
UNIVERSITÀ DEGLI STUDI DELL'INSUBRIA
Dipartimento di Scienze Teoriche e Applicate - DISTA

Dissertation

COLLABORATIVE EXECUTION
OF SECURITY-RELATED PROCESS

Philosophy of Doctor
In

Computer Science

PhD Candidate: Ngoc Hong Tran
Advisors: Prof. Elena Ferrari, Prof. Barbara Carminati

Italy, 11th January 2016

I would like to dedicate this thesis to my beloved parents,
Hue Hong Tran and Sam Thi Nguyen,

and my little nephews, Anh Minh Tran and Lam Bao Tran.

Acknowledgements

I would like to express my deepest gratitude to my beloved parents, Hue and Sam, for
carrying me to this life, bringing carefully me up, and educating me thoughtfully. They
always support me silently behind, give me wings to fly farther in my career and a root to
come back whenever I am tired. I would like to thank my sister, Hanh Ngoc Tran, and my
brother, Huy Ngoc Tran, for their advice in life and for sharpening my spirit when I have
been living apart from my family.

I cannot obtain this Ph.D. without my excellent advisors, professor Elena Ferrari and
professor Barbara Carminati. I would like to express the most sincere gratitude to my
advisors. They played the key roles in my Ph.D. In addition to their academic guidance,
they have shown a great deal of patience towards me and supported my research in a way
that goes beyond a professional relationship. Their caring attitude has always given me the
strength to continue my research endeavor.

I would like to thank Leila Bahri and Natasha Poposka for always standing by my side
and being my best friends during years in here. I would like to thank my friends Shuai Li and
Naime Laleh for sharing the office and spending some time with me. I would like to thank all
lab colleagues, Dr. Marco Tarini, Dr. Pietro Colombo, Dr. Valentina Pedoia, Dr. Giulio Liu,
Dr. Cuneyt Arkora, Dr. Lorenzo Bossi, Dr. Michele Giuglielmi, and all my Italian friends
in here, for showing me Italian hospitality and enriching my life greatly. Without them, my
Ph.D. would never be such a great experience.

I would like to thank Mauro Santabarbara for his time in helping me with the computer
that I used during my research. I would like to thank Roberta Viola for aiding me in
processing the paperwork during my Ph.D.

Finally, I would like to thank the Italian people for their warmth and grace, which made
me feel at home during these years.

Abstract

So far the number of users on the social network sites has been increasing year-on-year. In
the meanwhile, the price of mobile devices drops vertically. Both events push up vigorously
the quantity of social users who use mobile devices. This results in a need for collaboration
among mobile social users to attain the common goals. The fact that the huge number of users
goes online lifts forcefully up the number of services over the Internet. The user requirements
for services then get more complex. As a consequence, responding such a complex service
request needs a composition of several single services.

However, the collaboration among several participants can make the personal data dis-
closed to the other sides during the collaborative process. Despite the fact that all participants
comply with the common protocol and agree on contributing their personal data, they do not
trust adequately in each other. This leads to the requirement of preserving user privacy and
securing the user data against the other sides.

In this dissertation, we investigate different collaboration and participant types. More
specifically, they are centralized and decentralized models among users/services. We also
concern the communication environment, e.g., mobile network, Internet, or mobile ad-hoc
network. The protocols that are enforced in a mobile network environment have more
rigorous constraints due to limited physical and performance resources. For preserving user
privacy and data security, we study and select different rational and effective cryptography
algorithms then apply them into the collaborative protocols. For more understanding, we
propose several collaboration scenarios and present them in detail in the upcoming chapters.
Each scenario describes a combination of different collaborative type, participant type and
network environment. For each scenario, we address issues on privacy preserving and data
security and propose selective solutions. In addition, we propose methods for improving
network performance. The experimental results show that our proposals are efficient and
effective.

Table of contents

List of figures xi

List of tables xiii

1 Introduction 1
1.1 Background and Motivation . 1

1.1.1 Secure-aware Mobile social collaboration 3
1.1.2 Web based collaboration . 6
1.1.3 Secure-aware web composition 6

1.2 Contribution . 7
1.2.1 Scenario 1: Secure Mobile P2P Payment 8
1.2.2 Scenario 2: Secure Mobile P2P Payment over MANET 9
1.2.3 Scenario 3: Secure Orchestrated Web Service Composition against

Untrusted Broker . 10
1.2.4 Scenario 4: Privacy-preserving constrained choreographed service

composition . 11
1.3 Dissertation Organization . 11

2 Related work 13
2.1 Multiple party collaboration . 13
2.2 Security and privacy in multiple party collaboration 15
2.3 Decentralized social trust computing . 16
2.4 Secure mobile person-to-person payment 19

2.4.1 Recent person-to-person payment systems 19
2.4.2 Security-aware decentralized mobile payment. 20
2.4.3 Secure path discovery . 22
2.4.4 Security-aware MANET payment 23

2.5 Web service collaboration . 24

viii Table of contents

2.5.1 Security-aware orchestrated web composition 25
2.5.2 Security-aware choreographied web composition 27

3 Mobile Person-To-Person Payment 29
3.1 Background and notations . 30

3.1.1 Trust preferences in Social Networks 30
3.1.2 Elliptic Curve Cryptography (ECC) 32

3.2 Trust-driven mobile P2P payments . 32
3.3 Mobile-oriented Decentralized Path Finding 34

3.3.1 Depth computation . 34
3.3.2 Trust computation . 35
3.3.3 Relationship type computation . 39

3.4 Flooding Optimization . 40
3.5 Security properties . 40
3.6 Experiments . 42

3.6.1 Computational costs . 42
3.6.2 Flooding optimization . 44

3.7 Complexity Analysis . 46

4 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork 47
4.1 MANET (Mobile Ad-hoc NETwork) introduction 48
4.2 SmartPay over MANET: Issues and Solutions 50
4.3 Expanded Smartpay Protocol (ESP) . 52
4.4 Condition-driven flooding . 67
4.5 Experiments . 72

4.5.1 ESP Performance . 72
4.5.2 Condition-driven Flooding Optimization 75

4.6 Complexity Analysis . 77
4.7 Security Analysis . 77

4.7.1 Honest-but-curious nodes . 77
4.7.2 Malicious nodes . 78

5 Secure Orchestrated Web Service Composition against Untrusted Broker 81
5.1 Security Requirements for Service Composition on Untrusted Broker 82
5.2 An Architecture for Secure Web Service Composition with Untrusted Broker 84
5.3 Secure Workflow Execution . 86
5.4 Selective User Credentials and Parameters Encryption 89

Table of contents ix

5.5 Encrypted Activity Blocks . 91
5.6 Secure Evaluation of Test Conditions . 94
5.7 Experimental Results . 95
5.8 Security Properties . 97

6 A privacy-preserving constrained choreographed service composition 101
6.1 Privacy issues in a constrained choreographed web service composition . . 102
6.2 A privacy-preserving framework for choreographed composition 104
6.3 Privacy-preserving user requirements evaluation 106
6.4 Privacy-preserving provider requirements 111
6.5 Experiments . 113

6.5.1 Time overhead . 114
6.5.2 Space overhead . 115

7 Conclusion and Future work 121

References 123

List of figures

1.1 Graphical representation of the main results of the dissertation 8

3.1 Trust-driven mobile Person-to-Person payments 31
3.2 CPU power consumption for creating a token on a node (%) 42
3.3 Time consumption for creating a token on a node (ms) 43
3.4 Space load for creating a token on a node (byte) 44
3.5 A comparison between NFO and KAO about number of traversed nodes per

second . 44
3.6 A comparison between NFO and KAO about number of flooding tokens per

second . 45

4.1 MANET partitions and radio ranges at different times 49
4.2 Communication at a stadium . 51
4.3 SmartPay protocol over MANET . 51
4.4 Social Network Layer and Manet Layer Cooperation 56
4.5 Step 1 of Example 8 . 60
4.6 Step 2 of Example 8 . 61
4.7 Step 3 of Example 8 . 61
4.8 Step 4 of Example 8 . 62
4.9 Step 5 of Example 8 . 63
4.10 Step 6 of Example 8 . 64
4.11 Step 7 of Example 8 . 65
4.12 Step 8 of Example 8 . 65
4.13 Step 9 of Example 8 . 66
4.14 Step 10 of Example 8 . 67
4.15 Step 11 of Example 8 . 68
4.16 Step 12 of Example 8 . 68
4.17 Step 13 of Example 8 . 69

xii List of figures

4.18 Transmission delay of an ESP tokenset vs key size of ECC and ECDSA vs
bit rate standard: a) 11Mbps bitrate and 384bit ECDSA; b) 11Mbps bit rate
and 521bit ECDSA; c) 24Mbps bitrate and 384bit ECDSA; d) 24Mbps bit
rate and 521bit ECDSA; e) 54Mbps bitrate and 384bit ECDSA; f) 54Mbps
bit rate and 521bit ECDSA. 74

4.19 A comparison between NFO, KAO, and CDF. 76

5.1 An example of BPEL document . 83
5.2 An Architecture for Secure Web Service Composition 85
5.3 Encrypted Activity Block for direct invocation 87
5.4 Encrypted Activity Block for condition-based invocation 87
5.5 Structure of an encrypted BPEL document 88
5.6 Time consumption and File size according to the number of activities and

the number of output parameters at WSApp 97
5.7 Time consumption for reading the encrypted BPEL document according to

the number of activities and the number of output parameters at the broker . 98

6.1 An example of web service selection . 105
6.2 Time overhead for the privacy-preserving evaluation of user requirements . 116
6.3 Time overhead for the privacy-preserving evaluation of provider’s require-

ments at WS j side. 117
6.4 Time overhead for the privacy-preserving evaluation of provider’s require-

ments at WS j+1 side. 118
6.5 Size of SOAP messages . 119

List of tables

4.1 Network configurations . 73
4.2 UDP payload size with different ECC and ECDSA key sizes 75

5.1 Considered Key Sizes . 96
5.2 Parameters of Inpput BPEL Documents 96

6.1 User requirement enforcement protocol 109
6.2 Private evaluation of cond in clause Cl . 113

Chapter 1

Introduction

1.1 Background and Motivation

In sociology, social network had been studied since 1978 [11] [134]. The social network
has evolved through remarkable milestones, and debuted with Bulletin Board System (BBS)
carrying users the means for exchanging the data using phone lines. Though BBS had many
limits, it set up the initial interactive environment for users. A real social network site, named
Geocities, was first exhibited in 1994. Initiatives following Geocities are respectively: AOL
(in 1995), Friendster (in 2002), MySpace (in 2004), Youtube (in 2005), Tweeter (in 2006),
Pinterest and Instagram (in 2010). An amazing explosion of the social network site happened
in 2008 when Facebook opened for external users. Facebook had been tested only with
Havard University students for four years, then overtook MySpace to become a leader of
social network sites. Since then, a new page for the age of social network sites has been
turned. The social network sites continue to increase year-on-year in the number of users.
Emarketer predicts that the development rate of 2016 will hit 8.9% and that 2.55 billion
people worldwide will use social networks by 2016 [49].

With the tremendous growth of social network sites, users have numerous convenient
means to keep in touch and share every moment of the life with the rest of the world. Social
users start integrating their daily routine to the social network. When people get used to so-
cialize online, the requirement for social collaboration rises up. Plenty of invented platforms
supporting users in collaboration have lately come up. For an example, Acrobat.com allows
teams to collaborate on documents by their browsers, Socialcast helps employees discuss
projects remotely through a micro-blogging service accessible from smart phones, etc. [145].
Such a quickly rising number of social network users turn all of social network sites into
a social media platform. With benefits from social media, the commercial services grow
up swiftly, user requirements on products/services are more and more complex. This leads

2 Introduction

to the needs of collaborating several commercial services in social network as well. As a
result, the collaborations are then more focused [107]. Inspired by this socially collaborative
requirement, collaborations among several participants are considered as an essential need.

However, not all participants in the collaboration know each other. This reduces signifi-
cantly the trustworthiness among them, as the collaboration among them possibly reveals
their personal data to the other sides. Even though all participants comply with the common
protocol and agree on contributing their personal data, they do not trust adequately in each
other. As a result, the requirements of preserving user privacy and securing the user data
against the other sides are a substantial need. This dissertation addresses the user privacy
and data security related issues and discusses the different solutions. Then, we select the
effective and efficient ones applied to the collaboration protocols.

As mentioned above, in the social media the collaboration is deployed not only for
users but also for organizations, i.e., service providers. In this dissertation, both types of
collaborator (i.e., user and service provider) are considered in detail through the proposed
multiparty collaborative protocols. Hereafter, the term "user" does not imply only the
individual who participates in the social media, but also the electronic device, relating to
that individual, where local data is stored and which has the computing capability. As well,
service provider does not only imply the organization, but also the service supplied to users
and hosted on servers.

As pointed out in the technical note of IBM [129], collaboration, is organized according
to the network models, i.e., decentralization or centralization. Let us give a reminder of these
two network models. According to the centralized model, there exists a central controller that
is requested to be powerful so as to be able to work with multiple partners simultaneously. It
is also the one that coordinates all partners and synchronizes processes in the system. A large
bandwidth is one key to this model. The single point failure is a shortcoming. However, it is
easy to deploy this model. Therefore, the centralized model has been investigated carefully,
and continues to be researched for commercial products or services, e.g., Huawei technology
services are built up and developed in the centralized model [30].

To overcome the limits of the centralized model, a decentralized model is one choice.
This model lacks the central controller, thus the peers in this model will do the central
controller’s job beside performing their own tasks. In particular, they independently search
a peer able to cooperate with them and then invoke the selected. It is harder to implement
this model, compared with the centralized model. In a meanwhile, considered as the most
important technological trend [141][123], decentralized model is a very promising approach,
for an example, IBM have agreed on the future trend of decentralized model and run a famous
project, named ADEPT, according to the decentralized model [139]. Both of collaboration

1.1 Background and Motivation 3

models are today used in collaborative systems. No model can be replaced by the other, as
every of them has advantages and disadvantages, and both need to be investigated for being
systematically and rationally applied.

Mobile social networks. Along with the expanse of social collaboration, the social
media goes mobile as well, thanks to the revolution of mobile devices. Since electronic
sensors get much cheaper, the price of a mobile device drops drastically. This brings users
a chance to own a mobile device easily. Gartner predicted that by 2020, 75 percent of
smartphone buyers will pay less than $100 for a device [48]. Since all users have mobile
devices do the jobs of Internet and even television, mobile device overtakes the personal
computers, and mobile network can replace Internet [17]. The mobile devices turn out to be
a vital communication means attaching to the daily routine of people. According to Gartner,
more than 50 percent of users are predicted to use a tablet or smartphone first for all online
activities by 2018; and according to eMarketer, the total mobile phone users are likely to
reach 5.13 billion users globally by 2017 [133]. Under the influence of mobile devices
and social collaboration on the worldwide market, the combination of them, mobile social
collaboration, becomes the most popular.

Motivated by the above discussion, the dissertation has focused on the collaborations
among mobile users/devices and exploited the connections among them in social network
sites.

1.1.1 Secure-aware Mobile social collaboration

According to Statista, by 2018, over 75 percent of Facebook users worldwide will access it
through their mobile phone [135]. Social users’ daily activities are now done in mobile social
network, such as, contacting friends, entertaining, etc. as well as activities corresponding to
monetary transactions, such as, online shopping, etc. As a result, the online social payment
comes up for the online shopping through social network sites [63]. This is a sort of online
payment between one user and one company/provider. Beside that, new digital methods of
making person-to-person (P2P) payments also get a rise. This allows customers to use their
mobile phone to support mobile Person-to-Person payments. Gartner [47] forecasts that in
2016 there will be 448 million mobile payment users in a market worth 617 billion USD,
and the global mobile transaction volume and value averages 42% annual growth between
2011 and 2016. Despite the success of these new digital P2P payment methods, we believe
that, to fully enable this increasing rise of digital wallets, relevant challenges still need to be
addressed, particularly over social media. However, as it happens in the real life when we
tend to lend somebody money, we make decisions based on what we know about him/her.
This cannot be applied in social network since there are people we do not know personally.

4 Introduction

The only thing which can help us evaluate a user’s trustworthiness is to exploit the social
connections, between them and us, for quantifying the amount of trust we have for them,
then judge their reputation by the quantified trust. This performance is called trust computing.
As a step in the direction combining social collaboration and online social person-to-person
payment, this dissertation leverages social network connections to support social users in
computing the trust of a person who wants to borrow them money before deciding a money
transfer [22, 23, 25].

The fact that computing the trust of a social user is discovering the path connecting
two social users. This requires users on the path need to collaborate and contribute their
relationship information to trust computing. However, there is a privacy requirement that
users do not want the others to read their own data, e.g., fullname, credit card, etc., and they
are not also allowed to read the others’ data, even the output data from the path discovery
process. For this purpose, there is a need to investigate cryptography algorithms and to
apply the suitable ones into the proposed collaborative protocols. Selecting the cryptography
algorithms depends on their properties. For an example, the encryption algorithm RSA
can be used for the wired network (i.e., Ethernet) since the bandwidth is larger, but it
runs slowly in the wireless network with mobile devices. Beside, there is another issue
that a user can identify his/her direct contacts, but has a requirement on preserving his/her
identity against contacts connecting indirectly to him/her. As a result, security and privacy
issues in collaborative execution of those security related processes need to be addressed.
Particularly, we emphasize to preserve the communications confidentiality, the authenticity
and trustworthiness of communication partners, message integrity, and user privacy, and give
possible solutions in the dissertation.

Moreover, parties in the collaborative process communicate together by transferring
their messages through the network. The a naive messages propagation, the broadcast
technique is used. It implies that a user forwards the received message to all of its contacts.
This increases exponentially the number of out-going messages, and slows dramatically
down the network bandwidth. Beside the propagation, another factors influencing on the
network performance, the message size and the number of out-going messages. The key
size of adopted cryptography algorithms can lengthen the message load, causing a deep
impact on the bandwidth. As a result, the necessity of revising the generated messages and
the propagation method optimization should be considered thoughtfully. The dissertation
presents some methods of optimizing the generated message capacity as well as the number
of out-going messages. Preliminary results on this have been published in [22, 23, 25].

Let us mention a missing crucial factor, that is, the specific communication means in
which the collaborative protocol can operate well. We target Mobile Ad-hoc NETwork

1.1 Background and Motivation 5

(MANET) as a rational communication means. MANET has been investigated since the
1990’s and recent predictions about the future research trends in MANET determined that it
has potentials to be continuously developed [85], [126]. Since MANET’s properties fit the
realistic requirements of many scenarios, such as availability, cost saving, self-organized and
infrastructure-less architecture, the applicability of MANET is extremely large. For instance,
MANET applications have been developed on tactical networks, emergency, as well as
education, context aware services, entertainment, military services [62]. Additionally, several
applications have been deployed over MANET. For instance, available locations of users on
their mobile devices have been exploited, among others, by Foursquare1 and Gowalla2, which
are location-based social networking services for mobile devices, and by Last.fm Festival3

that suggests a list of music festivals to users near the event locations. As further relevant
examples, TerraNet4 supports mobile phone calls without a connection through a cell tower;
Mobile Chedar [7] is a middleware prototype with a mobile peer-to-peer learning environment
application using Bluetooth; AdSocial [127] is a software platform supporting social network
applications in ad hoc networks targeting small-scale scenarios, such as friends playing
a game on the train or co-workers sharing calendar information, as well as, conference
participants establishing voice-video calls, chat, or play games. In addition, we can cite
MobiClique [116], a mobile social software, that allows people to maintain and to extend
their online social networks through opportunistic connections between neighboring devices,
and What’s Up [97] an application providing spontaneous social networks in ad hoc networks,
such as conferences and expositions. As witnessed by the above mentioned services, plenty
of MANET applications have been deployed successfully, and particularly for scenarios
where local networks with a high density of users are available (e.g., a conference room,
library, supermarket, stadium, park, university campus, company buildings). This typical
MANET scenario fits well the one in which P2P mobile payment applications can be used.
Hence, we strongly believe that there is a need of deploying P2P payments over MANET.
For this reason, the dissertation investigates how to deploy the mobile P2P payment over
MANET. To our knowledge, this work is the first one exploiting social network relationships
for P2P payments over MANET. Furthermore, as P2P payment collaborative protocol is
performed over MANET, another crucial issue is spotted in case connections in social graph
and MANET are not the same. The collaborative protocol needs to synchronize messages
moving through users in social graph and nodes in MANET. Another minor but important
issue is that MANET nodes are dynamic and change the network structure by partitioning it

1https://foursquare.com/about
2http://gowalla.com/
3http://www.last.fm/festivals
4http://terranet.se/

6 Introduction

into several sub-networks. There is a need for connecting those sub-networks and enabling
them to transfer data to each other smoothly. The solutions of these issues are going to be
presented in the upcoming part of the dissertation [25].

1.1.2 Web based collaboration

Web 2.0 technology comes in 2004 and gets a powerful tool for implementing and helping
social network grow up [31]. When the number of user accessing services by web browsers
increased steeply, in order to comfort users in accessing services, the web 2.0 based services
have been developed quickly by providers. Since then, user requirements on services get
more and more complex, which leaded to the advent of collaborations among web service
providers. inspired with above discussion, this dissertation also investigates and goes deeper
collaborations among web service providers.

Let us recall quickly the definition and functionality of a web service. A web service is
a software system designed to support interoperable application-to-application interactions
over the Internet. One of the major goals of web services is to make easier their composition
to form more complex services. Two are the main techniques for web service composition,
namely, orchestration [33, 106, 65, 75] and choreography [5, 149, 73]. Choreography is a
decentralized model with a dynamic sequence of web services used for B2B (Business-to-
Business) applications. In contrast, orchestration has a BPEL (Business Process Execution
Language) engine [110] as a central mediator to control a static sequence of activities
described in a BPEL-based file. In this dissertation, we focus on both composition models to
study how crucially they influence on collaborations based on centralized model [24] and
decentralized model [21].

1.1.3 Secure-aware web composition

Web service orchestration. With the web service orchestration, we assume the workflow
underlying the business process is encoded into a BPEL document and processed by a server
hosting a BPEL engine (hereafter, the broker). According to the orchestration paradigm,
the broker coordinates the invocation of services involved in the composition, i.e., partner
services, by passing the needed parameters. In general, all previous proposals for the service
orchestration model consider the broker as a trusted entity (See for example [138, 155, 109]).
In these works, data from users or services come to the broker, the broker reads and processes
them in a defined protocol. The data and user privacy can be preserved by matching policy at
the broker side upon the assumption of the trusted broker. As such, they never pay attention
to the fact that the broker is able to access several pieces of sensitive data, such as: the data

1.1 Background and Motivation 7

given as input by the user invoking the composite service, the final outcome of the composite
service, as well as internal parameters (i.e., variables and values generated as output by
partner services). The same issue can be caused with web service partners. We believe there
is a need to protect them against improper access and usage from partner services as well as
the broker. In this dissertation, we select the suitable encryption algorithms based on which
we propose a secure protocol against the untrusted broker and web service partners [24].

Web service choreography. Recently literature shows that there is an increasing interests
in decentralized composition as the orchestration paradigm suffers of single-point failure
problem as well as requires powerful and reliable brokers. According to the choreography
paradigm, once the business process and the workflow behind the web service composition
has been defined, the composite service is deployed by invoking the service that has to
perform the first activity. When this service correctly terminates the activity, it searches a
service able to carry on the next activity in the workflow. This is then directly invoked by the
service that has just terminated, without the presence of a broker (like in the orchestration
model). It is relevant to note that regardless of the adopted paradigm, a crucial task is the
selection of the service to be assigned to each activity in the workflow. As a matter of fact,
service compositions can be driven by constraints on service selection. As discussed in [131],
these requirements can be posed both by users requiring the composed service as well as by
the companies provisioning the atomic services. In general, requirements can refer to several
dimensions, such as Quality of Service (QoS) [86] or security [24], as services might have
strong security requirements on services with which they have to cooperate during the service
composition deployment. However, to the best of our knowledge none of them considers that
the evaluation of these criteria requires to expose private information of users and providers,
regardless of whom poses the requirements (i.e., users or providers) and the nature of these
requirements (e.g., QoS, security, etc.). The only paper we are aware of dealing with these
issues is [132], where a centralized and privacy aware approach for service selection of
composite services has been proposed. A prominent point is that the peer-to-peer nature
of the choreography model imposes to revise the way requirements have to be enforced.
Indeed, the absences of a broker entity demands for services able to locally and privately
validate user and provider requirements on new services to be invoked. At this purpose, in
this dissertation, we propose a privacy-preserving framework for a choreographed service
composition, where to enable privacy-preserving requirements evaluation [21].

8 Introduction

1.2 Contribution

Inspired from motivations in Section 1.1, the dissertation aims at building a variety of
secure protocols and application scenarios. Figure 1.1 depicts the major contributions of the
dissertation. Every protocol meets three prerequisites on collaboration type, network model,
and security. Let us describe one by one protocols and their application as follows.

Secure Collaboration

Collaboration type

Centralization

Security and Privacy

DecentralizationAmong servicesAmong users

Network model

Secure web service

composition with

untrusted broker [24]

Trust preferences

enforcement in mobile

person-to-person

payments [22, 23]

Constrained

choreographed

service composition

framework [21]

Deployed over multi-

hop mobile ad-hoc

network [25]

Fig. 1.1 Graphical representation of the main results of the dissertation

1.2.1 Scenario 1: Secure Mobile P2P Payment

We investigate a secure mobile social collaboration among multiple parties as motivated from
Section 1.1 through the scenario of mobile P2P payment. In this scenario, we propose to make
payer (i.e., payee) able to state a set of trust preferences stating how the potential payee/payer
has to be connected with him/her in order to give/accept money. Trust preferences state
conditions on: (1) the type of the relationship that must exist between the payer and the

1.2 Contribution 9

payee (e.g., friend, parents, just-met), (2) the distance between the payer and the payee, i.e.,
the number of hops in the path connecting them, (3) the trust value associated with this
relationship. As an example, a user can state that he/she will accept to transfer money only
to payees that are friends of one of his/her friends with a high trust value (i.e., type=friends,
distance=2, trust value = high). Before committing a money transfer, both payer and payee
evaluate their local trust preferences to decide whether the other can be considered enough
trusted.

Evaluating a trust preference implies finding connecting paths between payer and payee.
In designing a protocol to support this task, we kept into account two main requirements.
The first is that the solution has to support all existing mobile P2P payment methods as well
as existing social network services, without forcing an integration between these platforms.
Another relevant issue is that nowadays persons are used to join several social networks,
maintaining different accounts with different contact lists. Therefore, we need to support
path finding across different social network realms. To cope with these interoperability
issues, we designed a solution such that trust preference evaluation is locally performed on
each peer by means of a mobile application, called SmartPay, assuming that user contacts
list is locally managed by the mobile application. [22, 23] Therefore, the main goal is to
discover the relationship path between two arbitrary nodes in a distributed network. In
designing our protocol, we have considered two essential requirements: (1) relationship
privacy - relationship information is sensitive personal data. As such, information on the
type, trust and depth of a given relationship should be known only by the users establishing
that relationship, not by intermediate nodes participating in the protocol; (2) limitations of
mobile devices - almost all mobile devices are characterized by low battery, low memory,
low power, limited throughput. To cope with the above limitations, we propose of light
cryptographic protocol for mobile-oriented decentralized path discovery. The protocol makes
use of Elliptic Curve Cryptography (ECC) [72] to obtain a protocol running steadily and fast.
To fully protect relationship information, we also propose a privacy-preserving approach to
compute trust value between two adjacent nodes according to the well-known Tidal Trust
algorithm [52]. Beside, we also propose an optimization strategy exploiting a anonymity
technique, i.e., k-anonymity [136] so as to reduce the flooding of messages.

1.2.2 Scenario 2: Secure Mobile P2P Payment over MANET

In this scencario, we exploit social network relationships for P2P payments over MANET
[25]. Inspired from benefits carried from MANET as mentioned in Section 1.1, this new com-
munication means has open challenges that need to be addressed [126] [57]. Among them,
the most relevant are: (1) privacy and security, (2) energy efficiency, and (3) multicasting.

10 Introduction

The deployment over MANET of the mobile P2P payment protocol to deal with Scenario 1
has to cope with all these issues. Regarding privacy and security, the exchange of messages
through MANET rises new challenges w.r.t. relationship privacy and limitation of mobile
device as mentioned in Scenario 1. Indeed, according to the MANET protocol, a message
might be forwarded through several mobile users before reaching the destination. Those users
are not involved in the path traversal and thus do not have to infer any information about the
payment transaction as well as aggregate relationship information. Hence, the main problem
has to be cared about, that is, nodes in social graph can be malicious or honest-but-curious
nodes trying to infer the aggregate relationship information. In this scenario, we present a
solution suitable to MANET communication that provides a more secure protocol than the
one in Scenario 1. Regarding issue (2), we use cryptographic algorithms on elliptic curves,
that is, binary ECC [71] and Elliptic Curve Digital Signature Algorithm (ECDSA) [69].
These binary cryptographic algorithms make the mobile devices able to perform efficient
computations and consume less energy. With respect to (3), we propose an optimization
strategy exploiting secure comparison algorithms so as to reduce the flooding of messages
in MANET [25]. In particular, our algorithm allows to evaluate encrypted relationship
information inside a message to be forwarded in the network.

1.2.3 Scenario 3: Secure Orchestrated Web Service Composition against
Untrusted Broker

This scenario investigates the web service composition in the centralized model based on
the motivation presented in Section 1.1 [24]. As a reminder, in this model, the collaborators
in this scenario comprise of a broker and several service providers. The broker coordinates
service partners so as to carry out a sequence of activities requested by a user. In this
case, the broker can read the data transferred from web service partners to it. To resist the
broker and web partners on reading their unauthorized data, we propose a secure protocol
based on the selective encryption of user credentials and service parameters. Our protocol
ensures that the broker is not able to access these data as well as any information on invoked
activities, whereas partner services are able to access only the portions of user credentials
and service parameters generated by other partner services, needed for the correct execution
of the assigned activities. Because user requirements are in terms of many conditions
needed to be evaluated at web partners. Hence, the adopted encryption scheme allows the
broker to evaluate test conditions on encrypted data, which is instrumental to enforce the
correct execution order. In this dissertation, we also support more options for the expressive
languages so that users can describe sufficiently their preferences.

1.3 Dissertation Organization 11

1.2.4 Scenario 4: Privacy-preserving constrained choreographed ser-
vice composition

This scenario investigates the decentralized collaboration among web services according to
the decentralized model [21]. Each user can specify his/her requirements on an application.
Then, the specified user requirements are changed to a workflow of activities. This workflow
is done gradually through the peer-to-peer network. Because of the peer-to-peer nature of
the choreography model, revising the way to enforce requirements is imposed. The user
requirement enforcement basically needs two steps, including selecting the eligible service
able to invoke the next activity in the workflow based on user requirements, then invoking
the selected service. These two steps are required to be revised. There is a requirement
regarding user privacy, that is, when user requirements move through the intermediate
partners to their destinations, user requirements are validated privately at the intermediate
services. User requirements can be read by only the authorized partners. Moreover, service
providers have constraints on their partner candidates with whom they want to collaborate.
For example, the requested service needs to use the same kind of encryption algorithm of the
requesting service. For these purposes, we propose two secure protocols ensuring that service
providers can locally and privately validate user and provider requirements. To the best of
our knowledge none of them considers that the evaluation of these criteria requires to expose
private information of users and providers, regardless of whom poses the requirements (i.e.,
users or providers) and the nature of these requirements (e.g., QoS, security, etc.). The only
paper we are aware of dealing with these issues is [132], where a centralized and privacy
aware approach for service selection of composite services has been proposed. Yet this
scenario focuses on the decentralized model.

1.3 Dissertation Organization

This remainder of dissertation is organized as followed. We start with Chapter 2 for details of
the recent works on the secure collaborative processes among multiple parties. We provide an
overview of available collaborative protocols today, and point out the needs of complementing
their deficiency. We focus more on discussing on the cryptography techniques applied in
recent works, and spot the key problems to be considered in this dissertation. The details of
the proposals for the dissertation is discussed in the rest of dissertation.

In Chapter 3, we present a secure decentralized collaborative protocol among users in
mobile person-to-person payment [22, 23]. In this chapter we state privacy requirements,

12 Introduction

then debate the possible cryptography algorithms applied into trust computing and evaluation.
We also explain the security property of proposal against some attacks.

Chapter 4 investigates the communication environment, i.e., MANET, over which the
mobile person-to-person payment protocol is deployed, and figures out the problems when
running the protocol and solutions for them. Beside, we also describe security properties of
the proposal, and highlight the optimization methods for the system performance [25].

Chapter 5 presents a secure centralized collaboration among services to provide a complex
service to users [24]. In this chapter, we present the essential privacy points needed to be
obtained, discuss the solutions and analyze the results achieved from the proposal.

In Chapter 6, we continue to investigate the collaboration among service, but now we
study the decentralized model [21]. The different problems from the centralized model are
expressed, as well as, the privacy and security points are detailed in this chapter.

The conclusion is made in Chapter 7. This chapter outlines the future plan as well.

Chapter 2

Related work

In this chapter we first introduce recent works on collaborative systems among multiple
parties, so as to highlight the security and privacy risks in these systems. We then survey
mobile P2P payment systems and the state of art in the web service compositions, particularly
in regards of the security and privacy issues.

2.1 Multiple party collaboration

The first mass collaboration occurred as Linux source code was opened in 1991. At that
moment, all software developers worldwide freely modified the Linux core and shared their
contributions to the world. This improved much the quality of Linux services, and then
Linux has had a long way to evolve until now. After that, in 2000, GoldCorp followed the
same solution of Linux development team, they launched the problem Golden Challenge
online to receive recommendations of social users on solutions for their gold mining crisis at
that time.1 They overcame the difficulty and have grown up from $100 million, of the time
before Golden Challenge, to $9 billion. Following, the product Beehive of IBM, an internal
social network, was released in 2007 for the cooperation among IBM employees worldwide.
They carried out Beehive to promote their projects and gained the ideas from people in the
company having different backgrounds. The collaborations worked out excellently with
Beehive and brought back a huge benefit for IBM. In the meanwhile, the advent of web
based collaboration occurred officially in 2001 when InnoCentive web based network was
released. They used this product to make collaboration among their employees through web

1https://www.keithrozario.com/2012/07/opensource-gold-the-greatest-crowdsourcing-story-ever-
told.html

14 Related work

browser.2 InnoCentive helped them out of problems needing collaboration and gained the
urgent solutions in time.

According to a recent survey about requirements on manipulating social collaborative
techniques and tools, [8] the today social collaboration pervades and plays a key role in
enterprises. We admit that the social collaboration puts an important contribution into
improving solutions and developing the insight of organizations rapidly. That is a quick hop
to reach a long distance ahead for enterprises, however, a company is meaningfully powerful
not only because of the collaboration among their staffs but also for the customer services.
As mentioned above, users, particularly social users, have requested the higher complexity
on services. This pushes the online services to be upgraded and cooperated for survival.
Microsoft also determine that the social collaboration carries much benefits for companies
[103]. Not only social services need collaboration but web, mobile, and cloud services do as
well.

