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SUMMARY 

 
Neuronal circuitries within the enteric nervous system (ENS) display a considerable ability to adapt 

to a changing microenvironment, which comprises several cellular “players” such as neurons, 

enteric glia, smooth muscle cells, immune cells and the intestinal microbiota (Giaroni et al., 1999). 

The phenomenon of plasticity plays a fundamental role in the maintenance of gut homeostasis, in 

physiological conditions. However, remodelling of enteric neuronal circuitries may also occur in 

pathological conditions, such as during chronic inflammatory states of the gut or during 

ischemia/reperfusion (I/R) injury. Indeed, inflammatory bowel diseases (IBD) are associated with 

derangements of the ENS, characterized by increased neuronal excitability (hyperexcitability of 

primary afferent neurons), synaptic facilitation and reduced inhibitory neuromuscular 

neurotransmission. Such changes may lead to persistent dysmotility as well as altered visceral pain 

perception, which represent two of the main IBD symptoms (Vasina et al., 2006). Chronic 

inflammatory bowel diseases often include episode of ischemia, since the gut is one of most 

sensitive tissues to ischemic damage in the body (Haglund and Bergqvist, 1999). Intestinal 

ischemia/reperfusion injury, which is associated with a high morbidity and mortality, may also occur 

in both surgical and trauma patients (Reinus et al., 1990), as a result of embolism, arterial or venous 

thrombosis, shock, intestinal transplantation, or necrotising enterocolitis in the human premature 

newborn (Haglund and Bergqvist 1999; Massberg and Messmer, 1998; Nowicki 2005; Thornton and 

Solomon, 2002). The I/R insult can seriously affect the structure and function of myenteric neurons 

(Filpa et al., 2017) resulting in a particularly severe slowing of transit, suggestive of a long-lasting 

neuropathy (Rivera et al., 2011). 

The structural and functional changes occurring in enteric circuitries may be, at least in part, due to 

the interplay among different cell populations in the enteric microenvironment. In this context, 

extracellular matrix (ECM) molecules provide an important framework for the enteric 

microenvironment and may influence the integrity of myenteric neuronal circuitries during both 

physiological and pathological conditions.  

ECM molecules constitute a highly organized environment filling the extracellular space consisting 

of different types of macromolecules, such as collagens, elastin, fibronectin (FN), laminins, 

glycoproteins, proteoglycans (PGs) and glycosaminoglycans (GAGs) (Theocharis et al., 2016). 

Hyaluronan (HA), an unbranched GAG located immediately beneath the epithelial barrier of the 

gut, is deeply involved in the preservation of homeostasis. HA has also important functions in 

multiple host-defence mechanisms, promoting leukocyte recruitment in the intestinal 



 

 

 

extravascular space during disease states (de la Motte and Kessler, 2015), and acting to decrease 

inflammation and promote epithelial repair (Zheng et al., 2009). Several reports suggest that HA 

deposition is dramatically altered during gut inflammation. In experimental animal models of colitis 

and in the intestine of patients with IBD, accumulation of HA has been observed in the epithelial, 

submucosal and smooth muscle intestinal layers, and in blood vessels within the submucosal layer 

(Kessler et al., 2008). In these conditions, degradation of HA into small fragments may promote 

immune cell activation as well as production of pro-inflammatory cytokines, thus favouring an 

increased inflammatory response. 

Since the majority of studies have focused on the pathophysiological consequences of HA 

deposition in the submucosal and muscularis mucosae layers (de la Motte et al., 2011; Kessler et 

al., 2008), the aim of this work was to evaluate possible changes of HA homeostasis in the smooth 

muscle layer (muscularis propria), underlying derangement of the gut neuromuscular function 

during pathological conditions, such as IBD and I/R damage. Functional, morphological and 

biomolecular investigations were carried out in rat models of pathologies represented, 

respectively, by 2,4-dinitro-benzene-sulfonic acid (DNBS)-induced colitis and in vivo I/R injury, by 

temporary clamping the superior mesenteric artery. The results obtained, showed that HA 

contributes to the external architecture of enteric ganglia participating to the formation of a basal 

lamina surrounding myenteric ganglia. In addition, we were the first to demonstrate that the GAG 

may form a pericellular coat of condensed matrix surrounding myenteric neurons, similar to the 

well-organised ECM structures in the central system (CNS), called perineuronal nets (PNNs), which 

regulate ion homeostasis around active neurons, stabilize synapses and participate to neuronal 

plasticity (Oohashi et al., 2015; van 't Spijker and Kwok, 2017). Furthermore, the expression of some 

isoforms of HA synthases, such as HAS1 and HAS2, detected in myenteric neurons, support the 

hypothesis that myenteric neurons may be a source for HA. After DNBS-induced colitis, HA levels 

significantly increased in the muscularis propria layer and in the myenteric plexus. In particular, the 

GAG distribution within myenteric ganglia was highly altered, displaying a complete loss of the 

perineuronal organization. These alterations were associated with an up-regulation of HAS2 in 

myenteric neurons. 

HA levels significantly increased also in rat myenteric ganglia after the in vivo I/R. Such 

enhancement was associated with increased expression of both HAS1 and HAS2 in the myenteric 

neurons. Interestingly, treatment with an inhibitor of HA synthesis, 4-methylumbelliferone (4-MU), 

significantly reduced HA levels in myenteric plexus of I/R rats, which was associated with a 

significant reduction of HAS2 expression. 4-MU-administration in the I/R group was associated with 

alterations of the myenteric plexus neurochemical coding. From a functional view point, changes in 



 

 

 

both excitatory and inhibitory neurotransmission were evidenced, possibly hampering the 

efficiency of the gastrointestinal transit. Overall, these observations suggest that the I/R-induced 

neo-synthesis of HA may sustain gastrointestinal motor responses in this pathophysiological 

condition modulating some neuronal components within myenteric plexus circuitries. 

In conclusion, this study provides evidence that HA deposition within myenteric ganglia may have 

a homeostatic role, contributing to the control of myenteric neuron structure and function. In 

pathological conditions, such as during I/R, HA sustains the efficiency of the gastrointestinal transit, 

influencing both the excitatory and inhibitory components of the peristaltic reflex. Hence, 

modulation of HA deposition within the myenteric ganglia may ameliorate intestinal motility 

patterns related to these disease states. 
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1 INTRODUCTION 

1.1 The Enteric Nervous System 

The control of the main digestive functions in gastrointestinal (GI) tract largely depends upon the 

presence of a complex intrinsic neuronal network, termed enteric nervous system (ENS), that 

extends from esophagus to the anal sphincter. The ENS has an important role in determining 

motility patterns, gastric secretion, blood flow, nutrient handling, and the interactions with immune 

and endocrine systems of the gut, acting in a relative independent mode with respect to the central 

nervous system (CNS) (Furness et al., 2014). For this reason, it is often referred to as the “second 

brain” or the “minibrain” (Gershon, 1999; Wood, 2012). However, the ENS is not entirely 

autonomous, but it works as an integrated system in which afferent signals arising from the lumen 

are transmitted through enteric, spinal and vagal pathways to CNS, and efferent signals from CNS 

are driven back to the intestinal wall. This bidirectional communication guarantees the CNS 

monitoring of a number of gut parameters, from chemical sensing in the lumen, to sensing 

mechanical stress along the gut wall (Furness, 2000). 

The human ENS contains 200-600 million neurons, a number similar to that found in spinal cord, 

grouped into ganglia which are connected by bundles of nerve processes to form two major 

plexuses innervating the effector tissues: the myenteric (or Auerbach’s) plexus and the submucosal 

(or Meissner’s) plexus (Furness et al., 2012) (Figure 1). 

The myenteric plexus lies between the longitudinal and circular muscle layers, extending in the 

entire length of the gut as a continuous network. It primarily provides motor innervation to the 

smooth muscle layers and secretomotor innervation to the mucosa. Numerous myenteric neuron 

projections extend into submucosal ganglia and enteric ganglia of the gallbladder and pancreas 

(Kirchgessner & Gershon, 1990), and another substantial number into sympathetic ganglia (Goyal 

& Hirano, 1996). The submucosal plexus is located in the submucosa, between the outer circular 

muscle layer and the serosal side of the muscularis mucosae, where it plays an important part in 

the control of the secretory function. Large mammals can have two layers of submucosal ganglia, 

and sometimes a third intermediate layer between them. Submucosal ganglia and connecting fibre 

bundles form the submucosal plexus, which can be found in the small and large intestine, and rarely 

in the stomach and esophagus (Furness et al. 2014; Furness, 2012).  
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According to the morphology, neurochemical properties, cell physiology, projections to targets and 

functional roles, approximately 20 distinct types of neurons have been described (Costa et al., 

2000), all of which can be mainly grouped into the three major classes of enteric neurons: intrinsic 

primary afferents neurons (IPANs), interneurons and motor neurons. The myenteric plexus shows 

a high density of neurons compared to the submucosal plexus with an average ratio of the primary 

afferents, interneurons and motor neurons of 2:1:1, respectively (Costa et al., 2000; Hansen, 2003). 

IPANs are sensory neurons, representing the 10-30% of total neurons in the submucosal and 

myenteric intestinal ganglia, that are able to detect chemical luminal stimuli, mechanical distortion 

of the mucosa and mechanical forces in the external musculature (e.g. tension of the gut wall) 

(Furness et al, 2014). IPANs react to these signals to initiate appropriate reflex activity controlling 

motility, secretion and blood flow (Clerc et al., 2002). IPANs connect with each other, with 

interneurons and directly with motor neurons (Figure 2). Uni-axonal excitatory and inhibitory motor 

neurons, which receive prominent fast excitatory synaptic potentials, innervate the longitudinal, 

circular smooth muscle layers and the muscularis mucosae along the entire GI tract (Wood, 2012). 

The primary neurotransmitters for excitatory motor neurons are acetylcholine (ACh) and 

tachykinins. Several neurotransmitters have been identified in inhibitory motor neurons, including 

nitric oxide (NO), vasoactive intestinal peptide (VIP) and ATP-like transmitters, although NO is 

considered the primary transmitter (Furness et al., 2014). Another important class of enteric 

neurons is represented by secretomotor and secretomotor/vasodilator neurons regulating 

electrolyte and water transport across the intestinal mucosa (Vanner and Macnaughton, 2004). 

 

Figure 1. Organisation of the ENS in human small and large intestine. Neurons are confined in ganglia of the myenteric 

plexus, localized between the longitudinal and circular muscle layers, and in ganglia distributed between the circular 

muscle and the muscularis mucosa within the submucosa, depicted in the transverse section of the gut wall. The ganglia 

and fibers in the submucosa form the inner and outer submucosal plexus (SMP). From Furness JB., 2012. 
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The next paragraphs will focus on some of these neurotransmitter pathways, which undergo 

adaptive rearrangements in the different studies carried out in the present thesis. 

 Cholinergic neurotransmission  

Acetylcholine (ACh) is the major excitatory transmission in the ENS, being involved in the regulation 

of motor, secretory and vascular reflexes, by inducing excitatory potentials in post-synaptic 

effectors. 

ACh is present in the greater population of the enteric neurons and synthesized in nerve terminals 

from choline and acetyl-CoA by choline acetyltransferase (ChAT). As a classic neurotransmitter, ACh 

is then translocated into synaptic vesicles by the vesicular acetylcholine transporter (VAChT; Eiden, 

1998) and stored in synaptic vesicles until it is released on demand (Wessler et al., 2003).  

There are two types of receptors mediating cholinergic transmission within the ENS: the nicotinic 

(nAChRs) receptors, which are ligand-ion channels, and the muscarinic (mAChRs) G-protein coupled 

receptors (Caulfield & Birdsall, 1998). Thus, ACh binding generates variable postsynaptic potentials 

depending on the receptor present on the cell membrane, with nAChRs mediating rapid excitatory 

transmission and mAChRs mediating slow excitatory transmission (Harrington et al., 2010). At the 

cholinergic synapse both classes of receptors are present either on effector cells (post- synaptic 

receptors) or on nerve terminals (pre-synaptic receptors), where they act as autoreceptors 

regulating release of ACh. nAChR activation is the predominant mechanism for cholinergic 

neurotransmission in enteric ascending reflex pathways, whilst it retains a minor role in mediating 

cholinergic transmission within the descending inhibitory reflex (Galligan, 2002). Within the ENS, 

activation of nAChRs entails rapid reflex propagation, producing fast responses to stimuli. 

Conversely, activation of mAChRs either induces cell membrane depolarization, resulting in the 

Figure 2. Nerve circuits controlling motility in the small intestine. This simplified circuit diagram shows the major 

circuitries involved in intrinsic motor reflexes of the small intestine. Intrinsic primary sensory neurons (IPANs, red) detect 

mechanical distortion and luminal chemistry and connect with excitatory muscle motor neurons (blue) and inhibitory 

muscle motor neurons (purple) directly and via descending (yellow) and ascending (green) interneurons. From Furness et 

al., 2014. 
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initiation of action potential, or cell membrane hyperpolarization, inhibiting additional action 

potentials by activating second messenger cascades and intracellular signalling pathways (Caulfield 

& Birdsall, 1998). Owing to different distribution, molecular structure and intracellular signalling of 

mAChRs and nAChRs, these receptors may differentially influence various intestinal functions, both 

in physiological and pathologic conditions of the gut. Indeed, several GI disorders are associated 

with changes in the enteric cholinergic system. Congenital gastrointestinal aganglionosis, such as 

Hirschsprung's disease, show a completely lack of mAChR3-immunoreactive fibres in smooth-

muscle layers and decreased mAChR3 and mAChR2 mRNA levels in the aganglionic segments of the 

colon, which may be responsible for the typical motility dysfunctions of this pathology (Oue et al., 

2000). In addition, abnormal levels of mAChRs expression were correlated with organic GI 

pathologies, including IBD (Jadcherla, 2002; Oue et al., 2000). 

 Tachykinergic neurotransmission  

Tachykinins are a family of small biologically active peptides that act as a co-neurotransmitter of 

excitatory enteric neurons. Indeed, tachykinins represent with ACh, the main transmitters of 

excitatory neurons innervating the muscle, regulating intestinal motility, secretion, and vascular 

functions. The principal mammalian members of this family are substance P (SP), the first to be 

discovered in extracts of horse brain and intestine, neurokinin A (NKA) and neurokinin B (NKB) 

(Holzer and Holzer-Petsche, 1997). These neuropeptides are produced from the cleavage of large 

precursor proteins in the cell body of the neurons, where they are transported to the varicosities 

and released after stimulation. Tachykinins bind with high affinity to specific membrane G-protein 

coupled receptors, namely NK1R, NK2R and NK3R (Holzer and Holzer-Petsche, 1997). Consistent 

data show that NK1 and NK2 receptors are present on enteric neurons, NK1Rs being expressed also 

on interstitial Cajal cells (ICC), while NK2 are also highly expressed on smooth muscle cells. Although 

NK1Rs are considered SP-preferring, NK2Rs NKA-preferring and NK3Rs NKB-preferring receptors, 

all of these receptors can be fully activated by all tachykinins with moderate selectivity. NK1 and 

NK2 receptors mediate the transmission from excitatory motor neurons to muscle, whereas NK1 

and NK3 participate in slow excitatory transmission at neuro-neuronal synapses in both ascending 

and descending pathways affecting motility. Moreover, the activation of NK1 and NK2 receptors on 

mucosal epithelium is involved in fluid secretion (Lecci et al., 2002). 

However, tachykinins are not only important for neurotransmission, but they also have effects on 

tissue growth and differentiation, immunomodulation, tumour growth, and inflammation. In this 

latter regard, SP, via binding to the NK1Rs, were shown to participate to development of intestinal 

inflammation by several groups. In the ENS, SP represents a classical sensory neurotransmitter 
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involved in visceral pain perception associated with inflammation (Foreman, 1987). Several studies 

have reported altered expression of SP in the ENS of patients with inflammatory and functional GI 

disorders, such as constipation, diverticulitis, inflammatory bowel disease (IBD) and irritable bowel 

syndrome (IBS) (Lecci et al., 2006). 

 Nitrergic neurotransmission  

Nitric oxide (NO) is a gaseous messenger molecule, which has numerous molecular targets. It 

controls regulatory functions such as neurotransmission and vascular tone (Rapoport et al., 1983), 

gene transcription (Gudi et al., 1999) and mRNA translation (e.g. by binding iron-responsive 

elements) (Liu et al., 2002) and produces post-translational modifications of proteins (e.g. by ADP-

ribosylation) (Brune et al., 1994). The nerves whose transmitter function depend on NO release are 

called “nitrergic”, and such nerves are recognized to play major roles in the control of smooth 

muscle tone, motility and fluid secretion in the GI tract. In mammals NO can be produced by three 

different isoforms of the NO synthase enzyme: neuronal NOS (nNOS), inducible NOS (iNOS) and 

endothelial NOS (eNOS) isoforms. All NOS isoforms utilize as substrate L-arginine and molecular 

oxygen, and reduced nicotinamide-adenine-dinucleotide phosphate (NADPH) as co-substrates. 

Flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) and (6R-)5,6,7,8-tetrahydro-L-

biopterin (BH4) are cofactors of all isoenzymes. All NOS proteins are homodimers. NO synthesis is 

accomplished via two steps. In the first step, NOS hydroxylates L-arginine to Nω-hydroxy-L-arginine, 

successively NOS oxidizes Nω-hydroxy-L-arginine to L-citrulline and NO (Stuehr et al., 2001). All NOS 

isoforms bind to the intracellular Ca2+-binding protein, calmodulin. nNOS and eNOS binding to 

calmodulin is brought about by elevated intracellular Ca2+ concentrations (half-maximal activity 

between 200 and 400 nM), while iNOS binds to calmodulin at extremely low intracellular Ca2+ 

concentrations (below 40nM). (Forstermann and Sessa, 2012). 

