
1 

 

 

 

 
 

 

 

 

 

Role of RNASET2 in innate immune response 

regulation 

Il ruolo di RNASET2 nella regolazione della risposta 

immunitaria innata 

 
 
 

PhD Thesis of 

 NICOLÒ BARANZINI  

712709 

 
 
 

Supervisor: 

Prof. Annalisa GRIMALDI  

 
 

 

PhD in Biotechnology, Biosciences and Surgical Technology 

XXXII Cycle – Cellular and Molecular biology 

Department of Biotechnology and Life Science (DBSV) 

Academic year: 2018/2019 



2 

 

 

INDEX 
 

ABSTRACT……………………………………………………………………………………………………………………………. 3 

INTRODUCTION .......................................................................................................................... 4 

Ribonucleases ......................................................................................................................... 4 

The RNase T2 family ............................................................................................................... 6 

Transferase-type RNases and host defence ........................................................................... 9 

Innate immunity modulation and tissue regeneration ........................................................ 10 

The leech body anatomy ...................................................................................................... 12 

Molecules and cells and involved in leech immune response ............................................. 14 

Molecules and cells and involved in leech regenerative events .......................................... 16 

AIM ........................................................................................................................................... 20 

CHAPTER 1                                                                                                                                           

Human recombinant RNASET2-induced inflammatory response and connective tissue 

remodelling in the medicinal leech ...................................................................................... 20 

CHAPTER 2                                                                                                                                           

AIF-1 and RNASET2 Play Complementary Roles in the Innate Immune Response of 

Medicinal Leech .................................................................................................................... 46 

CHAPTER 3                                                                                                                                           

Antimicrobial role of RNASET2 protein during innate immune response in the medicinal 

leech Hirudo verbana ........................................................................................................... 85 

CHAPTER 4                                                                                                                                         

Recombinant HvRNASET2 protein induces a marked connective tissue remodelling in the 

invertebrate model Hirudo verbana  .................................................................................. 117 

DISCUSSION ........................................................................................................................... 153 

CONCLUSION .......................................................................................................................... 157 

REFERENCES ........................................................................................................................... 158 

 

 
 



3 

 

ABSTRACT 

In the last decades, numerous studies have highlighted the existence of several proteins that, 

besides performing a specific and evolutionarily conserved function, are involved in the 

regulation of different and independent biological processes, thus acquiring new functional 

roles. Among them, the RNase T2 family enzymes represent one of the most known and 

investigated example. Indeed, T2 RNases are implicated not only in RNA maturation or 

degradation, but also perform additional functions in different organisms, often 

independently of their catalytic activity. Recently, it has been demonstrated that RNASET2, 

the only member of T2 family presents in human genome, regulates the tumorigenicity of 

ovarian cancer cells in vivo, establishing a functional cross-talk between the tumor mass and 

the surrounding microenvironment and stimulating an inflammatory response by inducing 

macrophages migration and activation. Although these evidences, the details on the biological 

mechanisms by which this evolutionarily conserved enzyme interacts with the innate immune 

system and promotes cells migration and extracellular remodeling are still poorly defined. To 

shed light on this aspect, here we propose the medicinal leech Hirudo verbana as a 

consolidated invertebrate model for studying these processes.  

Our in vivo results demonstrate that injection of human recombinant hRNASET2 (or the H. 

verbana recombinant rHvRNASET2) in the leech body wall caused fibroplasia, connective 

tissue remodeling and the recruitment of numerous CD68+/HmAIF1+ macrophages. Moreover, 

LPS, LTA, Gram-negative and Gram-positive infection induces a release of this enzyme from 

granulocytes, reflecting a putative antibacterial role for this protein. Indeed, our in vitro 

results clearly confirm that that the medicinal leech recombinant HvRNASET2 protein 

represents a promising candidate molecule for counteracting bacterial infections. In 

particular, HvRNASET2 apparently plays a dual anti-microbial role: on the one hand, it induces 

bacterial clusters formation, likely to facilitate recognition by innate immune cellular effectors 

and, on the other hand, it stimulates macrophage recruitment and phagocytosis. In 

conclusion, HvRNASET2 acts as an evolutionary conserved activator of the innate immune 

response, favoring an effective and rapid microbial pathogen removal or an effective 

oncosuppressive activity. Further investigations in in vivo experimental models will be crucial 

to evaluate the possible role of HvRNASET2 as a potential agent to counteract microbial 

infection.  
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INTRODUCTION 

Ribonucleases  

The concept of pleiotropy was coined about one hundred years ago to define a condition in 

which a single gene affects the expression of different and seemingly unrelated phenotypic 

traits. Although this definition has originally been strictly applied to the research field of 

genetics, over the time it has been adopted and extended to other biological fields.  

In fact, investigations on the cellular mechanisms underlying many biological processes 

revealed the existence of complex interactions, both intracellular and extracellular, in which 

a single molecule could generate a wide range of biological responses simply based on its 

biochemical structure. In the wake of these discoveries, it is currently common to define a 

protein or any type of molecule as pleiotropic when, in addition to its own defined and proper 

role, it shows the ability to perform independent biological roles.  

The field of immunology has provided several examples on this topic, as many cytokines are 

today known to exert widely pleiotropic roles not only by activating different cellular 

pathways, but also by triggering multiple responses following their interaction with a 

particular receptor, based on the specific cellular and molecular context in which they act 

(Katsutoshi and Warren 2002) . 

Within this frame, some enzymes also exhibit the ability to perform multifunctional roles 

and, among them, Ribonucleases (also called RNases) represented one of the most known and 

studied group. Their discovery dates back to 1938, when the first RNase has been isolated and 

purified from the bovine pancreas (Kunitz 1940), becoming an important model to investigate 

protein chemistry and leading the way that allowed the characterization of numerous other 

ribonucleases in other organisms, displaying a molecular weight that can vary between 26 to 

188 kDa (Wlodawer et al. 1982; Beintema and Kleineidam 1998; Dyer and Rosenberg 2006). 

In all cases, a common nuclease activity has been observed, which proved necessary for the 

regulation of RNA metabolism, often with a preference for single-stranded RNA, double-

stranded RNA or DNA/RNA hybrids (Libonati and Sorrentino 1992; Beintema and Kleineidam 

1998; Irie 1999). Due to the huge heterogeneity presented by these enzymes, their 

classification has been much debated and initially they were divided in relation to their 

mechanisms of action (Barnard 1969). However, it was soon realized that early RNases 
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classifications efforts were oversimplified and more complex criteria were proposed based on 

different parameters. Indeed, although all RNases show a biochemically conserved catalytic 

role, they can be nevertheless split into several different families and classes, based on either 

their specificity for a particular base related to catabolism of RNA, the levels of pH at which 

they act, their cellular localization and their catalytic mechanism (D’Alessio and Riordan 

1997).  

In this context, a growing interest has been recently focused on an interesting group of 

ribonucleases, defined “transferase-type” for their mechanism of catalysis. These enzymes 

perform their ribonucleolytic role by hydrolyzing a single-stranded RNA through the transient 

creation of a 2’-3’-cyclic phosphate intermediate (trans-phosphorylation reaction) at the level 

of the 3’-end of RNA molecule, followed by the production of mononucleotides with a terminal 

3’-phosphate (hydrolysis reaction) (Ward et al. 1969; Wladkowski et al. 1995; Irie et al. 1997; 

MacIntosh et al. 2001). Interestingly, it has been observed that, although the reaction was 

unique, it belonged to RNases endowed with a wide range of biological features (D’Alessio 

1993; Irie 1999; Deshpande and Shankar 2002). For this reason, transferase-type RNases were 

further split into three large families. The RNases A family is composed by enzymes with a 

molecular mass ranging from 13 to 20 kDa that act preferentially in an alkaline environment 

to carry out RNA catalysis via pyrimidine-specific recognition. Of note, RNases A genes are 

present in vertebrates only and no evidences of these proteins were obtained from the 

analyses of genomes from deuterostomian organisms, such as Ciona intestinalis, or from 

lower invertebrates (Pizzo and D’Alessio 2007).  

On the other hand, the alkaline T1 RNases family, with a molecular mass of about 12 kDa, was 

purified only in fungi and bacteria (Sato and Egami 1957) and shows a preference for guanylic 

acid residues.  

The last important set is represented by the RNases T2 family, which differs from the 

previously described families in several aspects: the optimal pH range for the activity of these 

enzymes is between 4.0 and 5.0, they show little substrate cutting specificity at the base level 

and, most interesting, they are widely distributed throughout taxa, being found from viruses 

to eukaryotes, including vertebrates.  

Moreover, unlike RNase A and RNase T1 family members, T2 RNases enzymes show a higher 

molecular masses,(Horiuchi et al. 1988; Kurihara et al. 1992; D’Alessio and Riordan 1997; Irie 
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1997; Deshpande and Shankar 2002) and are frequently endowed with highly pleiotropic 

roles, by performing different biological functions in the organisms.  

For this reason, during the last thirty years, several research groups in the world focused 

their studies on the identification of the biological roles related to this particular family of 

enzymes. 

Figure 1. Schematic representation of the proposed overall phosphate ester hydrolysis mechanism catalyzed by RNase A. 

Reprinted (adapted) with permission from (Wladkowski et al., 1995). Copyright (1995) American Chemical Society. 

 

The RNase T2 family  

RNase T2 glycoproteins have been purified and isolated for the first time from an enzyme 

extract from the fungus Aspergillus oryziae (Sato and Egami 1957). Further studies defined 

the precise amino acid sequences of the T2 RNases extracted from A. oryziae and Rhizopus 

niveus (Kawata et al. 1988; Horiuchi et al. 1988). These results resulted crucial for 

understanding the biochemical mechanisms of action of these enzymes. In fact, two highly 

conserved active sites for catalysis (dubbed CAS I and CAS II), characterized by the presence 

of two specific histidine residues involved in RNA cleavage, were subsequently identified, 

(Kawata et al. 1990). Further investigations focused on the three-dimensional structure of T2 

RNases and revealed a conserved α+β-type organization consisting in six α-helices and seven 

β-strands (Kobayashi et al. 1992; De and Funatsu 1992; Inokuchi et al. 1993). Interestingly, 

CAS I and CAS II domains are localized in the central β-strand and in the relative parallel α-

helix, respectively (Kurihara et al. 1992). 
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A turning point in the studies of T2 RNases was attributed to McClure and colleagues, 

who demonstrated a high homology between the A. oryziae T2 RNase and T2 glycoprotein in 

plants (McClure et al. 1989). These investigations not only confirmed the presence and the 

conservation of the same CAS I and CAS II active sites also in plant T2 RNAse, but also identified 

a new function related to this class of enzymes in plants. Further studies demonstrated that, 

whereas the biochemical and structural characteristics have been preserved in a wide variety 

of T2 enzymes deriving from different organisms, some of them gained in addition alternative 

and unexpected biological roles, showing a pleiotropic nature (Deshpande and Shankar 2002). 

The discovering of new additional characteristics and biological features of these 

enzymes further fuelled a great interest in the scientific community, mostly because the 

different functions were often associated with a particular subcellular localization.  

Indeed, besides their canonical localization in the cytosol and nucleus, T2 RNases can be found 

into cytoplasmic vacuoles, lysosomes or, in many cases, they are secreted in the extracellular 

environment (Morikawa 1967; Wiener and Ashworth 1970; Nakamura et al. 1989), a tissue 

compartment in which RNA molecules were not usually found (MacIntosh 2011). For example, 

the T2 RNases from Saccharomyces cerevisiae (Rny1), was found to be released from the 

vacuole to the cytosol during oxidative stress in order to degrade tRNAs, independently from 

its catalytic activity (Luhtala and Parker 2010). This suggest the occurrence of a direct link 

between particular or specific roles of these proteins and their cellular localization, where the 

lost of the enzyme’s catalytic activity is apparently associated with an atypical novel 

specialized biological role.  

In this context, several studies carried out in the last decades have unveiled an impressive 

range of biological roles for T2 RNases both in both plants and animals, such as the regulation 

of self-pollination (McClure et al. 1989; Huang et al. 1994), a nutritional role in phosphate 

scavenging (Nürnberger et al. 1990; Löffler et al. 1992) and in nitrogen preservation (Van 

Damme et al. 2000), the ability to counteract harmful agents (Irie 1999), the control of cell 

senescence (Acquati et al. 2001), the recruitment of reactive oxygen species during stressful 

condition (Caputa et al. 2016), the control of the apoptotic process (Wang et al. 2014) or the 

triggering of cytotoxic events (Huang et al. 1994).  

A single member of T2 RNase family, the RNASET2 gene, was also found in human genome, 

encoding a protein with three different isoforms with a molecular weight of about 36, 31 and 

27 kDa respectively, deriving from post-translational modifications. The 36 kDa isoform 
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represents the extracellular, secreted form, with a protein length of 256 amino acids, while 

the two smaller isoforms are localized in the cytoplasm (Campomenosi et al. 2006).  

The role of human RNASET2 as an oncosuppressor gene in different type of cancers has been 

well investigated and a marked anti-cancer action was recognized in ovarian carcinoma 

(Acquati et al. 2001, 2005; Lualdi et al. 2015), malignant melanoma (Monti et al. 2008), 

lymphoid neoplasm (Steinemann et al. 2003) and malignant glioma (Kim et al. 2006). 

Moreover, human RNASET2 has also been recently involved in other human pathologies, such 

as cystic leukoencephalopathy, vitiligo and possibly several autoimmune disorders (Henneke 

et al. 2009; Wang et al. 2015). Interestingly, in vivo studies carried out on human ovarian 

tumorigenic models revealed how, during tumor growth, cancer-cells-derived extracellular 

RNASET2 establishes a continuous cross-talk with the surrounding tumor microenvironment, 

by recruiting immunocompetent cells to the tumor area. In particular, M1-polarized 

macrophages were clearly detected in RNASET2-ovexpressing tumors, infiltrated among 

cancer cells, suggesting that macrophages recruitment was fundamental in RNASET2-

mediated tumor suppression (Acquati et al. 2011).  

Coupled to more recent data reporting RNASET2 as a stress response gene (Wang et al. 2014; 

Lualdi et al. 2015; Caputa et el. 2016) these data apparently place RNASET2 in the growing 

family of “alarmins”, molecules passively released by necrotic cells or actively secreted by 

epithelial or immune cells in order to signal to the innate immune system the occurrence of 

dangerous events, such as a growing tumor mass or a bacterial infection (Oppenheim and 

Yang 2005; Coffelt and Scandurro 2008). 

 

 

 

 

 

 

 

 

 

 

Figure 2. Crystal structure of the human RNASET2 protein (PDB code: 3t0o). In light blue and blue are represented the 

active sites CAS I and CAS II respectively.   
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Transferase-type RNases and host defence 

In the last decades, a great attention has been focused on the antibacterial role of members 

of the RNase A superfamily in vertebrates and of T2 RNases in plants, in which the ability to 

counteract pathogens is displayed in different ways.  

Indeed, several RNase A family members display a powerful antimicrobial activity and 

represent essential effectors involved in promoting host defenses. Among them, human 

RNase 3, also called eosinophil cationic protein (ECP), is a cationic arginine-rich protein 

released by white blood immune cells (Ackerman et al. 1983; Boix et al. 2001) displaying 

antiparasitic properties, evaluated and confirmed in vitro (Lehrer et al. 1989; Hamann et al. 

1990). Of note, the canonical ribonucleases activity of this molecule has been lost and but it 

is not essential for the role played by this protein in the inflammatory processes mediated by 

eosinophils. In particular, ECP is released from the inner secondary cytoplasmatic granules to 

the extracellular environment during the activation of eosinophils and it makes the external 

membranes of infecting bacteria more permeable and susceptible of disruption (Carreras et 

al. 2003; Torrent et al. 2007, 2008). The direct effect of ECP on different bacterial species 

(Torrent et al. 2010) is due to its high affinity for lipopolysaccharides (LPS), the outer 

component of Gram-negative bacterial cell wall (Pulido et al. 2012, 2016). In addition, it has 

been observed that the N-terminal region of ECP triggers the agglutination and the 

aggregation of the microorganisms, thus promoting a systematic elimination by immune cells 

(Pulido et al. 2012).  

Other human class A ribonucleases, such as RNase 2 and RNase 7, act as alarmins. As 

such, alarmins are known to promote inflammatory responses, often via Toll-like receptors 

family members (TLRs) (Harder and Schroder 2002; Yang et al. 2008). Among TLRs, TLR2 and 

TLR4 represent the most significant group of PRRs (Pattern Recognition Receptors), proteins 

expressed on the immune cell membranes which are evolutionary conserved in both 

vertebrate and invertebrate species (Coscia et al. 2011; Molteni et al. 2016). These receptors 

mediate the recognition of conserved bacterial biomolecules known as Pathogen-Associated 

Molecular Patterns (PAMPs), such as lipoteichoic acid (LTA) and lipopolysaccharide (LPS), 

which are normally displayed in the external membranes of Gram-positive and Gram-negative 

bacteria, respectively. Noteworthy, RNase 2 acts as an alarmin in order to activate the Toll-

like receptor 2 (TLR2) in dendritic cells and to improve immune response mediated by T2 
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helper lymphocytes (Yang et al. 2008). Similarly, RNase 7 promotes inflammatory response 

mediated by TLR2 and TLR4 receptors after its activation due to different released 

inflammatory stimuli such as interferon-gamma (INF-γ), tumor necrosis factor-alpha (TNF-α) 

or interleukin-1beta (IL-1β) during bacterial infection (Harder and Schroder 2002). Moreover, 

it possesses also a high affinity to peptidoglycans (PNG) presented in bacterial cell-wall that 

promotes its antimicrobial activity (Torrent et al. 2010). Besides the most known human 

RNase 2 and RNase 3, defensive functions have been also identified for the cationic RNase A-

2, presents in the leukocytes of the chicken Gallus gallus (Nitto et al. 2006) and for three 

RNase A enzymes in the zebrafish model Danio rerio (Cho and Zhang 2007). Furthermore, in 

the amphibian Rana pipiens, another RNase A member, known as Onconase, was shown to 

display an active role in immune response and tumor suppression. In fact, in bullfrogs this 

protein is normally involved in the oocytes defense even in the earlier embryonic stages, 

acting against possible external harmful invaders.  

Strikingly, the antimicrobial role of some vertebrate RNase A proteins is very similar to 

that of T2 RNases of plants. For example, RNase MC1 in Momordica charantia (Ide et al. 1991) 

and the RNase LC1 and LC2 in Luffa cylindrica (Irie 1999) protect germinal seeds from different 

harmful agents and the RNase NE from tobacco, a S-like RNase, inhibits the growth of specific 

fungal hyphae (Hugot et al. 2002).  

Of note, other S-like T2 RNase genes are activated during damages and mechanical wounds 

related to insect feeding, including RNS1 (discovered in the plant model Arabidopsis thaliana) 

or RNase NW and RNase Nk1, found in tobacco or other T2 enzymes proper of soybean and 

rice (Ye and Droste 1996; Kariu et al. 1998; MacIntosh et al. 2010). 

All these evidences suggest that, besides the physiological RNA metabolism role, new 

and different biological activities have been acquired by T2 RNases in the evolutionary scale 

for each organism and, among them, a crucial role in immune modulation (Acquati et al. 2011, 

2013) and likely in tissue regeneration has emerged.  

Innate immunity modulation and tissue regeneration 

The innate immune response serves not only to eliminate infections following injury but also 

to maintain homeostasis, functional integrity, and modulate the healing process (Martin 1997; 

Saltzman 1999; Frantz et al. 2005). Among the cellular effectors of innate immunity, recent 

data suggest that macrophages play a predominant role in the clearance of cellular debris, in 
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the synthesis of growth factors and cytokines and in promoting extracellular matrix (ECM) 

remodeling and tissue regeneration. Recently, different studies have highlighted the existence 

of two subtypes of macrophages, known as M1 and M2 respectively, which show different 

morphological and functional hallmarks that are specific in relation to the surrounding 

immunological microenviroment. In particular, the M1 macrophages present a pro-

inflammatory phenotype, being activated by INF-γ, microbial stimuli or cytokines, such as TNF-

α and GM-CSF, and producing pro-inflammatory effectors molecules. However, during the 

control and the retrieval of the correct tissues homeostasis after injuries, the dynamic 

transition to the M2 phenotype result extremely important. In fact, the anti-inflammatory M2 

macropaghes predominate during the repair and regenration phases of damaged tissues and 

organs in order to reduce an inflammatory condition, which is harmful if it persists over time 

(Sciorati et al. 2016).    

 Thus, the successful and correct regeneration of tissues requires the specific coordination of 

several processes, which include a rapid immune response stimulated by cytokines produced 

by inflammatory cells (Eming et al. 2009; Aurora and Olson 2014).  

In this context, TLRs play a key role not only in host defence by regulating both innate 

and adaptive immune responses (Takeda and Akira 2005; Huang et al. 2008), but are also 

involved in the different phases of wound healing, promoting regenerative responses. Indeed, 

their activation causes the recruitment of inflammatory cells and improves the fibrogenic 

response of fibroblasts in order to modify tissue lesions (Serra et al. 2017). Interestingly, 

recent studies revealed that macrophages and other immune cells, by activating TLR4 and 

TLR2 pathways, play a critical role in tissue regeneration as well (Wynn and Barron 2010; Oishi 

and Manabe 2016). They produce a variety of factors that stimulate the proliferation, 

differentiation and activation of fibroblasts, epithelial cells, endothelial cells, stem cells and 

progenitor cells that promote tissue repair (Wynn and Vannella 2016).  

Although it is clear that T2 RNases, TLR4 and TLR2 play a crucial role in activating and/or 

in recruiting innate immune cells in relation to the inflammatory response, the relationship 

between these molecules in orchestrating immune response, wound healing and tissue 

regeneration has been poorly investigated. Therefore, innovative studies are necessary to 

provide new information on how these molecules are connected to each other and how they 

possibly cooperate in the regulation and modulation of these intimately connected processes.  
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It is well known that the use of animal models is crucial in wound healing and immune 

response researches, as they provide a means of studying the complex cellular and molecular 

interactions occurring in living tissues. In the last decades, several studies related to the 

administration of new drugs or molecules were essentially based on the use of vertebrates, 

which allowed assessing their effects both at the whole body and at the cellular level. 

However, ethical and economic conditions are actually leading to a consistent reduction of 

their use, with the aim of identifying alternative testing methods. As a result, the choice fell 

back on invertebrates and non-mammalian species, which are becoming more and more 

appreciated as alternative experimental models, mainly due to the underlying consistent 

biological analogies between all these species.  

In this regard, invertebrates have found considerable space in medicine and in biology, taking 

place in the preliminary tests associated to administration of drugs related to human and 

animal diseases and in many other fields of research, including immunity, development, tissue 

remodeling, memory, learning, behavior, neurotoxicology and aging (Wilson-Sanders 2011). 

Among these, the medicinal leech is a powerful model system for acquiring a new vision 

of the basic mechanisms of both innate immune response and regenerative processes, which 

are surprisingly similar to those of vertebrates. Moreover, the use of medicinal leech avoids 

ethical problems and is more cost-effective when compared to vertebrate models.  

In addition, any biological response evoked in leeches by a wide range of different stimuli is 

easily interpretable due to its simple anatomy and can be detected within a short period of 

time (30 min–24 h). These features permit to analyze different morphological and molecular 

processes related to the various treatments (Grimaldi 2016; Grimaldi et al. 2018).  

In order to better understand the molecules regulating the leech immune response and 

regenerative events, we first provide a short description of the animal model anatomy, of the 

cells and of the mechanisms involved in the related processes. 

The leech body anatomy 

The medicinal leech has a parenchymatous body with a reduced coelom, characterized by a 

relatively simple anatomy. The external surface is covered by a resistant cuticle, which is 

produced by the underling epithelial cells. This essential barrier not only protects the entire 

body wall from any potentially harmful agent, but also it prevents it from drying. Moreover, it 

also takes part in respiration, osmoregulation and excretion processes. Underneath the cuticle 
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and epithelium, there are three layers of helical muscle fibers (Rohlich 1962; Forrester and 

Sawyer 1974). In each layer, muscles are grouped in small bundles separated by scant 

extracellular matrix. Such tissue organization is known as musculocutaneous sac and it results 

separated from the inner digestive apparatus by a thick layer of loose connective tissue. In 

addition, in this collagenous matrix, gonads, nervous system and a reduced circulatory system 

are present, besides two characteristic tissues proper of leeches: the botryoidal and 

vasofibrous tissues, which are differently involved. The botryoidal tissue gives rise to new 

vessels and immunocompetent cells, specifically the leucocytes deriving from the myeloid 

lineage (Grimaldi 2016; Grimaldi et al. 2018). In fact, it possesses a myelo/erythroid and 

storage function (Grimaldi et al. 2006), besides playing a crucial role in vasculogenesis, 

angiogenesis (de Eguileor et al. 2001a, b). Of note, it is formed by two types of cells: botryoidal 

and endothelial cells. The former of the first is large, round or oval shaped with a cytoplasm 

containing numerous granules of different sizes. On the other hand, endothelial cells are small 

and flattened, with less granules in the cytoplasm. These two types of cells are linked by 

desmosome-like junctions and separated from the connective tissue by a basal lamina. After 

injuring, cytokine injection or bacterial challenging, the beginning of vasculogenesis is 

characterized by a remodelling of the botryoidal tissue. In fact, the cells change their shape, 

and from a solid cord a tubular pre-vascular structure is obtained. At the same time, 

hematopoietic stem precursor cells (HSPCs) become evident in the centre of the immature 

vessel lumen. The numerous circulating HSPCs are conveyed into the lesioned/stimulated area 

via new vessels and, after crawling between adjacent endothelial cells, they leave the 

bloodstream and disperse in the surrounding connective tissue where differentiate in mature 

leukocytes (i.e. macrophage-like, NK-like and granulocyte-like cells) that mediate the 

inflammatory response (Grimaldi et al. 2006; Grimaldi 2016). 

Indeed, the vasofibrous tissue is involved in both tissues repair (Huguet and Molinas 1994, 

1996; Grimaldi 2016) and immune response. It is constituted by the association of two 

different cell types: the vasocentral and the vasofibrous cells. The vasocentral cells show a few 

large granules inside the cytoplasm and they are normally surrounded by the vasofibrous cells, 

which instead are characterized by containing numerous small highly electron-dense granules. 

After an injury, numerous vasofibrous tissue cells migrate towards the lesioned area, crossing 

the muscle layers. At the lesion site, the vasocentral cells detach from the vasofibrous cells, 

differentiate into myofibroblasts (Grimaldi et al. 2011) and form the pseudoblastema (LeGore 
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and Sparks 1971; Huguet and Molinas 1994, 1996), whose retraction allows the wound 

closure. On the other hand, the vasofibrous cells give rise to granulocytes, involved in innate 

immune response (Huguet and Molinas 1994, 1996; Grimaldi et al. 2011). 

 

 

 

 

 

 

 

 

 

Figure 3. Drawing of the cross-sectioned body wall of medicinal leech. External cuticle and epithelium recover the muscular 

layers characterized by the presence of circular (c), oblique (o), longitudinal (l) and dorsoventral (d) fibres. 

Under the musculocutaneous sac, the botryoidal (b) and the vasofibrous (vf) tissues are located within a scant connective 

tissue localized between the musculocutaneous sac and the inner gut (g).  

Reprinted (adapted) with permission from (Tettamanti et al., 2003). Copyright (2003) Elsevier Science Ltd. 
 

Molecules and cells and involved in leech immune response  

In the medicinal leech, the immune response relies exclusively on innate immunity and the 

various processes related to hematopoiesis, neovascularization, inflammation are regulated 

by the same key molecules present in vertebrates, such as cytokines and growth factors. These 

molecules are produced by immune cells both in vertebrates (Bacon et al. 2002) and 

invertebrates (Ottaviani et al. 2004; Tettamanti et al. 2006) and they induce the production 

of other cytokines, chemokines and growth factors. Their functional conservation in leech has 

been widely demonstrated by previous investigations, in which the directly injection in the 

leech body wall of human cytokines and growth factors promoted hematopoiesis, vascular 

growth, immune cells migration and differentiation. Indeed, in stimulated leeches (wounded 

or injected with LPS or growth factors), the expression of VEGF (Vascular Endothelial Growth 

Factor), EGF (Epidermal Growth Factor), bFGF (basic Fibroblast Growth Factor), GM-CSF 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/connective-tissues
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/connective-tissues
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(Granulocyte Macrophage-Colony Stimulating Factor) and AIF-1 (Allograft Inflammatory 

Factor 1) regulates the formation of new vessels and the recruitment of immune cells 

(Grimaldi et al. 2006; Tettamanti et al. 2006; Schikorski et al. 2008; Schorn et al. 2015a, b). 

