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ABBREVIATIONS 

ADCC: Antibody-Dependent Cell-mediated Cytotoxicity 

APC: Antigen Presenting Cells 

cDC: conventional (or myeloid) Dendritic Cell 

CXCL12/SDF-1: C-X-C motif chemokine ligand 12 / Stromal Derived Factor 1 

dNK: decidual Natural Killer cell 

FBS: Fetal Bovine Serum 

GM-CSF: Granulocyte-Macrophage Colony-Stimulating Factor 

hPB: Peripheral Blood derived from healthy donor 

HUVEC: Human Umbilical Vein Endothelial Cell 

ICS: Intracellular Cytokine Staining 

IFNγ: Interferon gamma 

IL-2: Interleukin 2 

IL-8: Interleukin 8 

IL-15: Interleukin 15 

ILC: Innate Lymphoid Cell 

iPB: Peripheral Blood derived from patient with a Pleural Effusion caused by 

inflammatory disease 

iPE: Pleural Effusion derived from patient with a Pleural Effusion caused by 

inflammatory disease 

K562: human erythroleukemia tumor cell line 

M1: Type 1 Macrophages 

M2: Type 2 Macrophages 

mAb: monoclonal Antibody 

M-CSF: Macrophage Colony-Stimulating Factor 

MDSC: Myeloid-Derived Suppressor Cell 
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MHC: Major Histocompatibility Complex 

MMP: metalloproteinase 

NK: Natural Killer cell 

NSCLC: Non-Small Cell Lung Cancer 

OPN: Osteopontin 

PBS: Phosphate Buffered Saline 

pDC: plasmacytoid Dendritic Cell 

PFA: Paraformaldehyde 

PlGF: Placental Growth Factor 

PMA: Phorbol Myristate Acetate 

ptPB: Peripheral Blood derived from patient with a Pleural Effusion caused by primary 

tumor 

ptPE: Pleural Effusion derived from patient with a Pleural Effusion caused by primary 

tumor 

regDC: regulatory Dendritic Cell 

TAM: Tumor-Associated Macrophages 

TGFβ: Transforming Growth Factor beta 

Th1: T Helper 1 Lymphocytes 

Th2: T Helper 2 Lymphocytes 

tmPB: Peripheral Blood derived from patient with a Pleural Effusion caused by tumor 

metastasis 

tmPE: Pleural Effusion derived from patient with a Pleural Effusion caused by tumor 

metastasis 

TNFα: Tumor Necrosis Factor alpha 

Treg: Regulatory T Cell 

TUMIC: Tumor Microenvironment 

VEGF: Vascular Endothelial Growth Factor 
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SUMMARY 

Natural Killer (NK) cells are lymphoid cells involved in tumor recognition and 

eradication. NK cell activity is impaired in cancer patients and in non-small cell lung 

cancer it has been shown that they acquire pro-angiogenic phenotype and functions 

similar to those of NK cells in the decidua. In this work, we characterized NK cells 

derived from inflammatory or malignant pleural effusions. 

We collected peripheral blood samples from healthy donors (hPB) and from patients 

with inflammatory (iPB) or malignant pleural effusions [from primary tumors (iPB) or 

tumor metastasis (tmPB) of different origins], in addition to inflammatory (iPE) and 

malignant pleural effusion fluids (ptPE and tmPE). We performed ex vivo FACS analysis 

of phenotype and cytokine production of PB and PE-derived NK cells, and analyzed 

cytotoxic NK cell function by using a CD107a NK cell degranulation assay against K562 

target cell line. In addition, we performed a 3-day culture with IL-2, IL-2 and TGFβ and 

with IL-2 in a conditioned media containing 33% of pleural fluid supernatant, to 

evaluate cytotoxicity of NK cells after treatment. We also isolated NK cells from buffy 

coats of healthy donors and cultured them for 7 days with IL-15 and with IL-15 with 

pleural fluid supernatant to evaluate polarization toward a pro-angiogenic phenotype 

caused by pleural effusion soluble factors. 

We found significantly increased levels of CD56bright CD16- NK cell in iPE (35%), ptPE 

(40%) and tmPE (60%) if compared with the PB of all samples analyzed (5%). PE-NK cells 

display an increased expression of CD49a decidual NK cell surface marker, are poorly 

mature (low expression of CD57) and yet activated (high expression CD69) and exhibit 

a deregulated expression of activating and inhibitory receptors. 

PE-NK cells display a higher amount of intracellular VEGF if compared to healthy and 

autologous PB-NK cells, especially those found in tmPE; supernatants resulting from NK 
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cells found in pleural effusions derived from patients with metastatic tumor (tmPE) 

induce formation of capillary-like structures in vitro. 

All patient’s NK cells analyzed showed a lower cytotoxicity ex vivo than hPB-NK cells.  

After 3-day culture with IL-2, NK cell cytotoxic function increased. Moreover, addition 

of TGFβ induced partial inhibition of cytotoxicity, whereas addition of PE supernatants 

resulted in total inhibition of cytotoxic function. 

NK cells Isolated from buffy coats from healthy donors, after 7-day culture with IL-15 + 

PE, increased CD56bright CD16- NK cell subset and VEGF production. Moreover, PE 

supernatants could induce a decreased production of IFNγ. 

Our data suggest a predominant role of tumor microenvironment in the NK cell 

polarization towards a pro-angiogenic and pro-tumor state. 
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INTRODUCTION 

IMMUNE SYSTEM AND TUMOR MICROENVIRONMENT 

The immune system can be considered a set of lymphoid organs, different cell types, 

humoral factors and cytokines. The ability to discriminate foreign pathogens and, at the 

same time, the tolerance to self-antigens is crucial for the achievement of homeostasis. 

The first line of host defenses consists in mechanical and chemical-physical barriers, 

after which participate the components of innate immunity that includes phagocytic 

cells (macrophages, neutrophils and dendritic cells), different types of immune and 

non-immune cells, which release inflammatory mediators, and Natural Killer cells. The 

main protagonists of the adaptive immunity are T lymphocytes, responsible for cellular 

immunity, and B cells, involved in humoral immunity. For a full and effective response, 

innate and adaptive mechanisms are interconnected into a sophisticated process of 

communication despite differences in the specificity and timing of activation [1, 2]. 

In the 19th century initial studies from most types of cancers showed the presence of 

inflammatory leukocytes in growing cancers and it was hypothesized that a relationship 

between chronic inflammation and cancer existed. Considering most types of cancer, 

infiltrating inflammatory cells may be different in terms of number and type of cells, 

however, this presence has long been interpreted as an attempt to interfere with tumor 

progression, termed "immune surveillance" [3]. It is demonstrated that there is a 

connection between a good patient prognosis and the presence of immune cell 

infiltrates [4, 5, 6, 7]. However, cellular and humoral responses that are generated in 

tissues because of infection by foreign pathogens, are stronger than those mediated by 

the tumor. Effectively, most tumor-associated antigens are considered "self" and non-

dangerous for the host [8]. 
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Recent studies have explained the mechanisms that connect inflammation and cancer: 

microbial infections, viral infections and autoimmune disease are considered promoter 

of chronic inflammation associated with cancer development [9]. Examples of 

pathologies implicated in this process are gastric cancer and gastric mucosal lymphoma 

caused by Helicobacter Pylori, hepatocellular carcinoma caused by hepatitis B or C virus 

and colon cancer correlated with inflammatory bowel disease [10]. Supporting the 

theory of the pro-tumor role of chronic inflammation there is the evidence that the 

treatment with nonsteroidal anti-inflammatory agents, such as cycloxygenase-2 (COX-

2) inhibitors, reduces the risk of developing colon and breast cancer and the related 

mortality [11]. 

It was documented that alterations in different classes of oncogenes and tumor-

suppressor genes lead to activate signaling pathways involved in inflammation. 

Examples are the tyrosine kinase RET, RAS, MYC and PTEN [12, 13, 14, 15]. 

Cancer-related inflammation can also activate transcription factors which are the key 

inducers of inflammatory mediators and contributes to tumor development promoting 

genomic instability, alteration in epigenetic events, enhancing proliferation and 

resistance to apoptosis of initiated cells, inducing tumor angiogenesis and tissue 

remodeling with consequent promotion of tumor cells invasion and metastasis [10]. 

Over the past three decades it has been possible to understand the function of immune 

cells in promoting tumor progression [16, 17]. Individuals subject to develop chronic 

inflammatory diseases show an increased risk of developing cancer [18]. Therefore, it 

was necessary to redefine the classical definition of carcinomas, extending it to the 

microenvironment in which most cellular components display immunosuppressive 

properties. Tumor cells not only try to escape from host defense mechanisms, but also 

acquire benefit from these conditions; cancer is also able to reprogram cells to create 

a favorable cell microenvironment to improve tumor progression [19]. 

The tumor microenvironment (TUMIC) generally includes, in addition to proliferating 

cells, a wide range of inflammatory and immune cells as well as stromal cells and 

endothelial cells able of develop tumor-promoting functions during all carcinogenesis 
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stages [20]. The main TUMIC features are hypoxia, deregulated pH (approximately 6,7-

6,9 at the extracellular level and 7,4 in tumor cells), different metabolic state and a 

different vascular architecture that is usually fenestrated [21, 22]. 

