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Introduction

Many problems of physics, engineering and applied sciences are governed by functional equa-
tions (differential or integral) that do not admit closed-form solution and therefore require
numerical discretization techniques which often involve solving large linear systems. How-
ever, the coefficient matrix of these systems usually inherits a “structure” from the continuous
problem (the properties of the continuous problem moving on the discrete problem) and this
information can be conveniently used for solving efficiently the discrete problem. For example
in the discretization of the Navier-Stokes indefinite differential equation, we obtain systems
of saddle point type also characterized by matrices with an indefinite structure. If the physi-
cal problem possesses the property of being invariant in space or time, we get operators with
constant coefficients that are invariant under translation (e.g. in partial differential equations
(PDEs)) and linear systems we derive from the discretization are of Toeplitz type (for the one-
dimensional case); for example in the reconstruction of images where we have specific integral
equations (IEs) with kernel invariant under translation.

From the discretization of continuous problems we usually obtain large linear systems where
the size of the involved matrices depends on the number of discretization points and the greater
the number of such points, the better the accuracy in the solution. In this setting, when
approximating a infinite-dimensional equation (e.g. PDEs, IEs, etc.), one finds a sequence of
linear systems {Anxn = bn} of increasing dimension dn. For the resolution of these systems,
the direct methods may require a high computation time and also if the coefficient matrix has a
particular structure and/or a sparsity these methods generally do not exploit the information on
the matrix in order to accelerate the convergence and/or optimize the storage space. Otherwise,
the iterative methods, such as multigrid or preconditioned Krylov techniques, are more easily
adaptable to problems with specific structural features.

The goal, however, is to choose resolution methods that are optimal.

Optimality: let {Anxn = bn} be a sequence of linear systems of increasing dimension.
A method is called optimal if, in terms of arithmetic operations (ops), the cost for the
numerical calculation of xn is of the same order as that of the matrix-vector product:
for an iterative method this implies a convergence, within a preassigned accuracy, in a
number of iterations independent of n and that the cost of every iteration is of the same
order as that of the matrix-vector product.

In this sense, the analysis must refer to the sequence {An}, and not to a single matrix, since the
objective is to quantify the difficulty of resolution of the linear system in relation to the accuracy
(the better is the quality of the approximation, the larger is the size dn) of the approximation
considered.

The research of optimality has been, in some sense, the guideline that has connected the
research topics covered during the Ph.D.: spectral analysis of sequences of structured matrices,
preconditioning techniques, multigrid methods and saddle point problems.

The first topic is the largest part covered during the Ph.D. and is contained in the first part
of the thesis: in particular we worked on the search for new mathematical tools (definitions
and theorems) for analyzing the spectral distribution of sequences of matrices, mainly related
to the shift-invariance property.
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A key starting point concerning the spectral distribution of eigenvalues for sequences of

Toeplitz matrices {Tn (f)}, where Tn (f) =
[
f̃j−r

]n−1

j,r=0
, f̃k being the Fourier coefficients of f ,

is the famous Szegö theorem which amounts to the following: if f is real-valued and essentially
bounded then

lim
n→∞

1

n

∑

λ eig. of Tn (f)

F (λ) =
1

2π

∫

[−π,π]

F (f (t)) dt, (1)

for every continuous function F with compact support (see, for example, [48]).

The knowledge of the functional symbol f representing the limit distribution of eigenvalues
has been shown to be crucial in understanding the superlinear convergence behavior [8] of
Krylov methods (see, e.g., [47]), especially for the Conjugate Gradient (CG) method (see, e.g.,
[5]) in the Hermitian positive definite case, after resolution of the outliers: in this direction, we
refer the reader to the analysis developed by Beckermann and Kuijlaars in recent years [8, 59]
by using potential theory.

Several intermediate steps were done during the 20th century involving also singular values
(Avram, Parter, etc.) and richer classes of symbols f (Böttcher, Silbermann, Widom, etc.).

In the 1990’s, independently, Tilli and Tyrtyshnikov/Zamarashkin showed [109, 118] that
equation (1) holds for any integrable real-valued function f . The corresponding result for a
complex-valued function f and the sequence of sets of its singular values (with |f | in the place of
f) was first obtained by Parter (continuous times uni-modular symbols [72]), Avram (essentially
bounded symbols [4]), and by Tilli and Tyrtyshnikov/Zamarashkin [109, 118], independently,
for any integrable symbol f . (The book [20] gives a synopsis of all these results in Chapters
5 and 6). The relation (1) was established for a more general class of test functions F in
[109, 87, 22] and the case of functions f of several variables (the multi-level case) and matrix-
valued functions was studied in [109] and in [82] in the context of preconditioning (other related
results were established by Linnik, Widom, Doktorski, see [20, Section 6.9]). Szegö-like results
using different choices of families of test functions can be found in [19, 87, 109] (see [20, Chapters
5 and 6] for a synthesis of all these results).

However we have to be careful: a simple yet striking example where the eigenvalue result
does not hold is given by the Toeplitz sequence related to the function e−it, i2 = −1, which has
only zero eigenvalues so that the condition (1) means that F (0) = 1

2π

∫
[−π,π] F

(
e−it

)
dt which

is far from being satisfied for all continuous functions with compact support, even though it
is satisfied for every harmonic function (in cases like the latter it is better to consider the
pseudospectrum, see [20]). In fact, Tilli was able to show that, if f is any complex-valued
integrable function, then the condition (1) holds for all harmonic test functions F [110] and
that it is even satisfied by all continuous functions with compact support as long as the symbol
f satisfies a certain geometric conditions. More specifically, the function f must be essentially
bounded and such that its (essential) range does not disconnect the complex plane and has
empty interior, see [112]. We call this set of functions the Tilli class. In other contexts such
a property is informally called “thin spectrum”. It is clear that the set of all real-valued L∞

functions is properly included in the Tilli class.

Further extensions of the Szegö result can be considered. An important direction of research
is represented by the case of variable Toeplitz sequences or generalized locally Toeplitz sequences
(see the pioneering work by Kac, Murdoch and Szegö [56] and by Parter [71], and, more
recently, papers [111, 89, 90, 103, 17]). Another important direction is represented by the
algebra generated by Toeplitz sequences and this is the main subject of the Chapter 4 of this
thesis, with special attention to the case of eigenvalues, by using and extending tools from
matrix theory (see Chapter 3) and finite-dimensional linear algebra; the case of singular values
being already known (see [20, 90] and the references therein).

In our study we are motivated by the variety of fields where such matrices can be en-
countered such as, e.g., multigrid methods [50, 34], wavelet analysis [29], and subdivision
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algorithms or, equivalently, in the associated refinement equations; see [36] and the references
therein. Furthermore, it is interesting to remind that Strang [107] has shown rich connections
between dilation equations in the wavelets context and multigrid algorithms [50, 114], when
constructing the restriction/prolongation operators [43, 3] with various boundary conditions.
It is worth noting that the use of different boundary conditions is quite natural when dealing
with signal/image restoration problems or differential equations; see [88, 85].

The second part of the thesis is more focused on computational problems in which the pre-
vious spectral analysis comes into the play. More specifically, by employing the analysis from
g-circulant/g-Toeplitz structures (see Chapter 5), we designed optimal regularizing precondi-
tioners and multigrid methods. A further research topic concerns the saddle point problem and
related preconditioning in which again a careful spectral analysis is essential. We can give a
brief account of the findings in these three directions.

Regarding the first topic, the preconditioning of Toeplitz matrices via circulant matrices is
widely studied in the literature (see, e.g., [24, 26] for the one-level case, [80] for the multi-level
case, and [81] for the multi-level block case), in particular we know that, given a sequence of
Toeplitz matrices {Tn (f)} is possible to construct a sequence of circulant matrices {Cn (f)}
such that the sequence

{
C−1

n (f) Tn (f)
}

is clustered at 1 and this speed up the convergence
of any Krylov like technique; but if we consider the more general definition of g-Toeplitz and
g-circulant matrix (where for g = 1 we obtain the “classical” circulant and Toeplitz matrix) this
is not true, then the case g = 1 is exceptional. However, in Chapter 6 we will see that, under
suitable assumptions on the generating function f , there exist choices of g-circulant sequences
which are regularizing preconditioning sequence for the corresponding g-Toeplitz structures.

The multigrid methods, in the last 20 years, have gained a remarkable reputation as fast
solvers for structured matrices associated to shift-invariant operators, where the size n is large
and the system shows a conditioning growing polynomially with n (see [42, 79, 43, 25, 54, 55,
108, 3, 95, 53] and the references therein). Under suitable mild assumptions, the considered
techniques are optimal showing linear or almost linear (O (n log n) arithmetic operations as
the celebrated fast Fourier transform (FFT)) complexity for reaching the solution within a
preassigned accuracy and a convergence rate independent of the size n of the involved system.

These excellent features are identical in the multilevel setting, as already known for linear
systems arising in the context of elliptic ordinary and partial differential equations (see [50, 77,
114, 85] and references therein). In particular, if the underlying structures are also sparse as in
the multi-level banded case, then the cost of solving the involved linear system is proportional
to the order of the coefficient matrix, with constant depending linearly on the bandwidths at
each level. We mention that the cost of direct methods is O (n log n) operations in the case

of trigonometric matrix algebras (circulant, τ , . . . ) and it is O
(
n

3d−1
d

)
for d-level Toeplitz

matrices (see [57]). Concerning multi-level Toeplitz structures, superfast methods represent
a good alternative, even if the algorithmic error has to be controlled, and the cost grows as

O
(
n

3d−2
d log2 (n)

)
ops: in fact, the computational burden is really competitive for d = 1,

while the deterioration is evident for d > 1, since it is nontrivial to exploit the structure
at the inner levels (see [28] and references therein and refer to [122] for recent interesting
findings on the subject). Moreover, in the last case the most popular preconditioning strategies,
with preconditioners taken in matrix algebras with unitary transform, can be far from being
optimal in the multi-dimensional case (see [97] and [86, 70, 122] for further results). On
the other hand, multigrid methods are optimal also for polynomially ill-conditioned multi-
dimensional problems. Furthermore, these techniques can be extended to the case of low-rank
corrections of the considered structured matrices, allowing to deal also with the modified Strang
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preconditioner widely used in the literature (see [24] and references therein).
The main novelty contained in the literature treating structured matrices is the use of the

symbol. Indeed, starting from the initial proposal in [42], we know that the convergence analysis
of the two-grid and V-cycle can be handled in a compact and elegant manner by studying few
analytical properties of the symbol (so the study does not involve explicitly the entries of the
matrix and, more importantly, the size n of the system). Already in the two-grid convergence
analysis, it is evident that the optimality can be reached only if the symbol f has a finite
number of zeros of finite order and not located at mirror points: more explicitly, if x0 is a zero
of f then f (x0 + π) must be greater than zero.

In Chapter 7 we show that the second requirement is not essential since it depends on the
choice of projecting the original matrix of size n into a new one of size n

2 . The latter is not
compulsory so that, by choosing a different size reduction from n to n

g
and g > 2, we can

overcome the pathology induced by the mirror points. A different approach for dealing with
such pathologies was proposed in [25] and further analyzed in [55], by exploiting a projection
strategy based on matrix-valued symbols.

The third research topic concerns the saddle point problems. Large symmetric linear sys-
tems in saddle point form arise in many scientific and engineering applications. Their effi-
cient solution by means of iterative methods heavily relies on exploiting the matrix structure.
Constraint preconditioners are among the most successful structure-oriented preconditioning
strategies, especially when dealing with optimization problems. In Chapter 8 we provide a full
spectral characterization of the constraint-based preconditioned matrix by means of the Weyr
canonical form. We also derive estimates for the spectrum when the preconditioner needs to
be modified to cope with possible high computational costs of its original version.

This Ph.D. thesis has been divided into two parts, a first part which explains the method-
ologies used and the theoretical results obtained and a second part which contains some appli-
cations.

Part I - Spectral Distributions of Structured Matrix-Sequences: Tools

• In Chapter 1 we introduce useful definitions and the notations used throughout the thesis.
We will see the concept of approximation class of sequences (a.c.s.) in order to define a
basic approximation theory for matrix-sequences, the definition of distribution in the
eigen/singular value sense and the clustering/attracting properties of matrix-sequences.

• In Chapter 2 we report well-known results concerning the notion of a.c.s. and of spectral
distribution. In particular we introduce the basic result of approximating theory for
sequences of matrices (used to demonstrate the most famous theorem of distribution
for sequences of Toeplitz matrices: the Szegö theorem), and some results of spectral
distribution for linear combinations of special sequences of matrices. In Section 2.4 we
report some results of perturbation for sequences of matrices (from Golinskii and Serra-
Capizzano [45]); these results will be used in Chapter 3 in order to deduce new results of
approximation for sequences of matrices.

• In Chapter 3 we enlarge the set of tools for providing the existence and for characterizing
explicitly the limit distribution of eigen/singular values for general (structured) matrix-
sequences. In particular, we test the stability of the notion of approximating class of
sequences (a.c.s.) for sequences of Hermitian sparsely unbounded matrices under the
influence of continuous functions defined on the real axis, then under mild trace norm
assumptions on the perturbing sequence, we extend the recent perturbation result based
on a theorem by Mirsky see in Chapter 2 to the analysis of the eigenvalue distribution and
localization of a generic (non-Hermitian) complex perturbation of a bounded Hermitian
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sequence of matrices. Finally we introduce two different but equivalent formulations of
Theorem 2.15 that will be used in Chapter 4 to prove a result of distribution for sequences
of products of Toeplitz matrices.

• Chapter 4 is devoted entirely to Toeplitz sequences: in addition to the definitions and clas-
sical distribution results, we use the result concerning the eigenvalues of a generic (non-
Hermitian) complex perturbation of a bounded Hermitian sequence of matrices proved in
Chapter 3 to prove that the asymptotic spectrum of the product of Toeplitz sequences,
whose symbols have a real-valued essentially bounded product h, is described by the
function h in the “Szegö way”. Then, using Mergelyan’s theorem, we extend the result to
the more general case where h belongs to the Tilli class. The same technique gives us the
analogous result for sequences belonging to the algebra generated by Toeplitz sequences,
if the symbols associated with the sequences are bounded and the global symbol h belongs
to the Tilli class. A generalization to the case of multi-level matrix-valued symbols and
a study of the case of Laurent polynomials not necessarily belonging to the Tilli class are
also given.

• In Chapter 5 we introduce the definitions of g-circulant and g-Toeplitz matrix, a general-
ization of the classical circulant and Toeplitz matrix. We study the eigen/singular values
of g-circulant matrices and provide an asymptotic analysis of the distribution results for
the singular values of g-Toeplitz sequences in the case where the sequence of coefficients
generating the g-Toeplitz can be interpreted as the sequence of Fourier coefficients of an
integrable function f over the domain (−π, π).

Part II - Spectral Distributions of Structured Matrix-Sequences: Applications

• In Chapter 6 we are interested in the preconditioning problem for g-Toeplitz matrices
which is well understood and widely studied in the last three decades for g = 1. In
particular, we consider the general case with g ≥ 2 and the interesting result is that the
preconditioned sequence {Pn} =

{
P−1

n An

}
, where {Pn} is the sequence of preconditioner

and {An} is the sequence of g-Toeplitz matrices, cannot be clustered at 1 so that the
case of g = 1 is exceptional. However, while a satisfactory standard preconditioning
cannot be achieved, the result has a positive implication since there exist choices of g-
circulant sequences which are regularizing preconditioning sequence for the corresponding
g-Toeplitz structures.

• In Chapter 7, starting from the spectral analysis of g-circulant matrices given in Chapter
5, we study the convergence of a multigrid method for circulant and Toeplitz matrices with
various size reductions. We assume that the size n of the coefficient matrix is divisible
by g ≥ 2 such that at the lower level the system is reduced to one of size n

g
, by employing

g-circulant based projectors. We perform a rigorous two-grid convergence analysis in
the circulant case and we extend experimentally the results to the Toeplitz setting, by
employing structure-preserving projectors. The optimality of the two-grid method and
of the multigrid method is proved, when the number θ ∈ N of recursive calls is such
that 1 < θ < g. The previous analysis is used also to overcome some pathological cases,
in which the generating function has zeros located at “mirror points” and the standard
two-grid method with g = 2 is not optimal.

• In Chapter 8 we deal with linear systems with non-singular symmetric coefficient matrix
A that arise in many applications associated with the numerical solution of saddle point
problems. We present a spectral analysis of the preconditioned matrix P−1A where P
is not the “ideal” preconditioner but a computationally less expensive version of this.
Much is known about the spectrum in the ideal case, characterized by a rich spectral
structure, with non-trivial Jordan blocks and favourable real eigenvalue distribution,
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while the spectral analysis of the general though far more realistic case (P not “ideal”)
has received less attention, possibly due to the difficulty of dealing with Jordan block
perturbations. In this chapter we want to fill this gap.

All our principal findings are summarized in the conclusion chapter.
The results of our research have been published or are in the process of publication in

[39, 101, 34, 68, 69, 99, 93, 92].
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Spectral Distributions of
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Tools





Chapter 1

Notations and definitions

The aim of this introductory chapter is simply to fix the notations used throughout the thesis,
to recall some basic concepts of linear algebra and to illustrate the definitions that are necessary
to work with sequences of matrices.

In particular, in Section 1.3 we introduce the definition of spectral distribution of a sequence
of matrices; this concept links the collective behavior of the eigenvalues or singular values of
all the matrices in the sequence to the behavior of a given function (or measure). Moreover
we illustrate some properties and characterizations of the spectrum of a sequence of matrices
such as “clustering” and “attraction”. We conclude the chapter with the definitions of sparsely
unbounded and sparsely vanishing sequence of matrices that will be frequently used in Chapter
6.

1.1 Some concepts of linear algebra

We denote by Mm,n (C) (Mm,n (R)) the vector space of matrices of dimension m × n with
complex (real) elements, where the matrices are square, i.e. m = n, we simply write Mn (C)
(Mn (R)). In the following, for matrices and vectors, ⊤ denote the transpose operator while ∗

the transpose conjugate operator.

Definition 1.1. A matrix A ∈ Mn (C) is Hermitian if A = A∗, and is skew-Hermitian if
A = −A∗. Given a Hermitian matrix A ∈ Mn (C), if we have that x∗Ax > 0 (x∗Ax ≥ 0) for
all x ∈ Cn, x 6= 0, then A is positive definite (semidefinite).

Definition 1.2. Let A, B ∈ Mn (C) be two Hermitian matrices, then the notation A < B
(A ≤ B) means that B − A is positive definite (semidefinite).

For Hermitian matrices the following theorem holds.

Theorem 1.3. Let A ∈ Mn (C) be a Hermitian matrix with eigenvalues λ1 (A) , . . . , λn (A).
Then A is positive definite (semidefinite) if and only if λj (A) > 0 (λj (A) ≥ 0), for j =
1, 2, . . . , n.

Any matrix A ∈ Mn (C) always can be uniquely written as a Hermitian matrix plus a
skew-Hermitian matrix (in analogy to case of scalar complex numbers). More precisely we
have

A = Re (A) + iIm (A) , i2 = −1, (1.1)

Re (A) =
A + A∗

2
, (1.2)

Im (A) =
A − A∗

2i
, (1.3)

where Re(A) and Im(A) are Hermitian matrices so that i Im(A) is skew-Hermitian.



12 Notations and definitions CAP. 1

For a matrix A ∈ Mn (C) with eigenvalues λj (A), j = 1, . . . , n, and for a matrix B ∈
Mn,m (C) with singular values σj (B), j = 1, . . . , k, k = min {m, n}, we set

Λ (A) = {λ1 (A) , λ2 (A) , . . . , λn (A)} , (1.4)

Ω (B) = {σ1 (B) , σ2 (B) , . . . , σk (B)} .

There is a relation between the singular values of a matrix B ∈ Mn,m (C) and the eigenvalues
of B∗B ∈ Mm (C): firstly the matrix B∗B is positive semidefinite, since x∗ (B∗B)x = ‖Bx‖2

2 ≥
0 for all x ∈ Cm (see the definition of ‖·‖2 in (1.12)), then, by Theorem 1.3, the eigenvalues
λ1 (B∗B) ≥ λ2 (B∗B) ≥ · · · ≥ λm (B∗B) are non-negative and can, therefore, be written in the
form

λj (B∗B) = σ2
j , (1.5)

with σj ≥ 0, j = 1, . . . , m. The numbers σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0, k = min {m, n}, are the
singular values of B, that is σj = σj (B), j = 1, . . . , k, and if m > k, then λj (B∗B) = 0,
j = k + 1, . . . , m. For a more general statement, refer to the singular value decomposition
(SVD) theorem (see, e.g., the classical book by Golub and Van Loan [46]).

The following theorem reduces the calculation of the eigenvalues of a singular matrix A ∈
Mn (C) with rank(A) = k ≤ n to the calculation of the eigenvalues of a smaller matrix Ã ∈
Mk (C).

Theorem 1.4. Let A ∈ Mn (C) be a matrix which can be written as A = XY ∗, where X, Y ∈
Mn,k (C), with k ≤ n. Then the n eigenvalues of the matrix A are given by k eigenvalues of
the matrix Y ∗X ∈ Mk (C) and n − k zero eigenvalues:

Λ (A) = Λ (Y ∗X) ∪ {0with geometric multiplicity n − k} .

Proof. The singular values decomposition (SVD) of the matrix X ∈ Mn,k (C), k ≤ n, is given
by

X = UΣV ∗ = U




σ1

. . .
σt

0
. . .

0
0




V ∗,

where U ∈ Mn (C) and V ∈ Mk (C) are unitary matrices, Σ ∈ Mn,k (R), t =rank(X), then
t ≤ k, and σ1 ≥ σ2 ≥ · · · ≥ σt > 0.

Consider the matrix Xǫ ∈ Mn (C), perturbation of the matrix X, defined in this way:

Xǫ = U




σ1

. . .
σt

ǫ

. . .
ǫ




[
V ∗ 0

0 In−k

]
= UΣǫṼ

∗, (1.6)

where In−k ∈ M(n−k) (R) is the identity matrix, U, Ṽ ∈ Mn (C) are unitary matrices and
Σǫ ∈ Mn (R), with ǫ > 0 and σt ≥ ǫ ((1.6) is an SVD for Xǫ); it is immediate to observe that
the matrix Xǫ is invertible.

We build now the matrix Aǫ ∈ Mn (C) in this way:

Aǫ = Xǫ

[
Y ∗

0

]
. (1.7)
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Since Xǫ is invertible, the matrix Aǫ is similar (has the same eigenvalues) to the matrix
A

′

ǫ = X−1
ǫ AǫXǫ where

A
′

ǫ = X−1
ǫ AǫXǫ = X−1

ǫ Xǫ

[
Y ∗

0

]
Xǫ =

[
Y ∗

0

]
Xǫ, (1.8)

then Λ (Aǫ) = Λ
(
A

′

ǫ

)
, and also the characteristic polynomials of the two matrices are the same

(we recall that the characteristic polynomial of a matrix A is the polynomial whose roots are
precisely the eigenvalues of A),

pAǫ (λ) = pA
′
ǫ
(λ) = pǫ (λ) . (1.9)

We observe that, since the matrix [ Y ∗

0 ] in (1.7) and (1.8) does not depend on ǫ, and Xǫ is
a matrix whose entries depend linearly from ǫ, we have that the entries of the two matrices
Aǫ and A

′

ǫ are linear functions in the variable ǫ, this means that the characteristic polynomial
pǫ (λ), by construction, is continuous with respect to ǫ. Now, for ǫ → 0 we have that

Xǫ = U




σ1

. . .
σt

ǫ

. . .
ǫ




[
V ∗ 0

0 In−k

]

−−→
ǫ→0

U




σ1

. . .
σt

0
. . .

0




[
V ∗ 0

0 In−k

]

=




U




σ1

. . .
σt

0
. . .

0
0




V ∗ 0




=
[

X 0
]
;

and so

Aǫ = Xǫ

[
Y ∗

0

]
−−→
ǫ→0

[
X 0

] [ Y ∗

0

]
= XY ∗ = A; (1.10)

A
′

ǫ =

[
Y ∗

0

]
Xǫ −−→

ǫ→0

[
Y ∗

0

] [
X 0

]
=

[
Y ∗X 0

0 0

]
. (1.11)

Now, since as mentioned above the characteristic polynomial of Aǫ is continuous with respect
to ǫ, by (1.10) is true that

pAǫ (λ) −−→
ǫ→0

pA (λ) ,

and from (1.9) we obtain

pA
′
ǫ
(λ) −−→

ǫ→0
pA (λ) ,

that is, the eigenvalues of the matrix A = XY ∗ in (1.10) are the same as those of the matrix
in (1.11).
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1.2 The Schatten p-norms and functional norms

Let Cn be the complex vector space of dimension n, ∀x ∈ Cn the class of p vector norm,
p ∈ [1,∞], is defined as

‖x‖p =




n∑

j=1

|xj |p



1
p

, p ∈ [1, +∞) , (1.12)

‖x‖∞ = max
j=1,...,n

|xj | , p = ∞,

where for p = 2 we obtain the so-called Euclidean norm.
If A ∈ Mn (C) has singular values σ1 (A) ≥ σ2 (A) ≥ · · · ≥ σn (A), we define ‖A‖p, with

p ∈ [1,∞], the Schatten p-norm of A to be the p vector norm of the vector of the singular
values of A:

‖A‖p =




n∑

j=1

(σj (A))p




1
p

, p ∈ [1, +∞) ,

‖A‖∞ = σ1 (A) , p = ∞.

We will be especially interested in the norm ‖·‖1 which is known as the trace norm (i.e.
the sum of all the singular values of a matrix), the norm ‖·‖2 called Frobenius or Euclidean
(induced matrix) norm and the norm ‖·‖∞ which is equal to the usual operator (spectral) norm
‖·‖

‖A‖ = sup
‖x‖2=1

‖Ax‖ ,

(in the following we will use the notation ‖·‖ for the spectral norm). For the Schatten p-norms,
Hölder’s inequality applies: if A, B ∈ Mn (C) then

‖AB‖1 ≤ ‖A‖ ‖B‖1 . (1.13)

Another well-known inequality involving the Schatten 1-norm of a matrix A ∈ Mn (C) is
the following

|tr (A)| ≤ ‖A‖1 , (1.14)

where tr (A) is the trace of A, i.e., the sum of all its diagonal entries (or equivalently the sum
of all its eigenvalues).

A simple proof of (1.14) is as follows. Let A = UΣV ∗ be the singular value decomposition
of A [15]. Then by a similarity argument

tr (A) = tr (UΣV ∗) = tr (ΣV ∗U) = tr (ΣW ) ,

with W = V ∗U being unitary. So, |tr (A)| = |σ1w1 + σ2w2 + · · · + σnwn|, with σ1, σ2, . . . , σn

being the singular values of A and where w1, w2, . . . , wn are the diagonal entries of W : all of
them bounded by 1. Hence the application of the triangle inequality yields (1.14).

Finally, if A ∈ Mn (C) is positive definite, then

‖·‖A =
∥∥∥A

1
2 ·
∥∥∥
2
,

denotes the Euclidean norm weighted by A on Cn and the associated induced matrix norm.
We recall that, if A ∈ Mn (C) is a positive definite matrix then, by Schur decomposition,
it can be written as A = UDU∗ with U unitary and D = diag

j=0,...,n−1
(λj (A)) diagonal, real
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and positive (see Theorem 1.3), so the matrix A
1
2 is defined as A

1
2 = UD

1
2 U∗ with D

1
2 =

diag
j=0,...,n−1

(√
λj (A)

)
.

In the following we use some functional norms. Let f : Q → C, Q ⊆ Kd, with K equals
R or C, d ≥ 1, Q Lebesgue measurable. We define the Lp (Q) spaces, subspace of measurable
functions on Q, and the respective norms, as follows:

if 1 ≤ p < ∞ Lp (Q) =





f : Q → C :

∫

Q

|f (x)|p dx < ∞





,

with ‖f‖Lp =



∫

Q

|f (x)|p dx




1
p

,

if p = ∞ L∞ (Q) = {Space of essentially bounded functions on Q} ,

with ‖f‖L∞ = sup
x∈Q

|f (x)| ,

(according to the Haar measure).

For these norms, Hölder’s inequality applies: if v ∈ Lp (Q) and u ∈ Lq (Q) with p, q ≥ 1
and 1

p
+ 1

q
= 1, then vu ∈ L1 (Q) and

‖vu‖L1 ≤ ‖v‖Lp ‖u‖Lq . (1.15)

1.3 Sequences of matrices

Throughout this thesis we speak of matrix-sequences as sequences {Ak} where Ak is an n (k)×
m (k) matrix with min {n (k) , m (k)} → ∞ as k → ∞. When n (k) = m (k), that is, all the
involved matrices are square, and this will occur often in the thesis, we will not need the extra
parameter k and will consider simply matrix-sequences of the form {An}.

Concerning the matrix-sequences the notion of approximating class of sequences was intro-
duced as reported below.

Definition 1.5. [83] Suppose a sequence of matrices {An}, An ∈ Mdn
(C) (dk < dk+1 for

each k) is given. We say that {{Bn,m} : m ≥ 0}, m ∈ N̂ ⊂ N, #N̂ = ∞, Bn,m ∈ Mdn
(C), is

an approximating class of sequences (a.c.s.) for {An} if, for all sufficiently large m ∈ N̂, the
following splitting holds

An = Bn,m + Rn,m + Nn,m, ∀n > nm,

with

rank (Rn,m) ≤ dnc (m) , ‖Nn,m‖ ≤ ω (m) , (1.16)

where nm, c (m) and ω (m) depend only on m and, moreover,

lim
m→∞ω (m) = 0, lim

m→∞ c (m) = 0. (1.17)

The idea behind the concept of a.c.s. was to define a basic approximation theory for matrix-
sequences with respect to the global distribution of eigenvalues and singular values. More
precisely, given a “difficult” sequence {An}, the goal is to recover its global spectral behavior
from the spectral behavior of simpler approximating sequences, as we shall see in the next
chapter.
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Remark 1.6. The matrix Rn,m+Nn,m can be a full rank matrix (invertible) with spectral norm
arbitrarily large. Indeed, let us consider, for example, the matrix Ln,m ∈ Mn(C) defined as

Ln,m =




φ(n)
1

m+1
1

m+1

...
1

m+1




, (1.18)

with φ(n) = n!. It is immediate to observe that Ln,m is a full rank matrix with ‖Ln,m‖ = φ(n),
however, we can write Ln,m as

Ln,m =




φ(n)
0

0
...

0


+




0
1

m+1
1

m+1

...
1

m+1




= L(1)
n,m + L(2)

n,m,

with rank
(
L

(1)
n,m

)
= 1 and

∥∥∥L(2)
n,m

∥∥∥ = 1
m+1 , that is Ln,m is the sum of two matrices: a matrix of

small norm, for m large enough, and the other of low-rank ∀m ≥ 1.

For matrix-sequences an important notion is that of spectral distribution in the eigenvalue
or singular value sense, linking the collective behavior of the eigenvalues or singular values of
all the matrices in the sequence to the behavior of a given function (or measure). First we need
some notations.

For any function F defined on C and for any matrix A ∈ Mn (C), the symbol Σλ (F, A)
stands for the mean

Σλ (F, A) :=
1

n

n∑

j=1

F (λj (A)) =
1

n

∑

λ∈Λ(A)

F (λ),

similarly, for any function F defined on R+
0 and for any matrix A ∈ Mn,m (C), the symbol

Σσ (F, A) stands for the mean

Σσ (F, A) :=
1

min {n, m}

min{n,m}∑

j=1

F (σj (A)) =
1

min {n, m}
∑

σ∈Ω(A)

F (σ). (1.19)

Definition 1.7. Let C0 (C) be the set of continuous functions with bounded support defined over
the complex field, let d be a positive integer, and let θ be a complex-valued measurable function
defined on a set G ⊂ Rd of finite and positive Lebesgue measure m {G}. Here G will be equal to

(−π, π)d so that eiG = Td with T denoting the complex unit circle and G denoting the closure
of G. A matrix-sequence {An}, An ∈ Mdn

(C) (dk < dk+1 for each k), is said to be distributed
(in the sense of the eigenvalues) as the pair (θ, G), or to have the distribution function θ, if,
for every F ∈ C0 (C), the following limit relation holds

lim
n→∞Σλ (F, An) =

1

m {G}

∫

G

F (θ (t)) dt, t = (t1, . . . , td) , (1.20)

and in this case we write that {An} ∼λ (θ, G).

If (1.20) holds for every F ∈ C0

(
R+

0

)
in place of F ∈ C0 (C), with the singular values

σj (An), j = 1, . . . , n, in place of the eigenvalues, and with |θ (t)| in place of θ (t), we say that
{An} ∼σ (θ, G) or that the matrix-sequence {An} is distributed (in the sense of the singular

values) as the pair (θ, G): more specifically for every F ∈ C0

(
R+

0

)
we have

lim
n→∞Σσ (F, An) =

1

m {G}

∫

G

F (|θ (t)|) dt, t = (t1, . . . , td) . (1.21)
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When considering θ taking values in Mp,q (C) and a function is considered to be measurable
if and only if the component functions are, we say that {An} ∼σ (θ, G) when for every F ∈
C0

(
R+

0

)
we have

lim
n→∞Σσ (F, An) =

1

m {G}

∫

G

∑min{p,q}
j=1 F (σj (θ (t)))

min {p, q} dt, t = (t1, . . . , td) ,

with σj (θ (t)) =
√

λj (θ (t) θ∗ (t)). If p = q we say that {An} ∼λ (θ, G) when for every F ∈
C0 (C) we have

lim
n→∞Σλ (F, An) =

1

m {G}

∫

G

∑q
j=1 F (λj (θ (t)))

q
dt, t = (t1, . . . , td) , (1.22)

where λi (θ (t)) in equation (1.22) are the eigenvalues of the matrix-valued function θ (t) .
Finally we say that two sequences {An} and {Bn} are equally distributed in the sense of

eigenvalues (λ) or in the sense of singular values (σ) if, ∀F ∈ C0 (C), we have

lim
n→∞ [Σν (F, Bn) − Σν (F, An)] = 0, with ν = λ or ν = σ.

Notice that two sequences having the same distribution function are equally distributed.
On the other hand, two equally distributed sequences may not be associated with a distribution
function at all: consider any diagonal matrix-sequence {An} and let {Bn} be a sequence of the
form Bn = An + ǫnIn with ǫn → 0 when n → ∞. Then, if the original {An} does not have
an eigenvalue distribution function (e.g. An = (−1)n In), we will have {An} and {Bn} equally
distributed, even though it is impossible to associate a distribution function with either of
them. On the other hand, if one of them has a distribution function, then the other necessarily
has the same one. This is easy to show using the definitions (or see [84, Remark 6.1]).

Now, we can observe that a matrix-sequence {An} is distributed as the pair (θ, G) if and
only if the sequence of linear functionals {φn} defined by φn (F ) = Σλ (F, An) converges weak-
* to the functional φ (F ) = 1

m{G}
∫
G F (θ (t)) dt as in (1.20). In order to describe what this

really means about the asymptotic qualities of the spectrum, we will derive more concrete
characterizations of {Λ (An)} such as “clustering” and “attraction”, where Λ (An) is defined in
(1.4).

Definition 1.8. [116] A matrix-sequence {An}, An ∈ Mdn
(C) (dk < dk+1 for each k), is

strongly clustered at s ∈ C (in the eigenvalue sense), if for any ε > 0 the number of the
eigenvalues of An off the disc

D (s, ε) := {z : |z − s| < ε} , (1.23)

can be bounded by a constant qε possibly depending on ε, but not on n. In other words

qε (n, s) := # {j : λj (An) /∈ D (s, ε)} = O (1) , n → ∞.

If every An has only real eigenvalues (at least for large n) then we may assume that s is
real and that the disc D (s, ε) is the interval (s − ε, s + ε). A matrix-sequence {An} is said to
be strongly clustered at a non-empty closed set S ⊂ C (in the eigenvalue sense) if for any ε > 0

qε (n, S) := # {j : λj (An) 6∈ D (S, ε)} = O (1) , n → ∞, (1.24)

where D (S, ε) := ∪
s∈S

D (s, ε) is the ε-neighborhood of S. If every An has only real eigenvalues

(at least for large n), then S is a non-empty closed subset of R. We replace the term “strongly”
by “weakly”, if

qε (n, s) = o (dn) , (qε (n, S) = o (dn)) , n → ∞,

in the case of a point s (or a closed set S). Finally, if we replace eigenvalues with singular
values, we obtain all the corresponding definitions for singular values.
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To link the concept of cluster with the distribution notion it is instructive to observe that
{An} ∼λ (θ, G), with θ ≡ s equal to a constant function if and only if {An} is weakly clustered
at s ∈ C (for more results and relations between the notions of equal distribution, equal
localization, spectral distribution, spectral clustering etc., see [84, Section 4]). We introduce
one more notion concerning the eigenvalues of a matrix-sequence.

Definition 1.9. Let {An} be a matrix-sequence, An ∈ Mdn
(C) (dk < dk+1 for each k), and

let Λ (An) defined as in (1.4). We say that {An} is strongly attracted by s ∈ C if

lim
n→∞dist (s,Λ (An)) = 0, (1.25)

where dist (X, Y ) is the usual Euclidean distance between two subsets X and Y of the complex
plane. Furthermore, if we order the eigenvalues according to their distance from s, i.e.,

|λ1 (An) − s| ≤ |λ2 (An) − s| ≤ · · · ≤ |λdn
(An) − s| ,

then we say that the attraction to s is of order r (s) ∈ N, r (s) ≥ 1 is a fixed number, if

lim
n→∞

∣∣∣λr(s) (An) − s
∣∣∣ = 0, lim inf

n→∞

∣∣∣λr(s)+1 (An) − s
∣∣∣ > 0,

and that the attraction is of order r (s) = ∞ if

lim
n→∞ |λj (An) − s| = 0,

for every fixed j. Finally, one defines weak attraction by replacing lim with lim inf in (1.25).

It is not hard to see that, if {An} is at least weakly clustered at a point s, then s strongly
attracts {An} with infinite order. Indeed, if there is an attraction of finite order to s then

lim
n→∞

# {λ ∈ Λ (An) : λ /∈ D (s, δ)}
dn

= 1,

for some δ > 0 and this is impossible if {An} is weakly clustered at s. On the other hand,
there are sequences which are strongly attracted by s with infinite order, but not even weakly
clustered at s. Indeed, the notion of weak clustering does not tell anything concerning weak
attraction or attraction of finite order.

In the following we introduce the definitions of sparsely unbounded and sparsely vanishing
matrix-sequences and of sparsely unbounded and sparsely vanishing functions, which will be
widely used in Chapter 6.

Definition 1.10. A sequence of matrices {An}, An ∈ Mdn
(C) (dk < dk+1 for each k), is said

to be sparsely unbounded if there exists a non-negative function x (s) with lim
s→0

x (s) = 0 so that

∀ε > 0 ∃nε ∈ N such that ∀n ≥ nε

1

dn
#

{
i : σi (An) ≥ 1

ε

}
≤ x (ε) , (1.26)

where σi ∈ Ω(An), i = 1, 2, . . . , n (see (1.4)).

Analogously, a sequence of matrices {An} is said to be sparsely vanishing if there exists a
non-negative function x (s) with lim

s→0
x (s) = 0 so that ∀ε > 0 ∃nε ∈ N such that ∀n ≥ nε

1

dn
# {i : σi (An) ≤ ε} ≤ x (ε) .
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Definition 1.11. A function θ is sparsely unbounded if

lim
η→0

m

{
x : |θ (x)| >

1

η

}
= 0,

with m {·} denoting the usual Lebesgue measure. Analogously, a function θ is sparsely vanishing
if

lim
η→0

m {x : |θ (x)| < η} = 0.

We conclude this chapter with the notion of the essential range of a function, which plays
an important role in the study of the asymptotic properties of the spectrum of sequences of
matrices.

Definition 1.12. Given a measurable complex-valued function θ defined on a Lebesgue measur-
able set G, the essential range of θ is the set S (θ) of points s ∈ C such that, for every ε > 0, the
Lebesgue measure of the set θ(−1) (D (s, ε)) := {t ∈ G : θ (t) ∈ D (s, ε)} is positive, with D (s, ε)
as in (1.23). The function θ is essentially bounded if its essential range is bounded. Further-
more, if θ is real-valued, then the essential supremum (infimum) is defined as the supremum
(infimum) of its essential range. Finally if the function θ is q × q matrix-valued and measur-
able, then the essential range of θ is the union of the essential ranges of the complex-valued
eigenvalues λj (θ), j = 1, . . . , q.

We note that S (θ) is clearly a closed set (it is easy to see that its complement is open),
and moreover

S (θ) = ∩
{
B : closed setwith m

{
θ(−1) (B)

}
= m {G}

}
.





Chapter 2

Known tools for general
matrix-sequences

In this chapter we will introduce the most important tools, known in the literature, which are
used to calculate the spectral distribution of sequences of matrices: starting from the main
result of distribution (Theorem 2.1) and from the extensibility to combinations of matrices of
the concept of a.c.s., we will see some special cases of distributions of combinations of matrices
and some results concerning the sequences of non-square matrices and of sparsely unbounded
and sparsely vanishing sequences of matrices.

In the concluding section of this chapter some distribution results are presented concerning
the perturbation of sequences of Hermitian matrices; we shall see in Chapter 3 that these results
of perturbation can be “converted” in the distribution results for sequences of matrices.

2.1 Main distribution theorems for sequences of matrices

The importance of the concept of a.c.s. introduced in the previous chapter is well emphasized
in the following theorem which is a basic result of approximation theory for matrix-sequences:
the existence of a distributional result for any of the (simpler) sequences {Bn,m} implies a
distributional result for {An}, as long as {{Bn,m} : m ≥ 0} is an a.c.s. for {An}.
Theorem 2.1. [83] Suppose a sequence of Hermitian matrices {An} is given such that An ∈
Mdn

(C) (dk < dk+1 for each k) and {{Bn,m} : m ≥ 0}, m ∈ N̂ ⊂ N, #N̂ = ∞, Bn,m ∈ Mdn
(C),

is an a.c.s. for {An} in the sense of Definition 1.5, with all Bn,m being Hermitian. Suppose
that {Bn,m} ∼λ (hm, K) and that hm converges in measure to the measurable function h over
K, K of finite and positive measure. Then necessarily

{An} ∼λ (h, K) . (2.1)

If we lose the Hermitian character either of An or of Bn,m, then the same statement is true
in full generality for the singular values, that is

{An} ∼σ (h, K) ,

(see Definition 1.7).

The following lemma is a particular result on the distribution in the sense of the singular
values for sequences of non-square matrices. This result is used in Chapter 5 to find the spectral
distribution in the singular value sense for sequences of g-Toeplitz matrices.

Lemma 2.2. Let f be a measurable complex-valued function on a set K, and consider the
measurable function

√
|f | : K → R+. Let {An,m}, with An,m ∈ Mdn,d′n

(C), d′n ≤ dn, be
a sequence of matrices of strictly increasing dimension: d′n < d′n+1 and dn ≤ dn+1. If the
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sequence of matrices
{
A∗

n,mAn,m

}
, with A∗

n,mAn,m ∈ Md′n
(C) and d′n < d′n+1, is distributed in

the singular value sense as the function f over a suitable set G ⊂ K in the sense of Definition

1.7:
{
A∗

n,mAn,m

}
∼σ (f, G), then the sequence {An,m} is distributed in the singular value sense

as the function
√
|f | over the same G: {An,m} ∼σ

(√
|f |, G

)
.

Proof. From the SVD, we can write An,m as

An,m = UΣV ∗ = U




σ1

σ2

. . .

σd′n

0




V ∗,

with U and V unitary matrices, U ∈ Mdn
(C), V ∈ Md′n

(C), and Σ ∈ Mdn,d′n
(R), σj ≥ 0. By

multiplying A∗
n,mAn,m we obtain

A∗
n,mAn,m = V Σ⊤U∗UΣV ∗ = V Σ⊤ΣV ∗ = V Σ(2)V ∗

= V




σ2
1

σ2
2

. . .

σ2
d′n




V ∗, (2.2)

with V unitary matrix, V ∈ Md′n
(C), and Σ(2) ∈ Md′n

(R), σ2
j ≥ 0. We observe that (2.2) is an

SVD for A∗
n,mAn,m, that is, the singular values σj

(
A∗

n,mAn,m

)
of A∗

n,mAn,m are the square of

singular values σj (An,m) of An,m. Since
{
A∗

n,mAn,m

}
∼σ (f, G), by definition it follows that

for every F ∈ C
(
R+

0

)
,

lim
n→∞

1

d′n

d′n∑

i=1

F
(
σi

(
A∗

n,mAn,m

))
=

1

m {G}

∫

G

F (|f (t)|) dt

=
1

m {G}

∫

G

H

(√
|f (t)|

)
dt, (2.3)

where H is such that F = H ◦ √·, that is, H (x) = F
(
x2
)

for every x. Owing to σj (An,m) =√
σj

(
A∗

n,mAn,m

)
, we obtain

lim
n→∞

1

d′n

d′n∑

i=1

F
(
σi

(
A∗

n,mAn,m

))
= lim

n→∞
1

d′n

d′n∑

i=1

F
(
σ2

i (An,m)
)

= lim
n→∞

1

d′n

d′n∑

i=1

H (σi (An,m)) . (2.4)

In conclusion, by combining (2.3) and (2.4) we deduce

lim
n→∞

1

d′n

d′n∑

i=1

H (σi (An,m)) =
1

m {G}

∫

G

H

(√
|f (t)|

)
dt,

for every H ∈ C
(
R+

0

)
, so {An,m} ∼σ

(√
|f (t)|, G

)
.
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2.2 Combinations of sequences of matrices

The notion of a.c.s. introduced in the previous chapter is stable under inversion, linear combi-
nations and product, whenever natural and mild conditions are satisfied.

Proposition 2.3. Let
{
A

(1)
n

}
and

{
A

(2)
n

}
be two sequences of matrices, A

(i)
n ∈ Mdn

(C) (dk <

dk+1 for each k), i = 1, 2. Suppose that

{{
B(1)

n,m

}
: m ≥ 0

}
and

{{
B(2)

n,m

}
: m ≥ 0

}
,

m ∈ N̂(i) ⊂ N, #N̂(i) = ∞, B
(i)
n,m ∈ Mdn

(C), i = 1, 2, are two a.c.s. for
{
A

(1)
n

}
and

{
A

(2)
n

}
,

respectively. Then any linear combination of
{{

B
(1)
n,m

}
: m ≥ 0

}
and

{{
B

(2)
n,m

}
: m ≥ 0

}
is an

a.c.s. for the same linear combination of
{
A

(1)
n

}
and

{
A

(2)
n

}
; if in addition

{
A

(i)
n

}
, i = 1, 2,

are sparsely unbounded matrix-sequences (see Definition 1.10), then
{{

B
(1)
n,mB

(2)
n,m

}
: m ≥ 0

}
is

an a.c.s. for the sequence
{
A

(1)
n A

(2)
n

}
. Furthermore, suppose that

{
A

(1)
n

}
is sparsely vanishing

and each A
(1)
n is invertible together with B

(1)
n,m. Then

{{[
B(1)

n,m

]−1
}

: m ≥ 0

}
,

is an a.c.s. for the sequence

{[
A

(1)
n

]−1
}
.

The proof of the first two parts concerning linear combinations and the (component-wise)
product of sequences can be found in [83]. The second part can be found in [94].

Using Proposition 2.3, we can demonstrate the results of distribution for particular products
or sums of sequences of matrices.

Proposition 2.4. [83, 89] If {An} and {Bn} are two sequences of matrices, An, Bn ∈ Mdn
(C)

(dk < dk+1 for each k), such that {An} ∼σ (θ, G) and {Bn} ∼σ (0, G), then

{An + Bn} ∼σ (θ, G) .

Lemma 2.5. Let {An} and {Qn} be two sequences of matrices An, Qn ∈ Mdn
(C) (dk <

dk+1 for each k), where Qn are all unitary matrices (QnQ∗
n = In). If {An} ∼σ (0, G), then

{AnQn} ∼σ (0, G) and {QnAn} ∼σ (0, G).

Proof. Putting Bn = AnQn, assuming that

An = UnΣnV ∗
n ,

is an SVD for An, and taking into account that the product of two unitary matrices is still a
unitary matrix, we deduce that the writing

Bn = AnQn = UnΣnV ∗
n Qn = UnΣnV̂ ∗

n ,

is an SVD for Bn. The latter implies that An and Bn have exactly the same singular values,
so that the two sequences {An} and {Bn} are distributed in the same way.

If Q is unitary, then ‖Qn‖ = 1, so Lemma 2.5 is a special case of the following lemma.

Lemma 2.6. Let {An} and {Qn} be two sequences of matrices, An, Qn ∈ Mdn
(C) (dk < dk+1

for each k). If {An} ∼σ (0, G) and ‖Qn‖ ≤ K for some non-negative constant K independent
of n, then {AnQn} ∼σ (0, G) and {QnAn} ∼σ (0, G).
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Proof. Since {An} ∼σ (0, G), then {0n} (sequence of zero matrices) is an a.c.s. for {An}; this
means (by Definition 1.5) that we can write, for every m sufficiently large, m ∈ N

An = 0n + Rn,m + Nn,m, ∀n > nm, (2.5)

with

rank (Rn,m) ≤ dnc (m) , ‖Nn,m‖ ≤ ω (m) ,

where nm ≥ 0, c (m) and ω (m) depend only on m, and, moreover,

lim
m→∞ c (m) = 0, lim

m→∞ω (m) = 0.

Now consider the matrix AnQn; from (2.5) we obtain

AnQn = 0n + Rn,mQn + Nn,mQn, ∀n > nm,

with

rank (Rn,mQn) ≤ min {rank (Rn,m) , rank (Qn)} ≤ rank (Rn,m) ≤ dnc (m) ,

‖Nn,mQn‖ ≤ ‖Nn,m‖ ‖Qn‖ ≤ Kω (m) ,

where

lim
m→∞ c (m) = 0, lim

m→∞Kω (m) = 0,

then {0n} is an a.c.s. for the sequence {AnQn} and, by Theorem 2.1, {AnQn} ∼σ (0, G).

2.3 Sparsely vanishing and sparsely unbounded sequences of
matrices

In Chapter 1 we have introduced the definition of sparsely vanishing and sparsely unbounded
matrix-sequence and of sparsely vanishing and sparsely unbounded function. In this section we
will show how these two objects (matrix-sequences and functions) are “linked” by the notion
of spectral distribution, in particular we prove that a sequence of matrices {An} spectrally
distributed as a sparsely vanishing function is sparsely vanishing and a sequence of matrices
{An} spectrally distributed as a sparsely unbounded function is sparsely unbounded in the
sense of Definition 1.10.

