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Abstract 
 

Performance evaluation of decision-making units (DMUs) via the data envelopment analysis 

(DEA) is confronted with multi-conflicting objectives, complex alternatives and significant 

uncertainties. Visualizing the risk of uncertainties in the data used in the evaluation process 

is crucial to understanding the need for cutting edge solution techniques to organizational 

decisions. A greater management concern is to have techniques and practical models that can 

evaluate their operations and make decisions that are not only optimal but also consistent 

with the changing environment. Motivated by the myriad need to mitigate the risk of 

uncertainties in performance evaluations, this thesis focuses on finding robust and flexible 

evaluation strategies to the ranking and classification of DMUs. It studies performance 

measurement with the DEA tool and addresses the uncertainties in data via the robust 

optimization technique.  

The thesis develops new models in robust data envelopment analysis with 

applications to management science, which are pursued in four research thrust. In the first 

thrust, a robust counterpart optimization with nonnegative decision variables is proposed 

which is then used to formulate new budget of uncertainty-based robust DEA models. The 

proposed model is shown to save the computational cost for robust optimization solutions to 

operations research problems involving only positive decision variables. The second research 

thrust studies the duality relations of models within the worst-case and best-case approach in 

the input – output orientation framework. A key contribution is the design of a classification 

scheme that utilizes the conservativeness and the risk preference of the decision maker. In the 

third thrust, a new robust DEA model based on ellipsoidal uncertainty sets is proposed which 

is further extended to the additive model and compared with imprecise additive models. The 

final thrust study the modelling techniques including goal programming, robust optimization 

and data envelopment to a transportation problem where the concern is on the efficiency of 

the transport network, uncertainties in the demand and supply of goods and a compromising 

solution to multiple conflicting objectives of the decision maker.  

Several numerical examples and real-world applications are made to explore and 

demonstrate the applicability of the developed models and their essence to management 

decisions. Applications such as the robust evaluation of banking efficiency in Europe and in 

particular Germany and Italy are made. Considering the proposed models and their 

applications, efficiency analysis explored in this research will correspond to the practical 

framework of industrial and organizational decision making and will further advance the 

course of robust management decisions.  
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Chapter 1: Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1 Background 

Data envelopment analysis (DEA) and robust optimization (RO) are somewhat two separate 

disciplines that have attracted management interest in the operations research (OR) and 

management science domain. Respectively, the two are methodologies that are frequently 

used to evaluate an organization's performance and robustness. The DEA, in particular, is a 

nonparametric efficiency measuring tool in operations research and economics that uses 

mathematical programming technique to evaluate the performance of peer units (e.g. 

universities, hospitals, bank branches) known as decision-making units (DMU) in terms of 

multiple inputs and multiple outputs. The evaluation of operations with DEA, i.e. how 

resources (inputs) are used to obtain products/services (outputs) is however masked in a 

complex real-world uncertain environment and so is the data for the evaluation. Uncertainty 

in data poses many challenges for management decisions. Indeed, the performance of the 

DMUs can be highly unstable and unreliable. The effect of uncertain data in the DEA models 

can lead the decision maker to extreme ranking decisions. In managerial applications, this also 

amounts to the difficulty in the objective of improving inefficient operations or benchmarking 

DMUs. The critical question one asks: is it possible to develop a model of uncertainty for the 

DEA that incorporates the randomness and uncertainties in inputs and outputs data, ensures 

less complex and tractable formulation and provide ranking strategies commensurable with 

the conservativeness of decision makers? 

 The purpose of this thesis is to find an approach in a direction that answers these 

questions. The general approach used is the RO technique for the DEA. The RO is a widely 

used optimization technique that addresses the issue of imperfect knowledge or uncertainty 

in data in mathematical programming problems from the perspective of computational 

tractability. The RO approach was originally introduced by Soyster (1973) and independently 

developed by Mulvey, Vanderbei, & Zenios (1995), Ben-Tal & Nemirovski (1998, 1999, 2000) 
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and Bertsimas & Sim (2004). The modeling process is based on a scenario description of 

uncertainty or the design of uncertainty set from whence the uncertain data are immunized. 

The most common technique of the RO is perhaps, to consider the worst-case scenario and 

trade-off between performance and robustness as different scenario occurs. In the RO 

application in DEA, this is done with the formulation of models that yield efficiency solution 

guaranteed to be good for all or most possible realization of the uncertain inputs and outputs 

data in a pre-specified set: polyhedral, ellipsoidal uncertainty set or discrete set of scenarios. 

The RO was introduced in DEA by Sadjadi & Omrani (2008). However, the more popular 

models as developed in Sadjadi & Omrani (2008), Shokouhi et al (2010) and  Omrani (2013) 

are only concerned with the robust ranking of DMUs and uncertainty in either inputs or 

outputs. In our literature survey of the few works done in the robust DEA, we observe that 

the general issue of constraint feasibility and complexity concerns for uncertainties in both 

inputs and outputs data as well as a robust frontier characterization for the production 

possibility set are yet to be attended to. Moreover, the basic duality relations in robust models 

and the relationship between the input- and output- oriented robust models have not been 

established. There is also a conspicuous lack of classification scheme for DMUs and a 

comparative analysis of robust DEA to the other techniques in the literature. We feel that for 

the robust DEA to have impact in theory and practice, these issues must be addressed. These 

concerns among others motivate the contributions of this research which are outlined in 

Section 1.3.   

 

Structure of the chapter. In Section 1.2, we discuss the motivation of the RO in DEA. The 

research thrust, and contributions of the thesis are provided in Section 1.3. In Section 1.4, we 

outline the structure of this thesis.  

 

 

1.2 Why robust optimization in data envelopment analysis? 

In performance evaluation using the data envelopment analysis (DEA), the inputs and 

outputs data are assumed to be precisely known and as a result uncertainty in the data and 

its effect, subsequently in the efficiency scores and the ranking of the DMU is ignored. It is 

conceivable that measuring inputs utilization to outputs with data precision which 

nonetheless are contaminated with errors (measurement, prediction, etc.), noise and 

vagueness is tantamount to ineffective, wobbly and volatile decision towards efficiency.  

The RO is one of the mathematical programming techniques which deal with 

uncertain optimization problems such as the DEA. The essence of the RO technique in DEA 

efficiency evaluation can be best understood from Ben-Tal & Nemirovski (2000) in their 

NETLIB case study:  
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“In real-world applications of Linear Programming, one cannot ignore the possibility that a small 

uncertainty in the data can make the usual optimal solution of the problem completely meaningless 

from a practical viewpoint"  

 

Consequently,  

“there exists a real need of a technique capable of detecting cases when data uncertainty can heavily 

affect the quality of the nominal solution, and in these cases to generate a “reliable” solution, one that 

is immunized against uncertainty”.  

Applying the RO technique in DEA thus, can overcome the effect of uncertainty in inputs and 

outputs data. More so, it can provide robust efficiency scores and stable performance ranking 

that are desirable and commensurate with the conservativeness of decision makers.  

 

1.3 Research thrusts and contributions 

The main contribution of this thesis is to advance the modeling of the robust DEA and provide 

an insightful framework for the ranking of DMUs. From the theoretical point of view, we 

develop robust DEA models with constraint feasibility for uncertainties in both input and 

output data. The first of such model is built on the budget of uncertainty set of Bertsimas & 

Sim (2004) and the second is built on the ellipsoidal uncertainty set of Ben-Tal & Nemirovski 

(1998, 2000). The models are formulated in their reduced form to ensure less computational 

difficulty. We provide a classification scheme for DMUs and then study the duality relations 

of the proposed models in the input – and output – orientation form. From the practical point 

of view, we apply these models to the efficiency analysis of banks in Europe in general and 

Germany and Italy in particular, where we compare and rank the operation strategies of banks 

under different robust approaches to data uncertainty. The final application is made to a 

transportation problem where the efficiency of the network is considered, and the goal 

programming technique is adopted with the RO to seek a desired compromising solution for 

the decision maker. 

 The objectives of this thesis are achieved by four research thrust which is pursued in 

Chapter 3 to Chapter 7. We conclude this section by describing each of the research thrust.  

Robust optimization with nonnegative decision variables: A DEA approach 

In this chapter, we propose robust counterparts with nonnegative decision variables – a 

reduced robust approach which attempts to minimize model complexity. This is an alternative 

robust formulation to the generally defined robust counterpart optimization with free-in-sign 

decision variables which to the best of our knowledge has not been considered before. The 

new framework is extended to the robust DEA with the aim of reducing the computational 

burden. In the DEA methodology, first we deal with the equality in the normalization 
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constraint and then a robust DEA based on the reduced robust counterpart is proposed. The 

proposed model is examined with numerical data from 250 European banks operating across 

the globe. The results indicate that the proposed approach (i) reduces almost 50% of the 

computational burden required to solve DEA problems with nonnegative decision variables; 

(ii) retains only essential (non-redundant) constraints and decision variables without alerting 

the optimal value.  

 

Duality, classification input – and output – orientations in robust DEA 

The second research thrust is concerned with the extension to dual models of the robust DEA 

in Chapter 3. Duality relations is one of the basic but very important theory in DEA. However, 

the existing studies in the robust DEA have so far unscripted note on dual model formulations 

and their relationships. We develop robust models with the input – and output – orientation. 

For each orientation, we study the multiplier and envelopment models and establish a 

relationship between them. A key thrust of this research is the design of a classification scheme 

that utilizes the conservativeness of the decision maker. From the management perspective of 

robust efficiency interpretation, we classify DMUs into fully robust efficient, partially robust 

efficient and robust inefficient. Therefore, the robust DEA is able to provide effective ranking 

strategies analogous to managerial risk preference. Finally, an application is made to the 

banking industry, using a dataset from banks in Germany.  

 

Robust efficiency measurement under ellipsoidal uncertainty sets 

The third research thrust extends the robust DEA framework to the ellipsoidal uncertainty 

set. Some evaluations of DMUs studied previously (see Sadjadi & Omrani, 2008;  Wang & 

Wei, 2010; Wu et al., 2017) consider an ellipsoidal set, however, they can only be applied to 

DEA models with uncertainty in either inputs or outputs data. We consider formulations 

where two uncertainty sets (i) a regular ellipsoid and (ii) interval–ellipsoid sets are designed 

for immunization of both uncertain inputs and outputs data. The insight into the connections 

and differences of the robust DEA to these uncertainties are provided. The chapter also studies 

the classification scheme for DMUs and as in the previous case provide a unifying framework 

for the ranking strategies of management evaluations. The last but not least, we extend the 

robust DEA model to the additive model and study its efficacy and classification of inefficient 

units with two imprecise additive models proposed in the literature.  

 

Robust multi-objective transportation problem with network efficiency 

The last thrust of the thesis deals with an application to a transportation problem. 

Transportation problem (TP) deals with shipping products from several sources to several 

destinations which either minimizes the total transportation cost (min-type) or maximizes the 

total transportation profit (max-type) under the intrinsic assumption of certain data. A 
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network efficiency measurement of the TP arises when shipment arcs involve multiple min-

type (inputs) and multiple max-type (outputs) factors. DEA method is an optimization 

approach which can measure the network efficiency by assigning weight to each min-type 

and max-type factors and then maximizes the ratio of the weighted sum of max-type factors 

over the weighted sum of min-type factors. Given that different conflicting objectives under 

unknown conditions exist concurrently in practice, this chapter analyses the TP with network 

efficiency focus under the multiple objective linear programming (MOLP) framework. The 

DEA and MOLP are integrated to minimize arc inefficiencies and other min-type factors while 

maximizing max-type factors. We study a linear programming robust model through goal 

programming (GP) approach in the presence of uncertain demands and supplies.  

 

1.4 Outline 

Each of the research thrusts listed above entails a chapter which has its own introduction, 

modeling framework, method, application and conclusion and stand independently on its 

own. The thesis contains 7 Chapters. The background of the study is given in Chapter 1. 

Chapter 2 provides the main concepts of the DEA efficiency and measurement as well as the 

RO technique to uncertain optimization. It also provides a review of the robust DEA and 

develops new models to different uncertainty sets.  

Chapter 3 develops and analyses robust counterpart optimization for operations 

research and management problems with non-negative decision variables and study their 

comparative computational complexity. It follows up with a new robust DEA formulation 

under the budget of uncertainty called the reduced robust DEA model.  

The thesis proceeds with the study of the duality relations of the reduced robust model 

in Chapter 4. Moreover, a classification scheme considering the conservativeness 

management decisions is further studied in the input – and output – orientation.  

Chapter 5 is dedicated to the development of a robust DEA under ellipsoidal 

uncertainty sets, where a similar classification scheme for DMUs is provided.  

Chapter 6 make application to transportation with multiple objectives, data 

uncertainty and focus on network efficiency. 

Finally, in Chapter 7, we conclude this thesis with summary and future research 

directions.  
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Chapter 2: DEA and RO: An overview  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary 

This chapter provides a brief overview of the DEA and RO approaches. It details the concepts 

of efficiency and its measurement using the DEA in Section 2.1 as well as the modeling 

techniques with the RO in Section 2.2. The combination of the two which is known as the 

robust DEA is reviewed in Section 2.3. A significant part of this section is dedicated to the 

characterization of the DEA under alternative uncertainty sets.  

 

2.1  Efficiency measurement with DEA 

Efficiency measurement has economic production theory as its foundation. At the micro level, 

firms employ a set of inputs to produce outputs with the aim of maximizing profit. The 

concept of efficiency lay emphasis on the reduction of inputs or expansion of outputs of a 

production unit and supposes that firms do things right by aligning resources to operate at 

their most productive scale size in order to achieve profit objective. In its basic form, efficiency 

is measured much more like productivity as the ratio of outputs to input. It is expressed as:  

Efficiency =  OutputInput  

More intuitively, by efficiency, what we have in mind is a comparison between observed and 

optimal values of outputs and inputs. By the latter, we mean the maximum potential output 

obtainable from observed input and the minimum potential input required to produce desired 

output respectively. The ‘optimum’ or ‘maximum potential’ is defined in terms of production 

possibilities or frontier line. This aptly measure of efficiency considering a vigorous analytical 

and frontier estimation was initiated in Koopmans (1951) and Debreu (1951). In that 

framework, instead of using a basic ratio definition above, one can measure efficiency with a 

frontier line (production possibility frontier) used as a production margin from which actual 

production are compared with. Such efficiency measure is defined by the “distance between 
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the quantity of input and output, and the quantity of input and output that defines the 

frontier” (Daraio & Simar, 2007). The idea of a frontier efficiency method is to make 

comparison among firms or DMUs in order to measure how inputs are being utilized to 

produce outputs as well as to provide significant information concerning the identification of 

benchmarking policies, the estimation of optimal inputs and outputs and the effect of returns 

to scale. The literature expounds two competing modeling techniques for measuring frontier 

efficiency. They are the parametric and nonparametric approaches.  

In the parametric approach (e.g. the stochastic frontier analysis (SFA)), the functional 

form of the input-output relationship is either known or estimated statistically. However, in 

most cases, the functional form cannot be determined. Instead, a facet of an efficient function 

called the production possibility set (PPS) derived from a set of observations is used to determine 

the input-output relationship. This latter approach is known as the nonparametric approach 

since it does not require any parameter estimation. Besides, the best practice function is 

computed empirically from observed inputs and outputs without any specification of the 

functional form. The DEA and the free disposal hull (FDH) are the main known 

nonparametric approaches in efficiency analysis of production and services activities (Daraio 

& Simar, 2007). The DEA has its basis from the Farrell‘s seminal paper on “the measurement 

of productive efficiency“ (Farrell, 1957). Farrell’s efficiency takes the form of uniform radial 

expansions or contractions from inefficient observations to a piecewise linear production 

frontier which is estimated based on the free disposability and the convexity of the inputs and 

outputs1. The FDH which was proposed by Deprins, Simar, & Tulkens (1984) is seen as a more 

general form of the DEA or the non-convex version of the DEA.  

 

DEA as a linear programming tool: The pioneering work of Charnes, Cooper, & Rhodes (1978) 

forms the basis of the non-parametric DEA or the operationalization of Farrell’s efficiency 

measurement concept as a linear programming (LP) tool. The acceptance of LP as a 

computational method for measuring efficiency in different economic decision-making 

problems, however, began with the work of Dorfman, Samuelson, & Solow (1958). Their text 

offered a clear, concise exposition of the relationship between LP and standard economic 

analysis. Early researchers such as Farrell & Fieldhouse (1962) and Boles (1971) utilized the 

LP to measure Farrell‘s efficiency in terms of multiple inputs – single output. However, it was 

Charnes et al. (1978) DEA approach that generalized the Farrell‘s measure to multiple inputs 

and outputs and more importantly, its duality relations. Charnes et al. (1978) approach 

provide an optimization framework for assessing the performance of a set of homogenous 

                                                 
1Farrells efficiency provided the conceptual framework for both technical efficiency and allocative efficiency. These 

concepts were indeed influenced by Debreu (1951) decomposition of efficiency, hence the reference Farrell – 

Debreu efficiency as used in some text for technical efficiency. Allocative efficiency refers to whether inputs, for a 

given level of output and set of input prices, are chosen to minimize the cost of production, assuming that the 

organization being examined is already fully technically efficient. The definition of technical efficiency is provided 

in the text.  
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DMUs (a set of - peer DMUs, i.e. DMU), 0 = 1, … , -), which transform multiple inputs into 

multiple outputs. The starting point of the DEA via a fractional programming model known 

as the Charnes, Cooper, & Rhodes (CCR) model and proposed in Charnes et al. (1978) 

expresses a production index explicitly as2: 

max ∑ 4676896:;∑ <>?>8@>:;  
s. t. ∑ 4676A96:;∑ <>?>A@>:; ≤ 1 0 = 1, … , -
CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , Q

  
(2.1) 

where RF) and SN) are observed non-negative input and output data and CF and LN are the 

weights assigned to the Jth input and Pth output respectively. The objective of the model is to 

obtain the ratio of weighted output to weighted input. Intuitively, the model maximizes the 

ratio of the DMU under evaluation (∑ LNSNTVNWX / ∑ CFRFTZFWX ) written as DMUT, subject to the 

fact that the ratio of all other DMUs (
∑ 4676A96:;∑ <>?>A@>:; ; 0 = 1, . . , -) is less than or equal to 1. In other  

 

                               Figure 2.1. Structure of a DMU 

 

words, the DEA drives weight directly from a given data and provides a positive efficiency 

score less than or equal to 1 by virtue of the constraint in (2.1). Under this paradigm, DMUs 

are classified into two mutually exclusive and collectively exhaustive groups, i.e. efficient 

(when the efficiency score is 1) and inefficient (when the efficiency score is less than 1). The 

DEA efficiency measure is ‘technical‘ as opposed to economic efficiency which considers 

behavioral objectives (such as revenue maximization or cost minimization) by including 

market prices to determine whether services are worth the cost3 (Lovell, 1993). Technical 

                                                 
2 Note the fractional programming model is nonconvex and nonlinear  
3 Note that the DEA model can allow for the measurement of economic efficiency, as well as its breakdown into 

technical and allocative efficiency whenever there is available information on price.  

 

 



 

 9 

efficiency (hereafter efficiency) refers to the maximization of a firm's feasible output from its 

given inputs or the minimization of feasible inputs that yield a desired level of output.   

DEA orientation: A very important advantage of the DEA is the suggestion of explicit 

improvement targets for the inefficient DMUs. This property enables firms to sanction a better 

utilization of their resources to achieve efficiency. Firms are able to select efficient DMUs on 

the frontier as the reference set for the projection of the inefficient DMUs. The path projection 

to the efficient frontier is done with an orientation of the DEA model. The orientation holds 

the viewpoint of the improvement direction of the inefficient units, whether the goal is to 

expand output shortfalls or reduce input excesses, respectively in order to move the inefficient 

unit to the frontier (Paradi, Sherman, & Tam, 2018). Two orientations are defined for the 

traditional models: input and output. Figure 2.2 provides a projection path for the inefficient 

DMU A.  In the input orientation, firms decrease their inputs level in order to be projected to 

the efficient frontier whiles maintaining the same output level. This is shown by the reduction 

of input from A to AX. The output-oriented model seeks to maximize outputs with a given 

level of inputs in the direction of A to A'. A third to the orientation dichotomy is the additive 

model proposed by Charnes, Cooper, Golany, Seiford, & Stutz (1985)  which allows firms to 

decrease inputs and increase output simultaneously to reach the efficient frontier. This model 

is discussed later in Section 2.1.2.3.  

 

 

                                      Figure 2.2. Input and output orientation 

 

DEA strengths and weaknesses: One attracting feature of the DEA approach is that, the 

efficiency concept follows the condition of Pareto optimality for productive efficiency [A 

DMU is “Pareto efficient if no other unit or combination of units exists which can produce at 

least the same amount of outputs, with less for some resource(s) and no more for any other” 

(see Thanassoulis, 1997)] which position the DEA efficiency at the center of welfare economics 
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and its associated efficient distribution of wealth in an economy. The DEA approach in 

measuring efficiency is flexible in allowing for the free and optimal selection of inputs and 

outputs weight of efficient DMUs from inefficient ones. The optimal weight in no doubt 

enables management in knowing the real importance of selected inputs and outputs. 

Moreover, by suggesting ‘peers’ as reference units for inefficient units, the DEA becomes a 

useful benchmarking tool in improving management operations. Not only does it suggest 

alternative ways of projecting inefficient units, but the DEA is also able to identify the sources 

of inefficiency, as to whether the unit is inefficient due to disadvantage conditions and/or 

actual inefficient operation. In fact, the DEA, per its easy implementation and user-

friendliness of software applications4, has received wide applications in various scientific and 

social science areas such as management science, operational research, engineering system, 

business analytics, decision sciences, economy etc. and it continues to be touted as an excellent 

data-oriented approach to efficiency measurement. Emrouznejad & Yang (2018) list over 

10,000 research papers in the field. Today, the DEA is one of the key research strands in OR 

and MS field.  

Notwithstanding its advantages, the traditional DEA models have some drawbacks 

that present some limitations that managers must be mindful of in its usage for performance 

decisions. Here we identify some main limitations that are given in Daraio & Simar (2007):  

 Deterministic and non-statistical nature; 

 Influence of outliers and extreme values;  

 Unsatisfactory techniques for the introduction of environmental or external variables 

in the measurement (estimation) of the efficiency.  

That is to say that, the DEA as a deterministic rather than statistical approach produces results 

that are sensitive to measurement errors and outliers. In other words, the DEA fails to capture 

the stochasticity or randomness in the data which in the SFA is dealt with by the error terms. 

It is also possible that the inputs and outputs data are inexactly defined such that the real 

values are uncertain. These challenges are at the heart of this thesis and they are addressed in 

the subsequent chapters via the robust DEA.  

 

2.1.1 Production possibility set and efficient frontier  

As aforementioned, instead of establishing inputs and outputs relationship through a 

functional form: ]: ℝZ → ℝ (S = ](R)), a PPS embodying the feasible alternatives of observed 

input-output correspondences is constructed. The boundary of the PPS known as the 

production possibility frontier (PPF) bounds all the feasible production plans. It is usually 

assumed that the production technology towards the efficiency measurement is known. 

                                                 
4A number of user-friendly software packages for DEA analysis include the DEA solver, DEA Frontier, LINGO, 

Max DEA and PIM-DEA, GAMS.  
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Assume that at a given technology, there are - DMUs (DMU);  0 = 1, … , -) where each DMU) 

is capable of producing Q outputs, `) = b… , SN) , . . d; P = 1, … , Q from K inputs, g) =b… , RF) , … d; J = 1, … , K.  All inputs and outputs for all DMUs are non-negative and a DMU has 

at least one positive input and one positive output. We refer to this as semipositive condition 

with mathematical characterization given by RF) ≥ h, RF) ≠ 0, and SN) ≥ h, SN) ≠ 0 for 0 =1, … , -. The PPS comprises the set of all feasible production plan or input-output combinations 

available to DMU). The PPS is defined as the set:  

 =  {(g, `) ∈ ℝZlV| g can produce `} (2.2) 

Different ways of constructing the set   exist and are commonly based on the technology 

defined for all observed inputs and outputs which are feasible in principle. The following 

assumptions which are fairly weak, hold for any technology represented by a quasi-concave 

and weakly monotonic production function  :  

Assumption 2.1. Properties of the set    

(A1): Feasibility: All observed activities are feasible. i.e. DMU) = bg), `)d for 0 = 1, … , -, 

then ∀0, bg), `)d ∈  . 

(A2): Free disposability: If an input-output combination is a feasible activity, then any 

input-output combination where the input is larger and the output smaller is also a feasible 

activity. i.e. (g, `) ∈  ⟹ ∀ gz ≥ g, ∀ z̀ ≤ `, (gz, z̀) ∈  . The axiom denotes the dominance 

relation of feasible activities and it stipulates that we can freely dispose of unwanted inputs 

and outputs.  

(A3): Convexity5: If two input-output combinations are feasible activity, then any 

mixture of the two or convex combination of the two is also a feasible activity. i.e. (gX, `X), (g', `') ∈  ⟹ ∀~ ∈ [0,1], ~(gX, `X) + (1 − ~)(g', `') ∈  .  

(A4): Constant returns to scale: Any ray scaled up or down from the origin with feasible 

activity generates a new activity which is feasible. i.e. (g, `) ∈  ⟹ ∀� > 0, (�g, �`) ∈  .   

We shall consider the two main technologies used in DEA: constant returns to scale (CRS) and 

variable returns to scale (VRS). The PPS based on the CRS technology, denoted as  !"#, is 

built on assumptions (A1) – (A4) whiles the PPS based on the VRS technology,  $"# is 

obtained by removing the CRS assumption (A4) and further assuming that no rescaling is 

possible. This involves considering � = 1 which lead to the Banker, Charnes, & Cooper (1984) 

                                                 
5 Note that convexity is a necessary assumption for establishing the duality between input and output sets and by 

extension cost and revenue functions. The FDH relaxes the assumption of the convexity of the DEA and so the 

computational technique requires mixed integer programming as compared to the linear programming of the 

DEA.   
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(BCC) model. The PPS which satisfies the set  !"# and  $"# can be written mathematically as 

follows6: 

 !"# = {(g, `)|g ≥ ��, ` ≤ ��, � ≥ h�} (2.3) 

  $"# = {(g, `)|g ≥ ��, ` ≤ ��, ��� = 1, � ≥ h�} (2.4) 

where � ∈ ℝZ×� is an inputs matrix consisting of all input vectors and � ∈ ℝV×� represent 

outputs matrix containing all the input vectors. The matrix of � and � are defined as follows: 

� = � RXX ⋯ RX�⋮ ⋱ ⋮RZX ⋯ RZ��
Z×�

, � = �SXX ⋯ SX�⋮ ⋱ ⋮SVX ⋯ SV� �
V×�

  
Note that  !"# and  $"# envelop all data using a borderline known as the efficient frontier 

and it is constructed according to the minimal extrapolation principle. To illustrate the minimal 

set that satisfies the assumptions of  !"#, we first define the efficient frontier.  

 

  
   a) 1 input – 1 output                        b) 2 inputs – 1 unitized output    c) 1 unitized input – 2 outputs 

Figure 2.3. Illustration of PPS with  !"# for different inputs and outputs cases.  

 

Efficient frontier: The efficient frontier (PPF) is a benchmark frontier line that spans all the 

best practice DMUs and envelops the non-best practicing DMUs. In other words, the efficient 

frontier is the non-dominated subset of the PPS.  

 

Efficiency: A DMU with the pair (R, S) is efficient in  !"# if it cannot be dominated by some 

DMU with (R̅, S�) ∈  !"#. The efficient subset of  !"#,   !"#�  is written as:  

 !"#�  =  {(R, S) ∈  !"#| (R, S) is efficient in  !"#} (2.5) 

The set of DMUs in  !"# which do not denote belong to  !"#�  are called the dominated DMUs 

or inefficient DMUs. Figure 2.3 illustrates the minimal subset that satisfies the CRS 

                                                 
6 Note that h� is a vector of zeros for the intensity variable.  



 

 13 

technology,  !"# for three DMUs (A, B and C) in different inputs and outputs cases. In Figure 

2.3, only DMU A is on the efficient frontier and therefore efficient whereas DMU B and C are 

dominated or inefficient. On the other hand, DMU A, B, and C are all efficient in Figure 2.3. 

The minimal subset that satisfies the VRS technology,  $"# is shown in Figure 2.4 where 

similarly, DMU A, B and C are on the efficient frontier.  

 

 

Figure 2.4. Illustration of PPS with  $"#  

 

2.1.2 Basic DEA models  

There are several extended and specific DEA models given in literature that deal with specific 

problems. The most representative DEA models include the CCR model by Charnes et al. 

(1978), the BCC model by Banker, et al. (1984), the Färe and Grosskopf (FG) model by Fare & 

Grosskopf (1985), and the Seiford and Thrall (ST) model by Seiford & Thrall (1990)7. However, 

given that we defined the PPS in section 2.1.2 for technology set  !"# and  $"#, we limit 

ourselves to the CCR and BCC models, their oriented models and a third, the additive model. 

Essentially these are the required models that will be used for the robust analysis in this thesis 

Interested readers can refer to Cooper, Seiford, & Tone (2006), Zhu & Cook (2007) and Toloo 

(2014)b for other advanced models that address specific issues. 

 

2.1.2.1 CCR Model 

The CCR model named after its developers, Charnes et al. (1978) measure the technical and 

scale efficiency based on the minimal extrapolation of the set  !"#. The model is an 

                                                 

7 These models can be solved by available commercial software such as DEA solver, LINGO, Max DEA, GAMS 

etc.  
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optimization formulation of the set  !"# known as the envelopment form of the CCR model. 

Mathematically, we solve the following linear programming problem:  

min �s. t∑ �)�)WX RF) ≤ �RFT J = 1, … , K∑ �)�)WX SN) ≥ SNT P = 1, … , Q�) ≥ 0 0 = 1, … , -
  

 

 

(2.6) 

where � =  (�X, �' … , ��)� is a nonnegative weight or intensity vector. Model (2.6) will be 

called the Input-oriented Envelopment CCR (IECCR) model since the model sought to 

decrease the input vector gT radially to �gT in order to obtain an activity level (�g, �`) that 

optimizes the efficiency of a DMU under evaluation, DMUT = (gT,  `T). Model (2.6) has the 

following properties (Toloo, 2014):  

(P1): The model entails K + Q constraints and - decision variables. 

(P2) The model is solved - times to obtain the relative efficiency for all DMUs. 

(P3): (�, �) = (1, �T)8  is a feasible solution of the model all the time.  

 (P4): Given the feasibility (1, �T), we obtain a bounded a solution �∗ ≤ 1. 

 (P5): The optimal objective value is positive. i.e. �∗ > 0. 

(P6): From (P4) and (P6), the efficiency of every DMU is between 0 < �∗ ≤ 1.  

Putting (P6) into perspective, it is possible to define the efficiency concept by model (2.6) as:  

Definition 2.1 DMUT is CCR-efficient if �∗ = 1 otherwise it is CCR-inefficient. 

Note that Definition 2.1 signifies a weak efficiency concept since it is possible that at the 

optimal solution, some alternate optima may contain nonzero intensity vector whiles other 

may not, e.g. it is possible to obtain the solution �∗ = 1, �T∗ = 1, �)∗ = 0 (0 ≠ 0). This implies that 

while a DMU may lie on the efficient frontier, it is still possible to increase (decrease) the 

production of some outputs (inputs) which intuitively indicate technical inefficiency. Suppose 

we associate model (2.6) with slack variables �� = {QF�}� ∈ ℛZ and �l = {QNl}� ∈ ℛV where the 

input constraint Q� = �RF� − ∑ RF)�)�)WX ∈ ℝZ and the output constraint  Ql = ∑ SN)�)�)WX −SN� ∈ ℝZ present input excesses and output shortfalls respectively. A sufficient condition for 

the efficiency of DMUT is achieved if all inputs and outputs are utilized and no excess or 

shortage exists. This entails solving the following max – slack model in which slacks are taken 

to their maximal values: 

                                                 
8 �), 0 = 1, … , - is the 0�� unit vector. i.e. a vector with zero components, except for a 1 in the 0�� position.  
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min ∑ QF�ZFWX + ∑ QNlVNWXs. t∑ �)�)WX RF) + QF� = �∗RFT J = 1, … , K∑ �)�)WX SN) − QNl = SNT P = 1, … , Q�) ≥ 0 0 = 1, … , -QF� ≥ 0 J = 1, … , KQNl ≥ 0 P = 1, … , Q
  

 

 

(2.7) 

Using model (2.7) we make two definitions of efficiency:  

Definition 2.2. DMUT is CCR-efficient if and only if  

(i) �∗ = 1 

(ii) all slacks ��∗ = hZ, �l∗ = hV 

otherwise, DMUT is CCR-efficient. 

Definition 2.3.  DMUT is CCR- weakly-efficient if and only if  

(i) �∗ = 1 

(ii) all slacks ��∗ ≠ hZ and/or �l∗ ≠ hV for some J or P in some alternate optima.  

Definition 2.2 depicts full (100%) efficiency since for all alternate optimal solutions, efficiency 

is achieved if and only if there is no inputs excesses or output shortfalls. In other words, 

efficiency restricted to conditions (i) and (ii) exemplifies the DEA technical efficiency, strong 

efficiency or Pareto-Koopman efficiency in economics because the zero slacks imply that no 

additional improvement in input or output is possible without worsening any other input or 

output. This is formalized by the definition below:  

Definition 2.4. (Pareto - Koopmans efficiency): DMUT is technically efficient if any reduction in 

input requires an increase in at least one other input or a reduction in at least one output, and 

if any increase in an output requires a reduction in at least one other output or an increase in 

at least one input. 

The Pareto Koopmans efficiency distinguishes technical efficiency from the Farrell 

efficiency. The latter identifies itself with Definition 2.3 and it is sometimes referred to as mix 

inefficiency because of its nonzero slack. Figure 2.5 shows DMUs identified under weak and 

strong efficiency in one unitized input – two output space. As observed on the frontier PXP', 

DMU B, C and E are the technically (strong) efficient units. DMU F indicates the special case 

of weak efficiency since it is not on the efficient part of the frontier. For instance, although 

DMU A, D, and G are inefficient, the shortfall in D outputs can be improved or projected to 

D’ by increasing its outputs 1 and 2 without altering their proportions. As also in the case of 

DMU G, these inefficiencies are called technical inefficiency. On the other hand, the 

improvement of DMU A requires first a radial measure of A to A’ followed by a projection to  
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Figure 2.5. Illustration of weak and strong efficiency 

 

B in order to remove the shortfall in output 1. The inefficiency exhibited by DMU A is known 

as mix inefficiency.  We now look at the dual of model (2.6) which is given by the following 

model9 

 ∗ = max ∑ LNSNTVNWXs. t.∑ CFRFTZFWX = 1∑ LNSN)VNWX − ∑ CFRF)ZFWX ≤ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , Q
  

 

 

(2.8) 

In this model, the weights, CF and LN are referred to as multipliers, hence the model name, 

Input-oriented Multiplier CCR (IMCCR) model. The first constraint called the normalization 

constraint ensures the relative efficiency of the DMUT to the other DMUs. The second 

constraint is a common constraint to all the DMUs. The multiplier CCR model measures 

efficiency by maximizing the ratio of the weighted sum of outputs to a weighted sum of inputs 

of a unit subject to the condition that, the same ratio of all other units is less than or equal to 

one. The efficiency obtained by model (2.8) follows the definition below:  

Definition 2.5. DMUT is CCR-efficient if and only if  

(i)  ∗ = 1 

(ii) There exists at least one strictly positive optimal solution (¡∗, ¢∗) 

                                                 
9Notice that this model is also the LP transformation of the nonconvex and nonlinear fractional programming 

model (2.1). See Toloo (2014)  for further discussion. 
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It is important the two conditions provided for the strong efficiency of DMUs. The efficiency 

definition restricted to only condition (i) even though known as weak efficiency is characterized 

as inefficiency. This implies that DMUT is CCR-inefficient if either  ∗ < 1 or  ∗ = 1 and for 

every optimal solution there exists at least one zero weights. On the other hand, Definition 2.5 

represents a strong efficiency or the Pareto-Koopmans efficiency which like the max–slack 

condition in model (2.7) permits no improvement in any input or output without worsening 

at least one other input or output.  

Note that models (2.6) and (2.8) are equivalent by the strong duality theorem10. i.e. �∗ =  ∗. Now suppose a DMU projection is made in the output directions, the output-oriented 

models that necessitate the technical efficiency is given by the following dual pairs: 

 max £s. t.∑ ¤)�)WX RF) ≤ RFT J = 1, … , K∑ ¤)�)WX SN) ≥ £SNT P = 1, … , Q�) ≥ 0 0 = 1, … , -
  

 

 

(2.9) 

and  

¥∗ = min ∑ ¦FRFTZFWXs. t.∑ §NSNTVNWX = 1∑ §NSN)VNWX − ∑ ¦FRF)ZFWX ≤ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , Q
  

 

 

 

(2.10) 

 

We refer to model (2.9) and (2.10) as the Output-oriented Envelopment CCR (OECCR) and 

Output-oriented Multiplier CCR (OECCR) models respectively. The relationship between 

these models and the earlier input-oriented models given by the theorem below: 

 

Theorem 2.1. Let (�∗, �∗) ∈ ℝXl� or (¨∗, ©∗) ∈ ℝZlV be the optimal solution of the input-

oriented model (2.6) and model (2.8), respectively. Then ª X«∗ , �∗
«∗¬ = (£∗, ©∗) or ª X«∗ , ¢∗

«∗¬ =
(¥∗, ©∗) is an optimal solution for the output-oriented model (2.9) and (2.10) respectively and 

vice versa.  

Proof. See Cooper, Seiford, & Tone (2006). 

                                                 
10 We refer interested readers to Appendix A where duality in linear programming and its exposition in DEA is 

discussed thoroughly.  
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The above relation implies a DMU under an input-oriented CCR model is efficient if and only 

if it is also efficient when the output-oriented CCR model is used to evaluate its performance. 

Furthermore, since �∗ ∈ (0,1], it implies that £∗ ∈ [1, ∞).  

2.1.2.2 BCC Model 

Banker, Charnes, & Cooper (1984)  introduced the BCC model with the view that not all units 

operate at the optimal scale and so the most productive scale size (MPSS) may not be 

attainable for a unit operating at other scales. They therefore proposed a piecewise linear and 

concave frontier which examines DMUs that are not operating at the optimal scale. This 

includes, as indicated in section 2.1.2, imposing a convexity constraint ∑ �)�)WX = 1 to replace 

the more restrictive assumption of ray rescaling in the possibility set  !"#. The BCC model 

induced by the set  $"# is the following:  

min ®s. t∑ �)�)WX RF) ≤ ®RFT J = 1, … , K∑ �)�)WX SN) ≥ SNT P = 1, … , Q∑ �)�)WX = 1�) ≥ 0 0 = 1, … , -® is free in sign
  

 

 

 

(2.11) 

The dual of model (2.11) (multiplier model of the BCC) is formulated as follows:  

®∗ = max ∑ LNSNT + LTVNWXs. t.∑ CFRFTZFWX = 1∑ LNSN)VNWX − ∑ CFRF) + LTZFWX ≤ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , QLT is free
  

 

 

(2.12) 

where LT is the returns to scale variable. The efficiency definition for the BCC model exudes 

similarly from the CCR model. Here we provide a definition for the BCC model (2.12) as the 

following: 

Definition 2.6. DMUT is BCC-efficient if ®∗  = 1 and there exist at least one strictly positive 

optimal solution (i.e. ∀J, CF∗ > 0, ∀P, LN∗  > 0) otherwise it is BCC-inefficient.  

 

The BCC measures pure technical efficiency (PTE) unlike the overall technical efficiency of the 

CCR model. A DMU that is efficient in the CCR sense is also efficient by the BCC. In other 

words, decomposing technical efficiency (CCR efficiency) into purely technical (BCC 

efficiency) and scale efficiencies, a DMU which is purely technical efficient and scale efficient 

is seen to be operating at the MPSS. In Figure 2.6, DMUs B, C, and D are the purely technical 
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efficient units lying on the VRS frontier while DMU A represents an inefficient unit. DMU C 

which is lying also on the CRS frontier represent the optimal or maximum productivity for a 

given mix of inputs and outputs, hence called the MPSS.  The BCC -efficiency score of DMU  

 

                              Figure 2.6. Various returns to scale technologies 

 

A is obtained as a radial projection from the envelopment surface (arrow AD and arrow AB 

in Figure 2.6). Here, the envelopment surface is a piecewise linear and concave which result 

in decreasing, constant or increasing returns to scale. The identification of returns to scale 

(RTS) is put forward in Banker & Thrall (1992) by the following theorem: 

Theorem 2.2. Let (gT,  `T) be on the efficient frontier of  $"#. The following conditions identify the 

RTS for the BCC models (2.11) and (2.12): 

1. Increasing returns to scale: This prevails at (gT,  `T) if and only if  ∑ �)∗�)WX < 1 (or LT∗ > 0) 

for all alternate optimal solutions. 

2. Decreasing returns to scale: This prevails at (gT,  `T) if and only if  ∑ �)∗�)WX > 1 (or LT∗ <0) for all alternate optimal solutions.  

3. Constant returns to scale: This prevails at (gT,  `T) if and only if  ∑ �)∗�)WX = 1 (or LT∗ = 0) 

for any alternate optimal solution.  

In addition, the production process could exhibit non-increasing RTS (NIRS) and non-

decreasing RTS (NDRS), obtained when the convexity constraint in (2.4) is relaxed by 

changing the equality to inequality. The frontier in  $"# exhibit NIRS  if  ∑ �)∗�)WX ≤ 1 and 

NDRS if ∑ �)∗�)WX ≥ 1 are modified for ∑ �)�)WX = 1 in model (2.11) respectively. Figure 2.6  

shows the NIRS frontier (dotted lines) and the CRS and VRS frontiers. Suppose ϑ²³"# is the 

efficiency of DMU´ obtained under the NIRS model. Then with �$"#, if ϑ²³"# = ϑ$"# as in the 

case of Aµ in Figure 2.6, DRS exist for DMU´;  if, however, ϑ²³"# ≠ ϑ$"# as in the case of AX, 
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then IRS is present for DMU´. Note that the RTS above holds for DMUs belonging to the set  $"#� . It, therefore, requires that ϑ∗ is estimated in model (2.11) for all alternate optima. For 

discussion including RTS identification from inefficient DMUs (CCR and BCC models), see 

Banker, Chang, & Cooper (1996). 

 

2.1.2.3 Additive Model 

The CCR and BCC models are focused on either minimizing inputs (input oriented) or 

maximizing output (output oriented) using radial projection to the frontiers. The additive 

model, on the other hand, combines both orientations in a single model. It utilizes an ¶X − 

distance projection to simultaneously decrease inputs (eliminating input excesses, QF�) and 

increase output (eliminating output shortfalls, QNl). Proposed by Charnes, Cooper, Golany, 

Seiford, & Stutz, (1985), the additive model is given by the following LP:  

sT∗ = max ∑ QF�Z)WX + ∑ QNlV)WXs. t∑ �)RF) + QF��)WX = RFT J = 1, … , K∑ �)SN)�)WX − QNl = SNT P = 1, … , Q�) ≥ 0 0 = 1, … , -QF� ≥ 0 J = 1, … , KQNl ≥ 0 P = 1, … , Q
  

 

 

(2.13) 

The efficiency of the additive model is obtained by simultaneously considering the inputs and 

outputs slacks. That is DMUT is ADD-efficient if and only if QT∗ = 0 (J. ·.  QF� = QNl = 0, ∀J, ∀P) 

otherwise, DMUT is called additive-inefficient.  

 

Theorem 2.3. DMUT is ADD-efficient if and only if it is CCR-efficient. 

 

Proof. See Ahn, Charnes, & Cooper (1988)  

Theorem 2.3 holds similarly for the BCC model. i.e. DMUT is ADD-efficient if and only if it is 

BCC-efficient. The additive model is partly significant because of its very important property 

called the translation invariance. This property is defined below.  

Definition 2.7. A DEA model is said to be translation invariant if translating the original input 

and/or output data values results in a new problem that has the same optimal solution for the 

envelopment form as the old one.  

Practically, the property allows the additive model to translate negative data and solve them 

as if they were positive data. Moreover, it allows the envelopment form of many DEA models 
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to deal with negative data. Pastor & Ruiz (2007) list a few of these envelopment models that 

have the translation invariance property11.  

1. The BCC envelopment model (2.11) (also the output-oriented model) is translation 

invariant with respect only to outputs (inputs)  

2. The envelopment form of the output-oriented NIRS radial model is translation 

invariant with respect only to inputs.  

3. The envelopment form of the input-oriented NDRS radial model is translation 

invariant with respect only to outputs.  

Practically, however, the CCR model (input- or output-oriented) is neither translation 

invariant with respect to outputs nor inputs and so the CCR model cannot be used with any 

type of negative data. 

2.1.3 Sensitivity issues in DEA  

We look at sensitivity in DEA on two fronts. The first is the sensitivity of the efficiency result 

to input-output specification and the size of the sample. The DEA estimates the efficient 

frontier relative to the sample input and output data, hence its discriminating power become 

sensitive to the proportionate selection of DMUs and data. In other words, having too many 

DMUs can reduce the discriminating power of the DEA model. The issue is addressed by 

following a general rule of thumb to ensure a statistical balance between the number DMUs 

and the number of performance measures. The rule of thumb is given as (for more details see 

Toloo et al., 2015, Paradi et al., 2018) 

- ≥ max  {K × Q, 3(K + Q)} (2.14) 

where - is the total number of DMUs (observations), K is the number of inputs and Q is the 

number of outputs. The rule states that the number of DMUs must exceed at least thrice the 

sum of inputs and outputs or the products of inputs and outputs. For insights on how this 

rule is embedded in DEA models including management imposing their opinion or 

predetermined performance measures, see Toloo et al. (2015). 

 The other issue of sensitivity in DEA is the sensitivity of the efficiency results to data 

perturbation which is a problem as old as the DEA. The concern of how to preserve the 

efficiency of DMUs to small data perturbation was looked at by early researchers; Charnes, 

Cooper, Lewin, Morey, & Rousseau (1984); Charnes, Roussea, & Semple (1996) and others. 

These researchers conducted a sensitivity analysis that defines a stability region with ‘‘radius 

of stability’’ within which data variations will not alter a DMUs classification. Organizations 

efficiencies are then called robust once they remain unchanged within the stability region. For 

instance, Charnes, Roussea, & Semple (1996) analyzed the additive model and its sensitivity 

                                                 
11 Note that the multiplier form of the DEA models does not have the same translation invariance properties as 

the envelopment form and so the focus here is on the envelopment models 
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to data perturbation by embedding ¶¹ −norms such as the ∞ −norm and 1 −norm as the 

radius of stability for the DMUs. The radius can be best interpreted as a measure of the DMUs 

classification stability and robustness, especially with respect to errors in the data. Thus, 

within the radius, the sensitivity analysis focuses on how much the efficiency score to a 

perturbed data or observations differs from the actual efficiency scores. The RO approach 

adopted in this thesis seeks a similar objective. Sensitivity analysis and RO are both 

mathematical approaches to data uncertainty. In the RO, rather than quantifying locally the 

stability of efficiency scores with respect to infinitesimal data perturbations, in contrast, we 

seek to identify “how much the optimal solution to the nominal problem can violate the 

constraints of the perturbed problem“ (Ben-Tal & Nemirovski, 2000). The next section 

describes various approaches used together with the RO technique to deal with data 

uncertainty or inexactness in DEA data.  

