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1
Introduction

1.1 Motivation

Deep learning has remarkably improved the state-of-the-art speech recognition, visual

object detection, object recognition and text processing tasks [1]. Majority of these tech-

niques focused on unimodality (images, text, speech, etc.), however, real-world scenarios

present data in a multimodal fashion – we see objects, listen sounds, feel texture, smell

odours and taste flavours. Multimodality refers to the fact that the real-world concepts

can be described by multiple modalities. Moreover, recent years has seen an explosion

in multimodal data on the web. Typically, users combine text, image, audio or video

to sell a product over an e-commence platform or express views on social media. It is

well-known that multimodal data may provide enriched information to capture a par-

ticular “concept” than single modality [2]. For example, Figure 1.1 shows two adverts

typically available on an e-commerce platform, where two visual objects have seemingly

similar captions in the first row but dissimilar images. On the second row, we have two

different captions but seemingly similar images in the second row. Typically, such sce-

narios are faced in multimodal classification. Similarly, Figure 1.2 shows two examples

of multimodal data collected from a social media platform. If we consider only the text

descriptions, entities may be wrongly labelled. Therefore, visual context is beneficial

to resolve ambiguities. In addition, various modalities generally carry different kinds of

information that may provide enrich understanding; for example, the visual signal of a

flower may provide happiness; however, its scent might not be pleasant. Multimodal

information may be useful to make an informed decision.

1
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Figure 1.1: In the top row, an example of ambiguous text descriptions that can be dis-

ambiguated with the analysis of the accompanying images. In the bottom row, examples

of ambiguous images that can be disambiguated with the analysis of the associated text

descriptions. Generally, e-commerce platforms have such ambiguous examples.
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(a) My daughter got 1 place in

[Apple valley LOC] Tags gymnas-

tics.

(b) Apple ORG] ’s latest [iOS

OTHERS] update is bad for ad-

vertisers.

Figure 1.2: Two NER multimodal examples show how some entities in the text can be

correctly tagged in combination with visual information. Looking only at the text, the

word Apple is ambiguous in the text description on the left because it can be interpreted

as Location (LOC) or as Organization (ORG).

It is therefore important to perform multimodal learning to understand the web and

the world around us. We cannot afford to have a single model for every concept. How-

ever, it is challenging to interpret various modalities together because each modality has

a different representation and correlational structure. For example, the text is typically

represented as discrete sparse word count vectors whereas an image is represented using

dense and real-value features. It is therefore difficult to capture cross-modal interac-

tions between modalities than intra-modal interactions among the same modality. It

is interesting to note that the input data from multiple modalities may contain struc-

ture however, it is challenging to discover the highly non-linear relationships that exist.

Moreover, the data may contain noise along with missing values at the input. Therefore,

meaningful representation should be extracted from multiple modalities to learn joint

representations for multimodal applications. Srivastava and Salakhutdinov [3] identify

the following desirable properties for good multimodal representations.

– It is challenging to obtain joint representation because multiple modalities data

may be heterogeneous. It is therefore important that the joint representation

should be meaningful and complement the corresponding “concepts” at the input

level.

– The joint representation form various modalities provides more information than

the representation from individual modalities however, modalities in real-world

scenarios may be missing. It is therefore important that the model provides mean-

ingful representation in such situations.
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– The missing modalities in some case should be fill-in with the help of observed one.

– Typically, the extracted representation is employed in various applications includ-

ing cross-modal verification and retrieval. It is therefore important that the ex-

tracted representation should be discriminative for improved performance.

In recent years, the combination of various modalities has been extensively studied

to solve various tasks including classification [4, 5, 6], cross-modal retrieval [7] seman-

tic relatedness [8, 9], Visual Question Answering [10, 11], image captioning [12, 13],

multimodal named entity recognition [14, 15, 16, 17].

1.2 Challenges

This doctoral thesis identifies and explores the following core technical challenges con-

cerning multimodal representation and learning. Besides, we focus on three modalities

including text, audio and visual signals for various multimodal applications such as

classification, cross-modal retrieval and verification on benchmark datasets.

– The first fundamental challenge is learning how to represent and summarize multi-

modal data to exploit meaningful information from individual modality. However,

the heterogeneity nature of multimodal data makes it difficult to construct joint

representation. For example, language is often symbolic, while audio and visual

modalities are represented as signals.

– The second challenge is to join information from multiple modalities to perform

various tasks. For example, for audio-visual speech verification, the visual de-

scription of the face is fused with the audio signal to verify if audio and face image

belongs to the same identity or not. The information coming from multiples modal-

ities may have different predictive power, with possibly missing information in at

least one of the modalities. In other words, the joint representation should have

discriminative power to be employed for various tasks.

The unimodal representations have been extensively studied [18, 19]. In recent years,

there is a paradigm shift in unimodal representations from hand-crafted for particular

applications to data-driven representations. For example, visual descriptors learned from

data using neural architectures such as Convolutional Neural Networks (CNNs) have

outperformed hand-craft descriptors, namely the scale invariant feature transform [20].

Therefore, representations will be extracted from CNNs in accordance with guidelines

from Bengio et al. [18] for unimodal representations and Srivastava and Salakhutdinov [3]

for multimodal representations.



1.3 Contributions 5

1.3 Contributions

In a multimodal approach, typically, data is obtained from various modalities and repre-

sentation for a particular modality is extracted. In this doctoral thesis, representations

from individual modalities are improved to extract enhanced representations. These

contributions are listed as follow:

– In Chapter 2, “visual word embedding scheme” is presented to transform word

embedding to visual space. The aim of the approach is to employ state-of-the-art

image classification models for text classification. The visual word embedding

is evaluated against state-of-the-art text classification methods on 8 benchmark

datasets. The work results in the following publications:

1. Shah Nawaz, Alessandro Calefati, Ignazio Gallo. Visual Word Embedding for

Text Classification. Submitted: Journal of Machine Vision and Applications

2019.

2. Ignazio Gallo, Shah Nawaz, Alessandro Calefati. Semantic Text Encoding for

Text Classification using Convolutional Neural Networks. In 2017 14th IAPR

International Conference on Document Analysis and Recognition (ICDAR)

(Vol. 5, pp. 16-21). IEEE.

– In Chapter 3, multimodal framework named “deep latent space representa-

tions” is presented for cross-modal retrieval, matching and verification. The frame-

work is coupled with a single stream network to bridge the gap between multiple

modalities (text/image and audio/image) without needing a separate network for

each modality. It is interesting to note that the text embedding in the multimodal

framework is extracted from “visual word embedding scheme”. In addition,

the visual word embedding helped to employ single stream network because rep-

resentations from text and the visual signal is extracted with the same neural

network. The cross-modal retrieval application is evaluated against state-of-the-

art methods on a benchmark dataset named MSCOCO. Similarly, the cross-modal

matching verification application is evaluated on VoxCeleb benchmark dataset that

includes audio and visual information. This work results in the following publica-

tions covering cross-modal retrieval and verification applications evaluated aganist

state-of-the-art works:

1. Shah Nawaz, Muhammad Kamran Janjua, Ignazio Gallo, Arif Mehmood,

Alessandro Calefati. Deep Latent Space Learning for Cross-modal Mapping

of Audio and Visual Signals. In Digital Image Computing: Techniques and

Applications 2019.
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2. Shah Nawaz, Muhammad Kamran Janjua, Alessandro Calefati, Ignazio Gallo

and Arif Mehmood. Do Cross-Modal Systems Leverage Semantic Relation-

ships? In International Conference on Computer Vision Workshop 2019.

– In Chapter 4, “deep fused representations framework” is presented for multi-

modal classification. The multimodal representation is obtained by fusing “visual

word embedding” and visual signals. Finally, the information enriched (fused)

image is classified with single stream state-of-the-art image classification model.

The proposed approach is evaluated against state-of-the-art methods on three

benchmark multimodal datasets including Ferramenta, UPMC Food 101 and Ama-

zon Product Data. This work results in the following publication:

1. Shah Nawaz, Alessandro Calefati, Muhammad Kamran Janjua, Muhammad

Umer Anwaar, Ignazio Gallo. Learning Fused Representations for Large Scale

Multimodal Classification. In IEEE Sensors Letters 2018.

– In Chapter 5, an “inwardly scale feature representations” in proportion to

projecting them onto a hypersphere manifold for discriminative analysis is pre-

sented. The proposed approach will render similar instances closer while dissimilar

instances distant. For this purpose, an inward scaling layer is paired with different

deep network architectures. Extensive experiments are performed on multitude

of datasets to establish the empirical gain achieved with the purposed method on

image classification and retrieval. Comparison with current state-of-the-art tech-

niques demonstrated the excellent performance of the purposed method.

– In Chapter 6, a new handwritten dataset named “Urdu-Characters” with set

of classes suitable for deep metric learning is created. The performance of two

state-of-the-art deep metric learning methods i.e. Siamese and Triplet network,

is compared. We show that a Triplet network is more powerful than a Siamese

network. In addition, we show that the performance of a Triplet or Siamese network

can be improved using the most powerful underlying Convolutional Neural Network

architectures. This work results in the following publication:

1. Shah Nawaz, Alessandro Calefati, Nisar Ahmed Rana, Ignazio Gallo. Hand

Written Characters Recognition via Deep Metric Learning. In 13th IAPR

International Workshop on Document Analysis Systems (DAS), pp. 417-422.

IEEE, 2018.

In Chapter 2, 5 and 6, representations from individual modalities are discussed which

in turn are employed in two multimodal frameworks for classification, cross-modal re-

trieval and verification in Chapter 3 and 4.



2
Visual Word Embedding for Text

2.1 Introduction

Text classification is a common task in Natural Language Processing. Its goal is to

assign a label to a text document from a predefined set of classes. In recent years,

CNNs have remarkably improved performance in image classification [21, 22, 23] and

researchers have successfully transferred this success into text classification [24, 25]. Im-

age classification models [21, 23] are adapted to accommodate text [26, 24, 25]. We,

therefore, leverage on the recent success in image classification and present a novel text

classification approach to cast text documents into visual domain to categorize text with

image classification models. Our approach transforms text documents into encoded im-

ages or visual embedding capitalizing on Word2Vec word embedding. Word embedding

models [27, 28, 29] for text classification convert words into vectors of real numbers.

Typically word embedding models are trained on a large corpus of text documents to

capture semantic relationships among words. Thus, these models can produce similar

word embeddings for words occurring in similar contexts. We exploit this fundamental

property of word embedding models to transform a text document into a sequence of

colors (visual embedding), obtaining an encoded image, as shown in Figure 2.1. In-

tuitively, semantically related words obtain similar colors or encodings in the encoded

image while uncorrelated words are represented with different colors. Interestingly, these

visual embeddings are recognized with state-of-the-art image classification models.

We present a text classification approach to transform word embedding of text doc-

uments into the visual domain. We evaluated the method on several large scale datasets

7
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Figure 2.1: We exploited a well-known property of word embedding models: semanti-

cally correlated words obtain similar numerical representation. It turns out that if we

interpret real-valued vectors as a set of colors, it is easy for a visual system to cope with

relationships between words of a text document. It can be observed that green colored

words are related to countries, while other words are represented with different colors.

obtaining promising and, in some cases, state-of-the-art results.

2.2 Related Work

Deep learning methods for text documents involved learning word vector representations

through neural language models [27, 28]. These vector representations serve as a founda-

tion of our work where word vectors are transformed into a sequence of colors or visual

embedding. Image classification model is trained and tested on these visual embeddings.

Kim [26] proposed a simple shallow neural network with one convolution layer followed

by a max pooling layer over time. The final classification is performed with one fully con-

nected layer with drop-out. The work in [24] presented rather deep convolutional neural
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network for text classification. The network is similar to the convolutional network in

computer vision [21]. Similarly, Conneau et al. [25] presented a deep architecture that

operates at character level with 29 convolutional layers to learn hierarchical representa-

tions of text. The architecture is inspired by recent progress in computer vision [30, 31].

In our work, we leverage on recent success in computer vision, but instead of adapting

the deep neural network to be fed with raw text information, we propose an approach

that transforms word embedding of text documents into encoded text. Once we have

encoded text, we can apply state-of-the-art deep neural architectures used for image

classification. We compared our proposed approach with deep learning models based on

word embedding and lookup tables along with the method proposed in [24] and [25, 32]

using the same datasets. In Section 2.5, experimental results of our proposed approach

are shown, highlighting that, in some cases, it overtakes state-of-the-art results while in

other cases, it obtains comparable results.

