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1
Introduction

I
nterfacial phenomena are widespread in nature: Adsorption, wetting,
spreading, capillary rise, drop and bubble formation, evaporation, rip-
pling are just some examples of phenomena where interfaces play a key
role. Therefore it is not surprising that the singular behaviour exhibited
by interfaces already attracted the attention of ancient natural philoso-

phers. Pliny the Elder, born Gaius Plinius Secundus in Como (AD 23 - 79),
reported in his treatise Naturalis Historia [177] that “everything is smoothed
by oil, and that is the reason why divers send out small quantities of it from
their mouths, because it smoothes any part which is rough and transmit the
light to them”1. Many centuries later, Leonardo da Vinci (1452-1519) described
for the first time capillary phenomena2 and analysed the motion of water in
the ground making use of this effect [137] . During the seventeenth and eigh-
teenth century the optical properties of surface films were intriguing for many
scientists committed to the observation of the amazing colours in Newton’s
rings, discovered a short time before [159]. However, the seismic breakthrough
in the understanding of interfacial phenomena were the achievements obtained
independently by Laplace [131] and Young [252]: The two equations that
bear their names successfully predict capillarity rise in narrow tubes, account

1“Omne oleo tranquillari, et ob id urinantes ore spargere, quoniam mitigat naturam

asperam lucemque deportet”, Gaius Plinius Secundus, Naturalis Historia, Liber II CVI,
Mirabilia fontium et fluminum.

2As reported in Ref. [137]: “Enfin, deux observations capitales, celle de l’action capillaire

et celle de la diffraction, dont jusqu’à présent on avait méconnu le véritable auteur, sont

dues également à ce brillant génie”. See also Manuscripts of Leonardo da Vinci, Vol. N,
Sheets 11, 67 and 74.
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for the shape of bubbles, describe the interfaces between liquids and solids.
Furthermore, right at that time the relevant role of cohesive interactions be-
came clear and new developments in the study of interfaces were put forward
mainly by van der Waals [226] and Rayleigh [184], who replaced the too crude
approximation of sharp interface, originally put forward by Laplace, with a
more physical idea of smooth interface. At the end of the nineteenth century
the Marangoni effect was discovered [146] and it was understood the role of
interfaces in transport processes. The modern era of the study of interfacial
phenomena has been characterised by the tireless work of Boris Derjaguin
and his co-workers at the Moscow Academy of Sciences [44]. His research
ranges from theory to experiments, from studies on the stability of films to the
formalisation of the concept of the disjoining pressure, from the development
of the DLVO theory to important insights in surface transport phenomena.
More recently, the contributions put forward by Rowlinson, Widom and J. R.
Henderson [198], together with the intuitions of de Gennes [40], provided new
blood to this field.

Among the plethora of phenomena in soft matter physics strongly affected
by the structure of interfaces, three specific examples will be investigated
in this Thesis: The critical Casimir effect, the depletion interaction between
corrugated particles and thermo-osmosis. The common element characterising
these phenomena is the essential role of interfaces: Due to the interaction with
surfaces the properties of fluids at contact with them (or confined in thin films)
significantly differ from that of the same matter in bulk and give rise to new
and unexpected effects. Many observations report that the perturbation in the
density profile due to the interface can extend in the fluid up to a distance of
several molecular diameters. Also the dynamic properties of fluids, such as the
transport coefficients, are expected to be deeply modified in the region near
an interfaces. Consequently any proper treatment of surface phenomena must
be based on a microscopic statistical mechanical description of inhomogeneous
fluids. The three problems presented above will be studied in this spirit: We
will make use of microscopic approaches able to account for the peculiar
behaviour of fluids near interfaces, where continuum theories necessarily miss
the microscopic details on the molecular lengthscale.

The critical Casimir effect [72] is the long-range interaction between two
planar walls in a critical fluid due to the confinement, achieved by the wall
interfaces, of the critical density fluctuations. The force between the walls
obeys scaling laws which can be predicted by means of finite-size scaling
theories and are evaluated through Monte Carlo simulations [144]. These
results are valid only in the long-wavelength limit and a microscopic theory
able to describe the Casimir force at all distances is still missing. However,
the overall interaction between colloidal particles in critical solvents can be
strongly influenced by the behaviour at short distances [144]. In Chapter 2 we
provide a microscopic description of the critical Casimir force, introducing a
novel density functional approximation coupled to the hierarchical reference
theory of fluids, a bulk liquid state theory which proved accurate also near
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the critical point [171]. The resulting interaction between the walls is seen
to change character on lowering the temperature: The strong oscillations
induced by layering of the molecules, typical of the depletion mechanism in
hard core systems, are gradually smoothed and, close to the critical point, a
long-range attractive tail emerges leading to a scaling form which agrees with
the expectations based on scaling approaches.

The depletion interaction is an effective attractive force arising between
colloidal particles immersed in a solvent: The first prediction of this effect
dates back to the seminal work by Asakura and Oosawa [6] and has been
obtained assuming that the colloidal particles were perfectly smooth spheres
immersed in an ideal gas. Anyway, many natural and synthesised colloidal
particles are characterised by surface heterogeneities. Several lines of evidence
point out that the interaction potential between corrugated particles strongly
deviates from the basic Asakura-Oosawa result [120]. In Chapter 3 we address
the study of the interaction potential mediated by an ideal gas between two
rough colloidal particles, as a function of the geometry, the dimension and the
spatial configuration of the corrugations. The resulting explicit expressions for
the potential can be easily computed, without free parameters, resorting to
Derjaguin approximation. The comparison with recent numerical simulations
[113] shows an encouraging agreement and allows predicting the onset of
colloidal aggregation in dilute suspensions of rough particles.

When a thermal gradient is applied to a fluid at contact with a surface
a stationary flow develops3. This effect, referred to as thermo-osmosis, has
been discovered in the late nineteenth century [69] but successful theoretical
descriptions have been up to now devised only when the fluid is a rarefied gas
[209]. Nevertheless, thermo-osmosis turns out to be the driving mechanism of
thermophoresis in liquids and, in addition, represents the most elementary
out-of-equilibrium problem that we can conceive, because the system is kept
in a stationary nonequilibrium state by a constant temperature gradient.
Tentative descriptions of thermo-osmosis in liquids have been put forward by
Derjaguin on the basis of nonequilibrium irreversible thermodynamics [46].
However, these continuum approaches can only partially account for surface
induced effects like thermo-osmosis, because the relevant thermodynamic
quantities change over a lengthscale comparable with the range of inter-particle
potentials. Chapter 4 presents a microscopic theory of thermo-osmosis based
on a generalisation of linear response theory to inhomogeneous and anisotropic
environments and to thermal disturbances. The predicted thermo-osmotic flow
is fully characterised in terms of two physically different equilibrium properties
of the inhomogeneous fluid near the surface. Close similarities to both kinetic
theory [209] and irreversible thermodynamics [46] results can be recovered by
retaining each of these contributions, showing that the gas and liquid regimes

3Here we are assuming that external symmetry breaking fields, e. g. the gravitational
field, are not present.
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are indeed governed by different physical mechanisms.
The critical Casimir effect, the depletion between corrugated particles and

thermo-osmosis will be individually discussed in the following chapters. Each
Chapter includes introduction, analysis and final considerations about a single
phenomenon.



2
Critical Casimir effect in fluids

T
wo perfectly conducting plates in vacuum attract themselves
according to the celebrated law

F (L)

Σ
= − π2

240

~c

L4
, (2.1)

where Σ is the surface of the two plates, L �
√
Σ their distance, and c

the speed of light in vacuum. The conciseness of Eq. (2.1) renders anyone
speechless: The interaction does not keep trace of the type of conductor and
the only relevant quantities are the distance L and the product ~c. This
amazing and unexpected effect was predicted theoretically by Casimir in 1948
[31] and is due to the confinement, made by the conducting plates, of the
zero-point (vacuum) fluctuations of the quantized electromagnetic field. An
important feature of the phenomenon, known as Casimir effect, is that, even
though it is quantum in nature, it predicts a non vanishing force between
two macroscopic objects: If we consider two conducting plates of area 1 cm2,
at a distance of 1µm, the Casimir force is of the order of 10−7 N. Casimir’s
claim has been experimentally confirmed only in 1997 [127, 128] through high
precision measurements of the force between a gold plate and a gold plated
sphere.

Casimir effect does not represent an unicum: Casimir himself, with the
help of his assistant Polder, understood that the physical mechanism behind
the interaction between the planar conductors in vacuum (2.1) also leads to
the van der Waals and London [141] forces. Actually, the presence of atoms
modifies (in a sense, confines) the vacuum fluctuations of the electromagnetic
field, giving rise to a net attractive interaction. This microscopic interaction
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between atoms is called after them Casimir-Polder effect [32].
However, fluctuations are ubiquitous in nature, and their confinement gives
rise to the diverse manifestations of the so called fluctuation-induced forces
which originate intriguing phenomena also in condensed matter physics [72,
145, 135, 83, 104] and cosmology [157, 238]1. The effect discovered by Casimir
is nothing but the prototype of fluctuation-induced interactions.

In this Chapter our attention will be focused on the so called critical
Casimir interaction [72], arising from the confinement of the density fluc-
tuations in a critical fluid. The universal properties of the critical Casimir
force are now well understood by means of techniques specific of finite-size
scaling and renormalization group theory [121], whereas a non-universal (i.e.
microscopic) analysis of this effect is still lacking. In this Chapter we try to fill
this gap providing a microscopic theoretical description of the critical Casimir
interaction by examining the solvent-mediated forces between two hard walls
immersed in a hard core Yukawa fluid. The investigation is performed in the
super-critical region in order to exclude wetting phenomena, which deserve
a separate analysis. We developed an appropriate theoretical tool for such a
study: A Density Functional Theory (DFT), which proved accurate in the
description of confined fluids, coupled to the hierarchical reference theory of
fluid, a liquid state theory reliable also in the critical region.
The Chapter is organised as follows. The first Section is an introduction to
fluctuation-induced interactions, with a focus to the critical Casimir effect.
Section 2.2 critically reviews the density functional theory for inhomogeneous
fluids, betraying that a specific implementation of DFT accurate in the critical
region is still lacking. In Section 2.3 we propose a Weighted Density Approxi-
mation (WDA) especially designed for being accurate also near the critical
point. This theory is validated against other DFT prescriptions, as well as
available numerical simulations, in several non-critical states. In Section 2.4
our approach is applied to a Yukawa fluid in critical conditions: We discuss
both the microscopic density profile and solvent-mediated force between two
walls. Section 2.5 takes into account the universal properties of the effective
interaction. The emergence of scaling laws is investigated in the critical and
pre-critical regime and the results are compared to numerical simulations.
Furthermore, we show that our critical Casimir scaling function is deeply
related to the universal bulk properties of the critical fluid, giving a simple
prescription for the theoretical evaluation of the critical and off-critical Casimir
scaling function.
The main results of this Chapter have been published in Ref. [4].

1For a thorough discussion of fluctuation-induced forces see [115] and references therein.
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2.1 FLUCTUATION-INDUCED INTERACTIONS

Casimir-like forces

In order to understand more deeply the physical mechanisms which originate
fluctuation-induced interactions we recall the original argument put forward
by Casimir in 1948 [31]. Obviously, it could be possible to describe more
accurately this phenomenon (see e.g. [110]): However here, for the sake of
simplicity and to keep the focus on the physical mechanism, we impose that
the field outside the plates is vanishing and we neglect corrections due to the
finite size of the plates.

Let us consider two perfectly conducting plates in vacuum, at z = 0
and z = L, in the hypothesis L �

√
LxLy

2, that in principle allows to
disregard edge effects. The quantized electromagnetic field is described by the
Hamiltonian

Ĥ =
∑

k,λ

~ω(k, λ)

[
1

2
+ â†(k, λ)â(k, λ)

]
,

where â†(k, λ) is the operator that creates a photon of momentum k and
polarisation λ. The dispersion relation for photons in vacuum is linear ω(k, λ) =
ω(k) = c |k| and does not depend on the polarisation of the photon. The zero
point energy of the electromagnetic field reads

E =
∑

k

gs(k)
~ω(k)

2
,

where the factor gs(k) accounts for the degeneracy of the mode k. Now we
impose, as usual, periodic boundary conditions in the directions orthogonal to
z, while, along z, we require that the tangential electric field and the normal
magnetic field vanish on the plates. This conditions can be fulfilled, for kz 6= 0,
by a vector potential in the Coulomb gauge given by

A(r, t) = ε ei(kxx+kyy) sin(kzz)e
−iω(k)t, (2.2)

where ε is the polarisation of the electromagnetic field and

kα =
2π

Lα
α = x, y nα ∈ Z; kz =

π

L
nz, nz ∈ N

0. (2.3)

Furthermore, the polarisation ε and the wavevector k are mutually orthogonal
(ε · k = 0) because ∇ ·E(r, t) = 0, where E(r, t) is the electric field.
For kz 6= 0 there always exist two possible polarisations (gs(k) = 2) such that

2Here Lx and Ly represent the linear dimensions of the plates in the direction orthogonal
to z.
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the normal magnetic field and the tangential electric field vanish on the plates.
When kz = 0 the vector potential (2.2) identically vanishes, and must be
replaced by

A(r, t) = ε ei(kxx+kyy)e−iω(k)t.

It is possible to show that the unique polarisation (gs(k)|kz=0 = 1) which
fulfils the boundary conditions on the fields is ε = êz, where êz is the unit
vector along z.
Due to (2.3) the ground state energy of the electromagnetic field between the
plates depends on the separation L between them. The contribution arising
from the modes with kz 6= 0 reads

E′
0(L) = ~c

∑

k

′
|k| = ~c

+∞∑

nx,ny=−∞

+∞∑

nz=1

√(
2πnx
Lx

)2

+

(
2πny
Ly

)2

+
(πnz
L

)2

= ~c

∫ +∞

−∞

dnx

∫ +∞

−∞

dny

+∞∑

nz=1

√(
2πnx
Lx

)2

+

(
2πny
Ly

)2

+
(πnz
L

)2

= Σ
π2

~c

4L3

+∞∑

nz=1

∫ +∞

0

dt
√
t+ nz2,

where the prime only reminds that the summation is extended over kz 6= 0. In
the second line we replaced with the corresponding integrals the summations
over nx and ny, limiting the accuracy of our analysis to the case of infinite
plates; The last line has been obtained defining a straightforward change of
variables.
The contribution to ground state energy E0 from the modes with kz = 0
follows from the same algebra and reads

E0|kz=0 (L) = Σ
π2

~c

8L3

∫ +∞

0

dt
√
t.

Summing up, the total ground state energy (per unit surface) of the electro-
magnetic field is

E0(L)

Σ
=
π2

~c

4L3

[
1

2

∫ +∞

0

dt
√
t+

+∞∑

m=1

∫ +∞

0

dt
√
t+m2

]
.

This quantity is clearly unbounded. However, the potential energy between
the walls is given by

U(L) = E0(L)− E0(L→ ∞). (2.4)

Therefore, in order to obtain the real finite potential U(L) we first have to
evaluate and subtract the constant unbounded quantity E0(L→ ∞), that is
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the zero-point energy of the electromagnetic field when the two plates are far
away. The same algebra shown above allows to evaluate the (diverging) ground
state energy in the limit of free electromagnetic field

E0(L→ ∞)

Σ
=
π2

~c

4L3

∫ +∞

0

ds

∫ +∞

0

dt
√
t+ s2

and the potential energy (2.4) per unit surface between the plates reads

U(L)

Σ
=
π2

~c

4L3

[
1

2

∫ +∞

0

dt
√
t+

+∞∑

m=1

∫ +∞

0

dt
√
t+m2 −

∫ +∞

0

ds

∫ +∞

0

dt
√
t+ s2

]

=
π2

~c

4L3

[
1

2

∫ +∞

0

dt
√
t+

+∞∑

m=1

∫ +∞

m2

dt
√
t−

∫ +∞

0

ds

∫ +∞

s2
dt

√
t

]
. (2.5)

The sum and the integrals in Eq. (2.5) are still diverging. However, if we come
back to the physical problem, we realise that conductors are indeed transparent
for the electromagnetic radiation at high wave vectors: It is therefore natural to
insert in the integrals a cut-off for short wavelengths, which ensure convergence.
This procedure is referred to as regularisation. Once the cutoff has been inserted,
the sum and the integrals converge and the difference in (2.5) can be estimated
applying the Euler-Maclaurin identity [1]

n∑

i=m+1

f(i)−
∫ n

m

dx f(x) =
f(n)− f(m)

2

+

bp/2c∑

k=1

B2k

(2k)!

[
f (2k−1)(n)− f (2k−1)(m)

]
+Rp, (2.6)

where f(x) =
∫ +∞

x2 dt
√
t, f (l) is the lth order derivative of f , B2k are the

Bernoulli coefficients of even index and Rp is an error which is normally small
for suitable values of p. The zero-order term in (2.6) cancels out with the
kz = 0 contribution, whereas the first non vanishing contribution is for k = 2
and f (3)(x) = −4.
Finally, the attractive force per unit surface acting on the plates is minus the
derivative w.r.t. L of the potential energy between the plates

U(L)

Σ
= ~c

π2

720

1

L3
,

and coincides with Eq. (2.1).
This fundamental result follows from the quantization of the electromag-

netic field and can be considered as the proof of the reality of the zero point
energy. Furthermore, even if this phenomenon is an electromagnetic effect, the
charge of the electron does not appear in (2.1), which seems to be a universal
result. Strictly speaking, the plates interact due to an imbalance of the normal
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modes of the (quantized) electromagnetic field: In the region between the plates
only the normal modes with wavevector greater equal π/L (that is wavelength
λ ≥ 2L) are allowed (see Eq. (2.3)), whereas in the two half spaces there is
not such restriction3. The physical mechanism underlying all the Casimir-like
forces is exactly this unbalance in the allowed modes of fluctuations.

If we retrace this simple calculation, we can single out the basic ingredients
this kind of fluctuation-induced phenomena: The fluctuations and the interfaces
able to interact with them.
Fluctuations can be quantum in origin, such as in Casimir’s set up where
zero point fluctuations at T = 0 were considered, or classical, as shown by
Lifshitz [138], who extended the idea put forward by Casimir at T 6= 0 in a
dielectric medium with an arbitrary dielectric constant. Thermal fluctuations
of a correlated fluid near a critical point4 lead to the so called critical Casimir
interaction. This phenomenon was predicted in the context of binary mixtures
by Fisher and de Gennes in 1978 [72], who probably formulated the first
generalisation of Casimir effect in a field different from QED. Furthermore,
any system characterised by long-range correlations can display Casimir-like
forces: In superfluids and in liquid crystals these interactions arise from the
confinement of long-wavelength Goldstone modes of the order parameter5.
Also fluctuations of charge density close to macroions dispersed in charged
solutions lead to Casimir-like corrections to the Poisson-Boltzmann interaction
[158].

However, it has become evident that fluctuations alone are not enough to
observe an effect: Some kind of constraint on their oscillation modes is also
necessary. The confinement is microscopically realised by an external field,
which couples to the fluctuations and somehow introduces a disturbance. As
regard fluids, the external field usually correspond to an interface, which can
be or a purely repulsive wall or a hard wall plus an attractive tail. Within
Casimir’s original setup the interface is a perfectly conducting wall. However
the confinement is not always obtained through real, macroscopic objects. In
the case of wetting films, two different boundaries confine the fluctuations:
The wall-liquid and the liquid-gas interface [79]. The most singular example
of confinement is related to the Casimir-Polder interaction: In this case single
atoms or molecules interact with vacuum fluctuations.
However, also the geometry of the confinement proves to be relevant. In the
beginning, the interest was focused on simple geometries, like parallel plates,
until it was shown in 1968 that an isolated, conducting sphere in vacuum

3The difference between the integral and the sum in Eq. (2.5) precisely accounts for this
unbalance of the fluctuations.

4In superfluids this effect is observed measuring film thickness when the system is near a
critical endpoint.

5The thickness of 4He thin films is determined by Van der Waals attraction plus a
contribution due to critical fluctuations (when the system is near the critical endpoint) or
due to Goldstone modes (when the fluid is in the superfluid phase) [79].
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should expand due to repulsive Casimir interaction [21]. This example shows
how the geometry is able to influence also the direction of the Casimir force.
Also random surface roughness, which mimics real surfaces, can introduce a
relevant contribution to the Casimir forces [136].

We conclude this overview about Casimir-like forces spending a few words
about the strength and the range of the interaction.
In fluctuation-induced phenomena the strength of the interaction is propor-
tional to the amplitude of fluctuations, namely ~ and kBT for quantum and
thermal fluctuations respectively. Here we report the behaviour of the Casimir
potential per unit surface when two infinite parallel planar walls are in vacuum,
in a Bose liquid at low temperatures and in a fluid at the critical point:

UQED(L)

Σ
∼ ~c

L3
,

UBose(L)

Σ
∼ ~cs

L3
,

Ucritical(L)

Σ
∼ kBT

L2
.

Here c is the speed of light in vacuum, cs is the speed of sound in the Bose
liquid and T is the critical temperature. Readily the peculiar dependence on
L in Ucritical stands out: It is due to the fact that ~c is an energy per length,
whereas kBT has dimensions of energy, and the interaction energy must be
proportional to Σ.
The range of the fluctuation-induced forces is limited by the range of fluctua-
tions: The Casimir force in QED has an infinite range while, away from the
critical point, the critical Casimir interaction has a finite range determined by
the correlation length of the order parameter fluctuations.

Critical fluctuations

The onset of Casimir forces in critical systems was theoretically predicted
in 1978 by Fisher and de Gennes in a three-page letter to the academy of
the sciences of Paris [72]6. Their work takes inspiration from the observation
that the concentration profiles in a critical mixture near a wall are perturbed
over a distance of the order of the correlation length. Then, making use of
the finite-size scaling approach, they argue that two planar walls, immersed
in the same mixture at a distance smaller than the correlation length, will
attract each other with a potential proportional to kBT and decreasing as the
second inverse power of the distance. The letter concludes with a remark about
colloidal suspensions: An enhanced rate of aggregation is to be expected as a
result of critical Casimir forces, and indeed this consequence has been recently
observed [28]. Furthermore, forty years later the hint provided by Fisher and
die Gennes, experiments on a binary mixture of water and Lutidine led to the
first direct measurement of critical Casimir forces [104].
The peculiar interaction predicted by Fisher and de Gennes strongly depends on

6The manuscript can also be found in the book [39], with some additional remarks by de
Gennes.
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the finite size of the system: Indeed, in critical conditions the distance between
the walls can be comparable with the bulk correlation length. Finite-size effects
can drastically influence the behaviour of the observables and a new form of
scaling, the so called finite-size scaling, was put forward by Fisher himself in
1970 [71] in order to account for these effects. This form of scaling allows to
express the universal contribution to the critical Casimir forces in terms of
universal scaling functions, which only depend on the boundary conditions
applied and on the universality class of the system in the thermodynamic limit.
In the following we present the main concepts of finite-size scaling in order to
obtain the universal scaling form of the critical Casimir force.

Finite-size scaling

The principle of thermodynamic additivity, which has its roots in the
homogeneity of the free energy with respect to the extensive variables, can be
considered the simplest finite-size scaling law: The free energy and the other
extensive quantities scale with the volume. If additivity holds, the description
of the system can be conveniently formulated in the so called thermodynamic
limit7, and reduces to determining the free energy density fb(ρ, T ), which
only depends on intensive variables, and, possibly, the correlations. The ther-
modynamic limit ensures that descriptions based on different ensembles are
equivalent and, under general conditions of regularity, that the free energy
looses any dependence on the boundaries. Furthermore, the singularities char-
acterising second order phase transitions appear only in this limit [133], and
the singular behaviour of the system is fully contained in the bulk free energy
density fb(T, ρ).
Unfortunately, for a finite-size system8 in near-critical conditions the descrip-
tion introduced above, based on the thermodynamic limit, is no longer valid.
This point can be made more explicit if we expand the free energy of a system
with finite size L, at fixed (T, ρ), in terms of free energy densities as9

F(T, V,N)

V
= fb(T, ρ) +

fs(T, ρ)

L
+
fe(T, ρ)

L2
+ . . .

+ · · ·+ fc(T, ρ)

Ld
+ o

(
e−L/ξ(T,ρ)

)
, (2.7)

where ξ is the bulk correlation length and the surface energy density fs(T, ρ),
the edge contribution fe(T, ρ) and the corner contribution fc(T, ρ) have been
evaluated in the thermodynamic limit too. Such expansion is meaningful only
far from the critical point10, i.e. when the correlation length is smaller than

7That is the limit for N, V → ∞, taken at fixed density.
8Namely, any system which has finite size in at least one space dimension.
9This expression is valid under free boundary conditions and for systems interacting with

short-range potentials.
10However, near the critical point the non-singular contribution to the free energy is still

given by (2.7).
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the size of the system L. Indeed, it is well known that any critical finite-size
system shows strong deviations with respect to the corresponding bulk system:
In many cases the bulk singularities are smoothened and there can be a shift
in the critical point. Equation (2.7) does not hold for a finite-size system
in critical conditions because such deviations from the bulk behaviour are
not included and it becomes necessary a correct formulation of scaling for
finite-size systems.
In what follows we summarise the finite-size scaling theory, starting from the
finite-size hypothesis originally put forward by Fisher [71]. For a complete and
formal introductions to this fascinating argument see e.g. [14, 180].

Let us consider a system near the critical point where all the relevant
parameters determining the thermodynamic state, except the temperature, are
fixed at their critical value. The correlation length will diverge approaching
the critical temperature Tc from above11 as

ξ = ξ0 t
−ν , with t =

T − Tc
Tc

, (2.8)

where t is the reduced temperature, ξ0 is a non-universal constant and ν > 0
is the bulk critical exponent, which only depends on the universality class of
the system. The singular behaviour of the susceptibility χ in bulk systems is
governed by the exponent γ:

χ ∼ t−γ .

Note that the divergence of this quantity near the critical point can be also
expressed in terms of the diverging correlation length through Eq. (2.8):

χ ∼ ξ
γ/ν . (2.9)

When the fluid is not confined, the susceptibility will diverge approaching
the critical point according (2.9), because also the correlation length diverges.
However, if the system has a finite size L, the correlation length will be cut
off at L, and the divergence of the susceptibility χ is no more possible. In
particular, the susceptibility will assume its bulk value until L� ξ, whereas
for L ∼ ξ it will be cut off at a value which depends on the geometry of the
system.
The finite-size scaling hypothesis, as formulated by Fisher [71], states that
the relevant quantity accounting for the properties of finite-size systems near
the critical point is the ratio between the size of the system L and the bulk
correlation length ξ

L/ξ ∼ L tν .

11Here we limit to super-critical thermodynamic states.
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This hypothesis, as well as the considerations presented above, can be imple-
mented for the susceptibility by writing

χ ∼ ξ
γ/νX

(
L

ξ

)
, (2.10)

where X is a dimensionless function such that

lim
x→0

X (x) ∼ x
γ/ν and X (x)

∣∣
x�1

= const

in order to reproduce the correct scaling behaviour in the different limits. The
function X (x), which has no other arguments except from x, is the so called
finite-size scaling function for the susceptibility. If the bulk correlation length
is unknown, it could be useful to replace its dependence in (2.10) with the
reduced temperature t. Therefore we can define another scaling function X̃ (x)
such that

χ ∼ L
γ/ν X̃

(
aL

1/ν t
)
,

where a is a system dependent metric factor, X̃ (x) is constant at the critical
point (x = 0) and there is not a hidden dependence on the variable L.
The finite-size scaling hypothesis can be extended with the same arguments to
negative reduced temperatures (the scaling function will be in general different)
and to the singular contribution of other diverging quantities, both intensive,
as the susceptibility, and extensive, as the free energy. Moreover, within this
pedagogical example we supposed that the temperature was the only free
parameter: Analogous laws can be formulated when other scaling fields, such
as the density or the magnetic field, can vary.

Within finite-size scaling, the scaling functions only depend on the bulk uni-
versality class, on the geometry of the problem and on the imposed boundary
conditions. This general property is shared by fluctuation-induced interactions,
which are categorised depending on the kind of fluctuation, i.e. the bulk uni-
versality class, and by the confinement, i.e. the geometry and the boundary
conditions.
The geometry has a strong effect on the confinement of fluctuations: As men-
tioned above, also in the electromagnetic framework confining shapes giving
rise to opposite Casimir interactions can be easily identified [21]. There are
many possible geometries of interest, but in this work we focus on the so
called 1-dimensional layer, that is a system confined in only one dimension.
For this geometry, as regards system belonging to the 3d Ising universality
class, a genuine phase transitions (i.e. with true singularities) can appear,
because the number of unconstrained dimensions is higher than the lower
critical dimension [23].
The role of the boundary conditions can be easily understood if we consider a
statistical system. Far away from the critical point the perturbation induced
by the surface can penetrate into the system only up to distances of the order
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of the correlation length, which is comparable with interaction range. If the
critical point is approached, the correlation length grows larger and larger, and
the same happens for the perturbation due to the surface which can penetrate
deeper and deeper inside the system. In addition, for each bulk critical point,
more than one surface critical transition can appear, and the critical point
turns into a multicritical point [49]. The surface critical behaviour can be
classified in surface universality classes, as in the case of bulk universality
classes [49]. The universality classes are responsible for the different boundary
conditions imposed on the fluctuations. The surface transition can enhance,
suppress or leave unchanged12 the bulk phase transition and the corresponding
universality classes are referred to as extraordinary (E), ordinary (O) and
special (S). In some situations the surface phase transition may take place
(spontaneously or guided by an external field) at higher temperatures than the
bulk transition, and the surface transition is referred to as normal transition.
This is the typical situation occurring in binary mixtures [123], where the pref-
erential absorption of the surface for one of the two components of the mixture
resembles an external (symmetry breaking) field which guarantees order on
the surface. However, up to corrections to scaling, the normal transition can
not be distinguished from the extraordinary transition (E). The boundary
condition is referred to as symmetry breaking or fixed boundary condition.
Periodic, Dirichlet and free boundary conditions belong to the ordinary (O)
surface universality class13. Confined binary mixtures belong to the nor-
mal/extraordinary (E) [80, 123] surface universality class.
Most of the theoretical predictions available for the finite-size critical Casimir
scaling functions have been obtained through Monte Carlo simulations of the
Ising model. A magnetic field applied to the surface, if sufficiently large, is
able to fix the orientation of the the surface spins. Therefore Ising systems
with surface fields belong to the same surface universality class of the binary
mixtures. The notation commonly adopted for a film geometry with symmetry
breaking boundary conditions is (+,+), (+,−), (−,+) and (−,−), where +
and − represent the spin orientation on the surface. The same notation is
adopted in confined binary mixtures and the symbols + and − stand for a
positive or negative order parameter [80].

12The ordering of the bulk and of the surface is simultaneous.
13Dirichlet boundary condition: The order parameter is forced to vanish on the surface of

the system. Free boundary conditions: Vanishing external field outside the system.
In spin systems free boundary conditions are usually adopted instead of Dirichlet bound-
ary conditions [53], whereas periodic boundary conditions are preferred in Monte Carlo
simulations.
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Scaling behaviour of the critical Casimir force

The free energy density of a confined system14 can be split in a regular
and in a singular part [179] as

FL(T, h)

kBTV
= fL,reg(T, h) + fL,sing(T, h). (2.11)

The non-singular contribution is given, at least for periodic boundary con-
ditions, by Eq. (2.7), whereas the singular contribution obeys the universal
scaling law [181]

fL,sing(T, h) =
1

Ld
Y
(
atL

1
ν , bhL

βδ
ν

)
. (2.12)

Here ν, β and δ are universal critical exponents15; the metric factors s and b
are the only non-universal parameters and are system dependent. The scaling
function Y will be determined, as shown before, by the bulk and surface
universality classes and by the geometry.

In order to obtain the universal scaling function of the critical Casimir
force between two planar walls in a critical fluid, let us move to the so called
film geometry. The free energy per unit surface of the confined fluid can be
written as

FL(T, h)

kBTA
= L

[
fL,reg(T, h) + fL,sing(T, h)

]

= Lfb(T, h) + fs(T, h) +
1

Ld−1
Y
(
atL

1
ν , bhL

βδ
ν

)
, (2.13)

where the surface term reads

fs(T, h) = f (1)s (T, h) + f (2)s (T, h)

with f
(1)
s and f

(2)
s the contributions to the non-singular free energy arising

from the two distinct confining surfaces. The higher order terms in Eq. (2.7)
vanish in planar symmetry16.
The free energy (2.13) varies with the distance L between the walls and the
critical Casimir force per unit surface is

1

A

FC(T, h;L)

kBT
= − ∂

∂L

(FL(T, h)

kBTA

)

= fb(T, h) +
1

Ld
Θ
(
atL1/ν , bhLβδ/ν

)
, (2.14)

14Here we adopt the magnetic notation.
15We assume that the hyperscaling relations hold.
16We are assuming that there is no contribution to the free energy arising from the

confinement of the fluctuations of the electromagnetic field in the (dielectric) fluid.
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where Θ (y1, y2) is the critical Casimir force scaling function

Θ (y1, y2) = (d− 1)Y (y1, y2)−
1

ν
y1
∂Y
∂y1

− βδ

ν
y2
∂Y
∂y2

.

A nice cancellation occurs if the walls are immersed in the fluid: The L-
independent bulk term in Eq. (2.14) is counterbalanced by the same contribu-
tion originated by the fluid in the outer region. In this configuration, the force
between the two walls is only due to the confinement of fluctuations.

Main results on the critical Casimir force

The analysis of the critical Casimir force and of the related universal scaling
function Θ is a rather difficult task both experimentally, for the small forces
involved, and theoretically, for the lack of an accurate description of critical
fluids in confined geometries. In what follows we limit to report the most
significant results about the critical Casimir interaction in connection to our
work. Further details, in particular as regards the role of the critical Casimir
forces on colloidal aggregation, can be found in the recent reviews [160, 144].
Most of the results present in the literature deal with the temperature de-
pendence of the Casimir fluctuation induced interaction at zero magnetic
field. An indirect estimate of the scaling function for the film geometry and
the 3D Ising universality class, at h = 0 under (+,−) and (+,+) boundary
conditions was given in Ref. [76, 182] monitoring the thickness of a binary
liquid film at different temperatures near Tc. The first direct evaluation of
the critical Casimir force was performed in 2008 [104] for a system consisting
of a colloidal particle close to a wall (sphere-plate geometry) immersed in a
binary mixture of water and Lutidine. The experiments were carried on at
different compositions and for both the relevant boundary conditions. This
system, however, allowed to probe only the exponential tail of the scaling
function. A MC study of the solvent-mediated potential between two spherical
particles in a simple fluid along the critical isochore has been performed in
Refs. [86, 85] with different boundary conditions. However, the determination
of the full Casimir scaling function could not be obtained in the temperature
range examined in the simulations. Along the symmetry line (h = 0), more
precise estimates of the universal Casimir scaling functions for the 3D Ising
universality class and film geometry have been obtained via MC simulations of
the Ising model [229, 230, 231]. Few theoretical approaches were devised to ad-
dress this problem: In addition to the mean-field results [122], its is worthwhile
mentioning the extended de Gennes-Fisher local functional method [20, 225]
and a long-wavelength analysis of density functional theory [28, 174]. The
latter investigations have been also extended away from the symmetry line
(h 6= 0) providing predictions on the shape of the critical Casimir scaling
function in the off-critical case [204, 154, 174]. Monte Carlo simulations at
h 6= 0 were recently performed in Ref. [232].
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2.2 DENSITY FUNCTIONAL THEORY

The physical properties of homogeneous fluids at equilibrium do not depend
on the position where they are measured. The translational invariance endowed
with such systems led to the formulation of simple theories accounting with
excellent accuracy for the bulk properties of fluids. However, finite systems
we handle in the laboratory are always inhomogeneous: Ubiquitous interfaces
break translational invariance and unexpected implications come into play.
The portion of fluid in contact with a wall can not be considered homogeneous:
The confining potential generated by the wall induces strong oscillations in
the density profile. Another illuminating example is the flat interface between
a liquid and a vapour that forms in the presence of the gravitational field:
Across this interface, if the system is far enough from the critical point, the
average density varies abruptly from the bulk to the vapour value. The same
happens for wetting films and many other interfacial phenomena.

However, the thermodynamic (or statistical mechanics) description of
inhomogeneous fluids at equilibrium brings with it some difficulties. To give an
example, it is well known that it is not possible to uniquely define all the local
thermodynamic functions in regions where the scale of the inhomogeneities
is of the order of the microscopic correlation length. This is the case of a
fluid against a hard wall or of the liquid-gas interface in a gravitational field.
The local density turns out to be well defined for all kind of inhomogeneities,
together with the chemical potential and the temperature, which are constant
throughout the system, whereas the pressure tensor lacks of a unique definition
(we deal with this problem in Section 4.2).

The goal of this Chapter is to give a microscopic prediction for the
solvent-mediated interaction between two planar walls immersed in a classical
fluid at different thermodynamic conditions, including the critical region. As
we will show below, the force between the walls induced by the confined fluid
is strictly related to its density profile. Therefore, in order to achieve the goal
we have set ourselves, we need an accurate description of the properties of a
confined fluid.
Up to now, the most successful theoretical approach devised to study in-
homogeneous systems is Density Functional Theory (DFT) [142]. Although
alternative techniques, like integral equations or scaled particle theory, have
been proposed [101], DFT is generally considered to be the most accurate and
versatile tool for dealing with inhomogeneous systems and has been applied in
several frameworks: From the study of fluids in nanopores, to the structure of
the liquid-vapour interface, to the theory of freezing (see e.g. [98]).

