
Roberta Bonacina

Semantics for

Homotopy Type Theory

PhD Dissertation

Advisor: Dr Marco Benini

Supervisor: Dr Marco Benini

Dottorato di Ricerca in Informatica e Matematica del Calcolo
Dipartimento di Scienze e Alta Tecnologia

Università degli Studi dell’Insubria

2019/2020

Contents

1 Introduction 2

1.1 Technical background . 2
1.2 Philosophical background . 3
1.3 Plan . 5

2 Background 7

2.1 Martin-Löf type theory . 10
2.2 Homotopy type theory . 14

3 Syntax 18

3.1 Basic system . 18
3.2 General syntax for inductive types 21
3.3 Basic proof theory . 25
3.4 Parallel substitution . 36
3.5 Canonical inductive types . 39

4 Normalisation 45

4.1 Reductions . 46
4.2 Strongly normalisable judgements 50
4.3 The normalisation theorem . 52

5 Semantics 64

5.1 Categorical preliminaries . 64
5.2 Interpretation . 74
5.3 Classifying model and completeness 82

6 Homotopic features 101

6.1 Function extensionality and univalence 101
6.2 Syntax of higher inductive types 102
6.3 Canonical higher inductive types 105
6.4 Proof theory . 110
6.5 Semantics . 112

7 Conclusions 121

Bibliography 123

i

Acknowledgements

I am extremely grateful to

Marco Benini for guiding me on this path. He is not only my supervisor, but
also and above all a friend.
My parents, and family. Without them nothing would have been possible.
Delia, my travelling companion. Challenges are easier and fun when faced
together.
Peter Schuster, Daniel Wessel, and Giulio Fellin for their support.
Lucia, Federico, Federica, Eleonora, Fabrizio, Francesco, Stefano, Alessia, Sara,
Chiara, Giulia, and my office mates for the time spent together during those
years.
Finally, my four-legged family. Their presence in my life is fundamental for me.

Thanks to all of you
Roberta

1

Chapter 1

Introduction

The aim of this work is to answer one single question:

Is the ∞-groupoid theory needed to describe homotopy type theory?

It is evident by the strong interest and the amount of results, see, e.g, [14, 50,
11, 60, 59, 13, 12, 6, 8, 9, 16, 98, 96, 97, 7], that the homotopical interpretation
is deep and useful. This is not to discuss: it is established beyond any doubt.
However, it may sound odd that the full power of higher-order category theory
is needed to describe what is, at the end of the day, a piece of recursive
mathematics strictly contained in the class of Turing-computable functions.
As Prof. Cardone was so kind to observe: “This is not especially odd if one
considers the categorical interpretation of polymorphic (2nd order) lambda-
calculus, which needs universes and a very strong version of product over a
universe. Similarly for the calculus of constructions. And yet the functions
representable in these systems are total and computable. The reason of this is
that a categorical model of a typed calculus must reflect the syntactical structure
of the system, which is the source of intensional phenomena of representability of
algorithms, as opposed to the extensional expressiveness of systems measured in
terms of classes of representable functions. This is a very interesting distinction
which is often overlooked in the literature, and has to do with the distinction
between function and algorithm. To my knowledge, it was brought to the surface
by Colson’s ICALP 1989 result [34] about the expressiveness of the system of
primitive recursive definitions, which cannot represent a straightforward parallel
algorithm of order O(min(n, m)) for computing the minimum of two natural
numbers n, m (actually, no such algorithm).”

In short, the present dissertation answers this question in a negative way:
homotopy type theory can be described in ordinary categorical terms, with
elementary tools. In fact, in Chapter 5 a sound and complete semantics is given
for Martin-Löf type theory, which is extended to a significant part of homotopy
type theory in Chapter 6 covering the fundamental axioms of univalence and
function extensionality and a relevant subset of higher inductive types.

Although the ultimate goal is clear, to achieve it many problems have been
encountered and eventually solved. The major obstacle was a lack of rigour in
the proof theory, from which the semantics moves on.

1.1 Technical background

Martin-Löf type theory, also called dependent type theory or intuitionistic type
theory, is a typed lambda calculus mainly due to Martin-Löf. Dependent
type theory has been presented in many different versions, between 1972 and
1984 [68, 69, 70, 71]. Aside, a large number of studies have been conducted

2

CHAPTER 1. INTRODUCTION 3

inside this formal system and its applications. For example, it has been analysed
as a programming language [77], and used (with some changes) as a base for
some proof assistants, such as Agda [5] and Coq [36].

Recently it has been studied and deepened in [95], where equality types play
a central role, together with their groupoid interpretation introduced for the
first time in [49]. In this dissertation we go through the first part of the Book1,
called “Foundations”, focusing in particular on Chapters 1, 2, 5 and 6, and
we use part of the Appendix A for the inference rules. Indeed, we are mainly
interested in the system itself, rather than its many applications in mathematics
studied in the second part.

This dissertation is concerned with the specific variant of Martin-Löf type
theory used in homotopy type theory. Its proof theoretical aspects are analysed
according to structural proof theory [76, 93]. In particular, the notion of
normalisation is studied, following the Tait and Girard’s approach, mostly
following the exposition in [43].

The semantic aspects require a categorical approach. In fact, category
theory [45, 63, 64] has been used several times as a language to define semantics
for Martin-Löf type theory. In particular, Seely [90] and other authors [32,
52, 39] interpret it in locally Cartesian closed categories, eventually with some
variations, but focus only on a fragment of the system, with a syntax adapted
to the constraints forced by the chosen categorical framework. Category theory
and homotopy theory, with the common construction of ∞-groupoids, are
used to interpret homotopy type theory, following respectively Streicher’s [49]
and Voevodsky’s [95] ideas, as we will sketch in Section 2.2. This structure
well-behaves for the whole homotopy type theory, but needs a very complex
mathematical background, which is not fully formalised: as remarked in [95,
page 68], some “complex combinatory” is needed to make precise all the notions;
since those notions are unnecessary in the rest of the Book, the authors did not
analyse them.

The above remark reveals that one of the difficulties this dissertation had
to face was the lack of rigour in the literature: some fundamental results are
folklore, like normalisation, but their proofs are missing, and, at a closer look,
the gap is by far not obvious to fill: also, fundamental definitions are sketchy,
like what is an higher inductive type. Therefore, there are syntactical and
semantic aspects of homotopy type theory which are understood but not defined
in the rigorous mathematical sense.

1.2 Philosophical background

Martin-Löf type theory was defined to formalise mathematical reasoning in
the framework of intuitionistic logic and, more generally, of mathematical
constructivism [94]. The first idea of a logic alternative to classical logic is due
to Brouwer [30], who thought of proofs as constructions, in the sense that

• an object exists when it can be found explicitly;

• a statement is true when there is a proof for it.

1Since it is central in this work, we refer to [95] also as the Book.

CHAPTER 1. INTRODUCTION 4

Different approaches to this concept led to some schools [17]; the main ones
are Brouwer’s intuitionism, the Russian constructivism [66] mainly focused on
recursion theory, and Bishop’s “practical” constructive mathematics. Bishop
showed [21] that a huge amount of results of classical mathematics can be
developed constructively; following his ideas, a constructive approach has been
applied, among the others, to analysis [22], algebra [61] and set theory [4, 3].

What relates intuitionistic logic and the type theories is the Curry-Howard
isomorphism. As described in [31], it was introduced at first only for propositions
and types [40], and then extended to terms and proofs [51]. This paved the way
to Martin-Löf to define his type theory [68], based on the idea of proof-relevant
mathematics. In Chapter 2 we study the evolution of Martin-Löf type theory
during the years.

A feature of Martin-Löf type theory is that it is a predicative theory; indeed,
as remarked in [73], a consequence of Girard’s paradox [42] is that the Curry-
Howard isomorphism is incompatible with impredicativity, at least in the strong
sense of Martin-Löf. As written in [38, page 3], the concept of predicativity
arose from some discussions between Poincaré and Russell: “a definition is
impredicative if it defines an entity by reference to (e.g. generalisation over)
a totality to which the entity itself belongs, and is predicative otherwise”.
Poincaré’s study of predicativity [82, 83] arise from the fact that quantification
over infinite domains may be tricky; indeed, when an entity X is defined
depending on all the elements of a collection to which X itself belongs, this
can cause instability: is X really defined? Could the collection exist before X?
Martin-Löf type theory avoids this instability thanks to a subtle treatment of
universes, and to the structure of Π and Σ types, which are the type theoretical
correspondents of universal and existential quantification.

Point-free mathematics

During the XX century, as remarked at the end of [28, 56], a growing attention
was put on abstraction, and on the study of general structures. One of the
clearest examples of this trend is the work by Bourbaki [27]; it focuses on
the logical structure of theories, with the aim to make the ideas, and not the
calculations, the main object of interest. Grothendieck followed this path,
generalising the idea of space through the concept of topos [47, 67].

Indeed the classical idea of topology [80, 81] was abstracted, using category
theory and the notion of locale [54, 53], and generalised. In Sambin’s formal
topology [87, 86, 88, 85], which is strictly related to Martin-Löf type theory, the
primitive notions are open subsets and coverings, while points are defined in
terms of opens. This attitude, common to all the above mentioned non-classical
approaches to spaces and topology [47, 54, 53], is called point-free. The idea is
that the fundamental notion to define a space is its structure, not the single
objects, i.e., the points in the space. Thus, for example, analysis can be done
without real numbers: the algebraic structure of the propositions about real
numbers is enough to assign a sound and complete meaning to mathematical
analysis, as shown in [18], even in the extreme philosophical position to deny
that real numbers exist. An example of this approach in algebra can be found
in [89], which makes clear that the notion of point is not essential to define the
notion of space, providing a natural counter-example.

CHAPTER 1. INTRODUCTION 5

This idea can be applied to logic; in particular, to semantics. Classical
semantics for logic are based on algebraic structures [25, 46, 54, 65]. Focusing
on first-order intuitionistic logic, a point-free semantics is defined in [18], where
the universal and existential quantifiers are interpreted through a substitution
functor. We tried to apply those ideas to Martin-Löf type theory in [24],
obtaining a partial result. In this dissertation we present the full one, and
extend it to a part of homotopy type theory.

1.3 Plan

The dissertation contains an extensive study of Martin-Löf type theory, which
comprehends the definition of a general syntax, a proposal for a novel semantics
and some proof theoretic results, including a normalisation theorem. Those
results are extended to a large subset of homotopy type theory, i.e., the 1-HoTT
theories. In details

Chapter 2 introduces the systems studied in the dissertation: Martin-Löf type
theory and homotopy type theory. It begins with an informal presentation
of the type theory, which describes the main notions and terminology.
Then it is studied how the system by Martin-Löf evolved in the different
papers, and the main novelties introduced by [95] — namely, the higher
inductive types and the axioms of function extensionality and univalence —
are described. The chapter ends with a focus on Voevodsky’s interpretation
of homotopy type theory, based on paths and homotopy theory. The
purpose of this chapter is to position the thesis in the development of
Martin-Löf type theory.

Chapter 3 is devoted to establish the syntax, and obtain some basic proof
theoretic results. Our syntax for Martin-Löf type theory is divided into
the basic system, which consists in the structural rules and dependent
product, and the inductive types; for them we define a general syntax,
which has all the canonical types (i.e., dependent sum, coproduct, natural
numbers, propositional equality, etc) as instances.

A particular attention is given to some notions and results, which are
usually considered folklore. For example, substitution is extensively
studied, introducing the notion of parallel substitution. We focus also
on contexts, proving a weakening result: whenever a judgement can be
derived from a set of assumptions, it can also be derived from a larger set
of assumptions.

Chapter 4 contains a proof of a strong normalisation theorem, in which
Girard’s ideas [43] are extended to our system. To deal with dependent
types, the technique based on reducibility candidates is enriched with a
notion of evaluation.

We begin defining the notions of reduction and conversion, and deriving
their relation with judgemental equality. Then the notions of strongly
normalisable judgements and reducibility candidates are defined and
studied; their interplay allows to prove a strong normalisation theorem.

CHAPTER 1. INTRODUCTION 6

Chapter 5 is devoted to propose a sound semantics, together with a classifying
model and a completeness result, which answers in a negative way the
initial question motivating this dissertation.

The semantics interprets terms-in-context as objects in a slice category,
and judgements as arrows, seeing the inductive types as transformations.
The chapter ends with a discussion of the overall idea which motivated
the semantics, explaining the reasons behind all the apparently ad-hoc
definitions.

Chapter 6 extends the results obtained so far to some of the novelties of [95].
It begins describing the syntax of function extensionality and univalence.
Then, a general syntax for a subset of the higher inductive types introduced
in [95], called 1-higher inductive types, is defined.

The proof theoretic results of Section 3.3 and Chapter 4 are extended
in a natural way to those constructions, and to truncation. The same
is done for the semantics, interpreting the higher inductive types and
the axioms as transformations. Thus, a wide fragment of homotopy type
theory, 1-HoTT theories, satisfies a strong normalisation theorem and can
be interpreted in our semantics in a sound and complete way.

The chapter terminates with a conjecture: if the syntax of some higher
inductive type is given in fully formal terms, our proof theoretic results
and semantics can easily be extended to that type.

Chapter 7 concludes the dissertation, summarising the achieved results.

Chapter 2

Background

In this chapter the the concept of type in Martin-Löf’s theory is introduced,
along with the canonical types. Then, we illustrate how this structure changed
over the years.

The writing a : A (or, sometimes, a ∈ A) is read as “a is a term of type A”.
This phrase can be understood in different ways: thinking of set theory it may
be interpreted as “a is an element of the set A”; from a logical point of view, it
can be read as “a is a proof of the proposition A”, shifting the focus from the
statement of a theorem to its proof; also, targeting computer programming, it
can be thought of as “a is a program satisfying specification A”.

Types Logic Sets Programming

A proposition set specification
a : A proof element program

It is worth remarking that, although types can be seen as sets or propositions,
they are not; in this sense, dependent type theory can be seen as a foundational
theory, from which set theory, logic, and computing can be constructed by
imposing a suitable point of view. As explained in [70], dependent type theory
was defined with the aim to represent intuitionistic mathematics, but it turned
out to be also a functional programming language. In fact, the computational
aspect of dependent type theory is the feature enabling the logical and the set-
theoretical interpretations. Interpreting types as propositions and inhabitants
of a type as proofs forces a proof-relevant reading of propositions, thus capturing
the core of intuitionistic logic. In turn, proof relevance imposes a constructive
interpretation of the set theoretic point of view on types: the elements in a set
on which we can really operate are the ones we can construct, i.e., the ones for
which there is an algorithm1 a satisfying specification A, thus a ∈ A. Therefore,
it is of primary importance to fix which constructions are allowed so that the
alternative points of view (logical, set-theoretical, etc.) keep their coherence in
a constructive sense. In other words, a choice has to be made on which types
are fundamental: these types are hereafter called canonical.

The canonical types, used as primitive notions to represent mathematical
reasoning (or programs, from another point of view), are as follows.

If A and B are types, A → B is the type of constructible functions from A
to B; a canonical2 term of type A → B is λx : A. b, where b is a term of type B
which may have x : A as a free variable. A generic element f : A → B can be

1Although beyond what is discussed here, this can be traced down to require a strictly
constructive and predicative axiom of comprehension.

2We use the word “canonical” with two different meanings: the canonical types are the
fundamental ones, while the canonical terms of a type are the ones obtained through an
introduction rule for that type.

7

CHAPTER 2. BACKGROUND 8

applied to a term a:A to obtain f a:B, the evaluation of f in a, or the application
of a to f . Function types are usually equipped with a type-theoretic version
of β and η reduction, see [15], governing application when f is a canonical
term. If x : A is a free variable in B, function types can be generalised to the
product types Πx : A. B; the canonical elements of a Π-type are λ-expressions
as above, in which x may be free in B, but applying f : Πx : A. B to a : A yields
f a : B[a/x]. Through the propositions-as-types interpretation, Π-types can be
seen as the type-theoretic version of the universal quantifier; indeed, a proof
of a proposition of the form ∀x ∈ A. B consists in a function assigning to each
a ∈ A a proof b[a/x] of B[a/x] and, by β-reduction, b[a/x] is equivalent to
(λx : A. b) a. From a set-theoretic perspective, a dependent product models the
sections of the fibred space B over A, naturally connecting Π-types to stalk
spaces (espace étalé) [45, Section 4.5].

Formally, the described reductions, as well as the construction of canonical
terms, are presented as inference rules3. For function types, application provides
a way to “use” a term of that type4. Rules like the construction of an applied
term, called elimination rules, are coupled with computation rules analogous to
β-reduction, which show how a canonical term of a type can be “used”, and
sometimes with a rule analogous to η reduction, the uniqueness rule, which
shows that canonical terms provide enough elements to fully determine the
extent of a type. The rules showing how a new type or a canonical term of a
type can be defined are, respectively, the formation and introduction rules. The
word “canonical” has thus a double meaning: it denotes the primitive types,
and it denotes the standard form a term of a type may assume.

The notion of Cartesian product is captured by A × B, with A and B
independent types. The canonical terms are the pairs (a, b), where a : A and
b : B. When x : A is free in B, Cartesian product can be generalised to the
dependent sum Σx : A. B; in this case the canonical element is (a, b), with a : A
and b : B[a/x]. The Σ-types are the type-theoretic version of the existential
quantifier from a logical perspective.

The Π and Σ-types are the main ones which justify the name dependent
type theory: indeed, they are called dependent types, because their definition
depends on a term. For example, “the pairs of natural numbers where the
second element is greater than the first” is a dependent sum. From a logical
point of view they model the usual quantifiers; set-theoretically they model
the relevant aspects of fibrations over sets; in a programming view they model
a sub-collection of computable functions, and variant records [79]. As a rule
of thumb, most (or, all the “natural” ones) functional programs that always
terminate can be coded by means of these and the other canonical types. It
is worth mentioning at this point that terminology varies: we adopt the one
in Martin-Löf’s papers, while the tradition in typed λ-calculi is different, and
homotopy type theory uses other words to denote the same types.

Disjoint union, or the logical connective “or”, can been obtained from the
coproduct types A + B, with A and B types. Their canonical terms are inl(a),

3Formal systems presented by rules are usually preferred over axiomatic systems for at
least two reasons: they are easier to interpret as programming languages, and they have
better proof theoretic behaviours [76].

4There is an analogous rule also for the other canonical types, but it is more complicated:
it shows how a term of a canonical type can be substituted in a generic type, and we will see
it in details in Section 3.2.

CHAPTER 2. BACKGROUND 9

with a : A, and inr(b), with b : B. It is worth remarking that each canonical term
of a coproduct type comes with a label stating the type it comes from. It is what
distinguishes disjoint union ⊔ from union ∪ but, also, intuitionistic logic from
classical logic: whenever we have a proof of A+B (read: A∨B), we know which
is the provable disjunct. The same happens for existential statements: every
term (a, b) of a Σ-types comes with a witness (a) of the existential proposition.

The trivial type 1 whose only canonical element is ∗ : 1 and the empty
type 0 are a limit case, respectively, of product and coproduct types, and can
be logically interpreted as true and false. Other finite types are Nn, whose
canonical elements are 1, 2, . . . , n; N0 is 0, N1 is 1, and Nn can be defined as
the iterated coproduct 1 + · · · + 1, with 1 appearing n times.

An infinite type is needed to reproduce mathematical reasoning; thus it has
been introduced the type N of natural numbers, whose canonical terms are
0 : N and succ(n), with n : N. They are the first example of an inductive type,
i.e., a type whose terms are defined in dependence of other terms of that type.
Another example of inductive type are the lists: if A is a type, List(A) is a type
whose canonical terms are the empty list nil : List(A) and a.l : List(A), with a : A
and l : List(A). Another important example are the W -types, which are a very
general type able to represent well-founded trees: if A is a type and B is a type
with x : A free variable, then Wx : A. B is a type whose canonical terms are
sup(a, v), with a : A and v : B[a/x] → Wx : A. B.

Finally, and fundamental to characterise the set-theoretic point of view in a
strong constructive way, fixed a type A, there is a family of types =A stating
when two terms of type A are equal, called equality types or propositional
equality. Thus, a =A b is a type whenever a, b : A, and the only canonical
terms are refl(a) : a =A a. The equality types play a special role in [95], as will
be explained in Section 2.2. Imposing propositional equality has a number of
consequences: in general, a set does not provide an algorithm to decide whether
two of its elements are equal (think to non-recursively enumerable sets [35],
for example). However, equality is fundamental to express the properties of
mathematical statements, and thus it deserves a special attention, particularly in
constructive mathematics, see, e.g., [92], or the comprehensive discussion in [17]5.
Also, (in)equality plays a fundamental role in constructive analysis, see [22],
whose tradition and influence cannot be underestimated in the development of
constructive type theory.

Propositional equality is not the only concept of equality present in dependent
type theory; there is judgemental equality (also called definitional equality),
which is not a type, but exists at the same level of judgements, the formal
assertions in type theory [71, 79]: as we write a : A, we can write a ≡ b : A when
a : A and b : A are judgementally equal. Propositional equality is a type, thus it
can be treated as a proposition: it can be proved, assumed as an hypothesis
and so on. Conversely, judgemental equality is an equality “by definition”; it is
the notion of equality which allows computation, playing a significant role in
the concept of reduction, see Chapter 4. Informally, propositional equality is
the internal notion of being equal provided by each type, while judgemental
equality is the computational engine allowing to show when two judgements

5For a somehow dated, but still very useful introduction of the history of constructive
mathematics see [94, Chapter 1]; a concise and more recent account of the major trends in
constructive mathematics in the late XX century can be found in [29].

CHAPTER 2. BACKGROUND 10

can be decided to compute the same value.
In order to soundly talk about terms and types, two other concepts are

needed: contexts and universes. Contexts are the set of hypotheses which
allow to deduce that an expression is a term of a certain type. Sometimes
mathematical arguments need hypothetical reasoning, thus it may be useful to
suppose that a certain type is inhabited; this is the aim of contexts: a context
Γ = x1 :A1, . . . , xn :An says that the types Aj are inhabited by a certain element
whose name is xj . Computationally, this corresponds to variable declaration [79],
while this corresponds to assign names to assumptions in a logical proof for the
propositions-as-types perspective. Finally, universes are a way to say that a
certain term is a type: if U is a universe and a : U , i.e., a is a term of a universe,
then it is a type. The structure of universes deeply evolved during the years in
order to avoid paradoxes, as explained in Section 2.1, since a universe stands
for the type of types, which is not a well-founded concept. Hence, the evolution
of the idea has needed to coherently model the notion of a type of small types,
analogously to small categories [63].

2.1 Martin-Löf type theory

This Section is devoted to study how Martin-Löf developed his type theory
through the years. We will analyse only the papers by Martin-Löf mainly focused
on his system’s syntax [68, 69, 70, 71], discussing the novelties introduced in
the different papers. When relevant, Σ-types will be used as a prototypical
example to study how the syntax evolved.

An intuitionistic theory of types

In [68], which later has been revised and published as [72], are defined the
formation, introduction, elimination and computation rules for types Π, Σ, +,
Nn and N; there are no uniqueness rules, even for the Π-types (i.e., the system
lacks η-reduction).

First, it is introduced a universe V , the type of small types, with a number
of introduction rules stating that Nn and N are terms of type V and, if the
types in the premises of the formation rules for Π, Σ and + are terms of type
V , then also the type in the conclusion of the rules is. It is worth remarking
that V is not a term of type V ; this would lead to a paradox; indeed, [42] found
an unintended effect of the assumption Type : Type in the original formulation,
which led to the modified version [68].

There are two forms of judgements: A type and a ∈ A, respectively saying
that A is a type and a is a term of type A. The prototypical example of inference
rules for a type is

A type B[x] type
Σ−form

(Σx ∈ A)B[x] type

a ∈ A b ∈ B[a]
Σ−intro

(a, b) ∈ (Σx ∈ A)B[x]

c ∈ (Σx ∈ A)B[x]
(x ∈ A y ∈ B)

d[x, y] ∈ C[(x, y)]
Σ−elim

E(c, (λx)(λy)d[x, y]) ∈ C[c]

CHAPTER 2. BACKGROUND 11

also, seen as a V -introduction,

A ∈ V
(x ∈ A)

B[x] ∈ V

(Σx ∈ A)B[x] ∈ V

The work introduces the concepts of contraction, reduction and conversion.
Contraction consists, substantially, in the computation rules: in the case of Σ,

E((a, b), (λx)(λy)d[x, y]) contr d[a, b] .

It is said that

• an expression a reduces to an expression b, or a red b, if b can be obtained
by repeated contractions of parts of a6;

• a is normal if it can not be reduced;

• a converts in b, or a conv b, if there is an expression c such that a red c
and b red c.

Definitional equality is introduced starting from conversion: two types A and
B are definitionally equal if A conv B, and two terms a : A and b : B are
definitionally equal if a conv b and A conv B. It is proved a Normalisation
Theorem for this system, stating that every term reduces to a normal term.

Finally, a map to reduce intuitionistic formal theories to Martin-Löf type
theory is described.

In this first version, propositional equality is absent and the universe has a
minor role. However, the philosophical basis for a constructive and predicative
theory of types is fully laid down.

An intuitionistic theory of types: Predicative part

In [69] propositional equality, denoted as I(a, b), is added to the list of canon-
ical types. The notion of free variables is stressed specifying them in the
terms: a[x1, . . . , xk] means that x1, . . . , xk are the free variables in a. Another
important difference is the introduction of an infinite hierarchy of universes
V = V0 ∈ V1 ∈ V2 . . . , where V0 is the type of small types and the terms of
the other universes are introduced saying that Vn ∈ Vn+1 and through the
formation (here, called reflection) rules for the canonical types. As illustrated
in [71], types in higher universes are needed to prove some results in concrete
applications: as confirmed by G. Sambin, this was the reason to extend the
system along this line.

Universes allow to say that a is a term if the judgement a ∈ A can be derived
for some A, and that A is a type if there is n such that A ∈ Vn; thus each
type is also a term, avoiding the need of the two different kinds of judgement
a ∈ A and A type. The other possible form of judgement is a conv b, where
the notion of conversion is the one introduced by the computation rules, but

6However, λ-expressions are considered as atoms, i.e., contractions are not allowed in
their body.

CHAPTER 2. BACKGROUND 12

with the additional requirements that it is an equivalence relation (i.e. reflexive,
symmetric and transitive), that

a1 conv c1 . . . ak conv ck

b[a1 . . . ak] conv b[c1 . . . ck]

whenever all the above terms are correctly typed, and that

a ∈ A A conv B

a ∈ B

that is, conv is a congruence [15] conservative over types. Reduction is governed
by the same rules of conversion, but without symmetry. Finally, it is said that
c is a closed normal term with type symbol C, which is called a closed normal
type symbol, if c ∈ C can be derived applying repeatedly the following rule:

{xj ∈ Aj [x1, . . . , xj−1]}k
j=1 f(x1, . . . , xk) ∈ F (x1, . . . , xk)

f(c1, . . . , ck) ∈ F (c1, . . . , ck)

with the additional requirements that F is a constant denoting one of the
basic types, cj ∈ Cj are closed normal terms and Aj [c1, . . . , cj−1] red Cj for
1 6 j 6 k. This definition implies that a closed normal term must be a universe
or a term with no free variables appearing in the conclusion of a formation or
introduction rule. The work ends with the proof of a Normalisation Theorem,
stating that each closed term reduces to a normal form. It is worth remarking
that such a theorem uses the normalisation-by-evaluation technique and that,
as before, λ-terms are atoms.

Constructive mathematics and computer programming

The connection of Martin-Löf type theory to programming languages is empha-
sised in [70], where a particular attention is devoted to the concept of execution
of a term or type. Accordingly to this point of view, an expression is called
canonical or normal if it is already fully evaluated, i.e., it has no free variables
and it is irreducible.

Four different kinds of judgement are used:

• A type (x1 : A1, . . . , xk : Ak),

• A = B (x1 : A1, . . . , xk : Ak),

• a ∈ A (x1 : A1, . . . , xk : Ak),

• a = b ∈ A (x1 : A1, . . . , xk : Ak).

Accordingly to the computational point of view of [70], the expression A type
means that A has a canonical type as value; similarly, a ∈ A means that a
has as value a canonical term, whose type is the value of the type A. Thus,
for example, A type (x1 : A1, . . . , xn : An) means A(a1, . . . , an/x1, . . . , xn) type,
with a1, . . . , an values of type A1, . . . , An, respectively. This latter expression
is governed by the substitution rules, which are introduced here for the first
time, together with the W -types and η-reduction for the Π-types.

CHAPTER 2. BACKGROUND 13

A second elimination rule for I(a, b) is added, stating that the only inhabited
equality types are the ones whose defining terms are equal according to =:

c ∈ I(A, a, b)
a = b ∈ A

this type theory is called extensional type theory, in opposition to the intensional
type theory in which the latter rule does not appear.

Universes, which are denoted as Un, have some particular formation, intro-
duction and elimination rules: the formation rules are Un type and Un = Un;
for each type formation rule for a canonical type there is a corresponding
introduction rule for universes, which introduces the type as a term of the
proper universes; finally, the elimination rules are

A ∈ Un

A type

A ∈ Un

A ∈ Un+1

both with the corresponding equality rules.

Intuitionistic type theory

In [71] a lot of space is devoted to explain the meaning and the philosophy of
dependent type theory, both in general and focusing on the idea behind each
type, with a particular attention to the propositions-as-types correspondence.

The syntax is very similar to the one of [70]; the main differences with
the previous article are the introduction of the types List and the treatment
of equality and universes. Here there are three different types of equality: =,
which is the one used above to denote the syntactical equality between objects,
definitional equality ≡ and propositional equality I(A, a, b). Definitional equality
is used when two expressions are equal by definition; for example, if x : A is
not free in B, A → B ≡ (Πx : A)B(x). Propositional equality is extensional
as in [70], but the only elimination rule is the one stating that if I(A, a, b) is
inhabited then a = b ∈ A; the corresponding computation rule states that, if
I(A, a, b) is inhabited, all its terms are equal. This notion of equality allows
to prove a generalisation of η-reduction for the other types; for example, in
the case of Σ, it can be shown that (p(c), q(c)) = c ∈ (Σx ∈ A)B(x), with
p(c) ≡ E(c, (x, y)x) and q(c) ≡ E(c, (x, y)y) the two projections.

Finally, two possible ways to define universes are explained: a la Tarski and
a la Russell. In the former construction, the formation rules are

U set

a ∈ U

T (a) set

where T is a map associating to each element of the first universe U a set (i.e.,
a type); then, for each canonical type, there is a couple of introduction rules for
universes like

a ∈ U
(x ∈ T (a))
b(x) ∈ U

σ(a, (x)b(x)) ∈ U

a ∈ U
(x ∈ T (a))
b(x) ∈ U

T (σ(a, (x)b(x) ∈ U) = (Σx ∈ T (a))T (b(x))

CHAPTER 2. BACKGROUND 14

where σ is a new symbol mirroring Σ, used to construct the canonical elements
of U ; finally, the infinite hierarchy of universes is constructed iterating the rules

u ∈ U ′ T ′(u) = U

a ∈ U

T (a) ∈ U ′

a ∈ U

T ′(t(a)) = T (a)

where T ′ associates a set to each element of the second universe U ′, and the
map t : U → U ′ lifts the terms of the first universe to the second one, with the
coherence condition T ′(t(a)) = T (a). Conversely, the construction a la Russell
builds only one universe which is not a term of itself, through the formation
rules

U set

A ∈ U

A set

and, for each canonical type, the introduction rule

a ∈ U
(x ∈ A)
b(x) ∈ U

(Σx ∈ A)B(x) ∈ U

In the preface to this paper, Martin-Löf describes a few improvements of
its system which have been presented during a series of lectures in Munich in
1980. The main ones are a different notation and the introduction of alternative
elimination and computation rules for Π, which follow the same pattern of
the ones for the other types. Those rules are equivalent to the canonical ones:
application can be derived posing f a = E(f, (y)y(a)) with y(x) ∈ B(x), η-
reduction can be derived from the rules for I as seen for the other types and,
conversely, the alternative elimination rule can be derived from application
defining E(c, d) = d((x), c.x).

2.2 Homotopy type theory

The community behind [95] deeply extended Martin-Löf type theory with the
aim to use it as a more flexible foundation of mathematics, able for example
to represent as primitive notions some geometric objects, or to interpret also
classical logic.

The system described in the Book is based on the interpretation of the
terms p : a =A b of an equality type as paths between the points a and b. The
main novelties introduced are the higher inductive types and the axioms of
function extensionality and univalence, which will be informally explained in
this Section.

The syntax used in the Book is similar to the one adopted in this thesis; in
the case of Σ-types, it is

Γ ⊢ A : Ui Γ, x : A ⊢ B : Ui
Σ−form

Γ ⊢ Σx : A. B : Ui

Γ ⊢ A ≡ C : Ui Γ, x : A ⊢ B ≡ D : Ui
Σ−form−eq

Γ ⊢ (Σx : A. B) ≡ (Σx : C. D) : Ui

CHAPTER 2. BACKGROUND 15

Γ, x : A ⊢ B : Ui Γ ⊢ a : A Γ ⊢ b : B[a/x]
Σ−intro

Γ ⊢ (a, b) : (Σx : A. B)

Γ, x : A ⊢ B : Ui Γ ⊢ a ≡ c : A Γ ⊢ b ≡ d : B[a/x]
Σ−intro−eq

Γ ⊢ (a, b) ≡ (c, d) : (Σx : A. B)

Γ, z : Σx : A. B ⊢ C : Ui

Γ, x : A, y : B ⊢ g : C [(x, y)/z] Γ ⊢ e : Σx : A. B
Σ−elim

Γ ⊢ indΣx:A. B (z.C, x.y.g, e) : C[e/x]

Γ, z : Σx : A. B ⊢ C ≡ D : Ui

Γ, x : A, y : B ⊢ g ≡ h : C [(x, y)/z] Γ ⊢ e ≡ f : Σx : A. B
Σ−elim−eq

Γ ⊢ indΣx:A. B (z.C, x.y.g, e) ≡ indΣx:A. B (z.D, x.y.h, f) : C[e/x]

Γ, z : Σx : A. B ⊢ C : Ui

Γ, a : A, y : B ⊢ g : C [(x, y)/z]
Γ ⊢ b : B[a/x]
Γ ⊢ a : A

Σ−comp
Γ ⊢ indΣx:A. B (z.C, x.y.g, (a, b)) ≡ g[a/x, b/y] : C [(a, b)/z]

As suggested by the above rules, the system is characterised by an infinite
hierarchy of universes a la Russell, such that Ui : Ui+1 and A : Ui implies A : Ui+1,
and by the notion of context: the free variables of a term are not specified as
arguments of the term, as done by Martin-Löf, but they are listed in the context
Γ. The rules governing the formation of new contexts and the introduction of
variables from existing contexts will be described in Section 3.1. It is worth
remarking that in [95, Chapter 5] the canonical terms of a type are seen as the
application of a term of a function type to some terms of the proper types; this
idea will be systematically developed in the thesis, see Section 3.2.

The canonical inductive types considered in [95] are Π, Σ, +, 1, 0, N, =
(which is intensional) and W , but the construction of new types is allowed as
long as they are “reasonable”, as the Authors explained in Section 5.6.

The novel notion of higher inductive types is introduced: they are types
whose introduction rules define not only the canonical terms a : A of the type,
but also the canonical terms p : a =A b of the equality type of that type, or of
the equality between equalities, and so on; through the homotopy interpretation,
we can say that what can be defined are not only the points of a type, but also
the paths, the paths between paths, etc. Those new types allow to define some
geometric spaces such as the n-dimensional sphere and the torus, and also some
concepts as “being a type with just one term”, which can be seen as “all the
proof of that proposition are equivalent”, allowing to interpret classical logic.
For example, the circle S

1 is defined as the type whose canonical terms are
a point base : S1 and a path loop : base =S1 base which is not identified with
refl. It is pretty clear why this type theory refers to homotopy theory in its
name: in fact, the type S

1 is nothing but the classical Poincaré’s homotopy
group of that topological space. The intuition, due by V. Voevodsky, is that,
beside logic, set theory, and computation, another interpretation of type theory
is possible: types as homotopy spaces, and terms as their points; then, equality
types a =A b model the space of paths between a and b.

It can be seen that, in this theory, the equality types become more important
than before; this is strengthened by the axioms of function extensionality and
univalence. To explain the idea behind them, let us informally introduce some

CHAPTER 2. BACKGROUND 16

notions: a function f :A → B is an isomorphism if it is invertible7, and two types
A and B are equivalent, write A ≃ B, if there is an isomorphism f : A → B.

Notice that, for × types, it can be shown that x =A×B y is equivalent to
(pr1(x) =A pr1(y)) × (pr2(x) =A pr2(y)), and a similar result holds for Σ-types;
thus, the equality of two terms of a × or Σ type depends on the behaviour of
their projections. We would expect something analogous to hold for Π-types,
i.e., that two functions are equal exactly when they are equal at each point,
but this is not the case in Martin-Löf type theory; the function extensionality
axiom, introduced to fill this gap, asserts that f =Πx:A. B g is equivalent to
Πx : A. (f(x) =B g(x)) for each f, g ∈ Πx : A. B, which is the type-theoretic
version of the idea explained above. The univalence axiom, which was introduced
by Voevodsky and implies function extensionality, states that two types are
equal exactly when they are equivalent, i.e., A =U B is equivalent to A ≃ B;
thus, an equality type whose type is a universe is inhabited if and only if the
two chosen terms of type U (which must be types) are equivalent.

In [33], it is introduced a system, called Cubical type theory, in which
both function extensionality and univalence are provable. It is an extension of
Martin-Löf type theory which allows to directly represent the elements of the
unit interval [0, 1] and, thus, the n-dimensional cubes.

Both the systems in [95] and [33] had a huge success, allowing to open new
perspectives on foundation of mathematics currently under intense investigation.

Interpretation

The semantics proposed in the Book is due to Voevodsky, and based on the idea
that types can be seen as spaces in homotopy theory. As already mentioned, it
interprets terms p : a =A b as paths with the interpretations of a : A as start
point and the one of b : B as end point. The iteration of this process allows to
interpret the whole theory in an ∞-groupoid, which is a collection of objects,
paths between objects, paths between paths and so on, equipped with a suitable
algebraic structure.

a

p

""

q

<<��
x b

As far as we have been able to track, the original idea of interpreting dependent
type theory in ∞-groupoids is found in [49]; here, the terms a and b are seen as
objects in a category, and p : a =A b is a morphism between them.

For each type A, the identity path exists because propositional equality
is reflexive, i.e., refla : a =A a. It is proved that paths can be reversed and
concatenated (which correspond to symmetry and transitivity of propositional
equality), and that those operations are well-behaved accordingly to the groupoid
laws; for example,

(

p−1
)−1

= p. We remind that a 1-groupoid is a category
whose arrows are all isomorphisms: an ∞-groupoid is an ∞-category whose
n-morphisms are isos with respect to the (n+1)-level, see [63], [26] or [62, 1.2.5].

7For the sake of precision, one should speak of left and right invertibility. However, it
is easier to grasp the idea with the more usual notion of invertible function. See Chapter 4
of [95] for the reasons why simple invertibility is inadequate.

CHAPTER 2. BACKGROUND 17

The general notion of an ∞-category is not straightforward, and probably not
unique8.

Functions f : A → B behave functorially on paths, i.e., they respect equality:
if p : a =A b, then it can be constructed q : f(a) =B f(b); the generalisation of
this result, especially to dependent types, leads to a number of constructions
broadly used throughout the Book, too complex to summarise here.

Dependent types B : A → Ui, also called type families, can be seen as
fibrations with A as base space; in particular Σx : A. B is the total space of the
fibration, and B[a/x] is the fiber over a. Indeed, for each p:a =A b and u:B[a/x],
it can be constructed p∗:B[a/x] → B[b/x] and lift(u, p):(x, u) =Σx:A. B (y, p∗(u)).
The term lift is the type-theoretic version of the lifting of paths in homotopy
theory, which characterises fibrations.

In the light of this interpretation, which is strongly based on propositional
equality, the relevance of the novel axioms becomes clear, and the introduction
of the higher inductive structure for types appears natural.

8I thank Prof. Cardone for pointing out this aspect, which is not immediate from the
literature.

Chapter 3

Syntax

This chapter is devoted to illustrate the syntax adopted in the thesis, and to
show some basic results about proof theory which will be useful to develop
the semantics. The proof theory will be extended in Chapter 4, proving a
normalisation result.

We divide Martin-Löf type theory into a basic system coupled with inductive
types; the basic system contains the rules for contexts, variables, judgemental
equality, universes and Π-types. The canonical inductive types considered are
the same of [95], i.e., Σ, +, 1, 0, N, = and W ; we call them inductive even if the
only types which are properly inductive1 are N and W. To make the system more
manageable, we introduce a generic syntax for inductive types, comprehending
all the canonical ones; it includes only “reasonable” inductive types, see [95,
Section 5.6], although it could be extended to cover also mutually recursive
types and similar, and is based on the idea that the formation, introduction and
elimination rules for an inductive type can be rewritten as repeated applications
computed over a constant of a proper type.

3.1 Basic system

The rules for the basic system are the ones presented in [95, Appendix A.2]. As
usual, types are identified with those terms having a universe as type. In general,
when not specified otherwise, we adopt the standard terminology of [95].

Context rules

Context rules govern the introduction of new contexts: the empty context • ctx

can always be introduced, and if a context Γ can prove that A is a type, then
Γ, x : A is a context, provided x is new in Γ and A.

ctx−EMP
• ctx

Γ ⊢ A : Ui
ctx−EXT

Γ, x : A ctx

Contexts are a finite set of typed variables, representing the assumptions of
a judgement. The assumption x :A ctx means that the type A is inhabited by, at
least, x. Properly speaking, a context is a list of declarations: a declaration x :A
may contain variables in its type A which must have been declared before, i.e.,
which appear before in the context. However, as proved later in this chapter,
a context may be seen as a set of declarations in which dependency is made
explicit by variables.

1In this, we follow Chapter 5 of [95], although there are a few differences, remarked in
due time.

18

CHAPTER 3. SYNTAX 19

Structural rules

Structural rules show when a variable can be introduced from a context

x1 : A1, . . . , xn : An ctx
Vble

x1 : A1, . . . , xn : An ⊢ xi : Ai

and govern judgemental equality: it is an equivalence relation, and equal types
have the same terms.

Γ ⊢ a : A
≡−refl

Γ ⊢ a ≡ a : A

Γ ⊢ a ≡ b : A
≡−sym

Γ ⊢ b ≡ a : A

Γ ⊢ a ≡ b : A Γ ⊢ b ≡ c : A
≡−trans

Γ ⊢ a ≡ c : A

Γ ⊢ a : A Γ ⊢ A ≡ B : Ui
≡−subst

Γ ⊢ a : B

Γ ⊢ a ≡ b : A Γ ⊢ A ≡ B : Ui
≡−subst−eq

Γ ⊢ a ≡ b : B

Notice that the rules ≡−sym and ≡−trans could be derived from2

Γ ⊢ a ≡ b : A Γ ⊢ c ≡ b : A
≡−symtrans

Γ ⊢ c ≡ a : A

It is important to remark that judgemental equality does not form new
terms: a ≡ b is definitely not a term of type A. Rather, judgemental equality is
the core of the computational engine: in fact, it acts as βη-equality in the pure
λ-calculus, see, e.g., [15].

Universes

Those rules govern the infinite hierarchy of universes: each universe is a term
of the next one, and all the terms of a universe are terms also of the next one.
Those rules formalise Russell’s interpretation of universes, in the sense of [71].

Γ ctx
U−intro

Γ ⊢ Ui : Ui+1

Γ ⊢ A : Ui
U−cumul

Γ ⊢ A : Ui+1

Γ ⊢ A ≡ B : Ui
U−cumul−eq

Γ ⊢ A ≡ B : Ui+1

Universes allow to define the notion of type:

Definition 3.1.1. A term a is a type if it is a term of a universe, i.e., if a
judgement Γ ⊢ a : Ui is derivable for some context Γ and some i ∈ N.

Dependent product

If B is a type and b : B, possibly having x : A as a free variable3, then the
dependent product type Πx : A. B and the abstraction λx : A. b can be introduced,

2To conform to the syntax of [95], the ≡−symtrans rule is not used, but it may be useful
to automated reasoning, if one likes to pursue this kind of applications.

3See Section 3.3 for a precise definition.

CHAPTER 3. SYNTAX 20

as shown by the following rules. Fixed f :Πx :A. B and a :A, the application f a
is a term of type B[a/x]; if f is a canonical term λx : A. b, then the application
(λx : A. b) a is judgementally equal to b[a/x]. Finally, computing abstraction
after application leads to the identity, i.e., f ≡ λx : A. fx. To each formation,
introduction and elimination rule is associated a corresponding equality rule
which performs the same action on judgemental equalities.

Γ ⊢ A : Ui Γ, x : A ⊢ B : Ui
Π−form

Γ ⊢ Πx : A. B : Ui

Γ ⊢ A ≡ C : Ui Γ, x : A ⊢ B ≡ D : Ui
Π−form−eq

Γ ⊢ (Πx : A. B) ≡ (Πx : C. D) : Ui

Γ, x : A ⊢ b : B
Π−intro

Γ ⊢ (λx : A. b) : Πx : A. B

Γ, x : A ⊢ b ≡ c : B Γ ⊢ A ≡ C : Ui
Π−intro−eq

Γ ⊢ (λx : A. b) ≡ (λx : C. c) : Πx : A. B

Γ ⊢ f : Πx : A. B Γ ⊢ a : A
Π−elim

Γ ⊢ f a : B[a/x]

Γ ⊢ f ≡ g : Πx : A. B Γ ⊢ a ≡ b : A
Π−elim−eq

Γ ⊢ f a ≡ g b : B[a/x]

Γ, x : A ⊢ b : B Γ ⊢ a : A
Π−comp

Γ ⊢ (λx : A. b) a ≡ b[a/x] : B[a/x]

Γ ⊢ f : Πx : A., B
Π−uniq

Γ ⊢ f ≡ (λx : A. f x) : Πx : A., B

The notation A → B is an abbreviation of Πx : A. B when x 6∈ FV(B).