 

2.1.4 Inexactness in DEA data 

The traditional DEA models that are so far given in Section 2.1.3 suppose all the inputs and 

outputs to be “crisp” or “exact” data. This implies that a fixed measure of efficiency can be 

obtained with the efficient frontier from the exact/precise amount of inputs and outputs. 

However, in real life situations such as in banking, manufacturing and production process, 

the data are volatile, and it is quite difficult to know the exact values. Ideally, observed input 

and outputs data are saturated with noise, sometimes imprecise, vague and mostly uncertain. 

Assuming crisp values for uncertain values can, therefore, lead to infeasible or suboptimal 

efficiency decisions. Besides, the DEA efficiency could be wobbly and sensitive to parameter 

perturbation.  

The traditional stalwart approach to deal with inexact and noise in DEA data is the 

stochastic DEA, including the chance-constrained DEA (see, Land, Lovell, Thore, Land, & 

Lovell, 1993; Olesen & Petersen, 1995; Olesen & Petersen, 2016). Stochastic DEA models are 

generally built on probabilistic assumptions of the randomness in the input and output data 

and mostly are statistical. The very common statistical stochastic approaches are due to 

Banker (1993) and Simar & Wilson (1998, 2007). These researches offer a similar solution to 

randomness in data but differ on the assumptions required to obtain a random reference 

technology. Simar & Wilson (2000) advocate for distributional assumptions on the data. In a 

two-stage analysis where the first stage determines the efficiency scores, and the second stage 

regresses contextual variables affecting productivity, Simar & Wilson (2000) consider a 

truncated regression, combined with bootstrapping via confidence intervals on the efficiency 

scores as a re-sampling technique to correct biased estimates and serial correlation. On the 

other hand, Banker (1993) suggest imposing statistical axioms and use maximum likelihood 

or ordinary least squares estimation for the second stage analysis. See also Daraio & Simar 

(2007) and Bogetoft & Otto (2011) for general discussion on statistical and robust 

nonparametric approaches to the influence of outliers or noise in efficiency measurement. 
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Undoubtedly, the stochastic approaches are conceptually intuitive and quite impressive in 

handling DMU-specific distributions of noise and inefficiency since they involve appropriate 

assumptions and specification of the data generating process (DGP). Nonetheless, their 

implementation is sometimes problematic due to the difficulty in obtaining historical data 

that determine the distribution of the random variable.  

 Some researchers prefer to use deterministic methods which to a larger extent prevent 

the problem of probability estimations. One of such early methods suggests the treatment of 

vagueness and ambiguity in data with fuzzy logic through fuzzy set theory. The fuzzy DEA, 

for instance, was introduced by Sengupta (1992) to characterize imprecise inputs and outputs 

by fuzzy numbers and membership functions. In the fuzzy DEA, inexact and imprecise input 

and output data are represented as linguistic variables characterized by fuzzy numbers 

reflecting the general feeling or experience of the decision maker (Guo & Tanaka, 2001). 

‘Fuzzification’ of unknown crisp values are justified to provide good approximation and 

sensitivity minimization via the representation of uncertainty as fuzzy data. Generally, the 

fuzzy DEA hinges on the theory of fuzzy set12 where the º − cut approach is the main 

technique used. Other techniques used include the fuzzy ranking, possibility, tolerance, fuzzy 

arithmetic and fuzzy random/type – 2 approach (Hatami-Marbini, Emrouznejad, & Tavana, 

2011). Kao & Liu (2000) proposed a transformation of fuzzy DEA to a family of crisp DEA. 

They adopt the º − cut technique and use membership function to represent the fuzzy data. 

Guo & Tanaka (2001) considered an extension of the fuzzy DEA to handle general crisp, fuzzy 

and hybrid data.  The recent survey on the development of the subject is summarized in 

Hatami-Marbini et al. (2011) for further reading. 

 Cooper, Park, & Yu (1999) addressed imprecision in data in its general form by 

proposing an imprecise DEA (IDEA) model that deals with bounded/interval data, ordinal 

data and ratio-bounded data, including also a mix of imprecise and exact data. However, 

incorporating these imprecise data into the DEA model result in a nonlinear and convex-

programming problem. Zhu (2003) showed that the IDEA model can be transformed into a 

standard linear DEA model by using scale transformation and variable alternations or 

procedures that convert the imprecise data into exact data. The transformation approach leads 

to solving the IDEA model in the standard linear CCR model and therefore permit the 

standard analysis of performance benchmarking, RTS identification, etc. One of the popular 

approaches that has emanated from the IDEA is the interval DEA which seek to provide 

efficiency of DMUs with their lower and upper bound values. Despotis & Smirlis (2002) 

propose an approach which treats interval DEA as a peculiar case of DEA with exact data 

following a transformation of interval variables. The authors define lower and upper bound 

for interval efficiency scores and further discriminate DMUs into fully efficient, efficient and 

inefficient units. Incorporating decision makers preference in determining the bounds of the 

                                                 
12 The fuzzy theory is based on the fuzzy set algebra developed by Zadeh (1965) 
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interval efficiency, similarly, Entani, Maeda, & Tanaka (2002) adopt the interval DEA to 

determine the optimistic and pessimistic ranking of DMUs with fuzzy approach. Optimistic 

measures are obtained from the upper limit of the interval efficiency and the lower limit of 

the inefficiency while the lower limit of interval efficiency and upper limit of the interval 

inefficiency determines the pessimistic measures.  

 

Table 2.1. A taxonomy of robust approaches in DEA 

 

 

A new stream of research in inexact DEA concerns uncertainty in inputs and outputs 

data which is addressed in the lens of the RO. This approach, deterministic in nature is the 

main focus of this thesis and its discussion is reserved for Sections 2.3.  We provide in Table 

2.1 a taxonomy of the main robust approaches adopted in DEA. Note that the stochastic 

approaches might contain some lesser known techniques in literature which are not captured 

in Table 2.1. So far, there are three main deterministic approaches used in handling 

imprecision and uncertainty in DEA: fuzzy DEA, imprecise/interval DEA and robust DEA. It 

is important to mention that, although the analysis with “imprecise data” and “uncertain 

data” both lead to robust efficiency scores, a common mistake is to perceive and use the two 

interchangeable since the modelling approach appropriate for one might not be appropriate 

for the other. For instance, whiles it is possible to use the RO approach for imprecise data such 

Deterministic   Stochastic 

Fuzzy DEA 

Sengupta (1992), Kao & Liu (2000), 

Guo & Tanaka (2001), Hatami-Marbini 

et al. (2011), Lertworasirikul et al. 

(2003)  

 

Imprecise DEA 

Cooper et al.(1999), Zhu (2003), 

Despotis & Smirlis (2002), Entani et al. 

(2002), Wang, et al. (2005), Park (2007) 

Toloo & Nalchigar (2011), Toloo et al. 

(2018),  

 

Robust DEA 

Sadjadi et al (2008, 2011a), Shokouhi et 

al (2010), Hafezalkotob et al. (2015), 

Salahi et al. (2016), Toloo & Mensah 

(2018), Salahi, et al (2018) 

 Chance constrained DEA 

Land et al. (1993), Olesen & Petersen (1995), 

Cooper et al. (1998), T. Y. Chen (2002), Cooper 

et al. (2004), Talluri et al. (2006), Azadi & Saen 

(2012), Tavana et al. (2013) 

 

 Statistical stochastic DEA 

-  Maximum likelihood/OLS 

Banker (1993, 1996), Banker & Natarajan 

(2008), McDonald (2009), Ramalho et al. 

(2010), 

-  Bootstrapping 

Simar & Wilson (1998,2000,2007), 

Alexander et al. (2010), Wanke & Barros 

(2014) 

-  Robust nonparametric estimation  

Cazals, Florens, & Simar (2002), Daraio & 

Simar (2006), Daraio & Simar (2007) 
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as in interval DEA (see Shokouhi et al., 2010; Aghayi & Maleki, 2016), it is quite difficult to 

model same for ordinal data or ratio-bounded data.  

 

2.1.4.1 Characterization of uncertainty in DEA 

Lio & Liu (2017) adopted the description “uncertain variable” as a better choice for describing 

the imprecise inputs and outputs of a DEA model. The authors developed a new uncertain 

DEA model based on uncertainty theory of Wen (2015). Ehrgott, Holder, & Nohadani (2018) 

recently proposed an uncertain DEA (uDEA) model which determines the configuration and 

minimal amount of uncertainty that suffices to render a DMU efficient. Uncertainty and 

imprecision are understood to be portmanteau words that are used contextually and 

sometimes interchangeably. They are sometimes confused with each other, nonetheless, the 

two concepts are distinct. In fact, “uncertainty in data” generally connotes the various form 

of uncertainty that may arise from imprecision, ambiguity or lack of clarity in quantifying the 

exact values of data. See French (1995). Different ways exist in handling uncertainty, more 

importantly when the source of uncertainty is known. Here, we describe two main types of 

uncertainty including randomness inherent in the input and output data of DMUs.   

b) Uncertainty arising from lack of knowledge, miscalculation or computational errors. This 

includes the entire spectrum of the different degrees of knowledge including lack 

of information or whilst information is available, the difficulty to quantify the exact 

values of data due to vagueness or imprecision of the data. Organizational data 

such as banks data, hospitals data, etc. which are used for evaluation are usually 

obtained through computations, predictions or by some statistical computation. 

Even at the power of modern computers or an efficient algorithm, one cannot 

accept the result 100% as they may be errors resulting from measurement, 

computation, statistical approximations or truncations.  

 

b) Uncertainty arising from physical randomness of the inputs and outputs data. This type 

of uncertainty pertains to data that are randomly generated and whose actual 

values are unknown. The variability in input and output data could result from 

uncaptured noise or natural stochasticity of the data.    

The uncertainties described above can be generally termed as epistemic uncertainty and 

aleatory (variability) uncertainty. Epistemic uncertainty arises due to limited knowledge and 

refers to the uncertainty description in (a). Aleatory uncertainty occurs as a result of natural 

randomness in data as described by (b). Aleatory uncertainty in particular is mostly modeled 

using mathematical probability. In DEA, this has been extensively discussed in Wen (2015). 
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            Table 2.2. Exact and uncertain data for two inputs – one input case. 

DMUs 
Exact data  Uncertain data RX R' S  RX»  R'»  y 

A 1 5 1  1 5.2 1 

B 1.2 3 1  1.6 3 1 

C 2 2 1  2.6 1.6 1 

D 4.2 1.2 1  4 1.2 1 

E 5 1 1  5.1 0.6 1 

F 7 1 1  7 0.5 1 

G 3 3 1  2.6 3 1 

H 5.2 1.6 1  6 1.5 1 

 

 

2.1.4.2 The effect of uncertainty in DEA data 

Uncertain data has effect on the discrimination of DMUs and the right decision on their 

performance. For instance, since DMUs are compared with each other to determine their 

relative efficiency, the question arises whether or not a particular DMU has been selected as 

efficient as a result of its uncertain data and if so, then there is a reasonable argument against 

its perceived performance (Ehrgott, Holder, & Nohadani, 2018). The uncertainty in DEA data 

has two main effects: Firstly, the uncertain data dislocate the efficient frontier. Figure 2.7  

shows two efficient frontiers; one depicting the true data (solid lines) and the other uncertain 

 

 

Figure 2.7. Frontiers of exact and uncertain data 
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/measured data (dashed lines) from the data points in Table 2.2. DMUs A, B, C, E, F, G from 

the actual data and their corresponding uncertain data efficient are on both frontiers although 

the frontier from the uncertain data is distorted. Observe that the actual reference unit for the 

projection of the inefficient DMU D is DMU C. On the other hand, DMU D» would be projected 

to the frontier (dashed lines) using DMUs B» and C». Moreover, the radial measurement of 

uncertain data points is quite different from what their actual data would suggest. In such 

cases, the identification of the inefficient units from the best practice units and the right 

amount of potential improvement possible of an inefficient unit becomes quite difficult to 

ascertain. Secondly, it is obvious that from the DEA model becomes sensitive to small data 

perturbation and fail to preserve the efficiency of the DMUs.  The effect of data uncertainty 

on DEA models when neglected can affect the reliability of the efficiency scores as well make 

the nominal DEA model highly infeasible following a small perturbation in the uncertain data. 

The erroneous selection of an under-performing DMU as a benchmark unit for others, for 

example, DMU C» has the potential of rendering the decision on DMUs performance useless. 

To overcome this drawback, the RO which immune data to a prescribed uncertainty set is 

introduced.  

 

2.2 Robust optimization 

Robust optimization is a field in optimization that deals with uncertainty in the data of 

optimization problems such as the DEA. RO addresses uncertainty based on an uncertainty 

set which is centered around the nominal values of the uncertain parameters. In its appealing 

form to practitioners, the RO focuses on searching for an acceptable performance or the best 

solution that is feasible under all possible realization of the uncertain parameters in a small 

“realistic set” (i.e. the uncertainty set) defined by the practitioner. The uncertainty set – 

induced RO began with the work of  Soyster (1973). He sought to obtain an optimal solution 

for an inexact linear optimization such that the constraints are satisfied under all possible 

perturbations of the data in an interval set. Although Soyster’s model is feasible, the resulting 

robust counterpart often produces result which is considered aggressively conservative in 

that too much of the optimality has to be scarified for robustness. To reduce the level of 

conservatism of the robust counterpart, several concepts and model formulations have been 

proposed. The reference to the modern literature on this relates to the work of Ben-tal, Ghaoui, 

& Nemirovski (2009). Specifically, the concept of reliability of the robust solution (Ben-Tal & 

Nemirovski, 2000), the control of the price of robustness (Bertsimas & Sim, 2004), and the 

adjustable robustness (Ben-Tal, Goryashko, Guslitzer, & Nemirovski, 2004) among others 

have all been proposed. Broadly speaking and in accordance with these authors, one of the 

major modelling concerns is to design a tractable13 robust formulation for the nominal 

problem and the guarantee that the constraints will not be violated or will be feasible with 

                                                 
13 By tractability, we mean the existence of an explicit polynomial time algorithm to an equivalent formulation of 

the nominal optimization problem 
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high probability for the realization of the uncertain parameters in the uncertainty set.  This is 

very important since the optimization may be tractable while its robust version may not or 

may be very complex and difficult to solve. In the sections that follow, we show how the 

uncertain optimization is turned to a tractable robust counterpart. 

 

2.2.1 Solving the uncertain optimization problem 

Consider the uncertain LP below:  

max ∑ ¾)R)�)WXs. t.∑ ¿ÀF)R)Z)WX ≤ ÁF J = 1, … , KR) ≥ 0 0 = 1, … , -
  

 

(2.15) 

 

where R represent a vector of decision variables and ¿ÀF) is a technological coefficient with 

entries ¿ÀF) = [¿ÀX), … , ¿À�)]. For simplicity, only the element ¿ÀF), 0 ∈ ÂF where ÂF represent the set 

of coefficients in row J that are subjected to the uncertainty. i.e. ¿ÀF) ∈ Ã14. In RO, the true value ¿ÀF), of an uncertain parameter is modeled as:   

¿ÀF) = ¿F) +  F)¿ÄF)      ∀J (2.16) 

where  F) = [ X), … , L�)] is the random part of ¿ÀF) (sometimes assumed to have symmetric 

distribution in the interval [-1, 1] and, ¿F) and ¿ÄF) are the nominal and estimate of the 

maximum deviation from ¿F respectively.  The RO approach deals with finding a solution to 

problem (2.15) such that the constraint feasibility for any realization of the uncertain 

parameter in Ã. To ensure such feasibility, the constraint is rewritten as:  

¿FR) + maxÅ>A∈Ã ∑ ¿ÄF)R) F))∈Æ> ≤ ÁF     ∀J    (2.17) 

Constraint (2.17) is called the robust counterpart of the uncertain constraint in (2.15). The 

explicit form of the robust counterpart of the later depends on the specific uncertainty Ã used 

for the former. 

2.2.2 Two alternative representation of uncertainty in RO 

Two main alternative approaches exist for characterizing the uncertainty. The first one is the 

continuous-based description of the uncertain data for a range of values and the second is the 

discrete-based scenario set description for each uncertain parameter. 

 

                                                 
14 The set Ã is assumed to be closed and convex without loss of generality.  



 

 29 

           

Figure 2.8.  Uncertainty description. Left: Box uncertainty set, Right: Discrete scenario set  

 

2.2.2.1 Continuous-based uncertainty set 

In this approach, the uncertain situation is characterized by an uncertainty set as used in 

Soyster (1973). The simplest uncertainty set to have is the box (interval) uncertainty set which 

is given as: 

ÃÇ = È¿ÀF) = ¿F) +  F)¿ÄF)|  ∥ Ê ∥Ë ≤ ΦÍ 

for  F) = [−1, 1] where Φ is an adjustable parameter. Other basic uncertainty sets are the norm 

uncertainty, polyhedral uncertainty, ellipsoidal uncertainty sets. Figure 2.8 (left) illustrates 

the box uncertainty set for the realized values of the uncertainty parameters. The optimization 

model with respect to Ê in the set ÃÇ is discussed in Chapter 3.  

2.2.2.2 Discrete scenario-based set 

This approach characterizes the realizable values of uncertain data by a discrete scenario set 

with occurrence probability %V. Suppose that the parameters (¿, Á, ¾) in (2.15) are all uncertain. 

We define a finite set of scenarios Î = {QX, Q', Qµ} and for each scenario QF ∈ Î, we associate the 

set ÃV = {¿V; , ÁVÏ , ¾VÐ} of realization for the parameters where ∑ %V = 1ÎV . Figure 2.8 (right) 

shows the scenario set Î = {QX, Q', Qµ} for the parameters. Ñ(ÃV, R) aim to optimize model (2.15) 

with respect to each scenario. The RO model to the discrete scenario set of scenarios was 

proposed in Mulvey, Vanderbei, & Zenios (1995). Note that large scenario set entails 

specifying each scenario which may be cumbersome a task. Most often, the discrete 

optimization problem becomes NP-hard in their robust version, as in the case of the 

assignment problem, shortest path problem, the resources allocation problem etc. (Kouvelis 

& Yu, 1997). Nonetheless, the discrete scenario description of the uncertainty has its own merit 

in the following (Yu, 1997):  

1. useful when the parameters assume only discrete values;  

2. accurate description of the uncertainty finite if historical data is available and can be 

used to form the discrete scenarios 
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3. correlation among parameters can be categorized by the discrete scenario specification 

without needing probability distributions.  

 

2.2.3 From uncertain optimization to robust optimization 

We explain the modeling technique used in the RO to attain the robust solution. The approach 

used throughout this thesis is based on the uncertainty set adaptation. From the uncertain 

problem (2.15), we describe three main steps that can be thought of as the modeling process 

leading to a robust solution: (J) the construction of the uncertainty set, (JJ) the formulation of 

a robust counterpart optimization and (JJJ) the probability bound for constraint violation of 

the uncertain parameter. Figure 2.9 shows the steps. The next sections explain the steps. 

 

 
Figure 2.9. Modeling process in robust optimization  

2.2.3.1 Choosing the uncertainty set 

Depending on the physical realization of the uncertain parameters or the distribution of the 

uncertainty, there are subtle ways of constructing/choosing the uncertainty set uncertainty set Ã. The construction of Ã start with the raw data which is then processed to meet the 

preferences of the decision maker and the assumptions on the structure and scale of the 

uncertainty set15. There are several ways of designing Ã, largely driven by the data. Bertsimas, 

Gupta, & Kallus, (2018) show concrete procedures for choosing an appropriate uncertainty set 

for a given application using historical data and statistical estimates. Bertsimas & Brown 

(2009) provide insights into the construction of Ã from the risk preference of the decision 

maker such as the coherent risk measure. In the literature, the more specific representation of Ã 

proposed relates to the structure of the set. Table 2.3 list few classes of the uncertainty sets 

that are frequently used. These are sets which have known tractable robust counterpart and 

deemed useful for robust analysis in DEA.  

Each uncertainty set is equipped with a size parameter (Φ, Δ, Ω, Γ, γ) which defines the 

robust level preferred by the decision maker. These parameters control the trade-off between 

the probability of constraint violation and the impact of the objective function of the nominal 

                                                 
15 The structure of Ã refers to the shape or geometry of the set whiles the scale refers to the size of the structure 

defining Ã. For instance, the structure of Ã must be convex and on the other hand, the deviation of the uncertain 

parameters (scale) must be properly scaled in order for the robust counterpart to be computationally tractable 

(Gregory, Darby-Dowman, & Mitra, 2011). 



 

 31 

Table 2.3. Examples of uncertainty set 

Uncertainty type Uncertainty set Ã Author 

Box/Interval Ã(Ç) = È¿ÀF) = ¿F) +  F)¿ÄF)|  ∥ Ê ∥Ë ≤ ΦÍ Soyster, 1973 

Norm-based16 Ã(Õ) = ÈA| ÖØbC·¾bÙÚd − C·¾(Ù)dÖ ≤ Δ Í  Bertsimas et al. (2004) 

Ellipsoid Ã(Û) = È¿ÀF)| ∥ Ê ∥' ≤ ΩÍ  Ben-Tal & Nemirovski (1998) 

Interval+ellipsoid  Ã(Û) = È¿ÀF)| ∥ Ê ∥Ë ≤ 1, ∥ Ê ∥' ≤ ΩÍ  Ben-Tal& Nemirovski (2000) 

Polyhedral Ã(Ü) = È¿ÀF)| ∥ Ê ∥X ≤ Γ Í --- 

Interval+polyhedral Ã(Ü) = È¿ÀF)|  ∥ Ê ∥Ë ≤ 1, ∥ Ê ∥X ≤ Γ Í Bertsimas &Sim(2004) 

CLT – based set17 Ã(Ý) = È¿ÀF)Þ Þ∑  F) − -ß�FWX Þ ≤ ¤Ñ√- Í  Bandi & Bertsimas (2012) 

 

problem. Bertsimas & Sim (2004) termed the trade-off as the price of robustness. The price paid 

to gain a robust solution is seen as the difference between the objective function value of the 

nominal model and the case for the specific value of the robust model at ΓF. In other words, as 

the parameter (ΓF) increases, there is more protection and robustness and high price to pay in 

terms of the performance of the robust model. Notice that Ã is constructed to meet a 

probability guarantee expectation of the modeler and should, therefore, take cognizance of 

the type of Ã since it determines the computational complexity of the robust counterpart 

(Bertsimas, Brown, & Caramanis, 2011). Figure 2.10 illustrates the distribution of the random 

variable  F) defined with the uncertainty dynamics  Ã = {(4 + 5 X, 2 + 3 ')|−1 ≤  X,  ' ≤ 1}. 

The uncertainty sets which takes the shape of a box, ellipsoid and polyhedron with unit 

parameter (i.e. ΦF = ΩF = ΓF = 1) as shown below are demonstrated in Appendix A. In 

Chapter 3, these uncertainty sets combined with the interval uncertainty set and their 

corresponding robust counterparts are reviewed. Subsequently, we provide a reduced robust 

counterpart for these sets. For each type of uncertainty set that is chosen, the goal of the 

modeler is to ensure that the constraint remains satisfied for any possible realization of the 

uncertain parameters. Choosing Ã such that the constraints are not violated when the 

uncertain parameters take their worst – case values is therefore very important since the 

computational tractability, the complexity of the robust counterpart and conservativeness of 

the solution all depend on Ã.     

                                                 
16 Ø is an invertible matrix and C·¾bÙÚd denote the vector obtained by stacking its rows of matrix Ù on top of one 

another.  
17 ß and Ñ are the mean and variance of the JJâ variable  F) .  



 

 32 

           

(a) Box uncertainty set     (b) Ellipsoidal uncertainty set      (c) Polyhedral uncertainty set 

Figure 2.10. Plot of basic uncertainty sets 

 

 

2.2.3.2 Formulating the robust counterpart  

Under the robust counterpart formulation, we are concerned with solutions which have the 

best performance under most realizations of the uncertain technological coefficients rather 

than a usual optimal solution (Ben-Tal, El Ghaoui, & Nemirovski, 2009). The concern, 

therefore, is to select a computationally tractable uncertainty set such that the gap between 

the optimal solution in the nominal case and the robust optimal value is as close as possible. 

We outline three steps for obtaining the robust counterpart for a specific Ã. Here we use the 

budget of uncertainty of Bertsimas & Sim (2004) for the purpose of its linear tractability. 

Step 1 (Worst-case reformulation): The worst-case formulation of the uncertain constraint in 

model (2.15)  is given by: 

¿F)R) + maxÅ>A∈Ã ∑ ¿ÄF)R) F))∈Æ> ≤ ÁF      ∀J (2.18) 

where Ã(Ü>) = ¿ÀJ0|∥ Ê ∥Ë ≤ 1, ∥ Ê ∥X ≤  ΓF  is used as the uncertainty set. The subproblem 

(inner maximization problem) is equivalently expressed as the following:  

maxÅ>A∈Ã ∑ ¿ÄF)R) F))∈Æ> =
⎩⎪⎨
⎪⎧max ∑ ¿ÄF)R) F))∈Æ>Q. t.∑ | F)| ≤ ΓF)∈Æ>0 ≤  F) ≤ 1 ∀0 ∈ ÂF

  

 

(2.19) 

Step 2 (Duality): We take the dual of the subproblem. Note that the subproblem and its dual 

yield the same optimal objective value by the strong duality theorem. Hence, model (2.19) is 

equivalent to the following:  

min ∑ çF) + %FΓF)∈Æ>s. t%F + çF) ≥ ¿ÄF)R) ∀0 ∈ ÂFçF) ≥ 0 0 ∈ ÂF%F ≥ 0
  

 

(2.20) 
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Step 3 (Robust counterpart): We can now write the robust counterpart for uncertain constraint 

in model (2.15) noting that model (2.20) is still feasible for at least one çF) and %F if we omit the 

minimization term. Now adding the objective function max ¾�R of the LP, we arrive at the 

following robust counterpart.  

max ∑ ¾)R)�)WXs. t.∑ ¿F)R)�)WX + %FΓF + ∑ çF)�)WX ≤ ÁF J = 1, … , K%F + çF) ≥ ¿ÄF)S) ∀J, ∀0 ∈ ÂFçF) ≥ 0 ∀J, 0 ∈ ÂF%F ≥ 0 J = 1, … , KR) ≥ 0 0 = 1, … , -
  

 

 

(2.21) 

 

2.2.3.3 Probability guarantees 

To reduce the strict conservativeness of robust solutions, the modeler might allow for a certain 

degree of constraint violation. Probability guarantee are given on the feasibility of the model 

constraints for all the uncertain parameters taking values in the uncertainty set and beyond18. 

The use of probability indicator enables the modeler to measure the level of satisfaction of the 

constraints. In this case, the probability of constraint feasibility becomes akin to the chance - 

constrained model where one is interested in the guarantee level in which at least a constraint 

is violated. Bertsimas & Sim (2004) remarked that if nature is restricted in its behavior in that 

only a subset of the uncertain parameters change, a guarantee for the robust model is required 

to ensure that the robust solution will be feasible deterministically and with high probability. 

Using their proposed budget of uncertainty for the robust counterpart, they suggested that 

the solution of the robust model will remain feasible if up to ⌊ΓF⌋ of the uncertain coefficients 

change within their bound and one coefficient ¿F� changes by (ΓF − ⌊ΓF⌋)¿ÄF�. Further, Bertsimas 

& Sim (2004) further proved that the probability of constraint violation, Prb∑ ¿ÀF)R)∗ > Á) d is 

bounded above by exp ª− ÜÏ
'|Æ>|¬. Similarly, Ben-Tal & Nemirovski (2000) proved the bound 

exp ª− ÛÏ
' ¬ for the robust counterpart with interval-based ellipsoidal uncertainty set. Bertsimas 

et al. (2004) proved the bound 
XXlÕÏ for the robust counterpart with norm-based uncertainty 

set19. Usually, if the probability distribution for the uncertainty exists, then it is desirable to 

determine the upper bound for constraint violation or lower bound for constraint satisfaction 

apriori or posterior. A stronger bound obtained indicates that the robust solution is feasible 

with high probability.  

                                                 
18 It is important to note that, in reality the uncertainty defined does not cover the whole uncertain space containing 

all the possible realization of the uncertain parameters otherwise the probability guarantee for constraint feasibility 

will be equal to 1.  

19 Note that the dynamics of uncertainty assumed to have bounded and symmetric distributions.  
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2.2.4 Motivating example 

Considering model (2.15), the decision variable is a positive variable (i.e. R) ∈ ℝl� ) and so is 

the robust counterpart uncertain constraint (2.17). This is the main focus of Chapter 3. We 

compare the computational complexity of this approach as against the formulation of 

Bertsimas & Sim (2004) and others where the decision variable is a free variable. Bertsimas & 

Sim (2004) robust counterpart where the R) is a free variable with the bounds ¶) ≤ R) ≤ L) is 

given as:  

max ∑ ¾)R)�)WXs. t.∑ ¿F)R)�)WX + %FΓF + ∑ çF)�)WX ≤ ÁF J = 1, … , K%F + çF) ≥ ¿ÄF)S) ∀J, ∀0 ∈ ÂF¶) ≤ R) ≤ L) 0 = 1, … , -−S) ≤ R) ≤ S) ∀J, ∀0 ∈ ÂFçF) ≥ 0 ∀J, ∀0 ∈ ÂF%F ≥ 0 J = 1, . . , KS) ≥ 0 ∀J, ∀0 ∈ ÂF

  

 

 

 

(2.22) 

We compare the advantage model (2.21) has on model (2.22) when R) is defined for only 

positive variables with an example and the leave the rest of the discussion for the next chapter. 

Consider the following simple example given in Bazaraa, Jarvis, & Sherali (2010), page 231: 

min ê = −2RX − 4R' − Rµs. t.           2RX + R' + Rµ ≤ 10             RX + R' − Rµ  ≤  4                           0 ≤ RX ≤ 4                           0 ≤ R' ≤ 6                           1 ≤ Rµ ≤ 4
  

The nominal values are (2, 1, 1) and (1, 1, -1) which are the coefficients of the first and second 

constraint respectively. The problem is in its minimal form and by the simplex algorithm, the 

optimal solution is (RX∗, R'∗, Rµ∗) =  (0.67, 6, 2.67) and the optimal objective function value is −28 

which can be computed under 4 iterations. Assume that the uncertain coefficients are 10% 

accurate approximations of the “true” vector of coefficients. Let  ÂX =  {1,3} and Â' =  {2}. The 

corresponding robust counterpart example based on model (2.21) is:  
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RCE(1) min ~ =  −2RX − 4R' − Rµs. t.2RX + R' + Rµ + %XΓ + %µΓ + çXX + çXµ ≤ 10   RX + R' − Rµ + %'Γ + ç'' ≤ 4                           %X + çXX ≥ 0.1RX                           %µ + çXµ ≥ 0.2Rµ                           %' + ç'' ≥ 0.4R'                                 çXX, çXµ, ç'' ≥ 0                                     %X, %', %µ ≥ 0                                          0 ≤ Rµ ≤ 4                                          0 ≤ R' ≤ 4                                          1 ≤ Rµ ≤ 6

 

On the hand, the robust counterpart based on model (2.22) which is the robust formulation of 

Bertsimas & Sim (2004) is:  

RCE(2) min Q =  −2RX − 4R' − Rµs. t.2RX + R' + Rµ + %XΓ + %µΓ + çXX + çXµ ≤ 10   RX + R' − Rµ + %'Γ + ç'' ≤ 4                           %X + çXX ≥ 0.1SX                           %µ + çXµ ≥ 0.2Sµ                           %' + ç'' ≥ 0.4S'                                 çXX, çXµ, ç'' ≥ 0                                     %X, %', %µ ≥ 0                                   −SX ≤ RX ≤ SX                                   −S' ≤ R' ≤ S'                                   −Sµ ≤ Rµ ≤ Sµ                                          0 ≤ Rµ ≤ 4                                          0 ≤ R' ≤ 4                                          1 ≤ Rµ ≤ 6                                   SX, S', Sµ ≥ 0

 

 

Note that the example provided is defined for positive values of R) only. This makes RCE(1) 

more appropriate than RCE(2). Table 2.4 summarizes the optimal solutions for different Γ 

values. Note that whiles optimal solution to RCE(1) and RCE(2) are equal, the latter entails 

more iteration and execution time to solve the problem. 

 

Table 2.4. Robust counterpart solutions to motivating example 

 Robust parameter Γ = 0 Γ = 0.4 Γ = 0.6 Γ = 1 

~∗
 −28.0 −27.73 −27.57 −25.82 (RX∗, R'∗, Rµ∗, SX∗, S'∗, Sµ∗) (0.67,6.0,2.67) (0.26,6.00,3.22) (0.05,6.00,3.48) (0.00,5.52,3.73) Q∗
 −28.0 −27.73 −27.57 −25.82 (RX∗, R'∗, Rµ∗) (0.67,6.0,2.67) (0.26,6.00,3.22) (0.05,6.00,3.48) (0.00,5.52,3.73) 
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2.3 Robust DEA 

Robust DEA (henceforth RDEA) is the application of RO in DEA. The first application of the 

robust optimization to DEA began in 2008 with Sadjadi & Omrani  when they investigated 

the performance of utility service providers where the underlying data was uncertain. The 

authors focused on providing a robust and reliable performance ranking of DMUs for 

management decision in the utility service. Furthermore, the work of Sadjadi et al (2011a),  

Wang & Wei (2010) and Shokouhi et al (2010)  bolstered the need for robust efficiency measure 

via the RO. An efficiency score that is robust is expected to withstand disturbances in order 

to keep its ranking stable. In fact, the term ‘robust’ in DEA is generic since every approach 

that seeks to preserve the efficiency scores of DMUs is termed as a robust approach. Here, the 

RDEA is robustly referred because of the RO techniques infused in. It is specifically an 

uncertainty driven efficiency measure to acceptable robust efficiency scores. In this study, the 

RDEA approach to robustness is defined as: 

a non-parametric frontier tool that utilizes robust optimization methods to immunize uncertain 

inputs and outputs data of DMUs and provide probability guarantee for reliable efficiency 

scores, robust discrimination and ranking of DMUs.   

The RDEA performance measure can be measured through the uncertainty set – based robust 

approach or the discrete scenario - based robust approach. As demonstrated in the previous 

sections, the contribution made in this study relate to the uncertainty set – based robust 

approaches to DEA. We first review the few studies made in the RDEA and provide a 

characterization of RO in the DEA to different uncertainty sets. The review allows us to 

highlight key areas that require attention in the methodological development. For 

completeness, some of the concerns which are addressed in the succeeding chapters will be 

restated in this section.  

2.3.1 A literature review of RDEA 

As aforementioned, the concept of RO in DEA began with the work of Sadjadi & Omrani 

(2008). The authors in their attempt to measure the efficiency of the electricity distribution 

companies in Iran but faced with output data uncertainty proposed two robust CCR models 

based on the robust approaches of Ben-Tal & Nemirovski (2000) and Bertsimas & Sim (2004). 

They compared their proposed models to the stochastic frontiers analysis technique in order 

to understand the effect of different data perturbations to the DEA efficiency. To further 

determine the input and output targets values of the electricity companies, Sadjadi et al 

(2011a) proposed an interactive RDEA which searches the envelopment frontier by combining 

DEA and multi-objective linear programming method such as the STEM. Wang & Wei (2010) 

use the robust approach of Ben-Tal & Nemirovski (2000) to similarly propose an input and 

output robust CCR models. Like the earlier researchers, their models avoid uncertainty 
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measurement in the DEA normalization constraints and so where an input-oriented model is 

adopted, uncertainty is measured in the output data and vice versa. 

  Shokouhi et al (2010) proposed a general RDEA model in which inputs and outputs 

are constrained in an uncertainty set with data uncertainties covering the interval DEA 

approach. They used the robust approach of Bertsimas & Sim (2004) where they embraced 

Monte Carlo simulation to compute for the range of Gamma values for the conformity of the 

ranking of the DMUs. A similar modeling approach is made in a modified RDEA in Shokouhi, 

Shahriari, Agrell, & Hatami-Marbini (2014).  Sadjadi & Omrani (2010) propose a combine 

bootstrapping and RDEA models that overcome the effect of perturbation and sampling error 

inherent in the input and output data. The proposed model is used to measure the efficiency 

of telecommunication companies in Iran. A robust super-efficiency model based on the 

ellipsoidal uncertainty set in envelopment CCR model is proposed in Sadjadi et al (2011b) to 

measure the efficiency of gas companies in Iran.  

 Hafezalkotob et al. (2015) consider the discrete set of scenarios used in the RO of 

Mulvey, Vanderbei, & Zenios (1995) to propose an RDEA for the electricity distribution 

companies in Iran. Different scenario set – based RDEA with specified probability for input 

and output data are also studied in Zahedi-seresht, Jahanshahloo, & Jablonsky (2017) in an 

attempt to derive the ranking of DMUs, being robust with respect to the changes of inputs 

and outputs in the different scenarios. Esfandiari, Hafezalkotob, Khalili-Damghani, & 

Amirkhan (2017) propose a robust two-stage DEA under the discrete set of scenarios. In the 

two-stage structure, the authors proposed two approaches: robust centralized (cooperative) 

and robust decentralized (non-cooperative) games models with application to the banking 

industry. Amirkhan, Didehkhani, Khalili-Damghani, & Hafezalkotob (2018) combined fuzzy 

set approaches and the discrete set scenario – based RO approach to deal with mixed fuzzy - 

robust uncertainty in the input/output data of DMUs. Ranking the robust efficiency of small 

and medium -sized enterprises with the fuzzy – robust DEA (FR-DEA), the authors showed 

under the CRS and VRS conditions that the FR-DEA maintain the advantages of both fuzzy 

and robust DEA and is capable of calculating the lower and upper bound efficiency of DMUs.  

 Lu (2015) is the first to develop RDEA models from the variable returns to scale 

technology using both the Ben-Tal & Nemirovski (2000) robust model and Bertsimas & Sim 

(2004) budget of uncertainty set to evaluate algorithm performance. The developed models, 

however, fall short of uncertainty in the normalization constraint. Arabmaldar, Jablonsky, & 

Saljooghi (2017) propose a new RDEA model by considering uncertainty in the CCR equality 

constraint. The proposed model is extended to a robust super – efficiency measure for a set of 

DMUs. Toloo & Mensah (2018)  propose a similar reduced robust DEA (RRDEA) model with 

inequality constraint for the BCC model using the robust approach of Bertsimas & Sim (2004). 

They show that the proposed RRDEA reduces model complexity by half for nonnegative 

decision variables which were demonstrated with 250 banks in Europe.  Omrani (2013) 

introduces an RDEA to find the common set of weights (CSW) in DEA with uncertain data. 
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 Table 2.5. Advances in robust optimization applications in DEA 

Authors  DEA model Robust approach*   Uncertainty var Application area 

Sadjadi & Omrani (2008)  CCR BN & BS Output Energy  

Shokouhi et al. (2010)   CCR BS & Interval Input & output No application 

Sadjadi & Omrani (2010)b  CCR BS & Bootstrap Output Telecommunication 

Wang & Wei (2010)  CCR BN Input or output No application 

Sadjadi et al. (2011)a                            SEð BS Input & output  Energy 

Sadjadi et al. (2011)b MOROñ BS Input & output Energy 

Omrani (2013)  CSWó  BS Input & output Energy 

Lu (2015)  BCC BN & BS Output Algorithm performance 

Mardani & Salarpour (2015)  

 

CCR BS & Interval Input & Output Agriculture 

Hafezalkotob et al. (2015)    CCR Mulvey Input & output Energy 

Atıcı & Gülpınar (2016)  CCR BS Output Agriculture 

Wu et al. (2017)  

 

CCR Maxmin Output 

 

Hybrid poplar clones 

Zahedi-seresht et al. (2017)  

 

 

CCR Mulvey Input & output Engineering company 

Esfandiari et al. (2016)  

 

Two-Stage Mulvey Input & output Bank branches  

Arabmaldar et al. (2017)  CCR/SE  BS Input & output Energy/forest district 

Toloo & Mensah (2018)   BCC BS Input & output Banking  

Salahi et al. (2016)  CCR-CSW Interval set Input & output 

 

Energy/forest district 

Hladík (2019)  

 

Fractional 

prog. 

Norm-based Input & output 

 

No application 

Aghayi & Maleki (2016)  DDFõ  

 

BS Input & output 

 

Banking  

Bayati & Sadjadi (2017) Network  BN & BS Input & output 

 

Energy  

*BN = Ben-Tal & Nemirovski, BS = Bertsimas & Sims, ö÷ø = Super Efficiency MORùú = Multi-Objective Model 

for Ratio Optimization, CSûü =  Common Set of Weights, DDýþ =  Directional Distance Function  

 

The common set of weight under interval uncertainties are computed from the optimistic 

viewpoint in Salahi et al. (2016). In a related study, Aghayi, Tavana, & Raayatpanah (2016)  

presented a robust DEA with a CSW to varying degrees of conservatism. Here the authors 

used the goal programming technique to compute the relative efficiencies of the DMUs by 

producing CSWs in one run and in addition ranking the DMUs using the level of conservatism 

of the decision maker.  

Majority of the contributions made so far in the RDEA are application driven. As noted 

in Sadjadi & Omrani (2008) and Lu (2015), the applications often require developments in 

methodology and raise some practical questions about existing RDEA models, generating 

challenges as to how to advance the field. The applications made are notably on utility service 
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with ranking seeking a trade-off between robustness and performance. See Sadjadi & Omrani 

(2008); Salahi et al. (2016) ; Bayati & Sadjadi (2017); Soltani, Tabriz, & Sanei (2017). Other 

applied disciplines include agriculture – efficiency of potato production (Mardani & 

Salarpour, 2015), the performance of olive – oil production (Atıcı & Gülpınar, 2016), banking 

(Esfandiari et al., 2017; Aghayi & Maleki, 2016) and others (Kaviani & Abbasi, 2015). Table 2.5 

summarizes the major robust modeling approaches in the RDEA literature. The application 

areas are provided in the last column.  

 

2.3.2 Characterization of DEA models with alternative uncertainty sets 

In this section, we characterize the DEA models to some uncertainty sets given in Table 2.3. 

The models are formulated using the following symbols: 

RÀF) = (RÀFX, RÀF', … , RÀF�): the uncertain input vector of DMU), 0 = 1, … , - RÀFT = (RÀTX, RÀT', … , RÀT�): the uncertain input vector of DMUT SÀN) = (SÀNX, SÀN', … , SÀN�): the uncertain output vector of DMU), 0 = 1, … , - SÀNT = (SÀTX, SÀT', … , SÀT�): the uncertain output vector of DMUT RF) = (RFX, RF', … , RF�): the nominal input vector of DMU), 0 = 1, … , - RFT = (RTX, RT', … , RT�): the nominal input vector of DMUT SN) = (SNX, SN', … , SN�): the nominal output vector of DMU), 0 = 1, … , - SNT = (STX, ST', … , ST�): the nominal output vector of DMUT RÄF) = (RÄFX, RÄF', … , RÄF�): the deviation from a nominal input vector of DMU) SÄN) = (SÄNX, SÄN', … , SÄN�): the deviation from nominal output vector of DMU) ÿ) = (ÿX, ÿ', … , ÿ�): set of inputs of DMU) that are subject to uncertainty �) = (�X, �', … , ��): set of outputs of DMU) that are subject to uncertainty 

 

Definition 2.8. A DMU´ = (g´ , `´) is uncertain if there exist J ∈ ÿ´ or P ∈ �´ . Moreover, for 

each input and output data, uncertainty index will be implemented in the model accordingly 

as below: 

        DMU) =  1  J ∈ ÿ´0 J ∉ ÿ´         or      DMU) =  1  P ∈ �´0 P ∉ �´    

In what follows, the uncertain inputs and outputs are defined by RÀF) =  RF) +  F)? RÄF) and SÀN)  = SN) +  N)7 SÄN) where  F)?  and  N)7
 are the random variables of the uncertain input and output 

respectively. Observe that Ã = "(g#, #̀) ∈ ℝÞ³AÞlÞ"AÞ$ ,  F)? ∈ ℤ?bΓ)?d,  N)7 ∈ ℤ7ªΓ)7¬ or  F)? ∈ℤ?bΩ)?d,  N)7 ∈ ℤ7ªΩ)7¬ & 

where  

 



 

 40 

ℤ?bΓ)?d = "b F)? d ∈ ℝÞ³AÞ$ ∑  F)?F∈³A ≤ Γ)? , Þ F)? Þ ≤ 1, ∀J ∈ ÿ)& 

 

ℤ7ªΓ)7¬ = "ª N)7 ¬ ∈ ℝÞ"AÞ$  ∑  N)7N∈"A ≤ Γ)7, $ N)7 $ ≤ 1, ∀P ∈ �)&  

 

 

is in the case of budget of uncertainty of Bertsimas & Sim (2004) and  

 

ℤ?bΩ)?d = "b F)? d ∈ ℝÞ³AÞ$ RF) + ∑ 'F)?  F)?F∈³A , ÖÊ)?Ö' ≤ Ω)? , ∀J ∈ ÿ)& 

 
 

ℤ7ªΩ)7¬ = "ª N)7 ¬ ∈ ℝÞ"AÞ$  SN) + ∑ 'N)7  N)7 ,N∈"A (Ê)7(' ≤ Ω)7 , ∀P ∈ �)&  

 

in the case of ellipsoidal uncertainty set (Ben-Tal & Nemirovski, 2000).  

 

In matrix form, the uncertain inputs and outputs can be expressed as the following: 

 

)RÀXX RÀX' ⋯ RÀX�RÀ'X RÀ'' ⋯ RÀ'�⋮ ⋮ ⋮ ⋮RÀZX RÀZ' ⋯ RÀZ�
* = )RXX RX' ⋯ RX�R'X R'' ⋯ R'�⋮ ⋮ ⋮ ⋮RZX RZ' ⋯ RZ�

* + Ê0R )RÄXX RÄX' ⋯ RÄX�RÄ'X RÄ'' ⋯ RÄ'�⋮ ⋮ ⋮ ⋮RÄZX RÄZ' ⋯ RÄZ�
*  

 

and  

  

)SÀXX SÀX' ⋯ SÀX�SÀ'X SÀ'' ⋯ SÀ'�⋮ ⋮ ⋮ ⋮SÀVX SÀV' ⋯ SÀV�
* = )SXX SX' ⋯ SX�S'X S'' ⋯ S'�⋮ ⋮ ⋮ ⋮SVX SV' ⋯ SV�

* + Ê0S )SÄXX SÄX' ⋯ SÄX�SÄ'X SÄ'' ⋯ SÄ'�⋮ ⋮ ⋮ ⋮SÄVX CV' ⋯ SÄV�
*  

 

where  

 

)RXX RX' ⋯ RX�R'X R'' ⋯ R'�⋮ ⋮ ⋮ ⋮RZX RZ' ⋯ RZ�
*, )SXX SX' ⋯ SX�S'X S'' ⋯ S'�⋮ ⋮ ⋮ ⋮SVX SV' ⋯ SV�

* and )RÄXX RÄX' ⋯ RÄX�RÄ'X RÄ'' ⋯ RÄ'�⋮ ⋮ ⋮ ⋮RÄZX RÄZ' ⋯ RÄZ�
* , )SÄXX SÄX' ⋯ SÄX�SÄ'X SÄ'' ⋯ SÄ'�⋮ ⋮ ⋮ ⋮SÄVX CV' ⋯ SÄV�

* 

 

are respectfully the nominal value and deviation matrix of uncertain inputs and outputs. It 

will be assumed that the unknown inputs and outputs data take their values from the 

symmetric interval. i.e.  RÀF) ∈ +RF) − RÄF), RF) + RÄF), and SÀN) ∈ +SN) − SÄN) , SN) + SÄN), and the 

random variables,  F)?  and  N)7
 are independent and distributed symmetrically in the interval 
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[-1, 1]. To model uncertainty in the DEA model (in the case of the multiplier model), we will 

make use of Theorem 2.4. This is very important since by the dint of the normalization 

constraint ∑ CFRFTZFWX = 1 in model (2.8) input uncertainty analyses in the constraint for robust 

analysis could lead to a restriction on the constraint and probable model infeasibility. 

