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Chapter 1. Introduction

1.1 Models in ecological risk assessment

Predicting ecosystem exposure to chemicals represents a complex task in ecotoxicology and

ecological risk assessment (ERA). Exposure assessment generally implies the evaluation of the

concentration of a specific chemical in the main environmental media (air, soil, water, sediment)

and in organisms representing a food source for other organisms (predators) by secondary poisoning

(EC, 2003). This results in a predicted exposure concentration (PEC) for each environmental

compartment, which is compared to a predicted no-effect concentration (PNEC), deriving from

effect assessment, to provide a quantitative estimation (risk quotient, RQ) of the level of risk posed

by the investigated substance to a certain trophic level of the ecosystem (EC, 2003):

PNECPECRQ /

The calculation of RQ is an iterative process, which involves the continuous refinement of such

ratio when further information or testing are required and should be carried out until a final

conclusion regarding the environmental risks can be reached. Reasonably, the relevance of such

estimate relies on the accuracy of PEC and PNEC estimates.

The estimation of environmental exposure is performed by means of (1) experimental monitoring

and/or (2) predictive modelling. Both approaches have advantages and disadvantages and the choice

of a particular approach needs to be based on a case by-case-evaluation. Monitoring is crucial, for

example, when the contamination levels of known and unknown chemicals in a certain area must be

investigated, and when the evolution of such contamination needs to be followed in time. However,

monitoring data represent single points in space and time and provide “snapshots” of reality and

little opportunity for extrapolation to reconstruct spatial and temporal patterns. Moreover, they
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represent an a posteriori approach, reflecting a contamination that has already happened and

leaving no chances of intervention (EC, 2013). In contrast, models are an a priori approach, which

allow the investigation of the environmental fate of a chemical before its use or emission and the

prediction of concentrations in the different compartments. Moreover, models can also be employed

to (1) interpret monitoring data, since they are based on relationships between physical-chemical

properties and environmental characteristics with chemical partitioning and distribution in the

environment and (2) as a support tool when planning new monitoring campaigns, providing

information, for example, on when and where concentrations in a certain compartment are expected

to be the highest. On the other hand, models need experimental data for their calibration and

validation and the proper predictive approach must be carefully selected for each specific situation,

in order to avoid misleading calculations or interpretations (EC, 2013). This implies that, whenever

possible, a combination of the two approaches (i.e., monitoring + modelling) would be desirable

(EC, 2003; EC, 2013).

Nowadays, multimedia fate models (MFMs) are widely employed to evaluate chemical fate in the

environment and therefore ecosystem exposure, since they represent a good compromise between

ease of implementation and predictive ability (EC, 2013). Such models generally provide a picture

of the behaviour of the investigated chemical in the main environmental compartments (air, water,

soil, sediment) starting from data concerning emission, physical-chemical properties and

environmental characteristics (Mackay, 2001; Mackay and Mackay, 2007). Among MFMs, the

“Mackay-type” multimedia box models (Mackay, 2001) and derived approaches are among the

most commonly used (Hollander et al., 2007). In such models, environmental compartments are

seen as a number of boxes, characterized by a well-mixed internal mass and, therefore, by uniform

chemical distribution throughout. Such compartments may be continuous (e.g., water) or consist of

a number of particles that are not in contact with each other, although residing in the same phase

(e.g., atmospheric particles or biota in water). “Mackay-type” multimedia box models rely on the

concept of fugacity, introduced by G. N. Lewis in 1901 as a more convenient thermodynamic
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equilibrium criterion than chemical potential and later adopted by Mackay for chemical mass

balance calculations (Mackay, 1979; Mackay and Paterson, 1981). After these first, pioneering

works, a number of multimedia box models were soon developed and applied to a number of

scenarios (Mackay et al., 1983; 1996a; 1996b) and a tiered strategy was also proposed with the

main aim of encouraging standardization in the investigation of the fate of substances and in the

calculation of PECs (Mackay et al., 1996c); in the tiered-strategy, 3 of the 5 steps involve the use of

modelling tools, to first deduce the general features of chemical behaviour in a generic environment

and, subsequently, to investigate chemical fate at regional and local scales.

Apart from the spatial scale, models can also be distinguished into steady-state approaches, which

ignore the temporal variability of chemical emission and environmental characteristics (e.g.,

compartment temperature, air or water fluxes, biota abundance, etc.), and unsteady-state models,

developed to investigate exposure concentrations in response to changes in discharge and

environmental properties, and therefore capable of providing a picture of exposure variability with

time (e.g., on a daily or hourly basis). While steady-state models are better suited to simulate

situations in which chemical emission does not significantly vary during the simulation period (e.g.,

sewage treatment plant discharges), dynamic ones are better suited to handle episodic discharges,

such as pulse emissions (e.g., pesticides within the FOCUS groundwater and surface-water models)

(FOCUS 2000, 2001) or chemical mass movements caused by environmental phenomena such as

runoff after a rainfall event (EC, 2013; Di Guardo and Hermens, 2013). Examples of steady-state

models are the evaluative model EQC (Mackay et al., 1996a) and the regional model ChemCAN

(Mackay et al., 1996b), while to unsteady-state approaches belong, for example, the SoilFug model

(Di Guardo et al., 1994), developed to investigate the fate of pesticides at field scale in agricultural

basins, and the DynA Model (Di Guardo et al., 2006), a dynamic surface water-sediment model

accounting for time-varying chemical emissions, water and sediment properties; examples of more

recent unsteady-state models are SoilPlus (Ghirardello et al., 2010), developed to investigate the

fate of organic chemicals in layered air-litter-soil systems, AirFug (Morselli et al., 2011) and
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AirPlus (Morselli et al., 2012), 2 air-soil models integrating some aspects of more complex

physically-based models to account for the dynamics of the atmospheric compartment.

From a regulatory point of view, the European Union System for the Evaluation of Substances

(EUSES; EC, 2004) is currently the reference support tool for the evaluation of the risk posed by

industrial chemicals to humans and environment and represents the implementation of the Technical

Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk

Assessment for New Notified Substances (EC, 2003). The comprehensive modelling framework

EUSES includes 7 different modules, one of which (“distribution module”) allows the calculation of

the concentrations in the relevant environmental compartments (air, surface water, marine water,

sediment, soil and groundwater) at the appropriate spatial scale (EC, 2004). Regional-scale fate

calculations in EUSES are based on a recent version of the steady-state modelling approach

SimpleBox (Den Hollander and Van de Meent, 2004).
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1.2 Limits of current approaches and new challenges

The main limitation of the EUSES modelling framework lies in the assumption of steady-state

concerning chemical emission and environmental characteristics; more specifically, emission rates

are assumed to be constant in time and temporal variations in flow rates, temperatures and partition

coefficients are disregarded (EC, 2004). Moreover, simulations are run in generalized local and

regional scenarios. All these assumptions imply that EUSES predicts space- and time- averaged

concentrations of chemical substances in non-existing hypothetical exposure situations (EC, 2013).

If on one hand such assumptions answer the need for systematic treatment of substances in a fair

and equitable way, on the other hand they limit the environmental and ecological realism and

relevance of exposure predictions (De Laender et al., 2014). For example, emissions are only

seldom constant; they usually vary in space, creating a complex exposure pattern, and in time, even

at short time scales, allowing less time than required for the establishment of a steady state.

Concerning environmental heterogeneity, it must be remarked that EUSES was designed with a

number of hard-coded static environmental parameters simulating an ideal region located in the

Netherlands and is therefore not suitable to derive specific information on chemical fate for other

European regions (e.g., mountainous regions or zones characterized by different climatic

conditions). This issue is partially overcome, in regulatory models for pesticide fate in groundwater

and surface water (FOCUS 2000, 2001), by the possibility of running simulations with regionally-

based scenarios, selecting for example combinations of weather, soil and cropping data

representative of different European conditions (EC, 2013).

A recent opinion of three scientific committees of the European Commission (EC, 2013) tried to

address the increasing need for realism and relevance of ERA procedures and identified a number

of new challenges in both the exposure and the effect fields. Moreover, a recent publication (Di

Guardo and Hermens, 2013) listed and extensively discussed all the raised issues in exposure

assessment. A summary of the suggested challenges is reported in Table 1.
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Table 1. Overview of the suggested challenges and growing needs in exposure assessment

(modified from Di Guardo and Hermens, 2013)

■ Exposure dynamics in biota: need for more detailed studies on

kinetic aspects of the rate limiting stepsBIOAVAILABILITY AND INTERNAL

EXPOSURE ■ Internal exposure: need for research and new concepts for chemicals

other than those which act by narcosis

■ Need for data for chemical mixtures, metabolites and nanoparticles

■ Ecological variability of scenarios: need for spatially- and

temporally-resolved data

■  Need for harmonization and availability (open-access) of data (and

metadata) for evaluation of quality and possible use

■ Need for peer-review of physical-chemical properties and

environmental half-lives

■ Need for improvement of the current environmental scenarios

(including mass transfer coefficients, MTCs) to describe realistic

ecological conditions (e.g. variability of conditions in time and space)

■ Need for temporal and spatial patterns of chemical emissions

MONITORING DATA

■ Need for datasets of model evaluation purposes

■ Need for modelling approaches for the prediction of sorption,

bioavailability and bioaccumulation of polar and ionized chemicals and

nanomaterials

■ Need for dynamic and spatially-explicit models, to reconstruct the

variability of environmental exposure

■ Need for model application to realistic scenarios, to reflect the

amplitude of ecological variability of conditions

■ Need for specific organism parameters (and their change with time)

to unfold the differences among organisms and to extend the

applicability of bioaccumulation models in aquatic and terrestrial

systems

■ Need for dynamic bioaccumulation models, especially accounting

for ecological variation in the food web path of chemicals

IMPROVEMENT AND CHALLENGES OF

MODELLING APPROACHES

■ Need for integration between exposure and effect models, to account

for risk evaluation beyond individual level and move to populations

and communities

With respect to improvements in modelling approaches, there is a strong need to estimate

bioavailable concentrations, here defined as the freely-dissolved chemical concentrations (e.g., in

water), which therefore determine the amount of chemical available for uptake by organisms. In
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aquatic environments, bioavailable concentrations are known to vary in space and time in response

to changes in primary producers biomass (algae and/or macrophytes) (Taylor et al., 1991; Berglund

et al., 2001; Leistra et al., 2003), particulate organic carbon (POC) and/or dissolved organic carbon

(DOC) concentrations in water (Schwarzenbach, 1993), and to the presence of high concentrations

of sorbing materials (organic matter or soot) in sediment (Gustafsson et al., 1997). Therefore,

predictive fate models should be able to account for such variability and to capture the complexity

of exposure related to environmental and ecological heterogeneity; this can be accomplished by

developing and using spatially-explicit dynamic (unsteady-state) models including compartments

and/or sub-compartments capable of describing environmental phases such as primary producers,

POC and DOC.

The complexity and variety of ecosystems implies the need for modelling tools capable of

predicting the extent of concentration changes in time and space, to better characterize organism

responses which may vary according to their life cycle and contribute to short- and long-term

effects on ecosystems (EC, 2013). Temporal changes are related, for example, to chemical emission

patterns (e.g., seasonal, pulse, event-driven) and meteorology (temperature, precipitations, wind

speed, and direction) (Di Guardo and Hermens, 2013). This variability was shown to be significant

especially in mobile phases such as air, where rapid changes in semi-volatile organic contaminant

concentrations, mainly related to atmospheric dynamics (e.g., planetary boundary layer height and

wind speed), were measured in different environmental contexts (e.g., Gasic et al., 2009). As a

consequence, a number of modelling approaches tried to incorporate atmospheric dynamics (e.g.,

Ma et al., 2003; Hansen et al., 2004; Sehili and Lammel, 2007; Morselli et al., 2011; 2012) and the

need for exposure monitoring at shorter time scales and with higher temporal frequency was

highlighted. Also spatial changes can be related to both emission variability and environmental

heterogeneity (e.g., organic carbon content in soil and sediment, POC/DOC concentrations in water,

etc.). Historically, this issue has been partially addressed by means of scale discretization, moving

from larger-scale models to site-specific ones. However, this simple acting on model scales could
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hide important variations in environmental properties, which could in turn lead to misleading

exposure predictions. A possible, more complete, answer could be an increase of detail in horizontal

discretization of model domains, therefore moving from large homogeneous regions or sites, with

standard or averaged properties, to more spatially explicit models, also with the help of GIS tools

(Di Guardo and Hermens, 2013). Moreover, the adoption of a vertical discretization of

compartments (i.e., layered air, water, soil, and sediment) could help to better describe chemical

movement in them and therefore to capture concentration variability (e.g., Ghirardello et al., 2010).

A further challenge is represented by the introduction of more realism in bioaccumulation models,

predictive tools designed to evaluate the concentrations that a chemical could reach in an organism

(aquatic or terrestrial) starting from its concentrations in the main environmental media (i.e., water,

sediment, air, soil) (EC, 2013) and in organisms representing a food source for the investigated

organism. For such purposes, fully dynamic models should be developed and adopted, for both

aquatic and terrestrial environments (Di Guardo and Hermens, 2013), in order to capture the

exposure variability deriving not only from emission dynamics, but also from changes in organism

properties (e.g., volume, lipid fraction, feeding rate, etc.) during their life cycle and in

environmental and ecological parameters (e.g., temperature, precipitations, biomass of primary

producers, etc.). The parameterization of such modelling approaches reasonably require specific

information concerning environmental and ecological aspects and realistic, dynamic scenarios,

should be built for both calibration and “validation” purposes.

A full integration of exposure modelling approaches improved as described above with proper

effect assessment tools would be the final step and allow carrying out ad hoc simulations to

evaluate and characterize risk in a more thorough and realistic fashion with respect to the currently

adopted risk assessment procedures.
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1.3 Aims of the work and thesis structure

The present Ph.D. project was conceived with the aim of addressing some of the emerging

challenges concerning exposure modelling for ecological risk assessment purposes. More in detail,

the main specific objectives of this work were:

1. Developing and applying integrated multimedia fate-bioaccumulation models for predicting

exposure variability in different dynamic aquatic environments, in order to investigate the

influence of environmental and ecological dynamics on PECs and bioaccumulation in

organisms

2. Developing and applying a dynamic, spatially-explicit, model for shallow-water

environments, capable of accounting for temporal and spatial variability of emissions and

compartment properties and accounting for the role of primary producers (macrophytes and

phytoplankton), POC and DOC dynamics in affecting bioavailable concentrations

As an answer to Objective 1, two works were undertaken. In the first one, resulted in a published

manuscript (Paper I) constituting Chapter 2 of this thesis, the integration between an existing

dynamic MFM for water-sediment systems (DynA Model; Di Guardo et al., 2006) and a new

dynamic bioaccumulation model (Single Organism) was presented. This integrated modelling

approach (EcoDynA) was developed with the aim of investigating temporal variability in

bioaccumulation resulting not only from emission or environmental changes, but also from

organism properties dynamics (e.g., volume, lipid fraction, feeding rate, lipid fraction in food, etc.).

The application of EcoDynA to a case study concerning p,p’-DDT bioaccumulation by Lake

Maggiore whitefish and the comparison between predicted and measured concentrations in fish

allowed appreciating the added value of simulating organism dynamics with respect to adopt single,
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static values for the different properties and the consequent improved model performance. In the

second work (Paper II, Chapter 3), the EcoDynA model was applied to a scenario characterized by

a high temporal variability of environmental properties (the glacier-fed stream Frodolfo, Italian

Alps) to investigate the influence of such changes on bioaccumulation of some persistent organic

pollutants (PCB 70, PCB 101 and p,p’-DDE) by macroinvertebrate individuals representative of 3

trophic levels (collectors, scrapers and predators). The first step of this work consisted in the

calculation of bioavailable concentration profiles of the investigated chemicals on an hourly basis.

For this purpose, a hydrological module for EcoDynA was first developed; such module, based on a

simple temperature-index model, allowed the estimation of the hourly water contributions deriving

from ice and snow melt to the Frodolfo stream discharge, and therefore to predict hourly discharge

values for the whole simulation year. Afterwards, basing on previously measured chemical

concentrations in ice and snow, chemical loadings and concentrations in stream water were

calculated. The second step implied the application of the EcoDynA model to estimate

bioaccumulation in the investigated organisms, and comparisons between model predictions and

experimental observations were performed. Results indicated a satisfying model performance, but a

strong need from an accurate model parameterization, especially concerning organism properties

and their changes with time. Moreover, such modelling approach appeared as a valuable tool for

investigating the occurrence and magnitude of peak exposure events, as well as the amplitude of

exposure variations in response to environmental heterogeneity (e.g., day/night cycles in discharge,

especially in the glacier ablation period).

Chapter 4 and 5 include works developed within the context of the recently approved European

Chemical Industry Council-Long-range Research Initiative (CEFIC-LRI) 3-year project

“ChimERA: An integrated modelling tool for ecological risk assessment”. Such project has the

main aim of developing an integrated exposure and effect ecosystem model (ChimERA) which

could be used as a support tool for performing ERA in aquatic environments.
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In Paper III (Chapter 4), simulations performed by a fugacity-based fate model and a differential

equation-based ecosystem model were presented, with the aim of theoretically exploring how direct

and indirect effects on invertebrate shallow pond communities can vary in response to changes in

exposure and ecological scenarios (here defined as the variables potentially influencing chemical

fate and exposure, and the ones determining effects at the ecosystem level, respectively). For this

purpose, the EcoDynA model was modified by adding a new water sub-compartment representing

DOC and by neglecting the organism compartment, while phytoplankton was assumed to contribute

to POC. Results showed that the combination of a dynamic fate model and a food-web/food-chain

model allows evaluating chemical availability together with the resulting population-level effects in

an ecosystem context.

Paper IV (Chapter 5) addressed the development and application of the dynamic, spatially-explicit

ChimERA fate and exposure sub-model, including not only POC/DOC dynamics, but also the ones

of rooted macrophytes, which have been proven to be highly effective in influencing chemical

bioavailability in shallow-water environments. In the manuscript, the implementation of the

macrophyte compartment was described and the results of a local sensitivity analysis and the

comparison between model predictions and observations for 4 case studies were presented.

Moreover, the model was also applied to an illustrative spatially-explicit scenario, in order to show

its capability in predicting both temporal and spatial exposure variations. The implementation of the

phytoplankton compartment and model application to scenarios representative of different European

conditions is the object of an ongoing work (Di Guardo et al., in preparation), which was not

included in the thesis since further efforts are required.

Last, Chapter 6 to 8 collect manuscripts for which only minor work from this Ph.D. project was

required. More in detail, Paper V (Chapter 6), concerning experiments to assess the contribution of

intraspecific (competition) and interspecific interactions (competition and predation) to chemical

effects on Daphnia magna populations, involved the use of the same fate model described in

Chapter 4, properly parameterized, to assess the fate of the tested chemical (pyrene) in the
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experimental vessels and to verify the potential influence of the algae used as a food source for D.

magna individuals on bioavailable concentrations. For Paper VI (Chapter 7), presenting the

development and application of a spatially-explicit version of the SoilPlus model (Ghirardello et al.,

2010) help was provided with manuscript writing and revision. Finally, in Paper VII (Chapter 8),

introducing a new modelling approach for the prediction of organic chemicals uptake by terrestrial

vegetation, most of the work concerned model coding (using Microsoft Visual Basic 6.0) of

transport processes and numerical solution and sensitivity analysis.

In summary, the present Ph.D. thesis was grounded on the following manuscripts:

Main works

Paper I. Infantino, A.; Morselli, M.; Di Guardo, A. Integration of a dynamic organism model

into the DynA Model: Development and application to the case of DDT in Lake Maggiore,

Italy. Sci. Total Environ. 2013, 454–455, 358–365.

Paper II. Morselli, M.; Semplice, M.; Villa, S.; Di Guardo, A. Evaluating the temporal

variability of concentrations of POPs in a glacier-fed stream food chain using a combined

modeling approach. Sci. Total Environ. 2014, 493, 571–579.

Paper III. De Laender, F.; Morselli, M.; Baveco, H.; Van den Brink, P.J.; Di Guardo, A.

Theoretically exploring direct and indirect chemical effects across ecological and exposure

scenarios using mechanistic fate and effects modelling. Environ. Int. 2015, 74, 181–190.

Paper IV. Morselli, M.; Semplice, M.; De Laender, F.; Van den Brink, P.J.; Di Guardo, A.

Importance of ecological dynamics in predicting chemical exposure in ecological risk

assessment. Submitted to Environ. Sci. Technol.
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Further works

Paper V. Viaene, K.P.J.; De Laender, F.; Rico, A.; Van den Brink, P.J.; Di Guardo, A.;

Morselli, M.; Janssen, C.R. Combined effects of intra- and interspecific interactions and pyrene

on Daphnia magna populations. Submitted to Environ. Toxicol. Chem.

Paper VI. Ghirardello, D.; Morselli, M.; Otto, S.; Zanin, G.; Di Guardo, A. Investigating the

need for complex vs. simple scenarios to improve predictions of aquatic ecosystem exposure

with the SoilPlus model. Environ. Pollut. 2014, 184, 502–510.

Paper VII. Terzaghi, E.; Morselli, M.; Semplice, M.; Cerabolini, B.; Jones, K.C.; Di Guardo, A.

Modelling the temporal uptake of semi-volatile organic chemicals in plants using an

ecologically realistic scenario. Draft to be submitted to Environ. Sci. Technol.
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1.4 Summary of results

Paper I

The Single Organism (SO) model was developed to investigate the influence of temporal dynamics

of aquatic organism properties on their exposure to organic chemicals in water. SO was then

integrated with an existing dynamic surface-water model (DynA), to form the coupled water-

bioaccumulation model EcoDynA. In order to evaluate the model performance, the results produced

by EcoDynA were compared to the p,p′-DDT concentrations measured in specimens of whitefish of

different age and sex caught in Lake Maggiore after the discovery of a DDT spill. The comparison

showed a good agreement. Other satisfying results were obtained comparing model results with

p,p′-DDT concentration values measured in another species of whitefish which were available in the

literature. A preliminary sensitivity analysis confirmed that accounting for dynamics of parameters

such as organism lipid fraction and feeding rate is necessary to obtain accurate exposure

predictions.

Paper II

Falling snow acts as an efficient scavenger of contaminants from the atmosphere and, accumulating

on the ground surface, behaves as a temporary storage reservoir; during snow aging and

metamorphosis, contaminants may concentrate and be subject to pulsed release during intense snow

melt events. In high-mountain areas, firn and ice play a similar role. The consequent concentration

peaks in surface waters can pose a risk to high-altitude ecosystems, since snow and ice melt often

coincide with periods of intense biological activity. In such situations, the role of dynamic models

can be crucial when assessing environmental behavior of contaminants and their accumulation

patterns in aquatic organisms. In the present work, a dynamic fate modeling approach was

combined to a hydrological module capable of estimating water discharge and snow/ice melt

contributions on an hourly basis, starting from hourly air temperatures. The model was applied to
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the case study of the Frodolfo glacier-fed stream (Italian Alps), for which concentrations of a

number of persistent organic pollutants (POPs), such as polychlorinated biphenyl (PCBs) and p,p′-

dichlorodiphenyldichloroethylene (p,p′-DDE) in stream water and four macroinvertebrate groups

were available. Considering the uncertainties in input data, results showed a satisfying agreement

for both water and organism concentrations. This study showed the model adequacy for the

estimation of pollutant concentrations in surface waters and bioaccumulation in aquatic organisms,

as well as its possible role in assessing the consequences of climate change on the cycle of POPs.

Paper III

Predicting ecosystem response to chemicals is a complex problem in ecotoxicology and a challenge

for risk assessors. The variables potentially influencing chemical fate and exposure define the

exposure scenario while the variables determining effects at the ecosystem level define the

ecological scenario. In absence of any empirical data, the objective of this paper is to present

simulations by a fugacity-based fate model and a differential equation-based ecosystem model to

theoretically explore how direct and indirect effects on invertebrate shallow pond communities vary

with changing ecological and exposure scenarios. These simulations suggest that direct and indirect

effects are larger in mesotrophic systems than in oligotrophic systems. In both trophic states,

interaction strength (quantified using grazing rates) was suggested a more important driver for the

size and recovery from direct and indirect effects than immigration rate. In general, weak

interactions led to smaller direct and indirect effects. For chemicals targeting mesozooplankton

only, indirect effects were common in (simple) food-chains but rare in (complex) food-webs. For

chemicals directly affecting microzooplankton, the dominant zooplankton group in the modelled

community, indirect effects occurred both in food-chains and food-webs. We conclude that the

choice of the ecological and exposure scenarios in ecotoxicological modelling efforts needs to be

justified because of its influence on the prevalence and magnitude of the predicted effects. Overall,

more work needs to be done to empirically test the theoretical expectations formulated here.
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Paper IV

In currently used approaches for ecological risk assessment (ERA), exposure is generally modelled

assuming steady-state in emissions and environmental properties and neglecting the potential role of

ecological dynamics in affecting bioavailable concentrations. In order to investigate the potential

influence of ecological scenario and emission dynamics on predicted exposure levels, the spatially-

resolved dynamic model "ChimERA fate" was developed, incorporating macrophyte biomass and

particulate/dissolved organic carbon dynamics into a water-sediment system. A comparison

between model output and experimental observations for four case studies allowed verifying the

implementation of the macrophyte compartment and assessing model performance, which was

generally satisfying. Illustrative runs showed the potential spatio-temporal variability of

bioavailable concentrations of two chemicals after a pulsed emission in a system composed of a

pond and its inflow/outflow streams: biomass dynamics caused variations in concentrations of a

factor of 2-3 during the simulation period, and of orders of magnitude in space (along the stream-

pond system). Given the increased level of ecological realism, ChimERA fate could represent a

vital tool for the identification of those environmental and ecological conditions where risk is

expected to be highest (e.g., emissions associated with low biomass/POC/DOC levels).

Paper V

Species interactions are often suggested as an important factor when assessing the effects of

chemicals on higher levels of biological organisation. Nevertheless, the contribution of intraspecific

(competition) and interspecific interactions (competition and predation) to chemical effects on

populations is often overlooked. In the current study, Daphnia magna populations were initiated

with different levels of intra- and interspecific competition and predation and exposed to two pyrene

pulses. Generalized linear models were used to test which of these factors significantly explained

population size and structure at different time points. Pyrene had a negative effect on total

population densities, with effects being more pronounced on smaller D. magna individuals. Among
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all species interactions tested, predation had the largest negative effect on population densities.

Predation and high initial intraspecific competition were shown to interact antagonistically with

pyrene exposure. This was attributed to differences in population structure prior to pyrene exposure

and pyrene-induced reduced feeding by Chaoborus sp. larvae. The current study provides empirical

evidence that species interactions within and between populations can alter the response of aquatic

populations to chemical exposure, suggesting complex interactions between the underlying

mechanisms.

Paper VI

A spatially-explicit version of the recent multimedia fate model SoilPlus was developed and applied

to predict the runoff of three pesticides in a small agricultural watershed in north-eastern Italy. In

order to evaluate model response to increasing spatial resolution, a tiered simulation approach was

adopted, also using a dynamic model for surface water (DynA model), to predict the fate of

pesticides in runoff water and sediment, and concentrations in river water. Simulation outputs were

compared to water concentrations measured in the basin. Results showed that a high spatial

resolution and scenario complexity improved model predictions of metolachlor and terbuthylazine

in runoff to an acceptable performance (R2 = 0.64-0.70). The importance was also shown of a field-

based database of properties (i.e. soil texture and organic carbon, rainfall and water flow, pesticides

half-life in soil) in reducing the distance between predicted and measured surface water

concentrations and its relevance for risk assessment.

Paper VII

A new dynamic vegetation model was developed to simulate the fate of organic compounds in the

air/plant/litter/soil system. Key features of the model are the double-layered air compartment

(planet boundary layer, PBL and residual layer) interacting dynamically with vegetation and

multilayered litter/soil compartments. Vegetation can represent both monospecific and multispecfic
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forest. Leaf biomass is dynamically calculated employing two important ecological parameters

(LAI and SLA), while stem and root biomass are assumed constant over time. The model was used

to investigate the air compartment structure and meteorological variability in influencing PAH air-

leaf exchanges, simulating a broadleaf wood located in Northern Italy (Como). Modelled leaf

concentrations showed a satisfying agreement with measured one. Leaves appeared to act as a

“filter” but also as a “dispenser” of air contaminants in response to meteorological parameters and

emission changes. A preliminary sensitivity analysis showed that air concentrations are most

affected by emission, PBL height and wind speed, while for leaf concentrations KOW, air

temperature and SLA are also important. Illustrative simulations were then performed for PCB 52

and PCB 153 to show the influence of leaves biomass on air concentrations in realistic forest

conditions in terms of air residence time, wind speed and domain size.
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• An integrated single organism–water–sediment dynamic model was developed.
• The model was applied to investigate p,p′-DDT bioaccumulation in whitefish.
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a b s t r a c ta r t i c l e i n f o

Article history:
Received 18 January 2013
Received in revised form 8 March 2013
Accepted 8 March 2013
Available online 3 April 2013

Keywords:
Dynamic bioaccumulation model
Coregonid
Lake Maggiore
Fugacity
DDT

The Single Organism (SO) model was developed to investigate the influence of temporal dynamics of aquatic
organism properties on their exposure to organic chemicals in water. SO was then integrated with an existing
dynamic surface-water model (DynA), to form the coupled water-bioaccumulation model EcoDynA. In order to
evaluate the model performance, the results produced by EcoDynA were compared to the p,p′-DDT concentra-
tions measured in specimens of whitefish of different age and sex caught in Lake Maggiore after the discovery
of a DDT spill. The comparison showed a good agreement. Other satisfying results were obtained comparing
model resultswith p,p′-DDT concentration valuesmeasured in another species ofwhitefishwhichwere available
in the literature. A preliminary sensitivity analysis confirmed that accounting for dynamics of parameters such as
organism lipid fraction and feeding rate is necessary to obtain accurate exposure predictions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The evaluation of the impact of pollutants in aquatic ecosystems is
a formidable challenge that needs the improvement of modelling
tools to understand distribution, bioavailability, and biological effects
of single chemicals and mixtures. Traditionally, static models assuming
constant transport rates among media were developed to investigate
the fate of chemicals characterized by high persistence in the environ-
ment and the presence of long-term effects (Mackay, 2001). However,
the classic steady-state approach is not suitable formodelling the expo-
sure to less persistent chemicals (such as pesticides) or to persistent
chemicals deriving from spills or characterized by fluctuating concentra-
tions depending on seasonal variability of environmental parameters.
This variability in exposure concentrations results in effects which
are difficult to evaluate according to the standard ecotoxicological
paradigm, which compares a predicted environmental concentration
(PEC) with a predicted no-effect concentration (PNEC), both obtained
or derived from a steady exposure. Reinert et al. (2002) and later

Ashauer et al. (2006) reviewed approaches and models that may be
used to predict effects on aquatic organisms resulting from time-
varying exposure to pesticides. However, there is a need for dynamic
fatemodels capable of predicting concentrations andmass distributions
resulting from a chemical emission into a realistic and changing envi-
ronment. An example of a dynamic fate model for aquatic systems is
the Dynamic Aquatic Model (DynA Model) (Di Guardo et al., 2006;
Infantino et al., 2008), a surface water model in which not only the
chemical emission, but also the properties of environmental compart-
ments (volumes, capacities, etc.) can vary with time. In the past years,
some dynamic bioaccumulation models accounting for a certain
dynamics of organism life cycles were developed for several organisms
(van Beusekom et al., 2006; Patwa et al., 2007). For example, in the
model by Patwa et al. (2007), volume and lipid variationwere introduced
as well as spatially different feeding habitats. More recently, the im-
portance of lipid dynamics in determining bioaccumulation patterns
(De Laender et al., 2010a) and the sensitivity of dynamic bioaccumulation
model predictions to ecological parameters (Gobas and Arnot, 2010;
Nfon et al., 2011) were shown. It is now well recognized that a more
accurate definition of ecological data, such as food web structure
and ecosystem functions, contributes to a reduction of predicted
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concentration uncertainty (De Laender et al., 2009, 2010b). Therefore,
one of the new challenges of dynamic models lies in the implementa-
tion of time-varying ecological parameters (e.g., life style, egestion
rate, feeding rate, assimilation rate, and specific diet matrix for each
life stage) for the estimation of bioaccumulation in aquatic organisms
(Borgå et al., 2004; De Laender et al., 2009).

The contamination by DDTs in Lake Maggiore (Italy) offered the
possibility to study the dynamic behavior of such contaminants in a
large lake. Lake Maggiore is the second largest and deepest lake in
Italy. During routine monitoring of contamination in fish from Lake
Maggiore in 1995, DDT was found at levels well exceeding the average
contamination measured in the previous years (Ceschi et al., 1996).
Therefore, in 1998, an international project was started tomonitor con-
centrations in a number of media such as water, sediment, fish, precip-
itation, etc. (CIPAIS, 1999, 2002, 2003, 2004, 2005). The source of the
contamination was identified in a chemical plant which discharged
DDTs in the Toce River, a tributary of the lake (Di Guardo et al., 2006).
On this topic, a number of publications appeared in the past years
(e.g., Di Guardo et al., 2006; Bettinetti et al., 2006, 2010, 2012;
Volta et al., 2009) which indicate that Lake Maggiore, unlike most
European lakes, is probably far from the steady state for DDTs; al-
thoughDDT synthesis ended in 1996, a possible additional loading com-
ing from the Toce River watershed or due to sediment resuspension
during floods may still influence chemical concentrations in the lake
(Di Guardo et al., 2006; Bettinetti et al., 2012).

In the presentwork, a newbioaccumulationmodel (Single Organism)
accounting for the dynamics of ecological parameters was developed and
integrated with the surface water–sediment model DynA (Di Guardo
et al., 2006) to form the water-bioaccumulationmodel EcoDynA. The
results produced by EcoDynA were first compared to p,p′-DDT concen-
trations measured in whitefish sampled in 1997/1998, and then com-
pared to measured values available in the literature for specimens of
another species of whitefish sampled in 2003 (Volta et al., 2009).

2. Materials and Methods

2.1. Sample Collection and Analysis

Samples of whitefish (pollan) (Coregonus sp., hybrid form deriving
from C. wartmanni coeruleus Fatio, 1890 and C. schinzii helveticus Fatio,
1890, common Italian name “lavarello”) were caught in Lake Maggiore
(Fig. S1) using different types of nets (in order to obtain fishes of differ-
ent sizes) in December 1997 and January 1998. Fish sampleswere frozen
and kept at −30 °C until analyses for DDT compounds. Analyses were
performed on 24 individuals (10 males and 14 females, aged 2 to
6 years); the analyzed tissues were portions of fish fillet, obtained
according EPA method 823-R-95-007 (US EPA, 1995). Samples were
freeze dried and extracted in hexane/acetone (9:1) with a Soxtec appa-
ratus (VELP Scientifica) for 6 h. A portion of the extracted fraction was
used for the determination of extractable lipids. Extracts were then
digested with sulphuric acid (on Extrelut columns, Merck) for 4 h, in
order to remove the lipid fraction. Sampleswere then eluted andpurified
on silica gel chromatography. The elution solvent was a mixture of hex-
ane and toluene (65:35). The eluted fractionwas concentrated in a rotary
evaporator and then evaporated with a gentle flux of nitrogen. Internal
standards (13C12 p,p′-DDT and 13C12 p,p′-DDE, CIL, Boston, MA, USA)
were added at extraction time to monitor recovery and quantify the
chemicals. The analysis was performed using GC-MS (HP 6890-5972a)
(electron impact ionization, selected ionmonitoringmode). The column
was a 50-m long SGE BP10 (0.22-mm internal diameter, 25-mm phase
thickness).

2.2. Quality Assurance/Quality Control (QA/QC)

Recoveries were checked at the method development stage and
were of 88 ± 10%. The extraction efficiency was >95% and it was

measured using the labelled standards spiked to the dry samples.
During routine analysis the labelled internal standards were added
to the samples just after extraction, and therefore no additional re-
covery correction was performed on results. The method detection
limit was set to 0.5 ng g−1 for all compounds and corresponded to
the lower concentration of the calibration curve when an average
extracted weight of 2 g (d.w.) was assumed. Procedural blanks
were included every five samples. The analyzed compounds were
never detected in blanks. No significant degradation of DDT to DDD
was observed, since 13C-labelled standards were used as internal
standards and only DDT and DDE were monitored in the samples
(Foreman and Gates, 1997). Method reproducibility was checked
by routinely analyzing a certified fish sample obtained during a previ-
ous laboratory inter-calibration. Resultswerewithin 12% of the certified
values.

2.3. Coregonid Age Estimation

The age of the whitefish specimens was determined by counting
the number of translucent or opaque rings in otoliths. A few scales of
otoliths were taken just above the lateral line, cleaned with a solution
of KOH and countedwith an opticalmicroscope. March 1st was assumed
as transition date between age n and n + 1.

2.4. The DynA Model

The DynAModel (Di Guardo et al., 2006; Infantino et al., 2008) is a
fugacity-based model developed to predict the fate of organic
chemicals in a dynamic water–sediment system. DynA is dynamic not
only in terms of chemical discharge, which may be discontinuous over
time (to simulate, for example, a single spill in a lake or a pesticide
application in a rice paddy), but also in terms of some environmental
parameters (e.g., temperature and water fluxes). More specifically, it
requires as input data daily values of parameters such as tempera-
ture, water inflow and outflow, and water depth. Additional details
regarding the model formulation are available in Di Guardo et al.
(2006), while an evaluation of the model performance in a rice-field
scenario can be found in Infantino et al., 2008.

2.5. Statistical Analyses and Software Employed

The statistical analyses were performed with SigmaStat version
3.0. The Single Organism model and the integrated version, EcoDynA,
were coded using Microsoft Visual Basic 6.0.

2.6. Model Parameterization

In the present work, EcoDynA was run to investigate p,p′-DDT
bioaccumulation in 2- to 4-year old whitefish of two different species,
“lavarello” whitefish and Coregonus macrophthalmus Nüsslin, 1882
(common Italian name: “bondella”), in Lake Maggiore. Simulations
results were compared with the concentrations presented in this
work for “lavarello” (see 3.1) and in Volta et al. (2009) for “bondella”.
Both these species are pelagic and mainly zooplanktivorous, although
some differences must be remarked: “lavarello” grows more rapidly
than “bondella”, especially during the first year of life, and reaches
higher dimensions. During the winter, when feeding rate generally
reduces for both species, “bondella” leaves its strict zooplanktivorous
habits in favor of other types of food (e.g., Oligochaetes, Isopoda,
burbot or whitefish eggs); a similar behavior can be attributed also to
“lavarello”, but for this whitefish it is less pronounced. Moreover,
while for “lavarello” spawning occurs in the first meters of water,
“bondella” spawns at higher depths (Berg and Grimaldi, 1965). In
order to investigate the influence of physiological parameters in deter-
mining bioaccumulation, dynamic profiles of fish volume, lipid fraction
and feeding rate were built, combining information available in the
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literature (Berg and Grimaldi, 1965; CIPAIS, 2002, 2003, 2004, 2005;
Volta et al., 2009) with measurements presented in the present work
(see 3.4).

Given the pelagic nature of whitefish, EcoDynA was parameterized
considering epilimnion only, as suggested by Bettinetti et al. (2006). A
constant water compartment depth of 25 m was assumed (equivalent
to the measured epilimnion depth during stratification months),
while a shallow sediment layer was used as a proxy of themetalimnion.
Additionally, water inflow and outflow rates were constant (CIPAIS,
1998, 2000, 2001). A complete list of the values adopted for environ-
mental parameters, with corresponding references, can be found in
Table S1. For both “lavarello” and “bondella” simulations, a constant
emission to the water compartment was used in order to recreate a
water-dissolved p,p′-DDT concentration of about 0.2 ng L−1, which
was the steady-state concentration assumed in Di Guardo et al.
(2006) and also the average concentration measured in Lake Maggiore
epilimnion (CIPAIS, 2003, 2004, 2005). Since the focus of this study was
not to detail the dynamics of DDT input to the lake, but rather to develop
a dynamic organism model, we decided to match the available con-
centrations in water and to show the influence of some factors
(such as POC dynamic) on their variability. More details on the re-
cent DDT contamination can be found in the literature mentioned
in the introduction. A variable profile of particulate organic carbon
(POC) was also adopted, in order to simulate the possible effect of
phytoplankton in sequestering the chemical; such profile was built
starting from the POC measures performed in Lake Maggiore in
1997 (CIPAIS, 1998). p,p′-DDT physical-chemical properties are listed
in Table S2.

3. Results and Discussion

3.1. DDT Concentrations in “Lavarello” Whitefish

Among the DDT compounds detected in whitefish, p,p′-DDE was
found in concentrations up to 10 times higher than p,p′-DDT and p,
p′-DDD ones (Table S3). This is probably due to the longer metabolic
half-life of DDE in fish and to a possible accumulation of the
metabolically-converted DDE from the previously accumulated DDT
(Kwong et al., 2008). Considering the uncertainty related to this pro-
cess, it was decided to restrict our modelling attempts to p,p′-DDT
only. Lipid-normalized concentrations for male and female whitefish
are shown in Fig. S2. Replicates (number in brackets) were available
for female fishes of age 2 (3), 4 (4) and male fishes of age 2 (5), 3 (3),
4 (5). For the other ages, a single sample was available, and standard
error was not calculated. The lipid-normalized concentrations varied
from 500 to 2000 ng g−1 lipid weight (l.w.); the high variability ob-
served did not allow perceiving a statistically significant correlation
between DDT levels and age classes, despite an increasing trend of
average concentrations with age can be noticed in both female and
male fishes in this work and in Volta et al. (2009). The p,p′-DDT concen-
trationsmeasured in “lavarello” specimenswere a factor of about 2–2.5
higher than the concentrations measured in “bondella” whitefish
caught in Lake Maggiore in 2003 by Volta and co-workers (2009).
Since p,p′-DDT water concentrations are available from 2002, it can be
only hypothesized that this discrepancy can be due to higher p,p′-DDT
water concentrations in the years preceding 1997/1998 than in the
ones before 2003.

3.2. Development of the Single Organism Model

Single Organism is a dynamic model based on the fugacity concept
(Mackay, 2001) developed to simulate the bioaccumulation of organic
chemicals by a single aquatic organism. Its mass balance description is
similar to the one of Clark et al. (1990), Gobas (1993) and Campfens
and Mackay (1997), but some organism dynamics are included. In SO,
the aquatic organismgrowswith time and its volume changes following

specific age growth rates. Thus, themodel incorporates not only volume
variation, but also variations of other parameters, such as ventilation
rates and ingestion rate, which are linked to the volume by means
of allometric equations (Gobas et al., 1988). In addition, SO simulates
the seasonal variations in other organism properties such as the body
lipid content or feeding rate. In order to simulate organism volume
variation with time, the model uses a linear growth rate as default
equation. If the aquatic organism of interest is a fish, themodel provides
three possible calculation routines to describe volume variation: linear
growth, the von Bertalanffy equation (von Bertalanffy, 1938), and a
user-defined equation. The linear growth equation can be used when
the available information is just the growth rate for a single life stage
or when the length/weight measured data are best fitted by linear
regression. The von Bertalanffy growth model allows describing indi-
vidual fish growth as a function of time. The mathematical equation is
an exponential growth function, expressed as:

Vorg tð Þ ¼ α � 1−e−β tð Þ� �
ð1Þ

where Vorg is thefish volume (m3) at time t andα (fish volume at t → ∞)
and β are the regression coefficients. Commonly, this model is used to
fit length or weight measurements in order to estimate empirically α
and β coefficients. Therefore, the growth rate kG (fraction of body
volume per unit time) for each time step can be calculated from
Eq. (1) as follows:

kG tð Þ ¼ α � β � e−β tð Þ� �
ð2Þ

As a third option, themodel can be run using a user-derived function,
if available (such as for “lavarello”whitefish, as shown later).

The rate at which the chemical is absorbed via gills is expressed by
the uptake rate constant k1, which has units of L kg−1 d−1.

In this model, k1 is calculated from the equation:

1
k1

¼ 1000 � σF �
Vorg

QW

� �
þ 1000 � σ F �

Vorg

QL
� 1
Kow

� �
ð3Þ

where 1000 is a unit conversion factor allowing the conversion of Vorg

fromm3 to L, σF is the fish density (assumed as 1 kg L−1) and QW and
QL (L d−1) represent the transport rates in water and lipid phases
(Gobas, 1993). The water transport parameter Qw is estimated from
Vorg (Gobas et al., 1988):

QW ¼ 88:3 � 1000 � Vorg
0:6 ð4Þ

while the lipid-phase transport parameter, QL, is considered as
1/100 ∗ QW.

Thedepuration rate (k2) (d−1) is calculated from thebioconcentration
factor (BCF) according to equation proposed by Mackay and Fraser
(2000):

k2 ¼ k1
BCF

ð5Þ

The BCF is expressed as σorg ∗ KOW, where σorg is the organism lipid
fraction.

These kinetic parameters (k1, k2, QW, QL) are updated as the organism
volume changes with time.

Food uptake is usually the most important bioaccumulation pathway
bywhich hydrophobic and persistent organic chemicals may accumulate
in aquatic organism such as fish or macroinvertebrates. In the modelling
exercises presented in this work, the food source is assumed at
equifugacity with water and its lipid fraction (σfood) constant with time.
However, it should be considered that since σfood can change with the
season, the fugacity capacity for food (Zfood) could show a seasonal
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trend, too. The food ingestion rate (Ga, m3 h−1) depends on bodyweight
variations, as shown by the following equation:

Ga tð Þ ¼ Vorg tð Þ � FR
24

ð6Þ

where FR (fraction of body volume per day) is the feeding rate. When
data are available, a FR trend with time can be specified. Alternatively,
FR can be assumed as constant during the entire life cycle.

The loss of chemical via metabolism is calculated from the rate
constant kM (d−1) which, which is obtained from the metabolic
half-life TM (d):

kM tð Þ ¼ ln2
TM

ð7Þ

All these transport and transformation processes are computed by
means of D values (mol Pa−1 h−1), which are listed in Table 1.

3.3. The EcoDynA Model

The integratedmodel EcoDynAwas created adding the newdynamic
compartment representing the aquatic organism, and therefore a new
mass balance equation, to the original DynA Model (Di Guardo et al.,
2006) (Fig. 1).

In EcoDynA, the dynamic chemical behavior in the three compart-
ments (organism, water and sediment) is described by a system of
three 1st-order ordinary differential equations (ODEs), one for each com-
partment, which is solved numerically using a modified 5th-order adap-
tive, implicit Runge–Kutta method (ESDIRK5(4)) (Semplice et al., 2012).
The ODEs, representing the variation of residue moles with time are:

dmolORG=dt ¼ aþ b �molWAT−c �molORG ð8Þ

dmolWAT=dt ¼ dþ e �molORGþ g �molSED−h �molWAT ð9Þ

dmolSED=dt ¼ iþ j �molWAT−k �molSED ð10Þ

where molORG, molWAT and molSED represent the moles present in the
three compartments at a certain time, while each coefficient (from a
to j) represents a transformation or a transport flux (single D value or
sum of D values) divided by the proper product of volume and fugacity
capacity Z (Table 2). All D and Z values are listed in Table 1.

It must be remarked that, in the EcoDynAmass balance, the chemical
uptake from food is not expressed by means of a D value. As shown in
Table 2, this process is modelled as a chemical source and, therefore,
can be found in the a coefficient. The term CAf, which appears in a, is
the chemical concentration in food (mol m−3) computed using the
water fugacity calculated for the previous hour (food is assumed to be
in equilibrium with water).

To allow mass conservation, the original DynA Model mass balance
was also updated so that, for each compartment, the residue moles (in-
stead of fugacities) represent the state variable: more specifically, at the
end of each time step, fugacities are converted to residue moles and, at
the beginning of the following time step, residuemoles are converted to
fugacities again by dividing residue moles by the actual compartment
volumes and Z values, which are subject to hourly changes.

3.4. Organism Scenarios for Model Simulations

For the simulations presented here, the linear-growth assumption
generally used in bioaccumulation models (van Beusekom et al.,
2006) was replaced with the volume trends depicted in Fig. 2a for
“lavarello” and Fig. S3a for “bondella”. In these charts, for simplicity,
weight instead of volume was plotted (a fish density equal to 1 kg L−1

was assumed).

For “lavarello”, two different volume profiles for females and
males were created adapting the growth curves depicted in Berg
and Grimaldi (1965) to the fish weights measured in this study.
According to these trends, during the period between May and Septem-
ber, “lavarello”whitefish linearly increase inweight, whereas they slowly
decrease during the pre-reproduction period (October-December). From
December to March, reproduction causes a rapid reduction of body
weight in females; the decrease in weight observed in males, although
less pronounced, is due to the lower winter feeding rate. Then, in spring,
they again increase in weight (Fig. 2a). Since no growth curve was avail-
able for “bondella”, the same trends used for “lavarello”were adapted to
the weights measured by Volta et al. (2009) to create a single curve for
females and males. The same remarks made for “lavarello” can be done,

Table 1
Z (mol m−3 Pa−1) and D values (mol Pa−1 h−1) in EcoDynA.