In the ENS, NO plays a pivotal physiological role in the inhibitory regulation of peristalsis (Furness, 

2000). All NOS isoforms have been localized in myenteric neurons of different species (Vannucchi 

et al., 2002; Talapka et al., 2011). In myenteric neurons, nNOS seems to represent the main source 

of NO involved in the physiological modulation of non-adrenergic non-cholinergic inhibitory motor 

responses of the gut (Toda et al., 2005). However, expression of iNOS, but not of nNOS and eNOS, 

prevails during diseases states, such as intestinal inflammation (Miampamba et al., 1999) and I/R 

injury (Giaroni et al., 2013). In these conditions, large amounts of NO can cause damages in different 

cellular populations, such as neurons, by the formation of peroxynitrite and nitrotyrosine (Rivera 

et al., 2011). This phenomenon reflects a functional plasticity of myenteric neurons that activate 
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different NOS isoforms depending on either physiological or pathological conditions (Robinson et 

al., 2011, Giaroni et al., 2013). 

1.2 Plasticity in the enteric nervous system: the enteric microenvironment 

Plasticity is the ability of the nervous system to rewire its connections, or to adapt its functions in 

response to alterations of different inputs. In the CNS, the ability of the brain to adapt to changing 

physiological conditions or traumatic lesions is crucial, due to a lack of a sufficient regeneration 

potential. The ENS also shows several features that make it a suitable and unique model of 

plasticity. Enteric ganglia share morphological (e.g., presence of enteric glial cells, resembling CNS 

astrocytes (Jessen et al., 1985), and absence of collagen fibres) and functional (e.g., growth factors, 

neurotransmitters) similarities with the CNS, and their complex organization is unmatched in any 

other section of the peripheral nervous system (Gershon et al., 1994). Second, enteric ganglia 

maintain integrated functions in the absence of input from the CNS, which has a modulatory role. 

The ENS undergoes significant changes in physiological conditions during the life span, i.e during 

development and ageing. Plasticity in the ENS is also evident for clinical (e.g., recovery of motor 

function after intestinal transplantation) and experimental (e.g., denervation and pharmacological 

manipulations) observations, which suggest that ENS can react upon microenvironmental changes, 

maintaining a homeostatic control of the gut functions. Enteric neuronal plasticity may also lead to 

regeneration of neuronal circuitries and allow the recovery of normal intestinal functions after 

surgical procedures.  

Several ‘‘players’’ are involved when considering adaptive changes in the enteric 

microenvironment: neurons, enteric glial cells, interstitial cells of Cajal (which are viewed as the 

intestinal pacemaker cells) (Sanders, 1996) and the gut microbiota. Neuroimmune interactions also 

play an important role in the ENS homeostasis and plasticity (Bueno et al, 1997, De Winter, 2012). 

A possible cross-talk between smooth muscle cells and dorsal root ganglion cells has also been 

demonstrated (Ennes et al, 1997), and this finding may affect the understanding of altered visceral 

sensitivity and reinforce the concept of a brain–gut axis interaction. In addition, it has already been 

demonstrated that the gut microbiota play a crucial role in the development of innate and adaptive 

immunity, and in regulation of gut motility, intestinal barrier homeostasis, nutrient absorption and 

fat distribution (Bercick et al., 2012; Backhed et al., 2004).  In the following paragraphs, some of the 

major non-neuronal cellular components of the enteric microenvironment will be described.  
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 Enteric glia 

Enteric glia cells (EGCs) are an important non-neuronal component of the ENS, similar to CNS 

astrocytes, which form a cellular and molecular bridge between enteric nerves, enteroendocrine 

cells, immune cells, and epithelial cells, depending on their location. 

During last decades, several studies have clearly shown that this cell population does not play a 

merely supportive function, serving only as a scaffold for neurons, but EGCs are also actively 

involved in most gut functions such as mucosal integrity, neuroprotection, adult neurogenesis, 

neuroimmune interactions, and synaptic transmission (Table 1) (Sharkey, 2015; Gulbransen and 

Sharkey, 2012). 

 

In view of this role in maintaining GI homeostasis, a possible EGC role in the pathophysiology of 

neurodegenerative or inflammatory disorders has been widely reported (Grubišić et al., 2018; 

Coelho-Aguiar et al., 2015). Genetic ablation of EGCs results in a fatal haemorrhagic jejuno-ileitis, 

with enteric plexus disruption and the loss of epithelial layer integrity (Bush et al., 1998), while EGCs 

destruction by autoimmune mechanism leads to enterocolitis (Cornet et al., 2001). A reduction of 

the glial network were found in patients with Crohn’s disease (CD) and similarly, there is a 

preferential loss of enteric glia in patients with slow-transit constipation (von Boyen et al., 2011; 

Cornet et al., 2001). Moreover, loss of neurons and glial cells in myenteric and submucosal plexus 

is characteristic of necrotizing enterocolitis (NEC), a disease occurring in premature infants (Sigge 

et al., 1998; Wedel et al., 1998). 

 

Function Location of enteric glia 
Mediator(s) released/expressed by enteric 

glia 

Epithelial barrier function Mucosa 

S-nitrosoglutathione 

15-Deoxy-Δ12,14-prostaglandin J2 

TGF-β1 

pro-epidermal growth factor 

Fluid secretion Myenteric plexus NO 

Intestinal motility Myenteric plexus ATP 

Support of enteric neurons and neuronal 

survival 
ENS 

L-arginine 

Glutamine Reduced glutathione 

Nerve growth factor 

15-Deoxy-Δ12,14-prostaglandin J2 

Enteric neurotransmission ENS ATP 

Neurogenesis ENS  

Immune signalling ENS 

MHC class II, CD80, CD86 

IL-1β 

IL-6 MCP1 

Prostaglandin E2 

S-100B 

TLR4 

Table 1. Functional role of enteric glia in the GI tract. Adapted from Sharkey, 2015. 
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 Enteric smooth muscle cells 

The enteric myocyte can also display phenotype plasticity similar to that of vascular and bronchial 

smooth muscle cells, whose plasticity has important pathophysiological implications for 

atherogenesis and airway remodelling, respectively (Johnson et al., 1997). Production of cytokines 

and/or growth factors by myocytes may alter neuromuscular function and be at the basis of 

neuromotor dysfunction in patients with IBD (Van Assche et al., 1996). Preclinical studies carried 

out on rodent gut have shown that enteric myocytes have sensors for inflammatory signals in the 

gut (Cocks et al., 1999; Giaroni et al., 1999). 

 Intestinal microbiota 

In the human body, the GI tract represents one of the largest interfaces (250–400 m2) between the 

host, environmental factors and antigens. The community of commensal microorganisms 

colonizing in or passing through the GI tract is referred to as the intestinal microbiota (Dethlefsen 

et al., 2006). The human intestinal tract hosts 3.8 X 1013 bacterial cells (Sender et al., 2016), a 

number ten times greater than human body cells, that belong to 2000 different species and contain 

nearly 2 million genes (the so-called microbiome) (Qin et al., 2010; Wopereis et al., 2014).  

Among the different bacterial phyla detected in the human gut, Firmicutes and Bacteroidetes are 

the most representative, whereas other phyla such as Actinobacteria, Proteobacteria, Fusobacteria, 

and Verrucomicrobia are present in smaller quantities (Simrén et al., 2013).  

The composition, diversity and abundance of the human gut microbiota vary along the GI tract. The 

microbial density, increases from 101–108 microbial cells in the stomach, and small intestine, to 

1010–1012 cells in the colon and faeces (Booijink et al., 2007; Dethlefsen et al., 2006; Gerritsen et al., 

2011), indicating that the greater microbial amount of the human microbiota is located in the large 

intestine. The composition also differs, with predominance of Gram-positive bacteria in the upper 

Gl tract and mainly Gram-negative microorganisms and anaerobes in the colon (Jones et al., 2009; 

Martinez et al., 2010).  

The intestinal microbiota coexists in a homoeostatic relationship with the host, contributing to the 

maturation of the GI tract, metabolism of nutrients, development of the immune host defence and 

pathogen protection (Figure 3) (Guinane and Cotter, 2013). The saprophytic flora exerts important 

metabolic activities by extracting energy from otherwise indigestible dietary polysaccharides, such 

as resistant starch and dietary fibres (Wopereis et al., 2014). These metabolic activities also lead to 

the production of important nutrients, such as short-chain fatty acids (SCFA), vitamins (e.g. vitamin 

K, vitamin B12 and folic acid) and amino acids, all essential nutrients for human beings (Albert et 

al., 1980; Conly et al., 1994). The gut microbiota has a primary role in the development and function 
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of the innate and adaptive immune responses, and participates in the defence against pathogens 

by the production of antimicrobial molecules. Moreover, it is essential for normal GI motility, 

contributing to the regulation of sensory and motor functions and intestinal barrier homeostasis 

(Parkes et al., 2008; Gerritsen et al., 2011). 

 

 

 

 

 

 

 
 

 

The gut microbiota extend its influence beyond the gut, playing a role in the bidirectional 

communication between the GI tract and CNS (Rhee et al., 2009), the so-called the “microbiota-gut 

brain axis”. This complex network of communication between the gut, the microbiota and the brain 

includes the CNS, both the sympathetic and parasympathetic branches of the autonomic nervous 

system (ANS) and the ENS, in addition to the neuroendocrine and neuroimmune systems (Grenham 

et al. 2011).  

It is now evident that our gut microbiome coevolves with us, undergoing an intense process of 

development throughout the lifespan and establishes its symbiotic relationship with the host early 

in life (Ley et al. 2008). Maturation of the microbiota occurs in parallel with neurodevelopment and 

they have similar critical development phases, in which a broad range of different factors may act 

altering the brain-gut signalling and leading to development of disorders later in life. 

Several studies showed that alterations of the gut microbiota composition (dysbiosis) may 

contribute to the onset of obesity (Ley et al. 2006; Zhang et al. 2009), malnutrition (Kau et al. 2011), 

diabetes (Qin et al. 2012) and chronic inflammatory diseases such as IBD and IBS (Frank et al. 2007). 

In the same way, microbiota alterations, through this bidirectional communication, may influence 

stress reactivity, pain perception neurochemistry, and several other brain-gut disorders (Borre et 

al., 2014). 

 

 

 

Figure 3. Functions or the intestinal microbiota.  Commensal bacteria exert protective, structural and metabolic effects 

on the intestinal mucosa. From Grenham et al., 2011. 
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 Enteric immune system 

The human immune system includes the innate immunity, that has a standardized response to all 

adverse agents, and the adaptive immunity, that specifically recognizes each microorganism and 

has a specific response and memory. The GI tract represents an important immune organ with a 

gut-associated lymphoid tissue (GALT), formed by both inductive (Peyer’s patches) and effector 

sites (lamina propria and sub-epithelial cells), representing approximately the 70% of the entire 

body immune system (Vighi, 2008). Moreover, the GI tract itself structurally forms a vital defensive 

barrier between externally-derived pathogens and the internal biological environment. 

In the GI ecosystem, different factors including the ENS, the gut microbial saprophytic flora and the 

enteric immune system, interact and influence each other in order to preserve gut homeostasis 

(Yoo and Mazmanian, 2017). Thus, the resident population of immune cells in the gut is not only 

involved in the response to deleterious luminal stimuli or pathogens, but takes part also in the 

maintenance of homeostasis and development of normal intestinal morphology and function 

(Shea-Donohue and Urban, 2017). Neuroimmune interactions play also a major role in the GI 

response to stress, inflammation from infection or to disease states, resulting in acute and chronic 

changes in the GI function that contribute to disease symptoms. 

Indeed, a persistent active inflammation in the gut leads to structural and functional remodelling 

in both neural and immune systems. Higher levels of circulation memory T cells and immunological 

memory cells in patients with IBD contribute to the disease persistence when the overt 

inflammation has subsided (Sundin et al., 2014; Takahara et al., 2013). In addition, immunological 

plasticity is part of the neuronal remodelling in functional bowel disorders, such as IBS. The 

mechanisms underlying the interplay between  enteric neurons and immune cells is complex and 

involves neuro-, immuno-, and microbe- associated molecules, such as hormones, neuropeptides, 

cytokines, neurotrophic factors and short chain fatty acids (SCFAs) (Verheijden and Boeckxstaens, 

2017). Furthermore, receptors for neurotransmitters are present on immune cells while, receptors 

for immune mediators are also located on neural structures (Shea-Donohue and Urban, 2017). 

Cells involved in innate immunity recognize conserved features of pathogens through pattern 

recognition receptors (PRR), which include the membrane associated toll-like receptors (TLR), with 

resulting release of cytokines and chemokines that bind to receptors on immune cells (mast cell, 

macrophages and Innate lymphoid cells). Mediators released from these resident and recruited 

cells bind to naïve lymphocytes that develop the appropriate response to the pathogen and initiate 

a polarized immune response at this level (Figure 4). 
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TLRs are type I transmembrane proteins responsible for the recognition of foreign pathogens 

referred to as pathogen-associated molecular patterns (PAMPs) (Martin et al., 2010). They play a 

role in the cross-talk between the intestinal microbiota and the host and protect against pathogenic 

microorganisms. The expression of TLRs in both the CNS and ENS (Barajon et al., 2009) suggest that 

TLRs are not only involved in the regulation of the host immune responses but they may also have 

a role in central aspects of neuroinflammation, neurodevelopment and neuroplasticity (Aravalli et 

al., 2007; Okun et al., 2011; Brun et al., 2013). Among all TLRs, the most important bacterial sensor 

proteins are TLR2s and TLR4s. Both these TLRs are expressed by enteric neurons and glia, suggesting 

that enteric neuronal pathways can directly sense the microbial population (Brun et al., 2013). The 

importance of TLR2 in the host defence against Gram-positive bacteria has been demonstrated 

using TLR2-deficient (TLR2-/-) mice, which demonstrated a high susceptibility to a challenge with 

Staphylococcus aureus or Streptococcus pneumoniae (Takeuchi et al., 2000; Echchannaoui et al., 

2002). TLR2s have also a crucial role in host defence against extracellular Gram-positive bacteria 

exposure (Akira and Takeda, 2004). TLR4s may detect LPS, a major component of Gram-negative 

bacteria cell wall (Takeda et al., 2003). Recently, TLR2 and TLR4 signalling has been described as 

fundamental for ensuring intestinal integrity and protecting from harmful injuries, such as 

inflammation. In fact, changes in TLR2 and TLR4 expression have been reported in both IBS and IBD 

(Rakoff-Nahoum et al., 2006). The absence of TLR2s seems to increase the susceptibility to intestinal 

injury and inflammation (Cario et al., 2007). Polymorphisms of TLRs genes as well as a defective 

immune response appear to be involved in the initiation and perpetuation of chronic inflammation 

in IBD (Pierik et al., 2006).  

 

A 

B 

Figure 4. (A) The neuroimmune synapse showing the release of neurotrnsmitters in the proximity of immune cells that 

induce changes in the phenotype and function of these cells (B) Resident and recruited immune mediators bind to 

receptors in nerves. This may result in changes in neuronal sensitivity. From Shea-Donohue and Urban, 2017. 
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1.3 Adaptation to a changing environment: role of the extracellular matrix  

As mentioned before, several factors take place in the adaptation to microenvironmental changes 

in physiological and pathological conditions, both in the CNS and ENS. Some molecular mechanisms 

that sustain this plasticity are common to both districts. A protein typically correlated to neuronal 

growth and regeneration, the growth-associated protein-43, is expressed at high levels in the 

nervous system during development. In adult animals, its expression is lower, but still observable 

in brain areas showing structural or functional plasticity (Simmons et al., 2008). In the ENS, GAP-43 

is strongly expressed in the myenteric and submucosal ganglia at all ages (Stewart et al., 1992), thus 

giving evidence for a lifelong capability of the ENS to adapt to new challenges (Giaroni et al., 1999). 

The phenomenon of plasticity has a fundamental role during all the life span, during pre- and post-

natal development and aging. During the perinatal period, in the rat myenteric plexus the neuronal 

number per ganglionic area increases from duodenum to colon (Gabella, 2001; Gabella, 1989). 

Conversely, the density of enteric neurons decreases with increasing age (Gabella, 2001; Gabella, 

1989), and this variation is correlated with changes in motility, mucosal function and changes in 

specific neuronal phenotypes, such as IPANs (which appear to be the most age-sensitive neurons 

in the ENS). However, neuronal adaptation in response to changes in their microenvironment 

occurs even during adult life. As previously described, gut disorders, such as IBD or IBS, can lead to 

a remodelling of the ENS and to cytokine-induced changes in neurotrophin and neurotransmitter 

content and release. Inflammation also results in reactive remodeling of EGCs, characterized by an 

increase in GFAP expression and more “stellate” cell appearance, similar to that seen in reactive 

astrocytes (Grubišić et al., 2018). In this scenario, extracellular matrix (ECM) molecules provide an 

important framework for the enteric microenvironment and may influence the integrity of 

myenteric neuronal circuitries during both physiological and pathological conditions. ECM 

molecules provide a highly organized environment filling the extracellular space, and consist of 

different types of macromolecules. The main constituents of ECM are fibrous-forming proteins, 

such as collagens, elastin, fibronectin (FN), laminins, glycoproteins, proteoglycans (PGs), and 

glycosaminoglycans (GAGs) (Theocharis et al., 2016). 

In the CNS, where the role of ECM has been mostly studied, these molecules are synthetized by 

neurons, glia and non-neuronal cells, and are secreted into the extracellular space, where then they 

are associated with cell surface receptors and form heterogeneous aggregates around the neurons, 

the so-called perineuronal nets (PNNs). The precise composition and specific structures of the PNNs 

vary from tissue to tissue. 
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Nevertheless, ECM is not only a mere mesh-like scaffold for the cells. In the CNS, PNN takes part in 

the regulation of neurogenesis, gliogenesis and circuitry formation during development, and, 

indeed, substantial changes in its quantity and composition occur in this period (Carulli et al., 2016). 

Moreover, ECM continues to be essential for synapse stability, neuroprotection and regulation of 

neuronal plasticity during all the rest of life (De Luca and Papa, 2016).  

