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Abstract 
 

 

Aquaculture is currently contributing almost half of fish consumed by the human 

population and it keeps growing more rapidly than other animal food production sectors. 

The introduction of molecular techniques, such as various genome projects, gene 

expression analysis and functional genomics, and the monitoring of stress levels through 

very early indicators such as molecular biomarkers, can bring considerable benefits to the 

quantity and quality of production and improve welfare of reared animals. Moreover in 

recent years, some teleost species have become model organisms, such as zebrafish and 

pufferfish, and the knowledge about them could be transferred to further improve reared 

animals and husbandry. Therefore, species of interest in aquaculture could, in turn, 

become new animal models. In this context, we looked for a new molecular biomarker for 

stress in Dicentrarchus labrax. 

Stress could involve alterations of brain functioning that may precipitate to mood 

disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been 

involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and 

adaptive processes. Regulation of BDNF is complex and may reflect not only stress-

specific mechanisms, but also hormonal and emotional responses. For this reason, we 

used, as an animal model of stress, a fish, D. labrax, whose brain organization is very 

similar to that of higher vertebrates, but is generally considered free of emotional 

reactions. We provide, for the first time in a species of great interest in aquaculture, a 

comprehensive characterization of BDNF gene and its transcriptional, translational and 

post-translational regulation following acute stress. While total BDNF mRNA levels are 

unchanged, BDNF splicing variants 1c and 1d resulted down regulated after acute stress. 

Acute stress induces also a significant increase in proBDNF levels and reduction in mature 

BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we 

provide here the first evidence that fishes possess a simplified proteolytic regulation of 

BDNF since the pro28kDa form, generated by the SKI-1 protease in mammals, is absent in 

fishes. The cleavage site, in fact, has first emerged in reptilians. Finally, we show that the 

proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect 
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stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 

100%. 

The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates 

that processing of BDNF is a central mechanism in adaptation to stress and predicts that a 

similar regulation of pro/mature BDNF has likely been conserved throughout evolution of 

vertebrates from fish to man. 

 

 

The second part of this thesis is focused on the problem of seafood and fish species 

authentication. This is an important issue within the seafood industry to protect 

consumers from fraudulent practices, like species substitution, resulting from the 

increasingly wide diversification of species and globalization of fish trade. DNA-based 

methods for species identification are by far the best: they are generally based on PCR 

amplification of a target sequence, followed by a post-PCR analysis of amplified products, 

which could consist in sequencing or obtaining species-specific patterns of restriction 

fragments. 

The gene coding for the 5S ribosomal RNA is a suitable target for fish species 

identification because, for its particular sequence features, it does not require any further 

treatment after PCR. This gene consists of a small coding conserved region and a variable 

region of noncoding DNA, which is termed not transcribed spacer (NTS). Both regions are 

tandem repeated in the genome. The NTS, which is species-specific for length and 

sequence, has been used, here, to discriminate species subjected to substitution in the 

Italian fish market. Although preliminary, our results have demonstrated the value of this 

approach.  
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1.1 Fish aquaculture and modern biotechnology 

Aquaculture is currently contributing almost half of the fish consumed by the human 

population. This sector has been growing extensively in the last 50 years and it keeps 

growing more rapidly than other animal food producing sectors (FAO, The State of World 

Fisheries and Aquaculture 2008. 2009). The introduction of molecular techniques in 

addition to the more traditional method of biotechnology has supplied the resources to 

significantly increase the production in world aquaculture. The new approaches include 

the various genome projects, cDNA microarray/expression analysis, functional genomics, 

transgenic technologies (based on microinjection or retroviruses), and proteome analysis. 

All these approaches could be apply for improving growth and cost effectiveness, 

increasing resistance to environment and pathogens, improving broodstock quality and 

control reproduction, creating new and/or better products (Melamed et al., 2002). Some 

examples of the relevance of these innovations are reported below. 

 

1.1.1 Growth enhancement 

Growth enhancement is an important aim for aquaculture especially if it can be obtained 

through more economic and faster manipulations than selective breeding methods. One 

of the ways to increase growth rates in animals, originally demonstrated in mice (Palmiter 

et al., 1982), is the introduction of additional growth hormone (GH). Alternatively, 

transgenic salmonids possessing an “all-fish” gene construct consisting of antifreeze 

protein promoter and GH cDNA show a dramatic growth enhancement (Du et al., 1992; 

Devlin et al., 1994), they appear healthy and some produce second and third generation 

transgenic offsprings which keep the phenotype (Saunders et al., 1998). 

An interesting phenomenon studied in intensive aquaculture as a means of enhancing 

growth rates is the “compensatory growth”, an exceptionally fast growth, which occurs in 

fish after periods of fasting. The mechanisms by which food intake activates an increase in 

somatic growth, especially in muscle growth, are complex and not yet fully understood. 

Terova et al. (2006; 2007a) identified three genes involved in compensatory growth in sea 

bass (Dicentrarchus labrax): the insulin-like growth factor I and II, which are potent 

mitogens, and the myostatin, an important factor for skeletal muscle growth. 
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1.1.2 Increase resistance 

The molecular approaches to increase the resistance to viral and bacterial pathogen are 

based on DNA vaccines and antimicrobial agents. The firsts consist in the injection of 

naked DNA encoding part of the antigen that induced production of antibodies and it has 

already been successfully used in fish in a number of studies (Traxler et al., 1999; 

Lorenzen et al., 1999). Antimicrobial proteins, like lysozyme, can be used, conversely, to 

target the non-specific immune response (Andreu and Rivas, 1999) or transgenic fish 

carrying genes encoding a number of antimicrobial peptides could be created. 

Molecular techniques can be used also to increase resistance of fish to adverse 

environmental condition, like excessive cold. Some marine teleosts have high levels of 

serum antifreeze protein (AFP) or glycoprotein (AFGP) which effectively reduce the 

freezing temperature by preventing ice-crystal growth. The gene encoding the liver AFP 

from winter flounder was successfully introduced into the genome of Atlantic salmon 

(Hew et al., 1999). The developing of stocks harbouring this gene would clearly be a major 

benefit in commercial aquaculture countries where winter temperatures often border the 

physiological limits of these species. 

 

 

1.2 Fish aquaculture and model organisms 

In recent years, it is rising the use of some teleost species as vertebrate model organisms 

used to study the genetics underlying development, normal body function and disease, 

with a parallel increase of new tools and methods available for this purpose. Transferring 

knowledge from models to the species of interest for aquaculture can achieve a further 

improvement of reared animals and husbandry, especially for what concerns the growth, 

stress and disease resistance (Dahm and Geisler, 2006).  

The most popular fish model is the freshwater teleost zebrafish, Danio rerio, which has 

become an experimental model for embryogenesis, organogenesis, general development 

in vertebrate (Love et al., 2004) and human diseases like cancer or neurodegenerative 

disorders (Amatruda and Patton, 2008). Medaka (Oryzias latipes) is another model 

organism employs to study aspects of embryonic development (Wittbrodt et al., 2002); 
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studies about behaviour and molecular evolutionary-developmental biology have been 

performed on stickleback, Gasterosteus aculeatus (Tickle and Cole, 2004); the two 

pufferfish, Takifugu rubripes and Tetraodon nigroviridis, have become important 

organisms to understand genome architecture, organization and function, because of the 

relatively small size and simple organization of their genomes. 

Other aquatic animal models have been used in biomedical research and many of them 

are directly relevant to understand physiology, genetics, anatomy and pathology of 

human disease processes, like specific cancers, toxicological responses and infectious 

diseases (Schmale, 2004). In this regard it can be cited the green swordtail (Xiphophorus 

sp.) as a well established model for human melanoma (Meierjohann et al., 2004); another 

study used the adult brain of the Atlantic salmon (Salmo salar) as an experimental model 

for neuronal tissue regeneration after injury and, although this is not an evident model 

for human diseases, the authors suggested that some of the involved proteins may play a 

role in homolog processes occurring in mammals (Zupanc et al., 2006). Some teleost 

species are also suitable for environmental monitoring: besides zebrafish, the rare 

minnow (Gobiocypris rarus) has recently been selected as a model for aquatic 

toxicological studies (Zhong et al., 2008); exposures to heavy metals like zinc and 

cadmium, biological toxins or more undefined pollutant mixtures have been monitored 

through proteomic studies in different species (Forné et al., 2010). 

 

 

1.3 Genomic resources for fish 

Often, the major drawback for the application of molecular techniques is the lack of 

genetic information about species of interest in aquaculture compared to the model 

organisms, although the resources are being expanded. A recent review summarized the 

present-day nucleotide information about fish (Oleksiak, 2010). Currently there are five 

fish genome projects that comprise the aforementioned zebrafish (D. rerio), medaka (O. 

latipes), T. rubripes, T. nigroviridis and G. aculeatus. Atlantic salmon (S. salar) and rainbow 

trout (Oncorhyncus mykiss) genome project are underway and to be completed by 2011. 
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Although nuclear genome projects are lacking for most fish species, a wealth of sequence 

data exists for many more fish species, largely based on expressed sequence tags (EST) 

projects. ESTs represent a partial sequence of much longer RNA expressed in a cell. Being 

encoding genes that are actively transcribed, without intron sequences, they can be more 

informative about the ultimate function of the gene. 

ESTs resources represent one of the efforts that are reducing the gap of knowledge 

between farming species from model organisms. With this aim our laboratory realized, in 

recent years, eight cDNA libraries obtained from different tissues of three teleosts: 

Dicentrarchus labrax, Perca fluviatilis and Thunnus thynnus (Chini et al., 2006 and 2008; 

Rossi et al., 2007).  

 

 

1.4 Molecular biomarkers for animal welfare 

Protecting the welfare of farmed animals is a central requirement of any animal-rearing 

system, fish included. Animal welfare involves the subjective feelings of animals and the 

experience of pleasure, pain, frustration, hunger or other states and it is difficult to define 

and to measure (Dawkins, 1990). Recently Korte et al. (2007) have proposed a new animal 

welfare concept based on allostasis, which means stability through change and it has the 

potential to replace homeostasis as the core model of physiological regulation. Not 

constancy or freedoms, but capacity to change is crucial to good physical and mental 

health and good animal welfare. Therefore, this new animal welfare concept has to be 

taken into account. 

Health and welfare of farmed animals are both influenced by husbandry practices, which 

are the major cause of stress. Knowledge of these stress levels represents a fundamental 

parameter to achieve and maintain high standards of animal welfare. This point is 

particularly important when welfare of animals reared for commercial interest is to 

monitor. In fact, production and quality have to be equally improved with benefits on the 

public perception of the products and consequent positive repercussions on marketing 

aspects. 
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A biomarker is defined as any biological response to a stress factor measured inside the 

organism indicating a deviation from the normal state. This response can range from 

molecular through cellular and physiological to behavioural changes. The generalized 

stress response in fish has been broadly characterized into primary, secondary and 

tertiary response. The primary response starts with a blood increase of 

neuroendocrine/endocrine factors such as cortisol. The secondary response comprises 

various hormone induced biochemical and physiological effects, that results in the 

alteration of haematological parameters such as glucose concentration. The tertiary 

response is associated to the involvement of “fish social life” that may result in appetite 

loss, compromised anabolic processes, reduced reproductive capability and frequent 

occurrence of infective pathologies (Terova et al., 2009b).  

Therefore, stress conditions were traditionally evaluated by monitoring blood levels of 

cortisol, haemoglobin, and glucose (Roche and Bogè, 1996), but these descriptors may 

not be sufficiently reliable when chronic stresses are applied and animal welfare is 

concerning. It is therefore necessary to search for further parameters, which are capable 

to describe, taking into account the “allostatic concept” (Korte et al., 2007) biological 

stress and animal emotional responses. Molecular biomarkers directly indicate a gene 

activity and for this reason they have the characteristics for being useful early indicator. 

The search for molecular markers can be approached looking for them among those 

genes whose expression could reasonably be modified by the different farming conditions 

or, alternatively, following a strategy addressed at searching for any gene whose 

expression can be modified by changes, for example, in rearing densities, through 

techniques like differential display. With this technique Gornati et al. (2004a) obtained six 

bands differentially expressed, comparing gene expression of sea bass (D. labrax) farmed 

at different population densities. One of these bands resulted to be coding for 3-hydroxy-

3-methylglutaryl coenzyme A reductase (HMGCR), a key enzyme of the cholesterol 

synthesis. Quantitative evaluation of HMGCR expression by real-time PCR confirmed an 

up-regulation of transcription at higher population densities (Gornati et al., 2005).  

Other classical stress-related genes were evaluated such as metallothioneins (MT), heat 

shock proteins (HSP) (Gornati et al., 2004b; 2005), enolase, Na +/H+ exchanger (NHE)-1 c-
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Fos, glucocorticoid receptor (GR), glucose transporter (GLUT2) (Rimoldi et al., 2009; 

Terova et al., 2005; 2009a). Moreover genes related to specific stress conditions, as 

oxygen fluctuation (HIF-1a) and food deprivation have been considered (Terova et al., 

2007b; 2008a; 2008b). 

In this thesis project, we decided to consider, for the first time in sea bass (D.labrax), a 

neurobiological marker such as brain derived neurotrophic factor. 

 

1.4.1 Brain derived neurotrophic factor 

Brain Derived Neurotrophic Factor (BDNF) is the most abundant and widely expressed 

neurotrophin, a family of structurally related proteins required for the development and 

function of the vertebrate nervous system (Casaccia-Bonnefil et al., 1999; Huang and 

Reichardt, 2001; Poo, 2001). In the vertebrate brain, BDNF also governs long lasting 

changes in synaptic efficacy and morphology (McAllister et al., 1999; Thoenen, 2000; 

Braham and Massaoudi, 2005; Lu et al., 2008; Braham, 2007). Recent studies have 

suggested that BDNF may be involved in stress-induced adaptation in adult (Marini et al., 

2008). Indeed, several types of injury and cell stress affect the expression of BDNF in the 

mammalian brain; in particular, chronic stress decreases the synthesis of hippocampal 

BDNF (Smith et al., 1995a; 1995b; 1995c; Nibuya et al., 1999) while acute stress induces 

complex alterations in the expression of BDNF, including a decrease in the hippocampus 

and an increase in the prefrontal cortex (Marmigère et al., 2003; Nair et al., 2007; Lee et 

al., 2008; Fuchikami et al., 2009). “Stress” is a biological term which refers to the 

consequences of the failure of a human or animal body to adequately answer to 

environmental stimuli. Stress induction is also used to study alterations of brain 

functioning leading to mood disorders which are often precipitated or exacerbated by 

acute or chronic stressful life events (Gold and Chrousos, 2002; Brown et al., 2003; 

Duman and Monteggia, 2006). Stress involves also subjective feelings that are particularly 

complicated in mammals and primates in which the emotional components may have a 

dominant effect. Since alterations in BDNF expression were also found in response to 

emotions such as anxiety or fear in rodents (Rasmusson et al., 2002) and BDNF affects 

emotional preferences in humans (Gasic et al., 2009), it remains to be determined how 
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the stress itself or the associated behavioural responses contribute in mediating these 

changes. In this view, it is interesting to use as an animal model of stress, a fish whose 

brain organization is very similar to that of higher vertebrates, but is generally considered 

free of emotional reactions. 

