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1
Introduction

Text localization and recognition (also known as text spotting) in natural scene images

is an interesting task that finds many practical applications.

For instance, an algorithm for text localization and recognition may be used in

helping visually impaired subjects during navigation in unknown enviroments, build-

ing autonomous driving systems that automatically avoid collisions with pedestrians or

automatically identify speed limits or other driving rules and warn the driver about

possible driving infractions that are being committed, and to ease or solve some tedious

and repetitive data entry tasks that are still carried out manually by humans.

While Optical Character Recognition (OCR) from scanned digital documents may

be considered a solved problem since state-of-the-art methods reach roughly 99% text

reading accuracy for that class of images, the same cannot be said for natural scene

images. In fact, this latest class of images cointains plenty of difficult situations that

algorithms for text localization and reading need to deal with in order to reach acceptable

text reading accuracies, and decent text localization detection rates.

For example, unlike algorithms for OCR from digital scanned documents, in which

a simple scaling and/or rotation of the images may be enough to correctly recognize

the text, in natural scene images the algorithm should also cope with plenty of more

difficult situations commonly found in real world images acquired with mobile phones

or webcams, such as: perspective projection distortions, light variations and reflections,

variable and unknown distances from the camera lens, total or partial occlusions, uncom-

mon fonts like company logos or uncommon text characters like those found in arabic

1



2 Introduction

Figure 1.1: There is a huge difference between text characters found in scanned born-

digital images (left image, from ICDAR 2015 Challenge 1 Task 4) and natural scene

images (right image, from ICDAR 2015 Challenge 2 Task 4). Scaling the left image

may lead to good text localization/recognition results; while the right one also requires

warping to sucessfully detect text words.

texts, to name a few.

Many of these difficult conditions are found in images from standard text localization

and recognition datasets and failing to deal with or ignoring any of these issues will cause

the accuracies or detection rates of the text localization/recognition algorithm that is

being developed to significantly decrease.

Dealing with all those difficult situations is a trivial task, and different techniques for

text localization and reading in natural scene images have been proposed in literature

over the past decade to try to reach human performances in real applications. Most of the

interesting and relevant related works recently presented in literature are presented and

discussed in Chap. 2; starting from traditional, and usually computationally expensive,

region-based methods which use sliding-window classifiers to build the so-called text

confidence maps, all the way up to more sophisticated and efficient approaches based on

stable connected-component analysis and/or deep architectures.

Most of the works cited in this thesis were presented after 2010, and the majority

of them deal with either text localization, text reading, or end-to-end text localization

and reading in natural scene images. This is a strong indication of the amount of

time, resources and energies that Computer Vision researchers are investing on trying to

increase state-of-the-art results for this task. A similar trend can be seen when looking
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Figure 1.2: Autonomous driving systems (autonomous vehicles) are one of the most

interesting and powerful practical application of end-to-end text localization and reading

algorithms in natural scene images/videos. Automatically recognizing and reading traffic

signs helps the driver to avoid unauthorized or dangerous driving maneuvers which may

injury the driver and other people, or cause driving tickets.

at the amount of works on pedestrian detection published over the last five years. 1

The main reason behind the increasing popularity of these research areas can be

probably found in the recent autonomous driving systems that are being developed by big

companies (Google Cars, etc.): increasing the affidability of text/pedestrian detection

algorithms will reduce the usage of expensive sensors and the risk of collisions with

pedestrians and other vehicles (Fig. 1.2).

The two main works on text localization and end-to-end text localization/recognition

in natural scene images developed during my three years of PhD course are presented in

this thesis. The construction of the text localization and the text spotting algorithms of

Chap. 3 and 4 were done in collaboration with my colleague Lucia Noce and advised by

Prof. Ignazio Gallo. Thus, when describing the algorithms and discussing about them,

I generally refer to and talk about those works using first-person plural to reflect the

joint nature of this work.

In our work of Chap. 3 we try to address most of the previously mentioned natu-

ral scene image problems (especially the localization of uncommon fonts and writings)

by proposing a hybrid system which exploits both the key ideas of region-based meth-

ods and stable connected components extracted from the processed images. During the

development of this method, our focus has always been on maintaining an acceptable

computational complexity and a high reproducibility of the achieved text localization re-

sults. To this end, we exploited the latest advancements in Computer Vision (especially

in pedestrian detection), using novel techniques and algorithms like Approximated Fea-

tures and Aggregated Channel Feature Classifiers [2] which provide a good compromise

between detection rates and computational complexity. As shown on the official web-

1State-of-the-art detection rates on “Caltech Pedestrians USA” dataset skyrocketed during ICCV

2015 [1] - http://www.vision.caltech.edu/Image Datasets/CaltechPedestrians/
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site of the International Conference of Document Analysis and Recognition (ICDAR) 2,

thanks to these novel methods our system outperforms all the other competing text lo-

calization approaches on the most popular standard text localization dataset available in

literature: ICDAR Challenge 2 Task 1 Robust Reading dataset. All of that while keeping

an excellent computational complexity, low training times and high duplicability.

Even though the results achieved by this first text localization algorithm were encour-

aging, the test computational complexity of our hybrid region-based/connected compo-

nent (CC)-based solution does not allow its use in real-time text spotting applications,

mostly due to the time required to perform moving window analysis and visual features

computation at multiple scale levels. For this very reason, we decided to focus our re-

search activity towards the development of a more innovative deep-based system which

exploits the same key ideas of our hybrid algorithm (Multi-resolution Maximally Stable

Extremal Regions, Text Confidence Maps, Non-maximum Suppression, etc.) but per-

forms end-to-end text spotting in natural scene using Convolutional Neural Networks and

GPU processing to achieve considerably better results both in terms of detection/recog-

nition accuracy and computational complexity.

The use of Convolutional Neural Networks for audiovisual data processing is not

novel; in fact, the most recent and sucessful way of approaching difficult Computer Vision

tasks (like text localization/recognition) involves deep architectures. In complex tasks

like object classification on the Large Scale Visual Recognition Challenge 2015 dataset [3]

(ILSVRC2015), where each object detection algorithm has to distinguish between 1000

different object categories, it is unfeasible to compute hand-crafted visual features for

each of the 1.2 million training images, and to train traditional classifiers (like Support

Vector Machines, Multi-layer Perceptrons, etc.) to recognize between that large amount

of object classes. Deep models like Convolutional Neural Networks solve this problem

because they are able to automatically extract highly discriminative visual features from

training data with limited tuning effort. Since Convolutional Neural Networks have been

extensively used in our deep-based end-to-end text spotting work described of Chap. 4,

a brief introduction of their fundamentals is provided in Chap. 2.

Similarly to our previous work on text localization, in our deep-based end-to-end text

spotting algorithm work we tried to achieve good results while keeping an acceptable

computational complexity. This is not a trivial task since all of the other deep-based

works for end-to-end text spotting proposed in literature take weeks or even months

to be trained using powerful CUDA-based graphic cards. On the other hand, our sim-

ple deep-based method, based on slight evolutions of the original LeNet Convolutional

Neural Network architecture, reaches nearly human performances for some practical ap-

plications (gas flow meter reading and license plate recognition) and its results are com-

parable with those achieved by other more complex state-of-the-art deep-based methods

2http://rrc.cvc.uab.es/
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on the challenging ICDAR dataset. All of this while maintaining a low computational

complexity (the algorithm is roughly 10 times faster than our previous text localization

method) and almost zero tuning effort.





2
Background and Related Work

In this chapter some fundamental concepts and related works that are useful to

understand the methods on text localization and recognition described Chap. 3 and 4

are introduced and briefly described.

Sec. 2.1 provides an overview on how text localization and recognition tasks have

been tackled by other researchers throughout the past ten years; beginning from tra-

ditional region-based approaches to newer connected component (CC)-based methods,

and concluding with the most recent deep-based algorithms. For this latest class of al-

gorithms an introduction on Convolutional Neural Networks is also provided; giving a

brief overview on the fundamental elements that are typically used in deep models for

Computer Vision tasks.

Sec. 2.4 provides a description of the datasets typically used in literature to eval-

uate and compare text localization/recognition approaches, with some visual examples

of the difficult situations that need to be faced and addressed when doing text local-

ization/recognition from natural scene images. Even though most of the datasets used

in our works of Chap. 3 and 4 are standard, we have also built and manually tagged

one specific dataset that has been used to evaluate the performance of text spotting

algorithms in unconstrained real-world application: FlowMeter Database [4].

Unlike most of the other datasets proposed in literature (KAIST Scene Text [5], IC-

DAR Robust Reading [6, 7], MSRA Text Detection 500 [8], Street View Text [9], etc.),

FlowMeter DB contains images of arbitrary rotated text with motion blur, lack of focus,

gravel on the text to be recognized, and extremely wide light variations. All of these

7
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conditions are commonly found in images aquired using mobile devices and, as shown in

Chap. 4, they are poorly addressed by competing state-of-the-art approaches, which fail

at correctly recognizing text from those images. On the other hand, our method suc-

cessfully reach nearly human detection accuracies (2% less than human performances)

for the same text spotting task.

2.1 Text Localization and Recognition

2.1.1 Region-based

Region-based approaches typically employ sliding-window classifiers to process the given

image, densely analyzing all the local regions of the image looking for potential text

characters of interest.

In order to reach satysfying results and detect text elements at different scales, sim-

ilarly to most of the sliding-window based object detection approaches proposed in lit-

erature, the image needs to be processed in a multi-resolution manner. A pyramid of

images is built by resizing the image with different scale factors; and a properly trained

sliding-window classifier processes each pyramid level to detect potential text comopo-

nents. Once the sliding-window classifier has densely analyzed one level of the pyramid,

it typically generates a text confidence map in which the intensity level associated with

each pixel denotes the probability it belongs to foreground (text) or background (noise),

as in Fig. 2.1.

Text confidence maps obtained at the different pyramids levels are stacked (usually by

summing and normalizing) together to form a final text confidence map that needs to be

further processed to detect/filter the enclosing bounding boxes for the potential regions

of text. This filtering procedure may be approached using a wide variety of techniques.

Most of the successful region-based algorithms proposed in literature performs Non-

maximum Suppression [10] (NMS) on the final overall text confidence map to discard

overlapping or insignificant detection windows, and then stack surviving regions together

to obtain the potentially relevant bounding boxes for text elements in the processed

image.

NMS is a common operation in Computer Vision algorithms for object detection, the

goal is to decrease the number of potential bounding boxes of interest by suppressing the

ones overlapping by a certain amount. In details, the detected bounding boxes are ranked

and ordered by their probability of belonging to foreground (their activation value);

for each pair of bounding boxes, their overlap, defined as in [11] (overlap(bb1, bb2) =

area(intersect(bb1, bb2))/area(union(bb1, bb2))), is computed. If the computed overlap

value is greater than the set overlap threshold (in Pascal VOC Challenge and Computer

Vision in general, overlap threshold is usually set at 0.5) then the bounding box with

the lower score is suppressed.
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Figure 2.1: Traditional multi-resolution region-based text confidence maps (image

from [12], and from the PhD thesis of L. Neumann).

Although NMS is a simple operation, it is also computationally expensive when

exhaustively executed over all the potential text regions detected in the text confidence

map: its complexity is O(n2), where n is the number of processed bounding boxes. For

this very reason greedy algorithms are usually employed in place of classic NMS. For

example, when n is very large, it is useful to split the data in half and run NMS on

each part, and then combine those two parts and run once again NMS. This greedy

algorithm may lead to a final result that differs from the one obtained using classic

NMS but, considering that the analysis of an image in a dense sliding-window manner

at multiple resolutions is already expensive in terms of comoutational complexity, to

obtain an acceptable computanional complexity every optimization is required.

