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Abstract

One of the main concerns in centralized and decentralized OSNs is related to the fact that
OSNs users establish new relationships with unknown people with the result of exposing
a huge amount of personal data. This can attract the variety of attackers that try to
propagate malwares and malicious items in the network to misuse the personal information
of users. Therefore, there have been several research studies to detect specific kinds of
attacks by focusing on the topology of the graph [159, 158, 32, 148, 157]. On the other hand,
there are several solutions to detect specific kinds of attackers based on the behavior of
users. But, most of these approaches either focus on just the topology of the graph [159, 158]
or the detection of anomalous users by exploiting supervised learning techniques [157, 47,
86, 125]. However, we have to note that the main issue of supervised learning is that they
are not able to detect new attacker’s behaviors, since the classifier is trained based on the
known behavioral patterns. Literature also offers approaches to detect anomalous users in
OSNs that use unsupervised learning approaches [150, 153, 36, 146] or a combination of
supervised and unsupervised techniques [153]. But, existing attack defenses are designed
to cope with just one specific type of attack. Although several solutions to detect specific
kinds of attacks have been recently proposed, there is no general solution to cope with the
main privacy/security attacks in OSNs.

In such a scenario, it would be very beneficial to have a solution that can cope with the
main privacy/security attacks that can be perpetrated using the social network graph. Our
main contribution is proposing a unique unsupervised approach that helps OSNs providers
and users to have a global understanding of risky users and detect them. We believe that
the core of such a solution is a mechanism able to assign a risk score to each OSNs account.
Over the last three years, we have done significant research efforts in analyzing user’s
behavior to detect risky users included some kinds of well known attacks in centralized and
decentralized online social networks.

Our research started by proposing a risk assessment approach based on the idea that
the more a user behavior diverges from normal behavior, the more it should be considered
risky. In our proposed approach, we monitor and analyze the combination of interaction
or activity patterns and friendship patterns of users and build the risk estimation model
in order to detect and identify those risky users who follow the behavioral patterns of
attackers. Since, users in OSNs follow different behavioral patterns, it is not possible to
define a unique standard behavioral model that fits all OSNs users’ behaviors. Towards this
goal, we propose a two-phase risk assessment approach by grouping users in the first phase
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to find similar users that share the same behavioral patterns and, then in the second phase,
for each identified group, building some normal behavior models and compute for each user
the level of divergency from these normal behaviors. Then, we extend this approach for
Decentralized Online Social Networks (i.e., DOSNs). In the following of this approach, we
propose a solution in defining a risk measure to help users in OSNs to judge their direct
contacts so as to avoid friendship with malicious users. Finally, we monitor dynamically the
friendship patterns of users in a large social graph over time for any anomalous changes
reflecting attacker’s behaviors. In this thesis, we will describe all the solutions that we
proposed.
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Chapter 1

Introduction

Social networks described as internet-based applications that allow users to create profiles
and share content easily with other users. These social networking websites bring people
together to talk, share ideas and interests, or make new friends. Many people join a social
network because they want to stay in contact with their family or current friends.

More precisely, an online social networks (OSNs) is an online platform that provides
social networking services for a user to create a public profile and create a friendship link
between his/her profile and other users [18]. Despite the popularity of centralized OSNs,
the users privacy and control over their data is becoming a major issue for these social
networking services. These issues have motivated researchers to work on and propose
several solutions in order to replace centrally controlled OSNs with Decentralized OSNs
(DOSNs) [30] by retaining the functionalities offered by centralized OSNs. A DOSN is
a distributed social networking service with no dependency on any central infrastructure
[33].

In the same way, DOSNs allow users to create a public or private profile, encourage them
to share information and interact with other users and communicate with each other in the
virtual environment. Once a person creates a profile and start to use a social networking
website, he/she will be in contact with other people including those people he/she does not
know them, called strangers. Therefore, both in traditional centralized social networks and
in decentralized’s one, users are used to establish new relationships with unknown people
by sharing a huge amount of personal data. The interaction of users in these sites reveals
a lot of personal information visible to anyone who wants to view it. Unfortunately, some
users are less concerned about information privacy; therefore, they post more sensitive
information on their profiles without specifying appropriate privacy settings, and this can
lead to security risks.

Risk is a situation involving exposure to danger, hazard, or mischance. Therefore,
exposing to risks means to participate in an activity or event that could lead to damage,
injury, or loss [132]. Risk has been part of every human life and then, all activities in our life
carry an element of risk. Some of these risky activities may not be completely voluntary,
as involuntary risks that are negative impacts associated with an occurrence that happens
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CHAPTER 1. INTRODUCTION 12

to us without our prior knowledge [97]. In some disciplines, a contrast is drawn between
risk and threat [129]. A threat is an event with low probability, but very large negative
consequences and analyzing and accessing the probability is impossible. In the contrary, a
risk is an higher probability event, where there is enough information to make assessments
of both the probability and the consequences. Risk assessment is a continuing process
involves monitoring, analyzing, understanding, identifying and evaluating loss exposures to
reduce the overall cost of operational risk. Therefore, risk management is very important
and essential for all the environments in our life. Risk management enable societies to
minimize the negative consequences and the threats of the associated risks and to remove
or reduce risk exposures.

Today’s globalized world and fast growing technological changes increase the intercon-
nectedness and social networking to improve social relation among people [18]. These social
relations increase the vulnerabilities and create new type of risks with impacts on a longer
time-span or a much larger scale [52]. Most of the users are not aware how much it will
be risky to expose the personal information as well as the serious consequences this might
have. Because, some kind of attackers taking advantage of the popularity of the social
networks and the users’ trust in their relationship to propagate malware and malicious
content and sending spam messages through the network [52]. On the other hand, there
are some kind of attackers that steal the user’s account and misuse them to propagate mal-
ware while users themselves are not aware of the consequences of stealing their accounts.
Therefore, some of the information posted on these sites can lead to security risks such as,
identity theft and cyber stalking. Moreover, there are some kind of attackers that create
fake accounts and propagate spam massages and malicious links. In these cases, whenever
a user click on these malicious contents, the message will post to his/her friends. On the
other hand, creepers are those real risky users that make trouble for both users and service
providers by posting some adv. items and encourage users to share those items in OSN for
advertisement purposes. Besides, in some kind of attacks like Cyberbullying attack, real
risky users send repeated hurtful messages to their victims. All these kind of attackers and
risky users do some risky activities in OSN that make an OSN unsafe environment for both
all other users and service providers.

As a result, the successful online social network needs a complete vision of risk man-
agement, where the service provider considers the solutions to protect the network against
some risks, and also which risks to exploit and how to exploit them. Then, in order to get
a safer environment, risk analysis and trust management in centralized and decentralized
social networks are an essential and important element for successful social networking
experiences.

1.1 Objective

The Marie Curie iSocial ITN project1 aspired to bring a transformational change in Online
Social Service provision, from centralized services towards totally decentralized systems.

1http://isocial-itn.eu/
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OSNs decentralization can address privacy considerations and improve service scalability,
performance and fault-tolerance in the presence of an expanding base of users and applica-
tions. The project has provided DOSNs services, in the absence of central management and
control. Based on the main goal, iSocial project has consisted of several components: dis-
tributed and scalable overlay Infrastructure for DOSNs, distributed storage infrastructures
that provide support for open social networks and for innovative social network appli-
cations, security, preserving end-user privacy and information ownership and risk/trust
estimation and modelling/simulation.

At this purpose, as the first stage of research activities in iSocial project associated to
security, risk management we made a comprehensive and detailed review of works related
to risk concepts in the context of social networks. This pointed out that mechanisms for
risk estimation have to be improved and adapted in order to be adopted in decentralized
social networks.

1.2 Essential Approach

Based on our preliminary study, this thesis presents efforts we carried out to describe some
of the main risks in centralized and decentralized OSNs and proposing some solutions for
risk estimation by analyzing and monitoring the users’s behavioral patterns. The key goal
of this thesis is analyzing those risks associated with the behavior of users in OSNs/DOSNs.
We need take into account technical capabilities and relative tendency of users to engage
in risky behavior on these social networking sites by taking in consideration both users
behavior (i.e., their patterns of interactions) and their social graphs (i.e., the network
structure). Then, we can anticipate bad behavior and reputation damage so that these
risks can be mitigated prior to adoption.

More precisely, the underling idea is that anomalous user behaviors can be risky in
the network. As such, the more the user behavior diverges from ‘normal behavior’, the
more he/she has to be considered risky. Thus, our goal is to detect anomalous users by
considering user’s interaction with all other users in the network. This implies to define
at first what the normal behavior is, then detecting anomalies. We achieve this goal using
outlier detection techniques to identify anomalous users with respect to their emerged
behaviors.

1.3 Main Contribution

In summary, this thesis provides the following research contributions:

• The definition of the model for detecting risky users in centralized OSNs that follow
the behavioral patterns of well-known attackers. Based on this principle, we propose
a risk assessment based on the idea that the more a user behavior diverges from
what it can be considered as a ‘normal behavior’, the more it should be considered
risky. Because, although the dramatic increase in Online Social Networks (OSNs)
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usage, there are still a lot of security and privacy concerns. In such a scenario, it
would be very beneficial to have a mechanism able to assign a risk score to each
OSNs user. In doing this, we have taken into account that OSNs population is
really heterogeneous in observed behaviors. As such, it is not possible to define a
unique standard behavioral model that fits all OSNs users’ behaviors. However, we
expect that similar people tend to follow similar rules with the results of similar
behavioral models. For this reason, we propose a two-phase risk assessment model,
where users are first grouped together to find similar users that share the same
behavioral patterns. Then, for each identified behavior, we build one or more normal
behavioral models. To reach this goal, the key contributions include determining
various user features to model normal/anomalous behaviors and assign a risk score
to each OSNs user. The carried out experiments on a real Facebook dataset show
that the proposed model outperforms a simplified behavioral-based risk assessment
where behavioral models are built over the whole OSNs population, without a group
identification phase;

• Proposing an approach for helping users to judge their direct contacts in OSNs by
assigning a local risk score to them. This brings us to investigate a risk estima-
tion measure by considering the topology of user’s social graph. In particular, the
proposed risk measure comes from the observation done in [5], where it has been high-
lighted that a user of a given network is anomalous if his/her subgraph significantly
differs from those of other users. Therefore, we proposed a graph-based outlier detec-
tion methods tailored over features meaningful for the detection of risky behaviors in
OSNs. The overall purpose is to obtain a local risk measure that helps users to detect
potential attackers among their contacts. This consideration brought us to design a
set of features defined based on attacker activity patterns. To prove the effectiveness
of the proposed risk measure, we run several experiments on a real OSNs dataset
(i.e., Orkut social network) with more than 3 million vertices and 117 million edges,
by injecting synthetic fake users according to different settings and showing how the
proposed measures can indeed help in their detection. The results presented in this
chapter has been published in [84];

• Proposing a change detection approach able to identify users with anomalous changes
in the structure of their subgraphs in OSNs. Effectively and efficiently detect these
changes has the potential to enable the service providers of OSNs to anticipate and
respond to the attackers and risky users. In particular, we were interested in detecting
user changes that can be considered anomalous compared to: (a) other similar users
with the same change patterns, and (b) his/her own previous change patterns in the
past. More precisely, we analyze and monitor the change patterns of users over time
and compare them with their own previous change patterns and the change patterns
of other similar users in the network and measure the degree of changes for each
user, by thus providing a level of anomaly, which can be used to trigger the proper
response. Our approach returns a list of these users by ranking them based on the
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value of their change deviation. We analyze the performance of our approach on a
real Google+ dataset;

• Proposing a distributed approach for identifying behavioral groups of users that share
the same behavioral patterns in decentralized social networks. In DOSNs, the aim is
to give the users control over their data and keeping data locally to enhance privacy.
In the fully distributed social graph, each user has only one feature vector and these
vectors can not move to any central storage or other users in a raw form duo to privacy
issues. The main contribution of this approach is adopting a distributed clustering
algorithm to be applicable on top of DOSNs and apply it to identify behavioral groups
of users. Our goal is to achieve an accuracy comparable to a centralized scheme by
considering both social and individual patterns of users. Moreover, in this proposed
approach, feature values of users are never send over the network in a raw form and
the approach has low computation and communication cost. In order to evaluate our
approach, we implement our algorithm and test it in a real Facebook graph;

• Proposing a solution that enables a target user in DOSNs to assign a risk score to
other users which send friend request to him/her and also his/her direct contacts by
considering their activities and friendship patterns in the network. The goal is to
compare the behavioral patterns of users with other similar users in the network to
find misbehaviors in a distributed manner. More precisely, we proposed a distributed
two-phase risk assessment approach by grouping users in the first phase based on their
group identification features and then, in the second phase, each user builds one or
more behavioral models for his/her identified group and other groups by defining
various user features to model normal/anomalous behaviors.

1.4 Thesis Organization

The thesis consists of seven chapters, whose content is briefly described in what follows:

• Chapter 2- In this chapter, we review several current attack detection/risk assessment
approaches in OSNs/DOSNs and their drawbacks. Moreover, we summarize several
graph based anomaly/outlier detection approaches and those related literature for
distributed community detection and group identification approaches;

• Chapter 3- We start to propose a comprehensive unsupervised approach to detect
risky users in OSNs that follow the behavioral patterns of well-known attackers.
Towards this goal, we propose a risk assessment approach organized into two phases:
similar users are first grouped together, then, for each identified group, we build one
or more models for normal behavior. In this chapter, we review several attackers in
OSNs and all the details related to their behavioral patterns in the network;

• Chapter 4-This chapter describes and discusses an efficient and effective measure
helping users to judge their direct contacts so as to avoid friendship with malicious
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users that could misuse their personal information. At this purpose, in this chapter
we propose a risk measure, called local risk factor, having as a key idea the fact the
malicious users in OSNs (aka attackers) show some common features on the topology
of their social graphs, which is different from those of legitimate users;

• Chapter 5- Once we have done the local risk estimation in the previous chapter, we
propose a dynamic solution for highlighting of anomalous changes in a sequence of
social graph snapshots to detect risky users in OSNs by monitoring and analyzing
their behavior over time. This is interesting due to its numerous applications. For
instance, it may be helpful for the identification of attackers or risky users in Online
Social Networks (OSNs). Indeed, dynamically monitoring and learning the friendship
patterns of users in a large social graph over time for any anomalous change often
reflects and predicts significant events or attacker’s behaviors. In this chapter, we
focus on anomalous changes that happen in the neighborhood of OSNs users. Our
main goal is to assign a risk score to each user by considering the anomalous changes
that user has in the structure of his/her subgraph in compare with his/her own
previous change patterns in the past and from those of other nearest users in the
graph;

• Chapter 6- The main goal in this chapter is identifying behavioral groups of users that
share the same behavioral patterns in decentralized OSNs. We propose a distributed
approach to identify behavioral group of users that share the same behavioral patterns
in DOSNs. We use a gossip learning approach where all users are involved with their
local estimation of the clustering model and improve their estimations and finally
converge to a final clustering model available for all users;

• Chapter 7- In this chapter, we extend the sixth chapter by proposing a distributed
two-phase risk estimation approaches to detect risky users in DOSNs based on their
behavioral patterns. In DOSNs, each user has a single feature vector including his/her
interactions and personal information and these local information cannot be moved to
a central server or to other users in a raw form due to privacy issues. Therefore, this
can attract a variety of privacy and highly damaging attacks. These attackers forward
spam and malware on online social network. Since attackers have weird behavioral
pattern in the network, our goal is to analyze the behavior of users (interactions
or activity patterns) in DOSNs by identifying those risky users whose follow the
behavioral pattern of attackers. More precisely, when the user behavior diverges
from ‘normal behavior’, the user will be considered as risky.

1.5 Related Publications

The research activities described in this thesis have bring to the following publications:

• Naeimeh Laleh, Barbara Carminati, Elena Ferrari, ”Graph Based Local Risk Estima-
tion in Large Scale Online Social Networks,” In: IEEE conference in social computing
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and networking 2015, SocialCom2015;

• Naeimeh Laleh, Barbara Carminati, Elena Ferrari, ”Risk Assessment in Online So-
cial Networks based on Anomalous Behavior Detection,” in IEEE Transactions on
Dependable and Secure Computing 2016, accepted, To appear;

• Naeimeh Laleh, Barbara Carminati, Elena Ferrari, Sarunas Girdzijauskas, ”Dis-
tributed Gossip based Behaviour Group Identification in Decentralized Online Social
Networks,” International conference in Machine Learning and Data Mining, MLDM
2016, Springer, New York, USA, Accepted, To appear;

• Naeimeh Laleh, Barbara Carminati, Elena Ferrari, “Dynamic Anomalous Change
Detection in User’s Neighborhood in Time-evolving OSN Graphs,” in 15th IEEE
IFIP annual Mediterranean Ad Hoc Networking 2016, Accepted, To appear;

• Naeimeh Laleh, Barbara Carminati, Elena Ferrari, Anders Holst, Sarunas Girdzi-
jauskas, “Distributed Gossip Based Risk Assessment in Decentralized OSN based on
Anomalous Behavior Detection,” Under preparation.



Chapter 2

Related Work

2.1 Introduction

The popularity of online social networks attracts a variety of attackers and malicious users
which try to misuse the personal information of users in the network. Therefore, to address
the growing problem of discovering malicious activities on social networks, researchers have
started to propose different detection and mitigation approaches. In particular, the first
category of approaches, focuses on detecting attackers and fake accounts in centralized
social network. Therefore, first we discuss the related work for risk estimation on OSNs
in Section 2.2. The second category of approaches try to detect anomalous users in so-
cial graphs (see Section 2.3. After that, we cover those approaches to detect changes in
time evolving graphs in Section 2.4. Afterwards, we will give the state of art in commu-
nity detection for risk estimation purposes in Section 2.5 and distributed risk estimation
approaches on decentralized social networks in Section 2.6.

2.2 Risk Assessment in OSNs

A first stream of papers focuses on detecting attackers and fake accounts in centralized
social networks. Some of these approaches are graph based and others are behaviour
based.

Graph-based sybil detection schemes make assumptions about the OSNs graph growth
and structure. Based on these assumptions, researchers use various graph analysis tech-
niques to develop algorithms for sybils detection, such as sybilGuard [159], sybil-Limit
[158], sybilinfer [32], and SumUp [148]. However, recent studies pointed out that these
assumptions might not always hold. Indeed, it has been observed that sybils mix well into
the rest of OSNs graphs [157], and that most of OSNs graphs are not fast-mixing [109].
These have implications in the proposed detection schemes, in that these may end up in
false positive and false negative results [152, 15]. Compared to graph-based sybil defense
techniques, our proposed risk assessment model is more flexible as it does not rely on the
same assumptions, since we consider the activity patterns of sybils after they joined the
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OSNs.
Most recent behavior-based approaches for the detection of anomalous users in OSNs

exploit supervised learning techniques [157, 47, 86, 125]. As an example, in [157] to detect
sybils, the proposed system trains a classifier by extracting four features, like: accepted
incoming requests, accepted outgoing requests, invitation frequency and clustering coeffi-
cient. In [47], also authors proposed a supervised approach to detect compromised account
attack by using a small manually labeled dataset of legitimate and anomalous users. [86]
and [125] used classifiers to detect spam and malware respectively. However, we have to
note that the main issue of supervised learning is that they are not able to detect new
attacker behaviors, since the classifier is trained based on the known behavioral patterns.
Literature also offers approaches to detect anomalous users in OSNs that use unsupervised
learning approaches [150, 153, 36, 146]. As an example, [150] used Principal Component
Analysis to detect anomalous users in OSNs. Their approach provides a framework for
modeling user behavior in an OSNs and leverage the user behavioral features to detect
misbehavior. They detect anomalous users based on the number of likes per day. Al-
though there is an issue that attackers can distribute their likes on several days to avoid
detection and attacker with low level of activity can not be detected because of intermixing
between legitimate and anomalous behavior. In [153], the author proposed a combination
of supervised and unsupervised techniques by analyzing the clickstream behavioral of users
in OSNs in order to detect sybils.

Our analysis of attack behavior and characteristics in Chapter 3 demonstrates that
most of the current unsupervised techniques are quite ad-hoc and complex. Some of these
unsupervised behavior-based risk models suffer from high false negative and positive rates,
due to the large variety and unpredictability of behaviors of both legitimate and malicious
OSNs users. In addition, existing attack defenses are designed to cope with just one type
of attack. However, given the presence of several type of risky users in OSNs, we believe a
more comprehensive approach to effectively detect and defend against them is needed.

Similarly to the proposal presented in Chapter 3, a risk measure for OSNs users has
been proposed also in [3]. However, in [3] authors defined the local risk measure, that is, a
measure computed only considering the similarity between two target users (e.g., network
similarity and profile similarity). In contrast, we propose a more general risk measure that
takes into account behavioral patterns of a target user and compares them with the rest of
network.

2.3 Graph Based Local Risk Estimation in OSNs

To cope with emerging security and privacy concerns, research community has started to
deeply investigate and propose mechanisms for safer and trustworthy OSNs. Our goal is to
investigate a risk estimation measure based on outlier detection approach by considering
the topology of user’s social graph to help users to judge their contacts. Relevant for
our proposal are the works targeting graph-based outlier detection (see [6] for a survey).
Among them, structure-based approaches make use of graph-centric features, such as node
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degree and subgraph centrality [63], that are sometimes used together with other features
extracted from additional information sources to identify outliers.

The feature-based approaches have been used in several anomaly detection application
domains, including network intrusion detection [41], web spam detection [11] and, fraud
detection [83].

One of the research works, ODDBALL [5] extracts ego network features by considering
one step subgraph, such as the degree, total weight, principal eigenvalue, etc. to find
patterns that most of the nodes of the graph follow with respect to those features and spot
anomalous nodes as those that do not follow the observed patterns. In our approach we
consider different features driven by the structural behavior of attackers in real OSNs. In
addition, we considered the 2 step subgraph (the network of all direct contacts of ego).
Because based on the behavior of attackers in OSNs, considering only ego network features
is not enough. More precisely, researchers stated that most sybils and fake accounts can not
create link with normal users and most of their friends are either sybils or popular users
[17]. Therefore, considering the network of direct contacts of attackers is important to
reveal these kinds of structural behavior. Another research work use recursive graph based
features to capture behavioral information for classification and de-anonymization tasks
without the availability of class labels [64], although their goal is not anomaly detection.

One of the application of anomaly detection in OSNs is spam filtering. [56] performs
online spam filtering on social networks using incremental clustering, based on network-
level features such as sender’s degree and the interaction history between users.

In addition to anomaly detection, there are some approaches for Sybil detection [14, 25].
These approaches uses different graph analysis algorithms to search for legitimate and Sybil
users. Although, these schemes work by analyzing the structure of the social network, all
of them make three common assumptions. First, the legitimate region of the graph is
densely connected. Second, attackers cannot establish a high number of social connections
to legitimate users. Third, the system is given the identity of at least one legitimate user.
Thus, the performance of these schemes is heavily dependent on the size and characteristics
of the community surrounding the legitimate users. Furthermore, another approach is [15]
that is a combination of graph and content based to detect Sybils. All of the above
mentioned approaches are supervised.

As the risk assessment in OSNs is concerned, [3] propose a measure for risk estimation
by considering the profile similarity and number of mutual friends that a target user has
with other strangers as a measure that how much is risky to become friend with a stranger.
They used supervised classification to assign a risk score. However, due to the challenges
in obtaining labels, supervised learning algorithms are less attractive for the task of risk
assessment. In our proposal, we focus on risk assessment in online social networks based
on unsupervised graph based anomaly detection.
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2.4 Anomalous Change Detection in Time-evolving OSNs

Detection of anomalous changes in time-evolving graph has been widely studied in the
context of mining and statistics [91, 75, 82, 9]. However, there are few approaches able to
detect change in dynamic social graphs.