 

 1.4.2 Neurotrophin family members and their receptors 

Neurotrophin family, besides BDNF, includes Nerve Growth Factor (NGF), Neurotrophin-3 

(NT-3) and Neurotrophin-4/5 (NT-4/5); other members are Neurotrophin-6 (NT-6) and 

Neurotrophin-7 (NT-7), both found only in fish.  

All known neurotrophin genes share a common organization: they encode for a pre-pro-

protein that is translocated to the endoplasmic reticulum and proteolitically processed to 

yeld the mature protein. While all mature neurotrophins bind to the p75 receptor with 

similar affinity, the specificity of their activity is dependent upon the activation of three 

different tyrosine kinase (Trk) receptors and their downstream signalling cascades: NGF 

specifically activates TrkA, BDNF and NT-4/5 interact with TrkB, whereas NT-3 

preferentially binds to Trk-C. NT-6 and NT-7 do not have orthologues in mammals or birds 

and appear to interact with the same receptors as the mammalian proteins. 

The mature neurotrophin proteins are non-covalently associated homodimers. Although 

some neurotrophin monomers are able to form heterodimers with other neurotrophin 

monomers in vitro, there is no evidence that these heterodimers exist at significant 

concentrations in vivo. The structures of NGF, NT-3 and NT-4 homodimers and of the 

BDNF-NT-3/4 heterodimers have been solved. Each of these four proteins shares a highly 

homologous structure with features, such as tertiary folds and cystine knots, which are 

present in several other growth factors. 

The first receptor to be discovered, p75 neurotrophin receptor (p75NTR), was identified 

as a low-affinity receptor for NGF, but was subsequently shown to bind each of the 

neurotrophins with a similar affinity. p75NTR is a member of the tumour necrosis 

receptor superfamily with an extracellular domain that includes four cysteine-rich motifs, 

a single transmembrane domain and a cytoplasmic domain that includes a ‘death’ 

domain. p75NTR inhibits activation of Trk receptors by non-preferred neurotrophins both 
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in vitro and in vivo. Pro-neurotrophins bind with high affinity to p75NTR, which can 

cooperate with many different protein partners and form multimeric receptor complexes 

to produce a number of cellular responses, including apoptosis. 

In mammals, the three members of the Trk subfamily of receptor tyrosine kinases 

constitute the second major class of neurotrophin receptors. The extracellular domain of 

each of the Trk receptors consists of a cysteine-rich cluster followed by three leucine-rich 

repeats, another cysteine-rich cluster and two immunoglobulin-like domains. Each 

receptor spans the membrane once and is terminated with a cytoplasmic domain 

consisting of a tyrosine kinase domain surrounded by several tyrosines that serve as 

phosphorylation-dependent docking sites for cytoplasmic adaptors and enzymes. The 

neurotrophins dimerize the Trk receptors, resulting in activation through 

transphosphorylation of the kinases present in their cytoplasmic domains. 

Each Trk receptor controls three major signalling pathways, which promote neuronal 

differentiation including neurite outgrowth, survival and growth of neurons and other 

cells, synaptic plasticity and gene transcription. 

Neurotrophins features and their signalling pathways have been reviewed by Reichardt 

(2006), Lu et al. (2005) and Lanave et al. (2007). 
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1.5 Dicentrarchus labrax Linnaeus, 1758 (Moronidae) 

[From: FAO. © 2005-2010. - . Cultured Aquatic Species Information Programme. See: References] 

The European Sea bass, Dicentrarchus labrax, is of great interest for Mediterranean 

aquaculture as it is an excellent food fish, with high commercial value; it is often 

marketed as Mediterranean seabass, branzino, in Northern Italy, or spigola in other parts 

of Italy. 

 

 

Figure 1.1 Dicentrarchus labrax 

 

 1.5.1 Features, habitat and biology 

Its body is rather elongate; the opercle has two flat spines and the preopercle has large, 

forward-directed spines on its lower margine. The mouth is terminal and moderately 

protractile with vomerine teeth in a crescentic band, without a backward extension on 

midline of roof of mouth. Sea bass has two separate dorsal fins; the first with 8 to 10 

spines; the second with 1 spine and 12 or 13 soft rays. The anal fin has 3 spines and 10 to 

12 soft rays. The scales are small; the lateral line is complete, but not extending onto 

caudal fin, that is moderately forked. The colour is silvery grey to bluish on the back, 

silvery on the sides, sometimes tinged with yellow on the belly. Young specimens have 

some dark spots on upper part of body. 

The European sea bass are eurythermic (5-28 °C) and euryhaline (3‰ to full strength sea 

water); thus they are able to frequent coastal inshore waters, and occur in estuaries and 

brackish water lagoons. Sometimes they venture upstream into freshwater. There is only 

one breeding season per year, which takes place in winter in the Mediterranean 

population (December to March), and up to June in Atlantic populations. Sea bass spawn 

small (1.02-1.39 mm) pelagic eggs in water with salinities lower than 35‰, near to river 
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mouths and estuaries or in littoral areas where the salinity is high (≥30‰). Being not 

particularly sensitive to low temperature some fish may over-winter in coastal lagoons 

instead of returning to the open sea. Sea bass are predators and their feeding range 

includes small fish, prawns, crabs and cuttlefish. 

 

 1.5.2 Historical background 

Sea bass were historically cultured in coastal lagoons and tidal reservoirs before the race 

to develop the mass-production of juveniles started in the late 1960s. During that time, 

France and Italy competed to develop reliable mass-production techniques for juvenile 

sea bass and, by the late 1970s, these techniques were well enough developed in most 

Mediterranean countries to provide hundreds of thousands of larvae. The European sea 

bass was the first marine non-salmonid species to be commercially cultured in Europe 

and at present is the most important commercial fish widely cultured in Mediterranean 

areas. Greece, Turkey, Italy, Spain, Croatia and Egypt are the biggest producers. 

  

1.5.3 Production cycle in intensive system 

The bulk of sea bass aquaculture production comes from sea cage farming. To secure a 

reliable and sufficient supply of good quality fish eggs, most hatcheries have established 

their own broodstock units, where breeders of different age groups are maintained long-

term. Parents may come either from a farm or from the wild. The management of captive 

broodstock in the breeding stations includes natural maturation, the induction of 

ovulation by photoperiod manipulation or hormonal treatments, fertilisation in spawning 

tanks and incubation in an open-water circulation system. At the onset of the spawning 

season it is necessary to move selected batches of breeders from their long term holding 

facilities to the spawning tanks, where they can be better treated and their performance 

can be easily monitored. When fertilised eggs are required outside the natural spawning 

period, out-of-season sexual maturation is obtained by promoting gametogenesis by 

manipulating the photoperiod and temperature. The hatchery management decides on 

the periods of egg production according to its marketing and/or farm needs. Hormonal 
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with human chorionic gonadotropin treatment is used to trigger the last phase of egg 

maturation. 

 

 

Figure 1.2 Production cycle of D. labrax - intensive system. 

 

In intensive production, on growing units are supplied with fry from hatcheries and 

controlled diet is provided. Juveniles are sold to farmers as on growing stock at a size of 

1.5-2.5 g. The on growing juveniles reach 400-450 g in 18-24 months. Cages can be of 

different kinds but the principle is the same; all types are based on a natural exchange of 

water through pens. The quality of sites is therefore highly variable, according to local 

conditions such as tide and current. 

Tanks are usually supplied with seawater (38‰) maintained in a continuous flow-through 

system under ambient temperature. High stocking densities are applied (20-35 kg/m³); 

this means that accurate control of water quality and careful observations of fish health 

are essential. A recirculation system, to control water temperature (between 13-18 °C) is 

used during autumn/winter, frequently full-time in hatchery and the pre-fattening phase 

of the production cycle; this system is also used for fattening in high technology farms. 

This practice improves growth but can be highly expensive due to the required 
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technology for water quality control (filtering, air stripping, UV treatment, catabolite 

removal). 

Killing methods should result in rapid and irreversible loss of consciousness. Methods that 

kill fish rapidly result in a reduction of stress, thus an improvement in welfare and in 

quality. Prolonged crowding before harvesting is avoided, to ensure high product quality 

and fish welfare. Greater muscle activity at slaughter leads to a rapid decrease in energy 

reserves (i.e. adenosine triphosphate, ATP), and to the build up of lactic acid and 

consequently a drop in post-mortem pH. An animal that struggles at slaughter goes into 

rigor very rapidly, adversely affecting the quality of fish fillets by softening the muscle 

texture. 

Although a sturdy species, sea bass are subject to a wide range of diseases under rearing 

conditions. These outbreaks have important effects on commercial production and could 

prevent the expansion of the industry in some countries. Stress is considered an 

important factor co-responsible for disease outbreaks; thus improved husbandry is 

generally suggested to reduce stress. Another problem is the lack of authorized effective 

therapeutants, particularly for parasites, in most European countries. 

 

 1.5.4 Market and trade 

One of the largest success stories in European aquaculture has been the Mediterranean 

sea bass industry, which in less than 15 years grew from a few thousand tonnes to 57 000 

tonnes today, having peaked at nearly 71 000 tonnes in 2000. When farmed bass started 

getting to market in the late 1980s and early 1990s, the farmed quality was seen to 

complement the wild species and prices were very high. Prices of the wild product may 

have suffered initially, as the volumes from aquaculture continued growing, but today 

there is clear distinction in the market between wild and farmed product, with the prices 

for wild bass several times higher than those of the farmed fish. 
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1.6 Molecular techniques for food authentication 

 

1.6.1 The problem 

Development in food preservation, processing technologies and liberalization of trade 

have contributed significantly to the globalization of fish trade and to the diversification 

of seafood, both in terms of species and products. It is currently estimated that more 

than 800 fish species are traded internationally under many different forms, shapes, 

brands and preparations. For this reason authentication of fish and seafood species has 

become an important issue within the seafood industry to protect the consumers from 

fraudulent and deceptive practices whereby low value species are substituted for high 

value similar species. At national level, food legislation generally indicates that the label 

must not mislead consumers, but international trade and the use of similar terms for 

different products makes it complicated when a product from one country is introduced 

to another. 

In Italy food imports from Far East is increasingly easy with competitive prices, often at 

the expense of food quality and safety. This makes the market more vulnerable to cases 

of species substitution. The most common substitutions in Italian fish market are 

reported in Table 1.1. 

Fish species identification is traditionally based on external morphological features, 

including body shape, pattern of colours, scale size and count, number and type of fin and 

rays and various relative measurements of body parts. Yet, in some cases morphological 

features are of limited value for identification and differentiation purposes, even with 

whole specimens, because they can show either considerable intraspecific variations or 

small differences between species (Teletchea, 2009). Moreover, the respect for labelling 

regulations becomes complicated in processed food such as frozen fillets and precooked 

seafood because the original identifying morphological characteristics are absent. 

Therefore, the development of protocols for assurance and control of seafood safety is 

currently a major challenge. To improve detection of commercial seafood fraud, a variety 

of protein and DNA-based technique have been developed (Rasmussen and Morissey, 

2008). 
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High commercial value 

species 
Replaced with… 

Solea vulgaris 
Pleuronectes platessa, Pangasius sp., Oreochromis sp., Hippoglossus 

hippoglossus 

Pleuronectes platessa Limanda sp. 

Perca fluviatilis Lates niloticus 

Dentex dentex Pagrus sp., Pagellus sp. 

Epinephelus sp. Pangasius sp., Oreochromis sp. 

Dicentrarchus labrax Pomatomus saltatrix 

Mustelus sp. Heptranchias perlo 

Xiphias gladius Mustelus sp., Prionace glauca, Squalus sp. 

Sardina pilchardus Neosalanx tangkahkei 

Table 1.1 Common substitutions in Italian fish market 

 

 

1.6.2 Protein-based methods for seafood and fish species identification 

Analytical diagnosis of fish and seafood using proteins has traditionally been based on 

species-specific electrophoresis, chromatography, or immunological assays. 

Chromatographic approach comprises techniques such as HPLC (High Performance Liquid 

Chromatography) and gas-chromatography, which require, however, expensive analysis 

instruments. The identification is based on the different sarcoplasmic proteins or amino 

acids profiles between meats from different species (Knuutinen and Harjula, 1998; 

Armstrong et al., 1992). 

Isoelectric focusing (IEF) technique has been used, for example, to identify four 

freshwater fish commercially labelled “perch” (Berrini et al., 2005) and puffer fish species 

(Chen et al., 2003). Puffer fish proteome was also analyzed by two-dimensional 

electrophoresis technique (2DE), which resulted useful to discriminate harmless species 

from the ones that accumulates lethal level of tetrodotoxin in their muscle (Chen et al., 

2004). In general 2DE resulted powerful to distinguish among closely related species, as it 

is reported by Pineiro et al. (1998) that characterized the water-soluble protein profiles of 

eight gadoid species. 
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At present there are only few examples of rapid immunoassay, such as a strip test or 

enzyme-linked immunosorbent assay (ELISA) kit, capable of identifying species of fish, 

even if this technique could be easy and fast to apply. The issue is obtaining species-

specific antibodies for each fish product liable to fraud and it is essential that antibodies 

don’t cross-react with non-target species. Gajewski et al. (2009) realized monoclonal 

antibodies for rapid identification of two species of Pangasius, both commercially labelled 

as catfish, but with considerable differences in their meat quality. Asensio et al. (2003a 

and b; 2008) developed ELISA and strip immunoassay with polyclonal and monoclonal 

antibodies to identify grouper (Epinephelus guaza), Nile perch (Lates niloticus) and wreck 

fish (Polyprion americanus) fillets and they demonstrated the effectiveness of the method 

directly in fish markets.  