Once the potential bounding boxes for text elements of interest are found, there are

different ways in which the text elements/words can be recognized. Among the most rel-

evant region based methods proposed in literature throughout the last decade [9, 12-18]

the two works that are worth mentioning due to their particular novelty over competing

approaches are the ones of Pan et al. [12] and Wang et al. [9].

Pan et al. [12] build a text confidence map by processing images in a sliding-window

manner, using Waldboost [13] and Histogram of Gradients (HOG) [14] features. The text

confidence map is used, together with other geometric features and a properly trained

Multi-layer Perceptron [15], to compute the binary and the unary weights of a component

neighborhood graph built over a set of connected components extracted using Niblack’s

text binarization algorithm [16]. Conditional Random Fields [17] (CRF) are used to filter

out non-text components from the graph, while the remaining neighboring elements are

clustered together into Minimum Spanning Trees [18] (MST) to form text words.

In our approach of Chap. 3, we also exploit a similar text confidence map to identify

potential regions of text, but we do not use all these complex and hard to reproduce

clustering algorithms or CRF to select regions of text from the processsed image; instead

we exploit the fundamental concepts of CC-based approaches (described in the Sec. 2.1.2)
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to effectively and efficiently detect the bounding boxes for text components on interest.

The effectiveness of our hybrid method (because it exploits both the concepts of region-

based and CC-based approaches) is proved by the state-of-the-art results it achieves for

ICDAR 2013 Challenge 1 Task 2, where it beats all the other published and unpublished

competing approaches proposed in literature at detecting text from natural scene images.

The second algorithm that it is worth analyzing is the one of Wang et al. [9] which

performs end-to-end text recognition using Random Ferns and Pictorial Structures. Even

though the pipeline of this method does not have any particular novelty, the part of the

work that is particulary interesting and novel is the choice of using synthetic positive

training data: roughly 1000 images are synthesized per text character using 40 different

fonts, adding Gaussian noise and applying random affine deformations (similarly to the

work of [19], which will be discussed in Sec. 2.1.2). It is interesting to see how the clas-

sifier trained exclusively using synthetic positive data achieves the same F-measure of a

Nearest-neighbour classifier [20] (NN) trained with Histogram of Oriented Gradients [14]

(HOG) features extracted from native data.

Another interesting idea from [9] is the choice of extracting negative training samples

from classes of Microsoft Research Cambridge Object Recognition Image Database [21]

(MSRC): classes like buildings and countryside deeply resemble the background patterns

of ICDAR images and help in reducing the number of false-positive errors produced by

the sliding-window classifier. Training region-based methods using synthetic data has

become quite popular during the last years, because it is very difficult to gather a sat-

isfying amount of correctly tagged training images that lead to acceptable results in

real-world applications when used to train a traditional sliding-window classifier. The

use of syntetic data also skyrocketed with the introduction of deep-based text spotting

algorithms that require millions of examples to reach decent detection rates. For ex-

ample, the performances of PhotoOCR [22] increase by more than 10% when adding

millions of syntetically generated training examples to the positive training set. Unfor-

tunately, researchers have yet to present a method for generating an infinite amount of

syntethic images which satisfactorily simulate natural scene images.

Region-based methods have become less popular with the introduction of novel CC-

based approaches that overcome most of the limitations imposed by sliding-window

classifiers: (i) high computational complexity, especially during feature computation at

multiple scales; (ii) false-positive detection errors, as some local regions in natural images

are virtually undisguisable from text components [23] (e.g. the corners of windows may

be seen a T or + when locally analyizing that particular portion of image); (iii) long

training times; (iv) and low portability to mobile enviroments, to name a few.

While most of the aforementioned problems could be solved using novel Computer

Vision techniques, such as Approximated Features [2], Aggregate Channel Features [24],

etc., region-based methods slowly became less popular for text localization/recognition in
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Figure 2.2: CNN filtered Maximally Stable Extremal Regions (image from [27]). 1st

row: enclosing bounding boxes for the detected Maximally Stable Extremal Regions;

2nd row: intensity maps for text-likelihood values assigned to each Maximally Stable

Extremal Region by the CNN.

natural scene images, first replaced by CC-based methods, and then by more innovative

deep-based approaches which are much faster and require less tuning to reach optimal

results. In fact, during the last years the effort of Computer Vision researchers shifted

from “finding the best classifier and features for the given task” [9, 12, 24, 25], to “finding

the training data that leads to best results when used to train a deep model” [3, 4, 26,

27, 28]. Thus making traditional text localization/recognition region-based approaches,

whose performances are highly related to the features used for classification, obsolete.

2.1.2 Connected Component (CC)-based

The main intuition behind connected components (CC)-based approaches is that text

characters usually show uniform geometric characteristics. For example, the color of a

text character stays the same for the whole digit/letter, the stroke width of the bound-

aries for the character has a slow intra-variation within the character itself, text char-

acters are usually placed on a high contrast background to increase readability, and

can be clustered on a same line to form words of text. All of these geometric properties

have been exploited by researches over the years to propose text localization/recognition

methods that identify and extract text character as stable connected components from

the processed images.

More in details, most CC-based text localization and recognition methods [25, 29,

30, 31, 32] either exploit Maximally Stable Extremal Region [33] (MSER) to identify

potential text components that are filtered and clustered together to form words, or

enhance/exploit the Stroke Width Transform [23] (SWT) algorithm to identify connected

components having low intra-stroke variance [8, 34, 35].

MSER is a method for blob detection in images to compute for a given gray image
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a number of co-variant regions called MSER. A MSER is a stable connected component

of some gray-level sets of the image, where the concept of stability is defined as a region

that stays nearly the same through a wide range of thresholds.

More specifically, when thresholding an image at different intensity levels it is pos-

sible to compute, for each threshold level, the geometric properties of the connected

components in that level. Once the threshold level is changed it is also possible to com-

pute the variation between two related connected components at the different thresholds.

If the computed variation (in terms of area, perimeter, etc.) is small enough for a suf-

ficiently large amount of thresholds, the connected component is considered stable and

it is identified as MSER. The word extremal refers to the property that all pixels inside

the MSER have either higher (bright extremal regions) or lower (dark extremal regions)

intensity than all the pixels on its outer boundary.

Similarly to SIFT [36], MSER features can be used as keypoint descriptor for im-

ages, showing great results when paired with other keypoint descriptors [37]. In text

detection, due to the geometric properties of text characters, MSER have become quite

popular during the last years. Unfortunately, classic MSER cannot capture text char-

acters that are blurred, unfocused, etc. For this very reason, many researchers tried

to increase the coverage rates (the percentage of ground-truth text elements identi-

fied as stable components) of MSER by proposing alternative algorithms for extracting

connected components which are specifically designed for text elements. For example,

Neumann et al. [38] proved that extracting Extremal Regions (ER) (CC that are not

maximally stable) from multiple image channels (RGB ∪ HSI ∪ ∇) leads to a coverage

rate of 95% over ground-truth character annotations for ICDAR 2011 dataset. This is

an outstanding coverage result for ICDAR 2011, but the amount of extracted ER is very

high when compared to the amount MSER (roughly 100 times higher), thus requiring

the algorithm of [38] to use computationally incremental features (computed in constant

time O(1) for every ER) to maintain an acceptable computational complexity. Those

so-called computationally incremental features are not discriminative enough to allow

the algorithm to reach state-of-the-art text localization results.

Other more efficient variants of the original MSER algorithm have also been pro-

posed: (i) Multi-channel MSER [32] (M-CHN); (ii) Multi-resolution MSER [37] (MR-

MSER); (iii) Edge-preserving MSER [25] (eMSER); (iv) and Edge-enhanced MSER [39]

(EE-MSER), to name a few. More in details, in the work of Li et al. [25] Edge-preserving

MSER are obtained by extracting MSER from images incorporating gradient magnitude

and intensity channels information. eMSER are robust to blur and therefore overcome

some of the limitations of traditional MSER (similarly to Edge-enhanced MSER [39]).

Another technique for improving the coverage rate of MSER over text elements is

the one proposed by Forssén and Lowe [37]: a pyramid of images is built and Multi-

resolution MSER (MR-MSER) are extracted at multiple scales (1 scale per octave). This
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multi-resolution approach causes some of the unstable regions in the original image to

become stable at low scales in the pyramid, where the original image has lost most of its

details as it has been sub-sampled and blurred multiple times with a Gaussian kernel.

Even though MR-MSER have never been used before for text localization from scene

images, in our works of Chap. 3 and 4, we prove that they can be combined with the

multiple channel technique of [25, 29, 38] to extract entire words of text from natural

images.

SWT [23] is another algorithm that is quite popular among text localization works.

Unlike MSER-based algorithms, SWT does not threshold the image at multiple levels

to look for stable connected components. Instead it looks for edges in the image (using

Canny Edge Detector algorithm [40]) and builds a stroke width map in which the value

assigned to each pixel denotes the width of the edge it belongs to. The stroke width map

is built by following the direction of the gradient on every edge until another edge is

found. The values of the pixels lying on the direction of the gradients is incremented by

the length of the segment between the two edges. Given the stroke width map, connected

components sharing similar activation values (similar stroke width) are identified as

potential text characters.

Unfortunately, the implemetation of the original SWT algorithm has not been re-

leased to public yet, and the published results of the algorithms are difficult to repro-

duce due to the lack of implementation details in the reference paper. In some works,

generic object window proposal/detection methods (Edge Box [41], Selective Search [42],

ACF [24], etc.) have also been used in place of MSER variants for bounding box gener-

ation for text elements in natural scene images [43].

Lately, object window proposal algorithms have become quite popular in Computer

Vision. The first work that introduced the concept of object as a generic entity having

homogeneous visual characteristics (high contrast, boundary continuity, visual saliency,

etc.) is the Objectness algorithm (originally proposed by Alexe et al. [44] and then

extended in [42, 45, 46, 47]) which generates a set of ranked object window proposals

for every given image, where the rank level denotes the probability that the window

proposal encloses an object.

In text localization algorithms, those window proposals are processed to analyze

whether they correspond to the bounding boxes of text elements or not. Introducing

object window proposals algorithm to the task text localization may be a good idea as

objectness-like methods have been sucessfully used as base detectors by many recent

state-of-the-art object segmentation/detection/localization methods [48, 49, 50] and can

significantly lower the computational complexity of the detection method. In our ex-

periments of Chap 3 and 4 we provide a comparison between most of the variants of

MSER proposed in literature throughout the years and the most recent object window

proposal algorithms. Our results show that MSER variants are always better at cap-
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turing text characters than generic object window proposal algorithms, both in term of

provided coverage rate and computational complexity. We also show how our “proposal

augmentation technique” (see Chap. 4, Fig. 4.2) can significantly boost detection recall

(number of ground-truth text character annotations covered by at least one generated

proposal) for all the evaluated datasets.

Once connected components have been extracted from the given image, the pipeline

of CC-based methods is usually straightforward: (i) visual features are computed for

each connected component; (ii) they are processed by a properly trained classifier that

determines whether they contain text elements of interest or not; (iii) finally, connected

components sharing similar visual characteristic are grouped together to form text lines

and words.

Unlike region-based approaches, CC-based algorithms are efficient to train and test.

Some CC-based methods can even process a stream of images from webcam in real-time

on a desktop machine (see the implementation of [38] provided in OpenCV 3.0).

However, their recall values on ICDAR datasets are typically low, because uncommon

text characters and fonts (company logos, graffiti, unfocused characters, etc.) are usually

discarded due to their irregular geometric features.

In our work for text localization of Chap 3 we overcome this problem by proposing

a hybrid algorithm that does not discard connected components based on some visual

geometric properties; instead it exploits the text confidence maps generated by an Aggre-

gate Channel Feature (ACF)-based sliding-window classifier. Thanks to this choice, our

algorithm can overcome both the limitations of region-based and CC-based approaches,

reaching state-of-the art results for ICDAR 2013 (especially in term of recall, which is

20% higher than the second ranked algorithm).