Therefore model (2.23) with inequality in the normalization constraint and uncertainty in the 

output objective function expressed as a constraint becomes very useful for the robust DEA 

modelling. The subject matter uncertainty in equality constraint of DEA is treated in Section 

3.4.1. 

Theorem 2.4. The CCR model (2.6) is equivalent to the following model:  

max �s. t.� − ∑ LNSÀNTVNWX ≤ 0∑ CFRÀFTZFWX ≤ 1∑ LNSÀN)VNWX − ∑ CFRÀF)ZFWX ≤ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , Q
  

 

 

(2.23) 

 

Proof. See (Toloo, 2014).  

 

See also Chapter 3 for the proof using the BCC model and Chapter 4 for the similar theorem 

on the output oriented model.  

 

2.3.2.1 A robust production possibility set 

The PPS under uncertainty comprises the set of all feasible production plan or input-output 

combinations available to DMU) in the uncertain space. It is defined as the set:  

 N =  {(g#, #̀) ∈ ℝZlV| #̀  is produced from g#} (2.24) 

We suppose that  RÀF) and SÀN) are constrained in an arbitrary uncertainty set, Ã ⊂ ℝ�×(ZlV). To 

define a robust PPS (PPSN) and obtain an accurate mathematical definition, we consider the 

following axioms: 

 

Assumption 2. Axioms for the set  N:  

(A1): The following set of uncertain activities corresponding to the observed activity DMU) is a subset of PPSN (for 0 = 1, … . , -):    

.) = /(gz, z̀)0R̅F = /R#J0 if J ∈ ÿ)RF) otherwise ;     S�N = /S#P0 if P ∈ �)SN) otherwise 1 
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Note that all observed activities are feasible, i.e. DMU) = (g), `)) belongs to PPSN for = 1, … , - 

if we let  F)? =  N)7 = 0; ∀J ∈ ÿ) and ∀P ∈ �). In addition, if DMU) is a certain observation, then .) is a singleton, namely .) = È(g), `))Í. 

(A2): All dominated activities of a feasible activity belong to PPSN, i.e. if (g, `) ∈ PPSN, 

then ∀gz ≥ g, ∀z̀ ≤ `, (gz, z̀) ∈ PPSN. 

(A3): If an activity (g, `) is feasible, then ∀~ > 0, (~g, ~`) is a feasible activity b(g, `) ∈ PPSN ⟹ ∀~ > 0, (~g, ~`) ∈ PPSNd.  

(A4): The convex combination of each two feasible activities is a feasible activity, i.e. (gX, `X), (g', `') ∈ PPSN ⇒ ∀� ∈ [0,1], �(gX, `X) + (1 − �)(g', `') ∈ PPSN. 

We can define the following robust production possibility set satisfying (A1) through (A4): 

PPSN =  {(g, `)|g ≥ �z�, ` ≤ �z�, � ≥ h�} 
      

(2.25) 

where �z = +R̅F), and �z = +S�N),. 
Accordingly, the following models measure the robust technical efficiency of DMUT 

with input and output orientations, respectively:  

min �s. t(�gT,  `T) ∈ PPSN   (2.26) 

max £s. t(gT, £`T) ∈ PPSN   (2.27) 

Two criteria are independently used in obtaining the robust efficiency: worst-case and best-

case criteria. A worst-case robust efficiency is a conservative or pessimistic approach 

concerned with a guaranteed level of performance for all feasible realization of uncertain 

inputs and outputs in an uncertainty set while the best-case provides an optimistic view and 

consist of minimizing (maximizing) the input (output) over the set of optimistic feasible 

constraints. The duality analysis with the worst-case is discussed in Chapter 4. In what 

follows, we characterize DEA models to alternative uncertainty sets based on the PPSN 

defined.  

 

2.3.2.2 RDEA induced by norm uncertainty set 

Following Bertsimas et al., (2004), the general norm – induced symmetric uncertainty set for 

the inputs and outputs data is formulated as the following: 

Ã(∆A) = "(4, 5) $(Ø? ªC·¾b46d − C·¾(4)¬( ≤ Δ)?, (Ø7 ªC·¾b56d − C·¾(5)¬( ≤ Δ)7&  
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where 46) = ÈRÀF)Í)WX,…,�, 56) = ÈSÀN)Í)WX,…,�, 4) = ÈRF)Í)WX,…,�, 5) = ÈSN)Í)WX,…,� and Ø? and Ø7 are 

the invertible matrix of the input and output vector 4) and 5) respectively. The robust RDEA 

to this set lead to the following model 

max �s. t.� − ∑ LNSNTVNWX + Δ)7‖(5T�)�XLN‖∗ ≤ 0∑ CFRFTZFWX + Δ)?‖(4T�)�XCF‖∗  ≤ 1∑ LNSNTVNWX − ∑ CFRFT +ZFWXΔT7‖(5T�)�XLN‖∗ + ΔT?‖(4T�)�XCF‖∗ ≤ 0∑ LNSN)VNWX − ∑ CFRF) +ZFWXΔ)7 (b5)�d�XLN(∗ + ΔF? (b4)�d�XCF(∗ ≤ 0 0 ≠ 8CF ≥ 0 ∀JLN ≥ 0 ∀P

  

 

 

 

(2.28) 

 

where ‖∙‖∗ is the dual normal of ‖∙‖ defined as ‖:‖∗ ≐ max{‖<‖=X} :> <  for the vector ?F =
{?X, … , ?�}.  The norm ‖∙‖ is arbitrary. We use the ¶¹ − norm defined as ‖@‖¹ = (∑ |?F|¹�FWX );A  

with % ≥ 1 which is commonly considered for ‖∙‖ in literature. Note that ‖@‖¹∗   is the ¶B − 

norm ‖:‖¹∗  with ç = 1 + 1/(% − 1). Model (2.28) has the following properties: 

 

 

                                  Figure 2.11: Norm in a unit circle for different values of % 

 

Properties of the model:  

 The terms Δ)7‖(5T�)�XLN‖∗ and Δ)?‖(4T�)�XCF‖∗ provide the necessary protection that 

ensures the feasibility of the normalization and common constraints for each model 

run 

 Let Δ) = Δ)? and Δ)7, the parameter Δ) controls the tradeoff between robustness and 

performance. 
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 The model is convex and can be linear or nonlinear depending on the specific norm 

used.  

 For the ¶¹ − norm, considering the random vector  F) = (RÀF) − RF))/RÄF) the following 

models emerge for special values of %. 

a. If % = 1 so that ‖Ê‖X = ∑ Þ F)Þ�)WX , model (2.28) is reformulated as an LP with 

polyhedral uncertainty set. 

b. If  % = 2 so that ‖Ê‖' = ª∑ Þ F)Þ'�)WX ¬;Ï
, model (2.28) culminates into a second 

order cone problem with ellipsoidal uncertainty set. 
 

c. If % = ∞ so that ‖Ê‖Ë = max)Þ F)Þ, model (2.28) is reformulated as an LP with 

box uncertainty set. 

 

Figure 2.11 shows the norm uncertainty for different values of %.  

 

2.3.2.3 RDEA induced by box uncertainty set 

The first kind of uncertainty set proposed by Soyster (1973)  is the interval set, a special case 

of the box uncertainty set when the parameter Φ) = 1. Considering the box uncertainty  

Ã(ÇA) = "(g#F , #̀N) $Ö(RÀF) − RF))/RÄF)ÖË ≤ Φ)?, Ö(SÀN) − SN))/SÄN)ÖË ≤ Φ)7& 

for the uncertain inputs and outputs, the robust counterpart DEA has the following 

formulation: 

max �s. t.� − ∑ LNSNTVNWX + Φ)7 ∑ LNSÄNT ≤ 0N∈"A∑ CFRFTZFWX + Φ)? ∑ CNRÄFTF∈³A  ≤ 1∑ LNSNTVNWX − ∑ CFRFT +ZFWXΦT7 ∑ LNSÄNTN∈"8 + ΦT? ∑ CNRÄFTF∈³8 ≤ 0∑ LNSN)VNWX − ∑ CFRF) +ZFWXΦ)7 ∑ LNSÄN)N∈"A + Φ)? ∑ CNRÄF)F∈³A ≤ 0 0 ≠ 8CF ≥ 0 ∀JLN ≥ 0 ∀P

  

 

 

 

(2.29) 

 

where ΦF and ΦN are the positive robust parameter for the model inputs and outputs. Model 

(2.29) has the following properties.  

 

Properties of the model:  

 The terms Φ)7 ∑ LNSÄNTN∈"A  and Φ)? ∑ CNRÄFTF∈³A  give the necessary protection that ensures 

the feasibility of the normalization and common constraints for each model run 
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 The model with the interval uncertainty ªΦ)? = Φ)7 = 1¬ can be very conservative and 

with a bad performance. 

 Let Φ) = Φ)? + Φ)7, the parameter Φ) controls the tradeoff between robustness and 

performance. The model allows the DM a flexibility for robustness separately for the 

uncertain inputs and outputs. 

 The model is an LP. 

 

2.3.2.4 RDEA induced by polyhedral uncertainty set  

Dimitris Bertsimas, Brown, & Caramanis (2011) considers a polyhedral uncertainty set in a 

case where the uncertainty affects the constraints in an affine manner. The polynomial 

uncertainty set can be viewed as a special case of the norm uncertainty set, i.e. when % = 1 in 

the ¶¹ − norm in model (2.28). To illustrate this, consider the uncertainty sets in terms of the 

uncertain inputs and outputs as below: 

Ã(ÜA) = "(g#F, #̀N) $Ö(RÀF) − RF))/RÄF)ÖX ≤ Γ)?, Ö(SÀN) − SN))/SÄN)ÖX ≤ Γ)7& 

The corresponding robust model has the following formulation: 

 max �s. t.� − ∑ LNSNT + %T7ΓT7VNWX ≤ 0∑ CFRFTZFWX + %T?ΓT? ≤ 1∑ LNSNTVNWX − ∑ CFRFT + %T7ΓT7 + %T?ΓT? ≤ 0ZFWX∑ LNSN)VNWX − ∑ CFRF) + %)7Γ)7 + %)?Γ)? ≤ 0ZFWX 0 ≠ 8%)7 ≥ LNSÄN) ∀0, ∀P ∈ �)p)? ≥ CFRÄF) ∀0, ∀J ∈ ÿ)%)? , %)7 ≥ 0 ∀0CF  ≥ 0 ∀JLN ≥ 0 ∀P

  

 

 

 

(2.30) 

 

where Γ)? and Γ)7
 are the positive robust parameter for the model inputs and outputs.   

 

Properties of the model:  

 The uncertainty affects the constraints in an affine manner.  

 The model is a linear model. 

 Let Γ) = Γ)? + Γ)7
, the model is flexible for the tradeoff between robustness and 

performance using parameter  Γ).  
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2.3.2.5 RDEA induced by polyhedral and interval uncertainty set 

The robust model induced by the polyhedral and interval uncertainty set is equivalent to the 

robust model based on the cardinality constrained uncertainty or the C −norm20 proposed in 

Bertsimas & Sim (2004). The corresponding RDEA model is formulated as the below:  

 max �s. t.� − ∑ LNSNT + %T7ΓT7 + ∑ çNTN∈"8VNWX ≤ 0∑ CFRFTZFWX + %T?ΓT? + ∑ ?FTF∈³8 ≤ 1∑ LNSNTVNWX − ∑ CFRFT + %T7ΓT7 + %T?ΓT? + ∑ çNTN∈"8 + ∑ ?FTF∈³8 ≤ 0ZFWX∑ LNSN)VNWX − ∑ CFRF) + %)7Γ)7 + %)?Γ)? + ∑ çN)N∈"A + ∑ ?F)F∈³A ≤ 0ZFWX 0 ≠ 8%)7 + çN) ≥ LNSÄN) ∀0, ∀P ∈ �)p)? + ?F) ≥ CFRÄF) ∀0, ∀J ∈ ÿ)çN), ?F) ≥ 0 ∀0 , ∀J ∈ ÿ), ∀P ∈ �)%)? , %)7 ≥ 0 ∀0CF ≥ 0 ∀JLN ≥ 0 ∀P

  

 

 

 

(2.31) 

 

Model is (2.31) is proved and discussed in Chapter 3. Its duality analysis is studied in 

Chapter 4. The following are the properties of the model: 

 

Properties of the model:  

 The model is a linear model. 

 The terms %T7ΓT7 + ∑ çNTN∈"8  and %T?ΓT? + ∑ ?FTF∈³8  indicate the protection for uncertain 

data.   

 A fixed number Γ) of coefficients is allowed to deviate from their nominal values and 

constraint feasibility is guaranteed within the probability bound exp D− ÜÏ
'bÞ"A|l|³A ÞdE. 

 Let Γ) = ΓF + ΓN, the budget uncertainty parameter Γ) ensures a flexible balance between 

robustness and performance of the model.  

 

2.3.2.6 RDEA induced by ellipsoidal uncertainty set 

The ellipsoidal uncertainty set induced RDEA model is equivalent to the RDEA model (2.28) 

induced by the ¶' − norm. We obtain model (2.32) using the uncertainty set below: 

                                                 
20 The C −norm is defined as ‖(R, S)‖ÜAF =

max
G#∪È�AÍ| #A⊆Þ"AÞ,Þ#AÞWJ ÜAK L,�A∈ÈÞ"AÞÍ\#A

#̅A∪È�̅AÍ| #̅A⊆Þ³AÞ,|#̅A|WJ ÜAM L,�̅A∈{|³A|}\#̅AN
G∑ ÖSN)ÖN∈#A + b Γ)7  −  O Γ)7 Pd (SN�A( +

∑ ÖRF)ÖF∈#̅A + bΓ)?  −  O Γ)? Pd (RF�̅A( N  
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Ã(ÛA) = "(RÀF), SÀN)):  RF) + ∑  F)'F)F∈³A |  F)�  F) ≤ Ω)?;  SN) + ∑  N)'N)N∈"A |  N)�  N) ≤ Ω)7&  

 max  �s. t.� − ∑ LNSNTVNWX + Ω)7Q∑ LN'SÄNT'N∈"A  ≤ 0
∑ CFRFTZFWX + Ω)?Q∑ CF'RÄFT'F∈³A  ≤ 1
∑ LNSNTVNWX − ∑ CFRFT +ZFWX
ΩT7Q∑ LN'SÄNT'N∈"8 + ΩT?Q∑ CF'RÄFT'F∈³8 ≤ 0
∑ LNSN)VNWX − ∑ CFRF) +ZFWX
Ω)7Q∑ LN'SÄN)'N∈"A + Ω)?Q∑ CF'RÄF)'F∈³A ≤ 0 ∀0
CF ≥ 0 ∀JLN ≥ 0 ∀P

  

 

 

 

(2.32) 

 

where Ω)? and Ω)7 are the positive robust parameter for the model inputs and outputs. This 

model is discussed for the ranking of banks efficiency in Chapter 5.  

 

Properties of the model:  

 The model is a nonlinear model and specifically a second order cone programming. 

 Let Ω) = Ω)? + Ω)7, the model is flexible for the tradeoff between robustness and 

performance using the parameter  Ω).  

 

2.3.2.7 RDEA induced by ellipsoidal and interval uncertainty set 

The model formulation follows Ben-Tal & Nemirovski (2000) when the uncertainty data are 

given by the random perturbation RÀF) = b1 + R F)? dRF) and SÀN) = ª1 + R N)7 ¬SN). Using the 

uncertainty set 

ÃbÛAd =
⎩⎪⎨
⎪⎧(g#F , #̀N)SS Ö(RÀF) − RF))/RÄF)ÖË ≤ 1, ∑ b?À>A�?>AdÏ

?Ä>AÏ  ≤ Ω)?'
  Ö(SÀN) − SN))/SÄN)ÖË ≤ 1, ∑ b7À6A�76AdÏ

7Ä6AÏ  ≤ Ω)7'⎭⎪⎬
⎪⎫

  

 

the correspond robust counterpart DEA is given as:  
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max �s. t.W − ∑ LNSNTVNWX + ∑ ßNSÄNTN∈"8 + Ω)7Q∑ ¦N'SÄNT'N∈"8 ≤ 0
∑ CFRFTZFWX + ∑ �FTRÄFTF∈³8 + Ω)?Q∑ XFT' RÄFT'F∈³8  ≤ 1
∑ LNSNTVNWX − ∑ CFRFTZFWX + ∑ ßNSÄNTN∈"8 + ∑ �FTRÄFTF∈³8 +
ΩT7Q∑ ¦NT' SÄNT'N∈"8 + ΩT?Q∑ XFT' RÄFT'F∈³8  ≤ 0
∑ LNSN)VNWX − ∑ CFRF)ZFWX + ∑ ßNSÄN)N∈"A + ∑ �F)RÄF)F∈³A +
Ω)7Q∑ ¦N)' SÄN)'N∈"A + Ω)?Q∑ XF)' RÄF)'F∈³A  ≤ 0  ∀0 ≠ 8
−ßN) ≤ LN − ¦N) ≤ ßN) ∀P ∈ �)  −�F) ≤ CF − XF) ≤ �F) ∀J ∈ ÿ)CF ≥ 0 ∀JLN ≥ 0 ∀P�F), ßN) ≥ 0 ∀J ∈ ÿ), ∀P ∈ �) 

  

 

 

 

 

 

(2.33) 

 

We provide a discussion of this model and ranking of DMUs in Chapter 5 from the robust 

fractional programming point of view. The properties of this model are the same as the 

previous model.  

  

 

2.4 Concluding remarks 

Efficiency measurement with the DEA compares actual output from a given input with the 

maximally producible quantity of output. However, when the data for measurement is 

uncertain, the reference technology becomes distorted which results in unreliable efficiency 

scores and unstable performance ranking for management decisions. Beyond knowing the 

problems uncertain data cause, knowledge of how to overcome it is very necessary. The 

current chapter has thus attempted to offer basic concepts on dealing with uncertainty in DEA 

data and ensuring stable efficiency scores using the robust optimization. The insight into the 

modeling process is useful for the rest of the chapters.  
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Chapter 3: Robust optimization with nonnegative 

decision variables: A DEA approach  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary 

Robust optimization has become the state-of-the-art approach for solving linear optimization 

problems with uncertain data. Though relatively young, the robust approach has proven to 

be essential in many real-world applications. Under this approach, robust counterparts to 

prescribed uncertainty sets are constructed for general solutions to corresponding uncertain 

linear programming problems.  It is remarkable that in most practical problems, the variables 

represent physical quantities and must be nonnegative. In this chapter, we propose alternative 

robust counterparts with nonnegative decision variables – a reduced robust approach which 

attempts to minimize model complexity. The new framework is extended to the robust Data 

Envelopment Analysis (DEA) with the aim of reducing the computational burden. In the DEA 

methodology, first we deal with the equality in the normalization constraint and then a robust 

DEA based on the reduced robust counterpart is proposed. The proposed model is examined 

with numerical data from 250 European banks operating across the globe. The results indicate 

that the proposed approach (i) reduces almost 50% of the computational burden required to 

solve DEA problems with nonnegative decision variables; (ii) retains only essential (non-

redundant) constraints and decision variables without alerting the optimal value.  

 

 

3.1 Introduction 

The robust optimization has been proposed to handle uncertainties in the input data in 

classical mathematical programming problems. An alternative approach that immunizes 

uncertain parameters in some probability sense is that of the stochastic programming which 

dates back to Dantzig (1955). See Prékopa (1995), Birge & Louveaux (1997) for references. 
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Although the robust approach was introduced by Soyster (1973), it was until the late 1990s 

that it took a massive flurry of interest in the mathematical programming community. Since 

then, several robust models have been proposed (see Ben-Tal & Nemirovski, 1998; 1999; 2000; 

Bertsimas & Sim, 2004; Bertsimas, Pachamanova, & Sim, 2004; Ben-Tal, El Ghaoui, & 

Nemirovski, 2009) and the field continues to be explored due to its usefulness in application. 

The standard robust optimization adopts a conservative methodology that confines all 

uncertain parameters to a pre-defined uncertainty set so as to optimize the worst-case 

performance for all feasible realization of the uncertain parameters in the defined set. It is 

conceivable that, like the stochastic programming, the robust optimization approach leaves 

some theoretical and practical issues to be addressed. Key among these issues include (i) 

structure of the uncertainty set, (ii) tractability of the robust formulation, (iii) conservativeness 

and probability guarantees to the distribution of the uncertain parameters in the uncertainty 

set, (iv) complexity of the robust models and (v) quality of the robust solution (Bertsimas, 

Brown, & Caramanis, 2011; Gorissen, Yanıkoğlu, & den Hertog, 2015). In consequence, rather 

than finding a usual optimal solution, the concern has been to seek the best performance 

under most realizations of the uncertain parameters. 

 Most remarkably, given the tractability of most robust linear programming, the robust 

technique has sparked interest in many applications in management science. Diverse areas of 

operations research applications including portfolio optimization, statistics, and learning, 

supply chain and inventory management, engineering etc. have been considered in the 

literature. For a comprehensive survey, we refer the reader to Bertsimas, Brown, & Caramanis 

(2011). However, despite the empirical success in these areas, the robust optimization has 

come under some practical concerns. As mentioned earlier, one of the critical practical issues 

of concern is the computational cost relating to the robust models. Although this issue is 

usually addressed with a flexible selection of uncertainty set, notwithstanding, it is important 

to note that the robust approaches considered usually provide general solutions of which 

some could be negative. In other words, the robust counterpart models provided in literature 

are generally defined with free-in-sign decision variables and a separate study looking at only 

nonnegative decision variables is not available. It is remarkable that in most practical 

problems, the variables represent physical quantities which are nonnegative (Bazaraa, Jarvis, 

& Sherali, 2010). Therefore, where decision variables are only nonnegative, a significant 

computational disadvantage is that the general robust counterpart models proposed in the 

literature present "unwanted parameters" that demand more computational resources. As a 

result, we believe that robust counterparts for nonnegative decision variables are needed. That 

is, there is the need for robust formulations, which by virtue of rendering some parameters 

redundant in the classical robust optimization models yield solutions faster than the former.  

In this chapter, we consider different robust counterpart models and formulate 

alternative models when decision variables are nonnegative. We call them reduced robust 

counterparts (RRC). These reduced models are equivalent to the former models without any 

redundant variable or constraint. As a result, the problem size (that is the number of variables 
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and constraints) of reduced model is significantly decreased which point out that the later 

models are more concise, more reliable, and more application-driven than the former models. 

In our pursuit of this cause, we use data envelopment analysis (DEA) method as an 

application-driven example to illustrate the practicality and computational usefulness of the 

RRC models. The DEA is one of the well-known linear programming (LP) applications that 

most often involves nonnegative variables.   

Recent research in DEA has focused on the robust optimization application in DEA to 

ensure robustness in efficiency analysis. Although the field is quite new and developing, 

variants robust models encompassing different uncertainty sets and scenarios have been 

explored and introduced into the DEA (see Sadjadi & Omrani, 2008; Atıcı & Gülpınar, 2016). 

It is important to note that, equality constraints containing uncertain parameters restrict the 

feasible region and may lead to infeasibility issue (for more details see Ben-Tal et al, 2009, 

Chapter 2). The multiplier form of DEA models involves a normalization constraint which is 

in an equation form containing uncertain input data. Accordingly, most researchers find it 

difficult handling uncertainties in the inputs and outputs data simultaneously. Regarding the 

normalization constraint, an alternative formulation in which the constraint is feasible for all 

data uncertainties is adopted in this chapter for a feasible robust DEA. In other words, using 

a proposed formulation, we provide a coherent feasibility treatment to the normalization 

constraint as with all robust optimization compared to the treatment from other studies (c.f. 

Omrani, 2013 and Salahi et al., 2016) and therefore may be regarded a novelty approach for 

robust DEA to general uncertainty modeling. Moreover, unlike in previous studies, the robust 

DEA considered for computational studies is based on the aforementioned RRC. In summary, 

the main contributions of the chapter are the following:  

1. We propose new robust counterpart optimization problems with nonnegative 

decision variables. This leads to an approach which is more applicable and 

computationally cost-effective for problems involving nonnegative decision 

variables. 

2. The suggested robust approach is used to propose a new robust DEA model. Our 

robust DEA models (called reduced robust DEA) are compared to existing robust 

DEA models.  

3. Prior to the reduced robust DEA formulation, we adjust the equality constraint in 

the normalization of the multiplier DEA models to inequality in order to allow for 

feasible and simultaneous consideration of uncertainties in the inputs and outputs 

data. 

4. We consider a case study of 250 banks in Europe to validate our new approach. The 

obtained results point out that the proposed robust DEA model reduces 50% of the 

required computational burden.   
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Structure of the chapter. In Section 3.2, we review different robust counterparts models to 

the most commonly used uncertainty sets. Section 3.3 presents the robust counterparts models 

for nonnegative decision variables. In addition, the theoretical complexity of these models is 

analyzed which indicates less iteration required to solve the reduced models by any efficient 

algorithm. The DEA and robust DEA approaches are presented in Sections 3.4  which includes 

dealing with equality constraint in DEA. The proposed new reduced robust DEA is presented 

in Section 3.5. We provide a practical banking problem and test the complexity of the models 

in Section 3.6. The chapter ends with conclusion and remarks in the next section. 

 

3.2 General robust counterpart formulations 

In this section, we review different uncertainty sets and demonstrate their robust 

counterpart formulations. To this end, we first consider an uncertain linear programming 

model  

êX = max ∑ ¾)R)�)WXs. t.∑ ¿ÀF)R)Z)WX ≤ ÁF J = 1, … , K¶) ≤ R) ≤ L) 0 = 1, … , -
   (3.1) 

where (¾X, … , ¾�) is a cost coefficient vector, ¿ÀF) represents the value of the technological 

coefficient that is subject to uncertainty, (ÁX, … , ÁZ) is the right-hand-side vector, (RX, … , R�) is 

decision variable vector, and ¶), L) are the lower and upper bounds for decision variable R). 

Let 4 be the feasible region of model (3.1), i.e. 4 = {g: ø#Fg ≤ ÁF ∀J, Y ≤ g ≤ ¢ } ⊂ ℝ� where ø#F =(¿ÀXF, … , ¿ÀF�), Y = (¶X, … , ¶�), and ¢ = (LX, … , L�). By standard transformations, we can assume 

without loss of generality that ¶) is finite for each 0 = 1, … , -. In addition, assume that only the 

technological coefficients are subjected to uncertainty and whiles their distribution may be 

unknown, they are known to be symmetric in an interval. Thus, let ÂF represent the set of 

coefficients in row J that are subject to uncertainty, then the true value of each entry ¿F), 0 ∈ ÂF 
is modeled as a symmetric and bounded variable taking values in the interval [¿F) − ¿ÄF), ¿F) +¿ÄF)] (Bertsimas & Sim, 2004). The true value of the uncertain technological coefficient can be 

expressed as ¿ÀF) = ¿F) +  F)¿ÄF) where ¿F) is the nominal value, ¿ÄF) is the maximum distance that 

specifies how much the nominal value is likely to deviate from the true value, and  F) denotes 

random variable that is symmetrically distributed in the interval [−1, 1]. Suppose an 

uncertainty set Ã (convex in structure) is constructed as an immunization region for the 

uncertain technological coefficients, the general robust counterpart (GRC) to a predefined 

uncertainty set for the classical uncertain LP model (3.1) can be formulated as: 
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ê' = max ∑ ¾)R)�)WXs. t.∑ ¿F)R)�)WX + ZmaxÅ>A∈ÃÈ∑  F)¿ÄF))∈Æ> R)Í[ ≤ ÁF J = 1, … , K
¶) ≤ R) ≤ L) 0 = 1, … , -

  
 

(3.2) 

Let 4]"! be the feasible region of model (3.2) involving the inner maximization problem 

maxÅ>A∈ÃÈ∑  F)¿ÄF))∈Æ> R)Í, i.e. 4]"! =  g: øFg + ZmaxÅ>A∈ÃÈ∑  F)¿ÄF))∈Æ> R)Í[ ≤ ÁF ∀J, Y ≤ g ≤ ¢ ^ ⊂ ℝ�. A 

vector g is a robust feasible solution if g ∈ 4]"!. Note that 4]"! ⊆ 4 which follows that the 

optimal objective value of the GRC model (3.2) is less than or equal to the optimal objective 

value of the uncertain LP model (3.1) . i.e., ê' ≤ êX. In other words, taking uncertainty into 

consideration does not lead to improving the optimal objective value. Rather, any optimal solution g∗ ∈ 4]"! corresponds to a solution that maximizes the worst-case21 objective function ∑ ¾)R)�)WX  under all realizations of  F) ∈  Ã. Such worst-case solutions are obtained by first 

taking the dual of the inner maximization, which by the strong duality property (see Bazaraa, 

Jarvis, & Sherali, 2010) yield the same optimal objective values as its dual. Any solution to a 

specific robust counterpart to model (3.2) depends on the structure of the uncertainty set. The 

tractability22 of the robust counterpart also depends on this set. For instance, suppose Ã is 

convex and the constraints are feasibly bounded in a convex region, then model (3.2) would 

lead to a computationally tractable solution (Ben-Tal, El Ghaoui, & Nemirovski, 2009). The 

general structure of the uncertainty set Ã is related to the distribution of uncertain parameters. 

For an unbounded distribution, the box, ellipsoidal, and polyhedral uncertainty sets can be 

used for the robust counterpart whereas interval constraint is necessary for bound 

distribution. The consideration of the latter case is necessary to avoid a more conservative 

solution. The box, interval+ellipsoidal, and interval+polyhedral uncertainty sets are reviewed 

in this chapter. As we mentioned earlier, the hint to deriving the robust solution to these 

uncertainty sets involves solving the subproblem (inner maximization problem) in model (3.2) 

using duality construction. For detailed information on these constructions, see Yuan, Li, & 

Huang (2016). 

 

3.2.1 Robust counterpart to interval uncertainty set  

In the robust optimization framework, the random variables, Ê are assumed to be 

independent in the interval [-1, 1] and the distribution over this interval is determined by the 

                                                 
21 The modeling assumption of robust optimization is to seek an optimal solution that is best possible in the worst-

case scenario. i.e. for a typical uncertain optimization problem maxg È∑ ¾)R)�)WX : _(`)R) ≤ ÁÍ where _ ∈ ℝZa� and ` ∈
ℝZ denote the uncertain parameter belonging to the uncertainty set Ã, we formulate a robust optimization that 

protects against the worst-case scenarios by minimizing over Ã the whole uncertain problem.  

22 By tractability, we mean the existence of an explicit polynomial-time algorithm to an equivalent formulation of 

the nominal optimization problem. Tractability issues are tantamount to solvability of the robust problem. See Ben-

Tal, El Ghaoui, & Nemirovski, 2009) for more details. 
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nature of the uncertain parameters. For the LP model (3.1), consider that the perturbation 

bound for the uncertain coefficients is given by Φ. A box/interval uncertainty set created by 

the interaction of perturbation of the random variables can be described as follows: 

Ã³��(Φ) = È¿ÀF) = ¿F) +  F)¿ÄF)|  ∥ Ê ∥Ë ≤ ΦÍ (3.3) 

The simplest case where knowledge about the distribution of Ê is known and the probability 

guarantees are given is when Φ ≤ 1 and E(Ê) = 0 (see Ben-Tal, El Ghaoui, & Nemirovski, 

2009). The parameter Φ varies between 0 and 1 and the optimization model is robust when all 

the uncertain coefficients can be realized within the bound provided by the uncertainty set 

(3.3). The interval uncertainty set is shown in Figure 3.1-a for the distribution of random 

variables taking values within the bounds Φ = 1. Note that ∥ Ê ∥Ë = 1 coincides with the 

highly conservative robust formulation of Soyster (1973)23. Thus, taking Ã = Ã³��(1) in model 

(3.2), the subproblems maxÅ>A∈Ãbcd(X) eWefgi(X) È∑  F)¿ÄF))∈Æ> R)Í  for J = 1, … , K are linear optimization 

problems and hence substituting their related duals leads to the following robust counterpart:   

max ∑ ¾)R)�)WXs. t.∑ ¿F)R)�)WX + Φ ∑ ¿ÄF))∈Æ> S) ≤ ÁF J = 1, … , K−S) ≤ R) ≤ S) ∀J, ∀0 ∈ ÂF¶) ≤ R) ≤ L) 0 = 1, … , -S) ≥ 0 ∀J, ∀0 ∈ ÂF

   (3.4) 

Note that Soyster (1973) added a nonnegative variable S) for each variable R); however, 

variable S¹ is redundant if ∄J: % ∈ ÂF. As a result, we consider variable S) if at least one of the 

coefficients of R) in a constraint is uncertain. Note also that an accurate representation of the 

indices further reveals the actual number of variables and constraints in the model including 

those that are uncertain.  

 

3.2.2 Robust counterpart to combined interval and ellipsoidal uncertainty set  

Following the over-conservativeness of robust solutions using the interval uncertainty set, 

Ben-Tal & Nemirovski (1998, 1999) proposed using an ellipsoidal set which leads to solving 

the robust counterparts as a conic quadratic program. The proposed uncertainty set (Ben-Tal 

& Nemirovski, 2000) involves a combined interval and ellipsoidal uncertainty set to ensure a 

less conservative robust model. Specifically, the uncertainty set can be described as follows: 

                                                 
23 Soyster (1973) robust formulation is one of the first models to immunize column-wise uncertainty in LP where 

uncertain parameters are confined to a convex set. Though the resulting robust model is linear, however, by taking 

the worst-case value of each uncertain parameter in the set, the approach becomes too conservative, sometimes 

producing results worse than the nominal problem.   
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Ã³��l�kk(Φ, Ω) = È¿ÀF)|  ∥ Ê ∥Ë ≤ Φ, ∥ Ê ∥' ≤ ΩÍ  
(3.5) 

where Ω is a user-defined adjustment parameter that controls the trade-off between 

conservativeness and performance for the subsequent robust counterpart. We illustrate the 

distribution of Ê in the combined uncertainty set Ã�kkl³��(1,1.14) in Figure 3.1-b. The robust 

counterpart to the use of this uncertainty set under the dual construction for model (3.2) is 

given as:   

max ∑ ¾)R)�)WXs. t.
∑ ¿F)R)�)WX + ∑ ¿ÄF))∈Æ> SF) + ΩQ∑ ¿ÄF)')∈Æ> êF)'  ≤ ÁF J = 1, … , K
−SF) ≤ R) − êF) ≤ SF) ∀J, ∀0 ∈ ÂF¶) ≤ R) ≤ L) 0 = 1, … , -SF) ≥ 0 ∀J, ∀0 ∈ ÂF

   (3.6) 

Note that the parameter Ω is defined as Ω ≤ (|ÂF|)�.l where Ω = (|ÂF|)�.l is the highest 

protection (i.e. the highest ellipsoid containing the box, ÈR): |R) − ê)| ≤ S)  Í) the decision maker 

can seek for the J�� constraint. The probability of violation of this J�� constraint is bounded 

above by ·��.lÛÏ
 for any R)∗. As mentioned before, Ã�kkl³��(1, Ω) is defined over the ¶' −norm. 

Therefore, the dual of the subproblem in model (3.2) involves quadratic functions 

b∑ ¿ÄF)')∈Æ> R)'d�.l
 whose solution leads to second-order cone programming24. The robust 

counterpart of the optimization problem over the ellipsoidal uncertainty set or its intersection 

with the interval can lead to computationally tractable solutions or NP-hard problem. For 

large scale problems where interior points techniques can be harnessed, for instance, the 

ellipsoidal uncertainty set leads to practically tractable conic quadratic programming 

solutions (Ben-Tal & Nemirovski, 1998; 1999). 

 

3.2.3 Robust counterpart to combined interval and polyhedral uncertainty set  

Bertsimas & Sim (2004) relied on the family of a polyhedral set to propose a new robust 

formulation. The authors  formulated an uncertainty set known as the budget of uncertainty 

set or the Bertsimas & Sim (2004) uncertainty set which is the commonly used uncertainty sets 

in practice because of its advantage in preserving the linearity of the nominal problem25. 

Ordinarily, the uncertainty set involves a combined interval and polyhedral set described as: 

Ã³��lmTk(Φ, Γ) = È¿ÀF)|  ∥ Ê ∥Ë ≤ ¥, ∥ Ê ∥X ≤  Γ Í (3.7) 

                                                 
24. The main drawback of this formulation which makes it difficult to implement in practice is that it is 

computationally demanding since the robust counterpart is a nonlinear convex programming. 

25 This is because the polyhedron in ℝl'  is simply an intersection of many finitely half spaces so the uncertainty set ÃX affects the constraint in an affine manner. Computationally, the size of the robust counterpart polynomially 

grows in the dimension of  ÃX and the size of the nominal problem. 
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For simplicity, we consider Φ = 1 and denote ÃÜ as the budget uncertainty set where Γ is the 

parameter which the decision-maker can trade-off robustness and performance. Figure 3.1-c 

illustrates the distribution of Ê in the combined uncertainty set Ã³��lmTk(1,1.5). The parameter, ΓF of the J�� constraint takes values in [0, |ÂF|]26 and the robust solution is feasible if only less 

than ΓF uncertain coefficients change. Besides, the uncertain parameters have maximum 

protection if at most ΓF coefficient of the uncertain J�� constraints are allowed to deviate. Under 

this uncertainty set dynamics, the robust counterpart of the subproblem (3.2) to the 

uncertainty set ÃÜ is the following: 

max ∑ ¾)R)�)WXs. t.∑ ¿F)R)�)WX + nF(`, ΓF) ≤ ÁF J = 1, … , K−S) ≤ R) ≤ S) ∀J, ∀0 ∈ ÂF¶) ≤ R) ≤ L) 0 = 1, … , -S) ≥ 0 ∀J, ∀0 ∈ ÂF

  (3.8) 

where nF(`, ΓF) = max{#>∪{�>}| #>⊆Æ>,|#>|W⌊ Ü> ⌋,�>∈Æ>\#>}È∑ ¿ÄF))∈#> S) + b ΓF  –  ⌊ ΓF  ⌋¿ÄF�>dS�>Í  is protection 

function of the J�� constraint and ` = (… , S) , … ) ∈ ℝ∑ |Æ>|op:� . Moreover, since model (3.8) is 

nonlinear, by strong duality to the subproblem, Bertsimas & Sim (2004) showed that an 

equivalent robust linear optimization has the formulation,  

max ∑ ¾)R)�)WXs. t.∑ ¿F)R)�)WX + %FΓF + ∑ çF)�)WX ≤ ÁF J = 1, … , K%F + çF) ≥ ¿ÄF)S) ∀J, ∀0 ∈ ÂF¶) ≤ R) ≤ L) 0 = 1, … , -−S) ≤ R) ≤ S) ∀J, ∀0 ∈ ÂFçF) ≥ 0 ∀J, 0 ∈ ÂF%F ≥ 0 J = 1, . . , KS) ≥ 0 ∀J, ∀0 ∈ ÂF

   (3.9) 

The robust solution parameter ΓF regulates the number of ¿ÀF) that may deviate from its 

nominal and obstruct the objection function. The higher value of a chosen ΓF indicates a 

higher protection for the J�� constraint and vice versa. The probability for the violation of the J�� constraint is given by e�Ü>Ï/'|Æ>|. 
 

                                                 
26 The budget of uncertainty parameter ΓF may not assume integer value. However, where ΓF takes an integer value, 

the last term in the protection function, nF(R∗, ΓF) is excluded. Note that if ΓF = 0, the problem attains a nominal 

solution and reduces to Soyster (1973) formulation if ΓF =  |ÂF|.  
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       Ã³��(1) Ã³��l�kk(1,1.14) Ã³��lmTk(1,1.5) 
 

a) Box/interval uncertainty set   

 

b) Interval + ellipsoidal uncertainty set     

 

c) Interval + polyhedral uncertainty set 

Figure 3.1. Illustration of uncertainty sets  

 

3.3 Robust counterpart for nonnegative decision variables 

In practice, a decision maker would prefer robust solutions for which the decision variable is 

positive. This condition is non-negotiable for many operations research problems such as 

robust efficiency scores via the data envelopment analysis, transportation problem and in 

some engineering and business applications. However, given that the unrestricted interval ¶) ≤ R) ≤ L) in the GRC could assume negative bounds and subsequently negative value for R), the goal of this section is to seek alternative reduced robust formulations that are restricted 

to the interval 0 ≤ R) ≤ L). We will compare robust optimization problems for the general LP 

model (3.1) with its reduced form when ¶) = 0 and L) = ∞ for 0 = 1, … , - (or equivalently when RX, … R� ≥ 0). We believe that taking the no-negativity constraints into consideration 

theoretically reduces the size of the corresponding robust counterpart optimization as well as 

practically decrease their required computational burden. To better understand the variations 

between the input sizes of the aforementioned robust counterparts, first, we look at the robust 

counterpart optimization confined to the positive half plane. As Aforementioned, we shall 

call it the reduced robust counterpart (RRC). The RRC considers robust counterpart optimization 

for the nonnegative decision variable, 

max ∑ ¾)R)�)WXs. t.∑ ¿F)R)�)WX + ZmaxÅ>A∈ÃÈ∑ ¿ÄF))∈Æ> R)Í[ ≤ ÁF J = 1, … , K
R) ≥ 0 0 = 1, … , -

  (3.10) 

Let 4""!  be the feasible region of model (3.10), i.e. 4""! =  g: øpg + ZmaxÅ>A∈ÃÈ∑  F)¿ÄF))∈Æ> R)Í[ ≤
ÁF ∀J, g ≥ 0^ ⊆ ℝl� , then 4""! ≈ 4]"! ⊆ 4. The following theorem argues the redundancy of 
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some constraints in the GRC model in the positive half plane which of course, reduces the 

computational burden for the reduced robust counterpart.  

Theorem 3.1. The tractable GRC constraint under nonnegativity condition, i.e.  

max ∑ ¾)R)�)WXs. t.∑ ¿F)R)�)WX + ∑ ¿ÄF))∈Æ> S) ≤ ÁF J = 1, … , K−S) ≤ R) ≤ S) ∀J, ∀0 ∈ ÂF0 ≤ R) ≤ L) 0 = 1, … , -S) ≥ 0 ∀J, ∀0 ∈ ÂF

  (3.11) 

is equivalent to the following model: 

max ∑ ¾)R)�)WXs. t.∑ ¿F)R)�)WX + ∑ ¿ÄF))∈Æ> R) ≤ ÁF J = 1, … , K0 ≤ R) ≤ L) 0 = 1, … , -
  (3.12) 

Proof. Let (g∗, `∗) ∈ ℝ�lÞ⋃ {Æ>}@>:; Þ be an optimal solution of model (3.11). It is plain to verify 

that model (3.11) possesses alternative optimal solutions: consider the following set: 4∗ = {(g∗, s∗)|ê)∗ ≤ S)∗ ∀J, ∀0 ∈ ÂF} 

Clearly, (g∗, s∗) is a feasible solution for model (3.11) and its objective function value is equal 

to the objective function value of the optimal solution (g∗, `∗). As a result, 4∗ is the set of all 

alternative optimal solutions of model (3.11). We arrive at model (3.12) when we let ê)∗ =R)∗ ∀0 ∈ ÂF (note that R)∗ ≤ S)∗ ) which completes the proof.  

 

Theorem 3.1 suggests fewer parameters in solving the robust counterpart for nonnegative 

decision variables. It is easy to see that, when the GRC involves positive decision variables, 

some variables and constraints become redundant which can be removed in order to reduce 

the extra computational effort without altering the optimal objective value. To see the implied 

usage of this suggested idea, we provide propositions which suggest that the robust 

counterparts discussed in Section 2 can be reformulated with fewer decision variables and 

constraints. The proof to these propositions can be inferred directly from the Theorem 3.1 and 

therefore omitted. 

Proposition 3.1. With the box uncertainty set ÃË defined with nonnegative decision variable R, model 

(3.4) can be equivalently expressed as: 

max ∑ ¾)R)�)WXs. t.∑ ¿F)R)�)WX + Φ ∑ ¿ÄF))∈Æ> R) ≤ ÁF J = 1, … , KR) ≥ 0 0 = 1, … , -
  

 

(3.13) 



 

 59 

The proof follows analogous reasoning from Theorem 3.1 since both ¿ÄF) and Φ are 

nonnegative parameters.  

Proposition 3.2. Given that the interval and polyhedral uncertainty set are intercepted in the positive 

half plane, the RRC with nonnegative decision variable R to model (3.9) can be written as  

max ∑ ¾)R)�)WXs. t.∑ ¿F)R)�)WX + %FΓF + ∑ çF))∈Æ> ≤ ÁF J = 1, … , K%F + çF) ≥ ¿ÄF)R) ∀J, ∀0 ∈ ÂFçF) ≥ 0 ∀J, ∀0 ∈ ÂF%F ≥ 0 J = 1, … , KR) ≥ 0 0 = 1, … , -
  (3.14) 

The proof follows an analogous reasoning from Theorem 3.1.  

 

3.3.1 Complexity analysis 

One of the main challenging questions in robust optimization relates to the structure and 

complexity of the robust counterpart towards different classes of uncertainty set, Ã. For 

instance, for a given class of nominal problem and structured uncertainty set, what would be 

the complexity class of the corresponding robust problem? (Bertsimas et al, 2011). 

Computational complexity theories allow us to group optimization problems into different 

difficulty level based on the number of computational resources required to solve a problem. 

For a tractable robust counterpart, efficient running of an optimization algorithm depends on 

the model structure and the evaluation stages used in finding an optimal solution. Our 

concern here lies in the computational burden of the models and the iteration counts required 

in solving each of the robust models. Note that, the number of iterations or steps necessary to 

solve these problems depends on the input size of the problem and the algorithm used to 

solve the problem. Here we consider the simplex method which is the most popular and 

effective for solving linear programming problems. More formally, for a given optimization 

problem in the standard form 

max ∑ ¾)R)�)WXs. t.∑ ¿F)R)�)WX = ÁF J = 1, … , KR) ≥ 0 0 = 1, … , -
  

 

(3.15) 

referencing Bazaraa et al. (2010), the average complexity of the simplex algorithm requires 

roughly K to 3K order of iterations to solve a problem. In most applications, the sparsity of 

the matrix t = È¿F)Í may be exploited to obtain a more efficient solution by the algorithm. The 

analysis with the simplex algorithm excludes the robust counterpart to interval+ellipsoid 

uncertainty set since the problem requires a non-linear approach such as the interior point 
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method. Let u = ∑ |ÂF|ZFWX  represent the total number of uncertain data. The standard form of 

model (3.6) however, involves K + 2(u + -) constraints and (- + 2u) + (K + 2(u + -)) 

nonnegative decision and slack variables. Table 3.1 summarizes the additions and 

multiplications involved in the iterations of the linear robust counterparts.  