Density functional theory was born in the late nineteenth century, when
Maxwell, Poisson and Lord Rayleigh turned their attention to another interface
driven phenomena: The capillarity action [198]. The mechanical approach
inspired by Laplace and then proposed again by Maxwell [148] in order to treat
the problem was too crude because it assumed that the density profile across the
gas-liquid interface was a step function. Poisson and Rayleigh [183] recognised
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the weakness in Maxwell’s approach, but it was van der Waals in 1893 [226] who
first succeeded in fixing some defects: He considered space dependent density
profiles and provided a description of the problem within a thermodynamical
framework. This work17 can be considered a milestone and is the first attempt,
however crude, to develop a thermodynamic analysis of non-uniform systems.
Van der Waals recognised that the local free energy density of an inhomogeneous
equilibrium system at a given point r is determined not only by the value
of the density at r, but also by the density at the neighbouring points. This
circumstance is somewhat related to the impossibility of a unique definition of
many local thermodynamic functions inhomogeneous systems: Van der Waals
(together with Rayleigh) was aware that a local expression of thermodynamic
functions can be regarded only as an approximation [197].
Furthermore, Van der Waals introduced in Section 6 of Ref [196] the paradigm
at the basis of the density functional theory. He expressed the free energy
density in terms of its local value ρ (r) and a correction proportional to its
second order derivative and he stated that the equilibrium density profile
should come from the minimisation of the functional

F [ρ(r)] =

∫
dr′
[
fb
(
ρ (r′)

)
+ a∇2ρ(r′)

]
, (2.15)

where a is a suitable constant and fb the homogeneous free energy density.
These works were largely forgotten since the early days of quantum me-

chanics. At that time no one was able to solve the Schrodinger equation for
the wave function in order to obtain the ground state density and energy of
many electron atoms. In 1927 Thomas [221] and Fermi [70] independently
understood that a way to circumvent the difficulties related to the knowledge
of the full wave function was to shift attention to the density. They developed
an approximation method which consists in expressing the ground state energy
as a function of the electron density, with suitable approximations for the
kinetic and the interaction term. They postulated that the equilibrium density
is simply obtained by minimisation of the energy functional, taking the number
of particles constant. This theory can be considered the first example of DFT
applied to quantum systems.
Thirty-seven years had to pass for Hohenberg and Kohn to prove [106] that
the variational principle postulated by Thomas and Fermi really holds for
the ground state energy of quantum mechanical electrons. The following year
Mermin [153] generalised the Hohenberg-Kohn theorem to system at any tem-
perature, paving the way for the application of DFT also in classical systems
described by statistical mechanics. The only difference is that within classical
systems the functional that has to be minimised with respect to the particle
density is the grand canonical functional. The functional techniques were in-
troduced in statistical physics by Bogoliubov [19] and the functional language
became familiar in the field of classical fluids in the early sixties thanks to

17An English version has been provided by Sir J. S. Rowlinson [196].
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the applications given by by Percus and Stell [73]. The use of the results
by Hohenberg-Kohn-Mermin became routine after the works by Ebner et al.
[60, 201] and by Yang et al. [249].

The variational principle

The density profile18 of an inhomogeneous fluid at equilibrium at a given
temperature T and chemical potential µ, whose particles interact with the
potential U({ri}) and are subject to an external field φ(r), depends on position
and is defined as [98]

ρ (r1) =
1

Q

∞∑

N=1

N

N !

∫
dr2 . . . drN e−βUN ({ri})

N∏

i=1

eβΨ(ri). (2.16)

In this expression Q is the grand canonical partition function and we have
introduced the intrinsic chemical potential

Ψ(r) = µ− φ(r), (2.17)

with Λ =
√
2πβ~2/m the de Broglie wavelength andm the mass of the particles.

If approached on the basis of Eq. (2.16), the evaluation of the density profile
turns out to be an impossible task for real systems. The difficulties enclosed
in Eq. (2.16) can be overcome by the density functional formalism, which,
in a nutshell, shifts the problem of calculating the grand partition function
in minimising an appropriate functional of the one-particle density, with the
temperature and the chemical potential acting as parameters. Equation (2.16)
could lead to believe that, for a system specified by a given inter-particle
interaction, the one particle density is a functional of the external field φ. Also
the grand canonical potential

Ω (T, V, µ) = − 1

β
log
[
Q (T, V, µ)

]
(2.18)

could seem to be a functional, at fixed temperature, of the intrinsic chemical
potential (and therefore of the external potential).
The density functional theory for classical systems overturns this way of
thinking stating19 that, at fixed the temperature T , chemical potential µ
and kind of particles (i.e. the interaction potential UN ), there is a one-to-one
correspondence between the density profile, the external potential and the

18Sometimes referred to as the one-particle density distribution, in order to show the
relationship with n-particle density distributions (see e.g. [98]).

19For the proof of the theorem in classical formalism see standard textbooks e.g. [98] or
the accurate, even if dated, review by Robert Evans [64].
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gran canonical probability density F0
20:

φ (r) ⇐⇒ F0 ⇐⇒ ρ (r) . (2.19)

This means that if we consider a given equilibrium density profile ρ(r), at
fixed T , µ and UN , there exists a unique21 external potential that gives rise
to that profile (modulo additive constants).

Equation (2.19) implies [98] that the equilibrium density profile ρ(r) of
a system subject to an external potential can be found by minimising a
suitably defined density functional Ω[n(r)] at fixed chemical potential µ and
temperature T . The grand potential functional can be conveniently expressed
in terms of the external potential φ(r) and the intrinsic free energy functional
F [n(r)] as

Ω[n(r)] = F [n(r)]−
∫

dr n(r)
(
µ− φ(r)

)
. (2.20)

When evaluated at the equilibrium density profile, Ω[n(r)] and F [n(r)] actually
reduce to the system’s gran potential and free energy:

Ω[ρ(r)] = Ω (T, V, µ) , F [ρ(r)] = F (T, V, µ) , (2.21)

defined in (2.18).
As stated by the Hohenberg-Kohn theorem, the equilibrium density profile

ρ(r) minimises the grand potential functional. In formulae:

δΩ[n]

δn(r)

∣∣∣∣
ρ(r)

=
δF [n]

δn(r)

∣∣∣∣
ρ(r)

+ φ(r)− µ = 0. (2.22)

The explicit knowledge of the intrinsic free energy functional would lead,
through a straightforward minimisation, to the equilibrium density profile
and to the corresponding value of the gran canonical potential. Unfortunately,
the analytical form of F [n], a unique functional of the density profile, is not
exactly known yet. The exact expression of the intrinsic free energy is available
only for the ideal gas

βF id[n(r)] =

∫
dr n(r)

[
log
(
Λ3n(r)

)
− 1
]

(2.23)

and the minimisation of the gran potential functional (2.22) gives the well
known barometric law for the density profile:

ρ(r) = Λ−3eβΨ(r). (2.24)

20Within the quantum formalism the many electron wave function replaces the distribution
function.

21Modulo an additive constant. For a basic discussion about the issues of non-uniqueness
and v-representability in DFT see [30].
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In an interacting system, it is customary to separate the ideal contribution,
splitting F [n(r)] as the sum of the ideal and the excess term Fex[n(r)]:

F [n(r)] = F id[n(r)] + Fex[n(r)]. (2.25)

Through this decomposition we can express the formal solution of the minimi-
sation (2.22) for an interacting system as the generalisation of the barometric
law:

ρ(r) = Λ−3 exp

{
β

[
Ψ(r)− δFex[n]

δn(r)

∣∣∣∣
ρ(r)

]}
. (2.26)

Looking at Eq. (2.26) we can note that the effects of the inter-particle interac-
tions on the density profile are fully enclosed in the functional derivative of
the excess free energy (defined as the one-particle direct correlation function),
which acts on the system like an external effective one body potential. Obvi-
ously, this reformulation does not solve the problem because the ρ(r) appears
also in the r.h.s., but it is useful because it offers a self consistent route to
perform the minimisation.

Approximated density functionals

The solution of the many-particle problem requires an (approximated)
excess free energy functional able to capture the physics of the system22. There
is not a unique strategy to obtain it and the success of the approximation
can be only judged checking the reliability of the results produced by the
minimisation and analysing the behaviour of the functional in appropriate
limits, where exact solutions are known.
Several approximations for the excess part have been proposed over the years
for dealing with specific problems. Hard sphere fluids are successfully described
by Rosenfeld’s Fundamental Measure Theory (FMT) [190, 192], also at bulk
densities close to the solid transition. Even if the FMT is widely used and
it its implementation is straightforward, at least for the planar geometry,
Rosenfeld’s approximation for the excess free energy holds in principle only
for fluids of purely hard particles of any shape. We implemented also this
version of DFT approximation (see Fig.s 2.3 and 2.6) in order to validate the
predictions of our approximated functional in the high-temperature (i.e. when
βUN ({ri}) → 0). Without going into further details, which go beyond the
purpose of this presentation, we refer to the recent review about FMT [192].
The impact of the attractive contributions in the inter-particle potential on the
structure of inhomogeneous fluids have been deeply analysed. In the following
we will review the most popular approximations of the free energy functional in

22However, strictly speaking, the variational principle is valid only for the exact free energy
functional, but not in general for an approximated one.
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the presence of attractive potentials, trying to show why they are inadequate to
account for the behaviour of inhomogeneous fluids in wide regions of the phase
diagram, including the critical region. Then we will introduce our original
approximation.

Local density approximation

The simplest approximation for the free energy functional can be obtained
retaining only local informations. Such, sometimes crude, approximation is in
principle even less accurate than the one proposed by van der Waals (2.15).
Nonetheless, it is justified when the density profile varies very slowly over the
range of molecular interactions. Under this hypothesis, the excess free energy
density of the inhomogeneous fluid is locally similar to the excess free energy
of the same fluid in bulk and at a density equal to the local density. The so
called Local Density Approximation (LDA) is usually expressed as

F [n(r)] =

∫
dr f

(
[n(r)], r

)
'
∫

dr fb
(
n(r)

)
, (2.27)

where fb(ρ) is the excess free energy density of the homogeneous bulk fluid at
density ρ, which can be considered as a known result of liquid state theories.
Note that the ideal contribution to the free energy (2.23), which is exactly
known, can be written without approximation in the form (2.27), i.e. is local.

Long-wavelength approximation

A refinement of the local density approximation can be obtained by ex-
panding of f

(
[n(r)], r

)
as a series of density gradients ∂αn(r):

f
(
[n(r)]

)
= c(0)

(
n(r)

)
+ c(1)α

(
n(r)

)
∂αn(r) + c

(2,a)
αβ

(
n(r)

)
∂αn(r) ∂βn(r)

+ c
(2,b)
αβ

(
n(r)

)
∂α∂βn(r), (2.28)

where the coefficients c(0)(ρ), c
(1)
α (ρ), c

(2,a)
αβ (ρ) and c

(2,b)
αβ (ρ) are only functions

of the local value of the density profile and the sum over repeated indexes is
understood. In this expansion, the density gradients include non-local correc-
tions to the LDA functional and account for slowly varying density profiles.
The (exact) intrinsic free energy functional F

[
ρ(r)

]
is a unique functional of

the equilibrium density profile [64], and also f
(
[n(r)], r

)
shares this property.

Therefore f
(
[n(r)], r

)
can not depend on the external potential φ(r) and must

be invariant under rotations. The coefficients are invariant under rotations
because their argument is a scalar function, so that

c
(2,a)
αβ (n) = δαβ c

(2,a)(n), c
(2,b)
αβ (n) = δαβ c

(2,b)(n).

As regards the derivatives of the density profile, only the scalar contributions
∂2αn(r) and ∂αn(r) ∂αn(r) are invariant under rotations. Furthermore simple
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algebra gives

c(2,b)
(
n(r)

)
∂2αn(r) = ∂α

[
c(2,b)

(
n(r)

)
∂αn(r)

]
− dc(2,b)

dn

∣∣∣∣
n(r)

∂αn(r)∂αn(r),

where the first term in this equation vanishes when integrated over the whole
system. Summing up, (2.28) reads

f
(
[n(r)], r

)
= fb

(
n(r)

)
+

1

2
b
(
n(r)

)∣∣∇n(r)
∣∣2 + o

∣∣∇n(r)
∣∣4,

where the function c(0)(ρ) equals the homogeneous free energy density, in order
to recover the correct bulk description, whereas b(ρ) has not been fixed yet.

Different prescriptions have been devised in order to obtain an estimate
for this coefficient. A feasible route is to make the problem easier, imposing
that the variation of the density profile with respect to the bulk density ρb is
also small, as well as slow. According to this hypothesis we can expand the
density profile about the bulk density ρb and the free energy functional reads

F [n(r)]'F [ρb]+

∫
dr

[
µ∆n(r)+

1

2

d2fb
dρ2

∣∣∣∣
ρb

(
∆n(r)

)2
+
b(ρb)

2

∣∣∇n(r)
∣∣2
]
, (2.29)

where ∆n(r) = ρ(r) − ρb and the first order derivative of the free energy
density is the chemical potential of the bulk system. The only unknown in
(2.29) is the constant b(ρb), which can be related, as we will show in the
following, to the second moment of the correlation function. This link arises
from the comparison of (2.29) with the perturbative expansion of the free
energy density, which is introduced in the next paragraph.

Let us focus on a system where only small variations of the equilibrium
density profile appear, that is |∆ρ(r)| � ρb. Expanding the free energy
functional about the bulk density

F [n(r)]'F [ρb]+

∫
dr

δF
δn(r)

∣∣∣∣
ρb

∆n(r)+
1

2

∫
dr

∫
dr′ δ2F

δn(r)δn(r′)

∣∣∣∣
ρb

∆n(r)∆n(r′)

and recalling some definitions we obtain the so called perturbative expansion
of the free energy functional

F [n(r)] ' F [ρb] + µ

∫
dr∆n(r)

+
1

2β

∫
dr

∫
dr′
[
δ(r − r′)

ρb
− c(|r − r′|, ρb)

]
∆n(r)∆n(r′). (2.30)

In this expression the first order functional derivative of the free energy at
constant density has been rewritten by means of Eq. (2.22). As regards the
second order derivative, the ideal contribution directly follows from (2.23),
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whereas the excess contribution, when evaluated at bulk density, is related to
the bulk direct correlation function [98]:

−β δ
2Fex

[
n(r)

]

δn(r)δn(r′)

∣∣∣∣∣
n(r)=ρb

= c(|r − r′|, ρb). (2.31)

It can be useful to express ∆n(r) and ∆n(r′) in (2.30) by means of their
Fourier transforms we readily obtain

F [n(r)] ' F [ρb] + µ

∫
dr∆n(r)

+
1

2β

V

(2π)3

∫
dq

[
1

ρb
− c(q, ρb)

]
∆̃n(q)∆̃n(−q), (2.32)

where c(q, ρb) and ∆̃n(q) are the Fourier transform of c(|r|, ρb) and ∆n(r)
respectively, and we exploited the translational invariance of the expression
between squared parenthesis.
Before the invention of the fundamental measure theory by Rosenfeld [190], the
structure of fluids with repulsive inter particle potentials was studied through
the expansion (2.30). This functional provides quite accurate density profiles
for hard spheres confined by hard walls, but is less successful in the description
of fluids with attractive or repulsive tails.

After this digression, let us come back to our original problem. The co-
efficient b(ρ) can be obtained through the comparison of (2.29) with the
perturbative expansion of the free energy (2.32), obtained for density profiles
showing small deviations from the bulk density, if we impose the additional
requirement of long-wavelength variations of ρ(r). In this limit an expansion
for small wavevector of c(q, ρb) is allowed:

c(q, ρ) = d0(ρ) + d2(ρ) q
2 + . . . , (2.33)

where d0(ρ) = c(q = 0, ρ). Substituting this expression in (2.32) and Fourier
transforming back in the real space we obtain:

F [n(r)] ' F [ρb] + µ

∫
dr∆n(r) +

1

2β

[
1

ρb
− d0(ρb)

] ∫
dr
(
∆n(r)

)2

− d2(ρb)

2β

∫
dr
∣∣∇n(r)

∣∣2. (2.34)

Finally, the consistency between this expression and the perturbative result
allows to fix b(ρ):

b(ρ) = − 1

β
d2(ρ) =

1

6β

∫
dr r2c(r, ρ) (2.35)

because the coefficient of the quadratic term in (2.33) is determined by the
so called compressibility sum rule. The parameter b(ρ) is also referred to as
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the stiffness coefficient and is related to the range of the direct correlation
function. This long-wavelength approximation, referred to as square-gradient
approximation corresponds to the φ4 coarse-grained theory, ubiquitous within
statistical field theory. It has been shown recently [20, 225, 28, 174] that
square-gradient approximations are suitable for the study of the long-range
tails of the interaction between two walls mediated by a correlated fluid.

The detailed presentation of the square-gradient approximation given above
is justified by the following circumstance: In the long-wavelength limit (i.e.
when the density profile changes slowly and by small amounts) any DFT
approximation fulfilling the condition (2.31) reduces to the square-gradient
approximation (2.29), with the coefficient b(ρ) given by (2.35). Therefore, when
only the long-wavelength properties of the system are relevant, it is possible
to replace an accurate functional, which probably requires heavy calculations
for the numerical minimisation, with the minimal approximation given by Eq.
(2.29) without any loss of information.
This idea has been recently implemented in Ref. [28, 174], where it has been
shown that the square-gradient approximation is suitable for the study of the
long-range tails critical Casimir interaction. Furthermore, in Section 2.5 we
prove that the scaling functions of the critical Casimir force obtained within
our full microscopic DFT approximation overlap with the coarse-grained
predictions from Eq. (2.29) (see Fig. 2.17).

Perturbation theory

The perturbative approaches are the most common (and less expensive)
way to deal with the attractive contribution to the inter-particle interaction.
This kind of approximation starts from a known reference functional, which
accounts for the repulsive contribution to the excess free energy functional, to
which a small (usually mean-field) perturbation is added in order to describe
the effects due to attraction. For a system with a pair-wise interaction potential
we have:

Fex[n(r)] = Fex
R [n(r)] +

1

2

∫
dr

∫
dr′ n(r)uatt(r, r

′)n(r′), (2.36)

where uatt(r, r
′) is the attractive contribution to the interaction potential.

The mean-field contribution in (2.36) is usually referred to as the Hartree term
[100] and it was introduced in the beginning of the study of many electron
problems. Such an approach is quite simple to implement, but it gives only
qualitative predictions, particularly in the critical region, because it does not
take into account correlations arising from the attractive tail of the potential.

Dealing with correlations

During the seventies the ground state of the many electron problem in
atomic, molecular and solid state systems was described within the density
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functional formalism by means of the local density approximation. Even if this
approach provided quite successful and unexpected results for a large number
of properties it soon became evident that the exchange and correlation energy
is characterised by a marked non-local character, neglected by simple choices
of the energy functional.
A new era began in 1979, when Gunnardson, Jonson and Lundqvist [94]
proposed the so called averaged-density approximation, which includes the
exchange and correlation contribution to the ground state energy as

Exc[n(r)] =

∫
dr n(r)εxc

(
n̄(r)

)
, (2.37)

where εxc(ρ) is the exchange-correlation energy density and n̄(r) is the density
profile averaged in the neighbourhood of the point r, thus introducing non-local
informations. Within liquid state theories this approximation is known as the
Weighted Density Approximation (WDA) and was applied for the first time
by Nordholm et al. [162] the following year. The WDA brought about several
improvement in the description of inhomogeneous fluids and certainly has
been as a source of inspiration for Rosenfeld’s fundamental measure theory.
Accurate oscillating density profiles were published and soon it was realised
that this approximation can also describe wetting because it fulfils the the
hard wall sum rule

βp = ρw

which links the contact density at a hard wall ρw to the bulk pressure of the
fluid23.

In its most general formulation, the WDA consists of expressing the excess
part of the free energy functional as

Fex[n(r)] =

∫
dr n(r)ψex

(
n̄(r)

)
, (2.38)

where ψex(ρ) is the excess free energy per particle of the homogeneous fluid
and the weighted density n̄(r) can be written as a local average of the density
profile, in terms of an isotropic weight function w(r; n̂):

n̄(r) =

∫
dr′n(r′)w

(
|r − r′|; n̂(r)

)
. (2.39)

The weight function is not fixed a priori and can be dependent on the local
value of an auxiliary reference density n̂(r)24. It must satisfy the normalisation
requirement

∫
dr′ w

(
|r − r′|; n̂(r)

)
= 1 ∀ r (2.40)

23Many approaches to the problem based on integral equations fail.
24The definition of this function is not yet specified at this point. We only impose that

the only functional dependence of n̂(r) is on the weight function w(r).
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to ensure that in the homogeneous limit the weighted density coincides with
the actual density of the fluid.
The perturbative approach, briefly outlined above, provides a formally exact
expression of the excess free energy functional useful to justify the WDA
assumption (2.38) and to obtain some hints on how non-local effects enter the
problem. It is possible to show [64] that the exact excess free energy can be
written as

Fex[n(r)] =

∫
dr′n(r′)Ψ

(
[n(r)]; r′

)
. (2.41)

The non-local functional Ψ is given by

Ψ
(
[n(r)]; r′

)
=

∫
dr′n(r′)u(r − r′)

∫ 1

0

dα g(2)
(
αu(r); r, r′

)

and all the complexity of the problem have been included into the two-particle
radial distribution function g(2)

(
αu(r); r, r′

)
of the inhomogeneous fluid25,

which is not exactly known. Looking at (2.41) it is clear that the most natural
approximation, based only on the knowledge of the properties of bulk fluids, is
that adopted in Eq. (2.38), where the homogeneous excess free energy density
ψex evaluated at the smoothed density n̄ takes the place of the product between
the functional Ψ and the potential.

As anticipated above, there is some freedom in the choice of the weight
function, which is one of the key elements in this approximation, and both
the LDA and the mean-field approximations correspond to special choices of
the weight function26. Nordholm [162] obtained qualitatively good results for
hard sphere systems by means of a weight function proportional to the step
function:

w
(
|r|; n̂(r)

)
=

3

4πσ3
Θ(σ − |r|), (2.42)

where σ is the diameter of the hard sphere.
Tarazona [216] refined Nordholm’s density profiles making use of the Carnahan-
Starling expression for the free energy of the bulk fluid. A key remark was
subsequently put forward by Tarazona and Evans [219], who noticed that
the homogeneous correlation function resulting from (2.42) is characterised
by an overestimated range and by values three times bigger respect to that
predicted by the PY approximation at short distances. This was a remarkable
step in the development of the WDAs, because thereafter the efforts have
been focused on devising weight functions able to reproduce correctly the
two-particle correlation function in the homogeneous limit. Operationally, the
desired bulk correlation c(|r|, ρ) can be obtained by enforcing for each density

25Interacting with potential αu(r).
26E.g. the LDA follows from the choice w

(
|r|; n̂(r)

)
= δ(r).
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ρ the relation

−β δ2Fex[n]

δn(r)δn(r′)

∣∣∣∣
n(r)=ρ

= c(2)(r, r′)
∣∣∣
ρ
= c(|r − r′|, ρ), (2.43)

where c(2)(r, r′) is the two-particle direct correlation function for an inhomo-
geneous system27 whereas the bulk correlation function c(|r|, ρ) is considered
as an input from liquid state theories or simulations. Equation (2.43), once
the excess free energy has been expressed in the form (2.38), is a non-linear
integro-differential equation for the weight function. If the solution exists, the
selected approximation is consistent with a bulk liquid state theory and it is
possible to proceed with the (numerical) minimisation of the functional.

Many weighted density approximations

Assuming that we are able to enforce a given direct correlation function in
the homogeneous limit through the condition (2.43), only two elements can
distinguish between different weighted density approximations. The first one
is the underlying bulk liquid state theory, which fixes the free energy densities
and the correlations. We will discuss this point in more detail in the next
section. The second one is the auxiliary function n̂(r).

The easiest way to proceed is to neglect the position dependence of n̂(r)
and set

n̂[n(r)] = ρb, (2.44)

where ρb is the bulk density of the system in the homogeneous limit. This
choice guarantees a great simplification in Eq. (2.43), because n̂(r) looses its
functional dependence on the density profile n(r)

δn̂[n(r)]

δn(r′)
= 0

and it straightforwardly follows28 that Eq. (2.43) takes the form:

c(|r − r′|, ρb) = −βρb
∂2ψ

∂ρ2

∣∣∣∣
ρb

∫
dr1 w

(
|r − r1|; ρb

)
w
(
|r′ − r1|; ρb

)

− 2β
∂ψ

∂ρ

∣∣∣∣
ρb

w
(
|r′ − r|; ρb

)
. (2.45)

27Here we are assuming that a given auxiliary function n̂(r) has been fixed.
28This choice implies that the second order functional derivative of the weighted density

vanishes.
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Leidl and Wagner [134] proposed the so called Hybrid-WDA, based on the
following prescription for the auxiliary density:

n̂[n(r)] =
1

N

∫
dr

∫
dr′ n(r)w

(
|r − r′|; n̂

)
n(r′), (2.46)

where N is the total number of particles in the fluid. The predictions for hard
sphere systems provided by the HWDA are accurate up to reduced densities
of the order of 0.8. The peaks due to the layering of the fluid are located in
the correct positions and the overall density profile is nearly indistinguishable
from that obtained with the more complicated WDA by Curtin and Ashcroft
[37]. However, in most cases the definition (2.46) introduces several difficulties
without real advantages. Computing the functional derivative of the auxiliary
function w.r.t. the density profile we get

δn̂[n(r)]

δn(r′)
=
N−2

∫
dr1dr2n(r1)n(r2)w

(
|r1−r2|;n̂

)
−2N−1

∫
dr1n(r1)w

(
|r′−r1|;n̂

)

N−2
∫
dr1dr2n(r1)n(r2)

∂
∂ρ

[
w
(
|r2−r1|;ρ

)]∣∣∣
n(r)

−1
.

If we consider the thermodynamic limit of this expression, the numerator
vanishes due to the presence of a multiplicative 1/N factor: Therefore also the
functional derivative vanishes. It means that the HWDA reduces, for system
unbounded at least in one direction, to the WDA resulting from the simpler
prescription (2.44). In the following we will deal with unbounded systems
and therefore we will adopt a constant auxiliary density. Leidl and Wagner
applied the functional resulting from (2.46) only for the repulsive contribution
to the excess free energy, whereas the attractive tail of the potential was
introduced in the functional as a mean-field correction. Maybe, this was due
to the complication in the solution of the equation for the weight function,
increased by the presence of an attractive contribution.

The approach suggested by Tarazona [218, 217], and subsequently adopted
also by Curtin and Ashcroft [37], identifies the auxiliary density with the
weighted density itself

n̂[n(r)] = n̄(r). (2.47)

The non-linear integro-differential equation (resulting from Eq. (2.43)) obeyed
by the weight function is hard to solve, even if the direct correlation function is
given explicitly as a function of position and density. The problem is therefore
shifted to the momentum space by means of a Fourier transform.
Tarazona proposed to solve the differential equation for the weight function in
the momentum space through a polynomial expansion of the weight function
up to the second order in the density. Skipping all the details [218, 217], the
density profiles resulting from this prescription were be better than all the
results obtained before using density independent weight functions. However,
such an expansion can not be justified at all29 and it is not possible to guaran-
tee that it holds also for systems other than hard spheres.

29Robert Evans, in his review about DFT [101], tells that the approximation by Tarazona
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Curtin and Ashcroft [37] made a formally consistent use of the Percus-Yevick
approximation, both for the correlation function and for the energy density,
without any further approximation. They solved the resulting non-linear dif-
ferential equation for w at fixed wave vector and density via an iterative
procedure, starting from a guess for w appropriately selected. They claimed
that the iteration can be stopped after 5/10 iterations with a precision of
1 part in 104. Kroll and Laird [124] solved the same equation addressed by
Curtin and Ashcroft without reporting details or difficulties. We also tried to
reproduce the results, following the same procedure suggested in [37], however
we noted that going further in the iteration led to complex solutions for the
second order equation used to produce the guess. After a careful analytical
analysis, it is possible to show that the equation for the weight function is
an Abel differential equation of the second kind [253], which, in a range of
densities, has no solutions satisfying the physical boundary conditions.

Many other auxiliary densities have been proposed (among them see
[93, 152]), but in the presence of interactions none of them shows better consis-
tency and better predictions than that obtained with the choice in Eq. (2.44).
Therefore we decided to proceed selecting this simple, and powerful, prescrip-
tion. In the next Section we present our WDA approach, which is characterised
by an original strategy introduced in order to include the non-mean-field effects
arising from the attractive tails of the interparticle potentials.

2.3 A WEIGHTED DENSITY APPROXIMATION
FOR CRITICAL FLUIDS

The goal of this Chapter is to provide a microscopic theory of solvent-
mediated forces in the whole phase diagram of the fluid, including the liquid-
vapour transition. As already stressed, the density functional formalism seems
to be a powerful tool to achieve our purpose but we need an approximation of
the excess free energy functional which, in the uniform limit, is accurate both
in the dense and in the critical regime. As we have tried to review before, such
an implementation of DFT has not been devised yet.

In the previous Section we have shown that a good starting point is
provided by the weighted density approximation. The accuracy of such DFT
implementation strongly relies on the two key ingredients which characterise
our WDA ansatz, namely the homogeneous free energy ψex and the weight
function w(r; n̂[n(r)]). In addition, as regards n̂[n(r)], a good compromise
between accuracy and computational agility is the simple prescription (2.44).

As regards the the underlying bulk description of the fluid, the only available
microscopic liquid state theory able to account both for non-critical and critical
fluid properties is the Hierarchical Reference Theory (HRT) [170, 171], which

“was once described, by an eminent theorist, as a chemical engineer’s prescription”.
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will be therefore adopted in this work for the evaluation of the excess free
energy ψex(ρ) and of the bulk direct correlation function c(r; ρ) of the uniform
fluid.
Although the general formalism of HRT can be applied to fluids and mixtures
with arbitrary pair interactions, quantitative results for specific models require
the closure of the exact HRT equations by introducing some approximation. A
closure which proved remarkably accurate has been implemented in the case of
a Hard Core Yukawa (HCY) fluid [169], because the resulting HRT equations
considerably simplify by use of the known solution of the Ornstein-Zernike
equation available for this interaction. The HCY potential is defined as the
superposition of a pure hard core term of diameter σ and an attractive Yukawa
tail of inverse range ζ

vY(r) = −εσ e−ζ(r−σ)

r
Θ(r − σ), (2.48)

where the parameter ε, which defines the energy scale, is positive and Θ(r)
is the Heaviside step function. In the following we will investigate this model
taking σ and ε/kB as the units of length and temperature respectively.

Having established the form of our excess functional in the homogeneous
limit, we proceed with the explicit definition of Fex[n(r)] for general density
profiles. We first focus our attention on the effects of the attractive contribution
to the potential. As we reported in Section 2.2, usually the contribution of
attractive tails is introduced in the functional through a mean-field approxi-
mation (2.36). The description of a near-critical fluid given by (2.36) is only
qualitatively correct, because it leads to mean-field critical exponents and
scaling functions. Nonetheless, it is well known that the main contribution
to the internal energy is given by the Hartree term: This circumstance has
been extensively recognised in the previous treatments. We are therefore led
to isolate this term in the excess free energy, by writing

Fex[n(r)] = Fex
R [n(r)] + Fex

H [n(r)], (2.49)

where the Hartree contribution is given by

Fex
H [n(r)] =

1

2

∫
dr′
∫

dr′′ n(r′) vY(|r′ − r′′|)n(r′′),

whereas the reference term Fex
R [n(r)], defined by Eq. (2.49), contains both the

entropic contribution to the free energy, arising from hard core repulsion, and
the correlations, induced by the attractive interaction. Our choice is then to
use the WDA to represent only the entropy-correlation part of the intrinsic
free energy functional, retaining the exact description of the Hartree energy:

Fex
R [n(r)] =

∫
dr n(r)ψex

R

(
n̄(r)

)
,

where

ψex
R (ρ) = ψex(ρ)− ρ

2

∫
dr vY(r). (2.50)
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The form of the weight function can be determined following the strategy
put forward by Tarazona [218, 217] and introduced in Section 2.2 (Dealing
with correlations), which consists in requiring that the two-particle direct
correlation function reduces, in the homogeneous limit, to the known form of
the underlying bulk liquid state theory (see Eq. (2.43)). In accordance with
the notation of this Section we have

−β δ2Fex
R [n]

δn(r)δn(r′)

∣∣∣∣
n(r)=ρ

= c(|r − r′|; ρ) + β vY(|r − r′|)

≡ cR(|r − r′|; ρ), (2.51)

where c(r; ρ) is the direct correlation function predicted by HRT and the
last equality is the definition of cR(r; ρ). It is straightforward to obtain from
(2.51) and (2.45) an algebraic equation for the Fourier transform of the weight
function w(q; ρ):

βρ
∂2ψex

R

∂ρ2

∣∣∣∣
ρ

w2(q; ρ) + 2β
∂ψex

R

∂ρ

∣∣∣∣
ρ

w(q; ρ) + cR(q; ρ) = 0 (2.52)

which, at least in the cases examined in this work, always admits real solutions30.
The physical root can be determined enforcing the normalisation condition
(2.40), recalling that the compressibility sum rule, satisfied by the HRT direct
correlation function, requires

cR(0; ρ) =

∫
dr cR

(
r; ρ
)
= −2β

∂ψex
R

∂ρ
− βρ

∂2ψex
R

∂ρ2
. (2.53)

As in other implementations of WDA [218], the range of the weight function
always remains comparable to the size of the molecules. This feature is pre-
served also in the critical region, as shown in Fig. 2.1. Indeed, the onset of this
remarkable property of the weight function can be justified as follows. Within
the mean spherical approximation closure adopted in the smooth-cutoff formu-
lation of HRT, the critical exponent η, which describes the long-wavelength
divergence of the structure factor, is equal to zero. This means that the direct
correlation function is characterised by a short range, also near the critical
point, and the same property must hold for the weight function too.

Once the intrinsic density functional has been determined, the approximate
equilibrium properties, such as the density profile ρ(r) and the grand canonical
potential Ω[ρ(r)], can be obtained minimising the functional (2.20) at fixed
temperature and chemical potential. In most of the situations the relevant
quantity held fixed is the bulk density, rather than the chemical potential. In

30The existence of the solutions for a given ψR(ρ) and c(q; ρ) can not be guaranteed a

priori. See also the discussion of the Curtin-Ashcroft implementation of the WDA in Sec.
2.2 (Many weighted density approximations ).
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Figure 2.1: Real space weight function at two values of bulk density (panel a):
ρbσ

3 = 0.3154; panel b): ρbσ
3 = 0.6) for three values of the temperature. One state

shown here (ρbσ
3 = 0.3154, T = 1.21354) is very close to the critical point (the

correlation length predicted by HRT is about 1.3 × 103 σ).

a HCY homogeneous fluid, the value of the chemical potential is related to
the density by:

µ(ρ) =
1

β
log ρ+ ψex

R (ρ) + ρ
dψex

R

dρ

∣∣∣∣
ρ

− 4π
ζ + 1

ζ2
ρ. (2.54)

This expression follows from the bulk limit of Eq. (2.22), with φ(r) = 0, when
the excess free energy in the homogeneous limit is given by Eq. (2.50).

Solvent-mediated force

A central quantity for the present investigation is the force acting on
two planar hard walls immersed in a HCY fluid. In this geometry, symmetry
requires that all the local properties may depend on the single coordinate
z, orthogonal to the two plates of surface Σ, placed at z = 0 and z = L
respectively. Remarkably, if the wall separation L is greater than σ, the force
per unit surface fΣ acting on the plates, sometimes called solvation force, can
be expressed as a pressure difference (see Appendix 2.8 for an introduction to
solvation force and Ref. [103]):

fΣ(L;T, µ) = − ∂

∂L

(
Ω(L)[ρ(z)]

Σ

)∣∣∣∣
T,µ

− p(T, µ), (2.55)

where Ω(L)[ρ(z)]/Σ is the grand canonical potential per unit surface of the
fluid confined in the region [0, L], determined by the minimisation of the
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approximated grand canonical functional at fixed (µ, T ) and p(µ, T ) is the
bulk pressure of the fluid at the same values of temperature T and chemical
potential µ = µ(ρb, T ).
On the other hand, when L < σ there are no particles between the walls and
the attractive force per unit surface acting on the walls arises uniquely from
the presence of the fluid in the regions z < 0 and z > L: The first term in Eq.
(2.55) vanishes and the force is given by

fΣ(L;T, µ) = −p(T, µ). (2.56)

The solvation force fΣ defined above is a difference of pressures and goes to
zero in the limit L → ∞. By means of standard functional identities it is
possible to express, without any further approximation, the derivative of the
grand potential per unit surface in terms of the contact density (the proof is
given in Appendix 2.8)

ρ(L)
w ≡ lim

δ→0+
ρ
(
L− σ/2− δ

)
= lim

δ→0+
ρ
(
σ/2 + δ

)
(2.57)

and the solvation force can be finally written as [66]

fΣ(L;T, µ) = kBT ρ
(L)
w − p(T, µ). (2.58)

Furthermore, the chosen WDA exactly satisfies the contact value theorem
[227] (the proof and an introduction to the contact theorem can be found in
Appendix 2.7)

βp(T, µ) = lim
L→∞

ρ(L)
w , (2.59)

leading to the more suggestive identity

βfΣ(L;T, µ) = ρ(L)
w − ρ(∞)

w , (2.60)

where ρ
(∞)
w is the contact density in the limit of a single wall.