Protein-based methods are generally reliable only on fresh or frozen tissue because 

intense heat processing or drying can destroy the biochemical properties and structural 

integrity of proteins, make the analysis impractical. Also other characteristics, reported in 

the following paragraph, make DNA the most suitable molecule for fish species 

identification. 

 

 

1.6.3 DNA-based methods for seafood and fish species identification 

DNA-based identification methods present several advantages over protein analysis 

(Teletchea, 2009): 

I. DNA is more resistant and thermostable than proteins and it is possible to amplify 

by PCR (Polimerase Chain Reaction) very small fragment with sufficient 

information to allow identification; 

II. DNA is present in almost all cells of an organism, so it can be recovered from any 

substrate; 

III. because of the degeneracy of the genetic code and the presence of many non-

coding regions, DNA provides more information than proteins do; 

IV. DNA is always the same, regardless tissue type, age, nutritional and physiological 

state. 
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Genetic species identification is based on the principle of DNA polymorphism, or genetic 

variations that take place as a result of naturally occurring mutations in the genetic code. 

Determination of fish and seafood can be carried out using either nuclear DNA (nDNA) or 

mitochondrial DNA (mtDNA). Some major advantages of mtDNA over nDNA are that it is 

relatively small compared to nDNA because it lacks features such as large noncoding 

sequences (introns), pseudogenes, repetitive DNA and transposable elements; it is 

relatively easy to extract; it does not undergo genetic rearrangements such as 

recombination and sequence ambiguities resulting from heterozygous genotypes 

avoided. Moreover, mtDNA presents a higher copy number and a faster rate of mutation, 

making it generally more appropriate in the study of evolutionary genetics and inter- 

intraspecies variability. However, high intraspecies variation can become a disadvantage 

to species diagnostic methods and the maternal inheritance pattern of mtDNA may 

produce misleading results in the event of species hybridization. The most common 

mtDNA genes exploited in species identification research have been cytocrome b, 12S and 

16S rRNA (Rasmussen and Morrisey, 2008). 

Despite the advantages of mtDNA, a number of nDNA targets have proven to be 

successful in the differentiation of fish and seafood species, such as nuclear 5S rRNA, p53 

gene, nuclear ribosomal internal transcribed spacer locus, 18S rRNA gene and major 

histocompatibility complex class II gene. In addition, nDNA also contains tandem repeated 

segments of DNA that occur throughout the genome and exhibit a high degree of 

polymorphism called satellite, minisatellite and microsatellite (Rasmussen and Morrisey, 

2008). 

The first step of fish identification is always based on PCR carried out with universal 

primer or species specific primers designed, for example, on the basis of single nucleotide 

polymorphisms. Following PCR amplification, the resulting DNA fragments must be 

properly analyzed to verify the presence or absence of species-specific genetic markers. 

Some methods include restriction fragment length polymorphism (RFLP), forensically 

informative nucleotide sequencing (FINS), amplified fragment length polymorphism 

(AFLP) or single strand conformational polymorphism (SSCP). All these technique are 

reviewed with many literature examples by Rasmussen and Morrisey (2008). In recent 



 23 

years, several online resources have been developed for specific use in the field of DNA-

based identification of fish and seafood species, like the FISH-BOL 

(http://www.fishbol.org/), which is part of the Consortium for the Barcoding of Life 

(CBOL; http://www.barcoding.si.edu/). The purpose of CBOL is sequencing the mt COI 

gene in all biological species. 

 

 

1.6.4 5S rRNA gene: special features for fish species identification 

Among the aforementioned genes, 5S rRNA is a very suitable target for easy, rapid and 

cheap fish species identification, because it does not require post-PCR analysis methods. 

This gene, represented in Fig. 1.3, consists of a small 120 bp conserved region coding for 

5S rRNA and a variable region of noncoding DNA termed nontranscribed spacer (NTS) that 

has a species-specific length and sequence (Aranishi, 2005). Conserved region and NTS 

are repeated several times in the genome. Due to the rapid mutation rate of the NTS 

region, 5S rRNA amplicons can often be differentiated for the species simply by visualizing 

the fragment length using gel electrophoresis, without the need for further analysis such 

as sequencing or RFLP (Moran and Garcia-Vazquez, 2006). 

 

 

Figure 1.3 Schematic representation of 5S rRNA gene: the coding region and the NTS are 

represented in orange and green respectively. Orange arrows represent universal primer 

designed on conserved sequence. The other arrows represent species-specific primers, 

which could be designed on NTS of different species. 

 

 

Nuclear 5S rRNA has been used to identify mackerel, gadoids, salmonids and others 

species (Karaiskou et al., 2003; Aranishi and Okimoto, 2004; Moran and Garcia-Vazquez, 

2006; Carrera et al., 2000; Lockley et al., 2000; Cespedes et al., 1999) and it has been 

effective in recognition of a variety of samples including larvae, eggs, frozen and canned 

food (DeSalle and Birstein, 1996). 

Coding  

region 
NTS 
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In this thesis we decided to use 5S rRNA as target for identification of fish species 

commonly found in Italian fish market. We performed PCR with species-specific primers 

designed on NTS sequences, capable to give the amplicon only when the DNA of 

corresponding species was used as template. Therefore, after the initial effort of cloning 

and sequencing the NTS of the species of interest, we have demonstrated the value of 

this approach. 

The analyzed species in this work are: sea bass (D. labrax), Nile perch (Lates niloticus), 

perch (Perca fluviatilis), swordfish (Xiphias gladius), bluefin tuna (Thunnus thynnus), plaice 

(Pleuronectes platessa), sole (Solea vulgaris), Atlantic salmon (Salmo salar), trout (Salmo 

trutta) and pangasius (Pangasius hypophthalmus). 

 

 

1.6.5 5S rRNA gene: genome organization, structure, interactions and biological 

functions 

Small non-coding RNAs are a topic of great interest for molecular biologists because they 

can be regarded as relicts of a hypothetical “RNA world” which preceded the modern 

stage of organic evolution on Earth. 

Ribosomes are large ribonucleoprotein (RNP) particles consisting of two unequally sized 

subunits that associate upon the initiation of translation. Their role is to provide an 

appropriate environment for the correct positioning of mRNA, tRNAs and translation 

factors during the decoding process, as well as catalytic activity for peptide bond 

formation. In bacteria, the large ribosomal subunit (50S) is composed of two rRNA 

molecules (5S and 23S rRNAs) and 34 proteins. The eukaryotic 60S subunit contains three 

rRNAs (5S, 28S and 5.8S) and 50 proteins. The small subunit in bacteria (30S) and 

eukaryotes (40S) contains a single rRNA, of 16S and 18S respectively. The number of 

proteins in the small subunit varies from 21 in bacteria to over 30 in eukaryotes. The 

small ribosomal subunit is responsible for decoding, whereas the large subunit performs 

catalytic functions.  

In higher eukaryotes, tandem arrays of ribosomal RNA genes are organized in two distinct 

multigene families composed of hundreds of thousands of copies. One class is 
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represented by the 45S rDNA that codes for the 18S, 5.8S and 26S/28S rRNAs and the 

other one, represented by the 5S rDNA, codes for the 5S rRNA, an element of the largest 

subunit of ribosomes. The 5S rDNA repeats consist of 120 base pairs coding sequences, 

which are separated from each other by a non transcribed spacer (NTS) that shows an 

accentuated length variation. The copy number of the 5S rRNA genes is highly variable 

among vertebrates. 

The genomic organization of the 5S rRNA genes is known on several eukaryote organisms. 

The accumulating data demonstrate that 5S RNA genes are highly conserved, even among 

non related taxa, both with respect to length and nucleotide sequence, whereas the NTS 

evolves more rapidly. Different 5S rDNA classes, which differs each other for the NTS 

sequence, have been observed in mammals and fish species (Hallemberg et al., 1994; 

Martins and Galletti, 2001); in the bony fish, two distinct 5S rDNA classes were 

characterized by distinct NTSs and base substitution in the 5S rRNA gene; thus, possession 

of two 5S rDNA classes seems to be a general trend for the organization of these 

sequences in the genome of fish, even with some exceptions due to polyploidy (Qin et al., 

2010). 

The transcription of 5S rRNA gene is performed by non-nucleolar RNA polymerase III and 

requires transcription factors like TFIIIA, B, C; an internal control region (ICR) functions as 

promoter for the gene and a TATA sequence, located in the NTS, plays an important role 

in regulation of 5S rRNA gene expression in mammals (Hallemberg et al., 1994) and it has 

been also observed in fish (Qin et al., 2010).  

In eukaryotes, the 5S rRNA molecule binds ribosomal protein L5 and 28S rRNA, whereas 

in bacteria it interacts with three different ribosomal proteins and 23S rRNA. The 

interactions with ribosomal proteins and transcription factors determine the stability of 

5S rRNA and its transfer inside the cell to the place of ribosomal subunit assembly. 5S 

rRNA was found to be absent from the mitochondrial ribosomes of some fungi, 

vertebrates and most protists. Thus, 5S rRNA requires also mechanism of import into 

mitochondria (Entelis et al., 2001; Smirnov et al., 2008).  

5S rRNA is supposed to play an important role during protein synthesis on ribosomes, but 

its function is still not clearly elucidated. Based on the results of cross-linking 
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experiments, it was suggested that it may serve as a signal transducer between the 

peptidyltransferase centre and domain II, responsible for translocation, or as a 

determinant of large-subunit stability. Its importance for the protein biosynthesis 

machinery was demonstrated in Escherichia coli, in which deletion of more than one 5S 

rRNA gene greatly impairs the growth rate (Ammons et al., 1999). 

The genome organization, structure, interactions and biological functions of 5SrRNA have 

been reviewed by Smirnov et al. (2008), Szymanski et al. (2003) and Barciszewska et al. 

(2001). 
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2. Materials and Methods 
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2.1 BDNF: gene structure characterization; mRNA and protein 

quantification after stress 

 

2.1.1 Animals 

European seabass eggs, at stage of somites formation, were obtained from a commercial 

hatchery in Crete. The eggs were incubated in three 500 l-cylindriconical polyester tanks 

(~50,000 eggs/tank) at the Institute of Aquaculture of the Hellenic Center for Marine 

Research (Heraklion, Crete). During the autotrophic stages (complete absorption of lecith 

reserves) larvae were kept in darkness. The oxygen level was maintained at about 7 mg/l 

throughout the experimental period. Following mouth opening and eye development, the 

larvae, under intensive conditions, are exposed to low light intensity (5-10 lux) without 

food for a period of 2-4 days, until swim bladder is fully inflated. Only when inflated swim 

bladder is observed in more than 80% of the population, larvae were fed using an 

automatic feeding system. Ten larvae were taken every day for determining the 

morphological characteristic and total length. The general conditions of rearing are 

presented in the Table 2.1, while the modality of the sampling, carried out in November 

2008, is reported in Table 2.2. Three pools of larvae for each developmental stage were 

randomly sampled and weighted. The samples were stored in RNAlater (Ambion, Austin, 

TX, USA) and kept at -20°C until the molecular biology analysis. 

Table 2.1 Conditions of rearing 

 

Seasons of rearing Winter – Spring 

Density of eggs 100 egg l
-1

 (INTENSIVE REARING) 

Water quality Tank filled with filtered sea water from deep drill; renewal 

from biological filter ; pseudogreen water method 

(Papandroulakis et al., 2001); closed recirculation system; 

controlled temperature and light 

Temperature range Constant 17,5±1
o
C  

Water renewal rate Initially 10% h
-1

, gradual increase to 40% h
-1

 at 35 dph  

Photoperiod 12light:12dark 

Larval food Enriched rotifers (5 ind ml-1); enriched Artemia Instar ΙΙ (0.5-1.0 

ind ml-1); artificial feed. Daily addition of phytoplankton (in order 

to maintain a concentration of ca. 650±300x103 cells ml-1) for 15 

days after hatching  
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Fingerling sea bass were obtained from NuovaAzzurro® hatchery in Civitavecchia (RM, 

Italy), and reared into three fiberglass raceway tanks with 2.5 m
3
 water each, with 

inconsistent mortality, at low biomass density (<10 Kg/m
3
). The tanks were connected to 

a water recirculation system where salinity (obtained adding salt Oceanfish 600 LT from 

Prodac Int® to dechlorinated tap water) was 20 g/l. Other water conditions were: 

temperature 21 ± 1°C, pH 8.2, total ammonia <0.2 mg/l; dissolved oxygen was maintained 

over 99% of the saturation, by insufflating pure O2 to the system. At average weight of 

450 g (adult animals), two groups of fifteen animals were randomly sampled. The first 

group (control) was rapidly killed by severing the cervical column; brain, liver, kidney and 

muscle were removed, frozen in liquid N2 and stored at -80°C for molecular biology 

analysis. The second group (stressed) was kept for 30 minutes in a water deprivation 

condition (water volume of 20 l in a bucket 50 × 50 × 50 cm), then tissues were removed 

as described above. The experimental protocol of this study was approved by the Ethics 

Committee of the University of Insubria. 

 

SAMPLES Dph stage total weight 

1a; 1b; 1c 6  Mouth opened-black eyes 404 mg (wet) 

2a; 2b; 2c 16  Lipid droplet absorption 300 mg (wet) 

3a; 3b; 3c 27  Nothocord flexion 961 mg (wet) 

4a; 4b;4c 33 Post-flexion 949 mg (wet) 

5a; 5b; 5c 44 Dorsal and anal fins 1 g (wet) 

Table 2.2 Sample timing; dph=days post hatching 

 

 

2.1.2 Isolation and amplification of genomic DNA 

Genomic DNA was extracted from 25 mg of liver with DNeasy Blood & Tissue Kit (Qiagen, 

Milan, Italy) according to the manufacturer’s procedure. Introns were amplified with 

primers designed in proximity of putative exon/intron junctions, inferred comparing 

ortologue sequences of BDNF (Genomic PCR section). Primers used for BDNF 
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amplification are reported in Table 2.3. The PCRs were set using 500 ng of genomic DNA, 

Herculase Enhanced DNA Polymerase 5U/μl (Stratagene, La Jolla, CA, USA) in its own 

buffer. The couple of primers used were Dl_ex1beta_fw and Dl_ex1a_rev, Dl_ex1a_fw 

and Dl_ex1c_rev, Dl_ex1c_fw and Dl_P2_ant_BDNF. The reactions were incubated in a 

thermal cycler at the conditions suggested in the manufacturer’s procedure. PCR 

fragments were run on a 0,7% agarose gel, stained with ethidium bromide and run in TAE 

1× buffer at 100 mV for 30 min. Single bands were gel-purified and sequenced. Another 

set of PCRs on genomic DNA were performed with 80 nM solutions of specific primers 

deduced on obtained sequences, 250 ng of genomic DNA, 2 U of PCR Extender 

Polymerase Mix (5PRIME,Gaithersburg, MD, USA), 5 μl 10× Tuning Buffer, 0,5mM dNTPs 

mix. The PCR was performed with the following conditions: 93°C for 3 min and 10 cycles 

at 93°Cfor 15 s, annealing at 65°C for 30 s elongation at 68°Cfor 8 min, plus 20 cycles with 

elongation time increased of 20 s each cycle. After gel electrophoresis single bands were 

gel-purified, cloned into pGEM-T Easy Vector (Promega, Milan, Italy), and sequenced. 