2.3 Proposed Approach

In this section, we present our approach to transforming Word2Vec word embedding

into the visual domain. In addition, we explained the understanding of CNNs with the

propose approach.

2.3.1 Encoding Scheme

The proposed encoding approach is based on Word2Vec word embedding [27]. We encode

a word tk belonging to a document Di into an artificial image of size W × H. The

approach uses a dictionary F (tk, vk) with each word tk associated with a feature vector

vk(tk) obtained from a trained version of Word2Vec word embedding model. Given

the word tk, we obtained a visual word t̂k having width V that contains a subset of a

feature vector, called superpixels. A superpixel is a square area of size P × P pixels

with a uniform color that represents a sequence of contiguos features (vk,j , vk,j+1, vk,j+2)

extracted as a sub-vector of vk. A graphical representation is shown in Fig. ??. We

normalize each component vk,j to assume values in the interval [0 . . . 255] with respect

to k, then we interpret triplets from feature vector vk as RGB sequence. For this very

reason, we use feature vector with a length multiple of 3.

The blank space s around each visual word t̂k plays an vital role in the encoding

approach. We found out that the parameter s is directly related to the shape of a visual

word. For example, if V = 16 pixels, then s must also have a value close to 16 pixels to

let the network understand where a word ends and another begins.
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Figure 2.2: In this example, the word “pizza” is encoded into a visual word t̂k based

on Word2Vec feature vector with length 15. This visual word can be transformed into

different shapes, varying the V parameter (in this example V = 2, 3, 6 superpixels).

2.3.2 Encoding Scheme with CNN

It is well understood that a CNN can learn to detect edges from image pixels in the first

layer, then use the edges to detect trivial shapes in the next layer, and then use these

shapes to infer more complex shapes and objects in higher layers [33]. Similarly, a CNN

trained on our proposed visual embedding may extract features from various convolu-

tional layers (see example in Fig. 2.4). We observed that the first convolutional layer

recognizes some specific features of visual words associated to single or multiple superpix-

els. The remaining CNN layers aggregate these simple activations to create increasingly

complex relationships between words or parts of a sentence in a text document.

To numerically illustrate this concept, we use the receptive field of a CNN. The

receptive field r is defined as the region in the input space that a particular CNN feature

is looking at. For a convolution layer of a CNN, the size r of its receptive field can be

computed by the following formula:

rout = rin + (k − 1) · jin (2.1)

where k is the convolution kernel size and j is the distance between two consecutive

features. We can compute the size of the receptive field of each convolution layer using

the formula in Eq. 2.1. For example, the five receptive field of an AlexNet, showed in

Fig. 2.3, have the following sizes: conv1 11 × 11, conv2 51 × 51, conv3 99 × 99, conv4

131 × 131 and con5 163 × 163. This means that the conv1 of an AlexNet, recognizes

a small subset of features represented by superpixels, while the conv2 can recognize a

visual word (depending on the configuration used for the encoding), up to the con5 layer

where a particular feature can simultaneously analyze all the visual words available in

the input image.
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Figure 2.3: The receptive fields of the five convolution layers of an AlexNet. Each

receptive field is cut from a 256×256 image to analyze the quantity of visual words that

each conv layer is able to analyze on each pixel of its feature map.

conv1 conv2 conv3 conv4 conv5

Figure 2.4: An example of five feature maps (conv1,. . . , conv5) displayed over the input

image of the DBPedia dataset. In this particular example images are encoded with 12

Word2Vec features and 16 pixels of space between visual words. The convolutional map

generated by the conv1 layer shows activations of individual superpixel or sequence of

superpixels, while other convolutional layers show larger activation areas affecting more

visual words.



12 Visual Word Embedding for Text

Figure 2.5: Five different sizes of encoded image (100×100, 200×200, 300×300, 400×400,

500× 500) obtained using the same document belonging to the 20news-bydate dataset.

All images use the same encoding with 24 Word2Vec features, space s = 12, superpixel

size 4 × 4. It is important to note that the two leftmost images cannot represent all

words in the document due to the small size.

2.4 Datasets

Zhang et al. [24] introduced several large-scale datasets which covers several text clas-

sification tasks such as sentiment analysis, topic classification or news categorization.

In these datasets, the number of training samples varies from several thousand to mil-

lions, which is considered ideal for deep learning based methods. In addition, we used

the 20news-bydate dataset to test various parameters associated with the encoding ap-

proach. A summary of the statistics for each dataset is listed in Table 2.1.

Table 2.1: Statistics of 20news-bydate and large-scale datasets presented in Zhang et

al. [24]. The 2 rightmost columns show the average (Avg) and standard deviation (Std)

for the number of words contained in text documents.

Dataset Classes Training Test Avg Std

20news-bydate 4 7,977 7,321 339 853

AG’s News 4 120,000 7,600 43 13

Sogou News 5 450,000 60,000 47 73

DBPedia 14 560,000 70,000 54 25

Yelp Review Polarity 2 560,000 38,000 138 128

Yelp Review Full 5 650,000 50,000 140 127

Yahoo! Answers 10 1,400,000 60,000 97 105

Amazon Review Full 5 3,000,000 650,000 91 49

Amazon Review Polarity 2 3,600,000 400,000 90 49



2.5 Experiments and Results 13

Figure 2.6: Five encoded images obtained using different Word2Vec features length and

using the same document belonging to the 20news-bydate dataset. All the images are

encoded using space s = 12, superpixel size 4×4, image size = 256×256 and visual word

width V = 16. The two leftmost images contain all words in the document encoded with

12 and 24 Word2Vec features respectively, while 3 rightmost encoded images with 36,

48 and 60 features length cannot encode entire documents.

2.5 Experiments and Results

The aim of these experiments is as follow: (i) to evaluate configuration parameters

associated with the encoding approach; (ii) to compare the proposed approach with

other deep learning methods.

In experiments, percentage error is used to measure the classification performance.

The encoding approach mentioned in Section 2.3.1 produces encoded image based on

Word2Vec word embedding. These encoded images can be used to train and test a CNN.

We used AlexNet [21] and Googlenet [22] architectures as base models from scratch. We

used a publicly available Word2Vec word embedding with default configuration parame-

ters as in [27] to train word vectors on all datasets. Normally, Word2Vec is trained on a

large corpus and used in different contexts. However, in our work, we trained this model

with the same training set for each dataset.

2.5.1 Parameters Setting

We used 20news-bydate dataset to perform a series of experiments with various settings

to find out the best configuration for the encoding scheme.

In our first experiment, we changed the space s among visual words and Word2Vec

feature length to identify relationships between these parameters. We obtained a lower

percentage error with higher values of s parameter and higher number of Word2Vec

features as shown in Table 2.2. We observed that the length of feature vector vk(tk)

depends on the nature of the dataset. For example in Fig. 2.6, a text document composed

of a large number of words cannot be encoded completely using high number of Word2Vec

features, because each visual word occupies more space in the encoded image. Moreover,

we found out that error does not decrease linearly with the increase of Word2Vec features,

as shown in Table 2.3.
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Table 2.2: Comparison between CNNs trained with different configurations on our

proposed approach. The width V (in superpixels) of visual words is fixed while the

Word2Vec encoding vector size and space s (in pixel) varies. H is the height of visual

word obtained.

s V H w2v feat. error (%)

4 4 1 12 7.63

8 4 1 12 5.93

12 4 1 12 4.45

16 4 1 12 4.83

4 4 2 24 6.94

8 4 2 24 5.60

12 4 2 24 5.15

16 4 2 24 4.75

4 4 3 36 6.72

8 4 3 36 5.30

12 4 3 36 4.40

16 4 3 36 4.77
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(a) Classification error using data augmentation: (mirror and crop) over the 20news-bydate test

set.
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Figure 2.8: On the left, five different designs for visual words (VW ) represented by 36

Word2Vec features, over the 20news-bydate dataset. The width V of these words is 4 for

the first two on the top and 6 for the rest. The first four visual words consist of super

pixels with different shapes to form particular visual words. On the right, a comparison

over these different shapes of visual words.

We tested various shapes for visual words before selecting the best one, as shown

in Fig. 2.8 (on the left). We showed that the rectangular shaped visual words obtained

higher perforance as highlighted in Fig. 2.8 (on the right). Moreover, the space s between

visual words plays an important role in the classification, in fact using a high value for the

s parameter, the convolutional layer can effectively distinguish among visual words, also

demonstrated from the results in Table 2.2. The first level of a CNN (conv1 ) specializes

convolution filters in the recognition of a single superpixel as shown in Fig. 4.3. Hence,

it is important to distinguish between superpixels of different visual words by increasing

the parameter s.

These experiments led us to the conclusion that we have a trade-off between the

number of Word2Vec features to encode each word and the number of words that can be

represented in an image. In fact, increasing the number of Word2Vec features increases

the space required in the encoded image to represent a single word. Moreover, this

aspect affects the maximum number of words that may be encoded in an image. The

choice of this parameter must be done considering the nature of the dataset, whether it

is characterized by short or long text documents. For our experiments, we used a value

of 36 for Word2Vec features, considering results presented in Table 2.3.

2.5.2 Data Augmentation

We encode the text document in an image to exploit the power of CNNs typically used in

image classification. Usually, CNNs use “crop” data augmentation technique to obtain

robust models in image classification. This process has been used in our experiments and

we showed that increasing the number of training samples by using the crop parameter,
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Table 2.3: Comparison of different parameters over the 20news-bydate dataset. In the

leftmost table we changed the size of the encoded image from 100 × 100 to 500 × 500

and the crop size is also changed by multiplying the image size with a constant i.e. 1.13.

Here sp stands for superpixel, w2v is for number of Word2Vec features, Mw stands for

Max number of visual words that an image can contain and #w is the number of text

documents in the test set having a greater number of words than Mw. We fixed the

remaining non-specified parameters as follow: s = 12, V = 4, sp = 4, image size= 256.

image size crop error

500x500 443 8.63

400x400 354 9.30

300x300 266 10.12

200x200 177 10.46

100x100 88 15.70

sp error

5x5 8.96

4x4 8.87

3x3 10.27

2x2 10.82

1x1 10.89

stride error

5 8.7

4 8.87

3 8.33

2 7.78

1 12.5

w2v Mw #w error

12 180 50% 9.32

24 140 64% 8.87

36 120 71% 7.20

48 100 79% 8.21

60 90 83% 20.66

results are improved. More precisely, during the training phase, 10 random 227 × 227

crops are extracted from a 256×256 image (or proportional crop for different image size,

as reported in the leftmost Table 2.3) and then fed to the network. During the testing

phase we extracted a 227 × 227 patch from the center of the image. It is important to

note that thanks to the space s introduced around the encoded words, the encoding of

a text document in the image is not changed by cropping. So, cropping is equivalent to

producing many images with the same encoding but with a shifted position.

The “stride” parameter is very primary in decreasing the complexity of the network,

however, this value must not be bigger than the superpixel size, because larger values can

skip too many pixels, which leads to information lost during the convolution, invalidating

results.

We showed that the mirror data augmentation technique, successfully used in im-

age classification, is not recommended here because it changes the semantics of the

encoded words and can deteriorate the classification performance. Results are presented

in Fig. 2.7a.

2.5.3 Encoded Image Size

We used various image sizes for the encoding approach. Fig. 2.5 shows artificial images

built on top of Word2Vec features with different sizes. As illustrated in Table 2.3,

percentage error decreases by increasing the size of an encoded image; however, we

observed that sizes above 300× 300 is computationally intensive; hence, this lead us to

chose an image size of 256×256, typically used in AlexNet and GoogleNet architectures.
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Table 2.4: Testing error of our encoding approach on 8 datasets with Alexnet and

GoogleNet.

Model AG Sogou DBP. Yelp P. Yelp F. Yah. A. Amz. F. Amz. P.

Xiao et al. [32] 8.64 4.83 1.43 5.51 38.18 28.26 40.77 5.87

Zhang et al. [24] 7.64 2.81 1.31 4.36 37.95 28.80 40.43 4.93

Conneau et al. [25] 8.67 3.18 1.29 4.28 35.28 26.57 37.00 4.28

Encoding scheme + AlexNet 9.19 8.02 1.36 11.55 49.00 25.00 43.75 3.12

Encoding scheme + GoogleNet 7.98 6.12 1.07 9.55 43.55 24.10 40.35 3.01

Table 2.5: Percentage errors on 20news-bydate dataset with three different CNNs.