Synaptic dysfunctions are a critical pathological component of several brain disorders; thus, it has 

been proposed that ECM and PNN alterations, being involved in processes of plasticity and 

homeostatic maintenance, may contribute to pathogenesis of neurological and neuropsychiatric 

disorders (Carulli et al., 2016). In both in vitro and in vivo models, a strong correlation has been 

reported between an impairment in ECM molecules expression and the development of 

Alzheimer’s disease, epilepsy, schizophrenia and drug addiction (Dzyubenko et al., 2016; De Luca 

and Papa, 2016). 

Less information, however, are available concerning the role of ECM in the ENS. Some studies show 

the distribution of several ECM molecules in the basement membranes surrounding enteric 

ganglions of rat and guinea pig intestines (Bennerman et al., 1986; Laurie et al., 1983). It is now well 

established that this molecules take part in the regulation of cell migration and differentiation into 

diverse phenotypes cells, not only during intestinal development but also in adult cell renewal 

(Rauch and Schäfer, 2003). 

Given the presence and the influence of ECM in GI tract, it become particularly interesting to 

investigate if ECM molecules may participate also to synaptic dysfunction in GI pathological 

conditions. 

 

1.4 HA and gut homeostasis  

 Hyaluronan: synthesis, properties and functions 

Hyaluronan is a relatively simple component of the extracellular matrix, an unbranched GAG 

composed of repeating polymeric disaccharides of d-glucuronic acid and N-acetyl-d-glucosamine 

linked by a glucuronidic β(1→3) bond (McDonald and Camenisch, 2002). The number of repeat 

disaccharides in a completed HA molecule can reach 10000 or more, with a molecular weight of ∼4000 kDa. Due to its exceptional length and high degree of hydration, hyaluronan makes the ECM 

an ideal environment in which cells can move and proliferate. Hyaluronan is ubiquitously expressed 

in the ECM and on cell surfaces of all body fluids and tissues of vertebrates, as well as on surface 

coats of bacterial species and certain algae (Joy et al., 2018). HA levels are maintained through 

regulation of the enzymatic activity of HA synthases (HAS) and hyaluronidases, which are 
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responsible for its synthesis and degradation. HA is produced by a family of three hyaluronan 

synthase isoenzymes (HAS1, HAS2, and HAS3) that synthetize HA on the inner surface plasma 

membrane and translocate the final polymer to the extracellular space. In general, HAS2 represents 

the main HA synthetic enzyme in adult cells and its activity reasonably undergoes fine regulation. 

However, HAS1 and HAS3 seem to have peculiar roles even if not completely clarified. 

In spite of its relative simple structure, HA possesses many physiological roles, regulating different 

cell behaviors such as cell adhesion, motility, growth and differentiation (Knudson and Knudson., 

1993). Several studies have shown that the majority of HA biological effects are size-dependent: HA 

can exist as large polysaccharides, medium fragments and small oligosaccharides. HA molecules of 

high molecular weight (HMW) are involved in the maintenance of physiological conditions, whereas 

fragmented polymers accumulate during tissue injury and function in ways distinct from the native 

polymer, inducing inflammatory responses and triggering repair processes. (Joy et al., 2018). There 

is accumulating evidence that free radicals and an enhanced activity of hyaluronidases are 

responsible for HA fragmentation. The resulting degradation products can stimulate the expression 

of inflammatory genes by a variety of immune cells at the injury site (Jiang et al., 2007).  

It has been suggested that also different HAS isoforms may synthesize HA with different chain 

length. In situ, all three HAS proteins synthesize HA chains of high molecular mass (≥4 × 106 Da). 

However, in vitro, HMW HA (≥4 MDa) is synthesized only by HAS2, while HAS3 and HAS1 synthesize 

smaller polydisperse chains of an average molecular mass of 800 and 100 kDa, respectively (Heldin 

et al., 2009). It seems that the difference in size of HA synthesized by the different HAS isoforms 

may be dependent on (1) the intrinsic enzymatic property, (2) the intracellular environment and (3) 

additional accessory molecules involved. Interestingly, stimuli such as growth factors and cytokines 

can regulate the expression of HAS isoforms in vitro, and upregulation of HASs, together with 

increased accumulation of HA, has been found after tissue damages (Al’Qteishat et al., 2006). 

In both physiological and pathological conditions, to accomplish its important functions, HA 

interacts with specific proteins called hyaladerins, or membrane receptors like CD44 and RHAMM, 

and toll like receptors (TLRs) such as TLR2 and TLR4 (Vigetti et al., 2014) (Figure 5). 

CD44 is considered a primary receptor for HA, existing in at least 10 different isoforms. Its 

interaction with HA plays an important role in a variety of cell functions like inflammation, 

development, tumor growth and metastasis. Upon binding with CD44, HMW and LMW HA show 

distinct inflammatory and angiogenic effects. Native HMW polymers demonstrated anti-

inflammatory and anti-angiogenic effects, suppressing cell migration, proliferation and sprout 

formation. On the other hand, HA oligosaccharides exhibited pro-angiogenic and pro-inflammatory 

responses, stimulating cell mobility and proliferation (Noble 2002).  
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HA is also able to induce the expression of inflammatory mediators, such as chemokines and 

cytokines, through the interaction with TLRs or the TLR adaptor protein MyD88, independently 

from CD44 activation. The abrogation of TLR2 and 4 as well as MyD88 abolished completely the 

activation of chemokines in macrophages in in vitro models (Jiang et al., 2005). Another study has 

shown that fragmented HA, via TLR2 and TLR4 signaling, specifically activates dendritic cells in vitro, 

with subsequent priming of allogeneic T cells. All these data suggest a focus on the role of HA as an 

immune regulator in both physiological and pathological conditions (Tesar et al., 2006). 

 

 

 

 

 

 

 

 

 HA production in health and pathological conditions in the gut 

HA is an important extracellular matrix component in the vertebrate intestinal tract, with a 

concentration four times higher in the colon than in small intestine (Gӧransson et al., 2002). In both 

healthy human and mouse guts, HA is prominently located immediately beneath the barrier 

epithelium, where it is deeply involved in the maintenance of homeostasis. As hydrophilic molecule, 

it ensnares water and regulates fluid exchange to and from the blood, interacting with lymphatic 

and blood microvessels that control water and solute transport (de la Motte and Kessler, 2015). As 

mentioned before, HA have also important functions in multiple host defense mechanisms. HA can 

participate in innate immune responses in the intestine, promoting leukocyte recruitment in the 

intestinal extravascular space upon a gut disease or damage, directly or via interaction with the 

surface receptor CD44 (de la Motte and Kessler, 2015). Interestingly, HA of medium average 

molecular weight (35 kDa), increased the epithelial expression of a murine orthologue of human β-

defensin (HBD2) in mice via TLR4 activation (Hill et al., 2012). HBD2 is a naturally produced 

antimicrobial peptide with a broad antimicrobial spectrum against bacteria, fungus protozoa, and 

viruses (Zasloff, 2002). In addition, HBD2 is one of the enteric defensins, which favour the shaping 

Figure 5. Schematic representation of the signalling cascade of HA receptors and their involvement in cell and tissue 

functions. From Vigetti et al., 2014. 
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of the intestinal microflora composition (Salzman et al., 2010), and HBD2 dysregulation has been 

reported in IBD (Wehkamp et al., 2008). 

HA can also act to systemically decrease inflammation and promote epithelial repair. Studies on 

rodents models have shown that administration of medium molecular weight HA protects from 

damage during experimentally induced colitis, through the activation of TLR4 receptors that drive 

COX2 production and promotes recovery (Zheng et al., 2009). In a recent study administration of 

nanoparticles consisting of medium molecular weight HA complexed with bilirubin, restored the 

epithelial barrier, reduced the damage score and increased the overall richness and diversity of the 

saprophytic microbiota in a murine model of colitis (Lee et al., 2019). Several reports have, 

however, demonstrated that endogenous HA deposition may be highly altered during gut 

inflammation. In these conditions, small fragments of HA may promote immune cell activation as 

well as production of pro-inflammatory cytokines, thus favoring an increased inflammatory 

response. Accumulation of HA in the epithelial, submucosal and smooth muscle intestinal layers 

and in blood vessels within the submucosal layer has been observed, both in experimental animal 

models of colitis and in the intestine of patients with IBD (Kessler et al., 2008). These findings are 

consistent with other data concerning the increased HA deposition in different tissues, such as liver, 

kidney and lung, during inflammation (Jiang et al., 2011).  

The majority of studies have focused on the involvement of HA in the development of fibrotic tissue 

within the submucosal and muscularis mucosae layers (de la Motte et al., 2011; Kessler et al., 2008). 

However, no information is available on the possible involvement of HA in myenteric neuron 

derangement in this state. Similarly, given the increasing amount of data concerning the role of HA 

in inflammatory processes, it could be interesting to investigate its involvement in other 

pathological conditions affecting the GI tract, such as, for instance, damages derived by an 

ischemic/reperfusion injury. 

 

1.5 Inflammatory bowel disease (IBD) 

IBD is a group of chronic inflammatory bowel disorders, comprising Crohn’s disease (CD) and 

ulcerative colitis (UC) with increasing incidence worldwide (Ng et al., 2017). CD and UC are 

identified by different inflammation patterns: CD is considered a chronic, segmental inflammation 

of the GI tract, whereas UC displays inflammation and ulceration restricted to the colon and rectum. 

Although the exact aetiology is unknown, the inflammation in these two disorders is suggested to 

develop because of an exaggerated immune response to luminal antigens derived from the gut 

microbiota or from infecting pathogens, in genetically predisposed individuals (Baj et al., 2019). 
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Patients with IBD commonly manifest symptoms suggestive of disturbed GI function with sensory, 

motor and secretory alterations, characterized by periods of exacerbation and remission (Lomax et 

al., 2005). Long-term changes involving enteric neurons and the smooth muscle layers may lead to 

persistent dysmotility as well as altered visceral pain perception. Inflammation leads to 

derangements of enteric neuronal circuitries characterized by increased neuronal excitability 

(hyperexcitability of primary afferent neurons), synaptic facilitation and reduced inhibitory 

neuromuscular neurotransmission (Vasina et al., 2006). The interplay among different cell 

populations in the enteric microenvironment, and infiltrating inflammatory cells may account for 

the structural and functional changes occurring in enteric circuitries in response to inflammation 

(Brierly and Linden, 2014). EGC, for example, which represent the most abundant cell population 

within enteric ganglia, are involved in processes of development and maintenance of afferent 

sensitization and have the potential to modify visceral perception through interactions with 

neurons and immune cells during pathological gut states (Morales-Soto and Gulbransen, 2019). 

Furthermore, neuronal cells in the ENS are located in close proximity to mucosal immunocytes and 

may regulate one another's functions by releasing a complex set of cytokines, neurotransmitters 

and hormones. Neuronal activation can lead to degranulation of mast cells and neutrophilic 

infiltration to the area. Furthermore, neuropeptides, such as SP and VIP, released by enteric nerves, 

may activate their receptors localized on immune cell membranes, inducing differentiation of 

immunocytes and inducing IgA production (Aguilera and Melgar, 2016). The enteric microbiota 

represents a fundamental player in IBD development and plays a central role in inflammation-

induced enteric neuron derangement. Indeed, both preclinical and clinical studies suggest that an 

important player in IBD development is represented by the gut microbiota (Lomax et al., 2005). 

Evidences show that IBD patients often develop dysbiosis, and that some antibiotics are efficacious 

in the prevention and treatment of inflammation both in humans and in animal models (Lomax et 

al., 2005). Metagenomic studies have shown qualitative and quantitative differences in the 

microbiota composition in IBD patients, which show reduced faecal amounts of the phylum 

Firmicutes (in particular Faecalibacterium prausnitzii) and increased levels of the phylum 

Proteobacteria, comprising E. coli, with respect to healthy individuals (Marchesi et al., 2016; Hansen 

et al., 2012). The hypothesis that specific pathobionts, i.e., commensal microorganisms, which in 

peculiar environmental or genetic conditions, can cause the disease has been put forward, but not 

yet clear-cut demonstrated, although, biopsies of patients with active CD showed high levels of a 

particularly invasive adhesive strain of E. coli (AIEC) (Aguilera and Melgar, 2016; Buttó et al., 2015). 

The correlation between dysbiosis and IBD has been demonstrated also in genetically modified 

mouse models, spontaneously developing the disease. For example, a healthy microbiota is 
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required in mouse models either overexpressing IL-23 or null for IL-10, which play a pro-

inflammatory and anti-inflammatory action via activation of Th17 and Treg lymphocytes, 

respectively, to spontaneously develop colitis (Lomax et al., 2005; Hoshi et al., 2012). Another 

important issue, which suggests the crucial role of the gut microbiota in IBD pathogenesis, is 

represented by the presence of microbial components within the inflammatory lesions (Sekirov et 

al., 2010; Ni et al., 2017). Genome-wide association studies suggest that TLRs are implicated in IBD 

pathogenesis (DeJager et al., 2007; Pierik et al., 2006). TLR signalling activation by microbial 

metabolites is essential for epithelial repair and homeostasis after experimentally-induced colitis. 

There are data suggesting that TLRs are protective for intestinal epithelium, by promoting epithelial 

cell survival, inhibiting apoptosis and recruiting stromal and myeloid cells (Malvin et al., 2012). In 

addition, both TLR2 and TLR4 are also present on neurons in the ENS, and TLR2s may regulate 

intestinal inflammation by controlling ENS structural and functional integrity (Brun et al., 2013; 

Caputi et al., 2017). In this scenario, it is particularly important to discover molecules involved in 

the gut microbiota-neuro-immune axis sustaining neuronal degeneration during pro-inflammatory 

states, in order to prevent the occurrence of more obvious inflammatory conditions. This opens the 

opportunity to obtain new molecules displaying high efficacy in the treatment of IBD in association 

and/or substitution of anti-inflammatory, immunosuppressive and biologic drugs, which represent 

the conventional therapeutic approach for this gut disorder (Neurath, 2017). 

 

 

1.6 Ischemia/reperfusion injury 

The GI circulation is a highly organized and well-regulated vascular bed, composed by vessels that, 

via the mesentery, pass through the muscular, submucosa and mucosal compartments of the GI 

wall. This vascular network provides a high rate blood flow to a large exchange surface area. For 

this reason, the gut is one of the most ischemia-sensitive tissues in the body (Haglund and Bergqvist, 

1999). Intestinal ischemia/reperfusion (I/R) injury is an important clinical problem, associated with 

a high morbidity and mortality, which may occur as a consequence of embolism, arterial or venous 

thrombosis, shock, intestinal transplantation, and necrotising enterocolitis in the human premature 

newborn or in chronic inflammatory diseases (Reinus et al., 1990; Haglund and Bergqvist 1999; 

Massberg and Messmer, 1998; Nowicki 2005; Thornton and Solomon, 2002). Intra-arterial infusion 

therapy with smooth-muscle relaxant vasodilators (papaverine), thrombolytic agents 

(streptokinase and urokinase) and anticoagulants represent possible therapeutic approaches for 

the acute treatment, although a laparotomy to resect necrotic bowel and local vascular 
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desobstructive interventions in case of occlusive etiology are more often practiced (MacDonald et 

al., 2005). I/R injury develops as a consequence of both the hypoxic and the reperfusion 

components. The interruption of blood supply, occurring with the initial hypoxia, causes severe 

depletion of tissue energy resources and microscopically detectable damages in the superficial part 

of the mucosa, which becomes the site for the production of various acute-phase proteins, gut 

hormones, and cytokines (Zimmerman and Granger, 1992, Carden and Granger, 2000). The exact 

mechanisms involved in intestinal IR injury are largely unknown, but pro-inflammatory cytokine 

release, inflammatory cell infiltration, production of reactive oxygen species (ROS), increased 

expression of nitric oxide (NO), TLR4 signalling and activation of inflammatory transcription factors 

are certainly involved in these events (Camara-Lemarroy, 2014). Production of such molecules may 

also harm distant tissues and culminate in multiple organ dysfunctions (Vollmar e Menger, 2010; 

Kong et al., 1998).  

The reperfusion period, although essential to rescue ischemic tissues, paradoxically initiates a 

cascade of events that may lead to additional cell injury, known as reperfusion injury, exacerbating 

vascular and tissue damage. (Mallick et al., 2004). The damage, is dramatically magnified by an 

increased generation of NO, inflammatory mediators and reactive oxygen species (ROS) (Carden 

and Granger, 2000). In particular, the enhanced net catabolism of ATP during ischemia, resulting in 

increased hypoxanthine and xanthine concentrations, represents an important mechanism to 

sustain ROS generation. This pathway is favoured by the conversion of xanthine dehydrogenase to 

xanthine oxygenase, which generates superoxide free radicals as a by-product of the oxidation of 

purines to uric acid. The burst of superoxide-generated xanthine oxygenase during reperfusion 

triggers a free-radical chain reaction that worsen tissue damage by recruiting neutrophils, which 

may produce additional free-radicals (Haglund and Bergqvist, 1999). 

From a structural viewpoint, the I/R insult has severe consequences for the metabolically active 

intestinal mucosa, which undergoes shedding, barrier dysfunction, and bacterial translocation 

(Kong et al., 1998). Other enteric cell types, including smooth muscle cells, enteric glial cells and 

neurons, may also deteriorate. Myenteric neurons are especially sensitive and can be irreversibly 

compromised (Filpa et al., 2017). Indeed, an I/R injury causes pathological alterations of myenteric 

ganglia, with dysmotility and a slowing of GI transit, suggestive of a long-lasting neuropathy (Rivera 

et al., 2011). Among the different enteric neurotransmitter pathways, there is good evidence that 

energy deprivation in GI tract can preferentially depress cholinergic neuronal pathways involved in 

intestinal reflexes (Kosterlizt and Robinson, 1959; Mizhorkova et al., 2001). Both spontaneous and 

electrically evoked endogenous acetylcholine overflow from the guinea pig ileum was altered 

during glucose and oxygen deprivation, mimicking an in vitro ischemic damage (Giuliani et al., 2006; 
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Mizhorkova et al., 2001; Larson and Martins, 1981). These effects were correlated with a depression 

of the cholinergic neuro-effector transmission (Corbett and Lees,1997; Mizhorkova et al., 2001). As 

regards the neuronal component, the sensitivity of enteric cholinergic neurons to I/R damage may 

be explained considering the strict dependence of neuronal acetylcholine synthesis on the oxidative 

phosphorylation. Furthermore, the ability of the I/R injury to influence the excitation-contraction 

coupling at a post-junctional level explains the depression of electrically induced smooth muscle 

contraction in this condition (Mizhorkova et al., 2001). 

