
UNIVERSITA’ DEGLI STUDI DELL’INSUBRIA

Facoltà di Scienze Matematiche, Fisiche e Naturali

Dottorato di Ricerca in Matematica del Calcolo:

Modelli, Strutture, Algoritmi ed Applicazioni

XXIII Ciclo

Categorical algebras for the
compositional construction of

probabilistic and distributed systems

PhD Candidate:

Luisa de Francesco Albasini

PhD Course Coordinator:

Prof. S. Serra Capizzano

Supervisors:

Prof. N. Sabadini
Prof. R.F.C. Walters

———————-
A.A. 2009-2010

i

Categorical algebras for the
compositional construction of

probabilistic and distributed systems

by Luisa de Francesco Albasini

Submitted to the Department of Physics and Mathematics, University of
Insubria, Como (Italy), on March 16, 2011, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Thesis supervisors : Prof. N. Sabadini, Prof. R.F.C. Walters.

ii

Acknowledgements.

During the work on this thesis, I have been lucky to work with Prof. Nicoletta
Sabadini and Prof. Robert F.C. Walters of the Department of Computer Sci-
ence and Communication, University of Insubria, Varese, who introduced me
to the enjoyment of scientific research and made this thesis possible. Their
continuous support, their advice and their guidance have made an important
difference in my work. I really enjoyed being part of this research group as
well as interacting with them at both the professional and the personal level.
I am very grateful to them.

I would also like to thank the Department of Physics and Mathematics,
University of Insubria, Como, for the opportunity to do this research.

Finally, I would like to thank Davide Maglia for helpful and interesting con-
versations that clarified my thinking, my husband Giuseppe and everyone
else who ever gave me help and support during this research.

iii

Abstract.

Structured transition systems have been widely used in the formal specification
of computing systems, including concurrent and probabilistic systems. In this
thesis we extend the span of graphs algebra introduced in [40] to describe
concurrent systems in a compositional way, in order to model probabilistic
distributed systems.

The span algebra of [40] may be regarded as an extension of various
automata models of computation based on distributed automata ([2, 70]).
With the introduction of both parallel and sequential operations ([41]), this
extension allows the compositional description of concurrent, distributed and
mobile systems. An important aspect of span graph model is that there is
also a geometric characterization associated with the algebra along the lines
of Penrose’s algebra of tensors [54].

The algebra of transition systems we describe is a well-supported compact
closed category - a symmetric monoidal category for which every object has
a separable algebra structure (satisfying Frobenius equation [12]) - whose ar-
rows are automata in which the actions have probabilities. The operations of
the category permit the compositional description of probabilistic processes
and in particular of classical finite Markov chains. The systems we can model
with our algebra are distributed, hierarchical and with an evolving geometry.

We also extend the span algebra of [40] in order to permit the inclusion of
quantum components. Again, this algebra is a well-supported compact closed
category. This extension permits a compositional description of quantum
protocols, in which quantum components interact with classical finite state
components. In our view, the inclusion of explicit components of finite state
classical control adds conceptual clarity and precision to quantum protocols.

Keywords : Classical automaton, Weighted automaton, Monoidal category,
Span, Probabilistic automaton, Markov chain, Compositionality, Quantum
automaton, Compact closed, Frobenius equations, Teleportation.

Contents

Table of symbols 4

Introduction 6

0.1 Parallel and sequential interfaces 8
0.2 Comparison with other models 9

0.2.1 Weighted and Markov automata 9
0.2.2 Quantum automata . 11

0.3 Organization of the thesis . 12

1 Weighted and Markov automata 15

1.1 Weighted automata with parallel and sequential interfaces . . 15
1.1.1 The power construction 18
1.1.2 Graphical representation of weighted automata 19
1.1.3 Reachability . 22

1.2 The algebra of weighted automata: operations 23
1.2.1 Sequential operations 23
1.2.2 Parallel operations . 26
1.2.3 Some derived operations 31

1.3 Graphical representation of expressions of weighted automata 32
1.3.1 Operations and constants 32
1.3.2 Some derived operations and constants 35

1.4 The Dining Philosophers system 38
1.4.1 The probability of deadlock 39

2 Systems with parallel and sequential interfaces 42

2.1 Spans and cospans of graphs 43
2.2 Systems with sequential and parallel interfaces 44

2.2.1 Sequential interfaces 45
2.2.2 Parallel interfaces . 45
2.2.3 Combined sequential and parallel interfaces 46
2.2.4 The wscc structure on span and cospan categories . . . 50

1

Contents 2

2.3 Simplifying Assumptions . 52
2.3.1 Simplifying the interfaces 52
2.3.2 Finiteness assumptions 54

2.4 The programming language Cospan-Span 58
2.4.1 Systems . 58
2.4.2 Operations on systems, and constants 59
2.4.3 Programs . 60

2.5 Concluding remarks . 60
2.5.1 Turing completeness 60
2.5.2 Problems of concurrency 62
2.5.3 Hierarchy . 62
2.5.4 Change of geometry 62

3 Hierarchical and mobile systems 64

3.1 Any automaton is in Σ(E) . 64
3.2 Sofia’s birthday party . 66
3.3 A fork bomb . 68
3.4 The probabilistic automata of Segala and Lynch 70

3.4.1 Segala-Lynch automata 70
3.4.2 Behaviour of Segala-Lynch automata 71
3.4.3 The parallel composition of Segala-Lynch automata . . 72

4 Conditional probability 73

4.1 Classical probability theory 73
4.2 Conditional probability for weighted automata 74
4.3 Examples . 79

4.3.1 Checking a fair coin . 79
4.3.2 False positives . 82
4.3.3 Two boys and girls problem 83

4.4 Concluding remarks . 86

5 Quantum automata 88

5.1 C-automata . 89
5.2 Graphical representation . 90

5.2.1 Qubits . 90
5.2.2 Alice and Bob . 93

5.3 The algebra of C-automata . 94
5.3.1 The teleportation protocol 95
5.3.2 The algebra of automata: further work 97

Appendix 99

Contents 3

A Calculating DPn with Maple 99

A.1 Weighted automata . 99
A.2 Transition matrices . 101
A.3 Operations . 103

A.3.1 Series composition . 103
A.3.2 Parallel feedback . 104
A.3.3 Reachability . 105
A.3.4 Normalization . 106

A.4 Examples . 107

Bibliography 117

Table of symbols

We list the symbols used in this thesis in the order they appear in the pre-
sentation. For each symbol we indicate a short description and the reference
to the page where it is first defined.

(Qa,b)(a∈A,b∈B) transition matrix of the weighted automaton Q 16

γ0, γ1 sequential interface functions 16
[Qa,b]q,q′ element q, q′ of (Qa,b) 16

Q total matrix of the weighted automaton Q 16
QX
Y ;A,B automaton with par. interfaces A,B, seq. interfaces X, Y 16
W set of isomorphism classes of weighted automata 16
ε null signal 17
N(Q) normalization of the weighted automaton Q 18
Qk automaton of k step paths in Q 18
Reach(Q,q0) reachable part of Q with initial state q0 23
+ sum 23
+Y (or ◦) sequential composition on Y 24
Seq(ρ) sequential constant 25
1A identity on A 25
∇ codiagonal 25
∇o opposite of codiagonal 25
twistA,B twist on A,B 26
iA sequential wire corresponding to ∅ ⊆ A 26
ioA opposite of iA 26
δ bijection X × Y +X × Z → X × (Y + Z) 26
× product (parallel without communication) 26
⊗ tensor product 26
×B (or ||) series composition on B (communicating parallel) 27
· series composition of Markov automata 29
Par(ρ) parallel constant 30
∆ diagonal 30
∆o opposite of diagonal 30

4

Table of symbols 5

pA parallel wire corresponding to A→ {∗} 31
poA opposite of pA 31
+loc local sum 31
+Y,loc (or •) local sequential composition on Y 31
Sfb sequential feedback 31
Pfb parallel feedback 32
DPn n Dining Philosophers system 38
∂0, ∂1 left and right arrows of a span respectively 44
Span(Graph) category of graphs and spans of graphs 44
Cospan(Graph) dual category of Span(Graph) 44
GX
Y system with graph G, sequential interfaces X, Y 45

GA,B system with graph G, parallel interfaces A,B 45
O→, O←, O↓, O↑ adjacent objects to O 46

ηX system corresponding to 0→ X
∇← X +X 61

Π(S) parallel expressions of elements in S 64
Σ(S) sequential expressions of elements in S 64
E set of automata with 2 states and 1 transition 64
P (X|Y) conditional probability of X given Y 74
PQ
q (b) probability in state q of a signal b 75

Oa observer of the signal a 75
Q|a automaton Q given a 75
PQ
q (b|a) probability of b given a in q 75
ϕa,b(a∈A,b∈B) family of linear transformations 89
< | > hermitian inner product 89
{ex}(x∈X) (or {x}) standard basis of CX 89
Belli i-th Bell state, i = 1, . . . , 4 96
TP teleportation protocol 96

Introduction

The aim of this thesis is to present a model which permits a composi-
tional description of probabilistic and distributed systems, also ones with
a hierarchical and mobile structure. Our systems are in the first place dou-
bly labelled graphs provided with an algebraic structure in order to allow the
compositionality.

An important aspect of our model is that there is an intuitive graphical
representation of probabilistic systems closely related to their algebraic char-
acterization. One of the first attempts to have a strict relation between graph-
ical and algebraic/categorical descriptions was the work [54] of R. Penrose
about the tensor calculus. This subject was later much developed in relation
to the geometry of manifolds, and quantum field theory ([36, 65]).

The algebra we propose to describe probabilistic systems is an extension
of the categorical algebra of spans of graphs introduced in [40] in order to
permit operations analogous to the parallel, series and feedback of classical
circuits.

The model of weighted and Markov automata described in this thesis
was introduced in [21], adding probabilities on the actions into the algebra
of [40] and then it was extended in [22] to sequential operations in order to
describe also hierarchical and mobile systems. Various parts of this model
were presented at the international conferences CT2009 [21], CT2010 [23]
and the Italian conference ICTCS’09 [22] .

We have mentioned that the algebra of [40] is the monoidal category of
spans of graphs. Spans were introduced in [5] and are a generalization of
relations. For example, in the category of sets a span R from A to B may
be thought of as a A × B indexed family of sets Ra,b (a ∈ A, b ∈ B), or
alternatively as a matrix of sets, whereas relations are matrices of boolean
values. Span composition of R from A to B and S from B to C is given by
pullback, or by the formula Σb∈BRa,b×Sb,c, (a ∈ A, c ∈ C) clearly reminiscent
of the formula for composition of relations. The monoidal categories of spans,
and of relations, have been intensively studied beginning in [12] where the
Frobenius equation was discovered. Recent papers are [10], and [69]. The

6

Introduction 7

paper [40] in considering spans of graphs, in particular between one vertex
graphs, introduced a new aspect. Such spans may be considered to be doubly
indexed families of graphs; but a graph may be thought of as a square matrix
of sets.

In this thesis we describe a natural extension of the algebra of spans of
graphs, namely doubly indexed families Qa,b (a ∈ A, b ∈ B) of non nega-
tive real square matrices, the main operation being the tensor product ⊗ of
matrices. In chapter 5 we present a similar extension - Quantum automata
- to doubly indexed families ϕa,b (a ∈ A, b ∈ B) of operators on finite di-
mensional vector spaces in order to permit a compositional description of
quantum protocols in terms of communicating quantum and classical au-
tomata. This further extension of span graph algebra was first presented to
Quantum Physics and Logic workshop, Oxford [19].

Markov automata are in the first place graphs - the vertices represent
states and the arcs transitions. Each transition has a non negative real num-
ber associated, which we may think of as the probability that the transition
occurs. We require that the sum of probabilities out of a given state is 1.

In [19] weighted automata (where the weighting of a transition is a non-
negative real number without others assumptions) played a subsidiary role.
However for sequential composition weighted automata are more fundamental,
since in identifying states of two different automata it is the relative weight
given to decisions which is important rather than the probabilities. Techni-
cally this appears in the fact that normalization is not compositional with
respect to sequential operations, whereas for parallel operations it is. For a
summary of recent work on the various kinds of weighted automata see [24],
and in particular [52].

There are many well-known examples of probability problems in which
the apparent clarity of the system configuration doesn’t correspond to an
analogous clarity of the solution. Sometimes such problems generate long
discussions between mathematicians and the possible answers are very far
from each other. In particular the meaning of conditional probability, which
is of huge importance in the classical model of probability theory, seems
sometimes to be not clear in practical examples and gives us counter-intuitive
answers to the problem. In this thesis we show how many of the paradoxes of
conditional probability arise from the non-compositionality of normalization
with respect to sequential operations.

Another aim of this thesis is to illustrate how hierarchical and mobile
systems may be modelled in this algebra, using the combined sequential
and parallel operations. Given a set of automata S, let us denote the set of
automata given as expressions in terms of parallel operations in the automata
S as Π(S) and given as expressions in terms of sequential operations as

Introduction 8

Σ(S). Let E be the set of elementary automata with two states and only one
transition. Then any automaton has a representation in Σ(E). The Dining
Philosopher problem of [19] is described as an element of ΠΣ(E), that is
of communicating sequential systems ([18]). An element of ΣΠΣ(E) is one
in which the net of automata may evolve; ΠΣΠΣ(E) expressions describe
nets of evolving nets of automata, and so on. In chapter 3 we describe some
examples.

The power of the sequential and parallel operations is that they may
be alternated, as the alternating quantifiers in logic, or the alternation in
alternating Turing machines. There is a close relation between this aspect of
the algebra and the statecharts of [31].

0.1 Parallel and sequential interfaces

The automata described in this thesis are equipped with parallel and se-
quential interfaces that are used to compose automata. Parallel interfaces
are distinguished into left interfaces and right interfaces. A parallel inter-
face is represented mathematically by a labelling of the transitions of the
automaton on an alphabet. The idea is that the transitions that occur have
effects, which we may think of as signals, on the two parallel interfaces of
the automaton, which signals are represented by letters in the alphabets.
It is important not to think of the letters as inputs or outputs, but rather
signals induced by transitions of the automaton on the interfaces. Parallel
interfaces allow us to describe parallel operations (parallel composition de-
noted by ×, and parallel composition with communication denoted by ||).
An important aspect is the use of conditional probability since, for example,
composing introduces restrictions on possible transitions and hence changes
probabilities.

Very often the state space of an automaton decomposes naturally into
a disjoint sum of cases. Sequential interfaces represent cases relevant to
activating (creating) or disactivating (destroying) automata and channels
between automata, what we call in-conditions and out-conditions respec-
tively. A condition is a state in which the configuration of the automaton
may change in a particular way. Formally, an in-condition of an automaton
is represented by a function in the set of states (usually not the inclusion of
a subset). Similarly, an out-condition consists of a function into the state
space of the automaton.

It is important to note that only in purely sequential programming it is
reasonable to think of the conditions just as initial and terminal states. In
fact when we have several active processes and there is, for example, a state

Introduction 9

in which only one process may die while the others are in general activity,
the global state of the system in which a change of configuration occurs is a
terminal state in only one component.

Sequential interfaces allow us to define sequential operations (the sum
denoted +, and the sequential composite denoted +Y , where Y is the common
sequential interface). This kind of compositions permits the description of
hierarchical and mobile systems.

0.2 Comparison with other models

0.2.1 Weighted and Markov automata

There is a huge literature on probabilistic and weighted automata, transduc-
ers, and process calculi (see for example, [56, 61, 33, 9, 63, 49, 24]). However
our model of Markov and weighted automata is distinguished from the others
in the following ways:

(i) In many other probabilistic automata models ([56],[3]) the sum of
probabilities of actions out of a given state with a given label is 1.
This means that the probabilities are conditional on the existence of
the label (or the “pushing of a button”). Our model of Markov au-
tomata is instead generative in the sense of [29] in that the sum of
probabilities of actions out of a given state for all labels is 1. We ex-
plain our intuition in the next point. The intuition of [29] is perhaps
slightly different since they also speak of “pushing buttons”.

(ii) The actual origins of our model are the work of Schützenberger and
Eilenberg [25] on weighted transducers - our operations are variations
on those introduced there - modified by further category theoretic ex-
perience, beginning, for example, with [12, 40]. We view the automata
and the operations on them rather differently from [25]. Instead of
modelling devices which translate input to output, the idea is that we
model devices with number of parallel interfaces, and when a transition
occurs in the device this induces a transition on each of the parallel in-
terfaces (the interfaces are part of the device). In order to have binary
operations of composition the interfaces are divided into left and right
interfaces. The notions of initial and final states are also generalized
in our notion of weighted automaton to become instead functions into
the state space. These sequential interfaces are not to be thought of as
initial and final states, but hooks into the state space at which a be-
haviour may enter or leave the device. The application of our weighted

Introduction 10

automata is to concurrent hierarchical and distributed systems rather
than language recognition or processing. In [20] we have shown how
data types and also state on the parallel interfaces (shared variables)
may be added to our model.

(iii) For many compositional models the communication is based on pro-
cess algebras like CCS [51] and CSP [34], with interleaving semantics
and underlying broadcast topology. Instead, our algebra models truly
concurrent systems with explicit network topologies. We have shown
in [17] that communication such as that of CCS and of CSP may be
modelled in our algebra, but that they correspond to very particular
network topologies. One of the key aspects in our algebra are the con-
nectors: parallel and sequential ”wires”, which give the hierarchical
network topology to expressions in the algebra.

(iv) Our automata with respect to the parallel operations form the arrows
of a compact closed symmetric monoidal category, with other well-
known categorical properties. (This would have been also the case for
the sequential operations if we had not chosen to make the technical
simplification of not considering state on the parallel interfaces.) The
operations are in fact based on the operations available in categories
of spans and cospans [20]. Similar algebras occur in developments in
many other areas of computer science, mathematics and physics. With
respect to parallel operations our algebra is a fortiori traced monoidal
[37], and hence has close relations with the work of Stefanescu [64]
on network algebras, and the theory of fix point operators studied by
many authors including Bloom and Esik [8] - connections are described
in [32]. The diagrams we introduce are related to those of topological
field theory described, for example, in [45], and also those of the dia-
grammatic approach to quantum mechanics described for example in
[15, 16].

(v) Other compositional probabilistic automata models admit non-determinism
as well as probabilistic transitions, in order to model concurrent be-
haviour. The most natural way to model asynchrony in our algebra is
instead through null (ε) labels on transitions; variation in timing would
be represented by different weights of null transitions in different states.
However we show that it is also possible to model asynchrony through
non-determinism in our algebra. In particular we show how (finite ex-
amples of) the probabilistic automata of Segala and Lynch in [61, 49]
fit naturally in our context and we give a simplified description of their
behaviour in terms of the operations of our algebra (see section 3.4).

Introduction 11

(vi) In our model, the communicating parallel composition involves condi-
tional probability (see chapter 4). The reason is that communication
restricts the possibilities of the participants of the composition; in an
extreme case communication may produce deadlock in which all pro-
cesses must idle. This restriction of movement in the composite means
that the probabilities of acting must be adjusted to be probabilities
given the synchronization. This crucial aspect of our model is not
shared by many other models. Indeed, Segala in section 3.4 of [61]
argues against such a parallel composition.

0.2.2 Quantum automata

A mixed algebra of quantum and classical phenomena has already been in-
troduced by Coecke and Pavlovic in [15], with further work in [14], following
the categorical twist on quantum logic introduced in [1]. The idea of those
works is to describe data flow in quantum protocols, involving also classical
measurements, as expressions in a symmetric monoidal category with extra
structure. Such a formulation yields geometric pictures (following [54],[44])
of the flow in protocols, as well as pictorial equations which may be used
to prove correctness. Another mixed algebra of quantum and classical phe-
nomena was introduced by Selinger in [62], in the context of a functional
programming language, which incorporates flow of data and flow of classi-
cal control. Neither of these approaches is an algebra of entities with states
and actions, and their communication, and neither can explain the following
picture introduced in chapter 5 to describe the teleportation protocol:

Q1

Q2 Q3

Alice
Bob

BAlice,1

A1 B1

A22

The importance of the distributive law of tensor product over direct sum
in making classical choices is evident, as first observed for data by Selinger
[62]. The situation is entirely analogous to classical Turing machines where an
infinite state tape interacts with, and is controlled by, a finite state automa-
ton (see the (non-compositional) description of Turing machines in [68]; and
also [60],[67] for relations with the Blum-Shub-Smale theory of computable
functions).

Introduction 12

Our automata are not to be confused with the quantum automata of
[46] or [53], and hence we use the name C-automaton for the general notion
and quantum or classical C-automaton for those which represent respectively
quantum or classical components.

0.3 Organization of the thesis

Chapter 1 is devoted to describing probabilistic processes and in particular
Markov chains, and for this reason we call these automata Markov automata.
We introduce the basic notions of the model giving first the definition of
weighted automata with parallel and sequential interfaces, where the weight-
ing of a transition is a non-negative real number, and then the less general
definition of Markov automata. In particular, we define a Markov automaton
with a given set A of signals on the left interface, and set B of signals on the
right interface to consist of a Markov matrix Q (whose rows and columns
are the states) which is the sum

Q = Qa1,b1 + Qa2,b1 + · · ·+ Qam,bn

of non-negative matrices Qai,bj whose elements are the probabilities of tran-
sitions between states for which the signals ai and bj occur on the interfaces.
In addition, each alphabet is required to contain a special symbol ε (the null
signal) and the matrix QεA,εB is required to have row sums strictly positive.
Then, we show how to compose such automata, calculating the probabilities
in composed systems and we introduce the graphical representation associ-
ated to weighted and Markov automata.

As an illustration of the algebra we show how to specify a system of n
Dining Philosophers (a system with 12n states) and to calculate the probabi-
lity of reaching deadlock in k steps, and we show that this probability tends
to 1 as k tends to ∞, using the methods of Perron-Frobenius theory1.

Chapter 2 presents a detailed description of the notion of system with pa-
rallel and sequential interfaces as introduced in [20]. The model we present
is an abstract guide in describing concrete situations.

From an algebraic point of view, these systems are cospan of spans of
graphs. In fact, a n-dimensional square matrix may be thought of as a
graph with n vertices. An A × B family of square matrices of the same
size may be thought of as a graphs with double-labelled edges. Hence a

1For numerical calculations of the probability of reaching deadlock in the Dining
Philosopher system see appendix A.

Introduction 13

weighted automaton consists of five graphs and four graphs morphism as in
the following figure:

X

γ0

��
A G

δ0oo δ1 // B

Y

γ1

OO

where X, Y are graphs without edges and A,B graphs with only one vertex.
G is the graph of states and transitions of the system, X, Y are the graphs
of the sequential interfaces and A,B graphs of parallel interfaces. But also
the sequential interfaces are systems and so need parallel interfaces. On the
other hand, parallel interfaces are systems and need sequential interfaces.
Hence a system with sequential and parallel interfaces is a cospan of spans of
graphs and consists of a commutative diagram

G0

γ1

��

X

γ0

��

δ0oo δ1 // G1

γ0

��
A G

δ0oo δ1 // B

G2

γ1

OO

Y

γ1

OO

δ0oo δ1 // G3

γ1

OO

of graphs and graphs morphism. A system may be regarded also a span of
cospans of graphs.

