Universita degli Studi dell'Insubria

DIPARTIMENTO DI INFORMATICA E COMUNICAZIONE
%1UDIO/?O

g

el

@

\%jj\[ﬂ ?N\-}')
PhD dissertation

ZISNY

TOWARDS A TRUSTWORTHINESS MODEL
FOR OPEN SOURCE SOFTWARE

Student: Supervisor:
Davide Taibi Prof. Gaetano A. Lanzarone
Advisor:
Prof. Sandro Morasca
Reviewer:

Prof. Alberto Sillitti

2010




Towards a trustworthiness model for open sourdsvaoé

2010

Executive Summary

Trustworthiness is one of the main aspects thatribome to the adoption/rejection of a
software product. This is actually true for anyguot in general, but it is especially
true for Open Source Software (OSS), whose trushivess is sometimes still
regarded as not as guaranteed as that of closedesproducts. Only recently, several
industrial software organizations have started shgating the potential of OSS
products as users or even producers. As they avegetting more and more involved
in the OSS world, these software organizationsciarly interested in ways to assess
the trustworthiness of OSS products, so as to &@&S products that are adequate for

their goals and needs.

Trustworthiness is a major issue when people aggrozations are faced with the
selection and the adoption of new software. Althoegmead-hocmethods have been
proposed, there is not yet general agreement albbidh software characteristics
contribute to trustworthiness. Such methods —lilee ®@penBQR [30] and other similar
approaches [58][59]- assess the trustworthiness siftware product by means of a
weighted sum of specific quality evaluations. Narfighe existing methods based on
weighted sums has been widely adopted. In facsetimeethods are limited in that they
typically leave the user with two hard problems,jclihare common to models built by
means of weighted sums: identify the factors thetukl be taken into account, and
assign to each of these factors the “correct” weighadequately quantify its relative

importance.

Therefore, this work focuses on defining an adegnation of trustworthiness of Open
Source products and artifacts and identifying a lpemof factors that influence it to
help and guide both developers and users whenidgoichether a given program (or
library or other piece of software) is “good enoughd can be trusted in order to be

used in an industrial or professional context.

The result of this work is a set of estimation meder the perceived trustworthiness of
OSS.

This work has been carried out in the context oé 1T project QualiPSo
(http://www.qualipso.eu/), funded by the EU in &ta FP (IST-034763).

Davide Taibi




Towards a trustworthiness model for open sourdsvaoé
2010

The first step focuses on defining an adequateonatif trustworthiness of software
products and artifacts and identifying a numbefaofors that influence it.

The definition of the trustworthiness factors isven by specific business goals for
each organization. So, we carried out a surveyita these goals and factors directly
from industrial players, trying to derive the fastdrom the real user needs instead of
deriving them from our own personal beliefs anddoty by reading the available

literature.

The questions in the questionnaire were mainlysdiasl in three different categories:
1) Organization, project, and role. 2) Actual peahg, actual trustworthiness evaluation
processes, and factors. 3) Wishes. These questiensieeded to understand what
information should be available but is not, and twihdicators should be provided for

an OSS product to help its adoption.

To test the applicability of the trustworthinesstéas identified by means of the
guestionnaires, we selected a set of OSS projeately adopted and generally
considered trustable, to be used as referencesrwidtds, a first quick analysis was
carried out, to check which factors were readilgible on each project's web site.
The idea was to emulate the search for informatamied out by a potential user, who
browses the project’s web sites, but is not willingspend too much effort and time in
carrying out a complete analysis.

By analyzing the results of this investigation, wéescovered that most of the
trustworthiness factors are not generally availabith information that is enough to
make an objective assessment, although some fattre been ranked as very
important by the respondents of our survey. To thik gap, we defined a set of
different proxy-measures to use whenever a facionat be directly assessed on the
basis of readily available information. Moreoveojre factors are not measurable if
developers do not explicitly provide essential miation. For instance, this happens
for all factors that refer to countable data (etbe number of downloads cannot be

evaluated in a reliable way if the development camity does not publish it).

Then, by taking into account the trustworthinesstdes and the experience gained
through the project analysis, we defined a Goal&far/Metric (GQM[29]) model for

Davide Taibi



Towards a trustworthiness model for open sourdsvaoé

2010

trustworthiness, to identify the qualities and nostrthat determine the perception of

trustworthiness by users.

In order to measure the metrics identified in th@NG model, we identified a set of
tools. When possible, tools were obtained by adgptextending, and integrating
existing tools. Considering that most of metricsraveot available via the selected
tools, we developed MacXim, a static code analygs$

The selected tools integrate a number of OSS tas support the creation of a
measurement plan, starting from the main actorsl stakeholders’ objectives and
goals (developer community, user community, busineseds, specific users, etc.),
down to the specific static and dynamic metrics thi#l need to be collected to fulfill
the goals.

To validate the GQM model and build quantitativedals of perceived trustworthiness
and reliability, we collected both subjective elons and objective measures on a
sample of 22 Java and 22 C/C++ OSS products.

Objective measures were collected by means of Macid the other identified tools
while subjective evaluations were collected by nseaihmore than 500 questionnaires.
Specifically, the subjective evaluations concernédw users evaluate the
trustworthiness, reliability and other qualities ©ES; objective measures concerned
software attributes like size, complexity, moduigrand cohesion.

Finally, we correlated the objective code measutesusers’ and developers’
evaluations of OSS products.

The result is a set of quantitative models thatoant for the dependence of the
perceivable qualities of OSS on objectively obsklvgualities of the code. Unlike the
models based on weighted sums usually availabtéanliterature, we have obtained
estimation models [87], so the relevant factors tuedr specific weights are identified
via statistical analysis, and not in a somewhatensoibjective way, as usually happens.

Qualitatively, our results may not be totally susprg. For instance, it may be generally
expected that bigger and more complex productdeaeetrustworthy than smaller and
simpler products; likewise, it is expected that lwabdularized products are more
reliable.

Davide Taibi



Towards a trustworthiness model for open sourdsvaoé

2010

For instance, our analyses indicate that the OSflusts are most likely to be
trustworthy if:

* Their size is not greater than 100,000 effectiveC.O

» The number of java packages is lower than 228.
These models derived in our work can be used byuseds and developers that would
like to evaluate the level of trustworthiness a@lihbility of existing OSS products and
components they would like to use or reuse, basedmeasurable OSS code
characteristics. These models can also be usedédydevelopers of OSS products
themselves, when setting code quality targets basdtie level of trustworthiness and
reliability they want to achieve. So, the infornoatiobtained via our models can be
used as an additional piece of information that banused when making informed

decisions.

Thus, unlike several discussions that are basedsometimes interested— opinions
about the quality of OSS, this study aims at deg\statistically significant models that
are based on repeatable measures and user evadupt@vided by a reasonably large

sample of OSS users.
The detailed results are reported in the next@estas follows:

* Chapter 1 reports the introduction to this work

» Chapter 2 reports the related literature review

* Chapter 3 reports the identified trustworthinessdes

» Chapter 4 describe how we built the trustworthinesslel
» Chapter 5 shows the tools we developed for thisiact

» Chapter 6 reports on the experimentation phase

» Chapter 7 shows the results of the experimentation

» Chapter 8 draws conclusions and highlights futuoeke
» Chapter 9 lists the publication made during the PhD

Davide Taibi



Towards a trustworthiness model for open sourdsvaoé

2010

Table of contents

L INTRODUCTION ...ttt ettt e e a e e et e e e e et e e e e e a b e e e neaneas 8
1.1 TRUST IN OSS oottt ettt e s et e e e e e e eaaes 9
1.2 THE APPROACH. ... ettt e e e 11
1.3 ACKNOWLEGMENTS ...ttt e e 12

2 LITERATURE REVIEW ON OSS TRUSTWORTHINESS..........oooii e, 13
2.1 FREE SOFTWARE.... oottt ettt e 13
2.2  OPENNESS, FREE SOFTWARE, AND OPEN SOURCE..........ccoovtiiiiiiiiiieeiii e 14
2.3 WHAT DOES TRUST MEAN? ... eimme e 15
2.4 TRUST IN COMMUNITIES. ....ccotitiiiiiii e 16

24.1 DEPENDENCIES IN TRUST ANALYSIS ..ot 17
2.4.2 TRUSTWORTHINESS, SECURITY, AND PRIVACY ...oceiiiiiiiiiiiiiiiiecciiee, 18
2.4.3 DEPENDABILITY AND TRUSTWORTHINESS ... 19
2.5  THE OSS ADOPTION. ...ttt termeme et 21
251 THE OSS ADOPTION IN AUSTRALIA ... e 21
252 THE CANADIAN COLLABORATIVE FACT FINDING STUDY.......coccvvviiiieeiiiiinnnn, 22
2.5.3 THE ITALIAN PUBLIC ADMINISTRATIONS AND OSS......cccooiiiiiiiiiiieiiiiieeeee 24
2.6  FLOSS EVALUATION MODELS AND TOOLS ..ot 25
2.6.1  OPENBRR ...ouiii et e 25
2.6.2 QSO .. 26
2.6.3 OSMM, NAVICA ... ot 27
2.6.4  OSMM, CAPGEMINI ...ttt 27
2.6.5  OPENBQR ...ouiiiiiiiii ittt 27
2.6.6 THE BALANCED SCORECARDS ........ouiiiiiiiee et 28
2.7  SOFTWARE QUALITY MODELS ... 32
271  THE ISO 9126 STANDARD .....iiiiiiiiiii e e 32
2.7.2  OTHER MODELS ... .o e 33

3 THE IDENTIFICATION OF TRUSTWORTHINESS FACTORS ... ..o 36
3.1 THE QUESTIONNAIRE AND THE SURVEY .....ccottiimeiiiiiiii e 36
3.2  QUALITATIVE AND QUANTITATIVE ANALYSIS OF FACTORS........ccooiviviiiiieciiii, 39
3.3 APPLYING THE IDENTIFIED FACTORS TO REAL PROJEGST..........ccovvvviiiiiiiiiieeeeeen 47

3.3.1 PROJECT SELECTION ....uiiiiiiii ettt e e 48
3.3.2 PROJECT SELECTION PROCESS.........ot e 49
3.3.3  PROJECT ANALYSIS ...ttt e e 52
3.34 TRUSTWORTHINESS FACTOR REFINEMENT .....ooiiiiiiiiiii e 54
3.3.5  CHECKLIST DEFINITION L..ouiiiiiiiiiiii e 55
3.4 TRUSTWORTHINESS FACTORS ANALYSIS ... 57

4 MODEL BUILDING ....ouiiiiitii ettt ettt e e e re e e e e e e e e eans 59
41 A NOTE ON THE TERMINOLOGY .....couiiiiiiiiaiieiie et erraa e 59
4.2  THE GQM APPROACH ... .ot 60
4.3  TOWARDS THE DEFINITION OF THE GOAL .....coimmmeiiiiiiiicee e 62
4.4 THE GQM PLAN L.ttt er e e e 68

441 THE GOAL ...t et e 69

4.4.2  THE DIMENSIONS OF TRUSTWORTHINESS. ... 69

443  THE ABSTRACTION SHEET OF THE GQM GOAL..ccocmiiieiiiiiiieeeii e 72
4.5 REFINING THE TRUSTWORTHINESS MODEL .......omieiiiiiiieiiiiiiecvi e 74,

5 THE MEASUREMENT TOOLSET ..ottt e e 82
51  SPAGO4Q AND THE INTEGRATION FRAMEWORK .....ccceiiiiiiiiiieiiiiiieceei e, 82
52 IMACKIIM L ettt e e e e ean 82

Davide Taibi




Towards a trustworthiness model for open sourdsvaoé

2010
5.3 JABUT oo e 84
54  THE GQM TOOL ...ooiiiiiiiiiii et e 85
55  STATSVN AND STATCVS ..o e e 86
56  PMD AND CHECKSTYLE ..ottt e 86
57 GOM METRICS MAPPING .....coootiiiiiiiii sttt e e e 87
6 DATA COLLECTION ..ottt e e e e eeneas 90
6.1 THE OSS PRODUCTS BEING ANALYZED .......cotmmmmeiiiiiiieiiiiiee e 90
6.1.1 OBJECTIVES: DEFINING THE SET OF PRODUCT TO BEALUATED .............. 90
6.1.2 METHOD: SELECTION CRITERIA ... 90
6.1.3 RESULTS: THE LIST OF PRODUCTS EVALUATED DURBNTHE FIRST ROUND
OF EXPERIMENTS ...t e e e 92
6.2 PREPARATION OF THE DATA REPOSITORY ...t 93
6.3 SUBJECTIVE EVALUATION OF PERCEIVED TRUSTWORTHESS ...........ccooeeviinennnn. 96
6.4  OBJECTIVE EVALUATIONS OF OSS PRODUCT CHARACTERIICS.........ccocvviiieees 98
T ANALY SIS e 104
7.1 INTRODUGCTION. ...cuuiiiiiii ettt e e e e s 104
711 TOOLS o e e 104
7.1.2  ANALYSIS PROCEDURES .......cciiiiiiiii i 105
7.1.3  THE DATASET ... e e 107
7.2 ANALYSIS OF JAVA PRODUCTS ...ttt 108
7.2.1 RELIABILITY Lo 108
7.2.2 US ABILITY Lo et r e e 110
7.2.3  PORTABILITY Lt rra e 110
7.2.4  HOW WELL ARE FUNCTIONAL REQUIREMENTS SATISFIE...........cccoeeevennenn. 111
7.2.5  INTEROPERABILITY ...ttt e e 112
T7.2.6  SECURITY oot e e e 112
T.2.7  SPEED ... 112
7.2.8  DOCUMENTATION QUALITY ..ot 113
7.29 TRUSTWORTHINESS WITH RESPECT TO NON OPEN S@HRPRODUCTS.... 113
7.2.10 TRUSTWORTHINESS ...ttt e e e 113
7.3  THREATS TO VALIDITY Lottt 115
T4 DISCUSSION ..ottt r e e e e e eanes 117
8 CONCLUSIONS AND FUTURE WORK ...ttt eenea e 119
8.1.1 USAGE OF THE RESULTS.....ouiiiiiit e e e enaa e 120
PUBLICATIONS . .. eee ettt e e e e e e e e e 123
REFERENGCES ... et ra e e e e e e e e e e reeaeas 125
APPENDIX A:  THE QUESTIONNAIRE ON OSS SELECTION .....cccoiiiiiiiiiiieeeen 130
APPENDIX B:  TRUSTWORTHINESS FACTORS ANALYSIS ...t 141
APPENDIX C:  THE QUESTIONNAIRE FOR ASSESSING THE PERCEIVED
TRUSTWORTHINESS OF OSS... ..ottt eraa e e 167
APPENDIX D:  THE MODIFIED ELEMENTS OF THE GOM PLAN. ...t viiiiiiiiiiieeienien, 172
APPENDIX E:  WHY DO OUR LOGISTIC REGRESSIONS LOOK LINEAR? ...... .ccoovieeens 176
APPENDIX F: ANALYSIS OF JAVA PRODUCTS ..ottt 178
APPENDIX G: ANALYSIS OF C++ PRODUCTS ... .ottt 210

Davide Taibi




Introduction

pen Source Software (OSS) is a continuously growingement. To give
an idea of the size of the phenomenon, note thatrding to a report
published in August 2006 by the market researchgt®C, OSS is used
by over 70% of all developers worldwide, and inquotion at 54% of
organizations. Another IDC report, published in Baber 2009, shows that more than
85% of companies are using OSS. OSS can also beestal success stories: programs
like the Apache projects, Netscape/Firefox, Ecligseux, MySQL, and several others
are well known and used by a huge number of peeplddwide. Nevertheless, there
are several areas where OSS was not adopted,satnetas widely as it could be
expected. An example is given by so-called deskemwironments and office
applications. In fact, even in the areas where @&Sbeen successful, there are several
potential users that have not yet adopted OSS.
Reluctance in adopting OSS may be due to seveuaksaA first reason is that the very
concept of OSS is hardly understood [25][26]. Pedphd to confuse OSS with free
software (i.e., software that can be used with@aying any fee) and open standards
with proprietary disclosed software (like PDF)[2ZInother reason is that it is not
obvious how to carry out the cost/benefit analygisen that the acquisition cost of
OSS is usually null. Recently, the concept of T@akt of Ownership (TCO) has been
proposed as a means to evaluate the cost of agaptamaging and maintaining OSS.
Nevertheless, the concept of TCO is not widely ugedtly because it is not well
understood (there are several, often inconsistifitiitions) and partly because there is
the suspect that most published TCO evaluationgliaven by software vendors who
want to convince customers that the commercialoopts economically profitable.
Finally, deciding the adoption of OSS requires thaluation of the qualities of

candidate OS programs, and their comparison withngercial programs. However,

Davide Taibi




Towards a trustworthiness model for open sourdsvaoé

2010
assessing the qualities of OSS is still a not weltsolidated practice. Organizations
facing the problem of deciding about the adoptiéf©8S have hardly any guide for
carrying out a well structured comprehensive euvana
On the other hand, the producers of OSS cannobrelylear indication concerning the
factors that could determine the success of theryrcts.

1.1 Trust in OSS

Modern society depends on large-scale software@sssbf astonishing complexity. As
the consequences of their possible failure areigio, Iit is vital that software systems
should exhibit a trustworthy behavior.

Trustworthiness is a major issue when people amgrozation are faced with the
selection and the adoption of new software. Althoegmead-hocmethods have been
proposed (see for instance [30]), there is notgexteral agreement about software
characteristics contributing to trustworthiness.

In general, trustworthiness is a holistic propehgt encompasses security, safety, and
reliability. To define trustworthy software, we cdraw upon conventional notions of
trust in other contexts. Trust is the reliance Img @arty on the behavior of another
party. Trustworthiness is not a quality that carclaemed without being proved. Trust
is a matter of perception and implies finding answ¥ee non-technical questions like
“why should people have confidence in my softwaref?eéven “how can | make users
confident in my software?” Trust is a relationskiat involves two parties, the actual
and the expected behavior of software. It is alwegsditional on the context and
operational environment.

People may want to know useful key information dbany software before making
any commitment to use it and so, when users waatitpt new software, they have to
trust it. Usually, during the selection of new sadte, users start by checking if the
selected program does exactly what they want aey ¢bllect information about the
products from other users. In this respect, the iwadtearly an extremely valuable and
easily accessible source of information. Many welssrecord a wide range of users’
opinions and comments about several different kafggoducts.

Davide Taibi



Towards a trustworthiness model for open sourdsvaoé
2010

Clearly, there are other quality-related factorattkhould be verified. Measuring
trustworthiness is possible only if there are sipeaittributes to measure. For example,
in measuring reliability, there are many usefutiltites (such as mean time to failure
of hardware or software).

The problem surfaces both in Closed and in OSS vhite in OSS we can measure the

code quality, in Closed Source Software we can tralst the producer company.

In this work, we define a model for OSS trustwardss and identify, quantify, and
assess the quality factors that affect trust in Q88ducts. This methodology
encompasses measure definitions, measurementcesgatiata analysis, and the actual
computation of indicators. The approach is baseatitakes into account the needs of
both OSS developers and users. Therefore, this Yoatkses on defining an adequate
notion of trustworthiness of OSS products and astd and identifying a number of
factors that influence it to provide both develgpand users with an instrument that
guides them when deciding whether a given programlifrary or other piece of
software) is “good enough” and can be trusted ohepto be used in an industrial or
professional context. In addition, as there areisd\wquality factors that are believed to
b related to trustworthiness, such as reliabilityteroperability, this research also

provides estimation models for them.

Davide Taibi
10



Towards a trustworthiness model for open sourdsvaoé

2010

1.2 The Approach

Organizations perceive software trustworthinesghenbasis of the role that software
plays with respect to the organization itself. fwstance, an organization may be a
software producer, customizer, value adder, etcdd@al with the various aspects of
software trustworthiness, we used an organizedoagpr whose steps are described in
Figure 1.

Trustworthiness Analysis of . Tool Definition Experimentation
Factors X Model Building d Buildi d Ivsi
Identification relevant Projects and Building and analysis

Figure 1. The approach description

The first step focuses on defining an adequateonatif trustworthiness of software
products and artifacts and identifying a numbefacfors that influence it. To this end,
we carried out a survey to elicit these goals adoirs directly from industrial players.
The survey was conducted via interviews supportgdabquestionnaire, partially
derived from the existing literature. We intervielveeveral people with various
professional roles, to derive the factors from thal user needs instead of deriving
them from our own personal beliefs and/or only &gding the available literature.

To test the feasibility of deriving a correct, cdetp, and reliable trustworthiness
model on the basis of these factors, a set of kvellvn OSS projects have been
chosen. Then, we verified the possibility to asslkeegproposed factors on each project.
Next, we developed the trustworthiness models bggua number of factors as its
independent variables and an assessment of trubiness by OSS practitioners and
users as its dependent variable. Therefore, it weagssary to collect data from OSS
practitioners and users about the trustworthinésisting OSS products.

Finally, the information collected was analyzed fiod out whether the factors
influence the trustworthiness of the OSS productsatifacts.

The analysis were carried out via a variety ofetéght statistical (e.g., Ordinary Least

Squares, Logistic Regression) techniques were @medata analysis, based on the

Davide Taibi
11



Towards a trustworthiness model for open sourdsvaoé
2010

specific independent and dependent variables iedobnd the objectives of the data
analysis.

1.3 Acknowlegments

The research presented in this dissertation has eially funded by the IST project
Qualios  (http://www.qualipso.eu/), funded by the EU in tb FP (IST-034763).

Davide Taibi

12



Towards a trustworthiness model for open sourdsvaoé

2010 Chapter

Literature review on 0SS
trustworthiness

lthough there is a good deal of research work dtwsoe trustworthiness,
the traditional software trustworthiness assuraneehanisms mainly focus
on security and dependability properties of sofeMaghavior.

In this section, we discuss the literature we tmbé& account during this work.

2.1 Free software

The term "free software" was coined by Richard 8tafi in 1983 when he launched the
free software movement [45]. This term define saf®vwhich user can use for any
purpose, study the source code of, adapt to tleEds and redistribute. To avoid the
ambiguity of the English word "free", and to aveadking about the impact on freedom
of non-free software, people have suggested atigenaames. "open-source software"
was proposed in 1998 as "a replacement label"ffee "software"[46]. Later that same
year, Open Source Initiative (OSI) was founded tonwte the term as part of "a
marketing program for free software"[44]. "Softwdnbre" was first used publicly in

2000, by the European Commission [47]. The wororéll means having liberty. This

avoids the freedom/cost ambiguity of the word "freéEOSS" has since been used by
others with the meaning of Free/Open-Source Soéwaad was first introduced by the
U.S. Department of Defense. "FLOSS" was used inl28€ a project acronym by

Rishab Aiyer Ghosh as an acronym for Free/Libref@peurce Software. Later that
year, the European Commission (EC) used the phvhse they funded a study on the
topic[48]. The L for "libre" was included in the pe that it would clarify that the word

Davide Taibi

13



Towards a trustworthiness model for open sourdsvaoé

2010
"free” was referred to freedom, not to the priGSS is software released under a

license conforming to the Open Source DefinitiorS), as articulated by the OSI.
OSS is computer software whose source code is alailunder a license (or
arrangement such as the public domain) that peuséss to use, change, and improve
the software, and to redistribute it in modifiedummodified form. It is often developed
in a public, collaborative manner. It is the mostrpinent example of OSS
development and often compared to user generateterdo "Open source is a
development method for software that harnessepaler of distributed peer review
and transparency of process. The promise of opencesois better quality, higher
reliability, more flexibility, lower cost, and ame to predatory vendor lock-in"[44]

2.2 Openness, free software, and open source

Cerri and Fuggetta[49] analyze some topical asaoisnd the openness concept. They
started by arguing that there is a real problengérernments, users, and organizations
to understand correctly the meaning of “open” whens used in three different
contexts: Open Standards, Open Formats and Opanesou

Open standards define standard interfaces and reagemts of ICT systems and
services. They make it possible to have differemerchangeable and interoperable
products, developed by different software housesnpanies, and communities.
Unfortunately, the definition of standard has difiet meanings. Open formats are open
standards to store and transmit documents, infoaemagand in general knowledge.
Since open formats are open standards appliedtép idéormation, documents, there is
the same problem seen before for the word standpen source is an approach to
manage the development and the distribution ofasgt. Open source means that the
user of a software program is able (free) to acttessource code of the program, study
it, change it, and redistribute it. This is truedanthe conditions and the limitation
expressed by software licenses as we said before.

Cerri and Fuggetta then present a survey of tHerdifit meanings of "Open standards”
they found on the Internet (e.g., from Wikipediayr&pa, Bruce Perens’ website).
Almost all of the results are compatible with thredidition given by Wikipedia, but are
not coherent with the version provided by BruceeRsr After an analysis about the



Towards a trustworthiness model for open sourdsvaoé
2010

four different levels of openness (disclosed, camck open concerted, open de jure),
they face with some surrounding aspects like three@ion between open source and
open standards. They also focus on the protecfiosears’ rights in open domains. The
main claims they have identified to support the pidm of FLOSS (for all that
concerns trustability) are: users can inspect thé&rce code; users can modify the
software; different systems can interoperate. Tideyntify as extreme the exclusive
adoption of FLOSS as working platform especiallyr fgovernments, Public
Administrations (PAs) and Small and Medium Entesgsi (SMES).

Among other conclusions, on protection of userghts, they suggest to keep the
source code of custom software owned by the pmrrdorc maintainer, at least in non
exclusive form. The procurer is not bound to thginal supplier, and can use, modify,
and redistribute the software in the most appropri@ay. Again, with respect to
software packages, it is reasonable to requesthbatource code is made available to
the customer for inspection and recompilation.

This work comes after a previous one [50], in whialggetta tries to analyze some
propositions (some of which can also be found ifj)[4®out FLOSS in order to prove
that there are some misleading or false claimscétapares FLOSS and proprietary
software for each claim and he concluded that FL33®t so revolutionary.

Fuggetta position is probably a bit more leaningamds proprietary software and a
classical software engineering model instead df@%S model.

2.3 What does trust mean?

Trust is a complex phenomenon that has been thecblgf interest in various
disciplines. Depending on the approach, trust leenldefined in many ways. As an
example, trust can be defined as "have confidemc&ith in,"[89] "something (as
property) held by one party (the trustee) for thendfit of another (the
beneficiary),"[90].

Trust is a relationship between people, It involtles suspension of disbelief that one
person will have towards another person or ideastlis a relationship of reliance, "A
trusted party is presumed to seek to fulfill p@giethical codes, law and their previous
promises.”"[91] Also, in security engineering, astad system is a system that is relied
upon to a specified extent to enforce a specifesisty policy.

Davide Taibi

15



Towards a trustworthiness model for open sourdsvaoé
2010

All these quotes to underline the confusion thagtexon defining what "trust" means if
applied to FLOSS software and products. Since itaidy difficult to define trust
without a context, then defining trust in a pareuopic like FLOSS is a real issue.
However, some assumptions can be done on trustpeCaibve relationships, for
example, need to be built on the foundation ofttrAsitikainen reports a distinction
between affective and cognitive trust. Affectivaustr derives from an emotional
attachment between a trustor and a trustee, whigaitve trust relies on the rational
assessment of the target by the trustor [51].

2.4 Trust in communities

Antikainen [51] argues about the correlation betweemmunities’ sentiments and
trust. She starts assuming that into communitissudisions, trust is a key factor,
because someone may have an opportunistic behantrso it may manipulate the
public opinion about an OSS product positively egatively, to damage or to promote
it. Also, Antikainen does not forget how trust isvary important factor when
organizations and companies are making decisioatakoether they choose an OSS or
not.

She defines trust as "the extent to which a peis@onfident in and willing to act on
the basis of, the words, actions, and decisioranother.” Trust requires a relationship
between a trustor and a trust target. She analyzef the more active communities
on the FLOSS world: the Linux Kernel community. Stiend eight factors which seem
to affect trust in the community, ordered by theiportance: skills (the most important
one), practices, reputation, common goals, shanfgrmation, culture and values,
possibility to influence, familiarity.

Nearer to Antikainen work, Hertzum aims to expldia trust value of the relationships
between colleagues [34]. Hertzum noticed how iimigortant and cheap for employees
to ask information to colleagues rather than teeml sources. Thus, this implies a
problem about trustworthiness of received inforomatiThe quality and credibility of an
object, a person, or a piece of information are profperties inherent in the object,

person, or information. Rather, quality and crddbare perceived as properties.

Davide Taibi
16



Towards a trustworthiness model for open sourdsvaoé

2010

Thus in looking for information of high quality, @ineers are looking for information
that has the following characteristics:

1. accessible in a way that enables the engineerio &operception of its quality;

2. perceived to be of high quality.
In relation to human interaction, trust is defireesian emotive issue where the trusted
party has a moral responsibility toward the trugtgoarty. To the trusting party, trust
involves an assessment of whether the other pgrgssesses the required knowledge
and skills and is likely to give a truthful and usded account of what he knows.
People place trust in each other to varying degmg®ending on numerous situational
factors.
It is possible to distinguish four types of trust mmeans of the evidence on which the
trust is founded and with respect to the amoumvadence involved:

» first-hand experience;

* reputation: what third parties have reported;

* simple inspection of surface attributes;

* general assumptions and stereotypes.
Thus, knowing an information source first-hand,kapwing someone who knows it
first-hand, provides people with a more solid bdsisassessing the trustworthiness of
the source.
Assuming that trust may govern cooperative relatigps, it is possible to adopt that
such a trusted relation needs to exist also betwb#erent applications. German
explains [52] that almost every OSS applicationeshels upon some other external
application to be executed. Thus, if there is adnae evaluate how trustworthy a
product is, the assessment should be extended od iéd external dependences. As a
matter of fact, one single product may be evaluaedrustworthy, but it can depend

upon an external library which is not trusted.

2.4.1 Dependencies in trust analysis

German [52] identifies four reasons because a soé\wackage (the minimum unit that
can be selected and installed in a system) canndeyggon others: build dependency,
library dependency, main middle dependency, apimicadependency. This distinction

Davide Taibi
17



Towards a trustworthiness model for open sourdsvaoé
2010

affects the weight an un-trusted package can havdetermining the trust of the
product that has to be evaluated. German also tliste main categories of issues
affecting trust on a software A which are relateds dependencies on another package
B:
» Package B is not present.
» Package B is present, and performs its expectadsgudut its interface is not
the one expected by package A.
Possible reason:
* a new version of B is released while there is nabaesponding version of
package A.

» Package B is present, but it does not perform pecgd.

2.4.2 Trustworthiness, security, and privacy

Hansen defines trustworthiness meaning in resgeseturity and privacy meanings
[53]. More in details, he argues that security anigacy principally can be objectively
stated, while trustworthiness strongly dependsherstibjective experience and feelings
of the user.
The trustworthiness enhanced by disclosure of thece code particularly affects
privacy. While other qualities such as integrity availability can be formulated as
"do's" and be validated to some degree by pracéigperience, privacy requirements
are very often "don'ts". The main security goapatacy is confidentiality, which is
clearly a "don't" (expose information). Such reguirents as well as formal proof of
"don’ts" can only be validated by disclosure of m®s. So this is a great advantage of
FLOSS in respect to closed source software.
Hasselbring and Reussner [54] aim to provide astioliview of trustworthiness in
software in an interdisciplinary setting. They itBad some attributes trustworthiness
consists of:

» correctness: the absence of the improper systdassta

» safety: the absence of catastrophic environmentaequences;

» quality of service: that includes three attributesrailability, reliability,

performance;

Davide Taibi
18



Towards a trustworthiness model for open sourdsvaoé
2010

* security: the absence of unauthorized accessystars;

* privacy: the absence of unauthorized disclosuiafofmation.

243 Dependability and Trustworthiness

In [55] Lawrieand and Gacek present issues raigeth® articles, presentations, and
discussions concerning OSS, trustworthiness, aperability at the “Open Source
Development Workshop” held in Newcastle upon Tyd&, on the 25th & 26th of
February 2002. Among other contributions, they ulm® some key concepts about
OSS and trustworthiness. They also note that thensteTrustworthiness and
Dependability are equivalent. Trustworthiness i8.8. term and Dependability is a
European term. Some other hints are noticeabley Tdm@ort some given definitions of
trust and trustworthiness, and summarize as followsst and trustworthiness can be
different: trust may exist where there is no eveto justify the reliance placed in a
certain system, whereas trustworthiness suggeatstliere are assurance criteria to
justify our confidence in a system. Finally, Lawaed and Gacek conclude that, to be a
dependable and trustworthy system, a computer mysteeds to include certain
attributes such as security, reliability, availapil One interesting point that becomes
clear is that the stereotypical view of the FLOB&Zaar" model is not as chaotic and
ad-hoc as it first appears.

At last, Bernstein in [36] analyzes how rarely twsrthiness is considered by software
designers. They more often consider scheduless,cpstformances, requirements. He
does not distinguish FLOSS from closed source. §ints attention is focused on the
trustworthiness issue. He complains with the lackit@rest around trustworthiness and
he would be pleased if there were laws that regemery product to have a named
Software Architect and a Software Project Managérich control the trustworthiness
of the product and of the development process.timrghiness is a holistic property,
encompassing security, safety and reliabilityslhot sufficient to address only one or
two of these diverse dimensions, nor is it suffiti® simply assemble components that
are themselves trustworthy. Integrating the comptsn@and understanding how the
trustworthiness dimensions interact is a challenBecause of the increasing

complexity and scope of software, its trustwortegwill become a dominant issue.

Davide Taibi
19



Towards a trustworthiness model for open sourdsvaoé

2010
Software fault tolerance is at the heart of theldmg trustworthy software.
Trustworthy software is stable software. It is mudintly fault-tolerant that it does not
crash at minor flaws and will shut down in an olgleray in the face of major trauma.
Trustworthy software does what it is supposed tcadd can repeat that action time
after time, always producing the same kind of oufpam the same kind of input.
Finally, the National Institute of Standards andcHAmology (NIST) defines
trustworthiness as "software that can and mustustetd to work dependably in some
critical function, and failure to do so may haveas&rophic results, such as serious
injury, lost of life or property, business failuoe breach of security."

Davide Taibi
20



Towards a trustworthiness model for open sourdsvaoé

2010

2.5 The 0SS adoption

In this section we introduce the literature on@®&S acceptance in the world.
2.5.1 The OSS adoption in Australia

Goode’s survey [56] reports an in-depth analysis surprising en mass rejection of
OSS by Australia’s top firms. The survey was madecample of 500 companies. The
study found that managers rejected OSS becausecthdg not see that it had any
relevance to their operations, perceived a lacketidble ongoing technical support of
it, and also seemed to foresee substantial learosts or had adopted other software

that they believed to be incompatible with OSS.

ol Commercial
8%

Committec to
Microsoh 8%,

Lack Relevance
36%

Insufficient Resourcas
8%

Minemal or No
Requiramant
16%

Lack of Support
20%

Figure 2: Reasons for rejecting OSS

Figure 2 reports the percentages breakdown of nsakwy OSS rejection. The main
reasons are the following:

Lack of Relevance. Most respondents had perceiviy ldtle relevance of OSS to
their business, and could not see any benefitsséoitu Some respondents argue that
they might be open to adopt it in the future. "Gin@ argued that they had not adopted

Davide Taibi
21



Towards a trustworthiness model for open sourdsvaoé

2010
OSS because other nearby firms had rejected OSSsiipgests that, for at least some
managers, peer information networks are signifitamhis also confirms the high
relevance that trustworthiness has in peer comratiaits, as already indicated by
Hertzum [34].
Lack of Support. The second largest segment citeglkaof conventional and ongoing
support as a critical factor in their decision mmtadopt OSS products. Here are some
guotes from the interviewees. "We think there’sealrlack of tangible support.”;
"We're not interested because it's not a commei@ring."; "We really don’t know
anything about them and don’t want to know. We wsmmeone we can sue when
things go to the wall".
Requirement. The next group had evaluated OSS aéxdw but had determined no
business requirement for it: "at the moment it'stjumot feasible - we have no
requirement for it". This suggests that managerghimbe poorly exploring existing
software models. Although a huge variety of OSBregposed to companies, managers
would rather stay with their closed source offesing
Resources. A number of respondents noted a latknefand resource (i.e., companies
and managers do not have enough time and/or resouecinvest in OSS) as the
barriers to OSS. Summarizing in one sentence, duntg!3]: "open source software is
only free if your time has no value".
» Committed to Microsoft. This is an interestingrgentage (8%). The interviewees
assert that the committing to Microsoft precludesn for making use of OSS.

2.5.2 The Canadian Collaborative Fact Finding Study

The main aim of the Canadian Collaborative Factifm Study [59] was to raise the
level of understanding of why and how the OSS pgracnd its products, services and
communities are important to Canada, both domdistiaad internationally. The report
tries to fill a lack of information on OSS awaresg@sitiatives, opinions and attitudes in
Canada. The study includes (quoting from the text):

* A scan and review of commercial and non-commel©85 business models

for software, applications and services delivery,identify recent trends in

Davide Taibi
22



Towards a trustworthiness model for open sourdsvaoé

2010
Canada, the United States and other major markeis, the most credible
forecasts of future trends.

* Industry profiles of key ICT suppliers in Canadaondupport or supply OSS,
applications and/or services.

* An assessment of the engagement of business, gogatnacademia and civil
society organizations in Canada toward OSS produntsorder to better
understand awareness, concerns about support abilityli and conditions for
acceptance.

» Assessment of the business advantages of alteznapign OSS licenses and
marketing strategies, from the standpoint of botbpsiers and users.

» A synthesis of the issues, opportunities and caimf for Canadian industry
and government decision-makers.

The e-Cology Corporation organized the methodolgich this study was delivered
with. First, they exhaustively surveyed all the &dian and international literature
published on OSS. Subsequently, a workshop onuheef of software and OSS in
Canada was held in Ottawa. After the workshop, Gmms were invited to answer an
online questionnaire. The Corporation obtained mtran 180 responses to be
analyzed. Finally, 17 Canadian companies activ@3% business had been profiled to
produce fact sheets on their products and servidesdiagram in Figure 3 presents a
composite view (depicted from a technology diffusimodel developed by Industry
Canada and here adapted and applied to facilitateigh level interpretation of the
study results) of the state of OSS in Canada basdbe primary research findings.
OSS adoption is framed in the context of its Raditi Market and Infrastructure
Environmental factors, which determine the startoognditions, and ongoing forces,
which influence adoption of open source. Among otiesults, the study reveals how
trust and collaboration are the DNA of OSS. In fa©SS requires a very deep
understanding of the dynamics, conditions and feeirethe power of collaboration.

Davide Taibi

23



Towards a trustworthiness model for open sourdsvaoé

2010
| Environment |t _ Market Political Infrastructure
Cost regulato Skilled people
Awareness, environment Collaboratories.
Understanding Policy Reusable code
novation Leadership Projects
Industry Government Educafion
* Readiness Readiness Readiness
Readiness |t [gwareress .
I understanding “m“f",'ﬁﬁéng * awareness /
+ innovation need « mnovation need irsnteg
P « innovation need
i ¢ - skills
+ collaboration - y ,
+ open slandards . ::pel‘l s!ar::rd‘s o
Industry Government Education
L Diffusion Diffusion Diffusion
I DﬁfUSiﬂﬂl‘UﬂﬁH * budgel pressure
+ software reuse o soltwars reuse
« budgel
E— * national security . coﬂabcf:::um
< inll CN{!rﬂ'lhﬂ * cooperation 2 rau:ahil‘t','
« mproved solutions ermnmenl
inleroperabibity

[ Tipad e

+ markel success

rastructure cosls

» ciliZzen access

. |
- and ellciency resourtes
L WENess
& + achieving desired + curmculum
* compelitive oulcomes eflectiveness
advantage W4 i

kg Plaflonms

* iInnavation

Figure 3: An Overview of OSS with respect to Readss, Uptake, Impact

2.5.3 The Italian Public Administrations and 0SS

The sentiment of Italian PAs on OSS is contrastidig.the one hand, many offices use
multiple hardware/software platforms (Windows XPR hilso MacOS, Ubuntu, SuSe,
RedHat or AlX), as desktop, servers, data managegrfient- end systems. But there is
still distrust from PAs towards OSS alternatives. tBe other hand, in June 2007, the
Ministero per l'lnnovazione e le Risorse nella PAshfounded the "OpenSource"
Commission, composed of several of the main Itatiaperts. At the same time the
Open Source Observatory was started128, hosted\bl AC[69](National Centre for

Informatics in the Public Administration); one dfet first objective was to shed light
over reuse aspects of software products [75][76&r& is also an initiative fulfilled by

the Roma Linux User Group. The project OpenPA [@Bhs to spread the OSS

knowledge toward PAs and schools. The Regione Rigaritas built the Consorzio per

Davide Taibi

24



Towards a trustworthiness model for open sourdsvaoé

2010
il Sistema Informativo [73] to promote innovation PAs using the most recent ITC
technologies. This Consortium has eight local eSiand 54 members. The Consortium
trusts in OSS and it has used OSS for 10 yearan®@006 it has launched an OSS
middleware platform, named OASI (Open Available 8edntegrated)[75], to develop
and provide services to PAs and users. AncitelAS.pas renewed its platform
investing in OSS projects. Ancitel provides teclogidal services to Italian
municipalities, having as technological partnersl AT division and Telecom Italia
S.p.A.. ACl itself is supporting six different peajs for PAs.
Regione Piemonte is still one of the more activbjestts in the adoption of OSS
software. There are two remarkable projects. SimtPigitali S.r.l. has chosen to use
only OSS for its services and products [76]. Thiay @ reach a more extended ROI, to
have a social feedback, to reduce the "digitald#Vi Companies and PAs can use
spared money thanks to the non-existent cost f@ @®nses investing them towards
education, personalization, information updatingd avolution. The other project,
named OSS Piemonte and funded by Regione Piemgatleers a set of companies
which collaborate to achieve the objective of usi§S solutions to provide services
and products to their customers.

2.6 FLOSS evaluation models and tools
There is a general uneasiness with FLOSS becauséesleiading, misunderstandings or
completely false opinions around FLOSS and FLOS8dwin this section, we analyze

the most important FLOSS evaluation models andtool

2.61 OpenBRR

OpenBRR.org proposes a model named Business Read®ating for OSS as an open
standard to facilitate the assessment and the iadagft OSS [58].

They point out how, in practice, many software ea#ibn projects are dored-hog
without a formal assessment methodolodd-hoc methods may be incorrect or
incomplete in their assessment, and it is extrerdéhcult to validate the correctness
of the evaluation. They suggest that using an dpepromote trust in the assessment

process) and standard (to allow common understgndfnthe assessment ratings)

Davide Taibi

25



Towards a trustworthiness model for open sourdsvaoé
2010

model to assess software will increase the easecan@ctness of evaluation, and
accelerate the adoption of OSS. Additionally, FLQS8rs can share their assessment

result with FLOSS communities.

2.6.2 QSOS

QSOS (Qualification and Selection of Open-Sourcéwsoe) is a free method
developed by Atos Origin to allow software quabkfiion by integrating the open source
characteristics and software comparisons accorin@rmalized needs requirements
of weighted criteria, in order to make a final c®[59].
The general process of QSOS is made up of fourdependent steps, and can be
applied iteratively with different granularity t@fme each of the four steps. The four
steps are the following:
1. Definition. Constitution and enrichment of frames reference used in the
following steps.
2. Evaluation. Evaluation of software made on threesaaf criteria: functional
coverage, risks for the user and risk for the serprovider.
3. Qualification. Weighting of the criteria split umahe three axes, modeling the
context.
4. Selection. Application of the filter set up in Stepf data provided by the first
two Steps.
Atos Origin also developed a tool (named O3S, a®fwen Source Selection Software)

to apply the QSOS method in a coherent way.

Davide Taibi

26



Towards a trustworthiness model for open sourdsvaoé

2010

2.6.3 OSMM, Navica

The OSMM (Open Source Maturity Model) is designedenable organizations to
evaluate FLOSS products and understand whether calugr can fulfill the
organization’s requirements [60].

Enterprises, as well as PAs and organizations,ofiem wondering whether an open
source product will satisfy their needs. The OSMIkgtmod evaluates a FLOSS product
assessing its support, training, documentatiomgnation and offered services. There
are the main requirements an enterprise has to batisfied in order to adopt a
software product. OSMM comes with a recommendedmuim maturity scores to give

a context to compare to the new evaluations.

2.6.4 OSMM, Capgemini

Capgemini developed an Open Source Maturity Modelséven steps to allow

organizations, PAs and enterprises to determin@rifwhich FLOSS product is

suitable[61]. The Capgemini OSMM describes how &@SCshould be assessed to
ensure that the product meets the IT challengepani®s face today. Twenty seven
FLOSS indicators has been found, either for prazlant applications.

2.6.5 OpenBQR

OpenBQR (Open Business Quality Rating) is a modeébped by Davide Taibi as his
thesis project at Univerista degli Studi dell'lnsiaf30]. This model comes as the
extension of and, at the same time, the join betvi@genBRR and QSOS. It introduces
new evaluation criteria and overturns the stepsetécting and of weighting products,
starting from the weighting of elements and theasimg on the weight, evaluating
which elements have to be scored. OpenBQR aime t@nlopen, standard, adaptable,
complete, simple model.
Unlike other models, OpenBQR firstly assigns a \weigr every element considering
five indicators areas:

* Product use target

* Internal qualities analysis

* External qualities analysis

Davide Taibi

27



Towards a trustworthiness model for open sourdsvaoé

2010
e Support availability in time
» Evaluation of functional requisites
With the model a tool named Open BQR Tool is alsovided to support users in their

comparative analysis.

2.6.6 The Balanced Scorecards

The Balanced Scorecards (BSC) technique was prdpasine early '90s by Kaplan
and Norton [83] as a reaction to the growing awessrthat companies could no longer
be managed on the basis of financial measures .ak@man and Norton believed that
traditional financial measures needed to be supphed with the measures of the key
factors which determined financial success. Theegfihey devised a set of operational
measures that could create a balance of emphasibeodesired outcomes and the
means of achieving them.
A few years ago, the BSC approach was adapted ,tanl®rder to provide the IT
departments of large companies with a tool to measua complete and balanced way
the contribution of IT to the main business of t@mpany, thus overcoming the
traditional view of IT as a cost.
Here we are concerned with the application of BRO$S.
The Balanced Scorecards (BSCs) are a measurenmgmirsed strategic management
method.
BSCs were proposed by Robert Kaplan and David Mofftr general purpose
organizations (i.e., not specifically for Inform@ti and Communication Technology
organizations). They observed that traditional nganaent-oriented metrics (like the
Return On Investment, for instance) were too muattred on a financial view of the
productive organizations. In particular, they obedrthat ROI-like techniques were
limited with respect to scope (in that they proddmn all-internal view of a company
situation) and time (they concerned only the pasfopmance of the company).
In order to get a more complete and effective vidwihe state of an organization, they
proposed to measure, in addition to financial issue

* The performance with respect to the outside wadslider this respect, customer

satisfaction was considered the most representatieator.

Davide Taibi
28



Towards a trustworthiness model for open sourdsvaoé
2010

 How well is the company (or organization) equippgedbe successful in the

future. The ability to innovate, learn and grovthas considered a fundamental
domain of the BSC method.

Finally, Kaplan and Norton identified the need ssess the performance of the internal

process, which is directly linked to customer $atison and to financial results, and

that is where the learning and growth take place.

These additional metrics were meant to providecatibns concerning the future

financial results, the strategic objectives to addr and to maintain a healthy balance

among the various relevant perspectives.

Figure 4 schematically illustrates the four persipes addressed by the BSCs.

] " m m
Financial ge,¢
g n O &
2822
=
To succeed o=k =
financially, how
should we appear
to our
shareholders ?
A
)
Customers 88 8 Internal $¢,8
3 @*g = business process 3 ¢ & s
S5 E Vision and . §S°E
== isionand | || To satisfy our

A

To achieve our
vision, how will
we appear to

our customers?

strategy shareholders and
customers, what
processes must

we excel at?
. 8o o
Learning 22,9
and Growth 8858
. 29 gE
To achieve our O=k =<

vision, how will
we sustain our
ability to change
and improve?

Figure 4. The domains addressed by the BSC.
Considering again the TCO and Open BQR techniquéisel framework of the BSC it

is quite clear that they do not provide a complatel balanced evaluation: the

contribution of TCO is entirely contained in thedncial perspective. The Open BQR
contribution spans the internal process and gropétspectives, but with a partial
coverage. In fact, the Open BQR addresses onl\sdftevare aspects of the process,
since non-software issues, e.g., concerning orgtaiz, training, etc., are not taken

into consideration.

Davide Taibi

29



Towards a trustworthiness model for open sourdsvaoé
2010

In practice, the Balanced Scorecards techniqueestigdghat when defining a method

for evaluating the trustworthiness of an OSS produe consider different aspects:

. How well does the OSS product contribute to theifass process of the
user.
. How well does the OSS product support the usermegton in addressing

changes and new challenges. Conversely, how welltamely does the
evolution of the OSS product match the new requamgsiof the users.
. What are the costs and benefits of using the O88&ugt.
. What is the contribution that the usage of the O@8duct provides to the
perception of the organization from outside (ég.customers).
The fact that applying BSC to OSS evaluation isoadgidea is demonstrated by the
following example.
An organization decides to adopt an OSS produdeadsof buying the licenses for
using an equivalent commercial product.
A first effect of this decision is — quite obviouslthat the license costs disappear and,

at the same time, the commercial software becomasgailable.

Financial Perspective

S e |

costs

|
|

Learning and Growth
Perspective

Customer Perspective

Internal Business
Process Perspective

N /

Figure 5. Example: effects of not buying commerciadoftware.
These effects can be precisely classified in th€ B@mework (see Figure 5). In

practice the beneficial effect of not paying treefhice for the software is accompanied

by negative effects in all the other sectors.