2.1.3 Deep-based

Convolutional Neural Networks [51] (CNN) have recently been sucessfully used for text

localization and recognition in natural scene images. Since deep-based methods are very

recent, there are not many deep-based text spotting works in literature. In this section,

I discuss the three most relevant works that have been proposed during the last years.

In [19], Coates et al. realized the discriminative power of features unsupervisingly

learnt by a CNN at identifying text characters from natural images. However, they

could not find a proper way to identify bounding boxes for text elements. Therefore

they did not participate in the ICDAR challenge to evaluate how their features per-

formed when evaluated using ICDAR’s evaluation protocol. Instead, they evaluated the

Precision/Recall of their deep-based model using per-pixel based accuracies computed

from the ground-truth annotations for ICDAR 2003 images, thus making it almost im-

possible for other researchers to compare existing results in literature with theirs.

In [28], a single very large CNN has been used for integrated text localization and
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Figure 2.3: Edges are detected by convolving the image with the kernel of Sec. 2.2.

recognition of Street View House Numbers [19] (SVHN) and CAPTCHA, thus removing

the need for using local windows or proposals as in region-based and CC-based methods.

While this integrated end-to-end text localization and recognition approach seems

promising, since it reaches nearly human detection rates on Google SVHN and CAPTCHA

datasets; it can only be applied for the localization/recognition of text sequences whose

length is known a priori, and a large amount (10 million or more manually tagged sam-

ples) of training data is required to obtain acceptable results.

Moreover, the proposed CNN model requires weeks to be trained using DistBelief [52]

(a powerful large scale distributed deep network architecture of Google) and it is therefore

difficult/impossible to reproduce and re-train for other text related tasks.

In [43], multiple very large CNN trained solely on synthetic data are used to localize

and read text word proposals from Edge Box and ACF detector.

This latest approach is similar to the one we propose in Chap. 4 however, we work

at text character level using augmented MR-MSER proposals in place of synthetically

generated training data.

Moreover, unlike most of the other deep-based methods proposed in literature, in

our deep-based algorithm described of Chap. 4 we pay particular attention to the repro-

ducibility of the method on common desktop machines, employing only small variants of

LeNet CNN [53]. Despite the simplicity of the CNN used in our work, the text spotting

results we obtain are comparable with human performances on a real-world application

(FlowMeter DB dataset) and also with competing traditional state-of-the-art methods

on ICDAR 2015 dataset.

2.2 Convolutional Neural Networks

Convolutional Neural Networks [51] (CNN) broke state-of-the-art results for several

Computer Vision tasks, and are now the dominant networks used for feature extrac-
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Figure 2.4: Feature visualization of the kernel weights learnt by AlexNet Convolutional

Neural Network [54] on ImageNet dataset [3, 51]. In the first convolutional levels (left

and middle) simple features like edges and gradients are learnt; at deeeper levels (right)

the network starts to learn more complex features like eyes, noses, flowers, etc.

tion from audiovisual and textual data. 1

CNN are slight variations of traditional Feed-forward Neural Networks. They take

biological inspiration from small regions of cells in the visual cortex that are sensitive to

subregions of the visual field. In Machine Learning, these regions of cells are referred to

as a receptive fields.

Receptive Fields are implemented in the form of weighted matrices, referred to as ker-

nels; which, similarly to their biologically inspired counterparts, are sensitive to similar

local subregions of an image.

The degree of similarity between a subregion of an image and a kernel may be com-

puted simply convolving the subregion using the given kernel. For example, a simple

3× 3 kernel like:  −5 0 0

0 0 0

0 0 5


may be convolved over one given image to detect and inform about the presence of edges

as in Fig. 2.3.

When used in CNN, kernel weights may be learnt from the training data to extract

basic features like edges, gradients and blurs; and when the network has enough con-

volutional layers, the kernels will start learning feature combinations off of the previous

layers. From simple features like edges, gradients and blurs, kernels start to learn more

complex features that are highly discriminative for the processed images.

1Are we there yet? - http://rodrigob.github.io/are we there yet/build/
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For the ImageNet Challenge [3] those features may detect the presence of eyes, noses,

hair, etc. Similarly to the ones learnt by one of the top performing CNN for image

classification on ImageNet Challenge: AlexNet [54] (Fig. 2.4).

Traditional works on audiovisual and textual processing required researchers to train

supervised models using some kind of features extracted from the given training data.

This is an expensive and fragile task, and it is difficult sometimes to understand if the

feature being extracted is discriminative enough for the task to be solved.

For example, the manuscript of Vondrick et al. [55] contains an analysis of the dis-

criminative power of HOG features; the paper provides an approximated inversion of the

HOG function and tries to understand why even the best classifiers are making some

strange mistakes for apparently simple images from Pascal VOC Challenge dataset [11].

For example, in the image of Fig. 2.5a there is a strange and apparently unexplainable

car detection window in the middle of the water even though there is clearly no car

in the water in the original image. The mistery is solved when looking at the inverse

visualization of the HOG feature for that local portion of the image: the car is hidden

in the HOG descriptor (Fig. 2.5b).2

This shows that using just HOG features no classifier would be able to avoid that car

false-detection, no matter how much time is spent for the training phase and no matter

which classifier is being trained.

On the other hand, a CNN does feature extraction on its own. By convolving the

given image a sufficient number of times it is possible to let the network, with minimal

preprocessing of the data, create/detect the set of visual features that work best for the

specific domain. In most cases, self-learned CNN features work better than most of the

algorithmically and hand-crafted features.

CNN are composed of building blocks corresponding to linear and non-linear opera-

tors. As previously described, the most common operator in a CNN is the regular linear

convolution by a filter bank. Given an image x with k channels, and a kernel w, the

convolution operator generates another image y in the following way:

yi′j′k′ =
∑
ijk

wijkk′xi+i′,j+j′,k (2.1)

where k′ corresponds to the number of filters/kernels in the convolution.

In addition to the previously described linear convolution, there are several non-linear

operators involved in the classification process. The most common non-linear operators

that can be found in CNN are: Non-linear Gating, Pooling and Normalization.

The simplest non-linearity can be obtained by following a linear filter by a Non-linear

Gating Function applied identically to each component of a feature map. The simplest

2HOGgles: Visualizing Object Detection Features - http://web.mit.edu/vondrick/ihog/
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(a) False-positive car detection.

(b) Visualization of the HOG descriptor for the false-positive detection region.

Figure 2.5: The mistery behind the false-positive car detection in the image (a) is solved

when looking at the visualization of the HOG descriptor for the false-positive patch (b).

The trained model misclassifies that local part of the image because the orientation of

the gradients in the computed HOG descriptor is very similar to the ones of a car [55].

Non-linear Gating Function is the Rectified Linear Unit (ReLU), which is defined as:

yijk = max{0, xijk} (2.2)

For every element position xijk the function takes the maximum value between 0 and

xijk. While this may seem like a useless operation, setting many of the values in a

feature map to 0 substantially improves CNN training times, since the derivative of 0 is

constant and can be computed in constant time.

One of the other commonly used non-linear operators in CNN is Pooling. Pooling

operates on individual feature channels, fusing nearby feature values into one by the

application of a suitable operator. The most common choice is Max-pooling, which is

defined as:

yijk = max{yi′j′k : i ≤ i′ < i+ p, j ≤ j′ < j + p} (2.3)

where p denotes the size of the p×p Max-pooling window. Max-pooling creates position

invariance over larger local regions and down-samples the input image by a factor of p×p
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Figure 2.6: Visual representation of the architecture of one of the first Convolutional

Neural Networks sucessfully used for feature extraction from visual data: LeNet [53]:

along each direction. It leads to faster convergence rates by selecting superior invariant

features which improve generalization performances.

Another non-linear operator that may be used in CNN is channel-wise Normalization

which is used to normalize the feature channels at each location in the feature map x.

The operator is defined as:

yijk′ =
xijk(

κ+ α
∑

k∈G(k′) x
2
ijk

)β (2.4)

where κ, α and β are the parameters for the normalization. Channel-wise Normalization

is also crucial to make the network invariant to small visual changes in the training

samples.

CNN are usually trained using Stochastic Gradient Descent, which is a gradient

descent optimization algorithm for minimizing the error for a given objective function.

A great speed-up in training times may be obtained when training CNN by exploit-

ing parallel execution provided by modern graphic cards. However, due to the limited

amount of memory resources available on GPU, the whole set of training samples can-

not be usually stored in graphic memory at training time: the samples need to be split

into multiple randomly created mini-batches. The error between the predictions of the

CNN and the objective function is computed for each mini-batch, and the weights of the

kernels in the network are updated according to that error.

The training process is therefore composed by many iterations (processing of single

mini-batches) and many epochs (processing of the whole training samples). The error

on validation set is usually computed after each training epoch.

There are many open source libraries available online for the creation and training

of CNN. In our work of Chap. 4 we have used Vedaldi’s VLFeat MatConvNet [56] to

design and test our CNN in Matlab 2014a, and Berkeley Caffe [57] to deploy the trained

network models in CUDA/C++.
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To be able to train our CNN in acceptable times we have used two NVIDIA GeForce

GTX 980 and NVIDIA Cuda Deep Neural Network (CuDNN), which is a library specif-

ically developed by NVIDIA to speed up the convolution of images on CUDA-based

GPU.

2.3 Fast Feature Pyramids and Aggregated Channel Features

The concept of Fast Feature Pyramids, introduced by Dollár et al. [2] and further in-

spected in [58], revolutionized multi-scale sliding window approaches by showing that

image features can be approximated from nearby scales within the same pyramid rather

than being computed explicitly.

Since their introduction, Fast Feature Pyramids have been used in many works to

build effective and efficient rigid object recognition detectors [59, 60, 61].

The work of Mathias et al. [59] shows that, without specific modification, the Integral

Channel Feature Classifier (ChnFtrs) [24], originally introduced for pedestrian detection,

can be applied to the task of traffic sign recognition to reach state-of-the-art performance;

this is particularly interesting as ChnFtrs has been extended in [2] by replacing the

explicit computation of multi-scale features with Fast Feature Pyramids.

The resulting algorithm, called FPDW [2] (aka “The Fastest Pedestrian Detector

in the West”) reaches the detection rate of ChnFtrs while being 2 order of magnitude

faster than competing methods. In [58], FPDW is further enhanced by introducing the

concept of Aggregated Channel Features (ACF).

Following the insight of [59] and the analysis of [62] on how to build the best classifier

for rigid object recognition, in the work on text localization of Chap. 3 we use an ACF

based classifier to perform text localization from natural images, obtaining excellent

detection rates and fast recognition times.

2.4 Datasets

2.4.1 ICDAR Robust Reading

The International Conference of Document Analysis and Recognition (ICDAR) is the

premier international conference for researchers in the document analysis community

for identifying, encouraging and exchanging ideas on the state-of-the-art technology in

document analysis, understanding, retrieval, and performance evaluation. The term

document in the context of ICDAR encompasses a broad range of documents from

historical forms such as palm leaves and papyrus to traditional documents and modern

multimedia documents.

The so-called “robust reading” task refers to the research area that deals with the

interpretation of written communication in unconstrained settings. Robust reading is
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Figure 2.7: Samples from ICDAR 2015 Challenge 2 Task 1 dataset [63].

linked to the detection and recognition of textual information in scene images, but in

the wider sense it refers to techniques and methodologies that have been developed

specifically for text containers other than scanned paper documents, and include born-

digital images and videos to mention a few.

