
University of Insubria
Department of Theoretical and Applied Sciences (DiSTA)

PhD Thesis in Computer Science
XXXII Cycle of Study

Discriminative Feature Learning for
Multimodal Classification

Candidate:

ALESSANDRO CALEFATI

Thesis Advisor:

Prof. IGNAZIO GALLO

9th October 2019





To my Family





Contents

List of Figures v

List of Tables vii

1 Introduction 1

2 Motivations and Background 5

2.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Convolutional Neural Network for Natural Language Processing . . . . . . 11

2.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Datasets for Multimodal Document Classification . . . . . . . . . . 12

2.4.2 Datasets for Discriminative Feature Learning . . . . . . . . . . . . 14

3 Preliminary Works 15

3.1 Multimodal Classification: a comparative study . . . . . . . . . . . . . . . 16

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Weighting methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Meta-combination methods . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Semantic Text Encoding for Text Classification using Convolutional Neu-

ral Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Reading Meter Numbers in the Wild . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Detection phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iii



Recognition phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Experiment on detection phase . . . . . . . . . . . . . . . . . . . . 33

Experiment on recognition phase . . . . . . . . . . . . . . . . . . . 33

Full pipeline experiment . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Multimodal Document Classification 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 The Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Encoding Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Detailed CNN settings . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 GIT Loss for Deep Face Recognition 47

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Deep Metric Learning Approaches . . . . . . . . . . . . . . . . . . 49

5.2.2 Angle-based Loss Functions . . . . . . . . . . . . . . . . . . . . . . 49

5.2.3 Class Imbalance-Aware Loss Functions . . . . . . . . . . . . . . . . 49

5.2.4 Joint Supervision with Softmax . . . . . . . . . . . . . . . . . . . . 49

5.3 The Git Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . 52

Training Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Data Preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Network Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Test Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.2 Experiments with λC and λG parameters . . . . . . . . . . . . . . 53

5.4.3 Experiments on LFW and YTF datasets . . . . . . . . . . . . . . . 55

6 Conclusions and Future Works 57

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography 63



List of Figures

2.1 Sample feature maps of eight layers of a CNN . . . . . . . . . . . . . . . . 9

2.2 AlexNet architecture proposed by Krizhevsky et al. . . . . . . . . . . . . . 10

2.3 Illustration of a CNN architecture for sentence classification . . . . . . . . 13

3.1 Examples of ambiguous text descriptions and images . . . . . . . . . . . . 18

3.2 Early Fusion approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Late Fusion approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Example of visually encoded text . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Schematic example of our proposed encoding scheme . . . . . . . . . . . . 26

3.6 Pipeline of the Semantic Text Encoding classification system . . . . . . . 26

3.7 Samples from the meter dataset . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 Pipeline for Text Detection and Recognition . . . . . . . . . . . . . . . . . 31

3.9 Examples of upside down images from the meter dataset . . . . . . . . . . 34

3.10 Qualitative results for various typologies of meter . . . . . . . . . . . . . . 35

3.11 Examples of images with superimposed ground truth . . . . . . . . . . . . 36

4.1 Graphical representation of the Fusion model . . . . . . . . . . . . . . . . 40

4.2 Encoded examples from UMPC-Food101 and Ferramenta datasets . . . . 41

4.3 Original samples taken from Ferramenta and UMPC-Food101 datasets . . 42

4.4 Comparison between CNNs using single and multimodal approaches . . . 45

5.1 Toy example showing the aim of our proposed approach . . . . . . . . . . 48

5.2 Graphical representation of Center loss and Git loss trends . . . . . . . . 50

5.3 Samples from VGGFace2 dataset . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Plots of Center and Git loss behaviour on MNIST training set . . . . . . . 53

v





List of Tables

3.1 Results using multimodal fusion on Ferramenta and Pascal VOC2007 . . . 22

3.2 Examples of prediction with the Late Fusion approach . . . . . . . . . . . 23

3.3 Evaluation of the proposed approach with SVM on top of Doc2Vec . . . . 29

3.4 Evaluation for Text Detection phase . . . . . . . . . . . . . . . . . . . . . 33

3.5 Evaluation of the recognition phase . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Evaluation of the whole pipeline . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Configuration of the network in the proposed approach . . . . . . . . . . . 41

4.2 Comparison of the proposed method with early and late fusion strategies 43

4.3 Results comparing single-modal approaches with fusion strategy . . . . . 44

5.1 Comparison between Center loss and Git loss on MNIST dataset . . . . . 54

5.2 Comparison of different state-of-the-art methods with the proposed ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vii





Acknowledgments

First and foremost, I would like to thank my advisor Prof. Ignazio Gallo that allowed

me to live this very special experience. He taught me to work hard even when things

seem not to go in the right direction or good results look are not yet to come. This is

the most important teaching I learnt and that I will take with me in my life.

I want to thank my colleague Shah Nawaz with which I collaborated during this

three-years journey. It has been difficult but thanks to its support and its huge network

of people, he helped me in getting out from difficulties. Thanks to him I knew some

very good students who helped us in research projects and writing papers.

I gratefully acknowledge Prof. Pierluigi Gallo (Università degli Studi di Palermo)
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1
Introduction

The purpose of this thesis is to tackle two related topics: multimodal classification

and objective functions to improve discriminative power of features. First, I worked on

image and text classification tasks and performed many experiments to show the effec-

tiveness of different approaches available in literature, which are described in Chapter 3.

Then, I introduced a novel methodology which can classify multimodal documents using

single-modal classifiers merging textual and visual information into images and a novel

loss function to improve separability between samples of a dataset.

The growth of the web and social networks have lead to an explosion of data, which

often is characterized by a multimodal nature. For instance, on social networks people

share posts using text and images or videos, which typically contain visual and audio

information. Another effective example of multimodal information are marketplaces: in

fact, on e-commerce websites online sellers advertise products using a combination of

text and images to describe and show features of an item. Often, very different products

on sale seem to be very similar if considering only the textual description or the image.

Classification in this scenario is even more difficult taking into account the fact that data,

typically, is affected by noise. In fact, often, it happens that the textual description of

an item is very generic, unclear or even completely unrelated to the object it should

describe, making the classification task even harder.

Tackling the text classification in social networks field is a challenging task, because

posts on social platforms are characterized by short text, slang and irony or sarcasm.

These characteristics of text are even more emphasized when talking about specific

1



2 Introduction

topics, such as politics.

All abovementioned observations lead to the fact that considering solely single modal-

ities can lead to uncertain and poor classification results [1, 2], while the joint usage of

text and images may help to overcome this problem. In this thesis, the importance of

methods that can deal with such modality of data is shown, highlighting improvements

obtained using multimodal classification in terms of performance and robustness against

the lack of information or inconsistencies within data. Using multimodal classification,

these issues, which can be considered as noise of a dataset, can be resolved.

Multimodal classification has been studied in literature and applied to many fields,

ranging from computer science to health. The analysis of images and text on e-commerce

websites, posts from social network with images, audios and text [3] or even analysis of

biometric data [4, 5] to detect diseases are few examples.

Classification tasks have been tackled from decades obtaining very good results with

traditional models like Support Vector Machine, decision trees, random forests and multi-

layers perceptrons [6]. With the recent introduction of Convolutional Neural Networks

(CNNs), results have been further improved making CNNs to become the de-facto stan-

dard in image classification. In addition to the strength of novel models, dealing with

data coming from various sources is important, because, considering a single modality,

often, is not enough to capture relevant information or semantic relationships.

Typically, multimodal classification has been performed with ensemble-of-classifiers

approaches. Methods consist in the joint usage of multiple classifiers, which, then, are

merged together to perform the final classification [7]. Boosting and Bagging methods

achieved good results and opened the way to multimodal approaches [8]. The intuition

behind the usage of multiple models is to create a more powerful and robust classifier

to overcome errors which could be done during the prediction phase by single classifiers.

For instance, ideally, when a model misclassifies a pattern, there should be another one

performing a correct classification. Assigning weights to each classifier is a simple but

effective method to reach this objective.

We tackled the multimodal classification topic, starting from simpler approaches

such as Early Fusion and Late Fusion to more complex approaches based on word2vec

(w2v) word embedding and CNNs. In the first part of this thesis, an approach which

is able to perform multimodal classification merging information coming from images

and text inside an image is presented. The advantage of this method is that it exploits

capabilities of CNNs designed for image classification only to multimodal classification

tasks, without making any changes to the architecture.

Approaches for classification working with multiple information sources lead to better

performance overcoming errors induced by noisy datasets or incomplete data [9].

In addition to multimodal approaches, separability between classes plays a crucial

role in improving classification performance. Datasets characterized by data of different
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classes being very close each other make the classification task very complex and error-

prone; even state-of-the-art classifiers on these datasets obtain low performances. This

scenario is even more challenging when introducing a method which represents multi-

modal features using only a single modality. This to be able to perform classification

using a unique classifier without the need of applying changes. For example, in this

thesis, it is presented an approach which uses CNNs, designed for image classification,

for multimodal classification.

In an ideal scenario, we would like to have compact features of a class while very

far features of other classes, in other words, having low intra-class variations and high

inter-class distances. This is the objective of the second main work presented in this

thesis.

Deep Metric Learning has been studied from decades. In fact, in literature there are

many approaches trying to optimize the similarity or relative similarity between dataset

samples [10, 11, 12, 13]. Most of them require the creation of a new datasets with a

huge cardinality, made up of pairs or triplets, to train models effectively. In literature,

majority of the works are performed on face verification and recognition tasks [14, 15,

16, 17, 18, 19, 20], however, discriminative feature learning is a recurrent task and not

limited only to face classification topic. The second objective of this thesis is to propose

a novel loss function to improve the discriminative power of a model, while avoiding the

dramatic data expansion typical of previously cited approaches.

In the last part of this thesis, a novel loss function which minimizes intra-class and,

at the same time, improves inter-class distances is proposed. This scenario increases

results of classification, as shown by results obtained in [21].





2
Motivations and Background

In this Chapter, I review the literature related to main works of this thesis and will

explain some ground concepts useful to understand the proposed approaches, explained

in Sections 4 and 5.

In particular, in Section 2.1, most of previous approaches dealing with multimodal doc-

ument classification, starting from works employing traditional classifiers to more recent

approaches using CNNs are reported. There will be an analysis on pros and cons for

each approach and motivation of taken choices. In Section 2.2, fundamental concepts of

CNNs are explained. These notions are useful to understand our proposed approaches

and advantages of using this kind of architectures to perform classification task. In

Section 2.3 there is a brief summary of the work proposed in “Text understanding from

scratch” [22] which has been used as inspiring model for the work described in Section 4.

Datasets used in the evaluation process of main works are described in Section 2.4.

2.1 Motivations

Multimodal classification has been studied and applied to many topics, such as smart

homes [23], surface classification from satellite images [24] and health [4] to name a few.

In e-commerce, advertising companies are using preferences of users to select and show

most suitable products for a specific target audience, or still, the joint analysis of images

and audios, can be exploited for cross-modal biometric matching [25]. In the literature

there are approaches dealing with traditional single-modal classification on text [26, 27]

and images, but most of them solve the task with traditional classifiers like SVM [28],

decision trees [29] and random forests [30].

5



6 Motivations and Background

I review the literature first considering the image classification task, then approaches

dealing with text only and, finally, I will discuss about methods working on the combi-

nation of images and text for classification.

With the advent of the CNNs [31] and their stunning results, the task of image

classification has changed drastically. Traditionally, the pipeline for image classification

was made up by feature extraction performed, typically, by Histogram of Gradients

(HOG) [32], Pyramid Histogram of Gradients (P-HOG) [33] or other methods to detect

contours of subjects. After this step, researchers were used to apply feature selection

algorithms to select more relevant features [34, 35] in order to remove redundancy and

noise within features. The usage of kernel functions [36] and Principal Component

Analysis (PCA) [37] was an alternative common scenario. Kernel functions map features

in a higher space dimension trying to make them linearly separable, while PCA reduces

the size of features and finds correlation, lowering the time needed to train classifiers.