Some today enterprise tools support social collaboration, to eliminate barriers to team
productivity, and are launched to cloud. Microsoft cloud based tools3 like Yammer and
Lync make it easy for employees to connect, share ideas, and build teams, Office 365
breaks down barriers between departments, enabling collaboration from virtually anywhere,
and Microsoft Dynamics CRM helps companies give customers a better, more responsive
experience. With Yammer and Office 365, the global textile and apparel manufacturer Esquel
Group increased productivity among its 7,000-member workforce resulting in an estimated
$2 million in savings a year and facilitated new ways of knowledge sharing and innovation.4

Beside Microsoft cloud product, blueKiwi5 is one of leading providers of enterprise social
collaboration software for companies of all sizes of diverse fields. It helps them connect
with their customers through an enterprise social network and is hosted SaaS (software as a
service) with the option of a Private Cloud configuration. One of big customer of blueKiwi
is Atos. blueKiwi helps over their 60,000 employees in 4,000 active communities across 47
countries collaborate with each other daily to manage projects and workflow successfully.
Beside, Cisco also have Web Collaboration products providing organizations with a tool to
carry chances of collaboration among internal employees and with customers to facilitate the
revenue.6

The requirements of social collaboration from enterprises now get higher and become
a motivation to boost the researches to provide the good solutions to the world. However,

2http://www.forbes.com/sites/karlmoore/2011/09/15/from-social-networks-to-collaboration-networks-the-
next-evolution-of-social-media-for-business/

3http://www.microsoft.com/enterprise/microsoftcloud/social/default.aspx#fbid=eUKomqXpXI8
4http://www.microsoft.com/enterprise/solutions/social_collaboration/default.aspx#fbid= eUKomqXpXI8
5http://www.bluekiwi-software.com/en/
6http://www.cisco.com/c/en/us/products/customer-collaboration/web-collaboration-option/index.html

2.2 Security and privacy in multiple party collaboration 15

under the extraordinary pushing power of using social collaboration tools, there are always
another problems needed to be considered, such as, data security, user privacy, performance,
etc.

2.2 Security and privacy in multiple party collaboration

In general, partners contribute their own information into the collaborative process and do
not want the other sides to be aware of their personal information. As a report by Gartner, in
2014 the worldwide spent on information security $71 billion, an increase of 7.9% over 2013,
with the data loss prevention segment recording the fastest growth at 18.9%.7 IBM redefines
requirements on network, data and user security and privacy along with pushing the quality
of services 8 Cisco address risks regarding the security and privacy during collaboration, in
terms of shared information, user identity, authentication, and authorization, etc. [29].

In the dissertation, we consider two kinds of attacker, that is, honest-but-curious (semi-
honest) and malicious attackers. A party is called honest-but-curious adversary when it
follows correctly the collaborative protocol agreed on by all participants in the protocol, but
it might be curious about the private information in the computed result which it receives. In
contrast, a malicious adversary party is more harmful, since he is not only trying to extract as
much as private information of the participants, but also trying to change/intervene the result
of computed data from collaborative protocol [55].

Risks by above adversaries are addressed in more detailed in some recent works. As
in [10] [28], authors identify main risks coming up when some of parties have incorrect
manner during the collaborative protocol enforcement. They might be honest-but-curious or
malicious adversaries who try to extract the additional information from the shared content.
Even though parties in the collaboration agree on the protocol about devoting their private
information to others for the common computation, the main problem is that they do not have
enough confidence in each others. Thus, they care about their shared data possibly disclosed
to the others. Another issue is that the computed data outputted from the collaborative
process can be then transferred to some parties. Some of those parties can infer the private
information of other parties, or intervene the computed data of protocol incorrectly.

In order to preserve the privacy of parties in the collaborative protocol, some recent
works [119, 114] exploit the anonymity techniques (i.e., including k-anonymity [136] and
l-diversity [95]) to obscure users’ personal information before collaboration. However, with

7http://www.computerworld.com/article/2598536/security0/security-spending-gets-boost-from-mobile–
social-and-cloud–says-gartner.html

8http://www.isaca.org/groups/professional-english/cloud-computing/groupdocuments/ redefiningnetworks-
forcloud.pdf

16 Related work

anonymity techniques, there is still the risk of disclosure of individual information. As in
[113], authors spot the privacy disclosure when applying k-anonymity into solutions, after
their experiments are done. One solution hides client’s identity (e.g., its own IP address) by
transfer a client’s request through one or more intermediate proxies as done in onion routing
systems such as Tor [36]. Hence, in some other recent work, the cryptographic mechanisms
are considered to empower the user privacy and the data security. As in [35], authors use the
homomorphic encryption, that is, RSA algorithm to allow n participants to cast their votes in
a way that preserves the privacy of individual values, to be resistant to collusion even against
as many as (n−1) malicious insiders.

Some other works focus on multiple party collaborative computation. It relates to the
computation done by all parties in the protocol but do not leak the private information of
every side, for an example, two millionaires [158]. In particular, two millionaires want to
know who is richer, without any of them revealing to the other his net worth. Authors in
[96] deploy a generic computation for two parties to compute the common data, with no
assumption of the trusted third party, using RSA, AES, and Elgamal. Some other works
share the same idea can be counted as [27, 15].

Some recent works concern the privacy preserving of participants in calculating the
intersection of private data, and do not want the other to know this private data. Freedman et
al. [45] proposed a specially-designed secure multi-party computation protocol to compute
set intersection between the input lists of two parties. It represents each party’s inputs as
the roots of an encrypted polynomial, and then it has the other party evaluate this encrypted
polynomial on each of its own inputs. While asymptotically optimized for this setting, a
careful protocol implementation found two sets of 100 items each took 213 seconds to execute
(on a 3 GHz Intel machine) [46]. Kissner and Song [81] extended and further improved
this polynomial-based protocol for a multi-party decentralized setting. Other works, as
[45, 92, 82], authors also solve the same problem using secure set intersection.

Although, recent works put much effort in exploiting the cryptographic and anonymity
techniques for their collaborative scenarios, their solutions cannot cover all cases. We believe
that there are still many open scenarios needed to solve the same problem. In the dissertation,
we describe respectively some of the open scenarios, by showing the proposed solutions
designed in this thesis.

2.3 Decentralized social trust computing

The decentralized systems do not have the central controller for protecting data authentication
and confidentiality, this causes an inherent insecurity and untrustworthiness [153]. Hence,

2.3 Decentralized social trust computing 17

peers do the work of central controller. When several parties collaborate together for a
common goal, they need to select the trustworthy partner satisfying all of their requirements
so as to cooperate with. Hence, they need to quantify how much trust they have for the
considered collaborator candidate. Actually, in the real society, people can appreciate others
based on the information they experience from daily interactions in person. However, in the
social network, people do not have face-to-face activities, everything are done in the virtual
online community. This makes it tough to know which person is really trustworthy. As in a
paper exploring a new perspective, namely the human capital approach, in understanding
social trust and its formation, Glaeser et al. [51] said that "Social trust in a group is equal
to the perceived trustworthiness of a typical member or the average trustworthiness of all
members, characterized by the proportion of cooperative players in the group. The level of
social trust is determined by the distribution of cooperative tendency in the group." It implies
that the only thing based on which social users can rely on to assess people is the information
recommended by a known user or the common social users, or shared from social user profile.
The quantification of how much trustworthiness a person has for another user is so-called
trust computing.

In order to visualize the interactive view of social network, a social network is mapped
onto a social graph. This also eases the trust computing. A social graph might contain
relationship type, trust level between every two users, and another information according to
every specific goal.

More specifically, in the dissertation we model a social network as a directed labeled
graph G = (V,E,RT,φ), where RT is a finite set of relationship types, V is a finite set of users,
E ⊆V ×V ×RT is a set of edges representing relationships between users, and φ : E → [0,1]
is a function mapping each edge e ∈ E to a trust level. Given a relationship between two
nodes v,v′, denoted by rel(v,v′), this is defined as a direct relationship if rel(v,v′) = e ∈ E, it
is defined as an indirect relationship if rel(v,v′) connects the two nodes by a path consisting
of more than one edge, all with the same relationship type. In case of indirect connections,
the depth of a relationship is given by the number of edges in the connecting path.

Some works just focus on the trust computing metrics between two directly connected
users. As an example, Velloso et al. [146] proposed a trust computing metric, for a node in
mobile ad-hoc network to quantify its trust in its neighbor, by accumulating the previous per-
sonal experience and recommendations from its neighbors. The previous personal experience
means that they keep track of behaviors of the neighbors to recognize that behaviors are good
or bad, then assess the neighbor. Recommendations are the previous personal experiences
transmission from neighbors. Authors propose the concept of relationship maturity based
on the age of the relationship between two nodes. If the age of relationship is older, the

18 Related work

recommendation is higher, and vice versa. In [34], authors have the same approach to solve
the same problem, the difference is that [34] has an description of operations on messages
in mobile ad-hoc network, while [146] supports more parameters so as to make the trust
quantification more exact. Moreover, some other works also share ideas based on concepts
of previous personal experience and recommendation can be found in [56] [142] [89], [90].
In another work [26], authors combine the ideas of using recommendations and tracking
the node behavior to compute the trust between two direct nodes and to evolve the trust
in community. Authors then apply the metric to social network for two indirect nodes, by
aggregating the trust of pairs of two nodes on the path connecting those two nodes. Golbeck
et al. [54] propose a method for creating a trust network on the semantic Web by extending
the FOAF schema. The model allows users to set a level of trust for people they know. The
trust levels are sorted out from "distrusts absolutely" to "trusts absolutely". In the model,
an ontology is used for defining different trust levels for the different contexts. Authors
also concern the trust values between nodes not directly connected to each other by using
trust-annotated FOAF9 (the friend of a friend) graph. The trust is calculated with the weights
on edges of the graph. In another work [53], Golbeck proposes TidalTrust, a metric of
trust quantification using FOAF vocabulary and exploiting in social network. In this model,
neighbors with higher trust ratings can agree with each other on the trustworthiness of a third
party. TidalTrust supports two metrics of trust computing between two directly nodes and two
nodes connecting through several intermediate nodes. There are also other works focusing
on serving the decentralized networks, such as, [2, 56, 58, 70, 89]. Some other works have
different approaches. [88] uses Bayesian to weigh the trust based on the occurrence time and
exponential decrease method to set time to live on the old observation. Another work [84]
computes the trust based on the probabilistic logic sampling.

The above works solve the need of nodes in validating the trustworthiness of a potential
node before a collaboration. However, they do not consider preserving the privacy in
computing the trust of a neighbor. As in [60], preserving a privacy in multiparty collaborative
trust computing as: "Let a be an agent that contributes its local feedback about an agent t,
as part of a protocol to compute the reputation of agent t. Then the privacy of agent a is
said to be preserved if during or after the execution of the protocol, no other agent in the
system is able to learn agent a’s local feedback.". Some proposals for privacy preserving trust
computation systems with an assumption that every node has a trusted hardware module. [77]
requires every node a trusted platform module (TPM). TPM makes its owner node to prove
that it is valid and a party in the system without leaking the node identity. Beside, it also

9FOAF vocabulary (http://xmlns.com/foaf/spec/) is one of the most common in semantic web. The vocabu-
lary describes social users and their social network connections. It stores over 8,000,000 people, and used by
many large web-based social networks.

2.4 Secure mobile person-to-person payment 19

allows the owner node to feedback privately and anonymously. Whereas, [157] and [147]
both present a solution based on smart cards which are supposed to be trusted. Another work
[78] tries not to use hardware modules, however, it needs an anonymous routing network.
There are some other works operating with the aid of a centralized system, that is, [68] and
[67], [6], all have the problem with the single point failure and the untrusted third party.

Therefore, in this dissertation, we discuss the need of a trust computation suitable
for decentralized networks with the limitations of mobile environment and that to have
independence of hardware or hardware plugins.

2.4 Secure mobile person-to-person payment

Section 2.4 is initiated with the introduction on recent well-known person-to-person payment
systems in Section 2.4.1. In Section 2.4.2, we present a couple of famous systems in secure
decentralized mobile payments. Then we discuss previous works on secure path discovery in
Section 2.4.3. Finally, Section 2.4.4 ends Section 2.4 with a discussion about recent secure
P2P payment systems over MANET.

2.4.1 Recent person-to-person payment systems

The first P2P payment emerged with Western Union service, and the next was Paypal [18].
These services really helped people in two distant locations making them able to transfer
money to each other in safe and convenient. The two services follow the centralized model.
They have been still well known and worked out until now. Based on the same target at P2P
payment, but with different motivations, that is, to secure and comfort people in reducing
to bring cash or wallet outside, and to balance the budget better, Kenya came up with the
idea of mobile payment and banking.10 Although Kenya was not the country inventing the
mobile device, it was the first place giving birth to mobile payment. This idea turned into
reality with M-Pesa, a mobile payment application, launched in 2007. In mobile payment, a
conceptual monetary unit is used. An amount of such units represented for cash or check
is stored in an application in mobile device, and certainly bought by device owners at
corresponding stores. When making a payment, users show their mobile device near the
card machine in a predefined distance. It is because most of mobile payment applications
use wireless technologies like Bluetooth, Near Field Communication (NFC), etc., so they
limit the distance. Since then, mobile payment applications have been spread all over the
world. So far a half of all mobile money transactions in the world take place in Kenya, where

10http://www.techrepublic.com/article/the-worlds-unlikely-leader-in-mobile-payments-kenya/

20 Related work

annual transfers have reached $10 billion. One of well known mobile payment application
revolutionizing the world of credit card cannot be missed, that is, Google Wallet,11 released
in 2011. Beside Google Wallet are VISA Wallet (multiple financial networks), ISIS (AT&T
and T-mobile telecommunication providers), Serve (American Express Customers). Mobile
payment promises to fetch an amount of money transfer to $670 billion by 2015.12

Though mobile payment promises to carry on tremendously growing up and overtakes
the traditional payment by cash and check, the above mobile payment methods are practically
needed in point-to-point transactions, e.g., supermarket/store payments. It means two points
involved in a transaction obliged to locate close to each other in a predefined range, and
still needs to go through the third party server. However, there is a need of dealing with a
(in)direct payment between two arbitrary points in a undetermined distance without going
through the third party server. This leads to the advent of mobile P2P payment. It is possible
to find very interesting initiatives, like Zopa,13 Ratesetter14 and Funding Circle.15 Another
notable example of P2P payment system is given by Ripple [121], which is a protocol for an
open source payment system.

2.4.2 Security-aware decentralized mobile payment.

Let us first introduce a recent typical leading system in decentralized e-cash systems, namely
Bitcoin. Bitcoin [108] was published in 2008 by Satoshi Nakamoto, and nowadays becomes
a famous innovative peer to peer payment with no central authority or bank. This virtual
currency system has been the first one accepted by the widespread popularity. Let us go
details of this payment method.

In Bitcoin, an electronic Bitcoin coin is defined as a chain of digital signatures. Each
Bitcoin user is referenced in each transaction by a pseudonym as a Bitcoin address. Each
Bitcoin address is attached to a unique pair of public key and private key. These keys are used
for transferring the ownership of the Bitcoin coin among addresses. When an owner receives
a Bitcoin coin, then makes a digital signature of a combination including the previous hash
and the public key of the next owner, and appends this signature to the coin before sending
its updated version to the next owner. The final owner receiving the coin, called payee, can
validate the ownership by verifying the chain of signatures. A problem emerges in case a
Bitcoin coin spends double. To overtake this problem, a hash based proof-of-work scheme is
implemented to generate blocks and widely publish them. A block includes a hash of the

11http://www.thinslices.com/mobile-payment-apps/
12http://www.bonsoni.com/news/research-shows-mobile-phone-payment-double-by-2013/
13http://zopa.com/, http://uk.zopa.com/about-zopa/peer-to-peer-lending
14http://www.ratesetter.com/
15https://www.fundingcircle.com/

2.4 Secure mobile person-to-person payment 21

previous block, a value nonce, and other requested data users want to include. A Bitcoin
user needs to search in the block for a nonce, a value beginning with a number of zero bits,
when hashed, the result is below a given value. If such a nonce is found out in the block, it
is included in a new block. The updated block is forwarded to all users in the network to
check its correctness by verifying the hash. Each block links to the previously generated
block, the Bitcoin block chain grows in the network. Bitcoin relies on this mechanism to
resist double-spending attacks.

However, in another work by Gervais et al. [50] addressed that today Bitcoin is not a fully
decentralized system as promised. Authors said that the original version of Bitcoin aimed
truly at a fully decentralized system, yet recent versions cannot maintain such a feature. They
are hosted and managed by central services, and a considerable share in Bitcoin market is
noticeable. Moreover, Bitcoin depends on its developers that can retain privileged rights in
conflict resolution and maintenance of the official client version.

Meanwhile, another recent work, namely Zerocoin [104] addresses risks of using pseudonym
of Bitcoin as an identifying address. In particular, Zerocoin deduces that Bitcoin is secure
relied on two assumptions that its nodes are honest and its proof-of-work can deter Sybil
attack [40], but all transactions are public and the anonymity of user’s addresses is protected
by the pseudonym technique. Hence, an attacker can identify participants of Bitcoin coins
partially or completely. Zerocoin proposes a solution to break the link among participants
without using any trusted parties. Let us describe the intuition behind Zerocoin scheme.
Zerocoin supposes to use a physical bulletin board. To mint a coin, each owner needs to
generate a serial number S and digitally signs S for a commitment. This can reveal the owner
identity. The commitment results in a coin C and a number r. To hide S when using C, the
owner can only use r to retrieve C. This step can break the link between the owner’s identity
and the currency. Then, the owner can public C to other users by pinning C on the bulletin
board, the other users accept C if it is structured correctly then calculate the sum of currency.
To redeem C from bulletin board, the owner of C needs to generate a value π relating to r,
and posts it to the bulletin board. The other users check if the coin has been spent in the
previous transactions so as to decide if the requesting owner can spend the coin or not. Not to
use the bulletin board and to launch Zerocoin to the fully decentralized model, the idea is to
apply the block chain in Bitcoin as a Zerocoin’s bulletin board. In Zerocoin, authors use RSA
cryptography, with 3072 bit as key size at least. This can prevent attacker in attempting to
infer the identity of coin owner from the digital signatures, but Zerocoin cannot be effective
if it goes mobile when RSA consumes much main memory in computing as well as space to
store the generated cipher texts. This makes Zerocoin unable to surpass the limitations of
mobile environment.

22 Related work

2.4.3 Secure path discovery

In [38], authors propose a decentralized solution for path discovery based on public key
cryptography, but the user triggering the path discovery can learn all properties of each
relationship between two nodes in the path. To overcome this drawback in [39] authors
enhance the protocol forcing users to be able only to access aggregated value of relationship
properties. [39] assumes that each node sets a trust level on its contacts, and adopts the
probabilistic multiplicative privacy homomorphism for computing the rational trust and
depth of two direct or indirect nodes. This supports a node, owning a resource and setting
an access control16 on it, in evaluating another node requesting its resource. For example,
there are three nodes in the protocol, i.e., A, B, C with B locating between A and C.
The trusts, respectively between A and B, B and C, are TAB and TBC. The total trust,
calculated at B and sent to C, is TAC = TAB ⊗TBC, after applied with homomorphic, it results
in EPC(TAC) = EPC(TAB)⊗EPC(TBC) where PC is the public key of C, known to A and B, and
EPC() is the probabilistic homomorphic encryption function. As a consequence, this work is
successful in aggregating trust and depth on the connecting path between two nodes. The
missing things are that (1) this work publishes the public key of the destination node, which
does not preserve the destination user’s privacy, (2) they do not validate the relationship type
of the entire connecting path, (3) the data set used for computing trust and depth is not the
social data, but locally set up and stored in every node by itself, so the data on the entire
connecting path seems more subjective. Moreover, given the requested mobility factor, this
work does not go mobile, so authors do not concern properties of homomorphic encryption
algorithms affecting to the space and pace load if it is working in mobile network.

In [101], authors focus on calculating the depth between two indirect nodes, i.e., length
of the path connecting the two nodes. Like [39], [101] does not support calculating trust and
relationship type of the connecting path, as well as does not exploit the social data. However,
this proposal is fully decentralized with no third party. In particular, while discovering the
path connecting those two arbitrary nodes, the protocol uses a hash function to aggregate the
depth without revealing the relationship information of nodes on the path. The path discovery
targets the way a node evaluates another node in the network. In the work, assume that there
is a path in the network as A → B →C → D, node A wants to verify the trust between A and
D. A generates a random value, called r, known to only A. A hashes r by a cryptographic
algorithm and obtains T1 = H(r||1) where 1 is the order of the branch from A to B. A then
sends T1 to B, B calculates the new hash, called T2 = H(T1||1), then forwards it to C. C
hashes the received token again and gains T3 = H(T2||1). If C has more than one branch, the

16Access control is a set of conditions specifying compulsory requirements all which users need to satisfy to
use services/resources.

2.4 Secure mobile person-to-person payment 23

number following the previous hashed value in the hash function is increased for every node
on every branch. This work first catch its objective in calculating privately the depth between
two (in)direct nodes against some honest-but-curious and malicious attacks wanting to know
the information in the token. The missing things in the work are (1) authors do not remind a
specific hash function, (2) the work do not mention how the destination node, i.e., the one
supposed to be the destination of the token, can evaluate the received token, (3) the work
limits in computing the depth and does not mention anything relating to the relationship type
and the trust. In addition, it is ineffective for a real large social network because of the initial
required token flooding phase.

Shared the idea with [39] and [101], another work [156] proposed a privacy-preserving
fully-decentralized protocol, namely P3D. The protocol uses a data structure, called token,
sent from a source node to a destination node. While moving through the network, the token
aggregates the relationship information on its path. [156] overtakes [39] and [101] due to
followings: (1) authors exploit the social data for calculating the trust between two arbitrary
nodes, this makes data more real and objective; (2) the protocol can compute aggregate trust,
depth and relationship type of the connecting path. Authors compute privately depth and
trust using logarithm based hash function, and compute relationship type using Elgamal
encryption. Moreover, if [101] limits the computation in a specific length, which makes it
unable to be applied to a real social network, as well as faces a problem of token flooding,
[156] can deal with those issues by proposing a computation method bounding the result,
and a strategy of optimizing token flooding. [156] can resist on the honest-but-curious attack.
As a consequence, [156] achieves the privacy during the progress of discovering the path.

With our observance, all above works operate very well on the wire network, e.g.,
Internet, since physical resources are sufficient for computation. However, to launch them to
mobile network, we need to take care of another limitations of mobile environment, such as,
limitations of mobile devices in power, memory, energy, and of mobile network bandwidth.

2.4.4 Security-aware MANET payment

Authors in [61] propose a secure electronic payment system over MANET, called PayFlux.
PayFlux applies SPKI (Simple Public Key Infrastructure) to improve the performance of
processing encryption/decryption. However, PayFlux only works with direct connections
(i.e., one hop) between the payer and the payee. In [66], [91], authors proposed a secure
payment protocol for a vehicular ad-hoc network between a client and a merchant. [66]
uses symmetric cryptography whereas [91] exploits ECC and hash functions. These aim at
improving the performance, while still preserving user privacy and data security. However,
[61] [66] [91] focus on direct connections and e-cash transfers, whereas, our work considers

24 Related work

both direct and indirect connections and makes trust preference enforcement available for
users to decide a money transfer.

Authors in [120] propose the P2P payment in multiple hop wireless networks as well.
Each node in the protocol is assigned a trust value. A packet of payment request is routed
through the network according to these trust values. It implies that the packet moves through
nodes having the high trust values. After every successful transaction, these trust values are
updated. Whereas, our protocol works on relationship information of every user retrieved
from their social network sites. Beside, [120] deploys the decentralized-based framework in
wireless network, however, they still need the third party to authenticate the data. Meanwhile,
we do not need the support of any third party, our proposal is a fully decentralized model.
Moreover, they use only hash function for data authentication while our proposal makes data
more confidential and authenticated as well by using both hash functions and encryption
algorithms. Hence, their data security is not guaranteed as the one in our proposal. In our
proposal, intermediate nodes are not let to know the source and the destination node to avoid
the trace made from a malicious intermediate node while the intermediates in [120] can know
the source and the destination nodes.

In [102], a local secure scheme supports nodes in evaluating the trust between two nodes,
node i and node j, in an ad hoc network, when node i requests node j for a communication.
In particular, node i retrieves a set of common connected nodes of node i and node j, then
requests common nodes to send to node i their reputation recommendation on node j. To
retrieve this intersection and to let each node in the protocol unaware of the set of nodes
of the other side, author adopted the homomorphic Paillier’s encryption and polynomial
intersection calculation.

2.5 Web service collaboration

A web service is a software system designed to support interoperable application-to-application
interactions over the Internet. One of the major goals of web services is to make easier their
composition to form more complex services. This leads to a requirement on collaboration
among services, called a web composition. The two main techniques for web service compo-
sition are respectively orchestration and choreography. According to [99], orchestration and
choreography models are defined as followed.

"In orchestration, the involved web services are under control of a single endpoint central
process (another web service). This process coordinates the execution of different operations
on the Web services participating in the process. The invoked Web services neither know
and nor need to know that they are involved in a composition process and that they are

2.5 Web service collaboration 25

playing a role in a business process definition. Only the central process (coordinator of the
orchestration) is conscious of this aim, thus, the orchestration is centralized through explicit
definitions of operations and the invocation order of Web services".

Each orchestrated web service is specified under an automated workflow of activities
using a particular executive language, such as Business Programming Executive Language
(BPEL) [4], and a BPEL engine [110], i.e., the coordinator of the orchestration to execute
the workflow at runtime. An orchestrated workflow is typically exposed as a service that can
be invoked through an API. It does not describe a coordinated set of interactions between
two or more parties.17 Recent works follow orchestration model as [33, 106, 65, 75].

In contrast, "choreography does not depend on a central orchestrator. Each Web service
that participates in the choreography has to know exactly when to become active and with
whom to interoperate. Choreography is based on collaboration and is mainly used to
exchange messages in public business processes. All Web services which take part in the
choreography must be conscious of the business process, operations to execute, messages to
exchange as well as the timing of message exchanges" [99].

Choreography refers to a description of coordinated interactions between two or more
parties. For example, you request a bid, I return a quote, you submit a purchase order, I send
you the goods.18 Recent works follow choreography model as [5, 149, 73].

Each of technique has own advantages and disadvantages. It depends on the specific
requirements of the application, the more suitable technique should be chosen [124] [130].
As discussed in [131], these requirements can be posed both by users requiring the composed
service as well as by the companies provisioning the atomic services. In general, requirements
can refer to several dimensions, such as Quality of Service (QoS) [86] composing of business
value quality, service level measurement quality, interoperability quality, business processing
quality, manageability quality.19 or security quality [24], as services might have strong
security requirements on services with which they have to cooperate during the service
composition deployment.

2.5.1 Security-aware orchestrated web composition

Orchestration has a BPEL engine as a central mediator to control a static sequence of activities
described in a BPEL-based file. Such an approach is simpler and easier to be implemented,
making orchestration a valid solutions for composite web service deployment. Literature
presents several approaches for orchestrating constrained web service compositions, where

17http://www.infoq.com/news/2008/09/Orchestration
18http://www.infoq.com/news/2008/09/Orchestration
19http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/WS-Quality-Factors-v1.0.html

26 Related work

QoS [94, 148, 128] and/or security criteria [24] [131] have been considered. However, to the
best of our knowledge none of them considers that the evaluation of these criteria requires to
expose private information of users and providers, regardless of whom poses the requirements
(i.e., users or providers) and the nature of these requirements (e.g., QoS, security, etc.). One
paper we are aware of dealing with these issues is [132], where a centralized and privacy
aware approach for service selection of composite services has been proposed. As such, we
assume the workflow underlying the business process is encoded into a BPEL document
and processed by a server hosting a BPEL engine. According to the orchestration paradigm,
the broker coordinates the invocation of services involved in the composition, i.e., partner
services, by passing the needed parameters. In general, all previous proposals for the service
orchestration model consider the broker as a trusted entity. As such, they never paid attention
to the fact that the broker is able to access several pieces of sensitive data, such as: the data
given as input by the user invoking the composite service (hereafter credentials), the final
outcome of the composite service, as well as internal parameters (i.e., variables and values
generated as output by partner services).

As we mentioned above, to the best of our knowledge, we are not aware of work on
untrusted BPEL engines for managing an orchestrated web service composition. However,
there are some proposals on untrusted servers but in different scenarios. For instance, Feldman
et al. [43] proposed SPORC, a generic framework for building a variety of collaborative
applications with untrusted servers. An encrypted document is stored on the untrusted server
and authorized users can access it. Tople et al. in [144] investigated the feasibility of a
web server architecture where the vulnerable server virtual machine (VM) runs on a trusted
cloud provider. All sensitive web content is made available to the vulnerable server VM in
encrypted form. However, both [43] and [144] are not targeted to orchestrated web service
composition.

However, the BPEL engine needs to follow a workflow pattern [152] [1] to perform a
web service composition. As in [13], authors presented a secure framework in the sequence
workflows. Blundo et al. in [14] presented a framework to authenticate a secure workflow by
addressing a recent cryptographic tool and aggregate signatures to validate the orchestration
by requiring all partners to sign the result of their computation. [14] can authenticate partner
web services joining the workflow, but cannot preserve the privacy and the security of user
and data. In another work [115], authors proposed Blindfold, a novel system that enables
users to upload encrypted data to the server and to search it without revealing the true keys
or values to the server or third parties. [115] supports user to search the encrypted values.

2.5 Web service collaboration 27

2.5.2 Security-aware choreographied web composition

To cope with weak points of the centralized model, recently many works have dealt on web
service selection using the decentralized model. Choreography is a decentralized model with
a dynamic sequence of web services used for B2B (Business-to-Business) applications, but it
is hard to be specified and implemented. In this model, peers share the service reputation/trust
levels together and manage them locally, so it can solve the problem of the single point
as well as the resource requirements for a central node. Therefore, in choreographed web
service composition, each peer has two key acts, that is, selecting a eligible service able to
collaborate with it, and invoking the selected. This model is also considered as an effective
solution to deal with problems of mobility, fault tolerance, reliability and the ultra large scale
of the Future Internet [3]. To select a good service meeting all of its requirements, a peer
often needs to consider many criteria on both functional and non-functional requirements,
such as, response time, availability, throughput, security, reliability, and execution cost [12].

In [151] authors proposed a super-agent based framework where super agents share
honestly their reputation information, and can also build the global reputation from public’s
opinions, as well as, form agent communities with similar interests. Also being in this
tendency, we build up a choregraphy-driven web service selection solution but do not make
available agent communities as a service. Our proposal is to select and execute at run time
web services which match a list of requirements in a predefined work flow. In another related
work [3], Ahmeh et al. proposed a selection choreography. This work calculates the time of
the supported functions of a web service as a metric while our proposal considers in details
at the parameters of a service candidate. In [64], authors presented how to use probability to
determine which service can enforce the next activity in the work flow.

However, with all above decentralized based approaches, there are still risks for data
exchanged among web services, as an example, parameters can be read by unauthorized
services. Recent works having focused on the data security can be listed as [9] [111]. In
these works, IBM and Oracle support fundamental security tools for users (i.e., between
two parties in a transaction) to apply into their protocol designs relating to web services.
They do not support a specific security solution for web service selection and composition.
Particularly, authors in [9] used the SSL technique and authentication and username tokens to
protect the data, and in [111] authors supported the web service security at three level (that is,
message level, transport layer, and access control layer). Moreover, another approaches [117]
[118] made use of a set of security patterns and rules to determine the security properties
that should be preserved by individual services so that the security properties of the overall
composition can be satisfied too. In [20] authors proposed a framework following which users
can reach a secure web composition, they quantified the amount of trust and security based

28 Related work

on the defined QoS-based confidentiality properties. In another approach using cryptography
scheme, authors in [98] applied the asymmetric cryptography to the exchanged messages
into the web composition in the orchestration model. Hence, the cryptography application is
simple just for the authorized parties to enable to read their messages.

As our observance, recent works have not worked on selecting an efficient and secure
service in the decentralized model, or securing the data transferred between services. Hence,
in the dissertation we would like to process a complete combination of selecting an efficient
service and invoking it locally, privately and securely. Beside, we consider the progress
in which peers exchange their private performance information to evaluate their potential
partner for a collaboration, and in which peers evaluate the functional requests to see if they
can respond those requests also in a secure and private way. As our best knowledge, this is a
new open problem and will be presented in more details in the upcoming chapters.

Chapter 3

Mobile Person-To-Person Payment

Today we are experiencing the rise of new digital methods of making person-to-person (P2P)
payments that, in contrast to traditional checks and cash, allow customers to use their mobile
phone to support P2P payment. As an example, Gartner [47], forecasts that in 2016 there
will be 448 million mobile payment users in a market worth 617 billion USD, and the global
mobile transaction volume and value averages 42% annual growth between 2011 and 2016.

Despite the success of these new digital P2P payment methods, we believe that, to fully
enable this increasing rise of digital wallets, relevant challenges still need to be addressed.
As a step in this direction, this chapter presents our proposal that leverages social network
connections to help the decision making processes behind mobile P2P payments. Indeed, in
real life, we make decisions on accepting money from or on giving money to someone based
on what we know about him/her. More precisely, we propose to make payer (i.e., payee) able
to state a set of trust preferences stating how the potential payee/payer has to be connected
with him/her in order to give/accept money. Trust preferences state conditions on: (1) the
type of the relationship that must exist between the payer and the payee (e.g., friend, parents,
just-met), (2) the distance between the payer and the payee, i.e., the number of hops in the
path connecting them, (3) the trust value associated with this relationship. As an example,
a user can state that he/she will accept to transfer money only to payees that are friends of
one of his/her friends with a high trust value (i.e., type = friends, distance = 2, trust value =
high). Before committing a money transfer, both payer and payee evaluate their local trust
preferences to decide whether the other can be considered enough trusted.

Evaluating a trust preference implies finding connecting paths between payer and payee.
In designing a protocol to support this task, we kept into account two main requirements.
The first is that the solution has to support all existing mobile P2P payment methods as well
as existing social network services, without forcing an integration between these platforms.
Another relevant issue is that nowadays persons are used to join several social networks,

30 Mobile Person-To-Person Payment

maintaining different accounts with different contact lists. Therefore, we need to support path
finding across different social network realms. To cope with these interoperability issues, we
designed a solution such that trust preference evaluation is locally performed on each peer by
means of a mobile app, called SmartPay, assuming that user contacts list is locally managed
by the mobile app. Therefore, the main goal is to discover the relationship path between
two arbitrary nodes in a distributed network. In designing our protocol, we have considered
three essential requirements: (1) relationship privacy - relationship information is sensitive
personal data. As such, information on the type, trust and depth of a given relationship
should be known only by the users establishing that relationship, not by intermediate nodes
participating in the protocol; (2) limitations of mobile devices - almost all mobile devices
are characterized by low battery, low memory, low power, limited throughput. To cope
with the above limitations, we propose of light cryptographic protocol for mobile-oriented
decentralized path discovery. The protocol makes use of Elliptic Curve Cryptography (ECC)
[72] to obtain a protocol running steadily and fast. To fully protect relationship information,
we also propose a privacy-preserving approach to compute trust value between two adjacent
nodes according to the well-known Tidal Trust algorithm [52].