 

Table 3.1. Addition and multiplication in each iteration per operation 

Robust Counterparts 

(RC) 

RC – Box uncertainty set RC – Polyhedral + interval 

uncertainty set 

General 

 RC 

Additions (K + 2(u + -))(u + - + 1) (K + 3u + 2-)(K + 2u + - + 1) 

Multiplications 
(K + 2(u + -))(u + -) + (K + 3(u + -)) + 1 

(K + 3u + 2-)(K + 2u + -) + (2K + 5u + 3- + 1) 

Reduced 

RC 

Additions K(- + 1) (K + u)(K + u + - + 1) 

Multiplications K- + K + - + 1 
(K + u)(K + u + -) + (2K + 2u + -+ 1) 

The number of operation required in each iteration for the GRC in models (3.4) and (3.9) and 

the RRC models (3.13) - (3.14) using the simplex algorithm can be seen in Table 3.1. Clearly, 

the standard form of the GRC model (3.4) involves K + 2(u + -) constraints and (- + u)  +K + 2(u + -) nonnegative decision and slack variables whiles, on the other hand, the 

associated standard form of the RRC model (3.13) requires K to K + - iterations. Again, we 

note that the GRC model (3.9) contains K + 3u + 2- constraints and K + - + 2u decision 

variables and K + 2- + 3u slack variables whereas the RRC (3.14) involves only K + u 

constraints and 2(K + u) + - variables in all their standard forms. In summary, Table 3.1 

indicates a significant reduction in the number of operations particularly for large-scale 

problems involving only nonnegative decision variables using models (3.13)  and (3.14). From 

Theorem 3.1, if - is significantly larger than K, solving these robust counterparts would result 

in saving a considerable computer storage and time.  

A further question however is, does the RRC models (3.13) and (3.14) generate 

equivalent optimal solution as its corresponding GRC models (3.4) and (3.9)?. Indeed the 

robust counterpart to a nonnegative optimization problem and its reduced form yield an 

equivalent solution as demonstrated by the following simple example in Bazaraa et al. (2010):  

min ê = −2RX − 4R' − Rµs. t.           2RX + R' + Rµ ≤ 10             RX + R' − Rµ ≤ 4                           0 ≤ RX ≤ 4                           0 ≤ R' ≤ 6                           1 ≤ Rµ ≤ 4
 (3.16) 
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The nominal values are (2, 1, 1) and (1, 1, -1) which are the coefficients of the first and second 

constraint respectively. The model is a minimization problem and its optimal solution and 

objective function value is (RX∗, R'∗, Rµ∗) =  (0.67, 6, 2.67) and ê∗ = −28, respectively. Assume 

that the uncertain coefficients are 10% accurate approximations of the “true” vector of 

coefficients. Let  ÂX =  {1,3} and Â' =  {2}. The corresponding robust counterpart based on the 

GRC model (3.4)  is obtained as follows:  

min ê =  −2RX − 4R' − Rµs. t.2RX + R' + Rµ + Φ(0.2SX + 0.1Sµ) ≤ 10   RX + R' − Rµ + Φ0.4S' ≤ 4                                   −SX ≤ RX ≤ SX                                   −S' ≤ R' ≤ S'                                   −Sµ ≤ Rµ ≤ Sµ                                          0 ≤ RX ≤ 4                                          0 ≤ R' ≤ 6                                          1 ≤ Rµ ≤ 4                                        SX, S', Sµ ≥ 0

 (3.17) 

while the robust counterpart based on the RRC model (3.13) is clearly the following:  

minW = −2RX − 4R' − Rµs. t.(2 + 0.2Φ)RX + R' + (1 + 0.1Φ)Rµ ≤ 10RX + (1 + Φ0.4)R' − Rµ ≤ 4                                          0 ≤ RX ≤ 4                                          0 ≤ R' ≤ 6                                          1 ≤ Rµ ≤ 4
 (3.18) 

 

Table 3.2. Robust counterpart optimal solutions and values to model (3.16) 

Box parameter  GRC example (3.17)      RRC example (3.18) 

 ê∗ (RX∗, R'∗, Rµ∗, SX∗, S'∗, Sµ∗) W∗ (RX∗, R'∗, Rµ∗) 

       Φ = 0 −28.00 (0.67,6.00,2.67,0.67,6.00,2.67) −28.00 (0.67,6.0,2.67) 

Φ = 0.2 −27.92 (0.48,6.00,2.96,0.48,6.00,2.96) −27.92 (0.48,6.0,2.96) 

Φ = 0.4 −27.84 (0.29,6.00,3.25,0.29,6.00,3.25) −27.84 (0.29,6.00,3.25) 

Φ = 0.6 −27.77 (0.11,6.00,3.55,0.11,6.00,3.55) −27.77 (0.11,6.00,3.55) 

Φ = 0.8 −27.40 (0.00,5.90,3.79,0.00,5.90,3.79) −27.40 (0.00,5.90,3.79) 

Φ = 1.0 −26.61 (0.00,5.67,3.94,0.00,5.67,3.94) −26.61 (0.00,5.67,3.94) 

 

 

It is plain to verify that the two robust counterparts lead to the same optimal solution under 

different box parameter Φ values. Table 3.2 summarizes the optimal solutions along with their 
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optimal values for different Φ. As can be seen, the optimal values of both models are identical 

for various  Φ which validates Theorem 1. We also emphasize the applicability of  Proposition 

3.2 by showing in Section 6, a real-world banking problem using the DEA approach 

 

3.4 Data Envelopment Analysis approach  

This section employs the robust DEA as a demonstration of the proposed models in Section 

3. We focus on the BCC model with an input orientation as presented in model (2.12) of 

Chapter 2:  

 ®∗ = max ∑ LNSNT + LTVNWXs. t.∑ CFRFTZFWX = 1∑ LNSN)VNWX − ∑ CFRF) + LTZFWX ≤ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , QLT is free
  

 

 

(3.19) 

 

Note that, this model (3.19) and other traditional DEA models use equality in the 

normalization constraint and can be formulated as inequality constraints (Toloo, 2014a and 

Gorissen et al., 2015). The next section focuses on uncertainty in the equality constraint for 

robust DEA analysis.  

 

3.4.1 Equality constraint in uncertain DEA 

In robust optimization, most often than not, the true values revolve in an unequal and 

symmetric interval. Equality constraints containing uncertain parameters are therefore 

required to be in the inequality form since the equality constraints can restrict the feasibility 

region or sometimes lead to the infeasibility of the robust model (Ben-Tal, El Ghaoui, & 

Nemirovski, 2009; Gorissen et al., 2015). However, uncertainty analysis carried out in DEA 

measures include modeling uncertainty in the normalization constraint which is equality 

constraints in model (2.12). In this case, though the DEA models are always feasible, they 

become infeasible for robust analysis. Unless the uncertain inputs and outputs are analyzed 

in the IECCR model (see Sadjadi et al, 2011 for example), these models become unsuitable for 

general robust efficiency measurement. Naturally, a solution  which is feasible in the robust 

DEA sense requires inequality in the normalization constraint of the multiplier DEA models. 

Equality constraint containing uncertain parameters for general robust optimization problems 

have been analyzed in different ways in applications. See Gorissen et al. (2015) for a summary 

of alternative approaches. Salahi et al. (2016)  dealt with this issue by converting equality in 

the normalization constraint of IMCCR model (2.8) to double inequality constraints. Omrani 

(2013) instead replaced the normalization constraint ∑ CFRFTZFWX = 1 with a superfluous 
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constraint ∑ LNVNWX − ∑ CFZFWX = 1 for his common weight robust DEA model in order to avoid 

constraint infeasibility for the input uncertainty. As mostly considered, in DEA, alternative 

formulation converting the equality to inequality constraint is proposed (Toloo, 2014)a for the 

IMCCR model. Here, suppose the normalization constraint is fixed at any other positive 

parameter, model (3.19) can be restated as:  

max ∑ LNSNT + LTVNWXs. t.∑ CFRFTZFWX = ~∑ LNSN)VNWX − ∑ CFRF) + LTZFWX ≤ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , QLT free in sign
   (3.20) 

where ~ is a positive parameter.  

Remark 3.1. It can easily be verified that (¢∗, ¡∗, L�∗) is an optimal solution for model (3.19) if 

and only if (~¢∗, ~¡∗, ~L�∗) is an optimal solution for model (3.20).  

 

Theorem 3.2. The following model is equivalent to the BCC model (3.19): 

max ∑ LNSNT + LTVNWXs. t.∑ CFRFTZFWX ≤ ~∑ LNSN)VNWX − ∑ CFRF) + LT ZFWX ≤ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , QLT free in sign
   (3.21) 

where ~ is a positive parameter.  

 

Proof. By primal-dual relationship, to show that the primal models (3.19) and (3.20) are 

equivalent, it is sufficient to compare the duals of these models as respectively below: 

min ~�s. t∑ �)�)WX RF) ≤ �RF� J = 1, … , K∑ �)SN)�)WX ≥ SN� P = 1, … , Q∑ �)�)WX = 1�) ≥ 0 0 = 1, … , -� free is sign
  

(3.22) 

 

and  
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min ~�s. t∑ �)RF)�)WX ≤ �RF� J = 1, … , K∑ �)SN)�)WX ≥ SN� P = 1, … , Q∑ �)�)WX = 1�) ≥ 0 0 = 1, … , -� ≥ 0
  (3.23) 

Let �∗ be the optimal solution of the dual models. It is easy to see that �∗ > 0 in model (3.22) 

since �∗ ≤ 0 would mean �∗ = h� in the first constraint and subsequently violate the convexity 

constraint ∑ �)�)WX = 1 which is impossible. Therefore, models (3.22) and (3.23) are equivalent 

and their related primal models are also equivalent.  

Definition 3.1. Let the parameter ~ be fixed at 1, the appropriate DEA model for the robust 

optimization analysis is the following:  

max ês. t.ê − ∑ LNSNT − LTVNWX ≤ 0∑ CFRFTZFWX ≤ 1∑ LNSN)VNWX − ∑ CFRF) + LTZFWX ≤ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , QLT free in sign

   (3.24) 

Definition 3.1 provides a way to analyze uncertainties in both input and output data. Usually, 

for the majority of the DEA literature, considering the difficulty of uncertainty in the 

normalization constraint, when uncertainty appears in the input data, an input-oriented 

model is adopted whereas the output-oriented model is adopted with uncertain output data 

(Wang & Wei, 2010). Practically, as the choice of DEA orientation is not the prerogative of the 

decision analyst but mostly by the organization ‘s choice of production process model (3.24) 

is very useful for measuring the robust efficiency with uncertain inputs and outputs data in 

either the input or output orientation model.  

3.4.2 Robust Data Envelopment Analysis  

The robust optimization in DEA has been introduced by Sadjadi & Omrani (2008) based on 

the reviewed approaches in Section 2 of this chapter. Extension to other advanced DEA 

models and a varied application has since been made, particularly for energy efficiency 

measurement. We refer the reader to Sadjadi et al. (2011), Omrani (2013), Lu (2015), and Wu 

et al. (2016).  The modeling of robust optimization in DEA follows three main approaches in  
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literature: the robust approaches proposed by Mulvey et al. (1995), Ben-Tal & Nemirovski 

(2000) and Bertsimas & Sim (2004). The Bertsimas & Sim (2004) approach is employed in this 

study and as previously described in Section 2, the true values of the uncertain input and 

output data are expressed as  RÀF) =  RF) +  F)? RÄF); SÀN) =  SN) +  N)7 SÄN)  where the independent 

random variables  F)? ,  N)7 , ∀J, ∀P take values in the interval [−1, 1] and the maximum 

deviations are defined as RÄF) = ·FRF) and SÄF) = ·)SN) . Note that · is the percentage of 

perturbation specifying the amount of deviation from the uncertain inputs and outputs data 

from their true values. For each input data RF), J ∈ ÿ) and output data SN), P ∈ �) the true values 

are modelled as variables RÀF)  and SÀN)  taking values in the symmetric interval [RF) − RÄF), RF) +RÄF)] and [SN) − SÄN) , SN) + SÄN)] respectively, where ÿ) and �) represent the set of inputs and 

outputs of DMUs that are subject to uncertainty. Note that DMU´ = (g´ , `´) is uncertain if 

there exist J ∈ ÿ´ or P ∈ �´ . Using the uncertainty dynamics of Bertsimas & Sim (2004), note 

that the total (scaled) deviations  F)?  =  (RÀF) − RF))/RÄF) and  N)7 , =  (SÀN) − SN))/SÄN)  which are 

symmetrically bounded in the interval [−1, 1] and assume values between −- and - are 

restricted to the budget of uncertainty parameter Γ). We assume that Γ)? ∈  [0, |ÿ)|] and Γ)7 ∈ [0, |�)|] are the budget of uncertainty parameter of the input and outputs vectors, 

respectively. We let Γ) = Γ)? + Γ)7 ∈ [0, |ÿ)| + |�)|] and ∑ | F)? |F∈³A +  ∑ | N)7 |N∈"A ≤ Γ). In view of 

this, one can express the budget of uncertainty set as follows: 

ÃÜA = x(g#F, #̀N)S RÀF) = RF) +  F)? RÄF), SÀN) = SN) +  N)7 SÄN) , ∀J ∈ ÿ), ∀P ∈ �)∑ | F)? |F∈³A +  ∑ | N)7 |N∈"A ≤ Γ), ∀J ∈ ÿ), ∀P ∈ �) F)? ,  N)7 ∈ [−1, 1], ∀J ∈ ÿ), ∀P ∈ �)
y (3.25) 

The level of the budget of uncertainty Γ) allowed depicts the level of robustness allowed for 

each perturbation in the constraints of the uncertain model. From model (3.19) if the output 

in the objective function is subject to uncertainty, without loss of generality, the objective 

function can be expressed as max z and the additional constraint z − ∑ LNSNTVNWX ≤ 0 added 

to the model. As a result, we extend the robust formulation of Sadjadi & Omrani (2008) to the 

following robust BCC model with both inputs and outputs uncertainty under the GRC 

approach: 
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max zs. t.z − ∑ LNSNT + %T7ΓT7 + ∑ çNTN∈"8 + L�VNWX ≤ 0∑ CFRFTZFWX + %T?ΓT? + ∑ ?FTF∈³8 ≤ 1∑ LNSN)VNWX − ∑ CFRF) + LT + %)7Γ)7 + %)?Γ)? + ∑ çN)N∈"A + ∑ ?F)F∈³A ≤ 0ZFWX 0 = 1, … , -%)7 + çN) ≥ ·SN)êN7 ∀0, ∀P ∈ �)%)? + ?F) ≥ ·RF)êF? ∀0, ∀J ∈ ÿ)−êN7 ≤ LN ≤ êN7 P = 1, … , Q−êF? ≤ CF ≤ êF? J = 1, … , KçN), ?F) ≥ 0 ∀0, ∀J ∈ ÿ), ∀P ∈ �)%)? , %)7  ≥ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , QLT   free in sign 

(3.26) 

where z is the efficiency score of DMUT; %)?, çN) and %)7, ?F) are nonnegative variables of the 

set of uncertain inputs and outputs respectively; êF? and êN7 are auxiliary variables of the 

absolute input and output weights; and ΓT? and ΓT7 are the respective robust parameters of 

the uncertain inputs and outputs of the DMU under evaluation.  

 

3.5 The new approach: Reduced Robust DEA (RRDEA) 

Now, with a strong emphasis on the computational complexity pointed out in Section 3.1 and 

to formalize our argument in Theorem 3.1 with the DEA, a reduced robust DEA (RRDEA) 

model based on  Proposition 3.2 is formulated for model (3.26). We suppose that all the 

uncertain inputs and outputs data are protected against with allowable deviation up to Γ)? 

and Γ)7
 and that an uncertain input and output data of DMU) changes from their nominal 

values by b Γ)? − O Γ)?  PdRÄF�A̅ and ª Γ)7 − J Γ)7 L¬ SÄN�A. Then from Section 2.3, the robust 

counterpart to the uncertain DEA (3.24) can be formulated as below: 

max ∑ LNSNTVNWX + LT + n(¢∗, hZ, ΓT7)s. t.∑ CFRFTZFWX + n(hV, ¡∗, ΓT?) ≤ 1∑ LNSN)VNWX + LT − ∑ CFRF)ZFWX + n(¢∗, ¡∗, Γ)7 + Γ)?) ≤ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , QLT   free in sign
      (3.27) 

where n(¢∗, ¡∗, Γ)7 + Γ)?) is the protection function corresponds to the uncertain data, and n(¢∗, hZ, Γ)7) and n(hV, ¡∗, Γ)?) are the protection functions corresponding to the uncertain 

outputs and inputs of DMU), respectively. Here  
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n(¢∗, ¡∗, Γ)7 + Γ)?) =
max

G#A∪È�AÍ| #A⊆Þ"AÞ,|#A|WJ ÜAK L,�A∈{|"A|}\#A
#̅A∪È�̅AÍ| #A̅⊆Þ³AÞ,|#̅A|WJ ÜAM L,�A̅∈{|³A|}\#̅A N

{∑ LNSÄN)N∈#A + ª Γ)7  − J Γ)7 L¬ L�SÄN�A +∑ CFRÄF)F∈#̅A + bΓ)?  −  O Γ)?  PdC�RÄF�A̅
|   (3.28) 

Therefore, 

n(¢∗, hZ, Γ)7) = max"#A∪È�AÍ| #A⊆"A,|#A|WJ ÜAK L,�A∈"A\#A& "∑ LNSÄN)N∈#A + ª Γ)7  −  J Γ)7 L¬ L�SÄN�A&   (3.29) 

An analogous definition can be made for n(hV , ¡∗, Γ)?). Note that Γ)7 = |�)| and Γ)? = |ÿ)|  lead 

to the worst-case formulation meanwhile Γ)7 + Γ)? = 0, n(¢∗, ¡∗, 0) for all 0 follow the nominal 

model (3.24). Therefore, the decision maker is able to make a trade-off between robustness 

and the level of conservatism of the solution by varying Γ)? in +0, |ÿ)|, or Γ)7
 in +0, |�)|,. If Γ)7

and Γ)7
 are chosen as integer numbers, then we obtain 

n(¢∗, ¡∗, Γ)7 + Γ)?) = max
G#A| #A⊆Þ"AÞ,|#A|WJ ÜAK L

#̅A| #̅A⊆Þ³AÞ,|#̅A|WJ ÜAM LN
"∑ LNSÄN)N∈#A + ∑ CFRÄF)F∈#̅A &   

(3.30) 

Again, notice that the above model is nonlinear. We make use of Theorem 3.1 and follow 

Theorem 3.3 below.  

Theorem 3.3. The nonlinear model (3.27) is equivalent to the following reduced linear model: 

max §s. t.§ − ∑ LNSNT + %T7ΓT7 + ∑ çNTN∈"8 + L�VNWX ≤ 0∑ CFRFTZFWX + %T?ΓT? + ∑ ?FTF∈³8 ≤ 1∑ LNSN)VNWX − ∑ CFRF) + LT + %)7Γ)7 + %)?Γ)? + ∑ çN)N∈"A + ∑ ?F)F∈³A ≤ 0ZFWX 0 = 1, … , -%)7 + çN) ≥ LNSÄN) ∀0, ∀P ∈ �)p)? + ?F) ≥ CFRÄF) ∀0, ∀J ∈ ÿ)çN) , ?F) ≥ 0 ∀0 , ∀J ∈ ÿ) , ∀P ∈ �)%)?, %)7 ≥ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , QLT   free in sign 

  
(3.31) 

Proof. The protection function used in model (3.27) provides a simple way to generate a 

corresponding optimization problem for the input and output parameters. Given the optimal 

solution vector (¢∗, ¡∗), the protection function n (¢∗, ¡∗,  Γ)7 + Γ)?) can be formulated as the 

following linear optimization problem: 
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max ∑ |LN|SÄN) N)7 + ∑ |CF|RÄF) F)?F∈³AN∈"As. t.∑  F)?  ≤F∈³A Γ)?  ∑  N)7N∈"A ≤ Γ)7
0 ≤  N)7  ≤ 1 ∀P ∈ �)0 ≤  F)?  ≤ 1 ∀J ∈ ÿ)

   (3.32) 

As inspection makes clear, model (3.32) at optimality arrives at Ê∗ =  ª F)? ,  N)7 ¬, ∀J ∈ ÿ), ∀P ∈ �) 

which is made up of Γ) variables equal to 1 and another variable equal to Γ)?  − OΓ)?P and Γ)7  −
 JΓ)7L. Equivalently, this implies selecting a subset of ".) ∪ È~)Í| .) ⊆ Þ�)Þ, |.)| = J Γ)7 L, ~) ∈
{|�)|}\.);  .)̅ ∪ È~)̅Í| .)̅ ⊆ Þÿ)Þ, |.)̅| = O Γ)?  P, ~)̅ ∈ {|ÿ)|}\.)̅& with the corresponding objective 

function ∑ LNSÄN)N∈#A + ª Γ)7  −  J Γ)7 L¬ L�SÄN�A + ∑ CFRÄF)F∈#A + bΓ)?  −  O Γ)?  PdC�RÄF�A̅, hence models 

(3.28) and (3.32) are rightfully equivalent. It should be noted that model (3.32) can be written 

as a linear minimization problem using strong duality theory (see Bazaraa et al., 2010). Let %)?, %)7, çN) and ?F) be the dual variables of the first, second, third and fourth constraints 

respectively. Given (¢∗, ¡∗) as optimal solution, at optimality, êN7 = |LN| and êF? = |CF|. The dual 

of the LP model (3.32) then follows: 

min ∑ çN)N∈"A + ∑ ?F)F∈³A + %)7Γ)7 + %)?Γ)?
s. tp)7 + çN) ≥ êN7SÄN) ∀P ∈ �)p)? + ?F) ≥ êF?RÄF) ∀J ∈ ÿ)−êN7 ≤ LN ≤ êN7 ∀P ∈ �)−êF? ≤ CF ≤ êF? ∀J ∈ ÿ)çN), ?F) ≥ 0 ∀J ∈ ÿ), ∀P ∈ �)%) ≥ 0

    

(3.33) 

Model (3.32) is feasible and bounded for all Γ)? taking values in +0, |I)|, and Γ)7
 taking values 

in +0, |R)|,. Therefore, by the strong duality theory, the dual model (3.33) is also feasible and 

bounded and their objective function values are equal. From Theorem 3.1, since LN∗ and CF∗ are 

nonnegative, model (3.33) can be simplified as model (3.34).  

min ∑ çN)N∈"A + ∑ ?F)F∈³A + %)7Γ)7 + %)?Γ)?
s. tp)7 + çN) ≥ LNSÄN) ∀P ∈ �)p)? + ?F) ≥ CFRÄF) ∀J ∈ ÿ)çF), ?F) ≥ 0 ∀J ∈ ÿ), ∀P ∈ �)%) ≥ 0

   (3.34) 

Model (3.28) is equivalent to model (3.32) and by extension to model (3.34). Substituting model 

(3.34) into model (3.27) yields the resulting linear optimization model.  
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Remark 3.2:  Model (3.31)  should be very relevant for large-scale problems since the number 

of variables and constraints can be reduced to aid efficient computation in less time.  

 

3.6 Application to banking data 

This section demonstrates the applicability of the RRDEA model using data from 250 banks 

in some 23 countries in the European Union. The section consists of two subsections. The 

performance of the RRDEA with respect to complexity is presented in subsection 7.1 and 

compared with the RDEA model (3.26). Subsection 7.2 provides a robust efficiency ranking of 

the banks using the RRDEA model. The banks analyzed comprise a conglomerate of European 

banks headquartered in the European Union with subsidiaries operating across the globe. 

They include, in terms of assets some large banks such as BNP Paribas, Deutsche Bank AG, 

HSBC Bank plc, Barclays Bank Plc, Société Générale SA whose operation extends beyond 

domestic European market. The data also comprises some less market share banks operating 

in the domestic market or solely in their single country. In Appendix B, we have provided 

descriptive summary and the raw data containing the financial statements indicators of the 

banks used. Next, we look at the analysis of efficiency with the bank data. 

 

3.6.1 Selection of variables 

We consider the selection of inputs and outputs which is crucial in the banking efficiency 

measurement. In the banking sector, similar to other sectors, a consensus is reached on the 

classification of some factors as inputs and outputs. However, the classification of others 

particularly deposit is unclear and controversial. The debate on bank deposit which in the 

DEA literature is termed as a flexible measure or dual role factors (see Toloo, 2012; Toloo, 

Allahyar, & Hančlová, 2018) is that, depending on the operational activities of the bank, in 

one hand, deposit could be regarded as an input (intermediation approach) and on the other 

hand as an output (production approach) or as a major component involved in the creation of 

added value (value-added approach). The first two are the main competing approaches as 

identified in Berger & Humphrey (1997) and so we explain them.  

Intermediation approach: This approach involves examining how banks are 

organizationally efficient by using labor and capital in conjunction with financial liabilities; 

deposits to produce loans, mortgage, and other means of financing (e.g., investment). It 

therefore perceives banks as financial intermediaries between savers and investors and 

considers banks’ liabilities as input. Efficiency of a bank by this approach signifies a strong 

indication of the strength of its lending ability which in turn is linked to the bank‘s ability to 

operate as a going concern (Paradi, Rouatt, & Zhu, 2011). One key important advantage of 

this approach is that it is better suited in capturing the management decisions to minimize the 

cost of financing mix, hence, it is seen more appropriate for evaluating the performance of 

financial institutions as a whole. According to a survey on banking efficiency by Fethi & 
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Pasiouras (2010), the intermediation approach has become a dominant approach used in the 

performance of whole banks since most banks are essentially financial intermediaries, whose 

main activities is to borrow funds from depositors and lend to others. 

Production approach: This approach is of the view that banks are producers of services 

and product using capital, labour and other resources as inputs to produce loans and deposit 

account services including the number of transactions or document processing as outputs to 

customers. The production approach is a significant dimension of bank performance at the 

branch level. At the bank branch level, transactions are made face-face to customers and the 

branch is seen as a ‘factory’ of service rendering services in the form of transactions, loan 

processing or customer deposit account services. The approach is therefore recommended for 

bank branch performance, also, due to the fact that managers have limited control on making 

decision on financial mix (Berger & Humphrey, 1997) 

It is important to note that different researchers select different measures using 

different approaches. There is no general consensus on the best approach to use in literature 

and the exact classification of deposit as input or outputs is even subject to controversy within 

a particular approach. For instance, although the intermediation approach is argued with 

deposit intake as input, it is too simplistic. Paradi, Rouatt, & Zhu (2011) argue that it is unfair 

to bank branches the classification of deposit as input since a significant amount of revenue is 

generated from deposits which further unfairly penalizes branches from taking in customers 

and their funds. Consequently, some studies consider deposit as an additional output in line 

with the value-added approach. In order to select the most appropriate bank features for this 

thesis, we follow Mostafa (2009) where 26 research papers done on the banking industry in 

different countries are surveyed. Reference is made to Toloo & Tichý (2015) on the percentage  

 

 

 

Figure 3.2. Input and output measures with banks as DMUs 

 

of frequent selection of these banking measures presented in Mostafa (2009). Generally, 

employees are considered as an input variable and reasonably as fixed input. However, 

deposit is treated differently in banking studies; whiles 15.38% of research papers considered 

Assets 

Employees                                                                                                

Personnel expense 

Equity 

 

 

Intermediary 

Banking 

      DMU 

 
Input measures Output measures 

Deposit from banks 

Net interest income 

Net fees and comm. 

Operating income  

Loans 



 

 71 

deposit as an input usually under the production approach, 26.92% of the surveyed papers 

measure it as output with the intermediate approach27. Figure 3.2 summarizes the approach 

adopted in this chapter. Assets, employees and equity are the most important measures 

considered as inputs and while loans, operating income and revenues (from interest and 

commissions) in addition to deposit are used here as output. Table 3.3 shows the descriptive 

statistics for the input and output measures. The specific sub regional descriptive details are 

also given in Appendix B. All the inputs and outputs variables are measured in millions of 

Euros. Employees - measured as the number of banking professionals and the non-banking 

staff is given in actual figures. As a result, the raw data are scaled for uniformity and to reduce 

round-off errors in the DEA models from excessively large values (Thanassoulis,  2001).  

 

Table 3.3. Descriptive statistics for input and output measures 

                   Variables Mean SD Min Max 

Inputs      

 Employees 14000 29277.42 217 193863 

 Assets 140792.80 308512.70 10017.70 1994193 

 Personnel expenses 1009.31 2270.90 14.2 16061 

 Equity 8537.6 1046.2 226.3 100077 

Outputs      

 Net interest revenue 1834.79 4001.07 52.3 33267 

 Loans 66053.43 126218.9 305.6 758505 

 Deposit from banks 18740.07 40327.94 58 263121 

 Net fees & comm. 776.52 1714.09 6.6 12765 

Operating income 1220.27 2781.87 20.29 19805 

 

In order to assess the performance and complexity of the RRDEA model compared to the 

RDEA model under the GRC, uncertainties compelling volatilities in banks specific variables 

were considered. Banking sector uncertainties may originate from forecast values of loans and 

deposit, missing values, and measurement errors, etc. A DMU) is classified as uncertain if any 

of its inputs or outputs data is uncertain. Now we could consider the robust approach of 

Bertsimas & Sim (2004)  to select the appropriate robust parameter Γ). For each DMU) with J ∈ÿ) and P ∈ �), the percentage of perturbation, ·) of the nominal data is set to 0.01 and 0.05. For 

the choice of appropriate robustness level, it suffices to select Γ)? and Γ)7
 according to the 

number of uncertain input and output indices (see Sadjadi & Omrani, 2008,  Omrani, 2013). 

Since the variable employee is given as fixed, there are three sources of uncertainties arising 

from the inputs and five sources of uncertainties for the output measures. To ensure full 

                                                 
27 These performance measures are known as flexible measures (see Toloo, 2012; 2014) or dual-role factors (see 

Toloo & Barat, 2015; Toloo, Keshavarz, & Hatami-Marbini, 2018) 
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protection, Γ) is set to 8; i.e. Γ)? = 3 and Γ)7 = 5 which implies that the uncertain parameters are 

protected 100% taking their worst-case value in the uncertainty set.  

 

3.6.2 Performance of the reduced robust DEA 

As with Table 3.1, a computational comparison of the iterations counts of models under the 

GRC and RRC is conducted with the 250 DMUs. The goal of the comparison is to understand 

the numerical differences in the computational complexity of the RDEA and RRDEA as the 

size of the problem increases. To do this, we consider five independent groups including 50, 

100, 150, 200, and 250 DMUs. The total number of iterations for each group is obtained by 

running the robust models (3.26) and (3.31) with CPLEX solver in GAMS. Table 3.4 shows the 

groups and average runtime result for each group. There are significant differences between 

the iteration used by the two models in solving the same problem 

 

Table 3.4. Iteration counts 

Groups 
No. of 

DMUs 

No. of iterations in 

RDEA 

No. of iterations in 

RRDEA 

Percent of 

reduction 

1 50 333 232 30.3 

2 100 591 404 31.6 

3 150 819 469 42.7 

4 200 1103 614 44.3 

5 250 1306 704 46.1 

 

 

For instance, suppose we run model (3.26) with 200 DMUs, the RDEA model requires 1103 

iterations to generate the robust efficiency scores. On the other hand, the RRDEA model (3.31) 

requires only 614 iterations for the same number of DMUs, showing 44.3% reduction in the 

iterations count. It can be observed from column 3 that the robust model of under the GRC 

increases rapidly in the number of iterations as the number of DMU increases. This follows 

the exponential increase in the number of nonnegative variables and constraints that 

unwantedly increases the complexity of the model (De Klerk, 2008). Generally, from Theorem 

3.1 it is noticeable that, particularly for large data set, the reduced robust model saves CPU 

time which by extension concludes a save in the computational cost of the reduced model to 

operations research problems with nonnegative decision variables.  

 

3.6.3 Ranking of the Europeans banks 

The proposed robust approach is applied to the ranking of banks in Europe to demonstrate 

the applicability of the RRDEA to efficiency measurement. The same observation used for the 

first group of DMUs is considered. The result from the classical DEA model and the robust 
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DEA models are reported in Table 3.5 which shows the efficiency scores and the rank of the 

DMUs (in bracket). A bank is efficient and operates on the efficient frontier under the VRS 

technology if its efficiency score is one. These efficient banks are shown in the 2nd column of 

Table 3.5 by the classical DEA model. There are several banks which are purely technical 

efficient as measured by the BCC model. Notice that the efficiency scores of the banks reduce 

in the case of the robust models. 

 

 

 

Figure 3.3. A plot of robust efficiency at different perturbation level 

 

Under the robust technical efficiency assessment, considering the uncertainties in the 

data, we should know that the feasibility of the optimal solution as well as the execution time 

for the robust models, can be affected heavily by just a small perturbation of the data (see Ben-

Tal & Nemirovski, 2000). The optimal solution decreases with each consideration of higher 

perturbation of the DEA input and output data. For this reason, the efficiency scores of the 

robust models are smaller than the efficiency of the classical DEA model (see Figure 3.3). In 

this chapter, the result of the robust efficiency is also reported for the full protection of 

uncertain inputs and outputs, i.e. Γ) = 8 and Γ)? = 3 and Γ)7 = 5. The result compares the 

efficiencies of the RRDEA and RDEA models. The last two pair of columns which are labeled 

“Robust DEA” and “Reduced robust DEA” practically validate our approach and illustrate 

that the robust models yield the same efficiency result at 1% and 5% perturbations of the 

uncertain data. The goal of reducing variables and constraints is therefore achieved without 

altering the optimal value and the information contemplated in decision making. 
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 Notwithstanding the obtained result, the efficiency scores in both models decrease as 

the perturbation of the uncertain data increases (see Figure 3.3) Subsequently, the number of 

efficient banks in column 2 reduces when we trade-off optimality for performance. And so, 

only few banks are closed to efficient when perturbation of the uncertain data increases from 

1% to 5%. The mean of the robust models at 1% and 5% perturbation is reported at 0.942, 0.861 

respectively. For managers in the banking industry, this indicates a higher price to pay for 

robustness when uncertainty level increases (Bertsimas & Sim, 2004).  Finally, per the output 

result not presented here, it is also observed that the execution time for solving each LP in the 

RDEA far exceeds the RRDEA. 

      

Table 3.5. Ranking of banks based on the robust models      

DMUs 

(Bank) 
DEA 

 Robust DEA  Reduced robust DEA 

 · 

0.01  0.05   0.01     0.05 

1 1.000(1) 0.979 0.896 0.979(8)   0.896(15) 

2 1.000(1) 0.979 0.893   0.979(11)   0.893(20) 

3 1.000(1) 0.980 0.900 0.980(1) 0.900(6) 

4 1.000(1) 0.977 0.886   0.977(13)   0.886(23) 

5 1.000(1) 0.980 0.899 0.980(4) 0.899(9) 

6 1.000(1) 0.980 0.900 0.980(1) 0.900(3) 

7 1.000(1) 0.979 0.897 0.979(7)   0.897(12) 

8 1.000(1) 0.980 0.898 0.980(5)   0.898(10) 

9   0.700(16) 0.682 0.609   0.682(29)   0.611(36) 

10 0.934(8) 0.912 0.826   0.912(21)   0.826(28) 

11 1.000(1) 0.980 0.899 0.980(3) 0.899(8) 

12 1.000(1) 0.979 0.896 0.979(8)   0.896(14) 

13 0.995(2) 0.975 0.895   0.975(15)   0.895(17) 

14 1.000(1) 0.979 0.894   0.979(10)   0.894(19) 

15 1.000(1) 0.980 0.900 0.980(2) 0.900(7) 

16 1.000(1) 0.979 0.895 0.979(9)   0.895(18) 

17   0.676(17) 0.659 0.592   0.659(30)   0.592(37) 

18 1.000(1) 0.980 0.900 0.980(1) 0.900(2) 

19   0.807(14) 0.788 0.712   0.788(27)   0.713(34) 

20 1.000(1) 0.980 0.900 0.980(1) 0.900(3) 

21 1.000(1) 0.980 0.900 0.980(1) 0.900(5) 

22 1.000(1) 0.978 0.892   0.978(12)   0.892(21) 

23 0.956(6) 0.934 0.844   0.934(19)   0.844(26) 

24 1.000(1) 0.979 0.895 0.979(8)   0.895(16) 

25 0.964(5) 0.938 0.831   0.938(18)   0.831(27) 
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26 1.000(1) 0.980 0.900 0.980(1) 0.900(5) 

27 1.000(1) 0.980 0.900 0.980(1) 0.900(5) 

28 1.000(1) 0.980 0.898 0.980(6)   0.898(11) 

29 0.923(9) 0.902 0.816   0.902(22)   0.816(31) 

30 1.000(1) 0.980 0.900 0.980(1) 0.900(4) 

31   0.819(12) 0.801 0.728   0.801(25)   0.728(32) 

32 1.000(1) 0.980 0.900 0.980(1) 0.900(3) 

33 1.000(1) 0.980 0.900 0.980(1) 0.900(3) 

34 1.000(1) 0.980 0.900 0.980(1) 0.900(6) 

35   0.816(13) 0.798 0.725   0.798(26)   0.725(33) 

36 1.000(1) 0.980 0.900 0.980(1) 0.900(2) 

37 0.996(2) 0.976 0.896   0.976(14)   0.896(13) 

38 1.000(1) 0.980 0.900 0.980(1) 0.900(2) 

39 0.987(3) 0.966 0.886   0.966(16)   0.888(22) 

40 1.000(1) 0.980 0.900 0.980(1) 0.900(6) 

41 0.983(4) 0.963 0.884   0.963(17)   0.884(24) 

42 1.000(1) 0.980 0.900 0.980(1) 0.900(5) 

43 1.000(1) 0.980 0.900 0.980(1) 0.900(6) 

44 1.000(1) 0.980 0.900 0.980(1) 0.900(2) 

45   0.759(15) 0.742 0.671   0.742(28)   0.671(35) 

46 0.945(7) 0.926 0.848   0.926(20)   0.848(25) 

47   0.918(10) 0.899 0.822   0.899(23)   0.822(29) 

48   0.915(11) 0.896 0.820   0.896(24)   0.820(30) 

49 1.000(1) 0.980 0.901 0.980(1) 0.901(1) 

50 1.000(1) 0.980 0.900 0.980(1) 0.900(3) 

   Mean         0.962 0.942 0.861        0.942          0.861 

  SD         0.080 0.079 0.076        0.079          0.076 

  Min         0.676 0.659 0.591        0.659          0.591 

  Max         1.000 0.980 0.901        0.980          0.901 

 

 

 

3.7 Concluding remarks 

Robust counterpart optimization providing a general solution for decision variables has been 

the traditional way to study problems in operations research involving data uncertainty. 

However, in most practical problems where decision variables are nonnegative, the existing 

robust models present ‘unwanted variables’ that consume computational space particularly 

for large data set. The goal pursued in this chapter is to offer alternative robust counterparts 

for nonnegative decision variables. The chapter proposes reduced robust counterpart that 
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attempts to minimize problem complexity without altering the optimality of the original 

solution.  

In the DEA, whiles the decision variables are nonnegative, we find that the initial 

authors who proposed the robust DEA (Sadjadi & Omrani, 2008) and hence subsequent 

researchers consider the original formulation in robust optimization where the decision 

variables can be negative (free in sign). We have shown in this chapter that, such formulation 

involves many redundant constraints and decision variables which significantly increases the 

complexity of the robust DEA models and, of course, the required space and time for running 

the models. Addressing first the issue of infeasibility of simultaneous uncertainties in the DEA 

normalization constraint, we adjust the equality constraint in the normalization of the 

multiplier DEA models to inequality in order to allow for feasible and simultaneous 

consideration of uncertainties in the inputs and outputs data. Our complexity analysis using 

data from 250 European banks indicate that the proposed reduced robust DEA model renders 

some variables and constraints redundant in the RDEA models and reduces significantly the 

complexity in solving the same problem. In addition, almost 50% of the average reduction in 

iterations is found to save computational space. The proposed model while saving 

computational cost with problems with nonnegative decision variables also preserve the 

optimality of the original solution. By extension, the reduced robust counterpart for 

nonnegative decision variables can be used in many operations research applications such as 

portfolio analysis, supply chain management, and banking industry. Similar applications 

using the reduced robust DEA for the output orientation model and other uncertainty sets can 

be considered for further research in the future.  
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Chapter 4: Duality, classification and input – and output – 

orientations in robust DEA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary 

The robust DEA has emerged as a fast-growing research area in operations research and has 

proven to be a useful tool in assessing managerial efficiency and productivity under 

uncertainty. While strong duality relations hold between the multiplier (primal) and 

envelopment (dual) in the DEA, the issue of rising importance is the relationship when 

uncertainty in data is introduced. In this chapter, the focus is to study through duality 

relations the link between the multiplier and envelopment models and among input- and 

output-orientation models in robust DEA. The groundwork is established with a robust 

fractional DEA which yields proper robust efficiency score for benchmarking of DMUs. For 

the proposed models, we provide a scheme for the classification of DMUs into fully robust 

efficient, partially robust efficient and robust inefficient. An application is made to study the 

performance of some banks in Germany.  

 

 

4.1 Introduction 

The underlying traditional DEA models estimate efficiency with precise data, which is given 

in either input – oriented multiplier form or its dual form - the envelopment model or the 

output-oriented multiplier model or its envelopment model. The assumption of precise data 

in the traditional DEA models presupposes that a fixed measure of efficiency can be obtained 

with the efficient frontier from the exact/precise amount of inputs and outputs (Park, 2010). 

Therefore, a DMU benchmarked as efficient is ranked based on its relative importance to the 

other DMUs with exact data. However, as aforementioned in previous chapters, 
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benchmarking with precise data poses many challenges in the real-world setting since inputs 

and outputs of some/all DMUs are measured with noise and very uncertain. These 

uncertainties can displace the DEA efficiency frontier and affect the feasibility and optimality 

of the DEA model. In fact, the unique optimality of the primal-dual relationship among the 

DEA models can also be affected.  

 Duality is an important linear programming concept in DEA which offer flexibility in 

explaining the operational meaning of efficiency and of Pareto optimality in primal and dual 

spaces. The dual spaces in which efficiency is measured are those of production and of value. 

Therefore, by making it possible to switch from a production to a value-based context of 

efficiency assessment and vice versa, duality relations in DEA provides a natural link to and 

rationalization for the traditional productivity indexes (Thanassoulis,  2001). In the standard 

DEA context, the envelopment model (in the production space) is equivalent to the multiplier 

model (in the value space) which yields the DEA projection and the efficiency due to the linear 

programming duality28. However, under the DEA analysis with uncertain input and output 

data, such duality may not lead to a particular pair of robust multiplier and envelopment 

models, where frontier projections and divisional efficiency scores are generated in a single 

robust DEA model. This and indeed other advanced DEA models have their own primal-dual 

concepts and relationships. In some instances, the relationship is however not clear and 

contesting in literature. For instance, Chen et al, (2013) discussed network DEA pitfall and 

argued that a unique optimal solution does not necessarily exist between network DEA 

models built on multiplier and envelopment models. Lim and Zhu (2015) recently counter-

argued this claim and demonstrated that duality in the standard DEA naturally migrates to 

the two-stage network DEA. Park (2010) studied the duality relations among multiplier and 

envelopment models of IDEA. He revealed that duality gap and hence efficiency gap exist 

between the dual pair models of DEA when imprecise data is incorporated. In this Chapter, a 

prime objective is to examine the duality relationship in the robust DEA case, herein from 

both the worst-case approach and the best-case approach.  

Within the worst-case robust DEA approach, we also study the possibility of scheme 

that can interpret robust efficiency and classify DMUs into different robust classes. The robust 

efficiency of DMUs has been analyzed and interpreted differently in literature. Prior to the 

RDEA, research work on the deterministic analysis of uncertainty in DEA took the general 

discussion of Imprecise DEA (IDEA) (see also research work using fuzzy DEA from Hatami-

Marbini et al., 2011). The IDEA proposed by Cooper et al (1999) deals with imprecise 

information in the input and output data such as data in bounded (interval), ratio or ordinal 

form. To provide a classification scheme for DMUs with imprecise data, Despotis & Smirlis 

(2002) suggested a variable transformation that treats interval DEA as a peculiar case of DEA 

with exact data. They provide lower and upper bound for efficiency score of DMUs and 

discriminate DMUs into fully efficient, efficient and inefficient units. Entani et al. (2002) 

provides a slightly different situation in which the efficiency of a mixture of interval and fuzzy 

                                                 
28 Duality in linear programming is discussed thoroughly in Appendix A.1. 
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data are measured from both pessimistic and optimistic viewpoints. Park (2010) research into 

duality IDEA models makes two definitions: perfect efficiency and potential efficiency based 

on whether the optimal efficiency value of one is obtained for all the imprecise data values or 

some in each DMU. Wei & Wang (2017)  classify DMUs with imprecise data into perfectly 

robust efficient, potentially robust efficient and robust inefficient units based on the lower and 

upper bounds formulated from the multiplier and envelopment models. These bounds 

according to the authors also represent the worst-case and best-case scenarios for the 

imprecise data.  

In general, the robust classification of DMUs and its attendant meaning provides 

effective ranking strategies appealing to the risk preference level of the DM. Notwithstanding 

its significance, no attempt has been made on this issue in the RDEA. It is, therefore, the 

purpose of this chapter to extend the methodology in RDEA and examine duality relations 

and unit classification when the input and output data are uncertain. The main contributions 

of this chapter are in five folds:  

1. we study duality relations and develop models that will establish a relationship 

between robust multiplier and envelopment models in the context of worst-case 

scenarios.  

2. we prove that the normalization equation in the output-oriented model can be 

replaced by “≥”. This is analogous to Theorem 3.2 for the BCC model in which it was 

showed that the traditional normalization constraint in the multiplier form of the 

input-oriented model which is in an equation form can be equivalently substituted by 

“≤”.  

3. More importantly, the chapter designs a classification scheme that utilizes the 

conservativeness of the decision maker and interprets robust efficiency solutions 

accordingly. Practically, in most cases, determining the robustness of the solution may 

depend on the risk preferences of the decision maker. Thus, unlike the classification 

scheme provided in Despotis & Smirlis (2002) and that of Park (2010) and Wei & Wang 

(2017) for the imprecise DEA, the proposed robust classification scheme is based on 

the conservativeness level of the DM and is further applicable and flexible to the risk 

preference of the DM.  

4. The next contribution considers the characterization of the efficiency of solutions for 

all DMUs in both input and output orientations. The relationship between the robust 

input – oriented models and robust output – oriented models is thus studied.  

5. Finally, a computational experiment is conducted with the proposed models using 

data on some banks in Germany. The result while validating the proposed models also 

provides an empirical estimation of the operational efficiency of banks in Germany 

under data uncertainty.  
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Structure of the chapter. In Section 2, we provide the motivation and background of the 

traditional DEA models and introduce a new output – oriented multiplier CCR model feasible 

for robust analysis, followed by introducing a robust fractional DEA programming. In Section 

3, a robust classification scheme under the worst-case DEA model is proposed. The section 

also studies the multiplier and envelopment models in the worst-case and best-case scenario 

in the input – orientation. The same analysis is done with the output – orientation in Section 

4. In Section 5, we present an application with the performance of some banks in Germany to 

demonstrate the efficacy of the proposed models. Finally, concluding remarks are made in 

Section 6. 

