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Abstract

In conservation biology the computation of biodiversity maps, based on statistical mod-

els is a central concern. These maps, produced with objective and repeatable methods

are an essential tool for conservation and monitoring programs as well as for landuse

planning.

Since the computation of biodiversity maps requires complex and time consuming pro-

cedures for data processing and analysis, it is necessary to design methods for homoge-

neous, scalable and repeatable data management and analysis.

Moreover, the huge volume of data used in ecological modelling requires suitable software

architectures to store, analyze, retrieve and distribute information in order to support

research and management actions in due time.

First of all we developed an analysis system (SOS - Species Open Spreader) providing

statistical and mathematical models to predict species distribution in relation to a set

of predictive environmental and geographical variables

The system is composed of a module for data input/output toward and from the GIS and

of a package of scripts for the application of di�erent modelling techniques. At present,

three statistical techniques are integrated in SOS: Logistic Regression Analysis (LRA),

Environmental Niche Factor Analysis (ENFA) and �exible Discriminant Analysis with

method BRUTO. Furthermore, two empirical spatial methods of analysis are available

within SOS: Habitat Suitability Index (HSI) and Spatial Overlay.

The system is designed to work with the GIS (Geographical Information System) soft-
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ware GRASS and the statistical environment R, coupled together through the SP-

GRASS6 library. Three di�erent outputs are expected: text and graphical outputs

with statistical results and suitability maps.

Second, we tested the use of spatial Database Management Systems (Spatial DBMS)

to handle wildlife and socio-economic data and we developed a web database application

to provide facilities for database access. The information system was built for the Meru

district (Tanzania) in the context of an Italian cooperation project of land use planning

in Maasai rural areas.

We tested two di�erent solutions: SpatiaLite and PostgreSQL-PostGIS; they both o�er

advanced technical facilities and spatial extensions to analyze spatial data. SpatiaLite is

a new solution and o�ers the main advantages to consist of a unique �le and to present

a user-friendly interface, which make it the best solution for many applications. in spite

of this we used PostgreSQL-PostGIS since it represents a well-established information

system supported by libraries for web applications development.

We applied SOS to three case studies at di�erent spatial scale: Brescia plain (small

scale), Mount Meru region - Tanzania (medium scale) and Lombardy region (big scale)

in order to produce maps of species potential distribution and biodiversity maps for

planning and management.

We applied logistic regression analyses to compute models and ROC analysis for clas-

si�cation performance evaluation. The automation of processes through SOS gave us

the possibility to build models for a large number of vertebrate species. The analysis

produced very reliable results at middle and big scale while regression methods did not

converge at small scale. This is probably due to habitat homogeneity and to the use of

environmental variables with an insu�cient level of detail.

The potential distribution and biodiversity maps produced also had in all cases an ap-

plicative use in fact we used mammal species models computed for Mt. Meru region to
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produce a map of biodiversity within the area: this map represents an informative base

for land use planning at village level within a cooperation project for Maasai economic

development and environmental redemption.

Amphibians and reptiles models, computed for Lombardy, represent a good informative

base for planning management actions in the region.
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1. Introduction

Species distribution models are becoming an essential tool in Ecology and Environmental

Management research. These predictive modelling techniques are common in numerous

areas such as Biogeography and Evolution, Conservation Biology and Climate Change

Research.

In a recent review by Guisan and Thuiller (2005) the history of species distribution mod-

els is revisited and described as having three major phases. First of all, models relied

on statistical quanti�cation of species-environment relationship based on empirical data.

Then an expert-based spatial modelling phase occurred, without statistical or empirical

treatment. In the meantime, the advancements and di�usion of Geographic Information

Systems (GIS) has supported spatial analysis in ecological studies and �nally a spatially

explicit statistical and empirical modelling of species distribution framework has been

de�ned. The development on predictive modelling was largely supported by the ad-

vances and interralation of statistics, information and computational science, improving

the understanding of complex ecological systems.

As for most habitats and taxonomic groups detailed species distribution maps are

unavailable, the prediction of species spatial distribution is a central concern in ecol-

ogy. Moreover, policies for preserving global species richness and the assessments on

species conservation status depend on the knowledge of temporal and spatial distribu-

tions (IUCN, 2001; Green et al., 2005). The predictive modelling importance comes

from the ability to estimate species distribution (species data) by relating it with some
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1. Introduction

environmental predictors (Elith et al., 2006; Araujo and Guisan, 2006; Meynard and

Quinn, 2007) and producing maps of potentially suitable habitat distributions (Brotons

et al., 2004; Olivier and Wotherspoon, 2006; Rodriguez et al., 2007).

In the last decade the availability of spatial data ready to be used as predictors of

species distribution has dramatically increased (e.g. remotely sensed data, digital el-

evation models, etc). Environmental predictors are any environmental variable from

Geographic Information System (GIS) or other mapped data; in Meynard and Quinn

(2007) they appear divided in three categories:

1. resource variables - describe consumed matter or energy;

2. direct gradients - having a direct relationship to the species physiology;

3. indirect gradients - having a strong relationship with other direct gradients or

resource variables and are easily measured.

Species data are �eld observations, therefore they rely on several issues that may a�ect

the quality of the data:

• species biology: organism characteristics may diminish species detectability (e.g.

mobility, inconspicuousness) or determine di�erent species prevalence.

• Planning of the census: monitoring e�orts are limited in space, time, taxonomic

coverage, and are altered by the variability among observers and habitat types.

• Data storage: species data usually have errors and biases due to an unsystematic

method of manner of accumulating samples; for instance, data collected at di�erent

geographic scales.

Researchers often have to work with sample data that result from complete lack of

standardization in surveying and in data storage (Zaniewski et al., 2002; Elith et al.,

2006; Rodriguez et al., 2007; Meynard and Quinn, 2007) and so the main issue a�ecting

model performance seems to be species data quality (Zaniewski et al., 2002; Stockwell
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and Peterson, 2002; Brotons et al., 2004). Moreover, the modelling process will begin

with the perspective of low prevalence of species and lower performance of the models.

There are, in broad a sense, two groups of methods to generate habitat suitability

maps (Brotons et al., 2004; Tsoar et al., 2007). Apart from obvious di�erences in the

statistical and computational backgrounds, they di�er in the kind of data they require.

The �rst group of methods needs presence-absence data to generate predictions. This

group includes popular statistical approaches such as Generalized Linear Models (GLM),

Generalized Additive Models (GAM), Classi�cation and Regression Tree analysis as well

as Arti�cial Neural Networks (ANN).

The other set of methods includes Ecological Niche Factor Analysis (ENFA; Hirzel et al.

2001), Environmental envelopes (BIOCLIM, DOMAIN, HABITAT; Walker and Cocks

1991), Genetic Algorithms (GARP; Stockwell and Peters 1999) and it uses sets of ob-

served occurrences without sites of observed absences (hereafter called presence-only

data). The latter methods were developed in order to allow the creation of distribution

maps as well, even if starting from "incomplete data", that either had inadequate ab-

sence information or had none. In fact, as often stressed in the literature (Hirzel et al.,

2002; Engler et al., 2004; Elith et al., 2006; Gibson et al., 2007), is that absence data

may not be inferred certainly. This is particularly true for rare species, for those species

which do not occupy the entire suitable area available to them and, as said before, for

species which are di�cult to detect.

Methods that use presence-only data usually do not surpass the performance of tech-

niques that employ higher quality (presence-absence) data, but they have been found

to model particularly well those data sets (Zaniewski et al., 2002; Brotons et al., 2004;

Engler et al., 2004).

Thus, some modelling techniques, such as GLM and GAM, are being improved in or-

der to use pseudo-absences data (i.e. random generated points) for model construction

(Engler et al., 2004; Olivier and Wotherspoon, 2006; Gibson et al., 2007; Tsoar et al.,
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1. Introduction

2007). These enhanced techniques are classi�ed as presence-only methods too, because

there is no use of real absence data. The way in which pseudo-absences are generated

is particularly important because it may exert in�uence upon the �nal quality of the

models (Zaniewski et al., 2002).

The simpler and quickest way to generate pseudo absences is to choose them totally at

random over the entire study area (Stockwell and Peterson, 2002). It is important to

remark that, however, this approach can generate absences in areas that correspond, in

fact, to suitable areas.

For this reason other methods have been tested to reduce this problem. Gibson et al.

(2007) uses GLM with case-weighting to reduce the e�ective sample size of randomly

selected pseudo-absences for modelling a rare parrot species in Western Australia. An-

other way was proposed by Zaniewski et al. (2002), for instance, in the case study of

New Zealand ferns, by choosing the absences using an environmental weighted random

sample. They have created a habitat suitability map for all the fern species using GAM

with totally random pseudoabsences; only after that another set of generated absences

is selected, these ones being proportional to the predictions made by the �rst habitat

suitability map �tting GAM models. A very interesting proposal is the one by Engler

et al. (2004) which combines the strengths of ENFA and GLM; just like the one before,

this is a two-step procedure but the �rst habitat suitability map is made with ENFA.

The model evaluation phase is extremely important to assess the accuracy of the pre-

dictions. Two types of prediction errors can be detected from presence-absence models:

false positives (type I) and false negatives (type II, Fielding and Bell, 1997; Ottaviani et

al., 2004). False positive errors are unavoidable, as they occur when the model predicts a

suitable habitat where the target organism does not exists, and not all suitable habitats

are occupied or reported for the said organism. False negatives correspond to points

predicted as unsuitable habitat while the species indeed exist (Ottaviani et al., 2004).

These errors may be caused by incomplete surveys or scarsely detectable species.
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As discussed before, the reliability of absences data depends on several factors; more-

over most of the available data banks have vague location details. Presence-absence

models and presence-only models can provide the same kind of outputs (habitat suit-

ability maps), however usually they cannot use the same evaluation method. This is

one of the reasons for enhanced presence-absence models development, because presence

only methods cannot contrast predictions with absence locations (Zaniewski et al., 2002;

Hirzel et al., 2006).

In this research work, the modelling process uses a typical presence-absence method

�tted with pseudo-absences, the Generalized Linear Model and speci�cally Logistic Re-

gression Analysis (LRA). Modelling was applied to three di�erent case studies charac-

terized by di�erent scale and di�erent species datasets.

The �rst one is a small scale case study and is applied to an area in the Brescia plain

(Northern Italy) characterized by deep habitat modi�cations; the area is investigated

through monitoring programs in order to assess environmental impacts. Species data

are represented by �eld data for di�erent taxa (Amphibians, Birds and Mammals).

The second case study (medium spatial scale) is located in the North of Tanzania, in

the Mount Meru ecosystem, that comprises mountain forest covering volcanic cones and

semi-arid vegetation. Species data came from �eld work and refer to Mammals; models

are used for land use planning within a cooperation project for sustainable development.

The third is a big spatial scale case study regarding the whole Lombardy region (North-

ern Italy) and is targeted to model the distribution of Reptiles and Amphibians using

data from distribution atlases.

The application of analytical techniques for wildlife spatial modelling is a consequence

of the present availability of large datasets that contribute to improve the explanatory

power of ecological complexity models and thus ecosystem management. On the other

hand this huge and heterogeneous volume of data brings the challenge of managing and
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1. Introduction

analyzing huge volumes of data (Cagnacci et al., 2008). This drives the conceptual

de�nition of a suitable software architecture that can be developed with speci�c tools

on di�erent platforms; the main requirements and needs are summarized in Urbano et

al. (2008):

1. data scalability: to handle large amount of data consistently, persistent and very

large data storage capability is needed.

2. Long-term storage for data reuse: data must be consistently stored in the long

term, independently from a speci�c application, to permit data reuse for di�erent

studies.

3. Periodic and automatic data acquisition: this requires automated procedures to

receive, review and store data from di�erent inputs.

4. E�cient data retrieval: fast data search and retrieval tools are needed to support

e�cient data analysis and management.

5. Management of spatial information: spatial data require retrieval, manipolation

and management tools speci�c to spatial domains.

6. Global spatial and time reference: they are needed to handle studies with regional

or global perspectives.

7. Heterogeneity of applications: it requires a software architecture that supports the

integration of di�erent software tools for speci�c task-oriented applications.

8. Easy implementation of new algorithms: it is imporant to support implementa-

tion and customization of new algorithms to test, or even apply new analytical

techniques.

9. Integration of di�erent data sources: spatial and non spatial datasets should be

correctly managed and e�ciently integrated into a comprehensive data structure.
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This allows the correct analysis of data derived from di�erent sources: remote

sensing, environmental and socio-economic databases, wildlife-related data etc.

10. Multi-user support: several users might need to access data simultaneously, both

locally and remotely, with di�erent access privileges (Wong et al., 2007).

11. Data sharing: this requires adherence to standard data formats, de�nition of meta-

data and methods for data storage and management that, in turn, guarantee in-

teroperability.

12. Data dissemination: this requires the integration of speci�c tools to make data

accessible (e.g. Data Web interfaces and Web-GIS tools).

13. Cost-e�ectiveness: the cost-e�ectiveness of software tools is an important accessi-

bility factor for institutions with limited �nancial resources that can be applied to

production and analysis of data instead of data handling.

Advanced information systems currently developed to manage wildlife data are based

on relational or object-relational database management system (DBMS), with dedicated

spatial tools (Urbano et al., 2010). From the technical point of view DBMS include soft-

ware architectures and tools that completely meet the requirement of DBMS for wildlife

ecological studies. Technical facilities include: storage capacity, backup and recovery,

data integrity and consistency, automation of processes, data retrieval performance,

reduced data redundancy, client/server architecture, multi-user environment, data secu-

rity, and standards compliance.

In addition DBMS are increasingly provided with spatial extensions (spatial DBMS): this

gives the opportunity to store and manipulate native data types and spatial reference

systems and to integrate spatial objects with standard DBMS data types. Moreover, in

a spatial database, geometric data are e�ectively manipulated with spatial indexes and

spatial extensions of the standard structured query language.

Finally the cost-e�ectiveness requirement can be ful�lled using open source software
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1. Introduction

that includes spatial DBMS, libraries, desktop GIS, Web database packeges and Web-

GIS packages.

In this study we tested the use of Spatial database Management Systems (DBMS) to

handle wildlife data. The application aimed the creation of an informative system to

store, analyze and retrieve spatial and non spatial data, addressed to Institutions for

socioeconomical and conservation planning.

This research study was focused on three major points:

1. applicability of Generalized Linear Models at di�erent scales;

2. automatization of statistical analysis and spatial processing;

3. use of spatial DBMS to handle wildlife data.

To understand to which extent a chosen model could give reliable species spatial pre-

dictions at di�erent scales was a objective of this study. The goal of producing biodiver-

sity maps is to detect their possible use as decision support systems on conservation and

management actions. We aimed at seeing whether it was possible to perform the mod-

elling processes in a expeditious manner by starting from existing datasets and available

GIS variables, in order to produce outputs readily exploitable for management purposes.

Finally another goal was to �nd solutions for data warehousing and data processing in

order to standardize data storage and to automate computational processes.
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2. Study areas

2.1. Brescia plain

(small spatial scale)

The study area corresponds to a 3 km bu�er along the planned 29 km highway Ospitaletto-

Montichiari, South-West of Brescia. The highway will connect the A4 highway, at Ospi-

taletto resort, with the airport of Brescia-Montichiari; it is an important infrastructure

for transportation, serving as belt-way to Brescia city, that partly follows the existing

roadway Provinciale 19. The construction of the highway started in September 2008 and

will be �nished at the end of 2012.

The study area extends for 87 km2, is completely �at (about 50 m a.s.l) and falls within

the Brescia plain, known as Bassa Bresciana. Economy is based on agriculture, mainly

single-crop farming (maize) even though industry is extensively present.

The climate is typical of the Po Plain, with long and humid summer and cold and

foggy winter. Rainfall is abundant and concentrate in the months of March-May and

October-November. Winter usually lasts from November to the end of March and is

characterized by short rainfalls; snowfalls can occur.

The Brescia plain is crossed by numerous streams and arti�cial channels for irrigation;

Mella and Garza are the main rivers in the study area. The Mella river is 96 km long,
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2. Study areas

Figure 2.1.: Study area in the Brescia plain corresponding to a 3 km bu�er along the

projected highway Ospitaletto-Montichiari

it rises at the Maniva pass, run through the Trompia Valley and the city of Brescia and

�ows into the Oglio river in the Cremona province. The Mella river is an important re-

source for irrigation, since it provides water through numerous channels. Unfortunately

its water, starting from Brescia, is characterized by high levels of pollution. The Garza

torrent rises between Lumezzane and Agnosine, runs through the Bertone Valley, the

Garza Valley, the low Trompia Valley and the city of Brescia, partly open and partly

underground; then it �ows in the plain of southern Brescia and then gets lost in Ghedi.

A second branch of the river, called Garzetta, comes from Brescia and �ows into the

Mella. The area is characterized by resurgences, typical water springs of the Po plain,

with characteristic �ora and fauna. Water has a constant temperature of 9-10◦ C in
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2.1. Brescia plain (small spatial scale)

winter and 12-14◦ C in summer and is widely used for irrigation. The main resour-

gences in the area are: Vaso Mandolossa, Vaso Orso and Vaso Fiume. All these rivers

are characterized by physical, chemical and biotic modi�cations, underlined by surveys

(Istituto Oikos, 2008). In general the quality index for rivers as evaluated by the Fluvial

Functionality Index - IFF is of poor quality (Istituto Oikos, 2008) because of the charac-

teristic of the Brescia plain, with extended cultivations and widespread, even if limited,

urban areas that decrease river banks quality. There are also some riverlines treats en-

closed between arti�cial banks with consequent deep habitat modi�cations. The aquatic

habitat of all the rivers in the area is seriously degraded with negative consequences on

the stability and balance of aquatic biocoenoses. Some of the rivers are over-exploited

for irrigation and thus completely dry in summer. Waters are characterized by a quite

elevated degree of pollution: as a matter of fact the assessment based on the Extended

Biotic Index ranges between "polluted environment" to "deeply polluted environment".

(Istituto Oikos, 2008) Aquatic vegetation was found only in rivers characterized by the

presence of water throughout the whole year; species are typical of rivers in �at lands

with slow water �ows, although in some cases species indicating the presence of organic

pollution have been found.

The study area is mainly interested by monocultures and industrial settlements with

limited natural areas along rivers. In such a compromised landscape, hedge rows between

�elds, small woods and single trees play an important role in the ecosystem. A study on

vegetation in the area (Oikos, 2008) registered some valuable tree entities, mainly single

trees with, only a few groups of trees.

The species with highest number of samples is Quercus robur. This species, once com-

mon, is now very rare in plain woods but persists with isolated specimen of big dimension

at roads and water channels margins. Populus nigra is the second species represented

in the "valuable" samples, Ulmus minor is the most represented autochthonous species

and is always present in good vegetative conditions. Celtis australis and Alnus glutinosa
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2. Study areas

were also registered with a few samples. The phytosociological analysis of the arboreal

layer underlined the dominance of Platanus hybrida, cultivated and then made wild in

the whole Italian territory. The area does not show peculiarities in vegetation, apart

from the presence of communities of the order Fagetalia sylvaticae, which are relicts of

ancient plain woods and of the order Alnetalia glutinosae and Salicion albae, typical

units of wetland. The rest of vegetation is characterized by common and exotic species

such as Robinia pseudoacacia that originally came from North America.

2.2. Mount Meru Region - Tanzania

(medium scale)

Mount Meru Ecosystem is located in Arusha region, northern Tanzania. The region

is well known for its unique wildlife resources and serves as the center for tourists in

the northern circuit. This study was conducted on an area that belongs to di�erent

administrations:

• the Mount Meru Ecosystem, partly inside and partly outside Arusha National

Park, covering the northern part of Arumeru district,

• the eastern part of Longido district,

• a small portion of Siha district of Kilimanjaro region.

The study area (Figure 2.2) covers a surface of 784 km2 and, excepted Arusha National

Park, a large part of it falls in village communal land where people and wildlife coexist.

The entire study area is a plain lying trough between three important high land marks.

On the East side is the well known volcanic mountain Kilimanjaro (5895 m a.s.l), on

the South-west Mount Meru, a recent volcano (4566 m a.s.l), and on the north Mount

Longido (2629 m a.s.l.). It borders Amboseli National Park to the further North at the

border between Tanzania and Kenya. Thus the area is basically considered as part of

18



2.2. Mount Meru Region - Tanzania (medium scale)

the much broader Meru-Kilimanjaro and Amboseli ecosystems.

At the center of the study area is located the village of Uwiro, which is particularly

important because the cartographic outputs of this study will be used as an instrument

supporting decision processes in landuse planning for this village.

2.2.1. Climate

The main factors for climate determination have been identi�ed as rainfall and temper-

ature. Mount Meru ecosystem has a bimodal rainfall type, with a marked dry season.

The short rains start in November-December and the long rains occur in March-May

with a peak in April. There is a prolonged dry period from June to October, and a short

dry season in January-February, which does not occur in all years. The short rains di�er

both in intensity and distribution from one year to another, but the long rains are more

regular. The beginning of the rainy seasons is variable; sometimes the short rains start

in October and end in January.

The higher altitude slopes receive an average of 800-1500 mm of rainfall per year; these

comprise the southern, western and southeastern slopes of Mount Meru (Hedberg, 1951

cited in Bolick, 1974). On the northeastern and northern slopes, in the low-lying trough

where the study was conducted, the rainfall is highly a�ected by the presence of the two

high mountains Meru and Kilimanjaro. Mount Meru has higher rainfall on its south-

ern, southeastern and western slopes, whereas the northern slope is on the leeward side,

hence with low rainfall. Moreover, Kilimanjaro has higher rainfall on the eastern side

while the western side, where the study area lies, receives much less water. The northern

Mount Meru area is semi arid and arid, receiving an annual average rainfall of 300-600

mm. Although the rainfall amount is very low in the area, its intensity is high resulting

into considerable erosion in several zones, forming deep-cutting gullies (Kidane, 1974).

There is no much data recorded on temperature, but data from Arusha regional inte-

grated development plan of 1981 show that the average minimum temperature is 15-18◦ C

and maximum average temperature is 27-30◦ C .
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2.2.2. Geology and soil

The geological characteristics of the study area are highly in�uenced by the volcanic

activities of the Great East African Rift Valley. The high numbers of volcanic activities

within the Rift Valley resulted into high numbers of volcanic cones.

The distribution of soil types is strongly related to the geology and terrain of the area.

Soil drainage varies from well drained to poorly drained.

On higher slopes near Mount Meru, soils are typically volcanic in origin and derived from

the volcanic rocks and ashes hurled during the eruption of Meru and Kilimanjaro (Lasan,

1971; Bolick, 1974). With little rainfall and scanty vegetation cover, the weathering

process of the volcanic rocks has been slow, and, as a result, a large part is characterized

by shallow soils, and in some areas bare rocks dominate the ground. In the swamps and

depressions soils are alkaline in nature dominated by leached soluble materials being

transported from higher slopes. (Kidane, 1974; Kiunsi, 1993).

2.2.3. Water sources

Water availability is the main problem in the whole area except the part adjacent to

Arusha National Park boundary that is close to Mount Meru slopes. In the past two

main rivers, Ngare Nanyuki and Ngare Nairobi �owed all over from the Meru-Kilimanjaro

basin, that is a part of the great Pangani basin, to the Amboseli basin.

With high water demands from an increasing population and change in land use in which

the majority is now adopting small-scale irrigation farming in the upstream area, the

�ow of the two rivers has been reduced dramatically. Ngare Nanyuki river no longer

�ows further north. Also the other important river, Ngare Nairobi, that once was �ow-

ing up to Ngasurai hill and to Nesiwandeti plains, by 1997 had only sporadic �ow to

Tinga Tinga village (Poole & Reuling, 1997). The highly reduced water �ow today in

both rivers is due to high demand of agriculture activities upstream.

An increase of irrigation in the villages of Olkung'wado, Uwiro and the newly emerged
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irrigated �elds at Ngabobo village contributeed to the high reduction of the water vol-

ume, and currently the �ow of Ngare Nanyuki is only up to Ngabobo village and within

the NARCO ranch where some people have encroached it for farming.

Sections of Mkuru, Engutukoit, and Losinoni villages experienced severe water problems

with no river �owing into their lands. They totally depend on seasonal rivers that are

only available in the wet season. This problem of water scarcity has adversely impacted

people's life and properties.

With the cut o� of the Maasai furrow water �ow, there has been an increase in human-

wildlife con�icts that in most cases are caused by animals searching for water. This

applies particularly to elephants. Severe con�icts occur repeatedly at Ngereiyani and

Tinga Tinga, particularly during the dry season when no water is available in the plains.

Nowadays much fewer species are seen in the plains during the dry season, as most of

them move close to water points of Amboseli, resulting in high herbivore pressure in

the ecosystem (Poole & Reuling, 1997). Other species move into bush lands in areas of

Mkuru, Uwiro and Ngabobo.

Other water sources available in the area are boreholes, that are very few and scattered

in the area, man made dams, arti�cial ponds, springs, and water that is retained in the

big gullies after rains. Other seasonal swamps and man made dams remain the major

source for both wildlife and livestock in the whole area, particularly in the Maasai lands

of Losinoni, Mkuru and Engutukuit.

2.2.4. Vegetation and land cover characteristics

The East African vegetation is highly connected to the local geological formations. Most

of East Africa is covered by savannah and scrubs of di�erent types, while the mountain

zones harbour a series of di�erent vegetation zones (Kiunsi, 1993).

A brief description of the vegetation of the study area has been derived from work

done by Istituto Oikos in the preparation of the Mount Meru Conservation Project

Land cover (MMCP, 2004). Additional information was added from Kidane (1974), and
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Kiunsi (1993).

The most common vegetation types of the study area are closed forest, wooded shrub

land, bushed grassland, open grass land-shrub savannah, and swamps.

Within Mount Meru ecosystem, the mountain forest is found in areas covering sections

of Arusha National Park in the high altitudes from 1700 to 3300 m a.s.l (Hecky, 1971,

cited in Bolick, 1974). The mountain forest is well developed on the southern, western,

and southeastern slopes and, to a lesser extent, on the higher slope in the North.

The lower section of the park is covered by secondary forest vegetation or dry mountain

forest as explained by Vesey-Fitzgerald (1974). Closed forest of typical dry mountain

forest types is found dominating the high altitudes of Longido Mountain, serving as the

water catchment reservoir.

The remaining part of the area is covered by semi arid vegetation, the typical vegetation

type of the study area (Kiunsi, 1993). Vegetation cover is poor, dominated by shrubs,

thickets, open woodlands and grassland of typical savannah lands. Bushes are the most

dominating land cover, which is characterized by scattered trees and shrubs. Dominant

species include Acacia mellifera, Acacia nubica and Sericocomopsis hildebrandtii, Acacia

drepanolobium and some Acacia tortilis.

The wooded shrub land type is also known by others as wooded grassland (Kidane,

1974). In this type a mixture of trees and shrubs is found. In most cases grass cover

is poor, and the main dominant tree species are Acacia tortilis, Acacia drepanolobium,

Salvadora persica, Balanites aegyptiaca and Commiphora spp. It is common on the foot

slopes of mountains, both in the northern Meru and Longido sections.

The open grassland-shrub savannah is de�ned by its open grassland and low tree cover.

It is a mixture of di�erent vegetation types: sparse trees, shrubs, and open grasses that

constitute a large part of it. This vegetation type is dominant all over the area. The

plains characterized by this vegetation are always overstocked. In the wet season they

are the major grazing and calving points for wildlife, particularly grazers. The shallow

volcanic soil favours the growth of the grasses.
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Swamps and seasonally �ooded areas are scattered in the zone, and can be found in

many di�erent places in the village lands where the terrain allows water to settle.

The main permanent swamps are found at Olkung'wado and Uwiro villages. Other

seasonal swamps can be found all over the place and they are always used as grazing

areas in the dry season for most of the livestock.

Swamps and riverine vegetation is much more pronounced at Olkung'wado and Uwiro

villages. These swamps are permanently wet throughout the year and several springs

are found in the swamps that supply water for both people and livestock.

The main dominating species along the river are Acacia xanthophloea and Ficus spp.

Irrigated crop �elds are found scattered all along the river.
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Figure 2.2.: Mount Meru region - Arusha - Tanzania
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Figure 2.3.: Vegetation and land cover characteristics in Mount Meru region - Arusha -

Tanzania
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2.2.5. Agriculture and livestock keeping

Agriculture in this study is considered as small scale farming, basically for food crops.

It is the main economic activity among the Meru and Waarusha communities. The

community practices small-scale farming, mainly at household level.

The main food crops cultivated are maize, beans, and tomatoes; mostly they depend on

the rainfall seasons of the year. The traditional cash crops are banana and co�ee, culti-

vated on a small scale. Recently, a change in rainfall patterns, which are unpredictable,

and a high demand for tomatoes, onions and Irish potatoes from the neighbouring re-

gions lead the communities to modify their traditional agricultural system and introduce

irrigation schemes.

There are several increasing farms, increasing in numbers, around Olkung'wado, Uwiro

and Kisimiri chini, with several irrigation channels from springs and Ngare Nanyuki

river supplying water to the farms. In the rest of the Maasai communities, despite their

e�orts to try to change their lifestyle into agro-pastoralism, the soils are very shallow

with insu�cient rains, which causes low harvests and sometimes no harvest at all.

Livestock keeping remains the key economic activity among the Maasai communities.

They are the key livestock keepers in the area: both Waarusha and Meru communities

also practice livestock keeping but with smaller numbers of heads. Modes of grazing

patterns within Maasai communities as well as cattle movement patterns are done in

di�erent ways, based on pasture availability and the season of the year.

2.3. Lombardy Region

(large spatial scale)

Lombardy is a northern Italian region formed by twelve provinces: Bergamo, Brescia,

Como, Cremona, Pavia, Lecco, Lodi, Monza, Mantova, Milan, Sondrio and Varese. This

23859 km2 region includes all the italian geological structures: Alpine formation at the
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North, Apennines in the South-West (Oltrepo Pavese) and the Po plain in the center and

South of the region. Approximately 20% of this region corresponds to protected areas,

including regional parks, natural reserves and other areas of conservational interest.

2.3.1. Geology, Geomorphology and Hydrography

Lombardy, according to geomorphological and vegetation di�erences, can be subdivided

in three areas: the Alpine zone, the Prealpine zone and the Plain (Prigioni et al., 2001).

The Alpine zone in the Lombardy region is located at the center of the Alpine arc and

is constituted on the East by Retiche Alps range with the major glaciers and peaks

reaching 4000 m a.s.l., and on the West by the Lepontine Alps with their numerous

pikes reaching elevations in the 3000 m a.s.l. range.

The line that joins the Como lake, the Mezzola lake, and through the Chiavenna Plain

and the S. Giacomo Valley heads North to the Spluga pass represents the boundary

between Lepontine and Retiche Alps (Prigioni et al., 2001).

The Alpine zone is characterized by a clear glacial geomorphology, which dates back to

the Quaternary Age, while today water is the main agent modeling valleys and slopes.

In Lombardy the Alps present a central crystalline band between two norther and souther

calcareous bands.

The Lombard Prealps are located at the foot of the Lepontine Alps, with calcareous

prevalence, containing the great lakes: Verbano (Maggiore), Ceresio (Lugano), Lario

(Como) and Benaco (Garda). The ridges hit the 2500 m a.s.l. elevation range and

the relief exhibits a heterogeneous aspect due to the geologic variability (Prigioni et al.,

2001).

The Po Plain can be di�erentiated between high plains and low plains. The high plain

lays on the North of the superior limit of resurgences and it is characterized by acid

soils, poor humus content and reduced number of rivers.

The main rivers that represent the boundaries of this area (Ticino and Adda) �ow in
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canyons and for this reason they are hardly exploited for irrigation. The lower plain lays

between the river Po and the rivers Ticino and Mincio and it is a water rich zone.

2.3.2. Vegetation and land cover characteristics

The Alpine vegetation changes as the elevation varies. Generally, starting from higher

elevations and descending towards valleys bottom, several di�erent typical vegetations

are found.

On summit, where there is snow for most part of the year, we �nd Dryas octopetala

and Carex �rma. The following horizon is characterized by grasslands with Gramineae,

Ciperaceae and other herbaceous vegetation.

The introduction of cattle resulted in a transition towards secondary grasslands leading

to proliferation of Nardus stricta (Prigioni et al., 2001).

At lower heights begins the Subalpine area, that is the area of transition between the

shrubby phase and arboreous phase. This zone shows di�erent phenologies such as brush-

woods, moorlands and the typical trees are Conifers. In the arboreous environment the

coniferous forest is composed mainly by Picea excelsea, Larix decidua and Pinus cembra.

The broadleaf horizon is mostly composed by Quercus petraea, Tilia cordata, Acer

campestre and Corylus avellana (Prigioni et al., 2001). The long streams found in

this region lead to forest and scrub specialized formations.

The submountain layer is a zone of expansion for Quercus pubescens, Quercus petraea,

Tilia cordata and Carpinus betulus (Prigioni et al., 2001). The frequent and abundant

rainfall favours the development of the vegetation. The dominant species are, in higher

ranges Fagus sylvatica, and in lower ones Castanea sativa. There are several �oristic

endemisms that are typical of the Prealps (Prigioni et al., 2001).

The natural cover of the high plain is constituted by the moorland, but nowadays the

landscape is dominated by intensive mais, wheat and clover cultivations and industrial

and residential settlements. The lower plain has been used for cereal cultivation since

ages. In the past, the Po Plain was covered by broadleaved forest, shrubs, grasses and
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marshes. Nowadays small island of natural vegetation can be found mainly along the

Ticino river and partly along other rivers. Natural vegetation along rivers is mainly

constituted by willow shrubs and trees (Salix alba), poplar and alder.

Apart from rivers banks, natural plain woods are constituted by Quercus robur and

Carpinus betulus. Cultivated rows of Populus canadensis are widespread and represent

one of the few elements of diversi�cation of the agricultural landscape (Prigioni et al.,

2001).

In the last forty years an increasing percentage of land has been used for industrial

and housing settlements due to high increase in demography and industry, mainly near

the metropolitan area of Milan, Bergamo and Brescia. Mountain regions showed deep

abandon of agriculture and livestock keeping (Prigioni et al., 2001).

2.3.3. Climate

Lombardy lies in a temperate climatic zone with a continental component.

The Alps and the Apennines are meteorological barriers which dictate the thermal and

rainfall regimes in the region. This leads to several microclimates typical of di�erent

circumscribed areas (Prigioni et al., 2001).

The lakes zone shows sublitoral temperate climate, the plains and the great valleys are

characterized by a subcontinental temperate one, and the Prealps and the Alps, depend-

ing on the height, exhibit a cool temperate, a cold temperate, or a glacial climate. The

latter can be found in areas higher than the 3000 m above sea level (Prigioni et al.,

2001).

The average temperature in January (Winter) is between 0◦ C and 3◦ C , the average

temperature for the month of July (Summer) is 22-24◦ C . The highest precipitation in

the region occur in the Prealps (more than 2000 mm) while the lowest values are regis-

tered along the Po river (less then 750 mm). Rainfall in the Alps reaches its maximum

in Summer and its minimum in Winter. (Prigioni et al., 2001).

For the Prealps and plains there are two maximum precipitation peaks, during Spring
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and Autumn, and two minimum precipitation peaks, in Summer and in Winter (Prigioni

et al., 2001).

2.3.4. Demography

The population resident in Lombardy amount to about 9600000 and represent the 16.2%

of Italian population. The popolution growed constantly since 1961 from 3.5 millions to

9.5 millions in 2006.

Plain and hills represent 60% of the regional territory and house 90% of the popula-

tion. Since Sondrio province is located in the Alpine zone all the population lives in the

mountain but it's concentrated in the valleys.

Other provinces that present mountain territory are Bergamo, Brescia, Como, Varese

(Alps and Prealps) and Pavia (Appennine). Only a quarter of the population of Berg-

amo, Brescia and Como is resident in mountain ares and the percentage further drops

in the Varese and Pavia provinces.

The plain is characterized by areas with very high demographic density and less popu-

lated areas (Prigioni et al., 2001).
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Figure 2.4.: Lombardy region
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3.1. Datawarehouse for wildlife data handling

In this study we tested the use of spatial DBMS as datawarehouse for wildlife projects.

Moreover, we developed a web-database application for data input and output. The

information system was based on PostgreSQL-PostGIS while the architecture of the

web-database application was based on the LAMP system.

3.1.1. Spatial Database and Database Management System

(DBMS)

A database is an integrated collection of data records and �les based on a data model.

At the moment the relational data model is the predominant choice in most applications.

The relational data model has a basic structure, the relation, which has a �xed structure

for data storage (Codd, 1969). Data are stored in relations in an e�cient way and can be

matched by using common characteristics found within the relations, so that the resulting

groups of data are organized and are much easier to understand by most people.

A DBMS is a software package that controls the creation, maintenance and the use of a

database; it provides facilities to extract information in a query language and to specify

the logical organization inside a database and to access and use the information within

it. It also gives the possibility to control data access, enforce data integrity, manage

concurrency, and restore the database from backups. Moreover a DBMS also provides
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the ability to logically present database information to users.

A Spatial DBMS is a spatial extension of normal DBMS, representing a powerful tool for

geospatial data handling, giving the advantage of storing spatial and non-spatial data

in a single environment with high e�ciency in query building, spatial analysis and data

viewing. Spatial DBMS support the geometry data-type and through spatial index are

able to access very quickly geometric data (Shekhar, 2003).

3.1.2. Web-database applications

Users access databases in order to input, manipulate and retrieve data. The language

used to communicate with the database is the Structured Query Language (SQL) but

non specialized users can access the database through dedicated forms.

Data dissemination among institutions is important to support management decision and

requires user-friendly interfaces for data access. Web database applications represent a

technical solution for the connection to the database through a web server and give the

opportunity to develop custom application for multi-users access.

Web database application are based on the so called three tier model (Eckerson, 1995):

at the base of the application is the database tier consisting of the database management

system that creates manages and query the database.

Built on top of the database tier is the middleware tier consisting of the web server with

all the scripts that translate the request from the web browser to the DBMS and, on

the other side, handle the data �owf from the DBMS to the web browser. On top is the

client tier, which is usually a web browser software that interacts the other applications.

In this three tier model, the web provides the protocol and the network that connects

the client and the middle tier of the application.

Hypertext transfer protocol (HTTP) is one component that binds together the three

component. The system is realized with a stack of technologies called LAMP, acronym

for Linux (operating system), Apache HTTP Server for the web server, MySQL for the

database software and PHP for the scripting of the middleware tier. The combination
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of software included in a LAMP package may vary, in our system the database tier was

based on PostgreSQL instead of MySQL.

3.2. Statistical, mathematical and GIS methods for

wildlife distribution assessment

One of the three main goals of this research project was the application of GLM, and

speci�cally Logistic Regression Analysis (LRA) to three di�erent case studies character-

ized by di�erent scale and di�erent species datasets.

The modelling process uses a typical presence-absence method �tted with pseudo-absences

3.2.1. Generalized Linear Models (GLM)

GLM are an extension of the classical multiple regression technique, allowing non-

linearity in the data (Guisan et al., 2002). This regression tool is widely used mainly

because of its ability to deal with the variety of distributions that describe ecological

data (normal, binomial, Poisson, exponential, gamma), and also because it harmoniously

�ts with practices commonly used in linear modeling and analysis of variance (ANOVA)

(McCullagh and Nelder, 1989; Guisan et al., 2002).

This predictive modelling methodology has been largely tested, and proved to be robust

in a number of independent situations (Elith et al., 2006). GLM assumes a relationship

(called link function) between the mean of the response variable and the linear combi-

nation of the explanatory variables (McCullagh and Nelder, 1989; Guisan et al., 2002).

This model does not force results into unnatural scales (which would cause under and

overestimations), and allows non-linearity and non-constant variance structures in the

data. In this study, regressions were implemented as generalized linear models with a

binomial error distribution. For this type of distribution the expected value varies be-
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tween 0 and 1 and a link function should satisfy the condition that it maps the interval

(0,1) on to the whole real line (Mc-Cullagh and Nelder, 1989).

There is a wide choice of link functions available (for example, the logistic, the probit,

the complementary log-log function); in this study the logistic link function was chosen

to compute the model because the response variable was limited to values between 0

and 1.

Logistic regression analysis (LRA) (Hosmer & Lemeshow, 2000) extends the tech-

niques of multiple regression analysis to research situations in which the outcome de-

pendent variable is categorical. In practice, situations involving categorical outcomes

are quite common. In the setting of evaluating the potential distribution of species, for

example, predictions may be made for the dichotomous outcome of presence/absence.