The remainder of the chapter is organized as follows. Background and notations are
presented in Section 3.1. Section 3.2 introduces trust-driven mobile P2P payments. Mobile-
oriented decentralized path discovery protocol is presented in Section 3.3. A method of
optimizing the message flooding is described in Section 3.4. Security properties of the
proposal is presented in Section 3.5. Experimental results show the effectiveness and
efficiency of the proposal in Section 3.5. We describe the time complexity of proposal in
Section 3.7.

3.1 Background and notations

3.1.1 Trust preferences in Social Networks

We model a social network as a directed labeled graph G =(V,E,RT,φ), where RT is a
finite set of relationship types, V is a finite set of users, E ⊆ V ×V ×RT is a set of edges
representing relationships between users, and φ : E → [0,1] is a function mapping each edge
e ∈ E to a trust level. Given a relationship between two nodes v,v′, denoted by rel(v,v′), this
is defined as a direct relationship if rel(v,v′) = e ∈ E, it is defined as an indirect relationship
if rel(v,v′) connects the two nodes by a path consisting of more than one edge, all with the
same relationship type. In case of indirect connections, the depth of a relationship is given by
the number of edges in the connecting path. Literature offers several algorithms to combine

3.1 Background and notations 31

����������	��
�	��
�����������	��
�	��
�

��������������
���	��	�

��	

������
�����

 ����	
�
�!����"�
����	#������$� ����	
�
�!����"�
����	#������$�

%�
��
�

��
�	
&
�

'
�

�(
	

��
	�
�
�

���
���

���

Fig. 3.1 Trust-driven mobile Person-to-Person payments

32 Mobile Person-To-Person Payment

and to aggregate the trust values associated with the edges involved in a connecting path so
as to compute trust value for an indirect relationship. In this protocol, we adopt one of the
most well-accepted one, that is, Tidal Trust [52] (cfr. Section 3.3).

Based on this notation, we can now formalize trust preferences. A trust preference is
defined as a pair (P, TC), where P indicates whether the trust preference has to be applied for a
money transfer where the specified user is the payer (P=payer), or the payee (P=payee), and
TC is a set of trust conditions specifying trust requirements. In particular, a trust condition
is a tuple TC= (rt,dmax, tmin), which states that between the trust preference owner and the
other party there should exist a relationship of type rt, with maximum depth equal to dmax

and a trust level greater than or equal to tmin.
For simplicity, in the chapter, we assume that a trust preference consists only of one trust

condition TC, and we denote with rtTC, depthTC, and trustTC the conditions specified on
relationship type, depth and trust in TC.

3.1.2 Elliptic Curve Cryptography (ECC)

In our protocol, we use Elliptic Curve Cryptography (ECC) [72] based on the binary finite
field Fm

2 . As such, we assume that each node vi using SmartPay has a pair of keys (ki, ki ·B),
where the public key ki ·B, the Elliptic Curve (E) and the base point B will be publicly
published when vi installs SmartPay, whereas the private key (ki) is known only by vi. Let
us remind ECC encryption/decryption operations by assuming that Alice wishes to send a
message M to Bob, and Bob has a pair of keys (kBob, kBob ·B), where kBob is Bob’s private
key, and kBob ·B is Bob’s public key. To encrypt M, Alice generates E(M) = (Y 1,Y 2),
Y 1 = rAlice ·B, Y 2 = M + rAlice · (kBob ·B), where rAlice is a random integer generated by
Alice. Given E(M) Bob uses his private key kBob to retrieve M as follows: D(E(M)) =

Y 2− kBob ·Y 1.

3.2 Trust-driven mobile P2P payments

As depicted in Figure 3.1, SmartPay implements the bridge between social networking
services and P2P payment services. We assume that SmartPay periodically synchronizes
with user social network accounts so as to extract their contact lists. These are merged into
a unique list, called Unified Contact List (UCL). We assume that users UCL can be either
locally stored or stored into a cloud public storage service.1

1Protection of UCLs at cloud side is out of the scope of the work presented in this chapter. However, existing
encryption techniques for cloud (e.g., [140], [105]) can be easily adopted to make only authorized mobile apps
able to access the proper UCLs.

3.2 Trust-driven mobile P2P payments 33

SmartPay provides users with the possibility of further classifying their relationships by
specifying, for each of them, the type of the relationship, e.g., parent, colleague, classmate,
defined according to a standard vocabulary like FOAF [19], and a trust value, representing
the strength of the relationship. As described in Section 3.3.2, SmartPay also provides a tool
for suggesting a user a proper trust value for those users he/she does not know, based on the
well-known Tidal Trust algorithm. Thus, given the UCL, SmartPay can access the user social
graph, representing the merge of the partial views the user has on each single social network.
Formally, the social graph follows the definition and notation provided in Section 3.1.

Before committing to a money transfer, a user evaluates through SmartPay whether
the payer/payee satisfies his/her local trust preferences and, if this is the case, the user
proceeds with his/her preferred mobile P2P payment method. This evaluation requires to
discover relationship paths connecting the two involved nodes, to verify if at least one of them
satisfies the specified trust preferences. Since relationship information is locally managed,
we propose a distributed protocol that, by means of node collaboration, traverses the social
graph and looks for connecting paths. For each of the traversed path, the protocol collects the
information on trust, depth, and relationship type. The collected information is stored into a
set of data structures (called tokensets) and propagated through the graph. For simplicity,
hereafter, we assume this process is always started by the payer. Therefore, once the payer
receives a request of a money transfer from a payee through an email or a message on the
social network, the payer initializes a tokenset including three distinct tokens, one for each
path property (i.e., depth token, trust token, and relationship type token, respectively). The
payer then forwards the tokens to his/her direct neighbors. These nodes update the received
tokenset with the information on depth, trust and relationship type of the edge to be traversed
and forward the updated tokenset to their neighbors. The process is iterated until the payee
receives the tokenset, which is then send directly back to the payer by email or mobile
internet. As soon as the payer receives back the set of tokensets, he/she retrieves the specified
trust condition TC, i.e., the trust condition in the trust preference defined for the payer role.
Then, by using the relationship type token, the payer is able to determine whether all the
edges in the path have a relationship type equal to the one required by the trust condition. In
case the edge relationship types are different, the payer is not able to determine their real
values. In contrast, by exploiting depth and trust tokens the payer can determine the number
of edges, and the trust value of the indirect relationship, without knowing the trust value of
any edge in the path.

34 Mobile Person-To-Person Payment

3.3 Mobile-oriented Decentralized Path Finding

In this section, the protocol will be described in further details introducing how tokens
are initialized, updated and propagated along the graph. Before that, we present notations
we adopt hereafter. According to the social network model given in Section 3.1, a path p
traversed by the collaborative protocol can be denoted as p = {v0,v1, . . . ,vp}, where v0 is
a payer and vp is a payee. Thus, given p we denote with Tr(i)(i+1), rt(i)(i+1) and d(i)(i+1),
respectively, the trust value, relationship type and depth of the edge connecting vi to vi+1 in
p. Moreover, the proposed protocol exploits ECC to protect relationship privacy. Data to
be encrypted with ECC have to be encoded in points in elliptic curve.2 Therefore, given an
edge e=(vi,vi+1), we denote with Pd(i)(i+1)

, Prt(i)(i+1) , PTr(i)(i+1) , respectively, the points in (E)
encoding depth, relationship type and trust value of edge e.

3.3.1 Depth computation

By exploiting ECC properties, depth of the traversed path p can be computed by securely
aggregating points in (E) encoding the depth of each single edge in p. Thus, each node vi

generates a big random number r(i)(i+1) ∈N+, which is used together with the payer’s public
key (k0 ·B) to encrypt the distance between vi and vi+1, that is, the value 1. The obtained
encrypted value is then added to the content of the received depth token. It is important to
note that, even if depth values have always the same value (i.e., 1), analysis of encrypted
text from attackers is still hard since each user in the path selects a different big random
variable r(i)(i+1). Moreover, only the payer v0 can know the final depth value of the whole
relationship path, since intermediate nodes only participate in aggregating the depth value in
the relationship path without the ability to decrypt it. Thus, the privacy of the payer and the
previous nodes is preserved.

Let us see the depth token computation by presenting its initialization, computation and
validation.

Depth token initialization. The payer v0 generates the point Pd(0)(1) on (E) corresponding
to d(0)(1). Then, it randomly generates a big number r(0)(1) for encrypting Pd(0)(1) with his/her
public key k0 ·B. We obtain: E(0)(1) = (Y 1v0 , Y 2v0) = (r(0)(1) ·B, Pd(0)(1) + r(0)(1) · k0 ·B).
The resulting encryption is then broadcasted to each of his/her direct contacts, that is, the
node v1 in each path p the protocol will find.

2Literature offers several algorithms for point compression (see [79] [80] [42]) that can be used to encode
and decode a bit string in Fm

2 into a point on a binary elliptic curve (E). These mapping functions do not affect
the security of the protocol at all. For this reason, in this work a message W is mapped to a point on (E) as
P =W ·B, where B is the base point, due to the simplicity and the additive property of the mapping.

3.3 Mobile-oriented Decentralized Path Finding 35

Depth token computation at intermediate nodes. Once an intermediate node vi receives
the depth token from a neighbor vi−1, it has to update and send it to each of its neighbors,
except from vi−1. Each forwarded depth token has to be updated so as to add to its contents,
i.e., E(0)(i), the value E(i)(i+1), that is, the encryption with v0 public key of point Pd(i)(i+1)

,
where d(i)(i+1) is the depth between vi and neighbor vi+1 to which the token will then be
forwarded.

As such, we have that: E(0)(i+1)=E(0)(i)+E(i)(i+1), where E(i)(i+1)=(r(i)(i+1) ·B,Pd(i)(i+1)
+

r(i)(i+1) ·k0 ·B). Thus, E(0)(i+1) ==(r(0)(i) ·B+r(i)(i+1) ·B,(Pd(0)(i)+r(0)(i) ·k0 ·B)+(Pd(i)(i+1)
+

r(i)(i+1) · k0 ·B))=((r(0)(i)+ r(i)(i+1)) ·B,(Pd(0)(i) +Pd(i)(i+1)
)+(r(0)(i)+ r(i)(i+1)) · k0 ·B).

Then, vi broadcasts the resulting E(0)(i+1) to each of its direct neighbors, i.e., vi+1:

Depth token validation. The depth token is flooded until it reaches the payee vp. Then,
for each founded path, vp sends the corresponding depth token back to the payer v0. By
the depth token, payer v0 obtains the aggregated depth value E(0)(p) = (∑

p−1
i=0 r(i)(i+1) ·

B,∑p−1
i=0 Pd(i)(i+1)

+(∑
p−1
i=0 r(i)(i+1)) · k0 ·B). In order to extract depth Pd(0)(p)

of the traversed

path, i.e., ∑
p−1
i=0 Pd(i)(i+1)

, v0 decrypts E(0)(p) with his/her own private key k0. Then, v0 decodes
Pd(0)(p)

to obtain the value d(0)(p). Finally, v0 checks if this value satisfies the trust condition
TC.

3.3.2 Trust computation

Literature offers several algorithms to compute the trust value between two indirectly con-
nected nodes [93]. In general, all of them aggregate, in different ways, the trust values
associated with edges (direct relationship) connecting the nodes in the path. In designing
the trust token, we started by the assumption that trust values for direct relationships are
associated directly by involved users. However, these values could be too much subjective
or, even worse, users could not be able to significantly quantify the trustworthiness for a
given contact, as they might have not enough information. To cope with this issue, in this
chapter, we propose a trust computation able to automatically compute trust values between
two adjacent nodes, The idea is that the resulting trust value can be considered as a suggested
trust value between two users, which can then be multiplied with the user-given trust value,
if present, as an adjusting weight. Among various trust algorithms, to compute the adjusting
weight we selected the Tidal Trust algorithm [52]. This is known as the most famous and
highly cited algorithm for inferring the trust between two adjacent nodes due to its simplicity
and low complexity O(V +E), which allows high scalability in its application. Thus, given
two adjacent nodes vi and v j, the trust value associated with edge connecting vi to v j is
Tri j = µi j ·Tui j, where µi j is the adjusting weight automatically computed between them

36 Mobile Person-To-Person Payment

according to the Tidal Trust algorithm, whereas Tui j is the trust value given by vi to v j, if
any. Note that in case users are not able to assign a trust value, Tui j is set to 1. Then, given a
path p, we compute the aggregated trust value as the average of values Tr associated with
edges in p. To obtain this value, the trust token is generated and updated so as to contain the
sum of Tr values of traversed edges. The payer can simply computes the average value by
dividing this sum by the path depth.

In the following, we start presenting the privacy-preserving Tidal Trust computation. We
then show how the obtained adjusting weights are used in the trust token computation.

Privacy-preserving Tidal Trust computation between two adjacent nodes. According
to [52], the trust value for two adjacent nodes vi and v j is computed as follows:

µi j =
∑st∈ad j(i)∋Tr(i)(st)≥max (Tr(i)(st) ·Tr(st)(j))

∑st∈ad j(i)∋Tr(i)(st)≥max Tr(i)(st)
(3.1)

where Tr(i)(st), Tr(st)(j) denote the trust values, respectively, between vi and vst , and between
vst and v j; ad j(i) is the adjacent node list of vi; st is a common neighbor of vi and v j whose
trust value satisfies the condition that Tr(i)(st) is greater than a given threshold max; t is the
position of a common node st in the set ad j(i). In order to evaluate Formula 3.1, vi and v j

have to execute the following steps:

(1) vi and v j collaboratively retrieve the set of common contacts, denoted as IS, by means of
a privacy-preserving protocol. Here, we assume that such a protocol can be defined based on
existing work (e.g., [45]). We plan to investigate such a protocol as a future work.
(2) For each common node st , v j maps the trust value Tr(st)(j) between v j and st to a point on
(E) denoted as PTr(st)(j) . Then, v j encrypts PTr(st)(j) with the payer v0’s public key (ko ·B) and
obtains E(st)(j) = (r j ·B, PTr(st)(j) + r j · k0 ·B), where r j is a random number generated by v j.
v j also encrypts the point on (E) corresponding to st’s identifier, denoted by PIDst

with vi’s
public key. The resulting encrypted value is denoted by E(j)(PIDst

). All these values are sent
to vi as a set of pairs [E(j)(PIDst

),E(st)(j)], for each st ∈ IS.
(3) Once vi receives pairs [E j(PIDst

),E(st)(j)], it decrypts the values E(j)(PIDst
), and decodes

PIDst
to obtain identifiers of common nodes, i.e., IDst . Among the resulting identifiers, vi

selects only those of the common nodes having Tr(i)(st) ≥ max, where max is a lower bound
for trust value as in Formula 3.1. Let θ(i)(j) denotes the set of common nodes satisfying this
condition.
4) According to Formula 3.1, for each st ∈ θ(i)(j), vi has to compute Tr(i)(st) · Tr(st)(j).
However, to apply the binary ECC, Tr(st)(j) is mapped to a corresponding point on (E),
i.e., PTr(st)(j) . Thanks to the additive property of the function used for mapping data in

3.3 Mobile-oriented Decentralized Path Finding 37

point on (E),3, we can calculate Tr(i)(st) ·PTr(st)(j) instead. Moreover, since PTr(st)(j) is en-
crypted by v0’s public key in E(st)(j), it is possible to exploit the additive property of ECC.
Thus, to compute Tr(i)(st) ·E(st)(j), vi adds to E(st)(j) the same value E(st)(j) for (Tr(i)(st)−1)
times.4 We obtain a value, denoted as addendst , such that addendst = Tr(i)(st) ·E(st)(j) =

∑
Tr(i)(st)
1 E(st)(j) = (∑

Tr(i)(st)
1 (r j ·B), ∑

Tr(i)(st)
1 (PTr(st)(j) + r j · k0 ·B)) = (Tr(i)(st) ·r j ·B, Tr(i)(st) ·

PTr(st)(j) +Tr(i)(st) · r j · k0 ·B), for each st ∈ θ(i)(j). Then, all these addends are summed to-
gether, to obtain an encrypted value of the numerator of the Formula 3.1, denoted by
EN, where EN = ∑

|θ(i)(j)|
t=1 addendst = ((∑

|θ(i)(j)|
t=1 Tr(i)(st)) · r j ·B,∑

|θ(i)(j)|
t=1 (Tr(i)(st) ·PTr(st)(j))+

(∑
|θ(i)(j)|
t=1 Tr(i)(st)) · r j · k0 ·B).

(5) vi can easily compute denominator of Formula 1, denoted as D = ∑
|θ(i)(j)|
t=1 Tr(i)(st). Hence,

from the step 4 vi has EN = (D · r j ·B, ∑
|θ(i)(j)|
t=1 (Tr(i)(st) ·PTr(st)(j))+D · r j · k0 ·B). Then,

it calculates the inverse value of the denominator, denoted D−1, by a binary polynomial
inversion calculation.
(6) Finally, vi calculates the encrypted weights E(i)(j)(µ(i)(j)) = EN ·D−1, by adding EN to
the same EN value for (D−1 −1) times according to the additive property of ECC, where

E(i)(j)(µ(i)(j)) = (r j ·B, ∑
|θ(i)(j)|
t=1 (Tr(i)(st) ·PTr(st)(j)) ·D

−1 + r j · k0 ·B) After the above steps,
the resulting encrypted value E(i)(j)(µ(i)(j)) is used for the next step of computing the trust
token.

b) Trust token. As discussed before, the trust token has to contain the summation of
the trust values Tr(i)(i+1) = µ(i)(i+1) · Tu(i)(i+1) of each edge connecting vi to vi+1 in the
relationship path, for each i ∈ {0, p−1}. To preserve the privacy of participant nodes, each
value Tr(i)(i+1) must be encrypted before being aggregated into the trust token. This can
be easily done since the execution of the proposed privacy-preserving protocol for Tidal
Trust algorithm between vi and vi+1 already returns the encrypted value of µ(i)(i+1), that
is, E(i)(i+1)(µ(i)(i+1)). Hence, we only need to add E(i)(i+1)(µ(i)(i+1)) to E(i)(i+1)(µ(i)(i+1))

values for (Tu(i)(i+1)− 1) times. Thus, according to the additive homomorphic property
of ECC, we obtain the encrypted product Tr(i)(i+1), denoted by E(i)(i+1). Then, we can
aggregate this product E(i)(i+1) into the trust token.

Trust token initialization. For each direct node to which the token will be forwarded,
i.e., v1, the payer v0 first executes the privacy-preserving Tidal Trust computation to obtain
E(0)(1)(µ(0)(1)). Then, it computes E(0)(1)=E(0)(1)(µ(0)(1))·Tu(0)(1)=∑

Tu(0)(1)
1 E(0)(1)(µ(0)(1))=

E(0)(1)(µ(0)(1) · Tu(0)(1)) = E(0)(1)(Tr(0)(1)). We denote this encrypted value as E(0)(1) =

3Let us denote a mapping function from a point PWi on (E) to a value Wi in Fm
2 and vice versa as PWi = f (Wi).

We have f (W1)+ f (W2) = f (W1 +W2). In case W1 =W2, we have f (W1)+ f (W2) = f (2 ·W1) = f (2 ·W2).
4In support of this, in the execution of this part of the protocol, we assume that the trust value are mapped

from [0,1] to [0,100].

38 Mobile Person-To-Person Payment

(r(0)(1) ·B, µ(0)(1) ·Tr(0)(1)+ r(0)(1) · k0 ·B), where r(0)(1) is a random number generated by
v1. Then, v0 broadcasts E(0)(1) to its direct neighbors, i.e., v1.

Trust token computation at intermediate nodes. Each intermediate node vi receives from
vi−1 the trust token. This contains E(0)(i), that is, the encrypted aggregation of trust values
on the edges traversed so far. Similarly to the payer v0, vi executes the privacy-preserving
Tidal Trust computation so as to obtain E(i)(i+1)(µ(i)(i+1)), and then to compute E(i)(i+1) =

E(i)(i+1)(µ(i)(i+1)) ·Tu(i)(i+1) = ∑
Tu(i)(i+1)
1 E(i)(i+1)(µ(i)(i+1)) = E(i)(i+1)(µ(i)(i+1) ·Tu(i)(i+1)).

We denote this encrypted value as E(i)(i+1)=(r(i)(i+1) ·B,µ(i)(i+1) ·Tr(i)(i+1)+r(i)(i+1) ·k0 ·B),
where r(i)(i+1) is a random number generated by vi+1. Then, vi computes E(0)(i+1), which is
given as the sum between the received E(0)(i) and the just computed E(i)(i+1). It obtains:

E(0)(i+1) = E(0)(i)+E(i)(i+1)

= (r(0)(i) ·B+ r(i)(i+1) ·B, (µ(0)(i) ·Tr(0)(i))

+(µ(i)(i+1) ·Tr(i)(i+1))+ r(0)(i) · k0 ·B+ r(i)(i+1) · k0 ·B)

= (
p−1

∑
i=0

(r(i)(i+1) ·B),
p−1

∑
i=0

(µ(i)(i+1) ·Tr(i)(i+1))

+(
p−1

∑
i=0

(r(i)(i+1)) · k0 ·B))

(3.2)

Trust token validation. The propagation ends when the tokenset reaches the payee vp.
This tokenset then is sent back to the payer v0 that decrypts the tokenset content, i.e.,
E(0)(p) with its private key (k0). Thus, v0 obtains the aggregated trust value Tr(0)(p) =

∑
p−1
i=0 (µ(i)(i+1) ·Tr(i)(i+1)). As such, the payer v0 obtains the final value as follows:

D(E(0)(p)) = D(
p−1

∑
i=0

(r(i)(i+1) ·B),
p−1

∑
i=0

(µ(i)(i+1) ·Tr(i)(i+1))

+(
p−1

∑
i=0

(r(i)(i+1) · k0 ·B)) =
p−1

∑
i=0

(µ(i)(i+1) ·Tr(i)(i+1))

+
p−1

∑
i=0

(r(i)(i+1)) · k0 ·B)−
p−1

∑
i=0

(r(i)(i+1) ·B · k0)

(3.3)

Tr(0)(p) =
p−1

∑
i=0

(µ(i)(i+1) ·Tr(i)(i+1)) (3.4)

The obtained Tr(0)(p) is still a point on (E), v0 needs to decode it to a value in Fm
2 .

3.3 Mobile-oriented Decentralized Path Finding 39

3.3.3 Relationship type computation

We assume that the payer v0 initializes the relationship type token, hereafter rt token, which
is then forwarded only to those v0’s neighbors with which v0 has a relationship type equal to
rtTC. The token is initialized as the encryption of the sum of points Pτ and Prt(0)(1) on (E),
respectively, corresponding to a random value τ ∈ Fm

2 and the relationship type rt(0)(1) that
is, the type in rtTC. Each intermediate node vi adds to the content of the received rt token
the encrypted point Prt(i)(i+1) on (E) corresponding to the relationship type of the edge to be
traversed, that is, e = (vi,vi+1). This is done until the rt token reaches the payee vp that then
sends the token back to the payer v0. In turn, the payer v0 decrypts rt token content and
verifies if rt is compliant with TC. A detailed description is presented as follows.

Relationship type token initialization. The payer v0 sets a random value τ ∈ Fm
2 and

encodes τ to a point Pτ on (E). v0 also encodes the relationship type rt(0)(1), which is
also the one required in rtTC, to a point on (E) denoted by Prt(0)(1) . Then, v0 uses its
public key (k0 ·B) to obtain the encrypted value E(0)(1). As such, E(0)(1) = (Y 1v0,Y 2v0) =

(r(0)(1) ·B, (Pτ +Prt(0)(1))+ r(0)(1) · k0 ·B), where r(0)(1) is a random integer generated by
v0. After that, v0 sends E(0)(1) to each of its direct neighbor, i.e., v1, with which it has a
relationship of type rtTC.

Relationship type token computation at intermediate nodes. Once the intermediate node
vi receives the rt token from vi−1, it encodes rt(i)(i+1) to a point Prt(i)(i+1) on (E). Then,
vi computes the encrypted value of Prt(i)(i+1) , that is, E(i)(i+1) = (Y 1vi, Y 2vi) = (r(i)(i+1) ·
B, Prt(i)(i+1) + r(i)(i+1) · k0 ·B), where r(i)(i+1) is a random integer generated by vi. Then, vi

aggregates E(i)(i+1) into the rt token content, i.e., E(0)(i), and obtains E(0)(i+1) = E(0)(i)+

E(i)(i+1) = ((r(0)(i)+ r(i)(i+1)) ·B, (Pτ +Prt(0)(i) +Prt(i)(i+1))+(r(0)(i)+ r(i)(i+1)) ·k0 ·B), where
Prt(0)(i) = ∑

l=i−1
l=0 Prt(l)(l+1) is an aggregated point on (E) corresponding to the aggregated

relationship types on the edges e = (v(l),v(l+1)) traversed from v0 to vi. Then, vi sends
E(0)(i+1) to vi+1. The propagation is iterated until the rt token reaches the payee vp, then vp

sends the rt token back to the payer v0.
Relationship type token validation. Once the payer v0 receives E(0)(p) from the payee vp,

v0 decrypts E(0)(p) with its own private key k0 and obtains Pτ +Prt(0)(p) = Pτ +∑
p−1
i=0 Prt(i)(i+1) .

Then, v0 subtracts the decrypted value to Pτ and gets Prt(0)(p) .

Finally, if all types on the relationship path are equal, it means that: rt(0)(p) =∑
p−1
i=0 rtTC =

λ ·rtTC, where λ is the number of hops to reach the payee from the payer or the depth through
which the rt token propagates. We have the above equation due to the basic point scalar
multiplication operator on (E). Then, v0 divides rt(0)(p) by rtTC, by a binary polynomial
division. If the division does not result in a remainder and the quotient is equal to the
relationship depth extracted from the depth token, it means that all edges in the traversed path

40 Mobile Person-To-Person Payment

have the type equal to rtTC. Otherwise, at least an edge has rt ̸= rtTC, so the trust condition
is not satisfied.

3.4 Flooding Optimization

The path finding protocol described so far assumes that each intermediate node sends the
tokenset to each of its direct contacts. However, that broadcast approach might not be suitable
in a mobile network. Although the tokenset computation does not require plenty of resources
(see experiments in Section 3.6.2), the broadcast approach might imply a high bandwidth
usage since the number of tokensets that are exchanged rapidly increases (see experiments in
Section 3.6.1). In order to cope with this issue, we introduce an optimization method aiming
at reducing the number of propagated tokensets. An easy way for drastically reducing the
number of tokensets is to let the intermediate nodes be aware of which type of relationship
the payee is looking for. Given this information, they would be able to forward the tokenset
only to the contacts with which they have the required relationship, rather than to broadcast
to all their neighbors. However, this solution would reveal the required relationship type.
In order to restrict the number of messages by at the same time protecting the required
relationship type, we adopt a solution inspired by k-anonymity [137]. The basic idea is to let
the intermediate nodes know a set, denoted by Arel , of k relationship types, k−1 of which are
chosen randomly according to a uniform distribution from RT whereas one is that required in
TC. The flooding is then limited only to those edges labeled with a relationship type among
the k types in Arel .

The rt token is computed and validated as described in Section 3.3.3. Thus, when the
payer v0 obtains the final aggregated relationship type, it decrypts the value and verifies if
TC is satisfied. Similarly to k-anonymity, the inference of the real relationship type required
by a trust preference depends on the selected k value. This value can be selected based
on the domain requirements, trying to trade off between efficiency and privacy of trust
preferences, since the smaller is Arel , the better is the protocol performance, but the greater is
the possibility to infer the required relationship type.

3.5 Security properties

In this section we discuss the security properties ensured by the proposed protocol. As stated
in Section 1, we are interested in protecting relationship information. In what follows, we
describe which information can be inferred by nodes involved in the protocol. This discussion
is done under the assumption that nodes are honest but curios, as such, they all perform steps

3.5 Security properties 41

required by the protocol, by trying to gain reserved information, if possible. The discussion
is organized according to the node’s role.

Intermediate nodes. We recall that intermediated nodes receive tokens containing en-
crypted aggregated information of path traversed so fa. Then, by exploiting ECC, they add
the properties (i.e., trust, depth, relationship type) of the edge through which the token is
going to be sent. According to token definitions, only v0 is able to decrypt the aggregated path
information, since all tokens have been encrypted with v0’s public key. Moreover, ECC keys
used in SmartPay have sizes larger than 160 bits [87], which meets the security conditions
in cryptanalysis [72]. Additionally, the fact that a relationship path includes many of nodes
implying the combination of the random big numbers makes adversaries hard to run a Bruce
Force algorithm to analyze the tokens. This, even for the depth token that has alway value
’1’, since different nodes give different encrypted values with different random big numbers.

Payee. This node has only to send back to the payer the received token. Similar to
intermediate nodes, it is not able to access aggregated data. According to honest-but-curios
model, this node can neither generate nor add fake tokens to the received one, before sending
it to payer.5

Payer. This is the only node able to decrypt aggregated data, as such obtaining the depth,
type and trust of the traversed path p. These are all aggregated data, that do not reveal nodes
that are involved in p, as well as, property of each edge. However, there is a particular case,
where from the aggregated data payer can infer private information. This is the case of paths
of depth 2. Indeed, in this case the path has a unique intermediate node, say X, which is also
common friend of both payer v0 and payee vr. Thus, X has an incoming edge from vo, and
an outgoing edge to vr. v0, once decrypted the token, is aware of the depth, that is, it is aware
that one of its contacts has a direct relationship with vr. It also knows that it is one to which
the token has been sent, thus, the one with which v0 has a relationship of rtTC type. However,
it does not know exactly who, but it can guess with a probability P(X) = 1

∥NC∥ , where ∥NC∥
is the number of direct contacts of vo with rtTC type. Larger is ∥NC∥, smaller is the ability
of v0 to infer information about X . We have to note that, even if this is possible, this is not
likely to happen as, in general, social network users have several hundreds of friends. As an
example, on average, Facebook users have 130 friends. If we consider that SmatPay merges
different user social network accounts, we believe that ∥NC∥ ensures a low probability of
guessing who is X.

5It is important to note that even in case of not-honest behavior, adding fake edge properties will decrease
the possibility of satisfying the trust condition TC. For example, dding a depth token increases the depth
making thus more difficult to satisfy the length limit stated in depthTC.

42 Mobile Person-To-Person Payment

Fig. 3.2 CPU power consumption for creating a token on a node (%)

3.6 Experiments

We carried out several experiments to test the proposed protocol. In particular, the first
experiment illustrates the cost in terms of CPU, memory and time of token computation.
Then, we present the performance of the optimizing flooding strategy introduced in Section
3.6.2. The physical resource used for the experiments is a PC configured with Core2 Duo
CPU 3GHz, 4.0GB DDRAM, 64 bit Windows 7 Professional.

3.6.1 Computational costs

In this section, we compare the costs of the proposed protocol with another decentralized
path finding protocol, that is, P3D [156] due to its similarity with our protocol. P3D is a
fully decentralized protocol for the social networks based on homomorphic cryptography
has been proposed, solving the above mentioned problems. However, the main difference
between SmartPay and P3D is that we make use of light cryptography techniques. As such
the proposed protocol can easily be executed by mobile devices due to its more effective
consumption of system resources, and faster performance.

Technically, in order to aggregate path properties, P3D uses the cryptographic hash
function SHA− 1,2 combined with either the property of logarithm function or Elgamal
cryptographic algorithm. According to the experimental results of P3D, the logarithm
function is much faster than Elgamal. Therefore, we make a comparison between SmartPay
and P3D variant based on SHA−1,2 and logarithm function. The key sizes of SHA−1,2
are sequentially 160, 256, 384, 512 bits. In SmartPay, we use Koblitz elliptic curves (or,

3.6 Experiments 43

Fig. 3.3 Time consumption for creating a token on a node (ms)

anomalous binary curves), which are one among the 15 recommended elliptic curves analyzed
in [59]. These elliptic curves are based on the binary Fm

2 and the size of underlying fields
are 163, 283, 409, and 571 bits in turn. (See more details in [59], [79], [80], [42]). Our first
experiment consists in computing the tokenset, i.e., depth, trust and rt token, tracing the
system resources usage, i.e., CPU, memory, and time. The tokenset has been computed 10
times. The final resources usage is then given as the average of these 10 executions.

Figures 3.2, 3.3, and 3.4 show the comparison in terms of CPU power, memory, and
time usage between SmartPay and P3D. From experimental results, we can easily see that
resource usage of SmartPay is less than P3D. With the largest key size of SmartPay (571 bits)
and P3D (512 bits), P3D used 1.8% CPU power w.r.t. 1.2% of SmartPay (see Figure 3.2).
Meanwhile, the space for P3D is 4640 bytes while SmartPay uses 728 bytes (see Figure 3.4).
SmartPay consumes 6.3 times less than P3D, which is an interesting property considering the
resource-constrained mobile domain. Moreover, the time spent on creating the tokenset with
P3D is 40ms, 1.3 times more than SmartPay that requires only 30 ms (see Figure 3.3). Let
us consider the smallest key size of SmartPay (163 bits) and P3D (160 bits): P3D used 0.7%
CPU power while SmartPay used 0.4%, 1.75 times more than SmartPay (see Figure 3.2).
Meanwhile, the space for P3D is 3120 bytes, while SmartPay uses 536 bytes (see Figure 3.4).
P3D consumes 5.8 times more than SmartPay. Time spent on creating a token with P3D is
19.6ms, 1.96 times more than SmartPay, i.e., 10ms (see Figure 3.3). With other key sizes,
P3D also consumes resource much more than SmartPay. Consequently, we conclude that
SmartPay is more efficient than P3D, especially in mobile environment.

44 Mobile Person-To-Person Payment

Fig. 3.4 Space load for creating a token on a node (byte)

Fig. 3.5 A comparison between NFO and KAO about number of traversed nodes per second

3.6.2 Flooding optimization

In order to verify the optimizating flooding strategy introduced in Section 3.4, we make
experiments on an existing social network dataset. In particular, we used the Epinions,
dataset6 which has been extracted from a Who-trusts-whom online social network.7

This is a dataset representing a directed social graph with 75,879 nodes and 508,837
edges. In order to perform the experiments, we modified the dataset so as to associate
with each edge a relationship type and a trust value. The relationship type is uniformly
and randomly picked up from [32] based on the ontological FOAF vocabulary specification

6http://snap.stanford.edu/data/
7http://www.epinions.com/

3.6 Experiments 45

Fig. 3.6 A comparison between NFO and KAO about number of flooding tokens per second

which provides a set of 35 relationship types. A trust value set on an edge e ∈ E is also
randomly generated uniformly from a range [0,1].

