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INTRODUCTION 

 

 



1. PROGRAMMED CELL DEATH (PCD). 

The suicide of individual cells is an efficient and conserved mechanism to achieve 

and maintain homeostasis in multicellular organisms as a response to pathogen 

attack and abiotic stress, as well as in normal development (Gilchrist et al., 1998). 

The selective elimination of certain cells is carried out by a gene-directed process 

called programmed cell death (PCD). This is an energy-dependent asynchronic 

process that comprises: loss of cell-to-cell contacts, cytoplasmic shrinkage, 

membrane blebbing, DNA fragmentation, disassembly of the nuclei and formation 

of apoptotic bodies. The execution of PCD requires the participation of a complex 

cell suicide machinery that involves several molecules regulated by the expression 

of a certain set of genes. The self-contained nature of PCD contrasts with necrosis, 

which is an unregulated process of traumatic destruction, followed by the release of 

intracellular components without the active participation of the cell (Okada et al., 

2004).  

In animals (Fig. 1), the active study of PCD began in 1972 the term apoptosis as “a 

basic biological phenomenon with a wide range of implications in tissue kinetics” 

was introduced by Kerr et al., 1972. However, it took more than a decade to realize 

the biological importance of PCD in plant pathogenesis and development (Pennel et 

al., 1997). As in animals, PCD plays a key role in numerous vegetative and 

reproductive phases of plant (Fig. 2) development, including the senescence of 

leaves, xylogenesis, death of petals after fertilization, postembryonic decay of 

aleuronic layers, root cap development, somatic and zygotic embryogenesis and sex 

determination. PCD in plants occurs in response to biotic and abiotic stimuli. 

Avirulent infections are usually characterized by a localized cell death known as 

hypersensitive response (HR) which results in the formation of necrotic lesions 

around the infection sites (Goodman et al., 1996). On the other hand, there is the 



abiotic stress response, and the best example is aerenchyma development under low 

oxygen conditions, in which root cortical cells are induced to die and form larger 

airspaces, enabling a greater diffusion of air from the upper parts of the plant (Drew 

et al., 2000). PCD in plants has also been characterised in response to high 

temperature (McCabe et al., 2000). Some of the morphological features of 

apoptosis as well as transduction pathways and signal molecules have been shown 

to be similar in both animals and plants. However, differences in the execution of 

PCD have also been observed.  

 

                 Fig. 1 Animal Apoptosis 

 



 

         Fig. 2 Plant PCD 

 

 

2. MORPHOLOGY OF APOPTOSIS IN ANIMALS AND PCD PLANTS 

Morphological features of apoptosis may be detected by various cytochemical and 

microscopic methods. The use of intercalatory agents, fluorescent microscopy and 

the comet assay enables the detection of the condensation of chromatin and show 

DNA degradation; in plants, in addition to these techniques, the use of Green 

Fluorescent Protein-Nitrilase 1 permits to see the formation of nuclear lobes and the 

release of nuclear contents into the cytosol. 

2.2 DNA cleavage 

The fragmentation of the DNA occurs at the nucleosomal linker sites and the 

fragments are reported to be of 140-180 base pairs in animals (Cohen et al., 1994). 

Electrophoretic separation exhibits DNA fragments as a ladder formation of which 



the rungs are multiples of 180 bp. The DNA fragments can be cytochemically 

determined by the terminal deoxynucleotidyl transferase-mediated dUTP nick end 

labelling (TUNEL) of the 3’OH groups (Gavireli et al., 1992). The DNA processing 

reported for animal PCD is also believed to exist in the dying cells of plants. 

Nuclear condensation as well as oligonucleosome sized DNA fragments have been 

detected by TUNEL and electrophoresis analysis in aleurone cells of barley (Pennel 

et al., 1997), in dying tobacco roots cap cells (Mitler et al., 1997), and also in plants 

exhibiting HR resistance such as cowpea leaf cells infected with Uromyces vignae 

and Tobacco Mosaic Virus (TMV) infected tobacco (Ryerson et al., 1997). DNA 

ladders were also observed during cell death in Alternaria Alternata (AAL) toxin 

treated tomato protoplasts and leaflets. The intensity of the DNA ladders was 

enhanced by Ca2+ and inhibited by Zn2+ (Wang et al,. 1996). The DNA fragments 

have been seen to range from sizes as high as 50000 bp in some cases and of 140 bp 

in others (O’Brien et al., 1998). Moreover, DNA fragmentation may be a marker 

feature of certain cell deaths of plants such as root cap cells, aleurone cells, etc; but 

it is not likely to be involved either in tracheary elements and fibers (Mitler et al., 

1995) or in epidermal and mesophyl cells of lace plant leaves during development 

(Gunawardena et al., 1995). 

2.3 Cell membrane components 

Another well characterized morphological feature of apoptosis is the lost of 

membrane phospholipid asymmetry that results in phosphotidylserine (PS) 

exposure on the outer and the inner surface of the plasma membrane. Externalized 

PS appears to serve as an important signal for targeting the recognition and 

elimination of apoptotic cells by macrophages. PS externalization has been 

suggested to originate from the balance between its inward and outward 

translocations driven by two enzymatic activities: aminophospholipid translocase 



(APT) and a non-specific phospholipid scramblase (PLSCR). Changes in PS 

asymmetry, analyzed by measuring Annexin V bound to the cell membrane, were 

detected in tobacco PCD induced by a number of chemical agents (O’Brien et al., 

1998) and in apple suspension cells under a low oxygen culture (Xu  et al. 2004). 

The physiological role of PS exposure in plants is still unknown since phagocytosis 

does not occur. 

2.4 Cytoplasmic events 

Morphological changes in the cytoplasm of animal cells during apoptosis include 

condensation, shrinkage and fragmentation. However, cell membrane integrity is 

preserved allowing the packaging of nuclear and cytoplasm components in 

apoptotic bodies. Condensation and shrinkage of the cytoplasm were reported in 

dying aleurone cells, onion and tomato root cap cells (Wang et al., 1996), HR lesion 

cells in Arabidopsis (McCabe et al., 1996) and wound and herbicide induced PCD 

(Cutler et al., 2005). The cytoplasm of differentiating treachery elements (TE) is 

reported to become lobed, condensed, shrunken and finally broken into small 

packages (Lai et al., 1976). The formation of membranebound structures or 

apoptotic-like bodies in tomato has been observed in response to AAL toxin from 

Alternaria alternata f. sp. lycopersiti, and also to arachidonic acid, an inducer of 

HR (Wang et al., 1996). In contrast to animals, hallmarks of a typical HR-PCD 

involve membrane dysfunction, vacuolization of the cytoplasm, vacuolar disruption 

(oncosis) and changes in gross mitochondrial morphology characterized by swelling 

and cristae disorganization (Greenberg et al., 2004). The final, preeminent step of 

TE PCD as well as in the formation of lace plant leaf perforations is a rapid collapse 

of the vacuole occurring after completing of secondary cell wall synthesis 

(Greenberg et al., 2004). 

 



2.5 Corpse management in plant cells 

Corpse management is a feature that is remarkably different between plants and 

animals since there is a cell wall in plant cells in contrast to animal cells and plants 

do not have an immune system. The cell wall precludes phagocytosis, the process of 

engulfing apoptotic bodies by neighboring cells or macrophages in animals, 

preventing their lysis and the release of toxic or immunogenic intracellular 

components to the nearby tissue with a consequent inflammation (Kam et al., 

2000). Instead of that, corpse processing in plants is autolytic, it is carried out by 

vacuoles. Decisions on corpse management based on the integration of various 

signals such as auxins , cytokinins, ethylene and elicitors, are probably made by the 

living cell long before death takes place and probably even well before the point of 

no return in the plant cell. The ability to make these decisions is especially relevant 

in plant cells due to the absence of macrophages and neutrophils to decide for them 

(Jones et al., 2001). The way the cell corpse is managed is a function of the profile 

of hydrolases and toxins that are loaded into the vacuole and these profiles are 

established by the original set of signals. The cell must be metabolically active to 

synthesize the destructive hydrolases it needs to process its corpse; it therefore 

sequesters these hydrolases and toxins into the vacuole and releases them when the 

vacuole collapses. This collapse is an irreversible step towards death which results 

in the immediate cessation of cytoplasmic streaming and requires a calcium flux 

(Jones et al., 2001). 

 

3. MOLECULAR BASIS OF PCD  

3.1 Caspase-like proteolytic activity regulates plant cell death 

In plants, proteolytic enzymes are known to be associated with both developmental 

PCD and pathogen- and stress-induced PCD. They are generally assumed to 



function in the autolysis of intracellular proteins, rather than as regulators. 

However, the evident participation of proteases, specifically caspases, in the 

regulation of animal PCD implies that proteases could also be involved in the 

regulation of plant PCD. Indeed, there are several reports that link protease activity 

to the regulation of plant PCD. Proteasome inhibitors can prevent TE differentiation 

in Zinnia cell cultures when added at the time of culture initiation, whereas 

proteasome inhibition following commitment to differentiation only results in a 

delay. This suggests that proteasome function is required for induction of TE 

differentiation, but not for bulk autolysis during the final phases of TE 

differentiation (Woffenden et al., 1998). Furthermore, the appearance of a secreted 

protease is co-ordinated with secondary cell wall synthesis and cell death during TE 

differentiation. Protease activity and cell death are both inhibited by soybean 

trypsin inhibitor, while exogenous application of another serine protease 

prematurely triggers cell death. These observations lead to the hypothesis that 

extracellular proteolysis triggers cell death (Groover et al., 1999). Inhibitor studies 

also implicate serine proteases in signal transduction during elicitin-induced HR 

cell death (Sasabe et al., 2000). In soybean cells, PCD activating oxidative stress 

induces a set of cysteine proteases. Inhibition of the induced cysteine protease 

activity by ectopic expression of cystatin, a cysteine protease inhibitor gene, can 

block PCD triggered either by an avirulent pathogen or by ROS (Solomon et al., 

1999). These data suggest that the interplay between proteases and endogenous 

protease inhibitors is a way for plants to regulate cell death. It remains to be seen if 

this can be compared to the pivotal role that caspases and IAP proteins play in 

animal PCD. 

To date, evidence for the existence of caspase-like proteins (CLPs) in plants is still 

indirect and mainly based on the inhibitory effects of caspase-specific inhibitors in 



plant cells. Such caspase-specific inhibitors can abolish bacteria-induced PCD in 

tobacco (Del Pozo et al., 1998). In addition, chemical-induced PCD in tomato 

suspension cells can be inhibited by caspase-specific inhibitors (De Jong et al., 

2000). Caspase-like activity has also been demonstrated in barley cell extracts and 

could only be inhibited by a specific caspase 3 inhibitor, not by cysteine protease 

inhibitors (Korthout et al., 2000). 

Microinjection of caspase 3 substrate into living plant cells revealed that caspase-

like activity is mainly present in the cytosol rather than in the vacuole (Korthout et 

al., 2000). Proteolytic activity in plant cells undergoing PCD has also been studied 

using poly (ADP-ribose) polymerase (PARP), a well-characterized substrate for 

human caspase 3. Cleavage of endogenous PARP occurs during menadione-induced 

PCD in tobacco protoplasts (Sun et al., 1999) and in heat-shock-treated tobacco 

suspension cells (Tian R et al., 2000). Exogenous (bovine) PARP is 

endoproteolytically cleaved in extracts of fungus-infected cowpea plants, and 

cleavage can be inhibited by caspase 3-inhibitor. Interestingly, a polypeptide 

(GDEVDGIDEV) mimicking the PARP human caspase-3 cleavage site (DEVD-G) 

partially inhibited PARP cleavage, whereas a modified peptide in which the 

essential aspartate was replaced by alanine (GDEVAGIDEV) did not affect PARP 

cleavage (D’Silva et al., 1998). However, cleavage of exogenous PARP in cowpea 

extracts results in fragments that are different from the fragments that remain after 

cleavage by an animal caspase (D’Silva et al., 1998). As the proteolytic activity 

detected in plants may have some different specificities to animal caspases, 

interpretation of these data requires some caution. 

In animals, the IAP protein family has been postulated to play its regulating role by 

inhibiting caspases. IAP proteins, which are conserved between numerous 

organisms, are distinguished both by their ability to suppress apoptosis and by the 



presence of at least one baculoviral IAP repeat (BIR) domain, which is required for 

their anti-death activity. It has been reported that Agrobacterium-induced PCD in 

maize cells can be suppressed by ectopic expression of an IAP from baculovirus 

(Hansen et al., 2000). Likewise, transgenic expression of the baculovirus IAP in 

tobacco conferred resistance to several necrotrophic fungal pathogens that normally 

result in necrotic lesions (Dickman et al., 2001). The macromolecule p35 is another 

highly specific caspase inhibitor from baculovirus that is effective in inhibiting 

Agrobacterium-induced PCD in maize (Hansen et al., 2000). Tobacco plants 

expressing p35 are partially inhibited inHRcell death, whereas mutated versions of 

the p35 protein, which are impaired in caspase inhibition, are ineffective (Lam et 

al., 2000). These data point towards the existence of plant proteases that are able to 

recognize caspase specific inhibitors, and their involvement in cell death. Recently, 

sequence comparison has revealed a group of CLPs, designated metacaspases, in 

fungi and plants. The universally conserved catalytic cysteine and histidine diad 

required for catalysis by cysteine proteases is present in these metacaspases (Uren 

et al., 2000). It has been shown that the only metacaspase present in Saccharomyces 

cerevisiae displays a caspase-like proteolytic activity that is activated when yeast is 

stimulated by H2O2 to undergo apoptosi (Madeo et al., 2002). A second subgroup of 

caspase-related proteases are legumains, cysteine endopeptidases first identified in 

plants. Although legumains have a strict specificity for an asparagine (and not 

aspartate) residue immediately N-terminal to the substrate’s cleavage site, they 

possess a protein fold similar to animal caspases and are believed to be 

evolutionarily related (Chen et al., 1998). Taken together, the effectiveness of 

animal caspase inhibitors in blocking plant PCD, the observed cleavage of animal 

as well as endogenous PARP by activated plant proteases, and the functioning of 

animal IAP proteins in plants strongly suggest that caspase-like proteolytic activity 



plays a role during plant PCD. Whether these plant CLPs display sequence and 

secondary structure similarities with animal caspases remains to be seen. It will be 

interesting to see what proteins are cleaved during plant PCD. Besides PARP, lamin 

like proteins have been reported to be cleaved during menadione-induced PCD in 

tobacco protoplasts (Sun et al., 1999). Degradation of lamins is an important event 

in apoptosis, playing an essential role in chromatin condensation and breakdown of 

the nuclear envelope. 

3.2 Role of mitochondria, cytochrome c, and BLPs 

In animal systems, changes in mitochondrial membrane permeability, subsequent 

release of cytochrome c and the formation of the apoptosome play an important role 

in apoptosis. BLPs can act as regulators of apoptosis both by interference with 

caspase activation or through their effect on mitochondrial membrane integrity. In 

various plant systems, the release of cytochrome c from mitochondria into the 

cytosol precedes cell death (Sun et al., 1999, Hansen et al., 2000, Balk et al., 1999). 