Davide Taibi
30



Towards a trustworthiness model for open sourdsvaoé
2010

Note that here we indicate only the qualitativeeetf$ of the decision, but according to
the BSC we should define proper metrics to perfarmuantitative evaluation. The
measurement addresses different issues: from obdtences to the efficiency of the
process, to the quality of the products, to thestsadtion of the customers.

The second part of the decision is that OSS is.uslsd these effects can be precisely
classified in the BSC framework (see Figure 6). &haluation shows that:

. From the financial point of view OSS is not fordrehe organization will
have to adapt it, to configure it, and possibly gerform maintenance
activities.

. From the point of view of the process the OSS &able, and with respect
to some issues even better. This is quite commah ®@ES: having the
possibility to instrument the code means betteting<f functionality and
security.

. From the learning and growth perspective we hanegative effect (the cost
of learning) and a positive effect (the knowleddetle software allows
faster and better responses to new requirements).

. From the customer perspective, being recognizeth&yDSS community as
a qualified user and/or developer of the OSS irsgedhe reputation of the
organization.

Finally, we have to combine the effects illustrated~igure 5 and Figure 6 to get the

complete picture. The measurement of the variopsas will be able to prove that the

effects of the decision are balanced, and thagthleal consequences of the decision
match the organization’s goal. In this case we wdund that the license savings are

partially compensated by the need to adapt andgroefthe software, and that the lack
of the (supposedly high-quality) commercial softevés compensated by the ability to

configure and adapt the OSS in a more timely afet®fe manner.

Although the situation described above is only aangple that cannot be generalized
indiscriminately, it illustrates quite clearly tlaglvantages provided by the evaluations
based on the BSC.

Davide Taibi
31



Towards a trustworthiness model for open sourdsvaoé

2010

Financial Perspective

/.

Customer Perspective

N

Internal Business

Process Perspective
User ’ P
community . - _
provides l OSS suitable

for the process
(even better
wrt security)

reputation &
support

Learning and Growth

Employees
can maintain &
adapt OSS

]
Figure 6. Example: effects of adopting Open Sourcgoftware.

2.7 Software Quality Models

In this section, we introduce the software quafitgdels taken into account in this

work.

2.71 The 1SO 9126 standard

The first of the ISO 9126 standards[68], namely IS126-1, defines a set of quality
characteristics and sub-characteristics that domstits Quality Model, as shown in
Figure 7.

Davide Taibi

32



Towards a trustworthiness model for open sourdsvaoé

2010
g o —1  suitabiliy | Sub-factors
——I Accuracy ]
_I Functionality ]__I Security ]
_l Interoperability r h 4
_I Compliance ] . e ]
1 —I Fault Tolerance ]
'——I Reliability |

_l Recoverability ]

_[ Time Behavior ]

7=} j |
™ Compliance
-

=) _I Efficiency _| Resource Behavior

Q I_ Analyzability
w .

= I c

o ompliance | Change-abilit
an | g y
> I Maintainability | L1 stability
]

2

a

Adaptability
:: Install-ability : ::
—1  Portability |—t— Co-existence |
| Replace-ability | — Understandability |
| compliance | |—{ Learn-ability |

|
Testability I
|

Compliance

L usability | | Operability |
_| Attractiveness l
_I Compliance l

Figure 7. 1ISO 9126 quality model.
The qualities defined in the ISO 9126-1 standagdthe ones that were believed to be

the most relevant when the standard was defined.

Recently, there is the tendency to add security intetoperability to the set of ISO
9126 gqualities. These qualities are recognizetiemiew set of ISO 25000 standards. In
fact, it should be noted that security and interap#ity are already present in the 1SO
9126 standard, but only as ‘sub-factors’ of funuaity.

2.7.2 Other models

The second of the basic and founding predecesdoisday’s quality models is the
quality model presented by Barry W. Boehm [79][86]is models attempts to
gualitatively define software quality by a givert sé attributes and metrics. Boehm's
model is similar to the McCall Quality Model [81] that it also presents a hierarchical
quality model structured around high-level charasties, intermediate level

Davide Taibi
33



Towards a trustworthiness model for open sourdsvaoé

2010

characteristics, primitive characteristics - eadhwiich contributes to the overall
quality level.
The high-level characteristics represent basic-leghl requirements of actual use to
which evaluation of software quality could be puihe general utility of software. The
high-level characteristics address three main guesthat a buyer of software has:

* As-is utility: How well (easily, reliably, efficietty) can | use it as-is?

* Maintainability: How easy is it to understand, nfgdind retest?

» Portability: Can | still use it if | change my enmnment?
As-is Utility, Maintainability, and Portability arenecessary (but not sufficient)
conditions for General Utility. As-is Utility requas a program to be Reliable and
adequately Efficient and Human-Engineered. Maimtiility requires that the user be
able to understand, modify, and test the programd, i aided by good Human-
engineering. Note that qualities overlap: e.g., eomicativeness is part of both
Human-engineered and Testability (and hence of tdanability).
It must be noted that the comparison is made aguptd the quality hierarchy defined
in the models (i.e., the qualities at the highestl in model A are compared to the
qualities of model B at the same level). This cannisleading, since the way the
hierarchy is defined depends on the aims and pointgw of the models’ authors. For
instance, though Boehm’s and McCall's models migyppear very similar, McCall's
model primarily focuses on the precise measureraétiie high-level characteristics
“As-is utility”, whereas Boehm’s quality mode modsl based on a wider range of
characteristics with an extended and detailed focugrimarily maintainability.
As a consequence, interesting qualities of a seéiywaoduct can be located in different
places in the hierarchies. Consider for instanee Wmderstandability: it is present
among the qualities of Boehm’s model [79] but mothe 1SO 9126-1 model. However,
it is quite clear that Analyzability and Change#pi(which are sub-factors in the ISO
9126 model) depend on the understandability optieeluct being analyzed or changed.
In practice while Understandability is consideredoag the main qualities by Boehm,
it is considered ‘only’ functional to Maintainalyi (through the Analyzability and
Changeability sub-qualities) by the ISO 9126-1 nto8émilar considerations apply to
qualities like Documentation, Clarity, etc.

Davide Taibi

34



Towards a trustworthiness model for open sourdsvaoé

2010

Figure 8. Boehm’s quality model.

Davide Taibi
35



Towards a trustworthiness model for open sourdsvaoé

2010 Chapter

The Identification of
Trustworthiness Factors

Defining a method for evaluating the trustworthived OSS products requires the
understanding of the trustworthiness goals of saféamorganizations when they deal
with OSS, and the factors to be taken into accadnan deciding whether a given OSS
application (or library, or any other piece of sgdte) is trustworthy enough to be used
in an industrial or professional context.

To collect information about these goals and fagtave have used an empirical
approach, by surveying 151 OSS users. By “users,’mean all the figures that deal
with an OSS product, including developers, intemrgtsystem administrators, product
managers, end users, etc. Our survey has prinfadlysed on investigating goals and
factors about the trustworthiness of OSS produatsthe context of industrial
environments.

The objective of the survey was twofold:
* To understand the reasons and motivations that $ediivare companies to

adopt or reject OSS, and, symmetrically, softwareetbpers to develop OSS;
* To understand which specific trust factors areriak&o account when selecting
an OSS product.

3.1 The questionnaire and the survey

The survey was carried out by using a questionnainech was developed jointly with
the researchers that studied the trustworthines®®% processes in the QualiPSo
project. Here we only report on the parts of theonnaire that address the factors

affecting the trustworthiness of 0SS products.

Davide Taibi

36



Towards a trustworthiness model for open sourdsvaoé

2010

The questionnaire was developed by taking into @acthe literature on OSS product

trustworthiness and software quality evaluation e(s€30][58][59][60]). The

guestionnaire is a general-purpose one, since:

It addresses OSS “as-is” usage , as well as itslopment and its maintenance;
It is applicable to companies of any size;

It targets multiple organizational roles (from thmexperienced developer to
upper management levels);

It can be used in all application domains.

The questions in the questionnaire address two majiposes:

Assessing the current situation, i.e., understandme current trustworthiness
problems, evaluation processes, and factors. Tdwigto take a snapshot of the
state-of-the-art in OSS trustworthiness accordingur interviewees.

Collecting “wishes,” i.e., understanding what kinaf information our
interviewees would like to have about OSS, evemughathis information may

not be commonly available.

The objective is to understand which additional ami@nt trustworthiness factors and

measures should be available for an OSS produelfo its adoption. This may help

OSS developers enhance the quality and type ofrm@#Eton provided in OSS

repositories, so that users have a better way dsessing the trustworthiness of OSS

products.

The questions in the questionnaire are organizedrdmg to the types of information

we sought to collect, as described below:

Personal Informationused to profile the interviewee, and the compang
organizational unit the interviewee belongs to.

Role of the Organization in Relation to O%Sed to understand the specific use
of OSS in an organization.

Selection Procesaused to understand the process followed wherctagdea
specific OSS product, even in cases in which tloegss is completely informal.
Economic used to understand the main economic driversnblethie choice of a
specific OSS product over other OSS products @edource software.



Towards a trustworthiness model for open sourdsvaoé

2010

» License used to identify the most widely used licensés, problems that can
occur when using the available licenses and theactexistics that a good or
ideal license should have.

* Development Procesgven though we investigate the trustworthines©®86
products, development process aspects need tkée iteto account as well, as
they may very well influence the trustworthinesshaf product.

e Product Quality Issuesused to understand the product quality attribubes
OSS users take into account when selecting OSSupiad

» Customer Requirementaised to understand the extent to which customer

requirements are influential when choosing an OR8urt.

We wanted to collect information in a structuredhian by means of closed-answer
guestions, as well as additional, less structurd@drimnation by talking with the
interviewees. Thus, each section in the questioanalso contained open-answer
guestions, to prompt the interviewees to providewith additional information. As
mentioned above, we also wanted to know the irger@es’ wishes, i.e., which
additional pieces of information the intervieweeswd like to have about OSS, even
though these pieces of information may not be contynavailable.

One of the most significant objectives was to itigage which factors are deemed to
be more important during the assessment of OSSuptedThus, we asked the
interviewees to provide us with an “importance”ualfor those factors on a 0 to 10
scale, with 0 meaning totally irrelevant and 10 nmeg absolutely fundamental. We
clarified that the single ranks have their real nieg only in comparison to other ranks.
For instance, giving a value of 6 to interoper&piland 4 to size indicates that
interoperability is believed to be more importaman size, but the individual values 6
and 4 have no meaning in themselves. So, the s@aiesed is a truly ordinal one.

We carried out the vast majority of the interviemwsperson and some by phone. We
believe this is the most effective way to eliciformation and establish an effective
communication channel with the interviewees. A# thterviews we carried out were
individual ones, since we believe that it is impottthat the interviewees provide their
own viewpoint without any sort of conscious or ewertonscious interference due to

the presence of other people, especially if belugpgo the same organization. While

Davide Taibi
38



Towards a trustworthiness model for open sourdsvaoé

2010
conducting the interviews, the feedback receivedhfthe first interviewees allowed us
to revise and improve the questionnaire.

The complete questionnaire is listed in Appendix A

3.2 Qualitative and Quantitative Analysis of
Factors

We have conducted 151 interviews. The interviewaatonalities comprise several

countries (Brazil, China, France, Germany, ItalglaRd, Spain, United Kingdom and

USA). The sample contains interviewees that ditber

* The organizational roles of the interviewees inrthempanies;

* The type of the organization of the interviewees;

 How OSS is used by the interviewees.

The sample of interviewees was not determined waack. A pre-planned sample
would have allowed for a more controlled resultlgsia, but it would also have limited

the possibility to add interviewees to the setnnuaanticipated manner. We are fully
aware that this may have somewhat influenced awitse but:

» It was not possible to interview several additiopabple that could have made
our sample more “balanced,” because they were vakaale or had no or little
interest in answering our questionnaire;

* No reliable demographic information about the oNepampulation of OSS
“users” is available , so it would be impossible konow if a sample is
“balanced” in any way

 We dealt with motivated interviewees, so this eedua good level for the
quality of responses;

* There is no researcher’s bias in our survey, simeesimply wanted to collect
and analyze data from the field, and not providdence supporting or refuting
some theory;

 We also investigated the influence of the interaew characteristics on the
results, to check whether a more “balanced” sanageld provide different
results.

During the interviews, we kept track of the roletbé interviewees. An interviewee

could play multiple roles (for example, an intewee could be both a Developer and a

Davide Taibi
39



Towards a trustworthiness model for open sourdsvaoé
2010

Project Manager). The roles are fairly equally riistted among Upper managers,
Project managers and Developers (see Table 1). @®%rts are clearly
underrepresented.

Role Percentage
Upper manager 30.8 %
Project manager 20.5%
Developer 39.7%
OSS expert 6.4%

Table 1: The interviewees role distribution

Here, we provide a concise analysis of the resgowseobtained, with insights gained
by statistical analysis. To carry out a sound sfiadl analysis on the importance
ordering of the factors, we used three non- paraegdsts that are appropriate with
ordinal scales: the Sign Test, the Mann-Whitneyt,Tasd the Wilcoxon Test [40]. We

used 0.05 as the statistical significance threshaddis customarily done in empirical
software engineering studies.

Strictly speaking, the ordering of factors accogdio importance cannot be obtained
directly using the arithmetic means of the prefeeewalues found on the sample,
because:

* The importance of the single factors is measuredrbgrdinal scale and not by
an interval or ratio scale, so the mean may notd®r as a sensible central
tendency indicator for comparison purposes;

* We wanted to assess the statistical significandaeobrdering, that is, we need
to know how “reliable” the ordering between twottas actually is.

At any rate, the arithmetic means of the importaiatmg of factors give an interesting

and expressive piece of information, so we proveEn alongside the factors ordering
for illustrative purposes.

The summary of the results is shown in Table 2wimch the factors are organized
according to the sections of the questionnaire. Skatstical analysis has allowed us to
partition the factors in 8 importance groups fromldgligible to 8-Fundamental, and

has provided evidence for the existence of an ergdretween factors belonging to

different groups.

Davide Taibi
40



Towards a trustworthiness model for open sourdsvaoé

2010
Specifically, it is not possible to find a statistily significance importance ranking
among the factors in the same group, while at least statistically significant
importance ranking exists between factors belongindifferent groups. For instance,
no statistically significant ordering can be foubhdtween factors performance and
usability, which are both at level 5. However, bfatttors are believed, in a statistically
significant way, to be more important than comglgxivhich is in group 2.

Upper Project All Group
Factor managemen| manager| Developer| respondent;
TCO 2% -6% -26% -15% 2
ROI 4% -1% -10% -14% 2
Types of licenses used 6% 10% 5% 1% 4
Availability of tools for developing
modifying customizing OSS products -8% -6% 8% 1% 4
Availability of best practices on the
specific OSS products -2% -3% -12% -6% 3
Availability of technical
documentation / user manual 8% 28% 2% 19% 7
Environmental issues 7% 12% -4% 4% 4
Availability of training, guidelines,
etc. -13% -16% -24% -16% 2
Mid- / long- term existence of a user
community 16% 249 7% 13% 6
Mid- / long- term existence of a
maintainer organization / sponsor -1% -2% -2P% -12%?2
Short-term support 6% 25% A% W% 5
Reputation of the OSS vendor -20% -4% -1P% -14% 2
Distribution channel -85% -85% -41% -49% 1
Programming language uniformity -19% -8% -4% -9% 3

Existence of a sufficiently large
community of users that can witness

its quality 10% 16% 29 12% 5
Existence of benchmarks / test suites
that witness for the quality of OSS -14% -8% -20% 14% 2

Degree to which an OSS product
satisfies / covers functional

requirements 27% 28% 29% 28% 8
Reliability 21% 23% 279 25% 8
Performance 49 12% 9% 1006 5
Usability 14% 18% 9% 13% 5
Maintainability 12% 23% 21% 17% 6
Portability -6% 1% 3% 1% 4
Reusability -4% 8% 9% 5% 4
Size -51% -48% -38% -39% 1
Complexity -23% -22% -13% -16% 2
Modularity 1% 8% 10% 8% 4
Standard architecture 4% -7% 5% 6% 4
Usage od design patterns -20% -18% -11% -14%2
Security 1% 27% 9% 13% 5
Davide Taibi

41



Towards a trustworthiness model for open sourdsvaoé

2010
Standard compliance -2% 1406 19% 12% 6
Self containedness -10% -22% -4% -9% 2
Interoperability 21% 149 21% 19% 7
Localization and human interface -5% 8% -9% -5% 3
Customer satisfaction 24% 330 10% 16% 7
Interoperability 119% 32% 19% 18% 7
Law conformance -9% 0% 5% -1% 4
Standard imposed -30% -1% -9% -13% 2

Table 2: Trustworthiness Factors (importance for ugsrs and group)
The factors reported in Table 2 are analyzed inibahd discussed below.

OSS Selection Process

The majority of interviewees (74.3%) answered tiegty do not use a formal OSS
selection process but, when they were asked fyrthey admitted that they actually do
use an informal selection process, roughly followetheir organizational unit.

None of the interviewees mentioned the use of ttistieg OSS product evaluation
methods that are available in the literature (Seeti® 2.6). This result shows that,
even though some of the methods originated in ss#veompanies, there is still a gap
to be bridged between these methods and the mractic

Economic Factors

In general, both Return On Investment (ROI) andalf@Gbst of Ownership (TCO) were
expected to be considered very important, but éselts do not support this intuition
(both TCO and ROI are relegated in group 2!). Tesllt is quite surprising, especially
for TCO, since it is usually considered a relevamd direct indicator when comparing
costs of OSS products to closed source proprigargucts.

Other social and economical factors and issues bae@ mentioned as important by
the respondents. OSS ethics is among the most temgoones; OSS supporters
consider ethic values at least as important asaunmnprofit. Another important factor
is related to integration, since integration cost affort have been reported to be high,
if there is the need to integrate proprietary safew Control of code is also considered
a big advantage when choosing OSS products, smeanied economic dependencies
(vendor lock-ins) can be avoided. Ease of acqaisiivas also mentioned: this is a
subtle topic but nevertheless important, since amynorganizations spending money to

buy software can be a lengthy and complex proc&isse there is usually no need to

Davide Taibi
42



Towards a trustworthiness model for open sourdsvaoé
2010

spend money at the moment of OSS acquisition, @3&garded as a faster and easier
way to acquire the needed software.

License

Some interviewees identified a large number ofnises that are used in their
organization, while the vast majority only nametewa. Overall, GPL is considered as
the standard license. Most of the interviewees idensd licenses and legal issues of
medium importance when incorporating an externgd @&duct in their own products:
the factors type of licenses and the factor lawirmgroup 4.

Sometimes, OSS products come with licenses that@rexplicitly mentioned. Clarity
in the licenses is a common requirement, since aften difficult to understand what a
license allows or forbids. The large number of exgslicenses further complicates this
issue, since some of the licenses appear to bdasirbut turn out not to be fully
compatible. This appears to be a relevant hindrémtee adoption of OSS.

Development Process

In this section, we deal with the factors that @ncthe usage of OSS in SW
development. Some interviewees check the qualitarofOSS product by testing it
thoroughly, even if the factor benchmarks / testesuis regarded as a very low
importance factor (it lies in group 2). This lownkang may be partially due to the fact
that OSS users do not expect such benchmarks ahduiees to be available for OSS
products. In some cases, OSS could not be useddeetize available OSS components
were not certified, while the applicable regulaionandated that software be certified.
The availability of documentation is considered yémportant in the process of
selecting OSS: documentation lies in group 7. Tin@renment and the context play
significant roles in the selection of OSS, and tiesconfirmed by the factor
environment being in group 4. The analysis indicdiat interviewees do pay high
attention to the vitality of the user communityt@mms of how long it has been existing
and, to a lesser degree, to the number of peopddvied: user community lies in group
6, user community that witnesses quality and steonh support (the possibility to have
bugs fixed in a short period of time) lies in grdugFinally, the availability of tools lies
in group 4.

Davide Taibi
43



Towards a trustworthiness model for open sourdsvaoé
2010

Interviewees do not seem to be very interested hm éxistence of a sponsor
organization behind an OSS product: the correspgnéiictors reputation of vendor
and the mid / long term existence of a maintainganization / sponsor both lie in
group 2. The interviewees who are less interesteslich an organization are usually
willing to carry out the required modifications tiee chosen OSS by themselves. Best
practices is not believed to be an important faawen though this factor is somewhat
similar to the documentation factors: this facies lin group 3. Again, this may partly
be due to the absence of available best practime®$S products. Other factors that
are not considered important are language unifgramtd training / guidelines: both are
considered of low importance: language uniformisy in group 3 and training /
guidelines is in group 2.

The answers to the open questions revealed somigoadtifacts that are considered
relevant at least by some of the interviewees. @edications are qualitative in nature,
hence it was not possible to analyze them by meé&ssatistical techniques. The most
interesting findings are reported below, since tbewtribute to complete the picture of
the users’ perception of the importance of factbas affect OSS trustworthiness.

Some interviewees pointed out that they would tiké@ave more information about the
development process (most of the mentioned infdomas hardly ever available). Part
of the requested additional information focuses tbe reasons that led to make
particular choices, that is, the rationale behiadelbping the OSS product. The future
of a project is considered very important: thicanfirmed by some of the additional
information requested by the interviewees, sucla aketailed roadmap (the planned
milestones and releases), a detailed release yhi@ter past milestones and releases),
the expected lifetime of the project, and the prdgeactive developers. Information on
the actual perception and usage of the project pseee of information usually not
available; a list of real users and data on theufaopy of the product are also believed
to be worth collecting. Accurate information on thevelopment process is considered
useful to assess the quality of the OSS product.

Some interviewees mentioned a heterogeneous gattofs and measures, including:
development approach visibility (the best practicasthodologies, tools, etc. used in
development), bug lists, quality review processwhquality is taken care of),

Davide Taibi
44



Towards a trustworthiness model for open sourdsvaoé

2010
benchmarks and certifications (the official cecations obtained by the product, or
parts of the product).
Finally it has been suggested that if there is & dedined relationship with a sponsor,

such relationship should be expressed clearly amerpublicly available.

Product Quality

The top level ISO 9126 qualities [26] were adoptethe questionnaire as a reference
for quality factors along with other commonly uspdlities.

Quite expectedly, functionality was almost unanisigundicated as one of the most
important quality. In fact, factor functional regeiments lies in group 8, which is the
most relevant factors group. The group containg anbther factor: reliability. This is
somehow intuitive and reasonable: a product shdald/hat is expected and should do
it reliably. There is another quality that is betd very important: maintainability, it
lies in group 6. Some other qualities are also idened fairly important, since they all
belong to group 5 (performance, usability) and drtgbility). In conclusion, the 1SO
9126 qualities are considered quite important.

The situation is quite different when dealing watdbde and design quality attributes: in
general these are considered of lesser importarwe . use of a standard architecture,
the production of reusable code and a good modalson are the factors considered
most important: modularity, reusability and stamtdarchitecture lie in group 4. Note
that reusability was not one of the factors orifinésted in the questionnaire, but it
was frequently mentioned and ranked by our intevees. The remaining code and
design related qualities are considered not impbdaall: complexity and patterns are
in group 2 and size is in group 1. Surprisinglgesis generally believed unimportant
by the interviewees, while in the scientific literee [38] size is reported as the most
important driver for a number of qualities of inthied interest, such as the development
effort and time, and the number of faults.

Interoperability is believed to be very importaittlies in group 7): OSS products are
supposed to interact heavily with several othercgseof software. Another factor
associated with the issue of interaction is thedsdad compliance, which lies in group
6.

Davide Taibi
45



Towards a trustworthiness model for open sourdsvaoé

2010
Security management is a factor that is believeloetoery important, it lies in group 6.
In addition, security was not one of the factongiaglly listed in the questionnaire, but
it was often explicitly mentioned in answers to mpgiestions of the questionnaire as a
very important factor.
Also self containedness is believed to be fairlpamant in the literature [34], but the
answers collected show a different opinion: thédais in group 2 only. This result can
be explained considering that one of the principe®SS communities is to reuse as
much code as possible, even if this creates contglexn the build process and in the
management of component dependencies.
Finally, localization and human interface are badeto be of low importance as well:
the factor lies in group 3.
Concerning the information on OSS product qualigt tis usually not available and the
interviewees would like to have, it was stated smvemes that product and design
documentation is a major issue: not only it shcaddavailable, but it is also required
that it is of high quality and accurate. In additionore attention should be given to
several quality aspects: ease of use and easeswllation, certifications, accurate
documentation on stability. Stability in particulaequires special attention since
several OSS products are released when they argehadtable: this is a common

practice in the OSS community that is not suitdbtebusiness users.

Customer Requirements
The factors related to customer requirements dreviee to be important, because they

are mandated by the customers or by the law.

Factor customer satisfaction lies in group 7, shgwthat it is considered very
important (not surprisingly, since it is supposedlyectly related to functional
requirements and reliability factors). Another taatonsidered of very high importance
is customer’s interoperability issues, which liesgroup 7 too (again, this factor is
somewhat related to standard compliance and direzitited to interoperability).

The factor law, i.e., the compliance of OSS witl f&gulations, lies in group 4, hence
it is considered fairly important. One possible laration for the fact that law does not
belong to a higher importance group may be that @®8ucts are not always subject

Davide Taibi
46



Towards a trustworthiness model for open sourdsvaoé

2010
to law regulations. The only factor related to oustr requirements considered of a

lesser importance is standard imposed, whichtiggoup 2.

Influence of Profiles

Our interviewees' responses are by their very eatubjective, and they may very well
depend on the interviewees' roles, responsibilitigge of organization, etc. So, we also
investigated whether it was possible to identifynoeonalities in the responses of
interviewees sharing common characteristics. Fstaimce, it may be sensible to expect
that interviewees with managerial roles are moter@sted in economic aspects such as
ROI and TCO than interviewees with technical ro®s, we analyzed our data to check
for statistically significant associations betweeur interviewees' profiles and the
responses they provided. This also helps overcomedssible lack of “balance” in our
sample, since we can check to what degree thevietezes' characteristics may have
influenced our results.

Much to our surprise, few such associations seeexigd. Among the most remarkable
ones, there seems to be an association betwedypef organization (for-profit vs.
no-profit) and the importance given to ROI, but tieé importance given to TCO. As
another example, there seems to be an associaiaedn the fact that an interviewee
is a project manager and the importance given ¢oettistence of short term support.
Other statistically significant associations seambé somewhat surprising, like, for
instance, the fact that developers are not all ititetested in the existence of a user
community that witnesses the product's quality.

Even though more data may lead to finding addiliosgtistically significant
associations, we would have expected that morkemhtwould be detectable even with

our sample, if such associations were strong.

3.3 Applying the identified factors to real
projects

We identified a set of OSS projects, widely adoged generally considered trustable,
to be used as references. Afterwards, a first qarmedysis was carried out, we checked

which factors were readily available on each prgewveb site. The idea was to

Davide Taibi
47



Towards a trustworthiness model for open sourdsvaoé

2010
emulate the search for information carried out byo#ential user, who browses the
project’s web sites, but is not willing to spend touch effort and time in carrying out
a complete analysis. Since the view of trustwodsm factors emerging from the
analysis seemed too subjective, it was decideddoigely define measures specifying
how to evaluate the OSS characteristics, and howolect data that could be
effectively used in the analysis phase, to be pead according to some statistical

methods.

3.3.1 Project selection

The selection of projects addressed different tyfesoftware applications, generally

considered stable and mature. The complete seray¢qgbs comprises 32 products,

different with respect to age, implementation laagg) size of developers and users
communities, etc.

Here the criteria used to select a representatteot OSS projects are reported.
Projects have a set of characterizing attributés. Selection criteria aimed at:

* Including a reasonably small set of projects.

* Including at least a couple of projects for everggible value of any attribute.
For instance, an attribute is the size of the agwaknt team. Four possible values were
defined: O (inactive project), no more than tengeoup to 50 people, more than 50
people. Therefore, we took care to include at léast projects for each of the four

mentioned classes. The complete set of attribstespiorted in Table 3.

Attribute Possible values

Repository SourceForge, Apache, Java.net, FreshMeRubyforge,
ObjectWeb, Free Software Foundation, SourceKihijtagrer

Standalone Yes / No (Part of a Project family)

Type Web Server, Operating System, ERP, CSM, ...

Developer organization | Sponsored/foundation, spontaneous, other

type

Cost Free; pay for services and features; payeryghing

Size of the development
team

0 (abandoned/closed project), 1-10, 11-50, >50

User community size

Small (<51), Medium (51-25@)de (>250)

Programming language

Java, C#, C/C++, scriptingdages, Visual Basic, other

Tool support)

little use of tools (0-4 tools used); extensige of tools (5-7)

Innovation Traditional application (existing befor2003); Emerging
application (only proprietary solutions before 2P03
Age Project started before 1998; between 1998 808;After 2003

Table 3: The projects’ attributes

Davide Taibi

48



Towards a trustworthiness model for open sourdsvaoé
2010

3.3.2 Project Selection Process

The project list was drawn up in three rounds:

* In the first round, we indicated the projects that considered most important
by giving the project name and some useful inforomagasily retrievable from
the project’s website. That first collection waefus in order to create a project
Identity Card. The first set of projects compris@@l projects (set 3), having
different characteristics;

* Once the first set was defined, we restricted malysis to a subset of 32
projects selected as the most representative omesigathe complete set of
projects (set 2);

* On this reduced project set, we carried out a gameMysis in order to determine
how long a complete analysis would take. Basedheneffort required by the
previous quick analysis, it was decided to anaizfirst 11 projects (set 1) and

then proceed with the analysis of the 32 projettebd?2.

Each subset is homogeneous and there are at \gasprojects for every selection
criteria we identified. For instance, the firsbsat contains 15 projects that are written
in C/C++, 15 in Java, and 2 in php; 18 projectsehavarge community of users, 7 a

medium one, and 7 a small community.

Table 4 reports the complete list of 96 projectsuding some useful information:
* Project Name
 Homepage

* Programming language

Project name Homepage Prog. language Set
Ant ant.apache.o 1
Apache Http www.apache.ort 2
Apache JMete jakarta.apache.org/jme JAVA 3
Apache PC jakarta.apache.org/poi/index.h JAVA 1
Asterisk www.asterisk.or¢ 1
Axis ws.apache.org/ax 1
Davide Taibi

49



Towards a trustworthiness model for open sourdsvaoé

2010
Boos www. boost.org C/C++ 1
Bouncycastl www. bouncycastle.or C#, Jav 1
Bugzilla www. bugzilla.or¢ Per 1
BusyBo» www. busybox.ne C 3
Canoo WebTe Webtest.canoo.co JAVA 1
Centos Linu: www.centos.or C 2
Checkstyls checkstyle.sourceforge.n 1
Cimerc incubator.apache.org/servicemix/t | Jave 2
ero-editor.html
CruiseContrc cruisecontrol.sourceforge.1 JAVA 1
CUP Parser genera www?2.cs.tum.edu/projects/ct 1
CVs cvs.nongnu.or C/C++ 1
Cygwin cygwin.com 1
DDD www.gnu.org/software/dd C/C++ 2
Debiar www.debian.org/index.en.ht C/C++ 2
drupa www.drupal.ory phr 3
Eclipse Platforr www.eclipse.org/platforn Jave 1
eXo platforn www.exoplatform.or Jave 1
Findbug: Findbugs.sourceforge.n 1
GDB www.gnu.org/software/gdb/gdb.ht | C/C++ 2
GNU C library www.gnu.org/software/libi C/C++ 2
GNU gcc gcce.gnu.org C/C++ 2
GNU GRUE www.gnu.org/software/gru C 1
GNUPIof www.gnuplot.info 1
Hibernati www.hibernate.or¢ 1
HttpUnit httpunit.sourceforge.nt 1
JacORE www.jacorb.org Jave 1
Jad jade.tilab.corr Jave 1
Jakarti jakarta.apache.or 1
Jakarta commoil jakarta.apache.org/comma Jave 1
Jakarta Or jakarta.apache.org/ol Jave 1
Jaspe jasperforge.or Javi 2
JasperRepor jasperforge.org/sf/projects/jasper | Jave 1
orts
JAVA www.sun.com/software/opensour: | JAVA 1
ava
Jbos: www.jboss.cor Jave 2
Jetspee portals.apache.org/jetspe1/ 1
JfreeChau www.jfree.org/jfreechar Jave 1
joomle www.joomla.or¢ phr 3
JxPatt jakarta.apache.org/commons/jxpi 1
libxml xmlsoft.org C 1
Linux kerne www.kernel.org C/C++ 3
log4j logging.apache.org/log4j/do 1
maxde www.maxdev.cor phr 1
MediaWiki www.mediawiki.org/wiki/MediaWil 1
i
Mondriar mondrian.pentaho.or Jave 2

Davide Taibi

50



Towards a trustworthiness model for open sourdsvaoé

2010
Mona www.monc-project.com/Main_Pay 1
myFace Myfaces.apache.or 1
MySQL www.mysql.or¢ C/C++ 3
ncurse www.gnu.org/software/ncurses/nc 1
es.html
NeuClea sourceforge.net/projects/neucl 1
NeuDis sourceforge.net/projects/neut 1
Open Solari Www.opensolaris.ol C 3
OpenLDAP www.openldap.or¢ C, Bourne She! 1
Programming
OpenPegas WWW.openpegasus.ol 1
OpensSsS www.openssl.org C 2
Pentah www.pentaho.col Jave 2
Per www.perl.com 1
phpnuk www.phpnuke.or phr 1
PMD pmd.sourceforge.nt 2
PostgreSQ www.postgresql.or C/C++ 1
Quart: www.opensymphony.com/quar 1
Red Ha Linux www.redhat.cor C 1
Saxor saxon.sourceforge.n 1
ServiceMi incubator.apache.org/servicer Jave 3
Spagt spago.eng. Javi 2
SpagoB spagobi.or Jave 3
Spee; WWW.Speex.or¢ 1
SpiderMonke www.mozilla.org/js/spidermonke 1
Spring Framewor www.springframework.or 1
SQLite www.sglite.org 1
Strut: struts.apache.or 1
Subversio subversion.tigris.ol C/C++ 2
Suse Linu: www.novell.com/linux C 1
Talenc www.talend.cor Perl/Jav 3
Tapestr tapestry.apache.c JAVA 1
TCL/Tk www.tcl.tk/ 1
Termca| gnuwin32.sourceforge.net/packag 1
ermcap.htm
Tomca tomcat.apache.or Javi 2
TPTF www.eclipse.org/tpt Jave 2
U-Boot www.denx.de/wiki/UBoot/WebHol | C, Assemble 2
e
uClibc www.uclibc.org C 1
Velocity velocity.apache.ol JAVA 1
Weke www.cs.waikato.ac.nz/~ml/index | Javé 3
ml
Xalan xalan.apache.or 1
Xenoma www.xenomai.org/index.php/Mail 1
Page
Xerces xerces.apache.ol Javi 2
Xml Pull Parse www.extreme.indiana.edu/xgws/; 1

Davide Taibi

51



Towards a trustworthiness model for open sourdsvaoé

2010
ap/xpp
XMLUnit xmlunit.sourceforge.net/ 1
X00pS WWW.X00pS.0rg php 1
www.opensolaris.org/os/commun|
ZFS zfs/ C
zlib www.zlib.net/ C 1

Table 4: The projects

3.3.3 Project analysis

The first round of our analysis was carried outdmking for the factor information that
was readily available by surfing the project sites.

We discovered that most trustworthiness factorsatalirectly available and they need
some specific measures to be specified.

In our experience, the only available informatibattcan be obtained for any project is
the number of downloads. Eight factors can be alartevaluated on the basis of the
information available on the web sites: the avalitgbof documentation, the type of
license used, the long term existence of a maietéponsor, the short term support,
the availability of training and guidelines, theogramming language uniformity, the
distribution channel, and finally the knowledge abthe organization that develops the
software. Almost every project provides documeataton the website, but most
projects do not supply technical and architectdcdlumentation. Moreover, most sites
do not provide up to date documentation.

Some factors can be partially evaluated only befedly digging into the depths of the
websites. They are: the availability of tools fevdloping and modify the software, the
existence of benchmarks and test suites, thelulion channel, the self containedness,
the interface localization, the availability of @aadmap, and finally the frequency of
new product releases.

Other factors could not be evaluated, in some chseause of their subjectivity, in
other cases because of lack of information.

Some factors seem to be easy to evaluate, but ofterretrieved information is
incomplete. For instance, most projects explictbgert that they adopt a given license,

Davide Taibi
52



Towards a trustworthiness model for open sourdsvaoé

2010
but one cannot in general be sure that all thepsafects, components and libraries
adopt licenses that are compatible with the licaxidbe main project.
The main areas that could not be covered in thstt dhalysis were those related to the
internal quality of the product and related to tiser community. In our experience, no
website provides data about the user community #ieeinternal software quality and
complexity, or the vitality of the project.
Unfortunately, some pieces of information that ianportant for our analysis are never
highlighted into the project websites. Therefore,niecommend that the leaders of OSS
projects who want to publicize the trustworthine§sheir products also publish all the
useful data. In any case, there are some factatsatk inherently difficult to evaluate.
For instance, it is quite hard to evaluate the iguaf the user manuals. This task may
be simplified, for example by collecting feedbac&nh users, but this demands users
being aware about the importance of feedback d¢ollecHowever, relying on the data
provided by users may harden or bias the evalusskif few users provide feedbacks
or if only the satisfied users provide evaluatiofshe project, respectively. Therefore,
web sentiment tools may be used to collect theiopgreported in the websites, blogs
and forums, and to analyze the sentiment of thenmanity, thus providing a good
approximation of the users' opinion about a givereet.
Table 5 summarizes, for each factor, how many ptojeeb sites —out of the 32
considered ones (see Table 4)— provided some iattwmto evaluate the factor in
their official web sites. We intentionally did noonsider some factors like ROI (Return
on Investment) and TCO (Total Cost of Ownershipgdose it was impossible to

measure them.

Davide Taibi
53



Towards a trustworthiness model for open sourdsvaoé

2010
Factor N° of projects
supporting the
evaluation of the
factor

Type of licenses us 32
Number of downloac 32
Distribution chann 31
Availability of user manui 30
Programming language uniform 25
Availability of training, guideline 20
Modularity 18
Availability of best practices on the specific O@®8duct: 17
Human interfacdanguage/localizatic 15
Portability 15
Self containedne 15
Functional requirements satisfact 11
Standard architectt 11
Availability of tools for developing modifying cushizing OSS 10
products.

Interoperability 10
Standard complian 10
Usability 9
Performance 8
Reliability 8
Maintainability 7
Usage of patter 6
Existence of benchmarks/test suites that witnesthéoquality of OS 5
Availability of technical documentatic 2
Complexity 0
Customer satisfactic 0
Existence of sufficiently large community of users that can wgs its 0
quality

Mid/long term existence of a maintainer organizatieponsc 0
Mid/long term existence of a user commu 0
Short term suppc 0
Size 0

Table 5: Number of projects that provide data aloetconsidered factors

3.34 Trustworthiness Factor refinement

The experience gained via the first round of anslySection 3.3.1) showed that
several factors need to be made more precise ahd@theasures need to be specified.
The factors that have been identifiedrable 2are too general and unspecific so that it
was hard to directly measure them. Therefore, veel mew measures in order to assess
the factors.

Accordingly, whenever a factor cannot be direcdgessed on the basis of the web site
information, a new set of proxy-measures needsetadfined. Some factors can be
assessed in a simple and direct manner, while ©ti@dfor specific tools.

Davide Taibi

54



Towards a trustworthiness model for open sourdsvaoé

2010
In the next subsection, we present the checklishefrefined factors we identified and
we discuss the results of the analysis based osettend subset of 11 projects.

3.3.5 Checklist definition

Due to the problems illustrated above, it is nemgsso define proxy-measures for
some factors in order to simplify the analysis @adobtain results as objective as
possible.

In Table 6 both the new measures and also thenaligines, defined for OSS product
trustworthiness, are reported.

Each project has been evaluated according to theitaens of the measures shown in
Table 6. These measures directly refer to the pihisgiof evaluating a factor by
looking into the project website.

Some factors cannot be measured in an objective seathe evaluation has to be done
by ranking the measure coverage by using an ordicale. For example, taking into
account the Feature List availability, the differerbetween the availability of a poor
free text description (where you can find the feagl and a comprehensive feature list
will be measured with a subjective scale. Hencersuwill be asked to assess whether a
description is comprehensive or not.

Other factors are not measurable, unless the deselqrovide essential information.
For instance, the number of downloads cannot béuated in a reliable way if the
development community does not publish it.

An important output of this work was a as set @oramendations that were given as
input to the OSS community. These recommendatiomsiseful both for developers to
highlight the trustworthiness factors into theioject websites, and also for final users

to simply evaluate these factors.

Davide Taibi
55



Towards a trustworthiness model for open sourdsvaoé

2010

Factor

Measure:

Functional requiremds
satisfaction degree

Availability of: feature list, free text descriptiprelease note
product example/demo

Customer Satisfactic

List of organizations, testimonials and other prtgeausing thit
software, case studies, usage histories

User community satisfaction (according to foruniegb, mailing
lists, newsgroups, magazine/scientific artic

Interoperabilit

Communication with other systems supported by blé
mechanisms (SOAP, Web services, protocols, putiefaces,
...); Ease of integration with other products andsfimbty to
migrate to other product with little effort

Reliability

Development status, frequency of patches, averagédiime
solving

Maintainability

Existence of a guide to extend/adapt the OSS ptpthantenane
releases and architectural documentation

Coherent usage of coding guidelines/standard, saade quality
and programming language uniformity

Modularity

The product provides pl-in interface(s

Standard Architectu

Availability of architecturadocumentation and usage
architectural standard/pattern

Mid Long Term
Existence of a User
Community

Project Age; Trend of the number of us
Number of patches/releases in the last 6 month;
Number of developers involved; Average bug solinge

Availability of technical
and user documentation

Availability of: up to date technical/user manuggfting starte:
guide, installation guide, Technical/User related.®.,
Technical/user forum and mailing list

Standard Complian

Any information about sndard implemented (like HTTP 1.0, S(
97...) and coding standards

Existence of
sufficiently large
community of users

Number of posts available on forums/blogs/newsgrmugprelate:
activity

Performanc

Existence of performance tests and/or scenespecific
performance-related documentation

Implementation -Any best practices, concerninggtesind product
construction, aimed at boosting performance.

Type of Licens

Main and sub license us

Short Term Suppc

Bug number, bug removal rate, availity of professional servic

Availability of tools for
developing, modifying,
and customizing OSS
products

General purpose build tools applicable to the pcgduuild script,
built-in customization facility (configuration API,.)

Usability Detailedfeature description and user matr
Ease of installation/configuration, ease of use.
Portability Supported environments, usage of a portable larg(likg Java)

environment-dependent implementation (e.g., usége o
hardware/software dependent libraries)

OSS Provider Reputati

Opinion and feedback from other u

Best Practice

Availability of best practices, code examples/tiatia

Programming languag
uniformity

Number of languages used in the prc

Complexity

McCabe complexity number or arelated information availabl
on the web site

Human Interfact
Language Localization

Localization support availability (e.g., are langediles provided?

Self Containedne

Can the product be installed and executed “out@hiox” or doe!
it require other software?
Are dependencies documented?

Existence o
benchmarks/test suites

Availability of test suites/benchmarks, Usage ¢ést frameworl

(JUnit, DejaGNU,...), results of tests published {toa project

Davide Taibi

56



Towards a trustworthiness model for open sourdsvaoé

2010
that witness for th site), existencof initiatives to encourage the community
quality contribute to quality efforts

Mid/long term existenc | Active maintainer organization / spon
of a maintainer / sponsor

Availability of training, | Up to date traininmaterials, manuals and guidelines available
guidelines, use cases, | of charge

tutorial etc. Availability of official training courses
The distribution medi Source code download; Binaries downl
Access to the project repository; CD/DVD distrilouti
Size Number of Lines of codesource files and functions (or classes

methods, for object oriented code)

Popularity of the produ | Number of downloac

Table 6: New criteria for the evaluation of trustwathiness factors

3.4 Trustworthiness factors analysis

The main goal of the analysis is to obtain the nmation that is quickly available
through a project’s website.

Some factors have been analyzed, while others sw®é tools to be developed.

In this section, we analyze all the factors andrtheeasures reported in Table 6
referring to the second set of 32 projects. We alate users and developers
requirementsTable 2 with the actual availability of the trustworthggefactors into web
portals. Finally, we provide some guidelines usétublevelopers of OSS products in
order to better highlight trustworthiness factot®itheir web portals.

Quite noticeably, most of the expected indication®lve technical issues. Most of
factors are assessed directly or indirectly viaitlentified measures, others need some
tools to be developed.

Taking into account the development related facttinere are some problems in
retrieving the majority of the factors. Only aroundlf of the projects have technical
documentation, forums and mailing list availablehiler only less than half of the
projects have updated F.A.Q. (Frequently Asked Ques and technical forum. The
same problems appear when we have to check favhi&ability of best practices and
the programming language uniformity. Some factors aften (but not always)
available: the availability of training, the avdiibty of tools for modifying,
customizing OSS products and the distribution ckénfaking in account the
community activity the situation is fairly negativdhe dimension of their user
community is not measurable unless the websitesna@toprovide the number of
partecipant. In the set of projects that has bewlyaed, only 2 projects from 32

provide information over the size of their commynand not all projects clearly show

Davide Taibi
57



Towards a trustworthiness model for open sourdsvaoé
2010

patches and releases; some projects inform ontheohumber of patches/releases in
the last 6 months, others only the of total nunaet finally a last group shows both.
An interesting result is the availability of seMecmmmunity groups identified via
different mailing lists (technical related, userlated, translator related...).
Unexpectedly, the situation about documentatioquie good from the user’s side:
almost every project has updated documentatiorr (msguals, getting started guide
and installation guides) and there is a good le¥&lommunication between users and
developers through forums and mailing lists.

Considering the product quality, there are no fectmmpletely measurable, in some
case because tools should be developed for this igoather because of the lack of
information provided in the project websites. Almoso project provide any
information about their performances, maintain&pilreliability and complexity. On
the other side, half projects show the usage ofdstal architectures, the availability of
interfaces and plug-ins and its interoperability possibility to run without any other
tools or library and their standard compliance. pdoject gives any information on
code complexity. Some factors are not analyzed usecaf their subjectivity: all
economic and customer related factors, the envieomah issue and the reputation of
the vendor.

The complete project analysis results are listetjppendix B.

Davide Taibi
58



Model Building

This section is aimed to defining a set of metta@sapture the trustworthiness of OSS
products, a set of metrics to capture the factmas thay influence trustworthiness, and

a set of models that link these influencing factorgustworthiness.

The identification and characterization of the died reported here are based on the
results of Section 3.1, as well as a set of previ@levant contributions to the notion of

quality desrcribed in Section 2.6, including:

. ISO 9126 [68];

. the quality models by Barry Boehm [79][&)d McCall [81];

. the balanced scorecards [83];

. the Open BQR [30];

. the TotalCost of Ownership [82].

4.1 A note on the terminology

Unfortunately, different quality models use diffetéerms to indicate qualities and sub-
gualities.

For instance, 1SO 9126-1 identifies quality factamsl sub-factors, while other models
talk about (quality) goals. McCall uses the termdlfy factor” to indicate top level
qualities and “criteria” to indicate the propertibsit affect the quality factors. In other
cases quality criteria indicate the top level giesdi

In this report we use the terminology illustratadhe (meta-)model of trustworthiness
given in Figure 9 (using UML as the modeling nataji

Throughout the document the term “guality” is somet also used to indicate
characteristics/properties of software productse Tdct that the term is used in this
sense should be clear from the context.

Davide Taibi

59



Towards a trustworthiness model for open sourdsvaoé
2010

Trustworthiness

I
|
|
|
v
Quality

?

Quality factor

?

Product characteristic

Figure 9: The meta model of trustworthiness

Figure 9 is our meta-model of trustworthiness.sltactually a meta-model since the
actual model —which is the final goal of the woeéported here— will be defined in the
following sections, identifying the actual qualgiethat affect a product’s
trustworthiness. Note that this meta-model is nohceptually different from the
“Factor-Criteria-Metric” approaches proposed by Mé@nd Boehm.

4.2 The GQM approach

The Goal/Question/Metric paradigm [29] has beenppsed and applied as a
systematic technique for developing a measuremagrgmme for software processes
and products. GQM is based on the idea that measunteshould be goal-oriented, i.e.,
all data collection in a measurement programme ldhimeibased on a rationale which is
explicitly documented.

Here we briefly introduce the GQM approach. Readeteyested in a more detailed
presentation of the GQM can find interesting docataigon on the net: [86] is a short
paper, while [85] is a complete book (a non-prifgakersion can be found at

http://www.ggm.nl/).

The most important concept/product of the GQM pigrads the GQM plan, produced

to define a set of metrics used to reach the ozgéinhal goals.

Davide Taibi

60



Towards a trustworthiness model for open sourdsvaoé
2010

The GQM plan is produced through hierarchical esfients. The goals selected in Step
2 of the GQM process constitute the top level & GQM plan. Goals are defined in
terms of the following entities:

* Object of study: the part of reality that is beolgserved and studied.

* Purpose: the motivations for studying the object.

* Quality focus: the object characteristics that@mesidered in the study.

* Viewpoint: the person or group of people interestestudying the object.

* Environment: the application context where the gtsctarried out.

Each goal is associated with an Abstraction SHemtg] 2 of the GQM plan) which is
composed of four parts:

* Quality focus: it provides additional details oretbbject characteristics to
study.

» Variation factors: this part specifies process pratiuct characteristics that may
affect the quality focus.

* Baseline hypotheses: they characterize the custatiis of the object of study
with respect to the quality focus. They describeitiitial beliefs of the observer
concerning the quality focus described above.

* Impact on baseline hypotheses: this part deschbwsthe variation factors are
expected to affect the current state of the olgéstudy.

From the abstraction sheet, a set of questionernweatl (Level 3 of the GQM plan).
These questions must be answered in order to uaddré and how goals have been
reached. Questions are a more detailed view adiltsgraction sheet.