Nitrergic inhibitory pathways seem also to play a distinctive role in the development of myenteric 

neuron derangement during I/R role. In the gut, the three isoforms of NOS, the endothelial NOS 

(eNOS), the neuronal NOS (nNOS), and the inducible NOS (iNOS), have been identified in different 

cells, comprising myenteric neurons of different species (Talapka et al., 2011). Nitrergic neurons 

play a fundamental role in the physiological regulation of peristalsis: nNOS is the predominant NOS 

in the normal intestine as it is constitutively expressed, whereas iNOS is only expressed in response 

to cytokines and growth factors. nNOS containing myenteric neurons seem to be selectively 

targeted by in vivo I/R injury, and damage or loss of function of nNOS-immunopositive neurons may 

underlie intestinal motility derangement, suggesting that NO produced by nNOS is protective 

against the metabolic insult (Rivera et al., 2011). Conversely, intestinal I/R damage has been 

associated with upregulation of iNOS, which may replace nNOS in the synthesis of NO in myenteric 

neurons (Giaroni et al., 2013).  
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2 AIMS 

Enteric neuronal circuitries display a considerable ability to adapt to a changing microenvironment, 

which comprises several cellular “players” such as neurons, enteric glia, smooth muscle cells, 

immune cells and the intestinal microbiota (Giaroni et al., 1999). The phenomenon of plasticity 

plays a fundamental role in the maintenance of gut homeostasis, in physiological conditions. 

However, remodelling of enteric neuronal circuitries may also occur in pathological conditions, such 

as during chronic inflammatory states of the gut or during ischemia/reperfusion (I/R) injury. Indeed, 

inflammatory bowel diseases (IBD) are associated with derangements of the ENS, characterized by 

increased neuronal excitability (hyperexcitability of primary afferent neurons), synaptic facilitation 

and reduced inhibitory neuromuscular neurotransmission. Such changes may lead to persistent 

dysmotility as well as altered visceral pain perception, which represent two of the main IBD 

symptoms (Vasina et al., 2006). Intestinal I/R injury, which is associated with a high morbidity and 

mortality, may result as a consequence of embolism, arterial or venous thrombosis, shock, 

intestinal transplantation, or necrotising enterocolitis in the human premature newborn, and are 

also associated with IBD (Haglund and Bergqvist 1999; Massberg and Messmer, 1998; Nowicki 

2005; Thornton and Solomon, 2002). The I/R insult, can seriously affect the structure and function 

of myenteric neurons (Filpa et al., 2017) resulting in a particularly severe slowing of transit, 

suggestive of a long-lasting neuropathy (Rivera et al., 2011).  

In both IBD and I/R conditions, the structural and functional changes occurring in enteric circuitries 

may be due to, at least in part, to the interplay occurring among different cell populations in the 

enteric microenvironment. In this context, extracellular matrix (ECM) molecules provide an 

important framework for the enteric microenvironment and may influence the integrity of 

myenteric neuronal circuitries during both physiological and pathological conditions. ECM 

molecules provide a highly organized environment filling the extracellular space, and consists of 

different types of macromolecules. The main constituents of ECM are fibrous-forming proteins, 

such as collagens, elastin, fibronectin (FN), laminins, glycoproteins, proteoglycans (PGs), and 

glycosaminoglycans (GAGs) (Theocharis et al., 2016). Among these components, the unbranched 

GAG Hyaluronan (HA), which is mainly deposited immediately beneath the epithelial barrier, is 

deeply involved in the preservation of gut homeostasis. HA can participate in innate immune 

responses in the intestine, promoting leukocyte recruitment in the intestinal extravascular space in 

both health and disease states of the gut (de la Motte and Kessler, 2015). Several reports have 

suggested that HA deposition is drastically altered during gut inflammation. In these conditions, 

small fragments of HA may promote immune cell activation as well as production of pro-
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inflammatory cytokines, thus favouring an increased inflammatory response. Accumulation of HA 

in the epithelial, submucosal and smooth muscle intestinal layers and in blood vessels within the 

submucosal layer has been observed, both in experimental animal models of colitis and in the 

intestine of patients with IBD (Kessler et al., 2008). Nevertheless, the majority of studies have 

focused on the participation of HA in the development of fibrotic tissue within the submucosal layer 

during inflammation (de la Motte et al., 2011; Kessler et al., 2008), but no information is available 

on the possible involvement of HA in the alterations of the neuromuscular function, related to these 

conditions. 

Thus, the first aim of this thesis was to evaluate the role of HA in the adaptive changes of the rat 

myenteric plexus in an experimental model of IBD induced by intrarectal administration of 2-4-

dinitro-benzensulfonic acid (DNBS). In a successive phase, the role of HA in the adaptation of the 

rat intestinal neuromuscular function was evaluated after in vivo ischemia/reperfusion (I/R) injury, 

a pathological condition associated with gut inflammation. 

Overall, the results obtained in these studies may allow to clarify whether HA participates to the 

rearrangement of enteric neuronal networks in pathological conditions, associated with important 

rearrangements of the intestinal neuromuscular function, such as chronic inflammation and I/R 

injury.  
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3 MATERIAL AND METHODS 

3.1 Animal models 

Male Sprague-Dawley or Wistar rats (weight 250-350 g, Envigo, San Pietro al Natisone, Udine, Italy), 

were housed under controlled environmental conditions (temperature 22±2°C; relative humidity 

60-70%) with free access to a standard laboratory chow and tap water, and were maintained at a 

regular 12/12-h light/dark cycle. Their care and handling were in accordance with the provision of 

the European Union Council Directive 2010/63, recognized and adopted by the Italian Government 

(Decree No. 26/2014). Animal Care and Use Ethics Committee of University of Insubria and 

University of Pavia approved the protocol. 

 DNBS-induced colitis 

Experimental colitis has been induced by administration of a single dose (30 mg) of 2,4-dinitro-

benzene-sulfonic acid (DNBS, ICN Biomedicals, CA, USA) dissolved in 0.25 ml of 50% ethanol and 

administered, under isofluorane anaesthesia, via a polyethylene PE-60 catheter into the colon, 8 

cm proximal to the anus. This dose was selected based on a previous study showing that it evoked 

adequate inflammation without causing unnecessary distress and suffering to the animals, with a 

mortality rate of 0%. Controls (CTR) were administered 0.25 ml of 50% ethanol (vehicle). DNBS-

treated and control rats were kept in separated cages during the study. Animals were euthanized 

at time of maximal intestinal inflammation, 6 days after the induction of colitis. Distal colon was 

removed, then opened longitudinally over the mesenteric line and washed with a physiological 

Tyrode’s solution (composition in mM: 137 NaCl; 2.68 KCl; 1.8 CaCl2.2H2O; 2 MgCl2; 0.47 NaH2PO4; 

11.9 NaHCO3; 5.6 glucose). DNBS-induced experimental colitis in rats was chosen since the 

inflammatory response develops rapidly and shares many features with the response observed in 

human IBDs. Possible physiological and behavioral changes were monitored throughout the 

treatment period (i.e., changes in body weight, respiration, occurrence of diarrhea, alterations of 

posture and in the appearance of the coat) to evaluate suffering and distress. 

 

 Assessment of colonic damage  

Colonic damage was evaluated macroscopically and histologically.  Macroscopic colonic damage 

was evaluated according to standard procedures (Sturiale et al., 1999). Briefly, the criteria adopted 

were the following: presence of adhesions between the colon and other intra-abdominal organs In 
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particular, the severity of intestinal inflammation was macroscopically evaluated using a gravity 

score ranging from 0 to 6, according to the following criteria: presence of adhesions between the 

colon and other intra-abdominal organs (0 = none, 1= mild, 2= major); consistency of colonic fecal 

material (as an indirect marker of diarrhea) (0 = formed, 1 = loose, 2 = liquid); thickening of the 

colonic wall, presence and extension of hyperemia and macroscopic mucosal damage [0 = no 

damage; 1 = hyperemia; 2 = presence of an ulcer; 3 = ulcer + inflammation; 4 = two or more ulcers; 

5 = major damage (presence of necrosis < 2 cm); 6 = very severe damage (presence of necrosis >2 

cm)]. Ethanol, used as a vehicle, had no effect, per se, on the parameters measured 6 days after 

induction of colitis. Microscopic evaluation of the damage was histologically investigated on full-

thickness samples of distal colon obtained from both DNBS-treated and control rats, which were 

fixed with 4% formaldehyde in acetate buffer 0.05 M for 24-48 h and successively embedded in 

paraffin. Hematoxylin and eosin (HE) histological staining was carried out on seven-micron-thick 

sections and observed under a light microscope (Nikon Eclipse Ni; Nikon, Tokyo, Japan), and data 

were recorded using a DS-5M-L1 digital camera system (Nikon Corporation, Tokyo, Japan). 

 Ischemia/reperfusion injury 

Rats were anaesthetized with sodium thiopental (100 mg/kg) diluted in sterile phosphate-buffered 

saline (PBS, composition in mM: 0.14 NaCl, 0.003 KCl, 0.015 Na2HPO4, 0.0015 KH2PO4, pH 7.4), 

given intraperitoneally. After laparatomy, a loop of the small intestine was exteriorized and the 

superior mesenteric artery (SMA) was temporarily occluded for 60 min with an atraumatic 

microvascular clamp. The clip was then gently removed, the abdominal wall was sutured and 

animals returned to a cage after recovering from anaesthesia. Another group of animals, 

represented by sham-operated animals, undergoing the same surgical manipulation except SMA 

occlusion. A last group of normal un-operated rats was used as control (CTR). Animals were 

euthanized 24 h after reperfusion, when the major histological and functional changes have been 

evidenced. In addition to these groups, I/R, sham-operated and controls animals were 

intraperitoneally treated with 4-Methylumbelliferone (4-MU), in order to inhibit hyaluronan 

synthesis. A single dose of 25 mg/kg 4-MU was administrated 24 h before euthanization. Segments 

of the small intestine, ~5 cm oral to the ileo-cecal junction, were rapidly excised and rinsed with a 

physiological ice-cold Tyrode’s solution for successive experiments.  

3.2 Immunofluorescence and immunohistochemistry 

The immunolocalization of hyaluronan (HA) was performed on paraffin-embedded tissue sections, 

and on longitudinal muscle myenteric plexus (LMMP) whole-mount preparations, using a biotin-
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labeled HA-binding protein (HABP, Hokudo Co, Japan). HABP recognizes HA saccharidic sequences 

and is able to localize HA in tissues by streptavidin conjugation with an appropriate fluorophore. 

Hyaluronan synthase 1 (HAS1) and 2 (HAS2), Substance P (SP), Choline acetyltransferase (ChAT), 

neuronal NOS (nNOS) and inducible NOS (iNOS) distributions in myenteric ganglia was also 

evaluated by immunofluorescence on colonic whole-mount preparations. Details of the primary 

and secondary antibodies and related optimal dilutions are reported in Table 2. 

 Ischemia/reperfusion injury 

Paraffin cross sections (7-16 μm) from all experimental animal groups were treated for 30 minutes 

with PBS containing 2% bovine serum albumin (BSA) before biotin-labeled HABP overnight 

incubation at 4°C. PBS buffer used for washing steps and HABP dilutions contained 2% BSA. After 

washing, incubation with the suitable streptavidin FITC-conjugated antibody was performed for 60 

minutes in a dark humid chamber. Control samples were incubated only with BSA-containing PBS. 

Coverslips were mounted with Citifluor mounting medium and then observed under a fluorescent 

microscope (Nikon Instruments). 

 Whole-mount preparations 

Small intestine segments were fixed with 0.2 mol/l PBS containing 4% formaldehyde and 0.2% picric 

acid for 3 hours, then stored at 4°C in PBS containing 0.05% sodium merthiolate (Thimerosal, Sigma-

Aldrich). For the whole-mount preparations, LMMP was gently peeled away from the remainder of 

the intestinal wall. Nonspecific sites were blocked using PBS added with 1% Triton X-100 and 10% 

normal horse serum (NHS) (Euroclone, Pero, Italy) for 2 hours, then LMMPs were incubated with 

optimally diluted antibodies for the staining. Double-labelling was performed during consecutive 

incubation times: the first primary antibodies were added overnight at 4˚C, followed by incubations 

with the appropriate secondary antibodies for 2h at room temperature (RT). Washing between 

antibodies were performed with PBS containing 1% Triton X-100 and 10% NHS. Preparations were 

mounted onto glass slides, using a mounting medium with DAPI (Vectashield; Vector Lab, 

Burlingame, CA, USA). Negative controls and interference control staining was evaluated by 

omitting one or both of the primary antibodies, or one of the secondary antibodies.  
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Antiserum Dilution Source Hostspecies 

Primary antisera 

HABP, biotin 1:100 Hokudo (BC41) -- 

HAS1 1:100 Bioss (bs-2946R) Rabbit 

HAS2 1:100 Santa Cruz (sc-34067) Goat 

HUC/D, biotin 1:100 Invitrogen (A-21272) Mouse 

ChAT 1:50 Chemicon (AB144P) Goat 

nNOS 1:50 Santa Cruz (sc-648) Rabbit 

iNOS 1:50 Santa Cruz (sc-8310) Rabbit 

Substance P 1:200 Immunostar (20064) Rabbit 

CD45 1:100 Merck Millipore (MAB079-1) Mouse 

Secondary antisera and streptavidin complexes 

FITC-conjugated streptavidin 1:200 Molecular Probes (SA1001) -- 

Cy3-conjugated streptavidin 1:500 Amersham (PA43001) -- 

Anti-rabbit Alexa Fluor 488 1:200 Molecular Probes (A21206) Donkey 

Anti-rabbit Alexa Fluor 555 1:500 Cell Signaling (4413) Goat 

Anti-mouse Alexa Fluor 488 1:200 Molecular Probes (A21202) Donkey 

Anti-goat Cy3 1:400 Jackson (705-165-147) Donkey 

F(ab’)2 anti-mouse IgG (H+L) biotin 1:300 Caltag Laboratories (M35015) Goat 

 

 Primary cultures of myenteric ganglia 

Intestinal segments (20 cm long) were isolated and rinsed with a physiological ice-cold Tyrode’s 

solution. For myenteric ganglia cultures, LMMP segments were minced and enzymatically digested, 

as described by Bistoletti et al., 2019.  After dissociation, 3 × 104 cells per well were seeded on the 

poly-L-lysine-pre-coated glass coverslips into the 24-well plate and grown in an incubator (37.5 °C, 

5% CO2) for six days. Medium was changed every two days. For immunofluorescence staining, cells 

on coverslips were fixed in PBS containing 4% formaldehyde for 10 min at 37 °C. After blocking non-

specific sites with PBS containing 5% normal horse serum (Euroclone) and 0.1% Triton X-100 for 1 

h at RT, preparations were double-labelled with HABP and with either an anti-HuC/D antibody. 

Preparations were mounted on glass slides and analyzed by confocal microscopy. Negative controls 

were evaluated as described for whole-mounts immunolabelling. 

Table 2. Primary and secondary antisera and their respective dilutions used for immunofluorescence assay. 
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 Acquisition and analysis of images 

Images were acquired at confocal microscopy using a Leica TCS SP5 confocal laser scanning system 

(Leica Microsystems GmbH, Wetzlar, Germany). Fluorophores were visualized using a 488 nm 

excitation filter and 515/530 nm emission filter for Alexa Fluor 488 or fluorescein isothiocyanate 

(FITC), 543 nm excitation filter and 590/650 nm emission filter for Alexa Fluor 555 or Cy3 dye. All 

microscope settings were set to collect images below saturation and were kept constant for all 

images. In intestinal myenteric plexus, the analysis of total neuron population was performed on 

LMMP preparations, obtained from 5 animals per group, by counting HuC/D+ myenteric cells. The 

distribution of nitrergic neurons was evaluated by counting HuC/D+/nNOS+ and HuC/D+/iNOS+ 

neurons. The evaluation of the tachykininergic neuron distribution was performed by counting 

HuC/D+/SP+ neuronal cells, whereas the distribution of cholinergic neurons was obtained by 

HuC/D+/ChAT+ neuron count. In the same way the percentage of HAS1 and HAS2 positive neurons 

was obtained by counting the neurons on the total of HuC/D+ neurons (Stenkamp-Strahm et al., 

2013; Robinson et al., 2016). Areas of myenteric ganglia, digitized by capturing 10 fields per 

preparation at 40X magnification, were measured by tracing boundaries around stained cell somas 

(HuC/D). In small intestine LMMP whole-mount preparations changes in the immunoreactivity for 

HA, ChAT and SP were assessed by analysing the density index of labelling per myenteric ganglia 

area (5 animals per group, 10 fields per preparation at 40X magnification). Images were captured 

at identical exposure time conditions and thresholded to allow ImageJ software (version 1.48a) to 

select and measure only stained segments.  

3.3 Myeloperoxidase activity 

Myeloperoxidase (MPO) was measured in order to assess the development of an inflammatory 

state caused by neutrophil infiltration. Briefly, mucosa-deprived intestinal samples were suspended 

in ice-cold potassium phosphate buffer (50 mM, pH 6.0) containing 0.5% hexadecyl 

trimethylammonium bromide (HTAB) and homogenized (50 mg/ml). After centrifugation  (14 000 

rpm, 20 minutes, 4°C), an aliquot of the supernatant fraction (34 μl) was mixed with 986 μl of the 

HTAB-phosphate buffer containing 0.167 mg/ml O-dianisidine dihydrochloride with hydrogen 

peroxide (0.0005%). Changes in the rate of absorbance were spectrophotometrically recorded at 

460 nm. MPO activity was expressed in units (U), defined as the amount of enzyme that degrades 

1μmol/min of hydrogen peroxide at 25°C. Experiments were performed four times, and results 

were expressed in U/mg wet tissue weight. 
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Alternatively, immunohistochemical analysis of neutrophil infiltration were performed on three-

micrometer-thick intestinal paraffin sections, using the avidin-biotin-peroxidase method (Hsu and 

Raine, 1981) with a polyclonal antibody anti-MPO (Ventana Medical System, Tucson, AZ). 