Furthermore, HR-induced PCD is associated with the disruption of mitochondrial 

functions (Xie et al., 2000). Cytochrome c is not released during petal cell death in 

(pollinated) petunia flowers, (Xu et al., 2000) establishing at least one form of plant 

PCD in which cytochrome c release is not required. Nevertheless, the release of 

cytochrome c from plant mitochondria as caused by ROS, elevated calcium levels, 

or inhibition of electron transport, has been postulated to be a common means for 

integrating cellular stress and activating plant PCD (Jones et al., 2000).  

Evidence for a function of BLPs in plant PCD is accumulating. Initial indications, 

such as the detection of a BCL2 homologue in plant cells by immunoblotting, and 

the capability of animal BLPs to modify cell death processes in plants, (Dickman et 

al., 2001, Lam et al., 1999) are now supported by the isolation of homologues of 

human Bax inhibitor-1 from Arabidopsis thaliana and rice (Bax is a proapoptotic 



member of the BCL2 family). Both clones, AtBI1 and OsBI1, are capable of 

suppressing Bax-induced cell death in yeast, (Kawai et al., 1999, Sanchez et al., 

2000) whereas AtBI1 is rapidly upregulated during wounding or pathogen 

challenge (Sanchez et al., 2000). In addition, overexpression of AtBI1 can rescue 

plants expressing mammalian Bax from cell death (Kawai-Yamada et al., 2001). 

Furthermore, the A. thaliana genome contains two AtBI1 homologues, AtBI2 and 

AtBI3, and a newly identified family of 13 AtBI2-related (ABR) genes encoding 

putative transmembrane proteins that could form macromolecular channels (Lam et 

al., 2001). Although their function remains to be elucidated, it has been suggested 

that these genes might represent functional equivalents of the mammalian BCL2 

family (Lam et al., 2001). 

 

4. PCD SIGNALLING  

4.1 The role of ROS and NO 

Although ROS used to be regarded merely as toxic by products of cellular 

metabolism, it is now recognised that molecules such as hydrogen peroxide (H2O2), 

superoxide (·O2¯), and hydroxyl radicals (·OH), have a signalling role in many 

biological systems. Experimental data indicating that ROS can activate cell death 

programs, both in animal and plants, are accumulating. In plant tissue, various 

conditions lead to accelerated generation and/or accumulation of ROS and 

subsequent PCD, for example ozone (O3) fumigation, cold stress, UV radiation and 

senescence. The role of ROS in plant PCD has been most extensively studied 

during the hypersensitive response (HR) to pathogen attack, when ROS are 

generated rapidly and transiently at the site of infection. This process is generally 

referred to as the oxidative burst. During the HR, ROS may possess direct 

antimicrobial activity and function in cell-wall reinforcing processes. As signal 



molecules, they are believed to induce PCD, and activate defence gene expression 

and systemic acquired resistance (SAR). Plant responses to ROS are dose 

dependent. High doses of ROS trigger HR-related PCD, whereas low doses induce 

antioxidant enzymes, and block cell-cycle progression (Vranova  ́ et al., 2002). It 

has been postulated that, through this dose-dependent action, ROS act as a trigger 

for PCD locally and as a diffusable signal for the induction of cell defences in 

neighbouring cells (Vranova´ et al., 2002). Despite the recognition of ROS as 

signalling molecules in PCD, little is known about how these signals are perceived 

and transduced in plant cells. It has been reported that H2O2 is a potent activator of 

a MAPK cascade that induces specific stress-responsive genes in A. thaliana leaf 

cells, but represses auxin-inducible promoters (Kovtun et al., 2000). The activation 

of a redox signalling pathway possessing a MAPK module has also been reported in 

response to avirulent pathogen infection in A. thaliana. This signalling network 

functioned independently of the plant hormones ethylene, salicylic acid and 

jasmonic acid (Grant et al., 2002). However, ethylene plays a critical role in the 

release of  H2O2 during PCD in tomato suspension cells, as inhibitors of  ethylene 

biosynthesis or perception block H2O2 production and cell death (De Jong et al., 

2002). The free radical gas nitric oxide (NO), well characterised as a mammalian 

signalling molecule, has also been recognized as a signal in plants. A. thaliana 

suspension cultures generate elevated levels of NO in response to avirulent bacteria. 

In this system, these elevated levels of NO were sufficient to induce cell death that 

involves caspase-like activity (Clarke et al., 2000). Recently, it was demonstrated 

that the HR is triggered only by balanced production of NO and ROS. More 

specifically, dismutation of ·O2¯ to H2O2 is required to activate cell death, which 

depends on synergistic interactions between NO and H2O2. Scavenging of ·O2¯ by 

superfluous NO (or vice versa) disturbs the NO / H2O2 ratio, resulting in reduced 



cell death (Delledonne et al., 2001). Little is known about signalling pathways 

downstream of NO / H2O2. It has been shown that NO signalling during both PCD 

and defence responses requires cyclic GMP and cyclic ADPribose, two molecules 

that can serve as secondary messengers for NO signalling in mammals. 

Furthermore, NO activates MAP kinases in both A. thaliana and tobacco (Neill et 

al., 2002). Collectively, these data confirm that NO is a ubiquitous signal in plants. 

However, understanding of NO signalling in plant PCD is still at an early stage. 

ROS, particularly H2O2, have been implicated in activation of the NF-kB signalling 

pathway that plays an essential role in regulating both immune and inflammatory 

responses, and tumour necrosis factor    (TNF)-induced apoptosis in animal cells. 

Once activated and translocated to the nucleus, NF-kB can induce various anti-

apoptotic factors, including IA proteins and BLPs. 

4.2 Calcium signaling 

Calcium (Ca2+) is an almost universal intracellular messenger, controlling a broad 

range of cellular processes, including animal apoptosis. In plant PCD, calcium has 

also been recognised as a ubiquitous signal. Elevated calcium levels have been 

observed during tracheary element differentiation, aerenchyma formation, wheat 

aleurone differentiation, the HR, and leaf senescence. Furthermore, the plasma 

membrane Ca2+ channel blocker lanthanum chloride can inhibit H2O2-induced cell 

death in soybean cells, bacteria-induced PCD in A. thaliana, and camptothecin-

induced PCD in tomato cells. However, this inhibitor does not suppress the 

induction of more general stress or defence pathways, suggesting that Ca2+ fluxes 

are involved in signalling the activation of PCD, but not the activation of general 

stress or defence responses (Hoeberichts et al., 2001, Levine et al., 1996). 

Additional data confirm a role for calcium signalling in pathogen defence. The A. 

thaliana dnd1 mutant has been isolated as a line that failed to produce HR cell death 



in response to avirulent pathogen infection. Cloning of the corresponding 

DND1/CNGC2 gene revealed that it encodes a cyclic nucleotide-gated ion channel 

that allows passage of Ca2+, K+ and other cations (Clough et al., 2000). Expression 

studies have led to speculation on an additional role for DND1/CNGC2 during 

developmentally regulated PCD (Kőhler et al., 2001). Another elicitor activated 

Ca2+ permeable ion channel has been identified in parsley by patch-clamp analysis 

(Zimmermann et al., 1997). Calcium-binding proteins interpret information 

contained in the temporal and spatial patterns of Ca2+ fluxes and accordingly bring 

about changes in metabolism and gene expression. Interestingly, plants contain a 

unique superfamily of calmodulin-like domain protein kinases (CDPKs) capable of 

activating protein phosphorylation cascades, a widely used mechanism by which 

extracellular stimuli are transduced into intracellular responses. Various (putative) 

calcium-binding proteins, among them several CDPKs, are induced during plant 

defence responses. It has been suggested that CDPKs, in response to elevated 

cytosolic Ca2+ levels, can induce NADPH oxidase activity (Blumwald et al., 1998). 

Present data indicate that calcium signalling is an important mediator of plant PCD. 

The existence of the CDPK protein family indicates that plants have incorporated 

certain plant specific factors into this universally present signal transduction system. 

4.3 Hormones in PCD 

It is likely that, in addition to the putative regulators of PCD conserved throughout 

the animal and plant kingdoms, there are plant-specific mediators of PCD. Various 

plant hormones, such as salicylic acid, ethylene, abscisic acid and jasmonic acid, are 

strong candidates, and supporting evidence is starting to accumulate. 

Salicylic acid (SA) is a key-signalling molecule in pathogeninduced disease 

resistance, but its function in relation to cell death is still poorly understood. The 

epistatic relationship between cell death and SA accumulation has been analysed in 



crosses between various A. thaliana mutants and the transgenic nahG line (depleted 

in SA). Whereas several mutants retain their spontaneous lesion phenotype in the 

nahG background, others display a reduction, delay or even abolition of their 

mutant phenotype. These data can only be explained if SA accumulation is placed 

both upstream and downstream of cell death, presumably as part of a feedback 

amplification loop. Biochemical evidence suggests that the function of SA upstream 

in the HR might affect the phosphorylation status of a signalling pathway 

component that regulates the activation of a sustained oxidative burst (Alvarez, 

2000). Fumonisin B1-induced cell death in A. thaliana protoplasts requires SA 

signaling (Asai et al., 2000), and transgenic nahG tobacco displays decreased lesion 

formation after O3-treatment (Örvar et al., 1997), confirming a role for SA 

upstream of cell death. Conversely, ROS are capable of inducing SA accumulation 

(Chamnongpol et al., 1998) or even of directly stimulating SA synthesis (Leo´n et 

al., 1995), supporting the idea of a feedback amplification loop. One of the two 

MAPKs implicated in the activation of the HR in tobacco can be induced by SA 

(Zhang et al., 1997, Zhang et al., 2000), providing a means by which SA could 

induce downstream phosphorylation. In TMV-infected tobacco tissue that 

accumulates SA, a gradient of SA is established along with lesion formation, with 

the highest levels of SA present in and around the necrotic lesions (Enyedi et al., 

1992). It has been postulated that low concentrations of SA might be inadequate for 

the induction of cell death but sufficient to activate survival signals and defence 

responses. 

This suggests that low levels of SA regulate lesion limitation, whereas high levels 

of SA actually induce cell death (Alvarez, 2000). Interestingly, high levels of SA 

can rapidly inhibit mitochondrial functions by a mechanism that requires ROS (Xie 



et al., 1999). Given the function of mitochondria in animal apoptosis, this effect of 

SA might contribute to the induction of cell death in response to pathogens. 

Ethylene is a plant hormone well known for its role during plant senescence and 

cellular responses to numerous forms of stress. In addition, a regulatory role during 

plant PCD is now emerging. Aerenchyma formation in hypoxic roots, one of the 

earliest examples of PCD recognised in plants, requires ethylene (Drew et al., 

2000). Epidermal cell death at the site of adventitious root formation, a response to 

submergence of the deepwater rice Oryza sativa, can be induced by application of 

the natural ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and it 

can be suppressed by inhibiting ethylene perception (Mergemann et al., 2000). 

During the development of cereal endosperm, ethylene is produced in two discrete 

peaks. Application of exogenous ethylene throughout seed development results in 

earlier and more extensive cell death and DNA fragmentation. Conversely, 

treatment with inhibitors of ethylene biosynthesis or ethylene perception reduces 

cell death and DNA fragmentation (Young et al., 2000). There are also reports 

describing ethylene as a stimulant of senescence-associated PCD (Orzáez et al., 

1997, Navarre et al., 1999) Furthermore, cell death induced by the mycotoxin 

fumonisin B1 seems to involve ethylene-mediated signalling pathways in both A. 

thaliana and tomato (Asai et al., 2000, Moore et al., 1999). Although ethylene alone 

is not sufficient to trigger PCD in tomato cell suspensions, camptothecin-induced 

cell death and the associated oxidative burst can be blocked by inhibition of 

ethylene signalling. Exogenous ethylene greatly stimulates camptothecin-induced 

H2O2 production and cell death (De Jong et al., 2002). Studies of A. thaliana double 

mutants have provided additional evidence supporting a role for ethylene signalling 

in cell death. Crosses of the lesion-mimic mutant accelerated cell death 5 (acd5) and 

ethylene insensitive 2 (ein2), in which ethylene signalling is blocked, show 



decreased cell death (Greenberg  et al., 2000). Ethylene insensitivity in double 

mutants of ein2 and the O3-sensitive radical-induced cell death 1 (rcd1) blocks 

ROS accumulation that is required for lesion propagation, whereas exogenous 

ethylene increases ROS-dependent cell death in rcd1 (Overmyer et al., 2000). In 

line with the suggested positive role for ethylene during propagation of ROS-

dependent lesions (Overmyer et al., 2000), it has been proposed that limiting the 

spread of pathogen-induced cell death in tomato involves a downregulation of 

ethylene sensitivity (Ciardi et al., 2000). These data show that various forms of 

plant PCD require ethylene signalling and, moreover, are accelerated by exogenous 

applied ethylene. It seems plausible that ethylene is required, though not sufficient, 

for regular PCD and that its function is linked to controlling the extent of cell death. 

The stimulation of PCD by ethylene seems associated with an increased production 

of ROS. 

Abscisic acid (ABA) has been implicated as a key regulator in cereal endosperm 

development. Cell death is accelerated in developing endosperm of ABA-

insensitive or deficient maize mutants. It is believed that a balance between ABA 

and ethylene establishes the appropriate onset and progression of PCDduring maize 

endosperm development (Young et al., 2000). During germination, cell death in 

barley aleurone layers is induced by gibberellin (GA), whereas ABA antagonises 

this effect (Fath et al., 2002). It has been found that ROS are mediators of this 

hormonally regulated cell death pathway. Incubation of aleurone layers or 

protoplasts in H2O2-containing media results in death of GA-treated but not ABA-

treated aleurone cells. Cells that are programmed to die are therefore less able to 

withstand ROS than cells that are programmed to remain alive, supposedly because 

ROS scavenging enzymes are strongly downregulated in aleurone layers treated 

with GA, whereas ABA-treated cells maintain their ability to scavenge ROS (Fath 



et al., 2002). A similar protective role of ABA against cell death has been observed 

during androgenesis in developing barley anthers. 

Jasmonic acid (JA) is a well-known signalling molecule in plant defence and stress 

responses. It has been implicated in O3-induced hypersensitive cell death since O3 

induces JA biosynthesis within several hours of treatment (Rao et al., 2001). 

Furthermore, treatment with exogenous methyl jasmonate inhibits propagation of 

O3-induced cell death in O3-sensitive A. thaliana plants. Accordingly, the 

jasmonate-insensitive mutant jar1 displays increased spreading of cell death 

following exposure to O3 (Overmyer et al., 2000). The highly O3-sensitive A. 

thaliana ecotype Cvi-0 has greatly reduced JA sensitivity, whereas various other JA 

mutants show a similar high sensitivity to O3 (Rao et al., 2001). Together, these 

studies indicate that JA is an important component of a pathway that negatively 

regulates cell death and lesion formation. Interestingly, JA is believed to cause this 

effect by attenuating the O3-induced ROS production, as wounding or treatment of 

plants with JA has been shown to reduce O3-induced cell death and O3-induced 

ROS levels (Örvar et al., 1997, Overmyer et al., 2000). However, the precise 

mechanisms by which JA signalling regulates cell death are far from understood. 

Contradictory results show that the viability of jar1 mutant A. thaliana protoplasts is 

only marginally affected by fumonisin B1, whereas this fungal toxin induces 

apoptosis-like PCD in wild-type protoplasts, suggesting that JA-mediated signaling 

increases fumonisin B1-induced cell death (Asai et al., 2000). 