Davide Taibi

61



Towards a trustworthiness model for open sourdsvaoé

2010

definition

Goal (object, purpose, quality focus,
viewpoint, environment)

Abstr.| QF | VF
sheet[ gy, |oBH<§
Implicit

e

o'
=1y §°{%
M1 M2 M3 M4 M5 | ﬁ{\

interpretation
Figure 10. The GQM process: a schematic view.

Finally, from each question a set of metrics isiéel (Level 4 of the GQM plan).
These metrics are used to collect data, which lvelused to answer the questions that

have been raised. The process is schematicallyidedan Figure 10.

4.3 Towards the definition of the goal
The GQM plan to be defined addresses the evaluaifotrustworthiness of OSS
products. However, in order to be able to defireegbal, we have to have a closer look
at the investigation framework: a first observatisithat we need to take into account
several variables:
 There are a huge number of OSS products. Of cotinsg, trustworthiness
varies from very low to extremely high. We havetae into account that an
evaluation must mix up different products. Howewee, want to create a GQM
plan that can be applied to several OSS produttstder to get a model (or a
set of models) that represent correctly the trudiweess of (almost) any OSS
product, including the ones not yet released.
* There are many different types of users. Each tyg® its requirements and
needs. These differences generate a number ofdtiffgooints of view. The

Davide Taibi

62



Towards a trustworthiness model for open sourdsvaoé
2010

perception of a product’s trustworthiness dependshe point of view of the
user, which depends on the type usage. This isteyarly important issue the
same product can be perceived as more or lessvaully by different users.

* Trustworthiness is a very high-level, abstract itpalAs discussed in section
2.7.1 and 2.7.2 it is convenient to identify thdfedent “dimensions” of
trustworthiness. In fact, the different perception$ trustworthiness are
determined by the qualities that users seek imptheduct. By identifying these
qualities we will be able to define a flexible mgdehich can be adapted to
different users and uses.

In practice, we have to deal with the situationrespnted in Figure 11. The figure
represents the relations among the elements ahéileations: every OSS product (the
target of the investigation) has one developer ¢lwhsan be an organization or a

community) several users, and several qualities ‘dimensions” of trustworthiness).

Developer OSS Product Quality

*

*

User

Figure 11. Relations among OSS products, developenssers, and qualities.

Actually, it could be observed that the represémtain Figure 11 is a bit abstract; we
can get a more detailed representation of relations consider how the OSS product
is used. According to Section O there are two bitgpds of usage of OSS: the product
is used directly (as a development platform, tovigl® services, etc.) or it is used in a
development activity (e.g., it is customized oisitused as part of another software
product).

Figure 12 shows the relations among OSS produetglaopers, users, and qualities
when the OSS product is directly used. In this ¢heauser perceives only the external
qualities1 of the OSS product. On the contrary,ititernal qualities are perceived by
the developers.

! Qualities are classified as “internal” or “external” as in the 1SO 9126 standards.

Davide Taibi
63



Towards a trustworthiness model for open sourdsvaoé
2010

Internal
Quality

*

*

Developer OSS Product

External
Quality

User

Figure 12. Relations when the OSS product is direlgt used.
Figure 13 shows the relations among OSS produetglaopers, users, and qualities

when the OSS product is used as part of the denv&opprocess. In this case the user
perceives also (some of) the internal qualitiesha&f OSS product, since the user’s
development process involves modifying (or exanghithe source code. Quite
interestingly, the external qualities of the prodcan be perceived only partially, often
only through the result of the development. Fotanse, when an OSS product has
been modified or integrated into another softwaepct, only the performance of the
resulting application is perceivable and relevant.

Internal
Quality
*
*
1 *
Developer OSS Product
*
*

Resulting Usagein |~ * | Internal
Product development Quality
*

*

External User

Quality

Figure 13. Relations when the OSS product is used part of development.

Davide Taibi
64



Towards a trustworthiness model for open sourdsvaoé
2010

For our purpose, we do not need to go into excesserails about the mechanisms that
relate the usage of OSS to the perceived qualiiés.need just that the usage of the
OSS product is clearly related with the perceivedlity. To this end, we can merge
Figure 12 and Figure 13, thus obtaining the moeledrted in Figure 14.

Developer
1
*
* * | Internal
OSS Product .
* Quality
1
*
*
Usade External
g * » | Quality
*
*
User

Figure 14. Relations among OSS products, developenssers, usage, and qualities.
According to the observation reported above, thdM@glan has to include questions

concerning the OSS product, the users and usesgdheloper and the perceived
gualities.

Now we have to address an important question: @M we get the evaluations of the
qualities that are relevant to trustworthiness@&lage two main options:

* Qualities are evaluated subjectively by users.

* Qualities are evaluated by means of measurememte $neasurement applies
to relatively low level properties of the code, feach quality we need to
identify its sub-properties, and the associatecequabperties. The measures of
the code are then composed to rate sub-qualitesjaalities.

If we chose just one of these options we would make a big step forward in the
evaluation of OSS trustworthiness. In fact, resgrtio the subjective evaluation of
gualities by users would just replicate —on a singdoduct base— the work already
performed in Section 3. On the contrary, just maaguthe properties of the code
would result in applying a model similar to the gmeposed by the 1ISO 9126 standard.

Davide Taibi
65



Towards a trustworthiness model for open sourdsvaoé
2010

In order to get the most complete and reliable rho@lérustworthiness, we intend to

perform both subjective (i.e., user dependent) @ndctive (i.e., measurement-based)
evaluations. Then we shall correlate the resultthefsubjective evaluations with the
objective measures, in order to create a modeldaatprovide qualitative indications

on the basis of precise and objective quantitatata.

The structure of the GQM goals with respect to shéject of the investigation is

described in Figure 15. The Product properties tipres concern the measurement of
the product as discussed above.

Product |*
investigation
Developer |,
v guestion
Developer
Product |«
! / question \
*
1 * *
—OSS Product Interr_1a|
«/|__Quality GQM goal
1 Quality / 4
N . questions
External
> .
Usage N » | Quality
*
* Product property
uestions
User * A
¢ User/usage
guestion
|

Figure 15. High-level model of the GQM plan and prduct investigation activities.
Since we are interested in modeling the trustwoetss of OSS products in general (not

just of a specific product), the GOQM investigatiaill be applied to several OSS
products. This is shown in Figure 15 by making mxpthat a single instance of the
GQM goal definition is associated with multiple tiawsces of product investigations.
Each product investigation will address:

* One product;

Davide Taibi
66



Towards a trustworthiness model for open sourdsvaoé

2010
Its developer (considering that the developer ctelédn organization involving
several individuals);
Its users. For each user, the following issueshelinvestigated:
» Identity and characteristics of the user;
* How is the OSS product used;

For each quality, how good is the product, accgrdinthe user.

The measurement of the properties of the product.

In order to simplify the structure of the plan andit the proliferation of roles, the

developers of OSS will be treated as users. In thetpossibility that a user modifies

the OSS product makes the difference between demedoand this type of users

marginal (at least as far as the perception ofmatlequalities is concerned).

The questions concerning the product and the perdare included in the plan for the

purpose of classifying the data.

The rest of the investigation involves an objectivel a subjective part:

The product property questions mentioned in Figlsewill be carried out
mainly through measurement. This evaluation wibtlr@ss features of the
product and developer that can be evaluated inrly fabjective way, on the
basis of well established Software Engineering Kedge. For instance,
features like the complexity of a SW product wil &valuated according to well
defined and commonly accepted metrics. Therefdre,résults will be fairly
objective and independent from who actually perfednthe measurement and
analysis. In other words, we will not need to hgreduct and developers
evaluated by different independent teams, as theyldvprovide very similar
results.

For every OSS product there are many users, witfierent culture,
environments, means, and needs. It is thus quéar ¢chat we cannot rely on
interviewing a single user (or even a small numbérusers) in order to
understand how users perceive the product trustmeds. For each product
several users will be involved in the evaluatiohe Tndications provided by the
users will be inherently subjective. This is petliecacceptable, or even
desirable, since we are building a model that kallusable, for instance, in the

process of deciding about the adoption of OSS. @Bsinch decision always

Davide Taibi
67



Towards a trustworthiness model for open sourdsvaoé

2010

based on partly subjective criteria, it is quit@senable that the underlying
model is itself partly subjective. In this respdttwill be necessary to
characterize the users, so that in a decision psoo@ie can use the data
provided by other users having similar charactesst

4.4 The GQM plan

Before proceeding to the definition of the planisinecessary to observe that we are
going to use the GQM approach in a slightly uncotiemal way. In fact, the GQM is
usually used to pursue specific goals: e.g., anadythe testing process in the context
of a given organization, or evaluating a speciiialgy in a specific product. Here we
are going to use the GQM to evaluate a whole aégsoducts (OOS products) with
respect to a complex quality (trustworthiness), clvhis determined by several
characteristics, according to different users.

We are therefore facing the problem to accommotta@se multiple dimensions in a
single GQM plan. It is quite clear that the tramti@l way of using the GQM, i.e.,
defining a specific goal for every triple <produgtiality, user type> is not applicable,
since it would lead to an unmanageable number alsg@ctually, it is easy to estimate
that in this case we would need no less than omgstnd goals, which would require a
total of about 100,000 data points for the analysis

A different strategy has to be adopted, that allowdo limit the number of goals and
data, while preserving the effectiveness of tha.pla

The GQM plan presented here consists of a singé ¢o fact, this is a most general
goal that does not strive to focus on specific efsp@r situations, at the cost of
including a large number of questions and metrics.

For instance, the proposed goal adopts a singlergepoint of view, which includes
both the developers and the different types of sus@he characteristics of the
developers and users are captured explicitly byns\e@d quality foci within the goal.
Similarly, another quality focus will represent tblearacteristics of the product being
analyzed. Finally, we define a quality focus foreley quality that contributes to

determine the trustworthiness of the product.

Davide Taibi
68



Towards a trustworthiness model for open sourdsvaoé
2010

Accordingly, the factors studied in Section 3 appeathe GQM plan as quality foci

when they are considered to correspond to Qualiigbe meta-model of Section 3.
Instead, when trustworthiness factors are congideag® Sub-qualities or Product
characteristics, they are represented as questibm® rarely they appear as variation
factors.

4.4.1 The goal

Goal: Analyze OSS for the purpose of evaluatingfeding the trustworthiness from
the point of view of OSS users and developers usiiliiess” organizations.

Note that the goal mentions business organizatibngact, we are interested in the
adoption of OSS in environments (like industry ahe Public Administration) where
the usage of OSS can have a financial/economicampa

Object: 0SS
Purpose: evaluate/estimate
Quality: trustworthiness

Viewpoint:  OSS users and developers
Environment: “business” organizations (e.g., industry and P.A.)
Table 7. Goal: GeneralTrustworthinessGoal

4.4.2 The dimensions of trustworthiness

In this section the conceptual model of trustwariss is defined.

According to the findings of Section 3 and to thdications of the literature and the
standards, it seems reasonable to define trustiness$ according to the following
gualities.

* As-is utility (quality in use)This is the quality that the users seek when they
want to use the OSS product “as-is”, i.e., withchdnging the code.

* Exploitability in developmentThis quality indicates how easy, efficient,
effective, etc. it is to change, maintain, develo@ product, possibly to include
it into another product.

* Functionality. This quality is desirable in general, i.e., bothhie product is
used as-is, or if it is changed. It indicates tlegréde to which the considered

OSS product satisfies / covers functional requirgshe

Davide Taibi
69



Towards a trustworthiness model for open sourdsvaoé

2010

Note that it is in the nature of OSS products that‘requirements’ are expressed by a
(potentially heterogeneous) community of usersisittherefore rather difficult to
evaluate to what extent the product actually satisthe requirements, since different
users have generally different requirements. Tihigson induced us to separate from
‘functionality’ as many qualities as possible, pded that they can be evaluated in a
reasonably objective manner. For instance, to sextent interoperability could be
considered a functionality, but not all users cobé interested in this feature: it is
therefore preferable to treat interoperability sapely from functionality.

* Interoperability This quality is desirable in general, i.e., bdtthe product is
used as-is, or if it is changed. It indicates hogllthe OSS product operates in
conjunction with (i.e., exchanging data or contimolormation with) other
software products.

» Reliability. This quality is desirable in general, i.e., bdtthe product is used
as-is, or if it is changed. It indicates the abibtff the software not to fail, i.e., to
perform its function satisfactorily.

» PerformanceThis quality is desirable in general, i.e., bibtime product is used
as-is, or if it is changed. It indicates the apildf the software to perform its
function within given constraints concerning thengemption of resources and
time.

e Security This quality is desirable in general, i.e., bdttihe product is used as-
is, or if it iIs changed. It indicates the abilityf the software to prevent
unauthorized access to program or data.

* EconomyThis quality is desirable in general, i.e., biftie product is used as-
is, or if it is changed. It indicates the ability the software to contribute
positively to the financial balance.

» Customer satisfactionThis quality is desirable in general, i.e., bdaththe
product is used as-is, or if it is changed. It aadés the ability of the software to
contribute positively to satisfying the customee (ithe final beneficiary of the
process in which the OSS product is involved).

» Developer quality (reliability). This quality is desirable in general, i.e., both if
the product is used as-is, or if it is changedintlicates to what extent the
developer of the OSS product is reliable. This itpaidicates (indirectly) that

Davide Taibi
70



Towards a trustworthiness model for open sourdsvaoé
2010

we can expect a reasonably good quality of theeotirversion of the product,

and regular maintenance and evolution of the prioduc
Table 8 summarizes the differences among the tog-lerustworthiness qualities
defined in this Section and the corresponding factonsidered in Section 3 and in the
ISO 9126 standard.
It is possible to see that trustworthiness qualitteatch quite closely the trustworthiness
factors, with the difference that, while Sectionv8s a flat list of quality factors, here
we have tried to structure the model of trustwaxtss around the qualities that the
users are presumably more interested into. Forréasons, we have highlighted the
two typical types of usage of OSS products: assis and modification/development
based on OSS products. These two types of use mpee to specific quality
perspectives: As-is utility and Exploitability iredelopment. Since these qualities are
specific of OSS products, quite naturally they rhatmly partially the 1SO 9126
gualities. As-is utility and Exploitability in delegment are useful to highlight what

qualities are a real concern for users, while stlaee only accessories.

Trustworthiness Quali Trustworthiness Factc ISO 912¢
As-is utility Only sut-qualities presel | v
(Quality-in-use)
Exploitability in developmer | Only sutl-qualities presel | Only sul-qualities prese
Functionality v v
Interoperabilit v v
(sub-factor of functionality)
Reliability v v
Performanc (implicitly addressed & v
part of functionality) (efficiency)
Securit) v v
(sub-factor of functionality)
Econom? v (addressed only partly t
productivity)
Customer satisfactic v (addressed only indirectly
user satisfaction)
Developer qualit v x

Table 8. Trustworthiness qualities and 1SO 9126

It is now interesting to evaluate whether any effdctors considered in Section 3 or by
ISO 9126 have been neglected in the trustworthimessel. By looking at Table 8 it is
possible to see that a large part of the trustwwoetis factors do not appear in the

Davide Taibi
71



Towards a trustworthiness model for open sourdsvaoé

2010
trustworthiness qualities model. Similarly, ISO 81Rlaintainability, Portability and
Usability are not present in the models.
Actually, all these qualities have been includedhia trustworthiness model, but not at
the topmost level: Maintainability and Portabiligre considered sub-qualities of
Exploitability in development, while Usability isonsidered a sub-quality of the as-is
utility quality (alias quality in use). As to theustworthiness factors, they have all been
taken into consideration, at various levels ofrtiael.
Of a few qualities (such as the degree to whichQ86 product satisfies/covers
functional requirements and the Security) it isgildle to provide objective evaluations
with respect to a “typical’ or “average” usage.
The other qualities can be evaluated both subjlgtand objectively.
Our definition of trustworthiness is largely based the trustworthiness factors,
complemented with a few other factors (like Perfance) from the ISO 9126. Our

definition of trustworthiness appears both suffithe complete and balanced.

The structure above does not need to be refleapdfaithfully in the GQM plan. It is

more of a guideline for assuring the completendsthe plan for guiding the data
interpretation process. By the way, the GQM supportly three levels (the Quality
Focus/Variation Factor, the Question and the Metievel). Instead our model has
several quality/sub-quality levels, a product cheeastic level (corresponding to the
guestion level in the GQM) and a measurement lés@iresponding to the metrics
level in the GQM). Therefore, we will have to flettthe quality/sub-quality levels onto

the unique GQM Quality Focus/Variation Factor.

4.4.3 The abstraction sheet of the GQM goal

The abstraction sheet of the GQM goal is illusttate Table 9. Here we adopted the
following naming convention:
 Names initiating by ‘ID ' indicate elements condeth the identity of the
product, the developer, the users, etc.
* Names initiating by ‘Q_’ indicate qualities or qginaffactors.
* Names initiating by ‘Q_User’ indicate qualitiesesluated by users.

Davide Taibi

72



Towards a trustworthiness model for open sourdsvaoé
2010

 Names initiating by ‘Q_Actual indicate qualitiesor( quality factors) as

evaluated via objective observations and measuresmen

Objec Purpos Quality Focu Viewpoint Environmen
0SS evaluate/ trustworthiness OSS users and “business”
estimate developers organizations
Quality Focus Variation Factors
ID_OSSproduct CodeCharacteristics
ID_User_Info

ID_Developer

User_Trustworthiness

Q_User_As-is utility (quality in use)
Q_User_Exploitability_in_development
Q_User_Functionality
Q_User_Interoperability
Q_User_Reliability
Q_User_Performance_Resources
Q_User_Performance_Time
Q_User_Security
Q_User_Customer_Satisfaction
Q_User_Cost_Effectiveness
Q_User_Developer_Quality(reliability)
Q_Actual_As-is utility (quality in use)
Q_Actual_Exploitability_in_development
Q_Actual_Functionality
Q_Actual_Interoperability
Q_Actual_Reliability

Q_Actual _Performance_resources
Q_Actual_Performance_Time
Q_Actual_Security
Q_Actual_Developer_Quality(reliability)
Q_Actual_As-is_Usability _Learnability
Q_Actual_As-is_Usability_Operability
Q_Actual_As-is_Usability _Attractiveness
Q_Actual_As-
is_Usability_Understandability
Q_Actual_As-is_Usability Compliance
Q_Actual_Exploit_in_dev_Modifiability
Q_Actual_Exploit_in_dev_Maintainability
Q_Actual_Exploit_in_dev_Portability
Q_Actual_Functionality _Suitability
Q_Actual_Functionality_Accuracy
Q_Actual_Cost_Effectiveness

Q_ Actual Customer Satisfaction

Baseline Hypotheses Impact on Baseline Hypotheses
Baseline hypotheses are given by the results
Section 0

ORlot specified. The consequences of
variations on the B.H. are as
documented in the literature.

Table 9 The abstraction sheet for the GQM plan.

Davide Taibi
73



Towards a trustworthiness model for open sourdsvaoé
2010

It is possible to see that the names of severditgdaci in the abstraction sheet above
start with “Q_user”. These quality foci represertte t user's perception of
trustworthiness. These quality foci are fully expas into questions and metrics in

Appendix C

4.5 Refining the trustworthiness model
The conceptual model of trustworthiness definedSection 4.4 is schematically
represented in Figure 16. It is possible to se¢ tha qualities that determine the

trustworthiness of the product are defined onlg edther abstract level.

As-is utility
Exploitability
in development
Functionality
Interoperability
Reliability
Performance
Trustworthiness Security
Costeffectiveness
Customer
satisfaction
Developerquality

Figure 16. The model of the perceived trustworthinss.

The GQM plan addressing the evaluation of subjectigualities is quite
straightforward: for each quality such as as-iftytireliability, performance, etc. we
just ask the users about their own level of satigfa. On the contrary, the objective
evaluation of qualities that affect trustworthingsguires that measurable elementary
characteristics are identified. The qualities régabrin Figure 6 were therefore refined

into a set of observable SW characteristics.

Davide Taibi

74



Towards a trustworthiness model for open sourdsvaoé

2010

The refined conceptual model of trustworthinesgdafined as follows. The complete
GQM Plan is described in Appendix C.
As-is utility (quality in use)This is the quality that the users seek when thagt to

use the OSS product “as-is,” i.e., without changdimg code. In practice, the quality

indicates how well (easily, reliably, efficientlgan the software be used as-is.

Accordingly, the quality in use is evaluated onlbase of the following sub-qualities:

e Usalbility: This quality indicates the effort regeor to use the software, i.e.,

how easy it is to use the software. It depends set af sub-qualities:

0]

Understandability: it indicates the users' effant fecognizing the logic
of the software and its applicability.

Learnability: it indicates the users' effort folataing how to use the
application.

Operability: it indicates the users' effort forngithe application, i.e., to
operate and control the software.

Attractiveness: it indicates how much the softwarattractive for the
user. This quality is related to the pleasantnéssiog the software.
Compliance: it indicates to what extent the sofewadheres to related
standards or conventions or regulations in lawssamdar prescriptions.
For instance the usability of Web applications (etlge layout of pages)

IS subject to regulations.

* Reliability, performance, security, etc. are ddsedi below. In general, these

gualities apply to both the usage as-is, and toedoitation in development.

Therefore, they are described separately.

Exploitability in development. This quality indiest how easy, efficient, effective, etc.

it is to change, maintain, develop the product,sfig to include it into another

product. The exploitability of the considered apation in the development (possibly

of another application) is defined by the followisigh- qualities:

* Maintainability: A quality of the software that adés to the effort needed to

make specified modifications. According to the ttiadal classification of

maintenance activities, the required changes caairbed at removing defects,

extend the product functionality, or adapt it tazviemnmental changes.

Davide Taibi
75



Towards a trustworthiness model for open sourdsvaoé

2010

* Modifiability: A quality of the software that reles to the effort needed for
modification. Modifiability is very similar to maiainability: we talk about
modifiability when the OSS is (re)used in the cahtef the development of a
larger product. You can consider it a sort of adiaph; however, since the OSS
is often used as building material, we considerseful to distinguish this type
of changes from regular maintenance.

Both maintainability and modifiability are rathesraplex to evaluate: accordingly, they
are characterized by a set of sub-sub-qualities:

* Analyzability: The quality of software that relatés the effort needed for
diagnosis of deficiencies or causes of failuredpordentification of parts to be
modified. Analyzability depends largely on how easys to understand the
program; hence, you can see analyzabilty as then @f readability,
modularization, documentation, etc.

» Stability: A quality that indicates to what extestftware modifications can
cause unexpected effects.

» Testability: The quality of software that indicatése effort needed for
validating the modified software.

Portability: It indicates how easy it is to transfoftware from one environment to
another.

» Adaptability: Attributes of software that relate iis adaptation to different
specified environments without applying other awsicor means than those
provided for this purpose for the software consder

* Installability: Attributes of software that relate the effort needed to install the
software in a specified environment.

* Replaceability: Attributes of software that rel&dethe opportunity and effort of
using it in the place of specified other softwanethe environment of that
software.

Functionality. This quality is desirable in generiad., both if the product is used as-is,
or if it is changed. It indicates the degree toakhihe considered OSS product satisfies
/ covers functional requirements. Functionality tvas sub- qualities:

» Suitability: It indicates to what extent the softergrovides an appropriate a set

of functions supporting the (stated or implied)rugguirements.

Davide Taibi
76



Towards a trustworthiness model for open sourdsvaoé
2010

* Accuracy: It indicates to what extent the softwprevides correct results and
effects.

Suitability and accuracy complement each other:stifevare does what it is required
to do (suitability), and does it well (accuracy).

Interoperability. This quality is desirable in geakei.e., both if the product is used as-
is, or if it is changed. It indicates how well tR&S product operates in conjunction
with (i.e., exchanging data or control informatioith) other software products.
Interoperability can be defined as “The abilityy@b or more systems or components to
exchange information and to use the informatiort bi@s been exchanged.” There are
several issues that have to be considered in dalexvaluate the interoperability,
especially when it is referred to one applicatioe.{ we are dealing with the potential
interoperability of the product with an unspecifigtther piece of software). We propose
to evaluate interoperability according to the faling sub-qualities:

» Data exchangeability: It evaluates how easy ibisthe considered application
to exchange data with other applications. It takes consideration
common/compatible data communication protocolsa depresentation models
and standards.

» Control exchangeability: It evaluates how easy st for the considered
application to exchange control data with otherliappons. By control data we
mean information that can affect the behavior @& ithvolved applications. It
takes into consideration issues like communicastamdards.

* Location independence: It evaluates to what extdw location of the
interoperating applications needs to be taken atcount and dealt with. It
takes into consideration issues like the usage widleware systems for
language and location independence.

Reliability. This quality is desirable in genered., both if the product is used as-is, or
if it is changed. It indicates the ability of theftsvare not to fail, i.e., to perform its
function satisfactorily. The reliability of the ceidered application is defined by the
following sub-qualities:

Davide Taibi
77



Towards a trustworthiness model for open sourdsvaoé

2010
Maturity: It indicates the presence of failuresfaylts in the software. The term
“maturity” was chosen because usually a matureiegpin, i.e. an application
that has been used and maintained for a long tisnexpected to fail very
seldom. In practice the maturity indicates how ofi@ internal fault results in a
user observable failure. In the definition of medrfor the software maturity, it
should be considered that the frequency of faildeggends on how the software
IS used.
Fault tolerance: It indicates the ability of thefte@re to maintain a specified
level of performance in cases of software faultsobrinfringement of its
specified interface.
Recoverability: It indicates the capability of theftware to re-establish its level
of performance and recover the data directly affiéanh case of a failure and on
the time and effort needed for it.

Performance. This quality is desirable in genaral, both if the product is used as-is,

or if it is changed. It indicates the ability oktsoftware to perform its function within

given constraints concerning the consumption obueses and time (under stated

conditions). The performance of the considerediegiibn is defined by the following

sub-qualities:

Time behaviour: This quality relates to the abibifythe software to perform the

required functionality according to the given tieenstraints. There are several
issues related to the time behaviour that can kentanto consideration: the

response time, the processing time, the througlepait,

Resource behaviour: This quality indicates theitgholf the software to perform

the required function within constraints concerniing amount of resources
used and the duration of such use. Among the ceregidresources there are:
the CPU time, the amount of RAM, the amount of dmkace and of

communication bandwidth, and in general the usdgeenpherals of different
types.

Note: scalability is also important, and can bensas an aspect of Performance.

However, we do not treat it as a separate quadtyrer, when evaluating the behaviour

of the OSS with respect to time and resource coptam we shall take into

Davide Taibi
78



Towards a trustworthiness model for open sourdsvaoé
2010

consideration how this behaviour varies with respdo the size of the

problem/data/computation to be performed.

Security. This quality is desirable in general,, imth if the product is used as- is, or if
it is changed. It indicates the ability of the safte to prevent unauthorized access to
program or data.

» Access right enforcement. This quality relatesh® ability of the software to
provide to any potential user only the type of ascprivilege that he/she is
entitled to (including no access at all for unauited users).

* Protection. This quality indicates the ability dfet software to protect the
programs and data from corruption due to malicactfons.

» Service level. This quality indicates the abilititbe software to preserve the

service level (no denial of service)

Usability

] As-is utility
Reliability
Modifiability
Perf
itahili ] Maintainability
Exploitability

in development

Security

Portability

il

. - Suitability Data
Functionality Exchangeability
Trustworthiness ~ —— Accuracy —
Control

— Interoperability

Maturity

Exchangeability
Location

— Reliabilit
Y Fault tolerance |__Independence |
Recoverabilit .
—1 Time behaviour

— Performance

Access right Resource behaviour|

enforcement
— Security

Protection

Service level

Figure 17: The conceptual model of trustworthinesgfirst part).

Davide Taibi

79



Towards a trustworthiness model for open sourdsvaoé

2010

There are several sub-qualities to be consideredinStance, the usability depends on
learnability, which depends on the qualities ofulser manual. Since these qualities are
at a rather low level of detail, they are shownyanlthe GQM plan.
Cost_Effectiveness. This quality is desirable inagal, i.e., both if the product is used
as-is, or if it is changed. It indicates the apilitf the software to contribute positively
to the financial balance.
This quality is evaluated objectively by meanstwd Total Cost of Ownership (TCO),
i.e., by evaluating all the components of the TCO:

* Acquisition cost;

* Adaptation cost;

* Deployment cost;

* Maintenance cost;

» Operation cost;

* Training cost;
Components of the cost that depend on specificitond are evaluated in an
“average” context.
Actually, the evaluation of the cost effectivene$sa software product should include
also the evaluation of the benefits. However, theeliits depend from the usage of the
product: it is not even possible to identify a ‘iggl” representative case. Therefore, we
decided to limit the evaluation of the cost effeetiess to the aspects concerning costs.

Customer satisfaction. This quality is desirableg@neral, i.e., both if the product is
used as-is, or if it is changed. It indicates tihditsx of the software to contribute

positively to satisfying the customer (i.e., theafi beneficiary of the process in which
the OSS product is involved).

This quality is practically the same as the Asiiity, as far as the involved qualities

help achieving external objectives, i.e., user @igatble properties.

Developer quality (reliability). This quality is dieable in general, i.e., both if the
product is used as-is, or if it is changed. It tades to what extent the developer of the
OSS product is reliable. This quality indicatesd{iactly) that we can expect a

Davide Taibi
80



Towards a trustworthiness model for open sourdsvaoé
2010

reasonably good behaviour of the developer, eegylar maintenance and evolution of
the product.
The sub-qualities that are considered to provideatuation of the developer quality
are:

* The size and quality of the user community;

* The reputation of the developer;

» The efficiency in removing defects;

* The market share.

Acquisition cost

Adaptation cost

Cost effectiveness

Deployment cost

Maintenance cost

Training cost

Operation cost

Trustworthiness Customer

satisfaction

As-is utility

Size and quality of the
user community

Developer quality Reputation of the
developer

Efficiency in removing
defects

— Market share

Figure 18: The conceptual model of trustworthinesgsecond part).

Davide Taibi
81



Towards a trustworthiness model for open sourdsvaoé

2010 Chaprter

The measurement toolset

In order to execute a representative portion ofGlgEM plan, we need to identify a set
of tools. In this section, we describe the tools sedected and MacXim, an OSS
measurement tools we developed to measure a sgewént trustworthiness factors.
Our toolset is composed of four tools developedad (Spago4Q, MacXim, JaBUT],
and the GQM tool) and seven tools integrated in gleform (StatSVN, StatCVS,
PMD, FOSSology and JUnit, PMD and Checkstyle).

5.1 Spago4Q and the integration framework
Spago4Q is an OSS platform that supports the asses@nd the quality inspection of
software products: these goals are achieved byatnad) data and measures collected
from various project management and developmens teibh non-invasive techniques.
Spago4Q is used to visually represent metrics fodyct evaluation. These metrics are
part of the GQM plan that is instantiated inside fiatform. Measurement tools are
integrated with Spago4Q by means of a set of ‘ekra’ that interact with the tools to
start an analysis process or to retrieve the resdlpreviously performed analyses. All
the collected data are merged into a unique rdapattvisually summarizes the quality
and trustworthiness level of the target OSS projébe main features provided by
Spago4Q are: data aggregation, quality indicatompedgation, and dashboards
rendering.

Spago4Q v2.0 has been released as FLOSS and cdémedh downloaded from
http://www.spago4q.org.

5.2 MacXim
MacXim (Model And Code XML-based Integrated Metex)our tools for measuring

the static properties of the source code. The ®@8&aliversion of MacXim was obtained

Davide Taibi

82



Towards a trustworthiness model for open sourdsvaoé

2010
enhancing an earlier version. The new release stpphe most recent versions of

Java, thanks to the incorporation of the parsetaioed in the Eclipse compiler, a
component of the Eclipse Core Java DevelopmentsTpalvw.eclipse.org/jdt/], and

features a wide set of metrics.

i,

.._."(..:-paﬁa@-.
o

-
|

: } | } AST‘*

parser

E'r-u-

Figure 19: A schematic view of the architecture oMacXim.

While most code measurement tools perform coddrnmpesd measure computation in
an integrated way, so that changing the set of coeagometrics is relatively complex
(as it requires operating on the results of thesipgr often involving the parsing
procedure itself), MacXim achieves a much highexibility, by clearly separating the
parsing phase and the measurement computation .pMeseXim is organized as
described in Figure 19. The Java code is parsethdégns of the Eclipse parser: the
resulting abstract data type is saved —after solaeomtion— as a SQL database.
Measures are computed by suitable queries (writt&SQL or directly implemented in
Java) on the contents of the DB. The latter datlbas also be loaded with measures
computed by other tools.



Towards a trustworthiness model for open sourdsvaoé

2010

L MACXIM ]
. 4 Y qucries |
\ 4 \

ANo Macxim Client

1ot 1670 B M4.4.2 - numParametersPerMethod @ 0.8704028 [l
numlnterfacesPerClass M4.4.3 - numPackages @ 210

g 0.32934132 [ M4.4.4 - numMethodsPerinterface @ 3.235294 [ s
@ 8.404255 = [}
‘median 0.0 sS. @ 74.20192 —_—
0.0 [ M4.4.7 - Number of Attrubutes per Class @ 4.361702 =

o |[std_dev 0.5084836 M4.4.8 - Number of Classes @ 167.0

File Edit Help .
== e Y 1
Upload Analyze std_dev 1.4159094 -
| T — CBO
soaiyicalmodel v | Behoouraimodel v | Toos v | Usermeny » | KpiModel v | Extaciors + | Wekome: sdgadain | B8
I Choose a granularity level avg 6.8509316 =
x 360 M4.3.1.1 - RFC per class o
© Applica... O Package ‘median 60 M4.3.1.2 - CBO per class @ 360 ——
min 0.0 M4.3.1.3 - LCOM per class @ 66.0 _
’ 2 std_dev 191479 £Q4.4 - 44 CodeSize
oK Cancel -
numClasses B M4.4.1 - elOC @ 83.92547 3 T
[Creckans

30

3] [xri\s H‘mlim EIE
—

tot 330 —__ e

Figure 20. Visualization of quality measures.
As shown in Figure 20, the results of the measunesngerformed by MacXim can be

visualized directly by means of the tool's own nfdee, or they can be loaded in
Spago4Q (see section 5.1) for a visualization éendbintext of the whole GQM plan.
Currently, MacXim is fully integrated in Spago4Qdacomputes 70 metrics (including
size, complexity, modularity, and various typesobject-oriented metrics) at different
abstraction levels: application, package, methad,dass level.

MacXim has been released as OSS/FLOSS and can benlodaled from
http://qualipso.dscpi.uninsubria.it/macxim.

Currently MacXim can measure only Java code. Thension to C++ is planned. In
order to perform such extension we shall have tegirate a C++ parser in the MacXim
engine. Since C++ and Java —though sharing ses@natructs and concepts— have also
some relevant differences, we shall have also tmamce the schema of the XML
database in which the XML representations of th#esaare stored.

5.3 JaBUTi

JaBUTi (Java Bytecode Understanding and Testingg sructural testing tool that
implements intra-method control-flow and data-fleasting criteria for the Java byte-
code language. JaBUTi implements four intra-metlomehtrol-flow based testing

criteria and four intra-method data-flow baseditgstriteria. It evaluates the coverage

Davide Taibi
84



Towards a trustworthiness model for open sourdsvaoé

2010
of a given test set against these testing criteeiporting the coverage obtained with
respect to each one. It operates at unit levelpaadides aggregated testing reports by
method, class, packages or project (composed & af packages and classes under
test).
The tool works at byte-code level and no sourceeasdequired to compute the testing
requirements and the coverage. If the source codwdilable, the tool is able to map
back the results computed from the byte code toatsesponding source code. In the
current version, JaBUTi is able to import JUnitttests so that their quality can be
evaluated against the different supported strukteséing criteria.
The main advantage of JaBUTi, when compared tolaintoverage testing tools,
consists in the ability of supporting the applioatof both control and data-flow based
testing criteria, while other tools just includentwl| flow testing. Moreover, with
JaBUTi, it is possible to evaluate the coveragelitiérent combinations of test cases
just by enabling and disabling some of them. Ontesting requirement is identified as
infeasible, JaBUTi enables the tester to eliminiaf®m the coverage computation.
JaBUTi can be used through its GUI or via commamel fo start the process analysis.
JaBUTi is partially integrated in Spago4Q for rdpaw the results of the analysis.
Currently, JaBUTi is able to compute six metricgl aiontributes to evaluating the
actual reliability and correctness of OSS products.
JaBUTI has been released in V1.0 and can be famlnloaded as OSS/FLOSS from
http://incubadora.fapesp.br/projects/jabuti.

5.4 The GQM Tool

The GQM Tool implements the homonymous methodoldgis a graphical tool that

simplifies the definition of a measurement modeltbree levels: a conceptual level
(goal), an operational level (questions about thal)gand a quantitative level (metrics
associated with questions in order to answer th&img. GOM Tool makes it easier to
define and implement a GQM plan: in the definitpmase the GQM plan is modeled
and defined (i.e. the associations between goalglitg foci, variation factors,

hypotheses, impacts, questions and metrics arefispigcin the implementation phase
the GQM plan is applied to a concrete case and/ghees are interpreted through the

metrics defined to answer one or more questions.

Davide Taibi

85



Towards a trustworthiness model for open sourdsvaoé

2010

The GQM Tool saves the GQM plans in XML format: gedfic XML Schema has

been defined to support this. A GQM plan can beedun multiple projects. The GQM
Tool connects to a RDBMS to extract the values edad the implementation phase.
The extraction is straightforward, since the GQMbITassociates an SQL query with
every metric in a GQM plan. The queries are exetwering the implementation

phase, on the project’s repository.

Currently, the GQM Tool has not yet been integratgtd Spago4Q and it has not yet
publicly available.

5.5 StatSVN and StatCVS

StatSVN [http://www.statsvn.org] and StatCVS [hifgiatcvs.sourceforge.net/] are
third-party OSS tools that were integrated in Sg&to generate statistics on the basis
of information retrieved from SVN or CVS reposigsi Such data are provided both
for overall project characteristics/features argbakith respect to individual authors,
giving insight into their development activitiese®de activity history, these tools
collect also data regarding the size of projeatsh{sas the number of files and lines of
code added/removed/changed from one revision teharjo StatSVN and StatCVS
were chosen because of to their usefulness in gaghepository statistics. With these
applications it is possible to collect data fronotef the most popular version control
systems. In addition, these tools have similar b#ifias and are easy to use. Moreover
they use the same data model and report generators.

StatSVN and StatCVS have been fully integratedpadg®4Q, thus providing both the
ability of starting a new project analysis or aadektraction directly via the Spago4Q
interface. Hence, StatSVN and StatCVS are transp&odinal users that only interact
with the Spago4Q platform to perform the analysid extract the results.

Currently, StatSVN and StatCVS are used to complggen metrics (such as the
number of developers and commits, the mean numbeO& added per year, etc.).
The modified versions of StatSVN and StatCVS arteyrbpublicly available.

5.6 PMD and Checkstyle

PMD and Checkstyle [http://sourceforge.net] ardstdor code analysis that scan Java
source code and look for potential problems, siscphassible bugs (for example empty

Davide Taibi

86



Towards a trustworthiness model for open sourdsvaoé
2010

try/catch/finally/switch statements), dead coder @xample unused local variables,
unused parameters, unused private methods), andptsmbal code (for example
wasteful String concatenation usage instead ofngBuffer/StringBuilder). Other
interesting features are the capability to detettand paste portions of source code.
They can be used against the source code comingtik® or more software systems,
to detect plagiarism; or they can be used agaessoburce code coming from a single
software system, to detect cut and pasted portminsode that could lead to
maintenance and quality problems.

PMD and Checkstyle have been chosen because theyidely used automated code
review software tools for the Java language. PMO @meckstyle have been fully

integrated as is inside MacXim to compute 32 add#i code quality metrics.

5.7 GQM metrics mapping

The tools identified and developed in this sectiom aimed to measure as much GQM
metrics as possible. In Table 11 we can find thepimg between the available tools
and the GQM metrics.

Davide Taibi

87



Towards a trustworthiness model for open sourdsvaoé

2010
& . z | o
x|l a2 |I35|E|E
w| 25| a|Q|<|<
o | S| 9 S| = | E
o| | ¥ 2 |lo|on
© @)
QF | QUESTIONS METRIC
2 | LicenseCharacteristics DistributionAgreement
=
.":% FeeAllowed
%)
2 ModificationOfCodeAllowed
©
s NumberOfLicences
©
E; SourceCodeAccessible
_l
5 copyrightedMaterial
o
< | RequirementsSatisfaction RequirementsSatisfactionDegree
EaseOfDataExchange AutomaticalMagaementOfOtherSoftwareData
EaseOfDataParsing/Unparsing
g SemanticallyWellDefinedDataFormat
e}
g StandardDataFormatSupported
3 UserDefinedData
9]
£ | EaseOfintegration StandardApplicationinterface
|
< StandardInterfaceConformityEvidence
< | Locationindependence LocationindependenceSupport
ProtocolBasedDataExchange | StandardProtocolSupportEvidence
StandardProtocolSupported
Correctness CorrectnessWrtTests
TestConditionCoverage X
TestlnstructionCoverage X | X
> TestPathCoverage X
g Dependability DependabilityEvidence
& | FailureFrequency FailuresFrequency
EI HowProbableAreProblems
,3. WrtCodeConstruction UnexpectedSituationHandlingindex plp
E ProductMaturity BugTrend
ProductMaturityLevel
ReleasesTrend X
Robustness Robustness (same as correctness, outside spg
o
EI AnalyzabilityForMaintenance | CodeDocumentation X
é CodeModularity X
(=) .
.E|§ CodingStandardEnforcement X | X
)
] g CodingStandards
3
u>j| i= MaintainabilityOrientedArchitecture
S RunTimeModularity
I BugRemovalEfficiency BugClosedPercentageRate

Davide Taibi

88




Towards a trustworthiness model for open sourdsvaoé

2010

BugClosureRatePerDeveloper

BugRemovalRate

CodeQuality

%OfClassesRespectingMaxSLOC

%OfMethodsRespectingMaxSLOC

ECA rules

McCabelndex

CodeSize

CodeSizeinLOC

OOCodeSize

SLOC

XX X X X X | X

Maintenance Stability

DesignPatternUsage

NumberOFailuresDueToMaintenance

MaintenanceTestability

AvgNumOfTestPerMethods

AvgNumOfSLOCPerTestCase

AvailabilityOfTestDocumentation

McCabeCyclomaticNumber

NumberOfTestCases

TestResultsAvailability

NewReleaseRate

BugsReportingRateperKLOC

ChangedLOCSperYear

MajorReleasesPerYear

x

MinorReleasesPerYear

StandardArchitecture

StandardArchitecture

SupportingTool Availability

ToolSupport

Table 10. The tools to be used for collecting theetrics in the GQM plan
Legend: x = tool available to support metric; poltavailable to partly support metric.

Davide Taibi

89




Towards a trustworthiness model for open sourdsvaoé

2010 Chapter

Data Collection

The goal of this section is to collect data conrgym22 Java and 22 C/C++ OSS
products. For each of these products we aimedwe: ha
* Evaluations concerning the qualities of the prosluthat are perceived
subjectively by the users. These evaluations apeesged in an ordinal scale
(form O = totally unsatisfactory to 6 = excellent).

* Measures that capture in an objective way the cheniatics of the software.

6.1 The OSS products being analyzed

6.1.1 Objectives: defining the set of product to be evaluated

The first round of experiments was performed ormalsset of projects, in order to
verify that the whole set of techniques, tools, sledand methods defined in the
previous section are effective with respect todherall goal, i.e., that they are suitable
for deriving the required information concerning thustworthiness of OSS.

The set of OSS products to be evaluated duringfiteeround of experiments was
chosen by means of a careful procedure. The predngst support the specific goal of
the first round of experiments, i.e., proving thhé techniques, tools, methods and
models defined in this work are effective for thergose of evaluating OSS
trustworthiness. Moreover, the set of products reshbumerous enough to support the
subsequent data analysis and derivation of théeatauthiness model

6.1.2 Method: selection criteria

The choice of the products was carried out accgrtirmultiple criteria.

Davide Taibi

90



Towards a trustworthiness model for open sourdsvaoé

2010
Coherence with the project selected in Section 6.1
The most obvious way of choosing the projects &wate in the first round is to reuse
the consideration performed in Section 3.3.1. IntiBa 3.3.1, a set of relevant OSS
products and artifacts have been selected, by dakio account different types of

software applications, generally considered stabté mature (Table 4).

Comparability
Another interesting consideration is that by semgcproducts for which quality metrics

have already been published, it would be posst®tnpare our overall quality results

with the published values, and/or exploit the pah@id evaluations as part of our data
set. To this end, we considered as candidates orQ5S evaluation the projects

evaluated by the Eclipse Enerjy plugin and by tbemercial tool Structure101. Table

11 reports the list of projects that are evaluatethis task and also by Eclipse Enerjy
or Structurel101.

OSS produc QualiPSc Structure101 Enerjy
Ant 4 v

Eclipse 4 v v
Findbug: v v v
Hibernat: v 4
JasperRepc 4 v
JBos! v v

JFreeCha 4 4 v
JMete 4 v v
PMD v v v
Saxor 4 v
Strut: 4 v v
Tapestr v v v
Velocity v v
Weke 4 v

Table 11. The list of OSS products being evaluateaso by other initiatives.
Additional selection criteria
In order to validate the set of techniques and outhat the current stage, we took into
consideration also the following points:
» The products should be different in the kind ofdusterface” they offer, i.e.,
select a full-fledged GUI-based OSS (like EclipseJdeter) compared to a
“library” product (like Jakarta commons).



Towards a trustworthiness model for open sourdsvaoé
2010

« The products should allow for applying the meaguamd testing capabilities
provided by the tools identified in Section 0. Fastance, since currently our
code measuring tools deal only with source codé&ewriin Java, we made sure
to include in the set of tools to be evaluatedhim first round of experiments a

statistically relevant number of Java programs.

6.1.3 Results: the list of products evaluated during the first

round of experiments

During the first round of experiments we evaluaBjava projects and 22 C/C++
projects reported in Table 12.

Product
Checkstyls Ant
Eclipse Axis
Findbug: BusyBox
Hibernat CVS
HttpUnit CygWin
Jakarta Commons| DDD
JasperRepc GDB
JBos! Gnu C Library
JFreeCha Gnu GCC
JMete Lib XML
Log4. Linux Kernel
PMDV Mono
Saxor MySQL
Sprin¢-FW OpelLDAP
ServiceMi Open Pegast
Struts Open SSL
Tapestr Perl
TPTPV PosgreSQl
Velocity SpiderMonkey
Weke SQLite
Xalar Subversior
Xerces TCL/Tk

Table 12. The list of OSS products being evaluatetlring the first round of

experiments

Davide Taibi

92



Towards a trustworthiness model for open sourdsvaoé
2010

6.2 Preparation of the data repository

The data being collected by means of measuremaritsyviews, from other data
sources, etc., have to be stored in a well-strediupersistent repository that supports
the analysis activities..

The repository should also integrate nicely witk theasurement and data collection
tools.

Such repository has to collect the data from th#owua tools and make them available
to the analysis activities and to the reportind {&pago4Q), as shown in Figure 21.
The construction of the repository proceeded thhotlge usual phases of database
design and implementation. The repository is basedMySQL relational DBMS.
MySQL was chosen because it is a reliable OS ptoahut because it had already been
used in conjunction with Spago4Q. It is also expédb support seamless integration
with the analysis tools.

The main result of the database design activitjuistrated in Figure 22 and Figure 23.
In particular, Figure 22 accounts for the Tablest thre dedicated to storing the user
perception of the trustworthiness of the OSS prtglutable OSS_Product stores the
data concerning the OSS products (name, versicende, etc.); table User stores a set
of data that characterize the users who providedristworthiness evaluations; table
PerceivedTrustworthiness has an attribute for egemlity aspect (reliability, safety,

usability, etc.) that is relevant to characterize trustworthiness of OSS products.

Davide Taibi

93



Towards a trustworthiness model for open sourdsvaoé

2010

Questionnaires

% » Measures

Other tools R
Statistical analysis
Figure 21. Role of the measures DB
O E—— v
id INT[2Q)
= - Trustwort hinessle vel ENUM{ Absdutely nat'Little', Just emought, More thar enought', Very/A lot. Compretely')
] 0ss_product v Relst T hist vt Hinds shavel ENUMC Al clitely nof, Lithe' Just sncught, More than érought’, Veny'A ke, Gamplati ly)
1d INT{10) Usageleve| ENUMI Absciutely not, Little' Just enought’, More ther encught, Venys iat|, Complately’]
/ lisme VARCHAR{Z55) Oarfigurability ENUM{ Absclutely nat', Little', Just enought’, More thar encught', Very/ & lot,'Completely’)
Version VARCHAR(30)  Effectivensss ENUM Absclubely nl, Littls', Just encught', Mors thar snaught, Very/A ot Compistsly)
Relesss VARCHARIZSS) Hiem——sereet Leamahility ENUM{ Absolutefy not', Little', Just enought’, More than enaught', Veny'a lat', Completely')
LycorseTyps ENUM(GPL,LOPL, Dbker) | —i - Productivity BNUM [ ‘absoiutely mat, Uit Just encusht’, More ther ercught, Veny/a 1ot Gampletely’)
URL WARCHAR(2S8) | Safety BNUM Absolutely nat', Little . Just encucht','Mare thar enaught’, Veny & I, 'Com pletehy’ )
Language ENUM( Iava|, T+ +')} ‘ Lisability ENUMI Abscute fy not,' Lite', Just emaught’, Mo than encught’, Very/A ot 'Completely)
» Irtaroperabiltty ENUM[ Als ol dsly nat’, Litls!, Just erought’. More than ancught’, Vend A lot, Completely)
Reliability ENUM("Absalutely nat', Little' Just enought' More than encught’, Very/ A It Completely’)
Securs ENUMT Absalutaly ot Little' Just ancught’ Mors than encucht’ Very/A lat', Completsly’)
# Prod_ref INT{10)
& sar_ref INT[10)

e S

SRR e
SEEST R

Tveer : v
16 INT(30)
Mame VARCHAR[2SE)
Ermail VARCHAR[255)
» Resle ENUM{Upiper Mansger, Project Merager, Developer  User, Bnd User, Other') |
(Organization Type ENLM['Private’, Mo Profit, Public Administration’, Other')
Orga rizstior Bm ployershum INT{11)
(OrganizationDomair VARCHAR (255}
+ UnitEm ployershum INT(11)
» Prod_mf NT(20)
»

Figure 22. Conceptual model including all user perived aspects of
trustworthiness.

