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ABSTRACT 

BACKGROUND 

New sources of insulin-secreting cells are strongly required for the cure of diabetes. 

Recent successes in differentiating embryonic stem cells, in combination with the 

discovery that it is possible to derive human induced pluripotent stem cells (iPSC) from 

somatic cells, have raised the possibility that patient-specific  cells might be derived 

from patients through cell reprogramming and differentiation.  

AIMS 

In this study, we aimed to obtain insulin-producing cells from human iPSC and test 

their ability to secrete insulin in vivo. 

METHODS: 

Human iPSC, derived from both fetal and adult fibroblasts, were differentiated in vitro

into pancreas-committed cells and their ability to secrete insulin was measured. iPSC-

derived cells at two different stages of differentiation (posterior foregut and endocrine 

cells) were transplanted into immunodeficient mice to test their ability to engraft, 

differentiate and secrete insulin.  

RESULTS: 

IPSC were shown to differentiate into insulin-producing cells in vitro, following the 

stages of pancreatic organogenesis. At the end of the differentiation, the production of 

INSULIN mRNA was highly increased and up to 14% of the cell population became 

insulin-positive. Terminally differentiated cells also produced C-peptide in vitro in both 

basal and stimulated conditions. In vivo, mice transplanted with pancreatic cells secreted 

human C-peptide in response to glucose stimulus, but transplanted cells were observed 

to lose insulin secretion capacity during the time. At histological evaluation, the grafts 

were composed of a mixed population of cells containing mature pancreatic cells, but 

also pluripotent cells and rare neuronal cells. 

CONCLUSION: 

These data overall suggest that human iPSC have the potential to generate insulin-

producing cells and that these differentiated cells can engraft and secrete insulin in vivo. 
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I. ACRONYMS AND ABBREVIATIONS 

iPSC: induced Pluripotent Stem Cells 

WHO: World Health organization 

T1D: Type 1 Diabetes 

HbA1c: Glycated Hemoglobin 

CITR: Collaborative Islet Transplant Registry 

GH: Growth Hormone 

GLP-1: Glucagon-like Peptide 1 

HGF: Hepatocyte Growth Factor 

Pdx-1: Pancreatic and duodenal homeobox 1 

Gal: Galactose 1,3Galactose 

PERV: Porcine Endogenous Retrovirus 

ESC: Embryonic Stem Cells 

HSC: Hematopoietic Stem Cells 

MSC: Mesenchymal Stem Cells 

GFP: Green Fluorescence Protein 

FGF- : Fibroblast Growth Factor-

EGF: Endothelial Growth Factor 

PKC: Protein Kinase C 

TGF : Transforming Growth Factor 

MEFs: Murine Fetal Fibroblasts 

bFGF: basic Fibroblast Growth Factor 

AMD: Age-related Macular Degeneration 

HLA: Human Leucocyte Antigen 

FBS: Fetal Bovine Serum 

DE: Definitive Endoderm 

PG: Primitive Gut Tube 

CYC: KAAD-Cyclopamine 

PF: Posterior Foregut 

GLP-1: Glucagon-like peptide-1 

DAPT:  N-[N-(3,5-Difluorophenacetyl)-L-alanyl] -S-phenylglycine t-butylester 
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NGN3: Neurogenin3 

EN: Hormone-expressing Endocrine 

IGF-1: Insulin-like growth factor 1 

HGF: Hepatocyte growth factor 

IL V: Indolactam V 

EB: Embryoid Bodies 

AU: Arbitrary Units 

SeV: Sendai Virus  

ME: Mesendoderm 

PE: Pancreatic Endoderm 

BM: Basal Medium 

BSA: Bovine Serum Albumin 

KGF: Keratinocyte Growth Factor 

ITS: Insulin-Transferrin-Selenium 

PdBU: Phorbol 12,13-dibutyrate 

T3: L-3,3’,5-Triiodothyronine 

ddPCR: Droplet Digital PCR 

DAVID: Database for Annotation, Visualization and Integrated Discovery 

FDR: False Discovery Rate 

FACS: Fluorescence-activated cell sorting 

ELISA: Enzyme-Linked Immunosorbent Assay

OGTT: Oral Glucose Tolerance Test 

AP: Alkaline Phosphatase 

FC: Fold Change 

SEM: Standard Error of the Mean 

IBMX: phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine 

KCl: potassium chloride 

SSC: Side Scatter 

APC: Allophycocyanin 

PE: phycoerythrin 

MODY: Maturity onset diabetes of the young 
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II. INTRODUCTION 

1. Type 1 Diabetes 

In 2014 The World Health Organization (WHO) estimates that there were 387 million 

people suffering from diabetes worldwide, a number that is predicted to increase to 592 

million by 2035 (Whiting et al., 2011). Approximately 10% of these cases are of type 1 

diabetes (T1D) (Stanekzai et al., 2012), a disease characterized by an absolute 

deficiency of insulin-producing pancreatic -cells caused by an autoimmune-mediated 

destruction.

Administration of exogenous insulin, regular blood glucose monitoring and dietary 

restrictions are the fundamental means of treating hyperglycemia in all patients with 

T1D. Although life-saving, insulin therapy does not restore the physiological regulation 

of blood glucose and is not able to prevent either the dangerous states of hypoglycemia 

or long-term complications like ketoacidosis, kidney failure, cardiovascular diseases, 

neuropathy and retinopathy (van Belle et al., 2011). Despite new technologies like 

slow-release insulin or insulin pumps have been developed in the last years and have 

substantially improved glycemic control as well as the quality of life of diabetic patients 

(Saudek et al., 2013), a fail-safe physiological regulation of systemic blood glucose 

levels remains challenging. The only possible definitive cure for this disease consists in 

providing a new  cell source capable of performing two essential functions: assessing 

blood sugar levels and secrete insulin in a glucose-dependent manner. 

2.  cell replacement with  cells  

2.1 Allogeneic adult cells  

At present, only pancreas or islet transplantation offer an alternative treatment option 

through restoration of the physiological response to changes in blood glucose levels. 

Whole pancreas transplantation is very effective in achieving insulin independence and 

in maintaining long-term physiological glycemic control: currently, graft survival for 

pancreas transplants alone is 82% at 1 year and 58% at 5 years, and these numbers are 

increased to 89% and 71% respectively for dual pancreas and kidney transplants 

(Redfield et al., 2015). However, because of the significant morbidity associated with 

this major surgery, this therapeutic approach is almost exclusively limited to diabetic 
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patients who also suffer for end-stage renal disease undergoing a simultaneous kidney 

transplant (Ichii & Ricordi, 2009). By contrast, islet transplantation requires a 

minimally invasive surgical procedure in which islet preparations are infused into the 

recipient liver through the portal vein, using a percutaneous radiologic procedure 

(Venturini et al., 2005). A functional transplant in a T1D patient can eliminate 

hypoglycemic episodes, correct glycated hemoglobin (HbA1c), reduce or reverse risk of 

secondary complications associated with the disease and, in the best cases, lead to 

insulin independence achievement (Barton et al., 2012). The first attempt of an islets 

transplant as a treatment for diabetes could be considered that of Dr. Watson-Williams 

and Dr. Harshant in 1893, when they transplanted small fragments of a sheep pancreas 

into a young patient with diabetic ketoacidosis who died after few days (Williams et al., 

1894). In this case, no attempt to purify the islets was performed. The first evidence of 

the effectiveness of islet isolation and transplantation was reported only in 1972 by 

Ballinger and Lacy in chemically induced diabetic rats (Ballinger & Lacy, 1972), with 

Kemp et al. establishing the liver as the most suitable site for islet implantation (Kemp 

et al., 1973). Five years later the first islet infusion in human was performed, with 

azathioprine and corticosteroid as immunosuppressive drugs (Najarian et al., 1977). 

Since then, many efforts and significant progress have been achieved in the field of islet 

transplantation, in terms of human islets isolation (Ricordi et al., 1988), 

immunosuppression strategies (Oberholzer et al., 2000; Hering et al., 1994) and optimal 

number of transplanted islets per kilograms of body weight (Secchi et al., 1997). The 

knowledge deriving from these experiences led to the appearance in 2000 of the 

“Edmonton protocol”, that was then adopted by all the centers of islet transplantation in 

the world; that year indeed Shapiro et al. published a success rate of 100% at 1 year in 

seven out of seven consecutive T1D patients, introducing several novelties to the 

procedures, above all the use of a glucocorticoid-free immunosuppressive regimen 

(Shapiro et al., 2000). Since then, the outcomes and safety of human islet allografts 

have steadily improved through the past few years. As recently reported by the 

Collaborative Islet Transplant Registry (CITR), insulin independence at 3 years after 

transplant improved from 27% in the early era (1999–2002) to 37% in the middle phase 

(2003–2006) and to 44% in the most recent era (2007–2010) (Barton et al., 2012). 

Moreover, five independent centers (Edmonton, Minnesota, Geneva, Milan and Lille) 
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are reporting a 5-year rate of insulin independence exceeding 50% (Shapiro et al., 

2011), closely matching the results of pancreas-alone transplantation from the 

International Pancreas Transplant Registry. Islet transplantation is currently being fully 

reimbursed under non-research, clinical care streams in several countries including 

Canada, United Kingdom, Sweden and the Nordic Network, Swiss and Australia. At 

present however, islet transplantation is far from being a standard procedure because of 

two main problems: the need for lifelong immunosuppression (with multiple adverse 

side-effects) and the lack of pancreases from heart-beating brain-dead donors (the only 

suitable source of human islets for clinical use). For these reasons, islet transplantation 

is presently restricted to diabetic patients showing unexplained metabolic instability 

despite carefully monitored insulin therapy, complicated by recurrent hypoglycemic 

events (Bertuzzi et al., 2007).  

In this scenario, a novel strategy to address the problem of how to reconstitute 

pancreatic endocrine function in diabetic patients is clearly needed. Many approaches 

are currently being studied intensively, in particular  cell proliferation/regeneration, 

xenotransplantation and differentiation of pluripotent stem cells (Figure 1).  

Figure 1. The most promising sources and the related strategies currently studied in order to obtain a 

large amount of transplantable  cells. Pellegrini, 2013. 
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2.2 Autologous cells (  cell proliferation or trans-differentiation in vivo/ex vivo) 

Unlike blood, skin or intestine, that are tissues with a relatively rapid turnover of cells, 

β cells in the pancreatic islets are a quiescent population with a proliferative ratio of 

0,1-0,3%/day in 1-year-old mice (Teta et al., 2005). Recent studies, however, have 

shown that also β cells mass is regulated dynamically and the relation between 

replication and apoptosis can determine the final mass (P. C. Butler et al., 2007; Lipsett 

et al., 2006). In human, normal expansion of the β cell mass occurs during the neonatal 

period, but fades early in childhood (Meier et al., 2008); in adult, β cell replication 

resulted increased in some physiological or pathological states, such as pregnancy 

(Parsons et al., 1995) or an obesity-induced insulin-resistant state (Gupta et al., 2007). 

Thus, the use of external agents to expand β cells ex vivo for transplantation purpose or 

to stimulate endogenous cell proliferation in vivo in order to increase the β cells mass in 

diabetic patients may be an attractive approach for β cells supplementation. In fact, β

cell regeneration has been observed also in T1D patients after onset (Willcox et al., 

2010) or even many years after diagnosis (Pipeleers & Ling, 1992; Keenan et al., 2010). 

Moreover, Dor et al. in a lineage-tracing study in mice observed a dramatic increase in 

β cell mitotic index following pancreatic injury such as 50~70% pancreatectomy (Dor 

et al., 2004) or a selective β cell genetic ablation (Nir et al., 2007). Transfection of 

many cell cycle regulators like cdks (cycline dependent kinases) and cyclins into rodent 

and human islets ex vivo, leads to an increase in the replication rate of β cells (Cozar-

Castellano et al., 2004; Fiaschi-Taesch et al., 2010), but the prolonged expression of 

these molecules would increase also the risk of oncogenesis. A safer option is 

represented by the addition in culture of growth factors, such as growth hormone (GH), 

glucagon-like peptide-1 (GLP-1) or hepatocyte growth factor (HGF), that have been 

described to increase the replication rate of rodent β cells (Nauck et al., 1993); 

unfortunately, in human the elevated proliferation is associated with a loss of β cell 

features, like Pdx-1 or insulin expression (Parnaud et al., 2008). An in vivo therapy with 

long-acting GLP-1 analogues (exenatide or liraglutide) has been considered to have a 

potential for the stimulation of β cell replication in diabetic patients after proof-of-

concept studies performed in patients treated with GLP-1 (Nauck et al., 1993; Rachman 

et al., 1997), but long-term data of the evidence of such increase in patients have yet to 
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be provided. In the field of β cell proliferation, a gene therapy aimed at the reversible 

inclusion of genes capable of immortalizing β cells has been tried as well. During the 

past 30 years, a number of  cell lines have been established in rodent (Gazdar et al., 

1980; Hohmeier & Newgard, 2004) and many attempts have been made to generate 

human  cell lines from many pancreatic sources, but insulin production by these cells 

was extremely low or limited at few passages (Levine et al., 1995; de la Tour et al., 

2001). In 2005, Narushima et al. reported the successful establishment of a functional 

human  cell line, NAKT-15, that looked promising for cell therapy of diabetes, but no 

new reports on the utility of this line have been published since 2005 (Narushima et al., 

2005). In 2011 another human  cell line was established transducing human fetal 

pancreases with a lentiviral vector that expressed SV40LT and human telomerase 

reverse transcriptase (hTERT). One of the cell lines generated with this strategy, the 

EndoC- H1, was further characterized and resulted able to secrete insulin in response to 

glucose stimulation, was stable at least for 80 passages and expressed many specific 

cell markers, without any substantial expression of markers of other pancreatic cell 

types (Ravassard et al., 2011). In view of clinical use, a second generation of human 

cell lines has been recently developed; the conditionally immortalized EndoC- H2 cell 

line is based on Cre-mediated excision of the immortalizing transgenes, leading to an 

arrest of cell proliferation and pronounced enhancement of  cell–specific features such 

as insulin expression, content, and secretion (Scharfmann et al., 2014), but further 

studies are required to determine the actual safety of these cells.  

Another completely different point of view is the theory that neogenesis and not 

proliferation is the mechanism responsible for β cells-mass expansion in conditions like 

pregnancy or obesity. A recent autopsy study on human pancreata during or after 

pregnancy supports this hypothesis: Butler et al. observed the presence of more new 

small islets rather than an increase in β cell replication, islet size or change in apoptosis 

(Butler et al., 2010). They also observed an increased number of insulin positive cells 

within ducts, indicating that duct cells can differentiate in β cells in certain conditions or 

that pancreatic stem/progenitor cells are localized in pancreatic ducts. In previous works 

putative pancreatic stem cells have been localized also in exocrine cells and endocrine 

islets, suggesting a widespread distribution within the pancreas and that a precise 

characterization of these cells still lacks (Jones et al., 2008). Experiments of 90% 
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pancreatectomy in rats show the substantial regenerative capacity of the adult pancreas 

(Dor et al., 2004; Bonner-Weir et al., 1993) and in a recent work it was demonstrated 

that this regeneration follows a dedifferentiation-redifferentiation paradigm, in which 

mature duct cells dedifferentiate to a progenitor-like state and then differentiate to form 

all pancreatic cell types, including β cells (Li et al., 2010). Also in this work an 

increased proliferation rate of the remaining β cells was observed, indicating that 

replication and neogenesis are not mutually exclusive and they both contribute to 

maintain an adequate β cell mass after birth, but there are important differences in the 

balance of these two pathways depending on species and age (Bonner-Weir et al., 

2010). The potential of α cells as possible source of insulin-producing cells has also 

been explored, since these cells are preserved in diabetic patients (Gianani et al., 2011) 

and are the most abundant endocrine cells in islets other than β cells. Collombat and 

colleagues have shown that the ectopic expression of Pax4 could force mature α cell 

conversion to β cells, reversing chemically induced diabetes in mice (Collombat et al., 

2009). In addition, Thorel et al. confirmed the differentiation potential of α cells 

reporting their spontaneous conversion to new functional β cells using a selective 

diphtheria toxin-mediated β cells ablation model (Thorel et al., 2010). Whether this 

plasticity might exist in human is unknown, but experiments in chemically-induced 

diabetes in non-human primate didn’t show evidence of β cells regeneration (Saisho et 

al., 2011). 

2.3 Xenogeneic cells

Using islets of Langerhans derived from other species seems an obvious way of 

providing the large amount of islets required for transplantation therapy of diabetes. 

Most effort in this area has been directed towards the use of pig islets for many reasons: 

(i) porcine pancreas as a by-product of pork production has been used for years as an 

exogenous source of insulin before recombinant human insulin became available, (ii) 

porcine islets regulate glucose levels in the same physiologic range as humans, (iii) high 

islets yields can be obtained with techniques similar to those for human islet isolation 

and (iv) pigs can be genetically modified for making their islets more suitable for 

human transplantation (Klymiuk et al., 2010). Recent studies in nonhuman primates 

reported the long-term survival of neonatal (Cardona et al., 2006) or adult (Hering et al., 
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2006) porcine islets in the presence of immunosuppression therapy and/or adoptive 

transfer of expanded autologous regulatory T cells (Shin et al., 2015). Two main 

problems have however limited the use of pig islets in humans. First, the risk of an 

hyperacute immunologic rejection, because humans have natural preformed antibodies 

that react to a saccharide, Galactose 1,3Galactose (Gal) expressed on cells of lower 

mammals but not on cells of humans or monkeys (Galili et al., 1988): the binding of 

antibodies to Gal antigens results in almost an immediate complement activation, with 

consequent destruction of the graft. Second, the risk of zoonosis because porcine 

endogenous retroviral (PERV) sequences can infect several human cells in vitro

(Patience et al., 1997; Wilson et al., 1998) and may be activated after the xenotransplant 

(van der Laan et al., 2000). A strategy currently studied in order to overcome the 

problem of the immunogenicity of pig cells consists in islets microencapsulation; the 

cells can be enveloped within a biocompatible membrane (often of barium alginate) 

and, due to the molecular weight cutoff of the capsule material, cells are isolated from 

the host immune system (Rayat et al., 2000). Studies in both non-human-primate 

(Dufrane et al., 2010) and human recipients (Elliott et al., 2007) without 

immunosuppressive drugs were performed and, despite promising results, whether 

encapsulated islets will survive and function for long periods in human is unknown. 

