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This thesis deals with the study of pattern formation on complex networks, a topic

of paramount importance in different fields of broad applied and fundamental interest.

Starting from a prototypical reaction-diffusion model, two main directions of investiga-

tion have been explored: on the one side, we have examined the system in its determinis-

tic limit. Partial differential equations hence govern the evolution of the concentrations

of the interacting species. In the second part of the thesis, we have conversely adopted

a stochastic viewpoint to the scrutinized problem. Both in the deterministic and in the

stochastic settings, the species are assumed to populate a complex graph, which provide

the spatial backbone to the inspected model. Diffusion is allowed between neighbouring

nodes, as designated by the associated adjacency matrix.

According to the deterministic formulation, a small perturbation of a homogeneous fixed

point can spontaneously amplify in a reaction-diffusion system, as follow a symmetry

breaking instability and eventually yield asymptotically stable non homogeneous pat-

terns. These are the Turing patterns. Travelling waves can also develop as follows an

analogous dynamical instability. In this Thesis we have considered the peculiar setting

where the spatial support is a directed network. Due to the structure of the network

Laplacian, the dispersion relation has both real and imaginary parts, at variance with

the conventional case for a symmetric network. The homogeneous fixed point of the

system can turn unstable because of the topology of the hosting network. This observa-

tion motivates the introduction of a new class of instabilities, termed topology driven,

which cannot be induced on undirected graphs. A linear stability calculation enables

one to analytically trace the boundaries of the instabilities in the relevant parameters

plane. Numerical simulations show that the instability can lead to travelling waves, or

quasi-stationary patterns, depending on the characteristics of the underlying graph. An-

other scenario where topology matters is that of multi-layered networks, also known as

multiplex networks. We have shown in this Thesis that the emergence of self-organized

patterns on a multiplex can be instigated by a constructive interference between layers.

It can be in fact proven that patterns can emerge for a reaction-diffusion system de-

fined on a multiplex, also when the Turing-like instability is prevented to occur on each

single layer taken separately. In other cases inter-layer diffusion can have a destructive

influence on the process of pattern formation, as we will discuss in details in this Thesis

work.

Beyond the deterministic scenario, single individual effects can also impact the process of

pattern formation. Stochastic fluctuations, originating from finite size populations, can

in fact significantly modify the mean-field predictions and drive the emergence of regular

macroscopic patterns, in time and space, outside the region of deterministic instability.

In the second part of the Thesis we have studied the dynamics of stochastic reaction-

diffusion models defined on a network. A formal approach to the problem has been
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developed which makes use of the Linear Noise Approximation (LNA) scheme. Simula-

tions based on the Gillespie algorithm were performed to test the analytical results and

analyzed via a generalized Fourier transform which is defined using the eigenvectors of

the discrete graph Laplacian. Travelling waves as well as stationary patterns reminis-

cent of the Turing instability are shown to develop as mediated by the discreteness of

the stochastic medium. As a final point we considered the case of a general stochas-

tic reaction-diffusion system, where the activator is solely allowed to diffuse. Working

under the LNA, we proved that stochastic Turing like pattern can develop, an obser-

vation which marks a striking difference with the conventional, customarily adopted,

deterministic scenario.
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Introduction

Pattern formation is a rich and fascinating field of investigations which aims at char-

acterizing the fundamental processes responsible for the spontaneous emergence of self-

organized collective structures in nature. This is an important domain of study which

ideally embraces different fields, ranging from biology to physics, passing through chem-

istry [1–6]. Patterns are indeed widespread and display a rich gallery of intriguing

symmetries, as e.g. trees, spirals, stripes, waves, meanders, cracks, etc.

The first attempt to tackle the problem of pattern formation dates back to 1952 when

the English mathematician Alan Turing [1] put forward the brilliant idea that mor-

phogenesis, the biological process that causes an organism to develop its shape, could

have a simple and nice mathematical explanation. In this attempt he showed that

macroscopic patterns could materialize as follows a symmetry breaking instability of a

spatially extended nonlinear reaction-diffusion equations. Turing suggested on the basis

of a rather intuitive argument that diffusion could turn unstable a system of reacting

agents initailized around a stationary stable equilibrium, thus triggering the morphogen-

esis process. In his analysis he considered a minimal model composed by two interacting

chemicals (or species): the so called activators which cause their own growth and the

inhibitors which, on contrary, have a damping effect. Allowing for the elementary con-

stituents to freely migrate within a defined domain, one observes, after a while, the

formation of islands of different concentration (in terms of the respective species abun-

dancy), which further shape in time, until a final stationary stable pattern is eventually

attained.

The process of pattern formation follows a linear instability mechanism, nowadays known

as the Turing instability. In fact, starting from a homogeneous stable state the system

goes unstable because of diffusion and the concentrations of the species grows exponen-

tially until the nonlinearities become so strong to balance this tendency and stabilize

the pattern. In his original work, however, Turing pointed out that there are some con-

straints for an activator-inhibitor system to get destabilized. First of all both species

should diffuse, and second, the diffusion rate of the inhibitor should be larger than that

1
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of the activator. Only this way the conditions for the Turing instability are met and the

patterns can develop.

Shortly after Turing seminal paper, plenty of applications came out; from the shape of

the starfish to the skin of the chameleon from the coat of the tiger to the sand dunes in

deserts, all these phenomena are seen under the lens of the Turing instability paradigm.

A new interdisciplinary discipline was born aimed at approaching life sciences questions

with the quantitative tools of mathematics and physics.

In recent years, networks based applications have been recognized as central in many

distinct fields [7–9]. It is indeed amazing to observe how networks pervade our everyday

life. Consider for instance the human brain, which is constituted by an incredible num-

ber of neurons connected to each other and exchanging thousands of electric pulses for

seconds. Nerves starting from the spinal cord end up almost in every part of our body, so

permitting the brain to gather information and response to external stimuli. The com-

plexity of nervous system, yet to be fully explored, is only one of thousands of examples

where networks apply. In fact, people have to do everyday with complex networks,

when they pick up the phone or google for information, chat on social networks or travel

back and forth to work; in all these examples where communication or transport are in-

volved, the underlying backbone structure is a complex graph. From human interactions

to animal ecoregions, from cellular networks to traffic flow, Turing patterns could rep-

resent a formidable approach to explain the natural tendency towards self-organization.

In the 70’s Othmer and Scriven [10] had the foresight to extend the theory of Turing

patterns to the relevant case where the spatial support of the reaction-diffusion system

is heterogeneous. In doing so, they took inspiration from the observation that, in the

early stages of the embryo morphogenesis, the zygotic cells represent a multi-cellular

network, rather than a continuous regular structure. Just a few year ago, the studies of

Othmer and Scriven were revisited and considerably expanded by Nakao and Mikhailov

[11] who generalized the analysis to include systems defined on large random complex

networks. As pointed out in [11], the pattern formation theory revisited in the context

of networks science broaden the pictures along interesting and undexplored directions

which could prove crucial for e.g. epidemics spreading, ecosystems dynamics, chemical

reactors, neurosciences, traffic systems, computer networks, power grids etc. In analogy

with the continuous case, patterns on a network are represented by a differentiation of

the nodes in activator-rich and activator-poor groups. Moreover, patterns on networks

manifest new properties inherited by the topology of the underlying spatial support, as

we will show in this thesis.

So far the study of collective dynamics based on Turing instability, has been limited to

undirected graphs. In this thesis, we will extend the theory of pattern formation based
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on reaction-diffusion systems to the case of directed networks [12]. Most of networks,

in fact, are based on directed graphs: interaction, transport or communication do not

necessarily display the symmetries that often invoked in basic reference models. In

practice the simplifications assumed when dealing with undirected, hence symmetric

networks, can be in several cases questioned. We will here show that the directionality

of the network is a key ingredient which can eventually enhance the ability of the system

to self-organize both in space and in time. At variance with the conventional case of

symmetric networks, the discrete Laplacians operator defined on a directed network

may admits complex eigenvalues. This complication is responsable for a new type of

instability of the homogeneous fixed point, which cannot be induced according to the

usual scenario. Analytical results from the linear stability analysis show that the patterns

can develop with no restrictions on the relative diffusivities of the interacting species,

as it is instead the case for the classical Turing vision. These results, that we shall

discuss in details all along the thesis, can potentially interest fields as neuroscience or

information technology.

The importance of the topology of the underlying discrete support is also manifested in

other context. Consider for instance, the newly introduced multiplex networks. This

family of networks is represented by a set of several graphs, called layers, interconnected

to each other [13–15]. By adapting to this setting the theory of patterns formation, we

will here show that the interaction between adjacent layers can seed the instability of an

uniform steady state, yielding self-organized collective motifs, which cannot develop in

the limit of decoupled layers [16]. Patterns on individual layers can also fade away due

to cross-diffusion between layers. These observations are analytically substantiated via

a spectral perturbative technique that we will make use of in the following. Multiplex

share indeed peculiar characteristics, which might play a pivotal role in favouring the

process of self-organization, from the microscopic to the macroscopic realms.

Often real systems in nature are composed of a moderate number of individuals which

are allowed to interact only on confined regions of the spatial domain. In general, this

makes impossible to model the population dynamics in terms of deterministic reaction-

diffusion equations. Methods such as Linear Noise Approximation (LNA), borrowed

from statistical mechanics, may be employed to account for the finite size corrections to

mean-field dynamics. Working in the generalized scenario of stochastic models, we will

prove that stochastic Turing patterns [17, 18] can emerge in a region of the parameters

for which spatial order is prevented to occur in the idealized deterministc picture. This

phenomenon, as revealed by direct stochastic simulations, is explained analytically by

mean of LNA adapted to the networks setting, and eventually traced back to the finite

size effects stemming from the inherent graininess of the scrutinized medium [19, 20].
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To carry out the analysis, we have introduced a generalized Fourier transform, by ex-

panding the signal on a basis formed by the eigenvectors of the Laplacian operator. By

elaborating along these line we could also prove that patterns can be found also when the

activators are solely allowed to diffuse, the inhibitors being considered as static targets,

at odd with the original Turing prescriptions [21].

To sum up and conclude, we briefly describe the structure of the thesis. In the first

chapter we introduce a few key elements on the theory of pattern formation for both

systems defined on a continuum or discrete, network-like, support. In Chapter 2 we

develop the theory of reaction-diffusion systems on directed networks by introducing the

new type of instability to which we have alluded above. Pattern formation in multiplex

networks is then studied in Chapter 3. The case of a two-layers multiplex is tackled

in some details via a perturbative method, which holds in the limit of weak inter-layer

coupling. Chapter 4 is dedicated to reviewing the theory of stochastic pattern formation

for systems evolving on a regular lattice. We will in particular consider the case where

only one species is allowed to diffuse in space. In the last chapter, we will discuss the

linear noise approximation for stochastic reaction diffusion systems defined on a graph.



Chapter 1

Pattern formation in complex

networks

1.1 Introduction

In this chapter, we introduce the concept of reaction-diffusion equations and discuss their

relevance in a broad perspectives. As it is widely known reaction-diffusion equations

admits a rich plethora of interesting solutions, some of which will be examined all along

this thesis work. Particularly interesting is the spontaneous appearence of self-organized

stationary patterns, originating from a symmetry breaking instability of a homogeneous

fixed point. The dynamical mechanism that seeds the aforementioned instability was

illustrated by Alan Turing in his pioneering work on the chemical basis of morphogenesis,

and since then has been exploited in many different contexts, ranging from physics

to biology. An extended discussion on the mathematics of pattern formation and its

multifaceted applications can be found the books of Murray [2] and Cross & Greenside

[3]. The concept of Turing instability also applies to reaction-diffusion systems defined

on a complex graph support, as recently discussed by Nakao & Mikhailov [11]. In

this chapter we will briefly review the process of diffusion driven instability, both for

systems embedded on a continuum space or defined on a discrete heterogeneous network.

These premises will serve as a starting point for our subsequent developments. More

specifically, in Section 1.2 we will provide a basic entry to the theory of pattern formation

for a system made of two interacting species. Some elements of graph theory will be

then covered in Section 1.3. In the last section we will introduce the theory of reaction-

diffusion equations for the case when the agents are constrained to evolve on a network.

5
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1.2 Turing instability for an activator-inhibitor system

Realistic equations describing chemical reactions in experimental geometries are com-

plicated to formulate and difficult to investigate. The same was true in the 1940s when

Alan Turing was thinking about morphogenesis. These difficulties did not stop Turing

who, in the tradition of great theoretical science, set as his goal not the quantitative ex-

planation of morphogenesis but the discovery of a clear plausible mechanism that could

guide researchers in how to think about such a complex phenomenon.

We will follow Turing original paper1 and examine analytically the linear stability analy-

sis of the simplest possible reaction-diffusion system that forms a pattern from a uniform

state. The analysis will lead to several insights, some unexpected. One insight is that

at least two interacting chemicals are needed for pattern formation to occur. Second is

Turing’s most surprising insight, that diffusion in a reacting chemical system can actu-

ally exert a destabilizing influence. This is contrary to intuition since diffusion by itself

smooths out spatial variations of a concentration field and so would be considered as a

stabilizing effect. A third insight is that the instability caused by diffusion can seed the

growth of structure at a particular wave length. This provides a possible mechanism

for producing patterns like the segmentation patterns in the developing fly embryo, the

periodic arrangement of tentacles around the mouth of the Hydra organism or zebra

stripes. A fourth insight is that pattern formation in a reaction-diffusion system will

not occur unless the diffusion coefficients of at least two reagents differ substantially.

The difficulty of satisfying this condition for chemicals in solution partially explains why

nearly 40 years passed after Turing’s paper before experiments were able to demonstrate

the truth of his ideas.

1.2.1 Reaction-diffusion equations

We will study the Turing model for two reacting and diffusion species u1, u2 of the form:

∂u1
∂t

= f1(u1, u2) +D1
∂2u1
∂x2

∂u2
∂t

= f2(u1, u2) +D2
∂2u2
∂x2

(1.1)

or in vectorial form
∂u

∂t
= f(u) +D

∂2u

∂x2
,

1Turing’s paper is also interesting from a historical point of view. For example, he could only speculate
about how an organism knew how to grow since the role of DNA would only be announced a year later
in 1953. The last section of the paper mentions one of the first simulations on a digital computer and
Turing states his belief that these new computers will be important for future research. There is a
certain irony here since Turing was one of the inventors of the digital computer.
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where we have introduced a diagonal 2× 2 diffusion matrix D defined by

D =

(

D1 0

0 D2

)

. (1.2)

Eqs. (1.1) describes the evolution of the concentration of the two species ui(t, x), i = 1, 2

on the real line x ∈ IR. The nonlinear functions f1(u1, u2), f2(u1, u2) are the reaction

terms of the two chemicals while the D1, D2 are the corresponding diffusion coefficients.

The simplest possible model is obtained by assuming that there is no prior spatio-

temporal structure in the system so that the functions fi and the diffusion coefficients

Di do not depend explicitly on time t or on position x. For simplicity, we further assume

that the diffusion coefficients are constants and so do not depend on the field values ui.

These assumptions are quite reasonable for many experimental situations.

1.2.2 Linear stability analysis

We now perform the linear stability analysis of uniform solutions of the two-chemical

reaction-diffusion model Eqs. (1.1). Turing’s surprising and important discovery was

that there are conditions under which the spatially uniform state is stable in the absence

of diffusion but can become unstable to nonuniform perturbations due to diffusion.

Further, for many conditions the instability first occurs at a finite wave length and so a

cellular pattern starts to appear.

The following discussion is aimed at deriving, and then physically understanding, the

sufficient conditions for which the real parts of the growth rates become negative.

When these conditions are first violated and instability occurs, it is then important

to think about the values of the wave numbers corresponding to the fastest growing

modes. For simplicity, we will discuss the one-dimensional case. If we assume that

the evolution equations have rotational symmetry in higher dimensions, the two- and

three-dimensional cases are identical: the one-dimensional Laplacian ∂2/∂x2 becomes a

higher-dimensional Laplacian ∇2 and so on.

We begin by assuming that our system admits a stationary uniform solution u∗ =

(u∗1, u
∗
2) when all partial derivatives are set to zero, leading to f(u∗) = 0. Since, in gen-

eral, this is a nonlinear system, numerical methods can be very helpful. Then, lineariz-

ing about the steady state u∗, one obtains that an arbitrary infinitesimal perturbation

δu(t, x) = (δu1(t, x), δu2(t, x)) of the fixed point will evolve in time according to the
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following linear equations:

∂δu1
∂t

= J11δu1 + J12δu2 +D1
∂2δu1
∂x2

∂δu2
∂t

= J21δu1 + J22δu2 +D2
∂2δu2
∂x2

, (1.3)

where Jij = (∂fi/∂uj) |u∗ are the entries of the 2×2 Jacobian matrix J evaluated at the

steady state u∗. Again in vectorial form we have

∂δu

∂t
= Jδu+D

∂2δu

∂x2
. (1.4)

Because the above partial differential equation is linear with constant coefficients and

imposing periodic boundary conditions we can look for solution in the form:

δu = δuqe
σqteiqx, (1.5)

where δuq is the constant vector and σq the growth rate associated to wave number

q. Note that both components δui, i = 1, 2 of the perturbation vector δu share the

same dependence on time and space. Substituting Eq. (1.5) in (1.4) with further

computational efforts one obtains the following eigenvalue problem

Jqδuq = σqδuq, (1.6)

where the matrix Jq is defined as

Jq = J−Dq2 =

(

J11 −D1q
2 J12

J21 J22 −D2q
2

)

.

The eigenvalue problem for a given q has generally two linearly independent eigenvectors

that we will denote by δu1q, δu2q with corresponding eigenvalues σ1q, σ2q. The general

solution of Eq. (1.4) is a superposition over all wave numbers q of particular solutions:

δu (t, x) =
∑

q

(

c1qδu1qe
σ1qt + c2qδu2qe

σ2qt
)

eiqx, (1.7)

where the coefficients c1q, c2q are complex constants, that depend on the initial pertur-

bation. The uniform solution u∗ is stable if both eigenvalues σ1q, σ2q have negative real

parts for all wave numbers q, i.e., if maxi maxq Re(σiq) < 0 for i = 1, 2.
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Solving the characteristic polynomial obtained from the eigenvalue problem (1.6) gives

the following result (since we are looking for the largest σq)

σq =
1

2

(

trJq +

√

(trJq)
2 − 4detJq

)

, (1.8)

known also as the dispersion relation. From the expression of Eq. (1.8) a simple criterion

can be derived that determines when the real parts of both eigenvalues are negative [2];

namely

trJq = J11 + J22 − (D1 +D2) q
2 < 0

detJq =
(

J11 −D1q
2
) (

J22 −D2q
2
)

− J12J21 > 0. (1.9)

If both conditions hold for all wave numbers q, then the stationary homogeneous state

u∗ is linearly stable 2.

We now discuss the physical meaning and implications of the mathematical criterion Eqs.

(1.9) in the context of pattern formation. Turing’s insight was that diffusion of species

may somehow cause a pattern-forming instability. If so, then the starting point is to

imagine that somehow the diffusion has been turned off (mathematically by setting the

diffusion coefficients to zero) and then we slowly turn on the diffusion to see if instability

ensues. Then we need to assume that the reacting chemicals form a stable stationary

state in the absence of diffusion. Setting the diffusion constants to zero in Eqs. (1.9),

we obtain the following criterion for linear stability of the homogeneous state:

trJ = J11 + J22 < 0

detJ = J11J22 − J12J21 > 0. (1.10)

If these conditions are satisfied, a well-mixed two-chemical solution will remain sta-

ble and uniform. Comparing Eqs. (1.10) with Eqs. (1.9) and recalling that diffusion

constants and the quantity q2 are non-negative, we conclude that

trJq = trJ− (D1 +D2) q
2 < trJ < 0,

so the trace of the matrix Jq is always negative. Hence diffusion can destabilize the

uniform state only if it yields a violation of the second of Eqs. (1.9). The determinant

detJq is a convex parabola in q2. The linear instability sets in if the minimum of the

parabola becomes negative. Setting the derivative of detJq with respect to q2 to zero,

2If our problem instead involved N interacting species, we can still obtain some necessary and suf-
ficient analytical criteria that all the eigenvalues of a N × N matrix have negative real parts. The
Routh-Hurwitz criterion, in fact, states that a certain sequence of determinants from size 1 to N all have
to be positive.
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we find that the minimum occurs at the wave number qm given by:

q2m =
D1J22 +D2J11

2D1D2
. (1.11)

The corresponding value of detJq at this minimum is

detJqm = J11J22 − J12J21 −
(D1J22 +D2J11)

2

4D1D2
.

This expression is negative when the following inequality is satisfied:

D1J22 +D2J11 > 2
√

D1D2 (J11J22 − J12J21). (1.12)

The term inside the square root is positive because of the second of Eqs. (1.10). As a

consequence, it implies that

D1J22 +D2J11 > 0,

which can also be deduced directly from Eq. (1.11) since q2m is a non negative real

number. From this last result and the first of Eqs. (1.10), we see that one of the

quantities J11 and J22 must be positive and the other negative for the instability to set

in. For simplicity and without loss of generality we will assume J11 > 0 and J22 < 0 in

the subsequent discussion. This implies that species “1” enhances its own production

and so it is generally called activator. At variance species “2” inhibits its own growth

and acts as an inhibitor. Eqs. (1.10) further implies that the quantities J12 and J21

must also have opposite signs. The above analysis can be summarized in the following

theorem

Theorem 1.1. (Turing instability) Eq. (1.12) is a necessary and sufficient condition

for linear instability of a uniform steady state that is stable in the absence of diffusion,

eqs. (1.10).

By varying one parameter, the inequality Eq. (1.12) can be eventually matched and the

fixed point turns unstable to perturbations. The excited modes lay in a bounded region

in q, an important requisite for the pattern to eventually stabilize. In the linear regime

the pattern will grow with a characteristic wave number which is close to the value qm

in Eq. (1.11). The condition Eq. (1.12) can be expressed alternatively in terms of two

diffusion lengths

l1 =

√

D1

J11
, l2 =

√

D2

J22
(1.13)

in the form

q2m =
1

2

(

1

l21
− 1

l22

)

>

√

J11J22 − J12J21
D1D2

.
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This implies that the length l2 must be sufficiently larger than the length l1. The

necessary condition l2 > l1 for a Turing instability is also sometimes referred to as “local

activation with long range inhibition”.

The condition l2 > l1, when expressed in the equivalent form D2/D1 > (−J22/J11)
partly explains why experimentalists had such a hard time finding a laboratory example

of a Turing instability. The diffusion coefficient D2 of the inhibitor has to exceed the

diffusion coefficient D1 of the activator by a factor (−J22/J11) which can exceed 10 for

some realistic models of reaction-diffusion experiments.

1.2.3 Reaction-diffusion system with one diffusing species

Let us now focus on the specific case study where just one species, specifically u, is

allowed to diffuse with a diffusion coefficient D. We will prove that no Turing instability

can occur, if just one species can diffuse.

Then a simple calculation yields an equivalent expression to eq. (1.8) written in explicit

form:

σq =
(trJ−Dq2) +

√

(trJ−Dq2)2 − 4(detJ−Dq2J22)

2
(1.14)

Since we are interested in the growth of unstable perturbations, we have here selected

the largest σq. The Turing instability occurs if one can isolate a finite domain in q for

which σq > 0. In formulae:

(trJ−Dq2) +
√

(trJ−Dq2)2 − 4(detJ−Dq2J22) > 0

=⇒
√

(trJ−Dq2)2 − 4(detJ−Dq2J22) > −(trJ−Dq2)

=⇒ −4(detJ−Dq2J22) > 0

=⇒ Dq2J22 > detJ. (1.15)

The right hand side contribution in equation (1.15) is positive as the homogeneous fixed

point is supposed to be stable. If J22 < 0, so the species v acts as inhibitor, it is clear

that (1.15) does not admit solutions, the left hand side of the equation being negative.