Endogenous peroxidase activity was blocked by immersing sections for 10 min in a solution of 3% 

hydrogen peroxide in water. Primary antibody was incubated overnight at 4°C. Specific biotinylated 

secondary antibody and avidin-biotin-peroxidase complex were consecutively applied, each for 1 h 

at room temperature. The immunohistochemical reaction was developed with diaminobenzidine–

hydrogen peroxide reaction (Van Noorden et al., 1986). The sections were counterstained with 

hematoxylin. Neutrophil infiltration was evaluated only in whole well oriented sections of intestine, 

counting MPO+ cells in four high-power fields (×400, diameter 0.55 mm) for each mucosal, 

sottomucosal, muscular, and serosal-sottoserosal layer. MPO value has been reported as the 

average of MPO+ cells for field in each layer. 

3.4 Quantification of HA levels in the submucosal and muscularis propria 

layers 

 Chromatographic assay 

HA levels were measured in the submucosal and muscularis propria layers of DNBS-treated and 

control animals, following a modified protocol from Raio et al., 2005. 3 cm long colonic segments 

were cut along the longitudinal axis and opened flat on a sylgard support. After gently removing 

the mucosa layer, the submucosal layer was separated from the muscularis propria under a 

dissecting microscope. Samples of the submucosal and muscularis propria were then lyophilized. 

HA was purified and digested with hyaluronidase SD in order to obtain Δ disaccharides which were 

then derivatized with 2-aminoacridone (AMAC) according to Karousou et al., 2014. Separation and 

analysis of AMAC-derivatives of Δ-disaccharides were done with a Jasco-Borwin chromatograph 

system with a fluorophore detector (Jasco FP-920, λex = 442 nm and λem = 520 nm). 

Chromatography was carried out using a reversed phase column (C-18, 4.6 × 150 mm, Bischoff) at 

room temperature, equilibrated with 0.1 M ammonium acetate, pH 7.0, filtered through a 0.45 μm 

membrane filter. A gradient elution was done using a binary solvent system composed of 0.1 M 

ammonium acetate, pH 7.0 (eluent A), and acetonitrile (eluent B). The flow rate was 1 ml/ min, and 

the following program was used: pre-run of column with 100% eluent A for 20 min, isocratic elution 

with 100% eluent A for 5 min, gradient elution to 30% eluent B for 30 min and from 30% to 50% for 

5 min. Sample peaks were identified and quantified comparing the fluorescence spectra with 
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standard Δ-disaccharides, using Jasco-Borwin software. Experiments were performed 4 times and 

HA levels were expressed as ng of HA per mg of dry tissue. 

 ELISA assay 

In control, sham-operated and I/R groups, exposed or not to 4-MU treatment, the level of 

hyaluronic acid was evaluated in LMMP samples using Hyaluronan Quantikine ELISA Kit (R&D 

Systems, Minneapolis, MN, US), following the manufacturer’s instructions. Before the assay, frozen 

tissues from 7 rats per group were lyophilized. A solution of PBS and Cell Lysis Buffer 2 (1:1) (R&D) 

was added and the samples were lysed over night at room temperature, with gentle agitation. The 

appropriate volumes of Lysis buffer were calculated suspending samples in 500µl of Cell Lysis Buffer 

2 each 100 mg of fresh tissue. Debris were then removed by centrifugation and the supernatants 

were collected for the assay. The absorbance (Abs) values, recorded at the wavelength of 450nm, 

were corrected subtracting the Abs readings at 570nm. Experiments were performed 4 times and 

HA levels were expressed as ng of HA per mg of dry tissue. 

3.5 Gastrointestinal transit 

Gastrointestinal (GI) transit was measured by evaluating the intestinal distribution of orally gavaged 

fluorescein isothiocyanate (FITC)-labeled dextran (70 kDa, FD70) from the stomach to the colon. 

FITC-dextran, dissolved in 0.9% saline, were intragastric administered to I/R, sham-operated and 

CTR animals, and to the relative groups treated with 4-MU (200 μl of 6.25 mg/ml FITC-dextran 

solution for each rat). Animal were sacrificed 30 minutes after administration, and the entire GI 

tract was collected, divided into 15 segments: a single stomach segment (sto), 10 equal-length 

segments of small intestine (S1-S10), a single caecum segment (CEC), and 3 equal-length segments 

of colon (C1-C3). Luminal contents from each sample (both tissue and fecal content) were collected 

and clarified by centrifugation (12,000 rpm for 10 minutes). The cleared supernatants were assayed 

in duplicate for FD70 concentration, with a Krebs solution control and a FITC-dextran control (1:10 

part dilution of FITC-dextran and Krebs solution respectively). The fluorescent signal was measured 

at 492/521 nm using a microplate reader (Infinite 200pro, TECAN). Data were expressed as 

percentage (%) of fluorescence for each segment and GI transit was calculated as the geometric 

center (GC) of distribution of the fluorescent marker using the following formula (Wehner et al., 

2007):  

GC = Σ (% of total fluorescence signal per segment * segment number)/100 
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3.6 In vitro contractility studies 

Intestinal contractility was examined in vitro by measuring tension changes of small intestine 

samples from I/R, sham-operated and CTR animals, using the isolated organ bath technique. 1 cm 

segments of full-thickness rat small intestine were rapidly excised, washed with Krebs solution 

(composition in nM: NaCl 118, KCl 4,7, CaCl2∙2H2O 2,5, MgSO4∙7H2O 1,2, K2HPO4 1,2, NaHCO3 25, 

C6H12O6 11), mounted in isolated baths containing 10 ml of continuously oxygenated (95% O2 and 

5% CO2) and heated (37°C) Krebs solution. Small intestinal segments were positioned along the 

longitudinal axis and connected, by means of a silk ligature, to an isometric transducer. Mechanical 

activity was recorded with a PowerLab acquisition data system (ADInstruments, UK) and elaborated 

with a LabChart 6.0 program (ADInstruments, UK). An initial load of 1 g was applied to each 

intestinal specimen. After 45 min equilibration, small intestinal segments were exposed to 

increasing concentrations (0.01-100 µM) of the muscarinic agonist, carbachol (CCh), to obtain 

concentration-response curves. Neuronal mediated contractions were obtained by Electric Field 

Stimulation (EFS, 0-40 Hz; 1-ms pulse duration, 10-s pulse train, 40 V) using platinum bipolar 

electrodes, attached to an S88 stimulator (Grass Instrument Co., Quincy, MA, USA), which were 

positioned in parallel to intestinal preparations in the isolated organ baths. Contractile responses 

were expressed as g tension/g dry tissue weight of small intestine segments. Concentration-

response curves to CCh were subjected to a nonlinear regression analysis (fitted to a sigmoidal 

equation) to calculate the potency (EC50) and the maximum effect (Emax). EFS response curves in 

the different experimental conditions were analysed by two way ANOVA as described in the 

Statistical Analysis section. Relaxation responses were measured at the frequency of 10 Hz after an 

incubation period of 20 min with atropine 1 μM and guanethidine 1 μM, in order to evaluate non-

adrenergic non-cholinergic transmission (NANC) neuromuscular responses. To evaluate the 

nitrergic component of the on-inhibitory NANC-mediated transmission, small intestine samples 

were incubated in NANC conditions, with 100 μM L-Nω-Nitroarginine methyl ester chloridrate (L-

NAME, an non-selective NOS inhibitor), or 10 μM 1400W (a specific iNOS inhibitor), for additional 

20 minutes before applying a 10 Hz EFS. Under NANC conditions, EFS induced a primary on-

relaxation of small intestine segments that was calculated as the AUC and normalized per g dry 

tissue weight to allow comparisons between tissue samples. 

3.7 RNA isolation and quantitative RT-PCR 

Total RNA from LMMPs of small intestine and colon samples was extracted with TRIzol (Invitrogen) 

and treated with DNase I (DNase Free, Ambion), to remove possible traces of contaminating DNA. 

2.5 μg of total RNA were then retrotranscribed using the High Capacity cDNA synthesis kit (Applied 
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Biosystems, ThermoScientific, Massachusetts, USA). Quantitative RT-PCR (qRT-PCR) was performed 

with an Abi Prism 7000 real-time thermocyclator (Applied Biosystems). TaqMan® Gene Expression 

Mastermix (Applied Biosystem) was used to detect HAS1 (Rn00597231_m1), HAS2 

(Rn00565774_m1) and the housekeeping gene β-actin (Rn00667869_m1) mRNA levels, following 

the manufacturer’s instructions. To evaluate the expression of HIF1, TNF, IL-1, and IL-6 qRT-

PCR was carried out with Power Sybr Green Universal PCR Master Mix (Applied Biosystems), as 

indicated by manufacturer's instructions. Primers were designed using Primer Express software 

(Applied Biosystems) on the basis of available sequences deposited in public database. Primer 

sequences were: HIF1 fw 5’- AAGCACTAGACAAAGCTCACCTG -3’, rev 5’- 

TTGACCATATCGCTGTCCAC -3’; TNF fw 5’- CCCAGACCCTCACACTCAGAT -3’, rev 5’- 

TTGTCCCTTGAAGAGAACCTG -3’; IL-1 fw 5’- CCCTGCAGCTGGAGAGTGTGG -3’, rev 5’- 

TGTGCTCTGCTTGAGAGGTGCT -3’; IL-6 fw  5’- GTGCAATGGCAATTCTGATTGTA -3’, rev 5’- 

CTAGGGTTTCAGTATTGCTCTGA -3’; β-actin fw 5’- TGACAGGATGCAGAAGGAGA-3’, rev 5’- 

TAGAGCCACCAATCCACACA-3’. Primers were designed to have a similar amplicon size and 

similar amplification efficiency, and were used at a final concentration of 500 nmol/L for each. The 

2−ΔΔCt method was applied to compare the relative gene expression. β-actin was used as 

housekeeping gene. Experiments were performed at least four times for each different preparation.  

3.8 Western immunoblot analysis 

To analyse HAS1 and HAS2 protein levels, small intestine LMMPs preparations were homogenized 

in ice cold isolation buffer [10 mM, Tris-acetate 5 mM, EDTA 1 mM, phenylmethylsulfonyl fluoride 

(PMSF) 10% protease inhibitor cocktail (Sigma Aldrich, Milan Italy) and 1% phosphatase inhibitor 

cocktail (Sigma Aldrich, Milan Italy), pH = 7.4]. The crude homogenate was centrifuged at 30 000g 

for 30 min at 4° C. The supernatant was collected, while the resulting pellet was re-suspended and 

incubated for 15 min at RT in a second buffer (Tris-HCl 20mM, NaCl 140 mM, pH 7.4, 10% protease 

inhibitor cocktail and 1% phosphatase inhibitor cocktail). Quantification of protein concentration in 

the supernatant and in pellet was performed by means of the micromethod of Bradford (1976). 

After protein quantification samples were diluted in Laemli sample buffer (Tris-HCl 300 mM, pH 6.8, 

glycerole 10%, SDS 2%, β-mercaptoethanol 0.04%). Sample aliquots were then boiled for 5 min at 

95°C to mediate protein denaturation. Protein were separated on 8% SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) and electroblotted to PVDF membranes (Merck Millipore, Italy). 

Membranes were then incubated in a blocking solution consisting of 5% fat-free milk dissolved in 

PBS-Tween, 2 hours at room temperature in order to saturate aspecific sites. Membranes were 

incubated with primary antibodies against HAS1 and HAS2 overnight at 4 °C, followed by a second 
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incubation at room temperature with horseradish peroxidase (HRP)-linked appropriate secondary 

antibodies. Dilutions and reactivity of primary and secondary antisera are reported in table 3. The 

antibody/substrate complex was visualized by chemiluminescence (LiteAblot, Euroclone, Milan, 

Italy). In each membrane β-actin or α-tubulin were used as protein loading controls. Experiments 

were performed at least four times for each different preparation. Signal intensity was quantified 

by densitometric analysis using Image J NIH image software. 

 

Antiserum Dilution Source Hosts species 

Primary antisera 

HAS1 1:1000 Thermo Scientific (3E10) Mouse 

HAS2 1:1000 Santa Cruz (sc-34067) Goat 

−actin 1:1000 Cell Signalling Technology (#3700) Mouse 

−tubulin 1:1000 Cell Signalling Technology (#2125) Rabbit 

Secondary antisera  

Anti-goat IgG HRP-linked 1:20000 
Santa Cruz (sc-2020) Donkey 

Anti-rabbit IgG HRP-linked 1: 10000 Santa Cruz ( sc-2313) Donkey 

Anti-mouse HRP-linked  1:10000 Santa Cruz (sc-2314) Donkey 

 

3.9 Statistical analysis 

All results are reported as mean ± standard error of the mean (SEM), except for the geometric 

center, which is presented as median and range (minimum-maximum), of at least 4 experiments. 

Statistical significance was calculated with the unpaired Student's t test (when comparing two 

groups of data) or, when comparing three or more groups of data, analysis of variance with one-

way ANOVA, followed by Tukey’s post-hoc test for multiple variables or two-way ANOVA, where 

appropriate. Differences were considered statistically significant when P values were <0.05. 

GraphPad Prism software (GraphPad 5.03 Software Inc, La Jolla, USA) was used for statistical 

analysis.  

 
  

Table 3. Primary and secondary antisera and their respective dilutions used for western blot analysis. 
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4 RESULTS 

4.1 HA and DNBS induced colitis 

 Assessment of colitis 

 Macroscopic assessment 

Six days after intracolonic administration of DNBS, body weight of rats was significantly reduced 

with respect to non-inflamed controls (Figure 6 A). Bowel of DNBS-treated animals was dilated at 

intervals and distal colon appeared thickened and ulcerated with evident regions of transmural 

inflammation. A twenty-fold increase of macroscopic damage score was observed in comparison 

with controls (Figure 6 B) and adhesions between the colon and other intra-abdominal organs were 

present (Figure 6 C). Faecal consistency did not significantly change between the two groups (Figure 

6 D). 

 

 

 

 

 

 

 

 

 Histological assessment 

Distal colonic cross-sections of control animals showed normal morphology features: a compact 

epithelium and well-formed crypts, an underlying thin layer composed of smooth muscle cells (the 

muscularis mucosae), a submucosal layer containing vascularized loose connective tissue and 

ganglia of the submucosal plexus, and a thick external smooth muscle layer of the muscularis 

propria (Figure 7A). Myenteric ganglia between the circular and longitudinal muscle of the 

Figure 6. (A) Body weight change in control (vehicle treated) and DNBS-treated animals, (B) macroscopic damage expressed 

in arbitrary units obtained from DNBS-treated (solid bar) and control s (empty bar), (C) presence of adhesions in colonic 

specimens, and (D) faecal consistency. Data are expressed as mean ± S.E.M. n=7 rats per group. * P<0.05 by one way ANOVA 

with Tukey’s post hoc test and *** P<0.001 by Student’s t test vs control. 
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Figure 7. (A-B) Hematoxilin-eosin (HE) staining representing the morphology in (A) control and (B) DNBS-treated cross 

section preparations (bars 50 µm and 100 µm). (C-D) details of the myenteric plexus in a cross-section obtained from (C) 

control rat colon and (D) DNBS-treated animals (bar 10 µm). Arrow indicates cytoplasmic vacuolization and irregular nuclear 

and cellular membranes. (E) In the distal colon of CTR animals, CD45 staining, as an index of inflammatory infiltrate, was 

slight, and significantly after DNBS treatment (F) (bars: 10 µm). M, mucosa; SM, submucosa; CM, circular muscle; LM, 

longitudinal muscle; MP, myenteric plexus. 

muscularis propria were compact and composed by healthy neurons and glial cells (Figure 7 C). 

CD45 staining, indicative of inflammatory cell infiltration, was almost negligible in the colon of 

control cross sections (Figure 7 E). 

In contrast, both the colonic mucosa and serosal epithelium of DNBS-treated rats displayed 

morphological abnormalities (Figure 7 B). The mucosal surface was irregular and the crypt 

architecture was highly altered. The thickness of submucosa and muscularis propria layers 

increased showing prominent leukocyte infiltration as demonstrated by a significant enhancement 

of CD45 staining (Figure 7 F). Important degenerative changes were also observed in myenteric 

ganglia, where dots-like structures in the nucleus, cytoplasmic vacuolization and irregular nuclear 

and cellular membranes were observed.  Large spaces between muscle cells were also evident 

(Figure 7 D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

In agreement with data obtained with cross-sections of DNBS-treated rat colon (Ippolito et al., 

2015), in colonic whole-mount preparation, DNBS-induced inflammation was associated with a 

decrease in the total number of myenteric neurons, which displayed a reduced soma area 

compared to control samples (Figure 8 A-B). After DNBS treatment, HuC/D immunoreactivity was 

faint in the cytoplasm of the majority of myenteric neurons, and a number of neurons showed 
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increased HuC/D staining in the nucleus relative to the cytoplasm (Figure 8 C-D).  

 

 

 

 

 

 

 

 

 

 

 Biomolecular assessment 

In DNBS-treated animals, a significant enhancement in the expression of inflammatory cytokines 

such as TNFα, IL-1β, and IL-6 was evidenced with respect to control rats (Figure 9 A). Furthermore, 

myeloperoxidase (MPO) activity significantly increased in mucosa-deprived rat colonic segments 

from DNBS-treated animals compared to controls, suggesting the occurrence of inflammation-

induced massive neutrophil infiltration into the intestinal wall (Figure 9 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. (A). Expression of inflammatory markers in the rat colon after DNBS-induced colitis. (A) qRT-PCR quantification 

of TNFα, IL1- and IL-6 mRNA levels obtained in the distal colon of control animals (CTR, empty bars) and after DNBS 

treatment (solid bars). Values are mean±S.E.M. N=5 rats/group. ***p<0.001 vs values obtained in CTR animals; 

Significance was evaluated by Student’s t test. (B) Values are mean±S.E.M. N=5 rats/group. ***p<0.001 vs values obtained 

in CTR animals; Significance was evaluated by Student’s t test. 