Currently, two clinical trials using encapsulated porcine islets are ongoing in New 

Zealand (DIABECELL®) and in Russia and their findings are expected to be published 

imminently. No subjects, to our knowledge, have been rendered insulin free with such 

approaches to date (Moore SJ, 2015). In summary, encouraging results in extending the 

survival and the safety of transplanted pig islets have recently been obtained, but several 

issues must still be addressed and this strategy is far from an ideal option. 

3.  cell replacement with non  cells  

Currently, many opportunities for the cell therapy of single-cell disorders like diabetes 

are offered by stem cell differentiation. Stem cells are, by definition, undifferentiated 

cells that hold both the potential to differentiate into a large variety of specialized cell 

type and the ability to go through numerous cycles of cells division while maintaining 

their undifferentiated state (self-renewal). In mammals, there are two broad types of 
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stem cells: Embryonic stem cells (ESC), which are isolated from the blastocysts, and 

adult stem cells, which are found in various tissues (Calafiore & Basta, 2015). 

3.1 Adult stem cells  

Adult stem cells are multipotent progenitors that, by definition, can differentiate only in 

certain types of specialized cells, and are deputed to the maintenance, repair and 

reconstitution of the tissue in which they are found. For many years these cells were 

considered to be able to differentiate only in cells of the tissue/organ of origin, but 

subsequently it has been shown that adult stem cells can trans-differentiate into cells of 

other tissues (Davis et al., 1987). This opened the way for the use of stem cells of 

different types of tissues as a source of progenitor cells potentially able to become an 

autologous source of insulin-secreting cells. Since the identification of pancreatic stem 

cells is still controversial (Dor et al., 2004; Jiang & Morahan, 2014), many studies have 

focused their efforts on the use of bone marrow-derived stem cells, in particular 

hematopoietic stem cells (HSC) and mesenchymal stem cells (MSC), as they are easily 

accessible and hold a remarkable cellular plasticity. In an initial study the ability of 

bone marrow stem cells to localize into pancreatic islets in vivo and to differentiate into 

insulin-expressing cells was demonstrated (Ianus et al., 2003), but this has not been 

confirmed by other groups. For instance, using GFP transgenic mice as donors, two 

groups evaluated the distribution of HSC in the pancreas after bone marrow 

transplantation and found that none of GFP-positive cells localized in islet or around the 

ducts expressed insulin, even after pancreatic injury (Choi et al., 2003; Lechner et al., 

2004). In humans, a study analyzed 31 human pancreata obtained at autopsy from HSC 

transplant recipients who had received their transplant from a donor of the opposite sex, 

and no contribution of HSC to endocrine pancreas was observed (Butler et al., 2007). 

These studies support the hypothesis that trans-differentiation of bone marrow cells is 

not a significant mechanism for adult pancreatic  cell renewal. In addition, one study 

demonstrated that cell fusion rather than differentiation lies at the root of many 

processes of apparent bone marrow differentiation into ectodermal or endodermal 

tissues (Terada et al., 2002). In vitro multiple strategies involving exposure to various 

growth factor combinations under specific culture conditions, often augmented by 

genetic manipulation, were explored in order to differentiate HSC into insulin-



16 

producing cells but, at this time, consensus exists that MSC but not HSC can be induced 

to exhibit pancreatic properties (Ciceri & Piemonti, 2010). Several studies reported, 

after the treatment with defined combinations of growth factor, the appearance of 

insulin mRNA in cultures of MSC derived not only from bone marrow but also from 

adipose tissue or cord blood cells (Timper et al., 2006; Thatava et al., 2006; Sun et al., 

2007; Karnieli et al., 2007; Hisanaga et al., 2008; Chang et al., 2008; Xie et al., 2009; 

Bhandari et al., 2011; Dave et al., 2014; Qu et al., 2014). To give an example, recently a 

study was published about the differentiation of MSC into  cells with a differentiation 

protocol of 18 days which includes the addition of FGF- , EGF, Activin A and -

cellulin. Differentiated cells formed cell clusters some of which resembled pancreatic 

islet, stained positive with dithizone and were able to produce C-peptide (Czubak et al., 

2014). The limits of this and of many studies published before is that, at a deeper look, 

none of these differentiated cells exhibit the necessary conditions to be defined as 

cells: insulin secretion in response to glucose stimuli and capacity to normalize 

glycemia in diabetic animal models. Moreover, safety is an issue when stem cells are 

forcedly converted in another cell type. For instance, in a study by Tang et al. islet-like 

MSC-derived cells expressed multiple genes related to islet development and  cell 

function, produced insulin, demonstrated time-dependent glucose-stimulated insulin 

release, and the ability to ameliorate hyperglycemia in chemically induced diabetic 

mice, but, when transplanted into diabetic immunocompromised mice, differentiated 

cells became tumorigenic (Tang et al., 2012). Recently, multiple studies supported the 

differentiation capacity into insulin-producing phenotypes also of other adult extra-

pancreatic stem cell populations, like cells derived from liver, intestine, spleen, brain, 

dermis and mouse salivary glands (Limbert et al., 2008), but these studies have not 

proven to be reproducible. In conclusion, many tissues offer the possibility to derive 

progenitor cells able to differentiate into pancreatic beta-like cells, but until now none 

of the sources analyzed has proved to be capable of producing clinical-grade material, 

because of problems related to restricted proliferative capacity, low levels of insulin 

expression and poor, or non-existent, insulin secretion (Jones et al., 2008). 
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3.2 Embryonic stem cells 

Embryonic stem cells (ESC) are considered to be the most promising source of cells for 

cell/organ replacement therapies due to their virtually endless proliferative capacity and 

their potential to differentiate into cells of all the three embryonic germ layers 

(pluripotency). Therefore, the development of ESC lines from the inner cell mass of 

early stage mouse embryos (Evans & Kaufman, 1981; Martin, 1981) and, 17 years later, 

human embryos (Thomson et al., 1998) offered the potential to generate any specialized 

cell type in large quantities, including insulin-producing cells. Initially Soria et al. 

observed that undifferentiated ESC are able to naturally express insulin, so they tried to 

select these cells using a technique called "cell-trapping" (transfecting the cells with a 

chimeric construct which couples insulin gene with a gene that confers drug resistance) 

and directed their differentiation by modulating culture conditions to obtain a  cell-like 

phenotype. The cells generated were able to secrete insulin in vitro in response to 

various stimuli but not to glucose (Soria et al., 2000). One year later another group 

developed an alternative approach, which consists in generating insulin-positive cells 

from murine Nestin-positive ESC colonies; Nestin is expressed in developing neurons, 

and islet and neural cells share phenotypic similarities (Zulewski et al., 2001). This type 

of approach led to the formation of cells capable of co-expressing all kinds of hormones 

produced by the cells in the pancreatic islets, but the final insulin content was very low

(Lumelsky et al., 2001). Further progress has been made after the identification of  the 

developmental cues that could induce ESC to replicate key aspects of the segregation of 

specific germ layers, as occurs during gastrulation in the normal embryo; since the 

pancreas is an endoderm-derived tissue, an important turning point was the induction of 

differentiation of ESC first into mesendoderm (progenitor of both endoderm and 

mesoderm), and subsequently into definitive endoderm (distinct from the 

extraembryonic visceral endoderm, which appears earlier and does not contribute to 

adult organ structures) (D’Amour et al., 2005). A major step forward came when the 

same group continued in a stepwise fashion to identify culture conditions and  

developmental signals that induce pancreatic organogenesis in vivo, in order to drive in 

vitro the further differentiation of human ES cell-derived definitive endoderm cells 

through subsequent stages on the desired path: posterior foregut, pancreatic endoderm, 

progenitors of endocrine pancreas and, finally, hormone-producing endocrine cells. 
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With their five-steps differentiation protocol the Baetge group (from Novocell, Inc., a 

preclinical stage stem cell engineering company focused on diabetes, that in 2010 

changed its name into ViaCyte, Inc) succeeded to obtain from human ESC about 7% of 

cells that expressed high levels of proinsulin that was processed, albeit inefficiently, to 

insulin and C-peptide. Insulin secretion was not responsive to glucose levels, but could 

be increased by other compounds known to act on -cells in fetal pancreas, which also 

respond poorly to glucose (D’Amour et al., 2006). Two other groups, using different 

culture conditions, confirmed that ESC are able to differentiate in insulin-producing 

cells, albeit with a lower efficiency (W. Jiang et al., 2007; J. Jiang et al., 2007). 

Subsequently Baetge and colleagues improved their results, optimizing their 

differentiation protocol and transplanting ESC-derived pancreatic progenitor cells into 

mice such that after three months in vivo the implanted cells differentiate into mature 

endocrine cells that can regulate blood glucose levels after diabetes induction (Kroon et 

al., 2008). They also identified CD142 (Tissue Factor) as a novel surface marker for the 

selection of pancreatic progenitor cells obtained through the differentiation of ESC; 

CD142
+
 cells transplanted in vivo give rise to all the pancreatic lineages, including 

functional insulin-producing cells (Kelly et al., 2011). The same group recently 

developed a scalable and standardized system for the production of functional 

pancreatic progenitors from human ESC, further optimizing their differentiation 

protocol for the CyT49 ESC line (Schulz et al., 2012). Finally, October 29
th

, 2014 

Viacyte announced the beginning of a Phase 1/2 clinical trial and that the first patient of 

this study was successfully implanted with ESC-derived insulin-producing cells 

delivered under the skin in a proprietary device with a selectively porous cell-

impermeable membrane, called the Encaptra® drug delivery system; this device is 

designed to protect the implanted cells from possible immune rejection, to permanently 

contain the cells and prevent their distribution away from the implantation site, and to 

provide a platform for product vascularization. This is the first time that an embryonic 

stem cell-derived cell replacement therapy for diabetes is studied in human subjects, 

and it represents the culmination of a decade of effort by the ViaCyte team 

(http://viacyte.com). Meanwhile, modified or improved protocols have been established 

using combinations of cytokines and small molecules, such as many Fibroblast Growth 

Factors, Sonic hedgehog pathway inhibitors (KAAD-cyclopamine or SANT-1), 
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Retinoic Acid, Nicotinamide, protein kinase C (PKC) activator (Indolactam V) or TGF

pathway inhibitors (Alk5 inhibitor, Dorsomorphin or Noggin) (Chen et al., 2009; Ameri 

et al., 2010; Mfopou et al., 2010; Nostro et al., 2011a; Xu et al., 2011; Rezania et al., 

2012; Rezania et al., 2013; Nostro et al., 2015). Noteworthy are in particular the 

directed differentiation strategies reported by the research units of Melton and Kieffer 

(Pagliuca et al., 2014; Rezania et al., 2014). These two groups reported a novel and 

efficient approach to generate in vitro 20%–50% insulin (C-peptide)-positive cells from 

hESCs. Upon transplantation into immunocompromised mice, the graft (composed of 

endocrine and ductal cells) restored glycemia within 2 (Pagliuca et al., 2014) or 6 weeks 

(Rezania et al., 2014) after transplantation, a tremendous improvement compared with 

the 2-3 months period required after transplantation of hESC-derived pancreatic 

progenitors (Kroon et al., 2008). Nevertheless, the similarities and differences between 

-like cells generated by all these groups remain to be elucidated by a direct 

comparison. Despite significant successes, three main problems still limit the use of 

ESC-derived insulin-producing cells. First, due to their pluripotency, undifferentiated 

cells give rise to teratoma formation in vivo and the transplantation of unselected 

differentiated cells would inevitably lead to tumorigenesis because of the presence of 

some residual undifferentiated cells (Kroon et al., 2008); several attempts have been 

made to identify surface markers able to select pancreatic progenitor cells (Kelly, Chan, 

L. A. Martinson, et al., 2011; Jiang et al., 2011) or to eliminate only pluripotent cells 

(Ben-David et al., 2013), but the safety of the selected cells requires further 

investigation. Another unsolved problem is related to the evidence that each ESC cell 

line has a different propensity to give rise to pancreatic cells (Osafune et al., 2008). 

Therefore many cell lines have to be tested (and, accordingly, the differentiation 

protocol must be optimized) in order to identify a set of ESC lines that could facilitate 

genetic matching of donor cells to patients and therefore prevent graft rejection and life-

long immunosuppression. The last major problem, which greatly limits the use of ESC 

in many countries of the world, is the presence of ethical concerns regarding the 

destruction of human embryos for the production of these cell lines. 
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4. Induced pluripotent stem cells 

4.1 Definition and characterization 

Because of their self-renewal abilities and the capacity to differentiate into any cell of 

the body, ESC have always been considered the most promising source for cell 

replacement therapies; despite this, however, their controversial origin and the 

impossibility to perform autologous therapies, had so far limited their use in clinical 

practice. To overcome these obstacles and still obtain pluripotent cells, the only possible 

way appeared to be the reprogramming of somatic cells to a state of embryonic-like 

stem cells. Initially, the reprogramming process of somatic cells has proved possible 

only transferring the nuclear content of these cells into oocytes (Wilmut et al., 1997) or 

fusing them with ESC (Tada et al., 2001). The results obtained from these experiments 

led many researchers to believe that the oocytes and ESC contain factors able to confer 

characteristics of pluripotency to somatic cells. The group of Yamanaka and colleagues 

in particular speculated that the elements capable of cover this important role in 

reprogramming induction were those involved in the maintenance of the 

undifferentiated state of ESC; to identify these factors they selected 24 candidate genes 

encoding for proteins that play an important role in maintaining cell identity of ESC and 

in their proliferation, including transcription factors (such as Oct3/4, Sox2, Nanog) or 

genes that are frequently overexpressed in tumors (such as Stat3, E-Ras, C-myc or 

Klf4), and tested their ability to reprogram somatic cells to pluripotent cells. They first 

transfected murine fetal fibroblasts (MEFs) with retroviral vectors containing the genes 

coding for 24 proteins of interest and observed the generation of colonies of embryonic-

like stem cells; later, in order to identify which of these 24 genes were necessary and 

sufficient to reprogram somatic cells, they monitored the formation of colonies by 

combining the transfection of the various factors among them. Using this strategy in 

2006 Prof. Yamanaka (winner of the Nobel prize in 2012 for this discovery) and his 

team found a set of four genes that, when over-expressed in murine fibroblasts (both 

embryonic and adult), are able to reprogram these somatic cells to pluripotent cells 

capable of self-renewal. This four reprogramming factors (also known as “Yamanaka’s 

factors”) are: 
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- POU domain class 5 transcription factor 1 (POU5F1), also known as Octamer-

binding transcription factor 4 (OCT3/4), a transcription factor important for self-

renewal of undifferentiated embryonic cells; 

- Krüppel-like factor 4 (KLF4), a repressor of p53, which is essential for the 

regulation of cell cycle; 

- SRY (sex determining region Y)-box 2 (SOX2), another transcription factor 

important for the self-renewal of undifferentiated cells; 

- Myelocytomatosis oncogene (c-MYC), a proto-oncogene crucial to drive cell 

proliferation and allow the self-renewal of ESC. 

Transduction of murine fibroblasts with retroviral vectors containing the genes 

encoding for these 4 factors resulted in the formation of colonies of cells with the same 

morphology (Figure 2), proliferation rate (Figure 3) and gene expression profile 

(Figure 4) of ESC; these cells were called "induced pluripotent stem cells" (iPSC). 

Figure 2. Morphology of an ES cell line, a colony of murine iPSC and a murine fetal fibroblasts cell line. 

Scale bar = 200µm. Takahashi, 2006. 
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Figure 3. Growth curves of ESC, iPSC                            Figure 4. RT-PCR analysis of ES cell marker 

(iPS-MEF24, clones 2-1–4), and MEFs.                           genes in iPSC (iPS-MEF24, clones 1-5, 1-9, 

3 × 105 cells were passaged every 3 days into                 and 1-18), ES cells, and MEFs. Nat1 was used 

each well of six-well plates. Takahashi, 2006.                 as a loading control. Takahashi, 2006. 

The iPSC lines produced are in fact, as ESC, formed by cells with a rounded shape, 

large nuclei and scant cytoplasm. They also showed a high proliferative rate, in fact the 

doubling time of these cells (17-19 hours) was equivalent to that of ESC (17 hours). 

Also the gene expression analysis showed the similarity of iPSC cells to ESC, as they 

express genes as Oct3/4, Nanog, E-Ras, Crypto, DAX1, Zfp196 and Fgf4, which are 

characteristic markers of undifferentiated cells. 

It was also evaluated the pluripotency of the iPSC lines produced through two different 

types of studies: 

- First, it was assessed the ability of these cells to form teratomas into 

immunodeficient animals by subcutaneous injection of cells; histological 

examination revealed that the iPSC lines generated were able, even after 

numerous passages in vitro, to give rise to tumors composed of cells derived 

from all three embryonic germ layers (Figure 5); 
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Figure 5. Histology of different tissues present in teratomas derived from the transplantation of iPSC in 

mice. Takahashi, 2006. 

- It was also evaluated the ability of these cells to differentiate in vitro into cells 

of the three embryonic germ layers. First, the formation of three-dimensional 

structures called "embryoid bodies" (EBs), a critical step to examine the 

potential of differentiation of ESC, was induced and then these clusters were 

grown in suspension condition to allow spontaneous differentiation. After a few 

days of culture, cells stained positive for the -smooth muscle actin (mesoderm 

marker), the -fetoprotein (endodermal tissues marker) and III tubulin 

(ectoderm marker) (Figura 6). (Takahashi & Yamanaka, 2006). 

Figure 6. Immunostaining confirming in vitro differentiation into cells of all three germ layers. Scale bars 

= 100 m. Secondary antibodies were labeled with Cy3 (red), except for -fetoprotein in iPS-MEF10-6, 

labeled with Alexa 488 (green). Scale bar = 100µm. Takahashi, 2006. 

One year later, Yamanaka’s and two other groups have successfully repeated the 

reprogramming process using human somatic cells (Takahashi et al., 2007; Yu et al., 
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2007; Park et al., 2008). Even these lines of human iPSC generated resulted comparable 

to ESC, as these cells showed the same morphology, the same proliferative capacity, 

had similar telomerase activity, a normal karyotype, expressed surface markers and 

genes that characterize human ESC, and were also able to form teratomas in vivo and to 

differentiate into cells of all three germ layers in vitro. The protocol described by 

Yamanaka’s group for the generation of iPSC by using adult human fibroblasts requires 

a first step of infection with retroviral vectors containing the genes encoding for the 4 

factors (Oct4, Klf4, Sox2 and C-Myc) and the growth in a medium containing 10% FBS 

(fetal bovine serum). After 6 days, cells are harvested using trypsin and plated on a 

layer of feeder cells (usually MEFs) inactivated with mitomycin C; from the next day 

onwards the cells are grown in the medium typically used for the culture of ESC 

supplemented with bFGF (basic fibroblast growth factor) to avoid spontaneous 

differentiation. Approximately 2-3 weeks after, flat and uniform colonies of cells 

similar to ESC start to appear with an overall efficiency of the reprogramming process 

of 0,2%; these colonies are then selected and expanded in vitro (Takahashi et al., 2007). 

