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Abstract 
 
Glasses at low temperatures show rather universal physical properties that are 

attributed to the low-energy excitations that characterize all kinds of amorphous solids.  
The two-level system (2LS) tunneling model (TM) has been accepted as the 

explanation for the thermal, dielectric and acoustic properties of glasses at T<1 K. The 
magnetic effects discovered recently in the multi-silicate glasses and the temperature 
dependence of the specific heat and permittivity of some mixed glasses indicate the need 
however for a suitable generalization of the 2LS TM.  

All these anomalous effects can be explained well in terms of the very same new 
(anomalous) tunneling systems (ATS) model. ATS in glasses are provided by the process of 
partial devitrification of the glassy network due to the presence of network-modifying ions in 
real glasses. A new probability distribution, which is inversely proportional to the energy 
asymmetry, takes into account partial devitrification. Using the ATS model we arrive at some 
expressions for the contribution to the dielectric constant and heat capacity anomaly from the 
advocated ATS with a few new parameters, which are concerning to the ATS and 
characterizing their energy gap distribution. We have shown the role of the ATS already in 
zero magnetic field in the multi-component glasses. The multi-welled ATS together with 
STM’s 2LS explain qualitatively, as well as quantitatively and with reasonable parameters, 
the relative change of the dielectric permittivity at zero magnetic field for multi-component 
glasses such as AlBaSiO (or BAS) and BK7. They explain also the relative change of the 
dielectric permittivity and heat capacity with temperature T and with alkali concentration x in 
the mixed (SiO2)1-x(K2O)x glass. 

In order to explain the effects of the magnetic field we consider the motion of a 
fictitious charged particle in a 3-welled potential as a working example, coupling to the 
magnetic field through the particle’s orbital motion. The magnetic-field dependent 
Hamiltonian of a single ATS has been modified introducing the Aharonov-Bohm phase. The 
experimental data of the relative change of the dielectric permittivity and loss in the presence 
of the magnetic field have been carefully fitted using the ATS model. 

The polarization echo’s theory has been improved and extended to the case of the 
independent ATS model describing glasses in a magnetic field. The agreement between 
theory and experiment is highly satisfactory, given the simplifications used in the theory. The 
isotope substitution effect on the dipole-echo amplitude also can be explained in a simple way 
with our model. 

The interpretation of the extracted material parameters brings us to confirm the 
existence of the coherent tunneling of a cluster of N true particles, with a value of N ranging 
from about 25 coherent-tunneling particles in a cluster at the lowest temperatures, to about 
600 at the higher temperatures. 
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Chapter 1  

 

Introduction 

 
Glasses are materials that play an essential role in science and technology. Their 

wide application in industry is dictated by the economic and practical points of view (cheap 

and easy production, chemical neutrality and mechanical strength). Their chemical, physical 

and in particular optical properties make them appropriate for applications such as flat and 

container glass, optics and optoelectronics application materials, solar energy industry, high-

tech information industry, semiconductor industry, laboratory equipment, thermal insulator 

(glass wool), reinforcement material (glass-reinforced plastic, glass fiber reinforced concrete) 

and glass art.  

But their fundamental physical properties are hardly understood from first principles, 

in contrast to the long-studied crystalline solid-state materials. Thus the scientific challenge, 

stretched even further by recent startling discoveries. 

The term glass is often used to describe any amorphous material that exhibits a glass 

transition temperature Tg, at which the material changes its behaviour from being glassy (a 

non-crystalline, infinite-viscosity solid) to being liquid (thus shapeless). Tg is always lower 

than the melting temperature Tm of the crystalline state of the material, if one exists. Because 

the glass transition is not a true thermodynamic transition, but rather a manifestation of 

divergent viscoelasticity and  metastability, the exact value of Tg depends on the method used 

to produce the glassy state and the rate at which the temperature is lowered during fabrication. 

The final structure of the glass therefore depends on how slowly it has been cooled.  

Glass exhibits an atomic structure close to that observed in the super-cooled liquid 

phase between Tm and Tg, but displays all the mechanical properties of a solid. Contrary to 

crystals, glasses do not possess any long-range order in their atomic arrangement. Therefore, 

it makes glass hard to be to mathematically described in a simple, tractable way.  

The question of the nature of glass and of the transition from the liquid or the 

cristalline solid and a glassy phase is long-standing and still open question. According to P.W. 

Anderson, “the nature of the glass transition is the deepest and most important problem in 

solid-state physics”. The ultimate difference between the glassy and the over-cooled liquid 

state remains in fact a mystery.  
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It is well known that glasses display universal thermal and dielectric properties at the 

lower temperatures, properties which are very different from those of their crystalline 

counterparts. Below 1 K, the specific heat of dielectric glasses depends approximately linearly 

and the thermal conductivity almost quadratically on temperature, while cubic dependences 

for both properties are observed in crystals. 

These thermal properties, together with other dielectric and acoustic universal 

properties, are well understood theoretically in terms of tunneling systems, since in 1972 

Phillips and, independently, Anderson, Halperin and Varma introduced the tunneling model 

(TM), the fundamental postulate of which is the general existence of atoms (or small groups 

of atoms) which can tunnel between two configurations of very similar energy (the double-

welled two-level systems as a simplest case). The distribution of energy asymmetries, barrier 

heights, etc., is such that the probability of the resulting tunneling two-level system having an 

energy splitting E is approximately independent of E. This presented an advancement in the 

study of glasses, a simplification in the mathematical modeling. 

The two-level systems’ (2LS) tunneling model (TM) has enjoyed an apparently 

impressive success. It gave the possibility to theoretical physicists to explain many of the 

characteristic features of glassy behaviour observed below 1 K (linear specific heat, 

logarithmic ultrasound velocity shift, T2 thermal conductivity, etc.) and also to predict 

qualitatively a whole novel series of nonlinear effects. 

However, the microscopic nature of the tunneling systems in glasses remains 

unknown. The tunneling model came under biting criticism by Yu and Legget (1998). 

Moreover, the limitations of the 2LS TM do not allow to explain quantitatively and even 

qualitatively (being in open contradiction) most of the properties of multi-component silicate 

and ceramic glasses in the presence (sometimes even in the absence) of a weak magnetic 

field, such as was found in a-Al2O3-BaO-SiO2, BK7 (a borosilicate glass important for optical 

applications), Duran (ditto, for chemistry), a-SiO2+xCyHz, (SiO2)1-x(K2O)x glasses and so on. 

These materials are important for applications in technology, and not only for low-

temperature thermometry, but also hopefully in the capacitive measurements of weak 

magnetic fields.  

The relative dielectric constant and loss in some dielectric glasses show non-

monotonic behaviour in the presence of weak to moderate magnetic fields, which does not 

scale with the concentration of paramagnetic impurities sometimes present in the glass, in 

trace ppm concentrations, due to specific contamination in the fabrication process. The 

amplitude of the dipole echo (similar to NMR’s spin echo) in some non-magnetic glasses 

exhibits a strong non-monotonic (oscillating, even) dependence on the magnetic field (or 
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pulses separation time) even for very weak fields (about 10 mT), whilst pure a-SiO2 shows no 

response at all. The dipole-echo experiments in pure and deuterated a-glycerol and in the 

doped crystals KCl:Li with 6Li and 7Li isotopes exhibit even an effect of isotopic substitution 

on the dipole-echo amplitude. These effects are still very poorly understood. 

Some unexplained older data of the dielectric permittivity in zero magnetic field for 

the mixed (SiO2)1−x(K2O)x and (SiO2)1−x(Na2O)x glasses for different concentration x present 

considerable difficulties to be understood within the standard tunneling model.  

Up to now several different attempts have been put forwards to explain the magnetic 

effects: introducing dipole-dipole interactions between the tunneling systems, along with the 

proposal of the interaction between the tunneling systems and the magnetic field by 

introducing a Aharonov-Bohm orbital coupling. The presence of nuclear electric quadrupole 

moments of atoms contained in the magnetically responsive glasses put physicists on some 

attempts of coupling the tunneling systems to the nuclear quadrupole moments and then, via 

the nuclear magnetic moments, to the magnetic field. The nuclear approach has enjoyed some 

success.  

However, the single model which could explain all kinds of reported, sometimes 

startling magnetic experiments in non-magnetic glasses is still absent.  

These are incentives for further investigation to receive understanding of the novel 

physical properties, and which call for an extension of the standard tunneling model. A simple 

explanation for many astonishing experimental discoveries in the last decade can now be 

given in terms of one single model (the multi-welled tunneling model) involving some 

additional (and anomalous, with respect to the standard parameter distribution) tunneling 

systems. The new multi-welled tunneling model is the simplest magnetic extension of the 

tunneling model of the 1970s that can very well, qualitatively and quantitatively, explain: the 

relative change of the dielectric permittivity for mixed glasses in the absence and presence of 

the magnetic field, the variation of the permittivity and heat capacity with changing the 

concentration of the chemical components in the mixed glasses, and the highly non-

monotonic, astonishing behaviour in the magnetic field of the polarization echo generated in 

glasses at high frequencies.  

The thesis is organized as follows. In Chapter 2 we present an overview of the 

structure of glasses and the basic physics of the standard double-welled tunneling model. 

Chapter 3 describes the structure of real glasses and reports numerical simulations that help us 

in the understanding of the nature of the tunneling systems. In Chapter 4 we present an 

overview of the experiments on the mixed glasses indicating deviations from the standard 

tunneling model and we build up our own model in zero magnetic field. In Chapter 5 we 
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present a review of the existent other models proposed to explain magnetic field effects in 

glasses. In Chapter 6 we describe the multi-welled tunneling model in the presence of a 

magnetic field. In Chapter 7 we present our own results for the magnetic-field dependence of 

the dielectric constant for several materials, in weak fields and with a simple attempt to 

explain behaviour in higher fields as well. In Chapter 8 we present our results for the 

dielectric loss and relaxation in a magnetic field. In Chapter 9 we present our results for the 

dipole-echo in a magnetic field, for the multi-silicate as well as for the organic glasses. The 

isotope effect finds a simple explanation. In Chapter 10 we present our interpretation of the 

fitting parameters, which sheds much new light on the nature of the tunneling systems. At the 

end of the thesis are the conclusions, outlook and references. 
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Chapter 2 

 

Structural glasses at low temperatures:  

the standard tunneling model 

 
2.1 General considerations 
 

The modern thinking about the microscopic structure of glasses is based on 

Zachariasen’s hypotheses [2.1]. Zachariasen noted similar mechanical properties (elastic 

modulus, etc.) between glasses and crystals and so expected similar structural energies and 

similar underlying atomistic building blocks. However, glasses have greater structural 

energies and are amorphous structures: glasses do not have the periodic (long range) order of 

a crystal, no infinitely-repeating unit cell (no repeating large scale structures), their 3D 

network lacks symmetry and periodicity, moreover glasses are isotropic - same average 

packing and structural properties in all directions. The most simple, studied and known glass 

is silica glass: SiO2. X-ray investigation shows that the average distance between the nearest 

atoms of Si and O is 1.62 Å, and between the (next) nearest atoms of Si is 3 Å; that almost 

coincides with the inter-atomic spacing in the crystal versions of SiO2 (quartz and 

crystobalite). But in the glasses a wide dispersion of the angles Si-O-Si from 120° to 180° is 

also observed. The local regular (short-ranged) order in silicate glasses is conserved at 

distances of 10-12 Å. In this complex single-component glass the unit cell consists of oxygen 

triangles or of oxygen tetrahedra around a silicon atom, connected randomly.  

Real, multi-component oxide glasses contain appreciable amounts of cations which 

can form vitreous oxides (good glass-formers), and other cations which are able to replace 

isomorphically, or much more likely form their own phase-separated droplets, any of  the 

glass formers. These network modifiers - combined alone with oxygen - would typically form 

a crystal (good crystal-formers). The glass- or Network-Forming (NF) cations are, typically: 

B3+, Si4+, P3+, P5+, As3+, As5+, Ge4+ . These cations are responsible for the glass-forming 

ability, and they combine together with oxygen atoms, creating the vitreous network of the 

glass. Other positive cations such as Na+, K+, Ca2+, Ba2+, Al3+ are capable of replacing the Si4+ 

ions, or more likely generate their own droplets by exploiting the vacua in the amorphous 

structure. These vacua, surrounded by oxygen atoms, necessarily must exist in the network, 
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because the oxygen polyhedra in the glass network (tetrahedra or triangles) are connected 

randomly. These cations, which combined with oxygen would normally form crystals, are 

named Network-Modifiers (NM) [2.1, 2.2]. The structure of real glasses and the significance 

of the NM-ions will be discuss in Chapter 3. 

After Zeller and Pohl published their celebrated findings [2.3] concerning the low-

temperature thermal anomalies in glasses, for the next following few years about ten different 

models were proposed to explain their discoveries (see the  review [2.4]). The most successful 

of these was a model developed by Anderson, Halperin and Varma [2.5] and independently by 

Phillips [2.4]. Later this became known as the “standard tunneling model” (STM), for its 

simplicity and wide application.  

The STM is a phenomenological model based on the assumption  that certain atoms 

or - rather - groups of atoms in disordered solids (Fig. 2.1b represents an old viewpoint now) 

have two (or more) spatial equilibrium positions (local potential minima), as opposite to 

perfect crystals (Fig. 2.1a), where the atoms have the same and only equilibrium positions. 

This assumption was confirmed in recent studies [2.6, 2.7] on computer modeling of the 

dynamics of the atomic structure of some amorphous solids like pure a-SiO2 and a-SiO2 with 

a small concentration of lithium oxide, Li2O.  Again in the 1970s and within the acoustic 

measurements [2.8, 2.9] a wide range of different materials have been investigated by more 

traditional experiments. The range of materials showing thermal anomalies below 1 K was 

extended to include disordered crystals and metallic glasses, thus showing not only the 

generality of the phenomena, but also that localized disorder, as present in imperfect crystals, 

was sufficient to reproduce effects found in true amorphous or glassy solids. Further, both 

thermal [2.10] and dielectric [2.11] measurements demonstrated that impurities could 

influence the properties of glasses below 1 K. 

At low temperatures these atoms cannot overcome the potential barrier between two 

minima via thermal excitation. But they can get to the other minimum through quantum-

mechanical tunneling. Due to the disorder of the atomic structure in the amorphous solids the 

minima of the double-well potentials have a wide range of barrier heights and depths of the 

potential minima. For the STM this configurational variability is described by the simplest 

possible model realization of the configurational energy landscape, which has the form of a 

paradigm one-dimensional double-well potential (Fig. 2.1c: x is not necessarily a linear 

coordinate, so a non-zero angular momentum is also possible).  

This potential, created by the surrounding atoms (the tunneling particle is embedded), 

is shown as a function of one generalized configuration coordinate. The frequency ω0 of the 

harmonic vibrations in both wells is taken to be the same. Since the barrier height is thought 
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to be relatively small (VB~100 K), the overlap of the tunneling wave functions of the localized 

harmonic-oscillator states in the left |�݈〉� and right |ݎ�〉� wells generates two localized states: a 

ground and an excited states. Below 1 K, the statistical population of the higher levels can be 

neglected, since they have an energy of at least ћω0~100 K or above. Only the two lowest 

energy levels are believed to be important, with an energy difference determined by quantum 

mechanical tunnelling through the barrier, having tunnelling splitting ∆0, and by the 

asymmetry of the ground-state harmonic-oscillator energies, ∆.  Systems like those described 

above are known as tunneling two-level systems (2LS). 

    
a)                                            b) 

 
                                                            c) 

Figure 2.1 – a) (2D projected) crystalline SiO2 structure; b) amorphous SiO2 
structure; c) a double-well potential built up from two harmonic-oscillator wells. 

 

To find the energy levels of a particle moving in a double-well potential V of the 

form shown in Fig.2.1c one can start with the solution of the single-well problem. This is 

known as the well, non-diagonal or coordinate QM representation. These two states are the 
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ground states of the relevant harmonic potential wells V1 and V2, they are shown continued as 

dashed lines in Fig. 2.1c.  

Fig. 2.1c shows a schematic representation of the potential: 

(ݔ)ܸ = ቐ ଵܸ(ݔ) = ݔ)ߛ + ݈)ଶ + ∆ , when ݔ ≤ −
∆

݈ߛ4
ଶܸ(ݔ) = ݔ)ߛ − ݈)ଶ , other.                  

�                     (2.1)   

∆ is the potential’s asymmetry, VB is the potential barrier, m is the mass of the 

(fictitious, as we shall see) “particle”,  ߛ, ݈ are constants, and ℏఠబ
ଶ

 is the lowest ground-state 

energy of the oscillator in the single-well.   

The simple unperturbed Hamiltonian H0 of each independent tunneling system is 

formulated in matrix form as follows, in order to generalize to arbitrary double-well 

potentials, in the position-, or well-representation (and an overall constant apart): 

଴ܪ = −
1
2 ൬ ∆ ∆଴

∆଴ −∆൰                                           (2.1) 

There is a formal analogy between the 2LS and a particle with spin 1/2 in a magnetic 

field. The states |�݈〉� and |ݎ�〉� correspond to different signs of the spin projection on the 

magnetic field vector. Then, using the Pauli matrices ߪ௫ , ௬ߪ ,  .௭, the Hamiltonian H0 of Eqߪ

(2.2) can be written in terms of spin operators: 

଴ܪ = −
1
2

௭ߪ∆) +  ௫)                                          (2.3)ߪ∆

These are referred to as pseudo-spin operators. 

∆଴ can be evaluated explicitly for specific toy potentials. Within the quasi-classical 

WKB approximation the tunnelling splitting can be written as: 

∆଴= ℏω଴݁ିఒ, where ߣ = ௗඥଶ௠௏ಳ

ℏ
                           (2.4) 

Here VB is the minimum energy barrier between the two wells, ћ is the Planck constant, d is 

the separation between the two minima. Roughly speaking the tunneling splitting ∆଴ is given 

by the vibrational energy ℏω଴ of the particle multiplied by the probability ݁(ߣ−)݌ݔ for 

tunneling. ߣ is a tunneling parameter, which reflects the overlap of the wave functions of the 

“particle” from both sides of the potential barrier.  

The matrix (2.2) can be diagonalized to obtain the energy of the ground and excited 

states of the double-well potential, the eigenstates in diagonal or energy representation. The 

eigenfunctions E1,2 will be: 

ଵ,ଶܧ = ±
1
2

ටΔଶ + Δ଴
ଶ                                           (2.5) 

The energy difference between ground and excited states is named energy gap or 
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excitation energy of the 2LS and corresponds to the following expression: 

ܧ = ටΔଶ + Δ଴
ଶ                                                  (2.6) 

When the glass is cooled from the melt, its atoms or ions form a potential energy 

landscape in which the characteristic parameters of the manifest double well-potentials (VB, m, 

l and ∆) are spread wide. The STM assumes that the asymmetry energy ∆ and the tunneling 

parameter λ are independent of each other and uniformly distributed according to a broad 

probability distribution function 

ܲ(∆, ߣΔ݀݀(ߣ = ܲ݀Δ݀(2.7)                                           ߣ 

where ܲ is a material-dependent constant, proportional to the volume concentration of 2LS 

and must be determined experimentally. For many of the dielectric glasses its value is of the 

order of ~1045 J-1m-3, but it varies widely. Using the expression (2.4), we can rewrite the 

distribution function (2.7) as a function of Δ and Δ଴:  

,߂)ܲ ଴߂݀߂݀(଴߂ = ௉ത

௱బ
 ଴                                       (2.8)߂݀߂݀

However, not all states of the parameter space (∆, ∆଴) count. Using the expression 

(2.6) and its Jacobian matrix, one can convert the above distribution function to a distribution 

in terms of the tunneling splitting Δ଴ and energy E: 

,ܧ)ܲ  ∆଴)݀݀ܧ∆଴= തܲ ா
∆బ

ଵ

ටாమି∆బ
మ

 ଴                           (2.9)∆݀ܧ݀

 
Figure 2.2 – Distribution function (2.9) as a function of ∆଴/ܧ . 

 

As seen from (2.9), the distribution function becomes infinity, when Δ଴ = 0. The 

other singularity at ∆଴=  is integrable. In this situation it is convenient to introduce a  ܧ
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minimal tunneling splitting ∆଴௠௜௡ and (eventually) a maximum energy splitting ܧ௠௔௫  .  

The tunneling systems (TS) couple to their environment by interacting with both 

phonons and photons. External elastic and electric fields change the asymmetry energy Δ and 

induce relaxation processes.  

The time required for changing the system from a perturbed state to the equilibrium 

state is called the relaxation time. The inverse of the relaxation time is the relaxation rate and 

is found to be given by the one-phonon scattering formula: [2.4] 

߬ିଵ = ൬ఊ೗
మ

௩೗
ఱ + 2 ఊ೟

మ

௩೟
ఱ൰ ∆బ

మா
ଶగℏర coth ቀ ா

ଶ௞ಳ்
ቁ                                (2.10) 

Here ߛ௟,௧ are deformation potentials, ݒ௟,௧ is the speed of sound in glass, kB is 

Boltzmann’s constant. The indices "l" and "t" denote the longitudinal and transverse phonon 

branches. The distribution function (2.9) as a function of energy E and relaxation times ߬, 

using a Jacobian transformation, now reads as: 

,ܧ)ܲ  ߬) = ௉

ଶఛටଵି
ഓ೘೔೙(ಶ)

ഓ

                                           (2.11) 

The shortest relaxation time ߬௠௜௡ is obtained for symmetric TS (∆=0), where the 

tunnel splitting ∆଴ is equal to the energy splitting E. Systems with the smallest tunnel splitting 

∆଴௠௜௡ have the longest relaxation time ߬௠௔௫: 

߬௠௜௡(ܧ) = ఊ
ாయ tanh ቀ ா

ଶ௞ಳ்
ቁ                                  (2.12ܽ) 

߬௠௔௫(ܧ) = ఊ
∆బ

మா
tanh ቀ ா

ଶ௞ಳ்
ቁ                                (2.12ܾ) 

Here,  ߛ = ℏସߩߨ2 ൬ఊ೗
మ

௩೗
ఱ + 2 ఊ೟

మ

௩೟
ఱ൰

ିଵ
 is an elastic material parameter of the solid. 

 

2.2 Dielectric properties. 
 

To measure the frequency-dependent dielectric properties of the cold glasses one 

applies an ac electric field to the sample, typically at radio frequencies (RF). The tunneling 

systems then couple to this field via the electric charge or dipole moment of the tunneling 

“particle”. The applied electric field both modulates the energy splitting of the tunneling 

states and excites them from thermodynamic equilibrium. The electric field only affects the 

asymmetry energy ∆ [2.12]. The influence of the electric field on the tunnel splitting ∆0 is 

usually neglected [2.13]. The coupling to the external field therefore causes resonant 

processes like resonant absorption and stimulated emission.  
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In the presence of the external electric field F the Hamiltonian matrix takes the form 

(coordinate representation): 

ܪ  = ଴ܪ + ௭ߪܨ଴⃗⃗݌ = − ଵ
ଶ

ቆ∆ − ܨ଴⃗⃗݌2 ∆଴

∆଴ −∆ + ܨ଴⃗⃗݌2
ቇ              (2.13) 

Here ⃗݌଴ denotes the electric dipole moment of the fictitious particle, ⃗ܨ =  is the  ݐఠcos߱ܨ⃗

time-dependent electric field. Diagonalizing the Hamiltonian (2.13) one can get (energy 

representation):  

ܪ  = − ቌ
ଵ
ଶ

ܧ 0

0 ଵ
ଶ

ܧ
ቍ + ቌ

∆
ா

∆బ
ா

∆బ
ா

− ∆
ா

ቍ   (2.14)                        ݐcos߱ܨ଴⃗⃗݌

The dynamics of the two-level systems is given by the change in the expectation 

values through the Bloch equations, which were first derived by Bloch in the context of 

magnetic resonance [2.14]:  

   ௗௌೣ
ௗ௧

=  − ଵ
ఛమ

ܵ௫ + ௭ܤ෤൫ܵ௬ߛ  − ܵ௭ܤ௬൯ 

ௗௌ೤

ௗ௧
= − ଵ

ఛమ
ܵ௬ + ௫ܤ෤(ܵ௭ߛ − ܵ௫ܤ௭)                                    (2.15) 

ௗௌ೥
ௗ௧

= − ଵ
ఛభ

(ܵ௭ − 〈ܵ௭〉) + ௬ܤ෤൫ܵ௫ߛ − ܵ௬ܤ௫൯. 

Here we have introduced the pseudo-spin ½ operator  ࡿ = ࣌/2, where  ࣌ are  Pauli’s 

matrices (in the TS energy representation), ߬ଵ is a characteristic time for the equilibration of 

the level populations of the two-level systems (2LS), and ߬ଶ  is the transverse dephasing time 

due to spin-spin (i.e. 2LS-2LS) interactions. Also,  〈ܵ௭〉 is the thermal equilibrium value of ܵ௭ 

given by 〈ܵ௭〉 = tanh(ߛ෤ℏܤ௭(ݐ)/2݇஻ܶ )/2, ߛ෤ is the appropriate (fictitious) gyromagnetic ratio 

and ࡮ = ௗ௖࡮ + ௔௖࡮  is a fictitious effective field made up of a static (dc) part and of an 

oscillating (ac) one proportional to the electric field with frequency ω. The dimensionless spin 

S processes around this fictitious effective field B, given by  

ሬ⃗ܤߤ = ቀଶ୼బ
ா

,ܨ଴⃗⃗݌ ܧ 0 + ଶ୼
ா

 .ቁܨ଴⃗⃗݌

Since the ac field is a small perturbation, one can expand 〈ܵ௭〉 in a Taylor series by 

keeping terms up to the first order in Bac. The solution to the Bloch equations takes the form 

(ݐ) = ܵ଴(ݐ) + ܵଵ(ݐ) , where ܵ଴(ݐ) is of zeroth order and ܵଵ(ݐ) is of first order in Bac. Thus 

the linearised Bloch equations become, for the zero-order and first-order contributions, 

respectively, to the S-components: 

ௗௌ೥
బ

ௗ௧
+ ଵ

ఛభ
[ܵ௭

଴(ݐ) − ܵ௭
଴(∞)] = 0, 

ௗௌೣ
భ

ௗ௧
− ߱଴ܵ௬

ଵ + ଵ
ఛమ

ܵ௫
ଵ = 0, 
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ௗௌ೤
భ

ௗ௧
+ ߱଴ܵ௫

଴ + ଵ
ఛమ

ܵ௬
ଵ − ௭ܵߙߜ

଴(ݐ)cos߱ݐ = 0, 

ௗௌ೥
భ

ௗ௧
+ ଵ

ఛభ
(ܵ௭

ଵ − ௭ܵߙߜ
଴(ݐ)cos߱ݐ) = 0                              (2.16) 

where we introduced the resonance frequency ߱଴ = ௭,ௗ௖ܤ෤ߛ =  ℏ, which depends on the/ܧ−

level splitting, ߜ = −(2Δ/ℏܧ )݌଴ܨఠ cos  ߠ ,ఠܨ which is a first-order term in the ac field  ߠ

being the angle between the ac field and the dipole moment. ܵ௭
଴(0) is the initial value of ܵ௭

଴(ݐ) 

shortly after the field is applied,  ܵ௭
଴(∞) = − tanh(2݇/ܧ஻ܶ) /2 is the equilibrium  value of 

the aligned spin,  ߙ = ∆଴/∆, and we define  ߣ = ℏ ቂ1 − 4൫ܵ௭
଴(∞)൯ଶቃ /4݇஻ܶ . If one 

introduces raising and lowering operators ܵ± = ܵ௫
ଵ ± ݅ܵ௬

ଵ , then the equations for ܵା  and ܵି 

separate. The equations for ܵା becomes: 
ௗௌశ(௧)

ௗ௧
+ ݅ ቀ߱଴ − ௜

ఛమ
ቁ ܵା(ݐ) − ௭ܵߜߙ݅

଴(ݐ)cos߱ݐ = 0         (2.17) 

and the equations for ܵି is the complex conjugate of the above. 

The solutions of these equations are given by the following expressions [2.15]: 

ܵ௭
଴(ݐ) = ܵ௭

଴(∞) + [ܵ௭
଴(0) − ܵ௭

଴(∞)]݁ି௧/ఛభ , 

ܵ௭
ଵ(ݐ) = ఋఒ

ଵାఛభ
మఠమ [cos߱ݐ + ߬ଵ߱ sin߱(2.18)                                                                             , [ݐ 

ܵା(ݐ) = ఋఈ[(ఠబି௜/ఛమ)ୡ୭ୱఠ௧ି௜ఠ ୱ୧୬ఠ௧]ௌ೥
బ(ஶ)

(ఠబି௜/ఛమ)మିఠమ + ఋఈ[(ఠబା௜/ఛభି௜/ఛమ)ୡ୭ୱఠ௧ି௜ఠ ୱ୧୬ఠ௧]ൣௌ೥
బ(଴)ିௌ೥

బ(ஶ)൧௘ష೟/ഓభ

(ఠబା௜/ఛభି௜/ఛమ)మିఠమ . 

the result for ܵି(ݐ) being the complex conjugate of the equation for ܵା(ݐ) .  

The Bloch spins should now be related to the 2LS polarization in the electric field 

direction. The component ݌∥ of the dipole moment along the direction of the electric field, in 

the diagonal basis as in Eq. (2.14), is now given by ݌∥ = − 〈୼
ா

௭ߪ + ୼బ
ா

〈௫ߪ ଴݌ cos  and using ߠ

the average values of 〈ߪ௭〉 and 〈ߪ௫〉 from the solutions of the Bloch equations one can obtain 

the dipole moment in the energy representation [2.15]: 

∥݌  = ଴݌− cos ߠ ቀଶ୼ୗ౰
భ(୲)

୉
+ ୼బ൫ୗశାୗష൯

୉
ቁ                            (2.19) 

Then, one must insert the deduced pseudo-spin values ܵ௭(ݐ), ܵା(ݐ) and ܵି(ݐ),Eq. 

(2.18) to (2.19). Equation (2.19) depends of electric field ܨఠ linearly and can be easily 

differentiated with respect to the electric field, and this gives a formula for the dielectric 

constant ߳ = �ௗ௣∥
ௗிഘ

ቚ
ிഘୀ଴

. For convenience one may separate the resulting formulae writing 

 ߳ = (߳ோாௌ
ᇱ + ߳ோா௅

ᇱ ) + ݅(߳ோாௌ
ᇱᇱ + ߳ோா௅

ᇱᇱ )  . These are the real (߳′) and imaginary (߳′′) parts of the 

dielectric constant. The imaginary part is interpreted as a dielectric loss (loss tangent, tanߜ =

߳ ′′/߳′) - a parameter of the dielectric material that quantifies its inherent dissipation of 

electromagnetic energy (much like in a RLC circuit). One gets: 
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߳′ோாௌ =  ௣బ
మ ୡ୭ୱమ ఏ

ℏ
ቀ୼బ

ா
ቁ

ଶ
ቂቀ (ఠబାఠ)ఛమ

మ

ଵା(ఠబାఠ)మఛమ
మ + (ఠబିఠ) ఛమ

మ

ଵା(ఠబିఠ)మఛమ
మቁ tanh ቀ ா

ଶ௞ಳ೅
ቁ − ቀ (ఠబାఠ)ఛభమ

మ

ଵାఛభమ
మ (ఠబାఠ)మ +

(ఠబିఠ)ఛభమ
మ

ଵାఛభమ
మ (ఠబିఠ)మቁ ቀ2 S୸

଴(0) + tanh ቀ ா
ଶ௞ಳ೅

ቁቁ ݁ି௧/ఛభቃ                                  (2.20a) 

߳ᇱᇱ
ோாௌ =  ௣బ

మ ୡ୭ୱమ ఏ
ℏ

ቀ୼బ
ா

ቁ
ଶ

ቂቀ ఛమ
ଵା(ఠబିఠ)మఛమ

మ − ఛమ
ଵା(ఠబାఠ)మఛమ

మቁ tanh ቀ ா
ଶ௞ಳ೅

ቁ +� �ቀ ఛభమ
ଵାఛభమ

మ (ఠబାఠ)మ −

ఛభమ
ଵାఛభమ

మ (ఠబିఠ)మቁ ቀ2 S୸
଴(0) + tanh ቀ ா

ଶ௞ಳ೅
ቁቁ ݁ି௧/ఛభ  ቃ                                 (2.20b) 

߳′ோா௅ = ௣బ
మ ୡ୭ୱమ ఏ
௞ಳ்

ቀ୼
ா

ቁ
ଶ

coshିଶ ቀ ா
ଶ௞ಳ்

ቁ ଵ
ଵାఛభ

మఠమ                                                     (2.20c) 

߳′′ோா௅ = ௣బ
మ ୡ୭ୱమ ఏ
௞ಳ்

ቀ୼
ா

ቁ
ଶ

coshିଶ ቀ ா
ଶ௞ಳ்

ቁ ఛభఠ
ଵାఛభ

మఠమ ,                                                  (2.20d) 

where ߬ଵଶ
ିଵ = ߬ଶ

ିଵ − ߬ଵ
ିଵ. In the adiabatic limit the initial value of the pseudo-spin is S୸

଴(0) =

−tanh (E/2k୆T)/2 , when the 2LS eigenvalues are ± ଵ
ଶ

 That makes the time dependent .ܧ

terms of (2.20a) and (2.20b) equal to 0 shortly after applying the field.  