It is important to emphasize that while normal blood vessels are lined by a single layer 

of interconnected endothelial cells, in the contest of TUMIC, endothelial cells are part 

of fenestrated vessels highly permeable for soluble blood components [23]. Tumor 

vessels are chaotically branched and display irregular diameters because of the 

compression of their walls by tumor and stromal cells [24, 25]. If the tumor growth 

exceeds over 1 mm, it requires a neo-vascularization to provide the right amount of 

oxygen and nutrients for proliferating cancer cells. However, during tumor expansion, 

the distances that must be covered by the vasculature increase and a localized hypoxia 

occurs [26, 27, 28]. A hypoxic environment is created very quickly during tumor 

development, resulting, in tumor cell, in an expression of genes that respond to hypoxia 

[29]; hypoxic stress plays a key role in regulating angiogenesis, and it is required for 

tumor invasive growth and metastasis formation [30]. This extremely heterogeneous 

realities, such as the tumor microenvironment, is enriched in immune cells-derived 

cytokines, chemokines and pro-angiogenic molecules, including: tumor necrosis factor 

α (TNFα), transforming growth factor β (TGFβ), vascular endothelial growth factor 

(VEGF), and Interleukin 1 (IL-1) and 6 (IL-6) [18]. The production of VEGF is a mechanism 

by which tumor infiltrating leukocytes increase angiogenesis and tumor development 

[31, 32]. The connection between angiogenesis induced by hypoxia and immune 

system tolerance has been studied and clarified [33, 34, 35]. The association between 

angiogenesis and immunosuppression may be justified in part by considering the 

immunosuppressive activity of angiogenic factors like VEGF, a cytokine secreted by 

most cancers [36, 37]. Hypoxic zones in the tumor can attract various immune cells in 

which the expression of hypoxia-induced transcription factors (HIF) is associated with 

the acquisition of a pro-angiogenic and immunosuppressive phenotype, such as Treg 

cells or myeloid-derived suppressor cells [38]. 
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Therefore, the immune cells may directly or indirectly destroy cancer cells, but on the 

other hand can promote tumor growth and progression [1, 39]. This pro-tumor 

polarization was widely described in macrophages but it can also be extended to other 

innate immunity cellular components (Figure I) [40].  
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Figure I. Within the tumor microenvironment, multiple cell types with established roles in 
immunosuppression have been shown to promote angiogenesis, through the production of 
various growth factors. Tumor cells, either in the steady state or in response to hypoxia, secrete 
soluble factors that recruit immunosuppressive cells to the tumor site. Recruited 
immunosuppressive cells include regulatory NK cells. The immunosuppressive cells secrete 
factors (such as VEGFA) that directly promote endothelial cell proliferation and migration, 
and/or induce the production of matrix metalloproteinases that act on the extracellular matrix, 
allowing for the development of new blood vessels. Pro-angiogenic growth factors derived from 
these cells probably promote angiogenesis in an additive or synergistic manner, together with 
tumor-derived VEGFA, transforming growth factor-β (TGFβ), adenosine, prostaglandin E2 
(PGE2), interleukin-6 (IL-6), reactive oxygen species (ROS) and oxidized lipids. Reprinted by 
permission from Macmillan Publishers Ltd: Nature Reviews Immunology. Motz GT, Coukos G. 
The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev 
Immunol. 2011 Sep 23;11(10):702-11, copyright 2011. [41]. 
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IMMUNE SYSTEM CELLS: FEATURES AND POLARIZATION 

Macrophages 

Macrophages are immune cells recruited after tissue damage and inflammation, and 

they are professional phagocytes able to recognize and eliminate parasites and 

microorganisms. In fact, during bacterial infection, macrophages participate in the 

acute inflammatory response to eliminate invading pathogens; subsequently can 

remove tissue waste [42]. Macrophages are versatile cells with pleiotropic functions, 

even opposite: they can be immune-stimulatory and pro-inflammatory, or 

immunosuppressive and anti-inflammatory [42, 43]. Microenvironment stimuli can 

induce in macrophages different states of polarization [18]. 

Macrophages called M1, or classically activated, are stimulated by bacterial products 

(such as lipopolysaccharide, LPS) and cytokines produced by T helper 1 (Th1) 

lymphocytes. They also produce pro-inflammatory cytokines, they can mediate 

pathogens elimination and to kill cancer cells. Generally, they have an IL-23high, IL-

10low, IL-12high phenotype and are also able to produce reactive oxygen species and 

nitric oxide [42, 44]. On the other hand, M2 macrophages are polarized in T helper 2 

(Th2) lymphocyte-rich microenvironments, i.e. in the presence of cytokines such as 

interleukin 4 (IL-4) and 13 (IL-13) [43, 45]. M2 macrophages also promote tissue 

remodeling and angiogenesis [9, 46, 47], and suppress adaptive immune responses. 

Both M1 and M2 macrophages could be recruited in cancers microenvironment such 

as monocytes because of chemokines produced by tumor cells and stromal cells, but 

they can also migrate from adjacent tissues [9]. 

Tumor-associated macrophages (TAMs) are derived from peripheral blood monocytes 

that are recruited in tumor mass thanks to growth factors like VEGF, chemokines 

including CCL2 and molecules involved in CXCL12/SDF-1/CXCR4 signaling pathway [9, 

48, 49]. In the tumor site, monocytes differentiate into macrophages primarily due to 
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the presence of the macrophage colony-stimulating factor (M-CSF) produced by 

neoplastic cells [50, 51]. 

TAMs show pro-tumor features: they can induce neo-angiogenesis, to promote 

secretion of soluble factors that support cancer cell resistance to apoptotic stimuli and 

to stimulate malignant cells proliferation and invasion. Tumor-associated macrophages 

have also been associated with direct suppression of adaptive immunity by producing 

interleukin 10 (IL-10) and TGFβ that suppress Th1 lymphocytes; producing chemokines 

such as CCL17, CCL18 and CCL22 which are attractive for Th2-type cells that lack of 

cytotoxic activity and for T regulatory cells (Treg) [52]. Under hypoxic conditions, that 

is a common characteristic of solid tumors in vivo, proangiogenic factors are produced 

by TAMs, including: VEGF, epidermal growth factor (EGF), some members of the family 

of fibroblast growth factors (FGF) which are able to stimulate the recruitment and the 

migration of endothelial cells (EC), platelet-derived growth factor (PDGF), also 

implicated in the recruitment of pericytes, the CXC angiogenic chemokines, (CXCL8/IL-

8 and CXCL12/SDF-1), thymidine phosphorylase and TGFβ [9, 49]. Because of hypoxia 

there is an up-regulation of the pro-tumor cytokine TNFα, [53], of the 

immunosuppressive cytokine IL-10 and of arginase [54]. The cytokines produced by 

TAMs can also act indirectly on angiogenesis by autocrine stimulation [55]. The 

molecular profile of TAMs is characterized by a defective NF-kB and by an inability to 

up-regulate interleukin 12 (IL-12) and other inflammatory cytokines following 

inflammation [56]. In addition to producing VEGF, tumor-associated macrophages are 

also influenced by this angiogenic factor: they produce the receptor VEGFR1 [57] and 

respond to it by migrating and modulating their biological activity [58, 59]. Cancer cells 

take advantage of the degradation of the extracellular matrix by macrophages and they 

can perform local invasion, penetrate the blood vessels and spread and give rise to 

metastasis [60]. Basement membrane and extracellular matrix components 

degradation is the result of the release of proteases including different matrix 

metalloproteinases (MMPs 1, 2, 3, 9, and 12), as well as plasmin and urokinase. These 

factors also induce the destabilization of the vascular system as well as the migration 
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and proliferation of endothelial cells [9, 49, 61]. Interestingly, it has been shown that a 

subset of TAMs may also counteract tumor growth using a nonspecific cytotoxicity 

activity based on phagocytosis and on cancer cell lysis mediated by factors such as IL-

12 and granulocyte-macrophage colony-stimulating factor (GM-CSF) [62]. A crucial 

target for anti-angiogenic therapy could be represented by TEMs (Tie2 expressing 

macrophages), a subset of TAMs associated with the construction of the pre-metastatic 

niche, whose deletion inhibits angiogenesis and tumor growth [63, 64, 65]. 

From circulating monocytes, derived from the bone marrow, originate tissue-resident 

and inflammatory macrophages [66]. In the same way, TAMs are derived from 

circulating monocytes or tissue-resident macrophages [67]. Macrophage mobilization 

into tumor tissues is regulated by multiple microenvironmental signals such as 

cytokines, chemokines, extracellular matrix components, and hypoxia. Hypoxic areas 

release higher amount of chemoattractants such as VEGF-A, endothelin and EMAPII 

that enhance macrophage migration to these hypoxic sites. Hypoxia also imprisons 

macrophages by decreasing their mobility through the upregulation of MKP-1 enzymes; 

this terminates the macrophage response to chemoattractants outside the hypoxic 

areas [68]. There is evidence that both tissue-resident and recruited macrophages may 

cohabit in tumors and it was demonstrated that TAMs in a murine mammary tumor 

model are phenotypically and functionally distinct from mammary tissue-resident 

macrophages and that recruited macrophages may differentiate and form most TAMs 

[69] 

Neutrophils 

In the context of circulating white blood cells, the polymorphonuclear leukocytes 

neutrophils are the most abundant cell population. Foreign microorganisms, captured 

through phagocytosis, are eliminated by lytic enzymes and anti-microbial molecules 

contained in their cytoplasmic granules. Neutrophils are involved in the early stages of 

inflammatory response and they are rapidly recruited to the site of infection. In parallel 
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to features described for macrophages, neutrophils are sensitive to microenvironment 

stimuli and modify their behavior, often in diametrically opposed directions, in 

response to paracrine and endocrine received signals. Different subsets of neutrophils 

with distinct profiles of cytokine production and surface markers have been described 

[70, 71]. 

The neutrophil mechanisms of action consist in degranulation leading the release of 

lytic enzymes and the production of ROS with antimicrobial potential (O2-, H2O2, HOCl) 

[72]. Neutrophils are also able to secrete various cytokines such as TNFα, IL-1β, IL-1Rα, 

IL-12 and VEGF and chemokines such as CXCL1, CXCL8/IL-8, CXCL9, CXCL10, CCL3 and 

CCL4 [73, 74] directly involved in tissues remodeling and angiogenesis. For example, 

CXCL1/macrophage inflammatory protein-2 (MIP-2) leads to recruitment of neutrophils 

that, in turn, release biologically active VEGF-A, resulting in angiogenesis in vivo [75]. 

However, neutrophils are also able of produce a wide range of anti-cancer and anti-

angiogenic molecules. Upon stimulation with pro-inflammatory stimuli, neutrophils 

have enzymatic activities that, in vitro, generate biologically active angiostatin-like 

fragments. Because angiostatin is a potent inhibitor of angiogenesis, tumor growth, and 

metastasis, the data suggest that activated neutrophils not only act as potent effectors 

of inflammation, but might also play a critical role in the inhibition of angiogenesis in 

inflammatory diseases and tumors, by generation of a potent anti-angiogenic molecule 

[76]. 

The pro-angiogenic and anti-angiogenic activities of neutrophils, and their role in tissue 

destruction or reconstruction, suggest that there are different subsets of neutrophils, 

characterized by different activities: anti-tumorigenic N1 neutrophils were found to be 

associated with direct tumor cell killing as well as activation of CD8+ T cells and pro-

tumorigenic N2 neutrophils were also detected [77]. 

Tumor-associated neutrophils (TANs) were found in a variety of tumors (such as colon 

adenocarcinoma, melanoma and gastric carcinoma) suggesting a potential role in 

tumor progression and angiogenesis (78). In fact, these cells can promote, for example, 

IL-8-mediated angiogenesis (79). Therefore, TANs can release proteases to degrade and 
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remodel the extra cellular matrix and TNFα to induce neutrophil degranulation, in 

addition to VEGF, CXCL8/IL-8 and CXCL1 release [80, 81]. 