Is also important to mention that Oct4, Sox2, Klf4 and C-Myc are not the only factor 

combination that can generate iPSC. For example, human iPSC have been derived by 

enforced expression of Oct4, Sox2, Nanog and Lin28 (Yu et al., 2007), suggesting that 

different routes may lead to a common pluripotent ground state or, alternatively, that 

different transcription factors activate the same program by reinforcing each other’s 

synthesis. Similarly, Sox2 and Klf4 have been replaced with related protein such as 

Sox1, Sox3 and Klf2 (Nakagawa et al., 2008). After the publication of these 

groundbreaking works, iPSC were created by reprogramming of somatic cells of 

different species, including human, mouse, rat, pig, horse and monkey (Stadtfeld & 

Hochedlinger, 2010; Kumar et al., 2015), demonstrating that the fundamental features 

of the transcriptional network governing pluripotency remain conserved during 

evolution. Similarly, iPSC have been derived from other somatic cell populations 

(Figure 7), such as keratinocytes, neural cells, stomach and liver cells, melanocytes, 

terminally differentiated lymphocytes (Singh et al., 2015) and also from pancreatic 

cells (Stadtfeld et al., 2008), further underscoring the universality of the reprogramming 

process. 
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Figure 7. Different cell sources and different combinations of reprogramming factors have been used by 

different groups for reprogramming to iPSCs (O- Oct4; S- Sox2; K- Klf4; M- c-Myc; N- Nanog, L- 

Lin28). Singh, 2015.  

Studies of this type have raised an important issue, that is the need to verify whether if 

iPSC generated from different cell types are biologically and functionally similar. In 

some studies substantial differences in the propensity to form tumors in vivo or in the 

persistence of gene expression characteristic of the cell of origin were observed between 

iPSC derived from different types of somatic cells (Ben-David & Benvenisty, 2011). In 

2010 Hochedlinger’s group compared gene expression level, epigenetic profile and 

differentiation abilities of four lines of iPSC derived from different types of somatic 

murine cells; they observed that iPSC reprogrammed from cells of different nature have 

a different transcriptional and epigenetic pattern, which allows to differentiate in the cell 

type of origin with more efficiency than in other cell types. They suggest that early-

passage iPSC retain a transient epigenetic memory of their somatic cells of origin, but 

that continue passaging of the cells largely attenuates these differences and that the cell 

lines become almost indistinguishable from each other after about ten splits (Polo et al., 

2010). It should therefore to be taken into account that the somatic cells used for 

reprogramming are crucial, at least in the first steps, for the differentiation abilities of 

iPSC, since they still retain a epigenetic memory. Theoretically, to obtain iPSC 

differentiation with high efficiency, it would be more appropriate to reprogram cells at 
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least derived from the same germ layer and begin the differentiation process within a 

few passage from the reprogramming process. This strategy, however, holds issues that 

should not be underestimated, as in a recent work Batada and his group studied the 

number of CNVs (Copy Number Variations, genomic alterations in the number of 

copies of one or more regions of DNA) which are generated during the reprogramming 

process by comparing them to ESC and fibroblasts used for the production of these 

iPSC lines. They demonstrated that the median number of de novo CNVs that are 

generated from the reprogramming process are almost twice compared to ESC or 

fibroblasts, and that this number is not affected either by the presence or absence of C-

Myc or by the reprogramming strategy. The interesting element, however, is that the 

number of these CNVs decreases drastically, reaching levels comparable to ESC, during 

the passages of the cell lines, indicating that the most aberrant cells are eliminated by 

natural selection (Hussein et al., 2011). In conclusion, iPSC immediately after 

reprogramming can be differentiated with more efficiency because of their epigenetic 

and transcriptional memory, but are more genetically unstable, and consequently less 

safe. 

4.2 Safety issues 

The main problem of iPSC, which currently still preclude their use in humans is related 

to their intrinsic characteristic: as pluripotent cells, like ESC, also iPSC determine the 

formation of tumors when transplanted into immunodeficient animals. In addition, other 

problems caused by the reprogramming process itself, as the use for transfection of 

integrating virus like retroviruses, may cause insertional mutagenesis, interfere with 

gene transcription and induce tumors formation. Yamanaka and colleagues in fact 

demonstrated that after pluripotency establishment, the transgenes derived from 

retrovirus are silenced, but that each iPSC clone contained from three to six retroviral 

integrations for each factors, which may increase the risk of tumorigenesis (Takahashi 

et al., 2007). Another issue is related to the use of C-Myc, a well-known proto-

oncogene, as reprogramming factor, because it can lead to the generation of neoplastic 

formations. To overcome these obstacles, various strategies have been developed: 

- First, it was decided to eliminate the oncogene C-Myc from the set of genes 

required for reprogramming. It was in fact demonstrated that one of the causes of 



27 

tumor development was due to the reactivation of the C-Myc retrovirus (Okita et 

al., 2007). The same group of Yamanaka was able to achieve this goal by changing 

their reprogramming protocol doubling the time of exposure (from 1 to 2 weeks) to 

the drugs used to select the transfected cells. With this method modification they 

obtained an absolute lower number of iPSC colonies, but the obtained colonies 

were more similar to ESC colonies in terms of morphology and gene expression 

profile, indicating that without C-Myc the reprogramming process is more specific, 

even if less efficient and slower. The C-Myc free iPSC lines generated were less 

tumorigenic as compared to cells derived from the reprogramming performed using 

all 4 factors, since none of the 26 mice chimera (generated by implanting the cells 

of interest into blastocysts which are then transplanted into the uterus of pseudo-

pregnant mothers) developed tumor at 100 days from birth (Nakagawa et al., 2008).  

- To try to further improve the safety of iPSC, several reprogramming strategies 

(summarized in Table 1) which did not include the use of retroviral vectors have 

been developed. At first were tested inducible lentiviral vectors, whose expression 

can be controlled by administration of the inert drug doxycycline, decreasing the 

risks related to the continuous transgenes expression and allowing the selection 

only of fully reprogrammed cells, since cells that are dependent on exogenous 

factors expression readily stop proliferating upon doxycycline withdrawal 

(Brambrink et al., 2008). In addition, infection of different types of somatic cells is 

more efficient with lentiviral compared to retroviral vectors, and lentiviruses can 

express polycistronic cassettes encoding all four factors simultaneously, thereby 

increasing the efficiency of reprogramming process (Carey et al., 2009). Alternative 

to integrating retro or lentiviruses, non-integrating strategies have been tested for 

reprogramming, and can be divided into three categories: 

o Those that use vectors that do not integrate into the host genome: the first 

integration-free iPSC were generated using adenoviral vectors that allow a 

transient, high-level expression of exogenous genes without integrating into the 

host genome (Okita et al., 2008; Stadtfeld et al., 2008). The adenoviral vectors 

contained Oct4, Sox2, Klf4 and C-Myc genes and were delivered repeatedly to 

maintain transgene expression for up to twelve days, resulting in the generation 

of iPSC without evidence of gene integration and demonstrating the feasibility 
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of nuclear reprogramming without permanent genetic alterations. Another non-

integrating virus is represented by the Sendai virus system; Sendai virus (SeV) 

vectors replicate in the form of negative-sense single-stranded RNA in the 

cytoplasm of infected cells, which do not go through a DNA synthesis nor 

integrate into the host genome, allowing an efficient production of iPSC and 

later on elimination of the viral vector (Fusaki et al., 2009). Also self-

replicating episomal vectors for reprogramming of somatic cells were 

described (Yu et al., 2009). After spontaneous loss of the episome by 

proliferating cells, iPSC completely free of vector and transgene sequences are 

generated, but the reprogramming efficiency in human fibroblasts is 

particularly low (about three to six iPSC colonies per 10
6
 input cells). Also 

polycistronic minicircle DNA vectors, produced by the recombinatorial 

elimination of the bacterial backbone of the original plasmids, were used for 

the generation of virus-free iPSC (Jia et al., 2010), but with an overall 

reprogramming efficiency of ~0.005% . 

o Those that use integrating vectors that can be subsequently removed from the 

genome: reprogramming efficiency with non-integrating methods is quite low, 

therefore several laboratories have developed integration-dependent gene 

delivery vectors with incorporated, at the ends of the genes of interest, loxP 

sites that can be subsequently excised from the host genome by the transient 

expression of Cre recombinase (Kaji et al., 2009; Soldner et al., 2009). It 

remains however to be assessed whether short vector sequences, which 

inevitably remain into host cell DNA after excision, affect cellular function. 

The recent development of hyperactive transposase enzymes makes transposon 

systems an interesting alternative to viral based methods, especially because 

they are able to carry large DNA cargo into cells. Transposons are mobile 

genetic elements that can be introduced and removed into host genome by 

transient expression of the transposase (Woltjen et al., 2009; Yusa et al., 2009). 

The commonly employed piggyBac and Sleeping Beauty (Kues et al., 2013; 

Talluri et al., 2014) transposon systems hold a low error rate due to a seamless 

excision, but require characterization of integration sites in iPSC before and 

after reprogramming.  
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o Those that do not use nucleic acid-based vectors: successful reprogramming 

has been achieved also without the use of viral or plasmid vectors at all. At 

first, delivery of the reprogramming factors as proteins seemed an obvious 

alternative. In 2009 transgene-free iPSC were produced with repeated 

supplementations of recombinant proteins of reprogramming factors, but with a 

low reprogramming efficiencies and a high costs for repeated treatments with 

protein factors (Zhou et al., 2009). Another group proposed the use of small 

molecules instead of transcription factors (Ichida et al., 2009): in this study 

Sox2 transcription factor was substituted by a small molecule that inhibits 

transforming growth factor-beta (TGF ) signaling and this inhibition promotes 

the completion of reprogramming through induction of the transcription factor 

Nanog. The most recent trend in the field of non-viral iPSC generation is 

reprogramming by RNA molecules. Recently, modified mRNAs encoding 

Yamanaka’s reprogramming factors were employed to generate iPSC with high 

efficiency (2-4%) without compromising genomic integrity (Warren et al., 

2010). Moreover, it was shown that also microRNA (miRNA) expression is 

sufficient to induce pluripotency. Two independent groups reported iPSC 

generation by delivery of miR302/367 cluster or miR200c, miR302, and 

miR369 (Anokye-Danso et al., 2011; Miyoshi et al., 2011). These miRNA-

derived iPSC were indistinguishable from conventionally generated iPSC and 

have the advantage of avoiding transduction of proto-oncogenic transcription 

factors.  
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Table 1. Different delivery methods for transfer of reprogramming factors for iPSC generation.  

All these new strategies allowed to successfully execute the reprogramming of somatic 

cells into iPSC without integration into genomic DNA of the cell, thereby drastically 

decreasing the tumorigenicity risk without altering the pluripotency potential of the 

reprogrammed cells. 

4.3 Current hurdles in advancing personalized iPSC 

The discovery of iPSC led to many more studies in the pluripotent arena, including the 

developing of “disease-in-a-dish” models for drug-screening platforms, the generation 

of disease-specific iPSC lines to study the pathophysiology of diseases, and creating 

personalized therapies for autologous stem cell transplantation (Matsa et al., 2014). In 

fact these cells can be derived from the somatic cells of each individual and can be used 

for autologous cell replacement therapies, theoretically avoiding the administration of 

immunosuppressive drugs. Murine or human iPSC have been successfully differentiated 

into many specialized cell types like neurons (Wernig et al., 2008), hematopoietic cells 

(Raya et al., 2009) or cardiomyocytes (J. Zhang et al., 2009) and the differentiated cells 
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may also be used to study in vitro cell types that are difficult to access or with limited 

proliferative capacity. A further advantage is that iPSC can also be obtained through the 

reprogramming of somatic cells of patients suffering from various diseases, including 

T1D (Maehr et al., 2009); the use of iPSC thus could allow to (Figure 8): 

- Study in vitro the molecular and genetic causes of the disease; 

- Perform screening of molecules in order to identify new drugs for the cure of the 

disease of interest; 

- Perform autologous or allogeneic transplants of differentiated cells (if necessary 

corrected ex vivo by homologous recombination or gene therapy) to cure the 

disease. 

Figure 8. Summary outline of the potential use of iPSC. Power, 2011. 

Therefore iPSC hold a huge potential, both in terms of cell replacement therapy for the 

possible treatment of many diseases and for the creation of in vitro models for the study 

of diseases or for drugs screening. In September 2014 the first pioneering clinical trial 

using autologous iPSC for the treatment of an AMD (age-related macular degeneration) 

patient was launched by Masayo Takahashi in Japan. After the transplantation of the 

first patient with his own iPSC-derived retinal pigment epithelial cells the trial was 



32 

stopped in July 2015 because the iPSC of the second enrolled patient did not pass a 

genomic validation step (6 mutations that were not present in the original somatic cells 

were found). At present then, many barriers preclude the use of iPSC in the clinical 

practice and some obstacles still need to be addressed: 

- The generation of  reprogramming strategies able to generate lines of iPSC with 

high safety and efficiency, without viral integration or genomic alterations; 

- The optimization of efficient and reliable in vitro differentiation protocols into 

the target therapeutic cell of interest 

- The post-transplantation efficacy, determined by the integration, maturation, 

survival and function of implanted cells to induce a therapeutically detectable 

effect, have to be further addressed. 

- The prospective removal (for example, before transplantation) of tumorigenic 

cells would provide the highest level of safety while reducing the need for post-

transplantation surveillance. In this context, new cell markers and methods that 

allow to select fully differentiated cells alone or to eliminate pluripotent cells are 

strongly required (Lee et al., 2013).  

- Currently  the culture media for human pluripotent stem cells contain animal-

derived components that could pose a hurdle for therapeutic use in humans. 

However, most of the issues have been solved by recent technological 

innovations such as use of animal-free culture media and reagents. Hence, we 

expect that, in the near future, clinical-grade iPSCs will be generated and 

differentiated under conditions that correspond to good manufacturing practices 

(GMPs) (Neofytou et al., 2015). 

- Last but not least, nowadays the preparation of autologous iPSC from each 

patient carries a high medical cost, and reprogramming, characterization and 

subsequent differentiation of each cell line requires several months (Ohnuki & 

Takahashi, 2015), limiting the suitability of this personalized iPSC derivative 

approach. Strategies for the generation of iPSC with low costs and short times 

are therefore strongly required.  

At present therefore, the idea of generating autologous iPSC lines cells as a source of 

transplantable cells, is not feasible in practical and economic terms for all the millions 

of patients who would benefit from this type of approach. The overall feasibility of the 
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iPSC-based therapeutic approach will be determined essentially by whether the 

technical, financial and temporal issues can be adequately resolved. With the extensive 

amount of research currently being conducted in the iPSC field, it is plausible to 

consider that these feasibility issues will be adequately addressed in due course (Byrne, 

2013). Meanwhile, many groups are working on the possibility of using allogeneic HLA 

(Human Leucocyte Antigen)-matched iPSC lines for transplantation purpose. 

Experience with solid organ and bone marrow transplantation has been used to help 

estimating the scale of iPSC banking that would be required to provide adequately 

matched tissues in a population; a study conducted on Japanese population estimate that 

50 homozygous iPSC lines would provide a haplotype match for 90.7% of individuals 

(Nakatsuji et al., 2008). These findings were confirmed in a subsequent study, which 

showed that 150 homozygous cell lines could provide a haplotype match for 93% of the 

population of the United Kingdom (Taylor et al., 2012). The generation of these iPSC 

lines would potentially be useful for the transplantation of a large number of patients, 

greatly reducing the need for immunosuppressive drugs. Another group has instead 

shown that generating a master cell bank for more diverse populations would be far 

more challenging using a probabilistic model to estimate the rate of haplotype matching 

of a carefully selected homozygous HLA-type iPSC bank for a North American 

population. According to their estimates a bank comprising 100 iPSC lines with the 

most frequent HLA in each population would leave out only 22% of the European 

Americans, but 37% of the Asians, 48% of the Hispanics, and 55% of the African 

Americans, indicating that an allogeneic cell bank in genetically homogenous countries 

like Japan or Iceland could be a viable option, but a similar bank in US would require a 

large-scale concerted worldwide collaboration (Gourraud et al., 2012). Finally, it should 

be noted that even highly matched cells could still trigger rejection. Although 

substantial debate exists within this field (Zhao et al., 2011), the current evidence 

supports the hypothesis that autologous iPSC-derived grafts are not strongly 

immunogenic. Recent studies using syngeneic mouse models demonstrated that 

transplanted iPSC-derived embryoid bodies, skin and bone marrow tissues engrafted 

efficiently with almost no signs of rejection (Araki et al., 2013; Guha et al., 2013). 

However, it would still be very difficult to predict problems with human iPSC based on 

mouse-to-mouse studies and also these problems must be addressed as soon as possible, 
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as medical communities are starting to build tissue banks that could offer 

groundbreaking treatments (Neofytou et al., 2015). 

4.4 Potential of iPSC in T1D 

Recent successes in differentiating ESC into insulin-producing cells, in combination 

with the discovery that pluripotent cells can be obtained through somatic cells 

reprograming, have raised the possibility that a sufficient amount of patient-specific 

cells might be derived from patients through cell reprogramming and differentiation. At 

present several scientific works reported successful differentiation of ESC into cells 

capable of secreting insulin and, as mentioned previously, the pioneer in this field was 

the Viacyte group. Fundamental was their contribution to the identification of the 

growth factors able to promote the differentiation of pluripotent cells into definitive 

endoderm cells (D’Amour et al., 2005). The endoderm is the germ layer that gives rise, 

as well as epithelial cells of the respiratory and digestive systems, thyroid gland, thymus 

and liver, also to the pancreas and the pancreatic  cells of the islets of Langerhans. 