CNN architecture error

Encoding scheme + AlexNet 4.10

Encoding scheme + GoogleNet 3.81

Encoding scheme + ResNet 2.95

2.5.4 Comparison with Other State-of-the-art Text Classification Meth-

ods

We compared our approach with several state-of-the-art methods. Zhang et al. [24]

presented a detailed analysis between traditional and deep learning methods. From their

work, we selected best results and reported them in Table 2.4. In addition, we compared

our results with Conneau et al. [25] and Xiaoet al. [32] . We obtained state-of-the-art

results on DBPedia, Yahoo Answers! and Amazon Polarity datasets, while comparative

results on AGnews, Amazon Full and Yelp Full datasets. However, we obtained higher

error on Sogou dataset due to the translation process [24].

It is interesting to note that the works in [24, 25] are text adapted variants of con-

volutional neural networks [21, 31] developed for computer vision. Therefore, we obtain

similar results to these works. However, there is a clear performance gain compared to

the hybrid of convolutional and recurrent networks [32].

2.5.5 Comparison with State-of-the-art CNNs

We obtained better performance using GoogleNet, as expected. We therefore believe

that recent state-of-the-art network architectures, such as Residual Network would fur-

ther improve the performance of our proposed approach. To work successfully with large

datasets and powerful models, a high-end hardware and large training time are required,

thus we conducted experiments only on 20news-bydate dataset with three network archi-

tectures: AlexNet, GoogleNet and ResNet. Results are shown in Table 2.5. We achieved

better performance with powerful network architecture.



18 Visual Word Embedding for Text

2.6 Conclusion

We presented a novel text classification approach to transform Word2Vec word embed-

ding of text documents into encoded images to exploit CNNs models for text classi-

fication. In addition, we presented a detailed study on various parameters associated

with the encoding scheme. We obtained state-of-the-art results on some datasets while

in other cases our approach obtained comparative results. We showed that the CNN

model generally used for image classification is successfully employed for text classifica-

tion. As shown in the experiment section, the trend in results clearly show that, we can

further improve results with more recent and powerful deep learning models for image

classification.



3
Learning Deep Latent Space Representations

3.1 Introduction

The recent success in various computer vision tasks including visual object classifica-

tion [21, 22] and speech recognition [34], demonstrated that representations play a crucial

role in the performance of machine learning models. Bengio et al. [18] pointed out some

of the properties of good representations including smoothness, temporal and spatial co-

herence, sparsity, and natural clustering. In last decade, there has been a paradigm shift

in representations from hand crafted to convolutional neural networks based representa-

tions. Moreover, Razavian et. al [35] showed that CNNs based representations are more

powerful than hand crafted on various image recognition tasks. Similarly, CNNs based

word embeddings or representations [36] in natural language processing have replaced

text representations developed on counting word occurrences. Furthermore, good multi-

modal representations are important for the improved performance of machine learning

models. CNNs have become a de facto method to extract representation from unimodal

modality [18]. and are extensively employed to represent audio, textual and visual data.

In addition, these CNNs are increasingly used in the multimodal domain [37, 38, 39].

Recent years have seen a surge in tasks based on multimodal tasks including classi-

fication [4, 5, 6], semantic relatedness [8, 9], Visual Question Answering [10, 11], mul-

timodal named entity recognition [14, 15, 16, 17], cross-modal retrieval [7, 40] and ver-

ification [41, 42]. In the existing systems, neural network based mappings have been

commonly used to bridge the gap between multiple modalities in building a joint repre-

sentation of each modality [43, 44]. Typically, separate networks are trained to predict

19
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features of each modality and a supervision signal is employed to reduce the distance be-

tween modalities [7, 40, 41, 42, 45, 46, 47, 48]. In addition, these works require pairwise

or triplet selection at the input for training. Though by using separate networks in pairs

or triplets, these systems were able to achieve good performance, however, they incur

significant memory overheads. In many modern applications such as mobile devices,

memory is a scarce resource therefore less memory demanding systems are required.

Furthermore, both pairwise and triplet based systems suffer fromata expansion when

constituting the sample pairs or sample triplets from the training set.

To address these issues, we introduced a deep latent space representations coupled

with a single stream network (SSNet) to merge multiple modalities (text/image and

audio/image) without needing a separate network for individual modality. We propose

a loss function inspired from [49] as a supervision signal to map multiple modalities

“nearer” to each other in the shared latent space. As a result, the proposed framework

does not require complex recombination at the input. Figure 3.1 shows a generic illustra-

tion of existing systems along with the proposed framework. We employed the proposed

framework in three cross-modal tasks including retrieval, matching and verification using

benchmark datasets.

3.2 Related Work

Several works in the field of multimodal representation and learning have been proposed

over recent years. Although each multimodal task is different from others, the underlying

principle is relatively the same: to achieve semantic multimodal alignment. In this

section we explore the related literature under different subsections.

One of the classical approaches towards image-text embedding is Canonical Cor-

relation Analysis (CCA) [50]. The method finds linear projections that maximize the

correlation between modalities. Works such as [51, 52] incorporate CCA to map rep-

resentations of image and text to a common space. Although it is rather a classical

approach, the method is efficient enough. Recently, deep CCA has also been employed

to the problem of obtaining a joint embedding for multimodal data [53]. However, the

major drawback is that using CCA it is computationally expensive i.e. it requires to

load all data into memory to compute the covariance score.

Deep metric learning based approaches have shown promising results on various

computer vision tasks. Metric learning to multimodal tasks requires within-view neigh-

borhood preservation constraints which is explored in several works [54, 55, 56]. Triplet

networks [57, 58] along with Siamese networks [59, 60] have been used to learn a sim-

ilarity function between two modalities. However, most of these techniques [7, 42, 40]

require separate networks for each modality which increase the computational complex-

ity of the whole process significantly. Furthermore, these networks suffer from dramatic
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Figure 3.1: The proposed cross-modal framework (c) based on single stream network

and a novel loss function to embed both modalities in the same latent space, compared

with a Siamese network (a) and a Triplet network (b). In (c) the single stream network

extracts the representation from both modalities while the loss function learns to bridge

the gap between them.

data expansion at the input while creating sample pairs and triplets from training set.

Many different multimodal approaches employ some kind of ranking loss function as

a supervision signal. Works presented in [61, 62] employ a ranking loss which penalizes

when incorrect description is ranked higher than the correct one. Similarly, the ranking

loss can be employed in bi-directional fashion where the penalty is based on retrieval of

both modalities.

Jointly representing multiple modalities on a common space can also be employed

for classification purposes. Work in [63] employs classification loss along with two neural

networks for both modalities (text and image) for zero-shot learning. Work in [64]

employs attention-based mechanism to estimate the probability of a phrase over different

region proposals in the image. In nearly every visual question answering (VQA) method,

separate networks are trained for image and text; however, [65] treats the problem as a

binary classification problem by using text as input and predicting whether or not an

image-question-answer triplet is correct using softmax.

In the current chapter, we extract representation from multiple modalities with a sin-

gle stream network instead of two branch network without pairwise or triplet information

at the input.

3.3 The Proposed Framework

The proposed framework reduces the gap between multiple modalities. The approach

eliminates the need for multiple networks for each modality, since representation can

be extracted with a single stream network. Figure 4.2(c) shows the proposed model.
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The details of the proposed approach are presented in the following subsections. In

Subsection 3.3.1, 3.3.2 and 3.3.3, we explain various mechanisms employed to extract

the representations of text, audio and image modalities. While Subsection 3.3.4 provides

details of the single stream network along with the objective function to bridge the gap

between various modalities.

3.3.1 Encoding Text Descriptions

Semantics plays a crucial role to understand the meaning of a text description. Humans

can understand semantics easily, however the same performed automatically becomes

a challenging task. Word2Vec word embedding [36] takes one step towards mathemat-

ically representing the semantic relationships between words. Its objective function

causes words that occur in a similar context to have similar word embedding. We pro-

pose presented an encoding scheme exploiting Word2Vec to reconstruct the semantics

associated with a text description as an image [66]. We employ this encoding scheme to

encode text descriptions as images and use these encoded text images as input to the

neural networks originally developed for image input. We explain the encoding scheme to

transform a text description into an image in Figure 3.2. The encoding scheme extracts

the Word2Vec emdedding of a word, then normalize each component to assume values in

the interval [0 . . . 255]. Finally, the normalized values are interpreted in triplets as RGB

sequence. This encoding scheme enabled us to use a single stream network for both text

to image and image to text retrieval. The single stream network based cross-modal re-

trieval has potential for memory efficient and computationally-inexpensive applications

on low powered devices.

3.3.2 Audio Signals

In addition to the encoded text input, audio signals are also fed to the network. The

encoded audio signals are short term magnitude spectrograms generated directly from

raw audio of length three seconds. The audio stream is extracted, converted to a single

channel at 16 kHz sampling rate, spectrograms are then generated in a sliding window

fashion using a hamming window [67, 41]. The generated spectrograms are used as

input to a standard neural network.

3.3.3 Visual Signals

The input to the proposed single stream network consists of three channel (RGB) image.

Other modalities (audio and text) are transformed into similar visual signals through en-

coding schemes mentioned earlier in Subsection 3.3.1 and 3.3.2. These encoding schemes

are extremely helpful to employ the the single stream network.
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Figure 3.2: The word “tablet” is encoded into an image using Word2Vec encoding with

vector length 15. Consecutive words in the text descriptions are encoded as image

preserving relative position of each word. Note that words that occur in similar context

will have similar embedding, thus the encoding will be similar in color space. (Best

viewed in color)

3.3.4 The Single Stream Network

The deep latent space representation and learning framework coupled with a single

stream network extracts features from multiple modalities to minimize intra and cross

modality variations. Suppose there are ns samples of a modality associated with ni

samples of second modality in a class c. Data from both modalities is input to the

network and ns+ni feature vectors fc are obtained at the output of the network. During

training, geometric centers of ns + ni feature vectors is computed and the objective

function consisting of the distance d of each feature vector from the center, is minimized

for all the classes.

d(fc) =

ns+ni
∑

i=1

‖ f i − 1

ns + ni

ns+ni
∑

j=1

f j ‖22 (3.1)

Thus, during the training phase, data from both modalities is treated in similar

fashion and the proposed single stream network can effectively bridge the gap between

two modalities removing the need of multiple networks. In the implementation, instead

of using the traditional loss functions, we extend center loss for learning deep latent space

jointly trained with softmax loss [49]. This loss function simultaneously learns centers for

all classes and minimizes the distances between each center and the associated samples

from both modalities. It thus imposes neighborhood preserving constraint within each

modality as well as across modalities. If there are n classes in a mini batch M with m

samples, the loss function is given by

L(M) = −
m
∑

i=1

log
e
WT

yi
f i+byi

∑n
j=1 e

WT
j f i+bj

+
λ

2

n
∑

c=1

d(fc) (3.2)
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Image Text Description

– A few deer and a zebra on a grass field.

– A few gazelles near a zebra in a field.

– A bunch of animals that are in some grass.

– The zebra is standing near four brown deer.

– Some gazelle and a zebra standing in a field.

Figure 3.3: A random example taken from MSCOCO dataset. The dataset consists of

samples made of an image and 5 representative text descriptions.

In Eq. 3.2, f i ∈ R
d denotes the i -th deep feature, belonging to the yj-th class. d is

the feature dimension. Wj ∈ R
d denotes the j -th column of the weights W ∈ R

d×n is the

last fully connected layer and b ∈ R
n is the bias term. A scalar λ is used for balancing

the two loss functions. The conventional softmax loss can be considered as a special case

of this joint supervision, if λ is set to 0 [49].

This loss function minimizes the variation between the two modalities and effectively

preserves the neighborhood structure. In this way, modalities which do not belong to

the same class do not occur in the same neighborhood. The proposed framework is

generic and an appropriate deep network can be employed to extract representations

from both modalities. In the implementation, InceptionResNet-V1 is used as a single

stream network for joint embedding of two modalities (text/image or audio/image).

3.4 Experiments

We perform series of experiments on various tasks consisting of cross-modal retrieval,

matching and verification to evaluate the embedding learned by the single stream net-

work under the proposed framework. The experimental setup and dataset details are

explained below.

3.4.1 Datasets

We evaluate the proposed framework on two publicly available benchmark datasets in-

cluding MSCOCO [68] and VoxCeleb [67]. MSCOCO dataset is employed for cross-modal

task on text/image, while VoxCeleb dataset is used for cross-modal matching and ver-

ification tasks on audio/image. MSCOCO dataset contains 123, 287 images, and each

image is annotated with 5 captions. Figure 3.3 shows a random example selected from

MSCOCO dataset. We use 1000 images for testing and the rest for training as proposed

by the original authors [68] and used by Wang et al. [7] and referred it as COCO-1k.