Proposition 2.7. Let {An} be a sequence of matrices, An ∈ Mdn
(C) (dk < dk+1 for each k),

spectrally distributed as a sparsely vanishing (sparsely unbounded) function f over the set K.
Then the sequence {An} is sparsely vanishing (sparsely unbounded).

Proof. First, we consider the case of a sparsely vanishing function f . For any ε > 0 we define
the non-negative test function

Gε (y) =





y
c

+ 1 for − c ≤ y ≤ 0,
1 for 0 ≤ y ≤ ε,
−y

ε
+ 2 for ε ≤ y ≤ 2ε,

0 otherwise.

Now, since

1

dn

dn∑

i=1

Gε (σi (An)) =
1

dn


 ∑

i∈{j: σj(An)≤ε}
1 +

∑

i∈{j: ε<σj(An)≤2ε}
Gε (σi (An))




≥ 1

dn

∑

i∈{j: σj(An)≤ε}
1,
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we find that

1

dn
# {j : σj (An) ≤ ε} ≤ 1

dn

dn∑

i=1

Gε (σi (An)) .

Moreover,

lim
n→∞

1

dn

dn∑

i=1

Gε (σi (An)) =
1

m {K}

∫

K

Gε (|f (t)|) dt

≤ 1

m {K}m {x ∈ K : |f (x)| ≤ 2ε} .

By recalling that the assumption f sparsely vanishing implies that

lim
η→0

m {x ∈ K : |f (x)| ≤ η} = 0,

the thesis follows by considering x (s) = 1
m{K}m {x ∈ K : |f (x)| ≤ s} in Definition 1.10.

Now, we consider the case of a sparsely unbounded function f . For any ε > 0 we define the
non-negative test function

Fε (y) =





y
c

+ 1 for − c ≤ y ≤ 0,
1 for 0 ≤ y ≤ 1

2ε
,

−2εy + 2 for 1
2ε

≤ y ≤ 1
ε
,

0 otherwise.

By taking into account the relations below

1

dn

dn∑

i=1

Fε (σi (An)) =
1

dn




∑

i∈{j: σj(An)≤ 1
2ε}

1 +
∑

i∈{j: 1
2ε

<σj(An)≤ 1
ε}

Fε (σi (An))




≤ 1

dn

∑

i∈{j: σj(An)≤ 1
ε}

1,

we easily deduce that

1

dn
#

{
j : σj (An) <

1

ε

}
≥ 1

dn

dn∑

i=1

Fε (σi (An)) .

Moreover,

lim
n→∞

1

dn

dn∑

i=1

Fε (σi (An)) =
1

m {K}

∫

K

Fε (|f (t)|) dt

≥ 1

m {K}m

{
x ∈ K : |f (x)| ≤ 1

2ε

}

= 1 − 1

m {K}m

{
x ∈ K : |f (x)| >

1

2ε

}
.

By the inequality

1

dn
#

{
j : σj (An) ≥ 1

ε

}
= 1 − 1

dn
#

{
j : σj (An) <

1

ε

}
≤ 1 − 1

dn

dn∑

i=1

Fε (σi (An)) ,
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and by recalling that the assumption f sparsely unbounded implies that

lim
η→0

m

{
x ∈ K : |f (x)| ≥ 1

η

}
= 0,

the thesis follows by considering x (ε) = 1 − 1
m{K}m

{
x ∈ K : |f (x)| ≥ 1

2ε

}
in Definition 1.10.

It is worth noticing that essentially the same proof applies in the case of a sequence of
Hermitian matrices with a real-valued function f when considering the eigenvalues instead of
the singular values. The only change is in the definition of the test functions Fε and Gε: in fact
it is enough to take new test functions T̂ε = T̂ε (y) that coincides with Tε (y) if the argument y
is non-negative and coincides with Tε (−y) otherwise. Here the symbol “T” means “F” or “G”
according to the previous notations.

The following result is very useful in practical manipulations in order to give norm bounds
from above.

Lemma 2.8. Consider a sequence of matrices {An}, An ∈ Mdn
(C) (dk < dk+1 for each k).

The following are equivalent.

• The sequence {An} is sparsely unbounded.

• There exists a non-negative function x (s) with lim
s→∞x (s) = 0 so that ∀ε > 0 ∃nε ∈ N

such that ∀n ≥ nε it holds that An = Rn +Ln, where ‖Rn‖ < 1
ε

and rank (Ln) ≤ x (ε) dn.

Proof. The result trivially follows by using the singular value decomposition properties of the
involved matrices and the singular values interlacing properties [46].

The next technical lemmas deal with the product and the inversion of sparsely unbounded
and sparsely vanishing sequences of matrices and will be useful for performing the spectral
analysis of preconditioned matrices in Chapter 6.

Lemma 2.9. Let {An} and {Bn} be two sparsely unbounded matrix-sequences, An, Bn ∈
Mdn

(C) (dk < dk+1 for each k). Then the sequences {AnBn} and {An + Bn} are sparsely
unbounded (the latter implies that the notion sparsely unbounded sequence is stable under
linear combinations).

Proof. Under these assumptions, we can consider the following splittings

An = R̂n + L̂n,

Bn = R̃n + L̃n,

where ∀δ̂ > 0 ∃n
δ̂
∈ N such that ∀n ≥ n

δ̂
it holds that

∥∥∥R̂n

∥∥∥ < 1
δ̂

and rank
(
L̂n

)
≤ x̂

(
δ̂
)

dn

with lim
s→0

x̂ (s) = 0 and where ∀δ̃ > 0 ∃nδ̃ ∈ N such that ∀n ≥ nδ̃ it holds that
∥∥∥R̃n

∥∥∥ < 1
δ̃

and

rank
(
L̃n

)
≤ x̃

(
δ̃
)

dn with lim
s→0

x̃ (s) = 0 (see Lemma 2.8). Therefore, the matrices AnBn can

be written as

AnBn = Rn + Ln,

with

Rn = R̃nR̂n,

Ln = L̃n

(
R̂n + L̂n

)
+ R̃nL̂n,
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where, for n large enough, we find

‖Rn‖ <
1

δ̃δ̂
,

rank (Ln) ≤
(
x̃
(
δ̃
)

+ x̂
(
δ̂
))

dn.

For the arbitrariness of δ̃ and δ̂ the first part of the claimed thesis follows by virtue of
Lemma 2.8.

The matrices An + Bn can be written as

An + Bn = R̆n + L̆n,

with

R̆n = R̃n + R̂n,

L̆n = L̃n + L̂n,

where, for n large enough, we find

∥∥∥R̆
∥∥∥ <

1

δ̃
+

1

δ̂
< 2

(
min

{
δ̃, δ̂
})−1

,

rank
(
L̆n

)
≤

(
x̃
(
δ̃
)

+ x̂
(
δ̂
))

dn.

For the arbitrariness of δ̃ and δ̂ the second part of the claimed thesis follows again by
Lemma 2.8.

Remark 2.10. Lemma 2.9 tells us that the set of sparsely unbounded sequences forms an
algebra (that is closed under linear combinations and products). On the other side, Lemma
2.14 can be read by saying that the set of sequences which are clustered at zero forms a two-
sided ideal in the algebra of sparsely unbounded sequences.

Lemma 2.11. Let {An} be a sequence of invertible matrices, An ∈ Mdn
(C) (dk < dk+1 for each

k). If the sequence {An} is sparsely vanishing then the sequence
{
A−1

n

}
is sparsely unbounded

and vice versa.

Proof. The result trivially follows by using the singular value decomposition properties of the
involved matrices.

Lemma 2.12. Let {An} and {Bn} be two sparsely vanishing matrix-sequences of invertible
matrices, An, Bn ∈ Mdn

(C) (dk < dk+1 for each k). Then the sequence {AnBn} is sparsely
vanishing. This is not true for the sequence {An + Bn}, that is, the notion sparsely vanishing
sequence is not stable under linear combinations.

Proof. Since {An} and {Bn} are both sequences of invertible matrices, from (AnBn)−1 =
(Bn)−1 (An)−1, the first part trivially follows from Lemma 2.9 by recalling Lemma 2.11. The
second part is straightforward by considering Bn = −An, so that An + Bn ≡ 0 is not sparsely
vanishing.

Remark 2.13. The assumption of invertibility in Lemma 2.11 and Lemma 2.12 can be removed
by considering the pseudo-inverse of Moore-Penrose [64, 73] instead of the usual inverse matrix.

Lemma 2.14. Let {An} and {Bn} be two matrix-sequences, An, Bn ∈ Mdn
(C) (dk < dk+1

for each k). Suppose that the sequence {An} is sparsely unbounded and the sequence {Bn} is
clustered at 0 with respect to the singular values (see Definition 1.8). Then both the sequences
{AnBn} and {BnAn} are clustered at 0.
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Proof. Under these assumptions, we have that ∀ε̂ > 0 ∃nε̂ ∈ N such that ∀n ≥ nε̂ it holds that

An = Rn + Ln,

where ‖Rn‖ < 1
ε̂

and rank (Ln) ≤ x (ε̂) dn with lim
s→0

x (s) = 0 and ∀ε > 0 ∃nε ∈ N such that

∀n ≥ nε we have

Bn = Nn + Pn,

where ‖Nn‖ ≤ ε and rank (Pn) ≤ y (ε) dn with lim
s→0

y (s) = 0. Now, by splitting the matrices as

AnBn = Ñn + P̃n,

with

Ñn = RnNn,

P̃n = RnPn + Ln (Nn + Pn) ,

where
∥∥∥Ñn

∥∥∥ <
ε

ε̂
,

rank
(
P̃n

)
≤ (x (ε̂) + y (ε)) dn,

and for the arbitrariness of ε̂ and ε, by choosing ε̂ =
√

ε, the desired result plainly follows. The
case {BnAn} can be proved in the same manner.

2.4 Some distribution results

In [45, Theorem 2.2] Golinskii and Serra-Capizzano address the problem of finding new in-
struments, different from Theorem 2.1, to derive the spectral distribution (in the sense of
eigenvalues) for sequences of matrices {An} bounded in the operator norm; in particular, they
try to find a way for relating formula (1.20), with F being an arbitrary polynomial, to the same
formula in its full extent, i.e., with F ∈ C0 (C) being a continuous function.

In order to do this, they use the Mergelyan’s Theorem, which requires some hypothesis on
the essential range of the symbol θ and a priori assumptions on the clustering properties of
the sequence {An}. The reason for these requirements is in part due to the barrier given by
the Mergelyan’s Theorem stating that the closure in the uniform norm of the polynomials on
a compact set S is given by the set of all continuous functions on S, which are holomorphic in
its interior, provided that C\S is connected (for the proof see [76, Theorem 20.5]). Therefore,
the polynomial space is able to approximate every continuous function on S if and only if S
has empty interior in C and C\S is connected.

Now we rewrite the Theorem 2.2 from [45] in a slightly different, but equivalent way. The
basic ideas used here come from the paper [112], where the same questions were considered in a
different context (but they were also known in a certain form to the operator theory community
(see [120, top of p. 39]) and were extensively developed by Böttcher, Roch, SeLegue, Silbermann
etc., see [20]).

Theorem 2.15. [45] Let {An} be a matrix-sequence, An ∈ Mdn
(C) (dk < dk+1 for each k),

and S a subset of C. If:

(a1) S is a compact set and C\S is connected;

(a2) the matrix-sequence {An} is weakly clustered at S;



§ 4 Some distribution results 29

(a3) the spectra Λ (An) of An are uniformly bounded, i.e., ∃C ∈ R+ such that |λ| < C,
λ ∈ Λ (An), for all n;

(a4) there exists a function θ measurable, bounded, and defined on a set G of positive and
finite Lebesgue measure, such that, for every non-negative integer L, we have

lim
n→∞

tr
(
AL

n

)

dn
=

1

m {G}

∫

G

θL (t) dt,

i.e., relation (1.20) holds with F being any polynomial of an arbitrary fixed degree;

(a5) the essential range of θ (see Definition 1.12) is contained in S;

then relation (1.20) is true for every continuous function F with bounded support which is
holomorphic in the interior of S. If it is also true that the interior of S is empty then the
sequence {An} is distributed as θ, on its domain G, in the sense of the eigenvalues.

The following theorem ([45, Theorem 2.4]) will allow us to deduce weak clustering and
strong attraction for sequences of matrices distributed as a measurable function θ in the sense
of Definition 1.7.

Theorem 2.16. Let θ be a measurable function defined on G with finite and positive Lebesgue
measure, and S (θ) be the essential range of θ. Let {An} be a matrix-sequence distributed as θ
in the sense of eigenvalues; in that case the following facts are true:

a) S (θ) is a weak cluster for {An};

b) each point s ∈ S (θ) strongly attracts the spectra Λ (An) with infinite order r (s) = ∞;

c) there exists a sequence
{
λ(n)

}
, where λ(n) is an eigenvalue of An, such that

lim inf
n→∞

∣∣∣λ(n)
∣∣∣ ≥ ‖θ‖L∞ .

The same statements hold in the case of a q × q matrix-valued function θ.

Proof. For items a) and b) see [45, Theorem 2.4], for a proof. Then notice that, by b), each

point s ∈ S (θ) is a limit of a sequence
{
λ(n)

}
where λ(n) is an eigenvalue of An. Hence item

c) follows from the definition of S (θ) . The extension to the matrix-valued case is trivial.

The next result ([45, Theorem 3.4]), based on Mirsky theorem (see [15, Proposition III, Sec-
tion 5.3]), establishes a link between distributions of non-Hermitian perturbations of Hermitian
matrix-sequences and the distribution of the original sequence.

Theorem 2.17. [119], [45, Theorem 3.4] Let {Bn} and {Cn} be two matrix-sequences, Bn, Cn ∈
Mdn

(C) (dk < dk+1 for each k), where Bn is Hermitian and An = Bn + Cn. Assume further
that {Bn} is distributed as (θ, G) in the sense of the eigenvalues, where G is of finite and
positive Lebesgue measure, both ‖Bn‖ and ‖Cn‖ are uniformly bounded by a positive constant
Ĉ independent of n, and ‖Cn‖1 = o (dn), n → ∞. Then θ is real-valued and {An} is distributed
as (θ, G) in the sense of the eigenvalues. In particular, if S (θ) is the essential range of θ, then
{An} is weakly clustered at S (θ), and S (θ) strongly attracts the spectra of {An} with an infinite
order of attraction for any of its points.

We conclude this section with a theorem which is a slight extension of a theorem from [45]
concerning strong clustering.
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Theorem 2.18. Let {Bn} and {Cn} be two matrix-sequences, Bn, Cn ∈ Mdn
(C) (dk < dk+1

for each k), where Bn is Hermitian and An = Bn + Cn. Let E be a compact subset of the
real line. Assume that {Bn} is strongly clustered at E, ‖Cn‖1 = O (1), n → ∞ and ‖An‖ is

uniformly bounded by a positive constant Ĉ independent of n. Then {An} is strongly clustered
at E.

Proof. The case where the compact set E is a union of m disjoint closed intervals (possibly,
degenerate) has been treated in [45, Theorem 3.6] and a similar result has been established
without using the Mirsky theorem in [119]. The general case follows since, for the notion of
strong clustering we have to consider the ǫ fattening of E, or D (E, ǫ) defined as in relation
(1.24). It is clear that for every compact set E, the closure of D (E, ǫ) is a finite union of closed
intervals and so the general case is reduced to that handled in [45].



Chapter 3

New tools for general
matrix-sequences

In this chapter we enlarge the set of tools, presented in Chapter 2, for proving the existence
and for characterizing explicitly the limit distribution of eigenvalues and singular values for
general (structured) matrix-sequences.

The new results presented in this chapter are obtained as generalizations of some theorems
and Propositions in the previous chapter: ranging from the spectral distribution in the sense
of eigenvalues for sequences of non-Hermitian matrices (extension of Theorem 2.1), to the gen-
eralization of the concept of a.c.s. for sequences of functions of Hermitian matrices (extension
of Proposition 2.3).

In Section 3.3 we present some variants of Theorem 2.15 that will be used in Chapter 4 to
find the spectral distribution of sequences of products of Toeplitz matrices.

3.1 Generalization of Theorem 2.1

In Theorem 2.1 we have seen that if we lose the Hermitian character either of An or of Bn,m,
then the same statements as (2.1) is true in full generality for the singular values (see [83, 90]
for details, more results and applications), but become false in general when considering the
eigenvalues; see [98] for a striking counterexample.

The goal of this section is to give new more restrictive conditions under which a more severe
notion of approximating class of sequences still enables to derive the spectral distribution of a
“difficult” sequence from those of simpler approximating sequences.

More precisely, under mild trace norm assumptions on the perturbing sequence and taking
into consideration the definition of a.c.s., we extend the perturbation result of Theorem 2.17.
The analysis concerns the localization and the distribution of the eigenvalues of a generic
(non-Hermitian) complex perturbation of a bounded Hermitian sequence of matrices.

Theorem 3.1. Let {{Bn,m} : m ≥ 0}, m ∈ N̂ ⊂ N, #N̂ = ∞ be an a.c.s. for {An}, with
An, Bn,m ∈ Mdn

(C) (dk < dk+1 for each k), such that En,m = Nn,m+Rn,m, Bn,m are Hermitian
and

{Bn,m} ∼λ (hm, K) , 0 < m {K} < ∞,

lim
m→∞hm = h in measure on K, (3.1)

with

sup
m

sup
n

‖Bn,m‖ = C̃,

sup
m

sup
n

‖En,m‖ = Ĉ,

C = max
{
C̃, Ĉ

}
.
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Here C̃, Ĉ are positive universal constants, ‖En,m‖1 ≤ c (m) dn with lim
m→∞ c (m) = 0.

Then h is real-valued and {An} is distributed in the eigenvalue sense as h, i.e., {An} ∼λ

(h, K) or, equivalently,

lim
n→∞Σλ (F, An) =

1

m {K}

∫

K

F (h (x)) dx, (3.2)

∀F ∈ C0(C).

Proof. We define the functionals acting on C0(C) as follows

Φm (F ) =
1

m {K}

∫

K

F (hm (x)) dx,

Φ(F ) =
1

m {K}

∫

K

F (h (x)) dx,

where the function F is continuous with bounded support, i.e., F ∈ C0(C). It is immediate
to check that relation (3.2) is equivalent to write that ∀ǫ > 0, ∃n > 0 such that ∀n ≥ n and
∀F ∈ C0 (C) we have |Σλ (F, An) − Φ(F )| < ǫ. By allowing the parameter m, the latter is
equivalent to state that there exists a non-negative function k (m) with lim

m→∞ k (m) = 0 such

that ∀F ∈ C0 (C), ∀m ∈ N̂, ∃nm ∈ N and the inequalities

|Σλ (F, An) − Φ(F )| < k (m) , ∀n ≥ nm, (3.3)

are fulfilled. Let us consider the left-hand side of (3.3) and let us decompose it in basic quantities
to be studied separately. In fact, by proper manipulations we find

|Σλ (F, An) − Φ(F )| = |Σλ (F, An) − Σλ (F, Bn,m)+

+Σλ (F, Bn,m) − Φm (F ) +

+Φm (F ) − Φ(F )|
≤ αn,m + βn,m + γm,

where

αn,m = |Σλ (F, An) − Σλ (F, Bn,m)| ,
βn,m = |Σλ (F, Bn,m) − Φm (F )| ,

γm = |Φm (F ) − Φ(F )| .

First we focus on the quantities βn,m. From the assumptions in (3.1), for all fixed m, βn,m

converges to zero as n → ∞; then we can take a value n̂m sufficiently large in such a way that
βn,m ≤ 1

m
∀n ≥ n̂m. In other words we can write lim sup

n→∞
βn,m ≤ 1

m
. By following the same

reasoning on the quantities γm, by (3.1) and from [100, Remark 5.1.3], lim
m→∞Φm (F ) = Φ (F ),

so we can write γm = |Φm (F ) − Φ(F )| ≤ υ (m), with lim
m→∞ υ (m) = 0.

As a consequence, the proof of (3.3) (and a fortiori of (3.2)) is reduced to check whether

lim
m→∞

[
lim sup

n→∞
αn,m

]
= 0, that is

|Σλ (F, An) − Σλ (F, Bn,m)| ≤ δ (m) , with lim
m→∞ δ (m) = 0. (3.4)

Now, remembering that, as mentioned above, to check the relation (3.2) is sufficient to
prove that (3.4) is true, we continue the proof by verifying that the assumptions of Theorem
2.15 are met, that is:
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I. the spectrum of all An is uniformly bounded, that is ∃Q positive constant such that
|λj (An)| < Q ∀n (λj ∈ Λ (An) where Λ (An) is defined in (1.4));

II. relation (3.2) is verified whenever F is a polynomial of arbitrary fixed degree;

III. the sequence {An} is weakly clustered, in the eigenvalue sense, at a compact set S ⊂ C
with empty interior, such that C\S is a connected set, and S (h) ⊂ S, with S (h) denoting
the essential range of h (see Definition 1.12).

Item I. From the assumptions we have

‖An‖ = ‖Bn,m + En,m‖ ≤ ‖Bn,m‖ + ‖En,m‖ ≤ 2C, ∀n, m,

and hence the spectra of the sequences {An}, {Bn,m}, and {En,m} lie all in the closed disk
{|z| ≤ 2C}. In particular, the spectrum of all An is uniformly bounded since ∀n |λj (An)| ≤ 2C,
2C constant independent of n, λj ∈ Λ (An).

Item II. Since

tr (X) =
∑

λ∈Λ(X)

λ =
dn∑

k=1

[X]k,k ,

and since tr(·) is a linear functional, the assumption An = Bn,m + En,m implies that

tr (An) − tr (Bn,m) = tr (En,m) .

Consequently
∣∣∣∣∣∣

1

dn

∑

λ∈Λ(An)

λ − 1

dn

∑

λ∈Λ(Bn,m)

λ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

dn

∑

λ∈Λ(En,m)

λ

∣∣∣∣∣∣

≤
(a)

1

dn
‖En,m‖1

≤
(b)

1

dn
c (m) dn = c (m) , with lim

m→∞ c (m) = 0,

where (a) follows from (1.14) and (b) follows from the assumptions; therefore, by invoking also
(3.4), we deduce that (3.2) is satisfied in the special case where F (z) = z (defined on the whole
complex field C, hence with non-compact support, but which can be considered an admissible
test function since the spectra of all An are uniformly bounded).

We now prove that (3.2) is satisfied by taking as test function F any arbitrary polynomial
of fixed degree. To this end, from the linearity in the first variable of the operators Σλ (·, ·) and
Φ (·) (i.e. Σλ (aG + bH, ·) = aΣλ (G, ·) + bΣλ (H, ·) and Φ (aG + bH) = aΦ(G) + bΦ(H)), it is
sufficient to consider the case of monomials, i.e., F (z) = zq for all non-negative integers q. For
q = 0, 1 the result is valid, so that we focus our attention to the case where q ≥ 2. Relation
An = Bn,m + En,m implies

Aq
n = (Bn,m + En,m)q = Bq

n,m + Ẽn,m,

where Ẽn,m is a term of the form

Ẽn,m =
∑

Xi∈{Bn,m,En,m}
(X1 · · ·Xq) − Bq

n,m. (3.5)

In other words, the error matrix Ẽn,m is the sum of all possible combinations of products of
j matrices Bn,m and k matrices En,m, with j +k = q and the exception of j = q (obviously it is
understood that all the addends are pair-wise different). By using a simple Hölder’s inequality
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involving Schatten p-norms (see (1.13)), for every summand R in (3.5), we deduce that there
exists j ≥ 1, k = q − j for which

‖R‖1 ≤ ‖Bn,m‖k ‖En,m‖j−1 ‖En,m‖1

≤ CkCj−1c (m) dn. (3.6)

Therefore by the triangle inequality and by applying inequality (3.6) to any summand

in (3.5), we find
∥∥∥Ẽn,m

∥∥∥
1
≤ K̂c (m) dn, with K̂ = K̂ (q) constant independent of n and m.

Consequently tr(Aq
n)−tr

(
Bq

n,m

)
=tr

(
Ẽn,m

)
, and, since λ (Xq) = λq (X), we have

∣∣∣∣∣∣
1

dn

∑

λ∈Λ(An)

λq − 1

dn

∑

λ∈Λ(Bn,m)

λq

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

1

dn

∑

λ∈Λ
(
Ẽn,m

)
λ

∣∣∣∣∣∣∣

≤ 1

dn

∥∥∥Ẽn,m

∥∥∥
1

≤ 1

dn
K̂c (m) dn = K̂c (m) , with lim

m→∞ c (m) = 0.

The latter, joint with relation (3.4), proves that (3.2) is satisfied with F (z) = zq for any
non-negative integer q and, a fortiori, with any polynomial F of fixed degree.

Item III. According to the standard notations in (1.1)–(1.3), we write the matrix En,m as

En,m = Re (En,m) + iIm (En,m) .

Clearly we have

‖Re (En,m)‖1 ≤ ‖En,m‖1 ≤ c (m) dn, (3.7)

‖Im (En,m)‖1 ≤ ‖En,m‖1 ≤ c (m) dn. (3.8)

We recall that every matrix Bn,m is Hermitian and the same is obviously true for Re(An)
and Re(En,m). Since using (3.7) we have

‖Re (An) − Bn,m‖1 = ‖Re (En,m)‖1 ≤ c (m) dn,

from [100, Lemma 5.1.3 and Corollary 5.1.2] we deduce that {{Bn,m} : m ≥ 0} is an a.c.s. for
the sequence {Re (An)}. From (3.1) and Theorem 2.1, it follows that

{Re (An)} ∼λ (h, K) .

As a consequence from Theorem 2.16, {Re (An)} is weakly clustered at the essential range
S (h) of h, which is a compact subset of [−2C, 2C] (recall that max

j=1,...,dn

|λj (Re (An))| =

‖Re (An)‖ ≤ ‖An‖ ≤ 2C). Therefore all the eigenvalues of the Hermitian matrix Re(An)
belong to the same interval [−2C, 2C].

We now consider the matrix Im(An) =Im(En,m). From (3.8) we have

‖Im (An)‖1 = ‖Im (En,m)‖1 ≤ c (m) dn,

from [100, Lemma 5.1.3] it follows that {0n} (sequence of null matrices) is an a.c.s. for the
sequence {Im (An)}, and since {0n} ∼λ (0, K), from Theorem 2.1, we deduce that

{Im (An)} ∼λ (0, K) ,

then Theorem 2.16 implies that {Im (An)} is weakly clustered a S (0) = {0}. Therefore, by the
definition of weak cluster (see Definition 1.8), for all ǫ > 0, we obtain that

# {j : λj (Im (An)) /∈ D (0, ǫ)} = o (dn) . (3.9)
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Finally, from Ky Fan-Mirsky Theorem (see [45, Theorem 3.1]), and from (3.9), we plainly
deduce

# {j : Im (λj (An)) /∈ D (0, ǫ)} = o (dn) .

Consequently from [45, (17), (18) and Corollary 3.3] we infer that all eigenvalues of An

show real parts in the interval [−2C, 2C] and

# {j : λj (An) /∈ D ([−2C, 2C] , ǫ)} = o (dn) ,

i.e., {An} is weakly clustered at the compact set [−2C, 2C], the interior of [−2C, 2C] is empty
as subset of C, C\ [−2C, 2C] is connected in C, and S (h) ⊂ [−2C, 2C].

Since all the assumptions of Theorem 2.15 are met, we conclude that {An} is distributed,
in the eigenvalue sense, as the function h in its definition domain K.

We see application of this theorem to the case of boundary value problems (BVPs) ap-
proximated by Finite Difference (FD) schemes. The idea is very general and can be applied
to other local approximation methods as finite elements or finite volumes on regions of Rd,
d ≥ 1. However, for the sake of clarity, we choose a single elliptic one-dimensional BVP for
illustrating the general strategy. Let a, b, c, and γ be four given continuous functions on [0, 1]
and let us consider the second-order differential equation − (au′)′ + bu′ + c = γ on (0, 1), with
given Neumann-Dirichlet boundary conditions, i.e., u (0) = α, u′ (1) = 0. We consider the
centered FD formula of minimal bandwidth, with precision order two and on the equi-spaced
grid {xj}n+1

j=0 , xj = jh, h = (n + 1)−1.
The coefficient matrix of the resulting linear system has the form

Xn = A′
n (a) + Rn, A′

n (a) = An (a) − an− 1
2
ene⊤n−1,

where

An (a) =




a 1
2

+ a 3
2

−a 3
2

−a 3
2

a 3
2

+ a 5
2

−a 5
2

−a 5
2

. . .
. . .

. . .
. . .

. . .
. . .

. . . −an− 1
2

−an− 1
2

an− 1
2

+ an+ 1
2




,

and Rn = h2 diag
j=1,...,n

(cj) + h diag
j=1,...,n

(bj) Tn (i sin (t)), vj = v (xj), v ∈ {a, b, c} (the matrix

Tn (i sin (t)) is the Toeplitz matrix generated by the function i sin (t), see Definition 4.1).
From the previous representation and taking into account that nh < 1 and ‖Tn (i sin (t))‖ ≤

‖i sin (t)‖L∞ ≤ 1 ((see [4] and [96, Corollary 4.2])), it easy to check that

∥∥∥∥∥h
2 diag
j=1,...,n

(cj)

∥∥∥∥∥ ≤ h2 ‖c‖L∞ ,

∥∥∥∥∥h diag
j=1,...,n

(bj) Tn (i sin (t))

∥∥∥∥∥ ≤ h ‖b‖L∞ ,

and

∥∥A′
n (a) − An (a)

∥∥ ≤ ‖a‖L∞ ,

with rank(A′
n (a) − An (a)) ≤ 1, and hence the coefficient matrix Xn equals An (a) plus a

correction whose trace norm is bounded by ‖a‖L∞ + ‖b‖L∞ + h ‖c‖L∞ . Furthermore, as clearly
analyzed in [111], the Hermitian (real symmetric indeed) sequence {An (a)} is distributed as
a (x) (2 − 2 cos (s)) over (0, 1) × (0, π). As a consequence, by Theorem 3.1, it follows that the
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non-Hermitian sequence {Xn} shares the same distribution function with {An (a)}. In addition,
since the trace norm of the correction Xn − An (a) is bounded by a constant, for every fixed
ǫ > 0 it follows that the number of eigenvalues of Xn not belonging to an ǫ-neighborhood of the
range of a (x) (2 − 2 cos (s)) is bounded by a constant, possibly depending on ǫ, but independent
of n (see [45, Theorem 3.5]).

It is worth noticing that all these derivations go through, with minor modifications, also for
higher order differential operators, in higher dimension, and by varying the boundary condi-
tions: as an example, the previous analysis remains the same if the Neumann-Dirichlet bound-
ary conditions are replaced by Dirichlet boundary conditions. As it can be easily argued, the
only significant exception can be found when considering somehow artificial singularly per-
turbed problems in which the perturbation parameter is of the order of h (or of some power of
h): in that case the analysis becomes more involved, since the arising matrix structures become
significantly non-normal and different tools have to be taken into consideration.

3.2 Approximating class of sequences for matrix-functions

In Chapter 2 we have shown that the a.c.s. notion is stable under inversion, linear combinations
and products, whenever natural and mild conditions are satisfied. In this section we focus
our attention on the Hermitian case and we show that {{f (Bn,m)} : m ≥ 0} is an a.c.s. for
{f (An)}, if {{Bn,m} : m ≥ 0} is an a.c.s. for {An}, {An} is sparsely unbounded, and f is a
suitable continuous function defined on R.

We recall that, if A ∈ Mn (C) is a Hermitian matrix then, by Schur decomposition, it can
be written as A = UDU∗ with U unitary and D = diag

j=0,...,n−1
(λj (A)) diagonal and real; in this

case, for every continuous function f , the matrix f (A) is defined as f (A) = Uf (D)U∗ with
f (D) = diag

j=0,...,n−1
(f (λj (A))).

Theorem 3.2. Let {An} be a sequence formed by Hermitian matrices, An ∈ Mdn
(C) (dk <

dk+1 for each k), and let {{Bn,m} : m ≥ 0}, m ∈ N̂ ⊂ N, #N̂ = ∞, Bn,m ∈ Mdn
(C) be one of

its a.c.s. Suppose that K is a compact subset of R and that the sequence {An} is weakly clustered
at K, in the eigenvalue sense. Take any δ > 0 and any function f continuous on D (K, δ) (the
closure of D (K, δ)) and arbitrarily extended elsewhere. Then {{f (Bn,m)} : m ≥ 0} is an a.c.s.
for {f (An)}.

Proof. From the definition of weak cluster (see Definition 1.8), for every ǫ > 0, we know that

lim
n→∞

1

dn
# {i : λi (An) /∈ D (K, ǫ)} = 0.

Take any positive r with K ⊂ (−r, r). Then 2r is larger than the diameter of K and hence

lim
n→∞

1

dn
# {i : λi (An) /∈ [−r, r]} = 0.

The latter directly implies that

lim
r→∞ lim sup

n→∞
1

dn
# {i : |λi (An)| ≥ r} = 0,

and then {An} is sparsely unbounded according to (1.26) (note that, for Hermitian matrices,
|λi| = σi).

Now take ǫ > 0 and consider pǫ algebraic polynomial such that

‖f − pǫ‖∞,C < ǫ, C = D (K, δ),
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where, by definition, ‖h‖∞,S := sup
x∈S

|h (x)| with h being a continuous function defined on the

compact set S. Using a standard Schur decomposition, it is clear that

f (An) − pǫ (An) = Nn,ǫ + Rn,ǫ, ‖Nn,ǫ‖ < ǫ, rank (Rn,ǫ) = o (dn) . (3.10)

By the second part of Proposition 2.3, since {An} is sparsely unbounded, it follows that

for any positive integer j, fixed independently of n,
{{

Bj
n,m

}
: m ≥ 0

}
is an a.c.s. for

{
Aj

n

}
.

Therefore again by Proposition 2.3, first two parts, we find that {{p (Bn,m)} : m ≥ 0} is an
a.c.s. for {p (An)}, for every polynomial p fixed independently of n. In particular, ∀ǫ > 0,
∃cǫ (·) , ωǫ (·) , nǫ,· non-negative functions such that for every m ≥ 0 we can write

pǫ (An) = pǫ (Bn,m) + Rǫ
n,m + N ǫ

n,m, (3.11)

with

rank
(
Rǫ

n,m

)
≤ dncǫ (m) ,

∥∥∥N ǫ
n,m

∥∥∥ ≤ ωǫ (m) , ∀n ≥ nǫ,m,

lim
m→∞ωǫ (m) = 0, lim

m→∞ cǫ (m) = 0.

We choose ǫ = g (m) such that lim
m→∞ g (m) = 0, lim

m→∞ω (m) + c (m) = 0 with ω (m) =

ωg(m) (m), c (m) = cg(m) (m).

Therefore, by combining (3.10) and (3.11), we have

f (An) = pg(m) (An) + Rn,g(m) + Nn,g(m)

= pg(m) (Bn,m) + Rn,g(m) + Nn,g(m) + Rg(m)
n,m + Ng(m)

n,m . (3.12)

The above partial result allows one to write that
{{

pg(m) (Bn,m)
}

: m ≥ 0
}

is an a.c.s. for

{f (An)}.
Therefore, for completing the proof, it only remains to study the behavior of the sequence{

f (Bn,m) − pg(m) (Bn,m)
}

for large m. For this end, let us order the eigenvalues of An and

Bn,m in a non-increasing order, i.e., λ1 (X) ≥ λ2 (X) ≥ · · · ≥ λdn
(X) with X being either An

or Bn,m. Since {{Bn,m} : m ≥ 0} is an a.c.s. for {An}, Definition 1.5 implies that there exist
{{Rn,m} : m ≥ 0} and {{Nn,m} : m ≥ 0}, with the conditions indicated in (1.16) and (1.17),
such that An = Bn,m + Rn,m + Nn,m, that is Bn,m = An − Rn,m − Nn,m.

If we set

Ãn = An − Nn,m,

then, by the MinMax Theorem (see, e.g., [15]), we find

λi (An) − ω (m) ≤ λi

(
Ãn

)
≤ λi (An) + ω (m) , ∀n ≥ ng(m),m. (3.13)

Furthermore, writing

Bn,m = Ãn − Rn,m,

again the MinMax Theorem leads to

λi+2⌈c(m)⌉dn

(
Ãn

)
≤ λi (Bn,m) ≤ λi−2⌈c(m)⌉dn

(
Ãn

)
, ∀n ≥ ng(m),m. (3.14)

By combining formulae (3.13) and (3.14) we deduce

λi+2⌈c(m)⌉dn
(An) − ω (m) ≤ λi (Bn,m) ≤ λi−2⌈c(m)⌉dn

(An) + ω (m) , ∀n ≥ ng(m),m, (3.15)
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and for 1 + 2 ⌈c (m)⌉ dn ≤ i ≤ dn − 2⌈c (m)⌉dn, where ω (m) and c (m) are the quantities
indicated in Definition 1.5. Relation (3.15) is the classical interlacing property between the
ordered spectrum of Bn,m and that of An.

Let us consider the compact interval Km defined as the closure of D
(
K̃, ω (m)

)
where

K̃ is the convex hull of K. Since K is a (weak) cluster for the spectra of {An} and given
the interlacing between the spectra of An and Bn,m (see (3.15)), the set Km contains all the
eigenvalues of Bn,m except for at most v (m) dn of them with v (m) ≥ 0 having zero limit as m
tends to infinity. Therefore

lim
m→∞ lim sup

n→∞
1

dn
# {i : λi (Bn,m) /∈ Km} = 0.

Taking a positive rm for which Km ⊂ (−rm, rm), we infer that 2rm exceeds the diameter of
Km and hence

lim
rm→∞ lim sup

n→∞
1

dn
# {i : |λi (Bn,m)| ≥ rm} = 0.

As a consequence, for m large enough, {Bn,m} behaves as a sparsely unbounded sequence
in accordance with (1.26).

We observe that for any fixed δ > 0, there exist mδ, ǫδ > 0 such that ∀m > mδ and ∀ǫ < ǫδ,
it holds

D (Km, ǫ) ⊂ D (K, δ).

Therefore, from the choice of the polynomial pg(m), by exploiting the Schur decomposition,
we have

f (Bn,m) − pg(m) (Bn,m) = Nn,m (g (m)) + Rn,m (g (m)) ,

with ‖Nn,m (g (m))‖ < g (m) and rank (Rn,m (g (m))) = o (dn).
Putting together the latter expression with the formula (3.12), we plainly infer

f (An) = pg(m) (An) + Rn,g(m) + Nn,g(m)

= pg(m) (Bn,m) + Rn,g(m) + Nn,g(m) + Rg(m)
n,m + Ng(m)

n,m

= f (Bn,m) − Nn,m (g (m)) − Rn,m (g (m)) + Rn,g(m) +

+Nn,g(m) + Rg(m)
n,m + Ng(m)

n,m

= f (Bn,m) + Nn,g(m) + Rn,g(m),

where

Nn,g(m) = Nn,g(m) + Ng(m)
n,m − Nn,m (g (m)) ,

Rn,g(m) = Rn,g(m) + Rg(m)
n,m − Rn,m (g (m)) ,

∥∥∥Nn,g(m)

∥∥∥ ≤
∥∥∥Nn,g(m)

∥∥∥+
∥∥∥Ng(m)

n,m

∥∥∥+ ‖Nn,m (g (m))‖
≤ 2g (m) + ωg(m) (m) ,

rank
(
Rn,g(m)

)
≤ rank

(
Rn,g(m)

)
+ rank

(
Rg(m)

n,m

)
+ rank (Rn,m (g (m)))

≤ o (dn) + cg(m) (m) dn, (3.16)

and with

lim
m→∞ 2g (m) + ωg(m) (m) = 0.
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We now conclude by recalling that Definition 1.5 requires that all relations should hold for
n ≥ nm, for a certain nm. However from the definition of the Landau symbol o (·), for every
g (n) = o (dn), there exists a value nm for which

g (n) ≤ dn

m
, for n ≥ nm.

In conclusion (3.16) implies

rank
(
Rn,g(m)

)
≤ dn

(
1

m
+ cg(m) (m)

)
,

with

lim
m→∞

1

m
+ cg(m) (m) = 0,

and the claimed thesis follows, i.e., {{f (Bn,m)} : m ≥ 0} is an a.c.s. for {f (An)} in accordance
with Definition 1.5.

Theorem 3.3. Let {An} be a sparsely unbounded matrix-sequence formed by Hermitian ma-
trices, An ∈ Mdn

(C) (dk < dk+1 for each k), and let {{Bn,m} : m ≥ 0}, m ∈ N̂ ⊂ N,

#N̂ = ∞, Bn,m ∈ Mdn
(C) be one of its a.c.s. Take any function f continuous on R. Then

{{f (Bn,m)} : m ≥ 0} is an a.c.s. for {f (An)}.

Proof. The only difference with respect to the assumptions of the previous theorem concerns
the fact that {An} is not weakly clustered to a compact set, in the sense of Definition 1.8. For
any ǫ > 0, by definition of sparsely unbounded sequence, we have

#

{
i : |λi (An)| >

1

ǫ

}
≤ γ (ǫ) dn, with lim

ǫ→0
γ (ǫ) = 0.

Therefore we choose pǫ standard polynomial approximating f with infinity norm error

bounded by ǫ on the domain
[
−1

ǫ
, 1

ǫ

]
:

‖f − pǫ‖∞,[− 1
ǫ
, 1
ǫ ]

< ǫ,

in such a way (3.10) is replaced by

f (An) − pǫ (An) = Nn,ǫ + Rn,ǫ, ‖Nn,ǫ‖ < ǫ, rank (Rn,ǫ) ≤ γ (ǫ) dn.

From now we can work on a bounded compact interval (depending on ǫ) so that the proof
is reduced to the one of Theorem 3.2. In fact, relations (3.11) and (3.12) are worked similarly

as well as the expression of
{
f (Bn,m) − pg(m) (Bn,m)

}
.

The result of Theorem 3.3 is of interest for applying concretely the Krylov convergence
analysis proposed in [8, 59]. In this sense, the above analysis could be applied for proving
that the class of Hermitian Generalized Locally Toeplitz (GLT) sequences [89] is closed under,
e.g., square root or other noteworthy functions of interest in applications. We recall that the
GLT class includes virtually any Finite Difference or Finite Element approximation of PDEs
(see [111, 89, 90]) and therefore this result could have impact in stability issues in the Von
Neumann/Lax sense, in providing spectral information for devising efficient multigrid solvers,
or in providing spectral information on large preconditioned systems, when both the matrix and
the preconditioner belong to the GLT class (see the series of applications discussed in [90]): as
an example of the preconditioning issue, refer to the discussion on the diagonal-plus-structured
preconditioning in [9, end of Section 3.2] for a concrete use of the results of this section.
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3.3 Other versions of the Theorem 2.15

In this section we illustrate how we can achieve the same result of Theorem 2.15, weakening,
strengthening and/or slightly modifying the hypotheses (a1)-(a5).

In the first version we show that the hypotheses (a3) and (a slightly stronger form of)
(a4) imply (a1), (a2), and (a3) for the set S defined by “filling in” the essential range of the
function θ from (a4) (or its strengthened version). This will show that, when our set S (θ) has
empty interior our matrix-sequence has the desired distribution. When we say “filling in” we
mean taking the “Area” in the following sense:

Definition 3.4. Let K be a compact subset of C, then its complement has just one unbounded
connected component. In other words, one has

C\K = U0 ∪
∞⋃

j=1

Uj , Ui ∩ Uj = ∅ if i 6= j,

where each Uj , j ≥ 1, is a connected bounded open set, and U0 is an unbounded connected
open set (it may hold Uj = ∅ for some or even all j ≥ 1). We define the Area of K as

Area (K) = C\U0.

In other words, Area (K) is the union of K and all the bounded components of its comple-
ment (intuitively, Area (K) is the region of C that is delimited by K).

Theorem 3.5. Let {An} be a matrix-sequence, An ∈ Mdn
(C) (dk < dk+1 for each k). If

(b1) the spectra Λ (An) of An are uniformly bounded, i.e., ∃C ∈ R+ such that |λ| < C,
λ ∈ Λ (An), for all n;

(b2) there exists a function θ measurable, bounded, and defined on a set G of positive and
finite Lebesgue measure, such that, for all non-negative integers L and l, we have

lim
n→∞

tr
(
(A∗

n)l AL
n

)

dn
=

1

m {G}

∫

G

θl (t)θL (t) dt;

then S (θ) is compact, the matrix-sequence {An} is weakly clustered at Area (S (θ)) , and relation
(1.20) is true for every continuous function F with bounded support which is holomorphic in
the interior of S = Area (S (θ)).

If it is also true that C\S (θ) is connected and the interior of S (θ) is empty then the sequence
{An} is distributed as θ on its domain G, in the sense of the eigenvalues.

Proof. Since θ is bounded, S (θ) is bounded, and so, since the essential range is always closed,
the set S (θ) is compact. Hence we can define S = Area (S (θ)) .

We prove that S is a weak cluster for the spectra of {An} . First, we notice that the compact
set SC = {z ∈ C : |z| ≤ C} is a strong cluster for the spectra of {An} since by (b1) it contains
all the eigenvalues. Moreover C can be chosen such that SC contains S. Therefore, we will
have proven that S is a weak cluster for {An} if we prove that, for every ε > 0, the compact
set SC\D (S, ε) contains at most only o (dn) eigenvalues, with D (S, ε) as in Definition 1.8. By
compactness, for any δ > 0, there exists a finite covering of SC\D (S, ε) made of balls D (z, δ),
z ∈ SC\S with D (z, δ) ∩ S = ∅, and so, it suffices to show that, for a particular δ, at most
o (dn) eigenvalues lie in D (z, δ). Let F (t) be the characteristic function of the compact set
D (z, δ) (the closure of D (z, δ)). Then restricting our attention to the compact set D (z, δ)∪S,
Mergelyan’s theorem [76] implies that for each ǫ > 0 there exists a polynomial Pǫ such that
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|F (t) − Pǫ (t)| is bounded by ǫ on D (z, δ)∪S. Therefore, setting γn (z, δ) equal to the number
of eigenvalues of An belonging to D (z, δ), we find

(1 − ǫ) γn (z, δ) ≤
dn∑

i=1

F (λi) |Pǫ (λi)| (3.17)

≤



dn∑

i=1

F 2 (λi)




1
2



dn∑

i=1

|Pǫ (λi)|2



1
2

(3.18)

=




dn∑

i=1

F (λi)




1
2



dn∑

i=1

|Pǫ (λi)|2



1
2

(3.19)

= (γn (z, δ))
1
2




dn∑

i=1

|Pǫ (λi)|2



1
2

(3.20)

≤ (γn (z, δ))
1
2 ‖Pǫ (An)‖2 (3.21)

= (γn (z, δ))
1
2 (tr (P ∗

ǫ (An)Pǫ (An)))
1
2 (3.22)

= (γn (z, δ))
1
2


tr




K∑

l,L=0

clcL (A∗
n)l AL

n






1
2

(3.23)

= (γn (z, δ))
1
2




K∑

l,L=0

clcLtr
(
(A∗

n)l AL
n

)



1
2

, (3.24)

where inequality (3.17) follows from the definition of F and from the approximation properties
of Pǫ, inequality (3.18) is Cauchy-Schwarz, relations (3.19)–(3.20) come from the definitions of
F and γn (z, δ), (3.21) is a consequence of the Schur decomposition and of the unitary invariance
of the Schatten p-norms for each p, identities (3.22)–(3.24) follow from the entry-wise definition
of the Schatten 2-norm (the Frobenius norm), from the monomial expansion of the polynomial
Pǫ, and from the linearity of the trace.

Given ǫ2 > 0, we choose ǫ1 > 0 so that equation

ǫ1

K∑

l,L=0

|cl| |cL| ≤ ǫ2,

is true and then, using (b2), we choose N so that for n > N , the equation
∣∣∣∣∣∣

tr
(
(A∗

n)l AL
n

)

dn
− 1

m {G}

∫

G

θl (t)θL (t) dt

∣∣∣∣∣∣
< ǫ1,

is true. Then, picking up from equation (3.24), we have that, for n > N

(1 − ǫ) γn (z, δ) ≤ (γn (z, δ))
1
2


dn


ǫ2 +

1

m {G}

∫

G

K∑

l,L=0

clcL

(
θl (t)θL (t)

)
dt






1
2

(3.25)

= (γn (z, δ))
1
2


dn


ǫ2 +

1

m {G}

∫

G

|Pǫ (θ (t))|2 dt






1
2

(3.26)

≤ (γn (z, δ))
1
2 d

1
2
n

(
ǫ2 + ǫ2

) 1
2 , (3.27)

where inequality (3.25) is assumption (b2), the latter two inequalities are again consequences of
the monomial expansion of Pǫ and of the approximation properties of Pǫ over the area delimited
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by the range of θ, and ǫ2 is arbitrarily small. So, choosing ǫ2 = ǫ2, we see that (3.17)–(3.27)
imply that, for n sufficiently large,

γn (z, δ) ≤ 2dnǫ2 (1 − ǫ)−2 ,

which means that: γn (z, δ) = o (dn).
Thus, hypotheses (a1)–(a5) of Theorem 2.15 hold with S = Area (S (θ)), which is nec-

essarily compact and with connected complement, and consequently the first conclusion of
Theorem 2.15 holds. Finally if C\S (θ) is connected and the interior of S (θ) is empty then
Area (S (θ)) = S (θ) and so all the hypotheses of Theorem 2.15 are satisfied. We can now con-
clude that the sequence {An} is distributed in the sense of the eigenvalues as θ on its domain
G.

Now, we give a second version, replacing hypotheses (a1)–(a5) with only (a3), (a4), and
a condition on the Schatten p-norm for a certain p.

Theorem 3.6. Let {An} be a matrix-sequence, An ∈ Mdn
(C) (dk < dk+1 for each k). If

(c1) the spectra Λ (An) of An are uniformly bounded, i.e., |λ| < C, λ ∈ Λ (An), for all n;

(c2) there exists a function θ measurable, bounded, and defined over G having positive and
finite Lebesgue measure, such that, for every non-negative integer L, we have

lim
n→∞

tr
(
AL

n

)

dn
=

1

m {G}

∫

G

θL (t) dt;

(c3) there exists a positive real number p ∈ [1,∞), independent of n, such that, for every
polynomial P there exists N ∈ N such that, for n > N ,

‖P (An)‖p
p ≤ 2dn

1

m {G}

∫

G

|P (θ (t))|p dt;

then the matrix-sequence {An} is weakly clustered at Area (S (θ)) := C\U (see Definition 3.4)
and relation (1.20) is true for every continuous function F with bounded support which is
holomorphic in the interior of S = Area (S (θ)). If, moreover

(c4) C\S (θ) is connected and the interior of S (θ) is empty;

then the sequence {An} is distributed as θ on its domain G, in the sense of the eigenvalues.