 

4.2 The DEA models and motivation  

Suppose there are - DMUs indexed as DMU) (0 = 1, … , -) where each unit consumes K inputs g) = b… , RF) , … d; J ∈ ÿ = {1, … , K} to produce Q outputs `) = b… , SN) , . . d; P ∈ � = {1, … , Q}. All 

inputs and outputs for all DMUs are non-negative and a DMU has at least one positive input 

and one positive output. For simplicity, we restate the CCR models with the given names 

below. The multiplier and envelopment (primal and dual) forms of the CCR model measuring 

the input-oriented technical efficiency of DMUs are expressed as the following, respectively: 

 

                                IMCCR                              IECCR  �∗ = max ∑ LNSNTVNWXs. t.∑ CFRFTZFWX = 1∑ LNSN)VNWX − ∑ CFRF)ZFWX ≤ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , Q
  (4.1) 

min �s. t∑ �)�)WX RF) ≤ �RFT J = 1, … , K∑ �)�)WX SN) ≥ SNT P = 1, … , Q�) ≥ 0 0 = 1, … , -
  (4.2) 

Here, the CF and LN are the weights assigned to the J�� input and P�� output, respectively. DMUT is CCR-efficient if �∗ = 1, otherwise, it is CCR-inefficient. The technical efficiency 

measured by the output-oriented CCR models can be measured by the following: 

OMCCR OECCR £∗ = min ∑ CFRFTZFWXs. t.∑ LNSNTVNWX = 1∑ LNSN)VNWX − ∑ CFRF)ZFWX ≤ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , Q
  (4.3) 

max £s. t.∑ �)�)WX RF) ≤ RFT J = 1, … , K∑ �)�)WX SN) ≥ £SNT P = 1, … , Q�) ≥ 0 0 = 1, … , -
  (4.4) 

It is well established that the CCR input-oriented and output-oriented models are equivalent. 

To be more precise at the optimality we have £∗ = 1/�∗. In what follows, we are motivated 

by the relationships between models (4.1) - (4.4) when the input and output data are uncertain, 
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using the robust optimization approach. The robust extension of the IMCCR model was given 

in Sadjadi & Omrani (2008) to assess the robust technical efficiency of utility companies. The 

IECCR model was extended to measure the robust super-efficiency by Sadjadi et al (2011b). 

Lu (2015) also studied the robust algorithm performance with the OMCCR model (4.3) under 

output uncertainty. However, Lu (2015) robust DEA model considers uncertainty in the 

normalization constraint which is to be avoided. The underlying modeling problem is that 

uncertainty analysis in equality constraint, in this case, the normalization constraint may lead 

to infeasibility issues since such constraint restricts the feasibility region (see Ben-Tal et al, 

2009, Chapter 2). This is also generally the case for all DEA models which involve equality in 

a constraint or slack variables. Naturally, a solution which is feasible in the robust DEA sense 

requires inequality in the normalization constraint of models (4.1) and (4.3). Salahi et al. (2016)  

dealt with this issue by converting equality in the normalization constraint of model (4.1) to 

double inequality constraints. Omrani (2013) instead replaced the normalization constraint ∑ CFRFTZFWX = 1 with a superfluous constraint ∑ LNVNWX − ∑ CFZFWX = 1 for his common weight 

robust DEA model in order to avoid constraint infeasibility for the input uncertainty. To 

overcome such equality problem in model (4.1), in this chapter, we use the following model 

which is earlier proposed by Toloo (2014)a: 

 max ês. t.ê − ∑ LNSNTVNWX ≤ 0∑ CFRFTZFWX ≤ 1∑ LNSN)VNWX − ∑ CFRF)ZFWX ≤ 0 ∀0CF ≥ 0 ∀JLN ≥ 0 ∀P
   (4.5) 

Toloo (2014)a proved that model (4.5) is the equivalent to the input-oriented model (4.1). 

Indeed, model (4.5) facilitate the efficiency measurement of both inputs and outputs data 

uncertainty and recently was adopted by Arabmaldar et al. (2017) to measure the robust 

super-efficiency of DMUs. To similarly deal with the output uncertainty issue in the 

normalization constraint of the OMCCR model (4.3), we consider the following theorem: 

 

Theorem 4.1. The following model is equivalent to the OMCCR model: 

 

min ∑ CFRFTZFWXs. t.∑ LNSNTVNWX ≥ 1∑ LNSN)VNWX − ∑ CFRF)ZFWX ≤ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , Q
  (4.6) 

Proof. Consider the following dual of model (4.6):  
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max £s. t.∑ �)�)WX RF) ≤ RFT J = 1, … , K∑ �)�)WX SN) ≥ £SNT P = 1, … , Q�) ≥ 0 0 = 1, … , -£ ≥ 0
  (4.7) 

We show that the nonnegativity constraint £ ≥ 0 is redundant. According to the strong 

duality property in linear programming (see Bazaraa, Jarvis, & Sherali, 2010), the primal and 

dual optimal objective values are equal. In other words, let (¡∗, ¢∗) ∈ ℝZlV and (£∗, �) ∈ ℝXl� 

be the optimal solution of models (4.3) and (4.6), respectively, then we can conclude that £∗ =∑ CF∗RFTZFWX . In addition, from the first and second constrains set of model (4.6) we obtain that 1 ≤ ∑ LNSN)VNWX ≤ ∑ CFRF)ZFWX  which means for any feasible solution (¡, ¢), including the 

optimal solution (¡∗, ¢∗), we have ∑ CFRF)ZFWX ≥ 1. As a result, we arrive at (∑ CF∗RFTZFWX =) £∗ ≥1 which proves that the last nonnegativity constraint in model (4.7) is non-geometrically29 

redundant. Hence, models (4.4) and (4.7) are equivalent and we can conclude that their duals 

(models (4.3) and (4.6)) are equivalent too which completes the proof.  

 

 

4.3 The Input-oriented robust DEA models 

We devote this section to studying the robust efficiency of DMUs with input – orientation. 

The approach is based on the worst-case robust efficiency which is a conservative approach 

concerned with a guaranteed level of performance for all feasible realization of uncertain 

inputs and outputs in an uncertainty set. As a result, it reflects the worst-possible performance 

of a DMU. Later in the section, we shall provide a classification scheme for the robust 

efficiency under different conservatism level. In Section 3.2, we study the link between the 

robust multiplier and envelopment models.  

In order to develop an explicit expression of the robust CCR model in the multiplier 

form, we consider model (4.5) and the variables RÀF) , SÀN) taking values in the symmetric 

intervals [RF) − RÄF) , RF) + RÄF)] and [SN) − SÄN) , SN) + SÄN)]. Then, using the fact that the random 

variations in the data are modeled such that ∑  F)?F∈³ ≤ Γ)? , Þ F)? Þ ≤ 1 ∀J, ∑  N)7N∈" ≤ Γ)7, | N)7 | ≤1, ∀P (see Bertsimas & Sim, 2004), it is sufficient to write the input-oriented multiplier robust 

CCR (IMRCCR) model according to the theorem below: 

 

 

 

Theorem 4.2. The IMRCCR model is expressed as the following: 

                                                 
29 A constraint is geometrically redundant if and only if the feasible region is identical with or without the 

constraint. A non-geometrically redundant constraint is a constraint which is redundant only at the optimality.    
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ÿZ∗ = max Ws. t.W − ∑ LNSNTVNWX + %T7ΓT7 + ∑ çNTN∈"8 ≤ 0∑ CFRFTZFWX + %T?ΓT? + ∑ ?FTF∈³8 ≤ 1∑ LNSN)VNWX − ∑ CFRF)ZFWX + %)?Γ)? + %)7Γ)7 + ∑ çN)N∈"A + ∑ ?F)F∈³A ≤ 0 ∀0%)7 + çN) ≥ LNSÄN) ∀0, ∀P ∈ �)%)? + ?F) ≥ CFRÄF) ∀0, ∀J ∈ ÿ)çN), ?F) ≥ 0 ∀0 , ∀J ∈ ÿ), ∀P ∈ �)%)? , %)7 ≥ 0 ∀0CF ≥ 0 ∀JLN ≥ 0 ∀P

  (4.8) 

where ÿZ∗  is the IMR-efficiency score of DMUT; %)?, çN), and %)7, ?F) are nonnegative variables 

correspond to the set of uncertain inputs and outputs respectively, and ΓT? and ΓT7 are the 

respective robust parameters of the uncertain inputs and outputs of DMUT.   

 

Proof. Consider the following NLP model which is arrived at by substituting RÀF) = RF) + F)? RÄF) and  SÀN) = SN) +  N)7 SÄN) into model (4.5): max ês. t.ê − ∑ LNbSNT +  NT7 SÄNTdVNWX ≤ 0∑ CF(RFT +  FT? RÄFT)ZFWX ≤ 1∑ LNªSN) +  N)7 SÄN)¬VNWX − ∑ CFbRF) +  F)? RÄF)dZFWX ≤ 0 ∀0−1 ≤  F)? ≤ 1 ∀0, ∀J ∈ ÿ)−1 ≤  N)7 ≤ 1 ∀0, ∀P ∈ �)CF ≥ 0 ∀JLN ≥ 0 ∀P

   (4.9) 

The model can be equivalently written as follows: 

max ês. t.ê − ∑ LNSNTVNWX + ∑ LN NT7 SÄNTN∈"A ≤ 0∑ CFRFTZFWX + ∑ CF FT? RÄFTF∈³A ≤ 1∑ LNSN)VNWX − ∑ CFRF)ZFWX + ∑ LN N)7 SÄN)N∈"A − ∑ CF F)? RÄF)F∈³A ≤ 0 ∀0−1 ≤  F)? ≤ 1 ∀0, ∀J ∈ ÿ)−1 ≤  N)7 ≤ 1 ∀0, ∀P ∈ �)CF ≥ 0 ∀JLN ≥ 0 ∀P

   (4.10) 

The robust counterpart of model (4.10) is the following: 
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max ês. t.ê − ∑ LNSNTVNWX + max∑ Å68K>∈b8 =ÜAK�=Å68K =X
"∑ LN NT7 SÄNTN∈"A & ≤ 0

∑ CFRFTZFWX + max∑ Å>8M>∈b8 =ÜAM�=Å>8M =X
"∑ CF FT? RÄFTF∈³A & ≤ 1

∑ LNSN)VNWX − ∑ CFRF)ZFWX + max∑ Å6AK6∈}A =ÜAK∑ Å>AM>∈bA =ÜAMÅ6AK ,Å>AM ∈[�,X] 

"∑ LN N)7 SÄN)N∈"A + ∑ CF F)? RÄF)F∈³A & ≤ 0 ∀0

CF ≥ 0 ∀JLN ≥ 0 ∀P

   (4.11) 

Note that all the weights and input-output data are non-negative and hence we could consider  F)?  and  N)7
 as positive variables in the inner-problems of model (4.11). Using the dual variables %)7 and çN) for the output and  %)? and ?F) for the input in the inner–problem of the third 

constraints set, we arrive at the following equivalent linear model30:  

min ∑ çN)N∈"A + ∑ ?F)F∈³A + %)7Γ)7 + %)?Γ)?
Q. ~p)7 + çN) ≥ LNSÄN) ∀P ∈ �)p)? + ?F) ≥ CFRÄF) ∀J ∈ ÿ)çF), ?F) ≥ 0 ∀J ∈ ÿ), ∀P ∈ �)%) ≥ 0

   (4.12) 

A similar formulation for the first and second constraints sets and subsequent substitutions 

into model (4.11) completes the proof.  

 

It should be mentioned that the IMRCCR model (4.8) incorporates variables that 

protect the objective function and constraints in evaluating the robust efficiency of the DMUs. 

The variables (%)? , %)7) and (çN), ?F)) quantify the sensitivity of the inputs and outputs data to 

infinitesimal changes in the level of conservativeness. The quantities  %)7Γ)7 + ∑ çN)N∈"A  and %)?Γ)? + ∑ ?F)F∈³A  represent the worst-case deviations of the uncertain outputs and inputs from 

their nominal values subject to the budget of uncertainty. Model (4.8) therefore involves - +1 + -b∑ Þÿ)Þ�)WX + ∑ Þ�)Þ�)WX d constraints, and K + Q weights and 2- + -b∑ Þÿ)Þ�)WX + ∑ Þ�)Þ�)WX d  

robust decision variables in each - instance of obtaining a solution. The robust model 

maximizes the weights (objective function) with respect to the worst-case perturbation of the 

                                                 
30 Note that in the inner-problem it is assumed that CF , ∀J and LN , ∀P are constants that turns the problem to an LP 

model.  
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inputs and outputs data in the uncertainty set with a pessimistic view. The dual expression of 

the IMRCCR model (4.8) is given below:  

ÿõ∗ = min �s. t∑ �)RF)�)WX − ∑ ¤F)? RÄF))∈Æ>M ≤ �RFT ∀J ∈ ÿ∑ �)SN)�)WX + ∑ ¤N)7 SÄN))∈Æ6K ≥ SNT ∀P ∈ ��TΓT? − ∑ ¤FT?F∈³8 + �ΓT? ≥ 0  �)Γ)? − ∑ ¤F)?F∈³A ≥ 0 ∀0 ≠ 8�TΓT7 − ∑ ¤NT7N∈"8 ≥ −ΓT7�)Γ)7 − ∑ ¤N)7N∈"A ≥ 0 ∀0 ≠ 8�T − ¤FT? + � ≥ 0 ∀J ∈ ÿT�) − ¤F)? ≥ 0 ∀0 ≠ 8, ∀J ∈ ÿ)�T − ¤NT7 + 1 ≥ 0 ∀P ∈ �T�) − ¤N)7 ≥ 0 ∀0 ≠ 8, ∀P ∈ �)¤F)? ≥ 0 ∀0, ∀J ∈ ÿ) ¤N)7 ≥ 0 ∀0, ∀P ∈ �)�) ≥ 0 ∀0

   (4.13) 

where ÂF? and ÂN7 are introduced indices for the uncertain inputs and outputs in the 

envelopment model (here and after); � is the technical efficiency score of DMUT; ¤F)?  and ¤N)7  are 

nonnegative variables corresponding to the set of uncertain inputs and outputs respectively. 

Note that (ÿZ∗ = ÿõ∗) by the strong duality theorem. The following proposition states that the 

robust efficiency score obtained in models (4.8) and (4.13) for each DMU 0 is less than or equal 

to one.  

 

Proposition 4.1. ÿZ∗ ≤ 1 

 

Proof.  From the first constraint of model (4.8) ê ≤ ∑ LNSNTVNWX − %T7ΓT7 − ∑ çNTN∈"8 . Since %T7 

and çNT∀P ∈ �T are nonnegative variables we have  ∑ LNSNTVNWX − %T7ΓT7 − ∑ çNTN∈"8 ≤∑ LNSNTVNWX + %T7ΓT7 + ∑ çNTN∈"8 . Now, considering the second constraint and the third 

constraints set for 0 = 8 we arrive at ∑ LNSNTVNWX + %T7ΓT7 + ∑ çNTN∈"8 ≤ ∑ CFRFTZFWX + %T?ΓT? +∑ ?FTF∈³8 ≤ 1. Henceforth, ê ≤ 1 and the fact that the model is a maximization problem leads 

to ÿZ∗ ≤ ê which completes the proof.  

  

From Proposition 4.1, DMUT is robust efficient or simply denoted R-efficient if ÿZ∗ = 1. 

Otherwise, it is R- inefficient. The interpretation of the R-efficiency in the IMRCCR model (4.8) 

is given as the radial contraction rate of input levels of a DMU in order to reach the robust 

efficiency frontier (Wei & Wang, 2017). Similarly, the optimal solution of model (4.13) for the DMUT apprises the minimum �∗ that decreases the input vector gT radially to �∗gT while 
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restricting the deviation (RÄF) , SÄN)) of the uncertain inputs and outputs. Note that in each of the 

models, the efficiency score of the DMUs are preserved by the robust frontier since the PPSN 

underlying the robust models are protected by the budget of uncertainty.  

 

 

4.3.1 A classification scheme for DMUs  

According to the IMRCCR model (4.8), an evaluated DMU adjust not only to the weights but 

also the conservativeness of the DM. A DMU can be partition into three main robust efficiency 

classes: a fully robust efficient, partially robust efficient, and robust inefficient units. The 

classification of the DMUs is determined based on the level of conservativeness of the DM 

that is controlled by the robust parameters, Γ)?, and Γ)7
 which are defined by the budget of 

uncertainty or the number of uncertain inputs and outputs. In the RDEA, we wish to control 

the level of conservativeness so that a reasonable trade-off between DMUs performance and 

robustness can be achieved. Let Γ) = Γ)? + Γ)7
,  the values of Γ) ranges from 0 to Þÿ)Þ + Þ�)Þ where Γ) = Þÿ)Þ + Þ�)Þ admit the highest protection for the uncertain inputs and outputs because all 

the uncertain data are protected against. The first step in classifying DMUs under the 

IMRCCR model (4.8) is to determine the number of uncertain inputs and outputs for the 

budget of uncertainty.  

 

 

 

 

  

         Γ) = 0                         0 < Γ) < Þÿ)Þ + Þ�)Þ                             Γ) = Þÿ)Þ + Þ�)Þ 
Figure 4.1. Different degree of conservativeness 

 

 

Figure 4.1 shows the different degree of conservativeness corresponding to the budget of 

uncertainty. Note that the optimal objective value W∗ decreases as Γ) increases, hence fewer 

units are expected to be robust efficient as Γ) increases. The following definition provides a 

formal classification scheme for the DMUs in the robust DEA setting. 

Definition 4.1. Let Γ) takes values in the interval +0, Þÿ)Þ + Þ�)Þ, in model (4.8). Referencing to 

Proposition 4.1 the DMUs are classified into the following sets:  

 (Full robust efficiency). DMU~ is fully R-efficient if and only if ÿZ∗ = 1 when Γ) = Þÿ)Þ +Þ�)Þ, ∀0. 

 (Partial robust efficiency). DMUT is partially R- efficient if ÿZ∗ < 1 when Γ) = Þÿ)Þ + Þ�)Þ 
and there exist Γ) > 0 such that  ÿZ∗ = 1  

        No                                Moderate                                      High 

Conservativeness                                   Conservativeness                           Conservativeness 
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 (Robust inefficiency). A DMUT is said to be R- inefficient if ÿZ∗ < 1 for all Γ) ∈b0, Þ ÿ)Þ + Þ�)Þ,. 
The above efficiency classification can be denoted as ��ll (full R-efficiency), ��l(partial 

robust efficiency or PR-efficiency) and ��� (R-inefficiency). The set ��ll consist of DMUs 

that are robust R-efficient in any combination of uncertain inputs and outputs at all robust 

level defined by the DM. This category of efficient DMUs is obtained under the most 

conservative evaluation of the uncertain data. So, logically, a DMU is robust efficient if and 

only if it is fully robust efficiency. The set ��l consists of DMUs that are R-efficient at maximal 

sense but there are certain conservative levels for inputs and outputs combinations for which 

they cannot maintain R-efficiency. The PR-efficiency is therefore obtained in a less stringent 

manner than the full robust efficiency and as a result, the latter outperforms the former for all 

uncertain input and output data. Finally, the set ��� consists of R-inefficient DMUs for all 

input and output combinations. It must also be noted that a unit can be efficient without being 

R-efficient or PR-efficient. The contrary is false. 

 

4.3.2 Primal-Dual relationship: input orientation  

The issue of rising importance in the RDEA is the relationship between the dual–pair of the 

DEA models, i.e. the multiplier and envelopment forms, when one incorporates uncertainty 

and builds a robust model either from the pessimistic or optimistic viewpoints. A prior 

knowledge generally exists in IDEA models (see Park, 2010) and Interval DEA models (see 

Entani et al., 2002) which presume that the presence of imprecise data invalidates the linear 

duality principle as well as create efficiency gap between the multiplier IDEA models and 

primal IDEA models. In the traditional DEA, it is known that IMCCR and IECCR are mutually 

dual. We will verify whether this property remains the same for the corresponding robust 

models. In order to do that, we introduce the following Input–oriented Envelopment robust 

CCR (IERCCR) model for the IECCR model (4.2) which, similar to the IMRCCR model (4.8), 

considers a worst-case formulation.  

 

 

 

 

 

 

 

 

 



 

 88 

Theorem 4.3. The IECCR model (4.2) with the worst-case criterion is equivalent to the following 

model: 

ÿ�∗ = min �s. t.∑ �)RF)�)WX − �RFT + ∑ �F)? + 'F?ΥF?)∈Æ>M ≤ 0 ∀J ∈ ÿ∑ �)SN)�)WX − SNT − ∑ �N)7)∈Æ6K − 'N7ΥN7 ≥ 0 ∀P ∈ �'F? + ¤F)? ≥ �)RÄF) ∀J ∈ ÿ, ∀0 ∈ ÂF?(0 ≠ 8) 'F? + ¤FT? ≥ ºTRÄFT 8 ∈ ÂF? , ∀J ∈ ÿ 'N7 + ¤N)7 ≥ �)SÄN) ∀P ∈ �, ∀0 ∈ ÂN7(0 ≠ 8) 'N7 + ¤NT7 ≥ nTSÄNT 8 ∈ ÂN7, ∀P ∈ �−ºT ≤ �T − � ≤ ºT−nT ≤  �T − 1 ≤ nTºT, ¤F)? ,  %F? ≥ 0 ∀J ∈ ÿ, ∀0 ∈ ÂF?  nT, ¤N)7 , %N7 ≥ 0 ∀P ∈ �, ∀0 ∈ ÂN7 �) ≥ 0 ∀0

  

 

 

 

(4.14) 

Proof.  First, note that the IECCR model (4.2) equivalent to the formulation:  

min �s. t.∑ �)RF)�)WX()�T) + (�T − �)RFT ≤ 0 ∀J∑ �)SN)�)WX()�T) − (1 − �T)SNT ≥ 0 ∀P�) ≥ 0 ∀0
  (4.15) 

The pessimistic robust counterpart leads to the following model:  

 min �s. t.
∑ �)RF)�)WX − �RFT + max∑ �>AM=�>MA∈�>M�=�>AM=X (∀)∈Æ>M)

{∑ �)�F)? RÄF))∈Æ>M)�T + |�T − �|�FT? RÄFT| ≤ 0 8 ∈ ÂF? , ∀J ∈ ÿ 

∑ �)RF)�)WX − �RFT + max∑ �>AM=�>MA∈�>M�=�>AM=X(∀)∈Æ>M)
{∑ �)�F)? RÄF))∈Æ>M)�T | ≤ 0 8 ∉ ÂF? , ∀J ∈ ÿ 

∑ �)SN)�)WX − SNT − max∑ �6AK =�6KA∈�6K�=�6AK =X(∀)∈Æ6K)
G∑ �)�N)7 SÄN))∈Æ>K)�T

+ |�T − 1|�NT7 SÄNTN ≥ 0  8 ∈ ÂN7, ∀P ∈ �
∑ �)SN)�)WX − SNT − max∑ �6AK =�6KA∈�6K�=�6AK =X(∀)∈Æ6K)

G∑ �)�N)7 SÄN))∈Æ>K)�T
N ≥ 0 8 ∉ ÂN7, ∀P ∈ �

�) ≥ 0 ∀0

   (4.16) 
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Let the inner problems of the first and third constraints be denoted by the protection functions  (�, �, ΥF?) and  (�, � ΥN7) and let ('F? , �F?) ∈ ÿ, and b'N7, �N7d ∈ � be the dual variables, 

respectively, where �F? = b… , �F)? , … d ∈ ℝ|Æ>| and �N7 = ª… , �N)7 , … ¬ ∈ ℝ|Æ6|. Using the strong 

duality theorem, we obtain the following equivalent models: 

 (�, �, ΥF?) = min ∑ �F)?)∈Æ>M + 'F?ΥF?s. t'F? + �F)? ≥ �)RÄF)  ∀0 ∈ ÂF?(0 ≠ 8)'F? + �FT? ≥ |�T − �|RÄFT�F)? , %F? ≥ 0 ∀0 ∈ ÂF?
  

  

(4.17) 

 b�, �, ΥN7d = min ∑ �N)7)∈Æ6K + 'N7ΥN7s. t'N7 + �N)7 ≥ �)SÄN) ∀0 ∈ ÂN7(0 ≠ 8)  'N7 + �NT7 ≥ |�T − 1|SÄNT�N)7 , %N7 ≥ 0 ∀0 ∈ ÂN7 
   

  

(4.18) 

Let ºT = |�T − �| and nT = |�T − 1| in models (4.17) and (4.18) respectively. We can write the 

following equivalent models: 

 (�, �, ΥF?) = min ∑ �F)?)∈Æ>M + 'F?ΥF?s. t'F? + �F)? ≥ �)RÄF) ∀0 ∈ ÂF?(0 ≠ 8)'T? + �FT? ≥ ºTRÄFT−ºT ≤ �8 − � ≤ ºTºT, �FT? , %)? ≥ 0 ∀0 ∈ ÂF?
  

  

(4.19) 

 b�, �, ΥN7d = min ∑ �N)7)∈Æ6K + 'N7ΥN7s. t'N7 + �N)7 ≥ �)SÄN) ∀0 ∈ ÂN7(0 ≠ 8)'T7 + �NT7 ≥ nTSÄNT−nT ≤  �8 − 1 ≤ nTnT, �NT7 , %)7 ≥ 0  ∀0 ∈ ÂN7
   

  

(4.20) 

Analogously, we can develop a couple of models to measure the second and fourth inner 

problems and substitute all the built models into model (4.16). Then finally, considering that 

all the inputs and outputs data of the DMUs are uncertain we arrive at the following model:  
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ÿ�∗ = min �s. t.∑ �)RF)�)WX − �RFT + ∑ �F)? + 'F?ΥF?)∈Æ>M ≤ 0 ∀J ∈ ÿ∑ �)SN)�)WX − SNT − ∑ �N)7)∈Æ6K − 'N7ΥN7 ≥ 0 ∀P ∈ �'F? + ¤F)? ≥ �)RÄF) ∀J ∈ ÿ, ∀0 ∈ ÂF?(0 ≠ 8) 'F? + ¤FT? ≥ ºTRÄFT 8 ∈ ÂF? , ∀J ∈ ÿ 'N7 + ¤N)7 ≥ �)SÄN) ∀P ∈ �, ∀0 ∈ ÂN7(0 ≠ 8) 'N7 + ¤NT7 ≥ nTSÄNT 8 ∈ ÂN7, ∀P ∈ �−ºT ≤ �T − � ≤ ºT−nT ≤  �T − 1 ≤ nTºT, ¤F)? ,  %F? ≥ 0 ∀J ∈ ÿ, ∀0 ∈ ÂF?  nT, ¤N)7 , %N7 ≥ 0 ∀P ∈ �, ∀0 ∈ ÂN7 �) ≥ 0 ∀0

   

 

 

 

(4.21) 

which complete the proof.  

 

In the robust optimization framework, the dual of the robust counterpart results in an 

optimal solution is different from the robust counterpart of the dual regardless of the choice 

of uncertainty set (see Gabrel & Murat, 2010). The following theorems prove that the optimal 

objective value of the IERCCR model (4.14) is indeed greater than the optimal objective value 

of the IMRCCR (4.8). 

 

Theorem 4.4. ÿ�∗ > ÿZ∗                                                                                                                   

Proof.  By definition, ÿZ∗ = ÿõ∗ . Suppose by contradiction that ÿ�∗ = ÿZ∗ . Let (�∗, `g∗, ``∗) ∈ℝXl�l∑ bÞ³AÞlÞ"AÞdcA:;  be the optimal solution of model (4.13) where �∗ = b… , �)∗, … d)WX,..,�, `g∗ =
b… , �F)?∗, … dF∈³,)∈Æ>M  and ``∗ = ª… , �N)7∗, , … ¬N∈",)∈Æ6K  . The optimal objective value ÿõ∗   is less than 

or equal to one according to Proposition 4.1 A feasible solution (�∗, �g∗, �`∗) ∈ℝZlVl�l∑ bÞ³AÞlÞ"AÞdcA:;  of model (4.14) correspond with a feasible solution for model (4.13). 

However, the optimal objective function value, ÿ�∗ from the feasible solution in model (4.14) is 

greater than the optimal objective functions values ÿõ∗  and ÿZ∗  which is a contradiction to the 

earlier claim.  

 

We have shown with Theorem 4.4 that the linear duality principle between the IECCR and 

IMCCR models (see appendix A1) breaks down when the underlying data is uncertain. This 

proof support that the similar result obtained for the imprecise DEA in see Park (2010). We 

therefore lay emphasis on the fact that the IECCR model differs from the IMRCCR model if 

the DMUs are benchmarked in the light of the worst-case scenario for uncertain inputs and 

outputs data. More importantly, the efficiency scores of the IERCCR model is higher than the 
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IMRCCR model. The differences in the optimal objective value of the models result from the 

ultraconservative strategy used in obtaining the two models. It is clear in the robust setting 

now that a DMU efficient in the envelopment model is not necessarily efficient in the 

multiplier model.  

 

 

4.4 The output-oriented robust CCR model 

We devote this section to study the robust efficiency of DMUs with output – orientation. In 

Sections 4.1 and 4.2, a classification of the robust efficiency under different conservatism level 

and duality relation between the multiplier and envelopment models are respectively studied. 

The latter section shall also establish an all-important relationship between the input – 

oriented and output-oriented robust models. Referencing models (4.8) and (4.14), the 

formulated input-oriented robust models minimize the input of DMUs while at least 

maintaining the given output level under the worst-case and best-case scenarios of the 

uncertain data. Here, the output-oriented robust models maximize the output level while 

using no more than the given amounts of inputs under a worst-case and best-case scenario of 

the uncertain data. The output-oriented multiplier robust CCR (OMRCCR) model is obtained 

similarly as follows: 

�Z∗ = min zs. t.∑ CFRFTZFWX + %T?ΓT? + ∑ ?FTF∈³8 − z ≤ 0∑ LNSNT − %T7ΓT7 − ∑ çNTN∈"8VNWX ≥ 1∑ LNSN)VNWX − ∑ CFRF) + %)?Γ)? + %)7Γ)7 + ∑ çN)N∈"A + ∑ ?F)F∈³A ≤ 0ZFWX ∀0%)7 + çN) ≥ LNSÄN) ∀0, ∀P ∈ �)%)? + ?F) ≥ CFRÄF) ∀0, ∀J ∈ ÿ)çN), ?F) ≥ 0 ∀0 , ∀J ∈ ÿ), ∀P ∈ �)%)? , %)7 ≥ 0 ∀0CF ≥ 0 ∀JLN ≥ 0 ∀P

  

 

 

 

(4.22) 

where the decision variable z is the efficiency of DM�T. Model (4.22) similarly entails - + 1 +-b∑ Þÿ)Þ�)WX + ∑ Þ�)Þ�)WX d constraints and K + Q + 2- + -b∑ Þÿ)Þ�)WX + ∑ Þ�)Þ�)WX d decision variables. 

The dual model is given as follows: 
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�õ∗ = max ¥s. t∑ ß)RF)�)WX − ∑ �F)? RÄF))∈Æ>M ≤ RFT ∀J ∈ ÿ∑ ß)SN)�)WX + ∑ �N)7 SÄN))∈Æ6K ≥ ¥SNT ∀P ∈ �∑ �FT?F∈³8 − ßTΓT? ≤ ΓT?  ∑ �F)?F∈³A − ß)Γ)? ≤ 0 ∀0 ≠ 8∑ �NT7N∈"8 − ßTΓT7 − ¥ΓT7 ≤ 0∑ �N)? − ß)Γ)7N∈"A ≤ 0  ∀0 ≠ 8�FT? − ßT ≤ 1  ∀J ∈ ÿT �F)? − ß) ≤ 0 ∀0 ≠ 8, ∀J ∈ ÿ)�NT7 − ßT − ¥ ≤ 0 ∀P ∈ �T�N)7 − ß) ≤ 0 ∀0 ≠ 8, ∀P ∈ �)�F)? ≥ 0 ∀0, ∀J ∈ ÿ)�N)7 ≥ 0 ∀0, ∀P ∈ �)ß) ≥ 0 ∀0

   (4.23) 

It can be similarly verified that �õ∗ = �Z∗  by the strong duality theorem (see Bazaraa, Jarvis, & 

Sherali, 2010). We know by now that the variables çN) ,  ?F), %) and �F)? , �N)7
  in models (4.22) and 

(4.23), respectively are the robust variables introduced to protect the inputs and outputs data 

from dislocating the efficient frontier. As a result, the optimal values z∗ and ¥∗ are preserved 

and as inspection makes clear, we have 1 ≤ z∗ < ∞ and 1 ≤ ¥∗ < ∞. The robust efficiency 

obtained by the OMRCCR model (4.22)  is stated in the following proposition.  

 

Proposition 4.2. �Z∗ ≥ 1. 

Proof. Let (z∗, ¡∗, ¢∗, �?∗, �7∗, �∗, �∗) be an optimal solution for model (4.22). From the first 

constraint, we obtain z∗ ≥ ∑ CF∗RFTZFWX + %T?∗ΓT? + ∑ ?FT∗F∈³8 . Taking the second constraint along 

with along the third constraints set for 0 = 8 into consideration leads to z∗ ≥ ∑ CF∗RFTZFWX +%T?∗ΓT? + ∑ ?FT∗F∈³8 ≥ ∑ LN∗SNTVNWX + %T7∗ΓT7 + ∑ çNT∗N∈"8 . Since %T7 and çNT∀P ∈ �T are nonnegative 

variables we can obviously obtain ∑ LN∗SNTVNWX + %T7∗�T7 + ∑ çNT∗N∈"8 ≥ ∑ LN∗SNTVNWX − %T7∗�T7 −∑ çNT∗N∈"8 ≥ 1. Consequently, (�Z∗ =) z∗ ≥ 1 which completes the proof. 

 

4.4.1 A classification scheme for the OMRCCR  

The classification of robust efficiency in Section 3.1 indicates that a DMU has a better rank 

robustly if it has an optimal objective value of one or closer to one for higher values Γ). From 

Proposition 4.2, DMUT is robust R-efficient if z∗ ≥ 1 and R-inefficient if z∗ = 0. In fact, the 

evaluation of DMUs from model (4.22) is based not only to the weights but also the 



 

 93 

conservativeness of the DM. Likewise Definition 4.1, we can provide a classification scheme 

for the DMUs into ��ll,  ��l, and ���. The formal classification of the R-efficiency for DMUs 

with the output orientation in the robust setting follows the definition below: 

 

Definition 4.2. Suppose Γ) takes values in the interval +0, Þÿ)Þ + Þ�)Þ, for every J ∈ ÿ) and P ∈ �) 

in model (4.22). Referencing Proposition 4.2, the DMUs are classified into the following sets: 

 (Full robust efficiency). A DMUT is fully robust efficient if and only if �Z∗ = 1 when Γ) =Þÿ)Þ + Þ�)Þ 
 (Partial robust efficiency). A DMUT is partially robust efficient if z∗ = 1 when Γ) ≥0 and �Z∗ > 1 when Γ) = Þÿ)Þ + Þ�)Þ  
 (Robust inefficiency). A DMUT is said to be robust inefficient if �Z∗ > 1 for all Γ) ∈b0, Þ ÿ)Þ + Þ�)Þ,. 

 

 

4.4.2 Primal-Dual relationship: output orientation 

It is established with the input orientation in Section 3.2 that the IMRCCR and IERCCR models 

are not mutually dual. Indeed, the dual of the IERCCR model exceeds the IMRCCR. We carry 

out a similar study of the duality relationship in the output-oriented robust model. Consider 

the following equivalent model of the OECRR model (4.4): 

��∗ = max ¥s. t.∑ ß)RF)�)WX()�T) + (ßT − 1)RFT ≤ 0 ∀J∑ ß)SN)�)WX()�T) − (¥ − ßT)SNT ≥ 0 ∀Pß) ≥ 0 ∀0
  (4.24) 

Using model (4.24) and considering similar reasoning apriori model (4.14) the Output–

oriented Envelopment robust CCR (OERCCR) model under the worst-case scenario can be 

expressed as the following:  
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��∗ = max ¥s. t.∑ ß)RF)�)WX − RFT + ∑ �F)? + 'F?ΥF?)∈Æ>M ≤ 0 ∀J ∈ ÿ∑ ß)SN)�)WX − ¥SNT − ∑ �F)7)∈Æ6K − 'N7ΥN7 ≥ 0 ∀P ∈ �'F? + �F)? ≥ ß)RÄF) ∀J ∈ ÿ, ∀0 ∈ ÂF?(0 ≠ 8)'F? + �FT? ≥ ºTRÄFT 8 ∈ ÂF?, ∀J ∈ ÿ'N7 + �N)7 ≥ ß)SÄN) ∀P ∈ �, ∀0 ∈ ÂN7(0 ≠ 8)'N7 + �NT7 ≥ nTSÄNT 8 ∈ ÂN7, ∀P ∈ �−ºT ≤ �T − 1 ≤ ºT−nT ≤  ¥ − �T ≤ nTºT, �F)? ,  %F? ≥ 0 ∀J ∈ ÿ, ∀0 ∈ ÂF?nT, �N)7 , %N7 ≥ 0 ∀P ∈ �, ∀0 ∈ ÂN7ß) ∀0

  

 

 

 

(4.25) 

The formulation of the robust model (4.25) follows the same modeling procedure in Theorem 

4.3. To see this, let ÑT = |ßT − 1| and �T = |¥ − ßT| in models (4.17) and (4.18) and let  (�, ¥, ΥF?) and  (�, ¥,  ΥN7) be the protection functions while ('F? , �F?) ∈ ÿ, and b'N7, �N7d ∈ � 

remain the dual variables, respectively. Then we obtain the following equivalent models: 

 (�, ¥, ΥF?) = min ∑ �F)?)∈Æ>M + 'F?ΥF?s. t'F? + �F)? ≥ ß)RÄF) ∀0 ∈ ÂF?(0 ≠ 8)'T? + �FT? ≥ ÑTRÄFT−ÑT ≤ ß8 − 1 ≤ ÑTÑT, �FT? , %)? ≥ 0 ∀0 ∈ ÂF?
  

  

(4.26) 

 b�, ¥, ΥN7d = min ∑ �N)7)∈Æ6K + 'N7ΥN7s. t'N7 + �N)7 ≥ ß)SÄN) ∀0 ∈ ÂN7(0 ≠ 8)'T7 + �NT7 ≥ �TSÄNT−�T ≤ ¥ − ß8 ≤ �T�T, �NT7 , %)7 ≥ 0  ∀0 ∈ ÂN7
   

  

(4.27) 

Moreover, putting (4.26) and (4.27) into the pessimistic robust counterpart for the output 

model:  
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min ¥s. t.
∑ ß)RF)�)WX − RFT + max∑ �>AM=�>MA∈�>M�=�>AM=X (∀)∈Æ>M)

{∑ ß)�F)? RÄF))∈Æ>M)�T + |ßT − 1| �FT? RÄFT| ≤ 0 8 ∈ ÂF?, ∀J ∈ ÿ 

∑ �)RF)�)WX − RFT + max∑ �>AM=�>MA∈�>M�=�>AM=X(∀)∈Æ>M)
{∑ ß)�F)? RÄF))∈Æ>M)�T | ≤ 0 8 ∉ ÂF? , ∀J ∈ ÿ 

∑ �)SN)�)WX − ¥SNT − max∑ �6AK =�6KA∈�6K�=�6AK =X(∀)∈Æ6K)
G∑ ß)�N)7 SÄN))∈Æ>K)�T

+ |¥ − ßT|�NT7 SÄNTN ≥ 0  8 ∈ ÂN7, ∀P ∈ �
∑ �)SN)�)WX − ¥SNT − max∑ �6AK =�6KA∈�6K�=�6AK =X(∀)∈Æ6K)

G∑ ß)�N)7 SÄN))∈Æ>K)�T
N ≥ 0 8 ∉ ÂN7, ∀P ∈ �

ß) ≥ 0 ∀0

   (4.28) 

and assuming the constraints for uncertain input and output arrives at model (4.25).  

Referencing Theorem 4.4 in which the optimal objective values of the robust multiplier 

model exceed the robust envelopment model, in contrast, we prove by the following Theorem 

4.5 that the optimal objective value of the OERCCR model (4.25) is less than the optimal 

objective value of the OMRCCR model (4.22). 

 

Theorem 4.5. ��∗ < �Z∗  

Proof.  By contradiction, let ��∗ = �Z∗  and for all DMUs recall that �õ∗ ≤ �Z∗ . It is easily 

verifiable that (�∗, �g∗, �`∗) ∈ ℝXl�l∑ bÞ³AÞlÞ"AÞdcA:;    is a feasible solution to models (4.23) and 

(4.25).  However, the optimal objective function value, ��∗ of this feasible solution is less than 

the optimal objective functions values �õ∗  and �Z∗  which is a contradiction to the earlier claim. 

 

 

From model models (4.22) and (4.8), similar property for the input – and output- oriented 

relationship in the CCR model holds in the RDEA setting. The relation between the IMRCCR 

model and the OMRCCR model can be shown via the following theorem.   

 

Theorem 4.6. The input-oriented model (4.13) and the output-oriented model (4.23) are 

equivalents and their optimal objective functions are related by ¥∗ = 1/�∗. 

 

Proof.  Let (¥, �, `?, `7) be a feasible solution to model (4.23). We show that (�, �, �? , �7) =
(X� , �� , `M� , `K� ) is also a feasible solution to model (4.13). (4.23)To do this, consider the first two 
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constraints of model (4.23). The first constraint ∑ ß)RF)�)WX − ∑ �F)? RÄF))∈Æ>M ≤ RFT becomes 

∑ �A� RF)�)WX − ∑ �>AM� RÄF))∈Æ>M ≤ ?>8�  or ∑ �)RF)�)WX − ∑ ¤F)? RÄF))∈Æ>M ≤ �RFT which is the first constraint of 

model (4.13). Similarly, the second constraint ∑ ß)SN)�)WX + ∑ �N)7 SÄN))∈Æ6K ≥ ¥SNT becomes 

∑ �A� SN)�)WX + ∑ �6AK� SÄN))∈Æ6K ≥ SNT or ∑ �)SN)�)WX + ∑ ¤N)7 SÄN))∈Æ6K ≥ SNT which leads to the second 

constraint of model (4.13). All the other constraints can be similarly transformed and the fact 

that models (4.13) and (4.23) are minimization and maximization problems, respectively, 

validates the transformation. At optimality, �∗ = �∗/¥∗, `g∗ = �g∗/�∗, ``∗ = �`∗/�∗ and ¥∗ =1/�∗ which completes the proof.  

 

 

4.5 Application to banking efficiency in Germany 

To demonstrate the application of the proposed models, i.e. the robust multiplier input - and 

output-orientated models and their dual models, we analyze the performance of the major 

banks in Germany. First, we provide an overview of the banks and their operation in 

Germany. 

4.5.1 Contextual setting: Uncertainties and banking efficiency in Germany 

The German banking industry is one of the largest European banking markets with huge 

capital market for industries across Europe. The banks operate under a common set of rules 

by Deutsche Bundesbank which is the independent central bank of the Federal Republic of 

Germany. The central bank forms part of the Euro-system that shares responsibility with other 

national central banks and the European Central Bank in managing the European currency, 

the euro. Currently, the Bundesbank takes oversight of the roughly 2,000 credit institutions 

and 1,500 financial services institutions active throughout Germany. The banking system in 

Germany comprises of three pillars – private commercial banks, public banks, and co-

operative banks, which primarily differ in terms of their legal form and ownership structure. 

The private banks such as the most popular Deutsche Bank and Commerzbank, Unicredit 

Bank AG (HypoVereinsbank), Deutsche Postbank AG represent the pillar with the largest 

asset, accounting for about 40% of the total asset in the banking industry. The public banks 

with government involvement such as the KfW (Kreditanstalt für Wiederaufbau) banks make 

up the large regional banks called the Landesbanken and the savings banks. Their asset share 

represents about 26% of total assets and their geographical business area is limited to the local 

government owners. The co-operative banks (e. g. Volksbanks and Raiffeisenbanks) are 

largely banks with mutual structure in which the shareholding is largely composed of 

depositors and borrowers. They represent about 17% of the total bank assets (European 

Banking Federation, 2018). While the private banks may be highly profit-oriented, the 

objective or the mandate in the case of co-operative banks and public banks is not to maximize  
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Table 4.1. Financial indicators of selected banks in Germany 

DMU Bank name Input  Output 
  

Employee Assets Equity   Deposits  Loans  Revenue  

1 Deutsche Bank AG 101104.00 1629130.0 67624.00   44710.00 428521.00 15881.00 

2 Commerzbank AG 51305.00 532641.00 30407.00   91633.00 203895.00 5779.00 

3 DZ Bank AG 30029.00 408341.00 19729.00   97227.00 124829.00 2988.00 

4 UniCredit Bank AG 16310.00 298745.00 20766.00   63079.00 113175.00 2797.00 

5 Sparkassen-Finanzgruppe 

Hessen-Thuringen 

26679.00 260313.00 
20085.00 

  37399.00 152441.00 3269.00 

6 Deutsche Postbank AG 14758.00 150597.00 7158.00   15444.00 97474.00 2403.00 

7 Deutsche Bank Privat-und 

Geschaftskunden AG 

12368.00 136927.30 2746.30   26741.20 68119.10 1940.50 

8 Hamburger Sparkasse AG 

(HASPA) 

5000.00 42638.50 
3218.00 

  4618.70 30192.20 742.10 

9 Santander Consumer Bank 

AG 

3805.00 42124.20 
3068.30 

  4991.30 30027.90 1177.40 

10 State Street Bank GmbH 4102.00 37612.00 2211.90   849.20 691.80 82.70 

11 Deutsche Apotheker- und 

Aerztebank eG 

2139.00 36444.40 2195.60   7213.80 27892.90 675.10 

12 KfW Ipex-Bank Gmbh 648.00 28369.70 3831.00   22761.50 24350.00 333.70 

13 Sparkasse KölnBonn 4351.00 26511.00 1675.00   2443.50 19054.40 432.50 

14 SEB AG 811.00 22398.70 2065.70   8387.00 12181.20 69.20 

15 Frankfurter Sparkasse 1837.00 17985.60 903.30   1272.40 7335.90 288.50 

16 Stadtsparkasse München 2669.00 17070.30 1546.10   437.10 12131.00 279.30 

17 Sparkasse Hannover 2102.00 13491.60 1137.00   914.70 10456.90 283.20 

18 Ostsächsische Sparkasse 

Dresden 

1748.00 12170.30 741.60   1198.20 5069.70 224.10 

19 Berliner Volksbank eG 2193.00 11677.30 975.90   367.00 7516.90 261.60 

20 Nassauische Sparkasse 1754.00 11280.90 910.10   1291.60 8822.20 279.10 

21 Die Sparkasse Bremen 1449.00 11058.70 736.60   2193.00 8762.80 233.50 

22 Stadtsparkasse Düsseldorf 2080.00 10921.90 1294.30   496.00 7657.60 244.30 

23 Sparkasse Pforzheim Calw 2005.00 10764.40 720.10   2251.30 7082.40 170.00 

24 Kreissparkasse Muenchen 

Starnberg Ebersberg 

1618.00 10722.10 790.80   1074.80 7339.00 227.20 

25 Sparkasse Nürnberg 1890.00 10627.40 920.50   912.60 5563.90 210.40 

26 Sparkasse Aachen 2047.00 10124.00 1280.30   912.10 7342.80 238.70 

 

profit but rather to support the sustainable growth of businesses of their members and the 

social development  of their local, regional or national economy (Behr & Schmidt, 2015). 

However, one thing is common; almost all German banks offer at least some services that one 

can classify as commercial and investment banking services. With the exception of specialist 
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banks which for some historical reasons limit their activities to selected businesses, the rest of 

the banks operate a universal banking system. As a result, the banks face competition among 

each other and compete fiercely for market share both locally and internationally. The 

activities of these banks fall under the supervision and regulation of the Bundesbank and 

Federal Financial Supervisory Authority (BaFin). Given such homogeneity, an assessment of 

the efficiency of German banks seem very prudent. 