These myeloid-derived cells, have been widely characterized, both morphologically and by the 

expression pattern on their membranes of specific cluster of differentiation (CD) (de Eguileor 

et al. 2000a, b; Grimaldi et al. 2004; Macagno et al. 2010; Schorn et al. 2015a, b). CD56 and 

CD57 positive NK-like migrating cells present a low ratio nucleus/cytoplasm, numerous 

lysosomal granules involved in exocytosis of toxic substances, abundant mitochondria and a 

developed endoplasmic reticulum. Macrophages, which derive from circulating monocytes, 

express CD61, CD68, CD14, AIF-1 and possess a high nucleus/cytoplasm ratio. Their cytoplasm 

contains numerous phagolysosomes, and the cell surface is irregular and characterized by the 

presence of pseudopodia, which are involved in phagocytosis and are useful during migration 

in the connective tissue. Two types of granulocytes (type I and type II) have also been founded, 

their differences being essentially based on the size and the shape of their cytoplasmic 

granules. Moreover, they express different markers and show diverse behavior during the 

innate immune response depending on the “non-self” characteristics. Type I granulocytes are 

CD11b+ cells originating from the vasofibrous tissue and presenting small and round granules. 

In response to bacteria, such as Escherichia coli, the content of these granules is extruded 

from the cells (de Eguileor et al. 2000b, a; Grimaldi et al. 2011), suggesting that some 

antimicrobial peptides could be present inside them, as observed for those of oligochaete 

granulocytes (Valembois et al. 1986; Dales and Kalaç 1992). By contrast, type II granulocytes 

are positive for CD11c and derive from the botryoidal tissue. They are the first cells involved 

in the survey of large biotic agents, in terms of dimensions, such as a protozoan or a parasite 

nematode. The content of their large and irregular granules creates a melanin capsule for 

isolating the parasite from the host tissues (de Eguileor et al. 1999a, 2000a).  

Following the introduction of foreign agents (bacteria, yeasts, spheres) or after injuries 

and transplantations, leech immune cells migrate towards the stimulated area through the 

loose connective tissue surrounding the muscle fibers and perform various and well-

orchestrated functions depending on the recognized antigens (PAMPs or DAMPs). As in 

vertebrates, both PAMPs and DAMPs detection in leech implicate the specific sensing receptor 

TLRs. In particular, the TLR4-like molecule expressed by macrophages and granulocytes of 

leeches specifically recognizes LPS and its triggering induces intracellular signaling events 
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involving the cytoplasmic adaptor molecule myeloid differentiation factor 88 (MyD88) and 

leading to the production of the proinflammatory cytokines such as TNF-α-like (Girardello et 

al. 2019). 

Molecules and cells and involved in leech regenerative events  

In the medicinal leech, as in vertebrates, the ECM is a “reservoir” for signalling molecules 

modulating different processes such as angiogenesis, inflammation, cell proliferation and 

migration (Tettamanti et al. 2005; Grimaldi et al. 2011). Moreover, the ECM acts as a 

“scaffold” during tissue development and repair, providing structural support and attachment 

sites for cell surface receptors (de Eguileor et al. 1999a). Indeed, following a. lesion or a 

bacterial infection, several factors such as EGF (epithelial growth factor), bFGF (basic 

Fibroblast Growth Factor), Cathepsin B are by produced by fibroblasts and immune cells and 

regulate the reorganization of the connective tissue (Grimaldi et al. 2004). All these molecules 

promote new collagen production by fibroblasts, which are the main effectors of such 

remodelling (Grimaldi et al. 2004; Tettamanti et al. 2005). These cells, once activated, begin 

to proliferate and are characterized by projections of cytoplasmic laminae stretching towards 

the extracellular space (Tettamanti et al. 2004). These cytoplasmic folding form a 

microenvironment in which fibrillogenesis occurs and these projection are involved in the 

spatial organization of the collagen bundles and in the control of the orientation of the 

collagen fibrils in the ECM (Tettamanti et al. 2005). The resulting scaffold is then used for 

immune cells migration and for the growth of new vessels (de Eguileor et al. 2004; Tettamanti 

et al. 2004). 

Since several data in literature suggest that the highly conserved T2 RNases are activated 

during host defense against different type of pathogens or after damages and mechanical 

wounds, we hypothesize that this RNase could be involved in a complex stress-response 

process triggered by a wide range of stimuli (such as bacterial infection) and involving tissue 

regeneration and the establishment of a functional cross-talk between the inflammatory 

response and the process of wound healing. However, the mechanisms by which these two 

processes are intimately connected and regulated by these enzymes are still far from being 

fully elucidated.  
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AIM 

The aim of this project is to make a significant contribution to the current knowledge status 

concerning the ability of T2 RNases in orchestrating a functional cross-talk between the innate 

immune system and tissue regeneration, using as animal model the medicinal leech Hirudo 

verbana, an emerging experimental model which is cost-effective, easily manipulable and 

devoid of significant ethical considerations in relation to its use and regulatory restrictions.  

Starting from these premises, my thesis project is divided according to the following schedule:   

• Evaluating the effects of the human recombinant RNASET2 in the medicinal leech 

Detailed morphological and immunohistochemical analyses are carried out after the human 

recombinant protein hRNASET2 injection in the leech body wall, in order to investigate the 

effects of this enzyme on the leech tissues and its direct involvement immune response 

regulation.  

 

• In vitro matrigel assays:  characterization of the cell types infiltrating rhRNASET2-

supplemented Matrigel (MG) 

To confirm the ability of hRNASET2 to induce macrophages migration in vivo, recombinant 

hRNASET2 protein is added to MG biopolymer held at a liquid state and the mixture will be 

subsequently inoculated in leeches. Vehicle-treated MG are used as a negative control. To 

characterize the cell types, infiltrating the polymerized biopolymer, the MG solid pellets 

formed following inoculation is explanted after 1 week and process for standard 

morphological and immunofluorescence analyses using the specific macrophage markers. 

 

• Evaluation of the endogenous leech RNASET2 expression after LPS treatment   

To investigate the role of the endogenous RNASET2 enzyme in innate immune response, the 

leech T2 RNase expression level is investigated upon stimulation in LPS challenged leeches.  

The immunophenotype of cells involved in the inflammatory response and expressing the 

leech RNASET2 are evaluated by immunofluorescence and western blot assays. In particular, 

double-immunolocalization of RNASET2 and of macrophage markers HmAIF-1 and CD68 will 

be carried out. 
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• Investigation of the RNASET2 and AIF-1 immunomodulator role after LPS treatment  

The temporal expression profiles of RNASET2 and AIF-1 are evaluated after LPS challenge 

performing morphological, immunofluorescence and western blot assays. Cell count based 

on double immunofluorescent analyses reveal that two different cells types are activated 

during the different phases of innate immune response. To better understand if these cells 

are involved in RNASET2 production, immunogold assays are performed. Moreover, to 

observe the direct role of RNASET2 against bacteria, in vitro and in vivo analyses are carried 

out using P. aeruginosa expressing GFP bacterial strain. 

 

• Cloning and characterization of the RNASET2 gene and protein from H. verbana 

   The coding sequence of RNASET2 from H. verbana is isolated as a cDNA recombinant clone 

by means of degenerate oligonucleotide primed RT-PCR. Interrogation of the leech genomic 

database is also evaluated as a potential source of DNA sequence information. Subsequently, 

a recombinant protein (rHvRNASET2) is produced in the yeast Pichia pastoris expression 

system. 

 

• Evaluation of the rHvRNASET2 antibacterial role  

   For this purpose, leeches are treated with lipoteichoic acid (LTA) at different time points. 

Morphological analyses are performed to observe the ability of LTA to induce an 

inflammatory response. Subsequently, the expression of HvRNASET2 is assessed by 

immunofluorescence and western blot assays. Moreover, the expression level of the cell 

markers CD11b and AIF-1, of the TLR2 receptor and of the pro-inflammatory cytokine TNF-α 

are evaluated by immunofluorescence and western blot.  

  Finally, the antibacterial of the cloned recombinant HvRNASET2 enzyme is investigated with 

in vitro and in vivo assays. The direct effect on the Gram+ bacteria S. aureus is evaluated by 

optical, TEM and SEM images and after its direct injection in the leech body wall.   

 

• Connective tissue remodeling induced by HvRNASET2 

  Morphological analysis, Masson Trichrome and Sirius Red colorimetric assays are conducted 

to better understand the direct role of HvRNASET2 in regulating connective tissue 

remodeling after the rHvRNASET2 injection in leech. The expression of the bFGF-receptor, 
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involved in fibroblast activation, and of the collagen 1, which is produce during tissue 

remodeling are investigated by immunofluorescent analysis. To confirm the evidence that 

HvRNASET2 induce extracellular matrix remodeling, the leech recombinant enzyme is also 

tested in vivo on human MRC-5 fibroblast cell culture.   

 

Expected outcome 

The data obtained in this project will provide new experimental data in support of a role for 

RNASET2 as a key component of the natural immune system not only in vertebrates, but also 

in invertebrates. These data would confirm a pleiotropic role for HvRNASET2 in orchestrating 

an evolutionarily conserved strong innate immune response upon inflammatory stimuli, based 

on macrophage recruitment and activation, extracellular remodeling and antibacterial 

activity. Moreover, the consolidated biopolymer in vivo cell sorting method, which allows the 

isolation of specific cell populations in relation to the cytokines utilized and the possibility to 

subsequently culture these cell types, will provide an invaluable tool for studying HvRNASET2 

activity. 
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ABSTRACT In recent years, several studies have demonstrated that the RNASET2 gene is involved in 

the control of tumorigenicity in ovarian cancer cells. Furthermore, a role in establishing a functional 

cross-talk between cancer cells and the surrounding tumor microenvironment has been unveiled for 

this gene, based on its ability to act as an inducer of the innate immune response. Although several 

studies have reported on the molecular features of RNASET2, the details on the mechanisms by which 

this evolutionarily conserved ribonuclease regulates the immune system are still poorly defined. In the 

effort to clarify this aspect, we report here the effect of recombinant human RNASET2 injection and its 

role in regulating the innate immune response after bacterial challenge in an invertebrate model, the 

medicinal leech. We found that recombinant RNASET2 injection induces fibroplasias, connective tissue 

remodeling and the recruitment of numerous infiltrating cells expressing the specific macrophage 

markers CD68 and HmAIF-1. The RNASET2-mediated chemotactic activity for macrophages has been 

further confirmed by using a consolidated experimental approach based on injection of the Matrigel 

biomatrice (MG) supplemented with recombinant RNASET2 in the leech body wall. One week after 

injection, a large number of CD68+ and HmAIF-1+ macrophages massively infiltrated MG sponges. 

Finally, in leeches challenged with lipopolysaccharides (LPS) or with the environmental bacteria 

pathogen Micrococcus nishinomiyaensis, numerous macrophages migrating to the site of inoculation 

expressed high levels of endogenous RNASET2. Taken together, these results suggest that RNASET2 is 

likely involved in the initial phase of the inflammatory response in leeches. 

 

Keywords T2 RNases . Hirudo . Immune response . Macrophages . Inflammation 
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INTRODUCTION 

Ribonucleases represent a wide family of enzymes whose common feature is the ability to 

process or degrade ribonucleic acids, yet our understanding of the roles played by these 

proteins in mammalian biology remains incomplete. Historically, investigations have focused 

on ribonucleases belonging to the RNase A family members, which are limited to vertebrate 

species (D’Alessio and Riordan 1997). However, the RNase superfamily also includes lineages 

of structurally related and evolutionarily conserved enzymes that have been shown to play a 

wide range of biological functions. In this regard, a growing interest has recently focused on 

ribonucleases belonging to the highly conserved T2/Sh/R family, due to their involvement in 

several key cellular and biological processes, such as nutritional stress response, neural 

development, modulation of the immune response, cell death, cancer growth control and 

stress response, to name a few (Luhtala and Parker 2010). T2 ribonucleases represent 

transferase-type RNases that catalyze the cleavage of single-stranded RNA through a 2’,3’-

cyclic phosphate intermediate. Of note, unlike the other known transferase-type ribonuclease 

families (i.e., RNase A and T1), T2 RNases represent the most widespread class, being found 

in viruses, bacteria, protozoans, plants and metazoans (Luhtala and Parker 2010). This feature, 

coupled to their rather unspecific substrate preference (they usually cleave RNAs at all four 

bases), suggest the occurrence of one or more ancient, evolutionarily relevant roles for T2 

RNases. In this regard, a bulk of experimental evidence has recently been reported in support 

for a role of T2 ribonucleases in immune responses. Indeed, human RNASET2 has been 

reported to behave as a tumor suppressor gene in ovarian cancer xenograft models by means 

of its ability to recruit host macrophages endowed with oncosuppressive properties toward 

the tumor mass in vivo (Acquati et al. 2011, 2013). 

Although several studies have recently reported the widespread tumor suppressive role 

for several members of the T2 RNase protein family (Smirnoff et al. 2006; Schwartz et al. 2007; 

Acquati et al. 2011, 2013), the relationship between these enzymes and their ability to activate 

and/or recruit innate immune cells in relation to the inflammatory response has not yet been 

thoroughly investigated. In order to improve our understanding of these functional features 

of T2 RNases and at the same time to evaluate their evolutionary conservation, in this work 

we focus our interest on the role of human recombinant RNASET2 in the activation and 

recruitment of immune cells using as an experimental model Hirudo verbana, a medicinal 
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leech species closely related to H. medicinalis. Furthermore, the endogenous expression 

pattern of leech T2 RNase following induction of a pro-inflammatory stimulus is also 

investigated. Hirudo is a consolidated experimental animal model for several reasons: first, it 

represents a suitable tool for experimental manipulation, being cost-effective, easily 

manipulable and devoid of significant ethical considerations in relation to its use and 

regulatory restrictions. Moreover, the main immune response processes in leeches have been 

shown to be strikingly similar to those reported in vertebrates, since they involve similar 

cellular mechanisms and a common equipment of key molecules playing pivotal roles for 

regulating hematopoietic cells activation and differentiation. In addition, any response evoked 

in leeches by a wide range of different stimuli is activated within a short period of time (6–24 

h) and is clearly and easily detectable due to the small size and anatomical features of this 

experimental model (de Eguileor et al. 1999, 2003, 2004; Grimaldi et al. 2004, 2006; 

Tettamanti et al. 2004; Girardello et al. 2015a, b; Schorn et al. 2015b). Finally, we recently 

developed an innovative method to investigate several key aspects of the immune response 

in leeches, based on the use of the biopolymer Matrigel (MG) to which various cytokines can 

be added before polymerization. Once inoculated in leeches, the polymerized matrigel 

gradually releases the supplemented cytokine, resulting in the specific recruitment of defined 

cell populations from the surrounding tissues within the MG matrix. Indeed, in recent reports, 

injection into the leech body of MG supplemented with growth factors, cytokines or bacterial 

lipopolysaccharides (LPS) has allowed us to analyze the specific in vivo recruitment of several 

cell populations, which can subsequently be characterized at both the morphological and 

immunocytochemical levels (Grimaldi et al. 2008, 2009, 2011; Girardello et al. 2015a). 

In this work, we confirm and extend previous results on the role of RNASET2 in the 

immune response by showing that human recombinant RNASET2 (rRNASET2) triggers a 

significant recruitment of host macrophages when injected in leeches. Moreover, we report 

for the first time that rRNASET2 injection is followed by a boost in endogenous T2 RNase 

expression in the same macrophage cell population. Finally, the role of endogenous leech T2 

RNase in the immune response is further confirmed by the observed upregulation of its 

expression following induction of an inflammatory challenge represented by LPS injection. 
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MATERIALS AND METHODS 

Animals and treatments 

 

Medicinal leeches (Annelida, Hirudinea; from Ricarimpex, Eysines, France) measuring 10 cm 

were kept in water at 20°C in aerated tanks and fed weekly with calf blood. For each 

experimental group, treatment (PBS, LPS, recombinant protein or matrigel injection) was 

performed at the level of the 80th superficial metamere on leeches anaesthetized with a 10 

% ethanol solution. Treated and control untreated animals were anesthetized and then 

dissected to remove body wall tissues or matrigel pellets at specific time points (T24 h, T7 

days). Animals were randomly split into eight separate experimental groups (five individuals 

for each time point) and submitted to various protocols and treatments. 

Group 1: control animals (uninjected) 

Group 2: control animals injected with 100 μl sterilized PBS (138 mM NaCl, 2.7 mM KCl, 4.3 

mM Na2HPO4, 1.5 mM KH2PO4, pH 7.4) and analyzed at T24 h and T7 days. 

Group 3: animals injected with 100 μl sterilized PBS containing 20 ng of recombinant 

hRNASET2 protein (Lualdi et al. 2015) and analyzed at T24 h and T7 days to functionally 

characterize cells migrating under the influence of this factor. The best concentration of 

hRNASET2 required to induce significant cell migration was determined based on our previous 

work (Grimaldi et al. 2011; Schorn et al. 2015b). 

Group 4: animals injected with 100 μl of sterilized PBS containing 50 ng of recombinant 

hRNASET2 previously incubated for 1 h at room temperature with 1 μg of anti-hRNASET2 

specific polyclonal antibody (Campomenosi et al. 2011) to perform antibody-mediated 

neutralization experiments, analyzed at T24 h and T7 days. 

Group 5: animals injected with 100 μl of PBS containing 100 ng/ml of bacterial 

lipopolysaccharides (LPS; the major outer surface membrane components present in almost 

all Gram-negative bacteria) from Escherichia coli serotype 0111: B4 (Sigma, St. Louis, MO, USA) 

for immune stimulation assays (Alexander and Rietschel 2001) in order to evaluate the 

expression of RNASET2 in cells involved in innate immune response. 

Group 6: control animals injected with 300 μl of liquid matrigel MG (an extract of the murine 

Engelbreth–Holm–Swarm tumor produced as previously described) (Kleinman et al. 1986), 
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analyzed at T7 days. 

Group 7: animals injected with 300 μl of liquid MG supplemented with 50 ng of hRNASET2 

were used to selectively isolate the cells migrating under the influence of RNASET2 and were 

analyzed at T7 days. 

Group 8: animals injected with 300 μl of liquid MG supplemented with 50 ng of hRNASET2 and 

1 μg of the polyclonal antibody RNASET2, used for antibody-mediated neutralization 

experiments and analyzed at T7 days. 

Optical and electron microscopy 

 

Leech tissues, dissected from the area of the injection, were fixed for 2 h in 0.1 M cacodylate 

buffer at pH 7.4, containing 2 % glutaraldehyde. Specimens were then washed in the same 

buffer and postfixed for 1 h with 1 % osmium tetroxide in cacodylate buffer, pH 7.4. After 

standard serial ethanol dehydration, specimens were embedded in an Epon-Araldite 812 

mixture. Sections were obtained with a Reichert Ultracut S ultratome (Leica, Wien, Austria). 

Semithin sections were stained by crystal violet and basic fuchsin (Moore et al. 1960) and 

subsequently observed under a light microscope (Nikon Eclipse Ni; Nikon, Tokyo, Japan). Data 

were recorded with a DS-5 M-L1 digital camera system (Nikon). Ultrathin sections were placed 

on copper grids, stained by uranyl acetate and lead citrate and observed with a Jeol 1010 EX 

electron microscope (Jeol, Tokyo, Japan). 

Acid phosphatase reaction (ACP) 

 

Leech tissues, dissected from unlesioned or injected areas, were embedded in Polyfreeze 

tissue freezing medium (OCT; Polysciences, Eppelheim, Germany) and immediately frozen in 

liquid nitrogen. Cryosections (7 μm in thickness) were obtained with a Leica CM 1850 

cryotome, rehydrated with PBS for 5 min and incubated with sodium acetate-acetic acid 0.1 

M buffer for 5 min, followed by incubation with reaction mixture (sodium acetate-acetic acid 

0.1 M buffer, 0.01 % naphtol AS-BI phosphate, 2 % NN-dimethylformamide, 0.06 % Fast Red 

Violet LB and MnCl2 0.5nM) for 90 min at 37°C. After washings in PBS, slides were mounted 

with PBS/glycerol 2:1 and observed with a Nikon Eclipse Ni (Nikon) light microscope. Images 

were taken with a digital camera Nikon Digital Sight DS-SM (Nikon). 
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Immunohistochemistry 

 

Samples (leech tissues or matrigel pellets) were embedded in Polyfreeze tissue freezing 

medium (OCT; Polysciences) and immediately frozen in liquid nitrogen. Cryosections were 

then obtained with a Leica CM 1850 cryotome. For morphological analyses, serial cryosections 

were stained with crystal violet and basic fuchsin. For immunofluorescence assays, sections 

were rehydrated with PBS for 5 min, pre-incubated for 30 min with PBS containing 2 % bovine 

serum albumin and later incubated (1 h at 37°C) with the following primary polyclonal 

antibodies, diluted in blocking solution: rabbit anti-human RNASET2 (Campomenosi et al. 

2011), diluted 1:200; rabbit anti-human CD68 (Santa Cruz Biotechnology, CA, USA), which 

specifically stains leech macrophage-like cells (de Eguileor et al. 2003; Schorn et al. 2015b), 

diluted 1:100; rabbit anti-HmAIF-1, specific marker for leech macrophages (Drago et al. 2014; 

Schorn et al. 2015b), kindly donated by Prof. Jacopo Vizioli, University of Lille 1, France, diluted 

1:1000; rabbit anti-human phospho-histone H3 (H3P; Merck-Millipore, Temecula, CA, USA), a 

known marker of proliferating cells (Hans and Dimitrov 2001), diluted 1:100. 

All specimens were washed before incubation with the secondary antibodies (Abcam, 

Cambridge, UK) for 1 h at room temperature. The secondary antibodies used were a goat Cy5-

conjugated (excitation filter 650 nm, emission filter 672 nm) or a goat fluorescein 

isothiocyanate (FITC)-conjugated anti-rabbit antibody (excitation 493 nm, emission 518 nm), 

both diluted 1:200. Double-labeling experiments were performed as previously described 

(Grimaldi et al. 2009; Schorn et al. 2015a) to detect RNASET2/HmAIF-1 or RNASET2/CD68 co-

expressing cells. The anti-RNASET2 antibody was applied first, then sections were incubated 

with the secondary antibody, goat anti-rabbit (Cy5)-conjugated. According to Würden and 

Homberg (1993), to inhibit binding of the primary antiserum of the second staining cycle to 

the goat anti-rabbit IgGs that were applied in the first sequence, the sections were incubated 

with rabbit IgG (Jackson ImmunoResearch Laboratories, West Grove, USA) at 1:25 for 2 h. 

After washing the samples were incubated with the antibody anti-HmAIF-1 or anti-CD68. 

Subsequently, the sections were treated with the secondary (FITC)-conjugated goat anti-

rabbit antibody. According to Schnell et al. (1999), after immunocytochemistry, the sections 

were treated with 1 mM CuSO4 in 50 nM ammonium acetate buffer (pH 5.0) for 15 min and 

then washed in distilled water and PBS. Application of CuSO4 for 10 min after 

immunohistochemistry substantially reduced tissue autofluorescence while preserving the 
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specific fluorochrome signal. In all control experiments, primary antibodies were omitted and 

sections were incubated only with the secondary antibodies. Nuclei were stained by 

incubating for 15 min with 49,6-Diamidino-2-Phenylindole (DAPI; 0.1 mg/ml in PBS, excitation 

340 nm, emission 488 nm). The slides were mounted in Citifluor (Citifluor, London, UK) with 

coverslips and examined with a Nikon fluorescence microscope or with a confocal laser 

microscope (Leica TCS SP5). Images were combined with Adobe Photoshop (Adobe Systems, 

San Jose, CA, USA). 

Western blot analysis 

 

Cultured human ovarian cancer-derived OVCAR3 cells were scraped in PBS/EDTA and 

resuspended in lysis buffer (0,5 % Igepal, 0,5 % Triton X-100 in PBS + 5 mM EDTA). Hirudo 

tissues extracted from the unstimulated body wall or from injected areas were immediately 

frozen in liquid nitrogen and then homogenized with a mortar. The homogenates were 

suspended (10 μl per mg of tissue), in RIPA buffer (150 mM NaCl, 1 % NP-40, 0.5 % dodium 

deoxycholate, 0.1 % SDS, 50 mM Tris-Hcl, pH 8.0) in the presence of a protease inhibitor 

cocktail (Sigma, Milan, Italy). The particulate material was removed by centrifugation at 

13,000 rpm for 10 min at 4°C in a refrigerated Eppendorf Minispin microcentrifuge (Hamburg, 

Germany). Supernatants containing total protein extracts were denatured at 100°C for 10 min 

and loaded on 10 % acrylamide minigels for SDS-PAGE analyses. Molecular weights were 

determined by concurrently running broad range standards from Bio-Rad (Richmond, MA, 

USA).  

Proteins separated by SDS-PAGE were transferred onto Bio-Rad nitrocellulose filters. 

Membranes were then saturated with 5 % non-fat dried milk in Tris-buffered saline (TBS; 20 

mM TRIS–HCl buffer, 500 mM NaCl, pH 7.5) at room temperature for 2 h and incubated for 90 

min with a rabbit polyclonal anti-RNASET2 (Campomenosi et al. 2011) or an anti-HmAIF-1 

antibody (1:5000 dilution in 5 % TBS-milk). After the membrane was washed three times with 

TBS-Tween 0.1 %, antigens were revealed with a secondary anti-rabbit IgG antibody 

conjugated to horseradish peroxidase (Jackson ImmunoResearch Laboratories), diluted 

1:5000. After a further washing step, immunocomplexes were revealed with luminol LiteAblot 

PLUS Enhanced Chemiluminescent Substrate (EuroClone, Pero, Italy). In control experiments, 

anti-RNASET2 and anti-HmAIF-1 antibodies were substituted with rabbit pre-immune serum 

(1:20,000). Bands were normalized by using the ImageJ software package 
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(http://rsbweb.nih.gov/ij/download.html), with the housekeeping protein D-glyceraldehyde-

3-phosphate dehydrogenase (GAPDH), which was detected with a rabbit polyclonal anti-

human GAPDH IgG (Proteintech, Chicago, USA), diluted 1:2000. 

 

RESULTS 

In order to evaluate the putative role of RNASET2 in the regulation of innate immune response 

in Hirudo, in particular in the activation and migration of macrophages, we first assessed the 

effects of recombinant human RNASET2 (rRNASET2) injection in the leech body wall. To this 

aim, morphological and immunohistochemical analyses were carried out on leech tissue 

sections from uninjured, PBS-injected, rRNASET2-injected (with or without preincubation of 

the recombinant protein with an anti-RNASET2 antibody) and LPS-injected animals. The same 

analyses were also carried out on rRNASET2-soaked, polymerized matrigel pellets explanted 

from the leech body wall after implantation for 1 week.  

 

Morphological analysis of the body wall in rRNASET2-injected leeches 

The body wall of unlesioned (Fig. 1a) or PBS-injected (Fig. 1b) leeches showed a typical 

cutaneous muscle sac, formed by epithelium and muscle fibers arranged in groups and 

surrounded by a loose connective tissue. In the body wall of these control animals, a few non-

muscle cells were immersed in the connective tissue surrounding the muscles. By contrast, at 

24 h (Fig. 1c) and 1 week (Fig. 1d, e) following rRNASET2 injection, a large number of infiltrating 

cells was clearly detected underneath the epithelium and in the connective tissue surrounding 

the muscle fibers. A marked reorganization of the muscle layers in rRNASET2-treated animals 

was also evident at the injection site, since the distance between single muscle fields appeared 

to be greatly increased, due to the infiltration of several cells interposed between them. This 

cell infiltration process was closely associated with a massive reorganization of the connective 

tissue and the appearance of new blood vessels in the space between the muscle fields (Fig. 

1c–e). By contrast, in uninjured (Fig. 1a) and PBS-injected control leeches (Fig. 1b) or in leeches 

injected with rRNASET2 previously pre-incubated with the anti-RNASET2 antibody (Fig. 1f–h), 

muscle fields were in close reciprocal contact and both the infiltration of cells and the 

appearance of vessels between the groups of muscle fibers or underneath the epithelium 

were negligible (Fig. 1f–h). 

http://rsbweb.nih.gov/ij/download.html
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Ultrastructural TEM analysis of unlesioned (Fig. 2a) or PBS-injected (Fig. 2b) leeches 

confirmed that muscle fibers forming the muscular fields were very close to each other and 

the extracellular matrix surrounding them was scant and devoid of cells. By contrast, 24 h (Fig. 

2c, d) and 1 week (Fig. 2e, f) following rRNASET2 injection, clearly recognizable neovessels 

were observed underneath the epithelium, with the vessels lumen containing circulating cells. 

The observed angiogenic process displayed the typical features of an inflammatory response-

derived process (Grimaldi et al. 2006), with circulating cells extravasating and migrating into 

the nearby connective tissue and thereby differentiating into mature leukocytes, likely 

involved in the leech innate immune response. Indeed, a high prevalence of cells displaying 

the typical appearance of macrophages was detected in the extracellular matrix underlying 

the epithelium (Fig. 2c) and surrounding the muscle fibers of rRNASET2-treated animals (Fig. 