The terms of a product type are the dependent functions from A to B, i.e., the
functions whose codomain depends on the choice of the term in the domain. As
already remarked, the type of (non-dependent) functions A → B corresponds
to the product type Πx : A. B when x : A is not free in B.

Constants

Extending the basic system of [95], we allow for the introduction of constants
of already existing types using the schema

Γ ⊢ A : Ui
k−intro

Γ ⊢ k : A

The purpose of having constants is to uniformly treat the inductive types. In
fact, allowing for arbitrary constants is easily seen to lead to inconsistent type
theories, e.g., consider when A is 0, and, in general, the Normalisation Theorem
fails for them. However, the advantages to consider the formation, introduction,
and elimination rules of inductive types as instances of the constant schema
cleans up many proofs, so we retain it until we will tackle the normalisation
proof. Note that, until that time, we assume that a prefixed number of constants
obeying to the schema is given, not that arbitrary constants could be freely
introduced for any type.

There are numerous reasons to consider the system illustrated so far as
basic. Following Chapter 2, the structural part (contexts, judgemental equality,

CHAPTER 3. SYNTAX 21

and universes) is clearly fundamental to express and to construct the kind of
judgements which are the subject of the type theory. Moreover, the dependent
product allows to define, together with suitable constants, all the inductive
types, see the next section, and, in particular, the canonical types. It should be
clear that the axioms of function extensionality and univalence state that the
dependent product and universes occupy a special position in the system, as
identity over them cannot be completely generated without imposing additional
property, as discussed in Section 2.2 and in Chapter 2 and 4 of [95]. One may
object about the exclusion of identity types from the basic system, as this type is
central in the homotopic interpretation. The reasons to consider identity types as
an extension of the basic system are both technical and philosophical: technically,
they are an instance of a general schema, and recognising this fact makes more
uniform and simplifies the development of the theory; philosophically, the
homotopic interpretation makes sense because of path induction, which is the
homotopic reading of the inductive principle about identity types that descends
from being an instance of inductive types. In other words, what allows the
homotopic interpretation of equality is the inductive nature of identity types.
Thus, we believe that syntactically identity types are better thought to as an
instance of a general schema, while homotopically they deserve special attention.
But these are different levels at which the theory can be studied.

3.2 General syntax for inductive types

The structure of the inductive types is similar to the one of the product types:
formation and introduction rules work in an analogous way, but the elimination,
computation, and uniqueness rules are more general. Given

• a type C depending on a variable z of the inductive type,

• for each introduction rule for the type, a term c whose type is C with z
substituted by a canonical term of that introduction rule,

• a term e of the inductive type,

the elimination rule says that the type C with z substituted by e is inhabited;
the inhabitant is called inductive term and denoted with ind. The meaning of
the elimination rules is that, to prove that a statement holds for each term of an
inductive type, it is enough to prove it for its canonical terms. The computation
rules, one for each introduction rule, give a way to reduce the inductive terms
when e is a canonical term of the inductive type.

The elimination rules, together with the computation rules, behave accord-
ingly to the inversion principle [76]:

whatever follows from the direct grounds for deriving a proposition
must follow from that proposition.

Indeed, when the term e is a constructor (i.e., when elimination is computed after
an introduction rule), the term obtained is equivalent to a suitable instantiation
of the related term c.

For the inductive types we considered rules very similar to the ones of [95,
Appendix A.2], but following the philosophy presented in Section 5.1 of the
Book: types and terms are seen as a constant term of a dependent product

CHAPTER 3. SYNTAX 22

type. Indeed, each formation, introduction and elimination rule is seen as a rule
introducing a constant term of a certain already existing type, i.e., an instance
of k−intro.

We also introduce, for each inductive type, a uniqueness rule stating how
induction is performed in the trivial case, i.e., when C coincides with the
inductive type considered. The uniqueness rules for the inductive types are not
present in [95]; there is only Π−uniq4.

Syntactically, an inductive type is a finite collection of symbols τ , indτ , K1,
. . . , Kk together with a collection of inference rules, defining how judgements
could be constructed, and how to reason and calculate. These inference rules
have a strict format, illustrated in the following.

Formation rule

The formation rule τ−form is

Γ ⊢ (Π (x : F)n . Ui) : Ui+1
τ−form

Γ ⊢ τ : (Π (x : F)n . Ui)

where Π (x : A)n . B abbreviates Πx1 : A1. · · · (Πxn : An. B) (similar notations
will be used from now on without further explanations). Sometimes, the
abbreviated writing Πx1 : A1, . . . , xn : An. B is used, too.

The purpose of the formation rule is to allow the construction of a new
inductive type τ , using the syntax of the basic system. In fact, τ−form is an
instance of k−intro. Usually, a specific inductive type is named after the τ
symbol. Also, the sequence (x : F)n denotes the parameters of the τ type.

It is possible to have n = 0, so that the conclusion is Γ ⊢ τ : Ui. It happens5,
for example, for the type N of natural numbers, as shown in Section 3.5.

Introduction rule

The canonical terms of an inductive type τ are defined by the introduction rules.
The introduction rule for the K constructor is

Γ ⊢ (Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

n) : Ui
τ−intro

Γ ⊢ K : (Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

n)

where n′ 6 n, (x : F)n′ is a subsequence of (x : F)n, the parameters of τ , and
for every 1 6 i 6 n, x′

i lies in (x : F)n′ , with a possibly different index, and
x′

i : Fi is the i-th element in (x : F)n.
A constructor K is total when (x : F)n′ = (x : F)n, and it is partial otherwise,

meaning it is defined for every instance of a type, or just for some instances,
respectively. An inductive type is partial if it has a partial constructor, and
it is total otherwise. The sequence (y : I)m denotes the parameters of the K

constructor. As before, note how the τ−intro rule is an instance of k−intro.
As shown in Section 3.5, dependent sum and coproduct are total, while the

identity types are partial. The adjective “partial” means that the canonical
constructors apply to a subset of the instances of the type. For example, refl

applies only on a =A a.
4The Book says that uniqueness rules trivialise the homotopic structure. Although this is

right, it is convenient to consider them as optional.
5We deviate from the Book here since the premise becomes Γ ⊢ Ui :Ui+1, which is different

although equivalently derivable from Γ ctx, see Corollary 3.3.5.

CHAPTER 3. SYNTAX 23

Elimination rule

The simple elimination rule for the τ type is

Γ ⊢ (Π (x : F)n . (ΠC : (Π (x : F)n . τ x1 · · · xn → Uh).
(Πk

i=1ci : (Π (x : F)n′
i
. Π (y : I)mi

.

C x′
1 · · · x′

ni
(Kx′

1 · · · x′
ni

y1 · · · ymi
)).

(Πe : τ x1 · · · xn. C x1 · · · xn e)))) : Uh+1
τ−elim

Γ ⊢ indτ : (Π (x : F)n . (ΠC : (Π (x : F)n . τ x1 · · · xn → Uh).
(Πk

i=1ci : (Π (x : F)n′
i
. Π (y : I)mi

.

C x′
1 · · · x′

ni
(Kx′

1 · · · x′
ni

y1 · · · ymi
)).

(Πe : τ x1 · · · xn. C x1 · · · xn e))))

where (x : F)n are the parameters of τ , (y : I)mi
are the parameters of Ki, and

for each 1 6 j 6 k, (x : F)n′
j

and {x′}nj
are as in the τ−introj rule.

The rationale is that indτ encodes the structural induction principle for the
τ type: if C is a proposition depending on a generic instance of τ , if ci proves
C to hold when C is applied to a generic instance of the Ki constructor, and if
e is an element of a specific instance of τ , then C holds on e.

A constructor parameter yi : Ii in (y : I)m is recursive when I is an instance
of τ . In turn, an inductive type is recursive when some of its constructors have
at least one recursive parameter. When τ is a recursive type, it is normally6

used the full elimination rule as follows:

Γ ⊢ (Π (x : F)n . (ΠC : (Π (x : F)n . τ x1 · · · xn → Uh).
(Πk

i=1ci : (Π (x : F)n′
i
. Π (y : I)m′

i
.

C x′
1 · · · x′

ni
(Kx′

1 · · · x′
ni

y1 · · · ymi
)).

(Πe : τ x1 · · · xn. C x1 · · · xn e)))) : Uh+1
τ−elim

Γ ⊢ indτ : (Π (x : F)n . (ΠC : (Π (x : F)n . τ x1 · · · xn → Uh).
(Πk

i=1ci : (Π (x : F)n′
i
. Π (y : I)m′

i
.

C x′
1 · · · x′

ni
(Kx′

1 · · · x′
ni

y1 · · · ymi
)).

(Πe : τ x1 · · · xn. C x1 · · · xn e))))

where the notation is the same as in the simple elimination rule except for
(y : I)m′

i
, the sequence of parameters of K, in which, if y : Π(w : L)s. τ a1 · · · an

is recursive, then it is immediately followed by

r : Π(w : L)s. C a1 · · · an (y w1 · · · ws) .

This additional variable, which is the only difference between the simple and
the full rules, allows to keep track of the evidence for y when unfolding the
induction. It is worth noticing how the full and the simple elimination rules
coincide when τ is not recursive.

As an example, natural numbers are a recursive type, while dependent sum
is non recursive, see Section 3.5.

Note how the usual introduction schema follows the simple elimination rule
in the presentation of most mathematical books not dealing with type theory.
The full elimination rule allows to deal with more advanced programming

6However, especially when dependent type theory is used as a programming language,
there may be exceptions.

CHAPTER 3. SYNTAX 24

constructions, like continuations [91], but this issue is outside the scope of this
thesis. Also, in the light of [76], note how the elimination rule is constructed
from the formation and the introduction rules via the inversion principle.

Computation rule

For every 1 6 i 6 k, a computation rule is associated to the Ki constructor:

Γ ⊢ C : (Π (x : F)n . τ x1 · · · xn → Uh)

Γ ⊢ c1 :
(

Π (x : F)n′
1

. Π (y : I)m′
1

.

C x′
1 · · · x′

n1

(

K1 x′
1 · · · x′

n1
y1 · · · ym1

)

)

· · ·

Γ ⊢ ck :
(

Π (x : F)n′
k

. Π (y : I)m′
k

.

C x′
1 · · · x′

nk

(

Kk x′
1 · · · x′

nk
y1 · · · ymk

)

)

Γ ⊢ Ki T1 · · · Tn p1 · · · pm : τ T1 · · · Tn
τ−compiΓ ⊢ indτ T1 · · · Tn C c1 · · · ck (Ki T1 · · · Tn p1 · · · pm) ≡

ci T1 · · · Tn p′
1 · · · p′

m : C T1 · · · Tn (Ki T1 · · · Tn p1 · · · pm)

where p′
j = pj if the j-th parameter is normal, and p′

j is pj immediately followed
by (indτ T1 · · · Tn C c1 · · · ck pj) if the j-th parameter is recursive.

The computation rule says that the induction, when the witness e is an in-
stance of some constructor, can be simplified to the instance of the corresponding
c case.

Uniqueness rule

The uniqueness rule is

Γ ⊢ e : τ T1 · · · Tn
τ−uniq

Γ ⊢ indτ T1, · · · Tn

(λ (x : F)n . (λz : τ x1 · · · xn. τ x1 · · · xn))
(

λ (x : F)n1
.

(

λ (y : I)m′
1

.K1 x1 · · · xn1
y1 · · · ym1

))

· · ·
(

λ (x : F)nk
.

(

λ (y : I)m′
k

.Kk x1 · · · xnk
y1 · · · ymk

))

e ≡ e : τ T1 · · · Tn

using the same notation as before. The uniqueness rule tells that performing
an induction on the τ predicate in which the constructors are interpreted as
themselves is redundant. As already said, uniqueness rules are optional and
homotopy type theory does not include them.

Inductive ordering

The inductive nature of the previous syntax for general inductive types stems
since an ordering <τ can be defined on the collection of terms of type τ .
Precisely, if Γ ⊢ τ f1 . . . fn : Ui then Γ ⊢ t : τ f1 . . . fn <τ Γ ⊢ t′ : τ f1 . . . fn

exactly when the term t′ is generated from t using the introduction rules, or,
the other way around, when t is inductively generated before t′. For example,

CHAPTER 3. SYNTAX 25

Γ ⊢ n : N <N Γ ⊢ succ n : N and Γ ⊢ v c : W A B <W Γ ⊢ supA B a v : W A B
whenever Γ ⊢ c : B a.

A precise definition of <τ is beyond the scope of this dissertation, and it
can be reconstructed through the initial algebra associated to τ , see Chapter 5
in [95], and [75, 99] for a detailed development. The fundamental facts to
remark are: <τ is a well ordering; in recursive types, the left-hand side of
the computation rule is indτ . . . e, and every occurrence of e′ : τ f1 . . . fn in the
right-hand side is such that e′ <τ e.

3.3 Basic proof theory

In this section will be shown the first, basic results of the proof theory of
dependent types. In particular, all the properties needed in Chapter 5 can be
found in the following. We will adopt the standard notation and terminology,
mostly conforming to [95]. Also, we will use π : γ to indicate that π is a
derivation of the judgement γ.

Once described the syntax, summarised in Figures 3.1 and 3.2 for easiness
of reference, we need to specify when a variable is free in a term and how
substitution is computed in our system.

Definition 3.3.1. The sets of the free variables and depending variables in a
term are inductively defined by:

1. if x is a variable, FV(x) = DV(x) = {x};

2. if Ui is a universe, FV(Ui) = DV(Ui) = ∅;

3. if k is a constant of type A, FV(k) = ∅ and DV(k) = DV(A);

4. for an application, FV(t s) = FV(t) ∪ FV(s) and DV(t s) = DV(t) ∪ DV(s);

5. for an abstraction, FV(λx : A. b) = (FV(A) ∪ FV(b)) \ {x} and DV(λx :
A. b) = (DV(A) ∪ DV(b)) \ {x};

6. for a function space type, FV(Πx : A. B) = (FV(A) ∪ FV(B)) \ {x} and
DV(Πx : A. B) = (DV(A) ∪ DV(B)) \ {x}.

Given Γ ⊢ a : A, the set of active variables in a is defined as

AV0(a) = DV(a) ,

AVi+1(a) = AVi(a) ∪
⋃

{B : x∈AVi(a)∧x:B∈Γ}

DV (B)

AV(a) =
⋃

i∈N

AVi(a) .

The free variables are a subset of the depending variables: the latter set
defines the variables a term depends on while the former set identifies the
variables a term directly depends on. A close inspection of the definition reveals
that the difference between FV and DV matters just when dealing with constants.
Usually, abusing terminology but conforming to the standard usage, we speak
of free variables even if DV should be intended.

Substitution is defined as a purely syntactical operation which replaces a
variable with an expression inside another expression:

CHAPTER 3. SYNTAX 26

ctx−EMP
• ctx

Γ ⊢ A : Ui
ctx−EXT

Γ, x : A ctx

x1 : A1, . . . , xn : An ctx
Vble

x1 : A1, . . . , xn : An ⊢ xi : Ai

Γ ⊢ a : A
≡−refl

Γ ⊢ a ≡ a : A

Γ ⊢ a ≡ b : A
≡−sym

Γ ⊢ b ≡ a : A

Γ ⊢ a ≡ b : A Γ ⊢ b ≡ c : A
≡−trans

Γ ⊢ a ≡ c : A

Γ ⊢ a : A Γ ⊢ A ≡ B : Ui
≡−subst

Γ ⊢ a : B

Γ ⊢ a ≡ b : A Γ ⊢ A ≡ B : Ui
≡−subst−eq

Γ ⊢ a ≡ b : B

Γ ctx
U−intro

Γ ⊢ Ui : Ui+1

Γ ⊢ A : Ui
U−cumul

Γ ⊢ A : Ui+1

Γ ⊢ A ≡ B : Ui
U−cumul−eq

Γ ⊢ A ≡ B : Ui+1

Γ ⊢ A : Ui Γ, x : A ⊢ B : Ui
Π−form

Γ ⊢ Πx : A. B : Ui

Γ ⊢ A ≡ C : Ui Γ, x : A ⊢ B ≡ D : Ui
Π−form−eq

Γ ⊢ (Πx : A. B) ≡ (Πx : C. D) : Ui

Γ, x : A ⊢ b : B
Π−intro

Γ ⊢ (λx : A. b) : Πx : A. B

Γ, x : A ⊢ b ≡ d : B Γ ⊢ A ≡ C : Ui
Π−intro−eq

Γ ⊢ (λx : A. b) ≡ (λx : C. d) : Πx : A. B

Γ ⊢ f : Πx : A. B Γ ⊢ a : A
Π−elim

Γ ⊢ f a : B[a/x]

Γ ⊢ f ≡ g : Πx : A. B Γ ⊢ a ≡ c : A
Π−elim−eq

Γ ⊢ f a ≡ g c : B[a/x]

Γ, x : A ⊢ b : B Γ ⊢ a : A
Π−comp

Γ ⊢ (λx : A. b) a ≡ b[a/x] : B[a/x]

Γ ⊢ f : Πx : A. B
Π−uniq

Γ ⊢ f ≡ (λx : A. f x) : Πx : A. B

Figure 3.1: The basic system.

CHAPTER 3. SYNTAX 27

Γ ⊢ (Π (x : F)n . Ui) : Ui+1
τ−form

Γ ⊢ τ : (Π (x : F)n . Ui)

Γ ⊢ (Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

n) : Ui
τ−intro

Γ ⊢ K : (Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

n)

Γ ⊢ (Π (x : F)n . (ΠC : (Π (x : F)n . τ x1 · · · xn → Uh).
(Πk

i=1ci : (Π (x : F)n′
i
. Π (y : I)m′

i
.

C x′
1 · · · x′

ni
(Kx′

1 · · · x′
ni

y1 · · · ymi
)).

(Πe : τ x1 · · · xn. C x1 · · · xn e)))) : Uh+1
τ−elim

Γ ⊢ indτ : (Π (x : F)n . (ΠC : (Π (x : F)n . τ x1 · · · xn → Uh).
(Πk

i=1ci : (Π (x : F)n′
i
. Π (y : I)m′

i
.

C x′
1 · · · x′

ni
(Kx′

1 · · · x′
ni

y1 · · · ymi
)).

(Πe : τ x1 · · · xn. C x1 · · · xn e))))

Γ ⊢ C : (Π (x : F)n . τ x1 · · · xn → Uh)

Γ ⊢ c1 :
(

Π (x : F)n′
1

. Π (y : I)m′
1

.

C x′
1 · · · x′

n1

(

K1 x′
1 · · · x′

n1
y1 · · · ym1

)

)

· · ·

Γ ⊢ ck :
(

Π (x : F)n′
k

. Π (y : I)m′
k

.

C x′
1 · · · x′

nk

(

Kk x′
1 · · · x′

nk
y1 · · · ymk

)

)

Γ ⊢ Ki T1 · · · Tn p1 · · · pm : τ T1 · · · Tn
τ−compiΓ ⊢ indτ T1 · · · Tn C c1 · · · ck (Ki T1 · · · Tn p1 · · · pm) ≡

ci T1 · · · Tn p′
1 · · · p′

m : C T1 · · · Tn (Ki T1 · · · Tn p1 · · · pm)

Γ ⊢ e : τ T1 · · · Tn
τ−uniq

Γ ⊢ indτ T1, · · · Tn

(λ (x : F)n . (λz : τ x1 · · · xn. τ x1 · · · xn))
(

λ (x : F)n1
.

(

λ (y : I)m′
1

.K1 x1 · · · xn1
y1 · · · ym1

))

· · ·
(

λ (x : F)nk
.

(

λ (y : I)m′
k

.Kk x1 · · · xnk
y1 · · · ymk

))

e ≡ e : τ T1 · · · Tn

Figure 3.2: Inductive types.

CHAPTER 3. SYNTAX 28

Definition 3.3.2. If a and b are terms, and x is a variable, then a[b/x] is
inductively defined as:

• if x 6∈ DV(a), then a[b/x] = a;

• if a = k constant of type A with x ∈ DV(k), then k[b/x] is another
constant of type A[b/x];

• if a = x then a[b/x] = b;

• if a = f c then a[b/x] = f [b/x] c[b/x];

• if a = λy : C. d then a[b/x] = λy : C[b/x]. d[b/x] provided y 6∈ DV(b);

• if a = Πy : C. d then a[b/x] = Πy : C[b/x]. d[b/x] provided y 6∈ DV(b).

The assumption in the last two cases can always be enforced7 by renaming the
bound variable y, i.e. substituting y in b by z 6∈ AV(a) ∪ AV(b). Substitution in
a typed term is defined as (a : A)[b/x] = (a[b/x] : A[b/x]). For contexts, there
are two cases:

• if xi 6∈ FV(b),

(x1 : A1, . . . , xn : An ctx)[b/xi]

= (x1 : A1, . . . , xi−1 : Ai−1, xi+1 : Ai+1[b/xi], . . . , xn : An[b/xi] ctx) ;

• otherwise,

(x1 : A1, . . . , xn : An ctx)[b/xi]

= (x1 : A1, . . . , xi : Ai, xi+1 : Ai+1[b/xi], . . . , xn : An[b/xi] ctx) ;

and in the other kinds of judgements:

(Γ ⊢ a : A)[b/x] = (Γ[b/x] ⊢ a[b/x] : A[b/x]) ;

(Γ ⊢ a ≡ a′ : A)[b/x] = (Γ[b/x] ⊢ a[b/x] ≡ a′[b/x] : A[b/x]) .

From now on, we will tacitly identify terms, types, and judgements up to
α-conversion, i.e., renaming of bound variables. So, λx :A. b equals λy :A. b[y/x],
Πx : A. B equals Πy : A. B[y/x], and x : A ⊢ b : B equals y : A ⊢ b[y/x] : B[y/x].
Here, equality means syntactically equal, i.e., the two expressions are considered
indistinguishable except for a different writing, which does not matter. Therefore,
= indicates syntactical equality, ≡ is judgemental equality, and =A the identity
type over A.

The notion of subproof, denoted by ⊆, is easily defined by induction in the
usual way. Essentially, π1 ⊆ π2 when the π1 derivation is a subtree in the π2

derivation.

Fact 3.3.3. If π : Γ, x : A, ∆ ⊢ b : B, or π : Γ, x : A, ∆ ⊢ b ≡ c : B, or π : Γ, x :
A, ∆ ctx, then there is π′ : Γ ⊢ A : Ui such that π′ ⊂ π and there is π′′ : Γ ctx

such that π′′ ⊂ π′.

7In fact, by using de Bruijn notation [41] one could avoid altogether the issues about free
and bound variables, and renaming. However, the human-friendly notation adopted here
simplifies understanding.

CHAPTER 3. SYNTAX 29

Proof. A straightforward induction on the structure of the π derivation.

Remark 3.3.4. This fact shows how the first premise in the Π−form rule can
be safely omitted provided A and B lie in the same universe, considering the
equivalent

Γ, x : A ⊢ B : Ui
Π−form

Γ ⊢ (Πx : A. B) : Ui
.

The requirement that A and B are in the same universe is essential to avoid
the formation of impredicative types.

Corollary 3.3.5. If π : Γ ⊢ a:A or π : Γ ⊢ a ≡ b:A, then exists (π1 : Γ ctx) ⊂ π.

The following completes the definition of substitution in Martin-Löf type
theory. It anticipates an independent result proved in the following, so no
circularity is present; however, it is cleaner to present the definition here.

Definition 3.3.6 (Substitution in proofs). Let π : Γ, x : A, ∆ ctx, or π : Γ, x :
A, ∆ ⊢ b : B, or π : Γ, x : A, ∆ ⊢ b ≡ c : B, and let π′ : Γ ⊢ a : A. Also, let
π′′ : Γ ctx be such that π′′ ⊂ π as for Fact 3.3.38. Then π[a/x] is inductively
defined as:

• if the last step in π is not an instance of ctx−EXT or Vble, or is an instance
of ctx−EXT in which the conclusion is Γ, x : A, ∆, y : B ctx with x 6= y, or
is an instance of Vble in which the conclusion is Γ, x : A, ∆ ⊢ y : B with
x 6= y, and π has premises π1, . . . , πn, then π[a/x] is the application of
the same rule to π1[a/x], . . . , πn[a/x];

• if π is an instance of ctx−EXT with conclusion Γ, x : A ctx, then π[a/x] =
π′′;

• if π is an instance of Vble with conclusion Γ, x :A ⊢ x :A, then π[a/x] = π′;

• if π is an instance of Vble with conclusion Γ, x : A, ∆, y : B ⊢ x : A, then
π[a/x] is inductively constructed as in Proposition 3.3.12 from π′.

Some further properties about derivations are obtained starting from a
counterexample which shows that an apparently natural property is false: if
π : Γ ⊢ Ui ≡ A : B or π : Γ ⊢ A ≡ Ui : B, then A = Ui. In fact, considering for
the sake of simplicity the basic system plus the natural numbers,

ctx−EMP
• ctx

U−intro
⊢ Ui : Ui+1

k−intro
⊢ N : Ui

k−intro
⊢ 0 : N

ctx−EMP
• ctx

U−intro
⊢ Ui : Ui+1

k−intro
⊢ N : Ui

ctx−EXT
x : N ctx

U−intro
x : N ⊢ Ui : Ui+1

Π−comp
⊢ (λx : N. Ui) 0 ≡ Ui[0/x] : Ui+1[0/x]

However, ⊢ (λx : N. Ui) 0 ≡ Ui[0/x] : Ui+1[0/x] is equal to ⊢ (λx : N. Ui) 0 ≡
Ui : Ui+1.

The following lemma tells how a regular judgement can be derived.

8The proof of Fact 3.3.3 effectively constructs π′′

CHAPTER 3. SYNTAX 30

Lemma 3.3.7. The following facts hold:

1. if π : Γ ⊢ x : A with x a variable, then π ends with a possibly empty
sequence of instances of ≡−subst and U−cumul after an application of
Vble whose conclusion is Γ ⊢ x : B with x : B ∈ Γ, and Γ ⊢ A ≡ B : Ui,
i ∈ N or, if there are k > 0 applications of U−cumul, Γ ⊢ B ≡ Ui : Ui+1

and Γ ⊢ A ≡ Ui+k : Ui+k+1;

2. if π : Γ ⊢ Ui :A, then π ends with a possibly empty sequence of instances of
≡−subst and U−cumul after an application of U−intro whose conclusion
is Γ ⊢ Ui : Ui+1, and Γ ⊢ A ≡ Ui+k+1 : Ui+k+2, with k ∈ N;

3. if π : Γ ⊢ k : A with k a constant, then π ends with a possibly empty
sequence of instances of ≡−subst and U−cumul after an application of
k−intro whose conclusion is Γ ⊢ k : B, and Γ ⊢ A ≡ B : Ui, i ∈ N

or, if there are k > 0 applications of U−cumul, Γ ⊢ B ≡ Ui : Ui+1 and
Γ ⊢ A ≡ Ui+k : Ui+k+1;

4. if π : Γ ⊢ (Πx : A. B) : C then π ends with a possibly empty sequence of
instances of ≡−subst and U−cumul after an application of Π−form, whose
conclusion is π : Γ ⊢ (Πx : A. B) : Ui, and Γ ⊢ C ≡ Ui+k : Ui+k+1;

5. if π : Γ ⊢ (λx : A. b) : C then π ends with a possibly empty sequence of
applications of ≡−subst and U−cumul after an instance of Π−intro whose
conclusion is Γ ⊢ (λx : A. b) : (Πx : A. B), and Γ ⊢ C ≡ (Πx : A. B) : Ui or,
if there are k > 0 applications of U−cumul, Γ ⊢ Πx : A. B ≡ Ui : Ui+1 and
Γ ⊢ C ≡ Ui+k : Ui+k+1;

6. if π : Γ ⊢ f a :C then π ends with a possibly empty sequence of applications
of ≡−subst and U−cumul after an instance of Π−elim whose conclusion is
Γ ⊢ f a :B[a/x], and Γ ⊢ C ≡ B[a/x] :Ui or, if there are k > 0 applications
of U−cumul, Γ ⊢ B[a/x] ≡ Ui : Ui+1 and Γ ⊢ C ≡ Ui+k : Ui+k+1.

Proof. All the cases are proved following the same pattern: the only rules
allowing to derive a judgement in each of the cases are ≡−subst, U−cumul, or
the mentioned rule. The conclusion follows since equivalences can be composed
by ≡−trans.

The following two properties show that types in judgements are well given
and, in particular, that an inhabited term is a type.

Proposition 3.3.8. If π : Γ ⊢ a ≡ b : A then Γ ⊢ a : A and Γ ⊢ b : A.

Proof. By induction on π:

• if the last step of π is an instance of ≡−refl, a = b and the premise
Γ ⊢ a : A is the statement;

• if the last step of π is an instance of ≡−sym or ≡−trans, the induction
hypothesis on the premise(s) yields the result;

• if the last step of π is an application of ≡−subst−eq, U−cumul−eq, or
Π−elim−eq, the corresponding plain rule applied to the induction hypoth-
esis on the premise(s) yields the result;

CHAPTER 3. SYNTAX 31

• if the last step of π is an instance of Π−form−eq or Π−intro−eq, the result
follows as in the previous case eventually with an additional application
of ≡−subst on the second premise;

• if the last step of π is an instance of Π−comp, calling its premises π1 : Γ, x :
D ⊢ e:E and π2 : Γ ⊢ d:D, with a = (λx:D. e), b = e[d/x], and A = E[d/x],
π1[d/x] shows Γ ⊢ b : A, while Γ ⊢ a : A because

π1 : Γ, x : D ⊢ e : E
Π−intro

Γ ⊢ (λx : D. e) : (Πx : D. E) π2 : Γ ⊢ d : D
Π−elim

Γ ⊢ (λx : D. e) d : A

• if the last step of π is an instance of Π−uniq, the premise π1 : Γ ⊢
a : (Πx : D. E) with A = (Πx : D. E) and b = (λx : D. a x) shows that
Γ ⊢ a : A. Then Γ ⊢ b : A holds because

π′
1 : Γ, x : D ⊢ a : (Πx : D. E) π2 : Γ, x : D ⊢ x : D

Π−elim
Γ, x : D ⊢ a x : E

Π−intro
Γ ⊢ (λx : D. a x) : (Πx : D. E)

where π2 is easily derived by Vble and Fact 3.3.3, while π′
1 is obtained by

π1 through Proposition 3.3.12;

• if the last step is an instance of τ−compi,

Γ ⊢ indτ T1 · · · Tn C c1 · · · ck (Ki T1 · · · Tn p1 · · · pm) :

C T1 · · · Tn (Ki T1 · · · Tn p1 · · · pm)

by applying Π−elim to

Γ ⊢ indτ : (Π (x : F)n . (ΠC : (Π (x : F)n . τ x1 · · · xn → Uh).
(Πk

i=1ci : (Π (x : F)n′
i
. Π (y : I)m′

i
.

C x′
1 · · · x′

ni
(Kx′

1 · · · x′
ni

y1 · · · ymi
)).

(Πe : τ x1 · · · xn. C x1 · · · xn e))))

and, in order, to

Γ ⊢ C : (Π (x : F)n . τ x1 · · · xn → Uh)
Γ ⊢ c1 :

(

Π (x : F)n′
1

. Π (y : I)m′
1

.

C x′
1 · · · x′

n1

(

K1 x′
1 · · · x′

n1
y1 · · · ym1

))

· · ·
Γ ⊢ ck :

(

Π (x : F)n′
k

. Π (y : I)m′
k

.

C x′
1 · · · x′

nk

(

Kk x′
1 · · · x′

nk
y1 · · · ymk

))

Γ ⊢ Ki T1 · · · Tn p1 · · · pm : τ T1 · · · Tn ;

also Γ ⊢ ci T1 · · · Tn p′
1 · · · p′

m : C T1 · · · Tn (Ki T1 · · · Tn p1 · · · pm) can
be derived appropriately applying Π−elim to

Γ ⊢ ci : Π (x : F)n′
i
. Π (y : I)m′

i
. C x′

1 · · · x′
ni

(

Ki x′
1 · · · x′

ni
y1 · · · ymi

)

;

CHAPTER 3. SYNTAX 32

• if the last step is an instance of τ−uniq, Γ ⊢ e : τ T1 · · · Tn by the premise,
and Γ ⊢ indτ T1, · · · Tn . . . e : τ T1 · · · Tn follows from

Γ ⊢ indτ : (Π (x : F)n . (ΠC : (Π (x : F)n . τ x1 · · · xn → Uh).
(Πk

i=1ci : (Π (x : F)n′
i
. Π (y : I)m′

i
.

C x′
1 · · · x′

ni
(Kx′

1 · · · x′
ni

y1 · · · ymi
)).

(Πe : τ x1 · · · xn. C x1 · · · xn e))))

by repeated applications of Π−elim.

Proposition 3.3.9. If π : Γ ⊢ a : A then Γ ⊢ A : Ui for some i ∈ N.

Proof. By induction on π:

• if the last step of π is an instance of Vble, the conclusion follows by
Fact 3.3.3;

• if the last step of π is an instance of ≡−subst with premises Γ ⊢ a : B and
π1 : Γ ⊢ B ≡ A : Ui then the conclusion follows by Proposition 3.3.8 on π1;

• if the last step of π is an instance of k−intro, in particular, if it is an
instance of τ−form, τ−intro or τ−elim, then the premise immediately
yields the conclusion;

• if the last step of π is an instance of U−intro, U−cumul or Π−form

the result is obtained observing that A = Uj , and thus by U−intro,
Γ ⊢ Uj : Uj+1;

• if the last step of π is an instance of Π−intro, by induction hypothesis on
the only premise, π1 : Γ, x : A ⊢ B : Ui. By Fact 3.3.3 on π1, π2 : Γ ⊢ A : Ui,
so Γ ⊢ (Πx : A. B) : Ui by Π−form on π1 and π2;

• if the last step of π is an instance of Π−elim, then by induction hypothesis
on its premises, π1 : Γ ⊢ A : Ui and π2 : Γ ⊢ (Πx : A. B) : Ui. Thus, by
Lemma 3.3.7 on π2, π3 : Γ, x:A ⊢ B :Ui, hence π3[c/x] : Γ ⊢ B[c/x]:Ui.

It is important to remark that Propositions 3.3.8 and 3.3.9 provide an
algorithm to effectively construct the proofs in their conclusions. Also, Proposi-
tion 3.3.8 can be redundantly rephrased as

Corollary 3.3.10 (Substitution rule). If Γ ⊢ a ≡ b : A and Γ ⊢ a : A, then
Γ ⊢ b : A.

Contexts

A strong property we need to prove is weakening: if a conclusion can be derived
from a set of assumptions, then the same conclusion can be derived also from
a larger set of assumptions. The result is not immediate because contexts are
ordered, and assumptions may be permuted as far as their free variables appear
before.

Proposition 3.3.11. Let x1 : A1, . . . , xn : An ctx and xπ(1) : Aπ(1), . . . , xπ(n) :
Aπ(n) ctx be contexts, and let π be a permutation of {1, . . . , n}. Then

CHAPTER 3. SYNTAX 33

• if x1 : A1, . . . , xn : An ⊢ b : B then xπ(1) : Aπ(1), . . . , xπ(n) : Aπ(n) ⊢ b : B;

• if x1 : A1, . . . , xn : An ⊢ b ≡ c : B then xπ(1) : Aπ(1), . . . , xπ(n) : Aπ(n) ⊢ b ≡
c : B.

Proof. By induction on the structure of derivations:

• if x1 :A1, . . . , xn :An ⊢ xi :Ai by the Vble rule, then xπ(1) :Aπ(1), . . . , xπ(n) :
Aπ(n) ⊢ xπ(i) : Aπ(i) by the same rule. Notice how α-conversion has been
tacitly applied.

• in all the other cases, if γ is deduced by an instance of the r rule, then the
conclusion follows by the same rule applied to the result of the induction
hypothesis on the premises.

The previous proposition may be understood as contexts are sets with
dependency. The fundamental weakening consists of adding a new variable to
the context.

Proposition 3.3.12. Let π1 : Γ, x : A ctx. Then

• if π : Γ ⊢ b : B then π′ : Γ, x : A ⊢ b : B;

• if π : Γ ⊢ b ≡ c : B then π′ : Γ, x : A ⊢ b ≡ c : B.

Proof. By induction on the structure of derivations,

• if the last step in π is an instance of Vble or U−intro, π′ is the application
of the same rule to π1;

• otherwise, π′ is obtained applying the same rule as in the last step of π
to the result of the inductive hypothesis on the premises.

Theorem 3.3.13 (Weakening). Let Γ ctx and ∆ ctx such that Γ ⊆ ∆. Then

• if Γ ⊢ b : B then ∆ ⊢ b : B;

• if Γ ⊢ b ≡ c : B then ∆ ⊢ b ≡ c : B.

Proof. Let Ξ = ∆ \ Γ, in which subtraction preserves the relative ordering of
elements. By induction on the length of Ξ:

• if Ξ is empty, then the statement follows by Proposition 3.3.11;

• if Ξ = Ξ′, x : A then, by induction hypothesis Γ, Ξ′ ⊢ b : B and Γ, Ξ′ ⊢
b ≡ c : B whenever Γ ⊢ b : B and Γ ⊢ b ≡ c : B, respectively. Thus by
Proposition 3.3.12, Γ, Ξ ⊢ b : B and Γ, Ξ ⊢ b ≡ c : B, respectively. Hence,
by Proposition 3.3.11 the conclusion follows.

The weakening property says that, if something can be derived from a given
context, it can be derived from every super-context. Oppositely, the following
proposition shows what is the minimal context, up to valid permutations, which
allows to derive a given conclusion.

CHAPTER 3. SYNTAX 34

Proposition 3.3.14. If Γ ⊢ a : A and Γ ⊢ A : Ui in the basic theory, then
FV(a) ⊆ DV(a) ⊆ AV(a) and AV(A) ⊆ AV(a). Moreover, AV(a) ctx is a
judgement by ordering the declarations according to dependencies, AV(a) ⊢ a : A,
and it is the minimal subcontext of Γ for which this happens.

Proof. Long but obvious inductions allow to prove all the statements.

The last property we need says that if A and A′ are equivalent types, then
what can be derived from A, can be proved from A′, too. This property com-
plements weakening since it shows that replacing declarations with equivalent
ones does not change what can be derived.

Proposition 3.3.15. Let Γ ⊢ A ≡ A′ : Ui. Then

1. if Γ, x : A, ∆ ⊢ b : B then Γ, x : A′, ∆ ⊢ b : B;

2. if Γ, x : A, ∆ ⊢ b ≡ c : B then Γ, x : A′, ∆ ⊢ b ≡ c : B.

Proof. By induction on the structure of derivations, we prove the first statement;
the latter is analogous.

• if the last step is an instance of Vble, the conclusion Γ, x : A, ∆ ⊢ y : B
is such that either x 6= y so AV(y) ⊢ y : B, hence Γ, x : A′, ∆ ⊢ y : B
by Theorem 3.3.13; or x = y so Γ, x : A′, ∆ ⊢ x : A′ by Vble. Thus,
Γ, x : A′, ∆ ⊢ x : A by ≡−subst.

• if the last step is U−intro, then Γ, x : A′, ∆ ⊢ Ui : Ui+1 by U−intro.

• in all the other cases, the result follows from the induction hypothesis.

The above results, in particular Propositions 3.3.11 and 3.3.15, show that,
as long as they are derivable, contexts can be identified up to permutations and
equivalence of the types appearing in them. Thus, we define two concepts of
equivalence between contexts, respectively catching only the first and both the
notions.

Definition 3.3.16. If Γ ctx and ∆ ctx are derivable, then Γ ≈ ∆, i.e., the Γ
and ∆ are permutation equivalent, if and only if ∆ is a rearrangement of Γ.

Fact 3.3.17. ≈ is an equivalence relation.

Proof. Immediate since permutations form a group.

Definition 3.3.18. If Γ = x1 : A1, . . . , xn : An and ∆ = x1 : B1, . . . , xn : Bn

are derivable, then Γ ∼ ∆, i.e., the Γ and ∆ are equivalent, if and only if
∆ ≈ Γ′ = x1 : C1, . . . xn : Cn and x1 : A1, . . . , xj : Aj ⊢ Aj+1 ≡ Cj+1 : Ui for every
0 6 j < n.

Fact 3.3.19. ∼ is an equivalence relation.

Definition 3.3.20. Two judgements Γ ⊢ a:A and ∆ ⊢ b:B are called equivalent
when Γ ∼ ∆, and the judgements Γ ⊢ a ≡ b : A and Γ ⊢ A ≡ B : Ui are derivable.

The abbreviated notation a ≡ b, used when the missing pieces are clear,
means that there are a context Γ and a type A such that Γ ⊢ a ≡ b : A.

CHAPTER 3. SYNTAX 35

The previous results about contexts allow to obtain two structural properties
of the calculus, illustrated in the following.

Universes a la Russell lead to possible ambiguities: it may happen, in some
particular cases, that a term c belongs to two types C and D such that a
judgement of the form Γ ⊢ C ≡ D : T cannot be derived. The trivial example
is when c is a type and c : Ui, c : Ui+1. The following result states when this
situation may arise.

Proposition 3.3.21. Let Γ ⊢ c : C and Γ ⊢ c : D be two derivable judgements
in the basic system. Then, it holds one of the following

1. Γ ⊢ C ≡ D : Ui;

2. Γ ⊢ C ≡ Π(x : G)l. Uj : Uj+1 and Γ ⊢ D ≡ Π(x : G)l. Uk : Uk+1. Notice that,
if l = 0, then C ≡ Uj and D ≡ Uk.

Proof. By induction on the structure of derivation of Γ ⊢ c :C. By Lemma 3.3.7,
Γ ⊢ c : D has to be similar to Γ ⊢ c : C. In particular

• If the last rule applied is Vble or k−intro, then the only possibilities to
obtain Γ ⊢ c : D are:

– when Γ ⊢ C ≡ D : Ui, applying ≡−subst and falling in case (1);

– when C ≡ Uj and D ≡ Uk, by repeated applications of U−cumul

and ≡−subst, obtaining case (2) with l = 0.

• If the last rule applied is ≡−subst, then by the premises Γ ⊢ c : A and
Γ ⊢ A ≡ C : Ui. If Γ ⊢ c : D then, by induction hypothesis on Γ ⊢ c : A,
there are two possibilities:

– if Γ ⊢ A ≡ D : Ui then, by ≡−sym and ≡−trans, Γ ⊢ C ≡ D : Ui,
which is case (1);

– if A ≡ Π(x : G)l. Uj and D ≡ Π(x : G)l. Uk then, by ≡−sym and
≡−trans, C ≡ Π(x : G)l. Uj , which is case (2).

• If the last rule applied is U−intro, U−cumul, or Π−form, then C = Ui+1,
and the only possibilities to obtain Γ ⊢ c : D are

– by ≡−subst if Γ ⊢ Ui+1 ≡ D : Ui+2, leading to case (1);

– by repeated applications of U−cumul and ≡−subst since D ≡ Uk by
Lemma 3.3.7; this is case (2).

• If the last rule applied is Π−intro then C = Πx : A. B, and the only
possibilities to have Γ ⊢ c : D are:

– when Γ, x : A ⊢ B ≡ B′ : Ui and D ≡ Πx : A. B′ applying Π−form−eq

and ≡−subst, falling in case (1);

– when B ≡ Π(x : G)l.Uj , B′ = Π(x : G)l. Uk, D ≡ Πx : A. B′ and, by
induction hypothesis, Γ, x : A ⊢ b : B and Γ, x : A ⊢ b : B′. Then,
applying ≡−subst and Π−form, Γ ⊢ c : Πx : A. Π(x : G)l. Uj and
Γ ⊢ c : Πx : A. Π(x : G)l. Uk, which is case (2).

CHAPTER 3. SYNTAX 36

• If the last rule applied is Π−elim, then C = B[a/x], and the only possibil-
ities to have Γ ⊢ c : D are when, by induction hypothesis, Γ ⊢ f : Πx : A. B,
Γ ⊢ f : Πx : A. B′ and D ≡ B′[a/x]. This can lead to two different cases:

– Γ, x : A ⊢ B ≡ B′ : Ui. Then by Π−intro−eq, Π−comp and ≡−trans

we obtain B[a/x] ≡ D, i.e., case (1);

– B ≡ Π(x : G)l. Uj and B′ ≡ Π(x : G)l. Uk. Then, by Π−elim, Γ ⊢
f a : (Π(x : G)l. Uj)[a/x] and Γ ⊢ f a : (Π(x : G)l. Uk)[a/x]. Since
(Π(x : G)l. Uj)[a/x] = Π(x : G[a/x])l. Uj , this is case (2).

The following result shows that every descending chain such that Γ ⊢ aj+1 :aj ,
j ∈ N, is finite. Of course, it does not hold with ascending chains: universes
form an infinite ascending chain such that Γ ⊢ aj : aj+1.

Proposition 3.3.22. Every sequence {aj}j such that Γ ⊢ aj+1 : aj for every j
is finite.

Proof. By contradiction, let the sequence be infinite. Then, Γ ⊢ aj : Uij

for every j ∈ N by Proposition 3.3.8. By Proposition 3.3.21, Γ ⊢ Uij+1
≡

Π(x : Gj+1)lj+1
. Ukj+1

: Ukj+1+1 and Γ ⊢ aj ≡ Π(x : Gj+1)lj+1
. Uhj+1

: Uhj+1+1,
possibly with lj+1 = 0 and kj+1 = hj+1, for every j ∈ N. Hence, by ≡−subst

and Corollary 3.3.10 (and omitting the first term), the sequence {aj}j∈N can
be rewritten as {Π(x : Gj)lj

. Uhj
}j∈N with

Γ ⊢ Π(x : Gj+1)lj+1
. Uhj+1

: Π(x : Gj)lj
. Uhj

. (3.1)

By Lemma 3.3.7:

• if lj+1 = 0, then (3.1) is obtained by U−intro after a sequence of ≡−subst

and U−cumul, so Γ ⊢ Π(x : Gj)lj
. Uhj

≡ Uδj
: Uδj+1;

• otherwise (3.1) is derived by Π−form after a sequence of ≡−subst and
U−cumul, so Γ, (x : Gj+1)lj+1

⊢ Π(x : Gj)lj
. Uhj

≡ Uδj
: Uδj+1. By Theo-

rem 3.3.13 and Proposition 3.3.14, Γ ⊢ Π(x : Gj)lj
. Uhj

≡ Uδj
: Uδj+1.