Dendritic cells 

The third phagocytic cells of the immune system are dendritic cells (DCs) that are 

present constitutively in the epithelia of most tissues, as well as in blood and in 

lymphoid organs. DCs, on the basis of location and morphology, play a critical role in 

the identification and the stimulation of both innate and acquired immune effector 

responses that lead to elimination of invading pathogens. Dendritic cells can act as 

"sentinels" that, once recognized microbial antigens, are able to migrate in secondary 

lymphoid organs, to process the foreign antigens and to present peptide epitopes to 

naïve T cells, acting as potent antigen presenting cells (APCs) [82]. APC function and 

maturation of dendritic cells are promoted by some angiostatic molecules, including 

the thrombospondin-1 [83] and CXCL4 [84] and CXCL14 chemokines [85]. Moreover, 

dendritic cells are located at the interface between innate and acquired immunity and 

for this reason they can establish a crosstalk with NK cells [86] and with neutrophils 

[87]. 

Dendritic cell population includes two main cell types: conventional or myeloid 

dendritic cells (cDCs) and the plasmacytoid DCs (pDCs) [88]. The cDC subset secretes 

primarily IL-12, while the pDC releases the anti-angiogenic cytokine interferon-alpha 

(IFNα) [89, 90]; in addition, mature cDCs are able to inhibit angiogenesis releasing 

angiostatic chemokines (CXCL9, CXCL10 and CCL21) [91]. 

A third subset of dendritic cells, regulatory dendritic cells (regDCs), is characterized by 

immune-suppressive features. regDC polarization is promoted by soluble factors such 

as VEGF, IL-6 and TGFβ, that can contribute to the reduction of mature DCs, to the 

expansion and accumulation of immature and tolerant DCs and to the possible DCs 

polarization into a pro-tumor phenotype promoting Th2 or Treg responses [92, 93]. DCs 

can release two important pro-inflammatory factors, TNFα [94, 95] and osteopontin 
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[96, 97], which can also function as angiogenic factors. Other cytokines released from 

DCs and that influence angiogenesis are IL-6 and TGFβ [98]. 

Different soluble tumor-derived factors, such as VEGF (99), adenosine [100], 

prostaglandin E2 (PGE2) [101] and TGFβ [102], are crucial for activation, migration of 

endothelial cell, and for inhibition of DC function that involves suppression of T cells 

and development of Treg cells. The VEGF-dependent DC inhibition is mediated by 

VEGFR1 receptor expressed on immature DC [103, 104]. Dendritic cells are also able to 

secrete different pro-angiogenic chemokines, such as CXCL1, CXCL2, CXCL3, CXCL5, 

CXCL8/IL-8 and CCL2 [105, 106]. 

Myeloid-derived suppressor cells 

Myeloid-derived suppressor cells (MDSCs) include immature macrophages or 

granulocytes and myeloid dendritic cell progenitors with high plasticity in their 

immune-suppressive function. However, these myeloid progenitors may differentiate 

in vitro into mature macrophages, granulocytes or even dendritic cells depending on 

available cytokines [107]. Two main subsets are described: granulocytic MDSCs and 

monocytic MDSCs [108, 109]. MDSCs can produce IL-10 and TGFβ, cytokines involved 

in the generation of tolerogenic DCs (110) and Treg cells [111, 112]. 

Recruitment and expansion of MDSCs may result from high levels of GM-CSF and IL-1β 

cytokines in case of chronic inflammation and in some cancer types the link between 

inflammation and cancer progression has been established [113, 114]. The involvement 

of myeloid-derived suppressor cells in inhibiting antitumor immunity is also reinforced 

by the ability to impair Natural Killer cells activity [115, 116], and to down-modulate 

recirculation of both naïve CD4+ and CD8+ T cells [117]. MDSC’s function is also 

involved in the angiogenesis process through the release of soluble factors such as 

MMP9 and VEGF, and thanks to the possibility of direct differentiation of these cells 

into endothelial cells as shown by experimental data obtained from mouse models [61, 

118]. 
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T and B lymphocytes 

The thymus-derived T-cells are divided into two main subpopulations based on the 

expression of CD4 or CD8 surface protein. In blood and secondary lymphoid organs, 60-

70% of T cells are CD4+ and 30-40% are CD8+ [2]. CD4+ T lymphocytes, also named T 

helper cells, can activate both cellular and humoral immune responses and they can 

recognize peptides presented by MHC Class II molecules. Depending on functions and 

cytokines produced, Th cells can be divided into three major subgroups [119]. The IL-

12 cytokine produced by macrophages or dendritic cells promotes the differentiation 

of Th1 lymphocytes; these cells express T-box transcription factor and produce 

interleukin 2 (IL-2) and interferon gamma (IFNγ). The IL-4 cytokine produced principally 

by NK-T and mast cells, induces differentiation of Th2-lymphocytes, expressing the 

GATA3 transcription factor and producing IL-4, IL-5, IL-9, IL-13 and GM-CSF. Finally, 

TGFβ and IL-6 allow differentiation of Th17 cells that produce IL-6 and IL-17 [2]. 

CD8+ T cells are cytotoxic cells (CTLs) that lyse cells through recognition of foreign or 

mutated antigens bound to MHC Class I molecules, as often happens for intracellular 

pathogens and for tumor cells. 

Instead Treg cells are characterized by CD25 and CD4 surface molecule co-expression 

and by nuclear transcription factor Foxp3 expression that is essential to their 

development. The regulatory activity of these cells is mainly due to the secretion of 

immunomodulatory cytokines, such as IL-10 and TGFβ [120]. Under physiological 

conditions Treg cells have a beneficial role in preventing autoimmunity [121]. However, 

in the presence of a tumor, they can expand and migrate into tumor site, to down-

regulate the proliferation of effector T cells and to suppress anti-cancer strategy of T 

helper cells and cytotoxic T cells [122, 123]. CCL22 and CCL28, which produced within 

the TUMIC, allows the selective recruitment of Treg cells who start to express in a 

constitutive manner the neuropilin-1 co-receptor [124] and are involved in the process 

of VEGF production in the tumor site (125). Within the tumor microenvironment, CD8+ 
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T cells are conditioned to acquire a regulatory T cells features with CD8+ CD28- 

phenotype [126, 127]. 

A subpopulation of T-lymphocytes consists in NKT cells, that are a relatively newly 

recognized member of the immune community, with profound effects on the rest of 

the immune system despite their small numbers. They are true T cells with a T cell 

receptor (TCR), but unlike conventional T cells that detect peptide antigens presented 

by conventional major histocompatibility (MHC) molecules, NKT cells recognize lipid 

antigens presented by CD1d, a non-classical MHC molecule. NKT cells are CD4- CD8- 

and could have immune-regulatory function through releasing a large amount of 

cytokines, including IL-4, IFNγ, and TNF [128, 129]. 

B cells constitute about 15% of peripheral blood leukocytes and can differentiate into 

plasma cells and, once activated, they produce antibodies against pathogens [130]. The 

primary immune role of B cells is to produce antibodies, but they can also influence T 

cell function via antigen presentation and, in some contexts, immune regulation. In 

many human cancers, the presence of tumor-infiltrating B cells and tumor-reactive 

antibodies correlates with extended patient survival [131, 132, 133, 134]. On the other 

hand, T cell responses can be adversely affected by B cell production of 

immunoregulatory cytokines [135, 136, 137]. The isotype and concentration of tumor-

reactive antibodies may also influence tumor progression. Recruitment of B cells into 

tumors may directly reflect the subtype and strength of the anti-tumor T cell response. 

As the response becomes chronic, B cells may attenuate T cell responses to decrease 

host damage, similar to their described role in chronic infection and autoimmunity 

[138]. 

Innate Lymphoid Cells (ILCs) and Natural Killer cells 

Innate lymphoid cells (ILCs) represent a family of different innate lymphocytes that, 

different from T and B lymphocytes, lack recombinant activating genes (RAG-1 or RAG-

2) and thus do not express rearranged antigen-specific receptors. ILCs have been 
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grouped in three major subsets based on their phenotypic and functional features as 

well as of their dependency on given transcription factors. Briefly, ILC-1 are dependent 

on T-bet transcription factor and produce interferon IFNγ. Group 2 ILCs (ILC-2) express 

GATA-3 transcription factor and produce IL-4, IL-5 and IL-13 (Type 2) cytokines, while 

group 3 ILCs (ILC-3) express RORγt transcription factor and produce IL-17 and IL-22. 

Natural Killer cells represent the prototypical member of the ILC-1 family [139, 140]. 

Natural Killer cells 

Natural Killer cells are large granular lymphocytes with the ability to lyse various types 

of cancer cells and virus-infected cells in the absence of a previous activation [141]. NK 

cells constitute the 5-15% of circulating lymphocytes [142, 143], however this 

proportion may vary with age of subject [144, 145]. In blood, the turnover of human 

Natural Killer cells is about two weeks [146] in accordance with data found in mouse 

models [147]. However, they are also found in tissues such as the spleen, lungs, kidney 

and liver, as well as in uterus and in slighter amounts in lymph nodes [148, 149, 150, 

151]. 

Upon priming by various soluble factors (for example, IL-15, type I IFN, IL-12, IL-18), NK 

cells boost the maturation and activation of DCs, macrophages and T cells, through a 

combination of cell surface receptors and cytokines. Conversely, NK cells can also kill 

immature DCs, activated CD4+ T cells and hyperactivated macrophages. These NK cell 

regulatory functions are kept in check by the recognition of constitutively expressed 

self-molecules (for example, MHC class Ia and MHC class Ib molecules) by means of 

inhibitory receptors (for example, the inhibitory KIR and the CD94-NKG2A complex), as 

is represented in Figure II [152]. 

Natural Killer cells are involved in the crosstalk of DCs; certain NK cell subsets could 

eliminate immature DCs, while others promote DC maturation, which in turn could 

induce further activation of NK cells (86); the functions of these innate immune cells 

are also conditioned by adaptive immunity. 
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Figure II. Regulation of immune responses by NK cells. Reprinted by permission from Macmillan 
Publishers Ltd: Nature Immunology. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. 
Functions of Natural Killer cells. Nat Immunol. 2008 May; 9(5):503-10, copyright 2008. [152]. 

– NK cell activation 

Concerning NK cell activation, the main functional hypothesis is related to the "missing 

self" mechanism (Figure IIIb), since NK cells can detect and lyse cells lacking expression 

of MHC-I molecules [153]. In 1990, several studies showed the presence of activator 

and inhibitor surface receptors expressed by NK cells [154], identifying a new 

recognition model called "induced-self" (Figure IIIc) [155], that complements the 

previous hypothesis of "missing-self". NK cells are also able to exert Antibody-

Dependent Cell-mediated Cytotoxicity (ADCC), a mechanism of cell-mediated immune 

defense, whereby an effector cell of the immune system actively lyses a target cell, 

whose membrane-surface antigens have been bound by specific antibodies (Figure IIId) 

[156]. 
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Figure III. a. Balance of signals delivered by activating and inhibitory receptors regulates the 
recognition of healthy cells by NK cells. b. Tumor cells that down-regulate major 
histocompatibility complex (MHC) class I molecules are detected as 'missing self' and are lysed 
by NK cells. c. Tumor cells can overexpress induced stress ligands recognized by activating NK 
cell receptors, which override the inhibitory signals and elicit target cell lysis. d. Tumor antigen-
specific antibodies bind to CD16 and elicit antibody-dependent NK cell-mediated cytotoxicity. 
Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Cancer. Morvan MG, 
Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016 
Jan;16(1):7-19, copyright 2016. [156]. 