In general, these approaches extract a summary of each graph snapshot to be compared
over time with the help of similarity functions [121]. Then, when the distance returned
by the considered similarity function is higher than a threshold, the corresponding graph
snapshot is flagged as anomalous. The goal of these approaches is detecting the time of the
anomalous changes in the structure of the whole graph. As an example, [136] computes
distance functions among a sequence of graphs, whereas[144] proposes an approach for
detecting changes in community structure to identify times of these changes. [103] and
[102] consider some network measures, such as closeness centrality, betweenness centrality
and the density of the graph, to detect any change in the graph over time.

Another approach is [23], where, in addition to compute the distances between consec-
utive graph snapshots, the distances between all pair of nodes in the graph are computed
as well. They detect the changes that occur in the time evolving graph based on the dis-
tances between pair of users. [77] proposes a graph feature-based similarity approach to
compare the pairwise node similarity. But, computing all the pairwise similarity scores has
high computational cost. A faster algorithm has been proposed to avoid computation of
similarity among all pairwise nodes [6]. Recently, [28] proposes a statistical approach to
detect change points.

However, these approaches are not able to detect which nodes are responsible for the
detected changes. On of the interesting research work in this direction is [4], which considers
individual local features (e.g., in-degree, out-degree, in-weight, etc.) for each user and
calculates the correlation between these features value over time for all pair of users, to
detect change times in the whole graph structure. However, they identify change points
where the majority of the users in a whole graph deviate from their normal behaviors.
Therefore, if the majority of the users do not deviate from their normal behavior, this
approach fails in detecting the changes.

A most recent work, that is, [137], in addition of finding the changes in the whole graph,
finds also which nodes or edges are responsible for these changes. However, their key goal
is the detection of changes in the whole graph structure.

2.5 Behavioral Group Identification in DOSNs

Work related to this research can be divided into three major areas: community detec-
tion, distributed clustering algorithms in large distributed networks, and distributed EM
algorithms.

In the context of community detection, there are plenty works that return clusters of
similar users, where users in each cluster are strongly connected with each other. These
community detection approaches focuses on identifying tightly-connected clusters (com-
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munities), relying on topological structures [38, 48], by considering the common neighbors
between two user. These methods are based on Minimum-cut [114], maximal clique [2],
modularity [115], edge betweenness [58] and etc. But, those topological based community
detection approaches fail to group users with the same behavioral pattern in that they
might belong to different communities based on their friendship links. For example, the
popular users with high number of friendships can not be considered in the same commu-
nity by community detection approaches if they don’t have any friendship. Furthermore,
active users with a high level of activities in the network will be in different communities if
they don’t have any friendship or interaction [111, 40]. In addition, there are some works
that use user’s actions to find popular people in online social network [94]. The researchers
use some centrality measures like closeness centrality, degree centrality, eigenvector cen-
trality, betweenness centrality and page rank in order to define users popularity. But, the
limitation of these approaches is that in order to have popular users with high level of
activity, high number of friendships and same feature vectors in the same community, they
need to construct a graph and the major problem of these community detection methods
is graph construction and scalability [40].

Moreover, researchers proposed some content based community detection methods, that
are relying on the analysis of the content generated by each user (e.g., features of users are
in a d-dimensional space) [111, 94]. The goal of these community detection approaches is
finding similar users with no inherent graph structure. Therefore, in order to apply graph
clustering algorithms for users, the researchers first construct a similarity graph, based
on the distance between user’s feature vector. Then, the problem of clustering the set of
feature vector of users will be transformed to a graph clustering problem. For example,
[111] combines graph structure and the action of users (i.e., sharing the same items) to
identify similar users. The problem of these content-based approaches is that in order
to measure the similarity, users need to send all their private information to their direct
friends or other users that is a big issue in our application due to privacy. On the other
hand, this identification can not be made when the data has many more dimensions (e.g.,
with the mixture of discrete and continuous features). Because, the various behavioral
patterns in the existence of both discrete and continuous features may not be obvious
by using similarity measures. Also, graph construction based on similarity measures will
bring another level of complexity (e.g. defining the edges weight based on the number of
similar features between two nodes in order to connect them in the graph, the required
guarantee for the connectivity of all nodes in the graph and the cut-off threshold to have a
link). Moreover, these content based approaches are not suitable for real-time applications
that require online analysis such as risk assessment, recommendation systems and load
balancing due to the problems of graph construction [40].

Some of the community detection methods are stream-based, suitable for real-time
applications, that is, the researchers incrementally find communities in dynamic graphs
(sequence of graphs). In some of them, they first assign nodes into communities and
then quantify the similarity between different communities and detect the change of the
community over time [90, 44, 116]. However, most of these approaches are link-based or
interaction-based, relying on the level/degree of interaction among users rather than mere
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friendship [92, 40], and they didn’t consider the personal behavioral data including profile
and activity information of users that are in d-dimensional space.

In the second category of related works, there are several distributed clustering algo-
rithms. The most naive approach is simply to build and use a single clustering model for
each user individually based on his/her local dataset (i.e. called local clustering model) [65].
However, in general the performance of using local clustering models improves slowly due
to the lack of data [65, 128]. Moreover, toward our goal in order to identify group behavior,
the local clustering models are not efficient duo to the lack of behavioral pattern of users
(i.e., every user has only his/her own single feature vector). There are other approaches
that users share the data between themselves to have more data samples [155]. But, users
need to share all their private information that is the first issue. Also, some of these
approaches lead to intensive communication among them, which degrades the scalability
[12]. However, there is a graph partitioning approach that is applicable for scalable social
graph, but, each user requires to access the data of both his/her direct friends and a small
subset of random users in the graph [124]. But, in our application personal information
of users can not be moved to their friends duo to the privacy issues. On the other hand,
their approach is link-based and they didn’t consider the feature vector of users. Another
approach is to organize the clustering model in a hierarchical fashion [128, 45, 65] by which
local clustering models are computed first for each user individually, and sent to a logically
higher-level user that aggregates local models, and then, returning results to the lower-level
users for further processing [93]. In such approaches, output from the algorithm is much
dependent on the processing of the highest level user. However, in our application users
need to share all private information (their profile and behavioral information) that is a big
issue as well as in some other applications, so it is essential to process them locally. But,
it is not possible to learn from local models because of the lack of information. Besides,
the communication cost needs to be kept low during our learning process that sharing all
the raw data of users are costly.

Distributed Computation in large distributed systems are included approximate algo-
rithms that computes the approximate data mining results and can be deterministic or
probabilistic.

In the deterministic averaging techniques such as graph-laplacian [34] and linear dynam-
ical systems [131], each user repeatedly select all his/her immediate neighbours to update
the local parameters estimation. For example, authors is [62] proposed an EM algorithm
based on this approach. In [112] the authors have proposed distributed algorithms for
inferencing in wireless sensor networks. Also, converging algorithms for computing simple
computation such as mean, sum or other computations have been proposed in [69]. How-
ever, these techniques are not suitable for social network that cause to overestimate the
parameters estimation because of the existence of some high degree users.

Another kind of averaging techniques is probabilistic gossip based approach [19, 78]
that at each iteration each user repeatedly selects a uniform random user and both users
compute the average of their parameters estimation. For instance, the distributed k-Means
algorithm in [10], the newscast model in [78] and, the gossip-based protocols in [19] are
all based on gossip learning. Also, Newscast EM [79] is based on this approaches and
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some of it’s application includes Multi-camera tracking [107] and distributed multimedia
indexing [117]. Since for applying Newscast EM in social network, the network need to be
fully connected and the user selection need to be done uniformly at random, we use gossip
based peer sampling service on social network to afford this requirement.

In addition, there is another work in fully distributed gossip based linear models that
there are a lot of local learning models that perform a random walk in the network and
update the local models to converge to a global model [118]. However, our proposal in
Chapter 6 is having one learning model that will be converge to a global model ready to
use for each user.

2.6 Distributed Risk Assessment in DOSNs

The work related to our research work in Chapter 7 can be subdivided into three major
areas: discovery of malicious activities on social networks based on graph or behavior of
attackers, distributed EM algorithms and computation in large distributed systems a.k.a
P2P systems.

For discovering malicious activities on social networks, several centralized solutions pro-
posed for detecting fake/sybil accounts in OSNs. Some of them are graph-based, relying on
topological structure of the graph, like sybilinfer [32], Canal [151], Sybil Defender [154], Cai
and Jermaine [24], SybilRank [25], and SumUp [148]. The draw back of these approaches
is that they made some assumptions about the OSNs graph growth and structure, that
these assumptions are not hold in real Renren social graph [157] 1. In our risk assessment
approach, we consider the activity patterns of sybils in order to detect them.

On the other hand, there are approaches that consider the behavior of users to detect
anomalous users in OSNs. Some of them exploit supervised learning techniques [47, 86,
125, 157] to detect compromised account attack, spam, malware and sybils respectively.
The drawback of supervised techniques is that they train a classifier based on the known
behavioral patterns, and they are not able to detect new behavioral patterns of attackers.
Detecting anomalous users in OSNs based on unsupervised learning approaches proposed in
several studies like [150, 153, 36, 146]. For instance, [150] proposed a misbehavior detection
approach based on PCA (Principal Component Analysis) by considering the number of likes
of users per day. Moreover, in [153] and in [15], the authors proposed a combination of
supervised and unsupervised techniques by analyzing the clickstream behavioral of users
and behavioral activity of users in OSNs respectively, in order to detect sybils. Most of
the existing approaches are designed to cope with just one type of attack. But, in [85], the
authors proposed a comprehensive approach to effectively detect and defend against several
type of risky users in OSNs. They proposed several behavioral features of users according to
the behavior of real attackers in OSNs such as, the number of friends, the average number
of mutual friends, the ratio between the number of friends of mutual friends, the number
of likes, number of comments, number of posts, the ratio between the number of posts and
the number of feedback received on them, and etc.

1The popular social network in China: http://www.renren-inc.com/en/
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In the distributed setup, some decentralized topological based approaches like sybil-
Guard [159], sybil-Limit [158], GateKeeper [149], MobID [123], Whanau [88], SybilShield
[135] and VoteTrust [156] are proposed. But, as we mention above, they make some assump-
tions about the graph structure and growth that do not hold in real social graph. Based on
our best understanding, there is no decentralized research work to detect malicious users
in DOSNs based on their behavioral patterns.

In distributed EM research, the naive approach is simply aggregating all the data at the
central location that is not suitable for large asynchronous networks. The other approach
is simply to divide the whole data streams into a set of substreams and to build and
use local models on each substream. In this case, the performance of the local models
improves slowly due to a lack of training samples. To improve the performance of local
models, another approach is sharing the training data between users to have more training
samples. However, this has a large communication cost which degrades the scalability [12].
In [79] a fully distributed EM algorithm, Newscast EM, is proposed which uses gossip-style
distributed computation to compute the parameters of the Maximization-step in peer-to-
peer network. The authors prove that this gossip-based algorithm converges to the correct
result exponentially fast.

Several applications for distributed EM algorithms have also been proposed in the
literature. Multi-camera tracking [107], distributed multimedia indexing [117] are some
of the examples. Although, the existing approaches try to detect malicious behaviors in
OSNs, we believe proposing a distributed risk assessment approach to effectively detect and
defend against risky users in DOSNs, is needed. Because, detecting risky users when the
feature vector of users are fully distributed and can not move thorough the network in a
raw form is challenging. We used newscast EM algorithm in our two-phase risk assessment
approach.



Chapter 3

Risk Assessment based on User
Anomalous Behaviors

3.1 Introduction

Although there is a dramatic increase in OSNs usage – Facebook, for instance, has now 1.55
billion monthly active users, 1.31 billion mobile users, and 1.01 billion daily users1 there
are also a lot of security/privacy concerns. Because, today’s social networks are exposed
to many types of privacy and security attacks. These attacks convincing users to click on
specific malicious links with the aim of propagating these links in the network [51]. These
attacks can either target users personal information as well as the personal information
of their friends. Another widely used attack is the generation of fake profiles, which are
generated with the only purpose of spreading malicious content. In addition, there is a
growing underground market on OSNs for malicious activities in that, for just few cents,
you can buy Facebook likes, share, Twitter followers, and fake accounts.

In this chapter, we propose a risk estimation service that allow a user to make more con-
scious decisions about his/her privacy-risky activities within the network (e.g., answering
to a friend request). Moreover, conducting a risk assessment in OSNs will allow the service
providers to minimize risks and help users to create and maintain a healthier friendship
environment. We believe that a risk score can be useful for those users who want to inspect
their contacts, and also for the service providers wishing to know which users are risky.

Therefore, our goal in this chapter is to assign a risk score to each user, by taking
into account both the user’s activities and friendship patterns in the network. The goal
is to compare the behavioral patterns of users with other users in the network to find
anomalous behaviors. The key idea is that the more the user behavior diverges from what
it can be considered as a normal behavior, the more it should be considered risky (i.e.,
with high risk score). Following this principle requires to address two main issues. The
first is the definition of a user behavioral profile able to catch those user’s activities and
interactions that are considered meaningful for risk assessment. The second issue regards

1http://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
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how to model a normal behavior. In doing this, we have to consider that OSNs users are
really heterogeneous in observed behaviors. However, similar to real world, we expect that
similar users (e.g., similar in activity level, gender, education, country, and so on) tend
to follow similar rules (e.g., moral, social) with the results of similar behavioral models
[7, 140]. Based on this principle, we propose a two-phase risk assessment, where users
are first grouped together according to some features meaningful for group identification.
Then, for each identified group, we build one or more normal behavioral models. To
reach this goal, the key contributions include determining various user features to model
normal/anomalous behaviors, and integrating them with probabilistic-clustering approach
(the Expectation Maximization algorithm). As it will be illustrated in the chapter, we
carried out experiments on a real Facebook dataset to show that the proposed two-phase
risk assessment outperforms a simplified behavioral-based risk assessment where behavioral
models are built over the whole OSNs population, without a group identification phase.

The rest of this chapter is organized as follows. Section 3.2 introduces the overall idea
underlying our approach, whereas Section 3.3 provides a summary of the considered attacks.
Grouping and behavioral features are presented in Section 3.4. Section 3.5 illustrates the
clustering approach as well as the risk definition. Finally, experiments are presented in
Section 3.6.

3.2 Risk Assessment based on user behaviors

As introduced in the previous section, our main goal is to associate a risk score with a user
based on how he/she behaves in the OSNs. More precisely, the key idea is that the more
the user behavior diverges from what it can be considered as a normal behavior, the more
the user should be considered risky. Therefore, we should first define a user behavioral
profile able to catch those user’s activities and interactions that we consider meaningful for
risk assessment.

In an OSN, a variety of activities are possible, such as writing comments/posts, reading,
or sharing items, as well as different types of interactions, like commenting on a users’
post, viewing profile information, assigning likes, joining special groups or pages, sending
invitations to others. In designing a behavioral profile we do not aim at monitoring all users’
activities, but only those that might reveal risky conducts. As an example, writing a lot of
comments/posts without receiving any like on them can be considered a warning that the
corresponding user might be a victim of an attack. On the contrary, simply having a high
number of friends, posts, comments and likes can not be considered as a risky behavior.
However, having a high number of friends, posts, comments and likes in a short period of
time can be considered risky. In order to identify a set of behavioral features, meaningful
for risk assessment, we have deeply reviewed the literature looking for well-known OSNs
attacks (see Section 3.3).

The second issue to be addressed regards how to model a normal behavior that, ac-
cording to the proposed approach, has to be used as baseline to measure how much users
diverge from it and thus to compute the corresponding risk score. In doing this, we have
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Figure 3.1: Two phase risk assesment

to consider that OSNs population is really heterogeneous in observed behaviors. As such,
it is not possible to define a unique standard behavioral model that fits all OSNs users’
behaviors. However, as mentioned in the introduction, we expect that similar people tend
to follow similar rules with the results of similar behavioral models. Based on this principle,
the proposed approach performs a first phase aiming at identifying groups in the OSNs.
This is achieved by exploiting clustering techniques over a set of user features meaningful
for group identification, called, in what follows, Group identification features.

As depicted in Figure 3.1, once groups have been identified it is possible to determine
one or more normal behavioral models for each of them. The identification of these models
is again performed by exploiting clustering techniques that, in this second phase, only
exploit behavioral features. As such, the aim of the second phase is creating behavioral
models for each group identified in the first phase. The clusters obtained as the result
of the second phase allow us to associate a risk score to a target user by calculating the
divergency of his/her behavior from each identified behavioral model (see Section 3.5 for
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more details).

3.3 Risky behaviors in OSNs

As social networking sites have risen in popularity, cyber-criminals or attackers started to
exploit them in propagating malwares and carrying out scams [47]. The activity patterns
underlying attacks are, in general, different from those of normal users. The discrepancy
is defined in terms of frequency, number, as well as type of activities.

In general, attackers use the OSNs infrastructure to collect and expose personal in-
formation about a user and their friends, by even successfully compromising users into
clicking on specific malicious links so as to propagate them in the network [51]. Notable
types of attack are: socialbots [17, 49], sybil attacks [42], identity clone attacks [71, 73],
[89], compromised account attacks [51, 139, 47], socware [125, 67], creepers [139], cyberbul-
lying [106, 104], and clickjacking [96]. In the following, we describe the activity behavior
of these types of attacks in summary.

Sybil attacks. Sybil attacks are one of the most prevalent and practical attacks in
OSNs [87, 113]. As an example, more than an hundred socialbots have been detected
on Facebook [16]. To launch a sybil attack, a malicious user has to create multiple fake
identities [72], known as sybils, with the purpose to legitimate his/her identity [53], so as to
unfairly increase his/her power and influence within a target community [157]. After that,
attackers initiate their work by sending friendship requests to other users in the community.
Once a request has been accepted, the socialbot can gather users’ private data. Researchers
have also observed sybils forwarding spam and malware on Facebook [57] and Twitter [61].

In general, we can classify sybil attacks into two types. The first is sybils with tight-knit
community (dense friendship graph). According to these attacks, adversaries create huge
number of sybils by also establishing connections among them [53]. These are beneficial
since they make sybils appear more legitimate to be normal users. Therefore, many pro-
posals, such as sybilGuard [159], sybilLimit [158], sybilInfer [32], and SumUp [148] try to
detect sybils with tight-knit communities based on the links creation among them.

Authors in [157], have analyzed the distribution of sybil accounts in the OSNs Renren.2

This analysis shows that the vast majority of sybil accounts do not form social links among
them. Moreover, even in case they form, the resulting clusters are loose, rather than
tightly knit. As such, the sybils shows to belong to another type, that is, those with
sparse community (sparse friendship graph). Also, they found that attackers use snowball
sampling techniques to identify and send friend requests to popular users, since these are
more likely to accept requests from strangers [157, 53]. Therefore, sybils have friendship
links with a lot of strangers and their friendship graph become sparse.

A final note is about the generation of fake profiles (also referred to as socialbots), which
are automatic or semi-automatic profiles that mimic human behaviors [51]. Even if these
can be also created by non-malicious users wishing some extra accounts, more commonly,
fake accounts are generated by attackers that want to compromise and influence regions of

2http://www.renren-inc.com/en/
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the graph [139]. In general, these can be created for several purposes, like: friendly pranks,
stalking, cyberbullying, and concealing a real identity to bypass real-life constraints [25];
for profitable malicious activities, such as spamming, click-fraud, malware distribution, and
identity fraud [130]. Additionally, fake profiles can be used to initiate sybil attacks [42],
manipulate OSNs statistics [142, 147], or publish spam messages [57]. The market of buying
fake followers and fake retweets is already a multimillion-dollar business [120]. Identity
clone attacks. In this type of attack, a malicious user creates similar or even identical
profiles to impersonate victims in an OSNs. The key goal is to obtain personal information
about a victim’s friends after successfully forging the victim, and to establish increased
levels of trust with the victim’s social circle for future deceptions. The cloned identity
can also be used to propagate malicious messages to other users in the network [71]. To
run this attack, the adversary first tries to obtain a victim’s personal information, such as
name, location, occupation, and friends list from his/her public profile on OSNs or his/her
personal homepage(s) [51]. Then, the adversary forges the victim’s identity. Afterwards,
he/she sends friend requests to the victim’s contacts. Once the friend requests have been
accepted, he/she builds the victim’s friend network and gains access to the profiles of the
victim’s friends. In general, exploiting the victim’s friend network, the cloned account
forms a network structure similar to the structure of sybils with tight-knit communities.

Compromised accounts attacks. Compromised accounts are accounts where legiti-
mate users have lost complete or partial control of their login credentials. Accounts can be
compromised in a number of ways, for example, by exploiting a cross-site scripting vulnera-
bility, or by using a phishing scam to steal the user’s login credentials. Also, bots have been
increasingly used to harvest login information [141]. Compromising legitimate accounts is
very effective, as attackers can leverage the trust relationships that the legitimate account
has established in the past, to spread malicious content more effectively [13]. Detecting
this kind of attacks based on link creation and profile information is almost impossible,
since the victim is a legitimate user with real profile and real friendship edges. However,
since attackers increasingly abuse legitimate accounts to distribute their malicious mes-
sages [57, 61], it is possible to detect these victims based on their behavioral patterns in
the network.

For example, in [150], authors analyzed the browser malware Febipos that infects user’s
browsers and silently performs actions on Facebook and Twitter using the credentials/-
cookies stored in the browser. After monitoring the behavior of this trojan, the following
activities have been pointed out: (1) like a Facebook page, (2) add comments to a Facebook
post, (3) share a wall post or photo album, (4) join a Facebook event or Facebook group,
(5) post to the victim’s wall, (6) add comments to photos, (7) send Facebook chat messages,
(8) follow a Twitter user, and (9) inject third-party ads into the victim’s Facebook page.
In this case, all these behavioral patterns should be monitored to detect the malware.

Socware attacks. In this type of attack, an adversary creates malware items, called
socware, in the form of applications, pages or events containing malicious links to be
propagated in the OSNs [125]. This attack lures victims by offering false rewards to who
will install/accept the socware [51]. Once users have installed the socware, it not only gets
access to the user’s personal information but also gains the ability to post on the victim’s
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wall. As a consequence, users unknowingly end up sending socware messages or posts to
their friends, essentially assisting the socware’s viral spread [126].

A recent work studied the ecosystem enabling socware to propagate [67]. By analyz-
ing data from the walls of approximately 3 million Facebook users over a period of five
months, they discovered that socware propagation is supported by Facebook applications
that are strategically collaborating with each other in large groups. This highlights that
the propagation mechanism of socware items is faster than other usual items in OSNs.

Creepers attacks. Creepers are real users that are using the OSNs functionalities in
inappropriate ways. As an example, they might send friend requests to many strangers
or post spammy chain letters [139]. They could also temporary sell their accounts to
advertisement services [108]. Sometimes, they collude with other users to send chain letters
or propagate items for advertisement purposes [150]. In these types of social spam the
damage is caused by real users, not automated programs. Therefore, creeper accounts
are characterized by real users that make real profiles, and they might have both sparse
friendship graphs, in case they send many friend requests to strangers, as well as a dense
graphs.

