalization could lead to a reduction in lead assimilation and hence to 

an increase in seed germination in contaminated soils. Concerning germination in 

uncontaminated soils, biochar does not appear to have any influence on germination capacity or 

coleoptile length (Free et al., 2010). 

In regard to element concentration, it has been reported that during the pyrolysis process, the 

availability of phosphorus in the biochar increases when maintaining the temperature around 

450/500°C; however, if the temperature exceeds 700°C, then the volatilization occurs (De Luca et 

al., 2009). For this reason, when melting a soil at a low-temperature, vegetable charcoal makes 

more available phosphorus, which it stimulates root growth (Chan et al., 2008). In different 

studies, using biochar amendment, it has been observed that increase in availability and 

absorption regards not only phosphorus, but also potassium, calcium and zinc (Lehmann et al., 

2003; De Luca et al., 2009; Major et al., 2010). Given the complexity of the existing interaction 

between biochar, soil, microorganisms and plants, it is not easy to understand the nature of the 

specific biochar property responsible for a certain effect observed in the plant. In general, it 

possible to stress that beneficial effects are the consequence of both the improvement of the 

physical chemical soil properties and the effects on fungi and bacteria (particularly those 

involved in nitrogen fixation) (Graber et al., 2010). 

 

1.3 The effects of Biochar on plant nutrition and stress response: tested genes 

 

Nitrogen is one of the most important elements for all plant species. During the early growth 

stages, young developing roots capture the nitrogen present in the soil to convert it in amino acids 

in leaves. These amino acids will be used in future for the proteins and enzymes synthesis mainly 

involved in the erection of plant architecture and in the several components of the photosynthetic 

system (Richardson et al., 2009). Combined with nitrogen, also phosphorus has an important role 
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in plant productivity. In particular, it promotes root development and increases fruits yield 

(Filgueira et al. 2000). These two elements allow the correct growth of the plant and when one of 

these fail the plant health and growth suffer. It is known that biochar application increases soil 

nutrient content. In particular, has been demonstrated that biochar significantly increases the 

content of total nitrogen, extractable phosphorus and cation-exchange capacity (CEC) (Mustafa et 

al. 2010). Such changes in soil physical, chemical and biological properties, in turn, may 

significantly influence plant health and growth.  In order to determine the effect of changing soil 

properties on plant growth, we analyzed the expression of the most important genes codifying 

root transporters of nitrogen (AMT1.1, AMT1.2, NRT2.1 and NRT1.2 gene; Ludewig et al., 

2002; Gansel et al 2001), phosphate (PT1 and PT2 gene; Liu et al., 1998) and water (PIP2.2 gene; 

Jang et al., 2004). Moreover, in order to test the plant health status, expression of genes related to 

the stress response (BH7 and BH12) has been analyzed (Perotti et al., 2017). 

 

1.3.1 Genes encoding nitrogen transporter 

 

  

AMT1.1 and AMT1.2 belong both to the ATM genes family (ammonium transporter). 

AMT1.1 has a higher affinity for the ammonium in NH4
+ form than NH3 form and its expression 

is predominantly dependent on the local N status of the roots. Indeed, it is mostly stimulated in 

the portion of the root system directly experiencing N starvation; therefore, it is possible to claim 

that it is up regulated in nitrogen deficiency condition (Ludewig et al., 2002).  

AMT1.2 is expressed only in hair roots and it is involved in root ammonium transport but in 

contrast to AMT1.1 has not a specific affinity regarding the ammonium form. This gene is up-

regulated when the nitrogen resource (NH4
+ and NH3) is present in high concentration in the soil. 

In recent studies (Lauter et al., 1996; Wang et al., 2001), it has been observed that AMT1.2 in 

Solanum lycopersicum is induced by both ammonium and nitrate resupply.  

 

NRT2.1 and NRT1.2 genes are involved in the nitrate absorption. 

NRT2.1 belongs to the family of HATS genes (high affinity transport system). Its expression is 

controlled by shoot-to-root signals of N demand under N deficiency condition. Gansel et al 

(2001) identified NRT2.1 as the first gene of the long-distance signaling that informs roots of the 

entire plant’s status. 

NRT1.2 belongs to the family of LATS genes (low affinity transport system) and, in Solanum 

lycopersicum, Ono et al (2000) observed that NRT1.2 is induced by NO3
-in root hairs and that its 

expression increased after prolonged N starvation.  
 

 



 

Chapter I - Introduction 

   pag. 15 
 

1.3.2 Genes encoding phosphate transporter 

 

PT2 and PT1 genes are directly involved in phosphate root transport. These two genes belong to a 

family that codify for 12 membrane-spanning domain proteins and show a high degree of 

sequence identity to known high-affinity Pi transporters. Both genes are highly expressed in roots 

and PT1 also in leaves. In Solanum lycopersicum and Arabidopsis thaliana, their expression is 

markedly induced by Pi starvation. Their transcripts are primarily localized in root epidermis and 

PT1-mRNA was also observed in palisade parenchyma cells of Pi-starved leaves (Liu et al., 

1998).  

 

1.3.3 Genes encoding water transporter 

 

PIP2.2 gene is an aquaporin belonging to a highly conserved group of membrane proteins called 

major intrinsic proteins. These proteins facilitate water transport across biological membranes. In 

the specific, PIP2.2 belongs to the plasma membrane intrinsic protein (PIP) sub group that are 

involved in plant response to environmental stimuli. 

Moreover, PIPs are the main genes that response to water stress condition. In particular, PIP2.2 is 

up-regulated in roots when these are under water stress condition (Jang et al., 2004). 

 
 

1.3.4 Genes involved in plant stress response 

 

Homeobox is a class of genes that act as regulators of different aspects of organisms development 

both plants and humans. Moreover, several research works showed their essential role from the 

embryogenesis to the latest stages of cell differentiation (Kmita and Duboule 2003, Morgan 2006, 

Wang et al. 2009). The superfamily of homeodomain-leucine zipper (HD-Zip) –genes, belonging 

to the Homeobox genes, have been found only in plants and seems to have specific functions in 

their development (Perotti et al., 2017). To date, several links have been reported between 

homeobox genes and plant hormones such as the abscisic acid (ABA), which is one of the most 

important hormones in plants (Son et al., 2010). In particular, this phytohormone is produced 

when plant undergoes to stress conditions such as water deficit, inducing a number of 

physiological changes. In Arabidopsis, ATBH6 gene (Söderman et al. 1999), ATBH7 gene 

(Söderman et al. 1996) and ATBH12 gene (Lee and Chun 1998, Henriksson et al. 2005), are 

highly induced by ABA as well as water stress. In the present work, we have chosen BH7 and 

BH12 genes specifically active in water deficit conditions with a consequently negative 

regulation of growth (Söderman et al., 1996; Hjellström et al., 2003). Moreover, in Arabidopsis 
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thaliana, the BH12 is closely related to BH7 sharing over 80% identity in the deduced amino acid 

sequence of their HDZip motives (Olsson et al., 2004). 

 

1. 4 Agronomic and model plants chosen to evaluate the effect of biochar 

 

The plants chosen in this thesis concern agronomic plants such Cherry tomato of Pachino vr and 

Chardonnay cv. grape and Arabidopsis thaliana. 

Both Cherry tomato and Chardonnay plants are two crops with a high commercial and agronomic 

impact on Italian economy and Arabidopsis thaliana is a genomic model plant. 

 

1.4.1 Solanum lycopersicum (L.) (Cherry tomato of Pachino vr) 
 

Tomato is a plant belonging to the Solanacee family. It is native of northern Chile and Ecuador 

and it was introduced in Europe in the 1540 by Spanish Hernán Cortés and today tomato is a 

plant species with a great commercial importance for the Italian agronomy (Leonardi et al., 2000 

a, b). 

In general, in Mediterranean region, cherry tomato plants is grown in passive solar greenhouses 

and this type of cultivation affects the qualitative and quantitative properties of tomato fruits. In 

particular, it has been shown that the content of antioxidants in the fruits can be affected 

considerably by environmental factors (Dumas et al. 2003). 

Tomato plants produce a climacteric fruit, represented by an edible berry with a red color and 

with a variable size and shape which, after its complete ripening phase, is characterized by 

approximately 93 - 96% of water content. In the berry there is a smooth and thin epicarp, a fleshy 

mesocarp, and an endocarp subdivided into two or more logs. In each log, immersed in placental 

tissue, there are seeds, more or less numerous, small, flattened, yellow and rich in oil. 

Tomato berry presents a relatively small genome, and more than 1000 molecular markers have 

been identified. (Manning et al., 2006). The resulting genetic map has been used in the 

identification and localization of quality traits (QTL), which influence the development and 

maturation of many fruits (Giovannoni 2007). 

In recent times, tomato berries has been valued for their nutritional, dietetic and health traits. 

From several recent medical researches, the key-role of tomato berries has emerged as a supplier 

of antioxidant compounds essential in human metabolism such as like cis-lycopene, trans-

lycopene and β-carotene (Figure 1.9) and other carotenoids. 
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Figure 1.9 Chemical structure of β-carotene; adopted from www.sicurezzanutrizionale.org site 

 

Biochar effects on tomato plant growth 

 

Due to both agro-food and socio-economic importance of this plant species, many studies have 

been conducted on tomato plants to evaluate the potential effects of biochar amendment on their 

growth and harvest yield (Figure 1.10). In this regard, Graber et al., 2010, has observed an 

increase in the length of the stem and in the leaf area when tomato plants were grown on soil 

treated with biochar. 

 

 

Figure 1.10 Tomato plants with different biochar rate, adopted from www.researchgate.net site 

 

Moreover, recent studies have described an increase in overall organic matter obtained from bio-

cultivated tomato cultivars (Yilangai et al., 2013). This result suggests that biochar could be used 

as an excellent improver of plant biomasses and therefore is not unreasonable to develop a 

technology that could allow the reuse of vegetable waste obtained from tomato industry. In past 

studies, it has been shown that the biochar addition to the soil could improve the agricultural 

production of the Pietrarossa variety (5%). Moreover, this treatment seems to increase nutrient 

concentration in the soil through a reduction of the imbalance present in the soil-plant system 

(typical of intensive agricultural areas) which leads to a slow development and a reduced 

production of plant biomass (Ichar.it). 
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1.4.2 Vitis vinifera (L.) (Chardonnay cv) 

 

Grapevine (Vitis vinifera L.) is a perennial woody vine that produces the most economically 

important fruit crop in the world. In particular, among the great number of wine varieties, 

Chardonnay seems to be more tolerant to water deficit and salinity changes (Figure 1.12). 

The grapevine fruit, the grape, is an infruttescence, that is, a group of fruits, called bunch.  

 

 
 

Figure 1.12 Vitis vinifera, Chardonnay vr.; adopted from www.aisitalia.it site 

 

The cluster is composed by a large number of small size berries with a light color in white grape 

while with dark color in case of black grappa.  

The truss, or rachis, is the center of the cluster, branched in ramioli and then in pedicels, which 

carry the flowers and then the fruits, the grapes. 

The grapes are mainly used for wine production and also for dry or fresh fruit consumption; 

finally, from the grape is possible also obtain a non-alcoholic beverage (juice) and grape seed oil 

from the seeds. 

The constituents of grapes and wine such as polyphenols, anthocyanins, flavonols, have been 

studied for several years since they play an important role not only in the quality of grapes and 

wines but also in their beneficial effects on human health linked to their antioxidant properties. 

Epidemiological studies conducted in the early 1990s have shown that in France, where wine 

consumption is high and nutrition is based on a fat-rich diet, mortality following cardiovascular 

disease was reduced compared to other countries. This phenomenon, called the "French paradox", 

was positively correlated with wine consumption and its antioxidant compounds such as 

proanthocyanidins and resveratrol, which, among the various properties, have the ability to lower 

the levels of LDL cholesterol in the blood (Renaud and De Lorgeril, 1992; Frankel et al., 1993; 

Teissedre et al., 1996).  
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Recently, numerous epidemiological studies have shown that these secondary metabolites protect 

from the onset of chronic and degenerative pathologies, especially for cardiovascular system, due 

to their antioxidant, anticancer, anti-inflammatory and antimicrobial properties. These bio-

components, once extracted from various parts of the plant, could also find important applications 

as active ingredients in pharmaceutical products, in fortified foods, dyes, and as natural 

preservatives for the food industry. 

 

Biochar effects on grapevine plant growth and fruit quality 

 

Baronti et.al, 2014 studies throw light upon the impact of biochar on soil-plant water relation in a 

perennial crops, and they demonstrate that biochar could effectively be used to increase water 

content in the soil. This effect upon water content it reduces the chance of a plant to undergo 

water stress and it increases consequently the photosynthetic activity without affecting soil 

hydrophobicity. Study by Genesio et al. 2015, shows that biochar application increased soil water 

content and plant available water and, this can be involved in the substantial increase of 

productivity (yield, average cluster weight and berry size) in all harvests. 

Given that grapevine is a plant species with a great commercial importance for Italian and 

worldwide food economy, many studies are evaluating the potential effects of biochar on 

grapevine growth, harvest yield and fruit quality. Unexpectedly, no significant effects were 

observed on grape quality parameters and this suggests that the increased plant water availability 

due to biochar has a complex mechanism of action on plant physiology and on fruit tissues 

differentiation (Bonilla et al. 2015). 
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1.4.3 Arabidopsis thaliana (L) 

 

Arabidopsis thaliana (Figure 1.13) is a flowering annual plant belonging to the Brassicaceae 

family. It represents the major model plant for its several advantageous traits, such as: a) 

simplicity in the cellular organization, b) rapid life cycle (6 weeks) and c) easy cultivation in 

restricted space and in non-soil media, d) efficient transformation methods when Agrobacterium 

tumefaciens is used (Hochholdinger and Zimmermann, 2008; Petricka et al., 2012). 

 
 

Figure 1.13 Arabidopsis thaliana model plant; adopted from www.nature.com site 

 

Its small genome (sequenced 114.5 Mb of total 125 Mb) allows to carry out depth genetic study 

about important genes (The Arabidopsis Genome Initiative, 2000). However, despite some 

progress made with other model crop, Arabidopsis thaliana remains the best characterized 

experimental system for studying the effects of biotic, abiotic stress and/or induced factors. 

Due to such important characteristics, this plant species has been chosen as model plant in the 

present work.  
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Arabidopsis thaliana DR5:GUS line 

 

In our research work, we have used Arabidopsis thaliana DR5:GUS seeds. In order to study 

auxin signalling the promoter DIRECT-REPEAT5 (DR5) has been used, - as a synthetic 

promoter that responds directly to the presence auxin.  

DR5 is the site-where the directed mutation in the 5' end of the D1-4 AuxRE has been realized 

(Ulmasov et al., 1997). 

This synthetic DR5 promoter has higher activity than natural AuxREs and for its property it is 

very useful when studying genes whose expression is auxin-responsive. 

Moreover, DR5 promoter is widely used to study the auxin signalling through molecular marker 

such as GUS. 

GUS (β-Glucoronidase) is a reporter gene that can be transcribed or translated under the direction 

of the controlling sequences of another gene called controller and, in the specific, this hydrolase 

enzyme catalyses the cleavage of a wide variety of β-glucuronides (Jefferson et al, 1986). 

The above-mentioned reporter system has been developed in order to detect in plants the 

transgene tissues that, put into a X-Gluc solution, they colour them with a blue colour – as a 

result of the enzymatic activity (Jefferson et al., 1987). 

The transgenic line of Arabidopsis thaliana was a wild-type expressing promoter:GUS constructs 

to characterize the pattern of the DR5 gene (an unpublished line from Riccardo Siligato and Ari 

Pekka Mähönen, University of Helsinki),  

This union of the DR5 controller and the GUS reporter gene has been allowed us to individuate 

the stained root tips (a region in which the auxin is more expressed) and consequently we have 

able to count the roots when these were treated with the GUS solution. 

 

1.5 The cost of using biochar in agronomy 

 

Beside the positive effects of biochar in terms of crop yield, the effective costs-benefit ratio for 

its application still need to be discussed. According to Wrobel et al. (2015) biochar production 

from organic waste is a potential method for carbon sequestration and for the residual 

management costs. In the research work of Harsono et al. (2013) the Net Present Value (NPV) in 

Selangor and Malaysia for the production of biochar is greater than zero, which indicates that the 

investment for biochar production is economically advantageous and feasible. Kung et al. (2013) 

studied the benefits / costs ratio of biochar production asserting that the slow pyrolysis is more 

profitable than the fast due to the biochar on site value and the GHG reduction. Thus, to date 
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seems that the value of biochar application as soil amendment is higher than its value in terms of 

production energy process. 