Genetic analyses in murine animal models have shown that disruption of either the 

WNT or TGF  signaling pathways prevents formation of the primitive streak, the 

mesoderm and the definitive endoderm (Conlon et al., 1994; Lowe et al., 2001). In 

addition, high expression of Nodal, a member of the TGF  superfamily, is essential for 

specification of endoderm during gastrulation in mice, while low levels lead to 

mesoderm formation (Lowe et al., 2001; Vincent et al., 2003). Although Nodal is an 

attractive candidate for inducing definitive endoderm differentiation of ESC in vitro, a 

source of highly active protein is not readily available. However, another TGF  family 

member, Activin, binds the same Nodal receptors, triggering similar intracellular 

signaling events (de Caestecker, 2004), and therefore can be used to mimic Nodal 

activity in vitro. In this study Baetge and his team were able to demonstrate that the 

addition of Activin A to the culture media in the absence of FBS leads to the 

specification of ESC into about 80% of definitive endoderm cells (SOX17, CXCR4 and 

FOXA2 positive) (D’Amour et al., 2005). One year later the same group optimized this 

protocol reducing the days of treatment with Activin A (from 5 to 3 days) and adding in 

culture also the protein Wnt3a for the first 1-2 days, increasing the efficiency of 

differentiation into definitive endoderm cells; this initial specification has proved to be 
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crucial for an efficient production of cells capable of expressing pancreatic hormones 

(D’Amour et al., 2006). The final goal was in fact to obtain insulin-secreting cells and 

to try to this aim they looked for chemokines and growth factors that could favor the 

formation of  cells in vitro, mimicking pancreatic organogenesis which occurs during 

embryo formation; in this study they analyzed many protocols with different 

combinations of molecules, different concentration and time of administration. What 

they achieved with this kind of approach is a 5-stages protocol (Figure 9) in which the 

production of -like cells is obtained through the sequential specification of human ESC 

into:  

- Definitive Endoderm (DE) through the addition of Activin A and Wnt3a in the 

absence of FBS (2-4 days); 

- Primitive Gut Tube (PG) through the stimulus given by FGF 10 and KAAD-

cyclopamine (CYC), the removal of Activin A and the presence of 2% FBS (2-4 

days). The growth factor FGF10 is usually produced by mesenchymal cells and 

is important for the growth and differentiation of the pancreatic epithelium. 

Fundamental is also the contribution of CYC, an inhibitor of hedgehog 

signaling, since the inhibition of the signaling within this pathway is 

fundamental for pancreatic specification;  

- Posterior Foregut (PF) adding to the culture medium containing FGF10 and 

CYC also Retinoic Acid (2-4 days); it rapidly induces the expression of Pdx1, 

which is a transcription factor necessary for the development and maturation of 

pancreatic  cells; 

- Pancreatic Endoderm (PE) through the addition for 2-3 days of two molecules: 

o Exendin-4: analog of GLP-1 (glucagon-like peptide-1), which by binding to 

GLP-1R receptor leads to the activation of intracellular pathways that 

increase  cell mass and insulin gene expression; 

o DAPT (N-[N-(3,5-Difluorophenacetyl)-L-alanyl] -S-phenylglycine t-

butylester) an inhibitor of Notch pathway: the decrease of the signal within 

this pathway is essential to allow the expression of Neurogenin3 (Ngn3), a 

protein produced by the endocrine progenitors and necessary for the 

development of the pancreatic endocrine cells. The production of Ngn3 in 
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turn allows the expression of two important transcription factors Nkx2.2 and 

Nkx6.1, which control the differentiation into endocrine cells. 

- Hormone-expressing Endocrine cells (EN) through the administration of 

Exendin-4 and two growth factors, IGF-1 (Insulin-like growth factor 1) and 

HGF (Hepatocyte growth factor) for 3 or more days. 

Figure 9. Scheme of differentiation procedure and protein expression for some key markers of pancreatic 

differentiation. The differentiation protocol is divided into five stages and the growth factors, medium 

and range of duration for each stage are shown. This protocol orchestrates differentiation through five 

identifiable endodermal intermediates en route to production of hormone-expressing endocrine cells. 

Several markers characteristic of each cell population are listed. CYC, KAAD-cyclopamine; RA, all-trans 

retinoic acid; DAPT, -secretase inhibitor; Ex4, exendin-4; ES, hES cell; ME, mesendoderm; DE, 

definitive endoderm; PG, primitive gut tube; PF, posterior foregut endoderm; PE, pancreatic endoderm 

and endocrine precursor; EN, hormone-expressing endocrine cells. D’Amour, 2006.

With this 5 stages protocol that goes in vitro through the steps that determine the 

generation of pancreatic organogenesis, D'Amour and colleagues were able to obtain 

cells expressing markers typical of each stage of differentiation and, after about 15 days 

of culture, up to 7.3% of insulin-positive cells (Figure 10), even if they are not 

responsive to glucose (D’Amour et al., 2006).  
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Figure 10. As demonstrated by immunofluorescence (A) and flow cytometry analysis (B) the cells 

resulting from the differentiation of ESC are able to produce insulin. A: DAPI (blue) for nuclei staining, 

stairs bar = 100µm. D'Amour, 2006.

After the publication of this important work, many other groups have focused on the 

possibility to generate cells capable of producing insulin from ESC and numerous 

protocols of differentiation that include the use of different molecules and growth 

conditions were created. Two studies published in 2007 described protocols for the 

differentiation of ESC into insulin-producing cells in conditions of total absence of both 

serum and feeder cells and, in particular, with the growth in suspension condition after 

the specification into pancreatic progenitor cells. The total efficiency of the production 

of insulin-positive cells was about 2-8% (J. Jiang et al., 2007) or 15% (W. Jiang et al., 

2007). Jiang W et al. also transplanted the ESC-derived insulin-producing cells into 

chemically induced diabetic mice and 30% of the animals reverted the hyperglycemic 

status; however no human C-peptide was detected in the serum of the mice, even after 

glucose stimulus (W. Jiang et al., 2007). In 2009 Melton’s group performed a screening 

of 5000 molecules in order to identify which one were able to increase the efficiency of 

the differentiation of human ESC into pancreatic-derived cells capable of expressing the 

transcription factor Pdx1. With this strategy they were able to identify a molecule, (-) - 

Indolactam V (IL V), which is able to increase the percentage of Pdx1 positive cells 

and, consequently, the amount of cells differentiating into pancreatic cells. IL V, acting 

in synergy with FGF10, allows the activation of PKC (protein kinase C) signaling, that 

regulates differentiation, proliferation and cell survival. Pdx1 positive cells were 

obtained by treatment with Activin A, Wnt3a, FGF10, CYC and, finally, administration 

of IL V; the cells were further differentiated in vitro using bFGF and nicotinamide, 
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didn’t generate insulin-secreting cells with an efficiency comparable to those obtained 

by Viacyte group (Chen et al., 2009). A common element in all of these studies is the 

observation that all the ESC lines tested were able to differentiate into pancreatic -like 

cells, but not with the same efficiency, making necessary the optimization of the various 

differentiation protocols for each cell line (D’Amour et al., 2006; Chen et al., 2009). 

Several strategies to differentiate ESC into cells capable of producing insulin have been 

described and, after the generation of human iPSC in 2007, these differentiation 

protocols were tested also on these induced pluripotent cells. The first paper that 

reported successful differentiation of human iPSC into insulin-secreting cells dates back 

to 2008, when the group of Zhang adapted the four-step differentiation protocol 

developed for ESC from Jiang J and colleagues (J. Jiang et al., 2007) and obtained for 

the first time -like cells in vitro from reprogrammed human fibroblasts. Unfortunately, 

the efficiency of differentiation process was very low and the total C-peptide content 

was significantly lower compared to adult  cells (Tateishi et al., 2008). Subsequent 

studies focused on the culture conditions in order to increase the efficiency of 

differentiation of the iPSC into insulin-secreting cells; for example in 2010 the group 

led by Yupo Ma applied a protocol which allowed the differentiation of murine ESC in 

pancreatic  cells (Schroeder et al., 2006) to iPSC derived from adult mouse fibroblasts. 

This differentiation protocol requires three phases: the formation of EBs through the 

growth in suspension conditions, the transfer of EBs in adhesion to allow the 

spontaneous differentiation of the cells and, finally, the addition to the culture medium 

of insulin, laminin and nicotinamide, to allow pancreatic specification. With this 

differentiation protocol Alipio et al. were able to obtain from murine iPSC up to 50% of 

cells capable of secreting insulin in response to glucose stimulus and, if transplanted 

into diabetic mice, these cells were capable to restore normoglycemia (Alipio et al., 

2010). This experiment, however, was performed only on six mice and remains to be 

confirmed if the same differentiation protocol could have the same efficiency in 

differentiating human iPSC. One year later a group reported the differentiation of 

human iPSC into insulin-secreting cells responsive to glucose using another 

differentiation protocol; it requires the culture in the absence of feeder cells and the 

addition, compared to Viacyte protocol, of two molecules, IL V (as suggested by 

Melton group) (Chen et al., 2009) and GLP-1 (instead of Exendin 4). The differentiation 
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efficiency was very low, as only 1.29% of insulin positive cells were obtained, and their 

ability to secrete insulin in vivo has not been verified. This group also reported the 

observation that the different efficiency of iPSC lines to differentiate into -like cells 

depends not only on genetic and epigenetic characteristics of the cells used for the 

reprogramming process, as they found variations among iPSC clones derived also from 

the same tissue of origin. This suggests that probably a different number of copies of 

pluripotency genes integrated, or different levels of silencing/reactivation of these genes 

in the various clones are able to influence the differentiation capacity of iPSC (Thatava 

et al., 2011). Encouraging results have been reported by other several in vitro studies 

that used protocols mimicking the mechanism of in vivo pancreas development to guide 

the differentiation of iPSC into -like cells (Zhang et al., 2009; Nostro et al., 2011; 

Kunisada et al., 2012; Hua et al., 2013), but with a lower efficiency compared to ESC. 

Moreover, none of these focused on the potential of these cells to engraft and secrete 

insulin in vivo. This is of particular relevance because in vivo engraftment could 

represent a critical step in implementing pluripotent stem cells differentiation into 

insulin-producing cells, as described for ESC (Kroon et al., 2008). Insulin-producing 

cells, although with low efficiency, were also generated with iPSC derived from the 

reprogramming of fibroblasts of two diabetic patients (Maehr et al., 2009), opening the 

way not only to autologous cell replacement therapy of T1D, but also to in vitro

modeling of this disease. As mentioned previously, iPSC were also generated using 

pancreatic  cells as somatic cells for the reprograming, both of murine (Stadtfeld et al., 

2008) and human origin (Bar-Nur et al., 2011). Ban-Nur and colleagues reprogrammed 

human pancreatic  cells and afterwards re-differentiated them into insulin-secreting 

cells; in this study the efficiency of differentiation was higher using  cell-derived iPSC 

compared to ESC or iPSC generated through the reprogramming of other somatic cell 

types. These observations further confirmed the theory that iPSC retain epigenetic 

memory of the somatic cell of origin even after the reprogramming process; in 

particular, it was shown that -cell derived iPSC have an open chromatin structure in 

the regions coding for key genes that allow the definition of  cells, and a methylation 

pattern that differs from that of all other iPSC lines derived from other somatic cells 

(Bar-Nur et al., 2011). However this type of approach makes impracticable the 

possibility to perform a patient-specific  cell replacement therapy, because in diabetic 
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patients the  cells have been destroyed by autoimmune assault. In the last few months 

two important groups described for the first time that pancreatic cells derived from the 

differentiation of pluripotent stem cells (both embryonic and induced) are capable to 

revert diabetes in mice (Rezania et al., 2014; Pagliuca et al., 2014). The main difference 

between these outstanding works consist in the timing of reversion of the disease; 

Rezania et al. in fact transplanted cells that exhibit key markers of mature pancreatic 

beta cells, but that are able to secrete insulin only after a 40 days period of further 

maturation in vivo (Rezania et al., 2014). The group of Melton instead reported a 

scalable differentiation protocol that can generate millions of glucose-responsive  cells 

that secrete insulin shortly after transplantation. This 4-5 weeks in vitro differentiation 

protocol involves a combination of sequential culture steps using factors that affect 

signaling in numerous pathways, including signaling by WNT, Activin, Hedgehog, 

TGF , retinoic acid and -secretase inhibitors and leads to the generation of ~50% of C-

peptide and Nxk6.1 double positive cells from both ESC and iPSC (Figure 11)

(Pagliuca et al., 2014).  

Figure 11. Representative flow cytometry dot plots and population percentages of cells stained for C-

peptide and NKX6-1 in HUES8 (ESC line) and two lines of iPSC. AU = arbitrary units. Pagliuca, 2014.

In conclusion, iPSC offer great hope for cell replacement therapy for diabetes, but many 

efforts still need to be done in order to make both processes of reprogramming and 

differentiation safer and more efficient.  
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III. AIM OF THE PROJECT 

Currently, the only possible strategy able to restore a physiological condition of 

normoglycemia in patients with T1D is constituted by  cell replacement therapy, in 

particular the transplantation of pancreas in toto or purified pancreatic islets. The 

shortage of organ donors and the need of a life-long immunosuppression therapy 

however, strongly limits this approach only to a small number of patients. Is therefore 

fundamental to look for an alternative, unlimited sources of cells capable of secreting 

insulin in response to glucose stimuli. Many research groups focused on the possibility 

of differentiate ESC in vitro into -like cells, but this type of approach, although 

successful, it is still inefficient and limited by ethical problems. The revolutionary 

discovery of the possibility to reprogram somatic cells to an embryonic-like state 

through the expression of four genes (Oct4, Sox2, Klf4 and C-Myc) made in 2006 by 

Yamanaka’s group overcame some of these obstacles and opened the way for an 

autologous stem cells-based therapy. The overall aim of this project is to try to obtain an 

unlimited source of pancreatic  cells from human iPSC in order to overcome the lack 

of organ donors and to get closer to an autologous  cells replacement therapy for 

diabetic patients. To this purpose in particular we plan to: 

1) Generate iPSC lines through the reprogramming of human fibroblasts.

2) Identify a protocol that allows iPSC differentiation into insulin-producing cells  

in vitro with high efficiency.

3) Use iPSC differentiation process as a tool to study pancreatic organogenesis in vitro.

4) Test the ability of iPSC-derived pancreatic cells to differentiate and secrete insulin 

in vivo in a murine model.
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IV. MATERIALS AND METHODS 

1. iPSC generation from human skin fibroblasts 

1.1 iPSC generation with retroviral vectors and characterization

The human iPSC lines used in this study are the result of a collaboration with the 

research group of Dr. Vania Broccoli (San Raffaele Scientific Institute, Stem Cells and 

Neurogenesis Unit). Human fetal fibroblasts (IMR90 cell line, ATCC, catalogue 

number CCL-186) were reprogrammed to iPSC as previously reported (Takahashi et al., 

2007) in Broccoli’s laboratory. Briefly, fibroblasts were infected  twice (once every 24 

hours) with retroviruses expressing the transcription factors OCT4, SOX2 and KLF4 

and the day after second infection cells were plated on mitotically Mitomycin 

C (Sigma-Aldrich) inactivated murine embryonic fibroblasts (MEFs) layer on Matrigel 

(BD)-coated dishes and maintained in ESC medium. Approximately after 6 weeks after 

infection iPSC colonies started to appear and were manually picked using a 

stereomicroscope (Leica). Cells were maintained at 37°C 5% CO2. Human iPSC clones 

were characterized for pluripotency (gene and protein expression analysis of markers of 

pluripotency such as alkaline phosphatase, NANOG, OCT4, SOX2, DPPA4, FGF4, 

REX1, TDGF1,  DPPA2, GDF3, hTERT). To further corroborate the pluripotency of 

reprogrammed iPSC was verify in vitro the ability to differentiate towards cells of the 

three germ layers; in details, iPSC were cultured in ESC supplemented with 20% FBS 

for up to 20 days and then tested by immunofluorescence with corresponding markers: 

Sox17 (clone 245013, R&D) for endoderm, Smooth Muscle Actin (SMA, clone 1A4 

Abcam) for mesoderm and Neuronal Class III Beta Tubulin (clone Tuj1, Covance) and 

Nestin (clone MAB353, Millipore) for ectoderm. To corroborate their pluripotency, 

1x10
6
 iPSCs (2 clones for each reprogrammed line) were subcutaneously injected into 

immunodeficient mice (6 week old SCID female mice, Charles Rivers) to test their 

ability to generate teratomas. After 2-3 months mice displayed subcutaneous masses 

that were dissected and paraffin-embedded. An histological evaluation of the explanted 

tissue by hematoxylin and eosin staining was performed to confirm the presence of 

teratoma. Differentiation experiments were performed on two clones (number 1 and 5). 
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1.2 iPSC generation with non-integrating Sendai virus vectors and 

characterization

The human integration-free iPSC (SeV-iPSC) line used in this study is the result of a 

collaboration with the research group of Dr. Gianvito Martino (San Raffaele Scientific 

Institute, Neuroimmunology Unit). Human skin fibroblasts derived from an healthy 

donor dermal biopsy explant were grown to confluence and infected with viral particles 

mixture expressing the transcription factors OCT4, SOX2, KLF4 and cMYC in 

CytoTune™-iPS 2.0 Sendai Reprogramming Kit (Invitrogen) following manufacturer’s 

instructions. On day 7 infected human fibroblasts have been seeded on MEF layer in 

human ESC medium for 6-8 weeks. When iPSCs colonies started to appear, they were 

manually picked using a stereomicroscope (Leica) and transferred in 48 multiwell plate 

matrigel ES (BD) coated and kept in culture with mTeSR1 medium (StemCell 

Technology). Cells were maintained at 37°C 5% CO2. To assess that viral genome has 

been eliminated from the culture, RT–PCR was performed on purified RNA from iPSC 

clones using recommended set of primers for Sendai Oct4, Sox2, Klf4 and cMYC  (see 

Cytotune kit guidelines). Further, SeV-iPSC clones were characterized for pluripotency 

by RT-PCR gene expression analysis using the endo pluripotency markers for NANOG, 

OCT4, SOX2. Sev-iPSC clone 5 was characterized to assess pluripotency by 

immunofluorescence using the following Antibodies: rabbit anti-Nanog (1:150, 

Abcam); mouse anti-OCT4 (1:50, Santa Cruz Biotechnology); mouse IgM anti-TRA 1-

60 (1:100, Millipore); mouse IgM anti-TRA 1-81 (1:100, Millipore); mouse anti-SSEA4 

(1:100, Millipore); mouse anti-SSEA3 (1:100, Millipore). As secondary antibody: 

AlexaFluor 488/546 conjugated goat anti-mouse IgG (1:1000); AlexaFluor 488/564 

conjugated goat anti rabbit- IgG (1:1000); AlexaFluor 647 conjugated goat anti-Rat 

IgM (1:1000). Nuclei were stained with DAPI. Imaging was performed using a Leica 

TCS SP5 confocal microscope. To corroborate the pluripotency of reprogrammed SeV-

iPSC, the ability to differentiate into cells of the three germ layers was assessed in vitro

culturing iPSC as EB and analyzed 4 days after by immunofluorescence with 

corresponding markers: Neuronal Class III Beta Tubulin (clone Tuj1, Covance) for 

ectoderm, cytokeratin 8-18 (Ck818, Clone EP17/EP30, Dako) for endoderm, Smooth 

Muscle Actin (aSMA1, clone 1A4, A2547 Sigma) for mesoderm. Further, the 

pluripotency into cells of the three germ layers was assessed also in vivo through a 
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teratoma formation assay. Tumors were removed and paraffin-embedded tissue sections 

were stained with hematoxylin and eosin to confirm the presence of teratoma. 