VoxCeleb is an audio-visual dataset consisting of short clips of human speech, ex-
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Figure 3.4: An audio-visual example extracted from Voxceleb dataset.

tracted from interview videos uploaded to YouTube [67]. Figure 3.4 shows an example

of audio-visual information taken from VoxCeleb dataset. We two train/test splits out

of this dataset to perform various cross modal tasks as recommended by [42]. The

first split consists of disjoint videos from the same set of speakers while the second split

contains disjoint identities. We train the model using two training sets, allowing us

to evaluate on both test sets, the first one for seen-heard identities and the second for

unseen-unheard identities.

3.4.2 Experimental Setup

We perform three different experiments which are as below.

3.4.2.1 Cross-modal Retrieval

In the first task, we evaluate the learned embedding on retrieval with MSCOCO dataset.

Given a single modality input, the task is to retrieve all the semantic matches of the

opposite modality. We perform this task for both Image → Text and Text → Image

formulation. For the sake of comparison with other techniques, we use R@K metric as

described in [69]. We employ the R@1, R@5 and R@10 which means that the percentage

of queries in which the first 1, 5 and 10 items are found in the ground truth.

3.4.2.2 Cross-modal Verification

The second task is to perform verification on VoxCeleb dataset where the goal is to

verify if audio segment or a face image belong to the same identity. Two inputs are

considered i.e. face and voice and verification between the two depends on a threshold

on the similarity value. The threshold can be adjusted in accordance to wrong rejections

of true match and/or wrong acceptance of false match. We report results on verification

metrics i.e. ROC curve (AUC) and Equal Error Rate (EER).
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3.4.2.3 Cross-modal Matching

Finally, the last task consists of matching on VoxCeleb dataset where the goal is to

match the input modality (probe) to the varying gallery size nc which consists of the

other modality. We increase nc to determine how the results change. For example,

the 1 : 2 task, we are given a modality at input, e.g. face, and the gallery consists of

two inputs from other modality, e.g. audio. One of them contains a true match and

other serves as an imposter input. We employ matching metric i.e. accuracy to report

results. We perform this task in five settings where in each setting the nc is increased

i.e. 2, 4, 6, 8, 10.

3.4.3 Implementation Details

We learn the proposed single stream network with standard hyper-parameters setting.

The size of the input image and encoded text is set to 128× 128 on MSCOCO dataset

for retrieval task while the input image and spectrogram is set to 256×256 on VoxCeleb

dataset for verification and matching tasks. The output feature vector is 128−d extracted

from the last fully connected layer of the single stream network. For optimization we

employ Adam optimizer [70] because of its ability to adjust the learning rate during

training. We use Adam’s initial learning rate of 0.05 and employ weight decay strategy

with decaying by a factor of 5e−5. Two networks are trained for 100 epochs on MSCOCO

and VoxCeleb. The mini-batch size was fixed to randomly select 45 samples from the

training set.

3.5 Evaluation

3.5.1 Cross-modal Retrieval

In this section we evaluate the results of cross-modal retrieval task employing both text

and image as probe with other modality at the retrieval end. We report results in terms

of R@K metric which evaluates the top K retrieved results. Table 3.1 demonstrates

quantitative results of our approach on the said task. Compared to the current state-

of-the-art, our proposed framework performance is comparatively low. The main reason

is due to the fact that R@K is based on whether query’s pair appeared or not in the

retrieval result. So, even if retrieval result is semantically similar and if query’s pair did

not appear in the retrieval result, the R@K score is considerably low.

3.5.2 Cross-modal Verification

In this section we report results of the framework on cross-modal verification task, the

aim of which is to determine whether an audio segment and a face image are from
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Table 3.1: Comparison of the proposed framework with current state-of-the-art methods

on cross-modal retrieval using R@K measure on MSCOCO dataset.

MSCOCO

Model Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10

DVSA [12] 38.4 69.9 80.5 27.4 60.2 74.8

HM-LSTM [71] 43.9 - 87.8 36.1 - 86.7

m-RNN-vgg [72]) 41.0 73.0 83.5 29.0 42.2 77.0

Order-embedding [69] 46.7 - 88.9 37.9 - 85.9

m-CNN(ensemble) [73] 42.8 73.1 84.1 32.6 68.6 82.8

TextCNN [74] 13.6 39.6 54.6 10.3 35.5 55.5

FV-HGLMM [74] 14.3 40.5 55.8 12.7 39.0 57.2

Str. Pres. [7] 50.1 79.7 89.2 39.6 75.2 86.9

Proposed SSNet 40.0 64.4 76.7 30.9 62.7 73.7

the same identity or not. Recently [42] used VoxCeleb dataset to benchmark this task

under two evaluation protocols, one for seen-heard identities and the other for unseen-

unheard identities. We evaluate on the same test pairs1 created in [42] for each evaluation

formulation. More specifically, 30, 496 pairs from unseen-unheard identities and 18, 020

pairs from seen-heard identities are selected. The results for cross-modal verification are

reported in Table 3.2. We use AUC and EER metrics for verification. As can be seen

from the table, our model trained from scratch outperformed the state-of-the-art work

on seen-heard and unseen-unheard protocols.

Furthermore, we examine the effect of Gender (G), Nationality (N) and Age (A)

separately, which influence both face and voice verification. It is important to note

that [42] employed pre-trained network, whereas we trained the model from scratch. Our

network outperformed on G, N, A and the combination (GNA) in seen-heard formulation

regardless of pre-trained network as a backbone, see Table 3.3. However, our network

shows comparable results on unseen-unheard formulation for N,A and GNA, whereas it

outperformed on random and G regardless of pre-trained network, see in Table 3.3.

3.5.3 Cross-modal Matching

In this section we perform the cross-modal matching task employing the framework. We

perform the 1 : nc where nc = 2, 4, 6, 10 matching tasks to evaluate the performance of

our approach. Unlike others [41, 42], we do not require positive or negative pair selection

since under the proposed framework, the network learns in a self-supervised manner.

1http://www.robots.ox.ac.uk/vgg/research/LearnablePins
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Table 3.2: Cross-modal verification results on seen-heard and unseen-unheard configu-

rations with model trained from Scratch.

AUC % EER %

Seen-Heard

Learnable Pins [42] 73.8 34.1

Proposed SSNet 91.1 17.2

Unseen-Unheard

Learnable Pins [42] 63.5 39.2

Proposed SSNet 78.8 29.5

Table 3.3: Analysis of cross-modal biometrics under varying demographics for seen-heard

and unseen-unheard identities. Note that SSNet has produced best results when trained

from scratch.

Demographic Criteria Configuration Random G N A GNA

Seen-Heard (AUC %)

Learnable Pins [42] Scratch 73.8 - - - -

Learnable Pins [42] Pre-train 87.0 74.2 85.9 86.6 74.0

Proposed SSNet Scratch 91.2 82.5 89.9 90.7 81.8

Unseen-Unheard (AUC %)

Learnable Pins [42] Scratch 63.5 - - - -

Learnable Pins [42] Pre-train 78.5 61.1 77.2 74.9 58.8

Proposed SSNet Scratch 78.8 62.4 53.1 73.5 51.4

Table 3.4 reports results on said task along with comparison with recent approaches on

the same task. In Table 3.4, the probe is voice while the matching gallery consists of

faces. For instance consider the case where the input is voice and is 1 : 2 matching task,

we figure out the entry in gallery that matches the input. It is important to note that

for nc > 2 tasks, the work in [41] trains separate network for each nc. However, the

major advantage of training under the proposed framework is that it is not restricted

by increasing nc. Thus, the proposed single stream network can effectively handle nc

size without increasing sub-network size to categorize each nc. However, increasing nc

decreases performance in a linear fashion due to increase in challenge.
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Table 3.4: Accuracy score of cross-modal forced matching task comparing Learnable

PINS [42], SVHF-Net [41] and SSNet.

Inputs Learnable PINS. SVHF-Net Proposed SSNet

Voice → Face (%)

2 84 78 78

4 54 46 56

6 42 39 42

8 36 34 36

10 30 28 30

3.5.4 Qualitative Evaluation

Figure 3.5 is t-SNE [75] visualization of features from MSCOCO test set i.e. 1k images

with five text descriptions for each image. Once the network is trained on the dataset,

features of the test set are extracted from the model and are fed to t-SNE, Visualiza-

tion verify that the proposed framework is capable of bridging gap between image and

encoded text description in the latent space. The image and text encoding description

are overlapped and distributed enough for being discriminated in retrieval. Some bidi-

rectional retrieval results from MSCOCO test set are also present in Figure 3.6. It can

be seen that query and retrieved objects are related.

Figure 3.6 is tSNE [75] embedding result of learned features extracted from test set of

VoxCeleb dataset for 10 identities. We visualize learned embedding for both formulations

i.e. seen-heard and unseen-unheard. Visual illustrations support the hypothesis that

no pair selection knowledge at pre/post processing stage is required for network to

learn mapping of identities in shared latent space. Given the faces and voices at input,

the network learns to map both modalities conditioned at class information due to

formulated loss function in Eq. 3.2. Note that, unseen-unheard formulation has very

high level of difficulty even though results shown in Figure 3.6 are impressive.

3.5.5 Ablation Study

We experiment with the hyperparameter λ which is used to couple conventional softmax

with the proposed loss signal, see Eq 3.2. When the value of λ is fixed to 0, the loss

function is a special case where only softmax’s penalization is employed. Increasing

value of λ introduce the increasing effect of coupled penalization. We experiment with

two values of λ where we set it to 0 and 1 for two evaluation protocol of cross-modal

verification and forced matching. The quantitative scores are reported in Table 3.5

and 3.6. In these experiments, only λ is varied otherwise joint formulation configuration

is same as for previous experiments. These experiments explain the crucial need for
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Image

Text- A group of people on a pavement and one
   flying a kite.
- A group of people flying a kite on a sunny 
  day.
- A group of people walking in a single file up a     
  slope.
- Some people on a hill flying their kites.
- A group of people flying a kite by the ocean.
 

- A train that is on a railroad track.
- A train runs on rails, visible through a  fence.
- Train tracks in the background taken from 
  behind a fence.
- A read train going along a track during  the day.
- A train on the tracks behind a fence.

A street with busses and cars next to a bus stop.

A white plate topped with sliced of pizza.

- A living room with a picture window and outside view. 
- A daylight lit neatly decorated living room with sliding glass 
  doors.
- A living room with furniture, a fireplace and a large scenic 
  window.
- There is a living room with chairs and tables and a mirror on it. 
- A view into a living room containing several pieces of furniture.

Skier standing in the sun holding ski poles.

A man riding on top of a board on water.

- Man hitting a tennis ball on a blue tennis court.
- A man plays tennis on a tennis court.
- A male tennis player is swinging to hit the ball.
- A male in a white shirt is playing tennis
- A man is playing tennis on the tennis court.

Figure 3.5: Embedding of MSCOCO test set in latent space visualized using t-SNE [75].

The similar text feature vectors (shown in red) and the image feature vectors (shown

in blue) are close in the embedding space. Few bidirectional retrieval results are also

shown which are similar. (Best viewed with color)

Figure 3.6: Visualization of learned voice and face embedding extracted from test set of

the VoxCeleb dataset for 10 identities. The pink oval encloses female entities while the

male entities are enclosed in blue one. (Best viewed in color)

penalization beyond softmax in the proposed setting and establish the effectiveness of

penalization based on centers for tasks such as verification, matching and retrieval.

3.6 Conclusion

In this chapter, a framework is proposed for deep latent space representation and learning

based on a single stream network for multimodal applications. The proposed framework

is applied on three cross-modal tasks including retrieval, verification and matching on
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Table 3.5: Cross-modal Verification results on seen-heard and unseen-unheard configu-

rations to illustrate the effect of proposed loss function.

Configuration AUC % EER %

Seen-Heard

λ = 0.0 81.2 26.3

λ = 1.0 91.1 17.2

Unseen-Unheard

λ = 0.0 72.6 33.6

λ = 1.0 78.8 29.5

Table 3.6: Accuracy score of cross-modal forced matching task to illustrate the effect of

proposed loss function.

Inputs λ = 0.0 λ = 1.0

Voice → Face (%)

2 73 78

4 49 56

6 38 42

8 34 36

10 29 30
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text/image and audio/image modalities. The proposed framework was able to reduce

the gap between different modalities by learning a shared latent space. Thus the frame-

work can generate discriminative representations of various modalities. The proposed

framework requires encoding schemes to transform text or audio signals to images. The

performance of the proposed system may increase if better encoding schemes are learnt.