 

2.1.3 5’ Genome walking 

To clone 5’ flanking sequence of the gene, genome walking was carried out with the 

Genome Walker Universal Kit (Clontech, Saint-Germain-en-Laye, France) according to the 

manufacturer’s procedure. Briefly, aliquots of genomic DNA (2.5 μg) were separately 

digested overnight with the following blunt-end restriction endonucleases: DraI, EcoRV, 

PvuII and StuI. After inactivation, the four digested DNA preparations were ligated to the 

Genomic Walker adaptors. Two rounds of PCR were performed with the BD Advantage 2 

PCR kit (Clontech, Saint-Germain-en-Laye, France). Adaptor-ligated DNA fragments were 

used as template for primary PCR amplification, with the outer adaptor primer (AP1) and 

a gene specific 5’-outer primer (Table 2.3, Genome Walking section). Reactions were run 

using 0.2 μM solution of specific primers, 1 μl of template, 1 μl of 50× Advantage 2 

Polymerase Mix, 5 μl 10× Advantage2 PCR buffer, 0.2 mM dNTPs mix. The amplification 

protocol consisted of two-step cycle parameters: 7 cycles at 95°C for 25 s and 72°C for 3 

min, 37 cycles at 94°C for 25 s and 67°C for 3 min plus a final extension at 67°C for 7 min. 

Aliquots (1 μl) of 50-fold diluted primary PCR products were used as template in the 
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secondary PCR amplification, with the nested adaptor primer (AP2) and a nested gene-

specific primer (Table 2.3, Genome Walking section) with the same reactions mix 

described above. The amplification protocol consisted of two-step cycle parameters: 5 

cycles at 95°C for 25 s and 72°C for 3 min, 24 cycles at 94°C for 25 s and 67°C for 3 min 

plus a final extension at 67°C for 7 min. Amplified products were analyzed in 1% agarose 

gel and sequenced as above reported. 

 

2.1.4 Endonucleases digestion 

The 3 Kb PCR product obtained with the primers Int1a/1c_Fwnew and Int1a/1c_REV_5 

was very tricky in cloning and sequencing steps because of the presence of highly 

repeated region. For these reasons a blunt digestion, with 1 U of HaeIII/1 μg of PCR 

product, was performed in order to obtain smaller fragments. The reaction was incubated 

at 37°C for 2 h. The four bands obtained from the digestion, of 1.5 Kb, 1 Kb, 0.4 Kb, 0.1Kb 

respectively, were gel purified, A-tailed with DNA Polymerase, ligated into pGEM-T Easy 

Vector (Promega, Milan, Italy), and sequenced. 

 

2.1.5 RNA extraction, mRNA retro transcription and amplification 

Total RNA was extracted with TRIzol Reagent (Invitrogen, S. Giuliano Milanese, MI, Italy) 

from about 100 mg of each pool of larvae and tissue following the manufacture’s 

instruction, then treated with DNase (DNA free, Ambion, Austin, TX, USA). The first strand 

cDNA was synthesized using 2 μg of total RNA, 150 pmol random primers (for larvae’s 

RNA) and dT16 primer (for tissues’ RNA), 1 μl dNTPs mix 10 mM, in a volume of 12 μl. The 

mix was heated at 65°C for 15 min, chilled on ice and then 4 μl 5× retrotranscription 

buffer, 2 μl of 0.1 M DTT, 1 μl RNaseOUT and 200 U M-MLV retrotranscriptase 

(Invitrogen, S. Giuliano Milanese, MI, Italy) were added to a final volume of 20 μl. After 

incubation at 37°C for 50 min, the reaction was stopped at 75°C for 15 min. The 

generated cDNA was stored at -20°C. 

The open reading frame was obtained by RT-PCR performed with specific primers 

Dl_BDNF_up and Dl_BDNF_down designed within conserved regions of BDNF coding 

sequence belonging to other species. The bipartite BDNF transcripts were evaluated, 
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when necessary, by two rounds of PCR with primers deduced on the obtained exon 

sequences. Reactions were run using 1 μM solution of specific primers (Table 2.3, 

Qualitative PCR section), 1 μl of cDNA, 0.75 U of GoTaq DNA Polymerase (Promega, Milan, 

Italy), 5 μl 5× Green GoTaq Reaction buffer, 0.2 mM dNTPs mix. The first round PCR was 

performed with the following conditions: 94°C for 3 min and 34 cycles at 94°C for 30 s, 

annealing at 56°C for 30 s, elongation at 72°C for 50 s and final extension at 72°C for 4 

min. The second round PCR was performed on 1 μl of first round PCR product for 30 

cycles at the same conditions. The PCR products were loaded into 1% agarose gel stained 

with ethidium bromide and run in TAE 1× buffer at 100 mV for 30 min; β-actin and GAPDH 

were used as housekeeping genes. For each sample a set of PCR has been run without 

retrotranscription to exclude any genomic contamination. 

 

2.1.6 5’ and 3’ Rapid Amplification of cDNA Ends (RACE) 

The 5’-RACE was performed according to the method published by Semple-Rowland et 

al., with slight modifications. Briefly, 1 µg poly-A+ RNA, extracted from sea bass brain, 

was reversed transcribed using 200 U M-MLV reverse transcriptase (Invitrogen, S. 

Giuliano Milanese, MI, Italy) following the manufactured instruction and using 20 pmol of 

sequence-specific antisense primer RACE_BDNF_GSP1. The reaction was incubated at 

42°C for 50 min and stopped placing the tube on ice; excess primers, dNTPs and buffer 

were removed using a QIAquick PCR purification kit (Qiagen, Milan, Italy). In the final step 

of the procedure the DNA was eluted in 30 µl of water. A poly dCTP tail was added to the 

single-stranded cDNA present using terminal deoxynucleotidyltransferase (Promega, 

Milan, italy). The mixture was denaturated at 94°C for 3 min, chilled on ice, incubated at 

37°C for 10 min and stopped at 70°C for 10min; excess of dCTP and buffer was removed 

as reported above. Second strand cDNA synthesis was carried out using 5 U Taq 

Polymerase (Qiagen, Milan, Italy), 0.2 μM of a poly d(G) anchor primer (RACE_AAP), 200 

mM dNTPs mix and 10× PCR buffer. The reaction was incubated in a thermo cycler at the 

following conditions: 40°C for 5 min, 72°C for 2 min, than the temperature was increased 

at 80°C. At this point 0.2mM of the nested sequence-specific primer RACE_BDNF_GSP2 

and a nested anchor primer RACE_AUAP were added for the amplification at the 
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following conditions: 94°C for 1 min, 54°C for 1 min, 72°C for 1 min (30 cycles), last 

extension time 72°C for 10 min; kept at 4°C. 1 µl of a 1:10 dilution of the PCR products is 

re-amplified using the nested anchor primer RACE_AUAP and the nested sequence-

specific primerRACE_BDNF_GSP3. The PCR cycle parameters were as follow: 8 touchdown 

cycles with annealing temperature from 58 to 54°C, than 94°C for 1 min, 54°C for 1 min, 

72°C for 1 min (27 cycles), last extension time 72°C for 10 min; kept at 4°C. The resulting 

products were run on a 1% agarose gel, purified, cloned into pGEM-T Easy Vector 

(Promega, Milan, Italy) and sequenced. The 3’ race was performed with the following 

protocol: 4 μg of total RNA and 10 pmol of Adapter Primer (AP) in a volume of 10 μl were 

incubated at 70°C for 10min. The mix was chilled on ice and then 4 μl of 5× reverse 

transcription buffer, 2 μl of 25 mM MgCl2 solution, 1 μl of 10 mM dNTPs mix and 2 μl of 

0.1 M DTT were added. The mix was incubated at 42°C for 5 min and then 200 U of 

SuperScript III reverse transcriptase (Invitrogen, S. Giuliano Milanese, Italy) were added. 

After incubation at 42°C for 50 min, the reaction was stopped at 70°C for 15 min. The 

generated cDNA (2 μl) was used as template for PCR. The reactions were run using 1 μM 

solution of Universal Amplification Primer (UAP) and gene specific 3’-outer primer 

(SP1FW_3’), 0.75 U of GoTaq DNA Polymerase (Promega, Milan, Italy), 10 μl 5× Green 

GoTaq Reaction buffer, 0.2 mM dNTPs mix. The reaction was incubated in a thermo cycler 

at the following conditions: 95°C for 2’ and 30 cycles at 95°C for 30 s, annealing 

depending on the melting temperature of the primers for 30 min, elongation at 72°C for 2 

min and final extension at 72°C for 6 min. A second round PCR was performed at the 

same conditions using 1 μl of first PCR product, 1 μM solution of UAP and a nested gene-

specific primer (SP2FW_3’, BDNF_3’race). The resulting products were run on a 1% 

agarose gel, purified, cloned into pGEM-TEasy Vector (Promega, Milan, italy) and 

sequenced. 
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 NAME SEQUENCE 5’ → 3’ Tm °C Notes 

Genome Walking  1beta_SP1 

1beta_SP2 

1beta_SP3 

1beta_SP4 

1beta_SP5 

1beta_SP6_A 

1beta_SP6_B 

AP1 

AP2 

CCACTGAGTCCAACCCTTCCAGCAATGC 

ACCATTTTCCCCTACGCTGTCCTGGAGATAG 

ACTTCTGCTGTGCTCAGTAGATCGCCCACC 

GGCAAATATCAACAAGCCCGGGTTGTCAG 

GGCAATCCAAGTTTGTGGGGGTACTAGTTC 

GAGTGTTAACTCCCTCTTTGGCGAGGGG 

GGCCTATTACGCATACGCACAAACTGGTC 

GTAATACGACTCACTATAGGGC 

ACTATAGGGCACAGCGTGGT 

72.2 

70.2 

71.9 

72.0 

68.3 

69.7 

69.0 

59.0 

71.0 

3 

3 

3 

3 

3 

3 

3 

4 

4 

Genomic PCR Dl_ex1beta_fw 

Dl_ex1c_fw 

Dl_ex1a_fw 

Dl_P1_ant_BDNF 

Dl_P2_ant_BDNF 

Dl_ex1a_rev 

Dl_ex1c_rev 

Int1c/2_FW 

Int1c/2_REV 

Int1c/2_up 

Int1c/2_low 

Int1c/2_FWnew 

Int1c/2_REVnew 

Int1a/1c_FW 

Int1a/1c_FWnew 

Int1a/1c_FW1 

Int1a/1c_FW2 

1crev_SP1 

Int1a/1c_REV_1 

Int1a/1c_REV_2 

Int1a/1c_REV_3 

Int1a/1c_REV_4 

Int1a/1c_REV_5 

Int1a/1c_REV_6 

Int1a/1c_REV_7 

Int1beta_FW 

CCAAGTGGTGGGCGATC 

CCATGCAATTTCCACCATC 

GTTAACTTTGGGAAATGCAAG 

CCATAGTAACGAACAGGATG 

GTCATCACTCTTCTAACCTGTTG 

CACTTGCATTTCCCAAAGTTAAC 

GATGGTGGAAATTGCATGG 

CCAGACAGTTTCTGTATTGTTGTTTTGGAGGGG 

TCCAGCCATGTGAGGATCAATTGTGAACGG 

GTATTTTCTTAATTGCACACAGCGTGGGTGGG 

CATTCTTAATTGGTATCTGGGGCCGTGGC 

CTCTAGGTGCGTTGTCATGCACAAAGGC 

AGGGGTAATATTGCAGTAGCAGGGGGTGG 

ATGCTCCCAATATGGGACCTTAAGACGCTGC 

GTAATCGTTGCGTTGTGCTTAATCATGCTCC 

GGTCTGCTGCATTCATGTTTTGTCTTGATG 

GCCCTACTCTTTACCCCCCCCACCC 

TCTCCCGACAAGCTTCAGGATATCTCTTCAGC 

TTTTGCGTAACIGCGCGTCTCCACCAIGTC 

CAAACTCCTGGATATGAGCTTAAAGGAGGC 

CGTTTGGCATGTAGCAGTATGGGAGTGG 

CCTTTCAAGGCTTCTCTTGCCAAATGC 

CATCCTGCCAGCATGTGCAACTGC 

CCTGACTCACTTTTAGCCTATCTGACATGCAGG 

CACACACACACACACACACACACACTGTG 

GACCAGTTTGTGCGTATGCGTAATAGGCC 

57.6 

54.5 

54.0 

55.3 

58.9 

54.0 

54.5 

70.2 

73.6 

71.4 

71.0 

69.8 

70.0 

72.2 

66.8 

68.7 

70.2 

70.8 

74.5 

66.4 

69.3 

68.2 

69.6 

69.3 

68.3 

69.0 

2 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3’-RACE SP1FW_3’ 

SP2FW_3’ 