The efficiency of banks in Germany particularly the private banks is a larger concern 

for managers and shareholders to determine best practice units, sustainability and increased 

market share. A more efficient bank is assumed to foster growth as it is able to select optimal 

projects that generate higher returns on assets and investment, and also play a crucial role in 

the allocation of financial resources at both the micro and macro level of the economy. Within 

the context of efficiency, a couple of studies, very few have been done on German banks. For 

example, Fiorentino et al. (2006) took a sample of 34, 192 observations on all universal German 

banks and assessed their efficiency between the period, 1993 – 2004. They concluded that 

efficiency rank stability is very high in the short run, however, the DEA efficiency is sensitive 

to measurement error and outliers as compared to the SFA. In explaining the efficiency 

differences among German and Austrian banks, Hauner (2005) attributed the cost-efficiency 

of the former banks to higher competition relatively to the latter. Ahn & Le (201) propose a 

DEA framework incorporating rationality concepts of decision making to derive appropriate 

performance of Germany saving banks. Their findings reveal stable scale efficiency pattern 

and suggest that savings banks are more efficient in fulfilling their public mandate than in 

generating profit. 

Generally, the banking industry is vulnerable to global challenges (e.g.  shocks in oil 

price, global financial crises, monetary policy, etc.) that leads to uncertainties in lending and 

borrowing activities and underpins new regulatory regime. For instance, the global financial 

crises in 2008 which put much stress on banks liquidity, decreased loans to borrowers by 47% 

and real investment such as working capital by 14%,  low lending power and banks 

vulnerability through banking panic and in particular from banks co-syndication of credit line 

with the defunct crushed-down Lehman Brothers31 prior to and during the crises affected 

many banks including German banks (Ivashina & Scharfstein, 2010). With exception of most 

cooperative banks whose activities were less of investment, the more investment engaging 

banks such Deutsche Bank and Commerzbank were largely affected due to their off-balance 

sheet activities and overly risky investment (Behr & Schmidt, 2015). Together with other 

banks, the crises meant various government interventions including bailout (with the 

exception of Deutsche bank) and new regulatory regime such as higher capital requirements 

and strict liquidity rules had to be instituted.  

                                                 
31 Lehman Brothers Holdings Inc. was the fourth-largest investment bank in the United States which for the 

financial crises in 2008 was declared bankrupt. The financial activities of the firm included investment banking, 

fixed-income sales, investment management, private banking and equity.    
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In fact, uncertainties are common phenomena in the banking industry which affect 

their operations and efficiency. Uncertainties in the banking sector imply that planning on 

both inputs and outputs data becomes unreliable. Financial data tend to be undoubtedly 

random and imprecise. As a measure, Buch, Buchholz, Tonzer, & Buch (2014) compute 

uncertainty among banks as a cross-sectional dispersion of volatilities to bank‘s specific 

variables. Most of the uncertainties in bank data are idiosyncratic in nature, observable by 

bank insiders who are privy to detailed knowledge of the bank’s portfolio, data, and its 

dynamics. Among many of the sources are listed below: 

 Prediction error: Banks are occasionally involved in forecasting of financial data. For 

instance, projections on returns on investment, liabilities, loans, etc., are made towards 

preparation of balance sheet and financial report. These variables are subject to 

prediction errors.  

 Measurement error: Banks record data assuming away random errors, many of which 

cannot be measured exactly. Measured data revolve around their mean value and have 

inherent errors.  

 Implementation error: Some of the banking data used for analysis cannot be 

implemented exactly as computed. These data are subject to implementation error. e.g. 

the intensity of technological usage of banks equipment.  

 

It is evident that these idiosyncratic errors observed in the data generating process result from 

differences in actual true data and observed or available data and produce uncertainties for 

which the measured efficiency scores become unstable and unreliable. The proposed models 

in this chapter rectify this problem of uncertainty and hence attempt to produce efficiency 

results which are robust to perturbations and uncertain conditions.  

 

 

4.5.2 Data and variable selection 

To analyze the efficiency of the banks in Germany with the DEA, we first look at the 

characterization of the financial indicators of banks which is based on the precise definition 

of banking activities.  The definition of inputs and outputs result from the functions exerted 

by a bank (Berger & Humphrey 1997). The three broad approaches used in determining input 

and output measures in banking studies are explained in Chapter 3. To reminisce, a common 

difference for the two major approaches – the intermediary approach and the production 

approach refers to the treatment of deposits. According to Allen & Gale (1995), the German 

banking system are intermediaries predominant, thus the banks operate as intermediaries 

between investors and savers, mainly transmitting capital and labor (inputs) to loans and 

securities (outputs). The quality of this approach by a bank is measured by its efficiency in 

converting inputs into outputs while ensuring cost minimization or profit maximization. 

Within the context of this approach, we consider Kao & Liu (2014) in which demand deposit 
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is treated as outputs in the intermediation approach and Mostafa (2009) in which a higher 

percentage of surveyed papers measure deposit as output with the intermediate approach.  

Moreover, we consider data with the financial indicators from BankScope. The 

accounting year for the data is 2016. This data including other dataset on European banks is 

obtained from the published dataset in Alfiero et al. (2019). Table 4.1 shows the data employed 

and the variables considered. According to the analysis of banking financial measures above, 

we assume that banks demand as inputs fixed assets and employees which is used to produce 

outputs, such as loans to customers, deposit, and net interest revenue. As in chapter 3, the 

measurement of all these variables are taken in monetary terms except the number of 

employees which counted as the number of banking personnel employed in the said 

accounting year. 

 

 

4.5.3 Results from model testing 

In order to first make a comparison between the robust multiplier and envelopment models 

and second, the input- and output- oriented robust models, we use the data in  Table 4.1 

considering that the exact values of the data are unknown except their nominal values. 

Besides, as standard in robust DEA settings (Sadjadi & Omrani, 2008; Omrani, 2013; Lu, 2015; 

Arabmaldar et al., 2017), the perturbation of the input and input data from their nominal 

values is set to 5%. i.e. the true values of the uncertain data are expected to lie in the symmetric 

where (RF), SN)) are the observed nominal values of the input and output data. Here, all 

interval, RÀF) ∈ +RF) − 0.05 × RF),  RF) + 0.05 × RF),, and SÀN) ∈ +SN) − 0.05 × SN) , SN) + 0.05 × SN)  , 
variables are considered uncertain and so the robust parameter is selected for Γ)? = 3 and Γ)7 =3. i.e.  Γ) = Þÿ)Þ + Þ�)Þ = 6. Table 4.2 shows the results obtained for the input - and output - 

oriented robust models including the CCR models. Based on the IMCCR and OMCCR models, 

six banks were efficient (efficiency score of 1) representing 23% of the banks under 

consideration here. The very least performing bank is State Street Bank GmbH. As visible from 

Table 1, the output of this bank is very low, e.g. with a relative low net interest revenue of 

82.7. Another private bank, Deutsche Bank AG is the next least performing which is surprising 

given its assets and number of branches. We note that this efficiency of banks here is 

‘technical’ without consideration to the ownership, size, age, no of branches etc of the firm.  

On the technical basis, referencing Grigorian & Manole (2002), conditions such as imperfect 

competition, prudential requirements and leverage concerns could be the driving force of the 

inefficiency of some banks. Also, in Germany, since the private sector banks are more subject 

to high market discipline, hence closer supervision and higher capital requirements than the 

public sector banks, the performance of these banks could be limited. 
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Table 4.2. The result of input and output models 

DMU IMCCR IMRCCR OMCCR OMRCCR 

1 0.575 0.471 1.739 2.124 

2 0.607 0.497 1.647 2.012 

3 0.692 0.566 1.446 1.767 

4 0.617 0.500 1.622 2.002 

5 0.752 0.612 1.365 1.668 

6 0.951 0.779 1.052 1.285 

7 1.000 0.819 1.000 1.222 

8 0.884 0.724 1.131 1.382 

9 1.000 0.819 1.000 1.222 

10 0.104 0.086 9.575 12.000 

11 1.000 0.819 1.000 1.222 

12 1.000 0.819 1.000 1.222 

13 0.924 0.756 1.082 1.322 

14 0.746 0.610 1.341 1.638 

15 0.728 0.596 1.374 1.679 

16 0.875 0.717 1.142 1.396 

17 0.973 0.796 1.028 1.256 

18 0.741 0.607 1.349 1.648 

19 0.857 0.701 1.168 1.426 

20 1.000 0.819 1.000 1.222 

21 1.000 0.819 1.000 1.222 

22 0.900 0.736 1.112 1.358 

23 0.851 0.696 1.176 1.436 

24 0.885 0.725 1.130 1.380 

25 0.723 0.592 1.384 1.691 

26 0.938 0.768 1.066 1.303 

 

 

A clearer picture of robust efficiency emerges when uncertainties are considered in the 

Banks’ operations and data. The method developed here improve on efficiency measurement 

as decision-makers can trade-off efficiencies of the DMUs for robust performance under 

uncertain circumstances. Note that uncertainties are differently considered in some of the 

variables of the DMUs. Using the IMRCCR model (4.8), we observe from Table 4.3 that only 

two banks (Deutsche Bank Privat-und Geschaftskunden AG and KfW Ipex-Bank Gmbh) are 

robust efficient. The specific robust efficiency and hence the robust classification of banks, 

however, is obtained based on the conservative level of managers. The classification scheme 

designed Definition 4.1 considers different robust parameters (Γ) = 1 for Γ)? = 0 and Γ)7 = 1,  
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Table 4.3. Robust classification of banks 

DMU Γ) = 0 Γ) = 1 Γ) = 2 Γ) = 3 Γ) = 4 Γ) = 5 Γ) = 6 Classification 

1 0.575 0.534 0.502 0.497  0.479 0.479 0.479 ��� 

2 0.607 0.583 0.549 0.535 0.526 0.526 0.526 ��� 

3 0.692 0.657 0.628 0.628 0.625 0.625 0.625 ��� 

4 0.617 0.582 0.561 0.561 0.556 0.556 0.556 ��� 

5 0.752 0.667 0.653 0.653 0.651 0.651 0.651 ��� 

6 0.951 0.926 0.884 0.884 0.867 0.867 0.867 ��� 

7 1.000 1.000 1.000 1.000 1.000 1.000 1.000  ��ll 

8 0.884 0.842 0.833 0.832 0.832 0.832 0.832 ��� 

9 1.000 0.955 0.951 0.913 0.913 0.913 0.913 ��� 

10 0.104 0.100 0.094 0.094 0.092 0.092 0.092 ��� 

11 1.000 1.000 0.981 0.981 0.977 0.977 0.977 ��l 

12 1.000 1.000 1.000 1.000 1.000 1.000 1.000  ��ll 

13 0.924 0.888 0.866 0.866 0.866 0.866 0.866 ��� 

14 0.746 0.705 0.672 0.672 0.670 0.670 0.670 ��� 

15 0.728 0.658 0.624 0.624 0.624 0.624 0.624 ��� 

16 0.875 0.842 0.822 0.820 0.819 0.819 0.819 ��� 

17 0.973 0.935 0.917 0.914 0.913 0.913 0.913 ��� 

18 0.741 0.681 0.644 0.644 0.632 0.632 0.632 ��� 

19 0.857 0.829 0.800 0.797 0.797 0.797 0.797 ��� 

20 1.000 0.995 0.925 0.919 0.910 0.910 0.910 ��� 

21 1.000 0.960 0.956 0.921 0.921 0.921 0.921 ��� 

22 0.900 0.881 0.804 0.804 0.804 0.804 0.804 ��� 

23 0.851 0.824 0.797 0.797 0.797 0.797 0.797 ��� 

24 0.885 0.834 0.790 0.780 0.772 0.772 0.772 ��� 

25 0.723 0.687 0.649 0.624 0.624 0.624 0.624 ��� 

26 0.938 0.917 0.876 0.876 0.876 0.876 0.876 ��� 

 

Γ) = 2 for Γ)? = 1 and Γ)7 = 1, Γ) = 3 for Γ)? = 1 and Γ)7 = 2, Γ) = 4 for Γ)? = 2 and Γ)7 = 2, Γ) =5  for Γ)? = 2 and Γ)7 = 3, and Γ) = 6  for Γ)? = 3 and Γ)7 = 3) which each result in an acceptable 

robust level efficiency. The last column of Table 4.3 indicates the robust classification of the 

DMUs; fully robust efficient banks, ��ll = {DMU�, DMUX'}, partially robust efficient, ��l ={DMUXX} and the rest of the DMUs are robust inefficient DMUs, ���. Similar classification 

under Definition 4.2 holds for the output-oriented models.  

 

 

 



 

 103 

Table 4.4. The result of duality relations 

DMU IMRCCR IERCCR OMRCCR OERCCR 

1 0.471 0.703 2.124 1.423 

2 0.497 0.742 2.012 1.348 

3 0.566 0.845 1.767 1.184 

4 0.500 0.742 2.002 1.347 

5 0.612 0.895 1.668 1.118 

6 0.779 1.079 1.285 0.927 

7 0.819 1.105 1.222 0.905 

8 0.724 1.040 1.382 0.962 

9 0.819 1.105 1.222 0.905 

10 0.086 0.128 12.000 7.838 

11 0.819 1.105 1.222 0.905 

12 0.819 1.105 1.222 0.905 

13 0.756 1.064 1.322 0.940 

14 0.610 0.911 1.638 1.098 

15 0.596 0.889 1.679 1.125 

16 0.717 1.035 1.396 0.967 

17 0.796 1.091 1.256 0.917 

18 0.607 0.905 1.648 1.104 

19 0.701 1.023 1.426 0.977 

20 0.819 1.105 1.222 0.905 

21 0.819 1.105 1.222 0.905 

22 0.736 1.050 1.358 0.953 

23 0.696 1.020 1.436 0.981 

24 0.725 1.041 1.380 0.961 

25 0.592 0.883 1.691 1.133 

26 0.768 1.072 1.303 0.933 

 

 

 Returning to Table 4.2, the relationship between the input – and output – oriented 

robust models including the DEA efficiency under the IMCCR model (2.8) and OMCRR model 

(2.10) are observed. Since full uncertainty for all the variables and Γ)? = 3 and Γ)7 = 3 is 

considered for all the DMUs, the results are more conservative. The efficiency under the 

IMCCR and OMCCR models are the equivalent with the robust models (4.8) and (4.22) 

respectively, when Γ) = 0. More importantly, the optimal objective values of the IMRCCR 

models (4.8) and OMRCCR model (4.22) given in columns 3 and 5 of Table 4.2 confirm the 

equivalent relationship between the two models as established in Theorem 4.6. . Observe that, 

this relationship also works equivalently for the IERCCR model (4.14) and the OERCCR 

model (4.25). For each DMU, �Z∗  expresses output enlargement while ÿZ∗  describes input 
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reduction rate in uncertain conditions. The relationship between the models supposes that 

like the traditional CCR models (see Cooper et al., 2006), the IMRCCR model will be efficient 

for any DMU if and only if it is also efficient when the OMRCCR model is used to evaluate its 

robust performance. On the other hand, the relationship between the robust CCR and their 

dual models expound an efficiency gap. The result in Table 4.4 shows that the input (output) 

-oriented multiplier robust CCR efficiency scores are different from the input (output) -

oriented robust envelopment models. In fact, the pair columns show that the efficiency scores 

under the IERCCR model is greater than the efficiency scores under the IMRCCR and 

similarly, the efficiency scores from the OERCCR model is less than the efficiency scores from 

the OMRCCR. We conclude that the efficiency of robust envelopment models suffers from 

usual intuitive interpretation and must be used with caution.  

 

 

4.6 Concluding remarks 

We have introduced here a robust fractional DEA that is used to propose robust DEA models 

for efficiency measurement uncertainty. The major highlights from the models in the chapter 

are the following:  

1. We proposed different robust models and studied their duality relations. We proved 

that the presence of uncertain data invalidates the linear duality principle as well as 

create efficiency gap between the multiplier robust DEA models and envelopment 

robust DEA models.  

2. Complementary to Chapter 3 where it was showed that the traditional normalization 

constraint in the input-oriented BCC model which is in an equation form can be 

equivalently substituted by “≤” as similarly proved for the CCR model in  (Toloo, 

2014a), analogously, we proved that the normalization constraint in the output-

oriented DEA model can be replaced by “≥”. 

3. Under the proposed models, a classification scheme that utilizes the conservativeness 

of the decision maker and interprets robust efficiency solutions accordingly were 

designed. According the scheme proposed, DMUs can be classified into fully robust 

efficient, partially robust efficient and robust inefficient.  

4. A characterization of the efficiency solution for all DMUs in both input and output 

orientations is made and an equivalent relationship is established.  

5. We showed the efficacy of the proposed models with an application on the 

performance of banks in Germany and demonstrated the applicable measurement of 

bank efficiency measurement under data uncertainty.  
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Chapter 5: Robust efficiency measurement under 

ellipsoidal uncertainty sets  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary 

The current chapter extends the conventional DEA models to a robust DEA framework by 

proposing new DEA models for evaluating the efficiency of a set of homogeneous decision-

making units (DMUs) under ellipsoidal uncertainty set. There are four contributions that are 

made in this chapter: 

i). We propose new robust CCR models based on two uncertainty sets: an ellipsoidal set 

that models uncertainty of epistemic type, and an interval-based ellipsoidal 

uncertainty set that models aleatory uncertainty. We study the relationship between 

robust DEA models of these two sets. 

ii). We provide a robust classification scheme where DMUs can be classified into fully 

robust efficient, partially robust efficient and robust inefficient in the framework of 

ellipsoid protected based robust efficiency scores. 

iii). The proposed models are extended to the additive DEA model, i.e. a robust additive 

DEA model is proposed, and its efficacy is analyzed with two imprecise additive DEA 

models in the literature. Numerical examples are provided.  

iv). Finally, the practicability of the proposed models is demonstrated by studying the 

performance of the banking industry in Italy. Considering uncertainty in the banks’ 

data, we showed that only a few banks are resilient in their performance and can be 

robustly classified as partially efficient or fully efficient compared to the DEA 

efficiency.    
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5.1 Introduction 

In the past few years, different robust concepts such as the reliability of the robust solution 

(Ben-Tal & Nemirovski, 2000), the control of the price of robustness (Bertsimas & Sim, 2004), 

and the adjustable robustness (Ben-Tal, Goryashko, Guslitzer, & Nemirovski, 2004) among 

others have all been proposed. These concepts developed are largely based on two main 

uncertainty sets: ellipsoidal uncertainty set, and polyhedral uncertainty set or the so-called 

budget of uncertainty. Bertsimas & Sim (2004) budget of uncertainty is the more utilized for 

most of the RDEA modelling and is perhaps due to its advantage of preserving the linearity 

of the DEA model. Shokouhi et al (2010) proposed a general RDEA model in which inputs 

and outputs are constrained in an uncertainty set with data uncertainties covering the interval 

DEA approach. They used the robust approach of Bertsimas & Sim (2004) where they 

embraced Monte Carlo simulation to compute for the range of Gamma values for the 

conformity of the ranking of the DMUs. Omrani (2013) introduces an RDEA to find the 

common set of weights (CSW) in DEA with uncertain data using similar uncertainty set. In 

another paper, Arabmaldar et al. (2017) propose a robust super-efficiency DEA model by 

considering the uncertainty set of Bertsimas & Sim (2004).  

This chapter focuses on the ellipsoidal uncertainty set introduced in Ben-Tal & 

Nemirovski (1999, 2000)  to identify inefficiencies of DMU with the risk preference of the 

decision maker (DM). From the mathematical point of view, the ellipsoidal uncertainty set 

provides a convenient entity and offers the decision maker the ability to control the 

conservativeness of the efficiency solution to different data perturbations via the semi-axis of 

the ellipsoid. As aforementioned, almost all the applications of the robust optimization in 

uncertain DEA have dwelled on the budget of uncertainty of Bertsimas & Sim (2004). Models 

with ellipsoidal uncertainty, however, seem relatively unexplored. Sadjadi & Omrani (2008), 

Lu (2015) and Wu et al. (2017) are the few researchers who have made advances to RDEA 

considering uncertainty in an ellipsoid. However, all the proposed models have so far been 

limited to output data uncertainty due to the larger concern of considering input data 

uncertainty in the normalization constraint. Uncertainty in the equality constraint of the DEA 

models must be strictly satisfied to obtain a feasible solution for the RDEA counterpart. The 

issue is well addressed in Toloo (2014)a and Toloo & Mensah (2018) which subsequently 

enables this chapter to address uncertainties in both input and output data. Beyond our model 

formulation, this chapter also provides a classification scheme based on the proposed models. 

As such, we provide a scheme which allows DMUs to be classified into fully robust efficient, 

partially robust efficient and robust inefficient. Our robust approach is extended to the non-

radial additive model. The newly proposed additive is compared with peer IDEA (Imprecise 

DEA) models proposed in Lee, Sam Park, & Kim (2002) and Matin, Jahanshahloo, & Vencheh 

(2007).  

 



 

 107 

Structure of the chapter. In Section 5.2 we provide the background of the DEA and RO 

models. Two ellipsoidal uncertainty set – based RDEA models for both input and output 

uncertainty are developed and discussed in Section 5.3 with the extension to the additive 

model given in Section 5.4. A numerical example comparing the efficacy of the proposed with 

the IDEA models is given in this section. The penultimate section illustrates the applicability 

of the models with banking studies in Italy. Finally, we make conclusions and some further 

research direction in Section 5.6.   

 

5.2 Robust optimization modeling 

Consider the uncertain optimization problem  

ming ](g, �)  s. t.�(g, �) ∈ K ⊂ ℝZg ≥ h�
    

 

(5.1) 

where 

 g ∈ ℝ�  is a vector of decision variables whose values are independent of the uncertain 

parameters. 

 � ∈ ℝZ  is the data element of the optimization problem which is unknown at the time 

the values of g is being determined. 

 �(g, �) ∈ K is the constraints set. 

 K is a convex cone.  

 h� is the origin in ℝ� space.  

The RO methodology deals with the uncertain model (5.1) as a two-stage methodology: the 

first stage focuses on determining a deterministic uncertainty set for the uncertainty 

parameters whiles the second stage deals with solving a worst-case formulation known as the 

robust counterpart. The following is the robust counterpart for the model (5.1): 

ming∈ℝc /sup�∈Ã ](g, �) : �(g, �) ∈ K1 (5.2) 

A vector g is called a robust feasible solution of model (5.1) if it satisfies all the possible 

realization of the constraints: Ù(g, �) ∈ K, ∀� ∈ Ã. Typically, a robust solution of model (5.2) 

depends on the type of the uncertainty set, Ã used whose selection is motivated by the 

available information, user preference and the tractability of uncertainty set. Soyster (1973) 

considers the interval uncertainty set for the robust counterpart which leads to an aggressive 

conservatism of the robust solution. In this chapter, we consider the Ben-Tal & Nemirovski 

(1999) robust counterpart which is based on a u − dimensional ellipsoidal uncertainty set: 

ÃÛ = {Φ(�)|  ∥ �� ∥' ≤ Ω} (5.3) 

where 
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 � → Φ(�) is an affine embedding of ℝZ into ℝ´, 

 � ∈ ℝ�×Z  is a non-singular matrix of perturbations, 

 ∥∙∥' is the standard Euclidean norm32, and 

 Ω is the safety or robust parameter defined by the DM 

The basic premise of the ellipsoidal uncertainty set adopted in Ben-Tal & Nemirovski (1998, 

1999, 2000) is to control the risk tolerance of the DM by controlling the size of the ellipsoid via 

the parameter Ω. As the size of the ellipsoid increases, so does the risk aversion of the DM and 

vice versa. The approach overcomes the aggressive conservatism of the robust solution of 

Soyster (1973) and as shown in Ben-Tal & Nemirovski (1999), the robust counterpart with 

respect to this set although nonlinear has a tractable formulation in the form of second order 

quadratic programming. Specifically, the robust counterpart optimization over ellipsoidal 

uncertainty set or its intersection with the interval in most cases lead to computationally conic 

programs which has many solution algorithms (see  Ben-Tal & Nemirovski, 2001; Grant et al, 

2008). 

5.3 Robust DEA models under ellipsoidal uncertainty sets 

In this section, we will obtain different robust DEA models based on the ellipsoidal 

uncertainty sets proposed in Ben-Tal & Nemirovski (1999; 2000). We distinguish between two 

kinds of uncertainty: epistemic and aleatory. The following two ellipsoidal uncertainty sets 

will be used to derive a robust DEA model for the different types of uncertainties: 

1. ellipsoidal uncertainty set and 

2. box (interval) - based ellipsoidal uncertainty set.  

The objective of our proposed robust models to these sets is to obtain efficiency solution to 

management decisions that can withstand data uncertainty while maintaining the 

performance of the DMUs. These sets are also practically useful for modelling correlation (if 

they exist) among the inputs (output) data which is relevant to prevent the effect of correlation 

on the efficiency mean (Farzipoor Sean, Memariani, & Lotfi, 2005). Specifically, the ellipsoidal 

uncertainty set is useful for the modelling of the epistemic type uncertainty and unbounded 

distribution of the uncertainty sets. On the other hand, the interval-based ellipsoidal set is 

practically useful for modelling aleatory uncertainty and bounded random distribution. 

Below, we discuss in detail the ellipsoidal uncertainty sets and their robust DEA formulation.  

 

5.3.1 The usual ellipsoid case 

Let t = t� be a positive definite matrix. The simplest case of an ellipsoid in (5.3) with Ω = 1 

represents the uncertainty for the matrix t such that: 

                                                 
32 The standard Euclidean norm, ∥∙∥' = �RX' + ⋯ + R�' 
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Ã(�, t) = {g ∈ ℝ�: (g − �)>t�X(g − �) ≤ 1} (5.4) 

where the vector ø ∈ ℝ� is the center of the ellipsoid and t is referred as the covariance matrix 

that defines the deviation of elements from the centre33. Let ¶F be the axis-length of the 

ellipsoid, defined in the direction of �F such that �F = ªXk>¬'
, where �F and �F are respectively 

the eigenvalues and eigenvectors corresponding to the matrix A. Figure 5.1 shows an ellipsoid 

in ℝ' (shaded) with centre ø and axis – length ¶X and ¶' in the direction �X and �' . The 

ellipsoidal uncertainty sets form relatively a wide family. Here, we are concerned with the 

representation that can handle different cases of the ellipsoid including “ellipsoidal cylinders” 

and “flat”  

 

       Figure 5.1. Geometry of an ellipsoid in ℝ'.   

 

ellipsoids such as points and intervals. This representation is equivalent to that used in Ben-

Tal & Nemirovski (1999). Thus, throughout this section, our robust model will focus on the 

ellipsoid defined as: 

Ã� = {ø + �¢|  ‖¢‖' ≤ 1} (5.5) 

where the Rank (�) = K ≤ - is the shape matrix of the ellipsoid and ¢ ∈ ℝ�. Note that if � is a 

symmetric positive definite matrix, the ellipsoid in (5.4) is identical to the expression in (5.5). 

                                                 
33Notice that A is symmetric positive definite, and we can obtain the real eigenvalues of the matrix using the 

Cholesky decomposition. The eigenvector �F with eigenvalue �F of (5.4) represent the orientations of the principal 

axes of the ellipsoid. That is geometrically, �F is the axis-vectors of the ellipsoid since it shows the direction of the Jth axis of the ellipsoid.  
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Adapting the latter uncertainty set (5.5), we describe and model the dynamics of the uncertain 

input and output of DMU34 in the following way. 

First, let (g#) , #̀)) be the true values of the uncertain input and output data for DMU) 

with maximum deviations, (g ),  ̀)) from their nominal values, bg), `)d.  Furthermore, let �? =+'̅F)? , ∈ ℝZ×�,  �7 = ¡'̅N)7 ¢ ∈ ℝV×�, £? = +�F̅)? , ∈ ℝZ×�, and £? = ¡�N̅)7 ¢ ∈ ℝV×� where '̅F)? =
 'F)? if J ∈ ÿ)0 otherwise, '̅N)7 =  'N)7 if P ∈ �)0 otherwise, �F̅)? =  �F)? if J ∈ ÿ)0 otherwise, �N̅)7 =  �N)7 if P ∈ �)0 otherwise.  Then for 

all DMUs, the simple ellipsoid where (g, `) ∈ ℝZlV is described as:  

Ã)�  = G(¤¥ , ¦¥) §¤¥ = (� + �?£?), Ö�)?Ö' ≤ 1¦¥ = (�+�7£7), (�)7(' ≤ 1 ;    0 = 1, … , -N ⊂ ℝ�×(ZlV) 

= G(¤¥ , ¦¥) §RÀF) = RF) + ∑ 'F)? �F)?F∈³A , Ö�)?Ö' ≤ 1
SÀN) = SN) + ∑ 'N)7 �N)7 ,N∈"A (�)7(' ≤ 1 ; 0 = 1, … , -N

  (5.6) 

We refer to ¨)?  and �)? (¨)7 and �)7)  as deviation vector defining the deviation of inputs 

(outputs) from their nominal values and the length of the inputs (outputs) vector, respectively, 

for DMU). Also, ÿ) and �) represent the set of inputs and outputs of DMU) that are subject to 

uncertainty and hence ÿ) = ∅ and �) = ∅ present the case where there is no uncertainty in g) 

and `). By definition, DMU´ with (g´ , `´) is uncertain if there exist J ∈ ÿ´ or P ∈ �´.  Now 

following Wu et al., (2017), the weight vectors ¢ or ¡ is respectively mapped by the following 

relationships:  

�)? = (¨)?)�¡∥ (¨)?)�¡ ∥'  , �)7 = (¨)7)�¢∥ (¨)7)�¢ ∥' 

The RCCR model using the uncertainty set (5.6) considers the following theorem.  

 

 

Theorem 5.1. The robust CCR described under the ellipsoidal set (5.6) can be formulated by the 

following model:  

                                                 
34 The uncertainty description of the data here is epistemic uncertainty without random variations in the input 

and inputs data.  
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max  ?s. t.? − ∑ LNSNTVNWX + Q∑ LN'SÄNT'N∈"8 ≤ 0
∑ CFRFTZFWX + Q∑ CF'RÄFT'F∈³8  ≤ 1
∑ LNSNTVNWX − ∑ CFRFT − Q∑ LN'SÄNT'N∈"8 − Q∑ CF'RÄFT'F∈³8ZFWX ≤ 0
∑ LNSN)VNWX − ∑ CFRF) + Q∑ LN'SÄN)'N∈"A + Q∑ CF'RÄF)'F∈³AZFWX ≤ 0 ∀0 ≠ 8
CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , Q

  

 

 

 

(5.7) 

Proof. Beginning with the fractional programming in Chapter 4, Section 2.2, the robust 

counterpart DEA with the ellipsoid in (5.6) (see details in Appendix C) is obtained by the 

following model: 

max  ?s. t.? − ∑ LNSNT  + VNWX infÖ�8KÖÏ=Xb∑ LN�NT7 'NT7  N∈"8 d
∑ CFRFT  + ZFWX sup‖�8M‖Ï=Xb∑ CF�FT? 'FT?F∈³8 d ≤ 1
ª∑ LNSNT +VNWX infÖ�8KÖÏ=XÈ∑ LN�NT7 'NT7  N∈"8 Í« − ª∑ CFRFT + ZFWX sup‖�8M‖Ï=XÈ∑ CF�FT? 'FT?F∈³8 Í« ≤ 0
∑ LNSN) − ∑ CFRF)  + ZFWX  VNWX sup(�AK(Ï=X sup(�AM(Ï=X "∑ LN�N)7 'N)7 + ∑ CF�F)?'F)?F∈³AN∈"A & ≤ 0 ∀0 ≠ 8 
CF ≥ 0 ∀JLN ≥ 0 ∀P

   

 

 

(5.8) 

Let us consider for each constraint a case and provide a simplified robust counterpart 

optimization. 

 

Case 1: Robust counterpart for the first constraint: 

max¢∈ℝ9  inf#̀8  È∑ LNSNT + ∑ LN�NT7 'NT7  N∈"8VNWX Í  = max¢∈ℝ9 /∑ LNSNTVNWX + infÖ�8KÖÏ=X(�T7)�(¨T7)�¢1
=  max¢∈ℝ9  ∑ LNSNT − ¢¬¨8K(¨8K)¬¢∥(¨8K)¬¢∥Ï

VNWX ^         
= max¢∈ℝ9  ∑ LNSNT − ∥(¨8K)¬¢∥ÏÏ∥(¨­K)¬¢∥Ï

VNWX ^            
= max¢∈ℝ9È∑ LNSNT− ∥ (¨T7)�¢ ∥'VNWX Í        

      

Case 2: Robust counterpart for the second constraint:  

supg#8  È∑ CFRFT + ∑ CF�FT? 'FT?F∈³8ZFWX Í  = sup‖�8M‖Ï=X{∑ CFRFT + (�T?)�(¨T?)�¡ZFWX }
        = ∑ CFRFT+∥ (¨T?)�¡ ∥'       ZFWX               
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Case 3: Robust counterpart for the fourth constraint:  

sup #̀A    sup g#A  "∑ LNSN) + ∑ LN�N)7 'N)7  N∈"A − ∑ CFRF) + ∑ CF�F)?'F)?F∈³AZFWXVNWX &  
                         = ∑ LNSN) − ∑ CFRF)ZFWXVNWX + sup(�AK(Ï=X   sup(�AM(Ï=X"(�)7)�(¨)7)�¢ + (�)?)�(¨)?)�¡&
                         = ∑ LNSN) − ∑ CFRF) +ZFWX ∥ (¨)7)�¢ ∥'  +∥ (¨)?)�¡ ∥'       VNWX

      

The robust counterpart for the third constraint can be inferred from the fourth constraint. For 

each P ∈ �) we can write 'F)7 = SÄN) , with SÄN) = �7SN) where �7 is a given uncertainty level or 

percentage of perturbation. We write ∥ ¨)7¢ ∥' = Q∑ LN'SÄN)'N∈"A  for P ∈ �) and equivalently ∥
¨)?¡ ∥' = Q∑ CF'RÄF)'F∈³A   for J ∈ ÿ).  Subsequently, we substitute cases 1 – 3 into model (5.8) which 

completes the proof.  

 

5.3.2 The combined interval and ellipsoid case 

Suppose the input and output data of the DMUs are not only uncertain but are also random, 

i.e. they have a probability distribution. The type of uncertainty saturated by random data is 

known as aleatory uncertainty which can be modeled with probability theory (Ben-Tal & 

Nemirovski, 2000). Assume that the actual values of the input and output data are unknown, 

but the distribution of the random data is known to be symmetric in an interval. This entails 

the assumption that the true values, (RÀF) , SÀN))  of the uncertain input and output data are 

obtained from their nominal values through random perturbation: 

RÀF) =  (1 + �?�F)? )RF)SÀN) =  (1 + �7�N)7 )SN) (5.9) 

where {�F)? }F∈³A and {�N)7 }N∈"A (�F)? = �N)7 = 0 for J ∉ ÿ), P ∉ �)) are the independent random 

variables symmetrically distributed in the interval bound [−1, 1] and where �? and �7 are 

given uncertainty levels of the uncertain inputs and outputs. We use an interval-based 

ellipsoidal uncertainty set to describe and model the uncertainty dynamics in (5.9). See Ben-

Tal & Nemirovski (2000). Considering the true definition of the uncertain data, RÀF) and SÀF), the 

uncertainty set is defined with both the ¶' − norm and the infinity norm as follows: 

Ã)Fl� = G(¤¥ , ¦¥) §RÀF) =  (1 + �?�F)? )RF), Ö`)?ÖË ≤ 1, Ö`)?Ö' ≤ Ω)?SÀN) =  (1 + �7�N)7 )SN) (`)7(Ë ≤ 1, (`)7(' ≤ Ω)7 ;  0 = 1, … , -N 

 

 

(5.10) 

where È�F)? ÍF∈³A and "�N)7 &N∈"A are corresponding input and output data perturbations and Ω)? 

and Ω)7 are the lengths of semi-axes of the ellipsoid for the uncertain input and output data  
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Figure 5.2. Illustration of feasible region for varying Ω) values. 

 

 

respectively. Let Ω) = Ω)? + Ω)7, where Ω) ≤ bÞ�)| + |ÿ) Þd�.l
 depicts the allowable conservative 

preference of the DM and Þÿ)Þ and Þ�)Þ are the cardinalities of the uncertain inputs and outputs 

respectively. According to Ben-Tal & Nemirovski (1999), with an allowable “uncertainty 

intervals“ ∆F = +RF) − RÄF) , RF) + RÄF), and ∆N = +SN) − SÄN) , SN) + SÄN),, the uncertainty set 

prescribed by Soyster (1973) is exactly the box ® = "bRÀF), SÀN)d $ÞRÀF) − RF)Þ ≤ RÄF);  ÞSÀN) − SN)Þ ≤
SÄN)   J = 1, … , K;  P = 1, … , Q&. Therefore, the largest volume ellipsoid contained in the box 

occurs when Ω) = 1 and the smallest volume ellipsoid containing the box occurs when Ω) =
bÞ�)| + |ÿ) Þd�.l

. Although it is possible to have  Ω) > bÞ�)| + |ÿ) Þd�.l
,  without loss of generality 

for the uncertain input and output data, we consider in this chapter that 0 ≤ Ω) ≤
bÞ�)| + |ÿ) Þd�.l

.  Figure 5.2 illustrates the different scenarios of the feasible region for the 

ellipsoid intersection with the box which is adapted similarly from Hanks, Weir, & Lunday 

(2017). To propose a robust DEA based on the uncertainty dynamics above, we consider the 

following lemma. 

 

Lemma 5.1. An uncertain problem with the constraint ø�g + max`∈Ã¯ `�g ≤ ú under the interval type  

uncertainty set, ÃË = {`| ∥ ` ∥Ë ≤ 1} has the following robust counterpart constraint:  ∑ ¿)R) +�)WX ∑ ¿Ä)ê) ≤ Á�ÆWX , −ê) ≤ R ≤ ê). 

Proof. See Yuan et al (2016) 
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                                Figure 5.3. The trade-off between robustness and efficiency 

Then using the uncertainty set (5.10) the proposed robust DEA is obtained according to the 

following theorem: 

 

Theorem 5.2. The robust CCR model described under the ellipsoidal set (5.11) is the following: 

max Ws. t.W − ∑ LNSNTVNWX + ∑ ßNSÄNTN∈"8 + ΩT7Q∑ ¦N'SÄNT'N∈"8 ≤ 0
∑ CFRFTZFWX + ∑ �FTRÄFTF∈³8 + ΩT?Q∑ XFT' RÄFT'F∈³8  ≤ 1
∑ LNSNTVNWX − ∑ CFRFTZFWX − ∑ ßNSÄNTN∈"8 − ∑ �FTRÄFTF∈³8 −
ΩT7Q∑ ¦NT' SÄNT'N∈"8 − ΩT?Q∑ XFT' RÄFT'F∈³8  ≤ 0
∑ LNSN)VNWX − ∑ CFRF)ZFWX + ∑ ßNSÄN)N∈"A + ∑ �F)RÄF)F∈³A +
Ω)7Q∑ ¦N)' SÄN)'N∈"A  + Ω)?Q∑ XF)' RÄF)'F∈³A  ≤ 0 0 ≠ 8
−ßN) ≤ LN − ¦N) ≤ ßN) ∀P ∈ �)  −�F) ≤ CF − XF) ≤ �F) ∀J ∈ ÿ)CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , Q�F), ßN) ≥ 0 ∀J ∈ ÿ), ∀P ∈ �) 

  

 

 

 

(5.11) 

where ßN) and �F) are auxiliary output and input variables; ¦N) and XF) are interval uncertainty 

parameters35.  

                                                 
35Note that the RDEA to the ellipsoidal uncertainty set is practically tractable and convenient to handle with 

nonlinear solvers (such as Gurobi, MOSEK, BARON) and any efficient optimization software (see Sadjadi & 

Omrani 2008; Wu, Ding, Koubaa, Chaala, & Luo, 2017). 
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Proof. The proof follows similarly from Lemma 5.1 and Theorem 5.1 

Models (5.7) and (5.11) provides certainty level, ' = P°(` ∈ Ã) that guarantees robust 

solutions for uncertain inputs and outputs. The robust model (5.11) has a feasible solution if 

all the constraints are satisfied with the probability guarantee u = exp (Ω)/2) (Ben-Tal & 

Nemirovski, 2000). Moreover, using model (5.11) the DM is at will to vary Ω) according to his 

robust preference in the following: 

 If Ω) = 0, the robust model shrinks to the nominal DEA problem.  

 If Ω) = 1, the uncertainty denotes the largest volume of ellipsoid contained in the 

interval and  

 If Ω) = bÞ�)| + |ÿ) Þd�.l
 it implies that the highest robust solution is sought for the 

uncertain inputs and outputs in the model. Here, since all the uncertain inputs and 

outputs are immunized or protected against. 

Furthermore, the DM can seek different robust efficiency solution between Ω) = 0 and Ω) =
bÞ�)| + |ÿ) Þd�.l

. It is important to note that the DM trade-off efficiency for robustness according 

to the tuning of Ω). Figure 5.3 depicts the relationship. For higher values of Ω), the robust 

efficiency scores decrease since increasing Ω) implies that the uncertainty set is enlarged 

leading to high assurance for robustness. On the other hand, this implies worsening the 

performance of DMUs or paying the price for robustness (Bertsimas & Sim, 2004). The specific 

value of Ω) to the model is therefore carefully chosen so as to avoid overly conservative 

solution.  

Theorem 5.3: The optimal objective values of model (5.7) is less than or equal to 1.  

Proof. Let (?∗, ¡∗, ¢∗) be the optimal objective value of model (5.7). We have ?∗ ≤
∑ LN∗SNTVNWX − Q∑ LN∗'SÄNT'N∈"8  according to the first constraint of model (5.7). For every 

bRF) ,  SN)d, J ∈ ÿT, P ∈ �T, we have ∑ LN∗SNTVNWX − Q∑ LN∗'SÄNT'N∈"8   ≤  ∑ LN∗SNTVNWX + Q∑ LN∗'SÄNT'N∈"8  

and since Q∑ CN ∗ 'SÄNT'N∈"8  is nonnegative, taking the second and third sets of constraints arrive 

at ∑ LNSNTVNWX + Q∑ ¦N∗'SÄNT'N∈"8  ≤  ∑ CF∗RFTZFWX + Q∑ CF∗'RÄFT'F∈³8  ≤ 1 for each 0 = 8. Consequently ?∗ ≤ 1 which completes the proof.  

Theorem 5.4: The optimal objective values of model  (5.11) is less than or equal to 1. 

Proof: The proof is similar to Theorem 5.3.  
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Remark 5.1. The relationship between models (5.7) and (5.11) are observed interestingly. 

When Ω) = 1, the ellipsoid is exactly inscribed by the box/interval as shown in Figure 5.2 and 

the optimal objective values of model (5.7) and model (5.11) are equal. Furthermore, if a DMU 

fully efficient in the later model is also efficient in the former model. The reverse, however, is 

not true.  

Definition 3. A DMUT is R-efficient, if and only if it satisfies the following two conditions: 

   (J)  it is CCR-efficient and 

   (JJ)  ?∗ = 1 or W∗ = 1. 

Alternatively, a DMU that is CCR – inefficient is obviously robust – inefficient. Generally, the 

efficiency of model (5.11) is obtained through the parameter Ω) ≤ bÞ�)| + |ÿ) Þd�.l
. Let ®)N be the 

optimal objective function value of model (5.11). The following definitions hold.  

Definition 4. DMU) is R-efficient if ®)N = 1 for all values of Ω); otherwise, it is R-inefficient.   

Definition 5. The performance of DMU) is better than DMU´ if  ®)N > ®Ń,  ∀0, ∀u.  

Remark 5.2. If a DMU is characterized as inefficient by the robust model (5.11) then it is also 

characterized as inefficient by the robust model (5.7). 

We provide some suggestions for the classification of DMUs under the RDEA by the 

following definition. 

Definition 6. The robust efficiency for DMUs under the robust model (5.11) can be classified 

into three mutually exclusive subsets as follows.  

 

  (Full robust efficiency). DMUT is fully R-efficient if and only if ®)N = 1 when Ω) =
bÞ�)| + |ÿ) Þd�.l, ∀0. 

 (Partial robust efficiency). DMUT is partially R- efficient if ®)N < 1 when Ω) =
bÞ�)| + |ÿ) Þd�.l

 and there exist Ω) > 0 such that  ®)N = 1  

 (Robust inefficiency). A DMUT is said to be R-inefficient if ®)N < 1 for all Ω) ∈
ª0,  bÞ �)| + |ÿ) Þd�.l¢. 

 

Note that the classification of DMUs under the RDEA depends on the DM conservativeness 

level and risk preference. In other words, a robust ranking of DMUs using model (5.11) is 

based on the values of Ω) which gives a further interpretation to robustness. For the 

classification scheme (J) − (JJJ), denote by ��ll ~ full R-efficiency, ��l ~ partial robust 

efficiency or PR-efficiency and ��� ~ R-inefficiency. The set ��ll consist of DMUs that are 

robust CCR efficient in any combination of uncertain inputs and outputs at all conservative 



 

 117 

level defined by the DM. The set ��l consist of DMUs that R- efficient at maximal sense but 

there are certain conservative levels for inputs and outputs combinations for which they 

cannot maintain CCR- efficiency. Finally, the set ��� consist of robust inefficient DMUs for 

all input and output combinations. The classification scheme above is analogous to the 

classification of interval DEA efficiency provided in Despotis & Smirlis (2002).  

 

5.3.3 Numerical example with uncertain data 

We study the proposed models with numerical data from Hatami-Marbini & Toloo (2017). 

Table 5.1 shows the input and output data which is assumed to be uncertain. In order to 

compare the robust models (5.7) and (5.11), we assume 5% perturbation of the input and 

output data from their nominal values. The results for the CCR model and robust CCR models 

are shown in Table 5.2. We considered for omega values in model (5.11), Ω) = 0, 0.5, 1, 2 and 

2.8 which were chosen arbitrary reckoning that Ω) = 0 is equivalent to the CCR efficiency in 

column two of Table 5.2 and Ω) = bÞ�)| + |ÿ) Þd�.l ≅ 2.8 is the highest conservatism the DM can 

tolerate for the uncertain data. It can be observed that, except DMU³, all other DMUs are CCR 

efficient. However, as uncertainty is considered in the data and Ω) increases in the robust 

model (5.11), the efficiency scores decrease, a fact already indicated in Figure 5.3. shows the 

efficiency of DMUs as Ω) increases from Ω) = 0 to Ω) = 2.8 at an interval of 0.4. Note that the 

robust efficiency of DMUX, DMUµ, DMU´, DMUµ and DMUX� remain the same at 1 for all values 

of Ω). These DMUs are called R – efficient. Considering columns three and five of Table 5.2, it 

is evident the equivalency of the robust models (5.7) and (5.11) when the ellipsoid is inscribed 

by the box/interval. Thus, the robust efficiency scores of model (5.11) include that of model 

(5.7) at Ω) = 1.0, Here, DMUs which are R −inefficient in the later model are also R − inefficient in the former model. However, as mentioned earlier, it is possible that the 

maximum realization of the uncertain data may occur at the corners of the interval (see Figure 

5.2) which means that model (5.11) can be more conservative and with higher complexity than  

Table 5.1. Data for uncertainty analysis adapted from Hatami-Marbini & Toloo (2017) 

DMU Input  Output 

 RX R' Rµ R´  SX S' Sµ S´ 

1 32 50 82 46  47 93 54 65 

2 61 56 68 37  88 56 92 80 

3 42 58 45 34  94 65 80 80 

4 73 39 88 81  50 53 93 97 

5 45 38 68 41  47 42 70 52 

6 86 62 44 32  86 45 100 47 

7 38 74 71 74  83 91 62 74 

8 61 54 70 62  79 60 72 98 

9 84 52 38 47  85 68 51 41 

10 87 47 31 52  78 95 70 92 
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Table 5.2. Results of CCR and RCCR models  

DMU �∗ ?∗ W∗     Classification 

   (Ω) = 0.5) (Ω) = 1) (Ω) = 2) (Ω) = 2.8)  

1 1.000 1.000 1.000 1.000 1.000 1.000   ��ll 

2 1.000 0.944 1.000 0.944 0.899 0.899 ��l 

3 1.000 1.000 1.000 1.000 1.000 1.000   ��ll 

4 1.000 1.000 1.000 1.000 1.000 1.000  ��ll 

5 1.000 0.884 0.959 0.884 0.842 0.853 ��� 

6 1.000 1.000 1.000 1.000 1.000 1.000  ��ll 

7 1.000 0.956 1.000 0.956 0.931 0.931 ��l 

8 1.000 0.875 0.947 0.875 0.839 0.839 ��� 

9 0.994 0.833 0.905 0.833 0.812 0.798 ��� 

10 1.000 1.000 1.000 1.000 1.000 1.000   ��ll 

 

model (5.7) at full protection of the uncertain data. Although, it can be observed from Table 

5.2 that the robust efficient DMUs in model (5.7) remain the same for model (5.11), the 

efficiency of the inefficient DMUs decrease in the latter model. The full classification of the 

DMUs under model (5.11) is shown in the last column of Table 5.2. It is observed that the R-

efficient DMUs are  ��ll = {DMUX, DMUµ, DMU´, DMUµ, DMUX�}, the PR-efficient DMUs are ��l = {DMU', DMU�} while finally, the R-inefficient DMUs are  ��� = {DMUl, DMU¶, DMU³}. 