Some (technical) details about the minimisation

The above results show that, in order to obtain the force acting on the
walls, we just need to perform the (numerical) minimisation of the functional in
the region [0, L], and then to extract the contact density from the equilibrium
density profile. The minimisation has been be carried out by a simple iterative
Picardmethod, taking advantage of the exact relation obeyed by the equilibrium
density profile (see Eq. (2.26))

ρ(z) = e−β[u(z)−µ], (2.61)

where the potential of mean force u(z) is defined as

u(z) =
δFex

R [n]

δn(r)

∣∣∣∣∣
ρ(z)

+

∫
dr′ρ(z′)vY(|r − r′|).
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Starting from a guess for the density profile, it is possible to evaluate u(z)
and then to obtain, by means Eq. (2.61), a new density profile. This density
profile gives a new value for the potential of mean force and the iteration
can be continued as far as convergence is reached. At moderate densities it is
necessary to weight the solution ρi(z) at step i with the solution ρi−1(z) at
step i− 1, because, during the iterative procedure, the peaks in the oscillating
density may exceed the physical limit given by the random close packing
volume fraction:

ρi(z) = αρi−1(z) + (1− α)ρ̃(z),

where ρ̃(z) is the density profile evaluated from Eq. (2.61) with ρ(z) = ρi−1(z)
and α is a number between 0 and 1. The particular value of α is chosen in
order to obtain the fastest convergence.

The minimisation of the grand canonical functional turns out to be demand-
ing due to the evaluation of the functional derivatives and of the weighted
densities for each step of the iteration and for all the points of the mesh.
However, the symmetries of the system considerably speed-up the whole min-
imisation. It can be shown that the 3d-convolution of any function of the
single variable z (e.g. ρ(z)) with the weight function (see e.g. Eq. (2.39)) can
expressed as a 1d-convolution of the same quantity with the cosine Fourier
transform of the weight function itself. As regards the density profile, we
proceed as follows:

n̄(z) =

∫ h

0

dz′ n(z′)

∫
dr⊥w

(
|r − r′|; ρ

)

= 2π

∫ h

0

dz′ n(z′)

∫ ∞

|z−z′|

duuw(u; ρ). (2.62)

If we express the weight function w(u; ρ), which is directly provided by the
analytical solution of Eq. (2.52), in terms of its Fourier transform w(q; ρ) as

w(u; ρ) =
2

(2π)2

∫ ∞

0

dq q
sin(uq)

u
w(q; ρ),

we obtain from Eq. (2.62)

n̄(z) =

∫ h

0

dz′ n(z′)W
(
|z − z′|; ρ

)
. (2.63)

The function W(z, ρ) is the cosine Fourier transform of the weight function at
density ρ:

W(z; ρ) =
1

2π

∫ ∞

−∞

dq cos(qz)w(q; ρ),

which can be easily evaluated numerically by means of standard routines [178].
Similar arguments lead to the expression of the functional derivative of the
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reference excess free energy:

δFex
R [n]

δn(r)

∣∣∣∣
n(z)

= ψex
R

(
n̄(z)

)
+

∫ h

0

dz′ n(z′)
∂ψR

∂ρ

∣∣∣∣
n̄(z′)

W
(
|z− z′|; ρ

)
. (2.64)

We performed minimisations of the functional for values of the temperature
T above the critical point (T > Tc ∼ 1.21353) and bulk reduced densities ρbσ

3

up to 0.85. The free energy and the correlation function of the homogeneous
fluid obtained with HRT are given on a mesh of 10300 points for reduced
densities between 0 and 1.05. A spatial step-size ∆z = 1.5 × 10−2σ has
been generally used in the numerical minimisation, while for bulk densities
ρbσ

3 > 0.7 and close to the critical point ∆z has been reduced up to two
orders of magnitude. Typically, up to few thousand Picard iterations were
necessary to achieve a precision of one part in 107 for the density profile and
one part in 1011 in the grand potential.

Minimisations near the critical point

The solvent-mediated interaction between the walls is characterised by a
diverging range if the fluid is set in critical conditions. More precisely, the
range of the interaction becomes comparable with the correlation length,
which diverges as a power law at the critical point. Therefore, in order to
study the onset of the universal properties of the interaction, we need to
evaluate the force between the walls at distances at least comparable with the
correlation length. The minimisation of the gran potential functional becomes
computationally very demanding when the dimension of the system increases.
In fact, the number of operations needed to evaluate the weighted densities
(2.63) and the derivative of the excess free energy (2.64) does not scale linearly
with the dimension of the system. At a first sight, we are lead to believe that
the number of operations for each convolution scales as N2, where N is the
number of points of the spatial mesh which discretise the distance between
the walls. Actually, the computational complexity of this operation scales as
N logN : We will show below that it is possible to exploit the properties of
Toeplitz circulant matrices and of the discrete Fourier transform algorithm in
order to reduce the complexity of the problem.

The bottleneck in the numerical minimisation of the grand potential func-
tional are integrals of the form

g(z) =

∫ h

0

dz′ w(z − z′) f(z′)

which, after the discretization of the variables z and z′, can be written as

gi =

h∑

j=0

wi−j fj , (2.65)
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where i and j are integers in [0, h].
It is useful to interpret the sum in Eq. (2.65) as the product between the
(square) matrix W , defined as

W =




w0 w−1 w−2 . . . . . . w−h

w1 w0 w−1
. . .

...

w2 w1
. . .

. . .
. . .

...
...

. . .
. . .

. . . w−1 w−2

...
. . . w1 w0 w−1

wh . . . . . . w2 w1 w0




,

and the vector f = (f0, . . . , fh). The elements of the matrix are such that

Wi,j =Wi+1,j+1 = wi−j ,

and a matrix Wi,j with this property is referred to as a Toeplitz matrix.
Now, let us define the (2h+ 2)-by-(2h+ 2) Toeplitz matrix Xij = xi−j :

X = Xi−j =




w0 w−1 . . . w−h 0 wh wh−1 . . . w1

w1 w0
. . .

. . . w−h 0
. . .

. . .
...

...
. . . w0

. . .
. . .

. . . 0
. . .

...
...

. . .
. . . w0

. . .
. . .

. . . 0 wh

wh
. . .

. . .
. . . w0 w−1

. . .
. . . 0

0
. . .

. . .
. . . w1 w0

. . .
. . .

...

w−h 0
. . .

. . .
. . .

. . . w0
. . .

...
...

. . . 0
. . .

. . .
. . .

. . . w0 w−1

w0 w−1
. . . 0 wh . . . . . . w1 w0




.

This matrix has the additional property

xk = xk+2h+2 (2.66)

and is referred to as a circulant matrix.
The convolution in (2.65) can be written in terms of the circulant matrix

X as

Gα =

2h+1∑

β=0

XαβFβ , (2.67)

where F is a vector with 2h+2 elements defined as F = (f0, f1, . . . , fh, 0, . . . , 0).
The first h+1 components of G correspond to the vector g, namely the result
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of the convolution. Now we will show that the properties of the matrix X
allow to evaluate all the 2h+ 2 components of G (and then the h+ 1 of g)
performing only three discrete Fourier transforms of dimension 2h+ 2. From a
computational point of view, the complexity of standard Fast Fourier Transform
(FFT) algorithms [178] scales, as first recognised by Gauss, as N logN and the
resulting computational complexity of the whole minimisation will be N logN .
Eq. (2.67) can be written as

Gα =
1

2h+ 2

2h+1∑

l=0

F̃l

2h+1∑

β=0

Xα−β e
−2πiβl/(2h+2), (2.68)

where Fβ has been expressed by means of its inverse discrete Fourier transform

Fβ =
1

2h+ 2

2h+1∑

n=0

F̃l e
−2πiβl/(2h+2). (2.69)

The next step is to introduce the transformation β = α−m and to separate
contributions with positive and negative m:

Gα =
1

2h+ 2

2h+1∑

l=0

F̃l

[
2h+1−α∑

m=0

X−m e−2πi lα+m
2h+2 +

α∑

m=0

Xm e−2πi lα−m
2h+2

]

=
1

2h+ 2

2h+1∑

l=0

F̃l

[
2h+1−α∑

m=0

X2h+2−m e−2πi lα+m
2h+2 +

α∑

m=0

Xm e−2πi lα−m
2h+2

]
,

where the second line follows from (2.66). Introducing the transformation
n = 2h+ 2−m in the first summation on r.h.s. we get

Gα =
1

2h+ 2

2h+1∑

l=0

F̃l

[
2h+1∑

n=α+1

Xn e
−2πli α−n

2h+2 +

α∑

m=0

Xm e−2πliα−m
2h+2

]
,

where we made use of the properties of complex exponentials. The final result
reads

Gα =
1

2h+ 2

2h+1∑

l=0

F̃lX̃l e
−2πiαl/(2h+2), (2.70)

where F̃ and X̃ are the discrete Fourier transforms of the vectors F and
X = (x0, x1, . . . , x2h+1)

31 respectively, according to the definition (2.69). Equa-
tion (2.70) shows that G can be evaluated through the Fourier transform of
the vector

(
F̃0X̃0, . . . , F̃2h+1X̃2h+1

)
.

31The elements xi belong to the circular matrix defined above.
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Here we remark that Eq. (2.70) holds exactly and the errors due to the process
of zero padding in principle can not arise. This circumstance is relevant because
at large distances the forces between the walls are expected to be very small
and high accuracy is needed.
The minimisations in the critical region were performed using this method and
we obtained the density profiles up to a wall-to-wall distance of about 800σ.

Validation of the method

The minimisation of the previously defined grand canonical functional
allows to evaluate the equilibrium properties of the confined fluid. Within this
approach, the relevant quantities can be found at every temperature and bulk
density of interest, also in the vicinity and below the critical point of the HCY
fluid. Most of the calculations refer to a Yukawa fluid with range ζσ = 1.8,
where several simulation results are available.

In the high temperature limit32 our model reduces to a hard sphere fluid,
whose properties have been extensively investigated by numerical simulations.
As shown by Fig. 2.2, the density profile obtained within our density functional
(blue line) is symmetrical with respect to the mid point between the walls.
Slight deviations from the old MC data of Ref. [208] can be observed, in
particular near the middle point between the walls, probably due to the lack
of statistics in the simulation. The density is zero at distances 0 < z/σ < 0.5
and h/σ − 0.5 < z/σ < h/σ, due to the infinite repulsion between the wall
and the fluid particles.

Figure 2.3 shows the density profiles ρ(z) of a hard sphere fluid near a hard
wall at three different values of ρb. The agreement of the WDA prediction with
the Monte Carlo (MC) data of Ref. [92] is very good up to reduced densities
of the order of 0.6, while at higher values the phase of oscillations in the
density profile are correctly captured, although a slight underestimation of
the peak value is observed. The comparison of our density profiles with those
predicted by the “White Bear” version of the FMT [194] shows, as expected,
that Rosenfeld’s theory gives more accurate estimates of the oscillation peaks,
particularly at high density.
When the temperature is decreased, the contribution of the Yukawa tail to the
density profile becomes relevant. We compared the density profile obtained
within our DFT approximation with the MC simulation data for ζσ = 1.8 at
temperature T = 2 and for ζσ = 3 at T = 1.004. Figure 2.4 shows that the
WDA estimate is remarkably accurate at reduced densities 0.4 and 0.5; small
deviations from the MC simulation data appear at reduced density 0.7. We
note that at ρbσ

3 = 0.7 the contact reduced density is overestimated of about
0.2 with respect to simulation data, even if the contact theorem is verified

32All the comparisons with the data of simulations of hard sphere systems are obtained
with a reduced temperature equal to 3000.
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Figure 2.2: Density profile ρ(z) for a hard sphere fluid between two hard walls at
distance h = 10.94σ. The bulk reduced density is ρb σ

3 = 0.81. The line correspond
to the WDA prediction. Points represent MC data from Ref. [208].
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Figure 2.3: Density profiles ρ(z) for a hard sphere fluid between two hard walls
(distance L = 16σ) at different values of the bulk reduced density ρbσ

3. MC simulation
data (symbols) are taken from Ref. [92]. The FMT data have been obtained through
an in-house minimisation of Rosenfeld’s functional (White Bear version [194]). To
enhance visual clarity the density profiles at ρbσ

3 = 0.715 and ρbσ
3 = 0.813 are

shifted upward by 0.4 and 0.8 respectively.
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Figure 2.4: Density profile ρ(z) of a Yukawa hard sphere fluid (ζσ = 1.8) at reduced
temperature T = 2 confined between two hard walls at different values of bulk
reduced density ρbσ

3. Lines represent the predictions of the present WDA. Points
are MC data from Ref. [165] (reduced density 0.7) and Ref. [251] (reduced density
0.4 and 0.5). The distance between the walls is 10σ.

with a relative error of the order of 10−5. This disagreement in the contact
value is due to different estimates of the grand canonical potential per unit
volume of the homogeneous fluid and it is compatible with the the spread in
the values of the bulk pressure obtained within different simulation techniques
[84]. In panel a) of Fig. 2.5 we compare our results for the density profile of
the HCY fluid characterised by ζσ = 3 with the recent MC simulations from
Ref. [114]. This figure shows that at relatively low densities the agreement
between our approximation and MC results is remarkable also for attractive
potentials of shorter range. In particular we predict accurately the kink in the
density profile at ρbσ

3 = 0.191, which is only qualitatively reproduced within
mean-field approximation [114].

The minimisation of the grand canonical functional provides both the value

of the contact density ρ
(L)
w and of the grand canonical potential. It is therefore

possible to obtain the depletion force either by calculating the derivative w.r.t.
L of the grand potential, as in Eq. (2.55), or by making use of Eq. (2.58). The
consistency between the two estimates is a good check for the accuracy of the
numerical procedure. To give an example, for a hard sphere fluid, the relative
difference between the two results is less than 0.01% if the absolute value of
the force per unit surface and kBT is larger than 10−6. Nonetheless at smaller
values of the force the result obtained by differentiation of the grand potential



A weighted density approximation for critical fluids 43

1 2 3 4
z / σ

-0.03

-0.02

-0.01

0

β
F

(z
) 

σ
 3

0 1 2
z / σ - 0.5

0.15

0.16

0.17

0.18

0.19

ρ
(z

) 
σ

 3

WDA
MC

a) b)

Figure 2.5: Panel a): Density profile ρ(z) of a HCY fluid at a single hard wall (ζσ = 3)
for bulk reduced density ρbσ

3 = 0.191 and temperature T = 1.004. Lines represent
the predictions of the present WDA. Points are MC data from Ref. [114]. Panel b):
Force per unit surface acting between two infinite parallel hard walls immersed in
a HCY fluid (ζσ = 3) in the same thermodynamic state of panel a). Lines are the
predictions of the WDA from Eq. (2.58), whereas points represent the MD simulation
of Ref. [114].

is less stable, due to errors introduced by the discretization.
The solvent-mediated force acting on two parallel hard walls immersed in a
hard sphere fluid, is compared with the Monte Carlo data of Wertheim et al.
[240], as well as the predictions based on FMT, in Fig. 2.6, showing a nice
agreement also at relatively high densities. At reduced density 0.2873 the force
maximum per unit surface is of the order of kBT/σ

3, and the oscillations due
to the packing of the hard spheres are damped within two or three diameters.
Furthermore, at this value of the reduced density, a small deviation between
WDA and FMT is present only at the first minimum. At reduced density 0.6
the force at distances of the order of the hard sphere diameter σ is hundred
times larger than at ρbσ

3 = 0.2873. Even this feature is well reproduced by
both WDA and FMT, as can be seen in the inset. In order to observe such
high values of the force the minimisation of the functional was performed at
distances belonging to an equally spaced mesh of step-size 0.00015 and the
integrals in the minimisation were estimated on a grid with the same step-size.
This panel shows that the strong oscillating behaviour of the MC data is
captured by WDA with a correct phase, even if the peak values are a little
underestimated, whereas FMT behaves considerably better.
The solvent-mediated force per unit area between two walls in a HCY fluid
has not been extensively investigated by numerical simulations. In panel b)
of Fig. 2.5 we show a comparison between our results and the Monte Carlo
data of Ref. [114] for a HCY fluid of inverse range ζσ = 3 at T = 1.004
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Figure 2.6: Force per unit surface and kBT between two infinite planar hard walls
immersed in a fluid of hard spheres of diameter σ for two values of the bulk reduced
density (panel a): ρbσ

3 = 0.2873; panel b): ρbσ
3 = 0.6). The force within the WDA

approximation has been obtained via Eq. (2.58). The FMT-WB result comes from
the in house implementation of the “White Bear” version of the FMT functional
[194] via Eq. (2.58). The MC data is taken from Ref. [240]. The inset highlights the
behaviour of the force at ρbσ

3 = 0.6 at small distances.

and ρbσ
3 = 0.191. Even if the net force is quite small, our prediction agrees

very well with the numerical simulations at all values of the wall separation.
We stress that, particularly at small distances, the WDA force is much more
accurate than any mean-field perturbation method (see Ref. [114]).

The detailed comparisons of our novel DFT with both numerical simulations
and state-of-the-art theories allow to conclude that in the high temperature
limit the present WDA is able to correctly reproduce the density profile and
the effective interactions between the hard walls also at high densities, with a
very satisfactory accuracy up to reduced densities of about 0.5. It could be
possible to further increase the quality of the predictions if the hard sphere
contribution in the reference excess free energy functional is described by
means of the FMT.
Moreover, this formulation of WDA appears to be the best available DFT for
a HCY fluid at finite temperature. In particular this formalism can be adapted
in order to treat other systems, provided an accurate underlying bulk liquid
state theory is identified instead of the HRT.
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2.4 MINIMISATION OF THE FUNCTIONAL
THROUGHOUT THE PHASE DIAGRAM

In the last Section we tested our weighted density approximation against a
large portion of the available data from numerical simulation. However this
comparison is, of necessity, limited: On one side we are obliged to select the
works dealing with hard core Yukawa interparticle potentials, on the other
side the literature covers limited regions of the bulk phase diagram and seems
to be not to much interested into critical behaviour. It follows that a wide
portion of the phase diagram remains unexplored and maybe some interesting
and unexpected phenomena generated by the presence of an interface can be
uncovered. In the following we will show predictions for different densities and
for temperatures above the critical temperature.
The restriction on the temperature domain deserves some additional consider-
ations. As a result of the action of the external potential (e.g. a hard wall), the
density profile oscillates about the bulk density. Even if the thermodynamic
state of the bulk fluid lies outside the two phase region, the local peaks of
the density profile can reach density values belonging to the coexisting phase,
and similar considerations should apply also for the weighted density. There-
fore it could be meaningless to evaluate expressions as Eq. (2.64), because
the thermodynamic potentials (ψ in our case) are not well defined functions
inside the two phase region. Some recent works (see e.g. [68, 250]) address the
problem of wetting by means of DFT, also below the critical point. In both
contributions the approximated functional is of the form (2.36) whereas the
reference term is approximated using FMT in Ref. [68] and LDA in Ref. (2.27)
in [250]. They claim that their methods are consistent with simulations, but
no mention about the difficulties which can be generated by the coexistence
region is found.

Slab geometry

We performed the minimisation of the WDA density functional at several
values of temperatures and reduced bulk densities for a HCY fluid of inverse
range ζσ = 1.8 confined between two hard walls. At high temperatures the
system behaves like a hard sphere fluid, whereas when the temperature is
decreased the contribution of the Yukawa tail becomes more and more relevant,
and the strongly oscillating character of both the density profiles and the
solvent-mediated force is lost.
Figure 2.7 shows the dependence of the density profile on temperature at
fixed bulk reduced density ρbσ

3 = 0.5. At reduced temperature T = 8 the
system behaves like a hard sphere fluid. As the temperature is lowered towards
its critical value, the density profile gradually becomes monotonic losing the
oscillating features typical of hard spheres and the density at contact assumes
values four times lower than the bulk density. The range of the perturbation
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Figure 2.7: Density profile of a HCY fluid (ζσ = 1.8) at a single hard wall at bulk
reduced density ρbσ

3 = 0.5 and different values of the temperature. The inset shows
the same data, also including the density profile at temperature T = 8, using a
different scale.

produced by the wall extends at larger and larger distances as the temperature
approaches Tc, giving rise to a region where a kind of drying of the wall can
be observed.
The attractive tail in the pair interaction of the HCY fluid smoothens the
density profile reducing the layering of particles. As a consequence, the effective
force between the two walls loses the strongly repulsive peak present at z ∼ σ
when the interaction between the fluid particles is purely hard sphere (see Fig.
2.6). Fig. 2.8 shows the force per unit surface between the walls for different
values of the temperature at the critical bulk reduced density ρc σ

3 = 0.3152.
The repulsive contribution to the interaction force, present at T = 8 gradually
disappears at lower temperatures and the force becomes purely attractive
and monotonic, confirming the findings of the numerical simulations in a
different model [86]. By approaching the critical temperature (Tc ∼ 1.21353)
the effective force becomes weaker and weaker at short distance, as can be seen
in the right panel of Fig. 2.8: Its amplitude reduces almost by a factor two due
to a 10% change in temperature. However, a closer look to the long-distance
tail of the solvent-mediated force shows that its range indeed increases close
to the critical temperatures, as expected on the basis of scaling arguments.
However this occurs at very large separations (L > 26σ for the data shown in
the figure).
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Figure 2.8: Force per unit surface acting between two hard walls immersed in a
HCY fluid (ζσ = 1.8) obtained from the minimisation of the WDA functional using
Eq. (2.58) at ρbσ

3 = 0.3152 and different values of the temperature.
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Figure 2.9: Force per unit surface acting between two hard walls immersed in a
HCY fluid (ζσ = 1.8) obtained from the minimisation of the WDA functional using
Eq. (2.58) at T = 1.2155 and different values of the reduced density.

Fig. 2.9 shows the force per unit surface between the walls in different density
regimes when the value of the temperature is close to Tc. We note that when
the bulk density is higher than ρc the force is an order of magnitude larger
than for ρb < ρc. The force is monotonic and purely attractive for all values of
the reduced density and its range grows near ρc, as expected.

In lattice fluid models the coexistence curve is symmetric about the critical
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temperature and the critical isochore coincides with the locus ρ(T ) of the
maxima of the isothermal susceptibility. For such systems, according to the
Renormalization Group terminology, the path to the critical point orthogonal
to the relevant odd operator coincides with the critical isochore. In a real fluid
the coexistence curve is asymmetric about the critical isochore. In this case a
good approximation for the same path is given by the line ρ̃(T ) in the phase
diagram defined as the locus of the points (ρ, T ) such as

ρ̃(T ) = max
ρ

{
ρχT

}
, (2.71)

where χT is the isothermal compressibility.
Fig. 2.10 shows the density profile of the HCY fluid at a hard wall along the
line ρ̃(T ). Its behaviour at distances larger than the bulk correlation length is
well fitted by an exponential of the form

ρ(z) = ρb +A e−z/ξ, (2.72)

where ρb is the bulk density of the fluid, A is a negative amplitude factor and
ξ is the bulk correlation length. In Appendix 2.9 we prove analytically that
any WDA fulfilling (2.43) indeed predicts this exponential decay.
However, the exponential decay of the density profile is observed also if the
system is far from the critical region and is probably related to the location
in the bulk phase diagram of the point we investigated with respect to the
Fisher-Widom line [65, 25].
Following the argument of Ref. [65], we expect that the exponential long-range
behaviour of the density profile reflects in an analogous exponential decay of
the force between the two walls. Provided we do not cross the Fisher-Widom
line, this decay should be present both far from the critical point and in the
critical region, where it agrees with the predictions of the theory of the critical
Casimir effect [80]:

βF (z) = f0 e
−z/ξ. (2.73)

The exponential decay of the solvation force is indeed confirmed by the
exact solution of a two-dimensional [67] Ising slab under symmetry breaking
boundary conditions and was observed in Monte Carlo simulations of three
dimensional simple fluids [86, 85]. Fig. 2.11 shows the long distance exponential
decay of the force per unit surface and kBT between two planar hard walls
mediated by a HCY fluid along the critical line ρ̃(T ). The force obtained
with our approach is very well fitted by Eq. (2.73) at large distances (z �
ξ(ρbT )), whereas at short distances, where depletion effects become relevant,
the solvent-mediated force, always attractive, displays a plateau (see inset).

Effective interaction between spherical particles

The same WDA formalism previously introduced may be generalised to
other interesting geometries, in addition to the planar one. Most importantly,
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Figure 2.10: Lines: Density profile of a HCY fluid (ζσ = 1.8) at a single hard wall in
the critical region. Here t = (T −Tc)/Tc. Points: Fits of the density profiles according
to Eq. (2.72) performed at distances larger than three times the correlation length
of the homogeneous HCY fluid at the same temperature and bulk density. ρb, A and
ξ are free fitting parameters and the results obtained for ρb and ξ agree well with
the bulk values of density and correlation length respectively (the accuracy is better
than 1% for the bulk density and 5% for the correlation length). The bulk correlation
lengths obtained from the fitting procedure are ξ = 41.1σ, 31.8σ, 26.5σ, 17.3σ, 12.9σ,
from the lowest to the highest reduced temperature. The inset shows a magnification
of the same density profiles at short distances.

it can be used to evaluate the effective interaction between two spherical
particles in a solvent, with obvious applications to the study of aggregation in
colloidal suspensions.

The force between two spheres of radius R immersed in a solvent is given
by the sum of the normal forces over the area of one exclusion sphere as

F (L) =

∫
dr pN(r) δ

(
R+

σ

2
− |r|

)
r

|r| , (2.74)

where L = h− 2R with h the center to center distance, σ/2 is the hard core
diameter of the particles belonging to the solvent, pN(r) is the normal pressure
on the exclusion sphere (with radius R+σ/2) and the origin of the coordinates
coincides with the center of the sphere. Note that pN(r) implicitly depends on
the position of the second sphere. The symmetry of the problem guarantees
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Figure 2.11: Lines: Force per unit surface of a HCY fluid (ζσ = 1.8) at a single hard
wall along the line ρ̃(T ). Here t = (T − Tc)/Tc. Points: Fits of the force according
to Eq. (2.73) performed at distances larger than four times the bulk correlation
length of the homogeneous HCY fluid at the same temperature and bulk reduced
density. f0, and ξ are free parameters in the fitting procedure. The result obtained
for ξ agrees well with the bulk value of the correlation length (the accuracy of
the fit is better than 3%). The bulk correlation lengths obtained from the fitting
procedure are ξ = 31.8σ, 26.5σ, 17.3σ, 12.9σ, 9.2σ, from the lowest to the highest
reduced temperature. The inset shows the force profile at short distance.

that the resulting force is directed along the line connecting the centres of the
spheres. This result can be expressed in a more elegant way exploiting the
contact theorem (see Section 2.7) as

βF (L) =

∫
dr ρ(r) δ

(
R+

σ

2
− |r|

)
n̂.

Therefore, once the density profile of the solvent is known, the evaluation of
the force is reduced to the computation of a bi-dimensional integral.
Unfortunately, the direct minimisation of the WDA for such a geometry,
although numerically feasible, represents a task considerably more complex
than in planar geometry. This problem is effectively 2d, and the number of
operations for each iteration scales as N2 logN , where N is the number of
points of the mesh. Therefore, in this first application of the formalism, we
have chosen to resort to the simple but effective Derjaguin approximation [43],
which allows to express the interaction between two convex objects starting
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from the knowledge of the force between two planar walls, independently on the
physical origin of the force. As regards this system, Derjaguin approximation
consists in replacing the local pressure pN(r) on the exclusion surface, by the
solvation force per unit surface fΣ between two walls, identical to the spheres,
at distance z. It is straightforward to show, starting from Eq. (2.74), that the
force FD between the two spheres can be written as

FD(L) = π

(
R+

σ

2

)∫ +∞

L

dz fΣ(z). (2.75)

This approximation gives accurate results provided L� R and if the interac-
tion potential between the two walls decays rapidly at large distances.
When the force between the walls is mediated by a hard sphere fluid with
particles of diameter σ it is possible to show that Derjaguin’s expression is
the best approximation of the true depletion interaction without taking in
account curvature effects [87] and it is accurate in the limit of q � 1, where
q = σ/2R is the size ratio. The range of validity of Derjaguin approximation
applied to depletion interactions is a debated issue. Particularly, it is a matter
of discussion the size ratio at which Derjaguin’s theory starts to fail, and
how its accuracy depends on the concentration of depletant. Depletion is
actually a global effect, influenced by the arrangement of all the (interacting)
depletants around the big objects: It is not possible to guarantee a priori that
the predictions according to Derjaguin’s approximation accurately reproduce
experimental data or simulations.

Most of the results present in the literature, both computational and
experimental, focus on the depletion potential, more than on the depletion
force. Within Derjaguin approximation the depletion potential is given by

VD(L) = π

(
R+

σ

2

)∫ +∞

L

dz (z − h) fΣ(z), (2.76)

where, as before, fΣ is the solvation force per unit surface. In most cases
the depletant interacts through a hard core potential with the sphere. Under
this hypothesis, for L < σ the analytical form of the potential following from
Derjaguin’s approximation (2.76) is a parabola:

VD(L) = π
(
R+

σ

2

){∫ +∞

0

dz z fΣ(z)− L

∫ +∞

0

dz fΣ(z)−
1

2
pL2

}
,

where −p is the solvation force at distances of the walls L < σ. At large size
ratios q the predictions based on Derjaguin approximation become unreliable
just at small face to face distances, where the potential is described by this
particular analytical expression.

In Fig. 2.12 we compare the predictions for the depletion potential βV (L)
between two big hard spheres in a fluid of smaller hard spheres obtained both
by Derjaguin approximation and MC simulations at two different values of
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Figure 2.12: Depletion potential per unit kBT between two hard spheres in a fluid of
smaller hard spheres (size ratio q = 0.1) at bulk packing fraction η = π

6
ρb σ

3 equal
to 0.2 (panel a)) and 0.35 (panel b)). MC (points) and FMT predictions obtained
with the insertion trick (purple lines) are taken from Ref. [8]. The red line at η = 0.2
is obtained by use of Derjaguin approximation starting from the solvation force
between two planar hard walls evaluated from the FMT-WB [194] approximation
implemented in-house. The green lines represent the depletion force obtained within
Derjaguin approximation when the solvation force between the walls is given by the
present WDA approximation.

the bulk density of the smaller particles. The predictions for the depletion
potential obtained by Derjaguin approximation are accurate at q = 0.1 only at
values of the packing fraction of the small spheres lower than 0.25. At η = 0.35
Derjaguin approximation overestimates by about 2kBT both the contact value
and the first repulsive peak in the potential, while the oscillations at larger
values of distance are underestimated when compared to MC data. The rather
poor performance of Derjaguin approximation is probably due to the presence
of a strong repulsive peak in the solvation force between the two walls at
z ∼ σ (see Fig. 2.6), which appears to be a peculiarity of the slab geometry.
We expect that, for smoother inter-wall effective interactions, the agreement
would be considerably better.

The results presented above show that Derjaguin approximation can be
safely adopted is the size ratio between the depletant and the colloid is
sufficiently small and up to moderate densities of depletant (i.e. q < 0.1
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and ρbσ
3 < 0.4), and we expect that similar considerations apply when the

depletant is a Yukawa hard core fluid. Within the limits of validity of the
Derjaguin approximation, we can determine the solvent-mediated potential
veff(r) between two hard spheres of radius R immersed in a YHC fluid in order
to examine the phase stability of such a colloidal suspension.
According to Noro-Frenkel extended law of corresponding states [163], fluids
characterised by short-ranged interaction potentials obey the same equation
of state, when expressed in terms of reduced variables33. In particular, it was
observed that the dimensionless second virial coefficient

B∗
2(T ) =

B2(T )

BHS
2

= 1 +
3

8R3

∫ ∞

2R

dr r2
[
1− e−βveff (r)

]
, (2.77)

where BHS
2 is the second virial coefficient of a hard sphere system with particles

of radius R, assumes a value of about −1.6 at the critical point independently
on the particular form of the interaction and that its value remains constant
in a relatively large density range across the coexistence line [236]. It is
therefore possible to estimate the the gas-liquid spinodal line for a system
of hard sphere colloidal particles dispersed in a HCY fluid, by evaluating
their reduced second-virial coefficient. The blue points in Fig. 2.13 identify
the phase separation line of a HS fluid induced by the presence of a depletant
modeled as a HCY fluid. The size ratio between the depletant and the guest
HS particles is q = 0.1. At high values of the reduced temperature the phase
separation occurs at reduced density of about 0.4, as expected in the limit of
HS depletant. When the temperature decreases, the concentration of depletant
needed to induce phase separation decreases monotonically. At the depletant
critical temperature we observe phase separation at depletant concentrations
ρbσ

3 ∼ 0.15 much lower than the critical one. This implies that, at this value
of the size ratio q, the phase separation is not related to the presence of
long-range tails in the effective force, which characterises the critical region of
the solvent, but is still mainly due to the short-range attraction generated by
the depletion mechanism which is enhanced at lower temperatures.
We note that whenever a direct short-range repulsion is present between the
colloidal particles, as for the case of charged systems, the strong attraction
due to depletion is severely weakened and particle aggregation takes place
at considerably larger solvent densities. Instead, in the critical region, the
long-range tails of the solvent mediated (Casimir) force is not effectively
contrasted by the additional short-range repulsion. In extreme circumstances
(i.e. when the direct repulsion between particles is sufficiently strong), ordinary
depletion may be fully screened and phase separation inhibited. However,
aggregation is generally expected in a small pocket within the critical region,
due to the emergence of long-range Casimir forces. For repulsive wall-solvent
interactions, this pocket will be centered at solvent densities larger than the

33Namely, the reduced density, the reduced temperature and the reduced second-virial
coefficient. For a precise definition of the rescaling see Ref. [163].
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Figure 2.13: Phase diagram of the HCY model (ζσ = 1.8) in the ρb - T plane. The
HRT results for the coexistence curve [169] are shown by a black line. Green dots
represent the MC data from Ref. [176]. Blue points show the aggregation boundary
of two big hard spheres (size ratio q = σ/(2R) = 0.1) predicted on the basis of our
WDA plus Derjaguin approximation and Noro-Frenkel criterion. The dashed line
connecting the points is a guide to the eye: Aggregation takes place on the right of
this boundary. The inset shows the same phase diagram in a wider density interval.

critical one, due to the strong asymmetry of the critical Casimir forces (see
e.g. Figs. 2.9 and 2.15).

2.5 CRITICAL CASIMIR EFFECT

The aim of this section is to evaluate the universal properties of the
solvent-mediated interaction induced between two walls when the depletant is
in the critical regime. As shown in Section 2.1 (Fluctuation-induced interactions),
in this regime the effective force between two bodies immersed in the critical
fluid acquires a universal form and obeys scaling laws, as many physical
properties near criticality do.
With a slight change of notation with respect to Section 2.1, we can express
the force acting between two walls in a critical fluid as (see Eq. (2.14)):

FC(t, h;L)

kBTΣ
=

1

L3
Θ(±s,±y) , (2.78)
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where L is the distance between the two walls. The upper sign refers to the
super-critical temperature (while the lower to the sub-critical one) and the
scaling variables (s, y)

s =
L

ξ
, y = ah|t|−βδ

are defined in terms of the two scaling fields

t =
T − Tc
Tc

, h = µ− µc

and µc is the critical potential of the fluid. Here ξ ∼ ξ±0 t
−ν is the bulk

correlation length at h = 0, a is a non-universal metric factor and ν, β and
δ are the usual critical exponents. We remark that there is no extra metric
factor associated with L/ξ and that there is a dependence on the sign of the
field h because boundary conditions at the walls break the bulk symmetry
h→ −h. According to the theory of finite-size scaling, Eq. (2.78) represents the
asymptotic decay of the solvent-mediated force as t, h→ 0 and for L, ξ → ∞.
The critical Casimir scaling function in planar geometry Θ(·, ·) only depends,
as already stressed in Section 2.1 (Fluctuation-induced interactions), on bulk
and surface universality classes. The bulk Yukawa fluid under investigation
belongs to the 3D Ising universality class and the boundary conditions are
determined by the affinity of the wall surfaces with the fluid particles: If the
contact density is less than the bulk density the boundary condition is of
type −, otherwise of type +. In this work we only deal with super-critical
temperatures (t > 0) and with symmetric (−,−) boundary conditions, which
arise for purely repulsive interactions between the fluid particles and two
identical confining hard walls.

Force profiles

The WDA approach developed in Section 2.3 allows the study of this
problem starting from the microscopic HCY fluid model confined between two
walls. According to the scaling hypothesis, the effective force per unit surface
between the two walls FC should depend on the physical control parameters
T, µ, L only through the combination (2.78), implying the collapse of different
data sets onto the same universal curve. Figure 2.14 shows the scaling function
obtained from independent calculations at different temperatures along the
previously defined critical line ρ̃(t) (i.e. y = 0). Note that, even at reduced
temperature t = (T − Tc)/Tc as low as 10−3, our estimates show a marked
temperature dependence, and the data along different isotherms do not collapse
as we expected. At the lowest temperature we investigated, a significant
difference between our prediction and the MC simulations of Ref. [230] suggests
the presence of strong corrections to scaling. We also remark that the curves
at the lowest temperatures develop a kink at small values of L/ξ, due to the
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Figure 2.14: Finite-size estimates of the Casimir scaling function at values of temper-
atures and density along the critical line defined in Eq. (2.71) from the microscopic
force obtained within the present WDA approximation. The corresponding bulk
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singular behaviour of the scaling function at L/ξ = 0. In fact, at any given
reduced temperature t 6= 0, the quantity L3 FC tends to zero as L/ξ → 0,
forcing the finite-size estimate of the scaling function to vanish. Figure 2.15
shows the scaling function at fixed temperature near Tc for different values
of the scaling variable y = ah|t|−βδ, corresponding to different bulk reduced
densities. The scaling function is always negative and a strong asymmetry is
evident between the curves at density above and below ρc. For positive values
of the scaling field h (i.e. ρ > ρc in our case), the magnitude of the force
becomes larger and larger and the peak is shifted towards small values of L/ξ.