2d, e). These cells were clearly distinguishable by an elongated shape, an irregular membrane 

(likely involved in the formation of pseudopodia, a typical feature of cells involved in active 

migration) (Fig. 2e) and a cytoplasm with a large nucleus and a few electrondense granules 

(Fig. 2d). Besides the infiltration of immunocompetent cells, rRNASET2-treated leeches were 

also characterized by a massive fibroplasia across the entire body wall. As in vertebrates, leech 

fibroblasts are responsible for the synthesis and remodeling of the extracellular matrix 

(Tettamanti et al. 2005). These cells were easily recognizable by TEM analysis in rRNASET2-

injected animals due to their tapered shape and the presence of several lipid droplets in their 

cytoplasm. Moreover, the fibroblasts’ cell membrane was characterized by the presence of 

laminar projections, known to be involved in the formation of a microenvironment that 

promotes fibrillogenesis (Fig. 2f). As already observed by optical microscope analysis, the 

number of vessels and immunocompetent cells underneath the epithelium and between the 

groups of muscle fibers was very scant in animals injected with rRNASET2 that was pre-

incubated with anti-rRNASET2 neutralizing antibody, (Fig. 2g, h), suggesting that the observed 

tissue morphological changes represent a specific effect of rRNASET2 treatment. 
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Fig. 1 Light microscope morphological analysis of leech body wall sections. In unlesioned(a) and PBS-injected (b) animals, a 

few cells (arrowheads) among muscle fibers are visible; 24 h (24h, c) and 1 week (1w d, e) following rRNASET2 injection, 

numerous migrating cells (arrowheads) and neovessels (arrows) are visible. Injection of rRNASET2 pre-incubated with the 

neutralizing anti-RNASET2 antibody (Ab) significantly reduces both cell migration and neo vessel formation (f–h). mu muscles; 

ep epithelium. Bars 100 μm 
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Fig. 2 Ultrastructural analysis at TEM of leech body wall: details of a group of muscle fibers (mu) in unlesioned (a) and PBS-

injected (b) leeches. Muscle fibers (mu) are close to each other and surrounded by scant extracellular matrix (ecm) devoid of 

cells. After 24 h from rRNASET2 injection (c, d), macrophages (arrows) and vessels (v) containing circulating cells (arrowheads) 

are visible underneath the epithelium. After 1 week from rRNASET2 injection, migrating macrophages (arrowhead in e) and 

fibroblasts (arrowhead in f) in active fibrillogenesis (arrows) are observable (e–f). The number of vessels and macrophages is 

highly reduced in rRNASET2 pre-incubated with anti-rRNASET2 Ab injected leeches (g, h). Bars (a–c, e, g, h) 5 μm, (d, f) 2 μm 
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Characterization of cell types involved in the inflammatory response induced by injection of 

rRNASET2 

In order to better define the cell types recruited in leech tissues following rRNASET2 injection 

and thus confirm the occurrence of a RNASET2-driven inflammatory response, 

immunofluorescence experiments were performed on tissue cryosections from unlesioned, 

PBS-injected and rRNASET2-injected animals. Recombinant RNASET2-treated sections were 

investigated at both 24 h and 1 week, with and without neutralizing anti-RNASET2 antibody 

pretreatment (Figs. 3a– p; 4a–d). Immunohistochemical assays were carried out with an anti-

HmAIF-1 antibody, a known marker for leech macrophages (Drago et al. 2014; Schorn et al. 

2015a, b) and an anti-human RNASET2 antibody, to evaluate the expression of endogenous 

RNASET2 by leech immunocompetent cells. By these assays, both HmAIF-1 and RNASET2 

turned out to be constitutively expressed at a low level in the body wall of uninjured animals. 

These proteins were mainly detected in a few cells located in the connective tissue underlying 

the epithelium and surrounding the muscle fibers fields (Fig. 3a–c). The same expression 

pattern was observed in the samples analyzed 24 h (Fig. 3e–g) after PBS injection, suggesting 

that the mechanical stress induced by injection of a saline solution did not affect significantly 

the expression of HmAIF-1 and RNASET2 in the leech body wall. Of note, the presence of 

RNASET2-positive cells in uninjured and PBS-injected animals confirmed that the anti-human 

RNASET2 antibody used in immunofluorescence (IF) assays crossreacts with the endogenous 

leech T2 RNase protein, as further confirmed later by western blot analysis.  

By contrast, a highly increased number of HmAIF-1+ and RNASET2+ migrating cells were 

clearly recognizable 24 h (Fig. 3i–k) and 1 week (Fig. 4a, b) after rRNASET2 injection. These 

cells were mainly located under the epithelium and among muscle fibers. Strikingly, 24 h (Fig. 

3m–o) and 1 week (Fig. 4c, d) from injection with rRNASET2 pre-incubated with the 

neutralizing anti-RNASET2 antibody, the number of migrating HmAIF-1+/RNASET2+ cells was 

significantly reduced. Due to the limited amount of rRNASET2 injected, the widespread and 

intense staining observed by IF assay with the anti-RNASET2 antibody further suggests that 

the endogenous leech T2 RNase protein was detected by this antibody. No signal was detected 

in the negative control experiments in which the primary antibodies were omitted (Fig. 3d, h, 

l, p). Taken together, these data are indicative of a strong recruitment of cells belonging to the 

macrophage lineage at the rRNASET2 injection sites. Moreover, such recruitment seems to be 

associated by a concurrent increase in the expression of endogenous RNASET2 at the sites of 
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immune cells infiltration. 

Fig. 3 Immunofluorescence analysis of cryosections from medicinal leech body wall in unlesioned (a–c), PBS-injected (e–g), 

rRNASET2-injected (i–k) and neutralizing antibody preincubated rRNASET2-injected animals (m–o). The anti-HmAIF-1 and 

anti-RNASET2 antibodies stain in red a few cells among muscle fibers (mu) and underneath the epithelium (ep) in unlesioned, 

PBS-injected and anti-RNASET2-neutralized, rRNASET2-injected leeches, whereas several migrating immune-responsive cells 

located under the epithelium (ep) and among muscles (mu) are detected 24 h following RNASET2 injection. No signal is 

detected in negative control experiments in which the primary antibodies were omitted (d, h, l, p). Cell nuclei stained blue by 

treatment with DAPI. Bars 100 μm 
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Fig. 4 Immunofluorescence analysis of cryosections from medicinal leech body wall injected with rRNASET2 (a, b) or rRNASET2 

pre-incubated with the neutralizing anti-RNASET2 antibody (c, d). One week following injection of RNASET2 alone, several 

HmAIF-1+ and anti RNASET2+ cells (in red) are mainly located underneath the epithelium (ep). Cell nuclei are stained in blue 

with DAPI. Bars 50 μm 

 

Proliferative and enzyme ACP assays 

To further investigate the nature of the putative inflammatory process triggered by hRNASET2 

injection, leeches were stained with antibodies targeting known markers of cell proliferation 

and macrophage activation. Of note, unlike unlesioned leeches (Fig. 5a–c), a significant 

increase in the number of anti-Histone H3P-positive cells was observed 24 h (Fig. 5d–f) and 1 

week (Fig. 5g–i) after rRNASET2 injection, suggesting that infiltrating cells were undergoing 

cell division. Furthermore, the ACP assay showed a marked increase in cells endowed with 

phagocytic activity (de Eguileor et al. 1999; Girardello et al. 2015b; Schorn et al. 2015a) among 

muscle layers and next to the rRNASET2-injected area.  
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Fig. 5 HP3 immunostaining and ACP reaction on cryosections from unlesioned or rRNASET2 injected leech. Compared to 

control sections (a-c), after 24 h (d–f) and 1 week (g–i) from rRNASET2 injection, numerous cells with mitotic (red in a, d, g) 

and lysosomal activities (red in c, f, i) are visible underneath the epithelium (ep) and among muscle fibers (mu). Cell nuclei   are 

stained in blue with DAPI. No signal is present in negative control experiments in which the primary antibodies were omitted 

(b, e, h). Bars 100 μm 

 
Characterization of cell types infiltrating MG pellets supplemented with rRNASET2 

To further confirm the ability of rRNASET2 to induce macrophages migration in vivo, 

recombinant RNASET2 protein was added to MG biopolymer held at a liquid state and the 

mixture was subsequently inoculated in leeches. In order to characterize the cell types 

infiltrating the polymerized biopolymer, MG solid pellets formed following inoculation were 

explanted after 1 week and processed for standard histological and immunofluorescence 

analyses using anti-CD68 and anti-HmAIF-1 antibodies (both specific for leech macrophages) 

(Schorn et al. 2015a, b) and an anti-RNASET2 antibody (Fig. 6a–o). In keeping with our previous 

results, MG samples containing rRNASET2 protein appeared massively infiltrated by elongated 

and irregularly-shaped cells characterized by numerous cytoplasmic expansions (Fig. 6g). 
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These cells were HmAIF-1+ (Fig. 6h), CD68+ (Fig. 6j) and RNASET2+ (Fig. 6k). A much lower 

number of infiltrating cells was observed in control MG specimens lacking rRNASET2 (Fig. 6a, 

b), or added with PBS (Fig. 6d, e) or rRNASET2 pre-incubated with anti-RNASET2 antibody (Fig. 

6m, n). No signal was detected in negative control experiments in which the primary 

antibodies were omitted (Fig. 6c, f, i, l, o). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Morphological and immunohistochemical analyses of untreated control matrigel sponges (a–c) and MG sponges treated 

with PBS (d–f), rRNASET2 (g–l) and neutralizing antibody-pretreated rRNASET2 (m–o). After 1 week, only MG plugs 

supplemented with rRNASET2 are highly infiltrated by elongated and irregularly-shaped characterized cells and by numerous 

cytoplasmic expansions (g). These cells are HmAIF-1+ (h), CD68+ (j) and RNASET2+ (k). Cell nuclei are stained in blue with DAPI (h, 

i). No signal is detected in negative control experiments in which the primary antibodies are omitted (c, f, i, l, o). Bars (a–i, m–
o) 100 μm, (j–l) 10 μm 
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LPS injection induces RNASET2 expression in leech macrophages 

We next addressed the putative involvement of rRNASET2 in regulating the inflammatory 

response following injection with LPS, a well-known strong stimulator of innate immune 

response in almost all eukaryotic species, ranging from insects to humans. We previously 

reported that LPS injection promotes a massive migration of macrophages in the body wall 

of Hirudo (de Eguileor et al. 1999; Schorn et al. 2015a). The immunophenotype of cells 

involved in LPS-mediated inflammatory response was evaluated by double-labeling with an 

anti-RNASET2 antibody and anti-HmAIF-1 or anti-CD68 antibodies. As expected, the assays 

showed that, unlike unlesioned animals (Fig. 7a, b), LPS-injected animals (Fig. 7c, d) 

displayed a marked migration of macrophages that were mainly localized underneath the 

epithelium and in the connective tissue surrounding the muscle fibers. Strikingly, these 

infiltrating macrophages were expressing both RNASET2 and HmAIF-1 or RNASET2 and 

CD68. Thus, the massive recruitment of macrophages coupled to upregulation of 

endogenous RNASET2 that we previously observed following rRNASET2 treatment was 

recapitulated when leeches were challenged with a strong inflammatory stimulus. 

Moreover, the cellular source of leech endogenous RNASET2 turned out to be the 

macrophage cell itself.  

In order to quantify the changes in expression for the markers of interest, the RNASET2 

and HmAIF-1 expression pattern of uninjured, PBS-treated, rRNASET2-treated (with and 

without pre-incubation with the neutralizing anti-RNASET2 antibody) and LPS-challenged 

animals was also evaluated by means of western blot analysis (Fig. 7e–g). Injection of the 

anti-RNASET2 antibody alone was also performed as a further control. The analysis was 

carried out on protein extracts taken from the leech body wall at the site of injection. Two 

main RNASET2-immunoreactive bands of approximately 34 and 29 kDa (the latter being 

visible only in a subset of the tested samples) were detected in leech tissues (Fig. 7e). Of 

note, a control sample from the human OVCAR3 ovarian cancer cell line (known to express 

high endogenous RNASET2 levels) also showed two main anti-RNASET2-reactive bands, 

although their molecular mass were slightly different from those observed in leech tissues. 

As RNASET2 is a highly glycosylated protein, these differences are likely attributable to a 

different glycosylation pattern for this protein in leech as compared to human cells.  

By using an anti-AIF-1 antibody, a single band of 18 kDa corresponding to the 

expected molecular weight for HmAIF-1 (Schorn et al. 2015a) was detected (Fig. 7f).  
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Strikingly, the expression pattern of RNASET2 and AIF-1 turned out to be remarkably 

similar in most if not all the samples tested and was in keeping with the pattern previously 

reported by immunofluorescence assays. Indeed, both RNASET2 and HmAIF-1 turned out to 

be constitutively expressed at a low baseline level in unlesioned, PBS- and rRNASET2 plus 

neutralizing anti-RNASET2 antibody-injected animals (Fig. 7e,f). By contrast, expression of 

both RNASET2 and HmAIF-1 was significantly increased in the samples from LPS- and 

RNASET2-injected animals. Moreover, a very weak or undetectable signal was observed in 

the proteins extract of leech injected with the anti-RNASET2 antibody alone (Fig. 7e), again 

suggesting the occurrence of a RNASET2-specific effect. 

Thus, rRNASET2 injection was shown to induce a change in the expression pattern of 

both proteins that is very similar to that induced by injection with a highly pro-inflammatory 

agent such as LPS. 

 

 

 

 

 

 

 

 

 

Fig. 7 Double immunolocalization of RNASET2 and HmAIF-1 or RNASET2 and CD68 of unlesioned (a, b), LPS-injected (c, d) 

leech body wall and western blot analysis (e, f). At 24 h following LPS injection, numerous RNASET2+/HmAIF-1+ and 

RNASET2+/CD68+ macrophages (yellow) migrating towards the injected area are visible under the epithelium (ep) and among 

the muscle fibers (mu). Double-immunostaining is performed with anti-RNASET2 (red) and anti-HmAIF-1 or anti-CD68 

(green). No signal is detected in negative control experiments in which primary antibodies are omitted. Nuclei are stained in 

blue with DAPI. Bars (a–d) 50 μm. e, f Western blot analysis. A protein extract of human OVCAR3 ovarian cancer cell line (H), used 

as positive control and of body wall biopsies at the injection sites from unlesioned (U), PBS-treated, anti-RNASET2 alone-

treated (Ab), rRNASET2-treated (RN), rRNASET2 plus neutralizing anti-RNASET2 antibody (RN+Ab) or LPS-treated leeches 

were probed with the anti- RNASET2 (e) or anti-HmAIF-1 (f) antibodies. The antibody anti-RNASET2 recognizes two RNASET2-

immunoreactive bands of approximately 34 and 29 kDa in leech tissues and of 36 and 27 kDa in OVCAR3 cell line extract, 

while the anti-HmAIF-1 detects in leech tissues a specific immunoreactive band of about 18 kDa, according to the molecular 

weight ladder (kDa). The housekeeping protein D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is used as a loading 

control. No signal was observed in the proteins extract of leech injected with the Ab alone 
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DISCUSSION 

In the present study, we report that RNASET2, the only human member of the highly 

conserved T2 ribonuclease protein family, is involved in the regulation of the inflammatory 

response in the medicinal leech, an excellent model for investigating innate immune 

responses, since the effects of different types of stimuli, such as bacterial infection or injection 

of cytokines or chemokines (Tettamanti et al. 2006; Schorn et al. 2015a) can be easily assessed 

and interpreted in this animal model. Indeed, rRNASET2 was shown to induce both 

angiogenesis and the migration and functional activation of immunocompetent cells in H. 

verbana. In particular, our study suggests that human recombinant RNASET2 protein provides 

a marked chemotactic activity in leeches by promoting the massive migration of macrophages 

displaying high lysosomal activity towards the stimulated area. Furthermore, we show that, 

although the endogenous RNASET2 protein is constitutively expressed in untreated leeches, 

its level of expression significantly increases following LPS injection.  

rRNASET2 is involved in recruitment of leech macrophages 

We have demonstrated a direct effect of human recombinant RNASET2 on macrophage 

migration by injecting rRNASET2 in the body wall of the medicinal leech. Such treatment was 

shown to induce a massive migration of cells belonging to the macrophages lineage within 24 

h, coupled to the formation of new blood vessels. Indeed, following rRNASET2 injection, a 

marked increase in cells expressing specific macrophage markers (HmAIF-1 and CD68) (Schorn 

et al. 2015a, b) and characterized by phagocytic or proliferative activity (as demonstrated by 

positivity to ACP reaction and H3P expression, respectively) was detected underneath the 

epithelium and among the muscle fiber fields. Of note, the observed inflammatory response 

was specifically dependent of recombinant RNASET2 injection, since infiltrating macrophages 

and neovessel formation were not observed following injection of either PBS or rRNASET2 

protein that was pre-incubated with a neutralizing anti-RNASET2 antibody. Of note, the fact 

that animals injected with human rRNASET2 pre-incubated with the anti-RNASET2 antibody 

did not show the marked infiltration of immune cells strongly suggests that the observed 

phenomena did not represent a specific inflammatory response against foreign host proteins. 

This conclusion is further strengthened by the observation that injection of the anti-RNASET2 

antibody alone did not elicit any inflammatory response as well, as assessed in our western 

blot analysis. Noteworthy, the number of macrophages recruited in the body wall remained 
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very high nearly a week after rRNASET2 injection. This observation suggests that the observed 

recruitment of macrophages might be sustained by a positive feedback mechanism by which 

the infiltrating cells, once migrated in the stimulated area, produce and secrete one or more 

factors to further promote the recruitment of inflammatory cells. Taken together, these data 

strongly suggest that rRNASET2 injection in leeches induces a marked inflammatory response 

characterized by macrophage recruitment and functional activation coupled to cell 

proliferation. In this regard, the observation that recombinant RNASET2-mediated infiltration 

of leech macrophages is associated with a marked increase in the expression of endogenous 

RNASET2 by the same macrophage cells suggests that such an endogenous RNASET2 boost 

might induce the recruitment and accumulation of more macrophages in the stimulated body 

region. Despite the occurrence of such RNASET2-based positive feedback mechanisms on 

target infiltrating cells being largely speculative, our results are in agreement with data 

previously reported in vertebrate organisms. Indeed, proteins belonging to the Rh/T2/S 

ribonuclease family (including RNASET2) are known to be actively secreted in the extracellular 

medium, where they carry out several biological functions (Luhtala and Parker 2010). In 

particular, the human RNASET2 protein has recently been shown to suppress the growth of 

ovarian cancer-derived cells in vivo in murine xenograft models by inducing the recruitment 

of a tumor-suppressive (M1) macrophage cell population within the tumor mass (Acquati et 

al. 2011). Moreover, a direct chemotactic effect of recombinant RNASET2 on cells belonging 

to the human monocyte-derived U937 cell line has also been reported (Acquati et al. 2013) 

and recently confirmed on human peripheral blood-derived monocytes. Finally, a survey by 

immunohistochemical assays has recently shown that RNASET2 is endogenously expressed by 

tissue macrophages in most human tissues investigated (manuscript in preparation). Taken 

together, these observations are in keeping with the role of RNASET2 as an inducer of a strong 

inflammatory response, as reported in this work. 

Of note, RNASET2-mediated activation and recruitment of macrophages seems to 

represent an evolutionarily conserved process, since in this work we were able to recapitulate 

it in an invertebrate experimental model. In keeping with this hypothesis, recent work on the 

trematode Schistosoma mansoni has demonstrated a role for a T2 RNase protein encoded by 

the parasite’s genome (omega-1) in the modulation of the innate immune response in 

infected hosts (Ferguson et al. 2015). 

We investigated the marked RNASET2-mediated infiltration of leech macrophages 
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observed in vivo by further assessing the chemotactic activity of recombinant RNASET2, using 

a consolidated experimental approach based on injection of MG biopolymers supplemented 

with soluble factors in the leech body wall. Our previous studies have shown that MG 

supplemented with specific cytokines, such as interleukin IL-8, VEGF (vascular endothelial 

factor) or HmAIF-1, were able to form a microenvironment suitable to induce the migration of 

specific cell populations when injected in vivo in the body wall of the leech (Grimaldi et al. 

2008, 2009, 2011; Girardello et al. 2015a). This experimental approach is therefore a key tool 

to define the cell types chemoattracted by specific factors. In this work, histological and 

immunocytochemical assays on explanted rRNASET2-supplemented MG pellets showed a 

massive infiltration of host cells that stained positive for CD68 or HmAIF-1 markers, thus 

providing further evidence in support of the chemotactic activity of RNASET2 on macrophage 

cells.  

rRNASET2 injection causes rearrangement of the extracellular matrix 

After rRNASET2 injection, a significant increase in the production of collagen fibrils and a 

consequent remodeling of the muscle layers were also observed. As previously demonstrated 

in animals injected with soluble factors such as cytokines (de Eguileor et al. 2001; Tettamanti 

et al. 2005; Schorn et al. 2015a), a massive production of a new matrix also leads to a 

reorganization of the muscle cutaneous sac. The muscle fibers, which in control animals are 

adjacent to each other and arranged to form groups surrounded by scarce extracellular matrix, 

move away due to the overproduction of collagen. The main effectors of such remodeling 

turned out to be secreting fibroblasts characterized by projections of cytoplasmic laminae 

stretching towards the extracellular space (Tettamanti et al. 2004). The cytoplasmic folding 

was in turn shown to form a microenvironment in which fibrillogenesis occurs and was 

involved in the spatial organization of collagen bundles, governing the orientation of the 

collagen fibrils with respect to the cell axis (Tettamanti et al. 2005). The resulting massive 

production of connective tissues is then used as a scaffold for immune cells migration and for 

proper orientation of growth of new vessels (de Eguileor et al. 2004; Tettamanti et al. 2004). 

In this regard, it is worth noting that human RNASET2 was recently shown to affect both the 

cytoskeletal organization and the migratory pattern of ovarian cancer cell lines (Lualdi et al. 

2015).  
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RNASET2 is expressed by leech macrophage-like cells 

Previous studies carried out in vertebrates have shown that bacterial infections can induce 

the expression of ribonucleases such as RNase 7, RNase and angiogenin 8 (Harder and 

Schroder 2002), simultaneously to the release of inflammatory cytokines such as interferon 

gamma, TNF-alpha and IL-1beta. The data presented in this work suggest for the first time that 

ribonucleases belonging to the T2 family can play a key role in the recruitment of activated 

macrophages in the context of Gram-negative bacteria cell wall components injection. Indeed, 

in this work we show that injection of LPS in the body wall of leech not only causes a massive 

migration of CD68+/HmAIF-1+ macrophages as previously described (de Eguileor et al. 1999; 

Schorn et al. 2015a, b) but also induces a strongly increased expression of endogenous 

RNASET2 in these migrating macrophages, as assessed by both immunohistochemical and 

western blot analysis. It is well known that, in response to infections, leech macrophages 

produce antimicrobial proteins and peptides that specifically disrupt several components of  

Gram-positive bacterial cell walls (Schikorski et al. 2008; Hildebrandt and Lemke 2011). The 

observed increase of RNASET2 expression by leech macrophages could therefore be directly 

correlated to its putative ability to act as a stress response protein by priming host 

macrophages for mounting an anti-bacterial response. In this regard, it is worth noting that a 

marked stress response role for human RNASET2 has also been recently reported in human 

cancer cells (Lualdi et al. 2015), again supporting the occurrence of an ancient and 

evolutionarily conserved role for this gene. Moreover, since some ribonucleases have been 

described to display a marked antimicrobial activity (Boix et al. 2012), a direct anti-bacterial 

role for the RNASET2 enzyme cannot be ruled out, although this hypothesis remains largely 

speculative at present. 

The data reported in this work thus provide compelling evidence in support of a role for 

RNASET2  as  a key component of the natural immune system, not only in vertebrates but also 

in invertebrates. If confirmed by further investigations, this scenario would suggest a complex, 

pleiotropic role for RNASET2 in orchestrating an evolutionarily conserved inflammatory 

response, based on macrophage recruitment and activation coupled to a massive extracellular 

remodeling. 
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CHAPTER 2 

 

 

 

 

 

 

 

 

Abstract 

Recent studies demonstrated that allograft inflammatory factor-1 (AIF-1) and RNASET2 act as 

chemoattractants for macrophages and modulate the inflammatory processes in both vertebrates and 

invertebrates. The expression of these proteins significantly increases after bacterial infection; 

however, the mechanisms by which they regulate the innate immune response are still poorly defined. 

Here, we evaluate the effect of bacterial lipopolysaccharide injection on the expression pattern of 

these genes and the interrelation between them during innate immune response in the medicinal 

leech, an invertebrate model with a simple anatomy and a marked similarity with vertebrates in 

inflammatory processes. Collectively, prokaryotic-eukaryotic co-cultures and in vivo infection assays 

suggest that RNASET2 and AIF-1 play a crucial role in orchestrating a functional cross-talk between 

granulocytes and macrophages in leeches, resulting in the activation of an effective response against 

pathogen infection. RNASET2, firstly released by granulocytes, likely plays an early antibacterial role. 

Subsequently, AIF-1+ RNASET2-recruited macrophages further recruit other macrophages to 

potentiate the antibacterial inflammatory response. These experimental data are in keeping with the 

notion of RNASET2 acting as an alarmin-like molecule whose role is to locally transmit a “danger” signal 

(such as a bacterial infection) to the innate immune system in order to trigger an appropriate host 

response. 
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Introduction 

The innate immune response serves not only to counteract infections (either naturally 

occurring or following injury) but also to maintain tissue homeostasis and functional integrity, 

thus restoring the architectural structure to damaged organs and tissues (Frantz et al. 2005). 

In this context, efficient clearance of cellular debris by macrophages is known to prevent the 

persistence of potentially toxic or immunogenic material in the tissue environment and at the 

same time promotes tissue regeneration. A wide range of cytokines produced by 

inflammatory cells, including macrophages themselves, mainly orchestrates these processes. 

Thus, the generation of a rapid inflammatory response plays key roles in both host defense 

and tissue repair. 

Several studies have demonstrated the importance of macrophages in the production 

and secretion of different molecules such as growth factors and cytokines, which induce 

vessels and mesenchymal cell recruitment to injured/grafted or bacteria-infected tissues. 

Among these cytokines, two macrophage-derived interesting molecules have been recently 

demonstrated to be involved in inflammatory responses and tissue regeneration: allograft 

inflammatory factor-1 (AIF-1) and the RNASET2, a member of ribonuclease T2 family (Schorn 

et al. 2015b, a; Baranzini et al. 2017). 

AIF-1 is a 17-kDa calcium-binding protein originally identified in rat cardiac transplant 

subject to chronic rejection and later found to be selectively expressed in macrophages and 

neutrophils (Utans et al. 1995). Subsequently, several AIF- 1-like factors showing high amino 

acid sequence conservation have been identified in other metazoans (both vertebrates 

(Deininger et al. 2000; Watano et al. 2001) and invertebrates (Kruse et al. 1999; Ovando et al. 

2012; Li et al. 2013; Drago et al. 2014)). AIF-1 expression was shown to increase significantly 

after transplantation, wound healing, or bacterial infections, strongly suggesting its 

involvement in the inflammatory response and in immune system regulation by attracting 

macrophages to the challenged area. 

Ribonucleases (RNases) are hydrolytic enzymes that cut phosphodiester bonds within 

RNA molecules and represent one of the most versatile enzyme families, involved in an 

impressively wide range of biological processes (Luhtala and Parker 2010). Among the 

different ribonuclease families, the transferase-type RNase subfamily is split into three main 

groups: A, T1, and T2 RNases, among which only T2 RNases have been reported in all phyla 
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examined so far, suggesting a very ancient and evolutionary crucial role for this subclass of 

ribonucleases (Luhtala and Parker 2010). Moreover, a growing interest has been recently 

focused on T2 RNase family members, due their key role in several critical biological processes 

such as angiogenesis, biogenesis of ribosomes, apoptosis, cell proliferation control and, most 

interestingly, regulation of immune response (Acquati et al. 2011). For instance, the human 

RNASET2 protein, which acts as a tumor suppressor in different types of cancer, has been 

reported to trigger the innate immune response by recruiting host macrophages endowed 

with oncosuppressive properties toward the tumor mass in vivo (Acquati et al. 2011, 2013). 

Moreover, other members of the T2 RNase family have recently been shown to carry out a 

modulatory role in the immune response as well (Everts et al. 2012; Xu et al. 2013). 

Although it is now acknowledged that both AIF-1 and RNASET2 play a crucial role in 

activating and modulating the innate immune response, the mechanism(s) by which they act 

are largely unexplored. A better understanding of the interplay between these two molecules 

may thus provide valuable insights into how the innate immune system regulates 

inflammation, disease development, or wound healing and at the same time yield valuable 

new therapeutics and interventional strategies to control immune and systemic responses to 

disease, injury, and bacterial infection. 

Here, we propose the medicinal leech Hirudo verbana as a well-established 

experimental model to investigate the above-mentioned processes related to the innate 

immune response. Indeed, this invertebrate represents a cost-effective and easily 

manipulable model and without significant ethical considerations in relation to its use. In 

addition, its simple anatomy, physiological characteristics, and the less varied repertoire of 

cell types involved in immune response and wound healing allow to easily define the cellular 

and molecular mechanisms linked to these biological processes (Tettamanti et al. 2003b; 

Grimaldi et al. 2006). 

Differently from other Annelids (i.e., oligochaetes and polychaetes), leeches have a 

parenchymatous body and a reduced coelom (Mann and Kerkut 1962; Sawyer 1986). As 

previously mentioned, the anatomy of leech is relatively simple (Fig. 1): underneath the 

epithelium, muscle fibers are organized in fields, surrounded by a scant extracellular matrix. 

The muscular sac is separated from the inner digestive tube by a loose connective tissue 

containing the botryoidal and the vasofibrous tissues (Mann and Kerkut 1962; Sawyer 1986; 

de Eguileor et al. 2001b), from which most of the myeloid lineages-derived leucocytes arise 
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(Grimaldi et al. 2006). 