For an ensemble of 2LS, from the manipulation of the Bloch equations for the motion 

of the spatial components of a pseudo-spin 1/2 under periodic electric and elastic 

perturbations and taking into account the phonon relaxation mechanism, one then finds the 

explicit form of the expression for the dielectric constant [2.16]: 

߳ = ߳ோாௌ + ߳ோா௅
ଵ

ଵା௜ఠఛ
= ቀ߳ோாௌ + ߳ோா௅

ଵ
ଵାఠమఛమቁ − ݅߳ோா௅

ఠఛ
ଵାఠమఛమ  

The typical energy splittings of the TS in low temperature experiments correspond to 

frequencies in the range of ఠబ
ଶగ

≈ 10଼Hz , when the electric field frequency  ߱  is about 103 Hz. 

This justifies a low-frequency approximation ߱ ≪ ߱଴. To obtain the resonant part we can 

also set ߬ଶ
ିଵ = 0, which simplifies expressions (2.20a) and (2.20b), remembering that 

ܧ  = ℏ߱଴. From the averaging over the dipole orientation angle ߠ comes a prefactor 1/3: 

଴݌
ଶ cosଶ ߠ = ଵ

ଷ
଴݌

ଶ, where ݌଴
ଶ is the configurationally averaged square 2LS electric-dipole 

moment. 

The real part of the relative dielectric constant for 2LS shows the temperature-

dependent contributions (߳(ܶ) = ߳ᇱ(0) + ∆߳′(ܶ), with |∆߳′| ≪ ߳′): 

�Δఢᇱ
ϵ′

ቚ
ଶ௅ௌ ோாௌ

= ଶ
ଷ

଴݌
ଶ ∆బ

మ

ாయ tanh ቀ ா
ଶ௞ಳ்

ቁ                                             (2.21) 

�Δఢᇱ
஫ᇱ

ቚ
ଶ௅ௌ ோா௅

= ଵ
ଷ௞ಳ்

଴݌
ଶ ∆మ

ாమ coshିଶ ቀ ா
ଶ௞ಳ்

ቁ ଵ
ଵାఠమఛమ                       (2.22) 

The equation (2.21) corresponds to the resonant tunneling contribution to the dielectric 

constant, and (2.22) is the relaxational contribution. We neglect for now, for low ω, the 

frequency dependence in the RES part so long as ߱ ≪ ߱଴. 

The dielectric loss is described by the following formula (the resonant contribution 
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being vanishingly small): 

�Δtanδ|ଶ௅ௌ ோா௅ = �Δఢᇱᇱ
ఢᇱ

ቚ
ଶ௅ௌ ோா௅

= ଵ
ଷ௞ಳ்

଴݌
ଶ ∆మ

ாమ coshିଶ ቀ ா
ଶ௞ಳ்

ቁ ఠఛ
ଵାఠమఛమ          (2.23) 

Integrating equations (2.21-2.23) over the parameter distribution of the 2LS and over 

the dipole orientation angle  ߠ , using functions (2.9, 2.11), one can find the temperature-

dependent contributions to the dielectric constant and dielectric loss:  

�୼ఢᇱ
஫ᇱ

ቚ
ଶோாௌ

= ଶ௉௣బ
మ

ଷ஫బ஫౨
∫ ௗா

ா
tanh ቀ ா

ଶ௞ಳ்
ቁ ට1 − ቀ∆బ,೘೔೙

ா
ቁ

ଶா೘ೌೣ
∆బ,೘೔೙

,                                           (2.24) 

�୼ఢᇱ
஫ᇱ

ቚ
ଶோா௅

= ௉௣బ
మ

ଷ஫బ஫౨௞ಳ் ∫ ܧ݀ ∫ ୢத
த

ට1 − ఛ೘೔೙(ா)
ఛ

coshିଶ ቀ ா
ଶ௞ಳ்

ቁ ଵ
ଵାఠమఛమ

ఛ೘ೌೣ(ா)
ఛ೘೔೙(ா)

ா೘ೌೣ
∆బ,೘೔೙

,      (2.25) 

�୼୲ୟ୬ஔ
஫ᇱ

ቚ
ଶோா௅

= ௉௣బ
మ

ଷ஫బ஫౨௞ಳ் ∫ ܧ݀ ∫ ୢத
த

ට1 − ఛ೘೔೙(ா)
ఛ

coshିଶ ቀ ா
ଶ௞ಳ்

ቁ ఠఛ
ଵାఠమఛమ

ఛ೘ೌೣ(ா)
ఛ೘೔೙(ா)

ா೘ೌೣ
∆బ,೘೔೙

.      (2.26) 

If one extends, when appropriate and as a further approximation, the integration 

limits (ܧ௠௔௫ → ∞ and ∆଴,௠௜௡→ 0), then calculating the E-integral one gets a characteristic 

logarithmic variation of the real part of the dielectric constant as a function of  temperature: 

�୼ఢᇱ
஫ᇱ

ቚ
ଶோாௌ

≈ ൞
− ଶ௉௣బ

మ

ଷ஫బ஫౨
ln ቀ ்

బ்
ቁ , ܶ < ୼బ೘ೌೣ

ଶ௞ಳ

0,                          ܶ > ୼బ೘ೌೣ
ଶ௞ಳ

�                             (2.27) 

For  ߱߬௠௜௡ ≫ 1 and at low temperatures, the contribution from relaxation to the real 

part as compared to the resonant contribution is negligible. Under the condition  ߱߬௠௜௡ ≪ 1, 

however, the term  ݀߬/߬ dominates in the integral and we obtain again a logarithmic variation 

with temperature: 

�୼ఢᇱ
஫ᇱ

ቚ
ଶோா௅

≈ ൝
0,                      ߱߬௠௜௡ ≫ 1
ଵ௉௣బ

మ

ଷ஫బ஫౨
ln ቀ ்

బ்
ቁ , ߱߬௠௜௡ ≪ 1

�                             (2.28) 

 A crossover between the resonant (low temperature) and relaxation (high T) regimes 

occurs at a characteristic temperature [2.16] 

଴ܶ(߱) = ଵ
௞ಳ

 ට ఠగఘℏర

ఊ೗
మ/௩೗

ఱ ାଶఊ೟
మ/௩೟

ఱ
య                                       (2.29) 

which for a thermal 2LS with ܧ = ∆= ݇஻ܶ satisfies the condition ߱߬( ଴ܶ) = 1   

Eqs. (2.27-2.28) show that with increasing temperature the T dependence changes 

from a decrease in the resonant regime to an increase in the relaxation one. At the temperature 

଴ܶ(߱) there is a minimum. Thus, the sum of the two contributions has a characteristic V-

shaped form, in a semi-logarithmic plot, with the minimum occurring at a T0 roughly given by 

the condition ߬௠௜௡(݇஻ ଴ܶ) ≅ 1, or ݇஻ ଴ܶ(߱) ≅ ቀଵ
ଶ

ቁ߱ߛ
ଵ/ଷ

. ߳଴߳௥  is here the bulk of the solid’s 

dielectric constant and we see that a −2:1 characteristic behavior is predicted by the STM with 
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the slope for T >T0 given by (2.28). This behavior is indeed observed in pure a-SiO2 [2.17]. 

However in most multi-component glasses (chemically made up of good glass formers as well 

as of good crystal formers, for example a-Al2O3-BaO-SiO2) it is rather a V-shaped curve with 

a (roughly) −1:1 slope ratio that is often observed. 

 

2.3 Heat capacity 
 

At low-temperatures the specific heat observed in glasses has the same (universal) 

characteristic temperature dependence. Introducing the density of 2LS states n(E) it is simple 

to calculate the heat capacity of  these localised 2LS states: 

ܥ  = ݇஻ ∫ ∞(ܧ)݊
଴ ൜ቀ ா

ଶ௞ಳ்
ቁ

ଶ
coshିଶ( ா

ଶ௞ಳ்
)ൠ                       (2.30) 

In the seminal papers [2.4, 2.5] one supposes that ݊(ܧ) is a slowly-varying 

continuous function of E, and (0) ≠ 0 . This reduces to a linear dependence for the heat 

capacity on temperature:  

ܥ ∝ గమ

଺
݇஻

ଶ ܶ݊(0)                                             (2.31) 

For the heat capacity of glasses one should also take into account the Debye-type 

contribution of the acoustic (long wavelengths, oblivious to disorder) phonons, which is 

proportional to the temperature in power three: 

~஽௘௕௬௘ܥ ே௞ಳଵଶగర

ହ
ቀ ்

்ವ
ቁ

ଷ
,                                     (2.32) 

where N is the number of atoms, TD is the Debye temperature ஽ܶ = ௛௖ೞ
ଶ௞ಳ

ට଺
గ

ே
௏

 య , and cS is the 

effective sound velocity. The Debye formula, originally derived for a crystal, applies also to 

the glasses because only very low wavelengths contributions from the acoustic phonons are 

involved, and these are oblivious to the solid’s structure. 

 

2.4 Sound velocity  
 

At low temperatures, when  ߱߬௠௜௡ ≫ 1, the internal friction Q decreases as the third 

power of temperature, and the sound velocity  is expected to vary logarithmically with 

temperature too, as [2.18, 2.19 ] 

ܳିଵ = గమ஼ఊమ௞ಳ
మ ்మ

ଶସℏఠ
                                            (2.33) 

ఋ௩
௩

= ln ܥ ቀ ்

బ்
ቁ,                                              (2.34) 
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where T0 is a new characteristic reference temperature, and the parameter C is given by 

ܥ  = ௜ߛܲ
ଶ/߷ݒ௜

ଶ; the index i standing for longitudinal or transverse polarization. At higher 

temperatures, when ߱߬௠௜௡ ≪ 1, the internal friction approaches the value [2.18]  

ܳିଵ = గ
ଶ

 (2.35)                                                 , ܥ

independent of temperature and frequency. The sound velocity has an inverted V-shaped 

semi-logarithmic dependence, passing through a maximum and then decreasing 

logarithmically with increasing temperature as (for T>T0): 
ఋ௩
௩

= − ஼
ଶ

ln ቀ ்

బ்
ቁ                                            (2.36) 

Thus, it is believed that the sound velocity anomaly is also due to a direct coupling of 

the 2LS to the thermal phonons in the cold glasses. 

Other experiments reveal the existence and pseudo-spin like nature of the TS in 

glasses below 1 K, one of the most noteworthy being the dipole, or polarization echo which 

will be discussed in a separate chapter at the end. 

 

2.5 Realistic glassy energy landscape 
 

As was stated before, many properties of glass-forming materials can be explained in 

terms of their multi-dimensional potential energy landscape (at low T; at higher T one needs 

the free energy). Qualitatively (pictorially), the energy landscape of glass-forming systems is 

usually drawn as a 1D potential containing a large number of hills and valleys as shown in 

Fig. 2.3 and Fig. 2.4 [2.20]. Looking at Fig. 2.3 one can choose any two nearest well with 

different depth and energy barrier between them. It will be a local double-well potential, or 

2LS, as already shown in Fig. 2.1.  

 
Figure 2.3 – a) A simple 1D energy landscape, (b) a schematic representation of (a), (c) the 
potential minima are rearranged. The horizontal lines are discussed in the text of Ref [2.20]. 
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In his seminal work [2.20] Heuer calculated numerically the energy landscape of a 

model system of 32 Lennard-Johnes (LJ) particles with simulated densities 1 and 1.075. He 

found 367 minima with different energy for ρ=1 and 75 for ρ = 1.075. In Fig. 2.4 this 

schematic potential is reproduced for the energy landscape of the LJ glass with ρ =1. On the 

left far side one can see the isolated crystalline minimum. A very high energy has to be 

reached before the crystal can “melt”. Heuer defines a 2LS as adjacent pairs of minima k1 and 

k2 such that the energy at its saddle is smaller than the energy of all other saddles which can 

be reached either from minimum k1 or k2 (see, e.g., minima D and E in Fig. 2.3). This 

condition guarantees that at low temperatures the system can switch between both minima 

without escaping to a third minimum. Double-well potentials are marked by squares. Here are 

found 7 2LS for 223 minima, one has thus a probability of 14/223 per minimum that it 

belongs to a 2LS. The density of states in Heuer’s numerical work has been found to be 

2 × 10ସ଺ Jିଵmିଷ , that is of the right order of magnitude if compared with experimental data 

on molecular or metallic glasses. But the 2LS is an oversimplified representation of the model 

LJ glass. It is in fact possible to find three or more wells grouped together and with relatively 

close energy minima. 

Figure 2.4 – The energy landscape for a LJ glass calculated numerically by Heuer [2.20] 

 

There is a number of experiments with the low temperature glasses, which can be 

used to verify the hypothesis of the tunneling states, and especially of the 2LS tunneling 

model: sound velocity, dielectric permittivity, heat capacity and phonon heat conductivity, 

dipole-echo experiment and so on. However, all this experiments are made in the presence of 

electric and magnetic fields and are performed by different types of experimental equipment. 

Owing to the sol-gel fabrication process, through which one usually prepares thick-film 
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samples of the glass, these samples can (partially) devitrify after some time, the 

devitrification being favoured by the presence of different concentrations of impurities (Fe, 

OH, …) There are, on the other hand, important nonlinearity effects due to the high electric 

field magnitude employed in the experiments (non-linear response is measured, but linear-

response is used in the theory). All these non-ideal features result in discrepancies between 

the estimated STM parameters for the different experiments.  It should be stressed - in fact – 

that, in spite of its simplicity and relative success in explaining data, the 2LS STM still has 

many shortcomings. Such as: a strong variability of the various model’s parameters (needed 

to produce reasonable fits) from experiment to experiment for the very same glassy material. 

Moreover, the model’s parameters vary as different temperature- or frequency- (etc.) ranges 

are explored. All this points to the STM (especially in the 2LS form) as being just a crude 

phenomenological model; a good critique has been published by C. Yu and Leggett [2.21]. 

The restriction to only two wells, in particular - that is a spin-1/2 pseudo-spin degree of 

freedom - seems a convenient but unrealistic limitation. Despite some other interesting earlier 

and more recent attempts (the model of Fulde and Wagner [2.22], the Russian School 

approach [2.23], the Soft-Potential model [2.23], Kuehn’s quantum-mechanical model [2.24], 

Carruzzo et al.’s interacting-defects model [2.15], the elastic dipole model of Grannan, 

Randeira and Sethna [2.25], the free-volume model of Cohen and Grest [2.26], etc.…) the 

2LS STM remains, however, the most popular approach for the explanation of the low-

temperature properties of glasses. 

In Table 2.1 we list the STM parameters ∆଴௠௜௡, ܧ௠௔௫ , തܲ for the most investigated 

glasses, as found in the literature. 

 

Table 2.1 – Material parameters for the 2LS STM in the literature. 

Reference Material ∆0min, mK Emax , K തܲ, J-1 m-3 

a SiO2 2x10-3 ,2x10-7 4  1045 

b Suprasil W   2.2x1044 

c SiOx, 5kHz, 500 V/m 3.3 10  

d Suprasil 4   

e Alpha-SiO2, 90 kHz 6.6   

f 

Suprasil 1 

Suprasil 300 

Suprasil 310 

Suprasil W 

3 

1 

3 

2 

 

1.39x1045 

0.92 x1045 

1.1 x1045 

0.98 x1045 
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g 
Al2O3-BaO-SiO2 

(BAS) 
2.0±1.0  1.2x1045 

h 
i 

BAS 1 kHz, 15 kV/m 12.2 5 1045 

j BK7 ~10-5 ,10-2   

k BK7 1.5±1.2  2.3x1045 

c BK7, 5 kHz, 200V/m 2.2   

l BK7 16   

m BK7, 1 kHz, 75 V/m 3 10 തܲ݌଴
ଶ=1.28x1013 C/Jm 

n Duran 1.5±1.0  1.57x1045 

c 
5%K:SiO2 

5kHz, 500 V/m 
1.3 10  

 (KBr)1-x (KCN)x     
o x=0.2   0.83x1045   
p x=0.25   4.00x1045  

q    3.10x1045 
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Chapter 3 

 

Nature of the tunneling systems 

 
One of the most well-known method for preparing an amorphous solid involves the 

cooling of a viscous liquid below its thermodynamic-equilibrium freezing point Tf, through a 

metastable supercooled regime, and finally below a "glass transition" temperature Tg (Tg<Tf). 

The very fast cooling of the liquid does not make possible the arrangement of all atoms in 

perfect crystal cells. To understand the basic phenomena related to supercooling and glass 

formation, it is useful to take a "topographic" view of the potential energy function, a function 

that depends on the spatial location of each particle. Figure 3.1 shows a highly schematic 

illustration of the multi-dimensional landscape in a 1D representation. The minima 

correspond to mechanically (but not necessarily thermodynamically) stable arrangements of 

the particles in space. Any small displacement from such an arrangement gives rise to 

restoring forces to the changed arrangement. The lowest lying minima correspond to the 

crystal phases (there might be more than one). Higher lying minima correspond to amorphous 

particle packing and are sampled by the stable liquid phase above the melting/freezing 

temperature.  

 
Fig. 3.1 – Schematic 1D diagram of the potential energy surface in the 

multidimensional configuration space for a many-particle system [3.1].   
 

In some seminal papers, Heuer [3.2, 3.3] presents a numerical simulation procedure 

which is able to describe the low-energy excitations in a model glass on a microscopic level 
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and calculate the total potential energy landscape of a small glass-forming system. There, 

Heuer describes a quantitative method which finds the tunneling systems in glasses and hence 

allows for a microscopic backing of the STM and applies this method to a two-component 

model amorphous alloy. [3.2] Numerical simulations allow for the visualization of how 

crystalline and amorphous regions are separated from each other [3.3] 

Some previous realistic attempts to detect numerically double-well potentials 

(DWP’s) were made in simulation by Stillinger and Weber [3.1]. Since they chose a rather 

time-consuming method to detect DWP’s, they only reported a few DWP’s.  

In his important work Heuer (see also Section 2.5) calculated numerically the energy 

landscape of a model system of 32 Lennard-Johnes (LJ) particles with simulated densities ρ 

=1 and ρ=1.075 in units of the nearest-neighbor distance a and for unit mass. He found 367 

minima with different energy for ρ=1 and 75 for ρ = 1.075. It was already seen through the 

observation of the energy distribution of minima, that the absolute number of minima 

decreases by more than a factor of 4 when going from ρ=1 to ρ = 1.075. 

 
Fig 3.2 – The energy distribution of the number of found minima for ρ=1(thick line) 

and ρ=1.075 (thin line). 
 

The Euclidean distances of all pairs (k1, k2) of minima in configuration space is 

[݀(݇ଵ, ݇ଶ)]ଶ = ∑ ௜భ,௞భݎ⃗ൣ − ௜మ(௜భ),௞మ൧ଶேݎ⃗
௜భ  , where N is number of particles, {⃗ݎ௜భ,௞భ} and {⃗ݎ௜మ,௞మ } 

are positions of the N particles. The notation i2(i1) indicates that a priori it is not evident 

which particle of configuration k2 corresponds to which particle of  k1, so that several 

mappings have to be checked. The tunneling systems which dominate the low temperature 

properties correspond to pairs of minima with an average value of d≈0.35. 

Heuer defines a DWP as a couple of neighbouring pairs of minima k1 and k2 such 

that the energy at its saddle is smaller than the energy of all other saddles which can be 
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reached either from minimum k1 or k2 (see Fig 2.4). Corresponding to this configurational 

landscape there were found 7 DWP’s for 223 minima, with a probability of 14/223 per 

minimum that it belongs to a DWP and the corresponding density of states has been found to 

be about 2 × 10ସ଺Jିଵmିଷ , that is of the right order of magnitude if compared with 

experimental data on molecular or metallic glasses. One expects that the complexity of the 

energy landscape dramatically increases with further increasing the system’s size. However, 

Heuer’s work shows that already very small model systems contain relevant information 

about the nature of real glass-forming systems. 

But let us look again at the energy landscape, calculated numerically by Heuer and 

re-proposed in Fig 3.3 [24]. The DWP’s highlighted by Heuer in Fig 2.4 can be viewed, from 

another point of view, as three-, four-, or more welled local potentials with relatively close 

energy minima, as in shown by the red-lines highlighting in Fig 3.3. Therefore, the 2LS 

approach is an oversimplified representation of a more realistic glassy energy landscape, 

which comprises multi-welled local potentials as well. 

 

 
Fig. 3.3 – The energy landscape for ρ =1 with highlighted multi-welled potentials 

(black the 2LS, red the 3LS, 4LS, …). 
 

Another attempt to find the tunneling states and describe their behavior numerically 

was presented in the work of K. Trachenko et al. [3.4]. They found large sudden rotational 

rearrangements of the atomic structure with little energy cost, in a dynamical simulation, 

which may be identified with the tunneling states. In addition to visualising these tunneling 

states Trachenko et al. also answered the question concerning the extent of the part of glass 

structure which flops from one state to another: whether it involves one atom or tetrahedron, 
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or whether it is spatially more extended. To explain their anomalous thermal data at low 

temperatures, Zeller and Pohl indeed suggested the existence of large-amplitude 

reorientational motions of the SiO4 tetrahedra in a-SiO2 [2.4, 2.5] 

Figure 3.4 shows the time dependence of the coordinates x, y, z of one atom that 

shows wide jumping motion, together with other similar events that have been identified in 

other simulation runs for comparison. Fig. 3.5 shows snapshot images of the reorientations of 

the associated groups of tetrahedra. For this jump movement the participation ratio indicates 

that the number of tetrahedra involved in this event is around 30 per jump. The largest atomic 

displacement in these events is typically 0.8 Å. The figure shows superimposed snapshots of 

the local configuration captured before and after the jump event in order to highlight the 

large-amplitude re-orientation movements. One considers that the jump event shown in Figs. 

3.4 and 3.5 is a candidate event for the jump motion supposed to be involved in the two-level 

tunneling excitations (2LS). This procedure gave an energy barrier of 0.06 ± 0.02 eV (for 

about 30 tetrahedra), and the change in energy of the sample on flipping from one state to 

another was less than 0.01 eV.  

FIG. 3.4 – Time dependence of atomic 
coordinates x, y, z (in orthogonal Å units) for 
an atom undergoing a large jump involving a 
movement of about 0.5 Å (top), and an atom 
in a different simulation run that jumps from 
one site to another and subsequently jumps 
back again (bottom).[3.4] 

 
 
FIG. 3.5 – Snapshot images of the tetrahedra 
participating in the jump event indicated in 
Fig. 3.4 captured before and after the jump 
event. [3.4]  

 

Simulations show that jump events in a sample of 216 tetrahedra happen at intervals 

of around 20 ps. The simulation also shows that the system has a local free energy minimum 

in these states, because the system can remain in one state for times much larger that the 

periods of oscillation of the SiO4 tetrahedra before jumping to another state, without being 
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able to oscillate back and forwards into the second state. This means that the jump can happen 

only when all of the tetrahedra associated with the jump are aligned in a particular way. If the 

system evolves through the cooperative small-amplitude oscillations of the tetrahedra, 

eventually the potential energy barriers collapse to the small value that has been measured.  

In their work, Trachenko et al. have for the first time identified the potential 

tunneling states naturally, by allowing the system to evolve in its own phase space, in contrast 

to previous simulations for metallic and other glasses [3.1, 3.2, 3.5, 3.6], where in each case 

their identification has always required some initial stimulation of the system. 

The 2LS are an oversimplified view of the local energy landscape’s potential minima 

and were proposed many years ago. A more realistic view can identify 3LS, 4LS and so on in 

the simulations of the potential energy landscape. The wells in the minima correspond to 

metastable configurations involving many atoms, the jumps from one well to the next in a 

local multi-welled TS corresponding to the rearrangement of many atomic groups, like the 

work of Trachenko et al. has indicated [3.4].  

Physicists believe that glass is formed when a liquid is cooled quickly and its 

constituent atoms are unable to arrange themselves in a stable crystalline state. When the 

temperature becomes lower that the freezing temperature Tf, the atoms link with each other 

randomly and become trapped in a state, from which they cannot reach their final destination 

of a crystalline structure. The atoms ‘want’ to form a crystal structure, but can’t. A potential 

energy landscape can be characterized by a large number of wells, most of them very close to 

the crystalline phase’s energy, but separated from it by high potential barriers (Fig. 3.6 a). 

These wells can have more (2, 3 or more) smaller adjacent wells, where atoms tunnel through 

coherently, that can be presented as 3LS, 4LS and so on (Fig. 3.6 b). It was being said before, 

that groups of atoms create the tetrahedral structure linked to each other by corners. So they 

can change their position together, when some numbers of atoms are involved within the 

jump. This creates a coherent tunneling motion of a few atoms.  

Multi-component dielectric glasses, like AlBaSiO (a-Al2O3-BaO-SiO2, also known 

as BAS in the literature), BK7, Duran (a complex borosilicate commercial glass), consist of 

glass-forming (or network-forming (NF)) as well as of crystal-forming (or network-modifying 

(NM)) atomic species. 50-80% of the components is SiO2. Other components are B2O3, 

Al2O3, Na2O, BaO, or (in traces) FeO or Fe2O3 and so on. What happens when a ‘non-glass 

former’ (a good crystal-former) is added to a ‘glass-former’? Bridging oxygens link glass-

forming tetrahedra, non-bridging oxygens form the ionic bonds with the network-modifiers. 

NM ions can be large and carry a small charge [2.1]. (Fig. 3.6 c).  
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a) 

b) 

c) 

Fig. 3.6 – a) The potential energy landscape of glass as a function of temperature as 
the system is cooled down below Tf; b) a coherently tunneling group of real particles in the 
multi-welled potentials; c) mixed glass structure: the large circles represent the network 
modifiers (Na+, K+, Ba2+, Ca2+, Fe2+, Fe3+ and so on). 

 

 The structure of the multi-component silicate glasses has been investigated by 

means of molecular-dynamics simulations, neutron scattering and X-ray spectroscopy. Fig. 

3.7 shows a snapshot of a simulation [3.7] of the structure of the glass (Na2O) 3(SiO2) at 2100 

K at the density 2.2 g/cm3 and one can notice that whilst the SiO4 groups form a well-

connected network the Na+ ions are organized in pocket and channels in the structure and 

have only a relatively short-ranged connectivity, without forming a network. Simulations on 

the sodium di- and tri-silicates have shown [3.8]  that the NM species (Na+ ions in this case) 

cause a general loosening of the tight SiO4-tetrahedral matrix of pure a-SiO2 whilst the Na+ 

ions show a tendency to form micro-aggregates and to partially destroy the SiO4-network. 

It is natural to imagine that when a multi-component glass is cooled below 1 K,  

different tunneling entities will develop within the NM regions than the by-now familiar 2LS 

that are sitting in the network made up by the NF chemical species.    
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Fig 3.7 – Molecular dynamics snapshot of the structure of sodium trisilicate at 2100 

K at the density 2.2 g/cm3: The blue spheres that are connected to each other represent the Na 
atoms. The SiO4-network is drawn by yellow (Si) and red (O) spheres that are connected to 
each other by covalent bonds shown as sticks between Si and O spheres [3.7]. 
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Chapter 4 

 

Deviations from the standard tunneling model 

in the mixed glasses 

 
4.1 Comparison between experimental data and STM predictions 

for the multi-component glasses 
 

In spite of the important contribution of the STM to the description of a wide range 

of physical properties of glasses at very low temperatures, the 2LS model cannot explain all 

universalities and features as seen experimentally. Currently there is a number of experiments 

that show quantitative and qualitative deviations from the STM theory [4.1].  

For example, the plateau in the thermal conductivity and the bump (“boson peak”) in 

 ௣ is the specific heat, around 10 K for all glasses and which cannot beܥ ௣/ܶଷ, whereܥ

understood in terms of a constant density of tunneling states [4.2].  

According to the STM the temperature dependence of the sound velocity ݒ/(ܶ)ݒߜ 

and of the dielectric constant ߳ߜ′(ܶ)/߳′ of glass at zero magnetic field has a -2:1 ratio of the 

slopes in a semi-logarithmic plot. However, the slope ratio found in most experiments on 

multi-component glasses is rather found to be -1:1, approximately. In addition, it appears that 

the slopes are slightly different at different frequencies, a fact which is not expected within 

the STM [4.1]. Moreover, at temperature T≤10 mK the experimental curves saturate to a 

constant value, that asks for a high value of the low-energy cut-off: ∆଴௠௜௡  ~10 mK [4.3, 4.4] 

In the work of Rogge et al. [4.5] the dielectric constant of some SiOx samples is 

reported at various intensities of the electric field, from 0.33 to 593 kV/m. The minimum in 

the dielectric constant vs T and the saturation temperature are shifted towards higher 

temperature values as the electric field is increased; a fact which shows the need to take non-

linearities into account. The slope ratio is also different from the theoretically predicted one (-

2:1). 

Fig. 4.1 (inset) shows the behavior of the T dependent part of ߳′, Δ߳′/߳ᇱ = [߳ᇱ(ܶ) −

߳ᇱ( ଴ܶ)]/߳ᇱ( ଴ܶ), (where ଴ܶ(߱) is the characteristic minimum) for vitreous SiO2 at a frequency 

of 1 kHz and zero magnetic field [4.6]. A minimum is observed at a temperature of about 90 



30 
 

mK, in agreement with the results of Frossati et al. [4.7]. The saturation of the dielectric 

response at low temperature may be explained by a value of ∆଴௠௜௡/݇஻ which is comparable 

to the saturation temperature. This means that the density of states ends at this energy and 

lower temperatures will not activate any more 2LS’s; thus resulting in a constant dielectric 

response. The parameter ∆଴௠௜௡ refers to the largest tunneling barrier in the glass. 

 
Figure 4.1 – Dielectric signature of pure a-SiO2 (inset) and AlBaSiO (main) glasses. 

SiO2 data [4.6], fitted with Eq.s (2.24-25), display a -2:1 2LS STM behavior. Data for 
AlBaSiO [4.3] display rather a -1:1 behavior, yet could be fitted with Eq. (2.24, 2.25) (dashed 
line) [4.4, 4.11] with a large Δ଴௠௜௡ = 12.2 mK 2LS tunneling parameter. We have fitted all 
data with a more realistic Δ଴௠௜௡ = 3.9 mK (for the 2LS contribution) and best fit parameters 
from Table 4.1 (for the ATS) using Eq.s (2.24, 2.25) and (4.20) (driving frequency ߱ = 1) 
kHz. 