 

5. PCD IN RESPONSE TO DEVELOPMENT   

In plants, selective cell death is necessary for growth and survival and can occur on 

a local or large scale (Fig. 3). 



 

 

                                                  Figure 3 Sites of PCD in Vascular Plant. 

 

5.1 Aleurone Cells 

In seeds of monocots, aleurone cells form a secretory tissue that releases hydrolases 

to digest the endosperm and nourish the embryo. Aleurone cells are unnecessary for 

postembryonic development and die as soon as germination is complete (Kuo et al., 

1996). Several lines of physiological evidence suggest that their death involves 

PCD. For example, in the aleurone, secretory processes and cell death are 

stimulated by gibberellin (GA), whereas abscisic acid (ABA) blocks the effects of 

GA and retards seed germination and cell death (Jones and Jacobsen, 1991). 

Moreover, an elevation in cytosolic Ca2+ occurs in aleurone cells treated with GA 



(Bush et al., 1989; Gilroy and Jones, 1992), suggesting that a signal transduction 

pathway controls secretion and cell death.  

5.2 Root Cap Cells 

A cap of cells protects the root apical meristem during seed germination and 

seedling growth. Root cap cells are formed by initial cells in the meristem and are 

continually displaced to the root periphery by new cells (Laux and Jürgens, 1997; 

Schiefelbein et al., 1997). After severa1 days, the peripheral cells die (Harkes, 

1973). Cell death occurs in root caps when roots are grown in water, showing that 

cell death is a normal part of development and not a consequence of abrasion during 

soil penetration. Dying root cap cells shrink and adopt irregular profiles, and DNA 

staining shows that the nuclei in dying onion root cap cells become condensed (H. 

Wang et al., 1996).  

5.3 TE Cells 

Vascular plants transport water in columns of specialized dead cells termed TEs. 

Differentiation of TEs involves cell elongation, the deposition of cell wall 

components, including lignin, and autolysis (Fukuda, 1997). Autolysis begins as the 

cytoplasm and nuclei become lobed, condensed, and shrunken and ends as the 

cytoplasm breaks into small packets (Wodzicki and Humphreys, 1973, 1974; Lai 

and Srivastava, 1976). Zinnia elegans mesophyll cells can be cultured and induced 

to redifferentiate into TEs so that the cell death process can be studied 

biochemically as well as morphologically (Fukuda, 1994, 1997). Treatment of 

differentiating Zinnia cells with actinomycin D or cycloheximide blocks cell death 

(Fukuda and Komamine, 1983). This suggests that cell death in TEs requires 

protein synthesis, and it is possible that among the proteins synthesized are the 

effector proteases and nucleases necessary for cell disassembly.  

 



5.4 Somatic Embryogenesis 

Cultured cells of some plant species can be induced to develop into somatic 

embryos. In embryogenic suspension cultures, totipotent cells divide 

asymmetrically into cell pairs, one member of which stops synthesizing DNA and 

dies, whereas the other member goes on to establish an embryo (Nomura and 

Komamine, 1985, 1986). In some dead cells, the cytoplasm is broken into small, 

membrane-sealed packets, which suggests that the cells have undergone a form of 

PCD similar to apoptosis (Havel and Durzan, 1996; McCabe and Pennell, 1996). 

This contention is supported by the accumulation of 3'-OH groups in the DNA of 

these cells (McCabe et al., 1997).  

5.5 Senescence 

Senescence is the final phase of plant vegetative and reproductive development, 

preceding the widespread death of cells and organs. Senescence involves the active 

turnover and recapture of cellular material for use in other organs (Noodén, 1988; 

Bleecker and Patterson, 1997). Membrane integrity and cellular 

compartmentalization are maintained until late into the senescence process, 

suggesting that there is little or no leakage of cellular contents (Noodén, 1988). 

Senescence, which can be induced by ethylene (Grbic and Bleeker, 1995), requires 

nuclear functions (Thomas et al., 1992) and involves an increase in the generation 

of O2
- and H2O2 (Pastori and del Rio, 1997). Also, natural senescence can be 

blocked by mutations in the gthylene-iesponsive ( n R ) gene, by ethylene 

anatgonists, and by cytokinins (Bleecker et al., 1988). These observations suggest 

that senescence and cell death during senescence are under the control of a 

coordinated signaling pathway, consistent with the view that senescence involves 

PCD (Gan and Amasino, 1997).  

 



6. PCD IN RESPONSE TO BIOTIC STRESS  

6.1 Pathogenesis 

Many studies have demonstrated the induction of PCD in plants in response to 

pathogen attack, indicating that PCD plays central role in pathogenesis (Goodman 

and Novacky, 1994). Plants can recognize certain pathogens and activate defenses 

(called the resistance response) that result in the limitation of pathogen growth at 

the site of infection. One dramatic hallmark of the resistance response is the 

induction of a localized cell death response (the hypersensitive response or HR) at 

the site of the infection. The HR is likely to be important for limiting a pathogen's 

nutrient supply, since the dying tissue rapidly becomes dehydrated. The HR appears 

to be a form of PCD in plants. Firstly, the appearance of the HR is genetically 

controlled and second, purified HR-inducing factors from bacteria called harpins 

will not induce the HR unless the plant tissue is transcriptionally active (He SH et 

al., 1993). In addition, HR-inducing bacteria will not cause the HR if protein 

synthesis is blocked in the plant. In the search for a signal for HR induction, several 

groups have determined that H2O2 is rapidly produced by plant cells in culture 

during the HR in a phenomenon termed the oxidative burst (Mehdy et al., 1994). 

Levine et al. showed that enhancing H2O2 production during the HR led to dramatic 

increases in the amount of cell death observed in a soybean cell culture system. The 

effects on cell death after trying to block H2O2 production were more modest. This 

observation in combination with the fact that bacterial mutants that fail to induce 

cell death in tobacco suspension cells yet still induce the oxidative burst has led to 

the suggestion that H2O2 is not sufficient to trigger the HR but may act in 

conjuction with other factors to activate cell death (Glazener et al., 1996). The 

induction of the HR by some pathogens and elicitors (molecules secreted by 

pathogens) may be mechanistically similar to apoptosis in animals, since apoptotic 



features such as DNA breaks with 3'OH ends, blebbing of the plasma membrane as 

well as nuclear and cytoplasmic condensation are present in some cells undergoing 

the HR (Levine et al., 1996, Ryerson et al., 1996)). In some cases the HR is also 

accompanied by internucleosomic DNA cleavage, another apoptosis-associated 

event (Wang et al., 1996). The HR is also correlated with the activation of K+/H+ 

exchange across the plasma membrane of plant cells in culture, an event which 

might lead to cell death and/or defense signaling. Introduction of a gene which 

encodes a bacterial proton pump into tobacco plants causes the plants to undergo an 

apparent HR (Mittler et al., 1995). If the bacterial protein really is functioning to 

translocate protons across the plasma membrane of plants, this suggests that the 

protein causes the HR by mimicking the K+/H+ exchange that occurs during the HR. 

This would provide the first compelling evidence that the exchange of ions is 

causally related to HR control.  

Many plant-pathogen interactions can lead to plant cell death that appears to be 

distinct from the HR either because it is not associated with resistance or it occurs 

late after infection and is not accompanied by tissue dehydration. It is not known if 

cell death that occurs in such susceptible interactions generally occurs by a 

programmed process. However, the existence of maize mutants that resemble 

different diseases and the recent discovery of Arabidopsis mutants that mimic 

specific diseases such as bacterial leaf spot and soft rot (unpublished observations) 

suggests that cell death associated with various diseases might be genetically 

programmed processes. It is not known whether any of the genes identified in 

Arabidopsis or maize act in the same pathway to control cell death. As these 

Arabidopsis and maize mutants become better characterized and some of the genes 

are cloned, it should become clearer how many pathogen triggered cell death 

pathways there are. Interestingly, it has also been shown that certain fungal toxins 



can induce apoptosis in both animal and plant cells, although the gene products that 

control the cell death process in toxin-susceptible plants have not been identified 

(Wang et al., 1996). 

 

7. PCD IN RESPONSE TO ABIOTIC STRESS  

Plant cells and tissues exposed to variety of abiotic stresses that ultimately may 

result in their death. Abiotic stresses include toxins such as salinity, metals, 

herbicides and gaseous pollutants, including reactive oxygen species (ROS), as well 

as water deficit and water logging, high and low temperature and extreme 

illumination. Plants show adaptations to the stress including mechanisms to tolerate 

the adverse conditions, to exclude the toxins or to avoid conditions where the stress 

is extreme. Abiotic stress may also result in stunted growth, followed by death of 

part or all of the plant. Cell death in abiotic stress may therefore be part of a 

regulated process to ensure survival. Alternatively, it may be due to the 

uncontrolled death of cells or tissues killed by unfavorable conditions. PCD may be 

a part of an adaptive mechanism to survive the stress. Adaptation of plants to 

environmental conditions such as high light intensity or low humidity often 

involves covering their surfaces with layer of dead unicellular hairs. These cells are 

thought to go through PCD resulting in the formation of a protective layer 

that functions to block high irradiance and trap humidity (Greenberg, 1996). 

7.1 Heat stress 

Due to the global increase of atmospheric temperature, plants must cope with heat 

stress conditions in wider and wider areas of our planet. Transitory or constantly 

high temperatures affect plant growth and development and are a serious threat to 

crop production worldwide. Heat stress response appears to be one of the most 

conserved defense mechanisms present in all living organisms. Heat stress induces 



different kinds of metabolic responses some of which seem to be activated under a 

plethora of unfavourable conditions and are aimed at maintaining cellular 

functionality (Desikan et al., 2001;  Baniwal et al., 2004, Baena-González & Sheen, 

2008). It has been reported recently that also heat shock induces PCD in plants 

(Vacca et al. 2004).  

Heat stress was shown to cause impairments in mitochondrial functions and result 

in the induction of oxidative damage that manifested in lipid peroxidation (Vacca et 

al., 2004). The steady-state transcript and protein level of many ROS-scavenging 

enzymes were found to be elevated by heat stress (Rainwater et al., 1996, Rizhsky 

et al., 2002). Heat stress-response signal transduction pathways and defense 

mechanisms, involving heat shock transcription factors (HSFs) and heat shock 

proteins (HSPs), are thought to be intimately associated with ROS (Pnueli et al., 

2003). Several studies have indicated that HSFs are involved in the sensing of ROS. 

These results indicate a central role of HSFs in early sensing of H2O2 and 

expression of APX1, APX2, and Zat12. Recent studies demonstrated that protection 

against heat stress-induced oxidative damage involves calcium, abscisic acid 

(ABA), ethylene, and salicylic acid (SA) (Larkindale and Huang, 2004). Calcium 

channel blockers and calmodulin inhibitors induced oxidative damage to 

membrane, and pretreatment with calcium, SA, ABA, and 1-aminocyclopropane-1-

carboxylic acid (ethylene precursor) increased survival rate of plants following a 

lethal heat stress (Larkindale and Knight, 2002). 

7.2 Hydrogen peroxide stress 

Several lines of evidence support the evidence that, among ROS,  hydrogen 

peroxide (H2O2) plays a crucial role in defining PCD in plants. Firstly, H2O2 

increases remarkably in the early events of the PCD process (Locato et al., 2008) 

and the different concentrations of exogenously applied H2O2 may induce different 



cell death pathways (Houot et al., 2001, Gechev et al., 2006). Perturbation of H2O2 

homeostasis through alteration of catalase activity is able to induce PCD (Dat et al., 

2003, Palma and Kermode, 2003). The overexpression of the H2O2-detoxifying 

enzyme ascorbate peroxidase suppresses the H2O2-induced PCD (Murgia et al., 

2004), while the overexpression of genes involved in biotic response increases 

H2O2 levels following pathogen. Changes in H2O2 homeostasis are sensed by the 

plant cell and, depending on the situation, genetic programs leading to stress 

acclimation or PCD are triggered (Gechev and Hille, 2005). 

Although there has been rapid progress in recent years, there are still many gaps in 

our understanding of how H2O2 affects PCD response of plants.  

 

8. APPLICATION OF PCD  

With an increase in the understanding of PCD mechanisms, genetic based and 

signal molecule genespecific therapies have become a strong alternative for 

combating diseases in animals and plants. Degenerative diseases such as 

Alzheimer’s, Parkinson’s and AIDS as well as proliferative diseases such as cancer 

that involve apoptosis in one way or another, are recent targets for the selective 

manipulation of PCD (Bossy-Wetzel et al., 2004). Plants may also be modified for 

resistance to a wide range of pathogens, considering the fact that there are no 

specialized cells as in mammals, dedicated exclusively to defense regulation. 

Therefore, the modulation of PCD to alter the development and progression of 

diseases in plants must be site-specific at the location of the infection (Kurana SMP 

et al., 2005). The modulation of apoptosis for disease control in plants can be 

achieved by either the inhibition or induction of PCD. For compatible obligate 

pathogens (necrotrophic) the inhibition of apoptosis may result in a broad-spectrum 

disease resistance. For example, the expression of the anti-apoptotic gene p35 from 



baculovirus in transgenic tomato plants provided resistance to Alternaria alternata, 

Colletotrichum coccode and Phytophtora syringae pv. tomato (Lincoln et al., 

2002). Transgenic tobacco plants expressing negative regulators of apoptosis (as 

human Bcl-2 and Bcl-xl, nematode CED-9, or baculovirus Op-IAP) exhibited 

heritable resistance to several necrotrophic fungal pathogens (Dickman MB et al., 

2001) . For incompatible-obligate pathogens (biotrophic), disease resistance can be 

achieved through the induction of HR-linked cell death. Genes with distinct roles in 

the induction of apoptosis during HR have been identified and characterized. For 

example, an Arabidopsis thaliana gene, AtMYB30, has been identified as a positive 

regulator of HR-linked cell death following incompatible interactions in response to 

bacterial pathogens (Vailleau et al., 2004). Another strategy to control biotrophic 

pathogens is to introduce avr/R gene pairs as two-component sensor systems which 

could be introduced into crop plants with the avr gene under the control of a 

pathogeninducible promoter so that infection by any pathogen will trigger an HR, or 

to fuse such a promoter to gene coding for a non-specific death elicitor. Another 

possibility is to use such gene pairs to induce low levels of cell death that trigger 

SAR. 

Furthermore, the manipulation of signal transduction pathways that lead to the HR 

such as those related to second messengers, such as calcium, is an attractive strategy 

that has been used. The expression of three types of tobacco calmodulins lead to the 

activation of HR in response to wound and infection with TMV. 

Therefore we can say that we should not think of this phenomenon as a 

degenerative invariably process, in fact the study of the evolution process of human 

aging showed a series of cellular phenomena associated with apoptosis, which are 

manufactured in an evolutionary sequence defined: such as DNA and DNA-helicase 



alteration, mitochondrial aging, apoptotic atrophy of female reproductive tissues 

and the death of osteoclasts.  

The decay of trophic and hormonal stimuli can be correlated with many of these 

events, though the relations of cause and effect are not always to clarify; a better 

understanding of the phenomenon would lead to clear advantages, in clinical field 

too. 

