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Cryptobiosis is a reversible ametabolic state of life characterized by the ceasing of all metabolic
processes, allowing survival of periods of intense adverse conditions. Here we show that 1) entire
moss individuals, dated by *C, survived through cryptobiosis during six centuries of cold-based glacier
burial in Antarctica, 2) after re-exposure due to glacier retreat, instead of dying (due to high rates

of respiration supporting repair processes), at least some of these mosses were able to return to a
metabolically active state and remain alive. Moss survival was assessed through growth experiments
and, for the first time, through vitality measurements. Future investigations on the genetic pathways
involved in cryptobiosis and the subsequent recovery mechanisms will provide key information on
their applicability to other systematic groups, with implications for fields as divergent as medicine,
biodiversity conservation, agriculture and space exploration.

Cryptobiosis is a reversible ametabolic state of life that has been considered as a third state between life and
death’. It is characterized by the ceasing of all metabolic processes and allows survival of periods of intense
adverse environmental conditions such as desiccation, freezing or oxygen deficiency, or combinations of these'-%,
The occurrence of cryptobiosis is documented in several invertebrate groups including rotifers, chironomid
midges, nematodes and tardigrades'*, as well as in many microbial groups occurring in polar and other extreme
environments**. Cryptobiosis differs from dormancy (hibernation, aestivation, diapause or quiescence), which
is associated with a low but still measurable level of metabolism (or hypometabolism), albeit with the tempo-
rary cessation of growth, development and (in animals) physical activity?. Dormancy is well documented in the
invertebrates, plants and microbes of extreme environments®, allowing their survival during inclement periods
through different mechanisms (e.g. tolerance of freezing, desiccation).

Cryptobiosis is a survival strategy that appears particularly suited to the permafrost environment. Several
different microbial groups are known to remain viable in permafrost, surviving under the permanently frozen
habitat conditions possibly from the point of their formation, in some cases up to 30,000 years*’. At subzero tem-
peratures the rates of biochemical reactions and processes become extremely low, and ensure the preservation of
the biological system*.

Survival under frozen or anhydrobiotic conditions in nematodes, rotifers and tardigrades, widely acknowl-
edged to be three of the most resistant invertebrate groups, has likewise been demonstrated over periods of only
a decade or two at most”™*, Survival through cryptobiosis in mosses and lichens has been reported for laboratory
experiments by Keilin’: fragments of mosses and lichens previously desiccated and cooled at —273°C revived
after being kept for about 2 hours at —272°C. Direct regeneration after cryptobiosis has been demonstrated in
mosses in laboratory experiments from herbarium (dried) and frozen material preserved for 20 years at most”'°
and over shorter periods (five years) for ferns and angiosperms''. Long-term cryoptobiosis lasting for centuries
has been described for angiosperm seeds, although seed germination was obtained only in the laboratory through
cloning and in vitro culturing approaches* '**, Regeneration, suggested by in vivo field observations, was recently
demonstrated through in vitro growth from exhumed mosses re-exposed by glacier retreat after 400 years of
burial by a cold-based glacier in Canada, demonstrating the totipotent capacity of bryophytes''. Millennial scale
viability has been described from a core of an in situ moss bank in Antarctica preserved within permafrost that,
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Figure 1. (A) View of the glacial margin of the Wormald Ice Piedmont (Rothera Point, Antarctic Peninsula,
taken in 2009). The occurrence of exhumed patches of the moss Bryum pseudotriguetrum can be seen in the
foreground. (B) Map showing the location of the moss samples (see Table 1) with the position of the glacier

boundary in 1993 (blue line), 2005 (yellow line) and 2011 (red line) (map created by CorelDraw 6.0).

after thawing in the laboratory, showed regeneration of moss shoots'*, These studies were interpreted as cases of
cryptobiosis, but did not involve direct measurements of moss metabolic vitality.

Mosses are major components of plant communities in terms of diversity and biomass in high latitude eco-
systems in the High Arctic and in Antarctica, where macroscopic vegetation is dominated by cryptogams'®'".
Mosses are poikilohydric organisms with high degree of phenotypic plasticity'® and have well-developed features
allowing them to tolerate stress'® and thrive in environments subject to change and disturbance'®. Among the key
traits allowing mosses to persist in harsh environments, one of the most important is tolerance to desiccation and
drought'®, also contributing to their ability to resist freezing (as during the Antarctic winter)'”.

In this study, measurements of metabolic activity through chlorophyll a fluorescence (as indicators of vitality
and survival) and growth chamber experiments applied to mosses exposed by recent glacier retreat at Rothera
Point (maritime Antarctica) present evidence of: a) in situ moss survival for over more than 600 y in the natu-
ral habitat through cryptobiosis, and their subsequent spontaneous recovery to active metabolism after glacier
retreat, b) persistence of active metabolism and growth in surviving exhumed mosses, ¢) regeneration with devel-
opment of green stem apices from moribund stems of exhumed mosses.

Results

Direct Observations and Radiocarbon Dating. Two moss species, Bryum pseudotriquetrum (Hedw.) P.
Gaertn. and Sanionia uncinata (Hedw.) Loeske, were collected from six sites in the glacier front (Fig. 1A,B) and
foreland: five samples of exhumed mosses (n. 1-5), plus an extant moss (n. 6, located at 16.8 m from the ice mar-
gin in 2011) used for comparison (Table 1). The sample n. 1 was emergent during the week of the collection, and
the sample n. 2 was located less than 1 m from the glacier front and likely exhumed less than one year previously
(Table 1). The remaining three samples (n. 3-5, Table 1) were located close to the glacier front (between <1 m and
10.1 m from the ice margin in 2011) and exhumed between six and 18 years ago (Table 1). All exhumed samples
were from in situ habitats in the field, with exceptional preservation and no damage apparent to the gametophytes
which exhibited intact rhizoids, stems and leaves. No sporophyte tissue was present. All samples lacked any sign
of regrowth, with green lateral branches and stem apices being absent. The calibrated age (see methods) of three of
the most recently exhumed moss (n. 1, 3, 4) was determined by radiocarbon dating and ranged between 640-526
and 626-510 cal years BP (Table 1).

Based on field observations and examination in the laboratory with a dissecting microscope (after sample col-
lection, and prior to the growth experiment), two exhumed mosses (n. 1, 2) and the extant sample (n. 6) showed
persistence of visibly greenish material with green leaves (Fig. 2A,B) lacking any decomposition processes and/
or development of moulds. The other three exhumed samples (n. 3-5) were characterized by blackish leaves, and/
or their desiccation (Table 1). From these observations, we suggest the two recently exhumed and extant mosses
were biologically active populations whereas the other three exhumed mosses were moribund (Table 1).

Vitality Measurements. Moss vitality was tested by analyzing the metabolic activity of the gametophores
using Chlorophyll a fluorescence with reference to a) the values of Fv/Fm (variable fluorescence/maximum fluo-
rescence maximum) (Table 1), and b) the shape of the induction curve (Fig. 3). We considered the gametophytes
to be metabolically active when Fv/Fm >0.2*"*'. Applying this threshold, metabolic activity (compatible with
life/vitality) was detected for all the three mosses suggested to be biologically active based on visual inspection (n.
1,2, 6). The three mosses suggested to be moribund (n. 3-5) exhibited values of Fv/Fm slightly higher than the
threshold of 0.2, also indicating metabolic activity, but at a poor level.