 

1.6 Possible negative effects of the application of biochar 

 

There is still debate on the positive effect of biochar on plant growth and crop productivity 

(Jeffery et al. 2011). In the early 80’s Kishimoto and Sugiura (1985) found yield reductions of 

soybean in plant treated with biochar and attributed this effect to the reduction of nutrients due to 

lower pH conditions. In particular, lower values of soil pH may increase the availability of 

aluminum element (Al), which is responsible for the phytotoxicity of the soil. In fact, in acidic 

soil, high concentrations of aluminum stop the growth of plant roots, block the absorption of 

calcium, and limit the plant productivity and development. Furthermore, aluminum is also 

expected to inhibit the cellular division process, damaging DNA and interrupting the plant growth 

(De Manzi et al., 1984). Graber et al. (2010) identified a set of chemical compounds contained in 

biochar and that negatively affect microbial growth and survival. These compounds include 

ethylene glycol and propylene glycol, hydroxy propionic acid and butyric acid, benzoic acid and 

o-cresol, quinones (resorcinol and hydroquinone), and 2-phenoxyethanol. Low levels of these 

toxic compounds in the soil promote the selection of less-sensitive microorganisms that, without 

competitors, proliferate at the expense of the microbial population useful for plant growth 

(Graber et al. 2010). In addition, biochar contains potentially toxic elements that could negatively 

affect the soil properties (CEC, 2008). Between these several compounds, the Potentially Toxic 

Elements (PTEs -heavy metals natural presents in the biochar parental material that increase in 

concentration after the pyrolysis process,) and the polycyclic aromatic hydrocarbons (PAHs - 

organic compounds produced during the pyrolysis process) are worthy of mention (Koppolu et al. 

2003). Both these compounds have the potential to interfere with soil quality and may be 

absorbed from plants, included in fruits, and consequently end up in food products for human 

consumption (Badger et al., 1960; McGrath et al., 2001). Finally, Lehmann et al., (2011) reported 

that a decrease in tensile strength of the soil after the application of biochar facilitates the 

movement of invertebrates, causing higher predation of roots. It is still unclear whether this 

tensile strength reduction has a negative or positive effect on the root system of the plant. 
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1.7 Aim of work 

 

In literature, there is a large amount of studies about biochar and its possible applications in 

agronomic field. 

Never the less, studies of biochar effects on biological processes in plant species, on their relative 

molecular profile and on qualitative profile of fruit are very scant when not completely absent. 

Among all possible candidate crop, S. lycopersicum and V. vinifera have been chosen in this 

thesis, and this choice is due to their economic interest and to a wide availability of bibliographic 

references and database transcripts. A. thaliana has been chosen to be used as model plant. 

In this context, research activities have been carried out to understand the effect of biochar upon 

different morphological and molecular traits with particular attentions to the above- and below-

ground biomass distribution in fruits and roots. Biochar rate was 30t ha-1 according to Baronti et 

al. (2010) that found an important improvement of Triticum durum, Zea mays and Lolium 

perenne plant yields.  

 

The initial hypothesis was that the biochar amendment could reduce soil nutrient leaching and 

could improve plant growth. 

In regard of molecular mechanisms affected by biochar a particular attention has been given to 

the expression of LeAMT1.1, LeAMT1.2, LeNRT1.2, LeNRT2.1 and LePT1, LePT2 genes in S. 

lycopersicum with the aim to evaluate the nitrogen and phosphate root absorption. Meanwhile, 

expression of AtBH7, AtBH12, AtAMT1.1, AtNAR2.3, AtNRT1.2 and AtNRT2.1 genes has 

been analyzed in A. thaliana in order to evaluate the nutrients absorptions and the plant health 

status during biochar treatment. 

Finally, in order to quantify the biochar effect on fruit development and quality, we have 

evaluated fruit dry biomass, alcoholic juice potential and fruit antioxidant content.
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Chapter II 

Effect of biochar on the response of Arabidopsis thaliana (L.) to water stress 

 

2.1 MATERIALS AND METHODS 

 

In summary, with the aim to investigate the influence of biochar on Arabidopsis thaliana 

seedlings, we have investigated the following morphological and molecular parameters with 

seedlings that were grown under normal or water stress conditions: 

 

- Above and below-ground biomass compartments  

            - dry weight of roots, stem and leaves 

- Leaf  

- Leaf area, leaf number  

- chlorophyll a, b, total content  

- Leaf relative water content (LRWC) 

- Leaf anatomy 

- Root  

- Root length  

- Root tips number  

- Root anatomy 

- Soil 

- Soil water content (SWC) 

  

- Gene expression  

- AtAMT1.1, AtNRT2.1, AtNAR2.1, AtPIP2.2, AtBH7, AtBH12, AtACT2    

 

2.1.1 PLANT MATERIAL AND GROWTH CONDITIONS 

 

Arabidopsis thaliana DR5:GUS seeds were sown in 42 treated pots (350 cc of volume) filled with 

commercial soil (sandy soil) mixed with woody biochar (vineyard parental material to obtain a 

ratio 30 t ha-1 (Baronti et al. 2010). Other 42 pots were filled only with commercial soil and were 

considered as controls. Afterwards, all pots were exposed to a photosynthetically active radiation 

(PAR, 400–700 nm) of 120 μmol m−2 s−1, air temperature of 25°C a humidity regime of 75%. In 

the case of water stress treatments a calibration curve was developed relating a known soil water 
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content by weighing the pots with a direct water potential (MPa) measurements by gypsum block. 

Different levels of soil water potential (- 0.003 and - 0.09 MPa, values of soil water potential 

corresponding to a middle stress in the calibration curve) were applied to 21 treated and 21 

control pots induced by watering withdrawing. In order to keep constant the level of soil water 

stress, daily measurements of soil water content were carried out. The water stress experiment 

lasted 32 days from germination but seedlings were water stressed only for 20 days only when 

seedlings were well developed. Four different treatments were applied, named: water-no biochar, 

water-biochar, no water-no biochar and no water-biochar.  

 

2.1.2 BIOMASS DISTRIBUITION IN ABOVE AND BELOW-GROUND 

COMPARTIMENTS 

 

To evaluate root dry weight (g) of roots (RDW) and leaf/above dry weight (ADW), samples were 

collected separately and dried at 70°C until constant weight was achieved. 

RDW was measured after roots sample were repeatedly rinsed under running tap-water. 

 

2.1.3 LEAF  

 

The total leaf area and the leaves number of each plant were measured by means of a scanner at a 

resolution of 400 dpi. Successively, images were analyzed by WinRhizo Pro V. 2007d software 

(Regent Instruments Inc. Quebec). 

To determine the chlorophyll (a, b and total ) content (µg ml-1), leaves were chopped to obtain 

0.5 g of ground material which was homogenized in 10 ml of 80% acetone solution for 30 min. 

The extract was then centrifuged at 2500 rpm for 5 minutes and 1 ml of supernatant was collected 

and diluted by adding 9 ml of 80% acetone. The diluted sample was measured by 

spectrophotometer at 663 nm and 645 nm. Chlorophyll contents were calculated according to 

Arnon equation (1949). 

 

In order to determine the relative water content (LRWC) of the leaves a specific quantity of each 

leaf sample was placed in a pre-weighed airtight vial and then weighed to obtain the initial weight 

(W). The samples were then hydrated to full turgidity for by leaving them 3-4 h under normal 

room light and temperature in the vials. After hydration, the samples were taken out of water and 

dried by filter/tissue paper before being immediately weighed to obtain the weight under turgor 

conditions (TW). Samples were then dried in oven at 80°C for 24 h and weighed (after being 

cooled down in a desiccator) to determine dry weight (DW). Relative water content was obtained 
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with the following equation (Barr et al., 1962):  

RWC (%) = [(WDW) / (TWDW)] x 100, 

 

             W – Fresh Weight 

             TW – Turgid Weight 

             DW – Dry Weight. 

 

For anatomical analysis, leaves samples were fixed overnight in 25% (v/v) glutaraldehyde and 

37% (v/v) formaldehyde in 0.05 mol/L sodium phosphate (FIX solution). Afterwards pieces of 

entire leaf and cross sections of 10 μm were placed on glass slides with distillated water before 

being observed with an optical microscope (OLYMPUS BX63) at a 4X, 10X and 40X 

magnification. The images acquisition was performed by means of a digital camera (OLYMPUS 

DP72) and images were processed with Image J software to determine leaf thickness and stomata 

number. 

 

2.1.4 ROOT 

 

In order to measure the biochar effects on the root growth, roots sample were repeatedly rinsed 

under running tap-water and after, scanned by a calibrated scanner (Epson, Expression 10000 

XL) at a resolution of 800 dpi. 

Afterwards, the acquired images were analyzed using WhinRhizo Pro V. 2007d software (Regent 

Instruments Inc. Quebec).  

The extracted data were processed to obtain information about the root length. 

To determine the root tips number Arabidopsis roots were subjected to histochemical GUS 

staining. 

Arabidopsis roots were fixed with 90% acetone for 1 hour on ice and washed in 0.05 M Sodium 

Phosphate buffer (NaPi buffer with pH 7.4) three times within 1 hour on ice. Afterwards, they 

were vacuum-infiltrated for 10 min in GUS buffer (1 M NaPi buffer, Triton X-100, potassium 

ferricyanide, potassium ferrocyanide, and X-Gluc dissolved in DMF). Subsequently, samples 

were incubate in a fresh GUS buffer in the dark at 37°C until blue color was visible. After GUS 

protocol, the roots were scanned by a scanner (Epson, Expression 10000 XL) at high resolution 

and the acquired imagines elaborated with Image J software to count the root tips number. 

Root anatomy was carried out to investigate the effects of biochar on root morphology so, root 

portions pre-fixed in a FIX solution, were dehydrated in different diluted ethanol-water solutions 

(30% - 50% - 70% - 90% - 100% x 2) and pre-infiltrated overnight with a solution of absolute 
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ethanol/glycol resin (1:1 ratio). The samples thus obtained were fixed on a support with a 

polyethylene glycol-basic resin (Leica Historesin, Leica Biosystem, Germany) and sections (7 μm 

thick) were cut with a sliding microtome (Leica 2400). The sample slices were stained with 

toluidine blue over glass slides and afterwards, they were observed with the optical microscope 

(OLYMPUS BX63) with a magnification of 10X and 40X. The acquired images with the digital 

camera (OLYMPUS DP72) were then analyzed by Image J software. 

 

2.1.5 MEASUREMENT OF SOIL WATER CONTENT 

 

To evaluate the biochar effect on the water availability in the soil, daily measurements were 

performed by weighting each pot. 

Afterwards, pot and soil weight were subtracted to the total pot weight in order to obtain the soil 

water content (g). 

 

2.1.6 EVALUATIONS OF RELATIVE GENE EXPRESSION IN MARKER GENES FOR 

NITROGEN AND PHOSPHATE ABSORPTION FROM SOIL IN PRESENCE OF 

BIOCHAR 

 

In order to evaluate the relative gene expression of the specific marker genes such as AtAMT1.1,  

AtNRT2.1, AtNAR2.1, AtPIP2.2, AtBH7, AtBH12, AtACT2, primers were designed by using 

Primer3 Plus software (http://primer3plus.com/cgi-bin/dev/primer3plus.cgi) with setting 

conditions such as to obtain a good quality primers. 

Table 2.1.1 shows: primers sequences, melting temperatures, amplicons length for each PCR 

products. 

 

Gene Primers 5’ –> 3’ Product (bp) Melting T° 

AtAMT1.1 
 

F: TCCTGTTGGGTCCTAATGCCA 
R: TGACCAGAACCAGTGAGAGACGAC 

 
500 55°C 

AtNRT2.1 
 

F: AGTCGCTTGCACGTTACCTG 
R: ACCCTCTGACTTGGCGTTCTC 

190 55°C 
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AtNAR2.1 
 

F: CCAGAAGATCCTCTTTGCTTCACT 
R: CCCAATCGAGCTTAGCGTCCA 

199 55°C 

AtPIP2.2 
 

F: GGCAACTTTGCTTGTAAAACTATGC 
R: AGTACACAAACATTGGCATTGG 

102 55°C 

AtBH7 
 

L: TGTTTGAGTCTGAGACAAGG  
R: ATCTGGTTCTTCCTCAAACC   

503 55°C 

AtBH12 
 

L: AGGTTCAGGTAGCTAGAGAG  
R: ACCAGTTAGGGTAATTGCTG    

522 55°C 

AtACT2 
 

L: TCACAGCACTTGCACCAAGCA 
 R: AACGATTCCTGGACCTGCCTCA 

 

161 
 

55°C 

 

Table 2.1.1 Primers sequences, melting temperatures and amplicons length for each PCR products 

 

In order to preserve the single-strand structure of RNA from degradation, it was necessary to 

sterilize tools and environmental by UV rays for 30 min, before the RNA extraction. In addition, 

the working bench was sterilized by pure ethanol and RNaseZap Sigma in order to eliminate any 

possible trace of ribonucleases. 

MirPremier microRNA isolation kit (Sigma) was used to extract RNA samples from root. 

Samples powdered in N2 liquid were aliquoted (0.07 g) in pre-cooled Eppendorf and 750 μl of 

Lysis solution \ 2ME (10 μl of β-mercapto-ethanol per ml of Lysis solution) was added. After 5 

min incubation at 55°C, samples were centrifuged at 14.000 rpm was carried out for a time of 3 

min freed from the supernatant and transferred to a "Filtration Column”. The filtrate was 

centrifuged at 14.000 rpm for 1 min, recovered and 1.5 volumes of "Binding Solution" was added 

before vortexing. The solution was then filtered several times with the "Binding Column" for one 

min at 14.000 rpm, until the solution was exhausted. Subsequently the filter membrane was 

washed three times to remove any traces of phospholipids, proteins and carbohydrates with these 

steps: 1) 700 μl pure ethanol; 2) 500 μl of Binding Solution; 3) in the end with 500 μl pure 

ethanol. An additional centrifugations was carried out to remove any ethanol residue from the 

membrane. 

30 μl of H2O Nuclease-free was added to the membrane to extract acid nucleic and then a 

centrifugation at 14.000 rpm was carried out. To obtain a pure RNA elution, the genomic DNA 

was removed with RNase-Free DNase Set and as suggested by the kit protocol, then samples 
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were incubated at room temperature for 10 min. 

The RNA was quantified by a spectrophotometer at 260 nm protein contamination was measured 

at 280 nm. 

 

The RNA quality was verified by electrophoretic analysis with 1.5% agarose gel (1,5 g of 

agarose, 100 ml of TAE 1X buffer and 10 µl of SYBR Safe Gel Stain). In this case two bands 

corresponding at the 18S and 28S ribosomal subunits showed to be well separated on gel and that 

confirms in our samples the RNA was not degraded. 

The RNA extract was immediately converted to cDNA by using the ImProm-II Reverse 

Transcription System (Promega) kit. The Retro-transcription (RT) reaction was carried out in two 

steps. In the first 10 μl of extracted RNA, 1 μl of Primer Oligo (dt) and 1 μl of dNTP were mixed 

in a micro-centrifuge tube and then positioned inside a thermocycler for 5 min at 70°C. To arrest 

the process the sample was kept at 4°C for 5 min. In the second stage 8 μl of master mix (20 μl of 

ImpromII 5X Reaction Buffer, 10 μl MgCl2, 5 μl of RNasin Ribonuclease Inhibitor 

Recombination and 5 ml of ImpromII Reverse Transcriptase) was added and then solution placed 

in a thermocycler for 5 min at 25°C, 60 min at 50°C, 15 min at 70°C.  

The retro-transcript samples were then stored at -20°C. 

To perform a PCR reaction, a mix solution was prepared with: 

 

 5 μl 5X Green GoTaq® Flexi Buffer 

 1,5 μl MgCl2 

 15,9 μl H2O Nuclease free 

 0,5 μl dNTP 

 1 μl primers (F+R) 

 0,1 μl GoTaq® DNA Polymerase (5u/µl) 

 

In PCR tubes, 24 μl of this solution was mixed together with 1 μl of cDNA. 

The PCR reaction was started by setting the thermocycler with the following program:  

 

o 95 °C for 1 min 

o 94 °C for 45 sec 

o 60 °C for 1 min       

o 72 °C for 1 min 

o 72 °C for 5 min 

 

35 cycles (25 for housekeeping gene) 
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PCR products were loaded (12μl template + 5μl Marker Rapid-Load PCR) on an agarose gel 

(2%) and as marker, the 1 kb DNA Ladder was used.  

After the electrophoresis, the gel picture was obtained by means of ChemiDoc. 

 

2.1.7 STATISTICAL ANALYSIS 

 

For the data with a number of 5 replicates for each parameter a two-tailed t-test was applied with 

a significance level equal to 95% ( p <0.05). For the data with a no-normal distribution, before 

assessing their significance, normality tests were performed (Test Kolmogorov-Smimov and Test 

Shapiro-Wilk). This approach will enable us to apply statistical parametric or non-parametric 

tests on different data. For the data that did not meet the normal distribution neither square root or 

log transformed and, for both parameters, non-parametric static test was carried out (analysis of 

two independent samples) and the test Mann - Whitney U was applied as post-hoc test. The 

remaining have rather met the normal distribution condition and therefore, parametric statistical 

test was implemented (one- tailed log rank test); Bonferroni post-hoc test was subsequently 

applied.  