Long-wavelength analysis

Although the direct numerical evaluation of the critical Casimir scaling
function predicted by this class of DFT is not conclusive, due to severe
corrections to scaling, an accurate estimate of the asymptotic behaviour can
be obtained by a long-wavelength (LW) analysis of the DFT equations. In
fact, following Ref. [174] we note that:
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3 = 0.3152.

1. The density profile ρ(z) displays reflection symmetry about z = L
2 ,

limiting the range of interest to z ∈
[
0, L2

]
.

2. When the walls are far apart (L � σ) and the system is close to
the critical point (ξ � L), the difference between the density profile
corresponding to a wall to wall distance L and its single wall limit,
reached for L = ∞, is significant only for z ∼ L

2 .

3. As a consequence, the effective force per unit surface FC (hence the
Casimir scaling function) just depends on the long-distance tail of the
density profile, which is expected to be a slowly varying function of the
coordinate z.

Therefore we can limit ourselves to the study of a free energy functional which
retains only the lowest term in a gradient expansion about the bulk density ρb
(see Eq. (2.34)):

βF [ρb +∆n(z)]

Σ
− Lϕ(ρb) =

=

∫
dz

[
b

2

(
d∆n(z)

dz

)2

+ ϕ
(
ρb +∆n(z)

)
− ϕ(ρb)

]
, (2.79)
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where ϕ(ρ) is the free energy density in the bulk fb(ρ), times β. As shown
in Section 2.2, this expression coincides with the long-wavelength limit of
our WDA functional, the stiffness b being related to the range of the direct
correlation function in the homogeneous system c(r, ρb):

1

ρb
−
∫

dr c(r, ρb) e
iq·r −→ ∂2ϕ(ρb)

∂ρ2b
+ bq2 +O

(
q4
)
. (2.80)

In the presence of short-range interactions, the direct correlation function is
analytic in q2 away from the critical point, where it displays a q2−η singu-
larity. However, within our approximate closure of the HRT equations, the
critical exponent η = 0 and analyticity is preserved also at criticality [169],
keeping the stiffness b finite in the whole phase diagram. This implies that the
long-wavelength limit of the structure factor of the homogeneous fluid follows
the Orstein-Zernike ansatz

S(q) ∼ S(0)

1 + ξ2q2
(2.81)

with

ρb S(0) =

[
∂2ϕ(ρ)

∂ρ2

]−1

. (2.82)

From (2.81) and (2.82) combined with (2.80) it follows that

ξ2 = ρb S(0) b. (2.83)

Close to the critical point, the HRT bulk free energy density ϕ(ρ) acquires a
scaling form:

ϕ(ρc + δρ)− ϕ(ρc)− βµ(ρc)δρ = tdν a11Ψ
(
b1 δρ t

−β
)
, (2.84)

where ρc is the critical density, δρ = ρ− ρc and µ(ρ) is the chemical potential
(the temperature dependence of these quantities is understood), while a11 and
b1 are non-universal metric factors. In the following it will be convenient to
express the universal quantities in terms of the scaling field x = b1 δρ t

−β

instead of the previously defined variable y. Within our HRT closure, the
critical exponents are δ = 5, β = 0.332, ν = 0.664 in d = 3, which agree within
10% with the accepted values. The metric factors appearing in the scaling
function are implicitly defined by the requirement that Ψ(x) has the following
expansion at small x [173]:

Ψ(x) −→ x2

2!
+
x4

4!
+O

(
x6
)
. (2.85)

In Fig. 2.16 the asymptotic HRT scaling function Ψ(x) is shown together
with a parameterization of the exact result for the 3D Ising universality class.
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Figure 2.16: Scaling function for the free energy Ψ(x) as predicted by HRT compared
with a parameterization of the exact result from Ref. [173] (black curve). The red
line, showing the HRT asymptotic result, is identical to the exact result on the
scale of the figure. A few rescaled free energies obtained from the integration of the
HRT equations at different reduced temperatures are also shown. Inset: Universal
amplitude ratio g+4 for a HCY fluid at the critical density as a function of the reduced
inverse correlation length (green points). The usually accepted value [173] is shown
by a blue triangle whereas the red square represents the asymptotic HRT value.

Although the two curves are indistinguishable on this scale, calculations at
different reduced temperatures, also shown, suggest the presence of important
corrections to scaling.

The minimisation of the long-wavelength functional (2.79) in slab geometry
gives rise to a differential equation whose solution allows to evaluate the
asymptotic decay of the effective force between two hard walls in a critical
fluid. The derivation, already detailed in Ref. [174] and not repeated here,
provides a closed form for the critical Casimir scaling function in terms of
two universal quantities: The bulk free energy scaling function Ψ(x) and the
universal amplitude ratio g+4 . Defining the auxiliary quantity σ(s, x) by the
implicit relations:

σ(s, x) = −Ψ(x+ u0) + Ψ(x) + u0 Ψ
′(x), (2.86)

s =

∫ ∞

u0

√
2 du√

σ(s, x) + Ψ(x+ u)−Ψ(x)− uΨ′(x)
(2.87)
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the critical Casimir scaling function in three dimensions is given by

Θ (s, x) =
s3

g+4
σ (s, x) . (2.88)

The universal amplitude ratio g+4 is expressed in terms of the non-universal
metric factors previously introduced as

g+4 = b31
√
a11b−3. (2.89)

Again, the evaluation of g+4 from the HRT equations displays severe corrections
to scaling in a HCY fluid, as shown in the inset of Fig. 2.16. More importantly,
the usually quoted “exact” value [173] g+4 ∼ 23.6 turns out to differ significantly
from the HRT prediction g+4 ∼ 32.4.

The asymptotic study of the DFT equations allows to extract the critical
Casimir scaling function just from bulk quantities via Eq.s (2.86 - 2.88). It
is then instructive to contrast these predictions with the outcome of the
direct minimisation of the HRT functional, already shown in Fig. 2.14. Such a
comparison can be found in Fig. 2.17, where the scaling functions obtained
from the microscopic DFT at a few reduced temperatures t in the critical region
are shown to agree remarkably well with the predictions of the long-wavelength
analysis, provided both the scaling function for the free energy Ψ(x) and the
universal amplitude ratio g+4 are consistently evaluated at the same reduced
temperature t.
The presence of strong corrections to scaling in both Ψ(x) and g+4 , already
highlighted, induces strong pre-asymptotic effects in the critical Casimir scaling
function which, at reduced temperatures lower than 10−3, is still quite far from
its asymptotic limit. The main effect is due to the growth of the amplitude
ratio, which, as shown in Fig. 2.16, appears to reach its universal value only
extremely close to the critical point, according to the prediction of HRT for the
model of critical fluid investigated here. We remark that, due to the already
quoted difference between the HRT estimate of the universal amplitude ratio
g+4 and the value obtained via series expansions, the critical Casimir scaling
function predicted by our DFT significantly differs from the one obtained in
MC simulations, as can be seen in Fig. 2.17.

2.6 CONCLUSIONS AND PERSPECTIVES

In this Chapter we presented a novel density functional, based on the
weighted density paradigm, able to describe classical inhomogeneous fluids in
a large portion of their phase diagram, critical point included. This is the first
attempt to describe the effects of correlations induced by attractive interac-
tions in confined fluids. The theory is based on the description of the uniform
system provided by the hierarchical reference theory, one of the few liquid state
approaches able to cope with long-range density fluctuations. This technique,
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Figure 2.17: Critical Casimir scaling function evaluated at different reduced tempera-
tures. Points: results from the direct minimisation of the microscopic WDA functional.
Lines: results from the long-wavelength analysis, starting from the universal quanti-
ties Ψ(x) and g+4 evaluated at the same reduced temperature as the DFT calculation.
Black line: asymptotic limit of the critical Casimir scaling function evaluated via
HRT (see the text). Points: prediction of Θ from Monte Carlo simulations [230].

applied to the evaluation of the effective interaction between two hard walls in
a fluid, allowed for the investigation of the crossover between a depletion-like
mechanism at high temperatures and the critical Casimir effect emerging near
the critical point. Our method does not rely on a long-wavelength approxima-
tion and provides a complete picture of the solvent-mediated force for any wall
separation, displaying the presence of important non-universal contributions
in the effective interaction at short distances, even in the critical region. We
believe that this DFT will be useful in investigating other correlated systems,
when density fluctuations are expected to play an important role.

We showed that, at large separations, the solvent-mediated force per unit
surface between the walls decays exponentially on the scale of the correla-
tion length in the whole portion of the phase diagram to the left of the
Fisher-Widom line. Such a behaviour cannot be considered as a signature of
the onset of critical Casimir effect: only the product between the amplitude
of the long-range exponential tail and the cube of the correlation length is a
genuine universal quantity.

Our microscopic approach allows for the determination of the universal
quantities characterising the critical Casimir effect, namely the scaling func-
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tion Θ(s, y), both along the critical isochore (y = 0) and in the off-critical
regime. Strong corrections to scaling have been observed in the HCY fluid
we investigated: The universal features appear to emerge only in a narrow
neighbourhood of the critical point, at least in the model we examined. It
would be useful to compare this prediction with numerical simulations for the
HCY fluid model as well as with theoretical investigations of other systems,
like the Ising model, where the corrections to scaling may be weaker. These
studies will hopefully clarify the origin of the discrepancy between the HRT
estimate of the universal amplitude ratio g+4 and the commonly accepted value.

The approach presented in this work allows for further improvements. In our
density functional, the ideal gas term and the Hartree contribution to the inter-
nal energy have been treated exactly, while the remaining entropy-correlation
term has been approximated by use of a weighted density trick. The next
step will be to treat the hard sphere term by the fundamental measure theory,
known to be very accurate in dealing with excluded volume effects, limiting
the weighted density contribution only for the residual correlation term. This
adjustment is expected to increase the accuracy of the theory at high density,
without however modifying the description of the universal properties of the
critical Casimir effect.

In this first application we just considered a planar geometry, whose
implications for the phenomenon of colloidal aggregation depend upon further
assumptions, namely the Derjaguin approximation, which however turns out
to be rather inaccurate when the two external bodies are not very close. A
natural further step will be to perform the functional minimisation in cylindrical
geometry, appropriate for dealing with two spherical particles thereby avoiding
any wall-to-sphere mapping.

2.7 APPENDIX: CONTACT THEOREM

In this Appendix we prove that the WDA introduced in Section 2.3 is
consistent with the so called contact theorem.

Contact theorem

The mechanical equilibrium condition for a fluid in an external field φ(r)
reads [205]

∂αp
αβ(r) = −ρ(r)∂αφ(r), (2.90)

where pαβ(r) is the pressure tensor. If we restrict to the planar symmetry34

the pressure tensor is diagonal and depends only on the direction orthogonal

34Within planar symmetry the external potential depends on a single coordinate, e.g.
φ(r) = φ(z). The same property will hold for the density profile.
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to the plane (let us say z):

pαβ(z) = diag {pT(z), pT(z), pN(z)} ,

where the subscripts T and N denote the tangent and normal components of
the pressure. The component pN(z) of the pressure tensor can be uniquely
determined [205] from Eq. (2.90):

d

dz
pN(z) = −ρ(z) d

dz
φ(z). (2.91)

The integration of (2.91) across a planar wall-fluid interface up to a value
z̃ well beyond the range of the external potential gives an exact statistical
mechanical sum rule which links the (macroscopic) bulk pressure p35 to the
integral of the (microscopic) density profile:

p = −
∫ z̃

−∞

dz ρ(z)
d

dz
φ(z) (2.92)

=
1

β

∫ z̃

−∞

dz n(z)
d

dz
e−βφ(z), (2.93)

where the function n(z), defined by

n(z) = ρ(z) e βφ(z), (2.94)

is always continuous [98] and allows to extend Eq. (2.92) to discontinuous
external potentials (e.g. the hard wall potential). Let us assume that the
external potential represents a hard wall located at z = z0:

φ(z) = φHC(z − z0) =

{
0 z > z0

+∞ z < z0
(2.95)

Then, Eq. (2.93) reduces to the well known contact theorem:

βp = lim
z→z+

0

ρ(z). (2.96)

Contact theorem and density functionals

The sum rule (2.92) is an exact identity of a Hamiltonian-based theory,
and we can not guarantee a priori that approximated density functionals,
as the WDA, can exactly satisfy it. This property must be checked for each
approximated functional. When the fluid is confined by a hard wall, the proof
of the consistence with the contact theorem reduces to show that the given

35The pressure tensor becomes isotropic and homogeneous in the bulk when the
inter-particle interactions are isotropic.
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approximated functional satisfies (2.93).
In the next paragraph we will show that our weighted density approxima-
tion satisfies (2.93), and therefore also the contact theorem (2.96). The
Percus-Yevick and hypernetted-chain wall-particle closures of the OZ equation
do not agree with (2.96).

Here we want to prove that our approximated functional fulfils

p = −
∫ +∞

−∞

dz ρ(z)
d

dz
φHC(z − z0)

=

∫ +∞

−∞

dz ρ(z)
d

dz0
φHC(z − z0), (2.97)

where z̃ has been replaced, without any approximation, by +∞.
The grand potential functional (2.20) within this simple geometry reads

Ω[n(r)] = F [n(r)] +

∫
dr′n(r′)

(
φHC(z − z0)− µ

)
(2.98)

and the equilibrium density profile ρ(z) fulfils the following relation:

δΩ[n]

δn(r)

∣∣∣∣
ρ(z)

=
δF [n]

δn(r)

∣∣∣∣
ρ(z)

+ φHC(z − z0)− µ = 0. (2.99)

Then, the derivative of the grand potential with respect to z0 reads

dΩ

dz0
=

d

dz0
Ω[ρ(z)] =

∫
dr

{
∂n(z − z0)

∂z0

∣∣∣∣
ρ(z)

[
φHC(z − z0)− µ

]

+
δF [n]

δn(r)

∣∣∣∣
ρ(z)

∂n(z − z0)

∂z0

∣∣∣∣
ρ(z)

+ ρ(z)
d

dz0
φHC(z − z0)

}
(2.100)

because the grand potential functional (2.98), evaluated at the equilibrium
density, equals the grand potential of the system. Making use of Eq. (2.99) in
Eq. (2.100) we obtain

d

dz0
Ω[ρ(z)] =

∫
dr ρ(z)

d

dz0
φHC(z − z0)

= Σ

∫ +∞

−∞

dz ρ(z)
d

dz0
φHC(z − z0), (2.101)

where Σ is the surface of the wall located at z0. However

Ω = −p V = −pΣ (h− z0)

and the derivative of grand potential w.r.t. z0 can be written as

dΩ

dz0
= pΣ. (2.102)

The final result (2.97) follows comparing (2.101) with (2.102).
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2.8 APPENDIX: SOLVATION FORCE

The purpose of this Appendix is to express the force between two walls
immersed in a fluid in terms of the contact density at the wall.

Let us consider two parallel36 planar walls of surface Σ immersed in a
classical fluid placed at z = z0 and z = z0 + L. The wall-fluid interaction can
be suitably represented by an external potential of the form

φ(z;L) = φHC(z) + φHC(L− z), (2.103)

where φHC(z) is defined in Eq. (2.95). A reservoir keeps the system at fixed
µ and T . The fluid between the walls exerts a force on the walls whose
contribution must be added into the grand potential of the fluid37. Following
the standard approach in the field [103, 66], we consider the fluid bounded by
the two walls with no fluid outside. The variation of the excess grand canonical
potential of the confined fluid is

dΩex = d [Ω− Ωb] = d [Ω + pΣL]

= −SexdT −N exdµ+ 2γdΣ− ΣfΣdL,

where the excess terms are expressed as differences w.r.t. the bulk values38,
the quantity 2γ is the total39 wall-fluid interfacial tension, and ΣfΣ is the
force applied externally against the walls in order to maintain them at a fixed
distance L, also known as solvation force. The solvation force is an excess
quantity expressed by a pressure difference as

fΣ = − 1

Σ

∂Ωex

∂L

∣∣∣∣
T,µ

= − 1

Σ

∂Ω

∂L

∣∣∣∣
T,µ

− p,

where p is the pressure of the bulk fluid. In presence of a wall-wall poten-
tial of finite range, f includes both direct interactions between the walls
and the solvent-mediated interactions, associated to wall-fluid and fluid-fluid
interactions. In this case the term solvation force is referred only to the
solvent-mediated contribution to the interaction. According to the contact
theorem (2.96) the bulk pressure can be expressed in terms of the contact
density against a single wall. The density functional formalism allows to express
without approximations the contribution

∂Ω

∂L

∣∣∣∣
T,µ

36Infinite in the thermodynamic limit.
37Note that the grand potential outside the walls is constant.
38In particular, Nex is the excess number of molecules adsorbed at the surface.
39I.e., the relation

2γ(L→ ∞) = 2γ∞

holds only in the single wall limit.
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in terms of the contact density.
The chain rule extended to functionals allows to evaluate the variation of the
intrinsic free energy potential as

dΩ[n(r)]

dL
=

∫
dr′

δΩ[n]

δφ(z;L)

dφ(r′;L)

dL
. (2.104)

According to the Hohenberg-Kohn-Mermin theorem (2.19), the grand potential
functional depends on the external potential only through the density profile:

δΩ[n]

δφ(r;L)
=

∫
dr′

δΩ[n]

δn(r′)

δn(r′)

δφ(r;L)
+ n(r).

Evaluating Eq. (2.104) at the equilibrium density ρ(r) and exploiting the
minimum principle (2.22) it follows that in our simple geometry:

− 1

Σ

dΩ

dL

∣∣∣∣
T,µ

= −
∫

dz ρ(z)
dφ(z;L)

dL
(2.105)

=
1

β

∫
dz ρ(z) e βφ(z;L) d

dL
e−βφ(z;L)

=
1

β

∫
dz ρ(z) e βφ(z;L) d

dL

[
Θ(L− z)−Θ(z)

]

=
1

β

∫
dz ρ(z) e βφ(z;L)δ(L− z)

=
1

β
ρ(z) e βφ(z;L)

∣∣∣∣
z→L−|ε|

. (2.106)

The function ρ(z) e βφ(z;L) is everywhere continuous, even if the potential
exhibits a discontinuity across the wall surface [98], and Eq. (2.106) can be
evaluated in the limit z → L− ε, with ε→ 0+. Finally, the solvation force can
be written as

βfΣ(L;T, µ) = ρ(L)− ρ(∞),

where ρ(∞) is the contact density for a single wall.
It is possible to express the solvation force in terms of the local normal

pressure. Starting from Eq. (2.105) and together with the definition of the
external potential (2.103) it follows that:

fΣ = − 1

Σ

dΩ

dL

∣∣∣∣
T,µ

= −
∫ +∞

−∞

dz ρ(z)
d

dz
φ∞(z)

= pN(L/2)− 2

∫ +∞

L/2

dz ρ(z)
d

dz
φ∞(z).

The last identity can be obtained integrating from L/2 to +∞ the mechanical
equilibrium condition (2.90) and taking advantage of the symmetry of the
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density profile:

pN(+∞)− pN(L/2) = −
∫ +∞

L/2

dz ρ(z)
d

dz
φHW(z) +

∫ L/2

−∞

dz ρ(z)
d

dz
φHW(z)

= −2

∫ +∞

L/2

dz ρ(z)
d

dz
φHW(z) +

∫ +∞

−∞

dz ρ(z)
d

dz
φHW(z),

where pN(∞) = 0 because there is no fluid outside the walls. If the range of
the interaction between the walls is less than L/2 (as in the case of hard walls)
then the solvation force reduces to

fΣ(L;T, µ) = pN(L/2)− p,

which is the same result following from a direct mechanical evaluation of the
force.

2.9 APPENDIX: LONG-WAVELENGTH BEHAVIOUR OF
THE DENSITY PROFILES

In this Appendix we examine the long-wavelength behaviour of the density
profiles of a critical fluid confined by a wall. The analytical form of the density
profile far from the wall will be obtained through the DFT formalism. In
particular, we will adopt the square-gradient approximation, because all the
WDA functionals which provide consistent values of bulk direct correlation
function reduce to this form in the long-wavelength limit.

Let us consider a fluid confined by two infinite parallel hard walls at z = 0
and z = h. The stationarity condition (2.22) applied to a square-gradient
functional (here we keep the notation of Eq. (2.79)) reads

b

2

(
d∆n(z)

dz

)2

− ϕ
(
ρb +∆n(z)

)
+ ϕ(ρb) +

∂ϕ(ρb)

∂ρb
∆n(z) = Γ(h), (2.107)

where Γ(h) is an integration constant defined by

d∆n(z)

dz

∣∣∣∣
z=h

2

= 0. (2.108)

If we focus our interest on the region between the walls, with the supplementary
hypothesis that the walls are far apart with respect to the correlation length,
we can safely assume that ∆n(z)/ρb � 1. If we perform a Taylor expansion of
ϕ(ρ) about the bulk density Eq. (2.107) reads

b

2

(
d∆n(z)

dz

)2

− 1

2

∂2ϕ(ρb)

∂2ρb
∆n(z) = Γ(h). (2.109)
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It is possible to eliminate the constant term Γ(h) in (2.109) through the
substitution

∆n(z) = ∆n? + δn(z) with δn(h/2) = 0 (2.110)

which gives

b

(
dδn(z)

dz

)2

=
∂2ϕ(ρb)

∂2ρb

[
2∆n?δn(z) +

(
δn(z)

)2]
,

where we made use of (2.110) and of the boundary condition (2.108):

Γ(h) = −1

2

∂2ϕ(ρb)

∂2ρb
∆n?2.

According to Eq. (2.83), the second order derivative of the free energy is equal
to b/ξ2 and we obtain

ξ2
(
dδn(z)

dz

)2

= 2∆n?δn(z) +
(
δn(z)

)2
. (2.111)

If we define z′ = ξ z and f(z′) = ∆n?δn(z) > 0 Eq. (2.111) can be written as

df(z′)

dz′
= −

√
f2(z′) + 2f(z′).

We can solve this differential equation by separation of variables. Integrating
between z′ and ξ h/2, where f vanishes, we obtain

h ξ

2
− z′ = log

[
f(z′) + 1 +

√
f2(z′) + 2f(z′)

]

and, if we come back to the original variables, the final solution for ∆n(z)
reads

∆n(z) = ∆n? Cosh

(
h/2− z

ξ

)
.

If we take the limit of single wall, that is h → ∞, the density at h/2 is
asymptotically equal to the bulk density, ∆n? → 0 and the differential equation
for the density profile (2.111) reduces to

ξ2
(
d∆n(z)

dz

)2

=
(
∆n(z)

)2
,

whose solution is the well known exponential decay

∆n(z) ∼ e−
z/ξ.



3
How roughness affects depletion

I
nterfaces play a crucial role in soft matter physics, from lubrication
and bubble formation to the capillary rise of liquids in narrow tubes.
Most of the so called surface phenomena can be understood through
an idealised picture of the interface, that is usually regarded as an
infinitely smooth object. However, in many circumstances natural and

artificial interfaces are characterised by chemical heterogeneities, corrugations
and roughness which originate new and unexpected phenomena, that are not
predictable only relying on too idealised smooth surfaces.
It is well known that wetting in the presence of corrugations significantly
differ from that of a smooth surface. In particular it is believed that rough-
ness strongly amplifies the wetting properties of a given interface, making
hydrophilic surfaces more hydrophilic and hydrophobic ones more hydrophobic
[239]. This peculiar behaviour facilitates the fabrication of nano-hydrophobic
devices which mimic plans, where the gain in hydrophobicity due to rough
leaves [17, 118, 77] originates the so called the Lotus effect1. Furthermore,
the spread of liquid drops on rough surfaces is not completely reversible: A
hysteresis phenomenon is observed, such that the advancing and the receding
contact angles usually differ by ten or more degrees [38].
As regards colloids, it has been shown that surface roughness deeply influences
adsorption, motion, interaction and wetting properties of particles confined at
liquid-liquid interfaces, with direct implications in the stabilisation of Picker-
ing emulsions provided by colloidal particles [235, 203, 233]. In addition, the

1The dust particles present on leaves are adsorbed by water droplets, which roll off these
surfaces leaving a clean surface.
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deposition of colloids during transport processes in porous media, relevant
for both inorganic and biological organisms, is affected by the presence of
heterogeneities on colloidal particles: The retention and release rates appear
to be strongly altered by surface roughness [207, 22, 223].
Also the amazing behaviour typical of all dense colloidal suspensions (non-
Newtonian fluids) is amplified by the particles’ surface roughness: If a force is
suddenly applied to these systems, the material behaves like a solid, partly
because surface roughness hinders the particle motion. Recent rheological
studies proved that both shear thickening and Reynolds dilatancy [188] in
concentrated suspensions, which are neither predicted by hydrodynamics nor
friction, critically depend on particle roughness [107].
From a microscopic point of view, the presence of roughness has a crucial
influence on the interaction potential between colloids: Strong deviations ap-
pear between the DLVO potentials between rough particles with respect the
ones derived assuming ideally smooth surfaces [214, 18, 105]. Recent works
[172, 215] show that small amounts of asperities suppress the deep attractive
minimum of the DLVO interaction, where the van der Waals contribution
dominates.

In this Chapter we will focus on the effects of surface roughness on the
depletion potential between two colloidal particles. The pioneering works by
Zhao and Mason [254, 255] and by Badaire, Cottin-Bizonne and Stroock [10],
have undoubtedly pointed out that asperities on the colloid surface are able
to suppress the depletion attraction. In addition, the tunable behaviour of
depletion through surface roughness has proven to be suitable in order to
control particle aggregation, explore different phases and design novel materials
[16, 120, 191, 151, 244, 245]
Notwithstanding the widespread awareness of the effects of roughness on the
depletion mechanism only few theoretical works have already dealt with this
problem [13, 113], and a simple analytical or semi-analytical approach, able to
capture the physics of the problem, is still missing. In particular, it would be
interesting to determine how the geometry, the height and the concentration
of corrugations can alter the depletion potential.

Here we provide an approximate theory for the evaluation of the depletion
interaction between two rough spheres immersed in an ideal depletant. The
proposed model is deliberately simple, so to provide analytical expressions for
the effective potential without free parameters, both when roughness is fully
uncorrelated and in the presence of correlated roughness, e.g. due to strong
repulsion between defects on the surface. Within the limits of the theory, we
show that this approximation is able to capture the essential features of the
effective interaction in a significant range of physical parameters.
The first Section is an introduction to depletion interaction and gives a general
argument which allows to obtain the potential between two particles in a
mixture. The model is described and analysed in Section 3.2, where the
limits of applicability to physical systems are also discussed. The results are
compared with the recent simulations [113] in Section 3.3. In the same Section,
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the dependence of the effective interaction on the size of the surface roughness
and on its geometry are investigated. The implications of the different potential
shapes on the efficiency of particle aggregation are also discussed.
The main results of this Chapter have been published in Ref. [5].

3.1 DEPLETION INTERACTION

The study of solvent-mediated interactions in colloids dates back to the
seminal works by Asakura and Oosawa (AO) [6, 7]: Two colloidal particles
suspended in a polymer solution suffer an effective attraction, referred to as
depletion interaction, arising from the depletion of solutes between them. This
entropic2 force is due to the the osmotic pressure arising between the bulk
solution, characterised by uniform density, and the polymer-free zone, i.e. the
region between the colloids when their surface-to-surface distance is less than
the polymer diameter.
In their work [7], Asakura and Oosawa limited to a system where the depletant
is a dilute gas of polymers, the colloidal particles are hard spheres much bigger
than the polymers and the mutual interaction between colloids and depletant
is of the excluded volume type. The AO potential reads [7]

βvAO(r)=





+∞ 0≤r<2R

−ρ
π

12

[
2(σ+2R)2−3(σ+2R)3 r+r3

]
2R≤r<2R+σ

0 r≥2R+σ

(3.1)

where ρ is the polymer density, β = 1/kBT , R is the colloid radius, σ is the
polymer diameter and r is the distance between colloid centers. The range
of the interaction, referred to as depletion interaction, equals the depletant
diameter, whereas its strength is linear with polymer density. Even if the
original analysis focused the attention on two colloidal spherical particles [7],
it has been shown that the AO result is correct for an arbitrary number of
colloidal particles when the size ratio

q =
σ

2R
(3.2)

between the depletant and colloidal diameter is less than 0.155 [50]. In other
words, it is possible to map exactly a binary AO mixture into an effective one
component system interacting through the AO pair potential.
Some years later, Richmond and Lal [189] considered the depletion interaction
between two walls, which was the problem initially tackled by Asakura and
Oosawa [6], in the semi-dilute limit. These results were refined by Joanny,

2Strictly speaking, a purely entropic interaction arises only if the inter-particle interactions
are of excluded volume type.
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Leibler and de Gennes [111]: By means of scaling arguments, they showed that
the attractive potential between two colloids has a range equal to πξ, where ξ
is the correlation length of the polymers, and is given by

βvdeG(h) ∼ −R

ξ3
(πξ − h)3, 0 ≤ h ≤ πξ, (3.3)

where h = r − 2R is the surface-to-surface distance between the colloids. To
complete this historical review about depletion in polymers, a detailed study
was presented by Vrij in 1976 [237]: In particular, this work deals with the
aggregation of colloidal suspensions in the presence of polymers, discovered by
Vester many years before [234].

More realistic hard sphere potentials between depletants introduce strong
oscillations in the depletion potential. Many results obtained by means of
theoretical and simulation approaches can be found in the literature [193, 8],
and some results have been shown in Section 2.4 (Effective interaction between

spherical particles).

Asakura-Oosawa potential

The explicit expression of the Asakura-Oosawa potential (3.1) can be
obtained following different routes. The most common one relies on the ap-
plication of the semi-grand canonical formalism, where the colloidal particles
are described within the canonical ensemble, while the depletant degrees of
freedom are integrated out in the grand canonical ensemble [98].
Here we tackle the problem of depletion interaction through a more general
approach with respect to that originally adopted by Asakura and Oosawa. In
what follows, a mixture of ν components acts as the depletant, taking the
place of the polymeric solvent considered in Ref. [7]. Exploiting the potential
distribution theorem, we evaluate the depletion potential between a fixed ob-
ject of any shape and a test particle of a given species, without any constraint
on the densities and on the inter-particle potentials [88, 193]. Eq. (3.1) then
follows specifying the result to a binary mixture of colloids and ideal polymers
and taking the dilute limit for the colloids.

Let us consider a system in equilibrium at temperature T , consisting of
a mixture of ν components with chemical potentials {µγ} = (µ1, . . . , µν), in
the presence of an external object that we assume fixed in the origin of the
coordinate system (without any loss of generality). The particles of species
α are subject to an external potential φα(r) due to the presence of the fixed
object and all the interactions are supposed to be pair-wise additive. The
target is to evaluate the potential vtb(r) acting between the fixed object and
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a test particle of species b3 at position r, which is given by

vtb(r) = Ωtb

(
r; {µγ}, T

)
− Ωtb

(
r; {µγ}, T

)∣∣∣
|r|→∞

, (3.4)

where

Ωtb

(
r; {µγ}, T

)
=

1

β
log
[
Qtb

(
r; {µγ}, T

)]

is the grand potential of the system when the test particle tb is located at r.
The potential distribution theorem allows to express the grand canonical
partition function (and therefore the grand potential) of the system after the
insertion of the particle in terms of the grand canonical partition function of
the mixture Q({µγ}, T ) without the test particle as [241, 242, 102, 198]:

Qtb

(
r; {µγ}, T

)
= Λ3

b ρb(r)Q
(
{µγ}, T

)
eβ
(
φb(r)− µb

)
, (3.5)

where Λb is the de Broglie wavelength associated to species b and

Ω
(
{µγ}, T

)
=

1

β
log
[
Q
(
{µγ}, T

)]
.

Here ρb(r) is the equilibrium density profile of the species b without the test
particle, holding the same symmetries of the external field due to the fixed
body.
As shown in Section 2.2, it is possible to relate the equilibrium density profile
to the one-particle direct correlation function. The generalisation of Eq. (2.26)
in mixtures reads

ρα(r) =
1

Λ3
α

exp
{
β
[
µα − φα(r)

]
+ c(1)α

(
r; {µγ}, T

)}
, (3.6)

where the one-particle direct correlation function c
(1)
α (r; {µγ}, T ) of the species

α is given by

c(1)α

(
r; {µγ}, T

)
= −β δFex[{nγ(r′)}]

δnα(r)

∣∣∣∣
{ργ(r′)}

, (3.7)

Fex is the excess free energy functional of the mixture and the functional
derivative in Eq. (3.7) is evaluated at the equilibrium density profiles of the
species {ργ(r)}.
Making use of Eq. (3.6) in Eq. (3.5) we can express the correlation function as

c
(1)
b

(
r; {µγ}, T

)
= β

[
Ω
(
{µγ}, T

)
− Ωtb

(
r; {µγ}, T

)]
(3.8)

3Without any loss of generality, we assume that the species b belongs to the mixture.
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and the interaction potential (3.4) can be finally written as

βvtb(r)=c
(1)
b

(
r;{µγ},T

)∣∣∣
|r|→∞

−c
(1)
b

(
r;{µγ},T

)
(3.9)

=
δβFex[{nγ(r

′)}]
δnb(r)

∣∣∣∣
{ργ(r)}

− δβFex[{nγ(r
′)}]

δnb(r)

∣∣∣∣
{ργ(r)},|r|→∞

(3.10)

This identity is exact and holds for any inter-particle potential and for arbitrary
densities of the components of the mixture, because the potential distribution
theorem is an exact result and we have not made further assumptions in
the derivation. The potential is expressed in terms of one-particle correlation
functions, or in terms of the derivatives of the excess free energy functional,
of the binary mixture without the test particle. Therefore, the symmetry of
these quantities coincides with the symmetry of the external object fixed in
the origin.
The accuracy of the depletion potential given by Eq. (3.9) critically depends
on the reliability of the correlation function of the mixture in the presence of
the potential produced by the fixed body. Monte Carlo simulations are good
candidates in order to provide correlation functions. Moreover, if the external
potential due to the fixed object is characterised by a simple symmetry (e.g.
spherical, planar . . . ), also the density functional approximations prove to be
accurate and fast tools for evaluating correlations.

In order to obtain an analytical expression from Eq. (3.9), let us introduce
some additional assumptions. We restrict our attention to a binary mixture:
The component characterised by the smaller radius is the depletant (d), whereas
the other component represents the colloid (c). Furthermore, both the object
fixed in the origin and the test particle are colloids.
If the depletant is an ideal gas and the colloids are diluted4, that is if µc → −∞,
it is possible to show by means of a diagrammatic expansion that the free
energy functional can be written exactly as

βFex[{nγ(r′)}] = −1

2

∑

α,γ=c,d

∫
dr

∫
dr′nα(r)fαγ(r − r′)nγ(r

′), (3.11)

where

fαγ(r) = e−βvαγ(r) − 1 (3.12)

is the Mayer function between species α and γ which interact through a
potential vαγ(r). Under the hypothesis introduced above fdd(r) = 0, because
the depletant is an ideal gas, and the free energy functional is given by

βFex[ρd(r), ρc(r)] = −
∫

dr

∫
dr′ρd(r)fdc(|r − r′|)ρc(r′), (3.13)

4Asakura and Oosawa were mainly interested into the effective potential between two
colloids.
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where the contribution involving fcc(r) is quadratic in the density and has not
been retained. The direct correlation function of the colloids follows from a
straightforward functional derivation of (3.13) with respect to ρc(r) and the
depletion potential between the colloids (3.10) reads

βvD(r) =

∫
dr′ρd(r

′) fdc(|r′′ − r′|)
∣∣
|r′′|→∞

−
∫

dr′ρd(r
′) fdc(|r − r′|)

=

∫
dr′
[
ρd(|r| → ∞)− ρd(r

′)
]
fdc(|r − r′|), (3.14)

where the second line holds because the Mayer function is different from zero
only if |r′| ' |r′′| → ∞. Furthermore, the density profile of the ideal gas of
depletants in the presence of the fixed particle in the origin is given by the
well-known barometric law:

ρd(r) = ρ e−βvdc(|r|),

where we have defined ρd(|r| → ∞) ≡ ρ and ρ is the polymer density imposed
by the reservoir.
The final result under the hypothesis of ideal depletant and dilute colloids can
be written as

βvD(r) = −ρ
∫

dr′ fdc(|r′|)fdc(|r − r′|) (3.15)

and this result is valid for any depletant-colloid potential vdc(|r|).
Following Asakura and Oosawa we assume that the mutual interaction

between colloids and depletants is of the excluded volume type. In this case the
product of the Mayer functions is non vanishing only when the two depletion
layers5 around the colloids overlap.
The Asakura-Oosawa potential between two hard sphere colloids can be
therefore written as

βvAO(r) =





+∞ if the two particles overlap

−ρ V ov(r) if the two depletion layers overlap

0 elsewhere

(3.16)

where the potential only depends on the center-to-center distance r between
the colloids and V ov(r) is the overlap volume at a given r.
Eq. (3.16) reduces to Eq. (3.1) if the overlap volume between two spheres of
diameter 2R+ σ is evaluated explicitly as a function of the separation r.