 

This -2:1 slope ratio behaviour is observed in pure a-SiO2 [4.6] (with the parameters 

of Table 4.1, x=0, from our own best fit to Eq.s (2.24-25) – the sum of resonant and relaxation 

parts). However in most multi-component glasses one often observes a V-shaped curve with a 

(roughly) -1:1 slope ratio. Fig. 4.1 (main graph) shows this phenomenon for the AlBaSiO    

(a-Al2O3-BaO-SiO2, also known as BAS) glass, which has been extensively investigated in 

recent times due to its unexpected magnetic field response [4.11]-[4.13].  

Interesting and yet-unexplained behaviour was noted within some older data for the 

mixed glasses of composition (SiO2)1-x(K2O)x and (SiO2)1-x(Na2O)x for variable x. Fig. 4.4 

shows the behaviour of the dielectric constant vs T for the glasses of composition         

(SiO2)1-x(K2O)x  containing a molar concentration x of potassium oxide [4.14] Adding K2O or 

Na2O to vitreous SiO2 increases the dielectric response (Fig. 4.4), increases the specific heat 
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(Fig 4.8), decreases the thermal expansion coefficient, and leaves the thermal conductivity 

essentially unchanged [4.14]. The specific heat ܥ௣(ܶ) for these glasses is larger than for pure 

silica and the behavior of the plots is very strange for different molar concentrations of 

potassium or sodium oxide. The heat capacity decreases and then again increases with 

increasing molar concentration x of K2O. For the dielectric response it is seen that a S‒ /S+ 

slope ratio of roughly -1:1 is observed, with the slope definitely changing with x (and faster 

for ܶ > ଴ܶ): it qualitatively increases with increasing concentration of K2O, and this increase 

has frequency- and temperature-dependence. The minimum in the dielectric constant observed 

near 0.1 K is typical for glassy solids. One can notice that above the minimum, which 

corresponds to the relaxation part, ߳′ is increasing faster than the resonant part below 

minimum. This strongly indicates that not only magnetic and electric fields can influence the 

properties of glasses, but the concentration of these composite materials can too. The 

dielectric response shown in Fig. 4.4 arises from the addition of K2O. The rather large 

concentrations of K2O or Na2O seemingly introduce a new set of TS’s. [4.14] 

These data, thus far unexplained by the 2LS STM, call for an extension of the 

accepted TM and we shall now show that a simple explanation can be given in terms of the 

very same new (anomalous) tunneling systems (ATS) that have been advocated by Jug to 

explain the magnetic response of AlBaSiO and other multi-component glasses [4.12, 4.13] 

(see also later Chapters of this Thesis). In view of the interest for these materials in low-T 

thermometry, and on fundamental grounds, such explanation appears overdue to us. 

Moreover, ‘‘additional’’ TS (beside the standard 2LS) of the type here advocated were 

already called for in [4.14] by MacDonald et al. and in earlier papers too. Black and Halperin 

in [4.15] suggested a new type of TS from an estimation of tunneling-model parameters and 

from comparison of specific-heat experiments. The specific heat and density of states have 

contributions from both the 2LS and additional excitations which we call ‘‘anomalous’’ 

tunneling systems (ATS). The spin-phonon coupling of the anomalous systems must be 

weaker than that of the standard 2LS. On the other hand, the anomalous systems must be 

sufficiently strongly coupled so as to have relaxation times which are shorter than the duration 

of the heat-pulse experiments.  

In a rather general approach, the TS can be thought of as arising from the shape of 

the theoretical energy-landscape E({r1}) of a glass as T is lowered below the glass freezing 

transition Tf. Many local and global minima develop in E({ri}) as T→0, the lowest-energy 

minima of interest being made up of nw=2, 3,… local wells separated by shallow barriers. 

These local multi-welled potentials are our TS and it seems reasonable that the nw = 2 - welled 

potentials will be ubiquitous in this picture. These should be thought of as an effective 
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representation of local ‘‘tremblements’’ of the equilibrium positions {ri
(0)} of some of the 

glass ions' positions (unlike in the disordered crystal case, where the TS ought to be rather 

well-localized dynamical entities). Hence, just as the nw = 2 - welled case is possible, so ought 

to be the nw=3, 4,… – welled situations which would also be local rearrangements involving a 

few atoms/ions. So long as their energy parameters obey the usual uniform distribution 

advocated by the STM, however, most of these nw - welled potentials should present the very 

same physics as the nw=2 cases and thus in practice the nw distribution cannot be resolved 

experimentally in a pure glass.  

All changes if the glass is made up by a mixture of network-forming (NF) ions (like 

those of the SiO4 or (AlO4)- tetrahedral groups) as well as of network-modifying (NM) ions 

(like K+ or Na+, or Ba2+, Fe2+,...) which, these last ones, could act as nucleating centers for a 

partial devitrification of the glass, as is known to occur in the multi-component materials 

[4.16-4.19]. Simulations and experiments in the multi-silicates have shown that NM-species 

in part destroy the networking capacity of the NF-ions and form their own pockets and 

channels inside the NF-network [3.7, 3.8]. Hence, ݊௪ =  3, 4 … multi-welled systems inside 

these NM-pockets and -channels should follow some new energy-parameters' distribution 

form when some degree of devitrification occurs, leading to entirely new physics.  

Fig.4.2 presents a cartoon of our modeling of the real multi-component glasses. 

Within the homogeneous networked background, where only 2LS are borne, there appear 

regions - whether real micro- or nano-crystals or simply “regions of enhanced regularity” 

(RER) which are crystalline fluctuations of the supercooled liquid – in which a new type of 

TS are nucleated. 

 
Figure 4.2 – A cartoon of our model of the real glass. Beside the homogeneously 

networked background (where only 2LS are allowed), the NM-regions allow the formation of 
crystalline or quasi-crystalline regions where a new type of TS is borne. 
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4.2 Creating the theory of the ‘‘anomalous’’ tunneling systems 
 

It has been proposed by Jug in 2004 that precisely this situation occurs inside the 

magnetic-sensitive multi-component glasses [4.12, 4.13], and in this Chapter we show how 

this theory explains the ܤ = 0 dielectric data of Fig.s 4.1, 4.4 – 4.5 and 4.8 as well. 

 
Figure 4.3 – The particle moving in the three-welled potential (not in vacuum, but 

embedded in a reacting atomic surround).  
 

Instead of the standard 1D double-welled (W-shaped) potential, which continues to 

describe the ordinary 2LS TS inherent to the a-SiO2 network, we take a fictitious particle of 

charge q moving in a nw-welled 3D potential of the type displayed, for ݊௪ = 3 and in the 2D 

space, in Fig. 4.3. The hopping Hamiltonian for a single, non interacting ATS has the form 

଴ܪ = ෍ ௜ܧ ܿ௜
றܿ௜ +

ଷ

௜ୀଵ
∑ ଴ܿ௜ܦ

ற
௝ܿ + ℎ. ܿ௜ஷ௝ . This local Hamiltonian can also be written in matrix 

coordinate representation, with �|݅ �〉 (݅ = 1,2,3) denoting the single-well ground states:  

଴ܪ = ൭
ଵܧ ଴ܦ ଴ܦ
଴ܦ ଶܧ ଴ܦ
଴ܦ ଴ܦ ଷܧ

൱                                                 (4.1) 

Here, ܧଵ, ,ଶܧ  ∑ ଷ are random energy asymmetries chosen to satisfyܧ  ௜ܧ = 0ଷ
௜ୀଵ  and 

taken from an appropriate distribution (see below), together with the tunneling parameter 

଴ܦ > 0. The latter is chosen positive (contrary to custom in the 2LS TM) due possibly to the 

softness of the NM-potential, since indeed in general ܦ଴ ≃ ܽℏω଴݁ି௕௏ಳ/ℏఠబ , a and b being 

numbers such that for ஻ܸ ≳ ℏ߱଴ and ܾ = ܱ(1) this positive value of ܦ଴ can arise. This choice 

is still compatible with the concept of tunneling and yields very large values of ܦ଴ ∼ ℏ߱଴.  

The best justification, however, for the choice ܦ଴ > 0 arises from the following 

considerations, taken from the work of Sussmann in the 1960s [4.20]. If one considers the 
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problem of a charged particle (e.g. an electron) trapped (at a vacancy or impurity) inside a 

crystalline solid, then one finds that the atomic orbitals of the embedding crystalline surround 

make it possible for the particle to develop a degenerate ground state with a non-zero dipole 

moment. This, Sussmann showed, was possible for the cases where there are three (C3 

symmetry) or four (tetrahedral symmetry) mutually equidistant nearest neighbours. In the C3 

case we have the Hamiltonian (4.1) with all ܧ௜ equal and ܦ଴ > 0. For the fictitious particle of 

the TS in a glass the perfect symmetry is lost, but the positiveness of ܦ଴ for the tunneling 

particle remains, leading to the lowest-lying energy level situation we now envisage. 

For this form of the Hamiltonian we have ݊௪ = 3 low-lying states, with (see below) 

ℰ଴ < ℰଵ ≪ ℰଶ, where: 

ℰ௞ = ଴ඨ1ܦ2 −
∑ ௝௜ஷ௝ܧ௜ܧ

଴ܦ6
ଶ cos ൬

1
3 ߠ +  ௞൰                                            (4.2)ߠ

ߠݏ݋ܿ =
ଷܧଶܧଵܧ

଴ܦ2
ଷ ቆ1 −

∑ ௝௜ஷ௝ܧ௜ܧ

଴ܦ6
ଶ ቇ

ିଷ/ଶ

 

with ݇ = 0, 1, 2 and ߠ௞ = 0, + ଶ
ଷ

π, − ଶ
ଷ

π distinguishing the three lowest eigenstates.  

In the ܧ௜ → 0 and ܦ ≡ ඥܧଵ
ଶ + ଶܧ

ଶ + ଷܧ
ଶ ≪  ଴ (near-degenerate situation) limits weܦ

can approximate the ݊௪ = 3 - eigenstate system with an effective 2LS having gap ∆ℰ = ℰଵ −

ℰ଴:  

∆ℰ ≃ ටܧଵ
ଶ + ଶܧ

ଶ + ଷܧ
ଶ + O(ܧଵܧଶܧଷ/ܦଶ ) ≃  (4.3)                    ܦ

The condition for the existence of the gap in the absence of a magnetic field, and 

which vanishes in the symmetric situation by yielding a degenerate ground state, is satisfied. 

For convenience we have introduced a slight redefinition of ܦ and ܦ଴: 
ଶ

√଺
ܦ → ଶ        ,ܦ

√ଷ
଴ܦ →  ଴                                       (4.4)ܦ

Another assumption, and the last one, requires that the energy asymmetries {ܧ௜} be 

taken out of a joint probability distribution taking partial devitrification into account: 

஺்ܲௌ(ܧଵ, ଶܧ , ;ଷܧ (଴ܦ =
ܲ∗

ଵܧ)
ଶ + ଶܧ

ଶ + ଷܧ
ଶ)ܦ଴

                        (4.5) 

For the real glasses (composite materials often consisting of a hard gel and 

containing micro-crystals [4.21], or simply regions of enhanced regularity (RER)) it would 

seem appropriate to resort to a distribution like equation (4.5), which favours near-degenerate 

energy asymmetries (due to the micro-crystals or RER). In the case of the commercial 

ceramic glass ‘Ceran’ (used in the ceramic-glass electric hob industry) it is known that the 

remarkable thermo-mechanical properties of the material are due to the presence of true 
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micro-crystals embedded in an amorphous glassy matrix [4.22]. Actually, given that the 

glassy state appears well below the freezing temperature Tf  of a liquid with crystal-like 

fluctuations developing all over for T<Tf,, it would appear that the RER should be ubiquitous 

in any glass, whether ideal or real. It is then a matter of their size for the ATS to show up in 

experiments. 

The density of states (DOS) is now obtained by the calculation of: 

g୅୘ୗ(ܧ) ≃ න ଴ܦ݀ න ଷܧଶ݀ܧଵ݀ܧ݀   ஺்ܲௌ({ܧ௜}; ଵܧ)ߜ (଴ܦ + ଶܧ + ܧ)ߜ  (ଷܧ − ∆ℰ)
ஶ

஽బ೘೔೙

     (4.6) 

The condition ∑ ௜ܧ = 0ଷ
௜ୀଵ  indicates that the integration is efficient in terms of 

variables defined by this condition. Therefore, it is possible to change variables using polar 

coordinates and expressing the old coordinates in terms of an angle and a distance:  

ଵܧ = ܦ ൬−
1

√2
cos߰ +

1
√6

sin߰൰ 

ଶܧ = ܦ ൬−
2

√6
sin߰൰                                                           (4.7) 

ଷܧ = ܦ ൬
1

√2
cos߰ +

1
√6

sin߰൰ 

This gives us a simplified form for the DOS: 

g୅୘ୗ(ܧ) ≃ න ݀߰ න ܦܦ݀ න ଴ܦ݀
ܲ∗

ଶܦ଴ܦ ܧ)ߜ − ∆ℰ)
ஶ

஽బ೘೔೙

ஶ

஽೘೔೙

ଶగ

଴
            (4.8) 

The integration in ψ may be carried out first and is equal to 2π, since the integrand is 

not dependent of the angle due to complete angular symmetry of the problem in this 

approximation. If ܧ > ௠௜௡, since ∆ℰܦ =  ଴, it is possible toܦ and does not depend on ܦ

perform the integration in D first, which allows us to find: 

g୅୘ୗ(ܧ) ≃
∗ܲߨ2

ܧ
න

଴ܦ݀

଴ܦ

ஶ

஽బ೘೔೙

                                      (4.9) 

This integral has a logarithmic divergence due to the upper limit of integration which 

a priori has been chosen as ∞. The divergence may be eliminated by introducing an upper 

integration cutoff ܦ଴௠௔௫. In fact, the expression for ܦ଴ ( ܦ଴ ≃ ℏ߱଴ exp ቆ−ටଶௗమ௠௏ಳ
ℏమ ቇ), when 

 ଴ assumes all possible values up to +∞, is not physical. Therefore, the introduction of anܦ

upper bound of integration seems reasonable. With this upper limit of the values that ܦ଴ can 

assume, one can perform the integration in ܦ଴ for determining the density of states:  

g୅୘ୗ(ܧ) ≃
∗ܲߨ2

ܧ
න

଴ܦ݀

଴ܦ
= ቐ

∗ܲߨ2

ܧ ln ൬
଴௠௔௫ܦ

଴௠௜௡ܦ
൰ ܧ   , > ௠௜௡ܦ

ܧ                                 ,0 < ௠௜௡ܦ

�
஽బ೘ೌೣ

஽బ೘೔೙

     (4.10) 
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As one can see, the DOS for the ATS’s is no longer a constant as for the 2LS STM. 

 

4.3 Dielectric constant 
 

If we think about the new system like an effective 2LS with a gap ∆ℰ, as in Eq. (4.3), 

we can assume that there are effectively two levels with values 

ℰଵ,ଶ = ± ଵ
ଶ

Δℰ = ± ଵ
ଶ

ඥܧଵ
ଶ + ଶܧ

ଶ + ଷܧ
ଶ 

Introducing the electric field shifts ̅݌௜ܨത to the diagonal terms ܧ௜ of the Hamiltonian 

,଴ܪ we can estimate the gap ܧ(ܨത) for the ATS and the partition function ܼ(ܨത) of the system 

in the presence of an electric field ܨത.  

(തܨ)෨ܧ = ට(ܧଵ − ଶܧ)+ത)ଶܨଵ̅݌ − ത)ଶܨଶ̅݌ + ଷܧ) −  ത)ଶ               (4.11)ܨଷ̅݌

(തܨ)ܼ ≅ ݁ିఉℰభ + ݁ିఉℰమ = 2 cosh ቀఉா෨(ிത)
ଶ

ቁ, where ߚ = 1/݇஻ܶ      (4.12) 

௜̅݌ = ݍ തܽ௜ - is the single-well dipole, ݍ - charge of the fictitious particle, തܽ௜ – distance from the 

3LS centre. The polarization in the electric field is found as: 

ிஷ଴〈ఈ݌〉 = −
߲

ఈܨ߲
൭−

߲
ߚ߲ lnܼ(ܨത)൱ =

߲
ఈܨ߲

ቈ
෨ܧ
2 tanh ቆ

෨ܧߚ
2 ቇ቉

=
1

෨ܧ2
ቆtanh ቆ

෨ܧߚ
2 ቇ +

෨ܧߚ
2 coshିଶ ቆ

෨ܧߚ
2 ቇቇ ∙ ൭෍ ௜ఈ݌෨௜ܧ−

ଷ

௜ୀଵ

൱                  (4.13) 

where ݌௜ఈ = డா෨೔
డிഀ

.  

The linear-response resonant and relaxation contributions to the polarizability for a 

single ATS are given by: 

ఓఔߙ = � ߲
ఔܨ߲

ฬ〈ఓ݌〉
ிୀ଴

 

ఓఔߙ
ோாௌ = න

ܧ݀
ܧ2  ࣡ఓఔ ൬൜

௜ܧ

ܧ
ൠ ; ௜൰࢖

ஶ

଴
 tanh ൬

ܧ
2݇஻ܶ൰ ܧ)ߜ − ∆ℰ)                          (4.14ܽ) 

ఓఔߙ
ோா௅ =

1
4݇஻ܶ

න ቌ෍ ܧ݀
௜ܧ ௝ܧ

ଶܧ ௝ఔ݌௜ఓ݌
௜,௝

ቍ
ஶ

଴
 coshିଶ ൬

ܧ
2݇஻ܶ൰ ܧ)ߜ − ∆ℰ)   (4.14ܾ) 

where ࣡ఓఔ ቀቄா೔
ா

ቅ ;  :௜ቁ is a geometrical intra-ATS dipole-dipole correlator࢖
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࣡ఓఔ ൬൜
௜ܧ

ܧ
ൠ ; ௜൰࢖ = ෍ ௝ఔ݌௜ఓ݌

ଷ

௜ୀଵ

− ෍
௝ܧ௜ܧ

ଶܧ ௝ఔ݌௜ఓ݌
௜,௝

                     (4.15) 

Equations (4.14 a, b) must now be averaged over the random energies’ distribution 

and over the dipoles’ orientations. For a collection of ATS with nw=3, this averaging can be 

done resorting to the decoupling:  

࣡ఓఔܧ)ߜ − ∆ℰ) ≃ ࣡ఓఔ ∙ ܧ)ߜ − ∆ℰ)                                         (4.16) 

where [ܧ)ߜ − ∆ℰ)]௔௩ = g஺்ௌ(ܧ) is the orientation-averaged DOS. Moreover [4.23]: ࣡ఓఔ =

ଵ
ଷ

ଵ݌
ଶതതതߜఓఔ ቀ3 − ଵ

ாమ ∑ ଷ
ଶ

௜ܧ
ଶ

௜ ቁ, ∑ ௜ܧ ఫఔതതതതതതതത௜,௝݌పఓ݌௝ܧ = ଵ
ଷ

ଵ݌
ଶതതതߜఓఔ ቀ∑ ଷ

ଶ
௜ܧ

ଶ
௜ ቁ, where ݌ଵ

ଶതതത - is an averaged 

dipole for the ATS, ߜఓఔ is Kronecker’s symbol. 

If the energy gap is ܧ ≅  the resonant and relaxation contributions after averaging ,ܦ

over the orientation have the following forms: 

ఓఔߙ
ோாௌ =

ଵ݌
ଶതതത

3
න ܧ݀

ଶܧ2 − ଶܦ

ଷܧ2

ஶ

଴
tanh ൬

ܧ
2݇஻ܶ൰ ܧ)ߜ −  (4.17ܽ)                      (ܦ

ఓఔߙ
ோா௅ =

ଵ݌
ଶതതത

3
1

4݇஻ܶ
න ܧ݀

ଶܦ

ଶܧ

ஶ

଴
 coshିଶ ൬

ܧ
2݇஻ܶ൰ ܧ)ߜ −  (4.17ܾ)                  (ܦ

The relative change of the dielectric constant is expressed by ఢ(்)ିఢೝఢబ
ఢೝఢబ

= ஺்ௌݔ
ఈ(்)
ఢೝఢబ

, 

where ݔ஺்ௌ is the volume concentration of the ATS’s. 

At this point we can carry out the averaging over energy’s disorder, using the new 

distribution for the ATS, Eq. (4.5), to get the relative change of the dielectric constant. The 

relaxation contribution must be multiplied by a frequency- and relaxation time-dependent 

term: 

�∆߳ ′

߳ ′ ቤ
஺்ௌ

= �∆߳ ′

߳ ′ ቤ
஺ோாௌ

+ �∆߳ ′

߳ ′ ቤ
஺ோா௅

 

�∆߳ ′

߳ ′ ቤ
஺ோாௌ

=
ߨ ෨ܲ∗݌ଵ

ଶതതത

3߳଴߳௥
න ܧ݀

1
ଶܧ tanh ൬

ܧ
2݇஻ܶ൰                   

ஶ

଴

                      (4.18ܽ) 

�∆߳ ′

߳ ′ ቤ
஺ோா௅

=
ߨ ෨ܲ∗݌ଵ

ଶതതത

4߳଴߳௥

1
݇஻ܶ

න
ܧ݀
ܧ coshିଶ ൬

ܧ
2݇஻ܶ൰

1
1 + ߱ଶ߬஺௠௔௫

ଶ     (4.18ܾ)
ஶ

஽௠௜௡

 

Here ෨ܲ∗ = ∗ܲ ஺்ௌݔ ln ቀ஽బ೘ೌೣ
஽బ೘೔೙

ቁ. We have neglected, for low-ω, the frequency-

dependence in the RES part, ߬஺௠௔௫ is the largest phenomenological ATS relaxation time 

given by [4.23] 
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߬஺௠௔௫
ିଵ =

ହܦ

߁ tanh ቀ ܦ
2݇஻ܶቁ

                                          (4.19) 

߬஺௠௔௫ is the relaxation time at zero field, it has been found by Jug [4.23] from the relaxation 

theory of ATS in a magnetic field. We put ݕ =  :௠௜௡, that makes energy dimensionlessܦ/ܧ

�∆߳ ′

߳ ′ ቤ
஺ோாௌ

=
ߨ ෨ܲ∗݌ଵ

ଶ

3߳଴߳௥ܦ௠௜௡
න

ݕ݀
ଶݕ

∞

ଵ
tanh ൬

௠௜௡ܦ

2݇஻ܶ  ൰                                                    (4.20ܽ)ݕ

�∆߳ ′

߳ ′ ቤ
஺ோா௅

=
ߨ ෨ܲ∗݌ଵ

ଶ

2߳଴߳௥ܦ௠௜௡
൬

௠௜௡ܦ

2݇஻ܶ ൰ݕ න
ݕ݀
ݕ

∞

ଵ
coshିଶ ൬

௠௜௡ܦ

2݇஻ܶ ൰ݕ
1

1 + ߱ଶ߬஺௠௔௫
ଶ    (4.20ܾ) 

 

Moreover, ܦ௠௜௡ is the lowest energy gap of the multilevel ATS, ߁ is an appropriate 

elastic constant and ෨ܲ∗ is the (slightly renormalised) probability per unit volume that an ATS 

occurs in the NM pockets and channels, with ݌ଵ
ଶ the average square ATS dipole moment. This 

description is linked to a distribution function (4.5) for these ATS favouring near-degenerate 

energy gaps (D bound from above by Dmin). In turn, this produces an overall density of states 

g(ܧ) = gଶ௅ௌ + g஺்ௌ(ܧ) ≃ 2ܲ + ൫2ߨ ෨ܲ∗/ܧ൯ ܧ)߆ −  ௠௜௡) that is roughly of the formܦ

advocated in [4.14] and by some other preceeding Authors (e.g. [2.21, 4.25]) to explain 

anomalies not accounted for by the standard 2LS TM.  

Manipulation of the expressions in (4.20 a, b) shows that:  

1) The RES contribution from the ATS has the leading behavior (for ܶ < ௠௜௡/2݇஻ܦ ,
�߳ ′ห

஺ோாௌ  is a constant)  

�Δ߳ ′

߳ ′ ቤ
஺ோாௌ

≃

⎩
⎪
⎨

⎪
⎧0,                                             ݂݅ ܶ <

௠௜௡ܦ

2݇஻

ߨ ෨ܲ∗݌ଵ
ଶ

6߳଴߳௥݇஻ܶ ln ൬
2݇஻ܶ
௠௜௡ܦ

൰ , ݂݅ ܶ >
௠௜௡ܦ

2݇஻

�                (4.21ܽ) 

2) the REL contribution is, instead, characterised by the leading form 

�Δ߳ ′

߳ ′ ቤ
஺ோா௅

≃ ቐ
0,                                           ݂݅ ߱߬஺௠௔௫ ≫ 1

ߨ ෨ܲ∗݌ଵ
ଶ

߳଴߳௥݇஻ܶ ln ൬
݇஻ܶ
௠௜௡ܦ

൰ , ݂݅ ߱߬஺௠௔௫ ≪ 1
 �           (4.21ܾ) 

Thus, the V-shaped semi-logarithmic curve is somewhat lost. However adding the 

2LS (Eqs. (2.24-25)) and ATS (Eqs. (4.20 a, b)) contributions together one does recover a V-

shape with a slope ܵି ≃ −2ܵ basically unchanged for ܶ < ଴ܶ and an augmented slope 

ܵା = ܵ + ஺்ܵௌ for  ܶ > ଴ܶ with ஺்ܵௌ = ߨ7 ෨ܲ∗݌ଵ
ଶ/6߳଴߳௥݇஻ܶ that for ܶ <  ௠௜௡/݇஻ mayܦ

approach 2ܵ and thus (qualitatively) a -1:1 slope ratio. 
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Figure 4.4 – Dielectric response of (SiO2)1-x(K2O)x glasses as function of T and x 

[4.14]. Fitting parameters from Table 4.1 using Eq. (2.24-25) and (4.20 a, b) from our theory 
(driving frequency ω = 10 kHz). 

 
 
 

 
Figure 4.5 – Dielectric response of the mixed-composition glasses  

(SiO2)1-x(K2O)x as function of T and ω for x=0.2 [4.14]. Fitting parameters are from Table 4.1 
using Eq. (2.24-25) and (4.20 a, b) from our theory.  

 

 

 



40 
 

We have fitted expressions (2.24-25) and (4.20 a, b) to the data for AlBaSiO [4.3] in 

Fig. 4.1 (main) and to the x-dependent data for (SiO2)1-x(K2O)x in Fig.s 4.4 and 4.5, obtaining 

in all cases very good agreement between theory and experiments [4.24]. Fig. 4.5 shows the 

fit of our theory to the frequency-dependent data for x=0.2. In all these best fits we have kept 

the value of ∆଴௠௜௡= 3.9 mK fixed, as obtained from our pure a-SiO2 fit, and the value of 

 ௠௜௡ also independent of x and ω. The idea is that these parameters are rather local ones andܦ

should not be influenced by NF/NM dilution. Table 4.1 reports all the (2LS and ATS) 

parameters used for our best fits and Fig. 4.7 shows the dependence of the extracted prefactors 

with x. 

 
Table 4.1 – Extracted parameters from the dielectric response of the glasses; K-Si 

stands for the (SiO2)1-x(K2O)x glasses. In all of the best fits we have employed the values 
∆଴௠௜௡= 3.9 mK and ∆଴௠௔௫= 10 K extracted from fitting the pure a-SiO2 data of Fig. 4.1 
(inset). 

Glass type x, 
A2LS, 
10-5 

γ,  
10-8 sK3 

AATS, 
 10-5 

Dmin, 
 K 

Г, 
10-6 sK5 

SiO2 0 47.2 5.30 - - - 
AlBaSiO - 116.2 13.40 264.7 0.65 69.73 
K-Si 0.05 104.1 1.33 75.5 0.87 3.55 
K-Si 0.08 146.5 1.23 130.0 0.87 3.97 
K-Si 0.10 158.5 1.15 160.0 0.87 5.08 
K-Si 0.20 239.5 0.82 281.9 0.87 6.44 

 
 

It can be seen that, as expected, the ATS prefactor ܣ஺்ௌ = ߨ ෨ܲ∗݌ଵ
ଶ ߳଴߳௥ܦ௠௜௡ൗ  scales 

linearly with x, an excellent confirmation that the ‘‘additional’’ TS of [4.12, 4.13] are 

precisely our ATS forming within the micro-crystallites or RER borne by the NM-pockets 

and channels. It can be seen, instead, from our fits that the 2LS prefactor ܣଶ௅ௌ = തܲ݌଴
ଶ ߳଴߳௥ൗ  

also increases, though less rapidly, with x (a decrease like 1-x would be expected). We 

propose (adopting a NF/NM percolation picture) that new, ‘‘induced’’ 2LS form with alkali 

dilution near the NF/NM surface of the NF percolating clusters as x is increased from 0.  

This leads to the expression ܣ௕௨௟௞(1 − (ݔ +  ,௙ for the 2LS prefactorݔ(ݔ)௦௨௥௙ܲܣ

with ܣ௕௨௟௞  ௦௨௥௙ and f fitting parameters and P(x) the percolation probability functionܣ ,

(ݔ)ܲ) ≃ 1 for small x). Our best fit leads to ݂ = 0.81, in rather good agreement with the 

heuristic expression ݂ = 1 − ܦ) −  ,D is the fractal dimension of the percolating cluster) ߥ(௦ܦ

௦ܦ <  of its ‘‘elastic’’ surface (not necessarily the hull),ν is the connectedness length's ܦ

exponent) one would infer from elementary fractal or percolation theory.  
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The expression for f is derived as follows [4.23]. Imagine (Fig. 4.6) the NM-regions 

percolating through the NF-bulk with a concentration x, so that their typical volume scales 

like ௖ܸ ≈ ݈஽, where ݈ ≈  ఔ is their typical linear size. The number of 2LS on the surface ofݔ

these clusters will scale like ଶܰ௅ௌ
(௦) ≈  ஽ೞ and so their density like݈(ݔ)ܲݔ

ேమಽೄ
(ೞ)

௏೎
≈ ఔ(஽ೞି஽)ݔ(ݔ)ܲݔ =  .௙ with the given expression for fݔ(ݔ)ܲ

 
Figure 4.6 – A cartoon of the fractal (presumably percolating) geometry of the NM-

pockets and channels, the clusters growing with increasing x. 

 
Figure 4.7 – The 2LS and ATS prefactor parameters (× 10ହ) for all glasses (from 

Table 4.1) as a function of x. Our data fit well with our theoretical expectations (full lines).  
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4.4 Heat capacity 
 

The heat capacity’s low-temperature dependence in zero field for glasses is usually 

given by the following expression:  

(ܶ)௣ܥ  = ௣௛ܶଷܤ  +  ଶ௅ௌܶ                                             (4.22)ܤ

The first term accounts for the Debye-type contribution from the acoustic phonons 

and dominates above 1 K, and the second term is usually attributed to the specific low-energy 

excitations of all vitreous solids - the 2LS’s. ܤ௣௛ and ܤଶ௅ௌ are constants. This expression 

describes well the experimental data for pure silica glass at zero field (Fig.4.8 black circles: 

x=0 with parameters from Table 4.2), but it fails for the multi-component glasses like 

AlBaSiO, BK7, Duran [4.12] and (K2O)1-x(SiO2)x. [4.14]  

Typically, the heat capacity’s experimental data for the multi-component glasses in 

zero field denote a kind of ‘shoulder’ at intermediate-low temperatures. This suggests a 

density of states, for at least some of the independent tunneling units in the glass, of the form 

g(ܧ, 0) ≃ (ܧ)in contrast to the standard TM  g ,ܧ/1 ≃  which ensues from the ,.ݐݏ݊݋ܿ

standard distribution. Indeed, this was the very first observation that led to the hypothesis of 

the ATS formulated by Jug. 