In healthy medicinal leech, a few resident immunocompetent cells, such as 

macrophages, type I and II granulocytes, and natural killer cells are poorly represented in the 

extracellular matrix surrounding muscle (Grimaldi 2016). These immunocytes display features 

and behaviors typical of those found in vertebrates (de Eguileor et al. 1999a, 2000b, a). 

Moreover, a plethora of cytokines, growth factors, and cluster of differentiation proteins (CDs) 

have been reported in leeches, where they act as modulators of these processes in a very 

similar way when compared to vertebrates (de Eguileor et al. 2000b; Grimaldi et al. 2004; 

Tettamanti et al. 2006; Macagno et al. 2010b). In fact, our previous investigations showed that 

injection in leeches of human cytokines and growth factors promote hematopoiesis, vascular 

growth, immune cell migration, and myofibroblast differentiation (Tettamanti et al. 2003b). 

Among these factors, AIF-1 and RNASET2 have recently been shown to play a pivotal role in 

the leech immune response and tissue repair (Drago et al. 2014; Schorn et al. 2015b; Baranzini 

et al. 2017). Indeed, expression of both factors is significantly increased following 

lipopolysaccharides (LPS) or bacterial infection in leeches. We have previously demonstrated 

that the injection in the leech body wall of LPS induces a massive migration of macrophages 

towards the stimulated area. These immune cells in turn express and produce AIF-1 and 

RNASET2, both involved in other macrophage recruitment (Schorn et al. 2015a; Baranzini et al. 

2017). 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Drawing representing a general view of leech body in cross section. Under the cuticle and epithelium, the muscle fibers and 

gut are visible, and between them a loose connective tissue containing the botryoidal and the vasofibrous tissue can be seen. 

Modified from Grimaldi et al. [55]. 
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Based on these previous studies, we demonstrate for the first time an interrelation 

between these two molecules, which orchestrate a functional cross talk between granulocytes 

and macrophages. In particular, we show that RNASET2 is firstly released by granulocytes to 

play an early antibacterial role. Subsequently, RNASET2 recruits AIF-1+ macrophages with 

phagocytic activities in order to potentiate the antibacterial inflammatory response. 

 

Materials and Methods 

Animals and Treatment 

Leeches (H. verbana, Annelida, Hirudinea, from Ricarimpex, Eysines, France) were kept in 

lightly salted water (NaCl 1.5 g/L) at 19–20°C in aerated tanks. Animals were randomly divided 

into separate experimental groups (5 individuals for each time point). Each injection was 

performed in the body wall at the level of the 20th metamere on leeches anesthetized by 

immersing them in a 10% ethanol solution. Treated and untreated (control) animals were 

anesthetized and then dissected to remove body wall tissues at specific time points. Samples 

were processed for optical and electron microscopy and immunofluorescence protocols. 

Animals were randomly split into three groups (5 individuals from each time point) and 

submitted to various protocols and treatments. 

Group 1. Unstimulated control or iso-osmotic PBS solution (138 mM NaCl, 2.7 mM KCl, 4.3 

mM Na2HPO4, 1.5 mM KH2PO4, pH 7.4)-injected leeches, to verify the normal and correct 

morphological information about the body organization and to demonstrate that both the 

saline solution and the injection did not induce any immune response. 

Group 2. T 30 min, T 1 h, T 3 h, T 6 h, T 24 h: samples injected with 100 μL sterilized PBS 

containing, respectively, 100 ng/mL LPS from Escherichia coli (Serotype 0111: B4, Sigma, St. 

Louis, MO, USA). 

Group 3. T 30 min: samples injected with a solution of PBS containing Pseudomonas 

aeruginosa PAO1 (expressing the green fluorescent protein [GFP]) alone or added with an anti-

RNASET2 antibody for functional blocking experiments. 
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Optical and Electron Microscopy 

Tissues were fixed for 2 h in 0.1 M cacodylate buffer at pH 7.4, containing 2% glutaraldehyde, 

washed in the same buffer and post-fixed for 1 h with 1% osmium tetroxide in cacodylate 

buffer, pH 7.4. After standard ethanol dehydration, specimens were embedded in an Epon-

Araldite 812 mixture (Sigma-Aldrich, Milan, Italy). Sections were obtained with a Reichert 

Ultracut S ultratome (Leica, Wien, Austria). Semi-thin sections (0.75 μm in thickness) were 

stained by crystal violet and basic fuchsin (Moore et al. 1960) and observed under the light 

microscope Nikon Eclipse Ni (Nikon, Tokyo, Japan). Data were recorded with a DS-5 M-L1 

digital camera system (Nikon). Ultrathin sections (80 nm) were placed on copper grids, stained 

by uranyl acetate and lead citrate and observed with a Jeol 1010 EX electron microscope (Jeol, 

Tokyo, Japan). Data were recorded with a MORADA digital camera system (Olympus, Tokyo, 

Japan). 

Western Blot Assays 

Tissues from injected and uninjected animals were immediately frozen in liquid nitrogen and 

then homogenized with a mortar. The homogenates were suspended in RIPA buffer (150 mM 

NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris-HCl, pH 8.0), at a 

concentration of 10 μL per mg of tissue, in the presence of a protease inhibitor cocktail (Sigma-

Aldrich). The particulate material was removed by centrifugation at 15,100 g for 10 min at 4°C 

in a refrigerated Eppendorf Minispin microcentrifuge (Hamburg, Germany). 30 µL of 

supernatants (40 µg/mL) containing total protein extract of 1 leech (in total 3 different animals 

were used for each treatment), were denatured at 100°C for 10 min and were loaded on 12% 

acrylamide minigels for SDS-PAGE analyses. Molecular weights were determined by 

concurrently running broad-range standards from Bio-Rad (Richmond, MA, USA). Proteins 

separated by SDS-PAGE were transferred onto Bio-Rad nitrocellulose filters. Membranes were 

then saturated with 5% non-fat dried milk in Tris-buffered saline (TBS; 20 mM TRIS-HCl buffer, 

500 mM NaCl, pH 7.5) at room temperature for 2 h and incubated for 90 min with a rabbit 

polyclonal anti-RNASET2 (Campomenosi et al. 2011) or an anti-HmAIF-1 (Drago et al. 2014) 

antibody (1:5,000 dilution in 5% TBS-milk). After three washes with TBS-Tween 0.1%, antigens 

were revealed with a secondary anti-rabbit IgG antibody conjugated to horseradish 

peroxidase (Jackson ImmunoResearch Laboratories), diluted at 1:5,000. Immunocomplexes 

were revealed with luminol LiteAblot PLUS Enhanced Chemiluminescent Substrate (Euro-
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Clone, Pero, Italy). In control experiments, anti-RNASET2 (Acquati et al. 2011, 2013) and anti-

HmAIF-1 (specific for medicinal leech macrophage (Drago et al. 2014; Schorn et al. 2015a)) 

antibodies were substituted with rabbit preimmune serum (1:20,000). Bands were normalized 

by using the ImageJ software package (http://rsbweb.nih.gov/ij/download.html), and the 

housekeeping protein D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH), used as an 

internal reference, was detected with a rabbit polyclonal anti-human GAPDH IgG (Proteintech, 

Chicago, IL, USA), diluted at 1:2,000. 

Immunohistochemistry 

Tissue samples were embedded in Polyfreeze tissue-freezing medium (OCT, Tebu-Bio, Le 

Perray-en-Yvelines, France/Poly- sciences, Eppelheim, Germany), immediately frozen in liquid 

nitrogen, and then kept at –80°C. Cryosections (7 µm) obtained with a cryotome (Leica 

CM1850) were collected on gelatinous slides and kept at 20°C. 

For double-labelling immunofluorescence assays, sections were rehydrated with PBS 1× 

for 10 min and then preincubated for 30 min with blocking solution (2% bovine serum albumin 

and 0.1% Tween20 in PBS) that block the nonspecific sites. The same blocking solution was 

used to dilute the following primary antibodies: rabbit anti-RNASET2 (1:100); goat anti-CD11b 

(Santa Cruz Biotechnology, CA, USA), known to react with leech granulocytes (de Eguileor et 

al. 2000b) (1:100); rabbit anti-HmAIF-1, (1:1,000). After several washes, specimens were 

incubated for 45 min with the following secondary antibodies (Abcam, Cambridge, UK): goat 

anti-rabbit Cy5 conjugated (excitation filter 650 nm, emission filter 672 nm), donkey anti-goat 

Cy5 conjugated, or donkey anti-rabbit fluorescein isocyanate (FITC)/conjugated (excitation 

filter 493 nm, emission filter 518 nm), all diluted at 1:200. Sections were treated with 1 mM 

CuSO4 in 50 nM ammonium acetate buffer (pH 5.0) for 15 min and then washed in distilled 

water and PBS for reducing tissue autofluorescence while preserving the specific 

fluorochrome signal (Schnell et al. 1999). In all control experiments, primary antibodies were 

substituted with rabbit preimmune serum (1:100) or were omitted, and sections were 

incubated only with the secondary antibodies. Nuclei were stained by incubating for 3 min 

with 4′,6-diamidino-2-phenylindole (DAPI; 0.1 mg/mL in PBS, excitation 340 nm, emission 488 

nm). The slides were examined with a Nikon fluorescence microscope. Images were combined 

with Adobe Photoshop (Adobe Systems, San Jose, CA, USA). 

 

http://rsbweb.nih.gov/ij/download.html
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Immunogold 

Samples were fixed for 2 h at 4°C with 4% paraformaldehyde and 0.5% glutaraldehyde in PBS, 

dehydrated in ethanol series and embedded in an Epon-Araldite 812 mixture (Sigma-Aldrich). 

Ultrathin sections, obtained as above, were collected on gold grids (300 mesh). After etching 

with NaOH 3% in absolute ethanol (Causton 1984), they were incubated for 30 min in blocking 

solution containing PBS, 1% bovine serum albumin, and 0.1% Tween and then with the 

polyclonal primary antibody rabbit anti-human RNASET2 diluted at 1:20 in blocking solution. 

After several washings with PBS, the primary antibody was visualized by immunostaining with 

the secondary goat anti-rabbit IgG (H+L)-gold conjugate antibody (GE Healthcare, Amersham, 

UK; particle size, 10 nm) diluted at 1: 100 in blocking solution for 1 h. In control experiments, 

the primary antibody was omitted or was substituted with the rabbit pre-immune serum 

(1:100), and sections were incubated with secondary antibody alone. After several washings 

with PBS, samples were treated for 5 min with PBS containing 0.5% glutaraldehyde, 

counterstained with uranyl acetate and observed under a Jeol 1010 EX transmission electron 

microscope (Jeol). 

Cell Culture Lines and Bacterial Strain Growth Conditions 

The human promonocytic THP-1 cell line (Auwerx 1991) was cultured in RPMI-1640 media, 

10% FBS, 1% glutamine. The silence RNASET2 THP-1 SH cell line was cultured in the same 

medium supplemented with 0.75 µg/mL puromycin. Both cell lines were maintained in a 

humidified incubator (37°C, 5% CO2). THP-1 cells were differentiated into macrophages by 

addition of 5 ng/mL phorbol 12-myristate 13-acetate for 48 h in MT12 wells at a concentration 

of 0.65 × 106 cells/mL. 

P. aeruginosa PAO1 (Stover et al. 2000) was transformed using the pivo (GFP) expression 

vector; a pJB3 KmD derivative, in which the GFP coding sequence was cloned under an 

arabinose inducible promoter (pAra). Both strains were grown overnight in LB medium (Sigma-

Aldrich) at 37°C under 200 rpm shaking. 

THP-1 and P. aeruginosa PAO1 Co-Cultures 

The medium of THP-1 cell cultures treated for 48 h with phorbol was changed and three 

washes were performed before the bacterial inoculum. P. aeruginosa PAO1 expressing GFP 

was induced for 30 min with arabinose 1 mM inoculum to THP-1 cell cultures. A sample of 
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PAO1 cells suspended in 50 mM phosphate buffer, pH 7.4 has been dispensed to THP-1 cells 

(500,000 cells/well) to reach a concentration equal to ∼107 CFU/mL. Upon 2 h co-culture at 

37°C, GFP expression was checked through fluorescence microscopy (488/525 nm, for FITC 

signals). Bacterial viability was checked through a plate count technique. A volume (0.1 or 0.01 

mL) of undiluted or serially diluted samples was plated on LB agar plates and incubated for 24 

h at 37°C. Viable counts were expressed as colony-forming units (CFU mL−1). 

Leech Infection 

Leeches were injected in the body wall, at the level of the 20th metamere, with 100 µL of PBS 

containing P. aeruginosa PAO1 expressing GFP at a concentration equal to 107 CFU/mL. For 

functional blocking experiments, animals were injected with a sample of bacterial culture 

treated with 1 µL of antibody anti-RNASET2 to inhibit the possible bactericidal activity of this 

enzyme. After 30 min, tissue samples were collected, embedded in Polyfreeze tissue-freezing 

medium (OCT) and immediately frozen in liquid nitrogen. Cryosections (7 µm) were 

counterstained with crystal violet and basic fuchsin for morphological analysis and with DAPI 

(0.1 mg/mL in PBS) to highlight bacterial chromosomal DNA. Specimens were then observed 

under a light optical microscope and fluorescence Nikon Eclipse Ni (Nikon, Japan). DAPI was 

visualized with excitation and emission filter 360/420 nm, and to evaluate bacterial GFP, 

excitation and emission filter 488/525 nm was used. 

Statistical Analysis 

The percentages of CD11b+/RNASET2+ cells were assessed by analyzing 5 different slides 

(random fields of 45,000 µm2 for each slide) for each experimental time point using the Image 

J software package. Cells in the chosen fields were counted by hand as macrophages if they 

were RNASET2+ FITC labelled (Baranzini et al. 2017) or as granulocytes if they were 

CD11b+/RNASET2+ (yellow labelled as a result of CY5/FITC double staining). Statistical analyses 

were performed using Statistica 7.0 software (StatSoft Inc., Tulsa, OK, USA), and differences 

were calculated by one-way ANOVA followed by Fisher’s post hoc test, and p < 0.05 was 

considered statistically significant. 
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RESULTS 

We have previously reported that AIF-1 and RNASET2 are significantly upregulated at 6 and 

24 h following LPS injection, and that this change in their expression is involved in leech 

macrophage recruitment (Schorn et al. 2015b; Baranzini et al. 2017). However, the underlying 

mechanisms by which these two factors operate are still poorly characterized. For instance, it 

is still not clear whether they display a different temporal expression profile during the earliest 

phases of the inflammatory response (30 min to 24 h) and what their specific role in the innate 

immune cell activation is. To address these issues, here we first carried out a morphological 

analysis on leech tissue sections from unlesioned and PBS- and LPS-injected leeches to better 

characterize the phenotype of the immune cells activated at different time points following 

LPS injection. Further, the temporal expression profile of AIF-1 and RNASET2 was evaluated 

by Western blot and immunohistochemistry. 

Morphological Analysis of Leech Tissues Injected with LPS 

The immune cell population recruited following LPS injection was characterized by both 

optical and ultrastructural analysis. Morphological examination of the body wall showed that, 

in both unlesioned (Fig. 2a) and control PBS-injected leeches (Fig. 2b), macrophages (Fig. 2c) 

and vasofibrous tissue (Fig. 2d) were poorly represented underneath the epithelium and 

among muscle fibers. Of note, the vasofibrous tissue was formed by vasocentral cells showing 

an electron-dense cytoplasm containing a few large granules and by vasofibrous cells 

characterized by a cytoplasm filled with several small highly electron-dense granules (Fig. 2d). 

As previously reported, following LPS stimulation the vasocentral and vasofibrous cells 

dissociated from each other (Huguet and Molinas 1994, 1996), and the vasofibrous cells gave 

rise to type I granulocytes (Grimaldi et al. 2011). Indeed, 30 min after LPS injection, several 

vasofibrous tissue cells crossing the thick muscle layers were readily recognizable by light 

microscopy due to their dark pigmentation (Fig. 2e). By transmission electron microscopy 

(TEM) analysis, vasofibrous cell-derived type I granulocytes (Grimaldi et al. 2011) were clearly 

recognizable underneath the epithelium and characterized by small round electron-dense 

granules (Fig. 2f). At 6 h following LPS injection (Fig. 3a– c), numerous type I granulocytes and 

macrophages were readily detected in the injected area in both connective tissue surrounding 

the muscle fibers and underneath the epithelial region. Macrophages were clearly 
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recognizable by their irregular membrane border, involved in the formation of pseudopodia 

(Fig. 3a–b1), a typical feature of cells engaged in active migration and phagocytosis. 

Significantly, ultrastructural TEM analysis also showed that recruited macrophages in LPS-

challenged areas were strictly associated with type I granulocytes (Fig. 3b1). Indeed, at 6 h 

following LPS stimulation, numerous macrophages were detected also underneath the 

epithelium close to type I granulocytes, characterized by a large nucleus and small electron-

dense granule-filled cytoplasm (Fig. 3d, c). Interestingly, some granulocytes apparently 

emptied of their granules were also present (Fig. 3e), suggesting that these cells were 

releasing antimicrobial and/or cytotoxic molecules from their granules in the extracellular 

environment, as already described for other invertebrates (Destoumieux et al. 2000; Otero-

Gonzalez et al. 2010). 
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Fig. 2. Morphological analysis of leech body wall at optical and TEM microscopes 30 min after PBS and LPS injection. Few 
resident macrophages (arrow) and vasofibrous tissue cells (arrowheads) are visible underneath the epithelium (e) or 
among the muscle fibres (m) in unlesioned (a) and in PBS-injected animals (b). Detailed TEM of macrophages (arrows 
in c) and of the vasofibrous tissue (d) surrounded by extracellular matrix (ECM) formed by vasocentral cell (vc), with 
cytoplasm containing a few granules, surrounded by vasofibrous cells (arrowheads), with a cytoplasm containing 
numerous small highly electron-dense granules. 30 min after LPS injection (e, f), numerous vasofibrous tissue cells are 
recognizable by their dark color (arrowheads in e) among muscle fibers and underneath the epithelium (e). f Detailed 
view of type I granulocytes (arrowheads) detached from vasocentral cells (vc) and next to resident macrophages (arrow) 
localized in the subepithelial region (e). Bars in a, b, e: 100 μm; bar in c, d: 2 μm; bar in f: 10 nm. 
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Fig. 3. Morphological analysis of leech body wall at optical and TEM microscopes 6 h after LPS injection. a, b Optical 
images show numerous macrophages (arrows) and type I granulocytes (arrowheads) underneath the epithelium (e) and 
localized in the extracellular matrix surrounding the muscle fibers (m). Ultrastructure TEM images show that 
macrophages (arrows in c) are characterized by pseudopodia (arrow in b1) and are in close contact with type I 
granulocytes (arrowheads in b1, c, and d), some of which are undergoing the degranulation process (e). n, nuclei. Bars 
in a, b: 20 μm; bar in b1: 2 μm; bar in c: 4 μm; bar in d, e: 2 μm. 

Western Blot Analysis of AIF-1 and RNASET2 in LPS-Injected Medicinal Leech 

In order to better characterize the temporal expression profiles of AIF-1 and RNASET2, 

Western blot assays were performed in LPS- and control PBS-injected leeches at different time 

points after treatment (30 min, 1, 3, 6, and 24 h) (Fig. 4a–f). Immunoblot analysis on protein 

extracts of tissue sections from control, PBS-injected areas confirmed the presence in leech 

tissues of an AIF-1-immunoreactive band at about 18 kDa, corresponding to the expected 

molecular weight for this protein (Schorn et al. 2015a), and of two main RNASET2-

immunoreactive bands of approximately 36 kDa (the known secreted form) and 29 kDa (a 

known intracellular form especially visible only in a subset of the tested samples), respectively 
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(Campomenosi et al. 2006; Baranzini et al. 2017). 

Strikingly, in the protein extracts from LPS-injected tissue areas, not only did the amount 

of both proteins increase significantly, their expression profile turned out to be quite different 

as well (Fig. 4c, d). In particular, AIF-1 expression was highly increased from the earliest phases 

of LPS-mediated inflammation (30 min), and then it slightly decreased up to 24 h after 

treatment. Interestingly, the trend for RNASET2 expression following LPS injection was quite 

different, since this protein showed two distinct peaks of expression, at 30 min and 6 h from 

stimulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. AIF-1 and RNASET2 Western blot analysis. Proteins extracted from 3 PBS- and LPS-injected leeches and probed 

with anti-HmAIF-1 (a) and anti-RNASET2 (b) antibodies. The housekeeping protein D-glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) was used as a loading control, and band intensity appeared to be similar in each loaded sample. 

The anti-HmAIF-1 antibody detected a specific immunoreactive band of about 18 kDa, while two bands of approximately 

36 kDa (the extracellular form) and 29 kDa (the intracellular form) were detected by the anti-RNASET2 antibody. c, d 

The levels of expression were quantified by densitometry using the Image J software package, and the obtained graphs 

show the level of expression of the two factors. d The graphic is based on the RNASET2 extracellular form. The individual 

signals from each lane have been cropped from larger digital images, which are available as supplementary information 

(see www.karger.com/doi/ 10.1159/000493804 for all supplementary material). Statistical differences were calculated 

by one-way ANOVA followed by Tukey’s post hoc test, and p < 0.05 was considered statistically significant (between PBS and 

LPS treatments). Means with different letters indicate significant difference between PBS and LPS treatments at 

different times. Experiments were performed in triplicate, and data represent mean values ±SEM. Statistical analyses 

were performed using Statistica 7.0 software (Stat-Soft Inc., Tulsa, OK, USA), and differences were calculated by one-way 

ANOVA followed by Fisher’s post hoc test, and p < 0.05 was considered statistically significant. 

http://www.karger.com/doi/
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AIF-1 and RNASET2 Tissue Localization 

The expression profile of AIF-1 and RNASET2 was also analyzed by double 

immunofluorescence staining, using both anti-HmAIF-1 and anti-RNASET2 polyclonal 

antibodies on cryosections obtained from unlesioned and PBS-injected leeches (Fig. 5a–c1) 

compared to LPS-challenged leeches (Fig. 5d–i1). 

As previously demonstrated (Schorn et al. 2015b; Baranzini et al. 2017), double 

immunofluorescence assays confirmed that the two proteins are constitutively expressed in 

unlesioned (Fig. 5a) and in PBS-injected animals (Fig. 5b). However, the signal intensity 

detected for both proteins significantly changed following injection with LPS. In general, the 

number of cells positive for both AIF-1 and RNASET2 significantly increased following LPS 

injection, although AIF-1–/RNASET2+ cells were also detected at specific time points. In 

particular, several AIF-1+/RNASET2+ cells were detected at 30 min and 1, 3, 6, and 24 h after 

treatment (Fig. 5d–h), whereas AIF-1–/RNASET2+ cells were mainly observed at 30 min and 6 

h after treatment (Fig. 5d, g), in keeping with the observed pattern of RNASET2 expression 

shown by Western blot analysis. No signal was detected in negative control experiments in 

which primary antibodies were substituted with blocking solution (Fig. 5c, i) or preimmune 

serum (Fig. 5c1, i1). 

These data suggested that, besides macrophages, other types of immune cells were 

expressing RNASET2, and based on morphological analysis, we hypothesized that these AIF-1–

/RNASET2+ cells might represent type I granulocytes. 
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Fig. 5.Immunofluorescence analyses. Immunofluorescence assays (a–h) of leech body wall sections. In unlesioned (a) 

and PBS-injected animals (b), a few cells located close to the epithelium (e) and among muscle fibers (m) are visible and 

express HmAIF-1 (in red) and RNASET2 (in green), whereas after LPS injection several migrating immune responsive 

cells are visible in the epithelial region and among muscles (m) (d–h). No signal is detected in negative control 

experiments in which the primary antibodies were omitted (c, i) or substituted by preimmune serum (c1, i1). Cell nuclei 

stained blue by treatment with DAPI. Bars: 100 μm. 
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Immunophenotype Characterization of LPS-Induced Migrating Immune Cell Populations 

To further characterize the AIF+/RNASET2+ and AIF–/RNASET2+ cell populations recruited to 

LPS-challenged areas, we performed double-staining experiments using an anti-CD11b 

antibody to detect leech granulocytes (de Eguileor et al. 2000b), and an anti-RNASET2 

antibody. The experiments showed that, 30 min (Fig. 6a–c) and 6 h (Fig. 6d, e) following LPS 

stimulation, both CD11b+/RNASET2+ and CD11b–/RNASET2+ cells gathered at the injection 

area and were mainly localized underneath the epithelium (Fig. 6a, d) and among the muscle 

fibers (Fig. 6d, e). Interestingly, cell counting performed on five representative images of 

CD11b+ cells at each time lapse showed that CD11b+/RNASET2+ granulocytes and CD11b–

/RNASET2+ macrophage cell numbers were differently distributed during the different phases 

of the inflammatory response. Indeed, the number of granulocytes largely increased just 30 

min following stimulation, remained high at 6 h and then decreased and returned to a baseline 

level at 24 h from stimulation. By contrast, the number of infiltrating macrophages was lower 

than that of granulocytes in the early inflammatory phase, but it grew gradually in later phases 

to reach a peak at 6 h from stimulation. 

The presence of RNASET2 in CD11b+/RNASET2+ leech granulocytes was also confirmed 

by immunogold staining in LPS-challenged leeches at 30 min (Fig. 7a–c). Strikingly, electron 

microscope analysis clearly showed the presence of RNASET2-positive gold particles 

specifically localized in the granules of these cells (Fig. 7b). No gold particles were detected in 

control experiments in which the primary antibody was omitted (Fig. 7c) or substituted with 

preimmune serum (Fig. 7d). Besides confirming the expression of RNASET2 in granulocytes, 

these data also demonstrated that this enzyme was stored in their granules. 
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Fig. 6. Double immunolocalization of RNASET2 and CD11b or RNASET2 and HmAIF-1 in animals 30 min and 6 h following 
LPS injection. Numerous RNASET2+/CD11b+ type I granulocytes (yellow in a, b) and RNASET2+/HmAIF-1+ macrophages 
(yellow in d, e) migrating towards the injected area are visible under the epithelium (e) and among the muscle fibers 
(m). Double immunostaining was performed with anti-RNASET2 (green) anti-CD11b or anti HmAIF-1 (red). c, f. No signal 
was detected in negative control experiments in which the primary antibodies were omitted. Cell nuclei stained blue 
by treatment with DAPI. Bars: 50 μm. g The percentages of granulocytes (RNASET2+/CD11b+) and of macrophages 
(RNASET2+/CD11b–) were assessed by analyzing 5 different slides (10 random fields of 45,000 μm2 for each slide) using 
the Image J software package. Statistical differences were calculated by factorial ANOVA followed by Tukey’s post hoc 
test, and p < 0.05 was considered statistically significant (between PBS- and LPS- challenged leeches). Means with 
different letters indicate significant difference between the number of granulocytes and macrophages in untreated 
animals. 
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Fig. 7. Immunogold staining of RNASET2. Type I granulocytes (arrowhead in a) present in the extracellular matrix 

(ECM). b Detailed TEM showing the localization of gold particles in the granules (arrows). c, d Negative controls. Bar in 

a: 2.5 μm; bars in b, c, d: 300 nm. 

Evaluation of the Antibacterial Effect of RNASET2 

The RNASET2 localization pattern in the electron-dense granules of granulocytes prompted us 

to investigate whether this enzyme could directly or indirectly affect bacterial viability. To 

better evaluate this hypothesis, an in vitro eukaryotic-prokaryotic co-culture was set up.  

The human monocytic leukemia-derived cell line (THP-1) was committed to differentiate 

into macrophage-like cells following treatment with phorbol esters, thus mimicking native 

monocyte-derived macrophages. We chose this experimental system because differentiated 

THP-1 cells represent a well-established model of in vitro macrophage differentiation when 

compared to other human myeloid cell lines (Auwerx 1991). In our co-culture assay, THP-1 

cells, which normally express and secrete high endogenous RNASET2 levels [Scaldaferri et al., 

submitted], were compared to their RNASET2-silenced counterpart (Fig. 8a–d) in the presence 

of the GFP-expressing PAO1 P. aeruginosa strain described in the Materials and Methods 
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section.  

Upon a 2-h co-culture at 37°C, bacteria cell integrity was checked by evaluating the GFP 

expression by fluorescence microscopy. Strikingly, the rod-like morphology of P. aeruginosa 

PAO1 cells co-cultured with parental RNASET2-expressing THP-1 cells could be hardly 

perceived and the GFP fluorescence signal appeared largely scattered, suggesting a bacterial 

stressful condition (Fig. 8a, c). By contrast, P. aeruginosa PAO1 cells co-cultured with 

RNASET2-silenced THP-1 cells maintained their cellular typical rod morphology (Fig. 8b, d). 