In future, we will investigate other encoding schemes more suitable for single stream

networks. One of the core strengths of reliance on learning features in a shared la-

tent space is no overhead of pair or triplet selection at the input. As dataset increases

exponentially over time, so does the overhead of pairs or triplets selection in the exist-

ing methods. The proposed framework ensures that class information is leveraged to

penalize distance between learned embedding. We achieved state-of-the-art results for

verification and matching on VoxCeleb dataset while promising results on MSCOCO

dataset.
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Learning Deep Fused Representation

4.1 Introduction

Information in real-world applications usually comes from multiple sources. Images are

often associated with tags or captions; for example in the world of e-commerce products

on sale are displayed using one or more images with one or more text descriptions

such as product title, summary and technical details. Each source is characterized

by distinct statistical properties that makes it difficult to create a joint representation

that uniquely captures the “concept” in the real-world. For example, Figure 4.1 shows

four advertisements, where, in the first row, two objects have seemingly similar images

but different text descriptions, conversely, in the second row, we have two different

images but similar text descriptions. For an image classification model it would not

be easy to distinguish two images on the first row while it would have no difficulty in

distinguishing images on the second one. Similarly, for a text classification model it

would be difficult to classify two text descriptions on the second row while it would have

no difficulty in classifying correctly descriptions shown on the first one. Such scenarios

present a challenge to create a joint representation of an image and associated text

description. This leads us to create a representation for such classification problem. This

representation can exploit such scenarios to remove ambiguity and improve classification

performance.

The use of joint representation based on image and text features is extensively em-

ployed on a variety of tasks including modeling semantic relatedness, compositionality,

classification and retrieval [76, 77, 78, 9, 5]. Typically, in such approach, image features

33
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are extracted using CNNs. Whereas, to generate text features, Bag-of-Words models or

Log-linear Skip-gram Models [79] are commonly employed. This represents a challenge

to find relationships between features of multiple modalities along with representation,

translation, alignment, and co-learning as stated in [80]

(a) Huawei Mediapad M3 Lite

Tablet, 10” Display, Qualcomm

MSM8940 CPU, Octa-Core, 3 GB

RAM, 32 GB ROM.

(b) DVD player with 25.7 cm

HD 1024 * 600 monitor, HDMI,

USB, SD. Ultra thin touch

screen LCD key by Hengweili.

(c) Men’s hybrid bicycle with alu-

minum frame and Shimano SLX

M7000 11-speed gearbox.

(d) Shimano SLX M7000 11-

speed gearbox with derailleur

gears and chain.

Figure 4.1: In the upper row, two examples of ambiguous images that can be disam-

biguated through analysis of the respective text description. In the lower row, two

examples of ambiguous text description that can be disambiguated through analysis of

respective images.

Traditionally, there are two general strategies for text and image fusion referred to

as early and late fusion [81, 80]. In early fusion [82, 78], features from each modality

are concatenated in a single vector and fed as input to a classification unit. In contrast,
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Figure 4.2: The proposed encoded text and image fusion model for deep multimodal

classification. The text is encoded within the image so that the CNN model can exploit

semantics along with the information of the image.

late fusion [6, 83] uses decision values from each classification unit and fuses them using

a fusion mechanism employing a weight sharing strategy. The work in [6] showcases a

comparative study of multimodal fusion methods to perform multimodal classification

in real-world scenarios. Specifically, in [6], late fusion produced better performance com-

pared to early fusion method, however, late fusion comes with the price of an increased

learning effort. Recently, [5], fuses data from discrete (text) and continuous (image)

domains and showcases the efficiency of fusion strategies in terms of learning and com-

putational expense. Our approach is similar to early fusion strategy, where a single

classifier is needed to perform multimodal classification, as stated in [81, 80]. However,

we concatenate encoded text features into an image to obtain an information enriched

image. Finally, an image classification model is trained and tested on these images. In-

tuitively, concatenating text descriptions onto images may not sound motivating due to

several reasons. Since the idea is overlaying the encoded tex tdescription into an image,

it might affect the image perception in general. However, we observed that the joint

representation of encoded text and image improves the multimodal classification.

With this work, we present a novel strategy which combines a text encoding schema

to fuse image and text in a information enriched image. The encoding schema is based

on Word2Vec word embedding [36] that transforms embedding to encoded text. We

fuse both text description and image into a single source so that it can be used with a

CNN architecture. We demonstrate that by adding encoded text information in images

better classification results are obtained compared to the best one obtained using a single

modality.

4.2 The Proposed Approach

Multimodal strategies fuse image and text description into integrated representation. We

obtain transform Word2Vec word embedding [36] into visual embedding from previous
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Figure 4.3: An example of an input image and some feature maps of the first two

convolutive layers of the CNN used for the Ferramenta dataset. These examples of

feature maps show significant activations on both textual information and image details.

Chapter 2. However, we fuse encoded text with associated image to obtain an informa-

tion enrich image. An example of information enriched image is shown in Figure 4.2.

This image can be fed to a CNN configured for image classification to learn multimodal

representations. In other words, multimodal classification problem is transformed into

a typical image classification task. Finally, state-of-the-art image classification network

can be employ with softmax function. Figure 4.3 shows the behavior of a CNN that

receives a joint representation with our approach. In the same figure we can notice how

some convolutive filters of the first two layers, are activated both on the image and on

the encoded text description. This approach is suitable to be adopted in a multimodal

strategy because a CNN model can extract information from both sources (Text/Image).

4.3 Experiments and Results

4.3.1 Datasets

Typically, multimodal dataset consists of an image and associated text description. In

this work, we use three large scale multimodal datasets to show the applicability of our

approach to various domains.

The first dataset is named Ferramenta multimodal dataset [66]. This dataset is

made up of 88, 010 adverts divided in 66, 141 adverts for train and 21, 869 adverts for

test, belonging to 52 classes. Ferramenta dataset provides a text and representative

image for each commercial advertisement. It is interesting to note that text descriptions
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in this dataset are in Italian Language.

Another dataset used is the UPMC Food-101 [84], a large multimodal dataset con-

taining about 100, 000 items of food recipes classified in 101 categories. This dataset

was crawled from the web and each item consists of an image and the HTML web-

page on which it was found. We have only extracted the title from every HTML docu-

ment.Categories in the dataset are the 101 most popular categories from the food picture

sharing website1.

We used another publicly available real-world multimodal dataset called Amazon

Product Data [85]. The dataset consists of advertisements with each advertisement

contain a text description and image. We randomly selected 10, 000 advertisements

belonging to 22 classes. Finally, we split 10, 000 advertisements for each class into train

and test sets with 7, 500 and 2, 500 advertisements respectively.

We applied mirroring and cropping to these datasets. To avoid losing the semantics

of the encoded text, we applied above mentioned techniques directly on images, before

merging them with the encoded text descriptions.

4.3.2 Implementation Details

In this work, the transformed text description is fused into original, horizontally flipped

and cropped version of an image with 256 × 256 pixel size. Some examples are shown

in Figure 4.4. We use a standard AlexNet [21] and GoogleNet [86] with softmax as su-

pervision signal. We use the following hyperparameters for both networks: learning rate

lr = 0.01, solver type = Stochastic gradient descent (SGD), training epochs = 90 and/or

till no further improvement is noticed to avoid over fitting. In our experiments, accuracy

is used to measure classification performance. We conducted five fold experiments on

each dataset to evaluate the proposed approach.

4.3.3 Experiment Details

In the first set of experiments we extract only images from the three datasets with an

image size of 256× 256, then we train a standard AlexNet and GoogleNet from scratch.

Results are shown in the column labelled “Image” of Table 4.1. In the second set of

experiments, we use text descriptions and train a Word2Vec model to extract feature

vectors, which then have been used as input to train a Support Vector Machine (SVM).

Results are shown in the column named “Text” of Table 4.1. Later, we use images and

text descriptions to create information enriched images with the proposed approach.

Results are shown in the last column of Table 4.1. Analyzing results in Table 4.1 it

can be noticed that the proposed method outperforms the accuracy of the best results

obtained using only text descriptions or images on all three datasets. Images in the

1www.foodspotting.com
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Table 4.1: Classification results and comparisons with the CNN trained on single source

(column Image) along with images and text descriptions fused using the proposed ap-

proach (column Proposed). Note that column Text shows results of a SVM trained on

Word2Vec features.

Dataset Image Text Proposed

AlexNet

Ferramenta 92.36 84.50 94.84

Amazon Product 46.07 64.37 72.52

Food-101 42.01 56.75 83.04

GoogleNet

Ferramenta 92.47 84.50 95.87

Amazon Product 51.42 64.37 78.26

Food-101 55.65 56.75 85.69

Ferramenta dataset contain objects on a white background, this explains the excellent

classification result obtained on images alone. On the contrary, images in the UPMC

Food-10 dataset are with complex background and extracted from different contexts,

which leads to a low classification performance of the images without text. Results of

our approach when applied to the UPMC Food-10 and Amazon Product Data datasets,

highlight the strengths of our approach: the fusion of two very different information

into a single image space exploits the two types of information content in the best way.

From the Table 4.1, it is evident that the proposed approach obtains higher classification

performance with GoogleNet compared with AlexNet. With this result, we expect higher

multimodal classification performance using the recent state-of-the-art CNNs for image

classification.

4.3.4 Baselines

In a multimodal setting, text and image are two standard baselines [6, 5, 37] to which

different fusion strategies are compared. In our work, we use Word2Vec word embedding

as text baseline and standard image classification model as image baseline. Finally,

we compare our fusion approach with these baseline strategies, results are shown in

Table 4.2. Our approach obtains higher classification accuracy compared to the uni-

modal (Text/Image).
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Table 4.2: Comparison of our approach with baseline and previous available works.

Model Ferramenta UPMC Food-101 Amazon Product Data

Wang et. al [84] – 85.10 –

Previous work Kiela et. al [5] – 90.8±0.1 –

Gallo et. al [6] 94.42 60.63 –

Baseline Image 92.47 55.65 51.42

Text 84.50 56.75 64.37

Ours Proposed 95.87 85.69 78.26

4.3.5 Comparison with State-of-the-Art Methods

In addition, we compare our fusion approach with state-of-the-art multimodal works

available in literature, results are shown in Table 4.2. Our approach obtains higher

or comparative classification accuracy compared to previous available works. We also

include results from [84] on UPMC Food-101, where they used TF-IDF features for text

and a deep convolutional neural network features for images. Furthermore, we compare

our work with [5] where they explore the trade off between efficiency and multiple fusion

strategies. Additionally, we compare our results with [6] where they use Word2Vec and

Bag-of-Words for text and a deep convolutional neural network for images. We note

that in the case of Ferramenta, our method works considerably better than previously

reported results. We obtain comparable results on UPMC Food-101 dataset. We find

that [6] is not scalable, whereas our work can be employed regardless of the dataset size

avoiding any bottlenecks.

4.4 Conclusion

In this chapter, we proposed a new approach to fuse images with their text description so

that a CNN architecture can be employed as a multimodal classification unit. To the best

of our knowledge, the proposed approach is the only one that simultaneously exploits

text semantics and image casted to a single source, making it possible to use a single

classifier typically used in standard image classification. The classification accuracy

achieved using our approach maintains an upper bound to single modalities.

Another very important contribution of this work concerns the joint representation

into the same source of two heterogeneous modalities. This aspect paves the way to a

still open set of problems related to the translation from one modality to another where

relationships between modalities are subjective.
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(a)

chocolate-mousse falafel sushi

(b)

Cell Phones and Acces-

sories

Pet Supplies Health and

Personal

Care

(c)

Trolley Belt Wheel

Figure 4.4: Some random examples of multimodal fusion from the datasets used. In row

(a) three examples of images with the corresponding classes, extracted randomly from

the UPMC Food-101 dataset, while in row (b) the three images were extracted from

the Amazon Product Data dataset and in (c) three example images extracted from the

Ferramenta Dataset. The size of all images is 256 × 256. The text associated to each

image is encoded and visually represented in the upper part of the image.
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Inward Scale Feature Representations

5.1 Introduction

In last few years, mainly due to advances in CNNs the performance on tasks such as

image classification [22], cross-modal and uni-modal retrieval [7, 74] and face recognition

and verification [87, 49, 88] has increased drastically. It has been observed that deeper

architectures tend to provide better capabilities in terms of approximating any learnable

function. A common observation is that these architectures (with large number of pa-

rameters) can learn features at various levels of abstraction. However, it is a well-know

that these architectures are more prone to overfitting than shallower counterparts, thus

hampering generalization ability, furthermore deep architectures are computationally

expensive. Majority of CNNs based pipelines follow the same structure i.e. alternating

convolution and max pool layers, fully connected along with activation functions and

dropout for regularization [89, 23, 30].