Due to the handcrafted feature extraction phase, this pipeline is very inefficient and

error-prone: often, obtained performances were very low not because of the selected

classifier being not able to classify patterns, but because features extracted were not

representative for the domain of the problem or were not the most discriminating ones.

For text classification, the approach was very similar to the one explained for im-

ages: the main difference is in the feature extraction step, where different methods are

employed. Dealing with text, a very common feature extraction algorithm is of Bag-

of-Words (BoW). It creates a vector representation for a document, first creating a

dictionary of all words of documents and then assigning a “1” value if a word occurs

in the document else “0”. Another common technique is term frequency (TF) which

assigns a weight to each word counting the number of its occurrences. TF is often used

in conjunction with inverse document frequency (IDF) which computes the score of rele-

vancy for each word. This two measures are merged together, computing the product by

TF and IDF. Intuitively, if a word occurs many times in a document, it is considered rel-

evant for that document, however, if it occurs in almost all documents, it means is not so

relevant for understanding the topic of a text. The disadvantage of all these approaches

is the casting of a document into a dictionary vector where correlations between words

are lost and no information about semantics is kept.

To solve this problem Word2Vec (W2V) [38] has been introduced. Starting from a

corpus of documents, it is able to create a real-valued vector for each word in documents.

Its strength is the capability of capturing semantic relationships between words: words

occurring in similar contexts will have similar vector representations. On top of w2v

is built Doc2Vec (D2V): it has the same objective of Word2Vec, but instead of dealing

with single words, it deals with entire documents. Thus each document in a corpus is

represented with a fixed length vector keeping the same property of Word2Vec.
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2.2 Convolutional Neural Networks

In recent times, deep neural networks have lead to outstanding results on a variety of

pattern recognition tasks, such as computer vision and voice recognition [31]. One of the

essential components leading to these results is a special kind of neural network called

CNN. CNNs are inspired from visual cortex. It has small regions of cells sensitive to

specific regions of the visual field, for example to edges or orientations. An experiment

performed in 1962 by Hubel and Wiesel [39] showed that some individual neuronal cells

in the brain respond only when exposed to vertical edges, while others respond only when

seeing horizontal or diagonal edges. Hubel and Wiesel discovered that these neurons are

organized in a hierarchical way and, together, they can produce a visual perception.

This is the base concept behind each kind of CNN. In Deep Learning these regions

are called receptive fields. Receptive Fields are represented as weighted matrices, also

known as kernels, that are sensitive to similar local subregions of an image. The degree

of similarity between a region of an image and a kernel can be computed convolving the

kernel on the region.

For example, a 3× 3 kernel like:






0 1 0

1 −4 1

0 1 0






(2.1)

can be convolved over one image to detect the presence of edges as shown in Fig-

ure 2.1. In a traditional feed-forward neural network each input neuron is connected to

each output neuron of the next layer. This kind of network is also called fully connected

network. In CNNs, convolutional layers applied to the input image are used to compute

the output. This leads to obtain local connections, where each region in the input is

bound to a neuron in the output. Typically in a CNN there are many layers that apply

different filters, as the one shown in 2.1, and combine results.

Pooling layers are usually applied after convolutional layers. The purpose of these

layers is to reduce the dimensionality of the input, selecting a value from a local region.

The typical operation performed is the max-pooling, thus for a region the maximum

value is selected, however, different selection criteria can be used depending upon the

scope of the network.

During the training step, a CNN automatically learns the values of its filters based

on the task. For example, in image classification, it may learn to detect edges from raw

pixel values in the first layer, then it uses edges to detect shapes and finally leverages

on features extracted to find higher level features that can be exploited in the last layer

to perform the final classification.

This architecture has two important aspects: location invariance and composition-

ality. The location invariance allows, for example, to classify whether or not there is a
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specific object in an image. Filters are convolved over the entire image, thus the posi-

tion of the object to be detected is not important. Rotation and scaling are performed

applying pooling filters. Moreover invariance to translation is obtained. The second

aspect, local compositionality, is obtained because each filter composes a local patch of

lower level features into higher level representation. From basic structures of an image

like edges, gradients and blurs, kernels start to learn more highly discriminating complex

features for the processed image. In Figure 2.1, taken from [40], some sample images

from all layers of a network similar to the famous AlexNet [31], pointing out information

learned by kernels.

Basically CNNs are composed of a series of convolutive layers with non-linear activa-

tion functions, pooling and fully connected layers. As described, CNNs use convolution

operators. Given an image x with k channels and a kernel w, the convolution operator

creates a new image y in the following way:

yi′j′k′ =
∑

ijk

wijkk′xi+i′,j+j′,k (2.2)

where k′ corresponds to the index of filters/kernels in the convolution.

A linear filter is followed by a non-linear activation function applied identically to

each component of a feature map. The most used non-linear activation function is the

Rectified Linear Unit (ReLU) and it is defined as follow:

yijk = max {0, xijk}. (2.3)

Another key aspect of Convolutional Neural Networks are pooling layers. They

subsample their input through a pooling operators which deals with individual feature

channels, merging nearby feature values into one. The most common way to perform

pooling is to apply a max function (max-pooling) to the output of each filter. Max

pooling is defined as follow:

yijk = max {yi′j′k : i ≤ i′ < i+ p, j ≤ j′ < j + p}. (2.4)

Pooling reduces the output dimensionality but keeps the most salient information and

it also provides a fixed-size output matrix, which typically is required for classification.

In image recognition, pooling also provides basic translation invariance and rotation

properties.

The success of CNNs in computer vision started few years ago with the AlexNet [31].

This network was trained on the ILSVRC-2012 training data, containing 1.2 million

training images belonging to 1000 classes. It was able to half the error rate on that task,

strongly beating traditional hand-crafted approaches. As shown in Figure 2.2, the net is

composed of five convolutional layers, some of them followed by max-pooling layers, and

three fully-connected layers with a final softmax. Authors applied dropout to reduce
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Figure 2.1: Sample features of eight layers of a CNN. For each layer the original size is

kept. In lower layers sizes are larger and features seem to be noise, because only edges,

blurs and gradients are detected. Going toward the last layer, it can be noticed that sizes

are smaller but features resemble to objects of interest from the dataset. Translation

invariance and compositionality are more evident in higher layers.
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Figure 2.2: AlexNet architecture proposed by Alex Krizhevsky taken from its original

paper. AlexNet consists of five convolutional layers followed by three fully-connected

layers.

overfitting in the fully-connected layers. Dropout is a powerful regularization method

introduced in [41], which has shown benefits for large neural networks. The simple key

concept of dropout is to reduce co-adaptation between units. This objective is obtained

randomly dropping units and their connections during the training phase.

The performance of AlexNet motivated a number of CNN-based approaches, all

aimed at improving performance over this model that became the de-facto standard

in computer vision. Just like AlexNet was the winner for ILSVRC challenge in 2012,

a novel CNN-based net [42] was the best at ILSVRC-2013. The key insight was the

training of a network to jointly classify, locate and detect objects in images. This led to

a boost of classification, detection and localization accuracies. GoogleNet [43], won the

ILSVRC-2014, establishing the fact that very deep networks can reach higher accuracies

in classification task. Authors introduced a trivial 1 × 1 convolutional layer after a

regular convolutional layer, this reduced the number of parameters and resulted in a

more expressive power. Further details are reported in the original paper [44], where

authors show that having one or more 1 × 1 convolutional layers is similar to have

a multilayer perceptron network processing the outputs of a convolutional layer that

precedes it. VGG-19 [45] is another example of highly performing CNN. An interesting

feature of VGG architecture is that it replaces larger sizes convolutional filters with a

stack of smaller sized filters. These smaller sized filters, typically, are selected in a way

that they have approximately the same number of parameters as the larger ones they

are replacing. This design decision provided efficiency and regularization-like effect on

parameters due to the smaller size of filters involved.
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2.3 Convolutional Neural Network for Natural Language Pro-

cessing

Thanks to stunning results obtained on image classification tasks, Convolutional Neural

Networks were also applied to Natural Language Processing (NLP) problems, achieving

good results. In NLP tasks, typically, the input is made up of a set of sentences or a

corpus of document. Each document must be transformed into a fixed length matrix

where each row represents the encoding of a word through a vector of real numbers. The

common word2vec [38] approach converts each word in a vector of a specified length,

however, it is not the only one available; similarly GloVe [46] or one-hot vectors indexing

dictionary can also be used. Convolutional nets applied to NLP, usually perform the so

called 1-D convolution operation. Differently from images, where kernels slide from left

to right over an entire image, in NLP tasks, kernels have the same length of the encoding

method selected, while the height, or region size, may vary. This results in applying the

convolution kernel in a single direction only: from top to bottom of a text document.

CNNs for NLP are trained to address classification tasks, such as Topic Catego-

rization, Spam Detection and Sentiment Analysis. Yoon Kim [47] introduced a CNN

architecture for Sentiment Analysis and Topic Categorization tasks. It is composed of

an input layer which takes a sentence in a form of concatenated word2vec word embed-

dings, followed by a convolutional layer with multiple filters, then a max-pooling layer

and finally a softmax classifier. Kim evaluated this model on many datasets achieving

good performance and, in some cases, state-of-the-art results.

Johnson and Zhang [48] trained a CNN directly to one-hot vectors from scratch,

differently from word2vec or GloVe approaches that need to be trained on documents.

Authors also introduced a more compact bag-of-words-like representation to reduce the

number of parameter the network needs to learn. This effect occurs because there is a

strong correlation between the number of parameters to learn and the cardinality of the

dataset: more samples are required to train a model with larger number of parameters.

In [49] authors extend the model with an additional “region embedding” learned using a

CNN predicting the context of text regions. Approaches proposed in these papers seem

to work well for long texts, however, performance on short text are not clear. To deal

with short texts, like tweets, it seems to be a good idea to exploit the capability of a

pre-trained word embedding to overcome the lack of information from the text.

Using CNNs in conjunctions with other approaches designed for text like word2vec,

GloVe or one-hot vectors, require the choice of several hyperparameters such as em-

bedding length (word2vec, GloVe, one-hot), sizes of convolutional kernels and pooling

layers with their own strategies (max, average) and activation functions (tanh, ReLU).

The work in [50] evaluates empirically the effect of above-mentioned hyperparameters

on CNNs. Results show that max-pooling performs better than average pooling, while
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filter sizes are important but task-dependent and that regularizazion does not have huge

impact on NLP tasks.

The main work of this thesis, explained in Section 3.2, is inspired from the archi-

tecture, introduced for NLP, shown in Figure 2.3 [50]. The original model has been

slightly changed. The embedding computed by the model is 128-dimensional. Moreover

we use it as feature extractor for the text: in the fully-connected layer we extract the

text feature that will be represented onto images. All these transformation are applied

on the text, while images are resized to the desired output size. Once we preprocessed

all images, applying the information coming from the text in the upper part, dataset is

ready to be trained with a ”standard” CNN, designed for image classification.

2.4 Datasets

In this Section, datasets employed in the thesis are presented. In the Subsection 2.4.1

datasets used to evaluate the multimodal document classification are shown, while in

Subsection 2.4.2 datasets of experiments on Git loss function are explained.

2.4.1 Datasets for Multimodal Document Classification

We tested our approach on two multimodal datasets coming from different topics.

The first dataset, UMPC Food-101, consists of images and text descriptions of food

recipes from all over the world, as the name suggests. Text description are written in

English. It contains about 100000 items of food recipes belonging to 101 classes. This

dataset is collected from the web and each item consists of an image and the HTML

webpage on which it was found. We extracted the title from HTML document tags and

use it as text description. In this dataset there are 101 classes of recipes taken from the

most popular categories of the food picture sharing website 1.