Bacterial viability has also been checked in both co-cultures with parental and RNASET2-

silenced THP-1 cells, but no significant difference was observed after 2 h from the inoculum 

(∼ 107 CFU/ml). Based on these results, GFP-expressing P. aeruginosa PAO1 cells were directly 

injected into the leech body wall (Fig. 8e–j) to evaluate the in vivo effects of leech RNASET2 

on bacterial viability. The microorganisms were injected with and without a neutralizing anti-

RNASET2 antibody, which does not induce an inflammatory response but functionally inhibits 

the endogenous leech RNASET2 protein function (Baranzini et al. 2017). Leeches were 

sacrificed 30 min after infection, the time point at which a high expression of RNASET2 was 

correlated with a high number of granulocytes, and tissue sections were examined by optical 

and fluorescence microscopy. Strikingly, in vivo antibody-mediated blocking of the RNASET2 

protein was associated with the observation of apparently undamaged bacteria, forming 

clusters in the connective tissue of the infected animals (Fig. 8e). These bacteria showed the 

typical rod shape easily recognizable by GFP (Fig. 8f) and DAPI (Fig. 8g) signals, respectively. 

By contrast, in leech infected in the absence of neutralizing anti-RNASET2 antibody, no 

bacterial clusters were observed in the tissues (Fig. 8h) and a diffused GFP signal was 

detectable. Only a few intact bacteria were recognizable (Fig. 8i, j). These results support a 

possible RNASET2-mediated bacterial cell wall damage or a failure in expression machinery 

given that the GFP signal was not associated with bacteria cells. 

Collectively, these data support our hypothesis that the RNASET2 protein might play an 

antimicrobial role. 
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Fig. 8. In vitro and in vivo analysis. P. aeruginosa PAO1 cells  expressing GFP and co-cultured with RNASET2 silenced THP-
1 cells (b, d, and inset) maintained their typical rod morphology, and GFP signal was localized inside the bacteria. On 
the other hand, in the presence of THP-1 expressing RNASET2 cells (a, c, and inset), GFP signal is widespread, indicating 
the PAO1 are in a stressful condition. Cryosection of leech body wall injected with GFP/PAO1 cells and an antibody anti-
RNASET2 (e–g) or injected with GFP/PAO1 alone (h–j). e Violet and fuchsin staining shows the presence of bacteria 
agglomerates. GFP (f) and DAPI (g) signals highlight the characteristic rod shape of these bacteria. In absence of the 
functional blocking antibody anti-RNASET2, no bacteria are visible (h), and GFP (i) and DAPI (j) show a diffuse staining. 
The squares in e, h indicate the magnified areas of f, g, i, j. a,b. The merge of fluorescent channel with transmission 
image shows the position of bacteria with respect to eukaryotic cells. Bars in a–d: 15 μm; bars in e–j: 4 μm. 
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DISCUSSION 

Several experimental reports have demonstrated a remarkable resemblance and evolutionary 

conservation of both the cell types and the underlying pathways by which Hirudinea and 

vertebrates trigger the inflammatory and immune response processes (Grimaldi et al. 2006; 

Grimaldi 2016). Hirudinea are continuously exposed to attack and invasion from potential 

pathogens such as microorganisms or parasites (Silver et al. 2007). In order to deal with this 

constant threat, they are endowed with several effective strategies to recognize and destroy 

“not-self” molecules or microorganisms. Indeed, bacterial infections, wounds or allografts 

activate a complex defense response in leeches, including proliferation and migration towards 

the stimulated area of immunocompetent cells involved in phagocytosis, encapsulation of not-

self agents, angiogenesis, fibroplasia, and reshaping of scar tissues (de Eguileor et al. 1999a, 

2000b, a; Tettamanti et al. 2005). As mentioned above, these processes involve cellular 

mechanisms and key effector molecules that proved to be very similar to those deployed by 

vertebrates. Due to these remarkable similarities to vertebrates in inflammatory response and 

tissue repairing, medicinal leeches belonging to the Hirudo genus are thus increasingly 

exploited as an emerging, cost-effective, and valuable experimental model to investigate the 

mechanisms that underlie these biological processes (Grimaldi et al. 2006; Grimaldi 2016). 

Within this frame, recent studies from our laboratories, focused on functional analyses 

of the immunomodulatory AIF-1 and RNASET2 proteins, allowed us to investigate the 

biological role played by these factors in the activation of the innate immune system in this 

animal model. 

The allograft factor 1 (AIF-1) protein, a novel cytokine-like molecule involved in 

immunocyte recruitment into injured/grafted or infected tissues both in vertebrates (Kuschel 

et al. 2000; Deininger et al. 2000; Watano et al. 2001) and invertebrates (Kruse et al. 1999; 

Zhang et al. 2011; Ovando et al. 2012; Li et al. 2013), has recently been characterized in leech 

by our research group. Indeed, a gene showing high similarity with vertebrates’ AIF-1, named 

HmIba1/alias HmAIF-1, has been recently characterized in the central nervous system of the 

medicinal leech (Drago et al. 2014). Of note, the expression of AIF-1 in leech has been reported 

to increase significantly after transplantation, wound healing, or bacterial infections, 

suggesting its involvement in the inflammatory response and in immune system regulation. 

Strikingly, immunohistochemical assays with an anti-HmAIF-1 polyclonal antibody revealed 
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the presence of this protein in leech macrophage-like cells. Moreover, recombinant AIF-1 was 

shown to induce a massive migration of CD45+/CD68+ macrophages towards infected of 

injured tissues (Schorn et al. 2015a). 

In our previous work, a chemotactic role of leech cells belonging to the monocyte-

macrophage lineage cells has been observed for RNASET2 as well. Indeed, injection of human 

recombinant RNASET2 in leeches induced a massive migration of macrophage-like cells 

towards the stimulated area, and endogenous RNASET2 was found to be expressed in leech’s 

macrophages as well. 

Although these previous data strongly implicate both AIF-1 and RNASET2 as evolutionary 

conserved mediators of the innate immune response, the specific mechanisms by which they 

regulate innate immune cells functions and that define their specific roles in inflammation and 

innate immune response activation remain largely unexplored. Our preliminary data strongly 

suggested that both molecules seem to play a similar role in the early stages of the 

inflammatory response but could also take part in later events that activate the immune 

response stimulating macrophage migration. However, neither the precise timing of action of 

both factors during the inflammatory response nor their putative functional interactions have 

been investigated so far. 

Here, we provide further experimental evidence supporting a critical role of both factors 

in orchestrating a highly coordinated response against pathogen infection in medicinal 

leeches. To shed more light on these issues, we first analyzed the in vivo expression levels of 

both AIF-1 and RNASET2 in tissues from LPS-injected leeches by immunoblot analysis at 

different times after treatment. This allowed us not only to confirm that AIF-1 and RNASET2 

are both activated in the early inflammatory events, but also to unveil a peculiar temporal 

expression profile for these two cytokines. Since medicinal leeches present a very fast 

inflammatory response (de Eguileor et al. 2000a, 2001a), we decided to investigate the 

temporal expression profiles of both proteins at 30 min and 1, 3, 6, and 24 h following LPS 

injection. Quantitative analyses of the data clearly showed that, whereas AIF-1 and RNASET2 

were constitutively expressed at low basal level in healthy animals, LPS injection produced a 

marked change in their expression profile over time. In particular, AIF-1 expression 

significantly increased in the earliest phases of inflammation, followed by a slow but steady 

decline up to 24 h. By contrast, RNASET2 expression significantly peaked at 30 min and 6 h 

after treatment. 
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In medicinal leeches, LPS injection is known to induce a massive migration and activation 

of immunocompetent cells, which are mainly localized in the connective tissue and near the 

body wall epithelium (Schorn et al. 2015b; Baranzini et al. 2017). Double immunofluorescence 

experiments of LPS-injected leeches showed a massive recruitment of both CD11b+/RNASET2+ 

granulocytes and AIF-1+/RNASET2+ macrophages underneath the epithelium and near the 

muscular fibers, with a signal specificity for each antibody in keeping with the data obtained 

by the previous Western blot analysis. By contrast, control samples analyzed following PBS 

injection showed a tissue architecture similar to unlesioned animals, indicating that neither 

the mechanical stress induced by injection nor the vehicle solution alone could significantly 

affect AIF-1 or RNASET2 expression. 

Taken together, the observed AIF-1 and RNASET2 expression pattern clearly suggests 

the involvement of both proteins in the early inflammatory processes of H. verbana. 

Moreover, the expression of RNASET2 by granulocytes, which to our knowledge has not 

been reported before, prompted us to evaluate the possible involvement of leech 

granulocytes in RNASET2 production and secretion. Our optical, ultrastructural, and 

immunohistochemical analyses of LPS-injected leeches confirmed that CD11b+/RNASET2+ 

granulocytes, representing the first immunocompetent cells that are activated to trigger a 

defense response against microbial infections, are early recruited at the site of LPS injection. 

Moreover, RNASET2 turned out to be specifically confined in the granules of these cells, 

suggesting a possible antibacterial role of this protein. It is important to stress that several 

ribonucleases are known to be endowed with a strong antibacterial activity such as the RNASE 

A superfamily members RNase 3, 6, 7, and 8, whose antibacterial activity has been associated 

with disruption of the bacterial membrane (Nitto et al. 2006; Pizzo et al. 2008). In fact, these 

enzymes display a strong affinity for LPS of Gram-negative bacteria, take contact with the 

bacterial cellular membrane and subsequently destabilize the phospholipid double layer, 

finally triggering the agglutination and depolarization of the bacterial membrane (Torrent et 

al. 2010; Pulido et al. 2013). Interestingly, several members of this RNase superfamily are 

often expressed in different types of immune cells (Gupta et al. 2013). For instance, 

EDN/RNase2 and ECP/RNase3 have been detected in the secondary granules of eosinophils 

(Shamri et al. 2011), whereas Rnase2 and RNase3 represent two actively secreted proteins 

that were found in the granules of these cells during an inflammatory response (Koczera et 

al. 2016). 
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Following the detection of RNASET2 in the granules of RNASET2+/CD11b+ cells in LPS-

challenged leeches, we set up in vitro and in vivo assays to evaluate the ability of Hirudo 

RNASET2 to affect P. aeruginosa PAO1 integrity. Strikingly, both assays strongly suggested that 

RNASET2 affects bacterial integrity. Although several antimicrobial peptides produced by 

medicinal leech have been described (Schikorski et al. 2008; Tasiemski and Salzet 2017), to 

our knowledge, this is the first report of the occurrence of an antibacterial activity of a 

ribonuclease protein in this animal model. The expression of RNASET2 seemed not to interfere 

with bacterial viability as outlined from viability assay in co-cultures. However, P. aeruginosa 

co-cultured with parental THP-1 cells released in the extracellular environment the GFP, 

suggesting a modification of membrane permeability. Although GFP release was apparently 

not able to influence cellular viability under the tested conditions, it could nevertheless 

represent the first part of a multistep in vivo antimicrobial response involving other immune 

system cells. The observed release of the GFP in both in vitro co-cultures and in vivo could 

therefore be attributed to the direct effect of RNase T2 on the bacterial envelope. For 

instance, the cationic residues of RNASET2 could bind to the anionic bacterial membrane to 

induce cell death (Pizzo et al. 2008). However, an indirect antimicrobial effect of RNase T2 

cannot be ruled out, and further investigations are needed to shed light on both hypothesized 

antimicrobial mechanisms. 

Collectively, these results suggest that the innate immune response could be activated 

and modulated in medicinal leeches by the establishment of an AIF-1/RNASET2-mediated 

cross talk involving the recruitment and activation of granulocytes and macrophages, 

resulting in an effective defense against bacterial infections. 

Thus, we can envisage an early inflammatory response in leeches, where both residents, 

LPS-activated AIF-1+ macrophages, and CD11b+ LPS-recruited granulocytes actively produce 

and secrete RNASET2, whose effect is to send an alarm signal to nearby healthy tissue in order 

to recruit further innate immune cells and at the same time to carry out a direct antibacterial 

activity. 

Moreover, the AIF-1 protein actively secreted by LPS-activated, resident macrophages 

contributes to immune cell recruitment as well (Schorn et al. 2015b, a). At later stages (6 h 

after treatment), a second boost of RNASET2 expression ensues to maintain the inflammatory 

state by means of recruitment of further macrophages (as shown by the resumed AIF-1 

expression detected by Western blot analysis at 24 h) in order to clean the infected area from 
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bacterial debris.  

CONCLUSION AND FUTURE PERSPECTIVES 

Taken together, our data strongly suggest that, in addition to the well-established role of AIF-

1 in triggering the innate immune response, the early phase of the inflammatory response in 

leeches is characterized by the contemporary release of RNASET2 and AIF-1 from 

immunocompetent cells, which might carry out different but complementary roles, namely 

bacterial killing and further innate immune cell recruitment. Moreover, at later stages of 

infection, RNASET2 might act mainly as a chemokine in order to attract new macrophages 

(which in turn produce RNASET2 by themselves) to further strengthen the inflammatory state 

(as schematically shown in Fig. 9). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Representation to explain the different but complementary roles of RNASET2 and AIF-1 in early inflammatory 
response. 30 min after LPS stimulation, activated granulocytes secrete RNASET2, whose first effect is to carry out a 
direct antibacterial activity. In parallel, LPS-activated macrophages release AIF-1 in order to recruit other macrophages. 
These cells, releasing RNASET2, maintain the inflammatory state by recruiting other macrophages involved in cleaning 
the infected area from bacterial debris 

Such dual role (antibacterial activity and innate immunity stimulation) played by 

RNASET2 represents a further demonstration of the pleiotropic role carried out by this class 

of ancient, evolutionary conserved ribonucleases. To confirm the evolutionary conserved 

function of RNASET2 in regulating the innate immune response, the role of the H. verbana 

RNASET2 gene in the response to bacterial infection will be investigated as well following the 

cloning of the corresponding gene’s coding sequence. Moreover, we are currently 

implementing experimental protocols for endogenous RNASET2 gene knockdown in leeches, 
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in order to develop functional assays aimed to further dissect the role of RNASET2 in 

inflammatory response. 
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ABSTRACT 

The innate immune response represents a first-line defense against pathogen infection that has been 

widely conserved throughout evolution. Using the invertebrate Hirudo verbana (Annelida, Hirudinea) 

as an experimental model, we show here that the RNASET2 ribonuclease is directly involved in the 

immune response against Gram-positive bacteria. Injection of lipoteicoic acid (LTA), a key component 

of Gram-positive bacteria cell wall, into the leech body wall induced a massive migration of 

granulocytes and macrophages expressing TLR2 (the key receptor involved in the response to Gram-

positive bacteria) towards the challenged inoculated. We hypothesized that the endogenous leech 

RNASET2 protein (HvRNASET2) might be involved in the antimicrobial response, as already described 

for other vertebrate ribonucleases, such as RNase3 and RNase7. In support of our hypothesis, 

HvRNASET2 was mainly localized in the granules of granulocytes and its release in the extracellular 

matrix triggered the recruitment of macrophages towards the area stimulated with LTA. The activity 

of HvRNASET2 was also evaluated on Staphylococcus aureus living cells by means of light, transmission 

and scanning electron microscopy analysis. HvRNASET2 formed S. aureus clumps following a direct 

interaction with the bacterial cell wall, as demonstrated by immunogold assay. Taken together, our 

data support the notion that, during the early phase of leech immune response, granulocytes-released 

HvRNASET2 triggers bacterial clumps formation and, at the same time, actively recruits phagocytic 

macrophages in order to elicit a rapid and effective eradication of the infecting microorganisms from 

inoculated area. 
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INTRODUCTION 

The RNases T2 family is represented by extracellular ribonucleolytic enzymes that act at an 

optimal pH of about 4.0-5.0 and have been found variously distributed throughout taxa, from 

viruses to higher eukaryotes (1). Strikingly, despite their highly conserved biochemical and 

structural features, T2 RNase from different organisms show a marked pleiotropic nature, 

being involved in an impressive range of biological functions, often related to stress response 

and host defense (1,2).  

Indeed, T2 RNases have acquired throughout evolution a range of biological functions, 

such as control of cell senescence (3), induction of oxidative stress-mediated apoptosis (4), 

cytotoxicity (5) regulation of cell motility/migration by cytoskeletal reassembly (6), 

modulation of angiogenesis (7), regulation of self-incompatibility in plants (8,9) and tumor 

suppression (10). In addition, T2 RNases in plants counteract harmful agents to protect 

germinal seeds from different type of pathogens, such as virus or bacteria (11).  

The pleiotropic roles of T2 RNase are further suggested by the observation that several 

biological processes regulated by members of this enzyme family do not depend by their 

catalytic activity (1). Moreover, besides extracellular compartments T2 ribonucleases have 

been reported in cytoplasmic vacuoles, lysosomes, P-bodies and mitochondria (6,12–14), 

further arguing in support to their involvement in wide range of key biological processes.  

Recently, our group begun investigating the role of T2 RNases in the medicinal leech 

Hirudo verbana, in order to better define the host defense role of this class of proteins in an 

invertebrate model showing a very simple anatomy, coupled to a marked similarity with 

vertebrates concerning the cellular and molecular effectors involved in inflammatory 

processes (15). Noteworthy, we were able to confirm the pro-inflammatory role of T2 RNases 

in this invertebrate model, carried out by means of recruitment and activation of cells from 

the monocyte/macrophage lineage, as previously defined in mammalian experimental models 

(10). This finding clearly suggests that stimulation of innate immunity-mediated host defense 

represents a key evolutionarily conserved role for T2 ribonucleases (16,17).  

Furthermore, we found preliminary experimental evidence in support of a putative role 

for T2 RNases in host defense against bacterial infections as well, since lipopolysaccharide 

(LPS) injection into the leech body wall triggered a marked increase in the expression levels of 
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endogenous RNASET2 protein in both host macrophages and granulocytes and recombinant 

RNASET2 was apparently able to affect bacterial cell integrity in vivo (16,17).  

Although the molecular mechanisms by which T2 enzymes from plants and medicinal 

leech act in the antimicrobial process are still unknown, this ability is reminiscent to that 

previously described for some members of the RNase A superfamily which, unlike T2 RNases, 

has been described only in vertebrates (18). For instance, the class A human RNase3 protein, 

also called eosinophil cationic protein (ECP) (19), acts as a strong eosinophils-mediated 

antimicrobial protein or peptide (AMPs) independently from its ribonucleolytic activity (20). 

ECP is released during eosinophil activation from the inner secondary cytoplasmatic granules 

to the extracellular environment and, after specific interaction with bacterial cells, it 

permeabilizes their external membranes in order to disrupt them (21–23). ECP is active against 

different types of bacteria (24) and shows a high affinity to lipopolysaccharides (LPS), a 

component of the outer membrane of Gram-negative bacteria. By binding to bacterial cell 

membranes and subsequent destabilizing them, ECP shows a carpet-like anti- bacterial 

mechanism which recalls many host defense antimicrobial proteins or peptides (20). In 

addition, its N-terminal region induces the formation of bacterial clumps, thus promoting a 

systematic elimination by immune cells (25).  

Other class A ribonucleases, such as RNase 2 and RNase 7, act as “alarmins”, molecules 

passively released by necrotic cells or actively secreted by immune or epithelial cells in order 

to signal to the innate and adaptive immune system the occurrence of a wide range of 

dangerous events, such as those occurring during pathogen infection or tumor progression. 

As such, alarmins promote inflammatory responses, usually mediated by Toll-like receptors 

family members (TLRs) (26,27). Among TLRs, TLR2 and TLR4 represent the most significant 

group of PRRs (Pattern Recognition Receptors), which are evolutionary conserved both in 

vertebrate and in invertebrate species (28–30) and are expressed by immune cell membranes. 

These receptors mediate the recognition of conserved biomolecules known as Pathogen-

Associated Molecular Patterns (PAMPs), such as lipoteichoic acid (LTA) and lipopolysaccharide 

(LPS), which are normally displayed in the external membrane of Gram-positive and Gram-

negative bacteria, respectively. Noteworthy, human RNASET2 has also been suggested to act 

as an alarmin, being actively release under a wide range of stressful conditions (4,6,31).  

Starting from these assumptions, using H. verbana as an experimental model to gain 

more insights into the role of RNASET2 as a host defense protein, we have confirmed and 
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characterized the antimicrobial action of RNASET2 against Gram-positive bacteria in both in 

vivo and in vitro experimental settings. 

 

MATERIALS AND METHODS 

Hirudo verbana recombinant rHvRNASET2: cloning and expression 

The mRNA sequence of H. verbana RNASET2 was obtained from an in silico leech 

transcriptome database (http://genomes.sdsc.edu/leechmaster/database/) (32): the >EN-

124k-90-group2043 coding the full sequence was selected. In parallel, mRNA extraction from 

the leech body wall was performed and the sample was treated with DNase (Turbo DNA-

freeTM Kit- Invitrogen) to remove all DNA traces. After reverse transcription with oligo dT 

(High-Capacity cDNA Reverse Transcription Kit - Applied Biosystems™), different couples of 

primers were used resulting in a partial amplifications of the coding sequence. Therefore, an 

overlap extension PCR was performed to obtain the full coding sequence of HvRNASET2. The 

primers used in the first two PCR amplifications were: 

First sample: Fw: 5’-CGTAGAATTCAAGTAATTAAATCTGATTCGGAGTG-3’ (fw1-e); Rev: 5’ 

ATATTGCAGTGGTTCATTACGTGGA 3’. 

Second sample: Fw: 5’ TCCACGTAATGAACCACTGCAATAT 3’; Rev: 5’ 

CGTAGAATTCTGTGTAAAAGGGAATATTAGATCAAG 3’ (rev7-e). 

 Both the products were used as template in a third PCR performed using the external primers 

(fw1-e+ rev7-e - the underlined bases represent restriction site for EcoRI). After digestion with 

EcoRI, the product was cloned in pBluescript.  

Subsequently, the leech HvRNASET2 coding sequence (BankIt2095553 Hirudo MH325331) was 

amplified without the predicted signal for secretion, using the following primers: 

5’ CGTAGAATTCAGGCCTCTGAAGGAAGAATT 3’; 5’ CGTATCTAGACCTGAGTTTGAATGAATTTGGTT 

3’ as forward and reverse primer, respectively (the underlined sequences represent restriction 

sites for EcoRI and XbaI). After digestion with EcoRI and XbaI, the product was cloned into the 

pPICZαA expression vector for heterologous expression in the yeast Pichia pastoris, as 

previously described (33). To introduce a 6XHIS tag at the N-terminus of the protein, a useful 

sequence for protein purification, the pPICZαA-HvRNASET2 construct was digested at EcoRI 

site. The tag was introduced by amplification using the following primer pair (as an insert): 
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5’ AATTCCATCACCACCATCATCACG 3’;  5’ AATTCGTGATGATGGTGGTGATGG 3’. 

Recombinant DNA was purified from several clones and, after control sequencing (BMR, 

Padova, Italy), the pPICZαA-HvRNASET2 expression vector was used to transform the X33 P. 

pastoris strain. Briefly, the RNASET2-coding construct was linearized within the 3'AOX region 

with PmeI restriction enzyme and transformed into yeast with the lithium chloride method 

(34). The methanol utilization test was carried out as a control to verify the correct yeast 

phenotype. 

Subsequently, a selected clone was inoculated into 50 mL of BMGY medium (BMGY/BMMY: 

1% yeast extract, 2% bactopeptone, 1.34% yeast nitrogen base, 4x10-5% biotin and either 1% 

glycerol or 0.5% methanol). Cultures were grown at 30 °C overnight until they reached an 

Optical Density at 600 nm (OD600) between 2 and 6. After centrifugation, cell pellets were 

resuspended in 1.3 L BMMY at a starting OD600 of 1 for induction of protein expression. Every 

day (for 7 days) fresh methanol (with a final concentration of 0.5%) was added to cultures. 

Purification of the recombinant rHvRNASET2 

The supernatant was concentrated by ultrafiltration using an Amicon stirred cell (Merk 

Millipore) equipped with a 10-kDa membrane to a final volume of 40 mL, and extensively 

dialyzed against 20 mM sodium phosphate, 150 mM NaCl, pH 7.5. The sample was added of 

NaCl up to 1 M final concentration and the protein was purified using a HiTrap chelating 

affinity column (5 mL) (GE Healthcare) previously loaded with 100 mM NiCl2 and equilibrated 

with 20 mM sodium phosphate, 1 M NaCl, pH 7.5. The column was washed with this buffer 

until the absorbance value at 280 nm was that of the buffer. rHvRNASET2 was eluted with the 

same buffer added of 100 mM imidazole; the fractions were equilibrated with 20 mM sodium 

phosphate, 150 mM NaCl, pH 7.5 by a gel- permeation chromatography (PD10 column, GE 

Healthcare). The amount of protein was determined by using the absorbance intensity at 280 

nm and a molar extinction coefficient of 66 mM−1 cm−1 (6). The recombinant rHvRNASET2 was 

isolated as a single band at ≈ 36 kDa with >90% purity as judged by SDS-PAGE analysis: ≈ 3.5 

mg of purified enzyme per L of fermentation broth were obtained. 

Endotoxin removal 

Endotoxins were removed from the purified protein according to the procedure reported in 

(35). Briefly, the protein sample was added of 1% Triton X-114, incubated at 4°C for 30 min 
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and then at 37°C for 10 min, and finally centrifuged at 16,000 g for 15 min, at RT. The 

supernatant was recovered and all the steps were repeated two times, plus a final step 

without Triton X-114. The removal of endotoxins was assessed with a LAL test (PYROGENTTM 

Gel Clot LAL Assay – LONZA). 

Animals and treatments 

Adult leeches (Hirudo verbana, Annelida, Hirudinea, from Ricarimpex, Eysines, France), 

measuring 10 cm were kept in lightly salted water (NaCl 1.5 g/mL) in aerated tanks at 19°-

20°C. Before injection and/or dissection, leeches were anesthetized with a 10% ethanol 

solution and all treatments were performed at the 80th superficial metamere from the oral 

sucker. Animals were randomly split into separate experimental groups (three individuals for 

each time point) and submitted to various protocols and treatments, as described below: 

Group 1: injection with 100 μL sterilized phosphate buffer saline (PBS, 138 mM NaCl, 2.7 mM 

KCl 4.3 mM Na₂HPO₄, 1.5 mM KH₂PO₄, pH 7.4) followed by evaluation at 30 min, 1 hours, 3 

hours, 6 hours and 24 hours time-points, to confirm that PBS alone does not induce an 

immune response. 

Group 2: injection with 100 µL of PBS containing 100 ng/mL of LTA from Bacillus subtilis (Sigma 

Aldrich, St. Louis, MO, USA) followed by evaluation at 30 min, 1 hours, 3 hours, 6 hours and 

24 hours time-points, to stimulate an inflammatory response and to evaluate the expression 

of TLR2 and TNF-α in cells involved in the immune response. The optimal LTA concentration 

required to induce significant cell migration in leeches was determined based on our previous 

work (36). 

Group 3: injection with 100 μL of PBS containing 1 µg/ml of CyP, a LPS-like molecule extracted 

from the cyanobacterium Oscillatoria Planktothrix FP1 (cyanobacterial product [CyP]) that 

acts as a potent and selective antagonist of bacterial LPS (30,37) followed by evaluation at 30 

min, 1 hours, 3 hours, 6 hours and 24 hours time-points. This treatment was performed to 

exclude any possible interaction between LTA and the LPS receptor TLR4 (30). 

Group 4: injection with 100 μL of PBS containing 1 µg/ml of CyP plus 100 ng/mL of LTA 

obtained from Bacillus subtilis (Sigma Aldrich) followed by evaluation at 30 min, 1 hours, 3 

hours, 6 hours and 24 hours time-points. This treatment was performed to confirm the TLR2 
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specificity in LTA recognition and to exclude any possible interaction between LTA and TLR4 

(30). 

 Group 5: injection with 100 μL of PBS containing methicillin susceptible Staphylococcus 

aureus ATCC 6538P (107 CFU/mL) followed by evaluation at 3 hours. 

Group 6: injection with 100 μL of a PBS solution containing S. aureus ATCC 6538P (107 CFU/mL) 

and 10 µM recombinant Hirudo verbana RNASET2 protein (HvRNASET2, accession number 

BankIt2095553 Hirudo MH325331) followed by evaluation at 3 hours. 

Group 7: injection with 100 μL of a PBS solution containing S. aureus ATCC 6538P (107 CFU/mL) 

and 10 µM rHvRNASET2 pre-treated with 1 µL of an anti-RNASET2 antibody followed by 

evaluation at 3 hours, as a specificity control to functional block HvRNASET2 activity (30). 

Light and electron microscopy 

Leech tissues, dissected from the area of injection in each experimental group, were fixed for 

2 h in 0.1 M cacodylate buffer at pH 7.4 containing 2% glutaraldehyde. After several washes 

in the same buffer, tissue samples were postfixed for 1 hour with 1% osmium tetroxide in 

cacodylate buffer, pH 7.4 and subsequently embedded in an Epon-Araldite 812 mixture 

(Sigma-Aldrich, Milan, Italy), after serial ethanol dehydration (70%, 90%, 100%). Tissue 

sections were obtained with a Reichert Ultracut S ultratome (Leica, Wien, Austria). Semi-thin 

sections (0,7μm) were stained by conventional methods, using crystal violet and basic fuchsin 

(according to (38) and observed under a light microscope Nikon Eclipse Ni (Nikon, Tokyo, 

Japan). Data were recorded with a DS-5M-L1 digital camera system (Nikon). Ultrathin sections 

(80 nm) were collected on copper grids (300 mesh, Sigma- Aldrich, Milan, Italy), 

counterstained by uranyl acetate and lead citrate, and observed with a Jeol 1010 EX 

transmission electron microscope TEM (Jeol, Tokyo, Japan). Data were recorded with a 

MORADA digital camera system (Olympus, Tokyo, Japan). 