Hence, by ≡−subst and Corollary 3.3.10, the sequence simplifies to {Uδj
}j∈N

with Γ ⊢ Uδj+1
: Uδj

. Thus, by Lemma 3.3.7, {δj}j∈N is an infinite descending
chain in N, impossible.

Corollary 3.3.23. If Γ is a derivable context, then there is a derivable judge-
ment Γ ⊢ a : A such that a is not inhabited.

Proof. Immediate, by Proposition 3.3.22.

3.4 Parallel substitution

The notion of substitution in Definition 3.3.2 is the standard on a single
variable. However, when we consider multiple substitutions, which substitute
many variables at once, there are many different ways to define them. If
[a1/x1, . . . , an/xn] is such a substitution, we may define it on terms as:

t[a1/x1, . . . , an/xn] = (· · · ((t[a1/x1])[a2/x2]) · · ·)[an/xn]

CHAPTER 3. SYNTAX 37

performing the substitution in a sequence. This kind of multiple substitution is
therefore called sequential.

However, sequential substitution poses a number of problems when doing
proof theoretical analysis: in fact, if x2 ∈ FV(a1) then x2 gets substituted in a1,
while x1 does not get substituted in a2 even if x1 ∈ FV(a2). This asymmetrical
behaviour causes the above mentioned difficulties. Hence, a different notion of
multiple substitution is required: parallel substitution. Although technically
more complex, its behaviour is symmetric: it operates only on the free variables
in t leaving untouched the ai’s.

As said the definition of parallel substitution is more complex, requiring to
mark the substituting terms so that they do not get substituted. The marking
naturally generates a notion of delayed substitution: the result of a substitution
leaves marked terms in the result, and we are required to cancel the marking,
or to reify them before getting a proper term. Hence, a delayed substitution is
completed when reified, and this action could take place not immediately after
the substitution occurs.

Definition 3.4.1 (Delayed substitution). If a and b are terms, and x is a
variable, then a[b/x]d is inductively defined as:

• if x 6∈ DV(a), then a[b/x]d = a;

• if a = k constant of type A with x ∈ DV(k), then k[b/x]d is another
constant of type A[b/x] (note that the second substitution is not delayed);

• if a = x then a[b/x]d = ♯b;

• if a = f c then a[b/x]d = f [b/x]d c[b/x]d;

• if a = λy : C. d then a[b/x]d = λy : C[b/x]d. d[b/x]d provided y 6∈ DV(b);

• if a = Πy : C. d then a[b/x]d = Πy : C[b/x]d. d[b/x]d provided y 6∈ DV(b);

• if a = ♯c then a[b/x]d = a.

The same remarks of Definition 3.3.2 apply, and delayed substitution is extended
to typed terms and judgements accordingly.

The ♯ operator marks a term, and it lies outside the syntax, so the result
of a delayed substitution is not a term, properly speaking. Also, it is worth
noticing that a delayed substitution naturally applies to already marked terms.

Definition 3.4.2 (Reification). If t is a marked term, then Λ(t) is inductively
defined as the operation removing the ♯ marks from t:

• if t is a variable or a constant, Λ(t) = t;

• if t = a b, Λ(t) = Λ(a) Λ(b);

• if t = λx : A. b, Λ(t) = λx : Λ(A). Λ(b);

• if t = Πx : A. b, Λ(t) = Πx : Λ(A). Λ(b);

• if t = ♯a then Λ(t) = a.

Reification is extended to typed terms and judgements in the obvious way.

CHAPTER 3. SYNTAX 38

On a single-variable delayed substitution coincides with the usual notion.

Fact 3.4.3. Λ(a[b/x]d) = a[b/x].

Proof. Straightforward induction on delayed substitutions.

At this point, parallel substitution can be easily defined. It is convenient to
keep separate two notions: parallel and delayed parallel substitutions, which
are related as in Fact 3.4.3.

Definition 3.4.4 (Delayed parallel substitution). Let a1, . . . , an, t be terms,
and let x1, . . . , xn be distinct variables. Then

t[a1/x1, . . . , an/xn]d = (· · · (t[a1/x1]d)[a2/x2]d · · ·)[an/xn]d .

Extensions to typed terms and judgements are obvious.

Definition 3.4.5 (Parallel substitution). Let a1, . . . , an, t be terms, and let
x1, . . . , xn be distinct variables. Then

t[a1/x1, . . . , an/xn] = Λ (t[a1/x1, . . . , an/xn]d) .

Extensions to typed terms and judgements are as before.

It is worth remarking how multiple substitutions are finite: in Martin-Löf
type theory the only variables which may be affected by substitutions are those
appearing in the context part of the substituted object. This observation leads
to equip substitutions with a reference context. If Γ is a context, a substitution
[a1/x1, . . . , an/xn], delayed or not, is such that x1, . . . , xn occur in Γ in the
same order.

We need to perform two operations on multiple substitutions: composition
(◦) and subtraction (\). Although they can be defined more in general, we
impose two constraints: the two operands are both substitutions on the same
reference context, and the second operand is a substitution of a single variable.
These constraints are what we use in the rest of the dissertation, so we leave
the straightforward generalisations to the reader.

Definition 3.4.6 (Composition). If [a1/x1, . . . , an/xn]d and [b/xk]d are delayed
parallel substitutions on y1 : A1, . . . , ym : Am, with xk 6∈ {x1, . . . , xn}, then
[a1/x1, . . . , an/xn]d ◦ [b/xk]d = [a1/x1, . . . , aj/xj , b/xk, aj+1/xj+1, . . . , an/xn]d,
with xk inserted in the right position according to the order given by y1, . . . , ym.

Definition 3.4.7 (Subtraction). If [a1/x1, . . . , an/xn]d and [b/xk]d are delayed
parallel substitutions on y1 : A1, . . . , ym : Am, with b = ai if 1 6 k 6 n, then
[a1/x1, . . . , an/xn]d \ [b/xk]d = [a1/x1, . . . , ak−1/xk−1, ak+1/xk+1, . . . , an/xn]d
if 1 6 k 6 n and [a1/x1, . . . , an/xn]d otherwise.

Since composition and subtraction have been defined just in the delayed
case, we usually drop the subscript when the operations are used, since the
nature of substitutions will be clear. Also, we will use “x is in the domain of σ”
when σ(x) 6= x.

Proposition 3.4.8. If σ is a delayed parallel substitution on Γ, then (σ \
[σ(x)/x]) ◦ [σ(x)/x] = σ.

CHAPTER 3. SYNTAX 39

Proof. Immediate by unfolding Definitions 3.4.6 and 3.4.7.

Fact 3.4.9. If σ is a delayed parallel substitution on Γ and x is in the domain
of σ, then

(Γ ⊢ t : A)σ = (Γ[σ(x)/x] ⊢ t[σ(x)/x] : A[σ(x)/x])(σ \ [σ(x)/x]) .

Proof. Obvious consequence of Proposition 3.4.8.

Proposition 3.4.10. If σ and [a/x] are delayed parallel substitutions on Γ,
and x in not in the domain of σ, then

(σ ◦ [σ(x)/x]) \ [σ(y)/y] = (σ \ [σ(y)/y]) ◦ [σ(x)/x]

for every y in the domain of σ.

Proof. Immediate by unfolding Definitions 3.4.6 and 3.4.7.

Proposition 3.4.11. If σ is a delayed parallel substitution on Γ, and x, y are
distinct variables in the domain of σ, then

(σ \ [σ(x)/x]) \ [σ(y)/y] = (σ \ [σ(y)/y]) \ [σ(x)/x] .

Proof. Again, immediate by unfolding Definitions 3.4.6 and 3.4.7.

In the following of the dissertation, we drop the “parallel” adjective when
speaking about substitutions. However, when delayed (parallel) substitutions
are used, this will be made explicit either in the discourse or in the notation.
When ambiguity in this respect helps understanding, we will be ambiguous,
principally to alleviate notation, but in the fundamental definitions and in the
crucial passages, ambiguities will always be resolved.

3.5 Canonical inductive types

The end of this chapter is devoted to show how the canonical inductive types
can be translated in our syntax, see Section 3.2. For the canonical rules, we
recall the Appendix of [95]. Except for W-types, the translation is immediate,
and it is evident that our rules are equivalent to the usual ones.

Dependent sum

The usual syntax does not use constants, so Σx : A. B is an abbreviation
for Σ A (λx : A. B), and (a, b) stands for pair A B a b. Here, we will use the
unabbreviated syntax to make explicit the inductive nature of Σ-types. The
dependent sum inductive type is total and non-recursive.

Γ ⊢ (ΠA : Ui. ΠB : (A → Ui) . Ui) : Ui+1
Σ−form

Γ ⊢ Σ : (ΠA : Ui. ΠB : (A → Ui) . Ui)

The conclusion could be rewritten as Γ ⊢ Σ : (ΠA : Ui. (A → Ui) → Ui).

Γ ⊢ (ΠA : Ui. ΠB : (A → Ui) . Πa : A. Πb : B a. Σ A B) : Ui+1
Σ−intro

Γ ⊢ pair : (ΠA : Ui. ΠB : (A → Ui) . Πa : A. Πb : B a. Σ A B)

CHAPTER 3. SYNTAX 40

The conclusion could be rewritten as

Γ ⊢ pair : (ΠA : Ui. ΠB : (A → Ui) . Πa : A. B a → Σ A B) .

Γ ⊢
(

ΠA : Ui. ΠB : (A → Ui).
ΠC : (ΠA : Ui. ΠB : (A → Ui). Σ A B → Ui) .
Πc1 : (ΠA : Ui. ΠB : (A → Ui). Πa : A. Πb : B a.

C A B (pair A B a b)).
Πe : Σ A B. C A B e

)

: Ui+1
Σ−elim

Γ ⊢ indΣ :
(

ΠA : Ui. ΠB : (A → Ui).
ΠC : (ΠA : Ui. ΠB : (A → Ui). Σ A B → Ui) .
Πc1 : (ΠA : Ui. ΠB : (A → Ui). Πa : A. Πb : B a.

C A B (pair A B a b)).
Πe : Σ A B. C A B e

)

Γ ⊢ C : (ΠA : Ui. ΠB : (A → Ui). Σ A B → Ui)
Γ ⊢ c1 : (ΠA : Ui. ΠB : (A → Ui). Πa : A. Πb : B a. C A B (pair A B a b))
Γ ⊢ pair A′ B′ a′ b′ : Σ A′ B′

Σ−comp
Γ ⊢ indΣ A′ B′ C c1 (pair A′ B′ a′ b′) ≡

c1 A′ B′ a′ b′ : C A′ B′ (pair A′ B′ a′ b′)

Γ ⊢ e : Σ A′ B′

Σ−uniq
Γ ⊢ indΣ A′ B′ (λA : Ui. λB : (A → Ui). λx : Σ A B. Σ A B)

(λA : Ui. λB : (A → Ui). λa : A. λb : B a. pair A B a b)
e ≡ e : Σ A′ B′

Coproduct

The usual syntax is A+B, which abbreviates + A B, and inl a, inr b, abbreviating
inl A B a and inr A B b, respectively. The coproduct inductive type is total and
non-recursive.

Γ ⊢ (ΠA : Ui. ΠB : Ui. Ui) : Ui+1
+−form

Γ ⊢ + : (ΠA : Ui. ΠB : Ui. Ui)

The conclusion can be rewritten as Γ ⊢ + : Ui → (Ui → Ui).

Γ ⊢ (ΠA : Ui. ΠB : Ui. Πa : A. + A B) : Ui+1
+−intro1Γ ⊢ inl : (ΠA : Ui. ΠB : Ui. Πa : A. + A B)

Γ ⊢ (ΠA : Ui. ΠB : Ui. Πb : B. + A B) : Ui+1
+−intro2Γ ⊢ inr : (ΠA : Ui. ΠB : Ui. Πb : B. + A B)

The conclusions can be rewritten, respectively, as Γ ⊢ inl : ΠA : Ui. ΠB : Ui. A →
+ A B and Γ ⊢ inr : ΠA : Ui. ΠB : Ui. B → + A B.

CHAPTER 3. SYNTAX 41

Γ ⊢
(

ΠA : Ui. ΠB : Ui.
ΠC : (ΠA : Ui. ΠB : Ui. + A B → Ui) .
Πc1 : (ΠA : Ui. ΠB : Ui. Πa : A. C A B (inl A B a)) .
Πc2 : (ΠA : Ui. ΠB : Ui. Πb : B. C A B (inr A B b)) .
Πe : + A B. C A B e

)

: Ui+1
+−elim

Γ ⊢ ind+ :
(

ΠA : Ui. ΠB : Ui.
ΠC : (ΠA : Ui. ΠB : Ui. + A B → Ui) .
Πc1 : (ΠA : Ui. ΠB : Ui. Πa : A. C A B (inl A B a)) .
Πc2 : (ΠA : Ui. ΠB : Ui. Πb : B. C A B (inr A B b)) .
Πe : + A B. C A B e

)

Γ ⊢ C : (ΠA : Ui. ΠB : Ui. + A B → Ui)
Γ ⊢ c1 : (ΠA : Ui. ΠB : Ui. Πa : A. C A B (inl A B a))
Γ ⊢ c2 : (ΠA : Ui. ΠB : Ui. Πb : B. C A B (inr A B b))
Γ ⊢ inl A′ B′ a′ : + A′ B′

+−comp1Γ ⊢ ind+ A′ B′ C c1 c2 (inl A′ B′ a′) ≡
c1 A′ B′ a′ : C A′ B′ (inl A′ B′ a′)

Γ ⊢ C : (ΠA : Ui. ΠB : Ui. + A B → Ui)
Γ ⊢ c1 : (ΠA : Ui. ΠB : Ui. Πa : A. C A B (inl A B a))
Γ ⊢ c2 : (ΠA : Ui. ΠB : Ui. Πb : B. C A B (inr A B b))
Γ ⊢ inr A′ B′ b′ : + A′ B′

+−comp2Γ ⊢ ind+ A′ B′ C c1 c2 (inr A′ B′ b′) ≡
c2 A′ B′ b′ : C A′ B′ (inr A′ B′ b′)

Γ ⊢ e : + A′ B′

+−uniq
Γ ⊢ ind+ A′ B′

(λA : Ui. λB : Ui. λx : + A B. + A B)
(λA : Ui. λB : Ui. λa : A. inl A B a)
(λA : Ui. λB : Ui. λb : B. inr A B b) e ≡ e : + A′ B′

Empty type

The empty type is total and non-recursive, and shows how the construction of
inductive types behaves on the boundaries of the definition.

Γ ⊢ Ui : Ui+1
0−form

Γ ⊢ 0 : Ui

Γ ⊢ (ΠC : (0 → Ui) . Πe : 0. C e) : Ui+1
0−elim

Γ ⊢ ind0 : (ΠC : (0 → Ui) . Πe : 0. C e)

Γ ⊢ e : 0
0−uniq

Γ ⊢ ind0 (λx : 0. 0) e ≡ e : 0

CHAPTER 3. SYNTAX 42

Unit type

The unit type is total and non-recursive. It is the prototypical example of
enumerations.

Γ ⊢ Ui : Ui+1
1−form

Γ ⊢ 1 : Ui

Γ ⊢ 1 : Ui
1−intro

Γ ⊢ ⋆ : 1

Γ ⊢ (ΠC : (1 → Ui) . Πc1 : C ⋆. Πe : 1. C e) : Ui+1
1−elim

Γ ⊢ ind1 : (ΠC : (1 → Ui) . Πc1 : C ⋆. Πe : 1. C e)

Γ ⊢ C : 1 → Ui Γ ⊢ c1 : C ⋆ Γ ⊢ ⋆ : 1
1−comp

Γ ⊢ ind1 C c1 ⋆ ≡ c1 : C ⋆

Γ ⊢ e : 1
1−uniq

Γ ⊢ ind1 (λx : 1. 1) ⋆ e ≡ e : 1

Natural numbers

The inductive type of natural numbers is total and recursive. In fact, it is the
prototypical example of recursive types.

Γ ⊢ Ui : Ui+1
N−form

Γ ⊢ N : Ui

Γ ⊢ N : Ui
N−intro1Γ ⊢ 0 : N

Γ ⊢ (Πn : N.N) : Ui+1
N−intro2Γ ⊢ succ : (Πn : N.N)

Γ ⊢
(

ΠC : (N → Ui) . Πc1 : C 0.
Πc2 : (Πx : N. Πy : C x. C (succ x)) . Πe : N. C e

)

: Ui+1
N−elim

Γ ⊢ indN :
(

ΠC : (N → Ui) . Πc1 : C 0.
Πc2 : (Πx : N. Πy : C x. C (succ x)) . Πe : N. C e

)

Γ ⊢ C : N → Ui Γ ⊢ 0 : N
Γ ⊢ c1 : C 0 Γ ⊢ c2 : (Πx : N. Πy : C x. C (succ x))

N−comp1Γ ⊢ indN C c1 c2 0 ≡ c1 : C 0

Γ ⊢ C : N → Ui Γ ⊢ succ n : N
Γ ⊢ c1 : C 0 Γ ⊢ c2 : (Πx : N. Πy : C x. C (succ x))

N−comp2Γ ⊢ indN C c1 c2 (succ n) ≡ c2 n (indN C c1 c2 n) : C (succ n)

Γ ⊢ e : N
N−uniq

Γ ⊢ indN (λx : N.N) 0 (λx : N. λy : N. succ x) e ≡ e : N

CHAPTER 3. SYNTAX 43

Identity types

The usual notation a =A b is formally rendered as = A a b, emphasising that
identity acts as a functional. The identity inductive type is partial and non-
recursive, providing the prototypical example of partial inductive types.

Γ ⊢ (ΠA : Ui. Πa : A. Πb : A. Ui) : Ui+1
=−form

Γ ⊢ = : (ΠA : Ui. Πa : A. Πb : A. Ui)

Γ ⊢ (ΠA : Ui. Πa : A. = A a a) : Ui+1
=−intro

Γ ⊢ refl : (ΠA : Ui. Πa : A. = A a a)

Γ ⊢
(

ΠA : Ui. Πa : A. Πb : A.
ΠC : (ΠA : Ui. Πa : A. Πb : A. = A a b → Ui) .
Πc1 : (ΠA : Ui. Πa : A. C A a a (refl A a)) .
Πe : = A a b. C A a b e

)

: Ui+1
=−elim

Γ ⊢ ind= :
(

ΠA : Ui. Πa : A. Πb : A.
ΠC : (ΠA : Ui. Πa : A. Πb : A. = A a b → Ui) .
Πc1 : (ΠA : Ui. Πa : A. C A a a (refl A a)) .
Πe : = A a b. C A a b e

)

Γ ⊢ C : (ΠA : Ui. Πa : A. Πb : A. = A a b → Ui)
Γ ⊢ c1 : (ΠA : Ui. Πa : A. C A a a (refl A a))
Γ ⊢ refl A′ a′ : = A′ a′ a′

=−comp
Γ ⊢ ind= A′ a′ a′ C c1 (refl A′ a′) ≡ c1 A′ a′ : C A′ a′ a′ (refl A′ a′)

Γ ⊢ e : = A′ a′ b′

=−uniq
Γ ⊢ ind= A′ a′ b′ (λA : Ui. λa : A. λb : A. λx : = A a b. = A a b)

(λA : Ui. λa : A. refl A a) e ≡ e : = A a b

Well orderings

The W inductive type is total and recursive.

Γ ⊢ (ΠA : Ui. ΠB : (A → Ui). Ui) : Ui+1
W−form

Γ ⊢ W : (ΠA : Ui. ΠB : (A → Ui). Ui)

Γ ⊢ (ΠA : Ui. ΠB : (A → Ui). Πa : A.
Πv : (Πy : B a. W A B) . W A B) : Ui+1

W−intro
Γ ⊢ sup : (ΠA : Ui. ΠB : (A → Ui). Πa : A.

Πv : (Πy : B a. W A B) . W A B)

CHAPTER 3. SYNTAX 44

Γ ⊢
(

ΠA : Ui. ΠB : (A → Ui).
ΠC : (ΠA : Ui. ΠB : (A → Ui). W A B → Ui) .
Πc1 : (ΠA : Ui. ΠB : (A → Ui). Πa : A.

Πv : (Πy : B a. W A B) .
Πz : (Πy : B a. C A B (v y)). C A B (sup A B a v)).

Πe : W A B. C A B e
)

: Ui+1
W−elim

Γ ⊢ indW :
(

ΠA : Ui. ΠB : (A → Ui).
ΠC : (ΠA : Ui. ΠB : (A → Ui). W A B → Ui) .
Πc1 : (ΠA : Ui. ΠB : (A → Ui). Πa : A.

Πv : (Πy : B a. W A B) .
Πz : (Πy : B a. C A B (v y)). C A B (sup A B a v)).

Πe : W A B. C A B e
)

Γ ⊢ C : (ΠA : Ui. ΠB : (A → Ui). W A B → Ui)
Γ ⊢ c1 :

(

ΠA : Ui. ΠB : (A → Ui). Πa : A.
Πv : (Πy : B a. W A B) .
Πz : (Πy : B a. C A B (v y)). C A B (sup A B a v)

)

Γ ⊢ sup A′ B′ a′ v′ : W A′ B′

W−comp
Γ ⊢ indW A′ B′ C c1 (sup A′ B′ a′ v′) ≡

c1 A′ B′ a′ v′ (λy : B′a′. indWA′ B′ C c1 (v′ y)) :
C A′ B′ (sup A′ B′ a′ v′)

Γ ⊢ e : W A′ B′

W−uniq
Γ ⊢ indW A′ B′ (λA : Ui. λB : (A → Ui). λx : W A B. W A B)

(

λA : Ui. λB : (A → Ui). λa : A. λv : (Πy : B a. W A B) .
λz : (Πy : B a. W A B). sup A B a v

)

e ≡ e : W A′ B′

To check that the present formalisation is equivalent to the usual one is easy
by comparing with [77, Chapter 15]. As a side note, not further developed in
this dissertation, W-types allow to predicatively simulate the construction of
other data types along the lines of [23], but not all of them, as shown in [78].

Chapter 4

Normalisation

This chapter is devoted to prove a normalisation theorem for the system
introduced in Chapter 3.

Although Martin-Löf type theory has been deeply and widely studied, a
normalisation result for the system used in [95] or, equivalently, for the one
used in this thesis is folklore as no full proof can be found in the current
literature. Indeed, although Section A.4 of [95] discusses normalisation and its
consequences, it does not prove the results, and the shape of the presentation
strongly suggests that the normalisation theorem is derived from the one in [69],
to which the main text of [95] refers to in the first chapter. The type system
of [69] differs from our system (and the one used in [95]) in a few aspects.
In particular, we use η-reduction, embodied in the uniqueness rule for the
dependent product types; also, the notion of conversion in [69] is much weaker
than ours, not admitting conversions under λ. The first aspect is delicate, but
the second one is crucial, preventing a direct extension of the proof in [69] to a
strong normalisation result for our system. These problems have been addressed
in [1] and [2]. There, a normalisation result has been proved for a type system
which has full β- and η-conversions, but it has a unique universe, which marks
a crucial difference from our system. In fact, an irreducible type A, regarded as
term, has the universe as a type; in a system with a cumulative hierarchy of
universes a la Russell, A lies in Uj for every j > i for some i, that is, A has an
infinite number of distinct and irreducible types. This simple fact prevents to
affirm that terms have a unique type up to conversions, see Proposition 3.3.21,
a property that allows to separate the normalisation of types from the one of
terms. Hence, the construction of a universe of all types, see section 3.2 of [2],
is inadequate to cope with an infinite hierarchy of universes. We do not know
whether the mentioned construction could be appropriately adapted to solve
the problem.

The technique called normalisation-by-evaluation [20] is the tool to prove
the strong normalisation results in [69], [1], and [2]. The great advantage of
this technique, originally introduced by Peter Hancock [69], is that it does not
require a separate uniqueness result showing that normal forms are unique up
to α-conversion, or equivalently, are unique in the de Bruijn representation of
terms [41]. The separate uniqueness result is usually an instance of Church-
Rosser theorem [15], which poses a difficult combinatorial problem with a
complex notion of conversion like the one of Martin-Löf type theory, a fact
already remarked in [69].

Our proof uses Girard’s technique [43] based on reducibility candidates,
suitably enriched with a weak notion of evaluation to deal with dependent types.
The normalisation theorem says that every reduction sequence starting from a
judgement γ necessarily terminates after a finite number of steps, eventually

45

CHAPTER 4. NORMALISATION 46

yielding an irreducible judgement γ′ such that γ ≡ γ′ is provable. While [69],
[1], and [2] show that normal forms are unique, we prove the uniqueness only
up conversions, which is a strictly weaker result with respect to the cited works,
but perfectly matches with the semantics we propose in Chapter 5.

4.1 Reductions

The notion of reduction on terms is defined as one expects: the computation
and uniqueness rules can be oriented, and the corresponding reductions are
thus obtained; a reduction may be performed in the context, in the term(s), or
in the type of a judgement, and within another term.

Definition 4.1.1. The one-step reduction ✄1 is a binary relation on judgements
inductively defined as:

• β reduction, Γ ⊢ (λx : A. b) a : T ✄1 Γ ⊢ b[a/x] : T ;

• η reduction, Γ ⊢ (λx : A. f x) : T ✄1 Γ ⊢ f : T ;

• τ−comp reduction,

Γ ⊢ indτ T1 · · · Tn C c1 · · · ck (Ki T1 · · · Tn p1 · · · pm) : T

✄1 Γ ⊢ ci T1 · · · Tn p′
1 · · · p′

m : T ;

• τ−uniq reduction, Γ ⊢ indτ T1 · · · Tn . . . e : T ✄1 Γ ⊢ e : T ;

• Γ, x : A, ∆ ctx ✄1 Γ, x : A′, ∆ ctx if Γ ⊢ A : Ui ✄1 Γ ⊢ A′ : Ui;

• Γ ⊢ a : A ✄1 Γ′ ⊢ a : A if Γ ctx ✄1 Γ′ ctx;

• Γ ⊢ a ≡ b : A ✄1 Γ′ ⊢ a ≡ b : A if Γ ctx ✄1 Γ′ ctx;

• Γ ⊢ a : A ✄1 Γ ⊢ a : A′ if Γ ⊢ A : Ui ✄1 Γ ⊢ A′ : Ui;

• Γ ⊢ a ≡ b : A ✄1 Γ ⊢ a ≡ b : A′ if Γ ⊢ A : Ui ✄1 Γ ⊢ A′ : Ui;

• Γ ⊢ a ≡ b : A ✄1 Γ ⊢ a′ ≡ b : A if Γ ⊢ a : A ✄1 Γ ⊢ a′ : A;

• Γ ⊢ a ≡ b : A ✄1 Γ ⊢ a ≡ b′ : A if Γ ⊢ b : A ✄1 Γ ⊢ b′ : A;

• Γ ⊢ (Πx : A. B) : T ✄1 Γ ⊢ (Πx : A′. B) : T if Γ ⊢ A : Ui ✄1 Γ ⊢ A′ : Ui;

• Γ ⊢ (Πx :A. B) :T ✄1 Γ ⊢ (Πx :A. B′) :T when Γ, x :A ⊢ B :Ui ✄1 Γ, x :A ⊢
B′ : Ui;

• Γ ⊢ (λx : A. b) : T ✄1 Γ ⊢ (λx : A′. b) : T if Γ ⊢ A : Ui ✄1 Γ ⊢ A′ : Ui;

• Γ ⊢ (λx : A. b) : T ✄1 Γ ⊢ (λx : A. b′) : T if Γ, x : A ⊢ b : B ✄1 Γ, x : A ⊢ b′ : B;

• Γ ⊢ f a : T ✄1 Γ ⊢ f ′ a : T if Γ ⊢ f : F ✄1 Γ ⊢ f ′ : F ;

• Γ ⊢ f a : T ✄1 Γ ⊢ f a′ : T if Γ ⊢ a : A ✄1 Γ ⊢ a′ : A.

The reflexive and transitive closure of ✄1 is the reduction relation ✄, while
the reflexive, symmetric, and transitive closure of ✄1 is the congruence or
equivalence relation ∼, also called conversion. A judgement γ such that there is
no δ for which γ ✄1 δ is said to be irreducible or normal.

CHAPTER 4. NORMALISATION 47

Reductions can be localised: if Γ ⊢ a :A✄∆ ⊢ b :B, there are Γ ⊢ a :A✄∆ ⊢
a : A, Γ ⊢ a : A✄ Γ ⊢ b : A, and Γ ⊢ a : A✄ Γ ⊢ a : B. These reductions are often
abbreviated as Γ ✄ ∆, a ✄ b, and A ✄ B when the missing pieces are clear.

The empty context • ctx is irreducible; also, if Γ ctx and Γ ⊢ A : Ui are
irreducible, Γ ⊢ x : A with x a variable, and Γ ⊢ k : A with k a constant are
irreducible.

The link between ≡ and ∼ is that Γ ⊢ a ≡ b : A if and only if Γ ⊢ a : A ∼
Γ ⊢ b : A. Hence, ≡ is the internalisation of ∼, thus justifying the claim that
judgemental equality is the computational engine of Martin-Löf type theory.
The proof of the relation between ≡ and ∼ is presented in the following.

Proposition 4.1.2. If π : Γ ⊢ a ≡ b : A then Γ ⊢ a : A ∼ Γ ⊢ b : A.

Proof. By Proposition 3.3.8, Γ ⊢ a : A and Γ ⊢ b : A are derivable. Then, the
statement is proved by induction on π. Considering the last step of π, it must
be an instance of one of the following rules:

• ≡−refl: since ∼ is reflexive, the conclusion is immediate;

• ≡−sym, ≡−trans: since ∼ is symmetric and transitive, the induction
hypothesis yields the result;

• ≡−subst−eq: by induction hypothesis, Γ ⊢ a : B ∼ Γ ⊢ b : B and Γ ⊢
A : Ui ∼ Γ ⊢ B : Ui so the result is obtained appropriately composing the
reductions in these equivalences of judgements;

• Π−comp, Π−uniq, τ−compi, τ−uniq: immediate by Definition 4.1.1;

• in all the other cases, the result follows by induction hypothesis since ∼
is a congruence.

In the opposite direction, the proof is more complex. It depends on two
results which have been proved in the semantics: Π is one-to-one, and no product
converts to a universe, which are Corollaries 5.3.24 and 5.3.25, respectively.

It is an open question to show that Π is injective without using semantic
reasoning. Even with a single universe, see Corollary 15 in [2], this property
is proved “outside” the system. Similarly, it is folklore that universes are
distinct from other types, and it is perfectly reasonable to think so, as strange
phenomena appear. However, we have been unable till now to prove such
a result “inside” the system. It is worth remarking that Corollaries 5.3.24
and 5.3.25 are independent from the following propositions: the semantics in
Chapter 5 relies on the uniqueness of normal forms up to convertibility, while
the following results will show that, in a way, convertibility can be internalised
as judgemental equality.

Proposition 4.1.3. If π : Γ ⊢ t : Πx : A. B then π ends with a possibly empty
sequence of instances of ≡−subst after an instance of a rule introducing the
main operation in t.

Proof. By Lemma 3.3.7 and Corollary 5.3.25, such a sequence cannot contain
an instance of U−cumul.

Proposition 4.1.4. If Γ ⊢ λx : A. b : C then Γ ⊢ λx : A. b : Πx : A. B and
Γ ⊢ Πx : A. B ≡ C : Ui.

CHAPTER 4. NORMALISATION 48

Proof. Immediate consequence of Proposition 4.1.3.

Proposition 4.1.5. If Γ ⊢ indτ :C then Γ ⊢ indτ :Πx :A. B and Γ ⊢ Πx :A. B ≡
C : Ui. The same holds considering Γ ⊢ indτ a1 . . . an : C with a1, . . . , an the first
n parameters except the witness of τ , see Section 3.2.

Proof. Again, immediate consequence of Proposition 4.1.3.

Proposition 4.1.6. If Γ ⊢ a : A ✄1 Γ ⊢ b : A then Γ ⊢ a ≡ b : A.

Proof. By Lemma 3.3.7, the derivation of Γ ⊢ a : A terminates with a possibly
empty sequence of instances of ≡−subst and U−cumul after π : Γ ⊢ a : T in
which the last step introduces the main operator of t. Since the sequence affects
only the type T , it can be replicated to derive Γ ⊢ a ≡ b : A from Γ ⊢ a ≡ b : T
by ≡−subst−eq and U−cumul−eq. Hence, it suffices to prove Γ ⊢ a ≡ b : T : it
follows by induction on the one-step reduction:

• if Γ ⊢ (λx : C. d) e : A ✄1 Γ ⊢ d[e/x] : A, then π is an instance of Π−elim

with premises π1 : Γ ⊢ λx : C. d : Πx : E. D and π2 : Γ ⊢ e : E, and
T = D[e/x]. By Proposition 4.1.4, Γ ⊢ λx : C. d : Πx : C. F and Γ ⊢
Πx : C. F ≡ Πx : E. D : Ui. By Corollary 5.3.24, Γ ⊢ C ≡ E : Ui and
Γ, x : E ⊢ F ≡ D : Ui. Also, by construction Γ, x : C ⊢ d : F . By
≡−subst, Γ ⊢ e : C so Γ ⊢ (λx : C. d) e ≡ d[e/x] : F [e/x] by Π−comp. Also,
substituting in the proof, Γ ⊢ F [e/x] ≡ D[e/x] : Ui, thus Γ ⊢ a ≡ b : T by
≡−subst.

• if Γ ⊢ λx : C. f x : A ✄1 Γ ⊢ f : A then π is an instance of Π−intro with
premise Γ, x : C ⊢ f x : B. By Lemma 3.3.7, this is an instance of Π−elim

followed by a possibly empty sequence θ of instances of ≡−subst and
U−cumul. The premises are π1 : Γ, x : E ⊢ f : Πx : E. F and Γ, x : E ⊢ x : E.
Since Γ ⊢ f : A, x 6∈ FV(f) so π2 : Γ ⊢ f : Πx : E. F by Proposition 3.3.14
and Theorem 3.3.13. Thus, Γ ⊢ λx : E. f x ≡ f : Πx : E. F by ≡−sym and
Π−uniq. Applying the sequence θ, the result follows.

• if the reduction in the statement is an instance of τ−uniq, it has the form
π1 : Γ ⊢ indτ a1 . . . an e : A ✄1 Γ ⊢ e : A. The last step of π is an instance
of Π−elim from π1 : Γ ⊢ indτ a1 . . . an e : Πx : E. D and Γ ⊢ e : E. By
recursively applying Lemma 3.3.7 and Proposition 4.1.5 to π1, it follows
E ≡ T ≡ τ a1 . . . ak, a1, . . . , ak being the formation parameters, and thus
Γ ⊢ e : T by ≡−subst. Hence Γ ⊢ a ≡ b : T by τ−uniq.

• if the induction in the statement is an instance of τ−comp, the last
step of π is an instance of Π−elim from π1 : Γ ⊢ indτ a1 . . . an : Πx : E. F
and π2 : Γ ⊢ Ki b1 . . . bm : E. By recursively applying Lemma 3.3.7 and
Proposition 4.1.5 to π1, it follows that C1, c1, . . . , ck and Ki b1 . . . bm all
have the right types via ≡−subst. Hence Γ ⊢ a ≡ b : T by τ−comp.

To concretely show how the process works, we illustrate the case of
1−comp: Γ ⊢ ind1C c1 ∗ :A ✄1 Γ ⊢ c1 : A. Considering π, it is an instance
of Π−elim from π1 : Γ ⊢ ind1 C c1 : Πx0 : E0. F0 and π2 : Γ ⊢ ∗ : E0. By
Lemma 3.3.7 and Proposition 4.1.5 on π1, π3 : Γ ⊢ ind1 C : Πx1 : E1. F1,
π4 : Γ ⊢ c1 : E1 and F1[c1/x1] ≡ Πx0 : E0. F0. Repeating on π3, π5 : Γ ⊢
ind1 : Πx2 : E2. F2, π6 : Γ ⊢ C : E2, and F2[C/x1] ≡ Πx1 : E1. F1. By

CHAPTER 4. NORMALISATION 49

the same reasoning, π7 : Γ ⊢ ind1 : Πα : 1 → Ui, β : α ∗, γ : 1. αγ, and
Πα : 1 → Ui, β : α ∗, γ : 1. α γ ≡ Πx2 : E2. F2, so E2 ≡ 1 → Ui and
F2[C/x2] ≡ Πx1 : E1. F1 ≡ Πβ : C ∗, γ : 1. C γ by Corollary 5.3.24. Thus
Γ ⊢ C : 1 → Ui by ≡−subst. Continuing, E1 ≡ C ∗ and F1[c1/x1] ≡
Πx0 : E0. F0 ≡ Πγ : 1. C γ, thus Γ ⊢ c1 : C ∗ by ≡−subst. Finally, E0 ≡ 1
and F0[∗/x0] = T ≡ C ∗, thus Γ ⊢ ∗ : 1 by ≡−subst. Hence, 1−comp

yields the result.

• if Γ ⊢ f c : A ✄1 Γ ⊢ g d : A then π is an instance of Π−elim with premises
π1 : Γ ⊢ f : Πx : E. F and π2 : Γ ⊢ c : E, with T = F [c/x]. If the one-step
reduction happens in f , by induction hypothesis π3 : Γ ⊢ f ≡ g : Πx : E. F
and π4 :Γ ⊢ c ≡ d :E by ≡−refl. On the contrary, if the reduction happens
in c, by induction hypothesis π4 :Γ ⊢ c ≡ d :E and π3 :Γ ⊢ f ≡ g :Πx :E. F
by ≡−refl. In both cases, Π−elim−eq on π3 and π4 yields the result.

• if Γ ⊢ λx :E. e :A✄1 Γ ⊢ λx :F. f :A then π is an instance of Π−intro from
Γ, x : E ⊢ e : B and T = Πx : E. B. If the one-step reduction happens in E,
by induction hypothesis π3 : Γ ⊢ E ≡ F : Ui and π4 : Γ, x : E ⊢ e ≡ f : B by
≡−refl. Oppositely, if the reduction happens in e, by induction hypothesis
π4 : Γ, x : E ⊢ e ≡ f : B and π3 : Γ ⊢ E ≡ F : Ui by ≡−refl. In both cases,
Π−intro−eq on π3 and π4 yields the result.

• if Γ ⊢ Πx : C. D : A ✄1 Γ ⊢ Πx : E. F : A, π is an instance of Π−form from
π1 :Γ ⊢ C :Ui and π2 :Γ, x :C ⊢ D :Ui. If the one-step reduction happens in
C, by induction hypothesis π3 :Γ ⊢ C ≡ E :Ui and π4 :Γ, x :C ⊢ D ≡ F :Ui

by ≡−refl. Otherwise the reduction happens in D, thus by induction
hypothesis π4 : Γ, x : C ⊢ D ≡ F : Ui and π3 : Γ ⊢ C ≡ E : Ui by ≡−refl.
In both cases, Π−form−eq on π3 and π4 yields the result.

The above result can be extended to arbitrary reductions as follows.

Corollary 4.1.7. If Γ ⊢ a : A ✄ Γ ⊢ b : A then Γ ⊢ a ≡ b : A.

Proof. Expanding the definition, Γ ⊢ a1 : A ✄1 · · · ✄1 Γ ⊢ an : A with a1 = a
and an = b. Then by induction on n:

• if n = 0 then necessarily a = b, so ≡−refl applied to the derivation of
Γ ⊢ a : A yields the result;

• if n > 0, then by induction hypothesis π1 : Γ ⊢ a ≡ an−1 : A, and by
Proposition 4.1.6 π2 : Γ ⊢ an−1 ≡ an : A, so ≡−trans applied to π1 and π2

yields the result.

The same happens when the reduction is performed in the type.

Proposition 4.1.8. If Γ ⊢ a : A ✄1 Γ ⊢ a : B then Γ ⊢ A ≡ B : Ui for some
i ∈ N.

Proof. By Proposition 3.3.9, Γ ⊢ A : Ui so Γ ⊢ A : Ui ✄1 Γ ⊢ B : Ui by Defini-
tion 4.1.1. By Proposition 4.1.6, Γ ⊢ A ≡ B : Ui.

Proposition 4.1.9. If Γ ⊢ a : A✄Γ ⊢ a : B then Γ ⊢ A ≡ B : Ui for some i ∈ N.

CHAPTER 4. NORMALISATION 50

Proof. Expanding the definition, Γ ⊢ a : A1 ✄1 · · · ✄1 Γ ⊢ a : An with A1 = A
and An = B. By Proposition 3.3.9, π′ : Γ ⊢ A : Ui. Then by induction on n:

• if n = 0 then necessarily A = B, so ≡−refl applied to π′ yields the result;

• if n > 0, then by induction hypothesis π1 : Γ ⊢ A1 ≡ An−1 : Ui, and by
Proposition 4.1.8 π2 : Γ ⊢ An−1 ≡ An : Ui, so ≡−trans applied to π1 and
π2 yields the result.

Thus, if the reduction involves both the term and the type, the above results
lead to the following corollary.

Corollary 4.1.10. If Γ ⊢ a :A✄Γ ⊢ b :B then Γ ⊢ a ≡ b :A and Γ ⊢ A ≡ B :Ui

for some i ∈ N.

Proof. By Proposition 4.1.9, Γ ⊢ A ≡ B : Ui. Hence, by ≡−subst and ≡−sym,
Γ ⊢ b : A. Since Γ ⊢ a : A ✄ Γ ⊢ b : A, by Corollary 4.1.7, Γ ⊢ a ≡ b : A.

Finally, the claimed relation between ≡ and ∼ is obtained.

Corollary 4.1.11. If Γ ⊢ a :A ∼ Γ ⊢ b :B then Γ ⊢ a ≡ b :A and Γ ⊢ A ≡ B :Ui.

Proof. Since Γ ⊢ a : A ∼ Γ ⊢ b : B can be written as (Γ ⊢ a : A) = (Γ ⊢
a0 : A0) ✄ Γ ⊢ a1 : A1 ✁ Γ ⊢ a2 : A2 ✄ · · · ✁ (Γ ⊢ an : An) = (Γ ⊢ b : B), the
statement is proved by induction on n:

• if n = 0 then a = b, so Γ ⊢ a ≡ b : A and Γ ⊢ A ≡ B : Ui by ≡−refl applied
to Γ ⊢ a : A and Γ ⊢ A : Ui, as for Proposition 3.3.9;

• if n = m + 1 then Γ ⊢ a ≡ am : A and Γ ⊢ A ≡ Am : Ui by induction
hypothesis. By Corollary 4.1.10 and possibly an application of ≡−sym,
Γ ⊢ am ≡ am+1 : Am and Γ ⊢ Am ≡ Am+1 : Ui, thus the result follows by
≡−subst−eq and ≡−trans.

Corollary 4.1.12. Γ ⊢ a ≡ b : A if and only if Γ ⊢ a : A ∼ Γ ⊢ b : A.

Proof. Evident by Corollary 4.1.11 and Proposition 4.1.2.

4.2 Strongly normalisable judgements

A judgement is strongly normalisable when every reduction starting from it
cannot be indefinitely extended. A formal system is strongly normalisable when
every judgement is so.

Definition 4.2.1 (Strongly normalisable). A judgement γ is strongly normal-
isable when every reduction sequence starting from it cannot be indefinitely
extended.

Since the ✄ relation has been defined as the reflexive and transitive closure
of the one-step reduction, every reduction is finite. However, the strong nor-
malisation property says that every reduction cannot be indefinitely extended:
it is a property of the collection of all the reductions from a judgement, and
not a property of a single reduction. This aspect justifies why the induction

CHAPTER 4. NORMALISATION 51

principle in the proof of the normalisation theorem must have an adequate
proof theoretical strength, see also [43].

The following proposition from Girard’s [43] characterises strongly normalis-
able judgements as those having a bound to the length of reductions starting
from them:

Proposition 4.2.2. The judgement γ0 is strongly normalisable if and only if
there is ν(γ0) ∈ N such that n 6 ν(γ0) for every reduction sequence γ0 ✄1 · · ·✄1

γn.

Proof. If ν(γ0) exists, every reduction sequence from γ0 is bounded by ν(γ0),
hence γ0 is strongly normalisable.

Conversely, the reduction sequences from γ0 can be organised in a directed
tree whose nodes are judgements and whose edges are redexes, with γ0 as root.
Since each redex in a judgement δ is a subterm of δ, and the collection of
all the subterms of δ is finite, the tree is finitely branching. Also, since γ0 is
strongly normalisable, each branch is finite. Hence the tree is finite by König’s
Lemma [57], and ν(γ0) is its height.

Occasionally, Γ ⊢ a : A may be said to be strongly normalisable on the
context, the term, or the type, when reductions are localised in these pieces.
The variants in the above definition and proposition are obvious.

In the following, Definition 4.2.1 and Proposition 4.2.2 are used indifferently
to characterise the notion of being strongly normalisable.

We remind that

Fact 4.2.3. If γ is irreducible, it is strongly normalisable.

Fact 4.2.4. If γ is strongly normalisable and every reduction from δ maps into
a reduction from γ, then δ is strongly normalisable.

More in general,

Fact 4.2.5. If γ1, . . . , γn are strongly normalisable1 and every reduction from
δ maps into reductions from γ1, . . . , γn, then δ is strongly normalisable.

As illustrated in Definition 4.1.1, a reduction is always confined in a term,
which may be the type part of a declaration in the context, or the term part of
a regular judgement, or one of the terms in a judgemental equality, or the type
in a judgement. When whatever term is applied to the term a, the resulting
term does not reduce as a whole, a is called neutral.

Definition 4.2.6 (Neutral term). A term a in a judgement Γ ⊢ a : A is neutral
when a b is not a redex for every term b such that Γ ⊢ a b : B for some B.