The second dataset, called Ferramenta dataset, has been provided by an Italian

online price comparison company. Through their platform, this company provides a

service which let customers to quickly compare the best prices for different products,

ranging from mobile phones to fridge and from gardening tools to hardware tools. We

collected a set of data from the hardware tools category (Ferramenta) and thanks to a

set of 3 experts, all commercial advertises from this category have been tagged. A total

of 88010 offers, composed of images and textual descriptions, has then been split into

66141 and 21869 for train and test sets respectively.

1www.foodspotting.com
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Figure 2.3: Illustration of a CNN architecture for sentence classification. We depict three

filter region sizes: 2, 3 and 4, each of which has 2 filters. Filters perform convolutions

on the sentence matrix and generate (variable-length) feature maps; 1-max pooling is

performed over each map, i.e., the largest number from each feature map is recorded.

Thus a univariate feature vector is generated from all six maps, and these 6 features

are concatenated to form a feature vector for the penultimate layer. The final softmax

layer then receives this feature vector as input and uses it to classify the sentence; here

we assume binary classification and hence depict two possible output states. Source:

Zhang, Y., & Wallace, B. (2015). A Sensitivity Analysis of (and Practitioners’ Guide

to) Convolutional Neural Networks for Sentence Classification.
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2.4.2 Datasets for Discriminative Feature Learning

We evaluated the Git loss function on two famous face recognition benchmark datasets:

LFW [51] and YTF [52] in unconstrained environments i.e. under open-set protocol.

LFW dataset contains 13233 web-collected images from 5749 different identities, with

large variations in pose, expression and illumination. We follow the standard protocol of

unrestricted with labeled outside data and tested on 6000 face pairs. Results are shown

in Table 4.3.

YTF dataset consists of 3425 videos of 1595 different people, with an average of 2.15

videos per person. The duration of each video varies from 48 to 6070 frames, with an

average length of 181.3 frames. We follow the same protocol and reported results on

5000 video pairs.



3
Preliminary Works

In this Chapter, I report salient preliminary works that acted as foundation for the

main proposals of this thesis. One of the main studies is related to multimodal classifi-

cation exploiting images and text, thus, it was necessary to study both modalities before

merging the acquired knowledge within a single method. The other main contribution

is a novel loss function which minimizes intra-class variation and improves inter-class

distance. Separability and discrimination is a point to keep in mind in classification

tasks to achieve good performance. Even though, it has been developed apparently from

a unrelated topic, i.e. face recognition, the proposed approach is easily adaptable to

any different task without any modifications. Thus it can be also employed with the

multimodal approach proposed in Chapter 4.

All approaches presented have been developed in collaboration with my colleagues

of ArteLab1. So, during the explanation of the approaches, I will use the first plural

person to reflect this collaboration.

In this section, three preliminary works will be summarized [53, 54, 55].

The first one is an approach introduced to classify multimodal documents containing

images and text using traditional classifiers. The aim was to understand how simple

single-modal classifiers perform when combined together for multimodal classification

tasks. We, then, compared results with multimodal approaches.

In the second work, a simple but very effective pre-process step that we introduced

to perform text classification task with CNN, typically used for image classification, is

1http://artelab.dista.uninsubria.it
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shown. This represented one fundamental aspect for the main study of this thesis.

After having developed a base knowledge on text classification field, we studied in

deep image classification to have a more complete view of the literature and state-of-

the-art models, which is useful for better understanding the multimodal classification

topic. We tackled the object recognition and detection fields, studying existing models

and adapting them to the context of our interest. At the very end of this Chapter, I will

discuss about a pipeline we introduced for object detection and object recognition.

Next sections are organized as follow: in Section 3.1 a summary of our work named

”Multimodal Classification in Real-World Scenarios” [53], while Section 3.2 contains an

overview of our paper ”Semantic Text Encoding for Text Classification using Convo-

lutional Neural Networks” [54]. Both papers have been presented at the International

Conference on Document Analysis and Recognition (ICDAR-WML 2017). Section 3.3

illustrates a work named ”Reading Meter Numbers in the Wild” [55] accepted at Digital

Image Computing: Techniques and Applications (DICTA2019).

3.1 Multimodal Classification: a comparative study

In this paper we introduced an approach leveraging on weighting and meta-learning com-

bination methods that integrate the output probabilities obtained from text and visual

classifiers. Typically, text or images are used in single way classification, however, many

times ambiguities present in either texts or images may reduce the performance. This

lead us to combine text and image of an object or a concept in a multimodal approach to

enhance the performance of the final classification. We trained text classifiers on Bag-of-

Words and Doc2Vec features, while for the visual branch, we extracted vectors from the

last fully connected layer of a Deep Convolutional Neural Network. Single-modalities

approaches are compared with early fusion and late fusion multimodal methods. Re-

sults show that multimodal classification achieves better performance than single-modal

classification, especially on very noisy datasets.

3.1.1 Introduction

With the rise of e-commerce websites, users are provided information often coming from

different sources, for example text and image. For each item on sale, a user can select

a product based on a text and an image that show characteristics, colors and other fea-

tures of the product. However, sometimes, the image and the text of an advertisement

are not consistent, which confuses the users that are interested in buying that product.

We use different kind of data to perform a multimodal classification, a technique that

leverages on features extracted from different modalities to enhance the classification

performance. The proposed approach is summarized in Figure 3.3 and uses Convolu-

tional Neural Network (CNN) [31] and other classifiers to achieve the above mentioned
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goal. This method can obtain high classification accuracy, especially on data character-

ized by noisy text (grammatically ill formed sentences, short text document, technical

details, etc.). Experiments are conducted on advertisements, as shown in Figure 3.1,

where the description contains a noisy text and an ambiguous image in some cases.

The image and the text of a document usually contain information describing the

same object or concept. In ambiguous situations it is useful to extract the information

content from the text and image. For example, in Figure 3.1, the image and the text

in the second column describe a pair of shears and a ladder respectively, without am-

biguities. But looking at the first column of the same image and we want to classify it

only using the text, a classifier may incorrectly classify it as “shears”. Conversely, if we

look at the example in the second row and we want to classify that advertisement only

analyzing the image, a classifier may incorrectly annotate it as a “ladder”. In this way,

by combining text and image it is possible to disambiguate wrong classifications and

improve the classification result. This leads to the use of a multimodal approach using

textual and visual features on a variety of tasks including modeling semantic relatedness,

compositionality and classification [56, 57, 58, 59, 60].

The fusion of different modalities generally occurs at two levels: at the level of fea-

tures or early fusion and at the level of decisions or late fusion as described in [61].

Some examples of early fusion such as [62, 60], directly concatenate text and image fea-

tures to produce a single multimodal vector (see graphical representation in Figure 3.2),

obtaining promising performance in other contexts other than classification. Thus, we

can show that in certain contexts an early fusion approach results in a classification

performance that is better than text or image classifiers: however, it never outperforms

better classifiers. In this work, we present two late fusion [61] mechanisms, weighting

and meta combination, to combine the output of visual and textual classifiers.

The performance of the two strategies outperforms an early fusion [61] classifier

trained on text and visual features concatenation. Visual features are obtained by us-

ing CNN extracted features whereas text features are obtained using Doc2Vec (D2V)

from [63] and BoW [61]. We also created a dataset called “Ferramenta”, which contains

ambiguous images and noisy text descriptions of commercial offers. Existing datasets,

such as [64] are mainly characterized by a couple of labels or keywords associated to an

image representing a concept. Our dataset provides images and descriptions represent-

ing adverts, that are usually available on an e-commerce website. For the purposes of

academic research, we will publish our dataset and we believe that it can be used for a

variety of useful tasks. Table 3.2 shows some of the examples with our fusion method

on Ferramenta dataset. Examples (a) - (c) show that the method correctly classifies an

advert even if one of the models or both make wrong classifications.

In literature it is uncommon to find a dataset with both text and image such as the

one presented in this work, which is created through the combined use of text and image
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craft 108811 - Scissors / shears - Seg-

mental diamond cut blade 115 x 22,2

mm Dry cooling Weight: 0,12.

Fumasi Shear Sheet metal Italy 220

- 8033116531634 - Model Italy Gambi

rights Lame execution burnished.

Finether 3.2M Portable Aluminum

Telescoping Ladder with Finger Pro-

tection Spacers for Home Loft Office,

EN131 Certified, 330 Lb Capacity.

Custom multifunction dynamic con-

struction scaffolding (11’6 x 4’ x 2’6

Base), simple for decoration -up 150 kg

-weights only 16 kg.

Figure 3.1: In the top row, two examples of ambiguous textual descriptions that can be

disambiguated through the analysis of the respective images. In the bottom row, two

examples of ambiguous images that can be disambiguated through the analysis of the

respective description.
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Figure 3.2: A classical early fusion [61] multimodal approach where texts and images are

used independently to extract the features in supervised manner or by special operators.

These two types of features are concatenated together in order to train a single output

classifier.

Figure 3.3: The late fusion model. Text and images are used independently to extract

the features in a supervised manner or by specific operators. In each of these two types of

features, a classifier is trained to output class probabilities. The latter are fused together

by special algorithms.
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in an advertisement. The majority of the datasets available in literature are related to

datasets of images that are then associated to labels to force multimodality, such as

PASCAL VOC2007 [64] extended with Flickr tags2.

3.1.2 Proposed Method

The purpose of supervised learning is to categorize patterns into a set of classes. The

main idea behind the ensemble methodology is to weigh several individual classifiers and

combine them to obtain a classifier that outperforms individual classifiers, also called

late fusion [61] in a multimodal approach. Empirically, ensembles tend to yield better

results when there is a significant diversity among models [7]. Many ensemble methods,

therefore, seek to promote diversity among the models they combine.

In the ensemble fusion model, texts and images are first processed separately to

provide decision-level results, as described in [65, 61]. Results are then combined using

two different approaches: weighting methods and meta-learning methods [7]. Weighting

methods are useful if the base-classifiers perform the same task and have comparable

success. Meta-learning methods are best suited for cases in which certain classifiers

consistently correctly classify, or consistently mis-classify, certain instances.

In our model, as in Figure 3.3, text processing and image processing are carried out

on text and images separately and a fusion algorithm is used to combine the results.

The details of the model and different ensemble approaches are explained below.

Weighting methods

When combining classifiers with weights, a classifier’s classification has a strength that is

proportional to an assigned weight. This weight can be fixed or dynamically determined

for the specific instance to be classified. Suppose we are using probabilistic classifiers,

where P (y = c|x) denotes the probability of class c given an instance x. The idea of

the Distribution Summation (DS) combining method [7] is to sum up the conditional

probability vector obtained from each classifier. The selected class is chosen according

to the highest value in the total vector. Formally, it can be written

class(x) = argmax
ci∈dom(y)

(Pt + Pv) (3.1)

where Pt and Pv are the probabilities Pt(y = ci|x) and Pv(y = ci|x) of the text classifier

and visual classifier respectively.

The weights αt and αv of each classifier can be set proportional to its accuracy

performance on the training set or validation set, obtaining the following Performance

2http://lear.inrialpes.fr/people/guillaumin/data.php
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Weighting (PW) formula

class(x) = argmax
ci∈dom(y)

(αtPt + αvPv) (3.2)

where each αk denotes the weight of the classifier, such that αk ≥ 0 and
∑

αk = 1.

According to the Logarithmic Opinion Pool (LOP) defined in [7], the selection of the

preferred class can be also performed in this way:

class(x) = argmax
ci∈dom(y)

eαtlogPt+αvlogPv (3.3)

Meta-combination methods

Meta-learning means learning from the classifiers produced by the inducers and from

the classifications of these classifiers on training data.