 

 

 

 

 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

 

 

MATERIALS  

and METHODS 
 
 
 



1. CELL CULTURE, GROWTH CONDITIONS AND HEAT TREATMENTS 

In my work I used the cells line Tobacco Bright Yellow 2 (TBY-2); this cell line is 

important, because basic plant cell features have been well visualized with these. 

Other features of this cells are the high synchrony, high uniformity and stability and 

that are non-photosynthetic (the cells have not the Rubisco); the synchrony attained 

with the TBY-2 cell line is 60-70% MI starting from the S phase, however, it should 

be remembered, in this context, that this high synchrony may be attainable when the 

cell line is properly maintained and handled.   

The suspension of TBY-2 cells was cultured at 27°C as previously described (de 

Pinto et al. 2002).  For heat shock, a stationary culture was diluted 4:100            

(v/v; 100 mL), cultured for 4 days and then transferred for 10 min into a water bath 

at 35°C or 55°C, with constant shaking. After this treatment, the cells were returned 

at 27°C for 3 and 6 hours and then collected, frozen in liquid nitrogen and stored at 

-80°C. Where indicated, spermidine 0.5–1.5 mM was added to the cell suspension 

15 min before the HS exposition. 

For H2O2 treatment, a stationary culture was diluted 4:100 (v/v; 100 mL), cultured 

for 4 days and then incubated with 50mM H2O2 with constant shaking. After this 

treatment, the cells were collected at 30 min and 3h, frozen in liquid nitrogen and 

stored at -80°C.  

Cell viability was measured by Trypan Blue staining as previously described (de 

Pinto et al. 2002). 

 

2. PROTEIN EXTRACTION  

Frozen cell pellets were homogenised, by using a mortar and pestle, in liquid 

nitrogen with addition of quartz sand. Soluble proteins were extracted in four 

volumes (w/v) of buffer containing 500 mM Tris–HCl pH 8, 700 mM sucrose, 10 



mM EDTA, 4 mM ascorbic acid, 0.4% 2-mercaptoethanol, 0.2% Triton X-100 

10%, 1 mM PMSF (Sigma, St. Louis, MO, USA), 1 µM Leupeptin (Fluka, 

Stenheim, Germany), 0.1 mg/mL  Pefabloc (Fluka, Stenheim, Germany), and 

subsequently stirred for 30 min at 4˚C. After sonication, three times for 10 s with 

intervals of 30 s, the samples were centrifuged at 13,000g for 20 min at 4˚C. An 

equal volume of phenol saturated with Tris–HCl 0.1 M pH 8 was added to the 

supernatant, and the phases were separated by centrifugation at 5000g for 20 min at 

4˚ C. The proteins were precipitated by adding five volumes of cold 0.1 M 

ammonium acetate in methanol to the phenol phase, vortexing and incubating 

overnight at -20˚ C. The precipitates were recovered by centrifuging at 13,000g for 

30 min, washed with ammonium acetate in methanol and with acetone 80%, and 

then resuspended in the IEF solubilization buffer [7 M urea, 2 M thiourea, 4% 3-

[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS), 50 mg/mL 

dithiothreitol (DTT)]. After sample clarification at 13,000g for 10 min, protein 

concentration was measured by the Bio-Rad protein assay (Hercules, CA, USA), 

using bovine serum albumin as a standard. The samples were directly loaded for 

isoelectrofocusing (IEF) or stored in aliquots at -80˚C until use. 

 

 

 

 

 

 

 

 

 



 

 

EXTRACTION BUFFER 

 [final] 

TRIS-HCl 1.5 M pH 8  0.5 M 

Saccarosio (Mw=342.3) 0.7 M 

EDTA (Mw=372.2) 10 mM 

KCl (Mw=58.44) 0.1 M 

A. Ascorbico (Mw=176.1) 4 mM 

MSH-beta mercapto  

(14.3M) 
0.4 % 

Triton X-100 10% (W/V) 0.2 % 

H2O  

 

 

PROTEASE INHIBITOR 

 [final] 

PMSF (200 mM) 1 Mm 

Leupeptina (stock 10 

mM) 
1 µm 

Pefabloc 0.1 mg/ml 

 

 

 

 

 



 

BUFFER IEF 

 [final] 

CHAPS 4 % 

UREA 7 M 

TIOUREA 2 M 

DTT 50 mg / ml 

 

 

3. 2-D GEL ELECTROPHORESIS 

The washed pellets were air-dried and recovered in 7 M urea, 2 M thiourea, 4% 

CHAPS, 50 mg/mL DTT, 0.5% of carrier ampholyte.  Protein concentration was 

determined by Bradford assay (Sigma-Aldrich Italia, Milan, Italy). Three 

independent protein extractions were performed from each sample. 600 µg of total 

proteins were loaded onto an 18 cm and  pH 4-7 linear gradient IPG strips (GE 

Healthcare, Uppsala, Sweden). Then IEF was performed at 16°C in the IPGphor 

system (Amersham Biosciences, Uppsala, Sweden) as the following: for 4 h at 200 

V, from 200 to 3500 V in gradient during 30 min, 3h at 3500 V, from 3500 to 8000 

V in gradient  during 30 min, after which the  run was continued at 8000 V to give a 

total of 70 kVh. Each focused strip was equilibrated for 30 min against 6 M urea, 

30% glycerol, 2% SDS, 50 mM Tris-HCl pH 8.8, 2% DTT and then a further 30 

min with the substitution of the DTT with 2.5% iodoacetamide. The separation of 

proteins in the second dimension was performed with SDS polyacrylamide gels 

(12.5%) on an Ettan DALT System (GE Healthcare). The  SDS-PAGE gels were 

visualized by the modified Colloidal Coomassie Brilliant Blue (CCBB) staining 



method (Aina et al. 2007). Each separation was repeated 3 times for each biological 

replicate to ensure the protein pattern reproducibility. 

 

LOADING BUFFER 

 [final] 

SAMPLE X 

IPG buffer 1.25 µl 

Blu Bromophenol 2.5 µl 

Buffer IEF q.b. 

 

EQUILIBRATION BUFFER 

 [final] 

Tris-HCl pH 8.8, 1.5M 50 mM 

Urea 6 M 

Glyicerol 30 % 

SDS 2 % 

H2O q.b. 

 

RUNNING BUFFER (Laemmli, pH 8.3) 

 [final] 

Trizma 50 mM 

Glycin 6 M 

SDS 30 % 

H2O q.b. 



 

 

 

GEL SOLUTION 

 [final] 

MONOMER STOCK 

SOLUTION 
30% T, 2.67% C 

Tris-HCl pH 8.8, 1.5M  

TEMED 0.5 % 

APS 10% 10 % 

H2O q.b. 

 

 

 

 

STAINING SOLUTION 

 [final] 

Ortho phosphoric acid 1,6% 

Ammonium Sulfate 8% 

Blu G-250 5 % 0,08% 

Methanol 20% 

H2O q.b. 

 

 

 



4. IMAGE ACQUISITION AND SPOT DETECTION 

The gels were analyzed by using the Image Master 2D Platinum software version 

5.0 (Amersham Biosciences). Data were normalized by expressing protein 

abundance as percent spot volume relative to volume of total protein in the gel 

(%Vol). The 2D gels for each biological replicate were averaged and the resulting 

gel (master gel) contains only the spots present in all of the gels. Statistical analysis 

(Student’s t-test at a level of 95%) identified proteins that significantly increased or 

decreased (at least 1.5-fold in relative abundance) after the different treatments with 

respect to the control. These spots were selected for MS/MS analysis. 

  

5. STATISTICAL ANALYSIS  

For all analysis at least three replicates were performed for each heat treatment and 

the values represent the means (± SD). Statistical analysis was done using a two-

tailed Student’s t test and with values that are significantly different with  p < 0.05 

and p < 0.01 respectively. 

The gels and X-ray films were analyzed by using the Image Master 2D Platinum 

software version 5.0 (Amersham Biosciences). 

 

6. IN GEL DIGESTION AND MASS SPECTROMETRY ANALYSIS 

Selected spots were manually excised from the 2D-gels, washed twice and stored in 

50% ethanol at 4°C until digestion. Spots digestion was performed as previously 

described (Marsoni et al. 2008). The extracted tryptic fragments were analyzed by 

MS/MS after reverse phase separation of peptides (Liquid Chromatography-

ElectroSpray Ionization Mass tandem Spectrometry, LC-ESI-MS/MS). For all 

experiments, a Finningan LXQ linear ion trap mass spectrometer, equipped with a 

Finningan Surveyor MS plus HPLC system (Thermo Electron Corporation, CA, 



USA) was used. Chromatography separations were conducted on a BioBasic C18 

column (150 µm I.D. x 150 mm length and 5 µm particle size; Thermo Electron 

Corporation), using a linear gradient from 5 to 75% acetonitril, containing 0.1% 

formic acid with a flow of 2 µL/min. Acquisitions were performed in the data-

dependent MS/MS scanning mode (full MS scan range of 400 – 1400 m/z followed 

by Zoom scan for the most intense ion from the MS scan and full MS/MS for the 

most intense ion from the zoom scan), thus enabling a dynamic exclusion window 

of 3 min. Protein identification was performed by searching in the National Center 

for Biotechnology Information (NCBI) viridiplantae and/or EST-viridiplantae 

protein database using the MASCOT program (http://www.matrixscience.com). 

The following parameters were adopted for database searches: complete 

carbamidomethylation of cysteines, partial oxidation of methionines, peptide mass 

tolerance 1.2 Da, fragment mass tolerance 0.8 Da and missed cleavage 1. For 

positive identification, the score of the result of [- 10 × log(P)] had to be over the 

significance threshold level (p > 0.05). Unsuccessful protein identifications were 

submitted to de novo analysis by PepNovo software using default parameters 

(http://peptide.ucsd.edu/pepnovo.py). Only those PepNovo results were accepted 

that received a mean probability score of at least 0.5. Peptides sequences candidates 

were edited according to MS BLAST rules and MS BLAST search was performed 

against NCBI non redundant database at http://www.dove.embl-

heidelberg.de/Blast2/msblast.html. Statistical significance of hits was evaluated 

according to MS BLAST scoring scheme. Other than Mowse and MS BLAST 

scoring system to assign correct identification we make a point of a minimum of 

two matched peptides and a molecular weight predicted in good agreement with 

that estimated from SDS-PAGE.  



For the sub cellular localization we used CELLO v.2.5: subCELlular LOcalization 

predictor (Yu et al. 2006). 

 

7. WESTERN BLOTTING 

Total soluble proteins were extracted by phenol method, as previously described, 

but after acetone precipitation the pellet was re-suspended in Laemmli sample 

buffer. 75 µg of proteins were loaded onto 14% SDS-PAGE gel and transferred to 

PVDF membranes (Westran CS, 0,45 µm, Whatman). Membranes were probed 

with 1:2000 Anti-cAPX monoclonal antibody (AP6 from Saji et al., 1990) using the 

Supersignal West Dura Extended Duration Chemiluminescent Substrate for HRP 

system (Pierce). Protein loading was verified by Ponceau staining of the membrane.  

The analysis  was  done in triplicate; however, only one representative Western blot 

is shown. 

 

 

TRANSFER BUFFER  

 [final] 

Trizma 50 mM 

Glycin 6 M 

SDS 30 % 

MetOH 20 % 

H2O q.b. 

 

 

 



 

8. SEMIQUANTITATIVE RT-PCR EXPERIMENTS  

Total RNA was extracted using the TRIzol reagent (Invitrogen, Carlsbad, CA, 

USA) according to the manufacturer's instructions. First strand cDNA was 

synthesized from 2 µg of total RNA by using Superscript III reverse transcriptase 

(Invitrogen). The 18S RNA was used as the inner control. The PCR products were 

isolated by 1% gel electrophoresis. The data were analysed with ImageJ 1.41 

(http://rsb.info.nih.gov/ij/). All experiments were repeated three times 

independently for each biological  replicate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

 

 

 

AIM OF THE WORK 
 
 
 



The main objective of the research described in this thesis is the identification of the 

molecular factors associated with the early phases of PCD in (Nicotiana tabacum) 

tobacco cells Bright-Yellow 2 (TBY-2).  

To achieve this, I used a proteomic approach which allows the global analysis of 

gene products in various tissues and cells in different physiological states. With the 

completion of genome sequencing projects and the development of analytical 

methods for protein characterization, proteomics has become a major field of 

functional genomics. The usefulness of the proteomic approach in addressing a 

biological system, in which there is little prior knowledge, to form the basis of more 

hypothesis-driven studies has been already demonstrated. 

For this study, I chose to use TBY2 cells, not only because data obtained using 

these cells are highly reproducible, but also because the PCD process has already 

been extensively studied in this system. Cells were exposed to two different heat 

shocks (HSs): 55 °C n or 35 °C, for 10 min. HS at 55 °C triggers PCD without the 

addition of any PCD inducer (Burbridge et al. 2007; Vacca et al. 2004). In TBY-2 

cells exposed to a temperature of 55 °C, cell viability starts to decrease after 2 to 3 h 

of recovery at 27 °C, falls to 50% after 24 h, and is negligible after 72 h (Vacca et 

al. 2004). Evidence that cell death occurs by PCD is provided by cytological 

hallmarks: cytoplasm shrinkage in 72% of 24 h-PCD cells, DNA laddering, and 

cytochrome c release from mitochondria (Locato et al. 2008). Moreover, HS at 55 

°C induces a biphasic production of H2O2 and a rapid increase in nitric oxide, both 

of which are necessary events for the activation of PCD (Delledonne et al. 1998). 

By contrast, 35°C HS leads to only a transient increase in H2O2 and a consequent 

alteration in Reactive Oxygen Species (ROS) scavenging systems aimed at 

maintaining the cell redox homeostasis (Locato et al. 2008). We performed a 

proteomic analysis of TBY-2 cells collected at 3 and 6 h after HS exposure. These 



time intervals were chosen on the basis of previous results obtained in the same 

experimental setup (Locato et al. 2008). Three hours after HS at 55°C (3 h-PCD), 

the biochemical pathways leading to PCD begin to be activated and cytological 

evidence of PCB starts to emerge; 6 h after the HS at 55°C (6 h-PCD), cell death is 

much more evident, even at the cytological level. In the TBY-2 cells exposed to 35 

°C HS, the homeostatic response (HRE) is at its highest level between 3 and 6 h 

after treatment (3 h- and 6 h-HRE) and then returns to the control level (Locato et 

al. 2008).  

We analyzed the overlap of differentially-accumulated proteins between HRE and 

PCD, and identified the modulation of specific proteins belonging to different 

categories, some of which are responsible for the two different cell fates.  

In TBY-2 cell suspension, the PCD process can be induced by several stimuli, such 

as the direct addition of 50 mM H2O2. However, in this treatment, the mortality 

trend is steeper than HS at 55°C: the cell viability reaches 30% after 24 h. Also, 

H2O2 induces cytoplasm shrinkage, a typical marker of plant PCD, in almost 80–

90% of the Trypan blue-dyed cells (de Pinto et al. 2006). We analyzed the proteins 

from cells treated with 50 mM H2O2 for  30 min and 3 h to gain information about 

the proteins induced by oxidative stress and involved in PCD pathway. The results 

were compared with those previously obtained from HS PCD cells. The two 

systems are quite similar because the mortality rate is         20–25% in both 3 h 

H2O2 and 3 h HS PCD cells, although the physiological statuses of the remaining 

85% of cells in the two treatments may not be directly comparable.  