S. aureus ATCC 6538P cells were grown overnight in Müller Hinton broth 2 (MHB2, 0.3% 

beef infusion solids, 1.75% casein hydrolysate, and 0.15% starch) with continuous shaking at 

200 rpm at 37°C and then transferred to fresh medium to reach the exponential growth phase. 

Subsequently, bacteria were suspended in PBS with the recombinant enzyme rHvRNASET2 (10 

µM) for 3 hours at 20°C, and then centrifuged for 10 minutes at 12.000 rpm. After surnatant 

removal, bacterial pellets were fixed with Karnovsky fixative (2% paraformaldehyde and 2.5% 
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glutaraldehyde in 0.1 M cacodylate Buffer, pH 7.2) for 1 hour at 4°C and then processed for 

TEM microscopy as above described. 

3D imaging was obtained by scanning electron microscopy (SEM). After 3 hours from 

rHvRNASET2 (10 µM) treatment, bacteria were fixed in Karnovsky fixative for 30 minutes, 

washed in 0.1 M cacodylate buffer (pH 7.2) and post-fixed in a solution of 1% osmium 

tetroxide and potassium ferrocyanide for 1 h. After several washes in PBS (pH 7.2) and 

dehydration with an increasing scale of ethanol, 20 μL of bacterial pellet resuspended in 

ethanol 100% were dried onto glass slides and finally subjected to critical point drying with 

hexamethyldisilazane. Images were acquired using the SEM-FEG XL-30 microscope (Philips, 

Eindhoven, The Netherlands). 

Immunogold staining at TEM 

Samples were fixed for 2 h at 4°C with 4% paraformaldehyde and 0.5% glutaraldehyde in PBS, 

dehydrated in ethanol series and embedded in an Epon-Araldite 812 mixture (Sigma-Aldrich). 

Ultrathin sections, obtained as above, were collected on gold grids (300 mesh, Sigma-Aldrich). 

After etching with 3% NaOH in absolute ethanol (39) they were incubated for 30 min in 

blocking solution containing PBS, 1% bovine serum album (BSA), and 0.1% Tween and then 

with the polyclonal primary antibody rabbit anti-human RNASET2 (40) diluted at 1:20 in 

blocking solution. After several washings with PBS, the primary antibody was visualized by 

immunostaining with the secondary goat anti-rabbit IgG (H+L)-gold conjugate antibody (GE 

Healthcare, Amersham, UK; particle size, 10 nm) diluted at 1:100 in blocking solution for 1 h. 

In control experiments, the primary antibody was omitted and sections were treated with BSA 

containing PBS and incubated only with the secondary antibodies. Sections were 

counterstained with uranyl acetate in water, observed at TEM and data were recorded with a 

digital camera system as previous described. 

Immunofluorescence assays 

Tissue samples, dissected from differently treated leech body wall, were embedded in 

Polyfreeze tissue freezing medium (OCT, Polysciences, Eppelheim, Germany), immediately 

frozen in liquid nitrogen. Cryosections (7 µm) from S. aureus injected leeches were obtained 

with a cryotome (Leica CM1850), collected on gelatinous slides and counterstained with 

crystal violet and basic fuchsin for morphological analysis or with 0,1 mg/mL 4,6-diamidino-2-
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Phenylinedole (DAPI, excitation and emission filter 360/420 nm).diluted 1:5000 in PBS to 

highlight bacterial DNA. 

For immunofluorescence assays, slices were incubated for 30 min in blocking solution and 

then for 1 h at 37°C with the following polyclonal primary antibodies diluted in the same 

blocking solution: rabbit anti-RNASET2 (40), expressed by macrophages and granulocytes of 

leech (17) diluted 1:200; goat anti-CD11b (Santa Cruz Biotechnology, CA, USA, sc-28664) that 

specifically stains leech granulocytes (41) diluted 1:100; rabbit anti-HmAIF-1 (kindly donated 

by Prof. Jacopo Vizioli, University of Lille 1, France), reacting with leech macrophages (36,42), 

diluted 1:1000; rabbit anti-TNF-α (Abcam, Cambridge, UK, ab6671) diluted 1:200 reacting with 

leech homologous protein (30); rabbit anti-TLR2 (Abcam, Cambridge, UK, ab213676, 

recognizing an epitope corresponding to amino acids 730–780 mapping to an internal region 

of TLR2 of human origin) diluted 1:200. After washing in PBS, samples were incubated for 45 

minutes at room temperature respectively with an anti-goat or anti-rabbit Cy5-conjugated 

(Jackson Immuno Research Laboratories, West Grove, USA) secondary antibodies (excitation 

filter 650 nm, emission filter 672 nm) diluted 1:250 in blocking solution. Double labelling 

experiments to detect cells co-expressing CD11b/TLR2 or CD11b/RNASET2; were performed 

combining the following polyclonal primary antibodies: goat anti-CD11b and rabbit anti-TLR2 

or goat anti-CD11b and rabbit anti-RNASET2. After washing in PBS, sections were incubated 

with a mix of the appropriate secondary antibodies: donkey anti-goat fluorescein isocyanate 

(FITC) conjugated (excitation filter 493 nm, emission filter 518 nm) and goat anti-rabbit Cy5-

conjugated (Jackson Immuno Research Laboratories), diluted 1:200. To detect MyD88/TLR2, 

HmAIF-1/TLR2, HmAIF-1/RNASET2 co-expressing cells, since the primary antibodies were 

raised in the same species, the method previously described was used (16). The primary 

antibodies rabbit anti-MyD88 or rabbit anti HmAIF-1 were applied first, then sections were 

incubated with the secondary antibody goat anti-rabbit (FITC)-conjugated. Before the second 

staining cycle, sections were treated with rabbit IgG (Jackson Immuno Research Laboratories) 

diluted 1:25 for 2 h (43) and incubated with rabbit anti-TLR2 or anti-RNASET2 Subsequently, 

the sections were treated with the secondary goat anti-rabbit (Cy5)-conjugated diluted 1:200. 

Tissue autofluorescence was reduced by treating sections with 1 mM CuSO4 in 50 nM 

ammonium acetate buffer (pH 5.0) for 15 min (44). In all sections, nuclei were counterstained 

for 5 minutes with DAPI. The primary antibodies were omitted in the negative control 

experiments and sections were incubated only with the secondary antibodies. All samples 
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were mounted with Cityfluor (Cityfluor Ltd, UK) and examined with a Nikon Eclipse Ni (Nikon, 

Tokyo, Japan) light and fluorescence microscope. Data were recorded with a Nikon digital sight 

DS-SM (Nikon), and combined with Adobe Photoshop (Adobe Systems, San Jose, CA, USA). 

Acid phosphatase reaction (ACP) 

Leech tissues, taken from injected areas, were embedded in OCT and frozen in liquid nitrogen. 

Cryosections (7 μm) were rehydrated with PBS for 5 min and stained as previously described 

(16). 

Western blot analysis 

Leech tissues, dissected from the LTA challenged areas, were promptly frozen in cryovials and 

homogenized with a mortar. Homogenates (10 μL per mg of tissue) were suspended in RIPA 

buffer (150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris-HCl pH 

8.0) in the presence of protease and phosphatase inhibitors and kept O/N on a rotation mixer 

at 4°C. The particulate was removed by centrifugation at 13,000 rpm for 20 minutes at 4°C in 

a refrigerated Eppendorf Minispin microcentrifuge (Hamburg, Germany). After denaturation 

at 95°C for 5 minutes, protein concentrations were assayed with Coomassie Brilliant Blue G-

250 protein assay (Pierce, Rockford, IL, U.S.A.) and BSA was used as standard. 10 µL of 

denatured proteins (2 mg/mL final concentration) were loaded on gel 12% acrylamide minigels 

for SDS-PAGE analyses. The SDS- PAGE separated proteins were transferred onto a 

nitrocellulose filter by means of a gel transfer system by applying 350 mA for 2 h. After pre-

incubation for 2 hours in continuous stirring with a blocking solution containing 5% milk in Tris 

buffered saline (TBS: 50 mM TrisHCl 7.5, 150 mM NaCl), membranes were treated O/N at 4°C 

with the following primary rabbit polyclonal antibodies: anti-RNASET2 (40), anti-TLR2 

antibody (Sigma-Aldrich) and anti-TNF-α (Abcam) diluted 1:250 in blocking solution. After 

several washing with TBST (0.1% Tween20 in TBS) nitrocellulose membranes were incubated 

with a secondary anti-rabbit IgG antibody horseradish peroxidase conjugated (Jackson 

Immuno Research Laboratories) diluted 1:7500 in blocking solution for 1 hour at room 

temperature. To reveal the immunocomplexes, the membranes were incubated with luminol 

LiteAblot® PLUS Enhanced Chemiluminescent Substrate (EuroClone S.p.A., Pero, Italy) and 

exposed to a with Kodak X-Omat AR film. Subsequently, nitrocellulose membranes were 

placed in stripping solution (62.5 mM TrisHCl pH 6.7, 2% (w/v) SDS, and 100 mM β-
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mercaptoethanol) for 30 min at 50°C, washed in TBS, incubated with blocking solution for 30 

min and then with a rabbit anti-human polyclonal antibody IgG recognizing the housekeeping 

protein D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) diluted 1:1000 

(Proteintench, Chicago, USA). Immunolabeled bands were detected using an anti-rabbit 

secondary antibody peroxidase-conjugated (Jackson Immuno Research Laboratories) diluted 

1:7500 in blocking solution for 1 hour at room temperature. The processed blots, before and 

after stripping, were scanned and, for quantification analysis, were subjected to densitometry 

analysis using ImageJ software package (http://rsbweb.nih.gov/ij/download.html). The 

recorded intensities of the GAPDH bands were used as an internal control to correct for 

differences in the samples loading on the gels and the bands were normalized with GAPDH 

using the ImageJ software package. The expression levels of HvRNASET2, TLR2, TNF-α were 

reported relatively to control PBS injected animals. 

Bacterial viability assay 

Viable counts (expressed as colony-forming units per mL, CFU/mL) were estimated by 

employing the plate count technique: a volume (0.1 or 0.01 mL) of undiluted or serially diluted 

samples was plated on nutrient agar plates and incubated for 24 h at 37°C to evaluate the 

viable cells. 

Statistical analysis 

Western blot and immunofluorescent experiments were performed in triplicate and data 

represent the mean values ± SD. The percentages of CD11b+ and HmAIF-1+ cells were assessed 

by analyzing 5 different slides (random fields of 45,000 μm2 for each slide) for each 

experimental time point using the Image J software package. Cells in the chosen fields were 

counted by hand as granulocytes if they were CD11b+ Cy5 labelled or as macrophages if they 

were HmAIF-1+ Cy5 labelled. Statistical analyses were performed using (GraphPad Prism 7, 

GraphPad Software, La Jolla, CA, USA), differences were calculated by one-way ANOVA 

followed by Fisher’s post hoc test and p < 0.05 was considered statistically significant. 
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RESULTS 

Starting from our previous results, showing that RNASET2 was detected in leech granulocytes 

and was able to actively recruit macrophages in an infected area (17), we investigated the 

RNASET2 antimicrobial action towards Gram-positive bacteria. To this aim, in vivo 

experiments were first performed to characterize the leech immune cells involved in the 

inflammatory response induced by LTA injection, a key component of the bacterial cell wall 

used to simulate a Gram-positive bacterial infection. Subsequently, the direct antimicrobial 

effect of the recombinant rHvRNASET2 was evaluated by in vitro assays. 

MORPHOLOGICAL CHARACTERIZATION OF IMMUNE CELL TYPES INVOLVED IN THE 

INFLAMMATORY RESPONSE INDUCED IN LEECHES BY LTA INJECTION 

By means of light microscope analysis, the cross-sectioned body wall of PBS-injected leeches 

(Figure 1A) showed a typical cutaneous muscle sac, formed by well-defined epithelial and 

avascular muscular layers, where muscle fibers were arranged in distinct groups surrounded 

by a scant extracellular matrix (ECM). Among muscle fields, only a few resident 

immunocompetent cells were detectable. 

By contrast, starting from 30 minutes following LTA injection, newly formed vessels and many 

infiltrating immune cells were clearly observable underneath the epithelium and in the ECM 

surrounding the muscle fibers (Figure 1B-H). In particular, several granulocytes were clearly 

recognizable both by light (Figure 1D) and TEM microscope analysis (Figure 1G) (17,30). At 6 

hours post-injection, a high number of macrophages infiltrating the injected area 

(characterized by a ruffled surface due to the presence of pseudopodia, a typical feature of 

migrating cells) were readily detected as well (Figure 1E,F,H). LTA injection thus triggered a 

typical antibacterial response in leeches. 
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FIGURE 1. Images of morphological analyses of cross sectioned leech body wall at light (A-F) and TEM microscopes (G-H). In 

PBS injected leeches (A), tissue appears essentially avascular with few resident cells underneath the epithelium (e) and in the 

extracellular matrix (ECM) surrounding the muscle fibers (m). After LTA treatment (B-D) new vessels (v), numerous 

granulocytes (arrowheads in C,D) and macrophages (arrows in E,F) are clearly visible among muscles and underneath the 

epithelium. TEM details show granulocytes (arrowhead in G), with dark granules inside the cytoplasm, and macrophages 

(arrow in H) characterized by the presence of pseudopodia. Bars in (A- C): 100 µm; bars in (D,F): 10 µm; bar in (E): 50 µm; bar 

in (G): 2 µm; bar in (H): 5 µm. n: nuclei. 
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CD11b AND TLR2 EXPRESSION 

Since these morphological observations correlated well with our previous finding following 

Gram-negative bacterial infection in leeches, which showed the massive recruitment of 

CD11b+ granulocytes expressing the TLR4 specific LPS receptor towards the challenged area 

(30), we focused on the immunophenotype of leech granulocytes activated in response to LTA 

injection. As expected, in control/PBS injected leeches (Figure 2A) a low CD11b signal was 

detectable, indicating that the mechanical stress induced by the injection or the vehicle 

solution alone did not trigger a significant inflammatory effect. 

By contrast, starting from 30 minutes up to 3 hours following LTA injection, an increased 

number of CD11b+ granulocytes were clearly visible underneath the epithelium and crossing 

the ECM surrounding the muscle fibers (Figure 2B-D). The number of granulocytes decreased 

after 6 hours (Figure 2E) and was drastically reduced 24 hours post-treatment (Figure 2F). 

Double immunofluorescence assays coupling anti-CD11b and anti-TLR2 antibodies showed 

that these two markers were co-expressed in the granulocytes (Figure 2G), suggesting that 

the TLR2 receptor might be involved in Gram-positive bacteria recognition during the early 

phase of immune response in leeches. To confirm that the recognition of LTA did not involve 

the TLR4 pathways, which is specific for Gram-negative bacteria recognition, further analyses 

were performed by injecting the cyanobacterium selective TLR4 antagonist CyP (29,30). In 

detail, leeches were injected with CyP (as a control) or with CyP added to LTA. Our data 

showed that the immune response caused by LTA treatment was not affected by Cyp (Figure 

2H) and CD11b expression in LTA/Cyp stimulated leeches was comparable to that found in 

tissues of leeches injected with LTA only (Figure 2I). Therefore, we could assume that CyP is 

closely connected to LPS-TLR4 interaction in leech and does not interfere with LTA-TLR2 

specific signal transduction pathway. In control experiments, where the primary antibody was 

omitted, no signals were detected (Figure 2J). Furthermore, as demonstrated by cell counting 

performed on 5 representative images of each time lapse, the number of CD11b+ granulocytes 

changed during the different phases of inflammation and its increase was statistically 

significant in the earliest LTA and CyP/LTA induced inflammatory phase (Figure 2K). 
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FIGURE 2. Immunofluorescence analyses on cryosections from leech body wall injected with PBS (A), LTA (B-G), CyP (H) and 

CyP+LTA (I). In PBS (A) and CyP (H) treated leeches, few CD11b+ granulocytes are detectable under the epithelium (e) and in 

the ECM surrounding muscles (m).The signal considerably increases after 30 minutes (B), reaches a peak after 1 and 3 hours 

(C, D) and decreases after 6 (E) and 24 hours from treatment (F). In CyP/LTA samples (I), signal appears to be similar to LTA 

challenged leeches. In negative control experiments (J), where the primary antibody is omitted, no positive cells are detected. 

Double immunofluorescence assays (G), using anti CD11b (green) coupled to TLR2 antibody (red), reveal that granulocytes 

express TLR2. The cell count is obtained on CD11b fluorescence signal for each treatment (K). Cell nuclei were stained in blue 

by treatment with DAPI. Bars in (A-F, H-J): 100 µm; bar in G: 10 µm. 

 

The expression of TLR2 and its downstream signalling pathway components was then 

evaluated by means of immunofluorescence and western blot analyses. In PBS-injected 

control leeches (Figure 3A), a low fluorescent signal for TLR2 was visible while, 30 minutes 

after LTA injection, an increased number of TLR2+ cells was detected, reaching a peak after 3 

hours (Figure 3B-D) to decrease at 24 hours post-treatment (Figure 3E,F). Moreover, double 
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immunofluorescent assays showed a co-localization of MyD88 and TLR2 in the same cells 

(Figure 3G) confirming a MyD88-dependent activation pathway via TLR2 (45) in leech. Further 

studies using the CyP agonist confirmed that LTA recognition involved only TLR2 and its 

signalling pathway, while TLR4 was excluded. Indeed, a TLR2 signal comparable to that of 

control and of 3hours LTA-injected leeches was detected in both CyP- and Cyp/LTA-treated 

leeches, respectively (Figure 3H,I). No signal was detected in the negative control experiments 

in which tissue sections were incubated only with the secondary antibody (Figure 3J). 

The increased expression level of TLR2 in LTA injected leeches was also confirmed by 

immunoblot assays, showing the presence of a 109 kDa band, corresponding to the expected 

molecular weight of vertebrate TLR2 (Supplementary Figure 1). As shown in the figure, TLR2 

expression was highly increased in LTA-treated samples when compared to PBS-treated 

controls (Figure 3K). 

Since one of the key targets of TLR2 signalling pathway is TNF-α (46), we also evaluated 

its expression level in control and LTA-stimulated leeches. Immunofluorescent assays 

detected a basal TNF-α expression in PBS-treated leeches (Figure 4A), whereas, as expected, 

its level markedly increased 30 minutes following LTA injection (Figure 4B), reached a peak at 

1 and 3 hours (Figure 4C,D) and then decreased at 6h post injection (Figure 4E,F). As expected, 

TNF-α expression in CyP and CyP/LTA injected leeches was comparable to that observed for 

TLR2 (Figure 4G,H) confirming once again that the immune response caused by LTA treatment 

is not affected by blocking the TLR4 pathway. No signal was detected in the negative control 

experiments (Figure 4I). Western blot analysis of PBS- and LTA-injected leech tissues revealed 

the presence of an immunoreactive 36 kDa band (Supplementary Figure 1), corresponding to 

the expected molecular mass of TNF-α in leech (30). A quantitative analysis confirmed the 

expression profile of this pro-inflammatory cytokine as already observed in 

immunofluorescence experiments (Figure 4J). 

Taken together, these data showed that LTA injection in leeches triggered the expected 

innate immune response molecular signalling cascade, thus properly mimicking the effects of 

a real bacterial infection. 
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FIGURE 3. Immunofluorescence assays on cryosections from PBS (A), LTA (B-G), CyP (H) and CyP+LTA (I) injected leeches. In 

PBS (A) injected leech, few TLR2+ cells were visible, whereas an increasing number of migrating immune-responsive cells 

located under the epithelium (e) and among muscles (m) are detected starting from 30 min until 3 hours following LTA 

injection (B-D). The signal turns out to decrease at 6 and 24 hours post treatment (E,F). In CyP (H) and Cyp/LTA samples (I), 

the number of TLR2+ cells appears to be similar to that of PBS and of LTA challenged leeches respectively. No positive cells 

are detected in negative control experiments (J). Detail of double immunofluorescence stained with anti-TLR2 (in red) and 

MyD88 (in green) (G). Cell nuclei are stained in blue with DAPI. The graph, relative to the western blot analysis (see 

supplementary Figure1) showing the TLR2 expression profile (K). Bars in (A-F, H-J): 100µm; bar in (G): 10µm. 
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FIGURE 4. Immunofluorescence analyses on cryosection from PBS (A), LTA (B-F), CyP (G) and CyP+LTA (H) injected leeches. In 

PBS (A) injected leech, few TNF-α cells were visible, whereas an increasing number of immune-responsive cells located 

underneath the epithelium (e) and in the ECM surrounding muscles (m) are detected starting from 30 min to 3 hours following 

LTA treatment (B- D), then decreases at 6 and 24 hours (E-F). In CyP (G) and Cyp/LTA samples (H), the number of TNF-α+ cells 

is similar to that of PBS and of LTA challenged leeches respectively. In negative control experiments (I), no positive cells are 

detected. The graph, relative to the Western blot analysis (see supplementary Figure1), shows the TNF-α expression profile 
(J). Bars in (A-I): 100 µm. 

 

RNASET2 EXPRESSION IN IMMUNE COMPETENT CELLS 

We next carried out both double immunofluorescence assays with anti-RNASET2 and anti-

CD11b antibodies and immunogold experiments at TEM, in order to show the presence of 

HvRNASET2 in the granules of leech granulocytes (Figure 5A,B’’), as previously reported in LPS-

stimulated leeches (17). In addition, HvRNASET2 immunolocalization on cryosections from 
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control and LTA-injected leech body wall showed that in control, PBS-injected animals, 

HvRNASET2 was expressed at a basal level (Figure 5C), whereas 30 min after LTA treatment its 

expression gradually increased, reaching a peak after 6 and 24 hours from stimulation (Figure 

5D-H). No signal was visible when sections were incubated with the secondary antibody only 

(Figure 5I). 

The HvRNASET2 temporal expression profile in LTA-injected leeches was also evaluated by 

western blot analyses. A 37 kDa immunoreactive band, corresponding to the molecular weight 

of the extracellular RNASET2 isoform was detected in all samples (Supplementary Figure 1). 

As expected, unlike control samples, the expression level of HvRNASET2 gradually increased 

in LTA- treated samples, reaching a peak at 6 h post treatment (Figure 5J). 

Taken together, our results not only confirmed that HvRNASET2 was produced by leech 

granulocytes, but also suggested that LTA-induced increase of this protein might be 

functionally involved in its potential antimicrobial activity against Gram-positive bacteria. 

Immune and enzyme histochemical characterization of LTA recruited macrophages  

The massive migration of leech granulocytes into the injected area during the earliest phase 

of the innate immune response was followed by a later macrophage recruitment towards the 

same area. Indeed, immunofluorescence analysis using the specific HmAIF-1 macrophage 

marker unveiled the presence of many HmAIF-1+ macrophages in the LTA-challenged area, 

while in control PBS-injected leeches only few resident cells were detectable next to the 

epithelium and in the ECM surrounding the muscle fibers (Figure 6A-F). 

Strikingly, the signal co-localization observed by double immunofluorescences assays 

with anti-HmAIF-1 and anti-TLR2 or anti-RNASET2 antibodies, respectively, suggested a direct 

involvement of these macrophages in LTA-response through the TLR2 pathway and confirmed 

that these immunocompetent cells expressed HvRNASET2 as well during LTA-induced innate 

immune response, as previously observed after LPS challenging (16,17) (Figure 6G-I). Indeed, 

HmAIF-1+ cell count performed on 5 representative images of each time lapse confirmed a 

significant migration of macrophages, especially at 6 and 24 hours post-treatment (Figure 6J) 

Moreover, an enzymatic histochemical ACP assay (Figure 6K-P) revealed that these 

macrophages were actively involved in a phagocytic activity (16,47–49), since PBS-injected 

leeches displayed a negligible number of ACP+ cells (Figure 6K), whereas their number 

significantly increased in relation to the time elapsed after LTA-treatment, reaching a peak at 
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6 and 24 hours from LTA injection (Figure 6M-N). The fact that CyP treatment did not induce 

any migration of phagocytic cells (Figure 6O) and at the same time did not reduce the LTA 

effects (Figure 6P) prompted us to postulate that the phagocytic activity of macrophages 

against Gram-positive bacteria was mediated by TLR2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. Double immunolocalization of RNASET2 (in red) and CD11b (in green) (A). Immunogold staining shows that 

HvRNASET2 is localized in the electron-dense granules of granulocytes (B’). No gold particles are detected in the negative 

control experiments, in which primary antibody is omitted (B’’). Immunofluorescence analyses on cryosection from PBS (C) 

and LTA (D-H) injected reveals an increasing RNASET2 signal starting form 30 minutes post LTA treatment. Negative control 

(I). The graph, relative to the Western blot analysis (see supplementary Figure1), shows the HvRNASET2 expression profile 

(J). Bar in (A): 10 µm; bar in (B): 2 µm; bars in (B’, B’’): 200 nm; bars in (C-I): 100 µm. 
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FIGURE 6. Immunofluorescence images of cryosection from PBS (A) and LTA (B-F) injected leeches. In PBS (A) injected leech, 

few HmAIF-1+ macrophages are visible, while starting from 30 minutes up to 24 h from LTA injection an increasing number of 

positive cells were detectable underneath the epithelium (e) and among the muscle fibers (B-F). Double immunofluorescent 

assays (G, H), using anti-HmAIF-1 (in green) coupled to anti-TLR2 (in red) or anti-RNASET2 (in red) antibodies, reveal that 

macrophages (in yellow) are HmAIF-1+/ TLR2+ and HmAIF-1+/RNASET2+. Negative control experiment (I). The cell count is 

obtained on HmAIF-1 fluorescence signal for each treatment (J). The acid phosphate (ACP) reaction (K-P) shows an increasing 

cytosolic lysosomal activity in phagocytic macrophages after LTA challenging (L-N). In CyP (O) and Cyp/LTA samples (P), the 

number of ACP+cells is similar to that of PBS and of LTA challenged leeches respectively. Bars in (A-F, I, K-P): 100 µm; bars in 

(G, H): 10 µm. 
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IN VITRO AND IN VIVO ASSAYS TO EVALUATE THE rHvRNASET2 EFFECT 

To further shed light on the putative HvRNASET2 antimicrobial mechanisms, we performed 

morphological analyses by means of both light, TEM and SEM microscopy on bacterial cell 

cultures upon incubation with rHvRNASET2 at a final concentration of 10 μM (Figure 7A-I). 

Unlike control, PBS-treated samples (Figure 7A,B,G), adding HvRNASET2 clearly induced the 

formation of bacterial clumps (Figure 7D,E,H,I). Strikingly, immunogold TEM analysis, using an 

anti-RNASET2 antibody, showed several gold particles localized on the bacterial cell surface, 

indicating a direct interaction between HvRNASET2 and one or more bacterial cell wall 

components (Figure 7C,F). Moreover, several blebs could be observed by SEM analysis 

following HvRNASET2-treatment, suggesting a local destabilization taking place at the 

bacterial cell surface (Figure 7I). 

Of note, rHvRNASET2 protein also triggered bacterial aggregation in in vivo experiments 

(Figure 7L-Q). Indeed, both light and fluorescence images showed that, in leeches injected 

with either S. aureus alone or a mixture of the same bacterial cells and rHvRNASET2 protein 

pre-incubated with a neutralizing anti-RNASET2 antibody, bacterial cells appeared randomly 

distributed throughout the leech ECM. By contrast, the extracellular matrix of leech co-

injected with S. aureus and rHvRNASET2 was consistently characterized by clusters of 

aggregated bacteria surrounded by macrophages (Figure 7M,P). This finding is clearly 

consistent with a role for rHvRNASET2 in stimulating a macrophage-mediated antimicrobial 

response, likely carried out by bacterial aggregation followed by ingestion by rHvRNASET2-

recruited macrophages. 
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FIGURE 7. Evaluation of rHvRNASET2 antibacterial activity by in vitro (A-I) and in vivo (L-Q) assays. Images at light (A, D), TEM 

(B, E) and SEM (G-I) microscopy of S. aureus incubated for 3 h in vitro with PBS or with rHvRNASET2 show that only rHvRNASET2 

treatment induces a bacterial agglutination and the formation of several blebs on the bacterial cell surface (arrowheads in I). 

Immunogold assay (F, C) demonstrates a direct interaction between rHvRNASET2 and the bacterial cell wall. In vivo 

experiments, performed by injecting in the leech body wall S. aureus alone (L, O) or S. aureus together with rHvRNASET2 (M, 

P) or with rHvRNASET2 pre-incubated with a specific blocking antibody (N, Q). The agglutination effect of rHvRNASET2 on S. 

aureus is highlighted with violet and fuchsin colorant (L-N) and with fluorescent DAPI staining (O-Q). Bars in (A, D, G, H, L- Q):10 

µm; bars in (B, E): 2 µm; bars in (C, F): 250 nm; bar in (I): 1 µm. 
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DISCUSSION 

Although in the last decades several studies have demonstrated that members of the human 

RNase A superfamily play a crucial role in the defense against bacterial infection (50), very 

little is known about the potential antibacterial activity of T2 RNase family members and their 

possible involvement in microbial recognition. 