Proof. The proof goes as in Theorem 3.5 until relation (3.17). Then with q the conjugate of p
(i.e., 1

q
+ 1

p
= 1) we have

(1 − ǫ) γn (z, δ) ≤



dn∑

i=1

F q (λi)




1
q



dn∑

i=1

|Pǫ (λi)|p



1
p

(3.28)

=




dn∑

i=1

F (λi)




1
q



dn∑

i=1

|Pǫ (λi)|p



1
p

(3.29)

= (γn (z, δ))
1
q




dn∑

i=1

|Pǫ (λi)|p



1
p

(3.30)

≤ (γn (z, δ))
1
q ‖Pǫ (An)‖p (3.31)

≤ (γn (z, δ))
1
q


 2dn

m {G}

∫

G

|Pǫ (θ (t))|p dt




1
p

(3.32)

≤ (γn (z, δ))
1
q (2dn)

1
p ǫ, (3.33)



§ 3 Other versions of the Theorem 2.15 43

where relation (3.28) is the Hölder’s inequality (see (1.15)), relations (3.29)–(3.30) come from
the definitions of F and γn (z, δ), (3.31) comes from the fact that, for any square matrix, the
vector with the moduli of the eigenvalues is weakly majorized by the vector of the singular
values (see [15] for the precise definition and for the result), inequality (3.32) is assumption
(c3) (which holds for any polynomial of fixed degree), and finally inequality (3.33) follows from
the approximation properties of Pǫ over the area delimited by the range of θ. Therefore

γn (z, δ) ≤ 2dnǫp (1 − ǫ)−p ,

and since ǫ is arbitrary we have the desired result, i.e., γn (z, δ) = o (dn).
The rest of the proof is the same as in Theorem 3.5.

The next result tells us that the key assumption (c3) follows from the distribution in the
singular value sense of {P (An)} and that the latter is equivalent to the very same limit relation
with only polynomial test functions.

Theorem 3.7. If the sequence {An}, An ∈ Mdn
(C) (dk < dk+1 for each k), is uniformly

bounded in spectral norm then {An} ∼σ (θ, G) is true whenever condition (1.21) holds for all
polynomial test functions. Moreover, if {P (An)} ∼σ (P (θ) , G) for every polynomial P then
claim (c3) is true for every value p ∈ [1,∞).

Proof. The first claim is proved by using the fact that one can approximate any continuous
function defined on a compact set contained in the (positive) real line by polynomials. The
second claim follows from taking as test function the function zp, with positive p, and exploiting
the limit relation from the assumption {P (An)} ∼σ (P (θ) , G). Indeed, the sequence {P (An)}
is uniformly bounded since {An} is, so we are allowed to use as test functions continuous
functions with no restriction on the support. Therefore, by definition (see (1.21)), {P (An)} ∼σ

(P (θ) , G) implies that

lim
n→∞

1

dn

dn∑

j=1

σp
j (P (An)) =

1

m {G}

∫

G

|P (θ (t))|p dt.

Hence, by observing that
dn∑
j=1

σp
j (P (An)) is by definition ‖P (An)‖p

p and using the definition

of limit, we see that, for every ǫ > 0, there exists an integer n̄ǫ such that

‖P (An)‖p
p ≤ dn

1 + ǫ

m {G}

∫

G

|P (θ (t))|p dt, ∀n ≥ n̄ǫ,

and since, without loss of generality, we can assume that ǫ < 1, we get (c3).

The two previous theorems will be used in Chapter 4 to find the spectral distribution of
sequences of products of Toeplitz matrices.





Chapter 4

Sequences of Toeplitz matrices

In this chapter we study the asymptotic spectral behavior of a product of Toeplitz sequences
(in the usual, matrix-valued, and multi-level cases), by using and extending tools from matrix
theory and finite-dimensional linear algebra.

The notion of distribution in the eigen/singular value sense goes back to Weyl and has
been investigated by many authors in the Toeplitz and locally Toeplitz context (see the book
by Böttcher and Silbermann [20] where many classical results by the authors, Szegö, Avram,
Parter, Widom, Tyrtyshnikov, and many other can be found, and more recent results in [22,
21, 45, 60, 103, 118, 109, 112]).

It is well-known that the product of Toeplitz operators is rarely equal to a Toeplitz operator
(see [23, 62]), but, it turns out that the sequence of eigenvalues or singular values of the product
of two Toeplitz sequences is often related to the product of the two symbols in a Szegö-type
way. For the singular values the result is known as long as all the involved symbols are
essentially bounded and, in fact, for any linear combination of products of Toeplitz operators,
the distribution function is exactly the linear combination of the products of the symbols of
the sequences: the latter goes back to the work of Roch and Silbermann (see [20, Sections
4.6 and 5.7]). The previous results have been extended by considering integrable symbols, not
necessarily bounded [89, 90], and by considering (pseudo) inversion and the related algebra of
sequences (see [90, 94]). Of course for the eigenvalues much less is known, and one simple reason
is that much less is true, as another basic example discussed at the beginning of Section 2 in [98]
shows. However, quite recently, using the Ky Fan-Mirsky theorem which says that the real (or
imaginary) parts of the eigenvalues are majorized by the eigenvalues of the real (or imaginary)
part of the matrix (see [15]), Golinskii and Serra-Capizzano found a method for deducing the
eigenvalue distribution of sequences obtained as generic perturbations of Hermitian sequences,
when the trace norm of the perturbation is asymptotically negligible with respect to size of the
involved matrices (see Theorem 2.17, Theorem 2.18 and [45]). We recall that a real vector v of
size n is said to be majorized by a real vector w of the same size if, for each k, the sum of the
largest k entries of v is bounded by the sum of the k largest entries of w and equality holds for
k = n.

By using [45, Lemma 3.2], Golinskii and Serra-Capizzano proved that the eigenvalues of
a non-Hermitian complex perturbation of a Jacobi matrix-sequence, which are not necessarily
real, are still distributed as the real-valued function 2 cos t on [0, π], which characterizes the
non-perturbed case where the Jacobi sequence is of course real and symmetric: see [45], and
[52, 90] for a further application of Lemma 3.2 in [45] to a (pseudo) differential setting. In
this chapter, we apply these results to certain products of Toeplitz sequences, then discuss,
apply and extend more general tools introduced by Tilli [112], and based on the Mergelyan’s
theorem, see [76]. Furthermore, the case of Laurent polynomials not necessarily in the Tilli
class is sketched and a generalization to the case of multi-level Toeplitz sequences and sequences
Tn (f) where f is a matrix-valued function is also given: we have to emphasize that these multi-
level and matrix-valued extensions are of interest in the Engineering context where the number
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of levels refers to multiple inputs (Multi-Input systems) and size of the basic blocks, i.e., the
size of the matrix-valued symbol refers to multiple outputs (Multi-Output systems). Following
the Engineering terminology, we are talking of SIMO and MIMO systems, see, e.g., [44, 49] for
details and the references therein.

4.1 Toeplitz sequences: definition and previous distribution re-
sults

We begin this section by introducing the definition of multi-level Toeplitz matrix.

Definition 4.1. Let f be a Lebesgue integrable function defined over Qd, where Q = (−π, π),
and taking values in Mp,q (C), for given positive integers p and q. Then, for d-indices r =
(r1, . . . , rd) , j = (j1, . . . , jd) , n = (n1, . . . , nd), e = (1, . . . , 1), 0 = (0, . . . , 0), the multi-level
Toeplitz matrix Tn (f) ∈ Mpn̂,qn̂ (C), n̂ = n1n2 · · ·nd, is defined as follows (see [109]):

Tn (f) =
n1−1∑

j1=−n1+1

· · ·
nd−1∑

jd=−nd+1

J (j1)
n1

⊗ · · · ⊗ J (jd)
nd

⊗ f̃(j1,...,jd), (4.1)

where J
(ℓ)
m ∈ Mm (R) , (−m + 1 ≤ ℓ ≤ m − 1) is the matrix whose (i, j)th entry is 1 if i −

j = ℓ and 0 otherwise (thus {J−m+1, . . . , Jm−1} is the natural basis for the space of m × m
Toeplitz matrices), ⊗ denotes the tensor or Kronecker product of matrices and f̃k are the
Fourier coefficients of f defined by

f̃k = f̃(k1,...,kd) =
1

(2π)d

∫

Qd

f (t1, . . . , td) e−i(k1t1+···+kdtd)dt1 · · ·dtd,
(
i2 = −1

)
, (4.2)

for integers kℓ such that −∞ < kℓ < ∞ for 1 ≤ ℓ ≤ d. Since f is a matrix-valued function of
d variables whose component functions are all integrable, then the (k1, . . . , kd)th Fourier coeffi-
cient is considered to be the matrix whose (u, v)th entry is the (k1, . . . , kd)th Fourier coefficient
of the function (f (t1, . . . , td))u,v. In the usual multi-level indexing language, we can rewrite
(4.1) more compactly as

Tn (f) =
[
f̃r−j

]n−e

r,j=0
,

where f is called symbol or generating function of the Toeplitz matrix Tn (f).

In the following we write n → ∞ to indicate that min
r=1,...,d

nr → ∞.

Throughout this chapter we speak of Toeplitz sequences as matrix-sequences of the form
{An} with An = Tn (f) and Tn (f) defined as above.

For the sake of clarity, whenever the extension from scalar to matrix-valued functions is
simple enough, we shall prove our theorems (especially the ones concerning multi-level Toeplitz)
only in the case p = q = 1 (see [109] for a detailed matrix definition and [20] for an explanation
with examples in the case d = 2), then Tn (f) ∈ Mn̂ (C).

The asymptotic distribution of eigenvalues and singular values of a sequence of Toeplitz
matrices has been deeply studied in the last century, and strictly depends on the generating
function f (see, for example, [20, 109, 118] and the references therein). Now, let {fα,β} be a

finite set of L1
(
Qd
)

functions and define the measurable function h by:

h =
ρ∑

α=1

vα∏

β=1

f
s(α,β)
α,β , s (α, β) ∈ {±1} , (4.3)

where fα,β is sparsely vanishing (see Definition 1.11) when s (α, β) = −1. The function h may
not belong to L1 in which case {Tn (h)} is not defined according to the rule in (4.1) simply



§ 1 Toeplitz sequences: definition and previous distribution results 47

because the Fourier coefficients (4.2) are not well-defined. However, for the sequence of matrices{
ρ∑

α=1

vα∏
β=1

T
s(α,β)
n (fα,β)

}
, the following result holds.

Proposition 4.2. [89, 90, 117, 83] With the above assumptions we have that





ρ∑

α=1

vα∏

β=1

T s(α,β)
n (fα,β)



 ∼σ

(
h, Qd

)
,

and





ρ∑

α=1

vα∏

β=1

T s(α,β)
n (fα,β)



 ∼λ

(
h, Qd

)
,

if the matrices
ρ∑

α=1

vα∏
β=1

T
s(α,β)
n (fα,β) are Hermitian, at least for n large enough (which implies

necessarily that p = q). In this context, the symbol T
s(α,β)
n (fα,β) with s (α, β) = −1 and fα,β

sparsely vanishing means that we are (pseudo) inverting the matrix in the sense of Moore-
Penrose (see [15]), since Tn (fα,β) is not necessarily invertible, but the number of zero singular
values is at most o (n̂), for n → ∞.

We should mention here that the distribution results in the singular value sense are much
easier to obtain and to prove [89, 90, 111, 109, 118], thanks to the higher stability of singular
values under perturbations [121].

Notice that in defining the symbol h when matrix-valued symbols are involved, it is neces-
sary to consider compatible dimensions and also one has to be careful in respecting the correct
ordering in the products, owing to the lack of commutativity in the matrix context.

When ρ = 1, p = q = 1, and v1 = 1 this result concerns standard Toeplitz sequences
and is attributed to Tyrtyshnikov, Zamarashkin and Tilli [109, 116, 118]; see also [83] and the
references therein for the evolution of the subject. The case where s (α, β) = 1 for every α and
β is considered and solved in [83, 117] by using matrix theory techniques. We stress that the
Hermitian case where h is defined as in (4.3) has been treated in two different ways in [20, 90],
for both singular values and eigenvalues. In the following section we first assume only that
the symbol of the product (h) is real-valued, then in Section 4.3 we extend these results to
functions with “thin spectrum” or that belong to the Tilli class.

Definition 4.3. Let D be any domain equipped with a positive measure and let us consider
the space L∞ (D) of complex-valued essentially bounded functions. The Tilli class is the subset
of L∞ (D) made by functions f whose (essential) range S (f) has empty interior and does not
disconnect the complex plane.

It is clear that the condition defining the Tilli class does not involve any regularity of the
function, but it is more related to the topology/geometry of the range (see also [20, Example
5.39] and [120, top of p. 390]); by the way it is evident that the Tilli class includes properly
all the real-valued L∞ functions.

Remark 4.4. It should be noted that, according to [90], the distribution result for singular
values holds for any sequence belonging to the algebra generated by Toeplitz sequences with

L1
(
Qd
)

symbols, where the allowed algebraic operations are linear combination, product, and

(pseudo) inversion. In order to formally define this algebra AT we say that AT =
∞∪

j=0
A(j)

T

where Toeplitz sequences with L1
(
Qd
)

symbols form the set A(0)
T and {An} ∈ A(j)

T , j ≥ 1, if
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there exists a finite set of sequences
{
A

(α,β)
n

}
, with measurable symbols fα,β, belonging to A(k)

T ,

0 ≤ k < j, such that

An =
ρ∑

α=1

vα∏

β=1

(
A(α,β)

n

)s(α,β)
, s (α, β) ∈ {±1} ,

where every sequence which is (pseudo) inverted (s (α, β) = −1) should have sparsely vanishing
symbol; the new symbol of {An} is recursively defined as

h =
ρ∑

α=1

vα∏

β=1

f
s(α,β)
α,β , s (α, β) ∈ {±1} .

The general result in [90] is that {An} ∼σ

(
h, Qd

)
and {An} ∼λ

(
h, Qd

)
, if all the matrices

An are Hermitian, at least for n large enough.

Finally it is worth mentioning that the above results also hold when starting from the set
of block multi-level sequences generated by matrix-valued p × q symbols; see [90] for general
integrable symbols (i.e. all the singular values of the symbol are integrable on Qd) and [21] for
the case of bounded symbols with p = q and without pseudo inversion, but where the distribution
result for eigenvalues is extended to the case in which the involved sequences are normal (the
Hermitian case for general integrable symbols and with pseudo inversion can be found in [90]).

4.2 Preliminary results for sequences of Toeplitz matrices

In this section we present some simple technical results which are useful in our next study in
search of the spectral distribution of sequences of products of Toeplitz matrices.

The first lemma is due to SeLegue: it can explicitly be found in [20, Lemma 5.16]. We
present an elementary matrix proof as an alternative to the (elementary) operator theory proof
given in [20] . This proof seems to be the most natural one to extend to the multi-level case,
as explained in the proof of Lemma 4.6.

Lemma 4.5. Let f, g ∈ L∞ (Q), An = Tn (f) Tn (g), and let h = fg. Then ‖An − Tn (h)‖1 =
o (n).

Proof. In order to estimate ‖An − Tn (h)‖1, i.e., the Schatten 1-norm of An − Tn (h), we will
use some classical results from approximation theory.

For a given θ ∈ L1 (Q), let pk,θ be its Cesaro sum of degree k, i.e., the arithmetic average
of Fourier sums of order q with q ≤ k (see [16, 123]). From standard trigonometric series
theory we know that pk,θ converges in L1 norm to θ as k tends to infinity and also that
‖pk,θ‖L∞ ≤ ‖θ‖L∞ , whenever θ ∈ L∞ (Q) with L∞ (Q) ⊂ L1 (Q). Furthermore, the norm

inequality ‖Tn (θ)‖p ≤ (
n
2π

) 1
p ‖θ‖Lp holds for every θ ∈ Lp (Q) if 1 ≤ p ≤ ∞ (see [4] and [96,

Corollary 4.2]). Now, by adding and subtracting and by using the triangle inequality several
times we get:

‖An − Tn (h)‖1 ≤ ‖An − Tn (pk,f ) Tn (g)‖1 + ‖Tn (pk,f )Tn (g) − Tn (pk,f ) Tn (pk,g)‖1 +

+ ‖Tn (pk,f ) Tn (pk,g) − Tn (pk,fpk,g)‖1 + ‖Tn (pk,fpk,g) − Tn (h)‖1 ,(4.4)

and, by using Hölder’s inequality for the Schatten p-norms (see (1.13)) and the previously
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mentioned norm inequality from [96], we infer that

‖An − Tn (pk,f )Tn (g)‖1 = ‖(Tn (f) − Tn (pk,f ))Tn (g)‖1

≤ ‖Tn (f) − Tn (pk,f )‖1 ‖Tn (g)‖
≤ n

2π
‖f − pk,f‖L1 ‖g‖L∞ ;

‖Tn (pk,f )Tn (g) − Tn (pk,f )Tn (pk,g)‖1 = ‖Tn (pk,f ) (Tn (g) − Tn (pk,g))‖1

≤ ‖Tn (g) − Tn (pk,g)‖1 ‖Tn (pk,f )‖
≤ ‖Tn (g − pk,g)‖1 ‖pk,f‖L∞

≤ n

2π
‖g − pk,g‖L1 ‖f‖L∞ ;

‖Tn (pk,fpk,g) − Tn (h)‖1 = ‖Tn (h − pk,fpk,g)‖1

≤ n

2π
‖h − pk,fpk,g‖L1 .

Thus, we see that the sum of the first, second and fourth terms of (4.4) equals ǫ (k) n where,
since the Cesaro operator converges to the identity in the L1 topology, we have

lim
k→∞

ǫ (k) = 0.

We treat the third term of (4.4) in a different way. Let us recall that pk,f and pk,g are
trigonometric polynomials of degree at most k, so that

pk,f (t) =
k∑

j=−k

aje
ijt, pk,g (t) =

k∑

j=−k

bje
ijt,

and their product is

pk,f (t) pk,g (t) =
2k∑

j=−2k

γje
ijt, with γj =

∑

l+L=j

albL.

Now from the definition of Toeplitz matrix generated by a symbol, we find

(Tn (pk,fpk,g))r,s
= γr−s =

∑

l+L=r−s

albL =
k∑

l=−k

albr−s−l, (4.5)

and

(Tn (pk,f )Tn (pk,g))r,s
=

n∑

v=1

(Tn (pk,f ))
r,v

(Tn (pk,g))v,s

=
n∑

v=1

ar−vbv−s

=
n−r∑

l=−r

albr−s−l. (4.6)

The summations in (4.5) and (4.6) coincide when k ≤ r ≤ n − k (remember that al = 0
if l > k or l < −k). Since r is the row index, the latter remark implies that the two matrices
Tn (pk,fpk,g) and Tn (pk,f )Tn (pk,g) differ only on the first and on the last k − 1 rows so that

rank (Tn (pk,fpk,g) − Tn (pk,f )Tn (pk,g)) ≤ 2 (k − 1) < 2k.
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Now, since the trace norm is bounded by the the rank times the spectral or operator norm,
we see that:

‖Tn (pk,f ) Tn (pk,g) − Tn (pk,fpk,g)‖1 ≤ 2k ‖Tn (pk,f ) Tn (pk,g) − Tn (pk,fpk,g)‖
≤ 2k (‖Tn (pk,f )‖ ‖Tn (pk,g)‖ + ‖Tn (pk,fpk,g)‖)
≤ 2k

(‖pk,f‖L∞ ‖pk,g‖L∞ + ‖pk,fpk,g‖L∞

)

≤ 2k
(‖pk,f‖L∞ ‖pk,g‖L∞ + ‖pk,f‖L∞ ‖pk,g‖L∞

)

= 4k ‖pk,f‖L∞ ‖pk,g‖L∞

≤ 4k ‖f‖L∞ ‖g‖L∞ ,

for each k ∈ N. Thus, if G = 4 ‖g‖L∞ ‖f‖L∞ and ǫ (k) is defined above, then

‖An − Tn (h)‖1 ≤ ǫ (k)n + kG, (4.7)

for each k ∈ N. Now, for each ǫ > 0, by first choosing k0 so that ǫ (k0) < ǫ
2 then choosing

Ñ > 2Gk0
ǫ

, we see that n ≥ Ñ gives

‖An − Tn (h)‖1

n
≤ ǫ,

which finishes the proof.

Next, we notice that the reasoning above applies to multi-level Toeplitz matrices, where
Tn (f) ∈ Mn̂ (C) represent the multi-level Toeplitz matrix with symbol f (as in Definition 4.1).

Lemma 4.6. Let f, g ∈ L∞
(
Qd
)
, n = (n1, . . . , nd) ∈ Nd and n̂ = n1n2 · · ·nd. Then for

An = Tn (f) Tn (g) and h = fg we have:

‖An − Tn (h)‖1 = o (n̂) .

The only part of the proof which is slightly different from that of Lemma 4.5 is the treatment
of the third term of (4.4). To get the analogous inequality, we remember that all the involved
symbols are trigonometric polynomials of degree not exceeding k, a direct check shows that the
two matrices Tn (pk,f ) Tn (pk,g) and Tn (pk,fpk,g) can differ only on the first k1 block-rows and on
the last k1 block-rows of size n̂

n1
; moreover on every block of size n̂

n1
the two matrices can differ

only the first k2 block-rows and on the last k2 block-rows of size n̂
n1n2

and so on. Therefore,
setting ‖k‖∞ = max

j=1,...,d
kj , the trace norm of Tn (pk,f )Tn (pk,g)−Tn (pk,fpk,g) is bounded by the

rank times the spectral norm, i.e.,

‖Tn (pk,f )Tn (pk,g) − Tn (pk,fpk,g)‖1 ≤ 4 ‖k‖∞ ‖g‖L∞ ‖f‖L∞

n̂

min
j=1,...,d

nj
,

we can replace equation (4.7) with the equation:

‖An − Tn (h)‖1 ≤ ǫ (k) n̂ + γ (k)G,

where γ (k) = ‖k‖∞ n̂
min

j=1,...,d
nj

, for each k ∈ Nd, and choose, for ǫ > 0, a d-tuple k such that

ǫ (k) < ǫ
2 and an Ñ such that Ñ > 2Gγ(k)

ǫ
. Then, if n̂ > Ñ we will have

‖An − Tn (h)‖1

n̂
≤ ǫ,

which shows that ‖An − Tn (h)‖1 = o (n̂) and finishes the proof.
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Now we consider the results of distribution in the case of a sequence {An} where An =
Tn (f) Tn (g) ; f, g ∈ L∞ (Q) such that fg is real-valued (even though f and g are not necessarily
real-valued; for the simpler, all real-valued case, see [90] or [117]). Symbols of this type are
studied, e.g., in statistics (see [13, 12]). The idea is to look at An as the Hermitian matrix
Tn (h), h = fg, plus a correction term Cn such that ‖Cn‖1 = o (n) as n → ∞, where each of the
matrix-sequences is uniformly bounded in operator norm (see Lemma 4.5). This will permit
us to use the powerful Theorem 2.17.

Theorem 4.7. Let f, g ∈ L∞ (Q) be such that h = fg is real-valued. Then {An} ∼λ (h, Q)
with An = Tn (f) Tn (g), S (h) is a weak cluster for {An}, and any s ∈ S (h) strongly attracts
the spectra of {An} with infinite order.

Proof. It is well-known (see [48]) that {Tn (h)} ∼λ (h, Q) and ‖Tn (θ)‖ ≤ ‖θ‖L∞ for every
θ ∈ L∞ (Q). Thus ‖Tn (h)‖ ≤ ‖h‖L∞ and ‖An‖ ≤ ‖Tn (f)‖ ‖Tn (g)‖ ≤ ‖f‖L∞ ‖g‖L∞ . As a
consequence, since ‖An − Tn (h)‖1 = o (n) by Lemma 4.5, the desired results follow by applying
Theorem 2.17 with Bn = Tn (h), Cn = An − Tn (h).

Now we once again notice that the same theorem holds for multi-level Toeplitz matrices.

Theorem 4.8. Let d ∈ N+ and let f, g ∈ L∞
(
Qd
)

be such that h = fg is real-valued. Then,

if An = Tn (f) Tn (g) , we have that {An} ∼λ

(
h, Qd

)
, S (h) is a weak cluster for {An}, and

any s ∈ S (h) strongly attracts the spectra of {An} with infinite order.

Proof. In 1993, Tyrtyshnikov showed that the relation (1) holds for multi-level Toeplitz se-

quences (see [20, Theorem 6.41]) so that we once again have {Tn (h)} ∼λ

(
h, Qd

)
. Also, by the

definition of the Toeplitz operators it is again true that

‖Tn (h)‖ ≤ ‖h‖L∞ ,

(see [48]) and ‖An‖ ≤ ‖Tn (f)‖ ‖Tn (g)‖ ≤ ‖f‖L∞ ‖g‖L∞ . As a consequence, since we have that
‖An − Tn (h)‖1 = o (n̂) by Lemma 4.6, the desired results follow by applying Theorem 2.17
with Bn = Tn (h) and Cn = An − Tn (h).

Remark 4.9. Let f, g, h and An be defined as in Theorem 4.7 and suppose that either f or
g is a Laurent polynomial (see (4.17)) of degree k. Then, if h = fg, by the same type of
reasoning as above, An − Tn (h) has rank less than or equal to 2k. Therefore, again using
the fact that the sequences {‖An‖} and {‖Tn (h)‖} are both bounded by ‖f‖L∞ ‖g‖L∞ and the
Schur decomposition, it follows that ‖An − Tn (h)‖1 ≤ 4k ‖f‖L∞ ‖g‖L∞. As a consequence,
since S (h) is a compact real set, Theorem 2.18 implies that S (h) is a strong cluster for the
spectra of {An}.
Remark 4.10. Lemma 4.5 and Theorem 4.7 remain valid in a block multi-dimensional setting,

i.e., when considering symbols belonging to L∞
q

(
Qd
)

with d ≥ 2, q ≥ 2. In fact, we can follow

verbatim the same proof as in Lemma 4.5 (see also [21]) and in Theorem 4.7 since all the
tools concerning the Cesaro operator and the trace norm estimates have a natural counterpart
in several dimensions and in the matrix-valued setting (see [96, 123]). The only change is of
notational type: in fact all the terms o (n) will become o (n̂), since the involved dimensions in
the multi-dimensional Toeplitz setting are qn̂, with n̂ = n1n2 · · ·nd and with n = (n1, . . . , nd)
being a multi-index, see Section 4.1.

In light of the previous remark, it is natural to state the following generalization without
proof.

Theorem 4.11. Let f, g ∈ L∞
q

(
Qd
)

be such that h = fg is Hermitian-valued (real-valued for

q = 1). Then {An} ∼λ

(
h, Qd

)
with An = Tn (f) Tn (g), S (h) is a weak cluster for {An}, and

any s ∈ S (h) strongly attracts the spectra of {An} with infinite order.
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Theorem 4.11 is the basis for the subsequent general result concerning the algebra generated

by Toeplitz sequences with L∞
q

(
Qd
)

symbols. Its proof works by induction on the structure of

h and of An and, more specifically, Theorem 4.11 is used for the basis of induction and for the
inductive step. We do not furnish further details since, under mild additional assumptions, the
same statement is proved carefully in Section 4.3 in the more general case where h belongs to

the Tilli class. We recall that Hermitian-valued (real-valued if q = 1) L∞
q

(
Qd
)

functions form

a proper subset of the Tilli class.

Theorem 4.12. Let fα,β ∈ L∞
q

(
Qd
)

with α = 1, . . . , ρ, β = 1, . . . , vα, ρ, vα < ∞. Assume that

the function
ρ∑

α=1

vα∏
β=1

fα,β, is Hermitian-valued (real-valued for q = 1) and consider the sequence

{An} with An =
ρ∑

α=1

vα∏
β=1

Tn (fα,β). Then {An} ∼λ

(
h, Qd

)
, S (h) is a weak cluster for {An},

and any s ∈ S (h) strongly attracts the spectra of {An} with infinite order.

Remark 4.13. Theorem 4.12 nicely complements the analysis by Böttcher and coauthors in
[21]. In fact in [21] the authors require that the given sequence {An} is normal, i.e., every
An satisfies A∗

nAn = AnA∗
n. This technical assumption may be difficult to verify except in the

Hermitian case. For the Hermitian setting see also [90] and Remark 4.4.

We are now ready to state and prove two important lemmas. An alternative proof using
operator theory methods can be found in [21].

Lemma 4.14. Let fα ∈ L∞
(
Qd
)

with α = 1, . . . , ρ, ρ < ∞, d ≥ 1, and let n = (n1, . . . , nd)

and n̂ = n1n2 · · ·nd. Set

An =
ρ∏

α=1

Tn (fα) ,

and h =
ρ∏

α=1
fα. Then

‖An − Tn (h)‖1 = o (n̂) , (4.8)

lim
n→∞

tr (An)

n̂
=

1

(2π)d

∫

Qd

h (t1, . . . , td) dt1 · · ·dtd. (4.9)

Proof. For proving (4.8) we proceed by induction on the positive integer ρ. If ρ = 1 then
there is nothing to prove since An − Tn (h) is the null matrix. For ρ > 1, we write An =(

ρ−1∏
α=1

Tn (fα)

)
Tn (fρ), where, by the inductive step, we have

ρ−1∏
α=1

Tn (fα) = Tn (hρ−1) + En,ρ−1

with hρ−1 =
ρ−1∏
α=1

fα and ‖En,ρ−1‖1 = o (n̂). As a consequence

An = Tn (hρ−1)Tn (fρ) + En,ρ−1Tn (fρ) ,

where

‖En,ρ−1Tn (fρ)‖1 ≤ ‖En,ρ−1‖1 ‖Tn (fρ)‖ ≤ ‖En,ρ−1‖1 ‖fρ‖L∞ ,

by the Hölder’s inequality (see (1.13)) and by the inequality ‖Tn (g)‖ ≤ ‖g‖L∞ , see, e.g., [20].
Furthermore, thanks to Lemma 4.6, we have

‖Tn (hρ−1) Tn (fρ) − Tn (h)‖1 = o (n̂) ,
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since h = hρ−1fρ. In conclusion An = Tn (h) + En,ρ where

En,ρ = En,ρ−1Tn (fρ) + Tn (hρ−1)Tn (fρ) − Tn (h)

so that by the triangle inequality ‖En,ρ‖1 = o (n̂), and therefore the proof of the first part is
concluded.

The proof of the second part, i.e., relation (4.9) is plain since the statement is a straight-
forward consequence of the first part. In fact

tr (Tn (h)) = n̂h̃0 =
n̂

(2π)d

∫

Qd

h (t1, . . . , td) dt1 · · ·dtd,

where h̃0 is the Fourier coefficient defined in (4.2), and, by (1.14) and (4.8),

tr (An) = tr (Tn (h)) + o (n̂) =
n̂

(2π)d

∫

Qd

h (t1, . . . , td) dt1 · · ·dtd + o (n̂) ,

which implies (4.9).

Lemma 4.15. Let fα,β ∈ L∞
(
Qd
)

with α = 1, . . . , ρ, β = 1, . . . , vα, ρ, vα < ∞, d ≥ 1, and let

n = (n1, . . . , nd) and n̂ = n1n2 · · ·nd. Set

An =
ρ∑

α=1

vα∏

β=1

Tn (fα,β) ,

and h =
ρ∑

α=1

vα∏
β=1

fα,β. Then

‖An − Tn (h)‖1 = o (n̂) ,

lim
n→∞

tr (An)

n̂
=

1

(2π)d

∫

Qd

h (t1, . . . , td) dt1 · · ·dtd. (4.10)

Proof. The first claim is a trivial consequence of Lemma 4.14. For the second claim, just
observe that the linearity of the trace operator and of the limit operation implies that (4.10)
is equivalent to the statement that

ρ∑

α=1

lim
n→∞

1

n̂
tr




vα∏

β=1

Tn (fα,β)


 =

ρ∑

α=1

1

(2π)d

∫

Qd

vα∏

β=1

fα,β (t1, . . . , td) dt1 · · ·dtd.

Hence, setting gα =
vα∏

β=1
fα,β , α = 1, . . . , ρ, the desired result follows from

lim
n→∞

1

n̂
tr




vα∏

β=1

Tn (fα,β)


 =

1

(2π)d

∫

Qd

gα (t1, . . . , td) dt1 · · ·dtd,

which is a consequence of Lemma 4.14.
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4.3 The Tilli class and the algebra generated by Toeplitz se-
quences

Many mathematicians have worked to obtain generalizations of the Szegö theorem to functions
with “thin spectrum”, a concept which varies a bit from one author to another. Here we work
with the definition used by Tilli given in Definition 4.3.

In the paper [112] Tilli was able to show that the distribution in the sense of the eigenvalues
of the Toeplitz sequence {Tn (f)} is valid whenever the symbol f lies in the Tilli class. Indeed
the proof is given in one dimension (d = 1) but the extension in several dimensions is plain.

Now we want to extend the result of Tilli to the case of linear combinations of products
of sequences of Toeplitz matrices whose “cumulative” symbol (derived from the same linear
combination of the products of generating functions/symbols of the Toeplitz matrices involved)
belongs to the Tilli class; to this aim we work along two different ways depending on the tools
used: the first theorem (Theorem 4.16) is obtained by extending Theorem 4.8 from the subset
of real-valued symbols to the whole Tilli class (the proof is not given in detail, but only by
providing the main steps), the second (Theorem 4.18), however, is obtained by application of
Theorem 3.6 and powerful Lemmas 4.14 and 4.15.

Theorem 4.16. Let f, g ∈ L∞
(
Qd
)

be such that h = fg belongs to the Tilli class, d ≥ 1.

Assume that a function φ can be found continuous on S (h), the range of h, such that it is
injective and the range of φ (h) lies on the real line, i.e., S (φ (h)) is compact set of R. Then

{An} ∼λ

(
h, Qd

)
with An = Tn (f) Tn (g).

Proof. We consider five steps:

Step1. Given ǫ > 0 consider φǫ polynomial such that ‖φ − φǫ‖L∞,S(h) < ǫ, φǫ is injective, the
latter implying that its range does not disconnect the complex plane. In such a way the
range of φǫ (h) lies in a ǫ-neighborhood of a compact subset of the real line.

Step2. Therefore, Tn (φ (h)) is Hermitian since φ (h) is real-valued and has real eigenval-
ues contained in the interval [r, R] with r being the essential infimum of φ (h) and R
being the essential supremum of φ (h). Moreover, since ‖Tn (φǫ (h)) − Tn (φ (h))‖ =
‖Tn (φǫ (h) − φ (h))‖ ≤ ‖φ (h) − φǫ (h)‖L∞ = ‖φ − φǫ‖L∞,S(h) < ǫ, it follows that the
matrix Tn (φǫ (h)) has all the eigenvalues in a ǫ-neighborhood of [r, R].

Step3. Now for every polynomial P of fixed degree ‖P (Tn (f) Tn (g)) − P (Tn (h))‖1 = o (n̂)
and ‖P (Tn (h)) − Tn (P (h))‖1 = o (n̂); this is not difficult in view of Theorem 4.6.

Step4. Using the previous step with any polynomial P = φǫ and since the eigenvalues of
Tn (φ (h)) belong to [r, R], we deduce that the eigenvalues of the sequences {φǫ (Tn (h))}
and {φǫ (Tn (f) Tn (g))} are clustered in a ǫ-neighborhood of [r, R]. As a consequence,
the injectivity of φǫ implies that the eigenvalues of {Tn (f) Tn (g)} are clustered in a ǫ′-
neighborhood of the range of h = fg. Since ǫ and therefore ǫ′ can be chosen arbitrarily,
it follows that the sequence {Tn (f) Tn (g)} is clustered in the eigenvalue sense at S (h).

Step5. By trivial computation it is easily deduced that for every positive integer k

tr
(
(Tn (f) Tn (g))k − (Tn (h))k

)
= o (n̂) .

Since {Tn (h)} ∼λ

(
h, Qd

)
by the previous relation, for every positive integer k, it follows

that

lim
n→∞

tr (Tn (f) Tn (g))k

n̂
=

1

(2π)d

∫

Qd

h (t)k dt.
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The above limit relation, the clustering of {Tn (f) Tn (g)} at S (h), the uniform bound-
edness of the spectra of {Tn (f) Tn (g)}, and the fact that h does not disconnect the
complex plane and its range has empty interior are the assumptions of Theorem 2.15: the
conclusion of Theorem 2.15 is exactly the desired claim and hence the proof is concluded.

The proof would have worked without technical assumptions if the following claim would
have been true.

Claim. Given h bounded such that its range has empty interior and does not disconnect the
complex plane, find φ continuous on S (h), the range of h, such that it is injective and
the range of φ (h) lies on the real line, i.e., S (φ (h)) is compact set of R.

Unfortunately this claim is generally false as the subsequent example shows.

Proposition 4.17. Let K ⊆ C be the Y shaped compact set illustrated in Fig. 4.1, and let
φ : K → R. Then φ continuous implies that φ is not injective and viceversa, i.e., φ injective
implies that φ is not continuous.

K

αβ

γ

δ

Figure 4.1: Y shaped compact set K.

Proof. Let φ : K → R be continuous. Let us consider the three edges C1, C2, C3 and the point
α, α /∈ Cr, r = 1, 2, 3, as illustrated in Fig. 4.2, where K = C1 ∪C2 ∪C3 ∪{α}. The continuity
of φ implies the following relationships

lim
z∈C1
z→α

φ (z) = φ (α) , (4.11)

lim
z∈C2
z→α

φ (z) = φ (α) , (4.12)

lim
z∈C3
z→α

φ (z) = φ (α) . (4.13)

Assume now that φ is injective on K, that is ∀z1, z2 ∈ K, z1 6= z2, we find φ (z1) 6= φ (z2).
Let us set φ (α) = a.

The following reasonings can be made.

Claim 1: Let us remark that, given any of the three sets Cr with r = 1, 2, 3, the function φ − a
cannot change sign since the existence of two points z1, z2 ∈ Cr with φ (z1) > a and
φ (z2) < a, would imply by continuity the existence of z̃ ∈ Cr, z̃ 6= α (α /∈ Cr) such that
φ (z̃) = φ (α) = a. This would imply that φ is not injective.

Claim 2: Given Cr and Cs, r, s = 1, 2, 3, r 6= s, the following condition is impossible:

∀z ∈ Cr, φ (z) > a and ∀t ∈ Cs, φ (t) > a. (4.14)
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Indeed, suppose by contradiction that (4.14) is satisfied. Since relations (4.11), (4.12),
and (4.13) hold, for every ǫ > 0 there exist C̃r ⊆ Cr and Ĉs ⊆ Cs, with C̃r, Ĉs 6= ∅,
C̃r ∩ Ĉs = ∅, such that

for z ∈ C̃r, the range of φ (z) contains (a, a + ǫ);

for t ∈ Ĉs, the range of φ (t) contains (a, a + ǫ).

� �
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C2

oO�������
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Figure 4.2: Analysis of φ in the 3 branches of K.

Furthermore, since φ is a continuous function, by varying z in the set C̃r, φ (z) has to
take all the values (a, a + ǫ) and by varying t in the set Ĉs, φ (t) has to take all the values
(a, a + ǫ). From this it follows that there exist z̃ ∈ C̃r and t̂ ∈ Ĉs with z̃ 6= t̂ such that

φ (z̃) = φ
(
t̂
)
, and the latter would imply again that φ is not injective.

Claim 3: Given Cr and Cs, r, s = 1, 2, 3, r 6= s, the following condition is impossible:

∀z ∈ Cr, φ (z) < a and ∀t ∈ Cs, φ (t) < a.

In fact, it is enough to repeat verbatim the same reasoning as in the previous claim, using
the interval (a − ǫ, a) in place of (a, a + ǫ).

Let us consider for instance the subset C1. Given relation (4.11) and Claim 1, we have two
possibilities:

I) ∀z ∈ C1, φ (z) > a;

II) ∀z ∈ C1, φ (z) < a.

Let us suppose that case I) holds: of course the alternative case II) can be handled similarly.
Therefore, we have

∀z ∈ C1, φ (z) > a. (4.15)

Let us consider the subset C2. With the same arguments used for C1, from (4.12) and
(4.15), Claim 2 implies that

∀z ∈ C2, φ (z) < a. (4.16)

Now let us consider the subset C3. From (4.13), given the continuity of φ, we deduce that

1. by Claim 1, φ − a cannot change sign in any of the subsets Cr, r = 1, 2, 3;

2. by Claim 2 and (4.15) ∀z ∈ C3, φ (z) ≯ a;
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3. by Claim 3 and (4.16) ∀z ∈ C3, φ (z) ≮ a;

4. by injectivity ∀z ∈ C3, φ (z) 6= a.

The four listed claims are of course in contradiction. Therefore φ cannot be simultaneously
continuous and injective over all K and the proof is complete.

However, even in this case where the key assumption of Theorem 4.16 is not satisfied, the
Szegö formula can be recovered in full generality.

Indeed it is enough to repeat the same proof as in Theorem 4.16, with φ being continuous
and injective over C1 ∪ C2 and with φ (α) = φ (z) ∀z ∈ C3. In that case we obtain a partial
Szegö relation in which the test function is an arbitrary continuous function over C1 ∪C2, but
it is constant over the remaining branch. However if we follow the same steps now choosing φ
continuous and injective over C1 ∪C3 with φ (α) = φ (z) ∀z ∈ C2, then we obtain a new partial
Szegö relation in which the test function is an arbitrary continuous function over C1 ∪C3, but
it is constant over the branch C2. If we sum up these two partial relations, then the general
Szegö formula is derived for this specific setting, in which the essential range of the symbol h
is Y shaped and compact.

In conclusion, despite the negative answer provided by Proposition 4.17 for satisfying the
key assumption of Theorem 4.16, the arguments used for the case where the range of h is
contained in a Y shaped compact tells us that the Szegö relation can be extended as long as
we have a finite number of branches.

We conclude the first part of this section with the “second version” of Theorem 4.16, which
overcomes the problems related to the continuity and injectivity of the function φ on a Y shaped
compact domain. The proof of the following result is obtained using a more powerful tool: the
Theorem 3.6

Theorem 4.18. Let fα,β ∈ L∞
(
Qd
)

with α = 1, . . . , ρ, β = 1, . . . , vα, ρ, vα < ∞, d ≥ 1.

Assume that the function

h =
ρ∑

α=1

vα∏

β=1

fα,β ,

belongs to the Tilli class and consider the sequence {An} with An =
ρ∑

α=1

vα∏
β=1

Tn (fα,β). Then

{An} ∼λ

(
h, Qd

)
, S (h) is a weak cluster for {An}, and any s ∈ S (h) strongly attracts the

spectra of {An} with infinite order.

Proof. We choose to apply Theorem 3.6. Assumption (c1) is easily obtained by repeated
applications of the triangle inequality to the infinity norm of the function h since the module
of the eigenvalues is dominated by the infinity norm of the symbol. Statement (c3) is true

for every p by Theorem 3.7, since {P (An)} ∼σ

(
P (h) , Qd

)
for every fixed polynomial P (see

Remark 4.4); assumption (c4) is verified with θ = h since h belongs to the Tilli class. The
only thing left is statement (c2) which is a consequence of Lemma 4.15, since any positive
power of linear combinations of products is still a linear combination of products. Therefore

{An} ∼λ

(
h, Qd

)
by Theorem 3.6 and the proof is completed by invoking a) and b) from

Theorem 2.16.

4.3.1 The Tilli class in the case of matrix-valued symbols

With the same tools we can easily give the generalization of Theorem 4.18 to the case of q × q
matrix-valued symbols. Lemmas 4.14 and 4.15 are easy to extend and indeed this extension
can be found in [21]. The only key point is to define the Tilli class in this context. We say
that f belongs to the q× q matrix-valued Tilli class if f is essentially bounded (i.e. this is true



58 Sequences of Toeplitz matrices CAP. 4

for any entry of f) and if the union of the ranges of the eigenvalues of f has empty interior
and does not disconnect the complex plane. We have to observe that the case where f (t) is
diagonalizable, by a constant transformation independent of t, is special in the sense that the
Szegö-type distribution result holds under the milder assumption that every eigenvalue of f
(now a scalar complex-valued function) belongs to the standard Tilli class. This leaves open
the question whether this weaker requirement is sufficient in general.

Finally we remark that such results can be seen as a generalization of the analysis by
Böttcher and coauthors in [21], with the advantage that the technical and difficult assumption
of normality is dropped.

4.3.2 The role of thin spectrum in the case of Laurent polynomials

In this subsection we treat a problem suggested by Böttcher, the case where the symbol f of
our Toeplitz operator is a Laurent polynomial, i.e.,

f (z) =
s∑

j=−r

f̃jz
j , z ∈ T. (4.17)

Given a Laurent polynomial f and given a value ρ > 0, we denote by f [ρ] the function

f [ρ] (z) =
s∑

j=−r

f̃jρ
jzj . (4.18)

Clearly f [ρ] is still a Laurent polynomial and, if we define the matrix Dρ = diag
j=0,...,n−1

(
ρj
) ∈

Mn (R) then a straightforward computation shows that

DρTn (f) D−1
ρ = Tn

(
f [ρ]

)
. (4.19)

Now, if f is any Laurent polynomial, then, as shown in the book [18] the eigenvalues of
the sequence {Tn (f)} cluster along a certain set called the Schmidt-Spitzer set, and denoted
by Λ (f) . It was shown by Hirschmann ([18, Theorems 11.16 and 11.17]) that, under certain
hypotheses,

{Tn (f)} ∼λ (θf , Gf ) , (4.20)

where θf is a suitable function supported on Gf = ∩
ρ>0

Area
(
S
(
f [ρ]

))
, f [ρ] is as in (4.18), and

the concept of Area is defined as in Definition 3.4.
Suppose now the functions fα,β , α = 1, . . . , ν, β = 1, . . . , vα, ν, vα < ∞, are all Laurent

polynomials, then the function h defined by

h =
ν∑

α=1

vα∏

β=1

fα,β ,

is also a Laurent polynomial. We want to prove that if h satisfies the hypotheses of the
Hirschmann theorem so that {Tn (h)} ∼λ (θh, Gh), then we can obtain the corresponding result

for the sequence {An} =

{
ν∑

α=1

vα∏
β=1

Tn (fα,β)

}
, i.e., {An} ∼λ (θh, Gh).

In order to do this, we need to prove the results of Section 4.2 when f, g are Laurent
polynomials.

Theorem 4.19. Let f, g be two Laurent polynomials, An = Tn (f) Tn (g) and let h = fg. If we

put Dρ = diag
j=0,...,n−1

(
ρj
)
, for each ρ > 0, then

∥∥∥DρAnD−1
ρ − DρTn (h) D−1

ρ

∥∥∥
1

= o (n).
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Proof. This is a direct consequence of Lemma 4.5 applied to the functions f [ρ] and g[ρ] since
(using (4.19)) we have

DρAnD−1
ρ = Tn

(
f [ρ]

)
Tn

(
g[ρ]
)

, and DρTn (h) D−1
ρ = Tn

(
h[ρ]

)
,

with f [ρ]g[ρ] = h[ρ].

Lemma 4.20. Let fα ∈ L∞ (T) be Laurent polynomials with α = 1, . . . , ν, ν < ∞. Let

h =
ν∏

α=1

fα, h[ρ] =
ν∏

α=1

f [ρ]
α ,

be a new Laurent polynomial and let {An} be defined as An =
ν∏

α=1
Tn (fα). For each ρ > 0 we

have
∥∥∥DρAnD−1

ρ − DρTn (h)D−1
ρ

∥∥∥
1

= o (n) ,

lim
n→∞

tr
(
DρAnD−1

ρ

)

n
=

1

2π

∫

Q

h[ρ]
(
eit
)

dt.

Proof. The same reasoning as above shows that

DρAnD−1
ρ =

ν∏

α=1

Tn

(
f [ρ]

α

)
, and DρTn (h) D−1

ρ = Tn

(
h[ρ]

)
,

so this lemma is a direct consequence of Lemma 4.14 with d = 1.

Lemma 4.21. Let fα,β ∈ L∞ (T) be Laurent polynomials with α = 1, . . . , ν, β = 1, . . . , vα,
ν, vα < ∞. Let

h =
ν∑

α=1

vα∏

β=1

fα,β , h[ρ] =
ν∑

α=1

vα∏

β=1

f
[ρ]
α,β ,

be a new Laurent polynomial and let {An} be defined as An =
ν∑

α=1

vα∏
β=1

Tn (fα,β). For each ρ > 0

we have
∥∥∥DρAnD−1

ρ − DρTn (h)D−1
ρ

∥∥∥
1

= o (n) ,

lim
n→∞

tr
(
DρAnD−1

ρ

)

n
=

1

2π

∫

Q

h[ρ]
(
eit
)

dt.

Proof. Once again, we apply (4.19) to see that

DρAnD−1
ρ =

ν∑

α=1

vα∏

β=1

Tn

(
f

[ρ]
α,β

)
, and DρTn (h) D−1

ρ = Tn

(
h[ρ]

)
, (4.21)

so a direct application of Lemma 4.15, with d = 1, gives the desired result.

Theorem 4.22. Let fα,β ∈ L∞ (T) be Laurent polynomials with α = 1, . . . , ν, β = 1, . . . , vα,
ν, vα < ∞. Let

h =
ν∑

α=1

vα∏

β=1

fα,β , h[ρ] =
ν∑

α=1

vα∏

β=1

f
[ρ]
α,β ,



60 Sequences of Toeplitz matrices CAP. 4

be a new Laurent polynomial and let {An} be defined as An =
ν∑

α=1

vα∏
β=1

Tn (fα,β). Denoting by

S
(
h[ρ]

)
the essential range of h[ρ], for each ρ > 0, the set Area

(
S
(
h[ρ]

))
is a weak cluster for

{An}.

Proof. We apply Theorem 3.6 to the sequence
{
DρAnD−1

ρ

}
using the equations (4.21). Con-

dition (c1) is obtained by repeatedly applying the triangle inequality to

∥∥∥∥∥
ν∑

α=1

vα∏
β=1

f
[ρ]
α,β

∥∥∥∥∥
L∞

;

(c2) is a consequence of Lemma 4.21, since any positive integer power of a linear combina-
tion of products is still linear combination of products; (c3) is true, in light of Theorem 3.7,

since
{
P
(
D−1

ρ AnDρ

)}
∼σ

(
P
(
h[ρ]

)
, T
)

for every polynomial P as a consequence of Lemma

4.21. Therefore Theorem 3.6 implies that the sequence
{
DρAnD−1

ρ

}
is weakly clustered at

Area
(
S
(
h[ρ]

))
. Since An has the same eigenvalues as DρAnD−1

ρ this means that the sequence

{An} is also weakly clustered at Area
(
S
(
h[ρ]

))
.