Analyzing the fluorescence induction curve shape, the progressive flattening observed comparing the
extant moss specimen with the two recently exposed moss clumps indicated a progressive decrease of activity.
Conversely, the flattened shape of the fluorescence induction curve of the three mosses suggested them to be
moribund (samples n. 3-5) and indicated a lack of activity.

Growth Experiment. During the growth experiment, the three metabolically active samples (based on their
Fv/Fm values; n. 1, 2, 6) remained alive (sample n. 2, Fig. 2A,B), with the extant moss (n. 6) and the recently
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Table 1. Moss samples collected along the boundary of the Wormald Ice Piedmont from the ice/glacier
foreland, presenting conventional and calibrated age 20 range (cal y BP); maximum time since exhumation
after glacier retreat (see Fig. 1B); minimum distance from the ice margin (m) (DIM); species name; visual
observations (field and dissecting microscope prior the 2014 regrowth experiment); value of Fv/Fm (variable
fluorescence/maximum fluorescence) of the chlorophyll a fluorescence measurements; shape of the induction
curve obtained during chlorophyll a fluorescence measurements; response during the growth experiment.
Legend: BP = Bryum pseudotriquetrum; SU = Sanionia uncinata.

exposed sample of S. uncinata (n. 1) exhibiting growth (Table 1, Fig. 2EH), and growth occurred from the stem
apex in both the latter cases (without any protonemal or rhizoid initial growth). Among the moribund mosses,
sample n. 3 became marcescent and covered by fungal hyphae, and did not show any regeneration (Table 1),
whereas the other two moribund samples (n. 4, 5) exhibited regeneration (Fig. 2C-E,G), with growth of leaves at
the branch apices in existing gametophyte shoots (Table 1).

Discussion

Cryptobiosis has already been demonstrated for mosses in polar environments, based on in vivo observations'*
and in vitro regeneration experiments'* '*. Our data, based on fluorescence measurements, corroborate these
previous studies. Cryptobiosis in our study is indicated by long-term survival for six centuries, but the study’s true
novelty is the demonstration, based on vitality measurements as well as on growth experiments, of the ability of
entire moss individuals to withstand six centuries of cryptobiosis and, at its cessation, to spontaneously recover
to active metabolism and survive in situ following glacier retreat. Indeed, the chlorophyll a fluorescence meas-
urements indicated the occurrence of metabolic activity (compatible with life) for all the three mosses hypoth-
esized to be active based on visual inspection (n. 1, 2, 6). Their Fv/Fm values were lower than would typically
be recorded from extant field samples (ranging between 0.6 and 0.8)*'. However, it is well known that repeated
freeze-thaw cycles decrease Fv/Fm, especially when mosses are exposed to light™, as would be the case for these
mosses re-exposed by the glacier retreat during the austral summer (with 24 hours of light per day). These results
are confirmed by the fluorescence induction curve (Fig. 3), that shows a decrease of activity from the extant
moss and the two recently exposed mosses. This is similar to the report of Rutten and Santarius*® when test-
ing age-related differences in frost tolerance of mosses subject to experimental freezing, in particular, the data
obtained from the extant moss (sample n. 6, Fig. 3 curve M6) with young leaves (cf. Rutten and Santarius, Fig. 3
curve 11), the most recently exhumed moss (sample n. 1, Fig. 3 curve M1) with mature leaves (cf. Rutten and
Santarius, Fig. 3 curve 10), and the 1 y exhumed moss (sample n. 2, Fig. 3 curve M2) with old leaves (cf. Rutten
and Santarius, Fig. 3 curve 6).

All vitality analyses indicated, at best, poor metabolic activity for the mosses with longer re-exposure times
and suggested to be moribund on the basis of visual observations (n. 3-5). Using the extant moss specimen
for comparison, our data indicated the persistence of active metabolism and capacity for regrowth of the very
recently re-exposed mosses (n. 1), whereas survival and active metabolism were observed for the less recently
exhumed moss clumps (<1 y) (sample n. 2). The mosses that had been exposed for longer intervals were consid-
ered moribund as indicated by poor or lack of metabolic activity, but showed regeneration in the growth experi-
ment, as noted in some previous studies'* %,

Recovery processes leading to resumption of normal metabolic activity after cryptobiosis are often charac-
terized by high rates of respiration repair processes that, in some cases, can be lethal®, especially if mosses are
exposed to light, due to photoinhibitory damage”. The intensity and frequency of these recovery processes may
explain the different ability of mosses to survive and grow after different periods of re-exposure. As time pro-
gresses (>1y) after re-exposure, the mosses will face repeated seasonal dormancy and adverse conditions™.
Therefore, accumulated damage with the recovery processes will increase with time, explaining why longer
re-exposure time may be associated with the observed lower vitality.

Future perspectives may concern investigations on the genetic mechanisms involved in cryptobiosis and
the subsequent recovery mechanisms, which would also provide information on the potential exportability and
applicability of these mechanisms to other systematic groups (including humans), with potential relevance for
medicine (e.g. organ banking through the cryopreservation of complex tissues”®), biodiversity conservation
(germplasm, embryogenic cells of both gymnosperms and angiosperms), agriculture (cultivars of major food
crops’™) and space exploration (dormancy during space travel””, use of anhydrobiosis and cryobiosis to protect
organisms exposed to space and exoplanetary environments™).
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Figure 2. Moss samples of Bryum pseudotriquetrum (Hedw.) P. Gaertn. (A-E,G) and Sanionia uncinata
(Hedw.) Loeske (F,H) that were assessed as active in the field ((A,B) sample n. 2), remained alive and exhibited
regeneration during the growth experiment ((C-E,G) samples n. 4, 5 (F,H) sample n. 1).

Materials and Methods

Study area. The study area was located at Rothera Point (67°34’S; 68°07'W) on Adelaide Island, Marguerite
Bay, southern Maritime Antarctic. The climate is a cold dry maritime climate, with mean annual air temperature
of —4.2°C and mean annual precipitation of about 500 mm, of which 20% occurs as rain. Permafrost is contin-
uous and exceeds 100 m in depth with an active layer ranging between 0.76 and 1.40 m. Vegetation on Rothera
Point is scattered and mainly composed of epilithic lichens (dominated by Usnea sphacelata and Umbilicaria
decussata), and sporadic mosses.

The study site was located at the southern limit of the Wormald Ice Piedmont Glacier, locally known as the “ice
ramp’, and located between 10 and 110 m a.s.]. This glacier front has been monitored since 1989 and has receded
rapidly in recent decades, with ablation rates (surface lowering) of 0.32 m water equivalent between 1989 and
1997, and a frontal retreat that increased from 0.85 m/y (period 1997-2005) to 1 m/y (2005-2011).

Field sampling. In February 2009 some scattered moss patches with 1-2 cm of underlying organic matter
were observed among the boulders at 1.5 m from the 2009 ice/glacier front. These were sampled for radiocarbon
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The kinetics of the light reaction provides an assessment of the recovery of the electron transport in PSII by
analyzing the shape of the fluorescence induction curve®. To identify all steps in the induction curve a logarith-
mic presentation of the time axis was used™. According to the standard procedure adopted when using PEA fluo-
rometers, the time axis of the induction curve started from 50 s*. Normally the induction curve is characterized
by four steps (named O, J, I, P), however samples subject to freezing exhibited different sensitivity of young vs.
mature vs. old leaves, with resultant changes of the induction curve shape®. To achieve further confirmation of
the vitality of the samples analyzed, and to test for differences linked to their different exposure ages, the induc-
tion curves for each assay were recorded and logged.