In order to measure the effects of the flooding optimization, we execute the protocols
several times by tracing: the number of traversed nodes and the number of generated tokens.
We execute the protocol according to the broadcast technique, i.e., no flooding optimization -
NFO and the k-anonymity based optimization - KAO with different k values. In particular,
in choosing the value k we have considered that if this k is too large, the expected KAO
performance is close to the one of NFO. In contrast, if k is too small, the relationship type
can be easily inferred. To set a good trade-off we have selected k = 18 and k = 27, that is
half and 3/4 of available relationship types in [32]. Besides, we use the key sizes of 163
bits, 233 bits, 283 bits, 409 bits and 571 bits. Figures 3.5, 3.6 present the comparison of the
flooding methods in which the x axis represents the key size of ECC algorithm; and the y
axis reports the number of traversed nodes in Figure 3.5, and the number of tokens flooding
in the network in Figure 3.6.

In case of the smallest 163 bit key size, in NFO, the number of traversed nodes is 2522
whereas the number of relevant tokens is 131313. In contrast, KAO with k = 18 traverses
2393 nodes (1.05 times less than NFO) and 52377 relevant tokens (2.51 times less than
NFO), with k = 27 traverses 1424 nodes (1.77 times less than NFO) and 53230 relevant
tokens (2.47 times less than NFO). Now let us consider the largest key size (571 bits), NFO
generates 89139 tokens flooding through 3669 nodes. Meanwhile, KAO (k = 18) generates
28972 tokens (3.08 times less than NFO) going through 1437 nodes (2.55 times less than
NFO), while KAO (k = 27) method generates 29799 tokens (2.99 times less than NFO) going

46 Mobile Person-To-Person Payment

through 1175 nodes (3.12 times less than NFO). With the other key sizes, the experimental
results also prove that KAO is completely effective.

3.7 Complexity Analysis

In order to assess the efficiency of the protocol more exactly, we consider the time complexity
of the fact that a token moves from the payer through intermediate nodes to the payee. We
denote the time consumption of processing a token at one node as tp. tp is formulated as a
summation of the token updating time (i.e., tu), the transmission time (i.e., tt), and the waiting
time on sensing the connection signal from the node’s contacts (i.e., tw). More formally:

tp = tu + tt + tw

Notice that tu depends on a couple of factors, that is, the physical power of the mobile
device and the key size of used cryptographic algorithms as mentioned in Section 3.6.
Whereas, tw is ’0’ if there are nodes connecting the sending node and available to receive the
token.

Since the time complexity of the path discovery depends on the number of active nodes,
we assume that at time t, there are N nodes being on in the network. We consider two cases
in which the path discovery can be done in the farthest and slowest way. In the case that
the two nodes are adjacent, the number of intermediate nodes is "1". The time cost in the
above equation is still applicable to this case as the sending node needs to compute the
token then to transfer the updated token to the next node. Hence, the time complexity is
O(N) = 1× tp = t = (tu+ tt + tw). In the worst case, the token needs to move through (N−1)
nodes, excluding the payee as the payee does not process the token, before reaching the
payee, the the time complexity turns out to be O(N) = (N−1)× tp = (N−1)× (tu+ tt + tw).

Chapter 4

Secure Mobile Person-To-Person
Payment over Mobile Ad-hoc NETwork

In Chapter 3, we have presented a secure protocol, namely SmartPay [22, 23], to exploit the
available social network connections to support users in making decisions behind mobile
P2P payments. In particular, SmartPay leveraged social connections to help the payers,
i.e., those people who give credit to someone, to judge if the person asking money can
be considered trusted. More precisely, SmartPay exploits social networks to verify how
payer and payee are connected in the social graph. Based on this information and the payer
trust preferences, SmartPay suggests whether the money transfer should be authorized or
not. A key aspect of SmartPay is the decentralized protocol exploited to gather information
on the social path connecting the payer and the payee, which is then encoded into a data
structure, called tokenset. Furthermore, SmartPay exploits a light cryptographic algorithm,
namely binary Elliptic Curve Cryptography (ECC) algorithm [71] to protect the privacy of
user relationship information in the traversed path. This makes SmartPay able to privately
aggregate information on the traversed paths (i.e., depth, trust, relationship type), without
revealing any information on traversed edges. However, in [22, 23] we did not cope with the
communication means for exchanging tokensets among SmartPay users. It is only assumed
that the communication means is Internet (e.g., using emails or sockets). In this chapter, we
want to explore alternative communication means. In particular, we propose to exploit Mobile
Ad-hoc NETwork (MANET). Several applications have been deployed over MANET (see
Chapter 1, Section 1.1.1 for examples). Plenty of MANET applications have been deployed
successfully, and particularly for scenarios where local networks with a high density of
users are available (e.g., a conference room, library, supermarket, stadium, park, university
campus, company buildings). This typical MANET scenario fits well the one in which P2P
mobile payment applications can be used. Hence, we strongly believe that there is a need of

48 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

deploying P2P payments over MANET. For this reason, in this chapter, we investigate how
to deploy SmartPay over MANET. To our knowledge, this work is the first one exploiting
social network relationships for P2P payments over MANET.

Despite the benefits, this new communication means has open challenges that need to
be addressed [126] [57]. Among them, the most relevant are: (1) privacy and security, (2)
energy efficiency, and (3) network performance. The deployment of SmartPay over MANET
has to cope with all these issues. Regarding privacy and security, the exchange of tokensets
through MANET rises new challenges w.r.t. of those investigated in [22, 23]. Indeed,
according to the MANET protocol, a tokenset might be forwarded through several mobile
users before reaching the destination. Those users are not involved in the path traversal and
thus do not have to infer any information about the payment transaction as well as aggregate
relationship information. In addition, in [22, 23] the payer identity was not kept private, as
the proposed solution exploits the payer’s public key. In contrast, in this chapter we present
a solution suitable to MANET communication that provides a more secure protocol than
the one in [22, 23]. Regarding issue (2), we use cryptographic algorithms on elliptic curves,
that is, binary ECC [71] and Elliptic Curve Digital Signature Algorithm (ECDSA) [69].
These binary cryptographic algorithms make the mobile devices able to perform efficient
computations and consume less energy. With respect to (3), SmartPay adopts a strategy
inspired by k-anonymity to optimize network performance. However, selecting a reasonable
value of k to make the network consumption effective is not easy. In particular, in case k is
large, network performance is similar to the one of broadcasting techniques, but privacy is
preserved more strongly. In case k is small, the bandwidth consumption is low but privacy
cannot be preserved effectively. To overcome this problem, in this chapter, we propose an
optimization strategy exploiting secure comparison algorithms so as to reduce the flooding of
tokensets in MANET. In particular, our algorithm allows to evaluate encrypted relationship
information inside a tokenset to be forwarded in the network.

The remainder of the chapter is organized as follows. A short MANET introduction
is introduced in Section 4.1. Section 4.2 presents issues and possible solutions to deploy
SmartPay over MANET. Section 4.3 describes the expanded SmartPay protocol over MANET.
Section 4.4 presents the optimization strategy. Experimental results are reported in Section
4.5. Finally, security properties are discussed in Section 4.7.

4.1 MANET (Mobile Ad-hoc NETwork) introduction

MANET is a collection of many devices equipped with wireless communications and net-
working capabilities that make them able to communicate with each other [143]. This can

4.1 MANET (Mobile Ad-hoc NETwork) introduction 49

be done through a direct communication, if the destination of the message is within the
radio range of the sender. In general, the radio range depends on the communication means.
For instance, a Bluetooth device has a radio range of 10m, whereas a Wi-Fi device has a
radio range of 100m [44]. In case two devices are out of their radio ranges, a protocol is
initialized aiming at forwarding the message through intermediate nodes until reaching the
final destination. For this purpose, each device, hereafter node, keeps track of the set of
neighbors that fall into its radio range. Since nodes might leave or enter the other’s radio
range, the MANET topology can change in a very dynamic way. These changes might
split the network into different subnetworks, called partitions, among which there might
not exist a possible routing path. To support the communication among nodes in different
partitions, large-scale MANETs make use of connectors. These are proxies responsible for
forwarding messages from a partition to another. A connector can be a fixed device (such
as an Access Point (AP), a server, or a switch that functions as a gateway) [154], or mobile
nodes/robots [37]. When a node joins the network, it receives from its neighbors information
about available connectors. When a node wants to transmit a message to a node in another
partition, it forwards the message to connectors in its connectors list.

v
0

v
3

v
4

v
1

v
2

Radio

range of v4

Partition 1 (p1) at t0

v
0

v
3

v
4

v
1

v
2

Partition 1 (p1) at t1

Partition 2 (p2) at t1

C
1

Fig. 4.1 MANET partitions and radio ranges at different times

Example 1. Figure 4.1 illustrates a MANET at two different time instants, i.e., t0 and t1.
Each node has a radio range, denoted by the surrounding dotted circle. Partitions are denoted
by a solid circle. When a node enters in another dotted circle, the two nodes can communicate
directly using Wi-Fi standards, i.e., IEEE 802.11. At time t0, v0 can directly contact v1 since
it is in v1’s radio range and vice versa. This direct communication is reported as an edge
connecting v0 and v1, denoted as e(v0,v1). In contrast, v0 can contact v3 indirectly by a
protocol forwarding the message through a routing path, e.g., v0 → v2 → v3. As reported in

50 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

Figure 4.1, at time t0 all mobile nodes v0,v1,v2,v3,v4 set up a partition, say p1, since all of
them can communicate with each other directly or indirectly. Figure 4.1 reports that v3 and
v4 leave p1 at time t1 and form the second partition, say p2. The two partitions, i.e., p1, p2,
communicate with each other through the connector, that is, C1.

4.2 SmartPay over MANET: Issues and Solutions

To be enforced in MANET, SmartPay needs to be expanded so as to handle MANET
communications. In order to distinguish users in SmartPay social network and in MANET,
we organize the structure of Smartpay over MANET into two layers, that is, SmartPay Social
Network Layer (SSNL) and Smartpay MANET Layer (SMNL). Users in the SSNL are called
contacts, whereas users in the SMNL are called nodes. Hereafter, let vS

i denote a contact i,
and vM

i denote a node i. One contact in the SSNL is mapped onto one node in the SMNL,
and vice versa. SSNL includes contacts operating according to the SmartPay protocol. In
particular, the SSNL is responsible for aggregating path information and propagating the
tokenset to the other contacts. Whereas, the SMNL includes nodes (physical mobile devices)
and communications in MANET. MANET communications are set up according to requests
on SSNL. The SMNL is in charge of forwarding the tokenset to neighbors, or stopping the
tokenset when the destination is reached. It is important to note that while contacts in SSNL
are mapped on nodes in SMNL, the same does not hold for edges in the corresponding graphs.
Indeed, in a MANET graph, edges are defined based on nodes’ radio ranges, and not based
on relationship information like in SSNL. As such, the protocol for discovering a path in a
social graph defined in [22, 23] cannot be applied as it is in the MANET graph. Indeed, the
tokenset flows might follow a different path in the MANET layer, due to the availability and
the position of nodes at that moment, as the following example clarifies.

Example 2. Let us consider the scenario of a MANET created among mobile devices of
spectators of a football match at a big stadium. Let us assume some of them are connected
in a social network graph. As presented in Figure 4.2, this MANET consists of several
partitions, that are connected together by means of a set of connectors (wireless access
points) placed around the stadium. Let us consider four friends: Bob, Evans, Carl, and Alice,
that come to the stadium to follow the match, but they sit in different stadium areas. Assume
that Bob is sitting next to Evans, Carl is a little far from Evans and Bob, while Alice is at
the farthest place from the others. Based on the distance, they are located into two different
partitions (see Figure 4.2). Evans and Bob can communicate directly because they are in the
radio range of each other. If Bob wants to communicate with Carl, he must communicate
through two intermediate nodes, that is, Evans and Davis. If Alice wants to communicate

4.2 SmartPay over MANET: Issues and Solutions 51

partitions

Evans

Bob
Carl

Davis

Alice

Spectator Area
Connector

(Wireless Access Point)

Fig. 4.2 Communication at a stadium

Fig. 4.3 SmartPay protocol over MANET

52 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

with Bob, her message needs to be sent to a connector that then forwards the message to
Bob’s partition. Continuing with this scenario, let us consider the social graph and MANET
described in Figure 4.3. As depicted in Figure 4.3, connections in SSNL and SMNL are
different. Suppose that Bob wants to buy snack and beverage, and thus he asks Evans for
lending him money by making a direct request. Evans and Bob are not connected in SSNL,
Evans does not know Bob very well, so he initializes and sends a SmartPay tokenset to Bob
through the SmartPay application installed on his cell phone. The tokenset propagates from
Evans to Bob through SSNL path Evans→Alice→Bob. Whereas, in the SMNL the tokensets
go directly to Bob through the path Evans→Bob.

Due to the SSNL communication layer, the SmartPay protocol as described in [22, 23]
cannot be directly applied, as further information needs to be inserted in the tokenset in order
to route it in the MANET network. As it will be described in the next section, the revised
tokenset has still to ensure privacy and security properties.

4.3 Expanded Smartpay Protocol (ESP)

Let us consider the three main roles with which nodes participate in the protocol, that is, the
payer, the payee, and the intermediate nodes.

The Payee. Let us assume that a user vpayee wants to borrow an amount of money from
another user, say vpayer. He/she first needs to send vpayer a request. By using SmartPay, the
payer will generate a tokenset which is propagated in the social graph until it reaches the
payee. The tokenset has to contain some information that makes the payee able to determine
he/she is the final destination of the received tokenset or this relates to another execution of
ESP.

The naive idea is to insert the payee identity in the tokenset. Yet, the payee identity is
a personal information. Thus, we use an additional information, called Validator, which is
generated as the encryption with the public key of the payee, i.e., (Kpayee ·B), of some local
information gathered from the payee’s mobile device. These are, as an example, the MAC
address and the timestamp of the instant when the payee makes a request to the payer. The
timestamp is used as a session identity to distinguish the payment request at the payee side, so
that the payee can recognize exactly the request relating to the payer. Before encrypting the
combination of MAC address and timestamp, to improve the robustness of Validator against
adversaries (see Section 4.7), we take the combination of MAC address and timestamp apart
into groups of bytes, then permute randomly positions of these groups of bytes by applying
the Fisher-Yates shuffle algorithm [41]. Note that the random arguments used for permutation
are held by the payee, so that the payee can reuse them for its identity data recovery. After

4.3 Expanded Smartpay Protocol (ESP) 53

that, the payee encrypts the permuted combination of local information by its public key to
gain Validator. Then, Validator is appended at the end of the ESP tokenset. Also notice that
Validator is not modified through the path from the payer to the payee.

Definition 1. (Validator). Let vM
payee be the node who makes the payment request, MAvM

payee
be

the MAC address of vM
payee, tvM

payee
be the timestamp when vM

payee makes the request, (KvM
payee

·B)
be the public key of vM

payee. The Validator made by vM
payee is defined as follows:

ValidatorvM
payee

= Enc(KvMpayee
·B)(shu f f le([MAvM

payee
||tvM

payee
]))

where shuffle() is the Fisher-Yates shuffle algorithm, ’||’ is an operation concatenating
two bit strings.

vpayee inserts the Validator into the request and sends the request to vpayer.

Example 3. Let us continue with Example 2 (see Figure 4.3), and suppose once again
that Bob wants to borrow money from Evans. Therefore, he needs to generate the re-
quest along with the Validator and sends them to Evans. Bob first retrieves the request
timestamp, i.e., tBobM , and the MAC address, i.e., MABobM , from his mobile device. Then,
he combines them together, creates a random permutation on the obtained combination,
and then encrypts the resulted permutation with his public key to generate the Validator:
ValidatorBobM = Enc(KBobM ·B)(shu f f le[MABobM ||tBobM]). Bob sends then the Validator and
the payment request to Evans.

After that, vpayee waits for an ESP tokenset from vpayer through his/her contacts. When
vpayee receives an ESP tokenset including his/her Validator, he/she sends that ESP tokenset
back to the payer and waits for the payment result.

Example 4. Consider Example 3, when Bob receives a tokenset with the Validator Enc(KBobM ·B)
(shu f f le([MABobM ||tBobM])), he can use his private key (i.e., KBobM) to successfully decrypt
the Validator, and verifies that he is the destination of the tokenset. Then, Bob stops forward-
ing the tokenset to his neighbors.

The Payer. In defining ESP we wish to cope with an open issue in [22, 23]. Indeed, in
order to aggregate information into the tokenset, in [22, 23] we assumed that each user knows
the public keys of other participants. However, this makes users involved in the SmartPay
execution able to infer who is the payer. In ESP, we wish to protect this information as well.
Therefore, we assume that the payer, i.e., vS

payer, generates a pair of temporary ECC public
and private keys, i.e., (KtempvS

payer
·B) and KtempvS

payer
, for each new transaction, to be used

instead of its original public key so that intermediate nodes cannot infer the payer identity.

54 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

Temporary keys have to be protected so as to avoid other contacts to misuse them. Beside, in
order to avoid that intermediate nodes do aggregation on the same tokenset received from
the same SSNL node in case the sending node can be subject of a replay attack (see Section
4.7), we insert the information of session identity (ID) between two SSNL nodes, called
sessionID. sessionID can include an ID of the receiving node and a number standing for the
session order. Beside, to let the receiving nodes know the sending node, we insert the ID
of the sending node, namely ID(vi), into the tokenset. Both ID(vi) and sessionID should
be protected as the temporary public key of the payer. At this purpose, we require that the
temporary public key, the sessionID and ID(vi) are encrypted by the intermediate contacts
who have used it to aggregate the relationship information with the official public key of
the SSNL contact to which the tokenset has to be sent. The above extra information is
encapsulated into a data structure, called secure key, and inserted into the head of the ESP
tokenset.

Definition 2. (Secure Key). Let vS
i be the node processing the ESP tokenset, vS

i+1 be a contact
of vS

i , (KvS
i
·B) be the public key of vS

i , (KvS
i+1

·B) be the public key of the neighbor vS
i+1,

sessionID(vS
i ,v

S
i+1)

be the session identity of vS
i and vS

i+1. SecureKey between vS
i and vS

i+1 is
defined as follows:

SecureKey(vS
i ,v

S
i+1)

= Enc(KvS
i+1

·B)(ID(vi)||(KtempvS
payer

·B)

||sessionID(vS
i ,v

S
i+1)

)

Example 5. Let us continue with Example 3. After receiving the request and Validator from
Bob, Evans generates a pair of temporary public and private keys, (KtempEvans ·B,KtempEvans),
to be used for the current payment transaction only. Evans keeps the temporary private
key, and propagates the temporary public key to his contacts, that is, Alice and Walker. In
particular, Evans encrypts his temporary public key, the session IDs between him and them
(i.e., sessionID(Evans,Alice), sessionID(Evans,Walker)), and his ID (i.e., ID(Evans)) with their
public keys, i.e., (KAlice ·B) and (KWalker ·B) respectively, and obtains two distinguished
encryptions. From the above information, Evans creates two secure keys, as follows:

• SecureKey(Evans,Alice) = Enc(KAlice·B)(ID(Evans)||KtempEvans · B)
||sessionID(Evans,Alice))

• SecureKey(Evans,Walker) = Enc(KWalker·B)(ID(Evans)||KtempEvans · B)
||sessionID(Evans,Walker))

The secure key (Definition 2), the SmartPay tokenset as defined in [22, 23], and the
Validator (Definition 1) are then enveloped into a unique data structure, namely, the ESP

4.3 Expanded Smartpay Protocol (ESP) 55

tokenset. Moreover, to guarantee the integrity of the content of elements of ESP tokenset,
i.e., no intermediate nodes can modify the public key encryption, a signature of ESP tokenset
encryption is made with the private key of the sending contact using the Elliptic Curve
Digital Signature Algorithm (ECDSA) algorithm [69]. An ESP tokenset is formally defined
as follows:

Definition 3. (ESP Tokenset). Let vS
i be a node, vS

i+1 be one of vS
i ’s contacts, vS

payer be the
payer, vM

payee be the payee. Validator is created by vM
payee as in Definition 1. SecureKey is

created by vS
i as in Definition 2, SPTokenset is the tokenset as defined in [22, 23]. Hence, the

ESP tokenset is defined as follows:

T K(vS
payer,v

S
i+1)

= [combi||signKvS
i
(combi)]

where

combi = [SecureKey(vS
i ,v

S
i+1)

||(SPTokenSet(vS
payer,v

S
i+1)

)

||ValidatorvM
payee

]

and sign() is the function that vS
i uses for generating the signature of the encryption of

ESP tokenset with its private key.

Example 6. Let us continue with Example 5. After creating the secure key, Evans detaches
Validator from the received request from Bob, and creates two tokensets for his two contacts
on SSNL, i.e., Alice and Walker, as follows:

• T K(Evans,Alice) = combi||signKEvans(combi), where combi = [SecureKey(Evans,Alice)

||SPTokenset(Evans,Alice)||ValidatorBob].

• T K(Evans,Walker) = combi||signKEvans(combi) where combi = [SecureKey(Evans,Walker)

||SPTokenset(Evans,Walker)||ValidatorBob].

where SecureKey(Evans,Alice), SecureKey(Evans,Walker) are like in Example 5, whereas Valida-
tor is like in Example 3.

vpayer sends the initial ESP tokenset to its contacts and waits for the final ESP tokenset
from vpayee. Once received, vpayer decrypts the SmartPay tokenset, and enforces the trust
preferences according to the Smartpay protocol.

Intermediate nodes. Before presenting in details the steps executed by an intermediate
node in the ESP protocol, let us remind that, when nodes move around, MANET can be
grouped into many partitions. In order for them to connect to each other, connectors forward
ESP tokensets from a partition to nodes of another partitions in their radio ranges. In a

56 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

Smartpay Social Network Layer (SSNL)

Alice

Bob

Evans

Davis

Carl

Haris

Walker

Martin
(just-met,

0.3)

(just-met,
0.2)

Partition 1 (p1)

C1

Smartpay Social Network Layer (SSNL)

Smartpay MANET Layer (SMNL)

AliceMartin

Carl

Davis

Evans

Bob

Haris

Walker

Partition 2(p2)

Fig. 4.4 Social Network Layer and Manet Layer Cooperation

4.3 Expanded Smartpay Protocol (ESP) 57

MANET partition, nodes that do not have any neighbor to propagate the tokenset are called
border nodes. These nodes send the received ESP tokenset to connectors located in their
radio range. There might be more than one border node in a partition.

Example 7. Let us continue with Example 2 by assuming that the MANET is divided into
two partitions, as in Figure 4.4. Suppose that Walker stays in partition p1 and receives
from Haris an ESP tokenset whose destination is Bob. However, Walker does not have any
neighbor in p1, so he forwards the ESP tokenset to connector C1. In this example, Walker
is a border node. When C1 receives the ESP tokenset from Walker, it forwards the received
ESP tokenset to nodes located in the radio range of C1, that is, nodes in partition p2. In this
example, it is assumed that Alice is a node in p2 staying in the radio range of C1, so Alice is
a border node as well. She can receive the ESP tokenset from p1 through C1. Alice continues
to propagate the received ESP tokenset to her contacts. The ESP tokenset is then propagated
until it arrives to Bob.

Now let us describe the operation done by intermediate nodes, encoded by Algo-
rithm 1. Let us assume that the intermediate node vi receives an ESP tokenset, i.e.,
T K(vpayer,vi), from node vi−1. Let T K(vi,vi+1) be the ESP token aggregated with the infor-
mation of the relationship between vi and vi+1 by vi. The result of Algorithm 1 is stored
into a variable, namely i_resProc. This variable can assume one of the values in the set
{_SENT _PAY ER,_NO_CONTACT,_SUCCESS_FORWARD,_SUCCESS_AGGR_PROP,
_DUP_T KSET,_CHANGED_CONT ENT}, where _SENT_PAYER means that the ESP to-
kenset is sent back to the payer, _NO_CONTACT means that there does not exist any contact
for vi to forward the ESP tokenset to, _SUCCESS_FORWARD means that vi forwards the ESP
tokenset to its neighbors, _SUCCESS_AGGR_PROP means that vi aggregates the information
on the relationship between itself and its contacts into the received ESP tokenset and forwards
the aggregate tokenset to its contacts, _DUP_TKSET means that the tokenset was processed
before, whereas, _CHANGED_CONTENT means that the tokenset content has been changed
on the communication channel. The values _SUCCESS_AUTH and _FAILED_AUTH are
used in the algorithm to show the result of tokenset authentication. _SUCC_AUTH shows that
the tokenset is authenticated successfully, whereas _FAILED_AUTH means that the authen-
tication fails. We also use _SUCCESS_DECRYPT to describe the status where SecureKey
decryption is successful.

We assume that each user on SSNL has the public keys of his/her contacts. vi first
decrypts the SecureKey received tokenset with its private key (line 2) so as to determine if
it is the intermediate node needing to aggregate the relationship information between itself
and vi−1. In case the decryption fails, vi is not the contact of the sender, vi needs to transfer
the tokenset to its neighbors or connectors on SMNL (line 33). If the decryption works

58 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

Function 1 processTokenset()
Input: T K(vpayer,vi)

Output: i_resProc
1: Let seckey be decryption of T K(vpayer,vi).SecureKey.
2: resDec = decryptECC(T K(vpayer,vi).SecureKey,Kvi,seckey);
3: if (resDec == _SUCCESS_DECRY PT) then
4: Kvi−1 ·B = f indContactPbKey(secKey.ID(vi−1));
5: resAuthen = authenKey(T K(vpayer,vi),(Kvi−1 ·B));
6: if (resAuthen == _SUCCESS_AUT H) then
7: if isDuplicate(seckey.SessionID(vi−1,vi)) then
8: if (isDestination(T K(vpayer,vi).Validator,Kvi)) then
9: send(T K(vpayer,vi),vpayer);

10: i_resProc = _SENT _PAY ER;
11: else
12: if (hasContacts()) then
13: T K(vpayer,vi+1) = aggregateTokenset(T K(vpayer,vi));
14: i_resProc = sendOnSMNL(T K(vpayer,vi+1));
15: return i_resProc;
16: else
17: Drop(T K(vpayer,vi));
18: i_resProc = _NO_CONTACT ;
19: return i_resProc;
20: end if
21: end if
22: else
23: Drop(T K(vpayer,vi));
24: i_resProc = _DUP_T KSET ;
25: return i_resProc;
26: end if
27: else
28: Drop(T K(vpayer,vi);
29: i_resProc = _FAILED_AUT H;
30: return i_resProc;
31: end if
32: end if
33: i_resProc = sendOnSMNL(T K(vpayer,vi));
34: return i_resProc;

4.3 Expanded Smartpay Protocol (ESP) 59

out (line 3), vi is the node needing to do aggregation. However, it also needs to verify the
integrity of the received tokenset and that the tokenset is truly from its SSNL contact, by
using the public key of its SSNL contact (line 5). However, vi does not know which contact
sent the tokenset to it. Therefore to get the public key of its sending contact, vi retrieves
the ID of the sending contact in the decryption. Assuming that, the found ID is of vi−1,
i.e., ID(vi−1), it then looks for the public key of vi−1 (line 4). Then vi authenticates the
tokenset. If the authentication works out, it means that the integrity of the received tokenset
is guaranteed and the tokenset content has been not changed. Hence, vi needs to check if the
tokenset is duplicated based on the SessionID in SecureKey (line 7). If the authentication
or the duplication checking fail, the tokenset is dropped (lines 23, 28). If the duplication
checking is successful, the next step is to evaluate the Validator, if vi is the destination of
the tokenset (line 8). In particular, vi uses its private key to decrypt the Validator and then
recovers the shuffled value in the decrypted Validator and sees if it makes sense or not. If the
result contains the local information of vi, it proves that vi is the destination of the tokenset,
it then sends the tokenset back to the payer (line 9). Otherwise, vi obtains the contact list
(line 12) by retrieving from its local storage, if it has contacts it does aggregation between
itself and its contacts by calling function aggregateTokenset() (line 13) (see Function 2), then
calls function sendOnSMNL() (line 14) (see Function 3) to propagate the tokenset. If it does
not have any contact, the social path through it is dead-end, so it drops the tokenset (line 17).

Function 2 aggregateTokenset()
Input: T K(vpayer,vi)

Output: T K(vpayer,vi+1)

1: T K(vi,vi+1).SecureKey = encryptECC(concatenate(ID(vi+1),Ktempvpayer ·
B,generateSessionID(vi,vi+1)),Kvi+1 ·B);

2: T K(vi,vi+1).SPTokenset
= SmartPay.createTokenset(T Kvpayer,vi.SPTokenset,Ktempvpayer ·B);

3: T K(vi,vi+1).Validator = T K(vpayer,vi).Validator;
4: T K(vpayer,vi+1) = concatenate(T K(vi,vi+1),signECDSA(T K(vi,vi+1),Kvi));
5: return T K(vpayer,vi+1);

Additionally, function aggregateTokenset() receives an input, that is, a tokenset from
vi−1. It then returns an output, that is, a tokenset T K(vpayer,vi+1) aggregated the relationship
information on the edge connecting it and its contact, i.e., vi+1. vi generates the session ID
between it and vi+1 then concatenates the ID of vi+1, the temporary public key of the payer,
and the session ID. After that, vi encrypts this concatenation by the public key of vi+1 (line
1). Then, vi aggregates the relationship information between it and vi+1, using the temporary
public key of the payer, by calling function SmartPay.createTokenset() as in [22, 23] (line 2).

60 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

The Validator is reused from the received tokenset without being modified (line 3). After
that, vi creates a signature of the aggregate tokenset and concatenate the new tokenset and its
signature (line 4).

Function 3 sendOnSMNL()
Input: T K(vpayer,v j)

Output: resSend
1: resSend = f alse;
2: if (hasNeighbor()) then
3: resSend = send(T K(vpayer,v j), list_manet_neighbor);
4: else
5: resSend = send(T K(vpayer,v j), list_manet_connector);
6: end if
7: return resSend;

Function sendOnSMNL() receives a tokenset T K(vpayer,v j). vi verifies if it has any neighbors
(line 2) by the neighborhood discovery protocol.1 In case the verification works out, vi obtains
a list of neighbors (i.e., list_manet_neighbor), then transfers the tokenset to neighbors in
list_manet_neighbor (line 3). Otherwise, hasNeighbor() returns a list of connectors (i.e.,
list_manet_connector) to vi, then vi sends the tokenset to its connectors (line 5).

Bob Evans

{Payment Request,

Validator}

Smartpay Social Network Layer (SSNL)

Fig. 4.5 Step 1 of Example 8

The following example clarifies how Algorithm 1 works.

Example 8. Let us continue with Example 2 and Figure 4.4. For the sake of simplicity, we do
not consider any trust preference, so the relationship information is removed from the figures
depicting the steps in the example. Consider the path on SSNL connecting Bob to Evans, that
is, Evans→Alice→Bob, where Evans is the payer, and Bob is the payee. After Bob makes
a request to Evans for an amount of money, Evans sends the initial ESP tokenset back to
Bob. There is only one SMNL path from Evans to Bob, that is, Evans→Bob. According to
Algorithm 1, the following steps are performed:

1Mobile Ad Hoc Network (MANET) Neighborhood Discovery Protocol (NHDP) (RFC 6130)
https://tools.ietf.org/html/rfc6130.

4.3 Expanded Smartpay Protocol (ESP) 61

Smartpay Social Network Layer (SSNL)

- Generates (KtempEvans .B, KtempEvans)

- Creates TK1 = TK(Evans,Alice)

- Creates TK2 = TK(Evans,Walker)

Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin

Fig. 4.6 Step 2 of Example 8

1. Bob sends the payment request and Validator to Evans (see Figure 4.5).

TK2 = TK(Evans,Walker)

TK1 = TK(Evans,Alice)Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin

Smartpay Social Network Layer (SSNL)

Smartpay MANET Layer (SMNL)

TK1, TK2

Smartpay MANET Layer (SMNL)

Partition 1 (p1)

C1

Alice
Martin

Carl

Davis

Evans

Bob

Haris

Walker

Partition 2(p2)TK1, TK2

Fig. 4.7 Step 3 of Example 8

2. Evans receives the request from Bob (see Figure 4.6), then it is:

• Evans generates a pair of temporary keys (KtempEvans ·B,KtempEvans) only used
for this payment transaction.

• Evans initializes the ESP tokensets for his two directly connected contacts
on SSNL, i.e., Alice and Walker, to obtain T K1 = T K(Evans,Alice) and T K2 =

T K(Evans,Walker).

62 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

a)

Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin

Smartpay Social Network Layer (SSNL)

Smartpay MANET Layer (SMNL)

?

?

?

Smartpay MANET Layer (SMNL)

Partition 1 (p1)

C1

Alice
Martin

Carl

Davis

Evans

Bob

Haris

Walker

Partition 2(p2)

TK1, TK2

TK1, TK2 TK1, TK2

b)

Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin

Smartpay Social Network Layer (SSNL)

Smartpay MANET Layer (SMNL)Smartpay MANET Layer (SMNL)

Partition 1 (p1)

C1

Alice
Martin

Carl

Davis

Evans

Bob

Haris

Walker

Partition 2(p2)

TK1, TK2

TK1, TK2TK1, TK2

Fig. 4.8 Step 4 of Example 8

3. Evans then looks for the list of his neighbors to forward these two ESP tokensets.
Evans has three neighbors, that is, Martin, Bob, and Davis. Hence, he sends these two
ESP tokensets to each of them.

4. Martin, Bob, and Davis receive two ESP tokensets. They start to verify if they are
contacts of Evans in the social graph (line 5 of Algorithm 1). It results that they are
not Evans’ contacts (see step 4a in Figure 4.8-a). Bob, Martin, and Davis thus look
for their neighbors (line 12), and forward the received ESP tokensets to them without
changing the content (line 33). Bob sends two ESP tokensets to Haris while Martin
and Davis send two ESP tokensets to Carl (see step 4b in Figure 4.8-b).

5. After receiving the ESP tokensets, Carl and Haris verify if they are contacts of Evans
by decrypting the SecureKey (line 2 of Algorithm 1) (see step 5a in Figure 4.9-a). The
function fails, therefore, Carl and Haris forward the ESP tokensets to their neighbors
(see step 5b in Figure 4.9-b). Haris’ neighbor is Walker, thus, Haris transfers the ESP
tokensets to Walker. Carl does not have neighbors, so he sends the ESP tokensets to
connectors in his radio range. Here we assume that Carl’s connector is C1.

4.3 Expanded Smartpay Protocol (ESP) 63

a)
Smartpay Social Network Layer (SSNL)

Smartpay MANET Layer (SMNL)

Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin

?

?