Cyberbullying attacks. Cyberbullying has become quite common in online social
networks. Attackers harass their victims (usually children and teenagers) by posting sexual
remarks, threats, or repeated hurtful messages [51]. Also, attackers spread cruel rumors
about the victims and share embarrassing pictures or videos of the victims in the net-
work [119]. A recent study discovered that 12% of parents claim their children have been
cyberbullied [106]. In addition, the majority of these attacks happened in OSNs sites,
like Facebook. One of the catastrophic results of Cyberbullying is the case of Amanda
Michelle Todd [119] and Rebecca Ann Sedwick [104], that committed suicide after being
cyberbullied on Facebook.

Clickjacking attacks. In this kind of attacks, attackers trick users into clicking some
items different from what they intended to click. Then, the attacker can manage the user’s
account by posting spam messages and performing likes on some items [35, 96]. Therefore,
when users click on such items such as pictures, messages or links, the items automatically
propagate in the network [105].

The analysis of all the above-mentioned attacks drives our feature selection, as detailed
in the following section.

3.4 Features Description

In this section, we describe the set of features used in our two-phase risk assessment ap-
proach.

3.4.1 Group Identification Features

We recall that the aim of the first clustering is to group users for which similar behaviors
are expected. At this purpose, group identification (GI) features should be those that
are greatly discriminating, like age, gender, but also those that impact the possible users’
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Attack name GI FR MFR FMFR CR SC PR PPS LPS CFR PFR OIR LRLP PRPP

Sybils (Dense friendship graph)
√ √ √ √ √ √ √ √ √ √ √

Sybils (Sparse friendship graph)
√ √ √ √ √ √ √ √ √ √ √ √ √ √

Identity clone (Real accounts)
√ √ √ √ √ √ √ √ √ √

Compromised with real accounts
√ √ √ √

Socware (Real accounts)
√ √

Creepers (Dense friendship graph)
√ √ √ √

Creepers (Sparse friendship graph)
√ √ √ √ √ √ √

Cyberbullying (Real accounts)
√ √ √ √ √ √

Cyberbullying (Fake accounts)
√ √ √ √ √ √ √ √ √ √

Clickjacking (Real accounts)
√ √

Table 3.1: Mappings of behavioral features to well-known OSNs attacks

behaviors, like, education and nationality. In addition to these features, we have to take
into account that even if in the real world, people with similar background usually behave
in similar way, in an OSNs this might be impacted by the users’ attitude towards online
social networks that might be different even for similar users. For this reason, in addition
to profile information (i.e., age, gender, education, nationality), in order to measure users’
attitude in online socialization, GI features also include the following:

• Number of friends: social and popular users with a lot of friends or followers have
different patterns from isolate users with few friends. For instance, popular users
with high number of friends are more likely to accept requests from strangers in the
OSNs, whereas isolated users do not [157, 53];

• Activity level: in general, active and popular users write a lot of messages, posts or
comments and receive a lot of likes. In contrast, passive users do not send any infor-
mation to others. We calculate this feature as the sum of the number of posts, likes
and comments that users send to others from the first day of joining the community;

• Percentage of public profile items: the assumption is that users with all profile in-
formation public are more social. On the other hand, users without any public
information either take care of their privacy too much or they are fake profiles.

3.4.2 Behavioral Features

In this section, we present the set of behavioral features (BF) on which our proposal is
based. The design of this set is driven by the purpose of the system, that is, the detection
of risky behaviors in OSNs. At this aim, we have taken into account the behavioral patterns
identified in the study of OSNs attacks discussed in Section 3.3. This analysis brings us
to the definition of 13 BFs, described in the following. As depicted in Table 3.1, this set
is defined such to cover all attack patterns identified in Section 3.3. Another interesting
quality of the identified set is that, as experiments in Section 3.6.4 will show, every single
feature is influent and relevant in the risk assessment process.

Before presenting the proposed behavioral features, we introduce two measures, used
in features computation. The first is the user longevity, which is measured as the number
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of days since the user joined the OSNs. The second one is the item longevity, which is
measured as the number of days since an item has been uploaded in the OSNs.

Friendship Rate (FR). In general, having a high number of friends is not a sign of
risky behaviors. However, literature shows that attackers are more aggressive in estab-
lishing new friendships than normal users [157]. Indeed, it has been shown that attackers
try to infiltrate the target OSNs and befriend with many real accounts, by sending friend
requests to popular users that are more likely to accept requests from strangers [15, 53].
Such infiltration is required because isolated attackers cannot directly interact with most
users in the OSNs or promote content [15]. In order to catch this behavior, for a given
target user u, we are interested in tracing the number of his/her friends based on his/her
longevity in the network. We assume that if a user has a lot of friends in few days after
joining the community, this can be indicative of an anomalous behavior. We calculated
this feature as follows:

FR(u) =
|Friends(u)|

UserLongevity(u)

Where |Friends(u)| is the number of friends of user u and UserLongevity(u) is the number
of days since user u joins the community. We also have to note that in some attacks,
attackers show significantly different number of friends [53], which might result in a not
meaningful FR measure. However, the first phase of the proposed approach groups users
also based on number of friends. As such we expect that in the same group, normal users
show a similar FR value.

Mutual Friendship Rate (MFR). This feature computes the average number of
mutual friends that a target user u has with all his/her friends in the network. We select
this feature since in some attacks (e.g., sybil attacks), attackers send friendship invitations
to a lot of strangers. This results in sparse friendship graphs, without mutual friends [157].
Whereas, in general, normal users have some mutual friends with their friends. This feature
is computed as follows:

MFR(u) =

∑
ŭ∈Friends(u) |MutualFriends(u, ŭ)|

|Friends(u)|

Where |MutualFriends(u, ŭ)| is the number of mutual friends of u and ŭ. We also have
to note that recently some attackers have became smarter as they first try to have some
mutual friends with their victims before sending friendship invitations [25]. For example,
as described in [16], an attacker and the victim in Facebook have more than eleven mutual
friends. However, this feature is still relevant for some attacks, and together with other
features can help to have a comprehensive risk estimation.

Friend Mutual Friend Ratio (FMFR). In addition to the previous features, we are
interested to catch those users with high number of friends, but a lower average number of
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mutual friends, as this could indicate a risky conduct. This is the case, as an example, of
fake accounts, where attackers have sparse communities and they send a lot of friendship
invitations to strangers. This feature is computes as follows:

FMFR(u) =
|FR(u)|
MFR(u)

Comment Rate (CR). Another common activity in an OSNs is commenting on posts.
Given the relevance of comments and posts, we identify a set of features to measure the user
activities related to them. In particular, for each target user u, CR measures the number
of comments written by u w.r.t. his/her longevity. This comes from the assumption that
normal users show regular patterns in writing comments. On the contrary, those users
that flood the network with comments as soon as they join might have to be considered
risky. As an example, in cyberbullying attacks, attackers harass their victims by sending
repeated hurtful messages [104], [106]. CR is computed as follows:

CR(u) =
|CommentsBy(u)|
UserLongevity(u)

Where |CommentsBy(u)| is the number of comments that user u sent to others.
Started Comments (SC). This feature complements the previous one. More pre-

cisely, it helps to catch active risky behaviors, where users maliciously start several new
comments. As an example, in cyberbullying, most of the time attackers write massages or
comments for his/her victims [104], [106]. This feature is computed as follows:

SC(u) =
|CommentsStartedBy(u)|

UserLongevity(u)

Where |CommentsStartedBy(u)| is the number of comments where user u was the starter.
Post Rate (PR). This feature helps to detect users that flood the networks with a huge

number of posts as soon as they join the OSNs. Indeed, since the goal of some attacks is to
propagate items to gain more popularity, attackers, in general, are more active in posting
items than regular users. For example, it has been shown that in social bots attackers with
higher activity levels achieve significantly more popularity than less active socialbots [53].
To catch this risky behavior we measure the number of posts sent by a target user u w.r.t.
his/her longevity, as follows:

PR(u) =
|PostsBy(u)|

UserLongevity(u)
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Where |PostsBy(u)| is the number of posts that user u sent to his/her friends. It is
relevant to note that, if this helps in detecting some kinds of anomalous behaviors, it does
not help in case of attacks where legitimate users are compromised so as to unknowingly
share items. In general, these compromised accounts have long longevity that might imply
normal rate of posts per longevity. This brings us to introduce further behavioral features.

Post Propagation Speed (PPS). In addition to previous features measuring the
general users behavior w.r.t. comments/posts, we are also interested in tracing how single
posts produced by a target user are consumed in the network. Usually, fake posts (e.g.,
posts created by attackers or victims) show an higher propagation speed than regular posts.
In general, attackers and victims have a massive propagation of information in the network
in a short period of time, which implies a propagation speed of malware items higher than
the usual ones [50]. Given a target user u, to measure the propagation speed of a given
post, we count the number of likes, posts and comments received by it, and normalize the
computed measure by the post longevity, as follows:

PPS(u) =

∑
∀p∈PostsBy(u)

(|LikesOn(p)|+ |PostsOn(p)|)
ItemLongevity(p)

|PostsBy(u)|

Where |LikesOn(p)| and |PostsOn(p)| are the number of likes and posts that item p
received, whereas ItemLongevity(p) is the number of days since item p has been created
by user u.

Like Propagation Speed (LPS). It might be considered a risky behavior the ac-
tivity of assigning likes to items that show an high propagation speed. For example, in
clickjacking, when legitimate users click on a malicious message/link, this automatically
and virally propagates onto their accounts. Therefore, attackers can manipulate friends of
the victim driving them in performing likes on malicious messages/links [50].

At this purpose, this feature aims at measuring the average propagation speed of items
on which the target user u has put a like. Thus, we measure, for each like x, the number
of likes and posts/comments received by x w.r.t. its longevity. After that, we normalize
this measure by dividing by the number of items to which the target user has assigned a
like, as follows:

LPS(u) =

∑
∀i∈LikesBy(u)

(|LikesOn(i)|+ |PostsOn(i)|)
ItemLongevity(i)

|LikesBy(u)|

Where |LikesBy(u)| is the number of items on which user u has performed a like.
Comment Feedback Ratio (CFR). This feature aims at detecting users that receive

few likes compared to the number of comments they write. This is motivated by the fact



CHAPTER 3. RISK ASSESSMENT BASED ON USER ANOMALOUS BEHAVIORS36

that, in some attacks, like cyberbulling and sybil attacks, attackers are more aggressive
in sending messages [106]. We measure the ratio between the number of comments that
a target user u sends to others and the average number of likes that he/she receives on
his/her comments. This is normalized by the user longevity, as follows:

CFR(u) =

|CommentsBy(u)|
AvgFeedbackOnComment(u)

UserLongevity(u)

where AvgFeedbackOnComment(u) is the average number of likes received by com-
ments of user u. This is computed as follows:

AvgFeedbackOnComment(u) =∑
c∈CommentsBy(u)

|LikesOn(c)|
|CommentsBy(u)|

where |LikesOn(c)| is the number of likes on comment c.
Post Feedback Ratio (PFR). If a user has a low longevity and posts a lot of items by

receiving few likes and comments on them, it can be indicative of risky behaviors. By this
feature, we just consider the number of likes and comments on posts, since, in most types
of attacks, attackers try to post items either in a direct way or indirectly by compromising
legitimate users in the network. In both cases, the attacker or victims of attacks propagate
a lot of items in the network without receiving any feedback on them. PFR is defined as
follows:

PFR(u) =

|PostsBy(u)|
AvgFeedbackOnPost(u)

UserLongevity(u)

where AvgFeedbackOnPost(u) is the average number of likes and comments received
by posts of user u. This is computed as follows:

AvgFeedbackOnPost(u) =∑
p∈PostsBy(u)

|LikesOn(p)|+ |CommentsOn(p)|
|PostsBy(u)|

where |LikesOn(p)| is the number of likes and |CommentsOn(p)| is the number of
comments on post p.
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Out In Ratio (OIR). In general, if a user propagates a lot of information in the
network (e.g., comments, posts) and receive few feedback (e.g., likes, comments on posts)
it can be indicative of an anomalous behavior. For instance, in cyberbulling attacks,
attackers send a lot of information without receiving any feedback on them. Thus, given
a target user u, this feature measures the ratio between the number of posts, likes and
comments generated by u and the number of likes on comments/posts plus the number
of comments on posts he/she received. This ratio is normalized by the user longevity as
follows:

OIR(u) =

|CommentsBy(u)|+ |PostsBy(u)|+ |LikesBy(u)|
FeedbackOn(u)

UserLongevity(u)

where FeedbackOn(u) is the number of likes on comments plus the number of comments
and likes on posts that user u received:

FeedbackOn(u) =
∑

c∈CommentsBy(u)

|LikesOn(c)|+

∑
p∈PostsBy(u)

(|LikesOn(p)|+ |CommentsOn(p)|)

Like Rate Like Propagation (LRLP). This feature can help in detecting creeper,
clickjacking and socware, where attackers try to propagate a high number of items in the
network with a high propagation speed. We recall that, in all these attacks, the victim is
maliciously forced to unknowingly perform likes on posts. In order to detect these attacks,
we believe that feature LPS might be not enough. Because this feature just considers
the average of the propagation speed of items on which a user performs likes, without
considering the number of those items. For this reason, LRLP additionally considers the
number of likes that a user performs on items in the network. This helps to capture users
that likes an high number of items with high propagation speed. LRLP is computed as
follows:

LRLP (u) =∑
∀i∈ItemsLikedBy(u)(|LikesOn(i)|+ |PostsOn(i)|)

ItemLongevity(i)

∗ |LikesBy(u)|
UserLongevity(u)
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Post Rate Post Propagation (PRPP). By this feature, we are interested to model
the number of posts generated by a target user and the propagation speed of these posts.
Because in some kinds of attacks, attackers have a high number of posts and these posts
have high propagation speed. For example, in identity clone attacks, the attacker could run
spam attacks by requesting the fake identities to propagate malicious posts and messages
to other users in the network. Therefore, we calculate the total propagation speed of posts
and multiply it by the post rate per longevity, as follows:

PRPP (u) =∑
∀i∈PostedBy(u)(|LikesOn(i)|+ |PostsOn(i)|)

ItemLongevity(i)
∗

|PostsBy(u)|
UserLongevity(u)

3.5 Two-phases clustering

We recall that our risk assessment approach is composed of two phases. The first aiming at
organizing users according to group identification features, the second exploiting behavioral
features. Regardless of the features taken into account, in both these phases we make use
of the same clustering algorithm. Clustering algorithms can be classified into two main
types [20]: hard and soft clustering.

Hard clustering techniques (e.g., k-means) compute the best cluster in a deterministic
way, that is, each item is assigned to a unique cluster. In contrast, soft clustering (i.e.,
probabilistic-based clustering) computes, for each item and every available cluster, the
membership probability. We recall that the proposed risk assessment approach is based on
the idea of estimating the user’s risk on the basis of how much his/her behavior deviates
from the one of other users. Thus, given a target user we are more interested in having
his/her cluster membership probability rather than just knowing the cluster to which he/she
should belong to. Therefore, we adopt probabilistic-based clustering.

In general, the key goal of a probabilistic-based clustering techniques is to find the most
likely cluster for each given data item. More precisely, to determine K clusters over a set
of data items, we have to define K probability distributions, each one representing the
likelihoods of data items to belong to a given cluster. In our setting, in the first phase,
membership probabilities are computed based on the values of GI features. Then, based on
these likelihoods, each user is associated with the group that better fits his/her GI features
that is, the one with the highest membership probability. In the second phase, users of
the same group are further clustered according to their behavioral features. As it will be
discussed in Section 3.5.2, the new membership probabilities are used to compute the final
user risk scores.

In order to introduce the user risk score definition, we need to more formally illustrate
the probabilistic-based clustering technique, which is described in the next section.
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Attack name
F-measure Detection rate False alarm rate

Two-Phase One-Phase Two-Phase One-Phase Two-Phase One-Phase

RF 0.807 0.744 0.92 0.726 0.0216 0.0257

SR 0.804 0.729 0.937 0.676 0.0230 0.0424

MSR 0.801 0.741 0.929 0.696 0.025 0.043

Table 3.2: Comparison of two-phase vs. one-phase risk assessment

3.5.1 Probability-based clustering

Membership probability is computed based on the values contained in the user features
vector, that is, GI features in the first phase and behavioral features in the second one.

To perform probabilistic clustering, we make use of the most popular algorithm,
Expectation-Maximization (EM) [20], which uses probability estimation via an iterative
procedure. The Expectation-Maximization algorithm iteratively learns and optimizes the
parameters of the clustering model, that is, the mean and covariance matrix of each feature
value for each cluster, and the fraction of users belonging to each cluster. Given the learned
parameters, the algorithm assigns with each cluster a set of features values that most likely
represent users belonging to that cluster. In the first iteration of the EM algorithm, the
parameters are initialized by random positive values. After that, for a number of iterations,
the membership probability for each user in each cluster is calculated in the Expectation-
step. Then, for each cluster the parameters are optimized based on the current membership
probability in the Maximization-step.

In the following, we describe probability-based clustering for a generic feature vector
of a user ~u. This vector will contain the values of the user’s GI features in the first phase,
while it will contain the values of the BFs in the second phase. Let N be the set of users
in the OSNs, with a set of features vectors ~u in cluster l. The probability of membership
or ‘weight’of target user u ∈ N , is defined as [20]:

wl(~u) =
wl.pl(~u|θl)

K∑
i=1

wi.pi(~u|θi)

where: wl is a weight computed as wl = |Nl|
|N | , with Nl denoting the set of users belonging

to the lth cluster, where
K∑
l=1

wl = 1; function pl(~u|θl) is the component density function

modeling the users of the lth cluster, where θl = {~µl,Σl} represents the parameters for lth

distribution, that is, the mean and the covariance.
Finally, the probability function evaluated over a target user u is:
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Figure 3.2: Comparison of F-measure for two-phase vs. one-phase risk assessment

p(~u|Θ) =
K∑
l=1

wl.pl(~u|θl)

where, we denote with Θ the set of model parameters, that is, Θ = {wl, ~µl,Σl}, l =
1, . . . ,K. Since user features values are independent, the probability function for all users
in N can be defined as:

p(N |Θ) =

|N |∏
i=1

p(~ui|Θ) =

|N |∏
i=1

(
K∑
l=1

wl.pl(~ui|θl))

Based on the above formula, if we know values of the model parameters Θ, then we
would also know the membership probabilities for all users in N , and thus the generated
clusters. For this reason, in the probabilistic-based clustering, the goal is to estimate Θ that
maximizes the log-likelihood, and EM algorithm [98] generates the maximum likelihood
estimation for Θ. This is quantified by the log-likelihood of all the users:

L(Θ) =
∑
~u∈N

log(

K∑
l=1

wl.pl(~u|~µl,Σl))
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Figure 3.3: Comparison of detection rate for two-phase vs. one-phase risk assessment

According to EM, initial values are assigned to each parameters in Θ, which are then
iteratively updated. We denote with Θj the parameter values set at iteration j. The
sequence of Θ-values which is then the Likelihood L(Θ) is non-decreasing at each iteration
[39, 20].

After the initialization phase, there are two steps that are iterated until the parameters
converge to a local maximum [110].

Expectation-step Using the Θj values, this phase calculates cluster probabilities and
computes the membership probability of ~u in each cluster.

wj
l (~u) =

wj
l .pl(~u|θ

j
l )

K∑
i=1

wj
i .pi(~u|θ

j
i )

Maximization-step In this phase, the algorithm updates parameter Θ [39] to maximize
the likelihood of the data[101] as follows:

wj+1
l =

∑
~u∈N

wj
l (~u)
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~µj+1
l =

∑
~u∈N

wj
l (~u).~u∑

~u∈N
wj
l (~u)

Σj+1
l =

∑
~u∈N

wj
l (~u)(~u− ~µj+1

l )(~u− ~µj+1
l )T∑

~u∈N
wj
l (~u)

The expectation and maximization phases are iterated until |L(Θj) − L(Θj+1)| ≤ ε,
where ε > 0 is the stopping tolerance.

3.5.2 User Risk Score

As discussed throughout the chapter, the idea is to consider more risky those users that
diverge from normal behaviors. These deviations are actually captured by the membership
probabilities computed in the second clustering phase. More precisely, an high membership
probability value implies that the target user fits well one of the behaviors emerged from
the group he/she belongs to. In contrast, a low membership probability value refers to
a user whose behavior diverges from those that are considered normal for his/her group.
Based on this, the risk score associated with a target user u is defined as the inverse of the
highest among u’s membership probability values resulting by the second clustering phase.

Definition 1 (User Risk Score (RS)) Let N be the set of users in the OSNs, and let
Ng ⊂ N be a set of users that belong to the same cluster g, resulted from the probabilistic-
based clustering computed in the first phase over the GI features’ values of user in N . Let
PB(Ng) be the probability-based clustering algorithm that takes as input the set of users
in Ng and, based on their BFs, returns, for each user u ∈ Ng, the highest membership
probability, denoted as PCL(u). Given a target user u ∈ Ng, the associated risk score
RS(u) ∈ [0, 1] is defined as:

RS(u) = 1− PCL(u) (3.1)

3.6 Experiments

In this section, we illustrate the experiments carried out to show the effectiveness of the
proposed two-phase risk assessment.
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Figure 3.4: Comparison of false alarm rate for two-phase vs. one-phase risk assessment

3.6.1 Facebook Dataset

To perform the experiments on real data, we used the Facebook dataset collected and used
in [3]. This dataset was collected using a Facebook application that gathered friendship
links and profiles of users who launched the application. This application has been used by
75 Facebook users, which forms a first dataset called FB75. This contains all posts, likes
and comments written by the 75 users, that is: 33,728 friend links, 185,644 posts, 2,187
likes and 2,262 comments. Using these 75 users as seeds, the Facebook application defined
in [3] crawled additional information about seeds’ friendships. In particular, once a friend
of a friend is found, the app queries Facebook for its mutual friends/profile information.
After having deleted those profiles with too many missing features, we obtain a second
dataset, called FB13000, which includes 13,000 user profiles, plus the 75 seed users, with a
total of about 461,700 friend links, 6,150,892 likes and 1,742,709 comments.

The Facebook app also collected the user public profiles during the crawl. Each profile
consists of optional information provided by the users themselves, such as education, gender
and geographic information. Since users are allowed to mark their profiles as private, we
were not able to download profile information for all users. In total, around 7,000 users of
FB13000 have more than 75% of their profile information.

3.6.2 Two-phase vs. one-phase risk assessment
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Figure 3.5: F-measure for social bots or sybils (dense friendship graph)

The first and second experiments aim at verifying the underlying idea of extracting
model behaviors from user groups. At this purpose, we compare the two-phase risk as-
sessment approach presented in this chapter against a risk assessment where we simply
consider the behavioral features presented in Section 3.4 without grouping users before.
We refer to that model as one-phase risk assessment.

Similarly to the two-phase approach, the risk score of a target user u returned by the
one-phase risk assessment is computed as RS(u) = 1- PCL(u), where PCL(u) is defined as
the highest among the membership probability values associated with u and returned by
the one-phase clustering.

In order to compare the two-phase risk assessment against the one-phase, we have
injected into the FB dataset a set of fake users. Then, we measured the effectiveness of the
two approaches in detecting them as risky based on their risk score. More precisely, we say
that a user u is risky if PCL(u) is less than a given threshold τ . By setting the threshold
value, we can determine how much the system has to be accurate in labeling users as risky.