Growth experiment. The growth experiment utilized the natural substrate from beneath moss popula-
tions at Anchorage Island (close to Rothera Point) mixed with high quality commercial litter (Tercomposti s.r.L.
Brescia). Twelve glass cups were filled each with 9g of this soil substrate. The 12 filled cups were sterilized at
120°C for 15 min, transferred into sterilized Petri dishes, sealed with parafilm and placed in a growth chamber
(CV-36L5, Percival Scientifics Series 101) from 17 January 2014 to 17 March 2014. In the growth chamber they
were kept under controlled conditions at a fixed temperature of 15°C, with 16 h of light (17 W cool-white fluores-
cence lamps, light intensity of 64 pmoles/m?/s) and 8 h of darkness'* '*. After two months in the growth chamber
all 12 Petri dishes with soil substratum were completely sterile. Six were then used for the moss samples and 6 as
controls. On 18 March 2014 the moss samples were transferred into the Petri dishes with the soil substratum: in
each Petri dish each moss sample was divided into three sub-samples. Then the 12 Petri dishes were returned to
the growth chamber and maintained under the same controlled conditions'"'*. Once per week each Petri dish
received 5ml of deionized water (misting each specimen with a handheld spray bottle), which had previously
been sterilized for 15min at 120°C'. All samples were placed in shallow trays and repositioned every 15 d to
minimize effects of any variations in light intensity within the chamber'. The contents of the Petri dishes were
inspected visually (including both the moss samples and the six soil control plots) and regularly observed under
a dissecting microscope'® between 19 May and 2 December 2014.
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VI. CONCLUSIONS AND FINAL REMARKS

In conclusion, we started the assessment of expected impacts of climate change on terrestrial
ecosystems within two case studies in regions geographically and evolutionary remote and distinct,
but both already affected by recent climate changes: European Alps and Maritime Antarctica.

In the Alps, the in-situ manipulation experiments confirmed to be a valuable and relatively easy way
to perform studies on climate change impacts. The deployment of Open Top Chambers (OTCs) and
Snow Fence (SF) confirmed their influences on ground surface temperature and snowmelt
respectively. The deployment of the Precipitation Shields (PS) confirm to affect the soil moisture, but
with some unexpected pattern, due to the influence of wind during the rain events, and also an
associated warming effect.

The warming effect generated by open top chambers and precipitation shields were within the
expected increase of the global mean surface temperature by the end of the 21sr century (IPCC,
2014). Therefore, Biological responses to such a warming were those we could expect in that
scenario.

The experiment design allowed us to identify already after 4 years of study the first responses of
vegetation to climate forcing drivers, underlining once again the sensibility of the tundra ecosystems
to a changing environment.

Ingression of new species (even still localised and scattered) and changes in coverages of the main
vegetation layers and main growth forms, indicated the possible future direction of vegetation
structure and, therefore, of ecosystem and landscape properties. Temperature resulted as the most
limiting factors, but we reported evidences of growing season length and soil moisture limitations as
well.

The phenology under changing environmental factors indicated species-specific differences, but also
plant communities and local conditions (topography) played an important role and therefore they
must be considered in the evaluation of the phenological plasticity of the alpine plants. It is
remarkable that the same species responded differently to the same manipulation treatment depending
on its community type and ecological requirement showing better performances or reduced damage
within its optimal community and with larger stress and/or damage when within a sub-optimal
community (h4).

Among all, it is of relevant interest the main effect of soil warming in determining the advancement
of most of the phenological stages, from flowering, to seed development and dispersal but not of the
leaf senescence, thus showing that the possible benefit of an extended growing season in response to
a future Autumn warming will depend not only on the temperature change but also on the soil
moisture. Even more relevant was the findings of the drought ability to buffer and counteract the
biological answer to soil warming (h1), again with species-specific differences due to community
types and ecological niches.

Moreover, plant size and the reproductive investment and success of the selected species have been
found to be extremely sensitive to the environmental changes, but with different responses among
species. This finding underlines once again the need and importance to analyse the species-specific
responses, for each phenological stages, in order to identify “winner” and “looser” species in a climate
change scenario, depending on their plasticity and conservative/adaptive strategies. Similarly, the
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comparison of the same species between different communities could help to quantify the degree of
species plasticity.

The phenological results supported also the hypothesis of a snowmelt effect on the late phenological
stages (h2), particularly visible in the snowbeds species, and the strong sensitivity of the alpine
species to extreme years (particular warm and dry or particularly cold) (45), that exceed the biological
answer under a constant environmental change.

Differently, an agreement between vegetative and reproductive phenology and changes in species
abundance has been found only for some species and treatments, supporting only in part the third
hypothesis (£3) and underlining the need of further years of monitoring to clarify this point.

The data that we collected at the Stelvio pass area could be used for adaptation strategies and
management plans, which have to be implemented in a protected area such the Stelvio National Park.

In northern maritime Antarctica (Signy Island) we installed manipulation experiments similar to those
set up in the Alps. The assessment of any vegetation changes was not possible, because of the
logistical constrain and of the short period of manipulation (2 years). However the experiments could
thus help to disentangle which are the main drivers of vegetation colonization and stabilization, in
order to create models on the evolution of Antarctic terrestrial ecosystems under different future
climate change scenario, which could enforce the management strategies of these peculiar
environments

In southern maritime Antarctica (Rothera Point), we investigated the past climate changes and climate
change impacts on the abiotic component of this ecosystems (Guglielmin et al.,2016) and how
similar changes are reactivating moribund mosses (Cannone et al.,2017) with future perspective in
medicine, biodiversity conservation, agriculture and space exploration.

Future perspectives

The maintenance and prosecution (from mid to, possibly, long term) of the monitoring and
manipulation of both the environmental and the biological components are recommended to achieve
a more accurate knowledge on the alpine plant plasticity to climate change. Moreover, it allows to
detect the occurrence of any threshold above which the environmental conditions induce a change in
the biological answer or otherwise to find species for which several years are required before a
response can be detected (Hoffmann et al., 2010).

Several points of these experiments and data elaboration could improve our knowledge on the
plasticity of alpine plants. We based our analysis on the first days of observation of each phenological
stages, combined with some semi-quantitative data, such as the day of maximum amount of each
stages. However, for further extending our analysis it will be interesting to consider all the
distributional curve of each phenological stages, in order to assess how communities respond in a
spatio-temporal dimension in each growing season. .

We observed the responses only on the above-ground tissues of the vegetation, but it would be
important to analyse and assess the below ground tissues as well, in order to understand the
occurrence of an increased or decreased below ground allocation under different climate change
scenarios. This would be useful in the evaluation of the growth forms and species changes that could
lie in an increased competitiveness in water and nutrients absorption.