Figure 23 illustrates the tables that were desigiedontain the data concerning the
objective measures of the product characterisiit®ere is a table for each element

Davide Taibi

94



Towards a trustworthiness model for open sourdsvaoé
2010

(class, method, attribute, ...) and granularityelefapplication, package, class, ...) for
which measures can be defined. In addition to thakkes, there are three tables for
storing the measures form the "foreign” tools thatare planning to use, namely PMD,
FindBugs, and Checkstyle. Finally there is a tdbtestoring data from any additional

measurement tool that we could decide to use ifutiee.

] Code_Attributes +

: Code_Class v
| Code_Method v :"L meT) idl INT{ 10} - 5
e AppRet INTEI0) | ameian s il INT{1 13
Class_ref INT(10} ¢ p———lk&  MName VARCHAR(254) ;
elOC INT(10} SourceType ENUR.)

_____ | ClagsRef INT(10)

MumParameters INT(10)
i CommentsLines INT{10)
elOC INT(10} : Scope EMUM{..)
Inline Carmments INT(10)

MNumComments INT{10) P >
ClassMame VARCHAR{Z254 )

MethodMNarme WARCHAR{254 )
PackageFief INT({11)

Interface Ref INT{10)

IdSouree INT(10)

i Dest INT(10)

DestTipe EMUM..}
Dependency Type VARCHAR(254 )

______ LCOM DOUBLE b i App_Ret INTE10)

r = Bl I3 i~

MeCabe Index DOUBLE CEO DOUBLE =
e FFC DOUBLE

¥ Trpe EMUME...3

"] Metrics_FindBugs v

id INTC1O)

|
|
|
|
|
|
|
|
|
: idClass INT(10)
|

|

|

idinterface INT{10)

AppFef INTOO0)
Metric Mame WVARCHAR{S0)

] T S yalue DOUBLE
= id [MTET1) GranularityLewvel EMUMC..}
Objfief INT(11)

AppRef INT{10)
»

N

PackageMame WARCHAREE4) S — — — — — — \F
|
|
|
|
|
|
|
|

! 1

| | |
| o

|

|

|
|
| id Package Father INT{10}
|

|
|
|
|
|
|
|
|
|
|
|
|
| i PackageSon INT(10)
1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Jf

"] 083_Product. v

et INT(TD)

Mame WARCHAR(255)
“ersion VARCHAR(30)

Fielease WARCHAR(255)

] Metrics_OtherTool
il INTC10)
BppRef INTETDY
Metric Name YVARC HAR( S

|
|
1 LycenseType EMLIM...) l_ ==
> —————1 Walue DOUBLE
URL VARCHAR(2SE )

_| Code_Interface v } | o R e GrarularityLevel ENLIM( ..
i INT(10) ‘ : e Ohifief INT(1 1)
App_ref INT(I0) e A R+ o A A |
interfaceName VARCHAR(254) | i “

ClassRef INT(10) };77777777777777777777777} | i
PackageRef INT(10) : R s
> A !
| |
I A
A

~] Metrics_Checkstyle » =

i INT10)
AppFef INT(10}
Metric Name VARCHAR{S0)
alue DOUBLE
Granularity Level ENUMI.. )
OlgjRef INT(11)

>

i INTETO)

AppRef INTE10)

MetricName VARCHARSD)
Walue DOUBELE
Granularity Level EMUM{.)

ObsjFef INT(11)

Figure 23. Conceptual model including the objectivelata.

Davide Taibi

95



Towards a trustworthiness model for open sourdsvaoé
2010

6.3 Subjective evaluation of perceived

trustworthiness

The collection of the subjective evaluation of tlagious aspects of trustworthiness by

users proceeded through a series of steps:

A first version of a questionnaire (concerning Irbjgcts) was released. This
version proved to be too detailed: people would spend the time required to
provide all the requested information.

* A second version of the questionnaire was releaBeid.version contained only a
few questions, with the possibility to answer théwn multiple products. As
already mentioned in section 6.1.3, the questioanacludes questions on a set
of 22 Java programs and a set of 22 C++ programs.qliestionnaire is reported
in appendix (section Appendix C: ).

* An on-line version of the questionnaire was pulgdhin order to ease the
collection of data. See http://qualipso.dscpi.unbrg.it/survey. The screenshot
of the initial page is reported in Figure 24.

2) QualiPSo Survey?2 :: - Mozilla Firefox

Eile Edit View Higtory Bockmarks Tools Help
@ - ¢ % . [0 fasipsodsl winsbria php?sid=58332% g=an - G Google PR
i Most Visited] @ Getting Started  Latest Head!i

QualiPSo Survey2

'YOUR OPINION WILL BE VERY USEFUL TO THE 0SS COMMUNITY

Qualipso Survey — The Trustworthiness of Open Source Product
www.qualipso.org

‘Why This Survey?
The purpose of this survey is to eliit information from the users and developers of Open Source Software (OSS) prodhucts about their perceptions on the
trustworthiness of OSS products and the related factors.

instit
to sound, well-recognized, and established industrial operations.

aires?
rovided by dual or organization will be treated as confidential. As such, it will not be released in other form than aggregated
statistical analyses that will make it impossible to identify the single respondents

Please do not hesitate to contact us if you need any information or clarification.

This survey is anonymous

allow survey,
have (or havent) There s no way

[Exit and clear survey] Load unfinished survey

| Dore.

Figure 24. A screenshot of the welcome page of tbaline questionnaijre.

Up to the end of June 2009, 532 questionnaires weliected. Overall, they account
for 3809 evaluations.

Davide Taibi

96



Towards a trustworthiness model for open sourdsvaoé

2010
Table 13 reports the questions in the questionnalriée Table 14 lists the number of
evaluations per project collected.

QUESTION IN THE QUESTIONNAIRE PERCEIVED QUALITY (short name
How familiar are you with the produs Familiarity

How usable is the produ Usability

How portable is the produc Portability

How much does/didthe product satisfy yoi| Functional Requiremer
functional requirements when you use/used it?

How interoperable is the produ Interoperabilit
How reliable is the produc Reliability
How secure is the produ Security

How useful is the product deloper community t(( Community
you?

How well documented is the produ Documentatio
How fast is the produc Fastnes

How much do you trust the product, comparei| Trust_wrt_0s
its Open Source competitors?
How much do you trust the product, compi to | Trust_wrt_non_os
its non Open Source competitors?
How much do you trust the product, over Trustworthines

Table 13. The evaluated characteristics in the quesnnaire

PRODUCT NAME PROGRAMMING LANGUAGE EVALUATIONS

Ant CIC++ 10¢
Axis C/C++ 15
BusyBo» C/C++ 72
Checkstyls JAVA 27
CVS C/C++ 154
CygWin C/C++ 112
DDD C/C++ 17
Eclipse JAVA 341
Findbug: JAVA 34
Firefox CIC++ 12¢
GDB CI/C++ 107
Gnu C Libran C/C++ 141
Gnu GC( CIC++ 162
Hibernat: JAVA 10z
HttpUnit JAVA 35
Jack.Commons | JAVA 13
Jasper Repot JAVA 37
JBos! JAVA 94
JFreeCha JAVA 36
JMete JAVA 40
Lib XML C/C++ 62
Linux Debiar CIC++ 58
Linux Kerne CIC++ 20~
Log4. JAVA 11¢

Davide Taibi

97



Towards a trustworthiness model for open sourdsvaoé

2010
Mona C/C++ 37
MySQL C/C++ 272
OpelLDAF C/C++ 54
Open Office C/C++ 127
Open Pegas C/C++ 5
Open SS C/C++ 117
Per C/C++ 13¢
PMD JAVA 28
PosgreSQ C/C++ 10¢
Saxor JAVA 27
Servicemi: C/C++ 5
SpiderMonke C/C++ 10
Spring Framewor JAVA 57
SQLite C/C++ 10¢
Strut: JAVA 55
Subversio C/C++ 18¢
Tapestr C/C++ 7
TCL/Tk C/C++ 21
TPTF JAVA 5
Velocity JAVA 19
Weke JAVA 11
Xalar JAVA 34
Xerce JAVA 55

Table 14. Number of evaluations per project

6.4 Objective evaluations of OSS product
characteristics

19 of the 22 Java projects whose trustworthinebgiisg evaluated were also measured

(i.e., their characteristics were objectively ewddual).

We report the measures concerning only a smalbfsptoducts, in order to illustrate

the kind of measures that were collected.

Table 15 reports the measure of the level of cgeed the tests that are available for a

given set of OSS products. These measures aredeiatreliability (the higher the

coverage the more effective the testing, the moreect, hence reliable, the released

product).
OSS product Jmeter Log4J PMD HSQLDB Junit
versior 2.3.2 1.2.18 |5.C 1.9 Alpha 2 |4.€

Davide Taibi

98



Towards a trustworthiness model for open sourdsvaoé

2010

Size (bytecode instructior 161,38! |34,84¢ |133,72° (277,53 11,01¢
Number of Classes with Exception Hand 28t 75 73 20C 41
Number of Methods with Exception Handlers (625 201 374 683 63
Cov Req / Al-Nodes_e 0.3¢ 0.41 0.37 0.2C 0.31
Cov Req / Al-Edges_e 0.2¢ 0.3¢ 0.2¢ 0.17 0.2¢
Cov Req / Al-Uses_e 0.27 0.41 0.2¢ 0.1¢ 0.2¢
Cov Req / Al-Poi-Nodes_e 0.2¢€ 0.3¢ 0.1t 0.1t 0.2¢
Cov Req / Al-Nodes_ec 0.0z 0.0¢ 0.1¢ 0.07 0.0¢
Cov Req / Al-Edges_e 0.01 0.01 0.0¢ 0.01 0.0t
Cov Req / Al-Uses_ec 0.0z 0.07 0.11 0.0¢ 0.07
Cov Req / Al-Poi-Nodes_ec 0.0z 0.0¢ 0.0¢ 0.0¢ 0.0¢

Table 15. Coverage measures

Table 16 reports the ECA (Expert Code Assessmeagsares that have been for the
usual small set of sample projects. There measuess identified out of Siemens’
experience and are expected to indicate poorlygdedi and/or implemented code,

which is more error prone.

Davide Taibi

99



Towards a trustworthiness model for open sourdsvaoé

2010
OSS product Jmeter Log4J PMD
ECARules_EqualsNotDefinedWithHash 0.015 0 0.045
ECARules_EqualsNotDefinedWithHash 0.015 0.03 0.045
ECARules_CatchingThrowable 0.15 0.303 1.681
ECARules_MissingBreakInSwitch 0 0 0
ECARules_MissingBreakInSwitch 0 0.03 0.166
ECARules EmptyCatchBlock 0.714 0.424 0.454
ECARules_ClassNameWithLowerCase 0 0 0
ECARules_ClassNameWithLowerCase 0 0 0
ECARules_ExcessiveClassLength 0.047 0.03 0.075
ECARules_DubiousFloatingPointComparison 0 0 0
ECARules_DubiousStringComparison 0 0.03 0
ECARules_DubiousStringComparison 0 0.03 0
ECARules_ConstructorCallsOverridableMethod 1.15 0.969 0.257
ECARules_DuplicatedCode 1.079 0.242 5.742
ECARules_MissingBraces|fStmts 0.015 4.242 29.712
ECARules_MissingBracesWhileLoops 0 0.03 0.045
ECARules_MissingBraces|fElseStmts 0 1.878 2.287
ECARules_MissingBracesForLoops 0 0.03 0.545
ECARules_FieldNeverlnitializedProperly 0.031 0 0
ECARules_ExcessiveMethodLength 0.206 0.09 0.5
ECARules_NullPointerDereference 0 0 0
ECARules_HidingField 0 0.03 0.09
ECARules_ReferenceToMutableObject ReturnsArrj0 0.03 0
ECARules_ReferenceToMutableObject_FinalArray |0.023 0 0
ECARules_ReferenceToMutableObject FinalHash10 0 0
ECARules_ReferenceToMutableObject ReturnsOb|0.087 0.03 0.03
ECARules_DubiousArrayComparison 0 0 0
ECARules_MissingDefaultinSwitch 0.063 0.06 0.212
ECARules_UnreadField 0.031 0.212 0.03
ECARules UnusedField 0 0 0.015
ECARules_UnusedField 0.047 0.06 0.045
ECARules_UnusedPrivateMethod 0 0 0
ECARules_UnusedPrivateMethod 0.039 0 0.075

Table 16. ECA (Expert Code Assessment) rules meass

Table 17 reports the static code measures of O8&8upts. The table accounts for size

metrics of various types (from LOCs to number adsskes, methods, etc.) and for

typical object-oriented metrics (namely those psgabby Chidamber and Kemerer).

Davide Taibi

100



Towards a trustworthiness model for open sourdsvaoé

2010
Metric Name JMeterV2.3R3 [Log4JV1.2R0 [PMDV4.3R5
eLOC median |36 a7 20
avg 63.41 71.84 53.56
tot 18517 12717 35243
max 584 913 2797
min 2 -54 2
std_dev [6769.86 10180.64 25613.15
McCabe median |4 6 3
avg 8.69 11.23 6.32
max 98 111 149
min 0 0 0
std_dev (10.68 13.53 12.05
LCOM median |6 6 1
avg 80.39 80.44 79.06
max 4361 5132 6441
min 0 0 0
std_dev [305.28 616.67 464.54
numAttributesPerClass median |2 4 1
avg 4.04 4.01 2.41
tot 1289 828 1759
max 67 37 123
min 0 0 0
std_dev [7.60 6.03 9.47
numClassesWithDefinedAttributes [tot 229 154 349
numClassesWithDefinedMethods [tot 299 197 686
CBO median |8 10 6
avg 12.06 13.85 11.69
max 97 120 228
min 0 0 0
std_dev (14.02 13.63 20.32
commentLinesPerCla: mediar |62 80 9
ave 106.08 129.45 31.91
tot 3097¢ 2291« 2099¢
max 108: 108: 772
min 17 16 0
std_de' [120.45 129.98 61.66
numAttributesPerClas mediar |2 4 1
ave 4.04 4.01 2.41
tot 128¢ 82¢ 175¢
max 67 37 12¢
min 0 0 0
std_de' [7.60 6.03 9.47
numClassesWithDefinedAttributc  [tot 22¢ 154 34¢
Davide Taibi

101




Towards a trustworthiness model for open sourdsvaoé

2010
numClassesWithDefinedMethc tot 29¢ 197 68¢
numcClasse tot 29z 177 65¢
numinterface tot 0 0 0
numinterfacesPerCle mediar |0 0 0
ave 0.69 0.34 0.24
tot 204 61 162
max 6 3 10
min 0 0 0
std_de' [0.94 0.51 0.67
numMethod tot 245¢ 1431 406¢
numMethodsPerCla mediar |5 7 3
ave 8.40 8.08 6.17
tot 245¢ 1431 406¢
max 98 104 114
min 0 0 0
std de' [10.33 9.79 11.32
numMethodsPerInterfa mediar |0 0 0
ave 0 0 0
tot 0 0 0
max 0 0 0
min 0 0 0
std_de' [0 0 0
numPackage tot 41 21 72
numParametersPerMett mediar |4 5 5
ave 7.15 8.41 8.91
tot 208¢ 148¢ 586¢
max 68 79 22¢
min 0 0 0
std_de' [9.37 9.49 18.81
RFC mediar |4 4 3
ave 8.45 8.19 6.16
max 98 10¢ 10C
min 0 0 0
std_de' [10.44 10.09 10.95

Table 17. Static code measures

Table 18 reports that defect measures extracted fnag repositories. Data on defects
is clearly important to explain reliability, to @ss maturity, and to relate code
characteristics to reliability.

Davide Taibi

102



Towards a trustworthiness model for open sourdsvaoé

2010
OSS Product Defect status
New Assigned Reopened Total
JMETER V2.3R3 4 0 1 5
Open Total
CHECKSTYLE V5.0R2505 7 7
New Assigned Resolved | Verified | Closed| Total
ECLIPSE JDT CORI
V3.5R0 140 3 44 178 7 372
Open Total
FINDBUGS no version 70 70
Open Reopened Total
HIBERNATE no version 62 1 63
Open Total
HTTPUNIT no version 13 13
Acknowledge | Confirme
New d d Assigned Total
JASPER V3.5.2 43 20 4 100 167
Open Total
JBOSS V3.2.6 Final 3 3
JBOSS V5.1.0 GA 27 27
Open Total
JFREECHART V1.0.X 46 46
New Assigned Reopened Total
LOG4J V1.2R0 43 8 7 58
Open Pending Total
PMD 134 6 140
Open Total
SAXON V9.1 4 4
Open In Progress | Reopened Total
STRUTS V2.1.6 40 0 1 41
Open In Progress | Reopened Total
VELOCITY V1.6.2 4 0 1 5
Open In Progress | Reopened Total
XALAN V2.7.1 62 0 13 75
Open In Progress | Reopened Total
XERCES V2.9.1 16 0 0 16

Table 18. Defect measures

Davide Taibi

103




Analysis

7.1 Introduction
The goal of the analysis reported in this sect®toievaluate —through statistical
methods— whether there are relations that linkstigjective perception of OSS
product qualities with objective measures of thitveare. For instance, the goal of
the analysis includes the verification of the exise of relations of the
trustworthiness, reliability, portability, etc., twicharacteristics like software size,
complexity and modularity...

For space reasons, we describe the results ofntdgsés of java projects. The detailed

results for Java projects are available in Apperdiwhile results on C/C++ are listed

in Appendix G:

711 Tools

The analysis of the data provided in the previoastisn was carried out using
appropriate tools. In particular, statistical toalsre needed in order to perform the
necessary computations and verify whether the fadtentified in Section 4.4 are
actually influential on the trustworthiness of B&S products and artifacts.

The analysis performed in this section is charasté by quite classical statistical
techniques. Therefore we did not look for a paféidy sophisticated tool; rather we

sought a tool that:

* Can be integrated at the data level with the measent repository. In fact, we
need to extract the required data from the repositmd feed them to the
analysis tools in a simple and efficient way.

* Provides all the required statistical tools, in tigakar logistic regression.

Davide Taibi
104



Towards a trustworthiness model for open sourdsvaoé

2010

* Is programmable, in order to let us define theigiatprocedures to be applied

repetitively.

On the basis of these requirements, it was dedidede R, the tool that was already
successfully used in Section 3. R is a GPL-licensedjuage and environment for
statistical computing and graphics that is reaslynadisy to use and comes with a huge
repository packages for analysis, database integra¢tc. (see the Comprehensive R
Archive Network at http://cran.r-project.org/).

7.1.2 Analysis procedures

All subjective evaluations are expressed by eaehn usan ordinal scale with grades
from zero to six.

Since we have interviewed several users aboutemgiuality of a given OSS product,
we need to reduce this amount of data to a singieber that can be effectively treated.
To this end, we establish a threshold that reptesenacceptable quality level and then
partition the population of the respondents into thatasets: one containing the users
that rated the product below the threshold, and comgaining the users that rated the
product above the threshold.

More formally, given an OSS product P and a quadywe start from the multiseof
evaluations E = {& where i O [1..N] indicates the i-th user, N is the number of
interviewed users, and is the rating of the quality Q of product P acdogdo the i-th
user.

By establishing a threshold T, we can partitionnio ik and E, the multisets of
satisfied and unsatisfied users, respectively:

Es={x|xOEOx>T}

E,={xX|xOEOx<T}

Now, we are not interested in distinguishing uslentities; rather, we are interested in
how many users are satisfied and how many are igfigdt To this end, we consider
the pairs < |§, |&| > of the cardinalities offand E.

2 A multiset or bag is a set with repetitions. This clearly accounts for the fact that multiple users
can assign a given quality of a given product the same grade.

Davide Taibi
105



Towards a trustworthiness model for open sourdsvaoé

2010
For every quality we have thus a pair, which canirterpreted as a percentage of
satisfaction (|B/(|E|+|&]|) = |E|/N). Since we performed the evaluation of sev&xa6
products, we actually have a vector of pairs andergages:
Ve = <B>, where Pis the pair < |§, |E| > concerning the j-th OSS product.
Actually we have not just one vector, but seveoale for each investigated quality.
Similarly, we have a vector for each subjectiveligypéhat has been measured.
The analysis consists in correlating a vector dfesttive evaluations with one or more
vectors of objective measures, in order to evaltatehat extent the qualities perceived
by the users depend on the internal, objectivelgsumble qualities. For instance, in
the analysis reported in sectidirore. L'origine riferimento non & stata trovata. we
correlated Trustworthiness to the measures ofaiecomplexity, as well as reliability
to the measures of modularity.
The analysis was based on binary logistic regrasdtinary (or binomial) logistic
regression is a form of regression which is usedmthe dependent is a dichotomy and
the independents are of any type.
Logistic regression has many analogies to linegression. Unlike the latter, however,
logistic regression does not assume linearity tdtienship between the independent
variables and the dependent, does not require migradiatributed variables, does not
assume homoscedasticity, and in general has lesgesit requirements. It does,
however, require that observations be independwhttat the independent variables be
linearly related to the logit of the dependent.
The logistic curve, illustrated in Figure 25, isttbe for modeling binary dependent
variables coded 0 or 1 because it comes closarggihg the y=0 and y=1 points on the
y axis. Even more, the logistic function is boundsd0O and 1, whereas the linear
regression function may predict values above llkshaw O.

Davide Taibi
106



Towards a trustworthiness model for open sourdsvaoé

2010

Figure 25. Logistic vs. linear regression curves.

The analysis procedures based on logistic regmessie reported in detail in the
appendixes, in the form of scripts for the R toblse

7.1.3 The dataset

The analyses reported in this document are baséldeaumsers evaluations and measures
collected up to September 30 2010.

For every subjective evaluation we used the numbiesatisfied and not satisfied users.
The threshold is 4, i.e., users who ranked a prtoddcwere counted as satisfied, while
those who ranked i 4 were counted as not satisfied.

For each product we have a variable number of useeduations, since most popular
products like Eclipse or MySQL tend to be evaludiganore users than products —like
Weka or Tapestry— that are or interest to a smaiken specialized, set of users. Table
14 reports the number of evaluations per projeclewhable 13 reports the list of
characteristics evaluated by the users. Detailsdltiseon the users’ evaluation can be
found in Table 2 or in [24]

Moreover, some users reported a low familiarity hwithe products in the
guestionnaires. Accordingly, we had to select thido be used for the analysis: only
products for which no less than six subjective eatbns expressed by users having a

good familiarity with product were considered i @nalysis. As a consequence, every

Davide Taibi
107



Towards a trustworthiness model for open sourdsvaoé

2010
analysis involved 16 to 18 products, dependinghenspecific quality being considered
(users were free to express opinions only on aetudfsthe products’ qualities) (Table
13).

7.2 Analysis of Java products

In this section, we summarize the results of tredyesms carried out for Java projects.
The detailed results are reported in Appendix F.

7.2.1 Reliability

Of the statistically significant relations foundhet most precise and reasonably
explained is the one that links Reliability witrethumber of interfaces per class. Such
relationships indicates that defining multiple niéees for a single class can be a
dangerous practice, which leads to a decreasdiabitity perceivable by the end users.
The regression line is reported in Figure 26.

The distribution of relative residuals is reportedrigure 27.

o
o o

Reliability
0.6 0.7 0.8 0.9

0.5

0.4

0.3

T T 1
0.5 1.0 15

Num. interfaces per class
Figure 26. Reliability vs. The number of interfaceger class: regression line.

Davide Taibi
108



Towards a trustworthiness model for open sourdsvaoé

2010
—

!

|

o _| |

< |

!

|

|

|

|

1

|

|

!

|

Q - :

N
0
@
>
h=
(%]
[}
=
S

[

|

:

Q i

N i

|

1

|

|

|

|

|

Figure 27. Reliability vs. The number of interfaceger class: boxplot of relative
residuals.

Davide Taibi
109



Towards a trustworthiness model for open sourdsvaoé

2010

7.2.2 Usability

Among the statistically significant relations fourthe most precise and reasonably
explained are the ones that link Usability with thember of interfaces and the number
of methods per interfaces. This appears quite staigdable: the more interfaces and
methods are provided, the more probable is thausee is given the function he/she
needs in a way that is considered easy to use.

Of course it is difficult to establish a really isddle and credible relation between a
guality that is based almost exclusively on extegtl@ments (e.g., the user interface)
and the measures of the internal qualities. Anywayseems that several of the
correlations found can at least be considered nede.

Another interesting correlation found is the onattindicates that Usability grows with

the size of classes (eLOC per class) and the nuoflEarameters per method, while it
decreases with the global size of the applicateltOC). This seems to indicate that
smaller applications, with big classes and highdyapmeterized methods tend to be

more usable.

7.2.3 Portability

The results found for portability seem very reasdsaand generally conformant to the
expectations.

The fact that portability grows with the NOC (numlag children, i.e., the number of
sub-classes) seems to indicate that portabilityfaoured by rich generalization
hierarchies. This seems reasonable: the richehidrarchy, the easier to encapsulate
and share the required adaptations.

The fact that portability grows with the numberpaickages seems to indicate that in a
system with several packages it is easier to fiackpges that do not depend on the
specific platform, and can thus be ported withelidffort.

The fact that portability grows with the numberedfiective LOC per class, while at the
same time it decreases with the number of intesfgoer class can be explained
considering that ‘big’ classes are easier to paat, (the porting effort probably depends
on the number of classes, rather than on thei) aizé that many interface increase the

difficulty of porting.

Davide Taibi
110



Towards a trustworthiness model for open sourdsvaoé

2010
The fact that portability grows with the McCabe qexity, while at the same time it
decreases with the number of parameter per metbeohss to confirm the previous
observation. In fact, complexity can be seen —8k#— as a measure of how much
computation is performed in a class, while a highmber of methods per class
increases the probability that some of these paemseepends on the platform, thus
posing porting problems.
Interestingly, the correlations found are very mec Moreover, the multivariate
regressions are characterized by the absence béreufThe distribution of relative
residuals of the Portability vs. McCabe and nundigrarameter per method is reported

in Figure 27.

% residuals
10
|

-10

Figure 28. Portability vs. McCabe and number of paameter per method: boxplot
of relative residuals.

7.2.4 How well are functional requirements satisfied

Of the statistically significant relations foundeveral are acceptably precise and
reasonably explained. Among these, are the coietadbf the degree of satisfaction of
functional requirements with the following factof@ minus in parentheses indicates
that the factor contributes negatively to the peemk satisfaction of functional

requirements):

Davide Taibi
111



Towards a trustworthiness model for open sourdsvaoé
2010

e eLOC (-), McCabe

* McCabe, Num. Methods (-)

* McCabe, Num. methods per class (-)

* Num. attributes per class, Num. methods perfexter
The first two correlations seem to indicate thatken and more complex applications
are more likely to satisfy users’ requirements. Tiied correlation says the same, but
at the class level. The last one seems to indtbateclasses rich in data and in exported
methods are more likely to contribute to satisfgrasrequirements.

7.2.5 Interoperability

Of the statistically significant relations foundhet most precise is also the one most
reasonably explained. In fact, the correlationaating that Interoperability grows with
number of attributes per class, while it decreas¢éh number of public methods
confirms the well known notion that a good encagisaih favours interoperability.

7.2.6 Security

Only one statistically significant correlation iving Security was found. This seems
to confirm that security is difficult to evaluate the basis of internal characteristics; in
particular, measures that indicate a good desigmair able to support the perception of
a good security level.

Quite interestingly, the only correlation found sdkiat the bigger the application, the
more secure it is, according to end users. Howrdssllt should be interpreted is not
clear. An hypothesis could be that bigger applicatare the result of wide, well
organized development efforts that are more likelpay attention to security.

7.2.7 Speed

Quite interestingly, all the statistically sign#ict correlations found are characterized
by negative coefficients, i.e., they indicate taetbrs that decrease the efficiency of the
analyzed applications. Among these factors are:

Davide Taibi
112



Towards a trustworthiness model for open sourdsvaoé

2010

» The size of classes (eLOC per class)

* The number of interfaces or public methods persclas

* The amount of data managed by a class (humbetrdiftaes per class)

* The lack of cohesion of classes
The correlation characterized by the better precisndicates that efficiency is most
hindered by the combination of lack of cohesion amel a large number of public
methods.

7.2.8 Documentation Quality

Establishing a correlation between the perceivedlityuof documentation and the

measured internal qualities appears difficult. Dimdy significant correlation found is

not very precise (MMRE is close to 40%). Howeverite interestingly, the correlation

involves the comment lines and the comment lingsgleess, thus showing that the
developers’ attention to commenting the code isedww correlated to the amount and
quality of the documentation made available toehé user.

7.2.9 Trustworthiness with respect to non Open Source

products

Establishing a correlation between the perceivedtiworthiness with respect to non
Open Source products and the measured internatigsiappears difficult. The only
significant correlation found indicates that therencomplex is the OSS product being
examined, the more likely it is that it is prefetr® non OS alternatives. The precision
of the correlation is quite good (MMRE close to 0%

The explanation of the correlation lays probablyhe fact that the most complex OSS
products (like PMD, for instance) do not have papulon OSS competitors.

7.2.10 Trustworthiness

Davide Taibi

113



Towards a trustworthiness model for open sourdsvaoé

2010
A univariate regression tend to suggest that thestworthiness of OSS products
decreases with the size expressed in terms of nuofbelasses, methods, or public
methods.
The trustworthiness vs. Number of methods regradsie is illustrated in Figure 29. It
is fairly precise (MMRE=17.7%). The boxplot of reNe residuals is reported in Figure
30.

0.9

Trustworthiness
0.7 0.8
|

0.6

0.5

T T T T T T T
0 5000 10000 15000 20000 25000 30000

Num. methods
Figure 29. Trustworthiness vs. Number of methods:egression line

Davide Taibi
114



Towards a trustworthiness model for open sourdsvaoé

2010

60
|

40

!

% residuals

-20

-40
|

Figure 30. Trustworthiness vs. Number of methods: &xplot of relative residuals

7.3 Threats to Validity

A number of threats may exist to the validity afarelational study like ours. We now
examine some of the most relevant ones.
Like with any other correlational study, the theetd the external validity of our study
need to be identified and assessed. The most iangdgsue is about the fact that our
sample may not be fully “balanced,” and that mayehaomewhat influenced the
results. While this may be true, the following gsineed to be taken into account.

» It was not possible to interview several additiopabple that could have made

our sample more “balanced,” because they were valkaale or had no or little

interest in answering our questionnaire.

* No reliable demographic information about the oNepapulation of OSS
“users” is available, so it would be impossibl&ktmw if a sample is “balanced”
in any way.

 The most popular products were assessed by sevesed, while only a few

evaluations were collected about specific-purposedyrcts. This effect is

Davide Taibi
115



Towards a trustworthiness model for open sourdsvaoé

2010
clearly very difficult to avoid. In any case, wectxded from the evaluation the
products that had been evaluated by too few users.

* Like in many correlational studies, we used a deddconvenience sample,”
composed of respondents who agreed to answer astigns. We collected
information about the respondents’ experience,iegiin field, etc., but we did
not make any screening. Excluding respondents basexbme criteria, which
must have been perforce subjective, may have esbuft an “unbalanced”
sample, which may have biased the results.

 We dealt with motivated interviewees, so this eedua good level for the

guality of responses.

* There is no researcher’s bias in our survey, simeesimply wanted to collect
and analyze data from the field, and not providdence supporting or refuting
some theory.

The measures of the products’ code used in thdystoncern a specific release for
each product, namely the most recent release alail®n the contrary, when we
collected the users’ opinions about the qualitieproducts, we did not ask for the
release being evaluated. This choice was due te@dhsiderations that a) most users
use the most recent release available; b) moss wseuld not remember the exact
version they are using; c) since products we inyatgd are quite mature, we do not
expect relevant changes in quality between releases

An additional threat concerns the fact that the suess used to quantify the relevant
factors may not be adequate. This work deals witlstivorthiness, which is an
intrinsically subjective quality, so the only wayrmeasure it is to carry out a survey.

As for reliability, quite a large number of measur@ve been proposed to represent it
from an objective point of view. However, here wee alealing with the users’
perception of reliability, so, again, a surveydequate to collect information about this
quality. The correlation of the subjective perceptof reliability with the traditional
measures of reliability (e.g., defect density) @oasible subject for future work.

Davide Taibi
116



Towards a trustworthiness model for open sourdsvaoé

7.4 Discussion

2010

The activities reported above were largely succéssf the sense that they identified

the existence of several statistically valid moddélthe subjective qualities as functions

of the internal, objectively measurable qualities.

The analyses reported in Appendix F and Appendatl@w us to state that the qualities

of OSS products that are subjectively evaluatedis®srs can be linked to the internal,

measurable qualities of the software both for Jhga for C/C++ OSS products.

In fact, two kinds of quantitative, statisticalligsificant models were derived:

 monovariate models that correlate a subjectiveityuaith a single objective

quality

* multivariate models that correlate a subjective liguavith several objective

qualities

As an example of monovariate model, it was fourat tine trustworthiness of OSS

products decreases as the size, expressed as nahdia@sses, increases both for Java

than C/C++ projects.

As summarized in Table 19 we found a monovariateetation for each perceived

quality except for the documentation quality and fherceived trustworthiness with

respect to other OSS products.

Perceived guality (short name

Objective Quality (metrics)

Usability

Number ofmethods per Interfa

Portability

Number of methods per cl:

Functional Requiremer

Number of interface per cle

Interoperabilit

Coupling Between Objects (CB

Reliability Number of Packag

Security Effective Lines of Code (eLOt
Community Couping Between Objects (CB!
Documentatio

Fastnes Number of attributes per clz

Trust_wrt_os

Trust_wrt_non_os

Ciclomatic Complexity (Mc Cab

Trustworthines

Number of classt

Table 19. Univariate Correlation for java OSS prodicts

We also found out several multivariate models. Asexample, this are the seven

models we identified for trustworthiness:

1. LCOM and eLOC

Davide Taibi

117



Towards a trustworthiness model for open sourdsvaoé

2010
RFC and LCOM
eLOC per class and Number of interface per class
Number of packages and eLOC per class
eLOC and Number of attributes per class

CBO, Comment Line per class and Number of intedgues class

N o g s~ w Db

Comment Lines. Ciclomatic Complexity, Number ofiatites per class

Raw results and an explanation on how to readdselts can be found in Appendix F
for Java projects and Appendix G for C/C++ projects

Davide Taibi

118



Towards a trustworthiness model for open sourdsvaoé

2010 Chapter

Conclusions and future work

The evaluation of the trustworthiness of OSS is drtgnt because of the ever
increasing importance of OSS in software develognam practical applications.
However, lacking objective measures, OSS usersstaiceholders rely on their own
somewhat subjective evaluations when deciding tpadn OSS product.

Some trustworthiness evaluation methods have beepoped to let potential users
assess the quality of OSS products before posadibpting them. Such methods —like
the OpenBQR [2] and other similar approaches [IQ]IR]- typically face two
problems: what are the factors that should be taktenconsideration, and what is the
relative importance of factors? Generally thesasitmts are left to the user, who has to
choose the qualities in a usually long list andgas#eights. So, the work reported here
improves our knowledge of the user-perceived gealiand trustworthiness of OSS
products and of trustworthiness models.

In this work we defined a trustworthiness model@8S projects.

First we carried out a survey to identified a sktrastworthiness factors based the
users’ perception of trustworthiness and a numbether qualities of OSS products.
Then, in order to test the feasibility of derivimg correct, complete and reliable
evaluation of trustworthiness on the basis of #edrs identified, a set of well-known
OSS projects, widely adopted and generally consdlérustable, were chosen to be
used as references. Afterwards, a first quick amalvas carried out, checking which
factors were readily available on each project'® wite. The idea was to emulate the
search for information carried out by a potentis¢n) who browses the project’s web
sites, but is not willing to spend too much effartd time in carrying out a complete
analysis.

Based on the trustworthiness factors identifiednigyans of the questionnaires, we

defined a GQM plan for the trustworthiness evatrati

Davide Taibi
119



Towards a trustworthiness model for open sourdsvaoé
2010

We identified set of tool to collect objective d&tam OSS projects and we developed
MacXim, a Java static code analysis tool.

We selected 22 Java and 22 C++ products, and vectad objective data by means of
the identified tools and subjective data by mednsare than 500 questionnaires. We
studied their popularity, the influence of the iemplentation language on
trustworthiness, and whether OSS products are kettdr than CSS products.

Finally we look for existing correlations among @tijve and subjective data.

The activities reported above were largely succéssf the sense that they identified
the existence of several statistically valid moddélthe subjective qualities as functions
of the internal, objectively measurable qualities.

In fact, we identified two kinds of quantitativetasstically significant: 1) univariate
models that correlate a subjective quality with iagle objective quality and 2)
multivariate models that correlate a subjectiveliguavith several objective qualities.

As an example of univariate model, it was foundt tthee trustworthiness of OSS
products decreases as the size, expressed as nahtia@sses, increases both for Java
than C/C++ projects.

8.1.1 Usage of the results

The main result of the activity reported in thissdment does not consist just in having
found that relationships to exist between trustiiadss (and reliability) and
objectively measurable characteristics of the OS&eally important point is that we
were able tquantifythe nature of these relationships.

The quantitative knowledge of the relationships barbeneficial to both the users and
the developers of OSS:

* The users can rely on the measures of the softimaceder to estimate to what
extent a given OSS product can be expected tdysatigiven quality aspect (e.qg.,
reliability). In this way, the potential users cget a rough evaluation of OSS
without the need to even try the product.



Towards a trustworthiness model for open sourdsvaoé

2010
» Developers can derive from their client satisfactiargets (i.e. to what extent users
will be satisfied by a given quality of their OS®gduct) into threshold of quality
metrics that must be met by their code.

The procedure for using the quantitative knowledgeelations is exemplified below,
considering the dependency of trustworthiness oGalbe complexity.

For users the procedure is simple: given a prodiictor instance its McCabe
complexity is, 8 then a user can expect that thedyet will be satisfactory (with
probability > 60%, see Figure 31).

0.70 0.75
. |
o)

0.65

rtrust
0.50 0.55 0.60
| |
o
[e]
o
o

0.45
|

6 8 10 12 14

mccab
Figure 31. McCabe complexity corresponding to medimand best quartile of
Trustworthiness.

For developers the procedure is a bit more compleX¥igure 31 —which shows the
function that links trustworthiness to McCabe coemily— the median value of the
trustworthiness for the observed user populatiorefperted, together with the highest
quartile. It is easy to see that the median trugtweess corresponds to a value of
McCabe complexity between 9 and 10, while the 25&stntrustworthy process are

expected to have McCabe complexity below 6. Theegfibthe goal of the developer is

Davide Taibi
121



Towards a trustworthiness model for open sourdsvaoé
2010

that its product is considered trustworthy by of&% of the users, he/she must aim at a
complexity not greater than 6. On the contrarythd goal of the developer is that to
satisfy the majority of the users with respectrigstworthiness, he/she must aim at a
complexity not greater than 10.

In conclusion, unlike several discussions that lzmeed on —sometimes interested—
opinions about the quality of OSS, this study aahsleriving statistically significant
models that are based on repeatable measures andeveuations provided by a
reasonably large sample of OSS users.

Davide Taibi
122



Towards a trustworthiness model for open sourdsvaoé

2010

Publications

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

D.Taibi, L.Lavazza, S.Morasca: "OpenBQR: a framdwior the assessment of
OSS" in Open Source Development, Adoption and latiom - Springer - pp
173-186

D. Taibi, M.Chinosi, V.Del Bianco, L.Lavazza: "A O@Q plan for the
evaluation of the trustworthiness of open-sourcdtwsoe” TOSS, 1st
International Workshop on Trust in Open Source \Bafe, Co-located with
OSS 2007, Limerick, Ireland, 14 June 2007.

D. Taibi, M. Chinosi, L. Lavazza:BlogMeter: Web $iement Platform, TOSS
1st International Workshop on Trust in Open SolBoéware, Co-located with
OSS 2007, Limerick, Ireland, 14 June 2007.

V. del Bianco, M. Chinosi, L. Lavazza, S. Morasba, Taibi: How European
software industry perceives OSS trustworthiness whdt are the specific
criteria to establish trust in OSS, October 200%ailable on-line at
http://wiki.qualipso.org/xwiki/bin/view/Wiki/WP51.

D.Taibi, V.Del Bianco, D. Dalle Carbonare , L. Laza, S. Morasca: "Towards
the evaluation of OSS trustworthiness: lessonséshfrom the observation of
relevant OSS projects” published in OSS 2008 Ediogs

V.Del Bianco, L.Lavazza, S. Morasca, D. Taibi: "Aysas of relevant open
source projects and artefacts”, QualiPSo reportil 2008

D.Taibi: "Defining an Open Source Software Trustthoress Model”, 3rd
International Doctoral Symposium on Empirical Safter Engineering, Co-
Located with ESEM (Empirical Software EngineerimgldMeasurement)

V.Del Bianco, L.Lavazza, S. Morasca, D. Taibi: "@@gource:mi devo fidare?"
Conferenza ltaliana sul Software Libero 2008 - Toen

V.Del Bianco, L.Lavazza, S. Morasca, D. Taibi: "Ttleserved characteristics
and relevant factors used for assessing the trustimess of OSS products and
artefacts" October 2008

[10]V.Del Bianco, L.Lavazza, S. Morasca, D. Taibi: "Rdp How the

trustworthiness of OSS products and artifacts eaadsessed and predicted”

[11] V.Del Bianco, L.Lavazza, S. Morasca, D. Taibi: "Aysas of relevant OSS

products and artifacts"

[12] S.Morasca, M.Proto, D.Taibi: "Quantitative AnalysisReliability and Defects

of Sourceforge Projects” Submitted to 0OSS2009



Towards a trustworthiness model for open sourdsvaoé

2010

[13] M.Keikha, S.Gerani, M.Carman, R.Gwadera, D.TaibiCFestani: "University
of Lugano at TREC 2008 Blog Track"

[14]V. del Bianco, L. Lavazza, S.Morasca, D.Taibi: "Gyaof Open Source
Software: The QualiPSo Trustworthiness Model". @889 — published in IFIP
International Federation for Information Processing

[15] S.Morasca, D.Taibi, D.Tosi: "Towards Certifying thesting Process of Open-
Source Software: new challenges or old methodad®ji&merging Trends in
FLOSS Research and Development Co-located with IQSED Vancouver,
Canada (http://icse.libresoft.es/)

[16] L.Lavazza, S.Morasca, D. Taibi, D.Tosi: “La ced#zione dei portali web che
ospitano software open source” Conferenza Italsn&oftware Libero 2009

[17] L.Lavazza, S.Morasca, D. Taibi, D.Tosi: "Quality 120- oss 2010 - An
Investigation of the users perception of OSS qualiOSS 2010 — Notre Dame

[18] L.Lavazza, S.Morasca, D. Taibi, D.Tosi: "T-DOC: aoT for the Automatic
Generation of Testing Documentation for OSS PrafucdSS 2010 — Notre
Dame

[19] L.Lavazza, S.Morasca, D. Taibi, D.Tosi: “ApplyingCBUM in an OSS
Development Process”. XP2010, Trondheim.

[20] V.Del Bianco, L.Lavazza, S.Morasca, D. Taibi, D.Td®\ Survey on the
Importance of Some Economic Factors inthe Adoptafn Open Source
Software. SERA (Software Engineering Research, agement &
Applications) 2010, Montreal

[21] L.Lavazza, S.Morasca, D.Taibi, D.Tosi: “Predicti@fsS Trustworthiness on
the Basis of Elementary Code Assessment.” Inteynati Symposium on
Empirical Software Engineering and Measurement (85Bolzano, Italy

[22] V.Del Bianco, L.Lavazza, S.Morasca, D.Taibi, D.TosiThe QualiSPo
approach to OSS product quality evaluation” Emaygifrends in FLOSS
Research and Development Co-located with ICSE 20&4fe Town, South
Africa

[23] D.Taibi: “Floss. To Trust or not to trust?” Workghorganization. fOSSA 2010,
Grenoble, France

[24] V.Del Bianco, L.Lavazza, S.Morasca, D.Taibi, D.ToSA Survey on Open
Source Software Trustworthiness: Which Factorsubrice Trust in OSS?”
Emerging Trends in FLOSEEEE Computer. Accepted for pubblication

Davide Taibi

124



Towards a trustworthiness model for open sourdsvaoé

2010

References

[25] Anderson J. P. Computer Security Technology Plansindy, ESD-TR-
73-51, Voll, AD758 206, ESD/AFSC, Hanscom AFB, Bedf M.A., October,
1972

[26] ISO/IEC, Information Technology-Security TechniqueBvaluation
Criteria for IT security, Patl: Introduction andngea Model 2nd ed. 2005-10-
01

[27] Trusted computing group. TCG Architecture overvidt. 2, 28 April
2004

[28] Basili V., and Rombach H.D., The TAME project: tods
improvement-oriented software environments, IEEBn§actions on Software
Engineering, June 1988.

[29] V. Basili and D. Weiss, “A methodology for colleagi valid software
engineering data,” IEEE Transactions on Softwargi&ering, vol. SE-10, no.
6, pp. 728-738, 1984.

[30] D.Taibi, L.Lavazza, S.Morasca. OpenBQR: a framewdok the
assessment of Open Source Software, Open Sourtea®®f2007, Limerick,
June 2007.

[31] C. Mundie, B.Gates: How Microsoft Is Refocusing &ecurity,
Reliability, Privacy, and More, as Part of Trusttiniyr Computing Initiative,
February 2002  hftp://ww.microsoft.com/PressPass/features/200Q&0?2
20mundiega.mspx

[32] Amoroso, E., Taylor, C., Watson, J., and WeissAJprocess-oriented
methodology for assessing and improving softwarestivorthiness”. In
Proceedings of the 2nd ACM Conference on Computdr @ommunications
Security, pp. 39-50, 1994.

[33] Neumann, P. G., "Robust Nonproprietary Softwara"Ptoceedings of
the IEEE Symposium on Security and Privacy, pp-122, 2000.

[34] Hertzum, M. "The importance of trust in softwaregmeers’ assessment
and choice of information sources". In Informati@nd Organization, vol. 12,
no. 1, pp. 1-18, 2002.

[35] "Economic impact of open source software on innowatand the

competitiveness of the Information and Communicaticechnologies (ICT)
sector in the EU". UNU-Merit report, 2006.

Davide Taibi

125



Towards a trustworthiness model for open sourdsvaoé

2010

[36] Bernstein, L., "Trustworthy software systems”, ACKBIGSOFT
Software Engineering Notes, vol. 30, no. 1, pp, 205.

[37] Dustin, E., "The Software Trustworthiness Framewpo#ero in a Bit,
30 January 2007.

[38] Fuggetta, A., "Open source software, an evaluatidiie Journal of
Systems and Software, vol. 66, pp. 77-90, 2003.

[39] Wheeler, D. A., "Why Open Source Software / Freévare (OSS/FS,
FLOSS, or FOSS)? Look at the Numbers", dwheeler BReport, 2007.

[40] Fisher, R. A., "On the interpretation 2 from contingency tables, and
the calculation of P", Journal of the Royal StatadtSociety, vol. 85, no. 1, pp.
87-94, 1922.

[41] Abdi, H., "Binomial Distribution: Binomial and Signlests", in
Encyclopedia of Measurement and Statistics, Thaugzaks, 2007.

[42] Mann, H. B., Whitney, D. R., "On a test whether afewo random
variables is stochastically larger than the othér"Annals of Mathematical
Statistics, vol. 18, pp. 50-60, 1947.

[43] Mood, A. M., "Introduction to the Theory of Statest", third edition,
McGraw-Hill, 1974.

[44] The Open Source Initiative. Internet Websitkccessed on June
2007. Available online via http://www.opensource/or

[45] The Free Software Foundation. Internet Website edsed in June 2007.
Available online via http://www.fsf.org.

[46] Raymond, E.S., "Goodbye, free software; hello, opearce"”, internet
website, accessed in June 2007, available online a vi

http://www.catb.org/esr/open-source.html.

[47] European Working Group on Libre Software, Intemé&tbsite, accessed
in June 2007, available online via http://eu.coasdict

[48] European Commission. "Free/Libre and Open Souisoftware:
Survey and Study", Internet Website, accessed me AD07, available online
via http://www.infonomics.nl/FLOSS.

[49] Cerri, D. and Fuggetta, A., "Open Standards, Opammgts, and Open
Source." CEFRIEL, Politecnico di Milano, versio® $inal draft, January 2007.

[50] Fuggetta, A., "Open Source and Free Software: A Newdel for The
Software Development Process?', UPGRADE, Europeaurndl for the
Informatics Professional, Vol. V, No. 5, Octobe020

Davide Taibi

126



Towards a trustworthiness model for open sourdsvaoé

2010

[51] Antikainen M., "Is trust based on cognitive factois OSS
communities?", Trust in Open-Source Software (TO3®)7, Limerick, June
2007.

[52] German D. M., Gonzales-Barahona J. M., Robles [@.what do you
trust when you trust? The importance of dependsnniérust analysis”, Trust in
Open-Source Software (TOSS) 2007, Limerick, Jur@ 20

[53] Hansen M. Ks., Uhntopp K., Pfitzmann A., "The Of@aurce Approach
— Opportunities and Limitations with Respect to B8a#g and Privacy".
Computers & Security, vol. 21/5, pp. 461-471, 2002.