In defining sequential and parallel operations on systems we will note a
strong analogy with the weighted and Markov model. An important aspect
of the system model is that the two kinds of operations with the necessary
constants give to the category of systems two structures of a well-supported
compact closed category.

In chapter 3 we explain with examples how to describe hierarchical and
mobile probabilistic systems in our weighted and Markov automata model.
We show that each automaton is an expression of sequential operations Σ and
that each hierarchical system is obtained alternating sequential operations Σ
with parallel operations Π.

We describe then the system Sofia’s birthday party as an expression in
ΠΣΣ(E) but illustrates also the form of systems of type ΠΣΠΣ(E). Then we
introduce a Fork bomb which is an expression of Σ(ΠΣ)n. In the last section
of the chapter we describe in our model the probabilistic automata of Segala

Introduction 14

and Lynch.

In chapter 4 we introduce the notion of conditional probability for weighted
and Markov automata. We prove results analogous to Bayes’ theorem and
Total probability theorem into the algebra of weighted and Markov automata.
Describing famous examples of conditional probability problems we show the
benefits of this approach.

In chapter 5 we illustrate an extension of the algebra of spans of graphs to
doubly indexed families ϕa,b (a ∈ A, b ∈ B) of operators on finite dimensional
vector spaces in order to describe quantum protocols. We introduce the no-
tion of quantum C-automaton and classical C-automaton. Then we describe
the teleportation protocol of [6] in this algebra and we prove its correctness.

Chapter 1

Weighted and Markov

automata

In this chapter we introduce the notion of Markov automaton, together with
parallel and sequential operations which permit the compositional descrip-
tion of Markov processes ([21],[22]). For technical reasons we give first the
definition of weighted automaton which is more general than the definition
of Markov automaton. It will be more clear in chapter 4 why it is important
to distinguish between Markov automaton and the more general notion of
weighted automaton.

We add also sequential operations to the algebra (and the necessary struc-
ture to support them) following analogous developments in [42, 20]. As we
will explain in more detail in chapter 3, the extra operations permit the
description of hierarchical and mobile systems.

1.1 Weighted automata with parallel and se-

quential interfaces

In this section we define weighted and Markov automata with sequential and
parallel interfaces, which however we shall call just weighted and Markov
automata. The reader should be aware that the definitions of [20] differs
in lacking sequential interfaces. We also do not require here for weighted
automata the special symbols ε and the condition that the rows of the total
matrix are strictly positive: we reserve those conditions for what we now call
positive weighted automata.

Notice that in order to conserve symbols in the following definitions we
shall use the same symbol for the automaton, its state space and its family
of matrices of transitions, distinguishing the separate parts only by the font.

15

1. Weighted and Markov automata 16

Definition 1.1.1. Consider two finite alphabets A and B, and two finite
sets X and Y . A weighted automaton Q with left parallel interface A,
right parallel interface B, top sequential interface X, and bottom sequential
interface Y , consists of a finite set Q of states, and an A×B indexed family
Q = (Qa,b)(a∈A,b∈B) of Q×Q matrices with non-negative real coefficients, and
two functions, γ0,Q : X → Q, and γ1,Q : Y → Q. We denote the elements of
the matrix Qa,b by [Qa,b]q,q′ (q, q

′ ∈ Q).
We call the matrix

Q =
∑

a∈A,b∈B
Qa,b

the total matrix of the automaton.

In other words, a weighted automaton Q with left parallel interface A,
right parallel interface B, top sequential interface X , and bottom sequential
interface Y , consists of a finite graph with set of vertices Q, with arcs labelled
on A×B and with two functions γ0 : X → Q, and γ1 : Y → Q. Each arc of
the graph has a non negative real number attached.

We will use a brief notation for the automata Q indicating its interfaces,
namely QX

Y ;A,B. We shall often use the same symbols γ0, γ1 for the sequential
interface functions of any automata, and we will sometimes refer to these
functions as the sequential interfaces. Notice that the terms ‘left’, ‘right’,
‘top’ and ‘bottom’ for the interfaces have no particular semantic significance
- they are chosen to be semantically neutral in order not to suggest input,
output, initial or final.

We will often consider weighted automata up to isomorphisms.

Definition 1.1.2. Given two weighted automata QX
Y ;A,B and RZ

W ;C,D, an
isomorphism of weighted automata φ : QX

Y ;A,B → RZ
W ;C,D consists of five

bijective arrows

φs : Q→ R

φl : A→ C, φr : B → D

φ0 : X → Z, φ1 : Y → W

such that:

(i) [Qa,b]q,q′ = [Rφl(a),φr(b)]φs(q),φs(q′) for all a ∈ A, b ∈ B, q, q′ ∈ Q,

(ii) φs ◦ γi,Q = γi,R ◦ φi, i = 0, 1.

We denote by W the set of isomorphism classes of weighted automata.

1. Weighted and Markov automata 17

Definition 1.1.3. A weighted automaton Q is positive if the parallel inter-
faces A and B contain special elements (null signals), the symbols εA and εB,
and satisfies the property that the row sums of the matrix QεA,εB are strictly
positive.

We require for a positive weighted automaton that the total matrix has
strictly positive row sums.

Definition 1.1.4. A Markov automaton Q with left interface A, right in-
terface B, top sequential interface X, and bottom sequential interface Y ,
written briefly QX

Y ;A,B, is a positive weighted automaton QX
Y ;A,B satisfying

the extra condition that the row sums of the total matrix Q are all 1. That
is, for all q

∑

q′

∑

a∈A,b∈B
[Qa,b]q,q′ = 1.

We call [Qa,b]q,q′ the probability of the transition from q to q′ with left
signal a and right signal b.

The idea is that in a given state various transitions to other states are
possible and occur with various probabilities, the sum of these probabilities
being 1. The transitions that occur have effects, which we may think of as
signals, on the two interfaces of the automaton, which signals are represented
by letters in the alphabets. We repeat that it is fundamental not to regard
the letters in A and B as inputs or outputs, but rather signals induced by
transitions of the automaton on the interfaces. For examples see section
1.1.2.

The positivity assumption for a Markov automaton means that in each
state there is a strictly positive probability of a silent move (idle transition
which induces the null signal ε on the two parallel interfaces).

When both A and B are one element sets and X = Y = ∅ a Markov
automaton is just a Markov matrix.

Definition 1.1.5. Consider a weighted automaton QX
Y ;A,B. A behaviour of

length k of QX
Y ;A,B consists of two words of length k, one u = a1a2 · · · ak in

A∗ and the other v = b1b2 · · · bk in B∗ and a sequence of non-negative row
vectors

x0, x1 = x0Qa1,b1, x2 = x1Qa2,b2, · · · , xk = xk−1Qak ,bk .

Notice that, even for Markov automata, xi is not generally a distribution
of states; for example often xi is the row vector 0.

From a positive weighted automaton we can always obtain a Markov
automaton with a normalization of the weights.

1. Weighted and Markov automata 18

Definition 1.1.6. The normalization of a positive weighted automaton Q,
denoted N(Q), is the Markov automaton with the same interfaces and states,
but with

[

N(Q)a,b

]

q,q′
=

[Qa,b]q,q′
∑

q′∈Q [Q]q,q′
=

[Qa,b]q,q′
∑

q′∈Q
∑

a∈A,b∈B [Qa,b]q,q′
.

To see that N(Q) is Markov, notice that the qth row sum of N(Q) is

∑

q′

∑

a,b

[

N(Q)a,b

]

q,q′
=

∑

q′

∑

a,b

[Qa,b]q,q′
∑

q′

∑

a,b [Qa,b]q,q′

=

∑

q′

∑

a,b [Qa,b]q,q′
∑

q′

∑

a,b [Qa,b]q,q′
= 1.

Lemma 1.1.7. (i) If Q is a Markov automaton then N(Q) = Q.
(ii) If cq are positive real numbers and Q and R are weighted automata

(with the same interfaces A and B, and the same state spaces Q = R) such
that

[Qa,b]q,q′ = cq[Ra,b]q,q′

then N(Q) = N(R).

Proof. (ii) follows since
∑

q′

∑

a,b

[Qa,b]q,q′ =
∑

q′

∑

a,b

cq [Ra,b]q,q′ = cq
∑

q′

∑

a,b

[Ra,b]q,q′

and hence

[Qa,b]q,q′
∑

q′

∑

a,b [Qa,b]q,q′
=

cq[Ra,b]q,q′

cq
∑

q′

∑

a,b [Ra,b]q,q′
=

[Ra,b]q,q′
∑

q′

∑

a,b [Ra,b]q,q′
.

�

An important operation on weighted automata is the power construction.

1.1.1 The power construction

Definition 1.1.8. If Q is a weighted automaton and k is a natural number,
then the automaton of k step paths in Q, which we denote as Qk is defined
as follows: the states of Qk are those of Q; the sequential interfaces are
the same; the left and right interfaces are Ak and Bk respectively. If u =
(a1, a2, · · · , ak) ∈ Ak and v = (b1, b2, · · · , bk) ∈ Bk then

(Qk)u,v = Qa1,b1Qa2,b2 · · ·Qak,bk .

The definition for positive weighted automata requires in addition that εAk =
(εA, · · · , εA), εBk = (εB, · · · , εB).

1. Weighted and Markov automata 19

If Q is a weighted automaton and u = (a1, a2, · · · , ak) ∈ Ak, v =
(b1, b2, · · · , bk) ∈ Bk, then [(Qk)u,v]q,q′ is the sum over all paths from q to
q′ with left signal sequence u and right signal sequence v of the weights of
paths, where the weight of a path is the product of the weights of the steps.

Lemma 1.1.9. If Q is a weighted automaton then the total matrix of Qk

is the matrix power Qk. Hence if Q is Markov then so is Qk.

Proof. The q, q′ entry of the total matrix of Qk is
∑

u∈Ak,v∈Bk

[

(Qk)u,v
]

q,q′

=
∑

u∈Ak,v∈Bk

[Qa1,b1Qa2,b2 · · ·Qak,bk]q,q′

=
∑

u∈Ak,v∈Bk

∑

q1,··· ,qk−1

[Qa1,b1]q,q1 [Qa2,b2]q1,q2 · · · [Qak,bk]qk−1,q
′

=
∑

q1,··· ,qk−1

∑

a1,··· ,ak

∑

b1,··· ,bk

[Qa1,b1]q,q1 [Qa2,b2]q1,q2 · · · [Qak,bk]qk−1,q
′

=
∑

q1,··· ,qk−1

∑

a1,b1

[Qa1,b1]q,q1

∑

a2,b2

[Qa2,b2]q1,q2 · · ·
∑

ak,bk

[Qak ,bk]qk−1,q
′

= [QQ · · ·Q]q,q′ .
�

Definition 1.1.10. If Q is a Markov automaton then we call Qk the au-
tomaton of k step paths in Q. We define the probability in Q of passing
from state q to q′in exactly k steps with left signal u and right signal v to be
[(Qk)u,v]q,q′.

It is important to understand the precise meaning of this definition. The
probability of passing from state q to q′ in precisely k steps, so defined, is
the weighted proportion of all paths of length k beginning at q and ending
at q′ amongst all paths of precisely length k beginning at q.

1.1.2 Graphical representation of weighted automata

Although the definitions above are mathematically straightforward, in prac-
tice a graphical notation is more intuitive. We may compress the description
of an automaton with parallel interfaces A and B, which requires A×B ma-
trices, into a single labelled graph, like the ones introduced in [40]. Further,
expressions of automata in this algebra may be drawn as “circuit diagrams”
also as in [40]. We indicate both of these matters by describing some exam-
ples.

1. Weighted and Markov automata 20

An example

Consider the automaton with parallel interfaces {a}, {b1, b2} × {c} and se-
quential interfaces {x}, {y, z}; with states {1, 2, 3}, sequential interface func-
tions x 7→ 1 and y, z 7→ 3, and transition matrices

Qa,(b1,c) =





0 2 0
0 3 0
0 0 0



 , Qa,(b2,c) =





0 0 0
0 0 1
0 0 0



 .

This information may be put in the diagram:

1 2

3

a/b1, c; 2

a/b2, c; 1

a/b1, c; 3

x

y z

a

b1, b2

c

The following two examples have both sequential interfaces ∅ and hence
we will omit the sequential information.

A philosopher

Consider the alphabet A = {t, r, ε}. A philosopher is an automaton Phil

with left interface A and right interface A, state space {1, 2, 3, 4}, both se-
quential interfaces ∅ ⊆ {1, 2, 3, 4}, and transition matrices

Philε,ε =









1
2

0 0 0
0 1

2
0 0

0 0 1
2

0
0 0 0 1

2









,

Philt,ε =









0 1
2

0 0
0 0 0 0
0 0 0 0
0 0 0 0









, Philε,t =









0 0 0 0
0 0 1

2
0

0 0 0 0
0 0 0 0









Philr,ε =









0 0 0 0
0 0 0 0
0 0 0 1

2

0 0 0 0









, Philε,r =









0 0 0 0
0 0 0 0
0 0 0 0
1
2

0 0 0









.

1. Weighted and Markov automata 21

The other four transition matrices are zero matrices.
Notice that the total matrix of Phil is









1
2

1
2

0 0
0 1

2
1
2

0
0 0 1

2
1
2

1
2

0 0 1
2









,

which is clearly stochastic, so Phil is a Markov automaton.
The intention behind these matrices is as follows: in all states the philoso-

pher does a transition labelled ε/ε (idle transition) with probability 1
2
; in

state 1 he does a transition to state 2 with probability 1
2
labelled t/ε (take

the left fork); in state 2 he does a transition to state 3 with probability 1
2

labelled ε/t (take the right fork); in state 3 he does a transition to state 4
with probability 1

2
labelled r/ε (release the left fork); and in state 4 he does

a transition to state 1 with probability 1
2
labelled ε/r (release the right fork).

All this information may be put in the following diagram.

1 2

4 3

ε/ε; 1
2

t/ε; 1
2

ε/t; 1
2

r/ε; 1
2

ε/r; 1
2

ε/ε; 1
2

ε/ε; 1
2

ε/ε; 1
2

t, r, ε t, r, ε

A fork

Consider again the alphabet A = {t, r, ε}. A fork is an automaton Fork with
left interface A and right interface A, state space {1, 2, 3}, both sequential

1. Weighted and Markov automata 22

interfaces ∅ ⊆ {1, 2, 3}, and transition matrices

Forkε,ε =





1
3

0 0
0 1

2
0

0 0 1
2



 ,

Forkt,ε =





0 1
3

0
0 0 0
0 0 0



 , Forkε,t =





0 0 1
3

0 0 0
0 0 0





Forkr,ε =





0 0 0
1
2

0 0
0 0 0



 , Forkε,r =





0 0 0
0 0 0
1
2

0 0



 .

The other four transition matrices are zero.
Fork is a Markov automaton since its total matrix is





1
3

1
3

1
3

1
2

1
2

0
1
2

0 1
2



 .

The intention behind these matrices is as follows: in all states the fork
does a transition labelled ε/ε (idle transition) with positive probability (ei-
ther 1

3
or 1

2
); in state 1 it does a transition to state 2 with probability 1

3

labelled t/ε (taken to the left); in state 1 it does a transition to state 3 with
probability 1

3
labelled ε/t (taken to the right); in state 2 it does a transition

to state 1 with probability 1
2
labelled r/ε (released to the left); in state 3 it

does a transition to state 1 with probability 1
2
labelled ε/r (released to the

right).
All this information may be put in the following diagram:

1

23

ε/ε; 1
3

t/ε; 1
3

ε/t; 1
3

r/ε; 1
2

ε/r; 1
2

ε/ε; 1
2

ε/ε; 1
2

t, r, ε t, r, ε

1.1.3 Reachability

For many applications we are interested only in states reachable from a given
initial state by a path of positive probability. Given a Markov automaton Q

1. Weighted and Markov automata 23

and an initial state q0 there is a subautomaton Reach(Q,q0) whose states
are the reachable states, and whose transitions are those of Q restricted to
the reachable states.

1.2 The algebra of weighted automata:

operations

Now we define operations on the set W of weighted automata up to isomor-
phisms1 analogous (in a precise sense) to those defined in [40, 42].

1.2.1 Sequential operations

Sum

Definition 1.2.1. Given weighted automata QX
Y ;A,B and RZ

W ;C,D the sum
Q +R is the weighted automaton which has set of states the disjoint union
Q+R, left interface A+C, right interface B+D, top interface X+Z, bottom
interface Y +W , (all disjoint sums), γ0 = γ0,Q+ γ0,R, γ1 = γ1,Q+ γ1,R. The
transition matrices are

[(Q+ R)a,b]q,q′ = [Qa,b]q,q′,

[(Q+ R)c,d]r,r′ = [Rc,d]r,r′,

all other values being 0.

The idea of the sum of two Markov automata is that in each state the
system is described by one and only of the automata. There is no communi-
cation between them.

Proposition 1.2.2. (W,+) is a commutative monoid.

Proof. We need to check that given weighted automata QX
Y ;A,B andRZ

W ;C,D

there exists an isomorphism Q+R→ R+Q. Let

Q +R = {(q, 0)|q ∈ Q} ∪ {(r, 1)|r ∈ R}.

We define the bijective arrow φs : Q+R→ R+Q such that for each (u, i) ∈
Q+R, φs(u, i) = (u,¬i), where ¬ is the not function. Analogously, we define
the bijective arrows φl : A + C → C + A, φr : B + D → D + B, φ0 :

1See p.16.

1. Weighted and Markov automata 24

X + Z → Z +X, φ1 : Y +W → W + Y . Given a ∈ A, b ∈ B, q, q′ ∈ Q we
have2:

[(Q+ R)(a,0),(b,0)](q,0),(q′,0) = [Qa,b]q,q′
= [(R+ Q)(a,1),(b,1)](q,1),(q′,1)
= [(R+ Q)φl(a,0),φr(b,0)]φs(q,0),φs(q′,0)

Similarly, given c ∈ C, d ∈ D, r, r′ ∈ R,
[(Q+ R)(c,1),(d,1)](r,1),(r′,1) = [(R+ Q)φl(c,1),φr(d,1)]φs(r,1),φs(r′,1)

It is easy to see that the diagram

X + Z
φ0 //

γ0,Q+R

��

Z +X

γ0,R+Q

��
Q +R

φs // R +Q

Y +W
φ1 //

γ1,Q+R

OO

W + Y

γ1,R+Q

OO

is commutative. It follows that φ is an isomorphism and (W,+) is commu-
tative.

Similarly, given weighted automata QX
Y ;A,B, R

Z
W ;C,D and SUV ;E,F , we can

define an obvious isomorphism (Q+R) + S→ Q+ (R+ S).
It is straightforward to check that the empty automaton ∅∅

∅;∅,∅ is the
neutral element for the sum of weighted automata.
�

Sequential composition

In many concrete examples there are states in which a system may change
its configuration. Sequential composition of two weighted automata commu-
nicating on a common sequential interface expresses this possibility.

Definition 1.2.3. Given weighted automata QX
Y ;A,B and RY

Z;C,D, the sequen-
tial composite of weighted automata Q +Y R (or briefly Q ◦R) has set of
states the equivalence classes of Q + R under the equivalence relation gen-
erated by the relation γ1,Q(y) ∼ γ0,R(y), (y ∈ Y). The left interface is the
disjoint sum A+C, right interface B+D, the top interface is X, the bottom
interface is Z. The interface functions are

γ0 = X
γ0→ Q→ Q+R→ (Q+R)/ ∼ , γ1 = Z

γ1→ R→ Q+R→ (Q+R)/ ∼ .

2Notice that in definition 1.2.1 for simplicity we denote [(Q+ R)(a,0),(b,0)](q,0),(q′,0) by
[(Q+ R)a,b]q,q′ and [(Q+ R)(c,1),(d,1)](r,1),(r′,1) by [(Q+ R)c,d]r,r′ .

1. Weighted and Markov automata 25

Denoting the equivalence class of a state s by [s] the transition matrices are:

[(Q+Y R)a,b][q],[q′] =
∑

s∈[q],s′∈[q′]
[Qa,b]s,s′,

[(Q+Y R)c,d][r],[r′] =
∑

s∈[r],s′∈[r′]
[Rc,d]s,s′,

all other values being 0.

The idea is that a behaviour of Q+Y R is initially a behaviour of QX
Y ;A,B

and then, when a state in the image of γ1,Q is reached, the behaviour may
change to a behaviour of RY

Z;C,D (but not necessarily because it is also pos-
sible that Q +Y R does not change its configuration). We think of γ0, γ1
as conditions under which a change of geometry might occur. The correct
interpretation is that initially only a process Q exists and then, when a state
in its out-conditions is reached, Q may die and the process R be created.

Proposition 1.2.4. Given weighted automata QX
Y ;A,B, R

Y
Z;C,D and SZW ;E,F ,

there exists an isomorphism (Q +Y R) +Z S→ Q+Y (R+Z S).

Sequential constants

Given two finite sets X and Y , there is a straightforward way of converting a
relation ρ ⊂ X × Y into a weighted automaton Seq(ρ) that is a constant of
our algebra. We say that Seq(ρ) is a sequential constant because its parallel
interfaces are empty sets.

Definition 1.2.5. Given a relation ρ ⊂ X × Y we define a weighted au-
tomaton Seq(ρ) as follows: it has state space the equivalence classes of
X + Y under the equivalence relation ∼ generated by ρ. It has parallel in-
terfaces ∅, so there are no transition matrices. The sequential interfaces are
γ0 : X → (X + Y)/ ∼, γ1 : Y → (X + Y)/ ∼, both functions taking an
element to its equivalence class.

Sequential connectors Some special cases have particular importance
and are called sequential connectors or wires :

(i) the automaton corresponding to the identity function 1A, considered
as a relation on A×A is also called 1A;

(ii) the automaton corresponding to the codiagonal function ∇A : A+A→
A (considered as a relation) is called ∇A, or briefly ∇ when there is no
confusion; the automaton corresponding to the opposite relation ∇A is
called ∇o

A (or briefly ∇o);

1. Weighted and Markov automata 26

(iii) the automaton corresponding to the function twistA,B : A×B → B×A
is called twistA,B;

(iv) the automaton corresponding to the function ∅ ⊆ A is called iA; the
automaton corresponding to the opposite relation of the function ∅ ⊆ A
is called ioA.

Notice that we have overworked the symbol ∇ and it will be used again in
another sense; however the context should make clear which use we have in
mind.

The role of sequential wires is to equate states.

The distributive law The bijection δ : X × Y +X × Z → X × (Y + Z)
and its inverse δ−1 : X × (Y +Z)→ X × Y +X ×Z considered as relations
yield weighted automata which we will refer to with the same names δ, δ−1.

1.2.2 Parallel operations

As done for sequential composition, we define now two parallel operations
characterized by the absence or presence of communication channels connect-
ing the components.

Parallel composition

Definition 1.2.6. Given weighted automata QX
Y ;A,B and RZ

W ;C,D the product
(or parallel composite without communication) Q×R is the weighted au-
tomaton which has set of states Q × R, left interface A× C, right interface
B × D, top interface X × Z, bottom interface Y ×W , sequential interface
functions γ0,Q × γ0,R, γ1,Q × γ1,R and transition matrices

(Q× R)(a,c),(b,d) = Qa,b ⊗ Rc,d.
3

If the automata are positive weighted then εA×C = (εA, εC), εB×D = (εB, εD).