Extensions of the LRA technique outcome are also available.

The fundamental model underlying multiple regression analysis (MRA) posits that a

continuous outcome variable is, in theory, a linear combination of a set of predictors and

error. Thus, for an outcome variable, Y, and a set of p predictor variables, X1, ..., Xp,

the MRA model is of the form:

Y = α + β1X1 + β2X2 + ...+ βnXn + ε = α +
n∑
j=1

βjXj + ε

where α is the intercept, βj is a multiple (partial) regression coe�cient and ε is the

error of prediction. If error is omitted, the resulting model represents the expected, or

predicted, value of Y :

E(Y |X1, ..., Xn) = Y ′ = α +
n∑
j=1

βjXj + ε

Since Y = Y ′ + ε, each observed score, Y , is made up of an expected, or predictable

component, Y ′, that is a function of the predictor variables X1, ..., Xn, and an error, or

unpredictable component, ε, that represents error of measurement and/or error in the

selection of the model.
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The MRA model summarized above is applicable when the outcome variable, Y , is

continuous, but it is not appropriate for situations in which Y is categorical.

The model for logistic regression analysis assumes that the outcome variable, Y , is

categorical (e.g., dichotomous), but LRA does not model this outcome variable directly.

Rather, LRA is based on probabilities associated with the values of Y .

In most cases Y is assumed to be dichotomous, taking on values of 1 (i.e., the positive

outcome) and 0 (i.e., the negative outcome). In theory, the hypothetical proportion of

cases for which Y = 1 is de�ned as p = P(Y =1). Then, the theoretical proportion

of cases for which Y = 0 is 1 − p = P (Y = 0). In the absence of other information,

p is estimated by the sample proportion of cases for which Y = 1. However, in the

regression context, it is assumed that there is a set of predictor variables, X1, ..., Xn,

that are related to Y and, therefore, provide additional information for predicting Y .

For theoretical, mathematical reasons, LRA is based on a linear model for the natural

logarithm of the odds (i.e., the log-odds) in favor of Y = 1:

loge

[
P (Y = 1|X1, ..., Xn)

1− P (Y = 1|X1, ..., Xn)

]
= loge

[
π

1− π

]
=

= α + β1X1 + ...+ βnXn + ε = α +
n∑
j=1

βjXj + ε

In the LRA model, P is a conditional probability of the form

P (Y = 1|X1, ..., Xn)

so it is assumed that "success" is more or less likely depending on combinations of values

of the predictor variables.

The log-odds, as de�ned above is also known as the logit transformation of P and the

analytical approach described here is sometimes known as logit analysis.

The LRA model above is identical to the MRA model except that the log-odds in favor

of Y = 1 replaces the expected value of Y .

There are two basic reasons underlying the development of the model above. First,
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probabilities and odds obey multiplicative, rather than additive, rules. However, tak-

ing the logarithm of the odds allows for the simpler, additive model since logarithms

convert multiplication into addition. Second, there is a (relatively) simple exponential

transformation for converting log-odds back to probability. In particular, the inverse

transformation is the logistic function of the form:

P (Y = 1|X1, ..., Xn) =
eα+

∑n

j=1
βjXj

1 + eα+
∑n

j=1
βjXj

Due to the mathematical relationship, ea/(1 + ea) = 1/(1 + e−a), the logistic function

for LRA is sometimes presented in the form:

P (Y = 1|X1, ..., Xn) =
1

1 + e−α−
∑n

j=1
βjXj

Due to the mathematical relation, 1− ea/(1 + ea) = 1/(1 + ea), the probability for a 0

response is:

P (Y = 0|X1, ..., Xn) = 1− P (Y = 1|X1, ..., Xn) =
1

1 + eα+
∑n

j=1
βjXj

As in MRA, there are two important stages in the analysis of data. First, estimates for

the parameters in the model must be obtained and, second, some determination must

be made of how well the model actually �ts the observed data.

In MRA, the parameter estimates are obtained using the least-squares principle and

assessment of �t is based on signi�cance tests for the regression coe�cients as well as

on the interpretation of the multiple correlation coe�cient. The parameters that must

be estimated from the available data are the constant and the logistic regression coe�-

cients.

Because of the nature of the model, estimation is based on the maximum likelihood

principle rather than on the least-squares principle. The process of �nding maximum

likelihood estimates is somewhat more complicated than the corresponding minimization

procedure in MRA for �nding least-square estimates. However, the general approach in-

volves establishing initial guesses for the unknown parameters and then continuously
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adjusting these estimates until the maximum value of likelihood is found. This iterative

solution procedure is available in popular statistical software.

As McCullagh and Nelder (1989) proved, the logistic function (or logit function) has

an important advantage over the alternative transformations in that it is suited for the

analysis of data collected retrospectively.

The logit transformation of the probability of presence-absence (p) produced linear func-

tion according to the equation (McCullagh and Nelder, 1989; Manel et al., 2001):

logit(p) = log
p

1− p

The modelling process requires the �nding of one or more appropriate parsimonious

sets of explanatory variables. In order to obtain a parsimonious model, the variables

included should have a detectable e�ect on the response. Should the sum of a single

variable reduce the residual mean square to, for instance, one third of its original value,

then it surely is a variable to be included in the model, and if the addition causes no

reduction then it is to be excluded (McCullagh and Nelder, 1989).

Problems appear when a decision for intermediate ambiguous cases is needed. This

could be suppressed with the use of computational skills. There are three methods for

selecting predictors through a stepwise procedure:

1. Forward selection, in which the best unselected variable satisfying the selection

criterion is added until no further candidate variables remain;

2. Backward selection, that starts with the complete set of variables and eliminates

the worst, one by one, until all remaining variables are necessary;

3. Both selection, which combines the two previous procedures, following backward

elimination by forward selection until both fail to change the model.

We used a "both" selection procedure combining the forward and backward methods.

The best combination of predictors was selected using the Akaike's Information Criterion
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(AIC) (Akaike, 1980). The criterion is based on the minimum choice of model parameters

to form a tradeo� between the �t of the model (which lowers the sum of squared residuals)

and the model's complexity.

LRA requires not only presence, but also absence data. As absence data were not

available in the original data sets, pseudo-absences were generated (Keating and Cherry,

2004). The number of pseudo-absence points was 30% more than real presences; pseudo-

absences were then combined with the real presences into a single presence-absence

dataset. LRA was �tted within R software (R Development Core Team, 2007).

As the �tted model describes the probability of the species presence occurrence, we

had to determine the threshold to distinguish between the binomial response of absence

and presence. The choice was based on the Receiver Operating Characteristic (ROC)

analysis.

3.2.2. Model Evaluation and Classi�cation

In order to estimate classi�cation performance for the GLM and ENFA models we per-

formed the Receiver Operating Characteristic (ROC) analysis.

In ROC analysis, speci�city corresponds to the number of true absences on the overall

number of absences in the sample while sensitivity re�ects the true positive fraction

(Pearce and Ferrier, 2000).

The ROC plot is obtained by plotting all correctly predicted presences, divided by the

total number of presences on the y axis, versus the false positive fraction (1-speci�city)

for all available thresholds on the x axis (Fielding and Bell, 1997).

In this way the ROC curve re�ects a compromise between the sensitivity and the false

positive proportion as the decision threshold is varied. Moreover these fraction values

are independent of the prevalence of a species because they are expressed as a proportion

of all locations with a given observation point (Pearce and Ferrier, 2000). In this way,

the Area Under the (ROC) Curve (AUC) is an important index, as it provides a measure

of overall accuracy that is not dependent on a particular threshold or species prevalence
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(Pearce and Ferrier, 2000).

The AUC ranges between 0.0 and 1.0, where 1.0 indicates perfect discrimination between

true positive and false positive, 0.5 shows that the predictive discrimination is near the

random guess and values under 0.5 indicate performance worse than random (Elith et

al., 2006).

The AUC values can be interpreted as the probability for a random selection from the

positive group to have a higher predictive value than a random selection from the neg-

ative group. For the model predictions to be considered valid, AUC scores should be

over 0,5 and the ROC plot curve should have a smoothed shape. An elbow shaped or an

angular curve indicate over-�tting of the data. The graph in �gure 3.1 shows three ROC

curves representing excellent, good, and worthless results plotted on the same graph.
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Figure 3.1.: Comparison of ROC curves
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The ROC statistic can also be used to identify an appropriate threshold value for a

given application. In our case, for methods producing probability values or continuous

indexes that have to be translated into a binomial response we set a threshold value by

determining a point in the ROC space. The continuous maps obtained from the GLM

were reclassi�ed using the threshold value based on the method speci�city=sensitivity.

This led to the conversion of continuous map values into binomial ones describing absence

and presence of the species. This evaluation was also performed with R software using

the package Presence Absence (Freeman and Moisen, 2008).

3.3. Software tools

Data management, processing and analysis were performed using exclusively Free and

Open Source Software (FOSS). These software are freely distributed under GNU Gen-

eral Public License often called the GNU GPL for short.

The GNU GPL is a free, copyleft license for software and other kinds of works. It is

intended to guarantee the freedom to share and change all versions of a program to

make sure it remains free software for all its users. (Stallman, 1989 and Free Software

Foundation, 2007)

Free software, refers to freedom, not price. The GPL is designed to ensure the freedom

to distribute copies of free software (or charge for them), availability of source code,

possibility to change the software or use pieces of it in new free programs.

The use of FOSS software is made easier by a huge and worldwide community of users

and developers connected through mailing list and forums.

Since a huge part of this study had applications for institution with limited economic

resources, even for those residing in developing country, the possibility to use and dis-

tribute the software without charging for it was an important factor. We used the

following FOSS software:

• PostGIS/PostgreSQL - spatial DBMS
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• GRASS - Geographical Information System (GIS)

• R - statical analysis

• LAMP - web server

3.3.1. PostgreSQL and PostGIS

PostgreSQL, or simply Postgres, is an object-relational database management system

(ORDBMS); it evolved from the Ingres project at University of California, Berkeley in

1985 as a post-Ingres project to address the problems with contemporary database sys-

tems that had become increasingly clear during the early 1980s. In 1996, the project

was renamed to PostgreSQL to re�ect its support for SQL.

The �rst PostgreSQL release formed version 6.0 in January 1997. Since then, the soft-

ware has been maintained by a group of database developers and volunteers around the

world, coordinating via the Internet. Postgres provides a variety of features for data

management such as functions, indexes, Multi-Version Concurrency Control (MVCC),

triggers, rules and a huge variety of data types are supported. Open source front-end

software like psql or pgAdmin is used to administrate the database. (PostgreSQL Global

Development Group, 1996-2010)

PostGIS is the spatial extension of PostgreSQL: it's an open source software program

that adds support for geographic objects to the PostgreSQL object-relational database.

PostGIS includes all the geometry types speci�ed by the Open Geospatial Consortium,

spatial operators for measurements and spatial operations and spatial predicates for de-

termining the interaction of geometries. It also provides indexes for high performance

queries. The PostGIS implementation is based on light-weight geometries and optimized

indexes. The �rst version was released in 2001 by Refractions Research under the GNU

General Public License. A stable 1.0 version was released on April 19, 2005.

At the beginning of this study we concentrated on the spatial DBMS SpatiaLite since

we were addressed to light solutions with possibility to transfer the architecture to other
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systems for management and planning purposes. In fact SpatiaLite is based on the well

known DBMS SQLite, it supports all the SQL and OGC-SFS speci�cations even if it's

very light, simple in structure and without any complexity.

Moreover SpatiaLite consists of a unique cross-platform �le that can be easily transferred

with all his geographical content. Despite of all this advantages we had to abandon this

solution because of the di�culties that we found integrating this DBMS in the web-

database application. In fact SpatiaLite is still little supported by PEAR libraries that

are fundamental in PHP scripts for client-database connection.

3.3.2. GRASS

GRASS is the acronym for Geographic Resources Analysis Support System; it's a Ge-

ographical Information System free software, licensed under the GNU GPL and dis-

tributed with versions for di�erent platforms. GRASS was born in the early 80's as a

project of the United States Army (U.S. Army Corp of Engineering Research Laboratory

- USA)(GRASS Development Team, 1999-2010).

The development was held by using in particular the C language and UNIX-like oper-

ating system reference.

In 1996 the U.S. Army took the decision to abandon the development of GRASS; users

were encouraged to migrate to commercial systems while the latest version of GRASS

(4.1) remained in the public domain. (GRASS Development Team, 1999-2010)

At the end of 1997, after more than a year, a new international team was organized

for continuing development. In 1999 the GRASS Development Team (GDT) decided

to grant GRASS (5.0b) the GPL license. Currently, the software development center is

based in San Michele All'Adige (Trento, Italy) at the Fondazione Edmund Mach, but it

uses mostly volunteers from all over the world as contributors. (GRASS Development

Team, 1999-2010)

Grass is now a powerful GIS used for geospatial data management and analysis, image

processing, graphics/map production, spatial modeling, and visualization. GRASS is
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di�used worldwide for academic and commercial applications and is also used by gov-

ernment agencies (NASA, NOAA, USDA, DLR, CSIRO, National Park Service of USA,

U.S. Census Bureau, USGS and JRC). (GRASS Development Team, 1999-2010)

The last versions were upgraded in function dealing with the management of the topol-

ogy of two and three-dimensional vector data and attributes data handling.

Moreover, the introduction of a graphical interface contributed to increase the number

of users, especially those who were familiar with commercial desktop GIS. One of the

advantages of GRASS is that it can analyze data in a not-interactive way through scripts

coded in the popular bash script language. GRASS can me coupled with R to perform

statistical analyses on geographic data in GRASS native format; the package required

is spgrass6 (Bivand,2009)

3.3.3. R

R is a language and environment for statistical computing and graphics licensed under

the GNU GPL and is available for di�erent platforms. Its architecture is similar to the

S language so that R can be considered as a di�erent implementation of S. (R, Core

Development Team, 2010)

R provides a wide variety of statistical technique such as linear and nonlinear modelling,

classical statistical tests, time-series analysis, classi�cation, clustering. It also provides

graphical techniques, and is highly extensible. (R, Core Development Team, 2010)

R is distributed with a command line interface and requires a strong knowledge of R

language. In order to simplify the interaction with the software, graphical interfaces are

available, running either under linux or windows (Tinn-R, RKward, ESS). As in GRASS,

it is possible to use R in a non-interactive manner using scripts that contain ordered

commands in R language.
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3.3.4. LAMP system

LAMP is an acronym for a package of free and open source software, originally coined

from the �rst letters of Linux (operating system), Apache HTTP Server, MySQL (database

software), and PHP. These are the principal components to build a viable general pur-

pose web server.

The precise combination of software included in a LAMP package may vary, especially

with respect to the web scripting software. Even though the original authors of these

programs did not design them all to work speci�cally with each other, the development

philosophy and tool sets are shared and were developed in close conjunction.

The software combination has become popular because it is free of cost, open source,

and therefore easily adaptable, and also thanks to the ubiquity of its components which

are bundled with the most current Linux distributions.

When a DBMS web server and a srcripting language are used in combination they rep-

resent a solution stack of technologies that support application servers.

3.4. Automated mapping process: SOS

During this study we developed an analysis system for automatic models computing in

order to make the modeling processes e�cient, repeatable and prompt.

Biodiversity (species richness) maps were based on a large number of species. Moreover

the modeling process required long and iterative procedures based on a large number

of predictable variables. For all these reasons the computation of models required auto-

mated computing.

We prepared a package of scripts for GRASS and R, integrated into an analysis system

that we called Species Open Spreader (SOS); the system allows automatic computation

of spatial statistical model for a great number of species.

The structure of the analysis system is planned to perform geoprocessing for data prepa-

ration in GRASS and then to run di�erent modeling techniques in R.
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SOS is built up of a common module for input-output and plug-in scripts for statistical

analysis, production of results, and preparation of outputs. SOS is designed to be ex-

tensible and perform a large number of statistical models; at the moment three model

are already available: Logistic Regression Analysis, Environment Niche Factor Analysis

(ENFA) and the �exible Discriminant Analysis with method BRUTO.

Moreover SOS is able to compute Habitat Suitability Index (HSI), a model based on the

opinion of experts, and spatial overlay: these two methods are useful when dataset are

not suitable for statistical analysis.

The statistical analysis is completely automated: it is controlled through a con�guration

�le and is performed by calling a unique R script (SPECIES.SPATIAL.MODELS.R - Ap-

pendix B). R is launched from the GRASS environment and koupled to GRASS through

the library spgrass6. The con�guration �le is a text �le containing the following items:

• name of the species for which models are required;

• reference to the environmental variables;

• name of the statistical method to apply;

• outputs required.

The script SPECIES.SPATIAL.MODELS.R reads the con�guration �le and subsequently

calls other scripts to perform the required statistical analysis and to produce outputs.

The SOS suite for model computation is composed of the scripts listed in table 3.1 and

reported in the Appendix B.
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Table 3.1.: List of scripts for model computation available in SOS.

Name Description

SPECIES.SPATIAL.MODELS.R main R script, reads the con�guration

�le and subsequently calls the required

scripts

CALC.LOGISTC.R script to compute LRA.

CALC.ENFA.R script to compute ENFA.

CALC.BRUTO.R script to compute BRUTO analysis.

CALC.OVERLAY.sh script to compute spatial overlay.

CALC.HSI.sh script to compute HSI.

OUT.LOGISTIC.R script to produce outputs of LRA anal-

ysis.

OUT.ENFA.R script to produce outputs for ENFA

analysis.

OUT.BRUTO.R script to produce outputs for BRUTO

analysis.

CALC.OVERLAY.sh and CALC.HSI are called directly in GRASS, since they are based

on spatial processing and do not require statistical procedures. For statistical analysis

SOS produces three kinds of outputs:

• text �les containing the results of statistical analysis in R format;

• images in .eps format containing graphs from statistical analysis results;

• maps of potential distribution, computed with the results of the statistical analysis.

Depending on the statistical model, maps either are generated in R as output of the sta-

tistical analysis (ascii �le) or in GRASS, running a bash script automatically generated
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by R.

Outputs are stored inside GRASS mapsets and more precisely in a folder called SOS.rs

containing the subfolders maps, text and plots.

SOS is also provided with GRASS scripts for common spatial data processing task used

in preparation of datasets. This part of SOS is not completely automated but scripts

are called by the user depending on the characteristics of the available data and on the

dataset required for the statistical analysis.

The SOS suite of GRASS scripts is listed in table 3.2 and is presented in Appendix B.

Table 3.2.: List of GRASS scripts available in SOS

Name Description

V.WHATRAST.MANY.SH prepares a dataset containing the

value of predictive variable at

each location of presence and ab-

sence points.

V.PRESABS.MANY.SH prepares a dataset of presence

and absence points from real ob-

servations.

V.PRESABS.MANY.TRANSECTS.SH prepares a dataset of presence

and absence points from real ob-

servations along transects.

V.PRESABS.MANY.GRID.SH prepares a dataset of presence

and absence points from wildlife

atlas grids.
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Name Description

R.CATDIST.MANY.SH computes distance maps for vec-

tor environmental variables in or-

der to produce continuous raster

datasets.
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4.1. Brescia plain

The goal of this application was the computation of a synthetic map as the result of a

monitoring program for environmental quality evaluation. The synthetic map of ecosys-

tem value was based on the assessment of wildlife and vegetation values through �eld

data processing in SOS. Wildlife value map was obtained through the computation of a

weighted species richness map based on potential distribution maps.

The monitoring program was addressed to three taxonomic groups: Amphibians, Birds

and Mammals: 88 species were registered of which 3 Amphibians, 76 Birds and 9 Mam-

mals. Table 4.1 lists the species registered in the monitoring program with the number

of observations for each species.

Birds were monitored with the point count technique (Bibby et al., 2000). Since census

took place in a �at region, we assumed a 200 m contact distance, thus we enlarged the

original dataset by computing 50 grid ordered points for each contact point, inside a 200

m bu�er.
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Table 4.1.: List of monitored species in the Brescia plain area

Class Scienti�c name Common name

Amphib. Rana synkl.esculenta edible frog

Amphib. Rana dalmatina agile froge

Amphib. Bufo viridis green toad

Birds Phalacrocorax carbo cormorant

Birds Ixobrychus minutus little bittern

Birds Nycticorax nycticorax night heron

Birds Ardeola ralloides squacco heron

Birds Egretta garzetta little egret

Birds Ardea cinerea grey heron

Birds Ardea purpurea purple heron

Birds Anas platyrhynchos mallard

Birds Buteo buteo buzzard

Birds Falco subbuteo hobby

Birds Falco tinnunculus kestrel

Birds Phasianus colchicus pheasant

Birds Perdix perdix grey partridge

Birds Coturnix coturnix quail

Birds Gallinula chloropu moorhen

Birds Fulica atra coot

Birds Rallus aquaticus water rail

Birds Himantopus himantopus blach-winged stilt
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Class Scienti�c name Common name

Birds Charadrius dubius little ringed plover

Birds Actitis hypoleucos common sandpiper

Birds Tringa nebularia greenshank

Birds Larus ridibundus black-headed gull

Birds Larus michahellis yellow-legged gull

Birds Columba palumbus woodpigeon

Birds Streptopelia decaocto collared dove

Birds Streptopelia turtur turtle dove

Birds Cuculus canorus common cuckoo

Birds Athene noctua little owl

Birds Strix aluco sttrix aluco

Birds Tyto alba barn owl

Birds Apus apus swift

Birds Alcedo atthis king�sher

Birds Upupa epops hoopoe

Birds Dendrocopos major great spotted woodpecker

Birds Picus viridis green woodpecker

Birds Jynx torquilla wryneck

Birds Alauda arvensis skylard

Birds Hirundo rustica swallow

Birds Delichon urbica house martin

Birds Motacilla alba white wagtail

Birds Motacilla cinerea grey wagtail

Birds Motacilla �ava yellow wagtail

Birds Prunella modularis dunnock

Birds Troglodytes troglodytes wren
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Class Scienti�c name Common name

Birds Erithacus rubecula robin

Birds Luscinia megarhynchos nightingale

Birds Phoenicurus phoenicurus redstart

Birds Phoenicurus ochruros black redstart

Birds Saxicola rubetra whinchat

Birds Saxicola torquata stonechat

Birds Turdus merula blackbird

Birds Turdus philomelos song thrusch

Birds Cettia cetti cetti's warbler

Birds Acrocephalus scirpaceus reed warbler

Birds Acrocephalus palustris marsh warbler

Birds Hippolais polyglotta melodious warbler

Birds Phylloscopus collybita chi�cha�

Birds Sylvia communis whitethroat

Birds Sylvia atricapilla blackcap

Birds Regulus regulus goldcrest

Birds Muscicapa striata spotted �ycatcher

Birds Remiz pendulinus penduline tit

Birds Aegithalos caudatus long-tailed tit

Birds Parus major great tit

Birds Parus caeruleus blue tit

Birds Sitta europaea nuthatch

Birds Lanus excubitor great grey shrike

Birds Lanus collurio red-backed shrike

Birds Sturnus vulgaris starling

Birds Oriolus oriolus golden oriole
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Class Scienti�c name Common name

Birds Pica pica magpie

Birds Corvus corone cornix hooded crow

Birds Passer domesticus italian sparrow

Birds Passer montanus tree sparrow

Birds Fringilla coelebs cha�nch

Birds Carduelis carduelis gold�nch

Birds Carduelis chloris green�nch

Birds Serinus serinus serin

Birds Emberiza schoeniclus reed bunting

Birds Miliaria calandra corn bunting

Mammals Erinaceus europaeus western hedgehog

Mammals Talpa europaea european mole

Mammals Lepus europaeus brown hare

Mammals Arvicola terrestris water vole

Mammals Rattus norvegicus brown rat

Mammals Myocastor coypus coypu

Mammals Vulpes vulpes red fox

Mammals Meles meles badger

Mammals Martes foina beech marten

In order to obtain potential distribution maps for each species we �rst applied Logistic

Regression Analysis. The analysis was base on the set of environmental variables listed

in table 4.2.
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Table 4.2.: Environmental variables used for LRA in the Brescia plain case study

Variable name Description Source

EV-CWED contrast weighted edge density computed

EV-LAKE distance from lakes CTR

EV-RVR1 distance from rivers (primary hydro-

graphic net)

CTR

EV-RVR2 distance from rivers (secondary hydro-

graphic net)

CTR

EV-ROAD weighted distance from roads CTR

EV-H103 broad-leaved forest DUSAF

EV-H104 riparian vegetation DUSAF

EV-H105 coniferous forest DUSAF

EV-H106 mixed forest DUSAF

EV-H107 recent reforestation DUSAF

EV-H108 orchards and vegetables gardens DUSAF

EV-H109 tree crops DUSAF

EV-H110 marshy vegetation DUSAF

EV-H111 debris vegetation DUSAF

EV-H112 riverbed vegetation DUSAF

EV-H113 schrubs DUSAF

EV-H114 meadows and pastures DUSAF

EV-H115 herbaceous crops DUSAF

EV-H116 herbaceous and tree crops DUSAF

EV-H117 protected crops DUSAF

EV-H120 dumps DUSAF
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Variable name Description Source

EV-H121 continuous urban areas DUSAF

EV-H122 open urban areas DUSAF

EV-H123 farm building DUSAF

Contrast weighted edge density (CWED) is a landscape metric computed with the

GRASS r.li commands package for landscape structure analysis, it calculates the edge

density between patch types speci�ed as follows:

CWED :

∑m
k=1 eikdik
AREA

10000

with

• k: attribute;

• m: number of non-null attributed in the sampling area;

• eik: total length of edge in landscape between patch types i and k;

• dik: dissimilarity (edge contrast weight) between patch types i and k;

• Area:total landscape area.

CWED was computed for di�erent groups of species with similar ecological characteris-

tics. We also used layers from the Regional Technical Map (CTR) (Regione Lombardia,

1998), describing hidrography, and communication ways.

The variables describing habitat types were generated from an informative base called

DUSAF - Destinazione d'Uso dei Suoli Agricoli e Forestali (Agriculture and Forest Soil

usage destination). DUSAF was created in 2000 by the Agriculture Department of Lom-

bardy Region and by ERSAF (Ente Regionale per i servizi all'agricoltura e alle foreste)

to bring o� a detailed database of soil usage in the region. It was based on photo in-

terpretation of a 85 cm resolution digital color orthophoto from the IT2000 aerial survey.
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4.2. Mount Meru region - Tanzania

In order to produce maps of species potential distribution and biodiversity maps in the

Mount Meru region we applied Logistic regression analysis. The dataset used for the

analysis consisted of presence/absence wildlife data whereas the set of environmental

variables consisted of raster layers describing landuse, climate, landscape and hydrog-

raphy. Landuse characteristics were derived from Africover (FAO, 2003), a Food and

Agriculture Organization (FAO) project which produced a digital georeferenced database

on land cover and a geographic referential for the whole of Africa at a scale of 1:200000

(www.africover.org). In order to obtain continuous data, raster maps of distance from

each habitat type were computed.

Climatic variables were derived from the BIOCLIM project (Hijmans and Jarvis, 2005),

a bioclimatic prediction system which uses surrogate terms (bioclimatic parameters) de-

rived from mean monthly climate estimates to approximate energy and water balances

at a given location. The present version can produce up to 35 bioclimatic parameters

based on the climate variables maximum temperature, minimum temperature, rainfall,

solar radiation and pan evaporation.

We used the SRTM 90 digital elevation model (CGIAR, 2004) from which aspect slope

layers were computed. Other unpublished topographic layers regarding hydrography,

location of villages and roads were collected by Istituto Oikos from previous research

projects.

We also computed landscape indexes with the GRASS r.li commands package for land-

scape structure analysis. We produced four maps based on the indexes of dominance's

diversity, Shannon diversity, edge density, patch density and mean patch size. The

dominance's diversity index is computed as:

Dominance : ln (m) +
m∑

1=1

pi ln (pi)

with:

• m: number of di�erent patch type

60



4.2. Mount Meru region - Tanzania

• i: patch type

• pi: proportion of the landscape occupied by patch type i

The Shannon diversity index is given by the formula:

Shannon : −
m∑

1=1

pi ln (pi)

The edgedensity index is computed as:

Edgedensity :

∑m
k=1

∑n
i=1 eik

AREA
10000

were

• k: patch type

• m: number of patch type

• n: number of edge segment of patch type k

• eik :total length of edge in landscape involving patch type k

• AREA: total landscape area

The patchdensity index is given by the fraction:

Patchdensity =
N

AREA
1000000

were N is the total number of patches.

Table A.1 shows the list of environmental variables used in this study.

61



4. Datasets

Table 4.3.: Environmental variables for spatial models in Mount Meru region

Variable name Description

EV-CL08 mean temperature of wettest quarter

EV-CL09 mean temperature of driest quarter

EV-CL16 precipitation of wettest quarter

EV-CL17 precipitation of driest quarter

EV-DOMI dominance's diversity index

EV-SHAN Shannon's diversity index

EV-EDDE edge density index

EV-PATC patch density index

EV-LAKE distance from lakes

EV-RVRS distance from rivers

EV-ROAD distance from roads

EV-SWPA distance from swamps

EV-VLLG distance from villages

EV-TASP digital elevation model - aspect

EV-TSLP digital elevation model - slope

EV-H101 continuous herbaceous vegetation

EV-H105 continuous herbaceous vegetation with scrubs

EV-H108 continuous herbaceous vegetation with isolated

rainfed crop

EV-H113 continuous herbaceous vegetation with sparse trees

and scrubs

EV-H115 continuous herbaceous vegetation with sparse

scrubs
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Variable name Description

EV-H117 continuous herbaceous vegetation with isolated

rainfed crop

EV-H122 open shrubs with sparse trees

EV-H126 open shrubs with sparse trees and with isolated

�elds of rainfed crop

EV-H127 open shrubs

EV-H131 open shrubs with isolated �eld of rainfed crop

EV-H132 open shrubs with combination of rainfed tree and

herbaceous crops

EV-H134 continuous shrubs with herbaceous layers with

rainfed tree and herbaceous crops

EV-H141 continuous shrubs with herbaceous lay-

ers/herbaceous vegetation with sparse trees

and shrubs

EV-H143 open shrubs with sparse trees/continuous herba-

ceous vegetation with sparse trees and shrubs

EV-H145 open shrubs with sparse trees/isolated �eld of rain-

fed crop

EV-H146 continuous trees forest with scrubs

EV-H154 continuous broadleaved deciduous forest with

herbaceous layer and sparse scrubs/urban area

EV-H162 continuous tree forest with shrubs

EV-H165 continuous broadleaved deciduous forest with

shrubs

EV-H166 continuous broadleaved deciduous forest with

shrubs/grassland
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Variable name Description

EV-H170 continuous woody vegetation with thorny plants

EV-H174 grassland with sparse shrubs on temporarily

swampy area

EV-H175 grassland on permanently �ooded area

EV-H177 grassland/woody vegetation with herbaceous layer

on temporarily swampy area

EV-H180 shrubs with herbaceous layer on temporarily

swampy area

EV-H182 shrubs with herbaceous layer on temporarily

swampy/grassland on temporarily swampy area

EV-H190 bare rock

EV-H193 natural lakes

EV-H196 continuous rainfed herbaceous crops/continuous

herbaceous vegetation with sparse trees and shrubs

EV-H202 continuous rainfed herbaceous crops/continuous

herbaceous vegetation with sparse trees and shrubs

EV-H204 continuous rainfed herbaceous crops

EV-H205 continuous rainfed herbaceous crops/continuous

herbaceous vegetation

EV-H207 continuous rainfed herbaceous crops/continuous

herbaceous vegetation with sparse trees and shrubs

EV-H211 continuous rainfed herbaceous crops/combination

of rainfed tree and shrubs crops

EV-H214 continuous forest plantations of rainfed Pine

EV-H216 continuous combination of rainfed tree and herba-

ceous crops/continuous herbaceous vegetation
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Variable name Description

EV-H218 continuous rainfed tree and herbaceous

crops/continuous broadleaved deciduous for-

est with shrubs

Wildlife data for the Mount Meru Region consisted of real observations along foot and

road transects for 39 mammal species. These data were collected from Istituto Oikos for

previous projects (Ntalwila, 2007).

The total number of transects is 31 and covered the whole study area.

Using SOS we prepared a dataset of presence and absence points for each species, in

which presences corresponded to real observation while absences were randomly gener-

ated. The number of absence points exceeded the number of presence points by 30%.

Random absence data for each specie were generated along transects were no observation

occurred.

The presence/absence dataset was prepared using the SOS script for GRASS

V.PRESABS.MANY.TRANSECTS.sh (Appendix B).

Table 4.4.: List of species involved in the computation of potential distribution maps

Order Scienti�c name Common name N.

Primates Cercopithecus mitis blue monkey 544

Papio cynocephalus yellow baboon 715

Colobus guereza mantled guereza 473

Rodentia Hystrix cristata crested porcupine 12

Lagomorpha Lepus saxatilis scrub hare 749
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Order Scienti�c name Common name N.

Pronolagus rupestris Smith's red rock

hare

765

Carnivora Canis aureus golden jackal 219

Canis mesomelas black-backed jackal 250

Lycaon pictus wildog 14

Otocyon megalotis bat-eared fox 180

Acynonix jubatus cheetah 3

Felis silvestrys wildcat 3

Crocuta crocuta spotted hyena 102

Hyaena hyaena hyena 3

Civettictis civetta african civet 2496

Proboscida Loxodonta africana african elephant 2398

Perissodactyla Equus burchelli zebra 1253

Hyracoidae Procavia capensis rock hyrax 146

Tubulidentata Orycteropus afer aardvark 2

Hyracoidae Procavia capensis rock hyrax 146

Artiodactyla Phacochoerus africanus warthdog 253

Gira�a camelopardalis gira�e 655

Aepyceros melampus impala 173
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4.3. Lombardy region

Order Scienti�c name Common name N.

Connochaetes taurinus wildbeest 447

Gazella granti Grant's gazelle 669

Gazella thomsoni Thomson gazelle 1295

Litocranius walleri gerenuk 138

Madoqua kirkii Kirk's dik-dik 3046

Raphicerus campestris steinbuck 333

Syncerus ca�er african bu�alo 691

Tragelaphus imberbis lesserkudu 450

Tragelaphus scriptus bushbuck 902

Cephalophus harveyi harvey's red duiker 434

Oryx gazella orix 3

Kobus ellipsiprymnus water buck 183

Dataset of species presence/absence was then processed in SOS to upload the values

of environmental variables at each point location

(SOS GRASS script V.WHATRAST.MANY.sh in appendix B).

Finally the dataset was passed to the software R for the statistical analysis.

4.3. Lombardy region

The production of maps describing species potential and biodiversity was based on LRA.

The dataset required for the analysis consisted of presence/absence wildlife data and en-

vironmental variables which described landuse, climate, and hydrography.

Landuse characteristics were generated from the informative base DUSAF (Regione Lom-

bardia & ERSAF, 2000) and, since we wanted to use continuous data, distance maps for
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4. Datasets

each habitat type were computed.

In order to model climatic variables we looked for a network of data that covered the

whole region. Complete dataset are available within the project "Regional Impact of

Climatic Change in Lombardy Water Resources: Modelling and applications (RICLIC-

WARM)" held by the University of Milan-Bicocca but, since we were not allowed to

access these data, climatic variables were derived from the BIOCLIM project (Hijmans

and Jarvis, 2005).

Relief was modeled using the raster layer at 20 m resolution produced by Direzione

Generale Territorio e Urbanistica of Lombardy (Regione Lombardia, 2008).

On the other and the variable describing the road network was derived from the regional

technical map of Lombardy with 10 m resolution 9Regione Lombardia, 1998).

Table 4.5.: Environmental variables used for LRA in Lombardy case study

Variable

name

Description Source

EV-DHYD distance from lakes and rivers CTR

EV-DINF weighted distance from roads and railroads CTR

EV-H100 snow�elds and glaciers DUSAF

EV-H103 broad-leaved forest DUSAF

EV-H104 riparian vegetation DUSAF

EV-H105 coniferous forest DUSAF

EV-H106 mixed forest DUSAF

EV-H107 recent reforestation DUSAF

EV-H108 orchards and vegetable gardens DUSAF

EV-H109 tree crops DUSAF
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4.3. Lombardy region

Variable

name

Description Source

EV-H110 marshy vegetation DUSAF

EV-H111 debris vegetation DUSAF

EV-H112 riverbed vegetation DUSAF

EV-H113 shrubs DUSAF

EV-H114 meadows and pastures DUSAF

EV-H115 herbaceous crops DUSAF

EV-H116 herbaceous and tree crops DUSAF

EV-H117 protected crops DUSAF

EV-H119 debris and rock DUSAF

EV-H120 dumps DUSAF

EV-H121 continuous urban areas DUSAF

EV-H122 open urban areas DUSAF

EV-H123 farm building DUSAF

EV-H126 airports

EV-DTM digital elevation model-elevation CTR

EV-

ASPECT

digital elevation model-aspect CTR

EV-

SLOPE

digital elevation model-slope CTR

EV-CL15 Precipitation Seasonality(Coe�cient of Vari-

ation)

EV-CL18 Precipitation of warmest quarter CTR

EV-CL01 Annual mean temperature CTR

EV-CL07 Temperature annual range CTR

69



4. Datasets

The modeling process was applied to Reptiles and Amphibians; data came from the

Atlas of Amphibians and Reptiles of Lombardy (Societas Herpetologica Italica sezione

Lombardia - 2000).

Table 4.6 shows the list of species considered in this study. Point data do not represent

real observation but refer to grid cells of 10 km2. The dataset for each species was en-

larged in order to be representative of the average ecological conditions of the cell area:

for each presence point, 100 random presence points were generated within the cell of

presence.

Since all the data set consisted of presence observations only, we computed random ab-

sence points in the whole region. The number of absence points exceeded the number

of presence points by 30%.

This data treatment produced large datsets, up to thousands of points. The pres-

ence/absence dataset was prepared using the SOS script for GRASS

V.PRESABS.MANY.sh (Appendix B)

Table 4.6.: List of species involved in the computation of potential distribution maps

Famiglia Scienti�c name Common name

Caudata Salamandra atra alpine salamander

Caudata Salamandra salamandra �re salamander

Caudata Salamandrina terdigitata spectacled salamander

Caudata Triturus alpestris alpine newt

Caudata Triturus carnifex italian crested newt

Caudata Triturus vulgaris smooth newt

Caudata Speleomantes strinatii Strinati's cave salamander

Anura Bombina variegata yellow bellied toad

Anura Pelobates fuscus spadefoot toad
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4.3. Lombardy region

Famiglia Scienti�c name Common name

Anura Bufo bufo common toad

Anura Bufo viridis green toad

Anura Hyla intermedia italian tree frog

Anura Rana dalmatina agile frog

Anura Rana italica italian stream frog

Anura Rana latastei italian agile frog

Anura Rana synk. esculenta edible frog

Anura Rana temporaria common frog

Cheloniidae Emys orbicularis european pond terrapin

Cheloniidae Trachemys scripta red-eared terrapin

Squamata(subord.

Sauria)

Tarentola mauritanica european leaf-toed gecko

Squamata(subord.

Sauria)

Anguis fragilis slow worm

Squamata(subord.

Sauria)

Lacerta bilineata western green lizard

Squamata(subord.

Sauria)

Podarcis muralis common wall lizard

Squamata(subord.

Sauria)

Zootoca vivipara viviparous lizard

Squamata(subord.

Sauria)

Chalcides chalcides three-toed skink

Squamata(subord.

Serpentes)

Coluber viridi�avus western whip snake

Squamata(subord.

Serpentes)

Coronella austriaca smooth snake
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4. Datasets

Famiglia Scienti�c name Common name

Squamata(subord.

Serpentes)

Coronella girondica southern smooth snake

Squamata(subord.

Serpentes)

Elaphe longissima aesculapian snake

Squamata(subord.

Serpentes)

Natrix maura viperine snake

Squamata(subord.

Serpentes)

Natrix natrix grass snake

Squamata(subord.

Serpentes)

Natrix tessellata dice snake

Squamata(subord.

Serpentes)

Vipera aspis asp viper

Squamata(subord.

Serpentes)

Vipera berus adder

Dataset of species presence/absence was then processed in SOS to upload the values of

environmental variables at each point location (SOS GRASS script V.WHATRAST.MANY.sh

in appendix B). Finally the dataset was passed to the software R for the statistical anal-

ysis.
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5. Results

5.1. Spatial database

This application was developed in the context of our collaboration with the NGOs Is-

tituto Oikos and Oikos East Africa within the project "Economic development and

environmental redemption in Maasai pastoral areas of Arumeru District, Tanzania".