Theorem 4.23. With the same notation as in Theorem 4.22, ∩
ρ>0

Area
(
S
(
h[ρ]

))
is a weak

cluster both for {An} and for {Tn (h)}.

Proof. This follows from Theorem 4.22.

Now, we use the result of Hirschmann theorem in (4.20), with f = h and so that S (θh) ⊆
∩

ρ>0
Area

(
S
(
h[ρ]

))
, in order to prove the following theorem.

Theorem 4.24. Let fα,β ∈ L∞ (T) be Laurent polynomials with α = 1, . . . , ν, β = 1, . . . , vα,
ν, vα < ∞ and let

h =
ν∑

α=1

vα∏

β=1

fα,β ,

be a new Laurent polynomial satisfying the hypotheses of the Hirschmann theorem. Let {An}
be defined as An =

ν∑
α=1

vα∏
β=1

Tn (fα,β), and set Gh = ∩
ρ>0

Area
(
S
(
h[ρ]

))
. If C \ Gh is connected

in the complex field and the interior of Gh is empty, then {An} ∼λ (θh, Gh) where θh is the
distribution function of {Tn (h)} indicated in (4.20), see [18].

Proof. We will use Theorem 2.15. First we see that (a1) holds since Gh is compact by con-
struction and C \ Gh is connected by the hypotheses. Condition (a2) is a consequence of
Theorem 4.23; while (a3) follows from a repeated application of the triangle inequality to∥∥∥∥∥

ν∑
α=1

vα∏
β=1

fα,β

∥∥∥∥∥
L∞

.

Condition (a4) amounts in proving that

lim
n→∞

tr
(
AL

n

)

n
=

1

m {Gh}

∫

Gh

θL
h (t) dt. (4.22)

In fact, from Lemma 4.15, with d = 1, we find An = Tn (h)+Rn,h where ‖Rn,h‖1 = o (n) and,
in addition, by assumption {Tn (h)} ∼λ (θh, Gh) (this second claim is indeed the Hirschmann
result).

With these ingredients, we now prove formula (4.22). Since

tr (X) =
∑

λ∈Λ(X)

λ =
n∑

k=1

[X]k,k ,
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and since tr(·) is a linear functional, the assumption An = Tn (h) + Rn,h implies that

tr (An) − tr (Tn (h)) = tr (Rn,h) .

Consequently

∣∣∣∣
1

n
tr (An) − 1

n
tr (Tn (h))

∣∣∣∣ =

∣∣∣∣
1

n
tr (Rn,h)

∣∣∣∣

≤
(a)

1

n
‖Rn,h‖1

≤
(b)

1

n
o (n) = o (1) ,

where (a) follows from (1.14) and (b) follows from Lemma 4.15 (with d = 1). Since Tn (h) is
distributed as θh over Gh, we infer

lim
n→∞

1

n
tr (An) = lim

n→∞
1

n
tr (Tn (h)) =

1

m {Gh}

∫

Gh

θh (t) dt,

therefore (4.22) is satisfied in the special case where L = 1.

Now we consider all non-negative integers L > 0. For L = 0, 1 the result is valid, so that
we focus our attention to the case where L ≥ 2. Relation An = Tn (h) + Rn,h implies

AL
n = (Tn (h) + Rn,h)L

= Tn (h)L + R̃n,h,

where R̃n,h is a term of the form

R̃n,h =
∑

Xi∈{Tn(h),Rn,h}
(X1 · · ·XL) − Tn (h)L . (4.23)

In other words the error matrix R̃n,h is the sum of all possible combinations of products of j
matrices Tn (h) and k matrices Rn,h, with j +k = L and the exception of j = L (obviously it is
understood that all the addends are pair-wise different). By using a simple Hölder’s inequality
involving Schatten p-norms (see (1.13)), for every summand R in (4.23), we deduce that there
exists j ≥ 1, k = L − j for which

‖R‖1 ≤ ‖Tn (h)‖k ‖Rn,h‖j−1 ‖Rn,h‖1

≤
(a)

CkCj−1o (n) , (4.24)

where (a) follows from the assumptions:

‖Tn (h)‖ ≤ ‖h‖L∞ ≤ C < ∞,

‖Rn,h‖ = ‖An − Tn (h)‖ ≤ C < ∞.

Therefore by the triangle inequality and by applying inequality (4.24) to any summand in

(4.23), we find
∥∥∥R̃n,h

∥∥∥
1
≤ K̂o (n), with K̂ = K̂ (L) constant independent of n. Consequently
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tr
(
AL

n

)
−tr

(
Tn (h)L

)
=tr

(
R̃n,h

)
, and, since λ

(
XL

)
= λL (X), we have

∣∣∣∣
1

n
tr
(
AL

n

)
− 1

n
tr
(
Tn (h)L

)∣∣∣∣ =

∣∣∣∣∣∣
1

n

∑

λ∈Λ(An)

λL − 1

n

∑

λ∈Λ(Tn(h))

λL

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

1

n

∑

λ∈Λ
(
R̃n,h

)
λ

∣∣∣∣∣∣∣

≤ 1

n

∥∥∥R̃n,h

∥∥∥
1

≤ 1

n
K̂o (n) = o (1) .

Since Tn (h) is distributed as θh over Gh, we infer

lim
n→∞

1

n
tr
(
AL

n

)
= lim

n→∞
1

n
tr
(
Tn (h)L

)
=

1

m {Gh}

∫

Gh

θh (t)L dt.

The latter proves that (4.22) is satisfied for any non-negative integer L.
Condition (a5) is true since S (θh) ⊂ Gh; finally Gh has empty interior by hypothesis.

Therefore we can apply Theorem 2.15 and we conclude that {An} ∼λ (θh, Gh).

4.3.3 A complex analysis consequence for H∞ functions

Let us consider the space H given by L∞ functions defined on Td, d ≥ 1; (where T is the unit
circle in the complex plane) such that the Fourier coefficients f̃j , j = (j1, . . . , jd) ∈ Zd, defined
as in (4.2) are equal to zero if jk < 0 for some k with 1 ≤ k ≤ d.

Theorem 4.25. If h ∈ H, [S (h)]C is connected, and the interior of S (h) is empty, then h is
necessarily constant almost everywhere.

Proof. By [112, Theorem 2] (or equivalently, by Theorem 4.18 with ρ = 1 and v1 = 1) we

know that {Tn (h)} ∼λ

(
h, Td

)
. However Tn (h) is lower triangular with h̃0 on the main

diagonal since h̃j = 0 if there exists k, 1 ≤ k ≤ d, with jk < 0. Therefore it is also true that

{Tn (h)} ∼λ

(
h̃0, Td

)
, i.e., h ≡ h̃0 and the proof is concluded.

In other words, if f ∈ H and it is not constant almost everywhere, then its essential range
necessarily divides the complex field in (at least two) unconnected components or its interior
is not empty. Since a function is in H if and only if it is equal to the boundary values of a
function in H∞ this rigidity is not surprising.

From an operator theory viewpoint the proof is as follows (A. Böttcher has suggested the
following alternative proof). Since H is a closed subalgebra of L∞, the spectrum of h in the
subalgebra results from the spectrum of h in L∞ by filling in holes. Thus, if the first set has no
holes, then the two sets coincides and are equal to a set without interior points. As the second
set is the closure of h over the polydisc, which contains interior points if h is not constant, it
follows that h must be constant.

4.3.4 Some issues from statistics

Given the function Wn : C0 (Π, R) → R where C0 (Π, R) is the space of real continuous functions
on the circle and Wn is defined by:

Wn (f) =
1

2πn

∫

Π

f (t)
∣∣

n∑

j=0

Xje
(ijt)

∣∣2dt,
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where (Xn) is a centered stationary real Gaussian process, we have that, if the spectral density
of (Xn) is the positive bounded function g then

Wn (f) =
1

n
Y (n)Tn (g)

1
2 Tn (f) Tn (g)

1
2 Y (n),

where the vector Y (n) has a Gaussian N (0, In) distribution. We hope that the results of this

chapter may be useful. In fact the matrix Tn (g)
1
2 Tn (f) Tn (g)

1
2 is similar to Tn (g) Tn (f) since

Tn (g) is Hermitian positive definite. As a consequence in view of item c) in Theorem 2.16
and in view of Theorem 4.7, we can claim that the eigenvalue distribution of the the sequence{
Tn (g)

1
2 Tn (f) Tn (g)

1
2

}
is h = fg and that its maximal eigenvalue has lim sup bounded from

above by ‖f‖L∞ ‖g‖L∞ and lim inf bounded from below by ‖h‖L∞ .





Chapter 5

Spectral features and asymptotic
properties for g-circulants and
g-Toeplitz sequences

In this chapter we address the problem of characterizing the singular values and the eigenvalues
of g-circulants and of providing an asymptotic analysis of the distribution results for the singular
values of g-Toeplitz sequences in the case where the sequence of values {ak}, defining the entries
of the matrices, can be interpreted as the sequence of Fourier coefficients of an integrable
function f over the domain (−π, π). We generalize the analysis to the block, multi-level case,
amounting to choosing the symbol f multivariate, i.e., defined on the set (−π, π)d for some
d > 1, and matrix-valued, i.e., such that f (x) is a matrix of given size p × q. As a byproduct,
we will see in Chapter 7 interesting relations between g-circulant matrices and the analysis of
convergence of multigrid methods given, e.g., in [95, 3].

5.1 Circulant and g-circulant matrices

The circulant matrices have been deeply studied in the literature (see, e.g., [30, 95, 115]) and
much is known about their algebraic and spectral characterization.

A generic circulant matrix is generated starting from n elements, those on the first column
of the matrix, and the remaining columns are obtained with a circular shift down one positions
of the previous column:

Cn =
[
a(r−s)mod n

]n−1

r,s=0
=




a0 an−1 · · · a2 a1

a1 a0
. . .

... a2

a2 a1
. . . an−1

...
... a2

. . . a0 an−1

an−1 · · · a2 a1 a0




, (5.1)

and is straightforward to verify that it can be written as

Cn =
n−1∑

j=0

ajZ
j
n,

where the matrix

Zn =




0 · · · 0 1
1 0

. . .
...

0 1 0




, (5.2)
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is the cyclic permutation Toeplitz matrix. Moreover, if Fn ∈ Mn (C) denotes the Fourier
matrix, i.e.

Fn =
1√
n

[
e−

2πijk

n

]n−1

j,k=0
, (5.3)

then Fn is unitary, FnF ∗
n = In, and it is well-known (see, e.g., [30]) that

Cn = FnDnF ∗
n , (5.4)

where

Dn = diag
(√

nF ∗
na
)
, a = [a0, a1, . . . , an−1]

⊤ ,

= diag
j=0,...,n−1

(
n−1∑

k=0

ake
2πijk

n

)
, (5.5)

a being the first column of the matrix Cn. Since Fn is a unitary matrix, the diagonal elements
of Dn are the eigenvalues of Cn; then the circulant matrices form a commutative algebra
simultaneously diagonalized by the unitary transform Fn.

Let p be a trigonometric polynomial defined over the set Q = (−π, π) and having degree

c ≥ 0, i.e., p (t) =
c∑

k=−c

ake
ikt, i2 = −1. From the Fourier coefficients ak of p (see (4.2) with

d = 1) one can build the circulant matrix Cn(p) =
[
a(r−s) mod n + a(r−s) mod n−n

]n−1

r,s=0
For

example, we take p (u) = 3− 2eiu + e−2iu + 4e3iu. The degree of p is c = 3 and we have a0 = 3,
a1 = −2, a3 = 4 and a−2 = 1; if we take n = 5, the circulant matrix C5(p) is given by

C5(p) =




3 0 5 0 −2
−2 3 0 5 0
0 −2 3 0 5
5 0 −2 3 0
0 5 0 −2 3




.

It is clear that the Fourier coefficient aj equals zero if the condition |j| ≤ c is violated. The
matrix Cn(p) is said to be the circulant matrix of order n generated by p, and, following (5.1)
and (5.4), it can be written as Cn(p) =

∑
|j|≤c

ajZ
j
n, or, equivalently, as Cn(p) = FnDn(p)F ∗

n

where, in this case, it is immediate to observe (from (5.5) and the expression of the polynomial
p) that the matrix Dn(p) is given by

Dn(p) = diag
j=0,...,n−1

(
p
(
x

(n)
j

))
, x

(n)
j =

2πj

n
, (5.6)

then the eigenvalues of Cn(p) are the evaluations of the polynomial p at the grid points 2πj
n

,
j = 0, . . . , n − 1.

Under the assumption that c ≤
⌊

n−1
2

⌋
, the matrix Cn(p) is the Strang or natural circulant

preconditioner of the corresponding Toeplitz matrix Tn(p) =
[
a(r−s)

]n−1

r,s=0
(see [24] and the

references therein). We observe that the above-mentioned assumption c ≤
⌊

n−1
2

⌋
is fulfilled

for n large enough, since c is a fixed constant and n is the matrix order: in actuality, in real
applications it is natural to suppose that n is large, if we assume that Cn(p) comes from an
approximation process of an infinite-dimensional problem. Furthermore, if the symbol p has a
zero at zero (this happens in the case of approximation of differential operators), then Cn(p)
is singular and it is usually replaced by a rank-one correction that forces invertibility: in the
relevant literature, the latter is called modified Strang preconditioner.
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A matrix Cn,g ∈ Mn (C) is called g-circulant if its entries obey the rule

Cn,g =
[
a(r−gs)mod n

]n−1

r,s=0
; (5.7)

for an introduction and for the algebraic properties of such matrices, refer to the classical book
by Davis [30, Section 5.1], while new additional results can be found in [113] and the references
therein. For instance, if n = 5 and g = 3, then we have

C5,3 =




a0 a2 a4 a1 a3

a1 a3 a0 a2 a4

a2 a4 a1 a3 a0

a3 a0 a2 a4 a1

a4 a1 a3 a0 a2




.

Also in this case, as in ordinary circulant setting, if the coefficients aj , j ∈ Z, arise from
a given symbol p (see (4.2)), we can build the g-circulant matrix generated by p as Cn,g(p) =[
a(r−gs) mod n + a(r−gs) mod n−n

]n−1

r,s=0
. For instance, with p(u) = 3−2eiu +e−2iu +4e3iu, we find

a0 = 3, a1 = −2, a3 = 4 and a−2 = 1 so that

C5,3(p) =




3 0 0 −2 5
−2 5 3 0 0
0 0 −2 5 3
5 3 0 0 −2
0 −2 5 3 0




.

It is immediate to observe that a generic g-circulant matrix is constructed starting from
n elements, those on the first column of the matrix, and the remaining columns are obtained
with a circular shift down g positions of the previous column, therefore, the circulant matrices
are g-circulant matrices with g = 1.

If Cn,g is the g-circulant matrix generated by the same elements of the circulant matrix Cn

(the two matrices have the same first column), for generic n and g one verifies immediately
that

Cn,g = CnZn,g, (5.8)

where

Zn,g = [δr−gs]
n−1
r,s=0 , δk =

{
1 if k ≡ 0 (mod n),
0 otherwise.

(5.9)

Proof. (of relation (5.8).) For j, k = 0, 1, . . . , n − 1 one has

(Cn,g)j,k = a(j−gk)mod n,

(Cn)j,k = a(j−k)mod n,

(Cn,g)j,k = (Cn)j,gk , (5.10)

then, from (5.9),

(CnZn,g)j,k =
n−1∑

ℓ=0

(Cn)j,ℓ (Zn,g)ℓ,k

= a(j−ℓ)mod nδℓ−gk

=
(a)

a(j−gk)mod n

= (Cn,g)j,k ,
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where (a) follows from the fact that there exists a unique ℓ ∈ {0, 1, . . . , n − 1} such that
ℓ − gk ≡ 0 (mod n), that is ℓ ≡ gk (mod n), so

(j − ℓ) modn = (j − (gk) modn)modn = (j − gk) mod n.

Remark 5.1. We can consider the parameter g only non-negative. Indeed, the case of non-
positive g can be reduced to the case of a non-negative g. In fact, the role of circulants will be
played by (−1)-circulant matrices (also called anticirculants or skew-circulants), [30]: as for the
circulants, (−1)-circulants form a commutative algebra simultaneously diagonalized by another
unitary transform that can be written as the product of the Fourier matrix and a diagonal
unitary matrix.

Remark 5.1 and the following lemma tell us that we can consider the parameter g only in
the interval [0, n).

Lemma 5.2. If g ≥ n, then Zn,g = Zn,g◦, where g◦ ≡ g (mod n) and Zn,g is defined in (5.9),
so Cn,g = Cn,g◦.

Proof. From (5.9) we know that, for r, s = 0, 1, . . . , n − 1, one has

(Zn,g)r,s = δr−gs = δr−(tn+g◦)s = δr−g◦s = (Zn,g◦)r,s ,

since tns ≡ 0 (mod n). Whence Zn,g = Zn,g◦ .
So, from (5.8) we infer that

Cn,g = CnZn,g = CnZn,g◦ = Cn,g◦ .

Finally, it is worth noticing that the use of (5.4) and (5.8) implies that

Cn,g = FnDnF ∗
nZn,g. (5.11)

Formula (5.11) plays an important role for studying the singular values of the g-circulant
matrices.

5.1.1 A characterization of Zn,g in terms of Fourier matrices

The relations between the specific matrix Zn,g and the Fourier matrices was explained for g = 2
in the multigrid literature (see, e.g., [42, 95]). Here we report an extension to the case of a
generic g and the details of the proof which uses the same tools as in [42, 95].

First we need some preparatory straightforward results. In the following, we denote by
(n, g) the greatest common divisor of n and g, i.e., (n, g) = gcd (n, g), and by It ∈ Mt (R)
the identity matrix, while the quantities ng and ǧ are defined, respectively, as ng = n

(n,g) and

ǧ = g
(n,g) .

Lemma 5.3. Let n be any integer greater than 2, then

Zn,g =
[
Z̃n,g|Z̃n,g| · · · |Z̃n,g

]

︸ ︷︷ ︸
(n,g) times

, (5.12)

where Zn,g is the matrix defined in (5.9) and Z̃n,g ∈ Mn,ng (R) is the submatrix of Zn,g obtained
by considering only its first ng columns, that is,

Z̃n,g = Zn,g

[
Ing

0

]
. (5.13)
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Therefore Z̃⊤
n,gZ̃n,g = Ing . Finally if Ẑn,g ∈ Cn×µg , µg =

⌈
n
g

⌉
, denotes the matrix Zn,g by

considering only the µg first columns, then 1 ≤ (n, g) ≤ g, µg ≤ ng ≤ n, and

Z̃⊤
n,gẐn,g =

[
Iµg

0

]
.

Proof. Setting Z̃
(0)
n,g = Z̃n,g and denoting by Z̃

(j)
n,g ∈ Mn,ng (R) the (j + 1)th block-column of the

matrix Zn,g for j = 0, . . . , (n, g) − 1, we find

Zn,g =


Z̃(0)

n,g︸︷︷︸
n×ng

| Z̃(1)
n,g︸︷︷︸

n×ng

| · · · | Z̃((n,g)−1)
n,g︸ ︷︷ ︸
n×ng


 .

For r = 0, 1, . . . , n − 1 and s = 0, 1, . . . , ng − 1, we observe that

(
Z̃(j)

n,g

)
r,s

= (Zn,g)r,jng+s ,

and

(Zn,g)r,jng+s = δr−g(jng+s)

= δr−jgng−gs

=
(a)

δr−gs

=
(
Z̃(0)

n,g

)
r,s

=
(
Z̃n,g

)
r,s

,

where ng = n
(n,g) and (a) is a consequence of the fact that g

(n,g) is an integer greater than

zero and so jgng = j g
(n,g)n ≡ 0 (mod n). Thus we conclude that Z̃

(j)
n,g = Z̃

(0)
n,g = Z̃n,g for

j = 0, . . . , (n, g) − 1.
Now we consider the product Z̃⊤

n,gZ̃n,g = Ing , from (5.13) we have that, for j, k = 0, . . . , ng−
1

(
Z̃⊤

n,gZ̃n,g

)
j,k

=

(
[
Ing |0

]
Z⊤

n,gZn,g

[
Ing

0

])

j,k

=
n−1∑

ℓ=0

(
Z⊤

n,g

)
j,ℓ

(Zn,g)ℓ,k

=
n−1∑

ℓ=0

δℓ−gjδℓ−gk

=
(a)

δ(gj)mod n−gk

=
(b)

δ((gj)mod n−gk)mod n

=
(c)

δ(gj−gk)mod n

=
(d)

{
1 if j = k,
0 otherwise,

where

(a) follows from the fact that there exists a unique ℓ ∈ {0, 1, . . . , n − 1} such that gj − ℓ ≡ 0
(mod n), that is, ℓ ≡ gj (mod n);

(b) comes from the definition of δ in (5.9): δw = δ(w)mod n;
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(c) just remember that

(((gj) modn) − gk) modn = (gj − gk) mod n;

then

Z̃⊤
n,gZ̃n,g = Ing . (5.14)

Finally, if Ẑn,g ∈ Cn×µg , µg =
⌈

n
g

⌉
, denotes the matrix Zn,g by considering only the µg first

columns, we have that, since µg ≤ ng

Ẑn,g = Zn,g

[
Iµg

0

]

= Zn,g

[
Ing

0

] [
Iµg

0

]

= Z̃n,g

[
Iµg

0

]
, (5.15)

where

[
Iµg

0

]
∈ Mng ,µg (R). Using (5.14) and (5.15) we can conclude that

Z̃⊤
n,gẐn,g = Z̃⊤

n,gZ̃n,g

[
Iµg 0

]

= Ing

[
Iµg 0

]

=

[
Iµg

0

]
.

Another useful fact is represented by the following equation:

Z̃n,g = Z̃n,(n,g)Zng ,ǧ, (5.16)

where Zng ,ǧ ∈ Mng (R) is the matrix defined in (5.9). Therefore

Zng ,ǧ =
[
δ̂r−ǧs

]ng−1

r,s=0,
δ̂k =

{
1 if k ≡ 0 (mod ng),
0 otherwise.

(5.17)

Proof. (of relation (5.16).) We show that the two matrices Z̃n,g and Z̃n,(n,g)Zng ,ǧ in (5.16) have
the same elements. For r = 0, 1, . . . , n − 1 and s = 0, 1, . . . , ng − 1, we find

(
Z̃n,g

)
r,s

= δr−gs

= δ(r−gs)mod n,

and

(
Z̃n,(n,g)Zng ,ǧ

)
r,s

=

ng−1∑

l=0

(
Z̃n,(n,g)

)
r,l

(
Zng ,ǧ

)
l,s

=

ng−1∑

l=0

δr−(n,g)lδ̂l−ǧs

=
(a)

δr−(n,g)((ǧs)mod ng)

= δ
r−(n,g)

((
g

(n,g)
s
)
mod ng

)

=
(b)

δr−(gs)mod n

= δ(r−(gs)mod n)mod n

= δ(r−gs)mod n,
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where

(a) holds true since there exists a unique l ∈ {0, 1, . . . , ng − 1} such that l− ǧs ≡ 0 (mod ng),
that is, l ≡ ǧs (mod ng) and hence δr−(n,g)l = δr−(n,g)((ǧs)mod ng);

(b) is due to the following property: if we have three integer numbers ρ, θ, and γ, then

ρ ((θ)mod γ) = (ρθ)mod ργ.

Lemma 5.4. Let Fn ∈ Mn (C) be the Fourier matrix defined in (5.3), and let Z̃n,g ∈ Mn,ng (R)
be the matrix represented in (5.13). Then

FnZ̃n,g =
1√

(n, g)
In,gFngZng ,ǧ, (5.18)

where In,g ∈ Mn,ng (R) and

In,g =




Ing

Ing

...

Ing








(n, g) times,

with Ing ∈ Mng (R) being the identity matrix and Zng ,ǧ as in (5.17).

Proof. Rewrite the Fourier matrix as

Fn =
1√
n

[
f0 f1 f2 · · · fn−1

]
,

where fk, k = 0, 1, 2, . . . , n − 1, is the (k) th column of the Fourier matrix Fn ∈ Mn (C):

fk =
[
e−

2πikj

n

]n−1

j=0
=




e−
2πik·0

n

e−
2πik·1

n

e−
2πik·2

n

...

e−
2πik·(n−1)

n




. (5.19)

From (5.16), we find

FnZ̃n,g = FnZ̃n,(n,g)Zng ,ǧ

=
1√
n

[
f0 f1·(n,g) f2·(n,g) · · · f(ng−1)·(n,g)

]
Zng ,ǧ ∈ Mn,ng (C) . (5.20)

Indeed, for k = 0, 1, . . . , ng − 1, j = 0, 1, . . . , n − 1, one has

(
FnZ̃n,(n,g)

)
j,k

=
n−1∑

l=0

(Fn)j,l

(
Z̃n,(n,g)

)
l,k

=
n−1∑

l=0

δl−(n,g)ke
− 2πijl

n , (5.21)

and, since 0 ≤ (n, g) k ≤ n − (n, g) , there exists a unique lk ∈ {0, 1, 2, . . . , n − 1} such that
lk − (n, g) k ≡ 0 (mod n), so lk = (n, g) k. Consequently relation (5.21) implies

(
FnZ̃n,(n,g)

)
j,k

= δlk−(n,g)ke
− 2πijlk

n = e−
2πij(n,g)k

n =
(
f(n,g)k

)
j
,



72 g-circulants/Toeplitz sequences: spectral features CAP. 5

for all 0 ≤ j ≤ n − 1 and 0 ≤ k ≤ ng − 1, and hence

FnZ̃n,(n,g) =
1√
n

[
f0 f1·(n,g) f2·(n,g) · · · f(ng−1)·(n,g)

]
.

For k = 0, 1, 2, . . . , ng − 1, we deduce

f(n,g)k =

[
e−

2πij(n,g)k
n

]n−1

j=0
=

[
e
− 2πijk

ng

]n−1

j=0
,

and then, taking into account the equalities n = (n, g) n
(n,g) = (n, g) ng, we can write

f(n,g)k =




[
e
− 2πikj

ng

]ng−1

j=0[
e
− 2πikj

ng

]2ng−1

j=ng

...[
e
− 2πikj

ng

](n,g)ng−1

j=((n,g)−1)ng




, (5.22)

where

[
e
− 2πikj

ng

]ng−1

j=0
=




e
− 2πik·0

ng

e
− 2πik·1

ng

e
− 2πik·2

ng

...

e
− 2πik·(ng−1)

ng




. (5.23)

According to formula (5.19), one observes that the vector in (5.23) is the (k) th column of
the Fourier matrix Fng . Furthermore, for l = 0, 1, 2, . . . , (n, g) − 1, we find

[
e
− 2πikj

ng

](l+1)ng−1

j=lng

=




e
− 2πiklng

ng

e
− 2πik(lng+1)

ng

e
− 2πik(lng+2)

ng

...

e
− 2πik(lng+ng−1)

ng




= e−2πikl




e
− 2πik·0

ng

e
− 2πik·1

ng

e
− 2πik·2

ng

...

e
− 2πik·(ng−1)

ng




=

[
e
− 2πikj

ng

]ng−1

j=0
. (5.24)

Using (5.24), the expression of the vector in (5.22) becomes

f(n,g)k =




[
e
− 2πikj

ng

]ng−1

j=0[
e
− 2πikj

ng

]ng−1

j=0
...[

e
− 2πikj

ng

]ng−1

j=0








(n, g) times. (5.25)

Setting f̂r =

[
e
− 2πirj

ng

]ng−1

j=0
, for 0 ≤ r ≤ ng − 1, the Fourier matrix Fng ∈ Mng (C) takes the

form

Fng =
1

√
ng

[
f̂0 f̂1 f̂2 · · · f̂ng−1

]
.
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From formula (5.23), the relation (5.25) can be expressed as

f(n,g)k =




f̂k

f̂k

...

f̂k








(n, g) times, k = 0, . . . , ng − 1,

and, as a consequence, formula (5.20) can be rewritten as

FnZ̃n,g = FnZ̃n,(n,g)Zng ,ǧ =
1√
n




f̂0 f̂1 f̂2 · · · f̂ng−1

f̂0 f̂1 f̂2 · · · f̂ng−1
...

...
...

...
...

f̂0 f̂1 f̂2 · · · f̂ng−1




Zng ,ǧ

=
1√

(n, g) ng




√
ngFng√
ngFng

...√
ngFng




Zng ,ǧ

=
1√

(n, g)




Fng

Fng

...

Fng




Zng ,ǧ

=
1√

(n, g)




Ing

Ing

...

Ing




FngZng ,ǧ

=
1√

(n, g)
In,gFngZng ,ǧ.

In the subsequent section, we will exploit Lemma 5.4 in order to characterize the singular
values of the g-circulant matrices Cn,g.

Remark 5.5. In Lemma 5.4, if (n, g) = g, we have ng = n
(n,g) = n

g
and ǧ = g

(n,g) = 1; so

the matrix Zng ,ǧ = Zng ,1, appearing in (5.18), is the identity matrix of dimension n
g
× n

g
. The

relation (5.18) becomes

FnZ̃n,g =
1√
g
In,gFng .

The latter equation with g = 2 and even n appears (and is crucial) in the multigrid literature;
see [95, (3.2), p. 59] and, in slightly different form for the sine algebra of type I, see [42, Section
2.1].

Remark 5.6. If (n, g) = 1, Lemma 5.4 is trivial, because ng = n
(n,g) = n, ǧ = g

(n,g) = g, and

so Z̃n,g = Zn,g. The relation (5.18) becomes

FnZ̃n,g = FnZn,g = In,gFngZng ,ǧ

= FnZn,g,

since the matrix In,g reduces by its definition to the identity matrix of order n.
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Remark 5.7. Lemma 5.4 is true also if, instead of Fn and Fng , we put F ∗
n and F ∗

ng
, respectively,

because F ∗
n = Fn. In fact there is no transposition, but only conjugation.

Now we see another characterization of the matrix Zn,g in terms of Fourier matrices that
will be useful in Section 5.3 for the study of eigenvalues of g-circulant matrices.

Lemma 5.8. Let Zn,g ∈ Mn (R) be the matrix defined in (5.9), and let Fn ∈ Mn (C) be the
Fourier matrix defined in (5.3), then we have that

Zn,g = FnSn,gF
∗
n , (5.26)

where

Sn,g = [δrg−c]
n−1
r,c=0 , δk =

{
1 if k ≡ 0 (mod n),
0 otherwise.

(5.27)

Proof. It suffices to show that

F ∗
nZn,g = Sn,gF

∗
n .

For j, k = 0, 1, ..., n − 1, we have that

(F ∗
nZn,g)j,k =

n−1∑

ℓ=0

(F ∗
n)j,ℓ (Zn,g)ℓ,k =

n−1∑

ℓ=0

(F ∗
n)j,ℓ δℓ−gk =

(a)
(F ∗

n)j,(gk)mod n , (5.28)

where (a) follows from the fact that there exists a unique ℓ ∈ {0, 1, . . . , n − 1} such that
ℓ − gk ≡ 0 (mod n) that is ℓ ≡ gk (mod n).

For j, k = 0, 1, ..., n − 1, it holds

(Sn,gF
∗
n)j,k =

n−1∑

ℓ=0

(Sn,g)j,ℓ (F ∗
n)ℓ,k =

n−1∑

ℓ=0

δgj−ℓ (F ∗
n)ℓ,k =

(b)
(F ∗

n)(gj)mod n,k , (5.29)

where (b) follows from the fact that there exists a unique ℓ ∈ {0, 1, . . . , n − 1} such that
gj − ℓ ≡ 0 (mod n), that is ℓ ≡ gj (mod n).

From (5.3), since (Fn)j,k = (Fn)k,j is clear that, for j, k = 0, . . . , n − 1,

(F ∗
n)j,k = e

2πijk

n ;

now, if jk = qn + c, for some q, c ∈ N, with c = ((jk) mod n) < n, then applies that

e
2πijk

n = e
2πi(qn+c)

n = e
2πiqn

n e
2πic

n = e2πiq
︸ ︷︷ ︸
=1

e
2πic

n = e
2πic

n ,

this means that

e
2πijk

n = e
2πi((jk)mod n)

n . (5.30)

Finally, from (5.28), (5.29) and (5.30), we obtain

(F ∗
n)j,(gk)mod n = e

2πij((gk)mod n)
n

= e
2πi[j((gk)mod n)mod n]

n

=
(a)

e
2πi[((gkj)mod nj)mod n]

n

=
(b)

e
2πi((gkj)mod n)

n , (5.31)

(F ∗
n)(gj)mod n,k = e

2πik((gj)mod n)
n

= e
2πi[k((gj)mod n)mod n]

n

=
(a)

e
2πi[((gkj)mod nk)mod n]

n

=
(b)

e
2πi((gkj)mod n)

n , (5.32)
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where (a) is due to this property: if we have three integer numbers ρ, θ, and γ, then

ρ ((θ)mod γ) = (ρθ)mod ργ;

while (b) follows from the fact that, since j, k ∈ N+, jn and kn are multiples of n, then, given
any number w ∈ Z, is true that

(w)modn = [(w)mod jn]mod n;

(w)modn = [(w)mod kn]modn.

The equality between the relations (5.31) and (5.32), is equivalent to equality between the
expressions (5.28) and (5.29); so (5.26) is proved.

A similar result to the first part of Lemma 5.2 also applies for matrices Sn,g.

Lemma 5.9. If g ≥ n then Sn,g = Sn,g◦ with g◦ ≡ g (mod n), where Sn,g is defined in (5.27).

Proof. For Lemma 5.8 we have that

FnSn,gF
∗
n = Zn,g,

FnSn,g◦F
∗
n = Zn,g◦ .

Now, by Lemma 5.2, it holds that Zn,g = Zn,g◦ with g◦ ≡ g (mod n), then

FnSn,gF
∗
n = FnSn,g◦F

∗
n ⇒ Sn,g = Sn,g◦ .

Lemma 5.10. Let D ∈ Mn (C) be a diagonal matrix,

D = diag
j=0,...,n−1

(dj) ,

and let Sn,g be the matrix defined in (5.27), then

Sn,gD = D̃Sn,g, (5.33)

where

D̃ = diag
j=0,...,n−1

(
d(gj)mod n

)
. (5.34)

Proof. We show that the two matrices Sn,gD and D̃Sn,g in (5.33) have the same elements. For
j, k = 0, . . . , n − 1, we have that

(Sn,gD)j,k =
n−1∑

ℓ=0

(Sn,g)j,ℓ (D)ℓ,k

=
n−1∑

ℓ=0

δgj−ℓ (D)ℓ,k

=
(a)

(D)(gj)mod n,k

=
(b)

{
d(gj)mod n if k ≡ gj (mod n),

0 otherwise,
(5.35)

where (a) follows from the fact that there exists a unique ℓ ∈ {0, 1, . . . , n − 1} such that
gj − ℓ ≡ 0 (mod n), that is ℓ ≡ gj (mod n); while in (b) simply recall that D is a diagonal
matrix, then (D)ℓ,k = 0 if ℓ 6= k.
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For j, k = 0, . . . , n − 1, from (5.34) we have that

(
D̃Sn,g

)
j,k

=
n−1∑

ℓ=0

(
D̃
)

j,ℓ
(Sn,g)ℓ,k

=
n−1∑

ℓ=0

(
D̃
)

j,ℓ
δgℓ−k

=
(a)

(
D̃
)

j,j
δgj−k

=

{
d(gj)mod n if gj − k ≡ 0 (mod n),

0 otherwise,

=
(b)

{
d(gj)mod n if k ≡ gj (mod n),

0 otherwise,
(5.36)

where (a) follows from the fact that, since D is a diagonal matrix, (D)j,ℓ = 0 if ℓ 6= j, then we
take ℓ = j; while in (b) we observe that there exists a unique k ∈ {0, 1, . . . , n − 1} such that
gj − k ≡ 0 (mod n), that is k ≡ gj (mod n).

The two expression in (5.35) and (5.36) are equivalent, and the equality (5.33) is thus
proved.

We conclude this section with a result on the product of g-circulant matrices.

Lemma 5.11. If Cn,g ∈ Mn (C) is a g-circulant matrix and Cn,h ∈ Mn (C) is a h-circulant
matrix, then Cn,gCn,h ∈ Mn (C) is a gh-circulant matrix.

Proof. From (5.8) and (5.11) we have that

Cn,g = FnD(1)
n F ∗

nZn,g,

Cn,h = FnD(2)
n F ∗

nZn,h;

hence, using (5.26) and (5.33), we obtain

Cn,gCn,h = FnD(1)
n F ∗

nZn,gFnD(2)
n F ∗

nZn,h

= FnD(1)
n F ∗

nFnSn,gF
∗
nFnD(2)

n F ∗
nFnSn,hF ∗

n

= FnD(1)
n Sn,gD

(2)
n Sn,hF ∗

n

= FnD(1)
n D̃(2)

n Sn,gSn,hF ∗
n , (5.37)

where D̃
(2)
n is a diagonal matrix. We compute separately the product Sn,gSn,h:

(Sn,gSn,h)
j,k

=
n−1∑

ℓ=0

(Sn,g)j,ℓ (Sn,h)
ℓ,k

=
n−1∑

ℓ=0

δgj−ℓδhℓ−k

=
(a)

δh((gj)mod n)−k

=
(b)

δ((hgj)mod hn)−k

=
(c)

δ[((hgj)mod hn)−k]mod n

=
(d)

δ{[((hgj)mod hn)−k]mod hn}mod n

=
(e)

δ[(hgj−k)mod hn]mod n

=
(f)

δ(hgj−k)mod n

=
(m)

δhgj−k, (5.38)
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where

(a) follows from the fact that there exists a unique ℓ ∈ {0, 1, . . . , n − 1} such that gj − ℓ ≡ 0
(mod n), that is, ℓ ≡ gj (mod n);

(b) is due to this property: if we have three integer numbers ρ, θ, and γ, then ρ ((θ)mod γ) =
(ρθ)mod ργ;

(c) comes from the definition of δ in (5.9): δw = δ(w)mod n;

(d) since h ∈ N+, hn is a multiple of n, then, given any number w ∈ Z is true that

(w)mod n = [(w)mod hn]modn;

(e) just remember that

[((hgj) modhn) − k] modhn = (hgj − k)mod hn;

(f) is the same argument made in (d);

(m) see (c).

From (5.38) and (5.27) we have that, for j, k = 0, . . . , n − 1

(Sn,gSn,h)
j,k

= δhgj−k

= (Sn,gh)
j,k

, (5.39)

and since for Lemma 5.8 it holds

FnSn,ghF ∗
n = Zn,gh, (5.40)

then, using (5.39) and (5.40), relation (5.37) becomes

Cn,gCn,h = FnD(1)
n D̃(2)

n Sn,gSn,hF ∗
n

= FnD(1)
n D̃(2)

n Sn,ghF ∗
n

= FnD(1)
n D̃(2)

n F ∗
nFnSn,ghF ∗

n

= FnD(1)
n D̃(2)

n F ∗
nZn,gh, (5.41)

and since D
(1)
n D̃

(2)
n is a diagonal matrix, (5.41) is exactly the expression of a gh-circulant

matrix.

Remark 5.12. We recall that for Lemma 5.2, Zn,g = Zn,(g)mod n, then Lemma 5.11 can also

be stated by saying that Cn,gCn,h is a ĝh-circulant matrix, where ĝh ≡ gh (mod n).

Remark 5.13. In Lemma 5.11, g, h ∈ {1, 2, . . . , n}, i.e., instead of taking g = 0 and/or h = 0,
we choose, under Remark 5.12, g = n and/or h = n, this is solely due to the fact that in some
passages in the proof (see (5.38)) is required the rest of the division for hn, and if h = 0, this
term does not make sense.
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5.2 Singular values of g-circulant matrices

Now we link the singular values of g-circulant matrices with the eigenvalues of its circulant
counterpart Cn. This is non-trivial given the multiplicative relation Cn,g = CnZn,g.

Theorem 5.14. Let Cn,g ∈ Mn (C) be a g-circulant matrix and let Cn = FnDnF ∗
n be the

circulant matrix generated by the same elements (the two matrices Cn,g and Cn have the same
first column); then the singular values of Cn,g are given by

σj (Cn,g) =

√√√√√
(n,g)∑

l=1

d(l−1)ng+j , j = 0, 1, . . . , ng − 1, (5.42)

σj (Cn,g) = 0, j = ng, . . . , n − 1,

where the values dk, k = 0, . . . , n − 1, are the diagonal elements of D∗
nDn.

Proof. Having in mind the definition of the diagonal matrix Dn given in (5.5), we start by
setting

D∗
nDn = diag

s=0,...,n−1

(
|Dn|2s,s

)
= diag

s=0,...,n−1
(ds) =

(n,g)
⊕
l=1

∆l,

J(n,g) ⊗ Ing = [In,g|In,g| · · · |In,g]︸ ︷︷ ︸
(n,g) times

=




Ing Ing · · · Ing

Ing Ing · · · Ing

...
...

...
...

Ing Ing · · · Ing








(n, g) times, (5.43)

where

ds = |Dn|2s,s = (Dn)s,s · (Dn)s,s, s = 0, 1, . . . , n − 1, (5.44)

∆l =




d(l−1)ng

d(l−1)ng+1

. . .

d(l−1)ng+ng−1



∈ Mng (R) ; l = 1, 2, . . . , (n, g) ,

J(n,g) =




1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1








(n, g) times. (5.45)

We now exploit relation (5.12) and Lemma 5.4, and we obtain that

FnZn,g = Fn

[
Z̃n,g|Z̃n,g| · · · |Z̃n,g

]

=
[
FnZ̃n,g|FnZ̃n,g| · · · |FnZ̃n,g

]

=
1√

(n, g)

[
In,gFngZng ,ǧ|In,gFngZng ,ǧ| · · · |In,gFngZng ,ǧ

]

=
1√

(n, g)
[In,g|In,g| · · · |In,g]




FngZng ,ǧ

FngZng ,ǧ

. . .

FngZng ,ǧ




︸ ︷︷ ︸
(n, g) times

=
1√

(n, g)
[In,g|In,g| · · · |In,g]

(
I(n,g) ⊗ FngZng ,ǧ

)
, (5.46)
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where I(n,g) ∈ M(n,g) (R) is the identity matrix. Furthermore,

C∗
n,gCn,g = (FnDnF ∗

nZn,g)
∗ (FnDnF ∗

nZn,g)

= Z⊤
n,gFnD∗

nF ∗
nFnDnF ∗

nZn,g

= Z⊤
n,gFnD∗

nDnF ∗
nZn,g

= (F ∗
nZn,g)

∗ D∗
nDnF ∗

nZn,g. (5.47)

From (5.46) and (5.43), we plainly infer the following relations:

(F ∗
nZn,g)

∗ =

(
1√

(n, g)
[In,g|In,g| · · · |In,g]

(
I(n,g) ⊗ F ∗

ng
Zng ,ǧ

))∗

=
1√

(n, g)

(
I(n,g) ⊗ F ∗

ng
Zng ,ǧ

)∗ (
J(n,g) ⊗ Ing

)

=
1√

(n, g)

(
I(n,g) ⊗ Z⊤

ng ,ǧFng

) (
J(n,g) ⊗ Ing

)
,

F ∗
nZn,g =

1√
(n, g)

[In,g|In,g| · · · |In,g]
(
I(n,g) ⊗ F ∗

ng
Zng ,ǧ

)

=
1√

(n, g)

(
J(n,g) ⊗ Ing

) (
I(n,g) ⊗ F ∗

ng
Zng ,ǧ

)
.

Hence

C∗
n,gCn,g

=
(
I(n,g) ⊗ Z⊤

ng ,ǧFng

) (
J(n,g) ⊗ Ing

) 1

(n, g)
D∗

nDn

(
J(n,g) ⊗ Ing

) (
I(n,g) ⊗ F ∗

ng
Zng ,ǧ

)
.

Now using the properties of the tensorial product

(
I(n,g) ⊗ Z⊤

ng ,ǧFng

) (
I(n,g) ⊗ F ∗

ng
Zng ,ǧ

)
= I(n,g)I(n,g) ⊗ Z⊤

ng ,ǧFngF
∗
ng

Zng ,ǧ

= I(n,g)I(n,g) ⊗ Z⊤
ng ,ǧZng ,ǧ

= I(n,g)I(n,g) ⊗ Ing = In,

and from a similarity argument, one deduces that the eigenvalues of C∗
n,gCn,g are the eigenvalues
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of the matrix

(
J(n,g) ⊗ Ing

) 1

(n, g)
D∗

nDn

(
J(n,g) ⊗ Ing

)

=
1

(n, g)




Ing Ing · · · Ing

Ing Ing · · · Ing

...
...

...
...

Ing Ing · · · Ing







∆1

∆2

. . .

∆(n,g)







Ing Ing · · · Ing

Ing Ing · · · Ing

...
...

...
...

Ing Ing · · · Ing




=
1

(n, g)




Ing Ing · · · Ing

Ing Ing · · · Ing

...
...

...
...

Ing Ing · · · Ing







∆1 ∆1 · · · ∆1

∆2 ∆2 · · · ∆2
...

...
...

...

∆(n,g) ∆(n,g) · · · ∆(n,g)




=
1

(n, g)




(n,g)∑
l=1

∆l

(n,g)∑
l=1

∆l · · ·
(n,g)∑
l=1

∆l

(n,g)∑
l=1

∆l

(n,g)∑
l=1

∆l · · ·
(n,g)∑
l=1

∆l

...
...

...
...

(n,g)∑
l=1

∆l

(n,g)∑
l=1

∆l · · ·
(n,g)∑
l=1

∆l




=
1

(n, g)




1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1




︸ ︷︷ ︸
(n, g) times

⊗



(n,g)∑

l=1

∆l


 .

Therefore, from (5.45), we infer that

Λ
(
C∗

n,gCn,g

)
=

1

(n, g)
Λ


J(n,g) ⊗

(n,g)∑

l=1

∆l


 , (5.48)

where

1

(n, g)
Λ
(
J(n,g)

)
= {0, 1} . (5.49)

Here we must observe that 1
(n,g)J(n,g) is a matrix of rank 1 with trace (n, g) · 1

(n,g) = 1, so
it has all eigenvalues equal to zero except one eigenvalue equal to 1. Moreover,

(n,g)∑

l=1

∆l =

(n,g)∑

l=1

diag
j=0,...,ng−1

(
d(l−1)ng+j

)

= diag
j=0,...,ng−1




(n,g)∑

l=1

d(l−1)ng+j


 .

Consequently, since
(n,g)∑
l=1

∆l is a diagonal matrix, we have

Λ




(n,g)∑

l=1

∆l


 =





(n,g)∑

l=1

d(l−1)ng+j ; j = 0, 1, . . . , ng − 1



 , (5.50)
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where dk are defined in (5.44).

Finally, by exploiting basic properties of the tensor product, we know that the eigenvalues of
a tensor product of two square matrices A⊗B are given by all possible products of eigenvalues
of A of order p and of eigenvalues of B of order q, that is, λ (A ⊗ B) = λj (A)λk (B) for
j = 1, . . . , p and k = 1, . . . , q. Therefore, by taking into consideration (5.48), (5.49), and
(5.50), we find

λj

(
C∗

n,gCn,g

)
=

(n,g)∑

l=1

d(l−1)ng+j , j = 0, 1, . . . , ng − 1, (5.51)

λj

(
C∗

n,gCn,g

)
= 0, j = ng, . . . , n − 1. (5.52)

From (5.51), (5.52), and (1.5), one obtains that the singular values of a g-circulant matrix
Cn,g are given by

σj (Cn,g) =

√√√√√
(n,g)∑

l=1

d(l−1)ng+j , j = 0, 1, . . . , ng − 1,

σj (Cn,g) = 0, j = ng, . . . , n − 1,

where the values dk, k = 0, . . . , n − 1, are defined in (5.44).

5.2.1 Special cases and observations

In this subsection we consider some special cases and furnish a further link between the eigen-
values of circulant matrices and the singular values of g-circulants.

Case g = 0.

If g = 0, from (5.7) we have that, for j, k = 0, . . . , n − 1,

(Cn,g)j,k = (Cn,0)j,k = a(j−0·k)mod n = aj .

This means that Cn,0 is a matrix that has constant elements along all the rows and, there-
fore, it has rank 1. Then the matrix Cn,0 has only one singular value different from zero, and
using the formula (5.42), since (n, g) = n and ng = n

(n,g) = 1, we get

σ0 (Cn,g) =

√√√√
n−1∑

l=0

dl,

σj (Cn,g) = 0, j = 1, . . . , n − 1.

Case (n, g) = 1.

In the case where (n, g) = 1 (for example when g = 1) we have ng = n
(n,g) = n. Hence the

formula (5.42) becomes

σj (Cn,g) =
√

dj , j = 0, 1, . . . , n − 1.

In other words the singular values of Cn,g coincide with those of Cn (this is expected since
Zn,g is a permutation matrix) and, in particular, with the moduli of the eigenvalues of Cn.
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Distribution in the singular value sense for g-circulant matrices

In Section 5.1 we have seen that the eigenvalues of a circulant matrix Cn(p) generated by a
polynomial p are given by

λj (Cn(p)) = p

(
2πj

n

)
, j = 0, . . . , n − 1.

The question that naturally arises is how to connect the expression in (5.42) of the non-
trivial singular values of Cn,g(p) (the g-circulant matrix generated by p) with the polynomial
p. The answer is somehow intriguing and can be resumed in the following formula which could
be of interest in the multigrid community (see Chapter 7):

σj (Cn,g(p)) =

√√√√√
(n,g)−1∑

l=0

|p|2
(

xj + 2πl

(n, g)

)
, xj =

2πj

ng
, j = 0, 1, . . . , ng − 1. (5.53)

If g is fixed the sequence n is chosen so that γ = (n, g) is a fixed number, by Definition 1.7
and using (5.53) we have

lim
n→∞

1

n

n∑

j=1

F (σj (Cn,g(p))) = lim
n→∞

1

n

ng−1∑

j=0

F (σj (Cn,g(p))) + lim
n→∞

1

n

n−1∑

j=ng

F (0)

= lim
n→∞

ng

n

ng−1∑

j=0

F (σj (Cn,g(p)))

ng
+ lim

n→∞
n − ng

n
F (0)

=
1

γ

1

2π

∫

Q

F




√√√√
γ−1∑

l=0

|p|2
(

x + 2πl

γ

)
 dx +

(
1 − 1

γ

)
F (0) ,

which results to being equivalent to the following distribution formula:

{Cn,g(p)} ∼σ (ηp, Q × [0, 1]) ,

where

ηp (x, t) =





√
̂|p|(2) (x) for t ∈

[
0, 1

γ

]
,

0 for t ∈
(

1
γ
, 1
]
,

with

̂|p|(2) (x) =
γ−1∑

j=0

|p|2
(

x + 2πj

γ

)
.