Moreover, the monitoring of the photosynthetically activity of different species and growth forms,
would be useful in the assessment of the metabolic adaptation to a changing climate in alpine species.
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SUPPLEMENTARY MATERIALS

Tab. S 1 - Topographic characterization of permanent plots. Experiment: OTC = Open Top Chamber; SF = Snowfence;
PS = Precipitation shield. Community: CC = Caricetum curvulae; SH = Salicetum herbaceae.

a E = £ o _ R~ A E = £ o _ PR ~)

= ¢ E £ 5 2% 7 % E = ¢« E & 5 B3 7 % E
£ %% 3 fE:f%x E Y% 3 EEEf %o3
o E 54 = “ © b = S = g n

OTC-CC1 1 OTC OTC CC 2605 11 NW 2 SF2NO07 1 SF  SFNO7 CC 2612 9 N 1
OTC-CClc 1 OTC OTCc CC 2608 10 NW 1 SF2NO08 1 SF SFNO08 CC 2612 5 N 1
OTC-CC2 1 OTC OTC CC 2607 11 NW 2 SF2N09 1 SF  SFN09 CC 2609 16 N 1
OTC-CC2¢ 1 OTC OTCec CC 2609 11 NW 1 SF2N10 1 SF SFNI10 CC 2609 4 N 1
OTC-CC3 1 OTC OTC CC 2612 22 NW 2 SF2S01 1 SF  SFSO01 CC 2612 4 NW 1
OTC-CC3¢ 1 OTC OTCc CC 2612 18 NW 1 SF2S02 1 SF  SFS02 CC 2612 6 W 1
OTC-SH1 1 OTC OTC SH 2632 5 N 2 SF2S03 1 SF  SFS03 CC 2612 32 W 1
OTC-SHlc 1 OTC OTCc SH 2634 5 N 1 SF2S04 1 SF  SFS04 CC 2612 12 SE 1
OTC-SH2 1 OTC OTC SH 2633 7 NW 2 SF2S05 1 SF  SFS05 CC 2612 6 NW 1
OTC-SH2¢ 1 OTC OTCec SH 2635 5 NW 1 SF2S06 1 SF  SFS06 CC 2611 18 NW 1
OTC-SH3 1 OTC OTC SH 2633 7 NW 2 SF2S07 1 SF  SFS07 CC 2610 16 W 1
OTC-SH3¢ 1 OTC OTCec SH 2632 7 NW 1 SF2S08 1 SF  SFS08 CC 2611 5 W 1
PS-CC1 1 PS PS CC 2619 11 NW 2 SF2S09 1 SF SFS09 CC 2611 10 W 1
PS-CClm 1 PS PS¢ CC 2618 16 NW 1 SF2S10 1 SF  SFS10 CC 2611 10 W 1
PS-CClvl 1 PS PSvl CC 2618 9 NW 1 SF3NO1 1 SF  SFNO1 CC 2607 17 N 1
PS-CC1v2 1 PS PSv2 CC 2618 10 NW 1 SF3N02 1 SF  SFNO02 CC 2607 5 N 1
PS-CC2 1 PS PS CC 2617 11 NW 2 SF3NO03 1 SF  SFNO3 CC 2607 26 N 1
PS-CC2m 1 PS PSc CC 2619 12 NW 1 SF3N04 1 SF  SFN04 CC 2607 10 N 1
PS-CC2vl 1 PS PSvl CC 2620 10 NW 1 SF3NO05 1 SF  SFNO5 CC 2607 13 N 1
PS-CC2v2 1 PS PSv2 CC 2620 22 NW 1 SF3N06 1 SF  SFNO6 CC 2604 9 NE 1
PS-SH1 1 PS PS SH 2628 7 NW 2 SF3NO07 1 SF  SFNO7 CC 2604 11 NE 1
PS-SHIm 1 PS PS¢ SH 2629 8 N 1 SF3NO08 1 SF  SFNO8 CC 2604 16 NE 1
PS-SHIvl 1 PS PSvl SH 2629 7 N 1 SF3N09 1 SF  SFN09 CC 2603 4 N 1
PS-SHIv2 1 PS PSv2 SH 2627 8 NW 1 SF3N10 1 SF  SFNI0 CC 2603 6 N 1
PS-SH2 1 PS PS SH 2628 6 NW 2 SF3S01 1 SF SFSO0I CC 2608 16 NW 1
PS-SH2m 1 PS PSc SH 2629 7 N 1 SF3S02 1 SF  SFS02 CC 2608 6 NW 1
PS-SH2vl 1 PS PSvl SH 2629 7 NW 1 SF3S03 1 SF  SFS03 CC 2608 16 NW 1
PS-SH2v2 1 PS PSv2 SH 2629 7 NW 1 SF3S04 1 SF  SFS04 CC 2608 16 NW 1
SFINO1 1 SF  SFNO1 CC 2612 18 N 1 SF3S05 1 SF  SFSO05 CC 2607 12 W 1
SFINO02 1 SF  SFNO2 CC 2613 11 N 1 SF3S06 1 SF  SFS06 CC 2607 6 W 1
SFINO3 1 SF SFN03 CC 2614 12 N 1 SF3S07 1 SF  SFS07 CC 2607 1 \'% 1
SFINO04 1 SF SFN04 CC 2612 10 N 1 SF3S08 1 SF  SFS08 CC 2604 18 W 1
SFINO5 1 SF SFNO5 CC 2612 12 N 1 SF3S09 1 SF  SFS09 CC 2604 6 W 1
SFINO06 1 SF SFN06 CC 2612 10 NE 1 SF3S10 1 SF SFS10 CC 2604 8 W 1
SFINO7 1 SF  SFNO7 CC 2611 9 NE 1 OTCs-CC1 2 OTC OTC CC 2630 9 S 2
SFINO8 1 SF  SFNO8 CC 2611 11 N 1 OTCs-CClec 2 OTC OTCec CC 2630 9 S 1
SFINO09 1 SF  SFN09 CC 2610 4 NE 1 OTCs-CC2 2 OTC OTC CC 2630 12 S 2
SFINI10 1 SF  SFEN10 CC 2609 6 NE 1 OTCs-CC2¢ 2 OTC OTCec CC 2629 10 W 1
SF1S01 1 SF  SFS0I CC 2614 8 NW 1 OTCs-CC3 2 OTC OTC CC 2629 13 W 2
SF1S02 1 SF  SFS02 CC 2615 2 NW 1 OTCs-CC3¢ 2 OTC OTCec CC 2629 12 W 1
SF1S03 1 SF  SFS03 CC 2614 2 NW 1 OTCs-SH1I 2 OTC OTC SH 2626 10 W 2
SF1S04 1 SF  SFS04 CC 2614 12 NW 1 OTCs-SHlc 2 OTC OTCc SH 2626 10 W 1
SF1S05 1 SF  SFS05 CC 2613 6 NW 1 OTCs-SH2 2 OTC OTC SH 2627 10 W 2
SF1S06 1 SF  SFS06 CC 2613 1 NW 1 OTCs-SH2¢ 2 OTC OTCc SH 2627 8 W 1
SF1S07 1 SF  SFS07 CC 2613 10 NW 1 OTCs-SH3 2 OTC OTC SH 2626 11 W 2
SF1S08 1 SF SFS08 CC 2612 12 W 1 OTCs-SH3¢ 2 OTC OTCc SH 2627 10 W 1
SF1S09 1 SF  SFS09 CC 2612 8 W 1 PSs-CC1 2 PS PS CC 2628 12 W 2
SF1S10 1 SF  SFS10 CC 2611 11 SW 1 PSs-CCIm 2 PS PS¢ CC 2628 10 W 1
SF2NO1 1 SF  SFNO1 CC 2615 6 N 1 PSs-CClvl 2 PS PSvl CC 2628 11 W 1
SF2N02 1 SF  SFNO02 CC 2618 6 N 1 PSs-CCl1v2 2 PS PSv2 CC 2628 18 W 1
SF2NO03 1 SF  SFNO03 CC 2615 6 N 1 PSs-SH1 2 PS PS SH 2629 15 SW 2
SF2N04 1 SF  SFN04 CC 2615 16 N 1 PSs-SHIm 2 PS PSc SH 2629 10 SW 1
SF2NO05 1 SF SFNO5 CC 2614 10 NE 1 PSs-SH1vl 2 PS PSvl SH 2629 12 SW 1
SF2NO06 1 SF SFN06 CC 2614 12 N 1 PSs-SH1v2 2 PS PSv2 SH 2629 16 SW 1
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Tab. S 2 - List of the species recorded in the manipulation experiments plots (nomenclature according to Conti et al., 2005; growth form according to Elmendrof et al.,2012).