This just says that the weight of a transition from (q, r) to (q′, r′) with
left signal (a, c) and right signal (b, d) is the product of the weight of the
transition q → q′ with signals a and b, and the weight of the transition
r → r′ with signals c and d.

Sometimes we will say simply parallel composition to intend parallel com-
position without communication.

Proposition 1.2.7. (W,×) is a commutative monoid.

3We denote by the symbol ⊗ the usual tensor product of matrices.

1. Weighted and Markov automata 27

Proof. Given weighted automata QX
Y ;A,B,R

Z
W ;C,D,S

U
V ;E,F , we can define

obvious isomorphisms Q ×R → R ×Q and (Q ×R) × S → Q × (R × S)
analogous to those defined for the sum of weighted automata. The unit of
(W,×) is the weighted automata III;I,I, where I = {?}, with transition matrix
[1].
�

Lemma 1.2.8. If Q and R are positive weighted automata then so is Q×R

and
N(Q×R) = N(Q)×N(R).

Hence if Q and R are Markov automata then so is Q×R.

Proof.

[

N(Q× R)(a,c),(b,d)

]

(q,r),(q′,r′)
=

[Qa,b]q,q′ [Rc,d]r,r′
∑

q′,r′

∑

(a,c),(b,d) [Qa,b]q,q′ [Rc,d]r,r′

=
[Qa,b]q,q′ [Rc,d]r,r′

∑

q′,(a,b) [Qa,b]q,q′
∑

r′,(c,d) [Rc,d]r,r′

=
[

N(Q)(a,b)

]

q,q′

[

N(R)(c,d)

]

r,r′

=
[

(N(Q)× N(R))(a,c),(b,d)

]

(q,r),(q′,r′)
.

For the second part notice that if Q and R are Markov then

Q×R = N(Q)×N(R) = N(Q×R)

which implies that Q×R is Markov.
�

Lemma 1.2.9. If Q and R are Markov automata then (Q×R)k = Qk×Rk.

Parallel with communication

Definition 1.2.10. Given weighted automata QX
Y ;A,B and RZ

W ;B,C the com-
municating parallel composite of weighted automata Q×B R (or sometimes
more briefly Q||R) has set of states Q × R, left interface A, right interface
C, top and bottom interfaces X × Z, Y ×W , sequential interface functions
γ0,Q × γ0,R, γ1,Q × γ1,R and transition matrices

(Q×B R)a,c =
∑

b∈B
Qa,b ⊗ Rb,c.

1. Weighted and Markov automata 28

In communicating parallel composition a state is a pair of states, a tran-
sition is a pair of transitions, one of each automaton, which synchronize on
the common parallel interface. The weights are multiplied.

The communication of the parts of a parallel composition is anonymous,
in the sense that each automaton has a precisely interface and it has no
knowledge of the automata with which it is communicating.

From a circuit theory point of view, parallel composition without commu-
nication and communicating parallel composition correspond, respectively, to
the parallel and series operations of circuit components.

Lemma 1.2.11. (Q||R) || S = Q || (R||S).
Proof. This follows from the fact that ⊗ is associative.
�

It is easy to see that Q||R is not necessarily Markov even when both Q

and R are. The reason is that the communication in the communicating
parallel composite reduces the number of possible transitions, so that we
must normalize to get (conditional) probabilities. However in a multiple
composition it is only necessary to normalize at the end, because of the
following lemma.

Lemma 1.2.12. If Q and R are positive weighted automata then so is Q||R
and N(N(Q)||N(R)) = N(Q||R).

Proof.

[

(NQ||NR)a,c
]

(q,r),(q′,r′)
=

∑

b∈B
[NQa,b]q,q′ ⊗ [NRb,c]r,r′

=
∑

b∈B

[Qa,b]q,q′
∑

q′

∑

a,b [Qa,b]q,q′
·

[Rb,c]r,r′
∑

r′

∑

b,c [Rb,c]r,r′′

=
1

∑

q′,r′(
∑

a,b [Qa,b]q,q′
∑

b,c [Rb,c]r,r′)

∑

b∈B
[Qa,b]q,q′ [Rb,c]r,r′ .

= cq,r

[

(Q||R)a,c
]

(q,r),(q′,r′)
, where

cq,r =
1

∑

q′,r′(
∑

a,b [Qa,b]q,q′
∑

b,c [Rb,c]r,r′′)
depends only on q, r.

Hence by the lemma 1.1.7 above

N(NQ||NR) = N(Q||R).

�

1. Weighted and Markov automata 29

Remark 1.2.13. The lemmas 1.2.8 and 1.2.12 mentioned above mean that
normalization is compositional with respect to parallel operations. Thus, in
an expression involving only parallel operations we can indifferently normalize
step by step or only at the end of our calculation.
This is not true for sequential operations. We will see in chapter 4 that in
many probability problems a wrong use of normalization leads to paradoxes.
In fact if we normalize at the beginning of the calculation we often loose the
relative weight given to transitions in different states.

In the following example we show that normalization is not compositional
with respect to sequential composition.

Example 1.2.14. Consider the weighted automaton Q and R as in the
following pictures:

b

b Y

Q

ε1/ε1; 10

b

b Y

R
ε2/ε2; 1

Let U be the automaton N(Q +Y R). Then U is the weighted automaton
with one state and transition matrices

Uε1,ε1 =
[10

11

]

Uε2,ε2 =
[1

11

]

Let V be the automaton N(N(Q) +Y N(R)). Then V has one state as U

but transition matrices:

Vε1,ε1 =
[1

2

]

Vε2,ε2 =
[1

2

]

If we normalize before sequential composition we loose the relative weight of
each transition.

Definition 1.2.15. If Q and R are Markov automata, Q with left inter-
face A and right interface B, R with left interface B and right interface
C then the series composite of Markov automata Q ·R is defined to be
Q ·R = N(Q||R).

Theorem 1.2.16. (Q ·R) · S = Q · (R · S).

1. Weighted and Markov automata 30

Proof.

(Q ·R) · S = N(N(Q||R)||S)
= N(N(Q||R)||N(S)) since S is Markov

= N((Q||R)||S) = N(Q||(R||S)) by 1.2.11 and 1.2.12

= N(N(Q)||N(R||S)) by 1.2.12

= N(Q||N(R||S)) = Q · (R · S) since Q is Markov.

�

Theorem 1.2.17. If Q and R are Markov automata then

(Q×R)k = Qk ×Rk

Proof.

(Q× R)k(u,u′),(v,v′)

= (Qa1,b1⊗Ra′1,b′1)(Qa2,b2⊗Ra′2,b′2) · · · (Qak ,bk⊗Ra′k ,b′k)
= (Qa1,b1⊗Qa2,b2⊗ · · ·⊗Qak ,bk)(Ra′1,b′1⊗Ra′2,b′2 ⊗ · · ·⊗Ra′k,b′k)
= (Qk×Rk)(u,u′),(v,v′).

�

Remark. It is not the case that if Q, R are Markov then (Q ·R)k = Qk ·Rk.
The reason is that normalizing length k steps in a weighted automaton is not
the same as considering k step paths in the normalization of the automaton.

Parallel constants

Definition 1.2.18. Given a relation ρ ⊂ A × B we define a weighted au-
tomaton Par(ρ) as follows: it has one state ∗ say. Top and bottom interfaces
have one element. The transition matrices [Par(ρ)a,b] are 1×1 matrices, that
is, real numbers. Then Par(ρ)a,b = 1 if ρ relates a and b, and Par(ρ)a,b = 0
otherwise. If (εA, εB) ∈ ρ then Par(ρ) is also positive weighted.

Parallel connectors Some special cases, all described in [40], have parti-
cular importance and are called parallel connectors or wires :

(i) the automaton corresponding to the identity function 1A, considered
as a relation on A×A is also called 1A;

(ii) the automaton corresponding to the diagonal function ∆A : A→ A×A
(considered as a relation) is called ∆A (or briefly ∆); the automaton
corresponding to the opposite relation of ∆A is called ∆o

A (or ∆o);

1. Weighted and Markov automata 31

(iii) the automaton corresponding to the function twistA,B : A×B → B×A
is again called twistA,B;

(iv) the automaton corresponding to the projection function A → {∗} is
called pA and its opposite poA.

The role of parallel wires is to equate signals.

Parallel codiagonal The automaton corresponding to the function ∇A :
A + A → A is called the parallel codiagonal, and is denoted ∇ where is no
confusion4. The automaton corresponding to the opposite relation is written
∇o.

1.2.3 Some derived operations

In this section we define some important operations derived from the canoni-
cal operations and the constants defined above. Their meaning will became
more clear looking ahead at the graphical representation in the next section.

Local sum

Given weighted automata QX
Y ;A,B and RZ

W ;A,B the local sum Q+loc R is
defined to be ∇o

A||(Q+R)||∇A. It has top and bottom interfaces X+Z and
Y +W , and left and right interfaces A and B.

Local sequential composition

Given weighted automata QX
Y ;A,B and RY

Z;A,B the local sequential composite
Q +Y,loc R (denoted briefly •) is defined to be

∇o
A||(Q+Y R)||∇A.

It has top and bottom interfaces X and Z, and left and right interfaces A
and B.

Sequential feedback

Given weighted automata QX+Z
Y+Z;A,B sequential feedback SfbZ(Q

X+Z
Y+Z;A,B) is

defined to be

(1X + iZ) • (1X +∇o
Z) • (Q+ 1Z) • (1Y +∇Z) • (1Y + ioZ).

4We use the symbol ∇ to denote also the (sequential) codiagonal (see p. 25).

1. Weighted and Markov automata 32

Parallel feedback

Given weighted automata QX
Y ;A×C,B×C parallel feedback PfbC(Q

X
Y ;A+C,B+C)

is defined to be

(1A × poC)||(1A ×∆C)||(Q× 1C)||(1B ×∆o
C)||(1B × pC).

1.3 Graphical representation of expressions

of weighted automata

Not only do weighted automata have a graphical representation, as seen
above, but so also do expressions of automata, as described in [40]. We
extend the representation given in that paper to the combination of sequential
and parallel operations and constants. We will see in section 3.1 that the
graphical representation of single automata is actually a special case of this
new representation of expressions, modulo the equations satisfied by wires
(the Frobenius and separable algebra equations first introduces in [12], see
also [57]).

In general an expression will be represented by a diagram of the following
sort:

X Y

A
B

C

D

E

U V W Z

The multiple lines on the left and right hand sides correspond to parallel
interfaces which are products of sets. For example, the component has left
interface A × B × C. Instead the multiple lines on the top and bottom
correspond to sequential interfaces which are disjoint sums of sets, so the top
interface is X + Y + Z.

1.3.1 Operations and constants

Sum

The sum QX
Y ;A,B +RZ

W ;C,D is represented as:

1. Weighted and Markov automata 33

Q R

X Z

Y W

A + C B +DA CB D

+

Sequential composition

The sequential composite QX
Y ;A,B +Y RY

Z;C,D is represented as:

Q

R

X

Z

YA+ C B +D

A

C

B

D

+

Sequential connectors

The various sequential connectors are represented as:

b

b

∇ ∇0 i i0 1 twist

Distributive law

The distributive law δ−1 : X × (Y + Z)→ X × Y +X × Z and its opposite
are represented as:

1. Weighted and Markov automata 34

XY XZ

X(Y + Z)XY XZ

X(Y + Z)

δ−1
δ

Product

The product QX
Y ;A,B ×RZ

W ;C,D is represented as:

Q

R

X

Z

Y

A

C

B

D

X × Z

Y ×W

W

×

Parallel with communication

The parallel with communication QX
Y ;A,B ×B RZ

W ;B,C is represented as:

Q R

X Z

Y W

A C
B

X × Z

Y ×W

×

1. Weighted and Markov automata 35

Parallel connectors

The various parallel connectors are represented as:

b b

∆ ∆0 p p0 1 twist

Parallel codiagonal

The parallel codiagonal ∇ : A+ A→ A and its opposite ∇o are represented
as:

∇A+ A A ∇0 A+ AA

1.3.2 Some derived operations and constants

Repeated sequential and repeated parallel operations

When representing repeated sequential operations, frequently we omit all but
the last bounding rectangle, as in the following picture:

Q R

X Z

Y W

A + C B +DA CB D

SE F

+

With care this does not lead to ambiguity - different interpretations lead
to at worst isomorphic automata. We do the same with repeated parallel
operations. It is not possible to remove bounding rectangles for mixed re-
peated sequential and parallel operations without serious ambiguity.

Example 1.3.1. Consider the following example in which all the transitions
have weight 1:

1. Weighted and Markov automata 36

b

c/d

b

a/b

b

g/h

b

e/f

b b

b b

b b

a b c d

e f g h

= b

a/b

e/f

a, e b, f
b

c/d

g/h

c, g d, h

b b

bb

=

=
b

a, c/b, d

a, g/b, he, c/f, d

e, g/f, h
a, e

b, f

d, hc, g

b

b

+ +

×

×

If we calculate instead first the products and then the sequential compo-
sition we obtain:

b

c/d

b

a/b

b

g/h

b

e/f

b b

b b

b b

a b c d

e f g h

=

b

a, c/b, d
a, e b, f

b

e, g/f, h
c, g d, h

b

b

b

=

= b

a, c/b, d

e, g/f, h

a, e b, f

d, hc, g

b

b

+

×

×

+

1. Weighted and Markov automata 37

The two results are not isomorphic.

Local sum

The local sum QX
Y ;A,B +loc R

Z
W ;A,B is represented by the first diagram below

which includes the parallel codiagonals, but also, since it is such a common
derived operation, more briefly by the second diagram below:

Q R

X Z

Y W

A

A B A B

B
Q R

X Z

Y W

A

A B A B

B

+

Local sequential

The local sequential QX
Y ;A,B +Y,loc RY

Z;A,B is represented by the first diagram
below which includes the parallel codiagonals, but also, since it is such a
common derived operation, more briefly by the second diagram below:

Q

R

X

Z

Y
A B

A

A

B

B

Q

R

X

Z

YA B

A

A

B

B

×

Sequential feedback

The sequential feedback SfbZ(Q
X+Z
Y+Z;A,B) is represented by the diagram:

1. Weighted and Markov automata 38

Q

Y

A
B

X

Z

Z

A
B

Parallel feedback

The parallel feedback PfbC(Q
X
Y ;A×C,B×C) is represented by the diagram:

Q

Y

B

X

A

Y
CC

X

1.4 The Dining Philosophers system

In this section we show how to describe a system of n Dining Philosophers
(with 12n states), and we observe that Perron-Frobenius theory yields a proof
that the probability of reaching deadlock tends to one as the number of steps
goes to infinity.

The model of the Dining Philosophers problem we consider is an expres-
sion in the algebra, involving also the automata Phil and Fork. The system
of n Dining Philosophers is

DPn = PfbA(Phil||Fork||Phil||Fork|| · · · ||Phil||Fork),
where in this expression there are n philosophers and n forks.

We may represent this system by the following diagram, where we abbre-
viate Phil to P and Fork to F .

P FP F · · · P F

1. Weighted and Markov automata 39

Let us examine the case when n = 2 with initial state (1, 1, 1, 1). Let Q
be the reachable part of DP2. The states reachable from the initial state
are q1 = (1, 1, 1, 1), q2 = (1, 3, 3, 2), q3 = (3, 2, 1, 3), q4 = (1, 1, 4, 2), q5 =
(4, 2, 1, 1), q6 = (1, 3, 2, 1), q7 = (2, 1, 1, 3), q8 = (2, 3, 2, 3) (q8 is the unique
deadlock state). The single matrix of the automaton Q, using this ordering
of the states, is

























1
4

0 0 0 0 1
4

1
4

1
4

0 1
2

0 1
2

0 0 0 0
0 0 1

2
0 1

2
0 0 0

1
2

0 0 1
2

0 0 0 0
1
2

0 0 0 1
2

0 0 0
0 1

3
0 0 0 1

3
0 1

3

0 0 1
3

0 0 0 1
3

1
3

0 0 0 0 0 0 0 1

























.

Calculating powers of this matrix5 we see that the probability of reaching
deadlock from the initial state in 2 steps is 23

48
, in 3 steps is 341

576
, and in 4 steps

is 4415
6912

.

1.4.1 The probability of deadlock

The idea of this section is to apply Perron-Frobenius theory (see, for example
[30]) to the Dining Philosopher automaton. However, for convenience, we give
the details of the proof of the case we need, without refering to the general
theorem.

Definition 1.4.1. Consider a Markov automaton Q with input and output
sets being one element sets {ε}. A state q is called a deadlock if the only
transition out of q with positive probability is a transition from q to q (the
probability of the transition must necessarily be 1).

Theorem 1.4.2. Consider a Markov automaton Q with interfaces being one
element sets, with an initial state q0. Suppose that:

(i) Q has precisely one reachable deadlock state,
(ii) for each reachable state, not a deadlock, there is a path with non-zero

probability to q0, and
(iii) for each reachable state q there is a transition with non-zero proba-

bility to itself.
Then the probability of reaching a deadlock from the initial state in k steps
tends to 1 as k tends to infinity.

5For Maple calculations of the probability of reaching deadlock in the Dining Philoso-
pher system see the appendix A.

1. Weighted and Markov automata 40

Proof. Let R = Reach(Q, q0). Suppose R has m states. Then in writing
the matrix R we choose to put the deadlock last, so that R has the form

R =

[

S T

0 1

]

where S is (m− 1)× (m− 1) and T is (m− 1)× 1. Now

Rk =

[

Sk Tk

0 1

]

for some matrix Tk. Condition (i) implies that there is a path with positive
probability (a positive path) from any non-deadlock state to any other in R.
Condition (ii) implies that if there is a positive path of length l between two
states then there is also a positive path of all lengths greater than l. These
two facts imply that there is a k0 such that from any non-deadlock state to
any other state there is a positive path of length k0. For this k0 the matrix
Tk0 is strictly positive. This means that the row sums of Sk0 are strictly less
than 1. But the eigenvalues of a matrix are dominated in absolute value by
the maximum of the absolute row sums (the sums of absolute values of the
row elements). Hence the eigenvalues of Sk0 and hence of S all have absolute
value less than 1. But by considering the Jordan canonical form of a matrix
whose eigenvalues all have absolute values less than 1 it is easy to see that
Sk tends to 0 as k tends to infinity. Hence Tk tends to the column vector all
of whose entries are 1. Hence the probability of reaching the deadlock from
any of the other states in k steps tends to 1 as k tends to infinity.
�

Corollary 1.4.3. In the Dining Philosopher problem DPn with q0 being the
state (1, 1, · · · , 1) the probability of reaching a deadlock from the initial state
in k steps tends to 1 as k tends to infinity.

Proof. We just need to verify the conditions of the theorem for the Dining
Philosopher problem. It is straightforward to check that the state

(2, 3, 2, 3, · · · , 2, 3)

in which the philosophers are all in state 2 and the forks in state 3 is a reach-
able deadlock. It is clear that in any state q there is a positive transition
to q, since each component has silent moves in each state. We need only
check that for any reachable state other than this deadlock that there is a
positive path to the initial state. Consider the states f1, f2 of two forks ad-
jacent modulo n, and the state p of the philosopher between these two forks.

1. Weighted and Markov automata 41

Examining the positive paths possible in two adjacent forks and the corre-
sponding philosopher we see that the reachable configurations are limited to
(a) f1 = 1, p = 1, f2 = 1, (b) f1 = 1, p = 1, f2 = 3, (c) f1 = 1, p = 4, f2 = 2,
(d) f1 = 2, p = 1, f2 = 1, (e) f1 = 2, p = 1, f2 = 3, (f) f1 = 3, p = 2, f2 = 1,
(g) f1 = 3, p = 2, f2 = 3, (h) f1 = 3, p = 3, f2 = 2, (i) f1 = 2, p = 4, f2 = 2.
We will show that in states other than the deadlock or the inital state there
is a transition of the system which increases the number of forks in state 1.
Notice that in a reachable state the states of adjacent forks determine the
state of the philosopher between. Consider the possible configurations of fork
states. We need not consider cases all forks are in state 1 (initial), or all in
state 3 (the known deadlock). Given two adjacent forks in states 3, 2 there
are transitions which only involve this philosopher and the two forks (apart
from null signals) which result in one of the forks returning to state 1 (the
philosopher puts down a fork that he holds). This is also the case when two
adjacent forks are in states 1, 2 or 2, 2 or 3, 1. But in a circular arrangement
other than all 1’s or all 3’s one of the pairs 1, 2 or 2, 2 or 3, 1 or 3, 2 must
occur.
�

Remark 1.4.4. Notice that in the proof described above we did not use the
specific positive probabilities of the actions of the philosophers and forks.
Hence the result is true with any positive probabilities replacing the specific
ones we gave in the description of the philosopher and fork. In fact, different
philosophers and forks may have different probabilities without affecting the
conclusion of the corollary6.

Remark 1.4.5. There are many non-compositional algorithms for deter-
mining properties like deadlock in other automata models originating in
[55, 66] (see for example [3]).

6For Maple calculations of the probability of reaching deadlock in DPn with different
choices of weights see the appendix A.

Chapter 2

Systems with parallel and

sequential interfaces

This chapter presents in detail a mathematical model based on spans and
cospans of graphs which permits a compositional description of systems with
both sequential and parallel communication. The presentation of the model
is very abstract but it serves as a guide to describe very concrete situations.

We develop further the algebra for the sequential and parallel composi-
tion of systems introduced in the two papers [39], [41]. Whereas those papers
dealt with the finite state control, here we add data structures. As in [41]
the sequential composition is a cospan composition and the parallel a span
composition. The algebra of parallel operations and constants has the struc-
ture of a well-supported compact closed category (briefly wscc category) - a
symmetric monoidal category for which every object has a separable algebra
structure ([12]). Similarly, the algebra of sequential operations and constants
has a structure of a wscc category.

There is a strong analogy between our notion of system with parallel and
sequential interfaces and the definition of weighted automata introduced in
chapter 1. First of all the operations are similar, except for the sum which is
different. In fact, in weighted and Markov automata model we have choosen
to define a slightly different sum in order to simplify the description of con-
crete problems rather than defining a sum analogous to the sum of systems.
The algebra of weighted and Markov automata with the simplified sum is not
a wscc category with respect to sequential operations and constants whereas
for parallel operations and constants it is. In the abstract model of systems
we prefer the more complicated definition of sum in order two have two sym-
metric monoidal structures.

Further, in the cospan-span model for each transition there is a set of
arrows attached which is the analogous of the weighting of a transition in

42

2. Systems with parallel and sequential interfaces 43

weighted and Markov automata.
The plan of the chapter is as follows. We begin with the basic concepts

of span and cospan of graphs that are necessary to understand the following
sections. Then we introduce the abstract notion of a system with sequential
and parallel interfaces. In section 2.3 we make simplifying assumptions ar-
riving in the section 2.4 with an algebra that is, in effect, an implementable
programming language of systems. The reader should be aware that the
word system has an increasingly specific meaning in successive sections of
the chapter. The motive for proceeding in this way is to show that what
may appear as arbitrary and unmotivated in section 2.4 actually arises in a
natural way from general considerations. In addition, for some applications a
different set of simplifying assumptions may be more appropriate. Finally, as
examples of programs in the language we indicate how sequential program-
ming, classical concurrency examples, hierarchy and change of geometry may
be expressed.