In order to support the District in the realization of Land Use plans at village level we

created a spatial database to handle data about wildlife, population, agriculture and

livestock. Socio-economic data were spatially related to subvillages while wildlife infor-

mation consisted of �eld data and were collected along transect.

This database has been produced to become one of the instrument for the Planning

O�ce of the Arumeru District Council for landuse planning in rural villages. The �nal

users were not database experts, but rather district o�cers with only basic education

in computer science, for this reason an user friendly solution with dedicated forms for

database access was a central need to ensure e�ective use of the information system for

data entry and retrieval to support management decisions.

We built an application upon a PostgreSQL/PostGIS spatial database; the basic entity

of the database was the subvillage for which data about agriculture and livestock were

collected every three months. A special interest of the administration was dedicated

to the results of modernization programs that involved farmers and livestock keepers.

Moreover statistical socioeconomic data were prepared by the government every year.

Wildlife data were not spatially related to administrative items but rather were spread
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5. Results

Figure 5.1.: Meru District o�cers taking part to database training

upon the entire study area along transects.

Di�erent geometries and di�erent topics co-exist in the spatial database. The database

was composed of 96 relations and to each table corresponds a view. The web-database

application consistsed of an Apache server web, 166 scripts in PHP language and 95

templates in HTML language.

Templates designed the appearance of web pages while PHP scripts enabled the con-

nection between the client browser and the DBMS. PHP scripts acted like translators

between the HTML language understood by the web browser and the SQL language

understood by the DBMS. From the web side the database was accessed through an

index page containing a list of items, where each item connected to a lister showing all

the records of a single view of the database. From the lister it was possible to access to

a form showing the details of each record for visualization and editing and to enter new

data. Data of each view could be easily exported in Data Base IV (.dbf) format

The preparation of the system required a big e�ort in order to create PHP scripts for
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5.1. Spatial database

database connection, the main di�culty being represented by the correct use of PEAR

libraries objects types to access the di�erent elements of the database.

As an advantage, once the system has been projected for one database, it is easy to adapt

it to many other systems. On the other hand the system interface was very simple and

after a �ve days training Arumeru District o�cers were able to enter, view, edit and

retrieve data collected in the information system.

Figure 5.2.: Web side database access: the index page
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5. Results

Figure 5.3.: Web side database access: the table data lister

Figure 5.4.: Web side database access: the data form of a single record
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5.2. Spatial models

5.2. Spatial models

5.2.1. Brescia Plain (small scale)

The �nal aim of this study was the monitoring of the e�ects of landuse changes on

wildlife and vegetation. Surveys and modeling regarded 88 species of which 3Amphib-

ians, 76 Birds and 9 Mammals.

In order to model species potential distribution we �rst applied LRA, but the statistical

analysis did not produce any acceptable results: stepwise selection of parameters didn't

converge and ROC analysis showed over�tting of the data.

Models were then based on simple spatial overlay procedures based on GIS. The analysis

was based on the spatial overlay of an informative base describing habitats and species

presence points. The method expects the reclassi�cation of land use map in the sense

that each habitat type is given a value equal to 1 if one or more presence points fall

within its boundary.

For each species the technique outputs a dichotomous map of potential distribution

where 1 indicates presence and 0 indicates absence.

Habitat suitability models computed for each species were weighted in order to consider

priorities; the species weight in conservation is established, for Lombardy, by a Regional

law (Delibera della Giunta Regionale n.4345 del 20 Aprile 2001).

The analysis was carried out in SOS using the script CALC.OVERLAY.sh. The weighted

sum of 88 habitat suitability maps produced the wildlife value map showed in Figure

5.5.

Survey also regarded vegetation: �eld surveys produced phytosociological data, �oristic

lists and lists of valuable trees that were processed together with a land cover layer with

the spatial overlay method (Figure 5.6.)

The sum of the two maps of wildlife and vegetation value produced a synthesis map

of ecosystem value showed in Figure 5.7.
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5. Results

Figure 5.5.: Wildlife value map of the Brescia plain

These maps refer to the ante operam stage of the monitoring program; in the next years

new models will be computed according to new surveys and results will be compared in

order to assess the environmental impact of the highway building site (in opera survey)

and of the highway employment (post operam survey).

The main advantage of using the SOS system in this study is that it provided a coded

methodology that can be reproduced for subsequent analysis in order to obtain compa-

rable results. Moreover scripting assures automated model computation for repetitive

procedures.
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5.2. Spatial models

Figure 5.6.: Vegatation value map of the Brescia plain

5.2.2. Mount Meru region - Tanzania (medium scale)

This study was directed to mammal biodiversity assessment for land use planning. Po-

tential distribution models for 35 mammals species were computed through LRA.

All the environmental variables listed in table A.1 have been selected in the models of

species distribution, but with di�erent frequencies.

Table 5.1 lists, for each environmental variable, the percentage of species models for

which it was selected. The average percentage of selection of the variable was 36.7; the

least selected variable was EV-TSLP, the variable related to the digital terrain model

describing slopes, while the most selected (57.6%) was EV-H122, the habitat variable

related to open schrubs with sparse trees. In addition three variables were retained for

over 50% of the species: continuous trees forest with shrubs (EV-H146), shrubs with
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5. Results

Figure 5.7.: Ecosystem value map of the Brescia plain

herbaceous layer on temporarily swampy area (EV-H180) and natural lakes (EV-H193).

The model for Felys silvestrys (wildcat) retained the minimum number of variables, only

4, while Gazella grantiselected 80% of the set of variables. Other species selecting over

the 70% were Gira�a camelopardalis, Lepus saxatilis and Madoqua kirkii. The mean

number of variables retained by species models was 24.5.

Table 5.1.: selection of environmental variables in LRA

Environmental variable Percentage of selection

EV-CL08 24.2
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5.2. Spatial models

Environmental variable Percentage of selection

EV-CL09 33.3

EV-CL16 33.3

EV-CL17 33.3

EV-DOMI 39.4

EV-SHAN 18.2

EV-EDDE 33.3

EV-PATC 24.2

EV-LAKE 39.4

EV-RVRS 33.3

EV-ROAD 48.5

EV-SWPA 39.4

EV-VLLG 36.4

EV-TASP 27.3

EV-TSLP 18.2

EV-H101 33.3

EV-H105 36.4

EV-H108 36.4

EV-H113 42.4

EV-H115 45.5

EV-H117 39.4

EV-H122 57.6

EV-H126 42.4

EV-H127 36.4

EV-H131 42.4

EV-H132 45.5

EV-H134 39.4
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5. Results

Environmental variable Percentage of selection

EV-H141 30.3

EV-H143 39.4

EV-H145 45.5

EV-H146 51.5

EV-H154 36.4

EV-H162 36.4

EV-H165 33.3

EV-H166 33.3

EV-H170 36.4

EV-H174 48.5

EV-H175 27.3

EV-H177 30.3

EV-H180 51.5

EV-H182 36.4

EV-H190 39.4

EV-H193 51.5

EV-H196 24.2

EV-H202 36.4

EV-H204 36.4

EV-H205 30.3

EV-H207 24.2

EV-H211 33.3

EV-H214 45.5

EV-H216 30.3

EV-H218 42.4
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5.2. Spatial models

AUC values of the ROC analysis computed for all the species are listed in table 5.2.

All the species obtained AUC scores superior to 0.5 and thus models are considered

better than random guess.

Six species (Acynonix jubatus, Lycaon pictus, Felis silvestrys, Hyaena hyaena, Oryc-

teropus afer, Oryx gazella and Hystrix cristata) obtained AUC values equal to 1 thus

meaning over-�tting of the data. This is a typical result when running LRA with a re-

duced number of presence data and, as a matter of fact these species were characterized

by a number of observation comprised between 2 (Orycteropus afer) and 14 (Lycaon

pictus). These six models were rejected.

The rest of the species obtained AUC scores comprised between 0.62 and 0.99, stating

the reliability of computed models.

Table 5.2.: ROC plot AUC values for LRA

Scienti�c name AUC model acceptance

Canis aureus 0.762 ±0.002 *

Canis mesomelas 0.772 ±0.009 *

Lycaon pictus 1

Otocyon megalotis 0.725 ±0.003 *

Acynonix jubatus 1

Felis silvestrys 1

Crocuta crocuta 0.653 ±0.001 *

Hyaena hyaena 1

Civettictis civetta 0.953 ±0.003 *

Equus burchelli 0.932 ±0.008 *

Orycteropus afer 1

Lepus saxatilis 0.830 ±0.003 *
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5. Results

Scienti�c name AUC model acceptance

Pronolagus rupestris 0.834 ±0.007 *

Cercopithecus mitis 0.803 ±0.002 *

Papio cynocephalus 0.820 ±0.002 *

Colobus guereza 0.793 ±0.007 *

Procavia capensis 0.770 ±0.002 *

Phacochoerus africanus 0.752 ±0.003 *

Gira�a camelopardalis 0.890 ±0.003 *

Aepyceros melampus 0.730 ±0.001 *

Connochaetes taurinus 0.797 ±0.002 *

Gazella granti 0.870 ±0.003 *

Gazella thomsoni 0.930 ±0.002 *

Litocranius walleri 0.713 ±0.004 *

Madoqua kirkii 0.922 ±0.006 *

Raphicerus campestris 0.780 ±0.003 *

Syncerus ca�er 0.765 ±0.001 *

Tragelaphus imberbis 0.682 ±0.002 *

Tragelaphus scriptus 0.710 ±0.003 *

Cephalophus harveyi 0.740 ±0.006 *

Oryx gazella 1

Kobus ellipsiprymnus 0.643 ±0.002 *

Loxodonta africana 0.995 ±0.001 *

Hystrix cristata 1

Prevalence is an important factor determining the possibility to compute LRA mod-

els: species with very low prevalence obtained AUC scores equal to 1 thus indicating

over-�tting of the model due to insu�cient data sample. The minimum sample size re-
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5.2. Spatial models

sulting in an acceptable model is 102 and refers to the spotted hyena (Crocuta crocuta),

for which an AUC value of 0.65 was obtained.

Regression coe�cients of LRA, ROC plots and �nal maps for each specie are shown in

appendix A.

We produced a species richness map resulting from the sum of 28 potential distribu-

tion maps. We selected only those species for which the statistical analysis produced

an acceptable result in terms of AUC (0.5 < AUC < 1); species considered for the

computation of species richness are pointed by the symbol * in table 5.2.
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Figure 5.8.: Species richness computed from species potential distribution maps(n = 28)
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5.2. Spatial models

Biodiversity was classi�ed into 3 classes with the Jenks Natural Breaks Classi�cation

(Jenks, 1967); the area characterized by highest biodiversity corresponds to the central

part of the study area. Graph of �gure 5.9 shows the distribution of habitat types in

each biodiversity class: open scrubs (habitat 101), with an extension of 11105 ha, are

the most extensive and representative habitat in class 3 (very high biodiversity), but

it's also the most common habitat in class 1 (medium biodiversity) and it's extensively

present in class 2 (high biodiversity).

The other habitats present in class 3 are: continuous herbaceous vegetation-100 (762

ha), shrubs with herbaceous layer on temporarily swampy area-105 (596 ha), grassland

on temporarily/permanently swampy area-104 (449 ha), continuous forest-102 (49 ha)

and continuous rainfed herbaceous crops (36)-108.

All these habitats are also present, with wider extension, in class 1 and 2. Three habitats

present in class 1 and 2 are not present in class 3, these are: bare rocks (329 ha), natural

lakes (325),continuous forest plantations of rainfed Pine (2320 ha).

One more habitat is present in class 2 and not in class 3: continuos rainfed tree and

herbaceous crops/continuous herbaceous vegetation (9424 ha) Comparing class 3 and

class 1, the major di�erence in habitat extension regards habitat 100 (continuous herba-

ceous vegetation), 102 (continuos forest) and 108 (continuous rainfed herbaceous crops).

The comparison of class 3 and class 2 underlines major di�erences in habitat extension

for habitat 102 (continuos forest).
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5. Results

Figure 5.9.: Distribution of habitat types among classes of biodiversity.
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The village of Uwiro falls completely in a territory with high (58%) and very high

(42%) biodiversity value.

The north-western part of Uwiro village has very high biodiversity. This area corresponds

to the subvillage of Mkuru and to the western sector of Kiamakata and Iyan subvillages.

Table 5.3 shows, for each subvillage, land distribution into biodiversity classes: the

Subvillages of Mkuru, Kiamakata and Iyan show the highest percentage of territory

with very high biodiversity (' 60%).

Table 5.3.: Distribution of subvillage territory into biodiversisity classes in Uwiro Village

Subvillage name Biodiversity class

Very High High Medium

Iyan 57% 43% 0%

Kiamakata 57% 43% 0%

Kimosonu 29% 71% 0%

Mkuru 60% 40% 0%

Nkuuny 3% 97% 0%

Total 42% 58% 0%

5.2.3. Lombardy region (big scale)

We applied LRA model to 34 species of Amphibians and Reptiles using 31 environmental

variables as predictors. All the environmental variables listed in table A.1 have been

selected in the models of species distribution, but with di�erent frequencies.

Table 5.4 lists, for each environmental variable, the percentage of species models for

which it was selected. The average percentage of selection of each variable was 63.7;

the least selected variable was EV-SLOPE, the variable describing slopes, while the

most selected (92%) was EV-H100, the habitat variable describing the distribution of
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snow�elds and glaciers.

In addition three other variables were retained for over 80% of the species: broad-

leaved forest (EV-H103), herbaceous and tree crops (EV-H116) and debris and rock

(EV-H119). The model for the species Speleomantes strinatii retained the minimum

number of variables, only 10, while 70% of the species selected more the 60% of the

variables set. Selected variables resulted signi�cant in most of the models.

Table 5.4.: selection of environmental variables in LRA

Environmental variable Percentage of selection

EV-DHYD 60

EV-DINF 44

EV-H100 92

EV-H103 80

EV-H104 60

EV-H105 68

EV-H106 72

EV-H107 76

EV-H108 56

EV-H109 72

EV-H110 72

EV-H111 72

EV-H112 72

EV-H113 40

EV-H114 64

EV-H115 60

EV-H116 64
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5.2. Spatial models

Environmental variable Percentage of selection

EV-H117 80

EV-H119 84

EV-H120 52

EV-H121 48

EV-H122 52

EV-H123 60

EV-H126 60

EV-DTM 60

EV-ASPECT 44

EV-SLOPE 16

EV-CL15 16

EV-CL18 80

EV-CL01 68

EV-CL07 68

AUC values of the ROC analysis are listed in table 5.5. All the species obtained AUC

scores superior to 0.5, therefore models are considered better than random guessing.

None of the species had an AUC equal to 1 (meaning over-�tting of the data); this

is probably a consequence of using large datasets of presence and absence. All the

species obtained AUC scores comprised between 0.65 and 0.99, stating the reliability of

computed models.

Table 5.5.: ROC plot AUC values for LRA

Scienti�c name AUC

Salamandra atra 0.802131 ±0.003
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Scienti�c name AUC

Salamandra salamandra 0.761 ±0.004

Salamandrina terdigitata 0.780 ±0.003

Triturus alpestris 0.871 ±0.004

Triturus carnifex 0.646 ±0.004

Triturus vulgaris 0.762 ±0.004

Speleomantes strinatii 0.849 ±0.021

Bombina variegata 0.821 ±0.003

Pelobates fuscus 0.731 ±0.007

Bufo bufo 0.764 ±0.003

Bufo viridis 0.773 ±0.003

Hyla intermedia 0.739 ±0.004

Rana dalmatina 0.839 ±0.003

Rana italica 0.949 ±0.003

Rana latastei 0.807 ±0.003

Rana synk. esculenta 0.663 ±0.003

Rana temporaria 0.937 ±0.004

Emys orbicularis 0.723 ±0.004

Trachemys scripta 0.688 ±0.004

Anguis fragilis 0.738 ±0.003

Lacerta bilineata 0.759 ±0.004

Podarcis muralis 0.663 ±0.004

Zootoca vivipara 0.734 ±0.001

Chalcides chalcides 0.964 ±0.002

Coluber viridi�avus 0.679 ±0.004

Coronella austriaca 0.804 ±0.004

Coronella girondica 0.994 ±0.001
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5.2. Spatial models

Scienti�c name AUC

Elaphe longissima 0.767 ±0.003

Natrix maura 0.974 ±0.002

Natrix natrix 0.912 ±0.002

Natrix tessellata 0.695 ±0.004

Vipera aspis 0.785 ±0.003

Vipera berus 0.925 ±0.002
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6. Conclusion

This project had three research aims:

1. explore and evaluate the applicability of Generalized Linear Models at di�erent

scales;

2. automation of statistical analysis and spatial processing;

3. use of spatial DBMS to handle wildlife data.

GLM were applied with good results at middle and big scale while at small scale it was

not possible to compute models. The applicability of GLM at di�erent scale seems to

be related especially to habitat variability.

The small scale study area, corresponding to a 87 km2 area in the Brescia plain, is

characterized by a monotonous environment represented by monocultures and reduced

natural landscape; in this conditions the stepwise analysis was not able to converge and

to �nd the predictable variables for the regression analysis.

A focal point seems to be represented by the informative layers used to model the en-

vironment. In lack of high resolution land use maps built expressly for this application

through interpretation of detailed aerial photographs, the modeling process was rather

based on the informative base DUSAF which was produced at 1:25000 scale, and thus

less detailed.

The analysis of reduced size areas requires the use of descriptors with small scale details

in order to detect di�erences in landscape and environment. Unfortunately, the need for
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6. Conclusion

speditive analysis within low budget projects often forces the use of cartographic layers

built at regional level. The application of GLM to the medium size study area of the

Mount Meru ecosystem (784 km2) produced good results in terms of the capacity to

discriminate presence and absence areas for each species.

AUC scores were comprised between 0.62 and 0.99 while only six models on thirty-four

were rejected since they obtained AUC values equal to 1, that is, were a�ected by over-

�tting of the data. These six species were characterized by very low prevalence (medium

sample size equal to 2.66).

In this geographical context the size of the area is large enough to show habitat vari-

ability and thus, at this scale of analysis, the informative base used as predictor dataset

was suitable to model species distribution. We used cartographic layers produced at a

scale of 1:200000 Africover, a FAO project.

Finally the application of GLM to the large scale case study of Lombardy region pro-

duced very good results. It was possible to model potential distribution for all the 33

species of Amphibians and Reptiles analyzed; ROC analysis succeeded in discriminating

presence and absence habitats for all the specie: AUC values were comprised between

0.65 and 0.99.

Since it was not possible to apply GLM to the Brescia plain case study, an empirical

method based on spatial overlay was applied. A routine was written in order to syn-

thetize potential distribution of 107 species in a unique map of wildlife value.

Species distribution models are an essential tool for decision support, especially in envi-

ronmental evaluation: if the dataset does not allow the application of a statistical model,

an empirical model based on real data and on repeatable and standardized methods rep-

resent a good substitute to take account of wildlife in monitoring projects.

The application of GLM to the Mount Meru and Lombardy case studies resulted in

maps of species potential distribution suitable for planning and management purposes.

Twenty-nine models of mammals distribution in the Mount Meru area were synthetized

in a biodiversity map that was used to analyze wildlife distribution within the Uwiro
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village which underwent a process of landuse planning.

The Thirty-three species models computed for Lombardy represent a cartographic base

useful for future planning and management projects within the region; atlases vector

data format are not directly usable for environment evaluation models, while species

distribution models in raster datasets can be processed in map algebra computational

processes.

The analysis system we built (SOS - Species Open Spreader) gave us the possibility

to compute models for a large number of species for di�erent applications. It would

not have been possible to conduct an interactive process due to the large number of

species and to to the large number of carthographic layers representing the dependent

variables dataset. Once the dataset is prepared, SOS allows the automated computation

of statistical and empirical models and also o�ers routines for data preparation in GIS

environment.

At the moment datasets preparation in SOS is not completely automated but still re-

quires a high degree of interaction. This is due in particular to the high heterogeneity of

input species data: �eld data along transects, occasional observations, grids of presence

in atlases etc. Automation is more advanced as regards the preparation of environmental

variables datasets. In the next years it will be important to improve automated geopro-

cessing of datasets.

Finally we tested the use Spatial DBMS, to handle wildlife data. Either SpatiaLite or

PostegreSQL-PostGIS represent optimal solutions to store heterogeneous wildlife data

in a standardized repository. They both o�er SQL tools for data query, import and

output and represented a good solution for spatial data visualization.

SpatiaLite is a very light and simple structure software solution consisting in a unique

cross-platform �le easy to transfer, but is still lacking support to properly interface with

LAMP
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6. Conclusion

In this research project one of the aims was the development of a web application with

forms for data input and output. This was a focal point in the research in consideration

of technology transfer to users not familiar to DBMS and SQL.

The web application was built with the LAMP system. The need for integration of

the spatial DBMS into a web application induced us to use PostegreSQL-PostGIS. The

reason is that the integration of SpatiaLite in the web-database application was di�cult

to achieve as SpatiaLite is still little supported by PEAR libraries that are fundamental

in PHP scripts for client-database connection.

The design and code development of the web-database applications gave us the possi-

bility to achieve very good results in terms of usability of spatial database. A spatial

database and a web database application for the management of wildlife and socio-

economic data in the Meru District (Tanzania) was developed. After a short course,

o�cers of the Meru District were able to correctly enter and retrieve data.

Every part of this research project was developed using Free and Open Source Soft-

ware. All the research issues had implications in professional conservation actions.

The possibility to develop code for automated spatial analysis and �exible dataware-

house makes FOSS an indispensable instrument for the development of conservation

projects not only in academic environments but also for professional applications.

98



Acknowledgements

A sincere thank

to Damiano Preatoni, for trusting me, for always answering my questions and to be a

constant reference;

to Istituto Oikos Onlus and Oikos East Africa, in particular Guido Tosi, Rossella Rossi

and Caterina Carugati, for the great experience in Tanzania and to the African sta� for

the warm hospitality;

to the development teams of the Open Source Software I used in my project: your work

has an inestimable value;

to all the UAGRA group, for the moments of work and enjoyment we shared;

to my sisters Nadia and Cristina, for the English revision.

Thanks to my family, for their support and their patient wait.

99





Bibliography

[1] Akaike, H. (1980). Likelihood and the Bayes procedure, Bayesian Statistics. Univer-

sity Press.

[2] Araujo, M. B. and Guisan, A. (2006). Five (or so) challenges for species distribution

modelling. Journal Of Biogeography, 33(10):1677�1688.

[3] Barbosa, A. M., Real, R., and Vargas, J. M. (2010). Use of coarse-resolution models

of species' distributions to guide local conservation inferences. CONSERVATION

BIOLOGY, 24(5):1378�1387.

[4] Basille, M., Calenge, C., Marboutin, ., Andersen, R., and Gaillard, J. (2008). Assess-

ing habitat selection using multivariate statistics: Some re�nements of the ecological-

niche factor analysis. Ecological Modelling, 211(1-2):233�240.

[5] Báez, J., Olivero, J., Peteiro, C., Ferri-Yáñez, F., Garcia-Soto, C., and Real, R.

(2010). Macro-environmental modelling of the current distribution of &lt;i&gt;undaria

pinnati�da&lt;/i&gt; (laminariales, ochrophyta) in northern iberia. Biological Inva-

sions, 12:2131�2139. 10.1007/s10530-009-9614-1.

[6] Bibby, C. J., Burgess, N. D., Hill, D. A., and Mustoe, S. H. (2000). Bird census

etchniques. Academic Press, London, UK.

[7] Bivand, R. (2009). spgrass6: Interface between GRASS6 and R., r packege version

0.6-9 edition.

101



Bibliography

[8] Bolick, M. R. (1974). A vegetation history of the mount meru lahar, tanzania.

Master's thesis, A thesis submitted in partial ful�llment of the requirements for the

degree of Master of Arts in the Department of Zoology in the Graduate School of Arts

and Science of Duke University.

[9] Brotons, L., Thuiller, W., Araújo, M., and Hirzel, A. (2004). Presence-absence versus

presence-only modelling methods for predicting bird habitat suitability. Ecography,

27(4):437�448.

[10] Cagnacci, F. and Urbano, F. (2008). Managing wildlife: A spatial information

system for gps collars data. Environmental Modelling & Software, 23(7):957�959.

[11] Calenge, C. (2006). The package adehabita for the r software: tool for the analysis

of space and habitat use by animals. Ecological Modelling, 197:1035.

[12] Calenge, C. (2008). A general framework for the statistical exploration of the

ecological niche. Journal of theoretical biology, 252.4:674�685.

[13] Cavallini, P. and Tufto, J. (2005). Should wildlife biologist use free software?

Wildlife Biology, 11:67�76.

[14] CGIAR, C. f. S. I. C.-C. (2004). Cgiar - csi srtm 90m dem digital elevation database.

http://srtm.csi.cgiar.org.

[15] Cianfrani, C.and Le Lay, G., Hirzel, A. H., and Loy, A. (2010). Do habitat suitability

models reliably predict the recovery areas of threatened species? Journal of Applied

Ecology, 47:421 � 430.

[16] Codd, E. (1969). Derivability, redundancy, and consistency of relations stored in

large data banks. Research report, IBM.

[17] Eckerson, W. W. (1995). Three tier client/server architecture: Achieving scalability,

performance, and e�ciency in client server applications. Open Information Systems,

10:3(20).

102



Bibliography

[18] Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hij-

mans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G.,

Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M.,

Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E.,

Soberon, J., Williams, S., Wisz, M. S., and Zimmermann, N. E. (2006). Novel meth-

ods improve prediction of species� distributions from occurrence data. Ecography,,

29(2):129�151.

[19] Engler, R., Guisan, A., and Rechsteiner, L. (2004). An improved approach for

predicting the distribution of rare and endangered species from occurrence and pseudo-

absence data. Journal of Applied Ecology, 41(2):263�274.

[20] FAO (2003). Africover. http://www.africover.org/.

[21] Fielding, A. H. and Bell, J. F. (1997a). A review of methods for the assessment of

prediction errors in conservation presence/absence models. Environmental Conserva-

tion, 24(1):38�49.

[22] Fielding, A. H. and Bell, J. F. (1997b). A review of methods for the assessment of

prediction errors in conservation presence/absence models. Environmental Conserva-

tion, 24(1):38�49.

[23] Freeman, E. (2007). PresenceAbsence: An R Package for Presence-Absence Model

Evluation. USDA Forest Service, Rocky Mountain Research Station, 507 25th street,

Ogden, UT, USA.

[24] Freeman, E. A. and Moisen, G. (2008). Presenceabsence: An r package for presence

absence analysis. Journal of Statistical Software, 23(11):1�31.

[25] Furieri, A. (2009). Spatialite 2.3.1, a complete spatial dbms in a nutshell.

http://www.gaia-gis.it/spatialite/.

103



Bibliography

[26] Gibson, L., Barrett, B., and Burbidge, A. (2007). Dealing with uncertain absences

in habitat modelling: a case study of a rare ground-dwelling parrot. Diversity And

Distributions, 13(6):704�713.

[27] GRASS, D. T. (2007). GRASS 6.2 Users Manual. ITC-irst, Trento, Italy.

[28] Green, J. L., Hastings, A., Arzberger, P., Ayala, F. J., Cottingham, K. L., Cud-

dington, K., Davis, F., Dunne, J. A., Fortin, M. J., Gerber, L., , and Neubert, M.

(2005). Complexity in ecology and conservation: Mathematical, statistical, and com-

putational challenges. Bioscience, 55(6):501�510.

[29] Group, P. G. D. (1996-2010). www.postgresql.org.

[Group] Group, T. P. G. D. Postgresql version 8.3.5. http://www,postgresql.org/.

[31] Guisan, A. and Thuiller, W. (2005). Predicting species distribution: o?ering more

than simple habitat models. Ecology Letters, 8(9):993�1009.

[32] Hijmans, R.J., S. C. J. P.-P. J. and Jarvis, A. (2005). Very high resolution inter-

polated climate surfaces for global land areas. International Journal of Climatology,

25:1965�1978.

[33] Hirzel, A. H., Hausser, J., Chessel, D., , and Perrin, N. (2002). Ecological-niche fac-

tor analysis: How to compute habitat-suitability maps without absence data? Ecology,

83(7):2027�2036.

[34] Hirzel, A. H., Helfer, V., , and Metral, F. (2001). Assessing habitat-suitability

models with a virtual species. Ecological Modelling, 145(2-3):111�12.

[35] Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., and Guisan, A. (2006). Evalu-

ating the ability of habitat suitability models to predict species presences. Ecological

Modelling, 199(2):142� 152.

[36] Hosmer, D. W. & Lemeshow, S. (2000). Applied Logistic Regression.

104



Bibliography

[37] Hu, J. and Jiang, Z. (2010). Predicting the potential distribution of the endangered

przewalski's gazelle. Journal of Zoology, 282.

[38] IUCN (2001). IUCN Red list Categories and Criteria. Species Survival Commission,

World Conservation Union (IUCN), Gland, Switzerland and Cambridge UK, version

3.1 edition.

[39] Jenks, G. F. (1967). The data model concept in statistical mapping. International

Yearbook of Cartography, 7:186�190.

[40] Jepsen, J., Topping, C., Odderskær, P., and Andersen, P. (2005). Evaluating conse-

quences of land-use strategies on wildlife populations using multiple-species predictive

scenarios. Agriculture, Ecosystems & Environment, 105(4):581 � 594.

[41] Kidane, A. (1974). Interaction of livestock, game and vegetation in longido con-

trolled hunting area. Master's thesis, Mweka Wildlife Management College.

[42] Kiunsi, R. (1993). Land cover change in the longido game controlled area and their

possible e�ect on the function of the amboseli biosphere reserve. Master's thesis, Inter-

national Institute for Aerospace survey and earth Science, Netherlands. Unpublished

Master�s thesis.

[43] Lasan, A. (1971). Formulation of management plan for the longido controlled area,

ngaserai. Master's thesis, Diploma theis submitted for the ful�llment of an award of

diploma in Wildlife Management, Mweka.

[44] Li, J. (2008). Biodiversity and conservation. Biodiversity and conservation,

17(13):3079�3095.

[45] Lipsitz, S. R., Laird, N. M., Brennan, T. A., and Parzen, M. (2001). Estimating

the kappa-coe�cient from a selected sample. The Statistician, 50(4):407�416.

105



Bibliography

[46] Liu, C. (2005). Selecting thresholds of occurrence in the prediction of species dis-

tributions. Ecography, 28(3):385�393.

[47] Luoto, M. (2000). Modelling of rare plant species richness by landscape variables

in an agriculture area in �nland. Plant Ecology, 149(2):157�168.

[48] Manel, S., Williams, H. C., and Ormerod, S. J. (2001a). Evaluating presence-

absence models in ecology: The need to account for prevalence. The Journal of

Applied Ecology, 38(5):921�931.

[49] Manel, S., Williams, H. C., and Ormerod, S. J. (2001b). Evaluating presence-

absence models in ecology: the need to account for prevalence. Journal Of Applied

Ecology, 38(5):921�931.

[50] Martinez, J. C., Coll, E., and Irigoyen, J. (2005). Spatial analysis using opengis

speci�cations: 'simple features sql'. WSEAS Transactions on Information Science

and Applications, 2(4):409�15.

[51] McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models -Monographs

on Statistics and Applied Probability. Chapman & Hall, London, UK, 2nd edition

edition.

[52] Meynard, C. N. and Quinn, J. F. (2007). Predicting species distributions: a critical

comparison of the most common statistical models using arti?cial species. Predicting

species distributions: a critical comparison of the most common statistical models

using arti?cial species., 34(8):1455�1469.

[53] Millington, J., Walters, M., Matonis, M. S., and Liu, J. (2010). E�ects of local

and regional landscape characteristics on wildlife distribution across managed forests.

Forest Ecology and Management, 259(6):1102 � 1110.

[54] Mörtberg, U., Balfors, B., and Knol, W. (2007). Landscape ecological assessment:

106



Bibliography

A tool for integrating biodiversity issues in strategic environmental assessment and

planning. Journal of Environmental Management, 82(4):457 � 470.

[55] Newbold, T., Reader, T., El-Gabbas, A., Berg, W., Shohdi, W. M., Zalat, S.,

El Din, S., and Gilbert, F. (2010). Testing the accuracy of species distribution models

using species records from a new �eld survey. Oikos, 119:1326 � 1334.

[56] Ntalwila, J. (2007). Wildlife diversity and their interaction with people for sustain-

able use in semi arid areas of northern Mount Meru Ecosystem (Tanzania). PhD

thesis, Analysis, Protection and Management of Biodiversity, XX Course.

[57] Oikos, I. (2004). Mmcp (mount meru conservation project) 2004. long term wildlife

monitoring in arusha national park, tanzania. Technical report. A report submitted

by Istituto Oikos for the European Commission, 109 pp.

[58] Oikos, I. (2008). Raccordo autostradale ospitaletto-montichiari-piano di monitor-

aggio ambientale (p.m.a.). monitoraggio ante operam. componente vegetazione, �ora,

fauna e ecosistemi. Technical report.

[59] Olivier, F. and Wotherspoon, S. J. (2006). Modelling habitat selection using

presence-only data: Case study of a colonial hollow nesting bird, the snow petrel.

Ecological Modelling, 195(3-4):187�204.

[60] Ottaviani, D., Lasinio, G. J., , and Boitani, L. (2004). Two statistical methods

to validate habitat suitability models using presence-only data. Ecological Modelling,

179(4):417�443.

[61] Pearce, J. and Ferrier, S. (2000). Evaluating the predictive performance of habitat

models developed using logistic regression. Ecological Modelling, 133(3):225�245.

[pgAdmin Development Team] pgAdmin Development Team. pgadmin postrgresql tools

(pgadmin). version 1.8.4. http://www.pgadmin.org/.

107



Bibliography

[63] Poole, J. and Reuling, M. (1997). A survey of elephant and other wildlife of the

west kilimanjaro basin, tanzania. 57 pp. Technical report.

[64] Prigioni, C., Cantini, M., and Zilio, A. (2001). Atlante dei Mammiferi della Lom-

bardia.

[65] R, C. D. T. (2010). R: A Language and Environment for Statistical Computing.

Vienna, Austria.

[66] Rebelo, H. and Jones, G. (2010). Ground validation of presence-only modelling

with rare species: a case study on barbastelles barbastella barbastellus (chiroptera:

Vespertilionidae). JOURNAL OF APPLIED ECOLOGY, 47(2):410�420.

[Refraction Research Inc.] Refraction Research Inc., Victoria, B. C.-C. Postgis version

1.4. htto://postgis.refractions.net/.

[68] RIichter, R. and Ford, R. (1994). An object-oriented characterization of spatial

ecosystem information. Mathematical And Computer Modelling, 20(8):17�29.

[69] Rodriguez, J. P., Brotons, L., Bustamante, J., , and Seoane, J. (2007). The ap-

plication of predictive modelling of species distribution to biodiversity conservation.

Diversity and Distributions, 13(3):243�251.

[Shekhar and Chawla] Shekhar, S. and Chawla, S. Spatial Databases: a Tour. Prentice

Hall� Upper Saddle River,. New Jersey, USA.

[71] Shekhar, S. and Chawla, S. (2003). Spatial Databases: A Tour.

[72] Sindaco, R., Doria, G.and Razzetti, E., and Bernini, F. E. (2006). Atlante degli

An�bi e dei Rettili d'Italia / Atlas of Italian Amphibians and Reptiles. Societas Her-

petologica Italica sezione Lombardia (2000).

108



Bibliography

[73] Stankowski, P. A. and Parker, W. (2010). Species distribution modelling: Does

one size �t all? a phytogeographic analysis of salix in ontario. Ecological Modelling,

221(13-14):1655 � 1664.

[74] Stockwell, D. and Peters, D. (1999). The garp modelling system: problems and

solutions to automated spatial prediction. International Journal Of Geographical In-

formation Science, 13(2):143�158.

[75] Stockwell, D. R. B. and Peterson, A. T. (2002). E?ects of sample size on accuracy

of species distribution models. Ecological Modelling, 148(1):1�13.

[76] Team, G. D. Geographic resources analysis support system (grass) version 6.4.0.

http://grass.itc.it/.

[77] Team, Q. D. Quantum gis (qgis). version 1.5.0. http://www.qgis.org/.

[78] Tsoar, A., Allouche, O., Steinitz, O., Rotem, D., and Kadmon, R. (2007). A compar-

ative evaluation of presence-only methods for modelling species distribution. Diversity

and Distributions, 13(4):397�405.

[79] Urbano, F., Cagnacci, F., Calenge, C., Dettki, H., Cameron, A., and M., N. (2010).

Wildlife tracking data management: a new vision. Phil. Trans. R Soc B, 365:2177�

2185.

[80] Vaughan, I. (2005). The continuing challenges of testing species distribution models.

The Journal of applied ecology, 42(4):720�730.

[81] Vesey-Fitzgerald, D. (1974). Utilisation of the grazing resources by bu�aloes in the

arusha national park, tanzania. E. Afr. Wildl. J, 12:107�134.

[82] Vigorita, V. & Cucè, L. a. c. d. (2008). La fauna selavatica in Lombardia - rapporto

2008 su distribuzione, abbondanza e stato di conservazione di uccelli e mammiferi.

Regione Lombardia - Direzione Generale Agricoltura.

109



Bibliography

[83] Walker, P. A. and Cocks, K. D. (1991). Habitat: A procedure for modelling a

disjoint environmental envelope for a plant or animal species. Global Ecology and

Biogeography Letters, 1:108�118.

[84] Wong, I., Bloo, R., McNicol, D., Fong, P., Russel, R., and Chen, X. (2007). Species

at risk: data and knoledge management within the wildspace decison support system.

Environmental Modelling and Software, 22:423�430.

[85] Wong, I., McNicol, D., Fong, P., Fillman, D., Neysmith, J., and Russel, R.

(2003). The wildspace decison support system. Environmental Modelling and Soft-

ware, 18:521�530.

[86] Zaniewski, A. E., Lehmann, A., , and Overton, J. M. C. (2002). Predicting species

spatial distributions using presence-only data: a case study of native new zealand

ferns. Ecological Modelling, 157(2-3):261�280.

[87] Zeilhofer, P., Neto, P. S. A., Maja, W. Y., and Vecchiato, D. A. (2009). A web-

based, component-oriented application for spatial modelling of habitat suitability of

mosquito vectors. International Journal Of Digital Earth, 2(4):327�342.