Discriminative learning techniques [90, 60, 49] aiming to embed the learned feature

representations onto a hyperspace, linear or quadratic spaces has remarkably increased

the performance of deep learning architectures. There are studies in literature [91, 92]

arguing that in higher dimensions when the data is projected onto an input space diver-

gence is reduced in terms of distance ratio between the nearest and farthest neighbors to

a given target and tends to be ≈ 1. Due to this reduced contrast distance, input point

cannot be discriminated effectively. It is important to note that since retrieval and search

tasks tend to operate on higher dimensions, this phenomenon is valid for these tasks as

well. Euclidean distance can be formulated as L2 =
√

(xi − xj)2 + (yi − yj)2 where

41
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Figure 5.1: A toy example representing how the projection takes place. The manifold M

is transformed into a hypersphere f(M) during training. The small black and white dots

represent different classes. The perfect alignment of all the classes on the circumference

of the hypersphere is ideal condition assuming that there exists no intra-class variation.

(best viewed in color)

xi, xj and yi, yj are two points in the input space. Surprisingly enough, [91] argues that

in Lk-norms, the meaningfulness in high dimensionality is not independent of value of k

with lower values of k norms performing better than their greater value counterparts i.e.

L2 < L1. The general formula of Lk norm can be setup as Lk(x, y) =
∑d

i=1(‖xi−yi‖k)1/k
for k = 1, 2, 3, ..., n. The relation considers norms with k = 1

2 ,
1
3 ...

1
n ; ∀k < 1, n ∈ Z, re-

ferred to as fractional norms. Although fractional norms do not necessarily follow the

triangle inequality Lk(x, z) ≤ Lk(x, y)+Lk(y, z); ∀x, y, z ∈ X where X is the input space,

they tend to provide better contrast than their integral counterparts in terms of relative

distances between query points and target.

In the current chapter, we explore projections of feature representations onto different

hyper-spaces and propose that hypersphere projection has superior performance to linear

hyperspace where discriminative analysis and disintegration of multiple classes becomes

challenging for deep architectures, as shown in Figure 5.1. We propose that inward

scaling applied to projections on a hypersphere enhances the network performance in

terms of classification and retrieval. We evaluate the proposed inward scaling layer on

a number of benchmark datasets for classification and retrieval. We employ MNIST,

FashionMNIST [93], CIFAR100 [94] and SVHN [95] datasets for classification while

FashionMNIST is used for retrieval. Note that the inward scaling layer is not dependent

on a particular deep architecture and it can be applied to different networks including

VGG, Inception-ResNet-V1, GoogleNet [22] and can be trained in an end-to-end fashion.
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5.2 Related Work

5.2.1 Metric Learning

Metric learning aims at learning a similarity function which can also be referred as

a distance metric. Traditionally, metric learning approaches [96, 97, 98] focused on

learning a similarity matrix Mi between two vectors. Consider feature vectors X =

(x1, x2, ..., xn) where each vector xi corresponds to the relevant features. Then the

similarity matrix for a corresponding distance metric can be computed as ‖xi − xj‖ =
√

(xi − xj)TMi(xi − xj) where xi and xj are given features. However, in recent metric

learning methodologies [54, 99, 100, 101, 102], neural networks are employed to learn the

discriminative features followed by a distance metric d(xi, xj). Contrastive loss [103, 101]

and Triplet loss [57, 58, 60] are commonly used metric learning techniques. Contrastive

loss function is a pairwise loss function i.e. reduces the similarity between query and

target Lc(xi, x
±
i ) = d(xi, x

±
i ); where d is the distance metric. However, triplet loss

leverages on triplets (xi, x
−
i , x

+
i ) which should be carefully selected to utilize the benefit of

the function Lt(xi, x
−
i , x

+
i ) = d(xi, x

+
i )−d(xi, x

−
i )+α; where d(xi, x

+
i ) and d(xi, x

−
i ) are

the distances between query and positive pair and query and negative pair respectively.

Note that triplet and pair selection is an expensive process and the space complexity

becomes exponential.

5.2.2 Normalization Techniques

To accelerate the training process of neural networks, normalization was introduced and

is still a common operation in modern neural network models. Batch normalization [104]

was proposed to speed up the training process by reducing the internal covariate shift

of immediate features. Scaling and shifting the normalized values becomes necessary

to avoid the limitation in representation. The normalization of a layer L can be de-

fined as L̂i = xi−E[xi]√
V ar[xi]

where the layer L is normalized along the i-th dimension where

x = (x1, x2, ...., xn) represents the input, E[xi] represents the mean of activation com-

puted and V ar[xi] represents the variance. The work in [105] shows that normalization

aids convergence of the network. Recently, weight normalization [106] technique was

introduced to normalize the weights of convolution layers to further speed up the con-

vergence rate.

5.2.3 Hypersphere Embedding Techniques

Different works in literature have explored different hyper-spaces for projection of learned

features to figure out manifold with maximum separability between the deep features.

Hypersphere embedding is one of the technique where the learned features are pro-
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jected onto a hypersphere with the L2-normalize layer i.e. x̂ = x
‖x‖ . Works in lit-

erature have employed hypersphere embedding for face recognition and verification

tasks [107, 108, 109]. These techniques function by imposing discriminative constraints

on a hypersphere manifold. As [104] explains that scale and shift is necessary to avoid

the discriminatory limitations and are introduced as y(i) = γ(i)x̂(i) + β(i); where γ, β

are learnable parameters. Inspired from this work, techniques such as [107] explore L2-

normalize layer followed by scaling layer which scales the projected features by a factor

α i.e. αx
‖x‖ where α is the radius of the hypersphere and can be both learnable and prede-

fined. However, in [107] the α is restricted to the radius of hypersphere and normalizes

the features only. Furthermore, [109] normalizes the weights of last inner-product layer

only and does not explore the scaling factor. The work presented in [108] optimizes both

weights and features, and defines the normalization layer as ‖x‖2 =
√

∑

i x
2
i+ ∈ without

exploring the scaling factor.

5.2.4 Revisiting Softmax-based Techniques

A generic pipeline for classification tasks consists of a CNN network learning the features

of the input coupled with softmax as a supervision signal. We revisit the softmax

function by looking at its definition Ls = −
∑m

i=1 log
e
WT

yi
xi+byi

∑n
j=1

e
WT

j
xi+bj

; where x is the learned

feature, Wi ∈ R denotes weights in the last fully connected layer and bi ∈ R
n is the

bias term corresponding to class i. It is clear that W T
i xi + bi is responsible for the

class decision which forms intuition for the necessity of the fully connected layer after

normalization. The work in [109] reformulates softmax and introduces an angular margin

and modifies the decision boundary of softmax as ‖x‖(cosmθ1 − cosθ2) = 0 for class 1

and ‖x‖(cosθ1 − cosmθ2) = 0 for class 2. This differs from standard softmax in a sense

that [109] requires cos(mθ1) > cos(θ2) for the learned feature x to be correctly classified

as class 1. This reformulation results in a hypersphere embedding due to the subtended

angle. Similarly, [107] constraints the softmax by adding a normalization layer.

5.3 Proposed Method

In this section, we explore the intuition behind the inward scale layer and explain why

normalization along with a fully connected layer is necessary before the softmax. We

term a normalization layer along with the inward scaling factor as the inward scale layer.

The reason behind this terminology is that normalization without the inward scaling acts

as constraint imposer on the feature space and hampers the discriminative ability of the

network. Furthermore, network struggles to converge if either of the layers are removed

i.e. normalization, inward scale factor and fully connected. We set some terminology

before proceeding with the explanation in Table 5.1.
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(a) Plot at epoch 3. (b) Plot at epoch 15. (c) Plot at epoch 30.

Figure 5.2: Plots on test set of MNIST dataset at different epochs. The figure shows

realistic plots of test set. At epoch 3 the projection of data points on hypersphere

embedding space is in initial stages with little to no inward scaling. However, at epoch

15 effects of inward scaling are visible with the projection being maximum scaled at

epoch 30. (Best viewed in color)

Table 5.1: Some important terminology used throughout this chapter.

Terminology Explanation

M Input manifold

f(M) Projected hypersphere manifold

xi Learned features of class i

Wi Weight of class i

bi Bias of class i

ξ Inward scale factor

IS(x, ξ) Inward scale layer with feature x and scale factor ξ

FC(W,x, b) Fully connected layer with weight W, feature x and bias b

The work in [108] establishes that softmax function always encourages well-separated

features to have bigger magnitudes resulting in radial distribution Figure 5.3a. However,

the effect is minimized in Figure 5.3b because of the IS(x, ξ).

5.3.1 Inward Scale Layer

In this paper, we define the inward scale layer as the normalization layer along with the

inward scale factor ξ. The normalization layer can be defined as in Equation 5.1.

x̂ =
x

‖x+ E‖ (5.1)

where E is the factor to avoid division by zero. Note that it is unlikely that norm

‖x‖ = 0, but to avoid the risk, we introduce the factor. Inspired from the works in

literature [107, 106] we further introduce a scale factor ξ. Unlike employing it in the
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(a) Plot on test set of MNIST reduced to 2-

dimensional features with the softmax as super-

vision signal without the IS(x, ξ).

(b) Plot on test set of MNIST reduced to 2-

dimensional features with the softmax as super-

vision signal with the IS(x, ξ).

Figure 5.3: Comparison of employing softmax with (a) and without (b) the inward

scale layer. The softmax tends to have a radial distribution whereas with IS(x, ξ) the

distribution changes to hypersphere. Note that the plot (b) has some variation between

the features in a radial fashion. This is due to the tendency of softmax. Note that figure

(b) is slightly off from the ideal hypersphere embedding, since the features are extracted

from the half trained network to establish analogy with the softmax, this scenarios takes

place. (Best viewed in color)

product fashion as in [107], we couple with the norm in inverse fashion to ensure the

scaling of the features as they are projected onto the manifold f(M). In other words,

we couple the factor ξ with ‖x‖ to enhance the norm of the features instead of bounding

entire layer. The Equation 5.2 is modified as x̂ = x
ξ(‖x+E‖) . L2-norm can be re-written

as ‖x‖ =
√

∑

i x
2
i + E . Thus, IS(x, ξ) can be formulated as follows.

x̂ =
x

ξ(
√

∑

i x
2
i + E)

(5.2)

where xi is the feature from the previous layer. Note that the factor ξ is not trainable.

We experiment with different values of ξ and find that maximum separability is obtained

with ξ = 100, see appendix A for experiments with different values of ξ.

The CNN layers are responsible for providing a meaningful feature space, without

the FC(W,x, b) layer, learning non-linear combinations of these features would not be

possible. Simply put, the features are classified into different classes due to FC(W,x, b)

layers followed by a softmax layer. The Figure 5.3b in [107] visually illustrates the

effect of L2-constrained softmax. On comparing it with our Figure 5.2c we visually see

the effects of the inward scale layer. It is necessary to note that we do not modify the

softmax and employ it as it is with the IS(x, ξ) which in turn benefits the network

with faster convergence and the learned features are discriminative enough for efficient
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classification and retrieval without the need for any metric learning. As the module is

fully differentiable and is employed in end-to-end fashion, the gradient with respect to

xi is given as ∂L
∂xi

and can be solved using the chain-rule, see appendix B for the prove

and appendix C for learning curves of the IS(x, ξ).

5.4 Empirical Results

In order to quantify the effect of layer, in this section we report results of the IS(x, ξ)

layer on multiple datasets. We report results of different works available in the literature

followed by the results of our work. Note that in order to demonstrate the modular nature

of IS(x, ξ) layer, we perform experiments with different baseline networks containing the

proposed layer. The layer coupled architecture can be trained with standard gradient

descent algorithms. In all of the following experiments we employ Adam [70] optimizer

with an initial learning rate of 1e − 2 and employ weight decay strategy to prevent

indefinite growing of ‖x‖2 because after updating ‖x+ ∂L
∂x ‖ > ‖x‖2 for all cases.

5.4.1 Classification Results

5.4.1.1 MNIST and FashionMNIST

For the basic experiment to quantify results of proposed layer, we perform the test on

MNIST and FashionMNIST dataset which are famous benchmark dataset for neural

networks. Table 5.2 demonstrates the results of IS(x, ξ) layer and LeNet and compares

it with available works in literature.