To find out the precise expression for the heat capacity of the ATS we use the model 

of ATS described in Section 4.2 [4.12, 4.13]. The heat capacity is determined as the second 

derivative of the free energy with respect to temperature: 

௣ܥ
஺்ௌ(ܶ) = −ܶ

߲ଶܨ஺்ௌ(ܶ)
߲ܶଶ                                            (4.23) 

where ܨ஺்ௌ(ܶ) is the free energy of the ATS, where we  neglect the third, highest, energy 

level (effective 2LS approximation): 

(ܶ)஺்ௌܨ = −݇஻ܶln ቆ݁ି ℰభ
௞ಳ் + ݁ି ℰమ

௞ಳ்   ቇ = −݇஻ܶln ൬2 cosh ൬
ܧ

2݇஻ܶ൰൰     (4.24)  

The heat capacity is obtained by averaging over the parameter distribution:  

௣ܥ
஺்ௌ(ܶ) = ݇஻ න (ܧ)g஺்ௌ ܧ݀ ൬

ܧ
2݇஻ܶ൰

ଶ

coshିଶ ൬
ܧ

2݇஻ܶ൰
ஶ

଴
                  (4.25) 

where the density of states g஺்ௌ(ܧ) has the following form (see Section 4.2): 

g஺்ௌ(ܧ) = ∫ ∫ܦ݀ ,ܦ)଴ܲܦ݀ ܧ)ߜ(଴ܦ − (ܦ ≃ ൝
2ܲ∗

ܧ , ܧ > ௠௜௡ܦ ,
0, ܧ < ௠௜௡ܦ .

�         (4.26) 

and ܦ௠௜௡  is a lower cutoff. 

The final expression for the heat capacity results in: 
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௣ܥ
஺்ௌ(ܶ) = ஺்ௌܤ  ቈln ቆ2cosh ൬

௠௜௡ܦ

2݇஻ܶ൰ቇ −
௠௜௡ܦ

2݇஻ܶ tanh ൬
௠௜௡ܦ

2݇஻ܶ൰቉             (4.27) 

where the prefactor for the ATS is ܤ஺்ௌ = ln(ݔ)ߩ஻݊஺்ௌ݇∗ܲߨ2 ቀ஽బ೘ೌೣ
஽బ೘೔೙

ቁ, ݊஺்ௌ - is the ATS 

mass concentration, ρ(x) - mass density. 

For ݇஻ܶ ≳  ’௠௜௡ this is indeed roughly a constant and gives the observed ‘shoulderܦ

in ܥ௣(ܶ) when the contribution ܤ௣௛ܶଷ (from virtual phonons) as well as the standard ܤଶ௅ௌܶ 

are added.  

Both prefactors, for 2LS and ATS, are dependent on the molar concentration x, just 

as we found before: ܤଶ௅ௌ ∼ ௕௨௟௞(1ܤ  − (ݔ + ஺்ௌܤ , ௙ݔ(ݔ)௦௨௥௙ܲܤ ∼ ௣௛ߛ Also .ݔ  should be re-

evaluated. With increasing concentration x for the (SiO2)1-x(K2O)x glass, the number of 

phonons from the NM component (K2O) increases linearly with the concentration x, and for 

the NF component (SiO2) it should decrease linearly like (1-x). As we assumed in the 

previous Section, there are percolation effects between NM and NF systems, which make 

room for some percolation clusters and surfaces, where phonons also might create a 

contribution someway proportional to ܥ௣௛ܲ(ݔ)ݔ௙. 

For some glasses, moreover, a non-negligible concentration of Fe3+ impurities is 

reported, which is a consequence of the industrial production process: 102 ppm for AlBaSiO 

and 126 ppm for Duran [4.26], 100 ppm for Pyrex 7740 and 12 ppm for Pyrex 9700 [2.3, 

2.10]. All glasses may have some [FeO4]0 impurities substitution centers (in the glass, similar 

to a liquid, in concentrations much much lower than the nominal Fe concentrations). The Fe3+ 

cation and the O2- anion, on which the hole is localized (forming the O- that is  O2- + hole 

subsystem), form a bound small polaron. In this configuration the Fe3+ cation is subject to a 

crystal field with an approximate C3 symmetry axis along the Fe3+ - O- direction. This axis 

plays a quantization role for the Fe3+ electronic spin. The hole is assumed to be tunneling 

between two neighboring oxygen ions, switching the quantization axis between two directions 

and therefore entangling the spin states. We should, therefore, also take into account the 

contribution from Fe-impurities to the heat capacity from [4.27] and for ܤ = 0. The spin 

Hamiltonian of the [FeO4]0 center at ܤ = 0 is ܪ௦ିௌ = ௭ܸݏ௭ܵ௭, where: ௭ܸ - is the principal 

value of the dipole interaction matrix, ݏ௭ and ܵ௭ - are the spin operators of the O- and Fe3+ 

ions, respectively. In the absence of a magnetic field there are only two ground state energy 

levels ܧଵ,ଶ = ± ହ
ସ

| ௭ܸ|. The distribution function ܩ( ௭ܸ) must approach zero while its argument 

approaches either zero or infinity and have a maximum at a definite argument value ଴ܸ. The 

simplest one-parameter function demonstrating such properties is a Poisson distribution:  
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)ܩ ௭ܸ) =
4 ௭ܸ

ଶ

଴ܸ
ଷ exp ൬−

2 ௭ܸ

଴ܸ
൰,       ௭ܸ ∈ (−∞; 0],           ଴ܸ < 0               (4.28) 

The contribution from the [FeO4]0 ensemble to the specific heat is as follows: 

(ܶ)ி௘యశܥ = −ܶ
߲ଶܨி௘యశ

߲ܶଶ                                          (4.29) 

where ܨி௘యశ(ܶ) is the free energy of the [FeO4]0 ensemble, that one finds as: 

ி௘యశܨ = −݇஻ܶln൫݁ିாభ ௞ಳ்⁄ + ݁ିாమ ௞ಳ்⁄   ൯

= −݇஻ܶln ൬2 cosh ൬
ܧ

2݇஻ܶ൰൰                                                  (4.30) 

(here ܧ = ହ
ସ

| ௭ܸ|). 

Using the distribution function for ܩ( ௭ܸ), as well as the expressions for ܥி௘యశ(ܶ)) 

and ܨி௘యశ(ܶ), one can obtain the expression for the specific heat from the few [FeO4]0 

centres, which should be added to the total heat capacity ܥ௣:  

௣ܥ
ி௘యశ(ܶ) = ௝݇஻ݔ(ݔ)ߩ න ݀ ௭ܸ ൬

ܧ
2݇஻ܶ൰

ଶ

coshିଶ ൬
ܧ

2݇஻ܶ൰ )ܩ ௭ܸ)
ஶ

଴

= ௝݇஻ݔ(ݔ)ߩ න ݀ ௭ܸ
25 ௭ܸ

ସ

16ܶଶ
1

଴ܸ
ଷ ݁ቀି ଶ௏೥

௏బ
ቁcoshିଶ ൬

5 ௭ܸ

8݇஻ܶ൰                            (4.31)
ஶ

଴
 

where xj – volume concentration of the substituting Fe3+.  

So the total heat capacity will be the sum of all these contributions ((4.22), (4.27) and 

(4.31)): 

(ܶ)௣ܥ = ௣௛ܶଷܤ  + ଶ௅ௌܶܤ + ௣ܥ
஺்ௌ(ܶ) + ௣ܥ

ி௘యశ(ܶ)                       (4.32) 

Making use of expression (4.32) we can fit the experimental data for the specific heat 

for the (SiO2)1-x(K2O)x glasses from [4.14]. In order to fit the a-SiO2 data we use only formula 

(4.22), that fits well the pure silica’s data within the 2LS model.  

The specific heat data [4.14] for (SiO2)1-x(K2O)x glasses were obtained using a 

signal-averaging technique. The samples of (SiO2)1-x(K2O)x glass have different 

concentrations of their K2O component, from 0 to 20%, they were roughly cubic in shape and 

about 1 cm in size. The OH content was about 20 ppm.  The specific heat ܥ௣(ܶ) of these 

samples is presented in Fig. 4.8.  

As one can see, the specific heat for (SiO2)1-x(K2O)x glass at small temperatures is 

larger than that for pure silica, already with the smallest 5% concentration of K2O. The heat 

capacity decreases and then again increases with increasing of molar concentration x of K2O. 

The additional heat capacity arises from the addition of K2O and from the Fe3+ impurities, 

contained in small concentrations, but contributing to the low and middle range of 

temperatures.  
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Figure 4.8 – The temperature dependence of the specific heat for a-SiO2 (black 

circles) and for the (SiO2)1-x(K2O)x glasses [4.14]. The lines are the theoretical curves, 
generated by Eq. (4.32) 
 

 

Table 4.2 – Extracted parameters from the heat capacity of the SiO2 and          
(SiO2)1-x(K2O)x glasses, with ܦ௠௜௡ = 0.87 K and ଴ܸ =– 0.42 K as fixed. 

glass type x 
Bph × 108 , 
Jg-1K-4 

B2LS ×108 , 
Jg-1K-2 

BATS ×108 , 
Jg-1K-1 

xj kB× 108 , 
Jg-1K-1 

xj , ppm 

SiO2 0 245.55 70.65 – – – 

K-Si 0.05 260.92 155.23 22.77 402.0 29.86 

K-Si 0.08 266.36 196.11 36.44 241.0 18.15 

K-Si 0.10 269.46 221.62 45.55 138.0 10.54 

K-Si 0.20 281.42 337.19 91.11 38.0 3.00 

 

Both prefactors, for 2LS and ATS, are dependent of the molar concentration x, and 

just as we have found before: ܤଶ௅ௌ ∼ ௕௨௟௞(1ܤ  − (ݔ + ஺்ௌܤ , ௙ݔ(ݔ)௦௨௥௙ܲܤ ∼  These .ݔ

dependences are show in Fig.4.9. Also ߛ௣௛  should change by increasing the concentration of 

impurities. 
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Figure 4.9 – The 2LS and ATS prefactor parameters (× 10଼) for all glasses (from 

Table 4.2) as a function of x. Our data fit well with our theoretical expectations with ݂ = 0.81 
(full lines). 

 

With increasing concentration x for the (SiO2)1-x(K2O)x glasses the number of 

phonons from the NM component (K2O) increases linearly with the concentration, and for the 

NF component (SiO2) should be decreasing linearly like (1-x). As we supposed before, there 

are percolation mixing effects between the NM and the NF systems, which creates some 

percolation clusters at their surfaces, where phonons (or fractons) also might be created in a 

way proportional to ܥ௣௛ܲ(ݔ)ݔ௙. 

In summary, we have shown that there is direct evidence in zero magnetic field 

already for the multi-welled ATS and with the new distribution function advocated to explain 

the magnetic-field effect in the multi-component glasses (see following Chapters). The 

relevance of the multi-welled TS in the multi-component glasses is a new and unexpected 

finding in this field of research. Our work predicts that the magnetic response of the alkali-

silicate glasses should be important and scale like the molar alkali concentration x. At the 

same time the −1 : 1 slope ratio problem of the standard TM has been given a simple 

explanation in terms of our two-component tunneling model. 

Using the results of this analysis (and for AlBaSiO the results of the analysis in a 

magnetic field) we can estimate the value of the dipole moment associated with the ATS, 

௘௙௙݌ = ට݌ଵ
ଶതതത  . For AlBaSiO, using the value of ෨ܲ∗ extracted from ܥ௣ [4.12] and that of AATS 
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given in Table 4.1 we extract ݌௘௙௙ = 0.41 D. For (SiO2)1-x(K2O)x , we notice from the 

definitions in this Chapter that the ratio of dielectric and heat capacity prefactors: 

஺்ௌܣ

஺்ௌܤ
=

(ݔ)ߩ
2߳଴߳௥݇஻ܦ௠௜௡

ଵ݌
ଶതതത                                              (4.33) 

is almost independent of the K2O concentration x. From our extracted values in Tables 4.1 and 

4.2 and the measured values of [4.14] (ݔ)ߩ we extract ݌௘௙௙ = 0.045 D independently of x. 

Considering the elementary dipole’s value ݁ܽ଴ = 2.54 D, these small values of ݌௘௙௙  for the 

ATS confirm that their new physics must come from the coherent tunneling of small ionic 

clusters (the very same origin for the large values of ܦ௠௜௡ and (later Chapters of this work) 

for ܦ଴௠௜௡,௠௔௫). Indeed, the cluster of N coherently tunneling particles has a dipole moment 

௘௙௙݌ = ห∑ ௜⃗݌
ே
௜ୀଵ ห  that can become much smaller than ݁ܽ଴ as N grows large. The fact, that we 

extract values of ݌௘௙௙  much smaller than ݁ܽ଴, confirms this picture already in the ܤ = 0 case. 
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Chapter 5  

 

Extension of the tunneling model: effect of a 

magnetic field 

 
The linear dependence in ± ln ܶ of the dielectric constant ߳′(ܶ) makes glassy 

material useful in low-temperature thermometry and, normally, structural window-type 

glasses are expected to be isotropic insulators that do not present any remarkable magnetic-

field response phenomena (other than a weak response to the inherent trace paramagnetic 

impurities). However, recent studies of some multi-component glasses developed for low-

temperature thermometry [5.1-5.4] have shown a remarkable and unexplainable anomalous 

magnetic-field-dependent behaviour. The multi-component AlBaSiO glass (or BAS), presents 

at very low temperatures (1<T<100 mK) an unexpected enhanced dielectric response to very 

weak magnetic fields already (B~10 mT, the magnetic field of the earth being ~40 mT) [4.3, 

4.11].  

AlBaSiO is contaminated with ca.100 ppm Fe-impurities; other, also much cleaner, 

multi-component borosilicate glasses (BK7, less than 6 ppm [5.5], and Duran, ~120 ppm 

[4.26] of paramagnetic Fe) show similar magnetic anomalies, thus excluding the paramagnetic 

impurities as their source. The fact that the magnetic response does not scale with the 

paramagnetic impurity concentration indicates that the phenomenon is not paramagnetic-

impurity related. Moreover, similar effects have been confirmed concomitantly [5.6] in 

studies of the iron-free structural glass a-SiO2+xCyHz in the range 50<T<400 mK and with B 

up to 3T.  

The unexpected magnetic response of the cold glasses calls for an extension of the 

STM. 

A fist attempt to explain this unusual phenomenon, consisting of a 3D version of the 

2LS STM, is the work of Ketteman, Fulde and Strehlow (KFS) [4.4]. The fictitious tunneling 

particle is imagined as moving in a hat-like type potential, shown in Fig 5.1a, with two 

potential barriers in azimuth direction along the rim of the hat and two non-equivalent 

minima, between which the tunneling can occur along different paths. Under these conditions 

the particle couples orbitally to the magnetic field through the Aharonov-Bohm (AB) effect 
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[5.7]. A field B applied along the z axis forces the charged particle to circular motion in the 

perpendicular plane having radius r. In the general case when the field B has an arbitrary 

angle ߙ with the plane of motion, the magnetic flux through the circular orbit of a TLS is 

given by = ଶݎߨܤ cos α . 

In analogy to the STM , the ground state and the first excited state of this 3D 2LS can 

be well approximated by a superposition of the ground states of each potential well’s 

harmonic oscillator, if ஻ܸ ≫ ℏ߱଴ > Δ, where ω0 is the oscillator frequency and ஻ܸ ≈

(1 8⁄ )݉߱଴
ଶߨଶݎଶ is the potential barrier; ݎ is a radius. The energy eigenvalues are found to be 

±ܧ = ൣℏ߱଴ + Δ ± E୥(߶)൧/2 and periodic in the magnetic flux ߶/߶଴ as seen in Fig.5.1b. 

߶଴ = ℎ/ݍ is the appropriate flux quantum. The energy gap is expressed by ܧ୥(߶) =

ටΔଶ + (߶)ݐ ଶ, where(߶)ݐ = Δ଴ cos(ߨ߶/߶଴) is now the magnetic flux-dependent tunneling 

splitting, that replaces the tunneling parameter Δ଴ of the STM. The parameter distribution 

function is assumed to be the same as for the STM (2.8). 

 
a)                                                         b) 

Figure 5.1 ‒ a) Hat-like potential. The double-well potential for a charged particle 
confined to a circular path is indicated by the thin line; b) the two lowest energy eigenvalues 
as a function of the flux ratio ߶/߶଴ [4.4] 

 

In the low-temperature resonant regime at zero field, the temperature dependence of 

the dielectric constant ߳′ோாௌ(ܶ, ߶ = 0) can be described well by assuming തܲ݌ଶ ߳଴⁄ = 1.03 ×

10ିଶ and a high value of Δ଴௠௜௡ ݇஻⁄ = 12.2 mK [4.4]. The deviation from the logarithmic 

temperature dependence of ߳′ோாௌ is observed in a magnetic field where ߳′ோாௌ(ܶ, ߶ = ߶଴/2) 

becomes maximal. To explain within this model the maximum in the real part of the dielectric 

constant at ܤ ≈ 0.1 T, as experimentally observed for AlBaSiO samples, the required charge 

of the tunneling particle must be assumed to be of order |10~|ݍହ|݁|, ݁ being the electron’s 

charge. Such a large value of q was interpreted as resulting from the coherent tunneling state 
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of a mesoscopic (~10ହ 3D 2LS) cluster of TS [5.8].  The KFS model does not find support 

from either the theoretical or the experimental side. For one, if this explanation were the 

correct one, then also pure a-SiO2 would display magnetic effects as for the other multi-

component silicates, a fact that so far has not been experimentally reported. There must be, 

therefore, something new and specific of the multi-component glasses, that is at the origin of 

the magnetic effects. 

The amplitude of the two-pulse dipole echo in the multi-component nonmagnetic 

glasses mentioned above exhibited also a strong non-monotonic dependence on the magnetic 

field even in weak fields (about 10 mT), whilst pure a-SiO2 gave no response at all. These 

experiments are a confirmation of how the TS in glasses behave as pseudo spin-S entities, 

ܵ ≥ ଵ
ଶ
. Wurger, Fleischmann and Enss (WFE) [5.9] suggested that this unusual magnetic field 

effect is caused by the presence of tunneling atoms with non-spherical nuclei carrying an 

electric quadrupole moment in the glass, because a-SiO2 does not contain nuclei with spin 

ܫ > ଵ
ଶ
, while all other glasses do and in good concentrations. The interaction of the quadrupole 

moment with the gradient of the static microscopic electric field in the two wells of double-

well potentials creates an energy-level fine-structure splitting in a 2LS transforming the 2LS 

into a multi-level system (albeit with a very small fine energy structure in ܤ = 0). 

The WFE nuclear-quadrupole model is capable to explain some of the experimental 

data of the two-pulse dipole echoes, in particular the results for the echo in vitreous glycerol 

(C3H8O3) [5.10]. It was shown, that the replacement of hydrogen, having zero quadrupole 

moment, by deuterium, with a nonzero quadrupole moment, increases the echo amplitude by 

more than a factor 10. However, the weak magnetic-field non-monotonic dependence of the 

echo in non-deuterated glycerol could not be explained in such a way. 

To explain this phenomenon Bazrafshan et al. [5.11] suppose that the magnetic field 

dependence of the echo amplitude in a-C3H8O3 is caused by the extra weak dipole-dipole 

interaction of the nuclear magnetic moments of the hydrogen atoms. This interaction also 

creates a hyperfine structure of the two levels in the 2LS, which depends on the applied 

magnetic field through the very weak nuclear Zeeman coupling. In the papers [5.12, 5.13] the 

two-pulse echo amplitude was numerically calculated in part-deuterated a-glycerol 

C3D5H3O3, assuming that the tunneling motion in the two-level systems is the rotation of the 

glycerol molecule as a whole. Later in [5.14] an analytical theory of the magnetic field 

dependence of the two-pulse echo amplitude in glasses with dipole-dipole interaction of 

nuclear spins was developed. Without any assumption about the microscopic tunneling 
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mechanism of the hydrogen atoms in glycerol and other fitting parameters than a prefactor, it 

also shows a reasonable agreement with the experimental data. 

The nuclear-quadrupole model seems to be adequate to explain the polarization echo 

experiments (though it predicts many oscillations when only one, typically, or at most two are 

observed as a function of ܤ), but it fails to describe the ܤ-field dependence of the dielectric 

constant even qualitatively. A static (ω=0) calculation of the dielectric constant’s dependence 

in the presence of quadrupole moment couplings has shown the wrong form of the ܤ- and ܶ-

dependence of ߳ߜ′ /߳′ compared to experiments and, most importantly, that the order of 

magnitude of the magnetic ߳ߜ′ /߳′ is a factor 106 weaker than observed [5.15]. 

In the work of Burin et al. [5.16] it is shown how a strong magnetic field dependence 

of the electric susceptibility in ultra-cold glasses can be qualitatively understood by taking 

into account the interactions of TS in the presence of nuclear quadrupolar moments as 

suggested by Würger et al [5.9]. In multi-component glasses the quadrupolar effects may be 

caused by Na, K, Al and B nuclei. The basic point is that the number of different energy 

levels of a TS increases, even by effect of small applied magnetic field. The magnetic field 

influences the energy spectrum since the particle obtains a Zeeman energy depending on the 

nuclear spin projection. The magnetic field produces a Zeeman splitting. It is larger than the 

quadrupolar splitting, when the magnetic field increases. The interactions of a nuclear 

quadrupole electrical moment with the crystal field and of a nuclear magnetic moment with 

magnetic field transform the two-level tunneling systems into multi-level tunneling systems. 

Increasing the number of different energy levels of a TS modifies the concentration of 

resonant tunneling pairs and leads to observable effects. This model tries to explain the 

behavior of the real and imaginary parts of the dielectric constant of the system to an applied 

magnetic field. But in this model the increasing in the dielectric constant with magnetic field 

was found in orders of magnitude too small compared with the available experiments. By the 

authors’ opinion it asks for larger values of the quadrupole splitting. 

The nuclear-quadrupole approach, in whichever form, also fails to explain the 

decrease of the dielectric constant, with ߳ߜ′ /߳′ becoming negative after the first positive 

enhancement, as the magnetic field further increases. A major setback is however represented 

by recent echo experiments with the doped crystals KCl:Li (also good realizations of the 2LS 

STM) in which selected samples with the isotopes 6Li or 7Li have been studied experimentally 

[5.17]. These isotopes have very different nuclear quadrupole moments ( Q(6Li)= ‒ 0.001 

barn and Q(7Li)= ‒ 0.040 barn ), 6Li  having by far the smallest and thus KCl crystals with 

such selected interstitials ought to reveal the weakest magnetic-field response in the echo. The 

opposite was observed, instead, KCl:6Li giving the most spectacular oscillations in the 
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magnetic field and also waiting time oscillations. This puts serious doubts on the validity of 

the WES nuclear-quadrupole explanation. 

For the explanation of the magnetic field effect for the dielectric constant of the       

a-SiO2+xCyHz glass (a system completely devoid of nuclear-quadrupole carrying species) J. Le 

Cochec, F. Ladieu and P. Pari in the work [5.6] proposed a model with two local potential 

sites separated by a disordered barrier as demonstrated in Fig. 5.2. Tunneling between the two 

sites of the (quasi-symmetric) 2LS separated by the distance a is strongly affected by the 

potential barrier’s disorder. This is modeled by a three-dimensional network of impurities (the 

unit length of which is the elastic mean free path ߣ௘௟) and Δ଴ results from the coherent sum of 

all quantum paths along the impurity network. This model can be compared with our 3-welled 

tunneling model (previous and following Chapters), where the “rugged barrier” can be 

represented the 3-rd, 4-th and so on potential wells with somewhat higher energy value. The 

shift of the dielectric constant (ܤ)′߳ߜ depends on the magnetic field ܤ through Δ଴௠௔௫(ܤ), 

that means the tunnel transparency is affected by the magnetic field. Numerically it was found 

that 〈ߜ ln[Δ଴(ܪ)]〉 ∝  ௘௟. For the extrapolation of the experimental data one can accountߣ/ܽ

ܽ ≃ ௘௟ߣ5 ≃ 1 nm, giving an elementary dipole ݌଴ ≃  But in the mechanism described .ܦ 10

above the behavior of (ܤ)′߳ߜ is a monotonous one on ܤ, i.e., it cannot account for the peaked 

structure around ܤ = 0.03 T reported in [4.3].  

 
a)                                               b) 

Figure 5.2 ‒ Schematic view of the disorder lying within the tunnel barrier of size ~a 
between the two sites (gray circles) of a 2LS: the potential fluctuations are modeled by a set 
of ‘‘impurities’’ of interspacing ߣ௘௟ whose energies are drawn at random either well above or 
well below that of the 2LS [5.6]; b) 2D representation. 

 

A successful interpretation of the (ܤ)′߳ߜ/߳′ non-monotonous changes for AlBaSiO 

in a field has been reported in the work of A. Borisenko and A. Bakai [5.18] Their approach 

relies on the idea that paramagnetic tunneling states (PTS) might exist in the glasses due to 
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localized electrons or holes associated with chemical species having valence different from 

those of the host atoms. Thus, a distribution is envisaged for 2LS-like tunneling charged 

particles (typically holes) carrying also a spin- ଵ
ଶ
 and thus a magnetic moment. The tunneling 

of this very localized, charged and spin- ଵ
ଶ
 particle in shallow double-well 1D potentials is 

treated approximately and results in a reasonable agreement with experiment. The tunneling 

motion leads to the non-conservation of the magnetic moment due to the disorientation of the 

hole-associated electronic quadrupole moment by the random “crystal” field. This feature 

gives rise to the non-monotonic magnetic field dependence of the dielectric susceptibility of 

the PTS ensemble. Also, good agreement with the magnetic-field dependence of the heat 

capacity ܥ௣ and of the polarization echo experiments for some Fe-contaminated multi-

silicates has been reported. However, no explanation for the magnetic effects in vitreous 

glycerol or in the cleaner multi-silicates (BK7) is offered by this PTS approach. 

No one of the present theories, invented to describe the magnetic field effect in 

glasses at very low temperatures, could explain all of the experimentally observed effects in 

glasses at the same time. In the following Chapters will be shown how our own multi-welled 

tunneling model can explain all of the low temperature magnetic effects in glasses discovered 

so far. 
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Chapter 6  

 

The multi-welled tunneling model for real 

glasses in a magnetic field 

 
In this Chapter we extend the novel anomalous tunneling model introduced in 

Chapter 4 in order to explain the low temperature properties observed in glasses in the 

presence of weak to moderate magnetic fields. The magnetic field makes the dependence of 

the specific heat of the multi-compound glasses non-monotonous with the increasing field. 

Data from [4.26] for the AlBaSiO and Duran glasses indicate strong deviation from Eq. (4.22) 

at zero magnetic field already. The data show that starting from the curve at zero field, the 

specific heat initially increases with increasing of the magnetic field, and then decrease at 

high fields (Fig. 6.1 a, b). A behaviour of this type has been observed for the multi-compound 

glasses AlBaSiO and Duran, and has been rather well reproduced and explained by the 

theoretical approach using the ATS model proposed by Jug in 2004 [4.12].  

 
a)                                                             b) 

Figure 6.1 ‒ Double-logarithmic plot of heat capacity ܥ௣/ܶ as a function of 
temperature T and magnetic field B for the heat capacity of the AlBaSiO (a) and Duran (b) 
glasses [4.12]. 

 

One way to explain the effects of the magnetic field (orbital, Aharonov-Bohm type 

coupling) is to consider the motion of a fictitious charge q particle in a ݊௪-welled potential, 

with ݊௪ ≥ 3. The barrier ஻ܸ  through which the fictitious particle tunnels might be taken to be 

relatively shallow, so that ஻ܸ ≈ ℏ߱଴, ߱଴ being the frequency of a single-well ground state, 
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whilst tunneling still takes place. This makes the present explanation rather different from the 

hat-like model of [4.4], where the ordinary ஻ܸ ≫ ℏ߱଴ situation (deep wells) is envisaged. As 

was explained in the previous Chapter 4, more realistically a situation of this type arises when 

the (fictitious) particle is embedded in an atomic medium, as the work of Sussmann [4.20] has 

shown. 

Each fictitious charged particle’s move encloses the magnetic flux, resulting in local 

tunneling currents. They couple to the magnetic field through the particle’s orbital motion: a 

three-welled potential landscape’s minimum is described in Fig. 4.3.  

The zero field Hamiltonian (4.1) changes in the presence of the field by developing a 

phase factor of the Aharonov-Bohm type, and becomes thus 

଴ܪ = ෍ ௜ܿ௜ܧ
றܿ௜ + ෍ ଴݁௜థ೔ೕܿ௜ܦ

ற
௝ܿ + ℎ. ܿ.                             (6.1)

௜ஷ௝

ଷ

௜ୀଵ

 

The phase ߶௜௝  (also known as Peierls phase) is given by: 

߶௜௝ = ±
ߨ2
3

(ܤ)ߔ
଴ߔ

 = −߶௜௝ =
ݍ
ܿ

න ܔ݀ ∙ ۯ
௝

௜
= ±

߶
3                   (6.2) 

where ߔ଴ is the appropriate flux quantum equal to ℎܿ/|ݍ ,|ݍ being the fictitious tunneling 

particle’s charge, and (ܤ)ߔ = ۰ ∙ Δ܁ = Δܵܤ cos  is the magnetic flux through each tunneling ߚ

unit, ߚ being the tiling angle of the planar loop of surface ܵΔ with respect to ۰. ۯ is a 

magnetic vector potential, ݀ܔ is an infinitesimal vector element of the loop contour around its 

surface ܵΔ . 

This local Hamiltonian can also be written in matrix representation, with �|݅ �〉 (݅ =

1, 2, 3) denoting the single-well ground state: 

଴ܪ = ቌ
ଵܧ ଴݁௜థ/ଷܦ ଴݁ି௜థ/ଷܦ

଴݁ି௜థ/ଷܦ ଶܧ ଴݁௜థ/ଷܦ

଴݁௜థ/ଷܦ ଴݁ି௜థ/ଷܦ ଷܧ

ቍ                          (6.3) 

The ground states of the three potential minima are random numbers, that can be 

chosen to satisfy the condition ∑ ௜ܧ
ଷ
௜ୀଵ = 0 and ܦ ≡ ඥܧଵ

ଶ + ଶܧ
ଶ + ଷܧ

ଶ ≪  ௜ can beܧ ଴ (whereܦ

both positive and negative) together with ܦ଴ > 0, as it was assumed in Chapter 4 in relation 

with Sussmann’s work [4.20]. 

The distribution function considered here is the very same used in the absence of 

magnetic field, Eq. (4.5), which corresponds to a distribution of ATS’s, which, as it was 

described before, can be realized within the multi-compound glasses due to NM species 

micro-phasing in the glass network. 
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Considering the spectrum of the Hamiltonian in Eq. (6.3) as a function of the AB 

phase ߶, it is possible to find an exact solution for the multi-welled tunneling Hamiltonian 

using Cardano’s trigonometric solution method for the cubic equation: 

ℰ௞ = ଴ඨ1ܦ2 −
∑ ௝ܧ௜ܧ   ௜ஷ௝

଴ܦ6
ଶ cos ൬

1
3 ߠ +  ௞൰                                             (6.4)ߠ

cos ߠ = ቆcos ߶ +
ଷܧଶܧଵܧ

଴ܦ2
ଷ ቇ ቆ1 −

∑ ௝ܧ௜ܧ   ௜ஷ௝

଴ܦ6
ଶ ቇ

ିଷ/ଶ

 ,   

with ݇ = 0,1, 2 and ߠ௞ = 0, + ଶగ
ଷ

, − ଶగ
ଷ

 distinguishing the three lowest eigenstates.  