Parameter Description Equation

ZA Z for pure air 1/RT
ZQ Z for aerosol particles 6E + 06/PL ∗ ZA
ZAbulk Z for bulk air ZA ∗ (1 − vQ) + ZQ ∗ vQ
ZW Z for pure water 1/H
ZWP Z for water column particles 0.41 ∗ KOW ∗ fP ∗ σP ∗ ZW/1000
ZWbulk Z for bulk water ZW ∗ (1 − vP) + ZWP ∗ vP
ZS Z for sediment particles 0.41 ∗ KOW ∗ fs ∗ σS ∗ ZW/1000
ZSbulk Z for bulk sediment ZW ∗ (1 − vs) + ZS ∗ vs
ZO Z for octanol ZW ∗ KOW

ZOrg Z for aquatic organism ZW ∗ KOW ∗ lf
ZFood Z for aquatic organism food ZW ∗ KOW ∗ lfFood
DI Water inflow GI ∗ ZW
DX Water particle inflow GX ∗ ZWP

DJ Water outflow GJ ∗ ZW

DY Water particle outflow GY ∗ ZWP

DV Absorption/Volatilization kV ∗ AW ∗ ZW
DM Rain dissolution GM ∗ ZW
DC Wet particle deposition GC ∗ ZQ
DQ Dry particle deposition GQ ∗ ZQ
DT Sediment-to-water/

water-to-sediment diffusion
kT ∗ AS ∗ ZW

DD Sediment deposition GD ∗ ZWP

DR Sediment resuspension GR ∗ ZS
DB Sediment burial GB ∗ ZS
DW Water transformation kW ∗ VW ∗ ZW
DS Sediment transformation kS ∗ VS ∗ ZS
DVentIn Input ventilation (exchange via gills) k1 ∗ VOrg ∗ ZW
DVentOut Output ventilation (exchange via gills) k2 ∗ VOrg ∗ ZOrg
DUpt Uptake from food EA ∗ GA ∗ ZFood
DMet Metabolism transformation kM ∗ VOrg ∗ ZOrg
DGrowth Growth dilution kG ∗ VOrg ∗ ZOrg
DEges Fecal egestion DUpt/QF

R = gas constant (8.314 J mol−1 K−1).
T = absolute temperature (K).
H = Henry's Law constant (Pa m3 mol−1).
PL = sub-cooled liquid vapor pressure (Pa).
vQ, vP and vs=volume fractions of aerosol in air, particles in water and solids in surface
sediments, respectively.
fP and fs= fractions of organic carbon inwater particles and sediment solids, respectively.
σP and σS = densities (kg m−3) of water particles and sediment particles, respectively.
lf and lfFood = aquatic organism and food lipid fractions.
kV = overall (water-side) air–water mass transfer coefficient (m h−1).
kT = sediment-water mass transfer coefficient (m h−1).
kW = water transformation rate constant (h−1).
kS = sediment transformation rate constant (h−1).
k1 = uptake via gills rate constant (L kg−1 d−1).
k2 = depuration rate constant (d−1).
kM = metabolism rate constant (d−1).
kG = growth rate (fraction of body volume or weight d−1).
EA = gut absorption chemical efficiency.
QF = limiting biomagnification factor.
AW and AS = water and sediment areas (m2).
VW, VS and VOrg = water, sediment and aquatic organism volumes (m3).
G represents flow of phase (I=water inflow, X=particle inflow, J = water outflow,
Y= particle outflow,M = rain dissolution, C =wet particle deposition, Q= dry particle
deposition, D = sediment deposition, R = sediment resuspension, B = sediment burial)
(m3 h−1).
GA = food ingestion rate (m3 h−1).
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even if shifted forward of one month: in fact, the sharpest growth is
observed for “lavarello” in May–June, while for “bondella” in June-
July (Berg and Grimaldi, 1965).

From volume trends, time-varying profiles of growth rate were
also calculated using the following equation:

kG tð Þ ¼ Vorg2−Vorg1

Vorg1 � Δt
ð11Þ

where Vorg1 and Vorg2 (L) are the fish volumes at times 1 and 2 and Δt
(e.g., day) is the chosen time interval.

It is known that whitefish experience a seasonal oscillation of their
lipid content related to gonad development and gamete spawning, as
well as a general increase of lipids with age (Berg and Grimaldi,
1965). In order to account for this variability, lipid-fraction profiles
for females and males of “lavarello” were compiled starting from
the lipid data deriving from fish of the same species collected during
a multi-year campaign in Lake Maggiore (CIPAIS, 2002, 2003, 2004,
2005): the mean lipid values measured in specimens of different age
four times a year (usually in March, July, September and December)
were interpolated using pseudo-Gaussian regressions. Results are
depicted in Fig. S4, where interpolations of the maximum and mini-
mum values are also included. Since higher lipid contents were

observed in females, the trend obtained by maximum values (upper
dashed line in Fig. S4) was used to simulate females, while the one
obtained by minimum values (lower dashed line) for males. These
trends were then adapted to simulate the lipid increase with age also
confirmed by our measurements (see Text S2), as shown in Fig. 2b.
For “bondella” whitefish, such a dataset from previous campaigns was
not available; therefore, the lipid profiles created for “lavarello” were
adjusted to fit the higher lipid contents typical of “bondella” whitefish
(Volta et al., 2009) (Fig. S3b).

Finally, feeding rate profiles were created on the basis of the
“maximum gastric replenishment coefficient” curves available in
Berg and Grimaldi (1965), in order to obtain an average feeding rate
(fraction of body weight per day) of 0.04 for “lavarello” (Campfens
and Mackay, 1997) and of 0.03 for “bondella” (Volta et al., 2009)
(Figs. 2c and S3c). Values for non-time varying parameters (digestion
factor, metabolism half-life, lipid fraction in food and gut chemical
absorption efficiency) and average values of physiological parameters
used for static simulations are reported in Tables S4 and S5, respectively.

3.5. Model Application

The first application of EcoDynA was performed comparing the p,p
′-DDT concentrations predicted in 2- to 4-year old “lavarello”whitefish
to the concentrations measured in specimens of the same age classes
(see 3.1). Two series of simulations were performed for each sex, one
using the constant values for ecological parameters listed in Table S5,
the other using the dynamic profiles described in 3.4 and depicted
in Fig. 2. For each simulation, EcoDynA was run for 1600 days, fol-
lowing the aquatic organism life from the egg to the adult stage
(4 years old).

The environmental scenario described in 2.6 was used. Water-
dissolved p,p′-DDT concentrations during the whole simulation period,
together with the adopted POC profile, are reported in Fig. 3.

The adopted POC profile presented three peaks (in April, August
and November), which could be ascribed to different algal-bloom
phases. Despite the overall POC variation was higher than a factor of
4, the water compartment responded with less significant oscillations
(up to a factor of 1.2). These results suggested that, in such a system,
the biological pump effect exerted by phytoplankton seems not to be

W Out

WATER

Bur

DiffResusp S Dep

Deg

Deg

W In

Vol A Dep

EM

FOOD
Met

Vent

G Dil

Eges

SEDIMENT

Fig. 1. Schematic representation of the EcoDynA model. Arrows represent processes, which include: emission to water compartment (EM), water inflow (W In) and outflow (W
Out), volatilization to air (Vol), deposition from air (A Dep), sediment resuspension (Resusp), water–sediment diffusion (Diff), sediment deposition (Dep), sediment burial
(Bur), degradation in water and sediment (Deg). Processes involving the aquatic organism include: uptake from food (FOOD), input and output ventilation (exchange via gills)
(Vent), metabolic transformation (Met), growth dilution (G Dil) and elimination via fecal egestion (Eges).

Table 2
Groups of variables involved in the EcoDynA mass-balance equations.

a EA ∗ GA ∗ CAf
b DVentIn/(VW ∗ ZW)
c (DGrowth + DEges + DVentOut + DMet)/(VOrg ∗ ZOrg)
d EW + fA ∗ (DV + DM + DC + DQ)
e (DVentOut + DEges)/(VOrg ∗ ZOrg)
g (DR + DT)/(VS ∗ ZSbulk)
h (DV + DJ + DY + DD + DT + DVentIn + DW)/(VW ∗ ZWbulk)
i ES
j (DD + DT)/(VW ∗ ZWbulk)
k (DR + DT + DB + DS)/(VS ∗ ZSbulk)

EW and ES = emission to water and soil compartment (mol).
fA = bulk air fugacity (Pa).

362 A. Infantino et al. / Science of the Total Environment 454–455 (2013) 358–365



not able to significantly affect water concentrations of p,p′-DDT; in
contrast, the effectiveness of the biological pump in Lake Maggiore
has been recently demonstrated for chemicals with higher log KOW

(e.g., PCB 138, 153/132 and 180) (Nizzetto et al., 2012). However,
the lack of measured data for concentrations in air during this period
and the lack of precise information about the emissions do not allow
to fully evaluate the issue.

Simulation results for “lavarello” whitefish are depicted in Fig. 4,
in which a and b charts represent the comparisons for female and
male whitefish performed using the static organism scenario, while
c and d charts represent the results obtained considering dynamic
ecological parameters, accounting for the contribution from food up-
take (black line) or not (grey line). Concentrations are expressed on a
fresh weight basis. For simplicity, the bioaccumulation curves of
4-year old female and male organisms were shown, and measured

concentrations of 2-, 3- and 4-year old whitefish were plotted on
them in correspondence of sampling periods.

It is evident, from both measured values and modelled ones, that
bioaccumulation leads to higher chemical levels in females than in
males; this behavior can be ascribed to the higher female lipid con-
tent (Fig. 2b), which causes an increase in bioaccumulation. The re-
sults of the simulations performed with the dynamic organism
scenario (black lines in Fig. 4c and d) generally showed a good agree-
ment with measured values, for both female and male organisms. The
use of dynamic ecological parameters clearly improved model predic-
tions with respect to static ones (Fig. 4a and b). The oscillations in
predicted concentrations observed in Fig. 4c and d were due to a com-
bination of the dynamics of fish volume, lipid fraction and feeding
rate: for example, the increase in concentrations (sudden for females,
smooth for males) observed in the second half of the year is related to
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the volume drop occurring in winter (related to egg spawning for
females and winter fast for males) (Fig. 2a). For males, the seasonal
profile is more marked and minimum values are observed when lipid
fraction and feeding rate are smaller.

A comparison of themain fluxes influencing themass balance of DDT
in female “lavarello” whitefish can be found in Text S4 and Fig. S9. The
role of the main driving forces (ventilation, food uptake, egestion,
metabolic degradation, etc.) in the different seasons is briefly
illustrated.

The second application of EcoDynA concerned the comparison
with the p,p′-DDT concentrationsmeasured in the “bondella”whitefish
sampled by Volta and co-workers in 2003 (Volta et al., 2009). Similarly
to the ones described for “lavarello”, simulations were performed for
female and male whitefish for 1600 days, but using the dynamic or-
ganism scenario only (see 3.4 and Fig. S3). Results, shown in Fig. S5,
confirmed the generally good model performance, despite the greater
uncertainties characterizing the “bondella” scenario with respect to
the “lavarello” one.

In order to verify the predictive ability of EcoDyna, the model was
tested against a number of PCBs of varying physical chemical prop-
erties for which data were available in the literature (Text S2 and
Fig. S7). Results confirmed the general good predictive ability of the
model.

3.6. Preliminary Sensitivity Analysis

A simple sensitivity analysis of EcoDynA was performed simulating
p,p′-DDT fate in an organism–water–sediment system. The model was
run for 1600 days and three target parameters were selected: average
concentrations in 2-, 3- and 4-year old female organisms. EcoDynA
was tested for substance physical-chemical properties, main environ-
mental parameters (water and sediment compartment depth and con-
centration of suspended solids in water), emission to water and
organism properties. As a reference, the environmental scenario de-
scribed in 2.6 and the dynamic organism scenario developed for females
of “lavarello” whitefish (see 3.4 and Fig. 2) were selected. Each param-
eterwas reduced and increased by 50% and the sensitivitywas recorded
as a percentage variation with respect to the target value in the refer-
ence simulation. Results and more details can be found in Text S3.
This preliminary sensitivity analysis revealed that chemical emission
to water was the main influential parameter, followed by organism
lipid fraction, gut absorption efficiency, feeding rate and lipid fraction
in food, causing variations ranging from 17 to 39%. Among physical-
chemical properties, the only influential parameter was KOW.

4. Conclusions

A new model (EcoDynA) was developed to simulate the fate and
bioaccumulation of organic chemicals in a single organism–water–
sediment system. The model is dynamic not only in terms of emissions
and environmental parameters such aswater fluxes and depth, temper-
ature or concentration of suspended solids in water, but also in terms of
ecological parameters (e.g., organism volume, growth rate, lipid frac-
tion, feeding rate). Preliminary applications of the model revealed its
general adequacy for studying bioaccumulation in aquatic organisms
such as zooplanktivorous fish and highlighted the importance of build-
ing accurate input scenarios. This was stressed by the simple sensitivity
analysis performed. The inclusion of a trophic web and, therefore, of
phytoplankton and zooplankton compartments,will bematter of future
work.
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Figure S1. Satellite view and location of Lake Maggiore (Northern Italy) (Google Maps, 2013). 
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Figure S2. Lipid-normalized p,p’-DDT concentrations (average and standard error, when available) 

in females and males of “lavarello” whitefish. 
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Figure S3. Temporal trend of weight (g, chart a), lipid fraction (chart b) and feeding rate (fraction of 

body weight d-1, chart c) adopted for 2- to 4-year old “bondella” whitefish. In chart b, the black line 

refers to females, while the grey one to males. For weight and feeding rate, a single profile for both 

sexes was created. 
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Figure S4. Lipid fraction seasonal variation in “lavarello” whitefish: the solid curve was 

extrapolated using pseudo-Gaussian regressions for mean values. Dashed lines represent maximum 

and minimum trends, calculated in the same way. All markers represent the lipid content values 

measured during CIPAIS campaigns from 2002 to 2005 (CIPAIS, 2002-2005). 
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Figure S5. Comparison between p,p’-DDT observed and predicted concentrations for females (chart 

a) and males (chart b) of “bondella” whitefish (age 2-4). Concentrations are on a lipid weight basis. 

Black lines represent model predictions, while experimental values are indicated by grey markers. 
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Table S1. Environmental scenario used for the simulations. 

Parameter Units Value References 

Water surface area m2 2.12·108 Di Guardo et al. (2006) 

Water depth m 25 CIPAIS limnology (1998; 2000; 

2001) 

Sediment active layer depth cm 1 Di Guardo et al. (2006) 

River water inflow m3 y-1 9.51·109 Equal to water outflow rate 

Water outflow rate m3 y-1 9.51·109 CIPAIS limnology (1998; 2000; 

2001) 

Conc. of particles in water column mg L-1 1.146 Calculated from POC values 

obtained from CIPAIS limnology 

(1998) 

Conc. of particles in inflow water mg L-1 1.146 Equal to concentration of particles 

in water column 

Conc. of aerosol particles µg m-3 30 Di Guardo et al. (2006) 

Vol. frac. of particles in surface sediments / 0.305 Di Guardo et al. (2006) 

Density of particles in water kg m-3 2400 Di Guardo et al. (2006) 

Density of sediment particles kg m-3 2400 Di Guardo et al. (2006) 

Density of aerosol particles kg m-3 1500 Di Guardo et al. (2006) 

Fraction of OC in water column particles / 0.27 Di Guardo et al. (2006) 

Fraction of OC in sediment solids / 0.0171 Di Guardo et al. (2006) 

Fraction of OC in resusp. sed. particles / 0.0171 Di Guardo et al. (2006) 

Fraction of OC in inflow susp. sed. solids / 0.0171 Di Guardo et al. (2006) 

Rain rate m y-1 1.7 Di Guardo et al. (2006) 

Aerosol dry deposition velocity m h-1 7.2 Di Guardo et al. (2006) 

Scavenging ratio / 200000 Di Guardo et al. (2006) 

Volatilization MTC (air side) m h-1 1 Di Guardo et al. (2006) 

Volatilization MTC (water side) m h-1 0.01 Di Guardo et al. (2006) 

Deposition rate of solids g m-2 d-1 8.27 Di Guardo et al. (2006) 

Resuspension rate of solids g m-2 d-1 0.75 Di Guardo et al. (2006) 

Burial rate of solids g m-2 d-1 7.52 Di Guardo et al. (2006) 

Sediment-water diffusion MTC m h-1 0.0004 Mackay (1989) 
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Table S2. p,p’-DDT physical-chemical properties at 25 °C (Mackay et al., 1997). 

Parameter Value 

Molecular weight (g/mol) 354.5 

Melting point (°C) 109 

Water solubility (g/m³) 0.0055 

Vapor pressure (Pa) 0.00002 

Log KOW 6.19 

Half-life in water (h) 5500 

Half-life in sediment (h) 55000 
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Table S3. Lipid-normalized p,p’-DDT, p,p’-DDD and p,p’-DDE concentrations (ng g-1 l.w., average 

and standard error, when available) in females and males of “lavarello” whitefish. 

 p,p’-DDT p,p’-DDD p,p’-DDE 

Females Age 2 590.19 (± 28.48) 1276.22 (± 154.16) 1874.00 (± 234.90) 

Females Age 3 791.25 1176.25 1674.69 

Females Age 4 986.18 (± 160.11) 1406.25 (± 144.92) 2834.55 (± 923.93) 

Females Age 6 1788.71 1917.42 8955.48 

Females Age 8 777.41 1953.15 14611.48 

Males Age 2 926.30 (± 273.91) 1727.52 (± 429.88) 2583.21 (± 562.81) 

Males Age 3 1002.79 (± 197.51) 1860.17 (± 239.02) 2834.39 (± 464.88) 

Males Age 4 1046.95 (± 140.70) 1643.18 (± 154.04) 2762.13 (± 445.83) 

Males Age 5 1742.00 2406.67 6650.67 
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Table S4. Values used for non-time varying organism parameters in the simulations.  

Parameter “Lavarello” “Bondella” 

Digestion factor 4a), b), 3c) 

Metabolism half-life (d) 5000d) 5000d) 

Lipid fraction in food 0.015d) 0.015d) 

Gut chemical absorption efficiency 0.63e) 0.63e) 

a): Clark et al. (1990); b): Mackay and Fraser (2000); c): Volta et al. (2009); d): Campfens and 
Mackay (1997); e): Gobas et al. (1988). 
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Table S5. Constant values used for ecological parameters in static simulations. These values were 

obtained averaging the dynamic organism profiles used for dynamic simulations for “lavarello” 

whitefish of age 2 to 4 (Fig. 2, main text). For non-time varying organism parameters refer to Table 

S4. 

Parameter Females Males 

Weight (g) 385 270 

Growth rate (fraction of body volume d-1) 0 0 

Lipid fraction 0.04 0.02 

Feeding rate (fraction of body volume d-1) 0.04 0.04 
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Text S1. 

Relationships between body weight/lipid content and fish age in sampled “lavarello” whitefish 

The length and weight of the sampled whitefish were linearly correlated for both sexes (p < 

0.0001). Female weight was generally 1.3 times higher than male one and ranged between 200 and 

900 g in the collected samples. Other biometric parameters measured in whitefish of different age 

and sex were considered, in order to identify age-dependent relationships. No correlation was found 

between weight and lipid content (female p < 0.13, male p < 0.07). Increase in weight with age was 

observed in both males and females, showing significant statistical correlation (p < 0.0001) (Figure 

S6a and b). In spite of the difference in average weight between females and males (426 ± 60 and 

310 ± 133 g, respectively), correlation of weight and age could be described by a similar linear 

equation, as underlined by the slope value (128 for females and 132 for males). Average lipid 

content in females and males were 3.9 ± 1 and 1.5 ± 0.5, respectively. Figure S6c and d show the 

significant correlation between lipid content and age in both sexes (p < 0.02 for females and p < 

0.05 for males). Between females and males, significant differences were noticed for both size (p = 

0.028) and lipid content (p < 0.001). 
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Figure S6. Dependence of fish physiological parameters (weight and lipid content) on age. All 

regressions were statistically significant (see main text for details). 
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Text S2. 

Model application to PCB 18, 52 and 149 

The EcoDyna model was applied, using the same environmental scenario for DDT, to three PCBs 

(PCB 18, PCB 52 and 149) for which concentrations in water (Nizzetto et al., 2012) and females of 

“lavarello” whitefish fish specimens sampled during CIPAIS campaigns from March 2008 to 

January 2011 (CIPAIS 2009-2011).  

The physical chemical properties employed for the simulation can be found in Table S6. 

 

Table S6. Physical-chemical properties at 25 °C (Mackay et al., 1997) for the three PCB congeners 

selected for the simulations. 

Parameter PCB 18 PCB 52 PCB 149* 

Molecular weight (g/mol) 257.5 292 360.9 

Melting point (°C) 44 87 103* 

Water solubility (g/m³) 0.4 0.03 0.001* 

Vapor pressure (Pa) 0.143 0.0049 0.000119* 

Log KOW 5.6 6.1 6.9* 

Half-life in water (h) 17000 55000 55000 

Half-life in sediment (h) 55000 55000 55000 

Note: *Since no complete data set was available for PCB 149, physical chemical properties for PCB 153 were used. 

 

Figure S7 shows the result of the comparison modeled/measured results for the three PCBs. The 

dashed lines represent the interval obtained varying feeding rate by plus or minus 50%.  

While the scatter of the measured result is relatively high, it must be considered that the 

emission scenario of PCBs (which were not related to the spill episodes of DDT) is probably 

related to other sources (atmospheric/drainage basin etc.). The modelling results seem to span 

generally within a factor of two to 4, confirming the predicting adequacy of EcoDyna. 
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Figure S7. Results of the comparison between model predictions for females of “lavarello” 

whitefish and concentrations in fish specimens sampled during CIPAIS campaigns from March 

2008 to January 2011 (CIPAIS 2009-2011). 
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Text S3. 

Preliminary sensitivity analysis 

A simple sensitivity analysis of EcoDynA was performed simulating p,p’-DDT fate in an organism-

water-sediment system. The model was run for 1600 days, reducing and increasing by 50% the 

values of 20 parameters, including substance physical-chemical properties, main environmental 

parameters (water and sediment compartment depth and concentration of suspended solids in 

water), emission to water and organism properties. As a reference, the environmental scenario 

described in 2.6 (main text) and the dynamic organism scenario developed for females of 

“lavarello” whitefish (see 3.4 and Figure 2, main text) were adopted. The percent variations caused 

by modifications in tested parameters were evaluated for three targets: average concentrations in 2-, 

3- and 4-year old female fishes. Percent variations for each tested parameter were calculated as 

follows: 

 

%Variation = (NewConc - RefConc) / RefConc * 100 

 

where NewConc is the yearly average chemical concentration in fish when varying the tested 

parameter, while RefConc is the yearly average chemical concentration in fish in the reference 

simulation. 

Results are shown in Table S6. For all targets, the most influential parameter was the emission to 

the water compartment, since a 50% modification caused an equivalent variation in organism 

concentrations. Organism lipid fraction (17-39%), gut absorption efficiency (25-37%), feeding rate 

(25-36%) and lipid fraction in food (25-36%) followed, revealing the importance of an accurate 

definition of organism physiological parameters when assessing bioaccumulation. Tested 

environmental parameters were less influential, causing variations which were always smaller than 

4%. Among the physical-chemical parameters, the only one causing noticeable variations was KOW 

(7-23%). The effect of the most influential parameters on the targets is shown in Figure S7. 
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Table S7. Percent variations of target parameters corresponding to ±50% variations of the tested 

parameters. 

Ave 2nd Ave 3rd Ave 4th
MW+50% -0.22 -0.22 -0.23
MW-50% 0.23 0.23 0.23
MeltingP+50% 0.00 0.00 0.00
MeltingP-50% 0.00 0.00 0.00
WS+50% 0.15 0.15 0.15
WS-50% -5.10 -5.20 -5.27
Vp+50% -0.22 -0.22 -0.23
Vp-50% 0.23 0.23 0.23
KOW+50% 6.83 10.23 11.19
KOW-50% -16.44 -21.46 -22.98
HLwat+50% 1.96 2.00 2.03
HLwat-50% -5.46 -5.56 -5.64
HLsed+50% 0.17 0.30 0.44
HLsed-50% -0.46 -0.82 -1.16
Wdepth+50% -2.96 -2.97 -2.97
Wdepth-50% 3.15 3.16 3.16
Seddepth+50% -1.83 -2.10 -2.15
Seddepth-50% 3.84 3.73 3.32
SuspSol+50% -1.25 -1.27 -1.28
SuspSol-50% 1.29 1.31 1.32
Emis+50% 50.00 50.00 50.00
Emis-50% -50.00 -50.00 -50.00
FishVol+50% 1.34 2.79 3.25
FishVol-50% -2.69 -5.24 -6.05
LipFrac+50% 16.97 22.89 26.41
LipFrac-50% -31.28 -36.75 -39.30
Q+50% 6.31 9.65 12.00
Q-50% -15.33 -21.24 -24.69
MetabHL+50% 0.38 0.64 0.88
MetabHL-50% -1.12 -1.88 -2.55
GrowthRate+50% 0.00 0.00 0.00
GrowthRate-50% 0.00 0.00 0.00
LFfood+50% 29.62 26.91 24.53
LFfood-50% -35.64 -35.36 -34.24
AbsEffic+50% 29.62 26.91 24.53
AbsEffic-50% -36.41 -36.71 -36.16
FeedRate+50% 29.62 26.91 24.53
FeedRate-50% -35.64 -35.36 -34.24
Temper+50% 8.92 6.22 5.24
Temper-50% -6.10 -4.25 -3.58  

Ave 2nd: average chemical concentration in the organism during the second year of life; Ave 3rd: 
average chemical concentration in the organism during the third year of life; Ave 4th: average 
chemical concentration in the organism during the fourth year of life; MW: molecular weight; 
MeltingP: melting point; WS: water solubility; Vp: vapor pressure; KOW: KOW; HLwat: half-life in 
water; HLsed: half-life in sediment; Wdepth: depth of the water compartment; Seddepth: depth of 
the sediment compartment; SuspSol: suspended solids in water; Emis: chemical emission to the 
water compartment; FishVol: fish volume; LipFrac: fish lipid fraction; Q: digestion factor; 
MetabHL: metabolism half-life; GrowthRate: fish growth rate; LFfood: lipid fraction in food; 
AbsEffic: gut chemical absorption efficiency; FeedRate: fish feeding rate; Temper: water 
temperature. 
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Figure S8. Percent variations caused by the most influential model parameters (%Variation > 5%). 

WS: water solubility; KOW: KOW; HLwat: half-life in water; Emis: chemical emission to the water 

compartment; FishVol: fish volume; LipFrac: fish lipid fraction; Q: digestion factor; LFfood: lipid 

fraction in food; AbsEffic: gut chemical absorption efficiency; FeedRate: fish feeding rate; Temper: 

water temperature. 
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Text S4. 

Mass balance of p,p’-DDT in fish 

Figure S9 shows the seasonal fluxes of p,p’-DDT (mol) in females of “lavarello” whitefish (second 

year of organism life). As it can be seen, uptake from food  prevales among the fluxes, with a 

considerable seasonal variation, while output ventilation  (gill exchange with water) and growth 

dilution are the most important loss processes. 
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Figure S9. Comparison of seasonal p,p’-DDT fluxes in females of “lavarello” whitefish. Nv1 is 

input ventilation, Nv2 is output ventilation, Nmet is metabolic degradation, Na is uptake from food, 

Ng is growth dilution and Ne is egestion. 
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Falling snow acts as an efficient scavenger of contaminants from the atmosphere and, accumulating on the
ground surface, behaves as a temporary storage reservoir; during snow aging andmetamorphosis, contaminants
may concentrate and be subject to pulsed release during intense snowmelt events. In high-mountain areas, firn
and ice play a similar role. The consequent concentration peaks in surface waters can pose a risk to high-altitude
ecosystems, since snow and ice melt often coincide with periods of intense biological activity. In such situations,
the role of dynamicmodels can be crucial when assessing environmental behavior of contaminants and their ac-
cumulation patterns in aquatic organisms. In the presentwork, a dynamic fatemodeling approachwas combined
to a hydrological module capable of estimating water discharge and snow/ice melt contributions on an hourly
basis, starting from hourly air temperatures. The model was applied to the case study of the Frodolfo glacier-
fed stream (Italian Alps), for which concentrations of a number of persistent organic pollutants (POPs), such as
polychlorinated biphenyl (PCBs) and p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE) in stream water and
four macroinvertebrate groups were available. Considering the uncertainties in input data, results showed a
satisfying agreement for both water and organism concentrations. This study showed the model adequacy for
the estimation of pollutant concentrations in surface waters and bioaccumulation in aquatic organisms, as well
as its possible role in assessing the consequences of climate change on the cycle of POPs.
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1. Introduction

Snow scavenging efficiently removes contaminants from the atmo-
sphere (Franz and Eisenreich, 1998; Herbert et al., 2006); such process
is of particular importance in the Northern hemisphere, where snow
covers up to 50% of the land and most of the contaminants are emitted
(Meyer and Wania, 2008). Snow, accumulating on the ground surface,
acts as a temporary storage reservoir of contaminants (Daly and
Wania, 2004). During snowpack aging and metamorphosis, contami-
nantsmay undergo several fate processes: for example, theymay be de-
graded, released with melt water to aquatic and terrestrial ecosystems,
or volatilize back to the atmosphere (Wania, 1997; Daly and Wania,
2004). Depending on their physical–chemical characteristics and snow
properties, contaminants may also concentrate in the snowpack, and
be rapidly released to surface waters during a short melt period. This
can result in spring peak concentrations, which were measured in a
number of studies (e.g., Quémerais et al., 1994; Lafrenière et al., 2006;
Bizzotto et al., 2009a). Moreover, in high-mountain areas, where snow-
fall rates are high and low temperatures allow snow accumulation, a
fraction of the chemical burden contained in snow is incorporated into
firn and ice. Similarly to the snowpack, glaciers can be important
sources of pollutants to surface waters: for example, Blais et al. (2001)
showed that melting glaciers supply 50 to 97% of the organochlorine
pesticide input to the sub-alpine Bow Lake (Alberta, Canada).

The timing of contaminant release from snow and icewith respect to
the seasonal cycle of ecosystems is crucial: in high-altitude areas, snow
and ice melt often coincide with periods of intense biological activity,
when organisms are at a vulnerable stage of development (Meyer and
Wania, 2008). Moreover, such ecosystems experience extremely harsh
conditions such as daily and seasonal extremes in temperature, wind
speed and water discharge; for this reason, the growing season is limit-
ed and survival, development and reproduction of organisms is difficult
(Füreder et al., 2005). However, only few comprehensive studies were
conducted on the occurrence and fate of POPs in organisms living at
high altitudes (e.g., Grimalt et al., 2001; Blais et al., 2003; Vives et al.,
2004a, 2004b, 2004c; Bartrons et al., 2007).

In such context, in which pulsed pollutant loadings and fast biological
cycles regulate water contamination and bioaccumulation, dynamic
models could play a vital role in the understanding of the fate of POPs
and their transfer to the ecosystems. This has been underlined in a recent
opinion of the three scientific committees of the European Commission
(EU. SCHER (Scientific Committee on Health) et al., 2013). Additionally,
the lack of temporally and spatially resolved concentrations in water
and sediment does not allow to evaluate realistic concentrations of expo-
sure (Di Guardo and Hermens, 2013). The prediction of the potential for
snowmelt to cause spring concentration peaks in water, air and soil has
been the object of a number of publications: for example, Daly and
Wania (2004) incorporated a snow compartment into a dynamic model
to investigate the effect of snowon the temporal variability of the concen-
trations of some organic contaminants. Despite the inclusion of a snow or
ice compartment that could substantially improve fate predictions,model
parameterization (e.g., snow and ice melting rates) could be extremely
difficult. Moreover, there is quite a large spatial variability in snow and
ice accumulation as well as for melting patterns; such heterogeneity
could be hard to assess given the low accessibility typical of high-
altitude areas. In hydrological models, snow and ice melt contributions
are generally computed using either energy balance approaches, which
attempt to quantify melt as residual in the heat balance equation, or
temperature-index approaches, which assume an empirical relationship
between air temperatures andmelt rates (Hock, 2003).While the former
can provide amore accurate picture of runoff deriving from snow and ice
melt, they require data which are generally not available in cold, remote
regions (Mou et al., 2008); in contrast, temperature-indexmodels rely on
temperature, which correlates well with melt, and are the most widely
used approaches for runoff computations from glacierized basins (Singh
et al., 2008).

In this work, the concentrations of three POPs (PCB 70, PCB 101 and
p,p′-DDE)measured in the Frodolfo stream(ItalianAlps) (Bizzotto et al.,
2009a) were selected and used as model compounds to reconstruct
water concentration profiles deriving from ice and snow melt during
the year 2006 and to investigate the subsequent accumulation patterns
in four macroinvertebrate trophic groups for which concentrations of
POPs were measured in the same year (Bizzotto et al., 2009b); this
was done by means of a dynamic organism–water–sediment model,
in which the organism compartment was parameterized to simulate
individuals belonging to the macroinvertebrate groups sampled in the
Frodolfo stream. The model incorporated a hydrological module which
permitted the estimation of water discharge and snow/ice melt contri-
butions on an hourly basis. This allowed to: (I) observe the influence
of the high variability of environmental characteristics (e.g., water
discharge) and organism properties (e.g., organism volume and lipid
fraction) on pollutant concentrations in water and on the consequent
accumulation in aquatic organisms and (II) preliminarily calculate
chemical loadings to the Frodolfo stream determined by the melting
of the glacier and of the snowpack.

2. Materials and methods

2.1. Case study description

During the year 2006, water, sediment and macroinvertebrate sam-
pling campaignswere performed on the Frodolfo stream, a glacial stream
fed by the Forni glacier (Ortles–Cevedale group, Italian Alps) in order to
investigate the concentrations of a number of POPs and their relationship
with glacier and snow melt (Bizzotto et al., 2009a,b). Investigated
chemicals included DDTs (dichlorodiphenyltrichloroethane, all isomers
and metabolites), HCB (hexachlorobenzene), α-, β- and γ-HCH (hexa-
chlorocyclohexane), and a selection of PCB congeners (from trichloro-
to octachloro-biphenyls). The sampling campaigns were performed on
May 31st, June 18–19th, July 18–19th, September 12th, and October
11th. Frodolfo stream water and sediment were collected at four sites
located at different distances from the glacier lobe, while organisms
were sampled at one of the four sites, located at a distance of about
2.5 km from the glacier lobe; in such site environmental characteristics
that allow a benthic community to reach a relatively high level of biodi-
versity. Details concerning the sampling and analytical results can be
found in Bizzotto et al. (2009a,b).

Fig. 1 shows the location of the study area in the Italian Alps, togeth-
er with a map of the Frodolfo stream course from its source (the Forni
glacier) and the site investigated in the present work (i.e., the site in
which macroinvertebrates were collected).

2.2. Modeling approach

EcoDynA (Infantino et al., 2013), a fugacity-based model (Mackay,
2001) developed to investigate the fate of organic chemicals in a dy-
namic organism–water–sediment system, was used for the simulations.
In EcoDynA, chemical fate in the three compartments (organism, water
and sediment) is described by a system of 1st-order ordinary differen-
tial equations (ODEs), one for each compartment, which is solved
using a 5th-order adaptive, diagonally implicit Runge–Kutta numerical
method (Semplice et al., 2012).

Model dynamics concern not only chemical emission (which can
be varied on an hourly basis) but also environmental and organism
properties. More specifically, model input include hourly values of
parameters such as water temperature, water inflow and outflow and
suspended solid concentration in water. In the current version of
EcoDynA, suspended solids are modeled as a water sub-compartment,
and the presence of particulate organic carbon (POC) is simulated by
specifying the organic fraction of suspended solids. Organismproperties
can also be input on an hourly basis and include organism volume and
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lipid fraction, feeding rate, gut absorption efficiency, digestion factor,
metabolism half-life and lipid fraction in food.

In the present work, the organism compartment was parameterized
to simulate singlemacroinvertebrate representative individuals belong-
ing to different trophic groups (see Section 2.4). Uptake from food was
modeled considering food in equilibrium with water. More details on
model formulation can be found in Infantino et al. (2013), which also
illustrates an application of EcoDynA to a case of bioaccumulation of
DDTs in fish.

2.3. Environmental scenario

The EcoDynAmodelwas parameterized to simulate a 50-m segment
of the Frodolfo stream (Fig. SI 1). Daily averages ofwater dischargemea-
sured at a dam located about a hundred meters downstream from the
investigated site were obtained by A2A Company (Bondiolotti, personal
communication). However, (i) measured discharge includes different
contributions (snow and ice melt, precipitation) and provides no infor-
mation on how such contributions could be distinguished and (ii) since
glacier-fed rivers are characterized by high dielfluctuations in discharge
(Cuffey and Paterson, 2010), the use of daily averages as model input
can be misleading. For these reasons, in the present work, an effort
was made to calculate hourly values of water discharge from estimates
of snow and ice melt on an hourly basis.

For a period of n time intervals, temperature-index models can be
described as follows (Hock, 2003):

Xn

i¼1

Mi ¼ DDF
Xn

i¼1

Tþ
i ΔT ð1Þ

whereMi (mm) is the amount of ice or snowmelt in the time interval i,
DDF (mm d−1 °C−1) is a proportionality factor known as “degree-day
factor”, Ti+ (°C) is the sum of positive air temperatures in i, and ΔT (d)
is the duration of i. Given the need for hourly values of discharge,
Eq. (1) was modified as follows:

Mh ¼ DDF
dTh

T ð2Þ

whereMh (mm) is the amount of ice or snowmelt in the time interval of
1 h, dTh (=24 h d−1) is a unit conversion factor, and T (°C) is a positive
air temperature. No melt was assumed for T≤ 0 °C. Since DDF depends
on a number of factors (e.g., solar radiation, albedo, snow/ice physical
properties)which considerably vary in space and time (e.g., seasonally),
DDF itself is also subject to such variability (Singh et al., 2008; Hock,
2005). However, for simplicity, in the present work fixed values of
DDF for snow and ice were adopted. Hourly air temperatures for the
year 2006 were acquired for the “Valfurva - Forni” meteorological
station (2118 m a.m.s.l.) (ARPA Lombardia, 2014). Hourly observations
of precipitations were also collected, in order to calculate runoff deriv-
ing from rain.

For computations, the total watershed area (29 km2) was divided
into 9 elevation zones (Fig. SI 2) (altitude interval = 200 m), in which
the glacierized and non-glacierized areas were distinguished. In order
to calculate snow cover, temporal profiles of the snow line for both
ice-covered and ice-free areas throughout 2006 were defined (SGL,
2006). This allowed the estimation of the temporal variation of the
snow covered areas for each elevation zone. Ice melt was assumed to
occur in case of free ice-surface only. For each elevation zone, tempera-
ture records were corrected using a lapse rate of 0.6 °C every 100 m
(Singh et al., 2008). In case of precipitation, rain contribution to runoff
was calculated when T ≥ 1 °C only. Infiltration and sub-surface runoff
were neglected, but for all contributions (from snow/ice melt and
rain) a delay of 2 days was adopted to account for water transport
from its source in the watershed to the investigated site. This 2-day
time lag was a result of the calibration process to account for partial
melting and accumulation processes along thewatershed; furthermore,
for rain contribution, a “retention factor” was applied (see Section 3.1).

The hourly values ofMh (mm) computed using Eq. (2) for snow and
ice were converted into meters and multiplied by the corresponding
snow or ice covered areas, in order to obtain runoff fluxes (m3 h−1).
By adding the rain contribution, hourly discharge estimates were
obtained. Such values were used as inflow and outflow rates from the
50-m stream segment; hourly values of water volumewere then calcu-
lated assuming a rectangular section and establishing the relationships
“discharge–stream width” and “discharge–water level” in order to de-
rive hourly values of such parameters. Details are reported in Text SI 1.

Glacier lobe

Frodolfo 
stream

Investigated 
site

50 km

0.5 km

Glacier lobe

Frodolfo 
stream

Investigated 
site

Glacier lobe

Frodolfo 
stream

Investigated 
site

50 km

0.5 km

Fig. 1. Location of the study area in the Italian Alps, of the investigated site on the Frodolfo stream, with respect to the Forni glacier frontal lobe.
Satellite image from Google Maps (2014).
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Since suspended solids concentrations (SSC) can also vary during
the day, and variations are often related to discharge (Lenzi et al.,
2003; Singh et al., 2005; Haritashya et al., 2010; Iida et al., 2012; Wulf
et al., 2012), a relationship was built in order to derive hourly values
of SSC (see Section 3.1); such relationship was grounded on SSC values
measured in Frodolfo streamwater sampled during summer campaigns
in 2011 and 2013, as described in Text SI 2.

For the simulations presented here, sediment depth was set to
5 mm, basing on field observations; this value was obtained from a
weighted average, considering that 1/10 of the riverbed was occupied
by 5-cm deep sediment, while the remainder by cobbles and boulders
with no sediment on them. This simplification was required because
of the non-spatial nature of the sediment compartment in the model.
Since measurements conducted in the Frodolfo stream from May to
October 2006 revealed an almost constant temperature of approximate-
ly 5 °C (Bizzotto et al., 2009b), such value was adopted for the simula-
tions. In Table SI 3 the values selected for static environmental
parameters and mass-transfer coefficients (MTCs) are reported.

2.4. Organism compartment

Information concerning the typical macroinvertebrate community
structure in glacier-fed Alpine streams can be found in Text SI 3. These
organisms represent the most abundant/representative species
for each trophic level. Such picture is confirmed by the organism
sampling performed in 2006 in the Frodolfo stream (Bizzotto et al.,
2009b). Starting from such knowledge, 4 keystone species, classified
according to their trophic role (Vannote et al., 1980), were selected
for the simulations: Baetis alpinus (Baetidae) and Diamesa nivoriunda
(Chironomidae) for collectors, Rhithrogena nivata (Heptageniidae) for
scrapers and a stonefly of the family Perlodidae (Dictyogenus fontium)
for predators.

For the simulations presented here, temporal profiles of organism
volume (Fig. SI 9) were built for all the macroinvertebrate species;
such profiles were derived from growth rates and relationships be-
tween body length and mass available in the literature (Berg and
Hellenthal, 1991; Ritter, 1990; Cereghino and Lavandier, 1998). Despite
the fact that lipid fraction in macroinvertebrates is known to vary with
time and is generally maximum in summer (Meier et al., 2000), fixed
values of organism lipid fraction were adopted in the present work to
match the ones measured in the macroinvertebrates sampled in the
Frodolfo stream in 2006 (Bizzotto et al., 2009b). More details can be
found in Text SI 3. Given the lack of data, the other organism properties
were kept constant throughout the simulation period: values for diges-
tion factor (4), gut absorption efficiency (63%), and feeding rate (4%
body weight d−1) were taken from Campfens and Mackay (1997). A
high chemical metabolic half-life (i.e., 10,000 d) was adopted as typical
of non-metabolizing substances. Collectors and scrapers were assumed

to feed on periphyton, for which a lipid content of 0.3% was adopted
(Walters et al., 2008). Predatorswere assumed to feed on Chironomidae
(70%), Baetidae (10%), Heptageniidae (10%) and Perlodidae themselves
(10%) (Silveri et al., 2008, 2009; Fenoglio et al., 2007), with their corre-
sponding lipid fraction; predator feeding preferences were adapted
according to prey availability (see Fig. SI 9).

2.5. Chemicals

Two PCB congeners (PCB 70 and 101) and p,p′-DDE were selected
for the simulations as model substances; this allowed to investigate
the fate of chemicals which, during the 2006 campaign on the Frodolfo
stream, had shown different behaviors (Bizzotto et al., 2009a). Among
DDT isomers and metabolites, p,p′-DDE only was always found; its
water bulk concentrations were similar in May and June (~60 pg L−1),
peaked in July (1323 pg L−1) and decreased to about 80 pg L−1 in Sep-
tember and October. In contrast, all the analyzed PCBs occurred at the
highest levels in June. PCB 70 concentrations were of 30 pg L−1 in
May, 2526 pg L−1 in June, again 30 pg L−1 in July, and not detectable
in September and October; similarly, PCB 101, which was not detected
in May, peaked in June (5091 pg L−1), decreased to 76 pg L−1 in July
and to lower levels (near the method detection limit) in the following
months. In Table SI 4 the physical–chemical properties adopted for the
three chemicals are listed.

3. Results and discussion

3.1. Water discharge

The first effort was devoted to estimate the contributions of snow and
icemelt to total discharge on anhourly basis. In order to do so, DDF values
for snow and ice were calibrated to obtain the best fit between predicted
andmeasured average daily discharges, whichwere the only experimen-
tal data available concerning stream flow. Fig. 2 reports the results of the
comparison. The adopted DDF values (3.7 mm d−1 °C−1 for snow and
7.1 mm d−1 °C−1 for ice) were in line with those found in the literature
(e.g., Hock, 2005; Pellicciotti et al., 2005). In order to account for the
loss of water due to infiltration and evaporation, precipitation contribu-
tion to runoff was scaled using a “retention factor”, which was also cali-
brated in order to improve thefit; the optimal valuewas found to be 0.45.

Generally, a good agreement was obtained (R2 = 0.66, Fig. SI 13).
The best fit was observed for the central part of the year, from May to
August; an exception was the underestimation in the first half of July.
Poorer fit, mostly due to an overestimation of the snow contribution,
was observed in spring, especially in April, and from September to
November. On a yearly basis, a total discharge of 6.46·107 was predicted,
while from measured data a value of 5.54·107 can be obtained. Such
discrepancies can be ascribed to the assumptions made for runoff
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Fig. 2. Comparison between predicted and measured discharge (m3 h−1). For comparison purposes, hourly predictions were averaged on a daily basis.

574 M. Morselli et al. / Science of the Total Environment 493 (2014) 571–579



calculations, in particular to the use of fixed values of DDF, of a “retention
factor” for liquid precipitations instead of accounting for infiltration, and
to the adoptionof a 2-day lag instead of accounting for sub-surface runoff.
Moreover, it must be remarked that predictions were compared to mea-
sured values computed assuming Frodolfo dischargewas equal to 2/3 the
discharge provided by A2A (Bondiolotti, personal communication), since
in the original values the contribution of a relatively important stream
(coming from the Cedèc Valley) was included; this factor was selected
on the grounds of field observations, but it is unlikely to be constant dur-
ing the year. A picture of the temporal variation of the different contribu-
tions to total discharge is provided in Fig. 3, where the different sources
(minimum flow, snow melt, ice melt and rain) are distinguished. Ice
melt mainly occurred in July, August and September; snowmelt was al-
ways dominant, except on some occasions during the month of August,
when icemelt prevailed. Thefirst relevant episode of snowmelt occurred
in late June, when most of the winter snow pack over terrain in the
Frodolfo watershed melted. Finally, the contribution of liquid precipita-
tion was limited, in some cases comparable to minimum stream flow.
Given the number of assumptions and the lack of data which would
have been necessary in order to apply a more accurate melt model, the
obtained agreement was considered satisfying; this allowed the comput-
edhourly discharges and relative contributions from the different sources
to be used for chemical loading calculations (see Section 3.3).

3.2. Suspended solids

A positive correlation between discharge and suspended solid con-
centration (SSC) generally exists (e.g., Lenzi et al., 2003; Iida et al.,
2012; Wulf et al., 2012); such relationship is strong at the beginning
and at the endof the ablation period andpoorer in the peakmelt season.
In the latter case some events may occur so as to increase SSC to amuch
higher extent than discharge (Singh et al., 2005). Since no data
concerning suspended solids were available from the 2006 campaigns
on the Frodolfo stream, field investigations were conducted in 2011
and 2013, in order to obtain an estimate of SSC. Sampling and analysis
are discussed in detail in Text SI 2. Results (Fig. SI 7) showed concentra-
tions in the range of 1000 to 2000mgL−1 in all the three afternoon sam-
ples, while water sampled in the morning revealed SSCs which were
lower by more than one order of magnitude with respect to the after-
noon ones. All the measured values were in line with those found in
the literature for glacial streams (e.g., Haritashya et al., 2010). Starting
from the obtained data, a linear relationship between the hypothesized
discharge at the sampling times and themeasured SSCswasbuilt, which
allowed the calculation of hourly values, which were used as model
input (Fig. SI 8). The solids obtained from the filtration of thewater sam-
ples collected in 2013 were also analyzed for organic carbon content
(see Text SI 2); results indicated a very low organic carbon content, of

0.74% (S.D. = 0.03) in the morning water and 0.38% (S.D. = 0.01) in
the afternoon one. Given the lack of other information, the latter value
was adopted as static organic carbon fraction of suspended solids.