The PCD pathways in plants not only remain enigmatic, but the nature and 

activities of core regulators of plant PCD are poorly understood. Proteins that are 

differentially and commonly accumulated during both types of PCD may function 

as a core regulator of plant PCD.  



The overall picture to emerge from the proteomic study was a sophisticated 

functional network for the regulation of oxidative stress in TBY-2 cells undergoing 

PCD. The role of selected members of this network was corroborated by 

physiological and biochemical analysis. In addition, immunological experiments 

were performed to show that post-translational modifications play important 

regulatory roles during the early phases of PCD.  
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ABSTRACT 

           We have used a comparative proteomic approach to investigate the 

changes elicited in Tobacco (Nicotiana tabacum) Bright-Yellow 2 (TBY-2) 

cell cultures by 50 mM H2O2 treatments for  30’ and 3h. This strong 

oxidative stress is able to induce programmed cell death (PCD) in TBY-2 

cells. Of the 1300 protein spots reproducibly resolved, 230 changed in 

abundance after H2O2 stress  and 156 were successfully identified by LC–

MS/MS analysis. The sorting of the identified proteins in different 

functional categories revealed that they mainly belong to metabolism (75) 

disease/defence (20) and protein synthesis and fate (45). For several 

differentially expressed proteins there is the intriguing possibility that they 

may play unappreciated roles in addition to the already known functions. 

Some of the identified proteins must be responsible of the PCD 

pathway induction.  To identify proteins that are putatively important in the 

PCD pathway, proteomic data from H2O2-PCD cells were compared with 

proteomic data obtained previously from cells undergoing PCD 3h after heat 

shock at 55°C. The two systems were judged to be similar because the 

mortality was 25% in both cases.  19 protein spots exhibited similar 

regulation during both types of PCD. Although  studies are necessary to 

confirm their direct involvement in PCD regulation, they may represent a 

core mechanism of plant PCD.   

 

 

Keywords: H2O2, redox homeostasis, PCD, TBY-2 cells, 2-DE, mass 

spectrometry  

 



 

Introduction  

Programmed cell death (PCD) is a genetically regulated process 

active during cellular differentiation, organ abortion, and cellular senescence 

(Kuriyama and Fukuda, 2002; Souter and Lindsey, 2000; Young and Gallie, 

2000; Gunawardena et al., 2004) as well as in response to biotic and abiotic 

stresses (Williams and Dickman, 2008; Langebartels et al., 2002).  

Hallmarks of plant PCD include condensed cell morphology, a shrunken 

nucleus, fragmented DNA, mitochondrial swelling and condensation.  

Several lines of evidence indicate that hydrogen peroxide (H2O2) 

plays a role in initiating PCD in plants. First, H2O2 increases early on in the 

process (Locato et al., 2008), and different concentrations of exogenous 

H2O2 induce different cell death pathways (Houot et al., 2001; Gechev et 

al., 2006; Rentel et al., 2004). Decreasing catalase activity causes 

perturbations of H2O2 homeostasis and induces PCD (Dat et al., 2003, 

Palma and Kermode, 2003). The overexpression of the H2O2-detoxifying 

enzyme ascorbate peroxidase suppresses H2O2-induced PCD (Murgia et al., 

2004) while the overexpression of genes involved in responses to biotic 

stresses increases H2O2 levels (Choi et al., 2007). Plant cells sense changes 

in H2O2 homeostasis and trigger genetic programs that promote either stress 

acclimation or PCD (Gechev and Hille, 2005).  

The direct addition of 50 mM H2O2 to the TBY-2 cell suspension 

induced cell death, as about 30% of the cells were viable after 24 h. In 

addition, H2O2 induced cytoplasm shrinkage, a marker of plant PCD, in 

almost 80–90% of the Trypan blue-dyed cells (de Pinto et al., 2006). 



To investigate the early phases of H2O2-induced PCD, changes in 

protein expression were analyzed in TBY-2 cells treated with 50 mM H2O2 

for 30 min (30’-H2O2) and 3 h (3h-H2O2) and cell viability was 100% and 

85%, respectively.  

Using two-dimensional electrophoresis (2-DE) in combination with 

MS/MS analysis, we isolated 152 H2O2-responsive proteins. Identification 

of these proteins and their mapping to various cellular processes gave a 

global view of the changes elicited in TBY-2 cells by oxidative stress. To 

identify a putative PCD core mechanism, we compared the data with that 

previously obtained from cells undergoing PCD induced by heat shock 

(Vannini et al., 2010). The results provide a framework for further 

functional studies of several members of the PCD network.   

 

MATERIALS AND METHODS 

 

Cell culture, growth conditions and  treatments 

The suspension of TBY-2 cells was cultured at 27°C as previously 

described (de Pinto et al., 2002).  For H2O2, a stationary culture was diluted 

4:100 (v/v; 100 mL), cultured for 4 days and then with constant shaking. 

After this treatment, the cells were collected, frozen in liquid nitrogen and 

stored at -80°C.  

For heat shock, a stationary culture cultured for 4 days and then transferred 

for 10 min into a water bath at 35°C or 55°C, with constant shaking. After 

this treatment, the cells were returned at 27°C for 3 and 6 hours and then 

collected, frozen in liquid nitrogen and stored at -80°C. 



Where indicated, spermidine 2mM was added to the cell suspension 15 min. 

before H2O2 exposition. Cell viability was measured by Trypan Blue 

staining as previously described (de Pinto et al., 2002). Three biological 

replicates were done.  

 

Protein extraction and 2-D gel electrophoresis 

The total proteins were extracted by phenol as previously 

described (Marsoni et al., 2008). The washed pellets were air-dried and 

recovered in 7 M urea, 2 M thiourea, 4% CHAPS, 50 mg/mL DTT, 0.5% of 

carrier ampholyte.  Protein concentration was determined by Bradford assay 

(Sigma-Aldrich Italia, Milan, Italy). Three independent protein extractions 

were performed from each sample. 600 µg of total proteins were loaded onto 

an 18 cm and  pH 4-7 linear gradient IPG strips (GE Healthcare, Uppsala, 

Sweden). Then IEF was performed at 16 °C in the IPGphor system 

(Amersham Biosciences, Uppsala, Sweden) as the following: for 4 h at 200 

V, from 200 to 3500 V in gradient during 30 min, 3h at 3500 V, from 3500 

to 8000 V in gradient during 30 min, after which the  run was continued at 

8000 V to give a total of 70 kVh. Each focused strip was equilibrated for 30 

min against 6 M urea, 30% glycerol, 2% SDS, 50 mM Tris-HCl pH 8.8, 2% 

DTT and then a further 30 min with the substitution of the DTT with 2.5% 

iodoacetamide. The separation of proteins in the second dimension was 

performed with SDS polyacrylamide gels (12.5%) on an Ettan DALT 

System (GE Healthcare). The SDS-PAGE gels were visualized by the 

modified Colloidal Coomassie Brilliant Blue (CCBB) staining method (Aina 

et al., 2007). Each separation was repeated 3 times for each biological 

replicate to ensure the protein pattern reproducibility. 



Image acquisition and spot detection 

                The gels were analyzed by using the Image Master 2D Platinum 

software version 5.0 (Amersham Biosciences). Data were normalized by 

expressing protein abundance as percent spot volume relative to volume of 

total protein in the gel (%Vol). The 2D gels for each biological replicate 

were averaged and the resulting gel (master gel) contains only the spots 

present in all of the gels. Statistical analysis (Student’s t-test at a level of 

95%) identified proteins that significantly increased or decreased (at least 

1.5-fold in relative abundance) after the different treatments with respect to 

the control. These spots were selected for MS/MS analysis. 

 

In gel digestion and mass spectrometry analysis 

                Selected spots were manually excised from the 2D-gels, washed 

twice and stored in 50% ethanol at 4°C until digestion. Spots digestion was 

performed as previously described (Marsoni et al. 2008). The extracted 

tryptic fragments were analyzed by MS/MS after reverse phase separation of 

peptides (Liquid Chromatography-ElectroSpray Ionization Mass tandem 

Spectrometry, LC-ESI-MS/MS). For all experiments, a Finningan LXQ 

linear ion trap mass spectrometer, equipped with a Finningan Surveyor MS 

plus HPLC system (Thermo Electron Corporation, CA, USA) was used. 

Chromatography separations were conducted on a BioBasic C18 column 

(150 µm I.D. x 150 mm length and 5 µm particle size; Thermo Electron 

Corporation), using a linear gradient from 5 to 75% acetonitril, containing 

0.1% formic acid, for 50 min. with a flow of 2 µL/min. Acquisitions were 

performed in the data-dependent MS/MS scanning mode (full MS scan 

range of 400 – 1400 m/z followed by Zoom scan for the most intense ion 



from the MS scan and full MS/MS for the most intense ion from the zoom 

scan), thus enabling a dynamic exclusion window of 3 min. Protein 

identification was performed by searching in the National Center for 

Biotechnology Information (NCBI) viridiplantae and/or EST-viridiplantae 

protein database using the MASCOT program 

(http://www.matrixscience.com). The following parameters were adopted 

for database searches: complete carbamidomethylation of cysteines, partial 

oxidation of methionines, peptide mass tolerance 1.2 Da, fragment mass 

tolerance 0.8 Da and missed cleavage 1. For positive identification, the 

score of the result of [- 10 × log(P)] had to be over the significance threshold 

level (p > 0.05). Unsuccessful protein identifications were submitted to de 

novo analysis by PepNovo software using default parameters 

(http://peptide.ucsd.edu/pepnovo.py). Only those PepNovo results were 

accepted that received a mean probability score of at least 0.5. Peptides 

sequences candidates were edited according to MS BLAST rules and MS 

BLAST search was performed against NCBI non redundant database at 

http://www.dove.embl-heidelberg.de/Blast2/msblast.html. Statistical 

significance of hits was evaluated according to MS BLAST scoring scheme. 

Other than Mowse and MS BLAST scoring system to assign correct 

identification we make a point of a minimum of two matched peptides. 

For the sub cellular localization we used CELLO v.2.5: subCELlular 

LOcalization predictor (Yu et al., 2006). 

 

 

 

 



Western blotting 

              Total soluble proteins  were extracted by phenol method, as 

previously described, but after acetone precipitation the pellet was re-

suspended in Laemmli sample buffer. 75 g of proteins were loaded onto 

14% SDS-PAGE gel and transferred to PVDF membranes (Westran CS, 

0,45 µm, Whatman). Membranes were probed with 1:2000 Anti-cAPX 

monoclonal antibody (AP6 from Saji et al., 1990), using the Supersignal 

West Dura Extended Duration Chemiluminescent Substrate for HRP system 

(Pierce). Protein loading was verified by Ponceau staining of the membrane. 

The analysis  was  done in triplicate; however, only one representative 

Western blot is shown. 

 

Statistical analysis  

           For all analysis at least three replicates were performed for each heat 

treatment and the values represent the means (± SD). Statistical analysis was 

done using a two-tailed Student’s t test and (*) and (**) indicates values that 

are significantly different with p < 0.05 and p < 0.01 respectively. 

 

 

 

 

 

 

 

 

 



RESULTS 

  

H2O2 response  

TBY-2 cell cultures exposed to 50mM H2O2 were analysed for cell 

viability. The decrease of cell viability 30 minutes and 3 hours was of 0-5% 

and 15% respectively, and a further decrease occurred in the following 

hours as already reported in literature (Vacca et al., 2004; Locato et al., 

2008). In a substantial number of cells, cytoplasmic shrinkage was also 

evident confirming that PCD was triggered, consistently with data obtained 

previously under the same experimental conditions (Vacca et al., 2006).  

 

2-D separation and identification of differentially accumulated proteins 

of control and H2O2-treated TBY-2 cells.  

              After phenolic extraction and during the time of the analysis here 

performed, the amount of total extracted protein was not significantly 

different between the control and H2O2 exposed  cells (data not shown). The 

protein extracts were subjected to IEF on linear gradient ranging from pH 4 

to 7 and they were subsequently separated on 12.5% SDS-PAGE gels. 

Image analysis revealed an average of about 1300 reproducible protein spots 

in each gel stained with colloidal CBB (Figure 1).  

 

 



     

 

Figure 1. Images of CCB-stained 2D isoelectric focusing sodium dodecyl sulphate 
polyacrylamide gel electrophoresis (IEF SDS–PAGE) gels. 
 

 

Image Master 2D Platinum software showed 230 protein spots that change 

significantly (t test; p0.05) in relative abundance of at least 1.5 fold 

between control and H2O2 treated cells. 165 of these spots were successfully 

identified by LC–MS/MS analysis (Table1).  
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Fold-of variation 
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 MW (Da)/pI    
  

Spot  Protein name 
NCBI 

accession 
number 

30' 3h  Theor.         Exp. EST code 

Disease/defence 

1 thioredoxin peroxidase  
Nicotiana tabacum gi|21912927  -6 <0.01 30.0/8.2 24.0/5.0 

2 thioredoxin peroxidase    
Nicotiana tabacum gi|21912927  -2,4 -1,7 30.0/8.2 23.0/4.9 

3 thioredoxin peroxidase  
Nicotiana tabacum gi|21912927  1 -1,9 30.0/8.2 32.0/6.6 

4 
peroxiredoxin-2E, chloroplastic; 

Thioredoxin reductase 2E  
Arabidopsis thaliana 

gi|143360522 1 -1,7 22.5/7.6 17.0/5.1 

5       peroxiredoxin, putative  
Ricinus communis a gi|255575353 <0.01 1 23.7/7.6 17.0/5.4 gi|225317455 

6 peroxiredoxin  
Ipomoea batatas a gi|37783267  3,9 8 20.7/8.8 19.0/5.9 gi|52834488  

7 thioredoxin H-type 1 
Nicotiana tabacum gi|267124 -1,9 1 14.1/5.6 12.0/5.6 

8 disulfide oxidoreductase, putative 
Ricinus communis a gi|255575237 -1,6 1 39.3/8.2 33.0/5.7 gi|761563 



9 ascorbate peroxidase  
Nicotiana tabacum gi|559005  1,5 2,6 27.3/5.4 27.0/5.4 

10 ascorbate peroxidase  
Nicotiana tabacum    gi|559005 -1,5 -1,5 27.3/5.4 27.0/5.7 

11 ascorbate peroxidase  
Nicotiana tabacum    gi|76869309 1 -1,5 27.0/5.4 27.0/5.9 

12 
thylakoid-bound ascorbate 

peroxidase  
Nicotiana tabacum 

gi|4996602  -2,4 -4,1 47.4/8.5 32.0/5.7 

13 thylakoid-bound ascorbate 
peroxidase Nicotiana tabacum gi|4996602  -1,7 -2,4 47.4/8.5 32.0/6.0 

14 Ferritin-1  
Nicotiana sylvestris gi|48754322 <0.01 <0.01 28.2/5.7 26.0/5.6 

15 
superoxide dismutase 

[Fe]chloroplastic  
Nicotiana plumbaginifolia 

gi|134642  <0.01 <0.01 23.0/5.5 23.0/5.9 

16 probable glutathione-S-transferase 
Capsicum annuum a gi|60459397 4,7 6 25.4/5.5 26.0/6.0 gi|76871463 