In this work we tested the Stacking (S) meta-combination method. Stacking is a

technique for achieving the highest generalization accuracy [7]. First, two algorithms

are trained on images and text descriptions using the available data, then a combiner

algorithm is trained to make a final prediction using all the predictions of the other

algorithms as additional inputs. If an arbitrary combiner algorithm is used, then stacking

can theoretically represent any of the ensemble techniques described above. Stacking

performance can be improved by using output probabilities for each class label from the

base-level classifiers. Each training instance i of a stacking meta-combiner, consists of

a first set of n probabilities P1,t(y = c1|x) . . . Pn,t(y = cn|x), computed by the model

used for the text classification, and concatenated to a second set of n probabilities from

the visual model P1,v(y = c1|x) . . . Pn,v(y = cn|x). All these input probabilities are

associated to the same set of binary outcome variables y1 . . . yn.

We experimented with two Stacking combiner algorithms: a simple Logistic regres-

sion (S-L) model with a ridge estimator and a Multilayer Perceptron Classifier (S-MLP)

that uses back-propagation to classify instances [7]. These two algorithms are available

in the Weka open-source library [66].

3.1.3 Conclusion

Results obtained indicate that the proposed multimodal setting outperforms classifiers

based on an early fusion approaches. In addition to the experiments on Ferramenta

dataset, we computed experiments also on PASCAL VOC 2007. All details on the ex-

perimental results on this dataset can be found in the original paper [53]. On the basis

of the results obtained on Ferramenta and PASCAL VOC2007 dataset, our multimodal

setting is recommended for applications where ambiguous text can exploit image to re-

solve ambiguities and, vice versa, to enhance performance.



22 Preliminary Works

Table 3.1: Multimodal fusion accuracy results with the Ferramenta and Pascal VOC2007

test set. In the top half of the table the results of the proposed late fusion model with

the best classifiers for each feature. The bottom half shows the results of the best

visual model combined with the best textual model, based on the D2V features. The

two rows FConc (Feature Concatenation) show the results of the early fusion model

shown in Figure 3.2, whereas the other rows labeled as Fusion show the results of the

model shown in Figure 3.3. Prob means that the final combiner receives in input the

probabilities of the two underlying models.

features algorithm P(%) R(%) F1(%) Acc(%)

Text bow1000 RF 91.80 91.70 91.70 91.73

Visual CNN4096 SVM 90.60 90.30 90.30 90.31

FConc. CNN+BoW RF 89.90 88.10 88.00 88.14

Fusion prob DS 93.80 93.70 93.70 93.74

Fusion prob PW 93.80 93.70 93.70 93.74

Fusion prob LOP 94.60 94.40 94.40 94.42

Fusion prob S-L 90.40 89.50 89.50 89.53

Fusion prob S-MLP 93.40 93.20 93.20 93.21

Text D2V SVM 88.20 87.40 87.10 87.38

Visual CNN4096 SVM 90.60 90.30 90.30 90.31

FConc. CNN+D2V SVM 90.40 89.50 89.50 89.53

Fusion prob DS 92.50 92.40 92.30 92.37

Fusion prob PW 92.50 92.40 92.30 92.38

Fusion prob LOP 93.20 92.90 92.90 92.94

Fusion prob S-L 91.80 91.60 91.40 91.57

Fusion prob S-MLP 92.00 92.00 91.90 92.03
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Table 3.2: From (a) to (f), six classification examples of instances (Description and

Image) belonging to the test set of the Ferramenta dataset. The Visual and Text columns

represent respectively the output produced by the classifier 1 and 2 showed in Figure 3.3.

The output of the final composer is shown in the column Fusion.

(a) Text Visual Fusion

actual screwdriver screwdriver screwdriver

predicted screwdriver glue screwdriver

Description silverline 918547 set 6 screwdrivers, 6 pcs

(b) Text Visual Fusion

actual cart cart cart

predicted scissor cart cart

Description cart box trolleys with solid tires

(c) Text Visual Fusion

actual screwdriver screwdriver screwdriver

predicted socket wrench cart screwdriver

Description ks tools 159.1203 screwdriver ergotorque plus key 5.5 mm., ks

tools 159.1203 screwdriver key ergotorqueplus 5.5 mm.

(d) Text Visual Fusion

actual safe safe safe

predicted safe safe safe

Description 88352 staco safe measure s, 88352 staco safe measure s

(e) Text Visual Fusion

actual chain chain chain

predicted chain circular saw blade circular saw blade

Description yale p1040sc deadbolt door locks high security chrome trim,

yale locks p1040sc deadbolt door high security chrome trim

(f) Text Visual Fusion

actual nail nail nail

predicted screw nail screw

Description Hardware bulk pack of 20 nails for masonry 3 x 70 mm, bulk

pack of 20 Hardware nails for masonry 3 x 70 mm
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3.2 Semantic Text Encoding for Text Classification using Con-

volutional Neural Networks

We encoded the semantics of a text document into an image to take advantage of the

Convolutional Neural Networks (CNNs) architectures that are successfully employed in

image classification. We used Word2Vec, which is an estimation of word representation in

a vector space that can maintain the semantic and syntactic relationships among words.

Word2Vec vectors are then transformed into graphical words representing sequence of

words in the text document. Next, encoded images are classified using the AlexNet

architecture [31]. Results obtained indicate that the proposed scheme achieves better

performance than traditional classifiers built on top of Doc2Vec features.

3.2.1 Introduction

Semantics plays a crucial role to understand the meaning of a text document: hu-

mans can understand the semantics easily, however, for a computer, understanding of

the semantics is not a trivial task. State-of-the-art word embedding models such as

Word2Vec [38] are a step forward to understand the semantics of the text. Word2Vec

takes words or phrases from the vocabulary and maps them into vectors of real num-

bers. Thanks to its objective function, it causes words occurring in similar contexts to

have similar word embeddings. We exploit this observation in our method, as shown in

Fig. 3.4, where similar word embeddings can be transformed into visual domain with

similar encoding which then can be used in text classification with CNNs. We intro-

duced a new encoding scheme called Semantic Text Encoding or ste2img which encodes

Word2Vec features of a text document into an image, capitalizing the abilities of CNNs

for classification. Our proposed encoding scheme captures typical computer vision lo-

cation invariant property along with compositionality. In fact, a CNN intuitively can

understand words from pixels, sentences from words, and more complex concepts from

sentences.

In literature, many approaches have been introduced to perform text classification

exploiting capabilities of state-of-the-art CNN. Zhang et al. [22], created a CNN model

working with texts at the level of characters. They showed that their approach achieved

low error rates compared to traditional approaches. However, in our work, instead of

using a convolutional model developed specifically to deal with text classification, we

designed a preprocess step which allows us to use the CNNs typically used for image

classification.

Kalchbrenner et al. [67] created a new model of CNN that used a specialized operation

named Dynamic k-Max Pooling to classify sentences of varying length. Moreover, they

provided a way to keep word order information intact unlike Bag-of-Words. In addition,

they concluded their approach suffered from complexity issues with larger dictionaries,
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Figure 3.4: When analyzing the text, a human can understand that the two words

”bikers” and ”riding” are semantically related and that the document talks about mo-

torcycles. Combining the ability of Word2Vec to find semantic relationships between

words and the ability of CNN in images classification, a computer can almost imitate

those human capabilities. The visual words encoded by Word2Vec and displayed at the

center and on the bottom of this figure, can be easily understood by a CNN. In this en-

coding, a 12 dimensions Word2Vec feature vector has been transformed into a sequence

of 4 RGB colors.

resulting in the reduction of either the dimension of the vocabulary or the length of

feature vectors. This leads us to consider that we should have the same issue; in fact,

some of the datasets that we used are characterized by a large number of words, which

forced us to limit the number of words, especially for the 20news dataset.

Tang et al. [68] faced up the sentiment classification problem on Twitter datasets

using an ad-hoc model made up of three neural networks to encode sentiment information

from text into loss function. To achieve this goal, this study exploits the capabilities of

Word2Vec model. They concluded that Word2Vec is not suitable for sentiment analysis

tasks as it cannot differentiate the meaning between adjectives before a noun, for example

“good” and “bad”. On the other hand, we are interested in the relationships between

words rather than polarity, and so this Word2Vec embedding is perfect for our purpose.

3.2.2 Proposed Method

The encoding method described in this section is used to analyze the behavior of a CNN,

with various encoding parameters.

We exploit Word2Vec [38] word embedding to get the semantics associated with a

text document in an image and then the encoded image can be used in the classification

process. As shown in Fig. 3.6, we used a dictionary F (tk, vk) where each word tk, used
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Figure 3.5: A schematic example of our encoding scheme. The figure on the left shows

a simple encoding image of size W × H = 9 × 9, with three visual words t̂k of size

V × V = 4 × 4 which may contains a maximum number of (V/P )2 = (4/2)2 = 4

superpixels of size P × P = 2 × 2. On the right, for example the word ”spaghetti”

is encoded in a sequence of 15 numbers using word2vec, and the same sequence can

be transformed into different visual words by changing parameter V (in this example

V = 4, 6, 12).

Figure 3.6: Image of the proposed pipeline. Starting from a text, we encode each word

with values extracted from a dictionary of feature vectors (W2V dictionary). Values

obtained are interpreted as RGB values and represented in the final image. After this

preprocess step, the image is classified by a properly trained CNN implementing the

AlexNet architecture.
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to train Word2Vec, is associated with a vector vk(tk) of features obtained from a trained

version of Word2Vec.

As shown in Fig. 3.6, to create the representation of a text document Di, we start

from a pre-processed version of Di, applying some transformations to the text. We

applied different pre-processing methods and compared them with the raw text.

To encode all the words tk ∈ Di into an image of size W ×H we introduced a basic

scheme that, varying some parameters, allows us to obtain different arrangements of

visual words t̂k in the image.

We introduce the concept of super-pixel as a square area of size P×P pixels with uni-

form color representing a contiguous sequence of features (vk,j , vk,j+1, vk,j+2) extracted

as a sub-vector of vk. Each vk,j component is normalized with respect to all k, in such

a way that it can assume values in the interval [0 . . . 255]. Given a word tk, a visual

word t̂k is a square area of V × V pixels that can contain a maximum number of super-

pixels equal to (V/P )2. The position (0, 0) of each t̂k was fixed in the upper left corner.

Consequently, each t̂k is placed in the following image coordinate (x, y):

x = k(V + s) mod (W − V )

y = (V + s) k(V+s)
(W−V )

(3.4)

where s is the space (horizontal or vertical) in pixels existing between two close visual

words. Fig. 3.5 shows an example of an image encoding a text document (on the left),

and one example of encoded visual word (on the right). The visual words positioning

described in Equation (3.4), produces a wanted vertical misalignment, avoiding regularity

in the encoding image.

As shown in Fig. 3.6, each convolutional layer produces different convolutive maps

and each of them, from the closest layer to the input up to the last one, produces

activation areas that shows how the model understands the semantics of the text.

The first convolutional layer recognizes some particular features of visual words, while

remaining CNN layers, aggregate these simple activations to create increasingly complex

relationships between words or parts of a sentence in a document.

3.2.3 Experiments

The aims of the experiments are:

• To validate the proposed encoding scheme and understand different parameters

and configurations

• To compare the proposed encoding scheme with text classification based on Doc2Vec

and SVM
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In our experiments we measured the performance of models using overall classification

accuracy. The encoding scheme mentioned in Section 3.2.2 produces encoded images

from Word2Vec features. These encoded images can be classified using CNNs, however,

we used the AlexNet architecture in our experiments. The architecture contains eight

layers with weights; the first five are convolutional and the remaining three are fully-

connected. The output of the last fully-connected layer is fed to softmax which produces

a distribution over the class labels, as shown in Fig. 3.6.

We use the publicly available Doc2Vec tool to train word embeddings, and all param-

eters are set as in [38] to train sentence vectors on 20news-bydate and Text-Ferramenta

datasets. However, we use a smaller window size (7), for StackOverflow dataset, as it is

composed of short question titles. Normally, Doc2Vec and Word2Vec are trained on a

large corpus and used in different contexts. However, in our work, we trained these two

tools with the same training set for each dataset used for text classification.