Table 5.2: Accuracy on MNIST and FashionMNIST test set in (%).

Methods Dataset Accuracy (%)

Softmax Loss MNIST 98.64

Ours (without IS(x, ξ)) MNIST 98.40

Ours (with IS(x, ξ)) MNIST 99.33

Ours (without IS(x, ξ)) FashionMNIST 89.64

Ours (with IS(x, ξ)) FashionMNIST 93.00

Ranjan et. al [107] MNIST 99.05

Zhong et. al [110] FashionMNIST 96.35

5.4.1.2 SVHN

For the next experiment, we perform the test on SVHN dataset. Since MNIST and

FashionMNIST are low resolution, grayscale and synthetic datasets, we test the layer
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on datasets with increasing complexity. Table 5.3 demonstrates the results of IS(x, ξ)

layer.

Table 5.3: Accuracy on SVHN test set in (%). LeNet is the baseline network for both

the experiments.

Methods Dataset Accuracy (%)

Ours (Without IS(x, ξ)) SVHN 93.20

Ours (With IS(x, ξ)) SVHN 95.05

Zagoruyko et. al [111] SVHN 98.46

(a) Training loss graph with the IS(x, ξ) layer on

CIFAR100 dataset using GoogleNet as baseline

network. Classification accuracy is 60.44..

(b) Training loss graph without the IS(x, ξ) layer

on CIFAR100 dataset using GoogleNet as baseline

network. Classification accuracy is 59.23..

Figure 5.4: Plots of training loss on CIFAR100 dataset with and without the proposed

layer IS(x, ξ) using GoogleNet as a baseline architecture with no pre or post processing.

5.4.1.3 CIFAR100

We perform an additional experiment on the CIFAR100 dataset to confirm the efficacy

of the proposed layer. This experiment is particularly interesting because it augments

an important claim behind the IS(x, ξ) layer. We employ GoogleNet for this experiment

for two reasons: (i) to verify that introduced layer can be coupled with GoogleNet and

(ii) CIFAR100 is a large dataset compared to the datasets previously employed, thus, the

accuracy with networks like LeNet is not satisfactory. Table 5.4 demonstrates the results

of GoogleNet on CIFAR100 with and without the IS(x, ξ) layer. Figure 5.4 visualizes

the training graph with and without the proposed unit. It is interesting for readers to
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note the difference between the two graphs. Note that we imply the idea that projection

and scaling happens during each pass and almost simultaneously due to scaling just

before the projection. This is the major reason why loss behaves in variating fashion in

the start. It should be noted that this does not mean the network struggles to converge.

Table 5.4: Accuracy on CIFAR100 dataset test set in (%). We employ GoogleNet for

this experiment.

Methods Dataset Accuracy (%)

Ours (Without IS(x, ξ)) CIFAR100 59.23

Ours (With IS(x, ξ)) CIFAR100 60.44

Cireşan et. al [112] CIFAR100 64.32

Goodfellow et. al [113] CIFAR100 65.46

Springenberg et. al [114] CIFAR100 66.29

5.4.2 Retrieval Results

In this section we report the retrieval results on FashionMNIST dataset. Most retrieval

systems employ Recall@K as a metric to compute the scores. R@K is the percentage

of queries in which the ground truth terms are one of the first K retrieved results. To

retrieve results, we take query image and simply compute nearest neighbor (euclidean

distance) between all images and sort results based on the distance. The first five

distances correspond to Recall@K (K = 5) results and so on. We report results for

K = 1, 5, 10. Since this is a unimodal retrieval, images are at the input and retrieval end.

It is known that Recall@K increases even if one true positive out of TopK is encountered,

so the results are almost similar. For a more valid quantitive analysis, we also present

results of average occurrence of true positives (TP) in Top K. For retrieval, distance

minimization is the major objective which softmax alone can not handle efficiently, thus

we employ contrastive loss introduced by [101] along with softmax for the retrieval

problem which shows that the proposed layer IS(x, ξ) can function regardless of the

architecture and loss function.

5.4.3 Result Discussion

We explore classification and retrieval tasks with and without the IS(x, ξ) layer. The

reported results indicate the superior performance of architecture with the IS(x, ξ) layer.

It is important to note that the each experiments is run 5 times and k-fold validation

methodology is employed. The architecture with IS(x, ξ) layer maintains the upper

bound over its counter part without the IS(x, ξ) layer. In Table 5.5, the TP with
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Table 5.5: Recall@K and average occurrence of true positives (TP) in Top K scores for

FashionMNIST test set with and without the IS(x, ξ). Note that LeNet is the baseline

architecture.

Without IS(x, ξ) With IS(x, ξ) TP with IS(x, ξ) TP without IS(x, ξ)

R@1 86.75 88.75 89.74 86.70

R@5 95.63 95.88 89.90 86.60

R@10 97.22 97.33 90.00 85.60

IS(x, ξ) and without IS(x, ξ) indicate the average occurrence of true positives in TopK

retrieved results. The reason we employ this metric is Recall@K is incremented even if

a single true positive is encountered out of TopK and thus the results with and without

IS(x, ξ) layer are almost similar. However, with average true positive, we compute

the actual number of true positives out of TopK and compute the average to report

more discriminative comparison between the two. Furthermore, we compare our work

with state-of-the-art approaches. Note that most of the works obtaining state-of-the-art

perform data preprocessing, while we do not employ any pre or post processing technique

for any experiment performed and use single optimization policy without fine-tuning

hyperparameters for any specific task.

5.5 Conclusion and Future Work

In this chapter, we proposed a novel IS(x, ξ) layer for embedding the learned deep

features into hypersphere. We propose that hypersphere embedding is important for

discriminative analysis of the features. We verify the claim with extensive evaluation

on multiple classification and retrieval tasks. Furthermore, the layer module can be

added to any network and is fully differentiable and can be trained end-to-end with any

network.

In future, we would like to explore different hyperspaces for discriminatively embed-

ding feature representations. Furthermore, we would like to explore constraint-enforced

hyperspaces where networks learns a mapping function under certain constraints thus

resulting in a desired embedding.
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6.1 Introduction

The aim of deep metric learning is to learn a similarity metric from data. The similarity

metric can be used to compare or match new samples from previously unseen data.

In recent years, deep metric learning has gained considerable popularity following the

success in deep learning. Deep metric learning can be applied to numerous applications

such as retrieval [99, 115], clustering [116], feature matching [117] and verification [103,

60]. Extreme classification [118, 119] with enormous number of classes can also take

advantage of deep metric learning methods because of its ability to learn the general

concept of distance metrics.

Typically, deep metric learning methods are built on state-of-the-art CNNs [22, 21,

120]. Deep metric learning methods produce an embedding of each input so that a

certain loss, related to distance between two images, is minimized. In other words,

embedding produced by metric learning methods are optimized to push examples of

similar classes closer, conversely examples belonging to different classes are far from

them. Such embedding is robust against intra-class variation which makes such methods

suitable to learn similarity. Existing works take randomly sampled pairs of similar and

dissimilar inputs or triplets consisting of query, positive and negative inputs to compute

the loss on individual pairs or triplets.

Computer vision community has extensively used MNIST dataset in different appli-

cations including similarity. However, the dataset has only few seemingly similar classes,

making it less effective for deep metric learning methods. In this chapter, a new hand-
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written dataset named Urdu-Characters is created in a similar way as MNIST dataset.

Furthermore, we build Siamese and Triplet networks on Urdu-Characters and MNIST

datasets to show that a Triplet network is more powerful than a Siamese network. We

demonstrated that the performance of a Siamese or Triplet network can be improved

further using most powerful underlying CNNs i.e. AlexNet [21] and GoogleNet [22].

6.2 Related Work

Kulis [121] provides a comprehensive survey on advances in metric learning. Siamese

models have been used for very different purposes. For example Bromley et al. [122]

presented a Siamese network for signature verification, while Chopra et al. [103] used

a similar network for face verification. They pointed out a complete freedom in the

choice of underlying architecture to build such family of networks. This observation

is extremely important as future variants of Siamese network are built on top of more

powerful architectures i.e. AlexNet [21], GoogleNet [22] etc.

With rise in e-commerce websites, deep metric learning methods are extensively em-

ployed in image retrieval applications, for example Bell and Bala [123] used variants of

Siamese network to learn an embedding for visual search in an interior design context.

The embedding produced by such network is then used to search for products in the

same category, searching across categories and looking for a product in an interior scene.

They concluded that using higher dimension of the embedding makes it easier to satisfy

constraints in loss function. However, higher embedding dimension will significantly in-

crease the amount of space and time required to search image in retrieval applications.

We show that higher embedding dimension produces better results for such networks.

However, the choice of embedding dimension is based on the application context. Veit et

al. [115] extended the Siamese network to answer this question: ‘What outfit goes well

with this pair of shoes?’. The proposed framework learns compatibility between items

from different categories consisting of outfit and shoes. In other words, it goes beyond the

notion of similarity using the notion of style. Their work is also one of the interesting ap-

plications of a Siamese network. Wang et al. [58] presented deep ranking model to learn

fine-grained image similarity models based on triplet loss. Schroff et al. [60] used the

similar loss for face verification, recognition and clustering. Authors also presented an

online triplet mining method for creation of triplets. Similarly, we perform experiments

with three triplet sampling strategies to analyze the impact of triplet creation on the

network. We compare the performance of Siamese and Triplet networks with different

underlying CNN architectures. We also analyzed the impact of embedding dimensional-

ity on these deep metric learning methods. These two aspects of our work are not deeply

explored in related works. Typically, deep metric learning methods used MNIST dataset

in experiments. However, with the introduction of Urdu-Characters dataset, we provide
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researchers with a dataset with higher number of classes and ambiguities among classes.

The nature of this dataset can be ideal for deep metric learning and classification tasks.

6.3 Deep Metric Learning Methods

A Siamese or Triplet network learns distance metric where similar examples are mapped

close to each other and dissimilar examples are mapped farther apart.

6.3.1 Siamese Network

Siamese network (Figure 6.1a) is popular among tasks that involve finding similarity or

a relationship between two comparable things. The network is characterized by using

the contrastive loss function during the training which pulls together items of a similar

class while pushing apart items of different classes. The formula is shown below:

Ls(xi, x
±
i ) =

N
∑

i

[(1− y)‖f(xi)− f(x±i )‖22

+y ·max(0, α− ‖f(xi)− f(x±i )‖22)] (6.1)

where N stands for the number of images in the batch, f(·) is the feature embedding

output from the network, ‖f(xi) − f(x±i )‖22 is the Euclidean distance to measure the

similarity of extracted features from two images, and the label y ∈ {0, 1} indicates

whether a pair (xi, x
±
i ) is from the same class or not.

The training process for this kind of network is done feeding a pair of images xi, x
±
i

and a label y ∈ {0, 1} representing the similarity or dissimilarity between images.

6.3.2 Triplet network

The Triplet network (Figure 6.1b) is an extension of the Siamese network. It consists of

three instances of the same feed-forward network (with shared parameters). The triplet

loss [60] is trained on a series of triplets {xi, x+i , x−i }, where xi and x+i are images from

the same class, and x−i is from a different class, as reported in Equation 6.2. The triplet

loss is formulated as following:

Lt(xi, x
−
i , x

+
i ) =

N
∑

i

max(0, [‖f(xi)− f(x+i )‖22

−‖f(xi)− f(x−i )‖22] + α]) (6.2)

where f(xi), f(x
+
i ), f(x

−
i ) mean features of three input images and α is a margin that is

enforced between positive and negative pairs.
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(a) Siamese network

(b) Triplet network

Figure 6.1: Graphical representation of networks with Contrastive and Triplet loss func-

tions used in this work.

6.3.3 Covolutional Neural Networks

A Siamese or Triplet network is built on top of underlying CNN architecture as shown

in Figure 6.1. Typically, a CNN structure consists of various stages or layers such con-

volutional, pooling and rectification. Parameters in each layer are learned from training

data to optimize performance on some tasks. AlexNet [21] is considered first CNN model

successfully applied for image classification and starting from this architecture many new

architectures have been presented in recent years. In this work, we use three well-known

CNNs (LeNet, AlexNet and GoogleNet), as underlying architectures to build a Siamese

network or Triplet network. LeNet has only two convolutional layers while AlexNet has

5 convolutional layers and GoogleNet has many more layers. It is important to note that

‘softmax’ layer is removed from these architectures to obtain D-dimensional embedding.