SUPPLEMENTARY MATERIALS

Legend: x = species selected for phenology monitoring during the study period (2014-2015).

species name family name elevation range  chorology growth form raunkier monitored
Agrostis alpina Scop. Poaceae 1700-2750 Orof. SW-European graminoids_grass H caesp -
Agrostis rupestris All. Poaceae 1700-2800 Orof. S-European graminoids_grass H caesp X
Agrostis schraderiana Bech. Poaceae 1500-2800 Orof. SW-European graminoids_grass H caesp -
Alchemilla pentaphyllea L. Poaceae 2200-3100 Alpine endemic forbs H ros X
Anthoxanthum odoratum L. subsp. nipponicum (Honda) Tzvelev Poaceae 1200-2800 Arctic-Alpine (Eurasiatic) graminoids_grass H caesp -
Arenaria biflora L. Caryophyllaceae  2300-2800 Arctic-Alpine (European) forbs Ch suff -
Arenaria ciliata L. s.1. Caryophyllaceae  2200-2800 Circumboreal Arctic-Alpine forbs Ch suff -
Avenula versicolor (Vill.) Lainz Poaceae 1800-2950 Orof. S-European graminoids_grass H caesp -
Bistorta vivipara (L.) Delarbre Polygonaceae 1600-2800 Circumboreal Arctic-Alpine forbs G rhiz -
Campanula scheuchzeri Vill. s.1. Campanulaceae  1400-2600 (3200) Orof. S-European forbs H scap -
%:Zvamine bellidifolia L. subsp. alpina (Wilid) B.M.G. Brassicaceae 2000-3080 Arctic-Alpine (Euromediterranean) forbs H scap -
Cardamine resedifolia L. Brassicaceae 1500-2600 Orof. S-European forbs H scap -
Carex curvula All. s.1. Cyperaceae 1900-2800 (3400) Orof. S-European graminoids_sedge H caesp X
Cirsium spinosissimum (L.) Scop. Asteraceae 1500-2400 (3000) Orof. S-European forbs H scap X
Euphrasia minima Jacq. ex DC. Scrophulariaceaec  1500-2800 Orof. Central-European forbs T scap -
Festuca halleri All. s.1. Poaceae 2000-3000 (3400) Orof. S-European graminoids_grass H caesp -
Gentiana punctata L. Gentianaceae 1500-2600 (3050) Orof. Central-European forbs H scap -
Gentiana sp. Gentianaceae 2000-3000 forbs H ros -
Geum montanum L. Rosaceae 1800-2600 (2800) Orof. S-European forbs H ros -
Gnaphalium supinum L. Asteraceae 2400-3000 (3400) Circumboreal Arctic-Alpine forbs H scap X
Hieracium piliferum Hoppe Asteraceae 1800-3000 Orof. S-European forbs H ros -
Homogyne alpina (L.) Cass. Asteraceae 800-2200 Orof. Central-European forbs H ros X
ﬁalg)ff rocumbens (L.) Gift, Kron & Stevens ex Galasso, Banfi & Ericaceae 1600-2400 (3000) Circumboreal Arctic-Alpine evergreen dwarf shrubs Ch rept X
Leontodon helveticus Mérat emend. Widder Asteraceae 1800-2600 Orof. SW-European forbs H ros X
Leucanthemopsis alpina (L.) Heywood Asteraceae 2000-3600 Orof. SW-European forbs H scap X
Ligusticum mutellina (L.) Crantz Apiaceae 2100-2800 Orof. S-European forbs H scap X
Luzula alpinopilosa (Chaix) Breistr. subsp. alpinopilosa Cyperaceae 1800-3100 Orof. S-European graminoids_rush H scap X

213



Tab. S2 - continued

SUPPLEMENTARY MATERIALS

species name family name elevation range  chorology growth form raunkier monitored
Luzula spicata (L.) DC. s.1. Cyperaceae 1500-3000 Circumboreal Arctic-Alpine graminoids_rush H caesp -
Minuartia sedoides (L.) Hiern Caryophyllaceae  1800-3825 Arctic-Alpine (European) cushion plants Ch pulv -
Nardus stricta L. Paceae 1200-2600 Eurosiberian graminoids_grass H caesp -
Oreochloa disticha (Wulfen) Link Poaceae 2000-2800 (3300) Orof. SE-European graminoids_grass H caesp -
Phyteuma hemisphaericum L. Campanulaceae  1900-2600 (3600) Orof. SW-European forbs H scap X
Poa alpina L. subsp. Alpina Poaceae 1500-2700 (3600) Circumboreal graminoids_grass H caesp X
Potentilla aurea L. subsp. Aurea Rosaceae 1800-2900 Orof. S-European forbs H scap -
Primula sp. Primulaceae - forbs H ros -
Primula glutinosa Wulfen Primulaceae 1800-3100 Alpine endemic forbs H ros -
Primula minima L. Primulaceae 1300-2700 Orof. SE-European forbs H ros -
Ranunculus montanus Willd. Ranunculaceae ~ 1500-2800 Alpine endemic forbs H scap -
Sagina saginoides (L.) H. Karst. subsp. Saginoides Caryophyllaceae  1700-2900 Circumboreal Arctic-Alpine forbs H caesp -
Salix herbacea L. Salicaceae 2000-3000 Circumboreal Arctic-Alpine deciduous dwarf shrubs  Ch frut X
Sedum alpestre Vill. Crassulaceae 1800-2800 Orof. S-European forbs Ch succ -
;lezo incanus L. subsp. carniolicus (Willd.) Braun- Asteraceae 1800-2600 Alpine endemic forbs H scap -
Sibbaldia procumbens L. Rosaceae 2000-2800 Arctic-Alpine(European) forbs H scap -
.éohlra;zlncella pusilla Baumg. subsp. alpicola (F.K. Mey.) Primulaceae 1000-2500 (2800) Orof. SE-European forbs H ros X
Trifolium alpinum L. Fabaceae 1500-2500 Orof. S-European forbs H ros -
Vaccinium uliginosum L. subsp. microphyllum (Lange) Tolm. Ericaceae 1000-2200 (2450) Circumboreal deciduous shrubs Ch frut -
Veronica alpina L. Scrophulariaceaec  1500-3000 Arctic-Alpine (Eurasiatic) forbs H scap -
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SUPPLEMENTARY MATERIALS

Tab. S 3 - Number of replicates of each monitored species in the whole study period (2014-2017) for each sites, plant community and treatment type.