All experiments are conducted using s = 1, images of 256×256 and we never removed

stop words from the text. We used superpixel, described in Section 3.2.2, set to 4 × 4

and 8 × 8 and we were interested in understanding if best results can be obtained by

using a kernel size that is smaller or larger than superpixel. We can see that best

results are obtained using a low number of features: 12 or 24. We believe that this

resulting difference is due to the encoding technique. In fact for low number of features,

our approach encodes feature vectors with superpixels in a single row, while, with large

number of features, multi-line encoding is used. The impact is given by the convolutional

layer, which cannot recognize scrolling images from left to right thus encoding in a new

line as if it belonged to a previously seen word.

We compared our encoding scheme with text classification based on Doc2Vec and

SVM. We obtained feature vectors from Doc2Vec model for each instance starting from

each document of a dataset and saved embedding to a file, one for training and one

for testing instances. Finally, instances have been classified with SVM available in the

WEKA open source library [66] to compare the results against ste2img as shown in ta-

ble 3.3. These results indicate that our encoding scheme outperformed text classification

based on Doc2Vec and SVM for StackOverflow and Text-Ferramenta datasets. However,

20news-bydate dataset does not produce similar results with our encoding scheme for 75

and 100 features, because we limit the maximum number of words for each document.

3.2.4 Conclusion

Our proposed scheme outperformed text classification based on Doc2vec and SVM on

three datasets i.e. StackOverflow, Text-Ferramenta and 20news-bydate. Overall accu-

racy obtained indicates that the proposed scheme can be applied to any kind of sentences

such as technical descriptions, common sentences or ill-formed phrases with different

lengths. Moreover, results were an interesting starting point for many Natural Lan-
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Table 3.3: Comparison of the accuracy of the Doc2Vec using SVM and the best results

obtained with our proposed ste2img.

num. features: 12 24 75 100

SVM Text-Ferramenta 71.02 80.47 87.83 88.69

ste2img Text-Ferramenta 89.90 91.60 91.84 89.38

SVM StackOverflow 44.80 61.95 68.62 70.62

ste2img StackOverflow 45.90 86.88 87.45 78.42

SVM 20news-bydate 91.54 93.33 95.30 95.88

ste2img 20news-bydate 94.99 94.48 91.22 89.93

guage Processing works based on CNNs, such as a multimodal approach that could use

a single CNN to classify both image and text information. All other performed experi-

ments can be found in the original paper [54].

3.3 Reading Meter Numbers in the Wild

The automatic detection and recognition of text in images is an important challenge for

visual understanding. In recent years, deep neural networks [69, 70, 71, 72, 73, 74] have

replaced traditional optical character recognition (OCR) based methods for text detec-

tion and recognition. In this work, we presented a system for detecting and recognizing

various utility meter numbers in the wild from pictures. This task is challenging due to

the huge variability in the visual appearance of numbers in the wild on account of a large

range of fonts, colors, styles, orientations and arrangements. While this specific task re-

duces the space of characters that need to be recognized, the complexities associated

with text recognition in natural images still apply.

3.3.1 Introduction

The automatic detection and recognition of text in images is an important challenge for

visual understanding. In addition environmental factors such as lighting, shadows, spec-

ularities and occlusions further complicate the automatic multi-digits numbers detection

and recognition tasks, as can be seen from Figure 3.7. The proposed system leverages

on deep convolutional neural networks for detection and recognition. For the detection

phase, we employed a fully convolutional neural network to perform a pixel-wise clas-

sification, while the recognition phase uses another deep neural network to predict the

length of meter numbers their values. The advantages of our approach are robustness

against severe perspective distortions, different lighting conditions, blurred images and

it is also scale invariant.
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Text detection in natural images has been tackled several times [75, 70, 76, 71]. All

these attempts differ for task addressed or models used for detection and recognition.

Many works in literature use Histogram of Gradient (HOG) features to perform text

detection. Minetto et al. [77] proposed T-HOG: a HOG-based texture descriptor that

uses a partition of an image to detect a single line of text. This approach, however,

suffers from orientation issues. Given that HOG deals with lines, texts in several orien-

tations become a problem in this approach. Boran et al. [76] adopted a more traditional

approach, with the joint use of HOG features and support vector machine [78] to detect

Chinese words in images. There are many works that employ Maximally Stable Ex-

tremal Region (MSER) to perform text detection [79, 80]. Although [79] and [80] solve

slightly different tasks, both use MSER-based approaches to perform the detection step.

Dai et al. [81] uses the traditional two-stage object detection strategy that consists in

region proposal extraction with region classification. The problem of these approaches

is that regions proposed often have very high cardinality, which thus need to be reduced

with the introduction of a strategy to remove false positives.

With the advent of Convolutional Neural Networks (CNNs) and their stunning re-

sults, we opt to perform the detection using a deep model [82]. In [70] authors developed

a pipeline for text detection and recognition from natural scene images using deep model.

The purpose of our work is similar, however, we employ to a more specific task: multi-

digit meter numbers detection and recognition in the wild. Next, for the recognition,

we used the model proposed by Goodfellow et al. [69]. Gómez et al.[71] address the

same task we solve in this work. Authors used an end-to-end CNN to predict numbers

in a meter. Although the approach obtained promising results, it suffers from severe

perspective distortions. However, in our approach, after the detection phase we apply

image transformations to align it in a horizontal position, making it possible to deal in-

clinations. After this step, we apply the classification model to obtain predicted values.

Moreover, in our approach we have one model for detection and other one model for

recognition that deals with various meter typologies, while authors in [71] worked only

with mechanical gas meters.

3.3.2 Proposed approach

We graphically present the approach in Fig. 3.8. It is split into two phases: detection

and recognition.

Detection phase

This phase is carried out with the model proposed in [82]. We show this phase in Fig. 3.8

with name “CNN-1”. This model takes the image resized to 224×224 pixels and produces

correspondingly-sized output image with inference. The training set contains pairs of
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Figure 3.7: Some random images from the dataset. Note that meter typologies are

different, ranging from mechanical gas meters to digital electricity meters.

Figure 3.8: Schematic representation of the proposed pipeline. On the left we have the

CNN-1 used for detection. It receives as input an image (a) and gives as output an

image map with the area of interest (b). On the right the CNN-2 performs the reading

starting from the detected region, rotated and cropped (c) producing the reading (d).

images: the original one and the ground truth with pixel values in {0, 1}, where 0

indicates background and 1 tags numbers. After inference stage, we crop the area of

interest from the original image. Furthermore, we rotate the cropped area to obtain a

horizontally aligned image. We apply the following strategy starting from the output

image obtained from CNN-1 (Fig. 3.8-b):
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• extract contours (curves joining continuous points along the boundary with same

color or intensity);

• select the best contour that contains the area of interest, keeping the region with

the highest ratio ri = min(wi, hi)/max(wi, hi), where wi and hi are the width and

height of the i-th rotated rectangle containing the contour for each of the proposed

areas of interest;

• calculate the tilt angle to obtain an horizontally aligned image from the selected

area of interest;

• width and height of the selected area are dilated with an increment d = 0.3 ·

min(w, h) (see the example in Fig. 3.8-c);

• crop the image using the dilated area;

Recognition phase

We perform this step with the model proposed in [69] and name it as “CNN-2” in Fig. 3.8.

Note that we preprocess the dataset in the following way:

• for each dilated area, we randomly crop 3 images, containing the full detected

region. In this way we obtain a three times larger dataset that improves the

overall accuracy of the model.

• resize images to a size of 360×90 pixels. We observed that width is usually 4 times

larger than the height.

Once the data is ready, we apply the classifier to get numbers from images. This

model is trained with manually assigned labels. For example, if an image contains the

value “00040, 87”, the label would be “40”. The model has the ability to discard the

decimal and leading zeros parts during training and testing phases. We observed that

the majority of numbers in meter images does not exceed more than 5 digits. This led

us to set the maximum length to 5.

3.3.3 Experiments

In this section we evaluate performance taking each step individually and finally applying

the whole pipeline.
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Table 3.4: IoU evaluation with thresholds ranging from 0.1 (Poor) to 0.9 (Excellent)

with step size of 0.1.

IoU Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Accuracy 99.37 99.16 98.35 91.06 69.87 40.41 17.42 2.63 0.002

Table 3.5: Accuracy computed on recognition phase for each position: from the 1st to

the 5th.

Phase 1st 2nd 3rd 4th 5th

Recognition 94.60 89.22 92.76 95.10 96.60

Experiment on detection phase

In the first experiment we use images from the detection split. The model detects the

area of interest from the input image and we use the mask obtained from the model to

calculate Intersection over Union (IoU) metric with the ground truth. IoU is defined in

Eq. 3.5:

IoU =
AO

AU
(3.5)

where AO is the area of overlapping rectangle between predicted and ground truth,

while AU is the area of union rectangle between predicted and ground truth.

Results on detection phase are shown in Table 3.4. Note that, we calculate IoU for

various thresholds ranging from 0.1 (Poor) to 0.9 (Excellent). We found out that a value

of 0.4 (Good) produces an accuracy of 91.06%, as can be seen from Table 3.4. However,

increasing this value leads to lower results. We observed that such situation arises from

different ways of annotating the data (see examples available in Fig.3.11).

Experiment on recognition phase

In the second experiment we use images from the recognition split. Note that images

used in this experiment contain only the detected area of interest. We compute the

overall accuracy considering a prediction right only if all numbers inside the image are

classified correctly. In addition, we calculate the accuracy for each number position in

the image. The overall accuracy for the recognition phase is 82.70%. We obtain this

value from already cropped (6045) test images available in the recognition split. Results

are in Table 3.5.
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Figure 3.9: Examples of upside down images from the dataset.

Full pipeline experiment

In the third experiment we evaluate the entire pipeline. First, we apply the detection

phase to get the area of interest and then we feed it to the recognition phase to obtain

the final prediction.

Our pipeline achieves promising results considering that it recognizes numbers from

three different meter typologies. Furthermore, the pipeline is capable to produce num-

bers from mechanical and digital meters. Moreover, our recognition model is more robust

than the one proposed in [71], because it can recognize digits from upside down images.

In some cases, due to the perspective with which the image is captured, when rotating

the area of interest, we obtain a horizontally aligned image but with numbers rotated

by 180° degrees as shown in Fig. 3.9.

Applying the entire pipeline to the test split, we achieved an accuracy of 85.60%.

In addition, we calculate the accuracy of each number based on the position. Results

are in Table 3.6. Analyzing results it can be observed that accuracy of the second most

significant digit is significantly lower than others. We believe that this happens because

of low variability in the dataset for digits in that particular position. We observed that

it is difficult to have high variability for most significant digits because most of times

they are either “0” or “1”.

Average time required to perform both steps in our pipeline on a single image is

of 0.12 seconds on a NVIDIA GeForce GTX 1080 GPU, this means that our approach

could also be used in real-time scenarios.

Furthermore, we present qualitative evaluation of the pipeline. Fig. 3.10 shows some

examples of correct readings where the performance of the pipeline is particularly robust.

In addition, we included some complicated error cases where the pipeline fails to predict

the correct output digits.

3.3.4 Conclusion

In this paper we proposed a pipeline to detect and recognize digits of household meters

from images. Our method has been tested on different typologies of meter, ranging
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Output: 1225 Output: 54 Output: 161 Output: 995

Output: 1134 Output: 11591 Output: - Output: 6681

Output: 14141 Output: 66081 Output: 477 Output: 4745

Figure 3.10: Qualitatively results for various typologies of meter. In each line first

two samples are correctly read while remaining show wrongly recognized meters. Strong

glares and shadows are the main issues which lead the algorithm to predict wrong results.
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Figure 3.11: Examples of images with superimposed ground truth (area with green

borders) and the relative prediction of the CNN-1 model (area with blue borders). These

examples highlight the lack of a clear boundary in the area of interest and consequently

the dependency of the ground truth from the annotator.