110



A. Results of LRA

A.0.4. Mount Meru region - Tanzania

Table A.1.: Environmental variables for spatial models in Mount Meru region

Variable name Description

ev-cl08 mean temperature of wettest quarter
ev-cl09 mean temperature of driest quarter
ev-cl16 precipitation of wettest quarter
ev-cl17 precipitation of driest quarter
ev-domi dominance's diversity index
ev-shan Shannon's diversity index
ev-edde edge density index
ev-patc patch density index
ev-lake distance from lakes
ev-rvrs distance from rivers
ev-road distance from roads
ev-swpa distance from swamps
ev-vllg distance from villages
ev-tasp digital elevation model - aspect
ev-tslp digital elevation model - slope
ev-h101 continuous herbaceous vegetation
ev-h105 continuous herbaceous vegetation with scrubs
ev-h108 continuous herbaceous vegetation with isolated rainfed crop
ev-h113 continuous herbaceous vegetation with sparse trees and

scrubs
ev-h115 continuous herbaceous vegetation with sparse scrubs
ev-h117 continuous herbaceous vegetation with isolated rainfed crop
ev-h122 open shrubs with sparse trees
ev-h126 open shrubs with sparse trees and with isolated �elds of

rainfed crop
ev-h127 open shrubs
ev-h131 open shrubs with isolated �eld of rainfed crop
ev-h132 open shrubs with combination of rainfed tree and herba-

ceous crops
ev-h134 continuous shrubs with herbaceous layers with rainfed tree

and herbaceous crops
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A. Results of LRA

Table A.1.: (Continued) Environmental variables for spatial models in Mount Meru re-
gion

Variable name Description

ev-h141 continuous shrubs with herbaceous layers/herbaceous veg-
etation with sparse trees and shrubs

ev-h143 open shrubs with sparse trees/continuous herbaceous vege-
tation with sparse trees and shrubs

ev-h145 open shrubs with sparse trees/isolated �eld of rainfed crop
ev-h146 continuous trees forest with scrubs
ev-h154 continuous broadleaved deciduous forest with herbaceous

layer and sparse scrubs/urban area
ev-h162 continuous tree forest with shrubs
ev-h165 continuous broadleaved deciduous forest with shrubs
ev-h166 continuous broadleaved deciduous forest with

shrubs/grassland
ev-h170 continuous woody vegetation with thorny plants
ev-h174 grassland with sparse shrubs on temporarily swampy area
ev-h175 grassland on permanently �ooded area
ev-h177 grassland/woody vegetation with herbaceous layer on tem-

porarily swampy area
ev-h180 shrubs with herbaceous layer on temporarily swampy area
ev-h182 shrubs with herbaceous layer on temporarily

swampy/grassland on temporarily swampy area
ev-h190 bare rock
ev-h193 natural lakes
ev-h196 continuous rainfed herbaceous crops/continuous herba-

ceous vegetation with sparse trees and shrubs
ev-h202 continuous rainfed herbaceous crops/continuous herba-

ceous vegetation with sparse trees and shrubs
ev-h204 continuous rainfed herbaceous crops
ev-h205 continuous rainfed herbaceous crops/continuous herba-

ceous vegetation
ev-h207 continuous rainfed herbaceous crops/continuous herba-

ceous vegetation with sparse trees and shrubs
ev-h211 continuous rainfed herbaceous crops/combination of rainfed

tree and shrubs crops
ev-h214 continuous forest plantations of rainfed Pine
ev-h216 continuous combination of rainfed tree and herbaceous

crops/continuous herbaceous vegetation
ev-h218 continuous rainfed tree and herbaceous crops/continuous

broadleaved deciduous forest with shrubs
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Canis aureus

Table A.2.: selected environmental variables and computed coe�cients from stepwise
analysis for Canis aureus (golden jackal)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 1.918e + 05 1.830e + 05 1.048 0.295
ev-cl09 -4.316e + 02 4.211e + 02 -1.025 0.305
ev-cl17 -5.140e + 02 4.992e + 02 -1.030 0.303
ev-edde -1.083e + 01 1.012e + 01 -1.070 0.284
ev-patc 1.623e + 04 1.555e + 04 1.043 0.297
ev-lake -2.273e + 00 2.187e + 00 -1.040 0.299
ev-rvrs 1.747e− 01 4.423e + 00 0.040 0.968
ev-swpa -1.161e− 01 3.385e + 00 -0.034 0.973
ev-vllg -1.028e + 00 1.375e + 00 -0.748 0.455
ev-h104 1.226e + 02 1.108e + 02 1.107 0.268
ev-h106 2.194e + 02 2.199e + 02 0.998 0.318
ev-h108 8.709e + 00 2.859e + 02 0.030 0.976
ev-h115 1.823e + 02 1.757e + 02 1.038 0.299
ev-h123 3.243e + 02 4.700e + 02 0.690 0.490
ev-h127 7.197e + 01 9.122e + 01 0.789 0.430
ev-h132 1.283e + 02 1.195e + 02 1.074 0.283
ev-h141 3.271e + 01 4.148e + 02 0.079 0.937
ev-h143 -2.125e + 02 1.927e + 02 -1.103 0.270
ev-h146 -2.377e + 02 2.583e + 02 -0.920 0.357
ev-h158 3.128e + 02 2.850e + 02 1.098 0.272
ev-h164 -8.911e + 01 1.150e + 03 -0.078 0.938
ev-h168 7.924e + 01 9.368e + 02 0.085 0.933
ev-h169 6.762e + 02 8.594e + 02 0.787 0.431
ev-h174 -7.343e + 01 7.689e + 01 -0.955 0.340
ev-h180 -1.185e + 02 1.308e + 02 -0.906 0.365
ev-h182 1.226e− 01 5.087e− 02 2.410 0.015
ev-h183 -1.357e + 02 3.314e + 02 -0.410 0.682
ev-h184 4.895e− 01 9.281e− 02 0.274 0.346
ev-h175 1.035e + 02 1.145e + 02 0.904 0.366
ev-h177 -2.705e + 01 3.363e + 02 -0.080 0.936
ev-h193 -5.233e + 02 5.830e + 02 -0.897 0.369
ev-h202 -1.125e− 01 5.482e− 02 -0.053 0.683
ev-h205 7.217e + 02 9.247e + 02 0.780 0.435
ev-h207 -3.238e− 01 6.224e− 02 0.569 0.972
ev-h214 1.182e + 00 1.446e− 01 0.177 0.916
ev-h216 3.202e− 01 9.737e− 02 3.289 0.734
ev-h218 3.935e + 00 6.252e + 02 0.006 0.995
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A. Results of LRA

Figure A.1.: LRA for Canis aureus (golden jackal) ROC plot

114



Figure A.2.: Canis aureus (golden jackal) potential distribution
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A. Results of LRA

Canis mesomelas (black-backed jackal)

Table A.3.: selected environmental variables and computed coe�cients from stepwise
analysis for Canis mesomelas (black-backed jackal)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 4.241e + 05 4.423e + 05 0.959 0.338
ev-cl04 2.953e + 01 3.498e + 01 0.844 0.399
ev-cl09 -5.969e + 02 5.891e + 02 -1.013 0.311
ev-cl15 5.145e + 02 5.922e + 02 0.869 0.385
ev-cl17 -3.542e + 02 5.328e + 02 -0.665 0.506
ev-domi -1.215e + 03 1.300e + 03 -0.934 0.350
ev-lake -7.017e− 01 8.634e− 01 -0.813 0.416
ev-road -1.086e + 00 1.056e + 00 -1.028 0.304
ev-rvrs 1.151e + 00 1.173e + 00 0.981 0.326
ev-vllg -8.992e− 01 9.364e− 01 -0.960 0.337
ev-tasp 9.908e− 01 1.671e + 00 0.593 0.553
ev-tslp 1.327e + 02 1.286e + 02 1.032 0.302
ev-h101 -6.319e + 01 6.077e + 01 -1.040 0.298
ev-h104 -5.803e + 01 7.189e + 01 -0.807 0.420
ev-h105 -5.536e + 01 5.466e + 01 -1.013 0.311
ev-h106 3.539e + 01 8.087e + 01 0.438 0.662
ev-h108 -1.175e + 02 1.222e + 02 -0.962 0.336
ev-h113 -6.838e + 01 6.985e + 01 -0.979 0.328
ev-h115 8.247e + 01 8.673e + 01 0.951 0.342
ev-h117 -5.042e + 01 5.213e + 01 -0.967 0.333
ev-h122 1.177e + 02 1.234e + 02 0.954 0.340
ev-h126 -9.098e + 01 1.242e + 02 -0.733 0.464
ev-h128 -1.465e + 02 1.455e + 02 -1.007 0.314
ev-h131 2.511e + 01 3.242e + 01 0.775 0.439
ev-h132 1.403e + 02 1.362e + 02 1.030 0.303
ev-h140 -2.704e + 02 2.853e + 02 -0.948 0.343
ev-h142 -5.595e + 01 7.458e + 01 -0.750 0.453
ev-h143 -9.911e + 01 1.304e + 02 -0.760 0.447
ev-h145 4.758e + 01 8.414e + 01 0.566 0.572
ev-h146 -8.860e + 01 1.037e + 02 -0.854 0.393
ev-h158 -9.093e + 01 1.235e + 02 -0.736 0.462
ev-h162 1.337e + 02 1.602e + 02 0.835 0.404
ev-h164 -1.243e + 02 2.551e + 02 -0.487 0.626
ev-h165 7.882e + 01 1.054e + 02 0.748 0.455
ev-h166 -1.152e + 02 1.402e + 02 -0.822 0.411
ev-h167 -3.249e + 02 3.794e + 02 -0.856 0.392
ev-h169 -6.750e + 01 1.161e + 02 -0.581 0.561
ev-h170 2.080e + 02 2.270e + 02 0.916 0.360
ev-h176 1.245e + 02 1.375e + 02 0.905 0.365
ev-h180 -1.125e + 02 1.072e + 02 -1.050 0.294
ev-h182 8.474e + 01 7.836e + 01 1.081 0.280
ev-h183 -4.220e + 02 4.987e + 02 -0.846 0.397
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Figure A.3.: LRA for Canis mesomelas (black-backed jackal) ROC plot

Table A.3.: (continued) selected environmental variables and computed coe�cients from
stepwise analysis for Canis mesomelas (black-backed jackal)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

ev-h184 3.469e + 02 3.421e + 02 1.014 0.310
ev-h190 5.746e + 02 5.569e + 02 1.032 0.302
ev-h193 -3.085e + 02 3.745e + 02 -0.824 0.410
ev-h202 -1.356e + 02 1.343e + 02 -1.010 0.312
ev-h207 -1.012e + 02 9.298e + 01 -1.089 0.276
ev-h214 -6.325e + 02 6.152e + 02 -1.028 0.304
ev-h218 -4.152e + 02 3.967e + 02 -1.047 0.295
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A. Results of LRA

Figure A.4.: Canis mesomelas (black-backed jackal) potential distribution
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Figure A.5.: LRA for Lycaon pictus (wildog) ROC plot

Lycaon pictus (wildog)

Table A.4.: selected environmental variables and computed coe�cients from stepwise
analysis for Lycaon pictus (wildog)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 30550.353 116939.876 0.261 0.794
ev-cl09 -20.056 79.919 -0.251 0.802
ev-h106 -17.329 81.211 -0.213 0.831
ev-h108 -8.054 36.206 -0.222 0.824
ev-h126 9.199 36.235 0.254 0.800
ev-h146 -32.359 163.664 -0.198 0.843
ev-h156 -43.354 175.628 -0.247 0.805
ev-h174 -29.120 110.035 -0.265 0.791
ev-h177 -35.200 171.702 -0.205 0.838
ev-h190 28.782 109.534 0.263 0.793
ev-h193 24.428 196.258 0.124 0.901
ev-h211 -61.725 241.722 -0.255 0.798
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A. Results of LRA

Figure A.6.: Lycaon pictus (wildog) potential distribution
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Figure A.7.: LRA for Otocyon megalotis (bat-eared fox) ROC plot

Otocyon megalotis (bat-eared fox)

Table A.5.: selected environmental variables and computed coe�cients from stepwise
analysis for Otocyon megalotis (bat-eared fox)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 7.066e + 03 5.693e + 04 0.124 0.901
evedde -6.286e− 01 5.436e + 00 -0.116 0.908
evroad 1.020e− 01 9.169e− 01 0.111 0.911
evrvrs 9.041e− 02 8.285e− 01 0.109 0.913
evh117 2.022e + 01 1.624e + 02 0.125 0.901
evh122 9.952e + 00 1.127e + 02 0.088 0.930
evh168 2.645e + 01 2.313e + 02 0.114 0.909
evh169 -5.231e + 01 4.338e + 02 -0.121 0.904
evh180 -1.133e + 01 9.058e + 01 -0.125 0.900
evh214 -2.232e + 01 1.940e + 02 -0.115 0.908
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A. Results of LRA

Figure A.8.: Otocyon megalotis (bat-eared fox) potential distribution
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Figure A.9.: LRA for Crocuta crocuta (spotted hyena) ROC plot

Crocuta crocuta (spotted hyena)

Table A.6.: selected environmental variables and computed coe�cients from stepwise
analysis for Crocuta crocuta (spotted hyena)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -1.576e + 04 4.380e + 05 -0.036 0.971
ev-rvrs 1.747e− 01 4.423e + 00 0.040 0.968
ev-swpa -1.161e− 01 3.385e + 00 -0.034 0.973
ev-tasp 4.383e− 01 1.303e + 01 0.034 0.973
ev-h106 -1.648e + 01 3.623e + 02 -0.045 0.964
ev-h108 8.709e + 00 2.859e + 02 0.030 0.976
ev-h132 1.107e + 01 6.256e + 02 0.018 0.986
ev-h146 2.529e + 01 6.299e + 02 0.040 0.968
ev-h156 -6.320e + 01 1.087e + 03 -0.058 0.954
ev-h162 4.782e + 01 9.185e + 02 0.052 0.958
ev-h167 6.623e + 01 1.286e + 03 0.051 0.959
ev-h170 1.757e + 01 3.033e + 02 0.058 0.954
ev-h175 -2.004e + 01 3.840e + 02 -0.052 0.958
ev-h183 -5.495e + 01 9.622e + 02 -0.057 0.954
ev-h207 2.298e + 01 5.762e + 02 0.040 0.968
ev-h218 3.935e + 00 6.252e + 02 0.006 0.995
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A. Results of LRA

Figure A.10.: Crocuta crocuta (spotted hyena) potential distribution
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Figure A.11.: LRA for Civettictis civetta (african civet) ROC plot

Civettictis civetta (african civet)

Table A.7.: selected environmental variables and computed coe�cients from stepwise
analysis for Civettictis civetta (african civet)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -4.871e + 00 2.679e + 00 -1.819 0.068963
ev-cl09 7.979e− 03 5.279e− 03 1.511 0.130718
ev-domi 4.191e− 01 1.695e− 01 2.473 0.013394
ev-swpa -6.312e− 05 2.162e− 05 -2.920 0.003501
ev-h106 6.102e− 03 2.785e− 03 2.191 0.028482
ev-h122 -6.596e− 03 2.604e− 03 -2.533 0.011314
ev-h132 -8.927e− 03 1.845e− 03 -4.838 1.31e-06
ev-h134 -9.617e− 03 3.041e− 03 -3.162 0.001567
ev-h156 -1.183e− 02 2.969e− 03 -3.985 6.74e-05
ev-h178 -1.654e− 02 4.160e− 03 -3.976 7.01e-05
ev-h216 -1.164e− 02 4.161e− 03 -2.797 0.005151

125



A. Results of LRA

Figure A.12.: Civettictis civetta (african civet) potential distribution
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Lepus saxatilis (scrub hare)

Table A.8.: selected environmental variables and computed coe�cients from stepwise
analysis for Lepus saxatilis (scrub hare)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 1.411e + 05 1.176e + 05 1.199 0.230
ev-cl04 2.790e + 01 72.195e + 01 1.271 0.204
ev-cl09 2.193e + 02 71.704e + 02 1.287 0.198
ev-cl15 -4.132e + 02 73.200e + 02 -1.291 0.197
ev-cl17 2.410e + 02 71.888e + 02 1.277 0.202
ev-domi -2.892e + 03 72.260e + 03 -1.280 0.201
ev-shan -6.016e + 03 74.735e + 03 -1.271 0.204
ev-edde -5.903e + 00 74.590e + 00 -1.286 0.198
ev-patc 1.926e + 04 71.528e + 04 1.261 0.207
ev-lake -4.622e− 01 73.637e− 01 -1.271 0.204
ev-road -1.686e− 01 71.427e− 01 -1.182 0.237
ev-swpa 9.473e− 01 77.574e− 01 1.251 0.211
ev-vllg -3.410e− 01 72.873e− 01 -1.187 0.235
ev-tasp 1.062e + 00 71.184e + 00 0.896 0.370
ev-tslp 2.881e + 01 72.375e + 01 1.213 0.225
ev-h101 -8.098e + 01 76.288e + 01 -1.288 0.198
ev-h104 8.135e + 01 76.380e + 01 1.275 0.202
ev-h105 1.020e + 02 78.001e + 01 1.275 0.202
ev-h106 6.209e + 02 74.802e + 02 1.293 0.196
ev-h107 -3.474e + 02 72.784e + 02 -1.248 0.212
ev-h108 -2.222e + 02 71.723e + 02 -1.290 0.197
ev-h110 -2.247e + 02 71.811e + 02 -1.241 0.215
ev-h113 -1.018e + 02 78.060e + 01 -1.263 0.207
ev-h115 8.017e + 00 71.698e + 01 0.472 0.637
ev-h117 -2.741e + 01 72.197e + 01 -1.248 0.212
ev-h122 8.343e + 01 76.505e + 01 1.283 0.200
ev-h123 1.249e + 02 79.902e + 01 1.261 0.207
ev-h126 -5.784e + 01 74.500e + 01 -1.285 0.199
ev-h127 1.271e + 02 71.038e + 02 1.225 0.221
ev-h128 6.225e + 01 74.940e + 01 1.260 0.208
ev-h131 1.552e + 02 71.212e + 02 1.281 0.200
ev-h132 3.737e + 01 73.146e + 01 1.188 0.235
ev-h134 -1.970e + 02 71.529e + 02 -1.288 0.198
ev-h140 7.951e + 01 76.647e + 01 1.196 0.232
ev-h141 6.283e + 01 76.727e + 01 0.934 0.350
ev-h142 -2.308e + 02 71.804e + 02 -1.280 0.201
ev-h143 4.176e + 02 73.261e + 02 1.280 0.200
ev-h145 4.062e + 02 73.172e + 02 1.280 0.200
ev-h146 3.013e + 01 72.477e + 01 1.217 0.224
ev-h165 1.348e + 02 71.130e + 02 1.193 0.233
ev-h167 6.964e + 01 75.993e + 01 1.162 0.245
ev-h170 8.553e + 01 76.819e + 01 1.254 0.210
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A. Results of LRA

Figure A.13.: LRA for Lepus saxatilis (scrub hare) ROC plot

Table A.8.: selected environmental variables and computed coe�cients from stepwise
analysis for Lepus saxatilis (scrub hare)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

ev-h174 7.174e + 01 75.600e + 01 1.281 0.200
ev-h176 -8.908e + 01 76.997e + 01 -1.273 0.203
ev-h178 -2.006e + 02 71.568e + 02 -1.280 0.201
ev-h180 -1.461e + 02 71.133e + 02 -1.290 0.197
ev-h183 2.662e + 02 72.064e + 02 1.290 0.197
ev-h184 -4.088e + 02 73.222e + 02 -1.269 0.204
ev-h190 -2.558e + 02 71.968e + 02 -1.299 0.194
ev-h193 -1.199e + 02 79.483e + 01 -1.264 0.206
ev-h207 -5.080e + 02 73.932e + 02 -1.292 0.196
ev-h211 -2.016e + 02 71.604e + 02 -1.257 0.209
ev-h214 -1.871e + 02 71.482e + 02 -1.262 0.207
ev-h218 -6.025e + 01 76.502e + 01 -0.927 0.354
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Figure A.14.: Lepus saxatilis (scrub hare) potential distribution
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A. Results of LRA

Figure A.15.: LRA for Pronolagus rupestris (Smith's red rock hare) ROC plot

Pronolagus rupestris (Smith's red rock hare)

Table A.9.: selected environmental variables and computed coe�cients from stepwise
analysis for Pronolagus rupestris (Smith's red rock hare)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 3.721e + 06 3.254e + 07 0.114 0.909
ev-cl15 -4.766e + 03 4.160e + 04 0.252 0.801
ev-cl17 -8.319e + 03 7.294e + 04 0.271 0.786
ev-patc 3.087e + 05 2.712e + 06 0.285 0.775
ev-lake -6.957e + 00 6.088e + 01 -0.024 0.981
ev-road -3.136e + 01 2.750e + 02 -0.086 0.932
ev-tasp 1.875e + 01 1.641e + 02 0.019 0.985
ev-h107 -2.627e + 03 2.292e + 04 0.017 0.986
ev-h122 3.975e + 03 3.479e + 04 -0.055 0.956
ev-h131 -8.210e + 02 7.190e + 03 0.042 0.967
ev-h134 2.540e + 03 2.227e + 04 -0.114 0.909
ev-h146 -3.095e + 03 2.707e + 04 0.311 0.756
ev-h164 -1.770e + 03 1.551e + 04 0.260 0.795
ev-h168 1.318e + 03 1.153e + 04 -0.126 0.899
ev-h178 3.926e + 03 3.438e + 04 -0.123 0.902
ev-h182 -2.518e + 03 2.203e + 04 0.127 0.899
ev-h211 3.198e + 03 2.801e + 04 -0.172 0.864
ev-h216 3.068e + 03 2.693e + 04 -0.215 0.830
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Figure A.16.: Pronolagus rupestris (Smith's red rock hare) potential distribution
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A. Results of LRA

Figure A.17.: LRA for Cercopithecus mitis (blue monkey) ROC plot

Cercopithecus mitis (blue monkey)

Table A.10.: selected environmental variables and computed coe�cients from stepwise
analysis for Cercopithecus mitis (blue monkey)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 1.148e + 04 1.868e + 05 0.061 0.951
ev-domi 5.717e + 02 9.139e + 03 0.063 0.950
ev-road -3.529e− 01 5.797e + 00 -0.061 0.951
ev-h104 -1.238e + 01 2.030e + 02 -0.061 0.951
ev-h117 -2.491e + 01 3.348e + 02 -0.074 0.941
ev-h141 -2.392e + 01 2.925e + 02 -0.082 0.935
ev-h142 -3.733e + 01 4.879e + 02 -0.077 0.939
ev-h143 3.042e + 01 3.639e + 02 0.084 0.933
ev-h158 -1.368e + 01 1.842e + 02 -0.074 0.941
ev-h170 1.879e + 01 2.506e + 02 0.075 0.940
ev-h180 1.032e + 01 1.749e + 02 0.059 0.953
ev-h214 -2.348e + 01 3.905e + 02 -0.060 0.952
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Figure A.18.: Cercopithecus mitis (blue monkey) potential distribution
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A. Results of LRA

Figure A.19.: LRA for Papio cynocephalus (yellow baboon) ROC plot

Papio cynocephalus (yellow baboon)

Table A.11.: selected environmental variables and computed coe�cients from stepwise
analysis for Papio cynocephalus (yellow baboon)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 2.956e + 04 7.968e + 05 0.037 0.970
ev-cl15 1.052e + 02 2.042e + 03 0.052 0.959
ev-edde 2.323e + 00 1.044e + 02 0.022 0.982
ev-lake 1.778e− 01 9.730e + 00 0.018 0.985
ev-swpa 2.808e− 01 3.205e + 01 0.009 0.993
ev-h104 -1.865e + 01 8.276e + 02 -0.023 0.982
ev-h105 -6.777e + 01 2.867e + 03 -0.024 0.981
ev-h106 -5.380e + 01 6.278e + 02 -0.086 0.932
ev-h113 4.671e + 01 9.759e + 02 0.048 0.962
ev-h122 3.562e + 01 1.858e + 03 0.019 0.985
ev-h123 -6.224e + 01 1.121e + 03 -0.056 0.956
ev-h127 9.287e + 01 4.949e + 03 0.019 0.985
ev-h131 2.042e + 01 1.188e + 03 0.017 0.986
ev-h162 -1.089e + 02 5.206e + 03 -0.021 0.983
ev-h169 -9.793e + 01 3.312e + 03 -0.030 0.976
ev-h174 -3.896e + 01 2.562e + 03 -0.015 0.988
ev-h175 -3.504e + 01 6.363e + 02 -0.055 0.956
ev-h177 -1.724e + 01 1.747e + 03 -0.010 0.992
ev-h182 -8.474e + 01 3.190e + 03 -0.027 0.979
ev-h183 1.456e + 02 3.489e + 03 0.042 0.967
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Figure A.20.: Papio cynocephalus (yellow baboon) potential distribution
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A. Results of LRA

Figure A.21.: LRA for Colobus guereza (mantled guereza) ROC plot

Colobus guereza (mantled guereza)

Table A.12.: selected environmental variables and computed coe�cients from stepwise
analysis for Colobus guereza (mantled guereza)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 27098.0741 77401.9803 0.350 0.726
ev-shan -1499.0778 4157.6777 -0.361 0.718
ev-road -0.4483 1.2221 -0.367 0.714
ev-vllg 0.1887 0.5158 0.366 0.714
ev-h123 -49.2945 139.2956 -0.354 0.723
ev-h134 -51.4382 140.1831 -0.367 0.714
ev-h142 -50.1845 138.5773 -0.362 0.717
ev-h145 -94.3995 255.6411 -0.369 0.712
ev-h146 -80.5670 219.6753 -0.367 0.714
ev-h178 -71.3159 193.3506 -0.369 0.712
ev-h183 122.5455 329.7377 0.372 0.710
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Figure A.22.: Colobus guereza (mantled guereza) potential distribution
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A. Results of LRA

Figure A.23.: LRA for Procavia capensis (rock hyrax) ROC plot

Procavia capensis (rock hyrax)

Table A.13.: selected environmental variables and computed coe�cients from stepwise
analysis for Procavia capensis (rock hyrax)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 5212.4283 80858.4668 0.064 0.949
ev-domi -183.0723 3404.9062 -0.054 0.957
ev-road 0.1137 2.0657 0.055 0.956
ev-h113 2.6780 80.8673 0.033 0.974
ev-h122 -5.7782 95.1944 -0.061 0.952
ev-h165 -10.9536 170.9874 -0.064 0.949
ev-h166 6.1611 141.8470 0.043 0.965
ev-h176 -7.4995 132.3412 -0.057 0.955
ev-h211 -7.7416 119.2485 -0.065 0.948

138



Figure A.24.: Procavia capensis (rock hyrax) potential distribution
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A. Results of LRA

Figure A.25.: Phacochoerus africanus (warthdog) ROC plot

Phacochoerus africanus (warthdog)

Table A.14.: selected environmental variables and computed coe�cients from stepwise
analysis for Phacochoerus africanus (warthdog)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -2342.23 309985.21 -0.008 0.994
ev-h107 67.13 1697.75 0.040 0.968
ev-h132 25.88 927.85 0.028 0.978
ev-h158 -30.00 1144.65 -0.026 0.979
ev-h164 -46.68 1424.77 -0.033 0.974
ev-h167 59.98 1790.15 0.034 0.973
ev-h170 -11.54 349.97 -0.033 0.974
ev-h175 -21.81 713.60 -0.031 0.976
ev-h178 32.82 1662.91 0.020 0.984
ev-h180 -19.55 539.74 -0.036 0.971
ev-h183 -72.71 2671.67 -0.027 0.978
ev-h190 29.62 1250.72 0.024 0.981
ev-h202 26.47 819.47 0.032 0.974
ev-h207 -28.43 1108.87 -0.026 0.980
ev-h218 -44.38 2016.10 -0.022 0.982
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Figure A.26.: LRA for Phacochoerus africanus (warthdog) potential distribution

141



A. Results of LRA

Gira�a camelopardalis (gira�e)

Table A.15.: selected environmental variables and computed coe�cients from stepwise
analysis for Gira�a camelopardalis (gira�e)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 4.126e + 02 2.172e + 02 1.899 0.057525
ev-cl09 1.086e + 00 2.589e− 01 4.195 2.73e-05
ev-cl15 1.218e + 00 6.384e− 01 1.908 0.056371
ev-domi -1.134e + 01 3.558e + 00 -3.186 0.001442
ev-mpsi -1.449e− 06 4.811e− 07 -3.012 0.002591
ev-lake 1.893e− 03 7.344e− 04 2.577 0.009970
ev-road -7.156e− 03 1.401e− 03 -5.108 3.25e-07
ev-rvrs 2.898e− 03 7.137e− 04 4.061 4.90e-05
ev-swpa 2.002e− 03 6.415e− 04 3.121 0.001803
ev-vllg 1.873e− 03 4.516e− 04 4.149 3.35e-05
ev-tasp 7.354e− 03 2.892e− 03 2.543 0.010977
ev-tslp -6.563e− 01 2.549e− 01 -2.575 0.010021
ev-h101 2.934e + 01 1.247e + 03 0.024 0.981224
ev-h104 -3.819e− 01 1.100e− 01 -3.473 0.000515
ev-h106 6.513e− 01 1.344e− 01 4.844 1.27e-06
ev-h107 -7.360e− 01 2.461e− 01 -2.990 0.002787
ev-h108 -4.666e− 01 9.874e− 02 -4.726 2.29e-06
ev-h113 1.370e− 01 6.684e− 02 2.050 0.040375
ev-h115 2.917e− 01 9.662e− 02 3.019 0.002535
ev-h117 -5.804e− 01 1.302e− 01 -4.456 8.35e-06
ev-h122 4.084e− 01 1.304e− 01 3.132 0.001738
ev-h126 -3.607e− 01 9.221e− 02 -3.912 9.16e-05
ev-h127 4.796e− 01 1.763e− 01 2.720 0.006532
ev-h128 1.789e− 01 7.402e− 02 2.417 0.015668
ev-h134 -2.194e− 01 6.661e− 02 -3.294 0.000987
ev-h140 -1.321e + 00 2.208e− 01 -5.983 2.18e-09
ev-h141 -1.704e + 00 3.546e− 01 -4.805 1.55e-06
ev-h143 3.892e− 01 1.675e− 01 2.324 0.020119
ev-h145 4.635e− 01 1.375e− 01 3.372 0.000746
ev-h146 -2.704e− 01 1.074e− 01 -2.517 0.011827
ev-h156 -8.627e− 01 2.581e− 01 -3.343 0.000829
ev-h158 3.099e− 01 1.394e− 01 2.223 0.026240
ev-h164 7.922e− 01 2.536e− 01 3.124 0.001783
ev-h165 5.000e− 01 1.602e− 01 3.121 0.001803
ev-h167 7.652e− 01 2.651e− 01 2.886 0.003898
ev-h168 3.451e− 01 1.854e− 01 1.861 0.062756
ev-h170 5.846e− 01 1.225e− 01 4.771 1.83e-06
ev-h174 -5.716e− 01 1.150e− 01 -4.972 6.61e-07
ev-h175 -2.907e + 01 1.247e + 03 -0.023 0.981393
ev-h177 -1.122e + 00 2.312e− 01 -4.854 1.21e-06
ev-h178 -7.300e− 01 1.636e− 01 -4.461 8.14e-06
ev-h182 -6.454e− 01 1.587e− 01 -4.066 4.79e-05
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Figure A.27.: LRA for Gira�a camelopardalis (gira�e) ROC plot

Table A.15.: (continued) selected environmental variables and computed coe�cients
from stepwise analysis for Gira�a camelopardalis (gira�e)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

ev-h190 -6.164e− 01 2.148e− 01 -2.869 0.004119
ev-h193 -1.456e− 01 8.601e− 02 -1.693 0.090487
ev-h202 1.935e + 00 3.250e− 01 5.952 2.65e-09
ev-h205 1.056e + 00 2.287e− 01 4.617 3.90e-06
ev-h211 -3.285e− 01 1.509e− 01 -2.177 0.029478
ev-h218 -8.653e− 01 4.046e− 01 -2.139 0.032450
ev-h180 -9.743e− 02 6.394e− 02 -1.524 0.127533
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A. Results of LRA

Figure A.28.: Gira�a camelopardalis (gira�e) potential distribution
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Figure A.29.: LRA for Aepyceros melampus (impala) ROC plot

Aepyceros melampus (impala)

Table A.16.: selected environmental variables and computed coe�cients from stepwise
analysis for Aepyceros melampus (impala)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -14504.134 42211.323 -0.344 0.731
ev-cl17 -581.588 1574.567 -0.369 0.712
ev-swpa 1.009 2.717 0.371 0.710
ev-h104 -123.113 333.827 -0.369 0.712
ev-h115 -75.751 204.015 -0.371 0.710
ev-h122 166.355 451.791 0.368 0.713
ev-h123 105.363 286.392 0.368 0.713
ev-h126 86.776 234.983 0.369 0.712
ev-h140 22.567 60.445 0.373 0.709
ev-h142 -346.102 939.978 -0.368 0.713
ev-h145 141.878 382.805 0.371 0.711
ev-h169 -387.029 1047.026 -0.370 0.712
ev-h170 200.245 540.285 0.371 0.711
ev-h176 209.733 567.851 0.369 0.712
ev-h183 346.995 941.664 0.368 0.713
ev-h190 450.395 1225.006 0.368 0.713
ev-h214 -765.932 2082.276 -0.368 0.713
ev-h218 -81.751 222.008 -0.368 0.713
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A. Results of LRA

Figure A.30.: Aepyceros melampus (impala) potential distribution
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Figure A.31.: LRA for Connochaetes taurinus (wildbeest) ROC plot

Connochaetes taurinus (wildbeest)

Table A.17.: selected environmental variables and computed coe�cients from stepwise
analysis for Connochaetes taurinus (wildbeest)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 1.216e + 05 7.634e + 05 0.159 0.873
ev-cl04 -1.374e + 01 7.536e + 01 -0.182 0.855
ev-lake -7.703e− 01 4.557e + 00 -0.169 0.866
ev-road -1.240e + 00 6.833e + 00 -0.181 0.856
ev-h104 1.066e + 02 4.845e + 02 0.220 0.826
ev-h117 -2.674e + 01 1.165e + 02 -0.229 0.819
ev-h131 -1.152e + 02 7.542e + 02 -0.153 0.879
ev-h132 1.714e + 01 6.114e + 01 0.280 0.779
ev-h146 -8.084e + 01 4.907e + 02 -0.165 0.869
ev-h158 6.331e + 01 2.149e + 02 0.295 0.768
ev-h169 -9.951e + 01 3.885e + 02 -0.256 0.798
ev-h193 -3.021e + 01 1.008e + 02 -0.300 0.764
ev-h205 1.255e + 02 9.739e + 02 0.129 0.897
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A. Results of LRA

Figure A.32.: Connochaetes taurinus (wildbeest) potential distribution

148



Gazella granti (Grant's gazelle)

Table A.18.: selected environmental variables and computed coe�cients from stepwise
analysis for Gazella granti (Grant's gazelle)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 8.144e + 04 3.237e + 05 0.252 0.801
ev-cl15 4.608e + 02 1.700e + 03 0.271 0.786
ev-cl17 2.903e + 02 1.018e + 03 0.285 0.775
ev-domi -2.656e + 03 9.710e + 03 -0.274 0.784
ev-edde 3.215e + 00 1.189e + 01 0.270 0.787
ev-patc -1.203e + 04 7.035e + 04 -0.171 0.864
ev-mpsi 2.553e− 04 1.007e− 03 0.254 0.800
ev-road -5.536e− 01 2.685e + 00 -0.206 0.837
ev-rvrs 5.101e− 01 1.765e + 00 0.289 0.773
ev-vllg 9.039e− 01 2.978e + 00 0.304 0.761
ev-tasp -1.859e + 00 7.756e + 00 -0.240 0.811
ev-h101 -4.677e + 01 3.027e + 02 -0.155 0.877
ev-h104 -4.270e + 01 1.193e + 02 -0.358 0.720
ev-h105 -1.225e + 02 5.020e + 02 -0.244 0.807
ev-h106 2.630e + 02 1.128e + 03 0.233 0.816
ev-h107 1.398e + 02 4.441e + 02 0.315 0.753
ev-h110 2.889e + 03 2.201e + 04 0.131 0.896
ev-h113 -7.000e + 01 2.962e + 02 -0.236 0.813
ev-h115 2.437e + 02 9.385e + 02 0.260 0.795
ev-h117 -3.861e + 01 2.784e + 02 -0.139 0.890
ev-h122 1.928e + 02 7.005e + 02 0.275 0.783
ev-h123 -6.941e + 01 2.612e + 02 -0.266 0.790
ev-h126 -8.697e + 01 3.234e + 02 -0.269 0.788
ev-h127 -1.610e + 02 7.414e + 02 -0.217 0.828
ev-h128 -1.100e + 02 4.957e + 02 -0.222 0.824
ev-h131 -6.136e + 01 2.749e + 02 -0.223 0.823
ev-h132 1.981e + 02 8.394e + 02 0.236 0.813
ev-h134 -1.707e + 02 6.696e + 02 -0.255 0.799
ev-h140 -1.231e + 02 5.250e + 02 -0.234 0.815
ev-h141 -2.876e + 03 2.192e + 04 -0.131 0.896
ev-h142 -2.485e + 02 9.598e + 02 -0.259 0.796
ev-h143 -1.844e + 02 8.725e + 02 -0.211 0.833
ev-h145 -2.221e + 02 8.651e + 02 -0.257 0.797
ev-h146 8.847e + 01 3.354e + 02 0.264 0.792
ev-h156 -3.244e + 02 1.555e + 03 -0.209 0.835
ev-h162 2.720e + 02 1.216e + 03 0.224 0.823
ev-h164 1.160e + 02 5.669e + 02 0.205 0.838
ev-h165 1.807e + 02 8.282e + 02 0.218 0.827
ev-h166 -2.205e + 02 8.755e + 02 -0.252 0.801
ev-h168 5.607e + 02 2.110e + 03 0.266 0.790
ev-h169 -1.163e + 02 4.115e + 02 -0.283 0.777
ev-h170 -4.203e + 01 2.156e + 02 -0.195 0.845
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A. Results of LRA

Figure A.33.: LRA for Gazella granti (Grant's gazelle) ROC plot

Table A.18.: (continued) selected environmental variables and computed coe�cients
from stepwise analysis for Gazella granti (Grant's gazelle)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

ev-h174 4.551e + 01 2.541e + 02 0.179 0.858
ev-h175 1.425e + 02 6.862e + 02 0.208 0.836
ev-h176 -1.124e + 02 3.072e + 02 -0.366 0.714
ev-h177 1.272e + 02 5.865e + 02 0.217 0.828
ev-h178 -6.056e + 01 1.994e + 02 -0.304 0.761
ev-h180 2.252e + 02 8.339e + 02 0.270 0.787
ev-h182 7.035e + 01 2.207e + 02 0.319 0.750
ev-h183 -3.637e + 02 1.202e + 03 -0.303 0.762
ev-h184 1.669e + 02 7.616e + 02 0.219 0.827
ev-h190 -8.324e + 01 2.934e + 02 -0.284 0.777
ev-h193 -2.313e + 02 8.901e + 02 -0.260 0.795
ev-h205 3.475e + 02 1.298e + 03 0.268 0.789
ev-h207 -2.344e + 02 9.731e + 02 -0.241 0.810
ev-h214 -1.302e + 02 6.987e + 02 -0.186 0.852
ev-h216 2.090e + 02 7.554e + 02 0.277 0.782
ev-h218 -4.517e + 02 1.763e + 03 -0.256 0.798
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Figure A.34.: Gazella granti (Grant's gazelle) potential distribution
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A. Results of LRA

Figure A.35.: LRA for Gazella thomsonii (Thomson gazelle) ROC plot

Gazella thomsonii (Thomson gazelle)

Table A.19.: selected environmental variables and computed coe�cients from stepwise
analysis for Gazella thomsonii (Thomson gazelle)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 3.156e + 04 1.144e + 06 0.028 0.978
ev-shan -7.863e + 02 3.665e + 04 -0.021 0.983
ev-mpsi 8.154e− 05 2.040e− 03 0.040 0.968
ev-rvrs 7.352e− 02 1.239e + 01 0.006 0.995
ev-vllg -7.689e− 02 3.547e + 00 -0.022 0.983
ev-h105 2.743e + 01 1.635e + 03 0.017 0.987
ev-h113 -2.567e + 01 1.558e + 03 -0.016 0.987
ev-h117 -1.832e + 01 5.034e + 02 -0.036 0.971
ev-h122 5.193e + 01 1.211e + 03 0.043 0.966
ev-h127 -5.324e + 01 2.210e + 03 -0.024 0.981
ev-h131 -1.608e + 01 3.610e + 02 -0.045 0.964
ev-h140 2.638e + 01 1.240e + 03 0.021 0.983
ev-h146 1.528e + 01 5.305e + 02 0.029 0.977
ev-h162 6.056e + 01 1.768e + 03 0.034 0.973
ev-h167 -7.128e + 01 1.375e + 03 -0.052 0.959
ev-h174 -3.273e + 01 1.551e + 03 -0.021 0.983
ev-h193 -3.896e + 01 1.619e + 03 -0.024 0.981
ev-h202 3.932e + 01 1.698e + 03 0.023 0.982
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Figure A.36.: Gazella thomsonii (Thomson gazelle) potential distribution
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A. Results of LRA

Figure A.37.: LRA for Litocranius walleri (gerenuk) ROC plot

Litocranius walleri (gerenuk)

Table A.20.: selected environmental variables and computed coe�cients from stepwise
analysis for Litocranius walleri (gerenuk)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 28890.4402 73437.3610 0.393 0.694
ev-cl17 -430.1806 1388.4208 -0.310 0.757
ev-edde -0.8873 2.6924 -0.330 0.742
ev-lake -0.6066 1.2743 -0.476 0.634
ev-vllg -0.9585 1.9546 -0.490 0.624
ev-h101 -79.8951 5147.0425 -0.016 0.988
ev-h108 -43.9618 120.3239 -0.365 0.715
ev-h110 61.1317 243.3591 0.251 0.802
ev-h127 -53.6930 159.5818 -0.336 0.737
ev-h132 25.6294 59.7809 0.429 0.668
ev-h162 96.3214 199.3937 0.483 0.629
ev-h166 -10.7185 25.3334 -0.423 0.672
ev-h170 -82.5812 168.3068 -0.491 0.624
ev-h180 -87.3043 185.8965 -0.470 0.639
ev-h183 56.5884 146.3579 0.387 0.699
ev-h193 47.8303 99.1150 0.483 0.629
ev-h207 -55.0920 114.3827 -0.482 0.630
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Figure A.38.: Litocranius walleri (gerenuk) potential distribution
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A. Results of LRA