Parametric and no-parametric analysis were applied to a significance level of 95%.  

All data obtained by semi-quantitative PCR were normalized using the expression values of the 

housekeeping gene ACT2 and then treated samples were compared with control samples.  

For the images obtained by the semi-quantitative PCR analysis were analyzed using Image J 

software. In this analysis, the optical density of pixels of each amplified band on the 

electrophoresis gels was calculated. The density values were calculated before for ACT2 and then 

for the marker genes. The normalization was calculated making a difference between density 

values of ACT2 and density values of each genes. The difference values obtained the different 

expressions of marker genes among the treated samples.  

T test was applied to test the statistical significance of expression among marker genes 

differences in different samples. 

All statistical analysis were performed using SPSS 17.0 software package (SPSS Inc., Chicago, 

IL,USA). 
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2.2 RESULTS 

 

2.2.1 SEEDLING TRAITS  

 

The highest RDW and ADW biomass values were observed in Biochar - water treated seedlings. 

Both root and shoot dry biomass, showed for biochar-water treatment values twofold higher than 

values measured for biochar – no water treatment (Figure 2.2.1). 

 

 
 

Figure 2.2.1 Dry biomass of root a) and above b) compartments. Each value represent the mean of (n=21) ±SE. 

a, b, c indicate a statistically significant difference among treatments (p < 0.05). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 
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Total leaf area (2.2.2.a) showed no significant difference between Biochar-water, Control-water, 

and Control -no water treatment while Biochar- no water treatment showed the lowest value.  

Values measured in plant with Biochar – water treatment were twofold higher than values 

measured in plant with Biochar – no water treatment. Leaves number (figure 2.2.2 b) showed a 

significant difference only when biochar was added to seedlings being under normal watering 

regime. However, the lack of total leaf area increase indicated that the leaves of seedlings treated 

with biochar had slightly smaller dimension. Chlorophyll contents showed no significant result in 

the different treatments (Figure 2.2.2.c).  

 

 

 

  

Figure 2.2.2 Leaf parameters: Total leaf area a), leaves number b) and Chlorophyll content c). Each value represent the mean of (n=21) ±SE. 

a, b, c indicate a statistically significant difference among treatments (p < 0.05). 

 

 

a) b) 

c) 
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The highest Leaf Relative Water Content (LRWC) values were measured in Control-water while 

the lowest were measured in control-no water treatment. In the case of normal watering regime 

control plants has the higher value. In the case of water withdrawn, the higher value was measure 

in biochar treatment (Figure 2.2.3). 

 
 

               Figure 2.2.3 Leaf Relative Water Content values. Each value represent the mean of (n=21) ±SE. 

a, b, c indicate a statistically significant difference among treatments (p < 0.05). 

 

In conclusion, regarding seedling traits is evident a general biomass increase of plants treated 

with biochar under normal watering regime. Therefore, the most important evidence of our 

results is the negative effect that the biochar exercises on the plants when applied under stress 

watering regime. 
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2.2.2 LEAF ANATOMY 

 

About leaf anatomy, the highest values of leaf thickness (Figure 2.2.4) were observed under 

water stress condition but the biochar presence seemed to induce a slight thickness reduction in 

respect to the control only under normal watering regime. 

 
 

Figure 2.2.4 Leaf thickness. Each value represent the mean of (n=21) ±SE. 

a, b, c indicate a statistically significant difference among treatments (p < 0.05). 

 
 

In regard to stomata number (Figure 2.2.5), the highest values were found under a normal 

watering regime independently from the presence of biochar in the soil.  
 

 
Figure 2.2.5 Leaf parameter: stomata number. Each value represent the mean of (n=21) ±SE.

a, b, c indicate a statistically significant difference among treatments (p < 0.05). 
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2.2.3 ROOT ANATOMY 

 

Fine root length showed the highest values in presence of biochar despite the number remained 

the same in control. Under water stress, the root length remained unaltered independently from 

biochar presence whereas the root tips number decreased (Figure 2.2.6.a, b). 

 

 
 

Figure 2.2.6 Root parameters: total root length a) and Root tips number b). Each value represent the mean of (n=21) ±SE. 

a, b, c indicate a statistically significant difference among treatments (p < 0.05). 

 

Regarding root anatomy, the highest number of vessels present in the vascular cylinder (n°/µm2) 

(Figure 2.2.7) was observed in control when seedlings were under water stress regime. 
 

 
Figure 2.2.7 Vessels number in the vascular cylinder. Each value represent the mean of (n=21) ±SE. 

a, b, c indicate a statistically significant difference among treatments (p < 0.05). 

a) b) 
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2.2.4 SOIL TRAIT  

 

The soil water content resulted to be higher in biochar treated pots under stress condition at all 

sampling point (Figure 2.2.8). 

This confirmed the hypothesis that biochar retains water and prevents its loss. 

 

 
                       Figure 2.2.8 Soil Water Content (SWC) of pots. Each value represent the mean of (n=21) ±SE. 

                       An asterisk indicates a statistically significant difference among treatments (p < 0.05). 
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2.2.5 RELATIVE GENE EXPRESSION 

 

Molecular analysis showed important difference regarding the relative gene expression of marker 

genes when plants were treated with biochar amendment. 

BH7 marker gene (Figure 2.2.9.a) showed a higher value in the Control-no water treatment while 

in the other treatments no difference was detected. 

BH12 marker gene (Figure 2.2.9.b) showed higher values in Control-no water and Biochar-no 

water treatment while no difference were detected between the two treatments under normal 

watering regime.  

 

 

Figure 2.2.9 BH7 a) and BH12 b) relative gene expression. Each value represent the mean of (n=10) ±SE. 

a, b, c indicate a statistically significant difference among treatments (p < 0.05). 

 
 

 

 

 

 

 

 

 

 

 

a) 

b) 



 

Chapter II – Arabidopsis thaliana 

   pag. 38 
 

The relative expression of the AMT1.1 gene (Figure 2.2.10) showed a higher value in Control-

water treatment with a significant difference than Biochar-water treatment. Concerning the gene 

expression in water stress condition, the gene showed a higher value in Biochar-no water 

treatment.  

 

 
Figure 2.2.10 AMT1.1 relative gene expression. Each value represent the mean of (n=10) ±SE. 

a, b, c indicate a statistically significant difference among treatments (p < 0.05). 

 

In the case of NRT1.2 gene (Figure 2.2.11) a higher value was observed in Control-water 

treatment while in stress water condition, a higher value was observed in Biochar-no water 

treatment.  

 
Figure 2.2.11 NRT1.2 relative gene expression. Each value represent the mean of (n=10) ±SE. 

a, b, c indicate a statistically significant difference among treatments (p < 0.05). 
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Relative expression of NRT2.1 gene (Figure 2.2.12) showed a higher value in Control-water 

treatment, while also in this case, in water stress condition the higher expression value was 

observed in the Biochar-no water treatment.  

 

 
Figure 2.2.12 NRT2.1 relative gene expression. Each value represent the mean of (n=10) ±SE. 

a, b, c indicate a statistically significant difference among treatments (p < 0.05). 

 

Finally, the relative expression of PIP2.2 (Figure 2.2.13) showed high values in Control-water 

and Biochar-no water treatment while the expression of this gene in Control-no water showed a 

minor expression. 

 

 
 

Figure 2.2.13 PIP2.2 relative gene expression. Each value represent the mean of (n=10) ±SE. 

a, b, c indicate a statistically significant difference among treatments (p < 0.05). 

 

In summary, our data suggest that the biochar use under normal watering regime affects positively 

the plant response to water  and nutrients in the soil while, under stress condition, these responses are 

negatively affects by the biochar presence into the soil. 
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2.3 SHORT DISCUSSION 

 

In the present work we found that biochar amendment had a positive effects on plant growth for 

all measured parameters but only under normal watering regime. This effect might be due to the 

higher nutrient content of biochar treated soil. Indeed has been observed that under water stress 

conditions biochar addition inhibits the growth of plants. This effect could be due to the water 

binding property of biochar (Conte et al., 2013). Thus, it is reasonable that under water stress 

condition, soil-biochar water potential has a lower value than the untreated soil so that both cell 

walls and epidermis cells of root hair are not able to overcome the strength. 
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Chapter III 

 

Effect of biochar on the response of Solanum lycopersicum (L.)  

(Cherry tomato of Pachino vr)  

 

3.1 MATERIALS AND METHODS (30t ha-1 experiment) 

 

In summary, with the aim to investigate the influence of biochar on Solanum lycopersicum 

seedlings (Cherry tomato of Pachino vr), we have investigated the following morphological and 

molecular parameters with seedlings, which were grown under normal or water stress conditions: 

 

- Above and below-ground biomass compartments  

            - dry weight of roots, stem and leaves 

- Plant CHN analysis  

- Leaf  

- Leaf area  

- Leaf number  

- Chlorophyll a, b, total content  

- Root  

- Root length  

- Specific root length (SRL), the root tissue density (RTD), Mean Diameter 

- Fruit  

- Number of Flowers and Fruits  

- Morphometric parameters  

- Titratable acidity  

- Total soluble solids content  

- Trans-lycopene, cis-lycopene and beta-carotene content  

- Pannel test 

- Soil  

- Chemical analysis 

- CHN and ICP analysis 
 

- Gene expression  

- LeAMT1.1, LeAMT1.2, LeNRT1.2, LeNRT2.1, LePT1, LePT2, LeTUB 
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- Plant health status 

- DNA extraction  

- Detection of Phytophthora infestans presence in leaf 

 

3.1.1 PLANT MATERIAL AND GROWTH CONDITIONS 

  

Six seeds of Cherry tomato were sown in 30 cylindrical pots (h24 cm, Ø21 cm lower and upper Ø 

26 cm, 9000 cc of volume) filled with soil (sandy soil) mixed with woody biochar (vineyard 

parental material) to obtain a ratio of 30 t ha-1 (Baronti et al., 2010). Other 30 pots were filled 

only with commercial sandy soil and were considered as controls. After treated and control pots 

were maintained at field capacity under controlled conditions (temperature 25 ° C, humidity 75% 

and PAR 400/700 mol m-2 s-1). After germination, seedlings were thinned and only one was left 

to grow in each pot. 10 treated plants (sandy soil with Biochar - B) and 10 control plants (only 

sandy soil - C) were collected at each of the three sampling time-points including  the whole plant 

life cycle; early stage (ES), vegetative stage (VS) and fruit stage (FS). In order to maintain 

constant temperature and water potential during the experiment, measurements were carried out 

every 2 days. The pot experiment was carried out for a total of 20 weeks. 

 

3.1.2 BIOMASS DISTRIBUITION IN ABOVE AND BELOW-GROUND 

COMPARTIMENTS (ES, VS and FS) 

 

To evaluate biomass distribution dry weight (g), root (RDW), shoot (SDW) and leaves (LDW) 

were separately collected and dried at 70°C until constant weight was achieved, for each 

sampling point. 

RDW was measured after roots samples were rinsed under repeatedly running tap water. 

 

3.1.3 PLANT CHN ANALYSIS (ES, VS and FS) 

 

The roots and leaf sampled during ES, VS and FS were firstly ground in liquid N2 with mortar 

and pestle and after they were dried at 80 °C in order to eliminate any humidity trace. After the 

previous preliminary operations, the samples were analyzed for C and N concentrations with a 

CHN elemental analyzer (Perkin Elmer, 2400 series, II CHNS/O elemental analyzer). 

The analyzer was calibrated with the atropine standard, and every 10th sample the calibration was 

again carried.  
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3.1.4 LEAF (ES, VS and FS) 

 

The total leaf area and the leaves number of each plant were measured using a high resolution 

camera (OLYMPUS DP72) in order to acquire the images and after the acquisition the images 

were analyzed with the Image J software. 

To determine the a, b and total chlorophyll content (µg ml-1), leaves were chopped to obtain 0.5 g 

of ground material which was homogenized in 10 ml of 80% acetone solution for 30 min. 

The extract was centrifuged at 2500 rpm for 5 min and 1 ml of supernatant was collected and 

diluted by adding 9 ml of 80% acetone. 

The diluted sample was measured by spectrophotometer at 663 nm and 645 nm. Chlorophyll 

contents were calculated according to Arnon equation (1949). 

 

3.1.5 ROOT (ES, VS and FS) 

 

In order to measure the biochar effects on the root growth, roots of each sampled plant were 

rinsed repeatedly under running tap water and after, scanned by a calibrated scanner (Epson, 

Expression 10000 XL) at a resolution of 800 dpi. 

Afterwards, the acquired images were analyzed by WhinRhizo Pro V. 2007d software (Regent 

Instruments Inc. Quebec).  

The extracted data were processed to obtain information about the root length, the specific root 

length (SRL, m g-1), the root tissue density (RTD, g cm-3), the roots distribution in the main 

diameter size classes (0 - 0.25 mm, very fine roots; 0.25 - 2.0 mm, fine roots) and information 

regarding the mean diameter class. 

 

3.1.6 MEASUREMENT OF FRUIT TRAITS  

 

During the phenological phase of flowering and fruit development, the number of flowers and 

fruits per plant was monitored. 

In order to valuate fruits parameters, tomato fruits were harvested at point 5 of the ripening color 

chart (USDA 1975). 

To determine fruit biomass and fruit water content, 40 tomatoes for each treatment were weighed 

before (fresh weight, FW, g) and after (dry weight, DW, g) drying at 70°C for 48 h. The tomato 

plant fertility was determined considering the seeds number and the dry seeds weight of 10 

tomatoes for each treatment. 

Morphometric fruit parameters, such as polar and equatorial diameters, epicarp thickness, right 
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and left mesocarp thickness were measured by a scanner at high resolution and after analyzed 

with ImageJ software (20 tomato fruits were sampled and processed for each treatment). 

In order to determine qualitative parameters tomato fruits were homogenized by homogenizer 

(VWR Collection, VDI 12). 

The titratable acidity (TA), expressed as percentage of citric acid, was measured using the 

titration method at pH 8.1 with NaOH (0.1 N) (Petruccelli et. al 2015).  

The pH was measured using an electronic pH meter (pH meter Eutech Instruments pH 700, 

2013). 

Finally, the total soluble solids content (TSSC), expressed as °Brix, was measured by 

refractometer (HANNA Instruments, HI 96813), prior homogenization and centrifugation at 

13.000 g for 20 min at 8°C. (George et. al 2004). 

The lycopene and β-carotene content was determined to quantify antioxidant properties. 

Six g of the homogenate were extracted in dark condition using 60 ml of a hexane-methanol-

acetone (2: 1: 1 volume/volume/volume) mixture with 2.5% of BHT at 4°C and for 30 min. 

Subsequently, 10 ml of distillated water was added and the polar phase (hexane) was recovered. 

On the polar phase spectrophotometric readings were carried out respectively at 472 nm 

(maximum absorbance peak of the trans-lycopene), 502 nm (maximum absorbance peak of the 

cis-lycopene) (George et al. 2004) and 453 nm (maximum absorbance peak of β-carotene) (Bohm 

et al. 2002). 

The analysis above mentioned were carried out for 5 replicates per each treatment. 

In order to evaluate the tomato taste, a panel test was performed. The sensory panel consisted of 

7-10 trained subjects, panellists who were able to detect a significant flavor difference between 

two tomato fruit samples (biochar treated and control fruits) when presented as a paired 

comparison. Each panellist received 16 samples to assess different parameters on 1-9 scale (eg 1 

= very weak aroma intensity and 9 = very strong aroma intensity).  

The valuated parameters were aroma, acidity, consistency, juiciness and T-Test was performed to 

evaluate the statistically significance of the obtained data.  

 

3.1.7 SOIL (ES, VS and FS) 

 

The chemical soil analysis were carried out to measure total organic C and N content, available 

phosphorus (Pav), CE (electrical conductivity), pH and exchangeable cations content (CEC).  

Total C and total N soil contents were determined by dry combustion Elemental Analyzer 

(Thermo Fisher Science). The Pav content determination was carried out by reference to the 

indications of the Olsen method (Arduino et al. 2000). 
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The CE was measured using the saturation method with barium-chloride at pH 8.5, where the 

adsorbed barium was shifted with a 0.05 M MgSO4 solution and finally, the exceeded Mg was 

titrated with a 0.025 M EDTA solution (Gessa et al. 2000). 

Soil pH has been measured using the potentiometric method with a 1:2.5 soil-water suspension. 

The CEC was measured using a barium chloride-triethanolamine buffered solution at pH of 8.2 

and after, the parameter quantification was performed using a flame atomic absorption 

spectrophotometry. Finally, the total elements concentrations were determined for subsamples 

dried at 105°C for 24 h according to the EPA method 3052 and the filtered solutions were 

analyzed using an ICP-OES spectrophotometer (Varian Inc., Vista MPX). 