If g = 1 that is we are in standard circulant context, then Cn,g(p) = Cn(p),

√
̂|p|(2) (x)

reduces to |p (x)|, and the variable t ∈ [0, 1] becomes useless so that

{Cn(p)} ∼σ (p, Q × [0, 1]) ,

which is the same as the classical result

{Cn(p)} ∼σ (p, Q) .

If g = 0, since from Subsection 5.2.1 most of the singular values are identically zero, we
infer that

{Cn,0} ∼σ (0, Q) .
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In addition if g is fixed and a sequence of integers n is chosen so that (n, g) > 1 for n large
enough, then

{Cn,g} ∼σ (0, G) ,

for a suitable set G.

From the above reasoning it is clear that if n is allowed to vary among all the positive
integer numbers, then {Cn,g} does not possess a joint singular value distribution.

5.3 Eigenvalues of g-circulant matrices

In this section we show how to calculate the eigenvalues of a g-circulant matrix; first we consider
two special cases: g = 0 and g = 1, then we will give an explicit formula for the eigenvalues of
Cn,g where (n, g) = 1 and then, using Theorem 1.4, we will see a recursive way to calculate the
eigenvalues of a g-circulant matrix when (n, g) 6= 1.

5.3.1 Case g = 1.

If g = 1, then Cn,g = Cn,1 = Cn is the “classical” circulant matrix and the eigenvalues are
given by the formula (5.5), i.e.

λj (Cn) =
n−1∑

k=0

e
2πijk

n ak, j = 0, . . . , n − 1.

5.3.2 Case g = 0.

If g = 0, from Subsection 5.2.1, Cn,g has rank 1; then, remembering that the trace (tr(·)) of a
matrix is the sum of its eigenvalues, we can conclude that Cn,0 has n − 1 zero eigenvalues and
one eigenvalue λ different from zero given by

λ = tr (Cn,0) =
n−1∑

r=0

(Cn,0)r,r =
n−1∑

r=0

ar.

5.3.3 Case (n, g) = 1 and g /∈ {0, 1}.
If n and g are coprime the following lemma gives us a direct formula for calculating the eigen-
values of a g-circulant matrix Cn,g.

Lemma 5.15. Let Cn,g ∈ Mn (C) be a g-circulant matrix such that (n, g) = 1. So if

Cn,g = FnDnF ∗
nZn,g,

with

Dn = diag
j=0,...,n−1

(dj) ,

the eigenvalues of Cn,g are given by

|λj (Cn,g)| =

∣∣∣∣∣∣
s

√√√√
s−1∏

k=0

d(gkj)mod n

∣∣∣∣∣∣
, j = 0, . . . , n − 1,

where s ∈ N+ is such that gs ≡ 1 (mod n).
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Proof. From Lemma 5.11 it holds that, if Cn,g is a g-circulant matrix, then C2
n,g is a g2-circulant

matrix and, more generally, Cr
n,g is a gr-circulant matrix (r ∈ N+) or, equivalently, for Remark

5.12, Cr
n,g is a ĝr-circulant matrix, with ĝr ≡ gr (mod n); this means that if s is such that

gs (mod n) ≡ 1, then Cs
n,g is a circulant matrix and we are able to calculate the eigenvalues of

this matrix (see Subsection 5.3.1) and, consequently, the modulo of the eigenvalues of Cn,g are
the modulo of the roots of index s of the eigenvalues of the circulant matrix Cs

n,g.
So we calculate the eigenvalues of Cs

n,g. From (5.11) and (5.26) we have that

Cs
n,g = (FnDnF ∗

nZn,g)
s

= (FnDnF ∗
nFnSn,gF

∗
n)s

= (FnDnSn,gF
∗
n)s

= Fn (DnSn,g)
s F ∗

n ,

then, since F ∗
nFn = In, we obtain

Λ
(
Cs

n,g

)
= Λ ((DnSn,g)

s) . (5.54)

Before continuing the proof, we introduce the following symbology:

Dn,gr = diag
j=0,...,n−1

(
d(grj)mod n

)
; (5.55)

from this we have that Dn = Dn,g0 . We work now on the matrix (DnSn,g)
s and, repeatedly

using the formulae (5.34) and (5.55) we get:

(DnSn,g)
s = Dn (Sn,gDn)s−1 Sn,g

= Dn,g0

(
diag

j=0,...,n−1

(
d(gj)mod n

)
Sn,g

)s−1

Sn,g

= Dn,g0 diag
j=0,...,n−1

(
d(gj)mod n

)(
Sn,g diag

j=0,...,n−1

(
d(gj)mod n

))s−2

Sn,gSn,g

= Dn,g0Dn,g1

(
Sn,g diag

j=0,...,n−1

(
d(gj)mod n

))s−2

S2
n,g

= Dn,g0Dn,g1

(
diag

j=0,...,n−1

(
d[g((gj)mod n)]mod n

)
Sn,g

)s−2

S2
n,g

=
(a)

Dn,g0Dn,g1

(
diag

j=0,...,n−1

(
d(g2j)mod n

)
Sn,g

)s−2

S2
n,g

= Dn,g0Dn,g1 diag
j=0,...,n−1

(
d(g2j)mod n

)(
Sn,g diag

j=0,...,n−1

(
d(g2j)mod n

))s−3

Sn,gS
2
n,g

= Dn,g0Dn,g1Dn,g2

(
Sn,g diag

j=0,...,n−1

(
d(g2j)mod n

))s−3

S3
n,g

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
= Dn,g0Dn,g1Dn,g2 · · ·Dn,gs−1Ss

n,g,

where (a) is due to this property: if we have three integer numbers ρ, θ, and γ, then

ρ ((θ)mod γ) = (ρθ)mod ργ,

so

g ((gj) modn) = (ggj) mod gn =
(
g2j
)

mod gn,
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moreover, since g ∈ N+, gn is a multiple of n, we have that
[(

g2j
)

mod gn
]
modn =

(
g2j
)

modn.

Now, since gs (mod n) ≡ 1, by (5.39) and by Lemma 5.9 it holds that

Ss
n,g = Sn,gSn,g · · ·Sn,g︸ ︷︷ ︸

s times

= Sn,gs

= Sn,(gs)mod n = Sn,1 = [δj−k]
n−1
j,k=0 = In,

so (DnSn,g)
s is a diagonal matrix and its eigenvalues are given by the diagonals elements of

Dn,g0Dn,g1Dn,g2 · · ·Dn,gs−1 , i.e., from (5.55),

λj ((DnSn,g)
s) = d(g0j)mod nd(g1j)mod nd(g2j)mod n · · · d(gs−1j)mod n

=
s−1∏

k=0

d(gkj)mod n, j = 0, . . . , n − 1. (5.56)

Finally, from (5.54) and from the fact that, as mentioned above, the modulo of the eigen-
values of Cn,g are the modulo of the roots of index s of the eigenvalues of the circulant matrix
Cs

n,g, by (5.56) it follows that

|λj (Cn,g)| =

∣∣∣∣∣∣
s

√√√√
s−1∏

k=0

d(gkj)mod n

∣∣∣∣∣∣
, j = 0, . . . , n − 1.

Remark 5.16. In Lemma 5.15, the existence of a number s ∈ N+ such that gs ≡ 1 (mod n) is
guaranteed by Euler’s Theorem (or Fermat-Euler Theorem), which states that if n is a positive
integer and g is a positive integer coprime to n, i.e. (n, g) = 1 as in the hypothesis of Lemma
5.15, then

gϕ(n) ≡ 1 (mod n),

where ϕ (n) is the Euler function defined in this way: if n can be factored as

n = pk1
1 pk2

2 · · · pkr
r , p1, p2, . . . pr prime numbers,

then

ϕ (n) = n

[(
1 − 1

p1

)(
1 − 1

p2

)
· · ·
(

1 − 1

pr

)]
.

5.3.4 Case (n, g) 6= 1 and g /∈ {0, 1}.
In the case where n and g are not coprime, Lemma 5.15 is no longer valid, then we proceed in
another way. The idea is to exploit the fact that if (n, g) 6= 1, then the matrix Cn,g is singular,
and then apply Theorem 1.4.

By Lemma 5.3 we have that

Zn,g =
[
Z̃n,g|Z̃n,g| · · · |Z̃n,g

]

︸ ︷︷ ︸
(n,g) times

= Z̃n,g

[
Ing Ing · · · Ing

]

︸ ︷︷ ︸
(n,g) times

,
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where Z̃n,g ∈ Mn,ng (R) and Ing ∈ Mng (R) is the identity matrix; now, is immediate to verify
that we can rewrite (5.8) as

Cn,g = CnZn,g

= CnZ̃n,g

[
Ing |Ing | · · · |Ing

]
︸ ︷︷ ︸

(n,g) times

= C̃n,gIn,ng , (5.57)

with C̃n,g = CnZ̃n,g ∈ Mn,ng (C), In,ng ∈ Mng ,n (R) and, for j = 0, . . . , n, k = 0, . . . , ng it holds(
C̃n,g

)
j,k

= (Cn,g)j,k.

Using Theorem 1.4, we have that the eigenvalues of Cn,g are the same as those of In,ng C̃n,g ∈
Mng (C), plus n − ng null eigenvalues:

Λ (Cn,g) = Λ
(
In,ng C̃n,g

)
∪ {0 with geometric multiplicity n − ng} .

Theorem 5.17. Let Cn,g = C̃n,gIn,ng =
[
a(j−gk)mod n

]n−1

j,k=0
∈ Mn (C) be the g-circulant matrix

defined in (5.57); then the matrix Ĉng ,̂g = In,ng C̃n,g ∈ Mng (C) is a ĝ-circulant matrix of

dimension ng = n
(n,g) , with ĝ ≡ g (mod ng), whose elements are given by

(
Ĉng ,̂g

)
j,k

=

(n,g)−1∑

t=0

a(j+tng−gk)mod n, j, k = 0, . . . , ng − 1. (5.58)

Proof. For j, k = 0, . . . , ng − 1 we have that

(
Ĉng ,̂g

)
j,k

=
n−1∑

ℓ=0

(
In,ng

)
j,ℓ

(
C̃n,g

)
ℓ,k

, (5.59)

where, for r = 0, . . . , ng and s = 0, . . . , n,

(
In,ng

)
r,s

=

{
1 if s − r ≡ 0 (mod ng),
0 otherwise,

then, since s = 0, . . . , n− 1, r = 0, . . . , ng and n
ng

= (n, g), there are precisely (n, g) values of s
such that

s − r ≡ 0 (mod ng),

that is

st = r + tng, t = 0, . . . , (n, g) − 1.

Now, in (5.59), since
(
In,ng

)
j,ℓ

= 1 if and only if ℓ = j + tng for t = 0, . . . , (n, g) − 1, using

(5.57) and (5.10), we obtain

(
Ĉng ,̂g

)
j,k

=
n−1∑

ℓ=0

(
In,ng

)
j,ℓ

(
C̃n,g

)
ℓ,k

=

(n,g)−1∑

t=0

(
C̃n,g

)
j+tng,k

=

(n,g)−1∑

t=0

(Cn,g)j+tng,k

=

(n,g)−1∑

t=0

(Cn)j+tng,gk

=

(n,g)−1∑

t=0

a(j+tng−gk)mod n, (5.60)
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and this proves (5.58); remains to prove that Ĉng ,̂g is a ĝ-circulant matrix. The first column of

the matrix Ĉng ,̂g is formed by the elements

(
Ĉng ,̂g

)
j,0

=

(n,g)−1∑

t=0

a(j+tng−g·0)mod n

=

(n,g)−1∑

t=0

a(j+tng)mod n

= â(j−g·0)mod ng

= â(j)mod ng

= âj j = 0, . . . , ng − 1; (5.61)

if we denote by Cng the classical circulant matrix of dimension ng whose first column is given

by
[
â0, â1, . . . , âng−1

]⊤
(âj defined as in (5.61)), and if Zng ,g is the matrix defined in (5.9) (with

ng instead of n), using (5.60) we have that

(
CngZng ,g

)
j,k

=

ng−1∑

ℓ=0

(
Cng

)
j,ℓ

(
Zng ,g

)
ℓ,k

=
(a)

â(j−ℓ)mod ng
δℓ−gk

=
(b)

â(j−gk)mod ng

=

(n,g)−1∑

t=0

a(j+tng−gk)mod n

=
(
Ĉng ,̂g

)
j,k

;

where

(a) remember that, for j, k = 0, . . . , ng − 1,
(
Cng

)
j,k

= â(j−k)mod ng
;

(b) follows from the fact that there is a unique ℓ ∈ {0, 1, . . . , ng − 1} such that ℓ − gk ≡ 0
(mod ng), that is ℓ ≡ gk (mod ng), so

(j − ℓ)modng = (j − (gk) modng)modng = (j − gk) mod ng.

In conclusion we can write

Ĉng ,̂g = CngZng ,g,

and, by Lemma 5.2, since Zng ,g = Zng ,̂g with ĝ ≡ g (mod ng), we have that

Ĉng ,̂g = CngZng ,̂g,

then Ĉng ,̂g is a ĝ-circulant matrix.

The result obtained above is useful because we can reduce the problem of computing the
eigenvalues of a g-circulant matrix of dimension n × n, to the calculation of eigenvalues of a
smaller ĝ-circulant matrix of size ng × ng with ng = n

(n,g) .

So, if we have a g-circulant matrix Cn,g =
[
a(r−gs)mod n

]n−1

r,s=0
, whose first column is given

by [a0, a1, . . . , an−1]
⊤, we can calculate the eigenvalues by following these steps:

I step: if g = 0 see Subsection 5.3.2;
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II step: if g = 1, see Subsection 5.3.1;

III step: if (n, g) = 1 with g /∈ {0, 1}, see Subsection 5.3.3;

IV step: if g /∈ 0, 1 and (n, g) 6= 1, from Theorem 5.17 we have that Cn,g has n − ng eigenvalues
equal to zero and the remaining ng = n

(n,g) are the eigenvalues of Ĉng ,̂g (defined in (5.58));
then we set

aj =

(n,g)−1∑

t=0

a(j+tng)mod n, j = 0, . . . , ng − 1,

g = ĝ ≡ g (mod ng),

n = ng =
n

(n, g)
,

and restart from I step.

Particular case: n = gr.

If n = gr (r ∈ N+, g ≥ 2), that is, if n is a power of g, then we can find explicitly the eigenvalues
of Cn,g by following the recursive algorithm proposed above. Indeed, since g /∈ {0, 1} and
(n, g) = g 6= 1, the algorithm proceeds by performing repeatedly the step IV:

Λ (Cn,g) = Λ (Cgr,g)

= Λ
(
Cgr−1,g

)
∪
{
0 with geometric multiplicity n − gr−1

}

= Λ
(
Cgr−2,g

)
∪
{
0 with geometric multiplicity gr−1 − gr−2

}
∪

∪
{
0 with geometric multiplicity n − gr−1

}

= Λ
(
Cgr−3,g

)
∪
{
0 with geometric multiplicity gr−2 − gr−3

}
∪

∪
{
0 with geometric multiplicity gr−1 − gr−2

}
∪

∪
{
0 with geometric multiplicity n − gr−1

}

= · · · · · · · · · · · · · · · · · ·
= Λ (Cg,0) ∪

{
0 with geometric multiplicity g2 − g

}
∪ · · ·

· · · ∪
{
0 with geometric multiplicity gr−2 − gr−3

}
∪

∪
{
0 with geometric multiplicity gr−1 − gr−2

}
∪

∪
{
0 with geometric multiplicity n − gr−1

}
,

at the end we arrive at the matrix Cg,0 that, for the step I of the algorithm, has g−1 eigenvalues
equal to zero and only one eigenvalue different from zero. If we come back in the equalities we
can conclude that Cn,g has n − 1 eigenvalues equal to zero and one eigenvalue different zero;
now, since the trace of a matrix is the sum of its eigenvalues, the only eigenvalue λ different

from zero of Cn,g =
[
a(r−gs)mod n

]n−1

r,s=0
, is given by

λ = tr (Cn,g) =
n−1∑

j=0

(Cn,g)j,j =
n−1∑

j=0

aj ,

so the matrix Cgr,g has the same eigenvalues of the matrix Cgr,0.
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5.4 Toeplitz and g-Toeplitz matrices

In Chapter 4 we have introduced the Toeplitz matrices and we have seen that, given a function
f ∈ L1 (Q), Q = (−π, π), with Fourier coefficients aj (aj = f̃j as in (4.2) with d = 1), if we
denote by Tn := Tn (f) the classical Toeplitz matrix generated by the function f (see Definition
4.1), Tn = [ar−c]

n−1
r,c=0, then the sequence of Toeplitz matrices {Tn} is distributed in the singular

value sense as the function f : {Tn} ∼σ (f, Q) (see Proposition 4.2).

We want to prove a similar distribution result for the g-Toeplitz matrices, where, like in
the g-circulant case, a generic g-Toeplitz matrix of dimension n × n is defined as

Tn,g = [ar−gc]
n−1
r,c=0 , (5.62)

where the quantities r − gs are not reduced modulus n, for example, if n = 5 and g = 3, then

T5,3 =




a0 a−3 a−6 a−9 a−12

a1 a−2 a−5 a−8 a−11

a2 a−1 a−4 a−7 a−10

a3 a0 a−3 a−6 a−9

a4 a1 a−2 a−5 a−8




.

In analogy with the case of g = 1 (the “classical” Toeplitz matrix), we consider aj as the
Fourier coefficients of some function f in L1 (Q).

If we denote by Tn the classical Toeplitz matrix generated by the function f ∈ L1 (Q), and
by Tn,g the g-Toeplitz matrix generated by the same function (in this case the two matrices Tn

and Tn,g have the same first column), one verifies immediately for n and g generic that

Tn,g =
[
T̂n,g|T̃n,g

]
=
[
TnẐn,g|T̃n,g

]
, (5.63)

where T̂n,g ∈ Mn,µg (C), µg =
⌈

n
g

⌉
, is the matrix Tn,g defined in (5.62) by considering only the

µg first columns, T̃n,g ∈ Mn,(n−µg) (C) is the matrix Tn,g defined in (5.62) by considering only

the n − µg last columns, and Ẑn,g ∈ Mn,µg (R) is the matrix defined in (5.9) by considering
only the µg first columns.

Proof. (of relation (5.63)). For r = 0, 1, . . . , n − 1, and s = 0, 1, . . . , µg − 1, one has

(
T̂n,g

)
r,s

= (Tn)r,gs ,
(
Ẑn,g

)
r,s

= δr−gs,

and

(
TnẐn,g

)
r,s

=
n−1∑

l=0

(Tn)r,l

(
Ẑn,g

)
l,s

=
n−1∑

l=0

δl−gs (Tn)r,l

=
(a)

(Tn)r,gs

=
(
T̂n,g

)
r,s

,

where (a) follows because there exists a unique l ∈ {0, 1, . . . , n − 1} such that l − gs ≡
0 (mod n), that is, l ≡ gs (mod n), and, since 0 ≤ gs ≤ n − 1, we obtain l = gs.
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If we take the matrix T̂n,g ∈ Mn,(µg+1) (C), then relation (5.63) is no longer true. In reality,
looking at the (µg + 1)th column of the g-Toeplitz we observe Fourier coefficients with indices
which are not present (less or equal to −n) in the Toeplitz matrix Tn. More precisely,

(Tn,g)0,µg
= a0−gµg = a−gµg , and −gµg ≤ −n.

It follows that µg is the maximum number of columns for which relation (5.63) is true.

5.5 Singular value distribution for the g-Toeplitz sequences

As stated in formula (5.63), the matrix Tn,g can be written as

Tn,g =
[
TnẐn,g|T̃n,g

]

=
[

TnẐn,g 0
]
+
[

0 T̃n,g

]
. (5.64)

To find the distribution in the singular value sense of the sequence {Tn,g}, the idea is to

study separately the distribution of the two sequences
{[

TnẐn,g|0
]}

and
{[

0|T̃n,g

]}
, to prove

{[
0|T̃n,g

]}
∼σ (0, G), and then apply Proposition 2.4.

Proposition 5.18. Let Tn,g be the g-Toeplitz matrix generated by the Fourier coefficients of a

function f ∈ L1 (Q). If we consider the matrix
[
TnẐn,g|0

]
defined in (5.64), it holds that

{[
TnẐn,g|0

]}
∼σ (θ, Q × [0, 1]) ,

where

θ (x, t) =





√
̂|f |(2) (x) for t ∈

[
0, 1

g

]
,

0 for t ∈
(

1
g
, 1
]
,

(5.65)

and

̂|f |(2) (x) =
1

g

g−1∑

j=0

|f |2
(

x + 2πj

g

)
. (5.66)

Proof. Since TnẐn,g ∈ Mn,µg (C) and
[
TnẐn,g|0

]
∈ Mn (C), the matrix

[
TnẐn,g|0

]
has n − µg

singular values equal to zero and the remaining µg equal to those of TnẐn,g; to study the
distribution in the singular value sense of this sequence of non-square matrices, we use Lemma
2.2: consider the g-Toeplitz matrix “truncated” T̂n,g = Tn (f) Ẑn,g, where the elements of the
Toeplitz matrix Tn (f) = [ar−c]

n−1
r,c=0 are the Fourier coefficients of a function f in L1 (Q),

Q = (−π, π), then we have

T̂ ∗
n,gT̂n,g =

(
Tn (f) Ẑn,g

)∗
Tn (f) Ẑn,g = Ẑ⊤

n,gTn (f)∗ Tn (f) Ẑn,g

= Ẑ⊤
n,gTn

(
f
)

Tn (f) Ẑn,g. (5.67)

We provide in detail the analysis in the case where f ∈ L2 (Q). The general setting in
which f ∈ L1 (Q) can be obtained by approximation and density arguments as done in [83].

From Proposition 4.2 if f ∈ L2 (Q) ⊂ L1 (Q) (that is, |f |2 ∈ L1 (Q)), then
{
Tn

(
f
)

Tn (f)
}
∼σ(

|f |2 , Q
)
. Consequently, for every m sufficiently large, m ∈ N, the use of Theorem 2.1 implies

Tn

(
f
)

Tn (f) = Tn

(
|f |2

)
+ Rn,m + Nn,m, ∀n > nm,
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with

rank (Rn,m) ≤ nc (m) , ‖Nn,m‖ ≤ ω (m) ,

where nm ≥ 0, c (m) and ω (m) depend only on m, and, moreover,

lim
m→∞ c (m) = 0, lim

m→∞ω (m) = 0.

Therefore (5.67) becomes

T̂ ∗
n,gT̂n,g = Ẑ⊤

n,g

(
Tn

(
|f |2

)
+ Rn,m + Nn,m

)
Ẑn,g

= Ẑ⊤
n,gTn

(
|f |2

)
Ẑn,g + Ẑ⊤

n,gRn,mẐn,g + Ẑ⊤
n,gNn,mẐn,g

= Ẑ⊤
n,gTn

(
|f |2

)
Ẑn,g + R̂n,m,g + N̂n,m,g, (5.68)

with

rank
(
R̂n,m,g

)
≤ min

{
rank

(
Z̆n,g

)
, rank (Rn,m)

}
≤ rank (Rn,m) ≤ nc (m) , (5.69)

∥∥∥N̂n,m,g

∥∥∥ ≤ 2
∥∥∥Z̆n,g

∥∥∥ ‖Nn,m‖ ≤ 2ω (m) , (5.70)

and

lim
m→∞ c (m) = 0, lim

m→∞ 2ω (m) = 0,

where in (5.69) and (5.70), Z̆n,g =
[
Ẑn,g|0

]
∈ Mn (R). In other words Z̆n,g is the matrix

Ẑn,g supplemented by an appropriate number of zero columns in order to make it square.

Furthermore, it is worth noting that
∥∥∥Ẑn,g

∥∥∥ =
∥∥∥Ẑ⊤

n,g

∥∥∥ = 1, because Ẑn,g is a submatrix of the

identity; we have used the latter relations in (5.70).

Now, consider the matrix Ẑ⊤
n,gTn

(
|f |2

)
Ẑn,g ∈ Mµg (C), with µg =

⌈
n
g

⌉
, f ∈ L2 (Q) ⊂

L1 (Q) (so |f |2 ∈ L1 (Q)). From (5.63), setting Tn = Tn

(
|f |2

)
= [ãr−c]

n−1
r,c=0, with ãj being the

Fourier coefficients of |f |2, and setting Tn,g the g-Toeplitz generated by the same function |f |2,
it is immediate to observe

TnẐn,g = T̂n,g ∈ Mn,µg (C) , with
(
T̂n,g

)
r,c

= ãr−gc, (5.71)

for r = 0, . . . , n − 1 and c = 0, . . . , µg − 1. If we compute Ẑ⊤
n,gT̂n,g ∈ Mµg (C), where Z⊤

n,g =

[δc−gr]
n−1
r,c=0 (δk defined as in (5.9)) and Ẑ⊤

n,g ∈ Mµg,n (R) is the submatrix of Z⊤
n,g obtained by

considering only the µg first rows, for r, c = 0, . . . , µg − 1, using (5.71) we obtain

(
Ẑ⊤

n,gTn

(
|f |2

)
Ẑn,g

)
r,c

=
(
Ẑ⊤

n,gT̂n,g

)
r,c

=
n−1∑

ℓ=0

(
Ẑ⊤

n,g

)
r,ℓ

(
T̂n,g

)
ℓ,c

=
(a)

(
T̂n,g

)
gr,c

= âgr−gc,

where (a) follows from the existence of a unique ℓ ∈ {0, 1, . . . , n − 1} such that ℓ − gr ≡
0 (mod n), that is, ℓ ≡ gr (mod n), and, since 0 ≤ gr ≤ n − 1, we find ℓ = gr.
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Therefore Ẑ⊤
n,gTn

(
|f |2

)
Ẑn,g = [ãgr−gc]

µg−1
r,c=0 = Tµg

(
̂|f |(2)

)
, where

̂|f |(2) ∈ L1 (Q) is given

by

̂|f |(2) (x) =
1

g

g−1∑

j=0

|f |2
(

x + 2πj

g

)
,

|f |2 (x) =
+∞∑

k=−∞
ãke

ikx. (5.72)

Indeed, if we denote by aj the Fourier coefficients of
̂|f |(2), for r, c = 0, . . . , µg − 1, we

have ar−c = ãgr−gc, where ãk are the Fourier coefficients of |f |2. This can be demonstrated by
observing that, from (4.2), (5.66), and (5.72), we have

ar−c =
1

2π

∫

Q

1

g

g−1∑

j=0

+∞∑

k=−∞
ãke

ik
(

x+2πj

g

)
e−i(r−c)xdx

=
1

2πg

∫

Q

+∞∑

k=−∞
ãk




g−1∑

j=0

e
i2πkj

g


 e

ikx
g e−i(r−c)xdx.

The following remarks are in order:

• if k is a multiple of g, k = gt for some value of t, then we have that

g−1∑

j=0

e
i2πkj

g =
g−1∑

j=0

e
i2πgtj

g =
g−1∑

j=0

ei2πtj =
g−1∑

j=0

1 = g;

• if k is not a multiple of g, then e
i2πk

g 6= 1 and therefore

g−1∑

j=0

e
i2πkj

g =
g−1∑

j=0

(
e

i2πk
g

)j

,

is a finite geometric series whose sum is given by

g−1∑

j=0

(
e

i2πk
g

)j

=
1 − e

i2πkg

g

1 − e
i2πk

g

=
1 − ei2πk

1 − e
i2πk

g

=
1 − 1

1 − e
i2πk

g

= 0.

Finally, taking into account the latter statements and recalling that

1

2π

∫

Q

eiℓxdx =

{
1 if ℓ = 0
0 otherwise

,

we find

ar−c =
1

2πg

∫

Q

+∞∑

t=−∞
ãgtge

igtx

g e−i(r−c)xdx

=
+∞∑

t=−∞
ãgt

1

2π

∫

Q

eix(t−(r−c))dx

= ãg(r−c),

then if ãk are the Fourier coefficients of |f |2 (x), ãgk are the Fourier coefficients of
̂|f |(2).
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In summary, from (5.68) we have

T̂ ∗
n,gT̂n,g = Tµg

(
̂|f |(2)

)
+ R̂n,m,g + N̂n,m,g,

with

{
Tµg

(
̂|f |(2)

)}
∼σ

(
̂|f |(2), Q

)
. We recall that, owing to (5.66), the relation |f |2 ∈ L1 (Q)

implies
̂|f |(2) ∈ L1 (Q). Consequently Theorem 2.1 implies that

{
T̂ ∗

n,gT̂n,g

}
∼σ

(
̂|f |(2), Q

)
.

Clearly
̂|f |(2) ∈ L1 (Q) is equivalent to write

√
̂|f |(2) ∈ L2 (Q): therefore, from Lemma 2.2, we

infer
{
T̂n,g

}
∼σ

(√
̂|f |(2), Q

)
.

Now, as mentioned at the beginning of this proof, by Definition 1.7, we have

lim
n→∞

1

n

n∑

j=1

F
(
σj

([
T̂n,g|0

]))
= lim

n→∞
1

n

µg∑

j=1

F
(
σj

([
T̂n,g|0

]))
+ lim

n→∞
1

n

n∑

j=µg+1

F (0)

= lim
n→∞

µg

n

µg∑

j=1

F
(
σj

([
T̂n,g|0

]))

µg
+ lim

n→∞
n − µg

n
F (0)

=
1

g

1

2π

∫

Q

F



√

̂|f |(2) (x)


 dx +

(
1 − 1

g

)
F (0) ,

which results to being equivalent to the following distribution formula:

{[
TnẐn,g|0

]}
∼σ (θ, Q × [0, 1]) ,

where

θ (x, t) =





√
̂|f |(2) (x) for t ∈

[
0, 1

g

]
,

0 for t ∈
(

1
g
, 1
]
.

Remark 5.19. We observe that the requirement that the symbol f is square integrable can
be removed. In [83] it is proven that the singular value distribution of {Tn (f) Tn (g)} is given
by h = fg with f, g being just Lebesgue integrable and with h that is only measurable and,
therefore, may fail to be Lebesgue integrable. This fact is sufficient for extending the proof to
the case where θ (x, t) is defined as in (5.65) with the original symbol f ∈ L1 (Q).

Proposition 5.20. Let Tn,g be the g-Toeplitz matrix generated generated by the Fourier coef-

ficients of a function f ∈ L1 (Q). If we consider the matrix
[
0|T̃n,g

]
defined in (5.64), it holds

that
{[

0|T̃n,g

]}
∼σ (0, Q) . (5.73)

Proof. In perfect analogy with the case of the matrix
[
TnẐn,g|0

]
, we can observe that T̃n,g ∈

Mn,(n−µg) (C) and
[
0|T̃n,g

]
∈ Mn (C). Therefore the matrix

[
0|T̃n,g

]
has µg singular values

equal to zero and the remaining n − µg equal to those of T̃n,g. However, in this case we have
additional difficulties with respect to the matrix T̂n,g = TnẐn,g, because it is not always true
that T̃n,g can be written as TnŽn,g, where Žn,g is the matrix obtained by considering the n−µg

last columns of Zn,g. Indeed, in T̃n,g there are Fourier coefficients with index, in modulus,
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greater than n: the Toeplitz matrix Tn = [ar−c]
n−1
r,c=0 has coefficients aj with j ranging from

1 − n to n − 1, while the g-Toeplitz matrix Tn,g = [ar−gc]
n−1
r,c=0 has an−1 as the coefficient of

maximum index and a−g(n−1) as the coefficient of minimum index, and, if g ≥ 2, we have
−g (n − 1) < − (n − 1).

Even if we take the Toeplitz matrix Tn, which has as its first column the first column of
T̃n,g and the other generated according to the rule (Tn)j,k = aj−k, it is not always true that we

can write T̃n,g = TnP for a suitable submatrix P of a permutation matrix; indeed, if the matrix

Tn = [βr−c]
n−1
r,c=0 has as the first column the first column of T̃n,g, we find that β0 =

(
T̃n,g

)
0,0

=

(Tn,g)0,µg
= a−gµg . As a consequence, Tn has β−(n−1) = a−(n−1)−gµg

as coefficient of minimum

index, while T̃n,g has a−g(n−1) as coefficient of minimum index. Therefore,

n ≤ gµg = g

⌈
n

g

⌉
≤ (n + g − 1)

⇓
− (n − 1) g − (− (n − 1) − gµg) = (1 − g) (n − 1) + gµg

≤ (1 − g) (n − 1) + (n + g − 1)

= (1 − g) (n − 1) + (n − 1) + g

= (n − 1) (1 − g + 1) + g

= (2 − g) (n − 1) + g < 0 for g > 2 and n > 4.

Thus, if g > 2 and n > 4, we have − (n − 1) g < − (n − 1) − gµg and the coefficient of
minimum index a−g(n−1) of T̃n,g is not contained in the matrix Tn that has a−(n−1)−gµg

as the
coefficient of minimum index.

Then we proceed in another way: in the first column of T̃n,g ∈ Mn,(n−µg) (C) (and, conse-
quently, throughout the matrix) there are only coefficients with index < 0; indeed the coeffi-

cient with the largest index of T̃n,g is
(
T̃n,g

)
n−1,0

= (Tn,g)n−1,µg
= an−1−gµg and n− 1− gµg ≤

n − 1 − n < 0, and the coefficient with smallest index is
(
T̃n,g

)
0,n−µg−1

= (Tn,g)0,n−µg−1+µg
=

(Tn,g)0,n−1 = a−g(n−1). Consider, therefore, a Toeplitz matrix Tdn,g
∈ Mdn,g

(C) with dn,g >
g(n−1)

2 + 1 defined in this way:

Tdn,g
=




a−dn,g+1 a−dn,g
a−dn,g−1 · · · a−2dn,g+2

a−dn,g+2 a−dn,g+1
. . .

. . . a−2dn,g+3
...

. . .
. . .

. . .
...

a−1 a−2
. . .

. . . a−dn,g

a0 a−1 a−2 · · · a−dn,g+1




=
[
ar−c−dn,g+1

]dn,g−1

r,c=0
. (5.74)

Since the coefficient with the smallest index is a−2dn,g+2, we find

−2dn,g + 2 < −2

(
g (n − 1)

2
+ 1

)
+ 2 = −g (n − 1) − 2 + 2 = −g (n − 1) .

As a consequence, we obtain that all the coefficients of T̃n,g are “contained” in the matrix

Tdn,g
. In particular, if dn,g > (g − 1) (n − 1) + 2 (this condition ensures dn,g > g(n−1)

2 + 1, that
all the subsequent inequalities are correct, and that the size of all the matrices involved are
non-negative), then it can be shown that

T̃n,g = [01|In|02]Tdn,g
Ždn,g ,g, (5.75)
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where Ždn,g ,g ∈ Mdn,g ,(n−µg) (R) is the matrix defined in (5.9), of dimension dn,g × dn,g, by
considering only the n − µg first columns and [01|In|02] ∈ Mn,dn,g

(R) is a block matrix with
01 ∈ Mn,(dn,g−gµg−1) (R) and 02 ∈ Mn,(gµg−n+1) (R).

Indeed, first we observe the following:

• for r = 0, 1, . . . , n − 1 and s = 0, 1, . . . , n − µg − 1, we have
(
T̃n,g

)
r,s

= (Tn,g)r,s+µg
= ar−gs−gµg ; (5.76)

• for r = 0, 1, . . . , n − 1 and s = 0, 1, . . . , dn,g − 1, we have

([01|In|02])r,s =

{
1 if s = r + dn,g − gµg − 1,
0 otherwise;

(5.77)

• for r, s = 0, 1, . . . , dn,g − 1 we have
(
Tdn,g

)
r,s

= ar−s−dn,g+1;

• for r = 0, 1, . . . , dn,g − 1 and s = 0, 1, . . . , n − µg − 1, we have
(
Ždn,g ,g

)
r,s

= δr−gs.

Since Tdn,g
Ždn,g ,g ∈ Mdn,g ,(n−µg) (C), for r = 0, 1, . . . , dn,g − 1 and s = 0, 1, . . . ,n−µg − 1, it

holds that

(
Tdn,g

Ždn,g ,g

)
r,s

=

dn,g−1∑

l=0

(
Tdn,g

)
r,l

(
Ždn,g ,g

)
l,s

=

dn,g−1∑

l=0

δl−gsar−l−dn,g+1

=
(a)

ar−gs−dn,g+1, (5.78)

where (a) follows from the existence of a unique l ∈ {0, 1, . . . , dn,g − 1} such that l − gs ≡
0 (mod dn,g), that is, l ≡ gs (mod dn,g), and, since 0 ≤ gs ≤ dn,g − 1, we have l = gs. Since
[01|In|02] Tdn,g

Ždn,g ,g ∈ Mn,(n−µg) (C), for r = 0, 1, . . . , n− 1 and s = 0, 1, . . . , n− µg − 1, using
(5.76) we find

(
[01|In|02] Tdn,g

Ždn,g ,g

)
r,s

=

dn,g−1∑

l=0

([01|In|02])r,l

(
Tdn,g

Ždn,g ,g

)
l,s

=
(d)

ar+dn,g−gµg−1−gs−dn,g+1

= ar−gµg−gs

=
(
T̃n,g

)
r,s

,

where (d) follows from (5.78),
(
Tdn,g

Ždn,g ,g

)
l,s

= al−gs−dn,g+1, and the following fact: using

(5.77), we find ([01|In|02])r,l = 1 if and only if l = r + dn,g − gµg − 1.
We can now observe immediately that the matrix Tdn,g

defined in (5.74) can be written as

Tdn,g
= JHdn,g

, (5.79)

where J ∈ Mdn,g
(R) is the “flip” permutation matrix, that is, (J)s,t = 1 if and only if s + t =

dn,g + 1, and Hdn,g
∈ Mdn,g

(C) is the Hankel matrix, that is,

Hdn,g
=




a0 a−1 a−2 · · · a−dn,g+1

a−1 a−2 ··· ··· a−dn,g

... ··· ··· ··· ...

a−dn,g+2 a−dn,g+1 ··· ··· a−2dn,g+3

a−dn,g+1 a−dn,g
a−dn,g−1 · · · a−2dn,g+2




.
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If f (x) ∈ L1 (Q), Q = (−π, π), is the generating function of the Toeplitz matrix Tn =
Tn (f) = [ar−c]

n−1
r,c=0 in (5.63), where the (k)th Fourier coefficient of f is ak, then f (−x) ∈ L1 (Q)

is the generating function of the Hankel matrix Hdn,g
= [a−r−c]

dn,g−1
r,c=0 ; by invoking [41, Theorem

6], the sequence of matrices
{
Hdn,g

}
is distributed in the singular value sense as the zero

function:
{
Hdn,g

}
∼σ (0, Q). From Lemma 2.5, by (5.79), since J is a unitary matrix, we have

{
Tdn,g

}
∼σ (0, Q) as well.

Consider the decomposition in (5.75), that is,

T̃n,g = [01|In|02] Tdn,g
Ždn,g ,g = Gdn,g

Tdn,g
Ždn,g ,g.

If we complete the matrix Gdn,g
∈ Mn,dn,g

(R) and the matrix Ždn,g ,g ∈ Mdn,g ,(n−µg) (R)
by adding an appropriate number of zero rows and columns, respectively, in order to make it
square, then

Gdn,g
=

[
Gdn,g

0

]
∈ Mdn,g

(R) ,

Zdn,g ,g =
[

Ždn,g ,g 0
]
∈ Mdn,g

(R) ,

and it is immediate to note that

Gdn,g
Tdn,g

Zdn,g ,g =

[
T̃n,g 0

0 0

]
= Tn,g ∈ Mdn,g

(C) .

From Lemma 2.6, since
∥∥∥Gdn,g

∥∥∥ =
∥∥∥Zdn,g ,g

∥∥∥ = 1 (indeed they are both “incomplete” per-

mutation matrices), and since
{
Tdn,g

}
∼σ (0, Q), we infer that {Tn,g} ∼σ (0, Q).

Recall that Tn,g ∈ Mdn,g
(C) with dn,g > (g − 1) (n − 1)+2; then we can always choose dn,g

such that gn = dn,g > (g − 1) (n − 1) + 2 (if n, g ≥ 2). Now, since {Tn,g} ∼σ (0, Q), it holds
that the sequence {Tn,g} is weakly clustered at zero in the singular value sense, i.e., ∀ǫ > 0,

# {j : σj (Tn,g) > ǫ} = o (dn,g) = o (gn) = o (n) . (5.80)

The matrix Tn,g is a block matrix that can be written as

Tn,g =

[
T̃n,g 0

0 0

]
=

[ [
T̃n,g|0

]
0

0 0

]
,

where T̃n,g ∈ Mn,(n−µg) (C) and
[
T̃n,g|0

]
∈ Mn (C). By the SVD we obtain

Tn,g =

[ [
T̃n,g|0

]
0

0 0

]
=

[
U1Σ1V

∗
1 0

0 U20V ∗
2

]

=

[
U1 0

0 U2

] [
Σ1 0

0 0

] [
V1 0

0 V2

]∗
,

that is, the singular values of Tn,g that are different from zero are the singular values of[
T̃n,g|0

]
∈ Mn (C). Thus (5.80) can be written as follows: ∀ǫ > 0,

#
{
j : σj

([
T̃n,g|0

])
> ǫ

}
= o (dn,g) = o (gn) = o (n) .

The latter relation means that the sequence
{[

T̃n,g|0
]}

is weakly clustered at zero in the

singular value sense, and hence
{[

T̃n,g|0
]}

∼σ (0, Q). If we now consider the matrix Ĝ =
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[
0 In−µg

0 0

]
∈ Mn (R), where In−µg ∈ Mn−µg (R) is the identity matrix, then

[
T̃n,g|0

]
Ĝ =

[
0|T̃n,g

]
, and since

∥∥∥Ĝ
∥∥∥ = 1 and

{[
T̃n,g|0

]}
∼σ (0, Q), from Lemma 2.6 we find

{[
0|T̃n,g

]}
∼σ (0, Q) .

Theorem 5.21. Let Tn,g be the g-Toeplitz matrix generated generated by the Fourier coefficients
of a function f ∈ L1 (Q), then it holds that

{Tn,g} ∼σ (θ, Q × [0, 1]) , (5.81)

where θ is defined in (5.65).

Proof. The relation (5.81), using (5.63) and Propositions 5.18 and 5.20, is a direct consequence
of Proposition 2.4, with G = Q × [0, 1],

Notice that for g = 1 the symbol θ (x, t) coincides with |f | (x) on the extended domain Q×
[0, 1]. Hence the Avram–Parter theorem is found as a particular case. Indeed θ (x, t) = |f | (x)
does not depend on t; therefore this additional variable can be suppressed, i.e., {Tn,g} ∼σ (f, Q)
with Tn,g = Tn (f). The fact that the distribution formula is not unique should not surprise
since this phenomenon is inherent to the measure theory. In fact, any measure-preserving
exchange function is a distribution function if one representative of the class is.

It is worthwhile to refer briefly to the case of sequences of g-Toeplitz matrices with neg-
ative g. First we observe that, for g < 0, all the coefficients of the g-Toeplitz matrix Tn,g =
[ar−gc]

n−1
r,c=0, generated by the function f , have a non-negative index, i.e., r − gc ≥ 0. If we let

Hdn,g
= [ar+c]

dn,g−1
r,c=0 be the Hankel matrix of dimension dn,g = −gn, generated by the same

symbol f of the g-Toeplitz matrix, it is immediate to verify that Tn,g is a submatrix of Hdn,g
.

Since
{
Hdn,g

}
∼σ (0, Q), following the same reasoning proposed in the proof of Proposition

5.20, we obtain that {Tn,g} ∼σ (0, Q), Q = (−π, π).

5.6 Generalizations: the multi-level setting

All the distribution results presented in the previous sections for g-circulant and g-Toeplitz
matrices can be extended to the multi-level case in which g denotes a d-dimensional vector
of non-negative integers, that is, g = (g1, . . . , gd), and n a d-dimensional vector of positive
integers, that is, n = (n1, . . . , nd).

In the following we use the symbol ◦ to denote the component-wise Hadamard product
between vectors or matrices of the same size, that is, for example, if r and s are d-dimensional
vectors we have

(r − g ◦ s) = ((r1 − g1s1) , (r2 − g2s2) , . . . , (rd − gdsd)) ,

(r − g ◦ s) modn = ((r1 − g1s1) modn1, . . . , (rd − gdsd)modnd) .

5.6.1 Multi-level circulant and g-circulant matrices

According to the multi-index block notation introduced in Definition 4.1, if p is a d-variate
trigonometric polynomial defined over Qd, where Q = (−π, π), and taking values in Mq1,q2 (C),
with Fourier coefficients aj , j = (j1, . . . , jd), a multi-level circulant matrix of size q1n̂ × q2n̂,
where n̂ = n1n2 · · ·nd, generated by p is defined as

Cn(p) =
[
a(r−g◦s)mod n + a(r−g◦s)mod n−n

]n−e

r,s=0
,
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with 0, e ∈ Rd, 0 = (0, . . . , 0) and e = (1, . . . , 1), and is straightforward to verify, as in the
one-level case, that can be written as

Cn(p) =
n−e∑

j=0

Zj1
n1

⊗ Zj2
n2

⊗ · · · ⊗ Zjd
nd

⊗ aj ,

where Znj
∈ Mnj

(R) is the matrix defined in (5.2) of dimension nj (⊗ denotes the tensor or
Kronecker product of matrices) and aj is considered to be the matrix of size q1×q2 whose (u, v)th
entry is the (k1, . . . , kd)th Fourier coefficient of the polynomial (p (t1, . . . , td))u,v. Moreover, if
Fn ∈ Mn̂ (C) denotes the multi-level Fourier matrix

Fn = Fn1 ⊗ Fn2 ⊗ · · · ⊗ Fnd
,

where Fnj
∈ Mnj

(C) is the Fourier matrix defined in (5.3) of dimension nj , then Fn is unitary,
FnF ∗

n = In, and it holds that

Cn(p) = (Fn ⊗ Iq1)Dn(p) (F ∗
n ⊗ Iq2) ,

where

Dn(p) = diag
(√

n̂ (F ∗
n ⊗ Iq1) a

)

= diag
k=0,...,n−e




n−e∑

j=0

aje
i2π

(
j1k1
n1

+···+ jdkd
nd

)
 ,

a being the first column of the matrix Cn(p) whose entries aj , j = (j1, . . . , jd), are ordered
lexicographically. If q1 = q2 = 1 the singular values of Cn(p), i.e., the diagonal entries of

Dn(p), are those of the n
2 th Fourier sum of p evaluated at the grid points 2πk

n
= 2π

(
k1
n1

, . . . , kd

nd

)
,

0 ≤ kj ≤ nj − 1, j = 1, . . . , d.

It should be mentioned now that when q1 6= q2 the matrices are not square and so it makes
no sense to speak of eigenvalues. On the other hand, the singular values are given by the
collection of those of the diagonal blocks of Dn(p), while, when q1 = q2, the matrix Cn(p) is
square and its eigenvalues are expressible as the collection of those of the diagonal blocks of
Dn(p).

Using the multi-level notation introduced at the beginning of this section, a g-circulant
matrix Cn,g ∈ Mq1n̂×q2n̂ (C) generated by a given d-variate polynomial p, is given by

Cn,g(p) =
[
a(r−g◦s)mod n + a(r−g◦s)mod n−n

]n−e

r,s=0
,

where, as in the circulant case, aj are the Fourier coefficients of p.

Following the analysis in Subsection 5.2.1, for g fixed vector and n increasing sequence

of vectors we do not find a joint distribution. Assuming {Cn(p)} ∼σ

(
p, Qd

)
with {Cn(p)}

standard sequence of multi-level circulants (that is g-circulants where g is the vectors of all
ones), and assuming that the sequence n is chosen so that γi = (ni, gi), i = 1, . . . , d, are d fixed
numbers, we find

{Cn,g(p)} ∼σ

(
ηp, Q

d × [0, 1]d
)

, (5.82)

where

ηp (x, t) =





√
̂|p|(2) (x) for t ∈

[
0, 1

γ

]
,

0 for t ∈
(

1
γ
, e
]
,

(5.83)
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with

̂|p|(2) (x) =
γ−e∑

j=0

|p|2
(

x + 2πj

γ

)
, (5.84)

where all the arguments are modulus 2π and all the operations are intended component-wise;

that is, t ∈
[
0, 1

γ

]
means that tk ∈

[
0, 1

γk

]
, k = 1, . . . , d, t ∈

(
1
γ
, e
]

means that tk ∈
(

1
γk

, 1
]
,

k = 1, . . . , d, the writing x+2πj
γ

defines the d-dimensional vector whose (k)th component is
(xk+2πjk)

γk
, k = 1, . . . , d.

When some of the entries of g vanish.

The content of this subsection reduces to the following remark: the case of a non-negative
g can be reduced to the case of a positive vector. Let g be a d-dimensional vector of non-
negative integers, and let N ⊂ {1, . . . , d} be the set of indices such that j ∈ N if and only if
gj = 0. Assume that N is non-empty, let t ≥ 1 be its cardinality and let d+ = d − t. Then
a simple calculation shows that the singular values of the corresponding g-circulant matrix

Cn,g =
[
a(r−g◦s)mod n

]n−e

r,s=0
are zero except for few of them given by

√
n̂ [0]σ where

n̂ [0] =
∏

j∈N
nj , n [0] = (nj1 , . . . , njt) , N = {j1, . . . , jt} ,

and σ is any singular value of the matrix




n[0]−e∑

j=0

C∗
j Cj




1
2

. (5.85)

Here Cj is a d+-level g+-circulant matrix with g+ =
(
gk1 , . . . , gk

d+

)
, and of partial sizes

n [> 0] =
(
nk1 , . . . , nk

d+

)
, NC = {k1, . . . , kd+}, and whose expression is

Cj =
[
a(r−g◦s)mod n

]n[>0]−e

r′,s′=0
,

where (r − g ◦ s)k = jk for gk = 0 and r′i = rki
, s′i = ski

, i = 1, . . . , d+. Since most of the
singular values are identically zero, we infer that

{Cn,g} ∼σ (0, G) ,

for any domain G satisfying the requirements of Definition 1.7. Specific examples are worked
out explicitly in Subsection 5.6.3.

Case g = 0. When g = 0 the multi-level block g-circulant is given by

Cn,0 =
[
a(r−0◦s)mod n

]n−e

r,s=0
=
[
a(r)mod n

]n−e

r,s=0
= [ar]

n−e
r,s=0 =




a0 · · · a0
...

...
an−e · · · an−e


 .

A simple computation shows that all the singular values are zero except for a few of them

given by
√

n̂σ, where n̂ = n1n2 · · ·nd and σ is any singular value of the matrix

(
n−e∑
j=0

a∗jaj

) 1
2

.