Highly size-asymmetric mixtures

A peculiar prediction of the AO model is that the strength of attraction
increases with the size of the colloidal particles, at fixed solute volume fraction,

5The depletion layer is the region outside the colloid which is not allowed to the depletant
due to the core condition.
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implying that macroscopic objects should feel extremely large attractive forces
at short distances. This paradoxical circumstance becomes evident considering
the contact value of the AO potential, which diverges as the size ratio (3.2)
tends to zero:

βv
(c)
AO = −η

(
1 +

3

2q

)
, (3.17)

where η is the polymer reservoir packing fraction. Such a strong, short-ranged,
divergence implies that smooth colloidal particles immersed in a molecular
solvent would stick together due to depletion interactions. This non-physical
behaviour, which contrasts with our daily experience, originates from neglecting
the irregularity of any particle surface on molecular scales and in itself calls for
a generalisation of the AO approach to include the effects of surface roughness.

It is well known, starting from the studies by Pine and coworkers [52,
51, 147], that surface geometry strongly affects the overlap volumes, leading
to the suppression or the enhancement of the depletion interaction [195, 27].
Increasing the overlap volumes reflects in a stronger depletion potential to
the point of allowing the realisation of site specific interactions between
colloidal particles, as theoretically predicted and experimentally shown in
recent works regarding lock-and-key colloids [119, 202]. Furthermore, it has
been experimentally shown [10, 254] that depletion attraction between rough
colloids can be suppressed when the height of the asperities becomes larger
than the depletant because the overlap volume is significantly reduced by a
small amount of surface corrugation.

Even if the effects of roughness on depletion have been recognised and
exploited in many situations, only a limited number of studies dealing with
solvent-mediated interaction between rough objects can be found in the litera-
ture.
Zhao and Mason [255] investigated the problem by computing the minimum of
the depletion potential between platelets decorated by hemispherical asperities
with different height, radius and configurations, and their results corroborate
previous experimental findings [254].
More recently, Schweizer and collaborators tackled the question of the role of
surface topography on the depletion interaction through a hybrid Monte Carlo
plus integral equation theory approach [13]. They consider the interaction
between corrugated “raspberry” particles immersed in a hard sphere polymer
fluid for different size ratios and packing fractions, finding that the resulting
effective interaction is affected by the competition among the standard deple-
tion and the excess entropic contributions arising from the fluid present within
the surface interstices. The analysis shows that surface corrugation suppresses
the depletion induced aggregation for values of the depletant diameter close
to the height of the roughness.
A recent work [113] evaluates, by means of Monte Carlo simulations, the effec-
tive potential between two spherical hard colloids, whose surface is decorated
with smaller spherical particles, immersed in an ideal depletant, comparing
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the results with experiments in a colloidal suspension of silica particles. An
interesting outcome of this work is that the best reduction of the depletion
potential is obtained for incomplete surface coverings and for a depletant with
approximately the same size as the particles attached to the colloidal surface.

Despite the theoretical efforts devoted to this problem, a simple analytical
or semi-analytical approach able to capture the physics of the problem is still
missing: In particular it would be interesting to determine how the geometry,
the height and the concentration of corrugations can alter the depletion
potential. Although numerical simulations are a powerful tool to investigate
the effects of roughness on the depletion mechanism, they cannot be efficiently
performed for the evaluation of the effective interaction in a wide range of
parameters characterising the particle corrugation. For instance, Ref. [13] deals
only with hemispherical roughness which appears to be strongly correlated,
whereas in Ref. [113] a single geometry and a single value of the dimension
of the particles which cover the colloidal surface are considered. Furthermore
these approaches are not suitable to give a quick estimate of the properties
of the potential and of aggregation, which is critical for an experimentalist
interested in the behaviour of colloidal suspension in presence of entropic
interactions.

3.2 THE MODEL

Let us consider two hard colloidal spheres of radius R, whose surface is
divided in patches of area A � R2. Each patch can accommodate at most
one bump of height ε, which represents the roughness. The projection of each
bump on the surface of the colloid is a circle of radius a, so the bumps can be
viewed as spheres, cylinders, hemispheres and so on. To reduce the number of
parameters of the model, we do not allow for a statistical distribution in the
dimensions and geometry of the bumps. A relevant parameter of the model is
the total number N of bumps on the sphere, which defines the dimensionless
coverage c as the fraction of the spherical surface covered by bumps:

c = N
a2

4R2
. (3.18)

The two colloidal particles are set at a center-to-center distance r and immersed
in an ideal gas of particles (typically polymers), modelled as spheres of diameter
σ � R, suffering a hard core repulsion with the rough colloidal surface.

Following the classical Asakura-Oosawa approach [7], the solvent-mediated
interaction between the two corrugated spheres can be obtained evaluating
the overlap volumes for each realisation of the disorder which characterises the
roughness of the two spheres. If the patch is small enough so that the colloidal
surface can be considered flat on the scale of the patch size, it is possible
to reduce the difficulty of the evaluation of the overlap volume resorting
to Derjaguin approximation for each patch. For a given realisation of the
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roughness and for a center-to-center distance r at which the colloids do not
overlap we write:

V ov(r) =
∑

j

V ov
j (r), (3.19)

where the sum over j runs over all the patches and V ov
j (r) is the overlap

volume generated by the intersection of the excluded volume of the patch j on
one sphere with the excluded volume belonging to the corresponding facing
patch j on the other sphere.
Due to thermal motion, the rough colloidal particles immersed in the depletant
approach from different directions and accordingly the effective interaction
results to be the average over all the orientations of the two colloidal particles.
Within our formalism, this average process can be mimicked by performing an
average over different realisations of the disorder. This amounts to compute

βveff(r) = − log
〈
e−βvAO(r)

〉
, (3.20)

where angular brackets denote a statistical average over uncorrelated disorder
on the two spherical surfaces.

By taking the colloid diameter 2R as a length unit, our model is defined by
five parameters: The bump dimensions ε and a and the coverage c characterising
the sphere roughness; the size ratio q and the reservoir density zp characterising
the polymer solution.

Uncorrelated roughness

We begin by considering the case of uncorrelated roughness within each
colloidal particle, i.e. when the bumps are located randomly on the colloidal
surface. Initially we will focus on the effective potential between two rough
spheres without depletant: In this peculiar situation the average can be carried
out analytically. The only purpose of this “pedagogical” example is to introduce
the reader to the evaluation of averages and to the geometry of the problem.
After this simple calculation, we will derive the general expression for the
depletion potential at a given non-zero concentration of depletant.

Effective interaction at zero concentration of depletant

Let us consider two colloidal particles randomly corrugated as shown in
Fig. 3.1. We divide the colloidal particle surface in circular patches of radius
a and area A = πa2, which host with probability c at most a single bump
of height ε. In the absence of depletant the overlap volume (3.19) vanishes,
and the Asakura-Oosawa potential (3.16) assumes only two values: It is equal
to zero when the corrugated colloidal particles do not overlap, whereas it is
infinitely repulsive when the the corrugated colloids overlap. Note that the
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Figure 3.1: Two facing spheres characterised by uncorrelated roughness. At fixed
covering c, the patches of radius a are occupied with probability c by spheres of the
same radius.

overlap can be originated by two bumps, by an empty patch and a bump and
by two empty patches.
The contribution to the average over the disorder (3.20) due to overlapping con-
figurations vanishes, because the associated potential is infinitely repulsive. On
the other hand, the contribution to the average arising from non-overlapping
configurations equals the probability of the configuration, because the expo-
nential in (3.20) equals one. Therefore, the average over the disorder reduces
to

βveff(r) = − log
[
Pno(r)

]
,

where Pno(r) is the fraction of non-overlapping (no) random configurations of
bumps on two facing colloids at center-to-center distance r.
If the two colloidal particles are placed at a center-to-center distance r < 2R the
probability of non-overlapping configurations is equal to zero, and the effective
potential will be infinitely repulsive veff(r) = ∞. The opposite circumstance
presents when r < 2R+ 2ε: In this case the probability of a non-overlapping
configuration of surface roughness is equal to one, and veff(r) = 0.
The situation becomes more complex when 2R ≤ r ≤ 2R+ 2ε. Let us first
consider the case shown in Fig.3.2, where the center-to-center distance is
2R+ ε < r ≤ 2R+ 2ε. Outside the spherical cap determined by the angle θ1
any roughness configuration is possible. According to Derjaguin approximation,
inside the cap the non-vanishing contribution to (3.20) comes from configura-
tions such that any pair of facing patches host at most a single bump (if two
facing patches host two bumps, the configuration is overlapping). The fraction
of non-overlapping configurations of bumps is given by

Pno(r) =
[
2c(1− c) + (1− c)2

]νc(θ1)

, (3.21)

where νc(θ1) is the number of patches of area πa2 hosted inside the spherical
cap determined by the angle θ1. If we assume a, ε� R elementary geometry
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gives

ν(θ1) '
R

a2
(2R+ 2ε− r) (3.22)

and the effective potential for 2R+ ε ≤ r ≤ 2R+ 2ε can be written as

βveff(r) = −R

a2
(2R+ 2ε− r) log(1− c2). (3.23)

Now let us focus our attention to the configurations at distance 2R ≤ r <
2R + ε shown in Fig. 3.3. Inside the spherical cap defined by the angle θ2
the patch-to-patch distance is less than ε, and only empty patches do not
overlap. Furthermore, the patches belonging to the spherical shell, obtained by
subtracting the spherical cap defined by the angle θ2 from the spherical cap
with angle θ1, are separated more than ε but less than 2ε. Therefore a pair of
facing patches belonging to this spherical shell can accommodate at most a
single bump. The probability Pno(r) when 2R ≤ r < 2R+ ε is then given by

Pno(r) =
[
2c (1− c) + (1− c)2

]νs(θ1,θ2)

×
[
(1− c)2

]νc(θ2)

, (3.24)

where νs(θ1, θ2) is the number of patches of area πa2 hosted inside the spherical
shell defined by the angles θ1 and θ2. Also in this case it is straightforward to
show that:

νs(θ1, θ2) '
R

a2
(2R+ ε− r), νc(θ2) '

R

a2
ε,

and the contribution to the effective potential is

βveff(r) = −2R

a2
(2R+ ε− r) log(1− c)− R

a2
ε log(1− c2). (3.25)

Summing up, the effective potential is purely repulsive and reads

βv
(η=0)
eff (r)=





+∞ r<2R

−
(
2R

a

)2
[(

1+
ε

2R
− r

2R

)
f(c)+

ε

2R
g(c)

]
2R≤r<2R+ε

−
(
2R

a

)2(
1+

ε

R
− r

2R

)
g(c) 2R+ε≤r<2R+2ε

0 r≥2R+2ε

(3.26)

where f(c) = log(1 − c) and g(c) = log
√
1− c2. As shown by Fig. 3.4, the

potential shows a simple behaviour: It vanishes for r ≥ 2R + 2ε while for
2R < r < 2R + 2ε it is formed by two straight lines with different slopes,
proportional to f(c) and g(c), joined at r = 2R+ ε.
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r

θ1

R+ ε

R

Figure 3.2: Colloidal particles of radius R at a center-to-center distance 2R + ε <
r ≤ 2R+ 2ε. The dashed line represents the local effective radius of the colloid when
the patch hosts a bump.

r2π − θ1

θ2

R+ ε

R

Figure 3.3: Colloidal particles of radius R at a center-to-center distance 2R ≤ r <
2R+ ε. The dashed line represents the local effective radius of the colloid when the
patch hosts a bump.

Effective interaction at non-zero concentration of depletant

In order to evaluate the average over the disorder when the colloids are
immersed in the ideal depletant we follow the same procedure outlined before,
dividing the colloidal particle surface in circular patches of radius a, area
A = πa2 and covered by a bump with probability c.
In this case the evaluation is more complex because we have to account for
the overlap volume generated by the depletion layers of the particles and of
the bumps. Resorting to Derjaguin approximation, the overlap volume V ov(r)
can be written as in Eq. (3.19). Then the average of the Boltzmann weight
over different realisations of disorder is given by

〈
e−βv(r)

〉
=
∏

j

[
c2χ11

j ezpV
11
j +2c(1−c)χ10

j ezpV
10
j +(1−c)2χ00

j ezpV
00
j

]
, (3.27)
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Figure 3.4: Lines: Effective potential between two rough hard spheres (spherical
bumps ε = 2a) as a function of center-to-center separation at η = 0. The diameter
of a spherical bump is ε/2R = 0.15, whereas the covering is varied as shown. The
curves are evaluated by means of Eq. (3.26)

where the index j labels the patches on each sphere; the pair of indices (11),
(10) and (00) label the three possibilities of having a bump on the facing
patches of both spheres, having a bump only on one patch and having no
bumps in both patches; χµν

j = 0, 1 according whether the configuration (µν) is
possible (i.e. does not violate the hard core constraint) for the patches labelled
by j; V µν

j is just a geometrical quantity, which depends on the shape of the
bumps and on the distance between the two facing patches j, defining the
overlap volume of the depletion layers for the patch configuration (µν). Taking
the logarithm of Eq. (3.27) and evaluating the sum in terms of an integral
over the surface of the colloidal particle, we get

βveff(r) = −2πR2

A

∫ π

0

dθ sin θ log

[
c2χ11ezpV

11

+ 2 c (1− c)χ10ezpV
10

+ (1− c)2χ00ezpV
00

]
, (3.28)

where, at fixed center-to-center distance r, the factors χµν and V µν both
depend on the angular coordinate θ. The relation which links, at fixed r, the
patch-to-patch distance hr with θ

hr(θ) = r − 2R cos θ (3.29)
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allows to convert the angular integral in (3.28) into an integral over h, leading
to our final expression for the average effective interaction:

βveff(r) = −R

a2

∫ 2ε+σ

r−2R

dh log

[
c2Θ(h− 2ε)ezpV

11

+ 2 c (1− c)Θ(h− ε)ezpV
10

+ (1− c)2ezpV
00

]
, (3.30)

where the factors χµν have been defined as

χµν(h) =

{
1 if h > (µ+ ν) ε

0 elsewhere

and Θ(·) is the Heaviside step function. The overlap volumes V µν(h) depend
on the shape of the bumps representing the surface roughness, and always
vanish for h > (µ+ ν) ε+ σ. If we assume spherical bumps of diameter ε = 2a,
as in the recent numerical study [113], the explicit expressions are:

V 11(h) =
π

6
(ε+ 2σ + h) (2ε+ σ − h)

2
ε+ σ < h < 2 ε+ σ

V 10(h) =
π

6
(ε+ σ + 2h) (ε+ σ − h)

2
σ < h < ε+ σ (3.31)

V 00(h) = π
ε2

4
(σ − h) 0 < h < σ

For each geometry of the bumps the effective potential is easily obtained
evaluating numerically the integral in Eq. (3.30).

Correlated roughness

In the experimental realisations of surface roughness, bumps are often
electrically charged [113]. The occurrence of repulsive interactions can favour a
more homogeneous covering of the particle surface: In this situation the bumps
are randomly distributed on the colloid, but at the same time long-range
fluctuations are inhibited (see Fig. 3.5). This behaviour is expected to be more
relevant at high coverings, when the distance of bumps reduces.
In order to model this situation, we require that each patch of area A accommo-
dates exactly one bump, whose projection on the patch surface is πa2 < A. The
bump is placed randomly within the patch and A is determined by enforcing
the surface covering condition NA = 4πR2 (in this case N is both the number
of patches and of bumps) which leads through Eq. (3.18) to

A =
πa2

c
.

Once again for the calculation of the overlap volumes we resort to Derjaguin
approximation for each patch and the statistical average in Eq. (3.20) is now
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Figure 3.5: Two facing spheres characterised by correlated roughness. At fixed
covering c, all the patches of radius a/

√
c > a are occupied a sphere of radius a

located randomly within the patch.

performed over the random location of the bump in the patch. In the case of
spherical bumps Eq. (3.27) is replaced by:

〈
e−βv(r)

〉
=
∏

j

[
1

A2

∫
dr1 dr2 Θ

(
dhj

(|r1 − r2|)− ε
)
ezpVj(|r1−r2|)

]
,

where r1 and r2 are the locations of the two bumps hosted by the facing
patches labelled by j, hj is the distance between the two facing patches (3.29)
and the couple of two-dimensional integrals are extended to the surface of a
single patch. The surface-to-surface distance between the bumps is

dhj
(|r1 − r2|) =

√
|r1 − r2|2 + (hj − ε)2 (3.32)

and Vj is the overlap volume between the depletion layers. Following the same
steps which lead to Eq. (3.30) we get

βveff(r) = −πR
A

∫ 2ε+σ

r−2R

dh log

[
1

A2

∫
dr1 dr2

Θ
(
dh(|r1 − r2|)− ε

)
ezpV (|r1−r2|,h)

]
, (3.33)

where dh has been defined above in Eq. (3.32). The overlap volume can be
expressed as the sum of two terms:

V (|r1 − r2|, h) = 2V 10(h) + V 11
(
dh(|r1 − r2|)

)
, (3.34)

where V 10 does not depend on the difference r1 − r2 and coincides with Eq.
(3.31), whereas

V 11(d) =
π

12
(2ε+ 2σ + d) (ε+ σ − d)

2
ε < d < ε+ σ
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Substituting the expression for the overlap volume of Eq. (3.34) in Eq. (3.33),
we obtain our final result for the effective potential in the case of short-range
correlated roughness:

βveff(r) = −R

s2

[
2 ρ

∫ ε+σ

r−2R

dhV 10(h) +

∫ ε+σ

r−2R−ε

dξ logK(ξ)

]
, (3.35)

where in the second integral on the r.h.s. the change of variable ξ = h− ε has
been performed. The function K(ξ) is defined:

K(ξ) =
1

(πs2)
2

∫

|r1|<s

dr1

∫

|r2|<s

dr2 f (|r1 − r2|; ξ) , (3.36)

where

f(r; ξ) = Θ
(√

r2 + ξ2 − ε
)
ezp V 11

(√
r2+ξ2

)
(3.37)

and s = a/
√
c is the radius of the patch. The numerical evaluation of the

integrals (see the Appendix for details) provides the effective potential.

Approximations and range of parameters

The expressions for the effective potential obtained above within the AO
framework (i.e. ideal depletant) mainly rely on the patch-to-patch evaluation
of the overlap volume coupled with Derjaguin approximation. In addition, we
assume that the size and the geometry of the bumps are the same for each
bump and we do not allow for multiple occupancy of the patches.

Regarding the geometry of the roughness, our approach does not allow
to model the bumps as objects with a substantial curvature: Due to the
patch-to-patch approximation only a small fraction of the possible overlap
volume would be taken into account.

The application of Derjaguin approximation requires some care. First of all
the bump size must be much smaller than the colloidal particle size (a� R),
because the effective potential is evaluated by decomposing the spherical
surface into small patches whose curvature is neglected. We also remark that
the condition a� R guarantees, in the case of uncorrelated roughness, that
the spherical surface is covered by a large number of patches. We expect
that our model for correlated roughness works well only at intermediate and
high coverings, because at small coverings the patch surface becomes large
with respect to the spherical surface and Derjaguin approximation becomes
inaccurate.
Furthermore, Derjaguin approximation neglects the occurrence of the inter-
stices between two facing bumps induced by the curvature of the colloidal
particle. Figure 3.6 shows two colloidal particles, covered by bumps of height
ε. The arc l, subtending the angle α, is the projection of a circular patch of
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α l

η

δ

α

R+ ε

R

Figure 3.6: Colloidal particles of radius R, eventually covered by bumps of height
ε. The arc l represents the projection of a patch of radius a. δ is the error induced
by Derjaguin approximation. The dimension of the patch has been deliberately
magnified.

radius a. The segment δ is the error introduced by Derjaguin approximation:
We can assume that our approach works well when the parameters of the
system are such that δ is smaller than the depletant diameter (δ < σ). Within
our approximations α is small (i.e. the patches have a small surface) implying
δ ' 2η, and simple geometry gives

R+ ε+ η ' R+ ε

1− α2/2
' (R+ ε)

(
1 +

α2

2r2

)
.

If we express the angle α in terms of the radius of the patch we obtain

η ' 2 a2

R

and the condition δ < σ reads

σ >
4 a2

R
.

Finally we introduce a condition which relates the parameters a and ε. The
present approach neglects the overlap between the excluded volumes belonging
to non-facing patches of the two colloids. It is possible to give a rough estimate
showing that the effect of the neglected volume is not relevant if the height of
the bump ε is of the same order of magnitude or smaller than the radius a of
the projection of the bump on the surface of the colloid.

Summarising, we expect that, in the case of spherical bumps (ε = 2a),
our model provides reliable results when the parameters fulfil the following
conditions:

ε

2R
� 1 σ < ε σ >

ε2

2R
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3.3 EFFECTIVE POTENTIAL BETWEEN ROUGH
COLLOIDS

The numerical evaluation of the integrals in Equations (3.30) and (3.35)
provides the solvent-mediated potential between two spheres whose surface
roughness is characterised by the geometry of the bumps and the five parame-
ters introduced above. Since the space of the parameters is relatively large, we
decided to investigate the behaviour of the potential by varying one parameter
at a time. Furthermore, within the AO framework adopted in this work, the
polymer packing fraction appears only as a multiplicative factor of the overlap
volume (see Eq. (3.16)). Therefore the dependence of the effective potential
on η is monotonic: The larger is the density of depletant, the more attractive
is the potential.

Figure 3.7 shows the effective potential between two hard spheres whose
surface is decorated by spherical bumps for different values of the covering
c and the same parameters adopted in the recent simulation [113]. We first
used the uncorrelated model of roughness as defined by Eq. (3.30) for covering
c ≤ 0.59. In this case, the minimum distance between the two colloidal particles
is 2R and the potential vanishes for r > 2R+2ε+σ. Figure 3.7 highlights that
the presence of surface roughness decreases the depth of the AO attractive
minimum of the potential already at small surface coverings. By increasing the
covering, the potential becomes more and more repulsive except at distances
r ' 2R+ 2ε, where an attractive minimum develops due to the presence of a
depletion layer around the bumps. The potential resembles the superposition
of an attractive depletion contribution, arising from the overlap between 00, 10
and 11 configurations present at center-to-center distances r ' 2R, r ' 2R+ ε
and r ' 2R+ 2ε, and the repulsive contribution in Eq. (3.26), already shown
in Fig. 3.4, present at all distances.
By comparing our analytical expression (3.30) with recent numerical simu-
lations [113], also shown in Fig. 3.7, it appears that the model of random
roughness we developed in Section 3.2 (Uncorrelated roughness) captures the
overall shape of the effective interaction and the agreement is quantitative
up to a covering c = 0.44. For higher values of c a qualitative change in the
simulation results occurs, suggesting that some other effect becomes relevant
in the regime of high coverings: The interaction is much more repulsive at
short distances and becomes attractive at r ' 2R+ 2ε. The numerical results
at intermediate/high coverings (i.e. for c > 0.5) can be well reproduced by the
the approach developed in Section 3.2 (Correlated roughness), where bumps
are assumed to be distributed in a more uniform way on the surface of the
colloidal particle. In this case, the range of the potential is the same as for
the uncorrelated model, but the distance of closest approach is increased to
2R + ε. The potential is monotonic in the repulsive region until a minimum is
reached at distances r ' 2R+ 2ε due to the presence of the depletion layer on
two facing bumps belonging to the two colloidal particles. The good agreement
with the numerical data in Fig. 3.7 shows that the model of correlated bumps
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Figure 3.7: Lines: Effective potential between two rough hard spheres (spherical
bumps ε = 2a) as a function of center-to-center separation. The packing fraction
and the diameter of the depletant are η = 0.16 and σ/2R = 0.04 respectively. The
diameter of a spherical bump is ε/2R = 0.15, whereas the covering is varied as shown.
The curves are evaluated by means of Eq. (3.30) in the case of uncorrelated covering
(c ≤ 0.59) and by means of Eq. (3.35) in the case of correlated covering (c ≥ 0.59).
Points: Data from the MC simulation of Ref. [113].

provides a faithful representation of the simulation results, suggesting that the
procedure adopted in Ref. [113] for modelling the surface roughness induces
repulsive correlations among bumps already at intermediate coverage.
Having determined the form of the effective interaction, we can discuss the
implications of surface roughness on the tendency towards aggregation of the
two colloidal particles by evaluating the reduced second virial coefficient B∗

2

(see Eq. (2.77)). In the case of bumps placed at random on the surface, B∗
2

changes from −3.5 for smooth spheres to −0.7 for c = 0.05, where aggregation
is inhibited by the roughness. Clearly, by increasing the coverage, the colloidal
particles behave almost as hard spheres, at least for the choice of parameters
investigated here.

Figure 3.8 compares the behaviour of the effective potential between two
hard spheres decorated by spherical bumps at different values of the ratio σ/ε
between the depletant diameter and the height of the bumps. In panel a) the
value of ε is hold fixed whereas σ varies. When σ is small (q = σ/2R = 0.03)
a deep short-ranged minimum of the potential develops at contact and the
reduced second virial coefficient is negative (B∗

2 ' −8). The increase of σ
reflects in an increase of B∗

2 , becoming positive at q ' 0.04 (see the inset).
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Figure 3.8: Effective pair potential potential as a function of the center-to-center
separation between two rough spheres (spherical bumps) evaluated by means of Eq.
(3.30). In both panels η = 0.21 and c = 0.11. Panel a): ε/2R = 0.1, q ranges from
0.03 to 0.1 as shown. The inset shows the reduced second virial coefficient B∗

2 as a
function of q. Panel b): q = 0.02, ε/2R ranges from 0.02 to 0.1 as shown. The inset
shows the reduced second virial coefficient B∗

2 as a function of ε.

This result depends on the fact that the depletion potential becomes weaker at
larger size ratio q, as in the case of smooth spheres (3.17), while the repulsive
contribution to the interaction does not change. In panel b) the comparison is
carried out at fixed σ. When ε = σ the potential is repulsive at contact, but a
second attractive minimum of the order of 7kBT appears at r = 2R+ ε and
B∗

2 ' −4. This minimum becomes less pronounced for larger ε while the AO
attraction at contact develops. For this choice of the parameters B∗

2 shows a
peculiar non-monotonic behaviour illustrated in the inset: At ε/2R ' 0.03 the
reduced second virial coefficient is close to zero, whereas at ε/2R ' 0.05 it
becomes strongly negative again. This unexpected behaviour can be attributed
to the fact that, in the case of spherical bumps, by increasing ε also the bump
radius a = ε/2 increases and, at fixed coverage, the number of corrugations
reduces, exposing larger available portions of the underlying particle surface
to the depletion mechanism.

The geometry of the bumps significantly affects the shape of the depletion
potential. Our model allows to investigate this effect: Spherical bumps constrain
the height of the surface roughness (defined by the parameter ε) and the
section of each bump (related to the parameter a) by the relation ε = 2a. This
limitation is lifted in the case of cylindrical bumps with radius a and height ε,
thereby representing a simple model of roughness allowing to study the effects
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Figure 3.9: Effective potential between two rough spheres as a function of the center-
to-center separation evaluated using Eq. (3.30). The spherical surface is decorated
with cylinders with basis of radius a and height ε. In both panels η = 0.16, q = 0.04
and c = 0.11. Panel a): ε/2R = 0.15, a/2R ranges from 0.05 to 0.08 as shown. Panel
b): a/2R = 0.075, ε/2R ranges from 0.1 to 0.2 as shown.

of these two parameters separately. In Fig. 3.9 we display some representative
result for such a choice. Panel a) shows that, at constant covering c and
height ε, the roughness is more effective when the surface is covered by a large
amount of small bumps than a small number of corrugations with a large
surface. Instead, when the number of bumps is constant, the potential is more
repulsive in the case of larger ε, as can be seen in panel b).

Figure 3.10 compares the potential obtained with bumps characterised
by different geometries in the case of uncorrelated roughness for two values
of covering. The spheres and the cylinders have the same height, while the
hemispheres are obtained dividing the spheres into two equal parts. The
spherical and hemispherical geometry proves to be more effective in suppressing
the depletion interaction with respect to the cylindrical geometry at the same
covering. This happens because the curvature of spherical bumps reduces the
overlap volume with respect to the flat surface of cylinders. It is interesting
to note that, in the case of cylindrical bumps, the potential develops a quite
deep attractive minimum at r = 2R+ ε caused by the large overlap volume
arising when a bump on one sphere faces a portion of smooth surface on the
other particle.
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Figure 3.10: Effective potential between two rough spheres as a function of the center-
to-center separation evaluated using Eq. (3.30). The spherical surface is decorated
with spheres (ε/2R = a/R = 0.15), cylinders (ε/2R = 0.15, a/2R = 0.075) and
hemispheres (ε/2R = a/2R = 0.075). In both panels η = 0.16, q = 0.04. Panel a):
c = 0.10. Panel b): c = 0.29.

3.4 CONCLUSIONS AND PERSPECTIVES

We introduced an analytical model able to capture the effects of surface
roughness on the depletion mechanism. Comparison with available simulations
shows that this, admittedly very schematic, parameter-free model allows to
quantitatively reproduce the main features of the effective interaction between
two spherical colloids in the presence of random surface corrugation. In order
to reduce the problem to an analytically tractable model, we introduced several
approximations. The two most relevant assumptions are:

• The ideal character of the depletant.

• The uncorrelated character of the corrugations. The surface of the parti-
cle has been divided in patches of the same size of the corrugation and
a sort of “Ising variable” has been defined on each patch, representing
the occupancy of each patch. This procedure neglects the correlations
between the presence of bumps on different patches, and is therefore
appropriate in the limit of small coverage. We also introduced an alter-
native model, where surface corrugation is strongly correlated at short
distances, as expected when a repulsive interaction between bumps is
present. This model has been shown to accurately describe the case of
high coverage in the presence of charged adsorbed particles.
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• Another important approximation we introduced refers to the calculation
of the overlap volume between facing patches on the two particles. In the
spirit of mean field theories, we disregarded the effects induced by the
presence of two nearby bumps on the overlap volume, thereby neglecting
correlations between nearest-neighbour corrugations.

We found that, as expected, surface roughness deeply inhibits the depletion
effects, strongly reducing the tendency towards aggregation of the colloidal
particles. These findings confirm that irregularities in the particle surface play
a key role in the properties of colloidal suspensions. As a general rule, the
effects induced by surface roughness appear to be more relevant when the
height of the corrugations is of the same order of the size of the depletant.
Several parameters are necessary to describe, even approximately, the extent
of surface roughness: The height, width, number and shape of the bumps on
each particle often induce competing effects on the depletion potential.
The availability of an analytical model may be extremely useful to estimate
the effects of a specific surface roughness on the overall features of the effective
interaction, even at a semi-quantitative level, without resorting to numerical
simulations.

3.5 APPENDIX: ANALYTICAL EVALUATION OF K(ξ)

Exploiting the symmetry of the problem it is possible to reduce the expres-
sion in Eq. (3.36) in order to perform a numerical evaluation.
The first step is to perform the change of variables r2 = r1 − r, obtaining

K(ξ) =
2

πs4

∫ 2s

0

dr r f(r; ξ)

∫

D

dr1,

where the domain of the integral is D = {r1 : |r1| < s ∧ |r1 − r| < s} and we
have taken advantage of the central symmetry of the integral over r. The
integral over r1 represents the surface of intersection between two disks of
radius s at distance r. The straightforward analytical solution allows to write

K(ξ) =
4

s2

∫ 2s

0

dr rΘ
(√

r2 + ξ2 − ε
)
ezp V 11

(√
r2+ξ2

)
I
(
r

2s

)
,

where we used the definition of f(r; ξ) in Eq. (3.37) and

I (x) =
1

π

[
arccos (x)− x

√
1− x2

]

is a function which is non-zero for x ∈ [0, 1]. If we replace the variable of

integration r with t =
√
ξ2 + r2 we obtain an expression which can be easily

integrated numerically:

K(ξ) =
4

s2

∫ +∞

Max[ε,ξ]

dt t ezp V 11(t) I
(

1

2s

√
t2 − ξ2

)
.



4
Thermal forces: A statistical approach

T
he influence of a non-uniform temperature profile on the motion
of fluids in the absence of external fields has been discovered
apparently for the first time by Ludwig [143] in 1856 and inde-
pendently by Soret in 1879 [211, 212, 213]. They observed the
so called Ludwig-Soret effect, which consists in an unbalanced

thermal migration of the two species in a binary mixture caused by a temper-
ature gradient. The first observation of this phenomenon was performed by
Ludwig, who filled with a homogeneous sodium sulphate solution a U-tube,
whose extremities were maintained in contact respectively with boiling water
and ice, and noticed that the solute crystallised near the cooled limb. However,
the contribution of the Swiss physicist and chemist Soret has been essential to
characterise this effect: He performed several experiments for many electrolyte
solutions and gave more quantitative predictions with respect to Ludwig.
The reciprocal effect, that is a temperature difference induced by a gradient
in particle concentration, was observed by Dufour [55, 56] for a mixture of air
and Hydrogen. Feddersen, who first named this phenomenon thermodiffusion
[69], performed similar experiments and understood that the thermal diffusion
and the Doufour effect are two sides of the same coin. He clearly realised that
the observable effects related to thermodiffusion are frequently small, but, at
the same time, that the occurrence of such phenomena is widespread. Quoting
Feddersen’s last paragraph of Ref. [69]: “If the forces set free by thermodiffusion
appear mostly to be trifling, yet it cannot be forthwith maintained that this
phenomenon plays only a quite subordinate part in the economy of nature; for
the conditions of its occurrence may at least be widely spread.”

During the same years of Soret’s experiments, Tyndall [224], compelled to
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remove the dust during his his studies on the decomposition of vapours by
light, realised that (dust) particles suspended in a gas (in that case the air of
the Royal institution) tend to be repelled by hot surfaces. This phenomenon is
related to the Ludwig-Soret effect, at least when the particles are suspended
in a very rarefied gas, and it is called particle thermophoresis, or simply
thermophoresis.
It is believed that interfaces play a key role in phoretic effects: The motion
of the particles is indeed driven by the simultaneous presence of an interface,
i.e. the particle surface, and a temperature gradient along that surface. The
idea is actually pretty simple: When a particle lies in a gas (or a liquid) where
a temperature gradient has been imposed, the particle surface induces the
motion of the fluid alongside. Due to this flow the particle is subject to a net
force (a “tangential stress”) and, if the particle is left free in the gas, it drifts
because of this “thermal” force.

Particle thermophoresis in gases is well understood and many predictions
are available at the moment [256]. A key parameter for the microscopic
interpretation of this phenomenon is the Knudsen number, defined as the
ratio between the mean free path λ and the particle size. In the rarefied
limit (Kn ≥ 1) both the approaches based on kinetic theories, starting from
the seminal works due to Enskog [61] and Chapman [33], and the direct
numerical solutions of the Boltzmann equations [209] prove to be very accurate.
The particle motion is towards the cold side, provided that the mass of the
suspended particles is larger than the gas particle masses.
Within the quasi-hydrodynamic regime, that is for gases at moderate pressures
(Kn � 1), continuum theories, suitably generalised to account for slip flow, give
quite accurate results. By means of these techniques, Epstein [62] evaluated
the thermophoretic force on a single spherical particle in a stagnant gas in a
thermal gradient. Subsequent works improved Epstein’s result, which can be
considered as a first-order approximation: These investigations show that the
drift velocity of the particle is generally directed towards the cold region of
the gas.

As the density of the underlying fluid increases, the situation becomes
more complex. First of all, in liquids the effect turns out to be be smaller than
in gases and particles can move either towards the cold or the hot region. The
drift velocity strongly depends on the surface properties of the particles: The
magnitude and even the direction of the drift velocity can change if external
parameters, such as temperature, are varied. The various aspects connected
to the behaviour of colloidal suspensions in temperature gradients have been
deeply described in the recent reviews by Piazza and Parola [175] and Wurger
[248].
From a theoretical point of view, different models have been put forward in
order to describe thermophoresis in liquids. The basic strategy adopted is
to look for an effective force f , directly coupled to the particles, leading to
the same steady-state situation as that induced by the thermal gradient. In
stationary conditions, the net force f is balanced by a frictional force and the
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total force acting on the colloidal particle vanishes. Two different routes are
generally pursued to evaluate f : An energetic approach or a hydrodynamic
one. The former consists in writing the net force as the gradient of some
thermodynamic potential [57, 47, 48, 247] or of the surface tension [199]. This
kind of approach is questionable for two reasons: The minimum condition
for a thermodynamic potential used to obtain equilibrium properties does
not hold in stationary (nonequilibrium) states and, moreover, it would give
information on the total force only, which has to be zero, not on the net force
f . The hydrodynamic way of proceeding [45, 3, 168] is to explicitly solve the
Navier-Stokes equations for the fluid in the particle frame of reference with
appropriate boundary conditions, to find the velocity field and then to obtain
f by an integration over the whole surface of the momentum flux transferred
to the colloid. Obviously, different choices of boundary conditions lead to
different trends in the net force.