The NK cell ability to recognize their target is the result of a complex balance between 

inhibitory and activatory signals and require not only the lack of MHC-I expression on 

target cells membrane but also the expression of ligands able to trigger activating 

receptors [157]. The first checkpoint is the lack of MHC-I molecules expression [153, 

158]: their down-regulation is observed during cell transformation [159] or viral 

infection and this phenomenon prevents the binding of NK cells inhibitory receptors to 

target. Target cell lysis occurs only when the activating signals exceed inhibitory signals 

[160]. 
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Thus, NK cells can recognize and destroy a wide range of abnormal cells (including 

cancer cells and virus-infected cells, cells bound by antibodies and allogeneic cells, as 

well as stressed cells), without damaging healthy cells and normal self-cells [161]. 

– NK cell subsets 

There are several distinct subsets of human Natural Killer cells classified by CD56 

surface molecule expression: the main peripheral blood subset consists of the NK cells 

with low density of CD56 expression (CD56dim) and with high levels of the CD16 

(CD16+, the Fc-γ receptor) and represent the 90-95% of NK cells in the blood. These 

cells kill their targets by releasing cytolytic granules containing perforin and granzyme, 

and can secrete only precociously high levels of cytokines [162]. In vitro interaction with 

cancer cells results in the production of IFNγ by these innate lymphoid cells [163]. The 

remaining 5-10% of peripheral blood NK cells are poorly cytotoxic, display lower 

amounts of perforin [149], but can produce large amounts of cytokines, including IFNγ, 

TNFα, and GM-CSF, and they show a higher surface density of CD56 (CD56bright) and 

reduced or negative expression of CD16 (CD16low/-). In vitro exposure to specific 

cytokines, such as IL-2, IL-12 and/or IL-15, induce these cells to acquire a cytotoxic 

CD56dim CD16+ phenotype with strong killing capacity [164, 165]. CD56high CD16− NK 

cells are thought to be immature precursors of CD56low CD16+ mature NK cells [142], 

although some studies have suggested that the two are separate lineages [143]. 

At the level of the decidua [166] (the hormone-responsive glandular layer of 

endometrium that sloughs off at each menstrual flow (decidua menstrualis) or at the 

termination of pregnancy) a third subset of NK cells was found, and called decidual 

Natural Killer cells (dNK). This subpopulation is characterized by a CD56superbright 

CD16- phenotype and can release significant amounts of pro-angiogenic factors, 

especially VEGF, placental growth factor (PlGF) and interleukin 8 (IL-8). They are 

necessary for the formation of the spiral arteries during endometrial differentiation 

[166, 167]. The low cytolytic activity of dNK cell seems to be involved in the 
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implantation of the embryo to avoid non-self-rejection. Compared to the two subtypes 

found in peripheral blood, dNK cells display specific surface markers, in particular CD9 

and CD49a [168].  
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– NK cell receptors 

Among the most important activating receptors there are NKp30, NKp44 and NKp46, 

normally named "natural cytotoxicity receptors" (NCRs) [169], member of the C-type 

lectins family NKG2D, 2B4, NTBA, CD69, NKp80 and DNAM-1, as it is shown in Figure IV, 

together with the most representative human NK cell receptors. 

 

Figure IV. NK cell activation programs result from the integration of multiple activating and 
inhibitory signals. Inhibitory receptors are in blue; 2B4, which can act as an activating or an 
inhibitory molecule, is in grey; other receptors are in green. Reprinted by permission from 
Macmillan Publishers Ltd: Nature Immunology. Vivier E, Tomasello E, Baratin M, Walzer T, 
Ugolini S. Functions of Natural Killer cells. Nat Immunol. 2008 May; 9(5):503-10, copyright 2008. 
[152]. 
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Another important molecule is the CD16 receptor (Fc-γ-RIIIA) that mediates recognition 

of the Fc portion of IgG1 and IgG3 antibodies allowing the identification and the attack 

of opsonized target cells through antibody-dependent cell-mediated cytotoxicity 

mechanism (ADCC). Many activating receptors are characterized by a common 

structural motif in the cytoplasm, called ITAM (Immunoreceptor Tyrosine-based 

Activation Motif) [170]. 

Specific inhibitory receptors for MHC Class I molecules include KIRs (Killer 

immunoglobulin-like receptors) in humans, the lectin-like dimers Ly49 in mice, and the 

lectin-like heterodimers CD94-NKG2A in both species [171, 172]. A conserved 

peculiarity in these inhibitory receptors is the presence of one or two intra-cytoplasmic 

inhibitors domains called ITIMs (Immunoreceptor Tyrosine-based Inhibition Motifs) 

that promote the signal transduction pathway maintained both in human and mouse 

[173]. Interacting with MHC Class I molecules, constitutively expressed by most healthy 

cells in conditions of "dynamic equilibrium" but that might be lost because of cellular 

stress, viral infection or neoplastic transformation, the inhibitory receptors enable NK 

cells to be educated to recognize the "missing-self" and, at the same time, tolerate self-

antigens [174]. However, there are also other inhibitory receptors, including 

p75/AIRM1 and IRP60, which can recognize molecules outside the family of MHC Class 

I molecules [175]. 

– NK cell killing strategies 

The target elimination by NK cells can be performed through three main strategies. The 

first mechanism, shared by T cytotoxic lymphocytes, is faster and more effective to kill 

cells and consists in releasing perforin and granzymes (including the granzyme B) that 

are stored in secretory granules [176]. This strategy is implemented either when 

activatory signals exceed inhibitory signals, or because of ADCC. When Natural Killer 

cells are activated, the granule exocytosis leads to the release of these molecules 

against target cells; perforin perforates the target cell membrane forming 
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homopolymers and creating a hole that facilitates the entry of granzyme in the cell 

cytoplasm. These serine-proteases act on different target molecules, proteins of the 

family of caspases, that induce programmed cell death (apoptosis). This leads to 

chromatin condensation, membrane blebbing and nuclear DNA fragmentation [177, 

178]. The whole process is strictly regulated: there are the formation of an 

"immunological synapse", at the point of contact between Natural Killer cell and the 

target cell, and there is a rearrangement of the actin cytoskeleton; then NK cell 

microtubular organizing center and secretory lysosomes polarize toward the 

immunological synapse. At this point the secretory lysosomes are anchored to the 

plasma membrane, and then merge with it and release their cytotoxic molecules [179]. 

Alternatively, there is a slower mechanism that requires the expression of tumor 

necrosis factor ligand superfamily (FasL/TNF) on the NK cell surface and a Fas death 

receptor on target cell [180]. An intracellular region, called death domain, characterizes 

these receptors that recruit an adaptive protein through homophilic interactions, which 

is required for cytotoxic signal transduction [181]. This initiates the start of enzymatic 

caspase cascade leading to apoptosis. 

Finally, Natural Killer cells can produce IFNγ a cytokine that inhibits cancer cell 

proliferation in vitro and tumor growth in vivo by inducing the anti-angiogenic CXCL10 

chemokine [182]. IFNγ is also able to potentiate the NK cells cytotoxicity inducing an 

over-expression of adhesion molecules or an increase of cancer cells susceptibility to 

cytotoxicity mediated by the release of granules or by death receptor [183]. In addition, 

the IFNγ produced by Natural Killer cells plays an important role in the production of 

IL-12 by dendritic cells [184]. In this way, NK cells contribute indirectly at the tumor 

control starting and maintaining a T cells-mediated effective antitumor response 

through a crosstalk with dendritic cells [185]. 
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– NK cells and angiogenesis 

Physiological angiogenesis is a complex process finely controlled by numerous pro-

angiogenic cytokines as well as inhibitory factors. Therefore, to induce angiogenesis, 

the balance between pro and anti-angiogenic factors near tumor should lean in favor 

of angiogenic stimuli, either through down-regulation of angiogenesis inhibitors or up-

regulation of pro-angiogenic cytokines [186]. 

The most important inducer of angiogenesis is vascular endothelial growth factor that 

is part of a gene family that contains 5 related genes (VEGF-A also known as VEGF, 

VEGF-B, VEGF-C, VEGF-D and PlGF) that are regulators of angiogenesis, lympho-

angiogenesis or both. Probably this is the most important inducer of angiogenesis 

[187]. Specifically, hypoxia regulates the production of VEGF via transcription factor 

HIF-1α, which also promotes invasiveness by transcriptional activation of the met 

protooncogene [188]. HIF-1α levels are regulated by prolyl hydroxylase whose activity 

is directly related to the availability of oxygen [189, 190]. The central regions of solid 

tumors become hypoxic when the tumor grows, thereby VEGF is produced and 

consequently the tumor angiogenesis induction occurs [191]. VEGF acts by binding and 

activating tyrosine kinase receptors VEGFR-1 and VEGFR-2 [192, 193]. It has been 

shown that activation of these receptors contributes to angiogenesis since antibodies 

that inhibit their function also inhibit tumor development [194]. 

Angiogenesis is also induced by CXC chemokines, such as IL-8 and CXCL12/SDF-1 (C-X-

C motif chemokine ligand 12 / Stromal Derived Factor 1). The IL-8 was originally 

discovered as a pro-angiogenic factor derived from macrophages [195]. Some 

microvascular endothelial cells express CXCR1 and CXCR2 receptors which are activated 

by IL-8 that induce changes in the cytoskeleton organization, causing cell movement 

and contributing to increased permeability observed in tumor-associated blood vessels 

[196]. In addition, IL-8 receptors on endothelial cells promote proliferation and 

angiogenesis induction. IL-8 also increases the production of MMP2 and MMP9 

metalloprotease in endothelial cells [197, 198]. These observations suggest that IL-8 
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has an important role in the induction of angiogenesis. In fact, various data indicates 

that the increase in the expression level of IL-8 in various tumors is associated with 

increased malignancy and ability to metastasize [199, 200]. The neutrophil role is 

essential in the response to IL-8, responding to this chemokine through CXCR2 

chemokine receptor agonists. IL-8 induces intense angiogenic reactions in vivo, but no 

angiogenic response to these factors was observed in neutropenic mice, demonstrating 

an essential role for neutrophils [201]. 