Madoqua kirkii (gerenuk)

Table A.21.: selected environmental variables and computed coe�cients from stepwise
analysis for Madoqua kirkii (gerenuk)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 3.880e + 04 2.063e + 05 0.188 0.851
ev-cl04 1.802e + 01 5.346e + 01 0.337 0.736
ev-cl09 4.446e + 02 1.398e + 03 0.318 0.750
ev-cl15 6.404e + 02 1.723e + 03 0.372 0.710
ev-cl17 -2.160e + 02 7.145e + 02 -0.302 0.762
ev-domi -1.842e + 03 7.125e + 03 -0.258 0.796
ev-edde 3.104e + 00 1.118e + 01 0.278 0.781
ev-patc -4.459e + 04 1.460e + 05 -0.306 0.760
ev-mpsi -9.276e− 04 2.935e− 03 -0.316 0.752
ev-road -1.331e + 00 4.039e + 00 -0.330 0.742
ev-rvrs 2.612e− 01 9.398e− 01 0.278 0.781
ev-swpa 9.614e− 01 3.215e + 00 0.299 0.765
ev-vllg -1.762e− 01 5.354e− 01 -0.329 0.742
ev-tasp 1.988e + 00 6.056e + 00 0.328 0.743
ev-tslp 1.732e + 02 5.144e + 02 0.337 0.736
ev-h105 -4.809e + 01 1.640e + 02 -0.293 0.769
ev-h106 3.956e + 01 1.236e + 02 0.320 0.749
ev-h107 -5.202e + 02 1.548e + 03 -0.336 0.737
ev-h108 -6.767e + 01 2.164e + 02 -0.313 0.755
ev-h113 -5.778e + 01 1.767e + 02 -0.327 0.744
ev-h115 -7.018e + 00 3.234e + 01 -0.217 0.828
ev-h117 -2.778e + 02 8.585e + 02 -0.324 0.746
ev-h123 1.102e + 02 3.113e + 02 0.354 0.723
ev-h126 -1.279e + 02 4.059e + 02 -0.315 0.753
ev-h127 2.590e + 02 8.599e + 02 0.301 0.763
ev-h134 -5.342e + 01 1.465e + 02 -0.365 0.715
ev-h140 -8.717e + 01 2.606e + 02 -0.334 0.738
ev-h141 -5.879e + 02 1.742e + 03 -0.337 0.736
ev-h143 1.474e + 02 4.538e + 02 0.325 0.745
ev-h145 1.653e + 02 5.540e + 02 0.298 0.765
ev-h146 -9.617e + 01 2.754e + 02 -0.349 0.727
ev-h156 -2.502e + 02 7.236e + 02 -0.346 0.729
ev-h158 3.366e + 02 1.010e + 03 0.333 0.739
ev-h162 7.674e + 01 2.394e + 02 0.321 0.749
ev-h164 1.422e + 02 4.333e + 02 0.328 0.743
ev-h165 1.275e + 02 3.914e + 02 0.326 0.745
ev-h166 -2.257e + 01 1.458e + 02 -0.155 0.877
ev-h168 2.168e + 02 6.515e + 02 0.333 0.739
ev-h170 9.079e + 01 2.748e + 02 0.330 0.741
ev-h177 8.532e + 01 2.549e + 02 0.335 0.738
ev-h178 4.143e + 01 1.745e + 02 0.237 0.812
ev-h180 -3.095e + 01 1.033e + 02 -0.300 0.764
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Figure A.39.: LRA for Madoqua kirkii (gerenuk) ROC plot

Table A.21.: (continued) selected environmental variables and computed coe�cients
from stepwise analysis for Madoqua kirkii (gerenuk)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

ev-h182 -2.726e + 02 8.633e + 02 -0.316 0.752
ev-h183 -1.216e + 02 4.191e + 02 -0.290 0.772
ev-h190 6.655e + 01 3.273e + 02 0.203 0.839
ev-h202 1.018e + 02 2.904e + 02 0.351 0.726
ev-h205 1.621e + 02 5.210e + 02 0.311 0.756
ev-h211 -1.197e + 02 4.275e + 02 -0.280 0.779
ev-h214 -1.968e + 02 8.037e + 02 -0.245 0.807
ev-h216 2.761e + 02 1.062e + 03 0.260 0.795
ev-h218 -3.502e + 02 1.081e + 03 -0.324 0.746
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A. Results of LRA

Figure A.40.: Madoqua kirkii (gerenuk) potential distribution
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Figure A.41.: LRA for Raphicerus campestris (steinbuck) ROC plot

Raphicerus campestris (steinbuck)

Table A.22.: selected environmental variables and computed coe�cients from stepwise
analysis for Raphicerus campestris (steinbuck)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 2.049e + 05 74.450e + 05 0.460 0.645
ev-cl09 3.629e + 02 7.877e + 02 0.461 0.645
ev-domi -4.997e + 03 1.079e + 04 -0.463 0.643
ev-road -1.858e + 00 4.059e + 00 -0.458 0.647
ev-rvrs 8.792e− 01 1.946e + 00 0.452 0.651
ev-vllg -1.231e + 00 2.678e + 00 -0.460 0.646
ev-h101 -1.149e + 02 2.544e + 02 -0.452 0.651
ev-h115 2.113e + 02 4.595e + 02 0.460 0.646
ev-h122 1.817e + 02 3.964e + 02 0.458 0.647
ev-h134 1.053e + 02 2.311e + 02 0.456 0.649
ev-h145 1.890e + 02 4.100e + 02 0.461 0.645
ev-h167 -5.309e + 02 1.153e + 03 -0.461 0.645
ev-h174 -3.112e + 02 6.759e + 02 -0.460 0.645
ev-h190 -7.881e + 02 1.710e + 03 -0.461 0.645
ev-h193 -2.214e + 02 4.832e + 02 -0.458 0.647
ev-h202 2.755e + 02 5.976e + 02 0.461 0.645
ev-h207 -3.188e + 02 6.951e + 02 -0.459 0.646
ev-h211 -3.304e + 02 7.150e + 02 -0.462 0.644
ev-h214 5.613e + 02 1.216e + 03 0.461 0.644
ev-h216 1.676e + 02 3.663e + 02 0.458 0.647
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A. Results of LRA

Figure A.42.: Raphicerus campestris (steinbuck) potential distribution
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Figure A.43.: LRA for Syncerus ca�er (african bu�alo) ROC plot

Syncerus ca�er (african bu�alo)

Table A.23.: selected environmental variables and computed coe�cients from stepwise
analysis for Syncerus ca�er (african bu�alo)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 4920.393 179.793 0.027 0.978
ev-cl17 -11.063 642.290 -0.017 0.986
ev-h117 -1.628 29.157 -0.056 0.955
ev-h132 -6.453 221.015 -0.029 0.977
ev-h158 -18.869 316.635 -0.060 0.952
ev-h168 16.269 188.291 0.086 0.931
ev-h177 -4.326 78.446 -0.055 0.956
ev-h193 -3.441 156.950 -0.022 0.983
ev-h211 -2.912 119.198 -0.024 0.981
ev-h214 -4.887 221.804 -0.022 0.982
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A. Results of LRA

Figure A.44.: Syncerus ca�er (african bu�alo) potential distribution
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Figure A.45.: LRA for Tragelaphus imberbis (lesserkudu) ROC plot

Tragelaphus imberbis (lesserkudu)

Table A.24.: selected environmental variables and computed coe�cients from stepwise
analysis for Tragelaphus imberbis (lesserkudu)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -1.874e + 05 3.185e + 05 -0.588 0.556
ev-cl04 2.966e + 01 5.150e + 01 0.576 0.565
ev-shan -3.744e + 03 6.334e + 03 -0.591 0.554
ev-lake -2.010e + 00 3.436e + 00 -0.585 0.559
ev-h107 2.915e + 02 4.897e + 02 0.595 0.552
ev-h115 -2.674e + 01 4.570e + 01 -0.585 0.558
ev-h131 5.742e + 01 9.815e + 01 0.585 0.559
ev-h158 -1.780e + 02 3.038e + 02 -0.586 0.558
ev-h166 -2.427e + 02 4.151e + 02 -0.585 0.559
ev-h167 -2.492e + 02 4.274e + 02 -0.583 0.560
ev-h168 -3.057e + 02 5.256e + 02 -0.582 0.561
ev-h178 1.859e + 02 3.217e + 02 0.578 0.563
ev-h180 -1.289e + 02 2.203e + 02 -0.585 0.558
ev-h193 -1.586e + 02 2.684e + 02 -0.591 0.554
ev-h214 -4.471e + 02 7.565e + 02 -0.591 0.555
ev-h218 1.954e + 02 3.359e + 02 0.582 0.561
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A. Results of LRA

Figure A.46.: Tragelaphus imberbis (lesserkudu) potential distribution
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Figure A.47.: LRA for Tragelaphus scriptus (bushbuck) ROC plot

Tragelaphus scriptus (bushbuck)

Table A.25.: selected environmental variables and computed coe�cients from stepwise
analysis for Tragelaphus scriptus (bushbuck)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 5.738e + 03 1.677e + 05 0.034 0.973
ev-cl15 -1.084e + 02 1.118e + 03 -0.097 0.923
ev-edde 1.057e + 00 2.447e + 01 0.043 0.966
ev-lake 1.477e− 01 3.058e + 00 0.048 0.961
ev-h101 -1.447e + 01 2.523e + 02 -0.057 0.954
ev-h108 1.841e + 01 3.042e + 02 0.061 0.952
ev-h123 -2.582e + 01 5.068e + 02 -0.051 0.959
ev-h134 4.451e + 01 4.792e + 02 0.093 0.926
ev-h164 -8.911e + 01 1.150e + 03 -0.078 0.938
ev-h168 7.924e + 01 9.368e + 02 0.085 0.933
ev-h174 1.848e + 01 2.884e + 02 0.064 0.949
ev-h207 -4.262e + 01 5.591e + 02 -0.076 0.939
ev-h211 -6.331e + 00 2.005e + 02 -0.032 0.975
ev-h214 -6.871e + 01 8.204e + 02 -0.084 0.933
ev-h216 4.842e + 01 5.489e + 02 0.088 0.930
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A. Results of LRA

Figure A.48.: Tragelaphus scriptus (bushbuck) potential distribution
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Figure A.49.: LRA for Cephalophus harveyi (Harvey's red duiker) ROC plot

Cephalophus harveyi (Harvey's red duiker)

Table A.26.: selected environmental variables and computed coe�cients from stepwise
analysis for Cephalophus harveyi (Harvey's red duiker)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -9.602e + 03 1.580e + 05 -0.061 0.952
ev-edde 5.176e− 01 1.364e + 01 0.038 0.970
ev-tslp 1.217e + 01 2.306e + 02 0.053 0.958
ev-h105 -3.214e + 01 5.761e + 02 -0.056 0.956
ev-h110 8.651e + 01 1.017e + 04 0.009 0.993
ev-h113 1.054e + 01 2.145e + 02 0.049 0.961
ev-h128 -2.585e + 01 4.249e + 02 -0.061 0.951
ev-h141 -1.087e + 02 1.021e + 04 -0.011 0.992
ev-h142 -1.198e + 01 2.301e + 02 -0.052 0.958
ev-h143 -3.287e + 01 5.303e + 02 -0.062 0.951
ev-h145 -8.877e + 00 1.623e + 02 -0.055 0.956
ev-h146 -3.175e + 01 5.453e + 02 -0.058 0.954
ev-h165 -4.316e + 01 6.794e + 02 -0.064 0.949
ev-h174 -7.323e + 00 1.595e + 02 -0.046 0.963
ev-h183 4.421e + 01 6.894e + 02 0.064 0.949
ev-h184 4.300e + 01 7.749e + 02 0.055 0.956
ev-h190 2.570e + 01 3.986e + 02 0.064 0.949
ev-h193 3.490e + 01 6.046e + 02 0.058 0.954
ev-h202 1.015e + 01 1.803e + 02 0.056 0.955
ev-h211 1.320e + 01 2.246e + 02 0.059 0.953
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A. Results of LRA

Figure A.50.: Cephalophus harveyi (Harvey's red duiker) potential distribution
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Figure A.51.: LRA for Kobus ellipsiprymnus (waterbuck) ROC plot

Kobus ellipsiprymnus (waterbuck)

Table A.27.: selected environmental variables and computed coe�cients from stepwise
analysis for Kobus ellipsiprymnus (waterbuck)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 5495.3817 28506.5001 0.193 0.847
ev-cl09 -9.9757 57.9183 -0.172 0.863
ev-road -0.3691 2.9067 -0.127 0.899
ev-h106 5.6266 53.4116 0.105 0.916
ev-h117 -10.4703 72.3244 -0.145 0.885
ev-h126 -7.6000 44.3052 -0.172 0.864
ev-h193 -10.9940 51.1660 -0.215 0.830
ev-h214 -13.0086 66.0502 -0.197 0.844
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A. Results of LRA

Figure A.52.: Kobus ellipsiprymnus (waterbuck) potential distribution
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Loxodonta africana (african elephant)

Table A.28.: selected environmental variables and computed coe�cients from stepwise
analysis for Loxodonta africana (african elephant)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -5.990e + 02 8.610e + 01 -6.956 3.49e− 12
ev-cl04 3.320e− 02 1.196e− 02 2.777 0.005492
ev-cl15 8.738e− 01 2.944e− 01 2.968 0.002999
ev-cl17 -4.589e− 01 1.622e− 01 -2.829 0.004673
ev-domi -8.355e + 00 1.970e + 00 -4.241 2.23e− 05
ev-patc 7.220e + 01 1.320e + 01 5.471 4.47e− 08
ev-road -3.081e− 03 5.283e− 04 -5.832 5.48e− 09
ev-rvrs -1.114e− 03 3.879e− 04 -2.872 0.004073
ev-swpa 8.480e− 04 2.710e− 04 3.129 0.001754
ev-vllg 5.219e− 04 2.084e− 04 2.504 0.012274
ev-tslp -2.497e− 01 8.491e− 02 -2.941 0.003272
ev-h101 1.460e− 01 2.825e− 02 5.166 2.39e− 07
ev-h104 -2.107e− 01 3.651e− 02 -5.771 7.89e− 094
ev-h105 -3.397e− 01 5.024e− 02 -6.762 1.36e− 11
ev-h106 -2.977e− 01 5.237e− 02 -5.685 1.31e− 08
ev-h110 9.595e− 01 2.796e− 01 3.431 0.000600
ev-h113 -8.743e− 02 2.918e− 02 -2.996 0.002731
ev-h117 -1.225e− 01 3.871e− 02 -3.165 0.001549
ev-h122 -2.138e− 01 5.242e− 02 -4.079 4.53e− 05
ev-h123 1.686e− 01 5.383e− 02 3.133 0.001733
ev-h127 -2.353e− 01 5.721e− 02 -4.112 3.91e− 05
ev-h128 -2.288e− 01 3.690e− 02 -6.202 5.57e− 10
ev-h132 3.084e− 01 5.530e− 02 5.577 2.45e− 08
ev-h134 -1.877e− 01 3.927e− 02 -4.781 1.74e− 06
ev-h140 3.402e− 01 5.839e− 02 5.827 5.66e− 09
ev-h141 -7.155e− 01 2.720e− 01 -2.631 0.008518
ev-h142 2.695e− 01 5.279e− 02 5.105 3.31e− 07
ev-h143 4.714e− 01 1.160e− 01 4.063 4.84e− 05
ev-h145 1.578e− 01 5.424e− 02 2.910 0.003620
ev-h146 2.387e− 01 4.696e− 02 5.082 3.73e− 07
ev-h162 1.117e− 01 4.882e− 02 2.288 0.022136
ev-h164 -1.928e− 01 7.810e− 02 -2.468 0.013577
ev-h165 -1.861e− 01 4.935e− 02 -3.771 0.000163
ev-h166 2.935e− 01 5.519e− 02 5.318 1.05e− 07
ev-h167 2.698e− 01 9.404e− 02 2.869 0.004124
ev-h168 -5.512e− 01 9.826e− 02 -5.609 2.03e− 08
ev-h174 -1.984e− 01 3.826e− 02 -5.186 2.15e− 07
ev-h176 2.583e− 01 5.747e− 02 4.493 7.01e− 06
ev-h177 1.664e− 01 7.396e− 02 2.249 0.024497
ev-h180 -2.907e− 01 4.720e− 02 -6.158 7.34e− 10
ev-h182 1.226e− 01 5.087e− 02 2.410 0.015944
ev-h184 4.895e− 01 9.281e− 02 5.274 1.34e− 07
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A. Results of LRA

Figure A.53.: LRA for Loxodonta africana (african elephant) ROC plot

Table A.28.: (continued) selected environmental variables and computed coe�cients
from stepwise analysis for Loxodonta africana (african elephant)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

ev-h193 6.066e− 01 6.896e− 02 8.796 < 2e− 16
ev-h202 -1.125e− 01 5.482e− 02 -2.053 0.040083
ev-h205 -7.893e− 01 9.557e− 02 -8.259 < 2e− 16
ev-h207 -3.238e− 01 6.224e− 02 -5.202 1.97e− 07
ev-h214 1.182e + 00 1.446e− 01 8.177 2.91e− 16
ev-h216 3.202e− 01 9.737e− 02 3.289 0.001007
ev-h218 -1.917e− 01 9.845e− 02 -1.947 0.051563
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Figure A.54.: Loxodonta africana (african elephant) potential distribution
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A. Results of LRA

Figure A.55.: LRA for Hystrix cristata (crested porcupine) ROC plot

Hystrix cristata (crested porcupine)

Table A.29.: selected environmental variables and computed coe�cients from stepwise
analysis for Hystrix cristata (crested porcupine)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 2.290e + 04 1.422e + 05 0.161 0.872
ev-cl09 -5.561e + 01 3.435e + 02 -0.162 0.871
ev-vllg -1.042e− 01 6.730e− 01 -0.155 0.877
ev-h108 -2.129e + 01 1.320e + 02 -0.161 0.872
ev-h115 1.403e + 01 8.930e + 01 0.157 0.875
ev-h132 1.647e + 01 1.018e + 02 0.162 0.871
ev-h156 -3.621e + 01 2.252e + 02 -0.161 0.872
ev-h180 -3.424e + 01 2.127e + 02 -0.161 0.872
ev-h182 2.326e + 01 1.457e + 02 0.160 0.873
ev-h216 -2.801e + 01 1.751e + 02 -0.160 0.873
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Figure A.56.: Hystrix cristata (crested porcupine) potential distribution
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A. Results of LRA

A.0.5. Lombardy region

Table A.30.: Environmental variables used for LRA in Lombardy case study

Variable
name

Description Source

EV-DHYD distance from lakes and rivers CTR
EV-DINF weighted distance from roads and railroads CTR
EV-D100 snow�elds and glaciers DUSAF
EV-D103 broad-leaved forest DUSAF
EV-D104 riparian vegetation DUSAF
EV-D105 coniferous forest DUSAF
EV-D106 mixed forest DUSAF
EV-D107 recent reforestation DUSAF
EV-D108 orchards and vegetable gardens DUSAF
EV-D109 tree crops DUSAF
EV-D110 marshy vegetation DUSAF
EV-D111 debris vegetation DUSAF
EV-D112 riverbed vegetation DUSAF
EV-D113 shrubs DUSAF
EV-D114 meadows and pastures DUSAF
EV-D115 herbaceous crops DUSAF
EV-D116 herbaceous and tree crops DUSAF
EV-D117 protected crops DUSAF
EV-D119 debris and rock DUSAF
EV-D120 dumps DUSAF
EV-D121 continuous urban areas DUSAF
EV-D122 open urban areas DUSAF
EV-D123 farm building DUSAF
EV-D126 airports
EV-DTM digital elevation model-elevation CTR
EV-
ASPECT

digital elevation model-aspect CTR

EV-SLOPE digital elevation model-slope CTR
EV-CL15 Precipitation Seasonality(Coe�cient of Variation)
EV-CL18 Precipitation of warmest quarter CTR
EV-CL01 Annual mean temperature CTR
EV-CL07 Temperature annual range CTR
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Salamandra atra (alpine salamander)

Table A.31.: selected environmental variables and computed coe�cients from stepwise
analysis for Salamandra atra (alpine salamander)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 1.138e + 00 7.849e− 01 1.450 0.147074
EV-CL18 -3.167e− 03 1.282e− 03 -2.470 0.013522
EV-CL01 6.527e− 03 3.423e− 03 1.907 0.056564
EV-D100 -8.235e− 05 6.622e− 06 -12.436 < 2e− 16
EV-D103 -8.216e− 05 2.160e− 05 -3.804 0.000142
EV-D104 3.035e− 05 1.327e− 05 2.287 0.022180
EV-D105 -7.195e− 05 2.199e− 05 -3.272 0.001069
EV-D106 -7.733e− 05 2.161e− 05 -3.579 0.000345
EV-D107 3.153e− 05 6.706e− 06 4.702 2.57e-06
EV-D108 1.046e− 04 9.967e− 06 10.492 < 2e− 16
EV-D109 3.255e− 05 6.420e− 06 5.070 3.98e-07
EV-D110 3.212e− 05 7.567e− 06 4.245 2.19e-05
EV-D112 -6.590e− 05 1.213e− 05 -5.432 5.56e-08
EV-D117 7.511e− 06 4.072e− 06 1.844 0.065118
EV-D118 -7.202e− 05 6.273e− 06 -11.481 < 2e− 16
EV-D119 -1.812e− 04 2.854e− 05 -6.351 2.14e-10
EV-D120 3.944e− 05 1.524e− 05 2.588 0.009658
EV-D122 -1.522e− 04 2.728e− 05 -5.579 2.42e-08
EV-D123 -1.348e− 04 1.079e− 05 -12.495 < 2e− 16
EV-D126 -8.067e− 06 3.264e− 06 -2.472 0.013452
EV-DHYD -7.430e− 05 4.265e− 05 -1.742 0.081473
EV-DINF 1.669e− 04 2.937e− 05 5.680 1.35e-08
EV-DTM 5.550e− 04 1.826e− 04 3.040 0.002367
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A. Results of LRA

Figure A.57.: LRA for Salamandra atra (alpine salamander) ROC plot and potential distribution
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Salamandra salamandra (�re salamander)

Table A.32.: selected environmental variables and computed coe�cients from stepwise
analysis for Salamandra salamandra (�re salamander)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -5.909e + 00 3.245e− 01 -18.208 < 2e− 16
EV-ASPECT -4.718e− 04 1.843e− 04 -2.561 0.010446
EV-CL15 6.338e− 02 6.565e− 03 9.654 < 2e− 16
EV-CL18 1.355e− 02 6.530e− 04 20.753 < 2e− 16
EV-D100 6.878e− 06 1.473e− 06 4.670 3.01e− 06
EV-D103 -7.056e− 05 1.385e− 05 -5.093 3.52e-07
EV-D105 3.612e− 05 4.541e− 06 7.956 1.78e-15
EV-D107 -1.701e− 05 4.442e− 06 -3.829 0.000129
EV-D110 -1.636e− 05 5.050e− 06 -3.240 0.001195
EV-D111 -3.377e− 05 4.122e− 06 -8.192 2.58e-16
EV-D112 -1.162e− 05 7.542e− 06 -1.541 0.123332
EV-D114 -1.276e− 04 3.053e− 05 -4.180 2.92e-05
EV-D115 -2.691e− 05 9.601e− 06 -2.803 0.005060
EV-D116 -2.322e− 05 7.271e− 06 -3.193 0.001408
EV-D117 2.833e− 05 1.478e− 06 19.162 < 2e− 16
EV-D122 3.818e− 05 2.701e− 05 1.414 0.157420
EV-D123 3.421e− 05 9.920e− 06 3.448 0.000564
EV-D126 9.482e− 06 1.316e− 06 7.205 5.79e-13
EV-DHYD -5.605e− 05 1.652e− 05 -3.393 0.000691
EV-DTM -1.055e− 03 8.915e− 05 -11.829 < 2e− 16
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A. Results of LRA

Figure A.58.: LRA for Salamandra salamandra (�re salamander) ROC plot and potential distribution
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Salamandrina terdigitata (spectacled salamander)

Table A.33.: selected environmental variables and computed coe�cients from stepwise
analysis for Salamandrina terdigitata (spectacled salamander)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -5.909e + 00 3.245e− 01 -18.208 0.000439
EV-CL15 2.338e− 02 3.575e− 03 8.632 < 2e− 16
EV-CL18 1.365e− 03 5.530e− 03 16.754 0.321332
EV-D100 4.278e− 05 1.323e− 06 32.632 2.21e− 05
EV-D103 3.056e− 05 2.385e− 06 -6.021 3.23e− 06
EV-D105 5.412e− 04 3.431e− 06 9.932 1.73e− 15
EV-D108 -1.321e− 07 5.442e− 05 -2.549 0.000159
EV-D110 -0.766e− 03 3.050e− 05 -2.240 0.131195
EV-D111 -3.217e− 05 2.342e− 06 -9.134 2.58e− 16
EV-D112 -3.162e− 05 8.542e− 05 -3.543 0.128332
EV-D113 -1.956e− 04 4.563e− 05 -5.240 6.32e− 05
EV-D115 -1.691e− 04 2.601e− 07 -3.803 0.125060
EV-D116 -2.322e− 05 6.221e− 06 -4.123 0.001578
EV-D119 3.833e− 04 2.443e− 05 21.104 < 2e− 16
EV-D121 3.818e− 05 1.7651e− 05 4.414 0.238420
EV-D123 3.421e− 06 10.932e− 06 5.486 0.001564
EV-D126 5.482e− 06 1.323e− 06 3.205 4.29e− 13
EV-DHYD -7.605e− 02 5.612e− 05 -3.243 0.100691
EV-DINF 1.645e− 03 1.976e− 06 6.320 1.29e− 09
EV-DTM -4.055e− 03 8.921e− 06 -11.839 < 2e− 15
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A. Results of LRA

Figure A.59.: LRA for Salamandrina terdigitata (spectacled salamander) ROC plot and potential dis-
tribution
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Triturus alpestris (alpine newt)

Table A.34.: selected environmental variables and computed coe�cients from stepwise
analysis for Triturus alpestris (alpine newt)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -2.021e + 01 1.79e + 00 -3.732 3.53e− 08
EV-ASPECT 2.423e− 04 1.559e− 04 2.196 0.022872
EV-CL15 4.237e− 02 1.349e− 02 2.683 0.000431
EV-CL18 6.121e− 03 9.877e− 04 6.198 5.73e− 3
EV-CL01 2.256e− 02 5.656e− 03 3.936 3.28e− 05
EV-CL07 1.327e− 02 3.277e− 03 5.179 2.34e− 04
EV-D100 2.431e− 05 2.082e− 06 12.673 < 2e− 16
EV-D103 -7.249e− 05 1.981e− 05 -3.660 0.000252
EV-D105 4.544e− 05 4.434e− 06 11.127 < 2e− 16
EV-D106 -4.130e− 05 3.923e− 06 -10.389 < 2e− 16
EV-D107 -3.445e− 05 3.923e− 06 -9.927 < 2e− 16
EV-D109 -4.112e− 05 9.543e− 06 -9.817 1.76e-06
EV-D111 -1.608e− 05 3.076e− 06 -5.227 1.54e-07
EV-D112 -2.584e− 05 7.075e− 06 -3.652 0.000230
EV-D114 7.767e− 06 2.297e− 05 3.447 0.000437
EV-D116 -3.898e− 05 8.826e− 06 -3.416 1.00e-05
EV-D117 2.216e− 05 2.803e− 06 12.287 < 2e− 12
EV-D121 -1.177e− 04 4.034e− 05 -2.881 0.008968
EV-D123 -7.857e− 05 1.748e− 05 -4.517 4.23e− 02
EV-D127 -8.162e− 05 2.443e− 05 -3.784 1.71e− 06
EV-DYDR -2.839e− 05 1.245e− 05 -2.279 0.034658
EV-DINF 5.189e− 04 5.422e− 05 5.881 3.07e− 08
EV-DTM 1.189e− 03 3.145e− 04 3.212 0.000461
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A. Results of LRA

Figure A.60.: LRA for Triturus alpestris (alpine newt) ROC plot and potential distribution
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Triturus carnifex (italian crested newt)

Table A.35.: selected environmental variables and computed coe�cients from stepwise
analysis for Triturus carnifex (italian crested newt)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -2.021e + 01 1.79e + 00 -3.732 3.53e− 08
EV-ASPECT 2.423e− 04 1.559e− 04 2.196 0.022872
EV-CL15 4.237e− 02 1.349e− 02 2.683 0.000431
EV-CL18 6.121e− 03 9.877e− 04 6.198 5.73e− 3
EV-CL01 2.256e− 02 5.656e− 03 3.936 3.28e− 05
EV-CL07 1.327e− 02 3.277e− 03 5.179 2.34e− 04
EV-D100 2.431e− 05 2.082e− 06 12.673 < 2e− 16
EV-D105 5.412e− 04 3.431e− 06 9.932 1.73e− 15
EV-D108 -1.321e− 07 5.442e− 05 -2.549 0.000159
EV-D110 -0.766e− 03 3.050e− 05 -2.240 0.131195
EV-D111 -3.217e− 05 2.342e− 06 -9.134 2.58e− 16
EV-D112 -3.162e− 05 8.542e− 05 -3.543 0.128332
EV-D113 -1.956e− 04 4.563e− 05 -5.240 6.32e− 05
EV-D114 7.767e− 06 2.297e− 05 3.447 0.000437
EV-D116 -3.898e− 05 8.826e− 06 -3.416 1.00e-05
EV-D117 2.216e− 05 2.803e− 06 12.287 < 2e− 12
EV-D121 -1.177e− 04 4.034e− 05 -2.881 0.008968
EV-D123 -7.857e− 05 1.748e− 05 -4.517 4.23e− 02
EV-D126 -8.067e− 06 3.264e− 06 -2.472 0.013452
EV-DHYD -7.430e− 05 4.265e− 05 -1.742 0.081473
EV-DINF 1.669e− 04 2.937e− 05 5.680 1.35e-08
EV-DTM 5.550e− 04 1.826e− 04 3.040 0.002367
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A. Results of LRA

Figure A.61.: LRA for Triturus carnifex (italian crested newt) ROC plot and potential distribution
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Triturus vulgaris (smooth newt)

Table A.36.: selected environmental variables and computed coe�cients from stepwise
analysis for Triturus vulgaris (smooth newt)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -1.071e + 01 1.79e + 00 -5.973 2.33e− 09
EV-ASPECT 3.423e− 04 1.559e− 04 2.196 0.028092
EV-CL15 4.967e− 02 1.349e− 02 3.683 0.000231
EV-CL18 6.121e− 03 9.877e− 04 6.198 5.73e− 10
EV-CL01 2.226e− 02 5.656e− 03 3.936 8.28e− 05
EV-CL07 1.787e− 02 4.277e− 03 4.179 2.93e− 05
EV-D100 2.431e− 05 2.082e− 06 11.673 < 2e− 16
EV-D103 -7.249e− 05 1.981e− 05 -3.660 0.000252
EV-D105 4.934e− 05 4.434e− 06 11.127 < 2e− 16
EV-D106 -4.130e− 05 3.975e− 06 -10.389 < 2e− 16
EV-D107 -3.895e− 05 3.923e− 06 -9.927 < 2e− 16
EV-D109 -4.112e− 05 8.536e− 06 -4.817 1.46e-06
EV-D111 -1.608e− 05 3.076e− 06 -5.227 1.72e-07
EV-D112 -2.584e− 05 7.075e− 06 -3.652 0.000260
EV-D114 7.917e− 05 2.297e− 05 3.447 0.000567
EV-D116 -3.898e− 05 8.826e− 06 -4.416 1.00e-05
EV-D117 2.216e− 05 1.803e− 06 12.287 < 2e− 16
EV-D121 -1.177e− 04 4.084e− 05 -2.881 0.003968
EV-D123 -7.897e− 05 1.748e− 05 -4.517 6.28e− 06
EV-D127 -7.162e− 05 1.497e− 05 -4.784 1.72e− 06
EV-DYDR -2.839e− 05 1.245e− 05 -2.279 0.022658
EV-DINF 3.189e− 04 5.422e− 05 5.881 4.07e− 09
EV-DTM 1.102e− 03 3.145e− 04 3.502 0.000461
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A. Results of LRA

Figure A.62.: LRA for Triturus vulgaris (smooth newt) ROC plot and potential distribution
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Speleomantes strinatii (Strinati's cave salamander)

Table A.37.: selected environmental variables and computed coe�cients from stepwise
analysis for Speleomantes strinatii (Strinati's cave salamander)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -1.570e + 01 3.871e + 00 -4.056 4.99e− 05
EV-CL07 4.552e− 02 1.240e− 02 3.670 0.000243
EV-D100 2.913e− 05 5.226e− 06 5.575 2.47e− 08
EV-D104 1.146e− 04 6.477e− 05 1.769 0.076865
EV-D105 5.473e− 05 3.816e− 05 1.434 0.151488
EV-D111 -4.555e− 05 3.001e− 05 -1.518 0.129034
EV-D119 -8.022e− 05 3.652e− 05 -2.197 0.028047
EV-D121 3.369e− 04 1.565e− 04 2.152 0.031364
EV-D123 -1.215e− 04 5.767e− 05 -2.106 0.035183
EV-D126 3.378e− 05 1.272e− 05 2.655 0.007923
EV-DTM 1.583e− 02 3.629e− 03 4.361 1.29e− 05
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A. Results of LRA

Figure A.63.: LRA for Speleomantes strinatii (Strinati's cave salamander) ROC plot and potential dis-
tribution
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Bombina variegata (yellow bellied toad)

Table A.38.: selected environmental variables and computed coe�cients from stepwise
analysis for Bombina variegata (yellow bellied toad)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -3.735e + 00 1.587e + 00 -2.354 0.018568
EV-CL15 4.534e− 02 7.734e− 03 5.863 4.54e− 09
EV-CL18 5.049e− 03 1.099e− 03 4.596 4.32e− 06
EV-CL07 6.680e− 03 4.128e− 03 1.618 0.105599
EV-D100 -1.277e− 05 2.362e− 06 -5.408 6.37e− 08
EV-D103 -6.400e− 05 1.519e− 05 -4.214 2.51e− 05
EV-D105 4.422e− 05 7.608e− 06 5.812 6.19e− 09
EV-D106 2.193e− 05 5.740e− 06 3.821 0.000133
EV-D107 -1.873e− 05 5.181e− 06 -3.615 0.000301
EV-D108 -4.192e− 05 1.216e− 05 -3.447 0.000566
EV-D109 -2.178e− 05 6.271e− 06 -3.474 0.000514
EV-D110 8.571e− 05 5.842e− 06 14.670 < 2e− 16
EV-D111 -1.515e− 05 5.127e− 06 -2.956 0.003121
EV-D112 -1.803e− 05 8.728e− 06 -2.066 0.038789
EV-D114 -8.930e− 05 3.444e− 05 -2.593 0.009518
EV-D115 3.608e− 05 1.050e− 05 3.438 0.000586
EV-D116 1.057e− 04 9.273e− 06 11.397 < 2e− 16
EV-D117 7.780e− 06 1.815e− 06 4.287 1.81e− 05
EV-D119 -3.537e− 05 6.394e− 06 -5.531 3.18e− 08
EV-D120 -4.819e− 05 1.755e− 05 -2.746 0.006028
EV-D121 5.902e− 05 2.943e− 05 2.005 0.044929
EV-D124 6.290e− 05 1.008e− 05 6.237 4.46e− 10
EV-D126 -3.903e− 06 1.712e− 06 -2.280 0.022623
EV-DHYD -7.090e− 05 1.912e− 05 -3.709 0.000208
EV-DTM -5.903e− 04 1.703e− 04 -3.466 0.000528
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A. Results of LRA

Figure A.64.: LRA for Bombina variegata (yellow bellied toad) ROC plot and potential distribution
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Pelobates fuscus (spadefoot toad)

Table A.39.: selected environmental variables and computed coe�cients from stepwise
analysis for Pelobates fuscus (spadefoot toad)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept-8.58e + 00 1.291e + 00 -6.647 2.99e− 11
EV-CL15 4.880e− 02 6.927e− 03 7.045 1.86e− 12
EV-CL18 7.926e− 03 8.861e− 04 8.945 < 2e− 16
EV-CL01 -1.506e− 02 3.950e− 03 -3.813 0.000137
EV-CL07 2.266e− 02 3.879e− 03 5.843 5.12e− 09
EV-D100 1.694e− 05 1.632e− 06 10.380 < 2e− 16
EV-D103 -2.138e− 04 1.567e− 05 -13.648 < 2e− 16
EV-D104 5.040e− 05 1.018e− 05 4.952 7.34e− 07
EV-D105 1.498e− 05 4.237e− 06 3.536 0.000406
EV-D107 -1.673e− 05 3.437e− 06 -4.867 1.13e− 06
EV-D108 2.904e− 05 9.277e− 06 3.131 0.001745
EV-D109 1.972e− 05 4.973e− 06 3.965 7.32e− 05
EV-D110 -2.925e− 05 4.684e− 06 -6.245 4.24e− 10
EV-D111 -9.023e− 06 3.332e− 06 -2.708 0.006763
EV-D112 1.773e− 05 6.443e− 06 2.752 0.005924
EV-D113 1.008e− 04 2.704e− 05 3.726 0.000194
EV-D114 -7.069e− 05 2.529e− 05 -2.796 0.005178
EV-D115 -1.208e− 04 9.994e− 06 -12.086 < 2e− 16
EV-D116 2.254e− 05 7.319e− 06 3.079 0.002075
EV-D117 1.353e− 05 1.299e− 06 10.415 < 2e− 16
EV-D119 -1.821e− 05 4.311e− 06 -4.223 2.41e− 05
EV-D121 -4.047e− 05 2.537e− 05 -1.595 0.110652
EV-D126 -5.635e− 06 1.388e− 06 -4.060 4.90e− 05
EV-DTM -3.350e− 04 1.849e− 04 -1.812 0.069981
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A. Results of LRA

Figure A.65.: LRA for Pelobates fuscus (spadefoot toad) ROC plot and potential distribution
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Bufo bufo (common toad)

Table A.40.: selected environmental variables and computed coe�cients from stepwise
analysis for Bufo bufo (common toad)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -8.58e + 00 1.291e + 00 -6.647 2.99e− 11
EV-CL15 4.880e− 02 6.927e− 03 7.045 1.86e− 12
EV-CL18 7.926e− 03 8.861e− 04 8.945 < 2e− 16
EV-CL01 -1.506e− 02 3.950e− 03 -3.813 0.000137
EV-CL07 2.266e− 02 3.879e− 03 5.843 5.12e− 09
EV-D100 1.694e− 05 1.632e− 06 10.380 < 2e− 16
EV-D103 -2.138e− 04 1.567e− 05 -13.648 < 2e− 16
EV-D104 5.040e− 05 1.018e− 05 4.952 7.34e− 07
EV-D105 1.498e− 05 4.237e− 06 3.536 0.000406
EV-D107 -1.673e− 05 3.437e− 06 -4.867 1.13e− 06
EV-D108 2.904e− 05 9.277e− 06 3.131 0.001745
EV-D109 1.972e− 05 4.973e− 06 3.965 7.32e− 05
EV-D110 -2.925e− 05 4.684e− 06 -6.245 4.24e− 10
EV-D111 -9.023e− 06 3.332e− 06 -2.708 0.006763
EV-D112 1.773e− 05 6.443e− 06 2.752 0.005924
EV-D113 1.008e− 04 2.704e− 05 3.726 0.000194
EV-D114 -7.069e− 05 2.529e− 05 -2.796 0.005178
EV-D115 -1.208e− 04 9.994e− 06 -12.086 < 2e− 16
EV-D116 2.254e− 05 7.319e− 06 3.079 0.002075
EV-D117 1.353e− 05 1.299e− 06 10.415 < 2e− 16
EV-D119 -1.821e− 05 4.311e− 06 -4.223 2.41e− 05
EV-D121 -4.047e− 05 2.537e− 05 -1.595 0.110652
EV-D126 -5.635e− 06 1.388e− 06 -4.060 4.90e− 05
EV-DTM -3.350e− 04 1.849e− 04 -1.812 0.069981
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A. Results of LRA

Figure A.66.: LRA for Bufo bufo (common toad) ROC plot and potential distribution
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Bufo viridis (green toad)