2. iPSC differentiation into insulin-producing cells

2.1 Differentiation protocol 1 

Human iPSCs were differentiated into insulin-producing cells following Viacyte 

differentiation protocol with slight modifications (D’Amour et al., 2006). The 

differentiation schedule consists of 6 stages with different culture conditions: (i) stage 1, 

mesendoderm (ME) formation: RPMI 1640 (Lonza) supplemented with 100 ng/ml 

Activin A and 25 ng/ml Wnt3a (R&D Systems) for 2 days; (ii) stage 2, definitive 

endoderm (DE) formation: RPMI supplemented with 0.2% FBS (Lonza) and 100 ng/ml 

Activin A for 2 days; (iii) stage 3, primitive gut tube (PG) formation: RPMI 

supplemented with 2% FBS, 50ng/ml of Fibroblast Growth Factor-10 (FGF-10, R&D 

Systems) and 0.2 M KAAD-cyclopamine (CYC, Calbiochem) for 2 days; (iv) stage 4, 

posterior foregut (PF) formation: DMEM (Lonza) supplemented with 1% B27 

(Invitrogen), 50 ng/ml FGF-10, 0.2 M CYC and 2 M Retinoic Acid (Sigma Aldrich) 

for 4 days, replacing with fresh medium on the second day; (v) stage 5, pancreatic 

endoderm (PE) formation: DMEM supplemented with 1% B27, 1 M N-[N-(3,5-

Difluorophenacetyl) L-alanyl]-S-phenylglycine t-butyl ester (DAPT, Sigma Aldrich) 

and 50 ng/ml Exendin-4 (AnaSpec) for 3 days; (vi) stage 6, hormone expressing 

endocrine cells (EN) formation: CMRL-1066 (Connaught Medical Research 

Laboratories, Mediatech) supplemented with 1% B27, 50 ng/ml Exendin-4, 50 ng/ml 

Insulin Growth Factor- 1 (IGF-1, Sigma Aldrich) and 50 ng/ml Hepatocyte Growth 

Factor (HGF, Peprotech) for 5 days, replacing with fresh medium on the second day. 

Cells were incubated at 37° C with 5% CO2 and maintained in culture in adhesion in 6-

wells plates (Costar) until stage 4 and in 6-wells Ultra Low Attachment Plates 

(Corning) in suspension condition for stage 5 and 6. The modifications introduced are: 

(i) 300 nM Indolactam V (Alexis Biochemicals) (Chen et al., 2009) was added to the 

culture during stages 4 and (ii) cells were detached with 4 mg/ml collagenase IV 

(Gibco) and re-seeded in Ultra Low Attachment Plates for suspension culture between 

stages 4 and 5. The differentiation schedule is shown in Table 2. 
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Table 2: Protocol of differentiation of hiPSC into insulin producing cells. Pellegrini, 2015.

Cells were imaged during the differentiation steps under an inverted microscope (Leica 

DMIRE2) equipped with a digital camera (Leica DC300Fx).

2.2 Differentiation protocol 2 

Human SeV-iPSC were differentiated into insulin-producing cells following Melton 

differentiation protocol with some modifications (Pagliuca et al., 2014). The 

differentiation schedule consists of 5 stages with different culture conditions:  

- Stage 1, definitive endoderm (DE) formation: STEMdiff™ Definitive Endoderm 

Kit (Stemcell technologies) for 4 days;  

- Stage 2, primitive gut tube (PG) formation: from this stage on the medium 

(called Basal Medium, BM) used is MCDB131 (Gibco) supplemented with 

8mM D-Glucose, 1.23 g/L NaHCO3, 0.25 mM Vitamin C, 2% Bovine Serum 

Albumin (BSA, Sigma Aldrich), 1% Pen/Strep and 1% L-Glutamine (Lonza).  

For differentiation BM is supplemented with 50ng/ml of Keratinocyte Growth 

Factor (KGF, Peprotech) and 1:50000 Insulin-Transferrin-Selenium (ITS, 

Gibco) for 3 days;  
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- Stage 3, posterior foregut (PF) formation: BM supplemented with 50 ng/ml 

KGF, 0.25 M SANT1, 2 M Retinoic Acid, 200nM LDN193189 (only the first 

day) (Sigma Aldrich), 500nM Phorbol 12,13-dibutyrate (PdBU, Millipore), 

1:200 ITS for 2 days;  

- Stage 4, pancreatic endoderm (PE) formation: BM supplemented with 50 ng/ml 

KGF, 0.25 M SANT1, 100nM Retinoic Acid and 1:200 ITS for 4 days; 

- Stage 5, hormone expressing endocrine cells (EN) formation: MB supplemented 

with 12mM D-Glucose, 0,52 g/L NaHCO3, 10µg/ml Heparin (Sigma Aldrich), 

0.25 M SANT1, 100nM Retinoic Acid, , 1µM -secretase inhibitor XXI 

(Millipore), 10 µM Alk5 Inhibitor II (Enzo Life Science), 1µM L-3,3’,5-

Triiodothyronine (T3, Sigma Aldrich), 20 ng/ml Betacellulin (R&D) and 1:200 

ITS for 4 days. 

Cells were incubated at 37° C with 5% CO2 and maintained in culture in adhesion in 6-

wells plates (Costar) until stage 4 and in 6-wells Ultra Low Attachment Plates 

(Corning) in suspension condition for stage 4 and 5. Cells were imaged during the 

differentiation steps under an inverted microscope (Leica DMIRE2) equipped with a 

digital camera (Leica DC300Fx). 

3. Molecular analysis of iPSC differentiation 

3.1 RNA extraction and retro-transcription 

In order to assess gene expression during differentiation of iPSC, the undifferentiated 

cells and those derived from each of the 4 stages of differentiation (Figure 12) that we 

established (DE, PF, PE and EN), were washed with PBS, resuspended in 600µl of lysis 

buffer (mirVana isolation kit, Ambion) and frozen at -80° C until RNA extraction. 

Figure 12. Schematic representation of the steps of in vitro differentiation of iPSC into insulin-producing 

cells and of the 4 stages whose final products have been analyzed to verify gene expression during 

pancreatic specification. 
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Total RNA was extracted with mirVana Isolation Kit following manufacturer’s 

instructions. The quality and quantity of RNA extracted were measured by run at 100 

volts for 30 minutes on a 1.5% agarose gel and spectrophotometer lecture (Epoch 

instrument, BioTek, Gen5 analysis software). For RT-PCR, after DNAse (Invitrogen) 

treatment, RNA was retrotranscribed in a 20-µl reaction volume containing 1–5 µg of 

total RNA and SuperScript III RT, according to the manufacturer’s instructions 

(Invitrogen).  

3.2 Taqman Real-Time PCR 

PCR runs and fluorescence detection were carried out in a 7900 Real-Time PCR System 

(Applied Biosystems) at the following temperature conditions: 50° C for 2 minutes, 95° 

C for 10 minutes and 50 cycles of 95° C for 15 seconds and 60° C for 1 minute. Each 

sample was analyzed in duplicate with predesigned gene-specific primer and probe sets 

from TaqMan Gene Expression Assays (Applied Biosystems) for the following genes: 

Oct4 (Hs00742896_s1), Nanog (Hs02387400_g1), Sox17 (Hs00751752_s1), Foxa2 

(Hs00232764_m1), Hnf1b (Hs00172123_m1), Pdx1 (Ha00195591_m1), Ngn3 

(Hs00360700_g1), Nkx2.2 (Hs00159616_m1), Nkx6.1 (Hs00232355_m1), Ins 

(Hs00356618_m1), Gcg (Hs00174967_m1) and Glk (Hs00175951_m1). Normalized 

gene expression levels are reported with the highest expression set to 1 and all others 

relative to this or expressed as fold changes over glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH, Hs99999905_m1) expression (2
− Ct

 method).  

3.3 Droplet Digital PCR (ddPCR) 

Droplet Digital PCR (ddPCR) was used to measure NANOG, SOX17, HNF1b, NGN3 

and INS absolute gene expression during differentiation. ddPCR was performed on a 

QX100 ddPCR system (Bio-Rad) using TaqMan Gene Expression Assays. A total of 

50ng of cDNA were used to set-up 3 replicate ddPCR reactions; these were emulsified 

in a QX100 droplet generator (Bio-Rad), transferred to 96 well plates and subjected to 

thermal cycling on a T100 instrument (Bio-Rad), according to the manufacturer’s 

instructions. After amplification, plates were read and individual sample droplets 

analyzed on a Bio-Rad QX100 droplet reader. The number of gene copies/ng of 

equivalent RNA was determined using the QuantaSoft v1.2.10 software, applying a 
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correction based on the Poisson distribution to the counted number of droplets positive 

for the different time points. 

3.4 MicroRNAs expression profiling and validation 

Analysis of microRNAs was performed in collaboration with the research group of Dr. 

Francesco Dotta (Diabetes Unit, Department of Medicine, Surgery and Neuroscience, 

University of Siena). MicroRNAs expression profiling was performed using Taqman 

Human MicroRNA Array Cards Panel A v2.1 + Panel B v.3.0 (Life Technologies) 

which allowed us to evaluate the expression of 768 microRNAs. MicroRNAs were 

reverse-transcribed using Megaplex Human microRNA RT primers pool A v2.1 and 

pool B v3.0 (Lifetechnologies). A total of 500ng of total RNA/each pool was used for 

reaction. Then, 9 µl of synthesized cDNA were loaded in Taqman Human MicroRNA 

Array Cards following manufacturer instructions. ViiA7 Real Time PCR instrument 

was used to perform Taqman Array Cards reaction runs.  

Real-Time PCR for single microRNA expression levels validation was performed using 

microRNA specific TaqMan MGB probe (Lifetechnologies) and TaqMan Universal 

Master Mix II in duplicate in a VIIA7 Real Time PCR instrument (Applied Biosystem) 

following manufacturer’s guidelines. The following Taqman microRNA expression 

assays were used: hsa-miR-9- ID:000583, hsa-miR-9#- ID:002231, hsa-miR-10a- 

ID:000387, hsa-miR-31- ID:002279, hsa-miR-99a- ID:000435, hsa-miR-124a- 

ID:001182, hsa-miR-127- ID:000452, hsa-miR-135a- ID:000460, hsa-miR-138- 

ID:002284, hsa-miR-143- ID:002249, hsa-miR-149- ID:002255, hsa-miR-211- 

ID:000514, hsa-miR-224- ID:002099, hsa-miR-302c#- ID:000534, hsa-miR-342-3p- 

ID:002260, hsa-miR-373- ID:000561, hsa-miR-375- ID:000564, hsa-miR-518b- 

ID:001156, hsa-miR-520c-3p- ID:002400. MicroRNA expression levels were 

normalized to the internal controls smallRNAs RNU48 and RNU6.  

3.5 Gene ontology classification analysis 

MicroRNA target genes prediction analysis was performed by Dr. Dotta’s research 

group employing the online algorithm Targetscan (Release 6.2) and applying specific 

cutoff parameters: at least 2 target sites within target gene 3’UTR sequences or, when 

just 1-site type prediction was present, a total context score <0.40. Functional 
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classification of putative microRNA target genes according to Targetscan 6.2 analysis 

was performed using DAVID (Database for Annotation, Visualization and Integrated 

Discovery) Bioinformatic Resources 6.7 as previously described (Huang, Sherman, & 

Lempicki, 2009). Briefly, predicted target genes of upregulated or downregulated 

microRNAs during differentiation stages were taken into consideration and their official 

gene name retrieved from NCBI databank (http://www.ncbi.nlm.nih.gov/gene/). Gene 

ontology classification term “Biological Process” (GOTERM_BP_ALL) was used to 

search for target genes classification categories. FDR (False Discovery Rate) corrected 

(Benjaminy-Hoechberg) p-values <0.05 were used to further select potential categories 

of interest. 

3.6 Data and statistical analysis  

For gene expression data, a nonparametric test (Mann–Whitney) was used to compare 

groups, and a 2-tailed P value less than 0.05 or 0.01 was considered significant. 

Analysis of data was performed using the SPSS statistical package for Windows (SPSS 

Inc.). For miRNA expression the data were analyzed using the Expression Suite 

Software 1.0.3 (Lifetechnologies) and GraphPad 5.1 software by applying the 2- Ct or 

2- Ct method and differentially expressed miRNAs were identified using a fold 

change cutoff <0.1 (downregulation) and >10.0 (upregulation). Student t-test was 

performed on normalized CT values in order to select significantly differentially 

expressed microRNAs (p<0.02). 

4. Cytofluorimetric analysis of iPSC differentiation 

For cytofluorimetric analysis human iPSC during the defined steps of in vitro

differentiation were dispersed into single-cell suspension by incubation in 0,25%

trypsin (BioWhittaker, CambrexBio Science) at 37°C for 5 minutes; cells were then 

collected and washed twice with PBS (Lonza). Cells were stained with Live/Dead 

(Molecular Probes, lifetechnologies) to exclude dead cells from the analysis. Intra 

cellular staining required cell fixation and permeabilization (Cytofix/Cytoperm, BD 

Bioscience). Cells were then washed with blocking buffer (PBS+2g/L Bovine Serum 

Albumin, BSA, Sigma) and stained using the following monoclonal antibodies (mAbs): 

813-70 FITC anti-Ssea-4 (BD Bioscience); 44716 PE anti-Cxcr4 (R&D); 182410 APC 
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anti-insulin (R&D); 199017 PE anti-Glut2 (R&D); CLB/TF-5 FITC anti-CD142 (Novus 

Biologicals); R11-560 PE anti-Nkx6.1 (BD Bioscience). Analysis was carried out on a 

FACS Canto flow cytometer (BD Bioscience) using FACS Diva software (BD 

Bioscience). Results were analyzed with FCS Express 4 (De Novo software) and 

expressed as the mean percentage of positive cells and standard deviation (SD) from 

multiple experiments. 

5. C-peptide content and release assays 

Human C-peptide levels in culture supernatants at every differentiation stage were 

measured using ELISA kit following manufacturer’s instructions (Mercodia). C-peptide 

release in response to stimuli was measured by incubating in vitro terminally 

differentiated iPSCs in Krebs–Ringer solution [25 mMNaCl, 5 mMKCl, 1 mM CaCl2, 

24 mM NaHCO3, 1 mM MgCl2, 10 mM HEPES, 0.1 % (wt/vol) BSA (Sigma)]. Initial 

1-h incubation was considered a wash; the medium was discarded, and this was 

followed by a 1-h incubation in basal medium containing 0.5 mM D-glucose (Sigma) 

and then a 1-h incubation in the stimulation condition [5, 11, 20 and 27 mM D-glucose 

(+ or - 0.5 mM 3-isobutyl-1-methylxanthine (IBMX, Gibco) and 30 mM KCl (Sigma)]. 

C-peptide release was then measured by C-peptide ELISA kit. The fold stimulation was 

calculated for each culture by dividing the C-peptide concentration in the stimulation 

supernatant by the C-peptide concentration in the basal supernatant. 

6. Transplantation of differentiated iPSC under the kidney capsule of 

NOD/SCID mice and evaluation of graft function 

To assess the ability of iPSC to differentiate into pancreatic cells and to secrete insulin 

in vivo, a total of 4–5 × 10
6
 differentiated human iPSC at the stage of posterior foregut 

or of endocrine cells were transplanted under the kidney capsule of immunodeficient 

NOD/SCID mice (male, 8 weeks old, Charles River). At least 3 mice for each time 

point were transplanted. For transplantation, the animals were anesthetized by 

intraperitoneal injection of 2,2,2-Tribromoethanol (20 mg/ml, Sigma), an incision was 

made to allow the exposure of the left kidney, subsequently a small hole on the surface 

of the renal capsule was performed and the cells were infused through the use of a P-50 

catheter. Then the incision was cauterized, the kidney repositioned and subcutaneous 
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tissue and skin were sutured. Blood sugar levels were measured every week post-

transplantation with Ascensia Confirm Glucometer (Bayer). An oral glucose tolerance 

test (OGTT) was performed at 1, 4 and 12 weeks after transplantation to evaluate the 

function of the transplanted cells. OGTT was initiated after a 4-h fast; mice were given 

glucose (1 g/kg) by oral gavage. Blood samples were collected at 0, 10, 30 and 60 min 

after glucose administration and were used to determine glucose concentrations. Serum 

C-peptide was measured by ELISA assay (Ultrasensitive C-peptide ELISA kit, 

Mercodia). Care of animals was in accordance with institutional guidelines. 

7. Immunohistochemical analysis of cell engraftment and evaluation of 

graft composition  

For morphological investigations, recipient mice were sacrificed at 1, 4 and 12 weeks 

after transplantation by cervical dislocation. Kidneys were explanted and fixed in 10% 

buffered formalin (Sigma) and processed routinely for histology. Briefly, the organs 

were then embedded in paraffin and cut with microtome (Leica RM 2035). The sections 

placed on glass slides were treated with Bio-clear (Bio-Optica) for 30 minutes to 

eliminate the residual paraffin. Slides were then rehydrated with decreasing 

concentrations (from 99% to 70%) of alcohol until distilled water. The 

immunohistochemical evaluation required an initial unmasking specific for each 

antibody and subsequently the incubation of the sections with the primary antibodies 

(listed in Table 3) for 1 hour at room temperature. The peroxidase-antiperoxidase 

immunohistochemistry method (Labvision, Thermo Scientific) was used for detection. 
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Table 3: Antibodies used for hystochemical analysis of transplanted hiPSCs-derived cells 

The sections were counterstained with hematoxylin (Bio-Optica) and analyzed with a 

color camera, which allows scanning and digitalization of the slide by multiple vertical 

scans with 40× magnification (AperioScanscope, Leica) and acquired with the 

SpectrumTM Plus software. 
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V. RESULTS 

1. Generation and characterization of iPSC reprogrammed with 

retroviral vectors  

Human lung fetal fibroblast IMR90 cell line was infected with OCT4-, SOX2- and 

KLF4-expressing retroviruses and cultured in human ESC medium. After 6–8 weeks, 

ESC-like colonies of iPSC appeared and the clones #1 and #5 were further characterized 

and used in this study. Reprogrammed cells exhibited the typical morphology of 

pluripotent cells (Figure 13, A-B) and expressed the pluripotency-related proteins 

alkaline phosphatase (AP), OCT4 and NANOG (Figure 13, C-J).  