In spite of a plethora of attempts during the last three decades, a mi-
croscopic and universal description of particle thermophoresis is still lacking.
Different approaches often fail to predict correctly the magnitude and the
direction of the drift when applied to different systems. In most cases the
theoretical efforts are addressed to the quantitative interpretation of the ex-
perimental data from systems characterised by high degree of complication
and several competing effects. Furthermore, continuum theories based on
local nonequilibrium thermodynamics necessarily abstain from an accurate
(microscopic) description of the fluid in the vicinity of the particle surface [81].
Indeed, close to the surface, in a region of the order of the interaction range, the
properties of the fluid are expected to vary considerably and the phenomenon
of thermophoresis follows from this microscopic structural modification [97].
In order to understand more deeply the nature of the phenomenon, aiming at
the formulation of a microscopic theory of thermophoresis, we revert to the
study of thermo-osmosis, which is believed to be the driving mechanism for
thermophoresis. The term thermo-osmosis1 refers to the onset of a station-
ary flow of matter in a one-component gaseous or liquid system2 induced by
temperature gradients. The flow is due to the presence of a confining surface
parallel to the thermal gradient and in the absence of the surface no flow is
observed. Indeed, when a uniform (bulk) fluid is placed in a thermal gradi-
ent, mechanical equilibrium sets in via the force balance condition, implying
constant pressure throughout the system. In the absence of external forces,
the steady-state is characterised by a space dependent density profile and a
constant heat flux not associated to mass current.
The link between thermal osmosis and thermophoresis turns out to be particu-
larly clear if we consider the limiting case of a mesoscopic particle immersed

1Also called thermal osmosis. Up to our knowledge, this name was coined by Lippman
[139] for liquids. In gases [116] the same phenomenon is referred to as thermal creep or
thermal transpiration (after Osborne Reynolds).

2In the absence of symmetry-breaking forces like gravity, when convection dominates.
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in a microscopic fluid, whose surface can be locally approximated by a planar
wall.

This Chapter provides a microscopic description of thermo-osmosis on the
basis of statistical physics: linear response theory generalised to inhomogeneous
and anisotropic environments. In the case of an imposed uniform thermal
gradient, the use of microscopic conservation laws allows to evaluate the veloc-
ity profile of the fluid and the thermo-osmotic slip in terms of two physically
different equilibrium properties of the fluid near the surface: The pressure
tensor and a specific dynamical correlation function. Close similarities to both
the kinetic theory and nonequilibrium thermodynamics result are recovered
by retaining each of these terms, showing that the gas and liquid regimes are
indeed governed by different physical mechanisms.
The first Section critically reviews the main results on thermo-osmosis available
in the literature. In Section 4.2 we introduce a convenient formalism for the
description of nonequilibrium systems, we derive the microscopic continuity
equations for the relevant quantities and we discuss some subtle implications
about the definition of the fluxes. Section 4.3 deals with linear response theory
and the Kubo formalism applied to mechanical perturbations. Thermal pertur-
bations and the generalisation of Mori’s approach to inhomogeneous systems
are discussed in Section 4.4. In Section 4.5 we specialise our results to a slit
geometry, showing that the velocity profile obeys a simple integro-differential
equation. Finally, some limiting results valid for liquids and gases are derived
in Section 4.6.

4.1 THERMO OSMOTIC PHENOMENA

The first observation of thermo-osmosis has been reported by Feddersen
in 1872 [69]. He measured the temperature induced motion of different gases
through a tube fitted with porous plugs of gypsum or spongy platinum. The gas
drift was directed towards the warmer side as long as a temperature difference
between the sides of the porous partition was present. As Feddersen reported
in Ref. [69]: “It is a universal property of porous bodies, when in the form of
diaphragms, to draw gases through them in the direction from the cold to the
hot side. We have thus a phenomenon of diffusion which, contrary to ordinary
diffusion, occurs even when the same gas under the same pressure is found on
both sides of the diaphragm. This is a singular, hitherto unknown phenomenon;
and we are therefore justified in giving it the name of Thermodiffusion.”
Even if thermo-osmosis was discovered in gases, the same effect has been ob-
served later also in liquids. However, in liquids the magnitude of the flow turns
out to be much smaller than in gases, and probably this is the reason why the
first investigations were focused on gases. In the following we critically review
the main results on thermo-osmosis in gases and in liquids. It appears that
the theoretical approaches adopted in gases and liquids are markedly different.
Furthermore, as regards thermo-osmosis in liquids, a full understanding of
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the phenomenon is still lacking, both experimentally and theoretically. Many
similarities with the development of the study of thermophoresis can be noted.

Thermo-osmosis in gases

The first investigations of thermo-osmosis in gases have been spurred by
the invention of the radiometer by Crookes [35, 246]3. The radiometer (or
light mill) consists of a small glass bulb, partially evacuated, inside of which
a set of vanes is accommodated on a spike. Each vane is shiny on one side
and blackened on the other because, according to Crookes, the purpose of
the radiometer was to detect the pressure of light. Unfortunately, when the
radiometer is placed in sunlight the vanes spin around the wrong way, that is
the black vanes are pushed away by the light. Crookes submitted a work to
the Royal Society [35] in which he argued, making a mistake, that the motion
of the light mill was a direct consequence of the light impinging on the vanes.
Maxwell was the referee of Crookes’ paper and substantially agreed with his
interpretation of the phenomenon. Only after the experiments performed by
Schuster [206], and suggested by Osborne Reynolds, it became clear that the
cause of the motion could not be the transfer of momentum on the vanes
due to the incident light: The rotation was due to an unbalance of pressure
of the residual gas near the two differently heated sides of each vane. The
reason of this pressure difference was not clear, and different hypotheses were
put forward. The latest chapter of the story is usually ascribed to Maxwell4,
who showed that the thermal creep, and consequently the motion of the
radiometer, is originated by the tangential stress of the gas which develops
near the confining surfaces to which a temperature gradient is applied [149].
Surprisingly, in the case of the radiometer the tangential stress arises just at
the edges of the vanes and accurate predictions are hard to obtain [116, 209].
Recently, the phenomenon of thermal creep has been demonstrated through a
simple revealing experiment by Sone and Yoshimoto [210].

The thermal creep flow in rarefied gases, that is when the mean free path
is larger than the range of the interparticle potentials, is to date accurately
predicted by kinetic theories [209]. The expression for the thermo-osmotic
velocity has been obtained for the first time by Maxwell in 1789, by means of
a calculation able to take into account the effects of the surface on the motion
of the gas. The simple model proposed by Maxwell “treats the surface as
something intermediate between a perfectly reflecting and a perfectly absorbing
surface, and, in particular, supposes that of every unit of area a portion f
absorbs all the incident molecules, and afterwards allows them to evaporate
with velocities corresponding to those in still gas at the temperature of the
solid, while a portion 1− f perfectly reflects all the molecules incident upon

3However, objects similar to Crookes radiometer were already known in Germany.
4But it should also be ascribed to Reynolds [187] and Thomson. For details see Ref. [26].
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it” [161, Pag. 706]. Maxwell’s expression for the creep velocity in the absence
of pressure gradients has been reported also in the classic book by Kennard
[116] and reads

v∞ =
3

4

η

ρ

∇T
T
, (4.1)

where ρ and η are the bulk mass density and the viscosity of the gas and
the temperature gradient ∇T is directed along the wall. The same result can
be expressed in terms of the mean free path λ of the particles through the
standard relation valid for a hard sphere gas

λ =
η

p

√
πkBT

2m
, (4.2)

where p is the gas pressure. Equation (4.2) together with the ideal gas law
p = ρkBT/m gives

v∞ = λ
3

2
√
2π

√
kBT

m

∇T
T
.

The mechanism which originates thermo-osmosis in gases can be qualita-
tively understood as follows [116, 209]. Let us consider a gas at rest over a
planar wall with a temperature gradient along it. The molecules bouncing on
a given element of surface dΣ come from various directions without collisions
over a distance of the order of the mean free path. This means that they
preserve the memory of the thermodynamic state of the gas at the point where
the last collision took place. The molecules belonging to the hotter region
carry an higher average momentum than those from the colder region and
therefore they will transfer (on average) more momentum to dΣ during the
impact. After the impact, the molecules are kicked back from the wall. If the
reflection is specular, then the net transfer of momentum to the wall will be
vanishing. However, if the momentum is not conserved during the collision (i.e.
if the particles release a fraction of their momentum to the wall) the result is
a net momentum transfer from the gas to the wall in the direction opposite to
the thermal gradient As a result, the gas will be set in motion in the direction
of the gradient, until a steady flow is reached5. Here we remark that the onset
of the thermal creep is deeply rooted in the specificity of molecule-surface
interaction. In particular, a flow is established only if particles loose momentum
to the wall during the collision. This idea was first put forward for the first
time by Maxwell [26] in a referee report to a work by Reynolds.
To conclude this review of thermal creep in gases we note that in free molecular

5A gas in motion is characterised by an average momentum, which will be on average
transferred to the wall. The steady state is reached when the transferred momentum in
the direction opposite to the motion (i.e. opposite to the gradient) and the transferred
momentum in the direction of the motion are equal.
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gases (very high gas rarefaction) the flows induced by temperature gradients
vanish [209]. The argument introduced above in order to qualitatively justify
the onset of the slip velocity is no longer valid: In this limit the molecules can
reach the opposite sides of the system without colliding with other molecules
and with the walls. It is straightforward to show that two gas reservoirs con-
nected by pipes of any shape and kept at different temperatures Ta and Tb
will reach a stationary state without any flow and their pressures will obey
the relation [116]

pa
pb

=

√
Ta
Tb
.

This phenomenon is called thermal effusion and the ratio between pressures
does not depend on the specific properties of gas.

Thermo-osmosis in liquids

Thermo-osmosis in liquids was first observed and named in 1907 by Lipp-
man [139]. In his seminal paper Lippman studied the flow of water through a
membrane of gelatin separating two volumes held at different temperatures.
A few years later Aubert [9] addressed the problem more systematically and
found that in the presence of a temperature difference some membranes (e.g.
gelatin and pig’s bladder) originate a water flow from the cold to the hot
whereas other (e.g. parchment paper and viscose) in the opposite direction.
Furthermore he noticed that for porous plugs of mineral origin (e.g.. glass) no
flow was detectable. He concluded was that thermo-osmosis was due to the
presence of electrolytes in the membrane and therefore, according to these
pioneering observations, the phenomenon seemed to be a manifestation of
electro-osmosis.
The works by Lippman and Aubert were little known in 1941 when Derjaguin
and Sidorenko [46] performed similar experiments and reported a remarkable
effect for porous plugs of sintered-glass in water and other liquids. Four years
later, Reekie and Aird [185] were carrying on some experiments on the flow
of water through micro-metric channels. Maybe stimulated by Landau, who
remarked in his work on the superfluidity of He2 that “the presence of the ther-
momechanical effect is not in itself peculiar only to helium, anomalous is only
the large value of the effect” [129, 220], they tried to observe this effect within
their setup, but they obtained a negative result. Reekie and Aird were not
aware of the works by Lippman, Aubert and of the measurements of Derjaguin
and Sidorenko. On the other hand, also Derjaguin was not aware of the works
published by Lippman and Aubert. However, as later shown by Hutchinson,
Nixon and Denbigh [108], Derjaguin’s results were strongly influenced by the
presence of free charges in the membrane. However thermo-osmosis shows up
also in neutral porous membranes, and the first indisputable observation of
the flow has been reported by Haase and Steinert [95].
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Currently thermal osmosis in liquids, both neutral and charged, is an accepted
phenomenon and a renewed interest is stimulated in relation to possible appli-
cations to fuel cells, water management [132] and water recovery. Furthermore,
thermal osmosis is relevant in desalination of seawater and in power generation
from the salinity difference with river water [140]. As regards nano systems,
thermo-osmosis could be relevant, together with thermophoresis, for particle
motion and manipulation through hot nanostructures [36]. Also in living sys-
tems, such as eukaryotic cells, thermo-osmotic driven effects could appear due
to the occurrence of large temperature gradients, as recently pointed out in
Ref. [34]. The increasing attention on these topics is confirmed by a recent
review on thermo-osmosis in membranes by Barragán and Kjelstrup [15].
Although several experimental measurements have been performed up to now,
the apparently simple phenomenon of thermal osmosis is not yet fully charac-
terised and understood at a microscopic level. The experimental results often
disagree about the direction and the magnitude of thermo-osmotic fluxes. In
hydrophobic membranes the flow is always directed from the hot to the cold,
whereas in hydrophilic membranes the direction of the flux is strongly influ-
enced by the nature of the liquid, possible solutes and the average temperature
of the system. New and refined experiments are necessary to clarify the loose
ends.
A recent work [24] claiming the first microscale observation of the velocity
field imposed by thermo-osmosis goes towards this direction. The experimental
setup consists of a glass slit of about 5µm thickness filled with water. The
temperature gradient is imposed heating a gold nanoparticle of 125 nm radius
immobilised at the upper surface of the slit. The thermo-osmotic flow has been
monitored tracking a smaller gold nanoparticle, which was supposed not to be
influenced by the temperature gradient. The flow was directed towards the
hot region, and the extrapolated velocity of about 40µm/s. Here we remark
that the results obtained in this work are strongly affected by the presence of
surface charge (see e.g. the results reported in Ref. [200]).

The growing interest on thermo-osmosis in liquids has been recently con-
firmed by the new nonequilibrium MD simulations performed by the groups
based in Cambridge [81, 82] and Lyon [74, 75]. Before discussing their results,
we introduce the unique, to the best of our knowledge, theoretical approach
devised in order to describe thermal osmosis.
The phenomenon of thermo-osmosis is characterised by the presence of energy
and matter fluxes, on account of a temperature difference: The system is out
of equilibrium and classical thermodynamics is of little help to describe this
process. The first attempts in order to account for nonequilibrium phenomena
involving heat and matter fluxes6 dates back to 1854 [222], when Thomson
provided a theoretical description of the thermo-electric effect based on the

6Heat fluxes in crystals have been studied by Dhuamel and Stokes starting from the
beginning of the nineteenth century.
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new hypothesis of entropy creation7. By means of similar arguments, in the
twenties Eastman [58, 59] predicted the existence of thermo-osmosis and in-
terpreted the Ludwig-Soret effect as a nonequilibrium process. As he states
in his work [58]: In the presence of a non-uniform temperature profile the
“substances constituting the system are able to move independently from one
region of temperature to another, they will in general do so until a condition
of equilibrium, accompanied by no further net transfer of material, is reached”.
The theories developed by Thomson and Eastman were then refined and for-
mulated more rigorously by de Groot, Prigogine, Denbigh and other authors.
All these approaches are deeply rooted in the works by Onsager [166, 167],
whose contribution has been essential in the development of nonequilibrium
thermodynamics. In what follows we introduce some elements of the formalism
of linear nonequilibrium thermodynamics, in order to understand how these
results can be applied to the problem of thermo-osmosis.

Let us consider a planar wall, which may be considered as a simplified
model for the surface of a pore in a membrane. A fixed temperature difference
∆T and a fixed pressure difference ∆p are imposed at the ends of the wall
along the same direction, let us call it x. The inhomogeneities in temperature
and pressure give rise to heat Jq and matter Jρ fluxes along x8. The rate of
entropy production σ across a surface perpendicular to the direction x can be
written as

σ = Jρ ∆p+ Jq
∆T

T
. (4.3)

The two quantities coupled to the fluxes in Eq. (4.3) are referred to as the
thermodynamic forces:

Xρ = ∆p, Xq =
∆T

T
.

The fundamental assumption of (linear) nonequilibrium thermodynamics is
that the fluxes are linear functions of the forces and we can write:

Jρ = LρρXρ + LρqXq = Lρρ ∆p+ Lρq
∆T

T
, (4.4)

Jq = LqρXρ + LqqXq = Lqρ ∆p+ Lqq
∆T

T
, (4.5)

where Lij are phenomenological coefficients. Lqq is the coefficient related to the
thermal conductivity: Taken alone it describes the heat conduction at constant
pressure. On the other hand, Lρρ accounts for the flow of liquid at constant
temperature. The cross terms, Lqρ and Lρq, act as a coupling between the heat

7In this work [222] appears for the first time the term thermo-dynamics, page 123.
8Here we follow, with some changes, the notations in [45]. Most of the references (see

e.g. Ref. [42, 41]) introduce the energy flux instead of the heat flux, because it is a less
ambiguous quantity.
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and the mass fluxes: The so called mechanocaloric coefficient Lqρ represents the
mechanical contribution to the heat flux, whereas Lρq has the inverse meaning.
Onsager showed that the cross coefficients are equal: This result is referred
to as the Onsager reciprocal relations and is rooted into the microscopic
reversibility of the system [166, 167]. Note that the cross-coefficients Lqρ and
Lρq vanish in a homogeneous fluid due to the independence of heat and mass
current fluctuations9.

Derjaguin and Sidorenko [46] applied the formalism introduced above
to describe thermo-osmosis. Their strategy consists in two steps: First they
express the mechanocaloric coefficient in terms of the local excess enthalpy of
the fluid, then they make use of the Onsager reciprocal relations in order to
obtain the expression for the mass flow at ∆p = 0, that is the flow in the case
of an open system. The fluid velocity far from the wall can be written as10

v∞ =
1

η

∫ l̃

0

dz∆h(z)
∇T
T
, (4.6)

where η is the bulk viscosity, ∆h(z) is the excess local enthalpy at a given
height z and l̃ is the (microscopic) length after which the excess local enthalpy
vanishes. This result is valid under two hypothesis. The first one is that we can
approximate the local viscosity with the bulk viscosity also near the surface.
The second one is that we can define a local enthalpy in the fluid layers in
front of the surface. Here some difficulties arise. First of all the effect of a
non-uniform viscosity on the motion of the fluid is not clear. Furthermore, as
shown in [81] and as expected from the local behaviour of the pressure tensor,
the local enthalpy is not a slowly varying function11 and a local equilibrium
definition is in principle not valid [197]. The inconsistency of the definition of
a local enthalpy is somewhat related to the local equilibrium interpretation of
the Gibbs-Duhem equation [81].

Coming back to simulations, the recent work published by Fu, Merabia and
Joly [74] focuses on the flow in a carbon nanotube generated both by pressure
and temperature differences applied to the extremities of the channel. They
assert that within their setup the Onsager reciprocity relations are satisfied
and that the mechanocaloric coefficient obtained through Derjaguin’s approach
accurately predicts the observed values. Furthermore, they show that in order
to observe consistency with theoretical prediction based on nonequilibrium
thermodynamics when the wall-particle interactions are weak it is necessary
to apply a hydrodynamic correction to account for the presence of slippage.
The group belonging to the University of Cambridge presented two very

9See e.g. Ref. [130], Sec. 49 or Ref. [11], Sec. 12.5.
10As recently noted by Ganti et al. [81], and some years before by Anderson [3], the result

reported in [45] has an extra multiplicative factor 2. The mistake is in the expression of the
Poiseuille flow.

11We remark, anticipating the content of the next Section, that it is not possible to define
the local enthalpy in an inhomogeneous system without ambiguities.
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different works. In the first work [81], they test the consistency between the
the slip velocity of a LJ fluid in a slit obtained by three different routes. The
mechanical route consists in two steps. First they run equilibrium simulations
at several temperatures in order to obtain the pressure tensor as a function of
T for different microscopic definition of the tangential pressure12. Then they
evaluate the force exerted on the fluid by taking the temperature derivative
of the tangential pressure (i.e. by use of the local equilibrium prescription).
Finally they run a nonequilibrium (but isothermal) simulation of the flow
generated by that force. The thermodynamic route consists in the evaluation
of the slip velocity by Eq. (4.6), where the local enthalpy is defined as

h(z) = u(z) +
p(z)

ρ(z)
, (4.7)

where u(z) is the local energy density, p(z) = pT(z) the virial expression for
the local tangential pressure and ρ(z) the local density profile. However, as
already mentioned above, the definition (4.7) is only valid in the bulk. The
last method relies on Onsager reciprocal relations: The mechanocaloric cross
coefficient is evaluated applying to the system a pressure gradient and the slip
velocity follows from (4.4) at ∆p = 0. The conclusion of this paper is that the
three routes provide consistent results, showing the presence of a strong space
dependence of the viscosity of the fluid.
Reference [82], published the following year, makes use of a clever trick in
order to directly evaluate the force on the fluid particles through a steady-state
nonequilibrium simulation. The result is surprising: The force obtained follow-
ing the mechanical route of Ref. [81] differs from that evaluated directly from
the most recent nonequilibrium simulation [82]. Furthermore, they report that
the force predicted by means of the thermodynamic route turns out to be
more accurate than that obtained using the other methods proposed in [81].
In this second work there is no mention of the definition of the pressure tensor
adopted for the evaluation of the local enthalpy (4.7). However, we can imagine
that the virial expression has been chosen, as in [81], even if this definition of
pressure tensor does not satisfy the hydrostatic equilibrium condition.
In our opinion the force on the particles evaluated through the nonequilibrium
steady-state simulation in [82] is, at least in principle, correct, but we think
that any preference among the three methods (and among the definitions of
the pressure tensor) put forward in [81] is risky, because, as we tried to show
above, some quantities are not well defined (see also the discussion in the next
Section).
To close this parenthesis about numerical results, we think that nonequilib-
rium steady-state MD simulations of systems characterised by a small number
of control parameters and simple interfaces are desirable. The problem of

12It has been shown that the tangential pressure can not be uniquely defined. See Ref.
[205] and the discussion in Section 4.2.
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thermo-osmosis of binary mixtures in pores has been studied through sim-
ulations more than ten years ago [243, 96, 78], but analogous results for
one-component fluids are still missing.

4.2 DYNAMICAL SYSTEMS AND MICROSCOPIC
CONSERVATIONS

In this Section we will introduce some notation about dynamical systems,
oriented to the statement of microscopic conservation laws. We will obtain
the local expressions for the relevant fluxes arising in an out-of-equilibrium
system and we will discuss some subtle aspects related to their definition.

Preliminaries on dynamical systems

Let us consider a dynamical system, whose state is characterised at a given
instant of time by a set of N generalised coordinates qi and N conjugated
momenta pi. Any physical observable (dynamical function) can be considered
as a real function of the 2N variables (q, p) = (q1, . . . , qN , p1, . . . , pN ).
The time evolution of the system is completely determined once a priv-
ileged dynamical function, the Hamiltonian H(q, p), is fixed. The trajec-
tories in the phase space are represented by set of 2N functions of time
(q(t), p(t)) = (q1(t), . . . , qN (t), p1(t), . . . , pN (t)), which are the unique solutions
of the Hamilton’s equations





q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

(4.8)

once the initial values qi(0) and pi(0) are given.
As a result of the motion, the dynamical functions change their value in time.
The rate of change of a physical observable A(q, p) is given by

dA

dt
=

N∑

i

[
∂A

∂qi
q̇i +

∂A

∂pi
ṗi

]

=

N∑

i

[
∂A

∂qi

∂H

∂pi
− ∂A

∂pi

∂H

∂qi

]
≡ {A,H} .

The second line follows by means of Hamilton’s equations (4.8), whereas the
last identity is the definition of the Poisson brackets. The time evolution of the
dynamical functions can be expressed more formally introducing the Liouville
operator L :

dA

dt
= −LA, (4.9)
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where

L · ≡ {H, ·} =
N∑

i

[
∂H

∂qi

∂

∂pi
− ∂H

∂pi

∂

∂qi

]
·

The formal solution to Eq. (4.9) can be written as

A(t) = exp{−tL }A(0). (4.10)

Now let us focus our interest on a system of point particles of equal
masses m, interacting with a central pair-wise additive potential v(|r|), in the
presence of an external potential V (r). The generalised coordinates qi and the
conjugated momenta pi can be taken as the components of the positions qαi
and of the momenta pαi of the particles13. The Hamiltonian of the system has
the form:

H
(
{qαi }, {pαi }

)
= HK

(
{pαi }

)
+Hv

(
{qαi }

)
+HV

(
{qαi }

)

=
∑

i

|pi|2
2m

+
1

2

∑

i 6=j

v
(
|qi − qj |

)
+
∑

i

V (qi), (4.11)

where the sum is extended over the particles.
As stated above, the Hamiltonian induces a dynamics ruled by the Liouvillian
L . This operator can be written as the sum of three contributions arising
from the kinetic, the internal potential and the external potential contribution
in the Hamiltonian:

L =LK+Lv+LV

=−
∑

i

pi

m
· ∂
∂qi

+
1

2

∑

i 6=j

∂vij
∂qi

·
(

∂

∂pi
− ∂

∂pj

)
+
∑

i

∂V (qi)

∂qi
· ∂
∂pi

, (4.12)

where vij is the shorthand notation for v(|qi − qj |).
Statistical mechanics provides the link between the microscopic observables

introduced above and macroscopic physical quantities. This link is provided
by the so called phase-space distribution functions F (q, p), which belong to
the subset of the dynamical functions such that their integral over the phase
space is normalised. The distribution F (q, p) specifies the state of the system
and the observable value of any dynamical function A(q, p) is given by

〈A〉 =
∫∫

dq dpA(q, p)F (q, p).

The time evolution of the distribution F (q, p) is regulated by the Liouville
equation

∂tF (t) = LF (t) (4.13)

13Here and in the following Greek indices refer to vector components, whereas Latin
indices refer to particles.
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which must be supplemented with the initial condition F (t = 0) = F0. The
formal solution of (4.13) reads

F (t) = U (t)F (0), (4.14)

where U (t) = exp{tL } is the so called Green propagator (or time evolution
operator). This operator can be alternatively defined as the solution of the
equation

∂tU (t) = L U (t) (4.15)

with the initial condition U (0) = I , where I is the identity operator.
Finally, the time evolution of the observables can be written according to Eq.
(4.10) as

A(t) = exp{−tL }A(0) = U (−t)A(0). (4.16)

The set of all the transformations U (t), which has the structure of a Lie
Group, is the so called group of the canonical transformations. The laws of
mechanics are invariant under the actions of the elements belonging to it.

Microscopic continuity equations

In order to obtain the microscopic counterpart of the macroscopic conser-
vation laws of mass, momentum and energy let us adopt the usual definition
for the local mass density and the local momentum density “operators”

ρ̂(r) = m
∑

i

δ(qi − r), (4.17)

ĵα(r) =
∑

i

δ(qi − r) pαi , (4.18)

whereas the local energy density operator can be written as

Ĥ(r) =
∑

i

δ(qi − r) ĥi

=
∑

i

δ(qi − r)

[
p2i
2m

+
1

2

∑

j( 6=i)

v(|qi − qj |) + V (qi)

]
. (4.19)

Here we point out that according to the definition (4.19), the interaction
energy vij between two particles i and j (located at qi and qj) is ascribed
(without justification) half to particle i and half to particle j. To give an
example, another admissible definition of the local energy density could ascribe
the whole interaction energy vij to the point (qi + qj)/2. The apparent14

14Indeed, integrating over the volume of the system the ambiguity disappears and the
Hamiltonian reduces to (4.11).
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ambiguity in (4.19) is related to the non-local nature of the interparticle
interaction potential v(r), which should appear also in the definition of local
quantities such as the local thermodynamic potentials (e.g. enthalpy, entropy,
free energies . . . ) and in the corresponding fluxes [197, 63].

Mass conservation

The microscopic continuity equation for ρ̂(r) straightforwardly follows from
Eq. (4.9):

dρ̂(r)

dt
= −L ρ̂(r) = −LK ρ̂(r) =

∑

i

∂

∂qi
δ(qi − r) · pi

= −∂α ĵα(r), (4.20)

where ĵα(r) is defined in Eq. (4.18). Equation (4.20) has the form of a continuity
equation expressing the conservation of mass at the microscopic level.
However, we point out that any microscopic mass current operator ĵαρ (r)
defined as

ĵαρ (r) = ĵα(r) + Γα(r), (4.21)

where Γα(r) is any vector field characterised by a vanishing divergence

∂αΓ
α(r) = 0,

fulfils of the continuity equation (4.20). The “generalised” mass current (4.21)
shows how continuity equations of the form

dÂ(r)

dt
+ ∂αĴ

α
A(r) = 0,

where Â(r) is the microscopic conserved observable and Jα
A(r) is the corre-

sponding current operator, define fluxes of conserved quantities only up to
zero-divergence vector fields.

Momentum conservation

Analogously, the rate of change of ĵα(r) according to (4.9) provides a
local conservation law corresponding to the macroscopic momentum balance
equation:

dĵα(r)

dt
= −L ĵα(r)

= −∂β
[
∑

i

pαi p
β
i

m
δ(qi − r)

]
− ρ̂(r)

m
∂αV (r)

− 1

2

∑

i 6=l

∂vil
∂qαi

[
δ(qi − r)− δ(ql − r)

]
. (4.22)
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The last term in Eq. (4.22) can be written as the divergence of a second-rank
tensor by means of the distributional identity [205]

δ(qj − r)− δ(qi − r) =

∮

Ci→j

dyγ
∂

∂yγ
δ (y − r)

= −∂γ
∮

Ci→j

dyγδ (y − r) , (4.23)

where the integral is along any contour Ci→j from qi to qj . Making use of
this result in Eq. (4.22) we obtain the microscopic continuity equation for the
momentum density ĵα(r)

dĵα(r)

dt
= −∂β Ĵαβ

j (r)− ρ̂(r)

m
∂αV (r), (4.24)

where we have defined the microscopic momentum current operator Ĵαβ
j (r)15

as

Ĵαβ
j (r) =

∑

i

pαi p
β
i

m
δ(qi − r) +

1

2

∑

i 6=l

∂vil
∂qαi

∮

Ci→l

dyβδ (y − r) . (4.25)

Finally, as regards system where particles interact through central pair-wise
potentials, the momentum flux Ĵαβ

j (r) can be more conveniently written as

Ĵαβ
j (r) =

∑

i

pαi p
β
i

m
δ(qi − r)

− 1

2

∑

i 6=l

qαil
|qil|

dv(q)

dq

∣∣∣∣
q=|qil|

∮

Ci→l

dyβδ (y − r) , (4.26)

with qij = qj − qi. Note that the last term in Eq. (4.24) acts as a source
contribution when a space dependent external field V (r) is present. The

average value of the operator Ĵαβ
j (r) is the so called (local) pressure tensor

pαβ(r) =
〈
Ĵαβ
j (r)

〉
. (4.27)

Equation (4.25) explicitly shows that the local momentum current, which
enters the continuity equation for the momentum density (4.24), can not be
defined without ambiguity because different contours in (4.25) lead to different

expressions for Ĵαβ
j (r) and also for the pressure tensor. This arbitrariness in

the definition of the momentum flux has the same origin as the arbitrariness in
the definition of the mass flux. Also the continuity equation for the momentum

15Some references adopt a slightly different notation, introducing the stress tensor σ̂αβ ,

defined as σ̂αβ(r) = −Ĵαβ
j (r).
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uniquely defines only the gradient of the momentum momentum flux. As
before, any other tensor which differs from Ĵαβ

j (r) by a quantity Γαβ(r) such
that

∂βΓ
αβ(r) = 0 (4.28)

fulfils the continuity equation. The arbitrariness with respect to the choice of
the contour in the definition (4.25) is just a different statement of this fact.
A remarkable consequence of the arbitrariness in the choice of the contour is
that both symmetric and anti-symmetric definitions of the pressure tensor are
legitimate and a privileged choice can not be justified. However, it has been
shown [150] that it is always possible to construct a symmetric momentum
flux tensor. Furthermore, the symmetries of the system restrain the range
of admissible definitions of the tensor, but in general an infinite number of
possibilities can be available.

For a system of particles interacting through central pair-wise additive
potentials the pressure tensor reads16

pαβ(r) =
ρ(r) kBT

m
δαβ

− 1

2

∫
dy

yα

|y|
dv(|y|)
d|y|

∮

C0→y

dsβρ(2)(r − s, r − s+ y), (4.29)

where ρ(2)(r, r′) is the two-particle density [98] and the line integral is extended,
without any loss in generality [205], from the origin 0 to a given point y. Making
use of this result it is straightforward to show that in the homogeneous and
isotropic limit the ambiguity in the definition of the pressure tensor disappears.
Indeed the two-particle distribution function can be expressed in terms of the
radial distribution function

ρ(2)(r, r′) =
( ρ
m

)2
g(|r − r′|)

and (4.29) reduces to

pαβ(r) = p δαβ =
ρ kBT

m
δαβ − 1

2

ρ2

m2

∫
dr

rαrβ

|r|
dv(|r|)
d|r| g(|r|), (4.30)

which is the well known virial (or pressure) equation for a homogeneous and
isotropic fluid at density ρ [98].

16Note that (4.25) can be written as

Ĵαβ
j (r) =

∑

i

pαi p
β
i

m
δ(qi − r)−

1

2

∑

i 6=l

qαil
|qil|

dv(q)

dq

∣∣∣∣
q=|qil|

∮

Ci→l

dyβδ (y − r) ,

with qij = qj − qi, and after a proper change of variables (see [205], Eq. (3.2)) we obtain
(4.29).
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The non-uniqueness of the local pressure tensor has been first recognised
by Kirkwood in the fifties. He provided an expression for the configurational
contribution to the stress tensor in a paper with Buff [117] and a different
one in another work with Irving [109]17. The first explicit description of the
ambiguity can be found in the paper by Harasima [99] whereas a rigorous and
exhaustive study of the problem was given in the eighties by Schofield and
Henderson [205].
This lack of uniqueness in the definition of the pressure tensor has been
recently recovered in two papers [81, 82] dealing with thermo-osmosis. The
authors try to discriminate between different expressions of the pressure tensor
estimating the value of the thermo-osmotic flow resulting from (approximate)
predictions, which involve the knowledge of the pressure tensor itself. In the
most recent paper [82] they compare these predictions with the (exact) results
obtained through a clever nonequilibrium molecular dynamics simulation and
they conclude that both the virial and the Irving-Kirkwood expression do not
accurately predict surface forces due to temperature gradients.
However, we remark that the infinite possible definitions of the the pressure
tensor are indeed equivalent, i.e. all the physical observables must be invariant
with respect to different choices of the path Ci→j [205]. As regards an inhomo-
geneous fluid, the pressure tensor is not a well defined observable on a length
scale shorter than the correlation length or the range of the interparticle poten-
tial [197]. Qualitatively, we can try to understand this circumstance reflecting
on the fact that it is not possible to identify the surface where the pressure is
acting. Analogously, it is not possible to define without ambiguities the surface
which separates two different phases of the same fluid. On the other hand, the
force exerted on a given region of fluid and the surface tension of an interface
are well defined quantities and do not depend on the particular definition of
the pressure tensor18. To give a more concrete example, it is straightforward
to check that the force FV exerted by the particles on a sub-volume V of
the system, which is a legitimate physical quantity, is unambiguously defined.
Indeed, making use of the microscopic continuity equation for the momentum
we obtain

Fα
V =

d

dt

∫

V

dr ĵα(r) = −
∫

V

dr

[
∂β Ĵ

αβ
j (r) +

ρ̂(r)

m
∂αV (r)

]

and we readily realise that the force is not altered by divergence-free fields
(4.28) added to the momentum flux.
As regards approximate theories, such as the local equilibrium assumption
or the approach originally put forward by Derjaguin and recently adopted in
[81, 82], the invariance of the observables with respect different definitions of

17The so called Irving-Kirkwood definition of the stress tensor is reported in the Appendix
of [109].

18The virial expression is an allowed choice for the pressure tensor only for homogeneous
and isotropic fluids.
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the pressure tensor can not be guaranteed. However, the slip velocity of a fluid
subject to a temperature gradient is a genuine physical quantity, also from the
microscopic viewpoint. Therefore an exact prediction of the thermo-osmotic
slip must be invariant on the choice of the trajectory in (4.25): We conclude
that both the local thermal equilibrium and the Derjaguin approach include
some errors, because their expression are not endowed by this invariance.
Finally, we stress that the virial pressure tensor (4.30), used in [81, 82] to
obtain the thermo-osmotic velocity of the fluid, does not correspond to any
path in Eq. (4.25) and does not fulfil the hydrostatic balance condition for
inhomogeneous fluids. This expression is commonly adopted within continuum
hydrodynamics, where the relevant quantities are assumed to be varying on a
length scale larger than the correlation length, i.e. when the definition of local
thermodynamic quantities is legitimate19.

Energy conservation

The microscopic conservation law for the energy density Ĥ(r) can be
obtained through the same steps followed before in the case of the mass
current:

dĤ(r)

dt
= −L Ĥ(r)

= −LKĤ(r)−
∑

i

δ(qi − r)
[
Lv + LV

] p2i
2m

(4.31)

After some algebra, the action of the Liouvillians on the Hamiltonian gives

LKĤ(r)=
∑

i

pαi
m

[
hi∂αδ(qi−r)− ∂V (qi)

∂qαi

]
− 1

2m

∑

i 6=j

δ(qi−r)
∂vij
∂qαi

(
pαi −pαj

)
,

[
Lv+LV

] p2i
2m

=
pαi
m


∑

j( 6=i)

∂vij
∂qαi

+
∂V (qi)

∂qαi


.

Making use of these results in Eq. (4.31), we get

dĤ(r)

dt
=−∂α

[
∑

i

δ(qi−r)
pαi
m
hi

]
− 1

2m

∑

i 6=j

pαi
∂vij
∂qαi

[δ(qi−r)−δ(qj−r)].

The identity (4.23) allows to rewrite the last Equation in the form of a
microscopic conservation law

dĤ(r)

dt
= −∂αĴα

H(r), (4.32)

19Unless the pathological case where the system is in near critical conditions.
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where we have defined the energy current Ĵα
H(r) as

Ĵα
H(r) =

∑

i

pαi
m
δ(qi − r)ĥi −

1

2

∑

i

pδi
m

∑

j( 6=i)

∂vij
∂qδi

∮

Ci→j

dyαδ (y − r) (4.33)

and the integral is along any contour Ci→j from qi to qj .
Here we stress that Eq. (4.33) is the microscopic energy flux according to the
definition of the local energy density given in Eq. (4.19). Different microscopic
choices for the local energy result in different expressions of Ĵα

H(r). In addition
to this, the same considerations stated above in the case of the momentum
current apply: The ambiguity in the definition of the heat flux is recovered
in the freedom connected to the choice of the path. However, the thermal
transport coefficients turn out to be independent on the particular choice in
Eq.s (4.33) and (4.19) (see Ref. [63]).