As an example, setting a threshold value near to 1 implies to consider risky those users
whose highest membership probability is near 1, that is, those users for which there exists
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Attack name
Two Phase Risk Assessment One Phase Risk Assessment
F-measure Threshold F-measure Threshold

Socialbots or sybils (sparse friendship graph) 0.9375 5.24E-07 0.8666 2.40E-10

Socialbots or sybils (dense friendship graph) 0.937 2.74E-08 0.857 2.66E-07

Identity clone 0.88 1.24E-07 0.81 1.24E-07

Compromised accounts 0.833 3.82E-05 0.580 9.13E-06

Socware 0.731 4.70E-05 0.558 4.70E-05

Creepers (dense friendship graph) 0.812 5.57E-06 0.667 5.57E-06

Creepers (sparse friendship graph) 0.86 1.60E-08 0.774 1.60E-08

Cyberbullying (real profiles) 0.857 3.82E-05 0.619 0.0002

Cyberbullying (fake profiles) 0.882 1.94E-09 0.812 1.65E-07

Clickjacking 0.769 3.34E-05 0.560 0.0004

Table 3.3: The best F-measure and corresponding threshold value for each type of attack

a cluster that almost fits their features. In contrast, when the threshold τ is near 0, it
means that the system judges as risky only those users for which the highest membership
probability is close to 0, that is, those users for which it does not exist a cluster fitting
their features. In general, we expect that threshold value is determined according to user
preferences on having a more conservative approach or relaxed one. In this experiment, we
set τ based on data distribution. In particular, we compute the membership probability
of all users. Analyzing the distribution of the computed values, we noted that most of the
users have a membership probability, near to 1, and just a small portion of users (less than
5%) have a membership probability near to 0. Then, the selected threshold (e.g., 2.74E-08)
is the one identifying this small portion of users.

Another relevant parameter to be initialized is the number of cluster K. We have to
note that several approaches to estimate the best number of clusters K have been proposed
in the literature [127]. There is a general agreement that identifying the optimal K is a
problem related to the nature of the dataset. Since the problem depends on data, we pre-
process the available dataset to estimate the best K for each phase. In particular, we run
the clustering phase with different K values and we measured the quality of the obtained
clusters as the ratio of users that belong to each of them. Based on this pre-processing, we
set K equal to 7 in the first phase, whereas, in the second phase, it is on average between
7-12 for each group of users.3

The effectiveness of our risk estimation approach is measured according to F-measure,
detection rate and false alarm rate (false positive). The F-measure is the weighted harmonic
mean of two measures, namely, precision and detection rate. The precision is the number
of correctly detected risky users divided by the number of injected fake users and normal
users that are detected as risky. Detection rate is the ratio between the number of correctly
detected risky users and the total number of injected fake users. Usually, precision and
detection rate scores are not discussed in isolation. Instead, both are combined into the

3We are aware that an approach based on data pre-processing is not suitable for big data scenarios,
like OSNs. However, we expect that this pre-processing could be run over a sample of OSNs data so as to
determine the right K.
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F-measure as a single metric. The F-measure reaches its best value at 1 and worst at 0.
False alarm (false positive) rate is a ratio between the number of normal users that are
misclassified as risky and the total number of normal users.

Fake users to be injected in the real Facebook dataset have been generated following
three models. The first model represents risky users with Randomized Features (RF), that
is, users where values of GI features and BFs are randomly set.4 The second one includes
Smart Risky users (SR), defined with legitimate values for profile features (i.e., age, gender,
education, nationality), and randomized values for BFs. In particular, the legitimate values
are generated by selecting and duplicating the whole profile of some of the users in the FB
dataset.

The last model considers More Smarter risky Users (MSU), where fake users are created
with legitimate values for profile and friendship features, and randomized value for the
remaining behavioral features. The friendship features are features related to friendship
behaviors and include: FR, MFR, and FMFR selected from BFs and number of friends
selected from GIs.

We run these two experiments on FB13000. We repeated the experiments five times,
where in each run we created 90 new fake users for each model. Moreover, we set the
threshold τ as the one identifying the small portion of users based on the distribution of
the PCL values of all users. The final result is reported in Table 3.2.

Figures 3.2, 3.3, and 3.4, report the F-measure value, the detection rate, and false alarm
rate, respectively, for the three types of considered fake users. As shown in Figures 3.2,
3.3 and 3.4, two-phase risk assessment outperforms the one-phase, based on F-measure,
detection rate, and false positive measure.

3.6.3 Risk assessment vs. Attacks

This experiment aims at showing how our risk scores can be used to detect very risky
users. At this purpose, we have injected into the real dataset fake users created so as to
simulate behavioral patterns of each type of attacks described in Section 3.3. We run this
experiment using the smallest dataset, that is FB75, since users in this dataset have also
post information, thus it was possible to compute all features.

From FB75, we generate 10 different test datasets for 10 different types of attack (e.g.,
sybils (dense graph), sybils (sparse graph), socware, etc). For each one, we inject 55
normal users and 15 fake users. In all the 10 datasets, we generate normal users so that
each one of their feature value is randomly selected within the corresponding standard
deviation in FB75. In contrast, fake users are customized based on the considered attack.
In particular, in the 10 datesets fake users are generated so as to have random values for
those features that are related to the corresponding attack (see Table 3.1), whereas the
remaining are initialized similar to normal users. For example, based on the behavioral
pattern of creepers with dense friendship graphs (see Section 3.3), the value of BFs such as
PR, PPS, PRPP and OIR (see Table 3.1) can be anomalous, whereas other features will

4Each feature value is set by randomly selecting a value from the corresponding domain, which has been
computed based on values in the real dataset.
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Figure 3.6: Detection rate for all types of attacks

be similar to normal users. Therefore, we set the value of these anomalous features in the
test set as randomized values outside the corresponding standard deviation in FB75. We
then see if these anomalous users can be detected using our model.

Experiments have been carried out both for the two-phase risk assessment as well as the
one-phase. Moreover, we analyzed the effectiveness by considering several values for the
threshold τ . As such, for each type of attack, we obtained different F-measure, detection
rate and false positive rate. As an example, Figure 3.5 shows the F-measure for social bots
or sybils (with dense friendship graph) attacks, where the F-measure value is represented
in the Y-axis, and the threshold value in the X-axis.

Then, from F-measure curves of each type of attack we selected the best F-measure
values. These values are reported in Table 3.3. By using these selected threshold values, we
run further experiments to evaluate the detection rate and false positive rate for each type
of attack. In particular, Figure 3.6 shows the results for detection rate, whereas Figure 3.7
shows the false positive rate. As we can see the two-phase risk assessment outperforms the
one-phase.
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Figure 3.7: False Alarm Rate for all types of attacks

3.6.4 Testing the Influence of BFs

The aim of this experiment is to test the relevance of each of the identified BFs. Toward this
goal, we generate a new dataset, called FB75Attackers, by injecting into FB75 a set of fake
users. These fake users are generated following behavioral patterns of 10 different types of
attack. In particular, for each attack we inject 15 fake users whose features’ values follow
the corresponding attack behavior. Then, we run the proposed two-phase risk assessment
model several times, by removing in every run one of the 13 behavioral features. In every
run, we compute the corresponding F-measure to see the accuracy of the risk assessment
model without the dropped behavioral feature. We need to mention that we set up the
threshold by analyzing the distribution of membership probability PCL of all users. Since
the PCL value for most of the users is near to 1 and just for a small portion of users (less
than 5%) is near 0, we set the threshold as 0.00001 thus to select a small portion of users.
As we can see in Figure 3.8, the obtained F-measure shows that in every execution we have
a significant (i.e., around 0.2-0.6) loss of accuracy.
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Figure 3.8: The best F-measure by removing one BF at a time



Chapter 4

Graph Based Local Risk
Estimation in Large Scale OSNs

4.1 Introduction

A huge amount of personal information of users in OSN encouraged attackers to develop dif-
ferent techniques to exploit OSNs infrastructures for malicious purposes in order to misuse
the personal information of users. The most notable types of attacks in OSNs are sybils/-
socialbots, identity cloned attacks, socwares, compromised account attacks, cyberbulling
attacks, and creepers [139, 51]. To cope with emerging security and privacy concerns, re-
search community has started to deeply investigate and propose mechanisms for safer and
trustworthy OSNs. Orthogonal to all these efforts, we believe there is the need of mea-
sures helping user to judge his/her contacts. This brings us to investigate a risk estimation
measure by considering the topology of user’s social graph. In doing this, we leverage on
relevant results achieved on graph-based outlier detection. In particular, the proposed risk
measure comes from the observation done in [5], where it has been highlighted that a user
of a given network is anomalous if his/her subgraph significantly differs from those of other
users. More precisely, in this chapter, we adapt the definitions proposed in [74] so as to have
an unsupervised graph-based outlier detection methods tailored over features meaningful
for the detection of risk behaviors in OSNs. The overall purpose is to obtain a local risk
factor measure that helps users to detect potential attackers among their contacts. The
obtained results show that these topological features can indeed be used to define the risk
of direct contacts in large scale OSNs.

The remainder of this chapter is organized as follows. Section 4.2 introduces the overall
idea underlying our approach, whereas Section 4.3 provides a summary of the considered
graph based features. Section 4.4 illustrates our graph based risk measure. Finally, exper-
iments are presented in Section 4.5.

50
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4.2 Overall Approach

The proposing risk estimation measure comes from the observation done in [5], where
it has been highlighted that a user of a given network is anomalous if his/her subgraph
significantly differs from those of other users. In our proposal, based on the behavior of
malicious users in OSNs, we consider not only the direct subgraph of a target user, but
also the direct subgraph of his/her direct contacts (two step subgraph). Therefore, the
subgraph of a user is a collection of all of his/her direct contacts, the direct contacts of
his/her direct contacts as well, and all the connections among them (see Section 4.3.2 for
a more detailed discussion).

We have then to define a measure for comparing different subgraphs. We exploit the
lesson learnt from an outlier detection technique presented in [22], saying that density can
represent an interesting measure to catch anomalous nodes. In particular, by comparing
the local density of a node to the local densities of its nearest users, one can identify nodes
that have a substantially lower density than their nearest users, considered to be outliers.
The local density of a user u is computed based on a distance measure. In particular, we
first compute the Euclidean distance between u and all the users in the network. Then,
we rank the results and we select the distance of the user at the k-th position. Thus, local
density of u is defined as the inverse of this distance. More precisely, given the purpose
of this chapter, i.e., risk estimation, we compute the Euclidean distances based on a set
of topological features that we believe are meaningful for the detection of risky behaviors.
These features have been selected based on a review of current well-known OSNs attacks
(see discussion in Section 4.3 for more details).

According to [74], we can exploit the local density of u, to determine its Divergency
Factor, that is, how much u is different from the rest of the network. More precisely, how
much u’s density is different from the ones of users that are topologically similar to u.
These users are defined as k-nearest users.1

Literature offers different ways to compute the divergency factor, see for instance [22,
74]. In this chapter, we exploit the method proposed in [74], called INFLO. The benefit of
this method is that it also considers the symmetric neighborhood relationship in computing
the k-nearest users. This means that a user z is into the k-nearest users of a user y if the
Euclidean distance between z and y is less than the one at the k-th position in the ranking
and there is symmetry in their k-nearest users, that is, y is into the k-nearest users of z as
well.

Once computed the divergency factors for all users in the network, a target user u will
be able to assign a Local Risk Factor to each node y in his/her direct contacts list, based
on how much y’s divergency factor is different from the divergency factor of the other u’s
direct contacts. Thus, u can understand how much his/her contacts are risky by ranking

1Given a k, the k-nearest users are determined by computing the Euclidean distance of u with all other
users in the network. Once all the Euclidean distances of u with other users in the network have been
computed, we rank the results and we select the value distk(u) of the Euclidean distance at the k-th
position in the ranking. Based on this value, we can define the k-nearest users of a target user u as the set
of users whose Euclidean distances with u is less than distk(u).



CHAPTER 4. GRAPH BASED LOCAL RISK ESTIMATION IN LARGE SCALE OSNS52

their local risk factors (see Section 4.4 for more details).

4.3 Topological-based Features for Risk Estimation

In this section, we introduce the features we use for computing our measures. We have
driven the selection of them by what have been so far recognized as risky users in OSNs,
that is, attackers. The topological patterns of attackers are, in general, different from those
of normal users. In the following, we first summarize the most notable attacks and related
topological information, we then introduce the considered features.

4.3.1 Risky behaviors in OSNs

Sybil attacks are one of the most prevalent and practical attack in OSNs [54]. To launch
a Sybil attack, a malicious user has to create multiple fake identities, known as Sybils,
with the purpose to legitimate his/her identity [54]. After that, attackers start sending
friendship requests to other users in the community. Once the requests have been accepted,
the socialbot can gather users’ private data. Sybil attacks can be classified into fourth main
types.

The first is Sybils with a tight-knit community (dense friendship graph), where adver-
saries create huge number of Sybils by also establishing connections among them [14, 25].
Due to this high number of connections, Sybils tend to form tight knit clusters in their
direct subgraph.

The second category are Sybils with a sparse community (sparse friendship graph).
Authors in [157] have analyzed the distribution of Sybil accounts in the Renren OSNs.2

This shows that the vast majority of Sybil accounts do not form social links among them.
Moreover, even in case they form, the resulting clusters are loose, rather than tightly
connected. They found that attackers use snowball sampling techniques to identify and
send friend requests to popular users, since these are more likely to accept requests from
strangers [54]. Therefore, their friendship graph become sparse. Moreover, authors in [5]
show that the majority of anomalous users in an OSNs have neighbors that are either very
well connected (forming a near-cliques), similar to Sybils with tight-knit community, or not
connected (stars), similar to Sybils with sparse community.

The third category are Sybils with normal friendship graph. Some works show that
Sybils first establish few connections among themselves, and then they try to send friend-
ship requests to other users [54]. In this way Sybils have a friendship graph that is not
sparse or dense in the direct subgraph, since they have a small number of mutual friends
with their direct contacts. Although Sybils in this category have a normal friendship graph
in their direct subgraph, researchers prove that in most cases Sybils fail to create friendship
links with legitimate users [14, 25] and majority of their friends are popular users or other
malicious users. Therefore, the structure of the direct subgraph of their friends is different
from those of legitimate users.

2http://www.renren-inc.com/en/
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Figure 4.1: Subgraph for each target user

The fourth category of fake users are those that are created by non-malicious users,
called creepers [139] wishing some extra accounts, for several purposes, like social reasons
such as friendly pranks, stalking, cyberbullying, etc. [139]. A recent paper stated that the
market of buying fake followers and fake retweets is already a multimillion-dollar business
[142].

4.3.2 Features

Given a user u, we model the graph from which the topological features of u are extracted
as the subgraph formed by the set of users, and related relationships, that can be reached
by P-steps from u as exemplified by Figure 4.1. In computing the features, we consider
P=2, since, as discussed in [8], real social networks show a small diameter. Moreover, the
motivation of extracting the topological features of u from its 2-step subgraph is analysing
the topological patterns of the direct and two-step subgraph of real attackers in OSNs
based on the discussion in Section 4.3.1, that are different from those of normal users. As
it will be discussed in the following, the first three features consider the structure of the
first subgraph of user u:

Degree of u, (Degree), that is the number of direct contacts of u. Researchers show
that most attackers send a lot of friendship request to increase their influence in the network
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[54, 139]. This feature is helpful to extract this topological pattern of attackers.
Triangles count of u, (TriangleCount), where a triangle exists when a node has two

adjacent nodes that are also adjacent to each other. This feature can be useful to indicate
the topological pattern of both Sybils with dense friendship graph that have a lot of mutual
friends with their direct contacts (high triangle count (near-cliques)) and Sybils with sparse
friendship graph that do not have mutual friends with their direct contacts (low triangle
count (stars)).

The ratio between degree and triangle count of u, that is, RateDT =
Degree/TriangleCount. The motivation of extracting this feature is that we assume at-
tackers show a different value compared to legitimate user. For example, Sybils tend to
have a high degree, although their triangle count is either too high or low in comparison
with those of normal users.

We also introduce these features that consider the topological patterns of the two-step
subgraph of the target user u. These features can help us to detect Sybils with normal
friendship graph that have a small number of mutual friends with their direct contacts
and their first sub-graph is similar to the normal users. But, their two-step subgraph is
different from normal users, because majority of their friends are either popular users or
other malicious users that tend to have a high degree in the network due to accepting friend
request from strangers [157, 14, 25]. Therefore, the topological pattern of these popular
and malicious users are different from normal users.

The average degree of all direct contacts of u, that is, AvgDegree.
The average triangle counts of all direct contacts of u, AvgTriangleCount.
The average ratio between degree and triangle count of all direct contacts

of u, AvgRateDT = Avg(Degree/TriangleCount).

4.4 Local Risk Score

Our goal is to assign a risk score to the direct contacts of a target user u, based on the
deviation of their divergency factors. As introduced in Section 4.2, we exploit the Influence
Outlierness (INFLO) [74] for the computation of the divergency factor. INFLO exploits
not only the k-nearest users, but also, the reverse k-nearest users (RNU) [29]. Members of
RNU of a user u are users that have u as one of their k-nearest users. More formally, we
introduce the definition of k-nearest users and reverse k-nearest users.

Definition 2 (k-nearest users of u) Let G be the graph modeling the OSNs, and u be
a node in G. Given a value k, the k-nearest-users of u are defined as:

NUk(u) = {u′ | u′ ∈ G, dist(u, u′) ≤ distk(u)} (4.1)

where dist(u, u′) denotes the Euclidean distance between u and u′ computed
on a selection of features among {Degree, TriangleCount, RateDT , AvgDegree,
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AvgTriangleCount,AvgRateDT};3 distk(u) is the Euclidean distance value between u
and the user in G placed in the k-th position w.r.t. the Euclidean distance ranking.

Definition 3 (Reverse k-nearest users of u) Let G be the graph modeling the OSNs,
and u be a node in G. Given a value k, the reverse k-nearest-users of u is defined as:

RNUk(u) = {u′ | u′ ∈ G, u ∈ NUk(u′)} (4.2)

Given a user u the union of NUk(u) and RNUk(u) forms its local neighborhood space
denoted as SNk(u) to estimate the density distribution around u. According to [74], INFLO
is defined as the ratio of the average density of users in SNk(u) to the u’s local density:

INFLOk(u) =
denavg(SNk(u))

den(u)
(4.3)

where denavg is the average density of users in SNk(u) and den(u) is the local density
of user u. Based on INFLO, we can now provide the definition of divergency factor.

Definition 4 (Divergency Factor) Let G be the graph modeling the OSNs, and u be a
node in G. Given a value k, the Divergency Factor of u, DFk(u), is given by INFLOk(u),
where the Euclidean distances are computed on a selection of features among {Degree,
TriangleCount, RateDT , AvgDegree, AvgTriangleCount,AvgRateDT}.

The divergency factor is a measure to define how much the neighborhood of a given
user u is different from his/her nearest users. We can then use the divergency factor to
assign a local risk factor to each direct contact of a target user u. In more detail, given
a target user u, in order to calculate the LRF of a user y in the u’s direct contacts, say
users set Y , we consider two measures for y. The first is the y’s DF that shows how much
the density of the neighborhood of y is different from its density. However, since it might
be that all direct contacts of user u are considered risky (i.e., their DF values are higher
then a given threshold) or all of them are normal (i.e., DF lower than the threshold), we
introduce a second measure. This is divergency factor deviation (DFD), that shows how
much the divergency factor of y is different from the divergency factor of other u’s direct
contacts, that is, users in Y . This helps us to detect those users that are more deviate than
others in Y that is formally defined as follows.

Definition 5 (Divergency factor deviation) Let G be the graph modeling the OSNs,
and let u be a node in G, and let y be one of its direct contacts. Given a value k, the
divergency factor deviation of y for u is the defined as:

DFDk(u, y) = DFk(y)− (STDDF (u) +ADF (u)) (4.4)

3As described in Section 4.5, in order to validate the effectiveness of the proposed features, we carried
out experiments by considering not only all the six features, but also a selection of them.
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where DFk(y) is y’s divergency factor; STDDF (u) and ADF (u) are the standard devi-
ation and the mean of the divergency factor values of all direct contacts of u, respectively.
Based on the above definitions, given a target node u and one of its direct contact, say y,
we combine these two measures DFk(y) and DFDk(u, y) to obtain the Local Risk Factor,
formally defined as follows.

Definition 6 (Local Risk Factor) Let G be the graph modeling the OSNs, and let u be
a node in G, and let y be one of its direct contacts. Given a value k, the Local Risk Factor
of y for u is the defined as:

LRFk(u, y) = DFk(y) +DFDk(u, y) (4.5)

Given a target node u, we first compute the LRF for each of its direct contacts, then
we rank them based on their LRFs and we flag as risky those contacts whose LRF is
higher than a threshold, denoted as LRFT (u) and defined based on the distribution of
LRF values of u’s contacts. In particular, the threshold for target user u is computed as:
LRFT (u) = STDLRF (u) + MeanLRF (u), where STDLRF (u) and MeanLRF (u) are
the standard deviation and the mean of the LRFs of all direct contacts of u, respectively.

4.5 Experiments

Experiments aim at showing how the proposed local risk factor measure can be used to
detect risky users in the contact list of a target user u. At this purpose, we have used a real
social graph, that is, the Orkut Online Social Network (OSNs) dataset taken from SNAP.4

In this dataset, there are 3,072,441 nodes and 117,185,083 edges. Unfortunately, the dataset
is not provided with a ground truth, in that we do not have any information about which
nodes in the Orkut dataset are risky. This is a common problem in validating anomaly
detection techniques, where, as discussed in [6], several different validation approaches
have been used in the literature, such as anomaly injections or qualitative analysis. There
are several works based on anomaly injection to evaluate the result of anomaly detection
models [31, 133]. In this chapter, we follow the idea of injecting fake users into the real
graph, that is, nodes and random connections, created such as to simulate some kind of
attacks. In particular, we simulate four different categories of risky users in OSNs (see
discussion in Section 4.3).

For each category, we inject the nodes into the Orkut dataset. Then, we compute a
divergency factor for all the users in the obtained new dataset and the local risk factor for
all the injected fake users. The LRF of a fake user is computed w.r.t. a target user u. In
particular, the target user is selected among the real nodes in the Orkut social graph that
have at least a connection with the injected fake node. Finally, we flag as risky a fake user,
if its LRF deviates from those of the other direct contacts of u, based on the computed
threshold value. In other words, if the LRF of fake node is higher than a local threshold
of target user, we flag him/her as risky.

4https://snap.stanford.edu/data/
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In all the experiments we set k from 5 to 10, since considering a high value for k in
large social graph has a high computational cost and, according to [74], does not have a big
effect on the result. Moreover, in order to test the effectiveness of the features described
in Section 4.3.2, we carried out experiments by considering different combinations of the
features. In the following, we first describe the feature combinations, we then introduce
the three categories of injected fake users, finally we discuss the experimental results.

4.5.1 Features settings

Once the six features described in Section 4.3.2 have been computed, we consider the
following different combinations for computing the Euclidean distances.
All the six features. According to this setting, we consider all the six features described
in Section 4.3.2. Figure 4.2 shows the distribution of computed divergency factors for all
users in the considered dataset. In this feature setting, the DF is in the range between [0,
250] and most of the users have a DF in the range [0, 2.7], whereas few of them are with
DF higher than 2.7.
Ratio of degree to triangles count. In this setting, we consider only RateDT and
AvgRateDT in the divergency factor computation. In the RateDT , we are interested to
catch those users for witch there is no balance between their degree and triangle count as
this could indicate a risky conduct. In addition, by bringing AvgRateDT into account,
we consider also for all his/her direct contacts as well. Therefore, we consider both the
subgraph around each user and all his/her direct contacts for our risk estimation.

In this way, we are able to catch users whose two steps subgraph are very well connected
(near-cliques) or not connected (stars). As we can see in Figure 4.3, most of the users have
a DF in the range [0, 2.7], whereas just few of them diverge from their nearest users with
DF higher than 2.7. The range of DF is [0, 84].