Over the years, ICDAR have proposed multiple manually tagged datasets and also

strict online evaluation protocols. This has led to the acceptance of ICDAR’s robust

reading competition framework by researchers worldwide as the defacto standard for

evaluation, and has promoted good practice in the field [6, 7].

Examples of images from ICDAR datasets are provided in Fig. 2.7; more examples

are also provided in our works of Chap. 3 and Chap. 4. An online comparison between

all the competing text localization and reading algorithms proposed in literature over

the years (including our work: IWRR2014 [64]) is publicly available on the conference

website. 3

2.4.2 License Plate Recognition

License plate localization and reading from natural images is an interesting task that

finds application in many real-world problems.

3http://rrc.cvc.uab.es/?ch=2&com=evaluation
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Figure 2.8: Some examples of images from “UCSD/Calit2 Car License Plate, Make and

Model Database” (1st row), “Zemris Car Database” (2nd row), and “Medialab License

Plate Recognition” (3rd row). Our algorithm of Chap. 4 was trained on the first two

datasets and tested on “Medialab License Plate Recognition” dataset.

Due to the privacy issues associated with car license plate numbers it is hard to

find tagged publicly available datasets. The most commonly used datasets to evaluate

the performances of license plate reading methods are the “UCSD/Calit2 Car License

Plate, Make and Model Database”, “Zemris Car Database”, and “Medialab License

Plate Recognition” (Medialab LPR).

Unfortunately none of these datasets are tagged for localization; therefore, to evaluate

the end-to-end text localization and reading performances of our work of Chap. 4, we had

to manually tag 290 images from UCSD dataset, 503 images from Zemris, and 680 images

from MediaLab LPR. We then compared the performances of our deep-based method

with other similar algorithms proposed in literature [65, 66]; results are presented in

Tab. 4.3: the proposed method outperforms all the other approaches while also being

faster than all of them.

Some examples of images from the 3 license plate recognition datasets are provided

in Fig. 2.8; our method was trained using just the samples extracted from UCSD and

Zemris datasets and tested using all the 680 images from Medialab LPR.
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Figure 2.9: Samples from FlowMeter Database including partially occluded meters,

gravel on the digits, reflections, and excessive distance from the camera.

2.4.3 Gas Flow Meter Reading

FlowMeter Database [4] (FlowMeter DB) is a text localization and recognition dataset

that we manually created to evaluate the performances of our algorithm of Chap. 4 on

a real-world problem: the automatic reading of gas flow meters.

The problem of reading gas flow meters is interesting because companies invest mil-

lions on human employees that roam from house to house to read the values associated

with every gas meter, and working as a gas meter reader is one of the top-10 worst job

of 2012 and 2013. 4 5

FlowMeter DB contains 6050 train and 168910 test scene images of gas flow meters.

All the images were acquired using smart phones, and typically contain non-horizontal

flow meters as well as difficult light conditions, lack of focus, motion blur, reflections,

gravel on the digits, etc.; they all have been manually tagged using MIT LabelMe dataset

creation interface [67] paired with Amazon Mechanical Turk. 6

Some examples are provided in Fig. 2.9. Unlike common text spotting datasets

like ICDAR, the goal on FlowMeter DB is to localize and read only the ciphers of the

4http://www.careercast.com/content/10-worst-jobs-2012-7-meter-reader
5http://www.careercast.com/slide/worst-jobs-2013-7-meter-reader
6http://labelme2.csail.mit.edu/
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meter in the image and not the whole text. As such, the evaluation metric we used

to measure the performance of our algorithm is the Sequence Transcription Accuracy

metric of [28], which is defined as the rate of test images for which the predicted sequence

of numbers/letters matches the respective ground-truth data.

An online demo of the approach presented in Chap.4 for some images from FlowMeter

DB is publicly available online. 7

7http://gasmeterreader.dista.uninsubria.it/
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Text Localization with Fast Feature Pyramids

and MR-MSER

This chapter contains an overview of our article “Text Localization based on Fast Fea-

ture Pyramids and Multi-resolution Maximally Stable Extremal Regions” [64] presented

at the 1st International Workshop on Robust Reading (IWRR2014), in conjunction with

the 12th Asian Conference on Computer Vision (ACCV2014).

3.1 Summary

In [64], we focus our attention toward the task of text localization, proposing a novel hy-

brid text localization approach that exploits Multi-resolution Maximally Stable Extremal

Regions to discard false-positive detections from the text confidence maps generated by

a Fast Feature Pyramid based sliding window classifier.

The use of a multi-scale approach during both feature computation and connected

component extraction allows our text localization method to identify uncommon text

elements (e.g. company logos, graffiti, etc.) that are usually not detected by compet-

ing algorithms, while the adoption of approximated features and appropriately filtered

connected components assures a low overall computational complexity of the proposed

system.

In Sec. 3.2 we introduce the motivations that lead to the development of the proposed

method, which is deeply described in Sec. 3.3; in Sec. 3.4 we present the text localization

results it achieves for ICDAR2003 and ICDAR2013 Challenge 2 Task 1; an experimetal

25
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evaluation of the method is provided in Sec. 3.4.

3.2 Introduction and Motivations

Text localization from scene images has recently gained attention due to its potential

application in various areas.

Using the categorization criteria of Pan et al. [12], algorithms for text localization

can be classified as either region-based [9, 12, 19, 68] or connected component CC-

based [25, 29, 30, 31, 32]. Region-based methods exploit local features and sliding

window classifiers to identify potential regions of text and build text confidence maps,

while CC-based methods are based on the observation that text characters usually show

uniform characteristics and therefore appear as stable connected components within the

processed images.

As previously stated in chapter 2, both of the previously mentioned approaches have

disadvantages: region-based methods need to process the image in a multi-scale manner

to obtain satisfying results, this usually causes those methods to be computationally

expensive as they spend most of their processing time performing feature computation at

the different scales. Moreover, sliding window classifiers for text localization are prone to

false-positive errors as some local regions in scene images are virtually indistinguishable

from text characters [23].

Most CC-based text localization methods [25, 29, 30, 31, 32] identify stable connected

components using Maximally Stable Extremal Regions (MSER) [33]. Even though the

basic assumption of CC-based algorithms is that text characters always appear as MSER,

this does not always hold true, e.g. almost none of the published CC-based algorithms

participating in ICDAR 2013 [7] competition successfully detect blurred or uncommon

(graffiti, company logos, etc.) text characters, as those text elements either do not

appear as stable connected components or are discarded due to their irregular geometric

properties.

In this work, we pair Fast Feature Pyramids and Aggregated Channel Features [58]

with Multi-resolution Maximally Stable Extremal Regions (MR-MSER) [37] to propose

an hybrid algorithm for text localization that exploits the key ideas of region-based and

CC-based methods but tries to overcome some of their previously mentioned limitations.

Without losing detection accuracy, in multi-scale approaches some image features

(gradients, etc.) can be approximated from nearby scales within the same feature pyra-

mid, instead of being explicitly computed at every level, to reduce by 2 orders of mag-

nitude the time required to complete the feature computation process [58].

In our method, an approximated feature based classifier, trained with natural, syn-

thetic and semi-synthetic data, is used to efficiently build text confidence maps that are

subsequently refined using MR-MSER.
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Figure 3.1: Examples of uncommon and difficult text components successfully detected

by our method (images from ICDAR 2003 and ICDAR 2013 datasets). These uncommon

text fonts are usually not recognized by competing text localization approaches, as they

do not satisfy the strict geometric requirements needed to be classified as text elements

by competing CC-based methods.

Throughout our experiments, we prove that MR-MSER excels at extracting entire

words of text from scene images as single connected components, this also holds true

for words composed by uncommon and difficult character fonts. We exploit this ability

to discard false-positive text regions from the text confidence maps generated by the

sliding window classifier.

In our system, most of the initially extracted MR-MSER are stacked and discarded;

together with the use of approximated feature, this choice assures that the proposed

method maintains an acceptable computational complexity even though it employs a

multi-scale approach during both feature computation and connected component ex-

traction.

As shown by the publicly available detection results for ICDAR 2013 1 (some ex-

amples are provided in Fig. 3.1), despite its simplicity, the proposed approach succeeds

where competing CC-based text localization methods usually fail, and achieves good

results for ICDAR Challenge 2 Task 1 Robust Reading dataset.

3.3 Algorithm

The proposed approach is presented in this section: a binary classifier based on Fast

Feature Pyramids (Sec. 2.3) and Aggregated Channel Features (Sec. 3.3.1) is trained

using natural, synthetic and semi-synthetic data collected from multiple datasets and/or

artificially generated (Sec. 3.3.2); predictions from the classifier are used to build a text

1http://dag.cvc.uab.es/icdar2013competition/?ch=2&com=results, Method: IWRR2014.
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Figure 3.2: Aggregated Channel Features (ACF) extracted from negative samples from

MSRC and positive natural, synthetic and semi-synthetic samples from different datasets

(ICDAR 2003/2013 [6, 7], Char74k [69], and Synth [9]) are used to train boosted depth-

two decision trees (also known as stump classifiers).

confidence map in which potential regions of text are highlighted (Sec. 3.3.3); the text

confidence map is used, together with MR-MSER (Sec. 3.3.4), to identify potential

bounding boxes for lines of text in the processed image (Sec. 3.3.5).

An analysis of the computational complexity of the proposed approach and imple-

mentation details are provided in Sec. 3.3.6 and Table 3.1.

3.3.1 Text Region Detector

The first step in our text localization pipeline is to build a text confidence map by

detecting potential regions of text using a multi-scale sliding window ACF detector [58].

ACF uses Aggregated Channel Features, which are extracted by smoothing the pro-

cessed image I with a [1 2 1]/4 filter and then computing 10 different channels: normal-

ized gradient magnitude, histogram of oriented gradients (6 orientations) and LUV.

In our implementation, the channels are condensed into 4×4 blocks and once again

smoothed using the same approximated Gaussian kernel before being concatenated to-

gether to form single descriptors.

We tune the ACF classifier to reach optimal detection rates for text detection from

scene images by setting the sliding window size to 32×32 pixels and the window stride

to 16 pixels both in the horizontal and vertical directions.

To deal with the large variation in size of text components in ICDAR datasets, we

increase the size of the image pyramid by computing 1 octave above the canonical image

scale; the final image pyramid goes from 2× the size of the original image I to at most

32×32 pixel and has 8 scales per octave.
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(a) ICDAR’13 [7] examples. (b) Synth [9] examples. (c) Semi-synth examples.
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(d) Precision/Recall (PR) curves for the trained ACF based classifier.

Figure 3.3: Augmenting the positive training set with synthetic and semi-synthetic data

increases the detection rate of the approximated feature based classifier. Semi-synthetic

samples are generated by placing random sized artificial characters in random positions

over images from MSRC dataset [21]; random jitter (translation and rotation) is applied

to increase the robustness of the classifier.

For each octave, 7 scales out of 8 are approximated using the λ coefficients [58]

inferred from 1000 samples randomly extracted from the positive training set.

In our experiments, increasing the number of scales per octave or decreasing the

number of approximated scales per octave did not affect the final results; on the other

hand, decreasing the size of the image pyramid deeply affects the final detection rate,

e.g. removing the highest octave while maintaining the same window size almost halves

the accuracy of the classifier because tiny text components are not correctly detected

The same behaviour when removing low pyramid levels or when improperly altering the

size of the sliding window.

Our ACF classifier is composed by a discrete AdaBoost of 2048 depth-two decision

trees (Fig. 3.2) that is trained using the speed-up technique of Appeal et al. [70], which
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(a) source (b) text conf. (tcm) (c) thr. & NMS (d) textness (tex )

Figure 3.4: True-positive regions discarded when thresholding the text confidence map

tcm (b-c) are recovered in the textness map tex using MR-MSER (d).

evaluates the discriminative power of features on a subset of the training data and uses

that information to prune the underachieving ones throughout the training process.