Table A.41.: selected environmental variables and computed coe�cients from stepwise
analysis for Bufo viridis (green toad)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 7.283e + 01 1.505e + 01 4.841 1.29e− 06
EV-ASPECT 2.246e− 04 1.537e− 04 1.461 0.143958
EV-CL15 7.567e− 02 1.390e− 02 5.444 5.20e− 08
EV-CL01 4.983e− 02 5.784e− 03 8.616 < 2e− 16
EV-CL07 -1.673e− 02 3.354e− 03 -4.988 6.11e− 07
EV-D100 -6.572e− 06 3.435e− 06 -1.913 0.055701
EV-D103 -3.536e− 05 1.620e− 05 -2.183 0.029060
EV-D107 -3.807e− 05 3.013e− 06 12.632 < 2e− 16
EV-D108 -7.609e− 05 1.137e− 05 -6.694 2.17e− 11
EV-D109 1.013e− 04 8.907e− 06 11.374 < 2e− 16
EV-D110 -1.497e− 05 5.479e− 06 -2.732 0.006294
EV-D114 -5.079e− 05 2.176e− 05 -2.334 0.019583
EV-D115 -1.204e− 04 2.102e− 05 -5.730 1.01e− 08
EV-D116 2.160e− 05 9.496e− 06 2.274 0.022957
EV-D119 2.319e− 05 1.959e− 06 11.840 < 2e− 16
EV-D122 1.292e− 04 3.561e− 05 3.629 0.000284
EV-D123 -7.906e− 05 1.808e− 05 -4.373 1.22e− 05
EV-D124 -6.714e− 05 9.959e− 06 -6.742 1.56e− 11
EV-D125 -3.348e− 06 2.066e− 06 -1.621 0.105074
EV-D126 -1.300e− 05 1.199e− 06 10.846 < 2e− 16
EV-D127 -6.808e− 05 1.553e− 05 -4.385 1.16e− 05
EV-DHYD -7.792e− 05 1.155e− 05 -6.748 1.50e− 11
EV-DTM 1.309e− 03 3.636e− 04 3.601 0.000318
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A. Results of LRA

Figure A.67.: LRA for Bufo viridis (green toad) ROC plot and potential distribution
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Hyla intermedia (italian tree frog)

Table A.42.: selected environmental variables and computed coe�cients from stepwise
analysis for Hyla intermedia (italian tree frog)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -8.992e + 00 1.447e + 00 -6.216 5.10e− 10
EV-ASPECT 2.148e− 04 1.479e− 04 1.452 0.146415
EV-CL15 2.036e− 02 9.159e− 03 2.223 0.026204
EV-CL18 1.328e− 02 9.856e− 04 13.478 < 2e− 16
EV-CL01 -6.071e− 03 3.257e− 03 -1.864 0.062288
EV-CL07 2.115e− 02 4.588e− 03 4.609 4.05e− 06
EV-D100 1.293e− 05 1.798e− 06 7.193 6.33e− 13
EV-D103 -1.273e− 04 1.533e− 05 -8.300 < 2e− 16
EV-D105 3.896e− 05 5.009e− 06 7.778 7.40e− 15
EV-D106 1.019e− 05 3.613e− 06 2.822 0.004777
EV-D107 8.350e− 06 3.346e− 06 2.496 0.012567
EV-D108 -3.722e− 05 1.061e− 05 -3.507 0.000454
EV-D109 -1.627e− 05 7.034e− 06 -2.314 0.020689
EV-D110 -3.036e− 05 5.146e− 06 -5.900 3.63e− 09
EV-D111 -2.137e− 05 2.972e− 06 -7.189 6.51e− 13
EV-D115 -5.861e− 05 1.487e− 05 -3.941 8.11e− 05
EV-D117 -3.970e− 06 1.507e− 06 -2.635 0.008425
EV-D118 1.356e− 05 3.566e− 06 3.803 0.000143
EV-D119 -8.738e− 06 4.498e− 06 -1.943 0.052044
EV-D120 -8.530e− 05 1.803e− 05 -4.730 2.25e− 06
EV-D122 -5.787e− 05 3.572e− 05 -1.620 0.105215
EV-D123 -1.195e− 04 1.575e− 05 -7.589 3.23e− 14
EV-D126 -2.821e− 06 1.166e− 06 -2.419 0.015555
EV-DHYD -2.852e− 05 1.150e− 05 -2.480 0.013144
EV-DINF 2.424e− 04 4.092e− 05 5.923 3.16e− 09
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A. Results of LRA

Figure A.68.: LRA for Hyla intermedia (italian tree frog) ROC plot and potential distribution
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Rana dalmatina (agile frog)

Table A.43.: selected environmental variables and computed coe�cients from stepwise
analysis for Rana dalmatina (agile frog)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 2.899e + 02 9.920e + 00 29.221 < 2e− 16
EV-CL18 2.664e− 02 1.063e− 03 25.068 < 2e− 16
EV-CL01 1.544e− 02 4.717e− 03 3.274 0.001059
EV-D103 -2.179e− 04 2.373e− 05 -9.183 < 2e− 16
EV-D104 4.360e− 05 1.157e− 05 3.769 0.000164
EV-D105 -3.697e− 05 4.595e− 06 -8.045 8.65e− 16
EV-D106 -2.942e− 05 4.571e− 06 -6.436 1.23e− 10
EV-D107 -1.189e− 05 4.288e− 06 -2.772 0.005580
EV-D108 3.245e− 05 1.230e− 05 2.638 0.008341
EV-D110 -2.913e− 05 5.395e− 06 -5.400 6.68e− 08
EV-D111 -5.423e− 05 3.755e− 06 14.443 < 2e− 16
EV-D112 4.724e− 05 6.606e− 06 7.152 8.56e− 13
EV-D113 -4.423e− 05 3.043e− 05 -1.454 0.146017
EV-D114 -2.780e− 04 3.195e− 05 -8.700 < 2e− 16
EV-D115 6.052e− 05 1.348e− 05 4.489 7.15e− 06
EV-D116 2.323e− 05 9.417e− 06 2.467 0.013637
EV-D117 2.596e− 05 1.606e− 06 16.169 < 2e− 16
EV-D119 6.697e− 05 3.953e− 06 16.940 < 2e− 16
EV-D120 -1.141e− 04 1.931e− 05 -5.906 3.52e− 09
EV-D121 8.949e− 05 4.540e− 05 1.971 0.048682
EV-D122 -7.875e− 05 4.638e− 05 -1.698 0.089497
EV-D123 -6.844e− 05 1.337e− 05 -5.119 3.07e− 07
EV-D124 -2.898e− 05 8.721e− 06 -3.323 0.000892
EV-D126 1.572e− 05 1.540e− 06 10.209 < 2e− 16
EV-DHYD -4.871e− 05 1.442e− 05 -3.376 0.000734
EV-DINF 1.796e− 04 4.968e− 05 3.616 0.000300
EV-DTM -4.437e− 04 2.441e− 04 -1.818 0.069061
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A. Results of LRA

Figure A.69.: LRA for Rana dalmatina (agile frog) ROC plot and potential distribution
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Rana italica (italian stream frog)

Table A.44.: selected environmental variables and computed coe�cients from stepwise
analysis for Rana italica (italian stream frog)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 3.892e + 05 10.320e + 01 43.231 0.032029
EV-CL15 1.634e− 03 1.064e− 04 22.063 < 2e− 10
EV-CL01 0.744e− 05 4.562e− 03 3.274 0.001069
EV-D103 -5.199e− 05 2.213e− 06 -10.146 < 2e− 08
EV-D105 -2.117e− 04 5.321e− 06 -7.031 8.62e− 16
EV-D106 -2.452e− 05 2.591e− 06 -4.472 1.21e− 09
EV-D107 -0.189e− 04 3.299e− 06 -2.734 0.003281
EV-D108 2.244e− 04 1.330e− 05 1.639 0.009541
EV-D112 6.324e− 04 6.756e− 06 8.322 9.26e− 10
EV-D113 -8.432e− 04 3.052e− 05 -1.824 0.146017
EV-D114 -3.780e− 04 6.215e− 05 -9.320 < 2e− 16
EV-D115 4.021e− 05 1.343e− 06 3.491 7.10e− 06
EV-D116 2.431e− 05 10.417e− 06 5.467 0.012397
EV-D117 2.666e− 05 1.606e− 06 16.169 < 2e− 10
EV-D122 -9.325e− 04 4.868e− 03 -9.327 0.089670
EV-D123 -7.873e− 04 0.347e− 05 -3.132 3.12e− 08
EV-D124 -2.898e− 05 8.721e− 06 -3.323 0.000892
EV-D126 0.902e− 04 1.546e− 05 09.232 < 2e− 10
EV-DHYD -9.531e− 05 0.922e− 05 -4.426 0.000823
EV-DINF 1.926e− 04 5.934e− 04 2.624 0.000323
EV-DTM -5.432e− 05 2.381e− 04 -0.832 0.167490
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A. Results of LRA

Figure A.70.: LRA for Rana italica (italian stream frog) ROC plot and potential distribution
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Rana latastei (italian agile frog)

Table A.45.: selected environmental variables and computed coe�cients from stepwise
analysis for Rana latastei (italian agile frog)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 3.365e + 02 2.202e + 01 15.284 < 2e− 16
EV-CL15 2.740e− 02 1.849e− 02 1.482 0.138351
EV-CL18 4.091e− 02 1.997e− 03 20.484 < 2e− 16
EV-CL01 2.236e− 02 6.780e− 03 3.298 0.000975
EV-CL07 6.458e− 02 5.814e− 03 11.107 < 2e− 16
EV-D100 -2.312e− 05 3.347e− 06 -6.908 4.91e-12
EV-D103 -1.622e− 04 1.882e− 05 -8.619 < 2e− 16
EV-D106 -9.611e− 06 3.861e− 06 -2.490 0.012792
EV-D107 -4.507e− 05 3.944e− 06 -11.427 < 2e− 16
EV-D108 7.327e− 05 1.215e− 05 6.030 1.64e-09
EV-D109 -1.965e− 04 1.412e− 05 -13.918 < 2e− 16
EV-D110 -1.035e− 04 5.876e− 06 -17.610 < 2e− 16
EV-D111 1.897e− 05 3.480e− 06 5.453 4.97e− 08
EV-D112 2.905e− 05 7.447e− 06 3.901 9.59e− 05
EV-D114 4.013e− 05 2.188e− 05 1.834 0.066691
EV-D115 -1.112e− 04 2.731e− 05 -4.071 4.68e− 05
EV-D116 1.211e− 04 9.580e− 06 12.639 < 2e− 16
EV-D117 2.217e− 05 2.344e− 06 9.455 < 2e− 16
EV-D119 2.061e− 05 4.572e− 06 4.508 6.54e− 06
EV-D120 5.352e− 05 2.335e− 05 2.292 0.021912
EV-D121 8.237e− 05 4.775e− 05 1.725 0.084541
EV-D122 -2.290e− 04 4.771e− 05 -4.800 1.59e− 06
EV-D123 -1.019e− 04 2.641e− 05 -3.859 0.000114
EV-D124 -5.081e− 05 1.245e− 05 -4.082 4.47e− 05
EV-D125 -3.124e− 05 2.845e− 06 -10.981 < 2e− 16
EV-D126 -2.781e− 06 1.612e− 06 -1.725 0.084593
EV-DHID 1.897e− 05 1.170e− 05 1.621 0.104949
EV-DINF 3.042e− 04 6.997e− 05 4.348 1.37e− 05
EV-DTM 1.432e− 03 4.110e− 04 3.483 0.000496
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A. Results of LRA

Figure A.71.: LRA for Rana latastei (italian agile frog) ROC plot and potential distribution
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Rana synk. esculenta (edible frog)

Table A.46.: selected environmental variables and computed coe�cients from stepwise
analysis for Rana synk. esculenta (edible frog)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -2.503e− 03 2.854e− 05 0.011 0.992
EV-CL18 -4.466e− 03 5.868e− 04 -7.612 2.71e− 14
EV-CL01 1.502e− 02 4.041e− 03 3.716 0.000202
EV-D100 2.913e− 05 5.226e− 06 5.575 2.47e− 08
EV-D104 1.146e− 04 6.477e− 05 1.769 0.076865
EV-D105 5.473e− 05 3.816e− 05 1.434 0.151488
EV-D106 -1.666e− 04 1.409e− 05 -11.818 < 2e− 16
EV-D108 -1.627e− 04 5.332e− 05 -3.052 0.002273
EV-D109 1.704e− 04 2.969e− 05 5.741 9.40e− 09
EV-D112 9.065e− 05 2.398e− 05 3.780 0.000157
EV-D113 -7.134e− 04 1.067e− 04 -6.684 2.32e− 11
EV-D117 7.511e− 06 4.072e− 06 1.844 0.065118
EV-D119 -1.812e− 04 2.854e− 05 -6.351 2.14e− 10
EV-D120 3.944e− 05 1.524e− 05 2.588 0.009658
EV-D122 -1.522e− 04 2.728e− 05 -5.579 2.42e− 08
EV-D126 -1.855e− 05 1.118e− 06 -16.595 < 2e− 16
EV-DHYD -2.331e− 05 1.138e− 05 -2.048 0.040555
EV-DINF 5.284e− 05 2.784e− 05 1.898 0.057685
EV-DTM -3.304e− 04 1.938e− 04 -1.705 0.088208
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A. Results of LRA

Figure A.72.: LRA for Rana synk. esculenta (edible frog) ROC plot and potential distribution
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Rana temporaria (common frog)

Table A.47.: selected environmental variables and computed coe�cients from stepwise
analysis for Rana temporaria (common frog)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 4.021e + 01 5.255e + 00 7.653 1.97e-14
EVaspect -4.718e− 04 1.843e− 04 -2.561 0.010446
EV-CL15 6.338e− 02 6.565e− 03 9.654 < 2e− 16
EV-CL18 1.355e− 02 6.530e− 04 20.753 < 2e− 16
EV-D100 6.878e− 06 1.473e− 06 4.670 3.01e− 06
EV-D103 -7.056e− 05 1.385e− 05 -5.093 3.52e− 07
EV-D104 1.146e− 04 6.477e− 05 1.769 0.076865
EV-D105 5.473e− 05 3.816e− 05 1.434 0.151488
EV-D106 2.021e− 04 3.086e− 05 6.550 5.75e− 11
EV-D107 1.358e− 04 1.848e− 05 7.347 2.02e− 13
EV-D108 1.367e− 04 4.870e− 05 2.808 0.004991
EV-D109 -1.451e− 04 3.966e− 05 -3.659 0.000253
EV-D110 9.785e− 05 2.902e− 05 3.372 0.000747
EV-D111 -2.175e− 04 1.690e− 05 -12.869 < 2e− 16
EV-D112 9.446e− 05 3.160e− 05 2.989 0.002797
EV-D124 -4.722e− 05 8.965e− 06 -5.268 1.38e− 07
EV-D125 -1.207e− 05 2.031e− 06 -5.945 2.76e− 09
EV-D126 -2.821e− 06 1.166e− 06 -2.419 0.015555
EV-DHYD -2.852e− 05 1.150e− 05 -2.480 0.013144
EV-DINF 2.424e− 04 4.092e− 05 5.923 3.16e− 09
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A. Results of LRA

Figure A.73.: LRA for Rana temporaria (common frog) ROC plot and potential distribution
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Emys orbicularis (european pond terrapin)

Table A.48.: selected environmental variables and computed coe�cients from stepwise
analysis for Emys orbicularis (european pond terrapin)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -1.397e + 00 1.394e + 00 -1.002 0.316207
EV-CL15 5.180e− 02 6.925e− 03 7.480 7.41e− 14
EV-CL18 3.327e− 03 9.866e− 04 3.373 0.000744
EV-CL01 9.549e− 03 3.594e− 03 2.657 0.007887
EV-CL07 -7.895e− 03 4.711e− 03 -1.676 0.093758
EV-D100 1.795e− 05 2.047e− 06 8.768 < 2e− 16
EV-D103 -1.919e− 05 1.266e− 05 -1.516 0.129585
EV-D105 6.705e− 05 5.656e− 06 11.853 < 2e− 16
EV-D106 -6.225e− 06 4.163e− 06 -1.495 0.134820
EV-D107 -1.663e− 05 3.652e− 06 -4.553 5.30e− 06
EV-D108 3.582e− 05 1.041e− 05 3.443 0.000576
EV-D109 3.995e− 05 5.569e− 06 7.173 7.32e− 13
EV-D110 -3.783e− 05 4.960e− 06 -7.627 2.40e− 14
EV-D111 -2.121e− 05 3.317e− 06 -6.395 1.60e− 10
EV-D112 -2.656e− 05 7.277e− 06 -3.649 0.000263
EV-D113 -5.759e− 05 2.717e− 05 -2.120 0.034032
EV-D114 -9.613e− 05 2.439e− 05 -3.942 8.09e− 05
EV-D115 -2.591e− 05 9.771e− 06 -2.651 0.008017
EV-D116 -1.979e− 05 8.770e− 06 -2.257 0.024016
EV-D117 4.418e− 06 1.634e− 06 2.704 0.006861
EV-D119 -1.346e− 05 4.768e− 06 -2.822 0.004768
EV-D120 3.540e− 05 1.497e− 05 2.364 0.018059
EV-D121 6.148e− 05 2.601e− 05 2.364 0.018099
EV-D123 2.315e− 05 1.028e− 05 2.253 0.024286
EV-D126 -7.154e− 06 1.324e− 06 -5.405 6.49e− 08
EV-DHYD -6.874e− 05 1.343e− 05 -5.118 3.09e− 07
EV-DINF -5.883e− 05 3.315e− 05 -1.775 0.075946
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A. Results of LRA

Figure A.74.: LRA for Emys orbicularis (european pond terrapin) ROC plot and potential distribution
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Trachemys scripta (red eared terrapin)

Table A.49.: selected environmental variables and computed coe�cients from stepwise
analysis for Trachemys scripta (red eared terrapin)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 8.080e + 00 9.753e− 01 8.285 < 2e− 16
EV-ASPECT -3.148e− 04 1.444e− 04 -2.180 0.029272
EV-CL15 1.496e− 02 5.904e− 03 2.533 0.011297
EV-CL18 -4.466e− 03 5.868e− 04 -7.612 2.71e− 14
EV-CL01 1.502e− 02 4.041e− 03 3.716 0.000202
EV-CL07 -2.841e− 02 3.260e− 03 -8.715 < 2e− 16
EV-D105 4.926e− 05 4.553e− 06 10.819 < 2e− 16
EV-D106 -3.671e− 05 3.266e− 06 -11.239 < 2e− 16
EV-D107 -8.257e− 06 3.269e− 06 -2.526 0.011553
EV-D109 2.119e− 05 4.449e− 06 4.762 1.92e-06
EV-D111 -3.966e− 05 3.205e− 06 -12.373 < 2e− 16
EV-D112 -1.227e− 05 6.409e− 06 -1.915 0.055556
EV-D114 -1.310e− 04 2.116e− 05 -6.189 6.06e− 10
EV-D116 -2.871e− 05 6.014e− 06 -4.774 1.80e− 06
EV-D117 1.061e− 05 1.391e− 06 7.628 2.39e− 14
EV-D119 3.966e− 05 3.642e− 06 10.888 < 2e− 16
EV-D120 2.094e− 05 1.270e− 05 1.649 0.099211
EV-D123 4.088e− 05 7.453e− 06 5.485 4.13e-08
EV-D126 -1.855e− 05 1.118e− 06 -16.595 < 2e− 16
EV-DHYD -2.331e− 05 1.138e− 05 -2.048 0.040555
EV-DINF 5.284e− 05 2.784e− 05 1.898 0.057685
EV-DTM -3.304e− 04 1.938e− 04 -1.705 0.088208
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A. Results of LRA

Figure A.75.: LRA for Trachemys scripta (red eared terrapin) ROC plot and potential distribution
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Anguis fragilis (slow worm)

Table A.50.: selected environmental variables and computed coe�cients from stepwise
analysis for Anguis fragilis (slow worm)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 4.021e + 01 5.255e + 00 7.653 1.97e− 14
EV-CL15 -4.219e− 02 3.623e− 03 -11.645 < 2e− 16
EV-CL18 -7.187e− 02 1.396e− 02 -5.150 2.60e− 07
EV-D100 -6.907e− 05 7.706e− 06 -8.964 < 2e− 16
EV-D103 5.617e− 04 6.193e− 05 9.070 < 2e− 16
EV-D104 -1.343e− 04 4.889e− 05 -2.747 0.006007
EV-D106 -1.666e− 04 1.409e− 05 -11.818 < 2e− 16
EV-D108 -1.627e− 04 5.332e− 05 -3.052 0.002273
EV-D109 1.704e− 04 2.969e− 05 5.741 9.40e− 09
EV-D112 9.065e− 05 2.398e− 05 3.780 0.000157
EV-D113 -7.134e− 04 1.067e− 04 -6.684 2.32e− 11
EV-D114 -4.004e− 04 9.488e− 05 -4.220 2.44e− 05
EV-D115 3.523e− 04 7.611e− 05 4.629 3.68e− 06
EV-D116 -6.508e− 04 5.125e− 05 -12.699 < 2e− 16
EV-D119 9.867e− 05 8.573e− 06 11.509 < 2e− 16
EV-D120 3.328e− 04 6.258e− 05 5.317 1.05e− 07
EV-D122 6.696e− 04 1.192e− 04 5.617 1.94e− 08
EV-D123 5.674e− 04 5.380e− 05 10.547 < 2e− 16
EV-D124 -2.579e− 04 4.077e− 05 -6.325 2.54e− 10
EV-D125 -9.200e− 05 8.329e− 06 -11.047 < 2e− 16
EV-D127 -6.235e− 04 6.430e− 05 -9.696 < 2e− 16
EV-DHYD -3.402e− 04 4.936e− 05 -6.893 5.45e− 12
EV-DTM -2.101e− 03 5.397e− 04 -3.893 9.89e− 05
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A. Results of LRA

Figure A.76.: Anguis fragilis (slow worm) ROC plot and potential distribution
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Lacerta bilineata (western green lizard)

Table A.51.: selected environmental variables and computed coe�cients from stepwise
analysis for Lacerta bilineata (western green lizard)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 1.924e + 03 1.960e + 02 9.815 < 2e− 16
EV-ASPECT -1.309e− 03 5.052e− 04 -2.591 0.009582
EV-CL15 -1.560e− 01 5.744e− 02 -2.716 0.006606
EV-CL18 1.366e− 01 2.801e− 02 4.877 1.08e− 06
EV-CL07 -2.666e− 01 2.553e− 02 -10.446 < 2e− 16
EV-D100 -2.741e− 04 3.728e− 05 -7.354 1.93e− 13
EV-D103 5.617e− 04 6.193e− 05 9.070 < 2e− 16
EV-D104 -1.343e− 04 4.889e− 05 -2.747 0.006007
EV-D106 -1.666e− 04 1.409e− 05 -11.818 < 2e− 16
EV-D108 -1.627e− 04 5.332e− 05 -3.052 0.002273
EV-D109 1.704e− 04 2.969e− 05 5.741 9.40e− 09
EV-D112 9.065e− 05 2.398e− 05 3.780 0.000157
EV-D113 -7.134e− 04 1.067e− 04 -6.684 2.32e− 11
EV-D114 -4.004e− 04 9.488e− 05 -4.220 2.44e− 05
EV-D115 3.523e− 04 7.611e− 05 4.629 3.68e− 06
EV-D121 8.237e− 05 4.775e− 05 1.725 0.084541
EV-D122 -2.290e− 04 4.771e− 05 -4.800 1.59e− 06
EV-D123 -1.019e− 04 2.641e− 05 -3.859 0.000114
EV-D124 -5.081e− 05 1.245e− 05 -4.082 4.47e-05
EV-D125 -3.124e− 05 2.845e− 06 -10.981 < 2e− 16
EV-D126 -2.781e− 06 1.612e− 06 -1.725 0.084593
EV-DHYD 1.897e− 05 1.170e− 05 1.621 0.104949
EV-DINF 3.042e− 04 6.997e− 05 4.348 1.37e− 05
EV-DTM 1.432e− 03 4.110e− 04 3.483 0.000496
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A. Results of LRA

Figure A.77.: LRA for Lacerta bilineata (western green lizard) ROC plot and potential distribution
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Podarcis muralis (common wall lizard)

Table A.52.: selected environmental variables and computed coe�cients from stepwise
analysis for Podarcis muralis (common wall lizard)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 8.239e− 01 1.150e + 00 0.716 0.473698
EV-CL15 9.924e− 03 6.352e− 03 1.562 0.118233
EV-CL18 1.739e− 03 8.017e− 04 2.169 0.030071
EV-CL01 6.443e− 03 2.884e− 03 2.234 0.025487
EV-CL07 -6.202e− 03 3.824e− 03 -1.622 0.104772
EV-D100 -8.259e− 06 1.639e− 06 -5.040 4.65e− 07
EV-D103 -1.045e− 04 1.292e− 05 -8.090 5.97e− 16
EV-D104 1.565e− 05 1.013e− 05 1.546 0.122135
EV-D105 2.509e− 05 4.125e− 06 6.082 1.19e− 09
EV-D106 -7.233e− 06 3.286e− 06 -2.201 0.027716
EV-D107 -2.567e− 05 3.131e− 06 -8.197 2.46e− 16
EV-D109 1.700e− 05 4.866e− 06 3.494 0.000476
EV-D110 -2.561e− 05 4.381e− 06 -5.846 5.04e-09
EV-D112 1.031e− 05 6.065e− 06 1.700 0.089193
EV-D114 -5.356e− 05 2.067e− 05 -2.591 0.009571
EV-D115 -8.683e− 05 8.843e− 06 -9.819 < 2e− 16
EV-D117 1.291e− 05 1.236e− 06 10.449 < 2e− 16
EV-D119 2.052e− 05 3.813e− 06 5.383 7.33e− 08
EV-D120 -3.785e− 05 1.408e− 05 -2.688 0.007180
EV-D121 -1.205e− 04 2.751e− 05 -4.380 1.19e− 05
EV-D123 1.862e− 05 9.339e− 06 1.994 0.046196
EV-D126 -3.930e− 06 1.059e− 06 -3.709 0.000208
EV-DINF 1.387e− 04 3.215e− 05 4.314 1.60e− 05
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A. Results of LRA

Figure A.78.: LRA for Podarcis muralis (common wall lizard) ROC plot and potential distribution
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Zootoca vivipara (viviparous lizard)

Table A.53.: selected environmental variables and computed coe�cients from stepwise
analysis for Zootoca vivipara (viviparous lizard)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 1.138e + 00 7.849e− 01 1.450 0.147074
EV-CL18 -3.167e− 03 1.282e− 03 -2.470 0.013522
EV-CL01 6.527e− 03 3.423e− 03 1.907 0.056564
EV-D100 -8.235e− 05 6.622e− 06 -12.436 < 2e− 16
EV-D103 -8.216e− 05 2.160e− 05 -3.804 0.000142
EV-D104 3.035e− 05 1.327e− 05 2.287 0.022180
EV-D105 -7.195e− 05 2.199e− 05 -3.272 0.001069
EV-D106 -4.130e− 05 3.975e− 06 -10.389 < 2e− 16
EV-D107 -3.895e− 05 3.923e− 06 -9.927 < 2e− 16
EV-D109 -4.112e− 05 8.536e− 06 -4.817 1.46e− 06
EV-D111 -1.608e− 05 3.076e− 06 -5.227 1.72e− 07
EV-D112 -2.584e− 05 7.075e− 06 -3.652 0.000260
EV-D113 -1.744e− 04 5.520e− 05 -3.160 0.001580
EV-D114 -3.184e− 04 5.177e− 05 -6.151 7.69e− 10
EV-D116 1.682e− 04 2.184e− 05 7.703 1.33e− 14
EV-D117 5.334e− 05 4.936e− 06 10.806 < 2e− 16
EV-D119 1.038e− 04 1.287e− 05 8.059 7.67e− 16
EV-D121 3.369e− 04 1.565e− 04 2.152 0.031364
EV-D123 -1.215e− 04 5.767e− 05 -2.106 0.035183
EV-D125 3.378e− 05 1.272e− 05 2.655 0.007923
EV-DTM 1.583e− 02 3.629e− 03 4.361 1.29e− 05
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A. Results of LRA

Figure A.79.: LRA for Zootoca vivipara (viviparous lizard)ROC plot and potential distribution
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Chalcides chalcides (three-toed skink)

Table A.54.: selected environmental variables and computed coe�cients from stepwise
analysis for Chalcides chalcides (three-toed skink)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 1.411e + 02 3.327e + 01 4.241 2.23e− 05
EV-CL15 -2.208e + 00 4.054e− 01 -5.445 5.18e− 08
EV-CL18 -4.226e− 01 7.023e− 02 -6.017 1.78e− 09
EV-CL01 -5.281e− 01 1.006e− 01 -5.248 1.54e− 07
EV-CL07 2.368e− 01 8.279e− 02 2.860 0.004230
EV-D101 -3.649e− 04 1.268e− 04 -2.878 0.003997
EV-D102 2.557e− 04 1.298e− 04 1.970 0.048865
EV-D103 5.901e− 04 2.362e− 04 2.499 0.012470
EV-D105 4.926e− 05 4.553e− 06 10.819 < 2e− 16
EV-D106 -3.671e− 05 3.266e− 06 -11.239 < 2e− 16
EV-D107 -8.257e− 06 3.269e− 06 -2.526 0.011553
EV-D109 2.119e− 05 4.449e− 06 4.762 1.92e− 06
EV-D111 -3.966e− 05 3.205e− 06 -12.373 < 2e− 16
EV-D112 -1.227e− 05 6.409e− 06 -1.915 0.055556
EV-D114 -1.310e− 04 2.116e− 05 -6.189 6.06e− 10
EV-D116 -2.871e− 05 6.014e− 06 -4.774 1.80e− 06
EV-D117 1.061e− 05 1.391e− 06 7.628 2.39e− 14
EV-D118 1.399e− 05 3.245e− 06 4.311 1.62e− 05
EV-D119 3.966e− 05 3.642e− 06 10.888 < 2e− 16
EV-D120 2.094e− 05 1.270e− 05 1.649 0.099211
EV-D127 3.843e− 05 8.971e− 06 4.284 1.83e− 05
EV-DHYD -8.686e− 05 1.545e− 05 -5.622 1.88e− 08
EV-DINF 7.956e− 05 3.581e− 05 2.222 0.026295
EV-SLOPE -7.029e− 04 4.018e− 04 -1.749 0.080222
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A. Results of LRA

Figure A.80.: LRA for Chalcides chalcides (three-toed skink) ROC plot and potential distribution
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Coluber viridi�avus (western whip snake)

Table A.55.: selected environmental variables and computed coe�cients from stepwise
analysis for Coluber viridi�avus (western whip snake)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -5.922e− 01 5.837e− 01 -1.015 0.310265
EV-CL15 4.210e− 02 7.193e− 03 5.853 4.82e− 09
EV-CL18 4.447e− 03 5.497e− 04 8.089 6.00e− 16
EV-CL01 -7.729e− 03 3.561e− 03 -2.171 0.029957
EV-D100 3.347e− 06 1.310e− 06 2.556 0.010597
EV-D101 4.242e− 05 7.629e− 06 5.560 2.69e− 08
EV-D102 1.153e− 05 5.507e− 06 2.093 0.036356
EV-D103 -1.690e− 04 1.474e− 05 11.466 < 2e− 16
EV-D104 4.206e− 05 1.042e− 05 4.038 5.40e− 05
EV-D105 4.896e− 05 4.258e− 06 11.500 < 2e− 16
EV-D106 -1.862e− 05 3.358e− 06 -5.547 2.91e− 08
EV-D107 -1.042e− 05 3.205e− 06 -3.251 0.001150
EV-D108 -4.682e− 05 9.769e− 06 -4.793 1.64e− 06
EV-D109 1.831e− 05 5.417e− 06 3.379 0.000727
EV-D110 -2.678e− 05 4.593e− 06 -5.831 5.53e− 09
EV-D111 -2.578e− 05 2.922e− 06 -8.824 < 2e− 16
EV-D112 -2.045e− 05 6.452e− 06 -3.169 0.001529
EV-D113 6.806e− 05 2.375e− 05 2.865 0.004169
EV-D115 -1.170e− 04 1.212e− 05 -9.653 < 2e− 16
EV-D116 -2.009e− 05 7.458e− 06 -2.694 0.007067
EV-D117 7.346e− 06 1.272e− 06 5.773 7.77e− 09
EV-D119 7.720e− 06 3.494e− 06 2.209 0.027141
EV-D120 -7.606e− 05 1.587e− 05 -4.792 1.65e− 06
EV-D121 -5.776e− 05 2.801e− 05 -2.062 0.039201
EV-D126 -8.922e− 06 1.104e− 06 -8.079 6.53e− 16
EV-D127 2.518e− 05 9.022e− 06 2.791 0.005248
EV-DHYD -2.659e− 05 1.121e− 05 -2.372 0.017711
EV-SLOPE -5.119e− 04 2.007e− 04 -2.551 0.010740
EV-DTM -6.676e− 04 4.074e− 04 -1.639 0.101291
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A. Results of LRA

Figure A.81.: LRA for Coluber viridi�avus (western whip snake) ROC plot and potential distribution
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Coronella austriaca (smooth snake)

Table A.56.: selected environmental variables and computed coe�cients from stepwise
analysis for Coronella austriaca (smooth snake)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 4.021e + 01 5.255e + 00 7.653 1.97e− 14
EV-CL15 -4.219e− 02 3.623e− 03 11.645 < 2e− 16
EV-CL18 -7.187e− 02 1.396e− 02 -5.150 2.60e− 07
EV-D100 -6.907e− 05 7.706e− 06 -8.964 < 2e− 16
EV-D104 1.509e− 04 3.461e− 05 4.359 1.31e− 05
EV-D105 1.777e− 04 2.890e− 05 6.150 7.74e− 10
EV-D106 5.037e− 05 1.042e− 05 4.834 1.34e− 06
EV-D108 -1.683e− 04 3.799e− 05 -4.429 9.46e− 06
EV-D109 -1.663e− 04 4.948e− 05 -3.360 0.000779
EV-D110 -1.136e− 04 1.798e− 05 -6.316 2.68e− 10
EV-D113 1.569e− 04 2.367e− 05 6.630 3.36e− 11
EV-D115 -3.037e− 05 1.060e− 05 -2.865 0.004164
EV-D116 -6.004e− 05 7.452e− 06 -8.057 7.85e− 16
EV-D117 5.636e− 06 1.298e− 06 4.343 1.41e− 05
EV-D119 8.833e− 05 3.312e− 06 26.671 < 2e− 16
EV-D123 5.674e− 04 5.380e− 05 10.547 < 2e− 16
EV-D124 -2.579e− 04 4.077e− 05 -6.325 2.54e− 10
EV-D125 -9.200e− 05 8.329e− 06 11.047 < 2e− 16
EV-D126 -5.993e− 06 1.038e− 06 -5.772 7.81e− 09
EV-DHYD -3.425e− 05 1.145e− 05 -2.992 0.00277
EV-DTM -6.109e− 04 3.481e− 04 -1.755 0.07927
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A. Results of LRA

Figure A.82.: LRA for Coronella austriaca (smooth snake) ROC plot and potential distribution
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Coronella girondica (southern smooth snake)

Table A.57.: selected environmental variables and computed coe�cients from stepwise
analysis for Coronella girondica (southern smooth snake)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 1.411e + 02 3.327e + 01 4.241 2.23e− 05
EV-CL15 -2.208e + 00 4.054e− 01 -5.445 5.18e− 08
EV-CL18 -4.226e− 01 7.023e− 02 -6.017 1.78e− 09
EV-CL07 -5.281e− 01 1.006e− 01 -5.248 1.54e− 07
EV-CL01 2.368e− 01 8.279e− 02 2.860 0.004230
EV-D103 5.901e− 04 2.362e− 04 2.499 0.012470
EV-D104 6.511e− 04 1.941e− 04 3.355 0.000793
EV-D106 -6.284e− 04 1.220e− 04 -5.149 2.62e− 07
EV-D107 -1.852e− 04 7.800e− 05 -2.374 0.017603
EV-D110 2.885e− 04 9.959e− 05 2.897 0.003767
EV-D111 8.173e− 04 2.218e− 04 3.685 0.000229
EV-D112 -1.045e− 03 1.793e− 04 -5.826 5.67e− 09
EV-D113 5.494e− 04 3.095e− 04 1.775 0.075871
EV-D117 1.282e− 04 6.001e− 05 2.136 0.032641
EV-D119 -8.997e− 04 2.354e− 04 -3.822 0.000133
EV-D122 9.402e− 04 4.791e− 04 1.962 0.049708
EV-D123 -4.376e− 04 2.578e− 04 -1.697 0.089676
EV-D126 -2.445e− 04 5.761e− 05 -4.243 2.20e− 05
EV-DINF -1.975e− 03 7.509e− 04 -2.631 0.008518
EV-DHYD -3.156e− 02 1.087e− 02 -2.904 0.003683
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A. Results of LRA

Figure A.83.: LRA for Coronella girondica (southern smooth snake) ROC plot and potential distribution
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Elaphe longissima (aesculapian snake)

Table A.58.: selected environmental variables and computed coe�cients from stepwise
analysis for Elaphe longissima (aesculapian snake)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 3.841e + 00 1.216e + 00 3.159 0.001581
EV-ASPECT 2.959e− 04 1.510e− 04 1.959 0.050080
EV-CL15 2.661e− 02 7.260e− 03 3.666 0.000246
EV-CL18 2.196e− 03 7.940e− 04 2.766 0.005672
EV-CL01 2.765e− 02 3.981e− 03 6.946 3.75e− 12
EV-CL07 -2.442e− 02 3.737e− 03 -6.533 6.47e− 11
EV-D100 2.769e− 06 1.452e− 06 1.907 0.056480
EV-D103 -2.067e− 04 1.985e− 05 -10.415 < 2e− 16
EV-D104 -4.389e− 05 1.059e− 05 -4.143 3.43e− 05
EV-D106 -1.940e− 05 3.612e− 06 -5.372 7.78e− 08
EV-D107 -1.257e− 05 3.898e− 06 -3.225 0.001260
EV-D108 -2.502e− 05 9.266e− 06 -2.700 0.006926
EV-D109 1.822e− 05 4.911e− 06 3.709 0.000208
EV-D110 -4.165e− 05 4.769e− 06 -8.734 < 2e− 16
EV-D111 -8.022e− 05 3.024e− 06 -26.525 < 2e− 16
EV-D112 1.646e− 05 6.127e− 06 2.687 0.007207
EV-D114 -1.503e− 04 2.820e− 05 -5.332 9.71e− 08
EV-D115 -5.859e− 05 1.088e− 05 -5.385 7.23e− 08
EV-D117 1.030e− 05 1.352e− 06 7.613 2.67e− 14
EV-D119 6.012e− 05 3.666e− 06 16.401 < 2e− 16
EV-D127 4.910e− 05 9.020e− 06 5.444 5.20e− 08
EV-DINF -7.812e− 05 3.146e− 05 -2.483 0.013033
EV-DTM 3.995e− 04 1.871e− 04 2.136 0.032693
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A. Results of LRA

Figure A.84.: LRA for Elaphe longissima (aesculapian snake) ROC plot and potential distribution
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Natrix maura (viperine snake)

Table A.59.: selected environmental variables and computed coe�cients from stepwise
analysis for Natrix maura (viperine snake)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 1.924e + 03 1.960e + 02 9.815 < 2e− 16
EV-ASPECT -1.309e− 03 5.052e− 04 -2.591 0.009582
EV-CL15 -1.560e− 01 5.744e− 02 -2.716 0.006606
EV-CL18 1.366e− 01 2.801e− 02 4.877 1.08e− 06
EV-CL01 -2.666e− 01 2.553e− 02 -10.446 << 2e− 16
EV-D100 -2.741e− 04 3.728e− 05 -7.354 1.93e− 13
EV-D103 -2.944e− 04 7.443e− 05 -3.955 7.65e− 05
EV-D105 -2.964e− 04 4.651e− 05 -6.372 1.86e− 10
EV-D106 2.021e− 04 3.086e− 05 6.550 5.75e− 11
EV-D107 1.358e− 04 1.848e− 05 7.347 2.02e− 13
EV-D108 1.367e− 04 4.870e− 05 2.808 0.004991
EV-D109 -1.451e− 04 3.966e− 05 -3.659 0.000253
EV-D110 9.785e− 05 2.902e− 05 3.372 0.000747
EV-D111 -2.175e− 04 1.690e− 05 -12.869 < 2e− 16
EV-D112 9.446e− 05 3.160e− 05 2.989 0.002797
EV-D113 3.440e− 04 1.113e− 04 3.091 0.001992
EV-D114 -2.932e− 04 9.313e− 05 -3.148 0.001643
EV-D115 4.100e− 04 1.045e− 04 3.923 8.76e− 05
EV-D119 1.379e− 04 4.111e− 05 3.354 0.000795
EV-D120 -2.730e− 04 7.513e− 05 -3.633 0.000280
EV-D121 -3.230e− 04 1.295e− 04 -2.495 0.012606
EV-D122 4.691e− 04 1.421e− 04 3.302 0.000960
EV-D126 2.791e− 05 1.025e− 05 2.722 0.006481
EV-DINF -4.375e− 04 2.391e− 04 -1.830 0.067283
EV-DTM -2.717e− 03 1.380e− 03 -1.969 0.048953