We have ݊௪ = 3 low-lying states periodic in ߶ (Fig. 6.2). The magnetic-field period, 

however, for ܵΔ ≈ 10 Åଶ, ݍ = −2|݁| and ۰ orthogonal to the ATS surface, is huge in the 

absence of macro/mesoscopic ATS-correlations: ܤ ≈ 10ସ T. We can thus concentrate on the 

relevant regime ߶ → 0, ௜ܧ  → 0, where ℰ଴ < ℰଵ ≪ ℰଶ. 

 
Figure 6.2 – The three energy levels as a function of Aharonov-Bohm phase ߶ for a 

choice of ܧଵ, ,ଶܧ ܦ ଷ withܧ ⁄଴ܦ = 0.01, ଴ܦ = 1. 
 

The chosen distribution function favours to the situation where ܦ → 0, but this 

choice also implies an enhanced probability of finding tunneling units that show a strong 

Aharonov-Bohm effect; in fact, this situation makes the interference trajectories almost equal 

in terms of path integrals, as is implied by the Aharonov-Bohm effect. If the distribution is not 

singular in ܦ, but is as was assumed for the 2LS model, the amount of tunneling systems 

which experiences a strong Aharonov-Bohm effect is small and thus the effect of the 

magnetic field on the mono-component glasses would be much less stronger than in the case 

of the multi-component glasses. 
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Considering the weak magnetic field regime at low temperature, we obtain an 

effective 2LS by reducing again three levels to a two-level model with energy gap equal to 

Δℰ = |ℰଵ − ℰ଴| that now depends on the phase ߶(ܤ), which is supposes to be small. This 

approximation is justified if we consider that the third level is much higher in energy than the 

other two. Using known trigonometric formulas, the shape of the energy gap between levels 

ℰଵ and ℰ଴ can be obtained, remembering that the angle ߠ is small and also using the 

redefinition (4.4): 

Δℰ ≃ ටܦ଴
ଶ߶ଶ + ଵܧ)

ଶ + ଶܧ
ଶ + ଷܧ

ଶ) + O(ܧଵܧଶܧଷ ⁄ଶܦ ) ≃ ටܦ଴
ଶ߶ଶ +  ଶ           (6.5)ܦ

So in this effective-2LS picture the energy gap opens with increasing magnetic field 

 at zero magnetic field, instead of closing like in other ܦ from a minimal energy gap ,ܤ

orbital-model approaches [4.4, 5.6, 5.9]. The linear approximation ensuing from (6.5) is 

reasonable when ߶ is consider to be small, but not vanishingly so. 

Introducing a magnetic field, the density of states changes and is given by the 

integrals (4.6) and (4.8), but now with the new energy gap (6.5): 

g஺்ௌ(ܧ, ߶) ≃ ߨ2 න ܦ ܦ݀ න ଴ܦ݀

ା∞

ି∞

∞

஽௠௜௡

 ܲ∗

ଶܦ଴ܦ ߜ ቆܧ −  ටܦ଴
ଶ߶ଶ +  ଶ ቇ    (6.6)ܦ

Solving for this integral, we can replace the original variable that contains the 

dependence on the magnetic field. Using the representation:  

൯(ܦ)൫݂ߜ = ෍
ܦ)ߜ − (௔ܦ

|݂ ௔|(௔ܦ)′
 

where ܦ௔ are the zeros of ݂(ܦ), one finds that:  

g஺்ௌ(ܧ, ߶) ≃ ∗ܲ ߨ2 න
଴ܦ݀

଴ܦ

஽బ೘ೌೣ

஽బ೘೔೙

ܧ
ඥܧଶ − ଴ܦ

ଶ߶ଶ
න

ܦ݀
ܦ  

∞

஽௠௜௡

ܦ)ߜ −   ଵ)     (6.7)ܦ 

where ܦଵ = ඥܧଶ − ଴ܦ
ଶ߶ଶ, so can obtain an integral with one variable less: 

g஺்ௌ(ܧ, ߶) ≃ ∗ܲ ߨ2 න
଴ܦ݀

଴ܦ

ା∞

ି∞

ܧ
ଶܧ − ଴ܦ

ଶ߶ଶ ଴ܦ)ߠ  − (଴௠௜௡ܦ × 

× ଴௠௜௡ܦ)ߠ − ߠ (଴ܦ ቆ
1
߶ ටܧଶ − ௠௜௡ܦ

ଶ −  ଴ቇ       (6.8)ܦ

The integral (6.8) can be solved easily for three intervals ܧ < ௖ଵܧ ,௖ଵܧ ≤ ܧ ≤  ௖ଶܧ

and ܧ > ௖ଵܧ ,௖ଶ. There are two critical values of the energy gapܧ = ටܦ௠௜௡
ଶ + ଴௠௜௡ܦ

ଶ ߶ଶ and 
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௖ଶܧ = ටܦ଴௠௔௫
ଶ ߶ଶ + ௠௜௡ܦ

ଶ , where the density of state changes. Solving the integral (6.8) we 

obtain the density of states with energy as well as the magnetic field dependence: 

g஺்ௌ(ܧ, ߶) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0,                                                                                  for ܧ <                ௖ଵܧ

∗ܲߨ2

ܧ ln

⎝

⎛
ට(ܧଶ − ଴௠௜௡ܦ

ଶ ߶ଶ)(ܧଶ − ௠௜௡ܦ
ଶ )

߶ ௠௜௡ܦ ଴௠௜௡ܦ
 

⎠

⎞ ,   for ܧ௖ଵ ≤ ܧ ≤     ௖ଶܧ

∗ܲߨ2

ܧ ln ቌ
଴௠௔௫ܦ

 ଴௠௜௡ܦ
ඨ

ଶܧ − ଴௠௜௡ܦ
ଶ ߶ଶ

ଶܧ − ଴௠௔௫ܦ
ଶ ߶ଶቍ ,                    for ܧ >  ௖ଶ      (6.9)ܧ

� 

The ATS density of states, as can be seen from Fig. 6.3, consists of two parts, 

defined by two different ranges of possible values of energy. There is a range of possible 

energies, where the density of states increases with increasing magnetic field; this is partly 

responsible for the initial increasing of specific heat at low field. 

In Fig. 6.3 (a, b) a plot of g஺்ௌ(ܧ, ߶) is shown as a function of energy ܧ and AB-

phase ߶ of a single ATS. It can be seen that for ߶ = 0 the form g஺்ௌ(ܧ, ߶) =  is ܧ/ݐݏ݊݋ܿ

recovered, cut off by a ܦ௠௜௡ below which no ATS states can exist (disorder gap). As soon as 

the magnetic field is switched on, the sharp peak near ܦ௠௜௡ in g஺்ௌ(ܧ, ߶) is eroded away, 

with most states in the DOS being transferred to higher energy from the immediate 

neighborhood of the disorder gap at very small values of ߶. When ߶ increases the ATS DOS 

is rapidly washed away and vanishes. With increasing the energy ܧ the ATS DOS decreases, 

the peak moves to higher values of ߶ and the DOS stretches (Fig. 6.3 a). This behaviour of 

the g஺்ௌ(ܧ, ߶) explains in a qualitative way the experimental observations. All the magnetic 

properties of glasses have a similar shape of the curve vs ܤ. It is due to the form of the DOS 

g஺்ௌ(ܧ, ߶), which they reproduce through the appropriate energy convolution.  

The linear-response resonant and relaxation contributions to the polarizability for a 

single ATS in the magnetic field are also given by (4.14 a, b), but now with the new, magnetic 

field dependent, energy gap.  

Equation (4.15) with the magnetic dependent energy gap for a general number of 

wells ݊௪ has the form:  

࣡ఓఔ ൬൜
௜ܧ

ܧ
ൠ , ௜൰࢖ =

݊௪

݊௪ − 1
1
ଵ݌ 3

ଶതതത (݊௪ − ଶܧ(2 + ଴ܦ
ଶ߶ଶ

ଶܧ  ఓఔ                 (6.10)ߜ 

which shows that there is a magnetic-field enhanced term only when ݊௪ > 2. For 3LS with 

݊௪ = 3 equation (6.10) becames: 

࣡ఓఔ ൬൜
௜ܧ

ܧ
ൠ , ௜൰࢖ =

1
ଵ݌ 3

ଶതതത ଶܧ + ଴ܦ
ଶ߶ଶ

ଶܧ ఓఔߜ  =
1
ଵ݌ 3

ଶതതത ଶܧ2 − ଶܦ

ଶܧ  ఓఔ                  (6.11)ߜ 



59 

 

 

 

 
Figure 6.3 – a) Variation with the magnetic Aharonov-Bohm phase ߶ of the density 

of states g஺்ௌ(ܧ, ߶) associated with anomalous tunneling systems (ATS) as a function of the 
energy ܧ (for ܦ଴௠௔௫ = ଴௠௜௡ and for ஽೘೔೙ܦ30

஽బ೘೔೙
= 0.03); b) the density of states g஺்ௌ(ܧ, ߶) as 

a function of the magnetic Aharonov-Bohm phase ߶ for different energies. The peak at some 
field value is reproduced in several experiments. 

 

a) 

b) 
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Figure 6.4 – The physical origin of the magnetic field effect. The area under each 

curve is the total number of states available (per ATS); so, switching on a magnetic field - 
however small - means that a large number of ܤ = 0 states within a narrow energy range near 
 ௠௜௡ (red shaded area) get tossed to a widespread band of higher energies (blue shaded area)ܦ
for ܤ > 0.  
 

Inserting (6.11) and (6.5) into (4.14 a, b), one finds the resonant and relaxation 

contributions to the polarizability for a single ATS in the magnetic field: 

ோாௌߙ =
ଵ݌

ଶതതത

4
න ܧ݀

ଶܧ2 − ଶܦ

ଷܧ

ஶ

଴
tanh ൬

ܧ
2݇஻ܶ൰ ߜ ቆܧ − ටܦଶ + ଴ܦ

ଶ߶ଶቇ                (6.12ܽ) 

ோா௅ߙ =
ଵ݌

ଶതതത

8݇஻ܶ
න ܧ݀

ଶܦ

ଶܧ

ஶ

଴
 coshିଶ ൬

ܧ
2݇஻ܶ൰ ߜ ቆܧ − ටܦଶ + ଴ܦ

ଶ߶ଶቇ                  (6.12ܾ) 

Considering the low-temperature regime, the linear (for weak to moderate magnetic 

fields) regime for the lowest energy gap, Eq. (6.5), approximates well the true energy gap 

between the first and second energy levels until some value of the Aharonov-Bohm phase is 

reached, where the linear approximation begins to break down. The true energy gap Δℰ =

|ℰଵ − ℰ଴| shows a smooth inflection of its curvature away from the linear approximation near 

߶ ≈ 1. The “linear” approximation (6.5) is shown in Fig. 6.5 by a dash-dot line. For high 

magnetic field it is necessary to take into account higher order corrections in ߶, which are yet 

analytically tractable. Expanding equation (6.4) to fourth order in ߠ and ߶ one finds the 

following next-order approximation: 
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Δℰ ≃ ඨܦଶ + ଴ܦ
ଶ߶ଶ −

1
27 ଴ܦ

ଶ߶ସ                                    (6.13) 

The new approximation displays one more change of curvature, just like the true gap 

(dashed line in Fig.6.5), but still breaks down at higher values of ߶. A higher order term in 

this expansion would therefore be needed, but would create serious difficulties in the 

calculations. Moreover, for very large ߶ the gap between levels ℰ଴ and ℰଵ increases whilst the 

level ℰଶ becomes closer to ℰଵ, and that also should be taken into account (see Fig. 6.2).  

 

 
Figure 6.5 ‒ Energy gap as a function of the magnetic AB phase ߶: solid line – the 

true gap Δℰ = |ℰଵ − ℰ଴|, dash-dot line – the “linear” approximation (6.5), dashed line – the 
second order approximation (6.13). 

 

To simplify the ensuing calculations and integration over the distribution function it 

is thus possible to make the replacement ߶ଶ − ଵ
ଶ଻

߶ସ = ߶෨ଶ, that gives us the known form: 

Δℰ ≃ ටܦଶ + ଴ܦ
ଶ߶෨ଶ                                                      (6.14) 

Considering, that = ߨ2 ః(஻)
ఃబ

= ߨ2 ଵ
ఃబ

௤
௘

Δܵܤ cos ߚ = ଶగ
√ଶ

ଵ
ఃబ

௤
௘

ܵΔܤ = ߨ2√ ஻
஻∗  – where 

we have supposed that the following replacement 〈cosଶ 〈ߚ = 1/2 can be made for the 

orientation averaging, and where ܤ∗ = ஍బ
೜
೐ௌΔ

 is a characteristic field value, – we can rewrite ߶෨ଶ 

as: 
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߶෨ଶ = ଶߨ2 ൬
ܤ
൰∗ܤ

ଶ

ቆ1 −
ଶߨ2

27 ൬
ܤ
൰∗ܤ

ଶ

ቇ 

߶෨ଶ = ଶߨ2 ൬
1

Φ଴

ݍ
݁ ܵΔ൰

ଶ

ଶܤ ቆ1 −
ଶߨ2

27 ൬
ܤ
൰∗ܤ

ଶ

ቇ                          (6.15) 

When the value of the magnetic field becomes of the order of the parameter ܤ∗, then 

the non-linear approximation makes an effect and the energy gap changes its curvature. The 

parameter ܤ∗ is roughly monitored experimentally and can thus give us some information 

about the value of the charge ݍ of the fictitious particle and its magnetic-flux threaded 

surface, ܵΔ.  

The second order approximation can qualitatively explain the further increase of the 

dielectric constant and loss at higher magnetic fields, as observed in some of the experiments. 

In the next Chapters we will present the results of our theory for the dielectric constant 

and the dielectric loss in a magnetic field, and for several multi-component glasses. 
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Chapter 7  

 

Results for the magnetic field dependence of the 

dielectric constant 

 
The expression of the resonant part of the polarizability (6.12a) should be averaged 

over the probability distribution of parameters (4.5). Averaging over the probability 

distribution ∫ ଴ܦ݀ ∫ ;{௜ܧ})ଷ  ஺்ܲௌܧଶ݀ܧଵ݀ܧ݀ ଵܧ)ߜ (଴ܦ + ଶܧ + ଷ)ஶܧ
஽బ೘೔೙

 can be simplified as 

described in Chapter 4 to the expression ∫ ݀߰ ∫ ܦܦ݀ ∫ ଴ܦ݀
௉∗

஽బ஽మ
ஶ

஽బ೘೔೙

ஶ
஽೘೔೙

ଶగ
଴ = 

∗ܲߨ2 ∫ ௗ஽
஽

 ∫ ௗ஽బ
஽బ

ஶ
஽బ೘೔೙

ஶ
஽೘೔೙

. Using definition of the energy gap (6.5) the Eq. (6.12a) divides into 

the sum of two integrals: 

,ܶ)ோாௌߙ (ܤ =
ߨ
2 ଵ݌∗ܲ

ଶതതത න ܧ݀
1

ଷܧ tanh ൬
ܧ

2݇஻ܶ൰ න
ܦ݀
ܦ  න

଴ܦ݀

଴ܦ

ஶ

஽బ೘೔೙

ஶ

஽೘೔೙

ଶܧ] − ଴ܦ
ଶ߶ଶ]

ஶ

଴

× ܧ)ߜ − Δℰ)

= ,ܶ)ଵߙ (ܤ + ,ܶ)଴ߙ  (ܤ

,ܶ)଴ߙ (ܤ = ߶ଶ ߨ
2 ଵ݌∗ܲ

ଶതതത න
ܧ݀
ଷܧ tanh ൬

ܧ
2݇஻ܶ൰ න

ܦ݀
ܦ  න ଴ܦ݀

஽బ೘ೌೣ

஽బ೘೔೙

ஶ

஽೘೔೙

଴ܦ

ஶ

଴

ܧ)ߜ − Δℰ)      (7.1ܽ) 

,ܶ)ଵߙ (ܤ =
ߨ
2 ଵ݌∗ܲ

ଶതതത න
ܧ݀
ܧ tanh ൬

ܧ
2݇஻ܶ൰ න

ܦ݀
ܦ  න

଴ܦ݀

଴ܦ

஽బ೘ೌೣ

஽బ೘೔೙

ஶ

஽೘೔೙

ஶ

଴

ܧ)ߜ − Δℰ)                  (7.1ܾ) 

with the energy gap Δߝ = ඥܦଶ + ଴ܦ
ଶ߶ଶ. 

We can evaluate the integral over ܦ using the property of the ߜ-function             

൯(ܦ)൫݂ߜ = ∑ ఋ(஽ି஽ೌ)
ห௙′(஽ೌ)ห௔  , where ܦ௔ are the zeroes of ݂(ܦ), to find: 

ߜ   ቆܧ − ටܦଶ + ଴ܦ
ଶ߶ଶቇ   = ܧ

ܦ)ߜ − ( ௔ܦ

ඥܧଶ − ଴ܦ
ଶ߶ଶ

                           (7.2) 

,ܶ)଴ߙ (ܤ = ߶ଶ ߨ
2 ଵ݌∗ܲ

ଶതതത න
ܧ݀
ଷܧ tanh ൬

ܧ
2݇஻ܶ൰ න ଴ܦ݀

଴ܦܧ

ඥܧଶ − ଴ܦ
ଶ߶ଶ

஽బ೘ೌೣ

஽బ೘೔೙

න
ܦ݀
ܦ

ஶ

஽೘೔೙

ஶ

଴

ܦ)ߜ −  (௔ܦ

where ܦ௔ = ඥܧଶ − ଴ܦ
ଶ߶ଶ , 
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,ܶ)଴ߙ (ܤ = ߶ଶ ߨ
2 ଵ݌∗ܲ

ଶതതത න
ܧ݀
ଶܧ tanh ൬

ܧ
2݇஻ܶ൰ න  

଴ܦ݀ ଴ܦ

ଶܧ − ଴ܦ
ଶ߶ଶ 

ାஶ

ିஶ 

଴ܦ)ߠ − (଴௠௜௡ܦ
ஶ

଴

× ଴௠௔௫ܦ)ߠ − ߠ(଴ܦ ቆ
1
߶ ටܧଶ − ௠௜௡ܦ

ଶ  −  ଴ቇ                                      (7.3)ܦ

Similarly to the calculation for the density of states (6.9), the integral (7.3) can be 

divided into three integrals on the intervals ܧ < ௖ଵܧ ,௖ଵܧ ≤ ܧ ≤ ܧ ௖ଶ andܧ >  ௖ଶ, whereܧ

௖ଵܧ = ටܦ௠௜௡
ଶ + ଴௠௜௡ܦ

ଶ ߶ଶ and ܧ௖ଶ = ටܦ଴௠௔௫
ଶ ߶ଶ + ௠௜௡ܦ

ଶ . On the interval ܧ <  ௖ଵ the integralܧ

is equal to zero. Carrying out this operation the integral (7.3) can be reduced: 

,ܶ)଴ߙ (ܤ = ߶ଶ ߨ
2 ଵ݌∗ܲ

ଶതതത න
ܧ݀
ଶܧ tanh ൬

ܧ
2݇஻ܶ൰ න

଴ܦ݀ ଴ܦ

ଶܧ − ଴ܦ
ଶ߶ଶ 

ଵ
థටாమି஽೘೔೙

మ  

஽బ೘೔೙

ா೎మ

ா೎భ

+  
ߨ
2 ଵ݌∗ܲ

ଶതതത න
ܧ݀
ଶܧ tanh ൬

ܧ
2݇஻ܶ൰ න

଴ܦ݀ ଴ܦ

ଶܧ − ଴ܦ
ଶ߶ଶ 

஽బ೘ೌೣ

஽బ೘೔೙

 
ஶ

ா೎మ

=  
ߨ
2 ଵ݌∗ܲ

ଶതതത ቎ න
ܧ݀
ଶܧ tanh ൬

ܧ
2݇஻ܶ൰

1
2 ln ቆ

ଶܧ − ଴௠௜௡ܦ
ଶ ߶ଶ

௠௜௡ܦ
ଶ ቇ  

ா೎మ

ா೎భ

+  න
ܧ݀
ଶܧ tanh ൬

ܧ
2݇஻ܶ൰

1
2 ln ቆ

ଶܧ − ଴௠௜௡ܦ
ଶ ߶ଶ

ଶܧ − ଴௠௔௫ܦ
ଶ ߶ଶቇ 

ஶ

ா೎మ

቏                                 (7.4) 

Repeating the previous procedure for ߙ଴(ܶ,  one obtains the final formula for ,(ܤ

,ܶ)ଵߙ  :(ܤ

,ܶ)ଵߙ (ܤ =
ߨ
2 ଵ݌∗ܲ

ଶതതത න
ܧ݀
ܧ tanh ൬

ܧ
2݇஻ܶ൰ න

଴ܦ݀

଴ܦ

ܧ
ඥܧଶ − ଴ܦ

ଶ߶ଶ
 

஽బ೘ೌೣ

஽బ೘೔೙

න
ܦ݀
ܦ  

ஶ

஽೘೔೙

ஶ

଴

× ܦ)ߜ −  (௔ܦ

,ܶ)ଵߙ (ܤ =
ߨ
2 ଵ݌∗ܲ

ଶതതത න ܧ݀ tanh ൬
ܧ

2݇஻ܶ൰ න
଴ܦ݀

଴ܦ

1
ଶܧ − ଴ܦ

ଶ߶ଶ + 

ଵ
థටாమି஽೘೔೙

మ  

஽బ೘೔೙

ா೎మ

ா೎భ

 

+ 
ߨ
2 ଵ݌∗ܲ

ଶതതത න ܧ݀ tanh ൬
ܧ

2݇஻ܶ൰ න
଴ܦ݀

଴ܦ

1
ଶܧ − ଴ܦ

ଶ߶ଶ 

஽బ೘ೌೣ

஽బ೘೔೙

 
ஶ

ா೎మ

 

=  
ߨ
2 ଵ݌∗ܲ

ଶതതത ቎ න
ܧ݀
ଶܧ tanh ൬

ܧ
2݇஻ܶ൰

1
2 ln ቆ

ଶܧ) − ଴௠௜௡ܦ
ଶ ߶ଶ)(ܧଶ − ௠௜௡ܦ

ଶ )
଴௠௜௡ܦ

ଶ ߶ଶܦ௠௜௡
ଶ ቇ  

ா೎మ

ா೎భ

+  න
ܧ݀
ଶܧ tanh ൬

ܧ
2݇஻ܶ൰

1
2 ln ቆ

଴௠௔௫ܦ
ଶ ଶܧ) − ଴௠௜௡ܦ

ଶ ߶ଶ)
଴௠௜௡ܦ

ଶ ଶܧ) − ଴௠௔௫ܦ
ଶ ߶ଶ)ቇ 

ஶ

ா೎మ

቏                                     (7.5) 
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For the whole mass of the glass: 

1
ܸ ෍ ൫ߙଵ(ܶ, (ܤ + ,ܶ)଴ߙ (ܤ − ,ܶ)ߙ 0)൯ = ஺்ࣨௌ

ܸ Δߙ =  ߙ஺்ௌΔݔ
ேಲ೅ೄ

ଵ

 

where ݔ஺்ௌ - is the concentration of ATS and ߙ(ܶ, 0) is: 

,ܶ)ߙ 0) =
ߨ
2 ଵ݌∗ܲ

ଶതതത ln ൬
଴௠௔௫ܦ

଴௠௜௡ܦ
൰ න

ܧ݀
ଶܧ tanh ൬

ܧ
2݇஻ܶ൰ 

ஶ

ா೎మ

                      (7.6) 

The relative change of the dielectric constant is expressed by equations (7.4), (7.5) 

and (7.6): 

Δ߳′(ܶ, (ܤ
߳′ = ஺்ௌݔ

Δߙ(ܶ, (ܤ
߳଴߳௥

=
஺்ௌݔ

߳଴߳௥
൫ߙଵ(ܶ, (ܤ + ,ܶ)଴ߙ (ܤ − ,ܶ)ߙ 0)൯          (7.7) 

Equation (7.7) describes well the experimental data for different glasses, as is shown 

in Figs. (7.1-7.3) and with the fitting parameters presented in Tables (7.1-7.2). 

For the sake of clarity, the data and curves in Figs. 7.2 and 7.3 have been shifted 

apart vertically. 

 

Table 7.1 – Fitting parameters for dielectric constant in a magnetic field for three 
different types of glasses. 

Material and 
Temperature ݔߨ஺்ௌܲ∗݌ଵ

ଶതതത/߳௥߳଴ ܦ௠௜௡ ,, K ܦ଴௠௜௡ ቚ௤
௘

ቚ ܵ୼, KÅ2 ܦ଴௠௔௫ ቚ௤
௘

ቚ ܵ୼, KÅ2 

BK7 15 mK 0.089 ∙ 10ିହ 0.03 1.668 ∙ 10ହ 4.576 ∙ 10ହ 

Duran 15 mK 0.052 ∙ 10ିହ 0.021 2.457 ∙ 10ହ 4.151 ∙ 10ହ 

A
lB

aS
iO

 

50 mK 0.89 ∙ 10ିହ 0.015 2.440 ∙ 10ହ 3.080 ∙ 10ହ 

94 mK 3.75 ∙ 10ିହ 0.025 1.225 ∙ 10ହ 1.589 ∙ 10ହ 

120 mK 3.09 ∙ 10ିହ 0.0227 1.767 ∙ 10ହ 2.248 ∙ 10ହ 

 

 

Table 7.2 – Fitting parameters for the SiO2+xCyHz glass for different temperatures. 

Temperature ݔߨ஺்ௌܲ∗݌ଵ
ଶതതത/߳௥߳଴ ܦ௠௜௡ ,, K ܦ଴௠௜௡ ቚ௤

௘
ቚ ܵ୼, KÅ2 ܦ଴௠௔௫ ቚ௤

௘
ቚ ܵ୼, KÅ2 

50 mK 4.38 ∙ 10ିହ 0.015 0.076 ∙ 10ଷ 3.047 ∙ 10ସ 

70 mK 12.22 ∙ 10ିହ 0.0486 0.600 ∙ 10ଷ 2.662 ∙ 10ସ 

100 mK 13.63 ∙ 10ିହ 0.0486 3.035 ∙ 10ଷ 7.616 ∙ 10ସ 
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Figure 7.1 ‒  The relative dielectric constant variation as a function of the magnetic 

field for AlBaSiO [7.1], BK7 [5.5] and Duran [7.1] glasses. With best-fit parameters as in 
Table 7.1, the curves are the results of our theory in the “weak field” approximation with 
(and, for AlBaSiO, without) higher order correction. 

 

 
Figure 7.2 ‒ Relative dielectric constant variation as a function of the magnetic field 

and temperature for AlBaSiO glass [7.1]. With fitting parameters as in Table 7.1, the curves 
are the result of our theory in the “weak field” approximation. 
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Figure 7.3 ‒ Dielectric constant variation as a function of the magnetic field and 

temperature for the SiO2+xCyHz glass [5.6 ]. Fitting parameters as in Table 7.2 
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Chapter 8  

 

Results for the dielectric loss in a magnetic field 

 
The dielectric loss (or loss angle δ) for a dielectric substance is a measure of the 

power lost in dissipation and is obtained as the following expression: 

tan ߜ ≡
߳ᇱᇱ

߳ᇱ ≅
߳ᇱᇱ

߳଴߳௥
                                                    (8.1) 

where ߳ᇱᇱ = ߳ோா௅
ఠఛ

ଵାఠమఛమ is the imaginary part of the dielectric constant, typically evaluated in 

the relaxation time approximation (Chapter 2). It should be pointed out that the 2LS STM 

does not describe well the temperature- and frequency-dependence of ߳ᇱᇱ in glasses, as is 

portrayed in Fig. 8.1. The reason is that the theory works well only in the low-frequency 

regime. Since ߳ᇱᇱ(߱) should be linked to the real part ߳ᇱ of the dielectric constant through the 

Kramers-Kroning relation :  

߳ᇱᇱ(߱) = −
2߱
ߨ

න ݀߱ᇱ ߳ᇱ(߱ᇱ) − 1
߱ᇱଶ − ߱ଶ                             (8.2)

ஶ

଴
 

one can see that the knowledge of the low-frequency behaviour of ߳ᇱ(߱) is not enough to 

reproduce the correct form of ߳ᇱᇱ(߱, ܶ). However, inclusion of the ATS contributions does 

seem to improve the agreement between theory and experiment, as least in the case of BK7, 

which is probably the best approximation to a fully networked glass. 

The relaxation part of the dielectric constant for the whole volume of glass depends on 

the concentration ݔ஺்ௌ of ATS’s and is expressed by: 

߳ோா௅ − 1 ≅ ோா௅ߙ஺்ௌݔ                                                         (8.3) 

where ߙோா௅  should be averaged over all parameters by means of the distribution function 

(4.5); following similar calculations as in the previous Chapters we get: 

ோா௅ߙ =
ଵ݌∗ܲߨ

ଶതതത

4݇஻ܶ
න

ܧ݀
ଶܧ

ஶ

଴

 coshିଶ ൬
ܧ

2݇஻ܶ൰ න
଴ܦ݀

଴ܦ
 න

ܦ݀
ܦ ଶܦ

ஶ

஽బ೘೔೙

ஶ

஽೘೔೙

×
߱߬஺்ௌ

1 + ߱ଶ߬஺்ௌ
ଶ ߜ ቆܧ − ටܦଶ + ଴ܦ

ଶ߶ଶቇ                                             (8.4) 
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Figure 8.1 – The dielectric loss at 1 kHz for the BK7 and AlBaSiO glasses [7.1]. 

Fitting parameters for BK7: ܣଶ௅ௌ = 215 ∙ 10ିହ,  Δ଴௠௜௡ = 3.9 mK, ߛ = 0.255 ∙ 10ି଻sKଷ 
(calculated from [7.1]), ܣ஺்ௌ = 303 ∙ 10ିହ, ܦ௠௜௡ = 0.29 K, Γ = 0.862 ∙ 10ି଺sKହ. For 
AlBaSiO the parameters are as from Chapter 4, Table 4.1.  “Kettemann” means with 
parameters from [4.4]. 

 

The relaxation time for ATS at low temperature and in a magnetic field is now found 

to be given by the following expression [4.23]: 

߬஺்ௌ
ିଵ = ߬ିଵ(ܧ, ߶) =

ଷܧ ቀܦ଴
ଶ߶ଶ + 5

6 ଶቁܦ

Γ tanh ቀ ܧ
2݇஻ܶቁ

=
ଷܧ ቀܧଶ − 1

6 ଶቁܦ

Γ tanh ቀ ܧ
2݇஻ܶቁ

= ߬ିଵ(ܧ,  (8.5)     (ܦ

in which the AB phase ߶ is directly proportional to the magnetic field ܤ. It appears, therefore, 

that the total dielectric relaxation time, obtained through its inverse: 
1

߬௧௢௧
=

1
߬ଶ௅ௌ

+
1

߬஺்ௌ(߶)                                               (8.6) 

must diminish in a non-trivial manner as the magnetic field is switched on. This very 

interesting prediction of the present theory appears to be confirmed explicitly, albeit only 

qualitatively, in the laboratory and for some multi-silicate glasses so far only via the work of a 

Russian group at liquid-He temperatures [8.1]. A systematic study of the magnetic-field 

dependence of ߬௧௢௧ in the multi-component glasses is still lacking. 