 

3.1.8 EVALUATIONS OF BIOCHAR EFFECT UPON THE GENE EXPRESSION OF 

MARKER GENES FOR NITROGEN AND PHOSPHATE ABSORPTION FROM SOIL  

 

In order to evaluate the relative gene expression of the specific marker genes such as LeAMT1.1,  

LeAMT1.2, LeNRT1.2, LeNRT2.1, LePT1, LePT2, LeTUB, primers were designed by using 

Primer3 Plus software (http://primer3plus.com/cgi-bin/dev/primer3plus.cgi) with setting 

conditions such as to obtain a good quality primers. 

Table 3.1.1 shows: primers sequences, melting temperatures, amplicons length for each PCR 

products. 

 

Gene Primers 5’ –> 3’ Product (bp) Melting T° 

LeAMT1.1 
F: GGCGCATATAATCCAGATAC 
R: ATTCCTAATTTCGGATCCTC 

 
208 55°C 

LeAMT1.2 
F: AACAAGACATGGAGGATTTG 

R: CTTTGAGATTTGACGTTTCC 
217 55°C 

LeNRT2.1 
F: ACAGAAGACGGGTACTGTTG 
R: CAATGACGTTGTCTGTTGAC 

230 55°C 

LePT1 
F: ACCATCACTGGACTCTCAAG 

R: GCGTATAAGAATCCAAATGC 
208 55°C 
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LePT2 
L: GCTGCACAAAGTAAAGATCC  
R: GTTTCTTGTGATGCTTCCTC   

167 55°C 

LeTUB 
L: TGACGAAGTCAGGACAGGAA  
R: CTGCATCTTCTTTGCCACTG   

90 52°C 

 

Table 3.1.1 Primers sequences, melting temperatures and amplicons length for each PCR products  

In order to preserve the single-strand structure of RNA from degradation, it was necessary to 

sterilize tools and environmental by UV rays for 30 min, before the RNA extraction. In addition, 

the working bench was sterilized by pure ethanol and RNaseZap Sigma in order to eliminate any 

possible trace of ribonucleases. 

MirPremier microRNA isolation kit (Sigma) was used to extract RNA samples from root. 

Samples powdered in N2 liquid were aliquoted (0.07 g) in pre-cooled Eppendorf and 750 μl of 

Lysis solution \ 2ME (10 μl of β-mercapto-ethanol per ml of Lysis solution) was added. After 5 

min  incubation at 55°C, samples were centrifuged at 14.000 rpm was carried out for a time of 3 

min freed from the supernatant and transferred to a "Filtration Column”. The filtrate was 

centrifuged at 14.000 rpm for 1 min, recovered and 1.5 volumes of "Binding Solution" was added 

before vortexing. The solution was then filtered several times with the "Binding Column" for one 

min at 14.000 rpm, until the solution was exhausted. Subsequently the filter membrane was 

washed three times to remove any traces of phospholipids, proteins and carbohydrates with these 

steps: 1) 700 μl pure ethanol; 2) 500 μl of Binding solution; 3) in the end with 500 μl pure 

ethanol. Additional centrifugations was carried out to remove any ethanol residue from the 

membrane. 

30 μl of H2O Nuclease-free was added to the membrane to extract acid nucleic and then a 

centrifugation at 14.000 rpm was carried out. To obtain a pure RNA elution, the genomic DNA 

was removed with RNase-Free DNase Set and as suggested by the kit protocol, then samples 

were incubated at room temperature for 10 min. 

The RNA was quantified by a spectrophotometer at 260 nm and protein contamination was 

measured at 280 nm. 

The RNA quality was verified by electrophoretic analysis with 1.5% agarose gel (1,5 g of 

agarose, 100 ml of TAE 1X buffer and 10 µl of SYBR Safe Gel Stain). In this case two bands 

corresponding at the 18S and 28S ribosomal subunits showed to be well separated on gel and that 

confirms the integrity of RNA in the samples.  

The RNA extract was immediately converted to cDNA by using the ImProm-II Reverse 
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Transcription System (Promega) kit. The Retro-transcription (RT) reaction was carried out in two 

steps. In the first 10 μl of extracted RNA, 1 μl of Primer Oligo (dt) and 1 μl of dNTP were mixed 

in a micro-centrifuge tube and then positioned inside a thermocycler for 5 min at 70°C. To arrest 

the process the sample was kept at 4°C for 5 min. In the second stage 8 μl of master mix (20 μl of 

ImpromII 5X Reaction Buffer, 10 μl MgCl2, 5 μl of RNasin Ribonuclease Inhibitor 

Recombination and 5 ml of ImpromII Reverse Transcriptase) was added and the solution placed 

in a thermocycler for 5 min at 25°C, 60 min at 50°C, 15 min at 70°C.  

The retro-transcript samples were then stored at -20°C. 

 

To perform a PCR reaction, a mix solution was prepared with: 

 

 5 μl 5X Green GoTaq Flexi Buffer 

 1,5 μl MgCl2 

 15,9 μl H2O Nuclease free 

 0,5 μl dNTP 

 1 μl primers (F+R) 

 0,1 μl GoTaq DNA Polymerase (5u/µl) 

 

In PCR tubes, 24 μl of this solution was mixed together with 1 μl of cDNA. 

The PCR reaction was started by setting the thermocycler with the following program:  

 

o 95 °C for 1 min 

o 94 °C for 45 sec 

o 60 °C for 1 min        

o 72 °C for 1 min 

o 72 °C for 5 min 

 

PCR products were loaded (12μl template + 5μl Marker Rapid-Load PCR) on an agarose gel 

(2%) and as marker, the 1 kb DNA Ladder was used.  

After the electrophoresis, the gel picture was obtained by means of ChemiDoc. 

 

 

 

 

 

35 cycles (25 cycles for housekeeping gene) 
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3.1.9 PLANT HEALTH STATUS 

 

In order to verify the presence/absence of the pathogen Phytophthora infestans, tomato leaves 

were collected from greenhouse-grown plants at vegetative stage (VS). Fresh leaf tissue was 

ground to fine powder in liquid nitrogen with a mortar and pestle.  

50 mg of plant tissue was subsequently transferred to a micro-centrifuge tube containing 150µl of 

Plant DNAzol and the solution was gently mixed a few times by inversion. 

After an incubation at 25°C with shaking for 5 min, 150µl chloroform was added and the solution 

was vigorously mixed and another incubation phase was carried out at 25°C with shaking for 5 

min. The aqueous phase obtained by a centrifuge at 13400 rpm for 10 min was transferred to a 

fresh tube and then it was mixed with 110µl of 100% ethanol. 

The DNA was precipitated at 7000 rpm for 5 min after an incubation at room temperature for 5 

min and the resulting supernatant was removed.  

The DNA solubilization from extract was carried out by adding 50 μl of sterile milliQ water, after 

two important DNA washing operations. 

In order to verify the presence/absence of the pathogen P. infestans, sequences primer were 

chosen containing complementary sequences of the pathogen genome. 

 

 

 

 

 

                Table 3.1.2 Primers sequences, melting temperatures and PCR products amplicons length of P. infestans pathogen 

 

To perform a PCR reaction, a mix solution was prepared with: 

 

 5 μl 5X Green GoTaq Flexi Buffer 

 2 μl MgCl2 

 13,8 μl H2O Nuclease free 

 1  μl dNTP 

 1 μl primers (F+R) 

 0,2 μl GoTaq DNA Polymerase (5u/µl) 

 

In PCR tubes, 23 μl of this solution was mixed together with 2 μl of cDNA. 

The PCR reaction was started by setting the thermocycler with the following program: 

 
 

Gene Primers 5’ –> 3’ Product (bp) Melting T° 

PiO8-3-3 
L: CAATTCGCCACCTTCTTCGA  
R: GCCTTCCTGCCCTCAAGAAC   

1500 55°C 
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o 95 °C for 1 min 

o 94 °C for 45 sec 

o 55 °C for 1 min        

o 72 °C for 1 min 

o 72 °C for 5 min 

 

PCR products were loaded (12μl template + 5μl Marker Rapid-Load PCR) on an agarose gel 

(2%) and as marker, the 1 kb DNA Ladder was used.  

After the electrophoresis, the gel picture was obtained by means of ChemiDoc. 

 

3.1.10 STATISTICAL ANALYSIS 

 

For the data with a number of 5 replicates for each parameter a two-tailed t-test was applied with 

a significance level equal to 95% ( p <0.05). For the data with a no-normal distribution, before 

assessing their significance, normality tests were performed (Test Kolmogorov-Smimov and Test 

Shapiro-Wilk); this enabled us to apply statistical parametric or non-parametric tests on different 

data. For the data that did not meet the normal distribution neither square root or log transformed 

and, for both parameters, non-parametric static test was carried out (analysis of two independent 

samples) and the test Mann - Whitney U was applied as post-hoc test. The remaining data have 

rather met the normal distribution condition and therefore, parametric statistical test was 

implemented (one- tailed log rank test); Bonferroni post-hoc test was subsequently applied.  

Parametric and no-parametric analysis were applied to a significance level of 95%.  

All data obtained by semi-quantitative PCR were normalized using the expression values of the 

housekeeping gene TUB and then treated samples were compared with control samples.  

For the images obtained by the semi-quantitative PCR analysis were analyzed using Image J 

software. In this analysis, the optical density of pixels of each amplified band on the 

electrophoresis gels was calculated. The density values were calculated before for TUB and then 

for the marker genes. The normalization was calculated making a difference between density 

values of TUB and density values of each genes. The difference values obtained the different 

expressions of marker genes among the treated samples.  

T test was applied to test the statistical significance of expression among marker genes 

differences in different samples. 

All statistical analysis were performed using SPSS 17.0 software package (SPSS Inc., Chicago, 

IL,USA). 

 

35 cycles  
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3.2 RESULTS (30t ha-1 experiment) 

 

3.2.1 SEEDLINGS TRAITS  

 

Mean biomass for root, stem and leaves (Figure 3.2.1.a, b, c) did not show any significant 

difference between treated and control plants at the ES stage, whereas significant differences with 

were found at both VS and FS with highest values found in biochar treated plants. 
 
 

 

 

Figure 3.2.1 Biomass of leaves (a), stem (b) and root (c). Each value represent the mean of (n=10) ±SE. 

a, b indicate a statistically significant difference between treatments (p < 0.05). 

 
 

 

 

 

a) b) 

c) 
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In regard of Ntot and Ctot root content (%) (Table 3.2.1) data indicated the absence of a significant 

difference between treated and control plants at ES and VS stage whereas at FS stage the highest 

value of Ntot was found in treated plants while, the highest value of Ctot was found in control 

plants. A slight difference was found between the life cycle phases in the sense that Ntot seemed 

to decrease with the time whereas Ctot seemed to increase. In both cases, such variations were 

observed independently from biochar treatment. 

 

Table 3.2.1 Root CHN data. Each value represent the mean of (n=10) ±SE. 

a, b indicate a statistically significant difference between treatments (p < 0.05). 

x, y, z indicate a statistically significant difference (p < 0.05) among the different sampling point (Es, Vs, Fs). 

 

Ntot and Ctot content (%) in leaves (Table 3.2.2) did not show any significant difference between 

treated and control plants at Vs and Fs. 

 

Table 3.2.2 Leaves CHN data. Each value represent the mean of (n=10) ±SE. 

a, b indicate a statistically significant difference between treatments (p < 0.05).  

x, y, z indicate a statistically significant difference (p < 0.05) among the different sampling point (Es, Vs, Fs). 

 

At the ES, treated plants showed that Ntot content was higher than the control plants while, unlike 

Ctot content which was higher in control plants.  

In analogy with roots also in leaves the Ntot showed decreasing values with time with a significant 

difference of the trend in both treatments.  

 

 

 

 

 

Root  Es Vs Fs 

Parameter Unit Control Biochar Control Biochar Control Biochar 

Ntot % 3,4 ± 0,07 ax 3,7 ± 0,10 ax 2,27 ± 0,1 ay 2,1 ± 0,22 ay 1,3 ± 0,0 az 
1,7 ± 0,16 

bz 

Ctot % 37,9 ± 0,7 ax 37,8 ± 0,25 ax  40,5 ± 0,15 ay  40,2 ± 0,7 ax  
42,9 ± 0,3 

az 
41,3 ± 0,75 

by 

Leaves  Es Vs Fs 

Parameter Unit Control Biochar Control Biochar Control Biochar 

Ntot % 6,1 ± 0,03 ax 6,91 ± 0,01 bx 3,6 ± 0,45 ay 4,5 ± 0,4 ay 1,45 ± 0,3az 1,9 ± 0,3 az 

Ctot % 
36,1 ± 1,45 

ax 
32,5 ± 1,9 bx 

35,3 ± 3,55 
ax 

36,12 ± 2,9 ax  35 ± 1,50 ax 36 ± 1,9 ax 
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Total leaf area (Figure 3.2.2) showed higher values in the biochar treated plants at VS and FS 

sampling point. This result is in accordance with the results of mean biomass for root, stem and 

leaves. 

 

  
 

Figure 3.2.2 Total leaf area at ES, VS and FS. Each value represent the mean of (n=10) ±SE. 

a, b indicate a statistically significant difference between treatments (p < 0.05). 
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Chlorophyll a (µg ml-1) and b (µg ml
-1

) content (Figure 3.2.3.a, b) did not show any significant 

differences between treated and control plants at the ES time. Biochar treated plants showed a 

higher value of b chlorophyll than control plants at the VS. At the FS time, the highest value of 

both a and total chlorophyll (Figure 3.2.3.a, c) was found in control plants.  

 

 

 

 

 

 

 

 

 

 

                 

 

 

 

 

 

 

 

 

       

 

 

Figure 3.2.3 a chlorophyll a), b chlorophyll b), total chlorophyll c) content at ES, VS and FS. Each value represent the mean of (n=10) ±SE. 

a, b indicate a statistically significant difference between treatments (p < 0.05). 

  

c) 

b) a) 

            

a) b)

      

c)
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The highest values of root length were found in treated plants throughout the experiment (Figure 

3.2.4). 
 

 
 

Figure 3.2.4 Root length at ES, VS and FS. Each value represent the mean of (n=10) ±SE. 

a, b indicate a statistically significant difference between treatments (p < 0.05). 

 

The SRL, RTD and the mean diameter class values have not shown any significant difference 

between treated and control plants at each sampling point (Figure 3.2.5). 
 

 
Figure 3.2.5 Specific root length (SRL) a), Root tissue density (RTD) b) and Mean root diameter c) at ES, VS and FS. Each value represent the 

mean of (n=10) ±SE. a, b indicate a statistically significant difference between treatments (p < 0.05). 

a) 

c) 

b) 
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Flower and fruit number were found in biochar treated plants respectively five and two fold 

higher (Figure 3.2.6.a, b) than in control plants. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.6 Flowers a) and Fruit b) number. . Each value represent the mean of (n=10) ±SE. 

a, b indicate a statistically significant difference between treatments (p < 0.05). 

 

  

a) b) a) b)
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All fruit morphometric parameters (Figure 3.2.7.a, b, c, d, e) did not show any significant 

difference between treated and control plants.  

                        

 

          

 

  

Figure 3.2.7 Morphometric fruit parameters: Polar a) and equatorial diameter b); Epicarp c), right mesocarp d) and left mesocarp e) thickness. 

Each value represent the mean of (n=10) ±SE. a, b indicate a statistically significant difference between treatments (p < 0.05). 

a) b) 

c) d) 

e) 
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Finally, treated plants showed higher values than the control in qualitative parameters such as 

titratable acidity (Figure 3.2.8,a), total soluble solids content (Figure 3.2.8.b), trans-lycopene, and 

cis-lycopene (Figure 3.2.8.c, d); no differences were detected for β-carotene (Figure 3.2.8.e).  

 

 

Figure 3.2.8 Qualitative fruit parameters: a) Titratable acidity (% citric acid) ; b) Total soluble solid content (°Brix); c) Trans-lycopene (A); d) 

Cis-lycopene (A); d) β-carotene content (A). Each value represent the mean of (n=10) ±SE. a, b indicate a statistically significant difference 

between treatments (p < 0.05). 

 

 

About Panel test, all sensory attributes did not show any significant taste difference (low 

significance: p >0.05). 

 

In summary, results obtained from this experiment confirm our hypothesis about the possible 

beneficial biochar effects on plant growth, fruit yield and fruit quality –one of the most important 

parameters. 

 

 

 

 

 

 

b) a) 

c) d) e) 
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3.2.2 SOIL TRAITS 

 

In regard of chemical and physical soil parameters (Table 3.2.3) such as pH, EC and Ntot we did 

not notice significant difference in all treatments and plant stages examined. CEC (Cmol kg-1) 

showed the highest value in treated plants at the FS stage. Also Nav content (mg kg-1) showed a 

significant difference at the FS, where the control soil showed an high value than treated plants. 

Ptot (mg kg-1) content showed a higher value in treated soil at the FS, while at the ES, the highest 

value of Pav (mg kg-1) was found in control soil. No relevant differences were present at VS. 

About Ctot (g kg-1) content, treated soil showed a higher value at the VS. 
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Chapter III – Solanum lycopersicum  

   pag. 60 
 

3.2.3 RELATIVE GENES EXPRESSION 
 

Molecular analysis conducted at the three different developmental stages showed interesting 

differences regarding the relative gene expression of marker genes (Figure 3.2.9.a, b, c). 