17 glutathione S-transferase  
Solanum commersonii a gi|148616162 -1,9 1 23.8/5.9 24.0/6.75 gi|83420783 

18 glyoxalase I  
Solanum lycopersicum a gi|2494844 -1,5 1 20.7/5.3 20.0/5.0 gi|190145651 

19 flavodoxin-Like Quinone Reductase 
Arabidopsis thaliana a gi|15239652 -1,8 1 21.7/5.9 22.0/6.7 gi|83420109 



20 chilling-responsive protein  
Nicotiana tabacum gi|153793260  -2 2,3 35.7/4.9 35.0/4.9 

Protein synthesis and fate 
 

21 
eukaryotic translation initiation factor 

3 subunit, putative  
Ricinus communis a 

gi|255550315  -1,8 1,7 26.9/5.8 25.0/5.6 gi|76867840 

22 eukaryotic initiation factor 4A-11 
Nicotiana tabacum gi|2500518  1 3,1 47.2/5.4 47.0/5.3 

23 eukaryotic initiation factor 4A-11 
Nicotiana tabacum gi|2500518  1,6 3,2 47.2/5.4 45.0/5.3 

24 eukaryotic initiation factor 4A-9 
Nicotiana tabacum a gi|2500517 1 -1,8 47/5.5 46.0/5.5 gi|190874337  

25 eukaryotic initiation factor 4A-9 
Nicotiana tabacum gi|2500517  1,7 2,5 47.0/5.5 47.0/5.2 

26 eukaryotic initiation factor 4A-15 
Nicotiana tabacum gi|2500521  1 2 46.9/5.4 47.0//5.35 

27 
eukaryotic translation initiation factor 

5A-2  
Nicotiana plumbaginifolia 

gi|124226 1 <0,01 17.6/5.6 17.0/5.65 

28 
eukaryotic translation elongation 

factor, putative  
Vitis vinifera a 

gi|225454579 2 1 94.0/5.9 110.0/6.4 gi|92027234 

29 elongation factor 1-beta / EF-1-beta 
Arabidopsis thaliana a gi|145324076  1 -1,7 28.7/4.6 31.0/4.4 gi|76867651 



30 ribosomal protein L2-like  
Solanum tuberosum gi|81074776  7,3 1 28.7/10.6 29.0/6.8 

31 glycyl-tRNA synthetase, putative 
Ricinus communis a gi|255543218 2,6 1 77.3/6.6 62.0/6.2 gi|190806778 

32 glycyl-tRNA synthetase, putative 
Ricinus communis a gi|255543218 <0,01 1 77.3/6.6 70.0/6.5 gi|190878443 

33 
 mitochondrial small heat shock 

protein           
 Solanum lycopersicum a 

gi|3492854 1 1,9 23.8/6.5 21.0/4.8 gi|92010828 

34 heat shock protein, putative  
Ricinus communis gi|255581792  1 -1,5 90.0/5.2 85.0/5.1 

35 heat shock protein Solanum 
lycopersicum gi|68989120  <0.01 -2,9 110/6.2 90.0/6.0 

36 heat shock 70 kDa protein, putative 
Ricinus communis a  gi|255574576 1 -1,9 93.6/5.2 110.0/5.5 gi|190723847  

37 hsp70-binding protein, putative 
Ricinus communis a gi|255581500 1 -1,6 39.2/5.2 42.0/5.0 gi|224704536  

38 heat shock 70 kDa protein putative 
Ricinus communis a gi|255574576 1 -1,6 94.0/5.2 110.0/5.6 gi|92037393 

39 heat shock 70 kDa protein, putative 
Ricinus communis a gi|255574576 1 -1,8 94.0/5.2 110.0/5.5 gi|92027886 

40 molecular chaperone Hsp90-1 
Nicotiana benthamiana gi|38154482 1 -2,2 80.0/4.9 80.0/4.9 



41 heat shock protein, putative  
Ricinus communis                   gi|255554571 -5,2 1 71.0/6.1 70.0/5.4 

42 
heat shock protein 70 (HSP70)-

interacting protein, putative  
Ricinus communis a 

gi|255537027 1,5 1 47.0/5.5 60.0/5.4 gi|83419786 

43 hypothetical protein cpn60  
Vitis vinifera  gi|225442531 -2 -1,7 65.3/5.6 58.0/5.1 

44 putative luminal binding protein 
Corylus avellana a gi|10944737 <0.01 -2 73.0/4.9 73.0/5.1 gi|190753562  

45 

 chaperonin containing t-complex 
protein 1, epsilon subunit, tcpe, 

putative  
Ricinus communis a   

gi|255547962 2,3 1,6 59.2/5.5 60.0/5.7 gi|92040148 

46 
 chaperonin containing t-complex 
protein 1, gamma subunit, tcpe, 

putative Ricinus communis a   
gi|255577568  1 1,7 60.0/5.9 61.0/6.0 gi|76867096  

47 

 chaperonin containing t-complex 
protein 1, epsilon subunit, tcpe, 

putative  
Ricinus communis a  

gi|255547962 <0.01 <0.01 59.2/5.5 56.0/5.4 gi|92040148  

48 
chaperonin  T-complex protein 1 

subunit epsilon  
Zea mays  

gi|226506102  1 2,5 59.6/5.7 60.0/5.7 

49 chaperonin 21 precursor  
Solanum lycopersicum a gi|7331143 -1,9 1 26.5/6.8 26.0/5.3 gi|52839170 

50 ubiquitin  
Nicotiana benthamiana gi|213868277  1 2,7 7.5/5.7 7.5/6.1 



51 SUMO  
Nicotiana benthamiana a gi|213868279 -2 1 11.0/4.9 13.8/4.9 gi|51462312 

52 20S proteasome subunit beta-6 
Petunia hybrida a gi|17380185 1 1,6 24.6/6.3 26.0/5.7 gi|92037305  

53 20S proteasome alpha 6 subunit 
Nicotiana benthamiana gi|22947842  <0.01 <0.01 30.0/5.0 33.0/5.2 

54 20S proteasome alpha 6 subunit 
Nicotiana benthamiana gi|22947842 1 <0,01 29.8/5.0 31.0/5.2 

55 
26S proteasome non-ATPase 

regulatory subunit, putative  
Ricinus communis 

gi|255538376 1 <0.01 27.2/6.1 18.0/5.9 

56 
26S protease regulatory subunit, 

putative  
Ricinus communis 

gi|255570523  1,6 -1,7 49.5/5.9 53.0/6.2 

57 putative alpha7 proteasome subunit 
Nicotiana tabacum gi|14594925 -1,6 1 27.2/6.1 27.3/6.1 

58 cysteine proteinase aleuran type 
Nicotiana benthamiana a gi|71482942 -4,7 <0,01 39.2/6.9 29.0/6.3 gi|76866797 

59 
ATP-dependent Clp protease ATP-

binding subunit  
Solanum lycopersicum 

gi|399213  -2,4 -2 102.5/5.7 85.0/5.6 

60 oligopeptidase A  
Ricinus communis a gi|255572579 -8 1 88.0/5.2 80.0/5.7 gi|190802613 

61 oligopeptidase A, putative  
Ricinus communis a gi|255572579 -5,6 1 88.0/5.2 85.0/5.6 gi|190876913 



62 oligopeptidase A, putative  
Ricinus communis a gi|255572579 1,9 -1,8 88.0/5.2 78.0/5.5 gi|76868752  

63 mitochondrial processing peptidase 
Solanum tuberosum  gi|587566 1 -1,8 59.9/6.2 60.0/6.0 

64 mitochondrial processing peptidase 
Solanum tuberosum gi|587564  -2,6 1 59.4/6.2 57.0/5.7 

65 
cytochrome c reductase-processing 

peptidase subunit II  
Solanum tuberosum a 

gi|410634 1 -2 59.3/6.2 59.0/5.9 gi|224697460 

Signal transduction/regulation 
  

66 BTF3  
Nicotiana benthamiana gi|90823167  <0.01 <0.01 17.3/6.3 17.0/6.6 

67 BTF3  
Nicotiana benthamiana gi|90823167 2,4 2 17.3/6.3 18.0/6.6 

68 nucleic acid binding protein, putative 
Ricinus communis a gi|255558037  <0.01 -1,7 28.6/4.9 30.0/5.5 gi|190847542  

69 DNA-binding protein GBP16   
Oryza sativa Japonica      gi|2511541  <0.01 <0.01 43.4/6.5 25.0/6.2 

70 EBP1  
Solanum tuberosum a gi|116292768 1 -2,3 42.8/6.3 45.0/6.5 gi|94324881 

71 RAN  
Nicotiana sylvestris a gi|48249480 1 1,7 25.5/6.3 26.0/6.8 gi|92027217  



72 SGT1-like protein  
Nicotiana tabacum gi|29468339 <0,01 <0,01 41.4/5.2 33.0/5.4 

73 SGT1-like protein  
Nicotiana tabacum gi|29468339 <0.01 <0.01 41.4/5.2 33.0/5.0 

74 SGT1-like protein  
Nicotiana tabacum gi|29468339 2,4 1,6 41.4/5.2 43.0/5.0 

75 
heterogeneous nuclear 

ribonucleoprotein 27C, putative 
Ricinus communis a 

gi|255574941  1,6 -1,8 47.4/6.4 48.0/5.8 gi|39851535  

76 hypothetical protein RNA binding 
Vitis vinifera a  gi|296081884 -1,7 1 43.7/5.8 60.0/5.3 gi|190733368 

77 
hypothetical protein DNA helicase, 

putative  
Vitis vinifera a 

gi|147858961 2,5 1 51,4/5,3 50.0/5.8 gi|190806396 

78 DNA helicase, putative  
Ricinus communis gi|255565715 2,1 1 50.2/5.8 50.0/5.9 

Metabolism 

79 GAPDH  
Nicotiana tabacum gi|120676 -1,8 -2,2 35.5/6.14 36.0/6.8 

80 
GAPDH  

Nicotiana langsdorffii x Nicotiana 
sanderae 

gi|120676 4,8 6,4 35.5/6.14 35.5/6.6 

81 

glyceraldehyde 3-phosphate 
dehydrogenase  

Nicotiana langsdorffii x Nicotiana 
sanderae 

gi|120676 >100 1 35.5/6.14 30.0/6.5 



82 enolase  
Nicotiana tabacum gi|238814974 2,3 2 48.0/5.4 54.0/5.9 

83 enolase  
Nicotiana tabacum gi|119354 2,2 2 48.0/5.6 50.0/5.9 

84 phosphoenolpyruvate carboxylase 
Glicine max gi|399182 1 -2,7 110.6/5.7 110/5.8 

85 phosphoglycerate kinase, cytosolic 
Nicotiana tabacum a gi|2499498 1 1,5 42.4/5.7 40.0/5.5 gi|190134894  

86 
phosphoglycerate kinase, 

chloroplastic Precursor  Nicotiana 
tabacum 

gi|2499497  1 -1,7 50.3/8.5 40.0/5.9 

87 cytosolic aconitase Nicotiana 
tabacum gi|11066033  1 5 98.7/5.8 100/6.1 

88 alcohol dehydrogenase Nicotiana 
tabacum gi|551257  -1,8 -2,7 41.9/6.6 42.0/6.4 

89 alcohol dehydrogenase    
Nicotiana tabacum gi|551257  >100 >100 41.9/6.6 42.0/6.2 

90 alcohol dehydrogenase  
Nicotiana tabacum gi|551257 2,1 1 41.9/6.6 42.0/6.1 

91 alcohol dehydrogenase class III 
Solanum lycopersicum a gi|283825505 2,2 8 40.7/6.3 42.0/6.9 gi|285193921 

92 pyruvate decarboxylase isozyme 1 
Nicotiana tabacum gi|1706327 2,3 1 45.7/6.6 60.0/6.8 



93 succinate dehydrogenase, putative  
Ricinus communis a gi|255579273  <0,01 <0,01 68.5/6.2 80.0/5.5 gi|190782074  

94 
NADH-ubiquinone oxidoreductase, 

putative     
Ricinus communis 

gi|255582280 1 -1,7 80.8/5.9 85,0/6,1 

95 putative aconitase  
Capsicum chinense gi|171854675 1 <0.01 108/7.0 48/6.0 

96 NAD-dependent isocitrate 
dehydrogenase Nicotiana tabacum gi|3790188  1 7.08 40.6/7.2 40.6/ 6.2 

97 
diaminopimelate epimerase, 

putative  
Ricinus communis a 

gi|255584553  1 -2 40.1/6.0 35.0/5.3 gi|83422108  

98 
semialdehyde dehydrogenase 

family protein  
Arabidopsis thaliana a   

gi|15223910 6,1 9 40.7/6.5 39.0/5.5 gi|39863720  

99 
aspartate semialdehyde 
dehydrogenase, putative  

Nicotiana sylvestris a 
gi|255584961 -1,8 -1,7 41.2/8.2 40.0/5.6 gi|190769575 

100 
aspartate-semialdehyde 
dehydrogenase, putative 

Arabidopsis thaliana 
gi|75161484 6,1 7 40,7/6,5 38/5,5 

101 betaine-aldehyde dehydrogenase* 
Nicotiana tabacum gi|92037527 1 -1,6 59.7/5.4 57.3/5.6 

102 
putative 3-isopropylmalate 

dehydrogenase large subunit 
Capsicum annuum  

gi|193290700 <0,01 1 43.7/5.9 43.0/5.3 

103 
Isovaleryl-CoA dehydrogenase 2, 

mitochondrial  
Solanum tuberosum a 

gi|25453061 1,8 1 43.9/6.1 43.0/6.1 gi|83422448 



104 glutamine synthetase  
Nicotiana plumbaginifolia gi|121373  1,8 2,3 39.0/5.5 39.0/5.2 

105 
d-3-phosphoglycerate 

dehydrogenase, putative  
Ricinus communis a 

gi|255555301 -5,6 1 63.0/7.7 58.0/6.3 gi|39856030 

106 
EDA9 (embryo sac development 

arrest 9) ATP binding  
Arabidopsis thaliana 

gi|15235282 >100 1 63.5/6.2 60.0/6.3 

107 
cvhain A structure  threonine 

synthase  
Arabidopsis thaliana 

gi|15825882 <0.01 1 53.5/5.6 45/6,6 

108 adenosine kinase isoform 1T 
Nicotiana tabacum  gi|51949796  1 1,6 37.8/5.1 36.0/5.0 

109 adenosine kinase isoform 1T 
Nicotiana tabacum   gi|51949796  1 -1,5 37.8/5.1 38.0/5.0 

110 
5'-aminoimidazole ribonucleotide 

synthetase   
Solanum tuberosum a 

gi|37983566 -1,9 -1,8 42.9/5.2 34.0/4.9 gi|190730691 

111 
putative carbamoyl phosphate 

synthase small subunit  
Nicotiana tabacum 

gi|21535793 -2,7 1 47.7/6.0 47.0/5.9 

112 
ATP synthase subunit delta', 

mitochondrial  
Ipomoea batatas 

gi|2493046 -1,8 2,2 21.3/5.9 20.0/4.9 

113 mitochondrial ATPase beta subunit 
Nicotiana sylvestris  gi|11228579 <0.01 <0.01 59.6/5.2 50.0/5.0 