CXCL12/SDF-1 is a potent chemoattractant molecule for resting lymphocytes, 

monocytes and CD34+ hematopoietic progenitor cells [202, 203]. Only CXCL12/SDF-1 

binds to CXCR4 receptor, which has only this chemokine known as a ligand [204]. It has 

been reported that CXCL12/SDF-1 recruits bone marrow-derived endothelial cells 

precursors to neo-forming blood vessels [205, 206], thus antibodies directed against 

CXCL12/SDF-1 inhibit angiogenesis [207]. Moreover, CXCL12/SDF-1 stimulates tumor 

progression through direct effects on CXCR4+ cancer cells, and it has been observed a 

direct correlation between poor prognosis and CXCR4 presence on cancer cells in 

different types of malignancies [208, 209]. 

Osteopontin (OPN) is a glycoprotein containing arginine, glycine, aspartate (RGD) and 

exists as a component of the extracellular matrix and immobilized as a soluble pro-

inflammatory cytokine [210, 211]; it is also able to play important roles in tissue 

remodeling, fibrosis (210) and angiogenesis [212]. Many of these effects are mediated 

by OPN binding to Integrin αvβ3 or CD44 receptors [213]. 

– NK cells and cancer 

Studies conducted in both human and mice have helped us to understand that Natural 

Killer cells play an important role in immune defense against solid cancers and 

hematological tumors [214, 215, 216, 217]. Nevertheless, as emerged from functional 

analysis, the cytotoxic activity of tumor infiltrating NK cells (TINKs) is often modulated 

and inhibited by several factors derived from the tumor milieu [218, 219, 220]. Like 
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other immune cells, Natural Killer cells may also infiltrate the tumor mass. The TUMIC 

can affect NK cell functionality through a variety of cytokines and soluble factors, both 

inhibiting their cytotoxic function and promoting a pro-neoplastic/pro-angiogenic 

phenotype [221]. 

Among various solid tumors, lung cancer is the leading cause of cancer-related 

mortality in men. About 80% of all lung cancers are non-small cell lung cancer (NSCLC) 

that can be divided at the phenotypic level into two main sub-types: squamous cell 

carcinoma (SCC) and adenocarcinoma (ADC). Interestingly, lung tissues are particularly 

enriched in Natural Killer cells [222, 223]. 

Natural Killer cell infiltrating NSCLC were characterized predominantly by CD56bright 

CD16- subtype. Moreover, these cells show reduced perforin production if compared 

to autologous peripheral blood NK cells. In addition, based on the expression of CD107a 

surface marker, they display reduced cytotoxic capacity following incubation with 

human erythroleukemic cell line K562 in vitro [216, 224]. 

CD56+ CD16- dNK cells are able to produce pro-angiogenic factors [225] and NSCLC NK 

cells have the ability to produce proangiogenic factors like VEGF, PlGF and IL-8 [226] A 

further demonstration of the angiogenic potential of these cells was obtained by 

testing ex vivo the chemotactic capacity of NK cell-derived supernatants on human 

umbilical vein endothelial cells (HUVECs). Furthermore, it has been observed that the 

supernatants of tumor infiltrating NK cells can induce a capillary-like organization of 

HUVECs in vitro. It has also been reported that an in vitro exposure to the 

immunosuppressive cytokine TGFβ induces NK cells from peripheral blood of healthy 

donors to produce angiogenic factors such as VEGF and PlGF, suggesting that this 

cytokine is involved in the TINK angiogenic switch [226]. This has been added to 

previous knowledge concerning the ability of TGFβ, very often present in solid tumor 

microenvironment, to polarize the cytotoxic CD56dim CD16+ NK cell subset into a 

CD56bright CD16- phenotype with some characteristic similarity to dNK cells [227, 228]. 

It is of interest to further characterize the NK cell phenotype and function in the context 
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of malignancies, related to pleural effusions (PA) caused by primary or metastatic 

pleura tumors [219, 229]. 

INFLAMMATORY AND NEOPLASTIC PLEURAL EFFUSIONS 

The pleura is a thin membrane that consists of five layers: an external fibro elastic layer, 

an under-pleural highly vascularized layer of loose connective tissue, an elastic surface 

layer tissue, a submesothelial layer of loose connective tissue and finally a mesothelium 

layer. The pleura directly adjacent to the lungs is the visceral pleura, the pleura in 

contact with the rib cage and diaphragm is the parietal pleura. Once fully developed, 

the pleural space typically contains 0,5-2,0 ml of pleural fluid that allows the parietal 

and visceral pleura to slide over each other during breathing. The pleural fluid, which 

normally has a similar composition to plasma with a lower concentration of proteins (< 

1,5 g/dl), is derived from the capillaries and exits from the parietal pleural pore and 

from the lymphatic vessels. The multipotent mesothelial layer located into the pleural 

space, is very active concerning metabolism, along with humoral and cellular immune 

components that also plays an active role in the production and absorption of pleural 

fluid [230]. 

The abnormal fluid accumulation in the pleural space, because of an imbalance 

between excessive production and absorption, can lead to a medical condition known 

as pleural effusion [231]. Pleural lesions could generate from a neoplastic or 

inflammatory conditions. About the first aspect, the pleura can be the site of primary 

tumors, such as mesothelioma, or secondary tumors. Secondary metastatic 

involvement is more common than primary tumors. Approximately 50% of patients 

with metastatic cancer develop a malignant pleural effusion. At the epidemiological 

level, more than 75% of all cases of malignant pleural effusion are caused by lung, 

breast, ovary cancers or lymphomas [232]. In males, the main cause of cancer 

development is lung cancer, while in females the most common cause is breast cancer 

[233, 234]. In most metastases cases, it forms a serous or serosanguineous pleural 
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effusion that often contains cancer cells. In general, the presence of pleural fluid is 

accompanied by poor prognosis and the survival for patients with metastatic cancer 

that develop a malignant pleural effusion is around three months [235]. 

Other causes of pleural effusions are: inflammation secondary to viral or bacterial 

infection with pleural localization; pleural inflammation in presence of tuberculosis; 

extension to the pleura, by contiguity, of lung inflammation (pneumonitis) developed 

into a portion of the lung near the pleural surface (metapneumonic pleurisy); and 

finally, this can be a pleural manifestation of autoimmune disease [231]. 

The mechanisms involving the pleural fluid accumulation include: increase of interstitial 

fluid in the lungs as a result of increased pulmonary capillary pressure (such as heart 

failure) or permeability (e.g. pneumonia); decreased intrapleural pressure (such as 

atelectasis, the absence of ventilation of pulmonary alveoli); decreased oncotic 

pressure of plasma (for example hypoalbuminemia); increase in pleural membrane 

permeability and lymphatic flow obstructed (e.g. pleural neoplasm or infection) or 

rupture of the thoracic duct (for example chylothorax). An important distinction is the 

fact that the pleural effusion may be unilateral or bilateral; it can also occupy the large 

pleural cavity or be localized to a circumscribed pleural space portion [236, 237]. 

There are two types pleural effusions based on biochemical characteristics of the fluid: 

transudative PE and exudative PE. The transudative PEs are the result of an imbalance 

between hydrostatic and oncotic forces and are caused by a limited number of medical 

conditions such as heart failure and cirrhosis; less common causes include nephrotic 

syndrome, atelectasis, peritoneal dialysis, constrictive pericarditis and superior vena 

cava obstruction. In contrast, the exudative PE occurs when there is an alteration of 

local factors that influence the accumulation of pleural fluid that induces an excessive 

liquid production. Causes of this second type of plural effusion may be cancer or 

inflammatory processes [238]. 

In 2013, Vacca P. et al. have demonstrated that a preponderance of NK cells in 

malignant pleural effusions display a CD56bright CD16low phenotype, in contrast with 

the predominant subtype in the blood. The main activating receptors are not down-
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regulated and inhibitory receptors are not up-regulated, contrary to what happens for 

TINK in solid tumors. Functionally, it is found that these cells, according with their own 

phenotype, quickly produce large amounts of cytokines, such as IFNγ and TNFα, 

following short-term stimulation with IL-2. An important aspect that has emerged 

following in vitro IL-2 treatment for 72 hours is the rapid and efficient cytotoxic ability 

against classical cancer target cells such as K562. The fact that Natural Killer cells 

examined are not anergic but actively functional was explained as the result of the fact 

that, at the pleural effusion level, NK cells are not in contact with cancer cells. 

Therefore, the cytokines and tumor-derived inhibitory factors may be diluted and do 

not reach the adequate concentration to demonstrate an inhibitory effect. The authors 

suggest that their findings could have relevant impact concerning in vivo therapeutic 

treatment for patients with primary or metastatic pleural tumors. NK cells cytotoxic 

activity in vivo may be induced or reinforced through local infusions of IL-2. Another 

possibility would be to expand and activate Natural Killer cells in vitro with IL-2 before 

their reintroduction into the patient. 

Analyzing pleural effusion soluble factors, it was demonstrated that malignant PEs were 

found to have 77-fold higher VEGF-A levels compared to inflammatory PEs in addition 

with elevated levels of pro-angiogenic factors VEGF-A, CXCL4 and MMP-8, and low 

levels of pro-inflammatory cytokines IL-8, MCP-1, and TGFβ1 in malignant PEs [239]. In 

another work, in contrast, it was found that the amount of TGFβ was high in malignant 

PE. All these molecules have a relevant role in the polarization of immune system cells 

and could influence also Natural Killer cell functions [240]. 

These results are very promising and have been the basis for the realization of this 

project of thesis, for which in addition to malignant pleural effusion was considered 

another medical condition, i.e. the inflammatory pleural effusion. 
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AIMS OF THE STUDY 

It is extensively demonstrated that the tumor microenvironment (TUMIC) plays a major 

role in cancer and in tumor progression. Different cell types are present in the TUMIC, 

such as the malignant-transformed cells (that acquire tumor-promoting functions 

during carcinogenesis), the stromal cells, the endothelial cells and a wide assortment 

of immune cells [55]. 

Immune cells infiltrating tumors typically show a tumor-induced polarization 

associated with attenuation of antitumor functions and generation of pro-tumor 

activities, among these the induction of angiogenesis. The immune cells better 

characterized are macrophages, neutrophils, dendritic cells and the myeloid-derived 

suppressor cells. Recently, also Natural Killer cells obtain the scientist attention and it 

was demonstrated that a subset of these cells could contribute, in NSCLC, in the 

promotion of angiogenesis during cancer [226]. 

The current investigation aims to determine whether NK cells residing in pleural 

effusion derived from patients with inflammatory diseases, primary or metastatic 

tumors of various origins, are characterized by decidual features and pro-angiogenic 

and pro-tumor characteristics, similar to those found in NSCLC. 

It was already demonstrated that IL-2 treatment can promote the restoration of 

cytotoxicity in NK cells from patients with pleural effusions and our goal is to evaluate 

if IL-2 could be counteracted by TGFβ, often present in TUMIC, or directly by pleural 

effusion soluble factors. 