Figure 8. DNBS-treatment induced changes in myenteric neurons. (A) Myenteric neuron number normalized per ganglion 

area calculated in colonic whole-mounts obtained from DNBS-treated (solid bar) and control animals (empty bar). (B) Mean 

myenteric neuron area calculated in colonic whole-mounts obtained from DNBS-treated (solid bar) and control animals (empty 

bar). Values are expressed as mean±SEM N=5 rats/group. **P<0.01 and ***P<0.01 vs values obtained in vehicle-treated 

control animals by Student’s t test. (C-D) HuC/D staining of myenteric neurons in CTR and DNBS-treated colonic whole-mount 

LMMP preparations. Arrows indicate HuC/D translocation in myenteric neurons after DNBS-induced colitis (bar: 50mm)  
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 Localization of HA in the rat colon myenteric plexus 

Control colonic cross-sections revealed a regular distribution of HA in the epithelial crypts, the 

underlying submucosal and muscularis propria layer with myenteric plexus, as indicated by HA 

binding protein (HABP) staining (Figure 10 A). In longitudinal muscle myenteric plexus (LMMP) 

whole mount preparations, HA staining was particularly intense on the surface of myenteric ganglia 

and along the interconnecting fibre strands (Figure 10 B and 11 A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, a faint HA labeling was found in myenteric neuron cytoplasm, as demonstrated by co-

staining with the neuronal marker HuC/D. A more intense and organised HA signal was detected in 

the perineuronal space surrounding neurons as well. (Figure 11 A-F). The ability of HABP to label 

myenteric neurons suggests that, in the myenteric plexus, neuronal cells may represent a source 

for HA. To evaluate this hypothesis, HABP binding was performed on primary cultures of small 

intestine myenteric ganglia. As result, the HuC/D co-staining showed an intense HA staining on the 

soma of some neurons (Figure 11 J-L). 

 

 

 

 

 

Figure 10. HA staining in rat colon after DNBS treatment. (A) HABP staining in rat colon cross-sections obtained from 

control (vehicle-treated animals), DNBS-treated animals, and relative negative control (bar 50 µm). (B) HABP staining in 

rat colon LMMP whole-mount preparations from control and DNBS-treated animals and relative negative control, bar 50 

µm. M, mucosa; SM, submucosa; CM, circular muscle; LM, longitudinal muscle; MP, myenteric plexus. HABP staining in 

myenteric plexus fiber strands (arrow) 
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 HA levels are upregulated after DNBS-induced colitis 

After DNBS treatment, HA levels significantly increased in both the muscularis propria and 

submucosal layers versus values obtained in control preparations (Figure 12). Accordingly, an 

increased HABP staining was observed both in colonic cross-sections and LMMPs compared to 

controls (Figure 10 A-B).  

 

 

 

Figure 11. Co-localization of HA in control rat intestine. (A-C) Confocal images showing co-localization of HABP with

HuC/D in a colonic whole-mount median section showing a myenteric ganglion. HABP immunofluorescence was 

prevalently found in neuronal soma and in the perineuronal space (insets, panels D-F). (G-I) HABP intensely stained the 

surface of the same ganglion and (A) interconecting fibers (*). (J-L) Confocal image of a rat small intestine myenteric

ganglion culture double-stained with HABP and HuC/D. Arrows indicate neurons displaying high HA staining. Bar 50 m. 
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In preparations obtained from DNBS-treated animals, the structured HA distribution within 

myenteric ganglia disappeared, and, in particular, perineuronal HA was less evident. HA labeling 

remains visible in the cytoplasm of myenteric neurons, on ganglia surface and along interconnecting 

fibers (Figure 10 A-B, Figure 13 A-H). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. HA levels in rat colon after DNBS treatment. HA levels measured in colonic submucosal and muscularis externa 

layers from control (empty bars) and DNBS-treated animals (solid bars). Values are expressed as mean±S.E.M. N=5 

rats/group. *P<0.05 and ***P<0.001 vs control animals by Student’s t test. 

Figure 13. Co-localization of HABP with HuC/D in whole-mount preparations of the rat colon after DNBS-treatment. 

(A-C) Confocal image showing co-localization of HABP with HuC/D in a median section of a myenteric ganglion. HABP 

immunofluorescence was prevalently present in the soma of myenteric neurons, perineuronal staining was absent 

(insets, D-F). Several neurons displayed a prominent HuC/D staining in the nucleus and faint cytoplasmic HuC/D 

immunoreactivity. (G-H) HABP staining the surface of the same ganglion. Bar 50 m. 
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 Expression of HAS2 in myenteric neuron after DNBS-induced treatment 

Colonic whole-mount preparations of control animals revealed the presence of HAS2 in myenteric 

plexus. When double labeled with HABP or HuC/D, HAS2 was discontinuously localized in the 

cytoplasm of a small percentage of myenteric neurons (figure 14 B-D, I-K).  

qRT-PCR and western blot investigations confirmed the presence of both transcript and protein of 

HAS2 in the colon of control rats (Figure 15 B-C).  

 

 

 

 

 

 

 

 

 

 

 

After DNBS-induced colitis, the number of HAS2 immunopositive myenteric neurons significantly 

increased in treated animals with respect to control values (Figure 14 F-H; Figure 15 A). In myenteric 

ganglia obtained from DNBS-treated rats, HAS2 staining around the neuronal profile was less 

evident than in controls (Figure 14 L-N). In addition, both HAS2 transcript and protein were 

significantly higher compared to control animals (Figure 15 B-C). In LMMP preparations obtained 

from control rats, HAS2 specific antibody revealed one band at 63 kDa, while a double band could 
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Figure 14. HAS2 and HuC/D co-localization in the rat colon myenteric plexus of control and DNBS-treated animals.  (A-

H) Confocal images showing co-localization of HAS2 with HuC/D in LMMP whole-mount preparations obtained from in 

control (vehicle treated) (B-D) and after DNBS-treatment (F-H). HAS2 and HABP co-localization in the rat colon myenteric 

plexus of control and DNBS-treated animals. (I-N) Co-localization of HAS2 with HABP in LMMP whole-mount preparations 

of control (I-K) and DNBS-treated animals (L-N). Panels A and E show negative controls for HAS2 staining in control and 

DNBS-treated preparations, respectively. Bar 50 m.  
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be observed at 63 kDa in preparations obtained from DNBS-treated mice, which may result from 

post-translational modifications of the protein induced by inflammation (Vigetti et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Role of HA in the adaptive changes of the intestinal neuromuscular 

function after an I/R injury in the rat small intestine 

 Histological assessment 

After occlusion of the terminal branch of the superior mesenteric artery, the corresponding small 

intestinal segment became purple and returned to a normal pink color after blood flow restoration. 

Animal recovered uneventfully from anesthesia and once awake were active, ate normally and did 

not show any sign of distress. A gross visual inspection of the regions subjected to I/R did not reveal 

any abnormality with respect to sham-operated and un-operated control animals at all times. 

Administration of 4-MU, 25 mg/kg, did not induce significant gross morphology changes in small 

intestinal segments obtained from animals subjected to I/R injury, sham-operated and controls, 

versus the respective untreated groups. However, in all experimental groups, after 4-MU treatment 

intestinal segments and mesenteric attachments were loser compared to the untreated groups. 

After 24 hours of reperfusion following ischemia, myenteric neurons both in the submucosal and 

myenteric plexus showed signs of cellular suffering, displaying swollen soma, cytoplasm 

vacuolization and ill-defined cellular membrane with respect to control preparations (Figure 16 

Figure 15. HAS2 expression in myenteric ganglia. (A) Percentage of myenteric neurons per mm2 co-staining for HuC/D 

and HAS2 from control (empty bars) and DNBS-treated animals (solid bars). Values are expressed as mean±S.E.MN=5 

rats/group. (B) qRT-PCR quantification of HAS2 transcripts in control and in DNBS-treated animals. Values are 

mean±S.E.M. N= 5 rats/group. The relative gene expression was determined by comparing 2-ΔΔCt values normalized to β-

actin. (C) HAS2 protein expression analyzed in LMMPs obtained from control and DNBS-treated animals. Values are 

expressed as mean±S.E.M. of the percentage variation of the normalized optical density (O.D.). N=5 rats/group. obtained 

from DNBS-treated preparations with respect to values obtained in control samples. **P<0.01 and ***P<0.001 vs control 

animals by Student’s t test. 
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A,C). Nuclear inclusions were sometimes present. The smooth muscle layer was also altered by the 

I/R injury, with cytoplasmic vacuolization and spaces between cells in some regions of muscularis 

propria with respect to control preparations (Figure 16 A,C). Mucosa and serosal epithelium did not 

display prominent histological abnormalities. In sham-operated samples, histological features of 

neurons or muscle cell cellular suffering were rarely observed. In control and sham-operated 

groups, 4-MU treatment did not modify the architecture of myenteric neurons. In the I/R group, 

after 4-MU treatment, cytoplasmic vacuolization and spaces were still visible in some regions of the 

muscularis propria and within the myenteric plexus, in addition, myenteric neurons displayed signs 

of nuclear suffering and cellular shrinking, although to a minor extent, than in the I/R untreated 

group. (Figure 16 C,D). 

 

 

 

 

 Neutrophil infiltration, myeloperoxidase activity and HIF-1α levels 

In the muscularis propria a significant increase in the number of neutrophil cells per field was 

observed after 24 hours of reperfusion with respect to control preparations (Figure 16 E-G). Also in 

the sham-operated group, the number of neutrophils increased, but not significantly, with respect 

to controls (Fig 16 G). After 4-MU treatment, the number of neutrophils in the muscularis propria 

of the I/R and sham-operated groups was significantly reduced, reaching values not significantly 

different with respect to controls (Figure 16 G). In small intestine LMMPs obtained from the sham-
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Figure 16. (A-D) smooth muscle cells in the circular (CM) and longitudinal (LM) layers and myenteric plexus (MP) of CTR 

(A), CTR 4-MU treated (B), I/R (C) and I/R 4-MU treated (D) rat small intestine (HE, original magnification 600x; bar: 

0.01mm). (E,F) MPO immunohistochemical staining of whole wall rat small intestine obtained from I/R and 4-MU treated 

I/R animals. Neutrophils are well marked (brown) and their count is easy for all the layers. (G) Neutrophil infiltrate in the 

intestinal wall in the different experimental groups, expressed as number of neutrophils in the rat small intestine 

muscularis propria. Values are expressed as mean±SD of neutrophil count. P<0.05 vs CTR and P<0.01 vs I/R by one way 

ANOVA followed by Tukey’s test. N=5 rats/group. (H) RT-PCR quantification of HIF1α in rat small intestine LMMPs in the 

different experimental groups. Values are expressed as means±SEM. N=5 rats/group. *P<0.05, ***P<0.001 by one way 

ANOVA followed by Tukey’s test vs CTR; #P<0.05 vs Sham; §P<0.05 vs I/R. Relative gene expression was determined by 

comparing 2-ΔΔCt values normalized to β-actin. 
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operated and I/R groups, the expression of HIF-1α mRNA significantly increased with respect to CTR 

preparations. After 4-MU treatment, HIF-1α mRNA levels were significantly reduced in both the 

sham-operated and I/R group, reaching values not significantly different compared to controls 

(Figure 16 H). 

 In vivo 4-MU treatment regulates HA levels in rat small intestine LMMPs after 

I/R injury 

In LMMP whole-mount preparations of control animals, HA staining was detected on the surface of 

myenteric ganglia and along interconnecting fiber strands (Figure 17 A). In addition, a faint HA 

labeling was found in myenteric neuron cytoplasm and in the perineuronal space, as demonstrated 

by co-staining with the pan neuronal marker HuC/D (Figure 17 B,D). After 4-MU treatment, HA 

labelling in myenteric ganglia was fainter, as suggested by a decrease, although not significant, in 

the density index (Figure 17 M). The intensity and distribution of HA staining in the myenteric plexus 

of sham-operated animals was not significantly different with respect to control preparations and 

was only slightly reduced after 4-MU treatment (Figure 17 M). In good agreement with HABP 

staining, HA levels measured by ELISA assay in LMMP preparations obtained from sham-operated 

animals were not significantly different from those obtained in control preparations, both with and 

without 4-MU treatment (Figure 17 N). 

After I/R injury, HA density index significantly increased with respect to control and sham-operated 

groups, as shown in panels E, F and M of Figure 17. Accordingly, ELISA assay revealed a significant 

increase of the GAG levels in LMMP preparations obtained from the I/R group versus control and 

sham-operated groups (Figure 17, panel N). After I/R injury HA staining in myenteric neuron 

cytoplasm and in perineuronal space was conserved and displayed higher intensity with respect to 

controls (Figure 17 F,H). HA labelling in LMMP preparations obtained from 4-MU-treated rats 

subjected to I/R injury was faint and the density index was significantly reduced with respect to the 

I/R group, reaching values not significantly different from those obtained in control and sham-

operated animals (Figure 17, I-L, M). HA levels in the I/R 4-MU treated group remained significantly 

elevated with respect to controls and sham-operated groups, but were reduced with respect to the 

untreated I/R group (Figure 17 N). 
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 Influence of 4-MU treatment on I/R induced changes of HAS1 and HAS2 

expression in rat small intestine myenteric plexus  

Immunohistochemical experiments revealed the presence of HAS1 in rat small intestine myenteric 

ganglia and along interconnecting fibers (Figure 18 A-F). HAS1 staining was detected in the 

cytoplasm and cytosolic membrane of with large-, medium- and small-sized ovoid neurons. Intense 

HAS1 labelling was also found in enteric glial cells surrounding myenteric ganglia (Figure 18 A,C). In 
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Figure 17. In vivo 4-MU treatment regulates HA levels in rat small intestine LMMPs after I/R injury. (A-L) Representative 

confocal microphotographs showing HA staining of the rat small intestine myenteric plexus in control conditions (CTR, A-

D), after ischemia followed by 24 hours of reperfusion (I/R, E-H) and in the I/R group treated with 4-methylumbelliferone 

(4-MU, 25 mg/kg, ip) (I-L). In all groups, HA intensely stained the surface of the myenteric ganglia and interconnecting 

fibers (*) (panels A,E,I) . In confocal median sections of myenteric ganglia, HA immunofluorescence was prevalently found 

in neuronal soma and in the perineuronal space (insets, panels B,F,J), as demonstrated by double-staining with the pan-

neuronal marker, HuC/D. Bar 50 m. (M) HA density index of HA in LMMP preparations obtained the different 

experimental groups with and without treatment of 4-MU, as indicated on bottom of bars. Data are reported as mean ± 

SEM.  **P<0.001 vs CTR, P<0.05 vs sham-operated, P<0.05 vs I/R by one-way ANOVA with Tukey’s post hoc test, N=5 
rat/group. (N) Quantification of HA levels by ELISA assay in small intestine LMMP preparations obtained from the 

different experimental groups with and without treatment of 4-MU, as indicated on bottom of bars. HA levels are 

expressed as ng of HA normalized per mg of dry tissue weight. ***P<0.001 and **P<0.01 vs CTR; ###P<0.001 and P<0.05 

vs sham-operated by one-way ANOVA with Tukey’s post hoc test, N=6 rat/group. 
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LMMP preparations obtained from the I/R group, the number of HAS1+ myenteric neurons was 

significantly higher than in the control and sham-operated groups (Figure 18 G). Such enhancement 

was reduced after 4-MU treatment as, in this condition, the number of HAS1+ myenteric neurons 

diminished with respect to the I/R group, remaining significantly higher versus controls but not 

versus sham-operated animals (Figure 18 G). In the sham-operated and I/R groups, HAS1 mRNA 

levels significantly increased with respect to control preparations (Figure 18 H). In the I/R group, 

HAS1 mRNA levels were also significantly higher than in preparations obtained from sham-operated 

animals. In the sham-operated group after 4-MU treatment, HAS1 mRNA levels were still 

significantly higher with respect to controls and similar to those obtained in the respective 

untreated groups. In the I/R group after 4-MU treatment, HAS1 mRNA levels were significantly 

higher with respect to controls, but not versus the sham-operated group, and were slightly, but not 

significantly, reduced with respect to the I/R untreated group (Figure 18 H). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HAS2 immunoreactivity was immunohistochemically found in the cytoplasm, nuclear and cytosolic 

membranes of few medium-sized ovoid neurons of control rat small intestine myenteric plexus 
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Figure 18. Enhancement of HAS1 expression in the rat small intestine myenteric plexus is regulated by 4-MU 

treatment.  (A-F) Confocal images showing co-localization of HAS1 with the pan neuronal marker HuC/D in myenteric 

neurons of CTR animals (A-C) and after I/R injury (D-F). HAS1 stained the soma and cytoplasmic membranes of ovoid 

myenteric neurons, interconnecting fibers (*) and enteric glial cells (arrow). Panel G shows the percentage of myenteric 

neurons co-staining for HuC/D and HAS1. Bar 50 m. **P<0.01, ***P<0.001 vs CTR, ###P<0.001 vs sham-operated by 

one-way ANOVA with Tukey’s post hoc test. N=5 rat/group (H) HAS1 mRNA levels in LMMP preparations obtained from 

the different experimental groups. Histograms show HAS1 relative gene expression determined by comparing 2-ΔΔCt 

values normalized to β-actin. *P<0.05, **P<0.01, ***P<0.001 vs CTR, ###P<0.001 vs sham-operated by one-way ANOVA 

with Tukey’s post hoc test. N=5 rat/group. 
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(Figure 19 A-C). The number of HAS2+ myenteric neurons significantly increased with respect to 

sham-operated and control animals after ischemia followed by 24 hours of reperfusion (Figure 19 