Partition 1 (p1)

C
1

Smartpay MANET Layer (SMNL)

Alice
Martin

Carl

Davis

Evans

Bob

Haris

Walker

Partition 2(p2)

b)

Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin

Smartpay Social Network Layer (SSNL)

Smartpay MANET Layer (SMNL)Smartpay MANET Layer (SMNL)

Partition 1 (p1)

C1

Alice
Martin

Carl

Davis

Evans

Bob

Haris

Walker

Partition 2(p2)

TK1, TK2
TK1, TK2

Fig. 4.9 Step 5 of Example 8

6. Walker receives two ESP tokensets from Haris. He checks if he is Evans’ contact (line
2 of Algorithm 1) and the decryption succeeds (see step 6a in Figure 4.10-a).
Then he authenticates if the tokenset content has been changed (line 5 of Algorithm 1).
Assume that the tokenset has been changed on the communication channel between
Walker and Haris. Hence, Walker checks if this tokenset from Evans was processed
before (line 7 of Algorithm 1). Assume that the tokenset has been already processed.
So, Walker continues to verify if he is the payee of Evans (line 8) and the check
fails. Therefore, Walker continues to search his contacts (line 12) and it retrieves
Alice. Walker aggregates the relationship information between him and Alice to gain
T K3 = T K(Evans,Alice) (line 13). Then, Walker needs to propagate the tokenset (line 14),
he looks for his neighbors, he finds out that he does not have neighbors. So, he forwards
to C1 the ESP tokensets, including the updated ESP tokenset T K3 = T K(Evans,Alice) and
the remaining tokenset T K1 from Haris (see step 6b in Figure 4.10-b).

7. Two ESP tokensets from Walker and one from Carl are for Alice. Another one is not
for Alice, that is, T K2 = T K(Evans,Walker) from Carl. So, Alice should forward T K2 to
her neighbors without modifying its content, but Alice does not have any neighbor. So,
she forwards T K2 to C1.

64 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

a)
Smartpay Social Network Layer (SSNL)

Smartpay MANET Layer (SMNL)

Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin
??

Partition 1 (p1)

C1

Smartpay MANET Layer (SMNL)

Alice
Martin

Carl

Davis

Evans

Bob

Haris

Walker

Partition 2(p2)

TK1, TK3

b)
Smartpay Social Network Layer (SSNL)

Smartpay MANET Layer (SMNL)

Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin

TK3 = TK2 + TK(Walker, Alice)

TK1 = TK(Evans,Alice)

Partition 1 (p1)

C1

Smartpay MANET Layer (SMNL)

Alice
Martin

Carl

Davis

Evans

Bob

Haris

Walker

Partition 2(p2)

TK1, TK3

Fig. 4.10 Step 6 of Example 8

8. Connector C1 sends the received ESP tokensets from Carl and Walker to partition p2.
In p2, there is only one node, that is, Alice (see step 7 in Figure 4.11).

9. With the remaining tokensets, Alice searches the list of her contacts (line 12) and
finds out six contacts that have to update their contents, that is, Bob, Carl, Davis,
Haris, Martin, and Evans. She updates the received ESP tokensets (line 13), and
obtains T K4 = T K(Evans,Bob) = T K1 + T K(Alice,Bob), T K5 = T K(Evans,Carl) = T K1 +

T K(Alice,Carl), T K6 = T K(Evans,Davis) = T K1+T K(Alice,Davis), T K7 = T K(Evans,Haris) =

T K1 + T K(Alice,Haris), T K8 = T K(Evans,Martin) = T K1 + T K(Alice,Martin), T K9 =

T K(Evans,Walker) = T K1+T K(Alice,Walker), T K10 = T K(Evans,Bob) = T K3+T K(Alice,Bob),
T K11 = T K(Evans,Carl) = T K3 + T K(Alice,Carl), T K12 = T K(Evans,Davis) = T K3 +

T K(Alice,Davis), T K13 =T K(Evans,Haris)=T K3+T K(Alice,Haris), T K14 =T K(Evans,Martin)

= T K3 + T K(Alice,Martin), T K15 = T K(Evans,Walker) = T K3 + T K(Alice,Walker). Alice
wants to send them to her neighbors (line 14), so searches for them, but she does
not have any neighbor. Therefore, she forwards all the tokensets to connector C1 which
is in her radio range (see step 9 in Figure 4.13).

10. C1 receives the ESP tokensets from Alice, and sends all of them to Walker and Carl
who are border nodes of partition p1. Let us first consider Walker. Carl will repeat
similar steps to process the received ESP tokensets (see step 10 in Figure 4.14).

4.3 Expanded Smartpay Protocol (ESP) 65

Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin

Smartpay Social Network Layer (SSNL)

Smartpay MANET Layer (SMNL)Smartpay MANET Layer (SMNL)

Partition 1 (p1)

C
1

Alice
Martin

Carl

Davis

Evans

Bob

Haris

Walker

Partition 2(p2)

Fig. 4.11 Step 7 of Example 8

Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin

Smartpay Social Network Layer (SSNL)

Smartpay MANET Layer (SMNL)Smartpay MANET Layer (SMNL)

Partition 1 (p1)

C1

Alice
Martin

Carl

Davis

Evans

Bob

Haris

Walker

Partition 2(p2)

TK1, TK3

Fig. 4.12 Step 8 of Example 8

66 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin

Smartpay Social Network Layer (SSNL)

Smartpay MANET Layer (SMNL)

Alice calculates
TK4 = TK(Evans,Bob) = TK1 + TK(Alice,Bob)

TK5 = TK(Evans,Carl) = TK1 + TK(Alice,Carl)

TK6 = TK(Evans,Davis) = TK1 + TK(Alice,Davis)

TK7 = TK(Evans,Haris) = TK1 + TK(Alice,Haris)

TK8 = TK(Evans,Martin) = TK1 + TK(Alice,Martin)

TK9 = TK(Evans,Walker) = TK1 + TK(Alice,Walker)

TK10 = TK(Evans,Bob) = TK3 + TK(Alice,Bob)

TK11 = TK(Evans,Carl) = TK3 + TK(Alice,Carl)

TK12 = TK(Evans,Davis) = TK3 + TK(Alice,Davis)

TK13 = TK(Evans,Haris) = TK3 + TK(Alice,Haris)

TK = TK = TK + TK
Smartpay MANET Layer (SMNL)

Partition 1 (p1)

C1

Alice
Martin

Carl

Davis

Evans

Bob

Haris

Walker

Partition 2(p2)

{TK2, TK4, …, TK15}

13 (Evans,Haris) 3 (Alice,Haris)

TK14 = TK(Evans,Martin) = TK3 + TK(Alice,Martin)

TK15 = TK(Evans,Walker) = TK3 + TK(Alice,Walker)

Fig. 4.13 Step 9 of Example 8

11. Walker receives the ESP tokensets from C1. He decrypts the SecureKey of all received
tokensets to check if there is any tokenset for him to update (lines 2, 5 of Algorithm 1).
But no tokenset is for him. Then, he forwards all of them to Haris who is his neighbor
(line 33) (see step 11a in Figure 4.15-a). Among the received ESP tokensets from
Walker, there are tokensets for Haris to update, that is, T K7 and T K13. Haris forwards
the other tokensets to Bob as Bob is his neighbor (see step 11b in Figure 4.15-b).

12. Bob decrypts SecureKey of the received tokensets (line 2 of Algorithm 1), there
is one tokenset for him. He authenticates if the tokenset has been changed on the
communication channel (line 5 of Algorithm 1), then he also checks if the tokenset has
been processed (line 7 of Algorithm 1). Then, he validates if he is the destination of
the received ESP tokensets (line 8). He is the destination of two ESP tokensets T K4

and T K10. (see step 12 in Figure 4.16).

13. Bob sends ESP tokensets to Evans (line 9) (see step 13 in Figure 4.17).

4.4 Condition-driven flooding 67

Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin

Smartpay Social Network Layer (SSNL)

Smartpay MANET Layer (SMNL)Smartpay MANET Layer (SMNL)

Partition 1 (p1)

C1

Alice
Martin

Carl

Davis

Evans

Bob

Haris

Walker

Partition 2(p2)

{TK2, TK4, …, TK15}

{TK2, TK4,

…, TK15}

Fig. 4.14 Step 10 of Example 8

4.4 Condition-driven flooding

As presented in Chapter 3, SmartPay exploits k-anonymity [137] to reduce the number of
distributed tokensets. Relationship information privacy as well as the number of propagated
tokensets depend on the value of k. Selecting a reasonable value of k to make the network
consumption effective is not easy. In particular, in case k is large, network performance is
similar to the one of broadcasting techniques, but privacy is preserved more strongly. In case
k is small, the bandwidth consumption is low but privacy cannot be preserved effectively.
Therefore, in order to preserve privacy, and, at the same time, improve network performance,
here we propose an alternative approach exploiting secure comparison techniques.

Let us first recall that the goal of finding a social path connecting the payee and the payer
is to verify if the relationship between the payee and the payer satisfies the specified trust
preferences. Let us consider a trust condition tc = (rt,dmax, tmin) in a trust preference of the
payer. Finding a valid social path connecting the payer and the payee requires to evaluate
whether the relationship type of the path is equal to rt, the aggregated trust value is greater
than or equal to tmin, and the depth of the path is less than or equal to dmax. As such, if an
intermediate node is able to detect that one of these conditions is not satisfied, it is able to
terminate the ESP tokenset propagation. Thus, the number of propagated ESP tokensets is

68 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

a)

Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin

Smartpay Social Network Layer (SSNL)

Smartpay MANET Layer (SMNL)Smartpay MANET Layer (SMNL)

Partition 1 (p1)

C1

Alice
Martin

Carl

Davis

Evans

Bob

Haris

Walker

Partition 2(p2)

{TK2, TK4,

…, TK15}

{TK2, TK4, …, TK15}

b)

Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin

Smartpay Social Network Layer (SSNL)

Smartpay MANET Layer (SMNL)Smartpay MANET Layer (SMNL)

Partition 1 (p1)

C1

Alice
Martin

Carl

Davis

Evans

Bob

Haris

Walker

Partition 2(p2)
{TK2,TK4, TK5,

TK6, TK8, …,

TK12, TK14, TK15}
{TK2, TK4, …, TK15}

{TK7,TK13}

Fig. 4.15 Step 11 of Example 8

Alice

Bob

Evans

Davis

Carl
Haris

Walker

Martin

Smartpay Social Network Layer (SSNL)

Smartpay MANET Layer (SMNL)

{TK2,TK4, TK5,

TK6, TK8, TK9,

TK10, TK11, TK12,

TK14, TK15}

Smartpay MANET Layer (SMNL)

Partition 1 (p1)

C1

Alice
Martin

Carl

Davis

Evans

Bob

Haris

Walker

Partition 2(p2)

{TK2, TK4, …,

TK15}

{TK7,TK13}

Fig. 4.16 Step 12 of Example 8

4.4 Condition-driven flooding 69

Bob Evans

Smartpay Social Network Layer (SSNL)

TK4, TK10

Fig. 4.17 Step 13 of Example 8

significantly reduced. For this purpose, there is the need of a way that enables intermediate
nodes to privately verify trust conditions. In [22, 23], since the trust condition verification
is enforced at the payer side, only the payer can read trust conditions. In this chapter, we
assume that each intermediate node receives trust conditions encrypted with the payer’s
temporary public key, so they cannot learn plain texts of trust conditions. With respect to
the protocol explained in Section 4.3, we add an additional step. The intermediate node,
say vi, has to evaluate the updated ESP tokensets based on the encrypted trust conditions by
exploiting the proposed secure comparison approach. Based on the results, vi, propagates
only the updated ESP tokensets that verify the trust conditions.

Example 9. Let us continue with Example 2. Assume that an intermediate node vi receives
an ESP tokenset along with the encryption of trust condition tc = (Friend,3,0.6). After
receiving the request from Bob, Evans initializes two ESP tokensets for his contacts, Alice
and Walker, where the trust values are 0.8 and 0.9, respectively. These trust values and the
depths (i.e., 1, as they are direct friends) satisfy tc. However, the type of the relationship in
the initial ESP tokenset is Friend between Alice and Evans, but is Sibling between Evans and
Walker. Hence, Evans only sends the ESP tokenset to Alice. The number of forwarded ESP
tokensets is reduced by half. In turn, Alice has six contacts, that is, Bob, Carl, Haris, Martin,
Davis, and Walker. She creates six duplicates of the received ESP tokenset, then updates
them with the relationship information of the edges between herself and these contacts. After
doing the secure comparison between the encrypted trust conditions and each of the updated
ESP tokensets, it results that, among these six contacts, Alice chooses Bob and Martin to
propagate the updated ESP tokensets since the relationship information in the ESP tokensets
for both Bob and Martin are (Friend,2,0.64). Here, the number of forwarded ESP tokensets
is also reduced. In the four other updated ESP tokensets, the type of the relationship is not
Friend. Therefore, Alice sends the updated ESP tokensets only to Bob and Martin.

In order to do a comparison between the encrypted trust conditions and the encrypted val-
ues in the ESP tokenset, we adopt the secure comparison scheme proposed by F. Kerschbaum

70 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

et al. in [74]. The authors proposed a general framework for a secure comparison between
x0 and x1. All participants involved in this scheme do not know the real values of x0 and x1.
They just receive the encrypted values, denoted as E(x0) and E(x1). This framework exploits
homomorphic encryption, and the authors used RSA (1024-bit key length) for the experiment.
However, RSA consumes a lot of memory, CPU and time on encrypting and decrypting, so it
is not suitable for the mobile environment. To cope with this issue, we adopt the original
scheme in [74], and apply the homomorphic binary ECC algorithm into it.

Secure comparison is done on trust, depth, and type of the relationship. Among these
three components, trust and depth are numbers, whereas, the type needs to be converted into
a number in the range [1,35]. This range is chosen according to the quantity of relationship
types defined in the widely used FOAF vocabulary [32]. The basic idea is that, for each
intermediate node, instead of forwarding a received ESP tokenset to several contacts, this
node applies the secure comparison scheme in [74] to compare the encrypted trust, depth,
type of the relationship in the received tokenset with the respective encrypted threshold in the
trust condition. Based on the result, the node can decide to which contacts the ESP tokenset
should be forwarded.

Let us denote trust, depth, type in a trust condition as tmin, dmax, rt, respectively. These are
encrypted with the payer’s temporary public key (i.e., (kvpayer ·B)), and denoted respectively
as Evpayer(tmin), Evpayer(dmax), and Evpayer(rt). The encryptions are sent from the payer to its
contacts, say vi. Let T(vpayer,vi) be the ESP tokenset containing the encryption of trust, depth,
and type which are collected in the social path from the payer to vi. Let T(vpayer,vi).trust,
T(vpayer,vi).depth, and T(vpayer,vi).rt, Evpayer(T(vpayer,vi).trust), Evpayer(T(vpayer,vi).depth),
Evpayer(T(vpayer,vi).rt) be respectively trust, depth and type tokenset in T(vpayer,vi) and their
corresponding encryptions with the payer’s public key. Let us first consider secure compar-
ison on trust. Secure comparison on depth and relationship type are managed in a similar
way. Let us assume that vi sends Evpayer(T(vpayer,vi).trust) to vi+1. Node vi+1 aggregates
T(vi,vi+1).trust (i.e., the trust value of the edge between vi and vi+1 into Evpayer(T(vpayer,vi).trust)
and obtains Evpayer(T(vpayer,vi+1).trust). Then, it applies the scheme in [74] to decide if this
updated ESP tokenset can be propagated to its contacts by comparing two encryptions of the
trust threshold and the aggregate trust in the tokenset. To do this comparison, vi+1 randomizes
two large numbers r, r′ in N, and calculates the value of Evpayer(c) with the following equation,
where E(c) is an encryption for the computation at the next round as described in [74].

4.4 Condition-driven flooding 71

Evpayer(c) = r · (Evpayer(tmin)−Evpayer(T(vpayer,v j).trust))

−Evpayer(r
′)

= (r · r0 ·B− r · r1 ·B− r′′ ·B,(r · (tmin

−T(vpayer,v j).trust)− r′)+(r · r0 − r · r1 − r′′)

· kvpayer ·B)
= Evpayer(r · (tmin −T(vpayer,v j).trust)− r′)

(4.1)

where r0, r1, r′′ are the randoms generated while the encryptions are done.

The basic idea of Formula 4.1 is to compute d = (tmin −T(vpayer,vi+1).trust). d is used
for comparing tmin and T(vpayer,vi+1).trust. If d < 0, it implies that tmin < T(vpayer,vi+1).trust;
otherwise, tmin ≥ T(vpayer,vi+1).trust. However, to hide d, d is multiplied with a random number
r to obtain a multiplication m = d.r. Then, to prevent the factoring of the result [76], r′ is
added to m and we obtain c = d.r+ r′. Here, we can replace the addition with the subtraction,
and we have c = d.r− r′. Actually r, r′ are used for obfuscating the value of d. However, the
goal is to do a secure comparison between tmin and T(vpayer,vi+1).trust. Therefore, c must be
encrypted, and we obtain E(c) as above.

After computing Evpayer(c), vi+1 sends (a1,a2,a3)= (Evi+1(0),Evi+1(1),Evpayer(c)) back to
vi, where Evi+1(0), Evi+1(1) are encryptions of values ’0’ and ’1’ with vi+1’s public key. Then,
vi also randomizes two large numbers ri, r′i, and flips a coin b ∈ {0,1}, then re-calculates
(a1,a2,a3):

a1 = a1+b +Evi(0);

a2 = a2−b +Evi(0);

a3 = (−1)b·ri(a3)+(−1)(1−b) · r′i ·Evi(1);

(4.2)

b is known only to vi. vi sends (a1,a2,a3) back to vi+1. Then, vi and vi+1 collaboratively
checks a3. At vi side, if a3 < 0, we have the boolean expression [tmin ≤ T(vpayer,vi+1).trust] =
1− b; otherwise, we have the boolean expression [tmin ≤ T(vpayer,vi+1).trust] = b. With the
value of b, vi can learn the result of the comparison. Notice that the boolean expression is 0
when it is false, and it is 1 when it is true.

This secure comparison makes it possible to reduce a large number of messages going
through the network, as shown in the performance results reported in Section 4.5.2.

72 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

4.5 Experiments

This section presents the performance of ESP protocol and the flooding optimization.

4.5.1 ESP Performance

In order to prove the efficiency of ESP, we measure the time an ESP tokenset spends reaching
the payee from the payer in several network configurations. Network configurations are
defined based on three parameters: the SMNL and SSNL topologies, the wireless network
bandwidth, and the adopted encryption algorithms (i.e., their key sizes).

Regarding the first parameter, we set up several SMNL and SSNL topologies, by varying
the number of contacts/nodes from 4 to 17. These results in 16 different network configura-
tions, which are summarized in Table 4.1, where network 1 has the shortest path, including
3 SSNL contacts, and a 8 SMNL hop distance between every 2 SSNL contacts; whereas,
network 16 has the longest relationship path, including 9 SSNL contacts, and a 14 SMNL
node distance between every 2 SSNL contacts. With respect to the second parameter, we
simulate different wireless network bandwidths. In general, MANET nodes transmit data
through different wireless standards. We deploy experiments assuming nodes exploit the
popular wireless standard IEEE 802.11a/b/g, and their respective bit rates of 54/11/24Mbps.
The third parameter that might impact the performance is the payload size of ESP tokenset.
Since we are using encryption schemes, the payload might vary based on the key sizes of the
adopted algorithms. In particular, we deploy the UDP protocol for exchanging the tokensets
between two mobile devices, because its speed and small payload fit well MANET. The
UDP payload size varies according to the key sizes of ECC and ECDSA algorithms. In this
experiment, we select four ECC key sizes, that is, 163, 283, 409, 571 bits, and two ECDSA
key sizes, that is, 384, 521 bits.

Table 4.2 shows the UDP payload size by using different combination of ECC and
ECDSA key sizes. The smallest UDP payload size is 446 bytes, using 163 bit ECC key size
and 384 bit ECDSA key size, whereas, the greatest UDP payload size is 1298 bytes, using
571 bit ECC key size and 521 bit ECDSA key size. These payload sizes do not exceed the
limit of a UDP packet size in MANET, i.e., 1460 bytes. Hence, the ESP tokensets are not
segmented into more than one packet.

We used OmneT++2 and INET framework3 to set up the different network configurations.
OMNeT++ is a component-based C++ simulation library and framework for building network
simulators for a variety of application domains, such as sensor networks, wireless ad-

2http://www.omnetpp.org/
3http://inet.omnetpp.org/

4.5 Experiments 73

hoc networks, photonic networks, etc. Whereas, the INET Framework is an open-source
communication network simulation package for the OMNeT++ simulation environment.
The INET Framework contains models for several Internet protocols, such as UDP, TCP,
SCTP, IP, IPv6, Ethernet, PPP, IEEE 802.11, MPLS, OSPF. By using these tools, we conduct
experiments on physical resources including Duo Core CPU 4GHz, 4GB RAM, 64-bit
Windows 7.

Table 4.1 Network configurations

Network
Number of SSNL

contacts

Number of SMNL
nodes between two

SSNL contacts

Total number of
SMNL nodes

N1 3 8 17
N2 5 8 33
N3 7 8 49
N4 9 8 65
N5 3 10 21
N6 5 10 41
N7 7 10 61
N8 9 10 81
N9 3 12 25

N10 5 12 49
N11 7 12 73
N12 9 12 97
N13 3 14 29
N14 5 14 57
N15 7 14 85
N16 9 14 113

We measure the delay (ms) spent on transmitting an ESP tokenset from the payer to
the payee according to different parameters values. Particularly, the transmission delay
includes the time of aggregating an ESP tokenset at each SSNL contact and the time of
propagating ESP between SMNL nodes. The experimental results are reported in Figure
4.18. According to Figure 4.18, we can see that at the same bit rate the transmission delays
in cases of 384 bit ECDSA are higher than the ones of 521 bit ECDSA, and the transmission
delays with increasing ECC key sizes are rising. In the worst case (i.e., 11Mbps bitrate,
521 bit ECDSA and 571 bit ECC), the transmission delay for an ESP tokenset to move
through 113 SMNL nodes and to aggregate relationship information among 8 SSNL contacts
is 1710,4 ms (approximately 1.7s). This transmission delay is reasonable with MANET

74 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

a) b)

c) d)

e) f)

Fig. 4.18 Transmission delay of an ESP tokenset vs key size of ECC and ECDSA vs bit rate
standard: a) 11Mbps bitrate and 384bit ECDSA; b) 11Mbps bit rate and 521bit ECDSA; c)

24Mbps bitrate and 384bit ECDSA; d) 24Mbps bit rate and 521bit ECDSA; e) 54Mbps
bitrate and 384bit ECDSA; f) 54Mbps bit rate and 521bit ECDSA.

4.5 Experiments 75

Table 4.2 UDP payload size with different ECC and ECDSA key sizes

ECC key size (Bit) ECDSA key size (Bit) UDP payload size (Byte)

163 384 446
283 384 686
409 384 942
571 384 1263
163 521 482
283 521 722
409 521 978
571 521 1298

performance requirement. Therefore, this result proves that the proposed ESP has an effective
performance.

4.5.2 Condition-driven Flooding Optimization

In order to prove the efficiency of the proposed flooding optimization method, we measure
the number of generated tokensets propagated through the network and the number of
nodes traversed by tokensets, by exploiting the solution proposed in this chapter, i.e., the
Conditional Driven Flooding (CDF), the solution proposed in [22, 23], i.e., the K-Anonymity
based Optimization (KAO), and the one without any optimization, i.e., the No Flooding
Optimization (NFO). The experiment is performed on the trust value. If the trust threshold
is very small, CDF is similar to the broadcast technique. If the trust threshold is very high,
the tokensets are easily dropped at each intermediate node. Hence, we choose 85% as a
threshold in CDF. This threshold is neither very high nor very small. With KAO, to set a good
trade-off we have selected k = 18 and k = 27, that is, half and 3/4 of available relationship
types in [32]. In this experiment, we use the Epinion dataset4. This is a who-trust-whom
online social network of a general consumer review for the site www.Epinions.com. The
dataset includes 75.879 nodes and 508.837 edges. We modified the relationship information
including a relationship type and a trust value on each edge. Relationship types are uniformly
and randomly picked up from [32] based on the ontological FOAF vocabulary specification
which provides a set of 35 relationship types. A trust value on an edge e is also randomly
generated uniformly from a range [0, 1].

Figure 4.19 shows that CDF flooding has the best performance. In the case of the largest
ECC key size (i.e., 512 bits), the number of tokensets flooding the network with KAO

4https://snap.stanford.edu/data/soc-Epinions1.html

76 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

a) Number of traversed nodes per second

b) Number of flooding tokens per second

Fig. 4.19 A comparison between NFO, KAO, and CDF.

4.6 Complexity Analysis 77

(k ∈ {18,27}) is approximately 2.25 times higher than with CDF, whereas the one with NFO
is approximately 7 times higher than with CDF; the number of traversed nodes with KAO (k
= 18) is approximately 3.48 times higher than with CDF, and the number of traversed nodes
with KAO (k = 27) is approximately 2.85 times higher than with CDF; whereas, the one with
NFO is approximately 8.9 times higher than with CDF.

4.6 Complexity Analysis

In order to appraise the system efficiency, we analysis the time complexity in two cases, that
is, the worst and the best cases. Since this work is a deployment of SmartPay over MANET,
which results in the time complexity calculated similarly to in Section 3.7, Chapter 3.

4.7 Security Analysis

Since each ESP tokenset component is encrypted, the tokenset can be considered robust to
external eavesdropping. Indeed, the adversaries able to thwart the system are more likely to be
playing the roles of participants of the protocol, that is, payer, payee, and intermediate nodes.
Based on their behaviors, we classify adversaries into two types, that is, honest-but-curious,
and malicious. Honest-but-curious adversaries are intermediate nodes correctly enforcing the
protocol by at the same time also looking for extra information. In contrast, malicious nodes
might try to modify the ESP token so as to illegitimately retrieve information (e.g., identity,
or relationship information). In this section, we discuss how our proposal can resist to both
attacks.

4.7.1 Honest-but-curious nodes

According to the honest-but-curious model, it is expected that nodes comply with the
proposed protocol and algorithms, by trying to infer additional private information. In this
section, we show how ESP is enough robust to avoid the inference of payee’s and payer’s
identities, and relationship information.

Scenario 1: Inferring payee’s identity. Payee’s identity is stored into the Validator
component, which is encrypted with the payee’s public key. This makes hard for an adversary
to learn its plain-text value. However, an intermediate node might try to infer the payee’s
identity even without decrypting the Validator component. Indeed, since the node has the list
of its neighbors’ identities (i.e., IP addresses, MAC addresses), and the respective public keys,

78 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork

it might try to encrypt neighbor’s identity with the corresponding public key and compare the
result with Validator content. However, we have to note that this attack is hard to be carried
out since Validator’s encryption is created based on a large random number generated and
held by the payee (see Section 3.1.2), and the timestamp, generated based on the payee’s local
system and appended to the pre-encrypted Validator. Moreover, to improve the robustness of
the system, we adopt the shuffle algorithm in [41] algorithm so as to obtain a permutation
of validator content, computed based on a set of random numbers generated and held by
the payee. The adversaries cannot have the above mentioned local parameters, hence, they
cannot infer the information of the payee’s.

Scenario 2: Inferring payer’s identity. We recall that in SmartPay [22, 23], in order
to elaborate the received tokensets, intermediate nodes have to know the public key of the
payer, as such they are aware of the payer identity. To avoid this exposure, in ESP, each
payer generates a different temporary public key for every payment transaction instead of
using its real public key. Thus, any intermediate node is not able to re-identify the payer by
the used public key. According to the proposed protocols, the receiving SMNL node can
infer information about the sender (e.g., MAC address, IP address). However, since it cannot
see any other information as all other components in the ESP tokenset are encrypted, the
receiving SMNL node cannot understand if the sender is indeed the payer and thus the payer
indetity.

Scenario 3: Inferring relationship information. Since SPTokenset content is en-
crypted by the temporary public key of the payer, an intermediate node cannot access the
relationship information, as it does not hold the corresponding private key. However, since
the node owns the temporary public key of payers, he might try to encrypt a pre-defined
set of values for trust and relationship types and then compare the results with encrypted
values in SPTokenset. However, let us recall that each node in ESP, including the payer,
needs to locally generate one random number for aggregating a trust/type into SPTokenset
using the homomorphic ECC encryption (see Section 3.1.2). Random numbers are different
at every node, which makes encryptions of the same value different. Hence, even if a node
uses the temporary public key of the payer for a statistical analysis, it cannot infer trust/type
of SPTokenset as well.

4.7.2 Malicious nodes

Under this attack model, malicious nodes might try to modify the ESP tokenset so as to
illegitimately retrieve information (e.g., identity, relationship information). In what follows,

4.7 Security Analysis 79

we analyze the scenarios of these malicious attacks and discuss how the proposed protocol
resists on them.

Scenario 4: Anti-replay attack. Let us consider the SSNL layer and assume that vS
1

sends a tokenset to vS
2 and that this tokenset passes through node m in the SMNL layer. Let us

assume that malicious node m tries to impersonate vS
1 by reusing a copy of the tokenset that

has previously passed through m. In SecureKey, a parameter, called sessionID, is inserted
and used for determining the processed tokensets. When vS

2 receives the same tokenset, it
decrypts SecurKey’s encryption with its private key and checks sessionID. In this case, vS

2

verifies that this tokenset has been already processed, then it drops the tokenset, avoiding
thus the replay attack.

Scenario 5: Altering tokenset content. According to this scenario, we assume that a
malicious node wishes to modify the tokenset content, by replacing one of the elements of
the tokenset (i.e., SecureKey, SPTokenset, Validator), and/or by simply inserting/deleting
some bits, so as to invalidate the tokenset. To detect the corrupted tokensets, we impose that
the ESP is digitally signed by the node processing the ESP tokenset. Since a malicious node
does not hold the private key of ESP signature, it cannot generate a new one for the modified
ESP tokenset. Thus, the node receiving this ESP tokenset can detect that its content has been
maliciously modified, by validating the original digital signature.

Chapter 5

Secure Orchestrated Web Service
Composition against Untrusted Broker

Large computing infrastructures, like the Internet, increase the capacity to share information
and services across organizations. For this purpose, web services have gained popularity in
both research and commercial sectors. A web service is a software system designed to support
interoperable application-to-application interactions over the Internet. One of the major goals
of web services is to make easier their composition to form more complex services. Two
are the main techniques for web service composition, namely, orchestration [33] [106], [65],
[75] and choreography [5, 149, 73]. Choreography is a decentralized model with a dynamic
sequence of web services used for B2B (Business-to-Business) applications, but it is hard
to be specified and implemented. In contrast, orchestration has a BPEL (Business Process
Execution Language) engine [110] as a central mediator to control a static sequence of
activities described in a BPEL-based file. Such an approach is simpler and easier to be
implemented, making orchestration a valid solutions for composite web service deployment.
Therefore, in this chapter we will focus on this approach. As such, we assume the workflow
underlying the business process is encoded into a BPEL document and processed by a server
hosting a BPEL engine (hereafter, the broker). According to the orchestration paradigm,
the broker coordinates the invocation of services involved in the composition, i.e., partner
services, by passing the needed parameters. In general, all previous proposals for the service
orchestration model consider the broker as a trusted entity. As such, they never payed
attention to the fact that the broker is able to access several pieces of sensitive data, such as:
the data given as input by the user invoking the composite service (hereafter credentials), the
final outcome of the composite service, as well as internal parameters (i.e., variables and
values generated as output by partner services).

82 Secure Orchestrated Web Service Composition against Untrusted Broker

To cope with such issues, in this chapter we present our proposed secure protocol based
on the selective encryption of user credentials and service parameters. Our protocol ensures
that the broker is not able to access these data as well as any information on invoked activities,
whereas partner services are able to access only the portions of user credentials and service
parameters generated by other partner services, needed for the correct execution of the
assigned workflow activity. The adopted encryption scheme allows the broker to evaluate test
conditions on encrypted data, which is instrumental to enforce the correct execution order.

The rest of the chapter is organized as follows. Section 5.1 discusses the security
requirements for the service composition, whereas Section 5.2 introduces the proposed
architecture. Sections 5.3 presents how to guarantee the order of a workflow execution in
a secure way. Encryption schemes are described in Section 5.4 and 5.5. The secure test
condition evaluation is presented in Section 5.6. Experiments are reported in Section 5.7,
and security properties of the proposal are described in Section 5.8.

5.1 Security Requirements for Service Composition on Un-
trusted Broker

In order to discuss the security requirements of composite web services, let us introduce a
composite service for an e-commerce transaction.

Example 10. Let us consider an e-commerce transaction in e-shop E1 which has established
a business partnership with two other e-shops, namely, E2 and E3. In case E1 is temporarily
out of stock for an item, E1 re-directs the interested customers to the other e-shops. In
terms of web services, the business process implies the composition of five different services,
that is, one for each e-shop, plus the payment service and the delivery service. The BPEL
document encoding this workflow is represented in Figure 5.1. As depicted in the figure, the
first service to be invoked is the login operation from E1. This step is iterated until the login
succeeds. The next invoked service aims at verifying if the requested item is available at E1
(line 6). If it is available, that is, the rescheck parameter is true, the BPEL engine invokes the
payment service, by passing the service parameters, i.e. itemID, price and user credential
credit card (line 17). In case it is not available, the BPEL engine invokes service E2 (line 8).
It then proceeds for the payment (line 10), if the item is available. Then, the item is delivered
by invoking service Delivery (line 11). Again, if the item is not available in E2, the BPEL
engine invokes service E3, then the payment service, and, eventually, the delivery service.

This composition highlights that, even in a simple workflow, several pieces of user data
are exposed to services as well as to the broker (for instance, user name, password, and credit

5.1 Security Requirements for Service Composition on Untrusted Broker 83

1. <sequence>

2. <invoke partnerLink=”E1” operation=”login” input=”username” input=”password” output=reslogin

/>

3. <while> <condition>$reslogin=“No”</condition>

4. <invoke partnerLink=”E1” operation=”login” input=”username” input=”password”

output=reslogin />

5. </while>

6. <invoke partnerLink=”E1” operation=”checkitem” input=”itemID” output=rescheck output=price />

7. <if> <condition>$rescheck=“No”</condition>

8. <invoke partnerLink=”E2” operation=”checkitem” input=”itemID” output=rescheck output=price />

9. <if> <condition>$rescheck=“Yes” </condition>

10. <invoke partnerLink=”Payment” operation=”pay” input=“itemID” input=”creditcard”

input=“price” output=receipt />

11. <invoke partnerLink=”Delivery” operation=”deliver” input=”itemID” input=“receipt”

output=status />output=status />

12. <elseif>

13. <invoke partnerLink=”E3” operation=”checkitem” input=”itemID” output=rescheck output=price

/>

13. <if> <condition>$rescheck=“Yes”</condition>

14. <invoke partnerLink=”Payment” operation=”pay” input=“itemID” input=”creditcard”

input=“price” output=receipt />

15. <invoke partnerLink=”Delivery” operation=”deliver” input=”itemID” input=“receipt”

output=status />

16. </if> </elseif> </if> <elseif>

17. <invoke partnerLink=”Payment” operation=”pay” input=“itemID” input=”creditcard” input =

“itemID” input=“price” output=receipt />

18. <invoke partnerLink=”Delivery” operation=”deliver” input=”itemID” input=“receipt” output=status

/>

19. </elseif> </if> </sequence>

Fig. 5.1 An example of BPEL document

84 Secure Orchestrated Web Service Composition against Untrusted Broker

card information). Similar concerns can be raised on the service parameters as well. 1 In
the previous example, partner services might prefer to keep the price parameter confidential
(lines 10, 14, 17). This problem is further exacerbated if we consider that the broker might be
untrusted, in the sense that it could maliciously access and use user credentials and service
parameters, as well as, it might be subject of attackers who take control over user data. To
cope with these issues, the first relevant requirement for a secure web service composition is
to ensure that each partner service is able to access only the portions of user credentials and
service parameters that it needs to complete its task, whereas the broker cannot access any
of them.