An important element of this chapter is the matrix calculus which arises
from the fact that categories of spans in an extensive category [11] have direct
sums. It allows an explicit relation between programs with data types, and
finite automata which express the control structure of the program.

Another important element is the role of the distributive law in various
roles, including flattening hierarchy.

In this chapter we concentrate on the operations of the algebra, and its
expressivity, rather than the equations satisfied. Theoretical considerations
behind this model include [59], [57],[11], [12],[13] and [43].

2.1 Spans and cospans of graphs

We introduce the categories of spans and cospans of graphs in order to have
the necessary mathematical notions to define systems with parallel and se-
quential interfaces.

By a graph G we mean here a set of states states(G), a set of transi-
tions transitions(G) and two functions source, target : transitions(G) →
states(G) which specify the source state and target state of a transition. We
say that a graph G is finite if states(G) and transitions(G) are finite sets.

Given two finite graphs A and B, a span from A to B is a diagram

A G
∂G
0oo

∂G
1 // B

in the category of graphs and morphisms between them. We say that two
spans ∂G0 : A ← G → B : ∂G1 and ∂H0 : A ← H → B : ∂H1 are isomorphic

2. Systems with parallel and sequential interfaces 44

if there exists an isomorphism of graphs φ : G → H such that the following
diagram is commutative:

A G
∂G
0oo

∂G
1 //

φ

��

B

H
∂H0

``@@@@@@@ ∂H1

>>~~~~~~~~

The composition of spans is by pullback: given two spans

G
∂G
0

��~~
~~

~~
~ ∂G

1

��@
@@

@@
@@

H
∂H
0

~~~~
~~

~~
~~ ∂H

1

  @
@@

@@
@@

A B C

the composite is ∂G0 p : A ← G ×B H → C : ∂G1 q where G ×B H, p, q is a
pullback of ∂G1 , ∂

H
0 .

G×B H
p

zzvvv
vv

vv
vv

v
q

$$I
IIIIIIII

G
∂G0

��~~
~~

~~
~ ∂G1

$$I
IIIIIIIII H

∂H0

zzuuuuuuuuuu
∂H1

  @
@@

@@
@@

A B C

Since span composition is unique up to an isomorphism of the central
graph, we will always consider spans up to isomorphisms. For simplicity we
will often denote the arrows of a span as ∂0 and ∂1 without specifying the
center G. We denote by Span(Graph) the category whose objects are finite
graphs and whose arrows are isomorphism classes of spans of graphs.

We denote by Cospan(Graph) the dual category of Span(Graph). Thus,
a cospan is a diagram γ0 : X → G ← Y : γ1. Composition of cospans is by
pushout and an arrow of Cospan(Graph) is an isomorphism class of cospans.

2.2 Systems with sequential and parallel in-

terfaces

We represent systems by (possibly infinite) graphs of states and transitions,
to which we will be adding extra structure.



2. Systems with parallel and sequential interfaces 45

2.2.1 Sequential interfaces

In order to compose sequentially one system with another both systems must
have appropriate interfaces. The idea comes from the sequential composition
of automata, which occurs for example in Kleene’s theorem: certain states
(final states) of one automata are identified with certain states (initial states)
of another. Here we replace initial and final states by graph morphisms into
the graph of the system.

Definition 2.2.1. A system with sequential interfaces is a cospan γ0 : X →
G ← Y : γ1 of graphs. The graph G is the graph of the system; X and Y
are the graphs of the interfaces. We write this also as GX

Y . Composition of
systems is by pushout. The category of systems with sequential interfaces is
Cospan(Graph). A behaviour of GX

Y is a path in the central graph G.

As we said above, in speaking of the category of cospans we should con-
sider cospans only up to an isomorphism of the central graph of the cospan.
In practice we will always consider representative cospans, and any equation
we state will be true only up to isomorphism. The same proviso should be
applied to our discussion later of spans, and systems.

2.2.2 Parallel interfaces

Similarly, to compose in communicating parallel two systems each system
must have a parallel interface. The idea here comes, for example, from cir-
cuits. A circuit component has a physical boundary and transitions of the
circuit component produce transitions on the physical boundary. Joining two
circuit components, the transitions of the resulting system are restricted by
the fact that the transitions on the common boundary must be equal. We
describe the relation between transitions of the system G and the transitions
on a boundary A by a graph morphism G→ A. To obtain a category when
we compose we require that a system has two parallel interfaces.

Definition 2.2.2. A system with parallel interfaces is a span ∂0 : A← G→
B : ∂1 of graphs. The graph G is the graph of the system; A and B are the
graphs of the interfaces. We write this also as GA,B.

Composition of systems is by pullback. The category of systems with se-
quential interfaces is Span(Graph). A behaviour of GA,B is a path in the
central graph G.



2. Systems with parallel and sequential interfaces 46

2.2.3 Combined sequential and parallel interfaces

We can now combine the two kinds of interfaces just defined to obtain a
system that allows both sequential and parallel composition.

Definition 2.2.3. A system with sequential and parallel interfaces consists
of a commutative diagram of graphs and graph morphisms

G0

γ0

��

X
∂0oo

γ0

��

∂1 // G1

γ0

��
A G

∂0oo ∂1 // B

G2

γ1

OO

Y
∂0oo

γ1

OO

∂1 // G3

γ1

OO

or more briefly, when we are not emphasizing the corner graphs, as

•

��

Xoo

��

// •

��
A Goo // B

•

OO

Yoo

OO

// •

OO

We denote such a system very briefly as GX
Y ;A,B, or even GX

Y or GA,B or
even just G, depending on the context. A behaviour of GX

Y ;A,B is a path in
the central graph G. Another useful notation is as follows: given an object O
in the diagram we denote the four adjacent objects by O→, O←, O↓ and O↑;
for example, G←↑ = G↑← = G0.

Such a system may be regarded in two ways:

(i) as three systems with parallel interfaces, the first XG0,G1
and third

YG2,G3
being sequential interfaces to the second GA,B;

(ii) as three systems with sequential interfaces, two (AG0

G2
, BG1

G3
) being pa-

rallel interfaces to the other (GX
Y ).

The point is that to compose in parallel a system with sequential interfaces
requires that the sequential interfaces also have parallel interfaces. It is not
necessary that the parallel interfaces themselves have parallel interfaces, since
interfaces are identified, not composed, in the composition. A similar remark
applies to sequential composition. Notice that for simplicity we have used the
same symbols γ0, γ1 for all the sequential interface morphisms and similarly
∂0, ∂1 for all the parallel interface morphisms.



2. Systems with parallel and sequential interfaces 47

Operations on systems

We define now operations on systems with parallel and sequential interfaces
analogous to those defined for weighted automata.

Definition 2.2.4. Two systems GX
Y ;A,B and HZ

W ;B,C admit a composition by
pullback, the communicating parallel (or horizontal) composition, denoted
GX
Y ;A,B ×B HZ

W ;B,C (or briefly GX
Y ;A,B||HZ

W ;B,C).

By the associativity of pullback it follows the associativity of horizontal
composition.

Proposition 2.2.5. The communicating parallel composition of systems is
associative.

Of course, certain corner graphs of G and H are required to be the same.
This applies also in the next definition.

Definition 2.2.6. Two systems GX
Y ;A,B and KY

Z;D,E admit a composition by
pushout, the sequential (or vertical) composition, denoted GX

Y ;A,B +Y K
Y
Z;D,E

(or briefly GX
Y ;A,B ◦KY

Z;D,E).

Proposition 2.2.7. The sequential composition of systems of associative.

It is important to note that, given four systems GX
Y ;A,B, H

U
V ;B,C , K

Y
Z;D,E,

LVW ;E,F in the following configuration

•
��

Xoo

��

// •
��

Uoo

��

// •
��

A Goo // B Hoo // C

•

OO

��
Yoo

OO

��

// •

OO

��
Voo //

OO

��

•

OO

��
D Koo // E Loo // F

•

OO

Zoo

OO

// •

OO

Woo

OO

// •

OO

there is an obvious comparison map

(GX
Y ;A,B||HU

V ;B,C)+Y×V (K
Y
Z;D,E||LVW ;E,F )→ (GX

Y ;A,B+YK
Y
Z;D,E)||(HU

V ;B,C+VL
V
W ;E,F ),

satisfying appropriate (lax monoidal) coherence equations, which however
is not in general an isomorphism. This reflects the fact that the left-hand
expression involves more synchronization than the right.



2. Systems with parallel and sequential interfaces 48

Example 2.2.8. Consider the systems

0

��
0oo

��

// 0
��

0oo

��

// 0
��

1 Goo // 1 Hoo // 1

0

OO

��
0oo

OO

��

// 1

OO

��
0oo //

OO

��
0

OO

��
1 Koo // 1 Loo // 1

0

OO

0oo

OO

// 0

OO

0oo

OO

// 0

OO

where all the arrows are obvious. If we calculate first the pullbacks and then
the pushout we obtain:

0

��

0oo

��

// 0

��
1 G×Hoo // 1

0

OO

��

0oo

OO

��

// 0

OO

��
1 K×Loo // 1

0

OO

0oo

OO

// 0

OO

=

0

��

0oo

��

// 0

��
1 (G×H)+(K×L)oo // 1

0

OO

0oo

OO

// 0

OO

On the other hand, if we calculate first sequential compositions we have:

0

��

0oo

��

// 0

��

0oo

��

// 0

��
1 G+Koo // 1 H+Loo // 1

0

OO

0oo

OO

// 0

OO

0oo //

OO

0

OO
=

0

��

0oo

��

// 0

��
1 (G+K)×(H+L)oo // 1

0

OO

0oo

OO

// 0

OO

The comparison map (G × H) + (K × L) → (G + K) × (H + L) is not an
isomorphism.

Example 2.2.9. Consider the following systems:

b

ε1/a

b

b

b

ε3/b

b

a/ε2

b

b/ε4
b

b
b

a

c

b

∅ ∅ ∅ ∅∅

b

b

b

ε1

ε3

b

b

b

ε2

ε4

∅ ∅ ∅ ∅∅

If we calculate first the parallel compositions and then the pushout we obtain:



2. Systems with parallel and sequential interfaces 49

b

ε1/ε2

ε3/ε4

∅∅∅

b b

ε1

ε3

ε2

ε4

∅∅∅

Calculating first the pushouts the composite is:

b

ε1/ε2

ε3/ε4

∅∅∅

b b

ε1

ε3

ε2

ε4

∅∅∅

ε1/ε4

ε3/ε2

Example 2.2.10. Consider now the systems:

b

ε1/a
b

b

ε3/b

b

a/ε2

b

b/ε4
b

b

a

c

b

∅ ∅ ∅ ∅∅

b

b

b

ε1

ε3

b

b

b

ε2

ε4

∅ ∅ ∅ ∅∅

∅ ∅

Calculating first the parallel compositions we have:

ε1/ε2

ε3/ε4

∅∅∅

b

ε1

ε3

∅∅∅

b

b

b

ε2

ε4
b

b

With the second calculation we obtain:



2. Systems with parallel and sequential interfaces 50

ε1/ε2

ε3/ε2

∅∅∅

b
ε1

ε3

∅∅∅

b

b

b

ε2

ε4
b

b

ε1/ε4

ε3/ε4
b

b

Definition 2.2.11. The product (or parallel composition without commu-
nication) GX

Y ;A,B×HZ
W ;C,D of two systems GX

Y ;A,B, H
Z
W ;C,D is formed by taking

the product of all the objects and arrows in G with the corresponding objects
and arrows in the H; briefly

•×•
��

X×Zoo

��

// •×•
��

A×C G×Hoo // B×D

•×•

OO

Y×Woo

OO

// •×•

OO

Definition 2.2.12. The sum GX
Y ;A,B+H

Z
W ;C,D of two systems GX

Y ;A,B, H
Z
W ;C,D

is formed by taking the sum of all the objects and arrows in G with the
corresponding objects and arrows in the H; briefly

•+•
��

X+Zoo

��

// •+•
��

A+C G+Hoo // B+D

•+•

OO

Y+Woo

OO

// •+•

OO

The last part of the algebra of systems consists of a number of constants.

Definition 2.2.13. The constants of the algebra are systems constructed
from the constants of the distributive category structure of Sets regarded as
discrete graphs ([68],[47],[26]).

When we describe in a later section a programming language there will
be of course also as constants the operations of data types; the particular
language we describe has the natural numbers together with predecessor and
successor.

2.2.4 The wscc structure on span and cospan cate-

gories

As seen above, a system may be regarded indifferently as a cospan of spans
of graphs or as a span of cospans of graphs. Thus, the category of systems is a



2. Systems with parallel and sequential interfaces 51

subcategory1 of the categories Cospan(Span(Graph)) and Span(Cospan(Graph))
and it has the same well supported compact closed structures (briefly, wscc
structures) defined on span and cospan categories. In fact, it is well-known
([57, 58]) that the category Cospan(E), where E is a category with finite
colimits, is a wscc category, that is a symmetric monoidal category in which
every object has a separable algebra structure ([12]). This means that for
each object A of E there exist four arrows2

iA : O → A, ∇A : A+ A→ A, ioA : A→ O, ∇o
A : A→ A+ A

such that (A,∇A, iA) is a commutative monoid, (A,∇o
A, i

o
A) is a cocommuta-

tive comonoid and the following axioms hold:

(i) (1A+∇A) ◦ (∇o
A+1A) = ∇o

A ◦∇A = (∇o
A+1A) ◦ (1A+∇A) (Frobenius

equations),

(ii) ∇A ◦ ∇o
A = 1A.

The axioms are represented as3:

= =

=

Also the dual category Span(E), where E is a category with finite limits,
is wscc. For each object A of Span(E) there are four arrows4

pA : I → A, ∆A : A×A→ A, poA : A→ I, ∆o
A : A→ A×A

such that (A,∆A, pA) is a commutative monoid, (A,∆o
A, p

o
A) is a cocommu-

tative comonoid and the following axioms hold:

1For simplifying assumptions see section 2.3.
2These constants are the analogous of sequential constants defined for weighted au-

tomata (see p. 25).
3See the graphical representation of sequential wires, p. 33.
4Compare these arrows with parallel constants defined on page p. 30.



2. Systems with parallel and sequential interfaces 52

(i) (1A ×∆A)||(∆o
A × 1A) = ∆o

A||∆A = (∆o
A × 1A)||(1A ×∆A) (Frobenius

equations),

(ii) ∆A||∆o
A = 1A.

Graphically:

= =

=

2.3 Simplifying Assumptions

We introduce a number of simplifying assumptions with the aim of arriving
at a implementable programming language for systems. As we do this we
will be considering also certain important derived operations of the algebra.

2.3.1 Simplifying the interfaces

Assumption 1. We assume from now on that in a system with sequential
and parallel interfaces G as described above the corner graphs G←↑, G→↑,
G←↓, G→↓ each have one state and no transitions, that the graphs A,B each
have one state, and that the graphs X, Y have no transitions.

The idea is that in many cases the sequential interface consists only of
states with no transitions, whereas the parallel interfaces are “stateless”, that
is, consist of transitions and one state. The assumptions are appropriate for
message passing communication but not for systems in which there is com-
munication by shared variables, since this requires that the parallel interfaces
have state. It is not difficult to make assumptions for this type of communi-
cation but we prefer here to make the simpler assumption.

Given the assumption we may ignore the corner graphs of a system so



2. Systems with parallel and sequential interfaces 53

that it consists of five graphs G,A,B,X, Y and the four graph morphisms

X

γ0

��
A G

∂0oo ∂1 // B

Y

γ1

OO

.

Since the single states of A and B need not have a name, we may sometimes
confuse A and B with transitions(A) and transitions(B) respectively. We
may think of A,B,X, Y as sets, and of A and B as labels for the transitions
in G (the graph morphisms ∂0, ∂1 providing the labelling).

As a consequence of the simple form of the corner graphs of a system we
have the following result.

Proposition 2.3.1. The communicating parallel composite GX
Y ;A,B×BHZ

W ;B,C

(briefly GX
Y ;A,B||HZ

W ;B,C) of two systems has top sequential interface X × Z,
and bottom sequential interface Y ×W ; we can summarize this by the formula
GX
Y ;A,B||HZ

W ;B,C = (G||H)X×ZY×W ;A,C.

The sequential composite GX
Y ;A,B +Y H

Y
Z;C,D has left parallel interface the

graph with one vertex and transitions transitions(A)+transitions(C) which
we denote with some abuse of notation as A+C, and similarly right parallel
interface B +D; we can summarize this by the formula GX

Y ;A,B +Y H
Y
Z;C,D =

(G+Y H)XZ;(A+C),(B+D).

Trivially, GX
Y ;A,B ×HZ

W ;C,D = (G×H)X×ZY×W ;A×C,B×D.

Notice that the class of systems we are considering is closed under sequen-
tial and communicating parallel composition and product, but is not closed
under the operation of sum since the resulting system will have parallel in-
terfaces with two states, not one.

We now introduce two derived operations similar to the sequential compos-
ite and the sum, but which are local in the sense that the parallel interfaces
are fixed. Intuitively they are sequential operations within a fixed parallel
protocol.

Definition 2.3.2. The local sequential composition GX
Y ;A,B+Y,locH

Y
Z;A,B (or

more briefly GX
Y ;A,B •HY

Z;A,B) of two systems GX
Y ;A,B, H

Y
Z;A,B, is formed from



2. Systems with parallel and sequential interfaces 54

GX
Y ;A,B +Y H

Y
Z;A,B by composing with appropriate codiagonals as follows:

•
��

•
��

1oo 1 // •
��

Xoo

��

// •
��

•1oo

��

1 // •
��

A A+A
∇oo 1 // A+A G+YHoo // B+B B+B

1oo ∇ // B

•

OO

•1oo 1 //

OO

•

OO

Zoo

OO

// •

OO

•1oo 1 //

OO

•

OO

where the codiagonals ∇ : A + A → A,∇ : B + B → B are codiagonals on
transitions, but the identity on the single state.

Definition 2.3.3. The local sum GX
Y ;A,B+locH

Z
W ;A,B of two systems GX

Y ;A,B,
HZ
W ;C,D, is formed from GX

Y ;A,B +HZ
W ;C,D by composing with appropriate co-

diagonals as follows:

•
��

•+•
��

∇oo 1 // •+•
��

X+Zoo

��

// •+•
��

•+•1oo

��

∇ // •
��

A A+A
∇oo 1 // A+A G+Hoo // B+B B+B

1oo ∇ // B

•

OO

•+•∇oo 1 //

OO

•+•

OO

Y+Woo

OO

// •+•

OO

•+•1oo ∇ //

OO

•

OO

Clearly, GX
Y ;A,B +loc H

Z
W ;A,B = (G+loc H)X+Z

Y+W ;A,B.

Now the class of systems we are now considering is closed under the
operations of parallel and sequential composition, product, local sequential
composition and local sum.

2.3.2 Finiteness assumptions

In general, pushouts and pullbacks of infinite graphs are not implementable.
We need to make some finiteness assumptions.

Assumption 2. We assume that in system GA
B;X,Y that A and B have a

finite number of transitions.

This assumption means that the pullbacks in the parallel composition
are implementable. A further consequence of this assumption is that the
transitions of the graph G decompose as a disjoint union

transitions(G) =
⊎

a∈A,b∈B
transitions(G)a,b

where transitions(G)a,b is the set of transitions labelled by a ∈ A, b ∈ B.
Denote by Ga,b the graph with the same states as G but with transitions
transitions(G)a,b.



2. Systems with parallel and sequential interfaces 55

The next assumption will have the effect that our systems have a finite
state automata as control structure. Usually finite state automata are pre-
sented as recognizers of regular languages [35]. However the original work of
McCulloch and Pitts [50] introduced automata as systems with thresholds,
that is systems with infinite state spaces which decomposed into finite sums.
Our finiteness assumptions are of this nature.

Assumption 3. We assume that the set of states of the graphs G, G↑,
G↓ are given as a finite disjoint sums : states(G) = U1 + U2 + · · · + Um,
states(G↑) = X1 +X2 + · · ·+Xk, states(G↓) = Y1 + Y2 + · · ·+ Yl.

The first effect of this is that each of the graphs Ga,b (a ∈ A, b ∈ B)
breaks up as a matrix of spans of sets.

To see this notice that a graph G is just an endomorphism

source, target : transitions(G)→ states(G)

in Span(Sets). Further the category Span(Sets) has direct sums, the direct
sum of U and V being U + V with injections the functions iU : U → U + V ,
iV : V → U +V considered as spans, and projections the same functions but
now considered as the opposite spans iopU : U +V → U , iopV : U +V → V . The
commutative monoid structure on Span(Sets)(U, V ) is given by sum and the
empty span. Since a graph is just an endomorphism in Span(Sets) a graph
G whose state set is U + V may be represented as a 2 × 2 matrix of spans
(

GU,U GU,V

GV,U GV,V

)

where for example GU,V = iopV GiU . Further

G = iUGU,U i
op
U + iVGU,V i

op
U + iUGV,U i

op
V + iVGV,V i

op
V .

Generalizing this to the case in which the states break up into a disjoint
sum of n subsets Assumption 3 implies that each of the graphs Ga,b may
be represented as a k × k matrix of spans, the i, jth entry of which we will
denote Ga,b,Ui,Uj

, or even Ga,b,i,j. It has a simple meaning: Ga,b,Ui,Uj
is the

set of transitions of G labelled a, b whose sources lie in Ui and whose targets
lie in Uj. The projections of the span Ga,b,Ui,Uj

are the projections onto the
sources and targets.

It is easy also to expand the matrix to include the functions γ0 : X → G,
γ1 : X → G. The resulting matrix has columns indexed by X1, X2, · · · , Xk,
U1, U2, · · · , Ul and rows indexed by Y1, Y2, · · · , Yl, U1, U2, · · · , Um. As an



2. Systems with parallel and sequential interfaces 56

example when k = l = m = 2 the matrix has the form

Ga,b X1 X2 U1 U2

Y1 0 0 Ga,b,U1,Y1 Ga,b,U2,Y1

Y2 0 0 Ga,b,U1,Y2 Ga,b,U2,Y2

U1 Ga,b,X1,U1
Ga,b,X2,U1

Ga,b,U1,U1
Ga,b,U2,U1

U2 Ga,b,X1,U1
Ga,b,X2,U2

Ga,b,U1,U2
Ga,b,U2,U2

where 0 denotes the empty span.

Example 2.3.4. The predecessor function pred : N → N + 1 which returns
an error if the argument is 0 but otherwise decrements, may be considered as
a system with trivial parallel interfaces, top sequential interface N bottom
sequential interface N +1 and central graph having states N +N +1, transi-
tions N and source : N → N+(N+1) = injN , target : N → N+(N+1) =
inj(N+1). (This is the usual picture of a function as a graph on the disjoint
union of the domain and codomain, with edges relating domain elements and
their images,) We call this system pred. The matrix is

pred N N N 1

N 0 0 1 0
1 0 0 0 1
N 1 0 0 0
N 0 predN,N 0 0
1 0 predN,1 0 0

where 0 denotes the empty span and 1 denotes the identity span. The span
predN,1 is the partial function which returns error on zero, and the span
predN,N is the partial function returning n− 1 for n > 0.

We describe next a derived operation which is a minor modification of
the parallel composition, in order to simplify the matrix version of the pa-
rallel composition. The mathematical fact behind the derived operation is
this: in a symmetric monoidal category with direct sums, in which the ten-
sor product distributes over the direct sums, if two arrows are represented
as matrices, then via distributivity isomorphisms the matrix of the tensor
product of two arrows is a tensor product of the matrices of the arrows. The
precise distributivity isomorphism needs to be specified since there are many
possible, resulting in different ordering of the rows and columns of the tensor
product matrix.



2. Systems with parallel and sequential interfaces 57

Definition 2.3.5. Distributed parallel.
Given systems GX1+···+Xk

Y1+···+Yl;A,B, H
Z1+···+Zk′

W1+···+Wl′ ;B,C
the communicating parallel

composite G×B H (briefly G||H) has left interface A, right interface C, top
interface (X1 + · · ·+Xk)× (Z1 + · · ·+Zk′) and bottom interface (Y1 + · · ·+
Yl) × (W1 + · · · + Wl′). Composing on the top and bottom interfaces with
distributivity isomorphisms we obtain a system with left interface A, right
interface C, top interface X1 × Z1 + X2 × Z1 + · · · + Xk × Zk′ and bottom
interface Y1 ×W1 + Y2 ×W1 + · · ·+ Yl ×Wl′ The set of states of G||H may
similarly be distributed to have the form U1 × V1 + · · ·+ Um × Vm′. We will,
with an abuse of notation, denote this resulting system also as G||H.

Definition 2.3.6. Distributed product.
Given systems GX1+···+Xk

Y1+···+Yl;A,B, H
Z1+···+Zk′

W1+···+Wl′ ;C,D
the product G × H has left

interface A × C, right interface B × D, top interface (X1 + · · · + Xk) ×
(Z1 + · · · + Zk′) and bottom interface (Y1 + · · · + Yl) × (W1 + · · · + Wl′).
Composing on the top and bottom interfaces with distributivity isomorphisms
we obtain a system with left interface A × C, right interface B × D, top
interface X1 × Z1 + X2 × Z1 + · · · + Xk × Zk′ and bottom interface Y1 ×
W1 + Y2 ×W1 + · · ·+ Yl ×Wl′ The set of states of G×H may similarly be
distributed to have the form U1×V1+ · · ·+Um×Vm′ . We will, with an abuse
of notation, denote this resulting system also as G×H.

The last assumption we make has the consequence that the pushout in
sequential composition is done a the level of control, not of data, and is
therefore implementable.

Assumption 4. We assume that in the matrix of the system GA
B;X,Y that

the entries involving the sequential interfaces are either the identity span 1
or the empty span 0.

Automaton representation

Of course the matrix for GX
Y,;A,B has a geometric representation as a labelled

automaton, with top sequential interfaces X1, X2, · · · , Xk, bottom sequential
interfaces Y1, Y2, · · · , Yl, and vertices which are labelled by the sets Ui and
for each a ∈ A, b ∈ B edges from Ui to Uj labelled Ga,b,Ui,Uj

. As usual we will
omit edges labelled with empty spans. This representation has advantages
both technical and conceptual, but is less easy to typeset. We give one
example, namely the automaton representation of the predecessor system
described above, which however has trivial parallel interfaces. We will see
further examples in section 2.5.



2. Systems with parallel and sequential interfaces 58

N

N

N

N 1

1

predN,N predN,1

2.4 The programming language Cospan-Span

The idea of this section is to restate the notion of system we have developed,
and describe the operations on systems. The reader should compare the
notions described here with those described in [41] where finite state systems
were considered. We describe the programming language at the same time
as its semantics. The programs are the expressions in the operations and
constants; an execution of a program is a path in the graph described by the
expression.

2.4.1 Systems

Definition 2.4.1. A system G consists of

(i) two finite sets A,B called the left and right parallel interfaces on G;

(ii) two families of possibly infinite sets X = X1, X2, · · · , Xk and Y =
Y1, Y2, · · · , Yl called the top and bottom sequential interfaces;

(iii) a family of possibly infinite sets U = U1, U2, · · · , Um which together
constitute the internal state space of G;

(iv) two functions ϕ : {1, 2, · · · , k} → {1, 2, · · ·m} and ψ : {1, 2, · · · , l} →
{1, 2, · · ·m} called the inclusions of the sequential interfaces, with the
properties that Xi = Uϕ(i) and Yi = Uψ(i);

(v) a family of spans of sets Ga,b,i,j : Ui → Uj (a ∈ A, b ∈ B, i ∈
{1, 2, · · · , m}, j ∈ {1, 2, · · · , m}) which together constitute a family
of graphs Ga,b (a ∈ A, b ∈ B) each with vertex set U1 + U2 + · · ·+ Um.

The graph Ga,b is the graph of transitions of the system when the signals a, b
occur on the parallel interfaces. We denote the system as GX

Y ;A,B(U).



2. Systems with parallel and sequential interfaces 59

It is easy to see that this is the essential concrete content of the notion
of system developed in the previous section.

2.4.2 Operations on systems, and constants

In the following we denote families by giving a typical element.

Definition 2.4.2. The product of two systems GX
Y ;A,B(U), H

Z
W ;C,D(V ), de-

noted G×H, has left and right interfaces A×C,B×D, top interface {Xi×Zj},
bottom interface {Yi ×Wj}, internal state space {Ui × Vj}, inclusions of se-
quential interfaces ϕG×H = ϕG × ϕH and ψG×H = ψG × ψH , and finally the
spans

(G×H)(a,c),(b,d),(i1,j1),(i2,j2) = Ga,b,i1,i2 ×Hc,d,j1,j2.

Ignoring the sequential interfaces, the matrix of the distributed product
is just the tensor product of the matrices of the components.

Definition 2.4.3. The communicating parallel composition of two systems
GX
Y ;A,B(U), H

Z
W ;B,C(V ), denoted G||H, has left and right interfaces A,C, top

interface {Xi×Zj}, bottom interface {Yi×Wj}, internal state space {Ui×Vj},
inclusions of sequential interfaces ϕG×H = ϕG × ϕH and ψG×H = ψG × ψH ,
and finally the spans

(G||H)a,c,(i1,j1),(i2,j2) =
∑

b

(Ga,b,i1,i2 ×Hb,c,j1,j2).

Definition 2.4.4. The sequential composite of two systems GX
Y ;A,B(U), H

Y
Z;C,D(V ),

denoted G+YH, has left and right interfaces A+C,B+D, top interface {Xi},
bottom interface {Zi}, internal state space ({Ui} + {Vj})/(UψG(i) ∼ VϕH(i)),
inclusions of sequential interfaces ϕG and ψH , and finally the spans

(G+Y H)p,q,[Wi],[Wj] =
∑

U∈[Wi],U ′∈[Wj ]

Gp,q,U,U ′ +
∑

V ∈[Wi],V ′∈[Wj ]

Hp,q,V,V ′

where p ∈ A+C, q ∈ B+D,W,W ′ ∈ {Ui}+{Vj}, [W ] denotes the equivalence