At variance, when J22 > 0, so v is the activator, we have:

q2 >
detJ

DJ22
=⇒ q < −

√

detJ

DJ22
and q >

√

detJ

DJ22
. (1.16)

Equation (1.16) implies that the relation of dispersion σq is positive for all values of q

above a critical threshold qc =
√

detJ/(DJ22). The quantity σq grows as q does, the
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instability involving smaller and smaller spatial scales. It is therefore not possible to

delimit a finite window in q for which σq is found to be positive, and, hence, the Turing

instability cannot take place. In conclusion, we have here confirmed a well establish fact

[22]: a two species systems where only one species can migrate, cannot undergo Turing

instability.

1.2.4 Example: Brusselator model

The criteria found above for the Turing instability of a uniform state will be now applied

to a simple two-variable mathematical model known as the Brusselator for illustration

purpose. The Brusselator model involves molecules of two chemical species, u and v.

More specifically, the system evolves according to the general dynamical equations (1.1)

with f(u, v) = a − (b + d)u + cu2v and g(u, v) = bu − cu2v, where a, b, c and d act as

external, positive definite, parameters.:

∂u

∂t
= a− (b+ d)u+ cu2v +Du

∂2u

∂x2

∂v

∂t
= bu− cu2v +Dv

∂2v

∂x2
(1.17)

The Brusselator model admits a unique homogeneous fixed point u∗ = a/d, v∗ = bd/ac,

which is stable for b < 1 + c(a/d)2. We additionally require b > d, such that J11 =

−d + b > 0, while J22 = −c(a/d)2 < 0. Although introduced with the goal of under-

standing the Belousov-Zhabotinsky reaction [23], this model was intended not to describe

a specific chemical experiment but to show how an invented plausible sequence of chem-

ical reactions could reproduce qualitative features such as the Turing patterns. Let us

consider the following parameter values a = 1.5, c = d = 1, Du = 2.8 and Dv = 22.4

and change b which acts therefore as the bifurcation parameter. The onset of instability

can be visually understood by plotting the dispersion relation as a function of the wave

number q for values of the parameter b below, equal to, and above the critical value

bc ≈ 2.34, Fig. 1.1. In Fig. 1.2 we show also two different patterns for the Brusselator

model. The results were obtained integrating numerically the system of partial differ-

ential equations (using a finite difference method in space and a Runge-Kutta scheme

in time) with periodic boundary conditions. In both cases the concentration of the first

species is plotted (color bar) in the XY− plane.

1.2.5 Oscillatory instability

We end this section with an important remark. Since trJq < 0, it is clear from equation

(1.8), that it is not possible to satisfy the condition for the instability Re (σq) > 0, and
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Figure 1.1: Plots (solid curves) of the maximum of the real part of the growth rate
(dispersion relation), σq versus wave number q, for the Brusselator model. Three curves
are plotted for different values of the bifurcation parameter (b = 0.6bc red, b = bc green
and b = 1.4bc blue), which controls the instability. The critical wave number qc ≈ 0.435
is identified as the wave number for which the maximum real part of the growth rate

first becomes zero.

have, at the same time, an imaginary component of the dispersion relation, Im (σq),

different from zero. This is instead possible when operating in a generalised setting

which accommodates for specific long-range couplings in the reaction terms [56] or when

considering at least three mutually interacting species [20, 24]. A system unstable for

q 6= 0 and with the corresponding Im (σq) 6= 0 is said to undergo a wave-instability and

the emerging patterns have the form of travelling waves [56].

So far, we have discussed the problem of pattern formation where the species diffuse in

a continuous medium with general boundary conditions. Nevertheless, as anticipated in

the beginning of this chapter, the analysis can be readily extended to systems defined

on complex spatial supports as graphs (also called networks). Before turning to discuss

this interesting generalization, we will briefly review, in the next section, some important

concepts in graph theory.

1.3 Mathematics of networks

In this section, we introduce the basic theoretical tools used to describe and analyze

networks, most of which come from graph theory, the branch of mathematics that deals
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Figure 1.2: Turing two-dimensional patterns produced through simulating the Brus-
selator model. The parameters for both cases are a = 4.5, c = d = 1, Du = 2, Dv = 16.
(a) Dotted patterns, b = 6.75. (b) Stripes patterns, b = 7.5. The simulations have zero-
flux boundary conditions, i.e. the boundaries are impermeable. The initial conditions

are random perturbations about the homogeneous steady state.

with networks. Graph theory is a large field of investigation which branches in many

directions. We will describe here only a small fraction of the results present in the

literature, focusing only on those aspects that are relevant to the study of real-world

applications.

1.3.1 Networks representation and centrality measures

By definition a network–also called a graph in the mathematical terminology–is made

up of points, usually called nodes or vertices, and lines connecting them, usually called

edges. Mathematically, a network can be represented by a matrix called the adjacency

matrix A, which, in the simplest case, is an Ω × Ω symmetric matrix, where Ω is the

number of vertices in the network. The adjacency matrix has elements

Aij =







1, if there is an edge between i and j

0, otherwise

For example, the adjacency matrix of the network in Fig. 1.3 is
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Figure 1.3: An example of a simple (undirected) graph.

A =

























0 1 0 0 1 0

1 0 1 1 0 0

0 1 0 1 1 1

0 1 1 0 0 0

1 0 1 0 0 0

0 0 1 0 0 0

























.

The matrix A is symmetric since if there is an edge between i and j then clearly there

is also an edge between j and i, thus Aij = Aji.

In some networks the edges are weighted. This means that the nonzero elements of the

adjacency matrix can be generalized to values (weights wij) other than unity to represent

stronger or weaker connections. In this case, we have the coupling matrix W. Since in

this thesis we will deal with unweighted networks, unless particularly specified, W = A.

Another variant is the directed network, in which edges point in a particular direction

between two vertices. It is represented by an asymmetric adjacency matrix in which

Aij = 1 implies (conventionally) the existence of an edge pointing from j to i, which

will in general be independent of the existence of an edge from i to j. Networks may

also have multiedges (repeated edges between the same pair of vertices), self-edges or

self-loops (edges connecting a vertex to itself), hyperedges (edges that connect more than

two vertices together) and many other features. We here concentrate however primarily

on the simplest networks having unweighted single edges between pairs of vertices. The
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only property we will be concerned with is the directionality which will prove crucial for

the reaction-diffusion dynamics on networks, as we shall discuss in the next chapter.

There is still another topological approach for graphs classification, that of the multiplex

network [13–15, 25]. In this case one is brought to consider a collections of networks

interconnected with each other. Single networks are layers of a global network, the

multiplex, and their dynamical interplay proves crucial, as we show in Chapter 3.

Turning to the analysis of dynamical processes that take place on networks, we start

by looking at the centrality measures, which are some of the most fundamental and

frequently used measures of network structure. Centrality measures quest for, who is

the most important or central node of the network. There are many answers to this

question, depending on what we mean by important. Perhaps the simplest of centrality

measures is the degree centrality, also called degree. The degree of a vertex in a network

is the number of edges attached to it. In mathematical terms, the degree ki of a vertex

i is

ki =
Ω
∑

j=1

Aij . (1.18)

Another useful centrality measures is the closeness centrality, which exploits the concept

of network paths. A path in a network is a sequence of vertices traversed by following

edges from one to another across the network. A geodesic path is the shortest path

(may not be unique), in terms of number of edges traversed, between a specified pair of

vertices. The closeness centrality of vertex i is the mean geodesic distance (i.e., the mean

length of a geodesic path) from vertex i to every other vertex. Closeness centrality is

lower for vertices that are more central in the sense of having a shorter network distance

on average to other vertices.

1.3.2 Models of network generation

In this paragraph we briefly describe the main graph generation models used along this

thesis. Perhaps, the most intuitively simple is the random graph. In general, a random

graph is a model network in which some specific set of parameters are fixed, but the

network is random in all the other aspects. One of the simplest way of generation a

random graph is based in the Erdős-Rényi [26] model G(Ω,m) in which we fix only the

number of vertices Ω and the number of edges m. That is, we choose m pairs of vertices

uniformly at random from all possible pairs and connect them with an edge. In order

to be a simple graph, i.e., that it should have no multiedges or self-edges, the position

of each edge should be chosen among only those pairs that are distinct and not already

connected. Another equivalent definition which is most commonly used is that given by
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Gilbert [27], denoted G(Ω, p), in which every possible edge occurs independently with

probability 0 < p < 1. Strictly speaking, the random graph model is not defined in

terms of a single randomly generated network, but as an ensemble of networks, i.e., a

probability distribution over possible networks.

There are other types of networks which do not arise naturally and for this reason their

growth is based in generative models. Here we discuss two main kinds of such networks

the scale-free and the small-world networks. The first one make use of the preferential

attachement principle invented by Barabási and Albert [7]. According to this method

if we start from an initial number of nodes Ω and edges m randomly distributed, the

network growths adding at each step more links to the more connected nodes (with

higher degree). A constrain which is usually imposed, is the mean degree k that the

graph should have. At the end of this process according to which the “rich get richer”

a network with a power-law degree distribution P (k) ∼ k−γ , (2 < γ < 3) is recovered.

The small-world networks on the other side are defined like graphs where most nodes can

be reached from every other by a small number of steps. In fact, the typical distance

L between two randomly chosen nodes grows proportionally to the logarithm of the

number of nodes in the network: L ∼ log Ω. Two different strategies for generating

these graphs will be considered. On the one side, we will follow the Watts-Strogatz

(WS) approach [9] that starts by constructing a k-regular ring lattice given a desired

number of nodes Ω and the mean degree k. Then, for every node i, we take all edges and

rewire them with a given probability 0 < p < 1 avoiding self-loops and multiedges. At

the end, the mean number of rewired links is Ωkp. Small world networks are found for

intermediate values of p. We will also implement an alternative generation strategy, the

so-called Newman-Watts (NW) algorithm [28]. It is quite similar to the preovius one,

with the only change that all of the original links in the regular lattice are preserved,

and extra Ωkp links are added.

1.4 Reaction-diffusion equations defined on a graph

As early as 1971, Othmer and Scriven [10] pointed out that Turing instability can occur

in network-organized systems and may play an important role in the early stages of bio-

logical morphogenesis, as morphogens diffuse over a network of intercellular connections.

They proposed a general mathematical framework for the analysis of such network in-

stability, which has been subsequently explored. The examples of specific applications

of the theory were, however, limited to regular lattices or small networks.
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Recentely [11], the concept of Turing patterns was extended to large complex networks,

revealing striking differences as compared to their analogues on a regular lattice. It

was observed that the system initially spontaneously differentiates into activator-rich

and activator-poor groups of the network nodes and the emerging patterns became fur-

thermore strongly reshaped at the subsequent nonlinear stage. Other features observed,

which go beyond the aim of this thesis, are coexistence of multiple stationary states

and hysteresis effects. Here, we briefly review the general theory of reaction-diffusion

dynamics on a undirected graph. The importance of the self-organizing behaviour in

networks is stressed out by potential applications such like ecological metapopulations,

cellular networks, traffic systems, computer networks, brain connectoma, etc.

We begin by considering a network made of Ω nodes and characterised by a general

weighted Ω×Ω adjacency matrix W: the entry Wij is equal to the weight wij if nodes i

and j (with i 6= j) are connected, and it is zero otherwise. If the network is undirected,

the matrix W is symmetric. Consider then two interacting species and label with (ui, vi)

their respective concentrations on node i. A general reaction-diffusion system defined

on the network takes the form:

dui
dt

= f(ui, vi) +Du

Ω
∑

j=1

∆ijuj

dvi
dt

= g(ui, vi) +Dv

Ω
∑

j=1

∆ijvj (1.19)

where Du and Dv denote the diffusion coefficients of, respectively, species u and v;

where again f(·, ·) and g(·, ·) are nonlinear functions of the concentrations and stand for

the reaction terms; ∆ij are the entries of the network Laplacian matrix ∆. This new

transport operator is defined as ∆ =W −K where K = diag(ki) or expressed in terms

of the entries ∆ij =Wij − kiδij where δij is the Kronecker δ−function.

The graph Laplacian turns up in a variety of different places, including random walks on

networks, resistor networks, graph partitioning, and network connectivity. As we will see

in the following, its spectral properties are crucial to predict the dynamical evolution of

the scrutinized system. Other formulations of the network Laplacian operator, however,

exist. For more details the interested reader should refer to Appendix A and the related

bibliography. (See also the study of stochastic pattern formation reported in Chapter

5).
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1.4.1 Linear stabilty in network-organized systems

Imagine now that system (1.19) admits an homogeneous fixed point, (u∗, v∗). This

implies f(u∗, v∗) = g(u∗, v∗) = 0. We also require that the fixed point is stable, namely

that tr(J) = fu+gv < 0 and det(J) = fugv−fvgu > 0, where J is the Jacobian of (1.19)

evaluated at (u∗, v∗) and fu (resp. fv) denotes the derivatives of f with respect to u

(resp. v), and similarly for gu and gv.

Patterns arise when (u∗, v∗) becomes unstable with respect to inhomogeneous perturba-

tions. To look for instabilities, one can introduce a small perturbation (δui, δvi) to the

fixed point and linearise around it. In doing so, one obtains Eq. (1.20).

(

δu̇i

δv̇i

)

=
Ω
∑

j=1

(Jδij +D∆ij) ·
(

δuj

δvj

)

, (1.20)

where

D =

(

D1 0

0 D2

)

.

For regular lattices, the Fourier transform is usually employed to solve this linear system

of equations, as we previously showed. When the system is instead defined on a network,

a different procedure needs to be followed [11, 20]. To this end, we define the eigenvalues

Λα and eigenvectors Φ(α) =
(

Φ
(α)
1 , . . . ,Φ

(α)
Ω

)

of the Laplacian operator:

Ω
∑

j=1

∆ijΦ
(α)
j = Λ(α)Φ

(α)
i , α = 1, . . . ,Ω. (1.21)

The eigenvectors can be orthonormalized as
∑Ω

i=1Φ
(α)
i Φ

(β)
i = δαβ . In fact, when the

network is undirected, the Laplacian is symmetric. Therefore the eigenvalues Λ(α) are

real and the eigenvectors Φ(α) form an orthonormal basis. This condition needs to

be relaxed when dealing with the more general setting of a directed graph, which we

will discuss in the next chapter. The inhomogeneous perturbations δui and δvi can be

expanded as:

δui =
Ω
∑

α=1

cαe
λαtΦ

(α)
i , δvi =

Ω
∑

α=1

bαe
λαtΦ

(α)
i . (1.22)

The constants cα and bα depend on the initial conditions. By inserting the above ex-

pressions in Eq. (1.20) one obtains the following eigenvalue problem

det

(

fu +DuΛ
(α) − λα fv

gu gv +DvΛ
(α) − λα

)

= 0. (1.23)
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This is equivalent to

det (Jα − Iλα) = 0, (1.24)

where Jα ≡ J + DΛ(α) and I stands for the identity matrix. The eigenvalue with the

largest real part, λα ≡ λα(Λ
(α)) defines the dispersion relation

λα =
1

2

(

trJα +
√

(trJα)2 − 4detJα

)

, (1.25)

which characterises the response of the system in Eq. (1.19) to external perturbations. In

Fig. 1.4 (a) is shown the dispersion relation for different choices of bifurcation parameter

of the Brusselator model. The symbols stand for the discrete values of λα and the

underlying solid curve is the continuous counterpart.
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Figure 1.4: (a) Dispersion relation for a small-world network (weighted with Wij =
0.15 for all links). (b) Network pattern. The dash line represent the initial steady state.

The model and parameters are the same as in Fig. (1.1).

If Re (λα) > 0, the fixed point is unstable and the system exhibits a pattern whose spatial

properties are encoded in Λ(α). The quantity Λ(α) is the analogue of the wavelength

for a spatial pattern in a system defined on a continuous regular lattice. In this case

Λ(α) ≡ −q2, where q labels the usual spatial Fourier frequency. From Fig. (1.4) (b)

one can note that the patterns on a network (the symbols represent the concentration

of the species u for each node), at variance with the continuum case, are organized in

activators (inhibitors) rich and activators (inhibitors) poor nodes.

Turning on the stability problem, it can be proved that, for symmetric graphs, all the

non-trivial values of Λ(α) are negative. Hence, trJα = trJ+ (Du+Dv)Λ
(α) < 0. For the

instability to manifest, it is therefore sufficient that detJα = detJ+(J11Dv+J22Du)Λ
(α)+

D2
v(Λ

(α))2 < 0, a condition that can be met only if:
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J11Dv + J22Du > 0. (1.26)

So, like for the continuum case, the instability can only set in if J11 and J22 have opposite

signs. This means that the two involved species should constitute an activator-inhibitor

system.

Working in this setting, it is instructive to consider again the limiting condition when

only one of the species can diffuse. In principle if the system is defined over a discrete

spatial support and at variance with the continuous domain, the instability can instead

develop if the inhibitors are mobile, Dv 6= 0, and the activator fixed Du = 0. A simple

calculation shows that the dispersion relation (1.25) is positive for |Λ(α)| > detJ/DvJ11.

If the spatial support is discrete, only a finite number of eigenmodes can be destabilised.

The eigenmode associated to the largest eigenvalue |Λ(α)| guides the instability and the

patterns can develop. In this case, there is a short wavelength instability.

As we will show in this thesis, pattern formation in networks is an interesting domain

of investigations with many important applications to real systems. Networks provide

in fact the backbone for interactions of individual constituents and can remarkably

contribute to the onset of the dynamical instabilities which underly the process of pattern

formation.





Chapter 2

Topology-driven instabilities: the

theory of pattern formation on

directed networks

2.1 Introduction

For a large class of problems, including applications to neuroscience, the system under

scrutiny is defined on a complex network, rather than on a regular, spatially extended

lattice. The effects of the embedding graph structure on the emergence of Turing pat-

terns in nonlinear diffusive systems were investigated in [11], paving the way for novel

discoveries in an area of widespread interest. The conditions for the deterministic insta-

bility are derived following a linear stability analysis that we recalled in the preceding

chapter, which requires expanding the perturbation on the complete basis formed by

the eigenvectors of the discrete Laplacian. Travelling waves can also develop via a com-

pletely analogous mechanism [20]. To date, symmetric (undirected) networks have been

considered in the literature. Again, the instability is driven by the non-trivial inter-

play between the nonlinearities, which are accounted for in the reaction parts, and the

diffusion terms. The topology of the space defines the relevant directions for the spread-

ing of the perturbation, but cannot impact on the onset of the instability. Consider

for instance a reaction-diffusion system defined on a regular lattice and assume that it

cannot experience a Turing-like instability: the system cannot be made unstable when

placed on top of a symmetric network. In other words, the structure of the underlying

graph cannot destabilise an otherwise stable scheme: the inherent ability of the model

to self-organise in space and time is determined by the reaction terms.

23
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In real applications, however, networks are not symmetric or, as they are called, undi-

rected. It is often the case that a connection between two distinct nodes is associated

with a specific direction, which means that the resulting graph is directed. Think for

instance of the human mobility flow patterns with their immediate consequences for ur-

ban planning, transportation design and epidemic control. Several routes can be crossed

in one direction only, so losing the symmetry between pairs of nodes. The internet and

the cyberworlds, networks that we explore on a daily basis, are also characterised by an

asymmetric routing of the links. Traffic symmetry typically does not hold for network

locations beyond intranet and access links [29]. Furthermore, the map of the neural

connection in the brain is also asymmetric, due to the physiology of neurons [30]. This

can be seen in connectome models [31–33], coarse grained maps of the brain, revealed by

MRI experiments, which reflects this asymmetric arrangement of connections at different

scales of resolution.

Motivated by this observation, we will show that topology-driven instabilities can de-

velop for reaction-diffusion systems on directed graphs, even when the examined system

cannot experience a Turing-like or wave instability if defined on a regular lattice. This

is at odds with the behaviour of symmetric networks. Therefore, the characteristics

of the spatial support that hosts the interacting species play a role of paramount im-

portance, often neglected and under appreciated in the literature. Consequently, our

analysis represents a significant extension to the modelling of reaction-diffusion systems.

The dynamical rules of interactions, on which the attention of the modellers has been

so far solely devoted, are not the only instigators in the complex interactions that yield

the rich variety of self-organised patterns seen in real-world applications. The topology

of the space is also important, and significantly influences the conditions that yield the

dynamical instability. This novel perspective might also hint at the causes that seem

to favour an evolutionary selection of network-like structures in the organisation of liv-

ing matter at different scales. For instance, the excitatory and inhibitory dynamics of

neurons, and their specific spatial arrangement are two ingredients that cannot be triv-

ially decoupled, the first being probably optimised to serve the global functioning of the

brain, given the peculiar structure of the second.

This chapter is organised as follows. In Section 2.2 we will start by developing the gen-

eralised theory of patterns formation on a directed network. We will test the adequacy

of the theory in Sections 2.3 and 2.4, for specific reference models, for different choices

of the underlying networks and employing two plausible definitions of the Laplacian

operator. Travelling waves and stationary inhomogeneous patterns will be obtained,

by changing the topological characteristic of the graphs, while fixing the parameters to

values for which the patterns cannot emerge when the model is defined on a symmetric

spatial support. In Section 2.5 we summarise our results and draw conclusions.
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2.2 Theory of pattern formation on a directed network

We will consider the pattern formation problem for a directed graph. In this case the

adjacency matrix W is no longer symmetric and its entries Wij , if equal to one, indicate

the presence of an edge directed from node i to j. Now, ki =
∑Ω

j=1Wij refers to the

outdegree of node i, defined as the number of exiting edges from node i. The associated

Laplacian operator can be defined as ∆ij = Wij − kiδij , as it is customarily done in

cooperative control applications [34], as e.g. intelligent transportation systems, routing

of communications and power grid networks. The spreading of physical or chemical

substances, rather than information content, requires imposing mass conservation, which

results in a different formulation of the Laplacian operator [35], where Wij is formally

replaced by Wji in the definition of ∆ij , as it can be readily obtained from a simple

microscopic derivation. Clearly, the two operators coincide, when defined on a symmetric

network. Let denote the two interacting species on node i with (φi, ψi). The reaction-

diffusion equations for both cases are:

dφi
dt

= f(φi, ψi) +Dφ

Ω
∑

j=1

∆ijφj

dψi
dt

= g(φi, ψi) +Dψ

Ω
∑

j=1

∆ijψj , (2.1)

where Dφ and Dψ are respectevely the diffusion constants of the first and second species

and f , g are the nonlinear reaction functions. For a directed graphs, the eigenvalues

of both Laplacian operators, will in general be complex, Λ(α) ∈ C. This property re-

quires the development of a generalised theory of the instabilities, extending the analysis

outlined in the previous chapter. As usual, we will assume a stable homogeneous fixed

point1, and indicate with J the associated Jacobian matrix. The stability of the fixed

point implies tr(J) < 0 and det(J) > 0. In order to proceed with the linear stability

analysis, we must ensure that the eigenvectors are linearly independent. This is not

always the case when the underlying graph is directed 2. For this reason, the diagonalis-

ability of the Laplacian matrix will be a minimal requirement to satisfy, in our analytical

treatment of the stability problem.

1To carry out the linear stability analysis, the homogeneous fixed point should be solution of the
spatially extended system of governing equations. This prescription implies dealing with a balanced
network (the outgoing connectivity equals the incoming one), when Fickean diffusion of material entities
is being addressed ∆ij = Wji − kiδij , while no additional hypothesis on the structure of the spatial
support are to be made when the operator ∆ij = Wij − kiδij is assumed to hold.