[54] Hasselbring W., Reussner R., "Toward Trustworthftare Systems”,
US Army Research Laboratories Information Assurddester, IEEE. 2006.

[55] Lawrieand T., Gacek C., "Issues of Dependability Gpen Source
Software Development”, ACM SIGSOFT, Software Engnireg Notes, vol. 27,
n. 3, pp 34, May 2002.

[56] Goode S., "Something for Nothing: Management R&acbf Open
Source Software in Australia’s Top Firms", Inforioat & Management, vol.
42, pp. 669 — 681, 2005.

[57] "A Collaborative Fact Finding Study. Open Source siBass
Opportunities for Canada’s Information and Commatdans Technology
Sector”, e-Cology Corporation, available on-line a vihttp://www.e-
cology.ca/canfloss/report, 2003.

[58] "Business Readiness Rating for Open Source", Opn&ig, BRR2005
- RFC 1, accessed in June 2007, available on-leétip://www.openbrr.org.

[59] "Method for Qualification and Selection of open 8mu software
(QS0S)", Atos Origin, version 1.6, accessed Jur@/ 2@vailable on-line via
http://www.qgsos.org.

[60] Golden B., "Making Open Source Ready for the Emisep The open
Source Maturity Model", extracted from "Succeedwmwgh Open Source",
Addison-Wesley, 2005.

[61] Duijnhouwer F. W., Widdows C., "Open Source MaturModel",
accessed June 2007, available on-line via httphgeriouslyopen.org.

[62] Ruffatti G., Oltolina S., Tura D., Damiani E., Batiini C., Colombo A.,
Frati F., "New Trends Towards Process Modellingag@plQ", Trust in Open-
Source Software (TOSS), Limerick, June 2007.

[63] Weiss D., "Measuring Success of Open Source Pmojgsing Web

Search Engines”, in proceedings of the Open-So&afware Conference
(OSS) 2005.

Davide Taibi

127



Towards a trustworthiness model for open sourdsvaoé

2010
[64] Hahn R.W. (editor), "Government Policy toward Ope&ource
Software", 2002.
[65] Krishnamurthy S., "Cave or Community? An Empiri€adamination of

100 Mature Open Source Projects"”, 2002.

[66] Stamelos I., Angelis L., Oikonomou A., Bleris GCdde quality analysis
in open source software development”, Systemsldme 12, pp. 43-60, 2002.

[67] "Object Management Group (OMG)", Internet Websategessed in June
2007, available on-line via http://omg.org/.

[68] "ISO/IEC-9126:2001 Information technology, Produduality”,
International Standard ISO/IEC 9126, Internatiosabndard Organization,
June, 2001.

[69] "Centro Nazionale per l'Informatica nella Pubblidaministrazione
(CNIPA)", Internet Website, accessed in June 208#ilable on-line via
http://www.cnipa.gov.it.

[70] "Osservatorio Open Source (O0S)", Internet Websitegssed in June
2007, available on-line via http://www.osspa.cnipa.

[71] "Riusabilita del software e delle applicazioni infaatiche nella pubblica
amministrazione", CNIPA, 2004.

[72] Cattaneo F., del Bianco V., Fuggetta A., "Fattdmilitanti al riuso del
software nella pubblica amministrazione"”, CEFRIEQQ4.

[73] "OpenPA", Internet Website, accessed in June 280dilable on-line
via http://www.lugroma.org/openpa.

[74] "Consorzio per il Sistema Informativo (CSI)", Imet Website, accessed
in June 2007, available on-line via http://www.@siponte.it.

[75] "Piattaforma per la gestione documentale OASI"ernmtt Website,
accessed in June 2007, available on-line via
http://www.csipiemonte.it/progetti/oasi.

[76] "Strategie Digitali", Internet Website, accessedApril 2007, available
on-line via http://www.strategiedigitali.it.

[77] "FLOSS Piemonte", Internet Website, accessed inl 2007, available
on-line via http://floss.piemonte.it.

[78] Fenton N., Pfleeger S. L., "Software metrics: somgis and practical
approach”, PWS Publishing, 1998.

[79] Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M¢cLeod, G., and
Merritt, M., Characteristics of Software Qualitypith Holland, 1978.

Davide Taibi

128



Towards a trustworthiness model for open sourdsvaoé

2010

[80] Boehm, Barry W., Brown, J. R, and Lipow, M.: Quéative evaluation
of software quality, International Conference onft®are Engineering,
Proceedings of the 2nd international conferenc@aitware engineering, 1976.

[81] McCall, J. A., Richards, P. K., and Walters, G.'Factors in Software
Quality", Nat’l Tech. Information Service, Vol. 2,and 3, 1977.

[82] J. Smith David, D. Schuff, R. St. Louis, “Managiygur total IT cost of
ownership”, Communications of the ACM, Volume 451r(January 2002).

[83] R. Kaplan and D. Norton, The Balanced Scorecardndlating Strategy
into Action, Harvard Business School Press, Sepeerh996.

[84] Dave Zubrow, Measuring Software Product Qualitye 5O 25000
Series and CMMI, European SEPG, June 14, 2004

[85] V. Basili, G. Caldiera, and D. Rombach, “Goal/QuimgMetric
Paradigm,” in En-cyclopedia of Software Engineerimgl. 1, J. C. Marciniak,
Ed.: John Wiley & Sons, 1994, pp. 528-532.

[86] R. van Solingen and E. Berghout, The Goal/Ques#letric Method,
McGraw-Hill, 1999. http://www.ggm.nl/

[87] Sandro Morasca, “On the Use of Weighted Sums inOgénition of
Measures.” WETSoM, Cape Town, South Africa, May@]0.

[88] Lionel C. Briand, Sandro Morasca, and Victor R. iBa®efining and
Validating Measures for Object-Based High-Level iDe§ IEEE Transactions
on Software Engineering, Vol. 25, No. 5, Septenbetdber 1999

[89] The Merriam Webster online Dictionary. http://wwvemam-
webster.com/

[90] Hyperdictionary online dictionaryttp://www.hyperdictionary.com/

[91] Wikipedia. http://www.wikipedia.org

Davide Taibi

129



Towards a trustworthiness model for open sourdsvaoé
2010

Appendix A: The questionnaire
on OSS selection

The purpose of this questionnaire is to elicit mfation from the users of FLOSS
products about their goals when they use/customaeify/develop FLOSS products
and about their development and FLOSS product tsgteprocesses.

This questionnaire has been developed in the framewf the QualiPSo (Quality

Platform for Open Source Software) project, whisha European Union-funded
Integrated Project which aims at making a majortidoution to the state of the art and
practice of Open Source Software. The QualiPSaeptgtarted in November 2006 and
will last until October 2010. The project bringsgébher over twenty software

companies, application solution developers, an@areh institutions. Its goal is to

define and implement technologies, procedures avitigs to leverage the Open
Source Software development current practices tondo well-recognized, and

established industrial operations.

All information provided by each individual or ormgaation will be treated as

confidential. As such, it will not be released ither form than aggregated statistical
analyses that will make it impossible to identifig tsingle respondents.

Please do not hesitate to contact us if you negdrdmrmation or clarification.

Personal information

¢ Name:
e Role:
e Unit:

» Education:

* Time in the company:

 E-mail:

Company information

* Type of organization (private, no profit, Public Adistration, etc.):
* Number of employees:

e Domain(s) (Public Administration, avionics, bankiingance, ...):

* Number of employees of the organizational unit:

Davide Taibi

130



Towards a trustworthiness model for open sourdsvaoé

2010

* Domain(s) (Public Administration, avionics, bankiiigance, ...) of the
organizational unit:

Role of the organization with respect to 0SS

* Is the company a producer, user, mixed (user/mesjlifvalue adder (customizer,
...) of 0SS?

* Choose all that applies:

OSS products are used to support SW development
OSS products are used as part of other product
OSS products are customized/configured

OSS products are used to support the internal psoce

a s b Pke

OSS products are used to provide services to ttsdeuworld.
* Is OSS the development platform?
* Is OSS the target/usage platform?

Issues that can be taken into account when deciding whether
to adopt OSS

Economics
* Do you choose OSS considering (please rank, frome@vant to 10-essential)

1. The TCO (Total Cost of Ownership)? E.g., is OSSdubecause it is less
expensive then commercial alternatives?

2. The ROI (Return On Investment)? E.g., is OSS ch&seeduce effort?
3. Any other issues related to your business model?
License
* What types of licenses do you have in the OSS yal\dith?
* Academic Free License
* Adaptive Public License (APL)
* Apache Software License
* Apple Public Source License
* Avrtistic License
» Attribution Assurance Licenses
 BSD License
» Computer Associates Trusted Open Source License
Common Development and Distribution License

e Common Public License

Davide Taibi

131



Towards a trustworthiness model for open sourdsvaoé

2010

CUA Office Public License

EU DataGrid Software License

Eclipse Public License

Educational Community License

Eiffel Forum License

Entessa Public License

Fair License

Frameworx License

GNU General Public License (GPL)

GNU Lesser General Public License (LGPL)
Historical Permission Notice and Disclaimer
IBM Public License

Intel Open Source License

Jabber Open Source License

Lucent Public License

MIT License

MITRE Collaborative Virtual Workspace License (CMWense)

Motosoto License

Mozilla Public License (MPL) 1.0 and 1.1
NASA Open Source Agreement
Naumen Public License

NetHack General Public License
Nokia Open Source License

OCLC Research Public License
Open Group Test Suite License
Open Software License

PHP License

Python License

Python Software Foundation License
Qt Public License (QPL)
RealNetworks Public Source License
Reciprocal Public License

Davide Taibi

132



Towards a trustworthiness model for open sourdsvaoé

2010

* Ricoh Source Code Public License
» Sleepycat License
* Sun Industry Standards Source License (SISSL)
* Sun Public License (SPL)
» Sybase Open Watcom Public License
» University of lllinois/NCSA Open Source License
* Vovida Software License v. 1.0
* Wa3C License
* wxWindows Library License
* X.Net License
» zlib-libpng license
» Zope Public License
* Other
* What should the license allow/restrict to usersettgpers, modifiers, integrators?

» Hackers dislike accepting code under it

» Cannot combine with proprietary and redistribute

» Cannot combine with GPL'ed code and redistribute
» Can redistribute binaries without source

* Apply to everyone who receives the program, withtetneed for any additional
agreements

» Allow distribution with any other software agreerten
* Allow distribution in any form

» Grant to distribute the program themselves, inclgdhe right to charge money
for it

» Grant the right to distribute modified versiongloé program
» Grant access to the program's source code
» Grant the right to modify the program
Selection Process
» Do you have a process for selecting OSS to use?
* Ifso, what is it like?
* Which OSS evaluation methods do you use?
* QSOS (www.qsos.org)
* OpenBRR (www.openbrr.org)

Davide Taibi

133



Towards a trustworthiness model for open sourdsvaoé

2010

* OSMM - Navica (www.navicasoft.com/pages/osmm.htm)
*  OSMM — Capgemini (www.SeriouslyOpen.org)
*  OpenBQR (http://www.taibi.it/OpenBQR)

* What is the context process in which it is used?

Do you choose OSS products considering (please, femin O-irrelevant to 10-
essential)

the type of licenses used?

the availability of tools for developing/modifyirgistomizing ... OSS products?
the availability of best practices on the spedd8S products?

the availability of technical documentation/usemunal?

environmental issues (platforms, preferences aedsief personnel, ...)?

the availability of training, guidelines, etc.?

the mid/long term existence of a user community?

the mid/long term existence of a maintainer orgaion / "sponsor"?

© ©o N o bk~ wDdRE

the short term support (problem resolution, commeocdf bugs, etc.)?
10.the reputation of the OSS provider?
11.the programming language uniformity?

12.the existence of a sufficiently large communityusérs of the OSS software that
can witness its quality?

13.the existence of benchmarks, test suites that gstfa@ the quality of OSS?
14.other (please specify)?

* What other characteristics that are not commongjilable about OSS development
processes would you like to have and use?

Product quality

* Do you choose OSS products considering (please, femin O-irrelevant to 10-
essential)

1. the degree to which an OSS product satisfies/cduectional requirements
2. the degree to which other qualities are satistegl, the qualities of 1ISO9126
. reliability
. performance
. usability

1

2

3

4. maintainability
5. portability

6

. other (e.g., reusability)

Davide Taibi

134



Towards a trustworthiness model for open sourdsvaoé
2010

3. design and code qualities:
size

complexity

modularity

standard architecture
patterns

o 0 s~ w b pkE

other (Please specify)

standard compliance

self-containedness (the product does not need Ytheducts" to work correctly)
the interoperability (data level, formats, etc.)

N o g bk

the human interface language / localization of®$S product

 What other characteristics that are not commonlgilable about OSS product
quality would you like to have and use?

Features supporting the customer requirements

* What features do you take into account when chgo®8S? (please rank, from O-
irrelevant to 10-essential)

Customer satisfaction
Interoperability issues
Law conformance (e.g., for Public Administrations)

w0 Dd P

Standard imposed
5. other (please specify)

Processes

Trust

* What are the elements (practices, tools, technjgetes) in the process that allow
you to trust the quality of the final result?

Quality assurance
* What are the aspects for verifying quality of hedurct you use/produce?
* Who is testing the product?
* Which manually test methods are used? (internalkesting)
* Which automated testing techniques are used?
* How often, how much and what do you test?
* Are new releases scheduled?
* How regularly are releases rolled out?
* Isit planned in which release which :

Davide Taibi
135



Towards a trustworthiness model for open sourdsvaoé

2010

e Features will be added?
e Bugs will be solved?

How is the work managed in the time of deliveringeav release?
General questions

* Which open source software are used within the emyjunit?

» Ifthere is a commercial alternative available, vdoyyou choose OSS?

e Is an OSS product usually used/developed/modifistitanized in a single location
within the company or at several locations?

* When did the project start?
* Where did the project start?
* Within the company?

* Did the project already have roots/backgroundssfdetof the company), that
the company improved?

How long does it last (approximately)?

Roles and responsibilities
* How many people were/are working in the project?
1-15
16-25
26-50
51-100
101-500
More than 500
* How much is the turnover? (annual rate of peoptargginto/leaving the project)
1. 1%-10%
2. 11%-20%
3. 21%-40%
4. 41%-60%
5
6

o ok~ wdh Pk

. 61%-80%
. 81%-100%
* Please determine:
* The standard roles:
1. users (yes/no)
2. developers (yes/no)

Davide Taibi

136



Towards a trustworthiness model for open sourdsvaoé

2010

3. committers (yes/no)
4. PMC members (yes/no)
5. other (yes/no)
* The number of the participants of the project:
users
developers
committers
PMC members
Other
* The responsibilities:

a s b ke

1. users
2. developers
3. committers
4. PMC members
5. Other
How can one become a developer, committer, PMC raetb
Is there any community within or outside of the pamy which makes decisions?
How are decision processes arranged?

How do you decide about code modification, givimghts, package releases, etc?
(voting, responsibilities, etc.)

Architecture definition
How is the technical architecture of the projechaged?
Is it planned before, incremental?
What are the most important technical requirements?
Which technologies are used?
Development techniques and practices
Which development methodology do you use?
Can you describe it? (if it is not standard)
Which practices do you use? (describe it)
* Test first
* Unit test
» Continuous integration

e Code reviews

Davide Taibi
137



Towards a trustworthiness model for open sourdsvaoé

2010

Other (please specify)
How do you collect and manage requirements?
Do you use any coding standards?
How is the maintenance of the existing code wodei?
Tools used
On which operating system is the project implemépte
Is it running on other OS?
If yes, on which one(s)?
Windows
Linux
Solaris
Other (please specify)

Which programming language is used for the impldatén?

Java

C++

C

Visual Basic 6

Perl

Pyton

Other (Please specify)
On which platform?

Windows

Linux

Solaris

Other (please specify)

* Which development tools are used in the project?

Eclipse
Visual Studio
Vi
Emacs
Other (please specify)
Do you use any tool developed in house? (yes, no)

Davide Taibi

138



Towards a trustworthiness model for open sourdsvaoé

2010

Do you make these tools available to others? fy@s,

Do you use other open source or commercial softtvgres/no)
Features to implement

Considering the new features; Who:

1. Makes suggestions for new features? (Is there aaling list/newsgroups for
doing this?)

2. Is deciding about new features?
3. Has to implement the new features?
Is there a time plan
1. For implementing the features?
2. Which feature should be implemented first? (ranlohfgatures by priorities)
3. How priorities are assigned?
Documentation, bug management
Do you have documentation of the project?

Who writes the documentation and where? (in thelempntation, in a separate
documentation, etc.)

Does the project have a roadmap?

Is it useful for the developers?

Which tools are used for bug-tracking?

If there are several in use, which tool has théésg priority?

Are the bug-tracking tools specialized for differ@ersons (users, developers, etc),
or do they use the same tool for reporting bugs?

How many bug reports do you get?

Can the bug-tracking tool be used for other purptse? (e.g.: making suggestions,
looking for tasks to resolve them, etc.)

How long does it take to solve a bug?
How are priorities assigned?

Version control and people management
Which version control system is used for the prigjec
Is this tool freely available for everybody (usesmpany, etc.)?
Who has access to the version control system amchwights?
Who and how can get more rights and which ones?
Who can be the owner of a module?
How are the tasks assigned? Can one choose winapement?

Davide Taibi
139



Towards a trustworthiness model for open sourdsvaoé

2010

Business model
Are developers employee?
Which advantages/disadvantages, benefits has tiedogher for contributing?
What is the goal of the project?
Does the company sell this product?
Are there any additional services (e.g. coursgg@, extensions, etc)?
If yes, which one(s)?

Workflows of the processes identified
Please describe the following processes:
Development techniques
Release development
Testing

w0 Dd P

Quality assurance

Davide Taibi

140



Towards a trustworthiness model for open sourdsvaoé

2010

Appendix B:
Trustworthiness Factors Analysis

The main goal of the analysis is to obtain the nmation that is quickly available
through a project’s website.

Some factor have been analyzed, while others remd $0ols to be developed.

In this section, we analyze all the factors andrtheeasures reported in Table 4
referring to the set of 32 projects. We correlaters and developers requirements with
the actual availability of the trustworthiness @ast into web portals. Finally, we
provide some guidelines useful to developers of f&lucts in order to better
highlight trustworthiness factors into their welrtads.

The next sections reflect the structure of the Quoiesaire presented in Appendix A
with reference to the four categories: Economiasydlopment, Quality, and Customer.

Economics: Economic Issues When Choosing OSS

Here, we do not analyze these factors due to shiectivity.

Developments: OSS Development Process

We collected information to understand both the m@evelopment related factors
when choosing an OSS product, and also the availafbtibutes that are taken into
consideration. In this section, we try to identifie attributes that the selected projects
currently provide to the final users.
The identified factors, hereafter analyzed, are:

» License Issues When Choosing OSS

* The availability of tools for developing modifyiragistomizing OSS products

» The availability of best practices on the specd6S products

» The availability of technical documentation / usenual

* Environmental issues

* The availability of training and guidelines

* The mid-long term existence of a user community

* The mid-long term existence of a maintainer orgaion / sponsor

Davide Taibi
141



Towards a trustworthiness model for open sourdsvaoé
2010

* The short-term support

* The reputation of the OSS provider

» The distribution channel

* The programming language uniformity

* The existence of a sufficiently large communityusiers that can witness its
quality

. Thedexistence of benchmarks / test suites thategatrior the quality of the OSS
product

License Issues When Choosing OSS
As emerged in our questionnaire, the factor “Theesyof licenses used” takes a fairly

high importance for developers and final users.

In Table 20 we show the distribution of the licensdgpes: The vast majority of the
projects use a GPL/LGPL license (48% GPL and 179l Gseven projects use an
Apache License while the remaining projects useratypes of licenses.

As expected, this important factor is properly mtéed into the analyzed web portals.

Type of license used Values | Percentage
Apache Licence 7132 24%
GPL 14/32 48%
LGPL 5/32 17%
CDDL 1/32 3%
CPL or EPL 1/32 3%
BSD 1/32 3%
Common Public Licence 1.0 1/32 3%
Apache BSD style 1/32 3%
Unknown 1/32 3%

Table 20: Type of licenses used

Davide Taibi

142



Towards a trustworthiness model for open sourdsvaoé

2010
unknown; 1
Apache BSD style; 1

Common Public
Licence1.0;1

BSD; lx Apache Licence; 7

CPLor EPL; 1
CDDL; 1

GNU LGPL; 5~
GPL; 14

Figure 32: The license distribution

The availability of tools for developing modifyingcustomizing OSS

products
As emerged in our questionnaire, the factor “Thailatbility of tools for developing

modifying customizing OSS products” takes a falmigh importance for developers.

In Table 21 we summarize the data collected fortdlods availability. We can see that
more than 50% of the projects have special purpodetools and more than 75% of
projects have some purpose-built tools and less 8i#6 of the projects have other
useful tools.

As expected, this important factor is properly mtéed into the analyzed web portals.

Purpose-build tools for product Values Percentage
yes 17 53%

no 15 47%

Other useful too Values Percentac
yes 11 34%

no 21 66%

Build customizing scrip Values Percentac
yes 21 66%

no 11 34%
Integration with development tools Values Percentage
yes 9 28%

no 23 72%
Documentation on customizat Values Percentac
yes 24 75%

no 8 25%

Built in customization facilitie Values Percentac
yes 25 78%

no 7 22%

Davide Taibi

143



Towards a trustworthiness model for open sourdsvaoé

2010
Implementation with customization in fo Values Percentac
yes 8 25%
no 24 75%

Table 21: The availability of tools for developingmodifying customizing OSS

products

B Not Available / Insufficient
O Yes/Available

2
CHL S
< (06\1 \>\\_00\ 60(\6\' (\\\00 N \\\’\'\e
0 . “ R
& (v Q\OQ“\ o° o A
50 AR\ Y
A0 O & Q& \\ 0
GO OF (05 (O 0O 0
0 AT @ 0T (S (P
R \ W AN X
«° ORI NN
?0 \'eg('a‘ 000\) %\) \:a&\o

Figure 33: The availability of tools for developingmodifying customizing OSS

products

The availability of best practices on the specifi©SS products
As emerged in our questionnaire, the factor “Thailalbility of best practices on the

specific OSS products” takes a low importance &Bra and developers.

In Table 22 we summarize the data collected foatlalability of best practices.

As expected, best practices were not available lynwstll projects (only one project

up to 32 shows best practices on its website) whibee than half projects have some

code examples listed in the website.

Best Practices Area Values | Percentage

Yes 1 3%
No 31 97%
Code Example Values | Percentage

Yes 20 63%
No 12 38%

Table 22 : The availability of best practices on ta specific OSS products

Davide Taibi

144



Towards a trustworthiness model for open sourdsvaoé
2010

100% -
90% -
80% -
70% +
60% -

® Not Available / Insufficient
O Yes/Available

50% +

40% -
30% +
20% ~
10% -

0%

Best Practices Area  Code Examples

Figure 34: The availability of best practices on tk specific OSS products

The availability of technical documentation / usemanual
As emerged in our questionnaire, the factor “Theailability of technical

documentation / user manual’ takes a low importdocesers and developers.

In Table 23 we summarize the data collected forathalability of user documentation,
while in Table 24 we summarize the availabilityt@thnical documentation.

As expected, almost every project has an up-to-dasx documentation (manuals,
getting started guides and installation guides) tede is a good level of interaction
between users and developers by means of forumsnailchg lists. Conversely, the

existence of technical documentation is not soueed; approximately half of the

projects provide technical documentation, forund arailing list, while only less than

half of the projects have updated F.A.Q. and texirforums.

We point out that OSS users consider product asegdelocumentation as a major
issue. We suggest developers to make always alailap-to-date technical

documentation.

Davide Taibi
145



Towards a trustworthiness model for open sourdsvaoé

2010
User manual Values | Percentage
Updated 25 78%
Not Updated 3 9%
Not Available 5 16%
Getting started guide Values | Percentage
Updated 18 56%
Not Updated 3 9%
Not Available 11 34%
User related F.A.Q. Values | Percentage
Updated 23 72%
Not Updated 1 3%
Not Available 8 25%
Mailing list Values | Percentage
Yes 27 84%
No 5 16%
Table 23: The availability of user documentation
The availability of user documentation
100% -
90% - —
80% -
70% - e
60% - - O Not Available
50% - ® Not Updated
40% - O Updated
30% -
20% -
10% -
0% : ‘ : !
User manual Getting User related Mailing list
available  started guide  F.A.Q.
available
Figure 35: The availability of user documentation
Technical manual Values Percentage
Updated 16 50%
Not Updated 2 6%
Not Available 14 44%
Technical documentation (like Javadoc) Values Percentage
Yes 14 44%
No 18 56%
Installation guid Values Percentac
Updated 25 78%
Not Updated 2 6%
Not Available 5 16%

Davide Taibi

146



Towards a trustworthiness model for open sourdsvaoé

2010
Technical related F.A.C Values Percentac
Updated 11 34%
Not Updated / unknown if related to the latest i@rs 7 22%
Not Available 14 44%
Technical forur Values Percentac
Yes 12 38%
No 20 63%
Technical related Mailing i Values Percentac
Yes 16 50%
No 16 50%
Table 24: The availability of technical documentatn
The availability of technical documentation
100%
90% + D —
80% —
0 +— |
2802 1 || |O Not Available
50% 1 | B Not Updated
40% T _— — .
30% | || @ Available/Updated
20% —
10% +— —
0% ‘ ‘
S < .
> o N Q < o
é\\) \J §'§> hes > . 5
& o) R\ < AS N
AV - A IR
& S 4 S &
d S U &
<@ O N X 2
60 ;\\'0 (\\ \\
& @ N N
o N &
<@ A

Figure 36: The availability of technical documentaibon

Environmental issues
Environmental issues describe software and hardeapabilities for each component

of the environment. Due to the high subjectivitytiis factor, we excluded it in our

analysis.

The availability of training and guidelines
As emerged in our questionnaire, the factor “Theailability of training and

guidelines” takes a very low importance for botargsand developers.
In Table 25 we summarize the data collected foatralability of training information

and guidelines.

Davide Taibi
147



Towards a trustworthiness model for open sourdsvaoé

2010
Unexpectedly, guidelines and training guides arstimavailable and updated on the
project websites. Only 7 project up to 32 have atdlate guidelines and one project
doesn’t provide any guideline.
Considering the availability of official trainingoarses, only 8 projects out of 32

provide it.
Availability of training, guidelines Values |Percentage
Some updated materials 24 80%
Out of date materials 1 3%
No training materials 7 17%
Availability of official training cours Values Percentage
Yes 8 30%
No 24 80%

Table 25: The availability of training and guidelines

100% -
90% +
80% +
70%
60%
50%
40%
30%
20%
10%

0%

® No / Not Available /
Insufficient

O Yes/Available

Availability of training, Availability of official
guidelines training course

Figure 37; The availability of training and guidelines

The mid-long term existence of a user community
As emerged in our questionnaire, the factor “The-long term existence of a user

community” takes a high importance for both userd developers. OSS users often
pay attention to the vitality of the user commuritth in terms of its duration and also
in terms of the number of people involved.

In Table 26 we summarize the data collected foethstence of a user community.

Unfortunately, the dimension of the user commurstyiot measurable unless explicit
data is provided on the website. In our analysmy two projects up to 32 show the

Davide Taibi
148



Towards a trustworthiness model for open sourdsvaoé

2010

community size. Considering the vitality of a commiy in correlation with the
number of patches and releases, not all websiseslglshow this data. Some websites
show only the number of patches/releases of the6laronths, others only the total
number of patches/releases, while others show dath. An interesting result is
provided by the availability of several communitsogps identified through different
mailing lists (technical related, user relatedpstator related...).

Despite our expectation, data related to the siwkthe vitality of the communities is
not well highlighted in the considered web portaMe suggest developers to clearly

show this information.

Actual dimension of user community Values Percentage
Found 2 6%
not found 30 94%
Number of patches/releases (to Values Percentac
0-25 13 41%
26-50 8 25%
>=50 5 16%
Not found 6 19%
Number of patches/releases (last 6 mor Values Percentac
0-5 17 53%
6-10 2 6%
>10 2 6%
Not found 11 34%
Project Age Values Percentac
0-5 18 56%
6-10 5 16%
>10 5 16%
Not found 4 13%
Age of the communit' Values Percentac
0-5 5 16%
6-10 2 6%
>10 0 0%
Not found 25 78%
Number of contributors of the commun Values Percentac
0-5 5 16%
6-10 2 6%
>10 6 19%
Not found 19 59%
Existence of several different community grc Values Percentac
Many mailing lists 22 69%
Several user groups 6 19%
Not available 4 13%
Number of subscribers of the mailing | Values Percentac
Available 1 3%
Not Available 31 97%

Davide Taibi

149



Towards a trustworthiness model for open sourdsvaoé
2010

Table 26: The mid-long term existence of a user camunity

The mid-long term existence of a maintainer organition / sponsor
As emerged in our questionnaire, the factor “Thd-fong term existence a maintainer

organization / sponsor” takes a very low importance

In Table 27 we summarize the data collected for ¢lkestence of a maintainer
organization / sponsor.

The analysis carried out on this factor shows thatvast majority of the projects have
several maintainers/sponsors. As shown in TableoBl, 8 projects out of 32 (25%)

don’'t have a maintainer/sponsor or a supportinguagation.

Active maintaiter organization / spons Values Percentac
yes 24 75%
no 8 25%
Type of the maintaine Values Percentac
individuals 3 9%
small 6 19%
large 8 25%
all 3 9%
not found 12 38%
Supporting organizatio Values Percentac
1-5 6 19%
6-10 2 6%
>10 11 35%
not found 13 41%

Table 27: The mid-long term existence of a maintaer organization / sponsor

The short-term support
As emerged in our questionnaire, the factor “Thertsterm support” takes a fairly high

importance for users and developers.

In Table 28 we summarize the data collected foratfalability of short term support.

As expected, the short term support is mostly asdds. As we can see, most of the
projects publish their bugs-tracker and providefggsional services that can guarantee

a short-term resolution of bugs.

Bug number available Values Percentage

Yes 15 47%
No 17 53%
Professional services Values Percentage

Yes 23 72%
No 9 28%
Bug tracking Values Percentage

Davide Taibi

150



Towards a trustworthiness model for open sourdsvaoé

2010
Yes 25 78%
No 7 22%
Bug workflow Values Percentage
Yes 2 6%
No 30 94%

Table 28: The short-term support

100% -
90% -
80% -
70% A
60% -
50% A
40% -
30% -
20% A
10% -|

0% ‘ ‘

Bugs Professional Bug Bug
number senices tracking workflow

m No/Not Available
O Yes/Available

Figure 38: The short-term support

The reputation of the OSS provider
This factor is not analyzed, due to its high sutbydg.

The distribution channel
As emerged in our questionnaire, the factor “Thetrdhiution channel” takes a

negligible importance.

In Table 29 we summarize the data collected foratfalable distribution channels.

As expected, all the projects freely provide themurce code via internet. The big
majority provides both the source code, the bisasad access to the source code
repository.

Only few projects are available via CD/DVD or p2gptworks (such as Torrent, or

eMule).
Source code downlo Values Percentac
Yes 32 100%
No 0 0%
Binaries download Values Percentage
Yes 24 75%
Davide Taibi

151



Towards a trustworthiness model for open sourdsvaoé

2010
No 8 25%
Repository access Values Percentage
Anonymous 28 88%
No 3 9%
Private Login 1 3%
CD/DVD Values Percentac
Yes 6 19%
No 26 81%
p2r Values Percentac
Yes 2 6%
no 30 94%

Table 29: The distribution channel

The programming language uniformity
As emerged in our questionnaire, the factor “progreng language uniformity” takes

a low importance.

In Table 30 we summarize the data collected foldhguage uniformity.

In this analysis, more than 60% of the projectsardg one programming language, but
only half of these projects explain why they use tamguage instead of another one, or
why they use a variety of languages for their prige

Only one language us Values | Pencentac
Yes 20 63%
No 12 38%
Reasoning why different languages are Values | Pencentac
Yes 18 56%
No 14 44%

Table 30: The programming language uniformity

Davide Taibi
152



Towards a trustworthiness model for open sourdsvaoé
2010

100% -
90% +
80% +
70% -
60% -
50% +
40% -
30% -
20% ~
10%

0%

® No/Unknown
O Yes

Only one language used Why are different
languages used

Figure 39: The programming language uniformity
The existence of a sufficiently large community afisers that can witness its quality
As emerged in our questionnaire, the factor “Thésterce of a sufficiently large
community of users that can witness its qualitKeaa fairly high importance.
In Table 31 we summarize the data collected foldhguage uniformity.
Unexpectedly, most of the project do not provideoHitial forum (20 up to 32), while
the others have forums with a lot of activity (ionge cases with more than 100.000
posts).

We suggest developers to always maintain activenisrand vital communities.

Number of post available on forums/blogs/newsgr Values | Percentac
0-5000 3 9%
5001-100000 6 19%
>100000 3 9%
unknown 20 63%
Table 31: The existence of a sufficiently large comunity of users that can witness
its quality

The existence of benchmarks / test suites that wiess for the quality
of OSS
As emerged in our questionnaire, the factor “Thisterce of benchmarks / test suites

that witness for the quality of OSS” takes a lovpartance.

Davide Taibi
153



Towards a trustworthiness model for open sourdsvaoé

2010

In Table 32 we summarize the data collected forettistence of benchmarks.

Unexpectedly, most of the project do not show @ytlise any test framework and test

suites. 18% of projects try to encourage the conityia contribute to their quality

efforts and 41% shows links to articles on the lteaf benchmarks.

Existence of test suites Values | Percentage

YES 2 6%

NO 30 94%

Existence of benchmarks Percentage

YES 6 19%

NO 26 81%

Usage of a test framework Percentage

YES 1 3%

NO 31 97%

Results of test suite runs published Percentage

YES 0 0%

NO 32 100%

Activity to encourage the community to contribubegiality Percentage

efforts
YES 6 19%
NO 26 81%
(Links to) articles on the results of benchm: Percentac

YES 13 41%

NO 19 59%

Explicitly named individuals or sub_-communltles wihifocus Percentage

on these topics

YES 0 0%

NO 32 100%

Which kind of tests are available Percentage
performance test 9 28%

function test 5 16%

unknown 18 56%
Table 32 The existence of benchmarks / test suitdsat witness for the quality of

0SS
Davide Taibi

154



Towards a trustworthiness model for open sourdsvaoé

2010

Quality

This information is collected in order to check teailability of the quality related

factors that OSS users take into account whentgege©SS products.

The degree to which a OSS product satisfies / cosefunctional requirements
As emerged in our questionnaire, the factor “Thgree to which a OSS product

satisfies / covers functional requirements” isdlamental.

In Table 33 we summarize the data collected far fdctor.

Unexpectedly, the situation is negative: less thalf of the projects do not provide a
comprehensive list of supported functionalities apbduct samples (such as
screenshots, static or dynamic demos or excerptedd). The majority of the projects
(19 out of 32) do not discuss functional requiretadar often the provided information
is incomplete). Only releases notes are widely iolex¥ (59% of projects).

We suggest developers to focus their attentiorhi® fundamental factor, discussing

and reporting how their products satisfy/cover fioral requirements.

Featurs list Values | Percentac
poor free text description 13 41%
incomplete feature list available 6 19%
comprehensive feature list available 13 41%

Release noti Values | Percentac
contains features information 19 59%
No feature information 13 41%

Products examples Values | Percentage

live 5 16%
demo 15 47%
screenshot 10 31%
none 19 59%

Table 33: Functional Requirements Analysis

Davide Taibi

155



Towards a trustworthiness model for open sourdsvaoé

2010

100% -
90% -
80% -
70% -
60% -
50% -
40% +
30% -
20% -
10% -

0%

Functional Requirement Analysis

@ Not Available/Insufficient
O Available/Update

Feature list

Release notes

Products
examples

Figure 40: Functional Requirements Analysis

External quality — Performances

As emerged in our questionnaire, the factor “Exdequality - performances” takes a

fairly high importance.

In Table 34 we summarize the data collected foldhguage uniformity.

Unexpectedly, this factor is omitted by most of elepers: the majority of the projects
do not provide any description about quality perfances (for example, by means of

specific documentations, reports of performances t&gnchmarks).

We suggest developers to pay attention to this mapo factor, discussing and

reporting how their products satisfy non-functioreduirements.

Quality performances description Values Percentage

yes 9 28%

no 23 2%

Is performance one of the goal of the project Values Percentage

yes 12 37%

no 20 63%

Performance tests Values Percentage

yes 8 25%

no 24 75%

Links to articles Values Percentage

yes 14 44%

no 18 56%
Performanc-related documentatis Values Percentac

yes 11 34%

Davide Taibi

156



Towards a trustworthiness model for open sourdsvaoé

2010
no 21 66%
Performanc-Oriented Implementatic Values Percentac
yes 7 22%
no 0 0%
unknown 25 78%
Table 34: External quality — performance
External Quality - Performances
100% -
90% -
80% |
70% -
60% - B No/Unknown
50% -
40% | O Yes
30% -
20% -
10% -
0%
e . <& &2 .
d\ S \Q;% 5 é \)"' Q
%b@% 6\‘%\@ (\OQ’ \Oé\\ boc’ Q,b\@
Ca o O & X N\
< 4 < v NG O
{\O\ ’b('\ ¥ on OQ'
& & & &
N &° & &
° N N &
& © Q? Q

Figure 41: External quality - Performances

External quality - Maintainability

As emerged in our questionnaire, the factor “Exdeguality - maintainability” takes a

fairly high importance.

In Table 35 we summarize the data collected fomaetainability.

Unexpectedly, the only measure that is easilyeesble from the analyzed web portals

is the existence of maintenance releases. The atleasures are almost never

retrievable, while half of the projects show thages of some coding standards.

We suggest developers to better highlight this irtgoa factor into their web portals,

discussing and reporting how their products arentaaiable.

Adaptation description Values | Percentage

yes 6 19%
no 26 81%
Architecture description Values | Percentage

yes 9 28%

Davide Taibi




Towards a trustworthiness model for open sourdsvaoé

2010
no 16 50%
Plugin interface Values | Percentage
yes 12 38%
no 20 63%
Maintenance releases Values | Percentage
yes 29 91%
unknow 3 9%
Existence Coding standards Values | Percentage
yes 16 50%
no 16 50%
Coding standard check Values | Percentage
yes 5 16%
no 27 84%

Table 35: External Quality - Maintainability

Maintainability

100%

90% - -

80% -

70% -

60% = No
50% -

40% - O Yes
30% -

20% -

10% -

0%

c c O - @ @ @ (2} o
© o 56 c Q &) O » 0 2 &5 x
= s 2 .= S 8 c n c c 3 c 39
T Qo o B S £ c @ O = S Q
= = D = = O c 0 +— T O OC-C
S o = 5 o e o LS 587
S ¢ = © c = O X0 @ 17
S o S B - £ L »

< o - gh

Figure 42: External Quality - Maintainability

External quality - Portability

As emerged in our questionnaire, the factor “Exdemuality - portability” takes a
fairly high importance.

In Table 36 we summarize the data collected foptmability issue.

As expected, the analysis shows that more than @D%e projects use a portable
language (e.g. Java), but only 38% of the projslatsv their supported environments.

Supported environments | Values Percentac
yes 12 38%
no 20 63%
Davide Taibi

158



Towards a trustworthiness model for open sourdsvaoé

2010
Usage of an easy portable language (e.g. Values Percentage
yes 23 2%
no 9 28%
Table 36: External Quality - Portability
Portability
100% -
90% -
80% -
70% -
60% 1 m No
50% |
40% - mYes
30% -
20% -
10% -
0%
Supported environments list Supported environments list

Figure 43: External Quality — Portability

External quality — Reliability
As emerged in our questionnaire, the factor “Exdequality - reliability” takes a very

high importance.

In Table 37 we summarize the data collected feréhability characteristic.
Unexpectedly, almost no project report its develepimstatus and only half of the
projects use some coding standards and checkutardg

We suggest developers to better highlight this irtgoa factor into their web portals,
discussing and reporting data that demonstrate ddgree of reliability of their

products.
Devel(pment Statt Values | Percentac
Available 4 13%
Not Available 28 88%
Intentions- not objective descriptic Values Percentac
Yes 10 31%
No 22 69%
Reliability focused Implementatic Values | Percentac
Yes 3 9%
No 5 16%
Unknown 24 75%
Minor/patchrelease Values | Percentac
1-4 10 31%
Davide Taibi

159



Towards a trustworthiness model for open sourdsvaoé

2010
5-15 5 16%
>15 6 19%
Unknown 10 31%
Existenceof coding standar( Values | Percentac
Yes 16 50%
No 16 50%
Coding standard che Values | Percentac
Yes 5 16%
No 27 84%

Table 37: External Quality Reliability

Reliability

100% -

90% -

80% -

70% -

60% 1 E No
50% -

20% | O Yes
30% -

20% -

10%

0% ‘

g E 5 So8 3
c

€ o ., 0 S > = S ER 2
S 3 =S = @© - T T o

= 0w s a = 0 = n o ¢ c ©

S ®© S O = S n € 28 & S 35

o A S O G c o O < + 8 =

2 m = e 2o e i o T
o 0 O

[ $owo QLT 2

Qa £ ° o o [

= e =

= 17

Figure 44: External Quality — Reliability

Internal Quality - Complexity
As emerged in our questionnaire, the factor “Irdequality - complexity” takes a low

importance for users and developers.

This is reflected by the incompleteness of statdtlata about the code complexity.

Internal Quality - Modularity
As emerged in our questionnaire, the factor “Irdéquality - modularity” takes a high

importance.
In Table 38 we summarize the data collected femtiodularity.
Inline with the desire of users and providers, mihwn 60% of the analyzed projects

provide plug-ins or interfaces that increase thelutarity of the project.

Davide Taibi
160



Towards a trustworthiness model for open sourdsvaoé

2010
Pluc-ins / Interfaces provide Values | Percentac
yes 20 63%
no 12 38%

Table 38: Internal Quality - Modularity

Internal Quality - usage of Standard Architecture
As emerged in our questionnaire, the factor “Imaéiquality — Standard Architecture”

takes a high importance both for developers antsuse

In Table 39 we summarize the data collected fougsge of standard architectures and
design patterns.

Unexpectedly, only half of the projects provide soanchitectural documentation and a
description of the adopted standards. Moreover; dhlout of 32 web portals describe
the design patterns applied into the project.

We suggest developers to simplify the retrievalhag important factor into their web
portals, increasing the information and the docuatém related to architectural

choices they used.

Availability of architectural documentation Values | Percentage
Yes 16 50%
No 16 50%

Any architectural standard/pattern used into the
description/manual

Yes 14 44%

No 18 56%

Table 39: Usage of standard Architecture

Values | Percentage

Davide Taibi
161



Towards a trustworthiness model for open sourdsvaoé

2010

Software Architecture

100% -
90% -
80% -
70% -
60% -
50% -
40% OYes
30% -
20% -
10% -

0%

m No

Availability of architectural Any architectural
documentation standard/pattern used into the
description/manual

Figure 45: Usage of standard architecture

Standard compliance
As emerged in our questionnaire, the factor “Steshdaompliance” takes a high

importance.

In Table 40 we summarize the data collected attmutompliance of the projects with
available standards.

Unexpectedly, the possibility to assess the stahdampliance reflects the already
discussed quality factors. Two measures are in aommith the factor “Internal
Quality — Reliability”: the use of standards durithg coding phase and the check of the
achieved standardization. Another measure we ceredd for this factor is the
availability of information about the implementethredards (e.g., HTTP 1.0, SQL
97...). Unfortunately, only half of the projects repdata about the compliance of the
project with available standards.

We suggest developers to point out this importadtor into their web portals,
discussing and reporting data about the used stw@da order to improve the global

comprehension of the project.

Informationabou standards implement Values Percentac
Yes 17 53%
No 15 47%
Coding standards Values Percentage
Yes 16 50%
No 16 50%
Davide Taibi

162



Towards a trustworthiness model for open sourdsvaoé

2010
Coding standar«check: Values Percentac
Yes 5 16%
No 27 84%
Table 40: Standard Compliance
Standard Compliance
100% +
90% -
80% -
70% -
60% 1 m No
50% -
40% - O Yes

30% -
20% -
10% -+

0%

Information about
standards
implemented

Coding standards

Regular automated

checks

Figure 46: Standard Compliance

Self containedness

As emerged in our questionnaire, the factor “Setin@inedness” takes a low

importance.

In Table 41 we summarize the data collected fdrcealtainedness.

More than 70% of projects can run out of the bothaut any other tool or library. As

expected, some projects use third parties prodogtsonly half of them describe

integration issues in their documentation.

Can run “out of the box"? Values Percentage

Yes 23 72%
No 9 28%
no data 3 9%
Are third parties products used? Values Percentage

Yes 11 34%
No 15 47%
no data 3 9%

Documented which third parties products are u Values Percentac

Yes 5 16%
No 26 81%
no data 1 3%

Table 41: Self Containedness

Davide Taibi

163



Towards a trustworthiness model for open sourdsvaoé
2010

Self Containedness

100% -
90% -
80% +
70% +
60% -
50% -
40% -
30% +
20% ~
10% -+

0% \

® No / No Data
O Yes

Can run “out of  Are 3rd parties Documented
the box™? products used? which 3rd parties
products are
used?

Figure 47: Self Containedness

Interoperability
As emerged in our questionnaire, the factor “Inperability” takes a very high

importance.

In Table 42 we summarize the data collected foirteroperability.

As expected, most of the projects are equipped witformation about the
interoperability issues (e.g., whether they commata@ or not with other systems, and

if they provide plug-ins or interfaces).

Communication with other systis Values | Percentac
Yes 24 75%
No 8 25%
Plugin / Interfaces provided Values | Percentage
Yes 20 63%
No 12 38%

Table 42: Interoperability

Davide Taibi

164



Towards a trustworthiness model for open sourdsvaoé

2010

Interoperability

100% -
90% -
80% +

70% +
60% -
50% -
40% -
30% +
20% ~
10% -+

0%

m No
O Yes

Communication with other Plugin / Interfaces provided
system

Figure 48: Interoperability

Human interface language / localization
As emerged in our questionnaire, the factor “Hunmaerface language / localization”

takes a low importance.
In Table 43 we summarize the data collected foldbalizability aspect.
Only 11 projects out of 32 provide the localizatisapport, and support more

languages. This reflects the results of the quesaoe.

Localization suppo Values Percentac
Yes 11 34%
No 17 53%
Unknown 4 13%
Availability of different localization Values Percentac
Yes 11 34%
No 17 53%
Unknown 4 13%
Possibility to add more languages Values Percentage
Yes 5 16%
No 25 78%
Unknown 2 6%

Table 43: Human interface language / localization

Davide Taibi

165



Towards a trustworthiness model for open sourdsvaoé

2010

Localization Support

100% -
90% -
80% A
70% -
60% -
50% A
40%
30% A
20% -
10% -+

0% -

B No / Unknown
OYes

Localization support Availability of different ~ Possibility to add more
localizations languages

Figure 49: Human interface language / localization
Customer

By customer, we mean the person that has requastervice, a system, a
library, a tool, etc. We intend to stress out achaser role.
An analysis of the customer-related factors is isgitale due to the subjectivity of this

category.

Davide Taibi
166



Towards a trustworthiness model for open sourdsvaoé

2010

Appendix C: The questionnaire
for assessing the perceived
trustworthiness of 0SS

Here follows the questionnaire for evaluating teerg’ perceived trustworthiness.

Why This Survey?

The purpose of this survey is to elicit informatisom the users and developers of
Open Source Software (OSS) products about theaepéons on the trustworthiness of
OSS products and the related factors.

Who Are We?

This survey has been developed in the frameworth®fQualiPSo (Quality Platform
for Open Source Software) project, which is a Eesyp Union-funded Integrated
Project which aims at making a major contributioritte state of the art and practice of
Open Source Software. The QualiPSo project stantédbvember 2006 and will last
until October 2010. The project brings togethersb®ware companies, application
solution developers, and research institutions.glial is to define and implement
technologies, procedures, and policies to leverdge Open Source Software
development current practices to sound, well-rezegh) and established industrial
operations.

What Will Happen to the Questionnaires?

All information provided by each individual or ormgaation will be treated as
confidential. As such, it will not be released ither form than aggregated statistical
analyses that will make it impossible to identifig tsingle respondents.