BDNF_3’race 

AP 

UAP 

GGCTGCAGAGGAATAGACAAGCGGCAT 

CCAATGCAGGACAACCCAGTCCTACGT 

GACCATTAAGAGGGGCAGATAG 

GGCCACGCGTCGACTAGTACTTTTTTTTTTTTTTTTT 

CUACUACUACUAGGCCACGCGTCGACTAGTAC 

70.4 

69.3 

60.3 

71.1 

64.3 

3 

3 

3 

4 

4 

5’-RACE RACE_BDNF_GSP1 

RACE_BDNF_GSP2 

RACE_BDNF_GSP3 

AAP 

AUAP 

CTTGGTTGCTGATCATC 

CTGTGAGTGAGGGCAGTTC 

CGAACAGGATGGTCATCACTC 

GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG 

GGCCACGCGTCGACTAGTAC 

50.4 

58.8 

59.8 

>75.0 

66.0 

3 

3 

3 

4 

4 

Qualitative and 

semiquantitative 

PCR 

Dl_BDNF_up 

Dl_BDNF_down 

1beta_FW_nested 

1beta_Rev_new 

1a_FW_new 

1a_Rev_new 

1bFW 

1c_FW_new 

ATGACCATCCTGTTCGTTAC 

CTATCTGCCCCTCTTAATG 

GCGAGGGTGTTACGTATATCTG 

CCACTCACTCCAACAGATGC 

GCTTATTCTGAGGGAGCCTG 

CCCAAAGTTAACGCAGTGTG 

CTCAGCTCTGCAGAGTTGGGGT 

CGTTTCACCATGCGACAAC 

55.3 

54.5 

58.7 

59.3 

59.0 

59.2 

61.8 

61.1 

2 

2 

3 

3 

3 

3 

3 

3 
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1c_Rev_new 

1dFW 

1dRev 

Ex2_FW_new 

Ex2_Rev_new 

Dl_BDNFreal_low 

Dl_Act_FW_RT 

Dl_Act_Right 

D.l._GAPDH_FW 

D.l._GAPDH_Rev 

GCCCAGTCGTAAAACAGACC 

GTCCTGATGGAAACAGGAAATCAC 

CACAGATGACGTCTCTTCCAGGT 

CTTCAGTTGCATGAGAGCTGC 

ACCCTCATGCACATATTAGCG 

TTGCTTCAGTTGGCCATTGG 

GGTATTGTCATGGACTCCGGTGAT 

TTAGAAGCATTTGCGGTGGA 

GAGGGTGACAAGCTGGTCGT 

CAAAGATGGAGGAGTGAGTGTCAC 

59.6 

63.1 

62.9 

61.3 

60.0 

57.3 

61.9 

58.0 

58.8 

58.8 

3 

3 

3 

3 

3 

3 

1 

1 

1 

1 

Universal Primers T7 

SP6 

TAATACGACTCACTATAGGG 

CATTTAGGTGACACTATAG 

53.2 

50.2 

 

Table 2.3 Primers used for BDNF amplification: 1 - primers deduced on sequences available in 

public databases (Actin: AY148350; GAPDH: AY863148). 2 - primers deduced on ortologue 

sequences (BDNF: Danio rerio AL935207 clone CH211-251J8; Fugu rubripes http://www.fugu-

sg.org/ scaffold_1; Paralichthys olivaceus AY074888). 3 - primers deduced on obtained sequences. 

4 - primers included in the kits used during the experiments. 

 

 

2.1.7 Semiquantitative analysis 

The bipartite BDNF transcripts expression, in control and stressed brain samples, were 

evaluated by semiquantitative PCR. The reactions were performed with the same specific 

primers and conditions of qualitative PCR, and normalization was carried out using 

cytoplasmatic β-actin (cDNA 1:50 diluted). The PCR products were loaded into 1% agarose 

gel and run in TAE 1× buffer at 100 mV for 30 min. The semiquantitative analysis was 

carefully performed by BIO-RAD Gel Doc 2000 connected to the software Quantity one™ 

that allowed to determine, in arbitrary units, the fluorescence value of the area of each 

considered band. After having obtained all the values, we have normalized them with 

those of β-actin; than we evaluated the ratio of the “stressed” samples compared to the 

control ones. In this way, we have avoided differences due to template concentration in 

the PCR tube. The data were statistically compared using the two tail omoschedastic 

Student’s t-test. The significance level was set at p < 0.05. 
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2.1.8 Bioinformatic analysis 

BDNF gene exon-intron boundaries were determined by Blast, ClustalW analysis 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi;http://www.ebi.ac.uk/Tools/clustalw2/index.htm) 

and by direct comparison of PCR-amplified sequences with genomic pufferfish 

(http://www.fugu-sg.org/BLAST/Export.htm), zebrafish, human and rodent DNA from the 

NCBI database (GeneBank accession numbers: AL935207 clone CH211-251J8; AF411339; 

AY057907, respectively). 

 

2.1.9 Western-blot analysis 

Brain and liver proteins were extracted from control (N = 15) or stressed animals (N = 15) 

and immediately frozen in liquid nitrogen. The tissues were mechanically homogenized at 

4°C using an extraction buffer solution containing 25 mM Tris HCl pH 7.5, EDTA 1 mM, 

Spermidin 1mM, PMSF 1 mM, IAA 1 mM, Soy Bean Trypsin Inhibitor (SBTI), 10 μg/ml 

Turkey Egg White inhibitor (TEWI). After homogenization 0.1% Triton X-100 was added 

and samples were incubated in agitation for 1 hour at 4°C. Samples were centrifuged for 5 

min, at 4°C (10.000×g) and the soluble fraction (supernatant) of the lysate was collected 

for Western blot analysis. Total protein content in lysate tissue samples was determined 

using Bradford assay (Sigma-Aldrich). Samples (10 μg) were run in 15% SDS-PAGE and 

proteins were transferred onto a nitrocellulose membrane (Protran Nitrocellulose 

Transfer Membrane, Whatman) using transfer buffer solution [39 mM Glycine, 48 mM 

Tris-HCl, 0,037% (v/v) SDS, 20% (v/v) methanol]. Subsequently, the membrane was 

stained using Ponceau dye (Sigma-Aldrich) to check for the complete protein transfer. 

Membranes were cut at the level of 44 kDa according to protein markers. The two 

membranes were incubated for 1 hour at room temperature in blocking solution [4% (v/v) 

non fat milk powder, 0.05% Tween-20 in phosphate buffer saline solution]. The upper 

part of the membrane (>44 kDa) was incubated over night (O/N) at 4°C with anti-α-

tubulin antibody (Sigma-Aldrich, mAB diluited 1:10.000). The lower part of the membrane 

(<44kDa) was incubated with anti-BDNF antibody (N-20, pAB, Santa Cruz Biotechnology, 

diluted 1:500). The anti-BDNF antibody recognizes the first 20 N-terminal aminoacids of 

mature BDNF and therefore is able to detect both the mature and the precursor form of 
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BDNF. Moreover, as the human and seabass mature BDNF are highly homolog (more than 

90%) we have used human BDNF as positive control (Michalski et al., 2003; Peng et al., 

2005). After O/N hybridization with the specific antibody, membranes were incubated 

with secondary antibodies for 1 hour at room temperature, we used goat anti-mouse HRP 

(Sigma-Aldrich, dil. 1:20.000) for α-tubulin, and goat anti rabbit HRP (Dako Cytomation, 

dil. 1:10.000) for BDNF. Finally, membranes were washed with blocking solution and 

immuno reactive bands were detected using a chemiluminescence system (ECL-advance, 

Amersham Biosciences). 

 

2.1.10 Densitometry and statistical analysis  

Densitometric analysis of immunoreactive bands was obtained by scanning films at 16-bit 

level and applying Quantity One software procedures (Biorad). Data were normalized 

using as internal control the Western blot for the housekeeping gene α-tubulin. The ratio 

ProBDNF vs total-BDNF or matBDNF vs total-BDNF was expressed as % and obtained with 

the formula: proBDNF/(proBDNF+matureBDNF)×100. Each set of data was statistically 

analyzed using Student’s t-test and one-way ANOVA (Holm-Sidak). The statistical analysis 

was performed using Sigma Stat 3.1 software. A p value of 0.05 was set as the minimal 

level for statistical significance. 

 

2.1.11 Calculation of test performance 

We considered positive to the proBDNF/totalBDNF test, individuals whose score was 

>1SD with respect to the average value in the normal, non-stressed population. Stressed 

animals positive to test are true positive (= a), non-stressed animals which tested positive 

are false positive (= b), stressed animals that tested negative are false negative (= c) while 

non-stressed animals that tested negative are true negatives (= d). The sensitivity, 

calculated as a/(a+c), measures the proportion of actual positives which are correctly 

identified as such; and the specificity, calculated as d/(d+b), measures the proportion of 

negatives which are correctly identified. The positive predictive value is the probability 

that a test positive is a true positive: a/(a+b) and it is the most important measure of a 

diagnostic method as it reflects the probability that a positive test reflects the underlying 
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condition being tested for. Its value does however depend on the prevalence of the 

disease, which may vary. The negative predictive value is the probability that a test 

negative is a true negative: d/(c+d). The negative predictive value is the proportion of 

individuals with negative test results who are correctly identified. 
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2.2 5S rRNA gene: PCR-based method for fish species identification 

 

2.2.1 Analyzed species 

Most of fish were purchased at the local supermarket; D. labrax were reared at the DBSM 

animal facility (University of Insubria, Varese, Italy) and P. fluviatilis  were provided by 

local farmer (Cooperativa Tinella, Varese) 

Fillets, from three different fishes for each analyzed species were immediately frozen and 

stored at -20°C until the molecular biology analysis. 

All the fish species analyzed are reported in Table 2.4. 

 

Linnaeus classification Common name Processing 

Dicentrarchus labrax Seabass 

Lates niloticus Nile perch 

Pangasius hypophthalmus Pangasius 

Perca fluviatilis Perch 

Pleuronectes platessa Plaice 

Salmo salar Atlantic salmon 

Salmo trutta Trout 

Solea vulgaris Sole 

Thunnus thynnus Bluefin tuna 

Xiphias gladius Swordfish 

The fishes have been bought 

as fresh fillets and 

immediately frozen and 

conserved at -20°C until the 

molecular biology analysis. 

Table 2.4 Fish species analyzed in this work 

 

2.2.2 Isolation of genomic DNA 

Total genomic DNA was prepared from frozen samples by the urea-SDS-Proteinase K 

method (Aranishi and Okimoto 2004). Briefly, about 100 mg of tissue from fillet were 

immersed in 500 µl of extraction buffer (10 mM Tris-HCl, pH 8.0, 20 mM EDTA, pH 8.0, 2% 

SDS, 4M urea, 4,12 µl Proteinase K 800 U/ml), and incubated at 55°C for 1 h with shaking. 

One-tenth volume of 5 M NaCl was added and mixed; then an equal volume of phenol-

chloroform-isoamyl alcohol was added and mixed. Following centrifugation at 10,000xg 

for 5 min, the upper aqueous phase containing DNA was collected and subjected to 



 40 

ethanol precipitation. DNA pellet was washed twice with 70% ethanol, dried, and 

resuspended in 50 µl of 10T0.1E (10 mM Tris-HCl, pH 8.0, 0.1 mM EDTA, pH 8.0). 

The genomic DNA was quantified measuring the absorbance at the wave length of 260 

nm and applying the following formula: (Abs260*ε*dilution factor)/1000= sample 

concentration (µg/µl), where ε is the molar extinction coefficient, which value for double 

strand DNA is 50. 

 

2.2.3 PCR and DNA sequencing 

All the primers used in this work are reported in Table 2.5. 

20 ng of genomic DNA were amplified using 1 μM solution of 5s rRNA “universal” primers 

with 0.75 U of GoTaq DNA Polymerase (Promega, Milan, Italy), 5 μl 5× Green GoTaq 

Reaction buffer, 0.2 mM dNTPs mix in a final volume of 25 μl. The PCR was performed at 

the following conditions: 95°C for 2 min and 24 cycles at 95°C for 30 s, annealing at 56°C 

for 30 s, elongation at 72°C for 30 s and final extension at 72°C for 4 min.  

The products resulting from the PCR were run on a 1% agarose gel, purified, cloned into 

pGEM-TEasy Vector (Promega, Milan, Italy) and sequenced (BMR Genomics, Padova, 

Italy). 

 

2.2.4 Sequences analysis and PCR amplification 

The obtained sequences were aligned by ClustalW 

(www.ebi.ac.uk/Tools/clustalW2/index.html; Appendix 2) to design species-specific 

primers along not conserved region of the NTS (Table 2.5). 

20 ng of genomic DNA were then amplified with the species-specific primers in the same 

described conditions. 
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 Name Sequence (5’ → 3’) Tm (°C) Notes 

Fish5S_FW TACGCCCGATCTCGTCCGATC 60,05 1 

U
n

iv
e

rs
a

l 

p
ri

m
e

rs
 

Fish5S_REV CAGGCTGGTATGGCCGTAAGC 60.21 1 

D.labrax_5SFW GTTATCACTTGTCCACTGCAGG 59.66 2 

D.labrax_5SREV TGAGCTTCACCTGCAAATGG 62.31 2 

L.niloticus_5SFW GTAGTCGAGACAGGGCACGT 60.33 2 

L.niloticus_5SREV TCATTCATTCGGCAGCAGT 60.37 2 

Pangasius_5S_FW TGGGAGGAAGATTGACTAGAAAC 58.77 2 

Pangasius_5S_REV CTAATTCAAATGAAGGCCTCAC 57.89 2 

Perca_5S_up TCCCATTGTACAACAGCAG 55.50 2 

Perca_5S_low CTTTAGAGTAGGTGAACACAAGG 55.04 2 

P.platessa_5SFW TCAGTGGGTGGCTTCATTC 59.62 2 

P.platessa_5SREV GTAAATACGTCAGGTAAAAGCGG 59.16 2 

Salmo_5S_up GTGTGCCCCTGCACTATTTC 60.53 2 

Salmo_5S_low GGCAGATGCTAATTGAAAACAC 58.77 2 

S.vulgaris_5SFW GCACACGTTAACGTCCTTCT 57.88 2 

S.vulgaris_5SREV GGGGACACAGACTCCTTTTATAG 58.22 2 

T.thynnus_5SFW TGCGTGCGCTTTACAACTA 59.22 2 

T.thynnus_5SREV CTATCCTTAATAACTTCCGTGTGC 58.37 2 

Trota_5S_up GGAATTTCAACTCTTTGTCCG 58.68 2 

Trota_5S_low CTTGCTTACTTATTTCAAAGCGAG 58.88 2 

X.gladius_5SFW CTTACTCATTGGAAAAAAAAGAGA 56.17 2 

S
p

e
ci

e
s-

sp
e

ci
fi

c 
p

ri
m

e
rs

 

X.gladius_5SREV ACAGTGTCTGCTTCTGGATG 56.31 2 

 

Table 2.5 Primers used for 5s rRNA amplification: 1 – primers deduced from literature (Pendas et 

al., 1994); 2 – primers deduced on obtained sequences. 
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3. Results 
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3.1 BDNF: gene structure characterization; mRNA and protein 

quantification after stress 

[The results reported in this thesis work have been published in: Tognoli et al., BMC Neuroscience 2010, 

11:4. See References] 

3.1.1 Genomic organization of BDNF 

As the gene encoding BDNF in Dicentrarchus labrax (D. labrax) was not described before, 

we first cloned the entire gene and determined its genomic organization. We used a 

strategy of cloning each exon separately using PCR primers designed on a consensus 

sequence inferred from the ortologue sequences of BDNF in Danio rerio (zebrafish), and 

Fugu rubripes (pufferfish). Zebrafish, pufferfish, and seabass are all teleosts and therefore 

we expected a similar exon/intron organization of their BDNF gene and closely related 

sequences. To clone the 5’ flanking sequence of the D. labrax BDNF gene, we carried out 

a genome walking. Finally, to determine the D. labrax BDNF gene exon/intron boundaries 

and identify the mRNAs transcribed from the gene, we performed a combination of 5’ 

and 3’ rapid amplification of cDNA ends (5’ and 3’ RACE), RT-PCR and bioinformatic 

analysis.  