4.5.2 Injected risky users

In this section, we introduce the four categories of fake users we inject in the Orkut dataset.
Sybils with sparse friendship graph. The first kind of attack that we try to simulate
is Sybils with sparse friendship graph in their direct subgraph. As we discuss in Section
4.3.1, these kind of attackers have friendship links with a lot of strangers by using random
sampling techniques to send friend requests to strangers. Therefore, we inject 100 users,
each one having a number of edges selected randomly in the range of the mean and the
sum of the mean and the standard deviation of degree of all users in the real graph (i.e.,
values in [100, 250]) to be similar to regular users. Then, we totally create around 10000
to 25000 friendship links among these 100 Sybils with randomly selected users from the
whole graph by considering random sampling.
Sybils with dense friendship graph. The second type of attackers are Sybils with
dense friendship graph or tight-nit communities. To model these attackers, after creating
100 fake nodes and inject them into the graph, we generate the edges among themselves
and then, with a set of randomly selected users and also the 80% of their direct contacts
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Figure 4.2: DF distribution by considering all the six features

to have more mutual friends with each friend. Moreover, we generate these edges so that
each fake node has a degree in the average range of all other legitimate users, to be more
similar to other regular users.
Sybils with normal friendship graph. The third type of attackers are Sybils with
normal friendship graph. In this kind of attacks, attackers after creating a huge number
of Sybil accounts establish few connections among themselves, and then they try to send
friendship requests to popular users. To model these attackers, after creating 100 fake nodes
and inject them into the graph, we generate the edges with a set of randomly selected users
with high degree in the range of [1000, 33000]. Then, totally we create around 10000 to
25000 friendship links among these 100 Sybils with popular users.
Real users with additional fake accounts (creepers). These risky users are real
users wishing some extra accounts. Usually these users have not a high degree in the
graph, but they just create a fake account and then, randomly pick up some strangers and
make friendship links with these random users. The difference of these creepers with Sybils
with sparse friendship graph is that they have few friendship links since their goal is not as
attackers to influence the graph by having more links. To model this type of risky users,
we inject 100 users each having a number of edges in the range of the mean minus standard
deviation and mean of degree of all users in real graph (i.e., values in [50, 150]). We create
these friendship link with randomly selected users from whole the graph. Then, totally
we create around 5000 to 150000 friendship links among all these 100 fake users and other
users in the network.
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Figure 4.3: DF distribution by considering Ratio and AvgRateDT

4.5.3 Experimental results

We run our experiment with two different feature settings previously discussed on the
four different graphs with injected risky users. After calculating the LRF for each user,
we compute the difference of the LRF value with the local LRF threshold of target user
LRFT (u) that is in contact with the risky user. In this way, if the LRF of each user is
higher than LRFT (u) among the other contacts of target user u, the user is detected as
risky. We consider the value zero for those risky users such that their LRF is lower than
the LRFT (u), since they are not deviate from other contacts of target user u, that is:{

LRFk(u, y)− LRFT (u) if LRFk(u, y) > LRFT (u)

0 if LRFk(u, y) ≤ LRFT (u)

We flag as risky those users with the difference of their LRF and LRFT (u) higher than
zero. The result of the first and second feature settings for the four categories of risky users
is shown in Table 4.1. Here, we can see the percentage of risky users that are detected by
the majority (more than 50%) of target users that are in contact with them. Furthermore,
Table 4.2 represents the percentage of fake users that are detected as risky by at least one
of the target users that are in contact with them.

In more details, Figure 4.4 shows 100 different categories of fake users that are detected
as risky with the percentage of target users that are in contact with each one. In particular,
the x-axis shows the percentage of target users that are in contact with each fake user and
able to detect him/her as risky and the y-axis show the percentage of fake users that are
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Feature Setting Sparse Sybils Dense Sybils Sybils with normal direct subgraph Creepers

All Six Features 90% 41% 79% 77%

RateDT and AvgRateDT 95% 76% 90% 95%

Table 4.1: Detection rate of risky users detected by majority of the target users

Feature Setting Sparse Sybils Dense Sybils Sybils with normal direct subgraph Creepers

All Six Features 100% 52% 95% 89%

RateDT and AvgRateDT 100% 99% 99% 98%

Table 4.2: Detection rate of risky users detected by of at least one of the target users

Figure 4.4: Risky users that are detected with target users in feature setting (RateDT and
AvgRateDT)

detected as risky. As we can see in the Figure 4.4, most of the fake users are detected with
more than 50 % (>= 0.5 in x-axis) of target users that are in contact with them.

Figure 4.5 shows all target users that are in contact with 100 Sybils with sparse friend-
ship graph, to see how many of the target users are able to detect these 100 Sybils as risky.
As we can see in Figure 4.5, among 15490 target users that are in contact with these Sybils,
around 13470 are able to detect these Sybils in their contact list as risky that is around
86.95 percent of all target users that are in contact with them.

To calculate the performance of our risk models with different feature settings, we
compute the F-measure. For calculating the F-measure, we need to compute precision and
recall that is based on: false positive (FP), false negative (FN), true positive(TP) and
true negative (TN). In order to calculate precision and recall, we need to calculate also
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Figure 4.5: Target users that are able to detect Sybils with sparse direct subgraph

the false positive that is the number of legitimate users that are detected as risky in our
risk models. Therefore, the evaluation based on precision and recall is challenging since
it would be severe to call the risky users detected other than the injected ones as false
positives, given that the original real graph may also contain same type of anomalies and
risky users [6].

Based on anomaly detection concept, the majority of users obey a pattern and only
few users that deviate, considered as outliers [5]. Therefore, to consider a set of legitimate
users, we selected 1000 legitimate users randomly not from the whole graph but among
those users that their graph structure is similar to majority of users inside the real graph.
In other words, we didn’t consider outliers for this selection.

Then, we find a measure to find legitimate users since considering all users with high
degree or low degree and also users with high triangle count or low triangle count as
legitimate or anomalous is not reasonable. This is motivated because, there is a large
number of popular users with high degree as shown in Figure 4.6 that is around 30,105
users with number of degree higher than 700 in the range of [700, 33313]. Figure 4.6 shows
the number of users in the x-axis and the number of degree in y-axis. The maximum
degree of users in the graph is 33313. Furthermore, there is a high number of users with
high triangle count or isolated users with low triangle count as shown in Figure 4.7. The
maximum value of triangle count is 1,666,622 that we can see there are around 100,000
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Figure 4.6: The distribution of user’s degree in OSNs

users with triangle count in the range of [1000, 1666622].
But, Figure 4.8 shows the relation of increasing the degree with triangle count that is

RateDT for all users inside the real social graph. As we can see the majority of users have
a RateDT near the red line and just few users surrounded with red circles have these values
outside the line that is considered as outlier in [5]. Therefore, we select our 1000 normal
users randomly among those users with RateDT between 0.1 and 10, since 98% of users
have this range of values.

Then, after computing their LRF, we consider all target users that are in contact with
normal users to see the percentage of these normal users that by mistake are detected as
risky. For example, between all target users (33156) that are in contact with the 1000
normal users when we consider (RateDT and AvgRateDT) as features, around 1196 of
them detect these normal users as risky that is 3.60% percent of all target users.

Table 4.3 represents the F-measure for the two feature settings with all four categories of
fake users when the majority of the target users, in contact with them, have detected them.
Based on the result, the performance of risk model with two feature settings (RateDT and
AvgRateDT) is the best, since these are the most influential features that reveal these kind
of risky structural patterns in the graph. As we can see, the performance of detecting
sybils with sparse direct subgraph is the best around 90% and sybils with normal direct
subgraph and creepers are in the second rank still more than 90%. The performance of
detecting sybils with dense direct subgraph is lower around 82% since there are some other
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Figure 4.7: The distribution of user’s triangle count in OSNs

Figure 4.8: The plot of user’ RateDT in OSNs



CHAPTER 4. GRAPH BASED LOCAL RISK ESTIMATION IN LARGE SCALE OSNS64

Feature Setting Sparse Sybils Dense Sybils Sybils with normal direct subgraph Creepers

All Six Features 0.90 0.54 0.839 0.826

RateDT and AvgRateDT 0.939 0.821 0.925 0.936

Table 4.3: F-measure in the two feature settings (majority of target users detect risky
users)

Feature Setting Sparse Sybils Dense Sybils Sybils with normal direct subgraph Creepers

All Six Features 0.955 0.649 0.93 0.897

RateDT and AvgRateDT 0.961 0.956 0.95 0.951

Table 4.4: F-measure in the two feature settings (At least one target user detect risky users
)

users inside the real graph with severe case than this category of sybils with a very high
degree more than 1000 and very high triangle count more than 900,000 that make their
direct subgraph denser than Sybils.

Also, Table 4.3 shows the value of F-measure when at least one target user detects fake
users as risky. Based on the result, again the performance of risk model with two feature
settings (RateDT and AvgRateDT) is the best. Also, the performance of all four categories
of fake users are more than 95 % that is a very good result. We can see that our risk model
is able to help target users to detect risky users with a high accuracy and low false alarm
(FP) rate.



Chapter 5

Anomalous Change Detection in
Time-evolving OSNs

5.1 Introduction

Detection of anomalous changes in time-evolving Online Social Networks (OSNs) has be-
come interesting in recent years. This problem has been widely studied in the context of
mining and statistics [91, 75, 82, 9]. However, there are few approaches able to detect
change in dynamic social graphs.

In general, these approaches extract a summary of each graph snapshot to be compared
over time with the help of similarity functions [121]. Then, when the distance returned
by the considered similarity function is higher than a threshold, the corresponding graph
snapshot is flagged as anomalous. The goal of these approaches is detecting the time of the
anomalous changes in the structure of the whole graph. As an example, [136] computes
distance functions among a sequence of graphs, whereas [144] proposes an approach for
detecting changes in community structure to identify times of these changes. [103] and
[102] consider some network measures, such as closeness centrality, betweenness centrality
and the density of the graph, to detect any change in the graph over time.

Another approach is [23], where, in addition to compute the distances between consec-
utive graph snapshots, the distances between all pair of nodes in the graph are computed
as well. They detect the changes that occur in the time evolving graph based on the dis-
tances between pair of users. [77] proposes a graph feature-based similarity approach to
compare the pairwise node similarity. But, computing all the pairwise similarity scores has
high computational cost. A faster algorithm has been proposed to avoid computation of
similarity among all pairwise nodes [6]. Recently, [28] proposes a statistical approach to
detect change points.

However, these approaches are not able to detect which nodes are responsible for the
detected changes. One of the interesting research work in this direction is [4], which
considers individual local features (e.g., in-degree, out-degree, in-weight, etc.) for each user
and calculates the correlation between these features value over time for all pair of users,
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to detect change times in the whole graph structure. However, they identify change points
where the majority of the users in a whole graph deviate from their normal behaviors.
Therefore, if the majority of the users do not deviate from their normal behavior, this
approach fails in detecting the changes.

A most recent work, that is, [137], in addition of finding the changes in the whole graph,
finds also which nodes or edges are responsible for these changes. However, their key goal
is the detection of changes in the whole graph structure.

Compared with the above mentioned approaches for change detection, in this chapter we
want to face a different problem. Indeed, our goal is to have a change detection approach
able to identify users with anomalous changes in the structure of their subgraphs. For
instance, the preparation of socialbots, or other type of attackers, may be associated with
changes in the structure or the patterns of friendship links between users in an OSN.
Therefore, the ability to effectively and efficiently detect these changes has the potential
to enable the service providers of OSNs to anticipate and respond to these attacks. In
particular, given a user u we are interested in his/her changes that can be considered
anomalous compared to: (a) changes of other similar users, and (b) changes performed by
him/her in the past.

More precisely, we analyze and monitor the change patterns of users over time and
compare them with their own previous change patterns and the change patterns of other
similar users in the network. Towards this goal, we consider local structural information
for each user by analyzing his/her subgraph over time. Then, we measure how much the
subgraph of a user changes over time, based on some distance metrics, and compare it with
his/her previous changes and with those of other similar users in the network.

This approach has many benefits. First, it does not consider global changes in the
whole social graph structure, but it only considers local changes in user’s subgraphs. By
considering the changes in the whole graph structure, we are not able to identify some kind
of attackers characterized by changes in the structure of their subgraph, nor which users
change the most. Second, our approach identifies those users with anomalous changes that
deviate from their own previous change patterns. This is good to detect the changes in the
behavior of attackers. Third, it can identify those users with anomalous changes in their
subgraph structure that deviate from other users with the same change patterns in the
whole graph. This is useful to analyze the structural patterns of attackers in comparison
with those of normal users. Finally, it can measure the degree of changes for each user,
by thus providing a level of anomaly, which can be used to trigger the proper response.
Moreover, our approach is well suited for OSNs where the number of users and edges are
very large.

Furthermore, identifying the exact time that these changes occur is good to identify the
preparation of socialbots or other type of attacks that are directly associated with changes
in the patterns of friendship links. We analyze the performance of our approach on a real
Google+ dataset over different graph snapshots.

The remainder of this chapter is organized as follows. Section 5.2 introduces the overall
idea underlying our approach, whereas Section 5.3 describes the considered graph based
local structural features. Section 5.4 presents the anomalous change scores. Finally, exper-



CHAPTER 5. ANOMALOUS CHANGE DETECTION IN TIME-EVOLVING OSNS 67

iments are presented in Section 5.5.

5.2 Overall Approach

The goal of the proposed approach is to monitor and analyze the change patterns in the
structure of user’s subgraph and to identify those users with anomalous changes. To-
wards this goal, given a user u in an OSN, we extract local structural features in u’s
subgraph (e.g., degree, triangles, ratio between degree and triangles) for each graph snap-
shot Gt, at a given time instant t, as shown in Figure 5.1(a). In order to monitor user
changes over time, we compute the Euclidean distance [121] between the structural fea-
tures of u’s subgraph (such features will be explained in Section 5.3), in the current
graph snapshot (e.g,. Gt+1) and its features in the set of w previous graph snapshots,
where w is a fixed size sliding window. The comparison of the structure of u’s subgraphs
over different snapshots is used to produce the time series of subgraph’s distances (e.g.,
{d(G3,G1), d(G3,G2), . . . , d(Gt+1,Gt−1), d(Gt+1,Gt)}), over the fixed size sliding window w.

Suppose, w = 2, given a sequence of four graph snapshots {G1, G2, G3, G4} and a user
u in these four graph snapshots, there is a sequence of distances between the structural
features of u’s subgraph at each graph snapshot, e.g., G4, and the structural features of u’s
subgraph in the two previous graph snapshots, i.e., G2 and G3, that is, {d(G4,G2), d(G4,G3)}.
Therefore, there will be a set of distances for user u over all these four graph snapshots,
{d(G2,G1), d(G3,G1), d(G3,G2), d(G4,G2), d(G4,G3)}.

Given a sequence of distances indicating the changes in the structure of user’s subgraph
over time, as shown in Figure 5.1(b), we obtain thus the set of user distance vectors,
denoted as DV (u) = {dv1(u), . . . , dvt(u), dvt+1(u), . . .}, where each element corresponds
to a distance vector at time instant t and contains the set of distances of u’s subgraph
at time t (i.e., in Gt) with its w previous snapshots (i.e., Gt−1, Gt−2, . . . , Gt−w ), where
dvt(u) = {d(Gt,Gt−1), d(Gt,Gt−2), . . . , d(Gt,Gt−w)}). For example, the distance vector of user
u at time 4 is dv4(u) = {d(G4,G2), d(G4,G3)}, whereas the distance vector at time 3 is
dv3(u) = {d(G3,G1), d(G3,G2)}, assuming w = 2.

We then identify those users that have anomalous changes in the structure of their
subgraphs over time by comparing their current distance vector with; a) those of other
similar users in the network; and b) his/her previous distance vectors.

At this purpose, we need a measure for comparing distance vectors. For this, we exploit
[74], which proposes a density based outlier detection technique. They compare the local
density of a node to the local densities of its nearest users in the network and flag a node
as an outlier if it has a lower density than its nearest users. In particular, based on [74],
in our approach we propose two factors to check whether a node is an outlier; a) k-nearest
Anomalous Change (KAC) factor, and b) Historical Anomalous Change (HAC) factor. We
will explain the definition of these two factors in Section 5.4.

In the following, we first discuss how we extract local structural features for each user.
We then describe how the proposed factors can be used to compute an anomaly score that
reflects how the sequences of subgraph changes of a user deviate from those of other users
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Figure 5.1: Graph snapshots and the sequence of distance vectors for a user u

and also from his/her historical change patterns.

5.3 Local Structural Features

The local structural features that we exploit are related to the type of changes that can
happen in an OSN. There are several possible changes in an OSN graph such as:

• change in the number of friends (degree) of a user;

• change of the number of mutual friends of a user with his/her direct friends (triangle
count);

• change in the ratio between degree and triangle count of a user. If this ratio increases
it implies that the subgraph of the user becomes more sparse. In contrast, if the ratio
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between degree and triangle count of a user decreases it implies that the subgraph of
the user becomes more dense.

To keep into account the above types of changes, given a user u, we extract the following
local structural features:

• Degree of u (Degree), that is, the number of direct friends of u. This feature is
helpful to identify those users whose degree increases or decreases over time in an
anomalous way.

• Triangles count of u (TriangleCount), where a triangle exists when a node has
two adjacent nodes that are also adjacent to each other. An high value of this feature
for a target user u shows that the high number of mutual friends among friends of u
caused to have a dense (near-cliques) subgraph. On the other hand, a low value for
this feature for a target user u shows a small number of mutual friends among the
friend of u, that causes to have a sparse (near-stars) subgraph. For instance, sybils
with a dense subgraph are those attackers that in order to legitimize their account
try to have a high number of mutual friends with their friends and form a tight knit
cluster in their direct subgraphs.

• The ratio between degree and triangle count of u, that is, RateDT =
Degree/TriangleCount. This feature shows the relation between degree and tri-
angle count. More precisely, the value of degree has a direct impact on the value of
the ratio, whereas, the value of triangle count has inverse impact on the value of the
ratio. When, user’s degree increases over time while the triangle count decreases, the
value of the ratio decreases. It means that, although the degree of user increases,
but, the number of mutual friends with user’s friends decreases the subgraph of the
user becomes sparser than before. On the other hand, if the triangle count increases,
it makes the subgraph of the user denser. Therefore, this feature can be useful to
analyze whether the structural patterns of users over time become sparser or denser.

5.4 Anomalous Changes

Each snapshot Gt is an undirected social graph with a various number of nodes (i.e., users)
UGt = {u1, . . . , un} and an edge set EGt = {e(1,2), . . . , e(1,n)}, with e(i,j) denoting the edge
between users ui and uj . For each graph snapshot Gt, and for each transition between
graph snapshots Gt+1 and Gt, our goal is to detect anomalous changes in the structure of
user’s subgraphs. A particular user u is deemed to be anomalous if u’s distance vector at
time instance t+1, dvt+1(u) = {d(Gt+1,Gt), d(Gt+1,Gt−1), . . . , d(Gt+1,Gt−w)}, deviates from the
norm.

More precisely, our goal is to define how much the recent changes of user u in the time
window w deviate from: a) those of other nearest users in the network; and b) his/her
previous changes in the window w.
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Toward this goal, we define two anomalous change factors, k-nearest Anomalous Change
factor (KAC) and Historical Anomalous Change factor (HAC). The KAC factor for a
particular user u, denoted as KACk(u), indicates anomalous changes of user u over time
window w in comparison with those of his/her k-nearest users in the network. The HAC
factor, denoted as HACh(u), indicates anomalous changes of user u in comparison with
h-nearest distance vectors of u, where h is the number of nearest previous distance vectors
of u. More precisely, the h-nearest distance vectors are the previous distance vectors that
are more similar to the distance vector of u at time instance t+1, dvt+1(u) (we will explain
this in Section 5.4.2). In the following, we explain these two anomalous factors in more
details.

5.4.1 K-nearest Anomalous Change Factor

In order to define KACk(u) for a particular user u, we borrow the idea of density based
anomaly detection, called the Influence Outlierness (INFLO) [74] that is based on Local
Outlier Factor (LOF) [22]. These approaches used a density measure to catch anomalous
users. More precisely, authors in [74, 22] compare the local density of a node to the local
densities of its k-nearest users in the network. The node is an outlier if it has a lower density
than its k-nearest users. More formally, the definition of k-nearest users is as follows:

Definition 7 (k-nearest users of u) Let Gt+1 be the graph snapshot at time t+ 1, and
u be a node in Gt+1. Given a value k, the k-nearest users of u are defined as:

NUk(u) = {u′ | u′ ∈ Gt+1, dist(u, u
′) ≤ distk(u)} (5.1)

where dist(u, u′) denotes the Euclidean distance between u and u′ computed on
{d(Gt+1,Gt), d(Gt+1,Gt−1), . . . , d(Gt+1,Gt−w)} . distk(u) is the Euclidean distance between u
and the user in Gt+1 placed in the k-th position w.r.t. the Euclidean distance ranking.
Therefore, users in NUk(u) are those users that are more similar to u, based on the distance
vectors over time window w.

Definition 8 (k-nearest local density of u) The k-nearest local density of u, denoted
as denk(u), is the inverse of distk(u):

denk(u) =
1

distk(u)
(5.2)

The KAC factor returns a measure of how much the changes in the structure of user
u’s subgraph are different from those of his/her nearest users. It is defined as the ratio of
the average density of users in NUk(u) and u’s k-nearest local density:

KACk(u) =
denavg(NUk(u))

denk(u)
(5.3)

where denavg is the average density of users in NUk(u), whereas denk(u) is the local density
of user u.
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5.4.2 Historical Anomalous Change Factor

Historical Anomalous Change factor, HACh(u), identifies those users whose structural
changes in their subgraphs deviate from their historical changes in the past.

In order to define HACh(u) for a user u, similar to the KAC factor, we compute the
Euclidean distance but in a different way. In more details, we compute the Euclidean
distance of u with his/her previous distance vectors. After ranking the results, we select
the value disth(u) at the h-th position in the ranking and define the set of distance vectors
whose Euclidean distances with u is less than disth(u). We consider this list of distance
vectors as h-nearest distance vectors of u. After that, we compare the local density of a
user wrt the current distance vector to the local densities of its h-nearest distance vectors
in previous snapshots. The user is an outlier if it has a lower density than its h-nearest
distance vectors.

In particular, the definition of h-nearest distance vectors is as follows:

Definition 9 (h-nearest distance vectors of u) Let u be a node in the graph snapshot
Gt+1, with the current distance vector for w = 2, dvt+1(u) = {d(Gt+1,Gt), d(Gt+1,Gt−1)}. The
h-nearest distance vectors of u are defined as:

NVh(u) = {v′ | v′ ∈ dvt(u), dist(u, v′) ≤ disth(u)} (5.4)

where dist(u, v′) is the Euclidean distance between u and v′ computed on
{d(Gt+1,Gt), d(Gt+1,Gt−1)}. disth(u) is the Euclidean distance between the current distance
vector of u and his/her previous distance vectors placed in the h-th position w.r.t. the
Euclidean distance ranking. Therefore, the vectors in NVh(u) are those historical distance
vectors that are more similar to the current distance vector of u.