Table 3.6: Accuracy computed on the full pipeline.

Phase 1st 2nd 3rd 4th 5th Acc.

Pipeline 92.94 88.99 90.95 92.24 92.92 85.60

from mechanical to electric meters of various kind: gas, water and electricity using two

deep models, one for detection and one for recognition. The proposed pipeline is robust

against severe perspective distortions, different scales and even upside-down images.

Results obtained are very promising and the execution time required to apply pipeline

makes it possible to use it in real-time applications.
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Multimodal Document Classification

This chapter contains an overview of the paper ”Image and Encoded Text Fusion for

Multimodal Classification” [9] presented at the Digital Image Computing: Techniques

and Applications (DICTA 2018).

4.1 Introduction

With the rapid rise of e-commerce, the web has increasingly become multimodal, mak-

ing the question of multimodal strategy ever more important. However, modalities in

multimodal approach come from different input sources (text/image [53, 60, 83] , au-

dio/video [84] etc.) and are often characterized by distinct statistical properties, making

it difficult to create a joint representation that uniquely captures the “concept” in the

real-world applications. There are many samples where exploiting a single modality to

classify a document, it is not possible to get the correct label. In fact, there are doc-

ument with very similar images but different text description and vice versa. In these

cases, it is mandatory to have a method which can deal with multimodal information in

order to get the correct label for a document.

This lead us to create a joint representation of an image and text description for

this classification problem. Multimodal strategy can exploit such scenario to remove

ambiguity and improve classification performance.

The use of multimodal approach based on image and text features is extensively

employed on a variety of tasks including modeling semantic relatedness, compositionality,

37
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classification and retrieval [56, 60, 59, 57, 83, 85]. Typically, in multimodal approaches,

image features are extracted using CNNs. Whereas, to generate text features, Bag-

of-Words models or Log-linear Skip-gram Models [63] are commonly employed. This

represents a challenge to find relationships between features of multiple modalities along

with representation, translation, alignment, and co-learning as stated in [86].

With this work, we present a novel strategy which combines a text encoding schema

to fuse text features and image in an unified information enriched image. We merge

both text encoding and image into a single source so that it can be used with a CNN.

We demonstrate that by adding encoded text information in an image, multimodal

classification results can be improved compared to the best one obtained on a uni-

modality (image/text).

Intuitively superimposing text descriptions onto images may not sound motivating

due to several reasons. Since the idea is overlaying the encoded text description onto

an image, it might affect the image perception in general. However, the main strength

of the approach is that embedded text can be overlaid onto the image with fixed width

regardless of the size of text description. We experiment with different embedding sizes

to verify that image perception by the network is not affected. Figure 4.4 plots different

embedding sizes to explain how the network behaves.

There are two general multimodal fusion strategies to fuse text and images features,

namely early fusion and late fusion [61, 86], each one having its advantages and disad-

vantages.

Early fusion is an initial attempt by the researchers towards multimodal represen-

tation learning. The main benefit of early fusion is that it can learn to exploit the

correlation and interactions between low level features of each modality. Early fusion

methods concatenates text and image features into a single vector which is used as input

pattern for the final classifier. The technique is employed for various tasks [62, 60, 83].

In contrast, late fusion [87] uses decision values from each modal and fuses them using

a fusion mechanism. Multiple works [88, 89] employ different fusion mechanisms such as

averaging, voting schemes, variance etc. The work in [53] showcased a comparative study

of early and late fusion multimodal methods. Late fusion produced better performance

compared to early fusion method, however, it comes with the price of an increased

learning effort. In addition, a strategy must be introduced to assign a weight to each

classifier employed. This presents another challenge in late fusion strategy. Our method

is inspired from early fusion [60], however, taking advantage of the idea of our previous

work [54] we concatenate encoded text features into an image to obtain an information

enriched image. Finally, an image classification model is trained and tested on these

images. To write the textual features on the image, we use an encoding very similar to

the one proposed in [54]. The main difference lies in the type of embedding used: in [54]

we used the encoding produced by Word2Vec and therefore we obtained a numeric vector
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for each word in a text document, while in this work we propose the textual features

extracted from a CNN network for text documents classification, trained using all the

text available in a document. In the next sections, the encoding technique used to

graphically represent the text above the image, will be summarized.

Multimodal fusion methods are successfully employed to other modalities, e.g. video

and audio [84, 25].

Other interesting examples of multimodal approaches that make use of deep networks

include restricted Boltzmann machines [90], auto-encoders [91].

4.2 The Proposed Approach

In this work we take a cue from our previous work [54] to transform a text document

into an image to be classified with a CNN. However, instead to use numeric values from

Word2Vec model to represent a text document, we are using a new approach involving

a CNN trained for text classification.

First, we transform the text document into a visual representation to construct an

information enriched image containing text and image. Finally, we solve the multimodal

problem using this new image to train a CNN generally used for image classification.

We use a variant of the CNN model proposed by Kim [47] for text document classifi-

cation. The input layer is a text document followed by a convolution layer with multiple

filters, then a max-pooling layer followed by a fully connected layer, and finally a soft-

max classifier. The network configuration summary is show in Table 4.1. Text features

are extracted from the fully connected layer (Figure 4.1a) and transformed into an RGB

encoding so that it can be overlaid onto an image associated with the text document.

We observed that if we concatenate the scaled and resized image (Figure 3.6b) to

the text document features (Figure 4.1a), before passing at the output level, the model

learns a better representation of the text features. Figure 4.1 shows architectural repre-

sentation of the model used to encode the text dataset into an image dataset to obtain

a multimodal dataset. In the second step, resulting images are fed to any baseline CNN

for classification.

As an advantage of this method we can cast a single modality model into a multi-

modal model without the need of adapting the model itself. This approach is suitable to

be adopted in multimodal methods because a CNN architecture can extract information

from both the encoded text and the related image.

4.2.1 Encoding Scheme

We exploit the CNN model proposed by Kim [47] which performs text to visual features

transformation within a single step. Figure 4.1 summarizes the encoding system used in

this work, where a reshape was applied to the fully connected layer showed in Figure 4.1a
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Figure 4.1: The proposed text and image fusion model for deep multi-modal classifica-

tion. The text is encoded (a) is concatenated to the resized image (b) so that the output

layer can consider simultaneously the text along with the information of the image. After

the training step only the text features (a) are extracted to be drawn over the original

image and thus generate a new multimodal dataset.

to transform an array into an image representing the encoded text to be superimposed

on the original image.

Features are extracted from the trained CNN model and transformed into a visual

representation of the document.

In practice, we used feature vectors showed in Figure 4.1(a), having a size L = 3 ·w ·h

that is a multiple of 3 in order to be transformed into a color image. We used the same

concept of superpixel used in [54] to represent a sequence of three values ∈ L as an area

with a uniform color of P × P dimension. In this way textual features are represented

as a sequence of superpixel, drawn from left to right and from top to bottom, starting

from a certain position of the scaled image (see some examples of the final multimodal

image in Figure 4.2 and Figure 4.3).

Finally, we encode an entire text document within the image plane and then the next

multimodal CNN model can work simultaneously on both modalities.

This approach has an advantage to the work in [54], in fact in our work it is possible

to encode long text documents because we encode the entire document in the same

image area having fixed size equals to w × h × 3. Some examples of resulting images

with encoded textual features can be seen in Figure 4.2.
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UMPC Food-101 Ferramenta

Figure 4.2: Two encoding examples taken from the two datasets. Images on the left

column show an encoding of 10 superpixel length while on the right column we have an

encoding of length equal to 250 superpixel. All images are 227 × 227 in size having an

encoding superpixel equals to 3×3 pixels for Ferramenta dataset and 4×4 for Food-101

dataset.

Table 4.1: Network configuration summary. k, s and p stand for kernel size, stride and

padding size respectively. In the convolution layer, we use 128 filters for each of the

following sizes 3,4,5 (the first one is showed below). The embedding size is w = 128.

Type Configuration

Output num. classes

Fully Connected Ht(encoded-text-height) × W (out-img-width) ×3

+ (H(out-img-height) −Ht)× W × 3

MaxPool-1D h:(encoded-text-height), k:1, s:1, p:1

Convolutional-1D w(embedding-size), k:3× w, s:1, p:1

Input 100 words (sequence length)

4.3 Experiments

4.3.1 Preprocessing

The proposed multimodal approach transforms text descriptions and embeds them onto

associated images to obtain information enriched images. An example of information

enriched image is shown in Figure 4.2. In this work, the transformed text description is

embedded into a RGB image with an image size of 227× 227 for UMPC Food-101 and

Ferramenta multimodal dataset.
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Ferramenta UMPC Food-101
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Figure 4.3: Each column contains 5 images and associated text descriptions belonging to

a particular class of Ferramenta and UPMC Food-101 datasets. Futhermore, each image

contains the proposed encoded text. Note that the text encodings on each column are

similar to each other even if the text and images are different from each other.
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Table 4.2: Comparison of our approach with early and late fusion strategies. The results

on the Ferramenta dataset were extracted from paper [53]

Dataset Early F. Late F. Proposed

Ferramenta 89.53 94.42 95.15

Food-101 60.83 34.43 82.90

4.3.2 Detailed CNN settings

We used a standard AlexNet [31] and GoogleNet [44] on the Deep Learning GPU Training

System (DIGITS) with default configuration. For fair comparison, we used same CNN

settings for experiments using only images and fused images. We use standard CNN

hyperparameters. The initial learning rate is set to 0.01 along with Stochastic Gradient

Descent (SGD) as optimizer. The network is trained for a total of 60 epochs and/or till

no further improvement is noticed to avoid over fitting. In our experiments, accuracy is

used to measure classification performances. The aim of the experiment is to show that

by adding encoded text information in images it is possible to obtain better classification

results compared to the best one obtained using a single modality (Text/Image). We

conducted following experiments with this aim in mind: (1) classification with CNN using

only images, (2) classification with CNN using only text descriptions, (3) classification

with CNN using fused images, (4) comparison with early and late fusion strategies.

The first experiment consists of extracting only text descriptions from multimodal

datasets, then we train text classification model shown in Figure 4.1. Results are shown

in first column of Table 4.3. It is very important to observe how the textual encoding

extracted is very similar to each other when the text description represents very similar

objects, even when the text information and the images are different from each other

(see the example of text encoding showed in Figure 4.3).

The second experiment consists of extracting only images from multimodal datasets,

then we train AlexNet [31] and GoogleNet [44] CNNs from scratch using DIGITS. Second

and third columns of Table 4.3 shows these results. Images in Ferramenta multimodal

dataset contain objects on a white background, this explains excellent classification

results obtained on images alone. On the contrary, images in the UPMC Food-101

multimodal dataset are with complex background and extracted from different contexts,

which leads to a low classification performance on images only.

The third experiment consists of employing fused images from multimodal datasets.

We train AlexNet [31] and GoogleNet [44] CNNs from scratch using DIGITS.

Results in Table 4.3 indicate that the proposed fusion approach outperforms uni-modal

methods. Furthermore, the approach is language independent, Ferramenta text descrip-
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Table 4.3: Classification results comparison on only-text, only-image and fused images.

There are two baseline models for images and fused-images, while we use only one

baseline for text-only scores.

Dataset Text Image Fusion

AlexNet GoogleNet AlexNet GoogleNet

Ferramenta 92.09 92.36 92.47 95.15 95.45

Food-101 79.78 42.01 55.65 82.90 83.37

tions are in Italian language. Results on UPMC Food-101 clearly indicate benefit of

our proposed approach, increasing the classification performance by two folds. This

performance gain is due to leveraging on multimodal representation learning.

In fourth experiment, we compare our approach with early and late fusion as shown

in Table 4.2. Experimental setting is inspired from the work [53]. In particular we used

Logarithmic Opinion Pool [7] as a late fusion approach using Random Forest model

applied to the 1000 BoW while as early fusion we used a SVM on the concatenation of

Doc2Vec features and 4096 visual features from a trained CNN. Our proposed approach

overcomes standard early and late fusion strategies which further reinforces strength of

our approach.