It is worth noticing how η reduction can be kept behind the scenes when
proving strong normalisation. In fact Γ ⊢ (λx : A. f x) : (Πx : A. B) is strongly
normalisable if and only if Γ ⊢ f : (Πx : A. B) is strongly normalisable, provided
x 6∈ FV(f), i.e., the second judgement is derivable. The argument is simple:
since Γ ⊢ (λx : A. f x) : (Πx : A. B) ✄1 Γ ⊢ f : (Πx : A. B) via η, every reduction
from one side can be mapped into a reduction from the other side. Thus, if one
side is strongly normalisable, so is the other side.

1Here, the fact that n ∈ N is essential

CHAPTER 4. NORMALISATION 52

4.3 The normalisation theorem

The normalisation theorem states that Martin-Löf type theory is strongly
normalisable. To simplify the proof of the normalisation theorem, a slightly
different calculus is used2. The only difference is that the ≡−subst is replaced
by

Γ ⊢ a : A Γ ⊢ A ≡ B : Ui Γ ⊢ A : Ui Γ ⊢ B : Ui
≡−subst

Γ ⊢ a : B

Because of Proposition 3.3.8, every proof from one calculus can be mapped into
an equivalent proof in the other calculus.

The proof of the normalisation theorem follows the guideline of [43], but
a number of enhancements have to be made. The first enhancement is in the
notion of reducibility candidates, which can be found in the next definition:
in this respect, we adopt the notation t ∈ Rσ

Γ(A), even if it is ambiguous,
because of its convenience. In fact, in the light of Section 3.4, it should be
Λ(t) ∈ Rσ

Λ(Γ)(Λ(A)), meaning that t, Γ, and A are reified with σ a delayed
substitution. This is precise but cumbersome, and therefore avoided.

Definition 4.3.1 (Reducibility candidates). The sets Rσ
Γ(A), whose elements

are called reducibility candidates, are defined when Γ ⊢ A : Ui and σ is a delayed
substitution on Γ such that σ(x) ∈ R

σ\[σ(x)/x]
Γ (A) whenever x is in the domain

of σ. The definition is by induction:

• if Γ ⊢ A : Ui ∼ Γ ⊢ x : Ui with x a variable in the domain of σ, then
tσ ∈ Rσ

Γ(A) if and only if Λ(Γ ⊢ t : A) and

tσ ∈ R
σ\[σ(x)/x]
Γ[σ(x)/x] (σ(x)) ;

• if Γ ⊢ A : Ui ∼ Γ ⊢ Πx : B. C : Ui with Λ((Γ ⊢ Πx : B. C : Ui)σ) strongly
normalisable and A does not fall in the previous case, then tσ ∈ Rσ

Γ(A)
if and only if Λ(Γ ⊢ t : A), Λ((Γ ⊢ t : A)σ) is strongly normalisable,
and for every B, C, b such that Γ ⊢ A : Ui ∼ Γ ⊢ Πx : B. C : Ui with
Λ((Γ ⊢ Πx : B. C : Ui)σ) strongly normalisable and bσ ∈ Rσ

Γ(B), (t b)σ ∈

R
σ◦[b/x]
Γ,x:B (C);

• otherwise the type A is said to be atomic and tσ ∈ Rσ
Γ(A) if and only if

Λ(Γ ⊢ t : A) and Λ((Γ ⊢ t : A)σ) is strongly normalisable.

As in [43], product types have to obey the law that their reducibility candi-
dates generate reducibility candidates when applied to reducibility candidates
of an appropriate type. However, the induction principle is more complex than
the one in [43]: viewing it as a construction process, first the collections Rσ

Γ for
atomic types are generated; then the product types are considered, with B and
C atomic; finally, the variable types generate their reducibility candidates from
the already constructed sets. The second and the third steps of the process are
iterated: in a finite amount of iterations each type A is necessarily considered
and its reducibility candidates, if any, are generated.

2In principle, this is not necessary. However, it lowers the complexity of induction in
Proposition 4.3.2.

CHAPTER 4. NORMALISATION 53

Here, a number of subtleties enter the picture. First, a type variable
which does not get substituted is atomic. Second, a reducibility candidate t is
evaluated, i.e., it does not contain variables in t that σ is going to modify, except
for those resulting in the evaluation: this is obtained collecting Λ(tσ) instead
of Λ(t). Hence, in the second clause, (t b)σ = (tσ) (bσ) since bσ ∈ Rσ

Γ(B), and
thus x 6∈ FV(b).

A glimpse through the definition shows that Rσ
Γ is empty if A or Γ are not

strongly normalisable. The purpose of the normalisation theorem is to show
that Rσ

Γ is always defined because Γ and A are always strongly normalisable,
and thus Rσ

Γ is empty exactly when A is an empty type and no variable x : A
lies in the context. Here, we are considering Γ and A up to the evaluation σ: we
should say “. . . if Λ(Aσ) and Λ(Γσ) are strongly normalisable . . . ”. Informally,
but not in the proofs and the definitions, we will often explain the results hiding
the role of evaluation.

The first and the second clauses are given up to conversions: “if A ∼ x
substituted variable . . . ” or “if A ∼ P strongly normalisable product type”.
Since ∼ is transitive, the definition is sound. However, at least in principle, the
choice of P is relevant: it is not, ex ante, a quotient on the set of types; it is a
partition without an explicit underlying equivalence relation. Of course, ex post,
it is easy to prove that it is a quotient, but the proof relies on the normalisation
theorem, the final result we are aiming to. This argument justifies why the
second clause have to consider all the suitable B, C, and b.

A natural question is why A in Rσ
Γ is not evaluated on σ: this choice allows

to reason on types before evaluation, and to consider terms before evaluation.
Hence, the overall shape of the argument in [43] can be applied with essentially
no changes. To ease notation, we will silently apply reification when needed.

Definition 4.3.1 suggests that Rσ
Γ(A) = Rσ

Γ(B) when A ∼ B. This property
allows to lift (CR1), (CR2), and (CR3) of [43] to types: since Γ ⊢ t : A implies
Γ ⊢ A : Ui by Proposition 3.3.9, these properties on terms can be transferred to
types. These informal statements are made precise in the following, starting
with:

Proposition 4.3.2. If tσ ∈ Rσ
Γ(A), Γ ⊢ A ≡ B : Ui, and (Γ ⊢ A ≡ B : Ui)σ is

strongly normalisable, then tσ ∈ Rσ
Γ(B).

Proof. By induction on the type A:

• A atomic: by Corollary 4.1.12, Γ ⊢ A : Ui ∼ Γ ⊢ B : Ui, so B is atomic,
the other two cases of Definition 4.3.1 being excluded by transitivity of ∼.
Since tσ ∈ Rσ

Γ(A), Γ ⊢ t : A and (Γ ⊢ t : A)σ is strongly normalisable by
Definition 4.3.1, so Γ ⊢ t : B by ≡−subst and (Γ ⊢ t : B)σ is strongly nor-
malisable since every reduction from it maps into a pair of reductions from
(Γ ⊢ t : A)σ and (Γ ⊢ A ≡ B : Ui)σ. Thus tσ ∈ Rσ

Γ(B) by Definition 4.3.1.

• A ∼ x substituted variable: then tσ ∈ Rσ
Γ(A) implies Γ ⊢ t : A and tσ ∈

R
σ\[σ(x)/x]
Γ[σ(x)/x] (σ(x)) by Definition 4.3.1. By Corollary 4.1.12, B ∼ A ∼ x

and Γ ⊢ t : B by ≡−subst hence tσ ∈ Rσ
Γ(B) by Definition 4.3.1.

• A converts to a strongly normalisable product type: as in the atomic
case, Γ ⊢ t : B and (Γ ⊢ t : B)σ is strongly normalisable. For every
C, D such that B ∼ (Πx : C. D) with (Γ ⊢ (Πx : C. D) : Ui)σ strongly

CHAPTER 4. NORMALISATION 54

normalisable, and cσ ∈ Rσ
Γ(C), since A ∼ (Πx : C. D) by transitivity of

∼, (t c)σ ∈ R
σ◦[c/x]
Γ,x:C (C) from tσ ∈ Rσ

Γ(A) and Definition 4.3.1. Hence,
tσ ∈ Rσ

Γ(B) by Definition 4.3.1.

The following Proposition 4.3.3 is (CR1) of Girard of [43], Proposition 4.3.4 is
(CR2), and Proposition 4.3.5 is (CR3), slightly adapted to cope with evaluations.

Proposition 4.3.3. If tσ ∈ Rσ
Γ(A) then Γ ⊢ t : A and (Γ ⊢ t : A)σ is strongly

normalisable.

Proof. By induction3 on the type A:

• A atomic or A product: immediate by Definition 4.3.1;

• A ∼ x: from tσ ∈ Rσ
Γ(A), Γ ⊢ t : A and tσ ∈ R

σ\[σ(x)/x]
Γ[σ(x)/x] (σ(x)) by

Definition 4.3.1. Since

Λ((Γ ⊢ t : x)σ) = Λ ((Γ[σ(x)/x] ⊢ t[σ(x)/x] : σ(x))(σ \ [σ(x)/x]))

by Fact 3.4.9, the right-hand side is strongly normalisable by induction
hypothesis, so is the left-hand side.

Proposition 4.3.4. If tσ ∈ Rσ
Γ(A) and Γ ⊢ t : A✄ Γ ⊢ t′ : A then t′σ ∈ Rσ

Γ(A).

Proof. By induction on the type A:

• A atomic: by Proposition 4.3.3, Γ ⊢ t : A and (Γ ⊢ t : A)σ is strongly
normalisable. By Corollary 4.1.10 and Proposition 3.3.8, Γ ⊢ t′ : A. Also
(Γ ⊢ t′ : A)σ is strongly normalisable since every reduction from it maps
into a reduction from (Γ ⊢ t : A)σ. Hence t′σ ∈ Rσ

Γ(A) by Definition 4.3.1.

• A ∼ x: by Definition 4.3.1, Γ ⊢ t : A and tσ ∈ Rσ′

Γ[σ(x)/x](σ(x)). As
in the atomic case, Γ ⊢ t′ : A. Clearly, Γ[σ(x)/x] ⊢ t[σ(x)/x] : σ(x) ✄
Γ[σ(x)/x] ⊢ t′[σ(x)/x] : σ(x), so by Fact 3.4.9 (t′[σ(x)/x])(σ \ [σ(x)/x]) =
t′σ ∈ R

σ\[σ(x)/x]
Γ[σ(x)/x] (σ(x)) by induction hypothesis. Thus t′σ ∈ Rσ

Γ(A) by
Definition 4.3.1.

• A product: as in the atomic case, Γ ⊢ t′ : A and (Γ ⊢ t′ : A)σ is strongly
normalisable. Let B, C be such that A ∼ Πx : B. C and (Γ ⊢ Πx :
B. C : Ui)σ is strongly normalisable, and let bσ ∈ Rσ

Γ(B). Then the
reduction Γ ⊢ t : A ✄ Γ ⊢ t′ : A maps into a reduction Γ, x : B ⊢ t b :
C[b/x]✄Γ, x :B ⊢ t′ b :C[b/x], both judgements derived by Π−elim on the
weakening of Γ ⊢ b : B, which follows by Proposition 4.3.3. Since (t b)σ ∈

R
σ◦[b/x]
Γ,x:B (C) by Definition 4.3.1 on tσ ∈ Rσ

Γ(A), (t′ b)σ ∈ R
σ◦[b/x]
Γ,x:B (C) by

induction hypothesis on C. Being B, C and b generic, t′σ ∈ Rσ
Γ(A) by

Definition 4.3.1.

Proposition 4.3.5. If (Γ ⊢ t : A)σ is neutral and t′σ ∈ Rσ
Γ(A) for every t′

such that Γ ⊢ t : A ✄1 Γ ⊢ t′ : A, then tσ ∈ Rσ
Γ(A).

Proof. By induction on the type A:

3From now on, we abbreviate the specifications of the clauses of Definition 4.3.1 for the
sake of conciseness.

CHAPTER 4. NORMALISATION 55

• A atomic: by hypothesis, Γ ⊢ t : A. If (Γ ⊢ t : A)σ is irreducible, it is
strongly normalisable and so t ∈ Rσ

Γ(A) by Definition 4.3.1. Otherwise,
every reduction in the term from (Γ ⊢ t : A)σ passes through some t′ as in
the statement. By Proposition 4.3.3, (Γ ⊢ t′ : A)σ is strongly normalisable.
Hence, every reduction from (Γ ⊢ t : A)σ maps into a reduction from
(Γ ⊢ t′ : A)σ for some t′. Since (Γ ⊢ t : A)σ contains a finite number of
redexes, the number of t′ to consider is finite, thus (Γ ⊢ t : A)σ is strongly
normalisable. Hence tσ ∈ Rσ

Γ(A) by Definition 4.3.1.

• A ∼ x: by hypothesis, Γ ⊢ t:A. If (Γ ⊢ t:A)σ is irreducible, tσ ∈ Rσ
Γ(A) as

in the atomic case. Otherwise, by Definition 4.3.1, t′σ ∈ R
σ\[σ(x)/x]
Γ[σ(x)/x] (σ(x))

for every t′ as in the statement. Then, by induction hypothesis, tσ ∈

R
σ\[σ(x)/x]
Γ[σ(x)/x] (σ(x)), hence tσ ∈ Rσ

Γ(A) by Definition 4.3.1.

• A product: let B, C such that A ∼ Πx : B. C with (Γ ⊢ Πx : B. C : Ui)σ
strongly normalisable, and let bσ ∈ Rσ

Γ(B). By Proposition 4.3.3, Γ ⊢ b :B
and (Γ ⊢ b : B)σ is strongly normalisable.

Considering the one-step reductions Γ, x : B ⊢ t b : C[b/x] ✄1 Γ, x : B ⊢ t′′ :
C[b/x], it follows that t′′σ ∈ R

σ◦[b/x]
Γ,x:B (C) by induction on ν ((Γ ⊢ b : B)σ):

– if Γ, x:B ⊢ t b:C[b/x]✄1Γ, x:B ⊢ t′ b:C[b/x] then (t′ b)σ ∈ R
σ◦[b/x]
Γ,x:B (C)

by Definition 4.3.1 on t′σ ∈ Rσ
Γ(A);

– if Γ, x:B ⊢ t b:C[b/x]✄1Γ, x:B ⊢ t b′ :C[b′/x] and Γ ⊢ b:B✄1Γ ⊢ b′ :B
then b′σ ∈ Rσ

Γ(B) by Proposition 4.3.4 on bσ ∈ Rσ
Γ(B). Since

ν((Γ ⊢ b′ : B)σ) < ν((Γ ⊢ b : B)σ), (t b′)σ ∈ R
σ◦[b/x]
Γ,x:B (C) by induction

hypothesis;

– being (Γ ⊢ t:A)σ neutral, (t b)σ is not a redex, thus all the possibilities
have already been considered.

Therefore, (t b)σ ∈ R
σ◦[b/x]
Γ,x:B (C) for every bσ ∈ Rσ

Γ(B) by induction hypoth-
esis on C. Since B, C and b are generic, Γ ⊢ t:A and (Γ ⊢ t:A)σ is strongly
normalisable as in the atomic case, tσ ∈ Rσ

Γ(A) by Definition 4.3.1.

Since, in Rσ
Γ, σ may only act on the variables in Γ, it may be the case

that σ(x) = x. The next property says that unevaluated variables like x are
reducibility candidates.

Proposition 4.3.6. If Γ ⊢ x : A by Vble, σ(x) = x, (Γ ctx)σ is strongly

normalisable, and for every y :B in Γ such that σ(y) 6= y, σ(y) ∈ R
σ\[σ(y)/y]
Γ (B),

then x ∈ Rσ
Γ(A).

Proof. By induction on the type A:

• A atomic: (Γ ⊢ x : A)σ is strongly normalisable since every reduction from
it maps into a pair of reductions from (Γ ctx)σ. Hence xσ = x ∈ Rσ

Γ(A)
by Definition 4.3.1.

• A ∼ y: by induction hypothesis x ∈ R
σ\[σ(y)/y]
Γ[σ(y)/y] (σ(y)) since x 6= y because

σ(y) 6= y while σ(x) = x. Hence xσ = x ∈ Rσ
Γ(A) by Definition 4.3.1.

CHAPTER 4. NORMALISATION 56

• A product: as in the atomic case (Γ ⊢ x :A)σ is strongly normalisable. Let
B1, . . . , Bn, C be such that C is not a product, A ∼ Πy1:B1, . . . , yn:Bn. C,
and (Πy1 : B1, . . . , yn : Bn. C)σ is strongly normalisable. Also, let b1σ ∈

Rσ
Γ(B1), . . . , bn(σ ◦ [b1/y1, . . . bn−1/yn−1]) ∈ R

σ◦[b1/y1,...bn−1/yn−1]
Γ,y1:B1,...,yn−1:Bn−1

(Bn).

If z is a new new variable, z ∈ R
σ◦[b1/y1,...,bn/yn]
Γ,y1:B1,...,yn:Bn

(C) by induction hypothe-
sis on C. Thus (Γ, y1 :B1, . . . , yn :Bn, z :C ⊢ z :C)(σ◦ [b1/y1, . . . , bn/yn]) is
strongly normalisable by Proposition 4.3.3. Hence (Γ, y1 :B1, . . . , yn :Bn ⊢
x b1 · · · bn : C)(σ ◦ [b1/y1, . . . , bn/yn]) is strongly normalisable since every
reduction from it maps into a finite set of reductions from (Γ ⊢ b1 : B1)σ,
. . . , (Γ, y1 :B1, . . . , yn−1 :Bn−1 ⊢ bn :Bn)(σ◦[b1/y1, . . . , bn−1/yn−1]), which
are strongly normalisable by Proposition 4.3.3, and (Γ, y1 : B1, . . . , yn :
Bn, z : C ⊢ z : C)(σ ◦ [b1/y1, . . . , bn/yn]).

We prove (x b1 · · · bn)(σ ◦ [b1/y1, . . . , bn/yn]) ∈ R
σ◦[b1/y1,...,bn/yn]
Γ,y1:B1,...,yn:Bn

(C) by
induction on C: because of the hypotheses, we can reason directly on C,
and not up to conversions:

– C product: by hypothesis, this case does not occur;

– C atomic: by Definition 4.3.1, the conclusion is immediate;

– C variable such that (σ ◦ [b1/y1, . . . , bn/yn])(C) 6= C: by induction
hypothesis,

(x b1 · · · bn)(σ ◦ [b1/y1, . . . , bn/yn]) ∈

∈ R
(σ◦[b1/y1,...,bn/yn])\[σ(C)/C]
(Γ,y1:B1,...,yn:Bn)[σ(C)/C] (σ(C)) .

Hence, by Definition 4.3.1 the conclusion holds.

Since bn is generic, by Definition 4.3.1,

(x b1 · · · bn−1)(σ ◦ [b1/y1, . . . , bn/yn]) ∈

∈ R
σ◦[b1/y1,...,bn−1/yn−1]
Γ,y1:B1,...,yn−1:Bn−1

(Πyn : Bn. C) .

Iterating the same argument (n − 1) more times,

x(σ ◦ [b1/y1, . . . , bn/yn]) = x ∈ Rσ
Γ(Πy1 : B1, . . . , yn : Bn. C) .

Hence, x ∈ Rσ
Γ(A) by Proposition 4.3.2.

The following proposition shows that if an abstraction λ is such that all its
β-reductions are reducibility candidates, so is λ. It follows [43]’s presentation.

Proposition 4.3.7. Let (Γ ctx)σ be strongly normalisable. Also, let b(σ ◦

[a/x]) ∈ R
σ◦[a/x]
Γ,x:A (B) for every aσ ∈ Rσ

Γ(A). Then (λx : A. b)σ ∈ Rσ
Γ(Πx : A. B).

Proof. Fix aσ ∈ Rσ
Γ,x:A(A). First, one proves ((λx : A. b) a)σ ∈ R

σ◦[a/x]
Γ,x:A (B) by

induction on

ν ((Γ, x : A ⊢ b : B)(σ ◦ [a/x])) + ν ((Γ ⊢ a : A)σ) .

This sum is finite since (Γ, x : A ⊢ b : B)(σ ◦ [a/x]) and (Γ ⊢ a : A)σ are both
strongly normalisable by Proposition 4.3.3. Consider the one-step reductions in
the term from (Γ ⊢ (λx : A. b) a : B[a/x])σ:

CHAPTER 4. NORMALISATION 57

• (Γ ⊢ b[a/x] : B[a/x])σ = (Γ, x : A ⊢ b : B)(σ ◦ [a/x]) by Fact 3.4.9. Then
b[a/x]σ = b(σ ◦ [a/x]) ∈ R

σ◦[a/x]
Γ,x:A (B) by hypothesis.

• (Γ, x : A ⊢ (λx : A. b′) a : B[a/x])σ with Γ, x : A ⊢ b : B ✄1 Γ, x : A ⊢ b′ : B.
Then b′(σ ◦ [a/x]) ∈ R

σ◦[a/x]
Γ,x:A (B) by Proposition 4.3.4 on b(σ ◦ [a/x]) ∈

R
σ◦[a/x]
Γ,x:A (B). Since

ν ((Γ, x : A ⊢ b′ : B)(σ ◦ [a/x])) < ν ((Γ, x : A ⊢ b : B)(σ ◦ [a/x])) ,

by induction hypothesis ((λx : A. b′) a) σ ∈ R
σ◦[a/x]
Γ,x:A (B).

• (Γ, x : A ⊢ (λx : A. b) a′ : B[a/x])σ with Γ ⊢ a : A ✄1 Γ ⊢ a′ : A: then a′σ ∈
Rσ

Γ(A) by Proposition 4.3.4 on aσ ∈ Rσ
Γ(A). Since ν ((Γ ⊢ a′ : A)σ) <

ν ((Γ ⊢ a : A)σ), ((λx : A. b) a′) σ ∈ R
σ◦[a/x]
Γ,x:A (B) by induction hypothesis.

• (Γ, x :A ⊢ (λx :A′. b) a :B[a/x])σ with Γ ⊢ A :Ui ✄1 Γ ⊢ A′ :Ui. Since aσ ∈
Rσ

Γ(A), (Γ ⊢ a:A)σ is strongly normalisable by Proposition 4.3.3, thus (Γ ⊢
A : Ui)σ is strongly normalisable since every reduction from it maps into a
reduction from (Γ ⊢ a : A)σ. Also, Γ ⊢ A : Ui by Proposition 3.3.9 so Aσ ∈
Rσ

Γ(Ui) thus A′σ ∈ Rσ
Γ(Ui) by Proposition 4.3.4. Since ν ((Γ ⊢ a : A′)σ) <

ν ((Γ ⊢ a : A)σ), ((λx : A′. b) a)σ ∈ R
σ◦[a/x]
Γ,x:A (B) by induction hypothesis.

Since a is generic and (Γ, x : A ⊢ (λx : A. b) a : B[a/x])(σ ◦ [a/x]) is neutral, by
Proposition 4.3.5, ((λx : A. b) a)σ ∈ R

σ◦[a/x]
Γ,x:A (B).

By Proposition 4.3.6, x ∈ Rσ
Γ,x:A(A), so by hypothesis there is b(σ ◦ [a/x]) ∈

R
σ◦[a/x]
Γ,x:A (B). Hence Γ, x : A ⊢ b : B and (Γ, x : A ⊢ b : B)(σ ◦ [a/x]) is strongly

normalisable by Proposition 4.3.3. Thus Γ ⊢ (λx : A. b) : (Πx : A. B) by Π−intro,
and (Γ ⊢ (λx : A. b) : (Πx : A. B))σ is strongly normalisable since every reduction
from it maps4 into a pair of reductions from (Γ, x : A ⊢ b : B)(σ ◦ [a/x]). Hence
(λx : A. b)σ ∈ Rσ

Γ(Πx : A. B) by Definition 4.3.1.

The core of the normalisation theorem is Proposition 4.3.10. Informally,
given a derivation of Γ ⊢ b : B, it says that when Γ is evaluated on reducibility
candidates, the evaluation of b is a reducibility candidate of B.

Since variables, when not evaluated, are reducibility candidates by Proposi-
tion 4.3.6, b becomes a reducibility candidate of B under the identity evaluation.
This is done in Proposition 4.3.11. Then, by Proposition 4.3.3, every regu-
lar judgement is strongly normalisable, hence every judgement is so, proving
Theorem 4.3.12.

To lighten notation, x : A abbreviates x1 : A1, . . . , xn : An, [a/x] abbreviates
[a1/x1, . . . , an/xn], and R abbreviates R

[a/x]
x:A .

Before the long proof of Proposition 4.3.10, we need a result saying that
evaluation preserves reducibility candidates:

Proposition 4.3.8. Let y : B be in Γ and let tσ ∈ Rσ
Γ(A). Then tσ ∈

R
σ\[σ(y)/y]
Γ[σ(y)/y] (A[σ(y)/y]).

4This map is evident as soon as one disregards the reductions involving a, that is, if a is
considered as a constant.

CHAPTER 4. NORMALISATION 58

Proof. If σ(y) = y, the conclusion is the hypothesis. So, assume σ(y) 6= y. By
Definition 4.3.1, σ(y) ∈ R

σ\[σ(y)/y]
Γ (B). The result follows by induction on the

type A[σ(y)/y]:

• A[σ(y)/y] atomic: by Fact 3.4.9, Λ((Γ ⊢ t : A)σ) = Λ((Γ[σ(y)/y] ⊢
t[σ(y)/y] : A[σ(y)/y])(σ \ [σ(y)/y])), and it is strongly normalisable by
Proposition 4.3.3 on tσ ∈ Rσ

Γ(A). Hence Λ(tσ) = Λ((t[σ(y)/y])(σ \

[σ(y)/y])) ∈ R
σ\[σ(y)/y]
Γ[σ(y)/y] (A[σ(y)/y]) by Definition 4.3.1.

• A[σ(y)/y] product: as in the atomic case, Λ((Γ[σ(y)/y] ⊢ t[σ(y)/y] :
A[σ(y)/y])(σ \ [σ(y)/y])) is strongly normalisable. Let A[σ(y)/y] be
equivalent to a strongly normalisable product. There are two cases:
either A ∼ y and A[σ(y)/y] ∼ σ(y), or A ∼ Πx : A′. A′′ such that
Πx : A′[σ(y)/y]. A′′[σ(y)/y] is strongly normalisable.

The former case implies tσ ∈ R
σ\[σ(y)/y]
Γ[σ(y)/y] (σ(y)) by Definition 4.3.1, so

tσ ∈ R
σ\[σ(y)/y]
Γ[σ(y)/y] (A[σ(y)/y]) by Proposition 4.3.2.

The latter case implies (t a)σ ∈ R
σ◦[a/x]
Γ,x:A′ (A′′) for every aσ ∈ Rσ

Γ(A′) by
Definition 4.3.1. By induction hypothesis on A′ and A′′, for every aσ ∈

R
σ\[σ(y)/y]
Γ[σ(y)/y] (A′[σ(y)/y]), (t a)σ ∈ R

(σ◦[a/x])\[σ(y)/y]
(Γ,x:A′)[σ(y)/y] (A′′[σ(y)/y]) or, equiv-

alently, by Proposition 3.4.10, (t a)σ ∈ R
(σ\[σ(y)/y])◦[a/x]
Γ[σ(y)/y],x:A′[σ(y)/y](A

′′[σ(y)/y]).

Hence tσ ∈ R
σ\[σ(y)/y]
Γ[σ(y)/y] (A′′[σ(y)/y]) by Definition 4.3.1.

• A[σ(y)/y] variable: there are two cases: either A ∼ y and σ(y) is a
variable, or A ∼ z for some z : C occurring in Γ and in the domain of σ.

In the former case tσ ∈ R
σ\[σ(y)/y]
Γ[σ(y)/y] (σ(y)) by Definition 4.3.1 on tσ ∈

Rσ
Γ(A). Hence tσ ∈ R

σ\[σ(y)/y]
Γ[σ(y)/y] (A[σ(y)/y]) by Proposition 4.3.2 since

A[σ(y)/y] ∼ y[σ(y)/y] = σ(y).

In the latter case tσ ∈ R
σ\[σ(z)/z]
Γ[σ(z)/z] (σ(z)) by Definition 4.3.1. By induction

hypothesis on σ(z),

tσ ∈ R
(σ\[σ(z)/z])\[σ(y)/y]
Γ[σ(z)/z,σ(y)/y] (σ(z)[σ(y)/y]) .

Equivalently by Proposition 3.4.11,

tσ ∈ R
(σ\[σ(y)/y])\[σ(z)/z]
Γ[σ(y)/y,σ(z)/z] (σ(z)[σ(y)/y]) .

Since A[σ(y)/y] ∼ z[σ(y)/y] = z, tσ ∈ R
σ\[σ(y)/y]
Γ[σ(y)/y] (A[σ(y)/y]) by Defini-

tion 4.3.1.

Corollary 4.3.9. Let Γ, x : A ⊢ t : B and aσ ∈ Rσ
Γ(A). If t(σ ◦ [a/x]) ∈

R
σ◦[a/x]
Γ,x:A (B), then t(σ ◦ [a/x]) ∈ Rσ

Γ(B[a/x]).

Proof. Immediate instance of Proposition 4.3.8.

Proposition 4.3.10. Let π : x : A ⊢ b : B and aj [a/x] ∈ R(Aj) for every
1 6 j 6 n.Then b[a/x] ∈ R(B).

CHAPTER 4. NORMALISATION 59

Proof. First, (x : A)[a/x] is strongly normalisable since every reduction from it
maps into a reduction from (x : A ⊢ aj : Aj)[a/x] for any 1 6 j 6 n, which is
strongly normalisable by Proposition 4.3.2 on the hypothesis. In the limit case
n = 0, the context is empty, i.e., • ctx which is irreducible and thus strongly
normalisable.

We remind that, if 6 is a well-ordering, it holds the following induction
principle: if P (e) holds for every e 6 e′ then P (e′) holds implies that P (x)
holds for every x. In our case 6 is given by ⊔τ <τ for every inductive type τ :
6 is obviously a well-ordering, see Proposition 18 in [19]. The proof is by an
external induction on 6 and an internal induction on π. In essence, this double
induction says that we first prove the statement for all the proofs not involving
“difficult” instances of inductive terms, and then we move to more complex ones.
The only point in which the external induction is needed is the τ−elim case of
the internal induction when τ is a recursive type.

• (Vble): b = xj , B = Aj , 1 6 j 6 n from the premise x : A ctx. Thus
b[a/x] = aj [a/x] and B[a/x] = Aj [a/x]. Hence b[a/x] ∈ R(B) by hypoth-
esis.

• (≡−subst): the premises are x : A ⊢ b : C, x : A ⊢ C ≡ B : Ui, x : A ⊢ C : Ui,
and x:A ⊢ B :Ui. By induction hypothesis b[a/x] ∈ R(C), C[a/x] ∈ R(Ui),
and B[a/x] ∈ R(Ui), so (x : A ⊢ C : Ui)[a/x] and (x : A ⊢ B : Ui)[a/x] are
strongly normalisable by Proposition 4.3.3. Thus (x : A ⊢ C ≡ B : Ui)[a/x]
is strongly normalisable, hence b[a/x] ∈ R(B) by Proposition 4.3.2.

• (U−intro): b = Ui, B = Ui+1 from the premise x : A ctx. So b[a/x] = Ui

and B[a/x] = Ui+1. Since (x : A ⊢ Ui : Ui+1)[a/x] is strongly normalisable
when (x : A ctx) is so, see the beginning of this proof, b[a/x] ∈ R(B) by
Definition 4.3.1.

• (U−cumul): B = Ui+1 from the premise x : A ⊢ B : Ui. By induction
hypothesis b[a/x] ∈ R(Ui), thus (x:A ⊢ b:Ui)[a/x] is strongly normalisable
by Proposition 4.3.3. Then (x : A ⊢ b : Ui+1)[a/x] is strongly normalisable
since every reduction from it maps into a reduction from (x:A ⊢ b:Ui)[a/x],
hence b[a/x] ∈ R(Ui+1) by Definition 4.3.1.

• (Π−form): b = (Πx : C. D), B = Ui from the premises x : A ⊢ C : Ui

and x : A, x : C ⊢ D : Ui. By induction hypothesis, C[a/x] ∈ R(Ui)
and D[a/x, c/x] ∈ R

[a/x,c/x]
x:A,x:C (Ui) for every c[a/x] ∈ R(C), so (x : A ⊢

C : Ui)[a/x] and (x : A, x : C ⊢ D : Ui)[a/x, c/x] are strongly normalisable
by Proposition 4.3.3. Thus (x : A ⊢ (Πx : C. D) : Ui)[a/x] is strongly
normalisable since every reduction from it maps into a pair of reductions
from (x : A ⊢ C : Ui)[a/x] and (x : A, x : C ⊢ D : Ui)[a/x], the latter
being strongly normalisable posing c = x by Proposition 4.3.6. Hence
(Πx : C. D)[a/x] ∈ R(Ui) by Definition 4.3.1.

• (Π−intro): b = (λx : C. d), B = (Πx : C. D) from the premise x : A, x : C ⊢

d : D. By induction hypothesis d[a/x, c/x] ∈ R
[a/x,c/x]
x:A,x:C (D) for every

c ∈ R(C). Hence b[a/x] ∈ R(B) by Proposition 4.3.7.

• (Π−elim): b = f c, B = D[c/x] from the premises x : A ⊢ f : (Πx : C. D)
and x : A ⊢ c : C. By induction hypothesis, f [a/x] ∈ R(Πx : C. D) and

CHAPTER 4. NORMALISATION 60

c[a/x] ∈ R(C). Hence (f c)[a/x, c/x] ∈ R
[a/x,c/x]
x:A,x:C (D) by Definition 4.3.1

on f . Hence, by Corollary 4.3.9, (f c)[a/x] ∈ R(D[c/x]).

• (τ−form): b is a constant, B = (Π(y : F)m. Ui) from the premise x :A ⊢ B :
Ui+1. By induction hypothesis B[a/x] ∈ R(Ui+1), so (x:A ⊢ B :Ui+1)[a/x]
is strongly normalisable by Proposition 4.3.3 and thus (x :A ⊢ b :B)[a/x] is
strongly normalisable since every reduction from it maps into a reduction
from (x : A ⊢ B : Ui+1)[a/x].

Let fj [a/x, f1/y1, . . . , fj−1/yj−1] ∈ R
[a/x,f1/y1,...,fj−1/yj−1]
x:A,y:F (Fj) for every

1 6 j 6 m. By Π−elim and Theorem 3.3.13, x : A, y : F ⊢ b f1 · · · fm : Ui.
Also (x : A, y : F ⊢ b f1 · · · fm : Ui)[a/x, f/y] is strongly normalisable
since every reduction from it maps into a finite set of reductions from
(x : A, y : F ⊢ fj : Fj)[a/x, f1/y1, . . . , fj−1/yj−1], 1 6 j 6 m, which are
strongly normalisable by Proposition 4.3.3. Thus, by Definition 4.3.1,

(b f1 · · · fm)[a/x, f/y] ∈ R
[a/x,f/y]

x:A,y:F (Ui) .

Being fm generic,

(b f1 · · · fm−1)[a/x, f1/y1, . . . , fm−1/ym−1] ∈

∈ R
[a/x,f1/y1,...,fm−1/ym−1]
x:A,y1:F1,··· ,ym−1:Fm−1

(Πym : Fm. Ui) .

Iterating m − 1 more times, b[a/x] ∈ R(B).

• (τ−intro): b is a constant, B = (Π(y : F)k. τ y1 . . . ym), with m 6 k and
omitting the irrelevant details, from the premise x : A ⊢ B : Ui.

By induction hypothesis B[a/x] ∈ R(Ui), so (x : A ⊢ b : B)[a/x] is strongly
normalisable since every reduction from it maps into a reduction from
(x : A ⊢ B : Ui)[a/x], which is strongly normalisable by Proposition 4.3.3.

Let fj [a/x, f1/y1, . . . , fj−1/yj−1] ∈ R
[a/x,f1/y1,...,fj−1/yj−1]
x:A,y:F for every 1 6

j 6 k. By Π−elim and Theorem 3.3.13, x:A, y :F ⊢ b f1 · · · fk :τ f1 . . . fm.
Also, every reduction from

(x : A, y : F ⊢ b f1 · · · fk : τ f1 . . . fm)[a/x, f/y]

is strongly normalisable since every reduction from it maps into a finite
set of reductions from (x : A, y : F ⊢ fj : Fj)[a/x, f1/y1, . . . , fj−1/yj−1],
1 6 j 6 k, which are strongly normalisable by Proposition 4.3.3. Thus

(b f1 . . . fk)[a/x, f/y] ∈ R
[a/x,f/y]

x:A,y:F (τ f1 . . . fm) by Definition 4.3.1. Iterat-

ing Definition 4.3.1 k times, as in the previous case, b[a/x] ∈ R(B).

• (τ−elim): b is a constant from the premise

x : A ⊢ (Π(y : F)m, C : (Π(y : F)m. τ y1 · · · ym → Ui),

c1 : (Π(y : F)m1
, (z : I)k1

.

C y1 · · · ym1
(K1 y1 · · · ym1

z1 · · · zk1
)),

. . . ,

ch : (Π(y : F)mh
, (z : I)kh

.

CHAPTER 4. NORMALISATION 61

C y1 · · · ymh
(Kh y1 · · · ymg

z1 · · · zkh
)),

e : τ y1 · · · ym. C y1 · · · ym e) : Ui+1

with B the long term in the premise.

Since B[a/x] ∈ R(Ui) by induction hypothesis, (x : A ⊢ B : Ui)[a/x] is
strongly normalisable by Proposition 4.3.3. Thus (x : A ⊢ b : B)[a/x] is
strongly normalisable since every reduction from it maps into a reduction
from (x : A ⊢ B : Ui)[a/x].

Let Γ = x : A, y : F , C : TC , c1 : Tc1
, . . . , ch : Tch

, e : Te, let

fj [a/x, f1/y1, . . . , fj−1/yj−1] ∈ R
[a/x,f1/y1,...,fj−1/yj−1]
Γ (Fj)

for every 1 6 j 6 m, let C∗[a/x, f/y] ∈ R
[a/x,f/y]

Γ (TC), let

c∗
j [a/x, f/y, C∗/C, c∗

1/c1, . . . , c∗
j−1/cj−1] ∈

∈ R
[a/x,f/y,C∗/C,c∗

1/c1,...,c∗
j−1/cj−1]

Γ (Tcj
)

for every 1 6 j 6 h, and let

e∗[a/x, f/y, C∗/C, c∗/x] ∈ R
[a/x,f/y,C∗/C,c∗/x]

Γ (Te) .

By Π−elim and Theorem 3.3.13,

x :A, y :F , C :TC , c :Tc, e :Te ⊢ b f1 · · · fm C∗ c∗
1 . . . c∗

h e∗ :C∗ f1 . . . fm e∗ .

Consider a reduction in the term from

(x : A, y : F , C : TC , c : T c, e : Te ⊢ b f1 . . . fm C∗ c∗
1 . . . c∗

h e∗:

C∗ f1 . . . fm e∗)[a/x, f/y, C∗/C, c∗/c, e∗/e] .

If it does not reduce the term as a whole, i.e., if it does not perform a
τ−comp or τ−uniq reduction spanning b f1 . . . fn C∗ c∗

1 . . . c∗
h e∗, then the

reduction can be mapped into m + h + 2 reductions from f, C∗, c∗, e∗,
which are strongly normalisable by Proposition 4.3.3. Thus the reduction
cannot be indefinitely extended. If the reduction performs a τ−uniq step
involving the whole term, the reduction can be mapped as before, and the
result of the τ−uniq step gets mapped into a reduction from e∗, which
is strongly normalisable. Hence, the reduction cannot be indefinitely
extended. If the reduction performs a τ−comp step on the whole term,
the reduction can be mapped as above up to the step, yielding

(x : A ⊢ c′ f ′
1 . . . f ′

mp1 . . . pk : C ′ f ′
1 . . . f ′

m e′)[a/x] .

If τ is non-recursive, since the terms c′, f ′
1, . . . , f ′

m, p1, . . . , pk are strongly
normalisable because they come from reducibility candidates, an immedi-
ate induction on m + k shows that this term is strongly normalisable since
c′ is a reducibility candidate of a non-atomic type, and by Definition 4.3.1
the result follows. If τ is a recursive type, the same reasoning applies since
the occurrence of indτ is simpler with respect to 6 and so it is a reducibility

CHAPTER 4. NORMALISATION 62

candidate by external induction hypothesis. To help understanding con-
sider the N type: if ∆ ⊢ indN C∗ c∗

1 c∗
2 (succ n) :C∗(succ n) is the judgement

under analysis, it may reduce to ∆ ⊢ c∗
2 n (indN C∗ c∗

1 c∗
2 n) : C∗ (succ n). It

is clear that C∗, c∗
1, c∗

2, succ n, and so n are reducibility candidates. Since
n 6 succ n, the external induction hypothesis says that indN C∗ c∗

1 c∗
2 n

is a reducibility candidate, showing that the reduced term is strongly
normalisable. Hence, every reduction is bounded.

Since the number of redexes in the initial term is finite, the maximum
of ν(γ), with γ ranging on the results of one-step reductions in the
term, is defined. Thus, by Proposition 4.2.2, the judgement is strongly
normalisable on the term. Since the type is strongly normalisable, too, and
the context, once substituted, is empty, the whole judgement is strongly
normalisable.

Since (C∗ f1 . . . fm e∗)[a/x, f/y, C∗/C, c∗/c, e∗/e] is atomic,

(b f1 · · · fm C∗ c∗
1 . . . c∗

h e∗)[a/x, f/y, C∗/C, c∗/c, e∗/e] ∈

∈ R
[a/x,f/y,C∗/C,c∗/c,e∗/e]

Γ (C∗ f1 . . . fm e∗)

by Definition 4.3.1. Hence, by the same definition,

(b f1 · · · fm C∗ c∗
1 . . . c∗

h)[a/x, f/y, C∗/C, c∗/c] ∈

∈ R
[a/x,f/y,C∗/C,c∗/c]

x:A,y:F ,C:TC ,c1:Tc1
,...,ch:Tch

(Πe : Te. C∗ f1 . . . fm e∗) .

Iterating Definition 4.3.1 h + m + 1 more times, b[a/x] ∈ R(B).

Proposition 4.3.11. If x : A ⊢ b : B then b ∈ Rid
x:A(B) with id the identity

substitution, id(x) = x for every variable x.

Proof. By induction on the length n of the context, to show it is strongly
normalisable:

• n = 0: • ctx is irreducible, thus strongly normalisable;

• n > 0: then x1 : A1, . . . , xn−1 : An−1 ctx is strongly normalisable by
induction hypothesis, and x1 : A1, . . . , xn−1 : An−1 ⊢ An : Ui. By Proposi-
tion 4.3.6, xj ∈ Rid

x:A(Aj) for every 1 6 j < n, so An ∈ Rid
x:A(Ui) by Propo-

sition 4.3.10. Hence x :A ctx is strongly normalisable since every reduction
from it maps into a pair of reductions from (x1 : A1, . . . , xn−1 : An−1 ctx)
and x : A ⊢ A : Ui, the latter being strongly normalisable by Proposi-
tion 4.3.3.

Since xj ∈ Rid
x:A(Aj) for every 1 6 j 6 n, by Proposition 4.3.10, b ∈

Rid
x:A(B).

Theorem 4.3.12 (Normalisation). If Γ ⊢ b : B is derivable then it is strongly
normalisable; if Γ ctx is derivable then it is strongly normalisable; if Γ ⊢ a ≡ b:A
is derivable then it is strongly normalisable.

CHAPTER 4. NORMALISATION 63

Proof. The first statement is immediate by Proposition 4.3.3 and Proposi-
tion 4.3.11; the second statement follows because Γ ⊢ Ui : Ui+1, derived by
U−intro from Γ ctx, is strongly normalisable by the first statement; the third
statement follows because Γ ⊢ a : A and Γ ⊢ b : A by Proposition 3.3.8 thus the
result is a consequence of the first statement.

In fact, by Corollary 4.1.12, irreducible judgements are unique up to conver-
sion, as it is immediate to show.

Chapter 5

Semantics

In this chapter a semantics, loosely inspired by [18], is first defined for the
basic system, and then extended to the inductive types. The soundness and
completeness results are obtained, together with the existence of a classifying
model.

The main idea consists in interpreting the contexts as objects in a suitable
category, and the terms as objects of slice categories over the interpretation
of their context. A term belongs to a type when there is a suitable arrow
between their interpretations; weakening is formalised by the properties of slice
categories. Finally, dependent product and the inductive types are seen as
transformation on the interpretations of terms and formalised as functors.

At a first glance, this semantics resembles [90]: however, there are significant
differences, especially on the interpretation of products and inductive types,
allowing to avoid the problems [32, 52, 39] of locally Cartesian closed categories.

The semantics presented here can be seen as a category with suitable
structure, plus a set of endofunctors. The endofunctors provide the meaning of
inductive types and dependent products. In this sense, the semantics is point-
free: meaning arises from transformation of the framework into itself. This idea,
which is a novelty of this work, will be detailed in the following, and it provides
a complementary view with respect to the homotopic interpretation of [95].
This view says that there is no need to consider ∞-groupoids to understand
Martin-Löf type theory. However, this semantics does not intend to say that
the homotopic interpretation is incorrect, in any way: positively, it says that
the theory of types admits many ways in which one can understand it, and the
intrinsic power of higher category theory is not necessary, without disputing its
value.

5.1 Categorical preliminaries

To define the suitable categories we use to interpret Martin-Löf type theory,
some preliminary definitions are needed.

Indecomposable morphisms

The semantics will be defined up-to-isomorphisms. Although this is the standard
way to think in category theory, isomorphisms will play a special role, so a
notion of factorisation, which is aware of how isomorphisms act in the semantics,
is needed.

Definition 5.1.1. In a category C a morphism f has a proper factorisation if
there are arrows g and h, which are not isomorphisms, such that f = g ◦ h.

64

CHAPTER 5. SEMANTICS 65

Definition 5.1.2. In a category C a morphism f is weakly indecomposable
when it has no proper factorisation; f is indecomposable when it is also not an
isomorphism.