Definition 10 (h-historic local density of u) The h-historic local density of a user u,
denoted as denh(u), is the inverse of disth(u):

denh(u) =
1

disth(u)
(5.5)

The HAC factor returns a measure of how much the change pattern of user u’s subgraph
at current time is different from his/her previous distance vectors. It is defined as the ratio
of the average density of vectors in NVh(u) and u’s h-historic local density:

HACh(u) =
denavg(NVh(u))

denh(u)
(5.6)

where denavg is the average density of vectors in NVh(u) and denh(u) is the local density
of user u.
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5.4.3 Local Anomalous Change Factor

In this section, we discuss how the previously defined anomalous factors are combined to
reach a final anomaly score that reflects how the current changes in the structure of user’s
subgraph deviate from his/her nearest friends and historic change patterns.

Given a target node u, we combine the two anomalous measures HACh(u) and
KACk(u) to obtain the Local Anomalous Change factor (LAC), formally defined as follows:

Definition 11 (Local Anomalous Change Factor) Let Gt+1 be the graph snapshot at
time t+ 1, and let u be a node in Gt+1. The LAC factor of u is defined as:

LAC(u) = HACh(u) +KACk(u) (5.7)

Given a target node u, we first compute the LAC factor, then we rank users based
on their LACs. We flag a user as anomalous if his/her LAC is higher than a threshold,
denoted as LACT , which is defined based on the distribution of LAC values of all users in
Gt+1.

5.5 Experimental results

In this section, we show how our proposed measures are able to detect those users with
anomalous changes in the structure of their subgraphs. At this purpose, we have used four
snapshots of Google+ [60, 59]. The first snapshot, referred to as G1, includes 4,693,129
nodes and 47,130,325 edges. In the second one (i.e., G2) there are 17,091,929 nodes and
271,915,755 edges, whereas in the third and fourth (i.e., G3 and G4), there are 26,244,659
and 28,942,911 nodes and 410,445,770 and 462,994,069 edges, respectively.

Unfortunately, the dataset does not provide any information on which users in the
dataset are anomalous. However, there are several validation approaches for anomaly
detection techniques [6, 31, 133, 46] when the ground truth is not available, since this is a
common problem in the anomaly detection area. Among the proposed approaches, we chose
the one proposing the injection of anomalous nodes into the real graph in order to evaluate
the performance of anomaly detection models [6]. In particular, we follow the approach of
injecting fake users which are created by simulating attackers structural patterns. Then,
we manually inject some connections between these fake users to simulate some kinds of
attacks. After that, we monitor and analyze the changes in the structure of user’s subgraph
over all graph snapshots to detect those users that have anomalous change over time by
calculating the three proposed anomalous change factors for all users including fake users.

More precisely, we simulate four different categories of anomalous users in OSNs. In
particular, the most prevalent and practical attacks in OSNs are sybils or socialbots. In
these attacks, attackers create some fake accounts, called sybils, in order to create some
friendship links with other users in the network to gather private information or propagating
malwares. There are different structural patterns for sybils, the most notable are: a) sybils
with a tight-knit community (dense friendship graph) and, b) sybils with a sparse community
(sparse friendship graph).



CHAPTER 5. ANOMALOUS CHANGE DETECTION IN TIME-EVOLVING OSNS 73

Sybils with a tight-knit community are those attackers that, in order to have a high
number of friends, after creating some fake accounts, they first establish some friendship
links among themselves and then send friend requests to other users [14, 25]. In this way,
they legitimate their identity by having more mutual friends with their friends to form
tight knit clusters in their direct subgraphs.

The second category of sybils is that of sybils with a sparse graph. In this category,
attackers create some fake accounts and then, use snowball sampling techniques [157] to
send friend requests to high degree users (i.e., popular users), since they are more interested
to accept friend requests from strangers [54]. Therefore, their subgraphs become sparse.

Based on these types of sybils, we injected different types of fake users into the last
Google+ snapshot, that is, G4. In particular, we randomly select some users as sybils and
inject some random edges among them with other users in the Google+ dataset. Then, we
compute our three anomalous change factors for all the users in the obtained new graph
snapshot, including the injected fake users. Finally, we flag as anomalous a user if its LAC
deviates from those of the other nearest users and his/her historical change patterns. We
set the values of w and, h to 2, and k from 5 to 10.1

In the following, we first describe the three categories of injected fake users and then
we discuss the experimental results.

5.5.1 Injected anomalous users

In this section, we describe the three type of injected anomalous users:

• Sybils with tight-knit community. To model these attackers, we first randomly
select 100 nodes in the last graph snapshot as sybils, then we add edges among
themselves, plus edges with other random users. These random users are selected
among those with large degree in the range of [1000, 35000] (greater than 10 times
the average). Then, we add edges with 80% of friends of these high degree users,
since attackers establish friendship with those popular users and also their friends to
infiltrate OSNs. Here, we simulate the worst case of these sybils, by assuming that
all these users accept sybil’s friend requests. The number of injected edges for each
sybil is between 10 to the average degree of all users in the network. This is done in
order to have some sybils with small changes in degree and some with big changes in
degree.

• Sybils with sparse community. This kind of attackers use snowball sampling
techniques to identify and send friend requests to high degree users to have friendship
links with a lot of strangers. The difference wrt the previous ones is that they do
not first create friendship links among themselves. Therefore, we randomly select 100
users, and, for each one of them, we establish a number of new edges in the range

1since considering a high value for k in large social graphs has a high computational cost and, according
to [74], it does not have a big effect on the result.
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[10, 350]2 with high degree users, in order to have some sybils with big changes in
degree and some with small changes in degree.

• Random fake users. These anomalous users are completely random in creating
new edges. Therefore, we randomly select 100 nodes from the last graph snapshot as
fake users and create edges among these fake nodes. For each of these fake users we
establish a number of new edges in the range [10, 350] with randomly selected users
from the whole graph, not only with high degree/popular users as in the previous
cases.

5.5.2 Obtained results

We run our experiments to compute the proposed anomalous factors: 1) KAC(u), b)
HAC(u), and c) LAC(u) on the three different graphs with the three different types of
injected anomalous users. More precisely, we have four snapshots and we injected to the last
(4th) snapshot each type of sybils and fake users (sparse sybils, dense sybils, and random
fake users). After that, we compute anomalous factors for all users in each snapshot
separately.

First we compute the first anomalous change factor, KACk(u), and we flag those users
where KAC is higher than a threshold value, KACT , which means their change pattern
deviates from other nearest users in the graph. We set the threshold value by computing
the distribution of KAC factor values for all users in G4.

Then, we compute the second anomalous change factor, HACh(u), and we flag those
users where HAC is higher than a threshold value, HACT , which means their change
patterns over time deviate from their own historical changes. The setting of threshold
value is based on the distribution of HAC for all users in G4.

As shown in Figure 5.2, around 90% of users have the KAC value less than 1, less
than 10% of users have the value in the range [1, 2], few users have the value in the range
[2, 3], and a very small number of users have a value greater than 3. Based on this, we
set the threshold KACT to 2. Therefore, users with KAC higher than 2 are considered
anomalous.

The distribution of HAC is shown in Figure 5.3. Here, around 80% of users have the
value in the range [0,1], 15% have the value in the range [1, 2], and 5% of users have the
value in the range [2,3]. Since very few users have the value higher than 3, we set the
threshold HACT as 3.

After selecting the thresholds, we compute the detection rate of those injected risky
users based on KAC, HAC, and LAC. We can see in Figure 5.4 that the detection rate of
sybils with sparse friendship graphs and random fake users are higher than the one of the
sybils with dense friendship graphs. Because, there are some users with dense friendship
graphs in the real snapshot that have more anomalous changes than these fake users.
However, because of the lack of ground truth, we can not proof either they are fake or real
users, and this can have a consequence on the obtained performance.

2350 is the average degree of all users in the 4th graph snapshot.
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Figure 5.2: Distribution of KAC values for sybils with sparse graphs

Figure 5.3: Distribution of HAC values for sybils with sparse graphs

On the other hand, the detection rate of LAC is higher than that of KAC and HAC. It
shows that by combining these two anomalous change factors, we reach a better detection
rate.

In order to calculate the false alarm rate, false positive (FP), we need to compute the
number of legitimate users that are detected as anomalous. Calculating the false alarm
rate is challenging since the real graph also may contain some anomalous users [6].
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Figure 5.4: Detection rate for the three categories of injected fake users

However, according to many anomaly detection studies, the majority of users follow
a common pattern and only few of them deviate from it [5]. Therefore, to select a set
of users to be considered legitimate users, we randomly select users not from the whole
graph but among those users whose graph structures are similar to the majority of users
inside the real graph. In other words, we did not consider outliers for this selection. To
perform this selection, we consider four structural features: degree, triangle count, average
degree of user’s friends and average triangle count of user’s friends. Then, we analyzed
the relation between these features. For example, Figure 5.5 shows the relation between
degree and triangle count. We can see that most users concentrate in some areas and only
few of them are outliers. Figure 5.6 illustrates the relation between the average degree and
average triangle count and, again, it is clear that most of the users concentrated on some
areas of the graph and few of them deviate as outliers. Therefore, we select our legitimate
users randomly among those users with ratio between degree and triangle count and ratio
between average degree and average triangle count in the range [0.1, 10], since 90% of users
have this range of values. In particular, from each graph snapshot, we randomly select
10000 legitimate users and then, select 1000 common users in all graph snapshots as the
final legitimate users.

Finally, we compute the false alarm rate for all these selected normal users. We can see
in Figure 5.7 that false alarm rate of LAC is lower than that of KAC and HAC. On the
other hand, the false alarm rate of sybils with dense friendship graphs is higher than the
two other types of fake users.

In the last experiment, we calculate the F-measure by computing precision and recall
based on: false positive (FP), false negative (FN), true positive (TP) and true negative
(TN). Table 5.1 shows the F-measure for the three categories of fake users based on our
three anomalous factors. We can see that the F-measure values for sybils with sparse graphs
and random fake users are almost equal with a very good value and the performance is
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Figure 5.5: Relation between degree and triangle count

Anomalous Factors Sparse Sybils Dense Sybils Random Fake Users

KAC 0.8695 0.7839 0.8883

HAC 0.93566 0.9124 0.9183

LAC 0.9790 0.9356 0.9737

Table 5.1: F-measure for three categories of fake users based on our three anomalous factors

better than the one for sybils with dense friendship graphs.
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Figure 5.6: Relation between the average degree and average triangle count

Figure 5.7: False alarm rate



Chapter 6

Gossip-based Behavioral Group
Identification in DOSNs

6.1 Introduction

Recently, discovery of meaningful groups of users that share the same behavioral patterns
in social networks has become an active research area. Behavioral group identification has
many valuable applications. For instance, it can help in improving recommendation sys-
tems, it can be used for advertisement purposes, direct marketing, and for risk assessment
in online social networks. The key idea in risk assessment is that the more the target user’s
behavior diverges from those of other similar users, the more the target user is risky [5].
Therefore, risk assessment approaches require to identify similar users that share the same
behavioral patterns.

By considering a social network as a graph, each node is depicted as a user, and an edge
connecting two users denotes the relationship between them. Here, the main problem is that
all users are connected in friend to friend graph, but users that share the same behavioral
patterns not necessarily have friendships in the graph. In grouping users we consider
the profile and activity information such as age, gender, education, nationality, number of
friends, activity level, etc. Furthermore, in investigating the discovery of behavioral groups,
we have cast our attention to DOSNs [33]. In DOSNs, there is no central infrastructure
and discovery of behavioral groups is more challenging than in the centralized setup. In
the fully distributed social graph, each user can only communicate with his/her direct
friends without sending all the private group identification feature values to his/her direct
friends in a raw form. In more details, behavioral patterns can be classified into social and
individual behavioral patterns. Social behavioral patterns rely on user interactions, while
individual behavioral patterns are related to profile information [100]. In this chapter, we
propose a methodology for identifying both social and individual patterns to group users
in DOSNs.

The problem of finding similar users in social networks has been widely studied in
the context of community detection. Community detection approaches that are pure link-

79
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based, relying on topological structures [38], [48], fail to group users with the same be-
havioral patterns in that such users might belong to different communities based on their
friendship links. Moreover, some of the community detection approaches are content-based
that they rely on the analysis of the content generated by each user [111], [94]. The major
problem of these approaches is the overhead for building the graph, based on similarity
measures, that is not suitable for real-time applications. On the other hand, when each
user feature vector includes both discrete and continuous features, the various behavioral
patterns may not be obvious by similarity measures and then, this identification can not
be made correctly. However, there are some stream-based community detection methods
suitable for real-time applications [90], [124]. But, most of these approaches are link-based
[92], and they do not consider the personal feature vector of users.

To alleviate the limitations of existing approaches, we propose a fully decentralized
clustering algorithm which is capable of clustering distributed information without requir-
ing central control. The selected clustering model requires specific aspects to be considered
such as: the final clustering model should maintain a reasonable performance compared to
a centralized clustering model and should be robust in that it should not easily fail when
some of the users leave the network or do not answer to messages. Also, all users should
be able to have the final clustering model at any time after convergence to assign a group
for themselves and their direct friends in a local way. Finally, we need to minimize the
communication cost by decreasing the number of messages and the size of them as well.
These requirements bring us to exploit Newscast EM [79], a probabilistic gossip-based
randomized communication clustering approach, originally developed for clustering users
in peer-to-peer networks. In Newscast EM, each user initializes a local estimation of the
parameters of the clustering model (mean, standard deviation, etc.) and then, contacts a
random user from all users in the network, to exchange their parameters estimation and
aggregate them by weighted averaging. The choice of random selection is crucial to the
wide dissemination of the gossip [79], since, the probability of a user being sampled is pro-
portional to his/her degree [95]. Gossip-based peer-sampling service [70] provides a user
with a uniform random subset of all users in the peer-to-peer network. But, the main
difference between peer-to-peer and social networks is that in peer-to-peer networks each
user can directly communicate with any other user in the network to exchange information.
On the contrary, in social networks each user can just communicate directly with his/her
direct friends. Therefore, we use the random-sampling implementation for social networks
proposed in [76].

The main contribution of this approach is making Newscast EM to be applicable on
top of DOSNs and apply it to identify behavioral groups of users. Our goal is to achieve an
accuracy comparable to a centralized scheme. The advantages of this distributed behavioral
group identification are: 1. the usage of both social and individual patterns of users, 2.
feature values of users are never send over the network in a raw form and 3. it has
low computation and communication cost. The remainder of this chapter is organized as
follows. We first explain Newscast EM in Section 6.2. Then, we propose our gossip-based
implementation for behavioral group identification in Section 6.3. In Section 6.4, we show
the result of the clustering model.
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6.2 Background

In selecting the clustering technique, we focused on soft clustering (i.e., probabilistic-based
clustering). Hard clustering techniques, (e.g., k-means) are not proposing a solution to
the problem of clustering discrete or categorical data [20] since they are based on distance
metrics. We use EM (Expectation Maximization) algorithm, that is, a probabilistic based
clustering method. In particular, EM defines K probability distributions to identify K
clusters for all users based on their feature vectors, where each distribution represents the
likelihood of those feature vectors to belong to a given cluster. In this way, EM first assigns
a set of K membership probabilities to each user u based on his/her own feature vector.
Then, EM maximizes these likelihoods by learning the parameters of the clustering model
in order to assign to each user the cluster with the highest probability.

The main idea of distributed EM algorithm is that each user starts the Expectation-
step with a local estimation of the parameters of the clustering model. Then, in the
Maximization-step, the algorithm employs a gossip-based protocol to learn a final clustering
model from these local estimations. Each user exchanges his/her own estimations with
several other users by using a randomized communication protocol. By gathering these
estimations from random users, the target user can update and re-estimate his/her own
estimation.

In the following, we present a summary of Newscast EM. Interested readers are re-
ferred to [79] for more details. Let N be the set of users in the OSNs, the probability of
membership or weight of a target user ~u, ~u ∈ N , in cluster l is defined as [20]:

wl(~u) =
wl.pl(~u|θl)
K∑
i=1

wi.pi(~u|θi)
(6.1)

where, wl is a weight computed as wl = |Nl|
|N | , with Nl denotes the set of users belonging

to the lth cluster, where
K∑
l=1

wl = 1; function pl(~u|θl) is the component density function

modeling the feature vector of the lth cluster, where θl = {~µl,Σl} represents the parameters
for lth distribution, that is, the mean and the covariance.

Newscast EM uses a fully distributed averaging process for estimating the parameters
Θ = {wl, ~µl,Σl}, l = 1, . . . ,K. Assuming that each user has just one feature vector,
then the Expectation-step implies that each user locally estimates the parameters based
on his/her own feature vector. In this manner, each user ui, i = 1, . . . , N starts with a
local estimation of Θi = {wli, ~µli,Σli} for the parameters of the cluster l. However, in
the Maximization-step of the algorithm user ui needs information from all users in the
network to recompute his/her parameters estimation. Therefore, this step is implemented
as a sequence of gossip-based cycles. The details of the algorithm, which each user will run
in parallel is as follows:

Initialization phase: We assume that all users agree on the number of clusters K
and start the exchanging protocol. Each user ~ui, sets the membership probability for each
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cluster as wl(~ui) to some random positive value and then normalizes all to sum to 1 over
all l. This phase is completely local for each user.

Maximization-step: In this step, user ui initializes the local parameters estimation
for each cluster l as follows: wli = wl(~ui), ~µli = ~ui and Σ̃li = ~ui.~ui

T , where T is the
transpose of the feature vector of user ui. Then, user ui for < cycles repeatedly initiates
the information exchange with random users, i.e., uj . Then, users ui and uj update their
local parameters estimation for each cluster l as follows:

w
′
li = w

′
lj =

wli + wlj
2

(6.2)

~µ
′
li = ~µ

′
lj =

wli.~µli + wlj .~µlj
wli + wlj

(6.3)

Σ̃
′
li = Σ̃

′
lj =

wli.Σ̃li + wlj .Σ̃lj
wli + wlj

(6.4)

Expectation-step: User ui, after waiting for < cycles for the convergence of his/her
local parameters estimation, computes new membership probabilities for each cluster l
using the Maximization-step estimations wli, ~µli and Σli = Σ̃li−~µli.~µTli . We denote with Θt

the parameter values set at iteration t and then Θt+1 = {(~µt+1
li ,Σt+1

li , wt+1
li ), l = 1, . . . ,K}.

The sequence of Θ-values which is then the likelihood of Θ, L(Θ), is non-decreasing at each
iteration. Then, user ui checks the stopping tolerance by using the estimations from the
previous EM-iteration to see if it is satisfied or not, until |L(Θt) − L(Θt+1)| ≤ ε, where
ε > 0. If it is not satisfied, the Maximization-step is repeated, unless a stopping tolerance
is satisfied. In the following, we will explain how to run newscast EM in decentralized
social networks.

6.3 Newscast EM in DOSNs

In social networks, each user can just communicate directly with his/her direct friends.
Therefore, we propose our gossip-based clustering framework on DOSNs that contains two
main components: UserSelection and ClusteringModelUpdate. The same algorithm is run
by each user in the network in parallel, as shown in Algorithm 1.

6.3.1 User Selection

In randomized user selection, the problem is that if users can be selected randomly with
equal probability, the estimation will be unbiased. But, it is well known that the probability
of a user being sampled is proportional to his/her degree [95]. Therefore, more popular
users have a higher degree and tend to have a higher probability of being sampled. This
will lead to overestimate the average value during the gossip process. There are plenty
of approaches to select a uniform and unbiased random sampling of users in DOSNs such
as: graph traversal techniques [81] and Random Walk [80]. But, most of these approaches
are biased towards high degree users [95]. To have a uniform random sample of all users,
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each user needs to know every other user in the network. Since, accessing each user in
the network to gossip with, is unrealistic in a large-scale dynamic networks, we apply a
technique for DOSNs proposed [76] for randomized communication, to define a dynamically
changing random graph topology over the network. This technique includes two methods
Initialization and SelectUser.

The initialization procedure initializes the service for the new user when he/she joins the
social network. First, each user ui maintains a list of its direct friends and two hops friends
in a small fixed size cache, called Random Neighbors Cache (RNC), including e entries.
The set e of entries in the RNC contains the list of random users ID, their longevity field,
and the path to reach them. The field longevity is the age of the entry since the moment it
was created by the user. Then, in the SelectRandomEntries() procedure, a user selects S
subset of neighbors from RNC and puts them in a cache, called Exchange Cache (ExC).
After that, the target user ui continuously selects one of his/her neighbors with the highest
longevity from RNC, i.e., uj , in SelectRandomUser() procedure, to exchange entries of
ExC. Then, ui increases by one the longevity of all the other entries in ui’s RNC.

In social networks, as shown in Figure 6.1, if user A wants to communicate with user
D, he/she needs to reach first B and then C. Therefore, each user needs to maintain both
a set of random users ID and also the path to reach them in order to exchange the entries
of ExC. For instance, let us assume that in Figure 6.1.(a) user A has six entries in the
RNC that include C, I, K, D, N and B. User A selects user I with the highest longevity
among all neighbors in the RNC and wants to exchange S (i.e., 3 in this example) number
of his/her neighbors in the ExC, such as C, D, N , with user I. On the other hand, user
A needs to pass through (M , L) to reach user I. Therefore, user I, in order to reach all
of the entries in the ExC of user A, needs to first reach user A and then he/she will be
able to reach all entries inside A ’s ExC. The problem is that this path could be long. For
instance, user I, in order to reach user D, first needs to reach user A by passing through
(L, M) and then from A to user D via (B, C), i.e., (L, M , A, B, C). This path is long
and it is not the shortest path from user I to D. But, user I can reach user D by passing
through his/her mutual friends with D, like (E ,D) or (L, D).

More precisely, to decrease the communication cost, the protocol in [76] builds a new
path for user I to reach all entries in user A’s ExC during the exchanging process, illus-
trated in procedure UpdateExC() in Algorithm 1. In this way, the source user A asks all
users within the direct path from A to I, i.e., (M , L, I) to build a new path for all the
entries to be accessible for user I. This process in summary is as followings. First the
source user (A) only adds his/her ID to the first part of the address of each entry in ExC
and sends the ExC to the next user (M) on the path towards user I, as shown in Figure
6.1.(1) in red color. Then, every next user (for instance user M) within the path towards
user I and also user I him/herself, after receiving the ExC, first reverses the path of each
entry in ExC, as shown in Figure 6.1.(2).a and starts traversing all users inside the reverse
path to check, if he/she has any direct friendship or mutual friends with those users. If yes,
he/she removes the remaining part of the path and adds his/her friends or mutual friends
ID to the path and adds the ID of his/herself to the first part of the path (except user
I that does not need to add his/her ID to the first part of the path), as shows in Figure
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6.1.(2).b (the first and second row of ExC). If not, he/she keeps the path and just adds
his/her ID to the first part of the path as shown in Figure 6.1.(2).b (the third row of ExC).

Then, all other users within the path towards user I, i.e., user L, do the same and send
the ExC to the next user towards user I. When user I receives the final ExC, checks
all entries in the ExC and updates them in his/her own RNC. Then, user I replies by
selecting a subset of his/her ExC entries, updates the entries path and, then, sends them
to user A from the path (L, M , A).

After exchanging neighbors for a number of cycles, the service will converge to a random
overlay where each user connects to a uniform random subset of all users currently in the
network. But, in our framework, users in addition of exchanging neighbors, also exchange
their parameters estimation of the clustering model. In this way, when the service converges
to the random overlay, also converges to a final parameters estimation available for all users
and then, users are able to update their local parameters estimation. After some iterations
of the EM algorithm, they will converge to a final clustering model. In the next section,
we will explain in more details the update of the clustering model.