4.3 LINEAR RESPONSE THEORY

A common way to obtain information from an equilibrium system is to
perturb it and to study the associated response. The perturbation can be
achieved by applying an external field, which couples to an observable of the
system and therefore an additional term appears in the Hamiltonian. Besides
the so called mechanical perturbations, it is possible to bring a system out of
equilibrium by imposing a temperature gradient. The main difference between
mechanical and thermal perturbations is that it is not possible to represent a
thermal disturbance as an additional term in the Hamiltonian, because thermal
perturbations carry a statistical nature.
The response of the system to the perturbation is characterised by the presence
of fluxes (or currents) and can always be expressed in terms of time-dependent
correlation functions of the unperturbed system. Furthermore, if we restrict
to small perturbations20, the response of the system turns out to be linear in
the perturbation and can be expressed through the equilibrium average of an
appropriate product of two space and time-dependent operators [112].

Linear nonequilibrium thermodynamics [41] assumes linear relations be-
tween the external fields and the corresponding fluxes (see e.g. Eq. (4.4) and
(4.5)): The proportionality constants of these phenomenological relations are
collectively called transport coefficients. Linear response theory provides a
microscopic expression for these coefficients in terms of dynamical correlations
at equilibrium and, in the continuum limit, the description it based on this

20Some objections were raised by van Kampen, based on the fact that the trajectory of
a charged particle in the presence of an electric field deviates drastically with respect to
the unperturbed case. The replies to these objections are rooted on the fact that statistical
mechanical calculations are based on the behaviour of a large number of independent
particles. See e.g. [54] and references therein.
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formalism reduces to the hydrodynamic Navier-Stokes equations. The relations
linking transport coefficients to time correlation functions are referred to as
Kubo (or Green-Kubo) formulas, even if much of the work on them dates
back to Nyquist [164], Kirkwood, Callen and Welton [29] and finally Green
[89, 90, 91].

The approaches based on linear response theory prove to be a powerful
tool towards a general theory of nonequilibrium statistical mechanics, at least
for slight deviations from equilibrium. Indeed, as stated by Zwanzig [257],
in equilibrium statistical mechanics all the thermodynamic properties follow,
at least in principle, from the evaluation of the partition function of the
system whereas the dynamical correlation functions play the same role in the
description of systems out of equilibrium. The analogy is somehow broken by
the fact that the partition function gives all the thermodynamic properties
whereas a correlation function describes a single transport process.

Kubo’s formalism for mechanical perturbations

The method proposed by Kubo [125, 126] is attractive because of its
simplicity and its marked operational character. In order to clarify this point,
let us consider the measurement of the conductivity of a metal. The experiment
consists of three stages. The first one is the initial preparation of the system, in
which the metal is set in a condition of thermal equilibrium. The experimentalist
“samples” from the equilibrium ensemble imposing a fixed temperature to the
wire and repeating the measurement for different portions of the same wire.
Then the perturbation, in this case the external electric field, is switched on.
There are different ways to turn on the perturbation, but here we will not
discuss the possible prescriptions. The last step is the measurement of the
current induced in the sample by the field and the average of the results. The
approach by Kubo is the formal (mathematical) translation of this operational
procedure.

To make things more quantitative, let us consider a system consisting of
several species of charged particles with total charge equal to zero. Particle
i is characterised by a charge zie, where e is the charge of the electron. The
quantity we want to measure is the charge current, which can be locally defined
as

ĵαq (r) =
∑

i

zie

m
δ(qi − r) pαi . (4.34)

The system is prepared in thermal equilibrium and its state is specified by
the canonical distribution function F0(q, p) = exp{−βH0(q, p)}/Z, where
β = 1/kBT , H0(q, p) = HK(q, p) + Hv(q, p) is the free Hamiltonian and Z
is the canonical partition function. From the dynamical point of view, the
unperturbed system can be described through the solutions of the Hamilton’s
equations induced by the Hamiltonian H0, to which a Liouvillian L0 =
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LK + Lv is associated (see Eq. (4.12)).
Following Kubo’s approach, at a given time (let us say t = 0) we switch on an
electric field E(t), constant in space. Due to the presence of the external field,
the additional term

HV (t) = −e
∑

i

ziE
α(t)qαi

adds to the unperturbed Hamiltonian. The Liouvillian LV (t) associated to
this term has the form (see Eq. (4.12))

LV (t) = −e
∑

i

ziE
α(t)

∂

∂pαi
. (4.35)

After the switch-on of the electric field, the state of the system is described by
a time-dependent distribution function which evolves according the Liouville
equation (4.13)

∂tF (t) =
[
L0 + LV (t)

]
F (0), (4.36)

where the initial condition is F (0) = F0.
The next step is to obtain the distribution F (t) of the perturbed system

in order to evaluate the average of the current (4.34), i.e. the response of the
system, at a given time t > 0. Here we wish to solve the evolution equation
(4.36) under the hypothesis that the perturbation due to LV (t) is small,
because we are interested in the linear response of the system to external
fields. Let us begin assuming that the time evolution operator (see Eq. (4.14))
of the unperturbed system U0 is known. Then, in the spirit of perturbative
approaches, we express the evolution operator U associated to the perturbed
Hamiltonian as

U (t) = U0(t) +

∫ t

0

dt′ U0(t− t′)LV (t
′)U (t′)

= U0(t) +

∫ t

0

dt′ U0(t
′)LV (t− t′)U (t− t′),

where the second line follows from a straightforward change of variables.
This equation can be solved iteratively and gives rise to an infinite series of
terms. Here we are interested into linear responses and, at linear order in the
perturbation, we get

U (t) = U0(t) +

∫ t

0

dt′ U0(t
′)LV (t− t′)U0(t− t′).

The probability distribution at time t reads

F (t) = U (t)F0 = F0 +

∫ t

0

dt′ U0(t
′)LV (t− t′)F0

= F0 + β

∫ t

0

dt′Eα(t− t′)

∫
dr′ U0(t

′)
{
ĵαq (r

′)F0

}
(4.37)
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because the equilibrium distribution F0 is a stationary solution to the Liouville
equation and Eq. (4.37) follows from the identity

LV (t)F0 = −e
∑

i

ziE
α(t)

∂F0

∂pαi
= F0β

∑

i

zie

m
Eα(t)pαi

= F0βE
α(t)

∫
dr′
∑

i

zie

m
δ(qi − r′)pαi

= F0βE
α(t)

∫
dr′ ĵαq (r

′).

The last step of Kubo’s method is the evaluation of the average charge
current at time t, which, according to Eq. (4.37), is given by

〈
ĵαq (r)

〉
t
= β

∫ t

0

dt′Eδ(t− t′)

∫
dr′
∫∫

dq dp ĵαq (r)U0(t
′)
[
ĵδq (r

′)F0

]

= β

∫ t

0

dt′Eδ(t− t′)

∫
dr′
∫∫

dq dpU0(−t′)
[
ĵαq (r)

]
ĵδq (r

′)F0

= β

∫ t

0

dt′Eδ(t− t′)

∫
dr′
〈
ĵαq (r, t

′)ĵδq (r
′)
〉
0
. (4.38)

In the first line the average of ĵαq (r), evaluated with respect to F0, is vanishing

because ĵαq (r) is an odd function of the momenta; in the second equality we
have exploited the invariance of the dynamics with respect to the canonical
transformation U0(t) and 〈. . . 〉0 indicates the average evaluated with the
distribution F0.

Equation (4.38) expresses the response to a disturbance in terms of an
unperturbed correlation function of two space and time-dependent operators.
This result is general and can be extended to all kind of mechanical perturba-
tions because in our derivation the only assumption is the particular form of
the perturbing field.
In the case of a homogeneous system the average current density does not
depend on position and, performing a straightforward change of variables, Eq.
(4.38) can be written in a more evocative form as

〈
ĵαq
〉
t
=

∫ t

−∞

dt′Eδ(t′)χαδ(t− t′), (4.39)

where the integrated kernel, defined

χαδ(t) = β

∫
dr′
〈
ĵαq (r, t)ĵ

δ
q (r

′)
〉
0
,

is usually referred to as the (tensorial) response function, or the admittance.
Equation (4.39) is the most general relationship which describes the response
of a system to a perturbation with the properties of causality, linearity and
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stationarity.
If we limit to a time-independent perturbing field E(t) = E, the evolution of
the measured current is the following. For t < 0 the system is at equilibrium
with E = 0 and

〈
ĵαq
〉
t
= 0. As soon as the field is switched-on, the system

reacts to the perturbation and a current appears: The current varies in time
until a steady state is reached. The current is proportional to the field E and
the constant of proportionality is, by definition, the electrical conductivity
tensor σαδ. If this steady state exists, it will be reached by our system at
t→ ∞ and (4.38) becomes

〈
ĵαq
〉
t→∞

= σαδ Eδ,

where the conductivity has the form

σαδ = β

∫ +∞

0

dt′
∫

dr′
〈
ĵαq (r, t

′)ĵδq (r
′)
〉
0
.

This result for the static conductivity is an example of Green-Kubo relation,
and was first obtained in this form by Kubo [125]. In the spirit of Eq. (4.39),
the transport coefficients are therefore nothing but an example of response
functions.

We add some remarks before concluding. The derivation of the Green-Kubo
relations is a particular consequence of a class of relations collected under the
name of the fluctuation-dissipation theorem [126]. According to this theorem
the (linear) response to an external perturbation, which brings the system out
of equilibrium, is linked to the fluctuation properties of the equilibrium system.
Roughly speaking, this connection is rooted in the fact that the system cannot
distinguish between a relaxation towards equilibrium as a result of a random
thermal fluctuation and a relaxation towards equilibrium as a result of the
perturbation due to an external field [166, 167].
Furthermore, we mention that the explicit evaluation of the transport coef-
ficients by means of the Green-Kubo relations is a hard task, because the
solution of the complete (N -body) problem is required. Finally, special care
must be paid when dealing with correlation functions involving currents of
conserved quantities. Indeed, it is well known since the work by Adler and
Wainwright [2] that the velocity autocorrelation function for a hard sphere
gas decays as a power law for large times. This long tail behaviour has been
confirmed by means of kinetic equations [12].

4.4 MORI’S LINEAR RESPONSE APPROACH
TO THERMAL PERTURBATIONS

The formalism outlined in the previous Section provides a general frame-
work linking transport coefficients to dynamical correlation functions. These
arguments can be applied only in the case of mechanical perturbations, that is
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when the presence of disturbance results in an additional term in the Hamilto-
nian of the system.
However, we are familiar with another class of transport coefficients, introduced
in the context of (macroscopic) hydrodynamics in order to close the set of mass,
energy and momentum continuity equations. The bulk η and shear ζ viscosity
link the dissipative contribution to the pressure tensor (momentum flux) to the
velocity gradients, whereas the thermal conductivity κ is the proportionality
coefficient between the heat flux and the temperature gradient. Furthermore
in a diffusive process the mass current is linked to the concentration gradient
by the diffusion coefficient D. One common feature shared by these transport
coefficients is that the corresponding fluxes arise due to a perturbation not
represented by an additional term in the Hamiltonian. For example, it has
not been devised yet a convincing (and natural) way to represent the effects
of a temperature gradient by means of a perturbation to the Hamiltonian
[257, 11]. Similar considerations apply whenever the fluxes are the response to
spatial inhomogeneities of the system, e.g. temperature and chemical potential
gradients.

Even if Kubo’s method can not be applied to perturbations due to spatial
inhomogeneities, several approaches [257] have been developed in order to
express the so called thermal transport coefficients in terms of time integrals
of dynamical correlation functions. All the predictions obtained agree with
each other21 [257] and there is no reason to prefer one formalism from the
others. Furthermore the results of the aforementioned approaches, where
transport coefficients are interpreted as generalised susceptibilities, have been
corroborated within kinetic theory. At the lowest order, for dilute systems,
kinetic theories express the transport coefficients as integrals of time correlation
functions, analogously to what happens in the case of the correlation function
approaches [12]. It was formally shown by Rèsibois [186] that this equivalence
indeed holds to all orders, because it is possible to prove that in both cases
the transport coefficients follow from the solution of an identical (up to an
exact transformation) inhomogeneous integral equation. Here we point out
that this equivalence is not a justification of the correlation function methods
through kinetic theories, but only a proof of their internal consistence despite
the severe assumptions taken.

The method proposed by Hazime Mori [155, 156] handles the disturbances
due to spatial inhomogeneities through the concept of local equilibrium. His
second work, published in 1958, describes the relaxation towards equilibrium
of a liquid in a nonequilibrium state in contact with heat and mass reservoirs.
Mori’s fundamental assumption is that the initial state of the liquid (which is
assumed to be known) can be described through a local equilibrium distribution.
Recalling Kubo’s method outlined in the previous Section, this assumption is

21Up to the harmless discrepancies in the time correlation functions generated by the
different ensembles adopted.
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equivalent to replace the (global) canonical distribution function F (0) = F0

in Eq. (4.36) with a given local equilibrium distribution. Once we have done
this substitution, the derivation of the transport coefficients follows along the
same line outlined before. Mori’s approach can therefore be considered as a
generalisation of Kubo’s linear response method to treat inhomogeneities not
arising from external potentials.
The local equilibrium distribution, as we shall see below, accommodates all the
inhomogeneities of the system via two scalar and one vector field: The scalar
fields are linked to the local temperature and chemical potential, whereas the
vector field is linked to the fluid velocity profile. The limits of validity of Mori’s
approach are naturally related to those of the local equilibrium distribution.
In particular, Mori’s assumption is an extension of local equilibrium concept
to the full distribution function: Single particle local equilibrium distributions
arise naturally in the context of kinetic theories, but the generalisation to
many particle distribution in principle can be an hazard.

Mori’s local equilibrium theory has been certainly an important step in
order to carry out Kirkwood’s program on statistical physics. According to the
American physicist, the main objectives of statistical mechanics of transport
processes were to obtain a microscopic derivation of the hydrodynamics equa-
tions, to investigate the limits of validity of the phenomenological constitutive
relations between forces and fluxes (such as Fick and Fourier’s laws) and to
give a microscopic expression for the transport coefficients. Mori’s theory of
transport processes goes towards this direction because gives a microscopic
basis for the phenomenological equations and provides explicit expressions for
the kinetic coefficients involved in such equations. The resulting expressions
for the thermal transport coefficients are completely analogous to the Kubo
formula for the electrical conductivity and involve integrals of time correlation
function evaluated at equilibrium (i.e. without perturbation).
To give an example, the isotropic thermal conductivity turns out to be pro-
portional to the time integral of the two-point correlation function of the heat
current22

κ =
1

kBT 2V

∫ ∞

0

dt′
〈
Ĵx
Q(t

′) Ĵx
Q

〉
0
,

where Ĵα
Q = Ĵα

H − hm
∑N

i=1 p
α
i is the (total) heat flux operator23, Ĵx

H is the
(total) energy current operator and hm is the hentalpy per unit mass.

The goal of this Chapter is the description of an inhomogeneous system in a
stationary state slightly off-equilibrium. To achieve our purpose we will adopt
Mori’s theory, generalised to inhomogeneous and anisotropic fluids. Within
our system space inhomogeneities are generated by a temperature gradient
and an external potential. Even if the original work was formulated within

22Mori’s paper adopts a quantum mechanics description, here we give the classical limit.
23We will define this operator more formally below. In particular we will give a local

definition of this vector.
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quantum statistical mechanics, we will adopt classical statistical mechanics
and the grand canonical formalism. Furthermore, Mori was interested in the
relaxation behaviour of a system, starting from an out-of-equilibrium state
towards full equilibrium. Instead here we keep the system in a nonequilibrium
condition imposing a fixed temperature difference at some boundaries.
In the first Subsection we will introduce Mori’s formalism and then we will
apply the results to an infinite channel.

Mori’s formalism for inhomogeneous systems

Let us consider a system of interacting particles in the presence of an
external potential, described by the Hamiltonian defined in Eq. (4.11) and
kept at a non-uniform temperature. Following the approach developed by
Mori, we define a Local Thermal Equilibrium (LE) distribution function which
resembles a local generalisation of the Boltzmann weight:

FLE = Q−1 e−
∫
dr β(r) Ê(r), (4.40)

where β(r) is a scalar field related to the local temperature, Ê(r) is the local
internal energy operator and Q = Tr{FLE} is the partition function. The
presence of a non-uniform temperature induces in the system a non-uniform
chemical potential and a local velocity profile. Therefore the internal energy
must include the contributions arising from these two local fields:

Ê(r) = Ĥ(r)− ĵ(r) · u(r)− µ(r)ρ̂(r).

The local Hamiltonian, momentum and particle densities have been defined in
Eq.s (4.19), (4.18) and (4.17) respectively. Here u(r) and µ(r) are the vector
and scalar fields linked to the local velocity profile and chemical potential (per
unit mass) of the fluid respectively. The three fields just introduced couple
locally to the conserved quantities: µ(r) couples to the local mass, u(r) to
the local momentum and β(r) to the local energy. These fields define the LE
state and are considered as external known parameters: We will discuss later
how to fix them. In order to justify the linear response formalism, we require
that they are smooth functions and that their gradients ∂αβ(r), ∂αu

β(r) and
∂αµ(r) are small. Furthermore we limit to the study of systems where it is
possible to find a Galileo transformation such that the field u(r) is small24.

Local Equilibrium averages

The averages according to the LE distribution (4.40) can be evaluated
within linear response theory as follows. The essential hypothesis is that the

24For this reason we can neglect the quadratic terms in the expression of the local energy
density Ê(r) given in [156, 11].
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nonequilibrium state defined by the LE distribution is very close, or analogously
is a small perturbation, of an equilibrium state. First of all we introduce the
underlying (zero order) equilibrium distribution function

F eq = Q−1
0 e−β(H−µmN) (4.41)

defined by uniform temperature β and chemical potential (per unit mass)
µ and vanishing velocity field u(r) = 0. Here Q0 is the equilibrium grand
canonical partition function. The fields characterising the out-of-equilibrium
state can then be written in terms of small deviations from the constant values
of the temperature, the chemical potential and the vanishing velocity profile:

β(r) = β + δβ(r), µ(r) = µ+ δµ(r), u(r) = 0+ δu(r).

Following the method inspired by linear response theory, we expand the LE
distribution (4.40) about the equilibrium distribution (4.41) to the first order
in the deviations δβ(r), δµ(r) and δu(r). Noticing that the deviations from
the equilibrium underlying distribution arise both in the exponential and in
the partition function of FLE we get

FLE ' e−
∫
dr β(r) Ê(r)

Q =
Q0 F

eq (1− Ĉe)

Q0 (1− CQ)
' F eq(1− Ĉe + CQ),

where the linear corrections to the exponential and the partition function are:

Ĉe =

∫
dr

{
δβ(r)

[
Ĥ(r) + µρ̂(r)

]
− β

[
ĵ(r) · δu(r)− δµ(r)ρ̂(r)

]}
,

CQ =

∫
dr

{
δβ(r)

[〈
Ĥ(r)

〉
0
− µ

〈
ρ̂(r)

〉
0

]
+ βδµ(r)

〈
ρ̂(r)

〉
0

}
. (4.42)

The averages 〈. . . 〉0 are evaluated using the equilibrium distribution (4.41) and

the difference in the notation underlines that Ĉe still depends on the phase
space coordinates. Within the linear approximation the LE distribution reads

FLE = F eq

{
1−

∫
dr

{
δβ(r)

[
Ĥ(r)− µρ̂(r)

]

− β
[
ĵ(r) · δu(r) + δµ(r)ρ̂(r)

]}
+ CQ

}
. (4.43)

Finally, the local equilibrium average of an observable Â(r) is given by

〈
Â(r)

〉
LE

=
〈
Â(r)

〉
0
−
∫
dr′
{
δβ(r′)

[〈
Â(r) Ĥ(r′)

〉
0
− µ

〈
Â(r) ρ̂(r′)

〉
0

]

− β
[〈
Â(r) ĵα(r′)

〉
0
δuα(r) + δµ(r′)

〈
Â(r)ρ̂(r′)

〉
0

]}
+ CQ

〈
Â(r)

〉
0
.
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In some circumstances the resulting expressions for
〈
Â(r)

〉
LE

loose some terms
because the equilibrium averages 〈. . . 〉0 of any odd operator in the momentum
coordinates Ôodd (e.g. the momentum density ĵα(r) ∼ pα) vanish:

〈
Ôodd

〉
0
= 0. (4.44)

Indeed, it is possible to factorise the momentum and the configurational
equilibrium averages and the momentum average reduces to an integral of
a odd function on the whole momentum space. Eq. (4.44) holds as well if
Ôodd = Ô1 · Ô2 · . . . , provided that the operators are evaluated at the same
time. In the following we report the expectation values for the most relevant
observables.
The local equilibrium average of the momentum density is

〈
ĵα(r)

〉
LE

= β

∫
dr′
〈
ĵα(r)ĵγ(r′)

〉
0
uγ(r′)

= 〈ρ̂(r)〉0 uα(r).

The local equilibrium average of the energy current can be written as

〈
Ĵα
H(r)

〉
LE

= β

∫
dr′
〈
Ĵα
H(r) ĵγ(r′)

〉
0
uγ(r′)

The local equilibrium average of the mass density is

〈ρ̂(r)〉LE = 〈ρ̂(r)〉0 + CQ 〈ρ̂(r)〉0 +
∫

dr′
{
β δµ(r′) 〈ρ̂(r) ρ̂(r′)〉0

− δβ(r′)
[〈
ρ̂(r) Ĥ(r′)

〉
0
− µ 〈ρ̂(r) ρ̂(r′)〉0

]}
, (4.45)

where the constant CQ has been defined in Eq. (4.42). This result can be
written as

〈ρ̂(r)〉LE = 〈ρ̂(r)〉0
∣∣∣
β(r),µ(r)

, (4.46)

showing that the local equilibrium average of the density can be evaluated in
the same way as the equilibrium average (4.41), provided that the temperature
and the chemical potential are fixed on their local value in r, that is β = β(r)
and µ = µ(r).
The local equilibrium average of the momentum current reads

〈
Ĵαβ
j (r)

〉
LE

=
〈
Ĵαβ
j (r)

〉
0
+ CQ

〈
Ĵαβ
j (r)

〉
0
+

∫
dr′
{[
µ
〈
Ĵαβ
j (r) ρ̂(r′)

〉
0

−
〈
Ĵαβ
j (r) Ĥ(r′)

〉
0

]
δβ(r′) + β δµ(r′)

〈
Ĵαβ
j (r) ρ̂(r′)

〉
0

}
. (4.47)

Note that the equilibrium averages 〈. . . 〉 in Eq. (4.47) are different from zero
also if α 6= β, because, due to the configurational contribution in (4.25),
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Ĵαβ
j (r) is not an odd operator with respect to the momenta. It follows that

the pressure tensor, which is diagonal in equilibrium systems, can acquire
off diagonal components when the state of the system is described by a LE
distribution as (4.40). Anyway, the diagonal components of this tensor can be
written making use of the shorthand notation introduced in Eq. (4.45) as

〈
Ĵαα
j (r)

〉
LE

=
〈
Ĵαα
j (r)

〉
0

∣∣∣
β(r),µ(r)

= pαα(r)
∣∣∣
β(r),µ(r)

.

Time-evolution of the distribution function

The equilibrium distribution F eq defined above is to be a stationary solution
of the Liouville equation (4.13) because it just depends on the five global
constants of motion. On the other hand, the LE distribution function (4.40)
is not stationary under the action of the Liouvillian: It can be shown that
LFLE 6= 0. Then, the LE distribution will depend on time due to the dynamics
and the evolution will be conditioned by the particular constraints to which
the system is subject. The system considered by Mori in Ref. [155] is a liquid
in a nonequilibrium state and in contact to heat and mass reservoirs, described
at an initial time by a LE distribution analogous to (4.40). He showed that, if
the system is free to evolve, at large times it will reach the equilibrium state
imposed by reservoirs. Here we are not interested into a relaxation process
towards equilibrium, but rather in the description of a time-independent
thermo-osmotic flow, which is an out-of-equilibrium stationary state. Therefore
we will adopt a strategy which in some points slightly differs from the one
proposed in [155].

Following Mori, we assume that the system is described at t = 0 by a
non-stationary LE state F (t = 0) = FLE and that for t > 0 the distribution
F (t) evolves spontaneously according to (4.13). The main difference in com-
parison to Mori’s derivation is that here we keep the system out of equilibrium
imposing fixed (i.e. time-independent) external parameters ρ(r), u(r) and
µ(r). The formal solution (4.14) of Eq. the Liouville equation (4.13) can be
written in an integral form as

F (t) = F (0) +

∫ t

0

dt′
d

dt′
F (t′)

= F (0) +

∫ t

0

dt′ LF (t′)

= F (0) +

∫ t

0

dt′ L U (t′)F (0),

where we made use of the Liouville equation and of its formal solution. Noticing
that the initial state is FLE and that within classical statistical mechanics
the Liouvillian commutes with the evolution operator, the time evoluted



Mori’s linear response approach to thermal perturbations 123

distribution reads

F (t) = FLE +

∫ t

0

dt′ U (t′)
[
LFLE

]
. (4.48)

At late times we expect that the system will relax to the stationary state
determined by the fixed external fields β(r), µ(r),u(r). We will take the limit
t → ∞ at the end of the computation with some care, due to the long tails
of the time correlation functions involving conserved quantities (see the last
paragraph of Section 4.3).
The explicit evaluation of the right hand side of (4.48) is straightforward. The
Liouvillian L acts on the LE distribution as a partial derivative with respect
to the phase space coordinates and we get

F (t) = FLE −
∫ t

0

dt′
∫

drU (t′)
[
FLE β(r)L Ê(r)

]

= FLE −
∫ t

0

dt′
∫

drU (t′)

{
FLE β(r)

[
∂αĴ

α
H(r)− ∂γ Ĵ

αγ
j (r)uα(r)

− µ(r)∂α ĵ
α
ρ (r)− ρ̂(r)∂αV (r)uα(r)/m

]}
,

where the action of the Liouvillian on the local energy, mass and momentum
operators has already been evaluated in Section 4.2 and corresponds to the
local conservation of energy, momentum and mass respectively (see Eq.s (4.32),
(4.24) and (4.20) and the definition of the fluxes given therein).
If we assume that the perturbation on the system due to the fields β(r),
u(r) and µ(r) is small, it is possible to evaluate the response of the system
within linear response theory. Within this approximation the (time-dependent)
average of a local observable Â(r) reads

〈
Â(r)

〉
t
=
〈
Â(r)

〉
LE

−
∫ t

0

dt′
∫

dr′ Tr

{
Â(r)U (t′)

[
FLE β(r′)

(
∂ ′
αĴ

α
H(r′)

− ∂ ′
γ Ĵ

αγ
j (r′)uα(r′)− µ(r′)∂ ′

α ĵ
α
ρ (r

′)− ρ̂(r′)∂ ′
αV (r′)uα(r′)/m

)]}
,

where Tr{. . . } is the trace over all the degrees of freedom and the symbol
∂ ′ represents the derivative w.r.t. r′. Integrating by parts and neglecting the
contributions at the boundaries, we obtain

〈
Â(r)

〉
t
=
〈
Â(r)

〉
LE

+

∫ t

0

dt′
∫

dr′ Tr

{
Â(r, t′)FLE

[
Ĵα
H(r′)∂ ′

αβ(r
′)

− Ĵαγ
j (r′) ∂ ′

γ

[
βuα

]
(r′)− ĵαρ (r

′)∂ ′
α

[
βµ
]
(r′)

+ ρ̂(r′)∂ ′
αV (r′)uα(r′)/m

]}
, (4.49)
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where have shifted the time dependence on the observable A(r) performing
the canonical transformation U (−t′) and recalling the time evolution equation
for the observables (4.16).
The product between FLE and the terms between round brackets still retains
quadratic terms in the gradients of the fields and in the velocity profile, as
can be noted in (4.43). Therefore we approximate FLE with the underlying
equilibrium distribution and we retain only the linear contributions in (4.49)
obtaining

〈
Â(r)

〉
t
=
〈
Â(r)

〉
LE

+

∫ t

0

dt′
∫

dr′
[〈
Â(r, t′) Ĵα

H(r′)
〉
0
∂ ′
αβ(r

′)

− β
〈
Â(r, t′) Ĵαγ

j (r′)
〉
0
∂ ′
γu

α(r′)−
〈
Â(r, t′) ĵαρ (r

′)
〉
0
∂ ′
α

[
βµ
]
(r′)

+ ∂ ′
αV (r′)

〈
Â(r, t′) ρ̂(r′)

〉
0
uα(r′)/m

]
.

This expression shows how the dynamics induces corrections to the LE aver-
age through terms involving the gradients in the external fields and a term
depending on the external potential linear in the velocity.

The distribution function (4.40), together with the definitions of the fluxes,
allows to calculate the averages of any microscopic observable in terms of the
parameters β(r), u(r) and µ(r). Here we provide the explicit expressions of
the most important quantities.
The formal expression of the average flux of fluid molecules is

〈
ĵσ(r)

〉
t
=
〈
ĵσ(r)

〉
LE

+

∫ t

0

dt′
∫

dr′
[〈
ĵσ(r, t′) Ĵα

H(r′)
〉
0
∂ ′
αβ(r

′)

− β
〈
ĵσ(r, t′) Ĵαγ

j (r′)
〉
0
∂ ′
γu

α(r′)−
〈
ĵσ(r, t′) ĵαρ (r

′)
〉
0
∂ ′
α

[
βµ
]
(r′)

+ ∂ ′
αV (r′)

〈
ĵσ(r, t′) ρ̂(r′)

〉
0
uα(r′)/m

]
. (4.50)

The average heat flux is

〈
Ĵσ
H(r)

〉
t
=
〈
Ĵσ
H(r)

〉
LE

+

∫ t

0

dt′
∫

dr′
[〈
Ĵσ
H(r, t′) Ĵα

H(r′)
〉
0
∂ ′
αβ(r

′)

− β
〈
Ĵσ
H(r, t′) Ĵαγ

j (r′)
〉
0
∂ ′
γu

α(r′)−
〈
Ĵσ
H(r, t′) ĵαρ (r

′)
〉
0
∂ ′
α

[
βµ
]
(r′)

+ ∂ ′
αV (r′)

〈
Ĵσ
H(r, t′) ρ̂(r′)

〉
0
uα(r′)/m

]
(4.51)

and the average momentum flux is

〈
Ĵσδ
j (r)

〉
t
=
〈
Ĵσδ
j (r)

〉
LE

+

∫ t

0

dt′
∫

dr′
[〈
Ĵσδ
j (r, t′) Ĵα

H(r′)
〉
0
∂ ′
αβ(r

′)

− β
〈
Ĵσδ
j (r, t′) Ĵαγ

j (r′)
〉
0
∂ ′
γu

α(r′)−
〈
Ĵσδ
j (r, t′) ĵαρ (r

′)
〉
0
∂ ′
α

[
βµ
]
(r′)

+ ∂ ′
αV (r′)

〈
Ĵσδ
j (r, t′) ρ̂(r′)

〉
0
uα(r′)/m

]
. (4.52)
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It is also useful to evaluate the average mass density

〈
ρ̂(r)

〉
t
=
〈
ρ̂(r)

〉
LE

+

∫ t

0

dt′
∫

dr′
[〈
ρ̂(r, t′) Ĵα

H(r′)
〉
0
∂ ′
αβ(r

′)

− β
〈
ρ̂(r, t′) Ĵαγ

j (r′)
〉
0
∂ ′
γu

α(r′)−
〈
ρ̂(r, t′) ĵαρ (r

′)
〉
0
∂ ′
α

[
βµ
]
(r′)

+ ∂ ′
αV (r′)

〈
ρ̂(r, t′) ρ̂(r′)

〉
0
uα(r′)/m

]
. (4.53)

Constraints for the external fields

As already pointed out, the expressions given above allow to evaluate the
average of the relevant observables for a system out of equilibrium. However,
the time-independent fields β(r), µ(r) and u(r), which enter these expressions,
have not been fixed yet, and in addition they can not be determined a priori.
In order to understand why, let us consider a fluid in an channel with two
thermostats at its ends, set at different temperatures. The actual temperature
profile along the channel can not be fixed from the outset. On the contrary, it
will be self-consistently determined by the fluid, as well as the local chemical
potential and, possibly25, the velocity field. Just to stress the point, within
this setup it is only possible to control the value of the temperature of the
thermostats.
These considerations also apply to the fields β(r), µ(r) and u(r). In order to
obtain their value, we will impose the physical constraints characterising a
stationary state, that is the continuity equations satisfied by the average local
energy density

〈
Ĥ(r)

〉
, by the average local momentum density

〈
ĵγ(r)

〉
and

by the average local particle density 〈ρ̂(r)〉. In formulae:

∂γ
〈
ĵγ(r)

〉
= 0, (4.54)

∂γ
〈
Ĵγ
H(r)

〉
= 0, (4.55)

∂γ
〈
Ĵαγ
j (r)

〉
= −〈ρ̂(r)〉

m
∂αV (r), (4.56)

where
〈
ĵγ(r)

〉
,
〈
Ĵγ
H(r)

〉
,
〈
Ĵαγ
j (r)

〉
and 〈ρ̂(r)〉 correspond to the t→ ∞ limit

of Eq.s (4.50), (4.51), (4.52) and (4.53) respectively. The solution of this set
of five independent differential equations formally provides the values of the
gradients of the fields ∂αβ(r), ∂αµ(r) and ∂αu

γ(r).

Unfortunately, without further approximations the general solution of this
system can not be obtained in closed form. On the other hand, when the
equations are specialised to some simple geometry, symmetry considerations

25If we consider a homogeneous fluid and we apply a temperature gradient we do not
observe a mass flow.
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Figure 4.1: Schematic representation of the slab geometry. The y direction is perpen-
dicular to the plane of the sheet.

allow to considerably simplify the problem, leading to analytical expressions
easier to handle.

4.5 FLOW IN A SLIT

Let us consider a gedanken experiment realised in order to observe the
phenomenon of thermo osmosis. The system (see Fig. 4.1) consists of a fluid
which fills the region between two infinite parallel planar walls (slit), placed
at a fixed distance h. Within this simple geometry the external potential just
depends on the z coordinate. To further simplify the problem we impose that
the walls behave as hard objects with respect to the fluid. In addition we
keep the fluid out of equilibrium applying a temperature difference in the x
direction. The temperature difference is set at infinity and is such that the
gradient is small and finite.

The planar symmetry of the problem will reduce, as we will show below,
the complexity of the problem. In the following Subsection we present the
symmetry properties related to the planar geometry, whereas the next one
applies the results obtained to the continuity equations.

Symmetries in planar systems

Under the hypotheses introduced above, the system is invariant along the x
and y-directions, when held at a constant temperature. Therefore the equilib-
rium averages evaluated by means of the underlying equilibrium distribution
F eq do not depend on that coordinates. To give an example, the average
equilibrium density profile 〈ρ̂(r)〉 depends only on the coordinate orthogonal
to the walls z. Obviously, the thermal gradient along the x direction introduces
an additional dependence of the averages on x.

Furthermore, any second-rank tensor representing a physical quantity and
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belonging to systems characterised by a broken symmetry along a single
direction, let us say z as in our case, reads

Tαβ = a δαβ + b ẑαẑβ , (4.57)

because it has to preserve the symmetry of the system. In Eq. (4.57) a and
b are constants, possibly position dependent if the tensor is a tensor field,
and ẑ is the unit vector along the z-direction. This peculiar expression is
motivated by the symmetry properties of its terms: The identity tensor has no
intrinsic symmetry whereas the product between the unit versors ẑẑ owns the
symmetry of the problem. Equation (4.57) is the most general expression for a
second-rank tensor that we can obtain combining the delta function and the
unit versor ẑ, which are the unique tensors preserving the symmetries of the
system.
It follows that in planar symmetry the equilibrium momentum flux tensor is
diagonal and is determined by two different non-vanishing components:

p(z) =



pT(z) 0 0
0 pT(z) 0
0 0 pN(z)


 ,

where pT and pN are referred to as the tangential and the normal pressure
respectively. According to the notation introduced in Eq. (4.57), a = pT(z)
and b = pN(z)− pT(z).

In the following we will deal with expressions as

Iαγ =

∫
dr′ Tαγ(r′), (4.58)

where Tαγ(r) is second-rank tensor. Now let us impose that the tensor Tαγ(r)
is invariant under a given coordinate transformation R, represented by a
matrix matrix belonging to the orthogonal group O(3)

Tαγ(Rr) = RασRγδT σδ(r).

It follows that the integral must obey the following property

Iαγ = RασRγδIγδ, (4.59)

because the Jacobian of the transformation is equal to 1. Then, if T is invariant
under all the rotations belonging to O(3) it follows, due to Schur’s lemma,
that the tensor Iαγ = aδα,γ . However, if T is invariant under a subset of O(3),
e.g. the rotations about the z-axis, Eq. (4.59) is fulfilled only if the Iαγ has
the form (4.57).