class of W .

Definition 2.4.5. The local sequential of two systems GX
Y ;A,B(U), H

Y
Z;A,B(V ),

denoted G+Y H (briefly G•H), has left and right interfaces A,B, top inter-
face {Xi}, bottom interface {Zi}, internal state space {Ui}+ {Vj}/(UψG(i) ∼
VϕH (i)), inclusions of sequential interfaces ϕG and ψH , and finally the spans

(G •H)p,q,[Wi],[Wj] =
∑

U∈[Wi],U ′∈[Wj]

Gp,q,U,U ′ +
∑

V ∈[Wi],V ′∈[Wj ]

Hp,q,V,V ′



2. Systems with parallel and sequential interfaces 60

where p ∈ A, q ∈ B, W,W ′ ∈ {Ui} + {Vj}, and [W ] denotes the equivalence
class of W .

Definition 2.4.6. The local sum of two systems GX
Y ;A,B(U), H

Z
W ;A,B(V ),

denoted G+locH, has left and right interfaces A,B, top interface {Xi}+{Zj},
bottom interface {Yi}+ {Wj}, internal state space ({Ui}+ {Vj}), inclusions
of sequential interfaces ϕG + ϕH and ψG + ψH , and finally the spans

(G+loc H)p,q,[Ui],[Uj] = Gp,q,Ui,Uj

and
(G+loc H)p,q,[Vi],[Vj] = Gp,q,Vi,Vj ,

where p ∈ A, q ∈ B and all remaining spans are empty.

2.4.3 Programs

In our view programming languages should be presented by first describing
an algebra of systems. Then programs are elements of the free algebra of the
same type, generated by some basic systems. The meaning of the program
is then the evaluation in the concrete algebra. The programs of the Cospan-
Span language are expressions in the operations and constants of the algebra
described above, and the following basic systems: predNN+1, succ

N+1
N (defined

similarly to predNN+1). The evaluation of a program is a system; a behaviour
is a path in the central graph of the system.

2.5 Concluding remarks

If one examines the previous investigations in this project it will be clear
that many matters discussed at the level of finite state control may now be
lifted to include also data.

2.5.1 Turing completeness

It is not difficult to relate the Elgot automata introduced in [68], [38],[42] to
the algebra of cospans of graphs. It was shown in [60] that Elgot automata
based on the elementary operations of predecessor and successor for natural
numbers are Turing complete, and hence also the algebra described in this
chapter. We give an example which illustrates sequential programming in
Cospan-Span. All the systems in the following have trivial parallel inter-
faces. We use the following constants definable from distributive category
operations, considered as systems with trivial parallel interfaces in which the



2. Systems with parallel and sequential interfaces 61

central graph has no transitions (in which case a system reduces to a cospan
of sets):

• ηX = 0→ X
∇← X +X,

• εX = X +X
∇→ X ← 0,

• ∇X = X +X
∇→ X ← X,

• 1X = X
1→ X

1← X .

Example 2.5.1. The following is a program which, commencing in a state
of the top sequential interface, computes addition of two natural numbers,
terminating in the lower interface:

(ηN2 + 1N2) • (1N2 +∇) • (1 + p× 1N) • (1N2 + 1N × s+ 1N) • (εN2 + 1N).

The system described by the program is:

N2

N2

N

N2 N

pN,N × 1

pN,1 × 1

1× s

where pN,1, pN,N are the partial functions arising from the predecessor function

p : N → 1 +N

n 7→ p(n) :=

{

? if n = 0
n− 1 if n > 0

and
s : N → N,

n 7→ s(n) := n + 1

is the successor function.
For instance, if the initial state is (2, 3) the program computes

(2, 3)
pN,N×1// (1, 3)

1×s // (1, 4)
pN,N×1// (0, 4)

1×s // (0, 5)
pN,1×1// (?, 5) ∼= 5

and returns 5.



2. Systems with parallel and sequential interfaces 62

2.5.2 Problems of concurrency

In [41],[42], [40] the authors explain how classical problems of concurrency
may be modelled in Span(Graph) algebra, at the level of finite state ab-
straction, which is the appropriate level for controlling many properties. In
this chapter we show that these descriptions may be extended to include also
operations on the data types.

We give a simple example of a parallel composite of two systems P and
Q. P has trivial left interface, and right interface {ε, a} whereas Q has trivial
right interface and left interface {ε, a}. The combined system may be repre-
sented by the diagram (analogous to those [40]), in which the first part of
a label is the span of sets, and the second part is the label on the parallel
interface. The left system is P and the right Q.

N

N

N

1, a
1, ε

t1, ε

f, ε
t1, ε

N

N

N

1, a
1, ε

t2, ε

g, ε
t2, ε

a, ε

The system P repeatedly applies f and then a test t1 until the test results
false, and then P may idle, eventually (in the Italian sense) synchronizing
with Q on the signal a. After this P repeats the whole sequence. Q does
the same, but with a different function g and a different test t2, and seeks to
synchronize with P .

Each of P and Qmay be described by a Cospan-Span program in a similar
way to the addition program above.

2.5.3 Hierarchy

There is an obvious relevance to hierarchical systems of the fact that systems
in this algebra may be constructed by repeated parallel and sequential operations,
with analogies to state charts. For an example of hierarchical system see sec-
tion 3.3.

2.5.4 Change of geometry

In [42] the change of geometry is described using sequential operations on
parallel systems. However in that paper only the local sequential composition



2. Systems with parallel and sequential interfaces 63

is considered, whereas in this chapter we have a general sequential operation,
which allows change of geometry with a change of parallel protocol.



Chapter 3

Hierarchical and mobile

systems

In this chapter we explain with examples how the algebra of Markov au-
tomata with both parallel and sequential interfaces can be used to describe
hierarchical systems and ones with evolving geometry.

The plan of the chapter is as follows. In the first section we show that
any automaton may be described as a sequential expression of automata with
two states and a single transition. Then, we describe a variant of Dining
Philosophers system called Sofia’s birthday party, originally introduced in
[42]. In the third section we describe a Fork Bomb. Finally, we describe in
our model the finite probabilistic automata of Segala and Lynch [61, 49] and
their behaviours.

3.1 Any automaton is in Σ(E)

Given a set S of automata, we denote with Π(S) the set of automata which
can be described as parallel composites of elements in S, and we denote with
Σ(S) the set of automata which can be described as sequential composites
of elements in S.

Let E be the set of automata with two states and a single transition.
Then any automaton is an element of Σ(E). To see this consider the following
Markov automata:

64



3. Hierarchical and mobile systems 65

1 2

3

a/b1, c; 2

a/b2, c; 1

a/b1, c; 3

x

y z

a

b1, b2

c

Let T1, T2, T3 be three single transition as follows:

• T1 has the single transition labelled on the left by a and the right by
(b1, c) with weight 2,

• T2 has the single transition labelled on the left by a and the right by
(b1, c) with weight 3,

• T3 has the single transition labelled on the left by a and the right by
(b2, c) with weight 1,

then the following diagram shows how the automaton may be given as
T1+T2+T3 composed sequentially with sequential wires:

T1 T2 T3

Remark 3.1.1. It is clear from this result that the pictures of automata are
actually a special case of our designs for expressions of automata ([57]).

Example 3.1.2. The Dining Philosopher system described in section 1.4 is
in Π(Σ(E)), that is a communicating parallel system.



3. Hierarchical and mobile systems 66

3.2 Sofia’s birthday party

The example we would like to describe is a variant of the Dining Philosopher
Problem which we call Sofia’s birthday party. Instead of a circle of philoso-
phers around a table with as many forks, we consider a circle of seats around
a table separated by forks on the table. Then there are a number of children
(not greater than the number of seats). The protocol of each child is the
same as that of a philosopher. However in addition, if a child is not holding
a fork, and the seat to the right is empty, the child may change seats - the
food may be better there.

To simplify the problem we will assume that all transitions have weight 0
or 1, so the transitions of components we mention will all have weight 1.

To describe this we need six automata – a child C, an empty seat E , a
fork F , two transition elements L and R, and the identity 1A of A (a wire).
The interface sets involved are A = {x, ε} and B = {ε, t, r}.

The transition elements have left and right interfaces A× B. The graph
of the of the transition element L has two vertices p and q and one labelled
edges x, ε/ε, ε : q → p. Its top interface is Q = {q}, and its bottom interface
is P = {p}. The graph of the transition element R also has two vertices p
and q, and has one labelled edges ε, ε/x, ε : q → p. Its top interface is also
Q = {q}, and its bottom interface is P = {p}. The empty seat E has left
and right interfaces A × B. The graph of the empty seat has one vertex e
and one labelled edge ε, ε/ε, ε : e→ e. Its top interface is P and its bottom
interface is Q. The functions γ0, γ1 are uniquely defined.

The child C has labelled graph as follows:

1 2

4 3

ε, ε/ε, ε
ε, t/ε, ε

ε, ε/ε, t

ε, r/ε, ε

ε, ε/ε, r

ε, ε/ε, ε

ε, ε/ε, ε

ε, ε/ε, ε

A

B

A

B

The states have the following interpretation: in state 1 the child has no forks;
in state 2 it has a fork in its left hand; in state 3 it has both forks (and can
eat); in state 4 it has returned it left fork. The child’s top interface is P and
its bottom interface is Q. The function γ0 takes p to 1; the function γ1 takes
q to 1.



3. Hierarchical and mobile systems 67

The fork F is as in the Dining Philosopher system (but with all transitions
weighted 1).

Let S =SfbP (C •R •E • L). This automaton has the following interpre-
tation – it can either be a child (on a seat) or an empty seat. The transi-
tion elements R and L allow the seat to become occupied or vacated. It is
straightforward to see that this automaton is a positive weighted automaton.

Then Sofia’s birthday party is given by the normalization of expression

PfbA×B(S||(1A × F)||S||(1A × F)||...||S||(1X ×F)).

This automaton has the behaviour as informally described above. Its
diagrammatic representation is:

C

E
R

b

L
F

A

B

C

E
R

b F

A

B

C

E

R

b

L
F

A

B

L

A

B

Notice that though Sofia’s birthday party belongs to ΠΣΣ(E) slight vari-
ations of the system belong instead to ΠΣΠΣ(E), for example the system
where more than one child may occupy a seat (communicating there). If the
system starts in a state with as many children as seats - then movement is
impossible and the system is equivalent to the Dining Philosophers.

Let us look at a particular case of Sofia’s birthday party in more detail.
Consider the system with three seats, and two children. There are 36 states
reachable from initial state (5, 1, 1, 1, 1, 1), where 5 is the state in which the
seat is empty, and there are 141 transitions.



3. Hierarchical and mobile systems 68

The states are

(5, 1, 1, 1, 1, 1) (5, 1, 1, 3, 2, 1) (5, 3, 2, 1, 1, 1) (5, 3, 2, 3, 2, 1)
(1, 1, 1, 1, 5, 1) (1, 3, 2, 1, 5, 1) (5, 1, 1, 3, 3, 2) (5, 3, 2, 3, 3, 2)
(5, 3, 3, 2, 1, 1) (1, 3, 3, 2, 5, 1) (1, 1, 5, 1, 1, 1) (2, 1, 1, 1, 5, 3)
(2, 1, 5, 1, 1, 3) (2, 3, 2, 1, 5, 3) (2, 3, 3, 2, 5, 3) (5, 1, 1, 1, 4, 2)
(5, 3, 2, 1, 4, 2) (5, 1, 4, 2, 1, 1) (1, 1, 4, 2, 5, 1) (2, 1, 4, 2, 5, 3)
(1, 1, 5, 3, 2, 1) (2, 1, 5, 3, 2, 3) (3, 2, 1, 1, 5, 3) (3, 2, 5, 1, 1, 3)
(3, 2, 5, 3, 2, 3) (5, 3, 3, 2, 4, 2) (3, 2, 4, 2, 5, 3) (1, 1, 5, 3, 3, 2)
(4, 2, 1, 1, 5, 1) (4, 2, 5, 1, 1, 1) (4, 2, 5, 3, 2, 1) (5, 1, 4, 2, 4, 2)
(4, 2, 4, 2, 5, 1) (1, 1, 5, 1, 4, 2) (4, 2, 5, 3, 3, 2) (4, 2, 5, 1, 4, 2).

Then in 12 of these states there is a child eating: only one may eat at
a time. It is straightforward to calculate the 36 × 36 Markov matrix and
iterating show that the probability of a child eating after 1 step from initial
state (5, 1, 1, 1, 1, 1) is 0, after 2 steps is 19

60
, after 3 steps is 98

225
, after 4 steps

is 49133
108000

, after 5 steps is 1473023
3240000

and after 100 steps is 0.3768058221.

3.3 A fork bomb

We describe in this section a system in Σ(ΠΣ)n, namely a probabilistic ver-
sion of a fork bomb; that is, a process which may duplicate, and each of its
descendants may duplicate also, hence leading to an exponential growth in
the number of processes.

In order to consider a finite example, and to model the fact that resources
are in practice limited, we consider a process Fn which, with equal probability,
may decide to idle, or to produce two parallel processes Fn−1, each of which
may, with equal probability, in turn choose to idle or produce two processes
Fn−2, and so on. Processes F0 simply idle.

We would like to model such a system in our algebra, and to calculate
the probability of arriving in the situation of having 2n idling processes after
k steps. The simplest version, in which there is no communication between
the processes, and hence all parallel interfaces may be taken to be trivial, is
shown the following picture, which may easily be converted into an expression
in our algebra:



3. Hierarchical and mobile systems 69

b

b

b

Fn−1

Fn−1

×

Of course the full expression for the system involves substituting for Fn−1
and then Fn−2 et cetera. Notice that if fn is the number of states in Fn then
fn satisfies the recurrence relation

fn = 1 + f 2
n−1, f0 = 1,

and hence f0 = 1, f1 = 2, f2 = 5, f3 = 26, · · · . It is straightforward to see
that fn is the number of binary trees of depth at most n. (The recursive
equation for the set B of all finite binary trees is B ∼= 1 + B × B; for an
interesting observation of Lawvere on this equation see [48, 7].) In fact the
states of Fn may be identified with such trees. Each state is a tuple of initial
states of a number of processes, which have been created after a number
of bifurcations. The trees encode the sequence of bifurcations which have
occurred: vertices indicate bifurcations and edges indicate which of the two
child process has bifurcated next. As an example, the trees of depth at most
2 are:

∅ b

(i) (ii) (iii) (iv) (v)

The initial state of F2 (no bifurcations) corresponds to (i) the empty tree;
the pair of initial states of F1×F1 corresponds to (ii) the one vertex tree (one
bifurcation); the triple of initial states of (F0 × F0)× F1 (after a bifurcation
then a further bifurcation to the left) corresponds to the binary tree (iii);
the triple of initial states of F1 × (F0 × F0) corresponds to the tree (iv); the
quadruple of initial states of (F0 × F0)× (F0 × F0) corresponds to tree (v).

A calculation in our algebra of the states and transitions of F2, with their
probabilities, yields the following Markov automaton:



3. Hierarchical and mobile systems 70

(i)

(ii)

(iii) (iv) (v)

1
2

1
2

1
4

1
41

4

1
4

1
2

1
2

1
2 1

1
2

from which it is possible to calculate that the probability of reaching the
state (v) in which there are 4 idling processes of type F0 is greater than 99%
after 12 steps.

3.4 The probabilistic automata of Segala and

Lynch

We indicate how the finite probabilistic automata of Segala and Lynch [61, 49]
(which we shall now refer to as Segala-Lynch automata) and their finite
behaviours can be described in our model. Segala-Lynch automata model
systems with non-deterministic choice of probabilistic actions. A behaviour
consists of probabilistic transition of the non-determinism. The parallel ope-
ration is based on Hoare synchronization. Properties of interest are relative
to a class of schedulers.

We show that Segala-Lynch automata are equivalent to a certain subclass
of ours, and we then show that their behaviours (so-called finite probabi-
listic executions) are, in our model, the reachable part of a composition of a
scheduling automaton and a weighted automaton. We show also that Hoare
synchronization may be described by an expression in our algebra.

3.4.1 Segala-Lynch automata

A finite Segala-Lynch automaton [49] consists of a finite set Q of states
(with a specified initial state q0), a finite alphabet of actions A (divided into
internal and external actions, though for simplicity we ignore the internal
actions here), and a finite set of probabilistic transitions. By a probabilistic



3. Hierarchical and mobile systems 71

transition we mean a triple (q, a,
∑

q′∈Q pq′q
′), where a ∈ A, q ∈ Q, and pq′

are non-negative real numbers with
∑

q′∈Q pq′ = 1 (the sum
∑

q′ pq′q
′ is a

formal sum). The idea is that the probabilistic transition is labelled a and
goes from q to a distribution of states instead of a single state. We write
such a transition also as q

a−→∑

q′∈Q pq′q
′.

Given such a Segala-Lynch automaton we construct a weighted automa-
ton as follows: state set Q, top sequential interface q0, bottom sequential
interface ∅, left parallel interface A ∪ {ε} and right parallel interface T the
set of (names of) probabilistic transitions of the Segala-Lynch automaton
augmented by the symbol ε. The set T contains the information necessary to
schedule the Segala-Lynch automaton. Finally the matrices of the weighted
automaton are defined as follows: if t = (q, a,

∑

q′∈Q pq′q
′) then [Qa,t]q,q′ = pq′

all other values being 0; further Qε,ε is the identity matrix and all other
matrices are zero.

We call the resulting weighted automaton an SL automaton, and it is clear
that from the SL automaton one may recover the Segala-Lynch automaton,
since the non-zero matrices of the SL automaton are exactly the transition
matrices of single probabilistic transitions.

3.4.2 Behaviour of Segala-Lynch automata

The type of scheduler that Segala and Lynch have in mind is one which at
any moment remembers the previous states and actions of the scheduling, but
not which probabilistic transitions have occurred, and on that basis makes a
probabilistic choice of which of the probabilistic transaction enabled in the
current state to schedule next.

We will describe this in terms of SL automata and our algebra.
For simplicity we will describe first a more general type of scheduler,

one which also remembers the probabilistic transitions carried out. Such a
scheduler is a weighted automaton with the following properties:

(i) the left interface is T , the right interface is trivial;

(ii) the graph (of transitions with non-zero weighting) is a finite tree with
root the initial state;

(iii) there are no ε labelled transitions,

(iv) out of any state there is at most one transition with non-zero weight
with a given label t ∈ T .



3. Hierarchical and mobile systems 72

That is, in each state the scheduler decides on a weight for the different pro-
babilistic transitions to execute and passes to a new state which remembers
which of the probabilistic transitions was chosen. It is not difficult, though a
little messy, to modify this notion so that the scheduler remembers only the
action taken rather than the whole probabilistic transition: equate states in
the general scheduler which arise from the same action in a given state. Such
a scheduler we call an SL scheduler. Now consider the parallel (in our sense)
of a SL automaton with an SL scheduler. The normalized reachable part
of this composite is easily seen to be a finite probabilistic execution of the
Segala-Lynch automaton (and all probabilistic executions arise in this way).
Normalization is necessary because the scheduler may attempt to schedule a
probabilistic transition in a state in which the transition is not enabled.

3.4.3 The parallel composition of Segala-Lynch automata

We describe how CSP synchronization of weighted automata may be model-
led in our algebra. Consider two positive weighted automata QA+B,T and
Q′B+C,T ′ with A, B and C pairwise disjoint, and with A and C contain-
ing ε’s. To define the CSP parallel composition of Q and Q′ we need a
special component MA+B+C,(A+B)×(B+C) with one state and non-zero 1 × 1
matrices being Ma,(a,ε) = 1, Mc,(ε,c) = 1, Mb,(b,b) = 1 and Mε,(ε,ε) = 1, where
a ∈ A, b ∈ B, c ∈ C.

The CSP parallel composite is then

MA+B+C,(A+B)×(B+C)||(QA+B,T ×Q′B+C,T ′).

When applied to the SL automata derived from Segala-Lynch automata it is
routine to check that this gives the SL automaton of their parallel composite
as Segala-Lynch automata.



Chapter 4

Conditional probability

It is well-known that the notion of conditional probability plays a prominent
role in probability theory. The aim of this chapter is the introduction of a
notion of conditional probability in the algebra of weighted and Markov au-
tomata. We prove results analogous to Bayes’ theorem and Total probability
theorem and we describe some famous problems of conditional probability in
this algebra.

In our view, the occurrence in a system of an event with a certain proba-
bility associated, which we represent as a transition in a weighted automaton,
induces a signal on the two parallel interfaces of the automaton. The obser-
vation of one of these signals on the right or on the left interface changes
the probabilities of the system. Mathematically, the observation of a signal
a on an parallel interface A is represented by the communicating parallel
composition between a weighted automaton called observer of a signal a on
A and the system.

A benefit of this approach is the clear distinction between states and
transitions and the fact that a probability of an event is always associated
to a specific state q into the state space of an automaton. Further, we
show how many paradoxes of conditional probability arise from the fact that
normalization is not compositional to sequential operations.

4.1 Classical probability theory

Classically (Kolmogorov axioms), given a probability space (Ω,F , P ), where
Ω is a set of outcomes called sample space, F is a σ-algebra on Ω and P is a
probability measure on F , and given an event D of non-zero probability with
respect to P , we define the probability P of an event C given D, denoted by

73



4. Conditional probability 74

P (C|D), with the formula

P (C|D) =
P (C ∩D)

P (D)

where the event C ∩D is the intersection of the events C and D. The most
important fact about conditional probability is Bayes’ formula given by the
following

Theorem 4.1.1. (Bayes’ theorem)
Let (Ω,F , P ) be probability space. Then, for each events C,D in Ω such that
P (C) 6= 0 and P (D) 6= 0

P (C|D) =
P (D|C)P (C)

P (D)

Another important result known as Total probability theorem is the fol-
lowing

Theorem 4.1.2. (Total probability theorem)
Let (Ω,F , P ) be probability space. Then, for each event D in Ω, given a
partition1 {Ci}i∈I of events in Ω with non-zero probability

P (D) =
∑

i∈I
P (D|Ci)P (Ci)

By Total probability theorem we obtain the following variant of Bayes’
formula which is very useful in many concrete problems:

P (Ck|D) =
P (D|Ck)P (Ck)

∑

i∈I P (D|Ci)P (Ci)

where k ∈ I.

4.2 Conditional probability for weighted au-

tomata

To our purpose it is useful to generalize the definition of normalization of
weighted positive automata given in the first chapter2 to the case of weighted
automata not necessarily positive. We give the following

1A partition of a sample space Ω is a family {Ci}i∈I of events in Ω such that Ci∩Cj = ∅
for i 6= j and ∪i∈ICi = Ω.

2See p. 18.



4. Conditional probability 75

Definition 4.2.1. Given a weighted automaton QX
Y ;A,B,we define the nor-

malized automaton N(Q) as the weighted automaton with the same interfaces
and states, but with

[N(Q)a,b]q,q′ =







[Qa,b]
q,q′∑

q′∈Q[Q]q,q′
=

[Qa,b]
q,q′

∑
q′∈Q

∑
a∈A,b∈B[Qa,b]

q,q′

if
∑

q′[Q]q,q′ 6= 0

0 otherwise

where Q is the total matrix3 of QX
Y ;A,B.

Definition 4.2.2. Given a weighted automaton QX
Y ;A,B, we define the pro-

bability of a signal b ∈ B on the right interface B in a state q ∈ Q in the
weighted automaton QX

Y ;A,B, denoted by PQ
q (b), with the formula

PQ
q (b) =

∑

q′∈Q

∑

a∈A
[N(Q)a,b]q,q′

In a similar way we define PQ
q (a) with a ∈ A.

In other words, PQ
q (b) is the normalized sum of all the weights of transi-

tions out of q with right label b. It is clear from the definition that if there
is at least one non-zero transition out of q then

PQ
q (b) =

∑

q′,a [Qa,b]q,q′
∑

q′,a,b [Qa,b]q,q′

Definition 4.2.3. Given a weighted automaton QX
Y ;A,B, and a signal a ∈ A,

we define observer of the signal a on the interface A as the weighted automa-
ton Oa with state space {0, 1}, parallel interfaces {ε}, A, trivial sequential
interfaces, and transition matrix

Oε,a =

[

0 1
0 0

]

.

The other transition matrices are zero matrices.
We define the automaton Q given a, denoted by Q|a, as

Q|a = Oa ×A Q

Given a signal b ∈ B, we define the probability of b given a in a state q ∈ Q
in the weighted automaton Q, denoted by PQ

q (b|a), as

PQ
q (b|a) = P

Q|a
(0,q)(b)

3For the definition of total matrix see p. 16.



4. Conditional probability 76

The automaton Oa is described by the diagram:

0 1
ε/a; 1 A

The automaton Q|a is the communicating parallel composite:

Oa Q B
A

×
X

Y

Remark 4.2.4. Conditional probability PQ
q (b|a) is defined also when PQ

q (a) =
0.

Now we extend the notion of probability of a signal on an interface to the
case of two signals, one on each parallel interface.

Definition 4.2.5. Given a weighted automaton QX
Y ;A,B, we define the pro-

bability of the signals a ∈ A on the left interface and b ∈ B on the right
interface in a state q ∈ Q in the weighted automaton QX

Y ;A,B, denoted by
PQ
q (a, b), with the formula

PQ
q (a, b) =

∑

q′∈Q
[N(Qa,b)]q,q′

Clearly, if there is at least one non-zero transition out of q then

PQ
q (a, b) =

∑

q′ [Qa,b]q,q′
∑

q′,a,b [Qa,b]q,q′

Example 4.2.6. Consider the weighted automaton Q represented by the
following picture:

0

1 2

a/b; 2

a′/b; 3

a/b′; 1

a/b; 2
b, b′a, a′

a/b′; 2



4. Conditional probability 77

Then PQ
0 (b) = 7

8
, PQ

0 (b|a) = 4
5
, PQ

0 (a, b) = 1
2
, PQ

2 (b) = 0, PQ
2 (a|b) = 0.

The following result is an analogous of Bayes’ theorem for the algebra of
weighted automata.

Theorem 4.2.7. (Bayes’ theorem for weighted automata)
Let QX

Y ;A,B be a weighted automaton. Then, for each a ∈ A, b ∈ B and q ∈ Q

PQ
q (a, b) = PQ

q (b|a)PQ
q (a)

Proof. Let QX
Y ;A,B be a weighted automaton. Let a ∈ A, b ∈ B, q ∈ Q.

If PQ
q (a) = 0 then also PQ

q (a, b) = 0 and the theorem is true.
Let PQ

q (a) 6= 0. Given x ∈ {0, 1}, q′ ∈ Q we have that

[(Q|a)ε,b](0,q),(x,q′) = [(Oa)ε,a ⊗Qa,b](0,q),(x,q′)

= [(Oa)ε,a]0,x · [Qa,b]q,q′