The aim of this work is also to evaluate if molecules contained in pleural effusion fluids 

can induce a switch in healthy NK cells phenotype and functions. We think that a better 

characterization of Pleural Effusion NK cells may lead in the future to an appropriate 

therapy able to improve NK cell cytotoxic function contrasting with tumor progression 

and the angiogensis associated phenomenon. 
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PATIENTS, MATERIALS AND METHODS 

PATIENT SELECTION 

Subjects included in this study were healthy donors and patients with pleural effusions 

caused by inflammatory disease or primary or metastatic tumors of different origin. 

Healthy Controls (h): n=14 (M: n=8; F: n=6); age: mean±SEM=58,1±3,4 (Table 1A). 

Inflammatory Pleural Effusions (iPE): n=18 (M: n=16; F: n=2); age: mean±SEM=72,2±2,2 

(Table 1B). Malignant Pleural Effusions from Primary Tumors (ptPE): n=18 (M: n=9; F: 

n=9); age: mean±SEM=72,8±2,5 (Table 1C). Malignant Pleural Effusions from Tumor 

Metastasis (tmPE): n=27 (M: n=11; F: n=16); age: mean±SEM=68,7±2,4 (Table 1D). 

Samples analyzed include peripheral blood of healthy subjects (hPB) and patients with 

inflammatory pathologies (iPB), primary tumors (ptPB) or tumor metastasis (tmPB) and 

the respective pleural effusions: iPE, ptPE and tmPE, respectively. All the experiments 

were performed on fresh samples. 

Patients with diabetes, human immunodeficiency virus (HIV)/hepatitis C virus 

(HCV)/hepatitis B virus (HBV) infection, overt chronic inflammatory conditions, 

previously treated with chemotherapy or radiotherapy, or those iatrogenically 

immunosuppressed or having undergone myeloablative therapies were excluded. 

All samples were collected from healthy donors and patients at the Ospedale di Circolo 

of Varese, following informed consent, with local Ethics Committee approval. 

NK CELL PHENOTYPE ANALYSIS 

Total mononuclear cell suspension derived from peripheral blood and pleural effusion 

samples was obtained by ficoll hystopaque (LONZA, Basel, Switzerland) gradient 

stratification. To identify NK cell subsets, cells obtained were subsequently stained with 
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monoclonal antibodies against surface markers (CD14-PE and CD45-FITC, CD3-PerCP, 

CD56-APC, CD16-FITC, CD9-PE, CD49a-PE, CD57-PE, CD69-PE, NKp30-PE, NKG2D-PE and 

NKG2A-PE) all purchased from Miltenyi Biotech (Auburn, CA). After 10 minutes fixation 

with PFA 1% in PBS, samples were stored at 4°C until a BD FACS Canto II analysis was 

conducted. Briefly, after physical parameters analysis (FSC/SSC), CD45+ CD14- 

lymphocytes were gated and assessed for NK cell markers. NK cells were gated on 

CD45+ CD3- CD56+ total lymphocytes. 

EVALUATION OF NK CELL CYTOKINE PRODUCTION 

NK cells were subjected to intracellular cytokine staining (ICS) assay after 1h incubation 

with monensin (2 mM, BD), or, to evaluate the production of IFNγ, after an overnight 

stimulation with PMA (10 ng/ml, Sigma-Aldrich, St Louis, MO) and Ionomycin (500 

ng/ml, Sigma-Aldrich) plus monensin (2 mM, BD). Briefly, following staining with anti-

human mAbs CD3-PerCP, CD56-APC, CD16-FITC (Miltenyi Biotec), cells were 

permeabilized and fixed using the Cytofix/Cytoperm fixation kit (BD), according to the 

manufacture instructions and finally stained with different anti-cytokine PE-conjugated 

mAbs (VEGF, CXCL12/SDF-1, perforin, osteopontin, IL-8 and IFNγ, Miltenyi Biotec) and 

analyzed with a BD FACS Canto II. 

MORPHOGENESIS OF HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS 

The capacity to induce formation of capillary-like networks by endothelial cells seeded 

on matrigel (BD) was tested using HUVECs at the concentration of 20x103 cells/well in 

a 96-well plate. Negative and positive controls (CTRL- and CTRL+) were obtained using 

a serum-free medium and a medium containing 10% of FBS, respectively [226]. 

HUVECs were resuspended in 0,2 ml of a medium containing pleural fluids (1/3 of the 

medium) and transferred to the matrigel-coated wells for 6-hour incubation. 
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HUVECs were resuspended in 0,2 ml of a medium containing or containing NK cell 

supernatants (protein concentration: 15 µg/µl) and transferred to the matrigel-coated 

wells for 6-hour incubation). NK cell supernatants were obtained with the procedure 

described below: NK cells were purified from peripheral blood and pleural effusion 

samples using two steps of MicroBeads-coated with mAbs: CD3 MicroBeads (Miltenyi 

Biotec): CD3 positive cells were eliminated and the CD3- fraction was purified using 

CD56 MicroBeads (Miltenyi Biotec) to isolate CD3-/CD56+ NK cells. Purified NK cells 

were incubated 6 hours in serum-free RPMI medium. Supernatants were collected; 

residual cells and debris were discarded by centrifugation and supernatants were 

concentrated with Concentricon devices (Millipore, Temecula, CA) with a 5-kDa 

membrane pore cutoff. 

The morphologic organization was documented with an inverted microscope (Zeiss) 

and angiogenesis was evaluated with ImageJ software and an Angiogenesis Analyzer 

Tool. 

EVALUATION OF NK CELL CYTOTOXICITY 

The NK cell degranulation activity assay was assessed on total mononuclear cells from 

PB and PE after in vitro 4h incubation with the human erythroleukemia K562 tumor cell 

line target in presence of anti-CD107a mAb (Miltenyi Biotec) and monensin (2 mM, BD) 

at a NK cell:Target ratio of 1:1. Cells were then stained with anti-CD3 and anti-CD56 

mAbs (Miltenyi Biotec), fixed for 10 minutes with PFA 1% in PBS and stored at 4°C until 

BD FACS Canto II analysis. This assay was performed on fresh PB of healthy donors and 

on fresh PB and PE of patients with iPE, ptPE and tmPE; ex vivo and after a 3-day cell 

culture with IL-2 (100 U/ml), IL-2 plus TGFβ (10 ng/ml) (Miltenyi Biotec) and IL-2 in a 

culture medium containing 33% of cell-free supernatants from iPE, ptPE or tmPE. Cell-

free supernatants were obtained after pleural fluids centrifugation at 300xg for 15 

minutes. Concentrations of IL-2 and TGFβ were used according to the protocol of Bruno 

et al. [226]. Viability of NK cells incubated with culture media with 33% of PE 
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supernatants was evaluated counting NK cells in Burker Chamber using Trypan Blue 

reagent. 

POLARIZATION OF NK CELLS FROM HEALTHY DONORS WITH PE SUPERNATANTS 

NK cells from 13 buffy coats were isolated with Kit RosetteSep (StemCell Technologies), 

according to the protocol of the manufacturer. Briefly, after ficoll separation, 

mononuclear cells and Red Blood Cells (RBC) are incubated in proportion 1:100 with 

RosetteSep kit in the concentration of 50 µl/ml (reaction volume: 50x106 mononuclear 

cell/ml). After 20 minutes of incubation at room temperature the suspension was 

stratified on ficoll to obtain purified NK cells that were isolated through negative 

selection procedure. The conditioning of the purified NK cells with supernatant of 

pleural effusion was performed to determine whether the supernatant could polarize 

NK cells towards a pro-angiogenic phenotype. NK cells purified from each buffy coat 

are cultured for 7 days in RPMI medium 2x106 NK cells/ml, with 10% of FBS, 1% of 

Penicillin/Streptomycin and IL-15 (10 ng/ml) or IL-15 in a culture medium containing 

33% of iPE, ptPE or tmPE supernatants.  

Concentration of IL-15 and culture timing are based on the protocol of Cerdeira and 

colleagues [241]. Each kind of PE supernatant used was a pool of 10 supernatants 

derived from 10 different patients. During incubation, every two days, 33% of culture 

media containing PE was removed and replaced by fresh PE and IL-15 was added to the 

culture media of all samples. Viability of NK cells incubated with culture media with 

33% of PE supernatants was evaluated every two days counting NK cells in Burker 

Chamber using Trypan Blue reagent. 

EVALUATION OF IN VITRO-CONDITIONED NK CELL CYTOKINE PRODUCTION 

After 7-day culture, NK cells were subjected to ICS assay after 1h incubation with 

monensin (2 mM, BD), or, to evaluate the production of INFγ, after an overnight 
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stimulation with PMA (10 ng/ml, Sigma-Aldrich, St Louis, MO) and ionomycin (500 

ng/ml, Sigma-Aldrich) plus monensin (2 mM, BD). Briefly, following staining with anti-

human mAbs CD3-PerCP, CD56-APC, CD16-FITC (Miltenyi Biotec), cells were 

permeabilized/fixed using the Cytofix/Cytoperm fixation kit (BD), according to the 

manufacture instructions and finally stained with different anti-cytokine antibodies and 

analyzed with a BD FACS Canto II. PE-conjugated mAbs (VEGF, CXCL12/SDF-1, IFNγ, 

perforin, osteopontin and IL-8) were all from Miltenyi Biotec. 

FLOW CYTOMETRY ANALYSES 

Flow cytometric analyses were performed using BD FACS Canto II and BD FACSDiva 

Software (v8.0.1). 

STATISTICAL ANALYSES 

Statistical analyses were performed using the GraphPad Prism statistics and graphing 

program (GraphPad Software, San Diego, CA). One-way ANOVA with Bonferroni post-

test were used to evaluate the statistical significance of all performed tests. 
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RESULTS 

NK CELLS ISOLATED FROM MALIGNANT PLEURAL EFFUSION ARE ENRICHED IN 

CD56BRIGHT CD16- NK CELLS 

It was demonstrated that there is an unbalanced distribution of CD56bright CD16- NK 

cell subsets between peripheral blood of healthy subjects (h), peripheral blood of 

patient with inflammatory (iPB) and malignant pleural effusions (ptPB and tmPB) and 

their respective pleural effusion samples (iPE, ptPE and tmPE): the percentages of 

CD56bright CD16- NK cells are higher in all PE samples, as shown in the representative 

dot plots (Figure 1). 

The analysis of the phenotype performed by flow cytometry demonstrated that the NK 

cell percentage found in all samples analyzed were very similar with healthy controls 

(about 10% to 20% of total lymphocytes) as reported in Figure 2A. It is however 

interesting to consider that the volume of starting material of peripheral blood samples 

and pleural effusions is very different: to analyze PB-NK cells we used 15 ml of 

peripheral blood while, for PE-NK cells, pleural effusion volume varies from 1 to 2 liters, 

hence the number of NK cells obtained from the latter was higher and this situation 

allows us to performed more experiments with a single sample. 