The gene spans about 15 Kb and it is organized in 6 exons and 5 introns as reported in Fig. 

3.1A (GeneBank accession number FJ711591). Exons were identified by ClustalW analysis 

(see methods) as the most highly conserved segments and were all found to be flanked by 

the typical consensus splice donor (GT) site in eukaryotes. The exons length and position, 

and their exon/intron junctions are summarized in Table 3.1. In analogy with zebrafish 

and pufferfish, also in D. labrax the BDNF coding sequence is contained in the exon 2 and 

this tract resulted highly conserved with respect to other vertebrate species (D. rerio 84%, 

F. rubripes 91%, H. sapiens 77%, M. musculus 78%, R. norvegicus 78%, ). 

Upstream to the coding exon we have found other five untranslated exons: 1b, 1a, 1b, 1c 

and 1d. By aligning these exon sequences with those of the corresponding zebrafish 

exons, we found an identity of 85%, 43%; 82%; 74% and 82%, respectively. D. labrax 

BDNF transcripts analysis indicated that upstream untranslated exons can be spliced 

independently to the major coding exon to form distinct bipartite BDNF transcripts with 

different 5’ UTR lengths and a common coding region (Gene-Bank accession number 
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DQ915807). Interestingly, in the exons 1β, 1b and 1d we have identified in-frame ATG 

codons that could be used as translation start sites leading to the prepro-BDNF proteins 

with longer N-termini (Fig. 3.1B). 

The five exons located upstream to the coding region did not show any significant identity 

when aligned with mammalian BDNF genes (rat, mouse and human) with the exception of 

a 75% identity between D. labrax exon 1b and mammalian exon 1, and for the presence 

of the highly conserved segments HCS1, HCS2 and HCS3. HCS2 is located in D. labrax 

BDNF exon 1a and mammalian exon IIC and showed 96% identity; HCS1 in D. labrax BDNF 

exon 1c showed 38-41% identity with a similar sequence in mouse, rat and human exon 

IV while the HCS3 is localized in the 3’UTR of D. labrax, mouse, rat and human BDNF and 

was 97% identical (39 of 41 nucleotides are identical in fish and man) between these 

species (Fig. 3.2 and 3.3). 

The coding region encoded a protein precursor (Fig. 3.4A) with a signal peptide at the N-

terminus, the propeptide of 150 amino acids (AA) in the center and the mature BDNF of 

129 amino acids at the C-terminus. This organization is similar to that of zebrafish 

(Hashimoto and Heinrich, 1997) avian (Maisonpierre et al., 1992) and mammalian BDNF 

(Hofer et al., 1990; Jones et al., 1990; Maisonpierre et al., 1991). The proBDNF resulted 

only 87% identical to zebrafish BDNF and 74-75% to the mammalian counterparts. 

However, two regions were >95% identical (Fig. 3.4B): the first 20 N-terminus AA, 

comprising the signal peptide, and 35 AA just upstream of the cleavage site which also 

encoded for the glycosilation consensus site (Fig. 3.4A). Analysis of the extended N-

terminal sequences with the prediction programme SignalP 3.0 (Bendtsen et al., 2004) 

showed that the N-termini produced by exons 1b and 1b have poor scores as signal 

peptides because of the presence of a putative signal anchor, while the very long 

sequence produced by exon 1d does not encode for a signal peptide. 
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Exon Start Splice acceptor End Splice donor Length (bp) 

1β nt203 - nt602 GGAAAATGgtaagtag 282 

1a nt1367 - nt1818 TTGTAAAGgtaagagc 452 

1b nt4270 - nt4315 ACCTGATGgtaggttt 46 

1c nt8347 - nt8646 AGTAAAAGgtatgtgt 300 

1d nt11540 - nt11797 CTGTGGTTgttatgct 258 

2 nt14063 ccctccagTTCCACCA nt15130 - 1068 

Table 3.1 Structure of Dicentrarchus labrax gene. Position numbering is based on gene sequence 

(FJ711591). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Alignment of Highly Conserved Sequence in man, rodent and fish. (H.s) Homo sapiens, 

(R.n.) Rattus norvegicus, (D.r.) Danio rerio, (D.l.) Dicentrarchus labrax.  

 

 

 

 

 

HCS1 (38-41%)
R.n./M.m. ATTACCTCCGCCATGCAATTTCC---ACTATCAATAATTTAA 39

H.s. ATTACCTCCGCCATGCAATTTCC---ACTATCAATAATTTAA 39

D.r. ATTACCTCAACCATGCAATTTCC---ACCATCAATAATTTAA 39

D.l.            GCAGCCATGGGAGTGCATTACCTCATACCATCAATAATTTAA 42

**       **** *  *    ** *************

HCS2 (96%)

R.n./M.m GTTAACTTTGGGAAATGCAAGTGTT 25

H.s. GTTAACTTTGGGAAATGCAAGTGTT 25

D.r. GTTAACTTTGGGAAATGCAAGTGTT 25

D.l.            GTTAACTTTGGGAAATGCAAGTCTT 25

********************** **

HCS3 (97%)

D.r. TATCTATTTGTATAT--ACATAACAGGGTAAATTATTCAGT 39

H.s. TATCTATTTGTATATATACATAACAGGGTAAATTATTCAGT 41

R.n./M.m TATCTATTTGTATATATACATAACAGGGTAAATTATTCAGT 41

D.l.            TATCTATTTGTATATATACATAACAGGGTAAATTATTCCGT 41

***************  ********************* **
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1 aggaacagaatgattacagtttgcaaacaatttgaaaacactgatgacacagcgccaata 

61 tcagtttaataaaaaaacattctgtgattattccaaagctactgactccctttttagtgt 

121 gcaaagaaagagtggagggtgtaaataagaggaaaggcttacattgtgcattatggatca 

181 agaataagctaacttcattgaaaatgctctttgactaaccgtcttgctctctctcccccc 

241 tccttccctcttgttttctctctttctctccccctccagttccaccaggttagaagagtg 

 

301 atgaccatcctgttccttactatggttatttcatacttcagttgcatgagagctgcgccc 

    1  M  T  I  L  F  L  T  M  V  I  S  Y  F  S  C  M  R  A  A  P  
361 ctgagagacgccccgggcatgcggggccatcggacggaaggctacttgggcgccgctgcg 

   21  L  R  D  A  P  G  M  R  G  H  R  T  E  G  Y  L  G  A  A  A  

421 acggccgcgcgaggccatgggactccacagagtggtggtgggccaggccagcgcggggaa 

   41  T  A  A  R  G  H  G  T  P  Q  S  G  G  G  P  G  Q  R  G  E  

481 ctgccctcactcacagacacgtttgagcaggtgatagaggagctgctggaggtggaggga 

   61  L  P  S  L  T  D  T  F  E  Q  V  I  E  E  L  L  E  V  E  G  

541 gaggcggcacagctgggacagggggctgataagagccagggaggtgggggcccatcctct 

   81  E  A  A  Q  L  G  Q  G  A  D  K  S  Q  G  G  G  G  P  S  S  

601 gtggtcaccacagaggccaaggatgtcgacctgtacgactcgcgggtgatgatcagcaac 

   101   V  V  T  T  E  A  K  D  V  D  L  Y  D  S  R  V  M  I  S  N  

661 caagtgcctttggagccgccgttgctctttcttctggaggaatacaaaaactatctggat 

   121  Q  V  P  L  E  P  P  L  L  F  L  L  E  E  Y  K  N  Y  L  D  

721 gccgctaatatgtgcatgagggtgcggcgacactccgatccctcacggcgtggagagctc 

   141  A  A  N  M  C  M  R  V  R  R  H  S  D  P  S  R  R  G  E  L  

781 agcgtgtgtgacagtattagccagtgggtgacagctgtggataaaaagacggcaatagac 

   161  S  V  C  D  S  I  S  Q  W  V  T  A  V  D  K  K  T  A  I  D  

841 atgtctgggcagacagttaccgtcatggaaaaggtccctgtccccaatggccaactgaag 

   181  M  S  G  Q  T  V  T  V  M  E  K  V  P  V  P  N  G  Q  L  K  

901 caatacttttatgagaccaaatgcaaccccatggggtacacaaaggagggctgcagagga 

   201  Q  Y  F  Y  E  T  K  C  N  P  M  G  Y  T  K  E  G  C  R  G  

961 atagacaagcggcattataattcccaatgcaggacaacccagtcctacgtgcgagcgctt 

   221  I  D  K  R  H  Y  N  S  Q  C  R  T  T  Q  S  Y  V  R  A  L  

1021 accatggatagcaaaaagaagattggctggcggtttataaggatagacacttcatgtgta 

   241  T  M  D  S  K  K  K  I  G  W  R  F  I  R  I  D  T  S  C  V  

1081 tgcacattgaccattaagaggggcagatagtgtataaaatgtatagattttattgaagag 

   261   C  T  L  T  I  K  R  G  R  - 
1141    tttaaaaaagagaataaagagaaaatatctatttgtatatatacataacagggtaaatta 

1201 ttccgtcaaatgaaaattttatggactgcatgtaaaaaaagatgaagtttatacagtaaa 

1261 agtgatactacagtctatttattgaacatattcatgaccttgtaaacaattaaaaaaaat 

1281   ctgatcagtcaaaaaaaaaaaaaaaaa   1308 

 

N  M  C: consensus sequence for N-glycosilation  

 

 

 

 

 

 

Figure 3.4 Protein and cDNA sequence of BDNF. Panel A. Dicentrarchus labrax cDNA sequence 

and deduced amino acid sequence (GeneBank accession number FJ711591). AA sequence of 

signal peptide is boxed in white; AA sequence for N-glycosilation is boxed in black; the cleavage 

sequence is underlined; start codon and the mature BDNF are shown in bold. Panel B. 

Representation of the entire BDNF protein and alignment, among different species, of AA 

sequence of two conserved regions in the prepro protein: Dicentrarchus labrax (D.l.); Danio rerio 

(D.r.); Mus musculus (M.m.); Homo sapiens (H.s). The dashed, the stippled and the black areas 

correspond to the signal peptide, the propeptide and mature secreted protein respectively. 

 

D.l.    MTILFLTMVISYFSCMRAAPLRDAP... ...YDSRVMISNQVPLEPPLLFLLEEYKNYLDAANMCMRVRRHSDPSRR 

D.r.    MTILFVTMVISYFSCMRAAPMREIP... ...YASRVMISNQVPLEPPLLFLLEEYKNYLDAANMSMRVRRHSDPARR 

M.m.    MTILFLTMVISYFGCMKAAPMKEVN... ...YTSRVMLSSQVPLEPPLLFLLEEYKNYLDAANMSMRVRRHSDPARR 

H.s.    MTILFLTMVISYFGCMKAAPMKEAN... ...YTSRVMLSSQVPLEPPLLFLLEEYKNYLDAANMSMRVRRHSDPARR 

1         20                                          150                                         

269  

  1                                                 20                                     115                                                                                  150 

A 

B 
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3.1.2 Developmental and tissue-specific expression of BDNF splice variants 

To learn more about the possible role of BDNF transcripts in the seabass, we analyzed 

their expression during post-hatching development and their tissue distribution in the 

adult. The different transcripts were amplified using 5’ exon forward specific primers in 

combination with a reverse primer located on the exon 2. Expression of the coding exon 2 

was determined using internal primers. When no amplicon was detectable after the first 

PCR reaction, a second round of PCR was carried out to increase sensitivity.  

Analysis of BDNF expression at 6, 16, 27, 33 and 44 days post-hatching (dph) showed that, 

besides variant 1d/2, all BDNF variants were expressed during the entire larval 

maturation. Of note, variant 1d/2 transcript was undetectable at all stages even after the 

second round PCR. Although this analysis cannot be considered quantitative, it is clear 

that the generated bipartite transcripts showed striking differences in their expression 

with 1c/2 splice variant showing the highest expression throughout all post hatching 

development stages (Fig. 3.5). 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Example of expression of Dicentrarchus labrax alternative mRNAs during larva 

development obtained by RT-PCR. *: Aliquots of first PCR products were amplified in 2nd round 

of PCR. For details see Material and Methods. 
 

Expression of splice variants was also determined in brain, liver, kidney and muscle of 

adult animals. An example of the PCR analysis, after gel electrophoresis, is shown in Fig. 

3.6. 
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Figure 3.6 Example of expression of 

Dicentrarchus labrax alternative mRNAs in 

different tissues of adult animals obtained 

by RT-PCR. *: Aliquots of first PCR products 

were amplified in 2nd round of PCR. For 

details see Material and Methods. 
 

 

EXON BRAIN LIVER* KIDNEY* MUSCLE* 

1β/2 + n.d. n.d. n.d. 

1a/2 +* n.d. n.d. n.d. 

1b/2 +/- n.d. +/- n.d. 

1c/2 + +/- + + 

1d/2 +* n.d. n.d. n.d. 