6.3.2 Clutering Model Update

The second main component of our framework is the online clustering algorithm that
updates the clustering model based on the local parameters estimation of each user. In our
setting, in the set e entries of the user ui’s RNC, in addition to the list of random users ID,
their longevity field, and the path to reach them, we maintain their parameters estimation of
the clustering model. Therefore, the gossip-based clustering algorithm shown in Algorithm
1 performs the following steps. In the initialization phase, each user ui, in addition to filling
RNC with direct friends and two hops friends, initializes the local parameters estimation
for each cluster l. After the initialization phase, users initiate exchanging neighbors and
the parameters estimation of the clustering model simultaneously and periodically at a
fixed period 4T . We do assume that the length of the period 4T is the same for all
users. During a period 4T , each user initiates one exchanging cycle. There are two types
of communication models for exchanging the information. In the Push based model, a
target user ui sends ExC and parameters estimation (Θi) to the selected user. In the
Push-Pull based model, both the target user ui and selected user uj exchange their ExC
and parameters estimation. Our communication model is based on Push-Pull, since the
Push approach can easily lead to partitioning the set of users in the network [70], [76].

After initialization, the initiating user ui increases by one the longevity of all neighbors
in his/her RNC. After that, user ui selects neighbor uj with the highest longevity among all
neighbors in RNC, and set the longevity of uj to zero in his/her RNC. If the information
has to be pushed, user ui replaces uj ’s entry in RNC with a new entry of longevity 0
and with ui’s ID and path to reach user ui. Then, user ui selects S subset of neighbors
from ui’s own RNC, and save them in the temporary ExC. Next, user ui updates the
entries path in the ExC by building a new path as mentioned in procedure UpdateExC()
in Algorithm 1, and sends it to the next user in the path towards user uj . After that, user
ui sends his/her local parameters estimation to the next user uk in the path towards user
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Algorithm 1 Gossip based Clustering Protocol

Input: The local Θi for each user ui, i = 1, . . . , N .
Output: The global Θi for each user ui.

1: Initialization()

2: Loop:
3: if Push then//if ui has to push information

4: Wait 4T
5: ExC ← RNC.SelectRandomEntries()

6: ExC ← UpdateExC(ExC, ui)

7: uj ← RNC.SelectRandomUser()

8: Sends ExC to ui ’s neighbor toward uj

9: Sends Θi to ui ’s neighbor toward uj

10: Θj ← Receive(uj)

11: Θi ← UpdateModel(Θi,Θj)

12: else if Pull then//If uj has to reply ui

13: ExC ← RNC.SelectRandomEntries()

14: Sends Updated ExC to uj ’s neighbor toward ui

15: Sends Θj to uj ’s neighbor toward ui

16: Receives ExC from uj ’s neighbor

17: ExC ← UpdateExC(ExC, uj)

18: Receives Θi from uj ’s neighbor

19: Θj ← UpdateModel(Θi,Θj)

20: else//Pull user uk within the path

21: ExC ← UpdateExC(ExC, uk)

22: Sends ExC to uk ’s neighbor toward uj

23: Sends Θi to uk ’s neighbor toward uj

24: End Loop
25: procedure Initialization()

26: InitModel()

27: InitRNC()

28: return Θ, RNC
29: End procedure

30: procedure UpdateModel(Θi, Θj )

31: for each cluster l do

32: w
′
l = (wli + wlj)/2

33: ~µ
′
l = (wli.~µli + wlj .~µlj)/(wli + wlj)

34: Σ̃
′
l = (wli.Σ̃li + wlj .Σ̃lj)/(wli + wlj)

35: return Θ
′

36: End procedure

37: procedure UpdateExC(RxC, u)

38: UpdatedRxC= RxC
39: if u = ui then

40: for all entries path ∈ UpdatedRxC do
41: Path.AddFirstID()

42: else//(u = uj) or (u = uk within the path to uj)

43: for all entries path ∈ UpdatedRxC do
44: ReversedPath=path.Reverse()

45: for all users ID ∈ ReversedPath do
46: if ID ∈ Direct-Friends (uk) then

47: Path.AddFirstID(ID)

48: Break
49: else if ID ∈ Two-Hop-Friends (uk) then

50: Path.AddFirstID(ID)

51: Path.AddFirstID(GetDirectFriend(ID))

52: Break
53: else
54: Path.AddFirstID(ID)

55: if u = uk then

56: for all entries ∈ UpdatedRxC do
57: Path.AddFirstID(u)

58: return UpdatedRxC
59: End procedure
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uj . Later, all users in the path towards user uj update the entries path in the ExC and
send the updated ExC and parameters estimation received from ui to the next user in the
path towards user uj .

When user uj receives from one of his/her direct friends the ExC coming from user
ui, user uj replies by selecting a random subset of S neighbors of his/her own RNC and
save them in his/her ExC. Next, user uj updates the entries path in ExC by adding
his/her ID to the first part of the entries path and sends ExC to the next user on the
path towards user ui. After that, user uj sends the local parameters estimation to the next
user in the path towards user ui. Then, user uj updates the entries path in the received
ExC. Next, uj discards entries pointing at uj and entries already contained in uj ’s RNC
and updates his/her RNC to include all remaining entries, by firstly using empty cache
slots, and secondly replacing entries among the ones sent to ui. User uj set longevity to
zero for all entries of received ExC in the RNC and does not increase, though, any entry’s
longevity in the RNC until he/she initiates the exchanging process. After that, user uj
updates his/her own parameters estimation by calculating the weighted average with the
parameters estimation coming from ui. Finally, user uj updates the parameters estimation
of ui and ui’s ID and the path to reach ui inside his/her RNC.

Under this algorithm, after some cycles, the local parameters estimation of users con-
verge exponentially fast to the global parameters estimation in each Maximization-step of
the EM algorithm. Therefore, each user is able to compute new membership probabilities
and check the stopping tolerance. Each user maintains the newly updated parameters esti-
mation from the previous EM-iteration in a small cache, called Estimation Cache (EsC),
of fixed size. When the cache is full, the parameters estimation stored for the longest time
is replaced by the newly added parameters estimation. Therefore, after some iterations
of clustering, all users will have a final clustering model and compute a final membership
probability to belong to their most fitting cluster.

6.3.3 User Behaviour-based Group Identification in DOSNs

Our goal is to have similar users in each group based on their social and individual features.
Feature vectors of each user are given as input to the Algorithm 1. Therefore, each user
can assign a cluster number (behavior group) to him/herself based on the feature vector
by considering the maximum membership probability among them.

User’s features vector includes two types of features: individual and social features.
Individual features are those, like age, gender, but also those that impact the possible
users’ behaviors, like, education and nationality. In addition to individual information, in
order to measure users’ attitude in online socialization, we consider the following social
features:
Number of Friends: social users with a lot of friends have different patterns than isolated
users with few friends;
Activity Level: unlike active users that write a lot of posts, passive users do not send any
information to others. We calculate this feature as the sum of: a) number of posts that a
user sends to others from the first day of joining the community, b) number of likes that a
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Figure 6.1: (a) before and (b) after the neighbours exchanged between A and I

user performs on posted items, and c) number of comments a user writes for posted items;
Percentage of public profile items: the assumption is that users with all profile information
(100%) public are more social.

6.4 Experiments

To perform the experiments on a real graph, we used the Facebook dataset crawled and
used in [3]. The author crawled the profiles information and friendship links of 75 users that
launched the application as seed. Then, the application crawled the information related to
these 75 users’ friendships. We removed those profiles that have many missing features and
obtained a graph by considering the largest connected component which includes 13,000
user profiles, plus the 75 seed users, with a total of about 461,700 friend links, 6,150,892
likes and 1,742,709 comments. Totally, around 7,000 users have more than 75% profile
information as public.

6.4.1 Results for convergence of the clustering model

The experiments are ran with S = 50 [70]. During the exchanging process the mean of the
local parameters estimation,
mui,c of each user ui, i = 1, . . . , N for each cluster in cycle c, c = 1, . . . ,< is always the
global correct mean µc, but, the variance measure σc2 that expresses the deviation of the
local estimations from the correct mean in the given cycle c decreases over the set of all
local estimations on the average by factor γ, with γ < 1

2
√
e

[70]. In general, when the
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variance tends to zero, then all users hold the global correct mean µc.

µc =
1

N

N∑
i=1

µi,c and σ2
c =

1

N − 1

N∑
i=1

(µi,c − µc)2

The convergence factor between cycle c and c+ 1 is given by σ2
c+1/σ

2
c . We plot the conver-

gence factor (values are averages for 20 independent runs) as a function of the number of
cycles, as shown in Figure 6.2. It is clear to see that the speed of the convergence of the
variance is fast and it decreases exponentially after few cycles. Thus, means that, after a
small number of cycles, all users, including the isolated users with low friendship links, will
have accurate estimations of the global correct mean µ in each M-step, when no failures
occurred. From this experimental result, choosing the number of cycles < equal to 1201 is
sufficient to reach a convergence.

6.4.2 Coping with User Failure

In a dynamic network, users continuously join and leave the network and they fail in some
situations. In this section, we consider the performance of the clustering model when some
percentage of users fail in each cycle of the exchanging parameters estimation.

As we mention before, each user maintains the parameters estimation he/she receives
from other users in the network in his/her ENC. If a user ui sends his/her parameters
estimation to a user uj to exchange and performs averaging and, waiting for 4T time,
he/she does not receive any answer, ui checks the ENC to verify if he/she has the pa-
rameters estimation of user uj from previous cycles or not. If yes, ui performs the average
with those previous values and updates his/her parameters estimation. Otherwise, he/she
skips the exchanging step. We need to mention that the user selection method in [76] takes
care of the failure of those users within the path between user ui and uj . We consider the
effect of these missing exchanges on the final value of the global µ of the clustering model.
Towards this goal, we remove 50% of users in each cycle of the exchanging protocol and
run independently the Newscast EM for 20 times. We show the result in Figure 6.3. The
y-axis shows the variance of the 120th cycle to the first cycle. The figure shows that if the
failure happens in the first cycles, the result of the global µ of the clustering model is so
far from the real correct global µ. But, if this failure happens in the next cycles (especially
after the 100th cycle), the variance tends to zero.

6.4.3 Clustering Results

In Table 6.1, we can see the performance of randomly initialized Newscast EM and central-
ized EM, by setting different number of clusters. The result in this table shows the average
number of EM iterations for each user to achieve convergence in Newscast EM (around
42± 3) and centralized EM (around 38± 2) that are almost near. After convergence, the
value of µi for each cluster at each user will converge to the true global µ. For example,

1We assume that all users agree on the number < of peer sampling cycles, and < is large enough to
guarantee convergence to the final parameters estimation.
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Figure 6.2: Convergence factor after users failure

Figure 6.3: The variance of µ at cycle 120 (for 20 independent run) after the failure of 50%
of users in each cycle
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Table 6.2 shows this value for feature Activity level in centralized EM and Newscast EM
that are almost equal. Also, Table 6.3 shows the values of µ for each cluster for the feature
Number of friends.

EM Iteration

Number of Clusters Centralized EM Newscast EM

3 38 41.25
5 38 42.53
7 39 41.38
10 38 43.19

Table 6.1: EM iterations for different number of clusters

Cluster No µ(AL)− CentralEM µ(AL)−NewscastEM

C1 27.5 27.35
C2 52.53 52.25
C3 48.31 48.05
C4 11301.68 11299.987
C5 6869.46 6868.299
C6 335.83 334.062
C7 18338.18 18336.647

Table 6.2: The value of µ for the feature Activity Level

Cluster No µ(NF )− CentralEM µ(NF )−NewscastEM

C1 536.39 535.56
C2 272.91 271.47
C3 194.42 193.39
C4 438.35 436.04
C5 276.87 275.41
C6 963 961.93
C7 953.6 951.58

Table 6.3: The value of µ for the feature Number of Friends

6.4.4 Dominant User Behaviors

Identifying the number of clusters or user behaviors is related to the nature of the dataset.
Therefore, there is no correct or incorrect numbers of groups to find. Each increment in
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Cluster No 10 clusters 7 clusters 5 clusters 3 clusters

Cluster1 20.27% 32.43% 47.29% 41.89%
Cluster2 20.27% 21.62% 22.97% 32.43%
Cluster3 14.86% 18.91% 10.81% 25.67%
Cluster4 10.81% 9.45% 12.16%
Cluster5 9.45% 6.75% 6.75%
Cluster6 6.75% 5.4%
Cluster7 1.35% 5.4%
Cluster8 5.4%
Cluster9 5.4%
Cluster10 5.4%

Table 6.4: The ratio of users (RU) in each cluster for different number of clusters

the number l of clusters yields to a new group and similarly a new behavior. On the other
hand, if we consider a small number of groups by aggregating some behaviors, we will have
the most dominant behaviors, but, we may miss some relevant behaviors. In this chapter,
we assume that we know the best number of clusters. However, we analyze the quality of
the clustering for various values of l. In Table 6.4, we report the ratio of users that belong
to each cluster, by considering different numbers of clusters. When we have 10 clusters,
the percentage of users that belong to the 7th cluster is 1%, that is, very small in size. By
setting the number of cluster to 5, we will have around 50% of users concentrated in one
group (1sh cluster) that will be a huge cluster, and we are not able to precisely identify
their behavioral pattern. For the number of clusters equal to 3, we will have the most
dominant behaviors, but, we will miss a lot of behavioral patterns. Therefore, we consider
the number of clusters equal to 7 in the rest of the experiments.

In the next experiment, we analyze the influence of each feature value on the quality of
the discovered groups. Then, among all features, we remove those features that have the
same distribution in all clusters. More precisely, we discard those features whose existence
in the clustering will not propose a new behavioral group. In order to have a measure for
the distribution of each feature value for all clusters, we use the inter-group relative feature
value [100], denoted by Relatedfl, which measures how a feature f of cluster l is related to
the same feature of the other clusters. It is computed as follows:

Relatedfl =
featurefl
K∑
l=1

featurefk

(6.5)

where featurefl is the value of feature f in cluster l. This allows us to see if the value of a
feature is evenly distributed in all clusters or concentrated in a single cluster. For example,
we can see in Figure 6.4 the distribution of all categorical features such as age, number of
friends and activity level. This figure shows that the distribution of the feature age in all
clusters is nearly the same. Then, we remove this feature since it can not help us to define
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Figure 6.4: The distribution of Categorical features in each cluster

any behavioral pattern. For discrete features, such as: gender, nationality and percentage
of public profile items, we consider the fraction of users that have the same value for that
feature in each cluster as shown in Figure 6.5. We removed gender and percentage of
public profile items and we consider all the remaining features.

Based on the experimental results, we are able to find the most dominant behaviors,
that are shown in Figure 6.6. These dominant behaviors are categorized as follows: 1)most
active users with high number of friends: users in cluster 7 have the highest activity level
and the highest number of friends. These users have a bachelor or master degree and all of
them are from Italy. 2)very active users with medium number of friends: these users are
concentrated in cluster 4, have a medium activity level and a medium number of friends.
Their education level is either elementary school, bachelor or PhD and they are from all
countries except Italy and USA. 3)active users with low number of friends: these users are
concentrated in cluster 5, and their education level is either diploma, bachelor or master
and they are from all countries except USA. 4)passive users with high number of friends:
these users are concentrated in cluster 6. These users have either a bachelor or PhD
degree. They are from all countries except Italy. 5)very passive users with medium number
of friends: these users are in cluster 1. These users are from all education levels. They are
from all countries except Italy. 6)most passive users with lowest number of friends: these
users are concentrated in cluster 3. Their education level is either bachelor or master and
they are from all countries except USA. 7)most passive users with low number of friends:
these users are in cluster 2 and most of them have bachelor. They are from all countries.
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Figure 6.5: The distribution of Discrete features in each cluster

Figure 6.6: The most dominant behaviors with percentage of users in each group



Chapter 7

Distributed Two-Phase Risk
Assessment in DOSNs

7.1 Introduction

In DOSNs, each user has a single feature vector including his/her interactions and personal
information and these local information cannot be moved to a central server or to other
users in a raw form due to privacy issues. However, this can attract a variety of privacy
and highly damaging attacks. These attackers forward spam and malware on online social
network. Since attackers have weird behavior pattern in the network, our goal is to analyze
the behavior of users (interactions or activity patterns) in DOSNs by identifying those risky
users whose follow the weird behavioral pattern of attackers. More precisely, when the user
behavior diverges from ‘normal behavior’, the user will be considered as risky.

There are several attack detection solutions for specific kind of attacks [15, 14, 152,
157, 47]. On the other hand, although there is a unique centralized approach to cope
with several kinds of attackers and risky users in OSNs [85], risk assessment over fully
distributed data poses an important problem in this decentralized social network. Besides,
this social network is also dynamic (users can join and leave). Therefore, we propose a
unique decentralized approach that helps users to have a global understanding of risky users
and able to detect several types of attackers in DOSNs. We believe that such a solution
is a mechanism able to assign a risk score to the direct contact of each DOSN’s user and
help users to make a decision for answering friend requests from strangers. Moreover, risk
assessment in DOSNs will be useful for those users desire to minimize risks by inspecting
other users and to know which users are risky in the network and provide them a safe
environment to create their account and do interactions.

Therefore, we propose a solution that enables a target user to assign a risk score to other
users which send friend request to him/her and also his/her direct contacts by considering
their activities and friendship patterns in the network. The goal is to compare the behav-
ioral patterns of users with other similar users in the network to find misbehaviors. First,
we model a ‘normal behavior’, based on the principle that similar users in DOSNs follow-

94
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ing the same behavioral patterns. For example, users with the same activity level, gender,
education and country tend to have the same behavioral patterns in DOSNs [7, 140]. In
order to model the normal behavior and measure the divergency of each user’s behavior
from the normal behavior and compute the risk score, we define several behavioral models,
modeling similar users that share the same behavioral patterns. The goal is defining the
behavioral patterns of users that are meaningful for risk assessment. For instance, users in
a DOSNs doing a verity of activities such as posting or sharing items, writing comments
on user’s post, performing likes on posted items and sending friend requests to other users.
For defining behavioral patterns, our goal is monitoring those activity of users that might
reveal risky behaviors. As an example, having a high number of friends and posting a
lot of items can not be considered as a risky behavior. However, if user creates a high
number of friendship in a short period of time or shares a lot of items in the networks with
receiving on average a high number of likes on all of them, this can be considered risky.
Because, in some kind of attacks like socware, the attackers propagate malware or spam
in the network in the way that when other users click on the shared item, it will be shared
automatically on the user’s page. Therefore, we review the activity patterns of several kind
of attackers in OSNs in order to extract meaningful behavioral features for risk assessment
in a distributed manner.

More precisely, we propose a distributed two-phase risk assessment approach by group-
ing users in the first phase based on their group identification features. This is achieved by
exploiting a distributed probabilistic clustering technique available for all users over a set
of user features meaningful for group identification, called GI features. Then, in the second
phase, each user need to build one or more behavioral models for his/her identified group
and other groups by defining various user features to model normal/anomalous behaviors.
In both two phases we apply a distributed gossip based randomized probabilistic-clustering
technique.

A key problem in our distributed risk assessment model is how to minimize the com-
munication overhead and energy consumption in the network. We propose a gossip-based
approach that involves multiple users with their local parameter estimations of the clus-
tering model and exchange these estimations between themselves over the social network
in parallel and update them. The basic idea is that all users periodically exchange these
local parameters estimation of the clustering model with each other and finally converge
to a global clustering model.

Thus, in the first phase all users exchange the parameters estimation of the first clus-
tering model based on their group identification features. The result of the first phase is
assigning a group number to each user in a distributed manner. After that, each user will
have the group number for him/herself and also able to assign a group number to his/her
direct friends based on their group identification features. As depicted in Figure 7.1, once
groups have been identified, each users is able to determine one or more normal behavioral
models for his/her group and other groups as well.

Thus, in the second phase users again starting to exchange the parameters estimation of
the second clustering model, only exploit behavioral features and update his/her parameters
estimation while he/she received the parameters estimation from users in the same group
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Figure 7.1: Two phase risk assesment

and maintains the parameters estimation from users in different group. Finally all users
will converge to a second global clustering models available for all users. The goal of the
second phase is creating behavioral models for all users in each group identified in the
first phase. The clusters obtained as the result of the second phase allow the target user
to associate a risk score to his/her direct friends by calculating the divergency of his/her
behavior from each identified behavioral model (see Section 7.5 for more details).

Then, each user is able to assign a group number based on the first clustering model
by considering the GI features and then, an anomalous score based on the second-phase
clustering models to his/her direct friends by considering their behavioral features. In
order to evaluate our distributed scheme, we implement our algorithm in a real Facebook
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data set. Our goal is to achieve a comparable accuracy compared to a centralized scheme.
The remainder of this chapter is organized as follows. Section 7.2 introduces the overall
idea underlying our approach, whereas Section 7.3 provides a summary of Grouping and
behavioral features. Then, we summarize the centralized solution for risk estimation on
OSNs in 7.4. After that, we propose our gossip-based implementation for two-phase risk
estimation in Section 7.5.

7.2 Overall Approach

Risk assessment over fully distributed data poses an important problem in DOSNs. All
users have some features, like number of friends, posts, likes, comments, average number of
mutual friends, etc where these feature values never leaves the computer of a user in a raw
form due to the privacy considerations. Furthermore their feature values can also change
over time. In addition, this social network is dynamic (users can join and leave any time).

Solving all these problems for risk assessment in DOSNs by monitoring (analyzing)
the activity pattern of users in a distributed manner is a grand scientific challenge. The
most naive approach is simply to build and use local learning models for each user [65].
But, the performance of the local learning models improves slowly due to the lack of data
records [65, 128]. There are another approach that share data records between the users to
have more data samples [155]. However, this leads to intensive communication among them,
which degrades the scalability [12] and also, users need to share all private information with
each other that is a big issue in some applications. However, there is a graph partitioning
approach that is applicable for scalable social graph, but, each user requires to access the
data of both his/her direct friends and a small subset of random users in the graph [124].
But, in our application personal information of users can not be moved to their friends
duo to the privacy issues. On the other hand, their approach is link-based and they didn’t
consider the feature vector of users.

Another approach is to organize the computations in a hierarchical fashion [128, 45, 65]
by which local learning models are computed first, and sent to a logically higher-level user
that aggregates models, and then, returning results to the lower-level users for further
processing [93]. In such approaches, output from the algorithm is much dependent on the
processing of the highest level user. On the other hand, personal behavioural data records
of users are so sensitive, so it is essential to process them locally. But, it is not possible to
learn from local models because of the lack of information. On the contrary, there is no
possibility to build local learning models and combining them. Besides, the communication
cost needs to be kept low during our learning process.

To alleviate the limitations of the existing approaches, we apply a fully decentralized
two-phase risk estimation based on distributed clustering algorithm without requiring cen-
tral control. This distributed risk estimation should have specific characteristics include:
the performance of the risk model should be comparable with the centralized risk model.
Also, the risk model has to be robust and it should maintain a reasonable performance
even in extreme failure when some of the users do not answer to messages. More over,



CHAPTER 7. DISTRIBUTED TWO-PHASE RISK ASSESSMENT IN DOSNS 98

all users should be able to assign a risk score to their direct contact and make prediction
immediately at any time after convergence in a local way. Finally, the communication cost
should be low by decreasing the size and the number of messages. The purpose of the
protocol is to disseminate up-to-date information and maintain them without collecting
them in the central place. The basic underlying idea is that all users are equivalent and
run the same risk assessment model. Therefore, we exploit Newscast EM [79], a proba-
bilistic gossip-based randomized communication clustering approach, originally developed
for clustering users in peer-to-peer networks, for both two phases of our risk estimation
approach.