The probability distribution function for the ATS dielectric relaxation times turns out 

to be rather different from that of the standard 2LS case, one finds indeed [4.23]:  

,ܧ)ܲ ߬) =
௠௜௡߬∗ܲߨ

߬)ܧ5 − ߬௠௜௡)(߬௠௔௫ − ߬)                                   (8.7) 
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(with suitable ߶ -dependent boundaries) where ߬௠௔௫ is the maximum ATS relaxation time of 

Chapter 4 and ߬௠௜௡ = (5 6⁄ )߬௠௔௫. The ATS relaxation-time distribution is therefore very 

narrow-ranged in τ and also very singular (albeit in the ܤ = 0 case only). This has important 

experimental consequences which will be discussed elsewhere. 

It is however not convenient to switch to ߬ as an integration variable. Then one 

writes, integrating over ܦ଴ first: 

ߜ ቆܧ − ටܦଶ + ଴ܦ
ଶ߶ଶቇ =

ܧ
ଶܧ√߶ − ଶܦ

ߜ ൬ܦ଴ −
1
߶

ඥܧଶ −  ଶ൰             (8.8)ܦ

Thus the integral (8.4) becomes: 

ோா௅ߙ =
ଵ݌∗ܲߨ

ଶതതത

4݇஻ܶ
න

ܧ݀
ܧ

ஶ

଴

 coshିଶ ൬
ܧ

2݇஻ܶ൰ න ܦ݀
ܦ

ଶܧ −  ଶܦ
ஶ

଴

߱߬஺்ௌ

1 + ߱ଶ߬஺்ௌ
ଶ

× ܦ)ߠ − ܦ൫ߠ(௠௜௡ܦ − (ܧ)ଶܦ)ߠ൯(ܧ)ଵܦ −  (8.9)                                       (ܦ

The integral (8.9) has two special points ܦଵ(ܧ) = ඥܧଶ − ଴௠௔௫ܦ
ଶ ߶ଶ and ܦଶ(ܧ) =

ටܧଶ − ଴௠௜௡ܦ
ଶ ߶ଶ, hence ܦଵ(ܧ) <  This conditions divide the integral (8.9) into two .(ܧ)ଶܦ

terms with different intervals in the energy value: ܧ௖ଵ ≤ ܧ ≤ ܧ ௖ଶ andܧ ≥  ௖ଶ, and the integalܧ

for ܧ ≤   :௖ଵ vanishesܧ

ோா௅ߙ =
ଵ݌∗ܲߨ

ଶതതത

4݇஻ܶ ቎ න
ܧ݀
ܧ

ா೎మ

ா೎భ

 coshିଶ ൬
ܧ

2݇஻ܶ൰ න ܦ݀
ܦ

ଶܧ −  ଶܦ

஽మ(ா)

஽೘೔೙

,ܧ)߬߱ (ܦ
1 + ߱ଶ߬ଶ(ܧ, (ܦ

+  න
ܧ݀
ܧ

ஶ

ா೎మ

 coshିଶ ൬
ܧ

2݇஻ܶ൰ න ܦ݀
ܦ

ଶܧ −  ଶܦ

஽మ(ா)

஽భ(ா)

,ܧ)߬߱ (ܦ
1 + ߱ଶ߬ଶ(ܧ,  ቏       (8.10)(ܦ

Substituting (8.5), (8.10) to (8.3) and then to (8.1) we receive the final formula for the 

dielectric loss variation in a magnetic field: 

Δtan ߜ =
ଵ݌∗ܲߨ஺்ௌݔ

ଶതതത

4߳଴߳௥

1
݇஻ܶ ቎ න

ܧ݀
ܧ

ா೎మ

ா೎భ

 coshିଶ ൬
ܧ

2݇஻ܶ൰ න ܦ݀
ܦ

ଶܧ −  ଶܦ

஽మ(ா)

஽೘೔೙

,ܧ)߬߱ (ܦ
1 + ߱ଶ߬ଶ(ܧ, (ܦ

+ න
ܧ݀
ܧ

ஶ

ா೎మ

 coshିଶ ൬
ܧ

2݇஻ܶ൰ න ܦ݀
ܦ

ଶܧ −  ଶܦ

஽మ(ா)

஽భ(ா)

,ܧ)߬߱ (ܦ
1 + ߱ଶ߬ଶ(ܧ,  ቏     (8.11)(ܦ

The fitting of relative dielectric loss variation in a magnetic field is shown in Fig. 

8.2, using the best-fit parameters from Table 8.1. 

One can see that, once again, the experimental data are very well reproduced by the 

present theory and with fitting parameters very similar to those extracted from the study of the 

dielectric constant (Chapter 7). 
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a) 

 
b) 

Figure 8.2 ‒ The 
relative dielectric loss as a 
function of the magnetic field 
and temperature in the AlBaSiO 
(a) and BK7 (b) glasses (data 
from [7.1]). The continuous 
curves are from the present 
theory. In the inset of (a) we 
show that a faint peak seen 
experimentally at very weak 
fields can also be explained by 
the theory. 

Table 8.1 – Fitting parameters for the dielectric loss in a magnetic field in the 

AlBaSiO and BK7 glasses. 

Tempe-
rature ݔߨ஺்ௌܲ∗݌ଵ

ଶതതത/߳௥߳଴ ܦ௠௜௡  , K ܦ଴௠௜௡ ቚ௤
௘
ቚ ܵ୼, KÅ2 ܦ଴௠௔௫ ቚ௤

௘
ቚ ܵ୼, KÅ2 Γ = ᇱ݇஻ߛ

ହ, (sK5)-1 

AlBaSiO  
77 mK 1.54 ∙ 10ିହ 0.0209 1.98 ∙ 10ସ 4.96 ∙ 10ହ 5.0 ∙ 10ଽ 

88 mK 1.35 ∙ 10ିହ 0.0206 1.98 ∙ 10ସ 4.96 ∙ 10ହ 4.0 ∙ 10ଽ 

96 mK 1.10 ∙ 10ିହ 0.0213 1.98 ∙ 10ସ 4.96 ∙ 10ହ 4.4 ∙ 10ଽ 

BK7  

15 mK 2.02 ∙ 10ିହ 0.0287 0.69 ∙ 10ଷ 0.66 ∙ 10ସ 3.34 ∙ 10ଽ 
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Chapter 9  

 

Results for the dipole-echo in a magnetic field 

 
9.1 The polarization echo experiment 
 

The experimental detection of electric and phonon echoes in glasses has become one 

strong convincing argument for the two-level systems’ existence. Echoes in glasses are 

similar to other echo phenomena such as spin echo, photon echo etc. But only at very low 

temperatures the relaxation of the tunneling systems becomes so slow that coherent 

phenomena like polarization echoes become observable in the insulating glasses.  

The essence of the effect is the following (see Fig. 9.1). A glass sample is subjected 

to two short electromagnetic pulses at the frequency of about 1 GHz separated by a time 

interval ߬ଵଶ. The duration ߬ଵ and ߬ଶ of these pulses should be much shorter that all relaxation 

processes in the observed system. The macroscopic polarization produced by the first pulse 

vanishes rapidly due to the distribution of parameters of the tunneling systems in glasses. This 

phenomenon is similar to the well-known free-induction decay observed in nuclear magnetic 

resonance experiments. The “phase” (energy-level populations) of each tunneling system 

develops freely between the two exciting pulses. The second pulse causes an effective time 

reversal for the development of the phase of the tunneling systems. The initial macroscopic 

polarization of the glass is recovered roughly at a time ߬ଵଶ after the second pulse. Since the 

thermal relaxation processes and (see later) spectral diffusion are strongly temperature 

dependent, polarization echoes in glasses can be observed in practice only at very low 

temperatures, typically below 100 mK. The echo amplitude is proportional to the number of 

tunneling systems that are in or near resonance with the exciting microwave pulse and that do 

not lose their phase coherence during the time 2τଵଶ [9.1]. 

It should be pointed out that, due to the wide distribution for the parameters of the 

two-level systems in glasses, the description of polarization echoes in glasses is much more 

complicated than in the case of nuclear spin systems. In analogy to the two-pulse echo in 

magnetic resonance experiments this phenomenon is referred to as the spontaneous echo. 
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Figure 9.1 – The two-pulse polarization echo experiment. Hahn’s vector 
interpretation on the right hand side is for NMR’s spin-echo experiment.  

 

The polarization echo phenomenon can help to understand more about the 

microscopic structure of tunneling systems in glasses and gives different kinds of information. 

The amplitude of the echo as a function of the strength of the applied resonant field gives a 

measure of the induced electric dipole moment, or of the phonon coupling constant. The echo 

amplitude as a function of pulse separation in a two- or three-pulse experiment can be used to 

give the relaxation times ଶܶ (spin-spin) or ଵܶ (spin-lattice) respectively. The analysis of these 

experiments follows that for the equivalent magnetic case, except that the TS problem is 

complicated by three factors. First, the elastic or electric dipoles are not aligned with respect 

to the driving field and a calculation of the echo signal involves an average over their 

orientations. Secondly, for a given pumping frequency ߱ there exists a distribution of induced 

moments (elastic or electric) and relaxation times, which should be included in the analysis. 

Finally, in electric echo experiments the local field seen by the TS is not equal to the applied 

field, and a local-field correction factor must be used when evaluating absolute values of the 

dipole moment [4.10]. 

In the polarization echo experiments at radio frequencies and at low temperature of 

about 10 to 100 mK it has been shown that the tunneling systems in glasses couple directly to 

the magnetic field [9.2]. Unexpectedly, the amplitude of two-pulse echoes in the AlBaSiO 

glass was found to be strongly dependent on the applied magnetic field showing a non-

monotonic (even oscillatory) field variation. In subsequent papers [5.9, 5.14] such behavior 

was attributed to the existence of nuclear electric quadrupole moments (NEQM) for some 

tunneling particles (having nuclear spin I ≥1) interacting with the magnetic field and with 
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gradients of the internal microscopic electric field. The NEQM model is based on the 

consideration that the levels of tunneling particles with non-zero nuclear quadrupole moment 

exhibit a quadrupole splitting, which is different in the ground state and in the excited state of 

a tunneling 2LS. The magnetic field causes an additional Zeeman splitting of these levels 

giving rise to interference effects. In turn, these effects cause the non-monotonic magnetic 

field variation of the echo amplitude.  

The amplitude (or integrated amplitude) of two-pulse polarization echoes of four 

types of silicate glasses is shown in Fig. 9.2 (a) as a function of magnetic field [9.2]. In 

contrast to many other low-temperature properties of glasses the influence of the magnetic 

field on the amplitude of spontaneous echoes is obviously not universal. BK7 and Duran 

show similar effects, although the concentration of magnetic impurities differs by at least a 

factor of 20. Perhaps the most remarkable result of the measurements is the fact that Suprasil I 

shows no measurable magnetic field effect. While Duran, BAS and BK7 contain nuclei with 

non-zero nuclear quadrupole moment, Suprasi I is virtually free of such nuclei. This fact is 

used to provide justification for the nuclear quadrupole model [5.9]. The variation of the echo 

amplitude with the applied magnetic field is similar for Duran, BK7 and BAS, but not 

identical. All three samples exhibit a principal maximum at ܤ = 0, but only BK7 has a 

relevant second maximum and a hint to an oscillation in B. At high fields the amplitude of the 

echo rises above its value at zero magnetic field and seemingly saturates.  

 
a)                                                 b) 

Figure 9.2 – a) The integrated echo amplitude as a function of the magnetic field for 
different silicate glasses: BK7, Duran, AlBaSiO and Suprasil I. All data were taken at 12 mK, 
߬ଵଶ = 2 ms, and roughly 1 GHz, except for Duran, where the delay time was ߬ଵଶ = 1.7 ms 
[9.2]. b) The amplitude of two-pulse echoes in BK7 glass as a function of the magnetic field 
for different values of the waiting time ߬ଵଶ between pulses. All data sets were taken at 
4.6 GHz and 12 mK except that for ߬ଵଶ = 2 ms which was taken at 0.9 GHz. [9.2]  
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In Fig. 9.2 (b) is shown the amplitude of spontaneous echoes in the BK7 glass as a 

function of the applied magnetic field for different delay times τଵଶ between  the exciting 

pulses [9.2]. We can see obvious differences for different values of τଵଶ.and that a second 

maximum (the “oscillation”) is not always present.  

 
Figure 9.3 – The integrated echo amplitude as a function of the magnetic field at 

ܶ = 13 mK, generated in partially deuterated glycerol (Glycerol-d3) and ordinary glycerol 
(Glycerol-d0.). On the left-hand side the figure shows that the echo amplitude for deuterated 
Glycerol-d3 is much more sensitive to the magnetic field in comparison with non-deuterated 
Glycerol-d0 shown at the right-hand side [9.3] 

 

The most remarkable fact about the recent experiments on echoes from glasses in a 

magnetic field is that the magnetic effect is not confined to the inorganic, silicate glasses. 

Figure 9.3 shows the amplitude of spontaneous echoes in partially deuterated and in ordinary 

amorphous glycerol as a function of the magnetic field [9.3]. In the case of ordinary glycerol 

there is very small change of the echo amplitude with B. However, for partially deuterated 

glycerol a change is much more noticeable, of a different shape and duration. This experiment 

seemingly provides proof that the magnetic effect is of nuclear origin, for the two amorphous 

glycerol samples differ in the content of isotopes carrying a NEQM.Glycerol-d0 has none 

(other than the natural abundance of deuterium, some 125 ppm, and of 17O, about 500 ppm, 

concentrations which are however a factor 10 too weak to account for the observed magnetic 

effect), whilst Glycerol-d3 contains 37.5% D (I=1) and 62.5% H (I=1/2). However, Glycerol-

d8 (nominally 100% D) displays a magnetic effect that is only 10% larger than in Glycerol-d3 

[9.5], hinting to the fact that the effect does not scale with NEQM concentration. 

As reproduced in Fig. 9.4, the integrated echo amplitude as a function of the waiting 

time ߬ଵଶ in amorphous partially deuterated glycerol-d5 (that is C3O3H3D5 instead of ordinary 

C3O3H8) shows exponential decay with spectacular oscillations at zero applied magnetic field. 
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Conversely, all oscillations disappear for the relatively weak magnetic field of 150 mT [9.4, 

9.5]. These findings are extraordinary, especially when combined with the observation that for 

all multi-silicate glasses the oscillations of the echo amplitude in ߬ଵଶ are absent for all values 

of the magnetic field. 

 
Figure 9.4 – The integrated echo amplitude as a function of the waiting time ߬ଵଶ at 

zero magnetic field (red curve) and in weak magnetic field 150 mT as generated in deuterated 
Glycerol-d5 [9.4] 

 

All these findings are collectively hard to explain on the basis of the 2LS STM or 

starting from more microscopic models and so far only the NEQM has been able to provide 

the beginning of a rationale for some of these startling experimental results. 

 

9.2 Density matrix formalism for the echo signal 
 

A detailed and general theoretical discussion of spontaneous echoes in glasses has 

been given by Gurevich et al. [9.6] in terms of the density matrix approach for the 2LS STM. 

Below we reproduce and improve the main result of these Authors.  

The contribution to the macroscopic dipole moment of the system from one 2LS is  

ܘ = −Tr ൬ߩ
ܪߜ
 ൰                                                     (9.1)ࡲߜ

where ߩ is the density matrix averaged over the phonons (the 2LS density matrix) and 

ࡲ = (ݐ)଴ࡲ cos  ,is the Hamiltonian of the system ܪ .is the pulsed external electric field ݐ߱

which consists of the sum of 2LS’s Hamiltonian ܪଶ௅ௌ , the Hamiltonian ܪ௜௡௧  of the 2LS 

interaction with the external electric field (ݐ)ܨ and the Hamiltonian ܪ௣௛  of the 2LS-phonon 

interaction: 
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ܪ = ଶ௅ௌܪ + ௜௡௧ܪ + ௣௛ܪ                                                 (9.2) 

ଶ௅ௌܪ = ଵ
ଶ

൬ Δ −Δ଴
−Δ଴ −Δ ൰,  ܪ௜௡௧ = ࡲ ∙ ଴ܘ ቀ1 0

0 −1ቁ,  ܪ௣௛ = Λ௜௞ ௜ܷ௞
௣௛ ቀ1 0

0 −1ቁ    (9.3) 

where  ܘ଴ = (1 2⁄ ) ߲Δ ⁄ܨ߲  is the local bare electric dipole, Λ௜௞  is the tensor of strain potential 

of the 2LS and ௜ܷ௞
௣௛  is the strain tensor at the location of the 2LS. Changing Hamiltonian ܪ to 

its proper diagonal representation, we get: 

ܪ =
1
2 ቀE 0

0 −Eቁ +
1
2 ൬ ࣆ ᇱࣆ2

ᇱࣆ2 ൰ࣆ− ∙ ࡲ + Λ௜௞ ௜ܷ௞
௣௛ ൬ Δ/ܧ Δ଴/ܧ

Δ଴/ܧ −Δ/ܧ൰            (9.4) 

where ܧ = ඥΔଶ + Δ଴
ଶ ࣆ , = 2Δܘ଴/ࣆ ,ܧᇱ = Δ଴ܘ଴/ܧ 

The density matrix can be represented in the form [9.6]: 

ߩ = ൬ ݊ −ܾ݅݁ି௜ఠ௧

ܾ݅∗݁ି௜ఠ௧ 1 − ݊
൰                                               (9.5) 

where ݊ is the average population of the 2LS upper level and ܾ is the off-diagonal part that is 

non zero only for the near-resonant 2LS, for which ܧ ≈ ℏ߱. Substituting (9.5) to (9.1) one 

obtains the electric dipole moment: 

ܘ = −
1
2 Tr ቆ൬ ݊ −ܾ݅݁ି௜ఠ௧

ܾ݅∗݁ି௜ఠ௧ 1 − ݊
൰ ∙ ൬ ࣆ ᇱࣆ2

ᇱࣆ2 ൰ ቇࣆ− = 

=
1
2

(1 − ࣆ(2݊ + ᇱ݅ ൫ܾ݁௜ఠ௧ࣆ2 − ܾ∗݁ି௜ఠ௧൯ = 

=
1
2

(1 − ࣆ(2݊ −  ᇱIm൫ܾ݁ି௜ఠ௧൯                                                      (9.6)ࣆ2

In the resonant approximation the equations for the density matrix elements of the 

resonant 2LS are given by the following system [9.7]: 

⎩
⎨

⎧
߲݊
ݐ߲ = ݊)ߛ̅− − ݊଴) − Ωோ  Re(ܾ)                                                 (9.7ܽ)

߲ܾ
ݐ߲ = ݅ ቈ

(ݐ)ܧ
ℏ − ߱቉ ܾ −

ߛ̅
2 ܾ +

Ωோ

2
(2݊ − 1)                             (9.7ܾ)

� 

where ݊଴ = ൫1 + ݁ா/௞ಳ்൯ିଵ
 is the equilibrium population of the 2LS upper level; Ωோ =

Δ଴ܘ଴ܨ଴/ℏܧ is the Rabi frequency of the resonant 2LS. It characterizes the frequency of 

coherent oscillations of the level populations under the influence of the resonant perturbation. 

ߛ̅ ,is the 2LS intrinsic damping due to its interaction with phonons ߛ̅ = 2߬ିଵ (߬ being the 

phonon relaxation time discussed in Chapter 8). Equations (9.7) for the density matrix take 

into account spectral diffusion [9.8]. Since the energy of the near-resonant 2LS depends on 

the strain and on the electric field at its location, the quantum transitions of thermal 2LS cause 

the spacing of the resonant 2LS levels to fluctuate with time:  

(ݐ)ܧ = ܧ + ℏ(9.8)                                                    (ݐ)߱߂ 
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where ℏ(ݐ)߱߂ is the contribution to the energy of the resonant 2LS by its interaction with 

surrounding thermal 2LS. It should be stressed that Eqs. (9.7) are written down in a 

phenomenological way (using arguments involving the Bloch-like equations discussed in 

Chapter 2) [9.7] rather than derived from first principles. 

The system (9.7) can be solved in the absence of a pump field (between pulses) and 

in the presence of a pump field when pulses are applied, but in the absence of damping ̅ߛ and 

spectral diffusion (ݐ)߱߂: 

a) in the absence of a pump field: 

൞

߲݊
ݐ߲ = ݊)ߛ̅− − ݊଴)                                                                      (9.9ܽ)

߲ܾ
ݐ߲ = ݅ ൤

ܧ
ℏ − ߱ + ൨(ݐ)߱߂ ܾ −

ߛ̅
2 ܾ                                           (9.9ܾ)

� 

These are simple first order differential equations and the solution of this system is as 

following: 

ቐ
(ݐ)݊ = ݊଴ + [݊(0) − ݊଴]݁ିఊഥ௧                                              (9.10ܽ)

(ݐ)ܾ = ܾ(0) exp ቈ−
ߛ̅
2 ݐ + ݐݖ݅ + ݅ න ᇱݐ݀(ᇱݐ)߱߂

௧

଴
቉             (9.10ܾ)

� 

where ݖ = ா
ℏ

− ߱. ݊(0) and ܾ(0) are initial conditions. 

b) in the presence of a pump field, but in the absence of damping ̅ߛ and spectral 

diffusion (ݐ)߱߂: 

൞

߲݊
ݐ߲ = −Ωோ Re(ܾ)                                                                   (9.11ܽ)

߲݂
ݐ߲ = ݂ݖ݅ +

ܨ
2

(2݊ − 1)                                                        (9.11ܾ)
� 

To solve this system it is convenient to represent ܾ = ߮ + ߮) ߟ݅ = Re(ܾ)): 

൞

߲݊
ݐ߲ = −Ωோ߮                                                                               (9.12ܽ)

߲߮
ݐ߲ + ݅

ߟ߲
ݐ߲ = ߮ݖ݅ − ߟݖ +

Ωோ

2
(2݊ − 1)                                (9.12ܾ)

� 

These two equations can be divided in three, thus simplify to get solutions: 

⎩
⎪
⎨

⎪
⎧

߲݊
ݐ߲ = −Ωோ߮                                                                            (9.13ܽ)

߲߮
ݐ߲ = ߟݖ− +

Ωோ

2
(2݊ − 1)                                                   (9.13ܾ)

ߟ߲
ݐ߲ = (9.13ܿ)                                                                                   ߮ݖ

 � 

and the solutions of this system can be found as: 
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⎩
⎪
⎨

⎪
(ݐ)݊⎧ = ଵܥ +

Ωோ

Ωୋ
ଶܥ cos Ωீݐ −

Ωோ

Ωୋ
ଷܥ sin Ωீݐ                           (9.14a)

(ݐ)߮ = ଶܥ sin Ωீݐ + ଷܥ cos Ωீݐ                                                 (9.14ܾ)

(ݐ)ߟ =
ݖ

Ωீ
ଷܥ sin Ωீݐ −

ݖ
Ωீ

ଶܥ cos Ωீݐ +
Ωோ

ݖ ൬ܥଵ −
1
2൰        (9.14ܿ)

� 

where ܥଵ, ,ଶܥ ݐ ଷ are unknown constants. To find these constant we imposeܥ = 0 in (9.14) and 

substitute ܾ(0) = ߮(0) + and ܾ∗(0) (0)ߟ݅ = ߮(0) −  thus having three unknown ,(0)ߟ݅

constants and three equations. The solutions for the constants are: 

⎩
⎪⎪
⎨

⎪⎪
ଵܥ⎧ = ݊(0) −

Ωோ
ଶ

Ωீ
ଶ ൬݊(0) −

1
2൰ + ݖ

Ωோ

Ωீ
ଶ

ܾ(0) − ܾ∗(0)
2݅          (9.15ܽ)

ଶܥ =
Ωோ

Ωீ
൬݊(0) −

1
2൰ −

ݖ
Ωீ

ܾ(0) − ܾ∗(0)
2݅                            (9.15ܾ)

ଷܥ =
ܾ(0) + ܾ∗(0)

2                                                                   (9.15ܿ)

� 

Substituting system (9.15) to (9.14) remembering that ܾ = ߮ +  one finds after ߟ݅

long calculations the final solution for the population ݊ and the off-diagonal part ܾ of the 

density matrix: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ (ݐ)݊ = ݊(0) − 2 ቂ݊(0) − 1

2ቃ Ωோ
ଶ

Ωீ
ଶ sinଶ Ωீݐ

2 − Ωோ
2Ωீ

݂(0) ቂsin Ωீݐ + ݅ ݖ2
Ωீ

sinଶ Ωீݐ
2 ቃ

                                            − Ωோ
2Ωீ

ܾ∗(0) ቂsin Ωீݐ − ݅ ݖ2
Ωீ

sinଶ Ωீݐ
2 ቃ                (9.16ܽ)

(ݐ)ܾ = Ωோ
Ωீ

ቀ݊(0) − 1
2ቁ ቂsin Ωீݐ + ݅ ݖ2

Ωீ
sinଶ Ωீݐ

2 ቃ + ܾ(0) ൤cos Ωீݐ + Ωோ
ଶ

Ωீ
ଶ sinଶ Ωீݐ

2
�

                                             �+݅ ݖ
Ωீ

sin Ωீݐቃ − ܾ∗(0) Ωோ
ଶ

Ωீ
ଶ sinଶ Ωீݐ

2                     (9.16ܾ)

� 

where in all the above equations Ωீ = ඥΩோ
ଶ + zଶ is a generalized Rabi frequency. 

The duration of the pulses is so short that we can neglect damping and spectral 

diffusion during the pulses. Assuming that the values at the beginning of the first pulse were 

݊(0) = ݊଴ and ݂(0) = 0 and using the above equations (9.10) and (9.16), at the end of the 

second pulse we have: 

݊(߬ଵ + ߬ଵଶ + ߬ଶ) = ݊଴ − 2
Ωோ

ଶ

Ωீ
ଶ ൬݊଴ −

1
2൰ sinଶ Ωீ߬ଵ

2 ݁ିఊഥఛభమ − 2
Ωோ

ଶ

Ωீ
ଶ ൬݊଴ −

1
2൰ sinଶ Ωீτଶ

2  

+4
Ωୖ

ସ

Ωୋ
ସ ൬݊଴ −

1
2൰ sinଶ Ωீ߬ଵ

2 sinଶ Ωீ߬ଶ

2 ݁ିఊഥఛభమ −
Ωோ

ଶ

2Ωீ
ଶ ൬݊଴ −

1
2൰ ൤൬sin Ωீ߬ଶ + 2݅

ݖ
Ωீ

sinଶ Ωீ߬ଶ

2 ൰� 

�× ൬sin Ωீ߬ଵ + 2݅ 
ݖ

Ωீ
sinଶ Ωீ߬ଵ

2 ൰ ݁ିఊ
ଶ
ഥఛభమା௜௭ఛభమା௜ ∫ ௱ఠ(௧)ௗ௧ഓభమ

బ  + ܿ. ܿ. ൨                              (9.17ܽ) 

 

ܾ(߬ଵ + ߬ଵଶ + ߬ଶ) =
Ωோ

Ωீ
൬݊଴ −

1
2൰ ൬sin Ωீ߬ଶ + 2݅

ݖ
Ωீ

sinଶ Ωீ߬ଶ

2 ൰   
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−2
Ωோ

ଷ

Ωீ
ଷ ൬݊଴ −

1
2൰ sinଶ Ωீ߬ଵ

2 ൬sin Ωீ߬ଶ + 2݅
ݖ

Ωீ
sinଶ Ωீ߬ଶ

2 ൰ ݁ିఊ
ଶ
ഥఛభమ +

Ωோ

Ωீ
൬݊଴ −

1
2൰       

× ൬sin Ωீ߬ଵ + 2݅
ݖ

Ωீ
sinଶ Ωீ߬ଵ

2 ൰ ቆcos Ωீ߬ଶ +
Ωோ

ଶ

Ωீ
ଶ sinଶ Ωீ߬ଶ

2 + ݅
ݖ

Ωீ
sin Ωீ߬ଶቇ               

× ݁ିఊ
ଶ
ഥఛభమା௜௭ఛభమା௜ ∫ ௱ఠ(௧ᇱ)ௗ௧ᇱഓభమ

బ −
Ωோ

ଷ

Ωீ
ଷ ൬݊଴ −

1
2൰ sinଶ Ωீ߬ଶ

2 ൬sin Ωீ߬ଵ − 2݅
ݖ

Ωீ
sinଶ Ωீ߬ଵ

2 ൰ 

× ݁ିఊ
ଶ
ഥఛభమି௜௭ఛభమି௜ ∫ ௱ఠ(௧ᇱ)ௗ௧ᇱഓభమ

బ                                                                                         (9.17ܾ) 

The first term in expression (9.6) for ܘ makes no contribution to the total dipole 

moment of the system after averaging over all the orientations of the 2LS dipoles ܘ଴, because 

the population of the upper level (9.10a) and (9.17a) is an even function of the cosine of the 

angle between ࡲ଴ and ܘ଴ and there is no preferred direction in glass. 

A contribution to the echo results only from the last term of the off-diagonal 

component of the density matrix in equation (9.17a). The first two terms and third term in 

(9.17b) describe the damping of the polarization after the second and first pulse, respectively. 

And the fourth term determines the echo signal. At any time ݐ ≥ ߬ଵ + ߬ଵଶ + ߬ଶ after the 

second pulse the last term of the off-diagonal component is as follows: 

ݐ)ܾ − ߬ଵ − ߬ଵଶ − ߬ଶ) =
Ωோ

ଷ

Ωீ
ଷ ൬݊଴ −

1
2൰ sinଶ Ωீ߬ଶ

2 ൬sin Ωீ߬ଵ − 2݅
ݖ

Ωீ
sinଶ Ωீ߬ଵ

2 ൰          

× exp ቆ−
ߛ
2
ത

߬ଵଶ − ଵଶ߬ݖ݅ − ݅ න ′ݐ݀(′ݐ)߱߂
ఛభమ

଴
ቇ 

× exp ቆ−
ߛ
2
ത

ݐ) − ߬ଵ − ߬ଵଶ − ߬ଶ) + ݐ)ݖ݅ − ߬ଵ − ߬ଵଶ − ߬ଶ) + ݅ න ′ݐ݀(′ݐ)߱߂
௧

ఛభିఛభమିఛమ

ቇ 

ݐ)ܾ − ߬ଵ − ߬ଵଶ − ߬ଶ) = −
Ωோ

ଷ

Ωீ
ଷ ൬݊଴ −

1
2൰ sinଶ Ωீ߬ଶ

2 ൬sin Ωீ߬ଵ − 2݅
ݖ

Ωீ
sinଶ Ωீ߬ଵ

2 ൰    

× exp ቆ−
ߛ
2
ത

ݐ + ݐ)ݖ݅ − 2߬ଵଶ) − ݅ න ′ݐ݀(ᇱݐ)ݏ(ᇱݐ)߱߂
௧

଴
ቇ        9.18) 

where we have put  (ݐ)ݏ = ൜+1, 0 < ݐ < ߬ଵଶ
ݐ          ,1− > ߬ଵଶ

�.  