=

{

[Qa,b]q,q′ if x = 1

0 otherwise
(4.1)

By (4.1) and by PQ
q (a) 6= 0 it follows that

∑

(x,q′)∈{0,1}×Q

∑

b∈B
[(Q|a)ε,b](0,q),(x,q′) =

∑

q′∈Q

∑

b∈B
[Qa,b]q,q′ 6= 0 (4.2)

Then

PQ
q (b|a) = P

Q|a
(0,q)(b)

=
∑

(x,q′)∈{0,1}×Q
[N(Q|a)ε,b](0,q),(x,q′)

=

∑

(x,q′) [(Q|a)ε,b](0,q),(x,q′)
∑

(x,q′)

∑

b∈B [(Q|a)ε,b](0,q),(x,q′)
by (4.2)

=

∑

q′∈Q [Qa,b]q,q′
∑

q′∈Q
∑

b∈B [Qa,b]q,q′
by (4.1)

Hence, since PQ
q (a) 6= 0 implies

∑

q′∈Q[Q]q,q′ 6= 0, it follows that:

PQ
q (b|a)PQ

q (a) =

∑

q′∈Q [Qa,b]q,q′
∑

q′∈Q
∑

b∈B [Qa,b]q,q′
·
∑

q′∈Q
∑

b∈B [Qa,b]q,q′
∑

q′∈Q[Q]q,q′
= PQ

q (a, b)

�



4. Conditional probability 78

Corollary 4.2.8. In a weighted automaton QX
Y ;A,B for each a ∈ A, b ∈ B

and q ∈ Q
PQ
q (b|a)PQ

q (a) = PQ
q (a|b)PQ

q (b)

Theorem 4.2.9. (Total probability theorem for weighted automata)
Let QX

Y ;A,B be a weighted automaton. Then, for each b ∈ B and q ∈ Q

PQ
q (b) =

∑

a∈A
PQ
q (b|a)PQ

q (a)

Proof. If
∑

q′∈Q[Q]q,q′ = 0 then PQ
q (b) = 0, for each a ∈ A PQ

q (a) = 0 and
the theorem is true.

Let
∑

q′∈Q[Q]q,q′ 6= 0.

PQ
q (b) =

∑

q′∈Q
∑

a∈A [Qa,b]q,q′
∑

q′∈Q[Q]q,q′
=

∑

a∈A
PQ
q (a, b)

=
∑

a∈A
PQ
q (b|a)PQ

q (a) by Bayes’ theorem

�

We introduce now the definition of the probability of a path v = (b1, b2, · · · , bk)
on an interface B.

Definition 4.2.10. Given a weighted automaton QX
Y ;A,B and a natural

number k, we define the probability of a path v = (b1, b2, · · · , bk) ∈ Bk on B
in a state q of Q as

PQ
q (v) = PQk

q (v)

In a similar way we define PQ
q (u) with u ∈ Ak.

PQ
q (v) is defined as the probability of the signal v in q in the power

automaton Qk.

Remark 4.2.11. It is obvious by the definition of probability of a path
v ∈ Bk on B in a weighted automaton QX

Y ;A,B that we can extend the notion
of conditional probability defining also the probability PQ

q (v|u) of a path
v ∈ Bk in a state q given a path u ∈ Ak of the same length. Thus, Bayes’
theorem and Total probability theorem can be extended to probabilities of
paths.



4. Conditional probability 79

Remark 4.2.12. It is interesting to note that it is also possible to give a more
general definition of the probability of a signal in a given state considering
weighted automata with products A1 × · · · × An, B1 × · · · × Bm as parallel
interfaces. So, given a weighted automaton QX

Y ;A,B where A = A1×· · ·×An,
we can define the probability of a signal ai ∈ Ai, for a given i ∈ {1, . . . , n}, in
a state q ∈ Q on the i-th wire of A as the normalized sum of all the weights
with left label (a1, . . . , ai−1, ai, ai+1, . . . , an) with ak ∈ Ak, k = 1, . . . , (i −
1), (i+ 1), . . . , n.
An intuitive definition of the weighted automaton Q given ai on the i-th wire
of A is suggested by the following picture:

Oai

QAi

×
X

Y

B1

Bm

B2

A1

An

4.3 Examples

4.3.1 Checking a fair coin

One box contains 20 fair coins and 5 coins rigged so that the probability of
getting heads is 3

4
. Alice selects randomly a coin from the box and tosses it

four times. She observes the following outcomes:

’head’, ’head’, ’tail’, ’head’.

What is the probability that the selected coin is rigged given the observation?

To describe the problem we need two weighted automata - Alice and Box,
representing the observer Alice and the box respectively. Alice has state
space {0, 1, 2, 3, 4, 5}, parallel interfaces {ε}, {c, h, t} and trivial sequential



4. Conditional probability 80

interfaces. The non zero transition matrices are:

Aliceε,c =

















0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















,

Aliceε,h =

















0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

















, Aliceε,t =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

















.

Alice has labelled graph as follows:

ε/c; 1 ε/h; 1 ε/t; 1ε/h; 1 ε/h; 1
0 1 2 3 4 5

c, h, t

It means that when Alice chooses a coin a signal c occurs on the non trivial
parallel interface. She does not know if the selected coin is fair or not. She
observes with probability 1 the outcomes h, h, t, h (h is ’head’ and t ’tail’).

The automaton Box has state space {0, 1, 2}, parallel interfaces {c, h, t}
and {c1, c2, ε}, and trivial sequential interfaces. The transition matrices of
Box are:

Boxc,c1 =





0 4
5

0
0 0 0
0 0 0



 , Boxc,c2 =





0 0 1
5

0 0 0
0 0 0



 ,

Boxh,ε =





0 0 0
0 1

2
0

0 0 3
4



 , Boxt,ε =





0 0 0
0 1

2
0

0 0 1
4



 .

The other eight transition matrices are zero matrices.
Box is represented by the following picture:



4. Conditional probability 81

0

1 2

c/c1;
4
5

c/c2;
1
5

h/ε; 1
2

t/ε; 1
2
h/ε; 3

4

t/ε; 1
4

c1, c2, εc, h, t

The system Box given the observation of Alice is the communicating
parallel composite Alice||Box:

Alice Box c1, c2, ε
c, h, t

×

The required probability is:

PBox
0 (c2εεεε|chhth) =

PBox
0 (chhth, c2εεεε)

PBox
0 (chhth)

=
PBox
0 (chhth, c2εεεε)

PBox
0 (chhth, c2εεεε) + PBox

0 (chhth, c1εεεε)

=
1
5
(3
4
)3 1

4
1
5
(3
4
)3 1

4
+ 4

5
(1
2
)4
∼= 0.297

The observation of Alice, that is the path chhth, changes the probability
of the path c2εεεε.

Remark 4.3.1. If we want to use the terminology of classical probability
theory, we define C1 as the event ”a fair coin is choosen”, C2 as the event ”a
non fair coin is choosen” and O as the event ”Alice obtains head, head, tail,
head”. Then, P (C2) =

1
5
is the prior probability to select a rigged coin. The

required probability is the posterior probability P (C2|O) that we calculate
with the formula

P (C2|O) =
P (O|C2)P (C2)

P (O|C2)P (C2) + P (O|C1)P (C1)



4. Conditional probability 82

4.3.2 False positives

We want now to consider a diagnostic test to detect a specific disease with a
low rate incidence: we know that 1 person in 100 is infected. We know also
that if a subject is infected then the error rate of the test, i.e. a negative test
result with a positive subject, is 2/100. On the other hand, the test is wrong
2 times in 100 within non infected population. What is the probability that
a subject with a positive test result is actually infected?

We model the sampled population with a weighted automaton P with state
space {0, 1, 2}, left interface {x,+,−} and right interface {p, n, ε}.

0

1 2

x/p; 1% x/n; 99%

+/ε; 98%
−/ε; 2% +/ε; 3%

−/ε; 97%

p, n, εx,+,−

An observer is a weighted automaton O with state space {0, 1, 2}, left
interface {ε}, right interface {x,+,−} represented by the following picture:

ε/x; 1 ε/+; 1
0 1 2

x,+,−

The system is given by the communicating parallel composite O||P. The
probability of false positives is:

P0(nε|x+) =
0.99 · 0.03

0.99 · 0.03 + 0.01 · 0.98
∼= 0.752

At first glance this outcome could seem to be counter-intuitive. The
probability that a positive test result indicates a positive subject is not given
only by the accuracy of the test, but also depends on the characteristics of
the sampled population (by Bayes’ theorem). When the incidence is lower
than the test is false positive rate, even tests that have a very low chance
of giving a false positive in an individual case will give more false than true
positives overall.

The key concept of Bayes’ theorem is that the true rates of false positives
and false negatives are not a function of the accuracy of the test alone, but
also the actual rate or frequency of occurrence within the test population.



4. Conditional probability 83

4.3.3 Two boys and girls problem

Here we want to explain how to solve a problem proposed by Gary Foshee,
a puzzle designer from Issaquah, Washigton, during a talk at the Ninth
Gathering 4 Gardner (March 24− 28, 2010, Atlanta, [4]). Foshee’s question,
which we call Two boys and girls problem, belongs to a well-known set
of problems which generated long discussions between mathematicians and
many variants4.

The problem we consider is the following:

if someone with two children tells you that at least one of whom is a boy
born Tuesday, what is the probability that both children are boys?

We assume that the sex of each child is independent of the sex of the other,
the probabilities to have a boy or a girl are equal and that the births are
equally distributed during the week.

We consider first two simpler versions of this problem in which there is
no mention of the day of birth.

Case 1: declaration

Consider the following problem:

1. If someone with two children tells you that at least one of whom is a boy,
what is the probability that that both children are boys?

The simplifying assumption mentioned above about boys and girls birthrate
means that given a parent with two children the following four combinations
in birth order are equally likely: Boy-Boy, Boy-Girl, Girl-Boy, Girl-Girl. In
the case of 2 boys a parent declares to have (at least) one boy with weight 1,
in the case of 2 girls the weight of a declaration that there is a girl is 1, but
in the other two cases there is a half chance that the declaration is ”boy”,
and a half chance that the declaration is ”girl”.

To describe the problem we need a weighted automaton Q1 with state
space {1, 2, 3, 4}, left parallel interface {x, b, g}, right interface {ε, b0, b1, b2},

4One of the most famous formulations of the problem was introduced by Martin
Gardner with the name of Two children problem in a Scientific American column in 1959
([28]) and then was republished in his book [27].



4. Conditional probability 84

both sequential interfaces ∅ ⊆ {1, 2, 3, 4}, and transition matrices

(Q1)x,b0 =









0 1
4

0 0
0 0 0 0
0 0 0 0
0 0 0 0









,

(Q1)x,b1 =









0 0 1
2

0
0 0 0 0
0 0 0 0
0 0 0 0









, (Q1)x,b2 =









0 0 0 1
4

0 0 0 0
0 0 0 0
0 0 0 0









(Q1)g,ε =









0 0 0 0
0 1 0 0
0 0 1

2
0

0 0 0 0









, (Q1)b,ε =









0 0 0 0
0 0 0 0
0 0 1

2
0

0 0 0 1









.

The other transition matrices are zero matrices.
The intention behind these matrices is as follows: in state 1 the system

does a transition to state 2 with probability 1
4
labelled x/b0 (a parent with

no boys is choosen), a transition to state 3 with probability 1
2
labelled x/b1

(a parent with exactly one boy is choosen) and a transition to state 4 with
probability 1

4
labelled x/b2 (a parent with 2 boys is choosen); in state 2 the

system does a transition to state 2 with probability 1 labelled g/ε (the parent
says to have a girl); in state 3 the system does a transition to state 3 with
probability 1

2
labelled g/ε (the parent says to have a girl) and a transition

to state 3 with probability 1
2
labelled b/ε (the parent says to have a boy); in

state 4 the system does a transition to state 4 with probability 1 labelled b/ε
(the parent says to have a boy).

We put this information in the following picture:

1

2 4

x/b0;
1
4 x/b2;

1
4

b/ε; 1
2

g/ε; 1
2

b/ε; 1

ε, b0, b1, b2x, b, g

3
x/b1;

1
2

g/ε; 1

The required probability is:

P1(b2ε|xb) =
1
4

1
4
+ 1

2
1
2

=
1

2

The information about a child given by a declaration does not change the
probability that the other child is a boy.



4. Conditional probability 85

Case 2: a question

Consider now a slightly different problem:

2. if you ask to someone with two children if he has at least a boy and he
answer ”yes”, then what is the probability that both children are boys?

In this case a parent with 2 boys gives a positive answer to the question
if he has a boy with the same weight of a parent with only 1 boy. Similarly,
a parent with 2 girls gives a positive answer to the question if he has a girl
with the same weight of a parent with only 1 girl.

The system is a weighted automaton Q2 with the same state space, in-
terfaces and transition matrices of Q1 except for the following matrices:

(Q2)g,ε =









0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









, (Q2)b,ε =









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1









.

Q2 is represented by the following picture:

1

2 4

x/b0;
1
4 x/b2;

1
4

b/ε; 1 g/ε; 1 b/ε; 1

ε, b0, b1, b2x, b, g

3
x/b1;

1
2

g/ε; 1

The weights of the transitions in state 3 (parent with exactly one boy) to
state 3 and in state 4 (parent with 2 boys) to state 4 labelled b/ε (positive
answer to the question about a boy) are the same. Similarly, the transition
from state 3 to state 3 and the transition from state 4 to state 4 labelled g/ε
(positive answer to the question about a girl) have the same weights.

The required probability is:

P1(b2ε|xb) =
1
4

1
4
+ 1

2

=
1

3

A positive answer about a boy changes the probability to have 2 boys
from 1

4
(before the question) to 1

3
(after the positive answer).



4. Conditional probability 86

The day of birth

Consider now the original version of Two boys and girls problem given above.
The simplifying assumption about the birthrate of boys and girls during the
week means that the probability to have a boy born on Tuesday is the same
to have a boy, i.e. 1

2
. As in case 1, the weight of the transition in state

4 labelled b/ε (declaration to have a boy born on Tuesday) to state 4 is 1.
Similarly, the weight of the transition in state 3 with the same label to state 3
is 1

2
. Calculations analogous to those described above show that the required

conditional probability is 1
2
. The information given about a child, including

the day of birth, does not change the probability that the second child is a
boy.

Remark 4.3.2. Consider the problem

if you ask to someone with two children if he has at least a boy born on
Tuesday and he answer ”yes”, then what is the probability that both children

are boys?

Then, calculations analogous to those of case 2 give the answer 13
27
.

4.4 Concluding remarks

The problems described in this chapter show that a wrong interpretation
of conditional probability leads often to paradoxical answers. Many of these
paradoxes arise from considering normalized probabilities, rather than weights
of actions.

In classical probability theory, which is based on set theory rather than
automata, probabilities are not explicitly attached to a specific state and the
systems described are abstractions of weighted automata. Mathematically,
the abstraction of a weighted automaton Q is the sequential operation con-
sisting in identifying all the states of Q like in the following example:



4. Conditional probability 87

1

2 4

x/b0;
1
4 x/b2;

1
4

b/ε; 1
2

g/ε; 1
2

b/ε; 1

ε, b0, b1, b2x, b, g

3
x/b1;

1
2

g/ε; 1

b b b
b

b

+

Many of the paradoxes arise when we normalize before the abstraction because
normalization is not compositional with respect to sequential operations5(including
abstraction).

5See remark 1.2.13 p. 29.



Chapter 5

Quantum automata

This chapter is devoted to another extension of the span graphs algebra ([40])
closely related to weighted and Markov automata model described in chapter
1. Here our purpose is the compositional description of quantum protocols.
In this extension, introduced in [19], we consider doubly indexed families
ϕa,b (a ∈ A, b ∈ B) of operators on finite dimensional vector spaces, the main
operation being Σb∈Bϕa,b ⊗ ψb,c, (a ∈ A, c ∈ C).

We distinguish two kind of components: quantum automata and classical
finite state automata. The benefit of this approach is that the inclusion of
explicit components of finite state classical control adds conceptual clarity
and precision to quantum protocols.

An important thing to note is that in order to decompose the above
system into parts, the algebra contains much more than just classical and
quantum components - it is only in combination that the qubits form quan-
tum components.

Another point of interest is that span graphs algebra has been used for
compositional model checking (in which non-determinism and the state ex-
plosion are considered the main problem) whereas here our extension is used
for quantum computing (in which linearity and the expanded state space are
the cited advantage).

We define a C-automaton Q with a given set A of “signals on the left
interface”, and set B of “signals on the right interface” to consist of a finite
dimensional complex vector space V and a family of linear transformations
ϕa,b : V → V (a ∈ A, b ∈ B). A quantum C-automaton is one in which
the space V has the extra structure of an hermitian inner product, and in
which the linear transformations are unitary transformations or orthogonal
projections. A classical C-automaton is one with the extra structure that the
space V is of the form CX for a given finite setX and for which the matrices of
the linear transformations are zero-one matrices induced by binary relations

88



5. Quantum automata 89

on X .
As example we explain how the teleportation protocol of [6] may be mo-

delled in our algebra and we prove its correctness.

5.1 C-automata

Definition 5.1.1. Consider two finite alphabets A and B. A C-automaton
Q with left interface A and right interface B consists of a finite dimen-
sional complex vector space V of states, and an A × B indexed family ϕ =
ϕa,b(a∈A,b∈B) of linear transformations from V to V.

The idea of a C-automaton is the same of Markov automata: the transi-
tions that occur induce signals on the two interfaces of the automaton, which
signals are represented by letters in the alphabets. For examples see a later
section.

Example 5.1.2. Let V be a 2-dimensional complex vector space with a basis
{v1, v2}. Consider the alphabets A = {a, a′}, B = {b} and the linear trans-
formations ϕa,b, ϕa′,b : V → V whose representative matrices with respect to
the given basis are:

ϕa,b =

[

2i 0
4 i

]

, ϕa′,b =

[

0 0
0 1

]

.

Then Q with state space V and linear transformations {ϕa,b, ϕa′,b} is a C-
automaton with left interface A and right interface B. A state of Q is a
linear combination c1v1 + c2v2 with c1, c2 ∈ C.

Definition 5.1.3. A C-automaton Q with the extra structure that the space
V is endowed with an hermitian inner product < | > and for which the
linear transformations are either unitary or orthogonal projections is called
a quantum C-automaton.

Definition 5.1.4. A C-automaton Q with the extra structure that the space
V is CX for a given finite set X, and for which the linear transformations
ϕa,b are of the form ϕa,b(ex) =

∑

y cyey with cy is 0 or 1 (x ∈ X) (where

{ex}(x∈X) is the standard basis of CX defined by ex(y) = 1 if y = x, and 0
otherwise) is called a classical (finite state) C -automaton. Note: we will
often write just x instead of ex for a basis element.

The definition of classical C-automaton requires that every element of the
matrices of the linear transformations written with respect to the standard
basis are 0 or 1.



5. Quantum automata 90

Definition 5.1.5. Consider a C-automaton Q with interfaces A and B. A
behaviour of length k of Q consists of a two words of length k, one w1 =
a1a2 · · · ak in A∗ and the other w2 = b1b2 · · · bk in B∗ and a sequence of vectors

x0,x1 = ϕa1,b1(x0),x2 = ϕa2,b2(x1), · · · ,xk = ϕak,bk(xk−1).

5.2 Graphical representation

There is an intuitive graphical notation of classical and quantum C-automata
analogous to that used for Markov automata.

Example 5.2.1. The C-automaton Q of example 5.1.2 is represented by the
following picture:

v1 v2
a/b; 4

a/b; 2i a/b; i

a′/b; 1

a, a′ b

Given a chosen basis for the state space of an automaton (or, more gene-
rally, a decomposition of the state space as a direct sum) we may compress the
description of an automaton with interfaces A and B, which requires A×B
matrices of scalars (or, more generally, matrices of linear transformations),
into a single labelled graph, like the ones introduced in [40]. Further, expres-
sions of automata in this algebra may be drawn as “tensor diagrams” also as
in [40]. We indicate both of these matters by describing some examples.

5.2.1 Qubits

Qubit automata are a C-automata with state space C2 which singly, or com-
bined, form quantum automata. We will describe three particular qubit
automata which will need for our discussion of teleportation. One of the
qubit automata is a quantum automaton; the others will be combined to
form a 2 qubit quantum automaton.

Qubit Q1

Consider the alphabets A1 = {ε, c, h,m0, m1} and B1 = {ε,¬}. Then Q1 is
the automaton with left interface A1 and right interface B1, state space C2



5. Quantum automata 91

and transition matrices

ϕε,ε =

[

1 0
0 1

]

, ϕc,¬ =

[

0 0
0 1

]

ϕc,ε =

[

1 0
0 0

]

, ϕh,ε =
1√
2

[

1 1
1 −1

]

ϕm0,ε =

[

1 0
0 0

]

, ϕm1,ε =

[

0 0
0 1

]

.

The other four transition matrices are zero matrices.
The intention behind these matrices is as follows: Q1 may do a transi-

tion labelled ε, ε (idle transition); Q1 may receive a signal h and perform a
transition determined by the unitary Hadamard matrix; Q1 may receive a
signal c (do Cnot) and if it is in state 1 pass on a signal ¬ with the intention
to perform a not on another qubit; the signal m0 means that a measurement
with result 0 has occurred on Q1; the signal m1 means that a measurement
with result 1 has occurred on Q1. All this information may be put in the
following diagram, noting that

(i) the basis elements of C2 are called 0 and 1, and occur in the diagram
as vertices,

(ii) labels of transitions indicate which matrix is involved,

(iii) the absence of an edge from i to j means that the i, jth element of the
matrix is 0,

(iv) we have in any case omitted loops labelled ε, ε,

(v) we have included the value of the matrix element only when it is not 1.

0 1
h/ε; 1√

2

h/ε; 1√
2

c/ε

m0/ε

h/ε;− 1√
2

c/¬

m1/ε

ε,¬ε, h, c,m0, m1 h/ε; 1√
2

Qubit Q2

Consider the alphabets A2 = {ε,¬} × {ε,m0, m1} = A21 × A22 = B1 × A22

and B2 = {ε}. Then Q2 is the automaton with left interface A2 and right



5. Quantum automata 92

interface B2, state space C2 and transition matrices

ϕ(ε,ε),ε =

[

1 0
0 1

]

, ϕ(¬,ε),ε =

[

0 1
1 0

]

ϕ(ε,m0),ε =

[

1 0
0 0

]

, ϕ(ε,m1),ε =

[

0 0
0 1

]

.

The remaining matrices are zero.
The intention behind these matrices is as follows: Q2 may do a transi-

tion labelled ε, ε (idle transition); Q2 may receive a signal ¬ and perform a
not transition; the signal m0 means that a measurement with result 0 has
occurred on Q2; the signal m1 means that a measurement with result 1 has
occurred on Q2.

0 1
¬, ε/ε

ε, ε/ε

ε,m0/ε

ε, ε/ε

ε,m1/ε
ε,m0, m1

¬, ε/ε
ε,¬

Qubit Q3

Consider the alphabets A3 = {ε}, and B3 = {ε, 00, 01, 10, 11}. Then Q3 is
the automaton with left interface A3 and right interface B3, state space C2

and transition matrices

ϕε,ε =

[

1 0
0 1

]

,

ϕε,00 =

[

1 0
0 1

]

, ϕε,10 =

[

1 0
0 −1

]

,

ϕε,01 =

[

0 1
1 0

]

, ϕε,11 =

[

0 −1
1 0

]

.

The intention behind these matrices is as follows: Q3 may do a transition
labelled ε, ε (idle transition); Q3 may receive one of four signal 00, 01, 10, 11
and perform the given unitary transformations.



5. Quantum automata 93

0 1
ε/11

ε/ε

ε/00

ε/10

ε/ε

ε/00

ε/10;−1

ε, 00, 01, 10, 11ε/11;−1
ε/01

ε/01

5.2.2 Alice and Bob

We now describe two classical C-automata Alice and Bob which represent,
respectively, the sender and the receiver of teleportation.

Alice

LetX = {x1, x2, x3, x00, x01, x10, x11}. ThenAlice is the classical C-automaton
with state space C

X with left interface AAlice = {ε} and right interface

BAlice = {ε, 00, 01, 10, 11} × {ε, c, h,m0, m1} × {ε,m0, m1}
= BAlice,1 × A1 ×A22.

and transformations as indicated in the diagram

x1 x2 x3

x00

x01

x10

x11

ε/ε, c, ε ε/ε, h, ε

p

p′
q′

r′
s′

q

r

s

ε, 00, 01, 10, 11

ε, c, h,m0, m1

ε,m0, m1

where
p′ = ε/ε,m0, m0, p = ε/00, ε, ε,
q′ = ε/ε,m0, m1, q = ε/01, ε, ε,
r′ = ε/ε,m1, m0, r = ε/10, ε, ε,
s′ = ε/ε,m1, m1, s = ε/11, ε, ε.

Bob

Let Y = {y1, y2}. Then Bob is the classical C-automaton with state space
CY with left interface ABob = {ε, 00, 01, 10, 11}× {ε, 00, 01, 10, 11} and right



5. Quantum automata 94

interface BBob = {ε} and transformations relative to the standard basis
ey1 , ey2 having the following non-zero elements:

ϕ(ε,ε),ε(ey1) = ey1 ,

ϕ(00,00),ε(ey1) = ey2 , ϕ(01,01),ε(ey1) = ey2 ,

ϕ(10,10),ε(ey1) = ey2 , ϕ(11,11),ε(ey1) = ey2 .

y1 y2
01, 01/εε, ε/ε

00, 00/ε

10, 10/ε

11, 11/ε

ε, 00, 01, 10, 11

ε, 00, 01, 10, 11

5.3 The algebra of C-automata

Now we define operations on C-automata analogous (in a precise sense) to
those defined for Markov automata.

Definition 5.3.1. Given a C-automata Q with left and right interfaces A
and B, state space V , and family of transformations ϕ, and R with interfaces
C and D, state space W , transformations ψ, the parallel composite Q×R

is the C-automaton which has state space V ⊗W , left interface A×C , right
interface B ×D, and transformations

(ϕ× ψ)(a,c),(b,d) = ϕa,b ⊗ ψc,d.

Definition 5.3.2. Given C-automata Q with left and right interfaces A and
B, state space V , and family of transformations ϕ, and R with interfaces B
and C, state space W , and family of transformations ψ the series (communi-
cating parallel) composite of C-automata Q×BR (or more briefly Q||R) has
state space V ⊗W , left interface A, right interface C, and transition maps

(ϕ×B ψ)a,c =
∑

b∈B
φa,b ⊗ ψb,c.

Notice that when the state spaces of the C-automata have direct sum
decompositions, and hence the operators have matrix representations, the
tensor products in the above definitions may be calculated (via distributiv-
ity isomorphisms) using tensor products of matrices. This gives a way of
calculating the operations analogous to the operations on automata in [40].



5. Quantum automata 95

Definition 5.3.3. Given a relation ρ ⊂ A × B we define a C-automaton
Par(ρ) as follows: it has state space C. The transition matrices ρa,b are
1× 1 matrices, that is, complex numbers. Then ρa,b = 1 if ρ relates a and b,
and ρa,b = 0 otherwise.

Some special cases, analogous to those defined for Markov automata, have
particular importance and are called parallel connectors or wires :

(i) the automaton corresponding to the identity function 1A, considered
as a relation on A×A is called 1A;

(ii) the automaton corresponding to the diagonal function ∆A : A→ A×A
(considered as a relation) is called ∆A; the automaton corresponding
to the opposite relation of ∆A is called ∆o

A.

(iii) the automaton corresponding to the function twistA,B : A×B → B×A
is called twistA,B.

(iv) the automaton corresponding to the projection function A → {∗} is
called pA and its opposite poA.

(v) the automaton corresponding to the relation ηA = {(∗, (a, a)); a ∈ A} ⊂
{∗}×(A×A) is called ηA; the automaton corresponding to the opposite