3.3. Chemical concentrations in water

For the investigated chemicals, temporal profiles of bulk water
concentrations were derived assigning time-varying concentrations to
melting snow and ice; this allowed the calculation of hourly chemical
loadings to the water compartment. Although some evidence of
increased background air concentrations around contaminated sites
close to two former production plants in northern Italy exists for DDT
(Di Guardo et al., 2003, 2008) and PCBs (Colombo et al., 2013), their
influence in terms of potential secondary sources of POPs to the Alps
is still to be properly quantified. However, some data seem to confirm
higher PCB level in the snow of the Alps (Carrera et al., 2001). Given
the total lack of data concerning local soil and snow characteristics, no
chemical loadingswere assumed to derive from rainfall and subsequent
runoff. A fit with the contaminant concentrations measured in the
Frodolfo stream in 2006 (Bizzotto et al., 2009a) was pursued; this was
performed with the only aim of investigating the potential exposure
levels (and thus accumulation in organisms) when measures were not
available. The obtained temporal profiles of bulk water concentrations
(pg L−1) for the selected contaminants are reported in Fig. 4. PCB 70
and 101, as all the other measured PCB congeners, peaked in June (see
Section 2.5 and Bizzotto et al., 2009a). From Fig. 3 it is evident that,
starting from the second half of June, snow melt represented the main
contribution, accounting from 65 to 95% of the total discharge. Since in
July PCB concentrations decreased although snow melt contribution
was still important (5–85%) and ice melt occurred at high rates
(5–75%), it was hypothesized that the first snow melt water reaching
the stream was highly concentrated. The observed PCB levels also
suggested that the contribution from ice melt was relatively unimpor-
tant. According to these considerations, during all the simulation year,
with the exception of the second half of June, snow concentrations of
15 pg L−1 for PCB 70 and 20 pg L−1 for PCB 101 were assigned. Such
values are within the range of the ones measured in nearby locations
(data presented for the first time in this work, reported in Text SI 4).
Fixed concentrations were assigned to ice (60 pg L−1 for PCB 70,
100 pg L−1 for PCB 101); such values are similar to the ones measured
in a 300-km far Alpine glacier (Villa et al., 2001). In order to match
the PCB levels measured in June, concentration of 5 ng L−1 for PCB 70
and 15 ng L−1 for PCB 101 were necessary; these values are more
than two orders of magnitude higher than the ones measured in the
snow sampled in nearby locations (Text SI 4) and other Alpine sites
(Herbert et al., 2004; Finizio et al., 2006) andwould indicate the concen-
tration occurred in the winter snowpack before late-spring sudden

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

5.00E+04

6.00E+04

1 31 61 91 121 151 181 211 241 271 301 331 361

Time (d)

Minimum flow Snow Ice Precipitation

D
is

ch
ar

g
e 

(m
3  

h
-1

)

Fig. 3. Temporal profile of computeddischarge (daily averages,m3 h−1) divided according to the different contributions. The circle indicates the late-springflush due to sudden snowmelt.
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melt. It is known that, if the snowpack is relatively warm, the wet snow
metamorphism preceding the melt period may concentrate chemicals
(Meyer and Wania, 2008); in the subsequent melt phase, which can
be extremely rapid (a few days or weeks), chemicals may be rapidly re-
leased to surface waters in two distinct flushes (water-dissolved and
particle-bound). Given the high log KOW values of both PCB 70 and
101 (6 and 6.4, respectively), the two chemicals are expected to be elut-
ed from the snowpackwith a certain time delaywith respect to the first
melt water formation, due to their affinity to organic particles (Daly and
Wania, 2004; Meyer and Wania, 2008). However, Lafrenière et al.
(2006) measured very high concentrations even of themost hydropho-
bic compounds (e.g., DDTs, PCBs) in the first snowmelt samples taken
from an alpine snowfield. This was ascribed to a low content of particu-
late organicmatter in the snowmeltwater,whichwould have kept even
themore hydrophobic substances in the dissolved phase. A similar situ-
ation, confirmed by a low organic carbon content of the suspended
solids in the Frodolfo stream (see Section 3.2), could be associated to
this case study. It was observed that, even during high-SSC episodes
(i.e., in case of elevated discharges), the low organic carbon content
resulted in a negligible influence of suspended solids in determining
reduced water-dissolved contaminant concentrations.

In contrast, p,p′-DDE peaked in July (see Section 2.5 and Bizzotto
et al., 2009a), and the same behavior was described in a previous
study on the Frodolfo stream (Villa et al., 2006a). A fixed snow concen-
tration of 70 pg L−1 was adopted, equal to the minimum concentration
measured in the snow sampled in 2008 (Text SI 4); since no late-spring
peak was observed for this chemical, no p,p′-DDE enrichment in
snow was assumed to occur. In ice, a fixed chemical concentration of
1000 pg L−1was assumed, except for themonth of July: it was observed
that, in order tomatch the concentration valuemeasured in the Frodolfo
stream, a concentration in ice of 3000 pg L−1 was necessary. No data

concerning p,p′-DDE concentration in Alpine glaciers were available
for a comparison, but the adopted values were one order of magnitude
higher than the concentrations measured in firn at a 300-km far Alpine
site (Villa et al., 2006b).

3.4. Bioaccumulation in organisms

In Figs. 5, 6 and 7 the results of the comparison between predicted
and measured concentrations (ng g−1 d.w.) of the investigated
chemicals in the four modeled macroinvertebrate species are reported.

A preliminary sensitivity analysis conducted on the EcoDynAmodel
revealed that the parameters which mostly affect organism concentra-
tions are organism lipid fraction, gut absorption efficiency, feeding
rate and lipid fraction in food (Infantino et al., 2013). Given the high
uncertainty associated to such parameters, it was chosen to perform
additional simulations increasing and decreasing the most influential
one (i.e., organism lipid fraction) of 50% (gray lines in the figures).
A different fresh to dry weight ratio for each macroinvertebrate group
was used to convert concentration to a dry weight basis; these values,
measured in the organism sampled in the Frodolfo stream in 2006,
were 4.2 for collectors, 3.5 for scrapers, 3.55 for predators.

Considering all uncertainties in model input, a satisfying agreement
between predictions and observations was generally observed for PCB
70; the best model performance concerned scrapers (Heptageniidae)
and predators (Perlodidae), while for Baetidae and Chironomodae
the model underestimated July and September concentrations of a
factor of 2 to 7. A similar good model performance was observed for
PCB 101, for which the only underestimated concentration was the
September one for collectors and scrapers (factor of 2 to 4). The compar-
ison between predicted andmeasuredp,p′-DDE concentrationswas less
satisfying, since the model generally underestimated chemical levels in
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Fig. 4. Temporal profiles of bulk water concentrations (pg L−1) obtained for the modeled chemicals. Gray lines depict model results, while markers represent measured concentrations.
The y-axis is on a log-scale.

576 M. Morselli et al. / Science of the Total Environment 493 (2014) 571–579



all macroinvertebrates, in some cases even of one order of magnitude.
As for PCB 70, the best agreement was observed for scrapers and pred-
ators. Despite the fact that uptake from food is usually one of the most
important bioaccumulation pathways for hydrophobic and persistent
organic chemicals in aquatic organisms such as fish or macroinverte-
brates, it was substantially negligible for collectors and scrapers; in con-
trast, it was relatively important for predators, responsible for 15% of the
accumulation of PCB 70, 30% of PCB 101, and 12% of p,p′-DDE.

The observed discrepancies could be attributed, for example, to the
use of static values of organism lipid fraction andother organismparam-
eters (e.g., absorption efficiency and feeding rate) instead of temporal
profiles. More accurate data on the modeled organisms could dramati-
cally improve model performance. Moreover, considering food in equi-
librium with water could also be misleading; this could be overcome
by simulating a food web, although much more information would be
required.

3.5. Considerations on chemical loadings to surface water

The modeling effort presented in this work allowed a very prelimi-
nary and rough estimation of the total amounts of the investigated pol-
lutants which were released to Frodolfo stream water from ice and
snow during 2006. According to our calculations, the total released
amounts were 2.86·10−2 kg for PCB 70, 8.64·10−2 kg for PCB 101,

and 4.09·10−2 kg for p,p′-DDE. While for PCB 70 and 101 the most
important contribution was snow melt, accounting for about 98% of
the total chemical burden, for p,p′-DDE ice was the main chemical
source (92%). These results highlight the possible valuable role of
dynamicmodeling approaches such as the one presented here in the es-
timation of the consequences of changing climate regimes on exposure
levels and environmental fate of POPs stored in cold archives such as
glaciers. This modeling approach could help in the identification and
quantification of chemical sources to surface waters in these circum-
stances. Starting from basic information concerning the environmental
scenario (watershed morphology, air temperatures, ice cover, etc.)
and from some measured chemical concentrations in surface water,
snow or ice, temporal profiles of chemical concentrations could be ob-
tained. Moreover, possible scenarios characterized by higher air tem-
peratures or more intense precipitation events could be investigated.

4. Conclusions

A dynamic organism–water–sediment modeling approach was
combined with a hydrological module capable of estimating water
discharge and snow/ice melt contributions on an hourly basis, starting
from hourly air temperatures. The application of the model to the
Frodolfo case study showed its adequacy for the estimation of pollutant
concentrations in surface waters and consequent bioaccumulation in
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aquatic organisms. Given the sudden response to variation in concen-
trations of the organisms living in a very changing environment, the
tool provided allows to obtain the magnitude of peak exposure. This
is in turn important to evaluate potential toxic effects of such dynamic
exposure pattern. Additionally, the possible role of the model in
assessing the consequences of climate change on cycle of POPs was
also highlighted.

For a more thorough calibration and validation of the modeling
approach presented here, which will be the object of future work,
more informationwill be needed: for example, higher-temporal resolu-
tion water and organism samplings, as well as more detailed informa-
tion on organism parameters (especially the most influential ones).
More complete sensitivity and uncertainty analyses need also to be
performed. However, the results presented here show the potential
benefits of a dynamic predictive tool in the calculation of exposure
variation in time of macroinvertebrates and, potentially, further levels
in the food web for an alpine stream.
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Text SI 1 

Discharge and water volume calculations 

For discharge computations, the total watershed area (29 km2) was divided into 9 

elevation zones (altitude interval = 200 m), in which the glacierized and non-glacierized 

areas were distinguished. The first step consisted in Frodolfo basin delineation and was 

performed starting from a 20-m resolution digital elevation model (DEM) obtained from 

the Lombardy Region (2014). A shapefile of ice-covered areas at the end of summer 

obtained from the same source was then overlapped, in order to differentiate ice-free 

from ice-covered areas, as shown in Figure SI 1. 

 

Basin

Ice-covered area (at the end of 
summer)

Sampling site

Basin

Ice-covered area (at the end of 
summer)

Sampling site  

Figure SI 1. Frodolfo stream watershed and ice-covered area. 
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Afterwards, contour lines with an altitude interval of 200 m were delineated starting from 

the DEM; the resulting shapefile was used to divide the ice-free and ice-covered areas of 

the basin into elevation zones, as shown in Figure SI 2.  

 

Contours (∆h = 200 m)

Sampling site

Contours (∆h = 200 m)

Sampling site
 

Figure SI 2. Watershed division in elevation zones and intersection with ice-covered 

areas. 

 

The described procedures were performed using ESRI ArcView version 3.2 (ESRI, 1999) 

and ESRI ArcGIS version 9.3 (ESRI, 2008). Information concerning the elevation zones 

is reported in Table SI 1. 
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Table SI 1. Information concerning the 9 elevation zones into which the Frodolfo 

watershed was split. 

Altitude range (m) Total area (km2) Ice-covered area (km2) Ice-covered area (%) 

< 2200 0.076 0 0 

2200-2400 1.404 0 0 

2400-2600 2.169 0.010 0.44 

2600-2800 4.356 1.052 24.16 

2800-3000 5.697 2.033 35.68 

3000-3200 6.270 3.936 62.78 

3200-3400 5.838 4.180 71.60 

3400-3600 3.154 2.171 68.82 

> 3600 0.248 0.153 61.87 

 

In order to calculate the snow cover in each elevation zone, a profile of the snow line 

(i.e., the lower altitudinal boundary of a snow-covered area) throughout the year 2006 

was defined for both the ice-free and the ice-covered areas (Figure SI 3), on the grounds 

of the observations collected during the 2006 glaciological campaign (SGL, 2006). The 

minimum value of the snow line for ice-covered areas was set to 2500 m, since no ice 

was found below such altitude. 
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Figure SI 3. Assumed snow-line temporal profiles for ice-free and ice-covered areas in 

the Frodolfo watershed. 
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The collected data were used to estimate, for each elevation zone, the areas covered by 

snow and ice in the different periods of the year. In Figure SI 4, an example for the 

elevation zone 2600-2800 m is reported (zone total area = 4.356 km2). 
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Figure SI 4. Temporal profiles of the different area types in the elevation zone 2600-2800 

m in the Frodolfo watershed. 

 

No ice melt was calculated in case of snow cover: in other words, ice melt was assumed 

to occur in case of free ice-surface only. In order to obtain representative temperature 

values for each elevation zone, the hourly values measured at the “Valfurva - Forni” 

meteorological station (ARPA Lombardia, 2014) were corrected using a lapse rate of 0.6 

°C every 100 m (Singh et al., 2008). Afterwards, by applying Equation 2 (main text), the 

hourly contributions of snow and ice melt to flow were estimated, using DDF values for 

snow and ice (3.7 and 7.1 mm d-1 °C-1, respectively) which were calibrated in order to 

obtain the best fit between predicted and measured discharge (see 3.1, main text). 

Estimated hourly values of Mh (mm) for snow and ice were then converted into meters 

and multiplied by the corresponding areas covered by snow or ice, in order to obtain 
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runoff fluxes (m3 h-1). A first estimate of the contribution of rainfall to flow was obtained 

by multiplying hourly values of precipitation amount (in case of T ≥ 1 °C) by the 

elevation zone area. Such method obviously ignores processes such as infiltration, but 

given the lack of data concerning, for example, ice and snow density or soil type, it can 

provide a preliminary idea of rainfall contribution.  

By summing all contributions (snow/ice melt and rain) and considering, in absence of 

melt and precipitation, a constant stream discharge of 720 m3 h-1 (Bondiolotti, personal 

communication), hourly estimates of discharge were obtained in order to calculate 

compartment volume change with time and used in EcoDynA as inflow and outflow rates 

from the 50-m stream segment. Hourly values of water volume were computed assuming 

a rectangular section and using hourly values of stream width and water level. Since no 

measures were available for such parameters, two linear relationships were established, 

also on the grounds of field observations: discharge-stream width and discharge-water 

level. It was assumed that, in low-discharge conditions (i.e., 720 m3 h-1), stream width 

was 2 m and water level was 15 cm, while in high discharge conditions (i.e., 3.96·104 m3 

h-1), stream width was 6 m and water level was 1 m; maximum values of stream width 

and water level were set to 10 m and 2 m, respectively. In Figures SI 5 and 6 the 

computed temporal profiles of the two parameters are reported. 
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Figure SI 5. Temporal profile of the computed stream widths (m). 
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Figure SI 6. Temporal profile of the computed water levels (m). 
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Text SI 2 

Suspended solids and organic carbon fraction: water sampling, analysis, results 

In 2011, Frodolfo stream water at the investigated site was collected twice, on July 31st 

and August 28th, at the same time of the day (3 PM), when discharge was estimated to be 

the highest; in 2013, water was sampled at different times of the same day (9.30 AM and 

3 PM, September 1st), in order to take a picture of the SSC variability. Water was 

sampled using 5-L plastic tanks; for each sampling, 4 tanks were collected. Afterwards, 

water was stored at -30 °C until analysis.  

The determination of total suspended solids was performed following a modified version 

of the Standard Method 2540 D (total suspended solids dried at 103-105 °C) (APHA, 

1999). According to this procedure, a well-mixed sample is filtered through a weighed 

standard filter and the residue retained on the filter is dried to a constant weight at 103 to 

105°C; the increase in weight of the filter represents the total suspended solids. In the 

present work, mixed cellulose esters membrane filters of nominal pore size of 0.45 µm 

(as indicated in APAT, 2003) instead of glass-fiber filters of nominal pore size of 0.2 µm 

were used. Filtration was carried out using a vacuum pump. Organic carbon fraction was 

measured using a Perkin Elmer 2400 CHN Elemental Analyzer. 

SSCs for the different water samples are reported in Figure SI 7, while in Figure SI 8 the 

hourly SSC values computed by means of a linear relationship between the hypothesized 

discharge at the sampling times and the measured SSCs are depicted. The maximum 

value of SSC was set to 20 g L-1. 
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Figure SI 7. Suspended solids concentrations (mg L-1) measured in the water sampled on 

the Frodolfo stream in 2011 and 2013. Standard deviations are also reported. 
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Figure SI 8. Temporal profile of the computed suspended solids concentrations (g L-1).  
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Text SI 3 

Macroinvertebrates: community structure in a glacier-fed stream and model 

parameterization 

The macroinvertebrate community structure in a glacier-fed ecosystem, in terms of total 

abundance, is dominated by the mayfly Baetis alpinus (Baetidae) and the dipterans 

Diamesa spp. (Chironomidae). During the summer, Diamesa spp. can represent a large 

amount of the community, ranging from about 50 to 80% (Füreder et al., 2001; Robinson 

et al., 2001; Lencioni and Rossaro, 2005), while Baetis spp. represent more than 10% 

(Robinson et al., 2001). Other common taxa in glacier-fed ecosystems are: 

Ephemeroptera (Rhithrogena spp.), representing from 0.2 to 13% of the community 

(Robinson et al., 2001), Plecoptera (stoneflies), representing about 4% (Füreder et al., 

2001), Tricoptera and other Diptera. In general, stoneflies communities are not highly 

diversified in Alpine streams in response to the harsh environmental conditions (Brittain 

et al., 2000; Ward, 1994). For Italian Alpine streams, for example, 11 species of 

Perlodidae stoneflies have been described (Silveri et al., 2008), 2 species belonging to the 

Dictyogenus genus, 2 to Perlodes and 7 to Isoperla. 

A brief description of how macroinvertebrate volumes and lipid contents were derived 

follows. 

 

BAETIDAE (COLLECTORS ) 

Hourly volumes for the simulated macroinvertebrate belonging to Baetidae were 

calculated starting from a relationship between dry mass and body length, computed as in 

Ritter (1990). The resulting profile is reported in Figure SI 9. 
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In the collectors sampled in 2006 in the Frodolfo stream, Bizzotto and co-workers (2009) 

measured an almost constant lipid content of about 15.3 % (dry weight); since, for 

collectors, a fresh/dry weight ratio of 4.2 was measured, such value was used to calculate 

the lipid content on a wet weight basis (i.e., 3.64%), which was adopted as constant 

model input. 

 

CHIRONOMIDAE (COLLECTORS ) 

Hourly volumes for the simulated macroinvertebrate belonging to Chironomidae were 

calculated starting from a relationship between dry mass and growth rate; growth rate 

values were derived from the information reported in Berg and Hellenthal, (1991). The 

resulting profile is reported in Figure SI 9 

 

As for Baetidae, a constant lipid content of 3.64% was used as model input. 

 

HEPTAGENIIDAE (SCRAPERS) 

Hourly volumes for the simulated macroinvertebrate belonging to Heptageniidae were 

calculated starting from a relationship between dry mass and growth rate; the seasonal 

values of growth rate reported in Cereghino and Lavandier (1998) were used. The 

resulting profile is reported in Figure SI 9. 

From the 2006 campaign, a single value of lipid content was available for scrapers (i.e., 

18.09% dry weight, measured in July) (Bizzotto et al., 2009). Such value was converted 

on a wet weight basis using the fresh/dry weight ratio measured for scrapers (3.5). The 

resulting lipid content (5.17% wet weight) was adopted as constant model input. 
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PERLODIDAE (PREDATORS) 

Hourly volumes for the simulated macroinvertebrate belonging to Perlodidae were 

calculated starting from a relationship between dry mass and body length, computed 

starting from the seasonal growth rate values found in Cereghino and Lavandier (1998). 

The resulting profile is reported in Figure SI 9. 

Since in the 2006 campaign a temporal variability was observed in the lipid content of the 

sampled predators (similar, lower values in June, September, October and peak in July), 

the summer increase in such parameter was reproduced, as depicted in Figure SI 10. For 

the conversion from dry weight to fresh weight, a factor of 3.55 (the one measured for 

predators) was used. 
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Figure SI 9. Temporal profiles of organism volume (L) created for the investigated 

macroinvertebrates. 
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Figure SI 10. Temporal profile of organism lipid fraction (on a wet weight basis) for the 

macroinvertebrate belonging to Perlodidae. Markers represent the measured values 

(Bizzotto et al., 2009) from which the profile was derived. 
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Text SI 4 

Snow sampling and analysis 

In winter 2008, two sampling campaigns were performed in order to investigate the 

concentrations of a number of chemicals (DDTs, HCB, HCHs, and a selection of PCB 

congeners, from trichloro- to octachloro-biphenyls) in snow. Two sampling sites were 

chosen: in the first one, located in Spiazzi di Gromo (municipality of Gromo, Bergamo), 

at an altitude of 1200 m a.m.s.l., snow was sampled once (on February 2nd); in the second 

one, in Gavia Valley (Sondrio), at 2000 m a.m.s.l., snow was sampled on January 16th 

and February 2nd. Sampling locations are shown in Figure SI 11. 
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Figure SI 11. Location of the snow sampling sites (“Gavia Valley” and “Spiazzi di 

Gromo”) with respect to the investigated site (“Frodolfo”). Satellite image from Google 

Maps (2014). 

 

Snow samples were taken from the first 10 cm of snow. Snow was collected using a 

stainless-steel shovel and stored in pre-cleaned aluminium cans (average melted water 

volume of about 3 L). The recovery standard (a mix of PCB 128 and 140) was added in 

the field and the same procedure was repeated for blanks (Milli-Q water). Afterwards, 

samples and blanks were stored at -20 °C until analysis. Extractions were carried out with 

pesticide-grade methylene chloride (DCM) in a liquid-liquid extractor (3 x 200 mL); to 

minimize the re-equilibration of pesticides with the atmosphere, samples and blanks were 
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extracted as soon as the last bit of ice had melted. Dissolved and particulate fractions 

were not analyzed separately; therefore, measured concentrations should be interpreted as 

“bulk”. After concentration by rotary evaporation, extracts were purified in a silica gel (3 

g) column, eluted first with 34 mL of hexane and then with 15 mL of hexane/DCM (1:1). 

All extracts were further concentrated under N2 flux to facilitate solvent exchange to 

dodecane containing two internal standards (PCB 30 and 141). Analyses were performed 

with an Agilent Technologies 6890N Series gas chromatograph equipped with a 50-m 

0.25-mm internal diameter CPSil8 capillary column (Chrompak) fitted with a retention 

gap (2-m long, 0.53-mm internal diameter FSOT column with a methyl stationary phase). 

Carrier gas was helium, and flux was set to 1 mL/min. The GC was coupled with a MS 

detector (5973N, Agilent Technologies), which was operated in single-ion monitoring 

mode. 

Method detection limit was determined as the instrument detection limit of the lowest 

concentration standard of each analyte, and was 5.7 pg/L for the Gavia Valley snow 

sampled on January 16th, 5.9 pg/L for the Gavia Valley snow sampled on February 2nd, 

and 32 pg/L for the Spiazzi di Gromo snow. More details on extraction and analytical 

procedures can be found in Villa et al. (2006) and Finizio et al. (2006). The results are 

reported in Table SI 2. 

 

Table SI 2. Chemical concentrations (pg L-1) in the snow sampled in 2008 at the two 

sampling sites. 

Chemical 
Stelvio, 

January 16th  

Stelvio, 

February 2nd  

S. di Gromo, 

February 2nd  

o,p’-DDE < MDL < MDL 43.0 

p,p’-DDE 70.8 118.0 162 
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HCB 110.3 72.1 134.5 

PCB 31 < MDL 51.3 < MDL 

PCB 49 18.7 8.4 < MDL 

PCB 52 37.2 9.8 32.0 * 

PCB 64 12.7 < MDL < MDL 

PCB 66 5.7 * < MDL < MDL 

PCB 70 18.1 < MDL < MDL 

PCB 74 < MDL 5.9 * < MDL 

PCB 87 9.2 < MDL < MDL 

PCB 95 19.9 7.2 < MDL 

PCB 97 < MDL < MDL 61.9 

PCB 99 5.7 * < MDL < MDL 

PCB 101 27.2 17.3 32.0 * 

PCB 110 27.9 33.3 60.6 

PCB 118 22.5 34.7 56.4 

PCB 132 < MDL 20.9 54.7 

PCB 138 < MDL 62.3 67.5 

PCB 149 26.9 31.6 55.5 

PCB 151 < MDL < MDL 32.6 

PCB 153 26.8 42.9 82.2 

PCB 156 22.7 < MDL < MDL 

PCB 174 < MDL < MDL 33.2 

PCB 177 < MDL < MDL 32.0 * 

PCB 180 < MDL < MDL 100.5 

PCB 187 < MDL < MDL < MDL 
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Figure SI 12. PCB fingerprints of the snow samples collected in 2008. 
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Table SI 3. Values for the non time-variable environmental parameters and mass-transfer 

coefficients (MTCs) adopted for the simulations. 

Parameter Unit Value 

Sediment active layer depth m 0.005 a) 

Aerosol particle concentration µg m-3 4 b) 

Volume fraction of sediment particles - 0.1 c) 

Density of water particles kg m-3 1500 c) 

Density of sediment particles kg m-3 1500 c) 

Density of air particles kg m-3 1500 d) 

OC fraction of suspended solids in water - 3.83·10-3 e) 

OC fraction of sediment particles - 3.83·10-3 f) 

Rain rate m y-1 0.7 g) 

Aerosol dry deposition velocity m h-1 7.2 d) 

Scavenging ratio - 200000 d) 

Volatilization MTC (air-side) m h-1 10 c) 

Volatilization MTC (water-side) m h-1 1 c) 

Sediment-water diffusion MTC m h-1 1·10-3 c) 

Sediment deposition rate g m-2 d-1 400h) 

Sediment resuspension rate g m-2 d-1 200h) 

Sediment burial rate g m-2 d-1 200h) 

 
a) Weighted average assuming that 1/10 of the riverbed is occupied by 5-cm deep sediment, while 

the remaining part by cobbles and boulders with no sediment on them 
b) Minimum PM10 value recorded in the nearby air quality station of Bormio (ARPA Lombardia, 

2014b) 
c) Warren et al., 2005 
d) Mackay et al. (1989) 
e) Measured (see Text SI 3) 
f) Assumed as e) 
g) Calculated from meteorological observations at the “Valfurva - Forni” station for the year 2006 

(ARPA Lombardia, 2014a) 
h) Calculated from the estimated average suspended solids concentration and using a deposition 

velocity of 0.02 m h-1; resuspension and burial rates are assumed to be half the deposition rate as 
in c) 
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Table SI 4. Physical-chemical properties of the three chemicals selected for the 

simulations (Mackay et al., 1992; 1997). 

Parameter PCB 70 PCB 101 p,p’-DDE 

Molecular weight (g mol-1) 292 326.4 319 

Melting point (°C) 104 76.5 89 

Vapour pressure (Pa) 2.48·10-3 * 1.09·10-3 8.66·10-4 

Water solubility (mg L-1) 6.55·10-2 * 1·10-2 4·10-2 

log KOW 6 * 6.4 5.7 

Half-life in water (h) 55000 55000 55000 

Half-life in sediment (h) 55000 55000 55000 
* Derived from similar PCB congeners 
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y = 0.7893x + 495.42

R2 = 0.6598
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Figure SI 13. Comparison between measured and predicted water discharge. The 

correlation is significant (P < 0.001 ). 
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Predicting ecosystem response to chemicals is a complex problem in ecotoxicology and a challenge for risk
assessors. The variables potentially influencing chemical fate and exposure define the exposure scenario while
the variables determining effects at the ecosystem level define the ecological scenario. In absence of any empirical
data, the objective of this paper is to present simulations by a fugacity-based fate model and a differential
equation-based ecosystemmodel to theoretically explore howdirect and indirect effects on invertebrate shallow
pond communities vary with changing ecological and exposure scenarios. These simulations suggest that direct
and indirect effects are larger in mesotrophic systems than in oligotrophic systems. In both trophic states, inter-
action strength (quantified using grazing rates) was suggested amore important driver for the size and recovery
from direct and indirect effects than immigration rate. In general, weak interactions led to smaller direct and
indirect effects. For chemicals targeting mesozooplankton only, indirect effects were common in (simple)
food-chains but rare in (complex) food-webs. For chemicals directly affecting microzooplankton, the dominant
zooplankton group in the modelled community, indirect effects occurred both in food-chains and food-webs.
We conclude that the choice of the ecological and exposure scenarios in ecotoxicological modelling efforts
needs to be justified because of its influence on the prevalence and magnitude of the predicted effects. Overall,
more work needs to be done to empirically test the theoretical expectations formulated here.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Ecosystems are inherently complex and understanding how
chemicals impact on their structure and functioning is at an incipient
phase (Naito et al., 2003; De Laender et al., 2008b; Park et al., 2008; De
Laender and Janssen, 2013). The number of variables potentially influenc-
ing how ecosystems respond to chemicals represents one dimension of
this complexity. Althoughwidely used, the concept of the ‘ecological sce-
nario’ is, to the best of our knowledge, rarely defined. One approach to
characterizing an ecological scenario consists of allocating one value to
each variable potentially influencing population- and ecosystem-level re-
sponses to an environmental perturbation. Note that this approach does
not constrain the number of variables needed to describe a given scenario,
as this will depend on the ecosystem considered and the research ques-
tions asked.

Examples of variables making up an ecological scenario include
trophic state, the degree of isolation of the exposed system, the interac-
tion strength between species in a food-web and the complexity of this
food-web. Trophic state may determine the response of individuals, pop-
ulations, and ecosystems to chemicals through modifying resource avail-
ability (Noel et al., 2006; Pieters et al., 2006; Alexander et al., 2013; De
Hoop et al., 2013; Gabsi et al., 2014). The degree of isolation will deter-
mine if immigration from areas with lower exposure levels can compen-
sate for chemical effects and/or facilitate recovery and recolonization
(Liess and Schulz, 1999; Caquet et al., 2007). Based on the ecological liter-
ature on disturbances in ecosystems, also interaction strength and food-
web complexity can be hypothesised as key variablesmaking up the eco-
logical scenario. For example, the influence of these two variables on var-
ious stability measures has been a major topic in community and
ecosystem ecology (May, 1972; Neutel et al., 2002; Allesina and Tang,
2012), although existing efforts have focused on random (non-specific)
perturbations. To our knowledge, the influence of these two ecosystem
descriptors on the response of ecosystems to chemicals has not been test-
ed yet.We expect this response to be different for chemicals than for ran-
dom perturbations because chemicals often affect specific taxa only. The
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way in which such direct impacts of chemicals travel through an ecolog-
ical network such as a food-webwillmost likely depend on the identity of
the impacted taxa.

Next to the ecological scenario, the exposure scenario is another
dimension to the complexity surrounding ecological effect assessments
at higher levels of biological organisation. Again, an approach to
defining an exposure scenario consists of attributing values to variables
determining chemical exposure. Such exposure is often related to
chemical emissions in the environment (application and/or discharge).
The timing of application is one potentially important variable making
up the exposure scenario, although the influence of the application sea-
son is unclear at present (Willis et al., 2004; Van Wijngaarden et al.,
2006). Other variables that characterize exposure include those deter-
mining chemical fate (e.g. partitioning coefficients) as well as chemical
movement across compartments anddegradation. In such view, the role
of the ecological complexity in defining the exposure is often neglected
or overlooked (Di Guardo and Hermens, 2013).

The influence of the exposure scenario on a chemical's effects on
ecosystems needs to be examined in concert with that of the ecological
scenario, as both scenarios may share common variables. More precise-
ly, certain variables making up the ecological scenario will also define
the exposure scenario, and vice versa. For example, trophic state, essen-
tially a characteristic of the challenged ecosystem determining resource
availability, will also influence chemical bioavailability in water, and
therefore the actual exposure pelagic biota are facing. The timing of
application, often considered as a part of the exposure scenario, will
likewise determine the ecological scenario in case of strong seasonal
fluctuations in community composition.

At present, no information is available on how ecosystem response
to chemicals varies across different ecological and exposure scenarios.
This may be partly due to the practical difficulty to experimentally test
chemical effects on population- and ecosystem-level endpoints for a
range of ecological and exposure scenarios and the resources that are
required to do so. As opposed to experimental approaches, the use of
mechanistic models does not suffer such constraints. Indeed, modelling
can play a key role in theoretically exploring how ecological scenarios
co-determine the ecological effects triggered by an array of exposure
scenarios.

In the field of exposure and fate modelling, efforts are on-going to
refine the incorporation of bioavailability into the exposure assessment
of organic pollutants (Di Guardo et al., 2006; Infantino et al., 2013).
Future efforts will include the evaluation and expression of the spatial
and temporal variability of chemical fate in order to definemore realis-
tic exposure scenario (Di Guardo and Hermens, 2013). In recent years,
advancements have beenmade in the field of mechanistic effect model-
ling as well, mostly at the population level (Grimm et al., 2009; Martin
et al., 2013), and these efforts have led to strategies to enhance the real-
ism of ecological effect assessments (Forbes et al., 2009). Currently,
efforts are on-going to continue the upscaling of effects towards higher
levels of biological organisation (De Laender et al., 2011; De Laender and
Janssen, 2013).

The objective of the presented paper is to formulate theoretical ex-
pectations for ecological effects and recovery across a range of exposure
and ecological scenarios, using a combined chemical fate and ecosystem
model. The chemical fate model is based on the fugacity approach. The
choice for a fugacity approachwasbased on the availability of a dynamic
fugacity-based aquatic model (Di Guardo et al., 2006; Infantino et al.,
2013), which could be easily modified to simulate exposure for this
exercise. The ecosystem model is defined as a set of coupled ordinary
differential equations, at present the only approach available to model
ecosystem dynamics in ecotoxicology. We summarize effects on the
biomasses of the included functional groups in two ways: (1) using
the maximum difference in time between the exposed and control
biomass, and (2) using the time-integrated biomass difference between
the exposed and control dynamics.We consider both direct and indirect
effects (Fleeger et al., 2003) across sixteen ecological scenarios, differing

in trophic state (oligo- vs. mesotrophic), the interaction strength be-
tween producers and consumers (high vs. low), the immigration rate
(fast vs. slow), and the complexity of the ecological system (food-web
vs. food-chain). The four chemicals considered represent all combina-
tions of two sorption characteristics (hydrophobic vs. hydrophilic),
and two toxicological profiles (targeting micro- vs. mesozooplankton).
By also varying the season of emission between spring and late summer,
a total of eight exposure scenarios were considered. The fate model was
used to predict the dynamics of the water dissolved chemical concen-
trations, taking into account trophic state by using phytoplankton and
detritusmass for bioavailability calculations.We stress that our exercise
should be interpreted as a model-aided quantification of the theoretical
expectations on how ecological effects of chemicals vary across ecolog-
ical and exposure scenarios. In our discussion, we qualitatively confront
our predictions with results frommicro- andmesocosm studies but this
comparison does not waive the need for a more formal confrontation
with data in the future, when these become available.

2. Material and methods

2.1. Chemical fate model

Chemical fate was calculated using a modified version of the
DynA (Di Guardo et al., 2006) and EcoDynA (Infantino et al., 2013)
models. These models are fugacity-based (Mackay, 2001) and were
developed to investigate the fate of organic chemicals in a dynamic
aquatic system. Model dynamics depend on chemical emission
(which can be varied on an hourly basis) and on environmental pa-
rameters. More specifically, model input includes hourly values of
water temperature, water inflow and outflow rates and suspended
solid concentration in water. Suspended solids are modelled as a
water sub-compartment; equilibrium with water is therefore
assumed. The presence of particulate organic carbon (POC) is simulated
by defining the organic fraction of the suspended solids. In the imple-
mentation of the model used in the present work, also a dissolved or-
ganic matter (DOM) sub-compartment was included. More details
concerning model formulation and the application in this paper can
be found in Text S1.

For all simulations, the model was parameterized to represent a
typical shallow pond, characterized by an area of 450 m2 and a depth
of 1m.Awater residence timeof sixmonths, sufficiently high to prevent
the chemical outflow with POC and DOC to become the dominant fate
process, was simulated, as the result of constant input and output
water fluxes of 0.1 m3 h−1. A seasonal profile of water temperature
similar to those measured in a set of UK temperate ponds, with values
ranging from 3 to 15 °C in winter and summer, respectively, was
adopted (Martin, 1972; Young, 1975) (Fig. S1, Supporting information).
The sediment compartment, in terms of the fraction of solids and
fraction of organic carbon in solids, was parameterized elsewhere
(Armitage et al., 2008).

2.2. Food-web model

A food-web model was implemented in R (R Development Core
Team, 2010) as a set of ordinary differential equations. Each equation
represented the dynamics of one functional group (mg C/m2), based
on gain and loss processes quantified as surface-specific carbon ex-
change rates (mg C/m2/d), including functional group-specific immi-
gration (Table 1 lists all parameters). The model included 6
functional groups: phytoplankton, omnivores, microzooplankton,
mesozooplankton, detritivores, and invertebrate predators (consuming
all heterotrophs) (Fig. 1). Phytoplankton growth was described as:

dPhy
dt

¼ Phy � 1−a � cos 2 � π � t
365

� �� �
� Gpp � 1−Resp−Excrð Þ � 1−Phy

K

� �
−Mort

� �

− Predationþ I
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where 1−a � cos 2 � π � t
365

� �
and Predation represent seasonal forcing and

predation by higher trophic levels, respectively. Predationwas calculated
by summing phytoplankton ingestion by omnivores, microzooplankton,
and mesozooplankton. These variables are calculated dynamically dur-
ing model simulation.

Growth of the heterotrophic groups (Het = omnivores, micro-
zooplankton, mesozooplankton, detritivores, or invertebrate predators)
was described as:

dHet
dt

¼ Het �
"
IngHet � AEHet �

Food
Foodþ KHet

−RespHet � 1−ExcrHetð Þ

�max MortHet ; ln 1þ C
LC50Het

� �slope
" #" ##

−Predationþ I

where Food, C, and Predation represent the total food concentration, the
chemical concentration, and loss by predation (equal to zero for preda-
tors), respectively. Food was calculated as the biomass summed across
all diet items (e.g. for omnivores, Food = Phy + Det, where Det repre-
sents the state variable for detritus). The dynamics of Detwere included
explicitly to simulate detrivory by detritivores and omnivores:

dDet
dt

¼
X5
i¼1

Ingi � 1−AEið Þ � Foodi

Foodi þ Ki
þMorti

� �
−d � Det

where Ing, AE, Food, K, andMort represent arrays (of size 5) containing
specific ingestion rates, assimilation efficiencies, food concentrations,
half-saturation constants, andmortality rates of all six functional groups.
Note that the entries for phytoplankton in Ing, AE, and Food are set to

zero. This equation represents detritus accumulation when egestion
and mortality exceed dissolution, and depletion when the opposite is
true.

The food-web model was equipped with logistic concentration–
response functions to describe the direct toxic effects of an aqueous
chemical concentration, C (input variable), on the mortality rate of
mesozooplankton or microzooplankton (depending on the exposure
scenario), as done previously (Traas et al., 2004; De Laender et al.,
2008a). Parameters of these functions were the median lethal concen-
tration (LC50) and slope (Table 2). Actual mortality was defined as the
maximum of the toxicant-inducedmortality and backgroundmortality.

2.3. Food-chain model

We constructed two food-chain models as a special parameterisation
of the food-web model. A first food-chain model only consisted of
phytoplankton and mesozooplankton; a second food-chain model
only consisted of phytoplankton and microzooplankton. These food-
chain models were constructed by simply setting the initial biomass
densities and immigration rates of all functional groups not present in
the food-chains to zero.

2.4. The scenarios

Sixteen ecological scenarios were obtained by varying trophic state
(mesotrophic vs. oligotrophic), immigration rate (high vs. low),
grazing rate as a proxy for interaction strength between producers
and consumers (strong vs. weak), and the complexity of the system
(food-chain vs. food-web). Trophic state was altered by changing
the phytoplankton carrying capacity from 1 μg Chlorophyll a/L for

Table 1
Parameters of the food-chain and food-web models.

Parameter Explanation Value Unit Source

Abiotic
a Amplitude of seasonal forcing 1 Scheffer et al. (1997)
d Detritus dissolution rate 0.01 d−1 Donali et al. (1999)

Biotic
All groups

I Immigration rate 10−5 (high); 10−15 (low) mg C m−2 d−1 Scenario-specific; similar to and smaller than
(Scheffer et al., 1997), respectively

Phytoplankton
K Carrying capacity 50 (oligotrophic); 500

(mesotrophic)
mg C m−2 Scenario-specific (Carlson, 1977)

Gpp Gross primary production rate 1.5 d−1 Moisan et al. (2002)
Resp Fraction of Gpp spent to respiration 0.1 Bidwell (1977)
Excr Fraction of Gpp spent to excretion 0.1 Baines and Pace (1991)
Mort Mortality rate 0.2 d−1 Janse (2005)

Detritivores, omnivores,
and predators

Ing, Het Ingestion rate 0.5 d−1 Hansen et al. (1997)
AE, Het Assimilation efficiency 0.6 Hendriks (1999)
Resp, Het Respiration rate 0.1 d−1 Park et al. (2008)
Excr, Het Ratio of excretion to respiration 0.6 Vezina and Platt (1988)
K, Het Half saturation constant for feeding 50; 500 mg C m−2 Scenario-specific; motivated in the text
Mort, Het Mortality rate 0.01 d−1 De Laender et al. (2008c)

Microzooplankton
Ing, Miz Ingestion rate 2 d−1 Hansen et al. (1997)
AE, Miz Assimilation efficiency 0.6 Hendriks (1999)
Resp, Miz Respiration rate 0.1 d−1 Park et al. (2008)
Excr, Miz Excretion 0.6 Vezina and Platt (1988)
K, Miz Half saturation constant for feeding 50; 500 mg C m−2 Scenario-specific; motivated in the text
Mort, Miz Mortality rate 0.05 d−1 De Laender et al. (2008c)

Mesozooplankton
Ing, Mez Ingestion rate 1 d−1 Hansen et al. (1997)
AE, Mez Assimilation efficiency 0.6 Hendriks (1999)
Resp, Mez Respiration rate 0.1 d−1 Park et al. (2008)
Excr, Mez Excretion 0.6 Vezina and Platt (1988)
K, Mez Half saturation constant for feeding 50; 500 mg C m−2 Scenario-specific; motivated in the text
Mort, Mez Mortality rate 0.01 d−1 De Laender et al. (2008c)
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oligotrophic scenarios to 10 μg Chlorophyll a/L for mesotrophic
scenarios (Carlson, 1977). Average carbon to Chlorophyll a ratios of
50 μg carbon/μg Chlorophyll a and the pond depth of 1 m were
used to convert these numbers to mg C m−2, the currency used by
the food-web and food-chain models (Riemann et al., 1989). Immi-
gration rates (I) were set to values that were either comparable to
(high immigration) or smaller than (low immigration) those used
elsewhere (Table 1). Grazing rates were changed by setting the half
saturation rate constant K from 50 (fast grazing) to 500 (slow grazing),
i.e. corresponding to the carrying capacity of the phytoplankton in the
oligotrophic and mesotrophic scenarios, respectively. This choice was
made to prevent grazing limitation to be either too high or too low in
all scenarios. Lastly, system complexity was altered by using the food-
chain model (simple) or the food-web model (complex).

We considered four hypothetical model chemicals, characterized by
different physical–chemical and toxicological properties. Chemicals 1
and 3 (hydrophilic), and 2 and 4 (hydrophobic) share environmental
fate determinants with atrazine and pyrene, respectively (Table 2).
The fate of these two types of chemicals (hydrophilic and hydrophobic)
was calculated separately for the two trophic states considered in the
ecological scenarios. We used the phytoplankton and detritus control
densities predicted by the food-chain and food-webmodels to estimate

POC concentrations in the fate model. In addition, fate calculations for
the oligotrophic state were performed using a sediment depth of 5 cm
and a constant DOC concentration of 5 mg/L, while in the mesotrophic
state sediment depthwas set to 7 cm and a constant DOC concentration
to 50 mg/L was assumed. No feedback from chemical-induced changes
in phytoplankton and detritus stocks to chemical fate was considered
in the current exercise. The four chemicals also differed in their toxico-
logical profile. Chemicals 1 and 2 selectively targetedmesozooplankton,
while chemicals 3 and 4 selectively targeted microzooplankton. We
assumed that these chemicals affected micro- or mesozooplankton by
reducing survival in a concentration-dependent fashion. By combining
these four chemical types with two seasons of emission (spring: April
4th–June 4th; late summer: August 5th–October 6th) we created eight
different exposure scenarios.

All simulations were ran using a time-step of 1 h (0.04 days) and ini-
tial conditions were always set to 50 (the carrying capacity of the oligo-
trophic system), 1, and 0 mg C m−2 for autotrophs, heterotrophs, and
detritus, respectively.

We used the fate and effect models to inspect how direct and indirect
effects varied across the ecological and exposure scenarios. We note that
calculations for chemicals 1 and 2 (targeting mesozooplankton) were
done with the phytoplankton–mesozooplankton food-chain model.
Calculations for chemicals 3 and 4 (targeting microzooplankton) were
done using the phytoplankton–microzooplankton food-chain model.
Direct effects were assessed by comparing meso- (chemicals 1 and 2) or
microzooplankton biomass (chemicals 3 and 4) between the exposed
and the control dynamics. Recovery was concluded when exposed and
control biomasses were identical during the last 31 days of the
simulation time. When this was the case, recovery time was calculated
as the time between the onset of effects and the start of the 31-day
period of permanent recovery. Because both groups only feed on
phytoplankton,we evaluated indirect effects by calculating effects and re-
covery time for phytoplankton. To aid visualization of themodelled direct
and indirect effects, we summarized these effects in two ways: (1) using
the maximum effect size (unitless quotient of exposed and control dy-
namics), and (2) using the time-integrated difference between the con-
trol and exposed biomass (mg C m−2 d). The maximum effect size was
defined as the largest absolute deviation of the quotient of the exposed
and control dynamics from 1.

3. Results

3.1. Chemical fate

Water-dissolved concentrations of chemicals 1 and 3 were about two
times higher than those of chemicals 2 and 4, as expected from the rela-
tively high octanol–water partitioning coefficient (KOW) of chemicals 2
and 4, which caused their fast removal from water through partitioning
onto POC and DOC and the subsequent deposition of particles (Fig. 2).
The influence of trophic state and season of emission on the fate of
chemicals 1 and 3 was small, as expected from their relatively low log
KOW. For this reason, very similar exposure levels were predicted for all
emission timings and trophic states. Chemical removal processes were
quite slow, due to a combination of the high residence time of the
water compartment (i.e., 6 months) with the relatively high half-life of
chemicals 1 and 3 in water (about 55 days).

In contrast to what was observed for chemicals 1 and 3, the higher af-
finity of chemicals 2 and 4 for the organic sub-compartments in water
and sediment caused very different exposure profiles for the four simula-
tion scenarios (Fig. 2). Concentrations following summer emission were
about 15–20% lower than concentrations following spring emission, re-
gardless of the trophic state. This behaviour can be mainly ascribed to
the higher POC levels in summer than in spring, which caused amore ef-
fective chemical removal from the water phase. In the mesotrophic sys-
tems, the concentrations of chemicals 2 and 4 were about 5 times lower
than in oligotrophic systems. Removal of chemicals 2 and 4 from the

Pred

Omni Miz Mez Detr

Phy Det

Fig. 1. Structure of a food-web including phytoplankton (Phy), detritus (Det), omnivores
(Omni);microzooplankton (Miz),mesozooplankton (Mez), detritivores (Detr), and inver-
tebrate predators (Pred). The structure of the food-chain can be obtained by removing all
groups except for phytoplankton and mesozooplankton (exposure to chemical 1 or 2) or
microzooplankton (exposure to chemical 3 or 4).

Table 2
Physical–chemical properties at 25 °C, and toxicity to zooplankton of the chemicals select-
ed for the simulations. Note that other groups than micro- and mesozooplankton are
always tolerant to both chemicals (i.e. LC50s NN).

Parameter Chemicals
1, 3

Chemicals
2, 4

Molecular weight (g/mol) 216 202
Melting point (°C) 176 156
Water solubility (g/m3) 33 0.13
Vapour pressure (Pa) 3.85 · 10−5 6 · 10−4

Log KOW 2.5 5.2
Half-life in water (h) 1320 1700
Half-life in sediment (h) 4800 55,000
24 h-LC50 for mesozooplankton (chemicals 1, 2) or
for microzooplankton (chemicals 3, 4) (ng/L)

1000 1000

Slope of concentration response curve for micro- or
mesozooplankton (–)

2 2
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water phase was faster than for chemicals 1 and 3, and the main process
involvedwas suspended solid deposition. Inmesotrophic systems, for ex-
ample, the deposition flux was up to 90% of chemical emission.