Davide Taibi

167



1{y1o

129Nnpold

1aziwoisnoy/iorelfaluj

S1'se, 1onpoud 8y} Jo Jasn

)0u1d SSO ay1 yum diysuone|al INoA si reymn

QU0 Juadal Y

auo 1se| ay L

Buisn noA are 10npoud ay) JO UOISISA TeUYM\

ON

ainn} syl ui aghey

SoA

npoud ay) asn noA oQ

XIWBIINIDS

S9219X

uerex

eyoM

INTISIEY

dldl

Ansade |

SIS
uoxes

and
c0o7
ssogr

s109lold ener

SEIETA
ueyosaidr
suoday Jadser

Ol suowwodoer
nuNdnH
areulaqiH
sbngpuiy

asdijo3
TSI RET )

yiomaweld buuds

10npoid SSO 8yl Jo asn INOA

:(s,uoneziuehio se awes ‘*** ‘@aureuUl/BUUEEPIUCIAR ‘UoIRNISIUILPY 21Ignd) (S)urewop S, 1un
:uoneziuebnoA ul yun o119ads INoA Jo seakojdws Jo JagunN

(" ‘soueuly/bugUuoneNSILILPY 21Ignd) (S)urewop s,uoneziuebio

‘uoleziueblo INoA Jo saakojdwa Jo JaquinN

uonensiuiwpy olgnd[ ]  woid ou[ ] areaud [ Joireziuebio jo adA |

12ylQ[ | 1adojenaq| | Jebeuew josfoid [ ] J1ebeuey saddn[ ]  uolreziuebilo JNoA ul 901 INOA
(reuondo) ssalppe |rews JINoA
(jeuondo) awreu INOA

uoluido reuosiamhoA aAIb sAemje asesjtbmsue noA usypn ‘wagndn] :noA o1 sjqedijdde ag 1ou Aew suollsanb awos



glomadwod adinos uado
uou s}l 03 paredwodionpold 8yl 1SNINOA op yonw MoH

&lomnadwod 82inos
uadQ s 01 pasedwodionpoud ayl 1ISNINOA op yonw moH

¢lreJano “1npoad ayr 1snunok op yonw MoH

:anoqe suonsanb ay) 0] siamsue InoA uo paseg

¢1npoud 8y S1HaluswnIop ||oM MOH

¢1npoud ays siisey MoH

¢NOoA 01AIunwiwo9 Jadojanap 19NpoIadY] SI [N}J8Sh MOH

¢1npoud ayi SI 21N23s MOH

¢1npoud ay) si a|gelal moH

¢1npoud ays si ajqeladolaiul MoH

&) pasnjasn NoA uaym syuswialinbal
reuonouny InoA Ajsiempoud syl pip/saop yonw moH

¢lonpoud ayi si ajgqenod moH

¢1npoud auy siajgesn moH

¢1npoud ay1 yum nok ale Jeljiwe) moH

XIWSJIAIBS

S9219X

uejex

B9

Auoojan

dldl

Ansade |
sInns

uoxes

dind

cv607

JEET S
yeyoeaidr
ssoqr
suoday Jadser
Ol suowwo) yoer
uundnH
areulaqiH
sbngpui4
asdip3

yiomaweld buuds

TSI RE )

s100lold ener

10npoid SSO 8yl jo Alend

yum Jeljiwey 1ou are noA syoaloid ayy diys 1snp

[geneo =9 10| v/A1an =G ‘ybnoua uey] aiow=y :-ybnoua
1snl=¢ ‘o= ‘10U ARIB|=T a1ayM ‘B|eds 9 0] T © U0 MO|aq Si010e] dyuel Ag ‘yum Jeljiwe} are noA s1oaloid sy 1oy uoluido Jnogn anb ases|d

0tToc

30BASPINOS USdO J0} [9POW SSaUIYLIOMISNI] B SpJemo |



1{y1o

129npold

1aziwoisnay/iorefaluj

S1'se, 1onpoud 8y} Jo Jasn

)0u1d SSO ay1 yum diysuone|al INoA si reymn

QU0 Juadal Y

auo 1se| 8y

Buisn noA are 19npoud ay) JO UOISISA TeUYM

ON

ainn} syl ui aghey

SoA

npoud ay) asn noA oQ

= 2 0 2] e U . . w
cl28|8|glg|R|9|8|S|8|5|/2|2 68(8|2/2 |8 |%|E
SIEIE (818 |7 (S |S (8|8 (3|5 |z2|5(a|®||8|9|% |7 _
4| |3 |3 |3 ® |0 = W
~ g |” |2 |G ol |2 |7 Z 7|8 |c 5 g s18foid ++2/2
o S |0 - |le | T 3 O |z
=} = — % o3 o
2 S 2
109npoud SSO ay) 10 SN INOA
"JaMmsUe 1091102 ay] Y21l 9se9|d
0T0¢

30BASPINOS USdO J0} [9POW SSaUIYLIOMISNI] B SpJemo |



glomadwod adinos uado
uou s}l 03 paredwodionpold 8yl 1SNINOA op yonw MoH

glomadwod a2inos uado
s11 0} paJedwodionpoud ayl 1SnINOA op yonw moH

¢lreJano “1npoud ayr 1snunoA op yonw MmoH

:anoqe suonsanb ay) 0] siemsue InoA uo paseg

¢1npoud 8y S1HaluswnIop ||oM MOH

¢1npoud ays siisey MoH

¢NOoA 01A1Iunwiwod Jadojaaap 10NpoIaY] SI [NJaSh MOH

¢1npoud ayi SI 21N23s MoH

¢1npoud ay) si ajgela) moH

¢1npoud ays si ajqeladolaiul MoH

&) pasnjasn nNoA uaym syuswialinbal
reuonouny InoA Ajsiempoud syl pip/saop yonw moH

¢lonpoud ayi si ajgenod moH

¢1npoud auy siajgesn moH

¢1npoud ay1 yum nok ale Jeljiwe) moH

= |» (0] »w |TU |T (. C O |© o |O O |0 |
O |S Q T. |© )] .m .m .m M M =} T |5 S o |O < < |
cClIg | T |la|lg =2 |2 @ || 3 |E cE 2| w|0|<g |u &
3 |3 & o (S > 2 5 |0 o |X VWA o o s S
~ e = |G 213> |" 2 | T |9 | > g

o S |0 = Q |T 5 O |&

=} [ =

5 (" B 2 2

< 5 <

SIXY

uy

s1o8loid ++9/D

10npoud SSO 8yl jo Aend

0tToc

yum Jeljiwey 1ou are noA syoaloid ayy diys 1snp
[geneo =9 10| v/A1an =G ‘ybnoua uey] aiow=y :-ybnoua
1snl=¢ ‘o= ‘10U ARIB|=T a1ayM ‘B|eds 9 0] T © U0 MO|aq Si010e] dyuel Ag ‘yum Jeljiwe} are noA s1oaloid sy 1oy uoluido Jnogn anb ases|d

30BASPINOS USdO J0} [9POW SSaUIYLIOMISNI] B SpJemo |




Towards a trustworthiness model for open sourdsvaoé

2010

Appendix D: The modified
elements of the GQM plan

Q_Actual_Reliability

How much is the OSS product reliable

This quality is desirable in general, i.e., bottthié product is used as-is, or if it is changedndlicates the

ability of the software not to fail, i.e., to pemfioits function satisfactorily.

e Correctness: Correctness: is the OSS product ¢8rrec
o Correctness_wrt_tests (Absolute)
What is the % of functional tests passed
Origin: Junit, awtaf
0 Test_instruction_coverage (Nominal)
Origin: coverage tools (Jabuti; cobertura; etc.)
0 Test_condition_coverage (Nominal)
Origin: coverage tools (Jabuti; cobertura; etc.)
0 Test_path_coverage (Nominal)
Origin: coverage tools (Jabuti; cobertura; etc.)

* Robustness
0 Robustness - same as correctness, but outside(Sprelisal)

Percentage of cases not conforming the specifitaiio which the SW behaves

acceptably

» Dependability: Is the OSS product dependable?
o DependabilityEvidence (Ordinal)
Is the OSS product dependable
Origin: manual

e ProductMaturity: How mature is the OSS product?

This question is meant to distinguished mature petgifrom those that have just been made
available and have yet to reach stability, concegiboth faultiness and functionality (i.e.,

matching user needs).
0 ProductMaturityLevel (Ordinal)
How much is the OSS product mature
Origin: StatCVS/SVN; bugzilla; bugtrackers; otheojpcts (
0 Bug_trend (Nominal)
Origin: StatCVS/SVN; bugzilla; bugtrackers
0 Releases_trend (Nominal)
Origin: some indicator from projects that amalyseyés

» FailureFrequency: What is the frequency of failwgthe OSS product
o FailuresFrequency (Absolute)
The number of failures for every hour of usage
Origin: Jmeter; crash report repository?

* How probable are problems according to code coctibru
0 Unexpected situation handling index (Absolute)
number of situations not handled

Davide Taibi




Towards a trustworthiness model for open sourdsvaoé

2010

Q_Actual_Functionality

The degree to which a OSS product satisfies / sdugrctional requirements
This quality is desirable in general, i.e., bottthié product is used as-is, or if it is changedndlicates the
degree to which the considered OSS product satistievers functional requirements.

Q_Actual_Functionality_Suitability

* RequirementsSatisfaction: To what extent does B8 roduct satisfy the requirements
The user requirements vary from user to user. Thezdhere we consider a set of user
requirements which is "typical" for the class ophpations to which the product belongs.

o RequirementsSatisfactionDegree (Absolute)
Percentage of requirements that are satisfied

» LicenseCharacteristics: What are the charactesisfithe license under which the OSS product is
released
In case no standard license is used, it is necggsacharacterize the specific license under
which the considered product is released. Othervalighe interesfing features should be
determined by the standard license itself.
o DistributionAgreement (Ordinal)
Does the license allow distribution with differdicence agreements
o FeeAllowed (Ordinal)
Does the license allow redistribution with fee
0 SourceCodeAccessible (Ordinal)
Does the licence allow access to source code
o ModificationOfCodeAllowed (Ordinal)
Modification of source code allowed
o NumberOfLicences (Absolute)
Origin: OSLC, FOSSology
o copyrightedMaterial (Ordinal)

Q_Actual_Functionality_Accuracy

* FunctionalityQuality: How ell are the requiremesédisfied by the OSS product
o FunctionalitylmplementationQuality (Ordinal)
For each requirement how well it is implementedH®y OSS product

e LawConformance: Does the OSS product conform tdicgipe laws
o ApplicableLaw (Nominal)
Identitity of applicable law
o LawBreakEvidence (Ordinal)

Q_Actual_Interoperability

How well does the OSS product support interopeitghilith other software

This quality is desirable in general, i.e., bottthié product is used as-is, or if it is changedndlicates
how well the OSS product operates in conjunctidh {lie., exchanging data or control informatiorthyi
other software products.

» EaseOfDataExchange: How easy is it to import/exgata to/from the OSS product
0 StandardDataFormatSupported (Ordinal)
Does the product read/write data according to @diically well defined format
0 UserDefinedData (Ordinal)
Can the user define the format of the data to bd ¢®ad and written)

Davide Taibi
173



Towards a trustworthiness model for open sourdsvaoé

2010

o EaseOfDataParsing/Unparsing (Ordinal)
Is the code that parses/unparses the In/Out daya@anodify
o AutomaticalMagaementOfOtherSoftwareData (Ordinal)
Is the application able to automatically managel&id(e.g., configuration) data from
other software?
o SemanticallyWellDefinedDataFormat (Nominal)
Does the product read/write data according to easéinally well defined format

e EaseOfintegration: How easy is it to integrate@8s product with other software
At the control level.
o StandardApplicationinterface (Ordinal)
Does the OSS product support standard interfaciechemisms
o StandardinterfaceConformityEvidence (Ordinal)

» Locationindependence: Are the locations of appbcat that interoperate with the considered
OSS product made not relevant?
0 LocationindependenceSupport (Ordinal)
To what extent is location independence supported

* ProtocolBasedDataExchange
o StandardProtocolSupported (Ordinal)
like data, but for protocols
o StandardProtocolSupportEvidence (Ordinal)

Q_Actual_Exploit_in_dev_Maintainability

The ease of maintaining the OSS product

Maintainability: A quality of the software that etks to the effort needed to make specified matiits.
According to the traditional classification of m&nance activities, the required changes can bediat
removing defects, extend the product functionaditygdapt it to environmental changes.

* BugRemovalEfficiency: How fast are bugs removednfitbe OSS product
An aspect of maintenance is bug removal. Fast bugpwal is an indicator of good
maintainability Here it is intended that bug remalis performed by the developers/maintainers,
not by the user.
0o BugRemovalRate (Absolute)
Number of bugs removed per month
Origin: tools from flossmole, etc.
0 BugClosedPercentageRate (Absolute)
Percentage of bugs closed per month
0 BugClosureRatePerDeveloper (Nominal)

* NewReleaseRate: How frequently are new versiorsaseld
o NewReleasesPerYear (Absolute)
Number of releases per year that do not involveljug corrections
o ChangedLOCSperYear (Absolute)
Number of LOCS added or modified per year
0 BugsReportingRateperKLOC (Absolute)
Number of new bugs found per month per KLOC

* Analyzability_for_maintenance: How easy is it t@bze the code of the OSS product for the
purpose of maintenance

Davide Taibi
174



Towards a trustworthiness model for open sourdsvaoé

2010

o CodingStandards (Absolute)
Is a coding standard defined for the product
o CodeDocumentation (Absolute)
Lines of comments to total lines of code ratio
Origin: Macxim
o CodeModularity (Absolute)
How much modular is the code
Origin: Macxim
o MaintainabilityOrientedArchitecture (Ordinal)
Does the product feature an architecture easyirigtemance
o RunTimeModularity (Nominal)
Origin: AOP by Siemens
0 CodingStandardEnforcement (Nominal)
Is the usage of a coding standard verified

Maintenance_Testability: Is support to testing ke
0 TestCases (Absolute)
Number of test cases available
0 TestResultsAvailability (Ordinal)
Availability of the results of previous tests
0 McCabeCyclomaticNumber (Absolute)
McCabe Cyclomatic complexity of the OSS productecod

Maintenance_Stability
0 Number_of failures_due_to_maintenance (Absolute)
How many failures are caused by defects introdibgechange activities
Origin: work by Zeller, Stroulia
o DesignPatternUsage (Ordinal)
Usage of design patterns
Origin: tool, like PTIDEJ, FUJABA,SPQR, CodeCrawler

SupportingToolAvailability: Are tools available smpport the adoption of the OSS product
0 ToolSupport (Ordinal)
The level of support provided by tools

StandardArchitecture: Does the OSS product featwtandard architecture
o StandardArchitecture (Ordinal)
Does the OSS product feature a standard archigectur

CodeSize
0 CodeSizeinLOC (Absolute)
Code size measured in effective LOC
Origin: Static cxode measurement
0 OOCodeSize (Ratio)
What is the size in terms of object-oriented carcssr
Origin: code measurement

Davide Taibi
175



Towards a trustworthiness model for open sourdsvaoé

2010

Appendix E: why do our logistic
regressions look linear?

One could observe that the logistic regressionslireported in several of the above
sections do not look like the typical regressiow liwhich is illustrated ifigure 50.

Logistic function

1.0

\

0.8

0.4

0.2

|

Figure 50. The logistic function y=1/(1+&*™).
The reason is that the range of variability of cuadependent variable is a relatively
small interval.
Consider for instance the function y = 1/ (f¥&353-0006746 ¥) \yhich is reported in
Errore. L'origine riferimento non & stata trovata., limitedly to the 25..250 range. The same
function, plotted for whole x axis is reported kiigure 51 The highlighted region
corresponds to the portion of the function illugtthinFigure 51 It is easy to see that in
such region the function is approximately linear.

Davide Taibi

176



Towards a trustworthiness model for open sourdsvaoé

2010

1.2

0.8

0.6

0.4

0.2

N\ —
N\

T T L 1

-500 0 500 1000 1500

Figure 51. The logistic function y = 1/ (1+e-(1.48R-0.08547 Xx)).

Davide Taibi

177



Towards a trustworthiness model for open sourdsvaoé

2010

Appendix F: Analysis of Java
products

Here we report the detailed data on for java pitsjdte correlations between subjective

and objective data.

How to read the results
Every correlation found is illustrated by meansao$et of results from the statistical

analysis as illustrated in Figure 52.

Reliability vs. LCOM , Num. public methods

Estimate std. Error z value Pr(>|z|)
(Intercept) 2.095484e+00 5.153696e-01 4.065982 4.783053e-05
x1 -1.371423e-03 3.936123e-04 -3.484196 4.936172e-04
X2 -3.414151e-05 1.468522e-05 -2.324889 2.007788e-02
R2log = 0.8483479
Excluded as outliers: Eclipse Ant Httpunit Log4l ( 4 / 17 )
MMRE = 21.68755
Pred(25) = 82.35294
Error range = [ -19.12005 .. 98.45401 ]

Figure 52. Data about a correlation.
The first line indicates the correlation being repd: the corretalion reported in in

Figure 52 concerns reliability vs. LCOM (the ladkcohesion between methods) and the
number of public methods.

The following tables reports in the first columretkalues of the coefficients of the

correlation (where x1 and x2 indicate the indepehdariables as reported in the title,

thus x1 = LCOM and x2 = Num. public methods). Hfere, z = 2.095484 —

1
1+e~%

The column ‘Pr(>|z|)’ indicates the significancetloé coefficients: all the values, except

0.001371423 x, — 0.00003414151x, andReliability(z) =

the one concerning the intercept, should be < Qrofact, we adopt 0.05 as a threshold,
as usually done in empirical software engineering.

R2log is the value of Rg, a measure of goodness of fit defined in [88] ttaaiges
between 0 and 1: the higheﬁ[ﬁ the higher the effect of the model's explanatory

variables, the more accurate the model.

Davide Taibi

178



Towards a trustworthiness model for open sourdsvaoé
2010

The next line reports the products that were exdufiom the analysis, having been
considered outliers. In our example, 4 productsobdi7 (namely, Eclipse, Ant, HttpUnit
and Log4J) were excluded as outliers.

The last three lines give some indication on thecision of the fitting. MMRE Mean
Magnitude Relative Error) indicates what is therage absolute percent error: values
below 25% are generally considered good. Pred@@birates how many products are
within 25% error with respect to the regressior likinally the error range indicates the
minimum and maximum distance between observed sand estimated ones (always

in percentage terms).

Reliability
The significant models found for OSS products Rty are reported below.

Reliability vs. Num. interfaces per class
Estimate Std. Error z value Pr>lz|)
(Intercept) 0.8540080 0.2158944 3.955674 7.631912e-05
-0.8735424 0.3750497 -2.329138 1.985178e-02
R21og 0.8465696
Exc1uded as outliers: Eclipse (1 / 18 )
MMRE = 16.97731
Pred(25) = 77.77778
Error range = [ -32.56562 .. 46.18897 ]

Reliability vs. Num. packages
Estimate std. Error z value Pr(>lz|)
(Intercept) 0.580388458 0.1478487288 3.925556 8.652965e-05
-0.003433091 0.0008863225 -3.873410 1.073229%e-04
R21og 0.8822593
Excluded as outliers: Hibernate ( 1 / 18 )
MMRE = 21.56865
Pred(25) = 77.77778
Error range = [ -60.01954 .. 98.18703 ]

Reliability vs. CBO , Num. abstract classes

Estimate Std. Error z value Pr(>|z]|)
(Intercept) 1.78359998 0.620729144 2.873395 0.004060861
x1 -0.45494183 0.190859853 -2.383643 0.017142204
X2 0.00705526 0.003555181 1.984501 0.047199987
R21og = 0.8538135
Excluded as outliers: Eclipse Xalan Saxon ( 3 / 17 )
MMRE = 24.2585
Pred(25) = 58.82353
Error range = [ -100 .. 37.34153 ]

Reliability vs. LCOM , McCabe
Estimate std. Error z value Pr(>|z]|)
(Intercept) -0.485624340 0.7177832658 -0.6765612 0.498684375
-0.001164551 0.0003753264 -3.1027695 0.001917189
x2 0.832067653 0.4064419644 2.0471992 0.040638533

Davide Taibi

179



Towards a trustworthiness model for open sourdsvaoé

2010

R21og = 0.8462217

Excluded as outliers: Eclipse Ant Xerces ( 3 / 18 )
MMRE = 17.49821

Pred(25) = 77.77778

Error range = [ -24.06588 .. 71.11811 ]

Reliability vs. LCOM , Num. public methods

Estimate std. Error z value Pr(>|z|)
(Intercept) 2.095484e+00 5.153696e-01 4.065982 4.783053e-05
x1 -1.371423e-03 3.936123e-04 -3.484196 4.936172e-04
X2 -3.414151e-05 1.468522e-05 -2.324889 2.007788e-02
R2log = 0.8483479
Excluded as outliers: Eclipse Ant Httpunit Log4l ( 4 / 17 )
MMRE = 21.68755
Pred(25) = 82.35294
Error range = [ -19.12005 .. 98.45401 ]

ReliabiTity vs. avg_loc_changed_per_year

Estimate std. Error z value Pr(>lz|)
(Intercept) 6.070026e-01 1.867163e-01 3.250935 0.001150262
x1 -4.904745e-05 2.110291e-05 -2.324204 0.020114586
R21og = 0.8563513
Excluded as outliers: Eclipse Xalan Hibernate ( 3 / 15 )
MMRE = 27.95078
Pred(25) = 66.66667
Error range = [ -98.0998 .. 30.23309 ]

Usability

Usability vs. CBO
Estimate std. Error z value Pr(>|z]|)
(Intercept) 1.8900494 0.6666344 2.835212 0.004579535
x1 -0.4521127 0.1750141 -2.583293 0.009786204
R2Tog = 0.840735
;xi;uged as outliers: Eclipse Saxon Struts Xalan Hibernate ( 5
MMRE = 37.77437
Pred(25) = 33.33333
Error range = [ -100 .. 101.6746 ]

Usability vs. LCOM
Estimate std. Error z value Pr(>lz|)
(Intercept) -0.2463181527 0.2029179427 -1.213881 0.224793325
0.0009124617 0.0003209740 2.842790 0.004472058
R21og 0.8568704
5xc1uged as outliers: JFreecChart Eclipse Checkstyle IMeter ( 4
18
MMRE = 31.74570
Pred(25) = 55.55556
Error range = [ -50.70977 .. 154.6519 ]

Usability vs. Comment lines

Estimate std. Error z value Pr(>|z|)
(Intercept) 7.293996e-01 2.165911e-01 3.367634 0.0007581608
x1 -7.331410e-06 2.945903e-06 -2.488680 0.0128218180
R2Tog = 0.8349655
Excluded as outliers: Eclipse Struts Httpunit ( 3 / 18 )

Davide Taibi

180



Towards a trustworthiness model for open sourdsvaoé

2010

MMRE = 27.32437
Pred(25) = 61.11111
Error range = [ -47.10666 .. 84.03233 ]

Usability vs. Comment lines per class
Estimate Std. Error z value Pr(>|z]|)

(Intercept) -0.19540460 0.292126050 -0.6689051 0.50355602

x1 0.01534695 0.007654782 2.0048838 0.04497547
R21og = 0.8863142

Excluded as outliers: IJFreeChart Ant weka Xerces ( 4 / 18 )
MMRE = 39.06681

Pred(25) = 38.88889

Error range = [ -37.87529 .. 181.9824 ]

Usability vs. eLOC per class
Estimate Std. Error z value Pr>lz|)

(Intercept) -1.08623822 0.607241023 -1.788809 0.07364558

0.02207583 0.009168053 2.407909 0.01604420
R21og 0.8895461
Excluded as outliers: IJFreeChart weka Xerces Ant ( 4 / 18 )
MMRE = 38.34607
Pred(25) = 44.44444
Error range = [ -43.70425 .. 174.1539 ]

Usability vs. McCabe
Estimate Std. Error z value Pr(>|z])
(Intercept) -2.585271 0.9440127 -2.738598 0.006170175
1.318073 0.4381872 3.008014 0.002629607
R21og 0.7773205

Excluded as outliers: Eclipse Xerces Ant Hibernate Log4l (5 /

18 )

MMRE = 27.85867

Pred(25) = 55.55556

Error range = [ -35.14576 .. 108.9347 ]

Usability vs. Num. abstract classes
Estimate Std. Error z value Pr>lz|)

(Intercept) 0.70679556 0.258363763 2.735661 0.00622552

-0.01090757 0.005052382 -2.158897 0.03085819
R21og 0.8316732
Excluded as outliers: Hibernate Eclipse Saxon ( 3 / 17 )
MMRE = 27.87937
Pred(25) = 58.82353
Error range = [ -63.27699 .. 91.26135 ]

Usability vs. Num. classes
Estimate Sstd. Error z value Pr(>|zl)

(Intercept) -0.3406731180 0.2819005583 -1.208487 0.22686005

0.0004166072 0.0001997859 2.085268 0.03704497
R21og 0.8801109
Excluded as outliers: Hibernate Log4] Checkstyle ( 3 / 18 )
MMRE = 30.68464
Pred(25) = 55.55556
Error range = [ -50.5957 .. 100.9276 ]

Usability vs. Num. intefaces
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.238526704 0.216620191 -1.101129 0.27084066
0.001866302 0.000803439 2.322892 0.02018498
R21og 0.8819345

Davide Taibi

181



Towards a trustworthiness model for open sourdsvaoé

2010

Excluded as outliers: Log4] Hibernate Checkstyle ( 3 / 18 )
MMRE = 25.31939

Pred(25) = 50

Error range = [ -50.16849 .. 71.46671 ]

Usability vs. Num. methods per class
Estimate Std. Error z value Pr>lz|)
(Intercept) -0.78918991 0.38396156 -2.055388 0.039841560
0.07067751 0.02543282 2.778988 0.005452852
R21og 0.855624
;xi;uged as outliers: Eclipse JFreeCchart Checkstyle IMeter ( 4
MMRE = 33.31810
Pred(25) = 55.55556
Error range = [ -53.38943 .. 150.4082 ]

Usability vs. Num. methods per interface
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.4220748 0.2461684 -1.714578 0.08642265
0.2956812 0.1174300 2.517936 0.01180447
R21og 0.8359456
Excluded as outliers: Eclipse Log4l (2 / 16 )
MMRE = 19.11263
Pred(25) = 75
Error range = [ -51.04846 .. 48.20157 ]

Usability vs. LCOM , Num. interfaces per class
Estimate std. Error z value Pr(>lz|)

(Intercept) 0.4938351234 0.2198629305 2.246105 0.024697314

0.0008107104 0.0003247587 2.496347 0.012547984
x2 -1.5492446451 0.4857427649 -3.189434 0.001425515
R21og = 0.8407305
Excluded as outliers: Eclipse (1 / 18 )
MMRE = 16.73436
Pred(25) = 72.22222
Error range = [ -42.89694 .. 44.26262 ]

Usability vs. Comment lines per class , Num. abstract classes
Estimate Std. Error z value Pr(>|zl)

(Intercept) 1.306207571 0.343302303 3.804832 0.0001419005

x1 -0.013041367 0.004869261 -2.678305 0.0073995818

x2 -0.005707365 0.002264978 -2.519832 0.0117410849

R2Tog = 0.8924783

Excluded as outliers: Httpunit (1 / 17 )

MMRE = 21.92274

Pred(25) = 64.70588

Error range = [ -49.71311 .. 96.47 ]

Usability vs. Comment lines per class , Num. interfaces per
class

Estimate std. Error z value Pr(>|z]|)

(Intercept) 0.69131658 0.219740236 3.146063 0.001654845

0.01582193 0.007266965 2.177240 0.029462634
x2 -2.11435537 0.647118645 -3.267338 0.001085640
R21og = 0.8865136
Excluded as outliers: Ant (1 / 18 )
MMRE = 20.18166
Pred(25) = 77.77778
Error range = [ -40.73157 .. 59.05492 ]

Davide Taibi

182



Towards a trustworthiness model for open sourdsvaoé

2010

Usability vs. eLOC per class , Num. interfaces per class

Estimate Std. Error z value Pr(>|z]|)

(Intercept) -1.59063979 0.83879334 -1.896343 0.0579147181
x1 0.05654653 0.01614373 3.502692 0.0004605812
x2 -4.16542796 1.32155395 -3.151917 0.0016220253
R21og = 0.9093642

Exc;uded as outliers: Ant JFreeChart Xerces Struts weka
18
MMRE = 30.05399

Pred(25) = 66.66667

Error range = [ -69.21335 .. 119.1383 ]

5/

Usability vs. McCabe , Num. abstract classes
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.69824151 1.117092945 -2.415414 0.015717350
1.72745291 0.556610584 3.103521 0.001912323
x2 -0.01814791 0.006294499 -2.883138 0.003937343
R2log = 0.8347016

Excluded as outliers: Eclipse Hibernate Xerces Jasper Reports

(4 /17 )

MMRE = 31.15396

Pred(25) = 52.94118

Error range = [ -95.33598 .. 95.93583 ]

Usability vs. McCabe , Num. classes

Estimate std. Error z value Pr(>|z]|)

(Intercept) -4,1706580369 1.3638094822 -3.058094 0.002227495
2.3871912375 0.7296164279 3.271844 0.001068485

x2 -0.0005741655 0.0002860659 -2.007109 0.044738046

R21og = 0.8161358

Exc;uded as outliers: Eclipse Hibernate Xerces Ant PMD
18

MMRE = 35.56762

Pred(25) = 50

Error range = [ -92.81493 .. 91.73914 ]

5/

Usability vs. McCabe , Num. interfaces per class
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -1.149280 0.7553382 -1.521543 0.128123600
x1 1.099552 0.3568063 3.081649 0.002058572
X2 -1.645729 0.7942253 -2.072118 0.038254422
R21og = 0.8427765

Excluded as outliers: Eclipse Ant JFreeChart Xerces ( 4 / 18 )

MMRE = 22.68806
Pred(25) = 61.11111
Error range = [ -51.17379 .. 53.35328 ]

Usability vs. McCabe , Num. methods

Estimate std. Error z value Pr(>|z]|)

(Intercept) -2.724667e+00 1.066611e+00 -2.554509 0.010633759
x1 1.672664e+00 5.453123e-01 3.067350 0.002159655

X2 -5.673673e-05 2.159146e-05 -2.627739 0.008595446

R2Tog = 0.838209 _ _

Exc;uded as outliers: Eclipse Hibernate Xerces Ant Saxon
18

MMRE = 29.2469

Pred(25) = 55.55556

Error range = [ -86.96785 .. 62.25866 ]

57/

Usability vs. McCabe , Num. public methods

Davide Taibi

183



Towards a trustworthiness model for open sourdsvaoé

2010

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.347257e+00 1.101606e+00 -2.130760 0.033108923

1.567818e+00 5.513584e-01 2.843555 0.004461337
x2 -7.893846e-05 2.644862e-05 -2.984597 0.002839525
R21og = 0.8454107
Exc;uded as outliers: Eclipse Hibernate Xerces Ant Saxon ( 5 /
17
MMRE = 27.89225
Pred(25) = 58.82353
Error range = [ -89.9932 .. 60.93035 ]

Usability vs. McCabe , RFC
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.752224e+00 1.069091e+00 -2.574358 0.010042643
x1 1.687290e+00 5.452864e-01 3.094320 0.001972647
X2 -3.104551e-05 1.147287e-05 -2.705993 0.006810042
R21og = 0.8398207

Exc;uded as outliers: Eclipse Hibernate Xerces Ant Saxon ( 5 /
18
MMRE = 28.41228

Pred(25) = 61.11111

Error range = [ -87.3 .. 62.42777 ]

Usability vs. NOC , Num. interfaces per class
Estimate Sstd. Error z value Pr(>|z])

(Intercept) 0.5427735 0.4689350 1.157460 0.24708452
0.8628447 0.4058809 2.125857 0.03351519

x2 -1.9245142 0.7835257 -2.456223 0.01404058

R2Tog = 0.803971

Exc1ude§ as outliers: 3JBoss Ant JFreeChart Eclipse Hibernate (

5/ 18

MMRE = 23.85434

Pred(25) = 66.66667

Error range = [ -69.32601 .. 67.94469 ]

Usability vs. Num. abstract classes , Num. methods per class
Estimate Std. Error z value Pr(>|zl|)

(Intercept) 3.01555755 0.777681713 3.877624 0.0001054814

x1 -0.01614820 0.006249208 -2.584040 0.0097650424

X2 -0.11122450 0.035442046 -3.138208 0.0016998432

R2Tog = 0.8580966

5xc1uged as outliers: Hibernate Saxon Eclipse Ant Httpunit ( 5

17

MMRE = 26.34150

Pred(25) = 70.58824

Error range = [ -69.3333 .. 117.7895 ]

Usability vs. Num. interfaces per class , Num. methods per
class

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.19565028 0.40222876 -0.4864154 0.626672640
-1.70975697 0.83624398 -2.0445672 0.040897550
x2 0.07797737 0.02705926 2.8817255 0.003955041
R21og = 0.8552978
Excluded as outliers: Eclipse JFreeChart Checkstyle ( 3 / 18 )
MMRE = 19.26414
Pred(25) = 72.22222
Error range = [ -42.50574 .. 44.08862 ]

Usability vs. LCOM , eLOC , McCabe

Davide Taibi

184



Towards a trustworthiness model for open sourdsvaoé

2010
Estimate std. Error z value Pr(>|z]|)
(Intercept) -3.315320e+00 1.089383e+00 -3.043301 0.0023399848
x1 -1.007403e-03 4.155108e-04 -2.424494 0.0153297546
x2 -9.283670e-06 3.768757e-06 -2.463324 0.0137655369
X3 2.264528e+00 5.847839e-01 3.872418 0.0001077609

R21og = 0.836629

5xc1uged as outliers: Eclipse Hibernate Xerces Ant Struts ( 5
18

MMRE = 28.57176

Pred(25) = 50

Error range = [ -72.82899 .. 66.58874 ]

Usability vs. LCOM , McCabe , NOC
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.567965357 1.1256249681 -4.058159 4.946104e-05

-0.001288068 0.0004399631 -2.927674 3.415084e-03
x2 2.408657412 0.5689756525 4.233322 2.302640e-05
x3 1.276032873 0.4570472283 2.791906 5.239858e-03
R21og = 0.8703066
Excluded as outliers: Ant Xerces Eclipse wWeka Xalan (5 / 18 )
MMRE = 32.07286
Pred(25) = 66.66667
Error range = [ -25.67032 .. 177.2891 ]

Usability vs. LCOM , McCabe , Num. abstract classes
Estimate Std. Error z value Pr(>|z])

(Intercept) -2.58753423 0.9913854929 -2.610018 0.0090537392
-0.00094592 0.0004016964 -2.354813 0.0185320094

x2 1.93654227 0.5206681085 3.719341 0.0001997432

x3 -0.01179430 0.0058714161 -2.008765 0.0445620353

R2Tog = 0.8294042

Excluded as outliers: Hibernate Eclipse Xerces Aant ( 4 / 17 )

MMRE = 29.37844

Pred(25) = 58.82353

Error range = [ -82.48251 .. 93.57965 ]

Usability vs. Comment lines , eLOC per class , Num.
parameters per method
Estimate Std. Error z value Pr(>|zl)

(Intercept) -4.569105e+00 1.746996e+00 -2.615407 0.008912115
-8.696668e-06 4.081206e-06 -2.130906 0.033096866

x2 2.543978e-02 1.060271e-02 2.399367 0.016423460

x3 3.990756e+00 1.626565e+00 2.453486 0.014147895

R21og = 0.8289981

Excluded as outliers: Eclipse JFreeChart Xerces Spring

Framework Hibernate ( 5 /18 )

MMRE = 37.65118

Pred(25) = 50

Error range = [ -57.23838 .. 210.4919 ]

Usability vs. Comment lines per class , McCabe , Num.
interfaces per class

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -1.18055552 0.74714504 -1.580089 0.1140865308
x1 0.02911286 0.01186272 2.454146 0.0141219568
X2 0.96756192 0.37792357 2.560205 0.0104610349
x3 -3.18227887 0.90979475 -3.497799 0.0004691151

R21og = 0.9036471 _
Excluded as outliers: Ant Xerces Xalan Hibernate ( 4 / 18 )
MMRE = 24.63878

Davide Taibi

185



Towards a trustworthiness model for open sourdsvaoé

2010

Pred(25) = 72.22222
Error range = [ -29.13776 .. 88.03527 ]

Usability vs. Comment lines per class , NOC , Num. methods
per class

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.59123947 0.796091911 -1.998814 0.0456285081
x1 -0.02710334 0.008099853 -3.346152 0.0008194146
x2 1.80096820 0.607362473 2.965228 0.0030245869
X3 0.10212771 0.036325585 2.811454 0.0049318145

R21og = 0.8938025

Excluded as outliers: Hibernate JMeter Struts JBoss ( 4 / 18 )
MMRE = 28.68584

Pred(25) = 55.55556

Error range = [ -62.68749 .. 104.6778 ]

Usability vs. Comment lines per class , Num. classes , Num.
parameters per method
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.792284069 1.0853653696 -2.572667 0.0100918148
-0.022731099 0.0072836336 -3.120846 0.0018033226

x2 0.001146167 0.0003180059 3.604231 0.0003130786

x3 3.085578531 1.1647931329 2.649036 0.0080721817

R21og = 0.9034009

Excluded as outliers: Hibernate Findbugs Log4] Checkstyle (4/18)

MMRE = 28.68404

Pred(25) = 55.55556

Error range = [ -58.83847 .. 94.19984 ]

Usability vs. eLOC per class , eLOC , Num. parameters per
method

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.008987e+00 1.793211e+00 -2.793307 0.005217219

2.846816e-02 1.121502e-02 2.538396 0.011136179
x2 -9.724296e-06 4.271110e-06 -2.276761 0.022800530
x3 4.332511e+00 1.641753e+00 2.638955 0.008316204
R21og = 0.8311528
Excluded as outliers: JFreeChart Eclipse Xerces Hibernate
Spring Framework ( 5 / 18 )
MMRE = 39.81476
Pred(25) = 38.88889
Error range = [ -62.56738 .. 217.0889 ]

Usability vs. McCabe , Num. interfaces per class , Num.
parameters per method
Estimate Std. Error z value Pr(>|z]|)

(Intercept) 4.411831 1.8951227 2.327992 0.0199125138
2.262855 0.6754384 3.350202 0.0008075256

x2 -4.280543 1.2465845 -3.433817 0.0005951464

x3 -7.684348 2.7963556 -2.747987 0.0059962453

R2Tog = 0.8421222

Excluded as outliers: Eclipse Ant JFreeChart Spring Framework

Hibernate ( 5/ 18 )

MMRE = 26.66088

Pred(25) = 61.11111

Error range = [ -99.94252 .. 81.56915 ]

Usability vs. NOC , Num. classes , Num. interfaces per class
Estimate std. Error z value Pr(>1zl)
(Intercept) 0.659571228 0.4935547265 1.336369 0.181428699

Davide Taibi

186



Towards a trustworthiness model for open sourdsvaoé

2010
x1 -0.871233340 0.4077327364 -2.136776 0.032616252
X2 0.001057646 0.0003371302 3.137203 0.001705679
X3 -1.935677414 0.8973713429 -2.157053 0.031001547
R21og = 0.901401
Excluded as outliers: Hibernate Log4] JFreecChart Findbugs
Checkstyle (5 / 18 )
MMRE = 31.23992
Pred(25) = 50

Error range

[ -72.2469 ..

91.79771 ]

Usability vs. Num. abstract classes , Num. attributes per
class , Num. parameters per method
Estimate Std. Error z value Pr(>|zl)
(Intercept) 4.77629374 1.332900667 3.583383 0.0003391726
x1 -0.02842533 0.008478548 -3.352618 0.0008005107
X2 -0.13833203 0.052459386 -2.636936 0.0083658678
x3 -2.07287411 0.860830245 -2.407994 0.0160404423
R2Tog = 0.9169942
Exc17ded %S outliers: Hibernate Xalan HttpuUnit Saxon Findbugs
5/ 17
MMRE = 34.39253
Pred(25) = 52.94118
Error range = [ -96.55657 .. 123.6709 ]
Usability vs. LCOM , Comment lines per class , NOC , Num.
abstract classes
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3885141047 0.5997093370 -0.6478373 0.517090158
x1 0.0008921735 0.0003906076 2.2840657 0.022367670
X2 -0.0207495637 0.0065122369 -3.1862421 0.001441339
x3 1.5910160665 0.5598925139 2.8416455 0.004488136
x4 -0.0062013338 0.0024322630 -2.5496148 0.010784199
R21og = 0.8977364
Excluded as outliers: 3JBoss IMeter ( 2 / 17 )
MMRE = 19.71771
Pred(25) = 70.58824
Error range = [ -44.54104 .. 89.00059 ]
Usability vs. LCOM , Comment lines per class , NOC , Num.
packages
Estimate Std. Error z value Pr(>lzl)
(Intercept) -0.1283061585 0.3722834065 -0.3446465 0.7303601727
0.0006465408 0.0002948998 2.1924086 0.0283500195
x2 -0.0171102621 0.0061554603 -2.7796885 0.0054411069
x3 1.6358959351 0.4964274864 3.2953371 0.0009830366
x4 -0.0155278370 0.0062883510 -2.4693019 0.0135376948
R2Tog = 0.8293402
Excluded as outliers: Eclipse Hibernate JBoss ( 3 / 18 )
MMRE = 27.28973
Pred(25) = 66.66667
Error range = [ -99.61787 .. 71.11291 ]
Usability vs. Comment lines per class , McCabe , NOC , Num.
packages
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -2.67364797 0.970312712 -2.755450 0.005861150
x1 -0.01145254 0.005810965 -1.970849 0.048741108
X2 1.46692206 0.503994693 2.910590 0.003607467
x3 1.28072502 0.516901521 2.477696 0.013223362
x4 -0.01689701 0.007021844 -2.406349 0.016112854

Davide Taibi

187



Towards a trustworthiness model for open sourdsvaoé

2010

R21og = 0.8281923
Exc;uded as outliers: Eclipse Hibernate JBoss Xerces Ant (5 /
18
MMRE = 30.75647
Pred(25) = 50
Error range = [ -99.91814 .. 64.18284 ]
Usability vs. Comment lines per class , McCabe , Num.
interfaces per class , Num. public methods

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.581208e+00 1.182140e+00 -2.183504 0.028998716
x1 4.166011e-02 1.541404e-02 2.702737 0.006877108
X2 1.266308e+00 4.225337e-01 2.996941 0.002727035
x3 -3.249089e+00 1.349876e+00 -2.406955 0.016086172
x4 3.829047e-05 1.822942e-05 2.100476 0.035686958
R2log = 0.9213594
Exc;uded as outliers: Ant Xerces Xalan JFreeChart weka (5 /
7
MMRE = 35.13904
Pred(25) = 64.70588
Error range = [ -16.00766 .. 162.0532 ]
Usab111tﬁ eLOC per class , Num. interfaces per class ,
Num. met ods per interface , Num. packages

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.80679301 1.38079091 -2.756966 0.0058340493

0.09263505 0.02748807 3.370009 0.0007516573
x2 -4.48969476 1.20712765 -3.719321 0.0001997594
x3 0.69129507 0.25955821 2.663353 0.0077366279
x4 -0.03339003 0.01045659 -3.193206 0.0014070262
R2log = 0.8624878
Ex;1ude§ as outliers: Hibernate Eclipse Xerces JIMeter JBoss (
5/ 16
MMRE = 35.71356
Pred(25) = 56.25
Error range = [ -99.99997 .. 84.25082 ]
Usability vs. Tloc_total

Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.778421e-01 2.004441e-01 3.880595 0.0001042014
x1 -3.245123e-06 1.239917e-06 -2.617210 0.0088651730
R21og = 0.8985792
Excluded as outliers: Hibernate Xalan Httpunit ( 3 / 15 )
MMRE = 27.93642
Pred(25) = 53.33333
Error range = [ -43.28456 .. 91.28609 ]
Usability vs. number_of_developers
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.63378245 0.30410013 -2.084124 0.037148866
x1 0.03160120 0.01198271 2.637234 0.008358512

R2log = 0.853871
Excluded as outliers: Saxon Eclipse Log4l ( 3 / 15)
MMRE = 17.91213
Pred(25) = 66.66667
Error range = [ -64.61552 .. 27.46912 ]
Usability vs. number_of_commits
Estimate std. Error z value Pr(

>|z]|
(Intercept) -0.3444293370 0.2539060679 -1.356523 0.1749329

Davide Taibi

)
3

188



Towards a trustworthiness model for open sourdsvaoé
2010

x1 0.0002540772 0.0001024132 2.480904 0.01310497
R21og = 0.9107858

Excluded as outliers: Findbugs Saxon Xerces JBoss ( 4 / 15 )
MMRE = 27.94476

Pred(25) = 40

Error range = [ -58.5081 .. 74.32911 ]

Usability vs. avg_major_release_per_year
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.1523779 0.1989726 -0.7658238 0.44378115
x1 0.8204048 0.3683445 2.2272756 0.02592886
R21og = 0.8529176
Excluded as outliers: Eclipse Spring Framework Saxon ( 3 / 15 )
MMRE = 26.68525
Pred(25) = 66.66667
Error range = [ -53.8021 .. 94.36208 ]

Usability vs. avg_file_size
Estimate Std. Error z value Pr(>|zl)
(Intercept) 0.533360460 0.149853780 3.559206 0.0003719778
-0.005106254 0.001960993 -2.603913 0.0092166256
R21og 0.895109
Excluded as outliers: 3JBoss Xalan (2 / 15 )
MMRE = 22.26312
Pred(25) = 60
Error range = [ -40.9427 .. 72.14782 ]

Usability vs. Tloc_total , number_of_developers
Estimate std. Error z value Pr(>|z]|)

(Intercept) -2.677970e-01 3.390873e-01 -0.7897583 0.42966893

-2.513747e-06 1.206899e-06 -2.0828151 0.03726808
x2 4.718344e-02 1.990810e-02 2.3700628 0.01778506
R2log = 0.9051717
Excluded as outliers: Hibernate Saxon JBoss ( 3 / 15 )
MMRE = 22.61816
Pred(25) = 73.33333
Error range = [ -56.12443 .. 39.99063 ]

Usability vs. Tloc_total , avg_files_added_per_year
Estimate Sstd. Error z value Pr(>lz|)
(Intercept) 4.414103e-01 2.207972e-01 1.999167 0.045590317
-3.414311e-06 1.220162e-06 -2.798244 0.005138134
x2 9.138793e-04 4.316301e-04 2.117274 0.034236583
R2Tog = 0.8418982
Excluded as outliers: Spring Framework Eclipse Xalan ( 3 / 15

)

MMRE = 31.49756

Pred(25) = 60

Error range = [ -47.12594 .. 87.55008 ]

Usability vs. number_of_developers, avg_minor_release_per_year
Estimate Std. Error z value Pr(>|z])
(Intercept) -0.11587350 0.24781534 -0.467580 0.64008495
x1 0.02846462 0.01208565 2.355241 0.01851070
X2 -0.14208698 0.06298908 -2.255740 0.02408692
R21og = 0.9136968
Excluded as outliers: PMD Saxon ( 2 / 15 )
MMRE = 19.71357
Pred(25) = 73.33333
Error range = [ -63.58232 .. 50.00066 ]

Davide Taibi

189



Towards a trustworthiness model for open sourdsvaoé

2010
Usability vs. avg_loc_del_per_year , avg_files_rem_per_year
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.570248e-01 2.138302e-01 -0.7343434 0.462739448
-9.934319e-06 3.341753e-06 -2.9727871 0.002951091

x2 3.996071e-03 1.220320e-03 3.2746094 0.001058081

R21og = 0.8719533

Excluded as outliers: Spring Framework Struts Eclipse ( 3 / 15 )

MMRE = 25.19746

Pred(25) = 66.66667

Error range = [ -18.17691 .. 105.1296 ]

Usability vs. files_count_total , number_of_commits ,
avg_number_of_revisions_per_file

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.1192780826 8.764064e-01 3.559168 0.0003720309
x1 -0.0002417612 8.904118e-05 -2.715162 0.0066243402
X2 0.0005509842 1.803138e-04 3.055696 0.0022453875
x3 -0.5800600276 1.782248e-01 -3.254654 0.0011353048

R2Tog = 0.8622824

Excluded as outliers: Httpunit Eclipse Jasper Reports ( 3 / 15 )
MMRE = 24.14804

Pred(25) = 66.66667

Error range = [ -90.28245 .. 51.10075 ]

Usability vs. files_count_total, number_of_commits,
avg_loc_del_per_year, avg_number_of_revisions_per_file
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.620110e+00 9.310747e-01 3.888099 0.0001010325
x1 -2.330507e-04 8.670948e-05 -2.687719 0.0071941882

X2 5.942523e-04 1.762725e-04 3.371213 0.0007483800
x3 -4.121874e-06 1.776910e-06 -2.319686 0.0203578578
x4 -6.585444e-01 1.824790e-01 -3.608877 0.0003075252

R2log = 0.9157867

Excluded as outliers: Httpunit Jasper Reports ( 2 / 15 )
MMRE = 20.25183

Pred(25) = 66.66667

Error range = [ -93.3342 .. 38.24876 ]

Usability vs. number_of_commits , avg_loc_added_per_year ,
avg_files_added_per_year , avg_number_of_revisions_per_file

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.262223e+00 8.237199e-01 3.960354 7.483863e-05
x1 5.647300e-04 1.799399e-04 3.138437 1.698513e-03
X2 -1.631638e-05 7.213468e-06 -2.261932 2.370159e-02
x3 -3.359794e-04 1.368256e-04 -2.455531 1.406768e-02
x4 -6.231798e-01 1.756165e-01 -3.548527 3.873927e-04

R21og = 0.8589273 )

Exc17ded %S outliers: Eclipse Hibernate HttpUnit Jasper Reports
4 15

MMRE = 30.31601

Pred(25) = 66.66667

Error range = [ -94.62795 .. 15.53882 ]

Usability vs. number_of_commits , avg_loc_del_per_year |,
avg_major_release_per_year , avg_number_of_revisions_per_file
Estimate std. Error z value Pr(>lz|)

(Intercept) 4.867469e+00 1.503066e+00 3.238361 0.001202188

Davide Taibi

190



Towards a trustworthiness model for open sourdsvaoé

2010
x1 6.755161e-04 2.165131e-04 3.119977 0.001808649
X2 -2.135499e-05 8.198418e-06 -2.604770 0.009193595
x3 -1.239872e+00 5.372658e-01 -2.307745 0.021013348
x4 -8.364053e-01 2.591819e-01 -3.227098 0.001250528

R2Tog = 0.8635258 _ ) ]

Exc17ded %S outliers: Eclipse HttpUnit Hibernate Jasper Reports
4 15

MMRE = 26.87195

Pred(25) = 66.66667

Error range = [ -97.1518 .. 49.09983 ]

Usability vs. number_of_commits , avg_loc_del_per_year |,
avg_files_added_per_year , avg_number_of_revisions_per_file
Estimate std. Error z value Pr(>|z|)

(Intercept) 3.255355e+00 8.273757e-01 3.934555 8.335114e-05
x1 5.539546e-04 1.769552e-04 3.130479 1.745214e-03
X2 -1.674359e-05 7.106329e-06 -2.356151 1.846539e-02
x3 -3.319648e-04 1.360686e-04 -2.439688 1.469996e-02
x4 -6.266876e-01 1.773827e-01 -3.532969 4.109205e-04

R21og = 0.8609328 )