Following the same argument adopted in the construction of the second-rank
tensor, it is possible to show that a third-rank tensor endowed with the same
symmetries reads

Tαβγ = a1 δ
αβ ẑγ + a2 δ

αγ ẑβ + a3 δ
γβ ẑα + b ẑαẑβ ẑγ . (4.60)
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Continuity equations

On the basis of the simple geometry of the problem, we expect that the
solutions of the system of continuity equations (4.54), (4.55) and (4.56) will
show some additional properties. Here we will assume these properties and
then we will show that such a solution exist. The assumptions on the solutions
are the following:

1. The gradient of the field β(r) is uniform throughout the fluid and is set
in the x-direction

∇β(r) =
(
∂xβ , 0 , 0

)
,

where ∂xβ is a constant.

2. The gradient of the field µ(r) is uniform throughout the fluid and is set
in the x-direction

∇µ(r) =
(
∂xµ , 0 , 0

)
.

Within linear response theory the combination this assumption with the
first one implies that ∂x(βµ) is a constant26 and, at linear order in the
derivatives of the fields, we can write

∇ [βµ] (r) =
(
∂x(βµ) , 0 , 0

)
. (4.61)

3. The only non-vanishing component of the velocity field is along the
x-axis and is dependent only on the coordinate z normal to the wall

u(r) =
(
ux(z) , 0 , 0

)
. (4.62)

In what follows we apply these assumptions to the conservation laws (4.54),
(4.55) and (4.56).

Mass and energy conservation laws

Due to the symmetries of the system, it turns out that the steady-state
conservation law for the mass density (4.54) and for the momentum density
(4.55) are identically satisfied.

The average value of the momentum density is

〈
ĵα(r)

〉
= 〈ρ̂(z)〉0 ux(z)δαx +

∫ ∞

0

dt′
∫

dr′
[〈
ĵα(r, t′) Ĵx

H(r′)
〉
0
∂xβ

− β
〈
ĵα(r, t′) Ĵxz

j (r′)
〉
0
∂ ′
zu

x(z′)−
〈
ĵα(r, t′) ĵxρ (r

′)
〉
0
∂x
(
βµ
)]
,

26The term ∂xβ∂xµ is of the second order.



Flow in a slit 129

where we only made use of the three assumptions introduced above. Here we
remark that the linear correction to the LE averages arising from the external
potential V (z) is vanishing: The potential enters the expressions multiplied to
the velocity profile in the form

∂αV (r)uα(r)

and, thanks to (4.62), this combination is zero. Furthermore, due to the symme-
try properties recalled above, only the x-component of the average momentum
density is non-vanishing (〈jy(r)〉 = 〈jz(r)〉 = 0, similar considerations apply
to both terms):

〈
ĵx(q)

〉
= 〈ρ̂(z)〉0 ux(z) +

∫ ∞

0

dt′
∫

dr′
[〈
ĵx(r, t′) Ĵx

H(r′)
〉
0
∂xβ

− β
〈
ĵx(r, t′) Ĵxz

j (r′)
〉
0
∂ ′
zu

x(z′)−
〈
ĵx(r, t′) ĵxρ (r

′)
〉
0
∂x
(
βµ
)]
. (4.63)

Therefore the stationarity condition for the mass density reads

0 = ∂α
〈
ĵα(q)

〉
= ∂x

∫ ∞

0

dt′
∫

dr′
[〈
ĵx(r, t′) Ĵx

H(r′)
〉
0
∂xβ

− β
〈
ĵx(r, t′) Ĵxz

j (r′)
〉
0
∂ ′
zu

x(z′)−
〈
ĵx(r, t′) ĵxρ (r

′)
〉
0
∂x
(
βµ
)]
.

The two-point correlation functions depend only on the difference x−x′ because
the averages are evaluated at equilibrium and the system is homogeneous
along the coordinate x. Therefore their integral over r′ will be independent on
x and its derivative vanishes.

Analogous considerations apply for the continuity equation for
〈
Ĥ(r)

〉
.

Only the component of the flux along x is different from zero:

〈
Ĵx
H(r)

〉
= β

∫
dr′
〈
Ĵx
H(r) ĵx(r′)

〉
0
ux(z′)

−
∫ ∞

0

dt′
∫

dr′
[
β
〈
Ĵx
H(r, t′) Ĵxz

j (r′)
〉
0
∂ ′
zu

x(z′)

−
〈
Ĵx
H(r, t′) Ĵx

H(r′)
〉
0
∂xβ +

〈
Ĵx
H(r, t′) ĵxρ (r

′)
〉
0
∂x
(
βµ
)]
.

As before, the continuity equation, which in the stationary limit reduces to
the derivative w.r.t. x of

〈
Ĵx
H(r)

〉
, is identically satisfied because the integral

of the correlation functions does not depend on x.

Momentum conservation law

The third stationarity condition (4.56) gives origin to three independent
equations. Two of them are identically satisfied whereas the last one defines
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the gradient of the velocity profile.
Let us start with the conservation law for

〈
ĵz(r)

〉
. The terms involved in this

relation are of the form

〈
Ĵαz
j (r)

〉
=
〈
Ĵαz
j (r)

〉
LE

+

∫ ∞

0

dt′
∫

dr′
[〈
Ĵαz
j (r, t′) Ĵx

H(r′)
〉
0
∂xβ

−β
〈
Ĵαz
j (r, t′) Ĵxz

j (r′)
〉
0
∂ ′
zu

x(z′)−
〈
Ĵαz
j (r, t′) ĵxρ (r

′)
〉
0
∂x
(
βµ
)]

and making use of the usual symmetry properties we obtain

〈
Ĵαz
j (r)

〉
=
〈
Ĵαz
j (r)

〉
LE

+ δαx
∫ ∞

0

dt′
∫

dr′
[〈
Ĵxz
j (r, t′) Ĵx

H(r′)
〉
0
∂xβ

−β
〈
Ĵxz
j (r, t′) Ĵxz

j (r′)
〉
0
∂ ′
zu

x(z′)−
〈
Ĵxz
j (r, t′) ĵxρ (r

′)
〉
0
∂x
(
βµ
)]
, (4.64)

where the second equality follows from the usual symmetry properties. The
term proportional to the delta function does not depend on x, because the
correlation functions only depend on x− x′, and a suitable change of variable
in the integral makes it independent on x.
The local equilibrium contribution in (4.64) for planar symmetry has not been
specified yet. Introducing the assumptions detailed in Section 4.5 in the general
expression (4.47) we obtain

〈
Ĵαz
j (r)

〉
LE

=
〈
Ĵαz
j (z)

〉
0
+ β ∂xµ

∫
dr′x′

〈
Ĵαz
j (r) ρ̂(r′)

〉
0
+ CQ

〈
Ĵαz
j (z)

〉
0

− ∂xβ

∫
dr′ x′

[〈
Ĵαz
j (r) Ĥ(r′)

〉
0
− µ

〈
Ĵαz
j (r) ρ̂(r′)

〉
0

]
. (4.65)

The quantity
〈
Ĵyz
j (r)

〉
LE

does not depend on y, because on one side the equi-
librium pressure tensor is diagonal and on the other side the linear corrections,
which are integrated along y′, loose their dependence on y.
As already pointed out,

〈
Ĵxz
j (r)

〉
LE

is different from zero due to the presence
of the linear contributions in the derivatives of the fields in Eq. (4.65). These
terms depend on z, but do not depend on x: The integrals in (4.65) can be
rearranged as

∫
dr′ x′

〈
Ĵαz
j (r) Â(r′)

〉
0
=

∫
dr′ (x′ − x)

〈
Ĵαz
j (r) Â(r′)

〉
0
, (4.66)

with Â(r) a scalar operator, and the symmetry properties ensure

∫
dr′
〈
Ĵαz
j (r) Â(r′)

〉
0
= 0.

The integral in Eq. (4.66) does not depend on x: The correlation function
itself depends only on x′ − x and we can perform a change of variable which
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removes this dependence (the integration domain is over the whole real axis).
Therefore, the xz-component of the LE pressure tensor reads27

〈
Ĵxz
j (r)

〉
LE

=

∫
dr′ (x− x′)

[
∂xβ

〈
Ĵxz
j (r) Ĥ(r′)

〉
0

− ∂x
(
βµ
)〈
Ĵxz
j (r) ρ̂(r′)

〉
0

]
. (4.67)

Finally, the continuity equation we are considering involves also the LE average
of the zz-component of the momentum flux, which can be written as

〈
Ĵzz
j (r)

〉
LE

= pN(z)
∣∣∣
β(x),µ(x)

.

Note that 〈Ĵzz
j (r)〉LE depends both on z and on x, because the equilibrium

averages are evaluated at a different β(x) and µ(x).
Gathering the results obtained so far, the stationarity condition for the
z-component of the momentum density reads

∂α
〈
Ĵαz
j (r)

〉
= ∂zpN(z)

∣∣∣
β(x),µ(x)

= − 1

m
ρ(z)

∣∣
β(x),µ(x)

∂zV (z), (4.68)

where ρ(z) is the equilibrium density profile evaluated at the local β(x) and
µ(x). Equation (4.68), the so called hydrostatic equilibrium condition, is always
fulfilled by the normal component of the pressure tensor at each value of the
coordinate x and is not specific to our problem. For hard walls (4.68) implies
that the normal pressure is constant along z and equals the bulk pressure p
evaluated at the local β(x) and µ(x):

pN(z)
∣∣∣
β(x),µ(x)

= p
(
β(x), µ(x)

)
. (4.69)

However, this equation underlines that the normal pressure in general will
depend on x.

The stationarity condition for
〈
ĵy(r)

〉
is identically satisfied because the

symmetry of the problem implies ∂α
〈
Ĵαy
j (r)

〉
= 0.

The only non-trivial continuity equation comes from the conservation of
the x component of the momentum density:

∂α
〈
Ĵαx
j (r)

〉
= ∂x

〈
Ĵxx
j (r)

〉
+ ∂z

〈
Ĵxz
j (r)

〉
= 0.

It is straightforward to show that the relevant terms in this relation can be

27Keeping in mind that according to linear response approach

∂x(βµ) = µ∂xβ + β ∂xµ.
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written as

〈
Ĵαx
j (r)

〉
=
〈
Ĵαx
j (r)

〉
LE

+ δαz
∫ ∞

0

dt′
∫

dr′
[〈
Ĵxz
j (r, t′) Ĵx

H(r′)
〉
0
∂xβ

− β
〈
Ĵxz
j (r, t′) Ĵxz

j (r′)
〉
0
∂ ′
zu

x(z′)−
〈
Ĵxz
j (r, t′) ĵxρ (r

′)
〉
0
∂x
(
βµ
)]
, (4.70)

where
〈
Ĵxx
j (r)

〉
LE

= pT(z)
∣∣∣
β(x),µ(x)

and
〈
Ĵzx
j (r)

〉
LE

has been evaluated in Eq. (4.67). Note, as remarked before for
the normal pressure, that also the tangential pressure acquires a dependence
on x because the equilibrium averages are evaluated at the local β(x) and
µ(x).
Finally, the stationarity condition for the x-component of the momentum
density reads

0 = ∂xpT(z)
∣∣∣
β(x),µ(x)

+ ∂z

∫ ∞

0

dt′
∫

dr′
[〈
Ĵxz
j (r, t′) Ĵx

H(r′)
〉
0
∂xβ

−
〈
Ĵx
j (r, t

′) ĵxρ (r
′)
〉
0
∂x
(
βµ
)
− β

〈
Ĵxz
j (r, t′) Ĵxz

j (r′)
〉
0
∂ ′
zu

x(z′)

]

+ ∂z

∫
dr′ (x− x′)

[
∂xβ

〈
Ĵxz
j (r) Ĥ(r′)

〉
0

− ∂x
(
βµ
)〈
Ĵxz
j (r) ρ̂(r′)

〉
0

]
. (4.71)

This condition is an integro-differential equation for the velocity profile ux(z).
In order to make further progress we have to specify the appropriate boundary
conditions. The free flow of fluid in an open channel imposes equal normal
pressure at the left and the right boundaries. If the fluid cannot flow through
the slit, that is in the case of a closed system, a normal pressure gradient forms
such that the integrated mass flow vanishes.

Open channel

The continuity equation for the momentum density along the x-direction
(4.71) can be integrated provided we restrict to the free flow in a infinitely long
channel (see Fig. 4.1), large enough to guarantee that in the central region
the perturbation due to the walls is absent. In this region the fluid can be
considered homogeneous and isotropic: The normal and tangential components
of the pressure tensor coincide and reduce to the bulk pressure p of the fluid
evaluated at the given value of the fields β(x) and µ(x)

pN(z ∼ h/2)
∣∣∣
β(x),µ(x)

= pT(z ∼ h/2)
∣∣∣
β(x),µ(x)

= p
∣∣
β(x),µ(x)

.
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We remark again that when temperature gradient is applied to the system the
bulk pressure itself acquires a dependence on the x-coordinate.

The flow in an open channel imposes equal bulk pressure at the left and the
right boundaries. It follows that the temperature and the chemical potential
gradients will adapt in order to guarantee that

0 = ∂xp
∣∣
β(x),µ(x)

= ∂xβ

[
∂βp+

∂xµ

∂xβ
∂µp

]
.

This equation determines the ratio between the temperature and the chemi-
cal potential gradients, which can be expressed in terms of thermodynamic
densities as

∂xµ

∂xβ
= −∂βp

∂µp
= kB T

2 s

ρ
,

where s is the entropy density and we made use of the thermodynamic relations:

∂T p
∣∣
µ
= −∂T (Ω/V )

∣∣
µ
= s, ∂µp

∣∣
T
= −∂µ(Ω/V )

∣∣
T
= ρ.

Here the derivatives of the grand potential Ω have always been evaluated at
constant volume V . The condition obtained above allows to express ∂x(βµ)
more naturally as

∂x(βµ) = ∂xβ

(
µ+ T

s

ρ

)
= ∂xβ

u+ p

ρ
= ∂xβ hm, (4.72)

where u is the internal energy and hm is the entropy per unit mass.
Now, the stationarity condition (4.71) can be easily integrated along z

from 0 to h/2, where h is the distance between the walls. All the integrals
derived w.r.t. z in (4.71) are odd functions of z with respect to h/2 and, when
evaluated at this point, vanish. Therefore, the integro-differential equation for
the velocity profile can be written in the compact form

∫ h

0

dz′K(z, z′) ∂ ′
z u

x(z′) = ∂xβ S(z). (4.73)

The kernel K(z, z′) is related to the local viscosity of the fluid

K(z, z′) = β

∫ ∞

0

dt′
∫

dr′⊥
〈
Ĵxz
j (r, t′) Ĵxz

j (r′)
〉
0

and the source term S(z) is written as the sum of two distinct contributions
S(z) = Ss(z) + Sd(z) depending on the static and dynamical equilibrium
correlations respectively:

Ss(z) =

∫ z

h/2

dz′
∂pT(z

′)

∂β

∣∣∣∣
p

−
∫

dr′ (x− x′)
〈
Ĵxz
j (r) P̂(r′)

〉
0
, (4.74)

Sd(z) =

∫ ∞

0

dt′
∫

dr′
〈
Ĵxz
j (r, t′) Ĵx

Q(r
′)
〉
0
. (4.75)
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Here we defined the operator P̂(r) = hm ρ̂(r)−Ĥ(r) and the heat flux operator
Ĵα
Q(r) = Ĵα

H(r)−hm ĵαρ (r). Note that the static contribution has been rewritten
regarding the tangential pressure as a function of β(x) and of the bulk pressure
p. Indeed, at midpoint

pT(h/2)
∣∣∣
β(x),µ(x)

∼ p

for each value of the coordinate x and we can replace the local chemical
potential with the bulk pressure obtaining

∂xpT
∣∣
β(x),p

= ∂βpT ∂xβ.

The solution of this set of equations provides the gradient of the velocity
field ∂z u

x(z), which does not have a direct physical meaning: The real flow is
related to the average value for the mass current, Eq. (4.63), which we report
here:

〈
ĵx(z)

〉
= ρ(z)ux(z) +

∫ ∞

0

dt′
∫

dr′
[〈
ĵx(r, t′) Ĵx

Q(r
′)
〉
0
∂xβ

− β
〈
ĵx(r, t′) Ĵxz

j (r′)
〉
0
∂ ′
zu

x(z′)

]
(4.76)

Anyway, the mass flux can not be fully determined by Eq. (4.76), because the
velocity field (and not only its derivative) appears in the first term. To resolve
this ambiguity we have to know the mass flux at a given height z. This further
requirement is not a limitation of the theory but rather a consequence of the
Galilean invariance of the problem which, in an experimental set-up, is broken
by the presence of friction between the fluid and the wall [228]. Instead, in
the simplified model considered here, the wall is represented by an external
confining potential (a hard wall) which does not modify the tangential (x)
component of the particles’ momenta28. Supplementing this solution by a
no-slip boundary condition for the mass flux, i.e.

〈
ĵx(0)

〉
=
〈
ĵx(h)

〉
= 0,

Eq. (4.76) allows to evaluate the thermo-osmotic flow in slab geometry: We
first have to solve Eq. (4.73) for ux(z) and then substitute the result into
Eq. (4.76).

Equation (4.76) is the main result of this Chapter and proves that the
mass flow is an interfacial phenomenon: Indeed all the contributions in (4.76)
vanish in the bulk. In the homogeneous limit Eq. (4.73) admits only a constant
solution for ux(z): The source term is zero because it involves bulk integrals of
odd correlation functions and the derivative of the tangential pressure (which

28A roughened interface can be modeled considering an x-dependent external potential.
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is equal to the constant normal pressure) evaluated at constant bulk pressure.
Furthermore the integral of the mass-heat correlation function vanishes because
mass and heat fluctuations are decoupled in the bulk29.

For an arbitrary wall-particle potential V (z) the normal pressure depends
on z (see Eq. (4.68)) and a pressure gradient along x arises for any choice of
the constant ∂βpT/∂µpN. In this case, even for isotropic fluids (i.e. without
surfaces which break homogeneity) where pN = pT, a non-vanishing particle
flux sets in within the range of the wall-particle interaction. For a large tube
it is natural to assume that the normal pressure gradient vanishes far from
the wall. Therefore we can evaluate in the bulk the value of the constant ratio
∂xµ/∂xβ and we can obtain the velocity profile far from the wall also for a
fluid with arbitrary wall-particle interaction.

We conclude this Section with a comment related to the ambiguities on
the definition of the fluxes. There are grounds for asking whether the actual
value of the mass flow is itself subject to the same pathology suffered by the
fluxes, which indeed appear both directly in Eq. (4.76) and indirectly through
the velocity profile, which is the solution of (4.73). The answer is no. It is
possible to prove that the terms in (4.76) which directly involve the fluxes do

not depend on the particular choice for Ĵα
Q and Ĵαβ

j . The same considerations
apply also to the velocity profile uα, because this quantity has been determined
making only use of the continuity equations (4.54), (4.55) and (4.56), which
only involve the gradients of the currents.

4.6 SOME LIMITING APPROXIMATIONS

The above analysis of a model of simple fluid close to a wall is exact, within
linear response theory, and shows that two distinct mechanisms give rise to
thermo-osmosis, both related to interface physics: The presence of anisotropies
in the pressure tensor close to the wall (see Eq. (4.74)) and the dependence
of the dynamical correlation functions on the existence of a confining surface
(see Eq. (4.75)). We now consider two limiting situations where these terms
play a very different role in order to clarify their relevance in providing the
required thermal force.

Thermo-osmosis in liquids

To the best of our knowledge, in liquids the theoretical approaches deal-
ing with thermo-osmosis are based on nonequilibrium thermodynamics. For
instance, according to Derjaguin’s result (4.6), the slip velocity far from the
walls arises due to the anisotropy of the local enthalpy density near the surface.

29See e.g. Ref. [130], Sec. 49 or Ref. [11], Sec. 12.5.
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However, the predictions given by this and similar works can not be completely
correct: Indeed, the impact of the surfaces on the system can only be included
a posteriori. The reason is that continuum theories, as nonequilibrium ther-
modynamics, can not account for changes in thermodynamic quantities over
length scales of the order of the range of the microscopic interactions30 and
approximations must be introduced31.
Another derivation of Derjaguin’s result (4.6) has been recently put forward
in Ref. [81] following the same thermodynamics arguments and with a ques-
tionable application of the Gibbs-Dhuem relation in regions where strong
inhomogeneities on the length scale of the interparticle potential appear32.
Finally, note that according to Eq. (4.6) no dynamical quantity, apart from
the viscosity, influences thermo-osmosis.

Back to Derjaguin’s result

Comparing Derjaguin’s result (4.6) to Eq.s (4.76) and (4.73) it could
seem that, according to “continuum approximations”, the contributions to
thermo-osmosis arising from the dynamical correlations near the interface
are negligible and that the dynamical correlations can be estimated by their
bulk values. However, up to now there is no clear evidence that Derjaguin’s
approach quantitatively predicts the thermo-osmotic slip.
In the following we evaluate Eq.s (4.76) and (4.73), which are exact at least
for sufficiently small perturbations, under the hypothesis of the continuum
approximations in order to we check if the the slip velocity is consistent with
Eq. (4.6). To do this, we evaluate all the dynamical correlation functions in
the bulk and we assume that the kernel is a short ranged function

K(z, z′) ∼ η δ(z − z′), (4.77)

with η the bulk viscosity. Under these assumptions the dynamic source term
(4.75) vanishes, because in bulk the tensors which preserve isotropy and
homogeneity are proportional to the identity. For the same reason the static
source (4.74) retains only the contribution including the anisotropy of the
pressure tensor. The source term within this “Derjaguin” approximation reads

SDerj(z) =

∫ z

h/2

dz′
∂pT(z

′)

∂β

∣∣∣∣
p

.

30Furthermore, in the spirit of continuum approaches, Eq. (4.6) depends on the bulk

viscosity η, without accounting for modifications due to the surface.
31However, as shown in [81], the enthalpy of the fluid strongly oscillates near the surface.
32We remind that in these regions the free energy densities can not be defined [197]

without ambiguities.
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Furthermore the momentum density (4.76) retains only the term linear in the
velocity

〈
ĵx(z)

〉
= ρ(z)ux(z) (4.78)

and the differential equation for the velocity profile reads

∂zu
x(z) = −∂xβ

η

∫ h/2

z

dz′
∂pT(z

′)

∂β

∣∣∣∣
p

. (4.79)

The integration of this first-order differential equation requires a boundary
condition and, as we anticipated above, we adopt the no-slip boundary condi-
tion

〈
ĵx(0)

〉
= 0, which implies ux(0) = 0. Once this choice is made, the mass

flux readily follows integrating Eq. (4.79)33

〈
ĵx(z)

〉
= −ρ(z)∂xβ

η

∫ h/2

0

dz′ Min(z, z′)
∂pT(z

′)

∂β

∣∣∣∣
p

.

In the asymptotic limit, i.e. when z and the width of the slit are larger than the
typical length scale of the correlations (z → ∞ and h→ ∞), Min(z, z′) ∼ z′

and the slip velocity reads

v∞ =

〈
ĵx
〉
∞

ρb
= −∂xT

η

∂

∂T

∣∣∣∣
p

∫ ∞

0

dz′ z
[
pT(z

′)− p
]
. (4.80)

In accordance with the “Derjaguin” approximation we have assumed ρ(z) ' ρb
34

and the bulk pressure in the integral can be subtracted because the derivative
is taken at fixed p.
This expression for the asymptotic slip velocity closely resembles the predic-
tion (4.6) obtained by Derjaguin [45], where the enthalpy difference enters the
integral. However, the two expressions (4.80) and (4.6) do not match, even in
the bulk, where we can write

∂p

∂T

∣∣∣∣
βµ

=
∂

∂T

[
p
(
T, µ

)]∣∣∣∣
βµ

=
∂

∂T

[
p
(
T, kBT βµ

)]∣∣∣∣
βµ

=
∂p

∂T

∣∣∣∣
µ

+
µ

T

∂p

∂T

∣∣∣∣
β

= s+
µρ

T
=
h

T
, (4.81)

with h the enthalpy per unit volume. This identity shows that the enthalpy
per unit volume is linked to the temperature derivative of the pressure at

33After the straightforward change of variable

∫ z

0
dx

∫ h/2

x
dy f(y) =

∫ h/2

0
dy f(y)

∫ Min(y,z)

0
dx.
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fixed βµ times T , whereas our result involves the derivative of the tangential
pressure at fixed bulk pressure. Anyway we stress that Eq. (4.81) holds only
in the bulk and has been reported here for its evocative value. The application
of (4.81) for an inhomogeneous system is indeed equivalent to the application
of the Gibbs-Duhem equation, and is not correct.

On the other hand, Eq. (4.80) coincides with the solution of the linearised
Navier-Stokes equation for an incompressible fluid in the presence of a gradient
in the tangential pressure given by the LE expression [81, 175]. The fully
macroscopic approach based on the continuum approximation states that
the differential equation obeyed by a the stationary velocity field v(r) of an
incompressible fluid can be written as

0 = ∂t(ρv
α) = −∂βΠαβ + Fα.

This equation is the (stationary) Navier Stokes equation, where F is the force
field acting on the fluid, which may be due either to the presence of the wall or
to an external field. The momentum flux tensor Παβ can be written in terms
of the stationary momentum flux

〈
Ĵαβ
j (r)

〉
= παβ introduced above as

Παβ = παβ + ρvαvβ − η

[
∂vα

∂rβ
− ∂vβ

∂rα

]
.

In the limit of small velocities and within the adopted planar symmetry, the
the x-component of the velocity field fulfils the linearised the Navier-Stokes
equation

η
d2vx

dz2
= ∂xpT

if the wall-fluid interaction is modelled as a hard core potential (F is vanishing
in the fluid domain). Following the same line of reasoning as above, the last
contribution can be written in terms of the temperature derivative of the
tangential pressure at fixed bulk pressure:

η
d2vx

dz2
= ∂xT

∂pT(z)

∂T

∣∣∣∣
p

. (4.82)

Imposing no slip boundary conditions at the wall (vx(0) = 0) Eq. (4.82) can
be easily integrated as before, and the asymptotic velocity field is35

v∞ = −∂xT
η

∂

∂T

∣∣∣∣
p

∫ ∞

0

dz′ z
[
pT(z

′)− p
]
,

which coincides with Eq. (4.80).

35The first integration is from h/2 to 0, and we take advantage of the symmetry of the
problem which implies that the derivative of the velocity profile vanishes in the middle point
between the walls. Then the second integration proceeds as already described above.
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The temperature derivative of the pressure tensor has been recently eval-
uated by numerical simulations [81] for a Lennard-Jones fluid. Use of these
results allows to estimate that the resulting thermo-osmotic velocity is opposite
to the thermal gradient and of the order of few micrometer per second.

Thermo-osmosis in gases

In the low-density limit, where kinetic theories provide a quantitative
interpretation of the phenomenon (see Section 4.1), our formalism should
reproduce the known results, at least for small temperature gradients, because
no approximation has been introduced. In the ideal gas limit, i.e. ignoring the
interparticle interactions, the momentum (4.25) and the energy (4.33) fluxes
acquire the simple form

Ĵαβ
j (r) =

∑

i

pαi p
β
i

m
δ(qi − r), Ĵα

H(r) =
∑

i

p2i p
α
i

m
δ(qi − r)

and the evaluation of the slip velocity can be carried out analytically.

Solution of the equation for ux(z)

The static source term Ss(z) vanishes because for ideal gases pT = pN = p
and the equilibrium average in (4.74) is performed on a quantity which is odd
in the momenta. Then, the source term reduces to

S(z) =
∑

i,l

〈∫ ∞

0

dt

∫
dr′ δ

(
r − ql(t)

)
δ
(
r′ − qi

)

· p
x
l (t) p

z
l (t)

m2
pxi

[
p2i
2m

−mhm

]〉

0

, (4.83)

where the equilibrium average is evaluated according to the equilibrium dis-
tribution (4.41) and qi and pi are the coordinate and the momentum of the
particle at t = 0 respectively.
Without any kind of interaction between particles the time integral in (4.83)
is diverging because the correlations persist at all times. In order to mimic the
behaviour of an almost ideal gas, where some collisions appear, we introduce a
finite relaxation time τ . This procedure allows to insert the collisions between
ideal particles a posteriori and τ is the mean time between two collisions of a
given particle. In addition, only the contribution arising from the same particle
(i.e. i = l) is non vanishing and the source term reads

S(z) =
∑

i

〈∫ τ

0

dt

∫
dr′ δ

(
r − qi(t)

)
δ
(
r′ − qi

)

· p
x
i (t) p

z
i (t)

m2
pxi

[
p2i
2m

−mhm

]〉

0

. (4.84)
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In the case of a perfectly reflecting wall, it is straightforward to show that
S(z) = 0. Indeed, specular reflections without energy exchange conserve both
the x-component of the momentum and the modulus of the momentum. Then
all the integrated quantities in Eq. (4.84) can be evaluated at time t. If we
perform the canonical transformation U (−t) the average over the momenta
does not depend on time, and the source term vanishes.

In agreement with the results obtained within kinetic theory [116], the oc-
currence of thermal creep is possible only assuming that in the particle-surface
scattering the momentum is not conserved36. In order to mimic this behaviour
and to obtain analytical results we assume that, due to the interaction with
the surface during the scattering process, the x-component of the particles’
momenta before and after the collision are fully uncorrelated. Furthermore, we
restrict to the limiting semi-infinite geometry, where only the wall at h = 0 in
Fig. 4.1 is present, in order to avoid multiple collisions between the surfaces.
The averages can be evaluated without any loss in generality within the
canonical (N,V, T ) ensemble and the source term reads

S(z) = N

Q̃c

∫ τ

0

dt

∫
dr′
∫

dq

∫
dp δ

(
r − q(t)

)
δ
(
r′ − q

)

· p
x(t) pz(t)

m2
px
[
p2

2m
−mhm

]
e−βp2/2m, (4.85)

where Q̃c = V (2πmkBT )
3/2 and the factor N takes into account that the

contributions in (4.84) arising from different particles are equal.
In order to evaluate the source term, let us briefly examine the behaviour of a
particle before a given time t and for a given initial coordinate q as a function
of the initial momentum p. If pz ≥ −mqz/t the particle does not bounce on
the wall in the time interval [0, t] and we can write

p(t) = p, q(t) = q +
p

m
t. (4.86)

On the other hand, when pz < −mqz/t the particle hits the wall at time ts,
before t. During the scattering the particle has completely lost the memory of
the value of px before the bounce, therefore its self correlation is equal to 0
and the contribution in (4.85) arising from pz < −mqz/t vanishes. Therefore
we can restrict the integral over pz to the set [−mqz/ t,+∞] and, according
to Eq. (4.86), we can write

S(z) = N

Q̃c

∫ τ

0

dt

∫
dr′
∫

dq

∫
dp⊥

∫ +∞

−mqz/t

dpz δ

(
r − q − p

m
t

)

· δ
(
r′ − q

)(px
)2
pz

m2

[
p2

2m
−mhm

]
e−βp2/2m,

36The additional contributions in Eq. (4.63) vanish for perfectly reflecting walls. See
below.
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where the integral over the momentum p⊥ orthogonal to pz is extended to R
2.

The final result for the source term, after a careful evaluation of the remaining
integrals, reads

S(z) = −Nπmτ
Q̃c β4

exp

[
−β mz

2

2τ2

]
.

Similar arguments allow to express the kernel as

K(z, z′) =
N2πm2

Q̃c β2
Θ(z)Θ(z′) exp

[
−β m (z − z′)

2

2τ2

]
.

Performing an appropriate change of variables, the differential equation (4.73)
for ux(z) can be written as

∫ +∞

0

dz′ ∂ ′
zu

x(z′)
2m

τkB∂xT
e−z′2+2ζz′

= 1,

where ζ = z
√
mβ/2τ2. The solution can be determined up to an additive

constant C and reads

ux(z) =
kB
2m

τ ∂xT Θ(z + δ) + C,

where δ → 0+ and the constant can be fixed imposing a given boundary
condition. The relaxation time introduced above can be related to the bulk
viscosity η, which appears in most of the results present in the literature
[149, 116], and can be defined in terms of τ as

η = β

∫ τ

0

dt

∫
dr′
〈
Ĵxz
j (r, t) Ĵxz

j (r′)
〉
0
. (4.87)

The integrals in (4.87) can be easily evaluated making use of the same argu-
ments introduced above, and, after simple algebra, we obtain η = p τ . Finally,
far from the wall the field ux(z) can be written as

ux(z) =
η

p

kBT

2m

∂xT

T
+C =

η

2ρ

∂xT

T
+C. (4.88)

Mass current

As already stated, the velocity field does not have a direct physical meaning:
The real flow is related to the average value of the x-component of the mass
current (Eq. (4.76)), which we report here:

〈
ĵx(z)

〉
= ρ ux(z) +

∫ τ

0

dt

∫
dr′
{〈

ĵx(r, t)
[
Ĵx
H(r′)− hmĵ

x(r′)
]〉

0
∂xβ

− β
〈
ĵx(r, t) Ĵxz

j (r′)
〉
0
∂ ′
zu

x(z′),

}
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where ρ is the density of the ideal fluid and the heat flux Ĵα
Q has been written

explicitly. It is straightforward to show that in the case of perfectly reflecting
hard walls the mass current vanishes: As shown before, the velocity profile is
equal to zero and it is easy to prove that the other two contributions exactly
cancel. Therefore, in order to obtain a net thermo-osmotic flow we must impose,
as done before, a scattering process which induces an exchange of momentum
between the particle and the wall. In doing so, the first contribution is trivial,
whereas, after some algebra, the integrals over r′ of the dynamical correlation
functions read

hm

∫
dr′
〈
ĵx(r, t)ĵx(r′)

〉
0
=

5

2

Nπm2

Q̃cβ3

2π

mβ

[
erf

(
z

√
βm

2t2

)
+ 1

]
,

∫
dr′
〈
ĵx(r, t)Ĵx

H(r′)
〉
0
= hm

∫
dr′
〈
ĵx(r, t)ĵx(r′)

〉
0
− Nπm2

Q̃cβ3

z

t
e−

βmz2

2t2 ,

∫
dr′
〈
ĵx(r, t) Ĵxz

j (r′)
〉
0
∂ ′
zu

x(z′) =
Nm2πkB τ∂xT

Q̃cβ t
z e−

βmz2

2t2 .

The final result for the mass current, after the time integration, is

〈
ĵx(z)

〉
=
η

2

∂xT

T
+
η

4

{√
2

3π

z

`g
Ei

[
3

2

(
z

`g

)2
]
+ erf

(√
3

2

z

`g

)}
∂xT

T
,

where we have imposed no-slip boundary conditions for the mass current at
z = 037, Ei(·) is the exponential integral and `g = τ

√
2/(mβ). Far from the

walls (z � `g) the exponential integral rapidly decays to 0 and the slip velocity

v∞ =
〈
ĵx(z)

〉
|z�`g/ρ reduces to

v∞ ∼ 3

4

η

ρ

∂xT

T
=

3

4
kBT

η

p

∂xT

T
, (4.89)

which coincides with kinetic theory results (4.1) [149, 116], showing how the
slip velocity grows at low pressure, as experimentally demonstrated [209].

4.7 CONCLUSIONS AND PERSPECTIVES

In this Chapter we have provided a microscopic theory of thermo-osmosis.
The linear response theory formalism, applied to systems characterised by
thermal disturbances, turned out to be the natural framework for a quantitative

37The constant C is equal to η/4.
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description of flows originated by thermal inhomogeneities in the presence of
interfaces. The emerging picture turns out to be more complex than expected
on the basis of the previously adopted theoretical approaches, making use
of kinetic theories and linear irreversible thermodynamics. We have found
the general expression which allows to evaluate the thermo-osmotic flow for a
simple microscopic model of fluid close to a planar wall subject to a temperature
gradient. The resulting velocity profile of the fluid depends on both static and
dynamical equilibrium properties of the system (see Eq.s (4.73) and (4.76)): In
particular the transport coefficients near the surface assume a key role. Our
approach is exact within the limits of validity of linear response theory, i.e. for
small gradients in the fields, and will be useful in the interpretation of future
experiments and numerical simulations in the whole phase diagram of a fluid.

Although our result is expressed in terms of quantities, like the tangential
pressure near the wall and the heat flux, which are not uniquely defined
on microscopic grounds, the combination of these terms (see for instance
Eq. (4.74)) is indeed independent of the adopted choice, thereby solving the
problem posed in Ref. [81].

A preliminary comparison with the existing macroscopic approach by
Derjaguin shows that it closely resembles one of the two contributions found
in our general expression. The other contribution, instead, allows to reproduce
the known expressions of the kinetic theory of gases in the appropriate limits
and sheds some light on the relevance of the scattering process at the confining
surfaces at least in the rarefied limit.

Our approach is general and can be applied also to other simple geometries.
The expressions obtained in Section 4.4 applied to a spherical geometry can
provide many insights on the driving mechanism which leads to thermophoresis.

Although our result is expressed in terms of quantities, like the tangential
pressure near the wall and the heat flux, which are not uniquely defined
on microscopic grounds, the combination of these terms (see for instance Eq.
(4.74)) is indeed independent of the adopted choice, thereby solving the problem
posed in Ref. [81].

Finally, a quantitative investigation in liquids requires an accurate evalua-
tion of the tangential pressure: We are preforming Monte Carlo simulations
and DFT calculations based on the fundamental measure theory.
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In più, durante questo dottorato ho avuto, come il Manu, la folle idea di
sposarmi (occhio Zen!). A parte gli scherzi, sono veramente felice di averlo
fatto. Grazie Gaia, semplicemente perché ci sei!