It is relevant to note that some of the output parameters are needed by the broker (i.e.,
BPEL engine) to evaluate conditions in the if/while instructions contained in the BPEL
process. In Example 10, this is the case of reslogin and rescheck parameters (see lines 3,
7, 9, 13 in Figure 5.1). Therefore, a further requirement is that the broker has to be able
to evaluate conditions on certain output parameters by, at the same time, not being able to
access their real values.

Under the scenario of an untrusted broker, we see an additional requirement to satisfy,
related to the risk that a malicious broker invokes services in an incorrect order. This might
create a damage for users. For instance, in the composite service of Example 10 a malicious
broker could invoke the Payment service without having checked before the item availability.
As a result, the payment charges the user even if the item is not available. For this reason,
a further requirement is that the partner services have to be invoked and access their input
parameters only according to the correct execution of the assigned workflow activity in the
BPEL document.

5.2 An Architecture for Secure Web Service Composition
with Untrusted Broker

In order to enforce the above described security requirements, we design the WSApp applica-
tion (see Figure 5.2), that makes a user able to invoke a composite service on an untrusted
broker. As depicted in Figure 5.2, the user describes his/her requirements for composite
services through a GUI. These are passed to an external web service, say WFModeler, which
retrieves a suitable workflow from libraries of well-known business process patterns. The
retrieved workflow is then sent to the BPEL Generator (step 2 in Figure 5.2). Based on

1Notice that there are two different kinds of parameters, that is, input parameters and output parameters.
Input parameters are sent to partner web services and used as input for their activities; output parameters are
values released from a partner web service.

5.2 An Architecture for Secure Web Service Composition with Untrusted Broker 85

����
��������	

��

�
��
�������

�
��

��
������������

��

�
!�"#�$%�&�

�'()� (*+,-).%*)

����

����
���������

����
��������/

����
��������0

/

-!*1,
23$

*�$�&4��2
25�5

� +1
23$

�++�,)�6�������

7�8�
9�:��;<��

�=�
>��;<��

?@A>�
9�:��;<��

0

�=�
A:��8B<��

�
�� ������������

���

	

C

� +1,23$�

-!*1
23$

-!*1,
"5��$

� +1
23$

!�"#�$%�&�

*�$�&4��2
25�5

� D!!

�=�
�:;�8E��

F

G3�H�2���5#
������������

-!*1,
"5��$

-!*1,
"5��$

� +1
23$

� +1
23$

Fig. 5.2 An Architecture for Secure Web Service Composition

86 Secure Orchestrated Web Service Composition against Untrusted Broker

the specification of the received workflow, the BPEL Generator generates a basic BPEL
document encoding the workflow, along with the description of input/output parameters,
needed services, and their to-be-called operations. The obtained document is passed to the WS
Locator. For each workflow activity, the WS Locator retrieves a service with functionalities
requested for executing the workflow activities, by using UDDI search functionalities and
semantic annotations. Additionally, the WS Locator retrieves WSDL documents specifying
published interfaces for each web service. The WS Locator sends the BPEL and WSDL
documents to the WS Analyzer (step 4 in Figure 5.2). This component identifies which
portions of user credentials and output parameters are needed by each partner service. The
final component of WSApp is the WS Encryptor, which generates the necessary encrypted
data. In particular, it retrieves from a Certificate Authority (CA) the public keys of all partner
services involved in the composition. It also requests the Key Generator module to create
a set of secret keys. As it will be explained in the following sections, these keys are used
for generating a secure version of the workflow description to which we refer hereafter as
encrypted BPEL document. This is sent to the broker for its execution (step 6 in Figure 5.2).

5.3 Secure Workflow Execution

BPEL offers several types of activities to coordinate the service composition. Some of them
contain sensitive information, e.g., user credentials, service parameters. In a scenario of
untrusted broker, our proposal aims at hiding all this sensitive information. In particular, we
focus on the invoked activity, which encodes information needed by the broker to invoke
the required service. This can be a direct invocation, like the one in line 2 in Figure 5.1,
or a condition-based invocation, that is, an invocation made after the BPEL engine has
tested some conditions, as line 3 in Figure 5.1. In this chapter, we focus on condition-based
invocation within if and while instructions. In order to hide sensitive information, we make
the broker able to process an encrypted BPEL document, by enforcing, at the same time,
the original workflow. At this purpose, for each invocation, the document contains an
encrypted activity block (EAB). For a direct invocation, EAB consists of two components. As
depicted in Figure 5.3, the first component, called service label, contains the minimum set of
information needed by the broker for service invocation (e.g., the partnerLink information).
The second component, called encrypted activity description (EAD), encrypts the description
of the activity to be invoked and complementary information. The latter component has to be
processed directly by the partner services, only when needed. At this purpose, the EAD is
encrypted with the public key of the service that has to process it.

5.3 Secure Workflow Execution 87

���

������	
����
������������

����������
��
���������

�

���
����
�

���������
��
�

�	
��

Fig. 5.3 Encrypted Activity Block for direct invocation

EAD 1

Block Key for EAB of Aj+1

Activity Description Aj
1

Service Label 1

Output Parameter Keys

If (op)
Encrypted

Thresold

Encrypted

Value

EAD

Block Key for EAB of Aj+1

Activity Description Aj

Service Label

Output Parameter Keys

while (op)
Encrypted

Thresold

Encrypted

Value

EAD 2

Block Key for EAB of Aj+1

Activity Description Aj
2

Service Label 2

Output Parameter Keys

Fig. 5.4 Encrypted Activity Block for condition-based invocation

For condition-based invocations, EAB is a bit more complicated since the encryption
that contains the information for making the broker able to securely evaluate test conditions.
Moreover, the activity to be invoked depends on the result of the condition evaluation. To
cope with these issues, EAB for condition-based invocations includes the information needed
for the secure comparison and the nested EABs one for each possible activity to be invoked.
As an example, in case of if activity, the condition-based EAB contains in turn two distinct
EABs (see Figure 5.4).

88 Secure Orchestrated Web Service Composition against Untrusted Broker

������������ ����������������� �

����

	�
�����
����

�������������
���������
��
�����
����

	�
�����
����

�������������
�����������
��
�����
����

���
�����
�
�����

���
�����
!��"�

#$%&'%()%*
++
#,(-./%01234(%35,(/678970.1%324,.(67):%)/,4%;70
,(1'467,4%;<=70.'41'463%$):%)/0>*
?@ABC?DEFG@H@EFBI
��� ��JKLMNOPC?QDEFG@H@EFB
#,(-./%01234(%35,(/67R2S;%(470.1%324,.(6712S70

(1'467,4%;<=70,(1'467)3%T,4)23T70.'41'463%$12S0>*
?NUON@AB
#,(-./%01234(%35,(/678V70.1%324,.(67):%)/,4%;70

,(1'467,4%;<=70.'41'463%$):%)/0>*
+WW
?QNUON@AB
?Q@AB
+WW

XYZ

XYYZ	�
�����
����

�������������
�����������
��
�����
����

[���J�������
���[��������

[���J�������
���[�������\

��
�����
����

	�
�����
����

�������������
����������\
��
�����
����

+WW
#>$%&'%()%*

]̂_̀abcdefgfcdahijkealmgfnfgopa]̂̂_̀aqdncrkealmgfnfgo

[���J�������
���[�������\

[���J�������
���[�������s

Fig. 5.5 Structure of an encrypted BPEL document

5.4 Selective User Credentials and Parameters Encryption 89

Each EAB is encrypted by a secret key generated by WSApp, called the block key. To
ensure the correct execution order, the block key has to be available to the broker only when
the previously invoked service has terminated its execution. At this purpose, given an activity
A j+1 the corresponding block key BKA j+1 is embedded into the EAB of A j (see Figure 5.3).
Then, when the service carrying out activity A j finishes it, the service sends its encrypted
output parameters (see section 5.4 and 5.5) along with the block key BKA j+1 to the broker.
Thus, the broker can use the block key BKA j+1 to identify the service to be invoked.

In particular, in case of direct invocation activity (see Figure 5.3), this is done according
to the following steps: (1) it decrypts the next EAB to be processed, (2) it extracts service
information from the service label, (3) it invokes that service by passing the EAD extracted
by the encrypted block with enclosed encrypted input parameters for that service. In case of
condition-based invocation activity (see Figure 5.4), the broker has to evaluate the condition
according to a secure comparison scheme. As it will be described in Section 5.6, this
evaluation will return the block key that has to be used for decrypting the proper nested EAB.
That decryption also allows the broker to learn what service has to be invoked. In case of
while activity the block key is not enough. Indeed, if the service invoked in the while cycle
sends the block key for the next EAB to the broker, this could use it even if the test condition
is not satisfied. Obviously, this breaks the requirement of correct workflow execution. To
avoid this problem, for while activity the block key in the nested block is set to null. After
testing the condition stated in the condition-based invocation, the broker makes a secure
query (described in Section 5.6) to get a shared key for decrypting the nested block.

In the following, before presenting the formal definition of EAB (cfr. Section 5.5), we
introduce the selective encryption of user credentials and service parameters.

5.4 Selective User Credentials and Parameters Encryption

In order to assure the confidentiality requirements discussed in Section 5.1, we propose to
selectively encrypt user credentials and service parameters. Let us start by considering user
credentials.

Definition 4. Confidentiality Requirements on User Credentials. Let u be the user requiring
the composition of a service S, where u credential is represented as Cu = {att1,att2, . . . ,attn},
with att j = (name j,value j), j ∈ [1,n]. Let WFS be the workflow encoding the business
process for S, and WS = {ws1,ws2, . . . ,wsm} be the set of web services assigned to activities
in WFS. For each att j ∈Cu, we represent its confidentiality requirements returned by the WS
Analyzer as Reqatt j = (att j,ws), where ws ⊆WS.

90 Secure Orchestrated Web Service Composition against Untrusted Broker

Example 11. Let us consider the composition of Example 10, where the set of services
is: WS = {E1,E2,E3,Payment,Delivery}. Here we assume that the customer, having user-
name u and password Y , bought a shirt by using the creditcard with the account number
X . u credential is Cu = {(username,u),(password,Y),(creditcard,X)}. According to the
workflow modeled in the BPEL document in Figure 5.1, the user confidentiality requirements
state that username and password can be only accessed by service E1, creditcard only by ser-
vice Payment. As such: Requsername = {username,{E1}}, Reqpassword = {password,{E1}},
Reqcreditcard = {creditcard,{Payment}}.

We therefore propose the following encryption for user credentials.

Definition 5. User Credentials Encryption. Let Cu = {att1,att2, . . . ,attn} be a user credential.
Let Reqatt j = (att j,ws) be the confidentiality requirements on att j, j ∈ [1,n]. The encryption
of att j is defined as a set Eatt j = {(EncPkws(att j.name),EncPkws(att j.value)) | ∀ws ∈ ws},
where Pkws denotes the public key associated with service ws and Enc() is an asymmetric
encryption function.2 The encryption of Cu, denoted as ECu , is ECu = {Eatt j | ∀att j ∈Cu}.

Example 12. Based on Example 11, let PKE1, PKPayment be the public keys of E1 and
EPayment respectively. Let Cu be u’s credential. Then, ECu = {(EncPkE1(username),EncPkE1(u)),
(EncPkE1(password),EncPkE1(Y)),(EncPkPayment (creditcard),EncPkPayment (X))}

While the encryption of user credentials can be generated by the WS Encryptor at WSApp
side, the encryption of service parameters has to be performed by the service who has released
them. At this aim, each service should know which are the services that will have to access
its output parameters, but this is not always possible. This is the case, for instance, of an
if activity, where the service to be invoked is not known at the time of BPEL definition.
To cope with this problem, we propose to encrypt the relevant output parameters, with a
different secret key. This key, hereafter denoted as shared key, is generated by WSApp (i.e.,
Key Generator) and stored in a tuple of the dataset, say SecDB (as introduced more detailed
in Section 5.6), to be sent to broker. To avoid the broker to misuse these shared keys, they are
encrypted with the public key of the partner service selected based on the result of the test
condition evaluation. More precisely, let P be an output parameter and {ws1, . . . ,wsn} be the
set of services that, based on the result of the condition evaluation, could be authorized to
consume P. For each ws j, j ∈ {1, . . . ,n}, the WS Encryptor generates a different encryption
of the shared key for P, say SKP, that is, EncPKws j

(SKP). As it will be described in the next
section, these encryptions of shared keys are included into the EAB for condition-based
invocation.

2we use the dot notation to refer to components of a credential.

5.5 Encrypted Activity Blocks 91

There is also another issue related to the fact that an output parameter from a prior invoked
partner service is likely to be used as a comparison value in the next test condition instruction.
For example, the output parameter rescheck from E1 (see line 6 in Figure 5.1) is used as a
comparison value in the test condition instruction (line 7). However, it is compulsory that the
rescheck cannot be read by any unrelated partner services and the broker. So it is necessary
to encrypt it. Hence, for each activity Ai, WSApp generates a pair of ECC public and private
keys. More precisely, since the scheme uses only the public key, for sake of clarity, hereafter,
we refer only to this key as the Condition Based Key for activity Ai, denoted as CBAi . For
example, the output parameter rescheck from E1 that is used for the next condition-based
activity Ai will be encrypted with CBAi and becomes EncCBAi

(rescheck).

5.5 Encrypted Activity Blocks

Let us start to present the EAB for direct invocation, by first introducing a formalization of
this kind of activity.

Definition 6. Direct Invocation Activity. We represent a direct invocation activity as tuple
A = (service address,operator, input parameters,
out put parameters), where service address is the address of the service to be invoked,
operator is the operation performed by the service to be invoked, input parameters are
the required values for operator, and out put parameters are the values returned from the
operator.

Let us consider the invocation activity A in line 2 of Figure 5.1. It can be modelled as
A = (E1, login,{username, password},{reslogin}).

Definition 7. EAB for Direct Invocation. Let Ai be a direct invocation activity, and wsi

be the service assigned to Ai. The EAB for Ai is defined as the encryption with the block
key associated with Ai, BKAi , of the following components: 1) SL=Ai.service_address, that
contains the address of the service to be invoked;3 2) EADAi , that is, the encrypted description
of activity Ai (as mentioned in Section 5.3) with the public key of the partner web service,
i.e. PKwsi . EADAi includes the following components: ActDesAi , that is, the BPEL code of
Ai; OPKAi , which contains the keys used for encrypting output parameters, that is, (1) the
public keys of the next direct invocation activity, i.e. PKwsi+1 , and/or (2) the condition-based
keys, i.e. CBAi+1 , and/or (3) the shared keys, i.e. SKAi+1 , of the next condition-based activity;
NBKAi=EncPKbroker(BKAi+1), that is, the encryption of the block key of the next EAB with the
broker public key.

3Hereafter, we adopt the dot notation to refer to components of an activity.

92 Secure Orchestrated Web Service Composition against Untrusted Broker

Thus, EABAi= EncBKAi
(SL,EADAi) = EncBKAi

(SL,EncPKwsi
(ActDesAi,OPKAi,NBKAi)).

Example 13. With respect to the BPEL document in Figure 5.1, once the user completes
the payment, he/she selects the delivery method by means of service Delivery. Payment’s
output parameter, i.e., receipt, is sent to service Delivery (line 11). Delivery also receives
itemID from E1. Let Ai and Ai+1 be the activities assigned to service Payment and Deliv-
ery, respectively. Hence, we have that EAB for activity Ai has the following components:
SLAi = Payment; ActDesAi= ” < invoke partnerLink = Payment operation = pay input =
creditcard input = itemID input = price out put = receipt/> ”; OPKAi={PKDelivery}, where
PKDelivery is the public key of Delivery that has to be used for encrypting of the parame-
ter receipt for the next activity Delivery; NBKAi = EncPKbroker(BKAi+1). Hence, EADAi =

EncPKPayment (ActDesAi,OPKAi,NBKAi) and EABAi = EncBKAi
(SLAi,EADAi).

As highlighted in Section 5.3, condition-based invocation requires to include into the
corresponding EAB more information. Again, let us start with a formalization of this kind of
activity. More precisely, we consider the if and while activity.

Definition 8. If Activity. We represent an if activity as a tuple A = (value, threshold,
inv activity 1, inv activity 2), where value is the value returned as output parameter from a pre-
vious activity that has to be compared with threshold, and inv activity 1, inv activity 2 are in-
voke activities formalized according to Definition 6. If value = threshold, then inv activity 1
is enforced; otherwise, inv activity 2 is enforced.

Definition 9. While Activity. We represent a while activity as a tuple A = (value, threshold,
inv activity), where value is the value returned as output parameter from a previous activity
that has to be compared with threshold, and inv activity is an invoke activity formalized
according to Definition 6. Until value is not equal to threshold, the inv activity is enforced.

Let us see the corresponding EAB. In both if and while condition-based activity Ai, the
broker has to evaluate the condition Ai.value = Ai.threshold. Value is an output parameter
returned by a previously invoked service ws j, j < i. As introduced in Section 5.3, in case of
if activity, the corresponding EAB contains two nested EABs for the services to be invoked.
These are encrypted with two separate block keys that are retrieved by the broker as the result
of a query on SecDB. With each condition-based invocation WsApp associates a different
public key, denoted as CBAi (as it will be introduced in Section 5.4).

Definition 10. EAB for If Activity. Let Ai be an If activity. Let Ai1,Ai2 be the two nested
invoked activities in Ai. Let BKAi1

, BKAi2
be the shared keys used for generating EABs

of Ai1,Ai2 , respectively. Let CBAi be the condition-based key associated with Ai. The

5.5 Encrypted Activity Blocks 93

EAB for Ai is defined as the encryption with BKAi of the following components: 1) ET =

EncCBAi
(Ai.threshold)⊕EncCBAi

(φAi), where φAi is the unique random number associated
with Ai, and is also the primary key in case the condition instruction is satisfied (see more
detailes in Section 5.6); 2) EV = EncCBAi

(Ai.value), that is, the encryption with CBAi of
the value to be compared with threshold. This is returned as an output parameter by a
previously invoked service; 3) IA1 = EncBKAi1

(SL1,EADAi1
), as defined in Definition 7; 4)

IA2 = EncBKAi2
(SL2,EADAi2

), as defined in Definition 7.

Thus, EABAi = EncBKAi
(ET,EV, IA1, IA2).

Example 14. Let Ai be the if activity in line 7 of Figure 5.1. The components of the
corresponding EAB are defined as follows: ET = EncCBAi

(”No”)⊕EncCBAi
(φAi); EV =

EncCBAi
(rescheck); IA1 = EncBKAi1

(SL1,EADAi1
), where SL1 = ”E2”, EADAi1

= EncPKE2

(ActDes1,OPK1,NBK1) with ActDes1 = (” < invokepartnerLink = E2 operation =

checkitem input = itemID out put = rescheck out put = price/ > ”), OPK1 = {CBAi+1,

PKPayment}, NBK1 = EncPKbroker(BKAi+1), BKAi+1 is the block key of the next EAB; IA2 =

EncBKAi1
(SL2,EADAi1

) where EADAi2
=(ActDes2,OPK2,NBK2) with SL= ”E2”, ActDes2=

(EncPKPayment (”< invoke partnerLink=Payment operation= pay input = creditcard input =
itemID input = price out put = receipt/ > ”); OPK2 = {PKDelivery}), and NBK =

EncPKbroker(BKAi+1). Hence, the encryption of Ai generated by the broker is:
EncBKAi

(ET,EV, IA1, IA2).

Definition 11. EAB for While Activity. Let Ai be a While activity. Let Ai1 be the nested
invoked activity in Ai. Let BKAi1

be the block key used for encrypting Ai1 . Let CBAi be
the condition-based key associated with Ai. The EAB for Ai is defined as the encryption
with BKAi of the following components: 1) ET = EncCBAi

(Ai.threshold)⊕EncCBAi
(φAi),

where φAi is the unique random number associated with Ai; 2) EV = EncCBAi
(Ai.value) is

the encryption with CBAi of the value to be compared with threshold. val is returned as
an output parameter by a previously invoked service; 3) m WA = EncBKAi1

(SLAi1
,EADAi1

),
where EADAi1

= (ActDesAi1
,OPKAi1

,NBKAi1
) as defined in Definition 7. Thus, EABAi =

EncBKAi
(ET,EV,WA).

Example 15. Let Ai be the While activity specified in line 3 of Figure 5.1. The components of
the corresponding EAB are defined as follows: ET = EncCBAi

(”No”)⊕EncCBAi
(φAi); EV =

EncCBAi
(reslogin); WA = EncBKAi1

(SLAi1
,EADAi1

), where SLAi1 = ”E1”, and EADAi1
=

EncPKE1(ActDesAi1
,OPKAi1

,NBKAi1
) with ActDescAi1

= ” < invokepartnerLink = E1
operation = login input = username input = password out put = reslogin/ > ”;OPKAi1

=

{CBAi}, and NBKAi1
= null. Hence, EABAi = EncBKAi

(ET,EV,WA).

94 Secure Orchestrated Web Service Composition against Untrusted Broker

5.6 Secure Evaluation of Test Conditions

EAB for condition-based invocation has to contain information that makes the broker able to
evaluate the condition without inferring the real values to be evaluated (e.g., the threshold
and the parameter values). At this purpose, we make use of homormophic encryption,
which allows to perform some simple math operations directly on encrypted data [122]. In
particular, in this proposal, we initially investigate the ’=’ operator and we adopt the Elliptic
Curve Cryptography algorithm [59] to exploit its additive homomorphism property. Let us
start to introduce which information WSApp has to generate in order to support the secure
comparison.
SecDB. We assume that the Encryptor generates a random number φAi uniquely associated
with activity Ai. We also assume that this module generates value EncCBAi

(Ai.threshold)⊕
EncCBAi

(φAi), which is enclosed into the EAB sent to the broker (see Section 5.5) where
CBAi is a Condition Based Key as defined in Section 5.4.

For each condition-based activity Ai, two tuples are created by WSApp and stored into
SecDB. These tuples have three components as follows:

- Primary Key. This component is used by the broker to retrieve the correct tuple
to be elaborated. This tuple has to be selected based on the result of the test condition.
Note that, according to the additive homomorphic ECC property, in case the condition is
satisfied, i.e., Ai.value = Ai.threshold, if the broker computes the following exclusive-OR
EncCBAi

(Ai.value)⊕ (EncCBAi
(Ai.threshold)⊕EncCBAi

(φAi), it obtains EncCBAi
(Ai.value⊕

Ai.threshold ⊕φAi)=EncCBAi
(φAi); otherwise, the result is different. As such, we define the

primary key of the tuple to be processed in case of the condition satisfied with the value
EncCBAi

(φAi). Thus, for each condition-based invocation activity, there are two tuples with
the following indexes: (1) index1=EncCBAi

(φAi) for the tuple to be evaluated in case the
condition is satisfied; and (2) index2=EncCBAi

(Ai.threshold)⊕EncCBAi
(φAi), for the tuple to

be evaluated in case the condition is not satisfied.
- Block Key. The tuple has to contain the block key for the nested EAB. For each primary

key of the same condition invocation activity as described in the first component, we have
the respective block keys as follows:

(1) index1=EncCBAi
(φAi): the block key carries BKAi1

of the next EAB. In case of If
activity, it contains the BKAi1

for EAB of the activity to be invoked if the condition is satisfied.
In case of a While activity, it contains the BKAi1

for EAB of the first activity to be invoked
after the while cycle.

(2) index2=EncCBAi
(Ai.threshold)⊕EncCBAi

(φAi): in case of If activity, it contains the
BKAi2

for EAB of the activity to be invoked in case of not satisfied condition. In case of
While activity, it contains the null value.

5.7 Experimental Results 95

- Encrypted Shared Keys. This component contains the shared keys, i.e. SKAi+1 , that have
to be used to encrypt the output parameters of Ai invoked by wsi, then used for Ai+1 invoked
by wsi+1, in case Ai+1 is a condition-based activity. In particular, this component contains
the encryption of SKAi+1 with the public key of the service to be invoked. For each primary
key of the same condition invocation activity, we have the respective block keys as followes:

(1) index1=EncCBAi
(φAi): the encryption of SKAi+1 with the public key of the service to

be invoked in case the condition is satisfied. In case of If activity, the public key of the
service invoked by inv activity1 (see Definition 10). In case of While activity, the encryption
of SKAi+1 with the public key of the service to be invoked after the while cycle.

(2) index2=EncCBAi
(Ai.threshold)⊕ EncCBAi

(φAi): the encryption of SKAi+1 with the
public key of the service to be invoked in case the condition is not satisfied. In case of If
activity, with the public key of service invoked by inv activity2 (see Definition 10). In case
of While activity, it contains the null value.

Broker secure comparison process. When the broker has to evaluate the test condition
in Ai, it performs the following steps: (1) from the EAB corresponding to Ai, it retrieves
EncCBAi

(Ai.threshold)⊕EncCBAi
(φAi) and EncCBAi

(Ai.value); (2) it computes the aggregate
value, say AG, where AG= EncCBAi

(Ai.threshold)⊕EncCBAi
(φAi)⊕EncCBAi

(Ai.value); (3)
it looks for a tuple in SecDB with primary key value equal to AG; in case this does not exist,
it looks for a tuple with primary key equal to EncCBAi

(Ai.threshold)⊕EncCBAi
(φAi); (4) it

uses the block key contained in the tuple retrieved in step (3) to decrypt and elaborate the
nested EAB. In case the tuple does not contain the block key (i.e, the while condition is not
satisfied), it invokes again the last invoked service.

5.7 Experimental Results

In order to demonstrate the efficiency of the proposal, we carried out several experiments
on the WSApp and broker prototype. We recall the we exploit asymmetric and symmetric
encryption as well as and ECC. Therefore, in the prototype we implemented RSA (1024
bit and 2048 bit key size), AES (128 bit and 256 bit key size), ECC (163 bit, 283 bit,
409 bit and 571 bit key size). To estimate the overhead of WSApp, we measure the time
needed to generate the encrypted BPEL documents, as well as the size of resulting encrypted
BPEL documents. To evaluate the broker performance, we measure the time needed to
elaborate each encrypted BPEL document. Since key size greatly impacts the performance
of cryptographic algorithms, we carried out experiments with four different combinations of
key sizes. These are represented in Table 5.1.

96 Secure Orchestrated Web Service Composition against Untrusted Broker

Table 5.1 Considered Key Sizes

ECC RSA AES
163 bit 1024 bit 128 bit
283 bit 1024 bit 128 bit
409 bit 2048 bit 256 bit
571 bit 2048 bit 256 bit

Each BPEL document has been encrypted about 50 times, and experimental results show
the average overhead. All experiments have been deployed on a PC Intel Duo Core CPU
3GHz, 4GB RAM, and 64-bit Windows 7 Professional OS. We have used four different
BPEL documents, say respectively B1, B2, B3, B4, each of which describes the collaboration
among 25 services. Parameters of each original BPEL document are shown in Table 5.2.

Table 5.2 Parameters of Inpput BPEL Documents

Original BPEL Documents B1 B2 B3 B4
Number of Direct Invocation Activities 15 14 15 16
Number of Condition-Based Activities 7 10 11 12
Total Number of Activities 22 24 26 28
Number of Output Parameters 31 40 42 48
File Size (KBytes) 3 4 4 8

Figure 5.6 presents the performance of WSApp. Figure 5.6-a) shows the time needed
to generate the encrypted BPEL documents. This time also includes the creation of SecDB
tuples. As depicted in Figure 5.6-a), even in the worst case, that is, in case of the largest
BPEL document and with the combination having the longest key size, the time of generation
is not significant (i.e. under 1 second). Figure 5.6-b) shows the size of the obtained encrypted
documents. Also in the worst case, the generated encrypted BPEL has the file size of 118
KBytes.

Figure 5.7 presents the time consumption for the broker to elaborate the encrypted BPEL
documents. This does not include the time for service invocation and waiting for the response
to/from the partner web services. The time is only for decrypting the encrypted BPEL
document and making queries on SecDB. As reported in Figure 5.7, even in the worst case,
the processing delay for reading the encrypted BPEL documents is minor, i.e. 1.39 seconds.

5.8 Security Properties 97

a) Time consumption (ms)

b) File size (KB)

Fig. 5.6 Time consumption and File size according to the number of activities and the number
of output parameters at WSApp

5.8 Security Properties

In this section, we discuss the security properties of the proposed protocol. This discussion
is done under the assumption that the broker is honest-but-curious, which implies that it
correctly enforces the protocol, but it tries to retrieve as much information as possible. Let us

98 Secure Orchestrated Web Service Composition against Untrusted Broker

Fig. 5.7 Time consumption for reading the encrypted BPEL document according to the
number of activities and the number of output parameters at the broker

consider each party in the protocol.

Broker. Let us consider each kind of data transferred through the broker from/to web
services. In particular, according to the proposed protocols, these data are: (1) user cre-
dentials; (2) parameters in a direct invocation activity; (3) parameters in a test condition
evaluation in an EAB; (4) parameters included into a nested EAB inside an EAB of a con-
dition based activity; (5) activity description in an EAD.; (6) the data in support of secure
test condition evaluation. Now let us clarify how the proposed protocol protects the above
parameters and the test condition evaluation process. The broker cannot be aware of (1) since
each user credential is encrypted by the RSA public keys of those web services authorized
according to the BPEL document. Without the corresponding private keys, the broker is
not able to decrypt it. Similarly to (1), parameters in (2) are encrypted by the RSA public
keys of the authorized web services. Parameters in (3) are encrypted with the ECC public
keys and used for the test condition evaluation. Since the broker does not possess any of the
corresponding ECC private keys, it cannot access these data. Parameters in (4) are encrypted
by AES shared keys, which are stored in secDB and encrypted by the public keys of the
authorized web services, so the broker cannot decrypt them. Data in (5) are encrypted with
the RSA public key of the authorized web service, so only authorized web service can read
this activity description with its RSA private key. Regarding the process (6), the broker
cannot obtain any relative information, because secure comparison is computed by exploiting

5.8 Security Properties 99

ECC homomorphic encryption, i.e. all data of the process are encrypted and the computation
operators of the process are performed directly on those encrypted data.

Partner Web Services. A partner web service receives the encrypted activity descrip-
tion, user credentials and parameters from the broker. Regarding activity description and user
credentials, the encryption scheme ensures that each partner service can decrypt only those
authorized to it, that is, those encrypted with its public key. The same holds for parameters
included in direct invocation activities. In contrast, parameters for condition-based activities
are encrypted with a symmetric shared key. We recall that this key is in turn encrypted with
the public key of web services authorized to access the parameters, based on evaluation of
test condition. As such, the shared key and, as consequences, the output parameters can be
decrypted only by authorized web services.

Chapter 6

A privacy-preserving constrained
choreographed service composition

A Web service is a software system designed to support interoperable application-to-application
interactions over the Internet. One of the major goals of Web services is to make easier
their composition to form more complex services, modeled as workflows. As mentioned in
Chapter I, there are two main techniques for web service composition, namely, orchestration
and choreography. Choreography is a decentralized model with a dynamic sequence of web
services, whereas, orchestration has a central broker to control a static sequence of activities.
Literature shows that there is an increasing interests in decentralized composition as the
orchestration paradigm suffers of single-point failure problem as well as requires powerful
and reliable brokers. According to the choreography paradigm, once the business process and
the workflow behind the web service composition has been defined, the composite service
is deployed by invoking the service that has to perform the first activity. When this service
correctly terminates the activity, it searches a service able to carry on the next activity in the
workflow. This is then directly invoked by the service that has just terminated, without the
presence of a broker (like in the orchestration model).

It is relevant to note that regardless the adopted paradigm, a crucial task is the selection
of the service to be assigned to each activity in the workflow. As a matter of fact, service
compositions can be driven by constraints on service selection. As discussed in [131],
these requirements can be posed both by users requiring the composed service as well as
by the companies provisioning the atomic services. In general, requirements can refer to
several dimensions, such as Quality of Service (QoS) [86] or security [24], as services might
have strong security requirements on services with which they have to cooperate during the
service composition deployment. Literature presents several approaches for orchestrating
constrained web service compositions, where QoS [94, 148, 128] and/or security criteria

102 A privacy-preserving constrained choreographed service composition

[24] [131] have been considered . Decentralized approaches have been proposed as well
[3, 151, 64]. However, to the best of our knowledge none of them considers that the evaluation
of these criteria requires to expose private information of users and providers, regardless of
whom poses the requirements (i.e., users or providers) and the nature of these requirements
(e.g., QoS, security, etc.). The only paper we are aware of dealing with these issues is [132],
where a centralized and privacy aware approach for service selection of composite services
has been proposed. However, the peer-to-peer nature of the choreography model imposes
to revise the way requirements have to be enforced. Indeed, the absences of a broker entity
demands for services able to locally and privately validate user and provider requirements
on new services to be invoked. At this purpose, in this chapter, we present our proposed a
privacy-preserving framework for a choreographed service composition, where to enable
privacy-preserving requirements evaluation we make use of two secure protocols.

The remainder of the chapter is organized as follows. Section 6.1 introduces privacy issues
in the choreography of web service composition. The proposed framework is described in
Section 6.2. Section 6.3 presents the user requirement evaluation, while Section 6.4 presents
the provider requirement evaluation. Experimental results are reported in Section 6.5.

6.1 Privacy issues in a constrained choreographed web ser-
vice composition

In order to illustrate the privacy issues we are interested in, let us assume that a user requests a
composite service aiming at organizing a trip plan. Moreover, assume that the corresponding
workflow implies the search and reservation of flight, hotel, car, and a tour visit. Based on
user’s preferences, each activity of the service composition can be further constrained by
additional user-defined constraints. For example, the requesting user might pose conditions
on flight budget (e.g., economy, business, premium economy), as well as food, seat position,
frequent fliers, etc. All these additional search criteria are encoded into user requirements,
whose formal definition is provided in Section 6.3.

According to choreography paradigm, the service deployment is then triggered by in-
voking the first service, i.e., the service carrying on the first activity, which, in turn, will
search and invoke a service for the second activity in the workflow once it has terminated its
own activity. When invoking the second service, all the information about workflow as well
as users credentials is passed, so as to make the new service able to invoke the successive
one. This process is continued until the workflow completion. This is the general way a
choreographed web service composition is carried out.