114 vacuolar H+-ATPase B subunit 
Nicotiana tabacum gi|6715512 1,6 1 53.8/5.1 55.0/5.1 



115 electron carrier/ oxidoreductase 
Arabidopsis thaliana a gi|15232542 -1,8 -2,3 37.2/5.7 34.0/6.6 gi|92032774 

116 N-carbamoylputrescine amidase 
Solanum Tuberosum a gi|118572820 1,5 2,2 33.4/5.9 33.0/6.6 gi|92015448  

117 N-carbamoylputrescine amidase 
Solanum Tuberosum a gi|118572820 -5,4 <0,01 33.4/5.9 33.0/6.8 gi|92015448  

118 Spermidine synthase  
Nicotiana sylvestris gi|6094336  1,7 1 34.5/5.2 33.0/5.4 

119 spermidine synthase  
Nicotiana sylvestris gi|6094336  2,4 1 34.5/5.2 33.5/5.0 

120 spermidine synthase Nicotiana 
sylvestris gi|6094336  <0,01 1 34.5/5.2 33.5/5.1 

121 
putative pyridoxine biosynthesis 

protein isoform A  
Nicotiana tabacum 

gi|46399269  2,1 1,7 33.0/5.9 31.0/5,8 

122 
putative pyridoxine biosynthesis 

protein isoform A  
Nicotiana tabacum 

gi|46399269  -1,9 1 33.0/5.9 31.0/6.1 

123 
ADH-like UDP-glucose 

dehydrogenase  
Nicotiana tabacum 

gi|48093455  -1,9 -2,2 42.0/6.2 42.0/6.8 

124 
ADH-like UDP-glucose 

dehydrogenase  
Nicotiana tabacum 

gi|48093455 3,7 2,2 42.0/6.2 42.0/6.6 

125 
UTP-glucose-1-phosphate 

uridylyltransferase  
Solanum tuberosum  

gi|17402533 2,1 1,1 52.0/5.4 50.0/6.0 



126 
UDP-glucose:protein 
transglucosylase-like  
Solanum tuberosum a 

gi|77416931 1,7 1 41.1/5.6 38.0/6.1 gi|123218663 

127 
putative cinnamyl alcohol 

dehydrogenase  
Nicotiana tabacum a 

gi|156763848 1 1,8 38.9/6.6 39.0/6.5 gi|190749158  

128 
NAD dependent 

epimerase/dehydratase, putative 
Ricinus communis  

gi|255537241  >100 >100 34.0/6.2 32.0/6.6 

129 
NAD dependent 

epimerase/dehydratase, putative 
Ricinus communis a 

gi|255537241 3,5 2,9 34.0/6.2 32.0/6.5 gi|92028282 

130 
NAD dependent 

epimerase/dehydratase, putative 
Ricinus communis a 

gi|255537241  -8,1 -7 34.0/6.2 32.0/6.8 gi|92028282 

131 type 2 proly 4-hydroxylase  
Nicotiana tabacum a  gi|215490181 >100 >100 32.7/6.3 32.0/6.4 gi|190760427  

132 Gibberellin 20 oxidase, putative 
Ricinus communis gi|255556243  -2,5 <0.01 42.0/5.7 38.0/5.5 

133 
1-aminocyclopropane-1-carboxylate 

oxidase  
Solanum lycopersicum a 

gi|50830975 1,7 -1,6 34.4/6.1 32.0/6.1 gi|39853392  

134 S-adenosylmethionine synthase 2 
Solanum lycopersicum  gi|1170938   <0.01 1 43.0/5.4 44.0/6.1 

135 acireductone dioxygenase  
Solanum tuberosum a gi|158325159 <0.01 <0.01 23.3/4.8 22.5/5.0 gi|76867763 

136 acireductone dioxygenase Solanum 
tuberosum a gi|158325159 1 <0.01 23.3/4.8 23,0/5,3 gi|76866491  



137 

putative 4-methyl-5(b-hydroxyethyl)-
thiazol monophosphate biosynthesis 

enzyme    
Capsicum chinense a 

gi|171854671 <0,01 <0,01 41.7/5.4 38.0/5.9 gi|190775218  

138 

putative 4-methyl-5(b-hydroxyethyl)-
thiazol monophosphate biosynthesis 

enzyme  
Capsicum chinense a  

gi|171854671 >100 >100 41.7/5.4 40.0/5.5 gi|47004010  

139 

putative 4-methyl-5(b-hydroxyethyl)-
thiazol monophosphate biosynthesis 

enzyme  
Capsicum chinense  

gi|171854671  1 <0,01 41.7/5.4 40.0/6.2 

140 
rubisco subunit binding-protein 

alpha subunit  
Ricinus communis a 

gi|255587664 -1,5 -1,5 53.2/5.2 60.0/5.0 gi|190794529 

141 
rubisco subunit binding-protein 

alpha subunit  
Ricinus communis a 

gi|255587664 -1,6 -1,6 53.2/5.2 60.0/4.9 gi|190805933 

142 
stem-specific protein TSJT1, 

putative  
Ricinus communis a 

gi|255552037  1 -2,4 27.0/6.0 27.5/6.4 gi|92026938  

143 
hypothetical protein  Stem-specific 

protein TSJT1, putative  
Populus trichocarpa a 

gi|224099853 3,8 1 27.2/5.8 28.0/6.7 gi|92026938 

144 

SAL1; 3'(2'),5'-bisphosphate 
nucleotidase/ inositol or 

phosphatidylinositol phosphatase        
Arabidopsis thaliana a 

gi|145359623 1 1,6 43.4/6.0 40.0/5.4 gi|190143393  

145 patatin homolog  
Nicotiana tabacum gi|1546817  -1,9 -1,8 42.5/5.1 42.0/5.2 



146 
acyl-[acyl-carrier-protein] 
desaturase, chloroplastic   
Solanum commersoni a 

gi|94730426 <0,01 -1,9 44.8/6.3 38.0/6.0 gi|92012186  

147 
DH putative beta-hydroxyacyl-ACP 

dehydratase  
Capsicum annuum a 

gi|193290688 >100 >100 23.9/9.4 22.0/6.4 gi|52834057 

148 
putative pyruvate dehydrogenase 

E1 alpha subunit  
Capsicum annuum 

gi|193290722  <0,01 <0,01 48.0/6.3 38.0/6.75 

149 
glutamate-cysteine ligase, 

chloroplastic  
Nicotiana tabacum 

gi|122194121  -2,5 -1,9 59.4/6.2 45.0/6.8 

150 L-galactono-gamma-lactone 
dehydrogenase Nicotiana tabacum gi|6519872 <0.01 -2 67.1/7.7 54.0/6.8 

151 
putative ketol-acid 
reductoisomerase  
Capsicum annuum 

gi|193290660 -2,6 1 63.7/6.5 59.0/5.8 

152 prolyl endopeptidase, putative 
Ricinus communis a gi|255539116 -2,3 -1,9 80.0/5.3 80.0/5.4 gi|190876295  

153 short chain dehydrogenase 
Solanum tuberosum a gi|77403673 <0.01 1 27.2/6.2 27.0/6.2 gi|254640456 

Cell structure 

154 actin isoform B  
Mimosa pudica a gi|6683504 <0.01 <0.01 41.7/5.3 36.0/5.7 gi|39877476 



155 actin  
Nicotiana tabacum gi|197322805 <0.01 <0.01 41.7/5.3 35.0/5.7 

156 actin-binding protein ABP29  
Lilium longiflorum a gi|117553552 -2,7 -5,5 29.4/6.0 38.0/5.6 gi|190829672  

157 actin  
Nicotiana tabacum gi|50058115  2,5 2,6 41.8/5.3 43.0/5.2 

158 alpha tubulin  
Nicotiana tabacum gi|11967906  1 -2 50.4/4.9 49.0/6.5 

159 alpha tubulin  
Nicotiana tabacum gi|11967906 <0.01 -2,1 50.4/4.9 49/6.4 

160 tubulin beta-2 chain  
Anemia phyllitidis gi|464851 <0.01 1 46.8/4.9 55/6.8 

161  predicted protein  
Populus trichocarpa a gi|224125262 1,5 1,5 26.0/5.1 30.0/5.7 gi|39875797  

162 villin 3 fragment de novo 
Arabidopsis thaliana gi|6735320 <0.01 1,2 64.8/5.5 38.0/5.4 

Unknown 

163 
hypothetical protein stomatin-like 

protein  
Vitis vinifera a 

gi|225442194 1,7 1 45.6/9.0 39.0/6.9 gi|92027149 

164 hypothetical protein isoform 2  
Vitis vinifera a gi|225454579 3,2 1 17,0/4,7 24.0/6.0 gi|190805443 



165 
hypothetical protein coatomer delta 

subunit  
Vitis vinifera a  

gi|270239956 <0.01 <0.01 61.5/5.6 33.0/5.0 gi|190738155 

   
 
 
 
Table 1.  a) Protein founded in the EST DataBase. The name, the molecular weight and the isoelectric point of the protein were annotated by BLAST search.



Some of the identified proteins showed a discrepancy with their theoretical 

Mr or pI. However, these kinds of phenomena are commonly found in 2-D 

gels for several reasons including modification of proteins during the 

extraction or the separation procedure, different isoforms derived from 

various genes, proteolytic cleavage, post translational modifications 

(PTMs). Cross-species protein identification also can produce this variation. 

As shown in Table1 and Figure 2, among the 165 proteins identified 43 and 

45 proteins were specifically expressed comparing with the control in 30’-

H2O2 and 3h-H2O2 respectively, while 77 were common to both treatments. 

                The identified proteins were sorted in different functional 

categories as follows: disease/defence (20), protein synthesis and fate (45), 

signal transduction/regulation (13), metabolism (75), cell structure (9), 

unknown (3). As shown in Figure 2, in PCD cells the down-accumulated 

proteins are the are more numerous than of the up-regulated.  15 unique 

proteins (unipros), representing 38 isoforms, exibited opposite expression 

pattern within each set of isoforms. This result suggests that  isoforms of 

certain unipros may play the same or different roles in modulating H2O2 

response.  

 

 



 

Figure 2. Image of a representative gel: spots differently expressed between Control 
and TBY-2 cells treated with H2O2 are indicated by their relative numbers. 
 

Validation of proteomic results with other approaches 

 

Ascorbate and Glutathione content 

Proteomic results indicated a early decrease of  L-galactono-

gamma-lactone dehydrogenase (GLDH, spot 144) and gamma-

glutamylcysteine synthetase (γ-ECS, spot 28) involved in Ascorbate (ACS) 

and glutathione (GSH) biosynthesis, respectively. The ASC and GSH pools 

(reduced plus oxidized forms) were determined starting from 30’ up to 8 h 

in cells undergoing PCD induced by H2O2 and 55°C treatments. Results 
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indicated that already in the very early phases of PCD,  the decrease of the 

ASC and GSH levels were  more drastic in H2O2 treated cells (Figure 3). 
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Figure 3. Changes in ascorbate (ASC) and glutathione (GSH) content induced by 
H2O2 treatments. Control and treated cells (50 mM H2O2 and 55°C for 10 minutes) 
were collected at the times indicated and used for the determination of the total ASC 
(a) or GSH (b) pools (reduced plus oxidized forms) as reported in Experimental 
procedures. Values represent means (±SE) of three experiments.  
 

Proteasome activity 

Due to the alterations of some proteasome subunits revealed by 

proteomic analysis, we investigated whether and how proteasome activity 



changes in H2O2-exposed cells. Moreover, a comparison was made between 

cells H2O2- and HS-undergoing PCD with respect to proteasome activity as 

measured as a function of time. In both cases, proteasome activity decrease 

already after 30’ of treatment and more rapidly in HS-cells (Figure 4). 
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Figure 4. Effects of H2O2 treatments and heat stress on Proteasome activity; specific 
activity of Proteasome was measured in control and treated cells (50 mM H2O2 and 
55°C for 10 minutes) during time. Values represent means (±SE) of three experiments. 
 

 

Effects of the recovery by spermidine  on PCD occurrence. 

Since the proteomic study show changes of  enzymes involved  in 

polyamine biosynthesis, the effects of exogenous addition of spermidine on 

PCD were also analyzed. Our results show that 2mM spermidine protected 

the H2O2-exposed cells from PCD during the first hours of treatment (Figure 

5).  
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Figure 5. Effect of spermidine pre-treatment on cell viability in PCD-induced by 50 
mM H2O2 . The values are the means of three different experiments ± SD. 

 

 

Western blot analysis of  APX  proteins 

2-DE data indicate the decrease of a Ascorbate Peroxidase protein 

(APX) in 3h and 6h-PCD cells (heat-treatment) and an increase in 3h-PCD 

cells (H2O2-treatment). We used immunoblot analysis with Anti-cAPX 

antibody to detect free and conjugated forms in soluble cellular extracts 

separated by 2-D Electrophoresis (Figure 6).  
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Figure 6. Western blot analysis with cytosolic-APX antibody detecting APX in control 
and treated sample; in cells treated with 50 mM H2O2 for 30 min and 3 h in cells and 
exposed to 55°C for 10 min and then recovered for 3 h and 6 h at 27 °C.  
 

 

DISCUSSION  

The present study investigated the changes found in the TBY-2 cell 

proteome after cells were exposed to 50 mM H2O2 for 30 min or 3 h to 

induce PCD. A number of proteins that differentially accumulated under 

these conditions were identified. 

 

Detoxifying and antioxidant enzymes.  

The metabolism of ascorbate (ASC) and glutathione (GSH) are 

important for the removal of ROS in plants (Mittler, 2002; Noctor and 

Foyer, 1998; Shigeoka et al., 2002). Previous studies using Arabidopsis 

mutants  deficient in ASC (vtc1 and vtc2) showed that low ASC levels 

trigger PCD (Pavet et al., 2005). While the redox states of TBY-2 cells are 

not necessarily important, ASC and GSH levels are important signals in  

TBY-2 cells undergoing PCD induced by 50 mM H2O2 and heat shock at 



55°C (de Pinto et al., 2006). A decrease in the activity of the enzyme GLDH 

has been observed in TBY-2 cells undergoing heat shock-induced PCD 

(Valenti et al., 2006). Cells treated with H2O2 have a lower content of γ-

ECS (spot 149), the rate-limiting enzyme in the synthesis of GSH, and of 

GLDH (spot 150), the last enzyme of the ASC biosynthesis pathway. These 

data could explain, at least in part, the different levels of ASC and GSH 

found in the H2O2 and HS-induced PCD. Moreover, it has been suggested 

that GLDH is an integral part of plant mitochondrial complex I, and that the 

redox state affects GLDH catalysis (Millar et al., 2003). The downregulation 

of the Complex I (NADH-ubiquinone oxidoreductase, spot 98) in cells 

treated with H2O2  for 3 hours suggests that decreased GLDH level 

correlates with Complex I inhibition.  

Of the 17 proteins differentially expressed in PCD cells and 

implicated in redox homeostasis, 14 were downregulated. Four protein spots 

corresponded to thioredoxin peroxidases (spots 1, 2, 3, 4), which are 

members of the peroxiredoxin (PRX) family. PRXs are potentially involved 

in a variety of cellular functions including apoptosis. In mammalian cells, 

PRX5 overexpression prevents p53-dependent ROS generation and 

apoptosis (Zhou et al., 2000), and overexpression of PRX1 and PRX2 leads 

to the removal of H2O2, thereby protecting thyroid cells from apoptosis 

(Kim et al., 2000). Furthermore, depletion of PRX3 by RNA interference in 

HeLa cells, or suppression of 1-Cys PRX in rat lung epithelial cells, leads to 

sensitized cells that are susceptible to peroxide-induced apoptosis (Chang et 

al., 2001; Pak et al., 2002). 