2In fact, even without a complete basis, one can use the generalised eigenvectors in order to make
progress. In this case however, patterns may emerge, even when the real part of the dispersion relation
is negative everywhere, due to a transient growth process [36].
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Introducing an inhomogeneous perturbation (δφi, δψi) and linearising around it, one

eventually obtains a dispersion relation, formally identical to equation (1.25), where now

Λ(α) is a complex quantity. For simplicity, and with obvious meaning of the notation,

we write Λ(α) = Λ
(α)
Re + iΛ

(α)
Im , where Λ

(α)
Re < 0, since the Laplacian matrix spectrum falls,

according to Gerschgorin circle theorem [37], in the left half of the complex plane. A

simple algebraic manipulation yields the following preliminary relations:

(trJα)Re = trJ+ (Dφ +Dψ)Λ
(α)
Re < 0

(trJα)Im = (Dφ +Dψ)Λ
(α)
Im

(detJα)Re = detJ+ (J11Dψ + J22Dφ)Λ
(α)
Re

+ DφDψ

[

(

Λ
(α)
Re

)2
−
(

Λ
(α)
Im

)2
]

(2.2)

(detJα)Im = (J11Dψ + J22Dφ)Λ
(α)
Im + 2DφDψΛ

(α)
Re Λ

(α)
Im ,

where (·)Re and (·)Im select respectively the real and imaginary parts of the quantity in

between brackets. To study the dispersion relation, we shall make use of an elementary

property of the square root of a complex number z = a+ bi, namely that

√
z = ±

(
√

a+ |z|
2

+ sgn(b)

√

−a+ |z|
2

i

)

, (2.3)

where sgn(·) is the standard sign function. In light of this consideration, the dispersion

relation can be cast in the form:

λα =
1

2
[(trJα)Re + γ] +

1

2
[(trJα)Im + δ] i, (2.4)

where:

γ =

√

A+
√
A2 +B2

2

δ = sgn(B)

√

−A+
√
A2 +B2

2
, (2.5)

and:

A = [(trJα)Re]
2 − [(trJα)Im]

2 − 4(detJα)Re,

B = 2(trJα)Re(trJα)Im − 4(detJα)Im. (2.6)
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The dispersion relation can now contain an imaginary contribution, which bears the

signature of the imposed network topology. Travelling waves can in principle materialise

for a two species reaction-diffusion model on a directed network, at variance with what

happens when the system is defined on a symmetric spatial support. For the instability to

occur, (λα)Re must be greater than zero, which is equivalent to setting |(trJα)Re| ≤ γ,

as it follows immediately from equation (2.4). A straightforward, although lengthy,

calculation which involves relations (2.2), allows us to rewrite the condition for the

instability in the compact form:

S2(Λ
(α)
Re )

[

Λ
(α)
Im

]2
≤ −S1(Λ(α)

Re ), (2.7)

where S1 and S2 are polynomials in Λ
(α)
Re , of fourth and second degree respectively. The

coefficients of the polynomials are model dependent, as specified in Eqs. (2.8), (2.9) and

(2.10) below.

S1(Λ
(α)
Re ) = C14

[

Λ
(α)
Re

]4
+ C13

[

Λ
(α)
Re

]3
+ C12

[

Λ
(α)
Re

]2
+ C11

[

Λ
(α)
Re

]

+ C10 (2.8)

S2(Λ
(α)
Re ) = C22

[

Λ
(α)
Re

]2
+ C21

[

Λ
(α)
Re

]

+ C20,

where

C14 = DφDψ(Dφ +Dψ)
2

C13 = (Dφ +Dψ)
2(J11Dψ + J22Dφ) + 2trJDφDψ(Dφ +Dψ)

C12 = detJ(Dφ +Dψ)
2 + (trJ)2DφDψ + 2trJ(Dφ +Dψ)(J11Dψ + J22Dφ) (2.9)

C11 = 2trJ(Dφ +Dψ)detJ+ (trJ)2(J11Dψ + J22Dφ)

C10 = detJ [trJ]2 ,

and

C22 = DφDψ (Dφ −Dψ)
2

C21 = (J11Dψ + J22Dφ) (Dφ −Dψ)
2 (2.10)

C20 = J11J22 (Dφ −Dψ)
2 .

Given the model, one can construct a class of graphs, namely those whose spectral

properties match condition (2.7), for which the instability takes place. Here we are

particularly interested in models that cannot develop the instability when defined on

a symmetric, hence undirected, graph. In this case Λ
(α)
Im = 0, by definition, and the

generalised condition of instability (2.7) cannot be met. On the contrary, when the
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graph is made directed, Λ
(α)
Im 6= 0 and the examined models can experience a topology-

driven instability, as governed by relation (2.7).

Recall that we are linearising around a stable fixed point, hence trJ = J11 + J22 < 0

and, in addition, detJ > 0. Because of the first inequality, the setting with both J11

and J22 positive is, as expected, ruled out a priori. Consider instead the dual scenario,

where both J11, J22 are taken to be negative. Hence, S1 and S2 are positive, as it

can be immediately appreciated by direct inspection of Eqs. (2.9) and (2.10) defined

previously3, and the instability condition (2.7) cannot be achieved. In conclusion, and

in agreement with the standard theory of pattern formation on a regular symmetric

lattice (network), J11 and J22 must have opposite signs, for the instability to develop.

In analogy with the discussion made in Chapter 1, we assume that the reaction-diffusion

scheme is such that J11 > 0, and J22 < 0. We imagine here that the necessary condition

(1.26) for the instability to set in, is not satisfied. No patterns can therefore develop,

according to the classical paradigm. Under this assumptions, while S1 is still a positive

definite quantity, S2 can take negative values, since C20 < 0 (see equation (2.10)). The

instability condition (2.7) can then be satisfied and one can expect topology-driven

instabilities to develop on directed graphs, as we shall demonstrate in the forthcoming

section.

As an additional point, we wish to emphasise that patterns on a directed network can

also emerge when the inhibitors are prevented from diffusing (Dψ = 0, in our notation),

at odds with the conventional vision [11]. Furthermore, travelling waves are always

found for a two species model, the imaginary part of the dispersion relation λα being

at all times different from zero, inside the instability domain. However, as we will

demonstrate in the next section, when (λα)Im << (λα)Re, the system evolves towards a

stationary inhomogeneous pattern, reminiscent of the Turing instability. In conclusion,

a two species reaction-diffusion system on a directed graph can display a rich variety

of instabilities, beyond the conventional scenario which applies to symmetric, hence

undirected, spatial supports.

2.3 Numerical results

To confirm the theoretical analysis carried out in the previous section, we here focus

on a specific system, the previously introduced Brusselator model and set in equations

(2.1) f(φi, ψi) = 1− (b+ 1)φi + cφ2iψi and g(φi, ψi) = bφi − cφ2iψi. It is worth stressing

3The coefficients C11, C13, C15 are negative, while C12, C14 are positive. Recalling that Λ
(α)
Re < 0, it

is straightforward to conclude that S1 and S2 are indeed positive quantities.
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Figure 2.1: Panel (a): Spectral plot of three Laplacians generated from the Newman-
Watts algorithm for p = 0.27, p = 0.5 and p = 0.95 (blue triangles, red circles and
green diamonds respectively) and network size Ω = 100. The shaded area indicates
the instability region for the case of the Brusselator model, where the parameters are
b = 9, c = 30, Dφ = 1 and Dψ = 7. Panel (b): The real part of the dispersion relation
for the same three choices of Newman-Watts networks as in panel (a). The black line

originates from the continuous theory.

that the Brusselator model has been selected for demonstrative purposes and due to

its pedagogical value: the techniques here developed, and the conclusions that we shall

reach, are nevertheless general and apply to a wide range of models. As an example, in

the next Section we will repeat the same analysis for a version of the Fitzhugh-Nagumo

scheme, that serves as a toy model for inspecting the coupled dynamics of neurons.

We will start by considering the first formulation of the Laplacian operator, ∆ij =

Wij − kiδij , which, as previously mentioned, is employed in cooperative control appli-

cations [34]. To proceed, we should also specify the characteristics of the networks that

define the spatial backbone for the explored systems. Two different strategies for gener-

ating the graphs will be considered. On the one side, we will follow the Watts-Strogatz

(WS) approach [9], modified in order to make the network directed. We will also imple-

ment an alternative generation strategy, the Newman-Watts (NW) algorithm [28]. Both

approaches are described in Chapter 1. When ∆ij =Wji− kiδij is assumed instead, the

directed networks are created with the additional prescription to balance the number of

incoming and outgoing connections per node.

In the following we will report the emergence of topology-driven instabilities, defined on

directed networks assembled via the two strategies mentioned here.

2.3.1 Travelling waves for systems of two diffusing species.

We commence by considering the Brusselator model in the general setting with Dφ 6= 0

and Dψ 6= 0. That is, both the activators and inhibitors are allowed to diffuse between

connected nodes of the network. Furthermore, we set the parameters so that the system
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is stable versus external perturbations of the homogeneous fixed point and no patterns

can develop if the spatial support is assumed symmetric (or continuous). The generalised

condition (2.7) for the instability on a directed network can be graphically illustrated

in the reference plan (Λ
(α)
Re ,Λ

(α)
Im ). Given the parameters of the model, one can in fact

determine the coefficients C1q (q = 0, .., 4) and C2q (q = 0, 1, 2) via Eqs. (2.9) and (2.10).

Then, the inequality (2.7) allows one to delimit a model-dependent region of instability,

which is depicted with a shaded area in Figure 2.1, panel (a). Each eigenvalue of the

discrete Laplacian (defined on the directed network) appears as a point in the plane

(Λ
(α)
Re ,Λ

(α)
Im ). If a subset of the Ω points that define the spectrum of the Laplacian

fall inside the region outlined above, the instability can take place. For an undirected

graph, Λ
(α)
Im = 0, and the points are located on the real (horizontal) axis, thus outside

the instability domain. In panel (a) of Figure 2.1 the spectral plot of three Laplacians,

generated from the NW algorithm, are displayed for three choices of p. As p increases

the points move to the left, away from the region of instability. The regular ring that

captures the eigenvalue distribution for low p (blue triangles), becomes progressively

distorted: for p = 0.95 the points (green diamonds) partially fill a circular patch in

(Λ
(α)
Re ,Λ

(α)
Im ). In panel (b) of Figure 2.1 the real part (λα)Re of the dispersion relation is

plotted as a function of −Λ
(α)
Re . The black solid line refers to the continuous theory: no

instability can develop in the limit of continuum space, since (λα)Re is always negative.

However, when the Brusselator model evolves on a discrete support, the continuous line

is replaced by a collection of Ω points. When the instability condition (2.7) is fulfilled,

the points are lifted above the solid curve and cross the horizontal axis. The figure shows

that (λα)Re is positive over a finite domain in −Λ
(α)
Re and the system becomes unstable

due to the topology of the underlying directed network. The travelling waves that stem

from this instability are displayed in Figure 2.2. As we shall prove in the following,

inhomogeneous stationary patterns are another possible outcome of the topology-driven

instability.

A similar analysis can be performed when the directed network is generated using the

WS method. In panel (a) of Figure 2.3, the region of instability, outlined by the shaded

area, is identical to the one depicted in Figure 2.1, since the parameters of the reaction-

diffusion scheme are unchanged. Here the topology-driven instability occurs for relatively

large values of the parameter p, when the random nature of the network takes over its

small world character. The travelling waves for this system are displayed in Figure 2.4.

2.3.2 The case of immobile inhibitors, Dψ = 0.

As mentioned earlier, patterns can also emerge on a directed network when the inhibitors

are prevented from diffusing (Dψ = 0). This is a marginal condition for which classical
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Figure 2.2: Time series for the case of the Brusselator model on a Newman-Watts
network, generated with p = 0.27. The nodes are ordered as per the original lattice.
Details of the network’s spectra and the system’s instability are displayed by the blue,
triangular symbols in Figure 2.1. The caption of that figure also contains the values of

the reaction parameters.
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Figure 2.3: Panel (a): Spectral plot of three Laplacians generated from the Watts-
Strogatz method for p = 0.1, p = 0.2 and p = 0.8 (blue triangles, red circles and green
diamonds respectively). In all cases the network size is Ω = 100. The coloured area
indicates the instability region for the Brusselator model. Panel (b): The real part of
the dispersion relation for three choices of Watt-Strogatz networks for p = 0.1, p = 0.2
and p = 0.8 (blue triangles, red circles and green diamonds respectively) and network

size Ω = 100. The parameters are as in Figure 2.1.
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Figure 2.4: Time series for the case of the Brusselator model on a Watts-Strogatz
network, generated with p = 0.1. The nodes are ordered as per the original lattice.
Details of the network’s spectra and the system’s instability are displayed by the blue,

triangular symbols in Figure 2.3. The reaction parameters are as in Figure 2.1.

òò
òò

òò

òò
òò

òò
òò

òò

òò
òò

òò

òòòò

òò

òò

òò

òò

ò
òò
òò
òò

òò

òò

òò

òò

òò

òò

òò

òò

òò

ò

òò

ò

òò
òò

òò

òò

òò

ò

òò

òò

òò
òòò

òò
òò

òòòò
òò

òò

òò
òòò

0 1 2 3 4 5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-LΑ
Re

HΛ
Α
L R
e

(a) (b)

Figure 2.5: Panel (a): Spectral plot for a Newman-Watts network with p = 0.27
and Ω = 100. The instability region is plotted for the choice of the Brusselator model,
where the diffusion Dψ has been set to zero. Panel (b): The real part of the dispersion
relation for a Newman-Watts network with Ω = 100, generated with p = 0.27. The
black line is found from the continuous theory. The full parameter set is: b = 9, c = 8.2,

Dφ = 1 and Dψ = 0.

patterns (both in the continuum limit or on an undirected network support) are not

found. In panel (a) of Figure 2.5 the condition of instability is represented. The symbols

(blue triangles) refer to a NW graph with p = 0.27 and fall inside the shaded domain,

signalling the existence of a topology-driven instability. The same conclusion can be

reached upon inspection of panel (b), where the real part of the dispersion relation is

plotted and shown to be positive over finite window in Λ
(α)
Re . The travelling waves found

in this case are shown in Figure 2.6.
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Figure 2.6: Time series obtained from the Brusselator model on a Newman-Watts
network, in the case where Dψ = 0. The network was constructed using p = 0.27.
Details of the network’s spectra and the system’s instability are displayed by the blue,
triangular symbols in Figure 2.5. The caption of that figure also contains the values of

the reaction parameters.

2.3.3 Stationary inhomogeneous patterns.

The instability mechanism that we have here discussed results in travelling waves, which

spread over the direct network. This is due to the fact that the imaginary part of

the dispersion relation λα is always different from zero, inside the instability domain.

Hence, Turing-like instabilities, which require imposing (λα)Im = 0, cannot formally

develop. On the other hand, as we argued earlier, stationary inhomogeneous patterns

reminiscent of the Turing instability, could be observed, provided (λα)Im << (λα)Re.

This is the case considered here, as shown in Figure 2.7, for a directed network generated

via the WS recipe. The parameters of the Brusselator model are instead set as in

Figure 2.1. This is to stress again that different types of patterns can emerge because

of the distinct characteristics of the networks: the patterns are not just selected by the

imposed dynamical rules. The most unstable mode is located at around Λ
(α)
Re = −2

(left panel of Figure 2.7), and its corresponding value of (λα)Im is relatively small (right

panel of Figure 2.7). The patterns found in this situation are shown in the two panels of

Figure 2.8. By comparing Figures 2.4 (WS with p = 0.1) and 2.8 (WS with p = 0.2), it is

immediately clear that a transitions take place, from travelling waves to asymptotically

stationary stable, by tuning the rewiring probability p in the WS graph generation

scheme.
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Figure 2.7: Panel (a): The real part of the dispersion relation for a Watts-Strogatz
network with a Brusselator dynamic. The network is of size Ω = 100, generated with
p = 0.2. Panel (b): The imaginary part of the dispersion relation for a Watts-Strogatz
network with a Brusselator dynamic. The network is of size Ω = 100, generated with

p = 0.2. The parameters are set as in Figure 2.1.
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Figure 2.8: Panel (a): Time series showing quasi-Turing patterns on a Watts-Strogatz
network with a Brusselator dynamic. The network was generated using p = 0.2. The
system evolves from a homogeneous fixed point towards a static pattern. Panel (b);
The long-time behaviour of the network, showing the concentration of each node. The

dispersion relation for this system is presented in Figure 2.7.

2.3.4 Alternative formulation of the transport operator

Consider now the Laplacian operator defined as ∆ij = Wji − kiδij . As anticipated,

this is the operator to be used when interested in modelling the diffusive spreading of

material entities (molecules, animals) on a network. To match the assumptions of the

analysis, the underlying network has to be balanced: the number of incoming connections

(
∑

jWji) needs to be equal to the number of outgoing links (ki). The homogeneous fixed

point (φ∗, ψ∗) is hence solution of the spatially extended system (2.1), since
∑

j ∆ijφ
∗ =

∑

j ∆ijψ
∗ = 0, and the linear stability analysis, as discussed above, still holds 4. In

4The case of unbalanced networks could be also addressed, provided one linearizes the equations (2.1)
around a non homogeneous state [38]. Such generalization will be discussed elsewhere, as we here aim
to a pedagogical introduction to the novel class of topology driven instabilities.
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Figure 2.9: Panel (a): Spectral plot for a Newman-Watts network with p = 0.27
and Ω = 100. The instability region is plotted for the Brusselator model. Panel (b):
The real part of the dispersion relation for a balanced Newman-Watts network with
Ω = 100, generated with p = 0.27. Here, ∆ij = Wji − kiδij . The black line is found
from the continuous theory. The full parameter set is: b = 9, c = 30, Dφ = 1 and

Dψ = 7.

Figure 2.10: Time series obtained from the Brusselator model on a balanced Newman-
Watts network, constructed using p = 0.27. Details of the network’s spectra and the
system’s instability are displayed by the blue, triangular symbols in Figure 2.9. The

caption of that figure also contains the values of the reaction parameters.

Figure 2.9, the condition of instability are displayed for a balanced NW network, while

the emerging travelling waves can be clearly appreciated in Figure 2.10.
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2.4 Topology induced patterns in FitzHugh-Nagumo model

As mentioned in the first part of this chapter, pattern formation in directed networks

could represent an important step forward in the understanding of the complex behaviour

in neuroscience where the spatial support is a neural network. Recently, substantial

progress has been made in acquiring the architectural structure of the cerebral cortical

areas in mammalian brains [39]. In all cases the topology of the neural networks can be

approximately mimicked by a directed small-world graph [39, 40]. It is therefore quite

reasonable to investigate neural dynamics based on the description that we have just

introduced. To this end we consider the FitzHugh-Nagumo model [41–43],

dui
dt

= ui − u3i − vi +Du

Ω
∑

j=1

∆ijuj

dvi
dt

= c(ui − avi − b) +Dv

Ω
∑

j=1

∆ijvj (2.11)

which is a very simplified model that mimics to some extent the neurons dynamics.

In fact, here u is the membrane potential and v the recovery variable. The model

parameters are a = 0.5, b = 0.04, c = 26, Du = 0.2 and Dv = 15 with a fixed point

(u∗, v∗) = (0.0795, 0.079). For this choice of the parameters the homogeneous fixed

point is stable to inhomogenous perturbations, when the system is defined on a spatial

symmetric support.

Below we discuss the network driven instability for the FitzHugh-Nagumo model, by

employing both possible choices of the Laplacian operator. Fig. 2.11 shows the spectral

plot of the same unbalanced NW small-world with 100 nodes with p = 0.27, used

previously in Fig. 2.2. The instability region (shaded domain) has been redrawn for the

FitzHugh-Nagumo model. Fig. 2.12 shows the real and imaginary parts of the dispersion

relation, for the same parameter choice. The solid line in the left panel of Fig. 2.12 stands

for the continuous linear instability theory, conferming that no instability can develop

for the model defined on a symmetric support, given the choice of the parameters made.

We conclude by presenting the wave pattern for this system in Fig. 2.13. Now, the

values taken by the first species can be negative also, as it corresponds to the membrane

potential. In Figs. 2.14, 2.15 and 2.16, the condition of instabilities, dispersion relation

and the emerging wave are respectively displayed for a balanced NW network, and

assuming a purely diffusive transport operator.
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Figure 2.11: Spectral plot of the Laplacians ∆ij = Wij − kiδij generated from the
Newman-Watts algorithm for p = 0.27 and network size Ω = 100. The shaded area
indicates the instability region for the case of the FitzHugh-Nagumo model, where the

parameters are a = 0.5, b = 0.04, c = 26, Du = 0.2 and Dv = 15.
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Figure 2.12: Panel (a): The real part of the dispersion relation for a Newman-Watts
network with a Brusselator dynamic. The network is of size Ω = 100, generated with
p = 0.27. Panel (b): The imaginary part of the dispersion relation. The reaction

parameter values are given in the caption of Fig. 2.11.

2.5 Conclusions

Patterns can spontaneously develop in reaction-diffusion systems following a linear in-

stability mechanism, first discussed by Turing in his seminal paper [1]. Turing pat-

terns are spontaneously emerging, stationary inhomogeneous motifs and represent a

characteristic form of ecological self-organisation. Travelling waves can also develop

in reaction-diffusion systems, following a similar instability mechanism. Alongside the

clear theoretical interest, these concepts connect with many fields of application, from

life science to chemistry and physics, transcending the boundaries of ecology. In general,

the inspected model is assumed to be defined on a continuous spatial support or on a

regular lattice.
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Figure 2.13: Time series for the case of the FitzHugh-Nagumo model on a Newman-
Watts network, generated with p = 0.27. The nodes are ordered as per the original

lattice and the reaction parameter values are given in the caption of Fig. 2.11.

Figure 2.14: Spectral plot of the network Laplacians ∆ij = Wji − kiδij generated
from the balanced Newman-Watts algorithm for p = 0.27 and network size Ω = 100.
The shaded area indicates the instability region for the case of the FitzHugh-Nagumo
model, where the parameters are a = 0.5, b = 0.04, c = 26, Du = 0.2 and Dv = 15.
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Figure 2.15: Panel (a): The real part of the dispersion relation for a balanced
Newman-Watts network with a Brusselator dynamic. The network is of size Ω = 100,
generated with p = 0.27. Here, ∆ij = Wji − kiδij . Panel (b): The imaginary part
of the dispersion relation. The reaction parameter values are given in the caption of

Fig. 2.14.

Figure 2.16: Time series for the case of the FitzHugh-Nagumo model on a balanced
Newman-Watts network, generated with p = 0.27. The nodes are ordered as per the
original lattice and the reaction parameter values are given in the caption of Fig. 2.14.

In many cases, it is instead more natural to establish the system on a complex network.

With reference to ecology, the nodes of the networks define localised habitat patches, and

the dispersal connection among habitats result in the diffusive coupling between adjacent

nodes. Broadening the discussion, the brain is a network of neuronal connections, which

provide the backbone for the propagation of the cortical activity. The internet and

the cyberword in general are other, quite obvious examples of applications that require

invoking the concept of network. In a recent paper [11], Nakao and Mikhailov developed

the theory of Turing pattern formation on random symmetric networks, highlighting the

peculiarities that stem from the embedding graph structure. Travelling waves can also
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set in following an analogous mechanism [20].

Starting from this context, and to reach a number of potential applications, we have

here considered the extension of the analysis in [11] to the case of directed, hence non-

symmetric, networks. It is often the case that links joining two distant nodes are defined

with an associated direction: the reactants can move from one node to another, but the

reverse action is formally impeded. In this chapter, we have shown that a novel class of

instability, here termed ‘topology driven’, can develop for reaction-diffusion systems on

directed graphs, also when the examined system cannot experience a Turing-like or wave

instability when defined on a regular lattice or, equivalently, on a continuous spatial sup-

port. This is at variance with the case of symmetric networks, that cannot possess the

intrinsic ability of turning unstable an otherwise stable homogenous fixed point. We have

shown here that different patterns can be generated depending on the characteristics of

the spatial support on which the reaction-diffusion system is defined. In particular, tran-

sitions from travelling waves to asymptotically stationary stable patterns, reminiscent

of the Turing instability, are obtained when tuning the rewiring probability p in a WS

network. The condition for the instability results in a rather compact mathematical cri-

terion, which accounts for the spectral properties of the underlying network and whose

predictive adequacy has been validated with reference to selected case studies.