6.1 Privacy issues in a constrained choreographed web service composition 103

We have to note that, this peer-to-peer nature of the choreography model imposes to
revise the way user requirements have to be enforced. Indeed, the absences of a broker entity
demands for services able to locally validate user requirements on new services to be invoked.
In order to deal with this scenario, we assume that each service is characterized by a set of
properties, defined as pair of property name and corresponding value(s). Thus, evaluating
user’s requirements implies to evaluate a set of constraints on properties of the service to
be invoked. This obviously implies to expose to the service who has to locally evaluate
these conditions the users’ private information (i.e., user preferences) as well as parameter
values of service to be invoked. Some of these data might be very sensitive, as an example
user’s preference on food might reveal the user’s religion. Moreover, the service provider
might have concerns to expose its property values to an unknown service. As an example,
the user’s constraint on budget requires the service to expose its price to previously invoked
services, i.e., the ones that have to evaluate user’s requirements. Thus, the privacy-preserving
framework has to ensure that: (R1) user’s requirements have to be privately evaluated over
service properties without revealing to the service carrying on the evaluation any of the
requirement-related information (e.g., parameters’ values, comparison values, etc.).

It should be also taken into account that, during a service composition, providers might
have requirements on the other services with which they have to cooperate. Provider require-
ments might be related to security [24, 131], imposing, as an example, to cooperate only
with services adopting appropriate security mechanisms. For instance, the flight reservation
service might require to invoke only services adopting a given encryption algorithm (e.g.,
AES with 256 bits key size). Moreover, QoS related constraints might be posed as well (e.g.,
response time below a given threshold). It is relevant to note that providers at both the sides
of the composition might have requirements, that to say, both provider of the invoking service
as well as of invoked service might have its own requirement on service (to be invoked or
from which being invoked).1

Similarly to the user requirements enforcement, in the choreography scenario each
service has to locally evaluate its constraints on the next service properties. For instance,
the flight reservation service has to evaluate whether the hotel booking service adopts the
required encryption algorithm. Again, even for provider requirements, we see privacy issues
as evaluating these constraints implies to expose confidential information. As such, (R2)
provider requirements have to privately evaluated over service properties without revealing
any of the requirement-related information (e.g., parameters, comparison values, etc.).

1The approach we present in this chapter for privacy-preserving evaluation of providers requirement can be
used for both these evaluations. Without lacks of generality, in the following we focus on requirements of the
invoking services.

104 A privacy-preserving constrained choreographed service composition

Further, we have to note that delegating the evaluation of user and providers requirements
to each single service might bring to harmful situations, as the delegated service as well
the service providing the properties might cheat the system. This can be done in several
ways. As an example, by skipping the evaluation or by unfairly evaluate conditions on fake
property values so as to invoke a colluding service rather the one satisfying the considered
requirements. In order to prevent this scenario, the proposed framework has to (R3) provide
proofs of the correct privacy-preserving evaluation of user and providers requirements.

6.2 A privacy-preserving framework for choreographed com-
position

To cope with the requirements introduced in Section 6.1, we propose a solution where each
service is able to locally evaluate user and providers requirements in a privacy-preserving
way. This implies that each service has to privately evaluate conditions over user credentials
and service provider properties. To enable this private evaluation we make use of two
secure protocols proposed in [16] and [45]. This requires to initialize some security-related
parameters and data structures. At this purpose, we propose to include in the service
composition choreography an additional component, called ElitePicker application (EPApp).

As depicted in Figure 6.1, EPApp is required only during the initialization phase. Thus, a
user wishing to deploy a composite service has to first interact with EPApp. EPApp gathers
the user service request, e.g., a trip organization. Then, it deploys the workflow that in
the context of choreography is intended as a description of activities, which each services
has to carry on, and a description of the coordinated interactions among services. For this
workflow specification, we adopt WS-CDL (Web service choreography description language)
[125] to dictate the order in which services have to collaborate according to a defined plan.
However, WS-CDL is not an executable business process description language, as well as,
not used for exchanging data of requests/responses among web peers. So to let services able
to invoke their required activities, WS-CDL can be used with one of executable business
process languages, such as BPEL, WS-BPEL, etc. As well to exchange request/response
data, we use SOAP [150]. Moreover, in this chapter, we model sequential workflows, in the
form WF={a1,a2, . . . ,an−1,an}.

Through EPApp’s GUI, the user specifies also his/her requirements, according to the
definition given in Section 6.3. In general, applying a user requirement to a workflow activity
a j implies that properties of service that has to carry on a j have to satisfy the corresponding
conditions. In particular, in order to satisfy R1, we adopt the protocol proposed in [16], which

6.2 A privacy-preserving framework for choreographed composition 105

user

WS
1

WS
8

WS
5

WS
3

WS
4

WS
2

Tourist

Agent

Hotel

Car RentSpecify

requirements

UR

WS WS

Verification

Information

GUI

C
h

o
re

o
g

ra
p

h
y

d
riv

e
n

Flight WS
6

WS
7

EPApp

Provider

Requirement

(PR)

WS
2

WS
3

User

requirement

(UR)

d
riv

e
n

P
ro

to
co

l

Fig. 6.1 An example of web service selection

exploits asymmetric encryption to privately evaluate combination of predicates (see Section
6.3 for more details). Thus, we assume that, for each service request submitted by a user,
EPApp generates a distinct pair of keys: a public key PK, available to everyone, and a secret
key SK, which is held only by the user requiring the composition. Then, the secret key is
used by the requestor to generate a distinct data structure, called token, for each of his/her
requirements. This data structure contains the encryption of the information related to the
user requirement (e.g., parameters, threshold values). As it will be described in Section 6.3,
a token is defined in such a way that only the service carrying on the activity to which the
user requirement applies is able to decrypt and securely evaluate it over its property values.
As an example, the user requirement asking for a flight with price less than 100 has to be
evaluated only by the flight booking service.

As depicted in Figure 6.1, to start the composition, by means of EPApp, the user searches
for service WS1 which has to execute the first activity a1.2 Afterward, EPApp passes all the
generated tokens along with user PK to WS1. In turn, WS1 retrieves the token(s) applying to
activity a1 and, following the protocol in [16], it privately evaluates whether its properties

2This service is retrieved by inquiring Universal Description, Discovery and Integration (UDDI) as well as
other search methods.

106 A privacy-preserving constrained choreographed service composition

satisfy the stated conditions. As it will be described in Section 6.3, it generates a proof
that can be used by EPApp to check whether the requirement evaluation has been correctly
executed. If this is the case, EPApp invokes WS1. A similar process is done for each activity
a j in the workflow. Therefore, once activity a j−1 has been executed, the corresponding
service searches for a new service WS j to be assigned with a j, it sends to it all tokens along
with the user PK. WS j will be then invoked only if WS j−1 receives a proof that WS j satisfies
the user requirements.

As introduced in Section 6.1, in addition to user requirements, we have to deal with
provider requirements as well. For their privacy-preserving evaluation, it is not possible
to exploit the protocol adopted for user requirements. The main reason is that provider
requirements are not known during the initialization phase. Indeed, the dynamic selection of
services to be assigned to each activity makes impossible to predict their requirements. To
deal with this issue, we adopt the privacy preserving matching protocol presented in [45],
which aims at making two entities able to privately compute the intersection of two sets.
The key idea is that, to check if a given value satisfies a condition, we can verify whether it
belongs to the predefined set of values satisfying the condition. As an example, given the
condition “ExpectedTimeResponse<10" the value 9 does satisfy the condition as it belongs
to the set [0,9). Thus, as it will be described in Section 6.4, we exploit the protocol defined
in [45] to make the invoking service and the service to be invoked able to privately verify
whether the requirements of the invoking service are satisfied. More precisely, when a service
carrying on the generic activity a j ended its execution, it first verifies user requirements on
WS j+1, i.e., the candidate service for activity a j+1. Then, it verifies if WS j+1 is compatible
with its requirements. Also in this case, the protocol execution generates a proof that can be
used to check the correct evaluation. The protocol is presented in details in Section 6.4.

As a final note, in order to satisfy requirement R3, all proofs generated during the
composite service deployment are collected and returned to EPApp together with the final
results. By exploiting these proofs, EPApp can further verify that all privacy-preserving
evaluations have been done correctly, that is, that the services evaluating the requirements
have not colluded with the service under evaluation.

6.3 Privacy-preserving user requirements evaluation

When a user u submits to EPApp a request for a composite web service, EPApp returns the
workflow WF underlying the composition. Then, u specifies, for each activity ai ∈ WF ,
the local requirements that have to be satisfied by the web service that will carry on this
activity. In general, user requirements are defined as boolean expressions of atomic conditions.

6.3 Privacy-preserving user requirements evaluation 107

Atomic conditions pose constraints on values of a service property. We assume that services
adopt the same catalog of property names, P , defined according to a common ontology.3

Definition 12. Atomic condition. Let P be the set of property names. An atomic condition
cond on P is defined as: cond = [prop,op, thresh], where prop ∈ P is a property name,
op ∈ {<,>,≤,≥,=, ̸=} is a comparison operator, and thresh is a value in the domain of
prop.

Example 16. In the trip organization scenario, the atomic condition requiring a price less
than 50 Euro is modeled as cond = [price,<,50].

Based on the above definition, we model user requirements as follows.

Definition 13. User requirements. Let ai be an activity specified in a workflow WF , modeling
the composite web service required by user u. The requirements specified by u for ai, referred
to as URai , are defined as a Boolean expression over atomic conditions. We express URai

in Disjunctive Normal Form [100] denoted as: URai = {Cl1,Cl2, · · · ,Clm−1,Clm}; where
{Cl1,Cl2, · · · ,Clm−1,Clm} are DNF clauses, such that Cl j = {cond1,cond2, . . . ,condn−1,condn},
∀ j = {1, . . . ,m}, where condl is an atomic condition, ∀l = {1, . . . ,n}.

Example 17. Let us continue the example depicted in Figure 6.1, assuming that for the
flight booking activity, i.e., activity a1, the requesting user has the following require-
ments: seat location is “aisle", the class is “economy", the meal is “standard"; or seat
location is “windows", the class is “premium economy", the meal is “standard". The re-
quirements are modeled as UR f light = {Cl1,Cl2}, where Cl1 = {[seat,=,“aisle”], [class,=
,“economy”], [meal,=,“normal”]} and Cl2 = {[seat,=,“windows”], [class,=,

“premiumeconomy”], [meal,=,“standard”]}

As introduced in Section 6.1, the privacy-preserving evaluation of user requirements
is carried out exploiting the protocol described in [16]. This protocol exploits asymmetric
encryption to privately evaluate combinations of predicates in the form {variable, operator,
threshold}, where the set of supported operators includes: <, >, ≤, ≥, =, ̸=. By means
of such protocol, it is possible to evaluate whether an encrypted value of a given property
satisfies a condition. As an example, it is possible to verify whether the encryption of
the price property satisfies the condition {price, < ,1000}. The key idea is to generate a
token AT K for each atomic condition. This is done by using the GenToken(SK,< cond >)

function defined in [16], where SK is the user private key generated according to [16]. In

3The ontology can defined based on UDDI registers as well as dictionaries used in web service semantic
annotation approaches.

108 A privacy-preserving constrained choreographed service composition

order to evaluate whether the encryption of a value v with the corresponding public key PK,
i.e., EncPK(v), satisfies cond, we make use of the Query() function defined in [16]. This
takes as input the encryption EncPK(v) and the token AT K generated for cond and returns a
predefined message M, if cond is satisfied, ⊥, otherwise.

However, to make a service able to perform this protocol, it has to know the name of the
property to which the condition applies. This information is included in the atomic condition
token, as the following definition states.

Definition 14. Atomic Condition Token. Let cond be an atomic condition. Let (PK,SK) be
a pair of public and secret keys generated by u according to [16]. The Atomic Condition
Token for cond, AT K(cond), is defined as:

(EncPK(cond.prop.name),GenToken(SK,< cond >))

where EncPK() and GenToken() are defined based on [16], cond.prop.name is the property
name included in cond.

Example 18. Let us consider the atomic condition for the flight service in Example 16, that
is, cond = [price,<,50]. We have AT K(cond) = (EncPK(“price”),GenToken(SK,sCond))
where sCond is a bit string encoding the threshold and the operator in the predicate cond.

By exploiting the above definition, EPApp creates, for each activity ai in the workflow, a
unique data structure, called user requirement tokenset, encoding the user requirements for
ai.

Definition 15. User requirement tokenset. Let URai be the requirements of a user u for
activity ai in a workflow WF . Let (PK,SK) be a pair of public secret keys generated by
u according to [16]. The user requirement tokenset associated with URai , i.e., T KURai

, is
defined as:

{T KC1,T KC2, · · · ,T KCm}

where T KC j = { AT K(cond),∀cond in the j-th DNF clause of URai}, ∀ j = {1, . . . ,m}.

Once all tokensets have been generated, EPApp searches a web service able to execute the
first activity, i.e., a1, so as to start the composition. Before invoking this service, EPApp has
to privacy-preserving evaluate whether the properties of the selected web service satisfy the
user requirements on a1. Since the process for the privacy-preserving evaluation is the same
for each activity, in the following we explain it for the generic activity a j+1. In general, once
a web service WS j has completed the execution of the assigned activity a j, it has to search
for a service able to perform activity a j+1. Let assume that WS j+1 is the available service

6.3 Privacy-preserving user requirements evaluation 109

Table 6.1 User requirement enforcement protocol

1. WS j →WS j+1 (PK,T KURa j+1
)

2. WS j+1 SEP = GenerateSEP(PK,
Properties(WS j+1))

3. WS j+1 arRes = PrivateEvaluation(SEP,
T KURa j+1

)

4. WS j+1 →WS j arRes,SEP
5. WS j Proo f (T KURa j+1

,SEP)

found by WS j. In order to verify whether WS j+1 satisfies the user requirements applied on
activity a j+1, that is, URa j+1 , WS j+1 and WS j execute the protocol in Table 6.1.

In particular, as a first step, WS j forwards the public key PK and the user requirement
tokenset T KURa j+1

to WS j+1. Then, WS j+1 uses the received public key PK to encrypt
each of its property names and values. More precisely, assuming that Properties(WS j+1)

returns all pairs of property names and values associated with WS j+1, the GenerateSEP()
function returns the Set of Encrypted Properties (SEP), that is, the set containing, for each
prop ∈ Properties(WS j+1), a distinct element. Each element consists of two attributes,
where the first one stores the encryption of a property name, i.e., EncPK(prop.name),
whereas the second one contains the encryption of the corresponding property value, i.e.,
EncPK(prop.val). In particular, the first attribute of the SEP elements is used to retrieve from
the user requirements tokenset T KURa j+1

those atomic conditions (i.e., the corresponding
token) that apply to a property owned by WS j+1. Once retrieved, the corresponding encrypted
value (i.e., the second attribute in the SEP element) can be passed to the secure evaluation
function (i.e., Query()), to determine whether the atomic condition is satisfied. This process
is executed by PrivateEvaluation(), whose pseudocode is given in Algorithm 4.

This algorithm receives as input the set of encrypted properties SEP and the user re-
quirement tokenset T KURai+1

. It returns a data structure, called arRes, representing the
array of results of the DNF clauses evaluation in the received tokenset. In particular, the
j-th element of arRes refers to the j-th DNF clause of the user requirements (i.e., the j-th
T KC in T KURai+1

). Every element in arRes is, in turn, defined as an array whose elements
store the results of the evaluation of the atomic conditions in the corresponding clauses. As
an example, the j-th element in arRes is an array containing an element for each atomic
condition (i.e., for each AT K in TCK j) contained in the j-th DNF clause of URai+1 . In order
to generate arRes, PrivateEvaluation() iteratively considers each T KC in T KURai+1

, and
each atomic condition token AT K in the considered T KC (cfr. the for cycles in lines 3 and
5). Then, it checks whether AT K poses a condition on one of WS j+1’s properties (line 7).

110 A privacy-preserving constrained choreographed service composition

Function 4 PrivateEvaluation()
Input: T KURai+1

, SEP
Output: arRes;

1: Let initialize arRes with all values set as false;
2: α = 0;
3: for T KC ∈ T KURai+1

do
4: β = 0;
5: for AT K ∈ T KC do
6: for el ∈ SEP do
7: if (el.EncPK(prop.name) == AT K.EncPK(cond.prop.name)) then
8: arRes[α][β] = Query(el.EncPK(prop.val),

AT K.GenToken(SK,< cond >));
9: break;

10: end if
11: end for
12: β = β +1;
13: end for
14: α = α +1;
15: end for
16: return arRes;

If this is the case, it evaluates the condition using the Query() function defined in [16] and
stores the result (i.e., true or false) in the corresponding element of arRes (line 8). Once all
T KC have been evaluated, the resulting arRes is returned.

As a final step of the protocol in Table 6.1, WS j+1 sends WS j both arRes and SEP. The
first is used by WS j to verify whether there exists at least a DNF clause whose conditions
are all satisfied. In contrast, SEP represents the proof of the correct evaluation of user
requirements, in that WS j can re-execute the same private evaluation as the one performed
by PrivateEvaluation() and check the obtained arRes. This proof is performed by Proo f ()
using the same logic as PrivateEvaluation(). In order to make EApp able to perform this
check as well, WS j sends to it SEP and arRes.prop.val

Example 19. Let us consider UR f light introduced in Example 17. EPApp generates a user
requirement tokenset T KUR f light , including two token clauses, that is, T KC1 and T KC2 for
Cl1 and Cl2, respectively. For each of the token clauses, three atomic condition tokens
are generated in turn, that is, T KC1 = {AT K(cond11),AT K(cond12),AT K(cond13)} and
T KC2 = {AT K(cond21),AT K(cond22),AT K(cond23)}. Then, EPApp sends T KUR f light and
the public key PK to WS1. Assume that WS1 has the following properties: {(prop =

“seat”, prop.val = “window”),(prop = “class”, prop.val = “premium economy”),(prop =

“meal”, prop.val = “standard”),(prop= “number o f transits”, prop.val = 1)} from which

6.4 Privacy-preserving provider requirements 111

a set SEP is generated with the received PK, that is, SEP = {el1 = (EncPK(“seat”),
EncPK(“windows”)),el2 = (EncPK(“class”),EncPK(“premium economy”)),el3 =

(EncPK(“meal”),EncPK(“standard”)),el4 = (EncPK(“number o f transits”),EncPK(1))}.
WS1 initializes arRes with values “false", the number of elements of arRes is equal to the
number of elements of T KUR f light . After that, it processes the received T KUR f light and SEP,
to compare the encryption of its property names with the received encryption of the atomic
condition names. With the first token clause T KC1, WS1 verifies that the atomic condition
name encryptions matches its property name encryptions, however, Query() verifies that not
all the atomic conditions are met. Hence, the three first elements of arRes are filled with
values “false". With the second token clause T KC2, all atomic condition name encryptions
are matched as well, and function Query() verifies that the atomic conditions are met. So,
the three next elements in arRes are set to “true". WS1 sends arRes and SEP back to EPApp.

6.4 Privacy-preserving provider requirements

As illustrated in Section 6.2, the proposed framework makes service providers able to pose
conditions on web services they have to invoke to proceed in the composition deployment.
Similarly to user requirements, these constraints are modeled as the disjunctive normal form
of a boolean expression over atomic conditions.

Definition 16. Service provider requirements. Let ai be an activity in a workflow WF , model-
ing the composite web service required by a requesting user u. The requirements specified by
the provider associated with activity ai, referred to as WRai , are defined as a Boolean expres-
sion over atomic conditions, denoted in the DNF as: PRai = {PCl1,PCl2, · · · ,PClm−1,PClm},
where {PCl1,PCl2, · · · ,PClm−1,PClm} are DNF clauses, such that PCl j = {cond1,cond2, . . . ,

condn−1,condn}, ∀ j = {1, . . . ,m}, where condl is an atomic condition, ∀l = {1, . . . ,n}.

Example 20. Let us continue with Example 17. Let us assume that the web service carrying
on the activity flight requires that the next service to be invoked must ensure at least 15-
second response time, usage of 2-GB RAM, and adoption of AES, or at least 10-second
response time, usage of 2-GB RAM, and use of RSA. These provider requirements are
modelled as follows: flight PR f light = {{[Response_time,≤,15], [RAM,≥,2], [Enc_alg,=
,“AES”]},{[Response_time,≤,15], [RAM,≥,2], [Enc_alg,=,“RSA”]}}.

According to Definition 16, provider requirements are satisfied if there exists at least
a clause whose conditions are all verified by the property values of the candidate service,
say WS j+1. This means that WS j and WS j+1 have to cooperate to privately verify whether
WS j+1 property values satisfy the conditions of at least a clause. In general, given a condition

112 A privacy-preserving constrained choreographed service composition

cond applying on a property prop, if WS j+1 satisfies it it means that WS j+1’s prop value(s)
belongs to the predefined set of values satisfying cond. This set is computed as follows.

Definition 17. SVS(cond) Let cond = [prop,op, thresh] be an atomic condition, the set of
values satisfying cond is defined as:

SV S(cond) =



(thresh,UDom(prop)] if op =′>′

[thresh,UDom(prop)] if op =′≥′

[LDom(prop), thresh) if op =′<′

[LDom(prop), thresh] if op =′≤′

thresh∪R if op =′=′

[LDom(prop)
UDom(prop)]\thresh if op =′ ̸=′

(6.1)

where Dom(prop) is the domain of prop, UDom(prop), LDom(prop)) the corresponding
upper and lower bound, and R is a set of random values such that R∩Dom(prop) = /0.

Example 21. Let us continue with Example 20 and consider three atomic conditions:
cond1 = (Response_time,≤,15), cond2 = (RAM,≥,2), and cond3 = (Enc_alg,=,“AES”).
The SVS for these atomic conditions are generated, as follows: SV S(cond1) = [1,15],
SV S(cond2) = [2,500], SV S(cond3) = [1,5].4

In order to verify whether WS j+1’s prop value(s), denoted as WS j+1.prop.val, belongs
to SV S(cond), we make use of the protocol presented in [45], which allows to compute
the common elements between two private sets. Applying this protocol for the private
evaluation of cond implies that WS j generates a polynomial Pcond(y) = Σ

|SV S(cond)|
u=0 (αu × yu)

such that values in SV S(cond) are all and the only roots of Pcond(y). Then, WS j has to
encrypt the obtained |SV S(cond)| coefficients, i.e., {α0,α1, . . . ,α|SV S(cond)|−1,α|SV S(cond)|}
with a homomorphic encryption algorithm.

The encrypted values, denoted EncCoe f , are then sent to WS j+1 together with public
key and related secure parameters. In order to check if WS j+1’s prop value(s) belongs
to SV S(cond), WS j+1 encrypts these value(s) and evaluates the polynomial Pcond(y), by
using the received coefficients. Since all coefficients are encrypted, it actually evaluates
Enc(Pcond(y)) = Enc(Σ|SV S(cond)|

u=0 (αu × yu)), where ∀y ∈ WS j+1.prop.val. Based on [45],
given a value y ∈WS j+1.prop.val, by returning the encrypted value Enc(r ∗Pcond(y)+ y),
where r is random value selected by WS j+1, WS j is able to decrypt it but it cannot read
the value of y if this element is not in the common set. Indeed, in case y ∈ SV S(cond),
then Pcond(y) ̸= 0, which implies that Dec(Enc(r ∗Pcond(y)+ y)) returns a randomized value
thanks to the presence of r.

4In the example, we assumed that the RAM property ha [1,500] as domain and that the web service supports
five encryption algorithms, each of which is associated with a number in the range [1,5].

6.5 Experiments 113

Based on the above description, the overall process implies that, as a first step, WS j

initializes the needed security parameters. This is performed by the SetU p() function
described by Algorithm 5, which takes as input the provider requirements PR j and generates

the encrypted coefficients for all polynomials Pcond(y) = Σ
|SV S(cond)|
u=0 (αu × yu), ∀cond ∈

Cl,∀Cl ∈ PR j. Then, given a clause Cl in PR j, ∀cond ∈ Cl, WS j and WS j+1 execute the
above-described process whose underling protocol is depicted in Table 6.2.

Function 5 SetUp()

Input: PR j = { Cl1,Cl2, . . . ,Cln}
Output: SK,PK,EncCoe f

1: (SK,PK) = generateSecretParamenters();
2: α = 0;
3: for Cl ∈ PR j do
4: β = 0;
5: for cond ∈Cl do
6: SV S = computeSV S(cond);
7: PolyCoe f = generatePolynomial(SV S);
8: EncCoe f [α][β] = Encrypt(PolyCoe f ,PK);
9: β = β +1;

10: end for
11: α = α +1;
12: end for
13: return (SK,PK,EncCoe f);

Table 6.2 Private evaluation of cond in clause Cl

1. WS j →WS j+1 EncCoe f [l][m], where l (i.e., m) is the position
of Cl (cond) in PR j (i.e., Cl)

2. WS j+1 generate Pcond() using EncCoe f [l][m]
3. WS j+1 EncValues = Enc(r ∗Pcond(v)+ v),

∀v ∈WS j+1.prop.val
4. WS j+1 →WS j EncValues

6.5 Experiments

In order to demonstrate the efficiency of our proposal, we carried out several experiments
to measure the overhead, in terms of time and space implied by the privacy-preserving
evaluation of user and provider requirements. All experiments have been run on a PC Intel
Duo Core CPU 3GHz, 4GB RAM, and 64-bit Windows 7 Professional OS. Each type of
experiment has been carried out 20 times, showing then the average overhead.

114 A privacy-preserving constrained choreographed service composition

6.5.1 Time overhead

This overhead has been estimated by measuring the extra time needed for the generation and
processing of the security related information (tokensets and polynomial coefficients). This
has been done for both user and provider requirements. Moreover, in order to show how
the proposal scales, we have considered different scenarios. In particular, as the key size
greatly impacts the overhead of the encryption schemes, we run different experiments by
varying the size of the adopted keys. Furthermore, we also measured how the complexity of
requirements impacts the overhead. More precisely, we have assumed that user and provider
requirements consist of a single DNF clause, but we varied the number of atomic conditions.

Time overhead for user requirement evaluation We implemented the privacy-preserving
user’s requirement evaluation by using the pairing-based cryptography over elliptic curve
presented in [83], with 224, 256, 384, 521, and 603 bits as key size.5 We also varied the
numbers of atomic conditions from 10 to 100. Figure 6.2-a shows the time needed for the
generation of the tokenset by EPApp. In the case of the largest key size (i.e., 603 bits) and
the highest number of conditions (i.e., 100 conditions), the time overhead is about 13s. In
the case of the smallest key size (i.e., 224 bits) and the lowest number of conditions (i.e., 10
conditions), the overhead is around 0.45s. Figure 6.2-b shows the time needed by the service
to privately evaluate the user requirements, where with the largest key size and the highest
number of conditions, the overhead is about 33.2s. Time is greatly reduced, i.e., about 1s,
in case of the simplest scenario (i.e., with the smallest key size and the lowest number of
conditions).

Time overhead for provider requirements evaluation
In this experiment we assumed to have WS j and WS j+1 performing the provider require-

ment evaluation, as described in Section 6.4. In particular, we implemented the framework
presented in [45] by using the Paillier homomorphic encryption [112]. Similarly to the
previous experiment, we have considered different settings. Here, in addition to the key size
and number of atomic conditions, we have to consider that also the degree of the polynomial
might impact the performance. We recall that this latter depends on the cardinality of the
set of values satisfying the condition (i.e., SV S(cond)). As such, we estimated the time by
varying all these three factors. In particular, based on NIST recommendation, the selected
key size varies in {1024, 2048, 3072, 4096} bits. The polynomial degrees vary from 30 to
100, whereas the number of conditions has been set to 40, 70 and 100. As Figure 6.3 reported,
in the worst case (i.e., with 4096-bit key size, 100 conditions and a polynomial of degree
100), at WS j side the time is about 350s. In the case of the shortest key size (1024 bits), a
polynomial degree of 30 and 40 conditions, at WS j the time is 3s. In contrast, as depicted

5These values have been selected based on NIST recommendation.

6.5 Experiments 115

in Figure 6.4, in the worst case at WS j+1 side the time is about 4099 milliseconds. In the
case of the shortest key size (i.e., 1024 bits), a polynomial degree of 30 and 40 conditions at
WS j+1 the time is 73 milliseconds. As Figures 6.2 and 6.4 show, we obtained a reasonable
time overhead, which we expect can be greatly reduced with more powerful machines, as the
ones adopted in the typical SOA architectures.

6.5.2 Space overhead

This overhead has been estimated by measuring the extra information exchanged due to the
private evaluation of user and provider requirements. We estimated the SOAP messages size,
by varying the number of atomic conditions as well as the size of adopted keys. In particular,
the number of atomic conditions varies from 10 to 100. Figure 6.5-a shows the size of SOAP
messages generated during the user requirements evaluation. Here, key sizes values are {224,
256, 384, 521, 603} bits. As the figure depicts, in the case of the largest key size (i.e., 603
bits) and the highest number of conditions (i.e., 100 conditions), the SOAP message storing
user requirements has size 438KB. In contrast, in the simplest case (i.e., 224 bits key and
10 conditions), the SOAP message size is 17KB. Figure 6.5-b shows the size of the SOAP
messages generated during provider requirements evaluation, where adopted key sizes are
{1024, 2048, 3072, 4096} bits. In the case of the largest key size and the highest number
of conditions, the SOAP message containing the provider requirements has size 123.7KB.
In contrast, in the simplest case, the SOAP message size is 13.5KB. We believe this is a
reasonable overhead thanks to the actual available bandwidth facilities.

116 A privacy-preserving constrained choreographed service composition

a) Time (ms) for the token generation at the user side

b) Time (ms) for the token evaluation at the service side

Fig. 6.2 Time overhead for the privacy-preserving evaluation of user requirements

6.5 Experiments 117

a) with 30 as polynomial degree

b) with 70 as polynomial degree

c) with 100 as polynomial degree

Fig. 6.3 Time overhead for the privacy-preserving evaluation of provider’s requirements at
WS j side.

118 A privacy-preserving constrained choreographed service composition

a) with 30 as polynomial degree

b) with 70 as polynomial degree

c) with 100 as polynomial degree

Fig. 6.4 Time overhead for the privacy-preserving evaluation of provider’s requirements at
WS j+1 side.

6.5 Experiments 119

a) Size of SOAP messages created during user requirements evaluation

b) Size of SOAP messages created during provider requirements evaluation

Fig. 6.5 Size of SOAP messages

Chapter 7

Conclusion and Future work

Under the motivation presented in Chapter 1, in this dissertation, we investigate requirements
on preserving user privacy and securing user data against adversaries in different collaboration
types among multiple participants. In particular, we focus on centralized and decentralized
models, and consider participants as users or services. To make it more understanding, we
deploy several different collaboration scenarios. Moreover, we investigate and adopt different
cryptography algorithms as well, and deploy them in different collaborative scenarios as
followed:

• Scenario 1 investigates a secure mobile social collaboration among multiple parties
through mobile P2P payment (see Chapter 3). Particularly, in Scenario 1 we presented a
privacy-preserving path discovery protocol on support of trust preference enforcement
in decentralized mobile payment systems. The protocol is able to protect information
about the relationship type, depth and trust of the discovered paths. As well we
described a method of optimizing the message flooding using k-anonymity technique
and proved that it can improve the network performance.

• Scenario 2 exploits social network relationships for P2P payments over MANET
(see Chapter 4). More specifically, in Scenario 2 we presented a privacy-preserving
path discovery protocol, namely ESP, in support of trust preference enforcement in
decentralized mobile payment systems exploiting MANET. The ESP protocol is able
to protect the relationship information in terms of the type, depth, and trust of the
discovered paths. We proposed some optimization strategies to decrease the number
of tokensets sent over MANET to improve the network performance. We proved the
efficiency of the system by experimental results.

• Scenario 3 investigates the web service composition in the centralized model called
web service orchestration (see Chapter 5). In particular, in Scenario 3 we developed a

122 Conclusion and Future work

secure protocol for orchestrated composite web services. The protocol does not rely
on a trusted broker and, through selective encryption, ensures confidentiality of the
involved parameters as well as the correct execution order.

• Scenario 4 investigates the decentralized collaboration among web services according
to the decentralized model called web service choreography (see Chapter 6). For
more details, in Scenario 4, we presented our proposed framework to enforce user and
provider requirements in the scenario of service choreography in a privacy-preserving
way, that is, without the release of any information of users and providers relating to
their requirements.

However, there are still open problems that need to be solved in the future work as
follows:

• In Scenario 1 and 2, there is a need of tackling the case in which nodes suddenly
go offline leading to the disconnected path. The messages are blocked at the nodes
connecting with the offline node.

• In Scenario 3, the expressive specification language needs to be enriched so as to
support users in fully stating their requirements with more details.

• In Scenario 4, there is a need of tackling the case in which two direct connected nodes
can collude each other to fool the protocol.

References

[1] Aalst, W., Hofstede, A., Kiepuszewski, B., and Barros, A. (2003). Workflow Patterns. In
Journal of Distributed and Parallel Databases, 14(1):5–51.

[2] Abdul-Rahman, A. (2004). A framework for decentralised trust reasoning. Ph.D.
dissertation, University College London.

[3] Ahmed, T., Tripathi, A., and Srivastava, A. (2014). Rain4service: An approach towards
decentralized web service composition. In IEEE International Conference on Services
Computing, SCC 2014, pages 267–274, Washington, DC, USA. IEEE Computer Society.

[4] Albreshne, A., Fuhrer, P., and Pasquier-Rocha, J. (2009). Web services orchestration
and composition: Case study of web services composition. Department of Informatics
Internal Working Paper no 09-03, University of Fribourg, Switzerland.

[5] Ali, S. A., Roop, P., and Warren, I. (2013). Web Service Choreography: Unanimous
Handling of Control and Data. In International Journal of Software and Informatics,
volume 7, pages 309–330.

[6] Androulaki, E., Choi, S. G., Bellovin, S. M., and Malkin, T. (2008). Reputation sys-
tems for anonymous networks. In Privacy Enhancing Technologies, 8th International
Symposium, PETS 2008, Leuven, Belgium, July 23-25, 2008, Proceedings, pages 202–218.

[7] Auvinen, A., Vapa, M., Weber, M., Kotilainen, N., and Vuori, J. (2006). Chedar: Peer-
to-peer middleware. In Proceedings of the 20th International Conference on Parallel
and Distributed Processing, IPDPS’06, pages 234–234, Washington, DC, USA. IEEE
Computer Society.

[8] Avanade (2013). Global survey: Is enterprise social collaboration living up to its promise?
"http://az370354.vo.msecnd.net/social-enterprise/Avanade

[9] Balakrishnan, P. (2011). Enabling web services security between modules in websphere
process server v7.0. http://www.ibm.com/developerworks/websphere/library/techarticles/
1103_balakrishnan/1103_balakrishnan.html.