 Four of the identified PRXs showed MW values smaller than the 

theoretical values. In S. Pombe, H2O2 treatment caused a C-terminal 



truncation and the inactivation of PRX (Koo et al., 2002). All of the protein 

spots identified as PRXs had a more acidic experimental pI than the 

theoretical value. Oxidative modifications of PRX caused an acidic shift of 

the relative spot position and inactivated the protein (Rabilloud et al., 2002, 

Lee et al., 2008). The decrease in the PRX amount revealed by proteomic 

analysis could be explained by the acceleration of PRX turnover under 

conditions that induce high oxidative damage to proteins.  To our 

knowledge, no information is available to indicate that protein oxidation 

accelerates PRX turnover. However, site-specific oxidation of proteins has 

been reported to act as a signal for ubiquitination, which triggers protein 

degradation (Iwai et al.,1998). Moreover, our analysis showed that the level 

of a thioredoxin (spot 7), which regenerates the active form of PRX, was 

decreased. 

Among the spots identified as cytosolic ascorbate peroxidases (c-

APXs), the intensities of spots 9 and 11 decreased in the presence of H2O2, 

while the intensity of spot 11 increased relative to the control. Both 

thylacoidal APX spots (t-APX, spots 12 and 13) decreased in intensity. 

Previous results reported a decrease in the abundance of c-APX under 

experimental conditions similar to those used in the present study (de Pinto 

et al., 2006), while a decrease of t-APX activity was observed in TBY-2 

cells undergoing heat shock induced by PCD (Locato et al., 2009). Changes 

in APX content could correlate with both the observed decrease in ASC 

content (De Gara et al., 1997) and the H2O2 level.    

The apparent lowering of antioxidant defenses could allow H2O2 to 

trigger the oxidative burst that is characteristic of  PCD.  

 



Protein synthesis and degradation 

       A total of 38 proteins (30%) whose levels changed in response to 

H2O2 treatment were identified and found to participate in protein 

metabolism (Table 1), indicating that active control of protein biosynthesis, 

folding, and degradation is crucial in PCD.  These proteins belonged to three 

different groups. The first group consisted of nine proteins that function in 

protein biosynthesis. The second group consisted of 16 proteins that 

function in protein folding and assembly. In particular, the lower intensities 

of four HSP70 and four HSP90 spots in cells undergoing PCD suggests that 

HSPs have an antiapoptotic function. Until now, there has been no 

suggestion that plant HSPs proteins have this function; however, the ability 

of HSPs to suppress apoptosis in animal systems is well established 

(Parcellier et al., 2003; Beere, 2005; Didelot et al., 2006). The inhibition of 

early apoptotic events caused by HSP70, such as mitochondrial 

depolarization and  cytochrome c release suggests that it functions at an 

early stage in the apoptotic pathway (Creagh et al., 2000). Interestingly, in 

cells treated with H2O2 for 30’, we found a decrease in the amount of a 

luminal binding protein that is localized to the RE (spot 44). This protein 

shares high homology with the well-studied human protein, GRP78, and its 

role in promoting cell growth and antagonizing apoptosis has been 

demonstrated in several tumor cell lines (Zhao et al., 2010). 

The third group of proteins identified comprised 13 proteins involved 

in protein degradation, five of which were proteasome subunits. Changes in 

proteasome activity are crucial for the regulation of PCD. In animal cells, 

proteasome inhibitors induce apoptosis (Wojcik, 1999) while proteasome 

malfunction leads to PCD in plants (Kim et al., 2003). The 26S regulatory 



subunit (spot 55) was found to be homologous to yeast Rtp2 protein.  Köhler 

et al. (2001) showed that Rpt2 functions to “gate” proteasome activity, as 

mutation of that subunit controlled both the entry of substrate into the 

proteasome and the release of proteolytic products from the proteasome.  

Other proteins involved in protein degradation decreased in 

abundance. These included Oligopeptidase A (spots 60, 61 and 62), 

mitochondrial processing peptidase (spot 63 and 64), a cysteine proteinase 

(spot 58), and two proteins (spots 70 and 69) belonging to the 

metallopeptidase family M24 that were similar to human EBP1, a protein 

that induces apoptotic DNA fragmentation when depleted from cells (Ahn et 

al., 2006).  Other results obtained with transgenic plants expressing high and 

low levels of EBP1 suggest that EBP1 is a dose-dependent regulator of cell 

growth with functions in meristematic competence and cell proliferation 

(Horvath et al., 2006).  

 

        Metabolism  

The level of carbamoyl phosphate synthetase II (CPSII, spot 111), a 

cytosolic enzyme that catalyzes the first step in pyrimidine biosynthesis, was 

decreased. Huang et al. (2002) showed that CPSII is a target for caspase-

dependent regulation during apoptosis.  Moreover, it has been demonstrated 

that alterations in pyrimidine nucleotide synthesis and utilization represent a 

metabolic signal that precedes and accompanies the NO and H2O2-induced 

PCD in tobacco BY-2 cells (Stasolla et al., 2004).  In cells undergoing PCD, 

differentially expressed proteins that are important in purine metabolism 

were identified. These included 5'-aminoimidazole ribonucleotide 

synthetase (AIR) involved in purine biosynthesis, and two isoforms of 



adenosine kinase (ADK) involved in both the phosphorylation of adenosine 

and the purine salvage pathway. Stasolla et al. (2005) showed that increases 

in purine nucleotide synthesis are an early metabolic event to ensure high 

energy levels for the proper execution of PCD induced by NO and H2O2 in 

TBY-2 cells.  The decrease of AIR in the present system is in agreement 

with intracellular energy depletion observed during petal PCD senescence in 

tulip (Azad et al., 2008).  

Purines, especially derivatives of adenosine, are potent inducers of 

apoptosis in animal cells. The results of Mlejnek and Prochazka (2002) and 

Mlejnek et al. (2003) suggest that intracellular phosphorylation of 

isopentenyladenosine (iPA) is required for the activation of caspase-like 

proteases and the induction of apoptosis in tobacco BY-2 cells. Among the 

four TBY-2 adenosine kinase (ADK) isoforms, ADK1T displays a 10-fold 

higher affinity for iPA than it does for other substrates.  These data, together 

with the accumulation of adenosine kinase isoform 1T in H2O2-PCD cells, 

support the hypothesis that ADK1T is an element of the apoptosis 

machinery. 

 H2O2 participates in complex interactions with plant hormones to 

regulate PCD. An initial increase and subsequent decrease in the amount of 

ACC oxidase was found in H2O2-PCD cells. Ethylene is a positive regulator 

of several types of H2O2-induced cell death, including PCD, during 

lysigenous aerenchyma formation and the hypersensitive response (HR) 

(Muhlenbock et al., 2007; Wang et al., 2002). Abiotic, biotic, and oxidative 

stresses can stimulate ethylene biosynthesis through activation of ACC 

synthase and ACC oxidase, and elevated levels of ethylene can amplify the 

H2O2 signal (Wang et al., 2002).  The decreased amounts of two isoforms of 



acireductone dioxygenase (ARD, spots 135 & 136) involved in methionine 

salvage may be related to ethylene synthesis and signaling. Similar results 

were obtained for TaARD in response to biotic and abiotic stresses (Xu et 

al., 2010). The decrease in GA20 oxidase observed in H2O2-PCD cells 

confirms that giberellic acid (GA) signaling is also involved in regulating 

PCD, as previously reported (Fath et al., 2001; Wang et al., 2007).   

Proteomic data confirmed that oxidative stress affects central 

metabolic pathways such as glycolysis, the tricarboxylic acid cycle (TCA), 

fermentation, and amino acid metabolism. The treatment of TBY-2 cells 

with H2O2 decreased the abundance of some key mitochondrial proteins. In 

particular, two enzymes involved in the electron transport chain (ETC) were 

downregulated, including succinate dehydrogenase (spot 93), which is 

involved in the ECT and TCA cycle, and NADH-ubiquinone oxidoreductase 

(75 kDa subunit, spot 94), which is a core component of the mitochondrial 

membrane respiratory chain NADH dehydrogenase (Complex I). The levels 

of two enzymes involved in the TCA cycle were also altered. Aconitase is 

sensitive to ROS and its downregulation may affect the overall efficiency of 

the TCA cycle.  However, the effect of lower levels of aconitase in H2O2-

PCD cells was mitigated by the upregulation of NAD-dependent isocitrate 

dehydrogenase. The upregulation of this enzyme permits degradation of 

citrate, even if the aconitase level is decreased, thereby maintaining 

mitochondrial NADPH activity and amino acid metabolism. Enzymes of the 

glycolytic and fermentation pathways including glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH, spots 81), phosphoglycerate kinase (spot 85), 

enolase (spots 82 & 83), alcohol dehydrogenase (spots 88, 89, 90, 91), and 

pyruvate decarboxylase (spot 92) were differentially regulated in H2O2-PCD 



cells compared to the control. The upregulation of some of the enzymes 

involved in the fermentation of ethanol suggests that fermentation may 

compensate for mitochondrial energy dysfunction. Similar results were 

obtained under conditions of abiotic stress (Levitt, 1980; Kürsteiner et al., 

2003). Some enzymes involved in polyamine biosynthesis (spots ) were 

significantly changed in H2O2-treated cells. Results from previous 

investigations suggest that exogenous application of spermidine and glycine 

betaine is able to alter the expression or activity of some scavenging 

enzymes as well as the cellular levels of ROS, thus modifying the oxidative 

stress intensity (Park et al., 2004; He et al., 2008). A similar effect of 

spermidine was also evident in our experimental system: spermidine 

treatment  protected the H2O2-exposed cells from PCD although the effect is 

less evident than that obtained on TBY-2 cells in which PCD was induced 

by 55°C (Vannini et al., 2010).  

 

         Cell wall 

Changes in the accumulation of three enzymes important for 

biosynthesis of cell wall polysaccharides and lignin were identified in cells 

undergoing H2O2-PCD. These included UDP-glucose dehydrogenase (spot 

123), UTP-glucose-1-phosphate uridyltransferase (spot 125), and 

cinnamoyl-CoA dehydrogenase.  

UTP-glucose-1-phosphate urydyltransferase produces UDP-glucose, which 

can be used in the biosynthesis of cellulose (Kleczkowski et al., 2004). 

UDP-glucose can then be used by the UDP-glucose dehydrogenase to form 

UDP-glucoronate, a key precursor in hemicellulose and pectin formation 

(Seitz et al., 2000).  In PCD induced during tracheary elements 



differentiation, the cell wall undergoes reinforcement and thickening. Also, 

when corolla senescence begins, cell wall modification takes place in the 

corolla, as indicated by the appearance of autofluorescence, which is 

purported to be due to wall-bound phenolic substances. 

Prolyl 4-hydroxylase (P4H), an enzyme responsible for the 

conversion of proline (Pro) to 4-hydroxyproline (4-Hyp) during the post-

translational modification of ER arabinogalactan proteins (AGPs), 

accumulates in apoptotic cells (Cohen et al., 1983; Cooper and Varner, 

1983, Schmidt et al., 1991; Serpe and Nothnagel, 1994). The highly 

regulated expression of AGP during xylem development (Majewska-Sawka 

and Nothnagel, 2000) suggests that AGPs might have roles in cell 

elongation, cell signaling, and programmed cell death, as they are thought to 

mark cells that are destined for PCD. Moreover, perturbation of AGPs by 

Yariv reagent induces PCD in Arabidopsis suspension-cultured cells (Gao et 

al., 1999).  

 

Crosstalk between H2O2- and heat shock-induced PCD pathways.  

The PCD pathways in plants are enigmatic as the functions of most 

of the genes and proteins involved in this complex network have not been 

assigned while other genes and proteins involved have yet to be discovered. 

Moreover, the nature and activities of core regulators of plant PCD are 

poorly understood. Plant proteases with functional similarities to proteases 

involved in mammalian apoptotic cell death (caspases) are thought to be an 

integral part of the core mechanism of most PCD responses in plants. 

To identify proteins that are important in the PCD pathway, 

proteomic data from H2O2-PCD cells were compared with proteomic data 



obtained previously from cells undergoing PCD 3 h after heat shock at 55°C 

(3h-PCD cells) (Vannini et al., 2010). The two systems were judged to be 

similar because the mortality was 25% in both 3h-H2O2 and 3h-PCD cells.   

The results indicated that there are functional differences between 

the PCD pathways activated by HS and H2O2, suggesting that distinct 

downstream components underlie these two pathways. However, as shown 

in Table 1, 19 protein spots exhibited similar regulation during both types of 

PCD: the intensity of 16 spots was decreased while the intensity of three 

spots increased in both of these PCD pathways. These 19 proteins, which 

belong to several functional classes, may represent a core mechanism of 

plant PCD.  

Six proteins were involved in determining protein fate: in particular, 

a decrease in the levels of proteasome alpha 6 and alpha 7 subunits and 

proteasome activity were observed. There exists previous experiments 

support for the involvement of these proteins in the PCD pathway. Virus-

induced gene silencing of the α6 subunit of the 20S proteasome activated the 

PCD program, which was accompanied by reduced proteasome activity and 

the accumulation of polyubiquitinated proteins (Kim et al., 2003). In 

Arabidopsis, the genes corresponding to α6 and α7 proteasome subunits are 

down-coexpressed  in plant cell death during HR experiments, as indicated 

by ATTED-II (Obayashi et al., 2009). Interestingly, this suggests that the 

different proteasome subunits may fulfill specific functions during 

apoptosis. The stability of individual proteasome subunits may be a potential 

target for the regulation of the PCD program. In conclusion, some plant 

PCD pathways may include signaling molecules that modify proteasome 

activity to activate PCD. 



Among the core proteins, five proteins were related to cytoskeletal 

proteins, which suggests that PCD activation causes remodeling of the 

cytoskeleton. Swidzinski et al. (2002) reported that after PCD-inducing 

treatments in cultures of Arabidopsis thaliana, the expression of the alpha 

tubulin gene and the overexpression of the actin2 gene were inhibited. 

Studies using drugs that affect actin turnover suggest that either actin 

stabilization or depolymerization can induce PCD in yeast and mammalian 

cells (Gourlay and Ayscough, 2005; Thomas et al., 2006).  

            For some of core proteins listed in Table 1 we cannot exclude the 

intriguing possibility that during plant PCD process they may play 

unappreciated roles in addition to the already known functions. For 

example, Hsp70 proteins play an important role in the maintenance and 

survival potential of mammalian cells by acting as anti-apoptotic proteins, a 

function that appears to be independent of their chaperoning activity (Beere 

et al., 2000). Similarly, GAPDH is a multifunctional enzyme with a role in 

glycolysis and other less well understood roles, such as a sensor of H2O2 

(Hancock et al., 2005).  Further studies are necessary to confirm the direct 

involvement of the core proteins identified here in PCD regulation and to 

investigate the potential of employing these core proteins as cell death 

markers. 
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