3.2. Ecosystem dynamics: control

In general, oscillations through time were more pronounced in the
mesotrophic systems than in the oligotrophic systems, both for the
food-chain as for the food-web (Fig. 3 includes an example for the
food-web). In oligotrophic systems with low immigration rates and oc-
cupied by slow grazing heterotrophs, only phytoplankton maintained
biomass densities N10−8 mg C m−2, while the other groups virtually
disappeared from the system (Fig. S2, Supporting information). Immi-
gration promoted co-existence and limit cycle stability (an example is
provided in Fig. S3, Supporting information).Mesozooplankton biomass
density was lower in the food-web than in the food-chain (Fig. S4,
Supporting information) and was mostly 10 to 100 times lower than
that of microzooplankton when both groups were present in the food-
web (Fig. 3A).

3.3. Ecosystem dynamics: exposure to chemicals 1 and 2

Because effects following spring and late summer emissions were
similar, only the former are discussed, after which the differences be-
tween both exposure scenarios are briefly highlighted.

Exposure to chemicals 1 and 2 in spring always resulted in clear ef-
fects on mesozooplankton, the only functional group that was sensitive
to these hypothetical chemicals. For mesozooplankton, the maximum
effect size was comparable between chemicals 1 and 2 (Fig. 4A and
Fig. S5A, Supplemental information). Also the time-integrated
effects compared well between chemicals 1 and 2 emitted in spring
(Figs. S6A and S7A, Supplemental information). The maximum ef-
fects of these chemicals on mesozooplankton were always negative
(nearly 100% biomass reductions) in the food-web, but positive in
the mesotrophic food-chain when grazing was fast. The maximum
and time-integrated direct effects were mostly independent of im-
migration rate. The maximal direct effects of chemicals 1 and 2 were
smaller at high immigration rates but only in mesotrophic food-chains
with fast grazing heterotrophs. In contrast, the integrated effect of
both chemicals emitted in spring in oligotrophic food-chains with fast
grazing heterotrophs was larger at high immigration rates than at low
immigration rates.

The maximum size of the indirect effects of chemicals 1 and 2 on
phytoplankton was common and positive in the food-chain, and largest
when grazingwas fast (Fig. 4B, and Fig. S5B, Supplemental information).
Also the time-integrated indirect effect on phytoplankton was apparent
in food chains (Figs. S6B and S7B, Supplemental information). Regard-
less of the effect summary considered, indirect effects were mostly ab-
sent in the food-web. Both effect summaries suggested the indirect
effect size to be nonresponsive to immigration rate.
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Fig. 2. Aqueous concentrations of chemicals 1, 2, 3, and 4 for the two trophic states (considered in the ecological scenarios) and two emission seasons (considered in the exposure
scenarios).
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Recovery of mesozooplankton and phytoplankton from chemical 2
wasmore frequently observed and occurredmore rapidly than recovery
from chemical 1 (Fig. 4C, D, and Fig. S5C, D, Supplemental information).
Recovery from direct and indirect effects was also more frequently pre-
dicted (and was faster) when immigration was fast.

Maximal (Fig. S8, Supplemental information) and integrated effects
(Fig. S9, Supplemental information) following summer emission of
chemical 1 were comparable to those described for spring emission,
both for mesozooplankton (direct) as for phytoplankton (indirect).
The same was observed for the maximal effects caused by chemical 2
(Fig. S10, Supplemental information). However, time-integrated effects
of chemical 2were larger for spring than for summer emission (Fig. S11,
Supplemental information). Recovery occurred more often and more
rapidly following spring emission than summer emission of chemical
1. No consistent differences between recovery patterns of spring and
summer emissions could be found for chemical 2 (compare Figs. S5
and S10, Supplemental information).

3.4. Ecosystem dynamics: exposure to chemicals 3 and 4

Again, effects following spring and late summer emissions were
similar, so that only the former are discussed in detail, after which the
differences between both exposure scenarios are briefly highlighted.

According to the two effect summaries, chemicals 3 and 4 emitted in
spring always affected microzooplankton, the only functional group
that was sensitive to these two hypothetical chemicals. The maximum
effect size for microzooplankton was comparable between chemicals 3
and 4 (Fig. 5A, Fig. S12A, Supplemental information) andmostly negative.

Themaximumeffect of these chemicals onmicrozooplanktonwasmostly
negative but positive in mesotrophic food-chains and food-webs when
grazing was fast. Also the time-integrated effect on microzooplankton
compared well between chemicals 3 and 4 and differences between
both chemicals were most pronounced in mesotrophic systems
(Figs. S13A, S14A, Supplemental information). Maximum indirect ef-
fects of chemicals 3 and 4 on phytoplankton were common and always
positive, both in the food-chain as in the food-web, regardless of the set-
tings for grazing and immigration rate (Fig. 5B, Fig. S12B, Supplemental
information). The maximum direct effect size was mostly independent
of the immigration rate. The maximal direct effect of chemicals 3 and 4
was smaller at low immigration rates but only in mesotrophic food-
chains with fast grazing heterotrophs. In mesotrophic food-webs, fast
immigration lowered the maximum indirect effect size in case of slow
grazing heterotrophs. The integrateddirect and indirect effectswere sen-
sitive to the immigration rate but in an inconsistent manner (Figs. S13
and S14, Supplemental information).

Recovery of microzooplankton and phytoplankton from chemical 4
(Fig. S12C, D, Supplemental information)wasmore frequently observed
and occurred more rapidly than recovery from chemical 3 (Fig. 5C, D).
Recovery from these direct and indirect effectswas alsomore frequently
predicted and faster when immigration was fast, except in oligotrophic
food-webs containing fast grazing heterotrophs and exposed to
chemical 4.

The maximal direct and indirect effects of spring emission of chem-
ical 3 (Fig. 5)were comparable to those following late summer emission
(Fig. S15, Supplemental information). The samewas found for the time-
integrated effects (Fig. S16, Supplemental information). For chemical 4,
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Fig. 4.Maximumeffect sizes and recovery times formesozooplankton andphytoplankton following exposure to chemical 1 in spring, inmesotrophic and oligotrophic food-webs and food-
chains, characterized by fast (upward triangles) or slow immigration (downward triangles), and composed of fast (black symbols) or slow (red symbols) grazing heterotrophs. Maximum
effects N10 are displayed as a maximum effect size of 10. Absence of a symbol for recovery time indicates no recovery. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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maximal effects following spring emission (Fig. S12, Supplemental
information) were larger than those following summer emission
(Fig. S17, Supplemental information). The same was found for the
time-integrated effects (Fig. S18, Supplemental information).

Recovery occurred more often and more rapidly following spring
emission than following summer emission of chemical 3 (Fig. S15C, D,
Supplemental information). No consistent differences between recov-
ery patterns of spring and summer emissions could be found for chem-
ical 4 (Fig. S17C, D, Supplemental information).

4. Discussion

4.1. Ecological and exposure scenarios

Our control simulations illustrated how immigration stabilized
population dynamics and facilitated coexistence of trophically similar
species, which is in line with findings from earlier theoretical exercises
(McCallum, 1992). However, the expected positive effect of immigra-
tion on the recovery of the targeted functional group (Caquet et al.,
2007) was only predicted for certain ecological scenarios. For other sce-
narios, the immigration rate did not affect recovery. In both oligo- and
mesotrophic systems, interaction strength (using grazing rate as a
proxy) was suggested as a more important driver for direct effects
than immigration rate, and this result was robust to the effect summary
considered (maximumeffect vs. time-integrated). In general, weak con-
sumer–producer interactions led toweaker direct (and indirect) effects,
i.e. the biomasses of the targeted groups (micro- or mesozooplankton)
and of phytoplankton in food-chains and food-webs were less affected

by the chemicals. This finding corroborates with several reports on the
importance of strong interactions as determinants of population
dynamics and extinction (May, 1972; McCann et al., 1998), although
this viewhas been challenged (Allesina and Tang, 2012). It also suggests
that the ‘weak interaction effect’, as defined in basic ecology, plays a role
in the occurrence of ecological effects of chemicals as well (McCann,
2000). If half-saturation constants for grazing scale with the competi-
tion strength between grazers, our findings also correspond to those re-
cently presented by Kattwinkel and Liess (Kattwinkel and Liess, 2014).
It should be noted though that interaction strength can be modified by
chemical-induced behavioural changes, e.g. as shown by Brooks et al.
for the case of predator–prey interactions in Cd-exposed freshwater
ecosystems (Brooks et al., 2009b). Such modifications in behaviour are
typically not included in the type of models presented in the present
paper. The findings presented by Brooks et al. (Brooks et al., 2009b),
indicating that sublethal exposure of prey maymodify its vulnerabil-
ity to predators with specific hunting strategies, make it clear that
such extensions are both scientifically challenging and relevant for
risk assessment.

Themesotrophic systemswemodelledwere less dynamically stable,
were less resistant to the chemical-induced perturbations, and recov-
ered more slowly from such perturbations. Again, this finding is insen-
sitive to the effect metric considered (maximum or time-integrated
effects). Although the combined effects of nutrient enrichment and
chemical exposure have been examined (Halstead et al., 2014), we do
not know of experiments where the responses to chemicals of food-
webs similar to those examined here were compared between different
trophic states, so it is not possible at the moment to confirm or reject
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this theoretical expectation. We only found reports of experiments
where plankton communities were exposed to fish predation as a
stressor, showing that effects of predation and recovery rates after fish
removal were less severe and faster, respectively, in oligotrophic than
in mesotrophic systems (Perez-Fuentetaja et al., 1996).

For some ecological scenarios, our models predicted direct effects
that were positive. This result is at first counterintuitive but indicates
that care should be taken when classifying a deviation of the most
sensitive functional group from its control biomass as a direct effect.
Indeed, such positive effects indicate feedbacks caused by large indirect
effects on phytoplankton (mostly in mesotrophic systems with fast
grazing heterotrophs, e.g. Fig. 5). Meso- (chemicals 1 and 2) or
microzooplankton decimation (chemicals 3 and 4) causes phytoplank-
ton blooms, which subsequently stimulate zooplankton density during
the recovery phase, when chemical concentrations have dropped to
zero. This result demonstrates that changes in the size of a functional
group that is targeted by a given chemical cannot be always simply cat-
egorized as direct effects but may classify as indirect effects because
they originate from a combination of chemical toxicity and a trophic
cascade caused by interspecific interactions.

The toxicological profile of the chemical (i.e. what functional group
was targeted by the chemical) was the most influential parameter of
the exposure scenario. In contrast, the season of emission appeared far
less important. However, it should be noted that the concentrations
considered in this paper (500 to 4000 ng/L, depending on the chemical;
Fig. 2) were relatively high because they approached or surpassed lethal
values for 50% of the organisms tested in a single-species toxicity test
(1000 ng/L; Table 2). As a result, effects were inherently large and re-
covery inherently slow so that differences in these descriptors of ecolog-
ical effect between exposure scenarios may have been less detectable.
Future efforts may perform similar exercises across a gradient of chem-
ical exposure, but no such efforts were pursued in the present paper.

4.2. Indirect effects

The modelling exercise we present in this paper suggests that in-
direct effects on phytoplankton following direct effects on
mesozooplankton (chemicals 1 and 2) occur in simple food-chains
but are highly exceptional in food-webs. In contrast, direct effects
on microzooplankton (chemicals 3 and 4) more often resulted in in-
direct effects in food-webs. This difference in the occurrence of indi-
rect effects between both chemical pairs makes both intuitive and
mathematical sense. In food-webs, where both zooplankton groups
were present, the biomass density of mesozooplankton was mostly
10 to 100 times lower than that of microzooplankton. Correcting
for differences in maximum grazing rates between both groups
(two times higher for micro- than for mesozooplankton), the maximum
grazing pressure on phytoplankton exerted by mesozooplankton was 5
to 50 times lower than by microzooplankton. Thus, a given direct effect
onmesozooplankton is likely to result in a smaller indirect effect on phy-
toplankton than a direct effect of the same size on microzooplankton.
This result demonstrates the need to account for dominance patterns
when predicting the potential for indirect effects. Our results suggest
that, when dominance combines with sensitivity, indirect effects will be
larger than when less abundant functional groups are most sensitive.

Are the indirect effects following direct effects of chemicals 1 and 2
on mesozooplankton indeed more likely in simple food-chains than in
food-webs? Since we only considered one (simple) food-chain and
one (more complex) food-web, it would be incautious to draw conclu-
sions regarding the relationship between the probability of indirect
effects and the number of functional groups in a food-web. Based on
data from micro- and mesocosm studies, representing systems with
varying food-web complexity but exposed to the same insecticide,
some empirical support exists for such a relationship. Briefly, Daam
andVan den Brink (2007) foundpositive indirect effects on phytoplank-
ton following 0.1 μg/L chlorpyrifos exposure in indoor microcosms only

containing phyto- and zooplankton and snails. Brock et al. (Brock et al.,
1992), using microcosms stocked with plankton and several macroin-
vertebrates, reported such indirect effects from 5 μg/L chlorpyrifos on-
wards. Studies with the same chemical in large outdoor experimental
ditches by Van den Brink et al. (1996) and Kersting and Van den Brink
(1997) only reported these indirect effects at concentrations from
44 μg/L chlorpyrifos onwards. Note that, in these experimental systems,
mesozooplankton is more sensitive to the tested insecticides than
microzooplankton, i.e. reasonably representative for our hypothetical
chemicals 1 and 2. In these experimental studies, indirect effects
would have been less likely to occur in complex systems than in simple
systems when both would have been exposed to the same concentra-
tion. Taking together the predictions made by our models, which only
reflect two samples from the full spectrum of system complexity, and
these empirical cosmdata, covering a broader range of system complex-
ity, we argue that the relationship between food-web complexity and
indirect chemical effects at least deserves further empirical testing and
theoretical exploration. In addition to the number of functional groups
or species, such empirical studiesmay alsowant to consider link density
as a measure of food-web complexity, because food-web topology and
the distribution of the number of links connecting a node in a food-
web have been shown to affect the resistance of ecosystems to species
removal (Dunne et al., 2002; Jonsson et al., 2006; Dunne and Williams,
2009; Montoya et al., 2009).

As stated in the Material and methods section, no feedback from
chemical-induced changes in phytoplankton and detritus stocks to
chemical fatewas considered in the current exercise, because fate calcu-
lations were performed using the control biomass dynamics. Because of
the indirect effects on phytoplankton observed here, i.e. algal blooms,
we hypothesise that taking into account such feedbackswould probably
moderate the effects on zooplankton by reducing chemical availability.

4.3. The influence of chemical type

The direct and indirect effects of chemicals 1 and 3 were more pro-
nounced than those of chemicals 2 and 4. This difference is purely driv-
en by chemical fate, as the partitioning of chemicals 1 and 3 to thewater
phase (i.e. the bioavailability) was higher than for chemicals 2 and 4.
Our simulations focused on pelagic systems and we acknowledge that
including sediment consuming benthic species or top carnivores may
yield contrasting results. Indeed, the models we present here ignore
potential dietary uptake and biomagnification, which would increase
(internal) exposure. However, our focus on planktonic systems, with
organisms smaller than 5 mm, probably limits the contribution of the
dietary uptake route to accumulation and toxicity (De Laender et al.,
2010a). Experimental evidence indicates that for species with a larger
body size, the hunting and feeding strategy, as well as the type of prey
consumed, can influence the accumulation and toxicity of chemicals
(Brooks et al., 2009a).

4.4. Conclusions and recommendations

The inclusion of sensitivity and uncertainty analyses in ecotoxicolog-
ical food-web and ecosystem models is common (Park et al., 2008; De
Laender et al., 2010b) but the influence of the ecological and exposure
scenario on the prevalence of direct and indirect chemical effects in
multi-species systems has remained understudied. We show that
combining a dynamic fate model and a food-web/food-chain model
allows evaluating chemical availability together with the resulting
population-level effects in an ecosystem context. The most notable
conclusions include that (1) indirect effects are most likely when
dominance patterns correlate with sensitivity patterns; (2) direct
and indirect effects are most pronounced in eutrophic systems; and
(3) interaction strength is a stronger determinant for effect size
than the immigration rate. As an overarching conclusion drawn from
our simulations, which represent theoretical expectations for a vast
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array of ecological and exposure scenarios, we postulate that ecotoxico-
logical research at the ecosystem level and risk assessments based on
such research need to sufficiently justify the ecological scenario consid-
ered if direct and indirect effects of chemicals are to be assessed in a ro-
bust and transparent way.
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Text S1: Fate model 

Chemical mass balance: model equations 

In the present work, chemical fate was simulated using a modified version of 

EcoDynA (Infantino et al. 2013), a fugacity-based (Mackay 2001) three-compartment 

model developed to investigate the fate of organic chemicals in dynamic organism-

water-sediment systems.  

In the original EcoDynA model, the dynamic chemical behavior in the three 

compartments (organism, water and sediment) is described by a system of three 1st-

order ordinary differential equations (ODEs), one for each compartment. The ODEs, 

representing the variation of residue moles with time are: 

 

dmolORG/dt = a + b * molWAT - c * molORG    (1) 

dmolWAT/dt = d + e * molORG + g * molSED - h * molWAT  (2) 

dmolSED/dt = i + j * molWAT - k * molSED     (3) 

 

where molORG, molWAT and molSED represent the moles in the three compartments 

at a certain time, while each coefficient (from a to k) represents a transformation or a 

transport flux (single D value or sum of D-values) divided by the proper product of 

volume and fugacity capacity Z. All D and Z-values are listed in Table S1, while 

explanations for coefficients are reported in Table S2. 



For the simulations presented here, the organism compartment was neglected by 

considering as null all the D-values describing transport from water to organism and 

vice versa (i.e., DVentIn, DVentOut, DUpt, and DEges, regulating input and output 

ventilation via gills, uptake from food, and fecal egestion, respectively). 

 

Solution and time step 

The ODE system composed of Equations 1, 2 and 3 is solved using a modified 5th-

order adaptive, diagonally implicit Runge-Kutta numerical method (ESDIRK5(4)) 

(Semplice et al. 2012). Calculations are performed with sub-hourly time steps, but 

results (fugacities, from which concentrations in the different compartments and 

phases are derived) are saved on an hourly basis. 

The model was coded using Microsoft Visual Basic 6. At the end of the simulations, 

hourly outputs (i.e., compartment fugacities, concentrations in all phases and fluxes 

among compartments) are saved on an hourly basis into comma-separated values 

(CSV) files and can be input to other models. In this work, for example, bioavailable 

water concentrations of the modelled chemicals were used as input for the ecosystem 

model. 

 

Inclusion of the DOM sub-compartment 

In order to account for the presence of dissolved organic matter (DOM), EcoDynA 

was provided with a new water sub-compartment, and dissolved organic carbon 

(DOC) was modelled as a fraction of DOM. The fugacity capacity of DOM (ZDOM, 

mol m-3 Pa-1) was described as: 

 

DOCDOMOCDOM ZfZ _=        (4) 



 

where fOC_DOM (unitless) is the organic carbon fraction of the DOM compartment and 

ZDOC (mol m-3 Pa-1) is the fugacity capacity of DOC. The description of ZDOC was 

taken from Armitage et al. (2008): 

 

DOCDOCWDOC KZZ ρ=         (5) 

 

where ZW (mol m-3 Pa-1) is the water fugacity capacity, KDOC (L kg-1) is the DOC 

partition coefficient, calculated as 0.08 * KOW, and ρDOC (kg L-1) is the DOC density 

(for simplicity, 1 kg L-1).  

 

 



Table S1. Z (mol m-3 Pa-1) and D-values (mol Pa-1 h-1) in EcoDynA. 

Parameter Description Equation 

ZA Z for pure air 1 / RT 

ZQ Z for aerosol particles 6E+06 / PL * ZA 

ZAbulk Z for bulk air ZA * (1 - vQ) + ZQ * vQ 

ZW Z for pure water 1 / H 

ZWP Z for water column particles 0.41 * KOW * fP * σP * ZW / 1000 

ZWbulk Z for bulk water ZW * (1 - vP) + ZWP * vP 

ZS Z for sediment particles 0.41 * KOW * fs * σS * ZW / 1000 

ZSbulk Z for bulk sediment ZW * (1 - vs) + ZS * vs 

ZO Z for octanol ZW * KOW 

ZOrg Z for aquatic organism ZW * KOW * lf 

ZFood Z for aquatic organism food ZW * KOW * lfFood 

DI Water inflow GI * ZW 

DX Water particle inflow GX * ZWP 

DJ Water outflow GJ * ZW 

DY Water particle outflow GY * ZWP 

DV Absorption / Volatilization kV * AW * ZW 

DM Rain dissolution GM * ZW 

DC Wet particle deposition GC * ZQ 

DQ Dry particle deposition GQ * ZQ 

DT 
Sediment-to-water/water-to-

sediment diffusion 
kT * AS * ZW 

DD Sediment deposition GD * ZWP 



DR Sediment resuspension GR * ZS 

DB Sediment burial GB * ZS 

DW Water transformation kW * VW * ZW 

DS Sediment transformation kS * VS * ZS 

DVentIn Input ventilation (exchange via 
gills) 

k1 * VOrg * ZW 

DVentOut Output ventilation (exchange 
via gills) 

k2 * VOrg * ZOrg 

DUpt Uptake from food EA * GA * ZFood 

DMet Metabolism transformation kM * VOrg * ZOrg 

DGrowth Growth dilution kG * VOrg * ZOrg 

DEges Fecal egestion DUpt / QF 

R = gas constant (8.314 J mol-1 K-1) 
T = absolute temperature (K) 
H = Henry’s Law constant (Pa m3 mol-1) 
PL = sub-cooled liquid vapour pressure (Pa) 
vQ, vP and vs = volume fractions of aerosol in air, particles in water and solids in 
surface sediments, respectively 
fP and fs = fraction of organic carbon in water particles and sediment, respectively. 
lf and lfFood  = lipid fraction in organism and food, respectively. For additional details 
see Infantino et al. 2013. 
 

 

 

 



 

Figure S1. Seasonal profile of water temperature (°C) adopted for the simulations. 

  

Figure S2: Food web (left) and food chain dynamics (right) when immigration rates 

are low in oligotrophic systems occupied by slow grazing heterotrophs: only 

phytoplankton (green) persists. Brown lines represent detritus. 
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Figure S3: Dynamics of a food-web with slow grazing heterotrophs in a mesotrophic 

system with low (left) and high immigration rates (right). Color codes are as in Figure 

1.  

 

Figure S4: Dynamics of a food chain (phytoplankton and mesozooplankton) with fast 

grazing mesozooplankton, fast immigration in an oligotrophic system. 

Mesozooplankton biomass is higher than in a food web in the same ecological 

scenario (Figure 3A).  
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Figure S5: Maximum effect sizes and recovery times for mesozooplankton and 

phytoplankton following exposure to chemical 2 in spring, in mesotrophic and 

oligotrophic food-webs and food-chains, characterized by fast (upward triangles) or 

slow immigration (downward triangles), and composed of fast (black symbols) or 

slow (red symbols) grazing heterotrophs. Maximum effects > 10 are displayed as a 

maximum effect size of 10. Absence of a symbol for recovery time indicates no 

recovery. 
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Figure S6: Time-integrated effects for mesozooplankton and phytoplankton following 

exposure to chemical 1 in spring, in mesotrophic and oligotrophic food-webs and 

food-chains, characterized by fast (upward triangles) or slow immigration (downward 

triangles), and composed of fast (black symbols) or slow (red symbols) grazing 

heterotrophs. Integrated effects > 10 are displayed as an integrated effect size of 10. 

Absence of a symbol for recovery time indicates no recovery. 

 

Figure S7: Time-integrated effects for mesozooplankton and phytoplankton following 

exposure to chemical 2 in spring, in mesotrophic and oligotrophic food-webs and 

food-chains, characterized by fast (upward triangles) or slow immigration (downward 

triangles), and composed of fast (black symbols) or slow (red symbols) grazing 
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heterotrophs. Integrated effects > 10 are displayed as an integrated effect size of 10. 

Absence of a symbol for recovery time indicates no recovery. 

 

Figure S8: Maximum effect sizes and recovery times for mesozooplankton and 

phytoplankton following exposure to chemical 1 in summer, in mesotrophic and 

oligotrophic food-webs and food-chains, characterized by fast (upward triangles) or 

slow immigration (downward triangles), and composed of fast (black symbols) or 

slow (red symbols) grazing heterotrophs. Maximum effects > 10 are displayed as a 

maximum effect size of 10. Absence of a symbol for recovery time indicates no 

recovery. 
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Figure S9: Time-integrated effects for mesozooplankton and phytoplankton following 

exposure to chemical 1 in summer, in mesotrophic and oligotrophic food-webs and 

food-chains, characterized by fast (upward triangles) or slow immigration (downward 

triangles), and composed of fast (black symbols) or slow (red symbols) grazing 

heterotrophs. Integrated effects > 10 are displayed as an integrated effect size of 10. 

Absence of a symbol for recovery time indicates no recovery. 
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Figure S10: Maximum effect sizes and recovery times for mesozooplankton and 

phytoplankton following exposure to chemical 2 in summer, in mesotrophic and 

oligotrophic food-webs and food-chains, characterized by fast (upward triangles) or 

slow immigration (downward triangles), and composed of fast (black symbols) or 

slow (red symbols) grazing heterotrophs. Maximum effects > 10 are displayed as a 

maximum effect size of 10. Absence of a symbol for recovery time indicates no 

recovery. 
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Figure S11: Time-integrated effects for mesozooplankton and phytoplankton 

following exposure to chemical 2 in summer, in mesotrophic and oligotrophic food-

webs and food-chains, characterized by fast (upward triangles) or slow immigration 

(downward triangles), and composed of fast (black symbols) or slow (red symbols) 

grazing heterotrophs. Integrated effects > 10 are displayed as an integrated effect size 

of 10. Absence of a symbol for recovery time indicates no recovery. 
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Figure S12: Maximum effect sizes and recovery times for microzooplankton and 

phytoplankton following exposure to chemical 4 in spring, in mesotrophic and 

oligotrophic food-webs and food-chains, characterized by fast (upward triangles) or 

slow immigration (downward triangles), and composed of fast (black symbols) or 

slow (red symbols) grazing heterotrophs. Maximum effects > 10 are displayed as a 

maximum effect size of 10. Absence of a symbol for recovery time indicates no 

recovery. 
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Figure S13: Time-integrated effects for microzooplankton and phytoplankton 

following exposure to chemical 3 in spring, in mesotrophic and oligotrophic food-

webs and food-chains, characterized by fast (upward triangles) or slow immigration 

(downward triangles), and composed of fast (black symbols) or slow (red symbols) 

grazing heterotrophs. Integrated effects > 10 are displayed as an integrated effect size 

of 10. Absence of a symbol for recovery time indicates no recovery. 

 

Figure S14: Time-integrated effects for microzooplankton and phytoplankton 

following exposure to chemical 4 in spring, in mesotrophic and oligotrophic food-

webs and food-chains, characterized by fast (upward triangles) or slow immigration 

(downward triangles), and composed of fast (black symbols) or slow (red symbols) 
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grazing heterotrophs. Integrated effects > 10 are displayed as an integrated effect size 

of 10. Absence of a symbol for recovery time indicates no recovery. 

 

Figure S15: Maximum effect sizes and recovery times for microzooplankton and 

phytoplankton following exposure to chemical 3 in summer, in mesotrophic and 

oligotrophic food-webs and food-chains, characterized by fast (upward triangles) or 

slow immigration (downward triangles), and composed of fast (black symbols) or 

slow (red symbols) grazing heterotrophs. Maximum effects > 10 are displayed as a 

maximum effect size of 10. Absence of a symbol for recovery time indicates no 

recovery. 
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Figure S16: Time-integrated effects for microzooplankton and phytoplankton 

following exposure to chemical 3 in summer, in mesotrophic and oligotrophic food-

webs and food-chains, characterized by fast (upward triangles) or slow immigration 

(downward triangles), and composed of fast (black symbols) or slow (red symbols) 

grazing heterotrophs. Integrated effects > 10 are displayed as an integrated effect size 

of 10. Absence of a symbol for recovery time indicates no recovery. 
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Figure S17: Maximum effect sizes and recovery times for microzooplankton and 

phytoplankton following exposure to chemical 4 in summer, in mesotrophic and 

oligotrophic food-webs and food-chains, characterized by fast (upward triangles) or 

slow immigration (downward triangles), and composed of fast (black symbols) or 

slow (red symbols) grazing heterotrophs. Maximum effects > 10 are displayed as a 

maximum effect size of 10. Absence of a symbol for recovery time indicates no 

recovery. 
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Figure S18: Time-integrated effects for microzooplankton and phytoplankton 

following exposure to chemical 4 in summer, in mesotrophic and oligotrophic food-

webs and food-chains, characterized by fast (upward triangles) or slow immigration 

(downward triangles), and composed of fast (black symbols) or slow (red symbols) 

grazing heterotrophs. Integrated effects > 10 are displayed as an integrated effect size 

of 10. Absence of a symbol for recovery time indicates no recovery. 
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Abstract

In currently used approaches for ecological risk assessment (ERA), exposure is generally modelled

assuming steady-state in emissions and environmental properties and neglecting the potential role of

ecological dynamics in affecting bioavailable concentrations. In order to investigate the potential

influence of ecological scenario and emission dynamics on predicted exposure levels, the spatially-

resolved dynamic model "ChimERA fate" was developed, incorporating macrophyte biomass and

particulate/dissolved organic carbon dynamics into a water-sediment system. A comparison

between model output and experimental observations for four case studies allowed verifying the

implementation of the macrophyte compartment and assessing model performance, which was

generally satisfying. Illustrative runs showed the potential spatio-temporal variability of

bioavailable concentrations of two chemicals after a pulsed emission in a system composed of a

pond and its inflow/outflow streams: biomass dynamics caused variations in concentrations of a

factor of 2-3 during the simulation period, and of orders of magnitude in space (along the stream-

pond system). Given the increased level of ecological realism, ChimERA fate could represent a

vital tool for the identification of those environmental and ecological conditions where risk is

expected to be highest (e.g., emissions associated with low biomass/POC/DOC levels).
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Introduction

Ecological risk assessment of chemicals (ERA) is a procedure which is commonly used to evaluate

the impact of chemicals on ecosystems. This is generally done comparing the environmental

exposure and the potential (ecological) effect threshold levels. The need of regulating a large

number of chemicals and the complexity of the ecosystems to protect led to the development of

simple and standardized tools1,2. However, most of these approaches do not properly address

environmental realism in terms of, for example, the spatial and temporal variability of the

ecological scenarios (affecting both exposure and effects)3, the interactions among individuals and

populations and the co-occurrence with other stress factors (such as chemical or physical ones). A

recent joint scientific opinion document from the three scientific committees of the European

Commission4,5 tried to address the new challenges for risk assessment for human health and the

environment. Among the challenges devised, a number were related to the improvement of the

exposure part in ERA. It was underlined that environmental exposure assessment (EEA) deserves

particular attention when the desire of the evaluation of the concentrations in the environment

should cover a large variety of habitats at different spatial scales and as well for terrestrial as

aquatic environments6. In particular, a recent publication7 listed a number of challenges for EEA.

Some are related to the need of accounting for the bioavailability of chemicals, here defined as the

freely dissolved concentration of a chemical (e.g. in water). This concentration, which is regarded

as bioavailable for organismal uptake, can substantially vary seasonally in a surface water body

because of changes in primary production (algae or macrophytes)8,9,10, or detritus concentration

(influencing the concentration of particulate organic carbon, POC and/or dissolved organic carbon,

DOC in water)11, or the presence of high concentrations of sorbing materials (organic matter or

soot) in sediment12. Therefore, predictive fate models should be able to account for such temporal

variability and capture the complexity of exposure in spatially variable environments. Most of the

current exposure models, especially those used in regulative approaches (such as EUSES in

European Union13) use fixed parameters representing “average” characteristics (such as
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temperature, organic carbon fractions, volumes of compartments and phases, etc.) in a steady-state

fashion (i.e., assuming continuous chemical discharge). Other models use an unsteady-state

discharge formulation and are based on environmental scenarios with a variable environmental

complexity, such as the TOXSWA model14,15,16 or the more comprehensive but extremely complex

model AQUATOX17,18. The above mentioned scientific opinion4 also called for the integration of

exposure and effect models (especially population and community models19,20,21) in order to be able

to perform more realistic ERAs.

The recently funded project "ChimERA"22 is one of the first attempts to couple exposure and effects

models with the objective of achieving an integrated modelling framework. The aim of the study

reported on here is to present the development of the fate model ("ChimERA fate") to be adopted as

the exposure sub-model within the integrated modelling framework. This sub-model will represent,

in the final integrated model, two adjacent small lentic water bodies connected via a stream as the

simplest form of a spatial network of water bodies, in which emissions of multiple chemicals can

take place, allowing unidirectional chemical movement (along the flow direction). In both water

bodies, the same compartment types (water, sediment, phytoplankton and macrophytes) together

with suspended matter and DOC will be considered for fate calculations. The objective is to show

how the dynamic behaviour of primary producers, POC and DOC can influence the dynamics of the

bioavailable concentrations of hydrophobic chemicals in aquatic ecosystems. Also the

consequences for chemical exposure to organisms will be highlighted.

Materials and methods

The ChimERA fate model, based on the fugacity concept23, was developed starting from an existing

dynamic water-sediment model24, adding the new compartments and sub-compartments and

connecting different model units to obtain a spatial discretization. In this first version of ChimERA

fate, the model incorporates the macrophyte compartment, while the addition of the phytoplankton

compartment will be described in a further paper. In Figure 1a, a schematic representation of the
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model unit is provided. Details concerning model development and parameterization are presented

in the following sections and in SI. A complete list of Z- and D-values can be found in Table S1 and

S2.
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Figure 1. Schematic representation of (a) the ChimERA fate model unit, with purple arrows indicating chemical fluxes

between compartments or accessing/leaving the system and circular green arrows indicating degradation processes; (b)

top-view and (c) side-view (b) of the environmental system simulated in the model illustration.

Model background

ChimERA fate was grounded on the DynA Model24, developed to investigate the fate of organic

chemicals in dynamic water-sediment systems. In DynA, dynamics concern input data, since time-

varying chemical emissions and environmental parameters (e.g., water temperature and fluxes) can

be specified, as well as model output, which is provided on an hourly basis. Suspended solids are

modelled as a water sub-compartment (in equilibrium with water), and POC is simulated by

specifying the organic fraction of suspended solids. The presence of DOC is neglected. The DynA
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Model was calibrated and validated for herbicides in rice paddy scenarios25; more recently, an

organism compartment was included and the model was applied to simulate uptake of DDTs by fish

in an Italian sub-alpine lake26 and of a number of POPs by macroinvertebrates in a glacier-fed

stream27.

Model formulation

Macrophyte compartment

Macrophytes play a vital role in aquatic ecosystems, not only as primary producers, but also

because of their ability to sequestrate pollutants, trap suspended solids containing them, and

enhance degradation and thus their irreversible removal from water bodies28-30. For this reasons, the

macrophyte compartment has been incorporated into a number of fate modelling approaches (e.g.,

refs. 31, 32). In ChimERA fate, such implementation was performed according to the work by

Armitage and co-workers31. Modelled processes include diffusive exchanges with water,

degradation in macrophytes, and particle-mediated deposition onto macrophyte leaves. For

simplicity, in the present version of the model, only the above-sediment portion of vegetation

biomass was modelled, thus neglecting diffusive exchange between roots and the sediment

compartment. It was also assumed that macrophyte losses through mortality and excretion processes

could occur, implying a chemical flux to total suspended particles (TSP) and dissolved organic

matter (DOM), respectively18,33. Finally, a preliminary computation of the chemical loss through

litterfall was included. Details concerning the calculation of the D-values for macrophyte-related

processes are reported in Text S1.

TSP and DOM sub-compartments

As in the original DynA Model24, suspended particles were modelled as a water sub-compartment,

characterized by a given fraction of organic carbon representing POC. Moreover, in order to

account for the presence of DOM, a new water sub-compartment was added; its fugacity capacity
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(ZDOM, mol m-3 Pa-1) was calculated as in Armitage et al.31 (Table S1). Processes involving water

sub-compartments are TSP deposition to aquatic vegetation and sediment and resuspension from

sediment and, for both TSP and DOM, inflow and outflow with water and chemical transfer from

macrophytes through mortality and excretion (see above). A complete list of D-values can be found

in Table S2.

Sediment vertical discretization

In ChimERA fate, the sediment compartment can be divided into a number of layers, in order to

obtain a more accurate reconstruction of chemical vertical movement. The total number of layers

can be user-selected and for each layer the different properties (e.g., depth, density, solids and

organic carbon fractions) can be specified, in order to simulate specific sub-environments. Each

sediment layer was modelled as a well-mixed box composed of two phases (i.e., solids and pore

water), between which equilibrium was assumed. Chemical exchanges between adjacent layers

included upward and downward diffusive fluxes; for simplicity, the top sediment layer (at the

water-sediment interface) was assumed to be the only one to exchange with water, and therefore to

be affected by diffusion from and to water, and particle deposition and resuspension. Similarly, the

bottom sediment layer was assumed to be the one to lose chemical through burial. All D-values are

listed in Table S2.

Chemical mass balance, numerical solution and model code

Chemical mass balance in ChimERA fate is described by a system of 1st-order ordinary differential

equations (ODEs), one for each compartment, which is solved using a 5th-order accurate, diagonally

implicit Runge-Kutta method with adaptive time stepping34. For a system consisting of water,

macrophytes and one sediment layer, equations are:
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where molMf, molW and molS represent the moles in the three compartments at a certain time, while

each coefficient (from a to j) represents a transformation or a transport flux (single D-value or sum

of D-values) divided by the proper product of volume and fugacity capacity Z (Table 1).

The ChimERA fate model, except for the hydrological module described in the following section

and more in detail in Text S2, was coded using Microsoft Visual Basic 6.0 and was provided with a

graphical user interface through which input data can be selected and uploaded and results can be

visualized and processed.

Table 1. Coefficients appearing in the 1st-order differential equations describing the chemical mass balance in a water-

macrophyte-sediment system (see main text). For Z-, D-values and other parameters see Tables S1 and S2.

Coeff. Explanation Equation

a Water > Macro (DW_Mf + DTSP_Mf) / (VW * ZWbulk)

b Losses for Macro (DDeg_Mf + DMf_W + DMf_TSP + DMf_DOM + DLfall) / (VMf * ZMf)

c Sources for Water Discharge + GI * CI + FugAir * (DV + DM + DC + DQ)

d Macro > Water DMf_W / (VMf * ZMf)

e Sed > Water (DT + DS_TSP) / (VS * ZSbulk)

g Losses for Water
(DV + DW + DJ + DT + DW_Mf + DTSP_Mf + DW_Phyto1 + DW_Phyto2

+ DOut_TSP + DOut_DOM + DTSP_S) / (VW * ZWbulk)

h Sources for Sed Starting contamination

i Water > Sed (DT + DTSP_S) /  (VW * ZWbulk)

j Losses for Sed (DS + DS_TSP + DB + DT) /  (VS * ZSbulk)
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Spatial discretization

The spatial discretization was obtained by connecting multiple model units by means of water flow.

For this purpose, the ChimERA fate model was provided with a hydrological module capable of

computing water volumes (m3) and fluxes (m3 h-1) on an hourly basis in a user-specified number of

adjacent boxes. Water flow was described using the Saint-Venant equations for a rectangular-

section channel with variable width and depth35, with Manning's friction term. The numerical

approximation of the equations was performed with a finite-volume conservative method, so that

the total mass of water can change only through the inflow and outflow at the beginning and end,

respectively, of the simulated portion of the water body and no artificial sources or losses can occur

at the internal interfaces. For more details on the hydrological module see Text S2. Similarly, a

conservative approach was adopted for the chemical flow: first, the flow across any given interface

is computed and then that amount is subtracted from one compartment and added to the

neighbouring one. Such discretization allows the simulation of complex environments such as

systems of ponds and ditches (see Model illustration) and the description of peculiar sub-

environments in water bodies (e.g., presence/absence of macrophytes, content of TSP or DOM,

etc.). In the present version of ChimERA fate, no vertical discretization of the water compartment

was included, since the model was designed to deal with shallow-water systems (1 m or less), where

stratification phenomena due to temperature or density can be neglected and water can be assumed

as “well mixed” in the vertical direction.

Sensitivity analysis

A preliminary sensitivity analysis was conducted simulating the fate of two chemicals characterized

by different hydrophobicity and persistence (Chemical A, atrazine-like, and Chemical B, pyrene-

like, Table S5) in a macrophyte-water-sediment system. 1-year simulations were performed, for a

simplified environmental scenario consisting of a 450-m2, 50-cm deep water body overlaying a 1-

cm deep sediment compartment. A water residence time of 20 days, corresponding to a constant
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water flux of 0.47 m3 h-1, was selected. Constant values for macrophyte biomass density (134 g d.w.

m-2), POC and DOC concentrations (1.1 and 8.3 mg L-1, respectively), and water temperature (18.5

°C) were assumed; such values were calculated as the average of the yearly profiles described for

the illustration scenario (see also Fig. S1a,b,c). A single discharge to the water compartment was

simulated, corresponding to the first of the three emission peaks simulated in Model illustration

(Fig. S1d).

Tested parameters included chemical emission, physical-chemical properties, environmental half-

lives, mass-transfer coefficients and rate constants, water temperature and fluxes, compartment

volumes and organic carbon fractions. A local sensitivity analysis36 was performed by varying each

parameter by 0.1% and calculating the influence of such variations on two target parameters,

namely peak dissolved-water and sediment pore-water concentrations, by assessing the index S37:

II
OOS

/
/




 (4)

where I is the input variable, O is the output of interest, and ΔI and ΔO are the variations in input

and output parameters, respectively.

Model parameterization

Output verification and corroboration

Following the terminology suggested by Augusiak and co-workers36, who introduced the term

“evaludation” to indicate the entire process of assessing model quality and establishing model

credibility throughout all stages of the “modelling cycle”, an output verification and an output

corroboration step were performed for ChimERA fate in order to (1) verify the correctness of the

implementation of the macrophyte compartment with respect to the reference approach31 and (2)

assess how well model output matched experimental observations (refs. 10, 38, 15). For this
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purpose, ChimERA fate was parameterized by selecting values for the environmental parameters

(e.g., water volumes, sediment depth, vegetation biomass and characteristics, TSP and DOM

concentrations, etc.) equal to the ones characterizing the experimental systems (refs. 10, 38, 15).

More details on model parameterization are reported in Text S3. Model performance was assessed

by means of modelling efficiency (EF)39, a dimensionless statistics which directly relates model

predictions to observations:
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where yi are observations, iŷ are predictions and y is the average of observations. For such statistic,

the "perfect fit" results in 1, and the degree of fit declines as it falls away from 1. EF between 0 and

1 still indicates good model performance, while negative values could indicate model bias or need

for model re-calibration39.

Model illustration

In order to illustrate the potential of the ChimERA fate model in predicting concentration variability

in response to spatio-temporal environmental heterogeneity, one-year simulations were performed

for the two model chemicals investigated in the sensitivity analysis (Chemical A, atrazine-like, and

Chemical B, pyrene-like, Table S5, Table S5) in a macrophyte-dominated spatially-resolved system

consisting of a pond and its inflow and outflow streams. As depicted in Figure 1b,c, the system,

with the same characteristics of the one adopted for the sensitivity analysis, was split into 10

adjacent boxes along the water flow direction. A constant water flow was selected to obtain an

average residence time in the pond boxes of about 20 days. Realistic information concerning

macrophyte biomass (Fig. S1a), DOC and POC concentrations (Fig. S1b) and water temperature

(Fig. S1c) was derived from the literature40-42. It should be remarked that no effort was made to
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simulate a specific situation and that the present scenario was adopted for illustration purposes only,

since time-resolved data concerning macrophyte biomass densities, POC/DOC concentrations and

other environmental parameters are often lacking. More details on model parameterization are

reported in Text S3.

Since in the present version of ChimERA fate no litter compartment was included, an investigation

of the potential role of dead aquatic vegetation in influencing chemical fate was performed by

simulating a non-decreasing biomass after the peak was reached (dashed line in Fig. S1a) and

assuming, for this portion of vegetation, (1) the same properties (e.g., organic carbon fraction,

density) and uptake/depuration rate constants with respect to the living part and (2) no biomass

transport with water to occur. These assumptions were obviously strong, since aquatic vegetation is

subject to fragmentation and decomposition, and is often responsible for much of the organic matter

production in shallow aquatic environments43,44; however, it can take months to years for litter to

break completely44; for this reason, we assumed a static macrophyte biomass of 350 g d.w. m-2

persisting until the end of the simulation period.

Results and discussion

Sensitivity analysis

Figure S2 depicts the results of the sensitivity analysis performed for the more soluble Chemical A

(chart a) and the higher-log KOW Chemical (B) (for physical-chemical properties see Table S5). For

both chemicals and targets, emission was the most influential parameter (S = 1). For Chemical A

(Fig. S2a), changes in water volume and flux significantly influenced both water-dissolved (S =

0.80 and 0.19, respectively) and sediment pore-water (S = 0.68 and 0.32, respectively)

concentrations. Water-dissolved concentration was also slightly influenced by water temperature

(0.04) and half-life in water (0.03), while sediment pore-water concentration was mainly affected by

changes in sediment-water diffusion mass transfer coefficient KT (0.33), organic carbon fraction of

sediment solids fOC_S (0.24), and KOW (0.18). A different picture appeared for Chemical B (Fig.
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S2b): water dissolved concentration was mostly sensitive to KOW (0.84), macrophyte biomass

density BioMf (0.61), TSP volume and organic carbon fraction (0.50 for both), particle settling

velocity gamma_p (0.49), and macrophyte uptake and depuration rate constants kW_Mf and kMf_W

(0.24 and 0.28, respectively); sediment pore-water concentrations showed a similar behaviour, but

with the most influential parameter being the organic carbon fraction of sediment solids (0.99). In

contrast with Chemical A, both targets for Chemical B were only moderately affected by changes in

water volume and fluxes (Fig. S2). Being a local sensitivity analysis (i.e., one parameter varied a

little at a time), the effort presented here did not allow capturing, for example, the effect of the

interactions between parameters36; however, it helped in the identification of the crucial input

parameters (chemical properties and environmental system descriptors), to which particular

attention should be paid in order to obtain accurate results. Moreover, results were comparable, for

instance, to those obtained from the global sensitivity analysis performed on the TOXSWA model

(Adriaanse, 1997), which identified as the most sensitive parameters chemical properties such as

half-life in water, the sorption coefficient to macrophytes and environmental characteristics such as

water flux and depth45.

Model output verification and corroboration

A detailed discussion of the results of the model output verification is reported in Text S4, while

results for output corroboration follow.

In Figure 2 the results of the comparison between predicted and measured prosulfocarb inventories,

expressed as percentage of the applied dose in all compartments, are reported. Since in the reference

manuscript15 the authors also applied a modelling approach (i.e., TOXSWA14) to investigate

measured patterns, the ChimERA fate input scenario was built using the same input data reported in

the manuscript, whenever possible (prosulfocarb physical-chemical properties, water volume,

sediment characteristics, etc.) (Table S3). However, being model formulations similar but not

identical (at least in the description of water-sediment exchange and sorption onto macrophytes), a
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full comparison between model predictions was not pursued and the effort was restricted to a

comparison between ChimERA fate model output and field data.

Adriaanse and co-workers15 identified half-life in water as the dominant factor regulating

prosulfocarb concentrations in the system and selected 2.9 d as a suitable half-life for mesocosm

studies (significantly shorter than the value of 204 d, deriving from small-scale laboratory tests,

they used as a starting point for their model optimization procedure; Milles and Kaur, unpublished).

For the ChimERA fate model application, a similar optimization of prosulfocarb half-life in water

(from 204 to 5.8 d) was necessary to reproduce the observed concentration pattern. Moreover, it

was observed that model output best fitted observations with a half-life in sediment set to double the

one in water (11.6 d) and a half-life in macrophytes of 5.8 d.

Results (Fig. 2) indicated only a slight underestimation of water inventories (up to a factor of 1.4,

EFW = 0.98; Fig. 2). However, comparisons for macrophytes and sediment revealed an

overestimation of prosulfocarb inventories from a factor of 2 to 6.5 in macrophytes (EFMf << 0)

and, in contrast, and underestimation of inventories up to a factor of 2.4 in sediment (EFS = -0.50,

Fig. 2). Despite predictions were always within an order of magnitude or less with respect to

experimental observations, discrepancies for macrophyte and sediment compartments indicated that

model parameterization was probably not sufficiently accurate (probably in terms of mass transfer

coefficients and compartment properties) to allow a proper description of the system. For example,

according to ChimERA fate simulations, macrophyte uptake was the dominant process of chemical

removal from water, followed by particle deposition onto macrophyte leaves and particle deposition

onto sediment; diffusion towards the sediment compartment was unimportant (Fig. S6). In contrast,

experimental observations revealed that migration to sediment was the dominant pathway for

prosulfocarb, while macrophytes were almost no influent (max inventory = 3%)15. In order to

improve model predictions, more information on the environmental system (e.g., sediment density

and organic matter content with depth) and probably a number of measurements (such as particle
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sedimentation rates and patterns) would have been necessary. However, given the uncertainty

associated with the environmental scenario description, the results can be considered satisfying.
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Figure 2. Results of the model output corroboration (lines) performed against the data reported in the reference

manuscript15 (markers) for water (W), macrophytes (Mf), and sediment (Sed). The comparison was performed on

prosulfocarb inventories in the different compartments, expressed as percentage of the initially applied chemical

amount.