2 ++ + + + 

Table 3.2 Expression of 5’ non coding and coding exons in different tissues of adult D. labrax. * 

An aliquot of first PCR product was amplified in a 2nd round of PCR. n.d.: not detectable 

 

The highest expression levels of the D. labrax BDNF transcripts were observed in the brain 

even though some variants, such as 1b/2 and 1c/2, were detected also in non neuronal 

tissues even if only after a second round of PCR. A semi-quantitative evaluation of the 

tissue-specific expression of D. labrax BDNF alternative transcripts is reported in Table 

3.2. Bioinformatic promoter analysis using Transfac® 6.0 and public version of Match™ 

software (Matys et al., 2003; Gößling et al., 2001) highlighted two regions (TGACGTCA 

and TGAAGTCA), upstream to the exon 1c with highly conserved consensus for the 

cAMP/calcium responsive element binding protein (CRE) which are also found in 

mammals upstream to the exon IV (Liu et al., 2006; Chen et al., 2003; Martinowich et al., 
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2003; Tao et al., 2002). The presence of the HCS1 in fish exon 1c and mammalian exon IV 

supports the likelihood that these two exons are true orthologs. 

 

 

3.1.3 Effects of acute stress on the expression of BDNF splice variants 

Since acute stress induces variations in BDNF transcripts expression in the brain of 

rodents (Marmigère et al., 2003; Fuchikami et al., 2009; Nair et al.,2007) we investigated 

if any changes occurs when fishes underwent to a brief stressful event consisting in 30 

minutes of controlled water deprivation condition (see methods). Semi-quantitative PCR 

analysis of BDNF transcripts expression in the sea bass brain revealed that in the stressed 

group there were no significant differences in the expression of coding exon 2, and in the 

upstream exons 1b, 1a, 1b compared to the control group (Fig. 3.7). In contrast, we found 

a significant decrease in the expression of the exons 1c and 1d (p < 0.05; Fig. 3.7). Thus, 

acute stress in the sea bass, in absence of an emotional component, induces a rapid down 

regulation of the exons belonging to the second exon cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Histogram of semiquantitative-PCR of BDNF. Variants and coding exon in control are 

reported as grey bars, stressed samples are reported as white bars. Values are means ± SD; *p < 

0.05. n = 5. 
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3.1.4 BDNF protein processing in sea bass after acute stress 

To understand if acute stress can also alter BDNF protein levels and/or processing, we 

analysed by Western blot the liver and the brain from 15 normally reared controls and 15 

animals that underwent acute stress. In both liver and brain, anti-BDNF antibodies 

recognized two bands with apparent molecular weight of 27 KDa and 18 KDa which 

correspond to proBDNF (calculated Mw = 28,7 KDa) and mature BDNF (calculated Mw = 

13,3 KDa), respectively (Fig. 3.8A and 3.9A). Remarkably, sea bass BDNF does not contain 

the cleavage site (RGLT) that in mammals is recognized by the Membrane-bound 

transcription factor site-1 protease (MBTPS1 also known as SKI-1 protease) to generate 

the pro28KDa-BDNF isoforms after a cleavage at Threonin 57 (Seidah et al., 1999). Thus, 

in fishes, there is only a proBDNF (equivalent to mammalian pro32KDa) and a mature 

BDNF. 

Preincubation of the anti-BDNF antibody with the corresponding immunizing peptide, 

abolished staining of both bands indicating that they represent the seabass BDNF (data 

not shown). In the liver, BDNF was mostly in the mature form (58% of total BDNF) 

nevertheless, there was also a large amount of proBDNF (42% of total BDNF; Fig. 3.8A). 

No statistically significant difference was observed in proBDNF and matBDNF in stressed 

animal (Fig. 3.8A, B). 

Similarly, in the brain, the mature form consisted in 60% of total BDNF and the proBDNF 

in 40% of total BDNF (Fig. 3.9B). 30 min of acute stress had no effects on the total amount 

of BDNF in the brain but induced a highly significant increase in the proBDNF levels and a 

corresponding significant reduction in mature BDNF (p <0.01 vs. control, Fig. 3.9B). The 

scatter-plot distribution analysis of the two populations showed that in the brain of every 

animal of the stressed group, the percentage of proBDNF is at least 1 standard deviation 

(SD) above the mean value of the control group (Fig. 3.9C). Analogous distribution, but 

towards lower levels, was also found for mature BDNF (not shown). We further calculated 

if the measurement of the percentage of proBDNF on total BDNF in the brain could 

represent a predictive test to identify stressed animals. Therefore, we calculated both 

sensitivity and specificity which are statistical measures of the performance of a binary 

classification test (see methods). 
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Figure 3.8 Stress does not alter the ratio of pro/matBDNF in the sea bass liver. A) A 

representative Western blot of proBDNF and matBDNF expression in the sea bass liver. α-tubulin 

(MW 55 KDa) is used for normalization. Human recombinant proBDNF and matBDNF shows 

reactivity of the anti-BDNF antibody. The bands corresponding to the sea bass proBDNF and 

matBDNF are indicated on the right side. B) Mean percentage of proBDNF vs. total BDNF 

(totalBDNF = proBDNF+matBDNF) of 10 control and 10 stressed animals. Error bars represent SE. 

No significant difference between control and stressed animals was found. C) Scatter-plot 

showing the large overlap of the percentage of proBDNF on total BDNF in individual animals from 

the control and the stressed populations. The F values, obtained by One way Anova analysis, for 

proBDNF and mature BDNF were 4.154 and 0.055, respectively. 
 

 

All stressed animals had ratio of proBDNF/totBDNF above 1 SD from the mean value of 

controls (15/15 stressed are true positive = a, and 0/15 are false negative = c; see 

methods), hence the sensitivity of the test is 100% while the specificity is 87% due to the 

presence of two false positives (2/15 controls are false positive = b, thus 13/15 are true 

negative = d; see methods). The test also had a Positive Predictive Value of 88% and a 

Negative Predictive Value of 100% (see methods). In sum, this test is a perfect exclusion 

test, which means that all specimen with proBDNF/totBDNF values below 43% are 

certainly not stressed. Thus, the brain proBDNF/totBDNF ratio (or its counterpart 

matBDNF/totBDNF) owing to its remarkable difference between stressed and non-
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stressed animals represents a highly reliable neurological biomarker capable to detect 

biological stress in sea bass. 

 

 

Figure 3.9 Stress increases significantly the percentage of proBDNF while decreasing matBDNF 

in the brain of stressed sea bass. A) The quantification of total BDNF in the brain of sea bass using 

an ELISA assay, showed no difference between control and stressed group (A.I.U. = arbitrary 

intensity units). B) A representative Western blot of proBDNF and mature BDNF expression in the 

seabass brain. Human proBDNF and mature BDNF is shown in the first lane from left. α-tubulin 

used for normalization is shown at the bottom. C) ProBDNF on total BDNF is significantly 

increased (** = p < 0.01) in stressed animals with respect to control animals and mature BDNF 

percentage is increased (** = p <0.01; n = 15 animals, each in duplicate. Error bars are SE). D) The 

scatter plot shows that in the brain of all stressed animals proBDNF are above the mean of 

controls+1SD. E) Similarly, in all stressed animals mature BDNF values are below the mean of 

controls -1SD. Only 2 control animals have a proBDNF percentage above the controls’ mean+1SD 

for proBDNF or below the mean-1SD. The F values, obtained by One way Anova analysis, for 

proBDNF and mature BDNF were 19.028 and 6.225, respectively. 
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3.2 5S rRNA: PCR based method for fish species identification 

[The results reported in this thesis work have been reported in: Tognoli et al., Food Chemistry, submitted] 

 

In order to obtain a reliable genetic marker for fish species identification, we conducted a 

bibliographic research and we found that the nuclear 5S rRNA gene is a good candidate 

for food authentication. This gene has 120 nucleotides coding sequence, highly conserved 

between species, tandem repeated in the genome. The repeats are separated by a 

sequence named not transcribed spacer (NTS), which is, on the contrary, species-specific 

in length and sequence. 

For our purpose we chosen ten species of fish of high commercial interest, some of which 

are subjected to substitution. For each species we have sequenced the 5S rRNA gene 

performing a PCR using universal primers designed on the conserved sequence (Table 

2.5). The results of the obtained sequences together with their length and accession 

numbers are summarized in Table 3.3. At this point, by ClustalW, we performed an 

alignment, among all the species (Appendix 2), in order to design species-specific primers 

within the not conserved region of NTS. 

Specific primers generate amplicons, of well defined length (Table 3.4), only when 

primers match with template genomic DNA (Fig. 3.10), allowed discriminating the tested 

species. Noteworthy, it is possible identifying species belonging to the same genus, like S. 

salar (Fig. 3.10 A) and S. trutta (Fig. 3.10 B), and species that are subject to substitution 

each other like P. Fluviatilis (Fig. 3.10 F) and L. niloticus (Fig. 3.10 G), or S. vulgaris (Fig. 

3.10 H) and P. platessa (Fig. 3.10 I) or P. hypophthalmus (Fig. 3.10 J and K). 

The presence of multiple bands, detected in some amplified products (see Fig. 3.10 B, F, H 

and I), is probably due to the repetition of gene sequence in the genome and does not 

influence the evaluation of the results. 

On the other hand, a problem might be caused by the presence of aspecific amplified; 

from our results emerged that, in spite of species-specific primers designed on T. thynnus 

and X. gladius NTS, it wasn’t possible differentiate, by PCR reaction, these two species 

(Fig. 3.10 C and D), that showed amplicons not only of the same sizes but also equally 

expressed. This, maybe, it was due to the presence of various sequences of NTS in the 
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same species. In this particular case, it is useful to point out that tuna and swordfish are 

not replaceable each other for the unique characteristics of their meat, but this is a 

problem that has to be take into account when, on the contrary, the two species are 

affected by fraud.  

 

Analyzed species Sequence length ACCESSION NUMBER 

S. salar 528 bp S73106.1* 

D. labrax 546 bp HM014363* 

T. thynnus 351 bp 

X. gladius 316 bp 

S. trutta 379 bp 

P. fluviatilis 222 bp 

L. niloticus 577+258 bp 

S. vulgaris 415 bp 

P. platessa 181 bp 

P. hypophthalmus 351 bp 

Submission in progress 

 

Table 3.3 List of the submitted sequence and accession number (submission in progress). 

*Sequences already present in NCBI database. 

 

 EXPECTED AMPLICONS SIZE WITH… 

 …5S rRNA universal primers …5S rRNA species -pecific primers 

S. salar 256 bp 128 bp 

S. trutta 377+294 bp 74 bp 

T. thynnus 349 bp 127 bp 

X. gladius 350 bp 275 bp 

D. labrax 544 bp 269 bp 

P. fluviatilis 222 bp 98 bp 

L. niloticus 550+250 bp 157 bp 

S. vulgaris 413 bp 231 bp 

P. platessa 179 bp 166 bp 

P. hypophthalmus 350 bp 319 bp 

Table 3.4 Expected amplicons size with 5S rRNA universal primers and species-specific 

primers.
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Figure 3.10 Species-specific 

amplification of 5S rRNA gene. Each 

panel has been obtained by 

amplification of genomic DNA 

belonging to a single species: A) Salmo 

salar (S. s); B) Salmo trutta (S.t.); C) 

Thunnus thynnus (T. t.); D) Xiphias 

gladius (X. g.); E) Dicentrarchus labrax 

(D. l.); F) Perca fluviatilis (P.f.); G) Lates 

niloticus (L. n.); H) Solea vulgaris (S. v.); 

I) Pleuronectes platessa (P. p.); J) 

Pangasius hypophthalmus (P. h.). In 

each lane has been used a couple of 

universal (lane 1 and 11) or species-

specific primers designed on 5S rRNA 

sequnces: lane 2) S. s.; 3) S. t; 4) T. t.; 5) 

X. g.; 6) D. l..; 7) P. f.; 8) L. n.; 9) S. v.; 

10) P. p.; in panel J, the lane P. h. 

represents the primers of P. 

hypophthalmus, wich are the only ones 

that gave amplicon with corresponding 

genomic DNA, and didn’t give any 

product with genomic DNA from other 

species (panel K lane, 1-9). 
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4.1 BDNF: gene structure characterization; mRNA and protein 

quantification after stress 

 

The first part of the study concerns the characterization of the BDNF gene in 

Dicentrarchus labrax and its transcriptional, translational and post-translational 

regulation following acute stress. 

We found that in the sea bass, BDNF is highly expressed in the brain and that the 

transcripts 1c and 1d from the second promoters cluster are down regulated after acute 

stress. In addition, we show that acute stress induces a significant increase in the 

proBDNF levels and a corresponding reduction in mature BDNF suggesting altered 

regulation of proBDNF proteolytic processing. Finally we show that the proBDNF/totBDNF 

ratio (or its counterpart matBDNF/totBDNF) is a highly reliable novel quantitative 

neurological biomarker capable to detect biological stress in fishes with sensitivity 100%, 

specificity 87%, Positive Predictive Value of 88% and Negative Predictive Value of 100%. 

All known vertebrate BDNF genes share a similar multiple exons organization and encode 

for a pre-proprotein that is translocated to the endoplasmic reticulum and proteolitically 

processed to yield the mature protein (Aid et al., 2007; Pruunsild et al., 2007; Tettamenti 

et al., 2010). The D. labrax BDNF gene consists of at least five alternative 5’-exons and 

one 3’-coding exon. For what concern the nomenclature, we have referred to previous 

studies on zebrafish (Heinrich and Pagtakhan, 2004) because mammalian, avian and 

amphibians BDNF follow a different nomenclature (Kidane et al., 2009). Analysis of D. 

labrax BDNF transcripts, carried out both in the early developmental stages and in adult 

tissues, shows that all alternative upstream exons (1b, 1a-1d) are spliced to the protein-

coding exon 2. This indicates that D. labrax BDNF transcripts structure is similar to other 

vertebrates. In fact, multiple transcriptional initiation sites and splicing into two-part 

transcripts can also be found in humans, chimpanzees, dogs, pigs, cats, cows, chicken, 

frogs, lampreys, zebrafish, and pufferfish (Heinrich and Pagtakhan, 2004). With the 

exception of the exon 1a (43%), we found strong sequence homology with zebrafish and 

pufferfish genes for most exons. Furthermore, exon 1b contains 170 nt segment that is 

highly similar to human exon 1 (75% identity). Three highly conserved segments were 
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found in the sea bass BDNF, HCS2 in exon 1a which is present also in exon IIc of 

mammalian BDNF; HCS1 in exon 1c also found in mammalian exon IV while in the 3’UTR 

encoded by exon 2, we have found the HCS3 which is also present in the 3’UTR in 

mammals. These results suggest that mammalian exons I, II, and IV (coding for the 5’ 

untranslated region) evolved early in the vertebrate radiation and may play a major role 

in BDNF action, while more recently evolved splice variants including other 5’ exons may 

participate in more specialized functions of BDNF such as, for example, synaptic plasticity. 