Site 1

CcC SH CC SH all
treatment OTC OTCec PS PSvl PSv2 PSc SFN-lines SFS-lines OTC OTCc PS PSvl PSv2 PSc all all all
species name 129 121 87 82 77 85 350 322 125 120 94 83 82 95 1253 599 1852
Agrostis rupestris 6 3 2 4 1 27 10 12 12 8 4 8 8 53 52 105
Alchemilla pentaphyllea 12 12 8 8 8 8 30 30 9 8 8 8 8 8 116 49 165
Carex curvula 12 12 8 8 8 8 28 30 4 4 7 8 4 8 114 35 149
Euphrasia minima 11 12 8 8 6 8 30 26 12 12 8 7 8 8 109 55 164
Gnaphalium supinum 12 12 8 8 8 8 30 25 12 12 8 8 8 8 111 56 167
Homogyne alpina 12 9 4 2 4 21 1 3 1 4 52 9 61
Leontodon helveticus 12 12 8 8 8 8 30 30 11 12 8 8 8 8 116 55 171
Leucanthemopsis alpina 10 10 8 8 8 7 24 21 12 12 8 8 8 8 96 56 152
Ligusticum mutellina 6 3 23 1 32 1 33
Luzula alpino-pilosa 4 4 1 5 4 22 13 12 12 8 7 4 8 53 51 104
Phyteuma hemisphaericum 12 12 7 4 1 28 20 3 4 2 3 84 12 96
Poa alpina 4 4 8 8 8 8 30 27 12 12 8 8 8 8 97 56 153
Salix herbacea 4 4 8 8 3 8 26 17 12 12 8 8 8 8 78 56 134
Soldanella pusilla 12 12 8 8 8 8 30 26 12 12 8 8 8 8 112 56 168

Site 2

CC SH CC SH all
treatment OTC OTCec PS PSvl PSv2 PSc SFN-lines SFS-lines OTC OTCc PS PSvl PSv2 PSc all all all
species name 109 109 34 37 37 38 70 70 34 38 35 35 364 282 646
Agrostis rupestris 9 9 3 3 3 3 9 9 3 3 3 3 30 30 60
Alchemilla pentaphyllea 9 9 3 3 3 3 9 9 3 3 3 3 30 30 60
Carex curvula 9 9 3 3 3 3 9 9 3 3 3 3 30 30 60
Euphrasia minima 9 8 2 3 3 2 2 2 2 3 2 2 27 13 40
Gnaphalium supinum 9 9 3 3 3 3 9 9 3 3 3 3 30 30 60
Homogyne alpina 8 8 16 16
Leontodon helveticus 9 9 3 3 3 3 3 3 3 3 30 12 42
Leucanthemopsis alpina 9 9 2 3 3 3 3 2 3 3 3 3 29 17 46
Ligusticum mutellina 9 9 3 3 3 3 3 3 3 3 30 12 42
Luzula alpino-pilosa 3 3 3 3 2 3 2 3 3 3 12 16 28
Phyteuma hemisphaericum 5 6 1 1 3 2 16 2 18
Poa alpina 6 6 3 3 3 3 9 9 3 3 3 3 24 30 54
Salix herbacea 9 9 3 3 3 3 9 9 3 3 3 3 30 30 60
Soldanella pusilla 9 9 3 3 3 3 9 9 3 3 3 3 30 30 60
all species 238 230 121 119 114 123 350 322 195 190 128 121 117 130 1617 881 2498
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SUPPLEMENTARY MATERIALS

Tab. S 4 - Topographic characterization of permanent plots and environmental data recording devices installed at Signy
Island. Experiment: OTC = Open Top Chamber; SF = Snowfence; PS = Precipitation shield. Community: M = mosses
dominated community; L = lichens dominated community; MP = mosses dominated with patterned ground; LP = lichens
dominated, with patterned ground. GST = Groung Surface Temperature (°C); VWC = Volumetric Water Content (m*/m?).

Plot ID site experiment treatment community altitude (m asl) slope (°) Aspect (°N) GST VWC  rain gauge
OTCcb-M la OTC OTC M 39 8 290
OTCcb-Mc la OTC OTCc M 39 8 290
OTCcb-L la OTC OTC L 39 10 290
OTCcb-Lc la OTC OTCc L 39 10 290
PScb-M la PS PS M 40 7 300
PScb-Mv1 la PS PSvl M 40 10 300
PScb-Mv2 la PS PSv2 M 40 10 300
PScb-Mc la PS PSc M 40 10 300
PScb-M2 la PS PS M 41 10 320
PScb-M2v1 la PS PSvl M 41 10 320
PScb-M2v2 la PS PSv2 M 40 10 320
PScb-M2c la PS PSc M 40 10 320
OTCca-M 1b OTC OTC M 91 5 320 X
OTCca-Mc 1b OTC OTCc M 91 3 320 X
OTCca-MP 1b OTC OTC MP 91 5 320 X
OTCca-MPc 1b OTC OTCc MP 91 5 315 X
OTCca-L 1b OTC OTC L 88 8 320
OTCca-Lc 1b OTC OTCc L 88 8 310
OTCca-LP 1b OTC OTC LP 90 7 320
OTCca-LPc 1b OTC OTCc LpP 90 5 320
PSca-M 1b PS PS M 89 5 325 X X
PSca-Mvl 1b PS PSvl M 89 5 325 X X
PSca-Mv2 1b PS PSv2 M 89 5 325 X X *
PSca-Mc 1b PS PSc M 89 5 325 X X
CALM_SFvl 1b SF SFv M 89 5 110
CALM_SFv2 1b SF SFv M 89 5 120 X
CALM_SFv3 1b SF SFv M 89 5 120 X
CALM_SFv4 1b SF SFv M 89 5 120
CALM_SFvS 1b SF SFv M 89 5 115
CALM_SFml 1b SF SFm M 89 5 120
CALM_SFm2 1b SF SFm M 89 5 115 X
CALM_SFm3 1b SF SFm M 89 5 120 X
CALM_SFm4 1b SF SFm M 89 5 115
CALM_SFm5 1b SF SFm M 89 5 120
OTCeb-M 2a OTC OTC M 28 7 260 X
OTCeb-Mc 2a OTC OTCc M 28 7 280 X
OTCeb-MP 2a OTC OTC MP 28 5 260 X
OTCeb-MPc 2a OTC OTCc MP 28 5 270 X
PSeb-M 2a PS PS M 30 7 265
PSeb-Mv1 2a PS PSvl M 30 7 265
PSeb-Mv2 2a PS PSv2 M 30 6 265
PSeb-Mc 2a PS PSc M 30 7 265
PSeb-MP 2a PS PS MP 30 3 250
PSeb-MPvl 2a PS PSvl MP 30 4 250
PSeb-MPv2 2a PS PSv2 MP 30 4 250
PSeb-MPc 2a PS PSc MP 30 4 250
OTCeb-M2 2a OTC OTC M 22 7 220
OTCeb-M2c 2a OTC OTCc M 22 8 220
OTCeb-M2P 2a OTC OTC MP 22 7 220
OTCeb-M2Pc 2a OTC OTCc MP 22 7 220
OTCea-M 2b OTC OTC M 105 10 230 X
OTCea-Mc 2b OTC OTCc M 105 10 230 X
OTCea-MP 2b OTC OTC MP 105 10 255 X
OTCea-MPc 2b OTC OTCc MP 105 10 255 X
OTCea-L 2b OTC OTC L 105 5 300
OTCea-Lc 2b OTC OTCc L 105 9 250
OTCea-LP 2b OTC OTC LP 105 10 260
OTCea-LPc 2b OTC OTCc LP 105 12 260
PSea-M 2b PS PS M 108 12 235 X X
PSea-Mv1 2b PS PSvl M 108 12 235 X X
PSea-Mv2 2b PS PSv2 M 108 12 235 X X X
PSea-Mc 2b PS PSc M 108 12 235 X X
PSea-MP 2b PS PS MP 108 6 260
PSea-MPv1 2b PS PSvl MP 108 6 260
PSea-MPv2 2b PS PSv2 MP 108 6 260
PSea-MPc 2b PS PSc MP 108 6 260
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Fig. S1 - Descriptive statistics of snowmelt (SM), first shoot (FS) and new leaves (NL) in warming (OTC) and control
(OTCc) plots for the whole study period (2014-2017) for A. pentaphyllea at intra-annual level for both the plant
communities (CC = alpine grassland; SH = snowbed). Black squares = medians, boxes = 25%-75%, whiskers = min-