Regarding the two major subpopulations of NK cells it was demonstrated that the 

percentage of NK cells represented by CD56bright CD16- subset is increased in all 

pleural effusions analyzed if compared with autologous peripheral blood samples and 

PB of healthy donors (iPE=35%; ptPE: 40%; tmPE=60%) (Figure 2B). In Figures 2C-D are 

represented the CD56bright and CD16- NK cells populations, separately. 



RESULTS 

 

41 

NK CELLS FROM PLEURAL EFFUSIONS SHOW AN INCREASED EXPRESSION OF THE DECIDUAL 

NK CELL MARKER CD49A 

Evaluating the presence of surface markers, typical of dNK cells, such as CD9 and CD49a, 

it was observed a partial decidual differentiation of Natural Killer cells isolated from 

inflammatory and malignant pleural effusions. 

Regarding CD9 we did not find differences in CD9+ NK cells percentage between all 

samples analyzed (Figure 3A) and the Mean Fluorescence Intensity parameter (MFI) 

was not statistically significant (Figure 3B). 

CD49a analysis reveals that the percentage of CD49a+ NK cells found in pleural effusion 

(especially in ptPE and in tmPE) are significantly higher if compared to PB-NK cell 

samples (Figure 3C). The same trend could be noticed in the analysis of MFI: the value 

is higher for NK cells derived from ptPE and tmPE if related to hPB and autologous ptPB 

and tmPB (Figure 3D). 

Therefore, in all types of pleural effusion there was observed an augmented percentage 

of CD49a+ Natural Killer cells, but not that of CD9+, revealing the acquisition of a partial 

decidual-like phenotype. Decidual NK cells are characterized by pro-angiogenic 

features and could help tumor growth. On the other hand, within inflammatory context 

these data could be interpreted in a positive manner: the growth of new blood vessels 

may be the preferred way to recruit other immune cells needed to maintain the 

inflammatory process. 

PLEURAL EFFUSION NK CELLS ARE PREDOMINANTLY IMMATURE AND HIGHLY ACTIVATED 

The differentiation molecule CD57, which identifies mature Natural Killer cells with a 

potent cytotoxic potential but a decreased sensitivity to cytokines and a reduced 

replicative ability [242], was examined. The NK cell percentage that displays this marker 

is lower in all pleural effusion analyzed, especially in ptPE and tmPE where it reaches 
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statistically significant differences (Figure 4A). The same trend was noticed in the MFI 

parameter analysis (Figure 4B). Poorly mature Natural Killer cells can be interpreted in 

a twofold manner: there may be cells that have not completed the maturation process 

or they may be fully differentiated NK cells de-differentiated because of stimulation of 

the microenvironment. 

We have also analyzed the percentage of CD56bright CD57+ NK cells, showing that 

mature CD56bright NK cells were very low in this specific subset: CD56bright CD57+ NK 

cells were about 20% in ptPB and 1% in ptPE and 10% in tmPB and 0,5% in tmPE (data 

not shown). 

We have observed a partial activation of Natural Killer cells: a high percentage of NK 

cells display CD69 surface molecule, a marker of NK cell early activation and present 

also on decidual NK cells [243]. We have demonstrated that CD69 is up-regulated on 

the NK cell membrane in pleural effusion samples, predominantly in those derived from 

neoplastic patients (Figure 4C). NK cells positive for this marker display a higher density 

expression of CD69 molecule on their surface if compared with PB samples, especially 

in ptPB/PE, as it is represented in the MFI graph (Figure 4D). 

Thus, in the context of inflammatory and neoplastic pleural effusions, Natural Killer 

cells are mainly immature but partially activated. 

INHIBITORY AND ACTIVATING RECEPTOR EXPRESSION ON NK CELLS FROM PLEURAL 

EFFUSIONS ARE NOT DEREGULATED 

Natural Killer cell activation is the result of a sophisticated detection system based on 

the balance between signals transduced by activating receptors, including natural 

cytotoxic receptors (NKp30, NKp44, NKp46) and NKG2D, and inhibitory receptors such 

as NKG2A. Regarding NKp30 and NKG2D surface receptor we did not observe relevant 

differences between all samples (Figures 5A-B). We have also evaluated the percentage 

of NK cells positive for NKG2A, an inhibitory receptor of NK cells, which seems to be 

higher in PE samples if compared to hPB, iPB, ptPB and tmPB (Figure 5C) but these data 
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are not statistically significant and it is necessary to evaluate more samples. The signals 

from the microenvironment in which Natural Killer cells are located did not affect the 

expression of the membrane proteins analyzed. It will be interesting to examine the 

expression of other NK cell receptors. 

EVALUATION OF CYTOKINE PRODUCTION: VEGF-PRODUCING NK CELLS ARE INCREASED 

IN PLEURAL EFFUSIONS 

We have focused our attention on NK cell spontaneous cytokine production, angiogenic 

potential and cytotoxic function. NK cells can secrete cytokines capable of stimulating, 

guiding and influencing the other immune system cell types responses. In the present 

study, we investigated Natural Killer cell ability to produce some pro-angiogenic 

cytokines, including VEGF, CXCL12/SDF-1, osteopontin, IL-8 and the pro-inflammatory 

molecule IFNγ. Our data suggest that NK cells derived from pleural effusions can 

produce the pro-angiogenic cytokine VEGF: there is a trend for an increase in 

percentage of VEGF+ NK cells in all PE analyzed if compared to NK cells derived from 

autologous peripheral blood and healthy donors peripheral blood. Statistically 

significant was only the difference between hPB and tmPE (Figure 6A). 

We studied the production by NK cells of CXCL12/SDF-1 that in tumors is demonstrated 

to be a pro-tumor molecule and found no significant differences (Figure 6B). These data 

seem to exclude CXCL12/SDF-1 as a determinant factor playing a role in the pro-tumor 

and pro-angiogenic process in the neoplastic pleural effusion disease. Osteopontin+, IL-

8+ and IFNγ+ NK cells percentages do not display any differences between samples 

analyzed (data not shown). 
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PLEURAL EFFUSION FLUIDS FUNCTIONALLY PROMOTE ANGIOGENESIS-ASSOCIATED 

EFFECTS ON ENDOTHELIAL CELLS 

We evaluated the ability of pleural effusions fluid from patients with inflammatory 

disease, primary tumor or tumor metastasis, to induce capillary like structure formation 

in vitro. The assay revealed that all pleural effusion fluid analyzed contains pro-

angiogenic molecules able to promote morphogenic effect on HUVECs, like it is 

represented in Figure 7. In Figure 7A capillary like network structures formed by 

HUVECs can be seen. Parameter analyzed with ImageJ software and Angiogenesis Tool 

(Figure 7B) display that iPE and ptPE angiogenic properties are like those in positive 

controls (CTRL+) and that tmPE have the highest proangiogenic potential, confirming 

the hypothesis that tmPE could be associated with the most pro-angiogenic tumor 

microenvironment. 

NK CELLS FROM TMPE CAN INDUCE CAPILLARY LIKE STRUCTURES FORMATION IN VITRO 

We evaluated the ability of NK cells derived from peripheral blood and pleural effusions 

from patients with inflammatory disease, primary tumor or tumor metastasis, to 

secrete pro-angiogenic molecules that can induce capillary-like structure formation in 

vitro (Figure 8). 

NK cells from patients with inflammatory pathologies or primary tumors, both from 

peripheral blood and from pleural effusions, are not able to induce angiogenesis on 

HUVECs. On the contrary, capillary-like structure formation is significant in the case of 

NK cells isolated from tmPE, demonstrating that a more pro-angiogenic TUMIC can 

induce NK cells with pro-angiogenic properties (Figures 8A-B-C). 
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THE PERCENTAGE OF CYTOTOXIC PERFORIN+ NK CELLS IS STRONGLY DIMINISHED IN 

PLEURAL EFFUSIONS 

Another crucial characteristic in Natural Killer cell biology is represented by their 

spontaneous cytotoxic capacity culminating in the induction of an apoptotic process in 

their cellular targets. A hallmark of NK cell activation, and especially of CD56dim CD16+ 

NK cells, is the degranulation against target cells, that consist in the releasing of lytic 

granules containing perforin and granzymes [162]. Therefore, for these set of 

experiments we have considered the CD56dim CD16+ NK cell subset, known to be the 

most cytotoxic, to better individuate differences between measured samples. 

Analyzing NK cells able to produce perforin and consequently to exert their cytotoxic 

functions we have found a decreased percentage of CD56dim CD16+ perforin+ NK cells 

in all pleural effusions considered (Figure 9A). Interesting, MFI data also suggest that 

CD56dim CD16+ NK cells from all patient samples can produce a lower amount of 

perforin if compared to healthy controls peripheral blood (Figure 9B), suggesting a 

systemic effect on a crucial NK cell function. In both inflammatory and malignant 

pleural effusion, the percentage of CD56dim CD16+ perforin-producing NK cells was 

diminished in as compared to controls. 

NK CELLS FROM PLEURAL EFFUSIONS SHOW LOWER CYTOTOXICITY EX VIVO 

The cytotoxic potential of NK cells, which is the result of the involvement of activating 

and inhibitory receptors expressed on the membrane surface, was examined in a 

twofold manner: considering directly the production of perforin and evaluating the 

exposure, following activation, of the membrane glycoprotein CD107a on the NK cells 

surface. 

We have evaluated the NK cell cytotoxic potential against a classical target, K562 cell 

line. The choice of these targets depends on their characteristic to be easily killed by 
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Natural Killer cells as they lack the MHC class I complex, required to inhibit NK activity. 

The degranulation assay underline the presence of CD107a surface marker, which 

presence on NK cell membrane correlate with granules exocytosis, is strictly associated 

with cytotoxicity. CD107a surface exposure is a marker of degranulation and NK cell 

cytotoxicity [244], as well as CD8+ T cell [245] and CD4+ T cells cytotoxicity [246]. 

We have analyzed the CD56dim CD16+ NK cell subset, characterized by a cytotoxic 

potential. CD56dim CD16+ NK cells response is weak in both peripheral blood and 

malignant pleural effusions from patients, on day zero ex vivo, compared to CD56dim 

CD16+ NK cells from peripheral blood of healthy donors and the same trend occurs also 

evaluating MFI (Figures 10A-B). 

In conclusion, the functional assays conducted in this work showed a diminished 

percentage of CD56dim CD16+ Natural Killer cells expressing CD107a marker, 

measured ex vivo, in all types of pleural effusions and peripheral blood of patients if 

compared with CD56dim CD16+ NK cells from healthy subjects. 

IL-2-TREATEMENT INCREASE CYTOTOXICITY OF PLEURAL EFFUSION-DERIVED NK CELLS 

BUT IT IS PARTIALLY INHIBITED BY TGFΒ AND, MORE STRONGLY, BY AUTOLOGOUS 

PLEURAL FLUID 

As reported in the literature, among the most important cytokines known for their 

ability to activate NK cell functions there are the interleukins IL-2, IL-12 and IL-15. 