Fact 5.1.3. In a category C, if f is a weakly indecomposable isomorphism, for
every factorisation f = g ◦ h it holds that g and h are both isomorphisms.

Proof. Let f = g ◦ h. Being f weakly indecomposable, either g or h is an
isomorphism. Being f an isomorphism, either g is an isomorphism and h =
g−1 ◦ f , or h is an isomorphism and g = f ◦ h−1. Since the composition of
isomorphisms is an isomorphism, the result follows.

Iso-stable categories

Every object in a category is isomorphic to itself via its identity. We need to
say that this is the only way in which an object is isomorphic to itself, and,
moreover, that identity cannot be decomposed in a section and a retraction.

Definition 5.1.4. An object A in a category is iso-stable when the only arrow
A → A is the identity idA and idA is weakly indecomposable. A category is
iso-stable when all its objects are iso-stable.

Fact 5.1.5. In an iso-stable category, there is at most one isomorphism between
each pair of objects.

Proof. Let f, g : A → B be isomorphisms. Then f ◦ g−1 : B → B and thus
f ◦ g−1 = idB by iso-stability. Hence f = f ◦ (g−1 ◦ g) = (f ◦ g−1) ◦ g = g.

Fact 5.1.6. In a category C, if f : A → B, g : B → A, and A, B are iso-stable
objects, then f and g are isomorphisms and each other’s inverse.

Proof. By iso-stability, g ◦ f = idA and f ◦ g = idB .

Typical categories and universes

Typing is the fundamental feature of type theory. As obvious as it may sound,
a semantics has to model this feature. This will be done by arrows from the
type to the term. Typical categories are those allowing for typing. Since types
are terms in a universe, universes have to come in the picture exactly now.

Definition 5.1.7. A category C is typical when for every A ∈ ObjC, there is
an indecomposable arrow f such that cod(f) = A.

Roughly, in a typical category every term has a type.

Definition 5.1.8. Given 〈C; u〉 with C a typical category and u ∈ ObjC, an
object v is a weak universe when there is an arrow v → u in C. Also, 〈C; u〉
has weak universes when for every A ∈ ObjC there is a weak universe v such
that exists v → A.

A pointed and typical category 〈C; u〉 has at least u as a weak universe.
The conditions say that every universe contains u, and every term lies in some
universe.

CHAPTER 5. SEMANTICS 66

Proposition 5.1.9. If 〈C; u〉 is an iso-stable, typical category having weak
universes, then it has infinitely many non isomorphic weak universes.

Proof. Let u0 = u: since idu : u0 = u → u, u0 is a weak universe. If ui, i ∈ N is
a weak universe, then there is fi : v → ui indecomposable for some v ∈ ObjC

since C is typical. Let ui+1 = v. Since ui is a weak universe, there is g : ui → u,
thus g ◦ fi : ui+1 → u showing that ui+1 is a weak universe, too. Hence, by
induction on N, ui is a weak universe for every i ∈ N.

Suppose {|i − j| : i, j ∈ N, i 6= j and ui
∼= uj} ⊆ N to be non empty. Then it

contains a minimal element k and there is m ∈ N such that h : um → um+k is an
isomorphism. Let f = fm ◦ · · · ◦ fm+k−1 : um+k → um. Then f ◦ h : um → um

so f ◦ h = idcod(f) being C iso-stable. Hence f = (f ◦ h) ◦ h−1 = h−1.
If k = 1 then f = fm is an isomorphism, contradicting fm to be indecom-

posable.
If k > 1 then fm+1 ◦ · · · ◦ fm+k−1 ◦ f−1 ◦ fm : um+1 → um+1 thus, by iso-

stability, fm+1◦· · ·◦fm+k−1◦f−1◦fm = idum+1
and it is weakly indecomposable.

Then, either fm+1◦· · ·◦fm+k−1 is an isomorphism, or f−1◦fm is an isomorphism.
In the former case, um

∼= um+k
∼= um+1; in the latter, um

∼= um+1. Both cases
contradict k being minimal.

Corollary 5.1.10. If 〈C; u〉 is an iso-stable, typical category having weak
universes, then there is a chain {ui}i∈N

of non-isomorphic weak universes
such that ui+1 → ui exists and it is indecomposable. Therefore, the chain of
universes is a family of objects together with a family of arrows, each one linking
to successive objects in the first family.

The previous corollary justifies to fix the universes in the chain, telling them
apart and being able to refer them. This is done in the following definition.
Then the usual terminology of type theory can be given inside the semantics.

Definition 5.1.11. Let 〈C; u〉 be an iso-stable, typical category having weak
universes and terminal object, and let {ui}i∈N

be a chain of non-isomorphic
weak universes such that ui+1 → ui exists and it is indecomposable. Then
〈C; {ui}i∈N

〉 is a category with universes, and each ui is said to be a (strong)
universe.

Definition 5.1.12. Let 〈C; {ui}i∈N〉 be a category with universes. Then A ∈
ObjC is a term when A is not terminal and there is i ∈ N such that ui → A.

Definition 5.1.13. Let 〈C; {ui}i∈N〉 be a category having universes. Then a
term A is a type when there is i ∈ N such that ui → A is indecomposable.

Definition 5.1.14. Let 〈C; {ui}i∈N〉 be a category having universes, let A be
a type and a be a term. Then, a has type A when there is f : A → a in C such
that f is not an isomorphism and either f is indecomposable or a is a type and
A a universe. Moreover, a has type A through f emphasises which morphism f
links A to a.

Fact 5.1.15. Let 〈C; {ui}i∈N〉 be a category having universes. Then

1. every ui is a type;

2. ui has type ui+1;

CHAPTER 5. SEMANTICS 67

3. every type A has type ui for some i ∈ N through an indecomposable f .

Proof. By Definition 5.1.11, (2) is evident and (1) follows. By Definition 5.1.13,
(3) is immediate, showing how the second clause of Definition 5.1.14 is needed
only when a is a type and A is not the minimal universe in which it lies.

Definition 5.1.16. Let A be a type in 〈C; {ui}i∈N〉, a category with universes.
Then AU = i with ui → A indecomposable. In this case uAU is said to be the
minimal universe in which A lies.

Definition 5.1.17. Let 〈C; {ui}i∈N
〉 be a category with universes, and let

d ∈ ObjC. Then, C ↑ d, the groupoid of terms of d, is the subcategory of C
whose objects are the terms of type d and whose arrows are the isomorphisms
of C between objects.

Fact 5.1.18. If 〈C; {ui}i∈N
〉 is a category with universes such that d, d′ ∈ ObjC

and d ∼= d′, then C ↑ d = C ↑ d′.

Proof. Immediate by noticing that the objects are in bijection via the identity
function, and the isomorphisms are preserved.

ML-categories

Finally, we introduce the notion of ML-category, which is used to interpret
the basic system of Chapter 3. The definition of ML-category is complex; the
intuition behind it is that M contains all the elements deputed to interpret the
expressions in dependent type theory:

• C models the contexts, with • being the empty context;

• Ui =!c ◦ ui is the i-th universe in the context c;

• νc
A models how a context c is extended with a variable of type A, and χc

A

identifies the term corresponding to that variable;

• FΠ, IΠ, and EΠ model the action of the formation, introduction, and
elimination rules, respectively;

• the auxiliary S functor stands for substitution: if a is a term of type A
in the context c, and b is a term of type B in the context c, x : A, then
S(c, A, B)(b, a) is the term b[a/x] of type B[a/x] in the context c.

Definition 5.1.19. A ML-category (ML stands for Martin-Löf) is

M = 〈M;C, {ui}i∈N, ν, χ, •, FΠ, IΠ, EΠ〉

such that (super- and subscripts will be omitted when clear from the context)

1. M is a category and C is a full subcategory of M such that • is initial in
C: for every c ∈ ObjC, the unique arrow • → c is denoted as !c;

2. for every i ∈ N, ui is an arrow of M whose codomain is •, and for every
c ∈ ObjC, Mc = 〈M/c; {!c ◦ ui}i∈N

〉 is a category with universes; we write
Ui for !c ◦ ui when c is clear from the context;

CHAPTER 5. SEMANTICS 68

3. for every c ∈ ObjC, if A is a type in Mc then νc
A is an indecomposable

arrow in C such that dom(νc
A) = c; moreover, for every c ∈ C, there is

n ∈ N and, for each 1 6 i 6 n, there is a type Ai in Mdom(νAi
) such that

!c = νA1
◦ · · · ◦ νAn

;

4. ν respects isomorphisms: for every c, d ∈ ObjC such that c ∼= d, A is a type
in Mc, B is a type in Md and A ∼= B it holds that cod(νc

A) ∼= cod(νd
B);

5. for every c ∈ ObjC, if A and B are types in Mc then ννA◦B ◦ νA =
ννB◦A ◦ νB ;

6. for every c ∈ ObjC, if A is a type in Mc then χc
A is a term of type A in

Mcod(νc
A

) such that, for every term a in Mc, χc
A 6= νA ◦ a in M;

7. FΠ is a family of functors indexed by c ∈ ObjC and a type in Mc such
that

a) FΠ(c, a) :
⋃

i∈N

(

Mcod(νc
a) ↑ Ui

)

→
⋃

i∈N
(Mc ↑ Ui);

b) FΠ preserves universes: FΠ(c, a)(e) ∈ Obj
(

Mc ↑ Umax(i,au)

)

when-
ever e ∈ Obj

(

Mcod(νc
a) ↑ Ui

)

;

c) FΠ respects isomorphisms: if c ∼= c′ and a ∼= a′ then FΠ(c, a) ∼=
FΠ(c′, a′) in the corresponding functor category;

d) FΠ is stable with respect to context extensions: FΠ(cod(νc
b), νc

b ◦a)(νc
b ◦

e) = νc
b ◦ FΠ(c, a)(e);

e) FΠ(c, a) is conservative, i.e., it reflects isomorphisms. Notice how
this requirement implies that FΠ(c, a) is injective on objects: just
consider that the identity is reflected necessarily in the identity. As
usual, the inverse on the image is denoted by F −1

Π (c, a).

8. IΠ is a family of functors indexed by c ∈ ObjC, a type in Mc, and b type
in Mcod(νc

a) such that

a) IΠ(c, a, b) : Mcod(νc
a) ↑ b → Mc ↑ FΠ(c, a)(b);

b) IΠ preserves universes: when they are both defined, recalling Defini-
tion 5.1.20 for F̄Π,

IΠ(c, a, F̄Π(cod(νc
a), d1, . . . , dl)(Uj))

= IΠ(c, a, F̄Π(cod(νc
a), d1, . . . , dl)(Uk)) ;

c) IΠ respects isomorphisms: if c ∼= c′, a ∼= a′, and b ∼= b′ then
IΠ(c, a, b) ∼= IΠ(c′, a′, b′) in the corresponding functor category;

d) IΠ is stable with respect to context extensions: IΠ(cod(νc
d), νc

d ◦ a, νc
d ◦

b)(νc
d ◦ e) = νc

d ◦ IΠ(c, a, b)(e);

e) IΠ(c, a, b) is a categorical equivalence.

9. EΠ is a family of functors indexed by c ∈ ObjC, a type in Mc, and b type
in Mcod(νc

a) such that

a) a and b are in the same universe Ui;

CHAPTER 5. SEMANTICS 69

b) EΠ(c, a, b)(x, y) ∈ Obj (Mc ↑ S(c, a, Ui)(b, y)), with

EΠ(c, a, b) : Mc ↑ FΠ(c, a)(b) × Mc ↑ a →

→
⋃

d∈Mc↑a

Mc ↑ S(c, a, Ui)(b, d) ;

c) EΠ preserves universes: when they are both defined

EΠ(c, a, F̄Π(cod(νc
a), d1, . . . , dl)(Uj))

= EΠ(c, a, F̄Π(cod(νc
a), d1, . . . , dl)(Uk)) ,

see Definition 5.1.20, and

EΠ(c, F̄Π(c, d1, . . . , dl)(Uj), b)

= EΠ(c, F̄Π(c, d1, . . . , dl)(Uk), b) ;

d) EΠ respects isomorphisms: if c ∼= c′, a ∼= a′, and b ∼= b′ then it
holds that EΠ(c, a, b) ∼= EΠ(c′, a′, b′) in the corresponding functor
category;

e) EΠ is stable with respect to context extensions: EΠ(cod(νc
d), νc

d ◦
a, νc

d ◦ b)(νc
d ◦ e, νc

d ◦ f) = νc
d ◦ EΠ(c, a, b)(e, f).

10. the auxiliary S is a family of functors indexed by c ∈ ObjC, a type in
Mc, and b type in Mcod(νc

a) such that

a) S(c, a, b)(x, y) = EΠ(c, a, b)(IΠ(c, a, b)(x), y);

b) S(c, a, νc
a ◦ a)(χc

a, e) ∼= e;

c) S(c, a, b)(νc
a ◦ p, e) ∼= p;

d) if EΠ(cod(νc
a), Q, P)(p, q) is a term of type b in Mcod(νc

a) but not in
Mdom(νc

a), then, calling Qe = S(c, a, Ui)(Q, e),

S(c, a, S(cod(νc
a), Q, Ui)(P, q))

(EΠ(cod(νc
a), Q, P)(p, q), e)

∼= EΠ(c, Qe, F −1
Π (c, Qe)(S(c, a, Ui)(FΠ(cod(νc

a), Q)(P), e)))

(S(c, a, FΠ(cod(νc
a), Q)(P))(p, e), S(c, a, Q)(q, e)) ;

e) if IΠ(cod(νc
a), d, b)(p) is a term of type FΠ(cod(νc

a), d)(b) in Mcod(νc
a)

but not in Mdom(νc
a), and posing

de = S(c, a, Ui)(d, e)

be = F −1
Π (c, de)(S(c, a, Ui)(FΠ(cod(νc

a), d)(b), e))

pe = I−1
Π (c, de, be)(S(c, a, Ui)(IΠ(cod(νc

a), d, b)(p), e)) ,

then

S(c, a, FΠ(cod(νc
a), d)(b))(IΠ(c, d, b)(p), e) ∼= IΠ(c, de, be)(pe) ;

CHAPTER 5. SEMANTICS 70

f) if FΠ(cod(νc
a), d)(p) is a type in Mcod(νc

a) but not in Mdom(νc
a), and

posing

de = S(c, a, Ui)(d, e)

pe = F −1
Π (c, de)(S(c, a, Ui)(FΠ(cod(νc

a), d)(p), e)) ,

then
S(c, a, Ui)(FΠ(cod(νc

a), d)(p), e) ∼= FΠ(c, de)(pe) ;

g) Finally,

S(c, A, S(cod(νc
A), νc

A ◦ B, Ui)(E, νc
A ◦ b))

(S(cod(νc
A), νc

A ◦ B, E)(e, νc
A ◦ b), a)

∼= S(c, B, S(cod(νc
B), νc

B ◦ A, Ui)(E, νc
B ◦ a))

(S(cod(νc
B), νc

B ◦ A, E)(e, νc
B ◦ a), b) .

We remark that conditions (8b) and (9c) are due to Proposition 3.3.21.
Sometimes, as already happened in Definition 5.1.19, there is the need

to iterate the application of the functors FΠ, IΠ, EΠ and S. To simplify the
notation, iterated functions are defined.

Definition 5.1.20. Let a1, . . . , an such that a1 ∈ Obj Mc, for 1 6 j <
n aj+1 ∈ Obj Mcod(νaj

◦···◦νa1
), and b ∈ Obj Mcod(νan ◦···◦νa1

). Then, define

F̄Π(c, a1, . . . , an)(b) by induction on n as

• if n = 0, F̄Π(c)(b) = b;

• if n = 1, F̄Π(c, a1)(b) = FΠ(c, a1)(b);

• if n = j + 1,

F̄Π(c, a1, . . . , aj+1)(b)

= F̄Π(c, a1, . . . , aj)
(

FΠ(cod(νaj
◦ · · · ◦ νa1

), aj+1)(b)
)

.

Definition 5.1.21. Let a1, . . . , an such that a1 ∈ Obj Mc, for 1 6 j < n aj+1 ∈
Obj Mcod(νaj

◦···◦νa1
), b ∈ Obj Mcod(νan ◦···◦νa1

), and x ∈ Obj Mcod(νan ◦···◦νa1
) ↑ b.

Then, define ĪΠ(c, a1, . . . , an, b)(x) by induction on n as

• if n = 1, ĪΠ(c, a1, b)(x) = IΠ(c, a1, b)(x);

• if n = j + 1,

ĪΠ(c, a1, . . . , aj+1, b)(x)

= ĪΠ(c, a1, . . . , aj ,
(

FΠ(cod(νaj
◦ · · · ◦ νa1

), aj+1)(b)
)

(

IΠ(cod(νaj
◦ · · · ◦ νa1

), aj+1, b)(x)
)

.

Definition 5.1.22. Let a1, . . . , an such that a1 ∈ Obj Mc, for 1 6 j < n
aj+1 ∈ Obj Mcod(νaj

◦···◦νa1
), and b ∈ Obj Mcod(νan ◦···◦νa1

). Also, let x1, . . . , xn

such that xj+1 ∈ Obj Mcod(νaj
◦···◦νa1

) ↑ aj+1 and y ∈ Obj Mcod(νan ◦···◦νa1
) ↑ b.

Then, define S̄(c, a1, . . . , an, b)(y, x1, . . . , xn) by induction on n as

CHAPTER 5. SEMANTICS 71

• if n = 1, S̄(c, a1, b)(y, x1) = S(c, a1, b)(y, x1);

• if n = j + 1,

S̄(c, a1, . . . , aj+1, b)(y, x1, . . . , xj+1)

= S(c, aj+1, S̄(c, a1, . . . , aj , Ui)(b, x1, . . . , xj))
(

S̄(c, a1, . . . , aj , b)(y, x1, . . . , xj), xj+1

)

.

Definition 5.1.23. Let a1, . . . , an such that a1 ∈ Obj Mc, for 1 6 j < n
aj+1 ∈ Obj Mcod(νaj

◦···◦νa1
), and b ∈ Obj Mcod(νan ◦···◦νa1

). Also, let x1, . . . , xn

such that xj+1 ∈ Obj Mcod(νaj
◦···◦νa1

) ↑ aj+1 and y ∈ Obj Mcod(νan ◦···◦νa1
) ↑ b.

Then, define ĒΠ(c, a1, . . . , an, b)(y, x1, . . . , xn) by induction on n as

• if n = 1, ĒΠ(c, a1, b)(y, x1) = EΠ(c, a1, b)(y, x1);

• if n = j + 1,

ĒΠ(c, a1, . . . , aj+1, b)(y, x1, . . . , xj+1)

= EΠ(c, aj+1, S̄(c, a1, . . . , aj , Ui)(b, x1, . . . , xj))
(

ĒΠ(c, a1, . . . , aj , b)(y, x1, . . . , xj), xj+1

)

.

An inductive theory is the theory generated by the rules for the basic system
extended with a finite number of inductive types, see Chapter 3.

Definition 5.1.24. Let T be an inductive theory. A T-ML-category is

Mi = 〈M;C, {ui}i∈N, ν, χ, •, FΠ, IΠ, EΠ, {Fτ , {Iτ,K}K, Eτ }τ 〉

with 〈M;C, {ui}i∈N, ν, χ, •, FΠ, IΠ, EΠ〉 an ML-category, see Definition 5.1.19,
and the families of functors Fτ , Iτ,K and Eτ defined as follows

1. each inductive type τ is uniquely identified by an object

p = F̄Π(c, a1, . . . , an)(Ui) ∈ Obj Mc ↑ Ui+1 .

Then Fτ is a family of functors indexed by c ∈ ObjC and p such that

a) Fτ (c, p) : {·} → Mc ↑ p, where {·} is the trivial category with just
one object and the identity;

b) Fτ respects equivalent contexts: if c ∼= c′, then Fτ (c, p) ∼= Fτ (c′, p) in
the corresponding functor category;

2. each constructor K of an inductive type τ is uniquely identified by an
object

q = F̄Π(c, a′
1, . . . , a′

n′ , d1, . . . , dm)

(ĒΠ(c, a′
1, . . . , a′

n, Ui+1)

(Fτ (c, p)(·), χa′
1
, . . . , χa′

n
)) ∈ Obj Mc ↑ Ui ,

where the {a′
j}16j6n′ are a subsequence of the {aj}16j6n. Then Iτ,K is a

family of functors indexed by c and q such that

CHAPTER 5. SEMANTICS 72

a) Iτ,K(c, q) : {·} → Mc ↑ q;

b) Iτ,K respects equivalent contexts: if c ∼= c′ then Iτ,K(c, q) ∼= Iτ,K(c′, q)
in the corresponding functor category;

3. in the non recursive case, each inductive type τ is uniquely associated to
an object

r = F̄Π(c, a1, . . . , an, FC , Fc1
, . . . , Fck

, Ee,

ĒΠ(cod(νEe
◦ νa), a1, . . . , an, Ee, FC)(χEe

, χa1
, . . . , χan

))

with

FC = F̄Π(c, a1, . . . , an,

ĒΠ(cod(νa), a1, . . . , an, p)

(Fτ (cod(νa), p)(·), χa1
, . . . , χan

)))(Uh) ,

Fci
= F̄Π(c, a′

1, . . . , a′
n′

i
, d1, . . . , dm,

ĒΠ(cod(νa,d), a′
1, . . . , a′

ni
, qi))

(χFC
, χai

, ĒΠ(cod(νa,d), a′
1, . . . , a′

ni
, d1, . . . , dm, qi)

(Iτ,K(cod(νa,d), q)(·), χai
, χd1

, . . . , χdm
))) ,

Ee = ĒΠ(cod(νa), a1, . . . , an, p)(Fτ (cod(νa), p)(·), χa1
, . . . , χan

) ,

and νa = νan
◦ · · · ◦ νa1

, νa,d = νdm
◦ · · · ◦ νd1

◦ νan
◦ · · · ◦ νa1

, χai
=

χa′
1
, . . . , χa′

n′
i

. Then Eτ is a family of functors indexed by c and r such

that

a) Eτ (c, r) : {·} → Mc ↑ r;

b) Eτ respects equivalent contexts: if c ∼= c′, then Eτ (c, r) ∼= Eτ (c′, r)
in the corresponding functor category;

c) given C ∈ Obj Mc ↑ FC , ci ∈ Mc ↑ Fci
for 1 6 i 6 k, Ti ∈ Mc ↑ ai

for 1 6 i 6 n, pi ∈ Mc ↑ di for 1 6 i 6 m,

ĒΠ(c, a1, . . . , an, FC , Fc1
, . . . , Fck

,

ĒΠ(c, a1, . . . , an, p)(T1, . . . , Tn, Fτ (c, p)(·)))

(Eτ (c, r)(·), T1, . . . , Tn, C, c1, . . . , ck,

ĒΠ(c, a1, . . . , an, d1, . . . , dm, q)

(Iτ,K(c, q)(·), T1, . . . , Tk, p1, . . . , pm))

∼= ĒΠ(c, a1, . . . , an, d1, . . . , dm, Fci
)

(ci, T1, . . . , Tn, p1, . . . , pn) ;

d) given T1 ∈ Mc ↑ a1, . . . , Tn ∈ Mc ↑ an and an object e ∈ Mc ↑
ĒΠ(c, a1, . . . , an, p)(T1, . . . , Tn, Fτ (c, p)(·)),

CHAPTER 5. SEMANTICS 73

ĒΠ(c, a1, . . . , an,

F̄Π(c, a1, . . . , an, EC)

(S̄(cod(νEC
◦ νa), a1, . . . , an, p)(Fτ (cod(νa), p)(·), χa)),

{ĪΠ(c, a′
1, . . . , a′

ni
, d1, . . . , dmi

, Eci
)

(S̄(cod(νEci
◦ νa,d), a′

1, . . . , a′
ni

, d1, . . . , dmi
, qi)

(Iτ,K(cod(νa,d), q)(·), χa,di
))}k

i=1,

ĒΠ(c, a1, . . . , an, p)(Fτ (c, p)(·), T1, . . . , Tn), r)

(Eτ (cod(νEC
◦ νdk

◦ · · · ◦ νd1
◦ νa), r)(·),

T1, . . . , Tn, ĪΠ(c, a1, . . . , an, EC ,

S̄(cod(νEC
◦ νa), a1, . . . , an, p)(Fτ (cod(νa), p)(·), χa))(EC),

{ĪΠ(c, a′
1, . . . , a′

ni
, d1, . . . , dmi

, Eci
,

S̄(cod(νEci
◦ νa,d), a′

1, . . . , a′
ni

, d1, . . . , dmi
, qi)

(Iτ,K(cod(νa,d), qi)(·), χa,di
))(Eci

)}k
i=1, e)

∼= e ,

with

EC = ĒΠ(cod(νa), a1, . . . , an, p)(Fτ (cod(νa), p)(·), χa) ,

Eci
= ĒΠ(cod(νa,d), a′

1, . . . , a′
ni

, d1, . . . , dmi
, qi)

(Iτ,K(cod(νa,di
), qi)(·), χa,di

) ,

χa = χa1
, . . . , χan

,

χa,di
= χai

, χd1
, . . . , χdmi

,

νdi
= νdni

◦ · · · ◦ νd1
.

If a constructor Ki is recursive, that is, a certain dj is an instance
τs1, . . . , sn of τ , then Fci

depends also on the object

ĒΠ(c, a1, . . . , an, Ey, FC)(C, s1, . . . , sn, χEy
) ,

with Ey = ĒΠ(c, a1, . . . , an, p)(Fτ (c, p)(·), s1, . . . , sn). Also, in Point (3c),
pj is followed by

ĒΠ(c, a1, . . . , an, FC , Fc1
, . . . , Fck

,

ĒΠ(c, a1, . . . , an, p)

(T1, . . . , Tn, Fτ (c, p)(·)))

(Eτ (c, r)(·), T1, . . . , Tn, C, c1, . . . , ck) .

4. for each inductive type τ and constructor K, the auxiliary functor S must
satisfy the following conditions:

a) if Fτ (cod(νc
a), p)(·) is a type in Mcod(νc

a) but not in Mdom(νc
a), then

S(c, a, Ui)(Fτ (cod(νc
a), p)(·), e) ∼= Fτ (c, S(c, a, Ui)(p, e))(·);

b) if Iτ,K(cod(νc
a), q)(·) is a type in Mcod(νc

a) but not in Mdom(νc
a), then

S(c, a, Ui)(Iτ,K(cod(νc
a), q)(·), e) ∼= Iτ,K(c, S(c, a, Ui)(q, e))(·);

CHAPTER 5. SEMANTICS 74

c) if Eτ (cod(νc
a), r)(·) is a type in Mcod(νc

a) but not in Mdom(νc
a), then

S(c, a, Ui)(Eτ (cod(νc
a), r)(·), e) ∼= Eτ (c, S(c, a, Ui)(r, e))(·).

The very complex definition of T -ML-category takes care of numerous
technical aspects, which will play a role in the following. However, abstracting
away these technicalities, it can be understood in a simple way: there is a
framework, which interprets the judgements - the contexts in C, the regular
judgements in the slices over C, the judgemental equalities as isomorphisms in
the slices; there is an internal transformation to interpret dependent products,
and there are internal transformations to interpret inductive types. The complex
conditions are needed to coordinate the framework and the term formations in
a coherent way.

5.2 Interpretation

This section is devoted to interpret the basic system and the inductive theories
in the framework introduced above, i.e., respectively in ML-categories and in
T -ML-categories, and to prove that the interpretation is sound.

Basic system

Definition 5.2.1. Given an ML-category M, see Definition 5.1.19, an interpre-
tation J·K is a collection of functions mapping judgements in arrows of M and
terms-in-context in objects of a slice category of M. Also, a notion of validity
applies, that selects which judgements and terms are subject to interpretation.
Formally, an interpretation has to satisfy:

1. • ctx is valid and J• ctxK = id•;

2. Γ, x : A ctx is valid if and only if Γ ctx is valid and JΓ ⊢ AK is a type in
Mcod(JΓ ctxK); then JΓ, x : A ctxK = νJΓ⊢AK ◦ JΓ ctxK; from now on, to ease
the notation, we write MΓ for Mcod(JΓ ctxK) and νA for νJΓ⊢AK;

3. Γ ⊢ a : A is valid when Γ ctx is valid and JΓ ⊢ aK is a term of type JΓ ⊢ AK
through f in MΓ; then JΓ ⊢ a : AK = f ;

4. Γ ⊢ a ≡ b : A is valid when Γ ⊢ a : A is valid, Γ ⊢ b : A is valid, and
h : JΓ ⊢ aK → JΓ ⊢ bK is a necessarily unique isomorphism in MΓ such
that JΓ ⊢ b : AK = h ◦ JΓ ⊢ a : AK; then JΓ ⊢ a ≡ b : AK = h;

5. Γ ⊢ a is valid when there is A such that Γ ⊢ a : A is valid;

6. for every i ∈ N, ⊢ Ui is valid and J⊢ UiK = ui; moreover, J⊢ Ui : Ui+1K is
the indecomposable arrow of Definition 5.1.11;

7. if Γ, x : A ⊢ x is valid then JΓ, x : A ⊢ xK = χ
JΓ ctxK
JΓ⊢AK , abbreviated to χΓ

A;

8. if Γ ⊢ a and Γ, x : A ctx are valid, then JΓ, x : A ⊢ aK = νA ◦ JΓ ⊢ aK; also,
if Γ ⊢ a : A and Γ, x : B ctx are valid, then JΓ, x : B ⊢ a : AK = JΓ ⊢ a : AK
in M, see Figure 5.1;

9. if Γ ⊢ A : Ui and Γ, x : A ⊢ B : Ui are valid, then Γ ⊢ Πx : A. B : Ui is valid,
and JΓ ⊢ Πx : A. BK = FΠ (JΓ ctxK, JΓ ⊢ AK) (JΓ, x : A ⊢ BK);

CHAPTER 5. SEMANTICS 75

10. if Γ, x : A ⊢ b : B is valid, then Γ ⊢ λx : A. b : Πx : A. B is valid, and
JΓ ⊢ λx : A.bK = IΠ(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ BK)(JΓ, x : A ⊢ bK);

11. if Γ ⊢ f :Πx :A. B and Γ ⊢ a :A are valid, then Γ ⊢ f a :B[a/x] is valid,and
JΓ ⊢ f aK = EΠ(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ BK)(JΓ ⊢ fK, JΓ ⊢ aK).

In the following, to alleviate the notation JΓ ctxK will be used to indicate both
the arrow and its codomain.

Notice that:

• Γ, x : A ⊢ x is valid implies that Γ ctx and Γ ⊢ A are valid, thus Point (7)
is well defined;

• since JΓ ⊢ Πx :A. BK ∈ Obj (MΓ ↑ JΓ ⊢ UiK), the arrow JΓ ⊢ Πx :A. B :UiK
is well defined, see (3);

• since JΓ ⊢ λx : A. bK ∈ Obj (MΓ ↑ JΓ ⊢ Πx : A. BK), the arrow JΓ ⊢ (λx :
A. b) : Πx : A. BK is well defined, see (3);

• if Γ ⊢ A ≡ A′ : Ui and Γ, x : A ⊢ B ≡ B′ : Ui are valid, then JΓ, x : A ⊢
BK ∼= JΓ, x : A ⊢ B′K and, thus, FΠ(JΓ ctxK, JΓ ⊢ AK)(JΓ, x : A ⊢ BK) ∼=
FΠ(JΓ ctxK, JΓ ⊢ A′K)(JΓ, x : A ⊢ B′K); this isomorphism is JΓ ⊢ (Πx :
A. B) ≡ (Πx : A′. B′)K, see (4);

• if Γ ⊢ A ≡ A′ : Ui and Γ, x : A ⊢ b ≡ b′ : B are valid, then JΓ, x : A ⊢ bK ∼=
JΓ, x : A′ ⊢ b′K and thus JΓ ⊢ λx : A. bK ∼= JΓ ⊢ λx : A′. b′K, see (10); this
isomorphism is JΓ ⊢ (λx : A. b) ≡ (λx : A′. b′)K, see (4);

• if Γ ⊢ f ≡ f ′ : Πx : A. B and Γ ⊢ a ≡ a′ : A are valid, JΓ ⊢ fK ∼= JΓ ⊢ f ′K
and JΓ ⊢ aK ∼= JΓ ⊢ a′K, thus JΓ ⊢ f aK ∼= JΓ ⊢ f ′ a′K, see (11); this
isomorphism is JΓ ⊢ f a ≡ f ′ a′K, see (4);

• if Γ ⊢ f : Πx : A. B is valid, then JΓ ⊢ λx : A. f xK = IΠ(JΓ ctxK, JΓ ⊢
AK, JΓ, x:A ⊢ BK)(JΓ, x:A ⊢ f xK). But JΓ, x:A ⊢ f xK = I−1

Π (JΓ ctxK, JΓ ⊢
AK, JΓ, x : A ⊢ BK)(JΓ ⊢ fK), since each instance of IΠ is an equivalence
of categories. Because the composition of the above instances of IΠ is
isomorphic to the identity, it holds that JΓ ⊢ fK ∼= JΓ ⊢ λx : A. f xK. This
isomorphism is JΓ ⊢ (λx : A. f x) ≡ fK, see (4).

The definition of interpretation, illustrated in Figure 5.1, clarifies and justifies
many aspects of the notion of ML-category: the terminology (context, term,
type, etc.) previously introduced to indicate objects and arrows in the categories
directly reflects the corresponding objects in the syntax via the interpretation
J·K. A special mention is due to the notion of validity: only valid judgements
are interpreted. In principle, there could be non-valid judgements in the syntax:
in this respect, the soundness theorem says that every judgement that one
can write is valid, thus interpretable. Here, as explained in Chapter 3, the
judgements are exactly the derivable expressions. Moreover, in this respect,
the semantics fixes the interpretation of inference rules as the collection of
syntactically sound, validity preserving transformations over a ML-category.

To interpret Π−comp, another result is needed. The proof is, essentially,
calculation, but we will make explicit all the passages to let the reader get used
to the style of the semantics.

CHAPTER 5. SEMANTICS 76

Lemma 5.2.2 (Substitution). If Γ, x : A ⊢ b : B and Γ ⊢ a : A are valid, then
JΓ ⊢ (λx : A. b) aK ∼= JΓ ⊢ b[a/x]K.

Proof. By Definition 5.2.1, Γ ⊢ (λx : A. b) : Πx : A. B is valid. Also, JΓ ctxK,
JΓ ⊢ aK, JΓ ⊢ AK, JΓ, x : A ⊢ bK, JΓ, x : A ⊢ BK, and JΓ ⊢ (λx : A. b) aK are defined.
Hence

JΓ ⊢ (λx : A. b) aK

= EΠ (JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ BK) (JΓ ⊢ λx : A. bK, JΓ ⊢ aK)

= EΠ (JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ BK)

(IΠ (JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ BK) (JΓ, x : A ⊢ bK) , JΓ ⊢ aK)

= S (JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ BK) (JΓ, x : A ⊢ bK, JΓ ⊢ aK) .

If x 6∈ FV(b), then JΓ, x : A ⊢ bK = νA ◦ JΓ ⊢ bK, and thus, by (10) in
Definition 5.1.19, JΓ ⊢ (λx : A. b) aK = JΓ ⊢ bK = JΓ ⊢ b[a/x]K. Henceforth,
assume x ∈ FV(b) and proceed by induction on the structure of the syntactical
term b.

• If b is a variable, it has to be x, thus by (10) in Definition 5.1.19,

JΓ ⊢ (λx : A. x) aK

= S (JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ AK) (JΓ, x : A ⊢ xK, JΓ ⊢ aK)

= S (JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ AK)
(

χΓ
A, JΓ ⊢ aK

)

∼= JΓ ⊢ aK = JΓ ⊢ x[a/x]K .

• If b is the application p q then

JΓ ⊢ (λx : A. p q) aK

= S (JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ BK) (JΓ, x : A ⊢ p qK, JΓ ⊢ aK)

= S (JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ BK)

(EΠ (JΓ, x : A ctxK, JΓ, x : A ⊢ QK, JΓ, x : A, z : Q ⊢ P K)

(JΓ, x : A, z : Q ⊢ pK, JΓ, x : A ⊢ qK) , JΓ ⊢ aK) ,

where Γ, x : A, z : Q ⊢ p : P , Γ, x : A ⊢ q : Q, and B = P [q/z]. Posing
Qa = S(JΓ ctxK, JΓ ⊢ AK, JΓ ⊢ UiK)(JΓ, x : A ⊢ QK, JΓ ⊢ aK), and applying
the induction hypothesis to B,

∼= S(JΓ ctxK, JΓ ⊢ AK,

S(JΓ, x : A ctxK, JΓ, x : A ⊢ QK, JΓ, x : A, z : Q ⊢ UiK)

(JΓ, x : A, z : Q ⊢ P K, JΓ, x : A ⊢ qK))

(EΠ (JΓ, x : A ctxK, JΓ, x : A ⊢ QK, JΓ, x : A, z : Q ⊢ P K)

(JΓ, x : A, z : Q ⊢ pK, JΓ, x : A ⊢ qK) , JΓ ⊢ aK)

which can be reduced by applying the properties of S (Point (10) of
Definition 5.1.19), and the induction hypothesis to Qa, yielding Qa

∼=
JΓ ⊢ Q[a/x]K,

∼= EΠ(JΓ ctxK, JΓ ⊢ Q[a/x]K,

CHAPTER 5. SEMANTICS 77

F −1
Π (JΓ ctxK, JΓ ⊢ Q[a/x]K)

(S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ UiK)

(FΠ(JΓ, x : A ctxK, JΓ, x : A ⊢ QK)

(JΓ, x : A, z : Q ⊢ P K, JΓ ⊢ aK))))

(S(JΓ ctxK, JΓ ⊢ AK,

FΠ(JΓ, x : A ctxK, JΓ, x : A ⊢ QK)

(JΓ, x : A, z : Q ⊢ P K))(JΓ, x : A ⊢ pK, JΓ ⊢ aK),

S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ QK)(JΓ, x : A ⊢ qK, JΓ ⊢ aK))

then, applying the induction hypothesis again,

= EΠ(JΓ ctxK, JΓ ⊢ Q[a/x]K,

F −1
Π (JΓ ctxK, JΓ ⊢ Q[a/x]K)

(JΓ ⊢ Πz : Q[a/x]. P [a/x]K))

(JΓ ⊢ p[a/x]K, JΓ ⊢ q[a/x]K)

= EΠ(JΓ ctxK, JΓ ⊢ Q[a/x]K, JΓ, z : Q[a/x] ⊢ P [a/x]K)

(JΓ ⊢ p[a/x]K, JΓ ⊢ q[a/x]K)

= JΓ ⊢ p[a/x] q[a/x]K = JΓ ⊢ (p q)[a/x]K .

• If b is the abstraction λy : C. p, in which we may safely assume that
y 6∈ FV(a) since we can freely rename bound variables, and calling

Ca = S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ UiK)(JΓ, x : A ⊢ CK, JΓ ⊢ aK) ,

Pa = F −1
Π (JΓ ctxK, Ca)(S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ UiK)

(FΠ(JΓ, x : A ctxK, JΓ, x : A ⊢ CK)

(JΓ, x : A, y : X ⊢ P K), JΓ ⊢ aK)) ,

pa = I−1
Π (JΓ ctxK, Ca, Pa)(S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ UiK)

(IΠ(JΓ, x : A ctxK, JΓ, x : A ⊢ CK, JΓ, x : A, y : X ⊢ P K)

(JΓ, x : A, y : C ⊢ pK), JΓ ⊢ aK)) ,

by Point (10c) in Definition 5.1.19,

JΓ ⊢ (λx : A. (λy : C. p)) aK

= S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ Πy : C. P K)

(IΠ(JΓ, x : A ctxK, JΓ, x : A ⊢ CK, JΓ, x : A, y : C ⊢ P K)

(JΓ, x : A, y : P ⊢ pK), JΓ ⊢ aK)
∼= IΠ(JΓ ctxK, Ca, Pa)(pa)

applying the induction hypothesis in Ca, Pa, and pa,

∼= IΠ(JΓ ctxK, JΓ ⊢ C[a/x]K, JΓ, y : C[a/x] ⊢ P [a/x]K)

(JΓ, y : C[a/x] ⊢ p[a/x]K)

= JΓ ⊢ λy : C[a/x]. p[a/x]K = JΓ ⊢ (λy : C. p)[a/x]K .

CHAPTER 5. SEMANTICS 78

•

·

·

JΓ ⊢ AK

JΓ ⊢ aK

JΓ ⊢ a : AK

JΓ, x : B ⊢ AK

JΓ, x : B ⊢ aK

JΓ, x : B ⊢ a : AK

νBJΓ ctxK

f

g

νB ◦ f

νB ◦ gc

d

C

Mc

Md=

=

Figure 5.1: How interpretation works.

• Finally, if b is the product Πy : C. P , in which we may safely assume that
y 6∈ FV(a), and calling

Ca = S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ UiK)(JΓ, x : A ⊢ CK, JΓ ⊢ aK) ,

Pa = F −1
Π (JΓ ctxK, Ca)(S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ UiK)

(FΠ(JΓ, x : A ctxK, JΓ, x : A ⊢ CK)

(JΓ, x : A, y : C ⊢ P K), JΓ ⊢ aK)) ,

then

JΓ ⊢ (λx : A. (Πy : C. P)) aK

= S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ UiK)

(FΠ(JΓ, x : A ctxK, JΓ, x : A ⊢ CK)

(JΓ, x : A, y : C ⊢ P K), JΓ ⊢ aK)
∼= FΠ(JΓ ctxK, Ca)(Pa)

applying the induction hypothesis in Ca and Pa,

∼= FΠ(JΓ ctxK, JΓ ⊢ C[a/x]K)

(JΓ, y : C[a/x] ⊢ P [a/x]K)

= JΓ ⊢ Πy : C[a/x]. P [a/x]K = JΓ ⊢ (Πy : C. P)[a/x]K .

Therefore, since JΓ ⊢ f aK is an object of

MΓ ↑ S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ BK)(JΓ, x : A ⊢ fK, JΓ ⊢ aK) ,

then JΓ ⊢ f aK ∈ Obj (MΓ ↑ JΓ ⊢ B[a/x]K) by Lemma 5.2.2, thus the arrow
JΓ ⊢ f a : B[a/x]K is defined, see (3) in Definition 5.2.1.

Proposition 5.2.3. Given a ML-category and an interpretation over it with
the notation as above, if Γ ⊢ a : A and ∆ ⊢ a : A are valid, and Γ ⊆ ∆, then
J∆ ⊢ a : AK = JΓ ⊢ a : AK.

CHAPTER 5. SEMANTICS 79

Proof. If Ξ ctx is valid and Ξ′ is a permutation of Ξ, then JΞ ctxK = JΞ′ ctxK
by (5) in Definition 5.1.19. Thus, in particular, if ∆ ctx is a valid permutation
of Γ ctx, JΓ ⊢ a : AK = J∆ ⊢ a : AK.

By hypothesis, ∆ ctx can be permuted to the valid context Γ, Θ ctx: first,
one moves in the front the typed variables in Γ, and in the rear the others,
taking care of preserving the relative ordering of the two pieces; then, one
rearranges the front part. Hence, J∆ ⊢ a : AK = JΓ, Θ ⊢ a : AK = JΓ ⊢ a : AK by
definition.

Corollary 5.2.4. Given a ML-category and an interpretation over it with the
notation as before, if Γ ⊢ a : A is valid then JΓ ⊢ a : AK = JAV(a) ⊢ a : AK.

Proof. By Proposition 5.2.3.

Fact 5.2.5. If Γ ∼ ∆ are equivalent contexts, see Definition 3.3.18, then
JΓ ctxK ∼= J∆ ctxK by Point (4) of Definition 5.1.19. If, in particular, Γ ≈ ∆,
then JΓ ctxK = J∆ ctxK by Point (5) of Definition 5.1.19.

Fact 5.2.6. In the basic system, if Γ ⊢ a : A and ∆ ⊢ b : B are two equivalent
judgements, JΓ ⊢ aK ∼= J∆ ⊢ bK. Thus, if M is an ML-category, MΓ ↑ JΓ ⊢
AK ∼= M∆ ↑ J∆ ⊢ BK.

This property will be extended to inductive theories in the following.

Definition 5.2.7. A model M = 〈M, J·K〉 for a theory T is composed by a
ML-category and an interpretation over it such that, for every γ ∈ T , γ is valid.

Theorem 5.2.8 (Soundness). Let B be the set of derivable judgements in the
basic system. Then all the judgements in B are valid in every model.

Proof. By induction on the structure of derivations:

• if the premises are valid, then by Definition 5.2.1 and the properties of
categories the conclusions of ctx−EMP, ctx−EXT, Vble, ≡−refl, ≡−sym,
≡−trans, ≡−subst, ≡−subst−eq, U−intro, U−cumul, Π−form, Π−intro,
and Π−elim are valid;

• the observations after Definition 5.2.1 show that, when the premises
are valid, also the conclusions of the rules Π−form−eq, Π−intro−eq,
Π−elim−eq, and Π−uniq are valid;

• Lemma 5.2.2 shows that if the premises are valid, so is the conclusion of
the Π−comp rule.

At this point it becomes clear how [18] inspired this semantics: the definitions
of ML-category and interpretation are a rephrasing of the proof theoretic
properties of type theory, in particular, how substitution in proofs is performed
gives the key to show Lemma 5.2.2. This lemma determines the constraints to
put into the semantics, but these constraints are nothing but the description of
substitution in proof, that is, Definition 3.3.6.

CHAPTER 5. SEMANTICS 80

Inductive types

In the following, the interpretations of dependent products, abstractions and
applications will always be obtained applying the functors FΠ, IΠ and EΠ to
the interpretations of the proper terms-in-context. However, to simplify the
notation, sometimes we will write JΓ ⊢ Πx : A. BK instead of FΠ(JΓ ctxK, JΓ ⊢
AK)(JΓ, x : A ⊢ BK), and similarly for the other constructions.