of ηA is called εA.

5.3.1 The teleportation protocol

An essential aspect of teleportation protocol is the existence of a pair of
qubits in an entangled state, that is in a state that cannot be decomposed
into separate states of each of the two qubits. Formally, we have the following

Definition 5.3.4. Given two qubits Q with interfaces A,B, and R with
interfaces C,D, we say that a state z of Q×R1 is entangled if there do not
exist αi, βi ∈ C, i = 1, 2 such that

z = (α10 + β11)⊗ (α20 + β21)

Entanglement implies that a measurement of one qubit affects a mea-
surement of the other. Famous examples of entangled states are the Bell
states.

1If z is a state of Q×R then z ∈ C2⊗C2 and z =
∑

i,j=0,1 γi,ji⊗ j with γi,j ∈ C, i, j =
0, 1.



5. Quantum automata 96

Definition 5.3.5. Given two qubits Q and R, we call Bell states (or EPR
states) the following states of Q×R:

• Bell1 = 1√
2
(0⊗ 0 + 1⊗ 1),

• Bell2 = 1√
2
(0⊗ 1 + 1⊗ 0),

• Bell3 = 1√
2
(0⊗ 0− 1⊗ 1),

• Bell4 = 1√
2
(0⊗ 1− 1⊗ 0).

The protocol TP

Now the model of the teleportation protocol we consider is an expression in
the algebra, involving also the automata Q1,Q2,Q3,Alice, and Bob. The
protocol is

TP = Alice||(1A3
× ((Q1 × 1A22

)||Q2))||(1A3
×Q3)||Bob.

Notice that (Q1 × 1A22
)||Q2 and Q3 are quantum C-automata.

As explained in [40], we may represent this system by the following dia-
gram:

Q1

Q2 Q3

Alice
Bob

BAlice,1

A1 B1

A22

The behaviour of TP

Consider the following initial state of TP

x1 ⊗ (α0 + β1)⊗ 1√
2
(0⊗ 0 + 1⊗ 1)⊗ y1;

that is that state of Q1 is arbitrary andQ2 andQ3 are in the Bell state Bell1.
Since the combined system TP is closed it consists of a single linear trans-
formation θ acting on the state space CX ⊗C2⊗C2⊗C2⊗CY . A behaviour
consists of a sequence of applications of θ to the initial state. However, in
view of the construction of θ from parts, we may give a more explicit descrip-
tion of behaviours beginning in this initial state. In the following calculation



5. Quantum automata 97

it is critical that CX and CY break up into a direct sums C ⊕ C⊕ · · · ⊕ C

so that, using the distributive law of tensor over direct sum, Alice and Bob

can do different actions on the qubits in different summands. This is en-
tirely analogous to the use of sums and the distributive law in sequential
programming, in particular in defining if then else [26],[68].

Simplifying the notation, writing for example 00 instead of 0 ⊗ 0, a four
step behaviour is:

x1 ⊗ (α0 + β1)⊗ 1√
2
(00 + 11)⊗ y1

7→ x2 ⊗
1√
2
(α000 + α011 + β110 + β101)⊗ y1

7→ 1

2
x3 ⊗ (α(0 + 1)00 + α(0 + 1)11 + β(0− 1)10 + β(0− 1)01)⊗ y1

=
1

2
x3 ⊗ (α(000 + 100 + 011 + 111) + β(010− 110 + 001− 101))⊗ y1

7→ 1

2
(x00 ⊗ (α000 + β001)⊗ y1 + x01 ⊗ (α011 + β010)⊗ y1+

x10 ⊗ (α100− β101)⊗ y1 + x11 ⊗ (α111− β110)⊗ y1)

7→ 1

2
(x00 ⊗ (α000 + β001)⊗ y2 + x01 ⊗ (α010 + β011)⊗ y2+

x10 ⊗ (α100 + β101)⊗ y2 + x11 ⊗ (α110 + β111)⊗ y2)

=
1

2
(x00 ⊗ 00 + x01 ⊗ 01 + x10 ⊗ 10 + x11 ⊗ 11)⊗ (α0 + β1)⊗ y2.

5.3.2 The algebra of automata: further work

There is clearly much more to develop about the algebraic structure. We
mention only that for each object A the constants ∆A, ∆

o
A satisfy the Frobe-

nius equations2 [12], namely that

(1A ×∆o
A)||(∆A × 1A) = ∆o

A||∆A = (∆A × 1A)||(1A ×∆o
A).

and the equation
∆A||∆o

A = 1A

Notice that relations on X also exist as closed classical automata with state
space CX and there the Frobenius equations are also satisfied, which fact has
been used in axiomatizing classical data in [14].

There is another sense in which the algebra is incomplete. We have
not described the relation between our diagrammatic representation, which

2See section 2.2.4 p. 50.



5. Quantum automata 98

concern parallel operations, and those of Coecke, Selinger and others in which
the diagrams represent flow of data, that is, involve sequential operations.
We hope to apply the ideas of [41], [20] to study this relation.



Appendix A

Calculating DPn with Maple

The use of a symbolic computation system may be extremely useful to eva-
luate expressions in the algebra of weighted or quantum automata. Here
we want to compute the total matrix of the n Dining Philosopher system
DPn described in chapter 1 using a set of Maple procedures1. Since DPn is
an element of Π(Σ(E)), namely a communicating parallel system of sequen-
tial automata, in the following sections we will consider only operations on
weighted automata with trivial sequential interfaces.

A.1 Weighted automata

We denote a state of a weighted automaton by an integer index [n]. A
transition is a tuple

[[a],[b],[n],[m],p]

where a and b are the left and right labels respectively, n the domain, m the
codomain and p the weight of the transition. Then, a weighted automaton
with trivial sequential interfaces consists of a list

sys(state(),trans())

where

• state() is a list [1],...,[n] of indexes of states,

• trans() is a list [t1],...,[tm] of transitions.

Example A.1.1. The automaton Phil in the Dining Philosopher system2

is represented in the following way:

1The procedures we describe were written in Maple 5.
2For the definition of Phil and Fork in the Dining Philosophers system see section

1.1.2.

99



A. Calculating DPn with Maple 100

> phil:=sys(stat([1],[2],[3],[4]),trans(

[[e],[e],[1],[1],1/2],

[[e],[e],[2],[2],1/2],

[[e],[e],[3],[3],1/2],

[[e],[e],[4],[4],1/2],

[[t],[e],[1],[2],1/2],

[[e],[t],[2],[3],1/2],

[[r],[e],[3],[4],1/2],

[[e],[r],[4],[1],1/2]

)):

Similarly, Fork is:

> fork:=sys(stat([1],[2],[3]),trans(

[[e],[e],[1],[1],1/3],

[[e],[e],[2],[2],1/2],

[[e],[e],[3],[3],1/2],

[[t],[e],[1],[3],1/3],

[[r],[e],[3],[1],1/2],

[[e],[t],[1],[2],1/3],

[[e],[r],[2],[1],1/2])):

More in general, a weighted automaton QX
Y ;A,B may be represented as a

list
sys(state(),trans(),incond(),outcond())

where state() and trans() are lists of states and transitions respectively
as described above, and incond() and outcond() are lists of integers rep-
resenting the images of the in and out condition functions into the state
space.

Example A.1.2. Consider the weighted automaton Q represented by the
following picture:

1 2

3

a/b, d; 2

a/c, d; 1

a/b, d; 3

1

1 2

a

b, c

d



A. Calculating DPn with Maple 101

Then, Q is:

> Q:=sys(

stat([1],[2],[3]),

trans(

[[a],[b,d],[1],[2],2],

[[a],[b,d],[2],[2],3],

[[a],[c,d],[2],[3],1],

),

incond(1),

outcond(3,3)

):

Since the automata we consider have trivial sequential interfaces, for sim-
plicity in the following sections we will ignore the in and out conditions.

A.2 Transition matrices

We define now the procedure transmatr which returns the transition ma-
trix of a weighted automaton sys1 with left label llab and right label rlab.
transmatr recalls the auxiliary procedures ord, which returns the index po-
sition of a state, and eqlist which returns true when two given lists are
equal.

> ord:=proc(sys,state)

local n,k,i;

n:=nops(op(1,sys));

k:=0;

for i from 1 to n do

if op(i,op(1,sys))=state then

k:=i;

fi;

od;

RETURN(k);

end:

> eqlist:=proc(list1,list2)

local n,m,i;

n:=nops(list1);

m:=nops(list2);

i:=1;



A. Calculating DPn with Maple 102

if not(n=m) then RETURN(false);fi;

for i from 1 to n do

if not(op(i,list1)=op(i,list2)) then RETURN(false);fi;

i:=i+1;

od;

RETURN(true);

end:

> transmatr:=proc(sys,llab,rlab)

local n,t,l,A,i,h,k,p,q;

n:=nops(op(1,sys)); # no of states of sys

t:=op(2,sys); #transition vector

l:=nops(t);#no of transitions

A:=matrix(n,n,0);

for i from 1 to l do;

if ( eqlist(op(1,op(i,t)),llab) ) and

(eqlist(op(2,op(i,t)),rlab) ) then

h:=op(3,op(i,t));

k:=op(4,op(i,t));

p:=ord(sys,h);

q:=ord(sys,k);

A[p,q]:=A[p,q]+op(5,op(i,t));

fi;

od;

RETURN(evalm(A));

end:

Example A.2.1. The command transmatr(phil,[e],[e]); returns the
following matrix:



A. Calculating DPn with Maple 103

A.3 Operations

A.3.1 Series composition

Given two weighted automata sys1, sys2, the procedure ser(sys1,sys2)

returns the series composite of sys1 and sys2.

> serstat:=proc(sys1,sys2) local l,i,j,n1,n2;

n1:=nops(op(1,sys1));

n2:=nops(op(1,sys2));

l:=stat();

for i from 1 to n1 do;

for j from 1 to n2 do;

l:=stat(op(l),[op(op(i,op(1,sys1))),op(op(j,op(1,sys2)))]);

od;od;

RETURN(l);

end:

> sertrans:=proc(sys1,sys2) local i,j,l,n1,n2,t1,t2;

n1:=nops(op(2,sys1));

n2:=nops(op(2,sys2));

l:=trans();

t1:=op(2,sys1);

t2:=op(2,sys2);

for i from 1 to n1 do;

for j from 1 to n2 do;

if op(2,op(i,t1))=op(1,op(j,t2)) then

l:=trans(

op(l),

[ op(1,op(i,t1)),op(2,op(j,t2)),

[op(op(3,op(i,t1))),op(op(3,op(j,t2)))],

[op(op(4,op(i,t1))),op(op(4,op(j,t2)))],

op(5,op(i,t1))*op(5,op(j,t2)) ]);

fi;

od;od;

RETURN(l);

end:

> ser:=proc(sys1,sys2);

RETURN(sys(serstat(sys1,sys2),sertrans(sys1,sys2)));

end:



A. Calculating DPn with Maple 104

Example A.3.1. The command ser(phil,fork) returns the following au-
tomaton:

A.3.2 Parallel feedback

The following procedure computes the parallel feedback of a system sys1:

> feedback:=proc(sys1) local i,n,n1,n2,l;

l:=trans();

n:=nops(op(2,sys1));#no of transitions

n1:=nops(op(1,op(1,op(2,sys1))));#no of labels on left

n2:=nops(op(2,op(1,op(2,sys1))));#no of labels on right

for i from 1 to n do;

if op(n1,op(1,op(i,op(2,sys1))))=op(n2,op(2,op(i,op(2,sys1))))

then l:=trans(op(l),[[op(1..n1-1,op(1,op(i,op(2,sys1))))],



A. Calculating DPn with Maple 105

[op(1..n2-1,op(2,op(i,op(2,sys1))))],op(3,op(i,op(2,sys1))),

op(4,op(i,op(2,sys1))),op(5,op(i,op(2,sys1)))]);

fi;od;

RETURN(sys(op(1,sys1),l));

end:

A.3.3 Reachability

The procedure reach(x,sys1) computes the reachable part of a weighted
automaton sys1 with initial state x and recalls some auxiliary procedures.

> reachinone:=proc(x,sys) local i,l,t;

#returns list reachable from state x plus x

l:=stat(x);

for i from 1 to nops(op(2,sys)) do;

t:=op(i,op(2,sys));#i th transition

if op(3,t)=x then l:=adjoin(op(4,t),l);

fi;od;

RETURN(l);

end:

> reachinonelist:=proc(list,sys) local i, l;

#returns the list of states reachable in one step

#from the list l of states plus states in l;

l:=list;

for i from 1 to nops(list) do;

l:=adjoinlist(reachinone(op(i,l),sys),l);

od;end:

> reachstat:=proc(x,sys) local l,i,m,n;

l:=stat(x);n:=-1;m:=0;

i:=0;while(n<m) do;

l:=reachinonelist(l,sys);i:=i+1;

n:=m;

m:=nops(l);

od;

RETURN(l);

end:

> reachtrans:=proc(x,sys1) local i,j,m,n,ls,lt;

#returns the transitions reachable from x



A. Calculating DPn with Maple 106

ls:=reachstat(x,sys1);

lt:=trans();

m:=nops(op(2,sys1));#number of transitions

n:=nops(ls);#number of reachable states

for i from 1 to m do;

for j from 1 to n do;

if op(3,op(i,op(2,sys1)))=op(j,ls)

then lt:=adjoin(op(i,op(2,sys1)),lt);fi;

od;

od;

RETURN(trans(op(lt)));

end:

> reach:=proc(x,sys1);

RETURN(sys(reachstat(x,sys1),reachtrans(x,sys1)));

end:

A.3.4 Normalization

Given a real matrix A, normalize(A) returns the normalized matrix of A.

> rowsum:=proc(A,i) local j,x,y;

x:=0;

for j from 1 to linalg[coldim](A) do;

x:=x+A[i,j];od;

RETURN(x);

end:

> normalizerow:=proc(A,i) local j,x;

x:=rowsum(A,i);

for j from 1 to linalg[coldim](A) do;

A[i,j]:=A[i,j]/x;

od;

RETURN(A);

end:

> normalize:=proc(A) local i;

for i from 1 to linalg[rowdim](A) do;

normalizerow(A,i);

od;

RETURN(A);



A. Calculating DPn with Maple 107

end:

A.4 Examples

The transition matrix of DPn with n = 2 is given by:

> DF2:=reach([1,1,1,1],feedback(ser(ser(phil,fork),ser(phil,fork)))):

> DF2matrix:=normalize(transmatr(DF2,[],[]));

After 3 steps the probability of reaching deadlock (fourth column of the
matrix) from the initial state [1,1,1,1] (first row) is 341

576
:

> evalm(DF2matrix^3);



A. Calculating DPn with Maple 108

After 20 steps the probability of deadlock is 0.9641951359:

> evalf(evalm(DF2matrix^20),10);

In an analogous way, we can calculate DPn for n > 2. For instance, for
n = 3 we can calculate:



A. Calculating DPn with Maple 109

> DF3:=reach([1,1,1,1,1,1],feedback(ser(ser(ser(phil,fork),

ser(phil,fork)),ser(phil,fork)))):

> DF3matrix:=normalize(transmatr(DF3,[],[])):

Then, we change the weights in DP2 and we compute the transition
matrix of the system after 20 steps:

> phil1:=sys(stat([1],[2],[3],[4]),trans(

[[e],[e],[1],[1],1],

[[e],[e],[2],[2],3],

[[e],[e],[3],[3],.5],

[[e],[e],[4],[4],.5],

[[t],[e],[1],[2],1],

[[e],[t],[2],[3],3],

[[r],[e],[3],[4],.5],

[[e],[r],[4],[1],.5]

)):

> fork1:=sys(stat([1],[2],[3]),trans(

[[e],[e],[1],[1],.5],

[[e],[e],[2],[2],.5],

[[e],[e],[3],[3],1],

[[t],[e],[1],[3],.5],

[[r],[e],[3],[1],.5],

[[e],[t],[1],[2],.5],

[[e],[r],[2],[1],1])):

> phil2:=sys(stat([1],[2],[3],[4]),trans(

[[e],[e],[1],[1],1],

[[e],[e],[2],[2],3],

[[e],[e],[3],[3],5],

[[e],[e],[4],[4],.5],

[[t],[e],[1],[2],1],

[[e],[t],[2],[3],3],

[[r],[e],[3],[4],5],

[[e],[r],[4],[1],.5]

)):

> fork2:=sys(stat([1],[2],[3]),trans(

[[e],[e],[1],[1],5],

[[e],[e],[2],[2],2],

[[e],[e],[3],[3],1],

[[t],[e],[1],[3],5],

[[r],[e],[3],[1],2],

[[e],[t],[1],[2],5],



A. Calculating DPn with Maple 110

[[e],[r],[2],[1],1])):

> DF2a:=reach([1,1,1,1],feedback(ser(ser(phil1,fork1),

ser(phil2,fork2)))):

> DF2amatrix:=normalize(transmatr(DF2a,[],[])):

> evalm(DF2amatrix^20):

With other similar calculations we note that the probability of reaching the
deadlock state grows with increasing numbers of steps independently of the
choices of weights3.

3See remark 1.4.4 p. 41.



Bibliography

[1] S. Abramsky and B. Coecke. A Categorical Semantics of Quantum
Protocols. In Proceedings of the 19th Annual IEEE Symposium on Logic
in Computer Science, pages 415–425. IEEE Computer Society, 2004.

[2] A. Arnold. Finite transition systems: semantics of communicating
systems. Prentice Hall International (UK), 1994.

[3] C. Baier, M. Grösser, and F. Ciesinski. Model checking linear-time
properties of probabilistic systems. Monographs in Theoretical Computer
Science, pages 519–596, 2009.

[4] A. Bellos. Magic numbers: A meeting of mathemagical tricksters. New
Scientist, 2762:44–49, 2010.

[5] J. Benabou. Introduction to Bicategories. Springer Lecture Notes in
Mathematics, 1967.

[6] C.H. Bennett, G. Brassard, C. Crépeau adn R. Jozsa, A. Peres, and
W. K. Wootters. Teleporting an Unknown Quantum State via Dual Clas-
sical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett., 70:1895–
1899, 1993.

[7] A. Blass. Seven trees in one. Journal of Pure and Applied Algebra,
103:1–21, 1995.

[8] S.L. Bloom and Z.Ésik. Iteration Theories: The Equational Logic of
Iterative Processes. EATCS Monographs on Theoretical Computer Sci-
ence. Springer–Verlag, 1993.

[9] R. Blute, A. Edalat, and P. Panangaden. Bisimulation for Labelled
Markov Processes. Proceedings of the 12th Annual IEEE Symposium on
Logic in Computer Science, pages 95–106, 1997.

111



Bibliography 112

[10] A. Carboni, G. M. Kelly, R. F. C Walters, and R.J. Wood. Cartesian
Bicategories II. Theory and Applications of Categories, 19(6):93–124,
2008.

[11] A. Carboni, S. Lack, and R.F.C. Walters. Introduction to extensive and
distributive categories. Journal of Pure and Applied Algebra, 84:145–
158, 1993.

[12] A. Carboni and R.F.C. Walters. Cartesian bicategories I. Journal of
Pure and Applied Algebra, 49:11–32, 1987.

[13] J.R.B. Cockett and S. Lack. The extensive completion of a distributive
category. Theory and Applications of Categories, 8:541–554, 2001.

[14] B. Coecke, E. O Paquette, and D. Pavlovic. Classical and Quantum
Structures. Technical Report RR-08-02, OUCL, 2008.

[15] B. Coecke and D. Pavlovic. Quantum measurements without sums.
In G. Chen, L. Kauffman, and S. Lamonaco, editors, Mathematics of
Quantum Computing and Technology. Taylor and Francis, 2006.

[16] B. Coecke and S. Perdrix. Environment and classical channels in cate-
gorical quantum mechanics. ArXiv:1004.1598, 2010.

[17] L. de Francesco Albasini, N. Sabadini, and R.F.C. Walters. The parallel
composition of processes. ART 2008, Analysing Reduction systems using
Transition systems, pages 111–121, 2008. (Also arXiv:0904.3961).

[18] L. de Francesco Albasini, N. Sabadini, and R.F.C. Walters. Systems
with discrete geometry. ART 2008, Analysing Reduction systems using
Transition systems, pages 122–131, 2008.

[19] L. de Francesco Albasini, N. Sabadini, and R.F.C. Walters. An algebra
of automata which includes both classical and quantum entities. To
appear in Proceedings 6th QPL workshop, Quantum Physics and Logic,
ENTCS, 2009. (Preliminary version arXiv:0901.4754, 2009).

[20] L. de Francesco Albasini, N. Sabadini, and R.F.C. Walters. Cospans
and spans of graphs: a categorical algebra for the sequential and parallel
composition of discrete systems. ArXiv:0909.4136, 2009.

[21] L. de Francesco Albasini, N. Sabadini, and R.F.C. Walters. The com-
positional construction of Markov processes. Applied Categorical Struc-
tures, 2010. Presented to International Conference in Category Theory,



Bibliography 113

University of Cape Town, 29 June - 4 July, 2009. (Preliminary version
arXiv:0901.2434, 2009).

[22] L. de Francesco Albasini, N. Sabadini, and R.F.C. Walters. The com-
positional construction of Markov processes II. To appear in RAIRO-
Theoretical Informatics and applications, 2010. Presented to ICTCS ’09,
11th Italian Conference on Theoretical Computer Science, Cremona,
Italy. (Preliminary version arXiv:1005.0949, 2010).

[23] L. de Francesco Albasini, N. Sabadini, and R.F.C. Walters. Weighted
automata and CospanSpan. Presented to International Confer-
ence in Category Theory, Università di Genova, available as:
http://ct2010.disi.unige.it/slides/Walters_CT2010.pdf, June
20-26 2010.

[24] M. Droste, W. Kuich, and H. Vogler(Eds.). Handbook of Weighted Au-
tomata. EATCS Monographs in Theoretical Computer Science. EATCS,
2009.

[25] S. Eilenberg. Automata, Languages, and Machines (Volume A). Aca-
demic Press, San Diego, CA, 1974.

[26] C.C. Elgot. Monadic computation and iterative algebraic theories. In
H.E. Rose and J.C. Shepherdson, editors, Logic Colloquium 1973: pro-
ceedings of the Logic Colloquium, Bristol, July 1973, volume 80, pages
175–230. North Holland Publishers, 1975.

[27] M. Gardner. The Second Scientific American Book of Mathematical
Puzzles and Diversions. University of Chicago Press, Chicago. First
appeared in 1961, Simon and Schuster, NY, 1987.

[28] M. Gardner. Mathematical games, Jan. 1957–Dec. 1981. A column in
Scientific American; all 15 volumes of the column are on 1 CD-ROM,
available from MAA.

[29] R. J. Van Glabbeek, S. A. Smolka, and B. Steffen. Reactive, Genera-
tive and Stratified Models of Probabilistic Processes. Information and
Computation, 121(1):59–80, 1995.

[30] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001.

[31] D. Harel. Statecharts: a visual formalism for complex systems. The
Science of Computer Programming, 8:231–274, 1987.

http://ct2010.disi.unige.it/slides/Walters_CT2010.pdf


Bibliography 114

[32] M. Hasegawa. On traced monoidal closed categories. Mathematical
Structure in Computer Science, 2009.

[33] J. Hillston. A Compositional Approach to Performance Modelling. Cam-
bridge University Press, 1996.

[34] C. A. R. Hoare, editor. Communicating Sequential Processes. Prentice-
Hall, New York, 1985.

[35] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Second edition, Addison Wesley,
2001.

[36] A. Joyal and R. Street. Braided tensor categories. Advances in Mathe-
matics, 102(1):20–78, 1993.

[37] A. Joyal, R. Street, and D. Verity. Traced monoidal categories.
Mathematical Proceedings of the Cambridge Philosophical Society,
119(03):447–468, 1996.

[38] P. Katis, N. Sabadini, and R.F.C. Walters. Bicategories of processes.
Journal of Pure and Applied Algebra, 115:141–178, 1997.

[39] P. Katis, N. Sabadini, and R.F.C. Walters. Representing P/T nets in
Span(Graph). Proceedings AMAST ’97, 1349:307–321, 1997.

[40] P. Katis, N. Sabadini, and R.F.C. Walters. Span(Graph): A categorical
algebra of transition systems. In Proc. AMAST ’97, volume 1349 of
LNCS, pages 307–321. Springer Verlag, 1997.

[41] P. Katis, N. Sabadini, and R.F.C. Walters. A formalisation of the IWIM
Model. In A. Porto and G.-C. Roman, editors, COORDINATION 2000,
volume 1906 of LNCS, pages 267–283. Springer Verlag, 2000.

[42] P. Katis, N. Sabadini, and R.F.C. Walters. On the algebra of systems
with feedback and boundary. Rendiconti del Circolo Matematico di
Palermo Serie II, Suppl. 63, pages 123–156, 2000.

[43] P. Katis, N. Sabadini, and R.F.C. Walters. Feedback, trace and fixed-
point semantics. Theoret. Informatics Appl. 36, pages 181–194, 2002.

[44] G.M. Kelly and M. Laplaza. Coherence for compact closed categories.
Journal of Pure and Applied Algebra, 19:193–213, 1980.



Bibliography 115

[45] J. Kock. Frobenius algebras and 2D topological Quantum Field Theories.
Cambridge University Press, 2004.

[46] A. Kondacs and J. Watrous. On the power of quantum finite state
automata. In Proc. of the 38th Annual Symposium on Foundations of
Computer Science, pages 66–75, Los Alamitos, CA, USA, 1997. IEEE
Computer Society.

[47] F.W. Lawvere. Functorial Semantics of Elementary Theories. Journal
of Symbolic Logic, 31:294–295, 1966.

[48] F.W. Lawvere. Some remarks on the future of category theory. In
Proceedings Category Theory 1990, volume 1488, pages 1–13. Springer
Verlag, 1991.

[49] Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Observing
Branching Structure through Probabilistic Contexts. SIAM J. Comput.,
37(4):977–1013, 2007.

[50] W.S. McCulloch and W. Pitts. A Logical Calculus of the Ideas Imma-
nent in Nervous Activity. Bulletin of Mathematical Biophysics, 5:115–
133, 1943.

[51] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 1980.

[52] Mehryar Mohri. Weighted automata algorithms. In Manfred Droste,
Werner Kuich, and Heiko Vogler, editors, Handbook of WeightedAu-
tomata, EATCS Monographs in Theoretical Computer Science, pages
213–254. Springer, 2009.

[53] C. Moore and J. Crutchfield. Quantum automata and quantum gram-
mars. Theoretical Computer Science, 237:275–306, 2000.

[54] R. Penrose. Applications of negative dimensional tensors. Combinatorial
Mathematics and its Applications, pages 221–244, 1971.

[55] A. Pnueli and L. Zuck. Probabilistic Verification by Tableaux. In Pro-
ceedings LICS’86, pages 322–331, 1986.

[56] M. O. Rabin. Probabilistic Automata. Information andControl, 6:230–
245, 1963.



Bibliography 116

[57] R. Rosebrugh, N. Sabadini, and R.F.C. Walters. Generic commutative
separable algebras and cospans of graphs. Theory and Applications of
Categories, 15:264–177, 2005.

[58] R. Rosebrugh, N. Sabadini, and R.F.C. Walters. Calculating colimits
and limits compositionally. presented to Category Theory 2007, Car-
voeiro, Portugal, 18th June 2007, 2007.

[59] R. Rosebrugh, N. Sabadini, and R.F.C. Walters. Calculating colimits
compositionally. Montanari Festschrift, 5065:581–592, 2008. (Also
arXiv:0712.2525).

[60] N. Sabadini, S. Vigna, and R.F.C. Walters. A note on recursive func-
tions. Mathematical Structures in Computer Science, 6:127–139, 1996.

[61] R. Segala. Modeling and Verification of Randomized Distributed Real-
Time Systems. PhD thesis, MIT Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA, May 1995. Also, Technical Report MIT/LCS/TR-676.

[62] P. Selinger. Towards a quantum programming language. Mathematical.
Structures in Comp. Sci., 14(4):527–586, 2004.

[63] A. Sokolova and E.P. de Vink. Probabilistic automata: system types,
parallel composition and comparison. In Handbook of weighted automata,
volume 2925 of EATCS Monographs in Theoretical Computer Science,
pages 1–43. Springer Verlag, 2004.

[64] G. Stefanescu. Network Algebra. Springer-Verlag, 2000.

[65] V. Turaev. Quantum Invariants of Knots and 3-Manifolds. De Gruyter,
2 edition, 2010.

[66] M. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In Proceedings FOCS’85, pages 327–338, 1985.

[67] S. Vigna. On the Relations between Distributive Computability and the
BS. Model. Theor. Comput. Sci., 162(1):5–21, 1996.

[68] R.F.C. Walters. Categories and Computer Science. Carslaw Publications
1991, Cambridge University Press 1989, 1992.

[69] R.F.C. Walters and R.J. Wood. Frobenius Objects in Cartesian Bicat-
egories. Theory and Applications of Categories, 20:25–47, 2008. (Also
arXiv:0708.1925).



Bibliography 117

[70] W. Zielonka. Notes on Finite Asynchronous Automata. Informatique
Théorique et Applications (ITA), 21(2):99–135, 1987.


	Table of symbols
	Introduction
	Parallel and sequential interfaces
	Comparison with other models
	Weighted and Markov automata
	Quantum automata

	Organization of the thesis

	Weighted and Markov automata
	Weighted automata with parallel and sequential interfaces
	The power construction
	Graphical representation of weighted automata
	Reachability

	The algebra of weighted automata: operations
	Sequential operations
	Parallel operations
	Some derived operations

	Graphical representation of expressions of weighted automata
	Operations and constants
	Some derived operations and constants

	The Dining Philosophers system
	The probability of deadlock


	Systems with parallel and sequential interfaces
	Spans and cospans of graphs
	Systems with sequential and parallel interfaces
	Sequential interfaces
	Parallel interfaces
	Combined sequential and parallel interfaces
	The wscc structure on span and cospan categories

	Simplifying Assumptions
	Simplifying the interfaces
	Finiteness assumptions

	The programming language Cospan-Span
	Systems
	Operations on systems, and constants
	Programs

	Concluding remarks
	Turing completeness
	Problems of concurrency
	Hierarchy
	Change of geometry


	Hierarchical and mobile systems
	Any automaton is in (E)
	Sofia's birthday party
	A fork bomb
	The probabilistic automata of Segala and Lynch
	Segala-Lynch automata
	Behaviour of Segala-Lynch automata
	The parallel composition of Segala-Lynch automata


	Conditional probability
	Classical probability theory
	Conditional probability for weighted automata
	Examples
	Checking a fair coin
	False positives
	Two boys and girls problem

	Concluding remarks

	Quantum automata
	C-automata
	Graphical representation
	Qubits
	Alice and Bob

	The algebra of C-automata
	The teleportation protocol
	The algebra of automata: further work


	 Appendix
	Calculating DPn with Maple
	Weighted automata
	Transition matrices
	Operations
	Series composition
	Parallel feedback
	Reachability
	Normalization

	Examples

	Bibliography