Model illustration

Chemical A vs. Chemical B

The concentration profiles obtained for the two model chemicals (A and B) in water (dissolved-

phase, µg L-1) and sediment solids (ng g-1 d.w.) in the first, stream box (Box 1), where chemical

discharge occurred, are depicted in Figure 3. The difference between the behaviours predicted for

Chemical A and B is evident and mostly due to the higher log KOW of Chemical B with respect to A

(5.18 vs. 2.5), which caused a rapid chemical migration towards the macrophyte and sediment

compartments, also mediated by suspended solids deposition. This resulted in water-dissolved

concentrations of Chemical A which were 5 times higher than those of Chemical B. It should also

be noted that, for Chemical B, the second emission pulse, of the same entity of the other two pulses,

caused lower water-dissolved concentrations (0.04 µg L-1 vs. 0.1 µg L-1); this was a direct

consequence of the higher macrophyte biomass density (~ 300 g d.w. m-2) and, to a lesser extent, of

the higher DOC and POC concentrations (16 and 4 mg L-1, respectively) characterizing the month

of July, when such emission pulse occurred (Fig. S1). Chemical B hourly losses from the water
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compartment in Box 1 are depicted in Figure S7; it can be noticed that, in correspondence with the

second emission pulse, chemical removal from water was actually significant, and this can be

mainly ascribed to the higher suspended solids deposition flux on submerged aquatic vegetation

caused by the higher biomass characterizing the system in July. The observed behaviour confirmed

the importance of such process, especially for chemicals with log KOW > 5.5, as already shown by

Armitage and co-workers31 and before in this work (see Text S4). The crucial role of aquatic

vegetation in influencing the fate and distribution of hydrophobic organic chemicals is also evident

from numerous laboratory and field studies (e.g., refs. 28-30, 46-48). Chemical A, in contrast, was

almost not influenced by the high levels of macrophyte biomass due to its low log KOW. In sediment

(Fig. 3b), an opposite picture with respect to water appeared, with lower Chemical A concentrations

reflecting the pulsed emission profile in water and higher Chemical B levels slowly oscillating in

response to emission pulses but generally increasing; this last pattern was due to a combination of

the high chemical flux towards the sediment compartment with the higher persistence of Chemical

B (half-life: 2290 d) with respect to Chemical A (200 d). Chemical fluxes also indicated that

Chemical B transport to the sediment was mainly particle-mediated (particle deposition flux was 2

orders of magnitude higher than water-sediment diffusion one; Fig. S7).
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Figure 3. Concentrations in water (dissolved phase, ng L-1) (a) and sediment solids (ng g-1 d.w.) (b) of Chemical A and

Chemical B during the simulation period (Box 1, stream, where emission occurred).

Spatio-temporal variations in bioavailable concentrations

In Figure 4, the spatio-temporal dynamics of Chemical B water-dissolved concentrations are

depicted. A simplified side-view of the stream-pond system is reported, together with two charts

comparing the temporal concentration profile in Box 1, where the application occurred (Fig. 4a),

and the concentration profiles in the first three boxes of the pond (Box 3, 4 and 5, Fig. 4b). Solid

lines represent the concentrations computed with the time-varying macrophyte biomass (solid line

in Fig. S1a and Fig. 4c), while results indicated by dashed lines are discussed later on. A depletion

of concentrations of about 2 orders of magnitude from Box 1 to Box 3 was observed: this was

partially due to an obvious chemical dilution occurring when the stream water entered the pond;

however, this phenomenon was not sufficient to explain such concentration decrease, since Box 3

volume was only 1 order of magnitude higher than Box 1 and 2 ones (10 m3 vs. 0.8 m3,

respectively). During water transport from Box 1 to 3, chemical transfer to macrophytes and

sediment regulated chemical fate, resulting in a further depletion of concentrations; this was

confirmed by the fluxes representing losses from the water compartment for Box 3, which are

depicted in Figure S8. From Box 3 to 4 and 5 the effect of dilution was negligible, but again
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macrophytes and sediment contributed in sequestering chemical from water. Box 4 and 5 appeared

less affected than the previous ones by direct emission pulses, since most of the chemical was

sequestered in Box 1 to 3; however, the chemical release exerted by macrophytes in such boxes and

the following transport with water were sufficient to cause an increase of chemical concentrations in

Box 4 and 5 from October to November (Fig. 4b).
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Figure 4. Temporal evolution of water-dissolved concentrations (ng L-1) of Chemical B (a) in Box 1 (stream, where the

emission occurred) and (b) in the first three boxes constituting the pond environment (Box 3, 4 and 5). Solid lines refer

to simulations performed with time-varying macrophyte biomass, while dashed lines refer to simulations performed

with static macrophyte biomass after the June peak (c).
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Potential role of dead macrophyte biomass

A second set of simulations was performed to estimate the potential role of dead macrophyte

biomass, and were run assuming no macrophyte biomass decrease after the peak in June (dashed

line in Fig. S1a and Fig. 4c). Water dissolved concentrations in Box 1 (dashed line in Fig. 4a)

responded to such modification in macrophyte biomass with a decrease of the third peak with

respect to the reference simulation (solid line) of a factor of 2; concentrations in the following boxes

(Fig. 4b) also decreased starting from July, in response to the fictitiously increased vegetation

biomass, and showed the same gradual increase in the last part of the year related to release by

macrophytes located in the previous boxes. This simulation allowed preliminarily exploring the

potential role of dead aquatic vegetation in shallow aquatic environments and suggested the need of

incorporating a litter compartment in models dealing with lentic systems as ponds or wetlands,

where most of this material remains in-place and enters the detrital pool44,49.

Implications for ecological risk assessment

The illustrative simulations showed the potential temporal and spatial variability of chemical

bioavailable concentrations derived from a pulsed emission in a natural system composed of a pond

and its inflow and outflow streams. Concentration variability was observed to be related to

physical-chemical characteristics, but also to environmental heterogeneity. For example, the

variability in the presence and abundance of biota and organic phases (especially macrophytes) was

able to strongly influence bioavailable concentrations and, consequently, the exposure of aquatic

organisms. The experiments conducted by Roessink and co-workers48 demonstrated the strong

influence of aquatic vegetation on chemical fate also for sediment-bound organic compounds. The

inclusion of the macrophyte compartment, the vertically-resolved sediment and the possibility to

simulate different sub-environments through the connection of properly parameterized model sub-

units allow an increase of ecological realism in exposure predictions. The results of the model

output verification and corroboration processes suggested that a thorough model calibration is



145

mandatory in order to obtain accurate predictions, as is usual for fate models. For example, a more

detailed description of the changes in sediment properties (e.g., density, solids and organic carbon

content) with depth could dramatically improve the description of water-sediment exchange.

Similarly, a higher spatial and temporal resolution in the POC and DOC concentrations and

macrophyte biomass could help in the modelling of the complex spatio-temporal mosaic of

exposure which may occur in such shallow-water systems. In the present version of ChimERA fate,

macrophyte biomass temporal profiles are required as input; however, efforts will be devoted to the

implementation of scenarios containing realistic values for such parameters and for DOC/POC

concentrations. This, together with the implementation of a phytoplankton compartment, will be

crucial in order to investigate the variability of chemical exposure in different environments at

different latitudes or characterized by different properties (e.g., trophic status, climate zone, etc.)

and will be the object of a further paper.

Associated content
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Additional information concerning materials and methods (Table S1 and S2, Text S1-S3) and
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Table S1. Z-values (mol m-3 Pa-1) in ChimERA fate.

Z-value Phase/compartment Equation

ZA Air 1 / RT

ZQ Aerosol 6E+06 / PL * ZA

ZAbulk Bulk air ZA * (1 - vQ) + ZQ * vQ

ZW Water 1 / H

ZTSP TSP 0.41 * KOW * fOC_TSP * ρTSP * ZW / 1000

ZDOM DOM 0.08 * KOW * fOC_DOM * ρDOM * ZW / 1000

ZWbulk Bulk water ZW * (1- vTSP - vDOM) + ZTSP * vTSP + ZDOM * vDOM

ZMf Macrophytes 0.41 * KOW * fOC_Mf * ρMf * ZW / 1000

ZS Sediment solids 0.41 * KOW * fOC_S * ρS * ZW / 1000

ZSbulk Bulk sediment ZW * (1 - vs) + ZS * vs

fOC_TSP, fOC_DOM, fOC_Mf and fOC_S = organic carbon fraction in TSP, DOM, macrophytes and sediment solids, respectively
H = Henry’s Law constant (Pa m3 mol-1)
KOW = octanol-water partition coefficient (-)
PL = sub-cooled liquid vapor pressure (Pa)
R = gas constant (8.314 J mol-1 K-1)
T = absolute temperature (K)
vQ, vTSP, vDOM, vs = volume fractions (-) of aerosol in air, TSP and DOM in water, and solids in sediments, respectively
ρTSP, ρDOM, ρMf and ρS = densities (kg m-3) of water particles and sediment particles, respectively, macrophytes (w.w.)
and sediment solids
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Table S2. D-values (mol Pa-1 h-1) in ChimERA fate. Subscripts i are: W = water, S = sediment, TSP

= total suspended particles, DOM = dissolved organic matter, and Mf = macrophyte. SLy =

sediment layer.

D-value Process Equation

DV Absorption / volatilization VolMTC * AW * ZW

DM Rain dissolution GM * ZW

DC Wet particle deposition GC * ZQ

DQ Dry particle deposition GQ * ZQ

DI Water inflow GI * ZW

DJ Water outflow GJ * ZW

DW Degradation in water kW * VW * ZW

DIn_TSP TSP inflow GIn_TSP * ZIn_TSP

DOut_TSP TSP outflow GOut_TSP * ZTSP

DIn_DOM DOM inflow GIn_DOM * ZIn_DOM

DOut_DOM DOM outflow GOut_DOM * ZDOM

DW_Mf Water > Macro (uptake) kW_Mf * VMf * ZW

DMf_W Macro > Water (elimination) kMf_W * VMf * ZMf

DTSP_Mf TSP > Macro (deposition) UDep * AMf * ZTSP

DMf_TSP Macro > TSP (mortality) GMort_Mf * ZMf

DMf_DOM Macro > DOM (excretion) GExcr_Mf * ZMf

DDeg_Mf Degradation in macro kMf * VMf * ZMf

DLfall Litterfall GLfall * ZMf

DT Sed > Water / Water > Sed DiffMTC * AS * ZW

DTSP_S TSP > Sed UDep * AS * ZTSP

DS_TSP Sediment resuspension UDep * AS * fResusp * ZS

DB Sediment burial UDep * AS * fBurial * ZS

DSly_Down

SedLy > SedLy + 1 (downward

diffusion)
1 / (1 / Dw(SLy) + 1  + Dw(SLy + 1)))

DSly_Up

SedLy > SedLy - 1 (upward

diffusion)
1 / (1 / Dw(SLy) + 1  + Dw(SLy - 1)))
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Dw Diffusion in the water phase Bew * AS * ZW / Y

DS Degradation in Sed kS * VS * ZSbulk

AMf = surface area of submerged aquatic vegetation (m2)
AW and AS = water and sediment areas (m2)
Bew = effective diffusivity in water (m2 h-1, calculated according to the Millington-Quirk eq.)
Ci = water concentrations of i (kg m-3)
DiffMTC = sediment-water mass transfer coefficient (m h-1)
Dw = D value for the diffusion in the water phase (mol Pa-1 h-1)
fBurial = fraction of deposited particles which is subject to burial
fResusp = fraction of deposited particles which is subject to resuspension
G represents flow of phase (m3 h-1):

GI = water inflow
GJ = water outflow
GM = rain dissolution
GC = wet particle deposition
GQ = dry particle deposition
GIn_TSP = TSP inflow
GOut_TSP = TSP outflow
GIn_DOM = DOM inflow
GOut_DOM = DOM outflow
GMort_Mf = macrophyte mortality (to form TSP)
GExcr_Mf = macrophyte excretion (to form DOM)
GLfall = macrophyte biomass loss (litterfall)

k is a rate constant:
ki = degradation in compartment i (h-1)
kW_TSP = TSP adsorption from water (m3 kg-1 h-1)
kTSP_W = TSP desorption to water (h-1)
kW_DOM = DOM adsorption from water (m3 kg-1 h-1)
kDOM_W = DOM desorption to water (h-1)
kW_Mf = macrophyte uptake from water (h-1)
kMf_W = macrophyte elimination to water (h-1)

UDep = mass transfer coefficient for particle deposition (m h-1)
Vi = compartment volumes (m3)
VolMTC = overall (water-side) air-water mass transfer coefficient (m h-1)
Y = diffusion path length (m)
Z i = phase or compartment fugacity capacities (mol m-3 Pa-1) (see Table S1)
ZIn_i = fugacity capacities of inflow phases (mol m-3 Pa-1)
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Materials and methods

Text S1. Calculation of D-values for macrophytes

Diffusive exchanges between submerged vegetation and water were described by means of uptake

(k1, d-1) and elimination (k2, d-1) rate constants1,2, calculated as a function of the octanol-water

partition coefficient (KOW):

OWKk
500002.01

1

 (1)

OWK
k

000015.058.11

2

 (2)

From k1 and k2, the hourly rate constants were derived (kW_Mf = k1 / 24, kMf_W = k2 / 24, h-1). The

corresponding D-values (mol Pa-1 h-1) for uptake from water (DW_Mf) and elimination (DMf_W) were

calculated as follows:

WMfMfWMfW ZVkD __  (3)

MfMfWMfWMf ZVkD __  (4)

where VMf (m3) is the volume of the submerged vegetation excluding roots, and ZW and ZMf (mol m-3

Pa-1) are the fugacity capacities for water and macrophytes, respectively (Table S1). The description

of degradation in macrophytes was similar to that in water and sediment (see DW and DS in Table

S2), and was obtained from:

MfMfMfMfDeg ZVkD _ (5)
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where kDeg_Mf (h-1) is the degradation rate constant in macrophytes, computed from the degradation

half-life (HLMf , h) as ln2 / HLMf.

As in the work by Armitage and co-workers2, particle deposition onto macrophyte leaves (DTSP_Mf)

was described as dry particle deposition onto terrestrial plant surfaces:

TSPMfDepMfTSP ZAUD _ (6)

where UDep (m h-1) is the mass transfer coefficient for particle deposition, AMf (m2) is the effective

surface area of the submerged vegetation compartment, and ZTSP (mol m-3 Pa-1) is the Z-value for

total suspended particles (Table S1).

UDep  was estimated as:

TSP

TSP
TSPdep

CU


 (7)

where γTSP (m h-1) is the mean particle settling velocity, CTSP (g TSP m-3 water) is the TSP

concentration in water and ρTSP (g m-3) is the particle density. Different values for γTSP have been

proposed in the literature; however, given the lack of specific measures, in this work a value of 1 m

d-1 (i.e., 0.0417 m h-1) was adopted2.

The macrophyte effective surface area AMf (m2) was estimated from the leaf area index (LAI, m2 leaf

m-2 water/sediment) and water-sediment interface area (AWSed, m2):

WSedMf ALAIA  (8)

and LAI was derived by the mass of the leaves (ML, g d.w.) and specific leaf area (SLA, m2 g-1 leaf

d.w.) as follows:
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SLAMLAI L (9)

Chemical losses with biomass through mortality and excretion and consequent transfer to TSP

(DMf_TSP) and DOM (DMf_DOM) were calculated as advective processes:

MfMfMortTSPMf ZGD __  (10)

MfMfExcrDOMMf ZGD __  (11)

where GMort_Mf and GExcr_Mf (m3 h-1) are the macrophyte mortality and excretion rates, respectively.

In ChimERA fate, macrophyte volume, computed from user-input biomass density, can vary with

time. In case of decreasing volume, a fictitious increase of chemical concentrations in macrophytes

would be computed as the result of the compartment volume reduction. In order to avoid such

phenomenon, a D-value (DLfall) was computed to preliminarily represent the "litterfall" process:

MfLfallfLfall ZGD  (12)

were GLfall (m3 h-1) is the macrophyte volume loss on an hourly basis, calculated as (VMf(t) - VMf(t-

1)) / 1 h. Since in the present version of ChimERA fate no litter compartment was included, in the

chemical mass balance such D-value was only considered as a loss for macrophytes, i.e., the

chemical amount lost with macrophyte biomass is immediately lost from the whole system. The

effect of this assumption is discussed in the Model illustration section (main text).
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Text S2. Hydrological module description

The flow of water in the spatially explicit version of ChimERA fate is described by the Saint-

Venant equations for a one dimensional channel with varying bottom topography and varying

width. Letting x denote the coordinate along the channel, the system consists of the two following

partial differential equations:

zgwhwghgwh
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where w(x) is the width of the channel, z(x) the topography of the bottom, A(t,x) = w(x) * h(t,x) the

wet cross section, h(t,x) the water height, u(t,x) the cross sectional average of the water velocity,

Q(t,x) = A(t,x) * u(t,x) the discharge and g = 9.8 m s-2 the acceleration of gravity.

Mathematically, this is an hyperbolic balance equation with two geometric source terms

representing, respectively, the effects of the varying width and bottom topography on the water

flow. The properties of the equation, the subtleties arising from the nature of the source terms and a

numerical method to approximate its solutions are described in Balbas and Karni3. We also added a

third source term in the second equation, namely a friction term of the Manning's type.

In the simulations for this paper, following Cowan’s parameterizatio4, the Manning coefficient M

was assumed as (0.02 + 0.005 + 0 + 0 + 0.005) * 1.0, where the numerical values, in order of

appearance, have the meaning of “earth bottom”, “moderate bottom irregularity”, “no cross-section

variations” (this is already accounted for in the partial differential equation), “no obstructions”, “no

meandering”.

The channel geometry used in the simulations for model illustration (see Text S4) is a pond of

radius 12 m with two streams of with 1 m and length 20 m as inflow and outflow, corresponding to:
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The computational domain is the interval  canalpondcanalpond LRLR  , .

The numerical scheme is based on a discretization of the computational domain in N = 64 cells of

length Δx = 1 m. For a channel of length N meters, the cell index i takes values from 1 to N, but also

the values 0 and N+1 will be used in order to denote fictitious computational cells placed at the

beginning and the end of the computational domain and that are needed to impose correctly the

boundary conditions. iz , iA , iQ , iW  denote the values of the variables at the center of each

computational cell. From these values, the water height iii WAh / , the water level iii zhH  ,

and the “total area” iii WHAT *  may be computed.

At the beginning of the simulation, all the variables are set to their initial values in cells from 1 to N

and then a sequence of time steps is computed in order to update the values of the time-dependent

variables until the final time of the simulation is reached. In each time step, the “flux” of water and

of momentum is computed for each interface between cells and then the cell values are updated,

thus obtaining a “conservative scheme” (i.e. all changes in the total mass of water and total

momentum come from the boundaries and no losses may occur at internal interfaces). First, the

“interface values” of the bottom topography are computed as 2/)( 12/1   iii ZZZ .

The first step is to impose the boundary conditions, computing the fictitious values for cells number

0 and N+1. The discharge inQ  (taken as 0.05 m3 s-1 for the present paper) is imposed at the inlet by

setting:
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inQQ 0 , 111 /~ ZWATh  , )~(* 000 ZhWAT 

and free-flow type boundary conditions are imposed at the outlet as follows:

NN QQ 1 , NNN ZWATh  /~ , )~(* 111   NNN ZhWAT

Next, for each computational cell, the first order accurate “hydrostatic reconstruction” is computed:
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In order to obtain a numerically stable scheme, the amount of artificial diffusion is controlled by the

(local) Lax-Friedrichs parameter
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and the maximum time step length is computed as
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When needed for output purposes, the time step length is shortened in order to meet the end of each

simulation hour. The fluxes at each interface are computed by the local Lax-Friedrichs formula
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and the source terms are given by
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Finally the time update of the variables is performed
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Before proceeding to the next time step, the values of )1(
2/1*  iFt  are accumulated, since they

represent the amount of water that flowed from cell i to cell i+1 is the time step. The sum of these

quantities in each simulation hour, together with the volume of water at the end of each simulation
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hour, is passed to the ChimERA computational model. For simulations in which the spatial

discretization in the ChimERA model is coarser than the one employed here, of course the water

volumes are gathered accordingly and only the fluxes across boundaries of ChimERA

computational cells are retained.
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Text S3. Model parameterization

Output verification

Output verification was performed by comparing the chemical inventories or concentrations in

water, macrophytes and sediment predicted by the model with the ones measured in three different

environmental scenarios, as also done by Armitage and co-workers2. This allowed (1) assessing

how well model output matched experimental observations and (2) verifying the correctness of the

implementation of the macrophyte compartment with respect to the reference approach2. The first

two scenarios5 concerned the application of lambda-cyhalothrin to ditch enclosures in Renkum, the

Netherlands, characterized by different vegetation densities (Case 1 and 2), while in the third

scenario6 azinphos-methyl was applied to a ditch enclosure in Duluth, Minnesota, characterized by

low vegetation density (Case 3). In all cases, simulations with ChimERA fate were performed

considering one sediment layer only (no vertical discretization). As in Armitage and co-workers2,

the model was parameterized by setting water volumes, sediment depth, volume fraction of solids

and organic carbon content, vegetation biomass and characteristics, TSP and DOM concentrations

and properties, and water temperature equal to the ones characterizing the experimental systems5,6.

All details concerning model parameterization can be found in Table S3, while physical-chemical

properties and environmental half-lives of the modelled chemicals are reported in Table S4.

Model performance was considered satisfying when predictions were within an order of magnitude

with respect to observations; moreover, modelling efficiency (EF) (Eq. 5, main text) was computed

following the approach of Mayer and Butler7, and model performance was considered good for EF

ranging from 0 to 1.
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Output corroboration

Output corroboration was performed by comparing model predictions to experimental data

collected in a 40-m long stagnant ditch in Renkum, the Netherlands, in which prosulfocarb was

applied and subsequently measured at different times in water, sediment and macrophytes8. As did

for the output verification, ChimERA fate was parameterized by setting environmental parameters

equal to the ones characterizing the experimental system. In Adriaanse and co-workers8, the authors

used the TOXSWA model9 to estimate a degradation rate in water for prosulfocarb that was suitable

for mesocosm studies; since their simulations showed that prosulfocarb penetrated no deeper than

the upper centimetre of sediment, a single 1-cm deep sediment layer was simulated with ChimERA

fate. All details concerning model parameterization can be found in Table S3, while prosulfocarb

physical-chemical properties and environmental half-lives of are reported in Table S4. Again,

model performance was assessed by means of modelling efficiency EF7.
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Table S3. Values for the key parameters adopted for ChimERA fate output verification and

corroboration.

Output verification

Parameter Unit Case 1 Case 2 Case 3

Output

corroboration

Simulation time d 8 8 16 30 c

Water surface area m2 0.865 0.865 50.5 132 c

Water depth m 0.5 0.5 0.6 0.57 c

Water temperature °C 21 a 21 a 27.6 b 14 c

Sediment depth m 0.05 0.05 0.05 0.01 c

Vol. frac. sediment solids - 0.15 0.15 0.15 0.46 c

OC frac. sediment solids - 0.1 0.1 0.15 0.17 c

TSP concentration mg L-1 16 16 2.65 10 c

OC frac. TSP - 0.35 0.35 0.2 0.05 c

Vegetation biomass kg d.w. m-2 0.145 0.043 0.01 0.0949 c

OC frac. vegetation (w.w.) - 0.045 0.045 0.0339 0.04

Veg. dry/wet mass ratio - 0.113 0.113 0.113 0.113

Specific Leaf Area (SLA) m2 g-1 d.w. 0.1 0.1 0.1 0.1

DOC concentration mg L-1 8 8 11 -

Sediment particle density kg m-3 1500 1500 1500 1210 c

TSP density kg m-3 1500 1500 1500 1210 c

OC density kg m-3 1000 1000 1000 1000

Vegetation (wet) density kg m-3 1000 1000 1000 1000

Particle settling velocity m d-1 1 1 1 1

Fraction resuspension - 0.7 0.7 0.7 0.7

Fraction burial - 0.3 0.3 0.3 0.3

GMort_Mf m3 h-1 0 0 0 0

GExcr_Mf m3 h-1 0 0 0 0

All values were taken from Armitage et al.2, except for a (Leistra et al.5), b (Knuth et al.6) and c (Adriaanse et al.8).
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Table S4. Physical-chemical properties and environmental half-lives of the chemicals modelled in

the output verification and corroboration cases.

Property Unit
Lambda-

cyhalothrin

Azinphos-

methyl
Prosulfocarb

Molecular weight g mol-1 449.9 a 317.32 a 251.4 b

Reference temperature °C 25 25 20 b

Melting point °C 49.2 b 73 b -20 c

Vapour pressure Pa 2.04E-07 a 2.8E-05 a 7.9E-04 b

Water solubility g m-3 5E-03 a 30 a 13 b

log KOW - 7 a 2.75 a 4.48 b

Half-life in water d 7 a 3 a 5.8

Half-life in sediment d 10 a 10 a 11.6

Half-life in macrophyte d 2 a 2 a 5.8

a Armitage et al.2; b Tomlin10; c FOOTPRINT11; d Adriaanse et al.8

Model illustration

One-year illustrative simulations were performed for two model chemicals characterized by

different hydrophobicity and persistence (Table S5) in a macrophyte-dominated system consisting

of a pond and its inflow and outflow streams. As depicted in Figure 1b,c (main text), the system

was split into 10 adjacent boxes along the water flow direction: the first two and the last two boxes,

10-m long, represented the inflow and outflow streams, respectively, while the 6 central boxes, 4-m

long, represented the 450-m2, 0.5-m deep pond. A constant water flow was selected to obtain an

average residence time in the pond boxes of about 20 days.
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Table S5. Physical-chemical properties and environmental half-lives of the two model chemicals

selected for the illustration: Chemical A (atrazine-like)10 and Chemical B (pyrene-like)12.

Property Unit Chemical A Chemical B

Molecular weight g mol-1 215.7 202.3

Reference temperature °C 25 25

Melting point °C 175.8 156

Vapour pressure Pa 3.85E-05 6E-04

Water solubility g m-3 33 0.132

log KOW - 2.5 5.18

Half-life in water d 55 70

Half-life in sediment d 200 2290

Half-life in macrophyte d 55 70

Realistic information concerning macrophyte biomass (Fig. S1a), DOC and POC concentrations

(Fig. S1b) and water temperature (Fig. S1c) was derived from the literature: more specifically, POC

values were obtained from the monthly averages of TSP concentrations for a Portuguese eutrophied

pond13 and considering an OC fraction of 0.05, while DOC was derived assuming a POC/DOC

constant ratio of 0.21 (average of the ones reported by Parszuto and Kaliszewska14); water

temperature was also taken from de Figueiredo and co-workers (Portuguese eutrophied pond)13,

while values for macrophyte biomass density were taken from Desmet and co-workers15 and

assumed as uniform for the whole stream-pond system. Since monthly averages were generally

available for environmental parameters, hourly ones were obtained by linear interpolation. It should

be remarked that no effort was made to simulate a specific situation and that the present scenario

was adopted for illustration purposes only; moreover, time-resolved data concerning macrophyte

biomass densities, POC/DOC concentrations and other environmental parameters are often lacking.

A sediment depth of 1 cm was selected, while all other model parameters (e.g., densities, settling

velocities) were identical to the ones adopted for model output verification (Table S3). A pulsed
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chemical emission to the first box (stream) was simulated (Figure S1c) in order to investigate the

influence of different combinations of POC/DOC concentrations and macrophyte biomass densities

on bioavailable concentrations.
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Figure S1. (a) Macrophyte biomass (g d.w. m-2)15, (b) DOC and POC concentrations (mg L-1)13,14,

(c) water temperature profile13 and (d) emission profile to Box 1 (stream) for the two model

chemicals adopted for model illustration.



172

Results and discussion
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Figure S2. Sensitivity analysis results for Chemical A (a) and Chemical B (b).

Tested parameters were: emission (mol h-1, Em), water solubility (mg L-1, WS), vapour pressure (Pa, VP), octanol-water

partition coefficient (dimensionless, KOW), chemical half-life in water (h, HLW), chemical half-life in sediment (h, HLS),

chemical half-life in macrophyte (h, HLMf), volatilization MTC - air side (m h-1, kVA), volatilization MTC - water side (m

h-1, kVW), particle settling velocity (m h-1, gamma_p), sediment-water diffusion MTC (m h-1, kT), macrophyte uptake rate

constant (h-1, kW_MF), macrophyte depuration rate constant (h-1, kMf_W), mortality/excretion rate (h-1, Mort/Excr),

temperature (°C, T), macrophyte biomass density (g d.w. m-2, BioMf), water volume (m3, VW), water flux (m3 h-1, FluxW),

TSP volume (m3, VTSP), DOM volume (m3, VDOM), organic carbon fractions of macrophytes (dimensionless, fOC_Mf), TSP

(dimensionless, fOC_TSP), DOM (dimensionless, fOC_DOM), sediment solids (dimensionless, fOC_S).

a)

b)
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Text S4. Results for output verification

The results of the comparison between ChimERA fate predictions and experimental observations

for Case 1, 2 and 3 are presented in Figures S3, S4 and S5, respectively. While for Case 1 and 2

inventories in the different compartments were compared, expressed as percentage of the applied

dose, for Case 3 the comparison was based on concentrations. For Case 1 and 2, simulations were

first performed using the scenario described in Table S3, which was built using the same input data

selected by Armitage and co-workers for testing their modelling approach2. These first model runs

(“Predicted” in Figs. S3 and S4) indicated in both cases an excessively rapid chemical transport

from water to macrophytes and sediment, which led to a general overestimation of concentrations in

these two compartments (charts b and c), at least in the first 25-50 hours (EF < 0 for macrophyte

and sediment in both Case 1 and 2); such overestimation was particularly evident in Case 2

(lambda-cyhalothrin, low vegetation biomass) (Fig. S4). Since dominant fluxes were particle

deposition onto macrophyte and sediment (at least two orders of magnitude higher than the other

losses for the water compartment; results not shown), a second model run was performed for both

cases halving the deposition velocity from 1 to 0.5 m d-1, as also done by Armitage and co-workers2.

Such values were in the range of those suggested in the literature (e.g., refs. 16, 17). Results (“Pred.

dep/2” in Figs. S3 and S4) showed a general, slight improvement of the fit between predicted and

observed concentrations, especially for the water compartment during the first simulation hours, but

such modification was not able to significantly improve the fit for sediment (EF < 0). Armitage and

co-workers obtained the same results from their model application for both cases and all

compartments, and ascribed the poor representation of the uptake of lambda-cyhalothrin by

sediment in the first 1-2 days to two factors: (1) the assumption that the contaminant immediately

became well-mixed in the water column and (2) the assumption of equifugacity between suspended

solids and water2. Our simulations confirmed such hypotheses, since an investigation of chemical

fluxes showed a fast particle-mediated deposition onto sediment (and macrophyte leaves)

immediately after dosing, also due to the high log KOW of lambda-cyhalothrin. A third set of
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simulations was performed, as also done by Armitage and co-workers, halving the lambda-

cyhalothrin half-life in macrophytes: almost no changes were observed for predictions in water and

sediment, and no substantial improvement was observed for macrophytes (“Pred. HLMf/2” in

Figure S3b and S4b).

From the simulations for azinphos-methyl (Case 3) (Fig. S5) a different picture appeared. Results

obtained from the first model run (“Predicted”), performed using the scenario described in Table

S3, revealed a good model performance, at least for water and macrophytes (within a factor of 1.5

or less, with EFW = 0.92 and EFMf = 0.95), but again the chemical behaviour in sediment was not

accurately captured (EF = -0.55). Armitage and co-workers obtained the same results from their

model application for water and macrophytes, but their predictions revealed a better fit for the

sediment compartment2. Since model formulations were very similar, this was probably due to a

different parameterization in terms of mass-transfer coefficients. In a second model run (“Pred

5*KT” in Fig. S5), the influence of the water-sediment diffusion mass transfer coefficient kT was

investigated, by adopting a value of 0.0005 m h-1 instead of the default one (i.e., 0.0001 m h-1 18):

for water and macrophytes almost no changes were observed, while the fit for sediment

concentrations considerably improved (EF = 0.35). In the case of azinphos-methyl, characterized by

definitely lower log KOW with respect to lambda-cyhalothrin (2.75 vs. 7), particle-mediated

deposition processes were evidently less important than in Case 1 and 2, and degradation in water

and water outflow were the dominant fluxes in determining chemical depletion from water (results

not shown); however, the predicted concentration profile in sediment suggested that a more

complex description of the physical environment (e.g., sediment properties with depth) and of

water-sediment exchange may be needed to improve model performance. In all cases, the high

similarity of ChimERA fate predictions with respect to Armitage's ones suggested a correct

implementation of the macrophyte compartment.
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Figure S3. Results of the model output verification for water (a), macrophytes (b), and sediment

(c): Case 1 (lambda-cyhalothrin, high veg)2.
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Figure S6. Hourly prosulfocarb fluxes describing losses from the water compartment: degradation

(“Degr”), volatilization (“Vol”), water outflow (“Wat_Out”), TSP outflow (“TSP_Out”), TSP

deposition onto macrophyte leaves (“TSP>Mf”), DOM outflow (“DOM_Out”), uptake by

macrophyte (“W>Mf”), TSP deposition onto sediment (“TSP>Sed”), water-sediment diffusion

(“Wat>Sed”).
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Figure S7. Hourly Chemical B fluxes describing losses from the water compartment for Box 1

(stream, where emission occurred): degradation (“Degr”), volatilization (“Vol”), water outflow

(“Wat_Out”), TSP outflow (“TSP_Out”), TSP deposition onto macrophyte leaves (“TSP>Mf”),

DOM outflow (“DOM_Out”), uptake by macrophyte (“W>Mf”), TSP deposition onto sediment

(“TSP>Sed”), water-sediment diffusion (“Wat>Sed”).
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Figure S8. Hourly Chemical B fluxes describing losses from the water compartment for Box 3 (first

box of the pond): degradation (“Degr”), volatilization (“Vol”), water outflow (“Wat_Out”), TSP

outflow (“TSP_Out”), TSP deposition onto macrophyte leaves (“TSP>Mf”), DOM outflow

(“DOM_Out”), uptake by macrophyte (“W>Mf”), TSP deposition onto sediment (“TSP>Sed”),

water-sediment diffusion (“Wat>Sed”).
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Abstract

Species interactions are often suggested as an important factor when assessing the effects of

chemicals on higher levels of biological organisation. Nevertheless, the contribution of intraspecific

(competition) and interspecific interactions (competition and predation) to chemical effects on

populations is often overlooked. In the current study, Daphnia magna populations were initiated

with different levels of intra- and interspecific competition and predation and exposed to two pyrene

pulses. Generalized linear models were used to test which of these factors significantly explained

population size and structure at different time points. Pyrene had a negative effect on total

population densities, with effects being more pronounced on smaller D. magna individuals. Among

all species interactions tested, predation had the largest negative effect on population densities.

Predation and high initial intraspecific competition were shown to interact antagonistically with

pyrene exposure. This was attributed to differences in population structure prior to pyrene exposure

and pyrene-induced reduced feeding by Chaoborus sp. larvae. The current study provides empirical

evidence that species interactions within and between populations can alter the response of aquatic

populations to chemical exposure, suggesting complex interactions between the underlying

mechanisms.

Keywords:

Pyrene; species interactions; competition; predation; Daphnia magna
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1. Introduction

Current procedures for the ecological risk assessment (ERA) of chemicals are generally based on the

extrapolation of individual-level responses to the whole ecosystem and often fail to integrate a

sufficient level of ecological realism (Chapman 2002; De Laender et al. 2008a; Schmitt-Jansen et al.

2008; SCHER 2013). In ecosystems, individuals exposed to a chemical are rarely isolated but

interact with other individuals of the same and/or of other species. Despite being one of the key

characteristics of ecosystems, interactions within and between species are rarely included in current

prospective ERAs, especially for non-pesticidal chemicals (De Laender et al. 2008b; Schmitt-Jansen

et al. 2008). Species interactions can alter the direct effects of a chemical on sensitive species

(Hanazato 2001). Alternatively, by interacting with sensitive species, tolerant species can also be

affected (positively or negatively) by a chemical, leading to indirect effects on more sensitive

species (Hanazato 1998; Rohr and Crumrine 2005; De Hoop et al. 2013). It has been suggested that,

at least for pesticides, indirect effects are more common and more complex than direct effects

(Fleeger et al. 2003; Rohr et al. 2006). Interactions with other species can either increase or decrease

the susceptibility of populations and communities to a chemical (Preston 2002; Fleeger et al. 2003).

For example, the no observed effect concentration (NOEC) of prometryn for ciliates was more than

two orders of magnitude lower in microcosms compared with a single-species toxicity test because

of the sensitivity of their food source to prometryn (Liebig et al. 2008). Also, elimination of grazers

by the fungicide carbendazim allowed certain phytoplankton species to increase in abundance (Van

den Brink et al. 2000) and exposure to insecticides resulted in the development of anti-predator

structures in daphnids, potentially reducing the effect of predation (Hanazato 2001). Accurately

assessing species interactions is thus essential to perform ecologically realistic chemical risk

assessments (De Laender et al. 2014).

Competition and predation are regarded as the most important species interactions when considering

indirect effects of chemicals (Preston 2002). Interactions can occur between individuals of different
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species (interspecific competition) but also within one population of the same species (intraspecific

competition). Although some studies exist on the combined effects of interspecific competition and

chemicals (Liess 2002; Foit et al. 2012), studies on how intraspecific competition affects the

response of populations to chemical exposure are rather underrepresented in the ecotoxicological

literature.

The objective of the current study was to investigate how initial differences in species interactions

influence the response of aquatic invertebrate populations to chemical stress. To this end, Daphnia

magna populations were initiated with different levels of intraspecific and interspecific competition

and predation. After seven and fifteen days, pyrene was added as a chemical stressor. The combined

effects of species interactions and chemical stress were assessed by analysing population size and

structure at different time intervals using generalized linear models.

2. Materials and Methods

Experimental design

D. magna populations were exposed to six levels of species interactions (i.e. species interaction

control, low and high intraspecific competition, low and high interspecific competition, and

predation) and to five different pyrene exposure profiles (i.e. control, solvent control, and low,

medium and high exposure; see Table 1). The experiment was performed in triplicate (n = 3). Two

additional replicates were added for the species interaction control treatment exposed to no pyrene or

only solvent (n = 5). The experiment was carried out in 94 glass vessels (1.5 L) filled with 0.5 L of

fresh water RT medium (Tollrian 1993). The test vessels were randomly distributed within a water

bath placed in a temperature-controlled room (20.8 ± 1 °C) and exposed to low artificial light

conditions (1000-1500 lux). The experiment lasted for 29 days with an adaptation period of 7 days

(day -7 until day 0). Pyrene was added twice, on day 0 and day 8. After the second pyrene addition,

population densities were monitored for another 14 days until day 22. The D. magna organisms used
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in the experiment were obtained from the laboratory culture of the department of Aquatic Ecology

and Water Quality Management from Wageningen University (The Netherlands). Scenedesmus

obliquus was used as a food source for the D. magna cultures prior to the experiment and throughout

the course of the experiment. Test vessels were fed six times a week with S. obliquus (1 mg carbon ∙

L-1 ∙ day-1). The rotifer Brachionus calyciflorus, which also feeds on S. obliquus, is expected to

compete with D. magna for food and was used to simulate interspecific competition. B. calyciflorus

cysts were obtained from MicroBioTest Inc.© (Gent, Belgium) and a stock culture was set up in RT

medium at 20°C. Chaoborus sp. larvae, which were added to simulate predation, were collected

from unpolluted mesocosms at ‘de Sinderhoeve’ research station (www.sinderhoeve.org, Renkum,

The Netherlands).

Identical D. magna population structures were introduced in all test vessels. They were composed of

20% adults, 40% subadults and 40% juveniles. The classification of D. magna organisms within

these three groups was based on size, and was performed by filtering the culture medium through

sieves with different mesh sizes (i.e., adults > 800 µm; subadults between 800 and 500 µm; and

juveniles < 500 µm). By using populations composed of different life stages, we wanted to simulate

realistic population structures and also to study the sensitivity of different life stages and its

implications for the D. magna population dynamics. To study the effect of intraspecific competition

on D. magna populations, initial densities of 10 (species interaction control), 20 (low intraspecific

competition) and 40 (high intraspecific competition) D. magna individuals per test vessel were used.

To study how interspecific competition affects the D. magna population, B. calyciflorus was added

to the test vessels at the start of the experiment in densities of approximately 333 rotifers ∙ vessel-1

(low interspecific competition) and 999 rotifers ∙ vessel-1 (high interspecific competition). Predation

was imposed by the addition of one Chaoborus sp. larva per test vessel 3 days after the addition of

daphnids to the test vessels. When a Chaoborus sp. larva died during the experiment, it was replaced

to assure continuous predation pressure.
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Pyrene was chosen as model compound for this experiment because of its non-specific, narcotic

mode of action. Acetonitrile was used as solvent for pyrene and, therefore, a solvent control was

included in the experimental design (38 and 75 µg/L added for the first and second addition,

respectively). A stock solution of 0.75 g/L pyrene was prepared in acetonitrile and stirred intensively

before addition to the test vessels. Pyrene was applied twice to the test vessels. The first dosing was

applied 7 days after the start of the experiment (day 0) at a nominal concentration of 7.5, 20 and 55

µg/L for the low, medium and high pyrene exposure profile, respectively. The second application

was performed 15 days after the start of the experiment (day 8) with a nominal pyrene concentration

of 15, 40 and 110 µg/L, corresponding to the low, medium and high pyrene exposure profile,

respectively. Pyrene concentrations were chosen between the EC10 and EC50 values for

immobilization. An EC50,immobilization value of 68 [44-106] µg/L values was estimated based on a 48

hours toxicity test with D. magna (OECD 2004; See SI Figure 1 for the concentration response

curve). Using a similar protocol, no mortality effects were observed for B. calyciflorus and the

Chaoborus sp. larvae at pyrene concentrations up to 150 µg/L.

Biological monitoring

D. magna and B. calyciflorus abundances in the test vessels were monitored on day -4, 0, 2, 4, 7, 10,

15 and 22 after the start of the experiment. D. magna were counted and divided into the size classes

adult, subadult and juvenile by filtering the test medium over sieves with mesh sizes of 800 µm, 500

µm and 200 µm, respectively. B. calyciflorus abundances in the test medium of the interspecific

treatments were monitored by taking two 6 mL sub-samples per test vessel and counting swimming

rotifers using an inverted microscope (magnification 10x).

Chemical analyses

Samples for pyrene analysis were taken after the first pyrene application, before the second pyrene

application and two, four and twelve days after the second pyrene application. Pyrene samples were
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stored in the dark at -20 °C in glass tubes. The chemical analysis was performed with gas

chromatography–mass spectrometry (Trace GC 2000 series, Thermoquest, DSQ,

Finnigan/Thermoquest). An apolar Zebron ZB 5-ms column (Phenomenex) was used for the

analysis, and extraction and elution were performed by solid-phase extraction according to the

manufacturer’s instructions (Waters and Phenomenex). An internal standard (fluoranthene-d10) at a

concentration of 10-50 µg/L (depending on expected pyrene concentration) was used to control and

correct for extraction losses. The method’s recovery was always >75%. Immediately before injection

of the sample, a recovery standard was also applied to control for the injection itself.

Fate model analysis

A recently developed dynamic water-sediment organism model (EcoDyna; Morselli et al. 2014) was

used  to predict the temporal fate of pyrene during the experiments. The model was calibrated using

the nominal water volume (500 mL) of the experiment and water-sediment interaction was

minimized to simulate negligible exchange, given the lack of a sediment phase in the vessels used. In

order to calculate potential algal uptake, a daily contribution of 1 mg carbon /L was assumed, while

organism biomass was calculated taking into account  worst case conditions (10 Daphnia individuals

plus 1 Chaoborus larva at all times) respectively using Dumont et al., (1975) and Dumont and

Balvay, (1979), respectively. Physical-chemical properties for pyrene were obtained from Mackay et

al., (1992).

Statistical analyses

All analyses were performed using the statistical software package R (R Core Team 2012). For each

sampling time, generalized linear models (GLMs) were constructed. Total, adult, subadult and

juvenile D. magna abundances were considered as response variables, allowing for the examination

of population structure. The effect of intraspecific competition (control, low, high), interspecific

competition (control, low, high) and predation (non-predation, and predation) was assessed by



191

constructing a GLM with the respective species interaction, pyrene exposure (control, low, medium,

high) and their interaction as predictor variables.

GLMs were initially constructed assuming a Poisson distribution (Zuur et al. 2009) but this led to

unsatisfactory model validation. We therefore opted to perform GLM analyses with a normal

distribution on the log10-transformed D. magna abundance data. The solvent control treatment was

not included in the GLM analysis as preliminary tests showed no significant differences between the

control and the solvent control treatments. Backwards model selection was used, dropping predictor

variables based on the Akaike’s Information Criterion (AIC), hypothesis testing and model

validation analysis (Zuur et al. 2009). As model validation analysis, we (1) inspected if patterns in

the data were present using predicted versus observed plots, (2) inspected if patterns in the residuals

were present using predictor versus residuals plots, and (3) we tested the normality of the residuals

using QQ-plots (Zuur et al. 2009).

3. Results

Pyrene concentrations

Measured pyrene concentrations in water were lower than expected from the nominal values (Figure

1). Nevertheless, there was a clear difference between the three pyrene exposure profiles at any

given point in time. The EcoDyna model was used to simulate pyrene concentration variations in

water. The model was run to fit actual water concentrations, and the importance of the main fluxes

dominating the change in concentration with time after the spikes. The most important parameter

contributing to pyrene disappearance from water was half-life (no distinction could be made between

biotic and abiotic processes), which was estimated being 30 h, and the second was volatilization,

which accounted for about 20 % of losses.  Simulations confirmed that pyrene uptake in algae and

animal biomass was negligible.
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Statistical analyses

The effects of the different explanatory variables and their interactions are discussed below. We only

included the results for the total D. magna abundance, results for the size classes are included in the

supporting information. Model validation plots are also included as Supporting Information.

Independent of the explanatory variables, a clear trend in the model intercept value could be

observed. There was an increase in the intercept until day 7, afterwards the intercept slowly

decreased (Table 2-4). This trend reflects the population dynamics of D. magna as they are

approaching carrying capacity (Figure 2).

Effects of pyrene

The estimated direct effects of pyrene were almost identical between the different treatments of

species interactions (Table 2-4). We will therefore only refer to Table 2 here. The first pyrene

addition did not significantly affect D. magna population densities (Figure 2 and Table 2). However,

the highest pyrene exposure did reduce total population densities seven days after the second pyrene

addition (day 15). The description and discussion of the experiment results will therefore focus on

the observed effects after the second pyrene addition. Effects of the medium and low pyrene

exposure profiles on total D. magna abundance were absent or negligible (Table 2). The variance of

the total population densities explained by pyrene exposure at day 15 was >45% (SI Table 1-3).

Fourteen days after the second pyrene addition, D. magna populations were recovering (day 22): no

differences in total population densities were observed between pyrene exposure profiles. However,

at that time, the abundances of juveniles were higher in the high pyrene exposure profile compared

to the control treatment (SI Table 6 and Figure 3). Also, the negative effect of high pyrene exposure

on the abundances of adults persisted on day 22, although this effect was smaller compared to day 15

(SI Table 4). Although the total population densities had recovered, differences in population

structure were thus still observed between pyrene treatments (Figure 2-3).
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Effect of competition and predation

During the first 9 days of the experiment, populations with a higher initial population density (and

therefore a higher degree of intraspecific competition) remained more abundant but the effect

decreased with time (Figure 4 and Table 2). The variance explained by intraspecific competition also

decreased from 71% to 22% over this period (SI Table 1). A high initial density resulted in lower

future population densities (starting from day 4), although this effect was limited (Table 2). The

population with the lowest initial density (10 Daphnia per test vessel) reached the highest total D.

magna abundance (135 individuals). The initial positive effect of a high initial density persisted

longer for adult D. magna (until day 10; SI Table 4) compared to the other size classes (day 2 and -4

for subadult and juveniles, respectively; SI Table 5-6). High initial densities resulted in a higher and

more constant proportion of adults in the second half of the experiment compared to low initial

densities (Figure 3).

B. calyciflorus population densities decreased sharply after one week and B. calyciflorus completely

disappeared by day 10 (SI Figure 14). Although B. calyciflorus disappeared, significant but limited

differences were observed between population densities of the different interspecific competition

treatments starting from day 4 until day 15 (Figure 5 and Table 3).  At the end of the experimental

period, differences in population density were no longer observed between the different degrees of

interspecific competition. Abundances of adult D. magna were never negatively affected by

interspecific competition during the whole experiment (SI Table 7) while abundances of subadult

and juvenile individuals were (SI Table 8-9). The effect of interspecific competition on the

abundance of juveniles was only significant up to day 10 because almost no juveniles were observed

in either of the pyrene exposure treatments the following sample days.