The existence of a generalised class of instabilities, seeded by the topological characteris-

tics of the embedding support, suggests a shift in the conventional approach to modelling

of dynamical systems. Mutual rules of interactions, that define the reactions among con-

stituents, are certainly important, although not decisive in determining the asymptotic

fate of the system. The topology of the space, when assumed to be a directed random

network, also matters and plays an equally crucial role in the onset of the dynamical

instability. This is a general conclusion that we have cast in rigorous terms, which can

potentially inspire novel avenues of research in all those domains, from neuroscience to

social related applications, where networks prove essential.



Chapter 3

Turing patterns in multiplex

networks

3.1 Introduction

Building on the pionering work of Othmer and Scriven [10], Nakao and Mikhailov [11]

developed the theory of Turing patterns formation on random undirected (symmetric)

network that we have illustrated in Chapter 1. In the previous chapter, the case of

directed, hence non symmetric, networks has been addressed [12]. When the reactants

can only diffuse along specific directions, the tracks that correspond to the reversal

moves being formally impeded, topology driven instabilities can develop also when the

system under scrutiny cannot experience a Turing like (or wave instability) if defined on

a regular lattice or, equivalently, on a continuous spatial support.

However, the conventional approach to network theory is not general enough to ascertain

the complexity that hides behind real world applications. Self-organization may proceed

across multiple, inter-linked networks, by exploiting the multifaceted nature of resources

and organizational skills. For this reason, multiplex, networks in layers whose mutual

connections are between twin nodes, see Figure 3.1, have been introduced as a necessary

leap forward in the modeling effort [14, 15, 25, 44, 45]. These concepts are particularly

relevant to transportation systems [46, 47], the learning organization in the brain [48]

and to understanding the emergent dynamics in social commmunities [49]. In [13] the

process of single species diffusion on a multiplex network has been investigated, and

the spectrum of the associated Laplacian matrix characterized in term of its intra- and

interlayer structure.

41
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Figure 3.1: A schematic illustration of a two layers multiplex network.

In this chapter we build on these premises to derive a general theory of patterns formation

for multispecies reaction-diffusion systems on a multiplex. Cooperative interference

between adjacent layers manifests, yielding stratified patterns also when the Turing like

instability on each individual layer is impeded. Conversely, patterns can dissolve as a

consequence of the inter-layer overlap. The analysis is carried out analytically via a

perturbative scheme which enables to derive closed analytical expressions for the critical

coupling that determines the aforementioned transitions. The adequacy of the analytical

predictions is confirmed by direct numerical simulations.

In the next section we will introduce the reaction-diffusion system defined on a multiplex

network. In Section 5.3 a perturbative technique will be employed to approximately

calculate the conditions for the Turing instability of a weakly coupled multilayer network.

In the last section we sum up our results and present our conclusions.

3.2 Reaction-diffusion equations on multiplex networks

Let us consider the reaction-diffusion dynamics on a multiplex composed by two distinct

layers. The analysis readily extends to an arbitrary number of independent layers. For

the sake of simplicity we will here assume each layer to be characterized by an identical

set of Ω nodes; the associated connectivity can however differ on each layer, as specified

by the corresponding adjacency matrix WK
ij , with i, j = 1, . . . ,Ω and K = 1, 2. In

principle the adjacency matrix can be weighted. The species concentrations are denoted

by uKi and vKi where the index K identifies the layer to which the individuals belong.

Species are allowed to diffuse on each layer, moving towards adjacent nodes with diffusion
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constants respectively given by DK
u and DK

v . Inter-layer diffusion is also accommodated

for, via Fickean contributions which scale as the local concentration gradient, D12
u and

D12
v being the associated diffusion constants. We hypothesize that reactions take place

between individuals sharing the same node i and layer K, and are formally coded via the

non linear functions f(uKi , v
K
i ) and g(uKi , v

K
i ). Mathematically, the reaction-diffusion

scheme generalizes to:











u̇Ki = f(uKi , v
K
i ) +DK

u

∑Ω
j=1 L

K
ij u

K
j +D12

u

(

uK+1
i − uKi

)

v̇Ki = g(uKi , v
K
i ) +DK

v

∑Ω
j=1 L

K
ij v

K
j +D12

v

(

vK+1
i − vKi

) (3.1)

with K = 1, 2 and assuming K + 1 to be 1 for K = 2. Here LKij = WK
ij − kKi δij

stands for the Laplacian matrix on the layer K. If the inter-layer diffusion is silenced,

which implies setting D12
u = D12

v = 0, the layers are decoupled. Working in this limit,

one recovers hence two independent pairs of coupled reaction-diffusion equations for,

respectively, (u1i , v
1
i ) and (u2i , v

2
i ). Turing patterns can eventually set in for each of the

considered limiting reaction-diffusion system as dictated by their associated dispersion

relations λKα ≡ λ(Λ(αK)) with K = 1, 2, derived following the procedure outlined above.

We are here instead interested in the general setting where the inter-layed diffusion

is accounted for. Can the system develop self-organized patterns which result from a

positive interference between adjacent layers, when the instability is prevented to occur

on each isolated level? Conversely, can patterns fade away when the diffusion between

layers is switched on?

To answer to these questions we adapt the above linear stability analysis to the present

context. Linearizing around the stable homogeneous fixed point (û, v̂) returns:

(

˙δu

˙δv

)

= J̃

(

δu

δv

)

(3.2)

with

J̃ =

(

fuI2Ω +Lu +D12
u I fvI2Ω

guI2Ω gvI2Ω +Lv +D12
v I

)

and where we have introduced the compact vector notation x =
(

x11, . . . , x
1
Ω, x

2
1, . . . , x

2
Ω

)T
,

for x = u, v. Also, I =
(

−IΩ IΩ
IΩ −IΩ

)

, where IΩ denotes the Ω × Ω-identity matrix. The

multiplex Laplacian for the species u reads: Lu =

(

D1
uL

1 0

0 D2
uL

2

)

. A similar opera-

tor, Lv, is associated to species v. Notice that Lu +D12
u I is the supra-Laplacian intro-

duced in [13]. Analogous consideration holds for the term that controls the migration of

v across the multiplex. Studying the 4Ω eigenvalues λ of matrix J̃ ultimately returns

the condition for the dynamical instability which anticipates the emergence of Turing
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like patterns. If the real part of at least one of the λi, with i = 1, ..., 4Ω is positive, the

initial perturbation grows exponentially in the linear regime of the evolution. Non linear

effects become then important and the system eventually attains a non homogenoeus

stationary configuration. Unfortunately, in the multiplex version of the linear calcula-

tion, and for a generic choice of the diffusion constants, one cannot introduce a basis

to expand the perturbations which diagonalizes the supra-Laplacian operators. In prac-

tice, one cannot project the full 4Ω× 4Ω eigenvalue problem into a subspace of reduced

dimensionality, as it is instead the case when the problem is defined on a single layer.

Moreover, it is not possible to exactly relate the spectrum of the multiplex matrix J̃ to

those obtained when the layers are decoupled. Analytical insight can be gained through

an apt perturbative algorithm which enables us to trace the modifications on the disper-

sion relation, as due to the diffusive coupling among layers. To this end we work in the

limit of a weakly coupled multiplex, the intra-diffusion constants being instead assumed

order one. Without losing generality we set ǫ ≡ D12
v << 1, and assume D12

u to be at

most O(ǫ). We hence write J̃ = J̃ 0 + ǫD0 where J̃ 0 =

(

fuI2Ω +Lu fvI2Ω

guI2Ω gvI2Ω +Lv

)

and D0 =

(

D12
u

D12
v
L1 0

0 L2

)

.

3.3 Perturbative characterization of the spectrum

The spectrum of J̃ 0 is obtained as the union of the spectra of the two sub-matrices

which define the condition for the instability on each of the layers taken independently.

To study the deformation of the spectra produced by a small positive perturbation ǫ,

we refer to a straightforward extension of the Bauer-Fike theorem [50]. We here give

a general derivation of the result which will be then exploited with reference to the

specific problem under investigation. Consider a matrix A0 under the assumption that

the eigenvalues of A0, (λ
(0)
m )m, have all multiplicity one 1. The associated eigenvec-

tors, (v
(0)
m )m are thus linearly independent and form a basis for the underlying vector

space R
Ω (or C

Ω). Introduce now A = A0 + ǫA1, A1 representing the pertubation

rescaled by ǫ. We will denote with λ(ǫ) and (vm(ǫ))m the eigenvalues and eigenvec-

tors of matrix A. Let us introduce the matrices Λ(ǫ) = diag(λ1(ǫ), λ2(ǫ), . . . λΩ(ǫ)) and

V (ǫ) =
(

v1(ǫ) v2(ǫ) . . . vΩ(ǫ)
)

and expand them into power of ǫ as:

Λ(ǫ) =
∑

l≥0

Λlǫ
l and V (ǫ) =

∑

l≥0

Vlǫ
l , (3.3)

1The discussion can be extended to the case where the eigenvalues are repeated, at the price of some
additional complications in the calculations [51–53].
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where Λ0 stands for the eigenvalues of the unperturbed matrix; V0 (resp. U0, to be

used later) stands for the matrix whose columns (resp. rows) are the right (resp. left)

eigenvectors of J̃ 0. Inserting formulae (3.3) into the perturbed system (A0 + ǫA1)V =

V Λ and collecting together the terms of same order in ǫ beyond the trivial zero-th

order contribution, we get A0Vl +A1Vl−1 =
∑l

k=0 Vl−kΛk ∀l ≥ 1. Left mutiplying the

previous equation by U0 and setting Cl = U0Vl yields:

Λ0Cl − ClΛ0 = −U0A1Vl−1 + C0Λl +

l−1
∑

k=1

Cl−kΛk . (3.4)

which can be solved as follows.

Eq. (3.4) contains two unknowns, namely Cl and Λl. To obtain a close analytical solution,

we observe that Eq. (3.4) can be cast in the compact form

[Λ0, X] = Y , (3.5)

where X and Y are Ω × Ω matrices and [·, ·] stands for the matrix commutator. In

practice, given Y ∈ R
Ω×Ω, one needs to find X ∈ R

Ω×Ω solution of (3.5). Since Λ0 is

a diagonal matrix, the codomain of the operator [Λ0, ·] is formed by all the matrices

with zero diagonal. To self-consistently solve (3.5) it is therefore necessary to impose

that Y has zero diagonal elements. Hence, matrix X will have its diagonal elements

undetermined.

Because of the above remark one can solve Eq. (3.4) by setting Λl so to cancel the

diagonal terms on its right hand side, that is:

(Λl)ij =







(U0A1Vl−1)ii −
∑l−1

k=1(Cl−kΛk)ii if i = j

0 otherwise .
(3.6)

Then Cl is readily found to match:

(Cl)ij =











(−U0A1Vl−1)ij+
∑l−1

k=1(Cl−kΛk)ij

λ
(0)
i −λ

(0)
j

if i 6= j

0 otherwise .

(3.7)

This latter epression allows us to simplify (3.6). In fact:

(Cl−kΛk)ii =
∑

h

(Cl−k)ih(Λk)hi = 0 ,
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and thus the approximated eigenvalues are given by

(Λl)ij =







(U0A1Vl−1)ii if i = j

0 otherwise ,
(3.8)

Observe that the previous formulae take a simpler form for l = 1 when they reduce to:

λ
(1)
i = (U0A1V0)ii and (C1)ij = −(U0A1V0)ij

λ
(0)
i − λ

(0)
j

for i 6= j. (3.9)

The above expressions allows us to assess the effect of the inter-layer coupling on the

stability of the system. Select the eigenvalue with the largest real part λmax0 of the

unperturbed matrices J̃ 0. For sufficiently small ǫ, such that the relative ranking of the

eigenvalues is preserved, we have at the leading order correction:

λmax(ǫ) = λmax0 + ǫ(U0D0V0)kk +O(ǫ2) , (3.10)

where k is the index which refer to the largest unperturbed eigenvalue λmax0 . Higher

order corrections can be also computed as follows the general procedure outlined above.

To illustrate how inter-layers couplings interfere with the ability of the system to self-

organize in collective patterns, we apply the above analysis to a specific case study, the

Brusselator model whose local reaction terms are given by f(u, v) = 1− (b+1)u+ cu2v

and g(u, v) = bu− cu2v, where b and c act as constant parameters.

Suppose now that for ǫ = 0 the system is stable, namely that λmax0 < 0, as depicted in

the main panel of Figure 3.2. No patterns can hence develop on any of the networks

that define the layers of the multiplex 2. For an appropriate choice of the parameters

of the model, λmax grows as function of the inter-layer diffusion D12
v (= ǫ) and becomes

eventually positive, signaling the presence of an instability which is specifically sensitive

to the multiplex topology. The circles in Figure 3.2 are computed by numerically cal-

culating the eigenvalues of the matrix J̃ for different choices of the diffusion constant

D12
v . The dashed line refer to the linear approximation (3.10) and returns a quite rea-

sonable estimate for the critical value of the inter-layer diffusion D12
v,crit for which the

multiplex instability sets in, D12
v,crit ≃ −λmax0 /(U0D0V0)kk. The solid line is obtained

by accounting for the next-to-leading corrections in the perturbative calculation. In the

upper inset of Figure 3.2 the dispersion relation is plotted versus ΛKα , the eigenvalues of

the Laplacian operators L1 and L2, for two choices of the inter-layer diffusion. When

D12
v = 0 the two dispersion relations (circles, respectively red and blue), each associated

2Numerical tests have been also performed for different choices of p or employing alternative strategies
to generate the networks that define the layers, reaching always qualitatively similar conclusions. The
same holds for the results depicted in Figure 3.3.
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to one of the independent layers, are negative as they both fall below the horizontal

dashed line. For D12
v = 0.5 the curves lift, while preserving almost unaltered their

characteristic profile (square, green). In particular, the upper branch of the multiplex

dispersion relation takes positive values within a bounded domain in Λα, so implying

the instability. To confirm the validity of the theoretical predictions we integrated nu-

merically the reaction-diffusion system (3.1), assuming the Brusselator reaction terms,

and for a choice of the parameters that yield the multiplex instability exemplified in

the main plot of Figure 3.2. As expected, the homogeneous fixed point (dashed line)

gets destabilized: the external perturbation imposed at time zero, is self-consistently

amplified and yields the asymptotic patterns displayed in lower inset of Figure 3.2.
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Figure 3.2: Main: λmax is plotted versus D12
v , starting from a condition for which the

instability cannot occur when D12
v = 0. Circles refer to a direct numerical computation

of λmax. The dashed (resp. solid) line represents the analytical solution as obtained
at the first (resp. second) perturbative order. Upper inset: the dispersion relation λ
is plotted versus the eigenvalues of the (single layer) Laplacian operators, L1 and L2.
The circles (resp. red and blue) stand for D12

u = D12
v = 0, while the squares (green) are

analytically calculated from (3.3), at the second order, for D12
u = 0 and D12

v = 0.5. The
two layers of the multiplex have been generated as Watts-Strogatz (WS) [9] networks
with probability of rewiring p respectively equal to 0.4 and 0.6. The parameters are
b = 8, c = 17, D1

u = D2
u = 1, D1

v = 4, D2
v = 5. Lower inset: asymptotic concentration of

species u as function of the nodes index i. The first (blue) Ω = 100 nodes refer to the
network with p = 0.4, the other Ω (red) to p = 0.6.
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Interestingly, the dual scenario is also possible. Assign the parameters so that the system

is unstable (on at least one of the layers), in the decoupled setting D12
v = 0. Hence,

λmax0 > 0, as displayed in the main panel of Figure 3.3. Patterns can therefore develop

on one of the networks that define the multiplex (see unperturbed dispersion relation

as plotted in the inset of Figure 3.3). The instability is eventually lost for a sufficiently

large value of the inter-layer diffusion constant D12 = D12
u = D12

v . In other words, the

interference between layers can dissolve the patterns. The perturbative calculation that

we have developed provides, also in this case, accurate estimates of λmax as function of

D12. The two branches of the dispersion relation shift downward as shown in the inset

of Figure 3.3.
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Figure 3.3: Main: λmax is plotted versus D12 ≡ D12
v = D12

u , starting from the
value D12 = 0 for which the instability can occur. Circles refer to a direct numerical
computation of λmax. The dashed (resp. solid) line represents the analytical solution
as obtained at the first (resp. second) perturbative order. Inset: the dispersion relation
λ is plotted versus the eigenvalues of the (single layer) Laplacian operators, L1 and L2.
The circles (resp. red and blue) stand for D12

u = D12
v = 0, while the squares (green)

are analytically calculated from (3.3), at the second order, for D12
u = D12

v = 0.2.
The two layers of the multiplex have been generated as Watts-Strogatz (WS) networks
with probability of rewiring p respectively equal to 0.4 and 0.6. The parameters are

b = 8, c = 16.2, D1
u = D2

u = 1, D1
v = 4, D2

v = 5.
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3.4 Conclucions

Summing up we have developed a consistent theory of patterns formation for a reaction-

diffusion system defined upon a stratified multiplex network. The analysis has been here

carried out for a two species model, defined on a two layers multiplex. The methodology

employed, as well as our main conclusions, readily extend to the general framework where

s species are mutually interacting, while diffusing across a K levels multiplex whose

layers can have arbitrary network topologies. The interference among layers can instigate

collective patterns, which are instead lacking in the corresponding uncoupled scenario.

Patterns can also evaporate due to the couplings among distinct levels. Conditions for

the critical strenght of the coupling constant are given and tested by direct numerical

inspection. The hierarchical organization of the embedding space plays therefore a

role of paramount importance, so far unappreciated, in seeding the patterns that we

see in nature. It is also worth emphasising that novel control strategies could be in

principle devised which exploit the mechanisms here characterized. These potentially

interest a large plethora of key applications, which range from the control of the epidemic

spreading, to the prevention of the failure of electric networks, passing through wildlife

habitat restorations.





Chapter 4

Stochastic pattern formation

theory: the case of one-diffusing

species

4.1 Introduction

Reaction-diffusion systems are generally studied by resorting to deterministic mathemat-

ical models. The continuum concentrations of the interacting species is hence monitored

over space and in time. As opposed to this strategy, one can develop an individual based

description of the scrutinized dynamics, which effectively accounts for the inherent dis-

creteness of the system. Stochastic contributions, stemming from finite size corrections,

can thus modify the idealized mean-field picture and occasionally return alternative

scenarios to interpret available data.

In a series of recent publications, the effect of the intrinsic noise was indeed shown

to create stochastic patterns, in a region of the parameters for which macroscopically

ordered structures do not occur. When the deterministic dynamics predicts a stable

homogeneous state, the stochastic component can amplify via a resonant mechanism,

giving birth to spatially organized patterns, also termed stochastic Turing patterns [17,

18, 54–56]. The effect of finite size fluctuations can be characterized with numerical

simulations, but also analytically with Linear Noise Approximation (LNA) techniques,

such as van Kampen system size expansion. This allows to expand the governing master

equation, which accounts for the role of demographic fluctuations. At the first order of

the expansion, the deterministic mean-field model is obtained, while the second order

contributions form an equation for the stochastic fluctuations.

51
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As previously discussed, the majority of studies devoted to the Turing instability consider

two, mutually interacting, species. More specifically, and following the customarily

accepted paradigm, one species activates the production of the other, this latter acting

through an inhibitor feedback. Systems of three [57] simultaneously diffusing species

have been also considered and shown to display a rich zoology of possible patterns and

instabilities. Patterns can also develop if only one species is allowed to diffuse in the

embedding medium, provided the system is composed of at least three coupled species

[22]. In contrast, it is well known [22] that two species systems where only one species can

migrate, cannot undergo Turing instability. This observation was made quantitatively

in Chapter 1, where we did prove that, over a continuum support, the Turing instability

cannot take place for reaction-diffusion models with two interacting species of which

only one is allowed to diffuse [22]. If space is instead discrete, Turing like pattern can

in principle take place, but only if the non diffusing species acts as a self-activator. As

we shall here demonstrate, accounting for the intrinsic finite size fluctuations allows

one to obtain a more complex landscape of possible instabilities. This chapter aims at

elaborating along these lines, by considering the generalized concept of stochastically

driven patterns.

The chapter is organized as follows. In the next section we introduce the stochastic birth

and death model that we shall use as a reference case study. The model is completely

general and the reaction rates are assumed to depend on the species concentration,

via generic non linear functions. Then, in Section 4.3, we first derive the mean-field

deterministic limit: the only request that we shall put forward has to do with the

existence of a stable fixed point for the aspatial mean-field system. We then proceed

to derive the Fokker-Planck equation that describes the fluctuations. From this, in

Section 4.4, we calculate the power spectrum of fluctuations, and find the mathematical

conditions for the emergence of stochastically driven patterns. In Section 4.5 we turn to

considering a particular non-linear model, so to verify the correctness of our predictions.

Finally, in Section 4.6 we sum up and conclude. A synthetic discussion on the theory of

stochastic processes is presented in the annexed Appendix A.

4.2 The Model and its Master Equation

The system that we are going to study is a general two species birth-death model, in

which one of the species diffuses. As already mentioned, we assume the physical space to

be partitioned in Ω patches of linear size a, and label with V their carrying capacity 1.

The integer index i runs from 1 to Ω and identifies the cell to which the species belong.

1For the sake of simplicity, and without loosing generality we will set a = 1 in the following.
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Label the two species Z and Y and assume the following chemical reaction scheme:

Zi
α−−→ Zi + 1 α =

1

Ω

V

si
f1

(

si
V
,
qi
V

)

Zi
β−−→ Zi − 1 β =

1

Ω

V

si
f2

(

si
V
,
qi
V

)

Yi
γ−−→ Yi + 1 γ =

1

Ω

V

qi
g1

(

si
V
,
qi
V

)

Yi
ρ−−→ Yi − 1 ρ =

1

Ω

V

qi
g2

(

si
V
,
qi
V

)

.

(4.1)

We indicated as si the number of elements of species Z and with qi the number of

elements of species Y in the cell i. Moreover, we require that f1, f2, g1, g2 are sufficiently

regular functions of the discrete number concentrations si/V and qi/V .

We assume that only Z diffuses with a diffusion coefficient δ, and therefore write

Zi
δ/wΩ−−−−→ Zj Zj

δ/wΩ−−−−→ Zi, with j ∈ {i− 1, i+ 1}, (4.2)

where, in general, w is the number of neighboring cells of a given cell i and, therefore,

w = 2 in the present one-dimensional case. A state of the system is characterized by two

vectors, respectively ~s = (s1, s2, ..., sΩ) and ~q = (q1, q2, ..., qΩ). It is worth emphasizing

that the model is completely general: virtually any system composed by two species,

one of each diffusing, can be cast in the form introduced above, upon a proper choice of

the functions f1, f2, g1, g2.

We then turn to write down the master equation that governs the dynamics of the

system. The reader can refer to the Appendix A for an introduction on the stochastic

modeling techniques here employed. To this end we need to calculate the transition

probability associated with each reaction:

T (si + 1, qi|si, qi) = α
si
V

T (si − 1, qi|si, qi) = β
si
V

T (si, qi + 1|si, qi) = γ
qi
V

T (si, qi − 1|si, qi) = ρ
qi
V

T (si + 1, sj − 1|si, sj) =
δ

Ω

sj
wV

T (si − 1, sj + 1|si, sj) =
δ

Ω

si
wV

.