Exc17ded %S outliers: Eclipse Hibernate HttpUnit Jasper Reports
4 15

MMRE = 27.32718

Pred(25) = 66.66667

Error range = [ -93.27653 .. 14.87284 ]

Usability vs. avg_loc_changed_per_year,

avg_minor_release_per_year,avg_file_size, avg_files_rem_per_year
Estimate std. Error z value Pr(>|zl|)

(Intercept) 2.316585e-01 3.595069e-01 0.6443786 0.519329952

x1 -1.792039e-05 6.301740e-06 -2.8437212 0.004459005

X2 -3.466954e-01 1.080971e-01 -3.2072585 0.001340065
x3 6.996326e-03 3.075602e-03 2.2747823 0.022918994
x4 2.723345e-03 1.035564e-03 2.6298170 0.008543083

R21log = 0.918734

Excluded as outliers: Spring Framework PMD JFreeChart ( 3 / 15 )
MMRE = 30.86335

Pred(25) = 73.33333

Error range = [ -82.74213 .. 160.4847 ]

Portability

Portability vs. NOC
Estimate Std. Error z value Pr>lzl|)
(Intercept) -0.08946496 0.3003584 -0.2978606 0.76580953
0.60899752 0.2794756 2.1790725 0.02932628
R21og 0.8921334
Excluded as outliers: 3JBoss (1 / 18 )
MMRE = 11.80279
Pred(25) = 88.88889
Error range = [ -24.37454 .. 52.83443 ]

Portability vs. Num. packages
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.03566876 0.278962725 -0.1278621 0.89825809
0.01030754 0.005156904 1.9987845 0.04563167
R21og 0.8320353
Excluded as outliers: Hibernate Eclipse Log4l ( 3 / 18 )

Davide Taibi

191



Towards a trustworthiness model for open sourdsvaoé

2010

MMRE = 18.88812
Pred(25) = 83.33333
Error range = [ -18.62236 .. 72.92966 ]

Portability vs. eLOC per class , Num. interfaces per class

Estimate sStd. Error z value Pr(>|z]|)

(Intercept) 0.05574562 0.406595952 0.1371032 0.890949199
x1 0.01682395 0.007527396 2.2350290 0.025415445
X2 -1.45046472 0.516305378 -2.8093155 0.004964696
R21og = 0.8986532

Excluded as outliers: (0 / 18)
MMRE = 7.343792

Pred(25) = 94.44444

Error range = [ -13.23063 .. 36.66999 ]

Portability vs. McCabe , Num. parameters per method
Estimate Sstd. Error z value Pr(>|z]|)

(Intercept) 0.7759051 0.6195523 1.252364 0.21043720

x1 0.6348988 0.2915224 2.177873 0.02941549

X2 -1.7554705 0.7593420 -2.311831 0.02078699

R21og = 0.8961848

Excluded as outliers: (0 / 18 )

MMRE = 10.73470

Pred(25) = 88.88889

Error range = [ -17.90362 .. 33.29071 ]

How well are functional requirements satisfied

Functionality vs. CBO , eLOC per class

Estimate sStd. Error z value Pr(>|z|)
(Intercept) 0.57318841 0.462322826 1.239801 0.21504892
x1 0.40247103 0.193051783 2.084783 0.03708902
X2 -0.02246685 0.009353803 -2.401895 0.01631039
R21og = 0.8652167

Excluded as outliers: Eclipse Hibernate HttpUnit Xalan Saxon

5/ 18 )

MMRE = 31.71418

Pred(25) = 66.66667

Error range = [ -21.12416 .. 112.9904 ]

(

Functionality vs. Comment lines per class , NOC
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.75324411 0.34681827 2.171870 0.029865491

x1 -0.03019243 0.01130772 -2.670072 0.007583506

X2 1.18332002 0.49346299 2.397991 0.016485250

R21og = 0.8677023

Ex;1ude§ as outliers: Hibernate Eclipse JFreeChart Httpunit

4 / 18

MMRE = 24.35349

Pred(25) = 72.22222

Error range = [ -84.35382 .. 98.25808 ]

Functionality vs. eLOC , McCabe
Estimate std. Error z value Pr(>lz|)
(Intercept) -2.691198e+00 1.075275e+00 -2.502800 0.012321521
-7.895661e-06 3.804496e-06 -2.075350 0.037954094

Davide Taibi

192



Towards a trustworthiness model for open sourdsvaoé

2010

X2 1.508519e+00 5.352988e-01 2.818087 0.004831068

R21og = 0.8661916

Exc17ded %S outliers: Eclipse Hibernate Xerces Jasper Reports
4 / 18

MMRE = 20.18275

Pred(25) = 72.22222

Error range = [ -69.7415 .. 44.32345 ]

Functionality vs. McCabe , Num. interfaces per class
Estimate std. Error z value Pr(>|z])

(Intercept) -0.3181390 0.5992554 -0.5308905 0.59549465
x1 0.5367714 0.2548872 2.1059174 0.03521153

x2 -1.3836324 0.6945088 -1.9922462 0.04634405
R2Tog = 0.866334

Excluded as outliers: 3JFreeChart Eclipse ( 2 / 18 )

MMRE = 17.77286

Pred(25) = 83.33333

Error range = [ -67.45904 .. 42.14344 ]

Functionality vs. McCabe , Num. methods
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.459630e+00 1.000538e+00 -2.458308 0.013959340

1.430944e+00 5.002081e-01 2.860698 0.004227099
x2 -4.273505e-05 2.030307e-05 -2.104857 0.035303759
R21og = 0.866268
Exc17ded %S outliers: Eclipse Hibernate Xerces Jasper Reports

4 / 18

MMRE = 21.10365
Pred(25) = 66.66667
Error range = [ -77.84831 .. 46.04495 ]

Functionality vs. McCabe , Num. methods per class
Estimate Std. Error z value Pr(C|z|)

(Intercept) -0.44703391 0.46984673 -0.9514463 0.34137789
0.55810373 0.25377921 2.1991704 0.02786581

x2 -0.03706245 0.01864084 -1.9882395 0.04678521

R2Tog = 0.8956569

Excluded as outliers: Log4l (1 / 18 )

MMRE = 17.57399

Pred(25) = 88.88889

Error range = [ -20.81359 .. 66.0328 ]

Functionality vs. Num. attributes per class , Num. methods
per interface
Estimate Std. Error z value Pr(>|zl|)

(Intercept) -2.4070712 0.95773904 -2.513285 0.011961267

x1 0.1377325 0.06042544 2.279379 0.022644534
X2 0.8465572 0.31828442 2.659751 0.007819852

R21og = 0.8466062

Excluded as outliers: Eclipse JBoss Xalan Ant Log4l (5 / 16
MMRE = 25.61057

Pred(25) = 68.75

Error range = [ -53.02712 .. 100.5544 ]

)

Functionality vs. LCOM , Num. abstract classes , Num.
interfaces per class
Estimate Sstd. Error z value Pr(>lz|)
(Intercept) -0.3440648918 0.5759262184 -0.5974114 0.55023274
0.0009067416 0.0003972887 2.2823244 0.02247020
x2 0.0161623534 0.0076233293 2.1201174 0.03399614

Davide Taibi

193



Towards a trustworthiness model for open sourdsvaoé
2010

x3 -1.9472984747 0.8499405928 -2.2910995 0.02195766
R21og = 0.8607087

Excluded as outliers: Hibernate JFreeChart Eclipse Log4]
Checkstyle (5 / 17 )

MMRE = 22.33808

Pred(25) = 70.58824

Error range = [ -71.09287 .. 93.00308 ]

Functionality vs. Comment lines per class , McCabe , NOC
Estimate Std. Error z value Pr(>|z])

(Intercept) -0.90524604 0.63925970 -1.416085 0.15675063
x1 -0.02397907 0.01025939 -2.337280 0.01942465

x2 0.74996722 0.33629560 2.230083 0.02574191

x3 0.70611936 0.32847338 2.149700 0.03157892
R21og = 0.9037505

Excluded as outliers: IJFreeChart Hibernate ( 2 / 18 )

MMRE = 18.80307

Pred(25) = 77.77778

Error range = [ -76.74598 .. 54.52898 ]

Functionality vs. Comment Tines per class , NOC , Num.
packages
Estimate Std. Error z value Pr(>|zl)

(Intercept) 0.861668404 0.360508339 2.390148 0.016841569

-0.031499653 0.011249000 -2.800218 0.005106810
x2 1.364286113 0.487051252 2.801114 0.005092651
x3 -0.003893344 0.001285312 -3.029105 0.002452796
R21og = 0.912421
Excluded as outliers: JFreeChart Httpunit ( 2 / 18 )
MMRE = 18.5524
Pred(25) = 83.33333
Error range = [ -85.57875 .. 106.8532 ]

F*nctiona]ity VvsS. eLOC per class , NOC , Num. interfaces per
class

Estimate Std. Error z value Pr>lz|)
(Intercept) 0.95175740 0.52179774 1.823997 0.068152558
x1 0.02836477 0.01219481 2.325970 0.020020157
X2 -1.15776465 0.55836437 -2.073493 0.038126416
x3 -3.77770708 1.38547711 -2.726647 0.006398144

R2Tog = 0.866799 )
Excluded as outliers: JFreeChart JBoss Eclipse IMeter ( 4 / 18

)

MMRE = 22.85829

Pred(25) = 66.66667

Error range = [ -91.15188 .. 59.93853 ]

Functionality vs. files_count_total
Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.3352351315 0.2751952614 -1.218172 0.22315866
x1 0.0003001768 0.0001195007 2.511926 0.01200744
R2Tog = 0.858213
EXC17d$d gs outliers: Spring Framework Hibernate Eclipse Struts
4 5
MMRE = 21.33821
Pred(25) = 73.33333
Error range = [ -23.62299 .. 78.58765 ]

Functionality vs. number_of_commits
Estimate std. Error z value Pr(>lz|)

Davide Taibi

194



Towards a trustworthiness model for open sourdsvaoé

2010

(Intercept) -0.1317928171 1.779582e-01 -0.7405832 0.45894620
0.0001525140 6.316434e-05 2.4145581 0.01575431

R21og 0.905931

Excluded as outliers: (0 / 15)

MMRE = 12.83085

Pred(25) = 93.33333

Error range = [ -22.13112 .. 38.01295 ]

Functionality vs. files_count_total , avg_loc_del_per_year
Estimate std. Error z value Pr(>|z|)

(Intercept) -4.365897e-01 2.877580e-01 -1.517212 0.129213271
4.041612e-04 1.426846e-04 2.832549 0.004617842

x2 -9.277479e-06 3.565440e-06 -2.602057 0.009266636

R2log = 0.8743656

Excluded as outliers: Spring Framework Eclipse Struts ( 3 / 15 )

MMRE = 19.43088

Pred(25) = 80

Error range = [ -38.53268 .. 89.27538 ]

Functionality vs. avg_loc_added_per_year, avg_files_rem_per_year
Estimate Std. Error z value Pr(>|zl)

(Intercept) -7.130892e-02 1.894508e-01 -0.3763980 0.706620997
-5.884354e-06 2.515269e-06 -2.3394532 0.019311990

x2 2.782665e-03 1.074880e-03 2.5888146 0.009630693

R2log = 0.914996

Excluded as outliers: Spring Framework Saxon Struts ( 3 / 15 )

MMRE = 22.46386

Pred(25) = 66.66667

Error range = [ -29.36840 .. 99.97384 ]

Functionality vs. avg_loc_del_per_year,
avg_major_release_per_year, avg_number_of_revisions_per_file
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.104056e+00 8.988395e-01 -2.340859 0.019239437
7.850266e-06 3.386075e-06 2.318397 0.020427749

x2 1.298017e+00 5.913246e-01 2.195100 0.028156395

x3 2.286458e-01 8.857330e-02 2.581430 0.009839187

R21og = 0.9198223

Excluded as outliers: Spring Framework Saxon Httpunit ( 3 / 15 )

MMRE = 21.49962

Pred(25) = 80

Error range = [ -73.17863 .. 87.19398 ]

Functionality vs. avg_major_release_per_year |,
avg_files_added_per_year ,

avg_number_of_revisions_per_file
Estimate std. Error z value Pr(>|z]|)

(Intercept) -2.493288276 1.0328643728 -2.413955 0.015780405

1.516011947 0.5879548786 2.578449 0.009924481
x2 0.001159953 0.0004417274 2.625948 0.008640811
x3 0.211383251 0.0883636005 2.392198 0.016747793
R21og = 0.9138229
Excluded as outliers: Spring Framework Saxon ( 2 / 15 )
MMRE = 20.58450
Pred(25) = 80
Error range = [ -55.80254 .. 99.82894 ]

Functionality vs. avg_major_release_per_year,
avg_files_rem_per_year, avg_number_of_revisions_per_file

Davide Taibi

195



Towards a trustworthiness model for open sourdsvaoé

2010

Estimate std. Error z value Pr(>|zl)

(Intercept) -1.480215550 0.6558593996 -2.256910 0.02401371

0.810028823 0.3943639308 2.054013 0.03997439
x2 0.001904427 0.0008035833 2.369919 0.01779198
x3 0.134256715 0.0641735824 2.092087 0.03643074
R21og = 0.8705076
Excluded as outliers: Spring Framework Eclipse (2 / 15 )
MMRE = 16.58737
Pred(25) = 86.66667
Error range = [ -17.02919 .. 99.78273 ]

Interoperability

Interoperability vs. Comment lines per class , Num. methods
per interface

Estimate Std. Error z value Pr(>|z])
(Intercept) -1.70738769 0.8020219 -2.128854 0.03326632
0.02061113 0.0099192 2.077902 0.03771838
x2 0.66748273 0.2689258 2.482033 0.01306351
R2log = 0.8273493
Exc17deg gs outliers: Eclipse JFreeChart JBoss Log4] Hibernate
5
MMRE = 27.77385
Pred(25) = 62.5
Error range = [ -32.49771 .. 100.7163 ]

Interoperability vs. NOC , RFC

Estimate Std. Error z value Pr(|z|)
(Intercept) 3.995809e-01 3.199987e-01 1.248695 0.21177651
x1 1.055025e+00 4.824227e-01 2.186931 0.02874754
X2 -3.045737e-05 1.321377e-05 -2.304973 0.02116811
R21og = 0.8147798
Ex;}gged as outliers: Eclipse Hibernate Ant Log4] Httpunit

5

MMRE = 26.1796
Pred(25) = 61.11111
Error range = [ -49.58174 .. 109.7635 ]

Interoperability vs. Num. attributes per class , Num. public
methods

Estimate std. Error z value Pr(>1|zl)
(Intercept) 3.414012e-01 3.052651e-01 1.118376 0.26340637
x1 4.984285e-02 2.291856e-02 2.174781 0.02964653
X2 -5.186182e-05 2.562597e-05 -2.023799 0.04299082
R21og = 0.8861481
Excluded as outliers: Hibernate Log4l ( 2 / 17 )
MMRE = 22.49075
Pred(25) = 64.70588
Error range = [ -64.2106 .. 79.68061 ]

InteroBerabi1it¥ vs. Comment Tines , Comment lines per class,
Num. abstract classes

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.439551e+00 5.532372e-01 2.602051 0.009266816
x1 2.243767e-05 1.005081e-05 2.232425 0.025586893

Davide Taibi

196



Towards a trustworthiness model for open sourdsvaoé

2010
X2 -2.472401e-02 1.118238e-02 -2.210979 0.027037321
x3 -2.506639e-02 1.123042e-02 -2.232009 0.025614349

R21og = 0.8330125

Excluded as outliers: Eclipse Hibernate Spring Framework (3/17)
MMRE = 24.87753

Pred(25) = 58.82353

Error range = [ -74.0165 .. 74.21646 ]

Interoperability vs. avg_loc_added_per_year

Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.417006e-01 2.059174e-01 2.630669 0.008521697
x1 -3.194263e-05 1.608166e-05 -1.986277 0.047002564
R21og = 0.8383662
Excluded as outliers: Eclipse Hibernate PMD IMeter ( 4 / 15 )
MMRE = 37.57031
Pred(25) = 53.33333
Error range = [ -99.94197 .. 77.66751 ]

Interoperability vs. Tloc_total , avg_major_release_per_year
Estimate Std. Error z value Pr(>|z])
(Intercept) -5.634165e-01 3.754854e-01 -1.500501 0.13348456
x1 2.749139e-06 1.316279e-06 2.088569 0.03674658
x2 6.755571e-01 3.153776e-01 2.142058 0.03218883
R21log = 0.8356012
Excluded as outliers: Hibernate Eclipse (2 / 15 )
MMRE = 14.39924
Pred(25) = 86.66667
Error range = [ -23.43169 .. 43.91985 ]

Interoperability vs. avg_major_release_per_year |,
avg_file_size

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -0.796471575 0.412101375 -1.932708 0.05327219
1.200617119 0.539953697 2.223556 0.02617835
x2 0.009012478 0.003470130 2.597158 0.00939986
R2log = 0.8541156
Exc17ded %S outliers: IJFreecChart JBoss Eclipse Spring Framework
4 15
MMRE = 21.00227
Pred(25) = 73.33333
Error range = [ -22.35049 .. 116.9828 ]

Interoperability vs. Tloc_total , avg_loc_del_per_year ,
avg_files_rem_per_year
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.110442e-01 3.325558e-01 -1.536717 0.124362576
x1 3.136311e-06 1.110728e-06 2.823653 0.004747977
X2 -1.296071e-05 4.984656e-06 -2.600121 0.009319091
x3 3.028319e-03 1.307945e-03 2.315326 0.020595094

R21og = 0.9116604

Excluded as outliers: Spring Framework Struts Saxon ( 3 / 15 )
MMRE = 24.67779

Pred(25) = 66.66667

Error range = [ -32.02462 .. 110.5184 ]

Security

Davide Taibi

197



Towards a trustworthiness model for open sourdsvaoé

2010

Security vs. eLOC
Estimate Std. Error z value Pr(>lz|)
(Intercept) -1.287702e-01 2.129536e-01 -0.6046866 0.54538725
7.596619e-06 3.789195e-06 2.0048110 0.04498326
R21og 0.8443458
Excluded as outliers: Eclipse Hibernate ( 2 / 17 )
MMRE = 20.90020
Pred(25) = 76.47059
Error range = [ -20.31237 .. 68.18477 ]

Security vs. avg_loc_added_per_year

Estimate std. Error z value Pr(>|zl)
(Intercept) 2.925696e-01 1.685849e-01 1.735444 0.08266219
x1 -2.183443e-06 8.883412e-07 -2.457887 0.01397571
R21og = 0.8936093
Excluded as outliers: Log4l (1 / 15)
MMRE = 14.76664
Pred(25) = 73.33333
Error range = [ -26.76824 .. 36.76835 ]

Security vs. avg_files_added_per_year
Estimate std. Error z value Pr(>|zl)

(Intercept) 0.4634404040 0.2320813363 1.996888 0.04583737

-0.0004971651 0.0001987493 -2.501469 0.01236793
R21og 0.8967454
Excluded as outliers: Spring Framework Log4l ( 2 / 15 )
MMRE = 19.82717
Pred(25) = 66.66667
Error range = [ -79.1386 .. 38.40918 ]

Security vs. avg_files_rem_per_year

Estimate std. Error z value Pr(>|zl)
(Intercept) 0.275131080 0.1919297926 1.433499 0.15171541
x1 -0.000798813 0.0003687744 -2.166129 0.03030134
R2log = 0.8949154
Excluded as outliers: Spring Framework ( 1 / 15 )
MMRE = 18.47417
Pred(25) = 86.66667
Error range = [ -84.43458 .. 24.74118 ]

Security vs. Tloc_total , files_count_total

Estimate Std. Error z value Pr(>|z]|)
(Intercept) 1.097497e-01 3.251229e-01 0.3375638 0.73569191
x1 2.900640e-06 1.262621e-06 2.2973169 0.02160070
X2 -2.372309e-04 1.064364e-04 -2.2288501 0.02582388
R2Tog = 0.9049571
Excluded as outliers: Spring Framework Hibernate pmD ( 3 / 15

)

MMRE = 18.60600

Pred(25) = 73.33333

Error range = [ -76.15355 .. 33.53208 ]

Speed

Davide Taibi

198



Towards a trustworthiness model for open sourdsvaoé

2010

Speed vs. LCOM
Estimate Std. Error z value Pr(>|z]|)
(Intercept) 0.0593518625 0.1842068505 0.3222023 0.74729948
x1 -0.0005567389 0.0002533943 -2.1971246 0.02801155
R2Tog = 0.8597402
Exc1uded as outliers: Eclipse (1 / 18 )
MMRE = 20.49962
Pred(25) = 66.66667
Error range = [ -34.1952 .. 107.4788 ]

Speed vs. elLOC per class
Estimate Std. Error z value Pr>lz|)

(Intercept) 0.57573620 0.417045975 1.380510 0.16742962

-0.01103935 0.005529275 -1.996527 0.04587658
R21og 0.8507292
Excluded as outliers: Eclipse Hibernate ( 2 / 18 )
MMRE = 24.35536
Pred(25) = 61.11111
Error range = [ -39.44572 .. 85.54478 ]

Speed vs. Num. attributes per class
Estimate Std. Error z value Pr(>|z]|)
(Intercept) 0.47525150 0.36681951 1.295600 0.19511319
-0.08452554 0.04175597 -2.024274 0.04294193
R21og 0.8368939
Excluded as outliers: Eclipse Xalan Hibernate Log4]l ( 4 / 18 )
MMRE = 32.14329
Pred(25) = 50
Error range = [ -82.81606 .. 109.7569 ]

Speed vs. Num. intefaces
Estimate Std. Error z value Pr(>|zl)

(Intercept) 0.159461399 0.228882144 0.6966965 0.48599272

-0.004512853 0.002012041 -2.2429233 0.02490176
R21og 0.850113
Exc1$geg as outliers: Eclipse JBoss Hibernate Jasper Reports (
4
MMRE = 24.31349
Pred(25) = 66.66667
Error range = [ -71.74088 .. 45.28392 ]

Speed vs. Num. public methods
Estimate Std. Error z value Pr(>|zl)

(Intercept) 4.002294e-01 3.149863e-01 1.270625 0.20386221

-6.594226e-05 2.927509e-05 -2.252504 0.02429044
R21og 0.8403567
Excluded as outliers: Hibernate Eclipse weka Log4l ( 4 / 17 )
MMRE = 28.49705
Pred(25) = 47.05882
Error range = [ -68.76518 .. 64.67592 ]

Speed vs. LCOM , Num. public methods

Estimate Sstd. Error z value Pr(>|zl)
(Intercept) 5.795781e-01 3.273662e-01 1.770427 0.07665599
x1 -8.215582e-04 3.277375e-04 -2.506757 0.01218445
X2 -2.217034e-05 1.111118e-05 -1.995319 0.04600813
R21og = 0.8593725
Excluded as outliers: Eclipse ant ( 2 / 17 )
MMRE = 20.40114
Pred(25) = 82.35294

Davide Taibi

199



Towards a trustworthiness model for open sourdsvaoé

2010

Error range = [ -27.64666 .. 131.4864 ]

Speed vs. Num. abstract classes , Num. attributes per class ,

Num. parameters per method

Estimate Std. Error z value Pr(>|zl)
(Intercept) 3.034775191 1.151299155 2.635957 0.008390034
x1 -0.005798768 0.002619608 -2.213601 0.026856244
X2 -0.092617308 0.041098177 -2.253562 0.024223709
x3 -2.249889428 0.994261315 -2.262875 0.023643374
R2log = 0.872414
Excluded as outliers: Eclipse Xalan ( 2 / 17 )
MMRE = 24.65641
Pred(25) = 88.2353
Error range = [ -88.89463 .. 155.4849 ]

Utility of the product developer community

Ccommunity vs. CBO

Estimate Sstd. Error z value Pr(>|z])
(Intercept) 0.9677939 0.4394584 2.202242 0.02764820
x1 -0.2614979 0.1155526 -2.263020 0.02363444
R21og = 0.8386677
Excluded as outliers: Eclipse Hibernate Log4l ( 3 / 16 )
MMRE = 27.88297
Pred(25) = 56.25
Error range = [ -99.99969 .. 74.70896 ]

community vs. LCOM , Num. interfaces per class
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.9956297435 0.5119546850 -1.944761 0.05180369
-0.0008882355 0.0004296822 -2.067191 0.03871612
x2 3.2623873793 1.3738567668 2.374620 0.01756704
R2Tog = 0.8692818

Excluded as outliers: JFreeChart Eclipse PMD JMeter ( 4 / 16 )

MMRE = 31.54234
Pred(25) = 56.25
Error range = [ -67.54058 .. 93.10946 ]

community vs. NOC , Num. attributes per class
Estimate Std. Error z value Pr(>|z]|)

(Intercept) 0.86101589 0.39627300 2.172785 0.02979653
-0.52963631 0.26543432 -1.995357 0.04600392

x2 -0.06147217 0.03048413 -2.016530 0.04374458

R21og = 0.9018403

Excluded as outliers: Xalan (1 / 16 )

MMRE = 21.82209

Pred(25) = 81.25

Error range = [ -75.64863 .. 110.1620 ]

community vs. McCabe , Num. attributes per class , Num.
interfaces per class
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -2.9151999 1.31719787 -2.213183 0.026885034
x1 1.1303664 0.52643170 2.147223 0.031775502
x2 -0.2355771 0.09133947 -2.579138 0.009904711
x3 5.5958856 2.15647225 2.594926 0.009461133

R21og = 0.8685826

Davide Taibi

200



Towards a trustworthiness model for open sourdsvaoé

2010

Exc1ude§ as outliers: Xalan JFreeChart Xerces Eclipse Log4]
5/ 16

MMRE = 33.97902

Pred(25) = 62.5

Error range = [ -99.84973 .. 99.80573 ]

(

community vs. LCOM , Comment lines per class , NOC , Num.
packages
Estimate std. Error z value Pr(>|z|)
(Intercept) 0.0460336297 0.4411546737 0.1043480 0.916893148
x1 -0.0007782302 0.0003437119 -2.2641930 0.023562247
X2 0.0364207528 0.0149238137 2.4404454 0.014669162
x3 -1.9128102380 0.6182737628 -3.0937917 0.001976162
x4 0.0032385674 0.0014897368 2.1739192 0.029711205

R21og = 0.9135916

Excluded as outliers: JFreechart PMmD ( 2 / 16 )
MMRE = 20.92991

Pred(25) = 68.75

Error range = [ -73.59067 .. 83.28782 ]

Community vs. TJloc_total , files_count_total
Estimate std. Error z value Pr(>lz|)

(Intercept) -1.070226e+00 3.464006e-01 -3.089560 0.002004530

2.529075e-06 1.176559e-06 2.149553 0.031590615
x2 1.773488e-04 7.402238e-05 2.395881 0.016580476
R21og = 0.9035187
Excluded as outliers: Hibernate JBoss ( 2 / 14 )
MMRE = 20.3453
Pred(25) = 71.42857
Error range = [ -34.34001 .. 54.29452 ]

Community vs. TJloc_total , avg_major_release_per_year
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.292636e+00 4.478521e-01 -2.886301 0.003897995
4.146629e-06 1.490031e-06 2.782915 0.005387292

x2 8.455055e-01 3.530812e-01 2.394649 0.016636294

R21log = 0.846061

Excluded as outliers: Eclipse Hibernate ( 2 / 14 )

MMRE = 17.86593

Pred(25) = 64.28571

Error range = [ -34.0511 .. 45.39039 ]

Community vs. TJloc_total , avg_files_added_per_year
Estimate Sstd. Error z value Pr(>lz|)

(Intercept) -7.369177e-01 2.653171e-01 -2.777498 0.005477914
2.808696e-06 1.215897e-06 2.309979 0.020889301

x2 2.209786e-04 1.073166e-04 2.059128 0.039481999

R21og = 0.8988746

Excluded as outliers: Hibernate (1 / 14 )

MMRE = 21.02635

Pred(25) = 64.28571

Error range = [ -22.79198 .. 54.85847 ]

Community vs. TJloc_total , avg_number_of_revisions_per_file

Estimate Std. Error z value Pr(>lz|)
(Intercept) 2.523388e-01 3.437476e-01 0.7340815 0.46289908
x1 2.851668e-06 1.225212e-06 2.3274896 0.01993922
X2 -1.232537e-01 5.870196e-02 -2.0996517 0.03575949
R21og = 0.8997666
Excluded as outliers: Hibernate (1 / 14 )

Davide Taibi

201



Towards a trustworthiness model for open sourdsvaoé

2010

MMRE = 21.14715
Pred(25) = 78.57143
Error range = [ -23.13899 .. 65.07981 ]

Community vs. avg_loc_del_per_year , avg_files_added_per_year

Estimate Std. Error z value Pr(>|lz|)

(Intercept) -5.693474e-01 2.311753e-01 -2.462838 0.013784223
x1 -1.110716e-05 4.481462e-06 -2.478469 0.013194775
X2 1.507830e-03 5.719926e-04 2.636101 0.008386473
R21og = 0.9059014

Excluded as outliers: Spring Framework ( 1 / 14 )
MMRE = 18.99841

Pred(25) = 57.14286

Error range = [ -29.68839 .. 72.54569 ]

Community vs. avg_major_release_per_year,
avg_minor_release_per_year
Estimate Std. Error z value Pr(>|zl|)

(Intercept) -0.9762137 0.3385586 -2.883441 0.003933566

0.5779543 0.2803257 2.061724 0.039234036
x2 0.2406570 0.0889429 2.705748 0.006815083
R21log = 0.8611813
Excluded as outliers: Eclipse PvD ( 2 / 14 )
MMRE = 26.37751
Pred(25) = 71.42857
Error range = [ -38.92617 .. 83.0344 ]

Community vs. avg_minor_release_per_year,
avg_files_added_per_year
Estimate std. Error z value Pr(>lz|)

(Intercept) -0.7566435522 0.2716702479 -2.785154 0.005350226

0.1956204075 0.0807010714 2.424013 0.015350076
x2 0.0002111372 0.0001076161 1.961949 0.049768450
R2Tog = 0.8598602
Excluded as outliers: PMD Eclipse (2 / 14 )
MMRE = 21.87745
Pred(25) = 71.42857
Error range = [ -27.86525 .. 66.71854 ]

(@]

Community vs. Tloc_total , files_count_total ,
number_of_commits
Estimate Std. Error z value Pr(>|zl)

(Intercept) -4.600312e-01 3.463251e-01 -1.328322 0.18407179
x1 3.196406e-06 1.253326e-06 2.550339 0.01076181
X2 1.572793e-04 7.189490e-05 2.187627 0.02869675
x3 -2.2500664e-04 1.091472e-04 -2.062044 0.03920356

R2Tog = 0.9094875

Excluded as outliers: Hibernate Findbugs ( 2 / 14 )
MMRE = 21.05915

Pred(25) = 64.28571

Error range = [ -54.33324 .. 79.84851 ]

Community vs. files_count_total, number_of_commits,
avg_number_of_revisions_per_ file
Estimate Std. Error z value Pr(>|zl)

(Intercept) -2.7416309685 1.1164573016 -2.455652 0.01406291

0.0003873338 0.0001635913 2.367692 0.01789943
x2 -0.0003644824 0.0001465291 -2.487441 0.01286660
x3 0.3651017260 0.1555691968 2.346877 0.01893152
R21log = 0.8645516

Davide Taibi

202



Towards a trustworthiness model for open sourdsvaoé

2010

Excluded as outliers: Httpunit JBoss Eclipse Spring Framework

(4/14)

MMRE = 28.55432

Pred(25) = 78.57143

Error range = [ -50.90839 .. 191.5555 ]

community vs. number_of_commits , avg_files_rem_per_year |,

avg_number_of_revisions_per_file
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.6776874060 1.0424045922 -2.568760 0.010206306
-0.0003904030 0.0001491933 -2.616760 0.008876867
x2 0.0032843184 0.0013142444 2.499017 0.012453850
x3 0.4173302751 0.1651916681 2.526340 0.011525796
R2log = 0.8675318

Excluded as outliers: Httpunit Spring Framework Eclipse JBoss

(4 /14)

MMRE = 34.34006

Pred(25) = 71.42857

Error range = [ -44.38507 .. 220.2552 ]

Community vs. avg_loc_added_per_year , avg_file_size ,
avg_files_rem_per_year
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.201678e+00 3.932606e-01 -3.055679 0.002245517
x1 -4.341128e-06 2.169166e-06 -2.001289 0.045361215
X2 6.579496e-03 2.381818e-03 2.762384 0.005738096
x3 2.823072e-03 1.089072e-03 2.592182 0.009536927

R2Tog = 0.909533

Excluded as outliers: Spring Framework ( 1 / 14 )
MMRE = 16.94885

Pred(25) = 85.71429

Error range = [ -21.70795 .. 72.6659 ]

Community vs. avg_loc_changed_per_year ,
avg_major_release_per_year , avg_minor_release_per_year
Estimate std. Error z value Pr(>lz|)

(Intercept) -1.451040e+00 4.859238e-01 -2.986147 0.002825171
1.127296e-05 4.483431e-06 2.514361 0.011924823

x2 9.130654e-01 3.686978e-01 2.476460 0.013269254

x3 2.903518e-01 9.890319e-02 2.935718 0.003327770

R2Tog = 0.9095433

Excluded as outliers: pPvD (1 / 14 )

MMRE = 20.55266

Pred(25) = 71.42857

Error range = [ -31.99209 .. 89.71474 ]

Community vs. avg_loc_changed_per_year , avg_file_size ,
avg_files_rem_per_year
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.177210e+00 3.889463e-01 -3.026665 0.002472681
-1.623266e-05 7.798504e-06 -2.081510 0.037387260

x2 7.732515e-03 2.598664e-03 2.975573 0.002924416

x3 2.428498e-03 9.600547e-04 2.529541 0.011421183

R21og = 0.8669093

Excluded as outliers: Spring Framework Eclipse (2 / 14 )

MMRE = 17.74764

Pred(25) = 85.71429

Error range = [ -40.91654 .. 72.51251 ]

Davide Taibi

203



Towards a trustworthiness model for open sourdsvaoé

2010

Documentation Quality

DocQuality vs. Comment Tines , Comment lines per class ,
Num. abstract classes , Num. methods per interface
Estimate Std. Error z value Pr(>lz|)
(Intercept) -4.320117e+00 1.504010e+00 -2.872399 0.004073678
-2.002578e-05 9.417799e-06 -2.126376 0.033471931

x2 5.127531e-02 1.963857e-02 2.610949 0.009029128
x3 3.050114e-02 1.346274e-02 2.265597 0.023476057
x4 6.536364e-01 2.769001e-01 2.360549 0.018247889

R2Tog = 0.8391869 )

Exc17ded %S outliers: IJFreeChart Eclipse Log4] Hibernate JBoss
5/ 16

MMRE = 39.98816

Pred(25) = 50

Error range = [ -68.60609 .. 138.0597 ]

DocQuality vs. files_count_total

Estimate std. Error z value Pr(>|zl)
(Intercept) -0.5504057808 2.143248e-01 -2.568092 0.01022601
x1 0.0001326518 6.079125e-05 2.182087 0.02910308
R2Tog = 0.8923422
Excluded as outliers: (0 / 15)
MMRE = 35.72839
Pred(25) = 73.33333
Error range = [ -40.87004 .. 310.0619 ]

DocQuality vs. avg_files_added_per_year

Estimate std. Error z value Pr(>lz|)
(Intercept) -1.010502834 0.2800142132 -3.608756 0.0003076694
x1 0.001912882 0.0005337721 3.583705 0.0003387547
R21og = 0.8355119
Exc17ded ?S outliers: Eclipse Spring Framework Hibernate Log4]

4 / 15

MMRE = 39.36985
Pred(25) = 60
Error range = [ -26.66932 .. 203.0511 ]

DocQuality vs. avg_files_rem_per_year
Estimate std. Error z value Pr(>|zl)
(Intercept) -0.520109781 0.1973799444 -2.635069 0.008412017
0.001303054 0.0006290435 2.071485 0.038313495
R21og 0.8558501
Excluded as outliers: Spring Framework Eclipse Struts ( 3 / 15

)

MMRE = 38.28485

Pred(25) = 66.66667

Error range = [ -28.9158 .. 310.9139 ]

DocQuality vs. Tloc_total , avg_files_rem_per_year
Estimate std. Error z value Pr(>|z|)
(Intercept) -1.418152e+00 4.175500e-01 -3.396365 0.0006828728
3.506074e-06 1.466122e-06 2.391393 0.0167845618
x2 2.327952e-03 6.778834e-04 3.434148 0.0005944194
R2Tog = 0.838631

Davide Taibi

204



Towards a trustworthiness model for open sourdsvaoé

2010

Exc17ded ?S outliers: Spring Framework Eclipse Hibernate Log4]
(4 /15

MMRE = 30.21146

Pred(25) = 66.66667

Error range = [ -38.0504 .. 117.1942 ]

DocQuality vs. files_count_total , avg_major_release_per_year
Estimate std. Error z value Pr(>|zl|)

(Intercept) -1.7664435378 0.4980051773 -3.547039 0.0003895877
0.0004586585 0.0001403948 3.266919 0.0010872465

x2 1.3576051873 0.6072020353 2.235838 0.0253624060

R21og = 0.914498

Exc;uded as outliers: Spring Framework PMD Saxon Log4l ( 4 /

15

MMRE = 29.59114

Pred(25) = 66.66667

Error range = [ -69.09649 .. 96.3461 ]

DocQuality vs. files_count_total ,
avg_number_of_revisions_per_file
Estimate std. Error z value Pr(>|z|)

(Intercept) 0.170199021 0.5176067638 0.3288192 0.742292381

0.000361532 0.0001323872 2.7308677 0.006316782
x2 -0.152779532 0.0616389406 -2.4786203 0.013189161
R2Tog = 0.8608512
Exc1udeg as outliers: Eclipse Hibernate Spring Framework PMD (
4 / 15
MMRE = 29.5962
Pred(25) = 53.33333
Error range = [ -26.45458 .. 95.9311 ]

DocQuality vs. files_count_total , number_of_commits ,
avg_loc_del_per_year
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.549910e-01 2.862640e-01 -1.938738 0.052533219
4.161277e-04 1.281786e-04 3.246467 0.001168468

x2 -1.480103e-04 7.499386e-05 -1.973632 0.048423635

x3 -8.319345e-06 3.559567e-06 -2.337179 0.019429886

R21og = 0.8603327

Excluded as outliers: Spring Framework Eclipse (2 / 15 )

MMRE = 33.39720

Pred(25) = 73.33333

Error range = [ -34.94137 .. 297.0179 ]

DocQuality vs. files_count_total , avg_loc_del_per_year ,

avg_number_of_revisions_per_file

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.121962e-01 4.977493e-01 0.6272158 0.530517813
x1 3.119420e-04 1.147533e-04 2.7183711 0.006560421
X2 -8.265360e-06 3.370102e-06 -2.4525548 0.014184579
x3 -1.500173e-01 5.999843e-02 -2.5003530 0.012406960
R21og = 0.8673331
Excluded as outliers: Spring Framework Eclipse (2 / 15 )
MMRE = 22.96958
Pred(25) = 73.33333
Error range = [ -28.16463 .. 121.7120 ]

Davide Taibi

205



Towards a trustworthiness model for open sourdsvaoé

2010

DocQuality vs. Tloc_total , avg_loc_del_per_year ,
avg_major_release_per_year ,

avg_files_rem_per_year
Estimate Sstd. Error z value Pr(>|z|)

(Intercept) -1.706635e+00 5.384801e-01 -3.169355 0.0015277773

2.724761e-06 9.755779e-07 2.792972 0.0052226286
x2 -5.430967e-06 2.709636e-06 -2.004316 0.0450362510
x3 1.194318e+00 5.960473e-01 2.003731 0.0450989043
x4 2.855538e-03 8.043877e-04 3.549952 0.0003853015

R2Tog = 0.916607

Excluded as outliers: Spring Framework PMD ( 2 / 15 )
MMRE = 21.48755

Pred(25) = 73.33333

Error range = [ -38.5442 .. 87.9971 ]

Trustworthiness with respect to non Open Source products

CssCompetitors vs. McCabe
Estimate std. Error z value Pr(>|z]|)
(Intercept) -0.7262621 0.6202630 -1.170894 0.24164150
x1 0.7263045 0.3141709 2.311813 0.02078797
R21og = 0.8945558
Excluded as outliers: Xerces (1 / 17 )
MMRE = 10.54384
Pred(25) = 94.11765
Error range = [ -20.37711 .. 39.18234 ]

Trustworthiness

Trustworthiness vs. Num. classes

Estimate std. Error z value Pr(>|z]|)
(Intercept) 1.0608998429 0.2438356102 4.350881 1.355913e-05
x1 -0.0003682820 0.0001778050 -2.071269 3.833363e-02
R21og = 0.8939507

Davide Taibi

206



Towards a trustworthiness model for open sourdsvaoé

2010

Excluded as outliers: Hibernate Httpunit ( 2 / 18 )
MMRE = 17.47932

Pred(25) = 83.33333

Error range = [ -44.54244 .. 68.36605 ]

Trustworthiness vs. Num. methods

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.186386e+00 2.443949e-01 4.854380 1.207638e-06
x1 -4.542541e-05 1.955227e-05 -2.323281 2.016408e-02
R21og = 0.8540174
Egc;uded as outliers: Hibernate Httpunit Eclipse Saxon ( 4 /
MMRE = 17.70697
Pred(25) = 83.33333
Error range = [ -48.04843 .. 72.17629 ]

Trustworthiness vs. Num. public methods

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.8316962419 4.406502e-01 4.156803 3.227318e-05
x1 -0.0001149826 3.825743e-05 -3.005499 2.651459e-03
R21og = 0.9108067
5xc1uged as outliers: Hibernate Saxon Httpunit Log4] weka ( 5

17

MMRE = 25.20285
Pred(25) = 76.47059
Error range = [ -86.89772 .. 91.48193 ]

Trustworthiness vs. CBO , McCabe
Estimate Std. Error z value Pr(>|z])
(Intercept) -1.618633 1.0829440 -1.494660 0.135003108
-0.258561 0.1070114 -2.416201 0.015683401
x2 1.559883 0.6003321 2.598367 0.009366838
R21og = 0.8521789
Excluded as outliers: Eclipse Xerces Hibernate PMvD ( 4 / 18 )
MMRE = 22.89241
Pred(25) = 72.22222
Error range = [ -99.99965 .. 63.35738 ]

Trustworthiness vs. Comment lines , McCabe
Estimate std. Error z value Pr(>|z]|)

(Intercept) -1.588621e+00 1.184741e+00 -1.340902 0.17995243

-9.162756e-06 3.859641e-06 -2.373992 0.01759694
x2 1.244082e+00 6.047269e-01 2.057263 0.03966092
R2Tog = 0.8448486
Exc;uded as outliers: Xerces Ant Eclipse Hibernate PvD ( 5 /
18
MMRE = 18.98965
Pred(25) = 72.22222
Error range = [ -41.52189 .. 51.91282 ]

Tqustworthiness vs. eLOoC per class , Num. interfaces per
class
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.21290835 0.65647941 -0.3243184 0.74569699
x1 0.02834693 0.01298528 2.1830053 0.02903542
X2 -2.76562686 1.03193673 -2.6800353 0.00736144
R2log = 0.9100124
Exc17ded %S outliers: IJFreeChart Struts Xerces Spring Framework
4 / 18
MMRE = 19.31615

Davide Taibi

207



Towards a trustworthiness model for open sourdsvaoé

2010

Pred(25) = 72.22222
Error range = [ -66.09687 .. 39.8693 ]

Trustworthiness vs. eLOC per class , Num. packages
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.632318935 0.4475924585 3.646887 0.000265437

x1 -0.011585483 0.0054908635 -2.109956 0.034862109

X2 -0.001314071 0.0006522147 -2.014783 0.043927402

R21og = 0.9004286

Excluded as outliers: Httpunit (1 / 18 )

MMRE = 13.48572

Pred(25) = 94.44444

Error range = [ -18.35019 .. 74.0536 ]

Trustworthiness vs. eLOC , Num. attributes per class
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.641993e+00 4.176497e-01 3.931508 8.441468e-05

x1 -4.608735e-06 2.272133e-06 -2.028374 4.252209e-02

X2 -7.085604e-02 3.447366e-02 -2.055367 3.984355e-02

R21og = 0.864489

Excluded as outliers: Xalan Httpunit Eclipse ( 3 / 18 )

MMRE = 18.30190

Pred(25) = 83.33333

Error range = [ -68.91717 .. 83.19392 ]

Trustworthiness vs. McCabe , Num. classes
Estimate std. Error z value Pr(>lz|)

(Intercept) -2.3428163610 1.1946285338 -1.961125 0.049864396
x1 1.7569920711 0.6358366558 2.763276 0.005722438
X2 -0.0006916421 0.0002721924 -2.541005 0.011053446
R2log = 0.8540814

Excluded as outliers: Hibernate Xerces Eclipse PMvD ( 4 / 18 )
MMRE = 23.11587

Pred(25) = 66.66667

Error range = [ -91.78244 .. 67.7372 ]

Trustworthiness vs. McCabe , Num. methods
Estimate std. Error z value Pr(>|z]|)

(Intercept) -2.173007e+00 1.140033e+00 -1.906091 0.056638371
x1 1.650310e+00 5.909619e-01 2.792582 0.005228925
X2 -5.897458e-05 2.127650e-05 -2.771818 0.005574412
R2log = 0.8575264

Excluded as outliers: Hibernate Xerces PMD Eclipse ( 4 / 18 )
MMRE = 20.57024

Pred(25) = 77.77778

Error range = [ -83.98747 .. 63.97956 ]

Trustworthiness vs. McCabe , Num. public methods
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.358158e+00 1.1815106308 -1.995884 0.045946602
x1 1.718108e+00 0.6006091748 2.860609 0.004228280
X2 -6.732879e-05 0.0000251374 -2.678431 0.007396804
R21og = 0.8580578

Excluded as outliers: Hibernate Xerces PMD Eclipse ( 4 / 17 )
MMRE = 21.45107

Pred(25) = 82.35294

Error range = [ -84.7867 .. 65.1984 ]

Trustworthiness vs. McCabe , RFC
Estimate std. Error z value Pr(>lz|)
Davide Taibi

208



Towards a trustworthiness model for open sourdsvaoé

2010

(Intercept) -2.180365e+00 1.142897e+00 -1.907754 0.056423067
1.646798e+00 5.918837e-01 2.782301 0.005397498

x2 -3.092225e-05 1.127234e-05 -2.743197 0.006084411

R21og = 0.856996

Excluded as outliers: Hibernate Xerces PMD Eclipse ( 4 / 18 )

MMRE = 20.20410

Pred(25) = 77.77778

Error range = [ -82.93462 .. 64.02911 ]

Trustworthiness vs. CBO , Comment Tines per class , Num.
interfaces per class

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.58742120 0.411172485 3.860718 0.0001130541
x1 -0.26585967 0.122101202 -2.177371 0.0294528638
x2 0.01632332 0.007812906 2.089277 0.0366828377
x3 -1.43930560 0.541748077 -2.656780 0.0078890844

R2log = 0.8576064

Excluded as outliers: Eclipse Hibernate Saxon ( 3 / 18 )
MMRE = 18.78701

Pred(25) = 77.77778

Error range = [ -99.99963 .. 35.7058 ]

Trustworthiness vs. Comment lines , McCabe , Num. attributes
per class

Estimate Std. Error z value pPr(|zl|)
(Intercept) 1.091825e-01 8.107740e-01 0.1346645 0.89287711
x1 -6.271132e-06 2.476323e-06 -2.5324374 0.01132726
X2 8.797515e-01 4.164251e-01 2.1126284 0.03463259
x3 -9.077953e-02 3.719986e-02 -2.4403189 0.01467430
R21og = 0.9156736
Excluded as outliers: Xalan Httpunit PMD Xerces ( 4 / 18 )

MMRE = 19.14223
Pred(25) = 77.77778
Error range = [ -75.85427 .. 71.77117 ]

Trustworthiness vs. avg_number_of_revisions_per_file
Estimate Std. Error z value Pr>lz|)

(Intercept) 1.5178204 0.42895087 3.538448 0.0004024865

x1 -0.1472291 0.06109325 -2.409908 0.0159565406

R2log = 0.8615347

Excluded as outliers: Eclipse Findbugs Hibernate ( 3 / 15 )

MMRE = 11.98052

Pred(25) = 86.66667

Error range = [ -38.54624 .. 29.83004 ]

Davide Taibi

209



Towards a trustworthiness model for open sourdsvaoé
2010

Appendix G: Analysis of C++
products

Here we report the detailed data on for java pitsjdte correlations between subjective
and objective data

Reliability

Reliability vs. Num. attributes per class , Num. attribute
per method

Estimate Std. Error z value Pr(>|zl|)

(Intercept) -1.51023767 0.300354006 -5.028192 4.951255e-07

-0.02444745 0.009473188 -2.580699 9.860053e-03
x2 1.53281304 0.256598128 5.973594 2.320830e-09
R2Tog = 0.9490417
Excluded as outliers: Tinux perl sqlite openssl (4 / 13 )
MMRE = 23.44636
Pred(25) = 69.23077
Error range = [ -45.0891 .. 108.1098 ]

Usability

Usability vs. LCOM
Estimate Std. Error z value Pr>lz|)
(Intercept) -0.38713612 0.15332815 -2.524886 0.011573576
x1 0.07920131 0.02444924 3.239418 0.001197741
R21og = 0.9493277
Excluded as outliers: Tinux glibc gdb ( 3 / 13 )
MMRE = 14.46090
Pred(25) = 76.92308
Error range = [ -30.74551 .. 71.75337 ]

Usability vs. Num. attributes per class
Estimate Std. Error z value Pr(>|zl|)

(Intercept) -0.2699555 0.13598832 -1.985137 0.04712922

0.0254235 0.01118158 2.273696 0.02298430
R21og 0.9477184
Excluded as outliers: Tinux gdb perl sqlite (4 / 13 )
MMRE = 17.65493
Pred(25) = 84.61538
Error range = [ -23.37585 .. 74.628 ]