Note that the classification of the DMUs, right in own sense corresponds to the uncertainty 

considered in the input and output data.  

 

 

 

  Figure 5.4. Efficiency scores of DMUs under different values of omega 
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5.4 Extension to the additive DEA model and imprecise data 

In this section, we extend the robust approach to the additive (ADD) model with imprecise 

data and compare inefficiencies of the proposed model with imprecise additive models in 

literature. 

5.4.1 The robust additive model 

Consider the additive (ADD) model proposed in Charnes, Cooper, Golany, Seiford, & Stutz 

(1985)  to evaluate the efficiency of DMUs:  

sT∗ = max ∑ QF�Z)WX + ∑ QNlV)WXs. t∑ �)RF) + QF��)WX = RF� J = 1, … , K∑ �)SN)�)WX − QNl = SN� P = 1, … , Q�) ≥ 0 0 = 1, … , -QF� ≥ 0 J = 1, … , KQNl ≥ 0 P = 1, … , Q
    

 

 

(5.12) 

where QF� and QNl are the slacks for the input and output respectively. In order to extend the 

RO to the additive model above, we first take the dual formulation in order to avoid possible 

infeasibility as a result of uncertainty analysis in the equality constraints of model (5.12). The 

dual of model (5.12) is expressed as the following: 

minωs. t.ω − ∑ CFRFTZFWX + ∑ LNSNTVNWX ≤ 0∑ CFRF)ZFWX − ∑ LNSN)VNWX ≥ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , Q
    

 

(5.13) 

where ω is the efficiency of DMUT. It is easily verifiable that z∗ ≥ 0; thus, an efficient point 

(RF), SN)) will lie on the facet-defining hyperplane with equation ∑ CF∗RFTZFWX − ∑ LN∗SNTVNWX = 0. 

Then, a DMU 0 is efficient if z∗ = 0 and inefficient if z∗ > 0 or alternatively, z∗ > 0 and (¡∗, ¢∗) ≥ �ZlV measures the inefficiencies of the DMUs. In particular, to obtain an efficiency 

preserving unit to data perturbation, we consider the ellipsoidal-interval uncertainty defined 

in (5.10) and similarly to model (5.11) we propose the following robust additive model 

(RADD): 
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min §  s. t.§  − ∑ CFRFTZFWX + ∑ LNSNTVNWX + ∑ �FTRÄFTF∈³8 +
ΩT?Q∑ XFT' RÄFT'F∈³8 + ∑ ßNTSÄNTN∈"8 + ΩT7Q∑ ¦NT' SÄNT'N∈"8  ≤ 0
∑ CFRFTZFWX − ∑ LNSNT +VNWX ∑ ßNTSÄNTN∈"8 + ∑ �FTRÄFTF∈³8
ΩT7Q∑ ¦NT' SÄNT'N∈"8 + ΩT?Q∑ XFT' RÄFT'F∈³8 ≥ 0
∑ CFRF)ZFWX − ∑ LNSN) +VNWX ∑ ßN)SÄN)N∈"A + ∑ �F)RÄF)F∈³A
Ω)7Q∑ ¦N)' SÄN)'N∈"A + Ω)?Q∑ XF)' RÄF)'F∈³A ≥ 0 0 ≠ 8
−ßN) ≤ LN − ¦N) ≤ ßN) ∀P ∈ �)−�F) ≤ CF − XF) ≤ �F) ∀J ∈ ÿ)CF ≥ 1 J = 1, … , KLN ≥ 1 P = 1, … , Q�F), ßN) ≥ 0 ∀J ∈ ÿ), ∀P ∈ �)

     

 

    

 

(5.14) 

where §  is the robust additive efficiency of DMUT. 

5.4.2 Numerical example with exact and imprecise data 

We intend to compare the RADD model proposed in this section to the imprecise additive 

models developed in Lee et al. (2002) and Matin et al. (2007) and so we use the numerical 

example given in Cooper et al. (1999) and presented in Table 5.3. The column headings 

indicate the data to be dealt with in ordinal and bounded forms as well as in the customary 

exact forms represented by the conditions SN ∈ CNl, RF ∈ CF� where CNl and CF�. DEA models 

described by these data are nonlinear and usually converted to linear standard DEA with 

exact data by using the transformation approach suggested in Zhu (2003). It is to be noted  

 

Table 5.3. Exact and imprecise data adapted from Cooper et al. (1999) 

 Inputs   Outputs  

 Exact Bound  Exact Ordinal  

DMU Cost Judgment  Revenue Satisfaction 0 RX) R')ð   SX) S')ñ  

1 100 [0.6, 0.7]  2000 4 

2 150 [0.8, 0.9]  1000 2 

3 150 1  1200 5 

4 200 [0.7, 0.8]  900 1 

5 200 1  600 3 .ðOrdinal ranking such that 5 = highest rank, …, 1= lowest rank (i.e. S'µ ≥ ⋯ ≥ S'´) .ñRatio bound based on the reference DMUs 3 or 5 (e.g., 0.6 ≤ R'X ≤ 0.7 with R'µ = 1) 
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Table 5.4. Retrieved exact data adapted from Lee et al. (2002)¸ 

DMUs RX) R')  SX) S') 

1 100 0.7  2000 50 

2 150 0.8  1000 20 

3 150 1  1200 100 

4 200 0.8  900 10 

5 200 1  600 20 .óExact data when DMU) (0 = 2, 3, 4, 5) is under-evaluation. Note: DMUT≡X for R'X = 0.6 

 

that, the robust model is not able to deal with ordinal and bounded data. The approach 

adopted in this chapter follows the transformation of bound and ordinal data in Table 5.3 to 

exact data by Lee et al. (2002). The result of the retrieved exact data is given in Table 5.4. Using 

this retrieved data, we compare the result from the RADD model to the two-stage imprecise 

additive model of  Lee et al. (2002) and the one – stage imprecise additive model of Matin et 

al. (2007). Table 5.5 presents the inefficiency of DMUs proposed by the different methods. The 

efficiency of DMUs provided by the proposed robust model (Ω) = 0 ) indicated in Table 5.5 is 

the same as the former two methods where the RADD model yields larger scores for the 

inefficient DMUs and with higher discriminating power. The performance of DMUs on the 

three models are indifferent and their efficiency score according to Table 5.5 is ranked as 

follows:  

DMUX~ DMUµ ≻ DMU' ≻ DMU´ ≻ DMUl 

where the symbol ‘‘~’’ denotes ‘‘indifferent to’’ and the symbol ‘‘≻’’ denotes ‘‘superior to’’. It 

should be noted that the RADD model lightens the computational burden compared to the 

imprecise DEA models and provides the flexibility for controlling the conservativeness of 

solution to data perturbations. Thus, for some imprecise data, the proposed model in this 

chapter is more computationally effective and flexible in robustly ranking the efficiency of 

DMUs.  

 

Table 5.5. Computed inefficiency with different additive models 

DMUs Lee at al. (2002)õ Martin et al. (2007)� RADD model 

1 0 0 0 

2 1321.429 1050.1 1358.57 

3 0 0 0 

4 1200 1200 1518.57 

5 2314.286 1500.3 2365.71 .õResult here are taken from  Lee et al. (2002) two-stage approach.  .�Result here are taken from Matin et al. (2007) one-stage approach.  
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5.5 Application to banking efficiency in Italy 

In order to demonstrate the real world application of the proposed robust CCR models under 

the ellipsoidal and interval-based ellipsoidal uncertainty, this section analyses the 

performance of banks operating in Italy with the proposed models.  

 

 

5.5.1 Banking efficiency in Italy 

The Italian banking market is of particular interest to measure robust efficiency, particularly 

for the analysis of uncertainties that have characterized the banking industry for some time 

now. The market is emerging from a prolonged period of distress following the global 

financial crises in 2008 and the slowdown of the Italian economy36. Notwithstanding the 

lengthy recessions, the banking system in Italy has shown enough resilience and recovering 

although, some of the largest mutual banks (the so-called “banche popolari”) are still facing 

challenges with nonperforming loans (Giordano, Mbriani, & Lopes, 2013). While there exist 

enormous optimism among shareholders and investors on returns, it is important to note that 

Italian banks face competition in a global uncertain environment particularly in Europe which 

has meant that they have had to compare themselves to other commercial and universal banks 

in Europe and beyond. This requires that banks are operating efficiently locally and robustly 

under the changing environment.  

Exploring the efficiency of banks in Italy, this study considers banks as decision-

making units which consume inputs, for instance, a number of assets and working staff 

required to generate a certain amount of output level; interest on loans or overall revenue, etc. 

To examine the performance of these banks, data comprising 29 main banks in Italy for the 

accounting year 2015 were collected from the Bureau van Dick – Bankscope database (Bank 

scope 2015). The selected banks operate under a common set of rules and regulations set up 

by the Bank of Italy and by extension the Central Bank of Europe which implies that they have 

a common current denominator for which comparison of performance can be smoothly made. 

The selection of variables as input and output is done stem from the consideration of either 

the intermediation approach, production approach or the value-added approach of banking 

                                                 

36 The banking crises that engulfed Italy and ongoing mildly can be attributed to two main sources. First is the 

financial market crises in 2008 that were caused by mortgage crises and largely the failure of the Lehman Brothers. 

The second one stem from the sovereign debt crises that affected Greece and some peripheral countries of the 

European monetary union: Italy, Spain, Portugal, Ireland. The Italian government through the bank of Italy in its 

supervisory capacity instituted measures such as the provision of liquidity, strengthening and supporting of banks, 

recapitalization of distress banks and including the so-called "Tremonti bond". The measures were to revitalize the 

banking industry, protect depositors and also finance the economy. 
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Table 5.6. Data for 29 major banks in Italy in 2015 

Bank Inputs  Outputs 

 Employees  Assets  Equity   Deposits  Loans  Revenue  

B01 125510.00 860433.40 53485.50  163050.90 445293.90 12764.70 

B02 90807.00 676496.00 48593.00  79743.00 350010.00 10259.00 

B03 25731.00 169012.00 9622.70  28068.10 106680.40 2905.50 

B04 16972.00 120509.60 8546.80  24078.00 71902.80 1843.70 

B05 17718.00 117200.80 10517.80  16626.80 83815.70 1724.50 

B06 13371.00 77494.50 5649.00  22222.70 60523.20 1750.30 

B07 11447.00 61261.20 5651.80  7385.60 43702.60 1362.30 

B08 8197.00 51373.20 5138.10  4290.60 36462.50 1017.50 

B09 7743.00 50203.30 4647.40  9000.70 33953.90 870.50 

B10 2651.00 44710.20 2070.10  8803.90 7430.60 322.20 

B11 5273.00 39783.40 2552.10  9973.50 25068.30 584.70 

B12 6019.00 37455.30 2479.70  6190.70 22649.40 509.30 

B13 3195.00 35537.60 2649.40  3029.20 23290.40 547.10 

B14 6263.00 33349.30 2153.40  6913.00 22012.20 556.70 

B15 5034.00 30298.90 2489.10  3352.70 20395.20 383.80 

B16 5868.00 27916.70 1687.20  449.90 18004.80 697.50 

B17 4123.00 26901.70 2187.70  4194.10 18263.50 544.90 

B18 3927.00 24186.20 1663.40  5811.20 19070.70 543.90 

B19 3588.00 21861.10 2323.70  2323.10 18736.10 426.20 

B20 3064.00 14968.20 1297.20  1661.60 13121.70 352.90 

B21 3194.00 14809.50 1084.70  2680.60 9414.80 266.30 

B22 916.00 13852.60 226.30  3731.30 4942.40 141.70 

B23 2208.00 13545.30 1387.60  1467.40 12295.50 261.00 

B24 2570.00 13205.90 1258.50  2137.90 7945.80 277.20 

B25 1863.00 12276.90 1006.20  2375.20 6795.10 175.50 

B26 2371.00 12248.10 922.10  905.20 9386.30 285.70 

B27 1207.00 11769.20 750.10  1612.40 6394.80 175.40 

B28 2443.00 11615.50 724.70  471.10 9328.80 292.30 

B29 2989.00 10765.90 771.20  381.50 6734.00 184.50 

Mean 13319.38 90863.50 6328.84  14583.86 52193.98 1449.20 

SD 27280.19 192987.03 12690.11  32430.64 99685.54 2879.44 

Max 916.00 10765.90 226.30  381.50 4942.40 141.70 

Min 125510.00 860433.40 53485.50  163050.90 445293.90 12764.70 
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activities as discussed in Chapter 3 and 4. In Italy, Casu & Girardone (2002) examined the cost 

efficiency of banks conglomerates by assessing the cost characteristics of bank parent 

companies and their subsidiaries. Favoring the intermediation approach, they considered as 

inputs labor cost, deposits, and physical capital whiles total loans and other earning assets 

were used as outputs. Aiello & Bonanno (2016) considered the role of banks in Italy as an 

intermediary and used deposits, capital and labor as input factors whiles they used loans, 

securities and commission income as output factors. Within this context and following the 

survey of Mostafa (2009) in which deposit is mostly used as outputs, we select as input factors; 

employees, assets and equity and as output factors; deposits from banks, loans, and revenue. 

Table 5.6 shows the input and output factors and statistics for the Italian banks used for this 

study (see Table B. in Appendix B for details of the banks). All the inputs and outputs are 

expressed in monetary values. It is assumed that the actual values of some of the input and 

output factors are uncertain. A bank has uncertainty characterization if any of its input or 

output data for the performance measurement is uncertain. Here, we perceive uncertainty in 

banking data to be the result of errors from measurement and statistical computations and 

other errors such as from forecast values of loans, non-performing loans, deposit, etc. 

Following this development, we then apply the proposed models (5.7) and (5.11) to assess the 

robust performance of the banks.  

 

5.5.2 Robust efficiency results  

In the proposed robust models, we seek to obtain an acceptable performance level of banks 

by optimizing the worst-case values of the uncertain inputs and outputs values in the 

ellipsoids. For each bank, uncertainty is considered in some or all the inputs and outputs 

where the realization of their values are restricted to the uncertainty sets. We suppose that the 

inputs and outputs deviate from their nominal values by a percentage of perturbation, � =0.05. The result of the model implementation is reported in Table 5.7. The third column shows 

the efficiency ranking by the IMCCR model (2.8) and the fifth and last column show the 

efficiency ranking by the robust models (5.7) and (5.11). Here, the result obtained in model 

(5.11) for Ω) = bÞ�)| + |ÿ) Þd�.l ≅ 2.5 indicates the highest conservativeness of decision makers 

which occurs at the full protection of the inputs and outputs against all uncertainties. Column 

2 of  Table 5.7 shows 8 banks with efficiency score equal to 1 which are efficient under the 

CCR model and two banks (B13 and B22) which are R − efficient in the two robust models. As 

evidenced from Figure 5.3, the robust efficiency decreases relatively to the DEA efficiency 

which indicates the worst-case and reliable performance of the banks in uncertain conditions. 

The DEA result indicates an average overall technical efficiency (0.898) for the banks under 

study. Although the banks are performing averagely well, the number of banks which are 

efficient with or without uncertainty analysis is quite small. The lowest performing bank 

includes UniCredit SpA (B01) with an efficiency score of 0.738.  
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Table 5.7. Efficiency scores and ranking – CCR and RCCR models 

Banks IMCCR (2.8) Rank RCCR (5.7) Rank RCCR (5.11) a Rank 

B01 0.738 29 0.649 27 0.602 29 

B02 0.769 26 0.648 28 0.629 26 

B03 0.897 16 0.767 16 0.733 13 

B04 0.847 21 0.729 21 0.692 20 

B05 0.876 18 0.748 17 0.717 16 

B06 1.000 1 0.963 4 0.947 3 

B07 0.932 13 0.792 13 0.728 15 

B08 0.899 15 0.780 15 0.713 18 

B09 0.860 20 0.737 20 0.702 19 

B10 0.815 22 0.676 24 0.667 21 

B11 0.975 9 0.840 10 0.791 9 

B12 0.785 25 0.667 25 0.642 25 

B13 1.000 1 1.000 1 1.000 1 

B14 0.874 19 0.748 18 0.714 17 

B15 0.803 23 0.683 22 0.656 22 

B16 1.000 1 0.859 8 0.833 8 

B17 0.938 12 0.793 12 0.745 12 

B18 1.000 1 0.921 5 0.850 6 

B19 0.972 10 0.842 9 0.791 9 

B20 1.000 1 0.882 7 0.840 7 

B21 0.792 24 0.680 23 0.648 23 

B22 1.000 1 1.000 1 1.000 1 

B23 1.000 1 0.912 6 0.868 5 

B24 0.887 17 0.738 19 0.643 24 

B25 0.759 27 0.653 26 0.617 27 

B26 0.963 11 0.829 11 0.765 11 

B27 0.922 14 0.784 14 0.731 14 

B28 1.000 1 0.969 3 0.900 4 

B29 0.753 28 0.629 29 0.614 28 
aNote that this result is obtained for  Ω) = 2.5 
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              Figure 5.5. The result from ellipsoid and interval-based ellipsoid (Ω) = 2.5) sets 

 

For the robust classification of banks, the robust parameter Ω) is set to a range from 0 

when no uncertainty in data is anticipated to Ω) = 2.5 when full protection for uncertainty is 

anticipated. The choice of appropriate Ω) within this range is selected arbitrarily. Table 5.8 

shows the result of the robust classification of the banks. In exchange for higher guaranteed 

robustness, higher values of Ω) is selected. The efficiency of banks decrease as Ω) increases 

and the DM can express preferences with different values of Ω) and robust efficiency which is 

similar to the approach proposed in Ben-Tal & Nemirovski (2000) and Sadjadi & Omrani 

(2008). At full protection of the inputs and outputs, only B13 and B22 has full R − efficiency. 

Banks B06, B16, B18, B20, B23, and B28 are PR − efficient at different conservativeness level. 

The rest of the DMUs are R −inefficient. The last column of Table 5.8 shows the classification 

of the banks as given in Definition 6. Considering the fact that many banks were inefficient in 

the traditional DEA evaluation, it is unsurprising the number efficient banks which are 

partially or fully robust efficient. As observed, 2 banks and 6 banks are fully or partially robust 

efficient at different levels from the 8 DEA efficient banks.   
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Table 5.8. Classification of banks based on the robust model (5.11)  

Banks  � = 0.05                                                                                                                     Classification Ω) = 0 Ω) = 0.1 Ω) = 0.5 Ω) = 1.0 Ω) = 1.5 Ω) = 2.0  Ω) = 2.5  

B01 0.738 0.728 0.690 0.649 0.611 0.603 0.602 ��� 

B02 0.769 0.755 0.704 0.648 0.629 0.629 0.629 ��� 

B03 0.897 0.882 0.827 0.767 0.741 0.733 0.733 ��� 

B04 0.847 0.835 0.786 0.729 0.693 0.693 0.692 ��� 

B05 0.876 0.863 0.810 0.748 0.717 0.717 0.717 ��� 

B06 1.000 1.000 1.000 0.963 0.951 0.947 0.947 ��l 

B07 0.932 0.916 0.856 0.792 0.749 0.735 0.728 ��� 

B08 0.899 0.886 0.837 0.780 0.732 0.713 0.713 ��� 

B09 0.860 0.847 0.796 0.737 0.703 0.703 0.702 ��� 

B10 0.815 0.799 0.739 0.676 0.667 0.667 0.667 ��� 

B11 0.975 0.960 0.905 0.840 0.798 0.794 0.791 ��� 

B12 0.785 0.772 0.723 0.667 0.649 0.642 0.642 ��� 

B13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 ��ll 

B14 0.874 0.859 0.807 0.748 0.715 0.715 0.714 ��� 

B15 0.803 0.790 0.740 0.683 0.664 0.657 0.656 ��� 

B16 1.000 1.000 0.931 0.859 0.836 0.834 0.833 ��l 

B17 0.938 0.922 0.859 0.793 0.766 0.759 0.745 ��� 

B18 1.000 1.000 0.985 0.921 0.873 0.858 0.850 ��l 

B19 0.972 0.957 0.904 0.842 0.791 0.791 0.791 ��� 

B20 1.000 1.000 0.960 0.882 0.854 0.848 0.840 ��l 

B21 0.792 0.780 0.733 0.680 0.651 0.648 0.648 ��� 

B22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 ��ll 

B23 1.000 1.000 0.988 0.912 0.885 0.875 0.868 ��l 

B24 0.887 0.870 0.806 0.738 0.698 0.668 0.643 ��� 

B25 0.759 0.748 0.704 0.653 0.621 0.617 0.617 ��� 

B26 0.963 0.948 0.893 0.829 0.784 0.767 0.765 ��� 

B27 0.922 0.906 0.847 0.784 0.758 0.748 0.731 ��� 

B28 1.000 1.000 1.000 0.969 0.916 0.900 0.900 ��l 

B29 0.753 0.739 0.688 0.629 0.614 0.614 0.614 ��� 

 

 

 

5.6 Concluding remarks 

Robust solutions which is one of the most significant components of managerial efficiency 

decisions has become an integral research focus for many organizations faced with data 

imprecision and uncertainty. Therefore, achieving a robust solution with feasibility for both 

inputs and outputs uncertainty is very essential for productivity and efficiency analysis. In 

this chapter, we proposed new robust DEA models based on the ellipsoidal uncertainty and 
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interval-based ellipsoidal uncertainty sets designed in Ben-Tal & Nemirovski (1999, 2000). 

This has been done in a manner that immunizes arbitrary uncertainties partly or in all inputs 

and outputs data simultaneously. By constraining the uncertain data in an ellipsoidal 

uncertainty sets, the models developed in this chapter become less pessimistic and in contrast 

offer advantage over the interval DEA models which mostly evaluate the performance of 

DMUs based on their extreme lower and upper bounds of the efficiency. A very important 

advantage derived from the proposed models is the ability to control the conservativeness of 

efficiency scores to different data perturbations via the radius of the ellipsoid. The models 

offer the DM the flexibility of controlling the level of robustness. Numerical examples 

illustrating the proposed models are given especially with a robust additive model which is 

compared with some IDEA models to show the efficacy, potential, and applicability of the 

robust additive model. Furthermore, the proposed robust models are applied for the 

evaluation and classification of banks in Italy. Using the proposed model, bank managers can 

now classify banks into fully robust efficient, partially robust efficient and robust inefficient 

units. It is notable that these models are input-oriented but can be extended to output-oriented 

and BCC models. In addition, incorporating uncertainties into the envelopment side of the 

additive model and extension to the slacks-based model can be considered topics for future 

research.  
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Chapter 6: Robust multi-objective transportation problem 

with network efficiency 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary 

Transportation problem (TP) deals with shipping products from several sources to several 

destinations which either minimizes the total transportation cost (min-type) or maximizes the 

total transportation profit (max-type) under the intrinsic assumption of certain data. A 

network efficiency measurement of the TP arises when shipment arcs involve multiple min-

type (inputs) and multiple max-type (outputs) factors. DEA method is an optimization 

approach which can measure the network efficiency by assigning weight to each min-type 

and max-type factors and then maximizes the ratio of the weighted sum of max-type factors 

over the weighted sum of min-type factors. Given that different conflicting objectives under 

unknown conditions exist concurrently in practice, this chapter analyses the TP with network 

efficiency focus under the multiple objective linear programming (MOLP) framework. The 

DEA and MOLP are integrated to minimize arc inefficiencies and other min-type factors while 

maximizing max-type factors. We provide a linear programming robust model through goal 

programming (GP) approach in the presence of uncertain demands and supplies. Finally, we 

provide a numerical example to illustrate the applicability of the proposed model.  

 

 

6.1 Introduction 

The transportation problem (TP) is one of the intriguing yet nontrivial linear programming 

(LP) problems in operations research. The conventional single objective TP suggested by 

Hitchcock (1941) is a network-type structure that deals with shipping products (goods) from 



 

 130 

several sources to several destinations which either minimizes the total transportation cost or 

maximizes the total transportation profit. The TP modelled as multi-objective optimization 

problem can be solved by standard algorithms to enumerate all the non-dominated solutions 

(Isermann, 1979) or by interactive algorithms and compromising solution procedures 

(Ringuest & Rinks, 1987; Bit, Biswal, & Alam, 1992; El-Wahed & Lee, 2006).  

Along a compendium of literature studies on the TP in recent times and indeed in real 

world situations, the following practical needs of the decision maker (DM) arises, which we 

seek to address in this chapter:  

 Each possible shipment from the sources to the destinations entails several conflicting 

objectives in which the DM seeks a compromise solution from the multiple objectives 

(Li & Lai, 2000; Das, Goswami, & Alam, 1999; Gupta & Kumar 2012;  

Narayanamoorthy & Anukokila, 2014).  

 Each product shipment may involve multiple inputs (min-type) and multiple outputs 

(max-type) factors where assessment of the performance of each shipment might be 

required (Chen & Lu, 2007; Amirteimoori, 2011).   

 In practice, the parameters of the TP (i.e., cost, demand, supply, etc.) are precisely 

unknown in terms of delivery and quantity (including defected product). As a result, 

a robust approach is needed to immunize the uncertain parameters (Das et al., 1999; 

Gabrel, Lacroix, Murat, & Remli, 2014; Narayanamoorthy & Anukokila, 2014).  

Several researchers have carried out investigations into the multiple objective transportation 

problem (MOTP) to deal separately with these thematic areas; in fact, the decision-making 

process has mainly focused on trade-off among conflicting objectives and desired 

compromising solutions rather than a complete set of non-dominated solutions. One of the 

effective strategies to generate a satisfactory compromise is to use the GP technique. Charnes, 

Cooper, & Ferguson (1955) proposed the GP concept in which they sought to study executive 

compensation plan by minimizing total deviations between realized goals and expected goals. 

The linear GP provides an analytical framework by which the DM can optimize multiple, 

conflicting objectives. The decision aspect in the design of goals makes the DM at least as 

important as the modeler in resolving conflict of accomplishment between specific 

transportation supply or demand goals and the possible maximization of profit (Abdelaziz 

2007). However, rarely the transportation parameters are fixed in practice to satisfy 

requirements and generate the exact DM goals.   

 Uncertainties and imprecision in the parameters of multiple objective problems makes 

the mathematical expression difficult to solve with traditional methods since any feasible 

solution would have to consider the feasibility of the uncertain parameters. There are several 

approaches that have been proposed to deal with imprecision and uncertainties in MOLP, 

namely the robust optimization approach, stochastic programming, interval and fuzzy 

programming techniques. Kwak & Schniederjans (1985) were among the first authors to 

propose a generalized goal programming to overcome variations in the supply and demand 
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requirement of the TP. Das et al. (1999) presented a MOTP where the interval cost, source, and 

destination parameters are solved with fuzzy programming technique. Fuzzy membership 

description of ambiguous transport parameters, e.g. fuzzy demand, fuzzy product and fuzzy 

cost have been extensively discussed in literature (see, Bit, Biswal, & Alam, 1992; Li & Lai 

2000; Gupta & Kumar, 2012). A new treatment combines the fuzzy and goal programming 

techniques. For example, Zangiabadi & Maleki (2007) and Narayanamoorthy & Anukokila 

(2014) proposed fuzzy goal programming methods to deal with fuzzy goals and interval cost 

respectively. El-Wahed & Lee (2006) also combine the goal programming, fuzzy programming 

and interactive programming to provide a more realistic preferred compromise solution.  

 Robust optimization on the other hand is a set – based deterministic approach used to 

protect DM decisions against uncertainties and provide guarantees for stable and quality 

solutions. The approach uses uncertainty sets through which the uncertain parameters are 

immunized. The robust optimization literature is faced with three well known formulations 

that share similar minimal assumption of the uncertainty set, nonetheless with different ways 

of representation. The robust formulation of Soyster (1973) considers box uncertainty set to 

linear robust counterpart optimization, the Bertsimas & Sim (2004) polyhedral uncertainty set 

also lead to linear robust counterpart optimization while the Ben-Tal & Nemirovski (2000) use 

of ellipsoidal uncertainty set transform the LP to set of conic and quadratic programming. The 

primary objective of the uncertainty set design is to provide a guarantee for robust solution 

whenever the uncertain constraints are feasible in the set. It is imperative to know that no 

robust optimization approach has so far been considered for the MOTP. Gabrel, Lacroix, 

Murat, & Remli (2014) proposed a two-stage robust formulation for the location 

transportation problem with uncertain demand. The robust approach utilizes the Bertsimas 

& Sim (2004) cardinality-constrained and interval-based uncertainty set with Kelley’s 

algorithm to iteratively search for an optimal solution. However, the extreme solution points 

generated by their recourse problem entails just a solution to a single objective TP. Kuchta 

(2004) developed a robust goal programming for the general multi-criteria programming 

using Bertsimas & Sim (2004) concept of robustness. Hanks et al. (2017) recently extended 

Kuchta‘s  model to further leverage for the constraint uncertainties via the norm-based and 

ellipsoidal uncertainty set. The robust goal programming is applied to the multi-objective 

portfolio selection problem in Ghahtarani & Najafi (2013). Herein, we propose a robust goal 

model under tight dual formulation of the MOTP.   

Moreover, we consider the efficiency of shipment arcs with incommensurate multiple 

inputs and multiple outputs, which in earlier research is suggested for the classical extended 

TP, the extended assignment problem and the extended shortest path problem (see Chen & 

Lu 2007; Amirteimoori, 2011; Amirteimoori, 2012). In these extended LP problems, DEA is 

employed for the aggregated performance measurement of the shipments plan from the 

source to the destinations. Keshavarz & Toloo (2014)  and Keshavarz & Toloo (2015) studied 

the efficiency status of the feasible solutions of these extended problems in the MOLP and the 

DEA framework.  
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In our proposed approach, we adapt the initial origin- and destination-orientations 

efficiency measurement concept of Amirteimoori (2011) and provide a comprehensive 

approach to solve the MOTP in which network efficiencies, compromising goal target and 

robust methods are combined to generate realistic solution preferred by the DM. Rather than 

focusing only on the maximum efficiencies of outlets, we seek in addition to optimize the min- 

and max-type objective functions presented by each shipment arc. From the viewpoint of 

multi-objective optimization, we consider % min-type and ç max-type objective functions 

including minimizing the inefficiencies of each arc. The chapter uses the technique of robust 

goal programming to generate a compromise solution of an equivalent LP for the uncertain 

MOTP.  

 

Structure of the chapter. In Section 6.2, we provide the background of the study including 

introduction to the DEA. Section 6.3 describes our model formulation whiles Section 6.4 

illustrate the robust goal programming as the solution method of this study. We conclude the 

chapter in Section 6.5.  

 

 

6.2 Background 

This section provides a brief background to the TP with network efficiency. It introduces the 

DEA approach as a multicriteria tool which further helps us to measure the efficiency on 

each transportation arc and develop a new MOTP in Section 3. 

 

6.2.1 DEA for multi-criteria decision analysis 

DEA is a multi-criteria optimization tool that is widely used for evaluating the relative 

efficiency of a set of decision-making units (DMUs) with multiple max- and min-type factors. 

At the heart of DEA is an LP that measures the relative efficiency of DMUs as the ratio of 

weighted sum of outputs to the weighted sum of inputs. The first two DEAs model, known 

as the CCR and BCC models are due to Charnes, Cooper, & Rhodes (1978)  and Banker et al. 

(1984), respectively, under constant and variable returns-to-scale assumptions. Suppose there 

are » DMUs; DMUÆ, (Â = 1, … , ») that use ÿ inputs (RFÆ , = 1, … , ÿ), to produce � outputs (SNÆ , P = 1, … , �). The IMCCR model for the relative efficiency of DMUs is given apriori 

follows: 

max � = ∑ LNSNTVNWXs. t.∑ CFRFTZFWX = 1∑ LNSNÆVNWX − ∑ CFRFÆZFWX ≤ 0 Â = 1, … , »CF ≥ ¼ J = 1, … , ÿLN ≥ ¼ P = 1, … , �
  (6.1) 
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where the outputs weights LN and input weights CF are required to be greater than a small 

positive number ¼ (known as non-Archimedean infinitesimal) to forestall weights from being 

zero (see Toloo, 2014d). The DEA efficiency benchmarking in the CCR model is characterized 

by the identification of an efficient frontier determined by the non-dominated DMUs. In other 

words, DEA efficiency is a dominance-based concept which follows similar Pareto optimality 

conditions as the MOLP. A DMU is efficient (Pareto optimal) if and only if it is not possible to 

improve the performance of any input or output without worsening at least one other input 

or output. See Keshavarz & Toloo (2015) on further established efficiency status of the MOLP 

solutions as pertain to the DEA. The set of all efficient units is obtained by solving at least one 

optimization problem for each DMU in (6.1); whence � = 1 indicates a Pareto efficient unit. 

Figure 6.1 shows a unitized space for one unitized input and two output case where PXP' 

indicates the piecewise DMU has efficient solution  

 

 

                                          Figure 6.1. Efficiency of DMUs in unitized space. 

linear efficient frontier. DMUs A and F are weakly efficient, usually obtained if the lower 

bound ¼ is removed and � = 1. Other DMUs on the frontier are Pareto efficient or strongly 

efficient. Notice that the distance measure CC» indicate an efficient projection of the dominated  DMU½¾ to the frontier. 

 

6.2.2 The transportation problem with arc efficiency 

First, consider a transportation network made of K origions �F (J = 1, … , K) and - distinations C) (0 = 1, … , -). For each transportation made, a supply quantity QF from source J is dispatched 

which is received as demand â) at destination 0. It is clear that the supply and demand indicate 

physical quantities and must be nonnegative, i.e. QF ≥ 0 ∀J, â) ≥ 0 ∀0.  The process is 
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represented as a network with K source nodes, - sink nodes, and a set of K × - directed arcs 

(links). Let � = +RF),Z×� denote the matrix of decision variables, in other words, the quantity 

of goods to be transported from all the sources to all the destinations. The conventional TP is 

the problem of minimizing the total transportation cost of the whole distribution and is 

mathematically expressed as: 

ê(�) = min ∑ ∑ ¾F)RF)�)WXZFWXs. t.∑ RF)�)WX ≤ QF J = 1, … , K∑ RF)ZFWX ≥ â) 0 = 1, … , -RF) ≥ 0 J = 1, … , K, 0 = 1, … , -
  (6.2) 

where  ¾F) represent the cost of transporting the products from source J to destination 0. The 

condition ∑ QFZFWX ≥ ∑ â)�)WX  is imposed for feasibility of the problem. The transportation 

problem considering arc efficiency developed under the generic name ‘extended 

transportation problem’ (ETP) is studied in Amirteimoori (2011).  The ETP adopts DEA to 

measure efficiency of incommensurate multiple max-type and multiple min-type factors of 

transportation arcs. The idea was earlier introduced in Chen & Lu (2007) for the assignment 

problem37. The ETP considers a network system with single product made of multiple inputs 

and multiple outputs. Each arc (J, 0), as a DMU, has ¿ min-type factors (inputs) ª¾F)(X), ¾F)('), … , ¾F)(�)¬ and À max-type factors (output) ª%F)(X), %F)('), … , %F)(Á)¬ where 

ª¾F)(X), ¾F)('), … , ¾F)(�)¬ ≥ h� and ª%F)(X), %F)('), … , %F)(Á)¬ ≥ hÁ. Two scenarios are used to measure the 

efficiency of each link; the origin – oriented scenario and destination – oriented scenario. The 

DEA model (6.3) measures the efficiency at the origin 

�F)(X) = max  ∑ LB%F)(B)ÁBWXs. t.∑ C���WX ¾F)(�) = 1
∑ LB%Fk(B)ÁBWX − ∑ C���WX ¾Fk(�) ≤ 0 ¶ = 1, … , -LB ≥ ¼ ç = 1, … , ÀC� ≥ ¼ ~ = 1, … , ¿

  (6.3) 

 

                                                 
37 An extended assignment problem addresses each assignment of - jobs to - individuals with the maximum 

efficiency over profit or cost.  
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�F)(') = max  ∑ LB%F)(B)ÁBWXs. t.∑ C���WX ¾F)(�) = 1
∑ LB%´)(B)ÁBWX − ∑ C���WX ¾´)(�) ≤ 0 u = 1, … , KLB ≥ ¼ ç = 1, … , ÀC� ≥ ¼ ~ = 1, … , ¿

  (6.4) 

While the DEA model (6.4) measures the efficiency at the destination. Here the vector LB and C� are the outputs weights and input weights respectively and the origin- and destination-

efficiency are given by �F)(X)
and �F)(')

.  Figure 6.2 shows the transportation arcs of the two-

scenario efficiency measurement.  

 

                           (¿)  Origin – oriented scenario                                     (Á)  Destination – oriented scenario 

 

Figure 6.2. Transportation problem with network efficiency 

 

6.2.2.1 Amirteimoori’s Approach 

Amirteimoori (2011) considers the maximum efficiency of the transportation arcs over profit 

and cost. However, unlike the extended assignment problem which suggests the use of 

composite efficiency index as a performance measure of each assignment (Chen & Lu, 2007), 

Amirteimoori (2011) considers the averages of the relative efficiency of the two scenarios of 

the transportation arc and compute the efficiency of the network with the following model:  

min ∑ ∑ (1 − ·F))RF)�)WXZFWXs. t.∑ RF)�)WX = QF J = 1, … , K∑ RF)ZFWX = â) 0 = 1, … , -RF) ≥ 0 J = 1, … , K, 0 = 1, … , -
   (6.5) 
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where 1 − ·F) is the inefficiency score of arc (J, 0) and ·F) = 1/2 ª·F)(X) + ·F)(')¬. As a matter of 

fact, model (6.5) is a traditional transportation problem where the unit cost of shipping from 

factory J to warehouse 0 is 1 − ·F) and provides a single objective of maximum efficiency. 

6.2.3 The drawback of the extended approaches 

While the two scenarios of efficiency measurement are fascinating for operations research 

problems such as the transportation and assignment problems, the approaches of Chen & Lu 

(2007) – a composite efficiency defined as the product of ·F)(X)
 and ·F)(')

 and Amirteimoori (2011) 

– average efficiency ·F), induce a non-multiple criteria optimization framework characterizing 

the non-dominated solution of the problems. The main drawback of these extended 

approaches are pointed out in Keshavarz & Toloo (2015) and Shirdel & Mortezaee (2015). 

Shirdel & Mortezaee (2015) provides a counterexample to Amirteimoori (2011) ETP to show 

that solutions generated in the later are not necessarily a non-dominated solution, thus given 

that the transportation problem is usually a multiple choice or multiple objective problem 

requiring Pareto optimal to alternative feasible solutions (Roy, Maity, Weber, & Gök, 2017). 

On the other hand, Keshavarz & Toloo (2015) provides practical example to show that the 

efficient solution in the extended assignment problem of Chen & Lu (2007) is dominated. 

Keshavarz & Toloo (2014) further provide a multi-criteria framework to classify all the 

efficient solutions of the assignment problem. 

  

6.3 Proposed multi-objective transformation problem  

In this study, we seek to consider the efficiency of the networks whilst optimizing the max-

type and min-type objective functions of the transportation problem. Let  ℎF)(´) ≥ 0 represent u�� unit cost for shipping along link (J, 0) for u = 1, … , Ã, J = 1, … . , K, 0 = 1, … . , -. Under the 

crisp environment with precise values, the MOTP is the problem of minimizing Ã objective 

functions, ê´(�); u = 1, … , Ã, below;  

min ê´(�) = ∑ ∑ ℎF)(´)RF)�)WXZFWX u = 1, … , Ãs. t.∑ RF)�)WX ≤ QF J = 1, … , K∑ RF)ZFWX ≥ â) 0 = 1, … , -RF) ≥ 0 J = 1, … , K, 0 = 1, … , -
  (6.6) 

where � ∈ +RF), ∈ ℝÄ×Å  is the matrix of decision variables, ê(�) = (êX(�), ê'(�), … , êÆ(�) ) is 

the vector of Ã objective functions with ê(�)  ≥ hÆ. We consider the function ê(�) comprising ¿ min-type functions ü�(�);  ~ = 1, … , ¿ and À max-type functions �B(�);  ç = 1, … , À. Since the 

DM is interested in obtaining a transportation plan with maximum efficiency, we also 
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consider Çk(�) = ª∑ ∑ �F)(X)RF)�)WXZFWX , ∑ ∑ �F)(')RF)�)WXZFWX ¬ ∈ ℝ(�,X]' , ¶ = 1,2 comprising two max-

type (efficiency)  functions as shown in Figure 6.2 (Amirteimoori, 2011). Note that the function ∑ ∑ �F)(X)RF)�)WXZFWX   shows the total origin-efficiency score corresponding to the feasible solution X. We propose an MOTP with the following max-type and min-type functions: 

max  �B(�) = ∑ ∑ %F)(B)RF)�)WXZFWX ç = 1, … , À
min  ü�(�)  = ∑ ∑ ¾F)(�)RF)�)WXZFWX ~ = 1, … , ¿
max  Çk(�) = ∑ ∑ �F)(k)RF)�)WXZFWX ¶ = 1, 2
s. t.∑ RF)�)WX ≤ QF J = 1, … , K∑ RF)ZFWX ≥ â) 0 = 1, … , -
RF) ≥ 0 J = 1, … , K, 0 = 1, … , -

   (6.7) 

Note that problem (6.7) maintains the same feasibility structure as problem (6.6) and contains À + 2 max-type and ¿ min-type factors. The problem solution treating the max-type and min-  

 

            Figure 6.3. Mapping of decision space into objective space 

type functions as multiple objectives in multiple dimensions has no unique solution. 

However, there are equally good mathematical solutions in the following: non-dominated 

solution, efficient solution, compromise solution, preferred solution, ideal solutions.  

 Let É = È�Þ ∑ RF)�)WX ≤ QF, ∀J; ∑ RF)ZFWX ≥ â) , ∀0 Í ⊂ ℝZ×Å denotes the feasible region in 

the decision space and subsequently = {(�X(�), … , �Á(�),  üX(�), … ,  ü�(�), ÇX(�), Ç'(�) ): � ∈É} ⊂ ℝÁl�l' represents the feasible region in the objective space. See Figure 6.3. We define 

the following solutions;  
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Definition 6.1 (Efficient/non-dominated solution) A feasible matrix ¤∗ ∈ É is said to be non-

dominated, efficient or Pareto optimal solution of  (6.7) if there is no other feasible solution ¤ ∈ Ê such that b−�B(¤∗), ü�(¤∗), −Çk(¤∗)d ≤ b−�B(¤), ü�(¤), −Çk(¤)d ~ = 1, … , ¿; , ç =1, … , À;  ¶ = 1,2 and b�B(¤), ü�(¤), , Çk(¤)d  ≠ b�B(¤∗), ü�(¤∗), Çk(¤∗)d for some ~, ç ¿-â ¶. 
Otherwise, the point ¤∗ is not efficient.  

The set of all efficient solution denoted by É� is generally called a complete solution and the 

image of É� in Ë forms the non-dominated frontier Ë².  

 

Definition 6.2 (Ideal solution) The ideal solution to (6.7) is a point ¤F ∈ É such that the objective 

values (�X(¤F), … , �Á(¤F);  üX(¤F), … , ü�(¤F);  ÇX(¤F), Ç'(¤F)) are optimal for each sub 

problem max  �B(¤),  min  ü�(¤) and max  Çk(¤) subject to the constraints in (6.7).   

 

Definition 6.3 (Compromise solution) A feasible vector ¤� ∈ É is called a compromise solution 

of (6.7) if and only if ¤� ∈ É� and ü�(¤�) ≤ ∧¤∈É ü�(4);  �B(¤�) ≥ ∨¤∈É �B(¤) and Çk(¤�) ≥ ∨¤∈É Çk(¤) where ∧ and ∨ stands for “minimum” and “maximum”.  

 

If the compromise solution meets the DMs maximum preferences (i.e. taking into 

consideration the various objective values), then it is called optimal compromise solution. On 

the one hand, it is practically impossible to enumerate all non-dominated solutions for most 

MOTPs. Therefore, it is only important to we concern ourselves with an optimal compromise 

solution which is the closest solution to the ideal point. 

 

 

6.4 Solution methods 

The common solution methods used by many researchers for the MOTP are fuzzy 

programming (Bit, Biswal, & Alam, 1992; Das et al., 1999; Li & Lai, 2000), GP and iterative 

approaches (El-Wahed & Lee, 2006), and sometimes a combination of them (Zangiabadi & 

Maleki, 2007; Narayanamoorthy & Anukokila, 2014). Generally, most popular a posteriori 

method for solving multi-objective optimization problems are the scalarization, R −constraint 

or the goal programming method. However, for the MOTP, the goal programming is one of 

the main ideas portrayed in several alternative approaches to obtain a compromise solution. 

In this chapter, an efficient solution using the goal programming technique is explored. Later 

in this work, a robust goal programming is formulated to obtain realistic decision based on 

different uncertain scenarios of the uncertain parameters in the MOTP.  
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6.4.1 Algorithm for the MOTP  

The general steps to solve the proposed MOTP model with GP and robust optimization 

approaches are described below.  

 

Step 1. Measure the efficiency scores �F)X   and �F)'  for each arc (J, 0)  with both 

origin- and destination-oriented models (6.3) and (6.4), respectively.  

Step 2. Build an MOTP with the benchmark efficiencies in Step 1. 

Step 3. Solve the built model in Step 2 as an LP using GP.  

Step 4. Determine the aspiration level of the DM from the ideal points of the 

MOTP model in Step 2.   

Step 5. If the uncertain parameters are found at the right hand of the LP, then 

find the dual of the goal programming model in Step 3; otherwise go to Step 6.  

Step 6. Define the protection function for the uncertain parameters and solve 

the model using the linear robust optimization technique of Bertsimas and Sim 

(2004)38. 

 

 

6.4.2 Goal programming approach 

The GP provides a special analytical approach to properly address the transportation problem 

with incommensurate max-type and min-type factors. It guarantees a compromise multi-

criteria framework by which DM can optimize multiple, conflicting objectives concurrently to 

achieve satifiable solutions (Larbani & Aouni, 2011; El-Wahed & Lee, 2006). The GP has been 

applied to several real-world problems such as in finance, health, economics etc. where a 

multiple objectives decision aid tool was needed. The basic idea is to assign a specific goal (or 

aspirations level) Î� for each objective function ê´(�), and then minimize the total deviations, |ê´(�) − Î´| from their target values.  