We have previously demonstrated that the leech ribonuclease RNASET2 not only acts as 

chemoattractant for granulocytes and macrophages, being thus involved in modulating 

inflammatory processes, but it also plays an effective response against Gram-negative 

bacteria infection (16,17). Indeed, our previous data clearly demonstrated that LPS bacterial 

injection in the leech body wall induced an increased expression of endogenous HvRNASET2 

in both granulocytes and macrophages. Interestingly, HvRNASET2 is released by granulocytes 

in the early phase of the inflammatory response and likely plays an antibacterial role against 

Gram-negative bacteria, by recruiting macrophages in the challenged area (16). Both 

macrophages and granulocytes are able to recognize Gram-negative bacteria by expressing on 

their membranes TLR4, the specific receptor for LPS (30). Recombinant RNASET2 did not 

apparently influence cellular viability in vitro, but it nevertheless affected Pseudomonas 

aeruginosa cell wall, triggering a change in the typical rod morphology of these cells (17). 

Here, we have analyzed the antibacterial activity of HvRNASET2 against Gram-positive 

bacteria, by investigating the role of this ribonuclease in regulating and orchestrating the 

innate immune response induced by stimulation with LTA in the medicinal leech H. verbana. 

This invertebrate has been increasingly used as an experimental model to study innate 

immune response processes, due to its cost-effective use, easy manipulation and lack of 

significant ethical considerations related to regulatory restrictions, coupled to the occurrence 

of immune response processes that are very similar to those reported in vertebrates (15,51–

53). 

By means of morphological, ultrastructural and immunofluorescence analyses, we have 

first shown that LTA injection in the leech body wall induces a marked recruitment of CD11b+ 

granulocytes, which are the first immune cells to be activated following leech bacterial 

infection (17,30). These immune cells were shown to express TLR2, the key receptor involved 

in the response to Gram-positive bacteria. Moreover, as in vertebrates, TLR2 triggering 

induced intracellular signalling events involving MyD88, a key molecular intermediate for the 
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activation of TLR2 signalling pathways (54) that ultimately leads to the production of the 

proinflammatory cytokines, including TNF-α (29,30,55). Functional studies carried out by 

injecting the cyanobacterium selective TLR4-antagonist CyP strongly suggested that, as in 

vertebrates, the recognition of LTA (a component of Gram-positive cell wall) in leeches did not 

involve the TLR4 pathway but was specific for the TLR2 pathway (54). 

Interestingly, after 3 hours from stimulation with LTA, CD11B+/TLR2+ granulocytes also 

expressed a high amount of HvRNASET2, as demonstrated by double immunofluorescence 

and western blot assays. This ribonuclease, as previously demonstrated following Gram-

negative bacterial challenge, promoted macrophage migration and activation, since cells 

expressing the specific leech macrophage HmAIF-1 (47,56) were clearly recruited in the 

challenged area and showed a high phagocytic activity, as demonstrated by their positivity for 

the hystoenzymatic ACP reaction. We propose that such cells have a dual role following 

bacterial infection in leeches, being involved both in cleaning up the infected area from 

bacteria and producing, 24 hour following LTA stimulation, a second wave of HvRNASET2 for 

further macrophage recruitment. Of note, the phagocytic activity of macrophages was 

apparently facilitated by the aggregating properties of HvRNASET2 on bacterial cells. Indeed, 

in vitro experiments clearly show that, following HvRNASET2 treatment, S. aureus formed cell 

clusters. This aggregation was likely mediated by a specific interaction between HvRNASET2 

and the bacterial cell wall, as demonstrated by immunogold experiments at TEM. 

Of note, the aggregating ability of HvRNASET2 was also demonstrated by in vivo 

experiments, since clusters of S. aureus cells surrounded by macrophages were detected in 

the injected leech body wall in the presence of HvRNASET2. 

Taken together, our results highlight that the antimicrobial properties of leech 

recombinant HvRNASET2 protein are comparable to other class A RNases, such as RNase 3 

and 7, and correlate to bacterial clumps forming activities (57). Indeed, similarly to RNase 7, 

HvRNASET2 triggered local blebs in the bacterial wall (58) and promoted a marked 

inflammatory response, mediated by TLR2 activation and followed by the release of 

inflammatory stimuli, such as TNF-α (26). Moreover, as reported for RNase 3, the ability of 

HvRNASET2 to bind bacterial cell wall seems of special relevance for its role in bacterial clumps 

formation (58). 

To our knowledge, this study represents the first report describing a marked 

antibacterial activity for a T2 RNase member in an invertebrate experimental model and 
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plausible mechanism of action. Of note, the similarity of the biological role between 

HvRNASET2 and some of class A RNases open the door to the production of new peptide-

derived antimicrobials drugs, which could help to counteract the ever-growing problem of the 

dramatic worldwide emergence of antibiotic-resistant strains. 
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SUPPLEMENTARY Figure 1 Western blot analysis performed on PBS or LTA injected leeches. Proteins extracted from leech 

body wall are probed with anti-TLR2 (A), anti- TNF-α (B) and anti- RNASET2 (C) antibodies respectively. Each experiment is 

quantified on the expression level of D- glyceraldyde-3-phosphate dehydrogenase (GAPDH), used as a control. 

Immunoreactive bands of about 109, 34 and 37 kDa are respectively detected for anti-TLR2, anti-TNF-alpha and anti- 

RNASET2. 
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Abstract 

The RNASET2 ribonuclease, belonging to the highly conserved RH/T2/s RNase gene family, has been 

recently shown to modulate inflammatory processes in both vertebrates and invertebrates. Indeed, the 

RNASET2 protein acts as a chemoattractor for macrophages in both in vitro and in vivo experimental 

settings and its expression significantly increases following bacterial infections. Moreover, we have 

recently observed that injection of human recombinant RNASET2 protein in the body wall of the medicinal 

leech (a consolidated invertebrate model for both immune response and tissue regeneration 

investigations) not only induced immune cell recruitment but apparently triggered a massive connective 

tissue remodelling as well. Based on these data, we evaluated here a possible role of leech recombinant 

RNASET2 protein (rHvRNASET2) in connective tissue remodelling, by characterizing the cell types involved 

in this process through histochemical, morphological and immunofluorescent assays. Moreover, a time-

course expression analysis of newly synthesized pro-collagen1α1 (COL1α1) and basic FGF receptor 

(bFGFR, a known fibroblast marker) following rHvRNASET2 injection in the leech body wall further 

supported the occurrence of rHvRNASET2-mediated matrix remodelling. Human MRC-5 fibroblast cells 

were also investigated in order to evaluate their pattern of collagen neosynthesis driven by rHvRNASET2 

injection. Taken together, the data reported in this work provide compelling evidence in support of a 

pleiotropic role for RNASET2 in orchestrating an evolutionarily conserved cross-talk between 

inflammatory response and regenerative process, based on macrophage recruitment and fibroblast 

activation, coupled to a massive extracellular reorganization. 
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INTRODUCTION 

Tissue regeneration in metazoa requires the accurate coordination of multiple processes, 

which include recruitment, proliferation and activation of progenitor cells, immune 

modulation, angiogenesis, extracellular matrix (ECM) remodelling and innervation of the 

newly forming tissue. Recently, several studies have highlighted the importance of the 

immune system in restoring damaged organs and tissues. In this context, injury-induced 

wound healing typically entails an acute inflammatory response, which acts not only to 

counteract possible infections, but also to restore tissue homeostasis and functional integrity 

(Mescher et al. 2015; Eming et al. 2009). Indeed, the release of immunomodulatory molecules 

such as cytokines and growth factors by injury-activated immune cells is now known not only 

to support the recruitment of different inflammatory cells to the damaged site (Frantz et al. 

2005), but also to actively participate in tissue remodelling, by establishing a crosstalk 

between immune cells and several stromal cellular component, such as fibroblasts (Glaros et 

al. 2009). Given the fundamental importance of innate immunity in both defence against 

pathogens and tissue regeneration, further investigations are necessary to shed further light 

on the cellular and molecular mechanism(s) by which immune-mediated debris clearance and 

tissue regenerative process are coordinated in a way that leads the immune system to act as 

both a “friend and foe” to the damaged tissue.  

In this context, the pleiotropic and evolutionary conserved RNASET2 gene, which has 

been involved in both innate immune response and tissue remodelling (Baranzini et al. 2017, 

2018), represents an interesting candidate whose role in the abovementioned biological 

processes is worth investigating. RNASET2 belongs to the Rh/T2/S family of extracellular 

ribonucleases, which, unlike other RNase families, is widely distributed throughout most taxa, 

from viruses to humans. Of note, besides the canonical RNA processing or degradation roles 

(whose function has only partially been described), T2 RNases are known to be involved in an 

impressively wide range of biological processes, some of which do not require the enzyme’s 

ribonuclease activity (Luhtala and Parker 2010). For instance, human RNASET2 has been 

involved in the control of tumorigenesis in vivo in several human cancer models independently 

of its catalytic activity (Acquati et al. 2011), affecting cancer growth by establishing of a 

complex cross-talk between cancer cells and the tumor microenvironment, which entails both 

the recruitment and activation of innate immune cells endowed with anti-tumor activity and 
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an extensive ECM remodelling (Acquati et al. 2011). Moreover, recent experimental data from 

in vitro ovarian cancer model systems reported that RNASET2-mediated cancer growth 

suppression involves the ECM/integrin signalling pathway (Roggiani et al. 2019).  

Of note, further in vivo studies have shown the ability of human recombinant RNASET2 

protein to induce fibroplasia, connective tissue remodeling and ECM rearrangements 

following injection in the medicinal leech Hirudo verbana, coupled to a chemotactic role for 

cells of the monocyte-macrophage lineage (Baranzini et al. 2017). 

To better define the role of RNASET2 in ECM remodelling in a more physiological 

experimental setting, in this work we analysed the effects of H. verbana recombinant RNASET2 

(rHvRNASET2) on leech tissue remodelling and ECM reorganisation.  

The medicinal leech represents a powerful experimental model system to gain novel 

insight on these topics (Grimaldi et al. 2018). Indeed, the response to several experimental 

manipulations (such as wounds or bacterial infections) can be easily detected in leeches, due 

to their small size and anatomical structures (de Eguileor et al. 2004, 2003; de Eguileor et al. 

1999; Grimaldi et al. 2006, 2004), allowing unambiguous assessment of the different cell types 

involved in wound healing and tissue repair processes, which typically extend over the whole 

thickness of body wall (Tettamanti et al. 2004). Following experimental wound or bacterial 

infection, the reorganization of the leech’s connective tissue is known to be regulated by 

several diffusible factors such as EGF (epithelial growth factor), bFGF (basic Fibroblast Growth 

Factor) and Cathepsin B, produced by fibroblasts and immune cells (Grimaldi et al. 2004; 

Tettamanti et al. 2005). By activating fibroblast proliferation, these molecules promote ex 

novo collagen synthesis. Moreover, both innate immune response and regenerative process 

in leeches have been shown to be strikingly similar to those reported in vertebrates, since they 

involve similar molecular and cellular effectors and a common equipment of key molecules 

playing pivotal roles for regulating immune competent cells and fibroblast activation.  

We report here that injection of recombinant rHvRNASET2 in the leech body wall 

triggers a rapid reorganization of the connective tissue and a subsequent activation of bFGFR+ 

fibroblasts engaged in new fibril production, such as those normally recruited after a wound 

to assemble a new collagen scaffold (Tettamanti et al. 2003).  

Moreover, we investigated the effect of leech RNASET2 on the human MRC-5 fibroblast 

cell line to evaluate a possible evolutionary conservation between the leech and human 

proteins in terms of their role in ECM remodelling. By establishing a coordinated in vivo cross-
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talk between inflammatory response and connective tissue remodelling, two key biological 

processes whose functional interconnection is still poorly defined, RNASET2 can be ascribed 

as a putative key novel player in this field which deserves further investigations. 

 

Materials and methods 

Hirudo verbana recombinant rHvRNASET2: cloning and expression  

An in silico leech transcriptome database (http://genomes.sdsc.edu/leechmaster/database/) 

was  used to retrieve the mRNA sequence of H. verbana RNASET2 (HvRNASET2) (Macagno et 

al. 2010b). We then selected a sequence representing a putative full-length coding sequence 

(>EN-124k-90-group2043). To clone the corresponding cDNA, total mRNA extraction from the 

leech body wall was performed and the sample was treated with DNase (Turbo DNA-freeTM 

Kit-Invitrogen) to remove all DNA traces and reverse transcribed with an oligo dT primer (High-

Capacity cDNA Reverse Transcription Kit - Applied Biosystems™). By using different primer 

combinations, we obtained partial amplicons representing the coding sequence. 

We therefore carried out an overlap extension PCR to obtain the full-length coding sequence 

of HvRNASET2.  

The PCR products were used as a template in a third PCR performed using the external primers 

bearing artificially-introduced EcoRI sites. The resulting PCR product was digested with EcoRI 

and cloned in pBluescript. Finally, the leech HvRNASET2 coding sequence (BankIt2095553 

Hirudo MH325331) was PCR-amplified to remove the predicted signal for protein secretion 

from the coding sequence. The PCR product was cloned into the pPICZαA expression vector 

for heterologous expression in the yeast Pichia pastoris, as previously described 

(Campomenosi et al. 2011).  

All primer sequences are available upon request. 

HvRNASET2 recombinant protein and purification have been described elsewhere (Baranzini 

et al. 2019, manuscript submitted). 

Endotoxin removal 

Endotoxins removal from rHvRNASET2 preparations was carried out according to the 

procedure reported in (Liu et al. 1997). 

 

http://genomes.sdsc.edu/leechmaster/database/
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Animals and treatment  

Adult leeches (H. verbana, Annelida, Hirudinea, from Ricarimpex, Eysines, France) measuring 

10 cm were kept in lightly salted water (NaCl 1,5 g/l) at 20°C in aerated tanks and fed weekly 

with calf liver. Animals were randomly split into separated experimental groups (five 

individuals for each time point). Each treatment was performed at the level of the 20th 

metamere on leeches anaesthetized with a 10 % ethanol solution. Treated and untreated 

(control) animals were anesthetized and then dissected to remove body wall tissues at specific 

time points. Samples were processed for optical and electron microscopy, 

immunofluorescence and western blot protocols as previously reported (Baranzini et al. 2017, 

2018).  

Group 1: unstimulated control or PBS-injected leeches (100 µL), to verify that the mechanical 

stress induced by the injection or the vehicle solution alone did not exert a significant effect 

on COL1α1 and bFGFR expression in the body wall of challenged animals.  

Group 2: leeches injected with 100 μl sterilized PBS containing 100 ng of recombinant protein 

rHvRNASET2. 

Optical and electron microscopy  

Leech tissues, dissected from the area of the injection, were fixed for 2 h in 0.1 M cacodylate 

buffer at pH 7.4, containing 2 % glutaraldehyde. Specimens were then washed in the same 

buffer and postfixed for 1 h with 1 % osmium tetroxide in cacodylate buffer, pH 7.4. After 

standard serial ethanol dehydration, specimens were embedded in an Epon-Araldite 812 

mixture (Sigma- Aldrich, Milan, Italy). Sections were obtained with a Reichert Ultracut S 

ultratome (Leica, Wien, Austria). Semi-thin sections (0.75 μm in thickness) were stained by 

conventional methods (crystal violet and basic fuchsin, according to Moore et al., 1960) and 

subsequently observed under a light microscope (Nikon Eclipse Ni, Nikon, Tokyo, Japan). Data 

were recorded with a DS-5 M-L1 digital camera system (Nikon). Ultrathin sections (80 nm in 

thickness) were placed on copper grids, stained by uranyl acetate and lead citrate and 

observed with a Jeol 1010 EX electron microscope (Jeol, Tokyo, Japan). Data were recorded 

with a MORADA digital camera system (Olympus, Tokyo, Japan).  
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Masson trichrome staining 

Tissues were fixed in 4 % paraformaldehyde for one hour and then washed for three times in 

PBS. After washings, samples were dehydrated in an ethanol series and paraffin embedded. 

Sections obtained with paraffin microtome (5μm thick) have been processed for Trichrome 

Masson staining (Trichromica kit, Bio Optica, Milano, Italy), as suggested by the data sheet. 

This colouring technique allows us to observe in blue the collagen and the reticular fibers and 

in red cells cytoplasm. Images have been obtained using the Nikon Digital Sight DS-SM optical 

Microscope (Nikon, Tokyo, Japan). 

Sirius Red staining 

The paraffin sections obtained as described above have been processed for 10 min in 0,1% 

Sirius Red staining (0.1 g of Sirius Red powder in 100 mL of picric acid), washed with distilled 

water and finally were dehydrated with an increasing scale of alcohols. Sirius Red is a red dye 

that allows to stain collagen fibres. 

Immunofluorescence assays 

Tissue samples just collected from the leech body were embedded in Polyfreeze tissue 

freezing medium (OCT, Tebu-Bio, Le Perray-en-Yvelines, France)/(Polysciences, Eppelheim, 

Germany) and immediately frozen in liquid nitrogen. They were then kept at -80°C. 

Cryosections (7 μm), obtained with a cryotome (Leica CM1850), were collected on gelatinous 

slides and kept at -20°C.  

For immunofluorescence assays, sections were rehydrated with PBS 1X (NaCl 8 g/l; KCl 

0,2 g/l; Na₂HPO₄ 1,44 g/l; pH 7,4) for 10 minutes and then pre-incubated for 30 minutes in 

blocking solution (2% Bovine Serum Albumin and 0.1% Tween20 in PBS). The same blocking 

solution was used to dilute primary and secondary antibodies. Samples were incubated with 

the primary antibodies for 1 hour. After 3 washes of 5 minutes each with PBS 1X, specimens 

were incubated for 45 minutes with the secondary antibodies diluted in blocking solution. 

Following other 3 washes, nuclei were counterstained with 4.6-diamidino-2-Phenylinedole 

(DAPI, 0.1 mg/ml in PBS) for 3 minutes and, after the last 3 washes, slides were mounted with 

Cityfluor (Cityfluor Ltd, UK). In negative control experiments, primary antibodies were 

omitted, and sections were incubated only with the secondary antibodies.  
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For bFGFR and COL1α1 immunofluorescence assays the primary antibodies respectively 

used were anti-bFGF receptor Flg (rabbit, Santa Cruz Biotechnology, sc-121), diluted 1:150 and 

anti-COL1α1 (rabbit, polyclonal, EMD Millipore, ABT257), diluted 1:200. Subsequently, 

samples were incubated with the respectively secondary antibody goat anti-rabbit TRITC-

conjugated (goat, Jackson ImmunoResearch Laboratories, Baltimora Pike, West Grove–PA), 

diluted 1:300. 

The percentages of positive bFGFR+ cells were assessed after rHvRNASET2 injection by 

analysing five different slides (random fields of 45000 μm2 for each slide) for each 

experimental timing using the Image J software package. Cells in the chosen fields were 

counted as fibroblasts if were bFGFR+ (TRITC labelled). Statistical analyses were performed 

using GraphPad Prism 7, (GraphPad Software, La Jolla, CA, USA). Statistical differences were 

calculated by one-way ANOVA followed by Fisher’s post-hoc test and p < 0.05 was considered 

statistically significant. Means with different letters significant difference between PBS and 

rHvRNASET2 injected leeches at different times elapse. 

Double-labelling experiments were performed as previously described (Baranzini et al. 

2017) to detect RNASET2/COL1α1 and COL1α1/ bFGFR co-expressing cells. Samples were first 

incubated with the respective primary antibodies: anti-RNASET2 (Acquati et al. 2011), diluted 

1:200, anti-bFGFR (rabbit, Santa Cruz Biotechnology), diluted 1:100. After several washes in 

PBS, sections were incubated with the secondary antibody goat anti-rabbit (Cy5)-conjugated 

(goat, Abcam England), diluted 1:200. According to Würden and Homberg, 1993, to inhibit 

binding of the primary antiserum of the second staining cycle to the goat anti-rabbit IgGs that 

were applied in the first sequence, the sections were incubated with rabbit IgG (Jackson 

ImmunoResearch Laboratories, West Grove, USA) at 1:25 for 2 h. After several washings, 

samples were incubated with the primary antibody COL1α1 (rabbit, polyclonal, EMD 

millipore), diluted 1:200. Subsequently, sections were treated with the secondary (FITC)-

conjugated goat anti-rabbit antibody (Abcam England), diluted 1:300. Slides were examined 

with a Nikon Eclipse Ni (Nikon, Japan) optical and fluorescence microscope equipped with 

three different excitation/emission filters: 360/420nm, for DAPI nuclear staining; 488/532nm, 

for TRICT/FITC signals and 650/672nm, for Cy5 signals. Data were recorded with Nikon Digital 

Sight DS-SM (Nikon, Tokyo, Japan) digital camera and images were combined with Adobe 

Photoshop (Adobe Systems, San Jose, CA, USA). 
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Protein extraction, SDS-PAGE, Western blot 

Tissues extracted from the PBS-injected body wall or from injected areas were immediately 

frozen in liquid nitrogen and then homogenized with a mortar. The homogenates were 

suspended (10 μl per mg of tissue), in RIPA buffer (150 mM NaCl, 1 % NP-40, 0.5 % sodium 

deoxycholate, 0.1 % SDS, 50 mM Tris-HCl, pH 8.0) in the presence of a protease inhibitor 

cocktail (Sigma, Milan, Italy). The particulate material was removed by centrifugation at 

13,000 rpm for 10 min at 4°C in a refrigerated Eppendorf Minispin microcentrifuge (Hamburg, 

Germany). Supernatants containing total protein extracts were denatured at 100°C for 5 min 

and loaded on 12 % acrylamide minigels for SDS-PAGE analyses. Molecular weights were 

determined by concurrently running broad range standards from Bio-Rad (Richmond, MA, 

USA). Proteins separated by SDS-PAGE were transferred onto Bio-Rad nitrocellulose filters. 

Membranes were then saturated with 5 % non-fat dried milk in Tris-buffered saline (TBS; 20 

mM TRIS–HCl buffer, 500 mM NaCl, pH 7.5) at room temperature for 2 h and incubated for 90 

min with an anti-COL1α1 antibody (rabbit, polyclonal, EMD millipore) diluted 1:500. After, the 

membrane was washed three times with TBS-Tween 0.1 %, and antigens were revealed with 

a secondary anti-rabbit IgG antibody conjugated to horseradish peroxidase (Jackson Immuno 

Research Laboratories, West Grove, USA), diluted 1:5000. After a further washing step, 

immunocomplexes were revealed with luminol LiteAblot PLUS Enhanced Chemiluminescent 

Substrate (EuroClone, Pero, Italy). Bands were normalized by using the ImageJ software 

package (http://rsbweb.nih.gov/ij/download.html), with the housekeeping protein D-

glyceraldehyde-3-phosphatedehydrogenase (GAPDH), which was detected with a rabbit 

polyclonal anti-human GAPDH IgG (Proteintech, Chicago, USA), diluted 1:7500. The expression 

level of COL1α1 in treated leeches were compared to that of control animals. Statistical 

analyses were performed using GraphPad Prism 7, (GraphPad Software, La Jolla, CA, USA). 

Statistical differences were calculated by one-way ANOVA followed by Fisher’s post-hoc test 

and p < 0.05 was considered statistically significant. Means with different letters significant 

difference between PBS and rHvRNASET2 injected leeches at different times elapse. 

Human MRC-5 fibroblast cell culture 

The human fibroblast MRC-5 cell line was cultured at 37°C in DMEM medium supplemented 

with 10% FBS and 1% penicillin/streptavidin solution. Cells were washed with phosphate-

buffer solution (PBS) and dissociated with 0.25% Trypsin solution. Cells were then diluted in 
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fresh medium and seeded into 96-well plates (8.0 X 104) for performing luciferase assays, into 

48-well plates (3.0 X 105) for mRNA extraction and into 8-plates LabTek (1.0 X 105) for 

immunofluorescence assays. 

Dual-luciferase assay system 

Luciferase assay was performed to evaluate the effects of the recombinant HvRNASET2 on 

MRC-5 fibroblast collagen I expression. After 24 h, the medium of cultured fibroblasts was 

removed and cells were co-transfected by Lipofectamine 3000 Reagent (Invitrogen, Waltham, 

MA) with pCol1-Luc, a collagen I promoter-driven firefly luciferase recombinant construct 

(0.25 µg/µl) and PRL-TK (promega) an HSV-TK promoter-Renilla luciferase construct as an 

internal control (0.25 µg/µl) in a 90µl volume of fresh DMEM medium. Tranfected fibroblasts 

were then treated with different concentrations of recombinant HvRNASET2 (0, 50 and 200 

ng/µl) for 24 h. The medium was then removed and the Dual-Glo Luciferase assay (Promega 

Madison, WI) was carried out by adding 75µl of Dual-Glo® Luciferase Reagent. The firefly 

luciferase luminescence was measured using a multilabel plate reader after 10 min (Victor – 

PerkinElmer Waltham, MA). The Dual-Glo® Stop & Glo® Reagent, which quenches the 

luminescence from the firefly reaction and provides the substrate for Renilla luciferase, used 

as internal control for normalizing values, was directly added after 20 min and a second 

measure was performed. Cells treated with TGF-β were used as positive control. The ratio 

between the two measurements from each sample was obtained and statistical differences 

were calculated using GraphPad Prism 7 (GraphPad Software, La Jolla, CA, USA). Statistical 

differences were calculated by t-test and p < 0.05 was considered statistically significant. 

In vitro immunofluorescent assays 

MRC-5 cells grown in LabTek and treated with or without rHvRNASET2, were fixed with 4% 

paraformaldehyde at room temperature, washed 3 times for 5 min with PBS 1X and treated 

for 10 mins with 0.5% Triton X100 (Sigma-Aldrich St-Louis, MI) to permeabilize cell 

membranes. Following a 30 min incubation with BSA blocking solution (4% in PBS), cells were 

treated overnight with anti-collagen I (rabbit polyclonal, Abcam, Cambridge, MA), diluted 

1:500, primary antibodies. After 3 washes of 5 min with PBS1X, fibroblasts were incubated for 

45 min with secondary antibodies: anti-rabbit Cy3-conjugated (Jackson Immunoresaerch Inc), 

diluted 1:200, and with 400 M Phalloidin-Atto488 (Sigma-Aldrich) to detect actin. Nuclei 
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were counterstained with 2M Hoechst 33342 (Sigma-Aldrich) for 10 sec and, after one quick 

wash, slides were mounted in Fluoromount-G mounting medium (Interchim, Montluçon, 

France).The intensity of anti-collagen I signal was assessed by analyzing ten different slides 

(random fields of 45000 μm2 for each slide) for each experimental group using the Image J 

software package. Statistical analyses were performed using GraphPad Prism 7 (GraphPad 

Software, La Jolla, CA, USA). Statistical differences were calculated by t-test and p < 0.05 was 

considered statistically significant. 

RNA extraction from MRC-5 fibroblasts and qRT-PCR 

MRC-5 cells treated with different concentration of HvRNASET2 were lysed with the lysis 

buffer solution from Nucleospin RNA Plus XS kit (Macherey-Nagel, Dueren Germany). Total 

RNA was extracted according to the manufacturer’s instructions. RNAs were retro-transcribed 

into cDNA using Superscript II Reverse Transcriptase and qPCR was carried out in triplicate on 

a CFX Connect™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA). Reaction mixtures 

had a final volume of 10 μl, consisting of 2 μl of cDNA, 5 μl of LightCycler® 480 SYBR Green I 

Master and 0.5 μM primers. After initial denaturation, amplification was performed at 95°C 

(10 s), 60°C (5 s) and 72°C (10 s) for 45 cycles. 
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RESULTS 

Recently, our group reported that RNASET2 injection in leeches triggered an inflammatory 

process coupled to extracellular connective tissue remodelling. Indeed, injection of human 

recombinant RNASET2 in the leech body wall was shown to induce both fibroplasia and the 

recruitment of infiltrating cells expressing both granulocyte and macrophage-specific markers 

(Baranzini et al. 2017).  

To further support this experimental evidence in a more physiological context and to rule 

out the occurrence of putative species-specific differences affecting the above mentioned 

process, we evaluated the effect of leech H. verbana recombinant RNASET2 protein 

(rHvRNASET2 - BankIt2095553 Hirudo MH325331) injection on leech connective tissue 

remodelling, under the assumption that such biological response might provide a scaffold for the 

subsequent migration of endothelial and immunocompetent cells at the injection site.  

To investigate these aspects, the H. verbana RNASET2 coding sequence was amplified by RT-PCR 

and cloned into a P. pastoris expression vector for heterologous production of recombinant 

rHvRNASET2. Endotoxin-free rHvRNASET2 was then injected into the leech body wall as 

described in Material and Methods. We first carried out both morphological and 

immunocytochemical assays to evaluate the presence and distribution pattern of leech 

fibroblasts and their possible activation in the earliest phases of leech inflammation by means of 

an anti-bFGFR antibody, which is a known marker for leech fibroblasts (Tettamanti et al. 2003). 

Western blot assays were also carried out to evaluate newly synthesized collagen I expression 

levels. Furthermore, double immunocytochemical assays were performed to investigate the 

putative interplay between RNASET2, fibroblasts activation and fibrillar collagen production.  
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rHvRNASET2 injection leads to leeches ECM reorganization 

A morphological analysis by means of both optical and transmission electron microscopy 

(TEM) was initially carried out. A thick muscular layer made of tightly packed helical muscle 

fibers, embedded in a scarce and loose connective tissues (de Eguileor et al. 1999; Sawyer 

1986; Tettamanti et al. 2004), was observed in the body wall of control, PBS-injected leeches 

(Fig. 1a,b). 