Definition 5.2.9. Given a T -ML-category Mi = 〈M; {Fτ , {Iτ,K}K, Eτ }τ 〉, for
each inductive type τ the interpretation of Definition 5.2.1 is extended as follows:

1. if Γ ⊢ Π (x : F)n . Ui : Ui+1 is valid, then Γ ⊢ τ : Π (x : F)n . Ui is valid
and JΓ ⊢ τK = Fτ (JΓ ctxK, JΓ ⊢ Π (x : F)n . UiK)(·); the interpretation
of the type-in-context Γ ⊢ Π (x : F)n . Ui can be computed from the
interpretations of the Γ ⊢ Fi through the functor FΠ.

2. if the judgement Γ ⊢ Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

n : Ui is valid, then
the judgement Γ ⊢ K : Π (x : F)n′ . Π (y : I)m . τ x′

1 · · · x′
n is valid and

JΓ ⊢ KK = Iτ,K(JΓ ctxK, JΓ ⊢ Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

nK)(·). As
above, the latter interpretation can be easily obtained through FΠ and
EΠ.

3. let

Tind := Π (x : F)n . (ΠC : (Π (x : F)n . τ x1 · · · xn → Uh).

(Πk
i=1ci : (Π (x : F)n′

i
. Π (y : I)mi

.

C x′
1 · · · x′

ni
(Kx′

1 · · · x′
ni

y1 · · · ymi
)).

(Πe : τ x1 · · · xn. C x1 · · · xn e))) .

If Γ ⊢ Tind : Uh+1 is valid, then Γ ⊢ indτ : Tind is valid and JΓ ⊢ indτ K =
Eτ (JΓ ctxK, JΓ ⊢ TindK)(·).

Notice that:

• since JΓ ⊢ τK ∈ Obj (MΓ ↑ JΓ ⊢ Π (x : F)n . UiK), then the arrow JΓ ⊢
τ : Π (x : F)n . UiK is well defined, see (3) of Definition 5.2.1;

• since JΓ ⊢ KK ∈ Obj (MΓ ↑ JΓ ⊢ Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

nK), the
arrow JΓ ⊢ K : Π (x : F)n′ . Π (y : I)m . τ x′

1 · · · x′
nK is well defined;

• since JΓ ⊢ indτ K ∈ Obj (MΓ ↑ JΓ ⊢ TindK), the arrow JΓ ⊢ indτ : TindK is
well defined;

• if the premises of τ−compi are valid, then

Eτ (JΓ ctxK, JΓ ⊢ indτ T1 · · · Tn C c1 · · · ck (Ki T1 · · · Tn p1 · · · pm)K)(·)
∼= JΓ ⊢ ci T1 · · · Tn p′

1 · · · p′
mK

by Point (3c) of Definition 5.1.24, allowing to interpret the conclusion of
the computation rule;

CHAPTER 5. SEMANTICS 81

• if Γ ⊢ e : τT1, . . . , Tn is valid, then

Eτ (JΓ ctxK, JΓ ⊢ indτ T1, · · · Tn

(λ (x : F)n . (λz : τ x1 · · · xn. τ x1 · · · xn))
(

λ (x : F)n1
.

(

λ (y : I)m′
1

.K1 x1 · · · xn1
y1 · · · ym1

))

...
(

λ (x : F)nk
.

(

λ (y : I)m′
k

.Kk x1 · · · xnk
y1 · · · ymk

))

eK)(·) ∼= JΓ ⊢ eK

by Point (3d) of Definition 5.1.24, allowing to interpret the conclusion of
the uniqueness rule.

Lemma 5.2.10 (Substitution). If Γ, x : A ⊢ b : B and Γ ⊢ a : A are valid, then
JΓ ⊢ (λx : A. b)aK ∼= JΓ ⊢ b[a/x]K.

Proof. If b is the conclusion of a rule in the basic system, the statement holds
repeating the reasoning of Lemma 5.2.2. Suppose that b is the conclusion of
a formation, introduction or elimination rule for an inductive type, and that
x ∈ FV(b), and proceed by induction.

• If b = τ ,

JΓ ⊢ (λx : A. τ) aK

= S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ Π (x : F)n . UiK)

(Fτ (JΓ, x : A ctxK, JΓ, x : A ⊢ Π (x : F)n . UiK)(·), JΓ ⊢ aK)
∼= Fτ (JΓ ctxK,

S(JΓ ctxK, JΓ ⊢ AK,

S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ Ui+1K)

(JΓ, x : A ⊢ Π (x : F)n . UiK, JΓ ⊢ aK))(·)

and, by induction hypothesis,

∼= Fτ (JΓ ctxK, JΓ ⊢ (Π (x : F)n . Ui)[a/x]K)(·)

= JΓ ⊢ τ [a/x]K .

• If b = K,

JΓ ⊢ (λx : A.K) aK

= S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

nK)

(Iτ,K(JΓ, x : A ctxK, JΓ, x : A ⊢ Π (x : F)n′ .

Π (y : I)m . τ x′
1 · · · x′

nK)(·), JΓ ⊢ aK)
∼= Iτ,K(JΓ ctxK, S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ UiK)

(JΓ, x : A ⊢ Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

nK, JΓ ⊢ aK))(·)

and, by induction hypothesis,

∼= Iτ,K(JΓ ctxK, JΓ ⊢ (Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

n)[a/x]K)(·)

= JΓ ⊢ K[a/x]K .

CHAPTER 5. SEMANTICS 82

• If b = indτ ,

JΓ ⊢ (λx : A. indτ) aK

= S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ TindK)

(Eτ (JΓ, x : A ctxK, JΓ, x : A ⊢ TindK)(·), JΓ ⊢ aK)
∼= Eτ (JΓ ctxK, S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ Uh+1K)

(JΓ, x : A ⊢ TindK, JΓ ⊢ aK))(·)

and, by induction hypothesis,

∼= Eτ (JΓ ctxK, JΓ ⊢ (Tind)[a/x]K)(·)

= JΓ ⊢ indτ [a/x]K .

Proposition 5.2.3, Corollary 5.2.4 and Fact 5.2.6 trivially extend to the
inductive system and T -ML-categories.

Definition 5.2.11. A model for an inductive theory T is composed by a T -
ML-category and an interpretation over it such that, for every γ ∈ T , γ is
valid.

Theorem 5.2.12 (Soundness). Let T be a set of derivable judgements on an
inductive system, i.e., the basic system extended with a finite number of inductive
types. Then all the judgements in T are valid in every model.

Proof. Since a model for an inductive system extends a model for the basic
system, and Theorem 5.2.8 proves the soundness of the basic system, it is enough
to prove the statement when γ is the conclusion of a rule for an inductive type:

• if the premises are valid, then the conclusions of τ−form, τ−introi and
τ−elim are valid by Definition 5.2.9;

• the observations after Definition 5.2.9 show that, when the premises are
valid, also the conclusions of the rules τ−compi and τ−uniq are valid.

5.3 Classifying model and completeness

This section is devoted to construct the syntactical categories for the basic
system and a generic inductive theory, and to prove that the respective semantics
are complete.

In the following, when considering the basic system, the theory T is the
system B, obtained applying the rules illustrated in Section 3.1. When dealing
with inductive types, T is an inductive theory, i.e., B extended with a finite
number of inductive types as in Section 3.2.

Basic system

Definition 5.3.1. The set OT is defined as the minimal one satisfying

1. if (Γ ctx) ∈ T then [Γ ctx] = [Γ ctx]≈ ∈ OT ;

2. if (Γ ⊢ a : A) ∈ T then [Γ ⊢ a] = (a, [AV(a) ctx]) ∈ OT , with AV(a) intro-
duced in Definition 3.3.1.

CHAPTER 5. SEMANTICS 83

Definition 5.3.2. Given a pair (a, b) ∈ OT ×OT , dom(a, b) = a and cod(a, b) =
b. Also, if (a, b) ∈ OT × OT and (b, c) ∈ OT × OT , then (b, c) ◦ (a, b) = (a, c).

Definition 5.3.3. The set AT ⊆ OT × OT is defined as the minimal one such
that

1. if (Γ, x : A ctx) ∈ T then νA = ([Γ ctx] , [Γ, x : A ctx]) ∈ AT ;

2. if (Γ ctx), (∆ ctx) ∈ T and Γ ∼ ∆ then ([Γ ctx], [∆ ctx]) ∈ AT ;

3. if (Γ ⊢ a : A) ∈ T then [Γ ⊢ a : A] = ([Γ ⊢ A] , [Γ ⊢ a]) ∈ AT and ǫΓ⊢a:A =
([Γ ⊢ a] , [AV(a) ctx]) ∈ AT ;

4. if (Γ ⊢ a ≡ b : A) ∈ T then [Γ ⊢ a ≡ b : A] = ([Γ ⊢ a] , [Γ ⊢ b]) ∈ AT ;

5. if a ∈ OT then ida = (a, a) ∈ AT ;

6. if (a, b) ∈ AT and (b, c) ∈ AT then (b, c) ◦ (a, b) ∈ AT .

It must be remarked that (a, b) ∈ AT is uniquely identified by its endpoints.

Definition 5.3.4. The syntactical category MT has OT as objects, and AT as
arrows, and its composition is ◦ as in Definition 5.3.2.

Fact 5.3.5. The syntactical category is a category.

Proof. First, Definition 5.3.4 is well given: by Proposition 3.3.9, if (Γ ⊢ a : A) ∈
T then (Γ ⊢ A : Ui) ∈ T thus [Γ ⊢ a : A] is properly defined; also, by Proposi-
tion 3.3.8, if (Γ ⊢ a ≡ b : A) ∈ T then (Γ ⊢ a : A) ∈ T and (Γ ⊢ b : A) ∈ T , thus
[Γ ⊢ a] and [Γ ⊢ b] are defined.

Finally, if f = (a, b) ∈ AT then f ◦ ida = (a, b) ◦ (a, a) = (a, b) = f and
idb ◦ f = (b, b) ◦ (a, b) = (a, b) = f . If f = (a, b), g = (b, c), h = (c, d) are in AT

then h ◦ (g ◦ f) = h ◦ ((b, c) ◦ (a, b)) = (c, d) ◦ (a, c) = (a, d) = (b, d) ◦ (a, b) =
((c, d) ◦ (b, c)) ◦ f = (h ◦ g) ◦ f .

As Dr. Maschio pointed out, the syntactical category is a partial order.

Definition 5.3.6. The syntactical context category CT is the full subcategory
of MT whose objects are {[Γ ctx] : (Γ ctx) ∈ T}.

Fact 5.3.7. The category CT has [• ctx] as the initial object, and each arrow
νA is indecomposable.

Proof. By construction, each arrow νA is indecomposable.
Since (• ctx) ∈ T , [• ctx] is defined. Let (Γ ctx) ∈ T , then Γ = x1 :A1, . . . , xn :

An, so

[• ctx] [x1 : A1 ctx] · · · [Γ ctx]
νA1

νA2 νAn

thus the composition is the pair ([• ctx] , [Γ ctx]). If ∆ ≈ Γ, the same con-
struction yields ([• ctx] , [∆ ctx]), but [∆ ctx] = [∆ ctx]≈ = [Γ ctx]≈ = [Γ ctx]
proving the uniqueness of the arrow [• ctx] → [Γ ctx].

Fact 5.3.8. If (Γ, x : A ctx), (∆, y : B ctx) ∈ T such that [Γ ctx] ∼= [∆ ctx] and
(Γ ⊢ A ≡ B ∈ Ui) ∈ T , then [Γ, x : A ctx] ∼= [∆, y : B ctx].

CHAPTER 5. SEMANTICS 84

Proof. By Definition 5.3.3 [Γ ctx] ∼= [∆ ctx] implies Γ ∼ ∆, thus Γ, x:A ∼ ∆, y:B
and cod(ν[Γ ctx]

A) = [Γ, x : A ctx] ∼= [∆, y : B ctx] = cod(ν[∆ ctx]
B) by Point (2) of

Definition 5.3.3.

Fact 5.3.9. If (Γ ⊢ A : Ui) ∈ T and (Γ ⊢ B : Uj) ∈ T then ννB◦A ◦ νB =
ννA◦B ◦ νA.

Proof. By Corollary 3.3.5, (Γ ctx) ∈ T , so [Γ ctx] ∈ ObjCT . Moreover, it
holds that (Γ, x : A, y : B ctx) ∈ T and (Γ, y : B, x : A ctx) ∈ T , with x and y
fresh variables. By Definition 3.3.18, [Γ, x : A, y : B ctx]≈ = [Γ, y : B, x : A ctx]≈,
hence

ννB◦A ◦ νB

= ([Γ, y : B ctx] , [Γ, y : B, x : A ctx]) ◦ ([Γ ctx] , [Γ, y : B ctx])

=
(

[Γ ctx] , [Γ, y : B, x : A]≈
)

=
(

[Γ ctx] , [Γ, x : A, y : B]≈
)

= ([Γ, x : A ctx] , [Γ, x : A, y : B ctx]) ◦ ([Γ ctx] , [Γ, x : A ctx])

= ννA◦B ◦ νA ,

proving the statement.

Fact 5.3.10. For every i ∈ N and (Γ ctx) ∈ T , [Γ ⊢ Ui] = (Ui, [• ctx]).

Proof. Since (⊢ Ui : Ui+1) ∈ T , [⊢ Ui] = (Ui, [• ctx]). Also, (Γ ⊢ Ui : Ui+1) ∈ T
and AV(Ui) is empty, so [Γ ⊢ Ui] = (Ui, [• ctx]).

Fact 5.3.11. For every [Γ ctx] ∈ ObjCT , the slice category

MT
Γ = 〈MT / [Γ ctx] ;

{

([• ctx] , [Γ ctx]) ◦ ǫ⊢Ui:Ui+1

}

i∈N
〉

is iso-stable.

Proof. Suppose f : a → a in MT
Γ . Since a = (b, [Γ ctx]), f : b → b in MT ,

thus f = (b, b) since arrows are uniquely identified by their endpoints, see
Definition 5.3.3. Hence, f = idb in MT and thus f = ida in MT

Γ .

Fact 5.3.12. If (Γ ⊢ a ≡ b : A) ∈ T , then [Γ ⊢ a ≡ b : A] is an isomorphism
both in MT and in MT

Γ .

Proof. If (Γ ⊢ a ≡ b : A) ∈ T then (Γ ⊢ b ≡ a : A) ∈ T , too, so [Γ ⊢ a ≡ b : A] ∈
AT . It is immediate to see that the composition of these two arrows yields the
identity, in both ways. Hence [Γ ⊢ a ≡ b : A] is an isomorphism.

Proposition 5.3.13. For every [Γ ctx] ∈ ObjCT , the slice category MT
Γ is

typical.

Proof. Let c ∈ Obj MT
Γ and consider its domain in MT :

• if dom(c) = [• ctx] then, by Corollary 3.3.23, there are a and A such that
(⊢ a : A) ∈ T and a is not inhabited. Thus, by Point (3) of Definition 5.3.3,
ǫ⊢a:A exists, and it has to be indecomposable, proving the statement.

• if dom(c) = [∆, x : A ctx] then νA is the sought indecomposable arrow.

CHAPTER 5. SEMANTICS 85

• if dom(c) = [Γ ⊢ a] then (Γ ⊢ a : A) ∈ T for some type A. By Proposi-
tion 3.3.21, if A is not unique up to isomorphisms then Γ ⊢ a : Π(x : G)l.Uj

and Γ ⊢ a : Π(x : G)l.Uk. Thus, if l = 0, consider A as the minimal
universe Ui such that Γ ⊢ a : Ui. Otherwise, the choice of A among the
different types of a is free. Thus [Γ ⊢ a : A] has to be indecomposable and
cod ([Γ ⊢ a : A]) = [Γ ⊢ a].

Proposition 5.3.14. For every [Γ ctx] ∈ ObjCT , the slice category

〈MT
Γ ; {([Γ ⊢ Ui] , [Γ ctx])}i∈N

〉

has universes.

Proof. First ([Γ ⊢ Ui] , [Γ ctx]) =![Γ ctx] ◦ ǫ⊢Ui:Ui+1
with ![Γ ctx] the unique arrow

from the initial object [• ctx], see Fact 5.3.7. Thus ([Γ ⊢ Ui] , [Γ ctx]) ∈ Obj MT
Γ .

Consider 〈MT
Γ ; ([Γ ⊢ U0] , [Γ ctx])〉: for every i ∈ N, (Γ ⊢ Ui : Ui+1) ∈ T , so

([Γ ⊢ Ui] , [Γ ctx]) is a weak universe by a straightforward induction.
Also, 〈MT

Γ ; ([Γ ⊢ U0] , [Γ ctx])〉 has weak universes because, for every c ∈
Obj MT

Γ ,

• either dom(c) = [∆ ctx] and thus ∆ ⊆ Γ, then ([Γ ⊢ Ui] , [∆ ctx]) is an
arrow of MT

Γ for each i ∈ N, whose codomain is c, obtained composing
ǫ∆⊢Ui:Ui+1

with the ν maps of the difference Γ \ ∆;

• or dom(c) = [Γ ⊢ a] and thus there is (Γ ⊢ a : A) ∈ T , so (Γ ⊢ A : Ui) ∈ T
for some i ∈ N by Proposition 3.3.9, hence [Γ ⊢ a : A] ◦ [Γ ⊢ A : Ui] is an
arrow of MT

Γ whose codomain is c.

Since (Γ ⊢ Ui : Ui+1) ∈ T , the arrow [Γ ⊢ Ui : Ui+1] : ([Γ ⊢ Ui+1] , [Γ ctx]) →
([Γ ⊢ Ui] , [Γ ctx]) is in MT

Γ for every i ∈ N. Moreover, by Proposition 3.3.21,
this arrow is indecomposable, so 〈MT

Γ ; {([Γ ⊢ Ui] , [Γ ctx])}i∈N
〉 is a category

with universes.

Definition 5.3.15. If T is the basic system, its syntactical category is MT

of Definition 5.3.4 extended with the following families of functors. Since the
groupoids of terms are groupoids, i.e., categories of isomorphisms, it suffices to
define the functors for Π on the objects of their category of definition. Whenever
(Γ ⊢ A : Ui) ∈ T ,

FT ([Γ ctx], [Γ ⊢ A])

(([Γ, x : A ⊢ B], [Γ, x : A ctx])) = ([Γ ⊢ Πx : A.B], [Γ ctx]) ,

and for each instance of a Π-type

IT ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])

(([Γ, x : A ⊢ b], [Γ, x : A ctx])) = ([Γ ⊢ λx : A.b], [Γ ctx]) ,

ET ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])

(([Γ ⊢ f], [Γ ctx]), ([Γ ⊢ a], [Γ ctx])) = ([Γ ⊢ f a], [Γ ctx]) .

Define χ
[Γ ctx]
[Γ⊢A] = [Γ, x : A ⊢ x].

Definition 5.3.16. The canonical interpretation J·KT over T is defined as
follows:

CHAPTER 5. SEMANTICS 86

• if (Γ ctx) ∈ T then JΓ ctxKT =![Γ ctx];

• if there is A such that (Γ ⊢ a : A) ∈ T , then JΓ ⊢ aKT = ([Γ ⊢ a], [Γ ctx]);

• if (Γ ⊢ a : A) ∈ T then JΓ ⊢ a : AKT = ([Γ ⊢ A], [Γ ⊢ a]);

• if (Γ ⊢ a ≡ b : A) ∈ T then JΓ ⊢ a ≡ b : AKT = ([Γ ⊢ a], [Γ ⊢ b]).

Proposition 5.3.17. The category

MT = 〈MT ;CT , {([Γ ⊢ Ui] , [Γ ctx])}i∈N
, ν, [• ctx] , FT , IT , ET 〉

is a ML-category and J·KT is an interpretation over it.

Proof. To simplify the presentation, the proof follows the points of Defini-
tion 5.1.19.

1. Fact 5.3.5, Definition 5.3.6, and Fact 5.3.7 prove the point to hold.

2. Fact 5.3.10 and Proposition 5.3.14 prove the point.

3. Fact 5.3.7 proves that νc
A is indecomposable, and, evidently, for every

c = [x1 : A1, . . . , xn : An ctx] ∈ ObjCT , !c = νAn
◦ · · · ◦ νA1

.

4. Fact 5.3.8 proves the point.

5. Fact 5.3.9 proves the point.

6. Since (Γ, x : A ⊢ x : A) ∈ T implies (Γ ⊢ A : Ui) ∈ T by Lemma 3.3.7
and Proposition 3.3.9, χ

[Γ ctx]
[Γ⊢A] has type [Γ ⊢ A] as required. Moreover, by

Proposition 3.3.14, χ
[Γ ctx]
[Γ⊢A] 6= νA ◦ e for every term e in M[Γ ctx].

7. By Definition 5.3.15, FT is appropriately indexed and

a) each instance has the right domain and codomain;

b) if (Γ ⊢ A : Ui) ∈ T , (Γ ⊢ Πx : A. B : Uj) ∈ T , and k = max(i, j),
then FT ([Γ ctx], [Γ ⊢ A])(([Γ, x : A ⊢ B], [Γ, x : A ctx])) = ([Γ ⊢
Πx : A. B], [Γ ctx]) is a term of type [Γ ⊢ Uk] because of Point (3) of
Definition 5.3.3;

c) if Γ ∼ ∆, [Γ ⊢ A] ∼= [∆ ⊢ C] and ([Γ, x : A ⊢ B], [Γ, x : A ctx]) ∼=
([∆, y : C ⊢ D], [∆, y : C ctx]),

FT ([Γ ctx], [Γ ⊢ A])(([Γ, x : A ⊢ B], [Γ, x : A ctx]))

= ([Γ ⊢ Πx : A. B], [Γ ctx])
∼= ([∆ ⊢ Πy : C. D], [∆ ctx])

= FT ([∆ ctx], [∆ ⊢ C])(([∆, y : C ⊢ D], [∆, y : C ctx]))

by closure under the Π−form−eq rule and Fact 5.2.6; the condition
on arrows is automatic since every functor preserves isomorphisms
and the domain and codomain are groupoids;

CHAPTER 5. SEMANTICS 87

d) if z does not occur in A and B,

FT ([Γ, z : C ctx], [Γ, z : C ⊢ A])

(([Γ, z : C, x : A ⊢ B], [Γ, z : C, x : A ctx]))

= ((Πx : A. B, [AV (Πx : A. B) ctx]), [Γ, z : C ctx])

= ([Γ ctx], [Γ, z : C ctx]) ◦

((Πx : A. B, [AV (Πx : A. B) ctx]), [Γ ctx])

= νC ◦ FT ([Γ ctx], [Γ ⊢ A])(([Γ, x : A ⊢ B], [Γ, x : A ctx])) ;

e) let h : a → b be an isomorphism such that FT ([Γ ctx], [Γ ⊢ A])(g) = h
for some arrow g. Then,

h = (FT ([Γ ctx], [Γ ⊢ A])(([Γ, x : A ⊢ B], [Γ, x : A ctx])),

FT ([Γ ctx], [Γ ⊢ A])(([Γ, x : A ⊢ C], [Γ, x : A ctx])))

and g = ([Γ, x : A ⊢ B], [Γ, x : A ⊢ C]). By considering the inverse
image h−1, g−1 = ([Γ, x : A ⊢ C], [Γ, x : A ⊢ B]), which has to exist
in the domain, showing that g is an isomorphism.

8. By Definition 5.3.15, IT is appropriately indexed and

a) IT ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])(([Γ, x : A ⊢ b], [Γ, x : A ctx])) =
([Γ ⊢ λx : A. b], [Γ ctx]) is a term of type [Γ ⊢ Πx : A. B] because of
Point (3) of Definition 5.3.3;

b) calculating

IT ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Πx1 : D1. · · · . Πxl : Dl. Uj])

(([Γ, x : A ⊢ b], [Γ, x : A ctx]))

= ([Γ ⊢ λx : A. b], [Γ ctx])

= IT ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Πx1 : D1. · · · . Πxl : Dl. Uk])

(([Γ, x : A ⊢ b], [Γ, x : A ctx]))

c) as already noticed in the case of FT , it suffices to prove that IT

respects isomorphisms on objects.
If Γ ∼ ∆, [Γ ⊢ A] ∼= [∆ ⊢ C], [Γ, x : A ⊢ B] ∼= [∆, x : C ⊢ D] and
[Γ, x : A ⊢ b] ∼= [∆, x : C ⊢ d],

IT ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])

(([Γ, x : A ⊢ b], [Γ, x : A ctx]))

= ([Γ ⊢ λx : A. b], [Γ ctx])
∼= ([∆ ⊢ λx : C. d], [∆ ctx])

= IT ([∆ ctx], [∆ ⊢ C], [∆, x : C ⊢ D])

(([∆, x : C ⊢ d], [∆, x : C ctx]))

by closure under the Π−intro−eq rule and Fact 5.2.6;

d) if z does not occur in A, B, and b,

IT ([Γ, z : C ctx], [Γ, z : C ⊢ A], [Γ, z : C ⊢ B])

CHAPTER 5. SEMANTICS 88

(([Γ, z : C, x : A ⊢ b], [Γ, z : C, x : A ctx]))

= ((λx : A. b, [AV (λx : A. b) ctx]), [Γ, z : C ctx])

= ([Γ ctx], [Γ, z : C ctx]) ◦

((λx : A. b, [AV (λx : A. b) ctx]), [Γ ctx])

= νC ◦ IT ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])

(([Γ, x : A ⊢ B], [Γ, x : A ctx])) ;

e) let (Γ ⊢ f : Πx : A. B) ∈ T and define

JT ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])

as a functor

(MT /[Γ ctx] ↑ ([Γ ⊢ Πx : A. B], [Γ ctx]))

→ (MT /[Γ, x : A ctx] ↑ F−1
T ([Γ ctx], [Γ ⊢ A])

(([Γ ⊢ Πx : A. B], [Γ ctx]))

such that

JT ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])(([Γ ⊢ f], [Γ ctx]))

= ([Γ, x : A ⊢ f x], [Γ, x : A ctx]) ,

which suffices to define JT as it acts on groupoids in an iso-stable
category. Hence

(

JT ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B]) ◦

IT ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])
)

(([Γ, x : A ⊢ b], [Γ, x : A ctx]))
∼= ([Γ, x : A ⊢ (λx : A. b) x], [Γ, x : A ctx])
∼= ([Γ, x : A ⊢ b], [Γ, x : A ctx])

by closure under the Π−comp rule, and
(

IT ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B]) ◦

JT ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])
)

(([Γ ⊢ f], [Γ ctx]))
∼= ([Γ ⊢ λx : A. f x], [Γ ctx]) ∼= ([Γ ⊢ f], [Γ ctx])

by closure under the Π−uniq rule. So IT ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢
B]) is an equivalence of categories whose inverse is JT ([Γ ctx], [Γ ⊢
A], [Γ, x : A ⊢ B]).

9. By Definition 5.3.15, ET is appropriately indexed and

a) assuming Γ ⊢ a : A, Γ ⊢ A : Ui, Γ, x : A ⊢ b : B, and Γ, x : A ⊢ B : Ui,
ET ([Γ ctx], [Γ ⊢ A], [Γ, x :A ⊢ B])(([Γ, x :A ⊢ b], [Γ, x :A ctx])) = ([Γ ⊢
λx : A. b], [Γ ctx]) is a term of type [Γ ⊢ Πx : A. B] in the universe Ui

because of Point (3) of Definition 5.3.3;

b) ET ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])(([Γ ⊢ f], [Γ ctx]), ([Γ ⊢ a], [Γ ctx]))
is a term of type B[a/x] because of conditions (3) and (4) in Defini-
tion 5.3.3, and closure under the Π−elim rule;

CHAPTER 5. SEMANTICS 89

c) calculating,

ET ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Πx1 : D1. · · · . Πxl : Dl. Uj])

(([Γ ⊢ f], [Γ ctx]), ([Γ ⊢ a], [Γ ctx]))

= ([Γ ⊢ f a], [Γ ctx])

= ET ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Πx1 : D1. · · · . Πxl : Dl. Uk])

(([Γ ⊢ f], [Γ ctx]), ([Γ ⊢ a], [Γ ctx]))

and

ET ([Γ ctx], [Γ ⊢ Πx1 : D1. · · · . Πxl : Dl. Uj], [Γ, x : A ⊢ B])

(([Γ ⊢ f], [Γ ctx]), ([Γ ⊢ a], [Γ ctx]))

= ([Γ ⊢ f a], [Γ ctx])

= ET ([Γ ctx], [Γ ⊢ Πx1 : D1. · · · . Πxl : Dl. Uk], [Γ, x : A ⊢ B])

(([Γ ⊢ f], [Γ ctx]), ([Γ ⊢ a], [Γ ctx])) ;

d) as already noticed in the case of FT and IT , it suffices to prove that
ET respects isomorphisms on objects. If Γ ∼ ∆, [Γ ⊢ A] ∼= [∆ ⊢ C],
[Γ, x : A ⊢ B] ∼= [∆, x : C ⊢ D], [Γ ⊢ f] ∼= [∆ ⊢ g], and [Γ ⊢ a] ∼= [∆ ⊢
c],

ET ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])

(([Γ ⊢ f], [Γ ctx]), ([Γ ⊢ a], [Γ ctx]))

= ([Γ ⊢ f a], [Γ ctx])
∼= ([∆ ⊢ g c], [∆ ctx])

= ET ([∆ ctx], [∆ ⊢ C], [∆, x : C ⊢ D])

(([∆ ⊢ g], [∆ ctx]), ([∆ ⊢ c], [∆ ctx]))

by closure under the Π−elim−eq rule and Fact 5.2.6;

e) if z does not occur in A, B, f and a,

ET ([Γ, z : C ctx], [Γ, z : C ⊢ A], [Γ, z : C ⊢ B])

(([Γ, z : C ⊢ f], [Γ, z : C ctx]), ([Γ, z : C ⊢ a], [Γ, z : C ctx]))

= ((f a, [AV (f a) ctx]), [Γ, z : C ctx])

= ([Γ ctx], [Γ, z : C ctx]) ◦ ((f a, [AV (f a) ctx]), [Γ ctx])

= νC ◦ ET ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])

(([Γ ⊢ f], [Γ ctx]), ([Γ ⊢ a], [Γ ctx])) .

10. the auxiliary family of functors S is indexed as S([Γ ctx], [Γ ⊢ A], [Γ, x:A ⊢
B]) with A a type in Γ ctx and B a type in Γ, x : A ctx, and

a) S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])(([Γ, x : A ⊢ b], [Γ, x : A ctx]), ([Γ ⊢
a], [Γ ctx])) is defined to be

ET ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])

(IT ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])

(([Γ, x : A ⊢ b], [Γ, x : A ctx])), ([Γ ⊢ a], [Γ ctx]))

CHAPTER 5. SEMANTICS 90

∼= ET ([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])

(([Γ ⊢ λx : A. b], [Γ ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= ([Γ ⊢ (λx : A. b) a], [Γ ctx]) ∼= ([Γ ⊢ b[a/x]], [Γ ctx])

by closure under the Π−comp rule;

b) calculating,

S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ A])

(([Γ, x : A ⊢ x], [Γ, x : A ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= ([Γ ⊢ x[a/x]], [Γ ctx]) = ([Γ ⊢ a], [Γ ctx]) ;

c) if Γ ⊢ p : B, i.e., x does not occur in p,

S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ B])

(([Γ, x : A ⊢ p], [Γ, x : A ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= ([Γ ⊢ p[a/x]], [Γ ctx]) = ([Γ ⊢ p], [Γ ctx]) ;

d) calculating, it is long but easy to verify the condition on substitution
applied to the Π-elimination functor:

ET ([Γ, x : A ctx], [Γ, x : A ⊢ Q], [Γ, x : A, y : Q ⊢ P])

(([Γ, x : A ⊢ p], [Γ, x : A ctx]), ([Γ, x : A ⊢ q], [Γ, x : A ctx]))

= ([Γ, x : A ⊢ p q], [Γ, x : A ctx]) ,

Qa = S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(([Γ, x : A ⊢ Q], [Γ, x : A ctx]), ([Γ ⊢ a], [Γ ctx]))
∼=([Γ ⊢ Q[a/x]], [Γ ctx])

then

S([Γ ctx], [Γ ⊢ A],

S([Γ, x : A ctx], [Γ, x : A ⊢ Q], [Γ, x : A, y : Q ⊢ Ui])

(([Γ, x : A, y : Q ⊢ P], [Γ, x : A, y : Q, ctx]),

([Γ, x : A ⊢ q], [Γ, x : A ctx])))

(([Γ, x : A ⊢ p q], [Γ, x : ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ P [q/y]])

(([Γ, x : A ⊢ p q], [Γ, x : ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= ([Γ ⊢ (p q)[a/x]], [Γ ctx])
∼= ([Γ ⊢ p[a/x] q[a/x]], [Γ ctx])
∼= ET ([Γ ctx], [Γ ⊢ Q[a/x]], [Γ, y : Q[a/x] ⊢ P [a/x]])

(([Γ, y : Q[a/x] ⊢ p[a/x]], [Γ, y : Q[a/x] ctx]),

([Γ ⊢ q[a/x]], [Γ ctx]))
∼= ET ([Γ ctx], Qa,

F−1
T ([Γ ctx], Qa)

(([Γ ⊢ Πy : Q[a/x]. P [a/x]], [Γ ctx])))

CHAPTER 5. SEMANTICS 91

(S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Πy : Q[a/x]. P [a/x]])

(([Γ, x : A ⊢ p], [Γ, x : A ctx]), ([Γ ⊢ a], [Γ ctx])),

S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Q])

(([Γ, x : A ⊢ q], [Γ, x : A ctx]), ([Γ ⊢ a], [Γ ctx])))
∼= ET ([Γ ctx], Qa,

F−1
T ([Γ ctx], Qa)

(S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(([Γ, x : A ⊢ Πy : Q. P], [Γ, x : A ctx]),

([Γ ⊢ a], [Γ ctx]))))

(S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Πy : Q[a/x]. P [a/x]])

(([Γ, x : A ⊢ p], [Γ, x : A ctx]), ([Γ ⊢ a], [Γ ctx])),

S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Q])

(([Γ, x : A ⊢ q], [Γ, x : A ctx]), ([Γ ⊢ a], [Γ ctx])))
∼= ET ([Γ ctx], Qa,

F−1
T ([Γ ctx], Qa)

(S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(FT ([Γ, x : A ctx], [Γ, x : A ⊢ Q])

(([Γ, x : A, y : Q ⊢ P], [Γ, x : A, y : Q ctx])),

([Γ ⊢ a], [Γ ctx]))))

(S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Πy : Q[a/x]. P [a/x]])

(([Γ, x : A ⊢ p], [Γ, x : A ctx]), ([Γ ⊢ a], [Γ ctx])),

S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Q])

(([Γ, x : A ⊢ q], [Γ, x : A ctx]), ([Γ ⊢ a], [Γ ctx]))) .

e) calculating,

IT ([Γ, x : A ctx], [Γ, x : A ⊢ D], [Γ, x : A, y : D ⊢ B])

(([Γ, x : A, y : D ⊢ b], [Γ, x : A, y : D ctx]))

= ([Γ, x : A ⊢ λy : D. b], [Γ, x : A ctx]) ,

Da = S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(([Γ, x : A ⊢ D], [Γ, x : A ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= ([Γ ⊢ D[a/x]], [Γ ctx]) ,

Ba = F−1
T ([Γ ctx], Da)

(S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(FT ([Γ, x : A ctx], [Γ, x : A ⊢ D])

(([Γ, x : A, y : D ⊢ B], [Γ, x : A, y : D ctx])),

([Γ ⊢ a], [Γ ctx])))
∼= ([Γ, y : D[a/x] ⊢ B[a/x]], [Γ, y : D[a/x] ctx]) ,

ba = I−1
T ([Γ ctx], Ba, Da)

CHAPTER 5. SEMANTICS 92

(S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(IT ([Γ, x : A ctx], [Γ, x : A ⊢ D])

(([Γ, x : A, y : D ⊢ b], [Γ, x : A, y : D ctx])),

([Γ ⊢ a], [Γ ctx])))
∼= ([Γ, y : D[a/x] ⊢ B[a/x]], [Γ, y : D[a/x] ctx]) .

Hence,

S([Γ ctx], [Γ ⊢ A], FT ([Γ, x : A ctx], [Γ, x : A ⊢ D])

(([Γ, x : A, y : D ⊢ B], [Γ, x : A, y : D ctx])))

(([Γ, x : A ⊢ λy : D. b], [Γ, x : A ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Πy : D. B])

(([Γ, x : A ⊢ λy : D. b], [Γ, x : A ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= ([Γ ⊢ (λy : D. b)[a/x]], [Γ ctx])
∼= ([Γ ⊢ λy : D[a/x]. b[a/x]], [Γ ctx])
∼= IT ([Γ ctx], Da, Ba)(ba) .

f) calculating,

FT ([Γ, x : A ctx], [Γ, x : A ⊢ D]

(([Γ, x : A, y : D ⊢ B], [Γ, x : A, y : D ctx]))

= ([Γ, x : A ⊢ Πy : D. B], [Γ, x : A ctx]) ,

Da = S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(([Γ, x : A ⊢ D], [Γ, x : A ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= ([Γ ⊢ D[a/x]], [Γ ctx]) ,

Ba = F−1
T ([Γ ctx], Da)

(S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(FT ([Γ, x : A ctx], [Γ, x : A ⊢ D])

(([Γ, x : A, y : D ⊢ B], [Γ, x : A, y : D ctx])),

([Γ ⊢ a], [Γ ctx])))
∼= ([Γ, y : D[a/x] ⊢ B[a/x]], [Γ, y : D[a/x] ctx]) ,

then

S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(([Γ, x : A ⊢ Πy : D. B], [Γ, x : A ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= ([Γ ⊢ (Πy : D. B)[a/x]], [Γ ctx])
∼= ([Γ ⊢ Πy : D[a/x]. B[a/x]], [Γ ctx])
∼= FT ([Γ ctx], Da)(Ba) .

g) by a simple calculation

S([Γ ctx], [Γ ⊢ A],

CHAPTER 5. SEMANTICS 93

S([Γ, x : A ctx], [Γ, x : A ⊢ B], [Γ, x : A, y : B ⊢ Ui])

(([Γ, x : A, y : B ⊢ E], [Γ, x : A, y : B ctx]),

([Γ, x : A ⊢ b], [Γ, x : A ctx])))

(S([Γ, x : A ctx], [Γ, x : A ⊢ B], [Γ, x : A, y : B ⊢ E])

(([Γ, x : A, y : B ⊢ e], [Γ, x : A, y : B ctx]),

([Γ, x : A ⊢ b], [Γ, x : A ctx])), ([Γ ⊢ a], [Γ ctx]))
∼= S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ E[b/y]])

(([Γ, x : A ⊢ e[b/y]], [Γ, x : A ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= ([Γ ⊢ e[b/y][a/x]], [Γ ctx])
∼= ([Γ ⊢ e[a/x][b/y]], [Γ ctx])
∼= S([Γ ctx], [Γ ⊢ B], [Γ, y : B ⊢ E[a/x]])

(([Γ, y : B ⊢ e[a/x]], [Γ, y : B ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= S([Γ ctx], [Γ ⊢ B],

S([Γ, y : B ctx], [Γ, y : B ⊢ A], [Γ, y : B, x : A ⊢ Ui])

(([Γ, y : B, x : A ⊢ E], [Γ, y : B, x : A ctx]),

([Γ, y : B ⊢ a], [Γ, y : B ctx])))

(S([Γ, y : B ctx], [Γ, y : B ⊢ A], [Γ, y : B, x : A ⊢ E])

(([Γ, y : B, x : A ⊢ e], [Γ, y : B, x : A ctx]),

([Γ, y : B ⊢ a], [Γ, y : B ctx])), ([Γ ⊢ b], [Γ ctx])) .

Finally, it is immediate to check that J·KT satisfies all the conditions to be
an interpretation, see Definition 5.2.1.

Theorem 5.3.18 (Classifying model). If M = 〈M, J·K〉 is a model for T , then
there is functor I : MT → M which preserves the interpretation.

Proof. Define I : MT → M following Definitions 5.3.1 and 5.3.3:

• if (Γ ctx) ∈ T , I ([Γ ctx]) = cod (JΓ ctxK);

• if (Γ ⊢ a : A) ∈ T , I ([Γ ⊢ a]) = dom (JΓ ⊢ aK);

• if (Γ, x : A ctx) ∈ T , I(νA) = νA where the former νA is an arrow of MT

while the latter is an arrow of M;

• if (Γ ⊢ a : A) ∈ T , I ([Γ ⊢ a : A]) = JΓ ⊢ a : AK, and I (ǫΓ⊢a:A) = JAV(a) ⊢
aK;

• if (Γ ⊢ a ≡ b : A) ∈ T , I ([Γ ⊢ a ≡ b : A]) = JΓ ⊢ a ≡ b : AK;

• I(ida) = ida and I(f ◦ g) = I(f) ◦ I(g).

This definition is well given since it does not depend on the representatives in the
equivalence classes. This fact follows from the definition of ≈, and Fact 5.2.6.

A simple check against Definition 5.3.16 shows that I(J·KT) ∼= J·K.

Theorem 5.3.19 (Completeness). Let γ be a judgement which is valid in every
model for T . Then γ is derivable from T .

CHAPTER 5. SEMANTICS 94

Proof. Since γ is valid in every model for T , it is valid in MT . Hence, it is
an arrow of MT , thus, by Definition 5.3.3, γ ∈ T . Since T is closed under
derivation in the basic system, γ is derivable from T .

Inductive types

Since the proof theory in Section 3.3 comprehends inductive types, all the
constructions and results obtained so far for the basic system B trivially extend
to any inductive theory T . Thus, we can extend the syntactical category for
the basic system to T as follows

Definition 5.3.20. If T is an inductive theory, its syntactical category is the
one of Definition 5.3.15 extended with the following families of functors; as for
the basic system, it suffices to define the functors on the objects of their category
of definition. For each instance of a formation, introduction and elimination
rule for a type τ ,

• Fτ ([Γ ctx], [Γ ⊢ Π (x : F)n . Ui])(·) = ([Γ ⊢ τ], [Γ ctx]);

• Iτ,K([Γ ctx], [Γ ⊢ Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

n])(·)
= ([Γ ⊢ K], [Γ ctx]);

• Eτ ([Γ ctx], [Γ ⊢ Tind])(·) = ([Γ ⊢ indτ], [Γ ctx]).

The canonical interpretation J·KT over T extends the interpretation for the
basic system of Definition 5.3.16 in the obvious way.

Proposition 5.3.21. Mi
T = 〈MT , {Fτ , {Iτ,K}, Eτ }〉 is a T -ML-category, and

J·KT is an interpretation over it.

Proof. MT is a ML-category by Proposition 5.3.17, thus it is enough to show that
the requirements of Definition 5.1.24 are satisfied. To simplify the presentation,
the proof follows the points of the definition.

1. By Definition 5.3.20, Fτ is appropriately indexed and

a) each instance has the right domain and codomain;

b) if Γ ∼ ∆, then by Fact 5.2.6

Fτ ([Γ ctx], [Γ ⊢ Π (x : F)n . Ui])
∼= Fτ ([∆ ctx], [Γ ⊢ Π (x : F)n . Ui]) .

2. By Definition 5.3.20, Iτ,K is appropriately indexed and

a) each instance has the right domain and codomain;

b) if Γ ∼ ∆, then by Fact 5.2.6

Iτ,K([Γ ctx], [Γ ⊢ Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

n])
∼= Iτ,K([∆ ctx], [Γ ⊢ Π (x : F)n′ . Π (y : I)m . τ x′

1 · · · x′
n]) .

3. By Definition 5.3.20, if τ is non recursive Eτ is appropriately indexed and

a) each instance has the right domain and codomain;

CHAPTER 5. SEMANTICS 95

b) if Γ ∼ ∆, then by Fact 5.2.6

Eτ ([Γ ctx], [Γ ⊢ Tind])
∼= Eτ ([∆ ctx], [Γ ⊢ Tind]) ;

c) by closure under τ−compi rule,

([Γ ⊢ indτ T1 · · · Tn C c1 · · · ck

(Ki T1 · · · Tn p1 · · · pm)], [Γ ctx])
∼= ([Γ ⊢ ci T1 · · · Tn p′

1 · · · p′
m], [Γ ctx]) ;

d) by closure under τ−uniq rule,

([Γ ⊢ indτ T1, · · · Tn

(λ (x : F)n . (λz : τ x1 · · · xn. τ x1 · · · xn))
(

λ (x : F)n1
.

(

λ (y : I)m′
1

.K1 x1 · · · xn1
y1 · · · ym1

))

...
(

λ (x : F)nk
.

(

λ (y : I)m′
k

.Kk x1 · · · xnk
y1 · · · ymk

))

e], [Γ ctx])
∼= ([Γ ⊢ e], [Γ ctx]) .

In the recursive case, the above points hold analogously.

4. Focusing on the auxiliary functor S,

a) by definition,

S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(Fτ ([Γ ctx], [Γ ⊢ Π (x : F)n . Ui])(·), ([Γ ⊢ a], [Γ ctx]))

= S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(([Γ ⊢ τ], [Γ ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= ([Γ ⊢ τ [a/x]], [Γ ctx])
∼= Fτ ([Γ ctx], [Γ ⊢ (Π (x : F)n . Ui)[a/x]])(·)
∼= Fτ ([Γ ctx], S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

([Γ ⊢ Π (x : F)n . Ui], [Γ ⊢ a])) ;

b) by definition,

S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(Iτ,K([Γ ctx], [Γ ⊢ Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

n])(·),

([Γ ⊢ a], [Γ ctx]))

= S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(([Γ ⊢ K], [Γ ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= ([Γ ⊢ K[a/x]], [Γ ctx])
∼= Iτ,K([Γ ctx], [Γ ⊢ (Π (x : F)n′ . Π (y : I)m . τ x′

1 · · · x′
n)[a/x]])(·)

∼= Iτ,K([Γ ctx], S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

([Γ ⊢ Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

n], [Γ ⊢ a])) ;

CHAPTER 5. SEMANTICS 96

c) by definition,

S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(Eτ ([Γ ctx], [Γ ⊢ Tind])(·), ([Γ ⊢ a], [Γ ctx]))

= S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(([Γ ⊢ indτ], [Γ ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= ([Γ ⊢ indτ [a/x]], [Γ ctx])
∼= Fτ ([Γ ctx], [Γ ⊢ (Tind)[a/x]])(·)
∼= Fτ ([Γ ctx], S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

([Γ ⊢ Tind], [Γ ⊢ a])) .