 

 

Figure 3.2.9 AMT1.1, AMT1.2 and NRT2.1 relative gene expression at ES a), Vs b) and FS c). Each value represent the mean of (n=10) ±SE. 

a, b indicate a statistically significant difference between treatments (p < 0.05). 

 

b) 

a) 

c) 
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In fact, AMT1.1 marker gene showed its highest expression in control plant at ES, whereas no 

relevant difference emerged between control and Biochar treatment at VS and FS. AMT1.2 

marker gene showed that its expression was twofold higher in treated plants at VS. 

In regard to NRT2.1 marker gene, we found that it showed its highest expression in control plants 

at both ES and FS developmental stages.  
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PT1 marker gene showed its highest expression in control plants at ES, unlike PT2 marker gene 

which showed its highest expression values in control plants at ES and also at VS (Figure 

3.2.10.a, b). 

 

 

 

    

 

Figure 3.2.10 PT1 and PT2 relative gene expression at ES a), Vs b) and FS c). Each value represent the mean of (n=10) ±SE. 

a, b indicate a statistically significant difference between treatments (p < 0.05). 

 

In summary, in regard the genes expression, our results highlight a higher expression of the 

AMT1.1, AMT1.2, NRT2.1 and PT2 gene during the different life stages of the plant treated with 

biochar. 

  

b) 

a) 

c) 
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3.2.4 PLANT HEALTH CONDITION 

  

During the Vs, same tomato leaves of both treatments showed the presence of yellow colors and 

irregular spots above their surface.  

In order to exclude the presence of P. infestans pathogen, after fungal DNA extraction, a PCR 

reaction was performed using PiO8-3-3 primers. The gel image obtained after the electrophoretic 

run (Figure 3.2.11) did not show the presence of P. infestans pathogen. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.11 PCR gel image of genomic P. infestans extraction  (M = molecular marker; 1b, 2b, 3b = biochar replicates; 1c, 2c, 3c = control 

replicates; Neg = negative control) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M Neg 1c 3b 2b 1b 3c 2c 
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Data collected during this experiment are part of a draft paper entitled:  

Biochar soil amendment enhances cherry tomatoes growth, fruit production and quality in 

controlled conditions. 

 

For the full manuscript please see page 115.
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3.3 MATERIALS AND METHODS (300t ha-1 experiment) 

 

In order to test the influence of biochar on Solanum lycopersicum seedlings (Cherry tomato of 

Pachino vr) the following morphological were investigated: 1) Above and below-ground biomass 

compartmentation; 2) - in the case of leaves we measured leaf area, leaf number; 3) - in the case 

of roots we measured root length . 

 

3.3.1 PLANT MATERIAL AND GROWTH CONDITIONS 

  

Seeds of Cherry tomato were sown in rectangular pots (h 16 cm, width 20 cm and length 60 cm) 

and maintained at field capacity under controlled conditions (temperature 25 ° C, humidity 75% 

and PAR 400/700 mol m-2 s-1). Each treated pot contained approximately 11,5 L of air dried soil 

mixed with biochar at a rate of 300 t ha-1 whereas control pots were filled with  commercial sandy 

soil. 

A number of 16 treated plants and 16 control plants were collected at the end of the experiment. 

In order to maintain temperature and water potential constant throughout the experiment, 

measurements were carried out every 2 days. After 22 days, morphological analysis were carried 

out on the sampled plants. 

 

 

 
 

Figure 3.3.1 Solanum lycopersicum experimental set up 
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3.3.2 BIOMASS DISTRIBUITION IN ABOVE AND BELOW-GROUND 

COMPARTIMENTS AND MORPHOLOGICAL TRAITS OF LEAVES AND ROOTS 

 

To evaluate biomass distribution we measured separately the dry weight (g) of roots (RDW), 

shoot (SDW), and leaves (LDW). Collected material was dried at 70°C until constant weight was 

achieved, for each sampling point. In the case of RDW roots were rinsed repeatedly under 

running tap water, slightly dried with paper before starting the drying procedure. 

In the case of leaves, the total leaf area and the leaves number were measured using a high 

resolution camera (OLYMPUS DP72) in order to acquire the images and then they were 

processed using by Image J software. In the case of roots, these were rinsed repeatedly under 

running tap water and after, scanned using a calibrated scanner (Epson, Expression 10000 XL) at 

a resolution of 800 dpi. Afterwards, the acquired images were analyzed by WhinRhizo Pro V. 

2007d software (Regent Instruments Inc. Quebec).   

 

3.3.3 STATISTICAL ANALYSIS 

 

For the data with a number of 5 replicates for each parameter a two-tailed t-test was applied with 

a significance level equal to 95% (p <0.05). For the data with a no-normal distribution, before 

assessing their significance, normality tests were performed (Test Kolmogorov-Smimov and Test 

Shapiro-Wilk); this will enable us to apply statistical parametric or non-parametric tests on 

different data. For the data that did not meet the normal distribution neither square root or log 

transformed and, for both parameters, non-parametric static test was carried out (analysis of two 

independent samples) and the test Mann - Whitney U was applied as post-hoc test. The remaining 

have rather met the normal distribution condition and therefore, parametric statistical test was 

implemented (one- tailed log rank test); Bonferroni post-hoc test was subsequently applied.  

Parametric and no-parametric analysis were applied to a significance level of 95%.  

All statistical analysis were performed using SPSS 17.0 software package (SPSS Inc., Chicago, 

IL,USA).
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3.4 RESULTS (300t ha-1 experiment) 

 

3.4.1 SEEDLING TRAITS 

 

Biochar treated plants showed lower root, stem and leaves biomass values than control plants and 

the same result was observed for total leaf area and fine root length parameters (Figure 3.4.1.a, b, 

c). 

 
 

Figure 3.4.1 Compartmental biomass a), Leaf area b) and Root length c). Each value represent the mean of (n=16) ±SE. a, b 

indicate a statistically significant difference between treatments (p < 0.05). 
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3.5 SHORT DISCUSSION 

 

In the present experiment plants of Solanum lycopersicum treated with a biochar rate of 30 t ha-1 

showed a better growth performance in terms of both morphological and fruit traits. Our results 

highlight for the first time the positive relationship between biochar amendment and the increase 

of antioxidant compounds in the fruit. This result might be related to the increase of both nitrogen 

availability and carotenoid metabolic pathway (Delgado et al., 2004). Therefore, results obtained 

from this experiment support our hypothesis about the positive effect of biochar amendment on 1) 

plant growth, 2) fruit yield and quality and 3) soil nutrient availability. On the contrary in the case 

of plants treated with a biochar rate of 300t ha-1, growth was strongly inhibited. This might be 

due to the large volume of biochar in relation to the soil, which is a reduction of the overall 

nutrient content. Moreover, the concentration of polycyclic aromatic hydrocarbons in the biochar 

composition could also negatively affect the plant growth at high concentration (Krull et al., 

2009). 
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Chapter IV 

 

Effect of biochar on the response of Vitis vinifera (L.)  

(Chardonnay cv)  

 

4.1 MATERIALS AND METHODS (Pot experiment) 

 

In order to test the influence of biochar on Vitis vinifera plants, we investigated the following 

traits in plants and soil: 

 

- Leaf  

- Leaf water potential (LWP) 

- Chlorophyll fluorescence (Yield) 

- Root  

- Root length  

- Soil 

- Soil temperature (ST)  

- Soil water potential (SWP) 

 

4.1.1 PLANT MATERIAL AND GROWTH CONDITIONS 

 

In order to test the influence of biochar on soil water and temperature and also on morpho-

physiologal parameters of Vitis vinifera (Chardonnay cv), a pot experiment was set up. 3 years 

old plants of Vitis vinifera were placed in cubic pots (h 30 cm x 30 cm x 30 cm; 25 L) specifically 

modified and presenting a transparent acrylic side to allow the visual control of the root growth 

kinetics (Van Do et al. 2015). 5 pots were filled with agricultural soil mixed with woody biochar 

(vineyard parental material) at a rate of 30t ha-1 (Baronti et al. 2010; Mustafa et al. 2010). Other 5 

pots were filled only with agricultural soil and considered as control samples. Both treated and 

control plants were grown from April to October 2016 under natural conditions. Time points 

were used to collect the samples and which coincided with 1) the annual maximum of solar 

radiation, 2) the highest peak of air temperatures, 3) the end of fruit growth, 4) the end of 

ripening phase. Soil temperature (ST) and soil water potential (SWP) were weekly measured at 5 

and 10 cm soil depth. Experiment was established adjacent to a weather station (LSI Lastem) and 

air temperature, atmospheric humidity, wind speed and direction were measured.  
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4.1.2 LEAF 

 

LWP measurements were carried out once a week by using the Bomb Scholander (SKPM 1400, 

Skye Instruments Ltd., UK).  

A leaf attached to the stem (10 treated and 10 control) was placed inside a sealed chamber and 

pressurized gas was slowly added inside the chamber. When the applicate pressure forced the 

lymph out from the xylem drops became visible at the extremities of cut stem. The pressure 

required to get out the lymph was equal and opposite to the water potential of the leaf. 

Leaf fluorescence measurements (10 treated and 10 control leaves) were performed once a week. 

For the abovementioned parameter, a portable modulator pulse fluorimeter (OS1 - FL, opti - 

sciences, inc. USA) has been used. Minimum fluorescence measurements (Fo) were carried out 

one hour before the lights impulse in dark conditions in order to determine the maximum 

fluorescence (Fm). The maximum fluorescence value was obtained by exposing the same leaves 

adapted to the dark at a short pulse of saturated white light (0.8 s about 600 μmol m-2 s-1). The 

PSII quantum yield (Fv / Fm, with Fv = Fm - Fo) was then calculated as %. 

 

4.1.3 ROOT  

 

In order to measure the biochar effects on the root growth a non-destructive analysis were carried 

out. In regard to this, root images were acquired by using a calibrated scanner (Epson, Expression 

6000 XL) at a resolution of 800 dpi. Afterwards, the acquired images were analyzed by using 

WhinRhizo Pro V. 2007d software (Regent Instruments Inc. Quebec); subsequently the extracted 

data were processed to obtain information about the root length, root surface area and root 

volume. 

 

4.1.4 STATISTICAL ANALYSIS 

 

Concerning the bioinformatics and the statistical analysis, see paragraph 3.3.3 of Solanum 

lycopersicum 300t ha-1 experiment, Chapter III. 
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4.2 RESULTS (Pot experiment) 

 

4.2.1 LEAF AND ROOT TRAITS 

 

LWP (Bar) (Figure 4.2.1.a) showed significant difference between treated and control plants in 

June 22th and from 3th August to 21th September where control plants showed higher values than 

treated plants. Chlorophyll fluorescence (Figure 4.2.1.b), express as Yield (% of Photosistem II 

rate) showed significant difference between treated and control plants from 13th July to 24th 

August with, treated plants showing higher values than control plants. 

 

 
 

Figure 4.2.1 Leaf parameters: Leaf water potential values a) and Yield (% of Photosintetic rate) values b). Each value represent the mean of (n=5) 

±SE. An asterisk indicates a statistically significant difference between treatments (p < 0.05). 
 
 

Fine root length (cm) (Figure 4.2.2.a), showed significant difference between treated and control 

plants from 8th June to 20th October where, also here, treated plants showed higher values than 

control plants. Both the two treatments showed a typical seasonal root pattern. 
 

a) b) 

* * 

* 

* 

* 
* 

* 

* 

* 
* 

* * 
* 
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Figure 4.2.2 Root length: Mean root length a) and Specific plant root length b). Each value represent the mean of (n=5) ±SE. 

 An asterisk indicates a statistically significant difference between treatments (p < 0.05).  

 

4.2.2 SOIL TRAITS 

 

Concerning ST (at 5 and 10 cm depth) (Figure 4.2.3.a, b) there was no significant difference 

between control and treated pots. The only exception was detected in July 20th with a higher 

temperature of 1.35 °C at 5 cm depth in treated plants.  

 
 

Figure 4.2.3 Soil temperature at 5 cm depth a) and Soil temperature at 10 cm depth b) values. Each value represent the mean of (n=5) ±SE.  

An asterisk indicates a statistically significant difference between treatments (p < 0.05). 

a) b) 

a) b) 

* 

* * 
* * 

* * 

* * 
* 

* 

* 

* * 

* 
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SWP (at 10 and 20 cm depth) (Figure 4.2.4.a, b) did not show significant difference between 

treated and control plants.  

 

 
Figure 4.2.4 Soil water potential at 10 cm depth a) and Soil water potential at 20 cm depth b) values. Each value represent the mean of (n=5) ±SE. 

An asterisk indicates a statistically significant.

a) b) 
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4.3 MATERIALS AND METHODS (Field experiment) 

 

In order to test the influence of biochar on Vitis vinifera plants, we investigated the following 

morpho-physiological parameters: 

 

- Leaf  

- Leaf water potential (LWP) 

- Chlorophyll fluorescence (Yield) 

- Root  

- Root length, root surface area and root volume  

- Fruit  

- Fruits yield  

- Fruit biomass 

- Fruit Fertility  

- Titratable acidity  

- Total soluble solids content or °Brix 

- Fruit Antioxidant content 

 

4.3.1 PLANT MATERIAL AND GROWTH CONDITIONS 

 

In order to test the influence of biochar on morpho-physiological aspects of Vitis vinifera 

(Chardonnay cv) an open-field experiment was set up in December 2016. Thirty 3-years old 

plants of Vitis vinifera grown in pot were transplanted in the fields in two rows; fifteen plants 

represented the control row and fifteen plants represented the biochar treatment. Each row was in 

turn divided into 5 plot with 3 plants per plot. In treated plots, natural soil was mixed with woody 

biochar (parental material obtained from different fruit plant species) at the depth of 30 cm and 

with a concentration of 30t ha-1 as suggested by Baronti et. al 2010 and Mustafa et al. 2010. On a 

side of each row a trench was excavated with the aim of burying 5 plastic boxes. The boxes were 

partially buried but remained accessible from above-ground to enable the possibility to insert in 

them a scanner. The side of each box facing the plants was modified with a plexiglass sheet to 

enable a scan of the roots growing in contact with the box (Van Do et al. 2015). SWP (Soil Water 

Potential) were weekly measured at 10, 20 and 30 cm depth. The setting of this experiment 

included a weather station (LSI, Lastem) where air temperature, atmospheric humidity, wind 

speed and direction were measured. The morphological and physiological parameters were 

measured each 20 days. 
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4.3.2 LEAF  

 

Leaf parameters measurements were carried out once a week; see paragraph 4.1.2 of Vitis vinifera 

pot experiment, Chapter IV for more information.  

 

4.3.3 ROOT  

 

In order to measure the biochar effects on the root growth a non-destructive analysis were carried 

out. Root images were acquired by using a calibrated scanner (Epson, Expression 6000 XL) at a 

resolution of 800 dpi. 

Afterwards, the acquired images were analyzed using WhinRhizo Pro V. 2007d software (Regent 

Instruments Inc. Quebec); subsequently the extracted data were processed to obtain information 

about the root length, root surface area and root volume. 

 

4.3.4 FRUIT  

 

During the harvest fruit season, fruit quality parameters were measured in treated and control 

plant. 

In order to determine the plot yield (n° bunch/plot), the bunch number and bunch dry biomass 

weight were measured for treated and control plot; also the berries number was calculated for 

bunch. 

To determine fruit biomass 20 berries for each treatment were weighed before (fresh weight, FW, 

g) and after (dry weight, DW, g) drying at 70°C for 48 h.  

The grape fertility was determined through a seed-count and through dry seeds weight (10 berries 

for each treatment). 

In order to determine qualitative parameters berries were homogenized by homogenizer (VWR 

Collection, VDI 12) and then they were centrifuged at 13,000 rpm for 20 minutes at 8°C. 

The titratable acidity (TA), expressed as percentage of tartaric acid, was measured using the 

titration method at pH 7 with NaOH (0.1 N) (Petruccelli et. al 2015).  

The pH was measured using an electronic pH meter (pH meter Eutech Instruments pH 700, 

2013). 

Finally, TSSC (°Brix) and Alcohol potential (% v/v) was measured by refractometer (HANNA 

Instruments, HI 96813). 

To quantified the grape antioxidant content the samples were kept frozen at -18 ° C for a period  

of 2- 3 weeks before the analysis. During the extraction phase, the berries were subdivided into 
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skin, seed and pulp in order to identify the compartmental distribution of the antioxidant content. 

The skin and seeds were grounded with liquid N and the pulp was blended. 

For each treatment, 1 g of skin, seed and pulp samples was extracted with 10 ml of acetone/water 

solution (80/20, v/v) containing 0.1% (v/v) of concentrated HCl to preserve the polyphenols 

content and to improve the phenolic extraction; acidification was required for anthocyanin 

extraction because its solubility is dependent on the pH of the medium used. 