In Newscast EM, each user initializes a local estimation of the parameters of the clus-
tering model (mean, standard deviation, etc.). After that, the target user contacts a
random user among all users to exchange their parameters estimation and aggregate them
by weighted averaging. It is crucial to provide a uniform random subset of all users during
the averaging process, to avoid any biased estimation towards high degree users [79]. Be-
cause, the probability of a user being sampled is proportional to his/her degree [95]. The
degree is the number of direct friends for each user in the social graph. Therefore, we used
gossip based peer-sampling service on DOSNs that provides a user with a uniform random
subset of all users in the social network [76]. Based on this protocol, users exchange their
parameters estimation and update them for some cycles to converge to a global correct
estimation. Each user will maintain the list of last parameters estimations that he/she
receives from other users in the fixed size cache.

The advantages of this distributed risk assessment model are include: 1. It uses the
interactions of users that are distributed over the network, 2. the interaction of users are
never send over the network in a raw form and 3. it has low computation and communica-
tion cost by gossiping parameters estimations of the clustering model instead of their raw
data records.

For the following, first we will explain in summary our previous work that was a cen-
tralized two-phase risk assessment model in OSNs. Then, we summarized the decentralized
group identification in DOSNs that is the first phase of our decentralized risk estimation
approach. After that, we will cover all the details of the decentralized two-phase risk
assessment model.

7.3 Feature Description

We used the GI features for the first phase and BF features for the second phase. We
describe them in the following section.

7.3.1 GI Features

Group Identification user’s features vector includes two types of features: individual and
social features. Individual features are those, like age, gender, but also those that impact
the possible users’ behaviors, like, education and nationality. In addition to individual
information, in order to measure users’ attitude in online socialization, we consider the
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following social features:
Number of Friends: social users with a lot of friends have different patterns than isolated
users with few friends;
Activity Level: unlike active users that write a lot of posts, passive users do not send any
information to others. We calculate this feature as the sum of: a) number of posts that a
user sends to others from the first day of joining the community, b) number of likes that a
user performs on posted items, and c) number of comments a user writes for posted items;
Percentage of public profile items: the assumption is that users with all profile information
(100%) public are more social.

7.3.2 BF Features

The extraction of these features is based on the detection of risky behaviors by considering
the behavioral patterns of well known attackers in DOSNs [85]. The first is the user
longevity, which is measured as the number of days since the user joined the OSNs. The
second one is the item longevity, which is measured as the number of days since an item
has been uploaded in the OSNs.

Friendship Rate (FR). Since, attackers are more aggressive in establishing new
friendship links [157], because isolated attackers cannot propagate content in OSNs [15].
Therefore, we consider the number of friends based on longevity of user, the number of
days since the user joined the OSNs.

Mutual Friendship Rate (MFR). This feature computes the average number of
mutual friends of a target user u with all his/her friends in the network.

Friend Mutual Friend Ratio (FMFR). In this feature, we are interested to catch
those users with high number of friends, but a lower average number of mutual friends, as
this could indicate a risky conduct.

Comment Rate (CR). In this feature, for each user, we measure the number of
comments that the user written based on his/her longevity. For instance, in cyberbullying
attacks, attackers send repeated hurtful messages to their victims [104], [106].

Started Comments (SC). In cyberbullying, most of the time attackers are starter
in writing massages or comments for their victims [104], [106].

Like Propagation Speed (LPS). This feature measures the propagation speed of
liked items that show an high propagation speed. For instance, in compromised account
attacks, attackers, after compromising legitimate accounts, distribute malicious links in the
network and manipulate a lot of users to put like on the posed items.

Comment Feedback Ratio (CFR). This feature is useful to detect those users that
write a high number of comments and receive few likes on those comments. As an example,
in cyberbulling and sybil attacks, attackers are more aggressive in sending messages [106].

Like Rate Like Propagation (LRLP). Since, Iin clickjacking, creeper, and socware,
attackers try to propagate malicious items by forcing victims to unknowingly perform likes
on these malicious items, this feature measures the number of likes on the items that have
a high propagation speed.
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7.4 Centralized Two Phase Risk Assessment Model

In this section, firstly we summarize our previous centralized two-phase risk assessment ap-
proach and then, we explain the distributed algorithm we need for our current decentralized
two-phase risk assessment on DOSNs.

Risk assessment approach in centralized OSNs provides a general solution for both the
service providers and users in OSNs to detect several types of attacks and risky users by
assigning a risk score to all user’s accounts in OSNs [85]. We considered both the activities
and friendship patterns of users in OSNs to assign a risk score. We compared the behavioral
patterns of users with other users in the network to find anomalous behaviors based on the
divergency of the behavior from normal behavior. In modeling the normal behavior, the
expectation is that similar users (e.g., similar in activity level, gender, education, country,
and so on) tend to have similar behavioral models [7, 140]. Then, we proposed a two-phase
risk assessment, by finding users with the same behavioral patterns in the first phase.
Therefore, in the first phase, we proposed an approach to identify similar behavioral groups
in the OSNs by applying clustering algorithm over a set of user’s Group Identification (GI)
features meaningful for people with the same behavioral patterns. After defining a set of
groups including similar users, in the second phase we defined a set of normal behavioral
models according to behavioral features for each group and we detect those users that
deviate from other users with the same behavioral patterns. The clustering result of the
second phase is allow us to assign a risk score to the target user by computing the degree
of divergency of the user’s behavior from other normal behavioral models.

For instance in the second phase, among a variety of activities in OSNs (i.e., sending
friends request to others, sending posts or sharing items, writing comments or performing
likes on users’ post items, viewing profile information), we aim to monitor those activity
that might reveal risky behaviors. As an example, simply having a high number of friends
can not be considered risky behavior. However, having a high number of friends in a short
period of time can be risky. Moreover, writing a lot of comments/posts without receiving
any like on them or receiving a large number of likes in a short period of time can be
considered a risky behavior and inform us that the target user might be a victim of an
attack or try to propagate spam in the network. Therefore, we investigated the literature
for well-known OSNs attacks to define a set of features, meaningful for risk assessment.
These attacks includes: sybil, identity clone, compromised accounts, socware, creepers,
cyberbullying and clickjacking attacks. Interested readers refer to [85] for more details.

Among all clustering techniques, we consider probabilistic-based clustering algorithm,
that is a kind of soft clustering techniques and provide us the membership probability for
each user to belong to the most fitting cluster. Because, hard clustering algorithms, (e.g., k-
means) is not a perfect solution for clustering discrete or categorical data [20], since they are
based on distance metrics. On the other hand, probabilistic-based clustering techniques try
to find the most fitting cluster for each user by considering his/her features vector in data by
defining K probability distributions for K clusters. Each probability distribution illustrates
the likelihoods of those feature vectors that belong to a given cluster. Therefore, we apply
EM (Expectation Maximization) algorithm that is a kind of probabilistic based clustering.
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The EM algorithm iteratively learns and optimizes the parameters of the clustering model,
that is, the mean and covariance matrix of each feature value for each cluster, and the
fraction of users belonging to each cluster. Given the learned parameters, the algorithm
assigns with each cluster a set of features values that most likely represent users belonging
to that cluster. In the first iteration of the EM algorithm, EM assigns a set of K membership
probabilities to each user u which means the parameters are initialized by random positive
values. After that, EM iteratively learn and optimize the parameters of the clustering
model in order to maximize these likelihoods and finally assign to each user the most
fitting cluster with the highest probability.

To assign a risk score to each user, we compute the deviations of users’ behavior from
other normal behavioral models, by calculating the membership probabilities in the second
phase of the clustering. If the target user is fitted very well to his/her normal behavioral
models, the membership probability is high. In contrast, when the behavior of the user
deviates from his/her behavioral models, the membership probability value is low. Based
on this, the risk score associated with a target user u is defined as the inverse of the highest
among u’s membership probability values resulting by the second clustering phase.

Definition 12 (User Risk Score (RS)) Let N be the set of users in the OSNs, and let
Ng ⊂ N be a set of users that belong to the same cluster g, resulted from the probabilistic-
based clustering computed in the first phase over the GI features’ values of user in N . Let
PB(Ng) be the probability-based clustering algorithm that takes as input the set of users
in Ng and, based on their BFs, returns, for each user u ∈ Ng, the highest membership
probability, denoted as PCL(u). Given a target user u ∈ Ng, the associated risk score
RS(u) ∈ [0, 1] is defined as:

RS(u) = 1− PCL(u) (7.1)

AlternativeRiskScore : RS(u) = −log(PCL(u)) (7.2)

7.5 Distributed Two Phases Risk Assessment Model

In our distributed two-phase risk assessment approach, we used the same distributed clus-
tering algorithm. In the initialization of the first phase, each user maintains the parameters
estimation of the clustering model for all users in his/her RNC based on their GI features.
After that, users communicate for exchanging these parameters estimation in order to
converge to a global clustering model. Then, in the second phase, users communicate to
exchange the parameters estimation of the clustering model according to their BF. In both
the phases of our risk assessment model, we make use of the same newscast EM algorithm.
Although, we have some issues in distributed risk assessment not present in the centralized
one.

The first issue is that there are some kinds of attackers in the network that may be
selected in the random selection phase to exchange the information with them. The goal
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of these attackers is to falsify their own parameters estimation of the clustering model
and also try to manipulate the aggregation value during the exchanging process. For
example, in Input Falsification attack, a compromised user may choose to lie about its own
parameters estimation value since the raw data value of a given user is known only to that
user. In Aggregation Manipulation attacks, a more powerful adversary may be able to
compromise some other users that are also aggregators. Also, a malicious aggregator can
report arbitrary subcomputation results and behave in arbitrary ways in order to attempt
to evade detection [26].

We need to mention that there are several approaches to avoid these problems in the
literature. For instance, various algorithms for outlier detection [1, 21, 134, 143, 145] can
detect abnormal changes based on statistical analysis. Also, some approaches introduce
One-hop Verification [66, 68] and Witness-based Verification [43, 37] to prevent the mali-
cious user from presenting falsified aggregation results by simply ensuring the aggregation
computation of each user is checked by some other users in the network as verifiers. More-
over, there are some reputation based approaches like QoI metric-based scheme [55] where
users evaluate trustworthiness of other users based on their past behavior, or based on the
feedback of other users [138] and determine whether to accept a received aggregate based
on the sender’s trustworthiness level. On the other hand, there are some secure aggregation
protocols that try to produce accurate aggregation result and be resilient against general
user compromised attacks. These protocols avoid intermediate users to report arbitrary
values to bias the final aggregation by designing secure aggregation and prevent intermedi-
ate users from illegal modification. For instance, SIA [122], using cryptographic hash values
and SecureDAV [99], is a system for encrypting and authenticating an aggregation result
based on the signature mechanism and private keys where the verification of the central
global result is fully distributed. This technique will be further extended by subsequent
schemes, most notably SHIA [27]. In this paper, we are not taken into account these kind
of attackers and we rely on these approaches and assume that the information of users is
reliable and attackers are not able to manipulate the aggregation results.

The second issue is the lack of a data center that avoid our protocol to keep the result
of the first grouping phase in one data center accessible for all users and then, we can not
access the behavioural data of all users in each group in order to apply the processing of
the second phase clustering, based on their behavioural features. On the other hand, in the
centralized version, the provider of OSNs can apply these two phase clustering and after
that assign a risk score to all users in the whole network. But, in a decentralized version
every target user need to be able dynamically assign a risk score to other users at any time
after convergence. Therefore, in our approach each user will act as a service provider and
maintains the result of all clustering models associated with all groups in the network in
his/her cache in order to be able to make a decision for other users and finally assign them
a risk score. In the following we explain in more detail the first and second phase of our
risk assessment approach in a distributed manner.
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7.5.1 Modelling Behavioral Patterns: User Behaviour-based Group
Identification Phase

In the first phase, our goal is to have similar users in each group based on their GI features
includes: social and individual features. Feature vectors of each user are given as input
to the Algorithm 1 as we explained more precisely in Section 6.3 of chapter 6. Each user
with his/her features vector in the initialization phase, estimates the parameters of the first
clustering model and start to exchange this information with a set of randomly selected
users in his/her RNC cache. After some cycles, all users access to a set of random users in
his/her RNC cache and converge to a global clustering model with the same parameters
estimation and they have a membership probability to belong to their most fitting cluster.
Therefore, after convergence, each user can assign a behavior group (cluster number) to
him/herself or his/her friends based on the GI feature vector by considering the maximum
membership probability among them.

7.5.2 Modeling Normal Behavior: Risk Assessment Phase

In the second phase, our goal is to create some behavioral models for similar users according
to the behavioral features and detect risky users that deviate from these behavioral models.

In this phase all users start to exchange their parameters estimation of the second
phase clustering model based on the behavioral features. The goal of this two-phase risk
assessment approach is considering each user in the DOSNs as a service provider similar
to a centralized OSNs. Because, in DOSNs, the goal is providing each user with the ability
to assign a group number and risk score to other users. Toward this goal, each user need
to have all clustering models associated with all groups in the network to be able to assign
a risk score to other users based on which group they belong. The detail of the algorithm
is illustrated in Algorithm 2, and summarize as the following.

After the convergence of the first phase of clustering, based on GI features of users, all
users have the assigned group number and able to assign a group number to their direct
friends as well. Then, in order to have all of the clustering models of all groups of users in
the second phase, each user will do the following step.

First, a target user ui initializes the local parameters estimation for each cluster LG, G =
1, . . . , l in the second phase based on his/her BF associated to the group number he/she
belong, where l is the number of groups in the first phase of clustering. Then, user ui
creates a cache called, All Groups Estimations (AGE) cache, and maintains the information
includes the user ID, the user group number, the path to reach the user ID, and the
parameters estimation of each cluster LG associated to user’s group number. After that,
user ui fills only the parameters estimation of his/her group in the cache and set the other
entrie’s parameters estimation to zero and their ID, their group number and the path
empty.

Next, each user in every cycle, i.e., user ui, contacts a user from his/her RNC with the
largest longevity, i.e., user uj to send the updated ExC, his/her group number and his/her
AGE to the next user in the path towards user uj, i.e., uk.
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When user uj receives from one of his/her direct friends the ExC and AGE coming from
user ui, user uj replies as follows.

First, user uj sends back his/her own AGE to the next user toward user ui. Next, user
uj selects a random subset of S neighbors of his/her own RNC and save them in his/her
ExC and update the entries path inside. After that, user uj will send back his/her own
ExC to the next user toward user ui. Then, user uj updates the entries path in the received
ExC and updates his/her RNC longevity attribute of all entries as mentioned in algorithm
1.

Finally, if user uj belongs to the same group with user ui, user uj updates his/her
own parameters estimation for each cluster LG by calculating the weighted averaging and
update them in his/her AGE. More over, user uj updates the remain entries of the received
AGE from user ui includes the users ID, parameters estimation of all other groups, the
entries’s group number and the path to reach those entries in his/her AGE cache.

But, if the user uj belongs to another group, user uj keeps his/her own parameters esti-
mation associated to his/her group in AGE cache. After that, user uj updates the remain
entries of the received AGE from user ui includes the users ID, parameters estimation of
all other groups, the entries’s group number and the path to reach those entries in his/her
AGE cache.

Therefore, after some exchanging cycles, all users have the same AGE including all the
parameters estimation for each cluster associated to each group. In this stage all users
are able to check the stopping tolerance of their group and after some EM iteration, each
user have a list of last updated entries in AGE cache, and able to compute the membership
probability for him/herself to belong to the most fitting cluster according to the BF features.
Then, each user able to assign a group number to his/her direct friends or other users based
on the value of the GI features and then, assign a risk score by computing the membership
probability of that user to belong to the most fitting cluster according to their BF.

7.6 Experiments

In the following we explain the data set in Section 7.6.1. Then, we show the result for
the convergence of the clustering model in the second phase and the performance of the
clustering model in Section 7.6.2.

7.6.1 Facebook Dataset

We evaluate the algorithms on real Facebook data crawled and used in [3]. We considered
the largest connected component by removing those user profiles with so many missing
values in their BF and profile features which totally includes 5,500 user profiles, with a
total of about 443,011 friend links, 50,515 likes and 124,920 comments.
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Algorithm 2 Gossip based Two-Phase Risk Assessment

1: Initialization()
2: Loop:
3: if u = ui then //if ui has to push information
4: ExC ← RNC.SelectRandomEntries()
5: uj ← RNC.SelectRandomUser()
6: Sends ExC ← UpdateExC(ExC, ui) to ui ’s neighbor toward uj
7: Sends G(ui) to ui ’s neighbor toward uj
8: Sends AGEi to ui ’s neighbor toward uj
9: AGEj ← Receive(uj)
10: for all entries in AGEi do
11: Update Θe

12: else if u = uj then //If uj has to reply ui
13: Sends G(uj) to uj ’s neighbor toward ui
14: Sends AGEj to uj ’s neighbor toward ui
15: ExC ← RNC.SelectRandomEntries()
16: Sends ExC ← UpdateExC(ExC, uj) to uj ’s neighbor toward ui
17: Receives AGEi from uj ’s neighbor
18: Receives ExC from uj ’s neighbor
19: ExC ← UpdateExC(ExC, uj)
20: if G(uj)= G(ui) then
21: Θj ← UpdateModel(Θi,Θj)
22: Update Θj in AGEj

23: for all entries e in AGEj do
24: Update Θe

25: else//G(uj) 6= G(ui)
26: for all entries e in AGEj do
27: Update Θe

28: else//(u = uk within the path to uj)
29: Sends received AGEi and ExC to the next user toward uj

30: End Loop
31: procedure Initialization()
32: InitModel()
33: InitAGE()
34: return AGE, RNC
35: End procedure

7.6.2 Modeling Normal Behavior: Risk Assessment Phase

The goal of the second phase is detecting risky users that deviate from the behavioral
models of similar users according to their BF. In this phase users exchange the parame-
ters estimation of the second clustering model based on their BF and update their own
parameters estimation according to which group they belong. Then, each user in order to
have the parameters estimation of all users associated to all groups, exchange his/her AGE
with other users. The Figure 7.2, shows how these parameters estimation in AGE cache
converge to a global AGE cache available for all users after convergence. In the first cycles
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Figure 7.2: The Ratio of Parameters Estimation of All Groups

each users has only the parameters estimation of his/her group. But, after few cycles all
users have the parameters estimation of all groups in their AGE cache (the values are av-
erages for 20 independent runs). Although, we can see that after a few cycles (20 Cycles),
all users have all parameters estimation associated to all groups in their AGE cache, but
the value of their parameters estimation according to each feature not converge to a global
value and they should exchange their parameters estimation for more cycles. In the next
experiments, we show how their parameters estimation converge to a global value.

Therefore, we randomly select 10 users from each group, e.i, totally 70 users, and we
monitor the value of parameters estimation of one of the groups associated to one BF
feature. The Figure 7.3 illustrates how all users from different groups in the network will
converge to the global value for their parameters estimation of group three (the ratio of
users belonging to this group is around 32 Percent), associated to the feature ”Number of
Friends” (after 120 cycles). We need to mention that users do averaging in their parameters
estimation only with those users that are belong to the same group as we explain in more
detail in Algorithm 2. In this Figure 7.3, we can see that even those users from other
groups rather than group three that do not have the parameters estimation of group three
in the first cycles (the value of the parameters estimation of the feature in group three is
zero for them in the first cycle) will converge to the global value that is available for every
user, no matter they belong to which group.

Moreover, Figure 7.3 demonstrates the parameters estimation of users in group 7. The
ratio of users belonging to this cluster is around 5 percent. As we can see in the Figure
7.4, the value of parameters estimation of users in this group, converge to a global value
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Figure 7.3: Parameters Estimation of Group Three for The Feature ”Number of Friends”

that is not exactly equal to the correct mean. Because, the number of users belonging
to this group is low. But, this does not have a big consequence on the result since their
parameters estimation is far from those users from other groups.
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Figure 7.4: Parameters Estimation of Group Seven for The Feature ”Number of Friends”



Conclusion

Identifying misbehaviors is an important challenge for monitoring and analyzing user be-
haviors in OSNs/DOSNs to detect risky users including malicious attackers. Therefore, in
this thesis, we analyze the user’s activities in the centralized and decentralized online social
network. The basic idea is the more the user behavior diverges from ‘normal behavior’,
more the user is risky. We proposed several approaches by considering the structural pat-
terns of users, activity patterns of users and also by monitoring the behavioral patterns of
users over time-evolving graphs to detect anomalous changes. In Chapter 3, we proposed a
two-phase risk assessment approach to assign a risk score to each OSNs user based on the
activity patterns of users by computing the divergency of user behavior from ‘normal be-
havior’, using a clustering algorithm. Experiments carried out on a real Facebook dataset
showed the effectiveness of our proposal.

After that, in Chapter 4, we proposed a local risk estimation measure (Local Risk Fac-
tor) for direct contacts of a target user. Our risk estimation is based on anomaly detection
algorithm having as key idea the fact the malicious users in OSNs show some common
features on the structure of their social graphs that is different from those of legitimate
users. We demonstrate that LRF can be used to define the risk of direct contacts efficiently
in large scale OSNs. We also show that some of the features are more influential in risk
assessment in OSNs than others. Since, graph based approaches for risk assessment in dy-
namic graph is challenging task, In the following of this chapter, we propose a solution to
have a high performance risk model that is more robust in online social network by chang-
ing the behavior of attackers. Therefore, in Chapter 5, we detected users with anomalous
changes in the structure of their subgraphs over time. We analyzed and monitored the
change patterns of users over time and compare them with change patterns of other sim-
ilar users and previous change patterns of the same user. After that, in Chapter 6, we
identify behavioral groups of users that share the same behavioral patterns in DOSNs for
risk assessment purposes. We applied distributed clustering algorithm, Newscast EM, to
identify group of behavioral patterns on top of DOSNs. We combine the ability to access
random users on social networks with distributed clustering model to identify group of
behavioral patterns. Our main goal is using this identified behavioral patterns of users for
identifying misbehaviors in DOSNs. Identifying misbehaviors is an important challenge for
monitoring, analyzing the social network for anomaly detection purposes, when we don’t
have data in a central site for analysis and the information of users are distributed over
the network and this information can not be shared or moved to any central server or
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other users due to privacy issues. Therefore, in the last chapter, Chapter 7, we propose
a distributed two-phase risk assessment approach in DOSNs to detect the divergency of
users behavior from normal behavior. Therefore, we used a fully distributed clustering
algorithm to compute the probability of behavior of each user with respect to other users
in the same community in each cluster to predict anomalous behaviors in the network. Our
existing anomaly detection algorithm does not need any global knowledge of the system.
In all proposed solutions, we used real social network datasets, like Facebook, Orkut and
Google+ to show the performance of our solutions.

We plan to extend our previous works along a set of directions. First, we plan to
extend the work in Chapter 3 so as to make it able to perform a continuous monitoring
and estimation of risk scores. Then, we plan to extend the Chapter 4 by considering more
subsets of structural features and add other user features to define risk score and develop
more accurate models for risk assessment in OSNs. After that, we plan to extend the work
in Chapter 5 by investigating the local neighborhood structure of users with anomalous
changes in more details. Because, these changes can also be because of benign reasons and
then, test our measures on different datasets. Next, we are planning to extend the work in
Chapter 6 by proposing a solution for defining the best number of clusters in a distributed
manner and also for exchanging information in a secure way for avoiding malicious users
manipulating the local parameters estimation of the clustering model during the exchanging
process. Finally, our future plan in Chapter 7, is proposing a solution to have a more
accurate risk assessment model in OSNs/DOSNs by proposing new features. Also, we plan
to have a dynamic high performance risk assessment model that will be robust in changing
the behavior of attackers over time. After that, we plan to apply the risk model for other
decentralized environment.
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