The contribution to the signal from one resonant 2LS at the time ݐ after the second 

pulse is obtained by substituting Eq. (9.18) into the second term of Eq. (9.6): 

ܘ = ݐ)ᇱIm൫ܾࣆ2− − ߬ଵ − ߬ଵଶ − ߬ଶ)݁ି௜ఠ௧൯ 

= −
2Δ଴ܘ଴

ܧ Im ቆ−݁௜ఠ௧ Ωோ
ଷ

Ωீ
ଷ ൬݊଴ −

1
2൰ sinଶ Ωீ߬ଶ

2 ൬sin Ωீ߬ଵ − 2݅
ݖ

Ωீ
sinଶ Ωீ߬ଵ

2 ൰

× exp ቆ−
ߛ
2
ത

ݐ + ݐ)ݖ݅ − 2߬ଵଶ) − ݅ න ′ݐ݀(ᇱݐ)ݏ(ᇱݐ)߱߂
௧

଴
ቇቇ 
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= −
Δ଴ܘ૙

ܧ Im ቆ݁௜ఠ௧ Ωோ
ଷ

Ωீ
ଷ tanh ൬

ܧ
2݇஻ܶ൰ sinଶ Ωீ߬ଶ

2 ൬sin Ωீ߬ଵ − 2݅
ݖ

Ωீ
sinଶ Ωீ߬ଵ

2 ൰

× exp ቆ−
ߛ
2
ത

ݐ + ݐ)ݖ݅ − 2߬ଵଶ) − ݅ න ′ݐ݀(ᇱݐ)ݏ(ᇱݐ)߱߂
௧

଴
ቇቇ               (9.19) 

Here ݊଴ − ଵ
ଶ

= ൫1 + ݁ா/௞ಳ்൯ିଵ
− ଵ

ଶ
= − ଵ

ଶ
tanh ቀ ா

ଶ௞ಳ்
ቁ. 

Now we should make the average over the configuration of the 2LS and over 

parameters of the distribution function (2.8) for 2LSs’ to find the dipole moment along the 

applied electric field: 

∥ܲ = න ݀Δ଴݀Δ
തܲ

Δ଴
ܘ ∙ ො݊ = න ݀Δ଴݀Δ

ܲ
Δ଴

ܘ ∙ ො݊ න න
sin ߠ ߮݀ߠ݀

ߨ4

ଶగ

଴

గ

଴
       (9.20) 

Making the replacing of ݕ = cos ∫ the integration becomes ߠ ∫ ୱ୧୬ ఏௗఏௗఝ
ସగ

ଶగ
଴

గ
଴ = ∫ ଵݕ݀

଴ . The 

Rabi frequency can be written as Ωோ = ୼బிబ୮బ
ℏா

cos ߠ = ୼బிబ
ℏா

p଴ݕ, and ො݊ is a unit vector. We can 

now find the value of the average dipole moment near ݐ = 2߬ଵଶ: 

∥ܲ = න ܧ݀ න ݀Δ଴݀Δ
തܲ

Δ଴
න ݕ ݕ݀

Δ଴p଴

ܧ

ଵ

଴
Im ቆ൬

Δ଴ܨ଴p଴ݕ
ℏܧ ൰

ଷ ݁௜ఠ௧

Ωୋ
ଷ tanh ൬

ܧ
2݇஻ܶ൰

× sinଶ Ωீ߬ଶ

2 ൬sin Ωீ߬ଵ − 2݅
ݖ

Ωீ
sinଶ Ωீ߬ଵ

2 ൰ ܧ)ߜ − ටΔଶ + Δ଴
ଶ )  

× exp ቆ−
ߛ
2
ത

ݐ + ݐ)ݖ݅ − 2߬ଵଶ) − ݅ න ᇱݐ݀(ᇱݐ)ݏ(ᇱݐ)߱߂
௧

଴
ቇቇ                               (9.21) 

∥ܲ = න ܧ݀ න ݀Δ଴݀Δ
തܲΔ଴

ଷ ଴ܨ
ଷp଴

ସ

ℏଷܧ
න ସݕ ݕ݀

ଵ

଴
Im ቆ

݁௜ఠ௧

Ωீܧ
ଷ tanh ൬

ܧ
2݇஻ܶ൰ sinଶ Ωீ߬ଶ

2
� 

× ൬sin Ωீ߬ଵ − 2݅
ݖ

Ωீ
sinଶ Ωீ߬ଵ

2 ൰ exp ൬−
ߛ
2
ത

൰ݐ exp൫݅ݐ)ݖ − 2߬ଵଶ)൯ 

�× exp ቆ−݅ න ᇱݐ݀(ᇱݐ)ݏ(ᇱݐ)߱߂
௧

଴
ቇቇ ܧ)ߜ − ටΔଶ + Δ଴

ଶ)                               (9.22) 

This result reproduces (and improves) the derivation by Gurevich et al. [9.6]. It should 

be stressed that the (normalized in ߱଴ = (଴߱)ߪ ħ) spectral function/ܧ = ଵ
ଶ

Ωோ
ଶ Ωீ

ଷ⁄  is in 

practice, for Ωோ ≪ ߱, very narrowly centered at the pumping frequency ω and can therefore 

be replaced by a Dirac’s ߜ(߱଴ − ߱), thus resulting in the strictly-resonant approximation 

which is normally employed. Things change considerably, however, when the density of 

states g(ܧ) is non-uniform, as is the case for the ATS model. 
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9.3 The polarization echo in a magnetic field: Schrödinger equation 

formalism 
 

The above result for the echo signal from a collection of 2LS can also be obtained - 

and from first principles - from a lengthy but straightforward Schrödinger equation treatment 

in which high-frequency modes are neglected and phonon-damping is treated in a 

phenomenological way [9.9]. In the most rigorous way, one obtains for the echo signal: 

(ݐ)‖℘ = ℘ା(ݐ) cos(߱߂τ) − (ݐ)ି℘ sin(߱߬߂)                 (9.23) 

where ߬߂ = ߬ଶ −  ߬ଵ  (whence ߱߬߂ typically as large as 10ଶ) and where:  

℘ା(ݐ) = p଴‖
Δ଴

ܧ tanh ൬
ܧ

2݇஻ܶ൰ ݁ିఊഥ௧
ଶ ൬

Ωோ

Ωீ
൰

ଷ

Im ൜sinଶ ൬
Ωீ߬ଶ

2 ൰ ൤sin(Ωீ߬ଵ)                

− 2݅
߱଴ − ߱

ோߗ
sinଶ ൬

Ωீ߬ଵ

2 ൰൨ ݁௜ఠబ(௧ିଶఛതభమ)ି௜ ∫ ௱ఠ൫௧ᇲ൯௦൫௧ᇲ൯ௗ௧ᇲ೟
బ ൠ                         (9.24a) 

(ݐ)ି℘ = p଴‖
Δ଴

ܧ tanh ൬
ܧ

2݇஻ܶ൰ ݁ିఊഥ௧
ଶ ൬

ோߗ

ீߗ
൰

ଷ

Re ൜sinଶ ൬
ଶ߬ீߗ

2 ൰ ൤sin(߬ீߗଵ)                 

− 2݅
߱଴ − ߱

ோߗ
sinଶ ൬

Ωீ߬ଵ

2 ൰൨ ݁௜ఠబ(௧ିଶఛതభమ)ି௜ ∫ ௱ఠ൫௧ᇲ൯௦൫௧ᇲ൯ௗ௧ᇲ೟
బ ൠ                        (9.24b) 

in which 2߬ଵ̅ଶ = ߬ଵ + ߬ଵଶ + ߬ଶ + ߬ଵଶ ≈ 2߬ଵଶ is the total elapsed time at the echo signal’s 

centre. The above Eq. (23) gives the expectation value of the polarization per TS in the 

direction of the applied electric field. It still needs to be averaged wrt all STM parameter 

distribution and over a uniform orientational distribution of 2LS dipoles ܘ଴ . 
ఊഥ
ଶ

= ߬ିଵ is again 

the phonon relaxation rate (Chapter 8). If ߱߬߂ is neglected, then Eq. (9.22) (after averaging) 

is recovered for ‖ܲ = ℘‖തതതത. 

We are now in a position to extend [4.23] the polarization echo’s theory to the case 

of the ATS model describing glasses in a magnetic field; the point of view will be taken that a 

background of ordinary 2LS’s - insensitive to the magnetic field.- also exists in the glass. 

One starts with a collection of 3LS (݊௪ = 3 is always computationally convenient) 

as in the previous Chapters, but with the single ATS Hamiltonian written in the energy 

representation: 

ᇱܪ = ଵିܵܪܵ = ൭
଴ߝ 0 0
0 ଵߝ 0
0 0 ଶߝ

൱ + ܵ ൭
ଵܘ− ∙ ۴ 0 0

0 ଶܘ− ∙ ۴ 0
0 0 ଶܘ− ∙ ۴

൱ ܵିଵ    (9.25) 

where the diagonalizing matrix ܵ = ܵ(߶) is magnetic-field dependent, the ߝ௜ are the (B-

dependent) ATS energy levels and the ܘ௜ are the wells’ electric dipoles.As in the treatment of 

Gurevich et al. [9.6] there is also a phonon bath, but this will be treated - as always - 



83 

 

phenomenologically resulting in a phonon-damping exponential. The second term in Eq. 

(9.25) causes irrelevant energy-level shifts and produces an extra matrix term ܪ߂ᇱ(ݐ) =  (௜௝ܣ)

of which the only relevant element (see below) is  

଴ଵܣ = ଵ଴ܣ
∗ = ෍ ௞ܘ− ∙ ۴଴ S଴୩(߶)Sଵ୩

∗ (߶)
ଷ

௞ୀଵ

 cos ݐ߱                   (9.26) 

The ܣ௜௝ cause transitions between the ATS levels 0, 1, 2 when the pulses are applied. 

In the weak magnetic field limit (most appropriate for the echo experiments) and in the 

approximation ܦ ≪  ଴ that we always use (and that is always confirmed by out best fits toܦ

the data), one quickly discovers that the second excited level remains unperturbed and one can 

make use of the “effective 2LS approximation” (where, however, the ground-state 

wavefunctions of the three wells mix). One can then repeat the Schrödinger equation (or 

density-matrix, for that matter) calculation carried out for the 2LS case, at the cost of 

introducing a complex Rabi frequency: 

Ω଴ = ଴ଵܣ ℏ⁄                                                      (9.27) 

The evolution of the generic ATS during and in the absence of pulses can then be 

followed in much the same way as before, except that in order to simplify the formalism it is 

convenient to introduce from the outset an orientationally-averaged Rabi frequency (now a 

real quantity):  

Ωோ = ට|Ω଴|ଶതതതതതതത                                                     (9.28) 

the bar denoting the average wrt 3LS base-triangle’s orientations. Replacing Ω଴ with Ωோ 

before carrying out the averaging of the sample’s polarization is our main approximation, 

allowing for a considerably simplified treatment and leading to the magnetic-field dependent 

expression [4.23]: 

Ωோ =
pଵF଴

ℏ
ඨܦ଴

ଶ߶ଶ + 5
6 ଶܦ

ଶܧ6                                     (9.29) 

Here, pଵ is a single-well (averaged) electric dipole and ܧ = ℏ߱଴ = ඥܦଶ + ଴ܦ
ଶ߶ଶ is 

the usual magnetic-field dependent lower energy gap in the weak field approximation. The 

above approximation for Ω଴ treats incorrectly the ATS’s that have ۴଴ roughly orthogonal to 

the ATS base triangle; luckily these have Ω଴ ≈ 0 and do not contribute to the echo signal.  

Proceeding as for the derivation of Eq. (9.23) [9.9] one finds that there is a magnetic 

contribution to the (partly averaged) polarization of the sample from the generic ATS given 

by [4.23]:  
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(ݐ)‖℘߂ ≅ −
ℏ
F଴

tanh ൬
ܧ

2݇஻ܶ൰ ݁ିఊഥ
ଶ௧ ோߗ

ସ

ீߗ
ଷ Im ൜sinଶ ൬

Ωீ߬ଶ

2 ൰ ൤sin(Ωீ߬ଵ)

− 2݅
߱଴ − ߱

ோߗ
sinଶ ൬

Ωீ߬ଵ

2 ൰൨ ݁௜ф(௧)ି௜ ∫ ௱ఠ൫௧ᇲ൯௦൫௧ᇲ൯ௗ௧ᇲ೟
బ ൠ                                       (9.30) 

Now, ఊഥ
ଶ

= ߬ିଵ is the magnetic ATS phonon relaxation rate given by Eq. (8.4), the 

generalized Rabi frequency is again given by Ωீ = ඥΩோ
ଶ + (ω଴ − ω)ଶ and: 

ф(ݐ) = ߱଴(ݐ − 2߬ଵ̅ଶ) +  (9.31)                                    ߬߂߱

is the appropriate time argument. From this, it is obvious that the time at which all ATS 

(regardless of their energy gap ܧ = ℏ߱଴) will be refocused is ݐ = 2߬ଵ̅ଶ and this determines 

the echo’s peak position.  

The measured echo amplitude’s contribution from the magnetic ATS is therefore 

(allowing for an arbitrary amplification factor ܣ଴): 

(߶)ܣ߂ = ଴ܣ
݀

௥ߝ଴ߝ
∗ܲߨ஺்ௌ2ݔ න ܧ݀

ஶ

଴
න

ܦ݀
ܦ

න
଴ܦ݀

଴ܦ
)߆ ,ܦ  (଴ܦ

× ߜ ቆܧ − ටܦଶ + ଴ܦ
ଶ߶ଶቇ  (9.32)                     (2߬ଵ̅ଶ)‖℘߂

where ݀ is the sample’s thickness, ܦ)߆,  ଴) is the usual theta-function restriction for theܦ

integration domain (previous Chapters) and where a final orientational averaging wrt the 

angle ߚ = ෢∆܁۰  (defining the Aharonov-Bohm phase ߶, see Eq. (6.2)) is in order. At this point 

one deals with the delta-function’s constraint and the energy parameters integrations in the 

usual way, to arrive at, after a lengthy calculation: 

(߶)ܣ߂ ≅ ଴ܣ−
݀

௥ߝ଴ߝ
஺்ௌݔ

∗ℏଶܲߨ4

F଴
cos(߱߬߂) 

× ൝න
ܧ݀
ܧ

ா೎మ

ா೎భ

න
ܦ݀
ܦ tanh ൬

ܧ
2݇஻ܶ൰

ଶܧ

ଶܧ − ଶܦ

஽మ(థ)

஽೘೔೙

݁ି௪ଶఛതభమΩோ
ଶ σ(ܧ)[S(θଵ, θଶ) tan(߱߬߂)

+ C(θଵ, θଶ)] + න
ܧ݀
ܧ

ஶ

ா೎మ

න
ܦ݀
ܦ

஽మ(థ)

஽భ(థ)
 (… same integrand as above … )ቋ    (9.33) 

where we have defined the functions:  

σ(E) =
Ωୖ

ଶ

2ℏΩୋ
ଷ =

Ωோ
ଶ

2ℏ(Ωோ
ଶ + (߱଴ − ߱)ଶ)ଷ/ଶ 

S(θଵ, θଶ) = sin(Ωீτଵ) sinଶ(Ωୋ߬ଶ/2)                                            (9.34) 

C(θଵ, θଶ) = −2
߱଴ − ߱

Ωோ
sinଶ(Ωீ߬ଵ/2)sinଶ(Ωீ߬ଶ/2)       
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with ߠଵ,ଶ = Ωீ߬ଵ,ଶ the so-called pulse areas. ܧ௖భ,మ are as in the previous Chapters, whilst 

(߶)ଵ,ଶܦ = ටܧଶ − ଴௠௔௫,௠௜௡ܦ
ଶ ߶ଶ and ܧ = ℏ߱଴. 

In going from Eq. (9.30) to (9.33) we have tacitly made some assumption on the 

(fully averaged) spectral diffusion term  ݁ି௜ ∫ ௱ఠ൫௧ᇲ൯௦൫௧ᇲ൯ௗ௧ᇱమഓതభమ
బ . The theory of spectral diffusion 

(SD) for the magnetic multi-welled ATS is a chapter still open, however we can safely 

assume that what was found by many Authors for NMR’s spin-echoes [9.8] and for the 2LS 

polarization echoes in glasses [9.7, 9.10] holds for the ATS as well. Namely, that there is a 

wide range of waiting times where the decay of the echo amplitude is a simple exponential in 

߬ଵଶ  so that one can replace the SD term with ݁ିଶఛതభమ ఛഝ⁄  , where ߬థ(ܶ) is a SD characteristic 

time depending only on temperature. There must be a SD time ߬థ for the ATS as well as a SD 

time ߬థ for the standard 2LS. For the latter, theory shows [9.7, 9.10] that this parameter is 

independent of the energy gap ܧ and thus for the ATS we shall assume the same and, 

moreover, that (like for the phonon damping rate and Rabi frequency) its dependence on the 

magnetic field is weak or absent. This allows us to lump the SD problem together with 

phonon damping, yielding an overall exponential relaxation rate:  

,ܧ)ݓ (ܦ = ߬థ
ିଵ + ߬ିଵ(ܧ,  (9.35)                                   (ܦ

in which the SD time is typically much shorter than the phonon-damping time τ and depends 

only on temperature through [9.11, 9.12]:  

߬థ
ିଵ = ܿ஺்ௌܶ                                                        (9.36) 

with ܿ஺்ௌ an appropriate constant. The assumption of an overall simple-exponential decay of 

the echo amplitude with ߬ଵଶ is well verified experimentally [9.11, 9.3]. 

We now make use of Eq. (9.33) to fit the experimental data for the multi-silicates, 

the idea being that the total amplitude is ܣ(߶) = ଶ௅ௌܣ +  which must be averaged wrt) (߶)ܣ߂

the ATS magnetic orientation angle ߚ). 

Fig. 9.5 shows the experimental results for the relative echo amplitude in AlBaSiO as 

a function of the magnetic field; values of B up to 0.6 T have been explored and for three 

temperatures [9.2]. The data are fitted with our theory with parameters as reported in Table 

9.1. The agreement between theory and experiment is highly satisfactory, given the 

simplifications used in the theory. There is only one minimum in (ܤ)ܣ and the inset in Fig. 

9.5 shows that again it is the ATS density of states (DOS) that is responsible for the magnetic 

effect (Chapter 6). Indeed, by enforcing the strict-resonance condition (ܧ)ߪ → ܧ)ߜ − ℏ߱) 

expression (9.33) collapses to a quantity very much like the DOS (convoluted with slow-

varying corrections) and with the same behaviour, thus reproducing the main shape of (ܤ)ܣ߂. 
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It is the non-resonant convolution of this quasi-DOS with other E-dependent functions that 

produces the rounding of the minimum and the ିܤଶ saturation. Interestingly, though ߬థ ≪ ߬, 

the phonon-damping term plays a main role in the rounding of the high-B tail to a ିܤଶ (as 

observed) saturation. The ATS approach predicts also a linear in B intermediate decay regime 

of the echo amplitude, and this is often experimentally observed [9.2, 9.3].  

 

 
Fig. 9.5 – Magnetic field dependence of the polarization echo amplitude (relative to 

its value at “high” fields where saturation occurs) for the AlBaSiO glass [9.2] (also referred to 
as BAS) at given experimental conditions. We believe two separate samples have been used. 
Continuous curves from our theory. Nominal frequency 1 GHz, ߬ଶ = 2߬ଵ = 0.2 μs. Inset: 
behaviour of the ATS DOS for the same parameters (the physical origin of the effect). 

 

 

Next, in Fig. 9.6 we present the comparison of theory and experiment for data for the 

echo amplitude in BK7 (good optical glass, hence devoid of microcrystals) at two different 

values of the waiting time ߬ଵଶ. It is remarkable how our theory, despite the simplifications and 

the total absence of multi-level physics (as advocated by the NEQM approach), can reproduce 

all the features of the experimenatl data, including every change of curvature in (ܤ)ܣ. A 

rough fit, not aiming at high ߯ଶ agreement, reproduces the two maxima (and minima) that the 

NEQM approach takes as indication of the multiple (rapid) oscillations ensuing from the 
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quantum beatings due to the Zeeman- and NEQM-splitting of the generic 2LS [5.8]. There are 

never more than two observed minima, in practice, and these can be reproduced by our simple 

ATS model. 

 

 

 
Fig. 9.6 – Magnetic field dependence of the polarization echo amplitude for the BK7 

glass [9.2] at given experimental conditions. Dashed curves (rough fit) and continuous curves 
from our theory; there are no more than two observable maxima or minima (no true 
oscillations). Nominal frequency 0.9 GHz, ߬ଶ = 2߬ଵ = 0.2 μs. Inset: our prediction for the 
higher magnetic field regime (B* as defined in Chapter 6). 

 

 

Finally, in the inset of Fig. 9.6, we show what the experimentalists missed by not 

exploring higher magnetic-field values. Using the simple-minded correction for the lower 

energy gap at higher fields, we plot the expected behaviour of (ܤ)ܣ for intermediate fields. 

After the two minima, there is only an apparent saturation and new interesting features should 

characterise (ܤ)ܣ at higher fields (ܤ > 600 mT), just like it happens for the dielectric 

constant. A full description of the effect, however, requires a calculation involving all three 

ATS energy levels. 
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Table 9.1 – Fitting parameters for the echo amplitude’s magnetic field dependence 

Glass type 
 ௠௜௡ܦ

mK 

଴௠௜௡ܦ ቚ௤
௘
ቚ ௱ܵ 

KÅଶ 

଴௠௔௫ܦ ቚ௤
௘
ቚ ௱ܵ

KÅଶ 

 ଵି߁

(μs Kହ)ିଵ  

ܿ஺்ௌ − ܿଶ௅ௌ  

 (μs K)ିଵ 

pଵF଴ 

D kV mିଵ 
tan  ߬߂߱

AlBaSiO 
(sample 1) 17.74 0.95×103 2.13×104 9.22×106 5.008 0.461 0.247 

AlBaSiO 
(sample 2) 27.20 1.14×103 8.96×103 2.57×105 3.825 0.450 0.245 

BK7 
(1.5 μs) 16.76 0.92×103 1.34×104 8.91×106 1.03 (*) 0.60 0.207 

BK7 
(6 μs) 15.94 0.89×103 3.31×104 3.25×106 5.72 (*) 0.98 0.204 

(*) For BK7 (best-fit parameters only), ܿ஺்ௌ only is involved.  

 

9.4 Amorphous glycerol and the so-called isotope effect 
 

We now come to the astonishing case of amorphous glycerol (C3O3H8 vitrifies 

around 47 K), deuterated and natural. The first question is whether our model applies to this 

system, which nominally is single-component. We firmly believe it does and therefore that the 

a-glycerol polarization echo experiments can also be explained by the presence of 

microphasing in the samples. 

In Brandt’s Ph.D. Thesis [9.3] it is reported that the liquid glycerol, from which the 

glass samples were made of, were contaminated by water (see Table 2). Moreover, 

experiments on samples with different deuterium molar content and different before-cooling 

open-air shelf-storage times gave definitely different results. The available experimental data 

[9.3] are reported in Fig. 9.7. One observes a much greater variation in the experimental data 

for the C3O3D3H5 samples left in the air before freezing than in the similiarly prepared 

C3O3D5H3 samples. 

 

Table 9.2 – Purity and water-contents data for the studied glycerol samples [9.3] 
Sample Chemical purity Water content 

Glycerol-d0 99.9%  

Glycerol-d3 99% ≤ 1.5% H2O 

Glycerol-d5 98% ≤ 0.11% H2O 

Glycerol-d8 98% no information 
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Fig. 9.7 – Relative integrated echo amplitude vs. τ12 for various deuterated 

amorphous glycerol samples at ܤ = 0, nominal frequency 0.85 GHz, ܶ =13.5 mK [9.3]. The 
samples termed “old” (alt) were left liquid several days in the air before cooling; two separate 
fresh preparations (neu(1) and neu(2)) were also employed, obtained from producer-sealed 
containers just before cooling. 

 

Glycerol is a highly hygroscopic substance, owing to the polarity (similar to H2O’s) 

of its molecules which tend to shed one of the three hydrogens (or deuteria) attached to the 

oxygens, but none of those firmly attached to the carbon atoms. The equilibrium process is of 

the type, e.g., C3O3D3H5↔ C3O3D2H5
-+D+ causing similar equilibrium concentrations as in 

the familiar dissociation process H2O↔OH-+H+. Thus it is not unreasonable to imagine that 

the water contained in the air causes some hydrogens to substitute for some O-attached 

deuteria, in time, when absorbed in liquid Glycerol-d3, - but not in the case of Glycerol-d5 The 

Glycerol-d3 hygroscopic effect on the echo would support the NEQM theory, but the (albeit 

smaller) effect in Glycerol-d5 does not. Moreover, oddly enough the more hygroscopically 

contaminated samples (“alt”) yield the smaller effect on the echo’s amplitude oscillations, 

whilst the fresher samples (“neu” (1) and (2)) give wider and different (neu(1) ≠ neu(2)) 

amplitude oscillations. 

The lack of reproducibility of the effect leads us to believe that the origin of the 

observed magnetic phenomena lies again in the formation of microcrystallites during the 

freezing process, which in glycerol are nucleated by the presence of dissociated H2O. The 

concentration of micro- or nano-crystals is therefore very much sample-dependent. To test 

these ideas, we have applied our theory for the V-shaped dielectric constant’s temperature-

dependence (Chapter 4) to the only complete data available for Glycerol-d3 [9.3], though the 
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frequency of the applied electric field (0.863 GHz, nominally) is huge (as it turns out, 

however, the 2LS STM approach can still explain the resonant part of the data [9.3, 9.13]).  

Fig. 9.8 (a) shows our best fit to the data, the relaxation part being reproduced only 

by means of the 2LS+ATS approach and with the parameters given in Table 9.3. 

 

   
Fig. 9.8 – V-shaped dielectric constant temperature-dependence for the high 

frequency data of: a) amorphous Glycerol-d3 (0.863 GHz), and b) Suprasil-I (0.7 GHz) [9.3]. 
The curves are the best fits from our theory (Chapter 4). The full ω-dependent formula for the 
2LS RES contribution has been used in the fits. 

 

Table 9.3 – Extracted parameters for the high-frequency (0.863 and 0.7 GHz) dielectric 
constant fits from the ATS theory (Chapter 4) 

Glass type 
 ଶ௅ௌܣ

10ିସ 

∆଴௠௜௡ 

݉K 

 ߛ

10ି଻ sKଷ 

 ஺்ௌܣ

10ିଶ 

 ௠௜௡ܦ

K 

 ߁

10ିହ sKହ 

Glycerol-d3 4.879 10.90 5.622 1.857 18.909 50.0 

Suprasil-I 4.840 9.90 5.622 1.289 19.967 1.18 

 

We have no explanation for such unrealistic, huge value of ܦ௠௜௡, except that 

(Chapter 10) the number of coherently tunneling ions (most probably D+ in Glycerol-d3) may 

be large and/or that the electric-field intensity (unknown for the glycerol experiments) may 

also be huge (thus renormalizing the value of ܦ௠௜௡ upwards). This is confirmed by our best fit 

of similar data in Fig. 9.8 (b) for Suprasil-I at high frequency (0.7 GHz) [9.3] which allows us 

to extract the parameters in Table 9.3, the value of ܦ௠௜௡ being far bigger than the one 

extracted from experiments at low frequency (kHz range, Chapter 4) for the same glass. 

The lack of reliable experimental dielectric data for amorphous glycerol makes the 

fitting of the polarization-echo data frustrating. All the more so, when considering that - so far 

- no evidence for a magnetocapacitance effect in a-glycerol has been found (albeit at the 

nominal frequency of 0.986 GHz) [9.3]. This last fact, however, could be explained by the 

(a) (b) 
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suspected large value of ܦ௠௜௡, for the order of magnitude of the magnetocapacitance is given, 

in our theory, by the combination ݌∗ܲߨଵ
ଶതതതݔ஺்ௌ ൗ(௠௜௡ܦ௥ߝ଴ߝ2)  (Chapter 7) and for a-glycerol 

௥ߝ = 42.5 and ܦ௠௜௡ are much larger than for the multi-silicates. Low-frequency (kHz range) 

and weak electric-field intensity measurements of the dielectric constant of a-glycerol would 

be most useful. These lacking, we must limit our discussion of the magnetic dipole echo 

phenomena in a-glycerol to the qualitative level of understanding. 

The integrated echo amplitude is readily obtained from Eq. (9.30), after the 

averaging procedure as in Eq. (9.32) and a subtraction of the pump-frequency mode ω are 

carried out:  

(߶)ܣܧܫ߂ ≅ ଴ܣ−
݀

௥ߝ଴ߝ
஺்ௌݔ

∗ℏଶܲߨ4

F଴
 

× ൝න
ܧ݀
ܧ

ா೎మ

ா೎భ

න
ܦ݀
ܦ tanh ൬

ܧ
2݇஻ܶ൰

ଶܧ

ଶܧ − ଶܦ Ωோ
ଶ (ܧ)ߪ

ݓ2
ଶݓ + (߱଴ − ߱)ଶ    

஽మ(థ)

஽೘೔೙

× ,ଵߠ)ܵ] (ଶߠ cos(2(߱଴ − ߱)߬ଵଶ) + ,ଵߠ)ܥ (ଶߠ sin(2(߱଴ − ߱)߬ଵଶ)]� +  

�+ න
ܧ݀
ܧ

ஶ

ா೎మ

න
ܦ݀
ܦ

஽మ(థ)

஽భ(థ)
 (… same integrand as above … )ൡ             (9.37) 

with ݓ ,(ܧ)ߪ, ܵ and ܥ as in Eqs. (9.34, 9.35) above. We are now in the presence of an even 

narrower spectral delimiter than (ܧ)ߪ:  

(ܧ)߯ =
ݓ

ଶݓ)ℏߨ + (߱଴ − ߱)ଶ)                              (9.38) 

is a (normalized) very sharply-peaked function of ܧ = ℏ߱଴ since ݓ ≪ Ωோ ≪ ߱. We can then 

take the limit ݌ଵܨ଴ → ∞ that seems to be appropriate for the glycerol experiments and replace 

(ܧ)ߪ ,by a constant (ܧ)ߪ → (2ℏΩோ)ିଵ, to get: 

(߶)ܣܧܫ߂ ≈ ଴ܣ−
݀

௥ߝ଴ߝ
஺்ௌݔ

∗ଶℏଶܲߨ2

F଴
  

× ൝න
ܧ݀
ܧ

ா೎మ

ா೎భ

න
ܦ݀
ܦ tanh ൬

ܧ
2݇஻ܶ൰

ଶܧ

ଶܧ − ଶܦ Ωோ߯(ܧ)
஽మ(థ)

஽೘೔೙

,ଵߠ)ܵ (ଶߠ cos(2(߱଴ − ߱)߬ଵଶ)� 

�+ න
ܧ݀
ܧ

ஶ

ா೎మ

න
ܦ݀
ܦ

஽మ(థ)

஽భ(థ)
 (… same integrand as above … )ൡ                                      (9.39) 

For fixed and large ߬ଵଶ the above is essentially the energy convolution of a function 

very much like the DOS g஺்ௌ(ܧ) times some slowly-varying functions of E and the sharply-

peaked spectral delimiter ߯(ܧ). The result of this convolution is depicted in Fig. 9.9 and very 

much depends on whether ܦ௠௜௡ < ℏ߱ or ܦ௠௜௡ > ℏ߱. 
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Fig. 9.9 – Convolution of the DOS g஺்ௌ(ܧ, ߶) and the spectral delimiter ߯(ܧ) in the 

integral giving the IEA. a) If ܦ௠௜௡ < ℏ߱ there is a significant effect on the echo amplitude as 
߶ increases; b) In the opposite case ܦ௠௜௡ > ℏ߱ the effect is much reduced and vanishes in the 
strict resonant case. This is our qualitative explanation for the “isotope effect”. 

 

(a) 

(b) 
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In the first case, the evolution of the g஺்ௌ(ܧ) with ߶ (or B) gives rise to a sizable 

magnetic effect on the echo amplitude (or IEA) even in the strict-resonant limit, whilst in the 

second case, ܦ௠௜௡ > ℏ߱, the magnetic effect is drastically reduced and even vanishes in the 

strict resonant limit, ߯(ܧ) → ܧ)ߜ − ℏ߱). 