Ultrastructural TEM analysis confirmed that the amount of fibrillar collagen in the extracellular 

matrix (ECM) surrounding muscle fibers of control leeches was almost negligible, since only a 

few collagen fibres were detectable (Fig. 1b).  Accordingly, few fibroblasts were found 

embedded in this loose matrix (Fig. 1a) and showed a typical roundish shape, with the 

cytoplasm almost completely filled by spherical lipid droplets (Fig. 1c).  

Noteworthy, 30 min following rHvNASET2 injection, ECM deposition among the muscle fibers 

already appeared to be increased. Moreover, its gross organization was markedly changed, 

showing an even looser appearance (Fig 1d,e). Of note, a marked increase in the number of 

fibroblasts embedded in the newly-laid ECM was easy detectable in the injected area (Fig. 

1d,e). These cells appeared to be massively activated from the earliest phases of rHvNASET2 

injection, as suggested by both the marked deposition of a massive amount of collagen and 

their clear change in morphology, detected under both optical microscopy (Fig. 1d) and TEM 

(Fig. 1e) analyses. Indeed, rHvNASET2-activated fibroblasts appeared elongated and star-

shaped (Fig. 1d-i), being characterized by the presence of multiple projections of cytoplasmic 

laminae stretching towards the extracellular space (Fig. 1f) in which new collagen fibril 

deposition was evident (Fig. 1g,h). Such cytoplasmic projections are known to be involved in 

the spatial organization of collagen bundles and in the control of fibril orientation (Tettamanti 

et al. 2004, 2005). Of note, abundant fibroblast-derived collagen deposition has been reported 

to be used also by immune cells to reach the area affected by injury and/or infection (Baranzini 

et al. 2017). Accordingly, a marked increase in the number of infiltrating macrophages and 

granulocytes (de Eguileor et al. 2000b, a; Girardello et al. 2019) was detected in rHvNASET2 

injected leeches (Fig 1d,e,i).  
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Fig. 1 Images of cross-sectioned leech body wall at optical (a, d) and TEM (b-c,e-i) microscopes. Organized and compact 

extracellular matrix (ECM) with few fibroblasts (arrowheads) is visible among muscle fibers in control animals (a,c). Detail at 

TEM of a roundish fibroblast with a cytoplasm containing a large quantity of lipid droplets (c). After the rHvRNASET2 injection 

(d,e) the ECM appears less compact and a large number of fibroblasts (arrowheads) are detected between the muscles. 

Details at TEM of fibroblasts with a stellate shape (f) in active fibrillogenesis (arrow) are observable (g,h). In the membrane 

folding of fibroblasts, collagen fibers with a precise geometrical organization were visible (i). Bar (a) 10µm, Bar (b) 2,5µm, 

bars (c,g,i) 2µm, bar (d) 50µm, bar (e) 5µm, bars (f,h) 1µm  

 

Colorimetric Staining of rHvRNASET2-induced ECM 

We next used collagen-specific Masson's trichrome and Sirius red (Fig. 2) staining to further 

investigate the effects of direct intramuscular injection of rHvRNASET2 on ECM remodelling.  

In control, PBS-injected leeches, the ECM organized among muscle fibers (Fig. 2a-c) appeared 

homogenously stained by both staining assays. By contrast, a remarkable rearrangement of 
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the collagen-based connective tissue was observed following rHvRNASET2 injection. In 

particular, the connective tissue assumed a rather lax appearance already 30 min following 

treatment (Fig. 2d-f) and such loose organization was maintained until 6h post-injection (Fig. 

2g-i). After 24h, a newly synthesized compact collagenous scaffold surrounding the groups of 

muscle fibers was evident (Fig. 2j-l). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Images of cross-sectioned leech body wall at optical microscope stain with Masson’s Trichrome and Sirius Red staining, 

in which collagen fibers are stained in blue and red respectively. In control PBS injected animals, tightly packed collagen fibers 

are visible under the cuticle and among muscle fibers (a-c). After 30 minutes from the recombinant rHvRNASET2 injection (d-

f) collagen fibers seem to lose their precise organization. Between 1 and 6 hours newly synthetized collagen is present (g-i) 

and after 24 hours the fibers appear to be re-arrange in a regular way and connective tissue is similar to that observe in 

control leech (j-l). Bars (a,c,d,f,g,I,j,l) 100µm, bars (b,e,h,k) 10µm. e: epithelium, m: muscle fibers 
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Effect of rHvRNASET2 on COLα1α1 production and bFGFR expression  

To better define the cell types involved in collagen neo-synthesis following rHvRNASET2 

injection and thus confirm the occurrence of a RNASET2-driven fibroplasia and connective 

tissue remodelling, immunofluorescence assays were performed with anti-COL1α1 and bFGF 

receptor/Flg polyclonal antibodies, to detect collagen I (Fig. 3) and fibroblasts (Fig. 4), 

respectively. Immunofluorescence analysis of cryosections from the body wall of PBS-injected 

control leeches showed a basal level of bFGFR expression from few resident cells (Fig. 3a), 

whereas a striking increased in the number of bFGFR+ cells was detected among muscles fibers 

following rHvRNASET2 treatment (Fig. 3b-f). In particular, cell counting performed on 5 

representative images from each time point confirmed a statistically significant change in 

bFGFR+ fibroblast number during different phases of the inflammatory response was (Fig. 3g). 

Indeed, the number of fibroblasts expressing bFGFR immediately increased following 

rHvRNASET2 treatment, reached a peak at 1 h and remained high for 6 h before decreasing to 

a baseline level after 24 h. Moreover, unlike the pattern observed in control leeches, the 

different morphology acquired by these cells, represented by the starry appearance typical of 

activated fibroblasts involved in collagen production, was confirmed (Fig. 3h).  

When we turned to evaluate COL1α1 expression pattern, control PBS-injected leeches 

displayed a barely detectable signal (Fig. 4a), whereas expression of this marker progressively 

increased at different time points following rHvRNASET2 injection (Fig. 4b-f).  

The temporal expression profile of COL1α1 after rHvRNASET2-injection was also 

evaluated by Western blot analysis. The observed expression pattern confirmed the presence 

of a 140 kDa bands (corresponding to the molecular weight of this type of collagen) (Fig. S1a-

f), that was shown by quantitative analyses to be expressed at low basal level in PBS-injected 

control leeches and at much higher levels following rHvRNASET2 injection (Fig. 4g). 

Indeed, COL1α1 expression began to increase in the early stages of treatment (at 30 min 

post injection) until the 24 h post-treatment. To better characterize the cells expressing 

COL1α1, we performed double-staining immunofluorescence assays by coupling the anti-

COL1α1 antibody to antibodies raised against either the common fibroblast marker bFGFR or 

RNASET2. Strikingly, these assays not only confirmed that rHvRNASET2-activated fibroblasts 

produced COL1α1 (Fig. 4h), but also showed that COL1α1+ fibroblasts co-expressed RNASET2 

as well (Fig. 4i). In the negative control experiments no signals were detected (Fig. S1g-i).  
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Fig. 3 Immunofluorescent analysis of cryosectioned PBS- (a) and rHvRNASET2 injected leech body wall (b-i). After 30 minutes 

(b) and 24 hours (f) from recombinant protein injection, the antibody anti-bFGFR stains in red a few cells among muscle fibers, 

whereas the presence of several positive cells is detected at 1, 3 and 6 hours (c-e). Cell nuclei are stained in blue with DAPI. 

The graph shows the percentage of positive fibroblasts (bFGFR+) in each time point after treatment (g). Statistical analyses 

were performed using Statistica 7.0 software (StatSoft, Inc, Tulsa, OK, USA) and differences were calculated by one-way 

ANOVA followed by Fisher’s post-hoc test. Means with different letters represent a significant difference between PBS and 

rHvRNASET2 injected animals at different time elapse. Detail of fibroblast showing the typical stellate shape following 

activation (h). No signal is present in negative control experiments in which primary antibody is omitted (i). Bars (a-i): 100µm 
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Fig. 4 Immunofluorescent analysis of cryosection from PBS (a) and rHvRNASET2 (b-h) injected leeches. The antibody anti-

COL1α1 stains in red the new produced collagen fibrils. In control PBS animals (a) a low signal is detectable, while after 30 

minutes, but especially starting from 1 hour (b), it begins to increase. The positivity remains high and continue to increase 

until the 24 hours (c-f). Cell nuclei are stained in blue with DAPI. The graph shows the level of expression of the newly 

synthetized COL1α1 in each time point quantified by densitometry with ImageJ software (g). Statistical analyses were 

performed using Statistica 7.0 software (StatSoft, Inc, Tulsa, OK, USA) and differences were calculated by one-way ANOVA 

followed by Fisher’s post-hoc test. Means with different letters represent a significant difference between PBS and 

rHvRNASET2 injected animals at different time elapse. Double immunolocalization of COL1α1 (in green) and bFGFR (in red) 

(h) and COL1α1 (in green) and RNASET2 (in red) (i) showing that bFGFR+ activated fibroblasts (in yellow) expressed both pro-

collagen I and endogenous RNASET2. No signals are detected in the negative control experiments, in which the primary 

antibodies are omitted. Bars (a-i) 100µm 
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Analysis of in vitro MRC5 fibroblast cell line following HvRNASET2 treatment 

We next turned to the human MRC5 fibroblast cell line to evaluate the collagen neosynthesis 

rate following treatment with leech recombinant HvRNASET2 at different concentrations (Fig. 

5).  

By means of realtime qPCR assays, human COL1α1 mRNA expression was shown to increase 

in rHvRNASET2-treated MRC5 cells (Fig. 5a), suggesting that the RNASET2-mediated effect on 

collagen neosynthesis is conserved across species and, at the same time, indicating that the 

induction of Col1 expression by HvRNASET2 in fibroblastic cells apparently acts at the 

transcriptional level. 

The effect of rHvRNASET2 treatment on COL1α1 expression pattern was further 

evaluated by a luciferase reporter assay, as described in Material and methods. The observed 

levels of luciferase expression at different concentrations of rHvRNASET2, related to collagen 

I promoter activation are shown in Fig. 5b-c. At each timepoint evaluated, a statistically 

significant increase in luminescence was observed when a rHvRNASET2 recombinant protein 

concentration of 200 ng/ml was used. Therefore, these data provided further support to the 

notion of a rHvRNASET2-mediated increase in collagen expression. 

Finally, the COL1α1 expression pattern was investigated in control and rHvRNASET2-treated 

MRC5 fibroblasts by immunofluorescent assay (Fig. 5d-f). Human fibroblasts showed a positive 

staining for COL1α1 antibody both in the presence or absence of rHvRNASET2 (Fig. 5c-e). 

However, signal intensity measurements revealed a statistically significant increase following 

recombinant leech protein treatment (Fig. 5g), suggesting the occurrence of a rHvRNASET2-

mediated increase in collagen I neosynthesis by these cells. 
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Fig. 5 In vitro experiments conducted on MRC5 human fibroblast cell line. (a) The graph shows COL1α1 mRNA expression in 

MRC5 fibroblasts treated with PBS or rHvRNASeT2. (b, c) Graphs showing the intensity of the firefly luciferase luminescence 

following treatment with different concentrations of rHvRNASET2. Immunofluorescent assays performed on treated (d, e) 

and untreated fibroblasts (f) using specific anti-collagen I antibody. The graph shows the significant different intensity of 

signal between rHvRNASeT2 treated and untreated samples (g). Bar (d) 50µm, bars (e,f) 20µm 
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DISCUSSION 

In both vertebrates and invertebrates, complex interactions based on several intracellular and 

extracellular events occur to restore and renew damaged tissues and regulate tissue 

homeostasis in response to wounds or infections, thus representing the key events in 

regenerative processes. To restore the original tissue reorganization, different types of cells 

such as immune cells, endothelial cells and fibroblasts are recruited and activated to modify 

their expression profile and produce several effector molecules, which in turn lead to cell 

differentiation and proliferation (Gurtner et al. 2008). In this context, the extracellular matrix 

(ECM) plays a key role, by acting as a molecular scaffold to affect and guide these cellular 

processes and to maintain the correct organization of organs and tissues (Daley et al. 2008).  

A better understanding of the molecular and cellular basis of tissue repair is one of the 

main targets of regenerative medicine. Interestingly, several discoveries in the field of 

regenerative processes that have been reported in low-complexity eukaryotic species, such as 

amphibians and invertebrates, have brought significant insights into human research (Gurtner 

et al. 2008). 

Among these alternative animal models, the medicinal leech represents a well-

consolidated tool for wound healing investigation. Indeed, in leech as in vertebrates, ECM 

degradation and reassembly are necessary for both immune cell recruitment and new vessel 

orientation during the inflammatory response (de Eguileor et al. 2004; Tettamanti et al. 2004). 

In this context, the Cathepsin B protease produced by both fibroblasts (Tettamanti et al. 2005) 

and macrophages (Grimaldi et al. 2004) is probably involved in degrading different 

components of ECM such as laminin, fibronectin and collagen. Either immune cells, 

endothelial cells or fibroblasts are known to exploit such degradation of the collagenous 

matrix in order to migrate and change their spatial position in the body wall during the 

reparative process. However, other molecular effector besides Cathepsin proteins are likely 

involved in the coordination of such a complex biological process as tissue repair. 

We have previously reported that injection of the human rhRNASET2 recombinant 

protein in leeches triggers both a strong innate immune system activation and a significant 

collagen production, leading to a marked remodelling of the connective tissue (Baranzini et al. 

2017). 
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To further investigate the role of this highly pleiotropic ribonuclease in these distinct but 

functionally related biological processes, we investigated here the effect of the endogenous 

H. verbana RNASET2 protein in leech ECM remodelling. To this aim, both in vivo and in vitro 

assays have been carried out to evaluate the role of recombinant HvRNASET2 protein injection 

in collagen synthesis, following the cloning of the H. verbana orthologous cDNA into a proper 

expression vector for recombinant protein production.  

Morphological and colorimetric analyses clearly demonstrated that, already at 30 min 

following in vivo rHvRNASET2 treatment, the ECM surrounding the muscular fields underwent 

a marked remodelling, becoming looser and disorganized. This pattern was maintained up to 

6 h from injection, whereas after 24 h post-treatment collagen neosynthesis was initiated to 

replace the previously degraded collagen, as already reported following the injection of the 

human recombinant protein rhRNASET2 (Baranzini et al. 2017). Moreover, a highly increased 

number of fibroblasts embedded in the extracellular network was easy detectable following 

rHvRNASET2 injection. Of note, these cells appeared to be actively involved in the production 

of a massive amount of collagen following their activation.  

As previously described upon experimental surgical lesions or cytokines injection in leeches 

(de Eguileor et al. 2001a; Tettamanti et al. 2005; Schorn et al. 2015b), the phenotype of 

rHvRNASET2-induced fibroblasts appeared very similar to that seen in vertebrates activated 

fibroblasts, with numerous laminar cytoplasmic projections stretching into the extracellular 

matrix. These cytoplasmic laminae allows the assembly of a specific microenvironment in 

which not only fibrillogenesis occurs, but also new collagen bundles are spatially organized 

and orientated (Tettamanti et al. 2004). These new fibrils, in cooperation with other molecular 

components such as proteoglycans and glycosaminoglycan, have been reported to serve as a 

solid and robust scaffolding favouring cells and new vessels migration towards the injured area 

(Tettamanti et al. 2005). As expected, the abundant production of collagen induced by 

rHvRNASET2 was also coupled by a numerical increase in fibroblast cells, as shown by both 

morphological analysis and cell counts in immunofluorescence images, where a high increase 

in bFGFR expression, a typical fibroblast marker, was unveiled. Indeed, the observed bFGFR 

expression pattern not only confirmed the activated state of fibroblasts in rHvRNASET2-

treated leeches, but also allowed us to demonstrate by cell count assays that the number of 

these activated cells was mainly increased in the earliest phases post treatment.  
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Furthermore, immunofluorescence assays and western blot analysis showed a continuous 

synthesis of new collagen fibrils over time, resulting with an ever-increasing COL1α1 signal in 

rHvRNASET2-treated leeches when compared to controls, in which mechanical stress induced 

by injection of the vehicle solution alone did not exert a significant effect. Therefore, following 

rHvRNASET2 injection, both bFGFR and COL1α1 expression were found to be significantly 

increased in the connective tissue surrounding the muscle fibers fields.  

The observed ECM remodelling following rHvRNASET2 injection in the leech body wall 

is of key relevance, since it allowed us to rule out the occurrence of an aspecific response due 

to injection of a non-self protein in our previous data reported with human recombinant 

rhRNASET2 (Baranzini et al. 2017). 

Moreover, the evolutionarily conserved role of RNASET2 in ECM remodelling was further 

suggested by our in vitro experiments, which confirmed the ability of rHvRNASET2 to induce 

collagen I production at the transcriptional level in the human MRC5 fibroblast cell line as well. 

Since recruitment and possibly activation/polarization of human cells from the 

monocyte/macrophage lineage by RNASET2 was also recently recapitulated in leeches by our 

group (Grimaldi et al. 2004; Baranzini et al. 2017, 2018), the data presented in this work are 

in keeping with the notion of RNASET2 as a highly evolutionarily conserved protein involved 

in a key ancient host defense process, represented by tissue repair following injury or 

infections, based on induction of an inflammatory process coupled to a marked ECM 

remodelling likely mediated by tissue fibroblasts. 

In this context it is worth noting that, following bacterial infection in leeches, a massive 

recruitment of RNASET2-expressing macrophages is observed (Baranzini et al. 2017). Since 

RNASET2 is known to be actively secreted by cells expressing it, it is tempting to speculate that 

the recruited RNASET2+ macrophage and granulocyte populations represent the source of 

extracellular RNASET2 which might in turn activate resident fibroblast in order to carry out 

ECM remodelling. If confirmed by future studies, the data reported in this work would 

therefore point at RNASET2 as a master regulator of a highly coordinated cellular crosstalk 

involved in a crucial biological process. 

Although further experiments will be necessary, our data also suggest for the first time a direct 

role of a T2 ribonuclease in the regulation of collagen synthesis in human cells, opening new 

possibilities related to its functionalities and its applications in the therapeutic field. 
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Figure S1 Western Blot analysis. The proteins extracted from the body wall of the leeches injected with PBS and rHvRNASET2 

have been marked with anti-COL1α1 antibody (a,c,e). In all samples, the antibody detected a specific immunoreactive band 

of about 140 kDa. The respectively housekeeping gene GAPDH (b,d,f) were used as internal control. Negative control 

experiments performed on leech cryosections related to the COL1α1 immunofluorescent assay (g) and to double 

immunofluorescent experiments showed in Figure 4 (h,i) in which the primary antibodies were omitted 
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DISCUSSION 

Following injuries or infections, a highly coordinated response involving intracellular and 

extracellular processes is critically involved in triggering a homeostatic rescue and restoring 

the original tissue reorganization. These mechanisms are considered key events in 

regenerative processes and are based on specific and complex molecular intereactions.       

To restore the original tissue structure, different types of cells such as immune, 

endothelial and fibroblasts cells are recruited and activated to change their expression profile 

in order to express a wide range of effector molecules, which in turn lead to cell differentiation 

and proliferation (Gurtner et al. 2008). Given the key role of innate immunity in both defense 

against pathogens and in tissue repair, innovative studies are critically needed to clarify how 

the molecular and cellular bases regulating the clearance of immune-mediated debris and the 

regenerative process are connected. 

Several findings related to innate immunity and regenerative processes reported in 

eukaryotic species with lower complexity, such as amphibians and invertebrates, have 

recently led to a significant advance for human research (Gurtner et al. 2008). Among these 

alternative animal models, leeches represent a well-consolidated tool for studying innate 

immune response and wound healing processes. Indeed, as observed in vertebrates, the 

degradation and subsequent reassembly of the ECM are necessary in leeches as well, both for 

immunocompetent cell recruitment and for the orientation of new vessels (de Eguileor et al. 

2004; Tettamanti et al. 2004). In particular, the Cathepsin B protease expressed by both 

fibroblasts (Tettamanti et al. 2005) and macrophages (Grimaldi et al. 2004) is probably 

involved in the degradation of laminin, fibronectin and collagen, all essential components of 

ECM. Of note, such degenerative events of the collagenous matrix are exploited by immune 

and endothelial cells or fibroblasts to migrate and vary their spatial position in the body wall 

during the regenerative processes. 

In this contents, our preliminary data obtained in leeches clearly suggest a key role of 

recombinant hRNASET2 not only in the activation of the innate immune response and in 

immune cells recruitment towards the injured/grafted or bacterial infection areas, but also in 

rearrangement of the extracellular matrix (Baranzini et al. 2017).  

These observations prompt us to clone and produce the leech RNASET2 recombinant protein 

(HvRNASET2) in order to evaluate the effect of the endogenous enzyme in leech. As previously 
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observed for human recombinant RNASET2, the injection of HvRNASET2 induces fibroplasia, 

connective tissue remodeling and the recruitment of numerous infiltrating CD11b+ 

granulocytes and HmAIF-1+ macrophages (Schorn et al. 2015a, b; Baranzini et al. 2017, 2018, 

2019a, submitted). 

Interestingly, bacterial stimulation enhances the expression of both HmAIF-1 and 

HvRNASET2 in leeches, key molecules involved in early events that trigger inflammation. 

However their temporal expression profile is quite different (Schorn et al. 2015a; Baranzini et 

al. 2018), suggesting that these two cytokines can play a different role in activation and 

modulation of innate immune response and, in particular, that HvRNASET2 might display a 

specific antibacterial role.  

The antibacterial activity of HvRNASET2 in regulating and organizing the innate immune 

response, induced by stimulation with LPS and LTA, was confirmed through morphological, 

ultrastructural and immunofluorescence assays. Indeed, after 3 hours from the injection of 

both these PAMPs in the leech body wall, a strong recruitment of CD11b+ granulocytes 

occurred, and these represent the first activated immunocompetent cells following bacterial 

infection (Baranzini et al. 2018; Girardello et al. 2019). These cells also expressed a significant 

amount of HvRNASET2, as demonstrated by double immunofluorescence and western blot 

analyses. In addition, this ribonuclease promoted HmAIF-1+ macrophage migration towards 

the challenged area (Drage et al. 2009; Drago et al. 2014), which showed a high phagocytic 

activity, as demonstrated by their positivity for the hystoenzymatic ACP reaction (Schorn et 

al. 2015a; Baranzini et al. 2019b, submitted). We thus propose that these cells have a dual 

role during bacterial infection in leeches, being involved in both cleaning up the infected area 

from bacteria and producing, 24 hour following LPS and LTA stimulation, a second wave of 

HvRNASET2 in order to recruit further macrophages. In this context, both granulocytes and 

macrophages were shown to express TLR4 and TLR2 (Girardello et al. 2019; Baranzini et al. 

2019b), the key receptor involved in the response to Gram-negative and Gram-positive 

bacteria respectively (Dziarski and Gupta 2000; Schröder et al. 2003; Bäckhed et al. 2003; 

Esen et al. 2003; Lu et al. 2008; Rahman et al. 2014). Moreover, as in vertebrates, both PRRs 

triggering induced intracellular signalling events involving MyD88, a key molecular 

intermediate for the activation of TLR4 and TLR2 signalling pathways (Girardello et al. 2019; 

Baranzini et al. 2019b, submitted) that ultimately leads to the production of TNF- (Kawai 

and Akira 2010; Molteni et al. 2016; Girardello et al. 2019). In addition, functional studies 
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carried out by injecting the cyanobacterium selective TLR4-antagonist CyP clearly 

demonstrated that TLR4 is specific for LPS recognition, while LTA likely involved the TLR2 

pathway (Takeuchi et al. 1999).  

Although both HvRNASET2 and hRNASET2 recombinant proteins did not apparently 

influence cellular viability in vitro (Baranzini et al. 2018, Baranzini et al. 2019b, submitted), 

they nevertheless affected Pseudomonas aeruginosa cell wall, triggering a change in the 

typical rod morphology of these cells (Baranzini et al. 2018) or induced Staphylococcus aureus 

clumps formation (Baranzini et al. 2019b, submitted). Of note, the phagocytic activity of 

macrophages was apparently facilitated by the aggregating properties of HvRNASET2 on 

bacterial cells, as demonstrated by in vivo experiments, where clusters of S. aureus 

surrounded by macrophages were detected in the injected leech body wall in the presence of 

HvRNASET2. Moreover, in vitro experiments confirmed that, following HvRNASET2 treatment, 

S. aureus formed cell clusters. This aggregation was likely mediated by a specific interaction 

between HvRNASET2 and the bacterial cell wall, as demonstrated by immunogold 

experiments at TEM. These results suggested that the antimicrobial properties of the leech 

recombinant HvRNASET2 protein are comparable to those of other RNases, such as the A 

RNases 3 and 7, and are in close relation to bacterial clumps forming activities (Pulido et al. 

2016). Indeed, as reported for RNase 7, HvRNASET2 induced the formation of local blebs in 

the cell wall of bacteria (Torrent et al. 2010), promoting a marked inflammatory response, 

mediated by TLR2 activation and followed by the release of several pro-inflammatory stimuli, 

such as TNF-α (Harder and Schroder 2002). Moreover, similarly to RNase 3, the ability of 

HvRNASET2 to bind bacterial cell wall seems of special relevance for its role in bacterial clumps 

formation (Torrent et al. 2010).  

Of note, this ability to agglutinate bacteria reminds to that observed for some lectins or 

lectin-like proteins, both in vertebrates (Sahly et al. 2008) and in invertebrates (Fisher and 

DiNuzzo 1991; Vazquez et al. 1996). Indeed, lectins are defensive proteins involved in the 

recognition of potential invasive microorganisms that, not only recruit pahgocityc or other 

immunocompetent cells in order to eliminate pathogens, but also can directly agglutinate or 

opsonize bacteria, inducing the membranes disruption (van Kooyk and Rabinovich 2008; 

Stowell et al. 2010). In particular, C-type lectins (CTLs) represent a well-known conserved 

group, discovered in many invertebrates models (Schulenburg et al. 2008; Wang and Wang 

2013; Wang et al. 2013) that directly agglutinate different microbial invaders, stimulating the 
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production of melanin, the rectuitment of hemocytes and promoting the humoral response 

(Li et al. 2014). The calcium dependent immulectin-2, discovered in the plasma of the tobacco 

hornworm Manduca sexta, presents a specific LPS-binding, agglutinating gram-negative 

bacteria also at low concentration (Yu and Kanost 2000). Given these evidences it is possible 

to assume that analogies exist between the leech enzyme HvRNASET2 and lectins.  

Taken together, the results presented in this work are in keeping with the notion of 

RNASET2 as a highly evolutionarily conserved protein involved in a key ancient host defense 

process, represented by tissue repair following injury or infections based on induction of an 

inflammatory process coupled to a marked ECM remodelling, likely mediated by tissue 

fibroblasts. 
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CONCLUSION 

The data reported in this work provide compelling evidence in support of a pleiotropic role for 

RNASET2 in orchestrating an evolutionarily conserved cross-talk between inflammatory 

response and regenerative process, based on granulocytes and macrophage recruitment and 

fibroblast activation, coupled to a massive extracellular remodelling. 

Moreover, to our knowledge, this study represents the first report describing a marked 

antibacterial activity for a T2 RNase member in an invertebrate experimental model and 

plausible mechanism of action.  

Of note, the similarity of the biological role assigned for some class A RNases and for T2 

RNases in plants (Irie 1999) and lower invertebrate, such as leeches, and the common cellular 

and structural features maintained by enzymes belonging to these two families, such as the 

preference of substrate and the affiliation with the extracellular pathways (Hillwig et al. 2009), 

lead us to hypothesize a possible evolutionary relations among T2 and A enzymes.  

We reckon that these working hypothesis pave the way to further targeted studies that 

deal with the possible evolutive origins of the T2 and A RNases enzymes and to the production 

of new peptide-derived antimicrobials drugs, which could help to counteract the ever-growing 

problem of the dramatic worldwide emergence of antibiotic-resistant strains. 

Moreover, our data show that the medicinal leech, which present similar morpho-

functional and molecular characteristics with Vertebrates, can be considered a useful 

invertebrate model to investigate all these mechanisms involved in immune response, wound 

healing, regeneration and control of tissue homeostasis. Indeed, studies conducted on leech 

should represent a helpful tool for conducing functional studies for better understanding the 

close connection between immune response and tissue regeneration and the specific role of 

the main immune modulators. Keeping in mind that in invertebrates all the biological 

processes and mechanisms are incredibly similar to those observed in Vertebrates, indicating 

a significant evolutive conservation, this should be a new emergent and reliable model for 

studying biological responses, cell types and related molecules. Moreover, as suggested by 

other invertebrate models, fine information can be obtained about the inflammation process, 

which resulted faster than in mammals. In addition, the use of powerful methods such as the 

MG biopolymer, allow to reduce the gap existing between in vitro and in vivo data.  
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Finally, the use of leeches in scientific research actually avoids some inconveniences 

associated to the increasing number of restrictions, i.e. ethical considerations, restrictions 

about the experimental animals use and the number of species accessible for any 

experimentation, and animal welfare.   
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