6.3.4 Triplet Sampling

We employ three different strategies for triplet creation in our experiments. We want

to evaluate if the creation process has an impact on the overall performance. The first
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Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

Set 8

Figure 6.2: Interesting set of classes in Urdu-Characters dataset.

strategy that we employ consists of random selection of an image from the dataset, then

we select one image belonging to the same class as positive sample and one belonging

to a different class as negative sample. These images are selected randomly within these

two sets.

The second strategy chooses a random image from the dataset, then extracts the

most similar image of the same class and the most dissimilar from all other classes,

excluding the class of the query image. To determine image similarity, we compute the

Euclidean distance between them using feature vectors extracted from a CNN.

The third strategy differs from the second one on the selection of most similar image

as positive image to the query image. This strategy selects the most dissimilar image in

the same class as positive image. The vice-versa is for negative image. As reported in

Equation 6.2, we expect to obtain best results with the third strategy because during

the training process there would be higher error, making the backpropagation process

more effective, while the second strategy would apply minimum adjustment within each

step because of the similarity between query and positive image and the large difference

between the query and the negative image.
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Figure 6.3: Typical handwritten response received from a student on a printed plain

paper.

6.4 Dataset

The first dataset we use in experiments is the original MNIST [120] consisting of 60, 000

gray-scale images of handwritten digits (0 − 9) and a corresponding set of 10, 000 test

images with 28×28 pixels. MNIST dataset is extensively used in deep learning methods

and is considered benchmark dataset. However, MNIST dataset has only few seemingly

similar classes. This lead us to build a new handwritten dataset named Urdu-Characters,

built in a similar way as MNIST dataset. The nature of characters in handwritten Urdu-

Characters dataset is ideal for deep metric learning methods. There are some sets of

classes available in Urdu-Character dataset which are seemingly similar however belong

to different classes as shown in Figure 6.2.

Urdu-Characters dataset is collected on a printed plain paper with an 6in× 2in box

and 10× 4 grid. To collect the data, a group of undergraduate students at University of

Engineering and Technology, Lahore Pakistan participated in the activity. In particular,

students are asked to write Urdu characters in a specific sequence from right to left. We

received 560 responses from students. The collected forms are then scanned at 300 dots

per inch resolution in 8 bit gray scale image for further processing. Figure 6.3 shows a

response example of a student having written all Urdu characters from right to left.

The vertical and horizontal projections of student responses are obtained to detect

grid lines for character segmentation. Figure 6.4 show these projections shows veritical

and horizontal projections. Each projection is obtained summing all rows to first row

and thus obtaining a plot. A similar procedure is used for horizontal projection. The

projection lines with 85% or less sum were treated as separating lines and characters

between them were separated. Extracted characters were normalized and converted into

a 64 × 64 pixels image with 8 bit depth. Figure 6.5 shows some examples of extracted
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(a) Vertical.

(b) Horizontal

Figure 6.4: Vertical and horizontal projections to detect vertical and horizontal grid

lines of handwritten response received from a student.

handwritten characters. There are 20, 324 segmented characters grouped in 39 classes

with 15, 251 characters for train and 5, 073 characters for test set.

6.5 Experiments

We compare the performance of a Siamese and Triplet network on MNIST and Urdu-

Characters datasets. In addition, we want to compare the performance of Siamese and
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Figure 6.5: Extracted Urdu characters from a student response on a printed plain paper.

Triplet Networks built on top of different underlying CNNs architectures with differ-

ent embedding dimensionality. To achieve these objectives, we performed a series of

experiments on both datasets as follow:

– Build a Siamese network

– Compare the performance of Siamese network built on top of different underlying

CNNs (LeNet and AlexNet)

– Build a Triplet network

– Compare the performance of a Triplet and Siamese network

– Compare the performance of Triplet networks built on top of different underlying

CNNs architectures

We use Caffe [124] and The NVIDIA Deep Learning GPU Training System deep

learning frameworks, which contains efficient GPU implementations for training CNNs.

In experiments, accuracy is employ to measure the performance of different network

settings. Table 6.1 shows a Siamese network settings for MNIST and Urdu-Character

datasets built on top of LeNet. We use 100, 000 pairs of similar and dissimilar randomly

selected images to built a Siamese network. Output embedding dimensionality of the

network is 256. The last column in Table 6.1 shows the accuracy obtained by Siamese

network. The accuracy value of a Siamese network shows that network built on top of

LeNet does not perform well on a complex dataset like Urdu-Characters. This leads

us to built a Siamese network on top of more powerful network i.e. AlexNet for Urdu-

Characters dataset. Table 6.2 shows that a Siamese network built on top of AlexNet

produces better results compared to the same model built on top of LeNet.

These results lead us to built a competitor of Siamese network i.e. a Triplet network.

We use 100, 000 triplets consisting of query, positive and negative images to build a

Triplet network. Table 6.3 shows a Triplet network settings for MNIST and Urdu-

Character datasets built on top of LeNet. Accuracy values of both datasets for a Triplet



6.5 Experiments 59

Table 6.1: Siamese network settings built on top of LeNet for MNIST and Urdu-

Characters datasets.

Dataset Resolution Network Embedding Pairs Accuracy

MNIST 28× 28 LeNet 256 100, 000 96.23

Urdu-Character 64× 64 LeNet 256 100, 000 27.79

Table 6.2: Siamese network settings built on top of LeNet and AlexNet for Urdu-

Characters.

Dataset Resolution Net. Emb. Pairs Accuracy

Urdu-Character 64× 64 LeNet 256 100, 000 27.79

Urdu-Character 64× 64 AlexNet 256 100, 000 61.46

Network is higher than accuracy values of a Siamese Network as shown in Figure 6.6.

This proves that a Triplet Network is more powerful than a Siamese Network. We also

built a Triplet network on top of AlexNet to obtain better results than a Triplet network

built on top of LeNet. Table 6.4 shows the accuracy values of a triplet network built on

top of LeNet and AlexNet. This leads us to built a Triplet network on even more powerful

network like GoogleNet. However, to perform this experiment we need an image size of

256 × 256, hence, we up sample Urdu-Characters dataset images. Accuracy values in

Table 6.5 show that a Triplet network built on top of GoogleNet is more powerful than

a network built on top of AlexNet.

We compare the impact of the embedding dimensionality on Siamese and Triplet

networks. This leads us to built a Triplet network on top of AlexNet and GoogleNet and

a Siamese network on top of LeNet and AlexNet with 128, 256, 512 embedding dimen-

sionality as shown in Figure 6.8 and 6.7a. These results show that higher embedding

dimensionality obtain better accuracy values. However, the choice of embedding dimen-

Table 6.3: Triplet network settings built on top of LeNet for MNIST and Urdu-

Characters datasets.

Dataset Resolution Net. Emb. Triplets Accuracy

MNIST 28× 28 LeNet 256 100, 000 98.23

Urdu-Characters 64× 64 LeNet 256 100, 000 53.45
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Figure 6.6: [

Comparison of Triplet and Siamese networks Built on Top of LeNet and

AlexNet]Comparison of Triplet and Siamese networks built on top of LeNet and

AlexNet with 256 embedding dimensionality for Urdu-Characters dataset. We

employed network settings mentioned in Table 6.2 and Table 6.4 to built a Siamese and

triplet network respectively.

sionality depends considerably on the application context. For example, using search by

example system, a higher embedding dimensionality could make the process very slow.

Finally, we compare the effect of different triplet sampling strategies on the per-

formance of the triplet network. Table 6.6 shows the performance of three sampling

strategies discussed in section 6.3.4. Results of these strategies are comparable however,

strategy 3 is better than other two strategies because it violates the triplet constraints.

However, we believe that the triplet selection strategy depends on the variation in the

dataset. In our Urdu-Characters dataset, we have do not have high variability inside

classes.

Table 6.4: Triplet network settings built on top of LeNet and AlexNet for Urdu-

Characters dataset.

Dataset Resolution Net. Emb. Triplet Accuracy

Urdu-Characters 64× 64 LeNet 256 100, 000 53.45

Urdu-Characters 64× 64 AlexNet 256 100, 000 69.35
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Table 6.5: Triplet Network Settings Built on Top of AlexNet and GoogleNet for Urdu-

Characters dataset.

Dataset Resolution Net. Emb. Triplet Accuracy

Urdu-Characters 256× 256 AlexNet 256 100, 000 69.98

Urdu-Characters 256× 256 GoogleNet 256 100, 000 77.06
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Siamese network built on top of LeNet and AlexNet with 128, 256, 512 embedding

dimensionalities for Urdu-Characters dataset. We employed same network settings

mentioned in Table 6.2 to built the network.

Table 6.6: Comparison of triplet sampling strategies. We built triplet network on top

of AlexNet with 15, 251 triplets for training and 5, 073 triplets for test. Embedding

dimensionality for these networks is 128.

Strategy Accuracy

Strategy # 1 59.88

Strategy # 2 61.48

Strategy # 3 61.78
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Figure 6.8: Triplet network built on top of AlexNet and GoogleNet with 128, 256, 512

embedding dimensionality for Urdu-Characters dataset. We employ the same network

settings mentioned in Table 6.5 to built the network.

6.6 Conclusions

We built a handwritten Urdu-Characters dataset containing some sets of classes suitable

for deep metric learning methods. We showed that Siamese network built on top LeNet

performed well on MNIST dataset, but it did not reach good results on Urdu-Characters

dataset, however, a Siamese network built on top of AlexNet obtains significantly better

results on Urdu-Characters. A similar phenomenon also happened for a Triplet network,

where the difference between using different underlying CNN architectures such as LeNet,

AlexNet or GoogleNet is considerable in terms of overall accuracy. Furthermore, we

compared three sampling strategies to create triplets to built a Triplet network, but we

obtained comparable results. Usually, the use of different sampling strategies lead to

different accuracy values due to the variation in the dataset, however not in our case

with Urdu-Character dataset due to the fact that it does not have high variability inside

classes.



7
Conclusions and Future Research Directions

7.1 Conclusion

In this doctoral thesis, we presented techniques to enhance representations from in-

dividual and multiple modalities for multimodal applications including classification,

cross-modal retrieval, matching and verification on various benchmark datasets.

Recent years have seen an explosion in multimodal data on the web. It is therefore

important to perform multimodal learning to understand the web. However, it is chal-

lenging to join various modalities because each modality has different representation and

correlational structure. Therefore, we focus on improving representations from individ-

ual modalities to enhance multimodal representation and learning. Main contributions

are listed below.

– “Deep Latent Space Representations” framework consisting of a single stream,

end-to-end trainable network with a novel training procedure to map multiple

modalities to shared latent space without pairwise or triplet information at the

input.

– “Deep Fused Representations Framework for multimodal classification”

– A “Visual Word Embedding Scheme” that transforms Word2Vec word em-

bedding into visual space. The scheme enhances the text representation.

– An “Inwardly Scale Feature Representations” to render similar instances

closer and dissimilar instances distant. The approach improves the discriminative

representation of image.
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– “Metric learning approaches” to improve the image representations.

7.2 Perspectives for Future Research

This doctoral thesis proposed various contributions to improve representations from indi-

vidual and multiple modalities on various multimodal applications such as classification,

cross-modal retrieval and verification. These contributions are in no way complete solu-

tions, and could be improved in several manners. In the following, we propose potential

directions that can be explored further.

– Inverted image representations visualization methods are useful to analyze the

representations from various convolutional layers [33, 125]. Interestingly, inverted

representations provide several insights into the properties of the feature represen-

tation learned by the network. It would be interesting to visualize the inverted

representations from the joint layer of a multimodal approach. The visualizations

may provide information on the influence of one modality on the other at the

combined layer for various multimodal applications.

– Last year seen an increased interest to transform text centric Named Entity Recog-

nition problem into multimodal approach [14, 15, 16]. It would be interesting to

utilize the representations discussed in Chapter 3 and Chapter 4 for the multimodal

Named Entity Recognition task.

– “Deep Latent Space Representations” approach for Audio-Image is evaluated

on Voxceleb dataset. The audio samples in Voxceleb dataset are in English lan-

guage. It would be useful to extend Voxceleb dataset for other languages. The

above approach can then be extended for multilingual cross-modal verification.



Colophon

– This thesis was written using LATEX.

– The LATEX template for this thesis was made by Carullo Moreno.

– Algorithms presented were developed using the Google TensorFlow1, Pandas2 and

Scikit-learn libraries3.

– All experiments have been run on a machine equipped with an Intel Core i7-6800K

3.50 GHz with 64 GB of RAM, three NVIDIA GTX 1080 and Linux Mint 19 Tara.

1https://www.tensorflow.org
2https://pandas.pydata.org
3https://scikit-learn.org
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