For a more efficient extraction an ultra-sonication (Branson 3510EMTH, Danbury, USA) was 

performed for 15 minutes and then the samples were stirred for 30 min. 

After centrifugation at room temperature and at 3000 rpm for 10 min, the obtained supernatant 

was collected and brought to a final volume of 25 ml with distilled water. 

The diluted extract was filtered with 0.45 μm filter to improve the yield of the spectrophotometric 

determination of the antioxidants. The total polyphenolic content (TPC) of the skin, seed and pulp 

extracts was determined using the Folin–Ciocalteu method (Slinkard & Singleton, 1977).  

The absorbance was measured at wavelength of 765 nm by using a cuvette with 1 cm of optical 

path. Gallic acid was used as a standard for construction of the calibration curve and the 

concentration of TPC was expressed as gallic acid equivalent (mg g−1 fresh mass). 

For total anthocyanin (TA) analysis, the grape skin extracts were diluted with a solution of 

acidified aqueous ethanol (Di Stefano, Cravero, & Gentilini, 1989) and the absorbance was 

measured immediately at 540 nm (1 cm optical path). Results were expressed as malvidin-3-

glucoside equivalents (mg g−1 fresh mass), calculated by using the following equation proposed 

by Di Stefano et al., 1989: 

 

TA540nm = A540nm ·16:7d 

 

where, A540nm is the absorbance at 540 nm and d is the dilution. 

 

The total flavonoid content (TFC) was evaluated according to a colorimetric assay with 

aluminum chloride (Zhishen, Mengeheng, & Jianming, 1999). 

The absorbance was measured against the blank (prepared in the same way with distilled water) 

at 510 nm using a 1 cm optical path. (+) -Catechin was used as a standard for the calibration 

curve and the TF content was expressed in mg g−1 fresh mass as catechin equivalent (Ivanova et 

al., 2011). 
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4.3.5 STATISTICAL ANALYSIS 

 

Concerning the bioinformatics and the statistical analysis, see paragraph 3.3.3 of Solanum 

lycopersicum 300t ha-1 experiment, Chapter III. 
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4.4 RESULTS (Field experiment) 

 

4.4.1 PLANT TRAITS 

 

LWP (Bar) (Table 4.4.1) showed significant difference between treated and control plants from 

23th June to 24th August. In the three measurements, control plants showed always higher values 

than treated plants.  

 

 

 
 

 

Table 4.4.1 Leaf water potential (LWP) values of treated and control plants. Each value represent the mean of (n=15) ±SE. a, b indicate a 

statistically significant difference between treatments (p < 0.05). 

 

 

Chlorophyll fluorescence (Table 4.4.2), express as Yield (% of Photosintetic rate) did not show 

significant difference between treated and control plants from 23th June to 24th August. 
 

 

 

 
 

 

 

Table 4.4.2 Yield (% of Photosintetic rate) values of treated and control plants. Each value represent the mean of (n=15) ±SE.  

a, b indicate a statistically significant difference between treatments (p < 0.05). 

 

 

 

 

 

 

 

 

 

 

 
 

LWP (Bar) Biochar Control 

23th June 11 ± 0,8 a 14 ± 1,10 b 

13th July 11,3 ± 0,8 a 15,12 ± 1,15 b 

24th August 15,34 ± 0,5 a 17,3 ± 0,43 b 

Yield (%) Biochar Control 

23th June 0,58 ± 0,04 a 0,48 ± 0,10 a 

13th July 0,39 ± 0,22 a 0,35 ± 0,18 a 

24th August 0,42 ± 0,11 a 0,45 ± 0,11 a 
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Root length (cm) (Figure 4.4.1.a) and root surface area (cm2) (Figure 4.4.1.b) did not show 

significant difference between treated and control plants at all sampling dates, unlike root volume 

(Figure 4.4.1.c), which showed that treated plants had a higher values than control plants at all 

sampling date.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.1 Root parameters: root length a), root surface area b) and root volume c). Each value represent the mean of (n=15) ±SE. 

a, b indicate a statistically significant difference between treatments (p < 0.05). 

 

 

 

 

 

 

b) 

c) 

a) 



 

Chapter IV – Vitis vinifera  

   pag. 80 
 

4.4.2  FRUIT TRAITS  

 

Plot yield (n° bunch/plot) and bunch yield (n° berries/bunch) (Table 4.4.2.a) did not show 

significant difference between the treated and control plants. 

 

Table 4.4.2 Fruit quantitative parameters. Each value represent the mean of (n=15) ±SE. 

              a, b indicate a statistically significant difference between treatments (p < 0.05). 

 
 

Berries dry biomass (g) (Table 4.4.2) showed a higher value in treated plants while fruit fertility 

(n° seeds/berries) did not show significant difference. Fruit qualitative parameters (Figure 4.4.3.a, 

b) such as tartaric acid, pH, total soluble solids content and Alcohol potential did not show 

significant difference between the treated and control plants. However, despite statistical 

evaluation, we observed that the values of total soluble solids content and Alcohol potential were 

higher in treated than control in plants.  

Parameters Unit Biochar Control 

Plot yield n° bunch/plot 5,25 ± 5 a 8,75 ± 7,2 a 

Bunch yield n° berries/bunch 27 ± 11 a 32,5 ± 7 a 

Berries dry weight g 0,18 ± 0,06 a 0,11 ± 0,05 b 

Fruit fertility n° seeds/berries 1,3 ± 0,5 a 1,7 ± 0,7 a 
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Figure 4.4.3 Fruit qualitative parameters: total soluble solids content (°Brix) and Alcohol potential (%V/V) a), pH (H+) and tartaric acid (g/L) b). 

Each value represent the mean of (n=5) ±SE. a, b indicate a statistically significant difference between treatments (p < 0.05). 

 

Grape content of antioxidant molecules (Figure 4.4.4) such as total polyphenolic, anthocyanin 

and flavonoid content were higher in biochar treated plants than in the control ones. PC 

(Polyphenol Content) was mainly present in seeds fraction while, AC (Anthocyanin Content) and 

FC (Flavonoid Content) were mainly present in seeds and skin fraction in both treatment.  

 

 

 

 

 

 

 

a) 

b) 
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Figure 4.4.4 Grape antioxidant content: polyphenol content a), flavonoid content b) and anthocyanin content c). Each value represent the mean of 

(n=5) ±SE. a, b indicate a statistically significant difference between treatments (p < 0.05). 
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4.5 SHORT DISCUSSION 

 

In the present work we found a higher photosynthetic efficiency of the Photosystem II (yield 

parameter) for potted Vitis vinifera plants treated with biochar. This result clearly indicated a 

higher plant performance probably due to the higher soil water and nutrient availability together 

with a higher root length (Chan et al. 2007). In particular, results referring to roots showed the 

occurrence of a considerable difference when biochar is present in the soil. The higher value of 

root number and length suggests the biochar effect on root production and biomass investment. 

Finally, in the case of Vitis vinifera plants growth in open field, biochar addition seemed to 

influence the radial growth of roots with an increase in root volume. In this case, fruit parameters 

were also measured showing a higher biomass of grape berries for plants treated with biochar 

probably due to the higher soil nitrogen availability (Bell et al., 2005). Analysis of fruit quality 

also showed a higher concentration of antioxidant substances and phenolic compounds for 

biochar treated plants. Also in this case the higher soil nitrogen availability may be responsible 

for the increase of polyphenols, anthocyanin and flavonoids (Delgado et al., 2004).
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Chapter V 

General Discussion 

 

Amendment of soil by vegetal charcoal called biochar could help to remediate a number of 

environmental problems due to the modern style of life and to an increase of C emission in the 

atmosphere. 

Biochar is a solid material obtained by pyrolysis process applied to different type of vegetal 

material and this fact explains its different properties which depend upon 1) the raw material 

used, and 2) the pyrolysis reaction parameters. It is obvious that the final result obtained after 

amendment it will depend also on the chemical and physical properties of the soil where this 

biochar is applied. 

It is far from the scope of this thesis to make a review of all the types of effect ascribable to 

biochar amendments; nevertheless, in general terms it can be said that biochar has the capacity to 

influence positively the soil fertility and the productivity of plants (Chan et al. 2007). In 

particular, it is known that biochar effects on a plant are also the consequence of its beneficial 

action on the soil parameters such as: increased nutrients availability, pH enhancement, reduction 

of nutrient leaching, and effect on the life cycle of resident soil flora and fauna. In our 

experiments, the soil used to grow the plants shows that the addition of biochar does not change 

its field capacity for water when a normal watering regime is applied unlike when a water with 

holding regime is applied. In this last case, the addition of biochar delays the loss of water.  

This effect of biochar on water retention explains why we have investigated different anatomical 

and molecular traits in three different plant species at various stages of development.  The three 

plant species have been selected for different reasons: Arabidopsis represented the plant model 

useful for future molecular investigations by forward and reverse genetics approaches; tomato 

and grape have been selected as both represent the most important crops for the Italian agriculture 

and economy which could take advantage of biochar amendment. 
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5.1 Arabidopsis thaliana 

 

In order to test the influence of biochar on Arabidopsis thaliana seedlings, we investigated 

different morphological and molecular parameters when the seedlings were grown under normal 

conditions or under water stress conditions. 

 

5.1.1 SEEDLING TRAITS ANALYSIS 

  
The higher values of RDM and ADM found in Arabidopsis seedlings when soil was treated with 

biochar amendment under a normal watering regime, could be attributed to the intrinsic-structural 

properties of biochar. In fact, the “sponge-structure” of biochar could have prevented leaching of 

water and nutrients from soil in respect to soil which had not been amended. The combination of 

these two elements (higher availability of water and nutrients) could have allowed a better growth 

condition and the accumulation of biomass in above- and below- compartments than control 

plants. At the same time data regarding plants grown under water stress conditions, the presence 

of biochar into the soil inhibits the overall (above- and below-ground) plant growth more strongly 

in respect to the control. This effect could be explained by the same strong binding property of 

biochar for water (Conte et al., 2013). In fact, it is reasonable to suggest that under water stress 

condition the water potential of soil with biochar becomes more negative than the soil without 

biochar with the consequence that cell walls of root hair and epidermis cells are not able to win 

the soil water potential (i. e., the strength, which binds water to soil-biochar particle mixture).  

The presence of biochar increases the number of leaves, when water stress is not applied. 

Interesting is the fact that under water stress condition total leaf area is reduced despite the 

number of leaves emitted remains constant; this suggests that smaller leaves are formed in 

presence of biochar. These results could be interpreted as an effect of biochar presence in the soil 

on the activity of the shoot apex, which could influence its ability to form new leaf-primordia but 

not in presence of water shortage. The explanation of this effect is too complex for the high 

number of factors which could be involved in this event, however a possibility could be that the 

activity of the shoot apex in presence of biochar is affected in the rate of the mitotic activity of 

stem cells in the SAM (Shoot Apex Meristem).  

 

In literature has been reported that a strong event of water stress degrades the photosynthetic 

pigments (Mohammadkhani et al., 2007). In our experiment, we have never observed damage to 

the photosynthetic pigments and a possible explanation could be that the water stress duration in 

our experiments was too short for inducing a degradation of the photosynthetic pigments. 
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However, the importance of the metabolic control of the photosynthesis calls for further 

investigations of this aspect in order to understand better whether or not biochar amendment has 

an influence also in the photosynthetic process. 

 

LRWC is an important parameter, which measures the relation existing in plant tissues between 

a) water content, b) osmotic adjustment between cells and c) amount of water loss due to stomata 

transpiration. In our experiment the value of LRWC in plants treated with biochar results to be 

independent from water availability and it is lower than in the control plants when water is 

available whereas becomes higher under water stress condition. This fact could be explained by 

suggesting that biochar addition to the soil becomes a stabilizing factor of relations between 

plants and water metabolism in the sense that protect the plants from the effect of water stress, at 

least for the value of water shortage achieved in our experiments. However, at this stage it is 

difficult to understand exactly if the effect of biochar observed by us is ascribable to variations in 

water uptake/transportation, in osmotic exchange between cells, or in water transpiration. 

Certainly, the data referring to the number of stomata seems to suggest that an effect of biochar 

upon water transpiration could be reasonably excluded as no variation in the number of stomata is 

present in respect to the control when water is available. 

The number of stomata is reduced when plants grow under water stress whereas the presence of 

biochar in the soil does not induces any variation in respect to the control. This data referring to 

stomata suggest that an increase of rate of water transpiration cannot be responsible for the 

reduction of leaf thickness observed in our treatments. 

In recent studies (Marenco et al., 2009) the leaf thickness has been correlated to the LRWC. Our 

data referring to leaf thickness confirm the possible stabilizing role of biochar in respect to the 

water metabolism when plants are under water stress condition. In normal watering regimes, the 

difference (the highest values were found in control plants) in leaf thickness found by us could 

have been the consequence of a reduction of the number and dimension of mesophyll cells, or by 

a reduction of their turgidity and consequently of their diameter.  

Further studies will still have to be carried out to better understand the effects of biochar on 

morphometric leaf parameters. 

 

Interesting are the data referring to the root compartment. In fact, the observed increase of root 

length could represent the need of the plant to explore an increased amount of soil in search for 

water as probably the biochar particles bind water molecules with a water potential so strong that 

cannot be won by the water potential of roots. Therefore, the plants must explore a major amount 

of soil to absorb the same amount of water. This hypothesis is supported by three observations: 1) 
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no difference in total root length exists when plants are maintained under water stress conditions 

as less water is available; 2) root tips do not variate when water is available indicating that there 

is no need to emit new roots in response to biochar presence into the soil but an increased root  

length is sufficient to absorb the water needed; 3) there is no need to increase the number of 

vessels in the central cylinder when plants are under water stress condition as observed in control 

plants because in presence of biochar in the soil water absorption depends closely on the root 

length increase.   

 

In conclusion, we suggest that Arabidopsis seedlings grown under a normal watering regime 

receive a metabolic advantage by the biochar presence in a soil which induces a greater biomass 

accumulation whereas is very evident how its presence when plants are under water stressed 

condition affects strongly all morphological traits investigated in our experiments.  

 

5.1.2 GENE EXPRESSION: MOLECULAR ANALYSIS  

 

The use of biochar has been shown to have a lot of advantages including improvements in soil 

quality and consequently plant growth (Chan et al. 2007). 

In particular, it has been demonstrated that biochar significantly changes many chemical 

properties of the soil and, among the most important, there are the increase of total nitrogen, the 

increase of extractable phosphorus and cation-exchange capacity (CEC) (Mustafa et al. 2010). 

Furthermore, the addition of biochar to the soil reduces leaching of ammonium compared to 

untreated soil and this effect is due to its already known “sponge-structure” (Lehmann et al. 

2003). In recent experimental works have been reported that the total nitrates/nitrites, ammonia 

and nitrogen content and nitrogen fixation rate is increased by biochar addition into the soil 

(Baronti et al. 2010) that consequently improves the soil microbial communities and their 

activity, in particular the activity of nitrogen fixing bacteria (Lehmann et al. 2011). All these 

important evidences highlight that the biochar increases the soil nutrients and decreases the 

amount of nitrogen fertilizer input to soil. 

In order to determine the effect of this soil improvement on the plant treated with biochar we 

have selected some genes codifying transporters of nitrogen metabolites and genes codifying 

genomic factors involved in the plant stress response. 

 

In particular, AMT1.1 and AMT1.2 genes were chosen as it is known that they are up-regulated 

when the nitrogen resource (NH4
+ and NH3) is present in high concentration in the soil (Lauter et 

al., 1996; Wang et al., 2001). AMT1.1 is up regulated by the NH4
+ form deficiency condition 
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(Ludewig et al., 2002) while AMT1.2 has not a specific affinity regarding the ammonium form. 

Due their specific affinity at the different ammonium forms the expression of these genes has 

been evaluated in order to deepen the biochar influence on these two ammonium forms. 

In regard to nitrate transport we have chosen to test the expression of NRT2.1 and NRT1.2 genes. 

NRT2.1 has been selected as it belongs to the family of HATS genes (high affinity transport 

system) while NRT1.2 belongs to the family of LATS genes (low affinity transport system).  

Their induction seems to be stimulated by NO3-in root and their expression is increased after 

prolonged N starvation (Ono 2000). In our experiments, these genes have been tested for their 

specific different affinity to nitrogen compounds with the aim to understand if their expression is 

affected by biochar presence in the soil. 

Concerning the genes involved in plant stress response, BH7 and BH12 genes have been chosen 

by us as both genes seems to be specifically active under water deficit conditions and they have 

been proposed to act as a negative regulator of growth (Söderman et al., 1996; Hjellström et al., 

2003). BH7 and BH12 genes belong to the homeodomain leucine-zipper and are implicated in the 

plant response to water deficit as deduced from their transcriptional induction by water deficit 

condition. Finally, PIP2.2 gene (an aquaporin belonging to plasma-membrane intrinsic proteins) 

has been chosen for its susceptibility to multiple environmental stimuli (Jang et al., 2004). 