[10] Balamurugan, M., Bhuvana, J., and Pandian, S. C. (2012). Privacy preserved collabora-
tive secure multiparty data mining. Journal of Computer Science, 8(6):872–878.

[11] Bennett, S. (2014). The history of social networking through the ages.
http://www.adweek.com/socialtimes/social-networking-ages/499633.

http://www.ibm.com/developerworks/websphere/library/techarticles/1103_balakrishnan/1103_balakrishnan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1103_balakrishnan/1103_balakrishnan.html

124 References

[12] Benveniste, A. (2008). Composing web services in an open world: Qos issues. In Fifth
International Conference on the Quantitative Evaluaiton of Systems (QEST 2008), 14-17
September 2008, Saint-Malo, France, page 121.

[13] Biskup, J., Carminati, B., Ferrari, E., Muller, F., and Wortmann, S. (2007). Towards
secure execution orders for compositeweb services. In Web Services, 2007. ICWS 2007.
IEEE International Conference on, pages 489–496.

[14] Blundo, C., De Cristofaro, E., Galdi, C., and Persiano, G. (2008). Validating orches-
tration of web services with bpel and aggregate signatures. In on Web Services, 2008.
ECOWS ’08. IEEE Sixth European Conference, pages 205–214.

[15] Bogetoft, P., Christensen, D. L., Damgård, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J. D., Nielsen, J. B., Nielsen, K., Pagter, J., Schwartzbach, M., and Toft, T.
(2009). Financial cryptography and data security. pages 325–343. Springer-Verlag.

[16] Boneh, D. and Waters, B. (2007). Conjunctive, subset, and range queries on encrypted
data. In Theory of cryptography, pages 535–554. Springer.

[17] Bosomworth, D. (2015). Statistics on mobile usage and adoption to inform your mobile
marketing strategy. http://www.smartinsights.com/mobile-marketing/mobile-marketing-
analytics/mobile-marketing-statistics/.

[18] Bradford, T. and Keeton, W. R. (2012). New person-
to-person payment methods: Have checks met their match?
"https://www.kansascityfed.org/publicat/econrev/pdf/12q3Bradford-Keeton.pdf".

[19] Brickley, D. and Miller, L. (2010). Foaf vocabulary specification 0.98.
http://xmlns.com/foaf/spec/.

[20] Brucker, A., Malmignati, F., Merabti, M., Shi, Q., and Zhou, B. (2013). A framework
for secure service composition. In Social Computing (SocialCom), 2013 International
Conference on, pages 647–652.

[21] Carminati, B., Ferrari, E., and Tran, N. (2015a). A privacy-preserving framework for
constrained choreographed service composition. In Web Services (ICWS), 2015 IEEE
International Conference on, pages 297–304.

[22] Carminati, B., Ferrari, E., and Tran, N. H. (2013a). Enforcing trust preferences in
mobile person-to-person payments. In Social Computing (SocialCom), 2013 International
Conference on, pages 429–434.

[23] Carminati, B., Ferrari, E., and Tran, N. H. (2013b). Smartpay: A lightweight protocol
to enforce trust preferences in mobile person-to-person payments. Science Journal,
2(4):170–182.

[24] Carminati, B., Ferrari, E., and Tran, N. H. (2014). Secure web service composition
with untrusted broker. In Web Services (ICWS), 2014 IEEE International Conference on,
pages 137–144.

References 125

[25] Carminati, B., Ferrari, E., and Tran, N. H. (2015b). Trustworthy and effective person-to-
person payments over multi-hop manets. Journal of Network and Computer Applications.
(accepted).

[26] Caverlee, J., Liu, L., and Webb, S. (2008). Socialtrust: Tamper-resilient trust establish-
ment in online communities. In Proceedings of the 8th ACM/IEEE-CS Joint Conference
on Digital Libraries, JCDL ’08, pages 104–114, New York, NY, USA. ACM.

[27] Chen, K. and Liu, L. (2009). Privacy-preserving multiparty collaborative mining with
geometric data perturbation. Parallel and Distributed Systems, IEEE Transactions on,
20(12):1764–1776.

[28] Chen, S., Wang, C., and Liu, D. (2011). Secure multi-party collaboration systems in
supply chain management. In 1st International Conference on Logistics, Informatics and
Service Science, volume 3.

[29] Cisco (2012). Security practices for online collaboration and social me-
dia. "http://www.cisco.com/c/en/us/solutions/collateral/enterprise/cisco-on-
cisco/Collaboration_Security-1.pdf".

[30] Co., H. T. (2014). "centralized operations: Strategies for today and to-
morrow higher efficiency, better quality, quicker readiness managed services
white paper". https://www.evernote.com/shard/s15/sh/a0b8847e-0cd7-4748-8b4d-
396c39558c35/200022bfb620e02d.

[31] Dasgupta, D. and Dasgupta, R. (2009). Social networks using web 2.0.
http://www.ibm.com/developerworks/library/ws-socialcollab/ws-socialcollab-pdf.pdf.

[32] Davis, I. and E., V. J. (2013). A vocabulary for describing relationships between people.
http://vocab.org/relationship/.

[33] Debortoli, S., Sperner, K., Magerkurth, C., Dobre, D., and Meissner, S. (2012). Project
deliverable d2.3 orchestration of distributed lot service interations. http://www.iot-
a.eu/public/publicdocuments/documents1.

[34] Devi, S. and Thilagavathy, D. (2013). Neighbor node discovery and trust prediction
in manets. International Journal of Science, Engineering and Technology Research,
2(1):145–149.

[35] Dimitriou, T. and Michalas, A. (2012). Multi-party trust computation in decentralized
environments. In New Technologies, Mobility and Security (NTMS), 2012 5th International
Conference on, pages 1–5.

[36] Dingledine, R., Mathewson, N., and Syverson, P. (2004). Tor: The second-generation
onion router. In Proceedings of the 13th Conference on USENIX Security Symposium -
Volume 13, SSYM’04, pages 21–21. USENIX Association.

[37] Dini, G., Pelagatti, M., and Savino, I. M. (2008). An algorithm for reconnecting
wireless sensor network partitions. In Wireless Sensor Networks, pages 253–267. Springer.

126 References

[38] Domingo-Ferrer, J. (2007). A public-key protocol for social networks with private rela-
tionships. In Modeling Decisions for Artificial Intelligence, 4th International Conference,
MDAI 2007, Kitakyushu, Japan, August 16-18, 2007, Proceedings, pages 373–379.

[39] Domingo-Ferrer, J., Viejo, A., Sebé, F., and González-Nicolás, Ú. (2008). Privacy
homomorphisms for social networks with private relationships. Computer Networks,
52(15):3007–3016.

[40] Douceur, J. R. (2002). The sybil attack. In Revised Papers from the First International
Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 251–260. Springer-Verlag.

[41] Durstenfeld, R. (1964). Algorithm 235: Random permutation. Commun. ACM, 7(7).

[42] Eagle, P. N. J., Galbraith, S. D., and Ong, J. (2011). Point compression for koblitz
elliptic curves. Advances in Mathematics of Communication, 5(1):1–10.

[43] Feldman, A. J., Zeller, W. P., Freedman, M. J., and Felten, E. W. (2010). Sporc: Group
collaboration using untrusted cloud resources. In Proceedings of the 9th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI’10, pages 1–, Berkeley,
CA, USA. USENIX Association.

[44] Ferro, E. and Potorti, F. (2005). Bluetooth and wi-fi wireless protocols: a survey and a
comparison. Wireless Communications, IEEE, 12(1):12–26.

[45] Freedman, M. J., Nissim, K., and Pinkas, B. (2004). Efficient private matching and set
intersection. In Advances in Cryptology - EUROCRYPT 2004, volume 3027, pages 1–19.
Springer Berlin Heidelberg.

[46] Garriss, S., Kaminsky, M., Freedman, M. J., Karp, B., Mazières, D., and Yu, H. (2006).
Re: Reliable email. In In Proc. NSDI, pages 297–310.

[47] Gartner (2012). Gartner says worldwide mobile payment transaction value to surpass
usd 171.5 billion. http://www.gartner.com/newsroom/id/2028315.

[48] Gartner (2014). Gartner says by 2018, more than 50 percent of users will use a tablet or
smartphone first for all online activities. http://www.gartner.com/newsroom/id/2939217.

[49] GEOFF (2013). The worldwide growth of social media. http://wersm.com/the-
worldwide-growth-of-social-media/.

[50] Gervais, A., Karame, G. O., Capkun, V., and Capkun, S. (2014). Is bitcoin a decentral-
ized currency? IEEE Security & Privacy, 12(3):54–60.

[51] Glaeser, E. L., Laibson, D., and Sacerdote, B. (2002). An economic approach to social
capital. Economic Journal, 112(482):F437–F458.

[52] Golbeck, J. (2005a). Personalizing Applications through Integration of Inferred Trust
Values in Semantic Web-based Social Networks. In Semantic Network Analysis Workshop
at the 4th International Semantic Web Conference.

[53] Golbeck, J. (2005b). Personalizing Applications through Integration of Inferred Trust
Values in Semantic Web-based Social Networks. In Semantic Network Analysis Workshop
at the 4th International Semantic Web Conference.

References 127

[54] Golbeck, J., Parsia, B., and Hendler, J. (2003). Trust networks on the semantic web. In
Cooperative Information Agents VII, 2782:238–249.

[55] Goldreich, O. (2004). The foundations of cryptography. Cambridge University Press.

[56] Gonçalves, M., dos Santos Moreira, E., and Martimiano, L. (2010). Trust management
in opportunistic networks. In Networks (ICN), 2010 Ninth International Conference on,
pages 209–214.

[57] Goyal, P., Parmar, V., and Rishi, R. (2011). Manet: Vulnerabilities, challenges, attacks,
application. IJCEM International Journal of Computational Engineering & Management,
11(2011):32–37.

[58] Gundelsweiler, G. (2006). Reputation and trust in mobile social networks. In Location-
Based Services in (collocated with International Conference on System of Systems Engi-
neering, SoSe 2006).

[59] Hankerson, D. and Menezes, A. (2011). Encyclopedia of Cryptography and Security
(2nd Ed.), chapter NIST Elliptic Curves. searching.

[60] Hasan, O., Bertino, E., and Brunie, L. (2009). Efficient privacy preserving protocols
for decentralized computation of reputation. at LIRIS UMR 5205 CNRS/INSA de
Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/École Centrale de
Lyon.

[61] Herrmann, K. and Jaeger, M. A. (2004). Payflux - secure electronic payment in mobile
ad hoc networks. In Lopez, J., Qing, S., and Okamoto, E., editors, ICICS, volume 3269 of
Lecture Notes in Computer Science, pages 66–78. Springer.

[62] Hoebeke, J., Moerman, I., Dhoedt, B., and Demeester, P. (2004). An Overview of
Mobile Ad Hoc Networks: Applications and Challenges. Journal of the Communications
Network, 3(3):60–66.

[63] Holmes, R. (2015). 5 trends that will change how you use social media in 2015.
http://time.com/3590866/social-media-2015/.

[64] Hwang, S. Y. and Lee, C. H. (2013). Reliable web service selection in choreographed
environments. In Journal of Decision Support System, 54(3):1463–1476. Elsevier Science
Publishers B. V.

[65] IBM (2015). Decentralized orchestration of composite web services.
http://researcher.ibm.com/researcher/view_project_subpageṗhp?id=3863.

[66] Isaac, J. T., Zeadally, S., and Cámara, J. S. (2012). A lightweight secure mobile payment
protocol for vehicular ad-hoc networks (vanets). 12(1):97–123. Kluwer Academic
Publishers.

[67] Ismail, R., Boyd, C., Josang, A., and Russell, S. (2003). Strong privacy in reputation
systems. In 4th International Workshop on Information Security Apps (WISA’03).

128 References

[68] Ismail, R., Boyd, C., Jøsang, A., and Russell, S. (2004). Private reputation schemes for
p2p systems. In Fernández-Medina, E., Castro, J. C. H., and García-Villalba, L. J., editors,
2nd Intl. Workshop on Security in Info. Systems (WOSIS’04), pages 196–206. INSTICC
Press.

[69] Johnson, D., Menezes, A., and Vanstone, S. (2001). The elliptic curve digital signature
algorithm (ecdsa). International Journal of Information Security, 1(1):36–63.

[70] Jun-feng, T., Yu-zhen, L., and Peng, Y. (2009). A weighted closeness-based trust
combination model. In Proceedings of the 2Nd International Conference on Interaction
Sciences: Information Technology, Culture and Human, ICIS ’09, pages 320–325, New
York, NY, USA. ACM.

[71] Katiyar, V., Dutta, K., and Gupta, S. (2010a). Article:a survey on elliptic curve
cryptography for pervasive computing environment. International Journal of Computer
Applications, 11(10):41–46.

[72] Katiyar, V., Dutta, K., and Gupta, S. (2010b). A survey on elliptic curve cryptography
for pervasive computing environment. Int. Journal of Computer Applications, 11(10).

[73] Kattepur, A., Georgantas, N., and Issarny, V. (2013). Qos composition and analysis in
reconfigurable web services choreographies. In ICWS, pages 235–242. IEEE Computer
Society.

[74] Kerschbaum, F., Biswas, D., and de Hoogh, S. (2009). Performance comparison
of secure comparison protocols. In Database and Expert Systems Application, 2009.
DEXA’09. 20th International Workshop on, pages 133–136. IEEE.

[75] Khadka, R., Sapkota, B., Pires, L., van Sinderen, M., and Jansen, S. (2011). Model-
driven development of service compositions for enterprise interoperability. In Enterprise
Interoperability, volume 76, pages 177–190. Springer Berlin Heidelberg.

[76] Kiltz, E., Leander, G., and Malone-Lee, J. (2005). Secure computation of the mean and
related statistics. In Theory of Cryptography, pages 283–302. Springer.

[77] Kinateder, M. and Pearson, S. (2003). A privacy-enhanced peer-to-peer reputation
system. In Bauknecht, K., Tjoa, A., and Quirchmayr, G., editors, E-Commerce and
Web Technologies, volume 2738 of Lecture Notes in Computer Science, pages 206–215.
Springer Berlin Heidelberg.

[78] Kinateder, M., Terdic, R., and Rothermel, K. (2005). Strong pseudonymous communi-
cation for peer-to-peer reputation systems. In Proceedings of the 2005 ACM Symposium
on Applied Computing (SAC ’05), pages 1570–1576, New York, NY, USA. ACM Press.

[79] King, B. (2004). A point compression method for elliptic curves defined over g f (2n).
In Work. Theory and Practice in Public Key Cryptography.

[80] King, B. (2009). Mapping an Arbitrary Message to an Elliptic Curve when Defined
over GF(2n). Int. Journal of Network Security, 8(2).

[81] Kissner, L. (2006). Privacy-preserving distributed information sharing. Document
Thesis at School of Computer Science, Carnegie Mellon University, Pittsburgh.

References 129

[82] Kissner, L. and Song, D. (2005). Privacy-preserving set operations. In IN ADVANCES
IN CRYPTOLOGY - CRYPTO 2005, LNCS, pages 241–257. Springer.

[83] Koblitz, N. and Menezes, A. (2005). Pairing-based cryptography at high security levels.
In Proceedings of Cryptography and Coding 2005, volume 3796 of LNCS, pages 13–36.
Springer-Verlag.

[84] Kuter, U. and Golbeck, J. (2007). Sunny: A new algorithm for trust inference in social
networks using probabilistic confidence models. In Proceedings of the 22Nd National
Conference on Artificial Intelligence - Volume 2, AAAI’07, pages 1377–1382. AAAI
Press.

[85] Lakhtaria, K. I. and Lakhtaria, K. I. (2012). Technological Advancements and Applica-
tions in Mobile Ad-Hoc Networks: Research Trends. IGI Global, Hershey, PA, USA, 1st
edition.

[86] Lee, K., Jeon, J., Lee, W., Jeong, S., and Park, S. (2003). Web services: Require-
ments and possible approaches world wide web consortium (w3c). "www.w3c.or.kr/kr-
office/TR/2003/ws-qos". accessed on Nov. 30, 2006.

[87] Lenstra, A. and Verheul, E. (2000). Selecting cryptographic key sizes. Public Key
Cryptography, 1751:446–465. Springer Berlin Heidelberg.

[88] Li, J., Li, R., and Kato, J. (2008). Future trust management framework for mobile ad
hoc networks. Communications Magazine, IEEE, 46(4):108–114.

[89] Li, J., Zhang, Z., and Zhang, W. (2010). Mobitrust: Trust management system in
mobile social computing. In 10th IEEE International Conference on Computer and
Information Technology, CIT 2010, Bradford, West Yorkshire, UK, June 29-July 1, 2010,
pages 954–959. IEEE Computer Society.

[90] Li, R. and Li, J. (2013). Requirements and design for neutral trust management
framework in unstructured networks. The Journal of Supercomputing, 64(3):702–716.

[91] Li, W., Wen, Q., Su, Q., and Jin, Z. (2012). An efficient and secure mobile payment
protocol for restricted connectivity scenarios in vehicular ad hoc network. Computer
Communications, 35(2):188–195.

[92] Lindell, Y. and Pinkas, B. (2000). Privacy preserving data mining. In Proceedings of the
20th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO
’00, pages 36–54. Springer-Verlag.

[93] Liu, G., Wang, Y., and Orgun, M. A. (2011). Trust transitivity in complex social
networks. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2011, San Francisco, California, USA, August 7-11, 2011.

[94] Liu, Y., Ngu, A. H., and Zeng, L. Z. (2004). Qos computation and policing in dynamic
web service selection. In Proceedings of the 13th International World Wide Web Confer-
ence on Alternate Track Papers &Amp; Posters, WWW Alt. ’04, pages 66–73, New York,
NY, USA. ACM.

130 References

[95] Machanavajjhala, A., Kifer, D., Gehrke, J., and Venkitasubramaniam, M. (2007). L-
diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data, 1(1).

[96] Malkhi, D., Nisan, N., Pinkas, B., and Sella, Y. (2004). Fairplay: a secure two-
party computation system. In Proceedings of the 13th Conference on USENIX Security
Symposium - Volume 13, SSYM’04, pages 20–20. USENIX Association.

[97] Mani, M., Nguyen, A. M., and Crespi, N. (2009). What’s up 2.0 : P2p spontaneous
social networking. In Society, I. C., editor, IEEE INFOCOM ’09 : 28th Conference on
Computer Communications, April 19-25, Rio de Janeiro, Brazil, pages 1–2.

[98] Martinelli, F. and Matteucci, I. (2014). Partial Model Checking for the Verification and
Synthesis of Secure Service Compositions. In Public Key Infrastructures, Services and
Applications, pages 1–11. Springer. rank B, FoR1 0803 Thanks to Aniketos, NESSoS.

[99] Matjaz, B. (2009). A hands-on introduction to bpel.
http://www.oracle.com/technology/pub/articles/matjaz_bpel1.html. Oracle.

[100] Mendelson, E. (1997). Introduction to Mathematical Logic (4th ed). London Chapman
& Hall, Reading, Massachusetts.

[101] Mezzour, G., Perrig, A., Gligor, V., and Papadimitratos, P. (2009). Privacy-preserving
relationship path discovery in social networks. In Garay, J., Miyaji, A., and Otsuka, A.,
editors, Cryptology and Network Security, volume 5888 of Lecture Notes in Computer
Science, pages 189–208. Springer Berlin Heidelberg.

[102] Michalas, A., Olesh, V. A., Komninos, N., and Prasad, N. R. (2011). Privacy Preserv-
ing Trust Establishment Scheme for Mobile Ad-hoc Networks. In IEEE International
Conference on Communications, pages 752–757.

[103] Microsoft (2014). Work like a network: Accelerating team collaboration with social.

[104] Miers, I., Garman, C., Green, M., and Rubin, A. D. (2013). Zerocoin: Anonymous
distributed e-cash from bitcoin. In Proceedings of the 2013 IEEE Symposium on Security
and Privacy, SP ’13, pages 397–411, Washington, DC, USA. IEEE Computer Society.

[105] Mohamed, E., El-Etriby, S., and Abdul-kader, H. (2012). Randomness testing of
modern encryption techniques in cloud environment. In Informatics and Systems (INFOS),
2012 8th International Conference on, pages CC–1–CC–6.

[106] Mohamed, M. F., ElYamany, H. F., and Nassar, H. M. (2013). A Study of an Adaptive
Replication Framework for Orchestrated Composite Web Services. In SpringerPlus.

[107] Moore, K. (2011). From social networks to collaboration networks: The next evolution
of social media for business. http://www.forbes.com/sites/karlmoore/2011/09/15/from-
social-networks-to-collaboration-networks-the-next-evolution-of-social-media-for-
business/.

[108] Nakamoto, S. (2009). Bitcoin: A peertopeer electronic cash system.
http://bitcoin.org/bitcoin.pdf.

References 131

[109] Nyre, s. A., Bernsmed, K., Bo, S., and Pedersen, S. (2011). A server-side approach
to privacy policy matching. In Availability, Reliability and Security (ARES), 2011 Sixth
International Conference on (ARES’11), pages 609–614. IEEE Computer Society.

[110] Oracle (2008). Oracle® fusion middleware developer’s
guide for oracle soa suite, 11g release 1 (11.1.1), e10224-01.
http://download.oracle.com/otndocs/products/soa/e10224.pdf.

[111] Oracle (2011). Fusion middleware securing weblogic web services for oracle weblogic
server. "http://docs.oracle.com/cd/E21764_01/web.1111/e13713/toc.htm". Oracle Fusion
Middleware Online Documentation Library, 11g Release 1 (11.1.1.5).

[112] Paillier, P. (1999). Public-key Cryptosystems Based on Composite Degree Residuosity
Classes. In Proceedings of the 17th International Conference on Theory and Application
of Cryptographic Techniques, EUROCRYPT’99, pages 223–238, Berlin, Heidelberg.
Springer-Verlag.

[113] Panackal, J., Pillai, A., and Krishnachandran, V. (2014). Disclosure risk of individuals:
A k-anonymity study on health care data related to indian population. In Data Science
Engineering (ICDSE), 2014 International Conference on, pages 200–205.

[114] Panda, G., Mitra, A., Prasad, A., Singh, A., and Gour, D. (2010). Applying l-diversity
in anonymizing collaborative social network. International Journal of Computer Science
and Information Security (IJCSIS), 8(2).

[115] Peterson, R. S., Wong, B., and Sirer, E. G. (2010). Blindfold: a system to "see no evil"
in content discovery. In Freedman, M. J. and Krishnamurthy, A., editors, Proceedings of
the 9th international conference on Peer-to-peer systems, IPTPS’10, San Jose, CA, USA,
April 27, 2010, page 1. USENIX.

[116] Pietiläinen, A.-K., Oliver, E., LeBrun, J., Varghese, G., and Diot, C. (2009). Mo-
biclique: Middleware for mobile social networking. In Proceedings of the 2Nd ACM
Workshop on Online Social Networks, WOSN ’09, pages 49–54, New York, NY, USA.
ACM.

[117] Pino, L. and Spanoudakis, G. (2012). Constructing secure service compositions with
patterns. In Eighth IEEE World Congress on Services, SERVICES 2012, Honolulu, HI,
USA, June 24-29, 2012, pages 184–191.

[118] Pino, L., Spanoudakis, G., Fuchs, A., and Gürgens, S. (2014). Discovering secure
service compositions. In CLOSER 2014 - Proceedings of the 4th International Conference
on Cloud Computing and Services Science, Barcelona, Spain, April 3-5, 2014., pages
242–253.

[119] Prathyusha, K. and Ramakrishna, S. S. (2014). Secure multi-party computation
protocols for collaborative data publishing with m-privacy. International Journal of
Computer Science and Information Technologies (IJCSIT), 5(5).

[120] Ramkumar, T. B., Kalaikumaran, T., and Karthik, S. (2014). Trust based secure
payment scheme for multi-hop wireless networks. International Journal of Advanced and
Innovative Research, 3(5):173–177.

132 References

[121] Ripple (2012). Ripple payment system. https://ripple.com/.

[122] Rivest, R., Adleman, L., and Dertouzos, M. (1978). On Data Banks and Privacy
Homomorphisms. New York: Academic Press.

[123] Rodriguez, J. (2015). Building an iot platform: Centralized vs. decentralized mod-
els. https://www.linkedin.com/pulse/building-iot-platform-centralized-vs-decentralized-
models-rodriguez.

[124] Rosen, M. (2008). Bpm and soa: Orchestration or choreography -
bptrends. http://www.bptrends.com/publicationfiles/0408COLBPMandSOA-
OrchestrationorChoreography 0804Rosen v01 _MR_finalḋocṗdf.

[125] Ross-Talbot, S. and Fletcher, T. (2009). http://www.w3.org/TR/ws-cdl-10-primer/.
World Wide Web Consortium, Working Draft WD-ws-cdl-10-primer-20060619.

[126] S., G. R. (2014). New trends in mobile ad hoc network. International Journal of
Ethics in Engineering and Management Education (IJEEE), 1(4).

[127] Sarigöl, E., Riva, O., Stuedi, P., and Alonso, G. (2009). Enabling social networking in
ad hoc networks of mobile phones. Proc. VLDB Endow., 2(2):1634–1637.

[128] Satish, N. and Wahidabanu, R. (2012). Towards trustworthy semantic qos based web
service description and discovery. International Journal of Soft Computing, 7:104–112.

[129] Shinde, S. (2011). "academy technotes - centralized/decentralized collabo-
ration model". https://www.evernote.com/shard/s15/sh/a0b8847e-0cd7-4748-8b4d-
396c39558c35/200022bfb620e02d.

[130] Singhal, A., Winograd, T., and Scarfone, K. (2007). Guide to secure web services.
"NIST Special Publication 800-95".

[131] Squicciarini, A., Carminati, B., and Karumanchi, S. (2011). A privacy-preserving
approach for web service selection and provisioning. In Web Services (ICWS), 2011 IEEE
International Conference on, pages 33–40.

[132] Squicciarini, A., Carminati, B., and Karumanchi, S. (2013). Privacy aware service
selection of composite web services invited paper. In Collaborative Computing: Network-
ing, Applications and Worksharing (Collaboratecom), 2013 9th International Conference
Conference on, pages 260–268.

[133] Srivastava, A. (2014). 2 billion smartphone users by 2015 : 83% of internet usage
from mobile. http://dazeinfo.com/2014/01/23/smartphone-users-growth-mobile-internet-
2014-2017/.

[134] Staff, D. T. (2014). The history of social networking.
http://www.digitaltrends.com/features/the-history-of-social-networking/.

[135] Statista (2015). Statistics and facts about mobile social networks.
http://www.statista.com/topics/2478/mobile-social-networks/.

[136] Sweeney, L. (2002a). K-anonymity: A model for protecting privacy. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., 10(5):557–570.

References 133

[137] Sweeney, L. (2002b). K-anonymity: A model for protecting privacy. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., 10(5):557–570.

[138] Tbahriti, S. E., Mrissa, M., Medjahed, B., Ghedira, C., Barhamgi, M., and Fayn, J.
(2011). Privacy-aware daas services composition. In Proceedings of the 22Nd International
Conference on Database and Expert Systems Applications - Volume Part I, DEXA’11,
pages 202–216. Springer-Verlag.

[139] team, I. A. (2015). "adept: An iot practitioner perspective ibm/samsung’s proof of
concept draft paper for adept". https://www.evernote.com/shard/s15/sh/a0b8847e-0cd7-
4748-8b4d-396c39558c35/200022bfb620e02d.

[140] Tebaa, M., El Hajji, S., and El Ghazi, A. (2012). Homomorphic encryption method
applied to cloud computing. In Network Security and Systems (JNS2), 2012 National
Days of, pages 86–89.

[141] ThoughtInfected (2015). Decentralization and the future world order – part i: The
revolution is on. http://thoughtinfection.com/2015/01/24/decentralization-and-the-future-
world-order-part-i-the-revolution-is-on/.

[142] Tian, J., Lu, Y., and Yuan, P. (2009). A weighted closeness-based trust combination
model. In Sohn, S., Chen, L., Hwang, S., Cho, K., Kawata, S., Um, K., Ko, F. I. S., Kwack,
K.-D., Lee, J. H., Kou, G., Nakamura, K., Fong, A. C. M., and Ma, P. C. M., editors, Int.
Conf. Interaction Sciences, volume 403 of ACM International Conference Proceeding
Series, pages 320–325. ACM.

[143] Toh, C. K. (2001). Ad Hoc Mobile Wireless Networks: Protocols and Systems. Prentice
Hall.

[144] Tople, S., Shinde, S., Chen, Z., and Saxena, P. (2013). Autocrypt: Enabling homomor-
phic computation on servers to protect sensitive web content. In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security, CCS ’13, pages
1297–1310, New York, NY, USA. ACM.

[145] Truby, A. (2011). 15 social media collaboration platforms.
http://www.freshminds.net/2011/03/social-media-collaboration-platforms-wiki/.

[146] Velloso, P. B., Laufer, R. P., de Oliveira Cunha, D., Duarte, O. C. M. B., and Pujolle,
G. (2010). Trust management in mobile ad hoc networks using a scalable maturity-based
model. IEEE Transactions on Network and Service Management, 7(3):172–185.

[147] Voss, M., Heinemann, A., and Mühlhäuser, M. (2005). A privacy preserving rep-
utation system for mobile information dissemination networks. In First International
Conference on Security and Privacy for Emerging Areas in Communications Networks
(SECURECOMM'05), pages 171–181. IEEE.

[148] Vu, L.-H., Hauswirth, M., and Aberer, K. (2005). Qos-based service selection and
ranking with trust and reputation management. In Proceedings of the 2005 Confederated
International Conference on On the Move to Meaningful Internet Systems - Volume Part I,
OTM’05, pages 466–483, Berlin, Heidelberg. Springer-Verlag.

134 References

[149] Vukojevic, K., Karastoyanova, D., and Leymann, F. (2013). Choreogra-
phies and cloud infrastructure for simulation workflows. http://www.iaas.uni-
stuttgart.de/institut/mitarbeiter/vukojevic/images/20121203_SimTech
_Statusseminar_KarolinaVukojevicṗdf.

[150] Walsh, A. E., editor (2002). Uddi, Soap, and Wsdl: The Web Services Specification
Reference Book. Prentice Hall Professional Technical Reference.

[151] Wang, Y., Zhang, J., and Vassileva, J. (2014). A super-agent-based framework for rep-
utation management and community formation in decentralized systems. Computational
Intelligence, 30(4):722–751.

[152] White, S. A. (2004). Process modeling notations and workflow patterns.
http://www.bptrends.com/.

[153] Wu, J. (2005). Peer-to-Peer Overlay Abstractions in MANETs. Handbook on Theoret-
ical and Algorithmic Aspects of Sensor Ad Hoc Wireless, and Peer-to-Peer Networks.

[154] Xiao, B., Cao, J., Shao, Z., Zhuge, Q., and Sha, E. H.-M. (2007). Analysis and
algorithms design for the partition of large-scale adaptive mobile wireless networks.
Computer communications, 30(8):1899–1912.

[155] Xu, W., Venkatakrishnan, V., Sekar, R., and Ramakrishnan, I. (2006). A framework
for building privacy-conscious composite web services. In Web Services, 2006. ICWS ’06.
International Conference on, pages 655–662.

[156] Xue, M., Carminati, B., and Ferrari, E. (2011). P3D - privacy-preserving path
discovery in decentralized online social networks. In Proceedings of the 35th Annual
IEEE International Computer Software and Applications Conference, COMPSAC 2011,
Munich, Germany, 18-22 July 2011, pages 48–57.

[157] Yang, B., Zhou, M., and Li, G. (2007). A reputation system with privacy and incentive.
In Feng, W. and Gao, F., editors, SNPD (1), pages 333–338. IEEE Computer Society.

[158] Yao, A. C.-C. (1986). How to generate and exchange secrets. In Proceedings of the
27th Annual Symposium on Foundations of Computer Science, SFCS ’86, pages 162–167,
Washington, DC, USA. IEEE Computer Society.

	PhD thesis cover
	Blank page.pdf
	thesis
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Background and Motivation
	1.1.1 Secure-aware Mobile social collaboration
	1.1.2 Web based collaboration
	1.1.3 Secure-aware web composition

	1.2 Contribution
	1.2.1 Scenario 1: Secure Mobile P2P Payment
	1.2.2 Scenario 2: Secure Mobile P2P Payment over MANET
	1.2.3 Scenario 3: Secure Orchestrated Web Service Composition against Untrusted Broker
	1.2.4 Scenario 4: Privacy-preserving constrained choreographed service composition

	1.3 Dissertation Organization

	2 Related work
	2.1 Multiple party collaboration
	2.2 Security and privacy in multiple party collaboration
	2.3 Decentralized social trust computing
	2.4 Secure mobile person-to-person payment
	2.4.1 Recent person-to-person payment systems
	2.4.2 Security-aware decentralized mobile payment.
	2.4.3 Secure path discovery
	2.4.4 Security-aware MANET payment

	2.5 Web service collaboration
	2.5.1 Security-aware orchestrated web composition
	2.5.2 Security-aware choreographied web composition

	3 Mobile Person-To-Person Payment
	3.1 Background and notations
	3.1.1 Trust preferences in Social Networks
	3.1.2 Elliptic Curve Cryptography (ECC)

	3.2 Trust-driven mobile P2P payments
	3.3 Mobile-oriented Decentralized Path Finding
	3.3.1 Depth computation
	3.3.2 Trust computation
	3.3.3 Relationship type computation

	3.4 Flooding Optimization
	3.5 Security properties
	3.6 Experiments
	3.6.1 Computational costs
	3.6.2 Flooding optimization

	3.7 Complexity Analysis

	4 Secure Mobile Person-To-Person Payment over Mobile Ad-hoc NETwork
	4.1 MANET (Mobile Ad-hoc NETwork) introduction
	4.2 SmartPay over MANET: Issues and Solutions
	4.3 Expanded Smartpay Protocol (ESP)
	4.4 Condition-driven flooding
	4.5 Experiments
	4.5.1 ESP Performance
	4.5.2 Condition-driven Flooding Optimization

	4.6 Complexity Analysis
	4.7 Security Analysis
	4.7.1 Honest-but-curious nodes
	4.7.2 Malicious nodes

	5 Secure Orchestrated Web Service Composition against Untrusted Broker
	5.1 Security Requirements for Service Composition on Untrusted Broker
	5.2 An Architecture for Secure Web Service Composition with Untrusted Broker
	5.3 Secure Workflow Execution
	5.4 Selective User Credentials and Parameters Encryption
	5.5 Encrypted Activity Blocks
	5.6 Secure Evaluation of Test Conditions
	5.7 Experimental Results
	5.8 Security Properties

	6 A privacy-preserving constrained choreographed service composition
	6.1 Privacy issues in a constrained choreographed web service composition
	6.2 A privacy-preserving framework for choreographed composition
	6.3 Privacy-preserving user requirements evaluation
	6.4 Privacy-preserving provider requirements
	6.5 Experiments
	6.5.1 Time overhead
	6.5.2 Space overhead

	7 Conclusion and Future work
	References