D-F,G). In this latter condition, 4-MU treatment induced a reduction of the number of HAS2+ 

myenteric neurons, which, however, remained significantly higher than in controls and sham-

operated animals (Figure 19 G). In LMMP preparations obtained from animals undergoing I/R, HAS2 

mRNA levels significantly increased with respect to both control and sham-operated preparations 

(Figure 19 H). 4-MU treatment did not modify HAS2 mRNA expression in both control and sham-

operated preparations. In the I/R group, 4-MU treatment significantly reduced I/R-induced 

enhancement of HAS2 transcripts with respect to the untreated animals, reaching values not 

significantly different versus those obtained in control and sham-operated rats (Figure 19 H). HAS3 

mRNA levels were not measurable by qRT-PCR in LMMPs of all experimental groups. 
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Figure 19. Enhancement of HAS2 expression in the rat small intestine myenteric plexus is regulated by 4-MU 

treatment.  (A-F) Confocal images showing co-localization of HAS2 with HuC/D in myenteric neurons of CTR animals 

(A-C) and after I/R injury (D-F). HAS2 stained the soma of ovoid myenteric neurons. Panel G shows the percentage of 

myenteric neurons co-staining for HuC/D and HAS2. Bar 50 m. ***P<0.001 vs CTR, ###P<0.001 vs sham-operated by 

one-way ANOVA with Tukey’s post hoc test. N= 5 rat/group. (H) mRNA levels of HAS2 in LMMP preparations obtained 

from the different experimental groups. Histograms show HAS2 relative gene expression determined by comparing 

2-ΔΔCt values normalized to β-actin. ***P<0.001 vs CTR, ###P<0.001 vs sham-operated, §§P<0,01 vs I/R by one-way 

ANOVA with Tukey’s post hoc test. N=5 rat/group. 
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 Efficiency of the gastrointestinal transit after I/R injury with and without 4-MU 

treatment  

After 24h I/R injury, the GI transit significantly decreased, as shown by the higher content of non-

absorbable FITC-labelled dextran in the upper part of the GI tract (Figure 20 A). Accordingly, I/R 

injury induced a significant reduction of the geometric center (GC) compared with that of control 

and sham-operated animals. In sham-operated animals, the GC was not significantly different from 

the value obtained in control animals. 4-MU treatment did not significantly modify both the 

efficiency of the GI transit and the value of the GC in control and sham-operated groups. In the I/R 

group, treatment with 4-MU, induced a significant reduction of the GC with respect to both control 

and sham-operated untreated animals (Figure 20 B). In addition, in the I/R, 4-MU treatment 

induced a significant delay in gastric emptying with respect to both control and sham-operated 

untreated groups (Figure 20 C). 
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Fig 20. 4-MU treatment affects G/I transit and gastric emptying after I/R injury in the rat. (A) Percentage of non-

absorbable FITC-dextran distribution along the gastrointestinal (GI ) consisting of stomach (Sto), small bowel (Sb 1–
10), caecum (Cec) and colon (C 1–3); (B) geometric centre (GC) of non-absorbable FITC-dextran distribution; (C) 

Percentage of gastric emptying in the different experimental groups. Data are reported as mean ± SEM for panels (A) 

and (C) and as median, minimum, maximum, upper and lower quartiles for panel (B). **P< 0.01 and ***P<0.001 vs 

CTR, ##P<0.01 and ###P<0.001 vs sham-operated and by one-way ANOVA with Tukey’s post hoc test. N=5 rat/group. 
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 I/R injury alters excitatory neuromuscular contractility: effect of 4-MU 

treatment  

The effects of I/R injury on the rat small intestine neuromuscular function were examined in vitro 

by measuring tension changes of the longitudinal muscle contractile activity, which underlies the 

preparative phase of the peristaltic reflex and is synchronous with circular muscle contraction 

during peristalsis, thus influencing the whole propulsive bowel activity (Smith and Robertson, 

1998). In all experimental groups, small intestine segments displayed spontaneous contractile 

activity consisting of phasic contractions, displaying a significantly reduced amplitude (tension) in 

the sham-operated and I/R groups with respect to control animals (Table 4). In all experimental 

groups, 4-MU treatment did not modify the amplitude of spontaneous contractions, which 

remained significantly lower in the sham-operated and I/R treated groups with respect to the 

control untreated group (Table 4). The frequency of spontaneous basal contraction was similar in 

all experimental groups (Table 4).  

 

 

To evaluate changes in the excitatory neuromuscular response, cumulative concentration–

response curves to the non-selective cholinergic agonist, carbachol (CCh), were performed on the 

longitudinally oriented small intestine segments from all experimental groups. I/R induced a 

significant downward shift of the concentration–response curve to CCh with a decrease in 

maximum response (Emax) with respect to values obtained in control and sham-operated. In the 

sham-operated group the contractile response curve to CCh was superimposable with the response 

observed in the control group (Figure 21, A). In the control group, 4-MU treatment induced a 

significant increase in the Emax with respect to the value obtained in untreated controls (Figure 21 

A). The concentration-response curves to CCh were not significantly modified both in the sham-

operated and in the I/R group after 4-MU treatment (Figure 21 A). The potency of CCh in inducing 

concentration-dependent contractile responses in the control group was [0.17 (0.10-0.28) µM, 

n=5)], and was not significantly different from those observed in the other experimental groups 

[CTR-4MU: 0.34 (0.25-0.46) µM, n=5; sham-operated: 0.20 (0.15-0.27) µM, n=5; sham-operated-

Experimental group Frequency (cicle/min) Basal Tension (g) 
CTR 17,79 ± 0,408 10,43 ±  0,920 

CTR 4-MU 17 ± 0,564 10,47 ±  1,305 

sham 16,75 ± 0,509           7,09 ±  0,740   ** 

sham 4-MU 16,83 0,458           7,13 ±  0,592   ** 

I/R 18,45 ±0,511         7,56 ±  0,834   * 

I/R 4-MU 17,71 ± 0,45           6,67 ±  0,774   ** 

Table 4. Basal spontaneous contractile activity of small intestine from all experimental groups (*P<0.05 and **P<0.01 vs 

CTR by one way ANOVA with Tukey’s post hoc test). 
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4MU: 0.15 (0.11-0.20) µM, n=5; I/R: 0.11 (0.036-0.32) µM, n=5; I/R-4MU: 0.15 (0.06-0.36) µM, n=5]. 

To further investigate potential changes in the excitatory contractile function, the effect of EFS was 

evaluated at increasing frequencies of stimulation on small intestine preparations. In the I/R and 

sham-operated groups, EFS-elicited contractions were significantly reduced with respect to 

controls (Figure 21 B). In the control and sham-operated groups, 4-MU treatment did not modify 

the responses to EFS compared to those observed in the respective untreated groups. EFS-induced 

contractions in the 4-MU treated sham-operated group remained significantly lower than in 

controls. In the I/R group after 4-MU treatment, EFS-evoked responses of the small intestine 

longitudinal muscle were higher with respect to those obtained in the respective untreated group, 

remaining lower compared to those obtained in control group. EFS-mediated responses were of 

neuronal origin, since in all groups addition of the neuronal blocker tetrodotoxin (1µM) totally 

abolished the EFS-induced responses. In small intestine myenteric plexus, distribution of ChAT 

immunoreactivity was similar in all experimental groups as demonstrated by the unchanged density 

index (Figure 21 panels C, D). 

 

 

 

 

 

 

 

 

 

 

 

 

-9 -8 -7 -6 -5
0

5

10

15

20

25 CTR

CTR  4MU

Sham

IR  4MU

IR

Sham  4MU

CCh [Log]

te
n

si
o

n
 (

g
)

***

******

***

###

#

0 10 20 30 40
0

2

4

6

8

Sham 4 MU I/R 4 MU

CTR I/RSham

CTR 4 MU

te
n

si
o

n
  (

g
)

***

§

***

###

**

**

frequency (Hz)

A

0

20

40

60

CTR sham I/R

+ _ + + 4-MU (25 mg/kg)
_ _

%
 C

h
A

T
+
 m

y
e

n
te

ri
c
 n

e
u

ro
n

s

ChAT ChAT/HuC/DHuC/D

C
T

R
I/

R
 4

-M
U

C

B

D

Figure 21. 4-MU treatment influences excitatory contractility in the rat small intestine. (A) Concentration–response 

curves to carbachol (CCh) of isolated rat small intestine segments in the different experimental groups (N=5 rats per 

group). (B) Neuromuscular excitatory responses induced by EFS (0.5–40 Hz) in isolated small intestine preparations 

obtained from the different experimental groups N=5 rat/group. (C) Representative confocal photomicrographs 

showing the distribution of ChAT (red, marker  for cholinergic neurons) and HuC/D (green, pan-neuronal marker) and 

(D) ChAT density index in LMMP preparations obtained from all experimental groups (N=5 rat/group). Data are shown 

as mean ± SEM. (A-B) statistical significance: **P < 0.01, ***P < 0.001 vs; ###P<0.001 vs sham-operated; §P<0.05 vs 

I/R by Two way ANOVA (A-B). 
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 I/R injury influences the inhibitory neuromuscular response: effect of 4-MU 

treatment  

Non-adrenergic non-cholinergic induced responses to 10 Hz transmural stimulation were evaluated 

in the small intestine of all groups in the presence of guanethidine and atropine. In these conditions, 

control and sham-operated segments displayed similar inhibitory relaxation responses with or 

without 4-MU treatment (Figure 22 A). In I/R and 4-MU-treated I/R groups, NANC relaxation 

responses were significantly reduced with respect to control and 4-MU treated control groups 

(Figure 22 A). In all groups, the inhibitory responses were mediated by NO, as demonstrated by the 

ability of the non-selective NOS inhibitor, L-NAME, to significantly reduce NANC-evoked relaxations 

at 10 Hz stimulation frequency by 50% the respective experimental groups in the absence of the 

inhibitor (Figure 22 A). In the control and 4-MU-treated control groups, 10 Hz EFS-induced on-

relaxations in NANC conditions were not influenced by pretreatment with 1400 W, a selective iNOS 

inhibitor (Figure 22 A). In sham-operated group, addition of 1400W significantly reduced NANC on-

relaxations, while in the 4-MU-treated sham-operated group the relaxation response was only 

slightly reduced with respect to values obtained in the absence of the inhibitor. In the I/R group, 

addition of 1400W reduced NANC on-relaxations with respect to the control group in the presence 

of 1400W and, although not significantly, with respect to the I/R group in the absence of the 

inhibitor (Figure 22 A). In the 4-MU treated I/R group, 1400W was not able to significantly reduce 

NANC relaxations neither with respect to the I/R group nor to the control group in the presence of 

the inhibitor (Figure 22 A). To further investigate the possible effects of 4-MU treatment on I/R-

induced alterations of the enteric nitrergic neurotransmission, we evaluated the distribution of 

nNOS and iNOS neurons in the myenteric plexus in the different experimental conditions. In 

particular, immunohistochemical co-localization with the pan neuronal marker HuC/D showed that 

the number of nNOS+ myenteric neurons was similar in all the experimental groups (Figure 22 B, C). 

nNOS+ neurons displayed morphological changes in both I/R and 4-MU treated I/R groups as  

demonstrated by the significantly enhanced area/soma ratio and total area with respect to control 

and sham-operated groups (Figure 22 D, E). The number of iNOS+ neurons significantly increased in 

the small intestine of the I/R group with respect to control and sham-operated animals (Figure 22 

panels F,G). After 4-MU treatment, the number of iNOS+ neurons were significantly reduced with 

respect to the I/R group displaying values similar to those obtained in the control and sham-

operated groups (Figure 22 F, G). 
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 I/R injury influences NANC small intestine SP excitatory neurotransmission: 

effect of 4-MU treatment 

In small intestine whole-mount preparations from all experimental groups, immunoreactivity of SP, 

a neuropeptide member of the tachykinin family with higher affinity for NK1 than for NK2 or NK3 

receptors (Lecci et al., 2006), was generally faint in the soma of myenteric neurons and more 

intense in nerve varicose fibers within myenteric ganglia and in interconnecting trunks along the 
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Figure 22. Effect of 4-MU treatment on inhibitory neurotransmission in the rat small intestine. (A) 10 Hz EFS-evoked 

NANC on-relaxation responses in the different experimental groups in the absence and presence L-NAME and 1400W, 

(N=5 rats per group). Data are reported as mean ± SEM. Statistical significance: *P< 0.05, ***P<0.001 vs CTR; çP<0.05, 
ççP<0.01 vs CTR 4-MU; ##P<0.01 vs sham-operated; &&P<0.01 vs sham-operated 4-MU; §§P<0.01 vs I/R; @P<0.05 vs I/R 4-

MU; °P<0.05 vs CTR 1400W by one-way ANOVA followed by Tukey’s post hoc test. (B) Representative confocal 

photomicrographs showing the distribution of nNOS immunoreactive myenteric neurons (red) and their co-localization 

with pan neuronal marker HuC/D (green). (C) percentage of HuC/D+-nNOS+ neurons with respect to total HuC/D+ 

neurons in ileal LMMP whole-mount preparations in the different experimental groups, (N = 5 rats per group). (D,E) 

Morphological analyses of nNOS immunoreactive myenteric neurons in rat small intestine of the different experimental 

groups. (D) Ratios of total cell areas, including dendrites, to cell body area and (E) nNOS+ cell profile total areas, including 

dendrites. Values are expressed as means±SEM. ***P<0.001 vs control ,##P<0.01 and ###P<0.001 vs sham-operated by 

one way ANOVA followed by Tukey’s test. (F) Percentage of HuC/D+-iNOS+ neurons with respect to total HuC/D+ neurons 

in ileal LMMP whole-mount preparations in the different experimental groups, (N = 5 rats per group). Values are 

expressed as means±SEM. ***P<0.001 vs. control, ###P<0.001 vs sham-operated and §P<0.05 vs I/R by one way ANOVA 

followed by Tukey’s test. (G) Representative confocal photomicrographs showing the distribution of iNOS 

immunoreactive myenteric  neurons (red) and their co-localization with pan neuronal marker HuC/D (green).  
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longitudinal muscle (Figure 23 A). In control and 4-MU-treated control preparations, the percentage 

of SP+ myenteric neurons staining and the relevant density index were similar (Figure 23 B, C). The 

number of SP+ myenteric neurons in the sham-operated group as well the density index was slightly, 

but not significantly, higher than in controls; after 4-MU treatment both values decreased (Figure 

23 B, C). In the I/R group, the number of SP+ myenteric neurons as well as the density index 

significantly increased. Both enhancements were significantly reduced by 4-MU treatment (Figure 

23 B, C). To assess the contribution of non-cholinergic excitatory neurotransmitters to the small 

intestine motor function, post-stimulus excitatory off-responses were evaluated under NANC 

conditions in the presence of L-NAME, to unmask tachykininergic nerve-evoked contractions (Lecci 

et al., 2006). The tachykinin-mediated response was not significantly different in control, 4-MU-

treated control, sham-operated and 4-MU-treated sham-operated groups (Figure 23 D). After I/R, 

tachykinin-mediated contractions were significantly reduced with respect to both control and 

sham-operated animals and returned to control values after 4-MU treatment (Figure 23 D). 

 

0

10

20

30

40

50

CTR sham I/R

+ _ + + 4-MU (25 mg/kg)_ _

***

§§

SP
 d

e
n

si
ty

 in
d

e
x

0

5

10

15

20

25

CTR sham I/R

+ _ + + 4-MU
_ _

%
 S

P
+

 m
ye

n
te

ri
c 

 n
e

u
ro

n
s ***

##

§§

0

1

2

3

4

5

4 MU (25mg/kg)- + - + - +

L-NAME (100M)+ +++++

te
n

si
o

n
 (

g)

**
##

CTR Sham I/R

A B

C

D

C
T

R

SP HuC/D SP/HuC/D

I/
R

I/
R

 4
-M

U

* *

* *

**

Figure 23. 4-MU modulation of tackykinergic neurotransmission in the rat small intestine after I/R injury. (A) 

Representative confocal microphotographs showing the distribution of SP (green) and HuC/D (red) in rat myenteric 

plexus obtained from CTR, I/R and I/R-4MU groups (N = 5 rats per group). Scale bars = 50 μm. Arrows indicate SP+-HuC/D+ 

neurons, asterisk interconnecting fibers. (B)  Percentage of SP+-HuC/D+ neurons with respect to total HuC/D+ neurons 

and (C) density index of SP immunoreactivity in small intestine LMMP whole-mount preparations in the different 

experimental groups (N = 5 rats per group). (D) Tachykininergic-mediated contractions evoked by 10 Hz EFS in small 

intestine segments in the different experimental groups (N = 5 rats per group), under NANC conditions, in absence or 

presence of L-NAME. Data are reported as mean ± SEM. Difference significance: **P < 0.01, ***P < 0.001 vs CTR;  
##P<0.01 vs sham-operated; §§P<0.01 vs I/R. 
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5 DISCUSSION 

The present project aimed to evaluate the role of Hyaluronan (HA) in adaptive changes of the gut 

neuromuscular function, in experimental models of inflammatory bowel disease (IBD) and after 

intestinal ischemia/reperfusion (I/R) injury. In both studies important changes in HA homeostasis 

have been demonstrated within the myenteric plexus, suggesting a role for the glycosaminoglycan 

(GAG), which is a fundamental component of the extracellular matrix (ECM), in the rearrangement 

of enteric neuronal networks in pathophysiological conditions, eventually underlying participation 

to changes in the gut motor functions. 