Figure 13. Two lines of iPSC reprogrammed from fetal fibroblasts (clones 1 and 5) were characterized in 

terms of pluripotency. A-B. Morphology of iPSC colonies at the end of the reprogramming process; C-D. 

Staining for alkaline phosphatase activity; scale bar50 µm. E-J. Staining for OCT4 (red) and NANOG 

(green) expression by immunofluorescence; nuclei evidenced by DAPI staining (blue); scale bar 25 µm. 

Molecular analysis by RT-PCR on both iPSC clones revealed the expression of the 

pluripotency related genes Oct4, Sox2, Dppa4, Fgf4, Rex1, Tdgf1, Dppa2, Gdf3 and 

hTert, that were not expressed in IMR90 fibroblasts before reprogramming (Figure 14).  
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Figure 14. Expression by RT-PCR of pluripotency genes Oct4, Sox2, Dppa4, Fgf4, Rex1, Tdgf1, Dppa2, 

Gdf3 and hTert in iPSC clone 1 and 5 and in fibroblasts before reprogramming. Beta actin was used as 

positive control gene. No-temp: negative control with no cDNA template. 

The ability of the reprogrammed cells to give rise to cells of all three embryonic germ 

layers in vitro was also tested to assess their pluripotency. After the formation of 

Embryoid Bodies (EB) and the growth on gelatine coated plates at a high percentage of 

FBS, iPSC were able to spontaneously differentiate into cells of the three germ layers, 

as shown by the expression of marker typical of endoderm (SOX17), mesoderm (SMA) 

or neuroectoderm (TUJ1 and NESTIN) cells (Figure 15).  
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Figure 15. Assessment of pluripotency in vitro. A-B: Staining for the endodermal marker SOX17 (red); 

C-D: Staining for the mesodermal marker Smooth Muscle Actin (SMA, red); scale bar 25 m. E-F: 

Staining for the ectodermal markers Tuj1 (green) and Nestin (red); scale bar 50 m. Nuclei evidenced by 

DAPI staining (blue). 

We also tested the capacity of the reprogrammed cells to give rise to all three embryonic 

germ layers in vivo through a teratoma formation assay. After injection into nude 

immunodeficient mice, both human iPSC lines were able to spontaneously differentiate 

into cells of different tissues (Figure16). 

Figure 16. Assessment of pluripotency in vivo. Staining with hematoxylin/eosin of teratomas generated 

by iPSC injected in immunodeficient mice: gut, neural and muscle-like tissues are present and indicated 

by arrows; magnification ×20. 

2. Differentiation of iPSC into insulin-producing cells in vitro

Human iPSC generated with retroviral infection of fetal fibroblasts were cultured with a 

modified version of a protocol described for the differentiation of ESC into pancreatic 

cells (D’Amour et al., 2006). This protocol was developed after a comparative 

evaluation of the protocol described by Viacyte group with or without the 

supplementation of Indolactam V (Chen et al., 2009) and the culture in suspension 

conditions (J. Jiang et al., 2007).  

To verify the actual differentiation of human iPSC during the various stages of 

pancreatic specification (Figure 17) we evaluated the expression levels of the following 

genes: 

- OCT4 and NANOG: characteristic markers of undifferentiated cells, used to 
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assess both the real pluripotency of the iPSC used and to ensure the loss of the 

expression of these genes during differentiation; 

- SOX17 and FOXA2: characteristic markers of the definitive endoderm (DE). 

Their expression during the first steps of the differentiation determines the 

transition from pluripotent cells to DE cells; 

- HNF1b and PDX1: typical markers of posterior foregut (PF) cells. Their 

expression is fundamental for the regulation of the development of embryonic 

pancreas. PDX1 in particular, is a key transcription factor for the activation of 

insulin, glucokinase and glucose transporter type 2 (GLUT2) gene transcription. 

- NGN3 and NKX2.2: transcription factors typically expressed by pancreatic 

endoderm (PE) cells and that regulate  cells function. 

- INS: characteristic marker of the pancreatic endocrine  cells. 

Figure 17. Schematic representation of the stages of differentiation of iPSC into insulin-secreting cells, 

the 4 stages that have been analyzed and the genes examined to verify the gene expression of the cells 

during pancreatic specification at the end of each  stage. 

Gene expression levels are expressed as Fold Change (FC) compared to Ct of 

undifferentiated iPSC. The Ct of the 7 different replicates of iPSC used in this study, 

expressed as mean ± standard error, are: Oct4: 10.6 ± 0.4; Nanog: 6.7 ± 0.5; Sox17: 

10.5 ± 0.5; Foxa2: 9.1 ± 0.9; Hnf1b: 10.5 ± 0.7; Pdx1: 26.8 ± 2.1; Ngn3: 18.8 ± 1.3; 

Nkx2.2: 19.2 ± 2.1; Ins: 20,4 ± 1.4. 

When the protocol of differentiation proposed by D'Amour et al. in 2006 was tested on 

our human iPSC we obtained the following changes in gene expression compared to 

undifferentiated cells (Fold Change, FC = 1): 

- At the end of the first stage of differentiation the down-regulation of the 
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expression of pluripotency genes Oct4 and Nanog (0.06 and 0.04 FC 

respectively) and an over-expression of the definitive endoderm marker genes 

Sox17 and Foxa2 (48.8 and 12.6 FC). 

- At the end of the second stage the over-expression of mRNA characteristic of 

pancreatic progenitor cells: Hnf1b, Pdx1 and Ngn3 (134.9, 962.9 and 1772.5 

FC). 

- At the end of the in vitro differentiation process we observed no expression of 

the key markers and transcription factors of  cells specification Pdx1, Ngn3, 

Nkx2.2 and, in particular, Insulin. 

We then decided to introduce two modifications to the last critical steps of in vitro

differentiation process in order to obtain the expression of insulin and of all the others 

pancreatic markers, in details: 

- the addition of Indolactam V after primitive gut tube (PG) specification to 

promote the differentiation into pancreatic endoderm cells (Chen et al., 2009); 

- the detachment of cells after posterior foregut (PF) specification and the seeding 

of cell clusters in suspension conditions mimicking in vitro pancreatic islet 

culture, to favour   cells maturation and survival (J. Jiang et al., 2007). 

Morphology, gene and protein expression of iPSC during differentiation with this 

modified version of the original Viacyte protocol were analyzed in seven independent 

experiments.  

Cell morphology changed from the adherent colonies of iPSC composed of small cells 

with scant cytoplasm, to bigger cell aggregates composed of a central cluster of cells 

surrounded by cells with elongated shapes, to cluster of cells in suspension condition, as 

shown in Figure 18.  
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Figure 18: Representative pictures of cell morphology of iPSC during the steps of pancreatic 

specification, scale bar 100 µm. 

We first evaluated the loss of pluripotency, that was confirmed by the downregulation 

of OCT4 and NANOG genes and the disappearance of the surface marker Ssea-4. The 

loss of the undifferentiated status was accompanied by the increase in the expression 

of SOX17 and FOXA2 genes (39.25 ± 15.78 and 7.94 ± 4.16 FC over undifferentiated 

iPSC) and of the chemokine receptor Cxcr4, characteristic traits of the definitive 

endoderm stage. At the subsequent step of posterior foregut specification, the 

upregulation of HNF1b and PDX1 genes was observed (97.14 ± 77.01, 596.34 ± 368.78 

FC), while at the following differentiation step into pancreatic 

endoderm, NGN3 and NKX2.2 genes appeared in the transforming cell population 

(83.46 ± 80.34 and 1.62 ± 0.9 FC). Furthermore, CD142 expression, previously 

described as a marker of endocrine progenitor cells (Kelly et al., 2011), increased in 

differentiating iPSC at this time point. Finally, at the end of the differentiation process, 

the production of INSULIN mRNA was highly increased (1567.92 ± 785.1 FC) and, 

accordingly, analysis by flow cytometry showed the presence of insulin-positive cells at 

the final step of differentiation, confirming the conversion of undifferentiated iPSC into 
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pancreatic cells following developmental stages (Figure 19 and 20).  

Figure 19. Gene expression analysis by Taqman of markers of pluripotency (OCT4 and NANOG), 

definitive endoderm (FOXA2 and SOX17), posterior foregut (HNF1b and PDX1), pancreatic endoderm 

(NGN3 and NKX2.2) and endocrine cells (INS). Normalized gene expression levels are reported with the 

highest expression set to 1 and all the others relative to this and expressed as mean + SEM of 7 

experiments. *P < 0.05; **P < 0.01 compared to undifferentiated hiPSC (Mann–Whitney test). Pellegrini, 

2015. 



60 

Figure 20. Protein expression analysis by flow cytometry of markers of pluripotency (Ssea 4), definitive 

endoderm (CXCR4), pancreatic endoderm (CD142) and endocrine cells (Ins). Gate delimitates positive 

events. Percentages of positive cells of a representative experiment are reported. SSC: side scatter, FITC: 

Fluorescein isothiocyanate, PE: phycoerythrin, APC: Allophycocyanin. Pellegrini, 2015. 

Absolute quantification by droplet digital PCR of NANOG, SOX17, HNF1B and 

NGN3 gene expression during differentiation corroborated these findings (Figure 21).  

Figure 21. Quantification of NANOG, SOX17, HNF1b and NGN3 mRNAs during differentiation of 

iPSCs into insulin-producing cells by droplet digital PCR. Gene expression was analyzed at the steps of 

pluripotency (iPSC), definitive endoderm (DE), posterior foregut (PF), pancreatic endoderm (PE) and 

endocrine cells (EN). PCR amplification of iPSCs cDNAs was performed in an emulsion using gene 
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specific primers and hydrolysis probes. The number of gene specific mRNA copies in each sample, 

corresponding to droplets fluorescing above background level (red line), was determined after droplets 

acquisition and counting on a QX100 instrument (Bio-Rad) and the QuantaSoft software v1.2.10 applying 

a correction algorithm based on the Poisson distribution. The number of gene specific mRNA copies per 

nanogram of total RNA in each sample of one representative experiment is shown. Pellegrini, 2015.

These data refer to differentiation of iPSC derived from the reprogramming of fetal 

fibroblasts; however, the protocol we set up resulted successful also for the 

differentiation of iPSC obtained from the reprograming of fibroblasts of an healthy 

adult subject (Figure 22). 

Figure 22. Gene expression of adult fibroblast-derived iPSC was analyzed during differentiation at the 

steps of pluripotency (iPSC), definitive endoderm (DE), posterior foregut (PF), pancreatic endoderm (PE) 

and endocrine cells (EN). Gene expression analysis by Taqman of markers of pluripotency (OCT4 and 

NANOG), definitive endoderm (FOXA2 and SOX17), posterior foregut (HNF1b and PDX1), pancreatic 

endoderm (NGN3 and NKX2.2) and endocrine cells (INS) is shown. Normalized gene expression levels 

are reported with the highest expression set to 1 and all the others relative to this. Histograms represent 

mean of n=2 experiments ± SEM. Pellegrini, 2015. 
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3. MicroRNAs expression profiles during iPSC differentiation into 

insulin-producing cells

Given the pivotal role of microRNAs in reprogramming of somatic into pluripotent 

stem cells (Miyoshi et al., 2011; Anokye-Danso et al., 2011), it is conceivable that this 

class of small RNAs may play a role also in the regulation of cell fate specification 

during iPSC differentiation into insulin-producing cells. Therefore, we evaluated 

microRNA expression profiles during the 4 main stages of endocrine pancreatic 

differentiation (iPSC, DE, PF and EN cells) in three independent experiments. Among 

768 microRNAs analyzed, 347 resulted expressed (Ct 35 in all samples of the same 

group). Firstly, we identified microRNAs specifically expressed in undifferentiated 

iPSC, as reported in the hierarchical heatmap clustering (Figure 23, left panel). Among 

highly expressed microRNAs (detailed zoom of hierarchical clustering analysis in 

Figure 23, right panel) we found those belonging to miR-17/92 cluster (miR-19b, 

miR-17, miR-20a, miR-19a) and its paralogs (miR-106a, miR-93) as well as miR-302 

cluster (miR-302a, miR-302b, miR-302c and miR-367), previously reported as 

representative microRNA families highly expressed in ESC and iPSC (Wilson et al., 

2009; Mogilyansky & Rigoutsos, 2013), thus demonstrating and confirming the 

pluripotent phenotype microRNA fingerprint. Indeed, microRNAs miR-19b and miR-

302b showed the highest expression levels in iPSC, reporting CT values of -1,18 and -

0.60 respectively. 
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Figure 23. Total microRNA expression profiles in undifferentiated human iPSC are reported in 

hierarchical clustering analysis in which normalized CT values of miRNAs are reported as scale colour 

(scale colour: blue=high expression; red=low expression) (Euclidean distance measure, correlation). Red 



64 

line highlighting upper part of hierarchical clustering represents most expressed miRNAs in iPSC. 

Detailed zoom of the red line highlighted hierarchical clustering is reported in the right panel. 

In order to verify whether microRNAs are differentially expressed during iPSC 

differentiation into insulin-producing cells and which may indeed play a role in the 

acquisition of endocrine pancreatic phenotype, we compared the microRNA expression 

profiles of iPSC during the steps of differentiation respect to undifferentiated cells. 

Taqman array profiling analysis revealed 19 microRNAs differentially expressed 

(p<0.05) during differentiation stages vs undifferentiated iPSC. Specifically, we 

observed 12 microRNAs upregulated (miR-9, miR-9#, miR-375 miR-10a, miR-99a#, 

miR-124a, miR-135a, miR-138, miR-149, miR-211, miR-342-3p and miR-224) and 7 

downregulated (miR-520c-3p, miR-302c#, miR-31,  miR-127, miR-143, miR-373, miR-

518b), reported in the hierarchical clustering heatmap (Figure 24). 

Figure 24. Hierarchical clustering analysis of differentially expressed miRNAs (fold change <0.1 and 

>10 and p<0.02, t-test): 19 miRNAs were found as differentially expressed (12 upregulated and 7 

downregulated) during progressive developmental stages (DE: definitive endoderm; PF, posterior foregut; 

EN, endocrine pancreatic cells) compared to undifferentiated iPSC. 3 replicates for each differentiation 

stage are reported. MicroRNAs expression levels are reported as CT values (scale colour: blue=high 

expression; red=low expression) (Euclidean distance measure, correlation) . 
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In order to confirm and validate the differential expression of those microRNAs 

identified through high-throughput profiling, we analyzed their expression by single 

assay RT-Real Time PCR. We initially validated those microRNAs, which showed an 

upregulation pattern during differentiation stages respect to undifferentiated cells; 

indeed, we confirmed the upregulation of all identified microRNAs except for miR-224 

(Figure 25). 

Figure 25. Differentially expressed microRNAs single assay validation through RT-Real Time PCR of 

upregulated microRNAs during differentiation stages. Values are reported as mean ± SEM of 2- CT 

normalized using RNU6 and RNU48 of 3 independent experiments. * p<0.05, ** p<0.001. 

Subsequently, we also validated those microRNAs which resulted downregulated 

during endocrine pancreatic differentiation in the initial screening. The validation 

process confirmed the results obtained using the profiling approach; specifically, among 

downregulated microRNAs we identified miR-302c#, miR-518b and miR-520c-3p 

which showed a progressive decrease throughout the differentiation stages. Such 

microRNAs have been previously associated with pluripotent phenotype (Wilson et al., 
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2009; Razak et al., 2013) thus demonstrating the progressive loss of pluripotency during 

endocrine pancreatic differentiation (Figure 26).  

Figure 26. Differentially expressed microRNAs single assay validation through RT-Real Time PCR of 

downregulated microRNAs during differentiation stages. Values are reported as mean ± SEM of 2- CT 

normalized using RNU6 and RNU48 of 3 independent experiments. * p<0.05, ** p<0.001. 

In order to reveal putative functional pathways/biological processes regulated by 

differentially expressed microRNAs identified during iPSC differentiation into insulin-

producing cells, we adopted a bioinformatic approach using two different online 

algorithms: Targetscan 6.2 (prediction of microRNA target genes) and DAVID 6.7 

(functional classification of target genes). Firstly, we obtained the putative/predicted 

microRNA target genes list using Targetscan6.2, by specifically focusing on those 

microRNAs significantly upregulated in the analyzed stages of differentiation compared 

to iPSC (Table 4).  



67 

Table 4: David6.7 Gene Ontology classification analysis of upregulated microRNA target genes 

subdivided into differentiation stages. Functional category accession ID (GO accession ID), specific 

name (GO term) number of genes included (NO. of Genes), percentage of gene respect to total genes 

included in the analysis (% of total), significance of gene-term enrichment with a modified Fisher's Exact 

Test corrected with Benjamini post-hoc test (p-value) and magnitude of enrichment (Fold enrichment) for 

each term are reported. Grey underlined terms were considered of particular interest in that specific 

differentiation stage. 

Interestingly, we detected several functional gene ontology (GO) categories specific for 

each differentiation stages. Specifically, we observed that microRNAs upregulated in 
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definitive endoderm stage are predicted to target several genes whose functional 

categories mainly belong to early stage morphogenesis function (‘cell morphogenesis’- 

GO:0000902 p=0.010,) whereas those upregulated in posterior foregut stage putatively 

regulate target genes involved in tissue and organ development (‘tissue development’- 

GO0009888 p<0.0001, ‘organ development’ – GO0048513 p<0.0001). Moreover, in the 

last stage of differentiation we detected several upregulated microRNA target genes 

whose functional categories can be ascribed to pancreas development and endocrine 

pancreatic cell functions (‘pancreas development’ – GO0031016 p=0.018, ‘exocytosis’-

GO0006887 p=0,032), thus suggesting a putative post-transcriptional control by 

microRNAs to those genes involved in the final stage of endocrine pancreatic 

differentiation. Next, we analyzed downregulated microRNAs target genes. 