By introducing the following “step operators”:

ε±sif(~s, ~q) = f(. . . , si ± 1, . . . , ~q), ε±qif(~s, ~q) = f(~s, . . . , qi ± 1, . . .),
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the master equation reads:

d

dt
P (~s, ~q, t) =

Ω
∑

i=1

[

(

ε+si − 1
)

T (si − 1, qi|si, qi) +
(

ε−si − 1
)

T (si + 1, qi|si, qi)

+
(

ε+qi − 1
)

T (si, qi − 1|si, qi) +
(

ε−qi − 1
)

T (si, qi + 1|si, qi)
]

P (~s, ~q, t)

+
Ω
∑

i=1

∑

j∈{i−1,i+1}

[

(

ε+siε
−
sj − 1

)

T (si − 1, sj + 1|si, sj)

+
(

ε−siε
+
sj − 1

)

T (si + 1, sj − 1|si, sj)
]

P (~s, ~q, t)

(4.3)

where, in accordance with our assumption of periodic boundary conditions, we adopt a

periodic convention for the indices out of the set {1, . . .Ω}.

4.2.1 The Linear Noise Approximation (LNA) method

The master equation is difficult to handle analytically. To progress with the analysis

we perform a Linear Noise Approximation (LNA) technique which is based in the van

Kampen system size expansion, a perturbative calculation that introduces, by an ansatz,

the following change of variables in the master equation:

si
V

= φi +
ξi√
V
,

qi
V

= ψi +
ηi√
V
. (4.4)

The number density si/V splits into two independent contributions: φi stands for the

deterministic (mean-field) concentration as measured in correspondence of the site i,

and ξi is a stochastic variable that quantifies the fluctuation that perturbs the mean-

field solution φi. Similar considerations apply to qi/V . The factor 1/
√
V takes into

account the finite volume of the system. In the limit for infinite systems size, the

fluctuations can be neglected and the stochastic system as formulated above converges

to its deterministic analogue. When working at finite V , stochastic fluctuations are

important. The role of fluctuations can be quantitatively studied by implementing the

aforementioned perturbative analysis, the van Kampen expansion [58], which assumes

the amplitude factor 1/
√
V to act as a small parameter. To this end we introduce the van

Kampen hypothesis into the master equation and split the contributions of order 1/
√
V

and 1/V , to respectively obtain the mean-field equation and Fokker-Planck equation.

To carry out the calculation explicitly one needs to expand the functions f1, f2, g1, g2

with respect to the small parameter 1/
√
V . As a representative example, we consider

f1 and obtain:

f1

(

φi +
ξi√
V
, ψi +

ηi√
V

)

≈ f1(φi, ψi)+
1√
V

∂f1
∂φi

(φi, ψi)ξi+
1√
V

∂f1
∂ψi

(φi, ψi)ηi+· · · (4.5)
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where the derivatives are evaluated at ξi = 0, ηi = 0. Similar results hold for f2, g1 and

g2.

Let us introduce the new distribution

Π(ξi, ηi, t) = P (si(φi(t), ξi), qi(ψi(t), ηi), t), (4.6)

where si(φi(t), ξi) and qi(ψi(t), ηi) are given by (4.4). Inserting into the master equation,

and expanding the step operators to second order, one eventually obtains

Ω
∑

i=1

∂Π

∂t
− ∂Π

∂ξi

√
V φ̇i −

∂Π

∂ηi

√
V ψ̇i = [A+B + C]Π (4.7)

where the contributions A,B,C take the following form:

A =
1

Ω

Ω
∑

i=1

{

1√
V

[

(f2 − f1)
∂

∂ξi

]

+

+
1

V

[

∂

∂ξi

(

∂f2
∂φi

− ∂f1
∂φi

)

ξi +
∂

∂ξi

(

∂f2
∂ψi

− ∂f1
∂ψi

)

ηi +
1

2
(f1 + f2)

∂2

∂ξ2i

]

}

,

B =
1

Ω

Ω
∑

i=1

{

1√
V

[

(g2 − g1)
∂

∂ηi

]

+

+
1

V

[

∂

∂ηi

(

∂g2
∂φi

− ∂g1
∂φi

)

ξi +
∂

∂ηi

(

∂g2
∂ψi

− ∂g1
∂ψi

)

ηi +
1

2
(g1 + g2)

∂2

∂η2i

]

}

,

C =
δ

wΩ

Ω
∑

i=1

∑

j∈{i−1,i+1}

{

1√
V

[(

∂

∂ξi
− ∂

∂ξj

)

φi +

(

∂

∂ξj
− ∂

∂ξi

)

φj

]

+

+
1

V

[

(

∂

∂ξi
− ∂

∂ξj

)

ξi +

(

∂

∂ξj
− ∂

∂ξi

)

ξj +
1

2

(

∂2

∂ξ2i
+

∂2

∂ξ2j
− 2

∂

∂ξi

∂

∂ξj

)

(φi + φj)

]}

.

4.3 Equations for the mean-field and the fluctuations

Introducing the rescaled time variable τ → t/ΩV , we obtain from (4.7) at the order

1/
√
V the following system of ordinary differential equations for the mean-field concen-

trations φi and ψi:






φ̇i = f1(φi, ψi)− f2(φi, ψi) + δ△φi
ψ̇i = g1(φi, ψi)− g2(φi, ψi)

(4.8)
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where △ = (φi+1 − 2φi + φi−1), the discrete Laplacian. To proceed in the analysis we

suppose that the homogeneous system:







φ̇i = f1(φi, ψi)− f2(φi, ψi) ≡ f(φi, ψi)

ψ̇i = g1(φi, ψi)− g2(φi, ψi) ≡ g(φi, ψi)
(4.9)

admits a fixed stable point (φ̂, ψ̂). Notice that system (4.8), derived from a micro-

scopic stochastic formulation, coincides with the general mean-field model considered in

Chapter 1.

The Fokker Planck equation that describes the dynamics of the fluctuations is obtained

by considering the terms proportional to 1/V in the master equation and reads as follows:

∂

∂τ
Π =

Ω
∑

i=1



−
2
∑

r=1

∂

∂ζr,i

(

2
∑

m=1

Jrm,iζm,iΠ
)

+
1

2

2
∑

r,l=1

i+1
∑

j=i−1

∂

∂ζl,i

∂

∂ζr,j

(

B(i)
rl,jΠ

)



 .

(4.10)

Let us indicate as ~ζi = (ζ1,i, ζ2,i) the vector (ξi, ηi) in (4.10). The 2×2 matrices Ji = Jrm,i
are given by

Ji =













∂f1
∂φi

− ∂f2
∂φi

+ δ△ ∂f1
∂ψi

− ∂f2
∂ψi

∂g1
∂φi

− ∂g2
∂φi

∂g1
∂ψi

− ∂g2
∂ψi

,













(4.11)

and the three-vectors B(i)
rl are given by

B(i)
11 = (−δ(φi + φi−1),δ(φi−1 + 2φi + φi+1) + f1(φi, ψi) + f2(φi, ψi),− δ(φi + φi+1))

B(i)
12 = B(i)

21 = (0, 0, 0), B(i)
22 = (0, g1(φi, ψi) + g2(φi, ψi), 0).

(4.12)

Note that, in the above expressions, the indices r and l label the species while the

indices i and j refer to the cells. The matrix Ji is the Jacobian matrix of (φi, ψi) 7→
(f1 − f2, g1 − g2), modified with the inclusion of the spatial contribution represented by

the discrete Laplacian.

Matrix B can be cast in the more compact form:

B(i)
rl,j =

(

b
(0)
rl δi−j,0 + b

(1)
rl δ|i−j|,1

)

+ b
(1)
rl △ (4.13)

where:
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b(0) =

(

2δφ̂+ f1(φi, ψi) + f2(φi, ψi) 0

0 g1(φi, ψi) + g2(φi, ψi)

)

b(1) =

(

−δφi 0

0 0

)

.

We are interested in studying the fluctuations around the fixed point, when the deter-

ministic system is in a steady state, i.e. when (φi, ψi) ≡ (φ̂, ψ̂), ∀i. A powerful mean of

investigation is the power spectrum of fluctuations, that allows us to resolve the typical

spatio-temporal frequencies that are represented in the recorded signal. The analysis of

the power spectrum is carried out in the next section.

4.4 Power Spectrum of fluctuations

The above Fokker-Planck equation is equivalent [58] to the Langevin equation:

d

dt
ζr,i(t) =

2
∑

l=1

Jrl,iζl,i(t) + λr,i(t) (4.14)

where λr,i(t) is a stochastic contribution which satisfies the following relations:

〈

λl,i(t), λr,i′(t
′)
〉

= Blr,|i−i′|δ(t− t′), (4.15)

〈λl,i(t)〉 = 0. (4.16)

and 〈·〉 denotes expectation. Upon Fourier transform one gets:

− iωζ̃r,k(ω) =
2
∑

l=1

J̃rl,k ζ̃l,k(ω) + λ̃r,k(ω) (4.17)

where (̃·) stands for the Fourier transform both in space and time. Notice that matrix J̃i
coincides with the matrix Ji given in (4.11) where the discrete Laplacian △, is replaced

by its Fourier transform △̃k. As previously remarked one gets:

△̃k = 2(cos(k)− 1). (4.18)

Define

Φrl,k(ω) = −iωδrl − J̃rl,k,
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then the solution of (4.17) reads:

ζ̃r,k(ω) =
2
∑

l=1

Φ−1
rl,k(ω)λ̃r,k(ω). (4.19)

The power spectrum of the stochastic variable ζr,i(t) is defined as:

Pr(k, ω) =
〈

|ζ̃r,k(ω)|2
〉

. (4.20)

Making use of condition (4.15) one gets:

Pr(k, ω) =
〈

|ζ̃r,k(ω)|2
〉

=

2
∑

l,p=1

Φ−1
rl,k(ω)B̃lp,k(Φ†)−1

rp,k(ω). (4.21)

By recalling expression (4.13) one gets:

B̃lp,k =
(

b
(0)
lp + 2b

(1)
lp

)

+ b
(1)
lp △̃k, (4.22)

which allows us to rewrite the power spectra in the form Pr(k, ω) [59, 60]:

PZ(k, ω) ≡ P1(k, ω) =
CZ,k + B̃11,kω

2

(ω2 − Ω2
0)

2 + Γ2ω2
, (4.23)

PY (k, ω) ≡ P2(k, ω) =
CY,k + B̃22,kω

2

(ω2 − Ω2
0)

2 + Γ2ω2
(4.24)

where the functions CZ,k and CY,k are respectively defined:

CZ,k = B̃11,k(
˜̂J22,k)

2 + B̃22,k(
˜̂J12,k)

2 − 2B̃12,k
˜̂J12,k

˜̂J22,k,

CY,k = B̃22,k(
˜̂J11,k)

2 + B̃11,k(
˜̂J21,k)

2 − 2B̃12,k
˜̂J21,k

˜̂J11,k

(4.25)

and

Ω0 =

√

det Ĵrl,k (4.26)

Γ = − tr Ĵrl,k. (4.27)

In the above expression, the symbol (̂·) indicates that from hereon the matrices are

evaluated at the fixed point (φ̂, ψ̂); (̃·) stands instead for the spatial Fourier transform.
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As anticipated, we are interested in studying the presence of stochastic stationary pat-

terns. We remember that stochastic Turing patterns [17, 18] are signaled by the presence

of at least a peak for the power spectrum in the direction of k, the spatial wavenumber,

for ω = 0, where ω stands for the time frequency. We are therefore going to analyze the

functions PZ(k, 0) ≡ P1(k, 0) and PY (k, 0) ≡ P2(k, 0), which respectively reads:

PZ(k, 0) =
CZ,k
Ω4
0

=
b22(J11 + δ△̃)2 + (b11 − 2φ̂δ△̃)J21

2

(detJ + J22δ△̃)2
(4.28)

PY (k, 0) =
CY,k
Ω4
0

=
(b11 − 2φ̂δ△̃)J22

2 + b22J12
2

(detJ + J22δ△̃)2
, (4.29)

where we have introduced:

b11 = f1(φ̂, ψ̂) + f2(φ̂, ψ̂), (4.30)

b22 = g1(φ̂, ψ̂) + g2(φ̂, ψ̂). (4.31)

To study the conditions that yield to one or more peaks, we need to calculate the power

spectrum derivative. We make use of the notation g(k) ≡ δ△̃ = 2δ(cos k−1) and obtain

the following general expression:

dPj(k, 0)

dk
=

g′(k)

(detJ + J22g(k))3
{Bjg(k) + Cj} for j ∈ {Z, Y }, (4.32)

where Bj and Cj are defined as:

BZ = 2φ̂J 3
22 (4.33)

CZ = −2J22

(

b11J 2
22 + b22J 2

12 + φ̂J22 detJ
)

(4.34)

BY = 2J21(−b22J12 + φ̂J21J22) (4.35)

CY = −2J21(b22J11J12 + φ̂J21 detJ + b11J22J21). (4.36)

Recall that Jij are the entries of the Jacobian matrix of system (φi, ψi) 7→ (f1−f2, g1−g2)
and bij are given by eqs. (4.31).

We observe that k = 0 and k = π are always stationary points of Pj . In fact g′(k) =

−2δ sin(k) is null if k = 0, π. To have additional stationary points of Pj , one should

require the quantity Bjg(k) + Cj to vanish. This implies:

cos(k) = 1− Cj
2δBj

.
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As cos(k) ∈ [−1, 1], it is necessarily the case that:

0 6
Cj

2δBj
6 2. (4.37)

Then, the derivative of Pj can be zero in k if Bj and Cj have the same sign. We indicate

as k1 and k2, the stationary wavenumbers different from π.

There are only two possible cases for the existence of k1 and k2:

(i) Existence condition of k1, k2

(a) Bj , Cj > 0 and δ >
Cj

4Bj
,

(b) Bj , Cj < 0 and δ >
|Cj |
4|Bj |

.

We are interested to know whether k1 and k2 correspond to maxima or minima of

Pj(k, 0). To achieve this goal we calculate the second derivative of Pj(k, 0):

d2

dk2
Pj(k, 0) =

g′′(k) (Bjg(k) + Cj) +Bjg
′(k)2

(detJ + J22g(k))3
− 3J22g

′(k)2 (Bjg(k) + Cj)

(detJ + J22g(k))4
. (4.38)

Remember that k1 and k2 are solution of Bjg(k)+Cj = 0. The expression of the second

order derivative is therefore cast into the form:

d2

dk2
Pj(k, 0)

∣

∣

∣

∣

k=k1,k2

=
Bjg

′(k)2

(detJ + J22g(k))3
. (4.39)

The nature of the stationary points k1 and k2 depends on the sign of both the denom-

inator and Bj in (4.39). In particular, if we require that the points are maxima, or

equivalently the second derivative in k1 and k2 has a negative sign, we must check one

of the two following conditions:

(ii) Maximum conditions for points k1, k2

(a) Bj < 0 and detJ + J22g(k)∣
∣

k=k1,k2

> 0,

(b) Bj > 0 and detJ + J22g(k)∣
∣

k=k1,k2

< 0.

As anticipated we shall consider the case of a self-inhibitory non mobile species, which

corresponds to requiring J22 < 0. The denominator in (4.39) is then always positive,

while g(k) is by definition negative. Accordingly, the kind of stationary points k1 and

k2 depend on the sign of Bj . In particular, for the condition of maximum (ii), Bj must

be negative.

To characterize whether the other stationary points 0, π are maxima or minima, we
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should again turn to evaluating the second derivatives for such choices of k. As g′(0) = 0,

then equation (4.38) is:

d2

dk2
Pj(k, 0)

∣

∣

∣

∣

k=0

=
g′′(0) (Bjg(0) + Cj)

(detJ + J22g(π))3
=

−2δCj
(detJ − 4δJ22)3

. (4.40)

Therefore k = 0 is a maximum, if one of the following conditions is true:

(iii) Maximum condition for k = 0

(a)







−2δCj < 0

(detJ − 4δJ22) > 0.
(b)







− 2δCj > 0

(detJ − 4δJ22) < 0.

Since by assumption J22 < 0, condition (iii)(b) cannot be met. This is because the

quantity detJ − 4δJ22 is positive, as detJ > 0 since we have assumed that (φ̂, ψ̂) is

a stationary stable fixed point. The nature of the stationary point k = 0 ultimately

depends on the sign of Cj . If Cj > 0, it is a maximum point, while, if Cj < 0, it is a

minimum.

Consider now k = π and observe that g′(π) = 0. Equation (4.38) reads:

d2

dk2
Pj(k, 0)

∣

∣

∣

∣

k=π

=
g′′(π) (Bjg(π) + Cj)

(detJ + J22g(π))3
=

2δ (−4δBj + Cj)

(detJ − 4δJ22)3
. (4.41)

For having a maximum in k = π one of the following conditions must be satisfied:

(iv) Maximum condition for k = π

(a)







−4δBj + Cj < 0

(detJ − 4δJ22) > 0.
(b)







− 4δBj + Cj > 0

(detJ − 4δJ22) < 0.

Since J22 < 0, the condition (iii)(b) is never satisfied: as already remarked, the term

detJ − 4δJ22 is in fact always positive.

Notice that, if k = π is a maximum the values k = k1 and k = k2 are minima. Otherwise

if k1 and k2 are maxima, k = π is a minimum. To show this, let us consider two different

cases, respectively Bj < 0 and Bj > 0.

If Bj < 0 and, at the same time, condition (i) is satisfied, then k1 e k2 exist. In

this case, the condition (ii)(a) guarantees that the stationary points else than π are

maxima. Indeed, Bj < 0 and (detJ + J22g(k))∣
∣

k=k1,k2

is positive. The condition for

having a maximum in k = π, namely −4δBj + Cj < 0, is in contradiction with (i). If

Bj , Cj < 0, in fact, we can write −4δBj + Cj < 0. Taking into account the signs of the
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quantities involved, it results 4δ|Bj |− |Cj | < 0, which implies δ <
|Cj |
4|Bj |

, in disagreement

with the condition (i). In conclusion k = π is necessarily a minimum.

Let us now turn to considering the case Bj > 0. To have the existence of k1 and k2

one must impose Cj > 0 and δ >
Cj

4Bj
. Clearly, condition (ii) cannot be then satisfied

and the two stationary points are minima. A maximum is instead found in k = π, as

dictated by condition (iv)(b).

A summary of the above results is given in the Tables annexed below, where the different

scenarios are highlighted depending on the sign of the reference quantities. We recall

that our results have been derived under the hypothesis of discrete lattice spacing a (set

to one in the calculations). Similar Tables can be in principle obtained for the case of a

spatially continuum lattice, i.e. when a→ 0 and g(k) ≡ −δk2. It can be however shown

[59, 60] that the power spectrum of fluctuations scales with an amplitude prefactor

proportional to ad, d being the dimension of the embedding space (d = 1, in our case).

Hence, in the limit a → 0, fluctuations fade away and the stochastic pattering is non

detectable. However, as remarked in [17], another continuum limit can be performed,

starting from the same microscopic discrete formulation. One could in fact imagine to

keep patch dimension to a constant, while sending to infinity both ω and the linear

size of the physical space which hosts the system under scrutiny. This is indeed the

case considered in [56]: working under this alternative scenario, fluctuations, and so the

triggered patterns, are persistent also in the continuum limit. The choice of operating

with patches of finite size, where microscopic constituents are supposed well mixed, and

accounting for the possibility of jumping towards neighbor patches of a finite lattice,

proves useful when modeling ecological systems [61], or in cellular biology, the space

inside the membrane being partitioned in macro compartments and oganelles [62], but

also for studying chemical systems as e.g. the device introduced in [63].
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J22 < 0 Cj > 0

Bj > 0 δ >
Cj

4Bj
∃ k1 and k2 and are minima.

Maxima are found in k = 0, π, 2π.

δ <
Cj

4Bj
6 ∃ k1 and k2. k = 0 and k = 2π are maxima.

A minimum is found in k = π.

Bj < 0 6 ∃ k1 and k2. k = 0 and k = 2π are maxima.

A minimum is found in k = π.
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J22 < 0 Cj < 0

Bj > 0 6 ∃ k1 and k2. k = π is always a maximum.

Two minima are found in k = 0 and k = 2π.

Bj < 0 δ >
Cj

4Bj
∃ k1 and k2 and are maxima. k = 0, π, 2π are minima.

δ <
Cj

4Bj
6 ∃ k1 and k2. k = 0 and k = 2π are minima.

A maximum is found in k = π.
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4.5 A simple stochastic reaction–diffusion model

We have so far demonstrated that a stochastic amplification of spatial modes takes place

for reaction-diffusion models, defined on a discrete lattice, in which only one species

diffuses. Working in a general context, we elaborated on the conditions which lead

to such stochastic pattern (termed stochastic Turing patterns in [18]), mediated by

demographic noise.

As an application of the results discussed above, we consider a specific stochastic reaction-

diffusion model, which can be cast in the form specified by (4.1) and (4.2). We choose

in particular:

f1

(

si
V
,
qi
V

)

= η1 (4.42)

f2

(

si
V
,
qi
V

)

= η2

(si
V

)p
+ η3

( qi
V

)n
(4.43)

g1

(

si
V
,
qi
V

)

= η4 (4.44)

g2

(

si
V
,
qi
V

)

= η5

(si
V

)p
+ η6

( qi
V

)n
(4.45)

to define the microscopic reaction rates implicated in chemical equations (4.1). Here ηi

are positive real numbers, while p and t are integers. We will set p = 4 and n = 1.

Note that the proposed model has no specific applied interest: it is solely introduced

for demonstrative purposes, aiming at testing the validity of the mathematical analysis

developed above.

In the mean-field approximation, one gets:











∂φi
∂t

= −η2φpi − η3ψ
n
i + η1 + δ∆φi

∂ψi
∂t

= −η5φpi − η6ψ
n
i + η4 .

(4.46)

To calculate homogeneous fixed point (φ̂, ψ̂) of system (4.46) one needs to solve the

following equations:







−η2φ̂p − η3ψ̂
n + η1 = 0

−η5φ̂p − η6ψ̂
n + η4 = 0

(4.47)

which immediately yield:



Chapter 4. Stochastic pattern formation 66

φ̂ =

(

η1η6 − η3η4
η2η6 − η3η5

)1/p

(4.48)

ψ̂ =

(

η2η4 − η1η5
η2η6 − η3η5

)1/n

. (4.49)

The parameters are to be in turn assigned so that the above fixed point is real and

positive, a condition on which we shall return in the following. Furthermore, we require

(φ̂, ψ̂) to be a stable fixed point, so to match the theory prescriptions. The trace of the

Jacobian matrix J associated to the homogeneous (a-spatial) version of system (4.46)

reads:

trJ = −
(

η2pφ̂
p−1 + η6nψ̂

n−1
)

. (4.50)

The trace is therefore always negative, for any choice of the parameters which returns a

physically sound (φ̂, ψ̂ > 0) homogeneous fixed point. For the fixed point to be stable,

one should further impose:

detJ = (η2η6 − η3η5) pnφ̂
p−1ψ̂n−1 > 0. (4.51)

This latter condition translates in:

η3 <

(

η2
η5

)

η6 ≡ γ1η6, (4.52)

where we brought into evidence the dependence on η6 and η3, since they will later on

act as control parameters. By using the above condition (4.52) into equations (4.48) the

condition for positive concentrations φ̂, ψ̂ > 0 gives:

η2η4 − η1η5 ≡ γ2 > 0 (4.53)

η3 <
(

η1
η4

)

η6 ≡ γ3η6. (4.54)

The homogeneous fixed point (φ̂, ψ̂) determined above exists and it is stable, provided

conditions (4.52) and (4.53) are simultaneously met. Moreover, and as discussed in the

first chapter, the spatially extended system (4.46) cannot experience a (deterministic)



Chapter 4. Stochastic pattern formation 67

Figure 4.1: The plane (η6, η3) is partitioned into two regions. In region II, the power
spectrum of fluctuations is predicted to display two peaks in, respectively, k1 and k2.
These are positions symmetric with respect to π. In region I the power spectrum has
instead a maximum in k = 0. The parameters are η1 = 15; η2 = 20; η4 = 4; η5 = 4;
δ = 42.9473. With this choice, γ1 = 4; γ3 = 20 > 0; γ3 = 3.75. The two lines
which cross the origin represent respectively the two conditions η3 = γ1η6 (blue) and
η3 = γ3η6 (red). Region I is delimited by this latter and the thick solid line which
marks the transition to the adjacent region II. The horizontal dashed lines is drawn at
η3 = 3: the data reported in the following figures (4.2) and (4.3) refer to choices of the

parameters that fall on such a line.