Of course in the scalar case where p = q = 1 the choice of σ is unique and by the above formula
it coincides with the Euclidean norm of the first column a of the original matrix. In that case
it is evident that {Cn,0} ∼σ (0, G), for any domain G satisfying the requirements of Definition
1.7.
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5.6.2 Multi-level g-Toeplitz matrices

For multi-level block Toeplitz sequences {Tn} generated by an integrable d variate and matrix-
valued symbol f , Tn := Tn(f), the singular values are not explicitly known but we know the
distribution in the sense of Definition 1.7; see Chapter 4. More precisely we have

{Tn} ∼σ

(
f, Qd

)
, Q = (−π, π) .

When g is a positive vector, the g-Toeplitz matrix generated by f is defined as

Tn,g =
[
a(r−g◦s)

]n−e

r,s=0
,

where aj are the Fourier coefficients of f , and we have that

{Tn,g} ∼σ

(
θ, Qd × [0, 1]d

)
, (5.86)

where

θ (x, t) =





√
̂|f |(2) (x) for t ∈

[
0, 1

g

]
,

0 for t ∈
(

1
g
, e
]
,

(5.87)

with

̂|f |(2) (x) =
1

ĝ

g−e∑

j=0

|f |2
(

x + 2πj

g

)
, (5.88)

and where all the arguments are modulus 2π and all the operations are intended component-

wise; that is, t ∈
[
0, 1

g

]
means that tk ∈

[
0, 1

gk

]
, k = 1, . . . , d, t ∈

(
1
g
, e
]

means that tk ∈
(

1
gk

, 1
]
,

k = 1, . . . , d, the writing x+2πj
g

defines the d-dimensional vector whose (k)th component is
(xk+2πjk)

gk
, k = 1, . . . , d, and ĝ = g1g2 · · · gd.

When some of the entries of g vanish.

Taking into account the notations of Subsection 5.6.1, for the g-Toeplitz Tn,g = [ar−g◦s]
n−e
r,s=0

the same computation shows that all the singular values are zero except for a few of them given
by
√

n̂ [0]σ where σ is any singular value of the matrix




n[0]−e∑

j=0

T ∗
j Tj




1
2

. (5.89)

Here Tj is a d+-level g+-Toeplitz matrix with g+ =
(
gk1 , . . . , gk

d+

)
, and of partial sizes

n [> 0] =
(
nk1 , . . . , nk

d+

)
, NC = {k1, . . . , kd+}, and whose expression is

Tj =
[
a(r−g◦s)

]n[>0]−e

r′,s′=0
,

where (r − g ◦ s)k = jk for gk = 0 and r′i = rki
, s′i = ski

, i = 1, . . . , d+. Also in this case, since
most of the singular values are identically zero, we infer that

{Tn,g} ∼σ (0, G) ,

for any domain G satisfying the requirements of Definition 1.7.
Concrete examples of g-Toeplitz sequences, where some of the entries of g vanish, are treated

in detail in the next subsection together with their spectra.
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Case g = 0. If g = 0 the g-Toeplitz matrix coincides with the g-circulant matrix, so the result
is the same seen in Subsection 5.6.1:

{Tn,g} ∼σ (0, G) ,

for any domain G satisfying the requirements of Definition 1.7.

5.6.3 Examples of g-circulant and g-Toeplitz matrices when some of the
entries of g vanish

We start this subsection with a brief digression on multi-level matrices. A d-level matrix
A ∈ Mn̂ (C) with n = (n1, n2, . . . , nd) and n̂ = n1n2 · · ·nd can be viewed as a matrix of
dimension n1 × n1 in which each element is a block of dimension n2n3 · · ·nd × n2n3 · · ·nd; in
turn, each block of dimension n2n3 · · ·nd × n2n3 · · ·nd can be viewed as a matrix of dimension
n2 × n2 in which each element is a block of dimension n3n4 · · ·nd × n3n4 · · ·nd, and so on. So
we can say that n1 is the most “outer” dimension of the matrix A and nd is the most “inner”
dimension. If we multiply by an appropriate permutation matrix P the d-level matrix A, we can
exchange the “order of dimensions” of A, namely P⊤AP becomes a matrix again of dimension

n̂ × n̂ but with n =
(
np(1), np(2), . . . , np(d)

)
and n̂ = np(1)np(2) · · ·np(d) = n1n2 · · ·nd (where p

is a permutation of d elements) and np(1) is the most “outer” dimension of the matrix A and
np(d) is the most “inner” dimension.

This trick helps us to understand what happens to the singular values of g-circulant and
g-Toeplitz d-level matrices, especially when some of the entries of the vector g are zero; indeed,
as we observed in Subsection 5.6.1, if g = 0, the d-level g-circulant (or g-Toeplitz) matrix
Cn,0 is a block matrix with constant blocks on each row, so if we order the vector g (which
has some components equal to zero) so that the components equal to zero are in the top
positions, g = (0, . . . , 0, gk, . . . , gd), the matrix P⊤Cn,0P (where P is the permutation matrix
associated with p) becomes a block matrix with constant blocks on each row and with blocks of
dimension nk · · ·nd × nk · · ·nd; with this “new” structure, formulae (5.85) and (5.89) are even
more intuitively understandable, as we shall see later in the examples.

Lemma 5.22. Let Tn ∈ Mn̂ (C) be a 2-level Toeplitz matrix with n = (n1, n2) and n̂ = n1n2,

Tn =

[[
a(j1−k1,j2−k2)

]n2−1

j2,k2=0

]n1−1

j1,k1=0
.

There exists a permutation matrix P such that

P⊤TnP =

[[
a(j1−k1,j2−k2)

]n1−1

j1,k1=0

]n2−1

j2,k2=0
.

Example 5.23. Let n = (n1, n2) = (2, 3) and consider the 2-level Toeplitz matrix Tn of
dimension 6 × 6

Tn =




a(0,0) a(0,−1) a(0,−2) a(−1,0) a(−1,−1) a(−1,−2)

a(0,1) a(0,0) a(0,−1) a(−1,1) a(−1,0) a(−1,−1)

a(0,2) a(0,1) a(0,0) a(−1,2) a(−1,1) a(−1,0)

a(1,0) a(1,−1) a(1,−2) a(0,0) a(0,−1) a(0,−2)

a(1,1) a(1,0) a(1,−1) a(0,1) a(0,0) a(0,−1)

a(1,2) a(1,1) a(1,0) a(0,2) a(0,1) a(0,0)




.

This matrix can be viewed as a matrix of dimension 2× 2 in which each element is a block
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of dimension 3 × 3. If we take the permutation matrix

P =




1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1




,

then it is plain to see that

P⊤TnP =




a(0,0) a(−1,0) a(0,−1) a(−1,−1) a(0,−2) a(−1,−2)

a(1,0) a(0,0) a(1,−1) a(0,−1) a(1,−2) a(0,−2)

a(0,1) a(−1,1) a(0,0) a(−1,0) a(0,−1) a(−1,−1)

a(1,1) a(0,1) a(1,0) a(0,0) a(1,−1) a(0,−1)

a(0,2) a(−1,2) a(0,1) a(−1,1) a(0,0) a(−1,0)

a(1,2) a(0,2) a(1,1) a(0,1) a(1,0) a(0,0)




,

and now P⊤TnP can be naturally viewed as a matrix of dimension 3× 3 in which each element
is a block of dimension 2 × 2.

Corollary 5.24. Let Tn ∈ Mn̂ (C) be a d-level Toeplitz matrix with n = (n1, n2, . . . , nd) and
n̂ = n1n2 · · ·nd,

Tn =

[[
· · ·
[
a(j1−k1,j2−k2,...,jd−kd)

]nd−1

jd,kd=0
· · ·
]n2−1

j2,k2=0

]n1−1

j1,k1=0

.

For every permutation p of d elements, there exists a permutation matrix P such that

P⊤TnP =

[[
· · ·
[
a(j1−k1,j2−k2,...,jd−kd)

]np(d)−1

jp(d),kp(d)=0
· · ·
]np(2)−1

jp(2),kp(2)=0

]np(1)−1

jp(1),kp(1)=0

.

Remark 5.25. Lemma 5.22 and Corollary 5.24 also apply to d-level g-circulant and g-Toeplitz
matrices.

Now, let g = (g1, g2, . . . , gd) be a d-dimensional vector of non-negative integers and t =
♯ {j : gj = 0} be the number of zero entries of g. If we take a permutation p of d elements
such that gp(1) = gp(2) = · · · = gp(t) = 0, (that is, p is a permutation that moves all the
zero components of the vector g in the top positions), then it is easy to prove that formulae
(5.85) and (5.89) remain the same for the matrices P⊤Cn,gP and P⊤Tn,gP , respectively (where

P is the permutation matrix associated with p), but with n [0] =
(
np(1), np(2), . . . , np(t)

)
and

where Cj and Tj are a d+-level g+-circulant and g+-Toeplitz matrix, respectively, with g+ =(
gp(t+1), gp(t+2), . . . , gp(d)

)
, of partial sizes n [> 0] =

(
np(t+1), np(t+2), . . . , np(d)

)
, and whose

expressions are

Cj =

[[
· · ·
[
a(r−g◦s)mod n

]np(d)−1

rp(d),sp(d)=0
· · ·
]np(t+2)−1

rp(t+2),sp(t+2)=0

]np(t+1)−1

rp(t+1),sp(t+1)=0

,

Tj =

[[
· · ·
[
a(r−g◦s)

]np(d)−1

rp(d),sp(d)=0
· · ·
]np(t+2)−1

rp(t+2),sp(t+2)=0

]np(t+1)−1

rp(t+1),sp(t+1)=0

,

with
(
rp(1), rp(2), . . . , rp(t)

)
= j. Obviously

Ω (Cn,g) = Ω
(
P⊤Cn,gP

)
,

Ω(Tn,g) = Ω
(
P⊤Tn,gP

)
.
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We proceed with two detailed examples: a 3-level g-circulant matrix with g = (g1, g2, g3) =
(1, 2, 0), and a 3-level g-Toeplitz with g = (g1, g2, g3) = (0, 1, 2), which helps us to understand
what happens if the vector g is not strictly positive. Finally we will propose the explicit
calculation of the singular values of a d-level g-circulant matrix in the particular case where
the vector g has only one component different from zero.

Example 5.26. Consider a 3-level g-circulant matrix Cn,g where g = (g1, g2, g3) = (1, 2, 0)

Cn,g =

[[[
a((r1−1·s1)mod n1,(r2−2·s2)mod n2,(r3−0·s3)mod n3)

]n3−1

r3,s3=0

]n2−1

r2,s2=0

]n1−1

r1,s1=0

=

[[[
a((r1−s1)mod n1,(r2−2s2)mod n2,r3)

]n3−1

r3=0

]n2−1

r2,s2=0

]n1−1

r1,s1=0

.

If we choose a permutation p of 3 elements such that

(p (1) , p (2) , p (3)) = (3, 2, 1) ,(
gp(1), gp(2), gp(3)

)
= (0, 2, 1) ,

(
np(1), np(2), np(3)

)
= (n3, n2, n1) ,

and if we take the permutation matrix P related to p, then

P⊤Cn,gP ≡ Ĉn,g =

[[[
a((r1−s1)mod n1,(r2−2s2)mod n2,r3)

]n1−1

r1,s1=0

]n2−1

r2,s2=0

]n3−1

r3=0

.

Now, for r3 = 0, 1, ..., n3 − 1, let us set

Cr3 =

[[
a((r1−s1)mod n1,(r2−2s2)mod n2,r3)

]n1−1

r1,s1=0

]n2−1

r2,s2=0
.

As a consequence, Cr3 is a 2-level g+-circulant matrix with g+ = (2, 1) and of partial sizes
n [> 0] = (n2, n1) and the matrix Ĉn,g can be rewritten as

Ĉn,g =




C0 C0 · · · C0

C1 C1 · · · C1
...

...
...

...
Cn3−1 Cn3−1 · · · Cn3−1




,

and this is a block matrix with constant blocks on each row. From formula (1.5), the singular
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values of Ĉn,g are the square root of the eigenvalues of Ĉ∗
n,gĈn,g:

Ĉ∗
n,gĈn,g =




C∗
0 C∗

1 · · · C∗
n3−1

C∗
0 C∗

1 · · · C∗
n3−1

...
...

...
...

C∗
0 C∗

1 · · · C∗
n3−1







C0 C0 · · · C0

C1 C1 · · · C1
...

...
...

...
Cn3−1 Cn3−1 · · · Cn3−1




=




n3−1∑
j=0

C∗
j Cj

n3−1∑
j=0

C∗
j Cj · · ·

n3−1∑
j=0

C∗
j Cj

n3−1∑
j=0

C∗
j Cj

n3−1∑
j=0

C∗
j Cj · · ·

n3−1∑
j=0

C∗
j Cj

...
...

...
...

n3−1∑
j=0

C∗
j Cj

n3−1∑
j=0

C∗
j Cj · · ·

n3−1∑
j=0

C∗
j Cj




=




1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1




︸ ︷︷ ︸
n3 times

⊗
n3−1∑

j=0

C∗
j Cj

= Jn3 ⊗
n3−1∑

j=0

C∗
j Cj .

Therefore

Λ
(
Ĉ∗

n,gĈn,g

)
= Λ


Jn3 ⊗

n3−1∑

j=0

C∗
j Cj


 , (5.90)

where

Λ (Jn3) = {0, n3} , (5.91)

because Jn3 is a matrix of rank 1, so it has all eigenvalues equal to zero except one eigenvalue
equal to tr (Jn3) = n3 (tr is the trace of a matrix). If we put

λk = λk




n3−1∑

j=0

C∗
j Cj


 , k = 0, . . . , n1n2 − 1,

by exploiting basic properties of the tensor product and taking into consideration (5.90) and
(5.91) we find

λk

(
Ĉ∗

n,gĈn,g

)
= n3λk, k = 0, . . . , n1n2 − 1, (5.92)

λk

(
Ĉ∗

n,gĈn,g

)
= 0, k = n1n2, . . . , n1n2n3 − 1. (5.93)

From (5.92), (5.93) and (1.5), and recalling that Ω
(
Ĉn,g

)
= Ω(Cn,g), one obtains that the

singular values of Cn,g are given by

σk (Cn,g) =
√

n3λk, k = 0, . . . , n1n2 − 1,

σk (Cn,g) = 0, k = n1n2, . . . , n1n2n3 − 1,

and, since
n3−1∑
j=0

C∗
j Cj is a positive semidefinite matrix, from (1.5) we can write

σk (Cn,g) =
√

n3σ̃k, k = 0, . . . , n1n2 − 1,

σk (Cn,g) = 0, k = n1n2, . . . , n1n2n3 − 1,
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where σ̃k are the singular values of

(
n3−1∑
j=0

C∗
j Cj

) 1
2

.

Regarding the distribution in the sense of singular values, let F ∈ C0

(
R+

0

)
, continuous

function over R+
0 with bounded support, then there exists a ∈ R+ such that

|F (x)| ≤ a ∀x ∈ R+
0 . (5.94)

From formula (1.19) we have

Σσ (F, Cn,g) =
1

n1n2n3

n1n2n3−1∑

k=0

F (
√

n3σ̃k)

=
n1n2 (n3 − 1) F (0)

n1n2n3
+

1

n1n2n3

n1n2−1∑

k=0

F (
√

n3σ̃k)

=

(
1 − 1

n3

)
F (0) +

1

n1n2n3

n1n2−1∑

k=0

F (
√

n3σ̃k) .

According to (5.94), we find

−an1n2 ≤
n1n2−1∑

k=0

F (
√

n3σ̃k) ≤ an1n2.

Therefore

− a

n3
≤ 1

n1n2n3

n1n2−1∑

k=0

F (
√

n3σ̃k) ≤
a

n3
,

so that
(

1 − 1

n3

)
F (0) − a

n3
≤ Σσ (F, Cn,g) ≤

(
1 − 1

n3

)
F (0) +

a

n3
.

Now, recalling that the writing n → ∞ means min
j=1,...,3

nj → ∞, we obtain

F (0) ≤ lim
n→∞Σσ (F, Cn,g) ≤ F (0) ,

which implies

lim
n→∞Σσ (F, Cn,g) = F (0) .

Whence

{Cn,g} ∼σ (0, G) ,

for any domain G satisfying the requirements of Definition 1.7.

Example 5.27. Consider a 3-level g-Toeplitz matrix Tn,g where g = (g1, g2, g3) = (0, 1, 2)

Tn,g =

[[[
a(r1−0·s1,r2−1·s2,r3−2·s3)

]n3−1

r3,s3=0

]n2−1

r2,s2=0

]n1−1

r1,s1=0

=

[[[
a(r1,r2−s2,r3−2s3)

]n3−1

r3,s3=0

]n2−1

r2,s2=0

]n1−1

r1=0

.
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The procedure is the same as in the previous example of a g-circulant matrix, but in this
case we do not need to permute the vector g since the only component equal to zero is already
in first position. For r1 = 0, 1, ..., n1 − 1, let us set

Tr1 =

[[
a(r1,r2−s2,r3−2s3)

]n3−1

r3,s3=0

]n2−1

r2,s2=0
,

then Tr1 is a 2-level g+-Toeplitz matrix with g+ = (1, 2) and of partial sizes n [> 0] = (n2, n3)
and

Tn,g =




T0 T0 · · · T0

T1 T1 · · · T1
...

...
...

...
Tn1−1 Tn1−1 · · · Tn1−1




.

The latter is a block matrix with constant blocks on each row. From formula (1.5), the
singular values of Tn,g are the square root of the eigenvalues of T ∗

n,gTn,g:

T ∗
n,gTn,g =




T ∗
0 T ∗

1 · · · T ∗
n1−1

T ∗
0 T ∗

1 · · · T ∗
n1−1

...
...

...
...

T ∗
0 T ∗

1 · · · T ∗
n1−1







T0 T0 · · · T0

T1 T1 · · · T1
...

...
...

...
Tn1−1 Tn1−1 · · · Tn1−1




=




n1−1∑
j=0

T ∗
j Tj

n1−1∑
j=0

T ∗
j Tj · · ·

n1−1∑
j=0

T ∗
j Tj

n1−1∑
j=0

T ∗
j Tj

n1−1∑
j=0

T ∗
j Tj · · ·

n1−1∑
j=0

T ∗
j Tj

...
...

...
...

n1−1∑
j=0

T ∗
j Tj

n1−1∑
j=0

T ∗
j Tj · · ·

n1−1∑
j=0

T ∗
j Tj




=




1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1




︸ ︷︷ ︸
n1 times

⊗
n1−1∑

j=0

T ∗
j Tj

= Jn1 ⊗
n1−1∑

j=0

T ∗
j Tj .

Therefore

Λ
(
T ∗

n,gTn,g

)
= Λ


Jn1 ⊗

n1−1∑

j=0

T ∗
j Tj


 , (5.95)

where

Λ (Jn1) = {0, n1} , (5.96)

because Jn1 is a matrix of rank 1, so it has all eigenvalues equal to zero except one eigenvalue
equal to tr (Jn1) = n1 (tr is the trace of a matrix). If we put

λk = λk




n1−1∑

j=0

T ∗
j Tj


 , k = 0, . . . , n3n2 − 1,
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by exploiting basic properties of the tensor product and taking into consideration (5.95) and
(5.96) we find

λk

(
T ∗

n,gTn,g

)
= n1λk, k = 0, . . . , n3n2 − 1, (5.97)

λk

(
T ∗

n,gTn,g

)
= 0, k = n3n2, . . . , n3n2n1 − 1. (5.98)

From (5.97), (5.98) and (1.5), one obtains that the singular values of Tn,g are given by

σk (Tn,g) =
√

n1λk, k = 0, . . . , n3n2 − 1,

σk (Tn,g) = 0, k = n3n2, . . . , n3n2n1 − 1,

and, since
n1−1∑
j=0

T ∗
j Tj is a positive semidefinite matrix, from (1.5) we can write

σk (Tn,g) =
√

n1σ̃k, k = 0, . . . , n3n2 − 1,

σk (Tn,g) = 0, k = n3n2, . . . , n3n2n1 − 1,

where σ̃k denotes the generic singular value of

(
n1−1∑
j=0

T ∗
j Tj

) 1
2

.

Regarding the distribution in the sense of singular values, by invoking exactly the same
argument as in the above example for g-circulant matrix, we deduce that

{Tn,g} ∼σ (0, G) ,

for any domain G satisfying the requirements of Definition 1.7.

Example 5.28. Let us see what happens when the vector g has only one component different
from zero. Let n = (n1, n2, . . . , nd) and g = (0, . . . , 0, gk, 0, . . . , 0), gk > 0; in this case we
can give an explicit formula for the singular values of the d-level g-circulant matrix. For
convenience and without loss of generality we take g = (0, . . . , 0, gd) (with all zero components
in top positions, otherwise we use a permutation). From Subsection 5.6.1, the singular values

of Cn,g =
[
a(r−g◦s)mod n

]n−e

r,s=0
are zero except for few of them given by

√
n̂ [0]σ where, in our

case, n̂ [0] = n1n2 · · ·nd−1, n [0] = (n1, n2, . . . , nd−1), and σ is any singular value of the matrix




n[0]−e∑

j=0

C∗
j Cj




1
2

,

where Cj is a gd-circulant matrix of dimension nd × nd whose expression is

Cj =
[
a(r−g◦s)mod n

]nd−1

rd,sd=0
=

[
a(r1,r2,...,rd−1,(rd−gdsd)mod nd)

]nd−1

rd,sd=0

=
[
a(j,(rd−gdsd)mod nd)

]nd−1

rd,sd=0
,

with (r1, r2, . . . , rd−1) = j. For j = 0, . . . , n [0] − e, if C
(j)
nd is the circulant matrix which has as

its first column the vector a(j) =
[
a(j,0), a(j,1), . . . , a(j,nd−1)

]⊤
(which is the first column of the

matrix Cj), C
(j)
nd =

[
a(j,(r−s)mod nd)

]nd−1

r,s=0
= Fnd

D
(j)
nd F ∗

nd
, with D

(j)
nd = diag

(√
ndF

∗
nd

a(j)
)
, then,
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from (5.47), (5.8), and (5.11), it is immediate to verify that

n[0]−e∑

j=0

C∗
j Cj =

n[0]−e∑

j=0

(
Fnd

D(j)
nd

F ∗
nd

Znd,gd

)∗ (
Fnd

D(j)
nd

F ∗
nd

Znd,gd

)

=

n[0]−e∑

j=0

(
F ∗

nd
Znd,gd

)∗ (
D(j)

nd

)∗
D(j)

nd

(
F ∗

nd
Znd,gd

)

=
(
F ∗

nd
Znd,gd

)∗



n[0]−e∑

j=0

(
D(j)

nd

)∗
D(j)

nd



(
F ∗

nd
Znd,gd

)
.

Now, if we put nd,g = nd

(nd,gd) and

q(j)
s =

∣∣∣D(j)
nd

∣∣∣
2

s,s
=
(
D(j)

nd

)
s,s

·
(
D

(j)
nd

)
s,s

, s = 0, 1, . . . , nd − 1,

∆l =




n[0]−e∑
j=0

q
(j)
(l−1)nd,g

n[0]−e∑
j=0

q
(j)
(l−1)nd,g+1

. . .
n[0]−e∑
j=0

q
(j)
(l−1)nd,g+nd,g−1




∈ Mnd,g
(R) ,

for l = 1, 2, . . . , (nd, gd), then, following the same reasoning employed for proving formula
(5.48), we infer

Λ




n[0]−e∑

j=0

C∗
j Cj


 =

1

(nd, gd)
Λ


J(nd,gd) ⊗

(nd,gd)∑

l=1

∆l


 ,

where

J(nd,gd) =




1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1




︸ ︷︷ ︸
(nd, gd) times

,

1

(nd, gd)
Λ
(
J(nd,gd)

)
= {0, 1} ,

and

(nd,gd)∑

l=1

∆l =

(nd,gd)∑

l=1

diag
k=0,...,nd,g−1




n[0]−e∑

j=0

q
(j)
(l−1)nd,g+k




= diag
k=0,...,nd,g−1




(nd,gd)∑

l=1

n[0]−e∑

j=0

q
(j)
(l−1)nd,g+k


 .

Consequently, since
(nd,gd)∑

l=1
∆l is a diagonal matrix, and by exploiting basic properties of the
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tensor product, we find

λk




n[0]−e∑

j=0

C∗
j Cj


 =

(nd,gd)∑

l=1

n[0]−e∑

j=0

q
(j)
(l−1)nd,g+k

, k = 0, 1, . . . , nd,g − 1,

λk




n[0]−e∑

j=0

C∗
j Cj


 = 0, k = nd,g, . . . , nd − 1.

Now, since
n[0]−e∑
j=0

C∗
j Cj is a positive semidefinite matrix, from (1.5) we finally have

σk







n[0]−e∑

j=0

C∗
j Cj




1
2


 =

√√√√√
(nd,gd)∑

l=1

n[0]−e∑

j=0

q
(j)
(l−1)nd,g+k

, k = 0, 1, . . . , nd,g − 1,

σk







n[0]−e∑

j=0

C∗
j Cj




1
2


 = 0, k = nd,g, . . . , nd − 1.





Part II

Spectral Distributions of

Structured Matrix-Sequences:

Applications





Chapter 6

A note on the (regularizing)
preconditioning of g-Toeplitz
sequences via g-circulants

In Chapter 5 we addressed the problem of characterizing the singular values and the eigenvalues
of g-circulants and of providing an asymptotic analysis of the distribution results for the singular
values of g-Toeplitz sequences, in the case where the sequence of values {ak}, defining the entries
of the matrices, can be interpreted as the sequence of Fourier coefficients of an integrable
function f over the domain (−π, π). Such results were plainly generalized the block, multi-
level case, amounting to choose the symbol f multivariate, i.e., defined on the set (−π, π)d for
some d > 1, and matrix-valued, i.e., such that f (x) is a matrix of given size p × q.
Here we consider the preconditioning problem. In particular, we consider the general case
with g ≥ 2 and the interesting result is that the preconditioned sequence {Pn} =

{
P−1

n An

}
,

where {Pn} is the sequence of preconditioner, cannot be clustered at 1 so that the case of
g = 1, widely studied in the literature, is exceptional (see, e.g., [24, 26] for the one-level
case, [80] for the multi-level case, and [81] for the multi-level block case). However, in this
chapter we will see that while the optimal preconditioning cannot be achieved, the result has
a positive implication since there exist choices of g-circulant sequences which are regularizing
preconditioning sequence for the corresponding g-Toeplitz structures.

6.1 General tools from preconditioning theory

When preconditioning a spectrally bounded sequence it is compulsory to use a spectrally
bounded sequence of preconditioners; otherwise the preconditioned sequence will have nec-
essarily the minimal singular value tending to zero with the size and this is known to spoil the
convergence speed of any Krylov like technique (see for instance the classical result of Axelsson,
Lindkog [6] in the context of the conjugate gradient). Therefore, if we look at a preconditioned
sequence {Pn} =

{
P−1

n An

}
, where {Pn} is the sequence of preconditioners, such that {Pn − In}

is clustered at 0, then the difference between the original sequence and the sequence of pre-
conditioners, that is {An − Pn}, should be clustered at zero too. The latter tells us that if the
original sequence has a given distribution then, necessarily, the preconditioning sequence has
to be chosen with the same distribution. Such key statements and other theoretical tools are
given and proven below.

Lemma 6.1. Consider a sequence {An}, where An ∈ Mdn
(C) (dk < dk+1 for each k). Then

the following are equivalent.

• There exists a sequence {Dn} so that ‖An − Dn‖2
2 = o (dn) and rank(Dn) = o (dn).
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• There exists a sequence {Dn} so that ∀p ∈ [1, +∞) it holds ‖An − Dn‖p
p = o (dn),

rank(Dn) = o (dn).

• There exist a function x (s) such that lim
s→0

x (s) = 0 so that ∀ε > 0 ∃nε ∈ N such that

∀n ≥ nε it holds An = Nn + Rn, with ‖Nn‖ ≤ ε and rank (Rn) ≤ x (ε) dn.

• The sequence {An} is clustered at zero (refer to Definition 1.8).

• The sequence {An} is spectrally distributed as the identically null function (refer to Def-
inition 1.7).

Proof. It is a direct check by making a clever use of the singular value decomposition [46].

Lemma 6.2. Consider two sequences {An} and {Bn}, where An, Bn ∈ Mdn
(C) (dk < dk+1 for

each k). If there exists a sequence {Dn} so that ‖An − Bn − Dn‖2
2 = o (dn) and rank(Dn) =

o (dn), then the sequence {An − Bn} is spectrally distributed as the identically null function
(in the sense of Definition 1.7) and the sequences {An} and {Bn} are equally distributed (in
the sense of the last part of Definition 1.7). In addition, if one of the sequences is spectrally
distributed as a function then the other sequence possesses the same distribution.

Proof. By the equivalence Lemma 6.1 we get that {An − Bn} ∼σ 0. The equal distribution
of the sequences {An} and {Bn} was proved by Tyrtyshnikov [116]. Lastly, if one of the
sequences is spectrally distributed as a function then, by definition of equal distribution, it is
easy to recognize that the other sequence possesses the same distribution.

Theorem 6.3. Let {Xn} and {Pn} be two sequences of matrices, with Xn, Pn ∈ Mdn
(C) (dk <

dk+1 for each k). Let {In}, In ∈ Mdn
(R), be the sequence of identity matrices. Suppose that

the sequence {Xn} is sparsely unbounded, the matrices Pn are all invertible and the sequence{
P−1

n Xn − In

}
is clustered at 0. Then {Xn − Pn} ∼σ 0 and the sequences {Pn} and {Xn} are

equally distributed. In addition, if the sequence {Xn} is distributed as a function then the
sequence {Pn} has the same distribution.

Finally, if {Xn − Pn} ∼σ 0 that is {Xn − Pn} is clustered at 0, then
{
P−1

n Xn − In

}
is

clustered at 0, under the condition that
{
P−1

n

}
is sparsely unbounded that is {Pn} is sparsely

vanishing.

Proof. From the third assumption, by putting Yn = Xn − Pn, we have
{
P−1

n Xn − In

}
={

P−1
n Yn

} ∼σ 0 (by Lemma 6.1). Therefore, again by invoking Lemma 6.1, there exists a
function x̃ (s) such that lim

s→0
x̃ (s) = 0 so that ∀ε > 0 ∃nε ∈ N such that ∀n ≥ nε we have

P−1
n Yn = Ñn + R̃n, with

∥∥∥Ñn

∥∥∥ ≤ ε

2
, (6.1)

rank
(
R̃n

)
≤ x (ε) dn. (6.2)

Consequently an explicit computation implies

P−1
n Xn = In + Ñn + R̃n,

that is

Xn = Pn

(
In + Ñn

)
+ PnR̃n,

and finally

Pn − Xn = XnNn + Rn,
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with

Nn =
(
In + Ñn

)−1
− In, (6.3)

Rn = −PnR̃n

(
In + Ñn

)−1
. (6.4)

Now relations (6.3) and (6.1), and ε < 1 imply

‖Nn‖ ≤ ε,

while relations (6.4) and (6.2) lead to

rank (Rn) ≤ x (ε) dn.

Since the sequence {Xn} is sparsely unbounded we deduce that {XnNn} ∼σ 0 by virtue
of Lemma 2.14 and therefore, by using the third part of Lemma 6.1, we deduce {Yn} =
{Xn − Pn} = {−XnNn − Rn} ∼σ 0. Furthermore, from the last part of Lemma 6.2, we infer
that the sequences {Xn} and {Pn} are equally distributed. Now, if the sequence {Xn} is dis-
tributed as a function, then the definition of equally distributed implies that the sequence {Pn}
has the same distribution.

For the last part we just observe that P−1
n Xn − In = P−1

n (Xn − Pn) so that Lemma 2.14
implies

{
P−1

n Xn − In

} ∼σ 0 if {Xn − Pn} ∼σ 0 and
{
P−1

n

}
is sparsely unbounded (which is the

same as {Pn} is sparsely vanishing given the invertibility of each Pn and thanks to Lemma
2.11).

Remark 6.4. Theorem 6.3 has a “philosophical” meaning. If we think to the matrices Pn as
preconditioners, then Theorem 6.3 states that a good preconditioning sequence {Pn} inherits
from the original sequence {Xn} the distribution, if any. Moreover if the sequence {Xn} is
sparsely unbounded (sparsely vanishing) then the same is true for the sequence {Pn}.
Remark 6.5. The sparsely unboundedness assumption of {Xn} is necessary and cannot be
removed as far as we are concerned with Theorem 6.3. For instance, take Xn = (n + 1) In and

Pn = nIn. Then the sequence
{
P−1

n Xn − In

}
=
{

In

n

}
is clustered at 0, but {Xn − Pn} = {In}

is not. However {Xn} and {Pn} have the same distribution function, since they are both
distributed as the constant function ∞.

Theorem 6.6. Let {Xn}, {Yn} and {Pn} be three sequences of matrices, with Xn, Yn, Pn ∈
Mdn

(C) (dk < dk+1 for each k), and Pn invertible for any n. Let {In} be the sequence of
identity matrices, In ∈ Mdn

(R). Suppose that

1. the sequence {Xn} is sparsely vanishing,

2. the sequence {Xn − Yn} is clustered at 0,

3. the sequence
{
P−1

n Xn − In

}
is clustered at 0.

Then the sequence
{
P−1

n Yn − In

}
is clustered at 0.

Proof. The matrices P−1
n Yn − In can clearly be split as

P−1
n Yn − In =

(
P−1

n Xn − In

)
+ P−1

n (Yn − Xn) , (6.5)

where the sequence
{
P−1

n Xn − In

}
is clustered at 0 by assumption 3. Moreover the sequence

{Pn} is sparsely vanishing since the sequence {Xn} is sparsely vanishing (see Remark 6.4).
Therefore the application of Lemmas 2.11 and 2.14 proves that the sequence

{
P−1

n (Yn − Xn)
}

is clustered at 0. As a final statement, in the light of equation (6.5), the sequence
{
P−1

n Yn − In

}

is expressed as the sum of two matrix-sequences that are clustered at 0, so that the proof is
concluded, by invoking Proposition 2.4 with θ = 0.
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6.2 Preconditioning of g-Toeplitz sequences via g-circulant se-
quences

We start by analyzing the possibility of a standard preconditioning in the light of the distribu-
tion results of Chapter 5 and of the analysis of Section 6.1. Then we consider the preconditioning
in a regularizing context.

6.2.1 Consequences of the distribution results on precond. of g-Toeplitz
sequences

We study the possibility of a standard preconditioning taking into consideration the distribution
results of Chapter 5 and of the analysis of Section 6.1.

First of all Theorem 6.3 tells one that {Pn} is a good preconditioning sequence for {Xn}
(that is

{
P−1

n Xn − In

} ∼σ 0) if and only if {Xn − Pn} ∼σ 0 and {Pn} sparsely vanishing, with
the matrices Pn all invertible. The consequences below are of paramount importance:

• The vector g has to be strictly positive; if not the original problem Tn,gx = b is sub-
stantially ill-posed since {Tn,g} ∼σ 0 (see the end of Section 5.5) and in addition Cn,g is
singular and indeed {Cn,g} ∼σ 0 which violates the crucial condition of Theorem 6.3 that
{Pn} is sparsely vanishing with Pn = Cn,g.

• Even in the case that g is strictly positive, relations (5.86), (5.87), and (5.88) imply that
{Xn} with Xn = Tn,g is sparsely vanishing if and only if f is sparsely vanishing and gi = 1
(or more generally gi = ±1), i = 1, . . . , d. In other words, again by Theorem 6.3, a good
preconditioning can be achieved only in standard case of multi-level Toeplitz sequences
and in fact the latter is a case widely studied in the literature [24, 26, 80] (for d = 1
also with strong clustering when f is continuous [80], while for d > 1 the clustering is
necessarily weak due to the computational barrier proven in [97]).

• In any case the condition required by Theorem 6.3 that the sequences {Xn}, {Pn}, with
Xn = Tn,g, Pn = Cn,g, share the same distribution symbol is quite tricky. By comparing
(5.86), (5.87), (5.88) and (5.82), (5.83), (5.84), the latter is possible only for the case
where gi =gcd(ni, gi), i = 1, . . . , d, and we have to choose p = 1

ĝ
f .

In conclusion, a good preconditioning can be reached only in the standard multi-level
Toeplitz setting. However, by looking at the preconditioning in a different sense, something
useful can be said.

6.2.2 Regularizing preconditioning

Suppose that {Xn} is a sequence of matrices with Xn ∈ Mdn
(C) (dk < dk+1 for each k) and

there exists a sequence of subspaces {Sn} of size rn being the integer part of cdn, c ∈ (0, 1) for
which ∀ǫ > 0, ∃nǫ and

‖Xnv‖2 ≤ ǫ ‖v‖2 , ∀v ∈ Sn,∀n ≥ nǫ.

This situation naturally arises when {Xn} ∼σ (θ, G) with θ vanishing on Ĝ ⊂ G with
m{Ĝ}
m{G} = c, m {·} being the Lebesgue measure and |θ| > 0 almost everywhere in the complement

G\Ĝ. Under such conditions we look for a preconditioning {Jn} already in inverse form such
that

‖JnXnv‖2 ≤ ǫ ‖v‖2 , ∀v ∈ Sn,∀n ≥ ñǫ,

‖JnXnv − v‖2 ≤ ǫ ‖v‖2 , ∀v ∈ S⊥
n ,∀n ≥ ñǫ.
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In other words JnXn when restricted to Sn is close to the null matrix, while it is close to the
identity matrix in the orthogonal complement. These conditions, amounting in writing that
JnXn is an ǫ-perturbation of

[
Irn 0

0 0

]
,

will be verified in the subsequent Subsection 6.2.3.

6.2.3 The analysis of regularizing preconditioners when p = q = d = 1 and n
chosen such that (n, g) = 1

According to the very concise analysis in Subsection 6.2.2, we will prove that a proper choice
of the matrix-sequence {Cn,g} leads to a satisfactory regularizing preconditioning for {Tn,g},
at least when the entries of Tn,g comes from the Fourier coefficients of a sparsely vanishing
function f .

Theorem 6.7. Let {Tn,g} be a sequence of g-Toeplitz matrices generated by a sparsely vanishing

function f ∈ L1 (Q), Q = (−π, π), then the sequence
{
C−1

n,g

}
, where {Cn,g} = {CnZn,g}, Cn is

the Frobenius distance minimizer of Tn in the standard circulant algebra and Zn,g defined as in
(5.9), is a regularizing preconditioning for {Tn,g}.

Proof. If we denote by Tn the classical Toeplitz matrix

Tn = [ar−c]
n−1
r,c=0 ,

where the elements aj are the Fourier coefficients of the sparsely vanishing function f in L1 (Q),
and by Tn,g the g-Toeplitz matrix generated by the same function

Tn,g = [ar−gc]
n−1
r,c=0 , (6.6)

where the quantities r − gc are not reduced modulus n. From (5.63) we have that

Tn,g = Tn

[
Ẑn,g 0

]
+
[

0 T̃n,g

]
,

where T̃n,g ∈ Mn,(n−µg) (C) is the matrix Tn,g defined in (6.6) by considering only the n − µg

last columns, and Ẑn,g ∈ Mn,µg (R) is the matrix defined in (5.9) by considering only the µg

first columns.
The g-circulant matrix Cn,g is defined as follows

Cn,g =
[
a(r−gc)mod n

]n−1

r,c=0

= CnZn,g,

where Cn is the classical circulant matrix generated from elements of the first column of Cn,g

and Zn,g is defined as in (5.9) and we suppose that Cn is non-singular and (n, g) =gcd(n, g) = 1,
so that Zn,g is a permutation matrix (see Lemma 5.3). If we choose {Cn} with Cn the Frobenius
distance minimizer of Tn in the standard circulant algebra (the one proposed by Tony Chan in

the one-level setting [26]), by the analysis in [91], for f ∈ L1
(
Qd
)
, we have {Cn} ∼σ

(
f, Qd

)

so that {Cn,g} ∼σ

(
f, Qd

)
whenever (ni, gi) = 1, i = 1, . . . , d, because Zn,g is a permutation

matrix (here we are for the moment interested only in the case where d = 1).
Now we consider the product C−1

n,gTn,g; from (6.7) and since Z⊤
n,gZn,g = In we have that

C−1
n,gTn,g = Z⊤

n,gC
−1
n Tn

[
Ẑn,g|0

]
+ C−1

n,g

[
0|T̃n,g

]
,
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and, since
{
C−1

n Tn

} ∼σ 1 or more precisely if
{
C−1

n Tn − In

} ∼σ 0, i.e.,

C−1
n Tn = In + En, with {En} ∼σ 0,

we obtain

C−1
n,gTn,g = Z⊤

n,gC
−1
n Tn

[
Ẑn,g|0

]
+ C−1

n,g

[
0|T̃n,g

]

= Z⊤
n,g [In + En]

[
Ẑn,g|0

]
+ C−1

n,g

[
0|T̃n,g

]

= Z⊤
n,g

[
Ẑn,g|0

]
+ Z⊤

n,gEn

[
Ẑn,g|0

]
+ C−1

n,g

[
0|T̃n,g

]

=

[
Iµg 0

0 0

]
+ Z⊤

n,gEn

[
Ẑn,g|0

]
+ C−1

n,g

[
0|T̃n,g

]
.

From Lemma 2.6, since
∥∥∥Z⊤

n,g

∥∥∥ = 1 and
∥∥∥
[
Ẑn,g|0

]∥∥∥ = 1 (indeed the first is a permutation

matrix and the second is an “incomplete” permutation matrix), and since {En} ∼σ 0, we

infer that
{
Z⊤

n,gEn

[
Ẑn,g|0

]}
∼σ 0. Moreover, since {Cn} , {Cn,g} ∼σ (f, Q) with f sparsely

vanishing, from Proposition 2.7 and Lemma 2.11 we have that
{
C−1

n,g

}
is sparsely unbounded.

Finally, since in Proposition 5.20 it was shown that

{[
0|T̃n,g

]}
∼σ (0, Q) ,

from Lemma 2.14, we deduce that
{
C−1

n,g

[
0|T̃n,g

]}
∼σ 0 and the proof is concluded.

Remark 6.8. In Theorem 6.7 any preconditioning sequence {Cn} for which
{
C−1

n Tn − In

} ∼σ

0 will lead to a preconditioning sequence {Cn,g} with regularizing features. In other words the
choice of the Frobenius optimal preconditioners is just a possible example.

6.3 Generalizations

With all the constraints of Subsection 6.2.3 we can allow to have d > 1 that is n = (n1, . . . , nd)
sequence of integer positive vectors with (ni, gi) = 1, i = 1, . . . , d, so that Zn,g is still a per-
mutation matrix. The proof reported in Subsection 6.2.3 is identical with the only observation

that the cluster of
{
C−1

n,gTn,g − In

}
is weak and not strong, due to the computational barrier

proven in [97]. More precisely, under the assumption of positivity and continuity of |f |, by
using the Korovkin Theory [80] and the Tony Chan preconditioners, we find that the number

of outliers of
{
C−1

n,gTn,g − In

}
grows asymptotically as n̂

(
d∑

j=1
nj

)
, n̂ = n1n2 · · ·nd. Moreover

the weak clustering can be achieved by using the mild assumption that f is only Lebesgue
integrable and sparsely vanishing (see [91]).

Furthermore, by following the approach in [81], nothing changes if we assume that the
multilevel setting is accompanied by the block setting i.e. p + q ≥ 3 (somehow the only
condition is the recourse to the Moore-Penrose inverse when p 6= q).

A bit trickier is the case where the assumption (ni, gi) = 1, i = 1, . . . , d, is dropped.
In that case Cn,g = CnZn,g is inherently singular due to the singularity of Zn,g whose rank

is n̂g = n1
(n1,g1)

n2
(n2,g2) · · ·

nd

(nd,gd) with µg ≤ ng < n, µg =
(⌈

n1
g1

⌉
, · · · ,

⌈
nd

gd

⌉)
(see Lemma 5.3,

where all the objects n, g, µg, ng, (n, g) are d-dimensional vectors of positive integers and the
inequalities are componentwise). In this case a good preconditioner already in inverse form is

Jn = Z⊤
n,gC

−1
n ,
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with Cn the usual Tony Chan preconditioner (refer to Subsection 6.2.2). Since µg ≤ ng < n
(because 1 < (n, g) ≤ g) by Lemma 5.3 we find

Z̃⊤
n,gẐn,g =

[
Iµg

0

]
.

As a consequence the proof given in Subsection 6.2.3 is the same and the final result is
identical: for the sake of completeness we only observe that the term C−1

n,g is always replaced

by Z⊤
n,gC

−1
n so that

{
C−1

n

[
0|T̃n,g

]}
∼σ 0 because {Cn} ∼σ

(
f, Qd

)
with f sparsely vanishing

and
{[

0|T̃n,g

]}
∼σ 0 (see Proposition 2.7, Lemma 2.11, Lemma 2.14 and (5.73)), and finally

{
Z⊤

n,gC
−1
n

[
0|T̃n,g

]}
∼σ 0 because of Proposition 2.4, where Z⊤

n,g plays the role of Qn and

C−1
n

[
0|T̃n,g

]
plays the role of Bn.

Finally we observe that we have emphasized the role of the Frobenius optimal preconditioner
proposed by Tony Chan, for which a very general and rich clustering analysis is available
thanks to the Korovkin Theory. However, any other alternative and successful preconditioner
for standard Toeplitz structures can be employed thanks to Theorem 6.6, which states a kind
of useful transitive property.

6.4 Numerical experiments

Aimed of providing numerical evidences to the theoretical results of the previous section, now
we analyze

(i) the distribution of the singular values of g-Toeplitz matrices and related g-circulant pre-
conditioned matrices (Subsection 6.4.1),

(ii) the effectiveness of the g-circulant preconditioning for the solution of the corresponding
g-Toeplitz linear system Ax = b (Subsection 6.4.2), and

(iii) a possible real application related to a 2D inverse problem in imaging (Subsection 6.4.3).

In particular, for the first two points (i) and (ii) we consider six well-known test cases, most
of them firstly used in pioneer works by G. Strang, T. Chan and E. Tyrtyshnikov for the classical
Toeplitz preconditioning (i.e., g = 1). For each of any considered test, we report the elements
of the first column A1,k for k = 1, . . . , n, and some basic properties of the corresponding basic
Toeplitz matrix (g = 1).

• Test 1 Ak,1 = k−1

Strictly positive non-Wiener generating function, Well-conditioned [106, 26].

• Test 2 Ak,1 = k−2

Strictly positive Wiener generating function, Well-conditioned [106, 26].

• Test 3 A:,1 = (2,−1, 0, . . . , 0)⊤

Sparsely vanishing trigonometric polynomial generating function f (x) = 2 − 2 cos x, Ill-
conditioned, Zero valued (order 2) at the origin [115].

• Test 4 A:,1 = (20,−15, 6,−1, 0, . . . , 0)⊤

Sparsely vanishing trigonometric polynomial generating function f (x) = (2 − 2 cos x)3,
Ill-conditioned, Zero valued (order 6) at the origin.

• Test 5 A:,1 =
(

π2

2 ,−2, 0,−2
9 , 0,− 2

25 , 0, . . . , 0, − 2
(k−1)2

, 0, . . .
)⊤

Sparsely vanishing generating function f (x) = π |x|, Ill-conditioned, Zero valued (order
1) at the origin [38].
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• Test 6 A:,1 =
(
2, 0, 21

3 , 0,−2 1
15 , 0, 2 1

35 , 0, . . . , 0, (−1)
k+1
2 2

(k−1)2−1
, 0, . . .

)⊤

Sparsely vanishing generating function f (x) = π |cos x|, Ill-conditioned, Zero valued (or-
der 1) at π [38].

We notice that the generating function f is strictly positive in the two (well-conditioned)
test cases 1 and 2, and sparsely vanishing in the four (ill-conditioned) test cases 3,4,5 and 6.

According to Subsection 6.2.2, for any g-Toeplitz test matrix we consider both (i) the
Natural g-circulant preconditioner and (ii) the Optimal g-circulant preconditioner (see [106, 26]
for the classical Toeplitz case g = 1). The numerical test have been developed with MatLab,
and the singular value decomposition has been computed by the built-in MatLab function
svd().

6.4.1 The distribution of the singular values

First, we plot the distribution of the singular values of the g-Toeplitz matrix A ∈ Mn (C), the
corresponding g-circulant preconditioner P , and the preconditioned matrix P−1A, for n = 1000
and g = 2, 3, 7 (n and g are coprime for g = 3 and g = 7, and are not coprime for g = 2). In
particular, we have:

I) Fig. 6.2 and Fig. 6.4 show the singular values of the g-Toeplitz matrices A, the Nat-
ural (top) and Optimal (bottom) g-circulant preconditioners P and the corresponding
preconditioned matrices P−1A in the coprime cases, respectively for g = 3 and g = 7;

II) Fig. 6.6 shows the singular values of the optimal preconditioning in the non-coprime case
g = 2, for two test examples (Test 1 and Test 5).

Before dealing with the preconditioned matrix P−1A, it is quite interesting to notice that
the plotted distribution of the singular values of the g-Toeplitz matrix A and its g-circulant
preconditioner P “exactly” agrees with the corresponding expected distributions (5.86)-(5.87)-
(5.88) and (5.82)-(5.83)-(5.84). Indeed, for g > 1 and sparsely vanishing generating functions,
we have:

(i) regarding the g-Toeplitz matrix A, the first n
g

singular values are positive, and equals to√
̂|f |(2) (x), while the remaining n − n

g
are null, as stated by (5.87) (see the blue line in

Figg. 6.2, 6.4 and 6.6);

(ii) regarding the g-circulant preconditioner P , by introducing the positive integer value γ =
gcd (n, g), if γ = 1 then the singular values are bounded away from zero or sparsely
vanishing as well as the generating function is (see the green line in Figg. 6.2 and 6.4),
and, if γ > 1, the first n

γ
singular values are always bounded away from zero (regardless

the sparsely vanishing generating function is or is not bounded away from zero), and

equals to

√
̂|p|(2) (x), while the remaining n − n

γ
are null, as stated by (5.83) (see the

green line in Fig. 6.6).

In particular, since n = 1000, then γ = 1 for g = 3, 7, and γ = 2 for g = 2: in Fig. 6.2 and
Fig. 6.4 the singular values of the for both the natural and optimal g-circulant preconditioners
are bounded away from zero in the ill-conditioned test cases 1 and 2, and sparsely vanishing
in the well-conditioned test cases 3,4,5 and 6, while one half of the singular values are always
null in Fig. 6.6 (green lines).