 

Our data suggest that addition of biochar in the soil does not induces a change in the expression 

of BH7 and BH12 genes when plants are maintained under a normal watering regime. Under 

water stress conditions only the expression of BH12 gene is increased although at a reduced level 

in respect to the control. This last result confirms that biochar interferes with the water cycle in 

the soil probably by releasing the water bound to its particles when plants are under stress 

conditions. 

 

AMT1.1 gene is a gene belonging to the ATM family (ammonium transporter) and it is 

characterized by a high affinity for the ammonium in its NH4
+ form rather than its NH3 form. In 

literature, it has been shown that this gene is up-regulated in nitrogen deficiency condition and its 

expression is predominantly dependent on the local N status of the roots (Ludewig et al., 2002). 

The higher AMT1.1 gene expression found by us in control plants under normal watering regime 

indicates that control plants need more nitrogen supplementation than plants growing in presence 

of biochar. Despite at present we do not have any indication of how the presence of biochar in the 

soil makes more available nitrogen to the roots, it remains that an increased nitrogen mobility in 

the soil could be an additional factor that together with the increased water availability discussed 

above could sustain the improved biomass accumulation observed by us in our experiments. 
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NRT1.2 gene belongs to the family of LATS (Low Affinity Transport System) whereas NRT2.1 

gene belongs to the family of HATS genes (High Affinity Transport System). Both genes are up-

regulated in condition of N-deficiency (Glass et al., 2000). The NRT2.1 gene expression is 

controlled by shoot-to-root signals of N demand and moreover, this gene is the first identified 

molecular target of the long-distance signaling informing the roots of the whole nitrogen plant’s 

status (Gansel et al 2001). The higher expression of both genes that has been observed in our 

experiments when control-plant grow under a normal watering regime indicates that both biochar 

presence in the soil and the loss of water alter the binding of nitrogen to the soil particles and 

make the nitrogen more available for absorption by the roots (Zheng et al., 2013). 

 

PIP2.2 gene codes for an aquaporin belonging to a highly conserved sub-group of membrane 

proteins called “plasma-membrane intrinsic proteins” PIPs.  

PIPs are genes involved in plant response to environmental stimuli and especially they are the 

most important genes that respond to water stress condition by influencing water availability 

through a modification of the water channels. PIP2.2 is abundantly expressed in roots and under 

water stress condition, its expression is up-regulated (Jang et al., 2004). 

Data presented here suggest that the presence of biochar in the soil down-regulates the PIP2.2 

gene expression when plants are grown in normal watering regime while up-regulates it when 

plants are under water stress by returning its expression level to the same level as it was in control 

plants growing under a normal watering regime. This result confirms that biochar modifies the 

water cycle in the soil making more water available for the metabolic activity. Difficult to explain 

is the high expression value of this enzyme when water stress is applied to plants growing in 

presence of biochar. 

 

In summary, data obtained by us in regard to expression of different genes, support the 

hypothesis that the biochar presence into the soil improves the nitrogen transport in the plant. 
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5.2 Solanum Lycopersicum (L.) 30t ha-1 

 

In order to test the influence of biochar on Cherry tomato cultivar, we have investigated several 

different morphological and molecular parameters. 

Results obtained from this experiment confirm our hypothesis about the possible beneficial 

biochar effects on 1) plant growth, 2) fruit yield and quality and 3) soil nutrient availability. 

 

5.2.1 SOIL ANALYSIS 

 

Data presented in different research works claim that the effects of biochar on plant growth are 

indirect consequences of its beneficial effects on the soil parameters (increased nutrients, pH 

enhancement, less leaching, etc). In order to test this statement, in this thesis we have tested 

parameters such as CEC, Nav, Pav and Ctot.  

CEC (Cation-exchange capacity) represents the power of soil to retain cations and organic acids; 

moreover, it stands for the cation exchange between the soil particles and the solution present 

within (Chapman, 1965). In literature, it is well known that the biochar applied into the soil 

reduces the leaching of nutrients/cations and is able to retain a major quantity of water; thus, the 

soil CEC increase found in our investigation is attributable to the combination of these two 

elements (Qambrani et al., 2017).  

Moreover, the biochar particles into the soil are subjected to oxidation processes that contribute 

to increase the charge density on their surface with the consequence of increasing CEC value 

(Liang et al., 2006). This last hypothesis could explain the higher CEC value found in our plants 

when they were treated with biochar during the FS stage, in which the biochar particles are 

probably subjected to a higher degree of oxidation. 

In regard to Nav content, the higher value found in control soil during the Fs could be due to a 

reduced microbial activity that does not use the available nitrogen present in control soil. 

Concerning the Pav content, a lower value was found in biochar-treated soil during the ES. This 

data could be attributed to a higher content of root exudates into the soil that, due to their 

chelating activity, do not allow the instrumental detection of the Pav element (Marschner et al., 

1987). Finally, regarding the Ctot value, a higher value was found in biochar-treated soil during 

the ES. This value could be attributed to two important factors: 1) the initial and elevated 

microbial activity and their subsequent production of organic acids into the soil (Sood et al., 

2003); 2) the conservative properties of biochar that keeps the soil carbon content constant – a 

value that, in normal soil, tends to naturally decrease over time (Laird, 2008). 
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5.2.2 SEEDLING AND FRUIT ANALYSIS 

 

In this experiment, the data referring to the below and above compartments have been found of 

particular interest. They could be interpreted as an effect of biochar addition on nutrient and 

water content in the soil. The increase of these two parameters could be attributed to two 

important events: a) soil biota activity that could have been improved by biochar addition 

(Castaldi et al., 2011); and b) reduced leaching of nutrient, which could be closely related to the 

intrinsic sponge property of biochar inducing an increase in water retention (Lehmann et al. 

2003). 

This hypothesis seems to be supported also by data referring to CHN plant content which confirm 

the higher content of nutrients in the soil when biochar is present, In fact CHN results suggest the 

occurrence of a higher metabolic activity and respiration in the roots during the fruit stage (Fs). 

This finding agrees with several works that show that the nitrogen concentration in fine roots is 

directly related to their metabolic activity and respiration (Ryan 1991, Pregitzer et al. 1998, 

Withington et al. 2006). 

About the higher value of Ctot root content found in control plants at the Fs, one possible 

explanation could be due to an increase of the secondary metabolite content (i.e., lignin and 

tannins) in the thinnest fine roots (Harborne 1984); in fact, it is known for secondary metabolites 

to have a C content higher than compounds like cellulose and other sugars (Chua and Wayman 

1979, Krässig, 1993). In regard to CHN analysis on leaf compartment, its increase suggests a 

higher photosynthetic activity of the plant during this first growth stage (Sinclair et al., 1987). 

Unfortunately, this result contrasts with the higher value of total and a chlorophyll content which 

has been found in control plants. In regard to this result, the current literature does not provide a 

clear cut explanation about the influence of biochar on the leaf chlorophyll content. Thus, further 

investigations is necessary to understand whether biochar amendment has an influence in the 

photosynthetic process. 

Interesting are the data referring to the production of flowers and fruits. The higher production of 

flowers and fruits in treated plants could be attributed to the higher value of phosphorus content 

in the soil. In fact, Poulton et al 2002 suggests that vegetative and reproductive properties of 

tomato plants are improved by a higher phosphorus content in the soil, as this nutrient is able to 

stimulate a root development that increases fruit production (Filgueira et al. 2000). 

Regarding the morphological and morphometric traits of fruits, the lack of significant difference 

contrasts with data referring to traits such as TA, TSSC and cis- / trans-lycopene content that 

show a clear increase of the value. The increase of titrable acidity (TA) is of particular interest as 

it confirms that the addition of biochar to the soil increases the availability of potassium which 
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improves the TA during the fruit repining stage (Arah et al. 2015, Passam eta al., 2007).  

This result has a practical consequence for the Agri-food industry that traditionally adds citric 

acid as a preservative. Therefore, a higher content of natural acids in tomatoes resulting after 

biochar amendment could lower the quantities of additional preservative necessary to preserve 

the final product. 

However, it remains that in literature the complete knowledge about the biochar influence on fruit 

quality is still far from having been achieved, and this situation explains why we cannot give an 

appreciable explanation for the data presented here. We can only assume generically that biochar 

makes more easily available nutrients and that it makes an effect on the quality of fruits. In regard 

of antioxidant compounds, the current literature does not provide evidences which could help us 

to interpret the increase observed in presence of biochar; therefore it seems reasonable to suggest 

the occurrence of a possible interference between a possible increase of nitrogen availability and 

the carotenoid metabolic pathway. In conclusion, we may assert that the use of biochar has a 

positive effects on the fruit yield and quality of tomato plant. Similar results has been recently 

found by Agbna et al. (2017) on tomato plants subject to three different biochar rates and 

irrigation regimes. 

 
  

5.2.3 GENE EXPRESSION: MOLECULAR ANALYSIS 

 

Among the different genes involved in nutrients transport, genes codifying for the main 

transporters of nitrogen and phosphate metabolites have been investigated. The tested genes in 

our experiments confirm and support the biomass data showed above which indicate that when 

the plants are treated with biochar they show a growth rate higher than the control plants. 

In particular, the choice of AMT1.1 gene is due to its involvement in in ammonium transport in 

the sense that it is up-regulated when the plants are in presence of low concentration of nitrogen 

(NH4
+) (Ludewig et al., 2002). In fact, sometime the increase in the expression of this gene has 

been used as an indicator of a Nitrogen starvation in the plant (Gansel et al., 2001). In particular, 

it seems that AMT1.1 expression is predominantly dependent on the local N status of the roots, as 

it is mostly stimulated in the portion of the root system directly experiencing N starvation (Gansel 

et al., 2001). 

In our experiments the higher expression level of this gene in control plants during the Es 

suggests the beneficial effect of biochar amendments. An indirect demonstration that our 

hypothesis is reasonable comes directly from the data regarding AMT1.2 gene that is up-

regulated in presence of higher concentration of (NH4
+ and NH3) (Lauter et al., 1996; Wang et al., 
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2001). In this case, our data present an increase of its expression in soil with biochar during the 

Vs confirming the effect of nutrient mobilization of this amendment. 

In regard to the whole plant's N status indicator we have tested an indicator such as the level of 

expression of the NRT2.1 gene (one of the most important genes for the nitrogen transport -as 

suggested by Gansel et al., 2001).   

 
 

Figure 7.2.1 Both AtNrt2.1 and AtAmt1.1 have been shown to be induced by N starvation (Filleur and Daniel-Vedele, 1999; Gazzarini et al., 

1999; Lejay et al., 1999; Rawat et al., 1999; Zhuo et al., 1999). 

 

Our data show a higher expression value of this gene in treated plant during the Es and Fs: these 

results highlight how the presence of biochar into the soil improves the availability of nitrogen 

compounds that could be absorbed and used by plants. 

Finally, in regard to phosphate transport, the genes tested (PT1-2) by us are known to be up-

regulated in the presence of a low phosphate concentration in the soil (Liu et al., 1998). 

.In our research experience, PT2 gene shows a high expression value in control plants during the 

Vs, while the PT1 gene never shows differences in its expression. At present, it is difficult to 

explain why PT1 gene expression does not change in presence of biochar, whereas the higher 

expression of PT2 in the vegetative stage confirms that also for this nutrient the presence of 

biochar in the soil could increase its availability with the effect of supporting a better growth rate. 

The importance of our data in regard to an improvement of nutrient availability in presence of 

biochar is bound to the fact that we confirm the occurrence of this effect in long-term 
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experiments, whereas all the demonstrations presented up to date in literature refer to short-term 

experiments.  

 
5.3 Solanum Lycopersicum (L.) 300t ha-1  
 

Data presented here and referring to parameters such as above- and below-ground biomass show 

that biochar application in the soil at high concentrations affects negatively the plant growth.  

In literature some problem in regard to biochar use have been reported, for example the binding 

and deactivation of agrochemicals (herbicides and nutrients) in soil, the excess of toxicants, the  

increase of EC and pH and finally, the negative impacts on germination (Kookana et al., 2011).  

A possible explanation for our obtained results could be attributed to the high concentration and 

to the subsequently large volume that biochar particles occupy inside the pot. The pot without the 

biochar will have a larger quantity of soil and relative nutrients than the pot with the presence of 

biochar, therefore, the lower quantity of soil and the corresponding lower nutrient content do not 

enable an optimal growth to the treated plants. Another possible cause could be found in the 

chemical biochar composition; in fact, its aromatic hydrocarbon polycyclics at high concentration 

could affect negatively the overall plant growth rate (Krull et al., 2009). 
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5.4 Vitis vinifera (L.) (Chardonnay cv) Pot experiment 
 
In order to test the influence of biochar on Vitis vinifera, we have investigated different 

morphological and physiological parameter in a pot experimental-setting.  

 

5.4.1 SEEDLING ANALYSIS 

  

The higher LWP value observed in control plants indicates that during treatment these plants 

have achieved a higher level of stress condition (Williams et al., 2002) in respect to plants treated 

with biochar. The stress condition could be attributed to higher leaf temperature developed during 

the experiment (Frank et al., 1973). From this result, we can assume reasonably that plants treated 

with biochar become more efficient in water utilization. This hypothesis is supported by the 

observation that unlike the LWP, the SWP value did not differ between treated and controls pots. 

 

The photosynthetic efficiency of the Photosystem II (yield parameter) which is higher in plants 

treated with biochar indicates a better overall health status of plants probably due to a higher 

availability of water and nutrient in the soil, but due also to a higher root length value (Chan et al. 

2007). This is particularly important in the period of July-August which coincides with the phase 

of ripening fruit, in which the plant absorbs the nutrients and water that will be used in the leaves 

for carbohydrates production. 

 

However, literature published on higher plants does not report any research work that could be 

used to validate this our hypothesis on superior plants. Unlike studies in unicellular algae show 

that  nitrogen deficit conditions affects significantly the photosynthetic efficiency of photosystem 

II leading to an effect on  the overall relative health status (Berges et a., 1996). 

 

Also for the Vitis vinifera the data referring to roots show the occurrence of a considerable 

difference when biochar is present in the soil. In particular, the higher value of root traits (number 

of roots and their length) suggests occurrence of an effect on the production of new roots or 

alternatively, on the biomass investment that could explain the length increase observed by us. 

 

In regard to T5 and T10 cm the lack of difference between the treatments (and, accordingly, the 

biochar action on the soil surface albedo cannot be validated) could be due to a reduction of pot 

surface area and, consequently, to a decrease in the amount of solar radiation absorbed by the 

soil. 
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5.5 Vitis vinifera (L.) (Chardonnay cv) Field experiment 
 
5.5.1 SEEDLING ANALYSIS 

 
In analogy with the pot experiment also in the field experiment, a higher LWP values found in 

control plants in all the three sampling points and this could be attributed to a smaller amount of 

water present in the plant consequently due to the severe environmental water stress conditions. 

This data one again highlights how the biochar could provide a greater water availability to the 

plant (Van Zwieten et al. 2008). 

Difficult to interpret is the lack of significative differences found in the photosynthesis efficiency 

of the photosystem II; nevertheless, we can suggest that in the field experiment unknown 

environmental factors could have quenched the potential effect of biochar. 

Concerning the below ground biomass, a very important data has been observed for the root 

volume as the addition of biochar positively influenced only the radial growth of roots measured 

as volume of roots. 

An explanation for this phenomenon could be attributed to a greater need for transporting water 

and nutrients leading to the production of higher amount of vessels in the xylem as suggested by 

the work of Amendola et al 2017, in which the presence of biochar in grape roots seems to 

increase their morphological plasticity and, as a consequence, a larger radial growth. 

Beside a larger availability of water, the largest dry weight of grape berries treated with Biochar 

could also be attributed to a higher availability of nitrogen (Bell et al., 2005). From this factor 

could also depend the increase in the concentration of antioxidant substances and phenolic 

compounds such as polyphenols, anthocyanins and flavonoids as suggested by the work of 

Delgado et al., (2004). 

Therefore, our data support the hypothesis that biochar improves also the nutrient uptake despite 

is not clear yet how the nitrogen increase availability can improve the grape quality as this 

property is affected by a complex interaction of several factors such as the type of cultivar, the  

rootstock, the site, the climate, the soil type and the season.



 

Chapter VI – Conclusion 

   pag. 97 
 

Chapter VI 

 

Conclusion 

 

The present study represent only a first step to understand the mechanisms involved in plant 

growth and development which could be effected when biochar is used for. 

All morphological, physiological and molecular data presented here support the hypothesis that 

the biochar addition to the soil affects positively plant growth and the quantity and quality of 

fruits. 

In particular, for both Solanum and Vitis species, the biochar presence has shown to improve the 

antioxidant fruit content and this result calls for attention given its importance for potential 

technological applications. 

In regard to Cherry tomato cultivar, in all the three plant stages considered, the plant treated with 

biochar shows a higher value in the seedling and fruit traits. 