Of all species interactions studied, predation had the largest negative effect on population densities

(Figure 3, 6 and Table 4). Predation had a continuous negative effect on total D. magna abundance.

The explained variance was always higher than 42%, except on day 15 when most variance was
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explained by pyrene exposure (Table 4). Because Chaoborus sp. larvae were added 3 days after the

start of the experiment, predation was not significant at day -4. A negative effect of predation was

first observed for adults (at day 0) but the largest effects were observed for the abundances of

juveniles and subadults (Figure 3 and SI Table 10-12).

Combined effects of pyrene and species interactions

Significant interactions between pyrene and predation or between pyrene and competition were rare

and most of the times changed inconsistently with increasing pyrene exposure. However, on day 15

the interaction between high pyrene exposure and predation and between high pyrene exposure and

intraspecific competition positively affected the total D. magna abundance, suggesting antagonism

between each of these two types of species interaction and chemical toxicity. The variance of the

total abundance explained by these two interactions on day 15 was 8.4% and 16.8%, respectively (SI

Table 1 and 3). These positive interactions indicated that the negative effect of high pyrene exposure

was less pronounced when the population was already exposed to predation or had experienced high

intraspecific competition at the start of the experiment.

4. Discussion

Pyrene toxicity

Pyrene has a narcotic mode of action (Di Toro et al. 2000). Phototoxicity of pyrene has been

reported (Bellas et al. 2008) but was likely limited in our experimental setup because of the low light

conditions (1000-1500 lux). In our study, short-term effects of pyrene were limited and the highest

effects occurred 7 days after the second pyrene addition. It is unclear why the first pyrene addition

had no observable effects on population densities. The highest concentration measured after the first

pyrene addition (71 µg/L) was similar to the EC50,immobilization determined in the toxicity test

performed on juvenile D. magna prior to the experiments (68 µg/L).. However, even juvenile D.

magna – often considered the most sensitive individuals (Muyssen and Janssen 2007)- were not
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affected by the first pyrene addition (SI Figure 10 and SI Table 6). The results of the pyrene toxicity

test did thus not seem applicable to the current experiment. D. magna EC50 values reported in the

literature (29 - 55 µg/L in the dark; Nikkilä et al. 1999) were similar to the one found here. Only one

study reported a LC50 value of 136 µg/L (Brausch and Smith 2009). During the second pyrene

addition, pyrene concentrations were roughly two times higher, leading to the observed mortality in

the highest exposure profile.

It was unclear if the negative effects of pyrene on the abundances of adults after the second pyrene

addition resulted from direct mortality or from a combination of direct mortality and reduced

survival or growth of smaller life classes. Reduced survival and growth of smaller life classes would

lead to a lower amount of individuals that grow to the adult size class over a given time period

compared to treatments without pyrene exposure. The negative effect of pyrene was largest on

abundances of subadults (SI Table 4-6). Adult D. magna were the only size class still affected by

pyrene at the end of the experiment (SI Table 4). Reduced survival and growth of earlier life stages

will reduce the number of subadults that reach the adult stage (Liess and Foit 2010). Possibly, the

negative effect of pyrene on the abundances of adults was thus, at least partly, attributable to effects

on earlier life stages. Juveniles were almost absent after the second pyrene addition, even in the

control treatment (SI Figure 10), which explains the absence of significant pyrene effects for

juveniles. Interestingly, abundances of juveniles were significantly higher on day 22 in the high

pyrene exposure profile compared to the control treatment (Figure 3 and SI Table 6). As a result,

total population densities were not significantly different between the different pyrene treatments at

the end of the experiment (Table 2), leading to the conclusion that total population density

recovered. However, it should be noted that the final D. magna populations in the high pyrene

exposure profile, consisting mainly of juveniles, were probably more susceptible to new chemical

stress events compared to those in the other pyrene treatments. This again illustrates that population



196

structure needs to be accounted for when assessing the response and recovery of a population to

(chemical) stress (Stark et al. 2004; Foit et al. 2012).

Species interactions

Of all species interactions studied, predation had the largest effect on total D. magna abundance.

Effects were visible six days after the addition of Chaoborus sp. larvae (starting from day 2) and the

highest effects were observed for the abundances of subadults and juveniles (Figure 3 and SI Table

10-12). This indicated a feeding preference: Chaoborus sp. larvae preferred to prey on smaller

subadult and juvenile D. magna than on adult D. magna. Size selective feeding by Chaoborus sp.

larvae has been observed before (Swift 1992). Surprisingly, however, the negative effect of

predation was first significant for adults (on day 0) and not for subadults or juveniles. Abundances of

subadults and juveniles were very low (subadults) or zero (juveniles) until day 0, so probably the

Chaoborus larvae were forced to feed on the larger D. magna adults. At later time points, juveniles

and subadults were more abundant and Chaoborus larvae fed on these size classes, leading to a

reduced or absent effect of predation on adults. These data show that feeding preferences depend on

the ecological context shaped by the prey’s population structure.

It is difficult to assess the effects of interspecific competition for the full duration of the experiment

because B. calyciflorus were reduced to low densities (<10%) after day 7 and completely

disappeared after day 10 (SI Figure 14). The effects of interspecific competition on total population

densities were therefore limited (Table 2). Posterior tests performed with the same conditions

showed that even in the highest pyrene concentration, B. calyciflorus was able to survive for at least

24 days (SI Figure 15). The rotifers were thus outcompeted by D. magna, as previously observed in

interaction experiments between B. calyciflorus and D. pulex without chemical stress (Gilbert 1985).

Gilbert et al. (1985) observed limited to no effects of the competition with B. calyciflorus on

population densities of D. pulex, similar to the results of the current study. Continuous competition
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pressure from B. calyciflorus could however lead to different results and future efforts should focus

on experimental designs promoting prolonged co-existence between these two zooplankton taxa.

Both intraspecific and interspecific competition seemed to result in effects on reproductive output.

Negative effects of different initial densities on the abundances of juveniles and subadults were

observed starting from day 2 while these were absent for adults (SI Table 4-6). Similarly, negative

effects of interspecific competition were observed for subadults and juveniles from day 4 onward

while adults were not affected (SI Table 7-9). High initial competition thus mainly affected early life

stages at later time points, suggesting competition-induced effects on D. magna reproduction over

direct competition effects. According to the dynamic energy budget (DEB) theory, the competition

with B. calyciflorus or other D. magna individuals could reduce the amount of energy that could be

allocated to reproduction, resulting in less offspring (Kooijman 1986). However, it is probable that

direct competition, through starvation, also contributed to the results. Young D. magna life stages

are more prone to starvation compared to adults (Preuss et al. 2009; Martin et al. 2013). Under high

competition conditions, less food is available per capita, possibly leading to starvation of smaller

individuals and contributing to the lower proportion of young life stages in the population.

Reduced effect of pyrene when combined with predation and competition

On day 15, when the pyrene effect was largest, predation and intraspecific competition reduced the

negative effect of pyrene on population densities (Figure 3). Contrary to the antagonism observed in

the current study, synergism between species interactions and chemical stress is often observed.

Synergistic effects between predation and chemical stress have been shown for a wide range of

organisms e.g. Artemia (Beketov and Liess 2006), amphibians (Relyea 2004) and mayflies (Schulz

and Dabrowski 2001). The combination of predation by Notonecta maculata and exposure to

nonylphenol led to loss of resilience in Daphnia magna populations (Gergs et al. 2013). Synergistic

effects of competition and chemical stress have been reported for D. magna (Foit et al. 2012) and

other Daphnia species (Knillmann et al. 2012a, 2012b). Although synergistic effects have been
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reported most frequently, empirical support exists for antagonistic effects as well. For example,

exposure to predator kairomones led to antagonistic interactions with carbaryl exposure on

reproduction of Daphnia magna (Coors and Meester 2008). This was attributed to larger-sized and

thus more tolerant offspring when predation cues were present. Two mechanisms are proposed to

explain the antagonism we observe in the current study: differences in population structure and

pyrene-induced alterations in species interactions. First, the structure of the populations exposed to

predation or to high intraspecific competition differed from that of the populations experiencing low

intraspecific competition and populations not exposed to predation. On day 7, immediately before

the second pyrene addition, a large negative effect of intraspecific competition and predation on the

abundances of subadults and juveniles was observed while the abundances of adults were less

affected (Figure 3, SI Table 4-6;10-12). Differences in sensitivity for different D. magna size classes

have been shown before e.g. for four metals (Hoang and Klaine 2007) or carbaryl (Coors and

Meester 2008). We argue that because of the lower proportion of small-sized and thus more sensitive

life stages in populations with predation or high (initial) intraspecific competition, pyrene effects

were smaller. Second, the feeding rate of Chaoborus sp. larvae was possibly inhibited by the pyrene

exposure, leading to reduced predation losses. Indeed, the estimated effect of predation (Table 4)

was lower on day 15. The effect of pyrene on the feeding rates of Chaoborus sp. larvae was not

tested in the current study but chemicals have been shown to alter feeding behaviour of fish (Weis et

al. 2001) and invertebrates (Maltby and Hills 2008).

Contrary to a similar study with D. magna populations exposed to fenvalerate (Liess and Foit 2010),

we observed no prolonged dominance of smaller-sized organisms after chemical stress in the

treatment with predation: after high pyrene exposure, the proportion of small individuals was higher

in the populations not exposed to predation (Figure 3). These contradicting results can be explained

by how predation was applied in the two studies. While Liess and Foit (2010) simulated predation by

removing individuals non-selective on size, Chaoborus sp. larvae preferred to prey on smaller



199

individuals, leading to lower abundances of juveniles in the predation treatments at the end of the

experiment. This highlights the complexity of assessing how ecological interactions alter the

response of a population to chemical stress and the need for ecologically realistic tools (De Laender

and Janssen 2013; Gabsi et al. 2014).

The current study is an example of how species interactions can lead to a priori unpredictable effects

of chemicals. Predation and intraspecific competition were shown to interact antagonistically with

pyrene. The current study also highlights the need to not only consider the effects of a chemical on

population density but also on population structure when assessing the risk of chemicals for

populations and communities. Alternative, ecologically more realistic approaches such as

mechanistic ecological models (De Laender et al. 2008a, 2013; Galic et al. 2010) could be used to

integrate species interactions while assessing the long-term ecological risk of a chemical. In

addition, such models could help to infer what processes contribute most to the patterns observed in

experimental studies.
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Tables

Table 1. Overview of the different species interactions tested. The columns indicate how many of each species were
added to the test vessels for the different species interaction treatments. Each of these treatments was exposed to
five different pyrene exposure profiles: no pyrene, solvent control, low, medium and high pyrene exposure.

Treatment # D. magna # B. calyciflorus # Chaoborus sp. larvae
Control 10 0 0
Intraspecific competition: low 20 0 0
Intraspecific competition: high 40 0 0
Interspecific competition: low 10 333 0
Interspecific competition: high 10 999 0
Predation 10 0 1

Table 2: GLM estimates of pyrene exposure and intraspecific competition for log10-transformed total D. magna
abundance after backwards model selection. For each time point, the significant estimates of explanatory variables
and their interactions are shown. Non-significant predictor variables are not shown (if never significant) or indicated
with “/”.

Time (days) -4 0 2 4 7 10 15 22
(Intercept) 1.03 1.18 1.64 1.91 2.13 2.03 1.97 1.88
Low pyrene / / / / -0.12 / / 0.10
Medium pyrene / 0.19 / / -0.09 / / /
High pyrene / / / / / -0.07 -0.56 /
Low intraspecific 0.26 0.22 / -0.12 -0.17 -0.09 / -0.07
High intraspecific 0.50 0.39 0.12 -0.11 -0.11 -0.13 / -0.11
Low pyrene X  Low intraspecific / / / / 0.17 / / /
Medium pyrene X  High intraspecific / / / 0.18 / / / /
High pyrene X  High intraspecific / / / / / / 0.30 /
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Table 3: GLM estimates of pyrene exposure and interspecific competition for log10-transformed total D. magna
abundance after backwards model selection. For each time point, the significant estimates of explanatory variables
and their interactions are shown. Non-significant predictor variables are not shown (if never significant) or indicated
with “/”.

Time (days) -4 0 2 4 7 10 15 22
(Intercept) 1.06 1.20 1.70 1.90 2.13 2.02 1.97 1.88
Low pyrene / / / / -0.12 / / /

Medium pyrene / 0.17 / / / / / /

High pyrene / / / / / -0.09 -0.63 /

Low interspecific / 0.13 / / -0.15 -0.12 -0.11 /

High interspecific / / / -0.16 -0.24 -0.12 -0.13 /

Low pyrene X High interspecific / / / / 0.17 / / -0.18

Table 4: GLM estimates of pyrene exposure and predation for log10-transformed total D. magna abundance after
backwards model selection. For each time point, the significant estimates of explanatory variables and their
interactions are shown. Non-significant predictor variables are not shown (if never significant) or indicated with “/”.

Time (days) -4 0 2 4 7 10 15 22
(Intercept) 1.07 1.27 1.69 1.90 2.08 2.01 1.97 1.88
High pyrene / / / / / / -0.56 /

Predation / / -0.32 -0.40 -0.38 -0.28 -0.25 -0.22
High pyrene X Predation / / / / / / 0.37 /
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Figures

Figure 1. Measured pyrene concentrations (µg/L) for the low (points), medium (crosses) and high (black squares)
pyrene exposure. Average pyrene values with standard deviations (error bars) are depicted.

Figure 2. Total D. magna abundances over time for four pyrene exposure profiles: control, low, medium and high
pyrene exposure. Data shown are the D. magna population densities with no additional species interactions.
Average values with standard deviations (error bars) are depicted. Dashed lines indicate the first and the second
pyrene application.
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Figure 3. Average population structure of D. magna just before and after the second pyrene application (day 15)
for different treatments. Data shown are the average abundances of adults (dark grey), subadults (medium grey)
and juveniles (light grey) of the specific treatments. Error bars are not shown for clarity. “−“ and “+” indicate a
significant negative and positive effect, respectively, of that treatment or interaction of treatments on total
population density, compared to the control treatment C0. C0 = no pyrene exposure; C3 = high pyrene exposure;
INTRA = high intraspecific competition treatment; INTER = high interspecific competition treatment; PRED=
predation treatment.

Figure 4. Total D. magna abundance over time for four pyrene exposure profiles: control, low, medium and high
pyrene exposure. Data shown are the D. magna population densities for the treatment with no additional species
interactions (points), low intraspecific competition (crosses) and high intraspecific competition (black squares).
Average values with standard deviations (error bars) are depicted. Dashed lines indicate the first and the second
pyrene application.
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Figure 5. Total D. magna abundance over time for four pyrene exposure profiles: control, low, medium and high
pyrene exposure. Data shown are the D. magna population densities for the treatment with no additional species
interactions (points), low interspecific competition (crosses) and high interspecific competition (black squares).
Average values with standard deviations (error bars) are depicted. Dashed lines indicate the first and the second
pyrene application.

Figure 6. Total D. magna abundance over time for four pyrene exposure profiles: control, low, medium and high
pyrene exposure. Data shown are the D. magna population densities for the treatment without (points) and with
predation (crosses). Average values with standard deviations (error bars) are depicted. Dashed lines indicate the
first and the second pyrene application.
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SI Table 1: Percentage of the total variance explained by pyrene exposure and intraspecific competition.
Percentages shown are calculated for the optimal GLM for log10-transformed total D. magna abundance after
backwards model selection on the intraspecific dataset. Non-significant predictor variables are indicated with “/”.

Time (days) -4 0 2 4 7 10 15 22

Pyrene / 13.7 10.4 2.1 16.6 12.3 75.4 32.1

Intraspecific 71.0 46.7 21.9 20.4 40.3 38.5 0.9 21.6

Pyrene X Intraspecific / / / 23.2 13.9 / 8.4 /

SI Table 2: Percentage of the total variance explained by of pyrene exposure and interspecific competition.
Percentages shown are calculated for the optimal GLM for log10-transformed total D. magna abundance after
backwards model selection on the interspecific dataset. Non-significant predictor variables are indicated with “/”.

Time (days) -4 0 2 4 7 10 15 22

Pyrene / 19.5 / / 5.1 23.1 81.3 24.0

Interspecific / 12.0 / 51.8 55.8 32.1 4.0 14.0

Pyrene X Interspecific / / / / 9.6 / / 18.2

SI Table 3: Percentage of the total variance explained by of pyrene exposure and predation. Percentages shown are
calculated for the optimal GLM for log10-tra/formed total D. magna abundance after backwards model selection on
the predation dataset. Non-significant predictor variables are indicated with “/”.

Time (days) -4 0 2 4 7 10 15 22

Pyrene / / / / / / 45.1 13.3

Predation / 11.4 51.8 42.4 46.8 54.6 19.5 55.0

Pyrene X Predation / / / / / / 16.8 /

SI Table 4: GLM estimates of pyrene exposure and intraspecific competition for log10-transformed adult D. magna
abundance after backwards model selection. For each time point, the significant estimates of explanatory variables
and their interactions are shown. Non-significant predictor variables are not shown (if never significant) or
indicated with “/”.

Time (days) -4 0 2 4 7 10 15 22
(Intercept) 0.57 1.02 1.11 1.22 1.40 1.48 1.69 1.73
Medium pyrene / / / / / 0.10 / /

High pyrene 0.12 / / / -0.12 / -0.37 -0.18
Low intraspecific 0.30 0.24 0.19 0.16 0.08 / / /

High intraspecific 0.46 0.41 0.37 0.32 0.25 0.08 / /
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SI Table 5: GLM estimates of pyrene exposure and intraspecific competition for log10-transformed subadult D.
magna abundance after backwards model selection. For each time point, the significant estimates of explanatory
variables and their interactions are shown. Non-significant predictor variables are not shown (if never significant) or
indicated with “/”.

Time (days) -4 0 2 4 7 10 15 22
(Intercept) 0.74 0.56 1.15 1.57 1.89 1.79 1.56 1.08
Low pyrene / / / / -0.17 / / 0.44
High pyrene / / / / / / -0.70 /

Low intraspecific 0.22 / / / -0.24 -0.14 / /

High intraspecific 0.49 0.57 0.27 -0.21 -0.33 -0.28 / /

Low pyrene X  Low intraspecific / / / / 0.32 / / /

Medium pyrene X  High intraspecific / / / 0.28 / / / -0.63

SI Table 6: GLM estimates of pyrene exposure and intraspecific competition for log10-transformed juvenile D.
magna abundance after backwards model selection. For each time point, the significant estimates of explanatory
variables and their interactions are shown. Non-significant predictor variables are not shown (if never significant) or
indicated with “/”.

Time (days) -4 0 2 4 7 10 15 22
(Intercept) / / 1.25 1.47 1.47 0.69 / -0.52
Medium pyrene / 0.79 / / / 0.32 / /

High pyrene / 0.87 / / / 0.33 / 1.03
Low intraspecific 0.51 / / -0.39 -0.34 / / /

High intraspecific 0.75 / -0.71 -0.75 -0.61 -0.55 / /

High pyrene X  Low intraspecific / -1.37 / / / / / /

High pyrene X  High intraspecific / -1.02 / / / / / /

SI Table 7: GLM estimates of pyrene exposure and interspecific competition for log10-transformed adult D. magna
abundance after backwards model selection. For each time point, the significant estimates of explanatory variables
and their interactions are shown. Non-significant predictor variables are not shown (if never significant) or
indicated with “/”.

Time (days) -4 0 2 4 7 10 15 22
(Intercept) 0.61 1.03 1.14 1.20 1.42 1.49 1.72 1.77
Medium pyrene / / / / / 0.10 / /

High pyrene / / / / -0.09 -0.10 -0.57 -0.22
Low interspecific / / / 0.13 / / / /

High pyrene X High interspecific / / / / / / / -0.29
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SI Table 8: GLM estimates of pyrene exposure and interspecific competition for log10-transformed subadult D.
magna abundance after backwards model selection. For each time point, the significant estimates of explanatory
variables and their interactions are shown. Non-significant predictor variables are not shown (if never significant) or
indicated with “/”.

Time (days) -4 0 2 4 7 10 15 22
(Intercept) 0.79 0.56 1.21 1.56 1.89 1.83 1.59 1.06
Low pyrene / / / / -0.17 / / /

High pyrene / / / / / -0.14 -0.81 0.42
Low interspecific / 0.35 / / / -0.15 -0.32 -0.42
High interspecific -0.35 0.32 / -0.14 -0.27 -0.16 -0.23 /

Low pyrene X Low interspecific / / / / 0.22 / / /

Low pyrene X High interspecific / / / / 0.23 / / /

High pyrene X High interspecific 0.59 / / / / / / /

SI Table 9: GLM estimates of pyrene exposure and interspecific competition for log10-transformed juvenile D.
magna abundance after backwards model selection. For each time point, the significant estimates of explanatory
variables and their interactions are shown. Non-significant predictor variables are not shown (if never significant) or
indicated with “/”.

Time (days) -4 0 2 4 7 10 15 22
(Intercept) -0.48 / 1.15 1.44 1.52 0.57 / -0.81
Medium pyrene 0.56 / / / / 0.56 / /

High pyrene / / / / / / / 1.79
Low interspecific -0.59 / / -0.38 -0.49 / / /

High interspecific / / / -0.41 -0.57 -1.22 / /

High pyrene X Low interspecific / -1.58 / / / / / /

Low pyrene X High interspecific / / / / / 1.21 / /

High pyrene X High interspecific / / / -0.44 / 1.00 / /

SI Table 10: GLM estimates of pyrene exposure and predation for log10-transformed adult D. magna abundance
after backwards model selection. For each time point, the significant estimates of explanatory variables and their
interactions are shown. Non-significant predictor variables are not shown (if never significant) or indicated with “/”.

Time (days) -4 0 2 4 7 10 15 22
(Intercept) 0.67 1.02 1.11 1.22 1.36 1.49 1.67 1.76
High pyrene / / / / / / -0.36 -0.16
Predation / -0.20 -0.22 -0.22 -0.18 / / -0.16

SI Table 11: GLM estimates of pyrene exposure and predation for log10-transformed subadult D. magna abundance
after backwards model selection. For each time point, the significant estimates of explanatory variables and their
interactions are shown. Non-significant predictor variables are not shown (if never significant) or indicated with “/”.

Time (days) -4 0 2 4 7 10 15 22
(Intercept) 0.67 0.55 1.01 1.56 1.89 1.79 1.56 1.27
Medium pyrene / / / / -0.28 / / /

High pyrene / / / / / / -0.70 /

Predation / / / -0.34 -0.36 -0.37 -0.50 -0.33
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SI Table 12: GLM estimates of pyrene exposure and predation for log10-transformed juvenile D. magna abundance
after backwards model selection. For each time point, the significant estimates of explanatory variables and their
interactions are shown. Non-significant predictor variables are not shown (if never significant) or indicated with “/”.

Time (days) -4 0 2 4 7 10 15 22
(Intercept) / / 1.25 1.51 1.47 0.57 -0.42 -0.57
High pyrene / 0.79 / / / / / 0.96
Predation / / -0.67 -1.03 -0.80 / / /

Low pyrene X Predation / / / / / -1.07 / /

SI Figure 1: Concentration response curve for pyrene based on the results of a 48 hours test with D. magna.

SI Figure 2. Adult D. magna abundance over time for four pyrene exposure profiles: control, low, medium and high
pyrene exposure. Data shown are the adult D. magna abundances with no additional species interactions. Average
values with standard deviations (error bars) are depicted. Dashed lines indicate the first and the second pyrene
application.
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SI Figure 3. Adult D. magna abundance over time for four pyrene exposure profiles: control, low, medium and high
pyrene exposure. Data shown are the treatments without (points) and with predation (crosses). Average values
with standard deviations (error bars) are depicted. Dashed lines indicate the first and the second pyrene
application.

SI Figure 4. Adult D. magna abundance over time for four pyrene exposure profiles: control, low, medium and high
pyrene exposure. Data shown are the treatments with no additional species interactions (points), low intraspecific
competition (crosses) and high intraspecific competition (black squares). Average values with standard deviations
(error bars) are depicted. Dashed lines indicate the first and the second pyrene application.



215

SI Figure 5. Adult D. magna abundance over time for four pyrene exposure profiles: control, low, medium and high
pyrene exposure. Data shown are the treatments with no additional species interactions (points), low interspecific
competition (crosses) and high interspecific competition (black squares). Average values with standard deviations
(error bars) are depicted. Dashed lines indicate the first and the second pyrene application.

SI Figure 6. Subadult D. magna abundance over time for four pyrene exposure profiles: control, low, medium and
high pyrene exposure. Data shown are the subadult D. magna abundances with no additional species interactions.
Average values with standard deviations (error bars) are depicted. Dashed lines indicate the first and the second
pyrene application.
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SI Figure 7. Subadult D. magna abundance over time for four pyrene exposure profiles: control, low, medium and
high pyrene exposure. Data shown are the treatments without (points) and with predation (crosses). Average
values with standard deviations (error bars) are depicted. Dashed lines indicate the first and the second pyrene
application.

SI Figure 8. Subadult D. magna abundance over time for four pyrene exposure profiles: control, low, medium and
high pyrene exposure. Data shown are the treatments with no additional species interactions (points), low
intraspecific competition (crosses) and high intraspecific competition (black squares). Average values with standard
deviations (error bars) are depicted. Dashed lines indicate the first and the second pyrene application.
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SI Figure 9. Subadult D. magna abundance over time for four pyrene exposure profiles: control, low, medium and
high pyrene exposure. Data shown are the treatments with no additional species interactions (points), low
interspecific competition (crosses) and high interspecific competition (black squares). Average values with standard
deviations (error bars) are depicted. Dashed lines indicate the first and the second pyrene application.

SI Figure 10. Juvenile D. magna abundance over time for four pyrene exposure profiles: control, low, medium and
high pyrene exposure. Data shown are the juvenile D. magna abundances with no additional species interactions.
Average values with standard deviations (error bars) are depicted. Dashed lines indicate the first and the second
pyrene application.
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SI Figure 11. Juvenile D. magna abundance over time for four pyrene exposure profiles: control, low, medium and
high pyrene exposure. Data shown are the treatments without (points) and with predation (crosses). Average
values with standard deviations (error bars) are depicted. Dashed lines indicate the first and the second pyrene
application.

SI Figure 12. Juvenile D. magna abundance over time for four pyrene exposure profiles: control, low, medium and
high pyrene exposure. Data shown are the treatments with no additional species interactions (points), low
intraspecific competition (crosses) and high intraspecific competition (black squares). Average values with standard
deviations (error bars) are depicted. Dashed lines indicate the first and the second pyrene application.
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SI Figure 13. Juvenile D. magna abundance over time for four pyrene exposure profiles: control, low, medium and
high pyrene exposure. Data shown are the treatments with no additional species interactions (points), low
interspecific competition (crosses) and high interspecific competition (black squares). Average values with standard
deviations (error bars) are depicted. Dashed lines indicate the first and the second pyrene application.

SI Figure 14. B. calyciflorus population sizes over time with D. magna present for four pyrene exposure profiles:
control, low, medium and high pyrene exposure. Initial population sizes of 333 rotifers ∙ vessel-1 (points) and 999
rotifers ∙ vessel-1 (crosses) are shown. Average values are depicted. Dashed lines indicate first and the second
pyrene application.
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SI Figure 15. B. calyciflorus population sizes over time without D. magna for four pyrene exposure profiles:
control, low, medium and high pyrene exposure. Initial population sizes of 333 rotifers ∙ vessel-1 (points) and 999
rotifers ∙ vessel-1 (crosses) are shown. Average values are depicted. Dashed lines indicate first and the second
pyrene application.

Model validation

The model validation plots were added as a separate zip archive. More details can be found in the word file
supplied in the zip archive.
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a b s t r a c t

A spatially-explicit version of the recent multimedia fate model SoilPlus was developed and applied to
predict the runoff of three pesticides in a small agricultural watershed in north-eastern Italy. In order to
evaluate model response to increasing spatial resolution, a tiered simulation approach was adopted, also
using a dynamic model for surface water (DynA model), to predict the fate of pesticides in runoff water
and sediment, and concentrations in river water. Simulation outputs were compared to water concen-
trations measured in the basin. Results showed that a high spatial resolution and scenario complexity
improved model predictions of metolachlor and terbuthylazine in runoff to an acceptable performance
(R2 ¼ 0.64e0.70). The importance was also shown of a field-based database of properties (i.e. soil texture
and organic carbon, rainfall and water flow, pesticides half-life in soil) in reducing the distance between
predicted and measured surface water concentrations and its relevance for risk assessment.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of non-point source pollution together with the
effects of pesticides on non-target organisms has been one of the
most studied environmental issues for almost half-a-century
(White et al., 1967), and the need to reduce the risk for non-
target terrestrial and aquatic ecosystems is acknowledged in cur-
rent European Legislation, under Directives 91/414/EC and 2009/
128/EC (EC, 1991, 2009). In addition, the EU Water Framework
Directive (EC, 2000) specifies that site-specific tools and indicators
have to be developed for the management of river basins, in order
to promote the protection of surface water ecosystems.

A number of models have been developed to predict soil and
surface/ground water pesticides concentrations, like PRZM (Suarez,
2006) or PEARL (Leistra et al., 2000). These models generally treat
the soil as a one-dimensional multi-layered compartment, but do
not usually account for spatial interactions over a catchment.
Instead, one such model is SWAT (Neitsch et al., 2005). While many

of these models can be applied at field level, when evaluating the
potential pesticide contamination of surface water at a basin scale,
the adoption of average (or prevalent) field properties in basin-
wide (one large field scenario) simulations could produce
misleading results. This is especially relevant when soil texture,
organic carbon, crop, pesticide application etc., heterogeneity is
high. To account for spatial variability, a Geographic Information
System (GIS) can be coupled to fate models, in order to provide an
adequate scenario description, without necessarily realizing a full
integration of GIS and model. Barra et al. (2000) is an example of
this approach, in which the SoilFug model (Di Guardo et al., 1994)
was loosely coupled to a GIS to perform spatially-explicit simula-
tions at a basin scale. More recently, the GeoPEARL model (Tiktak
et al., 2003) and EuroPEARL model (Tiktak et al., 2006) were
developed to evaluate the risk related to leaching in the
Netherlands and Europe on a geographical basis. In another
approach, the MACRO model (Jarvis, 1995) was coupled to GIS
(Balderacchi et al., 2008) to evaluate the vulnerability of ground-
water in the Marche Region, Italy. In addition, the PRZMmodel was
linked to a GIS in California (Luo and Zhang, 2009, 2010) to predict
runoff at a large watershed level and to evaluate the leaching of
chemicals towards groundwater (Ali Akbar and Lin, 2010). A
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relatively simpler procedure based on the approach by Gutsche and
Rossberg (1999) was successfully applied on a small watershed to
assess the fate of a number of pesticides (Bonzini et al., 2006).
Models for runoff potential of stream sites by a spatially explicit
calculation are also available at regional scale with a resolution of
10e50 km grid (Schriever and Liess, 2007). A multimedia fate
model with spatial resolution, based on a geo-referenced envi-
ronment in GIS, was also developed and applied to monitoring data
of benzene, dioxins, and 1,3-butadiene in Japan (Suzuki et al.,
2004). More recently, European wide approaches were published
at high resolution (1 km or better) (Pistocchi, 2008; Pistocchi et al.,
2010).

While there are many GIS-modelling approaches, a link be-
tween a site-specific soil model with layered soil and dynamic air
compartments to a GIS capable of performing runoff simulations at
catchment scale has not yet been developed. Such an approach
could be relevant when evaluating the fate of a chemical in the soil/
air at a basin scale, for example when evaluating the fate of pesti-
cides applied to soil or vegetation in the air compartment (or an
adjacent field) during application (drift) and after (volatilization
from soil and vegetation surfaces and consequent deposition/pre-
cipitation). Another possible use is when the impact of sources
adjacent to the basin are to be taken into account. An example of
the impact of such sources is given in a recent study (Morselli et al.,
2012), in which the integration of a physical dispersion model and
fugacity-based air/soil model allowed the fate of polycyclic aro-
matic hydrocarbons in a complex emission scenario to be predicted.
The need for enhancing the understanding of the temporal and
spatial dynamics of ecosystem exposure within Ecological Risk
Assessment procedures has recently been pointed out by Di Guardo
and Hermens (2013). This is particularly relevant in order to in-
crease the ecological realism of exposure prediction, for example
evaluating the role of a complex environmental scenario in
describing pulse exposure concentrations in surface waters
receiving runoff from adjacent treated fields.

The aim of this study is to further develop and evaluate the
spatially-explicit version of SoilPlus, a dynamic model of the fate of
organic chemicals (Ghirardello et al., 2010), applied to a small
agricultural catchment, as a case study, at three increasing levels of
spatial resolution and complexity (Tier I to III). A full model-GIS
integration was realized, which allows the model to directly
interact with spatial data without the help of a separate GIS soft-
ware. SoilPlus was used to calculate the runoff of three pesticides to
the receiving ditches and river stretches, while a modified version
of the DynA surface water model (Di Guardo et al., 2006) was used
to simulate the fate in the hydrographic network of the River
Meolo. Predicted environmental concentrations (PECs) calculated
on a daily basis in river water during the spring-summer growing
seasonwere compared to measured concentrations, and the results
are discussed in view of the improved prediction accuracy with
increasing spatial resolution.

2. Materials and methods

2.1. Improved SoilPlus

SoilPlus is a fugacity-based, dynamic and site-specific multimedia model of the
fate of organic chemicals in soil and air. It considers two dynamic air compartments,
and a number of 0.005 m-thick soil compartments; three mass balance equations
are solved for water, organic matter and the simulated chemical. A detailed
description of the SoilPlus model is given in Ghirardello et al. (2010). In the present
case study, SoilPlus was improved in twoways: (a) the original Runge�Kutta scheme
for solving the system of ordinary differential equations was updated with a much
more efficient scheme, using an adaptive and implicit method of medium order
(ESDIRK 4/5, full details can be found in Semplice et al., 2012), and (b) an open source
GIS product, namely the MapWinGIS.ocx Active X control, v. 4.9 (MapWinGis
website, 2010) was implemented, thus realizing a model-driven GIS-integration.
When running in the GIS-mode, the simulation scenario must be loaded from a
standard shapefile containing spatial data at field level (one polygon), a query engine

then extracts the georeferenced input data from the shapefile attribute table (for
example, site specific pedological properties, weather station data, and pesticide
application rates) and the calculation is run for each polygon. In the present version,
neither drift (or volatilization from soil) nor vegetated buffer strip effects on surface
water concentrations were included. In the case of herbicides applied to soil the drift
to surfacewater is of less importance than runoff, generally leading to PECs from 1 to
2 orders of magnitude lower (Verro et al., 2009). For this reason no calculation was
performed for drift of metolachlor and terbuthylazine to surface water. For the
insecticide fenitrothion, since no measured concentrations in water were available
for the dates of application and days immediately following, no drift loadings
calculation to surface water was performed; however, it should be noted that for
fenitrothion, a contribution could arise from drift during applications to the crop
canopy, resulting in PECs in surface water up to 1 order of magnitude higher than
runoff-related PECs (Verro et al., 2009).

Given the absence of buffer strips in the area, the present version of the model
does not consider the contribution of vegetated buffer strips in reducing chemical
runoff loadings to surface water. However, recent approaches (Sabbagh et al., 2010)
could be implemented to further refine the calculation, improving the ecological
realism, although they might require additional data for their validation. A scheme
of the GIS-integration is provided in Fig. 1. The integrated model was coded in
Microsoft Visual Basic 6.

2.2. DynA model

Chemical dissipation processes occurring in the hydrographic network were
modelled with the DynA model (Di Guardo et al., 2006). DynA is a dynamic water/
sediment model and was used to simulate both the ditches around the fields and the
River Meolo itself. At the current state of development, DynA model was not inte-
grated in the soil model but run separately. However, its full integration with the
soil/air model will be the subject of a further development. More details can be
found in Text SI-1.

2.3. Site description

The investigated site was the basin of the River Meolo (north-eastern Italy), in
which a sampling campaign was conducted in 2003e2004 to determine the river
water concentrations of some selected pesticides, following their application. A
detailed description of the scenario characteristics, sampling and analytical methods
used and results for this case study can be found in Bonzini et al. (2006).

Source of geographical information. The River Meolo is a 17 km-long resurgence
river that drains a 2828 ha basin. Runoff water reaches the outlet within a one-day
period, with a mean flow rate at the outlet of approximately 3 m3 s�1 (Bonzini et al.,
2006). Spatially-explicit information about the land use, crop distribution, hydro-
graphic network, and pedological characteristics was provided by Verro et al. (2009,
personal communication) collected and stored in the ESRI “shapefile” format. Most
of the catchment (86%) is agricultural land, about 95% of which is cultivated. Ac-
cording to the USDA classification, 47% of the soils are loam and silty loam and 53%
are silty clay loam and silty clay. The latter are more prone to generate runoff (Rawls
et al., 1992). Organic carbon (OC) content ranges from 0.81% to 5.55%. These two
extremes only occur loam and silty loam soils and represent 6% and 5% of the basin
area, respectively, while the most frequent OC content is around 1.30%. Table SI-1 (a
and b) reports additional details of textural and organic carbon distribution as well
as air temperature and rainfall in the basin. Field observations showed that transfer
of rainwater from fields to river occurs rapidly by runoff, within a few hours to one
day according to rainfall pattern (Bonzini et al., 2006). Leaching is very unlikely
because of the heavy soil types, watertable depth (0.7e1.0 m) and local rainfall
pattern, characterized by storms in May and June and drought in summer. Runoff as
preferential or unique transfer pathway has also been observed in field trials in
similar conditions (Otto et al., 2008, 2012).

Pesticide application. In this case study the fate of the three most applied pes-
ticides in the basinwas investigated and simulated: two herbicides (metolachlor and
terbuthylazine) and one insecticide (fenitrothion), for which measured concentra-
tions were published (Bonzini et al., 2006). Table SI-2 reports the physicalechemical
properties. Application dates and rates were based on those present in Bonzini et al.
(2006): metolachlor was applied onmaize (163 ha,1.34 kg ha�1) and soybean (53 ha,
1.47 kg ha�1) around April 9 and May 11 respectively, terbuthylazine was applied on
maize (503 ha, 0.79 kg ha�1) from April 8 to 24, and fenitrothion on grapevines
(235 ha, 0.35 kg ha�1) around July 2 and 16. Detailed information at field level was
available for the type of pesticide applied in each field and application rates, but
generally not for exact application dates. When necessary, application dates were
therefore attributed following Bonzini et al. (2006) and are discussed later.
Measured pesticide concentrations in the River Meolo were available at 4 sampling
points (Bonzini et al., 2006): Point 1 (Le Crosere, spring), Point 2 (Rovarè, mid-
course), Point 3. (Monastier, autosampler station), Point 4 (Castelletto, outlet)
(Fig. 2). Given the partitioning properties of the selected pesticides only water dis-
solved concentrations were calculated and compared to measured ones.

Estimated baseflow for ditches and residence time. Based on the available hy-
drological information and field observations, a constant baseflow was assumed
for ditches, together with an average residence time of water for the whole basin
(estimated as about 12 h). A comparison between rainfall data and flow rates
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showed that some rainfall events started during the night (May 4e5; May 22e23;
June 2e3; June 12e13; August 13e14; September 14e15) and stopped the
following day. A fraction of the runoff load was thus considered as part of the
runoff for the following day. More details about these assumptions are in Text SI-2,
while a precise description of the four-stage modelling approach is in Text SI-3 and
Fig. SI-1.

2.4. Simulation design and parameterization of the hydrographic network

Given the details above, the modelling approach can be considered semi-
distributed. Spatial heterogeneity (texture, organic matter, rainfall and pesticide
applications) was lumped at field level, where each field (simulation unit for Soil-
Plus) is represented by a polygon in a vector based approach. There was a total of
about 2000 simulated polygons for the hydrological-only simulations, whereas the
chemical fate simulations were performed for about 500e700 polygons depending
on the chemical.

The rationale behind the simulation scheme was to gradually increase the
spatial resolution and complexity of the scenarios in order to improve the accuracy
of the predictions. In a tiered logic, a more accurate scenario definition should have
positive consequences on the accuracy of the PECs compared to measured results
(FOCUS, 2001). The availability of detailed information on the agro-environment, i.e.
standard shapefile with spatial data at field level (pedological properties, weather
station data, and pesticide application rates), allows simulation up to field level on a
daily basis. A scheme of the increasing complexity is given in Fig. 3. For each
pesticide, the following series of simulations were performed for the period from
January 1 to September 30:

Tier I. Treated fields were considered as a single basin-wide field, with the most-
frequent homogeneous soil properties obtained from the GIS information available
(low spatial resolution). In this basin-wide scenario chemical runoff amounts were
diluted in the daily water volume obtained from the daily flow rates measured near
the basin outlet (Monastier sampling point, Point 3 in Fig. 2). This scenario
considered no spatial heterogeneity and no hydrographic network.

Tier II. Each field was parameterized and calculated independently, by retrieving
spatial data from the GIS. In this field-specific scenario, concentrations were
calculated for each field and amounts of chemicals in runoff water were obtained for
each day summing the contribution of each field. The predicted concentration in
water at the Monastier sampling point was then obtained by simply diluting the
daily amounts as in Tier I. This scenario used all the spatial information available but
neglected the role of the hydrographic network in the basin in reducing concen-
trations towards the river.

Tier III. Each field was calculated separately as in Tier II, and the runoff water
from each field was routed through the DynA model, applied to a series of repre-
sentative ditches and river segments, in order to account for the loss processes (such
as volatilization, degradation, adsorption to sediment, etc.) that could occur be-
tween each field and the sampling point. More details can be found in Text SI-4. This
scenario used all the spatial information available, and also accounted for the role of
the hydrographic network in reducing concentrations towards the sampling point.

2.5. Modelling evaluation

Comparisons between predicted and measured concentrations were performed
for the Monastier sampling point (Point 3 in Fig. 2), located 1 km upstream of the
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Fig. 1. Flux diagram of the GIS integration logic in SoilPlus. The final database stores output data for further elaborations.
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basin outlet in Castelletto (Point 4 in Fig. 2), wherewater samples were continuously
taken during rainfall events with an autosampler. This sampler was coupled to a
hydrometer to continuously measure the river flow rate, in order to trigger the
collection of water samples during rainfall events (Bonzini et al., 2006).

Rainfall, daily minimum, maximum and average temperatures and global radi-
ation data on a 5-min basis were obtained from the local environmental protection
agency (ARPAV website, 2012) for three weather stations located near the basin and
for the Monastier sampling point. Each of the four rainfall datasets was assigned to a
specific section of the basin according to Bonzini et al. (2006).

The overall predictive capacity of the model was evaluated with the Nashe
Sutcliffe efficiency (NSE) index (Nash and Sutcliffe, 1970), calculated as:

NSE ¼ 1�
Pn

i¼1 ðPi � OiÞ2
Pn

i¼1 ðOi � OÞ2

where Pi is the predicted value, Oi the observed value, and �O the mean of observed
values. NSE can range from 1 downwards to a negative value. An NSE ¼ 1 indicates
exact predictions and lower values indicate less agreement between the predicted
and observed data. In general, a good model performance is expressed by an NSE
higher than 0.4e0.5 (Cho and Mostaghimi, 2009) even if negative values are
common in model calibration studies (Akter and Babel, 2012; Holvoet et al., 2008).
For further discussion on these evaluation criteria refer to Krause et al. (2005). For
a detailed predicted vs. observed analysis, a linear regression and a correlation
analysis (Pearson’s r and Spearman Correlation) were performed (StatSoft Inc,

Fig. 2. River Meolo basin. Locations of sampling points and single fields (polygons) are shown. (Verro et al., 2009, personal communication).

(a) (b) (c)
Fig. 3. Scheme of the increasing level of complexity in the simulations. (a) corresponds to Tier I, (b) to Tier II, (c) to Tier III. Brown colours are fields characterized by different
properties, light blue is surface water, the red ring is the point in which water concentrations are calculated (see text for details). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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2011) and graphical comparison was also used to identify general agreement and
trends.

3. Results and discussion

For all simulation Tiers, three general results were relevant
(Fig. 4):

1)calculated concentrations over the 6-month period were in
general agreement with the observed concentrations in the
River Meolo (Fig. 4);
2)predicted values for metolachlor and terbuthylazine generally
decreased from Tier I to Tier III and the prediction accuracy
improved. Table 1 reports the comparison of the calculated
statistical indices while the regression curves of observed/

predicted concentrations and relevant coefficients are shown in
Fig. 5.
3)a very low background contamination was calculated for all
pesticides before first applications, i.e. terbuthylazine <0.011,
metolachlor <0.024, fenitrothion <0.016, (all values are mg/L,
see baseline levels in Fig. 4), given the concentrations measured
in the spring water at Point 1 during the same period (Bonzini
et al., 2006).

3.1. Effect of spatial resolution on PECs in water

Tier I. This was the lowest spatial resolution simulation, per-
formed on a hypothetical single basin-wide field with prevalent
properties, and showed the general features of the model and its
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capacity to simulate the driving forces determining the fate of
pesticides. The model reproduced the general trend of measured
concentrations in the simulated period, particularly for terbuthy-
lazine and metolachlor (Tier I graphs in Fig. 4). The highest con-
centration peaks in the left part of the graph (from the end of April
to early June), representing the so-called “spring flush”, were pre-
dicted by the model with a general overestimation of a factor be-
tween 3 and 35. Additionally, the model tended to overestimate
pesticide concentrations during April, and to miss some events of
lower concentration in late summer. April was indicated as the
application period for maize, but the uncertainties about the exact
application dates (Bonzini et al., 2006) made it difficult to accu-
rately predict concentration peaks in that period. This means, as

stated elsewhere (Luo and Zhang, 2009; Bonzini et al., 2006), that
the lack of information about the application dates represents a
crucial aspect for the calculation of accurate PECs. The low accuracy
of predictions in late summer (e.g. the two points at the end of
August) could in turn be related to uncertainties in the water mass
balance during irrigation events.

Despite the reasonably good reproduction of the concentration
trends at this level of spatial resolution, the overall SoilPlus per-
formance for terbuthylazine and metolachlor resulted in negative
NSE for both simulations (�21.3 and �7.3, respectively, Table 1). It
should be pointed out that NSEs are greatly affected by the highest
values of predicted and measured concentrations. Thus, the few
overestimates of concentration peaks can greatly affect the NSE,

Table 1
Statistical performance of the model.

Statistic* Dataset Tier I Tier II Tier III Tier I Tier II Tier III

Terbut Terbut Terbut Metol Metol Metol

Mean of Predicted concentration All data 1.19 0.65 0.51 0.56 0.32 0.28
Mean of Predicted concentration Without 4th May 0.87 0.46 0.41 0.41 0.26 0.24
NSE All data �21.29 �4.57 �0.43 �7.28 �0.78 0.48
NSE Without 4th May �9.20 �1.01 0.43 �2.22 0.21 0.70
Pearson’s correlation r All data 0.53 0.55 0.66 0.59 0.61 0.73
Pearson’s correlation r Without 4th May 0.70 0.74 0.80 0.72 0.78 0.83
Coeff. of determ. (R2) All data 0.28 0.31 0.43 0.35 0.37 0.54
Coeff. of determ. (R2) Without 4th May 0.48 0.55 0.64 0.51 0.60 0.70
Spearman Rank Order correlation All data 0.28 0.31 0.63 0.31 0.32 0.50
Spearman Rank Order correlation Without 4th May 25 (n.s.) 28 (n.s.) 62 0.27 (n.s) 0.28 (n.s) 0,47
Number of paired data All data 45 45 45 45 45 45
Number of paired data Without 4th May 44 44 44 44 44 44

*All correlations are significant at p < 0.05 except those specified (n.s.).
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although the overall performance of the model is sound. Further-
more, NSE values were strongly affected by the values of May 4, for
which large differences between observed and predicted values
were calculated (metolachlor: observed ¼ 0.42, predicted ¼ 7.04;
terbuthylazine: observed¼ 0.44, predicted¼ 15.60, all values in mg/
L). Those differences exceeded (mean þ 3*standard deviation) and
can be considered outliers, and when excluded the NSE improved
to �2.22 for metolachlor and �9.20 for terbuthylazine.

Fenitrothion represents a more peculiar case, since concentra-
tions comparable to those measured after the summer application
dates were also detected during spring. Local observations and
interviews with local dealers suggested that this was very likely
due to applications in private gardens and small orchards in the
spring. Nonetheless, calculated PECs in summer are generally in the
same order of magnitude as measured results.

Tier II. This field-specific scenario represented a detailed
spatially-specific (GIS-based) simulation, where the properties of
each field (such as organic carbon and texture, etc.) were used.