The Figure 4.4 explores text embedding dimension sizes against two different CNN

based architectures i.e. text only and fused image. We see that with lower text-

embedding dimension, the fused architecture has an increased performance as compared

to the text only architecture. Eventually, both architectures plateau as embedding di-

mension increases. However, the fused image architecture always maintains the upper

bound over the other.
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Figure 4.4: Comparison between the CNN that uses only text with the CNN that uses

fusion of image and text, as the dimension of the text embedding varies. In this experi-

ment the Ferramenta multimodal dataset is used.





5
GIT Loss for Deep Face Recognition

This chapter contains an overview of the paper ”GIT Loss for Deep Face Recogni-

tion” [21] presented at the British Machine Vision Conference (BMVC2018).

5.1 Introduction

The current decade is characterized by the widespread use of deep neural networks for

different tasks [16, 15, 14]. Similarly, deep convolutional networks have brought about

a revolution in face verification, clustering and recognition tasks [18, 14, 19, 17, 20].

Majority of face recognition methods based on deep convolutional networks (CNNs) differ

along three primary attributes as explained in [17, 92]. The first is the availability of

large scale datasets for training deep neural networks. Datasets such as VGGFace2 [93],

CASIA-WebFace [94], UMDFaces [95], MegaFace [96] and MS-Celeb-1M [97] contain

images ranging from thousands to millions. The second is the emergence of powerful

and scalable network architectures such as Inception-ResNet [98] to train on large scale

datasets. The last attribute is the development of loss functions to effectively modify

inter and intra-class variations such as Contrastive loss [99], Triplet loss [18] and Center

loss [19], given that softmax penalizes only the overall classification loss.

We employ all three attributes associated with face recognition. We use a large

scale publicly available dataset, VGGFace2, to train the powerful Inception ResNet-V1

network. We propose a new loss function named Git loss to enhance the discriminative

power of deeply learned face features. Specifically, the Git loss simultaneously minimizes

intra-class variations and maximizes inter-class distances. A toy example that explains
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Figure 5.1: A toy example depicting the aim of our work: a CNN trained for face

recognition supervised by our Git loss function that maximizes the distance d2 between

features and centroids of different classes and minimizes the distance d1 between features

and the centroid of the same class.

our approach is shown in Figure 5.1. The name of the loss function is inspired from

two common Git version control software commands, ”push” and ”pull”, which are

semantically similar to the aim of this work: push away features of different identities

while pulling together features belonging to the same identity.

In summary, main contributions of our paper include:

– A novel loss function which leverages on softmax and center loss to provide segrega-

tive abilities to deep architectures and enhance the discrimination of deep features

to further improve the face recognition task

– Easy implementation of the proposed loss function with standard CNN architec-

tures. Our network is end-to-end trainable and can be directly optimized by fairly

standard optimizers such as Stochastic Gradient Descent (SGD).

– We validate our ideas and compare Git loss against different supervision signals.

We evaluate the proposed loss function on available datasets, and demonstrate

state-of-the-art results.

5.2 Related Work

Recent face recognition works are roughly divided into four major categories: (i) Deep

metric learning methods, (ii) Angle-based loss functions, (iii) Imbalanced classes-aware

loss functions and (iv) Joint supervision with Softmax. These methods have the aim of

enhancing the discriminative power of the deeply learned face features. Deep learning

methods [18, 100, 99] successfully employed triplet and contrastive loss functions for

face recognition tasks. However, space and time complexities are higher due to the

exponential growth of the datasets cardinality.
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5.2.1 Deep Metric Learning Approaches

Deep metric learning methods focus on optimizing the similarity (contrastive loss [10,

11]) or relative similarity (triplet loss [12, 13]) of image pairs, while contrastive and

triplet loss effectively enhance the discriminative power of deeply learned face features,

we argue that both these methods can not constrain on each individual sample and

require carefully designed pair and/or triplets. Thus, they suffer from dramatic data

expansion while creating sample pairs and triplets from the training set with space

complexity being O(n3) for triplet networks..

5.2.2 Angle-based Loss Functions

Angular loss constrains the angle at the negative point of triplet triangles, leading to an

angle and scale invariant method. In addition, this method is robust against the large

variation of feature map in the dataset. ArcFace [92] maximizes decision boundary in

angular space based on the L2 normalized weights and features.

5.2.3 Class Imbalance-Aware Loss Functions

Majority of loss functions do not penalize long tail distributions or imbalanced datasets.

Range loss [101] employs the data points occurring in the long tail during the training

process to get the k greatest ranges harmonic mean values in a class and the shortest

inter-class distance in the batch. Although range loss effectively reduces kurtosis of the

distribution, it requires intensive computation, hampering the convergence of the model.

Furthermore, inter-class maximization is limited because a mini-batch contains only four

identities. Similarly, center-invariant loss [20] handles imbalanced classes by selecting

the center for each class to be representative, enforcing the model to treat each class

equally regardless to the number of samples.

5.2.4 Joint Supervision with Softmax

In joint supervision with softmax based methods [102, 19], the discriminative power of the

deeply learned face features is enhanced. The work in [19] penalizes the distance between

deep features and their corresponding centers to enhance the discriminative ability of

the deeply learned face features. With joint supervision of softmax loss and center

loss function, inter-class dispersion and intra-class compactness is obtained. However,

this comes with the cost of drastic memory consumption with the increase of CNN

layers. Similarly, marginal loss [17] improves the discriminative ability of deep features

by simultaneously minimizing the intra-class variances as well as maximizing the inter-

class distances by focusing on marginal samples.
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Figure 5.2: Graphical representation of LC and LG varying the distance (xi − c) in the

range [−2, 2]. The LG function takes a maximum value of λG at xi − c = 0 and has an

horizontal asymptote LG = 0.

Inspired from two available works in the literature [19, 17], we propose a new loss

function with joint supervision of softmax to simultaneously minimize the intra-class

variations and maximize inter-class distances.

5.3 The Git Loss

In this paper, we propose a new loss function called Git loss inspired from the center loss

function proposed in [19]. The center loss combines the minimization of the distance

between the features of a class and their centroid with the softmax loss to improve the

discriminating power of CNNs in face recognition.

In this work, to further improve the center loss function, we add a novel function that

maximizes the distance between deeply learned features belonging to different classes

(push) while keeping features of the same class compact (pull). The new Git loss function

is described in Equation 5.1:

L = LS + λCLC + λGLG

= −
m
∑

i=1

log
eW

T
yi
xi+byi

∑n
j=1 e

WT
j xi+bj

+
λC

2

n
∑

i=1

‖xi − cyi‖
2
2 + λG

m
∑

i,j=1,i 6=j

1

1 +
∥

∥xi − cyj
∥

∥

2

2

(5.1)

where LG is equal to 1
1+‖xi−cyj ‖

2

2

which is responsible for maximizing the distance

between divergent identities. The deep features of the i-th samples belonging to the

yi-th identity are denoted by xi ∈ R
d. The feature dimension d is set as 128, as reported

in [18]. Wj ∈ R
d denotes the j-th column of the weights W ∈ R

d×n in the last fully

connected layer and b ∈ R
n is the bias term. cyi is the center of all deep features xi
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Figure 5.3: Some sample images taken from the VGGFace2 dataset aligned and cropped

to 160× 160 pixels.

belonging to the yi-th identity. When the parameter λG = 0 the center loss function can

be obtained.

The gradient (∂LG

∂xi
) of the LG with respect to xi can be computed as:

∂LG

∂xi
=

∂

∂xi
(

1

1 + ‖xi − cyj‖
2
2

) (5.2)

Let u = 1 + ||xi − cyj ||
2
2, thus f = u−1. The equation 5.2 can be solved to compute the

final gradient. We substitute the values of u and get ∂u−1

∂u
∂
∂xi

(1 + ‖xi − cyj‖
2
2). Solving

∂u−1

∂u
and ∂

∂xi
(1 + ‖xi − cyj‖

2
2), we get

−1
u2 and 2(xi − cyj ) respectively. Substituting these

values, the final equation becomes −1
u2 (2(xi − cyj )). We can simplify this equation to

obtain the final gradient equation 5.3.

=
−2(xi − cyj )

(1 + (xi − cyj )
2)2

(5.3)

Git loss simultaneously minimizes the intra-class variances using the LC function

and maximizes the inter-class distances using the LG function. Parameters λC and λG

are used to balance the two functions LC and LG respectively. From the plot of LC

and LG functions, shown in Figure 5.2, it can be observed how these two functions have

opposite behaviors: to minimize LC we have to reduce the distance between features

and the centers, while to maximize LG we must maximize the distance between features

and all centroids of other classes. LG is a continuous and differentiable function, thus

it can be used to train CNNs optimized by the standard Stochastic Gradient Descent

(SGD) [103].

5.4 Experiments

We report experimental results on currently popular face recognition benchmark datasets,

Labeled Faces in the Wild (LFW) [51] and YouTube Faces (YTF) [52]. We also report a

set of experiments to investigate the hyper-parameters associated with the loss function.



52 GIT Loss for Deep Face Recognition

5.4.1 Experimental Settings

Training Data.

We use data from VGGFace2 [93] and MS-Celeb-1M [97] dataset to train our model.

The VGGFace2 dataset contains 3.31 million images of 9, 131 identities, with an average

of 362.6 images for each identity. Moreover, the dataset is characterized by a large

range of poses, face alignments, ages and ethnicities. The dataset is split into train

and test sets with 8, 631 and 500 identities respectively, but we only used the train set.

Some representative images taken from the VGGFace2 dataset are shown in Figure 5.3.

MS-Celeb-1M dataset contains about 10M images for 100K celebrities. The dataset

incorporates diversity in terms of professions, age, and regions. To report fair results,

we remove overlapping identities with YTF and LFW datasets from the training set.

Data Preprocessing.

The label noise is minimized through automated and manual filtering in the VGGFace2

dataset. We applied horizontal flipping and random cropping data augmentation tech-

niques to images, then face images are aligned using the Multi-Task CNN [104] and

finally cropped to a size of 160 × 160 pixels before feeding to the network. We no-

ticed that VGGFace2 contains 496 overlapping identities with LFW and 205 with YTF

datasets, therefore, we removed overlapping identities from both datasets to report fair

results. Similarly, MS-Celeb-1M dataset contains about 3184 overlapping identities with

LFW and about 1077 with YTF datasets.

Network Settings.

We implemented the proposed Git loss in Tensorflow [105] and the network was trained

using Nvidia’s GeForce GTX 1080 GPU. The implementation is inspired from the facenet

work, available on Github1. We employ the Inception ResNet-V1 network architecture

and process 90 images in a batch. We use adaptive learning rate for the training process

with a starting value of −1 and decreased it by a factor of 10 with Adam Optimizer [106],

thus adding robustness to noisy gradient information and various data modalities across

the dataset, improving the performance of the final model.

1https://github.com/davidsandberg/facenet
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Figure 5.4: Two plots showing the behavior of Center loss (a) and Git loss (b) on

MNIST training set. Using the Git loss function features are more compact (smaller

intra-class distances) and more spaced (larger inter-class distances), further enhancing

the discriminative power of deep features. Points with different colors denote features

from different classes.

Test Settings.

Deep face features (128−dimensional) are taken from the output of the fully connected

layer. Since the features are projected to Euclidean space, the score is computed using the

Euclidean distance between two deep features. Threshold comparison is obtained with

10− fold cross validation for verification task. We employ two different trained models

for LFW and YTF datasets due to number of overlapping identities with VGGFace2

dataset.

5.4.2 Experiments with λC and λG parameters

Parameters λC and λG are used to balance two loss functions LC and LG with softmax.

In our model, λC controls intra-class variance while λG controls inter-class distances.