Positive effects have been detected also in both Vitis vinifera experiments where the biochar 

presence improves the root length in the pot experiment while, in field experiment, it improves a 

radial root growth. However, the fact that in Solanum lycopersicum 300t ha-1 experiment, the 

biochar addition to the soil does not always produce positive effects calls attention on the right 

amount biochar to be added to the soil for amendment purpose. Interesting are the data obtained 

with the model plant. In regard to this Arabidopsis seedlings, the biochar addition into the soil 

shows positive effects in all the parameters considered but only under normal watering regime. In 

our experimental setting, it has emerged that the biochar presence under water stress condition 

inhibits strongly the growth of plants but does not influence the stress status of the plant. In any 

case, the presence of morphological, physical and molecular responses in the model plants 

indicates that in future all the hypothesis suggested in this work could be verified in the other 

plants. The use of forward and reverse genetic approaches could highlight the genes responsible 

for the variations observed in our experiment. 

 

In conclusion, the data in this thesis confirm the hypothesis that the biochar presence improves 

the soil fertility and plant growth however, further investigations will be carried out to strengthen 

our results.
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1. Introduction 

Global demand of agricultural crops is connected to a strong environmental impact mainly due to 

habitat fragmentation and land clearing as well as fertilization uses that pollute both water and 

terrestrial ecosystems (Tilman et al. 2011). To meet the need of doubling the crops production 

forecasted for the 2050, will implicate a major impact on the environment (Sachs et al. 2010; 

Tilman et al. 2011). Therefore, in the next future will be crucial to find new methods and 

technologies to achieve greater yields with lower global environmental impacts. Biochar is a solid 

material obtained from a process called pyrolysis characterized by a thermal transformation of 

biomass at high temperature and in the absence of oxygen dramatically reducing gas emission 

(Bridgwater et al. 2002; Yanai et al. 2007). Moreover, so far, has been demonstrated that biochar 

application significantly changes most of the soil chemical-physical properties (Adeyemi and 

Idowu, 2017). In particular, biochar showed to increase both soil carbon and soil water content as 

well as macro aggregates, electrical conductivity (EC), total nitrates/nitrites, ammonia and 

nitrogen (Baronti et al. 2010; Amendola et al. 2017), extractable phosphorus and cation-exchange 

capacity (CEC) (Hossain et al. 2010). Furthermore, due to its skeletal-sponge structure, biochar 

reduce soil leaching of ammonium (Lehmann et al. 2003), improves rhizosphere microbial 

communities and activities with particular regards to both cellulose degrading and nitrogen fixing 

bacteria (Lehmann et al. 2011). All these important evidences highlights that biochar enhance 

important functions such as soil carbon sequestration and nitrogen soil retention becoming a good 

technological products for a future sustainable agriculture (Ying et al. 2014).  

Although changes of soil characteristics due to the biochar application seems to have a general 

positive trend, with a mean yield increase of 10%, averaging different crops, soils and climates 

(Jeffery et al., 2011), results on the effects of biochar on crop development are still inconsistent 

(Biederman and Harpole, 2013). This is due to various factors such as differences in parental 

starting material, pyrolysis conditions and chemical-physical soil characteristics (Amonette et al., 

2009; Mukherjee  and  Lal,  2014). Thus, for deeper understandings of the complexity of these 



 

    
 

relationships more studies are required before introducing the biochar strategy among the 

common and sustainable agricultural practices (Lorenz and Lal, 2014). Tomato plants (Solanum 

lycopersicum L.) in Mediterranean region are optimally grown in passive solar greenhouses on 

well-drained, sandy loamy soils with pH values ranging between 6 and 7. Tomato is a plant 

species of a great commercial importance worldwide (Leonardi et al., 2000 a, b). Indeed, tomato 

is the most consumed nonstarchy vegetable with a global production of about 164 million tons (t) 

of fresh fruit harvested on a 4.7 million hectares (ha) surface (Burton-Freeman and Reimers, 

2011; FAOSTAT, 2015 from Vaccari et al. 2015). From a health point of view, a large body of 

research supports an inverse relationship between consuming tomatoes and tomato products and 

risk of certain cancers as well as cardio-vascular disease, osteoporosis, ultraviolet light–induced 

skin damage, and cognitive dysfunction (Weisburger et al., 2002; Burton-Freeman and Reimers, 

2011). Indeed, tomatoes are the most significant source of dietary lycopene, a powerful 

antioxidant, and in general, secondary metabolites like cis-lycopene, trans-lycopene and β-

carotene and other carotenoids, which are directly involved in these protective actions (Burton-

Freeman and Reimers, 2011). To date, there is still very poor information on the effects of 

biochar on tomato plants growth, fruit yield and antioxidant content (Hossain et al. 2010; Vaccari 

et al. 2015). Dumas et al. (2003) reviewed contradictory results and often-incomplete dataset, in 

various studies concerning the effects of environmental factors such water availability, mineral 

nutrients (nitrogen, phosphorus, potassium and calcium) and plant growth regulators on 

antioxidant content in tomato fruits. Given the above-mentioned multiple effects that biochar can 

have on soil characteristics, we hypothesized that biochar-derived changes in resource supply 

may play a crucial role in enhancing plant growth, fruit yield and antioxidant content. To test this 

hypothesis, after assessing the effects of biochar on soil physical-chemical properties, 

morphological parameters of shoot, root and fruit together with the number of fruit and their 

antioxidant content were investigated in a time-course pot experiment of cherry tomato plant 

(Pachino var.). The identification of possible relationships between any alterations of soil 



 

    
 

chemical-physical properties, plant growth and fruit production may further contribute to 

elucidating the mechanisms of biochar actions and its use.  

 

2. Materials and methods 

2.1 Experimental set up 

Six seeds of cherry tomato variety were sown each 9 L cylindrical pots (h 24 cm, Ø 21 cm lower 

and upper Ø 26 cm) filled with 1:2:1 mixture of peat, silica sand and bark humus (Table X) and 

placed in a growth chamber. Soil was maintained constantly wet, relative air humidity was 75 % 

with air temperature of 25 °C and Photosynthetically active radiation (PAR, 400–700 nm) at pot 

height of 500 µmol m−2 s−1. After germination, only one seedling was left to grow for each pot. In 

treated pots, soil was mixed with biochar at a rate of 30 t ha-1 according to Baronti et al. (2010). 

A number of 10 treated plants (B) and 10 control plants (C) were collected at each of the three 

harvesting points defined as early stage (Es, 36 days after germination (a.g.)), vegetative stage 

(Vs, 84 days a.g.) and fruit stage (Fs, 140 days a.g.) for a total of 60 plants.  

 

2.2. Biochar characterization 

Biochar used in this study was produced by Romagna Carbone s. n.c. (Italy) from orchard 

pruning biomass through a slow pyrolysis process with an average residence time of 3 h at 500 

°C in a kiln of 2.2 m in diameter and holding around 2 ton of feedstock. Measurement of pH was 

carried out by potentiometry (pH meter Eutech Instruments pH 700, 2013) according to IBI 

standards (2014). The electrical conductivity (EC) value was obtained by direct instrumental 

determination in 1:20 soil:water (w/v) extracts, according to IBI standards (2014). Cation 

exchange capacity (CEC) was assessed according to Mehlich (1938) using BaCl2. Moisture 

content was calculated according to the Black method (1965) as the difference in sample weight 

before and after oven drying at 105 °C to constant weight. 

Several parameters can be used to assess carbon stability in biochar. Calvelo Pereira et al. (2011) 



 

    
 

used the thermo-labile fraction and the oxidation efficiency with potassium permanganate and 

potassium dichromate, while Enders et al. (2012) used a combination of volatile matter and H:C 

ratios corrected for inorganic C. In the present work, we referred to IBI standards (2014), which 

define carbon stability as the molar ratio of hydrogen to organic carbon (maximum 0.7). 

Total nitrogen (Ntot), total carbon (Ctot), organic carbon (Corg) and hydrogen (H) contents were 

determined by dry combustion (Dumas, 1831) using a CHN elemental analyser (Carlo Erba 

Instruments, Mod 1500, series 2). In the case of Corg, combustion was carried out after the 

complete removal of inorganic C with acid. Available nitrogen (Nav) was determined by a 

modified Kjeldahl procedure using Devarda’s alloy (Liao, 1981) as reducing agent to convert 

(NO3) and (NO2) into (NH4)+ and subsequent Kjeldahl digestion. Total phosphorus (Ptot) was 

detected by spectrophotometry (UV-1601 Shimadzu) according to the test method described by 

Bowman (1988). Available phosphorus (Pav) was extracted by a NaHCO3 solution at pH 8.5 and 

evaluated by spectrophotometry according to the Olsen test method (1954). Alkalinity of samples 

with a pH value greater than 7.0 was determined by titrimetry according to the Higginson and 

Rayment method (1992).  

 

2.3 Soil characterization 

To assess soil chemical-physical properties and the effects of biochar on these characteristics, 

four soil samples were collected and analyzed before and after biochar application. Methods for 

the characterization of CEC, Ptot and Pav, Ntot and Nav, Ctot were described in the previous 

paragraph of the biochar characterization. The pH was determined by potentiometry (pH meter 

Eutech Instruments pH 700, 2013) according to Conyers and Davey (1988). EC was measured by 

direct instrumental determination according to Rhoades (1996). The different forms of available 

mineral nitrogen were determined by ion selective electrodes (Greenberg et al., 1985) on soil 

samples dissolved in deionized water. Only for soil samples, particle size distribution was 

analyzed by the Udden-Wentworth (1922) method. Furthermore, soil characteristics for control 



 

    
 

and biochar-amended pots were determined at three different sampling points (Es, Vs and Fs). In 

this case, samples were collected at soil surface, at the middle (18 cm) and at the bottom of the 

pot (32 cm). Once freed from roots, soil samples were mixed together in one bulk sample, air 

dried until constant weight, passed through a 2 mm sieve and stored at 4 °C in dark until 

processed.  

 

2.4 Plant traits analysis 

At each sampling point, plant traits for stem, leaves and roots sectors were measured. In 

particular, leaves were detached from the branches, counted, scanned at a resolution of 400 dpi 

with a calibrated flatbed scanner coupled to a lighting system for image acquisition (Epson 

Expression 10000 XL). Successively, images were analyzed by WinRhizo Pro V. 2007d (Regent 

Instruments Inc. Quebec). In the case of both length and surface area of root, the root system was 

carefully washed from the soil, all roots collected, scanned and images analyzed as described 

above for leaf traits. Content of both chlorophyll a and b (µg ml-1), was obtained by finely 

chopping 0.5 g of fresh leaf material, homogenized with 10 ml of 80% acetone solution and then 

centrifuged for 5 minutes at 2500 rpm. Afterwards, 9 ml of 80% acetone were added to 1 ml of 

concentrated extract handily shacked and subjected to spectrophotometric reading at the 

wavelengths of 663 nm and 645 nm. Arnon’s (1949) equations were used for calculation of the 

extracted chlorophyll. Finally, in order to obtain biomass values as dry weight (g), root (RDW), 

shoot (SDW) and leaves (LDW) were separately oven dried at 70°C until constant weight and 

weighed. 

 

2.5 Fruit traits analysis 

The number of flowers and fruits were monitored for each plant during the relative phenological 

stages. In order to have a homogeneity in fruits collection, tomatoes were harvested at point 5 of 

the ripening color chart (USDA 1975). To evaluate fruit biomass and the fruit water content, 40 



 

    
 

tomatoes for each treatment were oven drying at 70 °C for 48 h and weighed (FDW). Moreover, 

the tomato fertility was determined by both seeds number and dry weight on a samples of 10 

tomatoes for each treatment. Morphometric fruit parameters such as polar and equatorial 

diameters, epicarp thickness, right and left mesocarp thickness, were measured on 40 tomatoes 

for each treatment by scanning the fruits and analyzing the images with ImageJ software (open 

source https://imagej.nih.gov/ij/). Furthermore, a number of five fruits were homogenized (VWR 

Collection, VDI 12) for the determination of the following qualitative parameters. The titratable 

acidity (TA), expressed as percentage of citric acid, was measured according to the titration 

method at pH 8.1 with NaOH (0.1 N) (Petruccelli et. al 2015). The total soluble solids content 

(TSSC), expressed as °Brix, was measured by refractometer (HANNA Instruments, HI 96813), 

after homogenate centrifugation at 13000 g for 20 minutes at 8°C (George et. al 2004). Finally, 

both cis- and trans-lycopene and β-carotene content were determined by extracting 6 g of 

homogenate with 60 ml of hexane-methanol-acetone (2:1:1 volume) with 2.5% of BHT for 30 

minutes at 4 °C in dark condition (Martinez and Valverde 2002). Subsequently, 10 ml of 

distillated water were added and the polar phase (hexane) recovered. The polar phase was 

subjected to spectrophotometric reads at 472 nm (maximum absorbance peak of the trans-

lycopene), 502 nm (maximum absorbance peak of the cis-lycopene) (George et al. 2004) and 453 

nm (maximum absorbance peak of β-carotene) (Bohm et al. 2002). 

 

2.6 Statistical analysis 

The comparison of control and biochar-treated plants was tested for all measured parameters. 

Normality of data distribution was tested for each investigated parameter (Kolmogorov-Smimov 

and Shapiro-Wilk tests). Square root or log transformations were applied to ensure normal 

distributions and equal variances. For Chlorophyll content (a, b and total), n° of leaves, leaf area, 

dry weight of roots, stem and leaves, root length, SRL, RTD, mean diameter, n° of flowers and 

fruit quality parameters (% ac. Citric, ° Brix, content of cis-/trans- lycopene and β-carotene) a 



 

    
 

two-tailed t-test was applied. For n° of fruits, seeds dry weight, fruit dry weight and water 

content, polar and equatorial diameter, epicarp thickness and right mesocarp thickness, a one-way 

ANOVA was performed followed by Bonferroni post-hoc test. 

N° of seeds and left mesocarp thickness data did not meet the normal distribution and non-

parametric statistic test was performed (Kruskal–Wallis test) followed by Mann–Whitney two 

samples test as post-hoc test. 

Parametric and non-parametric analysis were applied at a significance level of 95%. Statistical 

analysis were performed using SPSS 17.0 software package (SPSS Inc., Chicago, IL, USA). 

 

3. Results 

3.1 Biochar characteristics 

The biochar tested was found to meet European Biochar Certificate (EBC, 2012) and IBI-

Standard (2014) requirements with regard to Ctot and Corg content, respectively. Its C:H value, 

close to 0.7, ensure a good stability to the organic carbon. With regard to the conductivity value, 

the biochar used showed a higher salt content compared to soil. Moreover, available phosphorus 

and nitrogen represented 17.7% and 0.3% of total phosphorus and nitrogen, respectively (Table 

1). Particles larger than 2 mm accounted for 11.9% of the total mass. Particles smaller than 2 mm 

were distributed as follow: 16.1% between 2 mm and 200 μm, 10.1% between 200 μm and 50 

μm, 52.7% between 50 μm and 20 μm, 17.4% between 20 μm and 2 μm and 3.7% smaller than 2 

μm (Table 1). 

3.2 Soil characteristics 

 

3.2 Plant characteristics  

Leaves biomass (Figure 1a) showed a linear growth during the time while stem and root biomass 

(Figure 1b, c) showed an exponential growth throughout the experiment. For all the three plant 

sectors considered, at early stage (Es, day 36) biomass did not show any significant differences 



 

    
 

between treated and control plants. Whereas, at both vegetative (Vs, day 84) and fruit stages (Fs, 

day 140) biochar treated plants showed significantly higher values (p<0.05) for all three plant 

sectors. Leaf number (Figure 2a), leaf area (Figure 2b), root length (Figure 2c) and root surface 

area (Figure 2d) increased significantly in time throughout the experiment and biochar treated 

plants showed significantly higher values than control plants at the second and third 

developmental stages (i.e. Vs and Fs).  

Chlorophyll content did not show any significant differences between treated and control plants 

at day 36 (Figure 3a, b and c). Biochar treated plants showed a higher value of b chlorophyll 

content than control plants at day 84 (Figure 3b). At the last sampling point, higher values of both 

a and total chlorophyll content were found in control plants (Figure 3a, c). 

 

3.3 Fruit characteristics 

Both flower and fruit number (Figure 4a, b) showed respectively almost four-fold and three-fold 

higher values in the biochar treated plants than in control ones. Moreover, also both seed number 

and dry weight (Figure 4c, d) resulted significantly higher for biochar treated plants than control 

ones. Fruit dry weight (Figure 5a) and fruit morphometric parameters such as polar and equatorial 

diameter (Figure 5b, c), epicarp thickness (Figure 5d), mesocarp thickness right (Figure 5e) and 

left (Figure 5f) did not show any differences between biochar-treated and control plants. Fruit 

qualitative parameters such as citric acid (Figure 6a) and total soluble solids content (Figure 6b) 

resulted to be significantly higher in biochar treated plants than in control plants. Fruit content of 

antioxidant molecules such as trans-and cis- lycopene (Figure 7a, b) were also higher in biochar 

treated plants than in the control ones. Unfortunately, no differences were detected for β-carotene 

(Figure 7c). 
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