Turing instability since gψ = −nη6ψ̂n−1 is by definition negative. The homogeneous fixed

point is hence a stable, although trivial attractor of the spatial deterministic model.

A different scenario holds instead when the stochastic version of the deterministic model

(4.46) is considered. As we will show, it is in fact possible to assign the model parameters

so as to generate a power spectrum of the stochastic fluctuations with two maxima for

non trivial values of k1 and k2, for ω = 0. These maxima are interpreted as the signature

of stochastic Turing patterns.

To this end we fix all parameters to nominal, arbitrarily chosen values, except for η3 and

η6 which can be tuned. We will then adjust η3 and η6 so to match conditions (i) and (ii),

as outlined in the preceding section. This results in region II of the parameter plane,

as depicted in Figure 4.1. Conversely, in region I the power spectrum of fluctuations is

predicted to display an isolated maximum for k = 0.

In Figure 4.2(b) we plot a two dimensional view of the theoretical power spectrum for

a choice of the parameters (η6, η3) which falls in region II. The predicted profile is just

displayed in the interval k ∈ [0, π]: a peak is present for a value of k smaller than π. A
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(a) (b)

Figure 4.2: In panel (a), the numerical power spectrum of the fluctuations for species
Z is represented, with an appropriate color code, in the plane (ω, k), for a choice of
the parameters that fall in region I of Figure 4.1. Specifically, we have set η6 = 25,
η3 = 3. The other parameters are set to the values specified in the caption of Figure 4.1.
Here V = 5000 and Ω = 32. The numerical power spectrum is obtained by averaging
over 200 independent realizations based on the Gillespie algorithm. A peak is found in
the interval [0, π]. A symmetric maximum exists in [π, 2π] (non displayed). In panel
(b) the power spectrum calculated analytically is plotted and shown to agree with the
numerical result. The power spectra are normalized so to have maximum equal to unit.

The color bar applies to both panels.

second, specular, peak is clearly found for k > π. The two maxima of the power spectrum

occur for ω = 0. They correspond therefore to stationary non homogeneous patterns.

To validate the theory predictions we performed direct numerical simulations, by means

of the Gillespie algorithm [64]. This is a Monte Carlo based scheme which produces

realizations of the stochastic dynamics equivalent to those obtained from the governing

master equation. The power spectrum calculated by averaging over a large collection of

independent realizations of the stochastic dynamics is depicted in Figure 4.2(a), showing

a good agreement with the corresponding theoretical profile. This confirms the validity

of the analysis developed above, and summarized in the Tables presented above.

In Figure 4.3, the position of the maxima of the power spectrum of species Z is plotted

as a function of the control parameter η6, while η3 is set to the value that corresponds

to the dashed horizontal line in Figure 4.1. This results in a bifurcation diagram from

zone I to zone II. A similar plot can be obtained for the co-evolving species Y . The

solid line stands for the theoretical predictions, which follows the results summarized in

the Tables annexed above. A transition from zone I (one isolated peak) to zone II (two

symmetric peaks) is predicted to occur at η6 ≃ 2.5. The symbols in Figure 4.1 refer to

the position of the power spectrum as obtained via direct simulations and confirms the

correctness of the theoretical scenario.

A final comment is mandatory at this point. Fluctuations driven patterns are stochastic
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Figure 4.3: A bifurcation diagram is displayed, which exemplifies the transition from
zone I to zone II. More specifically, the position of the peaks of the power spectrum of
species Z is plotted as a function of the control parameter η6. Here, η3 = 3, a value
that corresponds to the horizontal dashed line in Figure 4.2. The solid line stands for
the theory prediction, while the symbols refer to direct simulations of the stochastic
dynamics. The simulations are averaged over 150 independent realizations. The error
in the location of the peak is assumed as twice the spacing of the imposed wavelength

mesh.

in nature: as such they are not stationary, unlike their deterministic analogue. Stochas-

tic patterns continuously decay, while they are recreated by the effect of the noise [65].

In general, the noisy nature of the patterns makes them hard to detect by visual inspec-

tion. The emergence of a length scale become often clear only via a Fourier analysis.

This is for instance the conclusion reached in [66] where stochastic simulations for the

Schnakenberg kinetics [67] are carried out just outside the (deterministic) region of Tur-

ing order. On the other hand, patterns can possibly become more distinct depending on

the simulated model, the dimensionality of the system (1D vs. 2D ) and the structure

(lattice vs. network) of the embedding space. For the Levin-Segel model [68] studied

in two dimension [17], stochastic patterns are quite visible at the naked eye. Similarly,

robust and rather distinct patterns are found when a stochastic reaction model of the

Brusselator type [69] is defined on a network topology (see the following Chapter 5

and ref. [19]). Also, quasi–waves patterns found in [56] for a modified version of the

Brusselator model with long range couplings, stand out rather clearly from one single

realization of the stochastic dynamics. The search for the necessary ingredients that

make stochastic pattern accessible at visual inspection, remains however an important

and still open question that deserves to be further addressed. As concerns the model

here investigated, striped patterns are seen when plotting the density in the space-time
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(a) (b)

(c) (d)

Figure 4.4: In panel (a), the time evolution of the mean field concentration of species
Y is plotted. Initially, a random perturbation is imposed on the homogeneous fixed
point. Fluctuations are rapidly washed out and the system converges to the stable
homogenous solution. In panel (b), the result of a stochastic simulation is displayed.
The number of stochastic iterations is set so to span the same time window of the
deterministic solution depicted in panel (a). Striped horizontal patterns develop, sig-
naling a degree of spatial order which is instead lacking in the corresponding mean-field
picture. As explained in the main text, stochastic patterns decay, while being recreated
at different locations. The stripes looks therefore noisy, although still detectable by
eye inspection. Calculating the power spectrum of the individual stochastic realization
reported in panel (b) makes it possible to quantify the dominant spatial wavelength,
which appears to be consistent with that predicted by the theory. Here V = 10000 and
Ω = 200. The choice of V has been roughly optimized so to reach the following com-
promise. V is taken sufficiently large so to mitigate the disruptive effect of noise. On
the other hand, it is still moderately small for the finite size corrections to eventually
matter. In panel (c) and (d) the same comparison is drawn for a different realization

of the initial perturbation and for a distinct stochastic simulation.

plane. The stripes are noisy and intermittent but clearly detectable for an optimal choice

of the system size V , see Figure 4.4(b). Notice that the initial fluctuations are instead

quickly damped when operating under the mean field approximation. The deteminis-

tic system converges in fact to the deputed homogeneous solution, as demonstrated in

Figure 4.4(b).
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4.6 Conclusion

Reaction-diffusion models are deterministic in nature. They omit the stochastic con-

tributions that need to be included when dealing with finite populations and, in this

respect, represent an idealized approach to the modeling of the inspected phenomena.

The classical, deterministic theory for the Turing instability requires that at least two

species diffuse in a domain in which they are confined: the diffusion potentially leads

to an instability in following a perturbation of a stable equilibrium of the homogeneous

system. Conversely, if just one species is allowed to diffuse the Turing instability is

always precluded, when the system is defined on a continuum support (see discussion

in the first chapter). Working on a discrete lattice, Turing patterns can in principle

develop, but just for a trivial choice of the most unstable wave number and limited to

models that assume the non diffusing species to operate as a self-activator.

Beyond the deterministic viewpoint, the concept of stochastic Turing instability has

been introduced in the literature [17, 18]: discrete systems, made of a large though finite

number of constitutive entities (or equivalently bound to occupy a finite domain with a

given carrying capacity), can generate stochastic order on a macroscopic scale, as follows

a resonant mechanism which self-consistently amplifies the intrinsic demographic noise.

Building on these ideas, we have considered here a general stochastic reaction-diffusion

model, with just one diffusing species, and showed that spatial modes can spontaneously

amplify also when the non mobile species has a self-inhibitory capability, i.e. a condition

for which deterministic patterns are a priori excluded. General analytical conditions

for the existence of the stochastically driven patterns are given. The predictions are

tested numerically working with a simplified model that falls in the general class of

systems for which the theory has been developed. The quantitative agreement observed

between theory and simulations points to the validity of our analysis, which, we believe,

could open up novel perspectives to tackle the problem of pattern formation beyond the

classical deterministic picture.





Chapter 5

Stochastic patterns on a network

5.1 Introduction

As already remarked, the vast majority of studies devoted to investigating the emergence

of Turing patterns use deterministic partial differential equations to model the reactions

and diffusion of the constituents, which are hence characterized by continuous spatial

distributions. In the first chapter, we discussed the extension of the Turing paradigm to

systems defined on complex networks [11]. This is an important step forward [70], which

could eventually shed novel light onto the mechanisms that drive self-organization on

networks [71–73].

As discussed in the preceding chapter, Turing patterns have also been observed and

analyzed in models with a finite number of constituents. In this case reaction-diffusion

processes are amenable to individual-based models, which take into account the intrinsic

discreteness of the system. Stochastic effects are therefore present, and ultimately stem

from the finite size of the interacting populations.

At first sight it might appear surprising that stochastic effects are important in reaction-

diffusion systems, which after all consist of a large number of constituents. However,

the fluctuations due to the discreteness of these constituents can amplify through reso-

nant effects and so yield macroscopically ordered patterns, both in time [74, 75] and in

space [17, 18, 76]. Stochastic Turing patterns [18] (also termed quasi-Turing patterns

[17]) can appear in a region of the parameter space for which the homogeneous fixed

point is predicted to be stable from a deterministic linear stability analysis. Similarly,

stochastic waves [56] have been observed in reaction-diffusion models defined on a reg-

ular lattice. Importantly, the effect of fluctuations arising from this discreteness of the

populations of elementary constituents can not only be seen in numerical simulations,

73



Chapter 5. Stochastic patterns on a network 74

but also analytically understood by expanding the governing master equation within

the so-called Linear Noise Approximation (LNA) scheme, as we already discussed in

Chapter 4.

In this chapter we report analytical progress by carrying out the LNA for systems in

which the population is distributed over a set of nodes, which are connected to each

other in some way. Each node hosts a large number of individuals, so this is a metapop-

ulation model [77] — a collection of populations allowing some exchange between them.

Examples are: in ecology, where individuals reside on patches and may migrate to other

patches that are nearby [77]; in island models of evolutionary theory, where individuals

carrying certain alleles may migrate to other islands [78]; in epidemiology, where the

nodes are cities connected by commuters who carry disease [79] and in reaction kinetics,

where the nodes are compartments in which chemical reactions take place [80]. Our aim

is to formally extend the analysis of stochastic driven patterns to the relevant setting

where the system is defined on a complex network.

More specifically, in the first part of the chapter, we shall consider a stochastic version

of the Zhabotinsky model [24], introduced into a static scale-free network. This latter

is created via the preferential attachment probability rule [7], as described in Chapter

1. The power spectrum of fluctuations is analytically calculated by developing and

systematizing the LNA technique to network-based applications. A localized peak for

the power spectrum signals the presence of stochastic travelling waves, a prediction that

we confirm with stochastic simulations [64]. The power spectrum is calculated from a

generalized Fourier transform, the standard plane waves found in a spatial context being

replaced by the eigenvectors of the discrete Laplacian operator defined on the network.

To benchmark theory and simulations, we have therefore implemented and tested a

numerical routine which handles the generalized Fourier analysis. This is a diagnostic

tool that could prove useful beyond the specific case study, by guiding the unbiased

search for structured patterns on a network topology [81]. In the second part of the

chapter we will turn to consider the Brusselator model modified with the inclusion of a

non linear transport terms. The stochastic effects are in this case responsable for the

emergence of stationary non homogeneous patterns, reminiscent of the Turing instability.

The chapter is organized as follows. In the next section we will introduce the Zhabotinsky

model and discuss the basic steps of the LNA analysis on a graph. The linear stability

analysis for the model in its deterministic limit is carried out and numerical simulations

are performed to show that the deterministic wave manifests itself as a localized peak

in the power spectrum, as obtained from the generalized Fourier transform. Then, we

derive the power spectrum of fluctuations which points to the existence of travelling

waves, seeded by inherent stochasticity, outside the region of deterministic instability.
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Stochastic simulations confirm the validity of the theory. In Section 5.3, we consider a

modified stochastic Brusselator model which yields stochastic Turing-like patterns. In

the final Section we sum up and conclude.

5.2 Stochastic travelling waves case

5.2.1 Model definition and the linear noise approximation (LNA)

The reaction scheme that we will investigate was introduced by Zhabotinsky et al. to

study travelling waves arising from destabilization of a homogeneous state [24]. The

scheme involves molecules of three chemical species: X, Y and Z — that we will also

respectively call the first, second and third species. The molecules are placed on the

nodes of a network composed of Ω nodes, each of which has a finite volume V . We label

a molecule of species X located on the i-th node with Xi; Yi and Zi are similarly defined.

The number of molecules of type Xi, Yi and Zi are denoted by xi, yi and zi, respectively.

The Ω-dimensional vectors: x = (x1, ..., xΩ), y = (y1, ..., yΩ) and z = (z1, ..., zΩ), specify

the state of the system. Within each node, the molecules interact through the following

reaction scheme:

Xi + 2Yi
c1−−−→ 2Yi,

Xi + 2Yi
c2−−−→ Xi + 3Yi,

2Zi
c3−−−→ Xi + 2Zi,

Yi
c4−−−→ ∅, (5.1)

Xi
c5−−−→ Xi + Zi,

Zi
c6−−−→ ∅,

Xi
c7−−−→ ∅,

∅
c8−−−→ Yi.

The reaction rates are denoted by c1, c2, ..., c8. As explained in [24] they are all constant

except c7 that is given by c7 = c′7/
(

g + xi
V

)

, with g = 10−4.

The structure of the network is described by the Ω × Ω adjacency matrix, W . This

is a symmetric matrix whose elements, Wij , is equal to one if node i is connected to

node j, and zero otherwise. The molecules can migrate between two connected nodes

as specified by the diffusion reactions:

Xi
d1−−−−→ Xj , Yi

d2−−−−→ Yj , Zi
d3−−−−→ Zj . (5.2)
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The constants d1, d2 and d3 are the diffusion coefficients.

The construction of a stochastic model proceeds by assigning a transition rate T(x′,y′, z′|x,y, z)
to each reaction. They indicate the probability per unit of time to transit from state

(x,y, z) to state (x′,y′, z′). To lighten the notation, we only write the components of

the vectors which refer to molecules that take part in a reaction in the transition rates.

Invoking mass action, the transition rates associated with reactions (5.1) read [58]:

T1(xi − 1|xi) = c1
xi
V

y2i
V 2

,

T2(yi + 1|yi) = c2
xi
V

y2i
V 2

,

T3(xi + 1|xi) = c3
z2i
V 2

,

T4(yi − 1|yi) = c4
yi
V
,

T5(zi + 1|zi) = c5
xi
V
,

T6(zi − 1|zi) = c6
zi
V
,

T7(xi − 1|xi) = c7
xi
V
,

T8(yi + 1|yi) = c8.

(5.3)

In a similar way the transition rates for the diffusion reactions (5.2) are given by:

T9(xi − 1, xj + 1|xi, xj) = d1
xi
V
,

T10(yi − 1, yj + 1|yi, yj) = d2
yi
V
, (5.4)

T11(zi − 1, zj + 1|zi, zj) = d3
zi
V
.

As the dynamics is Markovian, the probability density function (PDF) that the system

is in state (x,y, z) at time t, P(x,y, z, t), satisfies the master equation:

∂

∂t
P(x,y, z, t) =

∑

(x′,y′,z′ 6=x,y,z)

[T(x,y, z|x′,y′, z′)P(x′,y′, z′, t)− T(x′,y′, z′|x,y, z)P(x,y, z, t)].

(5.5)

This is the fundamental equation that governs the dynamics of the system.

The LNA can be applied by carrying out the van Kampen expansion for the master equa-

tion [58]. As previously shown this method is used to approximate the master equation

(5.5) by a deterministic system of ordinary differential equations — that describes the

macroscopic evolution of the concentrations — together with a linear Fokker–Planck

equation which characterizes the fluctuations around the macroscopic solution. This

begins with changing variables from (xi, yi, zi) to (ξ1,i, ξ2,i, ξ3,i), where i = 1, . . . ,Ω:

xi
V

= φi +
ξ1,i√
V
,

yi
V

= ψi +
ξ2,i√
V
,

zi
V

= ηi +
ξ3,i√
V
.

(5.6)

The functions φi(t), ψi(t) and ηi(t) describe the concentrations of each chemical species

in the deterministic limit, that is, obtained by letting V → ∞. In this limit the system
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is not subject to fluctuations. In the following the indexes i and j refer to the nodes

of the network and range from 1 to Ω. The indexes r and s label the chemical species

and range from one to three. Finally, the Ω-dimensional vectors, such as x, y and z, are

displayed in bold.

Master equations, such as (5.5), can be rewritten by making use of step operators,

ǫ±r,i, which represent the creation/destruction of a molecule of species r at node i. For

instance, for species X, they act on a general function f (x,y, z) by

ǫ±1,if (..., xi, ...,y, z) = f (..., xi ± 1, ...,y, z) . (5.7)

The master equation (5.5) then reads:

∂

∂t
P(x,y, z, t) =

Ω
∑

i=1

[

(ǫ+1,i − 1)T1(xi − 1|xi) + (ǫ−2,i − 1)T2(yi + 1|yi) + (ǫ−1,i − 1)T3(xi + 1|xi) +

(ǫ+2,i − 1)T4(yi − 1|yi) + (ǫ−3,i − 1)T5(zi + 1|zi) + (ǫ+3,i − 1)T6(zi − 1|zi) + (ǫ+1,i − 1)T7(xi − 1|xi) +

(ǫ−2,i − 1)T8(yi + 1|yi) +
Ω
∑

j=1

Wij

[

(ǫ+1,iǫ
−
1,j − 1)T9(xi − 1, xj + 1|xi, xj) + (ǫ+2,i

ǫ−2,j − 1)T10(yi − 1, yj + 1|yi, yj) + (ǫ+3,iǫ
−
3,j − 1)T11(zi − 1, zj + 1|zi, zj)

]

]

P(x,y, z, t). (5.8)

We now apply the change of variable (5.6). In the new variables, the step operators

admit an expansion in powers of V −1 [58]. The LNA corresponds to the truncation of

the expansion at second order, namely:

ǫ±r,i ≈ 1± 1√
V
∂ξr,i +

1

2V
∂2ξr,i . (5.9)

The left-hand side of Eq. (5.5) can be expressed in terms of the PDF of the new variables,

Π(ξ1, ξ2, ξ3, t) = P (x (φ(t), ξ1) ,y (ψ(t), ξ2) , z (η(t), ξ3) , t). This implies that

∂P

∂t
= ∂tΠ−

√
V
(

∇ξ1
Π · ∂tφ+∇ξ2

Π · ∂tψ +∇ξ3
Π · ∂tη

)

. (5.10)

In the above equation there are terms which are either O(1) or O(
√
V ). By contrast,

the right-hand side of Eq. (5.8) contains O(V −1/2) and O(V −1) terms. They can be

balanced by rescaling time by τ = t/V . Collecting together the terms of the same order

and setting their sum at each order to zero gives, at the leading order, the deterministic
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system (5.11):

φ̇i = −c1φiψ2
i + c3η

2
i − c′7

φi
g + φi

+ d1

Ω
∑

j=1

∆ijφj ,

ψ̇i = c2φiψ
2
i − c4ψi + c8 + d2

Ω
∑

j=1

∆ijψj , (5.11)

η̇i = c5φi − c6ηi + d3

Ω
∑

j=1

∆ijηj .

Hereafter, a dot above a symbol indicates the time derivative taken with respect to the

rescaled time, τ = t/V . The symbol ∆ij denotes the Laplacian operator:

∆ij =Wij − kiδij , (5.12)

where ki is the connectivity of node i, ki =
∑Ω

j=1Wij . This form of the Laplacian

operator [82] reflects our specific choice for the microscopic reaction rates (5.4). As pre-

viously discussed (see Chapter 1), other choices are possible which would yield modified

Laplacians [83]. Working in the context of the proposed formulation, ∆ij is symmetric,

a feature of which we shall take advantage of when performing the generalized Fourier

analysis described below.

For finite volume V , the system is subject to intrinsic noise; these fluctuations perturb

the solutions of the deterministic model (5.11), which describes the dynamics of the

model in the limit V → ∞. Within the LNA, the fluctuations are Gaussian and given by

a linear Fokker-Planck equation. Before turning to discuss the role played by stochastic

fluctuations, we will start by focusing on the deterministic scenario. We will in particular

derive the conditions under which self-organized patterns of the wave type emerge. The

next subsection is devoted to this issue.

5.2.2 Pattern formation in the deterministic limit

The analysis of pattern formation for system (5.11) defined on a regular lattice in the

continuum limit has been already carried out in [24]. Here, we review some of the

results of [24], before moving on to discuss how the network affects the pattern formation.

Throughout our analysis we have used a scale-free network generated with the Barabási-

Albert preferential attachment algorithm [7], with Ω nodes and mean degree 〈k〉.

We first establish contact with the notation adopted in [24] by making the following

choices: c1 = c3 = m, c′7 = am, c2 = c4 = n, c8 = b n and c5 = c6 = 1. As in [24], we fix
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some of the parameters: a = 0.9, b = 0.2 and d1 = d2 = 0. We also set d3 = 0.8. The

parameters (m,n) can be freely adjusted and select different dynamical regimes.

The system of differential equations (5.11) admits three fixed points [24]. One of these

corresponds to the extinction of both X and Z species and is always stable. Another

one is a saddle. The last one is non-trivial, and its stability depends on the values of

(m,n). It is around this point in the two-dimensional plane defined by m and n that

the pattern formation is investigated. The concentrations (φ∗, ψ∗, η∗) at the fixed point

are independent of (m,n) and can be numerically determined.

Patterns arise when (φ∗, ψ∗, η∗) becomes unstable with respect to inhomogeneous per-

turbations [3]. To look for instabilities, we introduce small deviations from the fixed

point, (δφi, δψi, δηi), and linearise system (5.11) around it:









δφ̇i

δψ̇i

δη̇i









=
Ω
∑

j=1

(

M∗(NS)δij +M∗(SP )∆ij

)

·









δφj

δψj

δηj









. (5.13)

The explicit expressions for the matrices M∗(NS) and M∗(SP ) are given below (the label

NS stands for “non-spatial” and SP for “spatial”).

M∗(NS)
11 = −c1ψ∗2 − gc′7

(g + φ∗)2
,

M∗(NS)
12 = −2c1φ

∗ψ∗,

M∗(NS)
13 = 2c3η

∗,

M∗(NS)
21 = c2ψ

∗2,

M∗(NS)
22 = 2c2φ

∗ψ∗ − c4,

M∗(NS)
23 = M(NS)

32 = 0,

M∗(NS)
31 = c5,

M∗(NS)
33 = −c6,

M∗(SP )
rs = drδrs.