MicroRNAs downregulated ate DE and PF stages (miR-302#, miR-518b, miR-520c-

3p), having the same set of differentially expressed microRNAs, putatively regulate the 

same set of target genes. In this case, targeted genes mainly belong to kinase control 

function (‘regulation of phosphorylation’- GO0042325 p=0,0012), whereas genes 

predicted to be targeted by downregulated microRNAs in the final differentiation stage 

mainly belong to the control of metabolic processes (‘regulation of cellular metabolic 

processes’- GO031323 p=0,0007) (Table 5). 
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Table 5: David 6.7 Gene Ontology classification analysis of downregulated microRNA target genes 

subdivided into differentiation stages. Functional category accession ID (GO accession ID), specific 

name (GO term) number of genes included (No. of Genes), percentage of genes respect to total genes 

included in the analysis (% of total), significance of gene-term enrichment with a modified Fisher's Exact 

Test corrected with Benjamini post-hoc test (p-value) and magnitude of enrichment (Fold enrichment) for 

each term are reported. Grey underlined terms were considered of utmost interest in that specific 

differentiation stage. 

4. Terminally differentiated cells exhibit  cell characteristics 

Human iPSC terminally differentiated into pancreatic endocrine cells exhibited 

characteristics of islet cells in terms of morphology, expression and function. Cells 

clustered in structure of 50-300 microns of diameter resembling pancreatic islets, some 

with a necrotic core (Figure 27).  

Figure 27. Cell cluster morphology, scale bar 100 µm. Pellegrini, 2015. 

Endocrine commitment was confirmed by the increase of the absolute expression during 

differentiation measured through Droplet Digital PCR analysis of insulin mRNA, from 

1.1 to 13.4 mRNA copies per ng of total RNA (Figure 28).  
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Figure 28. Quantification by droplet digital PCR of Insulin mRNAs at the steps of pluripotency (iPSC), 

definitive endoderm (DE), posterior foregut (PF), pancreatic endoderm (PE) and endocrine cells (EN). 

The number of gene specific mRNA copies per nanogram of total RNA in each sample, corresponding to 

droplets fluorescing above background level (red line), was determined after droplets acquisition, count 

on a QX100 instrument (Bio-Rad) and analysis by QuantaSoft software v1.2.10. Pellegrini, 2015. 

Cytofluorimetric analysis confirmed the presence of insulin positive cells, in a range 

between 1.8 and 6.7%. At the final step of differentiation, iPSC-derived cells resulted 

positive for glucose transporter 2 (Glut2) (Figure 29).  

Figure 29. Protein expression analysis by flow cytometry of glucose transporter 2 (Glut2). Gate 

delimitates positive events. Percentage of positive cells of a representative experiment is reported. SSC: 

side scatter, PE: phycoerythrin. Pellegrini, 2015. 
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Moreover, the expression of the glucokinase gene, a critical enzyme involved in the 

glucose responsiveness of insulin release emerged in terminally differentiated cells 

(Figure 30).  

Figure 30. Expression analysis by Taqman of Glucokinase mRNA during the differentiation steps (iPSC, 

DE, PF, EN). Expression levels are reported as fold change compared to undifferentiated cells. Pellegrini, 

2015. 

Furthermore, at the end of the differentiation process, iPSC-derived cells secreted 

insulin in resting conditions, as shown by the presence of c-peptide in culture 

supernatants (Figure 31). 

Figure 31. C-peptide level in the supernatant of iPSC during the differentiation steps (iPSC, DE, PF, EN) 

measured by Elisa. Graph reports single values of 5 experiments as dots and mean±SEM. Pellegrini, 

2015. 

When insulin secretion was tested in stimulated conditions, a range of concentrations of 

glucose per se was not sufficient to increase insulin release, while the combination of 

glucose with phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) induced 

a significant release of insulin; stimulation of insulin release was also obtained by direct 

depolarization with potassium chloride (KCl) (Figure 32). 
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Figure 32. C-peptide secretion by terminally differentiated iPSC upon stimulation with 0,5, 5, 11, 20 and 

27 mM glucose without or with 0,5 mM IBMX and KCl, measured by Elisa and reported as ratio between 

stimulated and basal condition. Data are shown as mean + SD of 3 experiments. *P < 0.05; **P < 0.01 

compared to 0.5 mM glucose stimulus (Mann–Whitney test). Pellegrini, 2015. 

5. iPSC-derived cells engraft and survive for short-term periods when 

transplanted in vivo 

To test the capability to engraft, to survive and to release insulin in vivo, we 

transplanted terminally differentiated human iPSC under the kidney capsule of 12 

immunodeficient normoglycemic NOD/SCID mice. Fasting glycemia was measured in 

recipient mice during 12-week follow-up. Mice remained normoglycemic during the 

follow-up. One week after transplantation, grafts were responsive to glucose since 

human C-peptide was detected in the sera after an oral glucose tolerance test, but grafts 

gradually lost insulin production during the time (Figure 33).  

Figure 33. Functional characterization of iPSC-derived cells after transplantation in NOD/SCID mice. 

Analysis of graft function by human C-peptide measurement after oral glucose test tolerance in sera of 

mice transplanted with iPSC-derived-terminally differentiated cells. Pellegrini, 2015.
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Since terminal differentiation of pluripotent stem cells into pancreatic hormone-

secreting cells was described to occur efficiently in vivo (Kroon et al., 2008), we also 

transplanted iPSC-derived pancreatic endoderm cells. One week after transplantation, 

mice had significant basal levels of circulating C-peptide, but they were not responsive 

to glucose stimulation. Four weeks after transplantation, they acquired the ability to 

respond to glucose with an increase in insulin production, but, as observed for 

terminally differentiated iPSC transplant, transplanted cells were shown to gradually 

lose insulin production during the time, from the first week onwards (Figure 34). 

Figure 34. Functional characterization of iPSC-derived cells after transplantation in NOD/SCID mice. 

Analysis of graft function by human C-peptide measurement after oral glucose test tolerance in sera of 

mice transplanted with iPSC-derived pancreatic progenitor cells. Pellegrini, 2015.

In order to investigate engraftment, survival and localization of transplanted cells, we 

performed an immunohistochemical analysis of the graft at 1, 4 and 12 weeks after cells 

infusion. At 1 and 4 weeks, the grafts of mice transplanted with terminally 

differentiated cells showed the presence of proliferating cells (Ki67 positive cells) and 

pancreas-committed cells (Pdx1 positive). Significant number of insulin-positive cells 

was present only in the graft collected at the earliest time point of 1 week (Figure 35). 
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Figure 35. Immunohistochemical characterization of iPSC-derived cells after transplantation in 

NOD/SCID mice. Evaluation of grafts by immunohistochemistry 1 and 4 weeks after transplantation of 

terminally differentiated cells. Ki-67 staining was used to assess proliferation, Pdx1 and Ins as pancreatic 

markers. Scale bar 50 µm. Pellegrini, 2015.

At 12 weeks, immunohistochemical analysis of the graft showed that only few cells 

were present and resulted positive for Pdx1 and for glucagon, but not for insulin 

(Figure 36) and in 5 out of 6 mice the graft was not even visible. 

Figure 36. Immunohistochemical characterization of iPSC-derived cells after transplantation in 

NOD/SCID mice. Evaluation of grafts by immunohistochemistry 12 weeks after transplantation of 

terminally differentiated cells. Pdx1, Ins and Glucagon were used as pancreatic markers. Scale bar 50 µm.  

When the infusion of pancreatic endoderm cells was analyzed, immunohistochemical 

analysis of the grafts at all considered time points showed that transplanted cells 

engrafted, survived and did not infiltrate the surrounding tissues. The grafts resulted 

composed of a mixed population of cells containing proliferating components (Ki67 

positive), pancreatic cells (Pdx1-positive) and few scattered insulin-positive cells in the 

graft at 1 and 4 weeks after transplantation (Figure 37).  
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Figure 37. Immunohistochemical characterization of cells after transplantation in NOD/SCID mice. 

Evaluation of grafts by immunohistochemistry 1 and 4 weeks after transplantation of iPSC-derived 

pancreatic endoderm cells. Ki-67 staining was used to assess proliferation, Pdx1 and Ins as pancreatic 

markers. Scale bar 50 µm. Pellegrini, 2015.

At 12 weeks, all grafts were still retrievable, Ki67 and Pdx1 positive cells persisted in 

the graft area, while insulin-positive cells were not found (Figure 38).  

Figure 38. Immunohistochemical characterization of cells after transplantation in NOD/SCID mice. 

Evaluation of grafts by immunohistochemistry 12 weeks after transplantation of iPSC-derived pancreatic 

endoderm cells. Ki-67 staining was used to assess proliferation, Pdx1 and Ins as pancreatic markers. 

Scale bar 50 µm. 

At all time points, both after terminally differentiated or pancreatic endoderm cell 

transplantation, it was possible to find cells expressing markers of pluripotency (Sox2), 

markers of secretory cells not specifically pancreatic (ChgA, Syp), markers of epithelial 

cells (Ck8-18), pancreatic endocrine cells expressing glucagon and some neuronal 

lineage-committed cells (Gfap positive) (Figure 39). 
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Figure 39. Immunohistochemical characterization of iPSC–derived cells after transplantation in 

NOD/SCID mice. Sox2 staining was used to assess pluripotency, Synaptophysin (Syp) and 

Chromogranin A (ChgA) for secretory cells, cytokeratin 8 and 18 (Ck8/18) as epithelial cell markers, 

glial fibrillary acidic protein (Gfap) to detect any neuronal cells and Glucagon (Gcg) as a marker of 

pancreatic endocrine cells. These images are representative for graft composition at 1, 4 and 12 weeks, 

after infusion of precursors or of terminally differentiated cells. Scale bar: 100µm. Pellegrini, 2015.

6. Generation and characterization of iPSC reprogrammed with 

Sendai Virus 

Human iPSC were then generated using Sendai (Fusaki et al., 2009) non-integrative 

virus vectors containing the four Yamanaka’s factors. The clone #5 obtained from the 

reprogramming of fibroblasts derived from a skin biopsy of a healthy adult subject was 

used in this study after the assessment of its pluripotency. Reprogrammed cells indeed 

stained positive for the pluripotency-related proteins Oct4, Nanog, Tra1-60, Tra 1-81, 

SSEA4 and SSEA4 (Figure 40).  
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Figure 40. One line of iPSC reprogrammed from adult fibroblasts (clone 5) was characterized in terms of 

pluripotency. Staining for expression by immunofluorescence: A-C: OCT4 (red) and NANOG (green); D: 

Tra1-60 (red); E: Tra1-81 (red); F: SSEA4 (red) and SSEA3 (green); nuclei evidenced by DAPI staining 

(blue). Magnification ×10. 

Also at molecular level Sendai virus (SeV)-iPSC expressed, as the iPSC generated with 

retroviral infection, all the marker genes of pluripotency like OCT4, KLF4, SOX2 and 

NANOG, while the uninfected fibroblasts expressed only low levels of KLF4. Analysis 

of fibroblasts immediately after infection with SeV revealed the expression of Sendai 

Virus mRNA, that was lost after pluripotency establishment (Figure 41).  

Figure 41. Expression by RT-PCR of pluripotency genes OCT4, KLF4, SOX2 and NANOG and of SeV 

in iPSC clone 5, iPSC generated with retroviral infection, in fibroblasts before reprogramming and 

fibroblasts after SeV infection. Negative control: no cDNA template. 
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The ability of the reprogrammed cells to give rise to cells of all three embryonic germ 

layers in vitro was also tested. After EB formation SeV-iPSC were differentiated into 

cells of the three germ layers, as shown by the expression of marker typical of ectoderm 

(bIII Tubulin), endoderm (Cytokeratin 18) and mesoderm (aSMA) (Figure 42).  

Figure 42. Assessment of pluripotency in vitro. A: Staining for the ectodermal markers bIIITubulin 

(green). B Staining for the endodermal marker Ck18 (green); C: Staining for the mesodermal marker 

aSMA (green). Nuclei evidenced by DAPI staining (blue). Magnification 10x. 

Also the capacity of SeV-iPSC to form teratoma in vivo was tested. After injection into 

nude immunodeficient mice reprogrammed cells were able to spontaneously 

differentiate into cells of different tissues (Figure 43). 

Figure 43. Assessment of pluripotency in vivo. Staining with hematoxylin/eosin of teratomas generated 

by SeV-iPSC injection into immunodeficient mice: gut, neural and muscle-like tissues are present. 

magnification ×20. 

7. Differentiation of SeV-iPSC into insulin-producing cells in vitro

7.1 Differentiation protocol 1 

The protocol previously described for the differentiation of iPSC generated with 

retrovirus was tested also on SeV-iPSC. Morphology, gene and protein expression of 

SeV-iPSC during differentiation were analyzed in four independent experiments.  

Cell morphology changed from the adherent colonies of iPSC composed of small cells 

with scant cytoplasm, to stellate cells, to cluster of cells in suspension condition, as 

shown in Figure 44. 
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Figure 44. Representative pictures of cell morphology of SeV-iPSC during the steps of pancreatic 

specification, Magnification 10x. 

Gene expression levels are expressed as Fold Change (FC) compared to Ct of 

undifferentiated SeV-iPSC. The Ct of 12 different replicates of iPSC used in this 

study, expressed as mean ± standard error, are: Oct4: 9.44 ± 0.1; Nanog: 5.9 ± 0.1; 

Sox17: 18.3 ± 0.9; Foxa2: 13.3 ± 0.2; Hnf1b: 18.1 ± 0.4; Pdx1: 28.1 ± 1.6; Nkx2.2: 18.7 

± 0.1; Nkx6.1: 16.9 ± 0.2; Ins: 30,1 ± 1.1; Gcg: 30.7 ± 0.1. 

We first evaluated the loss of pluripotency, that was confirmed by the downregulation 

of OCT4 and NANOG genes, and the loss of the undifferentiated status was 

accompanied by the increase in the expression of SOX17 and FOXA2 genes (8096.7 ± 

1681.4 and 973.4 ± 190.8 FC over undifferentiated iPSC) during specification into 

definitive endoderm cells (Figure 45).  
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Figure 45. Gene expression analysis by Taqman of markers of pluripotency (OCT4 and NANOG) and 

definitive endoderm (FOXA2 and SOX17) during the stages of pancreatic differentiation. Normalized 

gene expression levels are reported as fold change compared to undifferentiated SeV-iPSC and expressed 

as mean ± SEM of 4 experiments. 

At the step of posterior foregut specification, the upregulation of HNF1b and PDX1 

genes (11086.5 ± 1514.9, 47811.5 ± 20399.5 FC) and their sustained expression during 

the subsequent steps of differentiation was observed (Figure 46). 

Figure 46. Gene expression analysis by Taqman of markers posterior foregut (HNF1b and PDX1) during 

the stages of pancreatic differentiation. Normalized gene expression levels are reported as fold change 

compared to undifferentiated SeV-iPSC and expressed as mean ± SEM of 4 experiments. 
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At the final differentiation step the overexpression of the transcription factors NNK2.2 

and NKX6.1 (75.8 ± 32.1 and 7.3 ± 3.1 FC) and of the mRNA of the pancreatic 

hormones Insulin and Glucagon (420976.6 ± 292501.4 and 125333.7 ± 81977.4 FC)  

were observed (Figure 47). 

Figure 47. Gene expression analysis by Taqman of markers pancreatic endoderm (NKX2.2 and NKX6.1) 

and endocrine cells (INS and GCG) during the stages of pancreatic differentiation. Normalized gene 

expression levels are reported as fold change compared to undifferentiated SeV-iPSC and expressed as 

mean ± SEM of 4 experiments. 

Accordingly, analysis by flow cytometry showed the disappearance of the pluripotency 

surface marker Ssea-4 (from 98% to 7% of positive cells) during differentiation steps, 

the increase of Cxcr4 positive cells at the stage of definitive endoderm (from 0,17% of 

iPSC to 89,44% after DE specification), and presence of few insulin (0,59%), Glut2 

(0,86%) and double-positive (0,36%) cells at the final step of differentiation, confirming 

the conversion of undifferentiated iPSC into pancreatic cells following developmental 

stages although with low efficiency (Figure 48).  
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Figure 48. Protein expression analysis by flow cytometry of markers of pluripotency (Ssea 4), definitive 

endoderm (CXCR4) and endocrine cells (double staining for GLUT2 and Insulin). Gate delimitates 

positive events. Percentages of positive cells of one experiment are reported. SSC: side scatter.

7.2 Differentiation protocol 2 

We optimized a new differentiation protocol for our SeV-iPSC relying on the protocol 

described by Melton’s group for the pancreatic differentiation of pluripotent cells 

(Pagliuca et al., 2014). Compared to their protocol we added some modifications: 

- we used the STEMdiff™ Definitive Endoderm Kit for the differentiation into 

definitive endoderm cells a commercial medium able to give rise to DE cells 

from pluripotent cells. 

- we have grown iPSC in adhesion condition until the specification into posterior 

foregut cells as previously described. 

Before the introduction of these two modification we observed a gradual and 

progressive death of the cells during the last step of the differentiation process and it 

was not possible to perform gene or protein expression analysis. 

Morphology, gene and protein expression of SeV-iPSC during differentiation with this 

new modified protocol were analyzed in 2 independent experiments.  
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Cell morphology changed from the adherent colonies of iPSC composed of small cells 

with scant cytoplasm, to bigger cell aggregates composed of a central cluster of cells 

surrounded by cells with elongated shapes, to cluster of cells in suspension condition, as 

shown in Figure 49. 

Figure 49. Representative pictures of cell morphology of SeV-iPSC during the steps of pancreatic 

specification, Magnification 10x. 

Also with this protocol we observed the loss of pluripotency (downregulation of OCT4 

and NANOG genes) and the increase in the expression of SOX17 and FOXA2 genes 

(7547.7 ± 3655.5 and 1159 ± 899.1 FC over undifferentiated iPSC) during specification 

into definitive endoderm cells (Figure 50). 
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Figure 50. Gene expression analysis by Taqman of markers of pluripotency (OCT4 and NANOG) and 

definitive endoderm (FOXA2 and SOX17) during the stages of pancreatic differentiation. Normalized 

gene expression levels are reported as fold change compared to undifferentiated SeV-iPSC and expressed 

as mean ± SEM of 2 experiments. 

At the step of posterior foregut specification, the upregulation of HNF1b and PDX1 

genes (27282.8 ± 830.9, 1797153.7 ± 225679.6 FC) and their sustained expression 

during the subsequent steps of differentiation was observed (Figure 51). 

Figure 51. Gene expression analysis by Taqman of markers posterior foregut (HNF1b and PDX1) during 

the stages of pancreatic differentiation. Normalized gene expression levels are reported as fold change 

compared to undifferentiated SeV-iPSC and expressed as mean ± SEM of 2 experiments. 
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At the final differentiation step the overexpression of the transcription factors NNK2.2 

and NKX6.1 (3653 ± 453.7 and 477.4 ± 47.3 FC) and of the mRNA of the pancreatic 

hormone Insulin and Glucagon (12319377.1 ± 6234648.6 and 2905349 ± 1504064.4 

FC)  were observed (Figure 52). 