This increased spatial resolution resulted in appreciable effects
on prediction accuracy, and this was clear by comparing Tier I to
Tier II simulations. The three Tier II graphs in Fig. 4 show that PECs
calculated for terbuthylazine and metolachlor more closely fol-
lowed the measured concentrations than in Tier I, and the higher
peaks were predicted within a factor of 7e19. Also the over-
predictions in April were smaller compared to those calculated in
the Tier I simulation, within a factor of 5; the fenitrothion PECs
were similarly reduced.

The increased spatial resolution (i.e. real vs. average basin data)
and field-specific simulations resulted in improved model pre-
dictions (Table 1). This was reached by reducing the variability of
the pedological characteristics of each field, which can greatly
affect chemical partitioning (which, for non-polar organic chem-
icals, is essentially dominated by the OC fraction) and runoff gen-
eration (Rawls et al., 1992). It is worth noting that the better
performance of Tier II vs. Tier I depends on the fact that soil and
environmental property values are not normally distributed and
therefore the arithmetical mean is not the best estimator. As an
example, Maize field distribution in the basin, as well as of texture
classes and organic carbon are shown in Fig. SI-2. This issue is
discussed later with a series of ad hoc worst case simulations.

Tier II simulation is comparable, in principle, to the one depicted
in Bonzini et al. (2006), in which PECs were calculated for the same
scenario. While the two spatial approaches are similar, the models
differ in that the present model calculates the overall fate of
chemicals in soil and water, while the approach in Bonzini et al.
(2006) was built upon a simple relationship that required addi-
tional factors to be described and assumed, such as the presence of
buffer strips and their role in the prediction. However, buffer strips
are almost absent in the Meolo river basin and cannot be used to
justify a pesticide water concentration reduction during runoff
events.

Also for Tier II the NSE values were strongly affected by the
values of May 4, and when excluded the NSE improved to 0.22 for
metolachlor and to �1.01 for terbuthylazine.

Tier III. This last Tier represented the highest degree of realism
investigated in this case study, since not only a field-specific sce-
nario parameterization was used, but also the contribution of the
hydrographic network to the overall fate of pesticides was included.
Tier III simulations showed a further improvement in model pre-
dictions, if compared to Tiers I and II. This was true particularly for
the highest peaks after the late AprileJune applications, which can
be considered the most important events from a risk assessment
point of view, since this is the period inwhich the aquatic ecosystem
can be exposed to the highest concentrations. Metolachlor pre-
dictions consistently improved; the number of concentration peaks

overestimated by the model was reduced, and the highest peaks
were generally predicted within a factor of 8. Although an over-
estimation of a factor of 33was calculated forMay 23, an NSE¼ 0.48
was obtained for the whole simulation period, confirming the
improvement of the predictive capacity of the approach. However,
themodel still overestimated concentrations duringApril bya factor
of 2e30, likely because of the uncertainty of application dates. In
order to evaluate a different pattern of application dates, an addi-
tional simulation was run for metolachlor, which was supposed to
be applied on maize and soybeanwithin a wider application period
(from April 9 to 29) instead of on two single days. This scenario/
hypothesis reduced the amount available for runoff in early April
and, consequently, the runoff peaks up to one order of magnitude
(event of April 13). The overall model performance again gave a
slightly negative NSE (�0.14) for thewhole dataset, which improved
to a positive value of 0.59when the outlier ofMay 4was excluded. It
is worth noting that the range of observed concentrations of
metolachlor (0.01e2.19 mg/L) was similar to that found in a similar
research performed in an agricultural catchment in France (Boithias
et al., 2011), but in the present study the model agreement was
about double (R2 ¼ 0.54, see Fig. 5).

Model performance also improved for terbuthylazine, concen-
trations of which were overestimated within a factor of 5 for April.
Higher measured concentrations were generally overestimated
within a factor of 8 and an NSE ¼ 0.43 was calculated for the whole
period when the outlier of May 4 was excluded.

The overestimation calculated on May 4 was common to all the
simulations performed, and seems to be related to the hydrological
response of the basin during the whole rainfall event, resulting in a
rapid increase only by the end of the event.

The ditches contribution to water balance was reflected in the
water fluxes calculated by the model at point 3 (Monastier), which
were in satisfying agreement with the measured ones, resulting in
an NSE ¼ 0.6 for the whole period. The Tier III level of simulation,
with the highest spatial resolution and complexity, greatly
improved the precision of predictions for metolachlor and terbu-
thylazine, as indicated by the close linear relationship between
predicted and measured concentrations and as only 4e6 values out
of 45 can be considered of low precision (i.e. outside a 95% confi-
dence interval, Fig. 5). The response in the case of fenitrothion
improved even if inconsistencies existed for peaks that did not
correspond to rainfall events, which seemed to be related to its use
in private gardens in the basin, as reported earlier. A similar lack of
obvious relationship between flow and load transported off-site
during individual events was found in other studies for chlorpyri-
fos (Oliver et al., 2012).

Evaluation of dissipation in the hydrographic network. The dissi-
pation processes occurring within the hydrographic network
calculated with the DynA model add a significant but relatively
small influence on the overall mass balance of the investigated
pesticides from the edge-of-field to the basin outlet. For example, in
the ditches of sub-basin 1, of the three tracers investigated, feni-
trothion losses were the highest (about 4% in water throughout the
simulation), while for terbuthylazine and metolachlor the degra-
dation losses were lower (2% and 0.25% respectively). The net
transfer to the sediment compartment throughout the simulation
was less than 1% of the total runoff amount, which led to maximum
sediment concentrations around 0.05 ng/g (fenitrothion), 1.4 ng/g
(metolachlor), and 1.5 ng/g (terbuthylazine), at the basin outlet.
However, if a more hydrophobic chemical was run, the effect of the
ditch system was relatively more appreciable (Text SI-5). This can
also be more effective when highly productive (because of algal or
macrophyte biomass) ditches are encountered (Gobas et al., 1991;
Poissant et al., 2008). More details on the dissipation processes
can be found in Text SI-5.
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The choice of the treated fields when simulating a small
catchment at such detailed scale is crucial for the response of the
model, at least for the chemicals simulated in this study, which
appreciably partition to water. Considering these results in the
context of Tier II simulations, in a field-specific scenario the lack of
information on the actually treated fields could result in an
appreciable source of uncertainty. This information is generally
difficult to obtain, as are the exact application dates, but is none-
theless another crucial aspect affecting the final model response.
However, given the general availability of land use GIS data, most of
the data needed for a spatially-explicit simulation can be obtained
and used, as in this case study, to considerably improve the pre-
diction of runoff trend and peaks and the related risk assessment
for aquatic ecosystems.

Worst case simulations and preliminary uncertainty analysis.
While a comprehensive analysis of input and SoilPlus model un-
certainty will be the subject of a subsequent ad hoc paper, some
preliminary observations can be made on the key factors affecting
the model predictions.

In Tier I, a number of worst-case scenario simulations were
performed considering hypothetical treated areas characterized by
extreme soil textures and OC content, based on the data available
for the Meolo scenario. The daily amount of chemical runoff was
compared with the output of the Tier II GIS-based simulations.
Results were very variable, and the Tier I worst-case scenario
simulations calculated daily runoff loads up to 2 orders of magni-
tude larger than those of the GIS-based simulations. The huge
variation observed in these worst-case scenario simulations
stresses the importance of the uncertainty in soil data collection,
pesticide properties and model parameterization. When a model is
used in a deterministic way, these sources of uncertainty should be
taken into account, as discussed in Dubus et al. (2003). Without
taking spatial resolution into account and running hypothetical
pesticides, Heuvelink et al. (2010) analysed how uncertainties in
soil and pesticide properties propagate using GeoPearl, and showed
that the parameters which contribute most to the uncertainty are
the transformation half-life in soil and, to a lesser extent, the co-
efficient of sorption on organic matter. Indeed, the half-life of
pesticides is very variable at field and catchment scale (Ghafoor
et al., 2011); a recent Italian research highlighted, for example,
that terbuthylazine half-life in soil ranges from 10 to 50 days
(Bottoni et al., 2013). An additional cause of uncertainty is related to
the lack of precise dates for the application of pesticides. Given the
relatively long (compared to the possible range of application
dates) half-lives in soil of the simulated pesticides (20e45 days), we
preliminarily estimate that the uncertainty in water concentration
prediction would range between 10 and 20%. Compared to the
other source of uncertainty these values should be considered
negligible.

4. Conclusions

Increasing spatial resolution and introducing a hydrographic
network improved the prediction of temporal variations of PECs:
with the pesticides compared in this exercise the overprediction
significantly decreased from non-spatial to spatial simulation. The
inclusion of ditch and river processes did not greatly enhance the
predictions, but it was shown that with higher Kow chemicals and/
or presence of vegetation their contribution could be substantial.
Results presented in this study show that SoilPlus can calculate the
pulse-exposure concentrations occurring at a small-catchment
scale with a reasonably satisfying degree of accuracy. The com-
parison among the three different tiers suggests that a higher
spatial resolution is useful especially when environmental prop-
erties are not normally distributed, and the main part of the

exposure is in a few large emission events, as is usual in an agri-
cultural watershed. This is relevant in the procedure of risk evalu-
ation as prescribed by theWFD (EC, 2000), alongwith experimental
evidence in recent studies on ecotoxicological response to pulse
exposure concentrations (Reinert et al., 2002; Ashauer et al., 2007;
Vallotton et al., 2008). The increased accuracy on PEC calculation
deriving from considering a spatially-explicit scenario could be
significantly used to evaluate the impact of such pulse exposure
scenarios in an updated ecological risk assessment framework. To
further enhance the predicting ability in such dynamically chang-
ing environments, an hourly prediction of surface water concen-
trations should be performed, supported by the collection of
monitoring data at the same temporal resolution for model verifi-
cation, as suggested by Di Guardo and Hermens (2013).
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Text SI-1: Modified DynA model
In order to account for the rapid changes in water volumes due to runoff events, the “variable

storage method” was implemented according to the formulation adopted in the SWAT model

(Neitsch et al., 2005). The modified model also includes the numerical method implemented in

SoilPlus. Lastly, the biodegradation rate in water and sediment was adjusted for daily water

temperature with an Arrhenius equation, using the same formulation adopted in the TOXWA model

(Beltman et al., 2006); average daily water temperatures were calculated from the average daily air

temperature using the approach by Stefan and Preud’homme (1993), also implemented in the

SWAT model (Neitsch et al., 2005).

Text SI-2: Estimated baseflow for ditches and residence time
An analysis of the rainfall and river flow rate datasets showed that an almost constant difference in

the flow rate was measured between Points 1 and 2, and between Points 2 and 3 (with reference to

Figure 2 in the manuscript), also during days with no (or scarce) rainfall. An average flow rate

difference was thus calculated for sub-basins 1 and 2, and assumed to be the baseflow for the

ditches. The same analysis, conducted on 5-minute rainfall and flow rate data, allowed estimation of

the time elapsed from the beginning of a rainfall event and the appearance of the peak in the river

flow rate at Point 3. On average, river flow peaks occurred within 12 hours after the beginning of a

rain event. Given the daily runoff calculation in SoilPlus, when rain fell at night the chemical and

water runoff outputs were redistributed between the previous and the following day before running

the DynA model. This procedure was necessary for the 6 following significant rain events: May 4-

10; May 22-23; June 2-3; June 12-13; August 13-14; September 14-17. During these events, 10% to

65% of the runoff loads were assigned to the current day, and the remainder as input for the

following day.
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Text SI-3: Four-stage modelling approach details
The four-stage modelling approach presented in Figure SI-1 was designed to perform Tier III

simulations, and could be briefly described as follows:

Stage 1. The SoilPlus model was used to simulate the “emission scenario”, that is the daily runoff

loadings (water + chemical) entering the ditches. The field-specific SoilPlus outputs were summed

for each sub-basin, and divided by the number of ditches considered, in order to assign the same

daily runoff load to each ditch. The overall runoff water contribution was calculated by running

only the water balance sub-routine of SoilPlus for the shapefile representing the complete Land

Use, which comprises more than 2,000 polygons to be simulated at once. The chemical runoff loads

were in turn simulated by running the SoilPlus model only for treated fields; this was necessary for

time-saving reasons, since each field-specific (polygon) simulation for the chemical fate is

considerably slower than the same simulation run for the water balance alone.

Stage 2. Based on the above assumptions, the ditches of sub-basin 1 and 2 were simulated, resulting

in daily water and chemical input for each sub-basin.

Stage 3. River Meolo sub-basin 1 was simulated considering a dynamic-baseflow, using the daily

flows measured at the spring (Le Crosere, Point 1 in Figure 2 in the manuscript); the average daily

water flow rates and chemical loadings of the ditches of sub-basin 1 were considered as inputs.

Average daily outflowing water volumes (converted into flow rates, L s-1) and outflowing chemical

amounts (µg h-1) were then calculated and used as input for sub-basin 2.

Stage 4. River Meolo sub-basin 2 was simulated as above and the resulting pesticide concentrations

in water were compared to experimental concentrations measured at the autosampler station

(Monastier, Point 3 in Figure 2 in the manuscript).

This integrated four-stage procedure also allowed the contamination of the sediment compartment

to be simulated, along with loss and transport processes occurring in both water and sediments.

Details on the parameterization of the DynA model for the ditches and River Meolo sub-basins are

given in Table SI-2.
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Text SI-4: Details on Tier 1-2-3 parameterization
In Tier I the treated area is simulated as a whole, parameterized with the most frequent OC content

(1.282 % and set at 1.30% in the scenario), average rainfall and weather data and the most frequent

soil texture (silty clay loam). The most treated crops and date were also selected on the basis of the

indications provided in the main text. Metolachlor was thus applied on maize and soybean, on April

9 (216 ha, 1.37 kg ha-1), terbuthylazine on maize on April 16 (503 ha, 0.79 kg ha-1), and fenitrothion

on grapevines on July 9 (235 ha, 0.35 kg ha-1).

In Tiers II and III, spatially-explicit information for the scenario description was retrieved directly

from the simulation shapefile, obtained by overlapping layers containing landscape information

consisting of pedological properties, area of influence for each weather station, land use, reference

sub-basin. This information was obtained by Verro (2009, personal communication). The GIS-

analysis was performed with the open-source GIS software Quantum GIS 1.8.0 (QGIS, 2013)). The

treated fields (polygons of the shapefile) were selected in order to represent each texture and OC

content proportionally to the covered basin area. For all the metolachlor and terbuthylazine

simulations, the application depth was assumed to be the 0-5 cm soil layer, while for fenitrothion

(applied directly to leaves), a more surficial worst case assumption was used and the depth was set

at 2 cm.

While in Tiers I and II the dissipation processes occurring in the ditches and river were not

considered, the step-by-step procedure depicted in Figure SI-1 was followed in Tier III. The Meolo

river basin was divided into two sub-basins, namely “sub-basin 1” (sub-basin outlet located at Point

2 in Figure 2 in the manuscript) and “sub-basin 2” (sub-basin outlet located at Point 3 in Figure 2 in

the manuscript). The overall length of the network of ditches was measured for both sub-basins with

Quantum GIS (QGIS, 2013). A “parsimonious” approach was then applied, which consisted of

dividing the network length of each sub-basin into a number of 5,000 m long and 1 m wide ditches

merging into the River Meolo in parallel. Based on the measurement performed with Quantum GIS,

the network of sub-basin 1 was represented by 10 parallel ditches, while that of sub-basin 2 was
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represented by 8 parallel ditches. Accordingly, the River Meolo was subdivided into two main

stretches, called Meolo 1 (9,000 m long, 7 m wide, from Point 1 to Point 2 in Figure 2 in the

manuscript) and Meolo 2 (7,000 m long, 7 m wide, from Point 2 to Point 3). The final portion

(1,000 m long) was the portion not monitored by the autosampler and was not further considered.

This rather simplified approach is on an intermediate level of complexity between the simulation of

the River Meolo as a single water body (without considering the ditch network) and a full GIS-

based integration between each edge-of-field simulation and the receiving, georeferenced ditch.

Text SI-6:

Text SI-5: Details on dissipation processes in the hydrographic network
Running the modified DynA model for the ditches and river segments showed that the dissipation

processes occurring within the hydrographic network scarcely influence the overall mass balance of

the three investigated pesticides once they exit the fields with runoff. The system seems to be

largely dominated by advective processes; the overall water and pesticide residence time is quite

short and this is explained by the partitioning properties of the chemicals, with relatively low KOW

(Log KOW3) and relatively long half-lives (4 to 60 days, see Table SI-1). However, when a more

hydrophobic chemical was run, the effect of the ditch system became relatively more appreciable.

Simulations performed with pendimethalin (LogKOW=5.18; (7)) showed that a 10% reduction can

occur between in/out of the chemical entering the ditches. The net transfer to the sediment

deposition accounted for 1.5%, whilst the rest of the dissipation occurred mainly by volatilization

and degradation in almost equal proportions.



237

Tables and Figures

Table SI-1a – Textural and Organic carbon for maize fields in Meolo basin.

Soil Type Type (%) Subtype Subtype (%) Organic carbon (%)
Loam 10.96 10.96 0.81

SL1 7.96 1.98
Silt Loam 24.34 SL2 8.35 0.9

SL 3 8.02 5.55
Clay Loam 25.09 25.09 1.15

SCL 1 9.85 1.57
Silty Clay Loam 33.75 SCL 2 20.93 1.28

SCL 3 2.97 1.86
Silty Clay 5.86 5.86 1.66
Note: Type (%) represents the percentage of the maize area in each soil type; Subtype represents the
percentage of each type characterized by a specific organic carbon average value.

Table SI-1b – Selected descriptive parameters for minimum, maximum and daily average
temperatures and rainfall in Meolo basin. Total rainfall in the simulation period was 861 mm.

min T (°C) max T (°C) Average T (°C) Rain mm
Average 8.35 18.89 13.47 3.14
Standard Deviation 7.12 9.06 8.00 7.69
Median 9.05 21.05 14.89 0.00



238

Table SI-2: Physical-chemical properties of the simulated chemicals at 25 °C.

Metolachlor Terbuthylazine Fenitrothion Pendimethalin
Molecular Weight (g mol-1) 283.81 229.71 277.251 281.31

Water Solubility (g m-3) 5302 8.53 302 0.31 (at 20°C)
Molar enthalpy of dissolution
(J mol-1)

270004 270004 270004 270004

Vapor Pressure (Pa) 0.004182 0.000153 0.000132 0.0041

Molar enthalpy of
vaporization (J mol-1)

950004 950004 950004 950004

Log Kow 3.132 3.043 3.42 5.181

Melting point (°C) -62.81 1765 3.41 585

Half-life soil (days) 233 453 202 356

Half-life sediment (days) 2402 705 122 165

Half-life water (days) 602 65 42 45

References:
1 (7); 2 (8); 3 (9); 4 Default value from the FOCUS Working Group (10); 5 Based on the Footprint Database (11); 6 (12).
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Table SI-3: Parameterization of the DynA model for the ditches and Meolo sub-basins.

Parameter required by DynA Ditches Notes River Meolo Notes
Length (m) 5,000 a Meolo 1: 9,000

Meolo 2: 7,000
a

Width (m) 1 7
Average residence time (h) Ditch 1: 5

Ditch 2: 2.5
b Meolo 1: 3

Meolo 2: 3
b

Average baseflow water depth (m) Ditch 1: 0.09
Ditch 2: 0.23

c Meolo 1: 0.34
Meolo 2: 0.44

c

Average water baseflow (L s-1) Ditch 1: 24
Ditch 2: 130

d Meolo 1: dynamic
Meolo 2: dynamic

e
f

Water outflow (L s-1) dynamic g dynamic g
Sediment active layer depth (m) 0.05 h 0.05 h
Concentration of particles in water
column (mg L-1)

15 h 15 h

Concentration of particles in inflow water
(mg L-1)

15 h 15 h

Density of particles in water (kg m-3) 2.400 i 2.400 i
Density of particles in sediment (kg m-3) 2.400 i 2.400 i
Density of aerosol particles (kg m-3) 1.500 i 1.500 i
Fraction of OC in ditch/river water
particles

0.05 h 0.05 h

Fraction of OC in sediment particles 0.05 h 0.05 h
Fraction of OC in resuspended sediment
particles

0.05 h 0.05 h

Fraction of OC in inflow suspended
sediment solids

0.05 h 0.05 h

Yearly rainfall (m) 1.250 l 1.250 l
Volatilization MTC
(air side) (m h-1) (MTCa)

5 i 5 i

Volatilization MTC
(water side) (m h-1) (MTCw)

0.05 i 0.05 i

Burial rate of solids
(g m-2 day-1)

0.1 m 0.1 m

Resuspension rate of solids (g m-2 day-1) 6.4 m 6.4 m
Deposition rate of solids
(g m-2 day-1)

6.5 m 6.5 m

Sediment – water diffusion MTC (m h-1)
MTCws

0.00015 n 0.00015 n

Volume fraction of particles in surface
sediment

0.4 h 0.4 h

Notes:
a: based on the spatial analysis performed on the GIS files
b: average values assumed in order to match the observed time of runoff (see text SI-1)
c: obtained in relation to the average residence time
d: based on the flow rates analysis (see manuscript)
e: based on measured flow rates at Point 1 (Figure 2 in the manuscript)
f: calculated (see description of Tier III and Figure 3 in the manuscript)
g: calculated on the basis of daily runoff water outputs (see description of Tier III and Figure 3 in
the manuscript)
h: based on recommendations by the FOCUS Working Group (10)
i: based on Mackay (2001)
l: yearly average obtained from daily rainfall data
m: based on Warren and Mackay (2004)
n: calculated, based on (Mackay (2001)
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Figure SI-1
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Hourly water flows at the outlet (L s-1 )
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Figure SI-1: Scheme of the modelling approach for simulations of Tier III, with reference to sampling points (Point 1, 2

and 3 as in Figure 2 in the manuscript).
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Figure SI-2
(A) (B) (C)

Figure SI2 –  Meolo Basin: (A) Maize fields vs. the rest of the area; (B) Distribution of textural classes; (C) Distribution of organic carbon

percentages
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ABSTRACT

A new dynamic vegetation model was developed to simulate the fate of organic compounds in the

air/plant/litter/soil system. Key features of the model are the double-layered air compartment

(planet boundary layer, PBL and residual layer) interacting dynamically with vegetation and

multilayered litter/soil compartments. Vegetation can represent both monospecific and multispecfic

forest. Leaf biomass is dynamically calculated employing two important ecological parameters

(LAI and SLA), while stem and root biomass are assumed constant over time. The model was used

to investigate the air compartment structure and meteorological variability in influencing PAH air-

leaf exchanges, simulating a broadleaf wood located in Northern Italy (Como). Modelled leaf

concentrations showed a satisfying agreement with measured one. Leaves appeared to act as a

“filter” but also as a “dispenser” of air contaminants in response to meteorological parameters and

emission changes. A preliminary sensitivity analysis showed that air concentrations are most

affected by emission, PBL height and wind speed, while for leaf concentrations KOW, air

temperature and SLA are also important. Illustrative simulations were then performed for PCB 52

and PCB 153 to show the influence of leaves biomass on air concentrations in realistic forest

conditions in terms of air residence time, wind speed and domain size.

1. INTRODUCTION

Most of the multimedia fate models developed in the past did not generally include vegetation

compartment. The reason was that modellers had enormous difficulty calculating the partitioning of

chemicals into plants rather than plants were considered unimportant (Mackay, 2001). The

introduction of the vegetation compartment in multimedia fate models had received more attention

as a result of the realization that (1) consumption of contaminated vegetation was a major route for
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the transfer of some toxic chemicals along the food chain and (2) that plants played an important

role in influencing contaminant concentrations in the surrounding compartments i.e. air and soil.

Since the late 1980s, a number of models with different degree of complexity have been developed.

Plants were also included in the European Union System for the Evaluation of Substances (EUSES)

(EC, 2004) which is recommended in European Union for risk assessment of organic chemicals.

Many of the bioaccumulation models described in the literature are steady state models: they

assumed that chemical concentrations in plant and other compartments, as well as, meteorological

and ecological scenario are constant over time. On the contrary unsteady state models can account

for the changes in environmental conditions, chemical emission and plant parameters and allow

predicting plant concentration at different times during the growing season (Undeman et al., 2009).

However most of these models consider only the variability in exposure concentrations and assume

that many plant and environmental parameters are constant over time, lacking of ecological realism.

Therefore this approach, even if required less input data, may lead to erroneous results when

comparing predictions to measured values. This drawback was recently highlighted by the

European Community (EC, 2013), which has reported that the approach currently employed for

environmental risk assessment need to be improved in the coming years since it lacks of ecological

realism both in the exposure and effect evaluation. Concerning the exposure assessment, this goal

can be achieved through the development of a number of more realistic scenarios which consider

temporal and spatial variability of environmental parameters and their adoption in dynamic

multimedia fate model capable to predict time and space variable concentrations.

Recently, an ecologically realistic and full dynamic scenario (Terzaghi et al., 2015) was developed

in order to investigate in detail how the variability of a number of meteorological and ecological

parameters can influence the uptake/release of polycyclic aromatic hydrocarbon (PAHs) by plants

and therefore air concentrations. Since different factors could influence PAH air and leaf



246

concentrations, it was highlighted that the assistance of a full dynamic multimedia fate model is

required if data are to be interpreted reliably.

In the present work, a dynamic vegetation model that accounts for the variability of meteorological

and ecological parameters was developed and integrated in an existing air/soil model (SoilPlus)

which includes a double layered air compartment and a multilayered litter/soil compartment

(Ghirardello et al., 2010). More specifically the air compartments represent the residual layer and

the planet boundary layer (PBL) and could change in height and wind speed on an hourly basis.

PBL height is one of the key parameters in determining the diurnal variability of contaminants air

concentrations. Recently, Morselli et al., 2011 showed that air concentrations could be predicted

including PBL variability in multimedia fate models; however they did not take into account

vegetation. Generally, when vegetation is considered in model that include PBL dynamics, it is kept

constant for the whole growing season (McLeod et al., 2001) or both vegetation and PBL height are

assumed not to change with time (Zhang et al., 2003).

Here, for the first time the role of air compartment structure and meteorological variability in

influencing PAH air-leaf exchanges was investigated, adopting the scenario developed by Terzaghi

et al., 2015 in the resulting vegetation model (SoilPlusVeg). Further specific simulations will be

provided in a later publication to show the importance of ecological parameters such Leaf Area

Index (LAI) and Specific Leaf Area (SLA), the timing of budburst and production of new leaves

during the growing season in determining the influence of each plant species that composed the

wood on contaminant air concentrations.
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2. MATERIAL AND METHODS

2.1 Development of the vegetation model. A new dynamic vegetation model based on the fugacity

approach (Mackay, 2001) was developed. The vegetation model simulates a forest/wood composed

of plants composed of roots, stem and foliage. While foliage biomass and volume varies over time,

root and stem volumes are assumed to be constant. The processes considered in the vegetation

model are represented in Figure 1. The arrows indicate the transfer, degradation and growth

processes. In this model formulated in term of fugacity, compartment capacities are expressed in

terms of Z values (Table 1) while transport, transformation and growth processes are computed by

means of D values (Table 2). Both D and Z values are drawn upon on different modelling published

paper. Organic chemicals can reach the vegetation compartment through dry gaseous deposition

(absorption), dry particle deposition, rain dissolution of dissolved chemical, wet particle deposition

and root uptake from soil, while they can leave it through volatilization, wash off, wax erosion,

litter fall, growth dilution, degradation and transfer from roots to soil; moreover translocation

through the xylem and phloem allows the chemical movement from roots to leaves and vice versa.

Table 1 - Fugacity capacity, Z values (mol/Pa·m3) in the vegetation model

Plant compartment Z values (mol/Pa·m3)
Roots HRCFZ RR 
Stem HSCFZ StSt 
Foliage RTKZ FPAF 

ZR, ZSt, ZF are the fugacity capacity of roots, stem and foliage (mol/Pa·m3), RCF is the Root Concentration factor (L/kg),

SCF is the Stem Concentration Factor (L/kg), KPA is the plant/air partition coefficient (m3/g), ρR (kg/L), ρSt (kg/L), ρF (g/m3)

are the densities of roots, stem and foliage, H is the Henry’s  Law Constant (Pa· m3/mol), R is the gas constant (Pa· m3/mol·
K), T is the temperature (K)
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Figure 1 - Schematic representation of the plant compartments and processes considered in the vegetation model

In the model presented here, each compartment is described by a time dependent mass-balance

equation written in differential form (for the steady-state form of the mass balance equation see SI-

2) in which the amount (mol) is the unknown parameter:

Roots: ROOTSSTEMSOILROOTS moldmolcmolbadtdmol                                 Eq.1

Stem: STEMFOLIAGEROOTSSTEM molhmolgmolfedtdmol                              Eq.2

Foliage: FOLIAGESTEMLOWERAIRFOLIAGE molnmolmmollidtdmol                    Eq.3

The left-hand terms represent the variation of the chemical amount (mol) in roots, stem, and foliage

with time. The letters a-n include the terms involved in the mass balance (Table 3).
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Table 2 - Time dependent D values (mol/h· Pa) in the vegetation model

Process D values (mol/h·Pa)
Soil-Root transfer 20XXSoR DDD  
Root-Soil transfer 20XRSo DD 
Root-Stem transfer XRSt DD 
Stem-Root transfer PStR DD 
Stem-Foliage transfer XStF DD 
Foliage-Stem transfer PFSt DD 
Absorption to foliage  CFABGAF DDD 111  

Dry particle deposition to foliage LAIAZvUD SQAQPAFPAF  

Rain dissolution  to foliage FrUFAZUD SWRRAF 

Wet particle deposition to foliage

LAFD

FrUFAQZvUD SQAQRQAF 

Volatilization from foliage GAFFLA DD 
Wash off    QAFRAFRFS DDFrUFD   1
Wax erosion   FCUTFCUT ZkVD  01.0
Litter fall

FSoD
FFBFB ZGD 

Foliage growth FFGFFG ZkVD 
Degradation in foliage FFDFFD ZkVD 
Degradation in stem StStDStStD ZkVD 
Degradation in roots RRDRRD ZkVD 

DX is the D value for the bulk flow in the xylem (mol/h· Pa), DP is the D value for the bulk flow in the phloem

(mol/h· Pa), Ø is a factor that considers the delay caused by a membrane barrier (-), TSCF is the Transpiration

Stream Concentration Factor (-), DLAF is the overall D value for air to foliage transfer (mol/h· Pa), DC is the D

value for diffusion into cutin (mol/h· Pa), DAB-F is D value for the transport across the air boundary layer (mol/h·

Pa), UAF-P is the dry deposition particle velocity to the vegetation canopy (m/h), vAQ is the volume fraction of

particle in air (-), ZQ is the fugacity capacity of atmospheric particles (mol/Pa·m3), AS is the area of the land

surface (m2), LAI is the Leaf Area Index (m2/m2), UR is the rain rate (m3rain/m2area·h), ZW is the fugacity

capacity of water (mol/Pa·m3) , FrUF is the fraction of precipitation that is intercepted by the canopy and

evaporates (-), Q is the scavenging ratio (-), DFSo is the overall D value for foliage to litter or soil transfer (mol/h·

Pa) kCUT is the cuticle erosion rate constant (1/h), GFB is the litter fall rate (m3/h), kFG is the leaf growth rate (1/h),

KFD, KRD, KStD are the degradation rate constant in foliage, roots and stem (1/h)
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Table 3 – Groups of variables involved in the mass-balance equations in the vegetation model

a RE
b TSoR ZVD 
c stStStR ZVD 
d   RRRDRStRSo ZVDDD 
e StE
f RRRSt ZVD 
g FFFSt ZVD 
h   StStStDStFStR ZVDDD 
i FE
l LALALAF ZVD 
m StStStF ZVD 
n FFFGFDFStFSoFLA ZVDDDDD 

ER is the direct emission in roots (mol), ESt is the direct emission in stem (mol), EF is the direct emission in foliage

(mol), DSoR is the soil to roots D value (mol/Pa·h), DStR is the stem to roots D value (mol/Pa·h), DRSo is the roots to

soil D value (mol/Pa·h), DRSt is the roots to stem D value (mol/Pa·h), DRD is the root degradation D value

(mol/Pa·h), DFSt is the foliage to stem D value (mol/Pa·h), DStF is the stem to foliage D value (mol/Pa·h), DStD is the

stem degradation D value (mol/Pa·h), DLAF is the total  lower air to foliage D value (mol/Pa·h), DFLA is the foliage

to lower air D-value (mol/Pa·h), DFSo is the total foliage to soil D value (mol/Pa·h), DFD is the foliage degradation

D-value (mol/Pa h), DFG is the foliage growth D value (mol/Pa·h), VR is the root volume (m3), VSt is the stem

volume (m3), VF is the foliage volume (m3), VLA is the lower air volume (m3), VZT is the total of the products of

volumes and Z values for each soil phase (mol/Pa), ZR is the root fugacity capacity (mol/Pa·m3), ZSt is the stem

fugacity capacity (mol/Pa·m3), ZF is the foliage fugacity capacity (mol/Pa·m3), ZLA is the lower air fugacity

capacity (mol/Pa·m3).

Equations 1-3 are 1st-order ordinary differential equations (ODEs), and the system is solved

numerically using a 5th-order accurate, diagonally implicit Runge-Kutta method with adaptive time

stepping (ESDIRK; Semplice et al., 2012).

For more details about model parameterization see the Supporting information where Z-values

(SI1-A), compartment densities (SI1-B), wood composition (SI1-C), compartement biomass and

volume (SI1-D and SI1-E), index of root distribution in soil (SI1-F), ecological parameters (SI1-G)

and D values (SI1-H) are reported.
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2.2 Vegetation model integration with SoilPlus. The assembled vegetation model was integrated

in an existing dynamic air/soil model (SoilPlus) described in detail in Ghirardello et al., 2010.

Figure 2 shows a schematic representation of the vegetation sub- compartments and their

relationships with the air and the litter/soil compartments of the SoilPlus model. The resulting

model (SoilPlusVeg) includes: 1) two-layered dynamic atmosphere, namely lower air (LA) and

upper air (UA) representing the planet boundary layer (PBL) and the residual layer respectively,

which vary in height and wind speed on an hourly basis; 2) a multi-layered soil, bare or covered by

up to three litter horizons; 3) a vegetation compartment which can be composed of a mono-specific

or a multi-specific forest/wood which includes roots, stem, leaves. When the vegetation model was

integrated in SoilPlus it was assumed that the new compartments (foliage, stem, roots) did not

change the volume of the other compartments (upper air, lower air, litter and mineral soil) and in

order to distribute root volume in each soil layers, considering the rooting distribution in soil, the

Gale and Grigal (1987) model was chosen. More details are given in SI-1F.

Figure 2 - Schematic representation of SoilPlusVeg
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2.3 Simulation scenario for the model evaluation. An evaluation of the SoilPlusVeg model

performance was carried out for 3 PAHs of different physical-chemical properties, phenanthrene,

pyrene and chrysene (for physical–chemical properties see SI-3) comparing model output with a

dataset of leaf concentrations measured in a small broadleaf wood located in Northern Italy (Como)

(Terzaghi et al., 2015). The vegetation compartment was parameterized as reported in SI-1.

Simulations were performed for a mixed broadleaf wood located in Como (Northern Italy),

composed of Cornus mas (cornel), Corylus avellana (hazelnut) and Acer pseudoplatanus (maple).

Bud burst occurred on March, 15 for the two understorey species (cornel and hazelnut), while

maple leaves appeared about 3 weeks later on April, 7. The growing season ended on December, 5

but comparison between predicted and measured results was performed for a shorter period (March,

15 – June, 7) and for only two species (cornel and maple).  The air compartments were

parameterized as reported in Morselli et al., 2011. Upper air height ranged between 10 m to 2267 m

while that of lower air between 100 m and 3000 m, depending on the season and the period of the

day (day or night). Wind speed in upper air ranged between 0.2 m/s and 43 m/s, while in lower air

between 0.2 m/s and 33 m/s. Such data were calculated with the help of a meteorological

preprocessor (for details, see Morselli et al., 2012) starting from upper air soundings and standard

meteorological observations collected during 2007 for a semi-urban site located in the proximity of

Milan, about 50-km away from Como. Despite the topographical setting of Como (surrounded by

800 to 1000-m mountains) could determine differences in PBL height and dynamics with respect to

the Milan site (substantially flat), we decided to resort to this meteorological dataset because of its

completeness and given the lack of an upper air sounding station in the surroundings of Como.

Soil/litter compartments were parameterized as reported in Ghirardello et al., 2010. The total

thickness of the litter/soil system was 15 cm. A single litter horizon (Oe) of 2 cm depth and a loamy

sand soil of 13 cm were simulated. The litter/soil horizons were subdivided into a number (30) of

0.005-m thick layers. OC fractions were set to 40% and 2% in litter and soil compartment
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respectively. Other meteorological parameters such as temperature, precipitation and solar radiation

and PM10 concentrations were provided by the Regional Environmental Protection Agency (ARPA,

2014) on an hourly or daily basis for 2007 for Como city. In order to run the model, an estimate of

the emission conditions was needed. The PAHs sources were calibrated to reflect the observed

range of variability in measured concentrations (Terzaghi et al., 2015). More specifically the direct

chemical and PM10 emission to lower air was calibrated in order to obtain the best possible fit to the

range of measured concentrations (average of the week), while a PM10 background concentration

equal to the lowest measured concentration (7 μg/m3) was assumed. No background concentration

for chemical was considered. More details about PAH and particulate matter emission to the system

are reported in SI-4.

2.4 Sensitivity analysis

A preliminary sensitivity analysis was conducted simulating the fate of pyrene in a 1-ha wide

vegetation-air-litter-soil system. 1-year simulations were performed, for a static environmental

scenario characterized by a fixed-height atmospheric compartment (LA height = 686 m, UA height

= 957 m), with constant wind speed (3.5 m/s in LA and 4.35 m/s in UA), overlaying a 2-cm deep

layered litter and a 13-cm deep layered loamy sand soil (layer depth = 5 mm). A constant foliage

compartment volume of 2.7 m3 was simulated, resulting from static LAI, SLA and leaf density

values (2.4 m2/m2, 0.032 m2/g and 282747.2 g/m3, respectively). A constant chemical discharge to

the LA compartment (1.53·10-10 mol/h) was adopted, while PM background concentration and

emission to LA were kept fixed in order to obtain a constant PM level in LA of 15.77 µg/m3. All the

static input values listed above were calculated as averages of the dynamic ones described in the

parameterization for model evaluation. Tested parameters included chemical emission, physical-

chemical properties and, environmental half-lives, meteorological parameters (LA height and wind

speed, air temperature, precipitations), vegetation characteristics (LAI, SLA, and leaf density),

partition and mass-transfer coefficients, and litter/soil organic carbon fractions. A local sensitivity
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analysis (Augusiak et al., 2014) was performed by varying each parameter by 0.1% and calculating

the influence of such variations on two target parameters, namely the steady-state concentrations in

LA (ng/m3) and leaves (µg/g d.w.), by assessing the index S (MacLeod et al., 2002):

II
OOS

/
/




 Eq.4

where I is the input variable, O is the output of interest, and ΔI and ΔO are the variations in input

and output parameters, respectively.
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3. RESULTS AND DISCUSSION

3.1 Sensitivity analysis

In Figure 3 the influence of the key parameters (S > 10-2) on the two targets (chemical

concentrations in LA and leaves) is depicted, while a complete list of results can be found in Table

SI-10. Pyrene concentrations in LA were mostly affected by emission, LA height and wind speed (S

~ 1), while only a slight contribution of parameters such as KOW and KOA, precipitations, LAI and

Kpa was observed (S ~ 10-4). The reduced influence of vegetation biomass on atmospheric

concentrations was ascribed to the extremely low residence time of air (~ 30 s), which caused

advective air movement to be the dominant flux for pyrene removal in LA. However, the influence

of vegetation in sequestering chemicals from air at different wind velocities was thoroughly

investigated in Model illustration section. For pyrene concentrations in leaves, the most influential

parameter was KOW (S = 2.7), followed by emission, LA height and wind speed, air temperature,

and SLA (S ~ 1). Other significant parameters were octanol-air partition coefficient (Log KOA),

enthalpy of phase change between plant and air (Enth), chemical half-life in air (HLair), mass

transfer coefficient for transport across the air-boundary layer (U_ABL) and Kpa (0.22 < S < 0.83).

Being a local sensitivity analysis (i.e., one parameter varied a little at a time), the effort presented

here did not allow capturing, for example, the effect of the interactions between parameters

(Augusiak et al., 2014); however, it helped in the identification of the crucial input parameters (e.g.,

emission, LA compartment characteristics, physical-chemical properties) to which particular

attention should be paid in order to obtain accurate results.
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Figure 3 - Results of the sensitivity analysis for the two target parameters (pyrene concentrations in LA, ng/m3,

and leaves, µg/g d.w.). Only the most influential input parameters (S > 10-2) were reported in the chart: emission

(mol/h), water solubility (WS, g/m3), vapour pressure (VP, Pa), octanol-water partition coefficient (KOW), octanol-

air partition coefficient (KOA), half-life in air and foliage, (HLair, d), enthalpy of phase change between plant and

air (Enth, J/mol), LA height (m) and wind speed (m/s), air temperature (AirT, °C), SLA (m2/g), plant-air

partition coefficient (Kpa, m3/g), and mass transfer coefficient for transport across the air-boundary layer

(U_ABL, m/h). For all other parameters and corresponding S values see Table SI-10.

3.2 Model evaluation

The SoilPlusVeg evaluation was performed running whole year simulation for phenanthrene,

pyrene and chrysene, using the meteorological and emission scenario described in section 2.3. The

results of the comparison for a three-month period (March, 15 - June, 7) in which measured

concentrations were available are shown in Figure 4. Figure SI-7 shows the comparison between

measured and predicted concentrations at the time of sampling (h 11).
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Figure 4 - Comparison between predicted (solid line) and measured (marker) concentrations (µg/g dw) in leaves of cornel (a,c,e) and maple (b,d,f) of phenanthrene

(orange), pyrene (green) and chrysene (grey)
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Modelled concentrations in leaves (solid line) seem to reproduce the seasonal pattern of the measured

one in which leaf concentrations decrease with time, oscillating within a small range according to air

concentration trend which is influenced by chemical emission and meteorological parameters (high

PBL height and solar radiation which cause chemical dilution and photo degradation). A similar trend

was shown for PAHs measured  in oak, ash and hazel leaves (Howsam et al., 2001) which remained

within a small range during the whole growing season, deviating significantly only when air

concentrations increase (due to uncontrolled burning of garden and domestic refuse). In Terzaghi et al.,

2015 this leaf concentration trend was ascribed to the collection of different aged leaves and PAH

volatilization/degradation from/on leaf surface enhanced by temperature increase. At the moment,

SoilPlusVeg does not consider the possibility of production of new leaves during the growing season.

However, the performed simulations show that the role of the timing of budburst and production of

new leaves during the growing season is less relevant with respect to PAH source and meteorological

parameters in influencing leaf concentrations.

Model results show a satisfying agreement (within a factor about 3) with measured data, considering

both plant species (cornel and maple) and all three chemicals. Over- and underestimation of measured

data could be ascribed to local oscillation in chemical emission and meteorological scenario (PBL

height and wind speed). Other factors that could be taken into account are: 1) the presence of other

species in the wood that were not considered in model parameterization; 2) the species fraction which

was assumed constant over time; 3) chemical half life in leaves does not vary between day and night

even if photolysis is one of the major transformation processes for PAHs in the environment (Wang et

al., 2005); 4) the temperature data used to update plant/air partition coefficient are those of air and not

of leaf surface.
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In general predicted concentrations for cornel better reproduce the measured concentration trend, as

demonstrated by the calculated efficiency factors (EF) (Table SI-11). This probably depends to

species-specific features that are not considered in SoilPlusVeg. Cornel measured concentrations (phe

and pyr) do not show an increasing trend with time as for maple. Maple behavior might be better

described by a two-compartment uptake model: a thin surface that rapidly reaches equilibrium and

exchange contaminants with air, and a larger internal compartment that slowly accumulates the

contaminant with time. Although in SoilPlusVeg model the D value for absorption to leaves consider

both the transport across the air-boundary layer and the diffusion into the cutin, leaves are still

considered a single compartment.

The largest discrepancy where observed for chrysene in cornel leaves. This is probably due to the fact

that particle phase chrysene predicted in air by SoilPlusVeg is a factor of 2 to 5 higher with respect to

the measured value, causing an underestimation of leaf concentrations. In the present version,

SoilPlusVeg does not include a mass balance for air particles, but particulate matter is considered an air

sub-compartment having equal fugacity. This might be responsible of the overestimation of air particle

associated chrysene. Furthermore a simplistic description of particle-leaf interaction is adopted, without

considering, for example, the processes of particle encapsulation in leaves and particle erosion

(Terzaghi et al., 2013).

Table SI-12 summarizes min, max, mean and median input and output fluxes to/from leaves for the

three selected chemicals. Absorption followed by volatilization and degradation are the most important

fluxes when considering phenanthrene and pyrene. Dry particle and wet particle deposition are relevant

for chrysene being a particle associated PAH. In order to evaluate how the variability of meteorological

parameters can influence the uptake/release of PAHs by plants and therefore air concentrations, a three-

day period (April, 11 – April, 13) was chosen. Air and leaf concentrations (of phenanthrene and
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chrysene), PBL height and chemical emission trend during the selected period are depicted in Figure

SI-8, while input/output fluxes in/from leaves are reported in Figure 5.

Predicted concentrations in leaves follow air concentration changes caused by the variability of PBL

height and chemical emission. In general air concentrations are higher during nighttime hours when

PBL is low and chemical emission is still high (e.g. from 17 to 22 h of 11 April). On the contrary,

during nighttime hours characterized by lower emission (e.g. from 1 to 6 h of 12 April) PBL influence

is less evident. During daytime hours, despite the elevated chemical emission, the higher PBL height

causes a dilution of chemical in air resulting in lower concentrations.

Phenanthrene modeled concentrations show larger oscillations in leaves than chrysene due to their

different physical and chemical properties. Phenanthrene in leaves was shown to take only few hours to

reach equilibrium with air, while chrysene needs more time (days) (Terzaghi et al., submitted). This

depends on its higher Log KOA which reduces its uptake rate. Leaves were shown to behave as a

dynamic compartment contributing to the diurnal variation of organic contaminant concentrations,

which deposit or volatilize from their surface in response to environmental conditions changes

(Hornbuckle et al., 1996; Hung et al., 2001; Gouin et al., 2002). The air-leaf surface exchange is

believed to be the major short-term source and sink of many persistent organic compounds

(Hornbuckle et al., 1996).

In general, for both simulated chemicals, a higher air-foliage flux (absorption) can be observed during

hours characterized by low PBL height (which increases air concentrations) and low temperature

(which increases plant-air partition coefficient, KPA). As appears from Figure 5, during some hours,

volatilization flux exceeds absorption indicating that leaves can act not only as a "filter" but also as

"dispenser" of air contaminants, depending on meteorological conditions. Chemical release from leaves

could happen both during daytime hours (driven by temperature mediated volatilization together with
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chemical gradient inversion caused by the increase of PBL height) and during some nighttime hours

(caused by the emission reduction and therefore chemical gradient inversion). Table SI-13 and Table

SI-14 summarize hourly values (of April, 11 and April, 12) of absorption and volatilization fluxes,

temperature, PBL height, emission and air and leaf concentrations for phenanthrene and chrysene.

April, 11 (h 1) - April, 13 (h 24)
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Figure 5 - Absorption (solid black line) and volatilization (solid grey line) fluxes, temperature (dotted red line) and

PBL height (dotted light blue line) trend during a three-day period (April, 11 – April, 13) for phenanthrene (a) and

chrysene (b). Please not that for illustration purposes temperature values was multiplied for a factor of 100. “M”

means midnight while “N” stands for noon.
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A comparison between air concentrations predicted without (“ConcLANoVeg”) and with vegetation

compartment (“ConcLAVeg”) was made in order to evaluate the influence of the simulated wood in

reducing/increasing air concentration through chemical absorption and volatilization. Vegetation

biomass, as already highlighted in the sensitivity analysis section, shows a low influence on

atmospheric concentatration with delta between “ConcLANoVeg” and  “ConcLAVeg” ranging from -

2.86 to 2.96 for phenanthrene, from -1.69 to 2.90 for pyrene and from -0.32 to 2.08 for chrysene. In the

following section the causes of this low vegetation effect in sequestering chemicals from air is

investigated.

3.3 Model illustration

In and around forest canopy, wind velocity is reduced and the profile is altered, therefore “wind

attenuation factors” should be adopted when performing simulations with models that include a

vegetation compartment. Larcher, 2003 shows that on a surface covered by tree, wind can be 20% to

80% of the wind measured over a tree less area.