Usability vs. Num. methods
Estimate std. Error z value Pr(>lz|)

(Intercept) 4.021547e-01 1.300177e-01 3.093077 0.001980928

-1.999896e-05 7.147359e-06 -2.798090 0.005140573
R21og 0.952941
Excluded as outliers: Tinux ldap-src subversion ( 3 / 13 )
MMRE = 22.73113
Pred(25) = 84.61538

Davide Taibi

210



Towards a trustworthiness model for open sourdsvaoé

2010

Error range = [ -99.63284 .. 110.6074 ]

Usability vs. Num. public methods

Estimate Std. Error z value Pr(>lz|)
(Intercept) 3.922633e-01 1.282449e-01 3.058705 0.002222956
x1 -1.973909e-05 7.151699e-06 -2.760057 0.005779136
R21og = 0.9527443
Excluded as outliers: Tinux ldap-src subversion ( 3 / 13 )
MMRE = 22.73732
Pred(25) = 84.61538
Error range = [ -99.60504 .. 109.8661 ]

Usability vs. LCOM , McCabe
Estimate Std. Error z value Pr(>|zl)

(Intercept) -0.3235288 0.17879399 -1.809506 0.0703724202

0.2667431 0.07667804 3.478742 0.0005037728
x2 -0.4111575 0.13336043 -3.083055 0.0020488755
R21og = 0.951955
Excluded as outliers: glibc perl sqlite linux ( 4 / 13 )
MMRE = 17.44336
Pred(25) = 76.92308
Error range = [ -58.85103 .. 37.42888 ]

Portability

Portability vs. Num. methods per class
Estimate Std. Error z value Pr>lz|)

(Intercept) -1.1136125 0.25915091 -4.297158 1.730018e-05

0.0637316 0.01145698 5.562689 2.656487e-08
R21og 0.9559484
Excluded as outliers: glibc openssT 1libxml2 ( 3 / 13 )
MMRE = 16.31748
Pred(25) = 76.92308
Error range = [ -51.96173 .. 51.02023 ]

How well are functional requirements satisfied

Functionality vs. ACC
Estimate std. Error z value Pr(>|z]|)

(Intercept) -0.2689996 0.20511091 -1.311484 0.189694418

x1 0.1232661 0.04645936 2.653203 0.007973198
R21og = 0.9477128

Excluded as outliers: Tinux perl gdb posgresql (4 / 13 )
MMRE = 16.80887

Pred(25) = 76.92308

Error range = [ -21.79552 .. 77.48773 ]

Functionality vs. CBO
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.2504962 0.20755474 -1.206892 0.22747363
x1 0.1214927 0.04818648 2.521303 0.01169211
R21og = 0.9469887
Excluded as outliers: Tinux perl gdb posgresql ( 4 / 13 )
MMRE = 17.03314

Davide Taibi

211



Towards a trustworthiness model for open sourdsvaoé

2010

Pred(25) = 76.92308
Error range = [ -21.28353 .. 78.48593 ]

Functionality vs. LCOM

Estimate Std. Error z value Pr(>|z])
(Intercept) -0.4697571 0.21130989 -2.223072 0.02621093
0.1048625 0.02919295 3.592048 0.00032809

R21og 0.9450293

Excluded as outliers: Tinux glibc subversion openssl ( 4 / 13 )

MMRE = 18.41709
Pred(25) = 69.23077
Error range = [ -28.51859 .. 57.13447 ]

Functionality vs. eLOC per method
Estimate Std. Error z value

(Intercept) -0.15824472 0.160398990 -0.9865693 0.323853837
0.01882910 0.006427766 2.9293379 0.003396850

R21og 0.94873

Excluded as outliers: Tlinux perl (2 / 13 )
MMRE = 16.38215

Pred(25) = 76.92308

Error range = [ -27.65076 .. 64.11788 ]

Pr(>|zl|)

Functionality vs. eLOC per class

Estimate std. Error z value
(Intercept) -0.075716271 0.1686317253 -0.4490037 0.65342898
0.001558958 0.0005701948 2.7340802 0.00625548

R21og 0.947368

Pr(>|z]|)

Excluded as outliers: Tibxml2 Tinux gdb sqlite (4 / 13 )
MMRE = 26.96493
Pred(25) = 61.53846
Error range = [ -10.09838 .. 89.42949 ]
Functionality vs. McCabe
Estimate Std. Error z value Pr(>|z]|)
623515966

(Intercept) -0.08322601 0.16954678 -0.4908734 0.
x1

0.16735464 0.06351721 2.6347919 0.008418887

R2Tog = 0.9456217

Excluded as outliers: Tinux gdb sqlite ( 3 / 13 )

MMRE = 20.59543
Pred(25) = 84.61538
Error range = [ -21.57827 .. 73.84595 ]

Functionality vs. Num. methods

Estimate std. Error z value
(Intercept) -2.206761le-02 1.662996e-01 -0.1326979 0.89443227
1 3.393236e-05 1.424471e-05 2.3821027 0.01721410

X
R2Tog = 0.9457637

Excluded as outliers: Tinux cygwin gdb perl (4 / 13 )

MMRE = 23.38308
Pred(25) = 61.53846
Error range = [ -15.52365 .. 92.69175 ]

Pr(>|z]|)

Functionality vs. Num. attribute per method
Estimate Std. Error z value

Pr(>|z|)

(Intercept) -0.6351755 0.2764945 -2.297245 0.0216047931
0.7121362 0.2073896 3.433808 0.0005951656

R21og 0.9498425

Excluded as outliers: Tinux perl sqlite gdb (4 / 13 )

MMRE = 18.71853

Davide Taibi

212



Towards a trustworthiness model for open sourdsvaoé

2010

Pred(25) = 69.23077
Error range = [ -26.55506 .. 79.08917 ]

Functionality vs. Num. public methods
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.444779e-02 1.676456e-01 -0.08618055 0.93132289
3.417787e-05 1.481457e-05 2.30704425 0.02105235
R21og 0.9453948
Excluded as outliers: Tinux cygwin gdb perl (4 / 13 )
MMRE = 23.64714
Pred(25) = 61.53846
Error range = [ -15.21326 .. 93.50963 ]

Functionality vs. LCOM , elLOC
Estimate std. Error z value Pr(>|z|)

(Intercept) -4.877843e-01 2.853327e-01 -1.709528 0.087353173
8.639986e-02 2.909423e-02 2.969656 0.002981334

x2 7.961439e-07 3.643925e-07 2.184852 0.028899674

R21og = 0.9422352

Excluded as outliers: Tinux gdb subversion ( 3 / 13 )

MMRE = 20.96989
Pred(25) = 69.23077
Error range = [ -13.95603 .. 72.81018 ]

Functionality vs. LCOM , Num. methods
Estimate std. Error z value Pr(>|zl)

(Intercept) -4.293522e-01 3.111793e-01 -1.379758 0.16766111

6.975180e-02 3.277884e-02 2.127952 0.03334107
x2 4.934959e-05 2.134364e-05 2.312144 0.02076973
R2log = 0.9482143
Excluded as outliers: Tinux gdb cygwin posgresql ( 4 / 13 )
MMRE = 25.01579
Pred(25) = 61.53846
Error range = [ -6.535332 .. 92.3553 ]

Functionality vs. eLOC per method , Num. attributes per class
Estimate Std. Error z value Pr(>|zl)

(Intercept) -0.15147724 0.16091658 -0.9413401 0.3465305817
0.02913454 0.00816428 3.5685382 0.0003589786

x2 -0.01658191 0.00802182 -2.0671013 0.0387246116

R21og = 0.9522783

Excluded as outliers: Tinux perl (2 / 13 )

MMRE = 15.36017

Pred(25) = 76.92308

Error range = [ -41.72362 .. 63.00066 ]

Functionality vs. McCabe , Num. attributes per class
Estimate Std. Error z value Pr(>|zl)

(Intercept) -0.10281958 0.16414106 -0.6264099 0.5310461481
0.33580539 0.10141678 3.3111423 0.0009291595

x2 -0.03683576 0.01254156 -2.9370945 0.0033130310

R21og = 0.9492425

Excluded as outliers: Tinux glibc (2 / 13 )

MMRE = 17.38857

Pred(25) = 76.92308

Error range = [ -52.28476 .. 69.44363 ]

Functionality vs. Num. attributes per class , Num. attribute
per method

Estimate Std. Error z value Pr>lzl|)

Davide Taibi

213



Towards a trustworthiness model for open sourdsvaoé

2010

(Intercept) -0.95941354 0.413152993 -2.322175 0.02022352
-0.02048793 0.009062966 -2.260620 0.02378278

x2 1.08703780 0.327806655 3.316094 0.00091285

R21og = 0.9515106

Excluded as outliers: Tinux perl sqlite cygwin (4 / 13 )

MMRE = 17.68123

Pred(25) = 76.92308

Error range = [ -33.05436 .. 63.06829 ]

Interoperability

Interoperability vs. LCOM
Estimate Std. Error z value Pr>lz|)

(Intercept) -0.8282344 0.21208493 -3.905202 9.414684e-05
x1 0.1350092 0.02623372 5.146401 2.655314e-07
R21og = 0.9459

Excluded as outliers: openss1 glibc subversion ( 3 / 13 )
MMRE = 15.54680

Pred(25) = 84.61538

Error range = [ -42.98863 .. 16.45856 ]

Interoperability vs. Num. methods
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.578726e-01 1.625064e-01 -0.9714855 0.33130655

3.934332e-05 1.563712e-05 2.5160208 0.01186882
R21og 0.9473539
Excluded as outliers: Tinux cygwin gdb openssl (4 / 13 )
MMRE = 23.97699
Pred(25) = 69.23077
Error range = [ -16.00141 .. 100.3220 ]

Interoperability vs. Num. public methods
Estimate Sstd. Error z value Pr(>lz|)

(Intercept) -1.574113e-01 1.621623e-01 -0.9707023 0.33169655

3.937568e-05 1.562725e-05 2.5196809 0.01174613
R21og 0.9473764
Excluded as outliers: Tinux cygwin gdb openssl (4 / 13 )
MMRE = 24.14464
Pred(25) = 69.23077
Error range = [ -18.65682 .. 99.77417 ]

Security

Security vs. ACC
Estimate Std. Error z value Pr>lzl|)
(Intercept) -0.4946254 0.14246159 -3.471991 5.166134e-04
0.1225129 0.02003996 6.113429 9.751256e-10
R21og 0.949365
Excluded as outliers: perl openssl (2 / 13 )
MMRE = 12.14888
Pred(25) = 84.61538
Error range = [ -26.29964 .. 18.11794 ]

Security vs. McCabe

Davide Taibi

214



Towards a trustworthiness model for open sourdsvaoé

2010

Estimate Std. Error z value Pr(>|zl|)

(Intercept) -0.1410507 0.20875037 -0.6756907 0.49923702

0.1425878 0.06652634 2.1433290 0.03208669
R21og 0.946116
Excluded as outliers: cygwin linux openssl sqlite (4 / 13 )
MMRE = 18.59930
Pred(25) = 69.23077
Error range = [ -26.34763 .. 46.87301 ]

Security vs. Num. methods
Estimate std. Error z value Pr(>lz|)

(Intercept) -1.000220e-01 1.619874e-01 -0.6174678 0.53692624

3.820375e-05 1.557583e-05 2.4527588 0.01417654
R21og 0.9471986
Excluded as outliers: Tinux cygwin gdb openssl (4 / 13 )
MMRE = 22.99840
Pred(25) = 61.53846
Error range = [ -16.40444 .. 97.19032 ]

Security vs. Num. attribute per method
Estimate Sstd. Error z value Pr(>|z|)

(Intercept) -1.0499715 0.2895565 -3.626137 2.876924e-04

0.8783335 0.2062723 4.258126 2.061477e-05
R21og 0.9492961
Excluded as outliers: sqlite perl Tinux openssl (4 / 13 )
MMRE = 16.92961
Pred(25) = 69.23077
Error range = [ -33.71983 .. 48.96089 ]

Security vs. Num. public methods
Estimate Std. Error z value Pr(>|z])

(Intercept) -9.903799e-02 1.616395e-01 -0.612709 0.54006879
x1 3.817564e-05 1.556492e-05 2.452672 0.01417997
R21og = 0.9471987

Excluded as outliers: Tinux cygwin gdb openssl (4 / 13 )
MMRE = 23.15043

Pred(25) = 61.53846

Error range = [ -18.91692 .. 96.61892 ]

Speed

Speed vs. LCOM
Estimate Std. Error z value Pr>lzl|)

(Intercept) -0.8776853 0.20230724 -4.338378 1.435382e-05

0.1351164 0.03524085 3.834085 1.260328e-04
R21og 0.9491585
Excluded as outliers: Tinux glibc openssl perl (4 / 13 )
MMRE = 17.71915
Pred(25) = 69.23077
Error range = [ -44.71081 .. 50.90545 ]

Speed vs. eLOC per method

Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.79642571 0.173572193 -4.588441 4.465692e-06
x1 0.02781879 0.006757576 4.116682 3.843656e-05
R21og = 0.9519118
Excluded as outliers: Tinux openssl glibc perl (4 / 13 )

Davide Taibi

215



Towards a trustworthiness model for open sourdsvaoé

2010
MMRE = 13.69598
Pred(25) = 84.61538
Error range = [ -40.7392 .. 16.77493 ]
Speed vs. McCabe o
Estimate Sstd. Error z value Pr(>|z|)

(Intercept) -0.6921361 0.16569838 -4.177084 2.952699e-05
x1

0.1931513 0.05239635

3.686350 2.274931e-04

R21og = 0.9498962
Excluded as outliers: Tinux openssl glibc (3 / 13 )
MMRE = 15.29002
Pred(25) = 76.92308
Error range = [ -39.96996 .. 33.50838 ]
Speed vs. ACC , RFC
Estimate Std. Error z value Pr(>|z])
(Intercept) -0.860165517 0.192798883 -4.461465 8.140114e-06
x1 0.074291962 0.029095916 2.553347 1.066932e-02
x2 0.003429174 0.001400897 2.447841 1.437149e-02
R21og = 0.9513538
Excluded as outliers: Tinux openssl glibc perl (4 / 13 )
MMRE = 13.93381
Pred(25) = 76.92308
Error range = [ -41.90643 .. 10.69179 ]
Speed vs. CBO , RFC
Estimate Std. Error z value Pr(>|z])
(Intercept) -0.859270402 0.192564299 -4.462252 8.110282e-06
x1 0.074258204 0.029081133 2.553484 1.066512e-02
x2 0.003424515 0.001401322 2.443774 1.453454e-02
R2log = 0.9513547
Excluded as outliers: Tinux openssl glibc perl (4 / 13 )
MMRE = 14.05334
Pred(25) = 76.92308
Error range = [ -43.4835 .. 10.75888 ]
Speed vs. eLOC , Num. attribute per method
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.563039e+00 3.022566e-01 -5.171231 2.325571e-07
x1 1.021710e-06 3.321474e-07 3.076073 2.097467e-03
X2 7.590314e-01 1.657819e-01 4.578494 4.683358e-06
R21log = 0.9521471
Excluded as outliers: openssl Tinux gdb perl (4 / 13 )
MMRE = 19.78608
Pred(25) = 61.53846
Error range = [ -36.37149 .. 64.60323 ]
Utility of the product developer community
community vs. ACC
Estimate Std. Error z value Pr(>|z]|)

(intercept)
R21og = 0.951876
Excluded as outliers: perl (1 / 13)
MMRE = 10.78645
Pred(25) = 92.3077
Davide Taibi

.61265952 0.13653385 -4.487235 7.215339e-06
0.08204031 0.01866126 4.396290 1.101167e-05

216



Towards a trustworthiness model for open sourdsvaoé

2010

Error range = [ -29.54724 .. 16.67387 ]

Ccommunity vs. CBO
Estimate std. Error z value Pr>lzl|)
(Intercept) -0.5972677 0.13472153 -4.433350 9.278006e-06
x1 0.0804353 0.01852726 4.341457 1.415412e-05
R2Tog = 0.9514845
Excluded as outliers: perl (1 / 13 )
MMRE = 10.98834
Pred(25) = 92.3077
Error range = [ -29.08407 .. 16.76074 ]

community vs. LCOM
Estimate Std. Error z value Pr(>|zl)

(Intercept) -1.0004855 0.21354228 -4.685187 2.797043e-06

0.1250674 0.02573718 4.859406 1.177385e-06
R21og 0.9505509
Excluded as outliers: glibc openssl1 subversion ( 3 / 13 )
MMRE = 13.54013
Pred(25) = 84.61538
Error range = [ -36.9326 .. 15.53158 ]

community vs. eLOC per class

Estimate Std. Error z value Pr(>|z])
(Intercept) -0.398719764 0.1830548126 -2.178144 0.029395309
x1 0.001367252 0.0004695217 2.912010 0.003591107
R21og = 0.9568126
Excluded as outliers: Tibxml2 sqlite gdb cygwin (4 / 13 )
MMRE = 24.54869
Pred(25) = 69.23077
Error range = [ -10.06239 .. 121.9292 ]

Ccommunity vs. Num. methods
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.904692e-01 1.789469e-01 -3.299690 0.0009679158
4.561845e-05 1.489235e-05 3.063215 0.0021897297
R21og 0.9527587
Excluded as outliers: Tinux cygwin gdb perl (4 / 13 )
MMRE = 22.31116
Pred(25) = 76.92308
Error range = [ -24.90588 .. 99.2933 ]

community vs. Num. attribute per method
Estimate Std. Error z value Pr>lzl)

(Intercept) -1.0062447 0.2857989 -3.520813 0.0004302255

0.6290865 0.2035320 3.090848 0.0019958597
R21og 0.9477246
Excluded as outliers: perl sglite Tinux ( 3 / 13 )
MMRE = 15.34681
Pred(25) = 84.61538
Error range = [ -34.37621 .. 49.48352 ]

Ccommunity vs. Num. public methods
Estimate Sstd. Error z value Pr(>lz|)

(Intercept) -5.966396e-01 1.800204e-01 -3.314289 0.000918764

4.757811e-05 1.546137e-05 3.077226 0.002089369
R21og 0.9528778
Excluded as outliers: Tinux cygwin gdb perl (4 / 13 )
MMRE = 22.45235
Pred(25) = 76.92308

Davide Taibi

217



Towards a trustworthiness model for open sourdsvaoé

Error range

2010

= [ -24.71196 .. 101.5722 ]

community vs. LCOM , Num. classes
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.6856567873 2.331556e-01 -2.940769 0.003273986
x1 0.0764484006 2.820048e-02 2.710891 0.006710278

X2

0.0001266623 6.132476e-05 2.065435 0.038881878

R2Tog = 0.9504459

Excluded as

outliers: Tinux cygwin ( 2 / 13 )

MMRE = 16.88189

Pred(25) =

Error range

84.61538
= [ -10.49582 .. 98.67139 ]

community vs. LCOM , RFC

(Intercept)
x2

Estimate Std. Error z value Pr(>1|zl)
-0.287286211 0.151444177 -1.896978 0.0578308951
0.102913348 0.028434327 3.619335 0.0002953613

-0.004124779 0.001676067 -2.460987 0.0138555574

R21og = 0.9533986

Excluded as

outliers: cygwin perl (2 / 13 )

MMRE = 12.37445

Pred(25) =

Error range

84.61538
= [ -9.100908 .. 52.02749 ]

community vs. eLOC , McCabe

(Intercept)
x2

Estimate std. Error z value Pr(>lz|)
-4.811913e-01 1.688362e-01 -2.850048 0.004371261
-4.692812e-07 2.144884e-07 -2.187909 0.028676196
2.353229e-01 7.190807e-02 3.272552 0.001065813

R21og = 0.947836

Excluded as

outliers: Tinux sqlite ( 2 / 13 )

MMRE = 20.60234

Pred(25) = 76.92308
Error range = [ -95.40849 .. 59.77883 ]
community vs. McCabe , Num. methods per class
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -1.11728356 0.274209075 -4.074568 4.609981e-05

x2

0.29962652 0.086098962 3.480025 5.013674e-04
0.02156189 0.007833908 2.752380 5.916391e-03

R21og = 0.9566052

Excluded as

outliers: sqlite gdb Tibxml2 posgresql ( 4 / 13 )

MMRE = 20.76168

Pred(25) =
Error range

76.92308
= [ -23.56640 .. 76.0099 ]

Documentation Quality

DocQuality

(Intercept)

vs. LCOM
Estimate Std. Error z value Pr(>|z|)
-1.1404971 0.21335438 -5.345553 9.014150e-08
0.1542199 0.02593226 5.947030 2.730517e-09

R21og 0.9480892

Excluded as

outliers: glibc subversion openssl (3 / 13 )

MMRE = 23.70122

Pred(25) =
Error range

69.23077
= [ -46.27743 .. 119.9662 ]

Davide Taibi




Towards a trustworthiness model for open sourdsvaoé

2010

DocQuality vs. Num. attributes per class
Estimate Std. Error z value Pr(>|zl)

(Intercept) 0.22116677 0.130340642 1.696837 0.08972756

-0.01723115 0.007226257 -2.384519 0.01710146
R21og 0.9434227
Excluded as outliers: Tinux posgresql cygwin perl ( 4 / 13 )
MMRE = 32.08148
Pred(25) = 61.53846
Error range = [ -37.52433 .. 193.3229 ]

DocQuality vs. Num. methods
Estimate std. Error z value Pr(>|z|)
(Intercept) -4.715958e-01 1.736558e-01 -2.715692 0.0066137345
x1 5.406815e-05 1.472338e-05 3.672265 0.0002404099
R21og = 0.9486783
Excluded as outliers: Tinux cygwin gdb perl (4 / 13 )
MMRE = 37.56731
Pred(25) = 53.84615
Error range = [ -25.53044 .. 137.6285 ]

DocQuality vs. Num. attribute per method

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -1.292514 0.2824477 -4.576117 4.736849e-06
x1 1.026637 0.1986796 5.167302 2.374968e-07
R21log = 0.9519507
Excluded as outliers: perl sqlite gdb ( 3 / 13 )
MMRE = 30.99149
Pred(25) = 69.23077
Error range = [ -40.33495 .. 187.7889 ]

DocQuality vs. Num. pubTlic methods
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.868995e-01 0.1750802812 -2.781007 0.0054190549
5.717341e-05 0.0000153281 3.729974 0.0001914995
R21og 0.949231
Excluded as outliers: Tinux cygwin gdb perl (4 / 13 )
MMRE = 37.65285
Pred(25) = 53.84615
Error range = [ -25.44634 .. 135.8436 ]

DocQuality vs. eLOC per method , Num. attributes per class
Estimate Std. Error z value Pr(>|zl|)

(Intercept) -0.69849295 0.195143189 -3.579387 3.444014e-04

x1 0.04214317 0.008682181 4.853984 1.210054e-06

X2 -0.02535074 0.008939206 -2.835905 4.569602e-03

R21og = 0.943998

Excluded as outliers: Tinux perl subversion ( 3 / 13 )

MMRE = 18.77071

Pred(25) = 76.92308

Error range = [ -50.86176 .. 57.22592 ]

DocQuality vs. eLOC per method , Num. methods per class

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.44503976 0.289977744 -4.983278 6.251597e-07
x1 0.01873411 0.007456299 2.512522 1.198718e-02
x2 0.05578795 0.011489008 4.855767 1.199214e-06
R2Tog = 0.9534666

Excluded as outliers: sqlite glibc 1ibxml12 openss1 ( 4 / 13 )

MMRE = 25.35241

Davide Taibi

219



Towards a trustworthiness model for open sourdsvaoé

2010

Pred(25) = 46.15385
Error range = [ -43.15462 .. 64.01202 ]

DocQuality vs. McCabe , Num. methods per class
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.60502529 0.290256245 -2.084452 0.037119048

0.19394146 0.073571927 2.636080 0.008387004
x2 0.01900285 0.008307099 2.287543 0.022164123
R21og = 0.9529295
Excluded as outliers: cygwin sqlite gdb Tibxml2 (4 / 13 )
MMRE = 33.09373
Pred(25) = 46.15385
Error range = [ -8.402078 .. 149.5282 ]

Trustworthiness with respect to other Open Source products

OssCompetitors vs. ACC
Estimate Std. Error =z value Pr(>|zl|)

(Intercept) 0.1386089 0.17739221 0.781370 0.434584939
x1 0.0819205 0.03033434 2.700586 0.006921743
R21og = 0.9310557

Excluded as outliers: Tinux perl subversion ( 3 / 13 )
MMRE = 12.38624

Pred(25) = 92.3077

Error range = [ -15.18194 .. 47.22463 ]

OssCompetitors vs. LCOM
Estimate Std. Error z value Pr(>|z]|)

(Intercept) -0.08099502 0.18356583 -0.4412315 0.659045429

0.08684293 0.02823579 3.0756335 0.002100559
R21og 0.9441202
Excluded as outliers: Tinux glibc openssl (3 / 13 )
MMRE = 13.71208
Pred(25) = 84.61538
Error range = [ -25.85867 .. 54.82388 ]

OssCompetitors vs. eLOC per method
Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.02596338 0.183890653 -0.1411893 0.887720435
x1 0.02595006 0.007918353 3.2772041 0.001048406
R2Tog = 0.940268
Excluded as outliers: Tinux sqlite perl ( 3 / 13 )
MMRE = 13.40685
Pred(25) = 84.61538
Error range = [ -23.61703 .. 38.00108 ]

OssCompetitors vs. Num. methods
Estimate std. Error z value Pr(>|z|)
(Intercept) -1.679869e-01 1.812274e-01 -0.926940 3.539577e-01

Davide Taibi

220



Towards a trustworthiness model for open sourdsvaoé

2010

x1 6.562055e-05 1.593747e-05 4.117376 3.832105e-05
R21og = 0.9457584

Excluded as outliers: Tinux gdb cygwin perl (4 / 13 )

MMRE = 14.59442

Pred(25) = 76.92308

Error range = [ -18.64501 .. 42.84904 ]

OssCompetitors vs. Num. attribute per method
Estimate Std. Error z value Pr(>|z]|)
(Intercept) 0.01036333 0.2962005 0.03498755 0.97208967
x1 0.45483522 0.2128316 2.13706584 0.03259264
R2Tog = 0.9269898
Excluded as outliers: sqlite linux perl subversion ( 4 / 13 )
MMRE = 16.98973
Pred(25) = 84.61538
Error range = [ -16.05440 .. 74.18972 ]

OssCompetitors vs. Num. public methods
Estimate std. Error z value Pr(>lzl)
(Intercept) -1.479425e-01 1.830022e-01 -0.8084192 4.188493e-01
6.542355e-05 1.657909e-05 3.9461494 7.941808e-05
R21og 0.944015
Excluded as outliers: Tinux gdb cygwin perl (4 / 13 )
MMRE = 14.81329
Pred(25) = 76.92308
Error range = [ -18.04017 .. 42.77925 ]

OssCompetitors vs. RFC
Estimate Std. Error z value Pr(>|zl)

(Intercept) 0.819423729 0.13754190 5.957630 2.559220e-09

-0.003289863 0.00138025 -2.383527 1.714762e-02
R21og 0.9322374
Exc;uded as outliers: T1inux posgresql subversion cygwin ( 4 /
13
MMRE = 16.57449
Pred(25) = 84.61538
Error range = [ -25.13926 .. 89.81073 ]

OssCompetitors vs. ACC , LCOM
Estimate Std. Error z value Pr(>|z]|)
(Intercept) 0.5266014 0.25347752 2.077507 0.037754745
x1 0.1091626 0.04195605 2.601833 0.009272708
X2 -0.1225675 0.05597316 -2.189755 0.028542016
R2Tog = 0.9350203
5xc1uded as outliers: perl Tinux posgresql subversion ( 4 / 13
MMRE = 14.32073
Pred(25) = 84.61538
Error range = [ -45.54541 .. 41.54445 ]

OssCompetitors vs. ACC , Num. attributes per class
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.44246548 0.16407607 2.696709 0.0070028359
0.14275718 0.03704286 3.853837 0.0001162808

x2 -0.03142094 0.00955415 -3.288722 0.0010064337

R2Tog = 0.9462454

Excluded as outliers: Tinux subversion ldap-src ( 3 / 13 )

MMRE = 10.5708

Pred(25) = 76.92308

Error range = [ -11.07156 .. 34.98033 ]

Davide Taibi

221



Towards a trustworthiness model for open sourdsvaoé

2010
OssCompetitors vs. ACC , Num. methods per class
Estimate Std. Error z value Pr(>|zl)

(Intercept) 0.35956129 0.22042323 1.631231 0.102841502
0.08876927 0.03009009 2.950116 0.003176545

x2 -0.01888204 0.00874729 -2.158616 0.030879991

R21og = 0.9416606

Excluded as outliers: perl Tinux (2 / 13 )

MMRE = 12.84397

Pred(25) = 84.61538

Error range = [ -28.60415 .. 53.48325 ]

OssCompetitors vs. CBO , LCOM
Estimate Std. Error z value Pr(>|z]|)
(Intercept) 0.5598569 0.25126418 2.228160 0.02586983
0.1035329 0.04294751 2.410684 0.01592262
x2 -0.1219968 0.05664703 -2.153631 0.03126911
R2Tog = 0.9336252
Excluded as outliers: perl Tinux posgresql subversion ( 4 / 13

)

MMRE = 14.60993

Pred(25) = 84.61538

Error range = [ -44.68897 .. 43.96367 ]

OssCompetitors vs. CBO , Num. attributes per class
Estimate Std. Error z value Pr(>|z]|)

(Intercept) 0.46015031 0.16238377 2.833721 0.0046009474
0.14601634 0.03820869 3.821548 0.0001326168

x2 -0.03281393 0.00979372 -3.350507 0.0008066386

R21og = 0.9459533

Excluded as outliers: Tinux subversion ldap-src ( 3 / 13 )

MMRE = 10.95897

Pred(25) = 76.92308

Error range = [ -10.98415 .. 34.72803 ]

OssCompetitors vs. CBO , Num. methods per class
Estimate Std. Error z value Pr(>|z]|)

(Intercept) 0.39496998 0.21718994 1.818546 0.06898067
0.08458445 0.03013316 2.807022 0.00500018

x2 -0.01935374 0.00876653 -2.207686 0.02726618

R2Tog = 0.9408186

Excluded as outliers: perl Tinux (2 / 13 )

MMRE = 13.01269

Pred(25) = 84.61538

Error range = [ -28.25762 .. 55.65066 ]

OssCompetitors vs. LCOM , eLOC
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.845058e-01 2.482176e-01 -1.549067 0.1213655654

8.364675e-02 2.860610e-02 2.924087 0.0034546770
x2 1.252165e-06 3.623181e-07 3.455983 0.0005482906
R21og = 0.943718
Excluded as outliers: Tinux gdb ( 2 / 13 )
MMRE = 11.57405
Pred(25) = 84.61538
Error range = [ -16.57002 .. 39.9556 ]

OssCompetitors vs. LCOM , Num. methods
Estimate std. Error z value Pr(>|z|)
(Intercept) -7.727836e-01 3.430907e-01 -2.252418 2.429589e-02

Davide Taibi

222



Towards a trustworthiness model for open sourdsvaoé

2010

x1 9.428574e-02 3.673456e-02 2.566677 1.026782e-02
X2 9.406765e-05 2.389677e-05 3.936417 8.270722e-05
R21og = 0.9489377 _ _
Excluded as outliers: Tinux gdb cygwin posgresql ( 4 / 13 )
MMRE = 14.62395
Pred(25) = 84.61538
Error range = [ -12.21201 .. 51.75187 ]
O?SCOmpetitors vs. eLOoC per nEEhod , Num. attributes per
class

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.52183316 0.20240936
0.02515103 0.01120142

2.578108 0.009934297
2.245342 0.024746157

x2 -0.04171287 0.01296373 -3.217660 0.001292408
R21og = 0.9383593 )
5xc1uded as outliers: Tinux gdb subversion posgresql ( 4 / 13
MMRE = 15.51862
Pred(25) = 76.92308
Error range = [ -56.93294 .. 31.37763 ]
OssCompetitors vs. eLOC per class , eLocC
Estimate Std. Error z value Pr(>|zl)

(Intercept) -4.950762e-01 3.088323e-01 -1.603058 0.108921758

2.239849%e-03 7.025664e-04
1.116911e-06 4.059276e-07 2.751503 0.005932249

x2
R2log = 0.9466387
Excluded as outliers:
MMRE = 19.26473
Pred(25) = 76.92308
Error range = [ -13.97349 ..

Tinux gdb Tibxml12 sqlite

3.188095 0.001432133

(4/13)

84.44037 1]

OssCompetitors vs. eLOC ,

Estimate std.

Num. methods per class
Error

z value Pr(>|z|)

(Intercept) -1.121878e+00 4.810261e-01 -2.332261 0.0196869768

1.997001e-06 5.674061e-07

3.519527 0.0004323164

x2 4.485541e-02 1.502577e-02 2.985231 0.0028336419
R21og = 0.9500572

Excluded as outliers: Tinux gdb openss1 Tlibxml2 (4 / 13 )
MMRE = 14.48514

Pred(25) = 84.61538

Error range = [ -23.89715 .. 47.10292 ]

OssCompetitors vs. McCabe , Num. attributes per class

Estimate Std. Error
(Intercept) 0.51153704 0.21910237
x1 0.19714412 0.10031768

z value Pr(>|z]|)
2.334694 0.019559399
1.965198 0.049391303

X2 -0.04479094 0.01456916 -3.074367 0.002109495
R2Tog = 0.936697 _
Excluded as outliers: Tinux gdb posgresql subversion ( 4 / 13
MMRE = 15.87538
Pred(25) = 76.92308
Error range = [ -58.46338 .. 34.63136 ]
OssCompetitors vs. ACC , Lc6ﬁ_, RFC
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.038757382 0.154348340 0.2511033 0.8017342225

0.084924252 0.023802604
0.060483535 0.026229528 2.

x2

Davide Taibi

3.5678555 0.0003599149
3059330 0.0211143760

223



Towards a trustworthiness model for open sourdsvaoé

2010

x3 -0.003332799 0.001349377 -2.4698807 0.0135158110
R2log = 0.944446

Excluded as outliers: 0/ 13)

MMRE = 9.961673

Pred(25) = 92.3077

Error range = [ -14.25141 .. 55.02372 ]

Trustworthiness with respect to non Open Source products

CssCompetitors vs. ACC
Estimate Std. Error z value Pr(>|z]|)
(Intercept) 0.53722334 0.18056441 2.975245 0.002927548
0.07268813 0.03205261 2.267776 0.023342879
R21og 0.9326331
Excluded as outliers: Tinux perl (2 / 13 )
MMRE = 11.80516
Pred(25) = 84.61538
Error range = [ -10.72870 .. 38.99635 ]

CssCompetitors vs. eLOC per method
Estimate Std. Error z value Pr(>|zl|)

(Intercept) 0.43049430 0.22419318 1.920194 0.05483345

x1 0.02916432 0.01189664 2.451475 0.01422719
R2Tog = 0.9345065

Excluded as outliers: Tinux sqlite posgresql ( 3 / 13 )
MMRE = 13.30016

Pred(25) = 76.92308

Error range = [ -15.56892 .. 35.27322 ]

CssCompetitors vs. Num. methods
Estimate Std. Error z value Pr(>|zl|)

(Intercept) 3.950109e-01 1.970246e-01 2.004881 0.044975753
x1 6.262022e-05 2.145549e-05 2.918611 0.003515944
R2log = 0.935521

Excluded as outliers: Tinux cygwin gdb posgresql (4 / 13 )
MMRE = 14.22091

Pred(25) = 76.92308

Error range = [ -8.552595 .. 42.52655 ]

CssCompetitors vs. Num. methods per class

Estimate Std. Error z value Pr(>|zl)
(Intercept) 1.22640911 0.181819582 6.745198 1.528183e-11
x1 -0.01835388 0.009316272 -1.970088 4.882829e-02
R2log = 0.9311549
Excluded as outliers: Tinux perl (2 / 13 )
MMRE = 14.50143
Pred(25) = 84.61538
Error range = [ -22.16676 .. 65.08489 ]

CssCompetitors vs. Num. attribute per method
Estimate Std. Error z value Pr(>|zl|)

(Intercept) 0.2408754 0.3068030 0.7851143 0.43238657
x1 0.5279231 0.2233258 2.3639146 0.01808298
R21og = 0.9326764

Excluded as outliers: sqlite linux perl ( 3 / 13 )

MMRE = 13.40067

Pred(25) = 92.3077

Davide Taibi

224



Towards a trustworthiness model for open sourdsvaoé

2010

Error range = [ -13.25562 .. 54.75226 ]

CssCompetitors vs. Num. public methods
Estimate std. Error z value Pr(>|zl)

(Intercept) 0.3804268597 0.2056252850 1.850098 0.064299474
x1 0.0000664253 0.0000232928 2.851752 0.004347897
R21og = 0.934901

Excluded as outliers: Tinux cygwin gdb posgresql ( 4 / 13 )
MMRE = 14.65793

Pred(25) = 69.23077

Error range = [ -8.355594 .. 43.49516 ]

CssCompetitors vs. ACC , LCOM
Estimate Std. Error z value Pr>lz|)

(Intercept) 0.7169864 0.19559360 3.665695 0.0002466682

0.1329127 0.04136043 3.213523 0.0013111727
x2 -0.1051667 0.04715965 -2.230015 0.0257464489
R2log = 0.9381416
Excluded as outliers: perl Tinux (2 / 13 )
MMRE = 11.22235
Pred(25) = 76.92308
Error range = [ -36.11098 .. 32.8361 ]

CssCompetitors vs. ACC , Num. attributes per class
Estimate Std. Error z value Pr(>|zl)

(Intercept) 0.72397163 0.163229462 4.435300 9.194418e-06
0.09662670 0.035255696 2.740740 6.130099e-03

x2 -0.01865060 0.008544485 -2.182765 2.905311e-02

R21og = 0.9377748

Excluded as outliers: Tlinux (1 / 13 )

MMRE = 10.20937

Pred(25) = 84.61538

Error range = [ -12.18411 .. 37.36086 ]

CssCompetitors vs. ACC , Num. methods per class
Estimate Std. Error z value Pr(>|zl)

(Intercept) 0.84932423 0.235593317 3.605044 0.0003121003
0.07718665 0.032058483 2.407683 0.0160541275

x2 -0.01954108 0.009176351 -2.129504 0.0332125471

R21og = 0.9376741

Excluded as outliers: perl Tinux (2 / 13 )

MMRE = 10.74531

Pred(25) = 92.3077

Error range = [ -20.09363 .. 47.8937 ]

CssCompetitors vs. ACC , RFC
Estimate Std. Error z value Pr(>|zl)

(Intercept) 0.769213468 0.170627568 4.508143 6.539751e-06

0.074170885 0.031231570 2.374869 1.755518e-02
x2 -0.002835036 0.001334122 -2.125020 3.358498e-02
R21og = 0.9374866
Excluded as outliers: Tlinux (1 / 13 )
MMRE = 10.73369
Pred(25) = 84.61538
Error range = [ -8.457621 .. 49.71875 ]

CssCompetitors vs. CBO , LCOM

Estimate Std. Error z value Pr>lz|)
(Intercept) 0.7412328 0.19409335 3.818950 0.0001340211
x1 0.1292410 0.04213871 3.067037 0.0021619188

Davide Taibi

225



Towards a trustworthiness model for open sourdsvaoé

2010

X2 -0.1044355 0.04797735 -2.176766 0.0294980418
R2log = 0.9371468

Excluded as outliers: perl Tinux (2 / 13 )

MMRE = 11.49438

Pred(25) = 76.92308

Error range = [ -35.37259 .. 33.39255 ]

CssCompetitors vs. CBO , Num. attributes per class
Estimate Std. Error z value Pr(>|zl|)

(Intercept) 0.74012709 0.161815681 4.573890 4.787517e-06
x1 0.09507526 0.035909064 2.647668 8.104919e-03

X2 -0.01886545 0.008670435 -2.175836 2.956751e-02
R21og = 0.9372796

Excluded as outliers: Tlinux (1 / 13 )

MMRE = 10.40584

Pred(25) = 84.61538

Error range = [ -12.42110 .. 37.71880 ]

CssCompetitors vs. CBO , Num. methods per class
Estimate Std. Error z value Pr(>|zl)

(Intercept) 0.87780950 0.232389759 3.777316 0.0001585277
x1 0.07406512 0.032130215 2.305155 0.0211579023

X2 -0.01997669 0.009196706 -2.172157 0.0298438119

R21og = 0.937137

Excluded as outliers: Tinux perl (2 / 13 )

MMRE = 10.93107

Pred(25) = 84.61538

Error range = [ -19.88941 .. 49.1187 ]

CssCompetitors vs. CBO , RFC
Estimate Std. Error z value Pr(>|zl)

(Intercept) 0.787394464 0.169172644 4.654384 3.249505e-06
x1 0.071414697 0.031454377 2.270422 2.318202e-02
X2 -0.002843488 0.001340449 -2.121295 3.389700e-02
R21og = 0.937005

Excluded as outliers: Tlinux (1 / 13 )
MMRE = 10.90620

Pred(25) = 84.61538

Error range = [ -8.771909 .. 50.57831 ]

CssCompetitors vs. LCOM , eLOC per method
Estimate Std. Error z value Pr>lzl|)

(Intercept) 0.7668079 0.21743061 3.526679 0.0004208073
x1 -0.1749729 0.07347917 -2.381259 0.0172535867
x2 0.0493524 0.01547119 3.189954 0.0014229527
R2Tog = 0.9370105

Excluded as outliers: Tinux perl sqlite glibc ( 4 / 13 )
MMRE = 15.9887

Pred(25) = 76.92308

Error range = [ -47.14434 .. 25.71036 ]

C?sCompetitors vs. eLOC per method , Num. attributes per
class
Estimate Std. Error z value Pr(>|z]|)

(Intercept) 0.74731307 0.17225582 4.338391 1.435297e-05

0.03227598 0.01000799 3.225022 1.259631e-03
x2 -0.04365922 0.01298912 -3.361215 7.760045e-04
R2log = 0.9418964
Excluded as outliers: Tinux gdb ( 2 / 13 )
MMRE = 12.53779

Davide Taibi

226



Towards a trustworthiness model for open sourdsvaoé

2010

Pred(25) = 76.92308
Error range = [ -51.62918 .. 29.09189 ]

CssCompetitors vs. eLOC per method , RFC
Estimate Std. Error z value Pr(>|zl)

(Intercept) 0.747060085 0.174237363 4.287600 1.806141e-05

0.020965968 0.008483986 2.471240 1.346453e-02
x2 -0.003949659 0.001529169 -2.582879 9.797979%e-03
R21og = 0.9379307
Excluded as outliers: Tlinux (1 / 13 )
MMRE = 11.65961
Pred(25) = 84.61538
Error range = [ -22.29256 .. 49.51463 ]

CssCompetitors vs. McCabe , Num. attributes per class
Estimate Std. Error z value Pr(>|z]|)

(Intercept) 0.75011045 0.18473932 4.060372 4.899451e-05

x1 0.26300399 0.09933235 2.647717 8.103722e-03

x2 -0.04622622 0.01528033 -3.025210 2.484602e-03

R21og = 0.9383112

Excluded as outliers: Tinux gdb ( 2 / 13 )

MMRE = 13.39119

Pred(25) = 84.61538

Error range = [ -50.786 .. 30.44502 ]

CssCompetitors vs. Num. attributes per class , Num. attribute

per method

Estimate Std. Error z value Pr(>|z]|)
(Intercept) 0.65070308 0.23546012 2.763538 0.0057178357
x1 -0.05202552 0.01548510 -3.359714 0.0007802314
X2 0.62230991 0.24495212 2.540537 0.0110682387
R21og = 0.9398034
Excluded as outliers: Tinux gdb posgresql ( 3 / 13 )
MMRE = 15.54464
Pred(25) = 69.23077
Error range = [ -52.57854 .. 41.16742 ]

CssCompetitors vs. Num. attributes per class , Num. public
methods

Estimate std. Error z value Pr(>|z|)
(Intercept) 7.413532e-01 2.199416e-01 3.370682 0.0007498234
x1 -2.789214e-02 1.397088e-02 -1.996448 0.0458851417
X2 5.176754e-05 1.913798e-05 2.704963 0.0068311985
R21log = 0.9371734
Excluded as outliers: Tinux cygwin sqlite gdb ( 4 / 13 )
MMRE = 12.83062
Pred(25) = 76.92308
Error range = [ -18.43080 .. 44.29059 ]

Trustworthiness

Trustworthiness vs. ACC
Estimate Std. Error z value Pr>lz|)
(Intercept) 0.06107287 0.16333649 0.3739083 0.7084725473
0.10715451 0.02948285 3.6344685 0.0002785543

Davide Taibi

227



Towards a trustworthiness model for open sourdsvaoé
2010

R2Tog = 0.9505937

Excluded as outliers: Tinux perl ldap-src ( 3 / 13 )
MMRE = 12.52097

Pred(25) = 92.3077

Error range = [ -23.33907 .. 72.07474 ]

Trustworthiness vs. CBO
Estimate Std. Error z value Pr>lzl|)

(Intercept) 0.08130587 0.16163887 0.5030094 0.6149576697

0.10471561 0.02954980 3.5436990 0.0003945554
R21og 0.949967
Excluded as outliers: Tinux perl ldap-src ( 3 / 13 )
MMRE = 12.77652
Pred(25) = 92.3077
Error range = [ -22.90171 .. 72.18718 ]

Trustworthiness vs. LCOM
Estimate Std. Error z value Pr>lz|)
(Intercept) -0.5367880 0.22263195 -2.411101 1.590446e-02
0.1632395 0.03165883 5.156208 2.520014e-07
R21og 0.942918
Excluded as outliers: Tinux glibc openssl subversion ( 4 / 13

)

MMRE = 13.25279

Pred(25) = 76.92308

Error range = [ -36.55212 .. 26.49659 ]

Trustworthiness vs. eLOC per method
Estimate Std. Error z value Pr(>|zl)
(Intercept) -0.06468410 0.1750661 -0.3694839 7.117671e-01
0.02970275 0.0076190 3.8985095 9.678659e-05
R21og 0.9414993
Excluded as outliers: Tinux perl sqlite ( 3 / 13 )
MMRE = 13.79388
Pred(25) = 84.61538
Error range = [ -25.21418 .. 61.3659 ]

Trustworthiness vs. McCabe
Estimate Sstd. Error z value Pr(>|z])

(Intercept) 0.07913687 0.17483670 0.452633 0.6508130099

0.20597148 0.05997392 3.434351 0.0005939744
R21og 0.9494126
Excluded as outliers: Tinux sqlite perl ldap-src ( 4 / 13 )
MMRE = 14.86738
Pred(25) = 84.61538
Error range = [ -21.12578 .. 69.69928 ]

Trustworthiness vs. Num. methods
Estimate std. Error z value Pr(>|z|)
(Intercept) -5.107505e-02 1.733888e-01 -0.2945694 7.683228e-01
x1 6.133483e-05 1.521912e-05 4.0301175 5.574897e-05
R2Tog = 0.9460112
Excluded as outliers: Tinux cygwin gdb perl (4 / 13 )
MMRE = 16.89503
Pred(25) = 76.92308
Error range = [ -22.98601 .. 59.99431 ]

Trustworthiness vs. Num. attribute per method
Estimate Sstd. Error z value Pr(>|z|)
(Intercept) -0.5984576 0.2765321 -2.164152 3.045266e-02

Davide Taibi

228



Towards a trustworthiness model for open sourdsvaoé
2010

x1 0.8732914 0.2015840 4.332147 1.476624e-05
R21og = 0.9446666

Excluded as outliers: sqlite perl Tinux ( 3 / 13 )
MMRE = 14.56759

Pred(25) = 76.92308

Error range = [ -31.77072 .. 43.18899 ]

Trustworthiness vs. Num. public methods

Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.649428e-02 1.753479e-01 -0.322184 7.473133e-01
x1 6.368713e-05 1.589916e-05 4.005692 6.183616e-05
R2log = 0.945877
Excluded as outliers: Tinux cygwin gdb perl (4 / 13 )
MMRE = 17.25905
Pred(25) = 76.92308
Error range = [ -22.75501 .. 61.06993 ]

Trustworthiness vs. eLOC per method , eLOC per class
Estimate std. Error z value Pr(>|z|)

(Intercept) 0.040254753 0.1772362984 0.2271248 0.8203267279
0.043615357 0.0113909548 3.8289466 0.0001286929

x2 -0.001606256 0.0006217851 -2.5832979 0.0097860770

R2log = 0.9437019

Excluded as outliers: Tibxml12 Tinux perl gdb ( 4 / 13 )

MMRE = 21.79792

Pred(25) = 69.23077

Error range = [ -77.90352 .. 54.46817 ]

Trustworthiness vs. Num. methods , Num. methods per class
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.005593e+00 3.681290e-01 -2.731632 6.302148e-03
2.388715e-05 8.933793e-06 2.673797 7.499777e-03

x2 5.906534e-02 1.350339e-02 4.374113 1.219274e-05

R2log = 0.9441127

Excluded as outliers: Tinux glibc openss1l Tibxm12 ( 4 / 13 )

MMRE = 19.41418

Pred(25) = 69.23077

Error range = [ -46.35815 .. 40.311 ]

Trustworthiness vs. Num. methods per class , Num. public
methods

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.002688e+00 3.668939e-01 -2.732910 6.277752e-03
x1 5.894094e-02 1.347003e-02 4.375710 1.210377e-05
X2 2.395724e-05 8.942985e-06 2.678886 7.386752e-03
R2Tog = 0.9441462

Excluded as outliers: Tinux glibc openss1l Tibxm12 ( 4 / 13 )
MMRE = 19.52612

Pred(25) = 69.23077

Error range = [ -46.24506 .. 40.26507 ]

Davide Taibi

229