As shown in [71], the performance of binary boosted classifiers can be improved by

bootstrapping the training data: 2 or 3 bootstrapping iterations can increase detection

rates by almost 10%. We perform 3 rounds of training, each time increasing the number

of boosted weak learners (512/1024/2048); at each training round, false-positive samples

collected from the previous round are added to the negative training set, this shifts

the decision boundary of the classifier and reduces the amount of false-positive errors

generated in the subsequent round.

Similarly to [58, 61] and unlike [71], false-negative samples are not bootstrapped

because text components wrongly classified as background are recovered using MR-

MSER, as described in Sec. 3.3.5.
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Thanks to the training routine of [70], even using 50000 positive/negative samples

and 3 rounds of bootstrapping, the ACF classifier can be fully trained in less than 3

minutes on a Intel Core i5 (see Table 3.1).

3.3.2 Training Data

Detection rates of linear classifiers are deeply affected by both the quality/amount of

training samples and the discriminative power of features extracted from those samples.

Considering that state-of-the-art results have been obtained in rigid object recog-

nition by methods based on ICF and ACF [58, 59], we assume that good results may

also be obtained in text detection using the same set of features if a decent amount of

training data is collected; for this reason, we not only gather positive/negative samples

from multiple datasets but we also generate additional semi-synthetic positive images

by combining natural and synthetic images.

The process of extracting negative samples is straightforward: images not containing

text are collected from some classes of MSRC database [21] (benches, chairs, buildings,

chimneys, kitchen utensils, miscellaneous, scenes, trees and windows). In total, 1843

images containing only background components are gathered.

For each image, a 4-level image pyramid (20%, 50%, 80% and 100% of the origi-

nal image size) is built and 32×32 pixels patches are randomly extracted from all the

pyramids until a total of 50000 negative samples are gathered.

Extracting negative examples at multiple scales reduces the number of false-positive

errors generated at low octaves in the feature pyramid.

Gathering positive training samples is a challenging task, poor results were ob-

tained when training our classifier using just the ≈5400 samples from ICDAR’13 [7]

(see Fig. 3.3).

For this very reason, we augmented the set of positive training data with: ≈8000

images from the GoodImg class of Char74k English dataset [69], ≈6200 artificial images

from the publicly available Synth dataset [9] (vertically cropped to remove neighboring

characters) and ≈30000 semi-synthetic samples obtained by combining natural data from

MSRC with synthetic fonts.

Semi-synthetic images are generated by placing random sized artificial characters in

random positions over the images previously collected from MSRC to extract negative

samples, random jitter (translation and rotation) is applied to increase the robustness of

the classifier. Characters are cropped to their bounding boxes (leaving at most 5 pixels

of random padding in every direction) and sub-sampled/up-sampled to 32×32 pixels.

In order to keep an acceptable degree of contrast between the character and its

surroundings, we compute the histogram of the patch on which each character is pasted

and discard samples that are human unreadable (zero contrast between character and

background).
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(a) source (b) text conf. (tcm) (c) thr. & NMS (d) detection (tex )

Figure 3.5: Text line formulation algorithm pipeline: the text confidence map (b) is

thresholded (c); words are identified using both textness map tex and MR-MSER (d);

final components are grouped together via Mean-shift [72].

Fig. 3.3 shows how the positive sample sets we aggregate complement each others:

samples from ICDAR and Char74k (Fig. 3.3a) contain uncommon and handmade char-

acters that cannot be artificially generated; the synthetic data from Synth (Fig. 3.3b) is

useful to learn the shapes of artificial characters placed on plain backgrounds; our semi-

synthetic samples (Fig. 3.3c) are often placed on cluttered backgrounds and degraded due

to sub-sampling/up-sampling, and thus represent an ideal point of connection between

synthetic and natural data.

All those sets of heterogeneous samples are needed to reach an acceptable degree of

accuracy for the ACF classifier, as shown by the Precision/Recall curves of Fig. 3.3d.
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3.3.3 Text Confidence Map

Let {s0, . . . , sn} be the scores assigned by the trained ACF classifier to each position of

the sliding window in the image pyramid built for the processed image; similarly to [9],

a greedy Non-maximum Suppression (NMS) [10] is performed to discard overlapping

regions.

In details: (i) we discard all the regions having score lower than µ({s0, . . . , sn}); (ii)

resize the remaining ones to half of their original size to obtain a good separation between

detected text regions (see the considerations of [19] and the code of [9]); (iii) iterate over

them by descending score and, if the region has not yet been suppressed, we suppress

all the other non-suppressed regions having intersection-over-union [11] IoU > 0.5 with

the one currently selected.

Using the suppressed regions we define a set of local text confidence maps {tc0, . . . , tcj},
one for each level of the image pyramid (as in [12]). The final text confidence map tcm

is obtained by stacking all the local confidence maps together tcm =
∑j

i=1 tci
n .

Finally, tcm is normalized in [0, 1] and thresholded at t = 0.5 to remove false-positive

regions. Even though this fixed threshold operation discards many true-positive regions

(see Fig. 3.5), losing text components in tcm is not an issue, as those components can

be fully recovered thanks to the ability of MR-MSER to detect entire words of text, as

explained in Sec. 3.3.5.

3.3.4 Textness Map and MR-MSER

The text confidence map tcm is used, together with MR-MSER [37], to generate a

textness map tex in which the value of each pixel denotes the probability it belongs to

a text component in the original image I.

To extract MR-MSER, we compute 7 channels for I (RGB, HSI and ∇) and build

an independent scale pyramid for each channel. MR-MSER are detected at each level of

the pyramid, which has 1 octave per scale and a minimum size of 256×256 pixels; images

in the pyramid are obtained by blurring and sub-sampling using a 6-tap Gaussian kernel

with σ = 1.

To reduce the final number of MR-MSER, and discard the duplicate ones, at each

level of each pyramid we discard nested MR-MSER and retain only the left ones. This

significantly decreases the final number of extracted MR-MSER: on average we discard

more than 2000 components from the ≈2500 initially identified.

Similarly to the text confidence map tcm, the textness map tex is built by iterating

over the extracted MR-MSER and, for each of them, increasing the value of its pixels in

the tex map by the average value of those pixels in tcm.
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(a) source (b) scale 1.0 (c) scale 0.5 (d) scale 0.25 (e) scale 0.12

Figure 3.6: MSER extracted at different levels of the pyramid capture different details:

at low scales (≤ 0.5), characters are merged together and words are captured as single

components, this also holds true for uncommon fonts (e.g. “Apocalypse Now”); in some

instances, difficult characters that are not detected at the original scale are correctly

identified as stable connected components at lower levels in the pyramid (e.g. “£99”,

graffiti).

3.3.5 Text Line Formulation

The last step in a text localization framework consists in identifying the bounding boxes

for words of text in the processed image; as in [25], we formulate an algorithm that can

be applied to different datasets without extensive tuning.

We propose a peak-based text grouping algorithm that is extremely fast (see Ta-

ble 3.1) and requires almost no parameterization.

In details: (i) local maxima of the column-wise histogram of tex are identified, those

peaks correspond to rows {r0, . . . , rk} of tex having maximum intensity value compared

to their neighbours; (ii) for each peak row ri, connected components {cc0, . . . , ccq} in-

tersecting ri in the text confidence map tcm are identified; (iii) each cci is resized to the
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Figure 3.7: The text confidence map tcm is superimposed over MSER (top-left) and MR-

MSER (bottom-left). Top-row: most characters are not identified when using MSER

to reshape the connected components from tcm; Bottom-row: both words are correctly

identified when using MR-MSER, as their intersection-over-union IoU with the con-

nected components from tcm is greater than the given threshold.

size of the minimum bounding box that encloses all the MR-MSER extracted from the

image that have a pixel-wise IoU > 0.2 with cci; (iv) each resized cci is assigned a score

computed as the average intensity of its pixels in tex and overlapping components are

suppressed (as in Sec. 3.3.3); (v) similarly to [25], neighbours connected components are

merged into text lines using Mean-shift [72], connected components are clustered only

on the basis of their centroid positions. The whole pipeline is summarized in Fig. 3.5.

In phase (iii), we reshape regions labelled by the classifier as potential text areas

according to the boundaries of MR-MSER extracted from the image. From Fig. 3.6 we

observe that MR-MSER extracted at low levels in the scale pyramid are able to capture

entire words (instead of single characters) as at those low levels most details of the

original image are lost, and this causes characters to be merged together and words to

be identified as single connected components.

As shown in Sec. 3.4.2 (see Table 3.2), MR-MSER outperform both state-of-the-

art object proposal methods and MSER [33] at capturing entire words of text from

natural images; our peak-based grouping algorithm exploits this talent to recover true-

positive regions that are lost when removing false-negative regions, e.g. see Fig. 3.6:

most of the components of the words “Fired Earth” are discarded when thresholding

tcm (together with all the false-positive areas) however, since both words have been

captured as single MR-MSER (see how “Fired Earth” entirely appears in tex), the

proposed method successfully identifies their bounding boxes by using MR-MSER to

reshape the partial bounding boxes identified from tcm to the boundaries of “Fired”

and “Earth”.

Exploiting the word detection ability of MR-MSER to discard noise regions without

worrying about losing true-positive areas is the key idea of our method.

Unlike most of the other methods for text localization, by clustering text components
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Table 3.1: Implementation details. Times refer to a 640×480 image and≈500 MR-MSER

processed on a desktop Intel Core i5 with 12Gb RAM.

Task Time (s) Implementation

Gathering pos./neg. training data 103.40 Parallel

Training the classifier 185.58 Normal

Building the text confidence map 0.29 Parallel

Building the textness map 0.45 Parallel

Text line formulation 0.01 Parallel

on the basis of their centroid positions (ignoring scale, orientation, etc.), our algorithm

often captures entire lines of text as single components. Even though some evaluation

metrics penalizes our method for doing such thing (see Sec. 3.4.3), detecting text at line

level is totally acceptable in real applications as the task of splitting lines into words can

be carried out by more sophisticated text reading algorithms (e.g. PhotoOCR [22]).

3.3.6 Implementation Setup

Timings information for the proposed approach are given in Table 3.1: gathering pos-

itive/negative samples and training the classifier for ICDAR 2013 dataset require less

than 5 minutes on a desktop machine (Intel Core i5, 12Gb RAM). On average, a natural

640×480 image can be fully processed in ≈0.75 seconds.

The computational complexity of the method can be reduced by decreasing the num-

ber of channels from which MR-MSER are extracted, by using a GPU implementation

of the classifier (as in [61]), or by changing the implementation language.

The whole method has been developed using Matlab 2014a; training routines for the

ACF classifier are implemented in C++ and used as external mex files.

3.4 Experimental Evaluation

In this section, we provide an experimental evaluation of the components described in

Sec. 3.3: the performances of the ACF text region detector introduced in Sec. 3.3.1 are

evaluated in Sec. 3.4.1; the capability of MR-MSER to detect words of text is analyzed

in Sec. 3.4.2; the results achieved by the proposed approach for ICDAR 2003 and ICDAR

2013 text localization datasets are presented in Sec. 3.4.3 and compared with competing

published and unpublished algorithms.
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Table 3.2: Evaluation of MR-MSER for text word detection. MR-MSER are compared

with MSER at detecting single characters and entire words, while varying the image

channels from which they are extracted, as in [38].