We conducted various experiments to investigate the sensitiveness of these two param-

eters. These tests are systematic random search heuristics based. The major reason

for employing heuristic methodologies over techniques like GridSearch is that when the

dimensionality is high, the number of combinations to search becomes enormous and

thus techniques like GridSearch become an overhead. The work in [107] argues why per-

formance of GridSearch is not satisfactory as compared to other techniques. Table 5.1

shows average result values over 10 runs on MNIST dataset, we have following outcomes:

(i) Smaller values of λC increase inter-class distance, but they also increase intra-class

distances which is undesirable in face recognition. (ii) Our loss function produces higher
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Table 5.1: Comparison between Center loss (λC) and Git loss (λG) on MNIST dataset.

Values are obtained by averaging 10 runs. We highlighted best results compared to

Center loss (λG = 0) for each configuration. We achieved reduced intra-class distance

along with higher inter-class distance compared to Center loss.

λC λG Loss Train Acc.(%) Val. Acc.(%) Inter Dist. Intra Dist.

0.0001 0 0.020 99.77 98.52 85.95 8.39

0.0001 0.0001 0.0132 100.00 98.65 87.87 8.52

0.0001 0.001 0.016 99.77 98.66 89.82 8.20

0.0001 0.01 0.020 99.77 98.62 88.48 8.54

0.0001 0.1 0.032 99.61 98.46 96.76 9.56

0.0001 1 0.466 89.77 88.95 137.37 15.45

0.0001 1.5 0.641 80.63 79.56 160.28 16.91

0.0001 2 1.001 69.84 68.51 125.84 17.78

0.001 0 0.021 99.61 98.67 44.36 3.10

0.001 0.0001 0.117 96.75 95.66 51.77 4.75

0.001 0.001 0.024 99.84 98.53 47.81 3.23

0.001 0.01 0.025 99.77 98.62 46.13 3.16

0.001 0.1 0.053 99.22 98.69 51.22 3.46

0.001 1 0.779 76.10 76.33 68.77 6.55

0.001 1.5 0.460 89.22 89.06 89.67 7.45

0.001 2 0.757 80.94 81.89 96.02 9.14

0.01 0 0.025 99.65 98.89 21.36 1.09

0.01 0.0001 0.031 99.69 98.77 22.07 1.16

0.01 0.001 0.024 100.00 98.75 20.63 1.18

0.01 0.01 0.051 99.53 98.61 21.96 1.09

0.01 0.1 0.037 99.84 98.70 22.93 1.22

0.01 1 0.937 71.17 71.38 30.25 2.02

0.01 1.5 0.368 97.58 96.50 50.56 3.10

0.01 2 0.824 83.44 84.10 46.35 3.03

0.1 0 0.040 99.74 98.89 9.76 0.38

0.1 0.0001 0.049 99.53 98.85 9.65 0.42

0.1 0.001 0.024 100.00 98.96 10.33 0.38

0.1 0.01 0.026 99.92 99.00 9.76 0.37

0.1 0.1 0.040 100.00 98.96 10.99 0.37

0.1 1 1.508 57.11 57.90 10.52 0.55

0.1 1.5 1.741 53.59 54.03 10.81 1.03

0.1 2 1.536 67.98 66.65 15.43 1.03

1 0 0.031 100.00 99.00 5.12 0.14

1 0.0001 0.178 96.72 95.72 5.86 0.22

1 0.001 0.023 100.00 99.03 4.94 0.12

1 0.01 0.027 100.00 99.04 5.03 0.12

1 0.1 0.064 99.92 99.04 5.25 0.14

1 1 0.264 99.92 99.02 8.30 0.21

1 1.5 0.330 100.00 98.96 9.73 0.23

1 2 0.847 91.10 89.79 9.22 0.25
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inter-class distances and lower intra-class distances. An example displaying the qualita-

tive and quantitative results of our Git loss and Center loss is shown in Figure 5.4. Note

that these results are obtained with a single run on MNIST dataset.

5.4.3 Experiments on LFW and YTF datasets

We compare the Git loss against many existing state-of-the-art face recognition methods

in Table 5.2. From results, we can see that the proposed Git loss outperforms the softmax

loss by a significant margin, from 98.40% to 99.30% in LFW and from 93.60% to 95.30%

in YTF. In addition, we compare our results with center loss method using the same

network architecture (Inception-ResNet V1) and dataset (VGGFace2). Furthermore,

we also compare our results with center loss by training on MS-Celeb-1M dataset with

same baseline architecture (Inception-ResNet V1). The Git loss outperforms the center

loss, obtaining an accuracy of 99.30% as compared to 99.20% on LFW and 95.30%

compared to 95.10% on YTF. These results indicate that the proposed Git loss further

enhances the discriminative power of deeply learned face features. Moreover, we trained

our model with ≈ 3M images which are far less than other state-of-the-art methods such

as [18, 108, 109], reported in Table 5.2.
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Methods Images LFW(%) YTF(%)

DeepID [99] - 99.47 93.20

VGG Face [14] 2.6M 98.95 97.30

Deep Face [109] 4M 98.37 91.40

Fusion [108] 500M 98.37 -

FaceNet [18] 200M 99.63 95.10

Baidu [100] 1.3M 99.13 -

Range Loss [110] 1.5M 99.52 93.70

Multibatch [111] 2.6M 98.80 -

Aug [112] 0.5M 98.06 -

Center Loss [19] 0.7M 99.28 94.90

Marginal Loss [17] 4M 99.48 95.98

Softmax ≈ 3M 98.40 93.60

Center Loss [19] ≈ 3M 99.20 95.10

Git Loss (Ours) ≈ 3M 99.30 95.30

Center Loss [19] 10M – –

Git Loss (Ours) 10M – –

Table 5.2: Performance verification of different state-of-the-art methods on LFW and

YTF datasets. The last three rows show results using the same architecture (Inception-

ResNet V1) trained on the VGGFace2 dataset. We also compare centerloss and Git loss

by training on MS-Celeb-1M dataset.
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Conclusions and Future Works

6.1 Conclusion

In this thesis a new methodology that exploits both textual and visual information for

document classification has been proposed. In addition to the introduction of a novel

model able to merge textual and visual information within a single image, we introduced

a novel loss function which is capable of minimizing intra-class distance, while enhancing

inter-class distances between samples of datasets.

Document classification is not a trivial task and can face many obstacles (as described

in Chapter 1) due to the shortness of the text associated to a document or due to

inconsistencies between texts and images. This scenario is very common especially on e-

commerce websites or social media platforms, where content is created by people without

following rigorously grammar rules.

In literature, the problem of document classification has been tackled several times

using very different strategies, such as, single-modal classification and Early or Late

Fusion approaches. Simpler approaches like single modal classification do not take ad-

vantages of entire available information, like text, image and audio or video signals. In

fact, often, very different elements appear to be very similar if considering only the tex-

tual description or the image, making the classification process error-prone. Exploitation

of visual and textual information is used to help classifiers to make correct predictions,

which, obviously cannot be performed using only one modality. This is a crucial aspect to

keep in mind while trying to overcome data inconsistencies with automatic approaches.

Fusion approaches can be used for multimodal classification, however, if considering
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the Early and Late Fusion approaches, many classifiers need to be trained making the

pipeline computationally expensive.Moreover, the Early Fusion approach, described in

Chapter 2 did not overcome results obtained with Late Fusion strategy.

The first objective of this thesis was to create a novel method of including textual and

visual features onto a single image, being able to exploit capabilities of Deep Convolu-

tional Neural Networks, which achieved state-of-the-art in the Computer Vision research

field, on text classification.

The approach is widely described in Chapter 4. Summarizing, our proposal consists

in using a single CNN architecture to add textual features on images. The network

computes embeddings for text and, to get relevant features, applies 1-d convolutional

kernels with different heights. This is similar to the application of n-grams strategy and

allows to the model itself to select best feature extracted with different resolutions. Next,

obtained embeddings features are encoded in the upper part of the images. The result is a

set of images, containing feature from both modalities, which are then used as dataset to

train another network which performs the classification task. Experimental results show

that overall accuracy of a Convolutional Neural Network trained on these artificial images

is considerably higher than accuracy obtained using only textual or visual information,

especially when different documents have similar text or similar images.

The second objective of this thesis was to introduce a loss function which is capable

of improving the discrimination between features. This task, known as Discriminative

Feature Learning, is a well studied topic in literature because separability is the base

condition to obtain good performance with any classifier. Many methods have been

introduced in recent times, however, most of them require the creation of a dataset

of pairs or triplets to train models in order to achieve minimum intra-class distance

and maximum inter-class distance. Other approaches which try to obtain such similar

result dealing with imbalanced datasets are available. The disadvantage of both kind of

approaches is due to the high memory consumption and high computation time required,

making their usage on large scale datasets very difficult.

In this thesis, we introduced a new loss function, named Git loss, described in Chap-

ter 5, which makes deep feature more discriminable. We exploit the softmax as supervi-

sion signal and the well-known property of the center loss which compacts patterns of a

class, lowering intra-class distances. The result is a novel loss function which minimizes

intra-class variations and enlarges inter-class distances simultaneously. We experimented

our method on two famous face recognition datasets, LFW and YTF, showing that clas-

sification and generalization abilities are improved.
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6.2 Future Works

Future extensions of multimodal document classification work may rely on testing on

large scale datasets with thousands of classes. The approach we built was born after

considering that in many cases, the exploitation of only textual or visual features is

not enough to provide a correct classification of a document. There are documents

with similar images and very different text and vice-versa, thus, using a single source

classification can lead to very poor performances. The first extension we will implement

is to encode textual information not only in the upper part of the image, but changing

pixel values of the whole image.

Moreover, we would like to include in the pipeline shown in Chapter 4, the text

detection and recognition approach shown in Chapter 2. The advantage would be the

inclusion of keyword that can be included into an image in the form of text which can

enrich the textual component of our approach.

The discriminative feature learning approach, explained in Chapter 5, actually, has

been developed and tested only to face datasets, however, it can be easily applied to

any other topic. Thanks to the fact we implemented it in an end-to-end manner using

Stochastic Gradient Descent as optimizer, it is very easy to use and to adapt to dif-

ferent datasets, thus it will be applied also to datasets used for multimodal Document

classification.

All works I carried out during my three years Ph.D. were based on multimodal

classification and discriminative feature learning. The final work ”Image and Encoded

Text Fusion for Multimodal Classification” [9], can be viewed as an example of real

application scenario and it is not limited only to images and texts, but can be exploited,

for example, also for sounds. Text and images are associated to plenty of contexts, for

example in most of social networks or marketplaces such as Facebook, Amazon, Twitter,

so this approach can perfectly suit actual needs of companies.

Taking all this into consideration, information extraction and fusion inside images

represents an effective approach useful for many research areas such as Sentiment Anal-

ysis, Image and Text Retrieval, Image Ranking.

As a proof of concept, we dedicated part of the time to explore above-mentioned

fields achieving encouraging results with images obtained from described approaches.





Colophon

– This thesis was written using LATEX.

– The LATEX template for this thesis was made by Carullo Moreno.

– The code for experiments was developed in Python1 and Java2.

– Algorithms presented were developed using the Google TensorFlow3, Pandas4 and

Scikit-learn5 libraries.

– For the approach presented in Section 3.1 WEKA6 for Java was used.

– NVIDIA DIGITS7 was used to create, train and evaluate the model shown in

Chapter 4.

– All experiments have been run on a machine equipped with an Intel Core i7-6800K

@ 3.50 GHz with 64 GB of RAM, three NVIDIA GTX 1080 and Linux Mint 19

Tara.

1https://www.python.org
2https://www.java.com/en/
3https://www.tensorflow.org
4https://pandas.pydata.org
5https://scikit-learn.org/stable/index.html
6https://www.cs.waikato.ac.nz/ml/weka/
7https://developer.nvidia.com/digits
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