It is immediate to check that J·KT satisfies all the conditions to be an interpre-
tation, see Definition 5.2.9.

Theorem 5.3.22 (Classifying model). If Mi is a model for T , then there is a
functor J : Mi

T → Mi which preserves the interpretation.

Proof. Analogous to the proof of Theorem 5.3.18.

Theorem 5.3.23 (Completeness). Let γ be a judgement which is valid in every
model for an inductive theory T . Then γ is derivable from T .

Proof. Since γ is valid in every model for T , it is valid in Mi
T . Hence it is an

arrow of MT , thus, by Definition 5.3.3, γ ∈ T . Since T is closed under derivation
in an inductive system, γ is derivable from T in the inductive system.

The classifying model can be used to obtain some proof theoretical results
about 1-HoTT theories.

Corollary 5.3.24. If Γ ⊢ Πx : A. B ≡ Πx : C. D : Ui then Γ ⊢ A ≡ C : Ui and
Γ, x : A ⊢ B ≡ D : Ui.

Proof. In the classifying model, the hypothesis become

JΓ ⊢ Πx : A. BK ∼= JΓ ⊢ Πx : C. DK

thus, by definition of interpretation

FΠ(JΓ ctxK, JΓ ⊢ AK)(JΓ, x : A ⊢ BK)
∼= FΠ(JΓ ctxK, JΓ ⊢ CK)(JΓ, x : C ⊢ DK)

Since FΠ is conservative, see Definition 5.1.19,

JΓ, x : A ⊢ BK

= F −1
Π (JΓ ctxK, JΓ ⊢ AK)(JΓ ⊢ Πx : A. BK)

∼= F −1
Π (JΓ ctxK, JΓ ⊢ CK)(JΓ ⊢ Πx : C. DK)

= JΓ, x : C ⊢ DK .

By definition of classifying model, it follows JΓ, x : A ctxK ∼= JΓ, x : C ctxK,
so, in particular JΓ ⊢ AK ∼= JΓ ⊢ CK. Since FΠ respects isomorphisms, see
Definition 5.1.19, it follows JΓ, x : A ⊢ BK ∼= JΓ, x : A ⊢ DK. By completeness,
Γ ⊢ A ≡ C : Ui and Γ, x : A ⊢ B ≡ D : Ui.

CHAPTER 5. SEMANTICS 97

Corollary 5.3.25. Γ 6⊢ Πx : A. B ≡ Ui : Uh.

Proof. Suppose Γ ⊢ Πx : A. B ≡ Ui : Uh. Then Γ ⊢ Πx : A. B : Uh, so there is Uj

minimal in which Γ ⊢ Πx : A. B : Uj . Since Γ ⊢ Ui : Ui+1, Γ ⊢ Πx : A. B : Ui+1

by Corollary 3.3.10, so j 6 i + 1. Suppose j 6 i: then Γ ⊢ Πx : A. B : Ui, thus
Γ ⊢ Ui : Ui by Corollary 3.3.10, contradicting the fact that the hierarchy of
universes does not collapse, see [58]. Hence j = i+1, so Γ ⊢ Πx :A. B ≡ Ui :Ui+1.

In the classifying model, this means JΓ ⊢ Πx : A. BK ∼= JΓ ⊢ UiK, so
F −1

Π (JΓ ctxK, JΓ ⊢ AK)(JΓ ⊢ Πx : A. BK) = JΓ, x : A ⊢ BK and the functor
is defined on JΓ ⊢ UiK: F −1

Π (JΓ ctxK, JΓ ⊢ AK)(JΓ ⊢ UiK) = JΓ, x : A ⊢ CK for
some C.

However FΠ(JΓ ctxK, JΓ ⊢ AK)(JΓ, x : A ⊢ CK) = JΓ ⊢ Πx : A. CK = JΓ ⊢ UiK,
so by Definitions 5.3.1 and 5.3.2 Πx:A. C = Ui, literally, which is impossible.

The semantics presented in this chapter, in the light of the obtained results,
is mathematically perfect: it is sound and complete, with completeness arising
from a classifying model. However, the semantics seems complex and ad hoc.

As already said, its complexity is technical, but the overall idea is simple:
except for universes, which are structural elements, types are transformations
of the framework into itself. The exact meaning of this description has been
clarified in Definitions 5.1.19 and 5.1.24, where the frameworks, ML- and T -
ML-categories, are presented along with the transformations, coded as families
of functors. The nature of these transformations is easy to grasp: the canonical
models, see Propositions 5.3.17 and 5.3.21, make evident how the transforma-
tions are conceived, and since these models are classifying, the transformations
can be conceived in this way only. Wearing the glasses of this point of view,
the complexity of the semantics reduces to a mere technical fact, which poses
no more difficulties than other semantics for other systems, see, e.g., Heyting
categories versus first-order intuitionistic logic [54].

The ad hoc aspect is apparent. It is clear that the presentation from
Section 5.1 to Section 5.3 follows the scholar style, which emphasises the
progressive construction of the semantics from the roots. And it is clear
to every working mathematician that the results have not been obtained by
conceiving them in this way. The ad hoc aspect is a by-product of the style
of the presentation. In the following, the main structure of the definitions is
decomposed to show where they come from and why. In other words, the part
the scholar presentation hides.

The initial idea is simple: different objects may be equal; equal objects
are interchangeable. The process of exchanging one object with another is a
morphism, so equality is naturally modelled by isomorphisms. As rough as it
may sound, the idea is deeply grounded in the proof theory: the ≡−subst rule,
Corollary 3.3.10, and Proposition 3.3.15 prove that judgemental equivalence
has the interchangeability property; Corollary 4.1.12 shows that normal forms
are unique up to conversion, i.e., judgemental equality. Hence the notion of
equality gets established, and also, as a side effect, the notion of object we
informally used above. In fact, equality acts on objects, so necessarily objects
have to be contexts, terms, and types. However, terms and types do not exist
in isolations: they live in a context, see Proposition 3.3.14, hence the building
blocks of the semantics must be contexts and terms-in-context. Contexts are
equivalent when they are permutations of the same set of declarations, as for

CHAPTER 5. SEMANTICS 98

Proposition 3.3.11, and every context is generated from the empty one. These
features are directly coded by Points (1) to (5) of Definition 5.1.19.

Typing has to relate Γ ⊢ a to Γ ⊢ A to get Γ ⊢ a : A: the natural way to
look at terms-in-context in a category is to think them as objects, as justified
before, and also as objects over the context Γ, which is achieved by the technical
instrument of slice categories. So Γ ⊢ a : A becomes a pair of objects in the slice
category over Γ, each one representing Γ ⊢ a and Γ ⊢ A respectively: this is
easy to achieve if we model ⊢ as an arrow to Γ; similarly, we model : as an arrow
from Γ ⊢ A to Γ ⊢ a. Each extension in the context introduces a new variable
via the ctx−EXT rule: Point (6) of Definition 5.1.19 is a direct translation of
this.

The typing arrows, modelling the colon in Γ ⊢ a :A, must be indecomposable
to fix that each term has a minimal type. This leads to have a notion of
factorisation which is aware of equalities, i.e., isomorphisms (Definitions 5.1.1
and 5.1.2), and objects which are equal to themselves in a unique way (Defini-
tion 5.1.4). Since type theory makes sense if and only if every term lies in some
type, Definition 5.1.7 directly captures this sentence.

Universes are special: they are, at the same time, types and the structure
allowing to define the concept of being a type. Definition 5.1.8 fixes what means
to be a universe in the most basic sense: containing the fundamental universe,
which is given. Putting all together, the chain {Ui}i∈N of universes arises, see
Corollary 5.1.10, as a consequence of types and equalities, as summarised in
Fact 5.1.15.

Therefore, the structural part of the semantics is by no means ad hoc: it is
the necessary consequence of a natural line to describe the formal system, in
which judgemental equality is the centre of interest.

The pillar of the presented semantics is to consider types as transformations.
This idea comes from the definition of inductive types, and the analysis of
Chapter 4 about normalisation. The syntax suggests that inductive types are
generated, or constructed if you prefer, from already existing ones combining
equality, function spaces, and new constants. These constants are the creative
part of a type: they allow to synthesise the new terms and types. The ultimate
purpose of transformations is to replicate inside the semantics this process of
construction. Of course, also Π-types are modelled by transformations, since
they are inductive types, too. In the syntax, encoding Π-types as inductive
following Section 3.2, will lead to a circular definition, but in the semantics it is
possible, although they still provide the foundational features to express the
other inductive types. As a matter of fact, Π-types are not function spaces, at
least, not in the sense of set theory, nor exactly in the sense of category theory,
as described in Chapter 2 about Seely’s work [90]. Our initial belief was that a
transformational semantics is better suited to capture Π-types’ nature, and the
soundness and completeness results confirm that the belief is solidly grounded.

Working in a categorical framework, transformations are rendered as functors;
the formation, introduction, and elimination rules become families of functors,
indexed by their parameters. Although it is somewhat arbitrary to choose
what is a parameter and what is an index, we believe our choice is good: the
conditions about the functors are naturally expressible, once their rationale is
explained. This choice is reflected in the domain and codomain of the functors:
both groupoid of terms in the right type. Many aspects must be considered:
each family of functors must preserve universes, that is, it has to respect the

CHAPTER 5. SEMANTICS 99

cumulative nature of universes; concretely, it has to implement the U−cumul

rule in the parameters, reflecting half of Lemma 3.3.7. Each family of functors
must respect isomorphisms: while this is automatic on arguments, it has to
be required on parameters. This requirement corresponds to preserve equality,
as already discussed. Each family of functors has to be stable with respect to
context extension, essentially implementing weakening. In addition, each family
of functors has a constraint to characterise its role in the theory: formation,
introduction, or elimination. The family FΠ must model the fact that a Π-space
is fully identified by its domain and codomain; hence, the right condition to
require is that it has to be injective on objects. However, this property is
categorically bad, not being stable under categorical equivalence, so the more
appealing notion of conservativity has been employed, which implies injectivity
on objects. The family IΠ has to preserve η-equivalence. In our framework, as
it becomes crystal clear in Proposition 5.3.17, for this reason the maps into
each member of the family have to be categorical equivalences. The family
EΠ is more complex: in fact, it is easier to constrain its behaviour having a
semantic notion of substitution S, which links EΠ with IΠ. In fact, Point (10)
of Definition 5.1.19 says that S acts as a substitution operator, Points (10a)
to (10g), following the usual definition of substitution on terms, and it says that
EΠ ◦ IΠ = S, leaving out parameters, which is nothing but the Π−comp rule.
The families Fτ and Iτ of Definition 5.1.24 are required to respect equivalent
contexts as it was for FΠ and IΠ: they inherit the other good properties from
FΠ and IΠ. The family Eτ , in addition, has to implement τ−comp, Point (3c)
of Definition 5.1.24, and τ−uniq, Point (3d). And, finally, S must behave as a
substitution on the τ type, Point (4) of Definition 5.1.24.

Therefore, the semantic conditions on the transformations are nothing but
the natural implementation of the types, as defined in the intended meaning
the syntax conveys, plus a few requirements due to the choice of parameters.
Nothing is forced in the semantics to make the soundness and the completeness
results to go through; thus, when properly explained and not covered by the
categorical language, nothing is ad hoc.

The previous explanation leaves one point open: apart the canonical one,
are there other models for a theory? The trivial answer is “yes”: one can easily
throw in elements in the canonical model to coherently extend it to a larger
model, for example, considering an extension to the theory, in which the new
elements are invisible, i.e., they do not lie in the image of the interpretation of
the theory. Of course, this answer in unsatisfactory.

A much more interesting answer comes from Theorem 4.3.12. That result
could be understood as saying that considering just irreducible contexts, terms,
and types suffices to build a model, which is different from the canonical one.
Because each judgement γ can be interpreted in an equivalent irreducible judge-
ment, interpretation has the features to conclude along the lines of Section 5.3
that the irreducible model Mirr

T is classifying for the theory T .
This facts opens the door to a new, yet unexplored room. In fact, it is

clear that Mirr
T ≃ MT , the two classifying models are categorically equivalent.

Considering the corresponding adjoint situation, the functor I : MT → Mirr
T

models computation, and its adjoint J in the equivalence is the inclusion, thus
showing that Mirr

T is a reflective subcategory of MT .
Finally, it has been said that the semantics discussed so far is point-free. In

fact, since every model can be derived from the classifying model MT , it suffices

CHAPTER 5. SEMANTICS 100

to justify the claim on it. As a category, its objects, see Definition 5.3.1, are
the (equivalence class of) context and pairs of terms and their minimal context
of definition; in turn, arrows are pair of objects, see Definition 5.3.3. This
structure provides the basis on which the semantics is constructed: Propositions
and Facts 5.3.5, 5.3.7, 5.3.8, 5.3.9, 5.3.10, 5.3.11, 5.3.12, 5.3.13, and 5.3.14
recognise that the properties to describe the structural aspects of Martin-Löf
type theory are present. Then, Definitions 5.3.15 and 5.3.20 add the appropriate
endofunctors to interpret the dependent product and the other inductive types.

Moving one step back, and comparing, e.g., to Tarski’s semantics for first-
order logic, there is a fundamental difference in the methodology: the primitive
notion behind the semantics is not a universe of objects linked by functions
and relations, expressible in the syntax, but rather the structure to model
substitution1, as already remarked after Theorem 5.2.8. In this respect, the key
concept of type splits into two parts: the object which stands for the type in
context, and the transformation which models the behaviour of the type. The
distinction between the object and its behaviour, the latter being predominant
to describe the semantics, is why the model is said to be point-free.

The topos-theoretical semantics of first-order logic and the simple theory
of types [55, 54] uses a similar idea: although the syntactical elements are
present in the models as suitable arrows, the core of the semantics, what gives
meaning to objects, are the constructions one can perform in the categories,
and, mostly important, how they are linked by adjunctions. However, there
is an asymmetry in that semantics, which becomes completely clear when
looking at the simple theory of types. In fact, the simple theory of types
is, via the Curry-Howard isomorphism, just intuitionistic propositional logic.
However, constructing the canonical models for these two formal systems in
the topos-theoretic framework, they are completely different: hence, there is no
direct correspondent of the proposition-as-type interpretation in the semantics.
Oppositely, the present semantics, which incorporates the simple theory of types
as a subsystem, provides a complete account of the isomorphism, since the
logical interpretation is not distinguished from the type-theoretical one.

1See [18] to see how first-order logic admits a point-free, substitution based semantics.

Chapter 6

Homotopic features

In this chapter, the results of Chapters 4 and 5 will be extended to homotopy
type theory. First, the prominent homotopic features will be introduced:
function extensionality and univalence, the higher inductive types. The family
of higher inductive types synthesised in Section 6.2 plus elementary truncation,
see Section 6.3, satisfies the normalisation theorem 4.3.12 and the semantics,
eventually getting soundness and completeness with a classifying model.

6.1 Function extensionality and univalence

The syntax of the most peculiar axioms characterising homotopy type theory,
that is, function extensionality and univalence, is complex: a number of auxiliary
definitions are used, which are introduced and discussed in Chapters 2 and 4
of [95]. They are summarised below with few further comments:

f ∼ g :≡ Πx : A. f x =B g x

with f, g : Πx : A. B, which expresses that f and g are extensionally equal;

f ◦ g :≡ λx : A. f (g x)

with f : B → C and g : A → B, composition of non-dependent functions;

idA :≡ λx : A. x

with A : Ui, the identity function of the type A;

happly(f, g) :≡ ind=(Πx : A. B) f g

(λf, g : (Πx : A. B).

(λp : (= (Πx : A. B) f g). f ∼ g))

(λf : (Πx : A. B). λx : A. refl (f x))

with f, g : Πx : A. B, so that happly(f, g) : f =Πx:A. B g → f ∼ g;

isequiv(f) :≡ Σg : (B → A), η : (g ◦ f ∼ idA), ǫ : (f ◦ g ∼ idB).

Πx : A. f (η x) =B ǫ (f x)

with f : A → B, which says that f is an equivalence;

p∗ :≡ ind= A x y (λz, w : A. (P z → P w))

(λz : A. idP z) p

101

CHAPTER 6. HOMOTOPIC FEATURES 102

with p : x =A y and P : A → Ui, so that p∗ : P x → P y, the transport of p in P ;

idtoeqv(A, B) :≡ λp : (A =Ui
B). p∗

with A, B : Ui.
To ease notation and help understanding, define the following abbreviations:

FunExt :≡ ΠA : Ui, B : (A → Ui). Πf, g : (Πx : A. B x).

isequiv(happly(f, g)) ,

Univalence :≡ ΠA, B : Ui.isequiv (idtoeqv(A, B)) .

Then the axioms of function extensionality and univalence can be expressed as

Γ ⊢ FunExt : Ui+1
Π−ext

Γ ⊢ funext : FunExt

Γ ⊢ Univalence : Ui+1
Ui−univ

Γ ⊢ univalence : Univalence

with funext and univalence distinguished constants.
It is clear that these axioms are instances of the k−intro schema. Also, it is

immediate to see how the present form is equivalent to the version in Section A.3
of [95], by Π−elim−eq in one direction, and by Lemma 3.3.7 in the other.

6.2 Syntax of higher inductive types

This section is devoted to introduce a generic syntax for the higher inductive
types with introduction rules of the form t : τ and p : (= τ x y). In the following,
these types are referred to as 1-higher inductive types, to emphasise that they
are limited to describe 0-paths (points) and 1-paths.

To simplify the notation, if p: = A x y, u :P x, v :P y, and f :Πx :A.P define

(u =P
p v) :≡ (= A p∗ u v) ,

adpf (p) :≡ ind= A x y (λx : A. λy : A. λp : (= A x y).

(= Px (p∗ fx) fy))(λx : A. reflfx) p .

These definitions come from Sections 2.3 and 6.2 of [95].

Formation and introduction rules

The formation rule τ−form has the same pattern of the one for the inductive
types, see Section 3.2. The same happens for the introduction rule τ−intro,
which introduces canonical terms of type τ .

The novel structure of this subset of higher inductive types is introduced by
the τ−intro−= rules, which are related to paths of type = τ x y. The scheme is

Γ ⊢
(

Π (x : F)n′ . Π (z : P)r . = (τ x′
1 · · · x′

n)
(Kax′

1 · · · x′
n wa

1 · · · wa
sa

)(Kbx′
1 · · · x′

n wb
1 · · · wb

sb
)
)

: Ui
τ−introk−=

Γ ⊢ Pk :
(

Π (x : F)n′ . Π (z : P)r . = (τ x′
1 · · · x′

n)
(Kax′

1 · · · x′
n wa

1 · · · wa
sa

)(Kbx′
1 · · · x′

n wb
1 · · · wb

sb
)
)

where the sequences of the wi
j contain the xk and zk.

CHAPTER 6. HOMOTOPIC FEATURES 103

Elimination rule

The simple elimination rule for the higher inductive types is the one for inductive
types extended with the gi

Γ ⊢ (Π (x : F)n . (ΠC : (Π (x : F)n . τ x1 · · · xn → Uh).
(Πh

i=1ci : (Π (x : F)n′
i
. Π (y : I)mi

.

C x′
1 · · · x′

ni
(Kx′

1 · · · x′
ni

y1 · · · ymi
)).

(Πh
i=1gi : (Π (x : F)n′′

i
. Π (z : P)ri

.

(cax(wa) =Cx
Pixz cbx(wb))).

(Πe : τ x1 · · · xn. C x1 · · · xn e)))) : Uh+1
τ−elim

Γ ⊢ indτ : (Π (x : F)n . (ΠC : (Π (x : F)n . τ x1 · · · xn → Uh).
(Πk

i=1ci : (Π (x : F)n′
i
. Π (y : I)mi

.

C x′
1 · · · x′

ni
(Kx′

1 · · · x′
ni

y1 · · · ymi
)).

(Πk
i=1gi : (Π (x : F)n′′

i
. Π (z : P)ri

.

(cax(wa) =Cx
Pixz cbx(wb))).

(Πe : τ x1 · · · xn. C x1 · · · xn e))))

where x = x1 · · · xn, z = z1 · · · zr and wi = wi
1 · · · wi

si
.

The same happens in the recursive case.

Computation rules

The computation rules τ−compi related to the introduction rules τ−introi

extend the ones for the inductive types requiring the existence of the gi

Γ ⊢ C : (Π (x : F)n . τ x1 · · · xn → Uh)

Γ ⊢ c1 :
(

Π (x : F)n′
1

. Π (y : I)m′
1

.

C x′
1 · · · x′

n1

(

K1 x′
1 · · · x′

n1
y1 · · · ym1

)

)

· · ·

Γ ⊢ ck :
(

Π (x : F)n′
k

. Π (y : I)m′
k

.

C x′
1 · · · x′

nk

(

Kk x′
1 · · · x′

nk
y1 · · · ymk

)

)

Γ ⊢ g1 :
(

Π (x : F)n′′
1

. Π (z : P)r1
. (ca1

x(wa1
) =Cx

P1xz cb1
x(wb1

))
)

· · ·

Γ ⊢ gl :
(

Π (x : F)n′′
l

. Π (z : P)rl
. (cal

x(wal
) =Cx

Plxz cbl
x(wbl

))
)

Γ ⊢ Ki T1 · · · Tn p1 · · · pm : τ T1 · · · Tn
τ−compiΓ ⊢ indτ T1 · · · Tn C c1 · · · ck g1 · · · gl (Ki T1 · · · Tn p1 · · · pm) ≡

ci T1 · · · Tn p′
1 · · · p′

m : C T1 · · · Tn (Ki T1 · · · Tn p1 · · · pm)

The computation rules τ−compi−= related to the τ−introi−= do not have
as a conclusion an equality judgement; indeed, they only state that a propos-

CHAPTER 6. HOMOTOPIC FEATURES 104

itional equality type is inhabited.

Γ ⊢ C : (Π (x : F)n . τ x1 · · · xn → Uh)

Γ ⊢ c1 :
(

Π (x : F)n′
1

. Π (y : I)m′
1

.

C x′
1 · · · x′

n1

(

K1 x′
1 · · · x′

n1
y1 · · · ym1

)

)

· · ·

Γ ⊢ ck :
(

Π (x : F)n′
k

. Π (y : I)m′
k

.

C x′
1 · · · x′

nk

(

Kk x′
1 · · · x′

nk
y1 · · · ymk

)

)

Γ ⊢ g1 :
(

Π (x : F)n′
1

. Π (z : P)r1
. (ca1

x(wa1
) =Cx

P1xz cb1
x(wb1

))
)

· · ·

Γ ⊢ gl :
(

Π (x : F)n′
l
. Π (z : P)rl

. (cal
x(wal

) =Cx
Plxz cbl

x(wbl
))

)

Γ ⊢ Pi T1 · · · Tn q1 · · · qri
:

= (τ T1 · · · Tn)(Kai
T (qai

1 · · · qai
sai

))(Kbi
T (qbi

1 · · · qbi
sbi

))
τ−comp∗

i −=

Γ ⊢ Ci: = (cai
T (Tqbi

) =CT
PlT q cbi

T (Tqai
))

(adpindτ T C c d(Pi Tq))(gi Tq)

where the qi
j correspond to the wi

j .
Since the rule above is complex and difficult to analyse, although it closely

resembles the shape of τ−compi, we will use instead the following less direct
rule:

Γ ⊢= (cai
T (Tqai

) =CT
PlT q cbi

T (Tqbi
))

(adpindτ T C c d(Pi Tq))(gi Tq) : Uh+1
τ−compi−=

Γ ⊢ Ci: = (cai
T (Tqai

) =CT
PlT q cbi

T (Tqbi
))

(adpindτ T C c d(Pi Tq))(gi Tq)

which is an instance of the k−intro schema. A tedious but easy derivation
shows that, given the premises of τ−comp∗

i −=, the premise of τ−compi−=
can be derived, so τ−compi−= is able to simulate τ−comp∗

i −=. Conversely,
by Lemma 3.3.7, from the derivation of the premise of τ−compi−= one could
extract the premises of τ−comp∗

i −=, so the τ−compi−= rule can be simulated
by τ−comp∗

i −=. Hence, the two rules are equivalent: the ∗-version is more useful
in applications since it resembles the first-order computation rule; oppositely,
τ−compi−= is easier to analyse, so this is the rule which will be adopted in
the following of this chapter.

Uniqueness rule

As remarked in [95], general uniqueness rules pose a problem. In fact, only
Π−uniq is included in [95], while the τ−uniq rules are excluded, although a
version which uses propositional equality can be usually derived, see Section 5.2
in [95]. The reason to exclude uniqueness rules lies in their meaning: what
a uniqueness rule says is that the only inhabitants of an inductive type are
the canonical terms up to equality. In the judgemental version of uniqueness,
equality is conversion, see Corollary 4.1.12; in the propositional version, equality
is the identity type, thus uniqueness states that every inhabitant of the type is
an endpoint of some path whose other endpoint is a canonical term. Moving to

CHAPTER 6. HOMOTOPIC FEATURES 105

higher order inductive types, even the simple sphere S
1 violates this meaning

of uniqueness: as explained in Section 6.1 of [95], loop, loop · loop, loop−1, refl

are all different and this is essential to capture the homotopical nature of the
sphere. In fact, stating that the only paths are the canonical ones, refl and loop,
would make impossible to generate the fundamental Poincaré’s group of the
sphere, see [48, Chapters 1 and 4], [84, Chapters 3 and 11] and [74]. However,
the results in Chapter 4 are immediately transported in a version of Martin-Löf
type theory in which Π−uniq is the only uniqueness rule. Therefore, the analysis
of the proof theory of [95] can safely start from those results, which have to be
extended to univalence, function extensionality, and the higher inductive types.

6.3 Canonical higher inductive types

In the following the rules for the canonical 1-higher inductive types, whose
introduction rules are of the form t : τ or p : (= τ x y), are written according to
our syntax.

The canonical types with different introduction rules are the spheres S
i

with i > 1, the generic cell complexes (and, in particular, the torus T 2), n-
truncation with n > 0 and quotients. These types are not 1-higher inductive
types. Although it is possible to generalise our definitions to k-higher inductive
types, k ∈ N, this is cumbersome and still ineffective to capture all these types.

Truncation (which is, indeed, −1-truncation) has introduction rules of
the required form, but its elimination and computation rules do not behave
accordingly to our generic syntax. We include the rules for truncation for
completeness, and briefly discuss them. Also, the higher order computation
rules are presented in the most convenient format for applications, see the
comments at the end of the description of the computation rules in Section 6.2.

Circle

Γ ⊢ Ui : Ui+1
S

1−form
Γ ⊢ S

1 : Ui

Γ ⊢ S
1 : Ui

S
1−intro

Γ ⊢ base : S1

Γ ⊢= S
1 base base : Ui

S
1−intro−=

Γ ⊢ loop: = S
1 base base

Γ ⊢ ΠC : (S1 → Ui). Πc1 : C base. Π g1 : c1 =C
loop c1. Πx : S1. Cx : Ui+1

S
1−elim

Γ ⊢ indS1 : ΠC : (S1 → Ui). Πc1 : C base. Π g1 : c1 =C
loop c1. Πx : S1. Cx

Γ ⊢ C : S1 → Ui Γ ⊢ c1 : C base Γ ⊢ g1 : c1 =C
loop c1

Γ ⊢ base : S1

S
1−comp

Γ ⊢ indS1 C c1 g1 base ≡ c1 : C base

CHAPTER 6. HOMOTOPIC FEATURES 106

Γ ⊢ C : S1 → Ui Γ ⊢ c1 : C base Γ ⊢ g1 : c1 =C
loop c1

Γ ⊢ loop: = S
1 base base

S
1−comp−=

Γ ⊢ C: = (c1 =C
loop c1) (adpind

S1 C c1 g1
loop) g1

Interval type

Γ ⊢ Ui : Ui+1
I−form

Γ ⊢ I : Ui

Γ ⊢ I : Ui
I−intro1Γ ⊢ 0I : I

Γ ⊢ I : Ui
I−intro2Γ ⊢ 1I : I

Γ ⊢= I 0I 1I : Ui
I−intro−=

Γ ⊢ seg: = I 0I 1I

Γ ⊢ ΠC : (I → Ui). Πc1 : C 0I . Πc2 : C 1I .
Π g1 : c1 =C

seg c2. Πx : I. Cx : Ui+1
I−elim

Γ ⊢ indI : ΠC : (I → Ui). Πc1 : C 0I . Πc2 : C 1I .
Π g1 : c1 =C

seg c2. Πx : I. Cx

Γ ⊢ C : I → Ui Γ ⊢ c1 : C 0I Γ ⊢ c2 : C 1I

Γ ⊢ g1 : c1 =C
seg c2 Γ ⊢ 0I : I

I−comp1Γ ⊢ indI C c1 c2 g1 base ≡ c1 : C 0I

Γ ⊢ C : I → Ui Γ ⊢ c1 : C 0I Γ ⊢ c2 : C 1I

Γ ⊢ g1 : c1 =C
seg c2 Γ ⊢ 1I : I

I−comp2Γ ⊢ indI C c1 c2 g1 base ≡ c2 : C 1I

Γ ⊢ C : I → Ui Γ ⊢ c1 : C 0I Γ ⊢ c2 : C 1I

Γ ⊢ g1 : c1 =C
seg c2 Γ ⊢ seg: = I 0I 1I

I−comp−=
Γ ⊢ C: = (c1 =C

seg c2) (adpindI C c1 c2 g1
seg) g1

Suspensions

As done in [95], we use Σ as type-symbol for suspensions, even though it is the
same symbol used for the inductive type of dependent sum.

Γ ⊢ ΠA : Ui. Ui : Ui+1
Σ−form

Γ ⊢ Σ : ΠA : Ui. Ui

Γ ⊢ ΠA : Ui. Σ A : Ui+1
Σ−intro1Γ ⊢ N : ΠA : Ui. Σ A

Γ ⊢ ΠA : Ui. Σ A : Ui+1
Σ−intro2Γ ⊢ S : ΠA : Ui. Σ A

Γ ⊢ ΠA : Ui. Πa : A. = (Σ A) (N A) (S A) : Ui+1
Σ−intro−=

Γ ⊢ merid : ΠA : Ui. Πa : A. = (Σ A) (N A) (S A)

CHAPTER 6. HOMOTOPIC FEATURES 107

Γ ⊢ ΠA : Ui. ΠC : (ΠA : Ui. Σ A → Ui).
Πc1 : (ΠA : Ui. C A (N A)). Πc2 : (ΠA : Ui. C A (S A)).
Π g1 : (ΠA : Ui, a : A. c1 A =C A

merid A a c2 A). Πx : Σ A. C A x : Ui+1
Σ−elim

Γ ⊢ indΣ : ΠA : Ui. ΠC : (ΠA : Ui. Σ A → Ui).
Πc1 : (ΠA : Ui. C A (N A)). Πc2 : (ΠA : Ui. C A (S A)).
Π g1 : (ΠA : Ui, a : A. c1 A =C A

merid A a c2 A). Πx : Σ A. C A x

Γ ⊢ C : (ΠA : Ui. Σ A → Ui)
Γ ⊢ c1 : (ΠA : Ui. C A (N A)) Γ ⊢ c2 : (ΠA : Ui. C A (S A))
Γ ⊢ g1 : (ΠA : Ui. Πa : A. c1 A =C A

merid A a c2 A)
Γ ⊢ N A : Σ A

Σ−comp1Γ ⊢ indΣ A C c1 c2 g1 (N A) ≡ c1 A : C A (N A)

Γ ⊢ C : (ΠA : Ui. Σ A → Ui)
Γ ⊢ c1 : (ΠA : Ui. C A (N A)) Γ ⊢ c2 : (ΠA : Ui. C A (S A))
Γ ⊢ g1 : (ΠA : Ui. Πa : A. c1 A =C A

merid A a c2 A)
Γ ⊢ S A : Σ A

Σ−comp2Γ ⊢ indΣ A C c1 c2 g1 (S A) ≡ c2 A : C A (S A)

Γ ⊢ C : (ΠA : Ui. Σ A → Ui)
Γ ⊢ c1 : (ΠA : Ui. C A (N A)) Γ ⊢ c2 : (ΠA : Ui. C A (S A))
Γ ⊢ g1 : (ΠA : Ui. Πa : A. c1 A =C A

merid A a c2 A)
Γ ⊢ merid A a: = (Σ A) (N A) (S A)

Σ−comp−=
Γ ⊢ C : = (c1 A =C A

merid A a c2 A)
(adpindΣ A C c1 c2 g1

(merid A a)) (g1 A a)

Pushout

As for suspensions, the inl and inr symbols are used even if they collide with
coproducts: we prefer to follow the traditional writing of [95].

Γ ⊢ ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B. Ui : Ui+1
⊔−form

Γ ⊢ ⊔ : ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B. Ui

Γ ⊢ ΠC : Ui. ΠA : Ui. ΠB : Ui.
Πf : C → A. Πg : C → B. Πa : A. ⊔ C A B f g : Ui+1

⊔−intro1

Γ ⊢ inl : ΠC : Ui. ΠA : Ui. ΠB : Ui.
Πf : C → A. Πg : C → B. Πa : A. ⊔ C A B f g

Γ ⊢ ΠC : Ui. ΠA : Ui. ΠB : Ui.
Πf : C → A. Πg : C → B. Πb : B. ⊔ C A B f g : Ui+1

⊔−intro2

Γ ⊢ inr : ΠC : Ui. ΠA : Ui. ΠB : Ui.
Πf : C → A. Πg : C → B. Πb : B. ⊔ C A B f g

CHAPTER 6. HOMOTOPIC FEATURES 108

Γ ⊢ ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B. Πc : C.
= (⊔ C A B f g)(inl C A B f g (f c))(inr C A B f g (g c)) : Ui+1

⊔−intro−=
Γ ⊢ glue : ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B. Πc : C.

= (⊔ C A B f g)(inl C A B f g (f c))(inr C A B f g (g c))

Γ ⊢ ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B.
ΠP : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B.

⊔ C A B f g → Ui).
Πc1 : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B.

Πa : A.P C A B f g (inl C A B f g a)).
Πc2 : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B.

Πb : B.P C A B f g (inr C A B f g b)).
Πg1 : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B.

Πc : C.(c1 C A B f g (f c))
=P C A B f g

glue C A B f g c (c2 C A B f g (g c)) : Ui+1
⊔−elim

Γ ⊢ ind⊔ : ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B.
ΠP : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B.

⊔ C A B f g → Ui).
Πc1 : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B.

Πa : A.P C A B f g (inl C A B f g a)).
Πc2 : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B.

Πb : B.P C A B f g (inr C A B f g b)).
Πg1 : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B.

Πc : C.(c1 C A B f g (f c))
=P C A B f g

glue C A B f g c (c2 C A B f g (g c))

Γ ⊢ P : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B.
⊔ C A B f g → Ui).

Γ ⊢ c1 : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B. Πa : A.
P C A B f g (inl C A B f g a)).

Γ ⊢ c2 : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B. Πb : B.
P C A B f g (inr C A B f g b)).

Γ ⊢ g1 : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B. Πc : C.

(c1 C A B f g (f c)) =P C A B f g
glue C A B f g c (c2 C A B f g (g c)) : Ui+1

Γ ⊢ inl C A B f g a : ⊔ C A B f g
⊔−comp1Γ ⊢ ind⊔ C A B f g c1 c2 g1 (inl C A B f g a) ≡

c1 C A B f g a : P C A B f g (inl C A B f g a)

CHAPTER 6. HOMOTOPIC FEATURES 109

Γ ⊢ P : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B.
⊔ C A B f g → Ui).

Γ ⊢ c1 : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B. Πa : A.
P C A B f g (inl C A B f g a)).

Γ ⊢ c2 : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B. Πb : B.
P C A B f g (inr C A B f g b)).

Γ ⊢ g1 : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B. Πc : C.

(c1 C A B f g (f c)) =P C A B f g
glue C A B f g c (c2 C A B f g (g c)) : Ui+1

Γ ⊢ inr C A B f g b : ⊔ C A B f g
⊔−comp2Γ ⊢ ind⊔ C A B f g c1 c2 g1 (inr C A B f g b) ≡

c2 C A B f g b : P C A B f g (inr C A B f g b)

Γ ⊢ P : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B.
⊔ C A B f g → Ui).

Γ ⊢ c1 : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B. Πa : A.
P inl C A B f g a).

Γ ⊢ c2 : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B. Πb : B.
P inr C A B f g b).

Γ ⊢ g1 : (ΠC : Ui. ΠA : Ui. ΠB : Ui. Πf : C → A. Πg : C → B. Πc : C.

(c1 C A B f g (f c)) =P C A B f g
glue C A B f g c (c2 C A B f g (g c)) : Ui+1

Γ ⊢ glue C A B f g c: = (⊔ C A B f g)
(inl C A B f g (f c))(inr C A B f g (g c))

⊔−comp−=
Γ ⊢ C: = ((c1 C A B f g (f c)) =P C A B f g

glue C A B f g c (c2 C A B f g (g c)))
(adpind⊔ C A B f g c1 c2 g1

glue C A B f g c) (g1 C A B f g c)

Truncation

As can be seen in the following, the higher order introduction, elimination
and computation rules for truncation do not behave accordingly to our generic
syntax.

Γ ⊢ ΠA : Ui. Ui : Ui+1
||·||−form

Γ ⊢ || · || : ΠA : Ui. Ui

Γ ⊢ ΠA : Ui. Πa : A. (|| · || A) : Ui+1
||·||−intro

Γ ⊢ | · | : ΠA : Ui. Πa : A. (|| · || A)

Γ ⊢ ΠA : Ui. Πx : (|| · || A). Πy : (|| · ||A). = (|| · || A) x y : Ui+1
||·||−intro−=

Γ ⊢ p : ΠA : Ui. Πx : || · || A. Πy : || · || A. = || · || A x y

CHAPTER 6. HOMOTOPIC FEATURES 110

Γ ⊢ ΠA : Ui. ΠC : (ΠA : Ui. || · || A → Ui).
Πc1 : (ΠA : Ui. Πa : A. C A (| · | A a)).
Π g1 : (ΠA : Ui.Πx : (|| · ||A). Πy : (|| · || A).

Πu : C A x. Πv : C A y. u =C A
p A x y v).

Πz : (|| · || A). C A z : Ui+1
||·||−elim

Γ ⊢ ind||·|| : ΠA : Ui. ΠC : (ΠA : Ui. || · || A → Ui).
Πc1 : (ΠA : Ui. Πa : A. C A (| · | A a)).
Π g1 : (ΠA : Ui.Πx : (|| · ||A). Πy : (|| · || A).

Πu : C A x. Πv : C A y. u =C A
p A x y v).

Πz : (|| · || A). C A z

Γ ⊢ C : (ΠA : Ui. (|| · || A) → Ui)
Γ ⊢ c1 : (ΠA : Ui. Πa : A. C A (| · | A a))
Γ ⊢ g1 : (ΠA : Ui.Πx : (|| · ||A). Πy : (|| · || A).

Πu : C A x. Πv : C A y. u =C A
p A x y v)

Γ ⊢ | · | A a : (|| · || A)
||·||−comp

Γ ⊢ ind||·|| A c1 g1(| · | A a) ≡ c1 A a : C A (| · | A a)

Γ ⊢ C : (ΠA : Ui. (|| · || A) → Ui)
Γ ⊢ c1 : (ΠA : Ui. Πa : A. C A (| · | A a))
Γ ⊢ g1 : (ΠA : Ui.Πx : (|| · ||A). Πy : (|| · || A).

Πu : C A x. Πv : C A y. u =C A
p A x y v)

Γ ⊢ p A x y : || · || A x y
||·||−comp−=

Γ ⊢ C: = ((ind||·|| A c1 g1 x) =C A
p A x y (ind||·|| A c1 g1 y))

(adpind||·|| A c1 g1
p A x y)

(g1 A x y (ind||·|| A c1 g1 x) (ind||·|| A c1 g1 y))

6.4 Proof theory

Let θ be a 1-higher inductive type; let τ denote a generic, non-higher induc-
tive type. Since Π−ext, Ui−univ, θ−form, θ−intro, θ−intro−=, θ−elim, and
θ−comp−= are instance of the k−intro schema, all the results in Section 3.3
apply to them.

The θ−comp rule affects Proposition 3.3.8: the induction in the proof has
to be extended by an additional case, which proves the left- and the right-hand
sides of the equivalence are derivable. The left-hand side is evidently derivable:
the indθ term comes from θ−elim and repeatedly applying Π−elim with the
premises eventually yields the result. The right-hand side is derived analogously
since the arguments of Ki in the last premise of θ−comp are all derivable by
Lemma 3.3.7. Therefore, all the results in Chapter 3 hold for all the newly
introduced results.

Adapting Definition 4.1.1 to homotopy type theory, that is, dropping the
τ−uniq reduction for every inductive type τ , and adding the θ−comp reductions
for each 1-higher inductive type θ, which are obtained orienting the conclusions
of the θ−comp rules, all the results in Chapter 4 smoothly extend.

In fact, the change of Definition 4.1.1 affects:

• Proposition 4.1.2, which is immediate to adapt;

CHAPTER 6. HOMOTOPIC FEATURES 111

• Proposition 4.1.6, in which the θ−comp case in the induction is completely
analogous to the τ−comp case, as the only difference between the two is
the number of arguments in the left-hand side of the equivalence;

• Proposition 4.1.8, in which the θ−comp reduction in the type behaves
as the τ−comp reduction, ultimately relying on the validity of Proposi-
tion 4.1.6;

To obtain Theorem 4.3.12, Proposition 4.3.10 has to be extended to 1-
higher inductive types. Since the θ−form and θ−intro rules have the same
shape of τ−form and τ−intro, they are already covered in the proof. As
before, it is convenient to extract the pattern of these cases in the inductive
proof of Proposition 4.3.10. The rules are instances of k−intro and the type
B = Πy1 : C1, . . . , yn : Cn. D with D atomic. Since B σ ∈ R(Ui) by induction
hypothesis, (Γ ⊢ B : Ui)σ is strongly normalisable. Saturating the constant b

by applying to it enough reducibility candidates cj ∈ R
σ◦[c1/y1,...,cj−1/yj−1]
Γ,y:C (Cj),

one derives by Π−elim and weakening (Γ, y : C ⊢ b c1 . . . cn : D)(σ ◦ [c/y]). This
judgement is strongly normalisable since every reduction from it maps into
reductions from Γσ, cj , and D(σ ◦ [c/y]), which are easily seen to be strongly
normalisable from the hypothesis, unless (b c1 . . . cn)(σ ◦ [c/y]) reduces as a
whole. However, this may happen only by a τ−comp or θ−comp reduction,
whose shape ensures the reduced term to be strongly normalisable by the

hypothesis. Hence b c1 . . . cn ∈ R
σ◦[c/y]

Γ,y:C (D). Thus, by iterating Definition 4.3.1

n times, b σ ∈ R(B), as required. Applying this pattern to θ−intro−=, θ−elim,
and θ−comp−=, Proposition 4.3.10 is proved with no difficulties.

The very same pattern applies to Π−ext and Ui−univ, so Proposition 4.3.10
holds even in presence of function extensionality and univalence.

Therefore, calling 1-HoTT theory any theory based on the basic system plus
a finite number of inductive and 1-higher inductive types, and plus function
extensionality and univalence, it holds that

Theorem 6.4.1 (Normalisation). Let T be a 1-HoTT theory. Then every deriv-
able judgement in T is strongly normalisable. Moreover, irreducible judgements
are unique up to conversion.

We have seen that not every higher inductive type in [95] is 1-higher inductive.
In principle, nothing prevents to extend the definitions in Section 6.2 to define
k-higher inductive types for every k ∈ N. Our unproved claim is that all the
framework developed so far, and in particular Theorem 6.4.1, holds also for
k-higher inductive types. There are two reasons why this path has not been
pursued: while 1-higher inductive types are complex but manageable, k-higher
inductive types are cumbersome, and quickly become unmanageable; most
importantly, the collection of all k-higher inductive types is not exhaustive
since, e.g., truncation does not fit into this pattern.

However, truncation validates all the results in Chapters 3 and 4. In fact,
the || · ||−form, || · ||−intro, || · ||−intro−=, || · ||−elim, and || · ||−comp−= rules
are instances of the k−intro schema, so the results in Section 3.3 apply to
them with no further proof. As for || · ||−comp, the corresponding case in
the induction in the proof of Proposition 3.3.8 is completely analogous to the
θ−comp case of 1-higher inductive types. About normalisation, after adding

CHAPTER 6. HOMOTOPIC FEATURES 112

the obvious || · ||−comp reduction to Definition 4.1.1 and observing that all the
Propositions 4.1.2, 4.1.6 and 4.1.8 are immediately extended as in the 1-higher
inductive case, it remains to prove Proposition 4.3.10 to derive Theorem 6.4.1
extended with truncation.

Since ||·||−form, ||·||−intro, ||·||−intro−=, ||·||−elim, and ||·||−comp−= are
instances of k−intro, proving Proposition 4.3.10 reduces to apply the previously
discussed pattern to them, checking its conditions to hold. This step smoothly
allows to derive Proposition 4.3.10.

In conclusion, our conjecture is that Theorem 6.4.1 holds for every HoTT-
theory, and it can be proved along the lines of Theorem 4.3.12. What prevents to
prove this conjecture is that there is no exhaustive syntactical characterisation
of higher inductive types, see [95].

6.5 Semantics

This section is devoted to extend the semantics presented in Chapter 5 to the
1-higher inductive types described above.

Categorical preliminaries

As done for the syntax, we need some definitions to simplify the notation. If
x, y ∈ Obj Mc ↑ a, define

eq[a; x; y] :≡ ĒΠ(c, Ui, a, a, F̄Π(c, Ui, χc
Ui

, χ
cod(νc

Ui
)

Ui
)(Ui))

(F=(c, F̄Π(c, Ui, χc
Ui

, χUi
)(Ui))(·), a, x, y) .