233



A. Results of LRA

Figure A.85.: LRA for Natrix maura (viperine snake) ROC plot and potential distribution
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Natrix natrix (grass snake)

Table A.60.: selected environmental variables and computed coe�cients from stepwise
analysis for Natrix natrix (grass snake)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -8.584e + 00 1.291e + 00 -6.647 2.99e− 11
EV-CL15 4.880e− 02 6.927e− 03 7.045 1.86e− 12
EV-CL18 7.926e− 03 8.861e− 04 8.945 < 2e− 16
EV-CL01 -1.506e− 02 3.950e− 03 -3.813 0.000137
EV-CL07 2.266e− 02 3.879e− 03 5.843 5.12e− 09
EV-D100 1.694e− 05 1.632e− 06 10.380 < 2e− 16
EV-D103 -1.492e− 05 8.781e− 06 -1.699 0.08924
EV-D104 1.516e− 05 8.631e− 06 1.757 0.07895
EV-D105 3.594e− 05 4.610e− 06 7.797 6.35e− 15
EV-D106 -8.821e− 06 3.332e− 06 -2.647 0.00812
EV-D108 2.904e− 05 9.277e− 06 3.131 0.001745
EV-D109 1.972e− 05 4.973e− 06 3.965 7.32e− 05
EV-D110 -2.925e− 05 4.684e− 06 -6.245 4.24e− 10
EV-D111 -9.023e− 06 3.332e− 06 -2.708 0.006763
EV-D112 1.773e− 05 6.443e− 06 2.752 0.005924
EV-D113 1.008e− 04 2.704e− 05 3.726 0.000194
EV-D114 -1.310e− 04 2.116e− 05 -6.189 6.06e− 10
EV-D116 -2.871e− 05 6.014e− 06 -4.774 1.80e− 06
EV-D117 1.061e− 05 1.391e− 06 7.628 2.39e− 14
EV-D119 3.966e− 05 3.642e− 06 10.888 < 2e− 16
EV-D120 2.094e− 05 1.270e− 05 1.649 0.099211
EV-D121 -4.047e− 05 2.537e− 05 -1.595 0.110652
EV-DHYD 7.622e− 03 1.343e− 03 5.674 1.40e− 08
EV-DTM -2.749e− 02 6.483e− 03 -4.240 2.24e− 05
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A. Results of LRA

Figure A.86.: LRA for Natrix natrix (grass snake) ROC plot and potential distribution
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Natrix tessellata (dice snake)

Table A.61.: selected environmental variables and computed coe�cients from stepwise
analysis for Natrix tessellata (dice snake)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 9.828e + 01 1.023e + 01 9.608 < 2e− 16
EV-ASPECT -2.421e− 04 1.422e− 04 -1.703 0.088526
EV-CL15 2.156e− 02 6.310e− 03 3.417 0.000634
EV-CL18 1.651e− 02 2.616e− 03 6.312 2.76e− 10
EV-CL01 -1.656e− 02 2.757e− 03 -6.006 1.90e− 09
EV-D100 -3.228e− 05 2.177e− 06 -14.829 < 2e− 16
EV-D103 -1.037e− 04 1.409e− 05 -7.362 1.82e− 13
EV-D104 -1.092e− 04 1.105e− 05 -9.887 < 2e− 16
EV-D106 -2.551e− 05 3.007e− 06 -8.482 < 2e− 16
EV-D107 1.206e− 05 3.192e− 06 3.779 0.000158
EV-D108 1.924e− 05 9.402e− 06 2.046 0.040747
EV-D109 4.533e− 05 5.494e− 06 8.251 < 2e− 16
EV-D110 -6.473e− 05 4.768e− 06 -13.576 < 2e− 16
EV-D111 -5.907e− 05 2.885e− 06 -20.475 < 2e− 16
EV-D112 -3.434e− 05 7.009e− 06 -4.900 9.60e− 07
EV-D113 1.569e− 04 2.367e− 05 6.630 3.36e− 11
EV-D115 -3.037e− 05 1.060e− 05 -2.865 0.004164
EV-D116 -6.004e− 05 7.452e− 06 -8.057 7.85e− 16
EV-D117 5.636e− 06 1.298e− 06 4.343 1.41e− 05
EV-D119 8.833e− 05 3.312e− 06 26.671 < 2e− 16
EV-D120 -8.670e− 05 1.533e− 05 -5.655 1.56e− 08
EV-D122 -5.304e− 05 2.682e− 05 -1.977 0.048014
EV-D126 3.499e− 06 1.209e− 06 2.894 0.003805
EV-DTM -6.538e− 04 3.965e− 04 -1.649 0.099145
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A. Results of LRA

Figure A.87.: LRA for Natrix tessellata (dice snake) ROC plot and potential distribution
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Vipera aspis (asp viper)

Table A.62.: selected environmental variables and computed coe�cients from stepwise
analysis for Vipera aspis (asp viper)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept -3.314e + 00 9.506e− 01 -3.486 0.000491
EV-SPECT -3.266e− 04 1.592e− 04 -2.052 0.040137
EV-CL15 -2.504e− 02 6.975e− 03 -3.590 0.000331
EV-CL18 8.381e− 03 8.321e− 04 10.072 < 2e− 16
EV-CL01 4.034e− 03 2.147e− 03 1.878 0.060327
EV-D100 8.058e− 06 1.479e− 06 5.449 5.06e-08
EV-D103 -2.969e− 04 1.713e− 05 -17.328 < 2e− 16
EV-D104 2.136e− 05 1.100e− 05 1.941 0.052285
EV-D105 2.912e− 05 4.951e− 06 5.883 4.03e− 09
EV-D106 -5.233e− 05 4.704e− 06 -11.124 < 2e− 16
EV-D108 9.128e− 05 1.037e− 05 8.801 < 2e− 16
EV-D109 1.869e− 05 5.394e− 06 3.465 0.000530
EV-D110 -7.911e− 05 4.974e− 06 -15.904 < 2e− 16
EV-D111 -1.086e− 04 3.548e− 06 -30.609 < 2e− 16
EV-D112 1.395e− 05 7.052e− 06 1.978 0.047976
EV-D113 9.919e− 05 2.950e− 05 3.362 0.000773
EV-D114 -2.676e− 04 3.193e− 05 -8.381 < 2e− 16
EV-D115 -8.908e− 05 1.005e− 05 -8.860 < 2e− 16
EV-D116 1.595e− 05 7.893e− 06 2.021 0.043308
EV-D117 1.069e− 05 1.318e− 06 8.111 5.03e− 16
EV-D119 8.311e− 05 4.031e− 06 20.618 < 2e− 16
EV-D120 -9.909e− 05 1.562e− 05 -6.345 2.22e-10
EV-D121 -8.606e− 05 3.246e− 05 -2.651 0.008027
EV-D122 -1.237e− 04 3.387e− 05 -3.651 0.000261
EV-D123 3.799e− 05 9.492e− 06 4.003 6.26e− 05
EV-D126 2.383e− 05 1.523e− 06 15.641 < 2e− 16
EV-DYDR -8.686e− 05 1.545e− 05 -5.622 1.88e− 08
EV-DINF 7.956e− 05 3.581e− 05 2.222 0.026295

239



A. Results of LRA

Figure A.88.: LRA for Vipera aspis (asp viper) ROC plot and potential distribution
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Vipera berus (adder)

Table A.63.: selected environmental variables and computed coe�cients from stepwise
analysis for Vipera berus (adder)

Regressor Estimated coe�. Std. Error z value Pr(> |z|)

Intercept 1.138e + 00 7.849e− 01 1.450 0.147074
EV-CL15 -3.167e− 03 1.282e− 03 -2.470 0.013522
EV-CL18 6.527e− 03 3.423e− 03 1.907 0.056564
EV-D100 -8.235e− 05 6.622e− 06 -12.436 < 2e− 16
EV-D103 -8.216e− 05 2.160e− 05 -3.804 0.000142
EV-D104 3.035e− 05 1.327e− 05 2.287 0.022180
EV-D105 -7.195e− 05 2.199e− 05 -3.272 0.001069
EV-D106 -7.733e− 05 2.161e− 05 -3.579 0.000345
EV-D107 3.153e− 05 6.706e− 06 4.702 2.57e− 06
EV-D108 1.046e− 04 9.967e− 06 10.492 < 2e-16
EV-D109 3.255e− 05 6.420e− 06 5.070 3.98e− 07
EV-D110 3.212e− 05 7.567e− 06 4.245 2.19e− 05
EV-D112 -6.590e− 05 1.213e− 05 -5.432 5.56e− 08
EV-D117 7.511e− 06 4.072e− 06 1.844 0.065118
EV-D119 -1.812e− 04 2.854e− 05 -6.351 2.14e− 10
EV-D120 3.944e− 05 1.524e− 05 2.588 0.009658
EV-D122 -1.522e− 04 2.728e− 05 -5.579 2.42e− 08
EV-D123 -1.348e− 04 1.079e− 05 -12.495 < 2e− 16
EV-D124 1.850e− 05 1.072e− 05 1.726 0.084300
EV-D125 2.670e− 05 4.743e− 06 5.630 1.80e− 08
EV-D126 -8.067e− 06 3.264e− 06 -2.472 0.013452
EV-D127 6.731e− 05 1.039e− 05 6.479 9.24e− 11
EV-DHYD -7.430e− 05 4.265e− 05 -1.742 0.081473
EV-DINF 1.669e− 04 2.937e− 05 5.680 1.35e− 08
EV-DTM 5.550e− 04 1.826e− 04 3.040 0.002367
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A. Results of LRA

Figure A.89.: LRA for Vipera berus (adder) ROC plot and potential distribution
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B. SOS scripts

B.0.6. SOS scripts for statistical and spatial modeling

SPECIES.SPATIAL.MODELS.R

##########################################################
# Basic script to launch functions for modeling species #
# presence through different techniques: #
# 1)Generalized Linear Models (GLM) #
# 2)Environment Niche factor Analysis (ENFA) #
# 3)Flexible Discriminant Analysis with method BRUTO #
# #
# scripts sourced for the analysis: #
# 1) CALC_LOGISTIC.R computes logistic regression #
# analysis #
# 2) CALC_ENFA.R computes ENFA #
# 3) CALC_BRUTO.R computes flexible discriminant #
# analysis with method bruto #
# 4) OUT_LOGISTIC_GRASS.R outputs results of logistic #
# regression analysis #
# 5) OUT_ENFA.R outputs results of ENFA #
# 6) OUT_BRUTO.R outputs results of flexible #
# discriminant analysis with method bruto #
# 7) MAKE_GRASS_SH.R creates a bash script for GRASS #
# in order to compute GRASS raster layer of predicted #
# distribution. If ROC analysis is performed, the #
# scripts also compute classified rasters. #
# #
# requires FOREIGN, ADEHABITAT, PRESENCEABSENCE, MDA #
##########################################################
# version 1.0 #
# created 01/06/2008 #
# revision history: #
# #
# #
##########################################################
# #
# Copyright (C) 2008 Monica Carro #
# #
# This program is free software; you can redistribute #
# it and/or modify it under the terms of the GNU #
# General Public License as published by the Free #
# Software Foundation; either version 2 of the #
# License or (at your option) any later version. #
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B. SOS scripts

# #
# This program is distributed in the hope that it #
# will be useful, but WITHOUT ANY WARRANTY; without #
# even the implied warranty of MERCHANTABILITY or #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU #
# General Public License for more details. #
# #
# A copy of the GNU General Public License is availabl #
# at http://www.gnu.org/licenses/gpl.txt, or can be #
# requested to the Free Software Foundation, Inc., 51 #
# Franklin Street, Fifth Floor, Boston, MA 02110-1301 #
# USA. #
# #
##########################################################
#DATA
#data for GLM analysis
#1) GRASS point vector layers provided with attribute
#table. The table will be red directly by R through
#spgrass6. The table should contain the value of each
#environmental variable at each point location and should
#be prepared with the GRASS script v.whatrast.sh.
#data for ENFA analysis
#1) shapefile(s) or table(s) in dbf file formatof presence
# or presence/absence point data . The name of the
# shapefile/dbf table must be the same of the keyword
# referring to the specie (es. ruprup.dbf)
# IMPORTANT: shapefile must contain a column 'pres'
# specifyng the nature of the point (0= absence,
# 1=presence), a column with the X coordinate and a
# column with the Y coordinate.
#2) grids of environmental variables and grid-pack(s):
# ascii files listing omogeneous grids according to
# the radius of the focal function applied.
#data for FDA-BRUTO analysis
#1) GRASS point vector layers provided with attribute
#table. The table will be red directly by R through
#spgrass6 The table should contain the value of each
#environmental variable at each point location and
#should be prepared with the GRASS script v.whatrast.sh.
#2) GRASS point vector layer resulting from the GRASS
#script r.whatrast.many.sh. Points should cover all the
#study area as a grid at the resolution set for the GIS
#analysis.The table completely describes environmental
#conditions in the whole study area
#CONFIGURATION FILE
#The computation and output of presence models requires a
#configuration file, in ASCII format; each row of the
#list contains, separeted by ",":
#1) keyword referring to the specie for wich presence
# models are computed;
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#2) name of the grid-pack (followed by the extension of
# the file)containg environmental variables for the
# analysis environmental;
#3) Keyword(s)of the modeling technique(s) choosed for
# presence prediction. If more than 1 model is required,
# keywords must be separated by space.
#4) Keyword(s) of the output(s) required at the and of the
# analysis. If more than 1 model is required, keywords
# must be separated by space.
#KEYWORDS:
#1) species are indicated with tre three first letter of
# the genera name, followed by the three first letters
# of the specie name. For example the specie
# "Rupicapra rupicapra" is referred to as "ruprup"
#2) keyword for ENFA model: enfa
# keyword for GLM model: logistic
# keyword for FDA-BRUTO model: bruto
#3) the following keyword can be put in the list according
# to the kind of model applied and to the output required.
# It should be noticed that models performance is
# estimated in both cases with the Reicer Operating
# Characteristics (ROC) analysis. Three kinds of outputs
# are available for each analysis: presence prediction
# map, graphical plots in eps format, text outputs in
# txt format.
# "enfa_grid": keyword to output presence grid from ENFA
# analysis (output as asciigrid to import in
# GRASS GIS)
# "logistic_grid" keyword to output presence grid from
# GLM analysis (output as script in aml
# language to run in ArcInfo GIS to
# compute final grid)
# "bruto_grid": keyword to output presence grid from ENFA
# analysis (output as asciigrid to import in
# GRASS GIS)
# "enfa_summary": keyword to output text summary of ENFA
# analysis
# "logistic_summary": keyword to output text summary of the
# results of GLM analysis
# "bruto_summary": keyword to output text summary of the
# results of FDA-BRUTO analysis
# "logistic_AIC": keyword to output Akaike's Information
# Criterion
# "enfa_hist":keyword to output ENFA histogram of
# marginality and specialisation
# "enfa_plotsummary": keyword to output plots that
# summarize ENFA analysis results
# "enfa_ROCauc": keyword to output the Area Under the
# Curve (AUC) value from ROC analysis for
# ENFA
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B. SOS scripts

# "logistic_ROCauc": keyword to output the Area Under the
# Curve (AUC) value from ROC analysis
# for GLM analysis
# "enfa_ROCsummary": keyword to output summary results
# from ROC analysis for ENFA
# "logistic_ROCsummary": keyword to output summary
# results from ROC analysis for
# ENFA model
# "enfa_ROCsummary": keyword to output summary results
# from ROC analysis for GLM model
# "enfa_ROCcutoffs": keyword to output cutoffs from ROC
# analysis for ENFA model
# "logistic_ROCcutoffs": keyword to output cutoffs from
# ROC analysis for GLM model
# "enfa_ROCplot": keywords to output plot of ROC curve
# for ENFA model
# "logistic_ROCplot": keywords to output plot of ROC
# curve for GLM model
# "bruto_contingency": keywords to output contingency
# table for FDA-BRUTO analysis
#
#path to data (comprise configuration file)
data_path <- ".../SOS.rc"
#path to R script
script_path <- ".../SOS/R"
#paths for outputs (text and plots)
output_plots_path <- ".../SOS.rs/plots"
output_text_path <- ".../SOS.rs/text"
output_maps_path <- ".../SOS.rs/maps"
#name of configuration file
config_file <- "..."

setwd(data_path)
require(foreign)
#opens the configuration file and reads the table, it
#assigns names to columns
tbl_conf <- read.table(config_file, header=FALSE, sep=",",

as.is=TRUE, col.names=c("specie","grid_pack",
"model","output"))

#creates a list to accumulate results for each model and for
#each specie
results <- list()
#For each row of the tables reads values from each column
#("specie", 'grid_pack", "models" and "output")
for (row in 1:nrow(tbl_conf)) {

rec <- tbl_conf[row,]
print(paste(" now doing",rec$specie))
extract the current specie
specie <- rec$specie
print(specie)
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# extracts the keyword corresponding to models and outputs
models <- strsplit(rec$model, split=" ")[[1]]
outputs <- strsplit(rec$output, split=" ")[[1]]
print(models)
print(outputs)
#creates a list to accumulate results from each model, for
#the current specie
results.specie <- list()
# if the keyword "logistic" is found in the outputs string,
# load scripts for logistic regression analysis
if("logistic" %in% models) {

print ("make logistic")
source(paste(script_path,"CALC_LOGISTIC1.R",sep='/'))
source(paste(script_path,"OUT_LOGISTIC_GRASS.R",sep='/'))
logistic.index <- agrep("logistic", outputs,

ignore.case=TRUE)
# extracts and print keywords corresponding only to

logistic outputs
print(paste("output =", outputs[logistic.index],

sep = " "))
logistic.outputs <- outputs[logistic.index]

# the function "make_glm" (in "CALC_LOGISTIC.R") is
called, which performs

# logistic regression analysis; results are accumulated in
the list

# "results.specie" under the element "logistic"
results.specie[["logistic"]] <- make_glm(specie)

# the function "out_glm" (in "OUT_LOGISTIC.R") is called,
# which prepares outputs from the results, following the
#keywords

out.glm(specie, logistic.outputs,output_plots_path,
output_text_path)
}

# if the keyword "ENFA" is found in the outputs string,
load packages and scripts for ENFA

if("enfa" %in% models){
print ("make enfa")
require(adehabitat)
source(paste(script_path,"CALC_ENFA.R",sep='/'))
source(paste(script_path,"OUT_ENFA.R",sep='/'))
enfa.index <- agrep("enfa", outputs, ignore.case=TRUE)
#extracts and print keywords corresponding only to enfa
#outputs
print(paste("output =", outputs[enfa.index], sep = " "))
enfa.outputs <- outputs[enfa.index]
# extract the name of the grid-pack of environmental
#variables for the current specie
gridpack<- rec$grid_pack
# the function "make.enfa" (in "CALC_ENFA.R") is called,
# which performs ENFA; results are accumulated in the
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# list "results.specie" under the element "enfa"
results.specie[["enfa"]] <- make.enfa(specie, gridpack)
# the function "out_enfa" (in "CALC_ENFA.R") is called
# which prepares outputs from the results, following
#the keywords
out.enfa(specie, enfa.outputs)
}

# if the keyword "BRUTO" is found in the outputs string, load
# packages and scripts for BRUTO
if("bruto" %in% models){

print ("make bruto")
require(mda)
source(paste(script_path,"CALC_BRUTO.R",sep='/'))

source(paste(script_path,"OUT_BRUTO.R",sep='/'))
bruto.index <- agrep("bruto", outputs,
ignore.case=TRUE)

# extracts and print keywords corresponding only to bruto
# outputs
print(paste("output =",outputs[bruto.index], sep = " "))
bruto.outputs <- outputs[bruto.index]
# the function "make_bruto" (in "CALC_BRUTO.R") is
#called, which performs

# flexible discriminant analysis; results are accumulated
# in the list "results.specie" under the element "bruto"

results.specie[["bruto"]] <- make_bruto(specie)
# the function "out_bruto" (in "OUT_BRUTO.R") is called,
# which prepares outputs from the results, following the
# keywords.

out.bruto(specie, bruto.outputs,output_plots_path,
output_text_path,output_maps_path)
}

# results from each model for the current specie are
# accumulated in the final list "results" in the element
# called with the keyword of the current specie
results[[specie]] <- results.specie
# the temporary list to accumulate results for the current
# specie is deleted since results are transferred to the
# list
# "results"
rm(results.specie)
}

CALC.LOGISTIC.R

##########################################################
##########################################################
# Script to compute Logistic regression analysis(GLM) #
# #
# requires FOREIGN #
# has to be sourced by SPECIES_SPATIAL_MODELS.R #
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##########################################################
# version 1.0 #
# created 1/06/2008 #
# revision history: #
# #
##########################################################
# #
# Copyright (C) 2008 Monica Carro #
# #
# This program is free software; you can redistribute it #
# and/or modify it under the terms of the GNU General #
# Public License as published by the Free Software #
# Foundation; either version 2 of the License, or (at #
# your option) any later version. #
# #
# This program is distributed in the hope that it will #
# be useful, but WITHOUT ANY WARRANTY; without even the #
# implied warranty of MERCHANTABILITY or FITNESS FOR A #
# PARTICULAR PURPOSE. See the GNU General Public #
# License for more details. #
# #
# A copy of the GNU General Public License is available #
# at http://www.gnu.org/licenses/gpl.txt, or can be #
# requested to the Free Software Foundation, Inc., #
# 51 Franklin Street, Fifth Floor, Boston, #
# MA 02110-1301 USA. #
# #
##########################################################
# Defines function performing logistic regression analysis
make_glm <- function (specie){
# prepares a list to accumulate results
result <- list()
require(foreign)
require(spgrass6)
library(spgrass6)
data <- readVECT6(specie, plugin=FALSE)
#print(data)
#attach(data)
presence <- names(data)[2]
print(presence)
# column names corrisponding to environmental variables are
# collapsed with + in
# order to build a formula
environment <- paste(names(data)[5:(ncol(data))],
collapse="+")

print(environment)
#detach(data)

# buldS a formula object based on extracted columns names
glm.formula <- as.formula(paste(presence,"~",environment,
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sep=""))
print(glm.formula)
# calles the "glm" function to fit generalized linear
# models, specified by giving a symbolic description of
# the linear predictor
logit.out <- glm(glm.formula,family=binomial(link="logit"),
data)

print('logit made')
# calles the "step" function which performs stepwise
# selection of the best combination of predictors, based
# on AUC (Akaike's Information Criterion)
step.out <- step(logit.out, direction = "both", trace = 1,

keep = NULL, steps = 1000000, k = 2)
# the analysis is completed, results from "glm" and "step"
# functions are copied in the list "results" respectevly
# in the elements "glm" and "step"
result[["glm"]] <- logit.out
result[["step"]] <- step.out
# the list "result" is returned invisibly (and so copied
# to the list "results.specie" in the element "logistic")
invisible(result)
}

CALC.ENFA.R

##########################################################
# Script for Environment Niche factor Analysis(ENFA) #
# #
# requires FOREIGN, ADEHABITAT #
# has to be sourced by SPECIES.SPATIAL.MODELS.R # #
##########################################################
# version 1.0 #
# created 15/07/2008 #
# revision history: #
# #
##########################################################
# #
# Copyright (C) 2008 Monica Carro #
# #
# This program is free software; you can redistribute it #
# and/or modify it under the terms of the GNU General #
# Public License as published by the Free Software #
# Foundation; either version 2 of the License, or (at #
# your option) any later version. #
# #
# This program is distributed in the hope that it will #
# be useful, but WITHOUT ANY WARRANTY; without even the #
# implied warranty of MERCHANTABILITY or FITNESS FOR A #
# PARTICULAR PURPOSE. See the GNU General Public #
# License for more details. #
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# #
# A copy of the GNU General Public License is available #
# at http://www.gnu.org/licenses/gpl.txt, or can be #
# requested to the Free Software Foundation, Inc., #
# 51 Franklin Street, Fifth Floor, Boston, #
# MA 02110-1301 USA. #
# #
##########################################################
# Definition of function performing ENFA
make.enfa <- function(specie,gridpack){
# prepares a list to accumulate ENFA results
result <- list()
# prepares a list to accumulate imported ascii files
asc.list <- list()

# definition of some useful function; reduce.pca performs
# PCA and keeps variabless the number of input
# environmental variables
reduce.pca <- function(pcadata, tresh_enter=0.5,
verbose=TRUE) {
ret <- list()
# do a pca on 1st axis only
dudi <- dudi.pca(pcadata, scannf=FALSE, nf=1)
# get variance explanied by 1st axis (for each component
# the formula to compute
# the percentage of explained variance is (eig * 100)/Nvar
# where eig is the eigenvalue for the firts component
# and Nvar is the number
# of variables (We know from the principal components
# theory that
# 1)the number of variables equals the number of
# components
# 2)Since the variance of each component is equal to 1
# the total variance 1* NComp(=Nvar))
ret[['varexp']] <- (dudi$eig[1] * 100 / dudi$rank)
if (verbose) print(paste(" explained variance:",

ret[['varexp']]))
# drop uncorrelated vars; this is done by keeping only
# variables whose
# coordinates of the 1st component (dudi$co$Comp1) are
# above the treshold entered (tresh_enter)
ret[['keep']] <- row.names(subset(dudi$co,
abs(Comp1) >= tresh_enter))

if (verbose) print(paste(" will keep:", ret[['keep']]))
# reduces data entered for PCA by selecting only
# correlated variables
ret[['tab']] <- subset(pcadata,select=ret[['keep']])
# returns list with 1)percentage of explained variance
# from the 1st axis,
# 3)string with the names of kept variables;
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# 4)reduction of dataframe pcadata$tab
# containig only kept variables. PCA will be performed on
# this new selected dataframe
invisible(ret)

}

# step.pca is a function that calls iteratively reduce.pca,
# until explained variance doesn't get better than + 1%
step.pca <- function(pcadata) {
# pcadata is the result of data2enfa, namely is data2enfa$tab

# some constants
tresh_enter <- 0.5
# stores variable names
vars <- names(pcadata)
#print(vars)
p.old <- reduce.pca(pcadata, tresh_enter)
p.new <- p.old
v.delta <- 100
while (v.delta >= 1) {

p.new <- reduce.pca(p.old[['tab']], tresh_enter)
v.delta <- p.new[['varexp']] - p.old[['varexp']]
p.old <- p.new

}
invisible(p.new)

}
# reads grid-pack list of environmentale variables and
# creates the corresponding dataframe
grids.list <- read.table(gridpack, header=FALSE,
col.names=c("GRID"), as.is=TRUE)

# imports ESRI ArcInfo ascii grids of environmental variables
# listed in each row of the dataframe
for (row in 1:nrow(grids.list)) {

asc.list[[grids.list[row,]]]
<- import.asc(paste(grids.list[row,], "asc", sep = "."))

}
# prepares data for ENFA: converts a list of matrices of
# class asc into a data frame of class kasc.
maps <- as.kasc(asc.list)
# from 58 to 61 do not run:
#for (var in 1:length(maps)) {
# max <- max(maps[,var], na.rm = TRUE)
# maps[,var] <- maps[,var] / max * 100
# }
# removes the list of matrices of class asc; don't need it
# anymore
rm(asc.list)
gc()
# reads .dbf tables of Presence/Absence data
#(directly fron point ESRI shapefile)
# IMPORTANT: shapefile must contain a column 'pres'
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# specifyng the nature of the point
# (0= absence, 1=presence), a column with the X coordinate
# and a column with the Y coordinate
data <- read.dbf(paste(paste("smp",specie,sep="_"),
"dbf", sep="."))

# keeps only presence points since ENFA uses only presence
# data
locs <- subset(data, PRES == 1, select = c(xcoor, ycoor))
rm(data)
gc()

# prepares dat for ENFA, based on kasc maps and presence
# coordinates
dataenfa <- data2enfa(maps, locs)
print("prepared data for enfa")
# do the "stepwise" selection of correlated variables by
# calling function step.pca (and
# function reduce.pca) until the maximum percentage of
# explained variance of the
# first axis is reached
s <- step.pca(dataenfa$tab)
gc(verbose = TRUE)
# based on the kept variables from function reduce.pca
#(s$keep) rebuild a reduced gridpack
grids.list <- data.frame(s$keep,stringsAsFactors = FALSE)
names(grids.list) <- "GRID"

# imports teh reduced number of ascii grids
asc.list <- list()
for (row in 1:nrow(grids.list)) {

asc.list[[grids.list[row,]]]
<- import.asc(paste(grids.list[row,], "asc", sep = "."))

}
# re-builds kasc dataframe from a reduced list of matrices
# of class asc
maps <- as.kasc(asc.list)
rm(asc.list)
gc()

# prepares data for ENFA (reduced dataset)
dataenfa <- data2enfa(maps, locs)
print("prepared data for enfa")
gc()

# ENFA step 1: do a PCA
datapca <- dudi.pca(dataenfa$tab, scannf=FALSE, nf=2)
gc()
# ENFA step 2: do ENFA
enfa.out <- enfa(datapca, dataenfa$pr, scannf=FALSE)
print("enfa computed")
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gc()
# prepares data for output; converts kasc object into
#dataframe

# (necessary to produce output prediction grid)
maps.df <- kasc2df(maps)

# copies results and processed data to the list result
result[["output_enfa"]] <- enfa.out
result[["PCA"]] <- datapca
result[["maps"]] <- maps
result[["maps_index"]] <- maps.df$index
result[["locs"]] <- locs
result[["C1_Varexp"]] <- s$varexp
result[["KeptVariables"]] <- s$keep
# the list "result" is returned invisibly (and so copied
# to the list
# "results.specie" in the element "ENFA")
invisible(result)
}

CALC.BRUTO.R

##########################################################
# Script to compute FLEXIBLE DISCRIMINANT ANALYSIS with #
# method "BRUTO" #
# #
# requires FOREIGN #
# has to be sourced by SPECIES.SPATIAL.MODELS.R #
##########################################################
# version 1.0 #
# created 1/06/2008 #
# revision history: #
# #
##########################################################
# #
# Copyright (C) 2008 Monica Carro #
# #
# This program is free software; you can redistribute #
# it and/or modify it under the terms of the GNU #
# General Public License as published by the Free #
# Software Foundation; either version 2 of the #
# License, or (at your option) any later version. #
# #
# This program is distributed in the hope that it will #
# be useful, but WITHOUT ANY WARRANTY; without even the #
# implied warranty of merchantability or fitness for a #
# paricular purpose. See the GNU General Public #
# License for more details. #
# #
# A copy of the GNU General Public License is available #
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# at http://www.gnu.org/licenses/gpl.txt, or can be #
# requested to the Free Software Foundation, Inc., 51 #
# Franklin Street, Fifth Floor, Boston, #
# MA 02110-1301 USA #
# #
##########################################################

# Defines function performing logistic regression analysis
make_bruto <- function (specie){
# prepares a list to accumulate results
result <- list()
require(foreign)
# opens the .dbf table resulting from the GRASS SOS script
# "v.whatrast.many.sh".
# The name of this file is built with the keyword of the
# specie, preceeded by "smp_". (for example
# smp_ruprup.dbf)
# The script samples a GRID pack, starting from a point
# layer of presence ad absence points.
# This part of the analysis which prepares date for bruto
# analysis is performed in GRASS GIS.
specie.smp <- paste(paste("smp",specie,sep="_"),"dbf", sep=".")
data.specie <- read.dbf(specie.smp)
print(specie.smp)
# opens dbf table resulting from GRASS SOS script
# r.whatrast.many.sh which samples a list of specified grid
# at each centroid of the grid cells. This part of the
# analysis which prepares date for bruto analysis is
# performed in GRASS GIS.
data.area <- read.dbf(paste("smp_area.dbf"))
print("red data.area")
# joins data.area and specie.area data in order to copy
# presence attributes to data.area

# train.data <-data.frame()
# for(r in nrow(data.specie)){
# row.specie <- data.specie[r, ]
# first.sel <- data.specie[r,5]
# first.col <- names(data.area)[5]
# sel.area <- data.area[data.area$first.col==first.sel, ]
# for(c in names(data)[5:length(data.specie)]){
# val.specie <- data.specie[r,data.specie$c]
# sel.area <- sel.area[sel.area$c==val.specie, ]
# }
# train.data[r, ] <- sel.area
#}

# extraxts fields for PCA analysis
data.pca <- data.area
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# col<- as.factor(names(data.specie[5:(length(data.specie)-1)]))
# data.pca <- subset(data.pca, select=col)

# extracts rows without NA values
funApply = function(x) {
drop = apply(is.na(x), 1, any)
x[!drop, ]

}
data.pca <- funApply(data.pca)
print("NA values removed")
cat<-data.pca$CAT
data.pca<-data.pca[-1]

# Performs PCA, first on the first axis, then considers
# axis
# with eigenvalues >1
pca <- dudi.pca(data.pca,scannf=FALSE, nf=1)
eig <- pca$eig
eig.keep <- subset(eig, eig>1)
axes.keep <- length(eig.keep)
pca <- dudi.pca(data.pca,scannf=FALSE, nf=axes.keep)
print("PCA done")

# keep scores from PCA analysis and uses them as new
# variables
# (linear combination of old variables
scores.pca <- pca$l1
scores.pca$CAT<- cat
print("built new dataframe with scores values")

for (c in data.specie$GRID_CAT) {
scores.pca[scores.pca$CAT==c, "PRES"]
<- data.specie[data.specie$GRID_CAT==c, "PRES"]

}

presence <- names(scores.pca)[length(scores.pca)]
scores <- paste(names(scores.pca)[1:(length(scores.pca)-2)],

collapse="+")
print(presence)
print(scores)
#builds formula for fda
fda.formula = as.formula(paste(presence,"~",scores,sep=""))
print(fda.formula)

#Creates new training setaxes.keep
train.data <- subset(scores.pca, PRES != "NA")
#performs fda with method bruto on training set
bruto.fda <- fda(fda.formula,data=train.data,method=bruto)
print("fda computed")
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bruto.fitted <- predict(bruto.fda,scores.pca)
print("predict done")
bruto.confusion <- confusion(bruto.fda,train.data)
print("confusion table computed")
result[["bruto.fda"]] <- bruto.fda
result[["bruto.fitted"]] <- bruto.fitted
result[["bruto.confusion"]] <-bruto.confusion
print("calc_bruto done")
invisible(result)
}

CALC.HSI.sh

#!/bin/sh
##########################################################
# #
# MODULE: SOS.HSI.SH v.1.1 for GRASS 6.4 #
# PACKAGE: SOS - Species Open Spreader #
# AUTHOR(S): Damiano G. Preatoni Monica Carro #
# PURPOSE: Calculates an Habitat Suitability Index (HSI) #
# raster map, given some environmental variable #
# rasters along with their reclassification #
# rules. #
# COPYRIGHT: (C) 2009 by D.G. Preatoni & Monica carro #
# and the GRASS Development Team. #
# This program is free software under the GNU #
# General Public License (>=v2). Read the file#
# COPYING that comes with GRASS for details. #
# #
##########################################################
# #
# Copyright (C) 2008 Monica Carro #
# #
# This program is free software; you can redistribute it #
# and/or modify it under the terms of the GNU General #
# Public License as published by the Free Software #
# Foundation; either version 2 of the License, or (at #
# your option) any later version. #
# #
# This program is distributed in the hope that it will #
# be useful, but WITHOUT ANY WARRANTY; without even the #
# implied warranty of MERCHANTABILITY or FITNESS FOR A #
# PARTICULAR PURPOSE. See the GNU General Public #
# License for more details. #
# #
# A copy of the GNU General Public License is available #
# at http://www.gnu.org/licenses/gpl.txt, or can be #
# requested to the Free Software Foundation, Inc., #
# 51 Franklin Street, Fifth Floor, Boston, #
# MA 02110-1301 USA. #
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# #
##########################################################
%module
%description: r.SOS.rules.sh
%end
%option
%key: output
%type: string
%required: yes
%gisprompt: new,cell,raster
%description: Name of the output habitat suitability
raster

%end
%option
%key: rastlist
%type: string
%gisprompt: old_file,file,input
%description: Text file with the list of rasters to export
%required: yes
%end
%option
%key: method
%answer: mult
%description: Method used to calculate final HSI
(multiplicative or additive)

%type: string
%options: mult,add
%gisprompt: new_file,file,input
%end

if [ -z "$GISBASE" ]
then
echo ""
echo "You must be in GRASS GIS to run this program"
echo ""
exit 1
fi

if [ "$1" != "@ARGS_PARSED@" ]
then
exec g.parser "$0" "$@"
fi

# Check for required arguments
if [ -z "$GIS_OPT_RASTLIST" ]
then
echo "ERROR: Missing list of raster!"
echo "Please enter a valid text file"
exit 1
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fi

eval `g.gisenv`
: ${GISBASE?} ${GISDBASE?} ${LOCATION_NAME?} ${MAPSET?}

SOS_RC_DIR=$GISDBASE/$LOCATION_NAME/$MAPSET/SOS.rc

MAPCALC_STRING="("
NUM_VARS=0
FIRST=TRUE

# recode input rasters as partial HSI maps
while read LINE; do

RULES=$SOS_RC_DIR/$GIS_OPT_OUTPUT.$LINE.rules
g.message -v message="recoding $LINE using $RULES"

OUT_RCL="tmp${LINE}_rcl"
# use r.recode, since r.reclass wants integer rasters
# only and we need -1-[0..1]
r.recode input=$LINE output=$OUT_RCL rules=$RULES

--overwrite # --quiet
# reclass "-1" cells to NULL
r.null map=$OUT_RCL setnull=-1 --quiet
r.colors map=$OUT_RCL color=grey1.0 --quiet
NUM_VARS=$(($NUM_VARS+1))
if [ $FIRST = "TRUE" ]; then
MAPCALC_STRING="$MAPCALC_STRING $OUT_RCL"
FIRST=FALSE
else

case "$GIS_OPT_METHOD" in
"mult" )

MAPCALC_STRING="$MAPCALC_STRING * $OUT_RCL"
;;

"add" )
MAPCALC_STRING="$MAPCALC_STRING + $OUT_RCL"
;;

esac
fi
done < $GIS_OPT_RASTLIST
case "$GIS_OPT_METHOD" in

"mult" )
# assemble partial HSI maps using a productory + nth
# rooth. use 1.0 and not 1 (which implies integer
# truncation)
MAPCALC_STRING="$MAPCALC_STRING) ^ (1.0/$NUM_VARS)"
;;

"add" )
# assemble partial HSI maps using averaging
MAPCALC_STRING="$MAPCALC_STRING) / $NUM_VARS"
;;

esac
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g.message -v message="about to calculate $MAPCALC_STRING"
r.mapcalc $GIS_OPT_OUTPUT="float($MAPCALC_STRING)"
r.colors map=$GIS_OPT_OUTPUT color=ryg --quiet
g.mremove rast="tmp*_rcl" -f --quiet
exit 0
## EOF ##
# kate: encoding utf-8; syntax bash; space-indent on;
# indent-width 2; kate: word-wrap-column 80;
# word-wrap-marker on; word-wrap-marker-color magenta;
# kate auto-brackets on; indent-mode cstyle;