Figure 52. Gene expression analysis by Taqman of markers pancreatic endoderm (NKX2.2 and NKX6.1) 

and endocrine cells (INS and GCG) during the stages of pancreatic differentiation. Normalized gene 

expression levels are reported as fold change compared to undifferentiated SeV-iPSC and expressed as 

mean ± SEM of 2 experiments. 

Finally, analysis by flow cytometry of cells differentiated in vitro until the last stage 

confirmed the presence of insulin (14.23%) and Nkx6.1 (46.09%) positive cells (Figure 

53).  
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Figure 53. Protein expression analysis by flow cytometry of Insulin and Nkx6.1. Gate delimitates 

positive events. Percentage of positive cells of one experiment is reported. SSC: side scatter.

Insulin positive cells were detected also by immunohistochemical analysis performed 

on the cytospinned terminally differentiated cells (Figure 54). 

Figure 54. Immunohistochemical characterization of Sev-iPSC-derived pancreatic endocrine cells 

differentiated in vitro. Insulin was used as  cell markers. Scale bar 100µm. 

Furthermore, at the end of the differentiation process, SeV-iPSC-derived cells secreted 

insulin in resting conditions, as shown by the presence of c-peptide in culture 

supernatants (Figure 55). 
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Figure 55. C-peptide level in the supernatant of iPSC during the differentiation steps (iPSC, DE, PF, PE, 

EN) measured by Elisa. Graph reports single values of 2 experiments as dots and mean±SEM.  

When insulin secretion was tested after glucose stimulus (in the presence of IBMX) a 

significant release of c-peptide was observed; stimulation of insulin release was also 

obtained by direct depolarization with potassium chloride (KCl) (Figure 56). 

Figure 56. C-peptide secretion by terminally differentiated SeV-iPSC upon stimulation with 0,5 (without 

or with 0.5mM IBMX) and 20 mM glucose (+0.5mM IBMX) and KCl measured by Elisa and reported as 

ratio between stimulated and basal (0.5 mM glucose) condition. 
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VI. DISCUSSION 

Many efforts in the field of diabetes research have been put on differentiating 

pluripotent stem cells to find an unlimited new source of pancreatic  cells. The overall 

aim of this project is to try to obtain an unlimited source of insulin producing cells from 

human iPSC in order to overcome the lack of organ donors and to get closer to an 

autologous  cells replacement therapy for diabetic patients. In this study, we reported a 

method for promoting the differentiation of iPSC into insulin-producing cells and we 

transplanted these differentiated pancreatic cells in vivo. The results obtained showed 

that human iPSC have the potential to generate functional insulin-producing cells in 

vitro, undergoing defined steps resembling pancreas organogenesis, and that 

differentiated cells can engraft and survive for short periods when transplanted in vivo. 

These data provide useful suggestions for the study of a potential use of induced 

pluripotent stem cells in the field of  cell replacement for diabetes treatment.  

For the differentiation of our human iPSC reprogrammed with retroviral vectors 

containing the 4 Yamanaka’s factors, we selected as a backbone the most efficient 

protocol for in vitro differentiation of ESC (D’Amour et al., 2006). We added slight 

modifications to this protocol in order to obtain an efficient differentiation of iPSC into 

the pancreatic lineage. With the addiction of the PCK activator Indolactam V (Chen et 

al., 2009) and the culture in suspension condition mimicking in vitro pancreatic islet 

culture (J. Jiang et al., 2007), the highest differentiation efficiency reached with this 

iPSC cell line was approximately 7% of insulin-positive cells, measured by flow 

cytometry. Gene expression data, both by Taqman and by Digital PCR, confirmed that 

terminally differentiated cells underwent all the steps of pancreatic organogenesis, 

expressing all the keys genes and transcription factors characteristic of each stage of 

differentiation. In particular, we observed a downregulation of the pluripotency markers 

Oct4, Nanog and SSEA-4 during pancreatic differentiation, although Oct4 expression 

was detected also during the last stage of in vitro differentiation; this observation is 

consistent with a study that reported Oct4 expression in pancreatic islet of healthy 

subjects (Iki & Pour, 2006). During specification to definitive endoderm cells, we 

detected a significant upregulation of the genes Sox17 and Foxa2 and of the microRNA 

miR375 (a key regulator of pancreatic development) (Lahmy et al., 2013), and an 
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increase in the percentage of Cxcr4 positive cells, confirming the differentiation of 

iPSC into DE cells. At the subsequent step of posterior foregut specification, the 

upregulation of Hnf1b and especially of the fundamental transcription factor Pdx1 was 

observed, while at the following differentiation step into pancreatic endoderm, also the 

genes Ngn3 and Nkx2.2, essential for  cell specification, resulted more expressed. 

Finally, at the end of the differentiation process, insulin mRNA expression resulted 

highly increased. In addition to insulin expression, other characteristics are needed to 

establish that iPSC have indeed generated functional  cells. Here, the final cell product 

presents distinctive features of mature  cells as the expression insulin, Glut2, 

Glucokinase, and of the microRNAs miR9 and miR-124a, two non-coding RNAs which 

have been described to play an active role in regulating insulin secretion (Baroukh & 

Van Obberghen, 2009; Ramachandran et al., 2011). Differentiated cells also showed the 

ability to secrete C-peptide in basal and stimulated conditions. Our in vitro results are in 

line and extend the few previous publications on human iPSC differentiation in  cell 

(Tateishi et al., 2008; D. Zhang et al., 2009; Nostro et al., 2011; Thatava et al., 2011; 

Kunisada et al., 2012; Hakim et al., 2014). The differentiation of iPSC to insulin-

producing cells with a process able to mimic every stage of pancreatic organogenesis 

represents also a powerful tool for the in vitro study of pancreas development. In the 

present study, we reported the characterization of microRNAs expression profiles 

during differentiation of iPSC into insulin-producing cells in order to discover which 

microRNAs regulate  cells specification. During in vitro differentiation we detected 

the progressive upregulation of 11 microRNAs and downregulation of 7 microRNAs. 

The concept that microRNAs operate in concert in well-defined gene networks (Herranz 

& Cohen, 2010), prompted us to analyze the functional classification of predicted target 

genes belonging to differentially expressed microRNAs grouped into ‘upregulated’ or 

‘downregulated’ in each differentiation stages respect to undifferentiated iPSC. Indeed, 

target genes analysis showed that microRNAs synergistically regulate cohorts of genes 

that participate in similar processes. Specifically, ontological analysis of microRNAs 

target genes revealed that those upregulated in DE and PF stages are predicted to 

regulate several genes whose functions can be ascribed to the control of tissue 

development or cell morphogenesis. MicroRNAs upregulated in the final stage of 

differentiation are instead predicted to target several genes involved in pancreas 
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development and exocytosis control. These data demonstrate that several microRNAs 

are upregulated during differentiation, in order to progressively control specific target 

genes involved in developmental processes or endocrine-pancreatic cell fate 

specification. For downregulated microRNAs instead, bioinformatic analysis revealed 

that most of their target genes belong to ‘regulation of phosphorylation’ (DE and PF 

stages) while ‘regulation of metabolic processes’ was the most significant category in 

the final stage. Interestingly, it has been recently reported that during differentiation of 

pluripotent stem cells, more than 50% of phospho-sites are regulated, providing 

evidence of the involvement of protein phosphorylation as a mechanism of cell fate 

specification (Van Hoof et al., 2009). In this context, the downregulation of such 

microRNAs may allow on one side the expression of those genes involved in 

phosphorylation processes and, on the other, facilitate the expression of those involved 

in metabolic processes, thus favoring the endocrine-pancreatic phenotype specification 

during differentiation. These results could therefore lead to the identification of markers 

of novel pathways and/or individual targets for possible pharmacological interventions 

able to increase the efficiency of the differentiation process. 

This is the one of the first studies in which human iPSC-derived pancreatic cells are 

transplanted in vivo in animal models. One recent paper reported C-peptide production 

after in vivo infusion of human iPSC differentiated to  cells, but the study was mainly 

focused on the correction of glucokinase deficiency in iPSC derived from MODY 

patients (Hua et al., 2013). Other previous in vivo experiences were limited to mouse 

iPSC, showing that transplantation of differentiated cells are able to correct 

hyperglycemia in models of type 1 and 2 diabetes (Alipio et al., 2010; Jeon et al., 2012).  

Only very recently two groups reported for the first time that pancreatic cells derived 

from the differentiation of pluripotent cells (both ESC and iPSC) were able to revert 

diabetes in mice within few weeks (Rezania et al., 2014; Pagliuca et al., 2014). In our 

study, we transplanted human iPSC-derived cells both at the stage of endocrine 

(INSULIN positive cells) and of pancreatic endoderm cells (PDX1 positive cells). In the 

first case, cells engrafted and we were able to find them in the graft, although only after 

a short period of observation, while after 3 months the infused cells had almost 

completely disappeared. The graft resulted composed not only of pancreatic lineage 

cells (expressing Pdx1, insulin and glucagon), but also of pluripotent and of other 
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lineages cells. Significant number of insulin-positive cells was found only in grafts 

retrieved 1 week after infusion and not after 4 and 12 weeks. Accordingly, mice 

responded to oral glucose stimulus by releasing human C-peptide from the graft only 1 

week after transplantation. Borrowing the experience from ESC (Kroon et al., 2008), we 

also transplanted iPSC-derived pancreatic endoderm cells: precursors survived and 

engrafted, but, as for terminally differentiated cells, at the longest time of follow-up, we 

were not able to find insulin-positive cells and mice did not secrete human C-peptide. 

Also in this setting, the graft we retrieved was characterized by a mixed population of 

pancreatic, neuronal and undifferentiated cells. We hypothesize that insulin-positive 

cells may have been replaced by undifferentiated cells in proliferation or have lost their 

pancreatic commitment. Besides, also the degree of neo-vascularization of the graft may 

have influenced insulin-positive cell survival, since it is well known that islet 

vasculature provides critical instructive signals necessary for  cell differentiation and 

survival (Reinert et al., 2013). Finally, we can speculate that the infusion of a mixed 

population of cells, reflected by a heterogeneous graft, could decrease the efficacy of 

insulin production, increase tumorigenicity and negatively impact on differentiated cell 

survival. To improve safety and avoid risk of tumorigenesis, it would be necessary to 

select only cells of pancreatic lineage. Several attempts have been made to look for new 

surface markers able to select pancreatic progenitors (Jiang et al., 2011; Kelly, Chan, L. 

A. Martinson, et al., 2011) or to get rid of unwanted pluripotent cells (Ben-David et al., 

2013), but the safety of the selected cells still requires further investigation. Besides, 

some transcriptional factors or genes such as Pdx1, Ngn3 or Insulin could be used as 

selection markers, but they have intracellular or intranuclear expression; therefore, 

standard sorting strategies cannot be applied. Very recently, however, novel methods 

for cell selection based on fluorescent nanoparticles capable of detecting mRNA targets 

inside living cells have been developed (Lahm et al., 2015). These tools would allow 

separation of cells at different stages of maturation with significant reduction of 

contaminating cells.  

To try to increase the safety of iPSC and to get closer to an eventual clinical traslation 

of this type of approach, we moved to the use of iPSC generated through infection of 

Yamanaka’s factors with Sendai virus, a RNA-based virus able to reprogram somatic 

cells with a relatively high efficiency (0,1%) avoiding transgenes integration into the 
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host genome (Fusaki et al., 2009). We first tested our in vitro differentiation protocol on 

one clone of SeV-iPSC and also with this cell line we obtained the differentiation into 

insulin-producing cells following all the steps of pancreatic organogenesis. Compared 

to retrovirus-generated iPSC, we observed a higher expression of all the the key genes 

and transcription factors characteristic of each stage of differentiation, including insulin 

(1567,9±785.1 FC compared to 420976.6±292501.4 FC over undifferentiated iPSC), 

but the total number of insulin positive cells detected was lower. These differences in 

the efficiency of differentiation are reported also in the literature, and can be ascribed to 

the variety of protocols but also to the characteristics of the pluripotent cells used, 

which are different in terms of source, reprogramming methods and culture conditions 

in every single experience. In fact, also in the ESC field, it has been published that 

different cell lines show different propensity to give rise to pancreatic cells (Osafune et 

al., 2008). We then tested a newly described differentiation protocol able to differentiate 

pluripotent cells to -like cells with high efficiency (Pagliuca et al., 2014) on SeV-iPSC, 

but we observed a gradual cell death during the last steps of the differentiation process. 

We then decided to add some modifications to the published protocol: the use of a 

commercial kit for a standardized and efficient differentiation into definitive endoderm 

cells and the growth in suspension conditions during the last steps of in vitro

differentiation as previously described. The protocol defined by Pagliuca et al., 

involves, compared to the protocol of the Viacyte group, the use of different molecules 

but able to affect the same pathways (KGF instead of FGF-10, the sonic hedgehog 

inhibitor SANT-1 instead of CYC, the PCK activator PdbU instead of Indolactam V, 

the Notch inhibitor XXI instead of DAPT) and the addition of new factors able to 

increase Pdx1 and insulin expression, like TGF  and BMP pathways inhibitors (Alk5i 

and LDN193189), Thyroid hormone T3 or Betacellulin. With our new modified 

differentiation protocol, we obtain again an overexpression of all the keys genes and 

transcription factors characteristic of each stage of differentiation, but also, at the end of 

the differentiation process, an high percentage of insulin positive cells (14,23%) 

measured by flow cytometry. Terminally differentiated cells were able to secrete C-

peptide both in basal and stimulated condition, indicating that iPSC-derived pancreatic 

cells are able to secrete insulin in response to glucose.  
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Taken together, our data therefore confirm that: (i) iPSC can differentiate into insulin-

producing cells, (ii) pluripotent cell specification goes through the developmental stages 

of the embryo, (iii) the efficiency of the process, in terms of percentage of insulin-

positive cells at the final step, is comparable to that of ESC, (iv) human iPSC-derived 

pancreatic cells can engraft and survive in vivo at least for a short time. These data 

overall suggest that human iPSC have the potential to generate insulin-producing cells, 

that these differentiated cells can engraft and secrete insulin in mouse models, but a 

significant increase in differentiation efficiency and/or a strategy of selection of target 

cells before infusion is strongly needed. Moreover, also an efficient, low-cost and 

integration-free reprogramming strategy in GMP condition is fundamental for the 

translation to the clinical practice of an ideal personalized cell therapy for the cure of 

diabetes with pluripotent stem cells. 
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Finalmente adesso torni, sei mancata tantissimo! 

Grazie Debby, grazie bambina per essere la persona unica che sei. Non so dire quanto 

mi mancherai…spero che i 3 anni di questa tua nuova avventura passino in fretta e che 

tornerai presto da noi. 

Grazie a Fabio e Concetta, il mio braccio destro e il mio braccio sinistro in questi ultimi 

mesi. Senza di voi non so come avrei fatto…e non lo dico solo perché il c-peptide l’ho 

visto solo da quando siete arrivati voi! Mi avete supportata (e sopportata!) giorno dopo 

giorno sia sperimentalmente che spiritualmente…grazie! 

Grazie a Valentina, che mi ha sempre donato ottimismo e buoni consigli quando 

pensavo di non farcela… sia al lavoro che fuori! Non vedo l’ora che sia aprile per fare i 

nostri lab meeting del martedì! 

Grazie a Paolo, il group leader più onnisciente del mondo. Sei l’unica persona che 

riesce a farmi ridere sempre, qualsiasi cosa accada e qualunque sia il mio umore, e non 

hai idea di quanto io ti sia grata per questo. 

Grazie alle isolologhe Alessia, Raffaella e Rita, per tutti i pellet, le isole, i consigli e i 

sorrisi che mi avete regalato in questi anni. 

Grazie anche a Vito, Cristina e Ilaria, formalmente non del nostro lab ma è come se lo 

foste. 

Dani, non mi sono dimenticata di te (e non ti sto escludendo dal gruppo del lab!), è solo 

che sei così importante da meritare una sezione a parte. Ringrazio sempre il giorno in 

cui Erica ha scelto te, perché lei ha trovato una grande ricercatrice, io una grande amica. 

E sono certa che qualsiasi strada decideremo di percorrere nella vita, la percorreremo 

insieme. You are my person.  
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Grazie anche a tutti gli “inquilini” del DRI, ognuno a modo suo parte integrante delle 

mio giornate. 

Un grazie “mega” va a Fra. Grazie per lo strano rapporto che siamo riusciti a creare in 

questi anni, perché nonostante tutto ci sei sempre stato. E so che potrò sempre contare 

su di te, qualsiasi cosa accada. 

Grazie a Sara, la mia salvezza spirituale in quest’ anno difficile! Grazie per il tuo 

immancabile ottimismo! 

Grazie Silvietta (e il piccolo Dani!) ed Andre, da 10 anni sempre accanto a me. 

Grazie a Giulie e Bla, le mie fecole preferite. Siete amiche speciali. 

Grazie anche ad Ale (finalmente sei tornato!), Elena (dai che arriverai presto anche tu a 

scrivere questa pagina!) e Nico (il mio futuro vicino di casa!). 

Grazie anche a quelle persone a cui dovrei dire tutto tranne che grazie, perché 

comunque mi sono servite a ricordarmi di quanto posso essere forte. 

Grazie alla mia famiglia, ai miei insostituibili genitori (e alla Happy ovviamente). 

Grazie per tutti i sacrifici che avete fatto per permettermi di arrivare a questo punto e 

per l’infinita pazienza che avete avuto nel sopportarmi nei miei momenti bui.  

Spero di avervi reso orgogliosi di me. 

All’interno della famiglia ringrazio anche Alessia, la mia sorella acquisita, che anche se 

è dall’altra parte del pianeta riesce a farmi sentire la sua presenza e ad essermi vicina 

come quando abitavamo nello stesso palazzo.  

E infine grazie all’unico vero Ragazzo della mia vita, Giuse. Non riesco neanche ad 

immaginare come sarebbe triste ora la mia vita se non ci fossimo mai incontrati. Da 

quando sei parte integrante della mia vita ho la certezza assoluta che non sarò mai sola, 

perché so che tu sarai sempre con me, pronto a starmi vicino come solo tu sai fare.  

E per quanto tu dica di dover fare il contrario, io mi auguro che non cambierai mai, 

perché sei semplicemente meraviglioso così come sei. GRAZIE. 