max.
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Fig. S2 - Descriptive statistics of snowmelt (SM), first shoot (FS) and new leaves (NL) computed in plots with
artificially delayed snow melt (SF+), in plots with naturally delayed snow melt induced by terrain morphology on the
north side (SFtN) and south side (SFtS) of the fence and in control plots (SFc) for A. pentaphyllea, at intra-annual
level. Coloured squares = medians, boxes = 25%-75%, whiskers = min-max.
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Fig. S3 - Descriptive statistics of flower bud (FB) and peak of flowering (MF) computed in warming (OTC) and
control (OTCc) plots of A. pentaphyllea at inter-annual level, for both the plant communities (CC= alpine grasslands;
SH=snowbeds). Black squares = medians, boxes = 25%-75%, whiskers = min-max. Note the different scales in y-axis
values.
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Fig. S4 - Descriptive statistics of flower bud (FB) and peak of flowering (MF) in dry+warm (PS), moist (PSv1) and
control (OTCc) plots for the whole study period (2014-2017) for A. pentaphyllea at intra-annual and intra-plant
communities levels (CC = alpine grassland; SH = snowbed). Coloured square = medians, boxes = 25%-75%, whiskers
= min-max. Note the different scales in y-axis values.
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Fig. S5 - Descriptive statistics of flower bud (FB) and peak of flowering (MF) computed in plots with artificially
delayed snow melt (SF+), in plots with naturally delayed snow melt induced by terrain morphology on the north side
(SFtN) and south side (SFtS) of the fence and in control plots (SFc) for A. pentaphyliea, at intra-annual level. Coloured
squares = medians, boxes = 25%-75%, whiskers = min-max. Note the different scales in y-axis values.

221



SUPPLEMENTARY MATERIALS

B OTC § OTCc cC SH
250 —— . . . . 250
240 | ] 240 [ I
230 | [ 230 | 11
2 D a | i
220 | ] 220 |
210 | - |- 210 | } & I
200 L— - - ll .-T 200 L— - - - -
2014 2015 2016 2017  all 2014 2015 2016 2017  all
B OTC E OTCc cC SH
290 —— . . . . 290
280 | - 280 | - T 1
270 | - IR 270 | H
go260F { & 20} ]
o ©
h B n
250 | - 250 | @ ]
240 | [ l@iLIJ 240 | ié T
230 L— - - - - 230 L— - - - -
2014 2015 2016 2017  all 2014 2015 2016 2017  all
B OTC F OTCe cC SH
260 —— . . . . 260 ——
250 [ [] - 250 l .
240 | ] 240 |
230 | ] 230 | I}l
o 220 | ! 1 220}
| —
210 | ] 210 |
200 | i é ] 200 | T D * T
190 | ! ] 190 |
180 L— - - - - 180 L— - - - -
2014 2015 2016 2017  all 2014 2015 2016 2017  all

Fig. S6 - Descriptive statistics of seed development (SD), seed dispersal (Sdisp) and leaf senescence (LS) computed
in warming (OTC) and control (OTCc) plots of A. pentaphyllea at inter-annual level, for both the plant communities
(CC= alpine grasslands; SH=snowbeds). Black squares = medians, boxes = 25%-75%, whiskers = min-max. Note the
different scales in y-axis values
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Fig. S7 - Descriptive statistics of seed development (SD), seed dispersal (Sdisp) and leaf senescence (LS) in dry+warm
(PS), moist (PSv1) and control (OTCc) plots for the whole study period (2014-2017) for A. pentaphyllea at intra-
annual and intra-plant communities levels (CC = alpine grassland; SH = snowbed). Coloured squares = medians,
boxes = 25%-75%, whiskers = min-max.
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Fig. S8 - Descriptive statistics of seed development (SD), seed dispersal (Sdisp) and leaf senescence (LS) computed
in plots with artificially delayed snow melt (SF+), in plots with naturally delayed snow melt induced by terrain
morphology on the north side (SFtN) and south side (SFtS) of the fence and in control plots (SFc) for A. pentaphyllea
at intra-annual level. Coloured squares = medians, boxes = 25%-75%, whiskers = min-max.
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Fig. S9 - Descriptive statistics of the mean height (Hmean) and of the day of achievement of the maximal mean height
(Hmean DoY) computed in warming (OTC) and control (OTCc) plots of 4. pentaphyllea at inter-annual level, for
both the plant communities (CC= alpine grasslands; SH=snowbeds). Black squares = medians, boxes = 25%-75%,
whiskers = min-max.
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Fig. S10 - Descriptive statistics of the maximum height (Hmax) and of the day of achievement of the maximum height
(Hmax DoY) computed in warming (OTC) and control (OTCc) plots of A. pentaphyllea at inter-annual level, for
both the plant communities (CC= alpine grasslands; SH=snowbeds). Black squares = medians, boxes = 25%-75%,
whiskers = min-max.
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Fig. S11 - Descriptive statistics of mean height (Hmean) and of the day of achievement of the maximal mean height
(Hmean_ DoY) in dry+warm (PS), moist (PSv1) and control (OTCc) plots for the whole study period (2014-2017) for
A. pentaphyllea at intra-annual and intra-plant communities levels (CC = alpine grassland; SH = snowbed). Coloured
squares = medians, boxes = 25%-75%, whiskers = min-max.
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Fig. S12 - Descriptive statistics of maximal height (Hmax) and of the day of achievement of the maximum height
(Hmax_ DoY) in dry+warm (PS), moist (PSvl) and control (OTCc) plots for the whole study period (2014-2017) for A.
pentaphyllea at intra-annual and intra-plant communities levels (CC = alpine grassland; SH = snowbed). Coloured
squares = medians, boxes = 25%-75%, whiskers = min-max.
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Fig. S13 - Descriptive statistics of mean height (Hmean), maximum height (Hmax) and day of achievement of the
maximal mean height (Hmean DoY) and maximum height (Hmax_ DoY) computed in plots with artificially delayed
snow melt (SF+), in plots with naturally delayed snow melt induced by terrain morphology on the north side (SFtN)
and south side (SFtS) of the fence and in control plots (SFc) for A. pentaphyllea, at intra-annual level. Coloured
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Fig. S14 - Descriptive statistics of the number of reproductive individuals (flowers_n) and of the reproductive success
(rep_succ) computed in warming (OTC) and control (OTCc) plots of A.pentaphyllea at inter-annual level, for both
the plant communities (CC= alpine grasslands; SH=snowbeds). Black squares = medians, boxes = 25%-75%, whiskers
= min-max.
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Fig. S15 - Descriptive statistics of the number of reproductive individuals (flowers_n) and of the reproductive success
(rep_succ) computed in dry+warm (PS), moist (PSv1) and control (OTCc) plots for the whole study period (2014-