CALC.OVERLAY.SH

#!/bin/sh
##########################################################
# MODULE: CALC.OVERLAY.sh v.1.0 for GRASS 6.3 #
# AUTHOR(S): M.Carro (monica.carro@libero.it) #
# PURPOSE: Computes overlay between a map of use of soil#
# and species presence points. The method #
# expects the reclassification of landuse map #
# in the sense that each habitat type is given #
# a value equal to one if one or more presence #
# points falls within his boundary. For each #
# species the technique outputs a dichotomous #
# map of potential distribution where 1 #
# indicates presence and 0 indicates absence #
# COPYRIGHT: (C) 2008 by Monica carro and by the GRASS #
# Development Team/Monica Carro #
# #
##########################################################
# #
# Copyright (C) 2008 Monica Carro #
# #
# This program is free software; you can redistribute it #
# and/or modify it under the terms of the GNU General #
# Public License as published by the Free Software #
# Foundation; either version 2 of the License, or (at #
# your option) any later version. #
# #
# This program is distributed in the hope that it will #
# be useful, but WITHOUT ANY WARRANTY; without even the #
# implied warranty of MERCHANTABILITY or FITNESS FOR A #
# PARTICULAR PURPOSE. See the GNU General Public #
# License for more details. #
# #
# A copy of the GNU General Public License is available #
# at http://www.gnu.org/licenses/gpl.txt, or can be #
# requested to the Free Software Foundation, Inc., #
# 51 Franklin Street, Fifth Floor, Boston, #
# MA 02110-1301 USA. #
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# #
##########################################################
%Module
% description: fau.model
%End
%option
% key: configfile
% type: string
% gisprompt: old_file,file,input
% description: name of configuration file
% required : yes
%end
%option
% key: datapath
% type: string
% gisprompt: old_file,file,input
% description: path to directory containing shapefiles
% required : yes
%end
%option
% key: usosuolo
% type: string
% gisprompt: old_file,file,input
% description: name of input soil use map
% required : yes
%end
%option
% key: spplist
% type: string
% gisprompt: old_file,file,input
% description: name of list containing species in

directives habitat and birds
% required : yes
%end

if [ -z "$GISBASE" ]
then
echo ""
echo "You must be in GRASS GIS to run this program"
echo ""
exit 1
fi

if [ "$1" != "@ARGS_PARSED@" ]
then
exec g.parser "$0" "$@"
fi

# Check for required arguments
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if [ -z "$GIS_OPT_CONFIGFILE" ]
then
echo "ERROR: Missing configuration file!"
echo "Please enter a valid text file"
exit 1
fi

# Check for required arguments
if [ -z "$GIS_OPT_DATAPATH" ]
then
echo "ERROR: Missing data path!"
echo "Please enter a valid path to directory

containing shapefile"
exit 1
fi

# Check for required arguments
if [ -z "$GIS_OPT_USOSUOLO" ]
then
echo "ERROR: Missing input soil use map!"
echo "Please enter name of a valid raster map"
exit 1
fi

# Check for required arguments
if [ -z "$GIS_OPT_SPPLIST" ]
then
echo "ERROR: Missing input list of prioritaries species!"
echo "Please enter a valid text file"
exit 1
fi

eval `g.gisenv`
: ${GISBASE?} ${GISDBASE?} ${LOCATION_NAME?} ${MAPSET?}

FAU_VAL=fau_val
r.mapcalc $FAU_VAL=0

while read LINE
#extracts variables from configuration file end prints
#them on screen
do
echo "$LINE" > configline.txt
SPECIE=`cut --delimiter=, --fields=1 configline.txt`
echo now doing specie "$SPECIE"
PRS_MAP=$SPECIE"_prs"
OUTPUTMAP=$SPECIE"_ovl"
echo outputmap is "$OUTPUTMAP"
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v.in.ogr -o -r dsn=$GIS_OPT_DATAPATH output=$SPECIE"_prs"
layer=$SPECIE type=point --overwrite

v.db.droptable -f map=$PRS_MAP
db.connect driver=dbf database='$GISDBASE/$LOCATION_NAME/
$MAPSET/dbf/'

v.db.addtable map=$PRS_MAP 'columns=DUSAFLAB int'
v.what.rast vector=$PRS_MAP raster=$GIS_OPT_USOSUOLO
layer=1 column="DUSAFLAB"

CATLIST=`v.db.select -c map=$SPECIE"_prs" layer=1
column=DUSAFLAB | awk -F" " '{print $1}'`

echo "$CATLIST"
r.mapcalc $SPECIE=0
for C in $CATLIST

do
r.mapcalc "$SPECIE"_c"=if($GIS_OPT_USOSUOLO==$C,1,0)"
r.mapcalc "$SPECIE=$SPECIE+$SPECIE"_c""

done
g.remove rast=$SPECIE"_c"
r.mapcalc "$SPECIE=if($SPECIE>1,1,$SPECIE)"
while read LINE

do
echo "$LINE" > spp_cons.txt
S=`cut --delimiter=, --fields=1 spp_cons.txt`
W=`cut --delimiter=, --fields=2 spp_cons.txt`

case $S in
$SPECIE) r.mapcalc "$SPECIE=$SPECIE*$W";;
*) echo -n "$SPECIE non Ã¨ specie di interesse
conservazionistico";;

esac
done < $GIS_OPT_SPPLIST

r.mapcalc $FAU_VAL=$FAU_VAL+$SPECIE
#v.select ainput=$GIS_OPT_USOSUOLO atype=area alayer=1
binput=$SPECIE btype=point blayer=1 output=$OUTPUTMAP
operator=overlap --overwrite

done < $GIS_OPT_CONFIGFILE
exit 0

OUT.LOGISTIC.R

##########################################################
# Script to output required results from #
#LOGISTIC REGRESSION ANALYSIS - calling MAKE_AML to #
# compute output map #
# if required. (ARCINFO version of OUT_LOGISTIC_GRASS) #
# #
# requires PRESENCEABSENCE #
# this script has to be sourced by CALC.LOGISTIC.R #
##########################################################
# version 1.0 #
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# created 20/06/2008 #
# revision history: #
# #
##########################################################
# #
# Copyright (C) 2008 Monica Carro #
# #
# This program is free software; you can redistribute it #
# and/or modify it under the terms of the GNU General #
# Public License as published by the Free Software #
# Foundation; either version 2 of the License, or (at #
# your option) any later version. #
# #
# This program is distributed in the hope that it will #
# be useful, but WITHOUT ANY WARRANTY; without even the #
# implied warranty of MERCHANTABILITY or FITNESS FOR A #
# PARTICULAR PURPOSE. See the GNU General Public #
# License for more details. #
# #
# A copy of the GNU General Public License is available #
# at http://www.gnu.org/licenses/gpl.txt, or can be #
# requested to the Free Software Foundation, Inc., #
# 51 Franklin Street, Fifth Floor, Boston, #
# MA 02110-1301 USA. #
# #
##########################################################
ps.options(width=5, height=5, horizontal=TRUE,
onefile=FALSE, paper="special")

out.glm <- function(specie, logistic.outputs) {
# defines an output text file where results will be copied
output_file = paste(output_text_path,
paste(specie, "glm_output.txt", sep="_"), sep="/")

print(logistic.outputs)
# if the keyword "logistic_grid" is found in
# logistic.outputs, than calles "MAKE_GRASS.R" to prepare
# GRASS script to compute the final presence/absence GRID
if("logistic_grid" %in% logistic.outputs) {

source(paste(script_path,"MAKE_AML.R",sep='/'))
make.aml(results.specie, specie)
}

#diverts output to text file ouput_file
sink(file = output_file, split = TRUE)
cat("*************************************************\n")
cat(paste("\n*** OUTPUT OF LOGISTIC MODEL FOR",
specie, "***", sep = " "))

# following keyword instruction for outputs...
# ...summarise results of GLM analysis
if("logistic_summary" %in% logistic.outputs ) {

cat("\n ***************** SUMMARY *****************")
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print(summary(results.specie$logistic$step))
}

#...extract AIC parameter from GLM analysis results
if("logistic_AIC" %in% logistic.outputs ) {

cat("\n ******************* AIC *******************\n")
print(AIC(results.specie$logistic$step))
}

# if the keyword ROC comapares in logistic.outputs,
# then data are prepared for ROC analysis and
# Presence Absence package is required
ROC.output <- agrep("ROC", logistic.outputs,
ignore.case=FALSE, value=TRUE)

if (length(ROC.output)> 0) {
require(PresenceAbsence)
# prepares dataframe for ROC analysis, containing a
# number of rows equal to the number of rows of the
# input specie.smp table which corresponds to the
# number of presence/absence points for the current
# specie. The dataframe
# contains 3 columns: ID, Observed values,
# Predicted values
pa.preds <- data.frame(ID = seq(1:length
(results.specie$logistic$step$fitted.values)),
Observed = results.specie$logistic$step$model[,1],
Predicted = results.specie$logistic$step$fitted.values)

# following keyword instruction for outputs...
#...summarize results from ROC analysis
if("logistic_ROCsummary" %in% ROC.output) {
cat("\n *************** ROC SUMMARY ***************\n")
print(presence.absence.summary(pa.preds))
}

#...extracts AUC from ROC analysis
if("logistic_ROCauc" %in% ROC.output) {
cat("\n ***************** ROC AUC *****************\n")
print(auc(pa.preds))

}
#...extracts cutoffs from ROC analysis
if("logistic_ROCcutoffs" %in% ROC.output) {
cat("\n ***************** CUTOFFS *****************\n")
print(optimal.thresholds(pa.preds))
}

# ends diversion to output text file
sink()
# ...creates a ROC plot and prints AUC for the model
if("logistic_ROCplot" %in% ROC.output) {

# ROC plot is copied to output eps file
#(for example "ruprup_glm_rocplot.eps")
postscript(file=paste(output_plots_path,
paste(specie,"glm_rocplot.eps",sep="_"),
sep="/"))
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cat("plot done\n")
auc.roc.plot(pa.preds)
dev.off
}

}
}

MAKE.GRASS.SH.R

##########################################################
# Script to create a bash script file to be run into #
# GRASS GIS. GRASS will produce some raster layers #
# representing the predicted distribution; #
# if ROC anlysis is required, then presence/absence #
# maps of the species are calculated, using optimal #
# tresholds #
# #
# #
# requires: PRESENCEABSENCE #
# this script has to be sourced by OUT_LOGISTIC_GRASS.R #
##########################################################
# version 1.0 #
# created 20/09/2008 #
# revision history: #
# #
##########################################################
# #
# Copyright (C) 2008 Monica Carro #
# #
# This program is free software; you can redistribute #
# it and/or modify it under the terms of the GNU #
# General Public License as published by the Free #
# Software Foundation; either version 2 of the #
# License, or (at your option) any later version. #
# #
# This program is distributed in the hope that it will #
# be useful, but WITHOUT ANY WARRANTY; without even the #
# implied warranty of merchantability or fitness for a #
# paricular purpose. See the GNU General Public #
# License for more details. #
# #
# A copy of the GNU General Public License is available #
# at http://www.gnu.org/licenses/gpl.txt, or can be #
# requested to the Free Software Foundation, Inc., 51 #
# Franklin Street, Fifth Floor, Boston, #
# MA 02110-1301 USA #
# #
##########################################################
make.GRASS <- function(results.specie, cutoffs, specie,
extension="sh") {
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if (is.data.frame(cutoffs) == TRUE) {
# Here I choose coefficients 2 and 6 coming from ROC
# as threshold cutoffs. You can add more declaring
# them in variable A. The script will create the
# threshold layers named cut+ [cut coefficient]+
#[specie] A <- c(2,6)

# This loop creates a text file with reclassification
# rules
# used later by r.reclass
for (i in seq(1, length(A), by = 1)) {

output_file = paste(output_text_path,
paste(specie,A[i],"recrule.txt",sep=""),sep="/")

sink(file = output_file, append = FALSE,
type = "output",split=TRUE)

cut <- cutoffs$Predicted[A]
cut <- cut*10
cut <- cat(cut[i],"00000",sep="")
cat("0 thru ",cut[i],"00000"," = 1 absence","\n",
sep="")

cat(cut[i],"00000"," thru 1000000 = 2 presence",
"\n", sep="")

cat("end","\n",sep="")
sink()
}

}
# get coefficents
c <- data.frame(c=coef(results.specie$logistic$step))
# coef[1] is the constant, called intercept
row.names(c)[1] <- "intercept"
# initialise output on file & screen
sink(file = paste(output_maps_path,paste(specie,
extension,sep="."),sep="/"), append = FALSE,
type = "output",split=TRUE)
cat("#!/bin/bash\n")
cat("##################################","\n",sep="")
cat("# This script is auto generated by R script
#MAKE_GRASS_SH.R","\n",sep="")
cat("# The output are raster layers. They are the
#result of ","\n",sep="")
cat("# the logistic regression and ROCR ","\n",sp="")
cat("##################################","\n",sep="")

# variables processing loop
for (i in seq(2, nrow(c), by = 1)) {

beta <- c$c[i] # get coefficient
alpha <- row.names(c)[i] # get grid name
cat("r.mapcalc ",specie,alpha,"=",alpha,
"*",beta,"\n",sep="")

}
# Here the loop to calculate the result of logistic
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# function begins
cat("r.mapcalc ",specie,"totfunc=",specie,
row.names(c)[2],"\n",sep="")

if (nrow(c)> 2) {
for (i in seq(3, nrow(c), by = 1)) {

alpha <- row.names(c)[i]
cat("r.mapcalc ",specie,"totfunc=",specie,
"totfunc+", specie,alpha,"\n",sep="")

}
}

beta <- c$c[1] #get intercept
cat("r.mapcalc ",specie,"totfunc= ",specie,"totfunc+",
beta, "\n",sep="")

cat("r.rescale input=",specie,"totfunc output=",specie,
"totfunc1 to=-100,100","\n",sep="")

cat("r.mapcalc ","'",sep="")
cat(specie,"expfunc= exp(",specie,"totfunc1)",sep="")
cat("'","\n")
cat("r.mapcalc ","'",sep="")
cat(specie,"pred= ",specie,"expfunc/(1+",specie,
"expfunc)", Sep="")

cat("'","\n")
cat("r.colors map=",specie,"pred color=ryg","\n",sep="")
# Now some cleaning....
cat("g.rename rast=",specie,"pred,glm_",specie,"
--overwrite", "\n",sep="")

cat("g.rename rast=",specie,"totfunc,tmp_",specie,
"totfunc --overwrite","\n",sep="")

cat("g.mremove -f rast=",specie,"*","\n",sep="")
cat("r.mapcalc glm_",specie,"=glm_",specie,"*1000000",
"\n",sep="")

if (is.data.frame(cutoffs) == TRUE) {
for (i in seq(1, length(A), by = 1)) {

cat("r.reclass input=glm_",specie," output=glm",A[i],"_",
specie," rules=",specie,A[i],"recrule.txt","\n",sep="")

cat("r.mapcalc glm",A[i],"_",specie,"=glm",A[i],"_",specie,
"\n",sep="")

}
}

cat("exit 128","\n",sep="")
sink()

}

## -- end of file --

OUT.BRUTO.R

##########################################################
# Script to output required results from #
# FLEXIBLE DISCRIMINANT ANALYSIS with method "BRUTO" #
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# #
##########################################################
# version 1.0 #
# created 20/06/2008 #
# revision history: #
# #
##########################################################
# #
# Copyright (C) 2008 Monica Carro #
# #
# This program is free software; you can redistribute it #
# and/or modify it under the terms of the GNU General #
# Public License as published by the Free Software #
# Foundation; either version 2 of the License, or (at #
# your option) any later version. #
# #
# This program is distributed in the hope that it will #
# be useful, but WITHOUT ANY WARRANTY; without even the #
# implied warranty of MERCHANTABILITY or FITNESS FOR A #
# PARTICULAR PURPOSE. See the GNU General Public #
# License for more details. #
# #
# A copy of the GNU General Public License is available #
# at http://www.gnu.org/licenses/gpl.txt, or can be #
# requested to the Free Software Foundation, Inc., #
# 51 Franklin Street, Fifth Floor, Boston, #
# MA 02110-1301 USA. #
# #
##########################################################
# defines a function that prepares ouputs of bruto
# analysis; input
# parameters from "PRESENCE_MODELS.R" are specie and
#bruto.outputs,
out.bruto <- function(specie, bruto.outputs) {
# defines an output text file where results will be copied
output_file = paste(output_text_path, paste(specie,
"bruto_output.txt", sep="_"), sep="/")

print(bruto.outputs)
# if the keyword "logistic_grid" is found in
# logistic.outputs, than calles "MAKE_AML.R" to prepare
# ArcInfo aml script to compute final presence/absence
# GRID
if("bruto_grid" %in% bruto.outputs) {

output.asc <- paste(output_maps_path,
paste(specie, "bruto.asc", sep="_"), sep="/")

export.asc(results.specie$bruto.fitted, output.asc)
print("grid map computed")
}
#diverts output to text file ouput_file
sink(file = output_file, split = TRUE)
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cat("************************************************\n")
cat(paste("\n * OUTPUT OF BRUTO MODEL FOR", specie, "*",
sep = " "))

# following keyword instruction for outputs...
# ...summarise results of FDA analysis, method bruto
if("bruto_summary" %in% bruto.outputs ) {

cat("\n ***************** SUMMARY *****************")
print(results.specie$bruto$bruto.fda)
}

#...prints contingency table
if("bruto_contingency" %in% bruto.outputs ) {

cat("\n ************* CONFUSION TABLE *************\n")
print(results.specie$bruto$bruto.confusion)
}
sink()

print("outputs computed")
}

OUT.ENFA.R

##########################################################
# Script to output required results from #
# Environment Niche factor Analysis (ENFA) #
# #
# requires FOREIGN, PRESENCEABSENCE #
# this script has to be sourced by CALC_ENFA.R #
##########################################################
# version 1.0 #
# created 20/06/2008 #
# revision history: #
# #
##########################################################
# #
# Copyright (C) 2008 Monica Carro #
# #
# This program is free software; you can redistribute it #
# and/or modify it under the terms of the GNU General #
# Public License as published by the Free Software #
# Foundation; either version 2 of the License, or (at #
# your option) any later version. #
# #
# This program is distributed in the hope that it will #
# be useful, but WITHOUT ANY WARRANTY; without even the #
# implied warranty of MERCHANTABILITY or FITNESS FOR A #
# PARTICULAR PURPOSE. See the GNU General Public #
# License for more details. #
# #
# A copy of the GNU General Public License is available #
# at http://www.gnu.org/licenses/gpl.txt, or can be #
# requested to the Free Software Foundation, Inc., #
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# 51 Franklin Street, Fifth Floor, Boston, #
# MA 02110-1301 USA. #
# #
##########################################################

# defines a function that prepares ouputs of ENFA; input
# parameters from "PRESENCE_MODELS.R" are specie and
# enfa.outputs
out.enfa <- function(specie, enfa.outputs) {
# defines an output text file where results will be copied
output_file = paste(specie, "enfa_output.txt", sep="_")
print(enfa.outputs)
# if the keyword "ENFA grid" is found in enfa.outputs, than
# a raster map of class kasc is produced through
# predict.enfa, based on: 1)enfa result 2)integer vector
# giving the position of the rows of df in the returned
# kasc; 3)an object of class kasc
if("enfa_grid" %in% enfa.outputs) {

output.asc <- paste(specie, "enfa.asc", sep="_")
habsuit.pre <- predict(results.specie$enfa$output_enfa,

results.specie$enfa$maps_index,
results.specie$enfa$maps)

habsuit.pre <- sqrt(habsuit.pre)
habsuit.pre <- (1 - ( habsuit.pre /
max(habsuit.pre, na.rm = TRUE)))

#exports raster map of class asc into ESRI ErcInfo ASCII
#raster file
export.asc(habsuit.pre, output.asc)
}

#diverts output to text file ouput_file
sink(file = output_file, split = TRUE)
# following keyword instruction for outputs...
# ...summarise results of ENFA analysis (kept variables
# and percentage of explained
# variance from 1st axis after variables reduction)
if("enfa_summary" %in% enfa.outputs) {

cat("\n************** ENFA SUMMARY ***************\n")
print(paste("1st AXIS EXPLAINED VARIANCE:",
results.specie$enfa$C1_Varexp, sep = " "))

print(paste("KEPT VARIABLES: ",
paste(results.specie$enfa$KeptVariables,
collapse= "+")))

}
# if the keyword ROC comapares in enfa.outputs, then data
# are prepared for # ROC analysis and Presence Absence
# package is required
ROC.output <- agrep("ROC", enfa.outputs, ignore.case=FALSE,
value=TRUE)

if (length(ROC.output)> 0) {
require(PresenceAbsence)
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# prepares dataframe for ROC analysis, containing a number
# of rows equal to the number cells of output prediction
# grids where falls at leat 1 presence pred.locs <- list()
# counts the number of points in each pixel of the raster
# prediction map of asc.
cp <- count.points(results.specie$enfa$locs, habsuit.pre)
# puts result of count.points and the raster prediction map
# in a temporary list
# of matrices of class asc
pred.locs[["cp"]] <- cp
pred.locs[["pred"]] <- habsuit.pre
# in order to convert the list of matrices into dataframe
# it must be converted
# into kasc object firt and than to dataframe through
#kasc2df
pred.locs.kasc <- as.kasc(pred.locs)
pred.locs.df <- kasc2df(pred.locs.kasc)
# now results are available in the correct form for ROC
# analysis; The dataframe
# contains 3 columns: ID, Observed values(wich correspond
# to the number of counted presence points), Predicted
# values (wich correspond to the value of
# the prediction enfa output matrice)
pa.preds <- data.frame(ID=pred.locs.df$index,
Observed=pred.locs.df$tab$cp,
Predicted=pred.locs.df$tab$pred)

# Since ROC analysis admits only 0 and 1
# (absence or presence)as possible values
# for Observed in the input dataframes and values
# between 0 and 1 for Predicted...
# ...first, value 1 (presence) is assigned to
# locations with more than 1 presence point
pa.preds[pa.preds$Observed > 0, ]$Observed <- 1
# ...second, "Predicted" values are trasformed in
# order to be in the range 0-1
pa.preds$Predicted <- sqrt(pa.preds$Predicted)
pa.preds$Predicted <- (1-(pa.preds$Predicted /
max(pa.preds$Predicted)))

# following keyword instruction for outputs...
#...summarize results from ROC analysis
if("enfa_ROCsummary" %in% ROC.output) {

cat("\n *************** ROC SUMMARY ***************\n")
print(presence.absence.summary(pa.preds))
}

#...extracts AUC from ROC analysis
if("enfa_ROCauc" %in% ROC.output) {

cat("\n ***************** ROC AUC *****************\n")
print(auc(pa.preds))
}

#...extracts cutoffs from ROC analysis
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if("enfa_ROCcutoffs" %in% ROC.output) {
cat("\n ***************** CUTOFFS *****************\n")
print(optimal.thresholds(pa.preds))
}

}
# ends diversion to output text file
sink()
# ...creates a ROC plot and prints AUC for the model
if("enfa_ROCplot" %in% ROC.output) {

cat("plot done\n")
auc.roc.plot(pa.preds)
# ROC plot is copied to output eps file (for example
#"ruprup_enfa_rocplot.eps")
dev.copy2eps(file=paste(output_plots_path,paste(
specie,"enfa_rocplot.eps",sep="_"),sep="/"))

}
# ...creates a graphical summary of enfa results
# (eigenvalues barplot, correlation circle
# scatter diagram)
if("enfa_plotsummary" %in% enfa.outputs) {

cat("graph done\n")
opar <-par(mfrow=c(2,2))
barplot(results.specie$enfa$PCA$eig)
s.corcircle(results.specie$enfa$PCA$co)
scatter(results.specie$enfa$output_enfa)
dev.copy2eps(file=paste(specie,"enfa_graphsummary.eps",
sep="_"))

}
# ...creates histograms of marginality and specialisation
# axis from ENFA results
if("enfa_hist" %in% enfa.outputs) {

cat("hist done\n")
hist(results.specie$enfa$output_enfa)
dev.copy2eps(file=paste(specie,"enfa_hist.eps",sep="_"))
}

}

B.0.7. SOS scripts for geoprocessing

V.WHATRAST.MANY.SH

#!/bin/sh
##########################################################
# #
# MODULE: V.WHATRAST.MANY.SH v.1.0 for GRASS 6.3 #
# #
# AUTHOR(S): M.Carro (monica.carro@libero.it) #
# #
# PURPOSE: Given a text configuration file with a list #
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# of vector point layers and for each vector #
# the corresponding text file containing the #
# list of raster layers, updates the attributes#
# table of each vector point layer with values #
# of the raster layers listed in the text file #
# #
# COPYRIGHT:(C) 2008 by the GRASS Development Team #
# This program is free software under the GNU #
# General Public License (>=v2). Read the file #
# COPYING that comes with GRASS for details. #
# #
##########################################################
%Module
% description: v.whatrast.many
%End
%option
% key: configfile
% type: string
% gisprompt: old_file,file,input
% description: Text file with the list of vector input
layers and text file of rasters list

% required : yes
%end
%option
% key: datapath
% type: string
% gisprompt: old_file,file,input
% description: path to directory containing configuration
file and text file with raster list

% required : yes
%end

if [ -z "$GISBASE" ]
then
echo ""
echo "You must be in GRASS GIS to run this program"
echo ""
exit 1
fi

if [ "$1" != "@ARGS_PARSED@" ]
then
exec g.parser "$0" "$@"
fi

# Check for required arguments
if [ -z "$GIS_OPT_CONFIGFILE" ]
then
echo "ERROR: Missing configuration file!"
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echo "Please enter a valid text file"
exit 1
fi

# Check for required arguments
if [ -z "$GIS_OPT_DATAPATH" ]
then
echo "ERROR: Missing data path!"
echo "Please enter a valid path to data"
exit 1
fi

eval `g.gisenv`
: ${GISBASE?} ${GISDBASE?} ${LOCATION_NAME?} ${MAPSET?}

#db.tables -p driver=sqlite database=$GISDBASE/
$LOCATION_NAME/$MAPSET/sqlite.db

#TABLELIST=`db.tables -p driver=sqlite database=$GISDBASE/
$LOCATION_NAME/$MAPSET/sqlite.db`

#echo "$TABLELIST" > tablelist.txt

#Iteration on each point vector map listed in the
#configuration file

while read LINE
#extracts variables from configuration file end prints
# them on screen
do
echo "$LINE" > configline.txt
SPECIE=`cut --delimiter=, --fields=1 configline.txt`
echo now doing specie "$SPECIE"
OUTPUTTABLE=$SPECIE
echo output table is "$OUTPUTTABLE"
RASTERLIST=`cut --delimiter=, --fields=2 configline.txt`
echo "using raste pack "$RASTERLIST""

# Check if table of attributes already exists
while read RIGA
do
if [ "$RIGA" = "$OUTPUTTABLE" ]
then

echo "drop table "$OUTPUTTABLE"" | db.execute
echo table dropped

fi
done < tablelist.txt

#Creates and populates table from vector points
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#sets database connection
db.connect driver=sqlite database='$GISDBASE/
$LOCATION_NAME/$MAPSET/sqlite.db'
#copy vector point attribute table to output table in
#order to preserve attributes
db.copy from_driver=sqlite from_database=$GISDBASE/
$LOCATION_NAME/$MAPSET/sqlite.db from_table=$SPECIE
to_driver=sqlite to_database=$GISDBASE/$LOCATION_NAME/
$MAPSET/sqlite.db to_table=$OUTPUTTABLE

# sets connection for the vector point map to output
#table
v.db.connect -o map="$SPECIE" table="$OUTPUTTABLE"
key=CAT
# populates table from vector features with categories

v.to.db map="$SPECIE" type=point layer=1 qlayer=1 option=cat
# add two columns to store points coordinates
v.db.addcol map="$SPECIE" columns="xcoor double precision"
v.db.addcol map="$SPECIE" columns="ycoor double precision"
#populates table with coordinates
v.to.db map="$SPECIE" type=point layer=1 qlayer=1
option=coor column=xcoor,ycoor

#updates tables with rster values
while read LINE

do
echo "ALTER TABLE "$SPECIE" ADD COLUMN $LINE
double precision" | db.execute

v.what.rast vect="$SPECIE" rast="$LINE" col="$LINE"
done < "$GIS_OPT_DATAPATH""/""$RASTERLIST"

echo "Table $OUTPUTTABLE updated"

done < $GIS_OPT_CONFIGFILE

rm -f tablelist.txt
exit 0

V.PRESABS.MANY.SH

#!/bin/sh
##########################################################
# #
# MODULE: V.PRESABS.MANY.SH v.1.1 for GRASS 6.3 #
# AUTHOR(S):M.Carro (monica.carro@uninsubria.it) #
# PURPOSE: Creates presence/absence maps from point #
# vectors of real observations. #
# COPYRIGHT:(C) 2008 by the GRASS Development Team #
# #
# This program is free software under the GNU #
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# General Public License (>=v2) #
##########################################################

%Module
% description: v.presabs.many
%End
%option
%key: specieslist
%type: string
%gisprompt: old_file,file,input
%description: Text file of species list
%required : yes
%end

if [ -z "$GISBASE" ]
then

echo ""
echo "You must be in GRASS GIS to run this program"
echo ""
exit 1

fi

if [ "$1" != "@ARGS_PARSED@" ]
then

exec g.parser "$0" "$@"
fi

# Check for required arguments
if [ -z "$GIS_OPT_SPECIESLIST" ]
then

echo "ERROR: Missing name of text file containing list
of species!"

echo "Please enter valid text file"
exit 1

fi

SPECIESLIST=`cat $GIS_OPT_SPECIESLIST`

for SPECIE in $SPECIESLIST
do

PRS_MAP=$SPECIE"_prs"
ABS_MAP=$SPECIE"_abs"
v.db.addcol map=$SPECIE 'columns=PRES int'
v.db.update map=$SPECIE layer=1 column=PRES value=1
echo "create table $SPECIE"_ori" as select *
from $SPECIE;" | db.execute

echo "create table $PRS_MAP as select CAT, PRES
from $SPECIE;" | db.execute
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g.rename vect=$SPECIE,$PRS_MAP
v.db.connect -d map=$PRS_MAP table=$SPECIE
v.db.connect map=$PRS_MAP table=$PRS_MAP
db.droptable -f table=$SPECIE
NUM_PRS_POINTS=`v.info map=$PRS_MAP | grep -F "Number of

points" | awk -F" " '{print $5}'`
NUM_ABS_POINTS=$(echo "scale=2; $NUM_PRS_POINTS +
$NUM_PRS_POINTS/100*30" | bc)

v.random output=$ABS_MAP n=$NUM_ABS_POINTS
v.db.addtable map=$ABS_MAP 'columns=PRES int'
v.db.update map=$ABS_MAP layer=1 column=PRES value=0
v.patch -e input=$PRS_MAP,$ABS_MAP output=$SPECIE
g.remove vect=$PRS_MAP
g.remove vect=$ABS_MAP

done

V.PRESABS.MANY.TRANSECTS.SH

#!/bin/sh
##########################################################
# #
# MODULE: V.PRESABS.MANY.TRANSECTS.SH v.1.0 for GRASS6.3 #
# AUTHOR(S):M.Carro (monica.carro@uninsubria.it) #
# PURPOSE: Creates presence/absence maps from point #
# vectors showing observation along transects #
# COPYRIGHT:(C) 2008 by the GRASS Development Team #
# #
# This program is free software under the GNU General #
# Public License (>=v2) #

#
##########################################################

%Module
% description: v.presabs.many
%End
%option
%key: specieslist
%type: string
%gisprompt: old_file,file,input
%description: Text file of species list
%required : yes
%end
%option
%key: transects
%type: string
%gisprompt: old_file,file,input
%description: vector file with transects
%required : yes
%end
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if [ -z "$GISBASE" ]
then

echo ""
echo "You must be in GRASS GIS to run this program"
echo ""
exit 1

fi

if [ "$1" != "@ARGS_PARSED@" ]
then

exec g.parser "$0" "$@"
fi

# Check for required arguments
if [ -z "$GIS_OPT_SPECIESLIST" ]
then

echo "ERROR: Missing name of text file containing list
of species!"

echo "Please enter valid text file"
exit 1

fi

# Check for required arguments
if [ -z "$GIS_OPT_TRANSECTS" ]
then

echo "ERROR: Missing name of map of transect!"
echo "Please enter valid vector of lines"
exit 1

fi

SPECIESLIST=`cat $GIS_OPT_SPECIESLIST`
TRS_BUF="transects_buf"
#v.buffer --overwrite input=$GIS_OPT_TRANSECTS
output=$TRS_BUF type=line distance=1000

v.random output="random_abs" n=10000 --overwrite
v.category -g input="random_abs" output="random_abs1"
option=sum type=point cat=100000 --overwrite

g.rename vect="random_abs1","random_abs" --overwrite

for SPECIE in $SPECIESLIST
do

PRS_MAP=$SPECIE"_prs"
ABS_MAP=$SPECIE"_abs"
PRS_BUF=$SPECIE"_prs_buf"
ABS_BUF=$SPECIE"_abs_buf"
#v.extract input=$SPECIE"_ori" output=$SPECIE
where='PRES="1"' --overwrite

g.copy vect=$SPECIE,$SPECIE"_ori" --overwrite
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g.rename vect=$SPECIE,$PRS_MAP --overwrite
db.droptable -f table=$PRS_MAP
v.db.connect -d map=$PRS_MAP
v.db.addtable map=$PRS_MAP 'columns=cat
integer,PRES integer'

v.db.update map=$PRS_MAP layer=1 column=PRES value=1
#v.buffer --overwrite input=$PRS_MAP output=$PRS_BUF
type=point distance=1500 minordistance=1500

v.overlay --overwrite ainput=$TRS_BUF binput=$PRS_BUF
output=$ABS_BUF operator=not

v.select ainput="random_abs" atype=point binput=$ABS_BUF
btype=area output=$ABS_MAP --overwrite

v.db.addtable map=$ABS_MAP 'columns=PRES int'
v.db.update map=$ABS_MAP layer=1 column=PRES value=0
v.patch -e input=$PRS_MAP,$ABS_MAP output=$SPECIE --overwrite
g.remove vect=$PRS_MAP
g.remove vect=$ABS_MAP
#g.remove vect=$PRS_BUF
g.remove vect=$ABS_BUF

done

V.PRESABS.MANY.GRID.SH

#!/bin/sh
##########################################################
# #
# MODULE: V.PRESABS.MANY.GRID v.1.1 for GRASS 6.3 #
# AUTHOR(S):M.Carro (monica.carro@uninsubria.it) #
# PURPOSE: Creates presence/absence maps from vector #
# grids of atlases #
# COPYRIGHT:(C) 2008 by the GRASS Development Team #
# #
#This program is free software under the GNU General #
#Public License (>=v2) #
#Read the file COPYING that comes with GRASS for details #
##########################################################

%Module
% description: v.presabs.many
%End
%option
%key: specieslist
%type: string
%gisprompt: old_file,file,input
%description: Text file of species list
%required : yes
%end
%option
%key: inputvectorgrid
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%type: string
%gisprompt: old_file,file,input
%description: name of vector grid with presence/absence
data

%required : yes
%end
%option
%key: inputvector
%type: string
%gisprompt: old_file,file,input
%description: name of vector with 0 points to use for
patch command

%required : yes
%end

if [ -z "$GISBASE" ]
then

echo ""
echo "You must be in GRASS GIS to run this program"
echo
exit 1

fi

if [ "$1" != "@ARGS_PARSED@" ]
then

exec g.parser "$0" "$@"
fi

# Check for required arguments
if [ -z "$GIS_OPT_SPECIESLIST" ]
then

echo "ERROR: Missing name of text file containing list
of species!"

echo "Please enter valid text file"
exit 1

fi

# Check for required arguments
if [ -z "$GIS_OPT_INPUTVECTORGRID" ]
then

echo "ERROR: Missing name of vector grid!"
echo "Please enter of a valid vector"
exit 1

fi

# Check for required arguments
if [ -z "$GIS_OPT_INPUTVECTOR" ]
then

echo "ERROR: Missing name of vector grid!"
echo "Please enter of a valid vector"

281



B. SOS scripts

exit 1
fi

SPECIESLIST=`cat $GIS_OPT_SPECIESLIST`
GRID=$GIS_OPT_INPUTVECTORGRID

for SPECIE in $SPECIESLIST
do

echo "now doing specie $SPECIE"
PRS_MAP=$SPECIE"_prs"
ABS_MAP=$SPECIE"_abs"
v.db.droptable -f map=$GIS_OPT_INPUTVECTOR layer=1
v.db.addtable map=$GIS_OPT_INPUTVECTOR 'columns=PRES int'
echo "names written"
g.copy vect=$GIS_OPT_INPUTVECTOR,$PRS_MAP
g.copy vect=$GIS_OPT_INPUTVECTOR,$ABS_MAP
SPECIEGRID="grid_"$SPECIE
v.extract --overwrite input=$GRID output=$SPECIEGRID
where="$SPECIE > '0'"

echo "$SPECIE extracted!"
v.db.select -c map=$SPECIEGRID > extract.txt
cut --delimiter="|" --fields="1" extract.txt > cats.txt
echo cats.txt
while read ROW
do

v.extract input=$SPECIEGRID output=$SPECIE"_cat"
list=$ROW

g.region -p vect=$SPECIE"_cat"
NUM_PRS_POINTS1=`v.db.select -c map=$SPECIE"_cat"
columns=$SPECIE`

NUM_PRS_POINTS=$(echo "scale=2;
$NUM_PRS_POINTS1 * 100"| bc)

NUM_ABS_POINTS=$(echo "scale=2;
$NUM_PRS_POINTS + $NUM_PRS_POINTS/100*30" | bc)

v.random --overwrite output=$SPECIE"_random"
n=$NUM_PRS_POINTS

v.db.addtable map=$SPECIE"_random" 'columns=cat
integer,PRES integer'

v.db.update map=$SPECIE"_random" layer=1
column=PRES value=1

v.patch -a -e --overwrite input=$SPECIE"_random"
output=$PRS_MAP

g.region -p vect=$GRID
echo "now region is" $GRID
v.random --overwrite output=$SPECIE"_random"
n=$NUM_ABS_POINTS

v.db.addtable map=$SPECIE"_random" 'columns=cat integer,
PRES integer'

v.db.update map=$SPECIE"_random" layer=1 column=PRES
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value=0
v.patch -a -e --overwrite input=$SPECIE"_random"
output=$ABS_MAP

g.remove vect=$SPECIE"_random"
g.remove vect=$SPECIE"_cat"

done < cats.txt
v.patch -e --overwrite input=$PRS_MAP,$ABS_MAP
output=$SPECIE

g.remove vect=$PRS_MAP
g.remove vect=$ABS_MAP
g.remove vect=$SPECIEGRID

done

R.CATDIST.MANY.SH

#!/bin/sh
##########################################################
# #
# MODULE: r.catdist.many v.1.0 for GRASS 6.3 #
# AUTHOR(S): M.Carro (monica.carro@uninsubria.it); #
# PURPOSE: Creates a raster layer for each category #
# of the input raster layer and then #
# computes shortest distance surfaces from #
# raster polygons for each layer #
# #
# COPYRIGHT: (C) 2008 by the GRASS Development Team #
# This program is free software under the #
# GNU General Public #
# #
##########################################################

%Module
%description: r.catdist.many
%End
%option
%key: inputrast
%type: string
%gisprompt: raster
%description: Input raster layer
%required : yes
%end

if [ -z "$GISBASE" ]
then
echo ""
echo "You must be in GRASS GIS to run this program"
echo ""
exit 1
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fi

if [ "$1" != "@ARGS_PARSED@" ]
then
exec g.parser "$0" "$@"
fi

# Check for required arguments
if [ -z "$GIS_OPT_INPUTRAST" ]
then
echo "ERROR: Missing raster layer!"
echo "Please enter a raster layer in the field Raster
layer"

exit 1
fi

#creates a raster map with all values=1 as cost weights in
#order to compute shortest distance maps
g.remove rast=AREA_ONE
r.mapcalc 'AREA_ONE =1'

#extracts category values from raster input map
CATLIST=`r.category map=$GIS_OPT_INPUTRAST | awk -F" " '{print $1}'`
echo "categories copied"

#for each category of the input raster map
for C in $CATLIST
do
#defines name of first output raster
OUTRASTCAT="h"$C
g.remove rast=$OUTRASTCAT
#creates a raster with category value and nodata elsewhere
r.mapcalc "$OUTRASTCAT=if($GIS_OPT_INPUTRAST==$C,
$GIS_OPT_INPUTRAST,null())"

#defines name of second output raster
OUTRASTDIS="ev_d"$C

OUTRASTDISC="ev_dc"$C
g.remove rast=$OUTRASTDISC
g.remove rast=$OUTRASTDIS

#computes shortest distance map
r.cost -k input="AREA_ONE" output="$OUTRASTDISC"
start_rast="$OUTRASTCAT"

r.mapcalc "$OUTRASTDIS=$OUTRASTDISC *
(ewres()+nsres())/2"

g.remove rast=$OUTRASTCAT
g.remove rast=$OUTRASTDISC

done
#removes weights map for the computation of cost surfaces
g.remove rast=AREA_ONE
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