This is the explanation for the so-called isotope effect in amorphous glycerol, which 

actually is a mere mass-substitution effect. Indeed, we claim that for natural glycerol the 

situation ܦ௠௜௡ > ℏ߱ applies and that for the deuterated samples, as for the multi-silicates, 

௠௜௡ܦ < ℏ߱ applies. Indeed, ܦ௠௜௡ is roughly given by (Chapter 2, Eq. (2.4)): 

௠௜௡ܦ ≈
1
2 ℏඨ ݇

ܯ moreover: ଴ܦ ≈ℏඨ ݇
ௗି݁ ܯ

ℏඥଶெ௏ಳ              (9.40) 

where ݇ is the bonding constant that depends only on the chemistry and not on the isotope’s 

mass, M. Thus we immediately see that ܦ௠௜௡(deuterium) =  ௠௜௡(hydrogen)/√2 and thisܦ 

is sufficient to make the transition from case b) to case a) in Fig. 9.9 when a substantial mass 

change of the tunneling particles through isotopic substitution is made.The case of partial 

isotopic substitution requires separate considerations. A further consequence of mass 

substitution, as seen in Eq. (9.40) is that a larger mass M will make - the chemistry being 

unchanged - the parameters ܦ଴௠௜௡,௠௔௫  much smaller and thus will give rise to a much slower 

variation of the echo’s amplitude with B, as is indeed verified in the experiments (Fig. 9.3). 

The highly non-uniform shape of the DOS for the ATS model thus qualitatively (and for the 

multi-silicates also quantitatively) explains all of the experimental findings. 

The last topic we discuss is our explanation for the dramatic effect for the echo’s IEA 

dependence on the waiting time ߬ଵଶ near ܤ = 0. To explain this we take the ܤ → 0 limit of 

Eq. (9.39), when only the second term contributes and we get, evaluating the D-integral 

exactly and lumping all slowly-varying functions into an overall constant ࣛ∗: 

 

lim (ϕ)ܣܧܫ߂ ≈ −ࣛ∗ න
ܧ݀
ܧ

∞

஽೘೔೙

tanh ൬
ܧ

2݇஻ܶ൰ ln ቆ൬
଴௠௔௫ܦ

଴௠௜௡ܦ
൰

ଶ ଶܧ − ଴௠௜௡ܦ
ଶ ߶ଶ

ଶܧ − ଴௠௔௫ܦ
ଶ ߶ଶቇ 

× (ܧ)߯ cos(2(߱଴ − ߱)߬ଵଶ)                                                      (9.41) 

Inspection of this last expression shows, that the ATS contribution quadratically 

decreases as the AB phase (or magnetic field) increases; hence, the disappearance of the 

oscillations in ߬ଵଶ is slow (as experimentally reported [9.2]) for very weak but increasing ܤ. 

To understand the oscillations (and their absence) we set ܤ = 0 and redefining the overall 

constant we arrive at (since ߬థ is the shortest decay time involved):  
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lim (0)ܣܧܫ߂ ≈ −ℬ∗ න
ܧ݀
ܧ

∞

஽೘೔೙

߬థ
ିଵ

ℏ[߬థߨ
ିଶ + (߱଴ − ߱)ଶ]

cos(2(߱଴ − ߱)߬ଵଶ)  (9.42) 

The remaining integral can be rewritten as an integral in the interval [0, ∞], which 

yields an exponentially decaying contribution in ߬ଵଶ, plus the integral in the energy interval 

[0, ℏ߱ −  :௠௜௡]. The latter is responsible for the oscillations in ߬ଵଶ sinceܦ

න ݔ݀
௕

଴

cos ݔ
ଶݔ + ܽଶ =

ߨ
2ܽ ݁ି௔ + Im ൜

݁ି௔

2ܽ Ei (– ܽ + ܾ݅) −
݁௔

2ܽ Ei (ܽ + ܾ݅)ൠ        (9.43) 

where Ei(ݖ) denotes the exponential-integral function [9.14]. Rearranging Eq. (9.42), also 

adding the 2LS standard exponentially decaying contribution [9.1, 9.11], we come to the 

following functional form for the total IEA of the sample: 

lim (0)ܣܧܫ ≈ ଶ௅ௌ݁ܥ
ି ଶఛభమ

ఛഝ(మ) + ஺்ௌܥ
߬థ(ଷ)

߬ଵଶ
 ݁

ି ଶఛభమ
ఛഝ(య)

+ ஺்ௌIm ൜ܭ
݁ି௔

2ܽ Ei (– ܽ + ܾ݅) −
݁௔

2ܽ Ei (ܽ + ܾ݅)ൠ                    (9.44) 

where C2LS, CATS and KATS are appropriate constants and where:  

ܽ = 2߬ଵଶ߬థ(ଷ)
ିଵ ܾ =2߬ଵଶ ൬߱ −

௠௜௡ܦ

ℏ ൰                      (9.45) 

We plot expression (9.44) in Fig. 9.10 as a function of ߬ଵଶ, assuming some 

reasonable value of ߬థ(ଷ) = 1.0 μs for the ATS spectral-diffusion time, ߬థ(ଶ)=10.0 μs for the 

2LS one, and of ߱߂ = ߱ − ஽೘೔೙
ℏ

= 0.6 MHz for the frequency offset.  

      
Fig. 9.10 – The IEA from Eq. (9.44) plotted as a function of ߬ଵଶ for parameters as in 

the text. a) The simplified theory almost reproduces (black curve) the experimental data 
(diamonds) for Glycerol-d3 at ܤ = 0, nominal frequency ߱/2ߨ =0.887 GHz and ܶ =13.5 
mK [9.3] (blue curve: – 2LS contribution, green and red curves: – ATS contributions, black 
curve: – sum of 2LS and ATS contributions); b) Disappearance of the IAE oscillations when 
 ߬థ(ଷ) decreases or ߱߂ increases (blue curve). 
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As is shown in Fig. 9.10 (a) (black curve), this simplified theoretical treatment 

almost reproduces the data for Glycerol-d3 at ܤ = 0 [9.3]. Fig. 9.10 (b) also shows (blue 

curve) that reducing to ߬థ(ଷ) = 0.3 μs causes the oscillations to disappear; alternatively, this 

can be achieved by increasing ߱߂. 

This explains the findings in Fig. 9.7. Leaving the sample in the air causes a change 

in ܦ௠௜௡ simply because more micro-crystals are generated (larger ߱߂), but also because of 

mass substitution through dissociation. The subtle role of the true value of the resonating 

frequency ߱ is as yet not completely understood. 

Clearly, if ߱߂ < 0 (case of Glycerol-d0) there can only be exponential decay (from 

the 2LS contribution), but if ߱߂ > 0 is also too large the oscillations die out. We believe this 

is the case for the multi-silicates.  

Qualitatively at least, our ATS model explains all experimental observations so far. 
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Chapter 10  

 

Interpretation of the fitting parameters: 

size of the tunneling cluster 

 
The tunneling model is a phenomenological model, it makes use of the concept of 

tunneling systems (TS) within one modeling approach (2LS STM) or another (ATS), but with 

little knowledge of the TS’s true nature. We claim here that thanks to the remarkable 

experiments in a magnetic field by the Berlin-Heidelberg and Saclay groups, for the first time 

some clear indication about the nature of the TS is indirectly emerging. 

One cannot avoid noticing that, in comparison with the parameters for the 2LS STM 

(Chapter 2), those for the curve-fitting of our theory based on the multi-welled ATS appear to 

be rather large. Namely: 

 ;௠௜௡  ranges from 16 to 870 mKܦ -

଴௠௜௡,௠௔௫, multiplied by the quantity ቚ௤ܦ -
௘

ቚ ௱ܵ, range from 0.8×102 to 4.5×105 KÅ2; 

- these values appear to be systematically larger for those experiments carried out at 

the higher temperatures; 

moreover: 

 ;஺்ௌ ܲ∗ ranges from to 6 to 7 × 1016 g-1ݔ -

 ଵ ranges from 0.05 to 0.41 D; from the echo experiments (Table 9.1) for the݌ -

nominal value ܨ଴ ≈ 1.0 kV/m of the electric field intensity one would infer values 

ranging from 0.46 to 0.98 D. 

Our interpretation for the large values of ܦ௠௜௡   and especially of ܦ଴ ቚ௤
௘
ቚ ௱ܵ, and at the 

same time for the small values of ݌ଵ (on should consider that the elementary electric dipole is 

݁ܽ஻ = 2.54 D) is as follows. The “tunneling particle” in question is only a fictitious one, 

representing the coherent tunneling of a cluster of N true particles (which might be the lighter 

ones involved in the material (O-- in the multi-silicates and H+ and/or D+ in a-glycerol)) of 

which we have made up appropriate renormalized tunneling parameters. The concept of 

coherent tunneling (CT) in separate local potentials is distinct from that of the joint tunneling 

of N particles in the same local potential, for in the latter case the tunneling probability 
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would be depressed exponentially: ܦ଴ ≈ Δ଴
ே/ଶ (Δ଴ being the real particle’s tunneling 

transparency). As we shall show below, at least for moderate values of N, for CT we expect:  

଴ܦ ≈ ଴߂ܰ ௠௜௡ܦ ≈  ௠௜௡                                   (10.1)߂ܰ

and, for the fictitious particle’s charge and flux-threaded area:  

ݍ = ଴ݍܰ ௱ܵ ≈ 4ܰܽ஻
ଶ                                             (10.2) 

଴ݍ) ≈ ݁ being the charge of the real tunneling particle, ܽ஻ Bohr’s radius). In the latter 

relations, less obvious is the renormalization of the flux-threaded area ௱ܵ. It is however the 

direct consequence of our multi-phase model of real glass, thought of as made up of regions 

of enhanced atomic ordering (RER) (Fig. 4.2). The magnetic flux appears quadratically in our 

theory, each elementary flux adding up within each micro-crystal or RER and then appearing 

multiplied by cosଶ  in the glassy matrix in a magnetic field, a factor averaging out to ½ in ߚ

the bulk. From these considerations, the renormalization of D0 and ܦ଴ ቚ௤
௘
ቚ ௱ܵ would be as 

follows:  

௠௜௡ܦ ≈ ܰΔ௠௜௡ ଴ܦ ቚ
ݍ
݁

ቚ ௱ܵ ≈ 8ܰଷΔ଴ܽ஻
ଶ                           (10.3) 

Setting Δ଴ = 1 mK, one gets a value of N ranging from about 25 coherent-tunneling particles 

in a cluster at the lowest temperatures, to about 600 at the higher temperatures. These 

estimates are somewhat speculative, since the real values of the elementary flux-threaded area 

and of the elementary tunneling barrier transparency Δ଴ are unknown, we are however 

inclined to support the value ܰ ≈200 that was proposed by Lubchenko and Wolynes [10.1]. 

This would yield a value of Δ௠௜௡ ranging from 80 μK to 4 mK. 

The above considerations, however, show the tendency for the CT cluster size N to be 

also temperature dependent, much smaller at the lowest temperatures than at the higher ones. 

In our opinion this is a most interesting and reasonable finding. The idea of a large CT size N 

is however the most obvious interpretation for the small values of the electric dipole moment 

p1 of the fictitious tunneling particle. Since electric dipole moments add up vectorially in the 

CT cluster: 

ଵܘ = ෍ ௜ܘ

ே

௜ୀଵ

                                                     (10.4) 

it appears natural to us that the magnitude pଵ =  ,ଵ| should be smaller (even much smaller࢖|

for large N) than the value of the elementary dipole, ݁ܽ஻ (see Fig. 10.1). 
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Fig. 10.1 – The electric dipole moments of the individual tunneling particles add up 

vectorially, resulting in an effective moment much smaller than the atomic ݁ܽ஻ . 
 

We now come to the justification of Eqs. (10.1). At low temperatures the 

interactions between true tunneling particles become important and coherent tunneling motion 

can take place. Coherent motion in the context of the tunneling model is a state in which all of 

the particles in each local potential contribute to the overall tunneling process coherently. We 

exemplify our ideas in the context of the simpler 2LS situation (݊௪ = 2) first. 

Let us consider two interacting 2LS’s. The positions of the particles in the wells we 

call left (L) and right (R). The tunneling particles interact via a weak potential ܷ which may, 

for example, appear from either a strain-strain interaction having the form ܷ~ܽ/ିݎଷ (dipole-

dipole interaction) [10.2, 10.3], where ݎ is the distance between the tunneling particles either 

in the L or R wells, ܽ being a constant, or it could be due to electrostatic dipole-dipole 

interaction. The tunneling of the particle in one 2LS from L to R (or vice versa) influences, 

via the interaction, the particle from the other 2LS, forcing it to jump into the free well. The 

Hamiltonian of two interacting 2LS can be written as follow (߂௜௅ = ௜ோ߂− = ௜߂ ,   ݅ = 1,2): 

ଶܪ = Δ଴ଵ ෍ ܿଵ௔
ற ܿଵ௔ᇱ + ℎܿ + ෍ Δଵ௔ܿଵ௔

ற ܿଵ௔ + Δ଴ଶ ෍ ܿଶ௔
ற ܿଶ௔ᇱ + ℎܿ + ෍ Δଶ௔ܿଶ௔

ற ܿଶ௔

− ܷ൫ܿଵ௅
ற ܿଵ௅ܿଶ௅

ற ܿଶ௅ + ܿଵோ
ற ܿଵோܿଶோ

ற ܿଶோ൯                                                            (10.5) 

which acts on the joint states |�ܽܽ′〉� =  The coherent motion of the real .{�〈ܴܴ�|�,〈ܮܴ�|�,〈ܴܮ�|�,〈ܮܮ�|}

particles can now be replaced by the tunneling of a new, fictitious particle in its own double 

well. In order to write the Hamiltonian of coherent tunneling particles we are interested only 

in matrix elements ⟨ܮܮ|ܪ|ܮܮ⟩, ⟨ܴܴ|ܪ|ܴܴ⟩, ⟨ܮܴ|ܪ|ܴܮ⟩, ⟨ܴܴܮ|ܪ|ܮ⟩ of the Hamiltonian 

(10.5): 

⟨ܮܮ|ܪ|ܮܮ⟩ = Δଵ + Δଶ − ܷ 

⟨ܴܴ|ܪ|ܴܴ⟩ = −Δଵ − Δଶ − ܷ                                          (10.6) 

⟨ܮܴ|ܪ|ܴܮ⟩ = ⟨ܴܮ|ܪ|ܮܴ⟩ = Δ଴ଵ + Δ଴ଶ 

These matrix elements represent the Hamiltonian of the fictitious particle, which 

corresponds to both particles moving together coherently: 
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ଵܪ
ᇱ = ൬Δଵ + Δଶ − ܷ Δ଴ଵ + Δ଴ଶ

Δ଴ଵ + Δ଴ଶ −Δଵ − Δଶ − ܷ൰                                (10.7) 

Next, we consider the case of three interacting 2LS’s and repeat the previous 

operation. The Hamiltonian of three interacting 2LS has the form: 

ଷܪ = ෍ ൝ ෍ ൫Δ଴௔ܿ௜௔
ற ܿ௜௔ᇱ + ℎܿ൯

ோ

௔,௔ᇲୀ௅

 + ෍ Δ௜௔ܿ௜௔
ற ܿ௜௔

ோ

௔ୀ௅

ൡ
ଷ

௜ୀଵ

− ܷ ෍ ෍ ܿ௜௔
ற ܿ௜௔ܿ௜ᇱ௔

ற ܿ௜ᇱ௔
௔௜,௜ᇲ

     (10.8) 

The matrix elements that correspond to coherent tunneling are obtained as follows: 

⟨ܮܮܮ|ܪ|ܮܮܮ⟩ = Δଵ + Δଶ + Δଷ − 3ܷ 

⟨ܴܴܴ|ܪ|ܴܴܴ⟩

= −Δଵ − Δଶ − Δଷ − 3ܷ                          (10.9) 

⟨ܮܴ|ܪ|ܴܮ⟩ = ⟨ܴܮ|ܪ|ܮܴ⟩ = Δ଴ଵ + Δ଴ଶ + Δ଴ଷ 

One can notice that the tunneling parameter is the sum of the Δ଴௜ of each 2LS. The 

energy asymmetry is also the arithmetical sum of the Δ௜ of each 2LS, but one must subtract 

the interaction energy multiplied by ܰ(ܰ − 1) 2⁄ . Thus, for a system of N 2LSs we find that 

the diagonal matrix element becomes Δ = (∑ Δ௜
ே
௜ୀଵ ) − ே(ேିଵ)

ଶ
ܷ and the off-diagonal element, 

that corresponds to the coherent tunneling splitting for all three particles, becomes Δ଴ =

∑ Δ଴௜
ே
௜ୀଵ . 

Applying the previous considerations to our model for a number N of ATS with three 

wells (see Fig. 10.2) we can write the interacting Hamiltonian in the form: 

ேܪ = ෍ ൝ ෍ ൫ܦ଴௔ܿ௜௔
ற ܿ௜௔ᇱ + ℎܿ൯

ଷ

௔,௔ᇲୀଵ

 + ෍ ௜௔ܿ௜௔ܧ
ற ܿ௜௔

ଷ

௔ୀଵ

ൡ
ே

௜ୀଵ

− ܷ ෍ ෍ ܿ௜௔
ற ܿ௜௔ܿ௜ᇱ௔

ற ܿ௜ᇱ௔
௔௜,௜ᇲ

   (10.10) 

If we represent the group of N coherently-tunneling particles as a single fictitious 

particle moving in a 3-welled potential, which is characterized by its own ground state 

energies ܧ஺ and tunneling parameter ܦ଴, we can describe this 3LS by the following 

Hamiltonian: 

ଵܪ
ᇱ = ෍ ஺ܿ஺ܧ

றܿ஺
஺

+ ෍൫ܦ଴ܿ஺
றܿ஺ᇱ + ℎܿ൯

஺,஺ᇱ

ܣ      , = 1,2,3            (10.11) 

The ground states energies ܧ஺ in the wells and tunneling parameter ܦ଴ for the fictitious 

particle, in line with the calculations above, can be obtained as: 

஺ܧ = ∏ ௜⟨ܽ݅|ܪ|ܽ݅⟩
଴ܦ = ∏ ௜⟨ܾ݅|ܪ|ܽ݅⟩

ܣ       , = ܽ = 1,2,3             
ܽ ≠ ܾ,    ݅ = 1,2, . . , ܰ                     (10.12) 
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Figure 10.2 ‒ A cluster of four interacting (real) tunneling particles being replaced 

with a (fictitious) single 3LS having renormalized parameters. 
 

In analogy with the 2LS considerations one can see that the tunneling parameters ܦ 

and especially ܦ଴ become roughly the arithmetical sums of those of the bare coherently 

tunneling particles, ܦ ≈ ଴ܦ ௜ (neglecting the correction for sufficiently weak U) andܦܰ =

 ଴௜, respectively. Therefore, since ܰ can attain values as large as 200 [10.3] (independentlyܦܰ

of the solid’s composition) in some models, this leads to values of ܦ௜ and ܦ଴௜ comparable to 

those characteristic of the 2LS TM. 
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Chapter 11 

 

Conclusions and outlook 

 
In the present work a new (anomalous) tunneling model has been re-proposed and 

applied, as an extension of the standard tunneling model to explain the anomalous dielectric 

properties exhibited by multi-component dielectric glasses at low and very low temperatures. 

Instead of the standard single-coordinate double-welled (W-shaped) potential, which describes 

the ordinary 2LS TS inherent to the a-SiO2 network, the existence of anomalous tunneling 

systems (ATS) was assumed and justified in the glasses, where the particle (actually, the 

fictitious particle) of charge ݍ moves in an ݊௪-welled 3D potential, tunneling through a relatively 

shallow energy barrier. ATS in the glasses are provided by the process of partial devitrification of 

the glassy network due to the presence of network-modifying ions in real glasses. The new 

probability distribution, which is now, in contrast to the constant one of the STM, inversely 

proportional to the energy gap, takes into account the said partial devitrification. The hopping 

Hamiltonian for a single, non interacting ATS with three wells as the simplest case was 

introduced and its eigenvalues were determined. 

We have shown that there is direct evidence for the multi-welled ATS in zero magnetic 

field already. The new multi-welled ATS together with STM’s 2LS explain qualitatively as well 

as quantitatively and with reasonable parameters the relative change of the dielectric permittivity 

at zero magnetic field for multi-component glasses such as AlBaSiO and BK7. It explains also 

the relative change of the dielectric permittivity and heat capacity with temperature and with 

variation of the alkali concentration x in the mixed (SiO2)1-x (K2O)x  glass. Our work predicts that 

the magnetic response of the alkali-silicate glasses should be important and scale like the molar 

alkali concentration x. At the same time the −1 : 1 slope ratio problem of the standard TM (which 

predicts a -2 : 1 ratio) has been given a simple explanation in terms of our two-component (2LS + 

ATS) tunneling model. 

In order to explain the effects of the magnetic field we consider the motion of the 

fictitious charged particle in a 3-welled potential, coupling to the magnetic field through the 

particle’s orbital motion. The magnetic-field dependent Hamiltonian of a single ATS has been 
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modified introducing the Aharonov-Bohm phase. The energy eigenvalues are found to be 

periodic in the magnetic flux. 

Keeping the same parameters probability distribution for ܤ = 0 and using the new 

magnetic-field dependent Hamiltonian we are able to explain very well the experimentally 

observed relative change of the permittivity for the AlBaSiO, BK7, Duran and SiO2+xCyHz 

glasses and the relative change of the dielectric loss for AlBaSiO with almost the same material 

parameters. The higher-order approximation can qualitatively explain also the further increase of 

the dielectric constant and loss at higher magnetic field, as observed in some of the experiments. 

The formulation of Gurevich et al. for the echo signal from a collection of 2LS was 

obtained and verified using the density matrix formalism and also (more rigorously) from a 

Schrödinger-equation treatment in which high-frequency modes are neglected and phonon-

damping is treated in a phenomenological way. The polarization echo’s theory was extended to 

the case of the ATS model describing glasses in a magnetic field; the point of view has been 

taken that a background of ordinary 2LS’s - insensitive to the magnetic field - also exists in the 

glass. The agreement between theory and experiment is highly satisfactory, given the 

simplifications used in the theory. The ATS approach also predicts a linear in B intermediate 

decay regime for the echo amplitude, and this is often experimentally observed. The isotope-

substitution effect in the dipole-echo amplitude also can be explained in a simple way with our 

model. Most pleasing was the semi-quantitative recovery of the damped oscillating behaviour of 

the integrated echo amplitude as a function of the pulse separation time, as observed for 

deuterated amorphous glycerol, but not for the other studied materials. We have been able to 

explain all these different observations, always making use of the same model in every detail. 

The interpretation of the extracted material parameters brings us to confirm the existence 

of coherent tunneling of a cluster of N true particles, with a value of N ranging from about 25 

coherent-tunneling particles in a cluster at the lowest temperatures, to about 600 at the higher 

temperatures. The above considerations, however, show the tendency for the cluster size N to be 

also temperature dependent, much smaller at the lowest temperatures than at the higher ones. In 

our opinion this is a most interesting and reasonable finding. The idea of a large cluster size N is 

ultimately the most obvious interpretation for the extracted small values of the electric dipole 

moment p1 of the fictitious tunneling particle, that is the vector sum of all dipole moments of the 

particles in the cluster. 

No one of the published theories, proposed earlier to describe the magnetic field effect in 

glasses at very low temperatures, could explain all of the experimentally observed effects in 
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glasses at the same time. Our new (anomalous) tunneling model is the simplest extension of the 

standard tunneling model that can explain them all, including also the zero magnetic field 

composition-dependent behaviour at low temperatures which entails a fractal picture for the glass 

structure.  

Our model opens the way for the microscopic understanding of the nature of the 

tunneling systems in real glasses and more experiments and computer simulations should be 

carried out to verify our model. For example in some multi-phase materials like ceramic glasses 

in which a degree of partial devitrification takes place and where micro-crystals embedded within 

an amorphous glassy matrix are known to occur. 

A key experiment which would help in deciding upon the validity of the nuclear 

quadrupole approach would be as follows. The glass of chemical composition (SiO2)1-x(MgO)x 

should be investigated in a magnetic field and for variable, controlled molar concentrations x. 

This is also a ceramic glass and in our ATS approach the magnetic field response, for all 

experiments, would scale like x independently of the deployed magnesium isotope’s nature. 

Conversely, according to the nuclear quadrupole approach there should be no magnetic response 

at all if the naturally occurring isotopes 24Mg (abundance 79%, nuclear spin 0, NEQM Q=0) and 
26Mg (11%, nuclear spin 0, NEQM Q=0) are employed, whilst the response would scale like x 

only in the case in which 25Mg (10%, nuclear spin 5/2, NEQM Q=199.4 m barn) is employed. 

The naturally-occurring Mg isotopes are used widely in nuclear medicine and are commercially 

available. This experiment, in our view, is feasible and decisive. 

Finally, the interactions between the ATS should also be taken into account for very low 

temperatures, when the interactions become important, to provide a more complete interpretation 

of the low-temperature observed behaviour. The same should be said for the development of a 

theory that goes beyond the linear-response approximation. The high magnetic field dependence 

can be also described by means of higher-order approximations and a full multi-level approach in 

the calculations. 

 

 

Addendum[4.23]: A spin-glass phase transition at 6 mK 
 

So far all our theoretical modeling has involved mostly single-particle physics, although 

the single particle is fictitious and as we claim it represents in practice a cluster of N coherent-



104 
 

tunneling particles, with N large yet neither mesoscopic nor macroscopic. However, some of the 

earlier findings of the Berlin-Heidelberg group [4.11] hinted at the presence of collective 

phenomena in the multi-silicate glasses at the lowest temperatures explored. As shown in Fig. 

11.1, the dielectric constant (thought of as electric field susceptibility) of AlBaSiO shows a kink 

in its temperature dependence in zero magnetic field and at around 6 mK. The purpose of this 

addendum is to convince the reader that also this mysterious phenomenon – in our opinion a 

genuine sping-glass transition – can be understood on the basis of the multi-welled ATS model.  

One begins by evaluating the electric dipole moment of the generic ATS by adding a 

vanishing electric field F0 contribution to each single-well energy: ܧ௜ → ௜ܧ − ۴଴ ∙  ௜ܘ

(alternatively a strain field and strain tensor can be invoked). Using the expressions for the 3-

welled TS energies, Eq. (6.4), after some work one gets for the dipole of state |ܽ >, ܽ = 0,1,2:  

௔܌ = ෍ ௔܌
(௜)

ଷ

௜ୀଵ

  

௔܌
(௜) = ௜ܘ

2
9

1

ඨ1 −
∑ ௝  ௜ஷ௝ܧ௜ܧ

଴ܦ6
ଶ

൦
௜ܧ

଴ܦ
cos ൬

1
3 ߠ + ௔൰ߠ +

cotan ߠ

଴ܦ
ଶ ൬cos߶ + ଷܧଶܧଵܧ

଴ܦ2
ଷ ൰

଴ܦ)௞ܧ௝ܧ
ଶ −

1
3 ௞ܧ௝ܧ

−
1
6 ௜ܧ

ଶ) inݏ ൬
1
3 ߠ +  ௔൰቏                                                                                     (11.1)ߠ

with the notation of Chapter 6 and where (݅, ݆, ݇) is a cyclic permutation of (1,2,3). The dipole of 

state |ܽ > is thus made up of three dipoles directed along the well’s directions.  

One can then study (numerically) the behaviour of these dipoles in the relevant limits 

ܦ ≡ ඥܧଵ
ଶ + ଶܧ

ଶ + ଷܧ
ଶ ≪ ߶ ଴ andܦ → 0 to find: 

- only d0 and d1 change significantly with ߶, whilst d2 remains small and virtually 

constant; 

- the dipole d0 is to a very good approximation always opposite to d1, so much so 

that one can write  

௔܌ ≅  ௔                                                     (11.2)ݏ(߶)܌ 

where ݏ௔ = ±1 is an Ising variable for the two lowest-lying states ܽ = 0,1. 
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Fig. 11.1 – (a) Dielectric constant variation of the AlBaSiO glass measured at a constant 

cooling rate of 62.6 μK/min. The dashed line is the extrapolation of the data from higher 
temperature. (b) Same data after subtracting a straight line through the first and last points of the 
measurement. On the abscissa the time scale has been converted to temperature. The magnetic 
field was ܤ = 0. From Ref. [4.11]. 
 

Thus, each ATS (regardless of the actual number of wells, in fact) A can be considered 

as the site of a “spin” ܌஺ having random single-axis anisotropy as well as a random energy-gap 

Δℰ ≅ ඥܦ଴
ଶ߶ଶ +  ଶ for the flipping of the local spin direction. At this point, switching on theܦ

electric field again, one can write the following Hamiltonian representing the energy of the 

collection of (quasi-classical) “spins” distributed in the glass and coupled via a weak dipole-

dipole interaction:  

஺்ௌܪ = ෍
஺܌ ∙ ஻܌ − ஺܌)3 ∙ ஻܌)(ො஺஻ܚ ∙ (ො஺஻ܚ

஺஻ݎ
ଷ

ேಲ೅ೄ

{஺ஷ ஻ୀଵ}

−  ۴଴ ⋅ ෍ ஺܌
஺

−
1
2 ෍ Δℰ஺

஺

 ஺   (11.3)ݏ

where A, B denote pairs of ATS. This intractable Hamiltonian can be simplified by resorting to a 

single-index Ising spin variable ݏ஺ = ±1 and writing  

஺܌ ∙ ஻܌ − ஺܌)3 ∙ ஻܌)(ො஺஻ܚ ∙ (ො஺஻ܚ

= d஺d஻(sin Ф஺஻
஺ sin Ф஺஻

஻ − 2 cos Ф஺஻
஺ cos Ф஺஻

஻  ஻          (11.4)ݏ஺ݏ(

Ф஺஻
஺  being the angle between ATS dipole ܌஺ with the direction joining ATS A and B. The 

trigonometric expression above is a random variable that takes values in [-2, +2] and therefore, 

neglecting the randomness of ܌஺ we end up with:  
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ୱ୮୧୬ܪ = [݀(߶)]ଶ ෍
,ܣ)Фܬ (ܤ

஺஻ݎ
ଷ

ேಲ೅ೄ

{஺ஷ ஻ୀଵ}

஻ݏ஺ݏ −
1
2 ෍ Δℰ஺

஺

 ஺               (11.5)ݏ

where ܬФ(ܣ,  (Фܬ)ܲ is a random variable taking values in [-2,+2] with a probability distribution (ܤ

that may be evaluated numerically by assuming a uniform, or polarized (some glasses have an 

overall dipole moment), distribution of dipoles {܌஺} in the sample (Fig. 11.2). 

 
Fig. 11.2 – The (normalized) probability distribution for the coupling constant’s sign ܬФ 

for uniform spatial dipole distribution; for a polarized spatial distribution, ܲ(ܬФ) becomes skew. 
 

It can be recognized immediately that the spin Hamiltonian (11.5) is that of a short-

ranged (ିݎଷ) Ising spin-glass system in a weak (random) positive external field, where ܲ(ܬФ) can 

be replaced with a sum of Dirac’s δ-functions centered in ܬФ/2 = −1,0, +1. This dilute Ising 

spin-glass in three dimensions ought to display an Almeida-Thouless line in the (ܶ,  plane (ܪ

(where H =  Δℰതതതത஺ > 0 is a fictitious, averaged out “magnetic” field if we neglect the energy gap 

randomness in first approximation, its sign being always positive). The question being still 

controversial [11.1], this would however mean [11.2] that there is a genuine spin-glass transition 

at some temperature ௙ܶ  (denoting perhaps just some dynamical freezing) which would come to 

depend on the real magnetic field B (through ݀(߶)). Experiments like that in Fig. 11.1 have not, 

however, been repeated in an external magnetic field, where we predict the cusp to shift 

downwards in ௙ܶ with increasing B. 
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