Then, as for Definition 5.2.9, eq[a; x; y] is the semantic representation of x =a y,
which is, of course, an abuse of notation.

For each

p ∈ Obj (Mc ↑ (eq[a; x; y])) ,

define

p∗ :≡ ĒΠ(c, Ui, a, a, F̄Π(c, a, a)(Ui),

F̄Π(c, a, (EΠ(c, a, Ui)(P, x))), eq[a; x; y], r)

(E=(c, r)(·), a, x, y, ĪΠ(c, a, a, Ui)

(FΠ(c, EΠ(c, a, Ui)(P, x))(EΠ(c, a, Ui)(P, y)),

ĪΠ(c, a, EΠ(c, a, Ui)(P, x))(χEΠ(c,a,Ui)(P,x)), p))

with r calculated as in Definition 5.1.24 Point (3), instantiated with the ob-

jects a1, . . . , an = Ui, χc
Ui

, χ
cod(νc

Ui
)

Ui
, a′

1, . . . , a′
n′ = Ui, χc

Ui
, d1, . . . , dm = ∅,

and a′
1, . . . , a′

n = Ui, χc
Ui

, χUi
. Let q∗ such that p∗ ∈ Mc ↑ q∗. For each

u ∈ Obj (Mc ↑ EΠ(c, a, Ui)(P, x)) and v ∈ Obj (Mc ↑ EΠ(c, a, Ui)(P, y)) define

(u =P
p v) :≡ ĒΠ(c, Ui, q∗, EΠ(c, a, Ui)(P, x),

EΠ(c, a, Ui)(P, y), F̄Π(c, Ui, χc
Ui

, χUi
)(Ui))

(F=(c, F̄Π(c, Ui, χc
Ui

, χUi
)(Ui))(·), a, p∗, u, v) ;

CHAPTER 6. HOMOTOPIC FEATURES 113

finally, for each f ∈ Obj (Mc ↑ FΠ(c, a)(P)),

adpf (p) :≡ ĒΠ(c, Ui, a, a, F̄Π(c, a, a, eq[a; x; y])(T=(P x)(p∗fx)(fx)),

FΠ(c, a)(eq[EΠ(c, a, Ui)(P, x); EΠ(c, a, FΠ(c, a)(P))(f, x);

EΠ(c, a, FΠ(c, a)(P))(f, y)]), eq[a; x; y], r)

(E=(c, r)(·), a, x, y, ĪΠ(c, a, a, eq[a; x; y], T=(P x)(p∗fx)(fx))

(eq[EΠ(c, a, Ui)(P, x); ĒΠ(c, FΠ(c, a)(P), a, q∗)(p∗, f, x);

EΠ(c, a, FΠ(c, a)(P))(f, x)]),

IΠ(c, a)(I=(c, F̄Π(c, Ui, χc
Ui

)(eq[Ui; χc
Ui

, χ
cod(νc

Ui
)

Ui
]))(·), p)) ,

with T=(P x)(p∗fx)(fx) such that

eq[EΠ(c, a, Ui)(P, x); ĒΠ(c, FΠ(c, a)(P), a, q∗)(p∗, f, x);

EΠ(c, a, FΠ(c, a)(P))(f, x)] ∈ Obj Mc ↑ T=(P x)(p∗fx)(fx) .

Abusing notation, we defined the syntactical and semantic objects p∗, (u =b
p v)

and adpf (p) in the same way. It should be clear from the context whether we
refer to syntax or semantics.

Definition 6.5.1. Let T be a 1-HoTT theory. A 1-HoTT-category is MH ,
which extends the corresponding category Mi, see Definition 5.1.24, as follows

1. for each context c and each universe Ui, define an object fe, which
interprets in our language the type FunExt; we leave to the reader the
exact definition of fe. It is just the rewriting of FunExt as defined in
Section 6.1 into the semantics, i.e., if c is the interpretation of Γ ctx, one
should calculate JΓ ⊢ FunExtK in a T -ML-category with the fe object.
Thus, FE is a family of functors indexed by c and fe such that

• FE(c, fe) : {·} → Mc ↑ fe;

• FE respects equivalent contexts: if c ∼= c′, FE(c, fe) ∼= FE(c′, fe) in
the corresponding functor category.

2. for each context c and universe Ui, define an object u which interprets in
our language the type Univalence interpreting JΓ ⊢ UnivalenceK as above.
Thus, U is a family of functors indexed by c and u such that

• U(c, u) : {·} → Mc ↑ u;

• U respects equivalent contexts: if c ∼= c′, U(c, u) ∼= U(c′, u) in the
corresponding functor category.

3. for each higher inductive type τ , the functor Fτ is defined as done for
inductive types, and identified by an object p;

4. for each type τ and constructor K, the functor Iτ,K is defined as for
inductive types, and identified by an object q;

5. each equality-constructor P of an inductive type τ is uniquely identified by
an object q′ representing the term in τ−intro−=, and an object s, which
is constructed as q′ but refers to the term in τ−comp−=. Then Iτ,P is a
family of functors indexed by c and q′ such that

CHAPTER 6. HOMOTOPIC FEATURES 114

a) Iτ,P(c, q′) : {·} → Mc ↑ q′;

b) Iτ,P respects equivalent contexts: if c ∼= c′ then Iτ,P(c, q′) ∼= Iτ,P(c′, q′)
in the corresponding functor category.

Moreover Cτ,P, interpreting the propositional computation rule for the
constructor P, is a family of functors indexed by c and s such that

a) Cτ,P(c, s) : {·} → Mc ↑ s;

b) Cτ,P respects equivalent contexts: if c ∼= c′, then in the corresponding
functor category Cτ,P(c, s) ∼= Cτ,P(c′, s);

6. in the non recursive case, each higher inductive type τ is uniquely associ-
ated to an object

r = F̄Π(c, a1, . . . , an, FC , Fc1
, . . . , Fck

, Fg1
, . . . , Fgl

, Ee,

ĒΠ(cod(νEe
◦ νa), a1, . . . , an, Ee, FC)(χEe

, χa1
, . . . , χan

)) ,

where Fci
, Ee, νa, νa,d, χai

are as in Point (3) of Definition 5.1.24,

and Fgi
represents

(

Π (x : F)n′
i
. Π (z : P)ri

. (cai
x(wai

) =
Cx
Plxz cbl

x(wbi
))

)

in our model. Then Eτ is a family of functors indexed by c and r such
that

a) Eτ : {·} → Mc ↑ r;

b) Eτ respects equivalent contexts: if c ∼= c′, then Eτ (c, r) ∼= Eτ (c′, r);

c) given C ∈ Obj Mc ↑ FC , ci ∈ Mc ↑ Fci
for 1 6 i 6 k, gi ∈ Mc ↑ Fgi

for 1 6 i 6 l, Ti ∈ Mc ↑ ai for 1 6 i 6 n, pi ∈ Mc ↑ di for
1 6 i 6 m,

ĒΠ(c, a1, . . . , an, FC , Fc1
, . . . , Fck

, Fg1
, . . . , Fgl

,

ĒΠ(c, a1, . . . , an, p)(T1, . . . , Tn, Fτ (c, p)(·)))

(Eτ (c, r)(·), T1, . . . , Tn, C, c1, . . . , ck, g1, . . . , gl

(ĒΠ(c, a1, . . . , an, d1, . . . , dm, q)

(Iτ,K(c, q)(·), T1, . . . , Tk, p1, . . . , pm)))

∼= ĒΠ(c, a1, . . . , an, d1, . . . , dm, Fci
)

(ci, T1, . . . , Tn, p1, . . . , pn) ;

the extension to the recursive case is done as for the inductive types.

7. for each inductive type τ and constructors K and P, the auxiliary functor
S must satisfy the following conditions:

a) if FE(cod(νc
a), fe)(·) is a type in Mcod(νc

a) but not in Mdom(νc
a), then

S(c, a, Ui)(FE(cod(νc
a), fe)(·), e) ∼= FE(c, S(c, a, Ui)(fe, e))(·);

b) if U(cod(νc
a), u)(·) is a type in Mcod(νc

a) but not in Mdom(νc
a), then

S(c, a, Ui)(U(cod(νc
a), u)(·), e) ∼= U(c, S(c, a, Ui)(u, e))(·);

c) if Fτ (cod(νc
a), p)(·) is a type in Mcod(νc

a) but not in Mdom(νc
a), then

S(c, a, Ui)(Fτ (cod(νc
a), p)(·), e) ∼= Fτ (c, S(c, a, Ui)(p, e))(·);

CHAPTER 6. HOMOTOPIC FEATURES 115

d) if Iτ,K(cod(νc
a), r)(·) is a type in Mcod(νc

a) but not in Mdom(νc
a), then

S(c, a, Ui)(Iτ,K(cod(νc
a), q)(·), e) ∼= Iτ,K(c, S(c, a, Ui)(q, e))(·);

e) if Iτ,P(cod(νc
a), q′)(·) is a type in Mcod(νc

a) but not in Mdom(νc
a), then

S(c, a, Ui)(Iτ,P(cod(νc
a), q′)(·), e) ∼= Iτ,P(c, S(c, a, Ui)(q′, e))(·);

f) if Cτ,P(cod(νc
a), s)(·) is a type in Mcod(νc

a) but not in Mdom(νc
a), then

S(c, a, Ui)(Cτ,P(cod(νc
a), s)(·), e) ∼= Cτ,P(c, S(c, a, Ui)(s, e))(·);

g) if Eτ (cod(νc
a), e)(·) is a type in Mcod(νc

a) but not in Mdom(νc
a), then

S(c, a, Ui)(Eτ (cod(νc
a), r)(·), e) ∼= Eτ (c, S(c, a, Ui)(r, e))(·).

Following the discussion about uniqueness rules at the end of Section 6.2, we
do not require a 1-HoTT-category to satisfy the requirements of Definition 5.1.24
about uniqueness, i.e., Point (3d).

As done in Section 6.4 for the proof theory, Definition 6.5.1 can be extended
to interpret truncation. It is enough to add five functors, as follows.

1. For each context c, is defined the object p̃ interpreting in our language
the term in || · ||−form. Then, is defined F||·|| such that

a) F||·||(c, p̃) : {·} → Mc ↑ p̃;

b) F||·|| respects equivalent contexts: if c ∼= c′ then F||·||(c, p̃) ∼= F||·||(c′, p̃)
in the corresponding functor category;

c) if F||·||(cod(νc
a), p̃)(·) is a type in Mcod(νc

a) but not in Mdom(νc
a), then

S(c, a, Ui)(F||·||(cod(νc
a), p̃)(·), e) ∼= F||·||(c, S(c, a, Ui)(p̃, e))(·).

2. For each context c, is defined the object q̃ interpreting in our language
the term in || · ||−intro. Then, is defined I||·|| such that

a) I||·||(c, q̃) : {·} → Mc ↑ q̃;

b) I||·|| respects equivalent contexts: if c ∼= c′ then I||·||(c, q̃) ∼= I||·||(c′, q̃)
in the corresponding functor category;

c) if I||·||(cod(νc
a), q̃)(·) is a type in Mcod(νc

a) but not in Mdom(νc
a), then

S(c, a, Ui)(I||·||(cod(νc
a), q̃)(·), e) ∼= I||·||(c, S(c, a, Ui)(q̃, e))(·).

3. For each context c, is defined the object q̃′ interpreting in our language
the term in || · ||−intro−=. Then, is defined I||·||,= such that

a) I||·||,=(c, q̃′) : {·} → Mc ↑ q̃′;

b) I||·||,= respects equivalent contexts: if c ∼= c′ then I||·||,=(c, q̃′) ∼=
I||·||,=(c′, q̃′) in the corresponding functor category;

c) if I||·||(cod(νc
a), q̃′)(·) is a type in Mcod(νc

a) but not in Mdom(νc
a), then

S(c, a, Ui)(I||·||,=(cod(νc
a), q̃′)(·), e) ∼= I||·||,=(c, S(c, a, Ui)(q̃′, e))(·).

4. For each context c, is defined the object s̃ interpreting in our language
the term in || · ||−comp−=. Then, is defined C||·|| such that

a) C||·||(c, s̃) : {·} → Mc ↑ s̃;

b) C||·|| respects equivalent contexts: if c ∼= c′, C||·||(c, s̃) ∼= C||·||(c′, s̃) in
the corresponding functor category;

CHAPTER 6. HOMOTOPIC FEATURES 116

c) if C||·||(cod(νc
a), s̃)(·) is a type in Mcod(νc

a) but not in Mdom(νc
a), then

S(c, a, Ui)(C||·||(cod(νc
a), s̃)(·), e) ∼= C||·||(c, S(c, a, Ui)(s̃, e))(·).

5. For each context c, is defined the object r̃ interpreting in our language
the term in || · ||−elim. Then, is defined E||·|| such that

a) E||·||(c, r̃) : {·} → Mc ↑ r̃;

b) E||·|| respects equivalent contexts: if c ∼= c′, E||·||(c, r̃) ∼= E||·||(c′, r̃)
in the corresponding functor category;

c) a condition analogous to (6c) of Definition 6.5.1, requiring the exis-
tence of an isomorphism between the object interpreting in our lan-
guage Γ ⊢ ind||·|| A c1 g1(| · | A a) and the one interpreting Γ ⊢ c1 A a;

d) if E||·||(cod(νc
a), r̃)(·) is a type in Mcod(νc

a) but not in Mdom(νc
a), then

S(c, a, Ui)(E||·||(cod(νc
a), r̃)(·), e) ∼= E||·||(c, S(c, a, Ui)(r̃, e))(·).

The interpretation J·K and all the results in the following can be extended to
truncation in the obvious way.

Interpretation

The interpretation extends the one for inductive types:

Definition 6.5.2. Given a T -ML-category MH , for each higher inductive type
τ extend the interpretation of Definitions 5.2.1 and 5.2.9 as follows:

1. if Γ ⊢ FunExt : Ui+1 is valid, then Γ ⊢ funext : FunExt is valid, and
JΓ ⊢ funextK = FE(JΓ ctxK, JΓ ⊢ FunExtK)(·);

2. if Γ ⊢ univalence : Ui+1 is valid, then Γ ⊢ univalence : Univalence is valid,
and JΓ ⊢ univalenceK = U(JΓ ctxK, JΓ ⊢ UnivalenceK)(·);

3. if Γ ⊢ Π (x : F)n . Ui : Ui+1 is valid, then Γ ⊢ τ : Π (x : F)n . Ui is valid
and JΓ ⊢ τK = Fτ (JΓ ctxK, JΓ ⊢ Π (x : F)n . UiK)(·); the interpretation
of the type-in-context Γ ⊢ Π (x : F)n . Ui can be computed from the
interpretations of the JΓ ⊢ FiK through the functor FΠ;

4. if the judgement Γ ⊢ Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

n : Ui is valid, then
the judgement Γ ⊢ K : Π (x : F)n′ . Π (y : I)m . τ x′

1 · · · x′
n is valid and

JΓ ⊢ KK = Iτ,K(JΓ ctxK, JΓ ⊢ Π (x : F)n′ . Π (y : I)m . τ x′
1 · · · x′

nK)(·). As
above, the latter interpretation can be easily obtained through FΠ and
EΠ;

5. if the judgement

Γ ⊢ (Π (x : F)n′ . Π (z : P)r . = (τ x′
1 · · · x′

n)

(Kax′
1 · · · x′

n wa
1 · · · wa

sa
)(Kbx′

1 · · · x′
n wb

1 · · · wb
sb

)
)

: Ui

is valid, then the judgement

Γ ⊢ P : (Π (x : F)n′ . Π (z : P)r . = (τ x′
1 · · · x′

n)

(Kax′
1 · · · x′

n wa
1 · · · wa

sa
)(Kbx′

1 · · · x′
n wb

1 · · · wb
sb

)
)

CHAPTER 6. HOMOTOPIC FEATURES 117

is valid and

JΓ ⊢ PK = Iτ,P(JΓ ctxK, JΓ ⊢ (Π (x : F)n′ . Π (z : P)r . = (τ x′
1 · · · x′

n)

(Kax′
1 · · · x′

n wa
1 · · · wa

sa
)(Kbx′

1 · · · x′
n wb

1 · · · wb
sb

)
)

K)(·) ;

6. if

Γ ⊢ C : (Π (x : F)n . τ x1 · · · xn → Uh)
{

Γ ⊢ cj :
(

Π (x : F)n′
1

. Π (y : I)m′
j

.

C x′
1 · · · x′

nj

(

K1 x′
1 · · · x′

nj
y1 · · · ymj

))}k

j=1
{

Γ ⊢ gj :
(

Π (x : F)n′
j

. Π (z : P)rj
. (caj

x(waj
) =Cx

Pixz cbj
x(wbj

))
)}l

j=1

Γ ⊢ Pi T1 · · · Tn q1 · · · qri
: = (τ T1 · · · Tn)
(Kai

T (qai

1 · · · qai
sai

))(Kbi
T (qbi

1 · · · qbi
sbi

))

are valid, then the judgement

Γ ⊢ Ci: = (cai
T (Tqai

) =CT
PlT q cbi

T (Tqbi
))(adpindτ T C c d(Pi Tq))(gi Tq)

is valid, and

JΓ ⊢ CiK = Cτ,Pi
(JΓ ctxK, JΓ ⊢= (cai

T (Tqai
) =CT

PlT q cbi
T (Tqbi

))

(adpindτ T C c d(Pi Tq))(gi Tq)K) ;

7. let

Tind := Π (x : F)n . (ΠC : (Π (x : F)n . τ x1 · · · xn → Uh).

(Πk
i=1ci : (Π (x : F)n′

i
. Π (y : I)mi

.

C x′
1 · · · x′

ni
(Kx′

1 · · · x′
ni

y1 · · · ymi
)).

(Πk
i=1gi : (Π (x : F)n′

i
. Π (z : P)ri

.

(cax(wa) =Cx
Pixz cbx(wb))).

(Πe : τ x1 · · · xn. C x1 · · · xn e)))) .

If Γ ⊢ Tind : Uh+1 is valid, then Γ ⊢ indτ : Tind is valid and JΓ ⊢ indτ K =
Eτ (JΓ ctxK, JΓ ⊢ TindK).

Lemma 6.5.3 (Substitution). If Γ, x : A ⊢ b : B and Γ ⊢ a : A are valid, then
JΓ ⊢ (λx : A. b)aK ∼= JΓ ⊢ b[a/x]K.

Proof. It has the same structure of the poofs of Lemmas 5.2.2 and 5.2.10. The
validity of the result is ensured by Point (7) of Definition 6.5.1. As an example,
consider the case of function extensionality, i.e., b = funext.

JΓ ⊢ (λx : A. funext) aK

= S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ FunExtK)

(FE(JΓ, x : A ctxK, JΓ, x : A ⊢ FunExtK)(·), JΓ ⊢ aK)
∼= FE(JΓ ctxK, S(JΓ ctxK, JΓ ⊢ AK, JΓ, x : A ⊢ Ui+1K)

CHAPTER 6. HOMOTOPIC FEATURES 118

(JΓ, x : A ⊢ FunExtK, JΓ ⊢ aK))(·)

and, by induction hypothesis,

∼= FE(JΓ ctxK, JΓ ⊢ (FunExt)[a/x]K)(·)

= JΓ ⊢ funext[a/x]K .

As already seen in Section 5.2 for inductive theories, Proposition 5.2.3,
Corollary 5.2.4 and Fact 5.2.6 trivially extend to 1-HoTT theories.

Definition 6.5.4. A model for a 1-HoTT theory T is composed by a 1-HoTT-
category and an interpretation over it such that, for every γ ∈ T , γ is valid.

Theorem 6.5.5 (Soundness). Let T be a set of derivable judgements on a
1-HoTT theory. Then all the judgements in T are valid in every model.

Proof. Since a model for a 1-HoTT theory extends a model for an inductive
system, and Theorem 5.2.12 proves the soundness of the inductive systems, it is
enough to prove the statement when γ is the conclusion of a rule for an 1-higher
inductive type or an axiom:

• if the premises are valid, then by Definition 6.5.2 the conclusions of
τ−form, τ−introi, τ−elim, τ−intro−=, τ−comp−=, Π−ext and Ui−univ

are valid;

• the observations after Definition 6.5.2 show that, when the premises are
valid, also the conclusion of the τ−compi rule is valid.

Classifying model and completeness

Section 6.4 allows to extend the results obtained in Section 5.3 to a 1-HoTT
theory T . Thus, the syntactical category for the inductive types can be extended
as follows.

Definition 6.5.6. If T is a 1-HoTT theory, its syntactical category is the one
of Definitions 5.3.4 and 5.3.20 extended with the following families of functors:

• FE([Γ ctx], [Γ ⊢ FunExt])(·) = ([Γ ⊢ funext], [Γ ctx]),

• U([Γ ctx], [Γ ⊢ Univalence])(·) = ([Γ ⊢ univalence], [Γ ctx]),

and, for each instance of the rules for a 1-higher inductive type τ , the functors
Fτ , Iτ,K, Eτ , Iτ,P, Cτ,P are defined, respectively, by the objects ([Γ ⊢ τ], [Γ ctx]),
([Γ ⊢ Ki], [Γ ctx]), ([Γ ⊢ indτ], [Γ ctx]), ([Γ ⊢ Pi], [Γ ctx]) and ([Γ ⊢ Ci], [Γ ctx]),
as done in Definition 5.3.20.

The canonical interpretation J·KT over T extends the interpretation for the
basic system of Definition 5.3.16 in the obvious way.

Proposition 6.5.7. MH
T , defined extending Mi

T with the functors of Defini-
tion 6.5.6, is a 1-HoTT-category, and J·KT is an interpretation over it.

Proof. Mi
T is a T -ML-category by Proposition 5.3.21, thus it is enough to show

that the requirements of Definition 5.1.24 are satisfied. This is a long but trivial
calculation, done as in the proof of Proposition 5.3.21. As an example, we check
the requirements for function extensionality.

CHAPTER 6. HOMOTOPIC FEATURES 119

1. By Definition 6.5.6, FE is appropriately indexed and

a) each instance has the right domain and codomain;

b) if Γ ∼ ∆, then by Fact 5.2.6

FE([Γ ctx], [Γ ⊢ FunExt])
∼= FE([∆ ctx], [Γ ⊢ FunExt]) .

7. Focusing on the auxiliary functor S,

a) by definition,

S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(FE([Γ ctx], [Γ ⊢ FunExt])(·), ([Γ ⊢ a], [Γ ctx]))

= S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

(([Γ ⊢ funext], [Γ ctx]), ([Γ ⊢ a], [Γ ctx]))
∼= ([Γ ⊢ funext[a/x]], [Γ ctx])
∼= FE([Γ ctx], [Γ ⊢ FunExt[a/x]])(·)
∼= FE([Γ ctx], S([Γ ctx], [Γ ⊢ A], [Γ, x : A ⊢ Ui])

([Γ ⊢ FunExt], [Γ ⊢ a])) .

Hence, MH
T together with J·KT is a model.

Theorem 6.5.8 (Classifying model). If MH is a model for T , then there is a
functor J : MH

T → MH which preserves the interpretation.

Proof. Analogous to the proof of Theorems 5.3.18 and 5.3.22.

Theorem 6.5.9 (Completeness). Let γ be a judgement which is valid in every
model for a 1-HoTT theory T . Then γ is derivable from T .

Proof. Since γ is valid in every model for T , it is valid in MH
T . Hence it is an

arrow of MT , thus, by Definition 5.3.3, γ ∈ T . Since T is closed under derivation
in a 1-HoTT system, γ is derivable from T in the 1-HoTT system.

The conjecture at the end of Section 6.4, that every HoTT-theory makes
Theorem 6.4.1, strong normalisation, true and its proof can be obtained along
the lines of Theorem 4.3.12, extends to the semantics. We conjecture that every
HoTT-theory can be interpreted in a suitable extension of ML-categories, similar
to Definition 6.5.1, and this semantics is sound and complete, with a classifying
model, the proof of these results being obtained extending Theorems 6.5.5, 6.5.8
and 6.5.9. As before, what prevents to verify this bold conjecture is the lack
of an exhaustive syntactical characterisation of higher inductive types in their
full generality. In fact, for each example of higher inductive types in [95], the
double conjecture on proof theory and semantics holds.

As an example, consider the torus T 2. As described in [95, Section 6.6], its
introduction constructors state that

• b : T 2;

• p : b =T 2 b;

CHAPTER 6. HOMOTOPIC FEATURES 120

• q : b =T 2 b;

• t : p · q = q · p, where · is the concatenation of [95, Lemma 2.1.2].

As emphasised in the Book, the induction principle, from which can be de-
rived the elimination and computation rules via the inversion principle [76],
is tricky; its exact formulation is too complex to be presented in this dis-
sertation. Anyway, this leads to nine rules of the form k−intro (T 2−form,
T 2−intro, T 2−elim, T 2−introp−=, T 2−introq−=, T 2−introt−=, T 2−compp−=,
T 2−compq−=, T 2−compt−=) and an equality rule, T 2−comp.

Thus, as discussed for truncation at the end of Section 6.4, the torus validates
all the results in Chapters 3 and 4. Also the semantics can be extended, as done
for truncation in the discussion after Definition 6.5.1; in the case of T 2, nine new
functors need to be defined, in order to interpret the formation, introduction
and elimination rules, the three higher introduction rules and the three higher
computation rules. The purpose of this example is twofold: the torus, and
similar higher inductive types, satisfy our conjecture, even if is not a 1-HoTT
type; moving outside 1-HoTT theories, the syntax, and thus the proofs of
Theorems 6.4.1, 6.5.5, 6.5.8, and 6.5.9, become heavier and heavier, despite
the core of the results and the methods to gain them are unchanged. This
observation suggests that an agile and exhaustive syntactical characterisation of
higher inductive types would lead to prove our bold conjectures. Unfortunately,
such a characterisation is still lacking in the current literature.

Chapter 7

Conclusions

At the beginning of this dissertation, it has been said that the purpose of the
present work is to answer one question: whether higher-order category theory is
necessary to describe homotopy type theory. Since homotopy type theory is an
open theory, in which parts are informally formal, that is, they are formal but
not part of a formal framework, like higher order inductive types in their full
generality, we considered a significant subset, 1-HoTT theory, and we proved in
Chapters 5 and 6 that 1-category theory is enough to give a sound and complete
semantics for it. Technically, the completeness results follow from the existence
of a classifying model, which is a non evident fact: for example, the Tarski’s
semantics for first order logic fails in this respect, as no classifying model can
be constructed1.

The semantics abstracts, in the point-free sense described in the Introduction
and discussed in Chapter 5, over the proof theory. As remarked in the Introduc-
tion, the proof theory of homotopy type theory has never been systematically
developed by its own: most results are inherited from Martin-Löf type theory,
see Chapter 2, and not always straightforwardly adapted to the new framework.

Then, in Chapters 3 and 4, a systematic account of the fundamental aspects
of the proof theory in the framework of Martin-Löf type theory has been
developed, prominently the strong normalisation theorem 4.3.12. This result
closes the 40 years’ quest for a bullet-proof normalisation of the intensional,
multi-universe version of dependent type theory [1, 2, 10, 20, 37]. However, this
result is still not perfect because, as e.g. in [2], it uses semantics to establish a
couple of fundamental properties, in particular that Π is one-to-one and that
no product is convertible to a universe.

The semantics for Martin-Löf type theory is developed in Chapter 5, where
the soundness and completeness results are derived along with the existence
of a classifying model, as already said. These results are naturally extended
to 1-HoTT theories in Chapter 6, thus providing the full picture to build
the semantics. Therefore, the dissertation concludes by providing a solid and
conclusive answer to the initial question: no, 1-category theory suffices to fully
describe a very large fragment of homotopy type theory. Also, the results of
Chapter 6 suggest that 1-HoTT theories could be extended to n-HoTT theories
with no major effort apart the complexity of the involved syntax, see the torus
example at the end of Chapter 6.

Hence, we conjectured that the methods and the major results in this
work (normalisation, soundness and completeness of the semantics, and the
existence of a classifying model) can be extended to the whole HoTT. What

1This fact ultimately follows by the existence of the G sentence from Gödel incompleteness
theorem [44]. In fact, a classifying model must make true either G or ¬G. Then, every model
validates the same sentence, which contradicts the existence of non-standard models.

121

CHAPTER 7. CONCLUSIONS 122

prevents to attempt this bold conjecture is the lack of an exhaustive syntactical
characterisation of higher inductive types: this is still an open problem as
remarked, e.g., in Section 6.13 of [95].

Bibliography

[1] Andreas Abel, Klaus Aehlig, and Peter Dybjer, Normalization by evalu-
ation for Martin-Löf type theory with one universe, Electronic Notes in
Theoretical Computer Science 173 (2007), 17–39, Proceedings of the 23rd

Conference on the Mathematical Foundations of Programming Semantics.

[2] Andreas Abel, Thierry Coquand, and Peter Dybjer, Normalization by
evaluation for Martin-Löf type theory with typed equality judgements, Pro-
ceedings of the 22nd Annual IEEE Symposium on Logic in Computer
Science, IEEE Computer Society, 2007, pp. 3–12.

[3] Peter Aczel and Michael Rathjen, Notes on constructive set theory, Tech.
Report 40, Institut Mittag–Leffler, 2000.

[4] , Constructive set theory, Book draft1: https://www1.maths.

leeds.ac.uk/~rathjen/book.pdf, 2010.

[5] Agda, Webpage, url: https://wiki.portal.chalmers.se/agda/pmwiki.

php, consulted on May 21st, 2019.

[6] Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti, Non-wellfounded
trees in homotopy type theory, 13th International Conference on Typed
Lambda Calculi and Applications (Dagstuhl, Germany) (Thorsten Al-
tenkirch, ed.), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 38, Schloß Dagstuhl–Leibniz-Zentrum für Informatik, 2015, pp. 17–30.

[7] Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman, Univalent
categories and the Rezk completion, Mathematical Structures in Computer
Science 25 (2015), no. 5, 1010–1039.

[8] Benedikt Ahrens, Peter LeFanu Lumsdaine, and Vladimir Voevodsky,
Categorical structures for type theory in univalent foundations, Logical
Methods in Computer Science 14 (2018), no. 3, 1–18.

[9] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus, Extending ho-
motopy type theory with strict equality, 25th EACSL Annual Conference
on Computer Science Logic (Dagstuhl, Germany) (Jean-Marc Talbot and
Laurent Regnier, eds.), Leibniz International Proceedings in Informatics
(LIPIcs), vol. 62, Schloß Dagstuhl–Leibniz-Zentrum für Informatik, 2016,
pp. 21:1–21:17.

[10] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher, Reduction-
free normalisation for a polymorphic system, Proceedings 11th Annual
IEEE Symposium on Logic in Computer Science, 1996, pp. 98–106.

1Courtesy of professor Rathjen.

123

BIBLIOGRAPHY 124

[11] Jeremy Avigad, Krzysztof Kapulkin, and Peter LeFanu Lumsdaine, Homo-
topy limits in type theory, Mathematical Structures in Computer Science
25 (2015), no. 5, 1040––1070.

[12] Steve Awodey, Natural models of homotopy type theory, Mathematical
Structures in Computer Science 28 (2018), no. 2, 241––286.

[13] Steve Awodey, Nicola Gambino, and Kristina Sojakova, Inductive types in
homotopy type theory, 27th Annual IEEE Symposium on Logic in Computer
Science, 2012, pp. 95–104.

[14] , Homotopy-initial algebras in type theory, Journal of the ACM 63

(2017), no. 6, 51:1–51:45.

[15] Hendrik P. Barendregt, The lambda calculus: Its syntax and semantics,
Studies in Logic and the Foundations of Mathematics, vol. 103, Elsevier,
1984.

[16] Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman,
Matthieu Sozeau, and Bas Spitters, The HoTT library: a formalization
of homotopy type theory in Coq, Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs, Paris, France, January 16-17,
2017 (Yves Bertot and Viktor Vafeiadis, eds.), ACM, 2017, pp. 164–172.

[17] Michael J. Beeson, Foundations of constructive mathematics, Springer,
1985.

[18] Marco Benini, Proof-oriented categorical semantics, Concepts of Proof
in Mathematics, Philosophy, and Computer Science (Dieter Probst and
Peter Schuster, eds.), Ontos Mathematical Logic, vol. 6, De Gruyter, 2016,
pp. 41–68.

[19] Marco Benini and Roberta Bonacina, Well-quasi orders in a categorical
setting, Archive for Mathematical Logic 58 (2019), no. 3, 501–526.

[20] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg, Normalization
by evaluation, Prospects for Hardware Foundations: ESPRIT Working
Group 8533 NADA — New Hardware Design Methods Survey Chapters
(Bernhard Möller and John V. Tucker, eds.), Springer, 1998, pp. 117–137.

[21] Errett Bishop, Foundations of constructive analysis, Mcgraw-Hill, 1967.

[22] Errett Bishop and Douglas S. Bridges, Constructive analysis, Springer,
1985.

[23] Corrado Böhm and Alessandro Berarducci, Automatic synthesis of typed
lambda-programs on term algebras, Theoretical Computer Science 39 (1985),
135–154.

[24] Roberta Bonacina, Point-free categorical semantics for Martin-Löf type
theory, Master’s thesis, Università degli Studi dell’Insubria, 2016.

[25] George Boole, An investigation of the laws of thought: On which are
founded the mathematical theories of logic and probabilities, Cambridge
Library Collection — Mathematics, Cambridge University Press, 2009.

BIBLIOGRAPHY 125

[26] Francis Borceux, Handbook of categorical algebra, Encyclopedia of Mathe-
matics and its Applications, vol. 1, Cambridge University Press, 1994.

[27] Nicolas Bourbaki, Theory of sets, Actualités scientifiques et industrielles,
Springer, 2004.

[28] Carl B. Boyer, A history of mathematics, Wiley, 1991.

[29] Douglas S. Bridges and Fred Richman, Varieties of constructive mathemat-
ics, London Mathematical Society Lecture Note Series, vol. 97, Cambridge
University Press, 1987.

[30] Luitzen E. J. Brouwer and Arend Heyting, Collected works/L.E.J. Brouwer;
edited by A. Heyting, North-Holland, 1975.

[31] Felice Cardone and J. Roger Hindley, History of lambda-calculus and
combinatory logic, Handbook of the History of Logic, vol. 5, Elsevier, 2006,
pp. 723–817.

[32] Pierre Clairambault and Peter Dybjer, The biequivalence of locally cartesian
closed categories and Martin-Löf type theories, Typed Lambda Calculi and
Applications (Luke Ong, ed.), Springer, 2011, pp. 91–106.

[33] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg,
Cubical type theory: A constructive interpretation of the univalence axiom,
21st International Conference on Types for Proofs and Programs (Tarmo
Uustalu, ed.), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 69, Schloß Dagstuhl–Leibniz-Zentrum für Informatik, 2018, pp. 5:1–
5:34.

[34] Loïc Colson, About primitive recursive algorithms, Automata, Languages
and Programming, 16th International Colloquium, ICALP89, Stresa, Italy,
July 11-15, 1989, Proceedings, 1989, pp. 194–206.

[35] Barry S. Cooper, Computability theory, Chapman and Hall/CRC, 2003.

[36] Coq, Webpage, url: https://coq.inria.fr/, consulted on May 21st, 2019.

[37] Thierry Coquand and Arnaud Spiwack, A proof of strong normalisation
using domain theory, 21st Annual IEEE Symposium on Logic in Computer
Science, 2006, pp. 307–316.

[38] Laura Crosilla, The entanglement of logic and set theory,
constructively, Preprint2 at https://www.researchgate.net/

publication/326741496_The_entanglement_of_logic_and_set_

theory_constructively Consulted on May 21st, 2019, 2018.

[39] Pierre-Louis Curien, Substitution up to isomorphism, Fundamenta Infor-
maticæ 19 (1993), no. 1–2, 51–85.

[40] Haskell B. Curry and Robert Feys, Combinatory logic, vol. 1, North-Holland,
1958.

2Courtesy of the author.

BIBLIOGRAPHY 126

[41] Nicolaas G. de Bruijn, Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the Church
Rosser theorem, Indagationes Mathematicae 75 (1972), no. 5, 381–392.

[42] Jean-Yves Girard, Interprétation fonctionnelle et élimination des coupures
de l’arithmétique d’ordre supérieur, Phd thesis, Université Paris Diderot -
Paris 7, 1972.

[43] Jean-Yves Girard, Yves Lafont, and Paul Taylor, Proofs and types, Cam-
bridge Tracts in Theoretical Computer Science, vol. 7, Cambridge Univer-
sity Press, 1989.

[44] Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme, I, Monatshefte für Mathematik und Physik 38

(1931), no. 1, 173–198.

[45] Robert Goldblatt, Topoi: The categorical analysis of logic, Dover Publica-
tions, 2006.

[46] George Grätzer, General lattice theory, 2nd ed., Birkhäuser, 2002.

[47] Alexandre Grothendieck and Jean-Louis Verdier, Expose IV: Topos, The-
ories des Topos et Cohomologie Etale des Schemas (SGA 4.1), Semi-
naire de Geometrie Algebrique Du Bois-Marie, Available at http://www.

grothendieckcircle.org/, 1963–64, pp. 299–519.

[48] Allen Hatcher, Algebraic topology, Cambridge University Press, 2001.

[49] Martin Hofmann and Thomas Streicher, The groupoid interpretation of type
theory, Twenty-Five Years of Constructive Type Theory (Giovanni Sambin
and Jan Smith, eds.), Oxford Logic Guides, vol. 36, Oxford University
Press, 1998, pp. 83–111.

[50] Kuen-Bang Hou Favonia, Eris Finster, Daniel R. Licata, and Peter LeFanu
Lumsdaine, A mechanization of the Blakers–Massey connectivity theorem
in homotopy type theory, 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, July 2016, pp. 1–10.

[51] William A. Howard, The formulæ-as-types notion of construction, To H. B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism
(J. Roger. Hindley and Jonathan P. Seldin, eds.), Academic Press, 1980,
pp. 479–490.

[52] Bart Jacobs, Categorical logic and type theory, Studies in Logic and the
Foundations of Mathematics, vol. 141, Elsevier, 1999.

[53] Peter T. Johnstone, Stone spaces, Cambridge Studies in Advanced Mathe-
matics, Cambridge University Press, 1982.

[54] , Sketches of an elephant: A topos theory compendium, vol. 2,
Oxford University Press, 2002.

[55] , Sketches of an elephant: A topos theory compendium, vol. 1,
Oxford University Press, 2002.

BIBLIOGRAPHY 127

[56] Morris Kline, Mathematical thought from ancient to modern times:, Math-
ematical Thought from Ancient to Modern Times, OUP USA, 1990.

[57] Dénes König, Über eine Schlussweise aus dem Endlichen ins Unendliche,
Acta Litterarum ac Scientiarum Regiæ Universitatis Hungaricæ Francisco-
Josephinæ Szeged 3 (1927), 121–130.

[58] James Ladyman and Stuart Presnell, Universes and univalence in homotopy
type theory, Review of Symbolic Logic 12 (2019), no. 3, 426–455.

[59] Daniel R. Licata and Eric Finster, Eilenberg-MacLane spaces in homotopy
type theory, Proceedings of the Joint Meeting of the 23rd EACSL Annual
Conference on Computer Science Logic and the 29th Annual ACM/IEEE
Symposium on Logic in Computer Science, ACM, 2014, pp. 66:1–66:9.

[60] Daniel R. Licata and Michael Shulman, Calculating the fundamental group
of the circle in homotopy type theory, 28th Annual ACM/IEEE Symposium
on Logic in Computer Science, 2013, pp. 223–232.

[61] Henri Lombardi and Claude Quitté, Commutative algebra: Constructive
methods — finite projective modules, Springer, 2015.

[62] Jacob Lurie, Higher topos theory (am-170), Princeton University Press,
2009.

[63] Sanders Mac Lane, Categories for the working mathematician, 2nd ed.,
Springer, 1998.

[64] Saunders Mac Lane and Ieke Moerdijk, Sheaves in geometry and logic: A
first introduction to topos theory, Springer, 1992.

[65] Michael Makkai, An algebraic look at propositional logic, vol. 18, Associ-
azione Italiana di Logica e sue Applicazioni, 1994.

[66] Andrey A. Markov, Theory of algorithms, TT 60-51085, Academy of
Sciences of the USSR, 1954.

[67] Jean-Pierre Marquis, From a geometrical point of view: A study of the
history and philosophy of category theory, Logic, Epistemology, and the
Unity of Science, Springer, 2008.

[68] Per Martin-Löf, An intuitionistic theory of types, Tech. report, University
of Stockholm, 1972.

[69] , An intuitionistic theory of types: Predicative part, Logic Collo-
quium ’73 (H.E. Rose and J.C. Shepherdson, eds.), Studies in Logic and
the Foundations of Mathematics, vol. 80, Elsevier, 1975, pp. 73 – 118.

[70] , Constructive mathematics and computer programming, Philosoph-
ical Transactions of the Royal Society of London. Series A. Mathematical
and Physical Sciences 312 (1984), no. 1522, 501–518.

[71] , Intuitionistic type theory. Notes by Giovanni Sambin of a series
of lectures given in Padua, June 1980, Bibliopolis, Napoli, 1984.

BIBLIOGRAPHY 128

[72] , An intuitionistic theory of types, Twenty-Five Years of Constructive
Type Theory (Giovanni Sambin and Jan Smith, eds.), Oxford Logic Guides,
vol. 36, Oxford University Press, 1998, pp. 127–172.

[73] , The Hilbert-Brouwer controversy resolved?, One Hundred Years of
Intuitionism (1907–2007): The Cerisy Conference (Mark van Atten, Pascal
Boldini, Michel Bourdeau, and Gerhard Heinzmann, eds.), Birkhäuser,
2008, pp. 243–256.

[74] William S. Massey, Algebraic topology: An introduction, vol. 52, Springer,
1967.

[75] Paul F. Mendler, Inductive definition in type theory, Ph.D. thesis, Cornell
University, USA, 1987.

[76] Sara Negri and Jan von Plato, Structural proof theory, Cambridge University
Press, 2001.

[77] Bengt Nordström, Kent Petersson, and Jan M. Smith, Programming in
Martin-Löf’s type theory, Oxford University Press, 1990.

[78] Michel Parigot, On the representation of data in lambda-calculus, Proceed-
ings of the 3rd Workshop on Computer Science Logic (London, UK, UK),
CSL ’89, Springer-Verlag, 1990, pp. 309–321.

[79] Benjamin C. Pierce, Types and programming languages, MIT Press, 2002.

[80] Henri M. Poincaré, Analysis situs, Journal de l’École Polytechnique 2

(1895), no. 1, 1–123.

[81] , Cinquième complément à l’analysis situs, Rendiconti del Circolo
Matematico di Palermo (1884-1940) 18 (1904), no. 1, 45–110.

[82] Henri M. Poincaré, La logique de l’infini, Revue de Métaphysique et de
Morale 17 (1909), 461–482.

[83] , La logique de l’infini, Scientia 12 (1912), 1–11.

[84] Joseph J. Rotman, An introduction to algebraic topology, vol. 119, Springer,
1988.

[85] Giovanni Sambin, Formal topology, url: https://www.math.unipd.it/

~sambin/maths-formaltopology.html, consulted on June 4th, 2019.

[86] , Intuitionistic formal spaces — a first communication, Mathemat-
ical Logic and Its Applications (Dimiter G. Skordev, ed.), Springer US,
Boston, MA, 1987, pp. 187–204.

[87] , A course in formal topology, 1998, European Summer School of
Logic, Language, and Information3.

[88] , Some points in formal topology, Theoretical Computer Science
305 (2003), no. 1, 347–408.

3Courtesy of M. Benini who attended the course.

BIBLIOGRAPHY 129

[89] Peter Schuster, Formal Zariski topology: Positivity and points, Annals of
Pure and Applied Logic 137 (2006), no. 1, 317–359.

[90] Robert A. G. Seely, Locally Cartesian closed categories and type theory,
Mathematical Proceedings of the Cambridge Philosophical Society 95

(1984), 33–48.

[91] Christopher Strachey and Christopher P. Wadsworth, Continuations: A
mathematical semantics for handling full jumps, Higher-Order and Symbolic
Computation 13 (2000), no. 1, 135–152.

[92] Anne S. Troelstra, Aspects of constructive mathematics, Handbook of
mathematical logic (Jon Barwise, ed.), Studies in Logic and the Foundations
of Mathematics, vol. 90, Elsevier, 1977, pp. 973 – 1052.

[93] Anne S. Troelstra and Helmut Schwichtenberg, Basic proof theory, 2nd ed.,
Cambridge Tracts in Theoretical Computer Science, vol. 43, Cambrdige
University Press, 2000.

[94] Anne S. Troelstra and Dirk van Dalen, Constructivism in mathematics:
An introduction. volume I, Studies in Logic and the Foundations of Mathe-
matics, vol. 121, Elsevier, 1998.

[95] The Univalent Foundations Program, Homotopy type theory: Univalent
foundations of mathematics, Institute for Advanced Study: https://

homotopytypetheory.org/book, 2013.

[96] Vladimir Voevodsky, A very short note on homotopy λ-calculus, http:

//www.math.ias.edu/vladimir/files/2006_09_Hlambda.pdf, 2006.

[97] , The equivalence axiom and univalent models of type theory, Tech.
Report arXiv:1402.5556, arXiv, 2010.

[98] Michael A. Warren, Homotopy theoretic aspects of constructive type theory,
Ph.D. thesis, Carnegie Mellon University, 2008.

[99] Benjamin Werner, Une théorie des constructions inductives, Ph.D. thesis,
Université Paris VII, France, 1994.

	Introduction
	Technical background
	Philosophical background
	Plan

	Background
	Martin-Löf type theory
	Homotopy type theory

	Syntax
	Basic system
	General syntax for inductive types
	Basic proof theory
	Parallel substitution
	Canonical inductive types

	Normalisation
	Reductions
	Strongly normalisable judgements
	The normalisation theorem

	Semantics
	Categorical preliminaries
	Interpretation
	Classifying model and completeness

	Homotopic features
	Function extensionality and univalence
	Syntax of higher inductive types
	Canonical higher inductive types
	Proof theory
	Semantics

	Conclusions
	Bibliography