(5.14)

For a regular lattice, the Fourier transform is usually employed to solve the above linear

equations. This analysis needs to be adapted in the case of a system defined on a network.

To this end we follow the approach of [11, 19] and start by defining the eigenvalues and

eigenvectors of the matrix ∆:

Ω
∑

j=1

∆ijv
(α)
j = Λ(α)v

(α)
i , α = 1, . . . ,Ω. (5.15)

Since the Laplacian is symmetric, the eigenvalues Λ(α) are real and the eigenvectors v(α)

form an orthonormal basis. It can actually be proven that for a case of a Barabási-

Albert network the Λ(α) are negative and non-degenerate [11, 19]. We can now define a

transform based on the eigenvectors v(α) which takes the role that the Fourier transform

took on for a regular lattice. This leads to the following transforms which will be used
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throughout the remainder of the paper:

fj(τ) =
1

2π

∫ ∞

−∞
dλ

Ω
∑

α=1

f̃α(λ)v
(α)
j eλτ ,

f̃α(λ) =

∫ ∞

0
dτ

Ω
∑

j=1

fj(τ)v
(α)
j e−λτ , (5.16)

where λ ∈ C and fj(τ) is any function of the nodes and of time. This is a standard

Fourier transform in time, but with the spatial modes replaced by the eigenvectors of

the network Laplacian. If the network is a regular lattice, the transform (5.16) reduces

to a classic Fourier transform for discrete space. From now on the index α is used to

label the variable conjugate to the nodes. Using this definition and setting λ = −iω,

one can define the power spectrum as P (ω,Λ(α)) = |f̃α(ω)|2.

Applying the transform (5.16) to Eq. (5.13) yields the following linear equation:

λ









δφα

δψα

δηα









=
(

M∗(NS) +M∗(SP )Λ(α)
)

·









δφα

δψα

δηα









, (5.17)

that is now decoupled in the nodes and in time and thus readily solvable. The matrix

M∗(NS)+M∗(SP )Λ(α) for a given α, is a 3×3 matrix whose eigenvalues characterize the

response of system (5.11) to external perturbations. The eigenvalue with the largest real

part will be denoted by λmax(Λ(α)). If Re[λmax(Λ(α))] > 0 the fixed point is unstable

and the system exhibits a pattern whose spatial properties are encoded by Λ(α). This

is the analog of the wavelength for a spatial pattern in a a system defined on a regular

lattice; it is customarily written Λ(α) ≡ −k2 in this case. When the imaginary part of

the eigenvalue, Im[λmax(Λ(α))], is different from zero, the pattern oscillates in time [3]. A

system unstable for Λ(α) 6= 0 and Im[λmax(Λ(α))] 6= 0 is said to undergo a wave-instability

(see Chapter 1) and the emerging patterns consist of travelling waves.

In Fig. 5.1, left panel, the domain of instability is shown as a shaded region in the plane

(m,n). The fixed point (φ∗, ψ∗, η∗) is stable for fixed n when m > mc. At m = mc a

wave instability sets it and travelling waves are found to occur for m < mc. The real and

imaginary parts of the eigenvalues λmax are depicted in the right panel, as a function

of −Λ(α), for two choices of the parameters (m,n), for which the system is respectively

stable and unstable. The circles in the left panel of Fig. 5.1 indicate these two choices.

Since the system is defined on a network, the emerging patterns present two main dif-

ferences as compared to those obtained for the case of conventional reaction-diffusion
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Figure 5.1: (a) The shaded region (left) delineates the wave instability domain in
the (m,n) plane for the Zhabotinsky model with a = 0.9, b = 0.2, d1 = d2 = 0 and
d3 = 0.8. The blue circle falls inside of the region of wave instability and is at the point
(28.5, 15.5). The red circle is outside the ordered region and is at the point (29.4, 15.5).
(b) Real and imaginary parts (right) of λmax are plotted as a function of both the
discrete modes −Λ(α) of the network Laplacian (symbols) and their spatial analogs
−k2 (solid line). The parameters used are (m,n) = (28.5, 15.5), (blue, upper curves)
and (m,n) = (29.4, 15.5), (red, lower curves) and correspond respectively to the two
points identified in panel (a). The scale-free network employed in this analysis has
50 nodes with a mean degree 〈k〉 = 10. The fixed point of the system is found to be

(φ∗ ≈ 1.1308, ψ∗ ≈ 0.5787, η∗ ≈ 1.1308).

models defined on the continuum. First, only some of the wavelengths, Λ(α), are al-

lowed. This is due to the fact that the solutions of Eq. (5.15) form a discrete set; such a

feature also occurs for systems defined on periodic lattices. In this latter case however,

the wavelengths are equally spaced and proportional to the lattice spacing. By contrast,

for systems defined on a complex network, there is no clear periodic structure and the

wavelengths are clustered or irregularly distributed, as displayed in panel (b) of Fig. 5.1.

The second unusual trait has to do with the shape of the patterns. In a reaction-diffusion

system defined on a regular lattice, each point of of the lattice has a concentration which

assumes a value significantly different from that characterising the homogeneous fixed

point. However, for a network, only a fraction of nodes have concentrations which are

significantly different from that of the homogeneous fixed point. The fraction that are

differentiated in this way depends on the connectivity of the nodes and on the ratio

of the diffusion coefficients [11]. This feature cannot be simply understood from linear

stability analysis, as it relates to the localization of the Laplacian eigenvectors in large

networks, a property that has been recently investigated in this context in [84].

In Fig. 5.2 the power spectrum of the concentration φi(τ) is plotted for a choice of

the parameters that correspond to the leftmost circle (blue) in Fig. 5.1(a). A peak is

displayed for (ω,Λ(α)) ≃ (10,−5), in complete agreement with the predictions of the

linear stability analysis. Similar results are obtained for the other concentrations ψi(τ)

and ηi(τ). Thus, the generalized Fourier algorithm based on Eqs.(5.16) can be effectively

employed to resolve complex patterns that develop on networks. This is a valuable tool
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which, we believe, could prove useful for the many applications where the dynamics on

a network is well known to be central, from neuroscience to epidemics.
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Figure 5.2: Upper panel: power spectrum of the concentration φi(t), for a choice
of the parameters that correponds to the unstable configuration of figure 5.1(a) (blue
circle). The power spectrum is constructed from the generalized Fourier transform
(5.16), using as an input the numerical solution of the deterministic equations (5.11).
A peak is seen for (ω,Λ(α)) ≃ (10,−5), confirming the validity of the linear stability
analysis and revealing the presence of a travelling wave in the time series. Lower panel:
a two-dimensional projection of the power spectrum is displayed. Recall that the power

spectrum is defined over a discrete, non-uniform support in Λ(α).

The next subsection is entirely dedicated to the study of stochastic patterns, aiming

at generalizing the deterministic picture of Fig. 5.1. By applying the LNA, we will

demonstrate that stochastic waves exist in a region of the parameter space for which

the deterministic analysis predicts a stable homogeneous fixed point. The presence of

stochastically driven patterns will be revealed by an analytical calculation of the power
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spectra of fluctuations. The theoretical predictions will then be validated by recon-

structing the power spectrum from the stochastic time series. Properties of the patterns

that in the deterministic picture depend on the eigenvectors, such as localization, will

not be addressed in the present work.

5.2.3 Power spectra of fluctuations and stochastic patterns

While in the deterministic limit a study of the eigenvalues reveals the range of parameter

values for which patterns are expected to occur, this prediction is not conclusive for

systems that are subject to noise. Simulations of the master equation have shown

that patterns arise even for parameter values for which the underlying fixed point is

stable, provided that the system is sufficiently close to an instability. The corresponding

patterns have been called stochastic patterns [18] or quasi-patterns [17]. The LNA allows

one to gain analytical insight into the mechanism that yields such patterns [17, 18, 59,

60]. The method has been extended in [19] to the case of a reaction-diffusion system on

a network. Here we shall develop the method further and provide the first evidence for

the spontaneous emergence of stochastic waves (or quasi-waves) on a network.

The role of fluctuations can be quantified by use of the van Kampen system-size expan-

sion, which is equivalent to assuming the LNA. The quantity 1/
√
V acts as the small

parameter in the perturbative expansion: at the leading order, the macroscopic deter-

ministic equations (5.11) are recovered. At the next-to-leading order one obtains the

Fokker-Planck equation (5.18) for the distribution of stochastic fluctuations:

∂τΠ =

Ω
∑

i=1



−
3
∑

r=1

∂ξr,i (Mr,iΠ) +
1

2

3
∑

r,s=1

Ω
∑

j=1

∂ξs,i∂ξr,j (Brs,ijΠ)



 . (5.18)

Equation (5.18) is linear as the matrices M and B do not depend on ξr, with r = 1, 2, 3.

However, they do depend on the trajectory φ(τ), ψ(τ), η(τ) that should be chosen

beforehand among the solutions of (5.11).

The form of the matrices M and B follow from the expansion of the transition rates

(5.3) and (5.4). For illustrative purposes, here we shall discuss only the first of the

transition rates (5.4), T9, explicitly. The contribution to matrix B associated with this

term, labeled B(9), is found to be

B(9)
rs,ij = d1δrs,11 (2kiφi −Wij (φi + φj)) . (5.19)

Clearly, the only non-zero entry is for r = s = 1, since the rate T9 involves only

the X species. The other diffusion rates, T10 and T11, yield similar contributions for
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respectively r = s = 2 and r = s = 3, with diffusion coefficients and concentrations

corresponding to the diffusing species. The contributions arising from the transition

rates for the reactions (5.3) follow in a similar fashion.

In most applications, the main point of interest is to study the fluctuations around a fixed

point. This is certainly our case, as we aim to characterize the pattern that originates

from a small perturbation of the fixed point (φ∗, ψ∗, η∗). We therefore substitute φi(τ) =

φ∗, ψi(τ) = ψ∗ and ηi(τ) = η∗ and label by M∗ and B∗ the matrices evaluated at the

fixed point.

From the form of the reaction rates it is clear that the following decompositions hold [19]:

M∗
sr,ij = M∗(NS)

sr δij +M∗(SP )
sr ∆ij ,

B∗
sr,ij = B∗(NS)

sr δij + B∗(SP )
sr ∆ij . (5.20)

The non-spatial part (NS) refers to the transition rates (5.3), whereas the spatial con-

tribution (SP) refers to the transition rates (5.4). Note that the matrix M∗ above is

exactly the same used in eq. (5.13).

We end by giving the elements of the matrix B∗.

B∗(NS)
11 = c1φ

∗ψ∗2 + c3η
∗2 + c′7

φ∗

g + φ∗
,

B∗(NS)
22 = c8 + c2φ

∗ψ∗2 + c4ψ
∗,

B∗(NS)
33 = c5φ

∗ + c6η
∗,

B∗(NS)
rs = 0, with r 6= s,

B∗(SP )
11 = −2d1φ

∗,

B∗(SP )
22 = −2d2ψ

∗,

B∗(SP )
33 = −2d3η

∗,

B∗(SP )
rs = 0, with r 6= s.

(5.21)

To quantify the impact of the stochastic components of the dynamics, the power spec-

trum of fluctuations is utilized. It is defined as:

Pr(ω,Λ
(α)) = 〈ξ̃cr,α(ω)ξ̃r,α(ω)〉 = 〈|ξ̃r,α(ω)|2〉, (5.22)

where ξ̃cr,α(ω) is the complex conjugate of ξ̃r,α(ω), which is given by transforming ξr,i(τ)

via the generalized transform (5.16). The average 〈·〉 is performed over many real-

izations of the stochastic dynamics. The Fokker-Planck equation (5.18), with the the

matrices evaluated at the fixed point, describes fluctuations about the fixed point, and

is equivalent to the Langevin equation [58]:

dξr,i
dτ

=

3
∑

s=1

Ω
∑

j=1

M∗
rs,ijξs,j + χr,i (5.23)

=
3
∑

s=1

Ω
∑

j=1

(

M∗(NS)
rs δij +M∗(SP )

rs ∆ij

)

ξs,j + χr,i.
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The Gaussian white noises χr,i have zero mean and correlator:

〈χr,i(τ)χs,j(τ ′)〉 = Brs,ijδ(τ − τ ′). (5.24)

Equation (5.23) generalises (5.13) to include stochastic fluctuations. In solving Eq. (5.23),

we again make use of the transforms (5.16) with λ = −iω. We express the ξr,i and the

associated noise in terms of their transformed analogs. Collecting each term, except the

noise, to the left-hand side of the equation yields:

(

−iωI −M∗(NS) −M∗(SP )Λ(α)
)

·









ξ̃1,α

ξ̃2,α

ξ̃3,α









=









χ̃1,α

χ̃2,α

χ̃3,α









, (5.25)

where I is the 3×3 identity matrix. By introducing F (α) = −iωI−M∗(NS)−M∗(SP )Λ(α)

the solution of Eq. (5.25) may be written as:

ξ̃r,α =
3
∑

s=1

F−1
rs χ̃s,α, (5.26)

where we have omitted the α index on F for clarity. We now insert Eq. (5.26) into

Eq. (5.22) to obtain an expression for the power spectra:

Pr(ω,Λ
(α)) =

3
∑

s,l=1

F−1
rl 〈χ̃l,αχ̃cs,α〉F−1†

sr . (5.27)

The symbol † signifies the adjoint operator, here equivalent to the conjugate transpose

operator. We now need to express 〈χ̃l,αχ̃cs,α〉 in terms of known quantities. We begin by

transforming Eq. (5.24) using the inverse transform (5.16), which leads to

〈χ̃l,αχ̃cs,α〉 = 2π
Ω
∑

i,j=1

v
(α)
i v

(α)
j B∗

ls,ij . (5.28)

The dependence on the Laplacian eigenvectors can be eliminated using the fact that

they are orthonormal and complete:

Ω
∑

i=1

v
(α)
i v

(α′)
i = δαα′ ,

Ω
∑

α=1

v
(α)
i v

(α)
j = δij . (5.29)

To do so, we substitute the decomposition (5.20) into Eq. (5.28), then use the above

properties to arrive at:

〈χ̃l,αχ̃cs,α〉 = 2π
(

B∗(NS)
ls + B∗(SP )

ls Λ(α)
)

. (5.30)
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The right-hand side of Eq. (5.30) is known through expressions (5.21), and so 〈χ̃l,αχ̃cs,α〉
can be found. By substituting Eq. (5.28) into Eq. (5.27) we arrive at the final formula

for the power spectra:

Pr(ω,Λ
(α)) =

3
∑

s,l=1

F−1
rl

(

B∗(NS)
ls + B∗(SP )

ls Λ(α)
)

F−1†
sr

=
(

F−1
(

B∗(NS) + B∗(SP )Λ(α)
)

F−1†
)

rr
.

(5.31)

Figure 5.3: Upper panel: analytical power spectrum of the fluctuations, plotted as a
function of the continuum frequency ω and the discrete wavelength Λα. The parameters
(m,n) are chosen so as to fall outside the region of deterministic order, i.e. as indicated
by the rightmost circle (red) of Fig. 5.1(a). The other parameters are set to the values
specified in the caption of Fig. 5.1. Lower panel: a two-dimensional projection of the

power spectrum is displayed.
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Once the parameters of the model have been assigned, it is therefore possible to calculate

the power spectrum of fluctuations and look for signatures of emerging self-organized

structures. In Fig. 5.3 the analytical power spectrum for species X is plotted for a

choice of parameters that corresponds to the rightmost circle in Fig. 5.1 (a), namely

outside the region for which the deterministic waves occur. As can be seen, the power

spectrum of fluctuations is characterized by a localized peak for (ωM ,Λ
(α)
M ). Therefore,

species r = 1 oscillates with an angular frequency ωM and, at the same time, displays

a pattern at wavelength Λ
(α)
M . Stochastic waves, or quasi waves, are hence predicted

to occur, in a region of the parameter plane for which the homogeneous fixed point is

stable, according to the deterministic picture. In other words, stochastic corrections,
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Figure 5.4: Upper panel: numerical power spectrum of the fluctuations obtained by
simulating the stochastic dynamics via the Gillespie algorithm. The power spectum is
calculated by using the generalized Fourier transform (5.16) and by averaging over 40
independent realizations. The parameters are the same as in Fig. 5.3. Here V = 104.

Lower panel: two-dimensional projection of the power spectrum.



Chapter 5. Stochastic patterns on a network 88

stemming from finite size, and, as such, endogenous to the system under scrutiny, can

eventually produce macroscopically ordered structures.

To test the correctness of the theoretical prediction we carried out stochastic simula-

tions of the processes (5.1) and (5.2) using the Gillespie algorithm [64] described in the

Appendix A. The numerical power spectrum is reconstructed by applying the gener-

alized transform (5.16) to the time series, and averaging over independent realizations

of the stochastic dynamics. The result is shown in Fig. 5.4 and is seen to agree with

the theoretically-predicted spectrum. The location of the maximum is captured by the

theory, as well as the characteristic shape of the profile. In the remaining part of this

chapter we will apply a similar analysis to a modified version of the classical Brusselator

model.

5.3 Stochastic Turing-like patterns

In this section, we will consider a stochastic version of the Brusselator model [4] which

will be placed on top of an heterogeneous network of Ω nodes. More concretely, two

species, respectively Xi and Yi are assigned to the generic node i, and therein react

according to the following chemical reactions [18]:

A+ Ei
a−→ A+Xi

Xi +B
b−→ Yi +B

2Xi + Yi
c−→ 3Xi

Xi
d−→ Ei . (5.32)

The symbol Ei stands for an empty case and formally amounts to imposing a finite

carrying capacity in each node of the network. This complication is introduced as in the

spirit of [85] to model the transport process under crowded conditions. More precisely,

we assume that each node can host a maximum number N of molecules (or agents),

including the vacancies 1. Let us denote by ni and mi the total number of elements

belonging to species X and Y in the node i. The corresponding number of empties total

hence in N −ni−mi. The parameters a, b, c and d in Eqs. (5.32) are the reaction rates,

while the species A and B are enzymatic activators whose concentrations are supposed

to remain constant during the dynamics. In addition to the above activator-inhibitor

rules, we assume that the molecules can migrate between neighbour nodes as dictated

1For a discussion of the role played by finite carrying capacity we refer to [56, 59, 74, 85]. The
forthcoming analysis can be repeated by relaxing such an assumption, and yielding qualitative equivalent
results.
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by the following reactions:

Xi + Ej
µ−→ Ei +Xj

Yi + Ej
δ−→ Ei + Yj (5.33)

where µ and δ are the diffusion coefficients characteristic of the two species, and the

subscript j denotes the generic node connected to i, via the network structure. Similar

equations governs the diffusion from node j towards node i. This condition, might sound

artifical, but, as we will see latter, it is imposed to obtain a symmetric non linear operator

for the trasport process. To complete the notation we introduce the Ω-dimensional

vectors n = (n1, ..., ni, ..., nΩ) and m = (m1, ...,mi, ...,mΩ) that unequivocally identify

the state of the system. Under the Markov hypothesis, the probability P (n,m, t) of

seeing the system at time t in state (n,m) obeys to the master equation

∂

∂t
P (n,m, t) =

Ω
∑

i=1

{

(ǫ−ni
− 1)T (ni + 1,mi|ni,mi) + (ǫ+ni

− 1)T (ni − 1,mi|ni,mi)

+ (ǫ−ni
ǫ+mi

− 1)T (ni + 1,mi − 1|ni,mi) + (ǫ+ni
ǫ−mi

− 1)T (ni − 1,mi + 1|ni,mi)

+

Ω
∑

j=1

Wi,j

[

(ǫ+ni
ǫ−nj

− 1)T (ni − 1, nj + 1|ni, nj) + (ǫ+nj
ǫ−ni

− 1)T (nj − 1, ni + 1|ni, nj)

+(ǫ+mi
ǫ−mj

−1)T (mi−1,mj+1|mi,mj)+(ǫ+mj
ǫ−mi

−1)T (mj−1,mi+1|mi,mj)
]

}

P (n,m, t)

(5.34)

where use has been made of the step operators ǫ±ni
f(..., ni, ...,m) = f(..., ni ± 1, ...,m)

and ǫ±mi
f(n, ...,mi, ...) = f(n, ...,mi ± 1, ...), f(·, ·) being any generic function of the

state variables. As usual, the Ω×Ω integers Wij represent the entries of the symmetric

adjacency matrix W, which characterizes the topology of the network. Wij is equal to

1 if nodes i and j are connected, and 0 otherwise. The transition rates T (n′,m′|n,m)

link the initial state (n,m) to another state (n′,m′), compatible with the former, and

are given by

T (ni + 1,mi|ni,mi) =
a

Ω

N − ni −mi

N

T (ni − 1,mi|ni,mi) =
d

Ω

ni
N

T (ni + 1,mi − 1|ni,mi) =
c

Ω

n2
imi

N3

T (ni − 1,mi + 1|ni,mi) =
b

Ω

ni
N

T (ni − 1, nj + 1|ni, nj) =
µ

Ω

ni
N

N − nj −mj

N

(

1

ki
+

1

kj

)

T (mi − 1,mj + 1|mi,mj) =
δ

Ω

mi

N

N − nj −mj

N

(

1

ki
+

1

kj

)

.
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where ki is the degree of the i−th node. Note the factor (1/ki + 1/kj) present in the

migration transition rates. In this problem we assume that the transition probability

associated to the migration event scales with the connectivity of the departure node. The

artificial symmetrization which yields the term (1/ki + 1/kj) is obtained if we assume

that the move can be initiated by either the physical particle or the virtual vacancy. For

more details about alternative formulation of the Laplacian operator, the reader should

refer to Appendix A.

To progress in the analysis we again resort to the van Kampen ansatz [58, 86]: ni/N =

φi + ξ1i/
√
N and mi = ψi + ξ2i/

√
N . φi and ψi are the mean-field concentrations

respectively associated to the interacting species X and Y . ξ1i and ξ2i are stochastic

fluctuations that originate from finite size corrections, normalized by the scaling factor

1/
√
N , as dictated by the central limit theorem [58]. Notice that in this case N is a

conserved (large) quantity and can be employed in the definition of the perturbative

parameter. In practice 1/
√
N replace 1/

√
V in the analysis carried out in the preceding

section. For moderately large system sizes N , the 1/
√
N factor is small and paves the

way to the van Kampen system size expansion. At the leading order of the perturbative

analysis, the mean-field equations for the deterministic variables are recovered and, for

the specific problem here investigated, read:

d

dτ
φi = f(φi, ψi) + 2µ





Ω
∑

j=1

∆ijφj + φi

Ω
∑

j=1

∆ijψj − ψi

Ω
∑

j=1

∆ijφj





d

dτ
ψi = g(φi, ψi) + 2δ





Ω
∑

j=1

∆ijψj + φi

Ω
∑

j=1

∆ijφj − φi

Ω
∑

j=1

∆ijψj



 (5.35)

where, generalizing the heuristic derivation of [11], we have introduced a new discrete

Laplacian ∆ij = W̃ij− k̃iδij where now k̃i =
∑Ω

j=1 W̃ij and W̃ij = (1/ki+1/kj)Wi,j . The

reaction terms are respectively f = −(b+d)φi+cφ
2
iψi+a(1−φi−ψi) and g = bφi−cφ2iψi.