It is now interesting to analyze the distribution of the preconditioned matrix.
Any coprime case (Figg. 6.2 and 6.4, red line) gives rise to a good clustering at unity,

in the first n
g

singular values, while the remaining ones are null. This is a results which was

expected in the light of Theorem 6.7: the preconditioned matrix P−1A guarantees a good
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clustering in a subspace which is the most large possible (remember that the rank of A is
n
g
, so that the rank of P−1A is just no larger than n

g
). This good clustering at unity of the

preconditioned matrix P−1A occurs in both the well-conditioned case (see, in Figg. 6.2 and
6.4. the cases Test1 and Test 2, where the preconditioners have no vanishing singular values)
and the ill-conditioned case (see, again in Figg. 6.2 and 6.4, the cases from Test 3 to Test
6, where the preconditioners have always a zero measure vanishing singular subspace). We
can also observe that the singular values’ distributions of the natural preconditioned matrix
and the optimal preconditioned matrix are very similar. This agrees with the classical and
widely studied Toeplitz case (i.e., g = 1), where both the distributions tend to the generating
function, as n grows. However, as expected, the optimal preconditioner, which is the closest-to-
A g-circulant matrix with respect to the Frobenius distance, gives a bit better clustering than
the natural one: as instance, see in particular the clustering at unity of Test 3 in the optimal
preconditioning (bottom) and in the natural preconditioning (top) in Figg. 6.2 and 6.4.

The situation is different in the non-coprime case, as Fig. 6.6 shows. Before going on,
according to Subsection 5.6.1, we mention that in this case instead of the inverse P−1 we have
to consider the Moore-Penrose generalized inverse P †, being P a singular matrix. Due to the
non-coprime circularity, now the g-circulant preconditioner has a lot of cyclically repeated,
hence linearly dependent, columns. Heuristically, the g-circulant preconditioner P “loose” a
lot of information which were contained in the related g-Toeplitz matrix A, which means that
P become less correlate to A, and a good clustering is no more possible. This is well explained
by Fig. 6.6, red line, where just a couple of test examples are reported (all the others behave
similarly, so they are not reported). In particular, in the first two columns we can see that
the singular values of the preconditioned matrix P †A are not clustered (moreover they tend
to diverge, giving rise to high instability in real applications). To avoid such an amplification,
instead of using P † for the preconditioned matrix, we can consider a regularized version P †

α

of P †, where the singular values of P smaller than a regularization parameter α > 0 are not
inverted. As very first attempt, we plot the singular values of the preconditioned matrix P †

αA,
being α = 10−12 ‖P‖. As we can notice, a good clustering is found also for the non-coprime
case.

6.4.2 The preconditioning effectiveness

In this subsection we give a first evaluation of the behavior of the optimal g-circulant precon-
ditioning for the solution of the g-Toeplitz linear system Ax = b, with g = 3 > 1. First of
all we mention that, since the square g-Toeplitz matrix A has no full rank (recall that here
g > 1), we necessarily have to consider the least square solution A∗Ax = A∗b. Accordingly,
we consider the solution of the linear system by means of the (P)CGNR method, that is, the
(preconditioned) conjugate gradient method applied on the normal equations.

In order to evaluate the restoration errors, we choose the true data vector x, ad then we
compute the known data b simply as b = Ax. In particular, we consider a true data vector x

whose (i)th component, for i = 0, . . . , n , is given by cos
(

gπi
n

)
, so that the first n

g
values of the

true data are a sampling on a uniform grid of an entire semi-period of the cosine function.

Let xk be the (k)th iteration of the (P)CGNR method. We compute the relative residual

error RelRes =
‖A∗Axk−A∗b‖2

‖b‖2
and the relative error on the restored signal RelErr =

‖xk−x†‖
2

‖x†‖
2

,

where x† is the projection on N (A)⊥ of the true data (which is obviously the best possible
restoration). Since n

g
is the rank of A, to obtain x† we compute x† = Ṽ Ṽ ∗x, where Ṽ ∈ Mn, n

g
(C)

is the matrix given by the first n
g

columns of V , being V the orthogonal matrix of the singular
value decomposition A = UΣV ∗.

By using the built-in MatLab function pcg() within the first 100 iterations, in Table 6.1
the numerical results related to three different levels of noise on the data b are reported. In
particular, by denoting as bη = b + η the noisy data, where η is a white Gaussian noise, we
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have the following test cases: in the left columns the data b is noiseless; in the central columns

the relative noise level
‖bη−b‖2
‖b‖2

is 10−4%; in the central columns the relative noise level
‖bη−b‖2
‖b‖2

is 10−1%.
As we can observe, the optimal g-circulant preconditioned conjugate gradient method does

not allow to obtain better results then the classical (i.e., “unpreconditioned”) method. This
fact has been already observed for the Toeplitz case (i.e., g = 1), and we can say that now, for
g-Toeplitz linear system with g > 1, this phenomenon is amplified.

Indeed, most preconditioners for Toeplitz systems with high clustering of the singular values
such as the natural and optimal ones give rise to instability and noise amplification. In Fig.
6.7 we plot the first n

g
values (i.e., the significative ones) of the restored signals for both the

CGNR and PCGNR algorithms (g = 3, Test 4, 1% of data noise): As we can see, here the noise
amplification of the preconditioned case is higher, and hence some oscillations occur. However,
to improve the results (that is, speed up the convergence, without amplifying the instability
due to noise or floating point computation), a wide range of regularization techniques can be
added to the preconditioners (see [37], for the classical Toeplitz case), and future works will
be devoted to this analysis. In this direction, the g-circulant preconditioner can be considered
as a basic tool for introducing regularization features, which could provide both speed-up and
stability to the PCG method.

6.4.3 Two dimensional g-Toeplitz matrices for structured shift-variant image
deblurring

We conclude the numerical section by introducing a real problem of image deblurring [14] which
is related to g-Toeplitz matrices. Basically, a blurring model (i.e., the forward model) involves
a Fredholm linear operator of the first kind as follows. A blurred version g ∈ L2

(
R2
)

of a true
image f ∈ L2

(
R2
)

is given by

g (x) =

∫

R2

h (x, u) f (u) du, (6.7)

where the integral kernel h ∈ L2
(
R2×2

)
is the known impulse response of the blurring system,

also called point spread function (PSF), being x = (x1, x2) and u = (u1, u2) the system coor-
dinates of the blurred image g and the true image f . Image deblurring is the (inverse) problem
of finding (an approximation of) the true data f (i.e., the cause) by means the knowledge of
the blurred data g (i.e., the effect).

The value h (x, u) represents the weight of the true image f at point u in the formation of
the blurred image g at point x. This way, g (x) is the average on R2 of the values of f with
respect the weights h (x, ·). Among the proposed mathematical models, the simplest and most
common blurring operator (6.7) involves the so-called shift-invariant integral kernel, in which
the weight h (x, u) depends only on the relative position of u with respect to x, that is, there
exists a function hI ∈ L2 (R), of one variable, such that

h (x, u) = hI (x − u) .

In a shift-invariant blurring system like that, the impulse response does not change as the
object position is shifted, which means that exactly the same blur arises all over the image
domain R2. In this case the blurring operator (6.7) becomes a simple convolution, and its
discretization gives rise to (classical) Toeplitz matrices. On the other hand, shift-invariant
mathematical models are often only basic approximations of real shift-variant imaging systems.
Among all the shift-variant imaging systems, we are interested in the ones which are intrinsically
shift-invariant as follows: there exist two “coordinate transformations” b = b (x) and c = c (u)
such

h (x, u) = h̃I (b (x) , c (u)) ,
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Noise level 0 (No noise) 0.0001% 1%

Preconditioning Prec. No prec. Prec. No prec. Prec. No prec.

Test 1

Iter. Number 92 48 94 77 96 92
Relative Residual 3.19e-007 6.05e-010 3.16e-007 1.64e-009 1.24e-007 1.32e-007
Relative Error 4.29e-006 1.20e-008 1.89e-005 1.88e-005 1.83e-002 1.83e-002

Test 2

Iter. Number 47 13 47 36 78 79
Relative Residual 2.87e-010 2.89e-010 3.48e-010 8.94e-010 9.08e-009 7.43e-009
Relative Error 4.64e-010 4.72e-010 8.75e-006 8.75e-006 8.80e-003 8.80e-003

Test 3

Iter. Number 100∗ 2 100∗ 2 100∗ 2
Relative Residual 2.14e-002 1.10e-016 2.13e-002 1.12e-016 2.13e-002 1.19e-016
Relative Error 1.81e-002 1.19e-016 1.81e-002 2.98e-006 1.83e-002 3.10e-003

Test 4

Iter. Number 100∗ 14 100∗ 20 100∗ 20
Relative Residual 1.93e-005 3.78e-010 1.93e-005 8.39e-010 2.34e-005 9.50e-010
Relative Error 7.48e-006 2.40e-010 7.62e-006 2.20e-006 2.10e-003 2.10e-003

Test 5

Iter. Number 100∗ 8 100∗ 37 98 99
Relative Residual 6.08e-005 1.04e-010 5.97e-005 9.93e-010 8.95e-005 1.34e-008
Relative Error 3.22e-005 8.93e-011 3.17e-005 2.76e-006 2.70e-003 2.70e-003

Test 6

Iter. Number 77 4 75 10 76 72
Relative Residual 1.92e-004 2.64e-013 1.93e-004 6.14e-010 2.09e-004 7.89e-010
Relative Error 1.04e-004 2.65e-013 1.05e-004 7.57e-006 7.60e-003 7.60e-003

Table 6.1: g = 3: Best relative residual
‖A∗Axk−A∗bη‖2

‖A∗bη‖2
, with corresponding iteration number k

and relative restoration error
‖xk−x†‖

2

‖x†‖
2

, with respect to different noise levels δ =
‖b−bη‖2
‖b‖2

of the

CGNR and PCGNR with optimal g-circulant preconditioner.
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where h̃I (b, c) = hI (b − c) is a shift-invariant PSF. Indeed, in some cases the discretization of
these models leads to two-levels g-Toeplitz matrices. We have

g (x) =

∫

U

h (x, u) f (u) du =

∫

U

hI (b (x) − c (u)) f (u) du,

that is

g̃ (x̃) =

∫

c(U)

hI (x̃ − ũ) f̃ (ũ) dũ, (6.8)

where x̃ = b (x) , ũ = c (u) , g̃ = g ◦ b−1 , f̃ =
(
c−1

)′ · f ◦ c−1 . Here the symbols ◦ and · denote
respectively the composition and the point-wise function products. In practice, by using such
these two coordinate transformations b and c in both the blurred image g and true object f ,
we obtain that the imaging system becomes explicitly shift-invariant, since it is modeled by
the shift-invariant PSF hI of (6.8). The main example is the rotational blur, generated when
a moving object rotates with respect to the imaging apparatus. In this case, although the blur
changes with respect the object position (in particular, it is small close to and increases far from
the center of the rotation), the blurring is intrinsically shift-invariant. If the coordinate systems
are changed from Cartesian x = (x1, x2) and u = (u1, u2) to Polar system (ρx, θx) and (ρu, θu),
the PSF becomes explicitly shift-invariant. As instance, concerning a blur of uniform circular
motion, we have h (x, u) = h ((ρx, θx) , (ρu, θu)) = hI (ρx − ρu, θx − θu), with hI (ρ, θ) = 1

σ
for

(ρ, θ) ∈ {0 × [0, σ]} and 0 elsewhere, being σ the whole angle of the considered rotation.
In the simplest case where the coordinate transformation are linear functions such as b (x) =

vx and c (u) = gu, with v and g two integer values. With a fixed discretization step d, we have
that

(A)i,j = h (id, jd) = hI (b (id) − c (jd)) = hI (ivd − jgd) .

If b (x) = x, then the PSF matrix A is a g-Toeplitz matrices. However, in general, we have to
consider (g, v)-Toeplitz matrices, that is, matrices which obey the rule An = [avr−gs]

n−1
r,s=0, which

are simple generations of g-Toeplitz matrices. By recalling that any 3D geometric projectivity
is a linear transformation, we have that such (g, v)-Toeplitz matrices arise in many imaging
systems related to large scenes, where the projective geometry becomes important due to
perspective. As instance (g, v)-Toeplitz blur matrices arise when some objects are moving
with approximately the same speed in a plane which is not parallel to the image plane of the
imaging apparatus (this is usually called as “non-perpendicular imaging system geometry”, see
Fig. 6.8). We remark that this is the classical scenario of high-way traffic flow control systems.

A numerical simulation is shown in Fig. 6.9, where a structured shift-variant blurred image
related to a synthetic homography (i.e., a projectivity between two planes) has been used (see
the shift-invariant blur which corrupts the image on the left). Since a homography is a liner
transformation with respect to the homogeny coordinates, the discretization gives rise to two-
level (g, v)-Toeplitz matrices. By using the involved algebraic structure, the deblurring process
can be done within O

(
n2 log n

)
as in the classical convolutive (i.e. Toeplitz) case. In Fig.

6.9, center, we show the projectivity under which the blur becomes shift-invariant, which is
modeled by a linear transformation of coordinates (see that the same blur all over the domain
of the image on the center). By means of such a shift-invariant blurred projected image, we
can obtain the deblurred image (left image), by using O

(
n2 log n

)
computation.
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Figure 6.1: g = 3 (coprime case) - Singular values of g-Toeplitz matrices A, Natural g-circulant
preconditioners P and corresponding preconditioned matrices P−1A.
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Optimal g-circulant preconditioning
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Figure 6.2: g = 3 (coprime case) - Singular values of g-Toeplitz matrices A, Optimal g-circulant
preconditioners P and corresponding preconditioned matrices P−1A.
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Figure 6.3: g = 7 (coprime case) - Singular values of g-Toeplitz matrices A, Natural g-circulant
preconditioners P and corresponding preconditioned matrices P−1A.
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Figure 6.4: g = 7 (coprime case) - Singular values of g-Toeplitz matrices A, Optimal g-circulant
preconditioners P and corresponding preconditioned matrices P−1A.
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Figure 6.5: g = 2 (non-coprime case) - Singular values of g-Toeplitz matrices A, optimal
g-circulant preconditioners P and corresponding preconditioned matrices P †A (left), zoom
on the small values (center), and analogous spectral distributions related to the regularized
preconditioners (right).
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Figure 6.6: g = 2 (non-coprime case) - Singular values of g-Toeplitz matrices A, optimal
g-circulant preconditioners P and corresponding preconditioned matrices P †A (left), zoom
on the small values (center), and analogous spectral distributions related to the regularized
preconditioners (right).
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Figure 6.7: Restored signal with (P)CG on the normal equations (1% of data noise, g = 3).
Left: without preconditioning. Right: with Optimal g-circulant preconditioning.
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Figure 6.8: Non-perpendicular imaging system geometry.
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Figure 6.9: Shift-variant blurred data, projected data (shift-invariant blur), deblurred data.



Chapter 7

Multigrid methods for Toeplitz
linear systems with different size
reduction

In this chapter we analyze the convergence of a multigrid method where the fine problem
of size n is projected to a coarser problem of size n

g
, g = 2, 3, . . . .Nonstandard projection

matrices with g > 2 arise in a natural way when the aggregation projectors are applied to finite
difference or regular finite elements approximations of partial differential equations (see [67]
and the references therein). We perform a two-grid analysis using the ideas in [95] for circulant
structures and by exploiting the spectral analysis of g-circulant matrices already performed in
[68]. As shown in [33], such two-grid analysis is an algebraic generalization of the classical local
Fourier analysis, which can be extended from circulant matrices to the more challenging case
of Toeplitz matrices. In the multigrid strategy that we propose the coarse problem has size n

g

with g > 2 and, as an interesting byproduct, we can design multigrid methods with optimal
cost and characterized by g − 1 recursive calls: in fact, it is enough to perform the analysis
of the arithmetic computational cost related to the size reduction n

g
between two consecutive

levels and to invoke the results in [114]. A further property of the proposed multigrid is that the
pathologies induced by the mirror points are bypassed as previously mentioned. Our proposal
can be plainly extended to the multilevel case by tensor product arguments, by taking into
consideration the larger number of “mirror points” (which is exponential in the number d of
levels). Moreover a V-cycle convergence analysis could be performed by following the steps in
[3, 2] as a model.

7.1 Two-grid and Multigrid methods

Let An ∈ Mn (C), and xn, bn ∈ Cn. Let pk
n ∈ Mn,k (C), k < n, be a given full-rank matrix and

let us consider a class of iterative methods of the form

x(j+1)
n = Vnx(j)

n + b̃n := V
(
x(j)

n , b̃n

)
, (7.1)

where An = Wn − Nn, Wn non-singular matrix, Vn := In − W−1
n An ∈ Mn (C), and b̃n :=

W−1
n bn ∈ Cn. A Two-Grid Method (TGM) is defined by the following algorithm:
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TGM
(
V

νpre
n,pre, V

νpost

n,post, p
k
n

) (
x

(j)
n

)

0. x̃n = Vνpre
n,pre

(
x

(j)
n , b̃n,pre

)

1. dn = Anx̃n − bn

2. dk =
(
pk

n

)∗
dn

3. Ak =
(
pk

n

)∗
Anpk

n

4. Solve Aky = dk

5. x̂n = x̃n − pk
ny

6. x
(j+1)
n = Vνpost

n,post

(
x̂n, b̃n,post

)

Steps 1. → 5. define the “coarse grid correction” that depends on the projecting operator
pk

n, while Step 0. and Step 6. consist, respectively, in applying νpre times and νpost times a
“pre-smoothing iteration” and a “post-smoothing iteration” of the generic form given in (7.1).
The global iteration matrix of the TGM is then given by

TGM
(
V νpre

n,pre, V
νpost

n,post, p
k
n

)
= V

νpost

n,post

[
In − pk

n

((
pk

n

)∗
Anpk

n

)−1 (
pk

n

)∗
An

]
V νpre

n,pre.

If k is large, the numerical solution of the linear system at the Step 4. could be computa-
tionally expensive. In such case a multigrid procedure is adopted. Consider 0 < m < n, the
sequence 0 < nm < nm−1 < · · · < n1 < n0 = n and the full-rank matrices pni

ni−1
∈ Mni−1,ni

(C),

for i = 1, . . . , m. The multigrid method produces the sequence
{
x

(k)
n

}
k∈N

defined by x
(j+1)
n =

MGM
(
V

νpre
n,pre, V

νpost

n,post, p
n1
n , An, bn, θ, 0

) (
x

(j)
n

)
with the function MGM defined recursively as fol-

lows:

x
(j+1)
ni = MGM

(
V

νpre
ni,pre, V

νpost

ni,post, p
ni+1
ni , Ani

, bni
, θ, i

) (
x

(j)
ni

)

If i = m then Solve Ani
x

(j+1)
ni = bni

Else

0. x̃ni
= Vνpre

ni,pre

(
x

(j)
ni , b̃ni,pre

)

1. dni
= Ani

x̃ni
− bni

2. dni+1 =
(
p

ni+1
ni

)∗
dni

3. Ani+1 =
(
p

ni+1
ni

)∗
Ani

p
ni+1
ni

4. x
(j+1)
ni+1 = 0

for s = 1 to θ

x
(j+1)
ni+1 = MGM

(
V

νpre
ni+1,pre, V

νpost

ni+1,post, p
ni+2
ni+1 , Ani+1 , dni+1 , θ, i + 1

) (
x

(j+1)
ni

)

5. x̂ni
= x̃ni

− p
ni+1
ni x

(j+1)
ni+1

6. x
(j+1)
ni = Vνpost

ni,post

(
x̂ni

, b̃ni,post

)

The choices θ = 1 and θ = 2 correspond to the well-known V-cycle and W-cycle, respectively.

In this chapter, we are interested in proposing such a kind of techniques in the case where
An is a Toeplitz matrix. However, for a theoretical analysis, we consider circulant matrices
according to the local Fourier analysis for classical multigrid methods (see [33]). Even if we
treat in detail the circulant case, in the spirit of the paper [3], the same ideas can be plainly
translated to other matrix algebras associated to (fast) trigonometric transforms. First we
recall some convergence results from the theory of the algebraic multigrid method given in [77].

Theorem 7.1. [77] Let An ∈ Mn (C) be a positive definite matrix and let Vn be defined as in
the TGM algorithm. Suppose that there exists αpost > 0 independent of n such that

‖Vn,postxn‖2
An

≤ ‖xn‖2
An

− αpost ‖xn‖2
AnD−1

n An
, ∀xn ∈ Cn, (7.2)



§ 2 Projecting operators for circulant matrices 135

where Dn is the main diagonal of An. Assume that there exists γ > 0 independent of n such
that

min
y∈Ck

∥∥∥xn − pk
ny
∥∥∥
2

Dn

≤ γ ‖xn‖2
An

, ∀xn ∈ Cn. (7.3)

Then γ ≥ αpost and

∥∥∥TGM
(
I, V

νpost

n,post, p
k
n

)∥∥∥
An

≤
√

1 − αpost

γ
.

Conditions (3.7) and (7.3) are usually called as “smoothing property” and “approximation
property”, respectively.

We note that αpost and γ are independent of n and hence, if the assumptions of Theorem
7.1 are satisfied, then the resulting TGM is not only convergent but also optimal. In other
words, the number of iterations in order to reach a given accuracy ǫ can be bounded from above
by a constant independent of n (possibly depending on the parameter ǫ).

Of course, if the given method is complemented with a convergent pre-smoother, then by
the same theorem we get a faster convergence. In fact, it is known that for square matrices A
and B the spectra of AB and BA coincide.

Therefore TGM
(
V

νpre
n,pre, V

νpost

n,post, p
k
n

)
and TGM

(
I, V

νpre
n,preV

νpost

n,post, p
k
n

)
have the same eigenval-

ues so that
∥∥∥TGM

(
V νpre

n,pre, V
νpost

n,post, p
k
n

)∥∥∥
An

=
∥∥∥TGM

(
I, V νpre

n,preV
νpost

n,post, p
k
n

)∥∥∥
An

<

√
1 − αnew

post

γ

<

√
1 − αpost

γ
,

and hence the presence of a pre-smoother can only improve the convergence.
Concerning multigrid methods, in [77] the V-cycle convergence is considered with a result

which could be seen as the analog of Theorem 7.1. For other bounds concerning the convergence
rate of the V-cycle see [66] and reference therein. Regarding the convergence of the W-cycle,
we point out that a rigorous TGM analysis is sufficient for determining the optimality of the
W-cycle (see [114]).

7.2 Projecting operators for circulant matrices

Let An := Cn (f) be a circulant matrix generated by a trigonometric polynomial f (see Chapter
5, Section 5.1). In order to provide a general method for obtaining a projecting operator
(also called projector) from an arbitrary banded circulant matrix Pn, for some bandwidth
independent of n, we introduce the operator Zk

n,g ∈ Mn,k (R), k ≤ n, where

Zk
n,g = [δi−gj ]i,j , δr =

{
1 if r ≡ 0 (mod n), i = 0, . . . , n − 1,
0 otherwise, j = 0, . . . , k − 1,

(7.4)

(it is immediate to observe that (7.4) is the matrix defined in (5.9) by considering only the first
k columns).

The operator Zk
n,g represents a special link between the space of the frequencies of size n

and the corresponding space of frequencies of size k.
The relation between Zk

n,g and the Fourier matrix Fn (see (5.3)) described in Lemma 5.4
(see also Remark 5.7 and [113] for recent findings on these structures) is the key step in defining
an algebraic multigrid method, since it allows us to obtain again a circulant matrix at the lower
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level. Indeed, denoting by ∆n the diagonal matrix obtained from the eigenvalues of An (see
(5.5)), we infer that ∆k := 1

g
I⊤n,g∆nIn,g is again a diagonal matrix. Therefore

(
Zk

n,g

)⊤
AnZk

n,g =
(
Zk

n,g

)⊤
Fn∆nF ∗

nZk
n,g

=
1

g
FkI

⊤
n,g∆nIn,gF

∗
k

= Fk∆kF
∗
k

= Ak,

where Ak is a new circulant matrix. Consequently, starting from the matrix Zk
n,g, it is possible

to define a generic projector

pk
n,g = PnZk

n,g, (7.5)

where Pn is a circulant matrix. Indeed P ∗
nAnPn is a circulant matrix and then

Ak =
(
pk

n,g

)∗
Anpk

n,g,

is a circulant matrix of size k. We note that, since k = n
g
∈ N, n must be a multiple of g. We

are left to determine the conditions to be satisfied by Pn = Cn (p) (or better by its generating
function p), in order to get a projector which is effective in terms of convergence.

Definition 7.2. Given x ∈ [0, 2π), g ∈ N, g ≥ 2, the set of g-corners of x is Ωg (x) = {y =(
x + 2πj

g

)
mod 2π, | j = 0, . . . , g − 1} and the set of g-mirror points is Mg (x) = Ωg (x) \ {x}.

TGM conditions Let An := Cn (f) with f nonnegative, trigonometric polynomial and let
pk

n,g = Cn (p) Zk
n,g with p trigonometric polynomial. Assume that f (x0) = 0 for x0 ∈ [0, 2π),

choose p such that the following relations

lim
x→x0

p2 (y)

f (x)
< ∞, ∀ y ∈ Mg (x) , (7.6)

∑

y∈Ωg(x)

p2 (y) > 0, ∀x ∈ [0, 2π) , (7.7)

are fulfilled.

If f has a unique zero x0 ∈ [0, 2π), then we set Pn = Cn (p) where p is a trigonometric
polynomial defined as

p (x) =
∏

x̂∈Mg(x0)

(2 − 2 cos (x − x̂))⌈
β

2 ⌉ ∼
∏

x̂∈Mg(x0)

|x − x̂|2⌈
β

2 ⌉ , (7.8)

for x ∈ [0, 2π), with

β ≥ βmin = min

{
i

∣∣∣∣∣ lim
x→x0

|x − x0|2i

f (x)
< +∞

}
,

thus conditions (7.6) and (7.7) are satisfied.

Before proving (in Subsection 7.3.1) that conditions (7.6) and (7.7) are sufficient to assure
the TGM optimality, we consider a crucial result both from a theoretical and a practical point
of view.

Proposition 7.3. Let f be a non-negative function, k = n
g
∈ N, pk

n,g = Cn (p)Zk
n,g ∈ Mn,k (C),

with p trigonometric polynomial satisfying condition (7.6) for any zero of f and globally the
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condition (7.7). Then the matrix
(
pk

n,g

)∗
Cn (f) pk

n,g ∈ Mk (C) coincides with Ck

(
f̂
)

where f̂

is non-negative and

f̂ (x) =
1

g

∑

y∈Ωg

(
x
g

) f (y) |p|2 (y) , (7.9)

for x ∈ [0, 2π), i.e., the projected matrix is obtained picking every (g)th entry out of the symbol
f |p|2. In particular

1. if f is a polynomial then f̂ is a polynomial with a fixed degree
⌊

q
g

⌋
, where q is the degree

of f |p|2;

2. if x0 is a zero of f then f̂ has a corresponding zero y0 where y0 = (gx0) mod 2π;

3. the order of the zero y0 of f̂ is exactly the same as the one of the zero x0 of f , so that at
the lower level the new projector can be easily defined in the same way.

Proof. From (5.4) and (5.5), we find

(
pk

n,g

)∗
Cn (f) pk

n,g =
(
Zk

n,g

)⊤
(Cn (p))∗ Cn (f) Cn (p) Zk

n,g

=
(
Zk

n,g

)⊤
Cn

(
f |p|2

)
Zk

n,g,

Thus the generating function of the circulant matrix (Cn (p))∗ Cn (f) Cn (p) is f |p|2. Denoting
by aj the (j)th Fourier coefficient of f |p|2, we have

Cn

(
f |p|2

)
=
[
a(r−s)mod n + a(r−s)mod n−n

]n−1

r,s=0
,

and hence, by (7.4), the entries of the matrix
(
Zk

n,g

)⊤
Cn

(
f |p|2

)
Zk

n,g are given by

(
Cn

(
f |p|2

)
Zk

n,g

)
r,s

=
n−1∑

ℓ=0

(
Cn

(
f |p|2

))
r,ℓ

(
Zk

n,g

)
ℓ,s

=
n−1∑

ℓ=0

(
a(r−ℓ)mod n + a(r−ℓ)mod n−n

)
δℓ−gs

=
(a)

a(r−gs)mod n + a(r−gs)mod n−n,

r = 0, . . . , n − 1, s = 0, . . . , k − 1,

((
Zk

n,g

)⊤
Cn

(
f |p|2

)
Zk

n,g

)

r,s

=
n−1∑

ℓ=0

((
Zk

n,g

)⊤)

r,ℓ

(
Cn

(
f |p|2

)
Zk

n,g

)
ℓ,s

=
n−1∑

ℓ=0

δℓ−gr

(
a(ℓ−gs)mod n + a(ℓ−gs)mod n−n

)

=
(b)

a(gr−gs)mod n + a(gr−gs)mod n−n,

r, s = 0, . . . , k − 1,

where (a) is true because there exists a unique ℓ ∈ 1, 2, . . . , n − 1 such that ℓ − gs ≡ 0 (mod
n), that is, ℓ ≡ gs (mod n) and, since 0 ≤ gs ≤ n − 1, we obtain ℓ = gs. The same
argument is applicable for showing the validity of (b). Now if we denote by bj the (j)th

Fourier coefficient of f̂ it only remains to show that
(
Cn

(
f̂
))

r,c
= b(r−c)mod k + b(r−c)mod k−k =
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a(gr−gc)mod n + a(gr−gc)mod n−n, r, c = 0, . . . , k − 1. Since f |p|2 is a polynomial, we can always
write

f |p|2 (x) =
∞∑

ℓ=−∞
aℓe

iℓx, f̂ (x) =
∞∑

ℓ=−∞
bℓe

iℓx. (7.10)

From (4.2), (7.9) and (7.10), we have

br−c =
1

2π

2π∫

0

1

g

g−1∑

j=0

+∞∑

ℓ=−∞
aℓe

iℓ
(

x+2πj

g

)
e−i(r−c)xdx

=
1

2πg

2π∫

0

+∞∑

ℓ=−∞
aℓ




g−1∑

j=0

e
i2πℓj

g


 e

iℓx
g e−i(r−c)xdx.

Taking into account

1

g

g−1∑

j=0

e
i2πℓj

g =

{
1 if ℓ = gt,
0 otherwise,

and
1

2π

2π∫

0

eiℓxdx =

{
1 if ℓ = 0,
0 otherwise,

we obtain

br−c =
1

2πg

2π∫

0

+∞∑

t=−∞
agtge

igtx

g e−i(r−c)xdx

=
+∞∑

t=−∞
agt

1

2π

2π∫

0

eix(t−(r−c))dx

= ag(r−c). (7.11)

So, from (7.11), since gk = n and g ((r − c)mod k) = (gr − gc)mod n, we have b(r−c)mod k =
a(gr−gc)mod n and, similarly, b(r−c)mod k−k = a(gr−gc)mod n−n.

From the expression of f̂ , since f (x0) = 0 we deduce p (y) = 0 ∀y ∈ Mg (x0), whose validity

is necessary in order to satisfy relationships (7.6). Thus y0 = (gx0) mod 2π is a zero of f̂ (i.e.
item 2. is proved).

Moreover, by (7.7), we deduce that p2 (x0) > 0 since p2 (y) = 0, ∀y ∈ Mg (x0), and the

order of the zero y0 of f
(

x
g

)
|p|2

(
x
g

)
is the same as the order of f (x) at x0. Furthermore, by

(7.6) we see that |p|2
(

x+2πk
g

)
has at y0 a zero of order at least equal to the one of f (x) at x0,

for any k = 1, . . . , g − 1. Since all the contributions in f̂ are non-negative the thesis in item 3.
is proved.

Finally we have to prove item 1. Since bj are the Fourier coefficients of f̂ and aj are the
Fourier coefficients of the polynomial f |p|2 (see (7.10)), from (7.11) we deduce that

f̂ (x) =
∑

j

bje
ijx =

∑

j

agje
ijx.

Hence, if the polynomial f |p|2 has degree q, then f̂ has degree at most
⌊

q
g

⌋
.

7.3 Proof of convergence

Using the results in Section 7.2, we prove the optimality of the TGM and of the W-cycle (for
the W-cycle the condition g > 2 is required).
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7.3.1 TGM convergence

The smoothing property for g = 2 was proved in [95] and the proof does not change for g > 2.

Lemma 7.4. [95] Let An := Cn (f) with f being a non-negative trigonometric polynomial
(not identically zero) and let Vn := In − ωAn, 0 < ω < 2

‖f‖L∞
. If we choose αpost so that

αpost ≤ a0ω (2 − ω ‖f‖L∞), then relation (3.7) holds true.

If in the previous Lemma we choose ω = ‖f‖−1
L∞ , then αpost ≤ ‖f‖

L1

‖f‖L∞
and the best value of

αpost is αpost,best =
‖f‖

L1

‖f‖L∞
. Moreover, the result of Lemma 7.4 can be easily generalized when

considering both pre-smoothing and post-smoothing as in [2].

The following result shows that TGM conditions (7.6) and (7.7) are sufficient in order to
satisfy the approximation property.

Theorem 7.5. Let An := Cn (f), with f being a non-negative trigonometric polynomial (not
identically zero), and let pk

n,g = Cn (p)Zk
n,g be the projecting operator, with Zk

n,g defined in
(7.4) and with p trigonometric polynomial, satisfying condition (7.6), for any zero of f , and
satisfying globally condition (7.7). Then, there exists a positive value γ independent of n such
that inequality (7.3) is satisfied.

Proof. The proof is similar to that of [85, Lemma 8.2], but we report it here for completeness.
First, we recall that the main diagonal of An is given by Dn = a0In with a0 = 1

2π

∫
Q f =

‖f‖L1 > 0, so that ‖·‖2
Dn

= a0 ‖·‖2
2.

In order to prove that there exists γ > 0 independent of n such that for any xn ∈ Cn

min
y∈Ck

∥∥∥xn − pk
n,gy

∥∥∥
2

Dn

= a0 min
y∈Ck

∥∥∥xn − pk
n,gy

∥∥∥
2

2
≤ γ ‖xn‖2

An
,

we chose a special instance of y in such a way that the previous inequality is reduced to a matrix
inequality in the sense of the partial ordering of the real space of the Hermitian matrices. For
any xn ∈ Cn, let y ≡ y (xn) ∈ Ck be defined as

y =
[(

pk
n,g

)∗
pk

n,g

]−1 (
pk

n,g

)∗
xn.

Therefore, (7.3) is implied by

∥∥∥xn − pk
n,gy

∥∥∥
2

2
≤ γ

a0
‖xn‖2

An
, ∀xn ∈ Cn,

where the latter is equivalent to the matrix inequality

Wn (p)∗ Wn (p) ≤ γ

a0
Cn (f) , (7.12)

with Wn (p) = I − pk
n,g

[(
pk

n,g

)∗
pk

n,g

]−1 (
pk

n,g

)∗
. Since, by construction, Wn (p) is a Hermi-

tian unitary projector, it holds that Wn (p)∗ Wn (p) = W 2
n (p) = Wn (p). As a consequence,

inequality (7.12) can be rewritten as

Wn (p) ≤ γ

a0
Cn (f) . (7.13)

When k = n
g
∈ N, following the decomposition in (5.18), pk

n,g = Cn (p) Zk
n,g can be expressed

according to

(
pk

n,g

)∗
=

1√
g
Fk

[
∆(0)

p |∆(1)
p | · · · |∆(g−1)

p

]
F ∗

n ,
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where

∆(r)
p = diag

j=0,...,k−1

(
p
(
x

(n)
rk+j,n

))
, r = 0, . . . , g − 1,

with x
(n)
j = 2πj

n
.

Let p [µ] ∈ Cg whose entries are given by the evaluations of p over the points of Ω
(
x

(n)
µ

)
,

for µ = 0, . . . , k− 1. There exists a suitable permutation by rows and columns of F ∗
nWn (p)Fn,

such that we can obtain a g × g block diagonal matrix whose µth diagonal block is given

by
Ig−p[µ](p[µ])⊤

‖p[µ]‖2
2

. Therefore, using the same notation for f [µ] and denoting by diag (f [µ]) the

diagonal matrix having the vector f [µ] on the main diagonal, the condition (7.13) is equivalent
to

Ig −
p [µ] (p [µ])⊤

‖p [µ]‖2
2

≤ γ

a0
diag (f [µ]) , (7.14)

for µ = 0, . . . , k − 1. By the Sylvester inertia law [46], the relation (7.14) is satisfied if every
entry of

diag (f [µ])−
1
2

(
Ig −

p [µ] (p [µ])⊤

‖p [µ]‖2
2

)
diag (f [µ])−

1
2 ,

is bounded in modulus by a constant, which follows from the TGM conditions (7.6) and (7.7).
Furthermore, if we put

z = max
y∈Ωg(x)

∥∥∥∥∥
p2 (y)

f (x)

∥∥∥∥∥
L∞

,

h =

∥∥∥∥∥
1∑

y∈Ωg(x) p2 (y)

∥∥∥∥∥
L∞

,

then condition (7.3) is satisfied by choosing a value of γ such that γ ≥ g (g − 1) a0hz.

Combining Lemma 7.4 and Theorem 7.5 with Theorem 7.1, it follows that the TGM con-
vergence speed does not depend on the size of the linear system.

7.3.2 Multigrid convergence

The optimal TGM convergence rate proved in Theorem 7.5 can be extended to a generic recur-
sion level of the multigrid procedure obtaining the so called “level independency” property. The
key tools are Proposition 7.3 and an explicit choice of the projector: for instance a good choice
is obtained by considering the symbol p reported in (7.8). Indeed, the “level independency”
was already proved in literature for g = 2 (see [25, 27, 3]) and the proof can be extended to
g > 2, as in Theorem 7.5.

The “level independency” implies that the W-cycle has a constant convergence rate in-
dependent of the problem size [114]. However, the fact that the convergence speed does not
depend on the size of the linear system does not imply the optimality of the method, because
the computational work at each iteration is not taken into account.

For estimating the computational work at each iteration of a multigrid method, we have
to consider the size of the coarse problem and the number θ of recursive calls. In our case the
size of the problem at the level i is ni = gni−1. According to the analysis in [114], we assume
that the multigrid components (smoothing, projection, . . . ) require a number of arithmetic
operations which is bounded by cni, with c constant independent of ni. From [114, equation
(2.4.14)], the total computational work Cm (n) of one complete multigrid cycle is

Cm(n)
.
=

{
g

g−θ
cn for θ < g,

O(n log n) for θ = g,
(7.15)
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where the symbol
.
= means equality up to lower order terms. It follows that for g = 2 the W-

cycle can not be optimal even in the presence of “level independency”, because each multigrid
iteration requires a computational cost of O (n log n) while the matrix vector product requires
O (n) arithmetic operations. On the other hand, for g = 3 the W-cycle shows a computational
cost growing as Cm(n)

.
= 3cn and hence it is optimal if the “level independency” is satisfied.

More in general, the proposed multigrid will be optimal for a number θ ∈ N of recursive calls
such that 1 < θ < g.

In this chapter we do not provide a convergence analysis for multilevel Circulant matrices.
Nevertheless, the computational cost of a multigrid iteration can be easily computed, up to
lower order terms, for multidimensional problems as well. For a d-dimensional problem, for
simplicity and without loss of generality, we assume the same reduction g along each direction
and so the size of the problem at the level i is ni = gdni−1, where ni is the algebraic size of the
problem at the level i and n0 = n. Therefore equation (7.15) generalizes into

Cm(n)
.
=

{
gd

gd−θ
cn for θ < gd,

O(n log n) for θ = gd.

It follows that each multigrid iteration has a linear computational cost in n only if 1 ≤ θ <
gd. In particular, for two-dimensional problems (d = 2), when g ≥ 2 the computational cost of
a W-cycle iteration (θ = 2) is linear in n but, for instance, the first order coefficient is equal to
2c if g = 2, while it is equal to 9c

7 if g = 3.

7.3.3 Some pathologies eliminated when using g > 2

From [95, conditions (3.4) and (3.5)], we know that, for g = 2, if x0 is a zero of f , then
f (x0 + π) must be positive: otherwise [95, relationship (3.5)] cannot be satisfied no matter
which polynomial p we choose. On the other hand, if we consider g = 3 then the presence of
two zeros at x0 and x0 + π is no longer a problem, because conditions (7.6) and (7.7) impose

that, if x0 is a zero of f , then f
(
x0 + 2

3π
)

and f
(
x0 + 4

3π
)

must be positive, while we do not

have constraints on the value f at x0 + π.

For g = 3, if f has a unique zero x0 ∈ [0, 2π) of finite order, then we consider x̂ =
(
x0 + 2

3π
)

mod 2π and x̃ =
(
x0 + 4

3π
)

mod 2π and we set Pn = Cn (p), where p is a trigonometric

polynomial defined as

p (x) = (2 − 2 cos (x − x̂))⌈
β

2 ⌉ (2 − 2 cos (x − x̃))⌈
β

2 ⌉ ∼ |x − x̂|2⌈
β

2 ⌉ |x − x̃|2⌈
β

2 ⌉ , (7.16)

for x ∈ [0, 2π). In this case the parameter β has to be chosen as

β ≥ βmin = min

{
i

∣∣∣∣∣ lim
x→x0

|x − x0|2i

f (x)
< +∞

}
,

so that conditions (7.6) and (7.7) are satisfied. If f shows more than one zero in [0, 2π), then
we consider a polynomial p which is the product of the basic polynomials of the same type
reported in (7.16), satisfying condition (7.6) for any single zero and satisfying globally condition
(7.7).

A different strategy was proposed in [25] where symmetric positive definite Toeplitz matrices
with entries a1 = · · · = al = 0, l < n, are considered (like, for example, Toeplitz matrices
generated by f(x) = 1 − cos ((l + 1)x)). A block symbol analysis and a related generalization
was discussed in [55] mainly based on the interpretation of Tn(f) with f(x) = 1−cos ((l + 1)x)
as Tm (F ) with m = n

l
and with F (x) = (1 − cos (x)) Il, being a matrix-valued function. The

projector is defined as a l × l block matrix. The basic projector (7.4) is replaced by its l × l
block version, where 1 and 0 become the identity and the zero matrix of order l, respectively.
The symbol of the projector is p(x) = 1 + cos ((l + 1)x) or, equivalently, the block symbol
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P (x) = (1 − cos (x)) Il. With this approach the size of the coarse problem is one half of the
size of the finer problem. A Galerkin strategy for l > 1 leads to lose the Toeplitz structure and
so in [55] a natural coarse grid operator, previously proposed in [54], was employed.

Comparing the two strategies, usually the coarser matrices have about the same sparsity.
Therefore, our proposal with g = 3 has a lower computational cost for iteration, since the size
reduction factor is 3 instead of 2, but usually requires more iterations to converge than the
proposal in [25, 55].

Example 7.6. The symbol

f (x) = (2 − 2 cos (x)) (2 + 2 cos (x)) = 2 − 2 cos (2x) , (7.17)

vanishes at x = 0 and at x = π with order two.
For g = 3, we have M3 (0) =

{
2π
3 , 4π

3

}
and M3 (π) =

{
5π
3 , 7π

3

}
, thus the trigonometric

polynomial

p (x) =
1√
3

∏

x̂∈M3(0)
⋃

M3(π)

(2 − 2 cos (x − x̂)) , (7.18)

satisfies the TGM conditions (7.6) and (7.7) and defines an optimal TGM. The only nonzero
Fourier coefficients of p are a0 =

√
3, a±2 = 2√

3
, and a±4 = 1√

3
.

The coarse function f̂ in (5.66) is equal to f .
The block projector proposed in [25] is

1

2




I2 2I2 I2 0
0 I2 2I2 I2 0

. . .
. . .




n×n
2

and the coarse matrix has the same symbol f , up to a scaling factor (see [55]). Therefore both
strategies preserve the same symbol f on the coarser levels.

7.4 Numerical experiments

In this section, we apply the proposed multigrid method to symmetric positive definite circulant
and Toeplitz systems Anx = b. We choose as solution the vector x such that xi = i

n
, i =

1, . . . , n. The right-hand side vector b is obtained accordingly. As smoother, we use Richardson
with ωj = 1

‖fj‖L∞
, for j = 0, . . . , m − 1 (m is the number of subgrids in the algorithm, m = 1

for the TGM), for pre-smoother and the conjugate gradient for post-smoother. In the V-cycle
and W-cycle procedure when the coarse grid size is less than or equal to 27, we solve the coarse
grid system exactly. The zero vector is used as the initial guess and the stopping criterion is
‖rq‖2
‖r0‖2

≤ 10−7, where rq is the residual vector after q iterations and 10−7 is the given tolerance.

7.4.1 Cutting operators for Toeplitz matrices

When dealing with circulant matrices, using the projector defined in (7.5), the matrix at the
lower level is still a circulant matrix, while for Toeplitz matrices, if we consider An := Tn (f)
and pk

n,3 = Tn (p)Zk
n,3, where p is defined in accordance with the formula (7.16) and k = n

3 ∈ N,
we find that

Tn (p)Tn (f) Tn (p) = Tn

(
fp2

)
+ Gn (f, p) .

Furthermore, if 2β +1 is the bandwidth of Tn (p), the matrix Gn (f, p) has rank at most 2β
and is formed by a matrix of rank β in the upper left corner and a matrix of the same rank
in the bottom right corner. According to the proposal in [3], we take a cutting matrix that
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will completely erase the contribution of Gn (f, p), so that, at the lower level, the restriction of
the matrix Tn (p)Tn (f) Tn (p) is still a Toeplitz matrix and thus we can recursively apply the
algorithm. The proposed cutting matrix is as follows:

Z̃k
n,3 =




0k′

β

Zk′

n−2β,3

0k′

β




n×k′

(k′defined below),

where 0k′

β ∈ Mβ,k′ (R) is the zero matrix; Z̃k
n,3 has the first and the last β rows equal to zero and

therefore it is able to remove corner corrections of rank less than or equal to 2β. Since Gn (f, p)

has rank 2β, we deduce that Ak′ =
(
Z̃k

n,3

)⊤
Tn (p) Tn (f) Tn (p) Z̃k

n,3 is Toeplitz and, in the

generic case, we cannot obtain a Toeplitz matrix of size greater than this. As a consequence,
for Toeplitz matrices, the projector is then defined as

pk
n,3 = Tn (p) Z̃k

n,3.

Also the size n of the problem should be chosen in such a way that a recursive application
of the algorithm is possible; in our case, if we choose n = 3α − ξ with ξ = β − 1, k = n

3

and k′ = k − 2(β−1)
3 , then the size of the problem at the lower level becomes k′ = n−2(β−1)

3 =
3α−(β−1)−2(β−1)

3 = 3α−1 − (β − 1) = 3α−1 − ξ.

7.4.2 Zero at the origin and at π.

We present some examples where the generating functions f0 vanish at the origin (x = 0) and
at x = π. First, we consider the Example 7.6 where the symbol

f0 (x) = (2 − 2 cos (x)) (2 + 2 cos (x)) ,

vanishes at x = 0 and x = π with order 2. According to (7.16), we choose the projector
pk

n,3 = Cn (p0)Zk
n,3 if An is a circulant matrix and pk

n,3 = Tn (p0) Z̃k
n,3 if An is a Toeplitz matrix,

where p0 = p defined in (7.18). Setting x
(1)
0 = 0 and x

(2)
0 = π, the position of the new zeros

x
(j)
j , for j = 1, 2, . . . , m with i = 1, 2, moves according to Proposition 7.3 and, in this case, the

functions pj are equal to p for every level j = 0, 1, . . . , m−1. Furthermore, the particular choice
of pj implies that the coarse matrices have the same symbol of the finer matrix, i.e., fj = f0 for
j = 1, . . . , m. Tables 7.1 and 7.2 report the number of iterations required for convergence in the
case of circulant and Toeplitz systems, respectively. According to the convergence analysis in
Section 7.3, Table 7.1 shows an optimal behavior of the TGM and W-cycle. Moreover, Table 7.1
shows an optimal behavior also of the V-cycle that is not covered from our convergence analysis,
but the latter is not surprising since the symbol of all coarse matrices does not change (fj = f0

for j = 1, . . . , m). Table 7.2 shows that for Toeplitz matrices the optimality is preserved only
for the TGM and W-cycle, while for the V-cycle the number of iterations slightly grows with
the size n. This is probably due to the properties of the projectors described in Subsection
7.4.1, which are employed in order to preserve the Toeplitz structure at the coarser levels.

In the second example we increase the order of the zero at x = π by choosing the function

f0 (x) = (2 − 2 cos (x)) (2 + 2 cos (x))2 ,

which has a zero at x = 0 of order 2 and one at x = π of order 4. The polynomial p0 = p
defined in (7.18) still satisfies the TGM conditions (7.6) and (7.7). As in the previous example,
the functions pj and fj do not change at the lower levels, i.e., pj = p for j = 0, . . . , m − 1
while fj = f0 for j = 1, . . . , m. In Tables 7.3 and 7.4 we report the number of iterations
required for convergence in the case of circulant and Toeplitz systems, respectively. Since f0

has a zero of order 4 the condition number of An is of order n4 and therefore for n = 37 we
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n # iterations

Two-grid V-cycle W-cycle

νpre = νpre = νpre = νpre = νpre = νpre =
νpost = 1 νpost = 2 νpost = 1 νpost = 2 νpost = 1 νpost = 2

34 = 81 11 6 11 6 11 6
35 = 243 11 6 11 7 11 6
36 = 729 11 6 11 7 11 6
37 = 2187 11 6 11 7 11 6

Table 7.1: Circulant case: f0 (x) = (2 − 2 cos (x)) (2 + 2 cos (x)).

n # iterations

Two-grid V-cycle W-cycle

νpre = νpre = νpre = νpre = νpre = νpre =
νpost = 1 νpost = 2 νpost = 1 νpost = 2 νpost = 1 νpost = 2

34 − 3 = 78 24 14 24 14 24 14
35 − 3 = 240 24 15 35 20 28 16
36 − 3 = 726 24 15 43 24 29 16
37 − 3 = 2184 24 15 49 27 29 16

Table 7.2: Toeplitz case. f0 (x) = (2 − 2 cos (x)) (2 + 2 cos (x)).

n # iterations

Two-grid V-cycle W-cycle

νpre = νpre = νpre = νpre = νpre = νpre =
νpost = 1 νpost = 2 νpost = 1 νpost = 2 νpost = 1 νpost = 2

34 = 81 20 9 20 9 20 9
35 = 243 20 9 18 9 20 9
36 = 729 20 9 18 9 20 9
37 = 2187 20 9 18 9 20 9

Table 7.3: Circulant case. f0 (x) = (2 − 2 cos (x)) (2 + 2 cos (x))2, tolerance=10−3.

n # iterations

Two-grid V-cycle W-cycle

νpre = νpre = νpre = νpre = νpre = νpre =
νpost = 1 νpost = 2 νpost = 1 νpost = 2 νpost = 1 νpost = 2

34 − 3 = 78 50 31 50 31 50 31
35 − 3 = 240 48 31 93 35 72 32
36 − 3 = 726 47 31 74 34 68 31
37 − 3 = 2184 47 31 76 34 68 31

Table 7.4: Toeplitz case. f0 (x) = (2 − 2 cos (x)) (2 + 2 cos (x))2, tolerance=10−3.
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Figure 7.1: Circulant: Graph of the residual in logarithmic scale of the V-cycle (left) and
W-cycle (right) with different sizes n, with νpre = νpost = 1 and a fixed number of iterations
iter = 400; f0 (x) = (2 − 2 cos (x)) (2 + 2 cos (x))2.
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Figure 7.2: Toeplitz: Graph of the residual in logarithmic scale of the V-cycle (left) and W-
cycle (right) with different sizes n, with νpre = νpost = 1 and a fixed number of iterations
iter = 400; f0 (x) = (2 − 2 cos (x)) (2 + 2 cos (x))2.

have a conditioning of magnitude 1013. Therefore, using double precision, for this example we
choose a tolerance equal to 10−3. This choice agrees also with the plots in Figures 7.1 and 7.2
where we note an optimal reduction of the residual norm only until about 10−3.