2017) for A. pentaphyllea at intra-annual and intra-plant communities levels (CC =

Coloured squares = medians, boxes = 25%-75%, whiskers = min-max.
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Fig. S16 - Descriptive statistics of the number of reproductive individuals (flowers_n) and of the reproductive success
(rep_succ) computed in plots with artificially delayed snow melt (SF+), in plots with naturally delayed snow melt
induced by terrain morphology on the north side (SFtN) and south side (SFtS) of the fence and in control plots (SFc)
for A. pentaphyllea, at intra-annual level. Coloured square = medians, boxes = 25%-75%, whiskers = min-max.
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Fig. S17 - Descriptive statistics of snowmelt (SM), first shoot (FS) and new leaves (NL) in warming (OTC) and
control (OTCc) plots for the whole study period (2014-2017) for G.supinum at intra-annual level for both the plant
communities (CC = alpine grassland; SH = snowbed). Black squares = medians, boxes = 25%-75%, whiskers = min-
max.
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Fig. S18 - Descriptive statistics of snowmelt (SM), first shoot (FS) and new leaves (NL) computed in plots with
artificially delayed snow melt (SF+), in plots with naturally delayed snow melt induced by terrain morphology on the
north side (SFtN) and south side (SFtS) of the fence and in control plots (SFc) for G.supinum, at intra-annual level.
Coloured squares = medians, boxes = 25%-75%, whiskers = min-max.
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Fig. S19 - Descriptive statistics of flower bud (FB) and peak of flowering (MF) computed in warming (OTC) and
control (OTCc) plots of G. supinum at inter-annual level, for both the plant communities (CC= alpine grasslands;
SH=snowbeds). Black squares = medians, boxes = 25%-75%, whiskers = min-max. Note the different scales in y-axis
values.
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Fig. S20 - Descriptive statistics of flower bud (FB) and peak of flowering (MF) in dry+warm (PS), moist (PSv1) and
control (OTCc) plots for the whole study period (2014-2017) for G. supinum at intra-annual and intra-plant
communities levels (CC = alpine grassland; SH = snowbed). Coloured square = medians, boxes = 25%-75%, whiskers
= min-max. Note the different scales in y-axis values.
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Fig. S21 - Descriptive statistics of flower bud (FB) and peak of flowering (MF) computed in plots with artificially
delayed snow melt (SF+), in plots with naturally delayed snow melt induced by terrain morphology on the north side
(SFtN) and south side (SFtS) of the fence and in control plots (SFc) for G. supinum, at intra-annual level. Coloured
squares = medians, boxes = 25%-75%, whiskers = min-max. Note the different scales in y-axis values.
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Fig. S22 - Descriptive statistics of seed development (SD), seed dispersal (Sdisp) and leaf senescence (LS) computed
in warming (OTC) and control (OTCc) plots of G. supinum at inter-annual level, for both the plant communities
(CC= alpine grasslands; SH=snowbeds). Black squares = medians, boxes = 25%-75%, whiskers = min-max. Note the
different scales in y-axis values.
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Fig. S23 - Descriptive statistics of seed development (SD), seed dispersal (Sdisp) and leaf senescence (LS) in
dry+warm (PS), moist (PSv1) and control (OTCc) plots for the whole study period (2014-2017) for G. supinum at
intra-annual and intra-plant communities levels (CC = alpine grassland; SH = snowbed). Coloured squares = medians,
boxes = 25%-75%, whiskers = min-max.
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Fig. S24 - Descriptive statistics of seed development (SD), seed dispersal (Sdisp) and leaf senescence (LS) computed
in plots with artificially delayed snow melt (SF+), in plots with naturally delayed snow melt induced by terrain
morphology on the north side (SFtN) and south side (SFtS) of the fence and in control plots (SFc) for G. supinum at
intra-annual level. Coloured squares = medians, boxes = 25%-75%, whiskers = min-max.
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Fig. S25 - Descriptive statistics of the mean height (Hmean) and of the day of achievement of the maximal mean
height (Hmean DoY) computed in warming (OTC) and control (OTCc) plots of G. supinum at inter-annual level, for
both the plant communities (CC= alpine grasslands; SH=snowbeds). Black squares = medians, boxes = 25%-75%,

whiskers

= min-max.
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Fig. S26 - Descriptive statistics of the maximum height (Hmax) and of the day of achievement of the maximum height
(Hmax DoY) computed in warming (OTC) and control (OTCc) plots of G. supinum at inter-annual level, for both
the plant communities (CC= alpine grasslands; SH=snowbeds). Black squares = medians, boxes = 25%-75%, whiskers
= min-max.
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Fig. S27 - Descriptive statistics of mean height (Hmean) and of the day of achievement of the maximal mean height
(Hmean DoY) in dry+warm (PS), moist (PSv1) and control (OTCc) plots for the whole study period (2014-2017) for
G. supinum at intra-annual and intra-plant communities levels (CC = alpine grassland; SH = snowbed). Coloured
squares = medians, boxes = 25%-75%, whiskers = min-max.
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Fig. S28 - Descriptive statistics of maximal height (Hmax) and of the day of achievement of the maximum height
(Hmax_DoY) in dry+warm (PS), moist (PSv1) and control (OTCc) plots for the whole study period (2014-2017) for
G. supinum at intra-annual and intra-plant communities levels (CC = alpine grassland; SH = snowbed). Coloured
squares = medians, boxes = 25%-75%, whiskers = min-max.
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Fig. S29 - Descriptive statistics of mean height (Hmean), maximum height (Hmax) and day of achievement of the
maximal mean height (Hmean DoY) and maximum height (Hmax_ DoY) computed in plots with artificially delayed
snow melt (SF+), in plots with naturally delayed snow melt induced by terrain morphology on the north side (SFtN)
and south side (SFtS) of the fence and in control plots (SFc) for G. supinum, at intra-annual level. Coloured squares
= medians, boxes = 25%-75%, whiskers = min-max.
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Fig. S30 - Descriptive statistics of the number of reproductive individuals (flowers_n) and of the reproductive success
(rep_succ) computed in warming (OTC) and control (OTCc) plots of G. supinum at inter-annual level, for both the
plant communities (CC= alpine grasslands; SH=snowbeds). Black squares = medians, boxes = 25%-75%, whiskers =

min-max.
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Fig. S31 - Descriptive statistics of the number of reproductive individuals (flowers_n) and of the reproductive success
(rep_succ) computed in dry+warm (PS), moist (PSvl) and control (OTCc) plots for the whole study period (2014-
2017) for G. supinum at intra-annual and intra-plant communities levels (CC = alpine grassland; SH = snowbed).
Coloured squares = medians, boxes = 25%-75%, whiskers = min-max.
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Fig. S32 - Descriptive statistics of the number of reproductive individuals (flowers_n) and of the reproductive success
(rep_succ) computed in plots with artificially delayed snow melt (SF+), in plots with naturally delayed snow melt
induced by terrain morphology on the north side (SFtN) and south side (SFtS) of the fence and in control plots (SFc)
for A. pentaphyllea, at intra-annual level. Coloured square = medians, boxes = 25%-75%, whiskers = min-max.
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