Image Channels
MR-MSER MSER

chars words chars words

∇ 0.56 0.69 0.52 0.56

RGB 0.63 0.40 0.56 0.25

HSI 0.62 0.51 0.56 0.36

HSI ∪ ∇ 0.71 0.77 0.67 0.65

RGB ∪ ∇ 0.72 0.73 0.68 0.61

HSI ∪ RGB 0.70 0.56 0.64 0.41

HSI ∪ RGB ∪ ∇ 0.75 0.78 0.71 0.66

3.4.1 Classifier and Training Data

In Fig. 3.3d, we plot the Precision/Recall (PR) curves for multiple ACF classifiers trained

using the same parameter configuration but different training samples.

PR curves have been obtained as in [19]: the text confidence map tcm is thresholded

multiple times to yield binary decisions at each pixel and compared pixel-wise with

ground-truth annotations from ICDAR 2013.

This experiment shows how deeply the training data affects the performance of our

sliding window classifier: poor results are obtained when training using just the samples

from ICDAR 2013. Significantly better results are obtained when combining ICDAR’s

data with samples from Char74k; the best results are achieved when augmenting the

positive training set with synthetic and semi-synthetic data generated as described in

Sec. 3.3.2.

In every experiment we kept the training set balanced, meaning that the number of

negative samples has always been equal to the number of positive samples.

The area-under-the-curve (AUC) for the PR curve for the classifier trained using

natural, synthetic and semi-synthetic data is higher than the one of [19], this proves

the effectiveness of Aggregated Channel Features and Fast Feature Pyramids for text

localization from natural images (as expected from [59]).

3.4.2 Word Detection with MR-MSER

The proposed method heavily relies on the ability of MR-MSER to identify entire words

of text from natural images (see Sec. 3.3.4 and Sec. 3.3.5). Similarly to MR-MSER

and MSER, object proposal methods learn the concept of object and generate a set of

windows that potentially contain that object in the processed image; for that reason
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Figure 3.8: Text word detection accuracy evaluation and timings information for

MR-MSER, MSER and object proposal methods on ICDAR 2003, while varying the

intersection-over-union IoU coverage tolerance.

we decided to include the most popular object proposal algorithms in our experimental

comparison.

In Fig. 3.8, MR-MSER are compared with object proposal methods [42, 44, 45, 46, 47]

and MSER at detecting entire words of text from ICDAR 2003 images.

Results are measured as in [45]: for each algorithm, at most 1000 bounding boxes per

image are selected from the ones initially extracted, the Detection Rate (DR, y-axis) is

the percentage of ground-truth words covered by those bounding boxes. A ground-truth

word is covered if it exists at least one bounding box, among the 1000 selected, that has

an IoU > x with the ground-truth bounding box of that word.

The value of x varies on the x -axis, by increasing x we require the identified bounding

boxes to match more precisely the ground-truth data in order for a word to be considered

covered.
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The comparison is carried out as follows:

– Objectness [44]: among the ≈1850 ranked proposals generated per image, the top

1000 are selected for evaluation. MS, CC and SS cues are learnt from 50 images

from ICDAR’03 training set;

– Selective Search [42]: evaluated in its fast variant, 1000 windows are uniformly

sampled from the ones initially extracted;

– Prims [45]: a grid search is performed in [0, 5]3 for color similarity, common border

ratio and size, the bias is set to −3.00. The parameters providing the best results

for 1000 unique windows and IoU > 0.5 are used for evaluation.

– Proposals [46]: evaluation is performed considering the bounding boxes surround-

ing the identified ranked segmentations proposals. The top 1000 windows are

selected from the ones initially extracted.

– MR-MSER: extracted as described in Sec. 3.3.4, the bounding boxes surrounding

each MR-MSER are considered for evaluation. On average, no more than 500

windows per image are generated.

– MSER [33]: extracted from RGB, HSI and ∇ channels. The bounding boxes

surrounding 1000 unique MSER are uniformly sampled from the initial set.

MR-MSER prove their effectiveness as robust word detector from scene images by

achieving higher detection accuracies throughout all the tolerance values; while all the

other evaluated methods fail at IoU ≥ 0.6.

3.4.3 Text Localization Results

In Tables 3.3a and 3.3b, the proposed text localization approach is evaluated on ICDAR

2003 and ICDAR 2013 datasets.

ICDAR 2003 [6] contains a total of 509 images: 258 for training and the remaining

251 for testing. The classifier is trained using 45000 positive samples from ICDAR’03,

Char74k, Synth and Semi-synth and 45000 negative samples from MSRC.

Bad training samples from ICDAR 2003 have been manually removed to avoid a

degradation of performance.

Precision, Recall and F-measure are computed by looking for the best match between

each detected bounding boxes and each ground-truth annotation [25, 29].

This evaluation metric penalizes approaches that detect text at line level, as only one-

to-one (see [73]) matches are taken into account. As such, in order to obtain acceptable

results, we disable the text component clustering step of our text line formulation algo-

rithm (step (v) in Sec. 3.3.5); however, since MR-MSER often capture entire words as
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Table 3.3: Text localization results for ICDAR 2003/2013 Challenge 2 Task 1.

(a) ICDAR’03. Evaluation metric: [6]

Method P R F1

Li [25] 0.79 0.64 0.71

Kim [29] 0.78 0.65 0.71

Proposed 0.71 0.74 0.70

TD-Mixture [8] 0.69 0.66 0.67

Yi [74] 0.73 0.67 0.66

Epshtein [23] 0.73 0.60 0.66

Li 0.62 0.65 0.63

Chen 0.60 0.60 0.58

Neumann [32] 0.59 0.55 0.57

Zhang 0.67 0.46 0.55

(b) ICDAR’13. Evaluation metric: [7]

Method P R F1

Proposed 0.86 0.70 0.77

Yin [31] 0.88 0.66 0.76

Neumann [75] 0.88 0.65 0.74

Bai [76] 0.79 0.68 0.73

Shi [30] 0.85 0.63 0.72

Shijian 0.75 0.69 0.72

Yang 0.70 0.65 0.67

Fabrizio [77] 0.74 0.53 0.62

Baseline 0.61 0.35 0.44

Inkam 0.31 0.35 0.33

single connected components, our method still generates a lot of many-to-one detections

and therefore performs 1% worse than the best competing approach.

ICDAR 2013 [7] contains a total of 462 images: 229 for training and 233 for testing.

The classifier is trained using 50000 positive samples from ICDAR2013, Char74k, Synth

and Semi-synth and 50000 negative samples from MSRC.

Unlike ICDAR 2003, results are measured using the DetEval [73] software which

takes into account one-to-one, one-to-many and many-to-one matches between ground-

truth annotations and detected bounding boxes. The competition protocol penalizes

methods that perform text localization at character level (one-to-many) but does not

inflict any penalty to methods that provide text detection at line level (many-to-one).

Unlike previous years, the concept of don’t care zone is introduced to identify human

unreadable characters that should not be taken into account to compute the final score.

Each method can be evaluated and compared with all the other published and un-

published works using the web page of the competition.

The proposed method outperforms all the competing approaches, full detection re-

sults for all the evaluated methods are available on ICDAR’s web page.

Using classic MSER in place of MR-MSER, F-score of the proposed method decreases

by roughly 10% on both datasets, as expected from the analysis of Sec. 3.4.2, where multi-

channel MR-MSER covers 78% of ICDAR’s ground-truth words while MSER provides

a coverage of 66%.

Note that results for ICDAR 2013 differ from those listed in [7] as in our table they

have been updated using the latest correct values from the ICDAR 2013 website, and
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(a) Positive (b) Negative

Figure 3.9: Examples of positive (a) and negative (b) text localization results from our

method for ICDAR 2013 Challenge 2 Task 1 (green→true-positive, red→false-positive).

all the competing methods have been re-ranked according to their new F-score values.

For references to all the algorithms see [7, 6].

Negative detection results are provided in Fig. 3.9, the proposed method fails when

MSER extracted at multiple scales do not capture text components or when the text

confidence map is noisy and text components are lost due to threshold (e.g. “HHH

CELCON”). It is in fact possible to obtain different values of Precision/Recall by shifting

the threshold value used during the text confidence map building phase described in

Sec. 3.3.3: lower threshold values increase the Recall of the algorithm and decrease

its Precision, while higher values discard more components from the text confidence

map and therefore decrease the Recall of the whole system while increasing its overall

Precision.





4
Text Spotting with Augmented MR-MSER

Proposals and CNN

This chapter contains an overview of our article “Augmented Text Character Propos-

als and Convolutional Neural Networks for Text Spotting from Scene Images” [4] pre-

sented at the 3rd International Asian Conference on Pattern Recognition (ACPR2015)

where it won the “best poster award”.

4.1 Summary

In [4], unlike [64], we do not focus just on the task of text localization from natural

images; instead we propose a novel method for end-to-end text localization and reading

from scene images based on augmented Multi-resolution Maximally Stable Extremal

Regions and Convolutional Neural Networks.

In this work we try to augment text character proposals to maximize their coverage

rate over text elements in scene images, to obtain satisfying text detection and recogni-

tion rates without the need of using very deep architectures nor large amount of training

data, unlike most of the other deep models proposed in literature for end-to-end text

localization and recognition [43, 28].

Using simple and fast geometric transformations on multi-resolution proposals our

system achieves good results for several challenging datasets while also being computa-

tionally efficient to train and test on a desktop computer.

A short introduction of our work is given in Sec. 4.2. The two main parts of the

43
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a) Test image

FG/BG CNN

OCR CNN

b) Proposals c) Text localization d) Text reading

Figure 4.1: A visual overview of the proposed text spotting algorithm. Given a test

image (a), augmented text character proposals (geometrically modified Multi-resolution

Maximally Stable Extremal Regions) (b) are extracted and processed by a Convolutional

Neural Network to build a text localization map in which potential areas of interest are

highlighted (c). High intensity regions from the text confidence map are considered as

potential regions of text and they are further processed to recognize text elements of

interest (d).

pipeline for the proposed method are described in Sec. 4.3; an experimental evaluation

of the method on several text spotting datasets is given in Sec. 4.4.

4.2 Introduction and Motivations

As discussed in Chap. 1, text localization and recognition (text spotting) from scene

images and digital documents is an interesting task that finds applications in multiple

commercial areas where automated systems can replace human workers in carrying out

tedious repetitive data entry tasks.

In the last few years, researchers were able to obtain new state-of-the-art results for

text spotting from scene images; however, recent state-of-the-art algorithms are often

difficult to reproduce as they use very deep architectures [28] and/or large datasets (10

million or more manually tagged images) which sometimes are not publicly available due

to copyright restrictions [78].

In our text spotting work, instead of focusing our attention on increasing either the

deepness of the text localization and recognition classifiers, or the amount of labeled

training data, we optimize the data that is fed to the proposed model by maximizing the

detection recall of multi-resolution text character proposals extracted from scene images

using simple geometric transformations.

Initially, we tackle the problem of reading analogic flow meters from natural im-

ages, showing that two slight variants of LeNet Convolutional Neural Network [53],
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trained solely on augmented Multi-resolution Maximally Stable Extremal Regions (MR-

MSER) [37], can reach nearly human detection accuracies and fast recognition times.

We then incrementally prove the generality of the proposed method by applying it

to the task of license plate recognition [65, 66] and unconstrained text localization from

scene images [7, 79, 43], obtaining state-of-the-art results for the first and competitive

performances for the second.

In our experiments, for all the evaluated datasets, replacing augmented proposals

with their respective non augmented versions leads to a dramatic reduction in terms of

detection rates.

4.3 Algorithm

Text spotting is a complex task that requires an algorithm to detect and recognize all

the natural and artificial text components appearing in the processed image.

In our method we approach this task using Convolutional Neural Networks. Most of

the other works in literature perform end-to-end text localization and recognition in an

integrated manner, using individual and extremely large deep architectures [43, 28] that

require weeks or months to be trained on a professional server configuration equipped

with expensive GPU (e.g. the network of [28] requires approximately one month to be

trained using Google DistBelief [52]).