In order to show the influence of the vegetation in filtering chemicals from air at different wind

velocities, an illustration was performed for two polychlorinated biphenyls of different physical and

chemical properties (Table SI-15): PCB 52 and PCB 153. The dynamic simulations in low-wind

conditions were performed assuming the same LA and UA heights adopted in the reference scenario

described in section 2.3, but decreasing wind speed by a factor of 2 and 5, according to the average and

minimum wind attenuation factors reported in Larcher, 2003. Despite such low wind speed values are

not related to the computed UA and LA heights, they were adopted with the only aim of investigating

the role of air residence time and vegetation biomass in determining chemical atmospheric

concentrations. Chemical and PM sources to the system were assumed in order to obtain realistic PCB

air concentrations.
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The difference (∆%) of PCB air concentrations predicted without vegetation and considering this

compartment, adopting different wind speed (reference wind, “ WindRef”; wind attenuated of a factor

of  2, “Wind50%”; wind attenuated of a factor of 5, “Wind20%”) are depicted in Figure 6. Positive ∆%

represent hours when vegetation uptakes contaminants from air, while negative ∆% represent hours

when vegetation releases contaminants to air.

For both chemicals, wind reduction resulted in a higher capability of plant to reduce air concentrations.

Maximum positive ∆% increases from 3% to 12% for PCBs 52 and, from 3% to 11% for PCB 153.

Maximum negative ∆% increases from -1.2% to – 6% for PCBs 52 and, from -1.6% to -7% for PCB

153. This is mainly due to the increase of average air residence time from ~ 65 sec with the “RefWind”

scenario to ~ 6 min with “Wind20%” scenario.
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Figure 6- Difference (∆%) of PCB (a, PCB52; b) PCB 153) air concentrations predicted without vegetation and

considering this compartment, adopting different wind speed (reference wind, “ WindRef”; wind attenuated of a

factor of  2, “Wind50%”; wind attenuated of a factor of 5, “Wind20%”).

However, results obtained with the higher wind speed, underestimate that reported in Jaward et al.,

2005, in which the forest filter effect was evaluated measuring PCB air concentrations in forest and in

the near clearing employing PUF disk. In the broadleaf forest located at 1100 m, comparable in

composition to that simulated here, PUF sequestered amount (and therefore air concentrations)

experienced a reduction of 34% and 47% for PCB 52 and PCB 153 respectively, with respect to the

clearing site.
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Another important factor that could influence air residence time is the model domain. Previously

simulations (included those of model evaluation) were performed considering a soil surface of 1 ha,

since the modeled vegetation was more representative of an “urban small wood” rather than a forest.

Using this type of domain resulted in lower air residence time again. Therefore in order to show the

influence of the vegetation in filtering chemicals from air considering different model domain (1 ha,

“urban wood” and 100 ha, “forest”) an illustration was performed for PCB 52 and PCB 153 using the

“Wind20%” scenario. The difference (∆%) of PCB air concentrations predicted without vegetation and

considering this compartment, adopting a different model domain and wind speed attenuated of a factor

of 5 are depicted in Figure 7. For both chemicals, model domain increase resulted in a higher

capability of plant to reduce air concentrations. Maximum positive ∆% increases from 12% to 40% for

PCBs 52 and, from 11% to 42% for PCB 153. Maximum negative ∆% increases from -6 % to – 37%

for PCBs 52 and, from -7% to -47% for PCB 153.  This is mainly due to the increase of average air

residence time from ~ 6 min with the “1ha” scenario to 1 h with the “100 ha” scenario.

This illustration provides information on vegetation influence on air concentrations both changing wind

conditions and model domain in order to increase air residence time. Vegetation resulted more

important when wind was reduced to 20% and model domain was increased of one order of magnitude.

This suggests that in the future SoilPlusVeg has to be improved considering an “air canopy layer” in

addiction to upper air and lower air compartments, in order to take into account the influence of the

presence of the vegetation on air structure and meteorological parameters.

Performed simulations helped in understanding that, during low air residence time situations, air

concentrations are more influenced by chemical emission and meteorological parameters rather than by

vegetation biomass.
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Figure 7- Difference (∆%) of PCB (a, PCB52; b) PCB 153) air concentrations predicted without vegetation and

considering this compartment, adopting a different model domain  (100 ha) and wind speed attenuated of a factor of
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SI-1 MODEL PARAMETERIZATION

SI-1A) Z values

This section reported the equations employed to calculate Z values for roots, stem and leaves.

Roots

Fugacity capacity of roots (ZR) was calculated as reported in Calamari et al., 1987:

HRCFZ RR  Eq.S1

where RCF is the Root Concentration Factor (L/kg), ρR is the root density (kg/L) and H is the Henry’s

law Constant (Pa·m3/mol).

Density of roots is assumed being equal to 0.180 kg/L and RCF was calculated according to Briggs et

al., 1982:

  52.177.082.0  OWKLogRCFLog Eq.S2

  82.010 52.177.0   OWKLogRCF  Eq.S3

Stem

Fugacity capacity of stem (ZSt) was calculated as reported in Calamari et al., 1987:

HSCFZ StSt                                                                 Eq.S4

where SCF  is the Stem Concentration Factor (L/kg), ρSt is the stem density (kg/L), H is the Henry Law

Constant (Pa·m3/mol).

Density of stem was assumed being equal to 0.590 kg/L and SCF was calculated according to Briggs et

al., 1983:
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TSCFKSCF sapxylemstem  _/                                        Eq.S5

where Kstem/xylem_sap is the stem/xylem sap partition coefficient (SCXF) and TSCF is the transpiration

stream concentration factor. Considering that:

  05.295.082.0_/  OWsapxylemstem KLogKLog                                                   Eq.S6
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78.1

784.0
2

OWKLogExpTSCF                                                                Eq.S7

SCF resulted in:

    










 
 

44.2
78.1

784.082.010
2

05.295.0 OWKLog KLogExpSCF OW                          Eq.S8

Foliage

Fugacity capacity of foliage (ZF) was calculated as reported in Wania and McLachlan, 2001:

APAF ZKZ                                              Eq.S9

Where KPA is the dimensionless plant/air partition coefficient on a volume/volume basis

(mol·m3/mol·m3) and ZA is the fugacity capacity of air (mol/m3·Pa).

Considering that ZA = 1/RT, where R is the gas constant (Pa·m3/mol·K) and T is the temperature (K):

RTKZ PAF                                                                                                             Eq.S10

The plant/ air partition coefficient (25°C) was determined for each species that composed the wood

(cornel, hazelnut, maple), using the relationship reported in Nizzetto et al, 2008:
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OAPA KLogayKLog  0                                      Eq.S11

where Log KPA is the plant/air partition coefficient on a mass/volume basis ((pg g-1 of dry leaf)/(pg m-3

of air)), Log KOA is the octanol/air partition coefficient (25°C), y0 and a are the regression parameters

(Table SI-1).

In order to obtain a dimensionless plant/air partition coefficient as in Wania and McLachlan, 2001, it

was necessary to include foliage leaf density ρF (g/m3):

RTKZ FPAF                                                                                                      Eq.S12

In order to obtain a bulk Z values for the whole canopy it was necessary to determine a canopy/air

partition coefficient KCA as follows:





n

i
iPAiCA KfK

1

                                                                                                     Eq.S13

where KPAi is the plant/air partition coefficient for the i-species and fi is the volume contribution of the

i-species to the volume of the total canopy (see SI-1C for more details).

The bulk Z value for the whole canopy was given by:

RTKZ CCAbulkF _                                                                 Eq.S14

where ρC is the density of the foliage of the whole canopy calculated as reported in SI-1B.

Since KPA is influenced by the temperature, it was updated with the air temperature following the

approach of Komp and McLachlan, 1997:
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K PA
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00

11                                                                                 Eq.S15
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where T0 is the ambient temperature (273.15 K), T is a reference temperature (K), R is the gas constant

(kJ/mol K), and ΔHPA is the enthalpy of phase change between the plant and the air (kJ/ mol), KPA0 is

the plant /air partition coefficient at the ambient temperature and KPA is the plant /air partition

coefficient at the reference temperature.

Table SI-1 Parameters of the KPA equation

Plant species y0 a
Cornel -3.10 0.49

Hazelnut -2.12 0.38
Maple -3.08 0.49

Please note that since values for cornel were not available, those of white ash reported in Nizzetto et al., 2008 were

used.
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SI-1B) Density

Table SI-2 summarizes density values of roots and stem used to parameterized the wood.

Table SI-2 Root and stem density values

Compartment Density
(kg/L dw) References Notes

Roots 0.180 Comas and Eissenstat, 2004 Mean of 25 woody-species
Stem 0.590 Gabauer et al., 2008 Acer pseudoplatanus

For leaves, values reported in Terzaghi et al., 2015 were used to calculate the canopy density as

follows:





n

i
iiC f

1
              Eq.S16

where ρi is the density for the i-species and fi is the volume contribution of the i-species to the volume

of the total canopy (see SI-1C for more details). As shown by Terzaghi et al., 2015, leaf density

increases with time. Table SI-3 summarizes min and max leaf density value for each species and for

the canopy. Max values are in agreement with those shown in Castro-Diez et al., 2000).
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Table SI-3 Leaf density values

Compartment Min ρ
(kg/L dw)

Max ρ
(kg/L dw)

Cornel 0.201 0.255
Hazelnut 0.236 0.320
Maple 0.155 0.285
Canopy 0.222 0.286
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SI-1C) Wood composition

The fraction of each plant species that composed the wood at each time during the growing season are

summarized in Table SI-4 and are calculated as reported in Terzaghi et al., 2015. Bud burst occurs on

March, 15 for the two under storey species (cornel and hazelnut), while maple leaves appear about 3 weeks

later on April, 7.

Table SI-4 Wood composition during the simulation period (March, 15 – June, 07)

Period frac cornel frac hazelnut frac maple
15 March-06 April 41% 59% 0%
07 April – 07 June 16% 36% 48%
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SI-1D) Biomass

Root biomass of the simulated wood was assumed to be equal to the root biomass of a temperate

deciduous forest reported in Jackson et al., (1997): 42000 kg/ha.

In order to estimate a stem biomass value to be used to simulate the broadleaf wood, root biomass

value was divided by the root/shoot ratio reported in Jackson et al. (1996) equal to 0.23, obtaining a

stem biomass of about 183000 kg/ha. As shoot includes both stem and leaves, in order to obtain stem

biomass values, leaf biomass (max: 1185 kg/ha) has to be subtracted to shoot biomass resulting in

181424 kg/ha.

Roots and stem biomass were assumed not to change during the simulation period but they were

considered constant over time.

Foliage biomass was calculated as the ratio of two ecological parameters (see SI-1G), LAI (Leaf Area

Index) and SLA (Specific Leaf Area) reported in Terzaghi et al., 2015:

CSLA
LAIB                                                                                    Eq.S17

where B is the leaf biomass (g/m2), LAI is the Leaf Area Index (m2/m2) and SLAC is the mean Specific

Leaf Area of the canopy (m2/g).

SLA of the canopy was calculated as follows:

i

n

i
iC SLAfSLA 




1

                                                                                                       Eq.S18

where SLAi is the SLA for the i-species and fi is the volume contribution of the i-species to the volume

of the total canopy (see SI-1C for more details).
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While root and stem biomass for a standing forest can be considered relatively constant, foliage

biomass varied during the simulation period. The trend of the foliage biomass obtained is reported in

Figure SI-1.

Figure SI-1 Leaf biomass temporal trend during the simulation period (March, 15 – June, 07)

Table SI-5 summarizes biomass values for each plant compartment.

Table SI-5 Root, stem, leaf biomass values

Compartment Biomass (kg/ha dw)
Roots 42000
Stem 181424
Leaves dynamic
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SI-1E) Volume

Foliage volume was calculated according to Cousins and Mackay, 2000 as follows:

S
F

F
F ABV 


Eq.S19

where VF is the foliage volume (m3), BF is the foliage biomass (g/m2), AS is the soil surface (m2) and ρF

is the foliage density (g/m3).

Figure SI-2 shows foliage volume calculated considering a soil surface of 10000 m2, the dynamic leaf

density (SI1-B) and the trend of foliage biomass shown in Figure SI-1.

Figure SI-2 Leaf volume temporal trend during the simulation period (March, 15 – June, 07)

Root and stem volume was calculated using the same equation. Table SI-6 shows the results of the root

and stem volume calculated assuming a root and a stem density of 180 kg/m3 and 590 kg/m3

respectively, soil surface of 10000 m2 and a root and a stem biomass of 4.2 kg/m2 and 18.14 kg/m2

respectively.
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Table SI-6 Root, stem and leaf volume

Compartment Volume (m3)
Roots 233
Stem 308
Foliage Dynamic
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SI-1F) Index of rooting distribution

In order to distribute root volume in each soil layers, considering the rooting distribution in soil, the

Gale and Grigal (1987) model was chosen. This is a model of vertical root distribution based on the

following asymptotic equation:

dy  1                                                                                                                   Eq.S20

where y is the cumulative root fraction (a proportion between 0 and 1), from the soil surface to depth d

(cm), and β is extinction coefficient which provides a simple numerical index of rooting distribution.

High β values (e.g. 0.98) correspond to greater proportion of roots at depth and low β values (e.g. 0.92)

imply a greater proportional of roots near the soil surface. Jackson et al. (1996) suggested a β values

and a percentage of roots in the upper 30 cm of soil for a temperate deciduous forest equal to 0.966 and

65% respectively. Figure SI-3 shows cumulative proportion root distribution as a function of soil depth

for a temperate deciduous forest (Jackson et al., 1996).
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Figure SI-3 Cumulative proportion root distribution as a function of soil depth for a temperate deciduous forest

(Redrawn from Jackson et al., 1996)
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SI-1G) Ecological parameters

Two ecological parameters, LAI and SLA, were used to parameterize the vegetation model. LAI is

defined as the amount of leaf area (m2) in a canopy per unit ground area (m2) and can be regarded as an

index of the total foliar biomass accumulating organic contaminants from the air and a measure of the

density of surface available for exchange with the atmosphere. SLA expresses the amount of leaf

surface per unit of dry weight (cm2/g) and can be considered as a measure of the surface available for

organic contaminants exchange with air per units of leaf mass. These two parameters allow to calculate

a dynamic foliar biomass and to predict the accumulation of organic chemicals in forests rather than in

single plants. Figure SI-4 show SLAC and LAI trend. SLAC was calculated as shown in SI-1D

employing SLA of cornel, hazelnut and maple reported in Terzaghi et al., 2015. Since SoilPlusVeg

requires hourly input parameters, two hourly databases (one for LAI and one for SLA) were created

linearly interpolating measured data. LAI values were corrected by subtracting the first measured value

relative to wood. The last measured SLA value of each species was kept constant until the end of the

growing season. The hourly values of LAI and SLAC were employed to calculate leaf hourly biomass

as described in SI-1D. Moreover SLAC and SLAstable (SLA values at full development of leaves equal

to ~ 291 cm2/g) where used to correct the KCA in order to take into account the different capability of

leaves to uptake contaminants from air depending to their SLA value which change over the growing

season (Terzaghi et al., 2015):

stable

C
CACA SLA

SLAKK
SLA

                                                                                               Eq.S21
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SI-1H) D values

In this subchapter, equations for D value determination for all the processes listed in Table SI-7 are

reported.

Table SI-7 Plant uptake model processes

.

Plant uptake model processes
1 Dry gaseous deposition to foliage (absorption)
2 Volatilization from foliage
3 Dry particle deposition to foliage
4 Wet particle deposition to foliage
5 Wet deposition of dissolved chemical to foliage
6 Wash off
7 Wax erosion
8 Litter fall
9 Leaf growth
10 Degradation in foliage
11 Degradation in stem
12 Degradation in roots
13 Soil to roots transfer
14 Roots to soil transfer
15 Roots to stem transfer
16 Stem to roots transfer
17 Stem to foliage transfer
18 Foliage to stem transfer
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1. Dry gaseous deposition to foliage (absorption): DAF-G

The overall D value for air-foliage gaseous exchange DAF-G was defined as reported in Cousins and

Mackay, 2001:

FABC

GAF

DD

D








11
1                                                                                               Eq.S22

where DC is the D value for diffusion into the cutin (mol/Pa·h) and DAB-F is the D value for the

transport across the air boundary layer (mol/Pa·h).

DAB-F was defined as:

LAIAZUD SAFABFAB                                                                                      Eq.S23

where UAB-F is the mass transfer coefficient for transport across the air-boundary layer (9 m/h) and ZA

is the fugacity capacity of air (mol/Pa·m3) (ZA=1/RT), AS is the area of land surface (m2), LAI is the

Leaf Area Index (m2/m2).

DC was defined as:

LAIAZUD SFCC                                                                                               Eq.S24

where UC is the mass transfer coefficients for transport through the cuticle (m/h) and ZF is the fugacity

capacities of foliage (mol/Pa·m3),

The mass transfer coefficient for transport through the cuticle (UC) was calculated as follows:











AW
CC K

PU 13600                                                                                             Eq.S25
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where PC  is the permeance (m/s) and KAW is the air-water partition coefficient.

PC of Citrus aurantium (Riederer, 1995) (Eq. S26) and Capsicum annuum (Trapp, 1995) (Eq. S27) leaf

cuticles was calculated as follows:

2117040 .KLog.PLog OWC  Eq.S26

OWC KLog.MWLog..PLog  9700792473 Eq.S27

An average permeance for use in the model was given by:





 


2
annuum )(CapsicumPrantium)(Citrus auP(average)P CC

C                           Eq.S28

2. Volatilization from foliage: DFLA

D value for volatilization from foliage DFA-G was defined as reported in Cousins and Mackay, 2001:

GAFGFA DD                                                                                                             Eq.S29

3. Dry particle deposition to foliage: DAF-P

The D value for dry particle deposition DAF-P was estimated as follows (Cousins and Mackay, 2001):

LAIAZvUD SQAQPAFPAF                                                                             Eq.S30

Where UAF-P is the dry deposition particle velocity to the vegetation canopy (5 m/h), vAQ is the volume

fraction of particle in air, and ZQ is the fugacity capacity of atmospheric particles (mol/Pa·m3) (ZQ=

KQAZA where KQA is the aerosol particle/air partition coefficient).
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4. Wet particle deposition to foliage: DAF-Q

The D value for wet particle deposition to foliage DAF-Q was estimated as follows (Cousins and

Mackay, 2001):

FrUFAQZvUD SQAQRQAF                                                                          Eq.S31

where UR is the rain rate (m3/m2·h),  Q is the scavenging ratio (200000) and FrUF is the fraction of

precipitation that is intercepted by the canopy and evaporates.

In Cousins and Mackay, 2001 it is assumed that 90% of the precipitation falling on vegetation is

washed of to the soil (i.e. FrUF=0.1 for LAI= 3), therefore for the present study, a time dependent

FrUF was calculated solving this proportion:

:XLAI.: t103  Eq.S32

3
10 t LAI.FrUFX                                                                                                 Eq.S33

Figure SI-5 shows the time dependent trend of FrUF for the simulated wood.

5. Rain dissolution of dissolved chemical: DAF-R

The D value for wet deposition of dissolved chemical to foliage DAF-R was estimated as follows

(Cousins and Mackay, 2001):

FrUFAZUD SWRRAF   Eq.S34

where ZW is the is the fugacity capacity of water (mol/Pa·m3) (ZW= 1/H).
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Figure SI-5 Time dependent trend of FrUF during the simulation period (March, 15 – June, 07)

6. Wash off: DFS-R

The D value for the wash off DFS-R was calculated as (Cousins and Mackay, 2001):

   QAFRAFRFS DDFrUFD   1                                                                       Eq.S35

7. Wax erosion: DCUT

The D value for the wax erosion DCUT was calculated as reported in Komprda et al., 2009:

FCUTCUTCUT ZkVD                                                                                                Eq.S36

VC is the cuticle volume (m3), ZC is the cuticle fugacity capacity (mol/Pa·m3) and kCUT is the cuticle

erosion rate constant (h-1).

As this process is not well quantified, in this study it was assumed that the cuticle represents the 1% of

the total volume of the foliage and that the cuticle erosion rate constant is equal to 0.01, therefore:
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  FCUTFCUT ZkVD  01.0                                                                                       Eq.S37

8. Litter fall: DFB

The D value for litter fall DFB was calculated as follows (Wania and McLachlan, 2001):

FFBFB ZGD                                                                                                            Eq.S38

where GFB is the litter fall rate (m3 leaves/h).

In the present work the litter fall rate was calculated from the differences in canopy volume between

June, 21 (h 4105) and December, 05 (h 8113) resulting in a GFB of 0.00095738 m3 leaves/h:

41058113

81134105

tt
VVGFB 


                                                                                                     Eq.S39

Please note that this process was not considered for model evaluation since the simulation period ended

before that litter fall began.

9. Leaf growth: DFG

D value for leaf growth DFG is calculated as reported in Cousins and Mackay, 2001:

FFGFFG ZkVD                  Eq.S40

where kFG is the leaf growth rate (1/d).

According to Nizzetto et al., 2007 the rate constant for growth can be calculated as follows:

Bdt
dBkFG

1
                                                                       Eq.S41
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SLALAIdt
SLAdLAIkFG

1
                                                                                        Eq.S42
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1 1




nnn

nn
FG B-hh

-BBk                                                                                                    Eq.S43

where Bn is the foliage biomass (g/m2) at the hour n and Bn+1 is the foliage biomass (g/m2) at the hour

n+1, LAI is the Leaf Area Index (m2/m2), SLA is the Specific Leaf Area (m2/g).

10. Degradation in foliage: DFD

D value for degradation in foliage DFD is calculated as reported in Paterson et al., 1991:

FFDFFD ZkVD                                                                           Eq.S44

where kFD is the first order rate constant (1/h).

Cousins and Mackay, 2001 expected high degradation rates in the canopy, because the leaves try to

maximize their exposure to solar radiation. According to this assumption, the main degradation path in

the canopy is photolysis. Therefore they assumed that degradation in the canopy can be described using

the same rate constant as for degradation in the air.

11. Degradation in stem: DStD

D value for degradation in stem DStD is calculated as reported in Paterson et al., 1991.

StStDStStD ZkVD                                                                                                     Eq.S45

where kStD is the first order rate constant (1/h). As no value of kStD was found in the literature, in this

work kStD Was assumed to be equal to the degradation rate in soil (first layer).
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12. Degradation in roots: DRD

D value for degradation in roots DRD is calculated as reported in Paterson et al., 1991.

RRDRRD ZkVD                                                                                                      Eq.S46

where kRD is the first order rate constant (1/h). As no value of kRD was found in the literature, in this

work kRD was assumed to be equal to the degradation rate in soil (first layer).

13. Soil to roots and root to soil transfer: DSoR and DRSo

The D value for exchange between soil and roots was calculated as reported in Paterson et al., 1991:

20
X

XSoR
DDD   (xylem flow and diffusion) Eq.S47

20
X

SoR
DD  (diffusion only)                                                                 Eq.S48

Where Ø is a factor that considers the delay caused by a membrane barrier (0.82), DX is the D value for

the bulk flow in the xylem (mol/Pa·h). The magnitude of the diffusive flow from root to soil is assumed

to be 5% of the xylem flow (DX/20).

D value for the bulk flow in the xylem (DX) was defined as:

WXX ZGD                     Eq.S49

Where ZW is the fugacity capacity of water (mol/Pa·m3) and GX is the flow rate (m3/h) in the xylem.

In the present study GX was defined as:

LAIATrG SX   Eq.S50
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Where Tr is the transpiration flow rate (m3/h per m2 of foliage).

 A transpiration flow rate of 0.000009 m3/h per m2 of foliage was used (Tang et al., 2006). As reported

in Tang et al., 2006 and Kramer and Boyer, 1995, canopy transpiration varies during the day and

during the growing season. Different factors such as solar radiation, vapour pressure deficit of the

canopy air and plant species, leaf temperature, wind velocity, leaf area or LAI, root/shoot ratio, leaf

size and shape, leaf orientation, leaf surfaces, leaf anatomy influence the transpiration flow rate, but in

the present work only the variation with LAI is considered.

14. Roots to stem and stem to roots transfer

The D value for exchange between roots and stem was calculated as reported in Paterson et al., 1991,

considering that chemical transport occurs in association with sap flow in the xylem:

XRSt DD  Eq.S51

The reverse process from stem to roots occurs in the phloem. Flow rate in the phloem GP is slow

compared to those of the xylem (Windt et al., 2006). In the present work, phloem flow was assumed to

be 5% of the xylem flow. Consequently bulk flow in the phloem can be described by D value as

follows (Paterson et al., 1991):

W
X

WPP ZGZGD
20

                                   Eq.S52

Where GP is the flow rate (m3/h) in the phloem.

Therefore D value for stem to roots transfer results in:

PRSt DD                                                                Eq.S53



296

15. Stem to foliage and foliage to stem transfer

Transfer of chemical between stem and foliage is assumed to take place by means of the xylem and

phloem resulting in the following D values (Paterson et al., 1991):

XFSt DD                                                                                                                   Eq.S54

PStF DD                                                                                                Eq.S55
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SI-2 MASS BALANCE EQUATIONS

The plant model is a dynamic mass balance compartmental model and requires to solve the differential

form of three mass balance equations which describe the mass balance of the chemical in each plant

compartment (mol/h):

Roots

 RDRStRSoRStRStSoRSoRRRR DDDfDfDfEdtdfZV  Eq.S56

Stem

 StDStFStRStFStFRStRStStStSt DDDfDfDfEdtdfZV  Eq.S57

Foliage:

 FGFDFStFSoFLAFStFStLAFLAFFFF DDDDDfDfDfEdtdfZV   Eq.S58

Where fR is the root fugacity (Pa), fSt is the stem fugacity (Pa). fF is the foliage fugacity (Pa), VR is the

root volume (m3), VSt is the stem volume (m3), VF is the foliage volume (m3), ZR is the root fugacity

capacity (mol/Pa·m3), ZSt is the stem fugacity capacity (mol/Pa·m3), ZF is the foliage fugacity capacity

(mol/Pa·m3), ER is the direct emission in roots (mol), ESt is the direct emission in stem (mol), EF is the

direct emission in foliage (mol). DSoR is the soil to roots D value (mol/Pa·h), DStR is the stem to roots D

value (mol/Pa·h), DRSo is the roots to soil D value (mol/Pa·h), DRSt is the roots to stem D value

(mol/Pa·h), DRD is the root degradation D value (mol/Pa·h), DFSt is the foliage to stem D value

(mol/Pa·h), DStF is the stem to foliage D value (mol/Pa·h), DStD is the stem degradation D value

(mol/Pa·h), DLAF is the total  lower air to foliage D value (mol/Pa·h), DFLA is the foliage to lower air D-

value (mol/Pa·h), DFSo is the total foliage to soil/litter D value (mol/Pa·h),  DFD is the foliage

degradation D-value  (mol/Pa· h), DFG is the foliage growth D value (mol/Pa·h).
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TEXT SI-3 PHYSICAL-CHEMICAL PROPERTIES OF SELECTED PAHs

Simulations were performed for three chemical of contrasting physical and chemical properties:

phenanthrene, pyrene and chrysene (Table SI-8).

Table SI-8 Physical and chemical properties of phenanthrene, pyrene and chrysene

Properties Phenanthrene Pyrene Chrysene
MW (mg/L) 178.20 202.250 228.3
WS (mg/L) 1.10 0.132 0.002
VP (Pa) 0.02 0.0006 0.000000570
Log KOW 4.57 5.18 5.86
Log KOA 7.45 8.61 10.44
ΔHVAP (J/mol) 78.3 89.4 106.2
ΔHPA (J/mol) 78985 111595 153409
HL soil (h) 5500 17000 17000
HL air (h) 55 170 170
HL leaves (h) as air as air as air
HL stem (h) as soil as soil as soil
HL roots (h) as soil as soil as soil

Data from Mackay et al., 1992

ΔHVAP from Roux et al., 2008

ΔHPA calculated as reported in Kömp and McLachlan, 1997

LogKOA calculated from LogKOA and LogKAW
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TEXT SI-4 EMISSION SCENARIO FOR THE SoilPlusVeg EVALUATION

PAH atmospheric origin is very different: by-products from incomplete combustion of fossil fuels and

wood, residential heating, coke production and vehicular traffic (Morville et al., 2011). Residential

heating and vehicular traffic can be considered as a major source of PAHs in Como air (ARPA, 2007),

in particular at the suburban site selected for SoilPlusVeg evaluation. In order to perform simulation,

chemical emissions in lower air were calibrated to reflect the observed range of variability in measured

concentration (Terzaghi et al., 2015) and corrected employing hourly traffic emission factor (Table SI-

9) reported in Menut et al., 2012 in order to consider a more realistic time profile of traffic emissions.

Residential heating was not taken into account for emission correction, since model evaluation was

performed for three months (March, 15- June, 7) which could consider mainly a non-heating period

(residential heating stopped on April, 15 in Como). PM10 emission was calibrated in order to match the

average weekly concentrations for Como city (ARPA, 2014). Chemical and PM10 emission trend are

shown in Figure SI-6.

Table SI-9 Traffic emission factor (from Menut et al., 2012)

Hours Emission factor Hours Emission factor
1 0.2 13 1.3
2 0.12 14 1.4
3 0.1 15 1.45
4 0.08 16 1.55
5 0.12 17 2
6 0.23 18 2.1
7 0.9 19 1.7
8 1.7 20 1.1
9 1.8 21 0.7
10 1.5 22 0.6
11 1.25 23 0.55
12 1.2 24 0.4
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Figure SI-6 Chemical and PM10 emission trend during the simulation period (March, 15 – June, 07): phenanthrene
(in red), pyrene (in green), chrysene (in grey), PM10 (in black)
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TEXT SI-5 SENSITIVITY ANALYSIS RESULTS

Table SI-10 Results of the sensitivity analysis for the two target parameters (pyrene concentrations in LA, ng/m3,

and leaves, µg/g d.w.)

Parameters Conc. LA (ng/m3) Conc. Foliage (µg/g d.w.)
Emission 1.00E+00 1.00E+00
WS 2.76E-04 2.29E-01
VP 0.00E+00 2.29E-01
KOW 5.52E-04 2.71E+00
KOA 2.76E-04 2.27E-01
HLsoil 0.00E+00 6.59E-06
HLair 0.00E+00 5.22E-01
Enth 2.76E-04 8.29E-01
PMback 0.00E+00 3.59E-03
PMem 0.00E+00 4.50E-03
PMDepVel 0.00E+00 2.52E-06
PMDepVelFO 0.00E+00 1.14E-02
LAheight 9.99E-01 9.94E-01
WSpeed 9.99E-01 9.99E-01
AirT 0.00E+00 1.08E+00
Precip 2.76E-04 2.61E-03
LAI 2.76E-04 9.34E-05
SLA 0.00E+00 1.00E+00
DensFO 0.00E+00 1.22E-09
Kpa 2.76E-04 4.77E-01
OCfrSoil 0.00E+00 8.14E-10
OCfrLitter 0.00E+00 1.07E-07
KEA 0.00E+00 0.00E+00
QRain 0.00E+00 9.69E-04
MTC_UA_FA 0.00E+00 0.00E+00
MTC_LA_UA 0.00E+00 1.15E-06
MTC_UA_LA 0.00E+00 1.49E-09
U_Cut 0.00E+00 1.22E-09
U_ABL 2.76E-04 5.08E-01
Kcut 0.00E+00 1.28E-04

All the 30 tested input parameters were reported: emission (mol/h), water solubility (WS, g/m3), vapour pressure (VP, Pa),

octanol-water partition coefficient (KOW), octanol-air partition coefficient (KOA), half-life in soil (HLsoil, d) and air (and

foliage, HLair, d), enthalpy of phase change between plant and air (Enth, J/mol), PM background concentration (PMback,

µg/m3) and emission to LA (PMem, µg/h), dry particle deposition velocity to soil (PMDepVel, m/h) and foliage

(PMDepVelFO, m/h), LA height (m) and wind speed (m/s), air temperature (AirT, °C), LAI (m2/m2), SLA (m2/g), leaf

density (DensFO, g/m3), plant-air partition coefficient (Kpa, m3/g), OC fraction in soil (OCfrSoil) and litter (OCfrLitter),

air-side volatilization MTC (KEA, m/h), scavenging ratio for rain (QRain), MTCs for transfer to free atmosphere

(MTC_UA_FA, m/h), from LA to UA (MTC_LA_UA, m/h) and from UA to LA (MTC_UA_LA, m/h), MTCs for transport

through leaf cuticle (U_Cut, m/h) and across the air-boundary layer (U_ABL, m/h), and cuticle erosion rate constant (Kcut,

1/h).
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TEXT SI-6 MODEL EVALUATION RESULTS

SI-6A) Concentrations
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Figure SI-7 - Comparison between predicted and measured concentrations (µg/g dw) in leaves of cornel (a,c,e) and

maple (b,d,f) of phenanthrene (red and orange), pyrene (light green and dark green) and chr (white and grey)

during the hour of sampling (h 11). Bars represent the analytical error assumed equal to 15%.
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SI-6B) Efficiency factors

The use of efficiency factor (EF) (Mayer and Buttler, 1993) is a way to quantify the adequacy of model

predictions compared to experimental observations. Good model performances are obtained when EF

ranges from 0 to 1. The calculated EFs for the SoilPlusVeg model, considering leaf concentrations, are

reported in Table SI-11.

Table SI-11 – Efficiency factors for leaf concentration prediction

Chemical Cornel Maple
Phenanthrene 0.58 -33.66
Pyrene 0.42 -1.96
Chysene -0.50 -2.33
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SI-5C) Fluxes

Table SI-12 Input/Output fluxes to/from leaves of phenanthrene, pyrene and chrysene

Phenanthrene Fluxes (mol/h)
Fluxes Min Max Mean Median
N_Abs 2.43E-09 1.50E-04 6.98E-06 1.75E-06
N_DryPart 1.45E-11 2.43E-06 9.09E-08 7.43E-09
N_WetPart 1.03E-10 3.08E-06 6.97E-08 8.95E-09
N_RainDiss 1.93E-10 1.16E-06 5.15E-08 1.24E-08
N_Vol 2.60E-11 2.25E-05 4.52E-06 3.75E-06
N_WashOff 2.40E-09 9.67E-07 6.76E-08 2.04E-08
N_WaxEr 2.43E-15 6.72E-10 1.84E-10 1.64E-10
N_LitterFall 0.00E+00 0.00E+00 0.00E+00 0.00E+00
N_FO_St 3.56E-15 2.02E-09 3.88E-10 3.12E-10
N_St_FO 9.36E-23 1.66E-10 7.49E-11 7.48E-11
N_Dr 3.06E-11 8.47E-06 2.32E-06 2.06E-06

Pyrene Fluxes (mol/h)
Fluxes Min Max Mean Median
N_Abs 4.22E-10 1.66E-05 8.12E-07 2.20E-07
N_DryPart 2.35E-11 2.13E-06 8.37E-08 7.75E-09
N_WetPart 1.23E-10 3.73E-06 8.29E-08 9.85E-09
N_RainDiss 9.86E-11 6.04E-07 2.64E-08 6.22E-09
N_Vol 8.14E-13 3.23E-06 4.93E-07 3.61E-07
N_WashOff 7.44E-10 1.24E-06 4.15E-08 1.15E-08
N_WaxEr 4.66E-16 1.85E-10 8.20E-11 8.51E-11
N_LitterFall 0.00E+00 0.00E+00 0.00E+00 0.00E+00
N_FO_St 3.92E-16 9.71E-10 1.46E-10 1.02E-10
N_St_FO 1.28E-23 7.74E-11 3.27E-11 3.20E-11
N_Dr 1.90E-12 7.56E-07 3.34E-07 3.47E-07

Chrysene Fluxes (mol/h)
Fluxes Min Max Mean Median
N_Abs 1.03E-11 1.93E-06 3.83E-08 1.14E-08
N_DryPart 3.12E-11 5.07E-06 7.90E-08 1.28E-08
N_WetPart 2.07E-10 1.20E-05 2.14E-07 3.61E-08
N_RainDiss 8.21E-11 9.83E-07 3.75E-08 8.24E-09
N_Vol 4.84E-15 1.56E-07 1.21E-08 5.49E-09
N_WashOff 9.10E-11 2.16E-06 3.55E-08 5.76E-09
N_WaxEr 4.14E-17 9.99E-11 1.80E-11 1.63E-11
N_LitterFall 0.00E+00 0.00E+00 0.00E+00 0.00E+00
N_FO_St 3.29E-17 6.77E-10 4.93E-11 2.22E-11
N_St_FO 1.95E-24 4.25E-11 1.49E-11 1.52E-11
N_Dr 1.69E-13 4.07E-07 7.33E-08 6.64E-08
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SI-6D) Short term variability

Figure SI-8 Trend of concentration in leaves of cornel (solid green line) and maple (solid orange line) and in air (solid blue line), emission (dotted pink line) and

PBL height (solid light blue line), during a three-day period (April, 11 – April, 13): phenanthrene (a,b) and chrysene (c,d). Please note that for illustration

purposes emission values was multiplied for a factor of 2000. “M” means midnight while “N” stands for noon.
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Table SI-13- Hourly values (of April, 11 and April, 12) of absorption and volatilization fluxes (N_Abs and N_Vol,
mol/h), temperature (T, °C), PBL height (PBL, m), emission (mol/h) and air (ConcLA, ng/m3) and leaf
concentrations (ConcFO C, cornel and ConcFO M, maple, μg/g dw) for phenanthrene. Hours during which
Nabs>Nvol are shown in green, while those during which Nvol>Nabs are shown in light blue.

Day Hour N_Abs N_Vol ∆% N

Abs-Vol

T PBL Emisison ConLA ConcFo

C

ConcFo

M1 1.71E-06 1.49E-06 13 10 100 1.42E-03 1.63 0.0288 0.0466
2 1.47E-06 1.35E-06 8 10 100 8.50E-04 7.60 0.0284 0.0461
3 6.89E-06 1.30E-06 81 9 100 7.08E-04 3.04 0.0292 0.0475
4 2.76E-06 1.22E-06 56 9 100 5.66E-04 10.92 0.0292 0.0475
5 9.93E-06 1.29E-06 87 9 100 8.50E-04 27.79 0.0307 0.0500
6 2.53E-05 1.51E-06 94 9 100 1.63E-03 7.41 0.0354 0.0578
7 6.93E-06 1.75E-06 75 10 737 6.37E-03 8.67 0.0360 0.0589
8 8.14E-06 2.49E-06 69 13 948 1.20E-02 10.29 0.0368 0.0602
9 9.68E-06 4.08E-06 58 17 1112 1.27E-02 2.85 0.0375 0.0615

10 2.69E-06 6.57E-06 -144 21 1230 1.06E-02 1.71 0.0361 0.0593
11 1.61E-06 7.98E-06 -395 24 1352 8.85E-03 1.19 0.0341 0.0561
12 1.12E-06 9.79E-06 -772 26 1544 8.50E-03 0.74 0.0316 0.0520
13 7.05E-07 7.57E-06 -973 24 1811 9.20E-03 0.70 0.0296 0.0488
14 6.67E-07 7.31E-06 -995 25 1929 9.91E-03 0.72 0.0276 0.0456
15 6.85E-07 7.34E-06 -972 25 1947 1.03E-02 1.08 0.0257 0.0425
16 1.03E-06 6.53E-06 -536 25 1967 1.10E-02 1.23 0.0241 0.0398
17 1.18E-06 4.95E-06 -320 23 1997 1.42E-02 18.30 0.0228 0.0379
18 1.71E-05 4.35E-06 75 21 117 1.49E-02 37.79 0.0255 0.0423
19 3.53E-05 4.03E-06 89 18 100 1.20E-02 59.22 0.0322 0.0535
20 5.54E-05 4.82E-06 91 17 100 7.79E-03 64.54 0.0431 0.0717
21 6.05E-05 4.97E-06 92 15 100 4.96E-03 32.32 0.0550 0.0917
22 3.04E-05 4.39E-06 86 13 100 4.25E-03 6.51 0.0604 0.1009
23 6.13E-06 3.80E-06 38 12 100 3.89E-03 2.40 0.0601 0.1005

11
-A

pr

24 2.27E-06 3.40E-06 -50 11 119 2.83E-03 0.79 0.0590 0.0989
1 7.52E-07 3.10E-06 -313 10 142 1.30E-03 0.80 0.0577 0.0967
2 7.55E-07 2.86E-06 -280 10 108 7.78E-04 0.39 0.0564 0.0947
3 3.78E-07 2.67E-06 -608 9 142 6.48E-04 0.62 0.0551 0.0926
4 5.93E-07 2.50E-06 -321 9 100 5.18E-04 2.47 0.0539 0.0907
5 2.35E-06 2.46E-06 -5 9 100 7.78E-04 5.22 0.0531 0.0895
6 4.99E-06 2.37E-06 52 9 100 1.49E-03 0.46 0.0529 0.0893
7 4.56E-07 2.68E-06 -488 10 1593 5.83E-03 1.71 0.0516 0.0873
8 1.69E-06 3.56E-06 -111 13 1624 1.10E-02 1.06 0.0505 0.0855
9 1.05E-06 5.34E-06 -410 16 1688 1.17E-02 0.74 0.0488 0.0828

10 7.35E-07 8.60E-06 -1070 21 1781 9.72E-03 0.59 0.0464 0.0787
11 5.82E-07 1.10E-05 -1797 24 1873 8.10E-03 0.57 0.0434 0.0738
12 5.63E-07 1.23E-05 -2080 26 1986 7.78E-03 0.54 0.0401 0.0683
13 5.39E-07 8.93E-06 -1556 23 2112 8.42E-03 0.40 0.0377 0.0643
14 3.97E-07 9.12E-06 -2198 24 2189 9.07E-03 0.46 0.0352 0.0601
15 4.62E-07 8.28E-06 -1691 24 2263 9.40E-03 0.47 0.0330 0.0564
16 4.73E-07 7.31E-06 -1446 23 2308 1.00E-02 0.86 0.0310 0.0531
17 8.61E-07 6.03E-06 -601 22 2330 1.30E-02 16.59 0.0295 0.0505
18 1.63E-05 4.91E-06 70 19 118 1.36E-02 45.63 0.0315 0.0541
19 4.48E-05 5.40E-06 88 18 100 1.10E-02 60.28 0.0396 0.0681
20 5.93E-05 5.97E-06 90 17 100 7.13E-03 15.25 0.0505 0.0870
21 1.50E-05 4.86E-06 68 15 100 4.54E-03 17.64 0.0522 0.0900
22 1.74E-05 4.41E-06 75 14 100 3.89E-03 16.17 0.0543 0.0937
23 1.60E-05 4.11E-06 74 13 100 3.56E-03 3.39 0.0561 0.0969

12
-A

pr

24 3.36E-06 3.83E-06 -14 12 100 2.59E-03 2.13 0.0552 0.0955
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Table SI-14- Hourly values (of April, 11 and April, 12) of absorption and volatilization fluxes (N_Abs and N_Vol,
mol/h), temperature (T, °C), PBL height (PBL, m), emission (mol/h) and air (ConcLA, ng/m3) and leaf
concentrations (ConcFO C, cornel and ConcFO M, maple, μg/g dw) for chrysene. Hours during which Nabs>Nvol
are shown in green, while those during which Nvol>Nabs are shown in light blue.

Day Hour N_Abs N_Vol ∆% N

Abs-Vol

T PBL Emisison ConLA ConcFo

C

ConcFo

M1 4.04E-09 1.64E-09 59 10 100 9.41E-03 3.71 0.0052 0.0094
2 3.48E-09 1.39E-09 60 10 100 9.38E-03 2.58 0.0051 0.0094
3 1.63E-08 1.21E-09 93 9 100 9.38E-03 0.46 0.0051 0.0094
4 6.52E-09 1.08E-09 84 9 100 9.36E-03 0.92 0.0051 0.0094
5 2.35E-08 1.08E-09 95 9 100 9.39E-03 0.38 0.0051 0.0094
6 5.99E-08 1.12E-09 98 9 100 9.53E-03 0.28 0.0052 0.0095
7 5.21E-08 1.45E-09 97 10 737 9.54E-03 0.58 0.0052 0.0095
8 6.63E-08 2.76E-09 96 13 948 9.57E-03 0.72 0.0052 0.0096
9 8.25E-08 6.92E-09 92 17 1112 9.61E-03 0.55 0.0052 0.0096
10 2.35E-08 1.87E-08 20 21 1230 9.58E-03 1.50 0.0052 0.0096
11 1.44E-08 3.03E-08 -110 24 1352 9.53E-03 1.90 0.0051 0.0095
12 1.03E-08 5.17E-08 -401 26 1544 9.47E-03 2.30 0.0051 0.0095
13 6.69E-09 3.54E-08 -429 24 1811 9.41E-03 3.39 0.0051 0.0094
14 6.40E-09 3.74E-08 -485 25 1929 9.35E-03 3.63 0.0050 0.0093
15 6.58E-09 4.30E-08 -554 25 1947 9.28E-03 3.63 0.0050 0.0093
16 9.88E-09 3.85E-08 -290 25 1967 9.23E-03 2.57 0.0049 0.0092
17 1.14E-08 2.47E-08 -117 23 1997 9.18E-03 2.85 0.0049 0.0092
18 4.57E-08 1.56E-08 66 21 117 9.26E-03 3.43 0.0049 0.0093
19 8.36E-08 8.73E-09 90 18 100 9.48E-03 1.57 0.0051 0.0095
20 1.31E-07 7.29E-09 94 17 100 9.84E-03 0.65 0.0052 0.0098
21 1.43E-07 4.99E-09 97 15 100 1.02E-02 0.37 0.0055 0.0102
22 7.18E-08 3.32E-09 95 13 100 1.04E-02 0.65 0.0055 0.0104
23 1.45E-08 2.53E-09 83 12 100 1.04E-02 2.96 0.0055 0.0104

11
-A

pr

24 6.14E-09 2.10E-09 66 11 119 1.04E-02 4.91 0.0055 0.0104
1 1.76E-09 1.82E-09 -4 10 142 1.04E-02 5.74 0.0055 0.0104
2 1.44E-09 1.62E-09 -12 10 108 1.03E-02 4.49 0.0055 0.0103
3 8.82E-10 1.47E-09 -67 9 142 1.03E-02 5.75 0.0054 0.0103
4 1.06E-09 1.34E-09 -25 9 100 1.02E-02 4.13 0.0054 0.0102
5 4.23E-09 1.33E-09 68 9 100 1.02E-02 1.56 0.0054 0.0102
6 8.99E-09 1.24E-09 86 9 100 1.02E-02 1.41 0.0053 0.0102
7 3.22E-09 1.63E-09 49 10 1593 1.01E-02 3.91 0.0053 0.0101
8 1.19E-08 2.95E-09 75 13 1624 1.01E-02 1.96 0.0053 0.0101
9 7.48E-09 6.86E-09 8 16 1688 1.00E-02 3.22 0.0052 0.0100
10 5.29E-09 1.89E-08 -257 21 1781 9.98E-03 3.64 0.0052 0.0100
11 4.23E-09 3.47E-08 -720 24 1873 9.91E-03 3.65 0.0052 0.0099
12 4.14E-09 4.91E-08 -1087 26 1986 9.84E-03 3.42 0.0051 0.0098
13 4.00E-09 2.96E-08 -640 23 2112 9.78E-03 3.65 0.0051 0.0098
14 2.96E-09 3.48E-08 -1076 24 2189 9.71E-03 5.16 0.0050 0.0097
15 3.47E-09 3.25E-08 -837 24 2263 9.65E-03 4.45 0.0050 0.0096
16 3.56E-09 2.85E-08 -701 23 2308 9.59E-03 4.57 0.0050 0.0096
17 6.49E-09 2.15E-08 -232 22 2330 9.53E-03 3.21 0.0049 0.0095
18 3.34E-08 1.27E-08 62 19 118 9.57E-03 3.44 0.0049 0.0096
19 8.08E-08 9.98E-09 88 18 100 9.77E-03 1.19 0.0050 0.0098
20 1.07E-07 7.73E-09 93 17 100 1.01E-02 0.58 0.0052 0.0101
21 2.71E-08 4.88E-09 82 15 100 1.01E-02 1.47 0.0052 0.0101
22 3.14E-08 3.75E-09 88 14 100 1.01E-02 1.09 0.0052 0.0101
23 2.88E-08 3.08E-09 89 13 100 1.02E-02 1.09 0.0052 0.0102

12
-A

pr

24 6.06E-09 2.74E-09 55 12 100 1.02E-02 3.78 0.0052 0.0102
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Text SI-7 PHYSICAL-CHEMICAL PROPERTIES OF SELECTED PCBs

Table SI-15 Physical and chemical properties of

Properties PCB 52 PCB 153
MW (mg/L) 291.99 360.88
WS (mg/L) 0.03 0.001
VP (Pa) 0.0049 0.000119
Log KOW 6.10 6.90
Log KOA 7.81 8.66
ΔHVAP (J/mol) 80800 91400
ΔHPA* (J/mol) 86600 116700
HL soil (h) 55000 5500
HL air (h) 1700 550
HL leaves (h) as air as air
HL stem (h) as soil as soil
HL roots (h) as soil as soil

Data from Mackay et al., 1992

ΔHVAP and ΔHPA calculated as reported in Kömp and McLachlan, 1997

LogKOA calculated from LogKOA and LogKAW
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