5.1 HA involvement in myenteric plexus derangement after DNBS-induced 

colitis in rats 

In the first part of the study, morphological investigations and biomolecular data provided evidence 

that HA, produced by myenteric neurons, is abundantly present in myenteric ganglia. These findings 

represent the first demonstration that the GAG may be involved in the formation of a pericellular 

coat of condensed matrix surrounding myenteric neurons, similar to the mesh-like structure called 

perineuronal net (PNN), that is associated with some classes of neurons in the central nervous 

system (CNS) (van 't Spijker and Kwok, 2017). The existence of a PNN in the CNS has been for the 

first time proposed by Golgi and consists of a soft and well-organized structure of ECM molecules, 

which occupies a large part of the neuronal tissue (Suttkus et al., 2016). Chondroitin sulfate 

proteoglycans, HA and its link proteins HAPLN1 and HAPLN4, as well as the large glycoprotein 

tenascin-R, are the main components of the PNN, whose main functions are the regulation of ion 

homeostasis around active neurons, stabilization of synapses and participation to neuronal 

plasticity (Oohashi et al., 2015; van 't Spijker and Kwok, 2017). Immunohistochemical reports have 

previously demonstrated that ECM molecules, such as laminin, type IV collagen, nidogen, heparin 

sulfate proteoglycans and fibronectin, are present in or nearby the basement membrane that 

surrounds myenteric ganglia (Bannerman et al., 1986). In accordance, whole-mount preparations 

from our samples showed a strong HA labeling on the myenteric ganglia surface, indicating that HA 

may contribute to the external architecture of enteric ganglia. However, in contrast with previous 

reports, that were not able to detect ECM molecules within myenteric ganglia (Bannerman et al., 

1986), HA staining was also visible in the perineuronal space surrounding myenteric neurons. In 

both colonic whole-mount preparations and in primary cultures of myenteric ganglia, neurons co-

expressed HA and the neuronal marker HuC/D, suggesting that the source for GAG is represented 
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by colonic myenteric neurons. However, although a strong HA staining was found in the soma of 

myenteric neurons in culture, only a faint labeling was evidenced in the cytosol of myenteric 

neurons from whole-mount preparations. This discrepancy may be due to the presence of trophic 

factors in the culture medium used to grow isolated myenteric ganglia, which may favor a higher 

HA turnover (Jacobson et al., 2000; Li et al., 2007). HA may sustain the accumulation of the PNN 

surrounding myenteric neurons through the binding with its receptors on neuronal surface, such as 

CD44 or RHAMM-l, or, directly, via one of the three transmembrane HA synthases (HAS1-3), which 

can retain HA on cell surface (Carulli et al., 2006). In the present study myenteric neurons were 

shown to express HAS2, the main isoform of the three HASs in adult cells (Vigetti et al., 2014), 

supporting the hypothesis that colonic myenteric neurons may be a source for HA. Interestingly, 

the presence of HAS2 mRNA and protein has recently been demonstrated in developing rat cortical 

neurons, consolidating the hypothesis that neurons are able to synthesize HA (Fowke et al., 2017). 

After DNBS-induced colitis, HA deposition in the whole wall of the rat colon was significantly altered 

with respect to control preparations, in analogy with data obtained in human colon biopsies 

obtained from IBD patients and in murine dextran sodium sulfate (DSS)-induced colitis (Kessler et 

al., 2008; de la Motte et al., 2003). In the present study a rearrangement of HA distribution occurred 

in DNBS-treated colonic specimens, changing from a well-defined matrix to a dense deposit in all 

the intestinal layers, as observed in the DSS-treated mouse colon (Kessler et al., 2008). A peculiar 

feature of the inflamed colon, observed also in this study, is submucosal and smooth muscle 

thickening with increased deposition of connective ECM components (Ippolito et al., 2015; Zhu et 

al., 2012). Thus, increased HA levels in both layers during inflammation may take part in the fibrotic 

process, as suggested in other peripheral organs and in vascular smooth muscle cells (de la Motte 

et al., 2011; Moretto et al., 2015). 

In addition to previous data describing deposition of HA in the epithelial and submucosal layer, the 

results obtained in this thesis indicate that inflammation may induce considerable changes in HA 

distribution also in myenteric ganglia. At this level, the perineuronal HA envelope was significantly 

reduced, while HA staining in neuronal cytoplasm and ganglia surface was still visible. We cannot 

exclude that this altered deposition is caused by a fragmentation of the GAG, after the 

inflammatory injury. Evidences, obtained in both humans and experimental animal models, suggest 

that the PNN retains a neuroprotective role against neurotoxic molecules, preventing, for example, 

amyloid-β toxicity deposition or oxidative stress, in selective vulnerable neuron types (Suttkus et 

al., 2016). In agreement with previous reports, in this study DNBS treatment induced significant 

alterations in myenteric ganglia, including a drastic reduction of HuC/D positive neurons, the 

presence of nuclear aggregates, cytosolic vacuolization, smaller area and changes in HuC/D 
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immunoreactivity distribution (Ippolito et al., 2015). Enhancement of HuC/D nuclear staining with 

respect to the cytoplasm is indicative of myenteric neuron damage, which may occur in different 

pathological conditions (Tacker et al., 2011; Giaroni et al., 2013). We cannot exclude that the 

degradation of a perineuronal HA sheath participates to alterations of myenteric neuron function, 

as observed after degradation of the PNN in cortical mouse slices (Shah and Lodge, 2013). A recent 

study, carried out on HAS3 deficient mice, showed a reduction of HA deposition in the CA1 striatum 

pyramidale of the hippocampus that was associated with a lower extracellular space volume and 

increased epileptogenic activity (Arranz et al., 2014). Furthermore, in the hippocampus, enhanced 

neuronal activity during episodes of status epilepticus, were correlated with synaptic 

reorganization caused by PNN loss (McRae et al., 2012). Hence, we cannot exclude that alterations 

in perineuronal HA deposition may contribute to changes in myenteric neuron structure and 

function during an inflammatory challenge. In particular, similarly to hippocampal neurons during 

status epilepticus, inflammation-induced removal of the PNN in the intestine may contribute, at 

least in part, to the development of neuronal hyper-excitability and synaptic facilitation observed 

during inflammation (Brierley and Linden, 2014). 

Alteration of HA distribution after experimentally-induced colitis was associated with up-regulation 

of HAS2 expression in myenteric neurons. Accordingly, expression of HA synthetic enzymes, such 

as HAS2 and HAS3, are increased in mouse colon epithelium after DSS-induced colitis (Zheng et al., 

2009), as well as in intestinal microvessel endothelial cells and submucosal smooth muscle cells 

from IBD patients (Kessler et al., 2008). We cannot exclude that HAS2 increased expression in 

myenteric neurons during DNBS-induced colitis serves to retain inflammatory cells in the proximity 

of myenteric ganglia, since we observed a prominent leukocyte infiltration and increase of MPO 

activity in the muscularis propria. In addition in agreement with previous reports, at this level, pro-

inflammatory cytokines, such as TNFα, IL-1β and IL-6, were up-regulated, (Barada et al., 2006; 

Bakirtzi et al., 2014).The interplay between myenteric neurons and immunocytes may be 

fundamental in the remodeling of the neuronal network in response to a neuromuscular damage 

during gut inflammation. Both myenteric neurons and immunocytes may regulate one another's 

functions by releasing a complex set of cytokines, neurotransmitters and hormones. Neuronal 

activation can lead to degranulation of mast cells and recruitment of neutrophils to the area 

(Lakhan and Kirchgessner, 2010). HA produced by HAS2 in myenteric neurons, may therefore take 

a part in recruiting immunocytes nearby myenteric ganglia during intestinal inflammation. This 

hypothesis is supported by the ability of myenteric ganglia in culture to produce HA “cable-like” 

structures, which confer to HA the ability to attach serum components, such as the heavy chain of 

inter-alpha trypsin inhibitor, which are known to increase the adhesiveness of HA to leukocytes (de 
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la Motte and Kessler, 2015). In microvessel endothelial cells and submucosal smooth muscle cells 

obtained from IBD patients HA cable-like structures, deriving from medium molecular weight HA, 

were shown to recruit mononuclear leukocytes via CD44 receptors (de la Motte, 2011). Further 

fragmentation of HA may sustain the inflammatory response by stimulating inflammatory cytokine 

production by monocytes (de la Motte et al., 2009). 

In conclusion, in this study we provide evidence that myenteric neurons may produce HA which 

retains a homeostatic role by contributing to the formation of an extracellular matrix basal 

membrane enveloping the surface of myenteric ganglia as well as a perineuronal net surrounding 

myenteric neurons. After DNBS-induced colitis this well-organized HA structure is highly altered, 

especially within myenteric ganglia. This alteration is associated with increased neuronal HAS2 

expression and may participate to myenteric neuron derangement underlying changes in motor 

function. We cannot exclude that modulation of HA production during intestinal inflammation may 

ameliorate intestinal motility patterns which represent a remarkable cause of IBD symptoms 

 

5.2 HA is a modulator of the rat small intestine neuromuscular function 

after in vivo I/R injury 

In the second part of this study, functional, morphological and biomolecular analyses demonstrated 

that HA may also influence the neurochemical coding and function of the myenteric neurons after 

an in vivo I/R injury in rats. Several investigations suggest that an intestinal I/R injury has 

detrimental consequences on the ENS structure and function. However, the effects of I/R on enteric 

neurons remain largely to be discovered. The result obtained in this study evidenced that, after I/R 

injury, HA levels within the small intestine muscularis propria significantly increased with respect 

to both controls and sham-operated animals. This change was associated with an increased 

deposition of the GAG both on the surface and in the perineuronal space. Overall, these 

observations are in good agreement with previous reports on the accumulation of HA after 

reperfusion following interruption of blood flow, both in the periphery and in the CNS, suggesting 

that the GAG may have a role in the pathophysiology of the I/R injury (Colombaro et al., 2013; 

Al’Qteishat et al., 2006). Analogously to data obtained in post mortem tissues of patients after an 

ischemic stroke and in the mouse brain after an I/R injury (Lindwall et al., 2013; Al Qteishat et al., 

2006), increased HA deposition in the myenteric plexus of the ischemic/reperfused rat small 

intestine may depend upon an up-regulation of HA synthases, HAS1 and HAS2. This is suggested by 

the increased number of HAS1+ and HAS2+ myenteric neurons as well as by the increased mRNA 
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levels for both proteins in longitudinal muscle myenteric plexus (LMMP) preparations. Increased 

HAS1 mRNA levels in LMMP obtained from sham-operated animals was not reflected by an increase 

in HAS1+ myenteric neurons, possibly owing to the enzyme overexpression in enteric glial cells. This 

hypothesis is in line with the mild inflammatory state, observed in this experimental group. In vivo 

treatment with the HA synthesis inhibitor, 4-methylumbelliferone (4-MU), reduced HA density 

index and HA levels in LMMP preparations more efficaciously in the I/R group than in the control 

and sham-operated groups, suggesting that the I/R-induced HA de novo synthesis was principally 

influenced by administration of the drug. This observation may reflect the ability of 4-MU to 

downregulate HA synthases in I/R conditions (Kultti et al., 2009), as suggested also by the reduction 

of HAS1+ and HAS2+ myenteric neurons and mRNAs. 

In the rat small intestine myenteric plexus, changes of HA deposition after I/R may be associated 

with alterations of the intestinal neuromuscular function. In agreement with previous reports, the 

I/R injury induced a significant slowing of the gastrointestinal transit (Filpa et al., 2017; Ballabeni et 

al., 2002). Treatment with 4-MU aggravated I/R-induced gastrointestinal transit slowing and 

significantly reduced gastric emptying, suggesting that the I/R-induced HA neo-synthesis may 

sustain gastrointestinal motor responses in this pathophysiological condition. Indeed, in the I/R 

group, but not in control neither in the sham-operated group, 4-MU administration was associated 

with alterations in both excitatory and inhibitory NANC transmission, concomitantly with 

alterations of the myenteric plexus neurochemical coding. Such changes do not apparently depend 

upon changes in the inflammatory infiltrate or in the activation of I/R-induced molecular pathways, 

as suggested by the reduced levels of both MPO stained neutrophils and HIF1α mRNA in the I/R 

treated with 4-MU group (Filpa et al., 2017; Kannan et al., 2011). Data obtained on both 

spontaneous and carbachol-induced contractions are in good agreement with previous studies 

showing that, in rats, a transitory occlusion of the superior mesenteric artery followed by 24 hours 

of reperfusion downregulates muscarinic post-junctional contractile responses (Hierholzer et al., 

1999; Ballabeni et al., 2002). The I/R-induced impairment of both basal and pharmacologically-

stimulated longitudinal muscle contractions was unchanged after 4-MU treatment, suggesting that 

HA deposition does not influence post-junctional cholinergic excitatory responses. In the control 

group, 4-MU treatment was associated with an increased contractile efficacy of carbachol, as 

suggested by the significant enhancement of the Emax in the relevant concentration-response 

curve. This data may suggest that modulation of HA synthesis in the small intestine muscularis 

propria may favor either muscarinic receptor recruitment, or may enhance receptor coupling with 

effector systems in smooth muscle cells. Both in the sham-operated and I/R group, TTX-sensitive, 

contractions evoked by increasing EFS frequencies, were significantly lower than in control 
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specimens, indicating that the neuronal component of the excitatory contractile response was 

impaired in both conditions. However, in segments obtained from sham-operated animals, 4-MU 

treatment did not influence the contractile responses to EFS, whereas the drug significantly 

enhanced the response in the I/R group. In this regard, HA may modulate the efficiency of excitatory 

neuronal pathways only in specific pathophysiological conditions, i.e after interruption of blood 

flow followed by reperfusion and not under conditions of mild inflammation, occurring in the sham-

operated group. Several studies suggest that excitatory cholinergic neurons may be particularly 

vulnerable to hypoxic/ischemic insults and there are evidences that hypoxia may preferentially 

depress cholinergic neuronal pathways involved in the intestinal reflexes (Corbett and Lees, 1997; 

Giuliani et al., 2006; Larson and Martins, 1981). In this study the density index of ChAT staining in 

myenteric ganglia was similar in the different experimental groups. However, we cannot exclude 

that functional changes of myenteric cholinergic neurons, i.e alterations of ACh release, may 

underlie changes of EFS excitatory responses with or without 4-MU treatment (Corbett and Lees, 

1997; Giuliani et al., 2006). Modifications of non-cholinergic excitatory neurotransmitter pathways 

may also be involved in the modulation of the EFS response in the different experimental groups. 

Indeed, in the I/R group, the off-contractions observed in NANC conditions, which is mediated by 

tachykinins, such as substance P, was significantly reduced after I/R injury, and was re-established 

to control values after 4-MU treatment. These data strongly support the hypothesis that, in I/R 

conditions, inhibition of HA synthesis by 4-MU may enhance excitatory non-cholinergic 

contractions. 4-MU modulation of the off-NANC contractions during I/R is apparently in contrast 

with the ability of the drug to reduce the I/R-induced enhancement of SP+ myenteric neurons and 

density index. Accordingly, SP release enhances following acute brain ischemia and is critically 

involved in the development of vasogenic edema and neuronal injury (Corrigan et al., 2015; Richter 

et al., 2018). In this study, we cannot exclude that HA contributes to increase SP synthesis and 

expression in myenteric neurons during I/R. Such enhancement may be followed by 

downregulation of NK1 receptors, underlying reduced contractile NANC responses. All these effects 

on the enteric tackykininergic transmission are reversed by 4-MU treatment.  

Intestinal I/R injury is associated with impairment of the NANC inhibitory transmission (Filpa et al., 

2017; Giaroni et al., 2013; Rivera et al., 2011). Accordingly, in this study, a significant reduction of 

rat small intestine NANC-mediated relaxations was observed after in vivo I/R, but not in the sham-

operated group. The on-relaxation in I/R conditions was not influenced by 4-MU treatment, 

remaining downregulated after blockade of HA synthesis. In all experimental groups, sensitivity of 

the NANC relaxation to the non-selective nitric oxide inhibitor, L-NAME, suggests that NO 

represents a major component of the inhibitory response. Indeed, nitrergic neurons seem to be 
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selectively involved in an I/R gut injury and previous studies indicate that both nNOS and iNOS 

expressing myenteric neurons may undergo important changes (Filpa et al., 2017; Filpa et al., 2015; 

Rivera et al., 2009). In small intestine segments obtained from control animals with and without 4-

MU treatment, NANC on-relaxations were insensitive to the iNOS inhibitor, 1400W, reflecting the 

low number of constitutively iNOS expressing myenteric neurons in both groups. A mild 

inflammatory state may account for the enhanced sensitivity to 1400W in sham-operated animals 

with/without 4-MU treatment. In the I/R group, NANC relaxations were significantly reduced by 

1400W, suggesting that iNOS is the main isoform involved in the inhibitory response in this 

condition (Filpa et al., 2017). Accordingly, the number of iNOS+ neurons increased in the rat 

myenteric plexus after I/R, as already demonstrated (Filpa et al., 2017; Giaroni et al., 2013). In the 

I/R group, after 4-MU treatment, the number of iNOS+ myenteric neurons returned to values not 

different from those obtained in controls, suggesting that blockade of HA synthesis may influence 

iNOS expression/activity. These observations are in good agreement with reports on the ability of 

HA to induce iNOS mRNA (Campo et al., 2012). The number of nNOS+ myenteric neurons was similar 

in all experimental group. However, as previously described, important morphological alterations 

were observed in nNOS+ neurons, with increased total neuron area, which persisted after 4-MU 

treatment. These functional and morphological data, suggest that during and I/R injury, HA may 

sustain nitrergic relaxations, mainly via iNOS, but not nNOS, regulation. In addition, alternative 

inhibitory neurotransmitter pathways, comprising purines and peptides may sustain the on-

relaxation during I/R (Furness et al., 2014). In view of its vasodilatory, neuroprotective and 

antioxidant properties, one of these neurotransmitters may be represented by vasoactive intestinal 

peptide (VIP), which is involved in the rearrangement of myenteric neurons during I/R injury (Borges 

2016; de Silva de Souza, 2015).  

In conclusion, these data suggest that HA sustains the efficiency of the gastrointestinal transit 

during an I/R injury influencing both the excitatory and inhibitory components of the peristaltic 

reflex. In this condition, after blockade of HA synthesis excitatory neuronal pathways, mainly 

tachykinergic, are up-regulated, while inhibitory responses remain downregulated, overall 

deteriorating transit efficiency. The beneficial effects of HA may depend upon the ability of the I/R-

induced neoformed GAG to maintain the neuronal structure and function of myenteric neuronal 

pathways in these pathological conditions. 
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