While these models work extremely well for the task they are trained, they are

impossible to reproduce on a common desktop machines because the amount of video

SDRAM required to load the network in the GPU exceeds the capacity of the GPU

itself. Therefore, even if you have access to the trained model you cannot use it due to

lack of memory resources.

In our method, instead of trying to reach the best possible text spotting detection

rates, we focus on the development of a system that can be efficiently trained and

used on a common desktop machine, and that can be easily extended to reach better

performances on practical applications (e.g. unconstrained flow meter and license plate

recognition).

To be able to reach acceptable results without using large Convolutional Neural

Networks, we split the task of text spotting into two individual components using two

indipendent networks, one trained for text localization (Sec. 4.3.1) and the other trained

for text recognition (Sec. 4.3.2).

The first network is designed to build text confidence maps in which the intensity level

associated with each pixel denotes the probability that the pixel belongs to foreground

(text) or background (noise) The second network processes the information coming from

those text confidence maps and associates a number/letter to each potential text element.

The whole pipeline (text localization and recognition) is visually summarized in
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a) Proposal b) Enclosing bounding box c) Squarify

d) Inflate by 30% and 60%e) Patchesf) Jitter (only during training phase)

Figure 4.2: Text character proposal augmentation pipeline. Given a proposal and its

bounding box (a,b): the bounding box is squarified without moving its center (c); two

additionals bounding boxes are obtained by inflating the squarified bounding box by

30% and 60% of its area (d); resulting patches are randomly rotated within [−π
4 ,

π
4 ] to

increase the robustness of the trained classifier (e,f).

Fig. 4.1 and deeply analyzed in the following sections.

4.3.1 Localization

The proposed text localization pipeline is visually summarized in Fig. 4.3.

Given a test image, Multi-resolution Maximally Stable Extremal Regions (MR-

MSER) are computed as in [37]: Maximally Stable Extremal Regions (MSER) [33]

proposals are extracted at each level of a scale pyramid, which has 1 octave per scale

and a total of 3 scales.

Unlike [37, 64], no Gaussian smoothing is applied between octaves; ∆ parameter,

which regulates the amount of stability required for a connected component to be con-



4.3 Algorithm 47

Figure 4.3: Text localization pipeline. MR-MSER text character are extracted from the

given test images (a,b) are augmented using the augmentation pipeline of Fig. 4.2 (c) and

processed by the text localization Convolutional Neural Network (d); foreground/back-

ground prediction values are stacked together to form text confidence maps (e).

sidered stable, is set to 3 to maximize the number of extracted proposals.

Using this setup, on average, roughly 8k MR-MSER proposals are extracted from a

640× 480 rgb natural scene image.

The idea behind the use of MR-MSER is that unstable text regions in the original

image may become stable at lower scales in the pyramid, where most image details are

lost, colors are merged together [37], and even difficult text elements are captured as

stable components (see Chap. 2 and the experimental evaluation provided in Chap. 3).

To increase detection recall of MR-MSER proposals over text regions in the processed

images, we adopt the augmentation pipeline described in Fig. 4.2 : (i) the original

proposal is squarified without moving its center, (ii) similar to [28], neighboring text

characters and background noise are captured by inflating the squarified proposal by 30%

and 60% of its area in every dimension, (iii) the squarified original proposal, together

with its inflated variants, are resized to 28×28 pixel to fed as input to the Convolutional

Neural Network.

Thanks to this augmentation routine, given a single MR-MSER proposal, a total of

3 augmented variants are generated; this provides us with roughly 24k image patches

per image that need to be classified as either containing text characters of interest

(foreground - FG) or noise (background - BG).

The task of classifying image patches as belonging to either FG or BG is approached

using a slight variant of LeNet Convolutional Neural Network [53].
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Table 4.1: Implementation details. Times refer to a 640 × 480 rgb image processed on

a Intel Xeon E5-1620 at 3.5 GHz, NVIDIA GeForce GTX 980, and C++ Caffe Deep

Learning library. The number of text character proposals first increases from 8k to 24k

during the augmentation step described in Fig.4.2, and then drastically decreases when

background components are filtered out after the text localization Convolutional Neural

Network filtering step. The algorithm is roughly 10x faster than [64].

Task Time (ms) Comp. # of prop.

MR-MSER (loc.) 14.4 CPU 8k

Prop. augment (loc.) 2.80 CPU 24k

FG/BG Convolutional Neural Network (loc.) 47.2 GPU 1k

OCR Convolutional Neural Network (read) 13.8 GPU < 100

The proposed architecture has a total of three convolutional hidden layers with

[128, 256, 512] units each, and two fully connected layers containing 512 units. Max

pooling with 2 × 2 window size is performed after each convolutional step. Kernel size

and stride are fixed to respectively 3 and 1 for all the convolutional layers. The final

classification is performed using Softmax which assigns the processed proposal a pair of

values denoting the probability that the proposal belongs to FG and BG.

The network is trained using augmented MR-MSER proposals extracted from images

from the given training dataset.

Positive samples are obtained by selecting augmented MR-MSER proposals having

Intersection-over-union [11] IoU > 0.5 with at least one ground-truth text character

annotation; an equal amount of negative training patches (IoU = 0 for every ground-

truth text character annotation) are randomly selected from the given training dataset.

Note that, since the network is relatively small (10MB SDRAM), we can apply on-

line jitter to the training patches while maintaining acceptable training speeds (≈ 1000

sample/s), and we can substantially speed up the training process by using a large batch

size (256+ samples) during each training iteration.

Moreover, having a network that small allows us to use the proposed method even

on cheap low-end GPU without worrying about the possibility of running out of GPU

memory (most GPU avaible on the market have more than 256MB of SDRAM).

As shown in Fig. 4.2, each training patch is randomly rotated four different times

within [−π
4 ,

π
4 ] radians, thus, starting from roughly 24k augmented patches we generate

an average of 96k randomly rotated patches per training image.

As in [80] and in our previous work of Chap. 3, confidence values provided by the

Convolutional Neural Network for each augmented MR-MSER proposal are stacked to-

gether to build a text confidence map in which high intensity regions denote potential
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Figure 4.4: Text reading pipeline. Augmented text character proposals overlapping

potential regions of text in text confidence maps (a,b), generated as in Fig. 4.3, are

assigned a letter/number by the text reading Convolutional Neural Network (c). Non-

maximum Suppression (NMS) [10] is performed over prediction scores generated by the

network (d) to obtain the final readings (e).

text components of interest.

As shown in Fig. 4.3 and Table 4.1, the proposed localization pipeline works well for

heterogeneous images, and requires on average 64.4 ms to be completed on a GTX 980

GPU, which is roughly 10x faster than our previous work on the localization.

4.3.2 Recognition

The proposed text reading pipeline is visually summarized in Fig. 4.4.

Given the normalized text confidence map (values in [0, 1]) produced by the previ-

ously described text localization step, we gather augmented MR-MSER proposals repre-

senting potential regions of text as follows: (i) each proposal is assigned a score computed

as the average intensity of its pixels in the text confidence map, and (ii) proposals with

score higher than σ are considered potential regions of text.

In our experiments we found that fixing σ = 0.9 gives an optimal balance between

Precision and Recall on the evaluated datasets. However the value of σ should be

changed if the goal is to obtain a more accurate system (higher Precision → higher σ),

or to capture as many text elements as possible (higher Recall → lower σ).

Note that, since flow meter and license plate images contain single text lines of

interest, to discard additional non-text proposals we compute the best fit line for the

data using Weighted Linear Least-squares over proposal centers and scores, and remove



50 Text Spotting with Augmented MR-MSER Proposals and CNN

proposals that do not overlap that line. This routine cannot be used for ICDAR images

as they may contain multiple lines of text (we only use threshold on ICDAR).

Non discarded proposals (roughly 1k per image) are then processed by a properly

trained Convolutional Neural Network that performs OCR and assigns each of them a

digit/letter together with a confidence value.

The network has the same architecture of the one used for text localization, and it

is trained using the same data gathering and on-line jitter techniques.

Non-maximum Suppression (NMS) [10] is finally performed over proposal confidence

values; NMS overlap threshold is set to 0.1 IoU to discard nested proposals generated

by our augmentation technique.

Text reading take approximately 13.8 ms on a NVIDIA GeForce GTX 980 GPU.

This is much faster than the text localization routine of Sec. 4.3.1 because, as showed

in Table 4.1, the number of text character proposals that have to be processed by the

text reading Convolutional Neural Network is roughly 1/24th of the number of proposals

processed by the text localization Convolutional Neural Network.

4.4 Experimental Evaluation

The proposed method has been evaluated using the following three standard text spot-

ting datasets: FlowMeter, Medialab LPR [65] and ICDAR 2015 task 2 [7].

In the next paragraphs the datasets are once again briefly introduced (a more com-

plete description, together with some visual examples of images taken from those datasets,

is provided in Chap. 2).

FlowMeter DB contains 6050 train and 168910 test scene images of gas flow meters.

All the images were acquired using smart phones, and typically contain non-horizontal

flow meters as well as difficult light conditions, lack of focus, motion blur, reflections,

gravel on the digits, etc.

Medialab LPR contains 680 scene images of car license plates, obtained by merging all

the collections from Medialab website (as in [65, 66]). 1 Similarly to competing methods,

none of those images were used for training our model; instead, we used a total of 790

manually tagged training images from Zemris DB and UCSD Car LPR datasets. 2

ICDAR 2015 Task 2 contains 229 train and 233 test scene images of focused text, it

has been the reference dataset for text localization for the last decade due to its difficulty

and large number of competing approaches. 3

Evaluation results for FlowMeter, Medialab LPR and ICDAR 2015 Task 2 datasets

are listed in Tables 4.2, 4.3 and 4.4 respectively.

1http://www.medialab.ntua.gr/research/LPRdatabase.html
2http://vision.ucsd.edu/belongie-grp/research/carRec/car data.html
3http://rrc.cvc.uab.es/?ch=2&com=evaluation
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Figure 4.5: Text chatacter detection recall of MSER, MR-MSER and augmented MR-

MSER proposals for FlowMeter dataset, while varying Intersection-over-union [11] IoU

coverage tolerance as in [44, 42] and Chap. 3.

Results for Tables 4.2 and 4.3 are measured using Sequence Transcription Accuracy

metric [28], namely the rate of test images for which the predicted sequence of number-

s/letters matches their respective ground-truth data.

Recall (R), Precision (P) and Hmean for Table 4.4 are measured using DetEval

evaluation tool [7] following the standard end-to-end ICDAR evaluation protocol.

The proposed method achieves nearly human performances for FlowMeter dataset,

state-of-the-art results for Medialab LPR, and competitive results for ICDAR 2015 Task

2. Results on this latest dataset do not exceed the ones obtained by more sophisticated

methods [43, 79] but it has to noted that, unlike most competing approaches (see web-

site), our model has been trained solely on samples gathered from the original training

set in an extremely small amount of time and using a cheap GPU.

Unsurprisingly, accuracies drop when not using augmented proposals; in fact, as

shown in Fig. 4.5, augmented MR-MSER achieves on average 20% more detection recall

on FlowMeter dataset for all the evaluated IoU values, compared with MSER [33] and

MR-MSER [37].
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Table 4.2: FlowMeter Database results. 168910 test and 6050 train images.

Method Acc. (%) Speed (img/s)

Human performance 95.1 0.08

SVM+HOG 67.4 2.10

Proposed 93.6 12.8

Proposed (no augment) 83.1 12.9

Table 4.3: Medialab LPR results. 790 test images from UCSD and Zemris datasets.