τ is the rescaled time t/(NΩ). Cross diffusion terms appear in the obtained deterministic

equations, because of the finite carrying capacity, imposed at the level of the single

node [85]. By relaxing such an assumption [56], conventional diffusion operators are

instead recovered as described in the Appendix A. Similarly, the finite carrying capacity

assumption reflects in the reaction contribution a(1 − φi − ψi) that replaces the usual

constant term a in the standard Brusselator equations [18]. Although interesting per

se, this modification does not play any substantial role in the forthcoming development:

equivalent conclusions can be drawn when working in the diluted setting, i.e. away from

jamming or crowding conditions that inspire the physically request for a limited capacity

to be explicitly accommodated on each individual node.
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Figure 5.5: The darkened region (yellow) in panel (a) delineates the Turing instability
domain in the (b, c) plane for the Brusselator model with a = d = 1, µ = 1 and δ = 15.
The (magenta) point belongs to the Turing instability region and corresponds to b = 76
and c = 950. The (blue) diamond falls outside the region of Turing order and is
positioned at (76, 1060). In panel (b) the dispersion relation (5.37) is plotted as a
function of both the discrete eigenvalues of the network Laplacian (symbols) and their
real analogues −k2 (solid line). Circles (magenta) refer to (b, c) = (76, 950), while
diamonds (bue) to (b, c) = (76, 1060). In the analysis we assumed a scale-free network
made of Ω = 200 nodes and mean degree 〈k〉 = 20. The network has been generated

according to the Barabási-Albert algorithm [7].

To look for mean-field Turing instability, one needs to introduce a small perturbation

to the homogeneous equilibrium point (φ∗, ψ∗) = ((a +
√

a2 − 4ab(a+ d)/c)/2/(a +

d), b/c/φ∗) of the deterministic system (5.35) and carry out a linear stability analysis.

In formulae, (φi, ψi) = (φ∗ + δφi, ψ
∗ + δψi). It is straightforward to show that the

perturbations obey to

δφ̇i = fφδφi + fψδψi + µ



(1− ψ∗)
∑

j=1

∆ijδφj +φ∗
∑

j=1

∆ijδψj





δψ̇i = gφδφi + gψδψi + δ



(1− φ∗)
∑

j=1

∆ijδψj + ψ∗
∑

j=1

∆ijδφj



 ,
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Figure 5.6: Simulations of the stochastic chemical model (5.32)-(5.33) outside the
region of Turing order, a = d = 1, b = 76, c = 1060, µ = 1, δ = 15. Here N = 1000.
The late time concentrations per node ni/N (resp. mi/N) are plotted in the upper
panel (resp. lower) panel, as a function of the node index i. The (orange) diamonds are
obtained from one realization of the stochastic Gillespie algorithm [64]. The network is
generated as described in the caption of Fig. 5.5. The stochastic dynamics yields the
emergence of two distinct activator-rich and activator-poor groups, while the determin-
istic dynamics is attracted towards the stable (and trivial) homogeneous fixed point,

dashed (blue) horizontal line.

under the linear approximation. To exploit the linearity of the resulting equations for

the perturbation amounts, we find it convenient to expand δφi and δφi as:

δφi =
Ω
∑

α=1

cαe
λατv

(α)
i δψi =

Ω
∑

α=1

cαβαe
λατv

(α)
i (5.36)

where v(α) = (v
(α)
1 , . . . , v

(α)
Ω ) stand for the eigenvectors of the Laplacian operator corre-

sponding to the eigenvalue Λα
2.

By inserting Eqs. (5.36) into the linearized differential equation for the perturbations

δφi and δψi, one obtains the usual characteristic equation for λα, which can be here cast

2The Laplacian operator ∆i,j is defined by the real and symmetric matrix ∆ij = W̃ij − k̃iδij . So, the
eigenvalues are real and non-positive. The eigenvectors are orthonormalized so to match the condition∑

i
v
(α)
i v

(β)
i = δα,β .
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in the form:

det









fφ + µ (1− ψ∗) Λα − λα fψ + µφ∗Λα

gφ + δψ∗Λα gψ + δ (1− φ∗) Λα − λα









= 0 (5.37)

where fq = ∂f/∂q and gq = ∂g/∂q for q = φ, ψ.

The Turing instability occurs, and the perturbation gets thus amplified, if λα(Λα) is

positive for some value of Λα. In Fig. 5.5(b), the dispersion relation is plotted for

two distinct choices of the parameters (see legend). Symbols refer to the discrete linear

growth rates λα, as function of the corresponding Laplacian eigenvalues Λα. The solid

line represents the homologous dispersion relations, as obtained working within the

continuous representation (Λα → −k2). The upper curve (panel (b) of Fig. 5.5, circles)

signals the presence of an instability. A significant fraction of the discrete rates λα is

in fact positive. Conversely, the other profile (diamonds) is obtained for a choice of

the chemical parameters that yields linear stability. By tuning the parameters, and

evaluating the corresponding dispersion relation, one can eventually single out in a

reference parameter space the region deputed to the instability. This is done in Fig.

5.5(a) working in the plan (b, c): the region of Turing instability, as predicted by the

deterministic analysis, is filled with a uniform colour (yellow). The (blue) diamond falls

outside the region of Turing order and points to the parameters employed in depicting the

stable dispersion curve in panel (b). Similarly, the circle (magenta) refers to the unstable

profile. In this latter case, performing a direct integration of the mean-field equations

(5.35) one observes the spontaneous differentiation in activator-rich and activator-poor

groups, as discussed in [11]. A stochastic simulation can be also carried out, using an ad

hoc implementation of the Gillespie Monte Carlo scheme [64]. Finite size fluctuations

materialize in a modest perturbation (∝ 1/
√
N) of the idealized mean-field dynamics.

Substantially different, is instead the scenario that is eventually recovered when com-

paring the simulations outside the region deputed to Turing instability. Setting the

parameters (b = 76, c = 1076) to the values (b = 76, c = 1060) that correspond to

the diamond (blue) of Fig. 5.5(a), the deterministic simulations always converge to the

homogeneous fixed point, the concentrations of the species being therefore identical on

each node of the network. At variance, a fragmentation into distinct groups is clearly ob-

served in the stochastic simulations. The late time evolution of the stochastic system, as

compared to the corresponding (trivial) deterministic solution, is displayed in Fig. 5.6.

As for the case of continuous media, the endogenous stochastic noise is amplified and

drives the formation of spatially extended, self-organized patterns outside the region of
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classical Turing order. Following [18], we call these self-organized, asymptotically stable

configurations, Stochastic Turing patterns on a network.

To gain analytic insight into the above mechanism, one can return to the van Kampen

perturbative analysis and consider the next to leading approximation. One obtains a

system of Langevin equations [18, 74] for the fluctuations ξsi, s = 1, 2:

dξsi
dτ

=
∑

rj

Msr,ijξrj + ηsi(τ) (5.38)

where ηsi is a Gaussian noise with zero mean and correlator given by 〈ηs,i(τ)ηrj(τ ′)〉 =
Bsr,ijδττ ′ . The explicit form of the matrices M and B is given as below:

M∗(NS)
11 = −a− b− d+ 2cφ∗ψ∗,

M∗(NS)
12 = −a+ cφ∗2,

M∗(NS)
21 = b− 2cφ∗ψ∗,

M∗(NS)
22 = −cφ∗2,

M∗(SP )
11 = 2µ (1− ψ∗) ,

M∗(SP )
12 = 2µφ∗,

M∗(SP )
21 = 2δψ∗,

M∗(SP )
22 = 2δ (1− φ∗) ,

(5.39)

and

B∗(NS)
11 = a (1− φ∗ − ψ∗) + φ∗ (b+ cφ∗ψ∗ + d) ,

B∗(NS)
12 = B∗(NS)

21 = −φ∗ (b+ cφ∗ψ∗) ,

B∗(NS)
22 = φ∗ (b+ cφ∗ψ∗) ,

B∗(SP )
11 = 4µφ∗ (1− φ∗ − ψ∗) ,

B∗(SP )
12 = B∗(NS)

21 = 0,

B∗(SP )
22 = 4δψ∗ (1− φ∗ − ψ∗) .

(5.40)

Employing the transformation (5.16), one can hence find an analytical expression of the

power spectrum of fluctuations of species s = 1, 2, Ps(ω,Λα) = 〈|ξ̃s|2〉, in completely

analogy with what it was done in the previous model.

In Fig. 5.7 the power spectrum of species X, is plotted in the plane ω = 0, as a function

of Λα, for the parameters selection that corresponds to the diamond in Fig. (5.5), i.e.

outside the region of deterministic Turing instability. Symbols are obtained by sampling

the power spectrum over the discrete Laplacian eigenvalues Λα. The solid line stands for

the power spectrum calculated in the continuous limit when the discrete Λα is replaced

with its real counterpart → −k2. A clear peak is displayed 3, a finding that explains in

turn the outcome of the stochastic based simulations reported in Fig. 5.6, proving on a

formal ground that stochastic Turing patterns do exist on a network topology.

3Similar conclusions hold for species Y , the power spectrum.
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Figure 5.7: Power Spectrum of fluctuations for species X as a function of Λα, ω = 0
(symbols). The solid line is the power spectrum calculated for a continuum media, i.e.
when Λα is replaced by −k2, where k denotes the wavenumber of the plane wave mode.
The curve refers to a = d = 1, b = 76, c = 1060, µ = 1, δ = 15, a choice of parameters
that correspond to operate outside the region of Turing instability (diamond in 5.5(a)).

The network is constructed as specified in the caption of Fig. 5.5.

5.4 Conclusions

Pattern formation has been extensively studied in the literature and with reference

to a wide variety of problems. Typically, the concentrations of the species involved are

assumed to obey partial differential equations. The conditions under which an instability

occurs follow from standard linear stability analysis around a stable homogeneous fixed

point. Recently, the emergence of steady state inhomogeneous patterns has been also

studied for deterministic reaction-diffusion models defined on a network, generalizing

the concept of a Turing instability to this important new area of investigation.

Deterministic models represent, however, an idealized approach to the phenomenon

being investigated: they omit stochastic fluctuations that need to be included when

dealing with finite populations of interacting elements. Finite size corrections result in

intrinsic stochastic perturbations which undergo amplification, and, through a resonant

mechanism, eventually yield self-organized patterns.

In this chapter, we have developed the theory of stochastic patterns for reaction-diffusion

systems defined on a network. The analysis is based on a systematic and general ap-

plication of the linear noise approximation scheme. Stochastic travelling waves and

stochastic Turing patterns are predicted to exist, and numerically observed in a region
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of the parameter plane for which the deterministic partial differential equations con-

verge to a stable homogeneous solution. The analysis is carried out for two specific

systems, the stochastic analog of the Zhabotinsky [24] and the Brusselator [4] mod-

els. The techniques discussed are however general, and can be readily adapted to any

reaction-diffusion model defined on a network. To benchmark theory and simulations

we have also developed, and successfully tested, a numerical algorithm that performs

the generalized Fourier transform, employed in the analytical derivation. This trans-

form decomposes the signal along the eigenvectors of the discrete Laplacian operator,

tailoring the analysis to the network under consideration, and so allowing the spectral

properties of the emerging patterns to be fully characterized.



Conclusions

In this thesis we have studied the problem of pattern formation on complex networks,

a topic of paramount importance with applications in different disciplinary contexts.

Starting from a prototypical reaction-diffusion model, two main directions of investiga-

tion have been explored: on the one side, we have examined the system in its deter-

ministic limit, where partial differential equations are assumed to govern the coupled

evolution of the concentrations of the interacting species. Then, in the second part of

the thesis, we have turned to considering a stochastic approach to the scrutinized prob-

lem. Working in this context, finite size effects, stemming from the inherent discreteness

of the populations, are explicitly taken in account. Both in the deterministic and in

the stochastic settings, the species are assumed to populate a complex graph, which

ultimately provide the spatial backbone to the inspected model. Diffusion is allowed

between neighbouring nodes, as designated by the associated adjacency matrix.

According to the deterministic formulation, a small perturbation of a homogeneous fixed

point can spontaneously amplify in a reaction-diffusion system, as follow a symmetry

breaking instability and eventually yield asymptotically stable non homogeneous pat-

terns. These are the Turing patterns. Travelling waves can also developed as follows an

analogous dynamical instability. Recentely, in a seminal paper [11], Nakao and Mikhailov

investigated the effects of the embedding complex graph structure on the Turing insta-

bility in nonlinear diffusive systems, so paving the way for novel discoveries in an area of

widespread interest. Building on their approach, we have here extended the analysis to

account for the rather peculiar setting where the system is hosted on a directed network

[12]. Due to the structure of the network Laplacian, the dispersion relation has both real

and imaginary parts, at variance with the conventional case for a symmetric network.

The homogeneous fixed point of the system can consequently turn unstable due to the

topology of the network, resulting in a new class of instabilities which cannot be induced

on undirected graphs. Results from a linear stability analysis allow the instability region

to be analytically traced. Numerical simulations show that the instability can lead to

travelling waves, or quasi-stationary patterns, depending on the characteristics of the
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underlying graph. The results here presented could impact on the diverse range of disci-

plines where directed networks are found, such as neuroscience, computer networks and

traffic systems.

Another scenario where topolgy matters is that of multi-layered networks, also known

as multiplex networks. Multiplex provide an idealized mathematical setting to elabo-

rate on the degree of mutual interference between networks that partecipte to a shared

dynamical process. Multiplex have been for instance invoked when modeling complex

structure like the brain, internet or even social networks [13–15]. Working in this con-

text, we have shown that the emergence of patterns on a multiplex can be triggered by a

constructive interference between layers [16]. It can be in fact proven that patterns can

emerge for a reaction-diffusion system defined on a multiplex, also when the Turing-like

instability is prevented to occur on each single layer taken separately. In other cases

inter-layer diffusion can have a destructive influence on the process of pattern formation,

so disrupting those regular collective motifs which are instead predicted to self-assemble

in the limit of decoupled layers.

Beyond the deterministic scenario, single individual effects can also impact the process of

pattern formation. Stochastic fluctuations, originating from finite size populations, can

in fact significantly modify the mean-field predictions and seed the emergence of regular

macroscopic patterns, in time and space, outside the region of deterministic instability

[18, 56]. In the last two chapters of the thesis, we have analysed in some details the

dynamics of (stochastic) reaction-diffusion models defined on a complex network [19–21].

To gain insight into the role of fluctuations and eventually work out the conditions for

the emergence of stochastic patterns, we have chosen to operate under the Linear Noise

Approximation (LNA) scheme. Simulations via Gillespie algorithm were performed to

test the analytical results and analyzed via a generalized Fourier transform which is

defined using the eigenvectors of the discrete graph Laplacian. Travelling waves, as well

as stationary patterns, reminiscent of the Turing instability, can develop as mediated by

the discreteness of the stochastic medium. Interestingly, stochastic patterns can also set

in for reaction-diffusion systems where the activator is solely allowed to diffuse. This is

a remarkable observation, that we have here cast on rigorous ground and which marks

a significant difference with the conventional deterministic theory of pattern formation.

In conclusion, in this thesis we aimed at contributing to the multi-faceted studies on

pattern formation. To this end we chose to deal with reaction-diffusion models defined

on complex networks. Interestingly, and as a general remark, the topology of the hosting

support plays an important role which couples non trivially with other purely dynamical

aspects accomodated for within the models. The thesis work was directed so to partially
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resolve this intriguing interplay, following a direction of investigation that will hopefully

finds applications in those fields where the concept of networks often recurs.





Appendix A

A.1 Stochastic processes

In the second part of this thesis we have focused on stochastic processes, systems which

evolve probabilistically in time. Here we review a selection of key concepts that relate

to this important topic.

A.1.1 Basic definitions

Let us start by labelling with X(t) a time-dependent random variable. Assume X(t)

takes values x1, x2, x3, . . . etc., at times t1, t2, t3, . . . and hypothese that a joint probabil-

ity density p(x1, t1;x2, t2;x3, t3; . . . ) exists, which describes completely the system. The

set of all the xi, called samples or realizations of the processes, constitutes the ensemble

of all possible values that the stochastic process X(t) can take. If the trajectory of a

stochastic process xi(t) crosses all the values of the ensemble for long but finite time in-

tervals, than the system is said to be ergodic. Another important property of stochastic

processes is the stationarity. Let first define the n-th moment of the stochastic processes

as:

〈X(t1)X(t2) . . . X(tn)〉 =
∫

S
x1x2, . . . , xnp(x1, t1;x2, t2, . . . , xn, tn)dx1dx2, . . . , dxn

where with S we denote the samples set. The 1-th moment 〈X(t)〉 is therefore the mean

(or expected value) of the distribution at a given time t. A stochastic process is said to

be stationary when all its moments are invariant under any traslation in time, namely:

〈X(t1 + τ)X(t2 + τ) . . . X(tn + τ)〉 = 〈X(t1)X(t2) . . . X(tn)〉, (A.1)

for all t1, t2, . . . , tn and for a general τ . In particular, we have, that 〈X〉 is independent
of time and the autocorrelation function η(t1, t2), defined as η(t1, t2) = 〈X(t1)X(t2)〉,
depends only on |t1 − t2|.
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Before we introduce the class of stochastic processes that we will deal with in this thesis,

let us define the conditional probability P (x2, t2|x1, t1) as the probability of event x2 at

time t2 given that the event x1 has occured at an earlier time t1, (t2 > t1). This latter

quantity satisfies the relation

P (x2, t2|x1, t1) =
P (x1, t1;x2, t2)

P (x1, t1)
. (A.2)

A.1.2 Markov processes

A Markov process has the property that for any set of n succesive times (i.e. t1 < t2 <

· · · < tn) one has

P (xn, tn|x1, t1;x2, t2; . . . xn−1, tn−1) = P (xn, tn|xn−1, tn−1). (A.3)

The conditional probability depends solely on the value xn−1 at time tn−1 and does not

keep track of the preceding instants. For this reason systems whose dynamics can be

described as Markov processes are called memory–less systems. The right hand side in

Eq. (A.3) is called transition probability and, when it is stationary, it is often denoted

as Tτ (xn|xn−1) with τ = tn − tn−1.

As we will see a Markov process is fully determined by the two functions P (x1, t1) and

P (x2, t2|x1, t1), since the whole hierarchy of moments can be constructed from them.

Indeed, taking t1 < t2 < t3 and making use of Eq. (A.2),

P (x1, t1;x2, t2;x3, t3) = P (x3, t3|x1, t1;x2, t2)P (x1, t1;x2, t2)

= P (x3, t3|x2, t2)P (x2, t2|x1, t1)P (x1, t1). (A.4)

By iterating recursively this reasoning one can eventually characterize all P (x1, t1;x2, t2; . . . ;xn, tn).

This property makes Markov processes very useful in applications.

A.1.3 Master equation

Here, we introduce the Master equation which describes the stochastic dynamics that

governs a stochastic system. It is the pivot of most of the work developed in the second

part of the thesis.

Integrating eq. (A.4) over x2 and then dividing both sides by P (x1, t1) one obtains

P (x3, t3|x1, t1) =
∫

P (x3, t3|x2, t2)P (x2, t2|x1, t1)dx2 (A.5)
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This is called the Chapman-Kolmogorov equation and it must be obeyed by the transition

probability of any Markov process. It will serve as a prelude for the Master equation.

At this point let define the transition probability for unit time or transition rate from

state x1 to state x2 as

T (x2|x1) = limτ→0Tτ (x2|x1), x2 6= x1. (A.6)

Since for t1 = t2

P (x2, t2|x1, t1) = δx1,x2 ,

we can expand the transition probability Tτ (x2|x1) around t1 for a small τ

Tτ (x2|x1) = δx1,x2 + T (x2|x1)τ +O(τ2).

On the other hand from the normalization condition
∫

Tτ (x2|x1)dx2 = 1 we have that

the coefficient associated to the delta function should be corrected as follows

Tτ (x2|x1) = (1− ατ) δx1,x2 + T (x2|x1)τ +O(τ2).

The coefficient 1− ατ is the probability that no transition takes place during τ ; hence

α(x1) =

∫

T (x2|x1)dx2 (A.7)

which also follows immediately from the assumption made above. Now insert the ex-

pression for Tτ in the Chapman-Kolmogorov equation (A.5)

Tτ+τ ′(x3|x1) =
(

1− α(x3)τ
′
)

Tτ (x3|x1) + τ ′
∫

T (x3|x2)Tτ (x2|x1)τ.

Dividing by τ ′ and than taking the limit for τ ′ → ∞, one obtains

∂

∂τ
Tτ (x3|x1) =

∫

[T (x3|x2)Tτ (x2|x1)− T (x2|x3)Tτ (x3|x1)] dx2

the differential form of the Chapman-Kolmogorov equation, widely known like themaster

equation. It is usually written in a more intuitive and simpler form as:

∂

∂t
P (x, t) =

∫

[

T (x|x′)P (x′, t)− T (x′|x)P (x, t)
]

dx′. (A.8)

If the samples space S is a discrete collection of states each labelled with the index n,

the equation reduces to

∂

∂t
Pn(t) =

∑

n

[Tnn′Pn′(t)− Tn′nPn(t)] (A.9)



Appendix 104

The master equation describes the gain and loss of the probabilities of different states

n. The first term on the right hand side measures in fact the gain of state n due to the

transition from other allowed states n′, and the second term is the loss due to transitions

from n towards distinct target states.

In general, it is not possible to solve Eqs. (A.8,A.9) in a closed analytical form. To

gain analytical insight one can therefore proceed with approximated techniques as the

Kramers-Moyal or van Kampen expansion [58, 86]. At the first order of the van Kampen

system size expansion one obtaines for instance the so called mean-field (deterministic)

representation of the scrutinized process. Typically, this is a reaction-diffusion system

of the type considered in the main body of the thesis. The next–to–leading order in

the expansion yields a complete characterization of the fluctuations in terms of the

Fokker-Planck equation whose structure reflects the underlying stochastic process.

A.2 Random walk graph Laplacian

Let us here discuss the alternative formulation of the Laplacian operator to which we

alluded in Chapter 5 and which descends from a stochastic microscopic formulation of

the random walk on a network. A random walk is a path across a network created by

taking repeated random steps. Starting at some specified initial node i, at each step of

the walk we choose uniformly at random between ki links attached to the current node,

perform the move along the chosen link (ij) to the node j at its other end, and repeat

the procedure again. If no restrictions are imposed, random walks are normally allowed

to go along edges more than once and also visit nodes more than once. If the coupling

matrix W does not coincide with the adjacency matrix A than the probability of chosen

the link (ij) should be weighted by wij .

Consider a random walk that starts at a specified vertex and takes n random steps. Let

Pi(tn) be the probability that the walk is at vertex i at the step n. If the walk is at

vertex j at the step n − 1, the probability of taking a step along any particular one of

the kj edges (weighted if necessary, so kj =
∑Ω

l=1Wjl) attached to j is 1/kj , so on an

undirected network Pi(tn) is given by

Pi(tn) =
Ω
∑

j=1

Wij

kj
Pj(tn−1).
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Furthermore, a continuity equation must be satisfied locally; so one must require that

Pi(tn)− Pi(tn−1) =
Ω
∑

j=1

Wij

kj
Pj(tn−1)−

Ω
∑

j=1

Wji

ki
Pi(tn−1)

=

Ω
∑

j=1

(

Wij

kj
− δij

)

Pj(tn−1).

Taking the limit for infinitesimal time between succesive jumps we get explicitely the

usual master equation as in eq. (A.9)

∂Pi(t)

∂t
=

Ω
∑

j=1

∆̃ijPj(t) (A.10)

with the only difference that now the Laplacian matrix takes the form ∆̃ = ∆K−1

where (∆)ij =Wij − kiδij and the diagonal matrix K, such that diag (K)i = ki.

This transport operator is different from the one mainly used in this thesis, with the

exclusion of the last part of Chapter 5. In fact, its spectrum is locally scaled with

a factor ki. It is still possible to prove that the eigenvalues of the above operator

are real as it happens for the other operator defined in the main body of the thesis.

From the definition above one obtains that ∆̃ can be related to a symmetric matrix S

by the following similarity transformation S = T∆̃T−1 where T is the diagonal matrix

diag(T)i = 1/
√
ki. Thus, in conclusion ∆̃ and S will have the same eigenvalue spectrum.

Let us notice that both ∆̃ and ∆ are used in the literature devoted to studying the

process of diffusion on networks [11, 19, 82, 83].
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