For the MOTP with max-type and min-type factors, there are three different set of goals 

corresponding to each objective function in (6.7), set as below,  

DM Goals = G�B(�) ≥ ÎB ç = 1, … , À ü�(�) ≤ Î̇ó ~ = 1, … , ¿Çk(�) ≥ Î̈k ¶ = 1, 2  

where ÎB , Î̇ó  represents the aspiration levels of the À max-type, ¿ min-type functions while  Î̈k 
represent the goal for network efficiency.  

                                                 
38 The robust GP via the norm-based uncertainty set or the ellipsoidal uncertainty can be used at this stage (see 

Hanks, Weir, & Lunday, 2017). 
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The MOTP (6.7) can be written as the following goal model: 

Min ∑ ?BâB�ÁBWX + ∑ ?̇�â̇�l��WX + ∑ ?̈kâ̈k�'kWXs. t.�B(�) + âB� − âBl = Î¹ ç = 1, … , Àü�(�) + â̇�� − â̇�l = Î̇� ~ = 1, … , ¿Çk(�) + â̈k� − â̈kl = Î̈k ¶ = 1,2∑ RF)�)WX ≤ QF J = 1, … , K∑ RF)ZFWX ≥ â) 0 = 1, … , -âB�, âBl, â̇��, â̇�l, â̈k�, â̈kl ≥ 0 ∀ç, ∀~, ∀¶

  (6.8) 

where the variables  âB�, âBl, â̇��, â̇�l, â̈k�, â̈kl indicate respectively the positive and negative 

deviations between the achievement levels �B(�),  ü�(�), Çk(�) as well the aspiration levels ÎB , Î̇ó , Î̈k; and ?B , ?̇�, ?̈k are the Euclidean normalised weights respectively. Note that the 

normalized weight, for instance ?B = ¿B/ B where ¿B is the DM chosen weights and  B is the 

Euclidean norm of the former is necessary for the commensurability of the goals.  The DM 

aspirations can be determined by considering ideal solution points of model (6.7). We 

therefore require for the DM, an efficient solution that is close as possible to the ideal points 

of the defined objective functions. Assuming that the feasible region É is non-empty, compact 

and convex, and the objective functions �B(�), ∀ç;  ü�(�), ∀~; ÇX(�), Ç'(�)  are continuous in Ë; more formally, the efficient solution status to model (6.8) can be described by the following 

proposition which is a direct result of Larbani & Aouni's (2011) theorem.  

Proposition 6.1. Assume that É is compact and the functions �B(¤), ü�(¤), Çk(¤), ∀ç, ∀~, ∀¶ are 

continuous. Let ¤z  be a solution vector to the GP formulation  (6.8). Then any optimal solution of the 

following program is an efficient solution 

max� ∈Éz   ∑ �B(�) − ∑ ü�(�) + ∑ Çk(�)'kWX��WXÁBWX    (6.9) 

where Éz  = "� ∈ É$ ª�B(�z), −ü�(�z),  Çk(�z)¬ ≤ ª�B(�), −ü�(�), Çk(�)¬ , ∀ç, ∀~, ∀¶&. 

Furthermore, if  �z is an optimal solution to problem (6.9), then it is efficient; otherwise it is not efficient 

and it is dominated by all the optimal solutions of problem (6.9).  

 

6.4.3 Robust goal programming approach 

Until now, the MOTP has been analyzed under crisp environment in which feasible solutions 

and Pareto optimal are quite often guaranteed. In practice, the MOTP involves uncertainties 

which may arise from ambiguity of the transport data or imprecise knowledge of demand or 

supply due to defected products, weather conditions, etc.  and any feasible solution will also 

require feasibility of the uncertain constraint or objective (Ehrgott, Ide, & Schöbel, 2014). In 

this chapter, uncertainties are considered in some demands and supplies. We define the DM 
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uncertainty as interval values of the demand and supply. Formally, let ÿ and Â indicate the set 

of uncertain demands and supply, respectively. Each true value Q̃F ∈ ÿ and âÚ) ∈ Â are 

symmetric and bounded random variables that take values in [QF − Q̂F, QF + Q̂F] and [â) −âÕ), â) + âÕ)] respectively where Q̂F and âÕ) represent the maximum deviation from the nominal 

values QF and â). We describe a robust solution that is feasible for all possible realizations of 

these uncertain parameters.  Denoting Ã(ΓX, Γ') as the budget of uncertainty set, we follow 

closely the robust model of Bertsimas & Sim (2004) where ΓX, Γ' called the budget of uncertainties 

parameters are the maximum range of values allowed for the uncertain demand and supply, 

respectively,  to simultaneously deviate from their nominal values. Define  

 

Ã(ΓX, Γ') = /(Q̃F,  âÚ)) ∈ ℝ|³⋃Æ||0Q̃F = QF  + �FQ̂F, ∀J ∈ ÿ, �F ∈ ℤ(ΓX)âÚ) = â) + �)âÕ), ∀0 ∈ Â, �) ∈ ℤ(Γ')1 (6.10) 

where ℤ(ΓX) = È( �F) ∈ ℝ|³||   ∑ �FF∈³ ≤ ΓX, | �F| ≤ 1, ∀JÍ  (6.11) 

ℤ(Γ') = Èb �)d ∈ ℝ|Æ||  ∑ �))∈Æ ≤ Γ', | �)| ≤ 1, ∀0Í  (6.12) 

Under the assumption that all the uncertain parameters will not take their worst-case values, 

a certain level of deviation is allowed (Bertsimas & Sim, 2004). Accordingly, the robust 

indicators ΓX and Γ'  are restricted to intervals ΓX ∈ [0, |ÿ|] and Γ' ∈ [0, |Â|]. For ΓX = Γ' = 0, the 

DM’s value for the demand and supply is equal to their nominal values while ΓX = |ÿ| and Γ' = |Â| (or equivalently ΓX + Γ' = |ÿ⋃Â|) implies that the worst-case values of demand and 

supply are considered. Notice that the uncertain parameters of model (6.8) are on the right 

sides (i.e. demand and supply), we transfer the uncertainties from the right-hand sides to the 

objective function coefficient using the dual program (Gabrel & Murat, 2010). The dual model 

(6.8) is given below.  

max ∑ ÎBSBÁBWX − ∑ Î̇�Ṡ���WX + ∑ Î̈kS̈k'kWX + ∑ QF�FZFWX − ∑ â)¤)�)WXs. t.∑ %F)(B)SBÁBWX − ∑ ¾F)(�)Ṡ���WX + ∑ �(k)S̈k'kWX + �F − ¤) ≤ 0 ∀J, ∀0SB ≤ ?B ∀çṠ� ≥ −?̇� ∀~S̈k ≤ ?̈k ∀¶ all variables are nonnegative  
  (6.13) 

Considering the uncertainty set in (6.10) – (6.12) and using Bertsimas & Sim (2004) approach, 

the robust goal programming is formulated as follow  
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max ês. t.ê − ∑ ÎBSBÁBWX + ∑ Î̇�Ṡ���WX − ∑ Î̈kS̈k'kWX − ∑ QF�FZFWX+ ∑ â)¤) + n(�, �, ΓX, Γ')�)WX ≤ 0∑ %F)(B)SBÁBWX − ∑ ¾F)(�)Ṡ�m¹WX + ∑ �(k)S̈k'kWX + �F − ¤) ≤ 0 ∀J, ∀0SB ≤ ?B ∀çṠ� ≥ −?̇� ∀~S̈k ≤ ?̈k ∀¶ all variables are nonnegative  

   (6.14) 

where  n(�, �, ΓX, Γ') = max #;∪{�;}| #;⊆³,|#;|W⌊ Ü; ⌋,�;∈³\#;#Ï∪{�Ï}| Æ;⊆Æ,|#Ï|W⌊ ÜÏ ⌋,�Ï∈Æ\#Ï^
È∑ Q̂FF∈#; �F + ( ΓX –  ⌊ ΓX ⌋)Q̂F�; +

∑ âÕ))∈#Ï ¤) + ( Γ' –  ⌊ Γ' ⌋)âÕ)�ÏÍ    
(6.15) 

If ΓX and Γ' are chosen as integer values, then we have  

n(�, �, ΓX, Γ') = max #;∪{�;}| #;⊆³,|#;|W⌊ Ü; ⌋#Ï∪{�Ï}| Æ;⊆Æ,|#Ï|W⌊ ÜÏ ⌋^È∑ Q̂FF∈#; �F + ∑ âÕ))∈#Ï ¤)Í    (6.16) 

  

Notice that model (6.14) is nonlinear. A linear model formulation is obtained in the following 

way (Bertsimas & Sim, 2004; Toloo & Mensah, 2018).  

The function in (6.15) is equal to the following the linear optimization problem, 

nb�F∗, ¤)∗, ΓX, Γ'd =  max  ∑ Q̂F|�F∗|�FF∈³ +  ∑ âÕ)|¤)∗|�))∈ÆÏs. t.∑ �FF∈³ ≤ ΓX∑ �))∈Æ ≤ Γ'0 ≤ �F ≤ 1 ∀J ∈ ÿ0 ≤ �) ≤ 1 ∀0 ∈ Â
   (6.17) 

The optimal value of model (6.17) is made up of (ΓX + Γ') variables equal to 1 and two 

variables at ΓX − ⌊ ΓX⌋ and Γ'  −  ⌊ Γ'⌋ which are equivalent to the selection of the subset with 

objective functions maximized in (6.15). The dual of model (6.17) is the following:  

 min ∑ ØF + êXF∈³ ΓX + ∑ Ù) + ê')∈Æ Γ's. t.ØF + êX ≥ Q̂F|�F∗| ∀ J ∈ ÿÙ) + ê' ≥ âÕ)|¤)∗| ∀ 0 ∈ ÂØF ≥ 0 ∀J ∈ ÿÙ) ≥ 0 ∀ 0 ∈ ÂêX, ê' ≥ 0
   (6.18) 

Now given that model (6.15) is feasible and bounded for all ΓX ∈ [0, |ÿ| ] and Γ' ∈ [0, |Â| ] 
respectively, by strong duality, the dual model (6.18) is also feasible and bounded. Therefore 
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model (6.13) can be reformulated in the following linear form:  

max ês. t.ê − ∑ ÎBSBÁBWX + ∑ Î̇�Ṡ���WX − ∑ Î̈kS̈k'kWX − ∑ QF�FZFWX+ ∑ â)¤)�)WX + ∑ ØF + êXF∈³ ΓX + ∑ Ù) + ê')∈Æ Γ' ≤ 0∑ %F)(B)SBÁBWX − ∑ ¾F)(�)Ṡ�m¹WX + ∑ �(k)S̈k'kWX + �F − ¤) ≤ 0 ∀J, ∀0ØF + êX ≥ Q̂FLF ∀ J ∈ ÿÙ) + ê' ≥ âÕ)C) ∀ 0 ∈ ÂSB ≤ ?B ∀çṠ� ≥ −?̇� ∀~S̈k ≤ ?̈k ∀¶ ØF ≥ 0 ∀ J ∈ ÿÙ) ≥ 0 ∀ 0 ∈ ÿ−LF ≤ �F  ≤ LF−C) ≤ ¤) ≤ C)êX ≥ 0, ê' ≥ 0

     (6.19) 

 

6.5 Concluding remarks 

The ETP is a network-type structure with shipment arcs involving multiple inputs and 

multiple outputs. In this chapter, we analyze through the multi-objective framework the 

transportation problem with multiple objectives and multiple inputs and multiple output 

data. The concept of DEA and MOLP were utilized to provide unified linear programming 

model while also ensuring a robust solution to uncertain parameters of the problem. The 

Chapter further describes the sequential algorithm/solution procedure for the uncertain 

MOTP, mianly via the robust goal programming.  
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Chapter 7: Summary, conclusions and future research 
 

 

 

 

 

 

 

 

 

 

 

 

 

7.1 Summary and conclusions 

While various methods exist to provide solution to inexactness in DEA data (e.g. fuzzy DEA 

models, Imprecise DEA, Interval DEA, stochastic DEA models), the robust DEA (set-based or 

scenario-based) set its own unique path in characterizing uncertainty and ensuring 

probability guarantee for reliable efficiency scores, robust discrimination and ranking of 

DMUs. At the center of the robust DEA is the robust optimization technique which enables us 

to model uncertainty in the input and output data of DMUs. For the robust DEA to have 

impact in theory and application, we feel that methodologies that meet the requirements of 

computational tractability, guarantee for feasibility of the robust DEA solution in terms of 

uncertainty in both input and output data and feasibility in probability sense if the uncertainty 

dynamics obey some natural probability distributions are needed.  

In this thesis, we focused on the set-based model for uncertainty within the context of 

robust optimization to advance the modeling of the robust DEA. We propose models which 

satisfy the robust optimization modeling technique and set the basis for robust DEA modeling 

and applications. Specifically, we contributed to the following:  

1. On robust counterpart to positive decision variables: The framework of the robust 

optimization involves robust counterpart to general free-in-sign decision variables. 

The DEA like many other operations research problems present variables which are 

physical quantities and must be nonnegative. Within the context of robust 

optimization, in Chapter 3, we derive alternative robust counterpart optimization 

which shows that our approach significantly reduces the computational burden but 

preserve the optimality of the original solution for (big data) problems with 

nonnegative decision variables.  
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2. On equality constraint and feasibility in the robust DEA: Feasibility in RO requires 

the avoidance of uncertainty analysis in the equality constraint. In the robust DEA, this 

requires that the normalization constraint which is equality constraint is remodeled as 

inequality constraint. Omrani (2013) and Salahi et al. (2016) make some suggestions 

concerning how uncertainty can be considered in the normalization constraint. This 

topic is treated in detail in Chapter 3 particularly for the input-oriented model and for 

the output - oriented model in Chapter 4. Theorems suggesting the use of inequality 

sign are proved.  

 

3. On the robust frontier characterization: We provide a characterization for robust 

efficiency beginning with a definition for robust PPS. In Chapter 2, the robust PPS is 

proposed with its axioms which is used as a basis for many of the proposed robust 

DEA models.  

 

4. On the classification of robust efficiency of DMUs: While a classification scheme 

exists for DMUs with imprecise and interval data, a striking observation is its non-

existence in the RDEA setting. This gap in the literature is resolved in Chapters 4. A 

classification scheme for DMUs considering the conservativeness of the decision 

maker and classifying DMUs into fully robust efficient, partially robust efficient and 

robust inefficient is proposed. A similar scheme is provided for the classification of 

DMUs with the robust DEA model under ellipsoidal uncertainty sets in Chapter 5.  

 

5. On duality relations in robust DEA: The duality relations in the robust DEA setting 

is studied. We prove that the presence of uncertain data invalidates the linear duality 

principle as well as create efficiency gap between the multiplier robust DEA models 

and envelopment robust DEA models. Our result provides further interpretation to 

practitioners on the use of robust DEA models in terms of multiplier and envelopment 

models. Particularly, the worst-case robust envelopment models produce result which 

fail interpretation and must be used with caution. 

 

6. On input – output relationship in RDEA: The relationship between the input and 

output – oriented models are known to be reciprocally equivalent with the CRS 

assumption. In the robust DEA setting, this relationship is studied, and the 

equivalency of the relation proved in Chapter 4.   

 

7. On multi-objective application with RDEA: In Chapter 7, we solve a multi-objective 

transportation problem that focuses on minimizing arc inefficiencies in the presence 

of demand and supply uncertainty. The chapter entails an extension of the RDEA to 

multi-objectives decision making using the goal programming technique.  
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8. On the characterization of DEA to different uncertainty set: In Chapter 2, we provide 

different several robust DEA models to different uncertainty sets, i.e. norm, 

polyhedral, interval-based polyhedral, ellipsoidal, interval-based ellipsoidal 

uncertainty sets. Some of these models are well structured for robust DEA application 

in the other chapters and useful for extension is future studies. 

 

9. On various applications of RDEA: While the theoretical and modelling expansion of 

the robust DEA has been the focus of this thesis, on the practical level, some profound 

contributions are made. Extensive analysis is done into these application areas rather 

than mere validation of the models proposed. First, we assessed the robust efficiency 

of the largest (in terms of assets) 250 banks in Europe in Chapter 3. The performance 

of some major 26 banks with the largest assets are also assessed with and without 

uncertainty in data. In Chapter 5, the performance of the major banks in Italy are 

evaluated with uncertainty restricted to the ellipsoid. Coupled with several numerical 

examples made in this thesis, the case study of these application areas further proves 

the applicability of the robust DEA models developed.   

 

10. On comparison with other robust approaches: We observe from a comparison of a 

proposed robust additive DEA model with developed IDEA models of Lee et al. (2002) 

and Matin et al. (2007) using imprecise data that, the efficiency classification of DMUs 

with all the models are the same. However, this is after ordinal and bounded data are 

transformed to exact. Thus, generically, the robust DEA model is not able to directly 

deal with ratio data or ordinal data and somehow fuzzy data. A research in this 

direction for instance pay recourse to the modeling approach of Shokouhi et al (2010) 

and Amirkhan et al (2018) in which interval data and fuzzy data are modelled with 

the robust optimization approach.  

 

7.2 Future research 

Some further research in the area of robust DEA include the followings:  

 

1. Extension of robust technique to advanced DEA models: A broader perspective and 

discussion on reliable and stable performance of DMUs can be found in extending the 

robust optimization technique to advanced DEA models. The models developed in 

this thesis are based on basic DEA models including the robust additive model. In 

Sadjadi et al. (2011)a, Omrani (2013) ,  Salahi et al. (2016) , Esfandiari et al. (2016), 

Arabmaldar et al. (2017) and Salahi, et al (2018) are extended the super-efficiency, 

common set of weights, two stage DEA and Russel measure. It is desirable extending 
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the robust DEA to other models such as slack-based model, network DEA, Malmquist 

productivity index, etc.  

 

2. Inequality constraints and feasibility in robust DEA models: Most of the 

envelopment form of DEA models entail slacks variables and hence equality constraint 

which lack feasibility for robust optimization modeling. In Chapters 3 and 4 we derive 

alternative models that involve inequality for the normalization constraints of the 

input - and output - oriented multiplier models. It is desirable to derive inequality 

constraint(s) for max-slack models and most of the DEA models involving equality 

constraints.  

 

3. Probability bounds for the distribution of the uncertain inputs and output data: So 

far, the robust DEA relies on the probability bounds on feasibility of the robust DEA 

counterpart based on the specific uncertainty set used. Since the uncertainty in DMUs 

can be quite unique and complex, it will be interesting to derive probability bounds 

for more general distributions especially for advanced DEA models with higher model 

complexity.  

 

4. Computational and comparative studies: There is a lack of comparative studies 

among robust DEA under different uncertainties, here by extension we also mean a 

comparison with the discrete-scenario based robust DEA. Furthermore, a 

computational comparison of robust DEA models, IDEA models, fuzzy DEA models 

and stochastic DEA approaches including the chance-constrained DEA would be a 

humble task to strike a uniform approach to performance evaluation under 

uncertainty.  
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 Chapter 2 
 

 

A.1     Exposition on duality in DEA 

This appendix overview linear programming and its duality relations. Such duality relation 

is very useful in DEA since the multiplier and envelopment models are concepts of duality in 

linear programming. The concepts here are largely based on Cooper, Seiford, & Tone (2006) 

and Bazaraa et al. (2010).   

Suppose the primal (Ø) linear program (considered in the canonical form) is given by 

the following model: 

(Ø)       min ∑ ¾)R)�)WXs. t.∑ ¿F)R)�)WX ≥ ÁF J = 1, … , KR) ≥ 0 0 = 1, … , -
  

 

(A.1) 

Then the dual (C) program is defined by:  

(C)    max ∑ ÁFSFZFWXs. t.∑ ¿F)SF�)WX ≤ ¾) 0 = 1, … , -SF ≥ 0 J = 1, … , K
  

 

(A.2) 

Note that the terms "primal" and "dual" are relative to the frame of reference and is chosen 

arbitrary. Basically, the dual of the “dual” is the “primal” itself. Let R)�, 0 = 1, … , - and SF�, J =1, … , K be the feasible solution to the primal and dual program respectively. The following 

theorems verifiable from textbooks on linear programming are restated here.  

Theorem A.1 (Weak duality theorem) For each primal feasible solution R)� and each dual feasible 

solution SF�,  

∑ ¾)R)��)WX ≥ ∑ ÁFSFTZFWX   

That is, the objective function value of the dual maximizing problem never exceeds that of the primal 

minimizing problem.  

 

Proof. The weak duality theorem follows from the respective feasibility conditions of the two 

solutions. In problem (Ø), feasibility of R)� implies that  

∑ ¿F)R)��)WX ≥ ÁF,   R)� ≥ 0   
whereas feasibility of SF∗ in problem (C) implies  
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∑ ¿F)SF�ZFWX ≤ ¾) ,    SF� ≥ 0  

Multiplying the Jth constraint in problem (Ø) by SF� gives 

∑ ∑ ¿F)R)�SF��)WX ≥ ∑ ÁFSF�ZFWXZFWX    
whereas multiplying the 0th constraint in problem (C) by R)� 

∑ ∑ ¿F)SF�R)�ZFWX ≤ ∑ ¾)R)��)WX�)WX    
Then since the LHS of the two inequalities are equal, we have  

∑ ¾)R)��)WX ≥ ∑ ÁFSF�ZFWX   

              

The weak duality provides a bound on the optimal value of the objective function of either 

the primal or the dual. In other words, the value of the objective function for any feasible 

solution to the primal minimization problem is bounded from below by the value of the 

objective function for any feasible solution to its dual. Similarly, the value of the objective 

function for its dual is bounded from above by the value of the objective function of the 

primal. The equality of the primal-dual at optimality follows from the strong duality theorem. 

Theorem A.2 (Strong duality theorem) If there exist feasible solutions to both the primal and the 

dual, then there exists an optimal solution R)∗ to the primal and an optimal solution SF∗ to the dual such 

that 

∑ ¾)R)∗�)WX = ∑ ÁFSF∗ZFWX   

Proof. See Bazaraa et al. (2010) 

The strong duality theorem simply states that if both the primal and dual problems are 

feasible then they have the same optimal value. Below, we summarize duality relations 

including when the solution is infeasible or unbounded.  

i) In a primal-dual pair of linear programs, if either the primal or the dual problem has 

an optimal solution, then the other does also, and the two optimal objective values are 

equal. 

ii) If either the primal or the dual problem has an unbounded solution, then the other has 

no feasible solution.  

iii) If either problem has no solution, then the other problem either has no solution or its 

solution is unbounded.  

A more precise relationship for the optimal solution of the primal and dual models is given 

by defining the concept of complementary slackness.  
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Theorem A.3 (Complementary Slackness Theorem) Assume problem (Ø) has a solution R)∗ and 

problem (C) has a solution SF∗.  

i) If R)∗ > 0, then the 0th constraint in (C) is binding, i.e. ∑ ¿F)SF∗ZFWX = ¾).   
ii) If the 0th constraint in (C) is not binding, i.e. ∑ ¿F)SF∗ZFWX < ¾), then R)∗ = 0. 

iii) If SF∗ > 0, then the Jth constraint in (Ø) is binding, i.e. ∑ ¿F)R)∗�)WX > ÁF. 
iv) If the Jth constraint in (Ø) is not binding, i.e. ∑ ¿F)R)∗�)WX > ÁF, then SF∗ = 0. 

Proof.  It follows complementary from the strong duality theorem.  See Bazaraa et al. (2010) 

The complementary slackness theorem identifies a relationship between variables in 

one problem and associated constraints in the other problem. The statement of the theorem is 

indeed about “complementary slackness” in that there cannot be slack in both a constraint 

and the associated dual variable and so if in an optimal solution of a linear program, the value 

of the primal variable associated with a constraint is nonzero, then that constraint in the dual 

must be satisfied with equality. Moreover, if a constraint is satisfied with strict inequality, 

then its corresponding dual variable must be zero.  

Duality relation in DEA  

We show the equivalency of the optimal solution of the dual CCR models with input 

orientation. Let’s consider the primal CCR model given in Section 2.1.2 with row vector ¡ for 

input multipliers and row vector ¢ as output multipliers. The model (multiplier form) is given 

as:       (Ø)     max¢,¡  ∑ LNSNTVNWXs. t.∑ CFRFTZFWX = 1∑ LNSN)VNWX − ∑ CFRF)ZFWX ≤ 0 0 = 1, … , -CF ≥ 0 J = 1, … , KLN ≥ 0 P = 1, … , Q
  

 

 

(A.3) 

The dual of problem (Ø) is expressed with the dual variable � and a nonnegative intensity 

vector � = (�X, … , ��)� for the constraints. Then using the slacks �� = {QF�}� ∈ ℛZ and �l ={QNl}� ∈ ℛV for the input and output constraints, the following equivalent dual model (�) is 

obtained: 

     (�)     min«,�, �Ú,�Û ∑ QF�ZFWX + ∑ QNlVNWXs. t∑ �)�)WX RF) + QF� = �RFT J = 1, … , K∑ �)�)WX SN) − QNl = SNT P = 1, … , Q�) ≥ 0 0 = 1, … , -QF� ≥ 0 J = 1, … , KQNl ≥ 0 P = 1, … , Q

  

 

 

(A.4) 
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Consider the following optimality conditions which defines efficiency for the dual pair 

models.  

Claim A.1  

Let (�∗, ¡∗, ¢∗) be the optimal solution of problem (Ø). DMUT is said to be efficient if �∗ = 1 

and with at least one ¡∗ > 0 and ¢∗ > 0 or else DMUT is inefficient.  

 

Claim A.2 

Let (�∗, �∗, ��∗, �l∗) be the optimal solution of problem (�). DMUT is called efficient if �∗ = 1 

and ��∗ = hZ, �l∗ = hV or else DMUT is inefficient.  

Theorem A.4. The optimal solution of problems (Ø) and (�) are equivalent and the efficiency 

definition in Claim A.2 implies that of Claim A.1.  

Proof. From the complementary slack theorem, it holds that for  (¡∗, ¢∗) of problem (Ø) and (�∗, ��∗, �l∗) of problem (�),  

¡∗��∗ = 0 and ¢∗�l∗ = 0 

Claims 1 and 2 both imply the efficiency with �∗ = 1. We explore alternate possibilities  

a) Suppose �∗ = 1 in Claim 2 and Q�∗ ≠ 0Z, Ql∗ ≠ 0V, (an inefficiency condition by Claim 

2) then by the complementary conditions, the elements of C∗ and L∗ corresponding to 

the positive slacks must be zero which result in inefficiency in Claim 1 

b) If �∗ < 1 in problem (Ø), then DMUT is inefficient by Claim 1 and by the strong duality 

theorem, problems (�) has �∗ < 1 which implies DMUT is inefficient according to 

Claim 2. 

c) If �∗ = 1 and Q�∗ = 0Z, Ql∗ = 0V, then, by the strong theorem of complementarity, 

problem (Ø) is assured of a positive optimal solution (¡∗, ¢∗) and hence DMUT is 

efficient by Claim 1.  

 

Interpretation of Primal – Dual relation in DEA.  

As already noted, duality relationship holds practical implication in DEA. Suppose an input 

orientation, a farm’s objective of minimizing input in the envelopment model is equivalent to 

maximizing output in the multiplier model. Therefore, per the linear duality principle, any of 

these equivalent models can be solved. The two are held in the dual production and value based 

spaces (Thanassoulis, 2001). The production space is characterized with the envelopment model 

since it is directly derived from the PPS which is used as the framework within which 

productive efficiency is measured. In this space, the envelopment model looks for a 

combination of DMUs which may dominate the DMU being evaluated. Here, DMUs 
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corresponding to positive decision variable � at the optimality serve as the reference units to 

other DMUs.  

 The dual multiplier model on the other hand is characterized in the value space since it 

gives a value-based measure of efficiency of DMUs. The multipliers or weights in the model, LN can be seen as an imputed marginal value or shadow price of output P. Similarly, CF can be 

seen as the imputed marginal value or shadow price of output J. Note that the imputed 

marginal values of inputs and outputs are DMU-specific. The efficiency of DMUs corresponds 

to the maximum value of the ratio of the imputed marginal value of outputs levels to imputed 

marginal value of input levels. Ostensibly, the total imputed input value is normalized to 

some arbitrary level, usually 1, i.e.  ∑ CF∗RFT (= 1)ZFWX  as in the case of problem (Ø) so that we 

can see the relative importance of each unit by reference to ∑ CF∗RFTZFWX .  

 

A.2      Numerical construction of basic uncertainty sets 

Consider a typical description of the uncertainty dynamics where the nominal value is (4,2), 

the deviation from the nominal is (5, 3) is given as  

Ã = {(4 + 5 X, 2 + 3 ')|−1 ≤  X,  ' ≤ 1} 
 

 

A.2.1  Construction of the box uncertainty set.  

 

For the box uncertainty set, the box uncertainty is given by ÃF(Φ) = È¿F) +  F)¿ÄF)| ∥ Ê ∥Ë ≤ ΦÍ 

or equivalently ÃF(Φ) = {(¿X +  X¿ÄX, ¿' +  '¿Ä')| max{| X|, | '|}} ≤ Φ}. From the above 

dynamics, box uncertainty set would be given by the following: 

ÃF(Φ) = {(4 + 5 X, 2 + 3 ')|−1 ≤  X,  ' ≤ 1, max{| X|, | '|} ≤ Φ } 

with  

max{| X|, | '|} ≤ Φ → | X| ≤ Φ  &   | '| ≤ Φ → −Φ ≤ ηX ≤ Φ, −Φ ≤ η' ≤ Φ,   
which further implies 

→ −5Φ ≤ 5ηX ≤ 5Φ, −3Φ ≤ 3η' ≤ 3Φ →  −5Φ + 4 ≤ 5ηX + 4 ≤ 5Φ + 4−3Φ + 2 ≤ 3η' + 2 ≤ 3Φ + 2, 
The following properties of the uncertainty set are observed 

i) ÃF(Φ) ⊂ Ã for all  Φ < 1,   

ii) ÃF(1) = Ã,  

iii) if 0 ≤ ΦX < Φ', then  ÃF(ΦX) ⊂ ÃF(Φ'),  

iv) ÃF(0) = (¿X, ¿') 

 

Moreover, for Φ = 0.5 and Φ = 1, we obtain the following plots for the explicit box 

uncertainty sets.  
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Figure A.2.1:  Box uncertainty sets (Left, when Γ = 0.5 and Right when Γ = 1.0) 

 

 

A.2.2    Construction of the ellipsoidal uncertainty set.  

 

Consider the ellipsoidal uncertainty set given by Ã�(Ω) = È¿F) +  F)¿ÄF)| ∥ Ê ∥' ≤ ΩÍ or 

equivalently Ã�(Ω) = {(¿X +  X¿ÄX, ¿' +  '¿Ä')Þ   X' +  ''} ≤ Ω'}. and similarly, for the 

uncertainty dynamics described above, the ellipsoid can be obtained as follows: 

 Ã�(Ω)= {(4 + 5 X, 2 + 3 ')Þ−1 ≤  X,  ' ≤ 1,  X' +  '' ≤ Ω'}= {(LX, L')ÞLX = 4 + 5 X, L' = 2 + 3 ', −1 ≤  X,  ' ≤ 1,  X' +  '' ≤ Ω'}
= "(LX, L')$ X = LX − 45 ,  X = L' − 23  − 1 ≤  X,  ' ≤ 1,  X' +  '' ≤ Ω'&
= /(LX, L')0 ªLX − 45 ¬' + ªL' − 23 ¬' ≤ Ω' 1
= /(LX, L')0 ªLX − 45Ω ¬' + ªL' − 23Ω ¬' ≤ 1 1

 

 

Here, the properties of Ã�(Ω) in relation to Ã is as before. Similarly, for Ω = 0.5 and Ω = 1, the 

following uncertainty sets plots are eminent.  

 

 

¿ÀX 

¿À' 

 

(4,2) 2.5 = 5Φ ¿X1.5 = 3Φ 

¿ÀX 

¿À' 

 

3Φ = 3 

5Φ = 5 (4,2) 
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Figure A.2.2:   Ellipsoidal uncertainty sets (Left, when Γ = 0.5 and Right when Γ = 1.0) 

 

 

A.2.3.    Construction of the polyhedral uncertainty set.  

 

We consider the polyhedral set given by Ã¹(Γ) = È¿F) +  F)¿ÄF)|  ∥ Ê ∥X ≤ ΓÍ or equivalently Ã¹(Γ) = {(¿X +  X¿ÄX, ¿' +  '¿Ä')|  | X| + | '|} ≤ Γ} and for the dynamics of the uncertainty 

described above, we obtain the following: 

 Ã¹(Γ)= {(4 + 5 X, 2 + 3 ')| −1 ≤  X,  ' ≤ 1, | X| + | '| ≤ Γ}= {(LX, L')|LX = 4 + 5 X, L' = 2 + 3 ', −1 ≤  X,  ' ≤ 1, | X| + | '| ≤ Γ}
= "(LX, L')$ X = LX − 45 ,  X = L' − 23 , −1 ≤  X,  ' ≤ 1, | X| + | '| ≤ Γ&
= "(LX, L')$ $LX − 45 $ + $L' − 23 $ ≤ Γ &

 

Again, we envisage similar properties in relation with the set Ã. Now we obtain the following 

plots of polyhedral uncertainty sets for different values of Γ. 

 

            
 
Figure A.2.3:   Polyhedral uncertainty sets (Left, when Γ = 0.5 and Right when Γ = 1.0) 
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 Chapter 3 
 

 

A dataset of European banks in performance evaluation under uncertainty39 

 

 

Summary 

This appendix explains the dataset containing financial indicators from the financial 

statements of 250 banks operating in Europe which were collated for the 2015 accounting year 

for the analysis in Chapter 3. First, the dataset is split into input and outputs measures. Then 

the preferred number of inputs and outputs in relation to the total number of data is selected 

according to the rule of thumb in data envelopment analysis (DEA).  

 

 

 

B.1. Specifications Table 

Subject area Operations research and management science 

More specific subject 

area 

Data envelopment analysis 

Type of data Table, figure 

How data was 

acquired 

Obtainable from financial statements of banks from Bureau van 

Dick – Bankscope database 

Data format Raw, analyzed with descriptive and statistical data 

Experimental factors The sample consists of raw financial data of banks for the 

accounting year 2015.  

Experimental features Indicators of interest were systematically selected and collated.  

Data source location Global data 

Data accessibility Data is within this article. Also, largely accessible from the 

database of the current database host, Orbis Bank Focus: 

https://banks.bvdinfo.com/version-

2018810/home.serv?product=OrbisBanks 

 

 

 

 

 

                                                 
39 This appendix is published as a paper in Data in Brief Journal: https://doi.org/10.1016/j.dib.2018.11.048 
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B.2. Value of the data  

 The raw data contains key financial statements indicators of 250 banks in Europe 

which were taken from the individual bank's financial statement in 2015.  

 The data are arranged in order of the largest bank to the smallest bank in terms of 

assets 

 The data is useful for measuring the performance of banks in Europe and for 

comparative analysis of sub-regional performances and beyond.  

 The data can be used by researchers to evaluate a wide range of efficiency measures 

for the countries under consideration. 

 

 

 

B.3. Data 

The data comprises financial indicators in the financial statements of 250 public and private 

banks operating in Europe. Table B.1. shows the distribution of these banks according to the 

sub-region. Including data on indicators such as assets, employees, personnel expenses, 

equity, loans, net interest income, deposit from banks, operating income and net fees and 

commission, the detailed financial statements of the banks were obtained from the Bureau 

van Dick – Bankscope database for the 2015 accounting year. The summary of descriptive 

statistics of these indicators for each subregion is provided in Table B.2. All the financial 

indicators were measured in millions of Euros with the exception of employees which is 

measured in actual figures. The total number of employees is defined as the number of 

banking professionals and the non-banking staff is given employed in the accounting year.  

Table B.1. Classification according to region 

Region Number of banks Percentage 

Western Europe 129 51.6 

Eastern Europe 22 8.8 

Northern Europe 33 13.2 

Southern Europe 66 26.4 

Total  250 100 

Table B.2. Descriptive statistics for Eastern Europe 

Financial indicators Mean SD Min Max 

Inputs     

Employees  8471.59 7367.41 2952.00 38203.00 

Assets 23006.93 13292.19 10517.04 62604.63 

Equity  2611.49 1672.28 996.40 7097.94 

Personnel Expenses  229.99 155.97 92.15 648.82 
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Outputs     

Deposits Banks  1602.50 1216.85 58.00 4484.65 

Loans  14302.75 8981.52 4132.18 43617.70 

Net Income Revenue  619.62 429.78 230.77 1752.56 

Operating Income  330.48 239.11 82.44 919.25 

Net Fees Commission  239.79 177.35 76.64 676.85 

 

Table B.3. Descriptive statistics for Northern Europe 

Financial indicators Mean SD Min Max 

Inputs     

Employees  21295.39 31900.42 1374.00 129400.00 

Assets 277515.12 382760.47 10231.98 1526980.04 

Equity  16442.98 21190.44 1056.87 89950.27 

Personnel Expenses  1801.82 2941.45 113.09 13570.41 

Outputs     

Deposits Banks  27492.99 41157.08 208.60 168902.51 

Loans  135471.03 163827.56 5097.33 620171.67 

Net Income Revenue  3374.36 4595.32 121.26 18149.74 

Operating Income  2061.49 3509.67 22.89 17641.53 

Net Fees Commission  1197.31 2042.12 29.70 10785.48 

 

 

Table B.4. Descriptive statistics for Southern Europe 

Financial indicators Mean SD Min Max 

Inputs     

Employees  15823.02 33227.16 217.00 193863.00 

Assets 110047.41 224459.34 10267.48 1340260.00 

Equity  8165.56 16031.01 226.30 98753.00 

Personnel Expenses  966.23 1944.74 14.20 11107.00 

Outputs     

Deposits Banks  17311.01 34733.78 81.40 185459.00 

Loans  63093.07 123057.73 768.60 758505.00 

Net Income Revenue  1957.18 4806.37 52.30 33267.00 

Operating Income  1176.55 2271.45 20.29 12628.00 

Net Fees Commission  844.13 1796.64 15.40 10033.00 
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Table B.5. Descriptive statistics for Western Europe 

Financial indicators Mean SD Min Max 

Inputs     

Employees  12144.32 28624.09 586.00 189000.00 

Assets 141635.11 339445.33 10017.70 1994193.00 

Equity  7716.21 16315.15 296.30 100077.00 

Personnel Expenses  961.52 2382.19 64.40 16061.00 

Outputs     

Deposits Banks  20154.79 45321.98 331.23 263121.00 

Loans  58635.75 121719.18 305.60 735784.00 

Net Income Revenue  1585.57 3628.48 69.20 23133.00 

Operating Income  1179.20 3004.06 34.10 19805.00 

Net Fees Commission  725.82 1711.31 6.60 12765.00 

 

 

B.4. Experimental Design, Materials and Methods 

Financial statements of banks were first downloaded from the Bankscope database Orbis Bank 

Focus (2016). Then data on the financial indicators mentioned above were compiled from 250 

banks financial statements individually and collated. These banks are arranged in descending 

order of their assets size.  Subsequently, for the performance analysis of the banks using the 

data envelopment analysis (DEA) tool, the financial indicators are split into two samples. The 

first is the input measures and the second is the output measures.  

The separation of the financial indicators into inputs and outputs measures was done 

based on the selective measures described in Mostafa (2009) and Toloo & Tichý (2015). The 

approach adopted for selecting inputs and outputs is the intermediary approach of banking 

studies, which is shown in  Table B.2. With the exception of deposit and loans refereed mostly 

in literature as dual role factors, it is unarguable the selection of the measures as input and 

inputs. In this appendix, the selection of deposit specifically as output corresponds to its 

treatment in Toloo & Tichý (2015) and Toloo & Mensah (2018). The number of DMUs in 

correspondence to the input and outputs measures is selected according to the rule of thumb 

in DEA as follows (for more details see Toloo et al. (2015) and Toloo & Allahyar (2018):  

- ≥ max{K × Q, 3(K + Q)} 

where - = total number of DMUs (observations) K = number of inputs Q = number of outputs 

All the raw data are scaled for uniformity and to reduce round-off errors from excessively 

large values prior to analysis. 
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 Chapter 5 

 

 
C.1  Fractional robust DEA with ellipsoidal set 

 

Recall that the robust fractional DEA is formulated as 

 max(g#8,#̀8) ∈ Ã8Þ inf  ∑ 467À6896:;∑ <>?À>8@>:; ^
s. t.inf(g#8,#̀8)∈ Ã8Þ  ∑ 467À6896:;∑ <>?À>8@>:; ^ ≤ 1

supbg#A,#̀Ad ∈ÃAÞ  ∑ 467À6A96:;∑ <>?À>A@>:; ^ ≤ 1 ∀0 ≠ 8 
CF ≥ 0 ∀JLN ≥ 0 ∀P

   (C.1.1) 

 

Then considering the uncertainty dynamics and using the ellipsoidal uncertainty set so 

defined; Ã)� = G(¤¥ , ¦¥) §RÀF) = RF) + ∑ 'F)? �F)?F∈³A , Ö�)?Ö' ≤ 1
SÀN) = SN) + ∑ 'N)7 �N)7 ,N∈"A (�)7(' ≤ 1 ; 0 = 1, … , -N, we obtain the 

following formulation: 

 

max ¢∈ℝ9 x∑ LNSNT + VNWX infÖ�8KÖÏ=Xb∑ LN�NT7 'NT7  N∈"8 d
∑ CFRFT  + ZFWX sup‖�8M‖Ï=Xb∑ CF�FT? 'FT?F∈³8 d y

s. t.∑ LNSNT + VNWX infÖ�8KÖÏ=XÈ∑ LN�NT7 'NT7  N∈"8 Í
∑ CFRFT  + ZFWX sup‖�8M‖Ï=XÈ∑ CF�FT? 'FT?F∈³8 Í ≤ 1

∑ LNSN)  + VNWX sup(�AK(Ï=X "∑ LN�N)7 'N)7  N∈"A &
∑ CFRF) + ZFWX inf(�AM(Ï=X "∑ CF�F)?'F)?F∈³A & ≤ 1 ∀0 ≠ 8 

CF ≥ 0 ∀JLN ≥ 0 ∀P

  

 

 

 

(C.1.2) 

which is equivalent to the following model: 
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max (¢,¡)∈ℝ@Û9 G∑ 46768l 96:; ßÅà(�8K(Ïá;b∑ 46�68K â68K  6∈}8 d
∑ <>?>8 l @>:; ãäåÖ�8MÖÏá;b∑ <>�>8M â>8M>∈b8 d N

s. t.ª∑ LNSNT + VNWX infÖ�8KÖÏ=XÈ∑ LN�NT7 'NT7  N∈"8 Í« − ª∑ CFRFT + ZFWX sup‖�8M‖Ï=XÈ∑ CF�FT? 'FT?F∈³8 Í« ≤ 0
∑ LNSN) − ∑ CFRF)  + ZFWX  VNWX sup(�AK(Ï=X sup(�AM(Ï=X "∑ LN�N)7 'N)7 + ∑ CF�F)?'F)?F∈³AN∈"A & ≤ 0 ∀0 ≠ 8 
CF ≥ 0 ∀JLN ≥ 0 ∀P

   

 

 

(C.1.3) 

We suppose the following change of variable in the spirit of Cooper and Charnes (1962). 

Specifically, let ~ = X∑ <>?>8 l @>:; ãäåÖ�8MÖÏá;b∑ <>�>8M â>8M>∈b8 d > 0 and LN = ~LN, CF = ~CF. Model C.1.3 is then 

equivalent to the following model: 

max ¢ ∈ℝ9  ∑ LNSNT + VNWX infÖ�8KÖÏ=Xb∑ LN�NT7 'NT7  N∈"8 d
s. t.∑ CFRFT  + ZFWX sup‖�8M‖Ï=Xb∑ CF�FT? 'FT?F∈³8 d = 1
ª∑ LNSNT +VNWX infÖ�8KÖÏ=XÈ∑ LN�NT7 'NT7  N∈"8 Í« − ª∑ CFRFT + ZFWX sup‖�8M‖Ï=XÈ∑ CF�FT? 'FT?F∈³8 Í« ≤ 0
∑ LNSN) − ∑ CFRF)  + ZFWX  VNWX sup(�AK(Ï=X sup(�AM(Ï=X "∑ LN�N)7 'N)7 + ∑ CF�F)?'F)?F∈³AN∈"A & ≤ 0 ∀0 ≠ 8 
CF ≥ 0 ∀JLN ≥ 0 ∀P

   

 

 

(C.1.4) 

The normalization constraint is always binding at optimality even when the constraint is in 

an inequality form  ≤  as shown in Toloo (2014)a, which implies the model above can be 

written as:  

 max ¢ ∈ℝ9 + infÖ�8KÖÏ=Xb∑ LN�NT7 'NT7  N∈"8 d
s. t.∑ CFRFT  + ZFWX inf‖�8M‖Ï=Xb∑ CF�FT? 'FT?F∈³8 d ≤ 1
ª∑ LNSNT +VNWX infÖ�8KÖÏ=XÈ∑ LN�NT7 'NT7  N∈"8 Í« − ª∑ CFRFT + ZFWX sup‖�8M‖Ï=XÈ∑ CF�FT? 'FT?F∈³8 Í« ≤ 0
∑ LNSN) − ∑ CFRF)  + ZFWX  VNWX sup(�AK(Ï=X sup(�AM(Ï=X "∑ LN�N)7 'N)7 + ∑ CF�F)?'F)?F∈³AN∈"A & ≤ 0 ∀0 ≠ 8 
CF ≥ 0 ∀JLN ≥ 0 ∀P

   

 

 

(C.1.5) 
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C.2 Italian banks used for the analysis 

 

Table C.2. Major banks in Italy used for the analysis 

Banks Bank name 

B01 UniCredit SpA 

B02 Intesa Sanpaolo 

B03 Banca Monte dei Paschi di Siena SpA-Gruppo Monte dei Paschi di Siena 

B04 Banco Popolare - Società Cooperativa-Banco Popolare 

B05 Unione di Banche Italiane Scpa-UBI Banca 

B06 Banca Nazionale del Lavoro SpA 

B07 Banca popolare dell'Emilia Romagna 

B08 Cassa di Risparmio di Parma e Piacenza SpA 

B09 Banca Popolare di Milano SCaRL 

B10 Banca Mediolanum SpA 

B11 Banca Popolare di Vicenza Societa cooperativa per azioni 

B12 Credito Emiliano SpA-CREDEM 

B13 Banca Popolare di Sondrio Societa Cooperativa per Azioni 

B14 Veneto Banca scpa 

B15 Banca Carige SpA 

B16 Banco di Napoli SpA 

B17 Banca Piccolo Credito Valtellinese-Credito Valtellinese Soc Coop 

B18 Deutsche Bank SpA 

B19 Banca Popolare di Bergamo SpA 

B20 Cassa di Risparmio del Veneto SpA 

B21 Banca Popolare di Bari Soc. Coop.P.A 

B22 CheBanca SpA 

B23 Banco di Brescia San Paolo Cab SpA 

B24 Banco di Sardegna SpA 

B25 Cassa di risparmio di Asti SpA 

B26 Banco di Desio e della Brianza SpA-Banco Desio 

B27 Banca di Credito Cooperativo di Roma 

B28 Unipol Banca Spa 

B29 Banca Sella SpA 
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