Method Acc. (%) Speed (img/s)

Human performance 97.2 0.25

Anagnostopoulos et al. [65] * 86.0 3.60

Zhu [66] ** 87.3 9.80

Proposed 90.2 10.0

Proposed (no augment) 83.3 10.4

* Intel Pentium IV at 3.0 GHz with 512 MB RAM.

** Intel Core 2 Duo at 2.4 GHz with 512 MB RAM.

Table 4.4: ICDAR 2015 Challenge 2 Task 2 results. 233 test and 233 train images.

Method R (%) P (%) Hmean (%)

StradVision [79] 80.2 90.9 85.2

VGGMaxNet cmb [43] 77.3 92.2 84.1

ABBYY OCR SDK v10 35.1 61.0 44.5

Proposed 67.0 83.2 74.1

Proposed (no augment) 47.9 82.4 60.5
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Figure 4.6: Text character detection recall evaluation and timings information for mul-

tiple augmented proposal algorithms [37, 38, 33]. In this experiment, intersection-over-

union IoU is fixed and detection recall is computed at IoU = 0.5. MR-MSER [37] provide

the best detection recall for all the evaluated datasets, with a small overhead in terms

of computational complexity (roughly 3 ms more per image over simple MSER [33]).

As also shown in Fig. 4.6 and Table 4.1, augmented MR-MSER provides the best

compromise between detection recall and computational complexity among the evaluated

augmented proposal algorithms [37, 38, 33].

MR-MSER proves once again to be the best method for extracting text elements as

connected components from natural scene images, requiring an overhead of roughly 3

ms to be computed for a 640× 480 rgb image.

As in Chap. 3, Detection recall is measured as the percentage of ground-truth text

character annotations covered by proposals; a text character is considered covered if

there exists at least one proposal having IoU > x with the ground-truth bounding box

of that character; x varies on the horizontal axis in Fig. 4.5, and it is fixed to 0.5 in

Fig. 4.6.

Using augmented MR-MSER proposals, our CNN provide text localization/reading

predictions for each text character based both on the character patch (the original pro-
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posal), and its surroundings (the inflated proposals); this is similar to processing the

original image at a multi-resolution level and leads to more accurate text confidence

maps with a small overhead in terms of computational completxity (see Table 4.1).



5
Conclusions, Future Directions and Practical

Applications

5.1 Conclusions

Text localization and recognition from real-world images is a complex Computer Vision

task that is being studied by many research laboratories and international companies

for its importance and critical use in newly developed technologies, such as automated

driving and automated indexing of information from visual data.

Unfortunately, to this day no method proposed in literature achieves text local-

ization and recognition rates that are even remotely comparable to human observers’

performances. For this very reason, competition among different text localization and

recognition methods in this field is still very strong, especially on standard datasets

like the ones from the International Conference of Document Analysis and Recognition

(ICDAR) or the ones for real-world applications from Google, such as Google Street

View House Numbers (SVHN) for house numbers localization and recognition from im-

ages harvested from Google Street View; Google Street View Text (SVT) for cropped

lexicon-driven word recognition and full image lexicon-driven word detection and recog-

nition from Google Street View.

As described in this thesis, throughout my Phd career two different approaches for

text localization and text spotting from natural images were proposed by me and my

research team [4, 64]. These methods achieved state-of-the-art performances on ICDAR

and other challenging datasets at the time of their acceptance, and still provide excellent

55
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localization and recognition rates when compared to other more recent and more complex

works. In the following paragraphs, the pipelines and key insights that allow those

methods to achieve those good recognition rates are briefly resumed and commented. In

Sec. 5.2 we provide and motivate some ideas and advices on how these two methods can

be modified and improved to reach even better results.

Like previously stated, text spotting from natural images finds many useful applica-

tions in real-world problems; as such, it is not surprising that the algorithm of Chap. 4

is currenly being used by different utility companies to gather information from visual

data and replace tedious human activity. A brief description of the current industry

application (automatic gas meter reading) of our method is given in Sec. 5.3.

In our work of Chap. 3 we exploit the latest advancements in rigid object recognition

and Multi-resolution Maximally Stable Extremal Region (MR-MSER) to obtain state-of-

the-art recognition rates for text localization from scene images. In this solution, stable

connected components are not discarded on the basis of their geometric properties; this

assures that uncommon text fonts that are typically filtered out as noise elements by

competing approaches are correctly retained and identified. Thanks to the use of ap-

proximated multi-resolution features and appropriately filtered connected components

extracted in a multi-scale multi-channel manner, our text localization system is compu-

tationally efficient to train and test, this enables its application to numerous problems

in which execution and training times are critical factors.

In our work presented in Chap. 4 we expand our research interest to end-to-end text

localization and recognition from natural scene images, proposing a novel and efficient

deep-based method for text spotting. In this second work, our goal was to achieve

good text detection and recognition rates in practical applications, paired with a low

computational complexity. To this end, we introduced a novel fast geometric-based

MR-MSER proposal augmentation technique which enhances detection recall of MR-

MSER for text characters in natural scene images. Using small LeNet Convolutional

Neural Network variants and augmented proposals, our system localizes and recognizes

text characters of interest from 640 × 480 rgb images in roughly 78.2 ms on a desktop

machine, can be fully trained in few hours (2-8, depending on the size of the processed

training dataset), and achieves nearly human accuracies for several challenging text

spotting datasets.

The two previously described methods leave room for many improvements, for exam-

ple: (i) the forest of stump classifiers used in the work of Chap. 3 can be replaced with

a faster and more accurate deep-architecture, this would most probably boost the text

localization performance of the method and enable it to achieve state-of-the-art results

for ICDAR 2015 Challenge 2 Task 1 text localization dataset; on the downside, it would

also require a lot more of training samples than the ones currently used to train the

forest (50k samples); (ii) the method of Chap. 4 can be extended by increasing the size
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of the employed deep models (higher number of convolutional layers) and by extracting

more training data so that it would be able to compete with other more accurate text

spotting methods on ICDAR 2015 End to End Challenge 2 Task 4.

5.2 Future Directions

In my opinion, every possible improvement to the presented methods of Chap. 3 and

Chap. 4 requires the introduction of deep architectures and the subsequent collection

of more labelled training data. In fact, as shown in this thesis, deep-based approaches

are currently the most effective and innovative way for reaching good results for text

localization and recognition in natural scene images.

The positive side of these novel deep architectures is that their use allow text spotting

methods to reach significantly higher detection rates than traditional shallow approaches.

The negative side is that deep models require several million training samples to reach

human-level performances and that all of the text spotting datasets currently available

in literature contain at most thousands of labelled samples.

Given this situation, the most significative input for future developments of the

presented works (and also for most of the competing deep-based text spotting approaches

proposed in literature throughout these last years) would be to propose a method for

automatically generating synthetic images of known text characters in known locations.

In fact, as also stated by many experts in text localization and recognition fields, the

best way to improve state-of-the-art results for deep-based text spotting algorithms

consists in designing and developing a system for the automatic generation of synthetic

train images that accurately simulate/mimic all the natural text elements and difficult

conditions commonly found in real world natural scene images.

The way I see it, a possible solution for creating those images could be to exploit the

advancements in computer graphics to artificially create highly realistic 3D environments

like those found in modern simulation video games and then to capture from those 3D

environments text elements from different point of views to simulate distortions, light

variations, etc. as in real-world natural scene images. Such set of images would provide

a virtually infinite set of positive samples that may be used to train deep models. The

training accuracy of these models would probably keep increasing epoch after epoch be-

cause each individual sample is never seen twice during the different epochs, and the final

trained classifier would most probably achieve human-level text spotting performances

in practical applications.

The idea that more labelled training data leads to better recognition rates is not

a myth as it has been proven multiple times in literature. For example, very recent

deep-based works [22, 28] achieve recognition rates that are sometimes 20% higher than

competing deep-based methods; one of the main reasons behind these outstanding results
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lies in the large amount of labelled data used to train the deep models. Unfortunately

for the research community, labelled data is precious, expensive to gather, and it is

often publicly unavailable due to privacy issues. For example, the training labelled data

of [22, 28] is not publicly available since it contains sensitive third party data. Most of

that training data was gathered exploiting manual labelling from users and/or Amazon

Mechanical Turk workers, both of these tagging techniques come at a high price.

Even though the lack of publicly available training data is the main issue, the ex-

treme computational power required to train deep architectures is also a problem. Even

supposing that a sufficient amount of labelled training data is made publicly available,

some recently proposed deep architectures require an amount of computational power

that is often achievable only by large IT companies. For example, the Convolutional

Neural Networks of [28] require many weeks to be trained using Google DistBelief frame-

work [52], and thus it is not feasible to re-train and/or tune that large model on smaller

architectures in acceptable times. The same holds for many other deep architectures

recently proposed in literature.

For these very reasons, if I had to begin another PhD course I would definitely work on

the creation of a novel and publicly available dataset of synthetic samples that accurately

mimic real world situations. I would then evaluate and compare the performances of

deep methods trained on these synthetic samples against the results achieved by the same

deep methods trained on natural data, expecting the first to be significantly higher than

the latter due to the virtually infinite number of available samples and the large amount

of heterogeneous difficult conditions.

5.3 Practical Applications

At the time of writing, the algorithm presented in Chap. 4 is being used by multiple

companies to localize and recognize gas and water flow meters using NVIDIA CUDA

GPU acceleration. In its current state, the algorithm processes million of images and

achieves a processing speed rate of more than 10 images/second on a NVIDIA GTX 980,

all while using less than 500MB of RAM.

Thanks to the large dimension of the test set extracted from the FlowMeter Database

(Chap. 2.4.3, ≈ 170k images), the algorithm’s recognition rates presented in [4] are

similar to the ones it achieves in a real-world scenario: roughly 90% localization and

reading success rate over more than 10 million processed gas meter images per year.

To achieve similar recognition rates on more difficult real-world applications using

the same algorithm, larger training datasets need to be created. Based both on my

experience and on the difficulty of the task, a training dataset of at least 10k tagged

license plates may lead to human-level real-world detection rates for this text localization

and recognition task. On the other hand, the problem of collecting a sufficient amount
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of training data to reach human comparable detectiong rates for generic text localization

and recognition from natural images is still open and it is currently being studied by

many Computer Vision researchers.





Colophon

- This PhD thesis has been written using LATEX.

- The LATEX template for this thesis was made by Carullo Moreno.

- The algorithm of Chap. 3 was entirely developed using Matlab 2013b.

- The prototype for the algorithm of Chap. 4 was developed using Matlab 2014b; the

final version of the same algorithm was written and deployed using C++.

- The following libraries have been used: Piotr Dollar’s Computer Vision Matlab Tool-

box for bounding box manipulation and AdaBoost classification 1; Andrea Vedaldi’s

VLFeat for MSER computation 2; Andrea Vedaldi’s MatConvNet for CNN creation

and manipulation in Matlab 3; Berkeley Caffe for CNN creation and manipulation in

C++ and Python 4; NVIDIA Digits to provide an intuitive HTML front-end for CNN

creation and training with Berkeley Caffe 5; NVIDIA cuDNN for high performance

neural network training using CUDA enabled GPU 6.

- For the work of Chap. 4, two NVIDIA GTX 980 were used: one donated by 7pixel

and the other given to Artelab 7 by NVIDIA Corporation for research purposes.

- When not explicitly stated otherwise, all of the experiments of this thesis were executed

on an Intel(R) Xeon(R) CPU E5-1620 v3 @ 3.50GHz with 64Gb of RAM and Linux

Mint 17.1 Rebecca OS.

1http://vision.ucsd.edu/pdollar/toolbox/doc/
2http://www.vlfeat.org/
3http://www.vlfeat.org/matconvnet/
4http://caffe.berkeleyvision.org/
5https://developer.nvidia.com/digits
6https://developer.nvidia.com/cudnn
7http://artelab.dicom.uninsubria.it/
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