The last example of this subsection is taken from [25]. The generating function

f0 (x) = 6 − 4 cos (2x) − 2 cos (4x) ,

vanishes at x = 0 and at x = π with order 2. The symbol of the projector is again p0 = p
defined in (7.18). The initial guess is a random vector u such that 0 ≤ uj ≤ 1, the pre-smoother

is a step of damped Jacobi with parameter ωj =
(Aj)1,1

‖f(x)‖ L∞
while the post-smoother is a step

of damped Jacobi with parameter ωj =
(Aj)1,1

‖f(x)‖L∞
for j = 0, . . . , m − 1. The coarser problem

is fixed such that it has size lower than 6. Table 7.5 shows that the number of iterations
required to achieve the tolerance 10−7 remains constant, when increasing the size n of the
system like for the multigrid technique proposed in [25], even if the number of iterations is
slightly higher. Anyway a direct comparison can not be easily done because of the different
cost of each iteration, due to the different size reduction, as discussed in Subsection 7.3.3.
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n # iterations

Two-grid W-cycle V-cycle

34 − 3 = 78 15 19 28
35 − 3 = 240 15 20 39
36 − 3 = 726 14 20 45
37 − 3 = 2184 13 20 47

Table 7.5: Toeplitz case. f0 (x) = 6 − 4 cos (2x) − 2 cos (4x), νpre = νpost = 1, tolerance=10−7.

n # iterations

V-cycle W-cycle

νpre = νpre = νpre = νpre =
νpost = 1 νpost = 2 νpost = 1 νpost = 2

34 − 1 = 80 33 37 33 37
35 − 1 = 242 30 31 30 31
36 − 1 = 728 30 31 30 31
37 − 1 = 2186 30 31 30 31

Table 7.6: Toeplitz case. f0 (x) =
(
2 − 2 cos

(
x − π

3

))
, tolerance=10−7.

7.4.3 Some Toeplitz examples

In this subsection we consider only the more interesting case for practical applications: Toeplitz
matrices with a multigrid strategy.

The first example is a function with a zero not at the origin or π:

f0 (x) =

(
2 − 2 cos

(
x − π

3

))
,

which vanishes at x = π
3 with order 2. Moreover, we choose as true solution a random vector

instead of a smooth solution. The tolerance is again 10−7. The symbol of the projector at the
first level is

p0 (x) = (2 − 2 cos (x − π))

(
2 − 2 cos

(
x − 5

3
π

))
.

At the lower levels, the symbols of the projectors will change according to the position of the
zero of fj , which remains unique and which moves as described in Proposition 7.3. Table 7.6
shows an optimal convergence both for the V-cycle and for the W-cycle.

In the second example, we consider the dense Toeplitz matrix generated by the function

n # iterations

V-cycle W-cycle

νpre = νpre = νpre = νpre =
νpost = 1 νpost = 2 νpost = 1 νpost = 2

34 − 1 = 80 21 11 21 11
35 − 1 = 242 18 11 21 11
36 − 1 = 728 18 11 21 11
37 − 1 = 2186 18 11 21 11

Table 7.7: Toeplitz case. f (x) = x2.
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f (x) = x2, which has the Fourier series expansion

f (x) =
π2

3
− 4

(
cos (x)

12
− cos (2x)

22
+

cos (3x)

32
− · · ·

)
.

Such function shows a unique zero at x = 0 of order 2 and hence we use the projector with
symbol

p0 (x) =

(
2 − 2 cos

(
x − 2

3
π

))(
2 − 2 cos

(
x − 4

3
π

))
.

In Table 7.7 we report the number of iterations required for the convergence, with a preas-
signed accuracy and we note again an optimal behavior.





Chapter 8

Spectral analysis of inexact
constraint preconditioning for
symmetric saddle point matrices

Large scale non-singular linear systems whose symmetric coefficient matrix has the following
saddle point structure

A =

[
A B⊤

B −C

]
, (8.1)

with A ∈ Mn (R), C ∈ Mm (R), with m ≤ n and A, C positive definite and semidefinite,
respectively, arise in a wide variety of applications in science and engineering; we refer to [10]
for a thorough account on the origin of the problem, and on the description of many solution
strategies. Conveniently exploiting the matrix structure allows one to devise computational
effective acceleration procedures that makes it possible to solve really large two and three-
dimensional application problems. In particular, structure-based preconditioners have become
a formidable acceleration device, as they can naturally exploit a-priori information on, e.g.,
the operators leading to the blocks A, B and C. In this chapter we investigate the spectral
properties of preconditioned matrices AP−1, where P is given by

P =

[
In B⊤

B −C

]

=

[
In 0
B Im

] [
In 0
0 −H

] [
In B⊤

0 Im

]
, H = BB⊤ + C. (8.2)

Here and in the following we assume that A was already preconditioned by means of a
preprocessing (e.g. block diagonal preconditioning), so that the (1,1) block in the preconditioner
can be taken to be the identity matrix, moreover Im, 0m ∈ Mm (R) denote the identity and zero
matrices, respectively; the subscript will be omitted whenever the matrix dimension is clear
from the context. The dimensions of zero rectangular matrices will also be deduced from the
context.

It can be shown that when solving the transformed problem AP−1 by means of an iterative
method, the iterates satisfy the original constraint (given by the second block-row in the asso-
ciated system). This major property has made P very popular in the optimization community,
and a lot is now known on the eigenvalue properties of AP−1, which to a large extent seem to
guide the convergence of the iterative system solver; see, e.g., the theoretical developments and
algorithmic consequences in [40, 74, 58, 31, 35, 32, 7]. As a key spectral feature, we recall that
AP−1 has all real eigenvalues, and that m Jordan blocks ([105]) of size 2 corresponding to the
unit eigenvalue also arise. Moreover, some eigenvector structure was analyzed in [31]. Many
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numerical experiments have shown that using P may be very competitive in various applica-
tions, and that the non-symmetry of the resulting matrix, namely AP−1, does not represent a
major problem.

The application of P−1, however, requires solving systems with H = BB⊤ + C (see the
block form in (8.2)). Explicitly solving with the exact H may be unrealistic when dealing with
3D applications, so that a cheap approximation to H is used, giving rise to an inexact constraint
preconditioner; see, e.g., [74, 51]. This necessary step seems to jeopardize the whole theory of
constraint preconditioning, as in general complex eigenvalues arise and may spread well away
from the original values obtained when H is used. This wide spreading is mainly caused by the
perturbation of the multiple unit eigenvalue, which is expected to be non-linear in the error
made in approximating H. Such a phenomenon has created some concern as of the adequacy
of this preconditioning procedure in the inexact case, although experimental evidence shows
otherwise. Theoretical ground supporting this optimistic numerical experience has remained
for long time a largely open issue. First attempts to analyze the spectral modification occurring
when using an inexact form of H can be found in [11, 74], but a thorough understanding is still
missing. Here we aim to fill this gap. For ease of presentation, we shall use Pex = P to denote
the exact preconditioner (namely exact solves with H), and

Pinex =

[
In 0
B Im

] [
In 0
0 −Hinex

] [
In B⊤

0 Im

]
, (8.3)

where Hinex is a symmetric and positive definite matrix such that Hinex ≈ H.
In this chapter we provide a complete spectral characterization of AP−1

ex by means of the
Weyr canonical form, which highlights the role of the matrix blocks and of the multiple unit
eigenvalue. Moreover, we express AP−1

inex as a perturbation of AP−1
ex , and this allows us to

easily track the perturbation of its eigenvalues. We can also naturally derive estimates for the
condition number of the transformation matrix in the canonical form of AP−1

ex ; these estimates
can be used to fully monitor the convergence of an optimal iterative solver such as GMRES
[78]; we refer to [75] for early specialized results in this direction, for C = 0.

We first discuss the case C = 0, and then highlight the difference occurring when C is
non-zero. In fact, the original Jordan form can be significantly modified for C 6= 0, possibly
leading to more favourable properties of the modified preconditioner.

For the sake of simplicity in the exposition we assume that A − I is non-singular.

8.1 Case C = 0. Exact constraint preconditioner

The eigenvalues of the preconditioned coefficient matrix AP−1
ex may be derived by considering

the general eigenvalue problem
[

A B⊤

B 0

] [
x
y

]
= λPex

[
x
y

]
, (8.4)

which can be written as
[

In 0
−B Im

] [
A B⊤

B 0

] [
In −B⊤

0 Im

] [
u
v

]
= λ

[
In 0
0 −H

] [
u
v

]
, (8.5)

where the factorization (8.2) is used, and
[

u
v

]
=

[
In B⊤

0 Im

] [
x
y

]
.

The left-hand side matrix yields
[

In 0
−B Im

] [
A B⊤

B 0m

] [
In −B⊤

0 Im

]
=

[
A (I − A)B⊤

B (I − A) −B (2I − A) B⊤

]
. (8.6)
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After changing sign in the second block-row in (8.5), we can write (8.6) as

[
A (I − A) B⊤

−B (I − A) B (2I − A) B⊤

]
=

[
(A − I) (I − A)B⊤

−B (I − A) B (I − A)B⊤

]
+

[
In 0
0 H

]

=

[
In

B

]
(A − I)

[
In, −B⊤

]
+

[
In 0
0 H

]
.

Then the eigenvalue problem (8.4) can be transformed into

([
In

B

]
(A − I)

[
In, −B⊤

]) [ u
v

]
= (λ − 1)

[
In 0
0 H

] [
u
v

]
,

or equivalently

M0w = (λ − 1) w ⇔
([

In

B̂

]
(A − I)

[
In, −B̂⊤

]) [ u
v̂

]
= (λ − 1)

[
u
v̂

]
, (8.7)

where B̂ = H− 1
2 B and v̂ = H

1
2 v.

For later results it is important to note that the matrix B̂⊤ = B⊤H− 1
2 has orthonormal

columns, so that
(
I − B̂⊤B̂

)
is an orthogonal projector.

The following proposition describes a particular form of Jordan decomposition of the matrix
M0, the so-called Weyr canonical form [102], which allows us to derive a clear block structure
of the transformation matrix. The complete Weyr canonical form of AP−1

ex can be then easily
derived, as shown in the subsequent theorem.

Proposition 8.1. Let (A − I)
(
I − B̂⊤B̂

)
X̂ = X̂Θ be the partial eigenvalue decomposition of

(A − I)
(
I − B̂⊤B̂

)
associated with its non-zero eigenvalues. Then the Weyr decomposition of

M0 is given by

M0X0 = X0




Θ
0m Im

0m


 , X0 =

[
X̂ B̂⊤ (A − I)−1 B̂⊤

B̂X̂ Im 0m

]
, (8.8)

with X0 non-singular.

Proof. We start by observing that Λ (M0) = {0}∪Λ
(
(A − I)

(
I − B̂⊤B̂

))
. Indeed, the matrix

M0 ∈ M(n+m) (R) has rank at most n, therefore it has at least m zero eigenvalues. Moreover,

we recall that the non-zero eigenvalues of a low-rank matrix XY ⊤ are the same as those of the
matrix Y ⊤X (see Theorem 1.4). Therefore, the remaining n eigenvalues of M0 are given by
those of the matrix

(A − I)
[
In,−B̂⊤

] [ In

B̂

]
= (A − I)

(
I − B̂⊤B̂

)
.

We then need to establish the dimension of Θ. Since (A − I) is non-singular and
(
I − B̂⊤B̂

)

is an orthogonal projector with m zero eigenvalues, the number of non-zero eigenvalues of

(A − I)
(
I − B̂⊤B̂

)
is n − m.

We seek the eigenvectors of the matrix M0 associated with Θ. It turns out that a distinct
analysis for each eigenvalue is not needed. We consider the system

[
In

B̂

]
(A − I)

[
In, −B̂⊤

] [ X
Y

]
=

[
X
Y

]
Θ,
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where X ∈ Mn,(n−m) (C) and Y ∈ Mm,(n−m) (C), or block-wise,

(A − I)
(
X − B̂⊤Y

)
= XΘ, B̂ (A − I)

(
X − B̂⊤Y

)
= Y Θ.

Substituting X = X̂, the matrix of eigenvectors of (A − I)
(
I − B̂⊤B̂

)
, and Y = B̂X̂ in the

first equation we obtain (A − I)
(
I − B̂⊤B̂

)
X̂ = X̂Θ which is clearly verified by the eigenpairs.

Substituting X and Y into the second block equation yields the same equation, multiplied by
B̂, and thus that is also verified. This gives us the first block of n − m columns in the matrix
X0.

Now we look for the eigenvectors of the matrix M0 associated with the zero eigenvalue. We
consider the system

[
In

B̂

]
(A − I)

[
In, −B̂⊤

] [ X
Y

]
= 0,

where X ∈ Mn,k (C), Y ∈ Mm,k (C), k ≤ 2m, or, equivalently,

(A − I)
(
X − B̂⊤Y

)
= 0, B̂ (A − I)

(
X − B̂⊤Y

)
= 0. (8.9)

Since (A − I) is invertible, the first matrix equation in (8.9) is satisfied if and only if(
X − B̂⊤Y

)
= 0, that is for X = B̂⊤Y . The matrix Y ∈ Mm,k (C), k ≤ 2m, will consist of

at most k = m linearly independent vectors, then we can take Y = Im and hence X = B̂⊤.
We have thus found m eigenvectors of M0 associated with the zero eigenvalue, matching the
second block of columns of X0. The remaining m vectors must be generalized eigenvectors
associated with the zero eigenvalue. We consider the system

[
In

B̂

]
(A − I)

[
In, −B̂⊤

] [ X1 X2

Y1 Y2

]
=

[
X1 X2

Y1 Y2

] [
0k Ik

0k

]
,

where X1, X2 ∈ Mn,k (C), Y1, Y2 ∈ Mm,k (C), 0k, Ik ∈ Mk (R), k ≤ m, and we write the two
systems of equations associated





(A − I)
(
X1 − B̂⊤Y1

)
= 0

B̂ (A − I)
(
X1 − B̂⊤Y1

)
= 0,





(A − I)
(
X2 − B̂⊤Y2

)
= X1

B̂ (A − I)
(
X2 − B̂⊤Y2

)
= Y1.

The first system is just (8.9) and admits solution Y1 = Im and X1 = B̂⊤, then k = m, and
it remains to solve the second system that block-wise reads

(A − I)
(
X2 − B̂⊤Y2

)
= B̂⊤, B̂ (A − I)

(
X2 − B̂⊤Y2

)
= Im.

Since B̂B̂⊤ = Im, the latter system is satisfied by setting Y2 = 0m and X2 = (A − I)−1 B̂⊤,
thus completing the matrix X0 and the resulting Weyr form in (8.8).

We complete by showing that X0 is non-singular. Let Ẑ0, Ẑ be the matrices of left eigen-

vectors of (A − I)
(
I − B̂⊤B̂

)
associated with zero and non-zero eigenvalues, respectively. In

particular, we recall that B̂⊤ has orthonormal columns and we notice that Ẑ∗
0 B̂⊤ must be

non-singular, since
[
Ẑ0, Ẑ

]
is full-rank and the columns of Ẑ span range

(
I − B̂⊤B̂

)
. Then,

using the full-rank assumption of B̂ (A − I)−1 B̂⊤, X−1
0 is given by

X−1

0
=




Θ−1

(
Ẑ∗X̂

)−1

Ẑ∗ (A − I) −Θ−1

(
Ẑ∗X̂

)−1

Ẑ∗ (A − I) B̂⊤

(
Ẑ∗

0
B̂⊤

)−1

Ẑ∗

0

(
I − (A − I)

−1
B̂⊤G−1B̂

) (
Ẑ∗

0
B̂⊤

)−1

Ẑ∗

0
(A − I)

−1
B̂⊤G−1

G−1B̂ −G−1


 ,

where G = B̂ (A − I)−1 B̂⊤. Explicit multiplication by X0 verifies the assertion.
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Theorem 8.2. With the notation and assumptions of Proposition 8.1, the preconditioned ma-
trix AP−1

ex admits the following Weyr decomposition:

AP−1
ex X = X



In−m + Θ

Im Im

Im


 , X =

[
X̂ B̂⊤ (A − I)−1 B̂⊤

0 0m B (A − I)−1 B̂⊤

]
,

with X non-singular.

Proof. Let AP−1
ex z = λz. The derivation leading to (8.7) shows that

X =

[
In 0

B −H
1
2

]
X0.

The result readily follows from recalling that the eigenvalues of AP−1
ex are given by those

of M0 plus one.

Direct inspection shows that the inverse of X can be explicitly written as

Y∗ := X−1 =




X̂† −X̂† (A − I)−1 B⊤G−1

H
1
2 G−1B (A − I)−1 −H

1
2 G−1B (A − I)−2 B⊤G−1

0 H
1
2 G−1


 ; (8.10)

here G = B (A − I)−1 B⊤, and X̂† is the (row) portion of the inverse eigenvector matrix

of (A − I)
(
I − B⊤H−1B

)
associated with the non-zero eigenvalues, or the properly scaled

conjugate transpose left eigenvector matrix.

The subdivision of X in three block-columns, and of Y∗ in the corresponding block-rows is
used to readily describe the role of each block, which the Weyr decomposition easily emphasizes.
The first column block of X contains all eigenvectors of Θ+In−m, while the second block collects
the m eigenvectors associated with the unit eigenvalue with geometric multiplicity m. The third
block is associated with the corresponding m generalized eigenvectors, revealing the occurrence
of 2 × 2 Jordan blocks.

Finally, we notice that with the explicit expression of X and X−1 at hand, it is possible
to give estimates for the condition number of X , which can be used, together with the Weyr
decomposition, for estimating the residual norm of optimal Krylov subspace iterative solvers;
see [104, Section 6] and the references therein.

8.2 Case C = 0. Inexact constraint preconditioner

We start by showing that the inexactly preconditioned problem can be written as a pertur-
bation of the exactly preconditioned one. This formulation will allow us to exploit classical
perturbation theory results to derive the desired spectral perturbation bounds.

Theorem 8.3. With the notation of the previous section, it holds that

AP−1
inex = AP−1

ex + E , with E = −A
[

B⊤

−Im

]
H−1EH−1

inex [B, −Im] .

Proof. Let E = BB⊤ − Hinex. We have

Pinex =

[
In B⊤

B E

]
= Pex +

[
0
E

]
[0, Im] =

(
In+m +

[
0
E

]
[0, Im]P−1

ex

)
Pex.
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Therefore,

AP−1
inex = AP−1

ex

(
In+m +

[
0
E

]
[0, Im]P−1

ex

)−1

.

Thanks to the Sherman-Morrison formula [46], and using P−1
ex

[
0
E

]
=

[
B⊤

−Im

]
H−1E, we

obtain

AP−1
inex = AP−1

ex


In+m −

[
0
E

](
Im + [0, Im]P−1

ex

[
0
E

])−1

[0, Im]P−1
ex




= AP−1
ex −A

[
B⊤

−Im

]
H−1EH−1

inex [B, −Im] ,

which is the sought after relation.

We also notice that

‖E‖ ≤ ‖A‖
∥∥∥∥∥

[
B⊤

−Im

]
H− 1

2

∥∥∥∥∥

∥∥∥∥H
− 1

2 EH
− 1

2
inex

∥∥∥∥
∥∥∥∥H

− 1
2

inex [B, −Im]

∥∥∥∥

= O

(
‖A‖

∥∥∥∥H
− 1

2 EH
− 1

2
inex

∥∥∥∥
)

,

which provides a clear relation between ‖E‖ and

∥∥∥∥H
− 1

2 EH
− 1

2
inex

∥∥∥∥ ≈
∥∥H−1E

∥∥.
To proceed with the spectral analysis, we must distinguish between the unit and non-unit

eigenvalues, since the occurrence of multiple eigenvalues with Jordan blocks requires a refined
analysis.

We assume that the eigenvalues of the diagonal matrix In−m + Θ in AP−1
ex are all distinct.

Therefore, we can exploit standard perturbation results to evaluate the perturbation that these
simple eigenvalues undergo when AP−1

ex is perturbed by E [105]. For each simple eigenvalue
λ
(AP−1

ex

)
there exists an eigenvalue λ

(AP−1
ex + E) such that

λ
(
AP−1

ex + E
)

= λ
(
AP−1

ex

)
+

y∗Ex

y∗x
+ O

(
‖E‖2

)
, (8.11)

where x, y are the right and left eigenvectors associated with λ
(AP−1

ex

)
. Since both the right

and left eigenvectors are available, namely they are the columns of the first block of X (see
Theorem 8.2) and of Y (see (8.10)), the first-order term can be explicitly computed.

To analyze the perturbation of the unit eigenvalues, we first notice that some of them may
not be perturbed at all, as the following theorem shows.

Theorem 8.4. Assume that E = H −Hinex has k ≤ m zero eigenvalues. Then AP−1
inex has 2k

unit eigenvalues with geometric multiplicity k.

Proof. Let x 6= 0 be such that Ex = 0. Setting y = H
1
2 x, from Hx = Hinexx we obtain

y = H− 1
2 HinexH

− 1
2 y. Therefore, using any linear combination of columns from the second

block of X , vectors of the form
[

B̂⊤y
0

]
yield

E
[
B̂⊤y

0

]
= −A

[
B⊤

−Im

]
H−1EH−1

inexH
1
2 y

= −A
[

B⊤

−Im

]
H− 1

2

(
y − H− 1

2 HinexH
− 1

2 y
)

= 0,
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so that

AP−1
inex

[
B̂⊤y

0

]
= AP−1

ex

[
B̂⊤y

0

]
=

[
B̂⊤y

0

]
.

Since the dimension of the null space of E is equal to k, the relations above show that
AP−1

inex has k eigenvalues equal to one, with corresponding linearly independent eigenvectors.
We also notice that the third block column of X is in the null space of E , namely

E
[

(A − I)−1 B̂⊤

B (A − I)−1 B̂⊤

]
= 0,

so that any k columns of this block represent a set of generalized eigenvectors for the unit
eigenvalue of AP−1

inex.

Theorem 8.4 shows that if Hinex is spectrally close to H, in the sense that their eigenstruc-
ture partially coincides, then E is singular and it only partially affects the Jordan structure of
the unperturbed problem.

The remaining 2 (m − k) unit eigenvalues, with k ≥ 0, may be perturbed by a possibly
much larger quantity than the simple eigenvalues. In particular, for a multiple eigenvalue with
all Jordan blocks of size two it holds that (see, e.g., [65, 61])

λ
(
AP−1

ex + E
)

= λ
(
AP−1

ex

)
+ ξ

1
2 + o

(
‖E‖ 1

2

)
, (8.12)

where ξ are the eigenvalues of Y ∗EX (and both positive and negative square roots are used
to compute the first-order term); the columns of X, Y contain all right and left eigenvectors
associated with the unit eigenvalue of AP−1

ex . In our case, X (Y ) is the second block-column
of X (of Y). Once again, thanks to the explicit expression of X and Y, all these quantities can
be readily computed.

Although we do not dwell here with the subject, we mention that [65, 61] also discuss
the non-linear perturbation of eigenvectors, by providing the zero-order perturbation term
explicitly. A similar procedure could be applied here; however, the results would be so technical
in our setting that they might be difficult to exploit in practice.

We conclude with a result that sheds light into the type of first-order perturbation induced
by Y ∗EX (8.12).

Proposition 8.5. Let X2, Y2 be the second block-columns of X and Y, respectively. Assume
that A − I is negative definite. Then the eigenvalues ξ of Y ∗

2 EX2 are all real. Moreover, if
E = H − Hinex ≥ 0 (E = H − Hinex ≤ 0) then ξ ≥ 0 (ξ ≤ 0).

Proof. We show that Y ∗
2 EX2 = W1W2 with W1, W2 symmetric and W1 > 0. This will ensure

that the eigenvalues are real. The definiteness will depend on the definiteness of W2.

Using the definition of Y2, E and X2, we have

Y ∗
2 EX2 = −H

1
2 G−1

(
BB⊤ − B (A − I)−2 B⊤G−1H

)
H−1EH−1

inexH
1
2

= −H
1
2 G−1

(
I − B (A − I)−2 B⊤G−1

)
EH−1

inexH
1
2

= −H
1
2 G−1

(
G − B (A − I)−2 B⊤

)
G−1EH−1

inexH
1
2

=
(
−H

1
2 G−1B (A − I)−1 (A − 2I) (A − I)−1 B⊤G−1

) (
H

1
2

(
H−1

inex − H−1
)

H
1
2

)

≡ W1W2.

Since A − 2I < A − I < 0, it follows that W1 is positive definite, while the definiteness of
W2 depends on that of H−1

inex − H−1.
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λ
(AP−1

ex

)
λ
(
AP−1

inex

) ∣∣∣λ
(AP−1

ex

)− λ
(
AP−1

inex

)∣∣∣
1 0.99495 - 0.14204i 0.14213
1 0.99495 + 0.14204i 0.14213
1 1.0051 - 0.071435i 0.07162
1 1.0051 + 0.071435i 0.07162
2 1.9798 0.02020

Table 8.1: Example 8.6. Eigenvalues of the exactly and inexactly preconditioned problem, and
their difference.

The sign of the eigenvalues ξ influences the type of first-order perturbation of multiple
eigenvalues. In particular, if H ≤ Hinex, then all ξ ≤ 0, so that ξ

1
2 are purely imaginary.

As a consequence, perturbed unit eigenvalues will all have non-zero imaginary part, and no
real eigenvalues occur as first-order perturbations of the unit eigenvalue with non-trivial Jordan
block. This is indeed the case for the perturbed spectrum of Example 8.8 when Hinex is obtained
by an Algebraic Multigrid operator.

8.3 Case C = 0. Numerical evidence

In this section we provide experimental validation of our theory. We start with two simple
examples with 5 × 5 matrices, which can be fully replicated.

Example 8.6. We consider the matrix (8.1) with

A =



2 1 0
1 3 1
0 1 4


 , B =

[
0 2 0
0 0 3

]
.

We precondition this matrix either with Pex or with Pinex. In the latter case, the matrix
Hinex occurring in (8.3) is defined as

Hinex = B



0.985 0 0

0 0.99 0
0 0 0.995


B⊤,

yielding a non-singular E = H − Hinex, with ‖E‖ ≈ 4.5 · 10−2 and ‖E‖
‖H‖ ≈ 5 · 10−3. The

eigenvalues of AP−1
ex and of AP−1

inex are reported in Table 8.1, together with their absolute
difference.

For the simple eigenvalue λ = 2 the first-order perturbation in (8.11) predicts a value
y∗Ex
y∗x

≈ −0.020202, which perfectly matches the actual true perturbation. Here x and y∗ are
the first column of X and row in Y∗, respectively, while E is as defined in Theorem 8.3.

For the multiple unit eigenvalue with 2 Jordan blocks of size 2 each, the computed quantity
ξ

1
2 in (8.12) is given by (to the first significant digits) ξ

1
2 = 0.11120 and ξ

1
2 = 0.11097i. Note

that here ‖E‖ 1
2 = 0.19277, so that higher order terms will be significantly smaller. As a

consequence, the first-order perturbation term ξ
1
2 provides a sufficiently good correction to the

estimate.

Example 8.7. In this example we consider the same data as in Example 8.6, whereas

Hinex = B



0.985 0 0

0 0.99 0
0 0 1


B⊤.
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λ
(AP−1

ex

)
λ
(
AP−1

inex

) ∣∣∣λ
(AP−1

ex

)− λ
(
AP−1

inex

)∣∣∣
1 1.0000 2.220 · 10−16

1 1.0000 2.220 · 10−16

1 1.0050 - 0.10141i 0.10153
1 1.0050 + 0.10141i 0.10153
2 1.9798 0.020198

Table 8.2: Example 8.7. Eigenvalues of the exactly and inexactly preconditioned problem, and
their difference.

tol ‖E‖ ‖E‖ / ‖H‖ ‖E‖ # 2 × 2 Jordan # 2 × 2 Jordan

blocks in AP−1
ex blocks in AP−1

inex

1 · 10−4 1.20 1.2 · 10−4 9.88 · 10−2 816 93
5 · 10−4 9.02 9.1 · 10−4 5.89 · 10−1 816 65
1 · 10−3 24.65 2.5 · 10−3 1.11 · 10 0 816 56

amg-mi20 164.59 1.6 · 10−2 2.68 · 10 0 816 145

Table 8.3: Example 8.8. Relevant quantities for the inexactly preconditioned problem.

This choice yields a diagonal and singular matrix E, with numerically computed eigen-
values 0, 0.040. The a-priori perturbation estimate for the simple eigenvalue is again y∗Ex

y∗x
≈

−0.020202, while for the multiple unit eigenvalue the theory predicts that AP−1
inex has a unit

eigenvalue with a Jordan block of size 2, and two non-unit eigenvalues, with first-order per-
turbation term equal to ξ

1
2 = 0.10050 and ξ

1
2 = 0. These expectations are fully met in the

numerical experiment, as Table 8.2 shows.

Example 8.8. Magnetostatic problem. We consider a 2088×2088 linear system stemming
from the mixed finite element discretization of the 2D magnetostatic problem; we refer to [74]
for a detailed description of this test problem. In this example n = 1272, m = 816, and
the resulting matrix A was properly scaled so that the matrix (A − I) is non-singular and
negative definite. We approximated H = BB⊤ with Hinex = R⊤R, where R is the upper
triangular factor of the incomplete Cholesky factorization of BB⊤ computed using the MatLab
function cholinc with different dropping threshold [63]. Table 8.3 shows the most relevant
quantities for different values of the tolerance tol used in cholinc. The table also displays the
number of Jordan blocks retained after perturbation (we considered as zero all eigenvalues of
E less than 10−9 in modulo). This provides a feeling of the spectral quality of the incomplete
Cholesky factorization. In the last table row we also report relevant information when using an
Algebraic MultiGrid (AMG) preconditioner (in this experiment we used mi20 in [1], with all
default parameters). In spite of a larger perturbation (in norm), the spectral properties of H
are better reproduced, leading to a less perturbed spectrum of the preconditioned matrix; note
that the number of eigenvalues of E less than 10−5 in absolute value is even higher, namely
196.

For the problem preconditioned with Hinex being the incomplete Cholesky factorization, in
Fig. 8.1 we report the true spectrum of AP−1

inex (◦ symbol), together with its approximation
using the first-order expansion in (8.11) and in (8.12) (+ symbol). As expected, we can see
that the unit eigenvalues of AP−1

ex are significantly spread both on the real line and on the
complex plane. This behavior is qualitatively fully captured by the first-order perturbation
terms (eigenvalues with + symbol) although only higher order perturbation terms would be
able to capture the actual direction of the complex eigenvalues. Finally, we observe that the
real eigenvalues of AP−1

inex stemming from simple eigenvalues of AP−1
ex are fully estimated by

the first-order term in (8.12): see the real interval [0.2, 0.4] in the plots.
Fig. 8.2 reveals the special features of the Algebraic Multigrid preconditioner. The unit

eigenvalue of AP−1
ex does not spread on the real axis, as all corresponding eigenvalues of AP−1

inex
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(◦ symbol) have non-zero imaginary part. This behavior is fully captured by the first-order

estimate, as all values ξ in (8.12) are real and negative, so that ξ
1
2 is purely imaginary. This

phenomenon is in agreement with Proposition 8.5, and relies on well-known spectral equivalence
properties of AMG which appear to hold, at least numerically, for this matrix; we refer, e.g.,
to [77] for a thorough discussion on AMG.
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Figure 8.1: Example 8.8. Eigenvalues of AP−1
inex (◦ symbol) and approximations (+ symbol)

as either λ
(AP−1

ex

)
+ ξ

1
2 or λ

(AP−1
ex

)
+ y∗Ex

y∗x
, as the cholinc tolerance tol varies (see (8.11),

(8.12)). From the top left corner: tol = 10−4, 5 · 10−4, 10−3.

8.4 The case of non-zero (2,2) block

In this section we generalize our analysis to the case of non-zero (2,2) block in the matrix A.
This setting often corresponds to the case when the (1,2) block is column rank deficient, so that

the original A would be singular. We thus assume that 0 < rank
(
B⊤

)
≤ m; in particular, we

exclude the case of B⊤ identically zero. Let us thus assume that C is symmetric and positive
semidefinite, and such that

H := BB⊤ + C, is non-singular.

We thus define

Pex =

[
In B⊤

B −C

]
.
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Figure 8.2: Example 8.8. Eigenvalues of AP−1
inex (◦ symbol) and approximations (+ symbol)

as either λ
(AP−1

ex

)
+ ξ

1
2 or λ

(AP−1
ex

)
+ y∗Ex

y∗x
, for Hinex obtained as an Algebraic Multigrid

operator.

Using the same steps as in Section 8.1 we can show that the problem
[

A B⊤

B −C

] [
x
y

]
= λPex

[
x
y

]
,

can be transformed into the equivalent eigenproblem

M0w = (λ − 1) w ⇔
([

In

B̂

]
(A − I)

[
In, −B̂⊤

]) [ u
v̂

]
= (λ − 1)

[
u
v̂

]
,

where B̂ = H− 1
2 B, and u, v̂ are related to x and y in the same manner. The only difference

lies in the definition of H. Clearly, B̂ no longer has all orthonormal rows. The following
result generalizes Proposition 8.1 to the new setting. In the following we shall assume that

(A − I)
(
I − B̂⊤B̂

)
is diagonalizable. This is not a restrictive condition, since A can always be

scaled to ensure that (A − I) be definite, from which the diagonalizability follows.

Proposition 8.9. Let C ≥ 0 and H = BB⊤ + C be non-singular. Let [Y∗, Y1, Y0] be the
eigenvector basis of B̂B̂⊤, whose blocks have dimension ℓ∗, ℓ1, ℓ0 ≥ 0, respectively, where Y1

and Y0 correspond to the unit and zero eigenvalues, if any. Let (A − I)
(
I − B̂⊤B̂

)
X̂ = X̂Θ

be the partial eigenvalue decomposition of (A − I)
(
I − B̂⊤B̂

)
associated with its n−ℓ1 non-zero

eigenvalues. Then the Weyr decomposition of M0 is given by

M0X0 = X0




Θ
0ℓ∗

0ℓ1 Iℓ1

0ℓ1

0ℓ0




,

X0 =

[
X̂ B̂⊤Y∗ B̂⊤Y1 (A − I)−1 B̂⊤Y1 0

B̂X̂ Y∗ Y1 0 Y0

]
,

with X0 non-singular.

Proof. The identity can be easily verified. A constructive proof closely follows the technique
used in the proof of Proposition 8.1. The only difference is in the distinction of the Jordan
blocks: since I − B̂⊤B̂ may not be an orthonormal projector, not all eigenvectors of B̂⊤B̂
contribute into the generation of Jordan blocks.
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We can thus generalize Theorem 8.2 to the case C 6= 0. The proof is completely analogous
and is thus omitted.

Theorem 8.10. With the notation and assumptions of Proposition 8.9 and C ≥ 0, the pre-
conditioned matrix AP−1

ex admits the following Weyr decomposition:

AP−1
ex X = X




In−ℓ1 + Θ
Iℓ∗

Iℓ1 Iℓ1

Iℓ1

Iℓ0




,

with the non-singular matrix X :

X =

[
In 0

B −H
1
2

]
X0

=

[
X̂ B̂⊤Y∗ B̂⊤Y1 (A − I)−1 B̂⊤Y1 0

0 −CH− 1
2 Y∗ −CH− 1

2 Y1 B (A − I)−1 B̂⊤Y1 −H
1
2 Y0

]
.

The decomposition in Theorem 8.10 shows that the number of Jordan blocks may be signif-
icantly low, and in particular less than m, if the matrix B̂B̂⊤ does not have unit eigenvalues,
that is, if BB⊤ and C do not complement each other (if they do, then B̂⊤B̂ is an orthogonal
projection onto the range of B̂⊤).

To analyze the perturbation induced by an inaccurate computation of H = BB⊤ + C by
means of some Hinex, we can define E = H − Hinex and then write

Pinex =

[
In B⊤

B −C + E

]
= Pex +

[
0
E

]
[0, Im] .

Therefore, precisely the same expression as the one in Theorem 8.3 holds for C ≥ 0:

AP−1
inex = AP−1

ex + E , with E = −A
[

B⊤

−Im

]
H−1EH−1

inex [B, −Im] .

As already said, the Weyr decomposition of Theorem 8.10 reveals that unless BB⊤ and
C complement each other, we expect fewer than m Jordan blocks to arise in general - these
affect the third and forth blocks in X in Theorem 8.10. In terms of spectral perturbation, fewer
eigenvalues will be highly perturbed when using AP−1

inex in place of AP−1
ex . However, there are

applications where BB⊤ and C do complement each other: in this case I − B⊤H−1B is a
projector, and ℓ1 = m − ℓ0 Jordan blocks in the exactly preconditioned matrix can be found.
For these, the discussion of the previous section on their perturbation applies.

The number of unit eigenvalues that are left unaltered by AP−1
inex depends once again on

the number of zero eigenvalues of E = H − Hinex. A result analogous to Theorem 8.4 is more
difficult to obtain, since we would need to distinguish among the occurrence of unit, zero and
other eigenvalues of B̂B̂⊤. As an example, we can easily see that if

Null (E) ∩ Range

(
H−1

inex [B,−Im]

[
0

−H
1
2 Y0

])
6= {0} , (8.13)

and k is the dimension of the intersection space, then there will be k unaltered unit eigenvalues
in AP−1

inex with geometric multiplicity k. Analogously, if

Null (E) ∩ Range

(
H−1

inex [B,−Im]

[
B̂⊤Y1

−CH− 1
2 Y1

])
6= {0} ,
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and k is the dimension of the intersection space, then there will be 2k unaltered unit eigenvalues
in AP−1

inex with geometric multiplicity k (note that the forth block of X is always in the null
space of E , hence that block provides the set of generalized eigenvectors). Following the same
proving strategy, more extreme cases can be obtained as follows. Recall the definition of ℓ∗, ℓ1

and ℓ0 above. Assume E = H − Hinex has k zero eigenvalues. Then
i) If ℓ∗ = m (i.e. ℓ0 = ℓ1 = 0), then k eigenvalues of AP−1

ex remain unchanged, with
geometric multiplicity k;

ii) If ℓ1 = m (i.e. ℓ∗ = ℓ0 = 0), then 2k eigenvalues of AP−1
ex remain unchanged, with

geometric multiplicity k.
We conclude with an example that validates the theory described in this section.

Example 8.11. We consider a variant of Example 8.6:

A =




2 1 0 0
1 3 1 0
0 1 4 1
0 0 1 5


 , B =



0 0 2 0
0 0 0 3
0 0 0 0


 , C =



γ1 0 0
0 γ2 0
0 0 3


 .

Here B is clearly rank deficient, and depending on the values (zero vs. non-zero) of γ1, γ2

we can obtain ℓ1 = 0, 1, 2; in particular, notice that for γ1 = γ2 = 0 the two matrices BB⊤ and
C complement each other. At first, we consider

Hinex = B




1 0 0 0
0 0.985 0 0
0 0 0.99 0
0 0 0 0.995


B⊤ + C.

For this choice of Hinex, the error matrix E is singular (one zero eigenvalue), irrespective of
the choice of C. Table 8.5 summarizes information on the exact and perturbed eigenvalues. For
γ1 = 1 and γ2 = 2 no Jordan blocks are expected even in the exactly preconditioned problem,
since I − B̂⊤B̂ is not a projector, and it is non-singular. Other relevant quantities are collected
in Table 8.4 for these and other values in C. First order terms yield the following linear
perturbation of the eigenvalues of AP−1

ex , which matches pretty well the actual perturbation
taking place:

λ
(AP−1

ex

)
y∗Ex

3.6888 -0.003994
1.8751 -0.040204
1.5754 -0.023661
1.1880 -0.015681

It can also be seen that (8.13) holds with k = 1, therefore one unaltered unit eigenvalue
can also be observed.

We next chose γ1 = 0 and γ2 = 2, so that C is singular. With these choices, ℓ1 = 1,
so that a Jordan block in the canonical form of AP−1

ex occurs. The theory predicts that the

corresponding eigenvalue is perturbed by at least ξ
1
2 = 0.11208 (plus the o

(
‖E‖ 1

2

)
terms), and

this can be observed in practice (see the second block of rows in Table 8.5). Since (8.13) still
holds with k = 1, one unaltered unit eigenvalue can also be observed. All remaining eigenvalues
show an at most linear perturbation in ‖E‖.

Finally, we consider the case γ1 = γ2 = 0, so that BB⊤ and C complement each other. In

this case, ℓ1 = 2, so that B⊤H−1B is a projector onto Range
(
B⊤

)
. The theory ensures that the

eigenvalues of the 2 Jordan blocks are thus perturbed by at least ξ
1
2 = 0.13020i, 0.10944, and

this can be verified in Table 8.5. Once again, (8.13) holds with k = 1, therefore one unaltered
unit eigenvalue can also be observed. All other eigenvalues are perturbed at most linearly.
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γ1, γ2 ‖E‖ ‖E‖ / ‖H‖ ‖E‖
1, 2 0.045 0.00409 0.030879
0, 2 0.045 0.00409 0.044302
0, 0 0.045 0.00500 0.045235

Table 8.4: Example 8.11. Norms of error and perturbation matrices, for various values of the
diagonal elements in C.

γ1, γ2 λ
(AP−1

ex

)
λ
(
AP−1

inex

) ∣∣∣λ
(AP−1

ex

)− λ
(
AP−1

inex

)∣∣∣
1, 2 1 1.0000 2.220 · 10−16

1.0000 1.0238 0.023763
1.0000 1.0478 0.047758
1.1880 1.1657 0.022336
1.5754 1.5511 0.024283
1.8751 1.8335 0.041568
3.6888 3.6848 0.003960

0, 2 1.0000 1.0000 3.33 · 10−16

1.0000 1.0070 - 0.13768i 0.13785
1.0000 1.0070 + 0.13768i 0.13785
1.0000 1.0238 0.02377
1.3820 1.3573 0.02468
1.7273 1.6885 0.03878
3.6180 3.6142 0.00381

0, 0 1.0000 1.0000 2.220 · 10−16

1.0000 1.0015 - 0.11657i 0.11657
1.0000 1.0015 + 0.11657i 0.11657
1.0000 0.9946 - 0.16696i 0.16705
1.0000 0.9946 + 0.16696i 0.16705
1.3820 1.3584 0.02356
3.6180 3.6142 0.00382

Table 8.5: Example 8.11. Eigenvalues of the exactly and inexactly preconditioned problem,
and their difference. The first column shows the choice of the parameters in C.
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In the first part of this thesis have provided new tools for working with sequences of matrices:
we have extended a recent perturbation result based on a theorem by Mirsky: more in detail
our findings concern the eigenvalue distribution and localization of a generic (non-Hermitian)
complex perturbation of a bounded Hermitian sequence of matrices; we have studied the sta-
bility of the a.c.s. notion for sequences formed by Hermitian matrices, under the action of a
continuous function defined on the real line; we observed that tools from matrix theory (Mirsky
Theorem, see [15]) and approximation theory in the complex field (Mergelyan’s Theorem, see
[76]), combined with those from asymptotic linear algebra [84, 109, 112], have been crucial in
our proof of results concerning the eigenvalue distribution of non Hermitian matrix sequences.
In particular, we have exploited these tools to deduce general results that we have applied, as a
special case, to the algebra generated by Toeplitz sequences (an interesting side effect, already
implicitly contained in the Tilli analysis [112], is a characterization of the range of L∞(Td)
functions obtained as restrictions of functions of several complex variables in the Hardy space
H∞); finally we have studied in detail the singular values and eigenvalues of g-circulant matri-
ces and we have identified the joint asymptotic distribution of g-Toeplitz sequences associated
with a given integrable symbol with the generalization to the multilevel block setting.

Some problems remain open.

For example, in Section 3.1 we studied the approximation of PDEs with given boundary
conditions. As an important example of application, it would be interesting to extend the
CG convergence analysis of Beckermann and Kuijlaars [8] to this quasi-Hermitian setting, in
the case where the Hermitian part is positive definite for every n and the global distribution
function of the eigenvalues is positive and bounded. The key point would be the definition
of proper assumptions on the outliers and on the extreme eigenvalues in order to mimic, if
possible, the same analysis performed in [8].

In Section 3.2, with the given assumption of Hermitian character, the results presented
generalize those of [83, 94] and have application in determining, if any, the eigenvalues limit
distribution of general matrix sequences (refer to [111, Proposition 2.7] and its generalization,
i.e., [83, Proposition 2.3]). Given the applications of such a study to the convergence analysis
of Krylov-type methods, we believe that the considered field and related tools are worth to be
further investigated. Some issues, not in a special order, are the following:

• Extending Theorems 3.2 and 3.3 to the case where An is not necessarily Hermitian and
{An −A∗

n}n is distributed as the zero function. Some precise trace-norm conditions seem
to be necessary as emphasized in [45, 52];

• Extending Theorems 3.2 and 3.3 to the case of singular values, when the Hermitianity
assumption is dropped;

• Setting and answering to the question whether {f(An)}n is a GLT sequence if {An}n is;

• Determining specific and interesting examples in which such a theory represents a concrete
improvement for the convergence analysis of Krylov-type methods, for stability issues of
approximated PDEs etc., in the sense indicated in [90, Section 3];
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• Considering the hint given by the knowledge of the spectral symbol in the GLT case
for designing new proposals of CG/GMRes preconditioners and prolongation/restriction
operators for multigrid procedures.

With regard to the product of sequences of Toeplitz matrices, it would be interesting to
extend the results of Chapter 4 to the case where the involved symbols are not necessarily
bounded, but just integrable. As already stressed in [90], in that case, the matrix theoretic
approach seems more convenient, since the corresponding Toeplitz operators are not well defined
if the symbols are not bounded. It should be observed that the conditions described in the Tilli
class for the existence of a canonical distribution corresponding to the symbol are sufficient,
but not necessary. In fact for f(t) = e−it the range of f is the complex unit circle, disconnecting
the complex plane, while the eigenvalues are all equal to zero. However, if one takes the symbol
f(t) in [20, (3.24), p. 80] (f(t) = e2it, t ∈ [0, π), f(t) = e−2it, t ∈ [π, 2π)), then the range of f is
again the complex unit circle, that disconnects the complex plane, but the eigenvalues indeed
distribute as the symbol as discussed in [20, Example 5.39, pp. 167-169]. A further step would
consist in understanding how to discriminate between these two types of generating functions
which do not belong to the Tilli class.

We also would like to study the more involved eigenvalue/eigenvector behavior both for
g-circulant and g-Toeplitz structures.

When in a given field of science (mathematics, physics, chemistry, etc.) new discoveries
are made, an important next step is to find an application. In the second part of the thesis
we dealt with this, especially we have studied in detail the singular values of matrix sequences
obtained by preconditioning g-Toeplitz sequences associated with a given integrable symbol via
g-circulant sequences: the main point is that the standard preconditioning works only in the
classical setting, namely when gi = ±1, i = 1, . . . , d. However, when g (or |g|) is positive a basic
preconditioner for regularizing techniques can be obtained by a clever choice of the g-circulant
sequence {Cn,g}. We have presented and discussed several numerical results, also instructive for
specific applications in image deblurring and denoising. In particular they have confirmed that
the proposed preconditioners can be used as a basic tool for obtaining regularizing features, by
means of filtering techniques which will be analyzed and discussed in next works.

We have extended the rigorous two-grid analysis for circulant matrices to the case where the
size reduction is performed by a factor g with g > 2. An interesting feature of a size reduction
by a factor g > 2 is that it allows to eliminate some pathologies which occur when g = 2. In
particular, if the considered matrices come from the approximation of certain integro-differential
equations, then we have two sources of ill-conditioning and the zeros of the underlying symbol
are located at x = 0 and at x = π: this situation is a special case of mirror point zeros, and
when g = 2, it is possible to prove that the resulting two-grid iteration cannot be optimal (see
[42, 85]). Such difficulty can be overcome using a block projector [25, 55] or choosing a larger g.
Moreover, when increasing g, the size of the coarse problems decreases: as a consequence more
multigrid recursive calls could be considered, like the W-cycle which is proved to be optimal
for g ≥ 3. We stress that the numerical experiments are encouraging, not only for circulant
matrices but also regarding Toeplitz matrices and concerning the use of the V-cycle algorithm.
A future line of research must include the multilevel setting, following the approach in [85, 2],
and a rigorous proof of convergence for the whole V-cycle procedure in accordance with the
proof technique introduced in [3]. The proposed convergence analysis could be then applied to
smoothing aggregation projection techniques [67].

We have analyzed in detail the spectral perturbation induced by the use of the inexact
constraint preconditioner when solving large scale symmetric algebraic saddle point problems
with zero and non-zero (2,2) block. Our results emphasize the role of the spectral properties of
the approximation to the core matrix H = BBT to be able to predict the actual distribution
of the spectrum of AP−1

inex. Moreover, thanks to an explicit description of the transformation
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matrix in the canonical form, we were able to fully track the linear and non-linear perturbation
of the eigenvalues. Our numerical results show that the analysis can be accurate also on data
stemming from real applications.
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[3] A. Aricò, M. Donatelli and S. Serra-Capizzano, V-cycle optimal convergence for
certain (multilevel) structured linear systems, SIAM J. Matrix Anal. Appl., 26-1 (2004), pp.
186–214.

[4] F. Avram, On bilinear forms on Gaussian random variables and Toeplitz matrices, Probab.
Theory Related Fields, 79 (1988), pp. 37–45.

[5] O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems:
Theory and Computation, Academic Press Inc., New York, 1984.
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