Further research in this direction may allow testing this hypothesis. 

The post-hatching developmental analysis indicates that although in different amounts, 

all D. labrax BDNF transcripts, except 1d/2, are well represented at all stages analyzed 

(day post-hatching 6, 16, 27, 33, 44). 

On the other hand, the distribution of various BDNF transcripts in adult sea bass is tissue 

specific with all transcripts being most expressed in the brain. The splice form 1c/2 was 

also expressed, even though at low levels, in all the examined extra nervous tissues (liver, 

kidney, muscle), while exon 1b/2 transcript was found only in the kidney. Organ-specific 

expression also holds for most BDNF exons in zebrafish and mammals suggesting 

conserved transcriptional regulation among the vertebrates (Liu et al., 2006; Aid et al., 

2007; Pruunsild et al., 2007; Tettamanti et al., 2010; Heinrich and Pagtakhan, 2004). 

According to this view, our bioinformatic analysis of D. labrax BDNF gene suggests that 

the region upstream to exon 1c contains two potential responsive elements, belonging to 

the CRE family. These elements function as responsive elements also in BDNF exon IV of 

rat cortical neurons (Liu et al., 2006; Heinrich and Pagtakhan, 2004) and may be 

responsible of the higher expression of the isoform 1c/2 in adult sea bass tissue. Of note, 

a previous study on transcriptional analysis of Zebrafish HCS1 reported that this highly 

conserved sequence in the 5’ exon 1c (and vertebrate exon IV) has properties of a 

dehancer and, depending on the sequence context, as an enhancer (Heinrich and 

Pagtakhan, 2004). 

In the second part of our study we have examined the expression of BDNF transcripts 

after acute stress caused by water deprivation for 30 minutes. Although no significant 

difference was found in the total BDNF mRNA levels between stressed and control groups 
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(measured by analysis of the protein-coding exon 2, common to all transcripts), we found 

a significant decrease in exons 1c and 1d. This finding is consistent with data in rodents in 

which single immobilization stress induces down regulation of exon IV, homologous to 

fish exons 1c (they both contain HCS1), due to decreased histone acetylation at this 

promoter immediately after acute stress (Fuchikami et al., 2009). Of note, in a recent 

study we showed that exons of the second promoter clusters (mammalian exons IV-VII, 

fish 1c-d), are particularly important for cell survival in response to cellular cytotoxic 

stress in human neuroblastoma cells (Baj and Tongiorgi, 2009). Thus, activation of 

promoters upstream to these exons might relate to a rapid adaptative response to 

various types of stress. 

Western blot analysis showed that in brain, but not in liver, proBDNF content is 

significantly increased in the stressed samples. Mammalian BDNF transcripts produce the 

well-known 32 kDa propeptide precursor that is cleaved either to pro28kDa or to the 

mature 14 kDa BDNF forms by two different proteases (Mowla et al., 2001). Pro28kDa 

BDNF peptide is not further processed into the mature 14 kDa BDNF form but it 

represents a true final proteolytic product generated by a specific Ca
2+

-dependent serine 

proteinase known as Membrane-Bound Transcription Factor Site-1 protease (MBTFS-1; 

EC= 3.4.21.112, alternative names: S1P endopeptidase, Site-1 protease), also known as 

Subtilisin/kexin-isozyme 1 (SKI-1) (Seidah et al., 1999); mature 14 kDa BDNF is generated 

intracellularly by furin (Mowla et al., 2001), or extracellularly by plasmin and matrix 

metalloprotease-7 (Lee et al., 2001). In contrast, in the sea bass we only found two BDNF 

forms, a proBDNF form corresponding to mammalian pro32KDa precursor and a mature 

BDNF, while the pro28KDa peptide was absent. Comparison of D. labrax BDNF protein 

with that of rodents and human BDNF, revealed that the mammalian SKI-1 cleavage site 

at Threonine 57 (Arg-Gly-Leu-Thr↓) is absent in fishes and amphibians and has first 

emerged in reptilians during vertebrates’ evolution (Tettamanti et al., 2010; see Appendix 

1). Limited proteolysis of one inactive precursor to produce active peptides and proteins 

is a general mechanism to generate biologically diverse products from a single gene. 

Here, we provide the first evidence that fishes possess a simplified proteolytic regulation 
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of BDNF and that the pro28KDa proteolytic product, whose function remains yet to be 

determined, is absent at this stage of vertebrates evolution. 

We found that acute stress profoundly alters the relative amount of proBDNF and mature 

BDNF. Our data are suggestive of a lower proteolytic activity to generate mature BDNF 

and thus, the uncleaved product is accumulated in the sea bass brain, but not in liver, 

immediately after an acute stress. Although, the mechanisms by which stress can prevent 

efficient conversion of proBDNF into mature BDNF are presently unknown, several recent 

studies have pointed out that pro32KDa BDNF has a biological function distinct from that 

of mature BDNF. Both proBDNF precursor and mature BDNF can be released from 

neurons (Lee et al., 2001; Yang et al., 2009). 

While proBDNF binds only to p75 receptor, mature BDNF displays high affinity to TrkB and 

lower affinity to p75 (Chao, 2003). Binding of proBDNF to p75 promotes cell death and 

attenuates synaptic transmission by inducing long term depression (Teng et al., 2005; 

Woo et al., 2005), while mature BDNF sustains long term potentiation and cell survival 

(Lee et al., 2001, Patterson et al., 1996; Pang et al., 2004). It is therefore conceivable that 

the shift towards higher proBDNF and lower BDNF level observed after acute stress may 

have the biological role of attenuating proactive behaviour inducing reduced activity in 

stressed animals. 

Stress affects the hormonal response in fish in much the same way it does in higher 

animals. Stress stimulates the hypothalamus, one of the oldest parts of the brain (in 

evolutionary terms) and is responsible for controlling the most basic functions such as 

hunger, thirst, sex drive and, in mammals, body temperature; all functions that are 

mediated also by BDNF. A reduced behavioural activity may thus represent an adaptive 

response to dangerous situations represented here by shallow waters, to allow for an 

immediate energy saving and recovery in preparation for future actions. In this context, it 

is striking that 100% of animals in our experimental stress group showed >1SD increase in 

proBDNF levels (and corresponding decrease in mature BDNF). A theoretical, optimal 

prediction test can achieve 100% sensitivity (i.e. predict all people from the sick group as 

sick) and 100% specificity (i.e. not predict anyone from the healthy group). Thus, our test 
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performances will make it feasible to screen for stress even in low prevalence 

populations, particularly where samples are first pooled before testing. 

In conclusion, we have determined the structure of Dicentrarchus labrax BDNF gene, its 

expression in neuronal and non neuronal tissues, and we have demonstrated that the 

proBDNF/totBDNF ratio (or its counterpart matBDNF/totBDNF) is a novel quantitative 

neurological biomarker capable to detect biological stress in fishes with sensitivity 100%, 

specificity 87%, Positive Predictive Value of 88% and Negative Predictive Value of 100%. 

The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates 

that processing of BDNF is a central mechanism in adaptation to stress and predicts that a 

similar regulation of pro/mature BDNF has likely been conserved throughout evolution of 

vertebrates from fish to man. 
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4.2 5S rRNA: PCR based method for fish species identification 

 

The detection of species substitution has become an important topic within the food 

industry and there is growing need for rapid, reliable and reproducible tests to verify 

species in commercial fish and seafood products. 

The predominant recent approaches to vertebrate species identification generally involve 

PCR amplification of a genomic target followed by post-PCR analysis, like RFLP or 

sequencing, of obtained fragments. These approaches, although robust and effective for 

species identification, are relatively time consuming and expensive, requiring 

downstream analysis that are not always possible and reproducible. For example, 

sequencing, which has proven to be the most direct and reliable way to obtain 

information from PCR fragments, it is not appropriate for the analysis of samples 

containing multiple species. On the other hand, restriction endonuclease analysis can lead 

to errors in case of intraspecies variation in which individuals from the same species 

exhibit different restriction patterns; therefore numerous individuals from the species 

must be analyzed to verify a lack of intraspecies polymorphism at the target sites. 

Moreover it is not guarantee that restriction pattern is unique for each species. 

In this paper we report an alternative and efficient approach for species identification 

which requires only a PCR without additional downstream manipulation of the amplified 

product. The method, based on 5S rRNA gene amplification, resulted effective for a rapid 

and cheap identification of fish species subjected to substitution (D. labrax, P. fluviatilis, 

X. gladius, T. thynnus, S. vulgaris, S. salar, S. trutta) or sold in place of more valuable ones 

(Lates niloticus, P. platessa, P. Hypophthalmus) in European market. Indeed, among 

nuclear markers, the 5S rRNA gene has a special interest in species identification because 

of its noteworthy structure that makes it a species-specific gene in higher eukariotes. As 

already reported this gene  comprises a 120 nt highly conserved coding sequence and a 

NTS which is species specific; the coding sequence and the NTS are tandemly repeated a 

variable number of times on the chromosome depending on the species. The 

oligonucleotides Fish5S_FW and Fish5S_REV (Table 2.5), based on conserved region of 

this gene in S. salar (Pendas et al., 1994), have already been used to amplify a whole unit 
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of the 5S rRNA gene (coding sequence and NTS) from different fish templates (Moran and 

Garcia-Vazquez, 2006; Karaiskou et al., 2003; Aranishi, 2005; Aranishi and Okimoto, 2004; 

Carrera et al., 2000; Lockley and Bardsley, 2000). These primers have also been used by us 

to amplify 5S rRNA gene in all analyzed species reported in this work. In some cases, the 

amplification with universal primers, gave more than one product (Fig. 3.10 B, F, G, H, I). 

As reported by the literature, and as already described in the introduction, this is 

probably due to the particular gene organization, that posses different 5S rDNA classes, 

which differs each other for the NTS sequence, in mammal (Hallenberg et al., 1994) as 

well as in fish (Carrera et al., 2000; Martins and Galetti, 2001). Moreover, Qin et al. (2010) 

reported that in fish different classes of 5S rDNA gene, characterized by slightly 

differences in NTS sequences, could be present simultaneously (class I: 203 bp; class II: 

340 bp; and class III: 477 bp; class IV: 188) and this is the result of the influence of 

polyploidy on the organization and evolution of the multigene family of 5S rDNA in fish. In 

our experiments these characteristics influence also the amplification of the gene with 

species specific primers (Fig. 3.10 B, F, H, I).  

Although the length of the NTS, even when present in multiple bands, appears to be 

species-specific in fish, to make the identification certain for each fish studied, we 

decided to design forward and reverse species-specific primers, on the NTS sequences 

(Table 2.5). To confirm the effectiveness of the designed primers we tested each couple 

on all the considered species. The results, showed in Fig. 3.10, confirmed that the 

genomic DNA of a particular species was amplified only with the its own oligonucleotides, 

allowing to discriminate different fish. In some cases it can happen that nonspecific PCR 

products have been amplified (Fig. 3.10 A, F, G, H, I ); being the expression of the these 

bands much less than the specific ones, and the expected sizes different, these products 

do not cause problems with interpretation of the results. In the case of T. thynnus, its 

genome is amplified both with the specific its own primers than X. gladius primers giving 

an aspecific amplicon expressed as well as the specific ones even though of different size 

(Fig. 3.10 C); viceversa, the same problem has been detected also for X. gladius genome 

with T. thynnus specific nucleotides (Fig. 3.10 D). Although these two species are not 

replaceable each other, the impossibility of discrimination highlights maybe the unique 
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limit of this approach: increasing the number of the analyzed species, there are growing 

chances of finding two species with the same PCR amplification pattern; in this case 

following sequence analysis may be necessary.  

In conclusion, the PCR amplification of selected NTS fragments by species-specific primers 

is a powerful technique for the identification of the considered species, because of its 

simplicity, specificity, sensitivity and cheapness. With this method the identification relies 

not only on the different size of the amplicons obtained, but also on the presence of the 

target sequences specific of each species studied. 

This simple PCR method could provide a powerful approach to detect mislabelling or 

fraudulent substitution of fish species, particularly in the market of processed food such 

as frozen fillets and precooked seafood. Moreover, it could be apply not only as routinely 

laboratory practice in qualified organizations but also in mobile laboratories, normally 

equipped for molecular biology investigation, allowing on-site (restaurant, fish market, 

supermarket) analysis in a relatively short time. 
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6. Appendix 1: BDNF pre-pro-protein alignment between 

different species. 
1-Pan troglodytes (common chimpanzee); 2-Homo sapiens (human); 3-Mus musculus 

(mouse); 4-Rattus Norvegicus (rat); 5-Japalura splendida (Japalura tree dragon); 6-

Cyclophios major (greater green snake); 7-Gallus gallus (chicken); 8-Xenopus laevis 

(African clawed frog); 9-Dicentrarchus labrax (sea bass); 10-Danio rerio (zebrafish). 

Amino acid sequence of signal peptide, with the cleavage site “Ala-Ala”, is boxed in red 

and it is highly conserved from mammals to fish.  

The blue box contains the subtilisin/kexin-isozyme 1 cleavage site (blue arrowhead), 

absent in fish and amphibians and first emerged in reptilians during vertebrate evolution. 

In mammals this cleavage site gives Pro28kDa BDNF form of the protein. 

A highly conserved, multifunctional decapeptide with the site of sulfoglycation (yellow 

circle) and serine-protease site of action (green arrowhead). The decapeptide is partially 

superimposed (His-Ser) to the last part of the sequence (pink box), that represents 14 kDa 

BDNF mature form. 
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7. Appendix 2: 5S rRNA gene alignment between analyzed 

species. 
The universal primers Fish5S_FW and Fish5S_REV have been highlighted in yellow and 

green respectively. The species-specific primers (see Table 2.5, Materials and Methods), 

highlighted in different colours, have been designed in not conserved regions of NTS for 

each species. 
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