Specifically, IL-2 and IL-15 induce proliferation and reinforce cytotoxicity of Natural 

Killer cells, while the IL-12 alone increases the cytolytic activity but has a modest 

proliferative effect [247]. The binding of each of these cytokines to their respective 

receptors activates various intracellular kinase signaling pathways [248, 247, 249]. 

In this study, we wanted to understand whether the 3-day in vitro stimulation with the 

exogenous cytokine IL-2 could make changes in the cytolytic potential of Natural Killer 

cells isolated from pleural effusions, in particular CD56dim CD16+ NK cells subset. 
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We investigated NK cell cytotoxicity on the most cytotoxic NK cell subset, CD56dim 

CD16+, after 3-day in vitro stimulation with IL-2, IL-2+TGFβ and IL-2+autologous PE, to 

evaluate if TGFβ, often present in tumor microenvironment, or other soluble factors 

residing in pleural effusion could cause a loss of function of IL-2 treatment. 

In NK cells from all pleural effusions analyzed, the NK cell effector function increased 

considerably because of the presence of IL-2 in the culture medium (Figures 11A-B-C). 

The observation of this reaction may suggest that the CD56dim CD16+ Natural Killer 

cells in pleural effusions are not fully inhibited: probably within the pleural fluid 

compartment Natural Killer cells do not show a feature completely compromised for 

the dilution of immunosuppressive factors and for the lack of close contact with tumor 

cells or with suppressor cells associated with the tumor. 

Hence, the ability of pleural effusion Natural Killer cells to respond quickly to IL-2 in 

vitro, suggests the possibility to induce or enhance the antitumor effects of NK cells by 

local intra-pleural administration of this cytokine or by a re-infusion of NK cells derived 

from pleural effusions and activated with IL-2 ex vivo [274]. As reported in the 

literature, also in the case of renal cell carcinoma it was found that intra-tumor NK cells 

could lyse target cells only after in vitro stimulation with IL-2 [250]. 

For the better understanding of the behavior of Natural Killer cells in the TUMIC we 

have conditioned NK cells with a typical cytokine often found in the tumor 

microenvironment: TGFβ. We know that in cancer, TGFβ acts as a "Janus-like" cytokine: 

in the early stage of tumor formation, it acts as a tumor suppressor, inhibiting the 

replication of cancer cells and promoting apoptosis. On the contrary, in the later stages 

of tumor progression, TGFβ exercises a pro-tumor role, promoting cell survival, 

epithelial-mesenchymal transition and tissue invasion, as well as acting in the tumor 

microenvironment as an immuno-suppressive and angiogenic agent [251, 252]. After 

stimulation with IL-2, at day 3, the degranulation activity was increased in CD56dim 

CD16+ NK cells from all patient’s samples but the addition of TGFβ at the medium 

culture partially inhibits the IL-2 stimulation (Figures 11A-B-C). 
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The CD56dim CD16+ NK cells cytotoxicity after 3-day culture with IL-2 plus pleural 

effusion supernatants are very like those revealed ex vivo suggesting that the action of 

IL-2 in vivo could be counteracted by soluble factors present in the fluid 

microenvironment. Interestingly, NK cells that respond stronger to IL-2 treatment are 

CD56dim CD16+ NK cells derived from patients with metastatic tumors (Figure 11C). In 

Figure 11D are shown CD56dim CD16+ CD107a+ NK cells from healthy subjects, ex vivo 

and after 3-day treatment with IL-2 or IL-2 plus iPE, ptPE and tmPE. Cytotoxic CD56dim 

CD16+ NK cells percentage remains high (about 40%) also after IL-2 treatment and 

diminishes in presence of TGFβ and, mostly, in the culture conditions with all types of 

pleural effusion supernatants (Figure 11D). These data necessarily lead to think that the 

examined pleural effusion supernatants may contain various soluble factors capable of 

deregulate and then inhibit the cytotoxic potential of Natural Killer cells. 

NK CELLS OF HEALTHY DONORS CONDITIONED WITH PLEURAL EFFUSION SUPERNATANTS 

ACQUIRE PARTIAL DECIDUAL-LIKE FEATURES 

The presence in the pleural effusions of factors that can promote a pro-angiogenic 

phenotype of Natural Killer cells was examined through a polarization of NK cells 

purified from buffy coat of healthy volunteers. We have examined phenotype and 

cytokines/chemokines production by NK cells isolated from buffy coat and conditioned 

for 7 days with IL-15 or IL-15 with 33% of pleural effusion supernatant (IL-15, IL-15+iPE, 

IL-15+ptPE and IL-15+tmPE). 

Regarding the CD56bright CD16- NK cell subset we found that supernatants of both 

malignant pleural effusions can induce an expansion of this population (Figure 12A). 

Also, total CD56bright NK cells and CD16- NK cells display the same behavior trend 

(Figures 12B-C). 

Moreover, we have analyzed the production of pro-angiogenic factors, such as VEGF, 

CXCL12/SDF-1, osteopontin and IL-8. We have demonstrated that there is a trend of 

increase in the VEGF production by NK cells conditioned with both the treatment 
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containing malignant pleural effusion supernatants (Figure 13A). Regarding 

CXCL12/SDF-1+ NK cells, they are present in lower percentage in the condition with IL-

15+ptPE and tmPE if compared to other conditions, reflecting what we have already 

discovered for NK cells ex vivo (Figure 13B). The percentages of osteopontin+ and IL8+ 

NK cells do not display differences between samples analyzed (data not shown) 

Finally, we have evaluated the IFNγ pro-inflammatory and anti-tumor cytokine 

production after 7-day treatment: interestingly, we found that all pleural effusion 

supernatants used for cell polarization could drastically diminished the percentage of 

IFNγ-producing NK cells, suggesting a potent inhibitory effect on this important NK cell 

function exerted by soluble factors inside pleural effusions (Figure 13C). 
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DISCUSSION AND CONCLUSIONS 

Natural Killer cells are an important component of innate immune responses displaying 

the ability to destroy neoplastic cells or virus-infected cells and, on the other hand, to 

tolerate self, healthy cells. Natural Killer cell responses are not only restricted to 

cytotoxic effector mechanisms, but this class of lymphocytes also plays a crucial role in 

the production of immunoregulatory cytokines and chemokines: these soluble factors 

affect recruitment and function of other hematopoietic cells, reinforcing the role of NK 

cells as protagonists at the interface between innate and adaptive immunity [253]. 

However, the concept of "immune surveillance” exerted by the immune system could 

be subverted in the context of the tumor microenvironment [3]. The 

immunosuppressive TUMIC is involved in tumor evasion from NK cell-mediated killing 

through several cellular and metabolic factors. Immune and stromal cells, as well as the 

hypoxic stress inside the tumor microenvironment, are known to be negative 

regulators of NK cell cytotoxicity [254]. Tumor cells themselves develop several 

strategies to evade NK cell-mediated killing. In this regard, hypoxic stress through its 

ability to induce tumor resistance and to regulate the differentiation and function of 

immune-suppressive cells plays a determinant role in shaping the NK cell phenotype 

and function [255]. 

Within the tumor tissue, macrophages and other myeloid cells constitute a major 

component of the immune cell infiltrate [256]. Macrophages can recognize and kill 

cancer cells through the secretion of various cytokines and factors (M1 phenotype), but 

also, after phenotypic and functional modification by the tumor, can act in pro-

angiogenic and pro-tumor manner (M2/TAM phenotype). Thus, macrophages isolated 

from malignant pleural effusions, as well as TAMs, exhibit weak cytotoxic activity 

against tumor cells, increase their proliferative activity and may protect tumor cells 

from apoptosis [257]. It has also been shown that the percentage of CD163+ TAMs 
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(CD163 is a marker for the M2 macrophage phenotype [258]) in malignant PE was 

higher than that found in non-malignant pleural effusion. CD163+ TAMs in malignant 

PE patients is a prognostic factor for progression-free survival and M2-related cytokines 

were more expressed in malignant PE-derived CD163+ TAMs than in malignant PE-

derived CD163- macrophages [259]. In addition, it was demonstrated that CD163+ 

CD14+ macrophages could be used as an immune diagnostic marker for malignant PE 

[260]. 

It was also found that, regarding soluble factors present in malignant PE, the amount 

of TGFβ is higher than in PB. TGFβ is mainly produced by TAMs in malignant PE, plays 

an important role in impaired T cell cytotoxicity and in vitro treatment with anti-TGFβ 

antibody restored the impaired T cell cytotoxic activity in malignant PE [240]. 

In the solid tumor microenvironment, macrophage-derived TGFβ is able to exert an 

immunosuppressive action on NK cells, combined with expression of adenosine A2A 

receptor, that can suppress NK cell responses [261]. 

TGFβ is also involved in NK cell inhibition mediated by Treg cells [262] and dendritic 

cells [263]. Furthermore, NK cell activity was found to be inversely correlated with 

MDSC expansion. In addition, MDSC-mediated inhibition of NK cells was found to be 

cell contact dependent via membrane-bound transforming growth factor-β (TGFβ) on 

MDSC or inhibition of perforin and signal transducer and activator of transcription 5 

(Stat5) activity in NK cells [264, 265]. 

In this work, our specific interest is focused on Natural Killer cells, characterized by CD3- 

CD56+ expression and further divided depending on the density of CD56 surface 

molecule expression and based on the presence or absence of activating receptor CD16 

[142]. 

Lung tissues are moderately rich in Natural Killer cells [223, 226] and it was found that 

the predominant subset in normal parenchyma is the CD56dim CD16+ phenotype [216, 

226, 266]. NK cells infiltrating non-small cell lung cancer (NSCLC), if compared to 

autologous Natural Killer cells isolated from peripheral blood and peri-tumor lung 

tissues, are predominantly CD56bright CD16- [216, 226]. A similar phenotype has been 
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observed at the level of Natural Killer cells infiltrating breast cancer [267] and in the 

case of colorectal cancer [268]. In the present work, it was demonstrated that a similar 

pattern, characterized by abundance of poorly cytotoxic Natural Killer cells, was finally 

observed at the level of different types of pleural effusions. 

We have analyzed Natural Killer cells isolated from patients with pleural effusions 

caused by inflammatory diseases or primary or metastatic tumors of different origins. 

It has been shown that NK cells isolated from all types of pleural effusions analyzed are 

characterized by an expansion of CD56bright CD16- NK cell subset, compared to NK 

cells isolated from autologous peripheral blood or peripheral blood of healthy donors, 

in which CD56dim CD16+ cytotoxic NK cells prevail. 

Our investigation analyzing NK cell functions would indicate that cytotoxic NK cells can 

be strongly conditioned by tumor microenvironment of patients with pleural effusion 

and become cells involved in the genesis of new tumor vasculature. Taking into 

consideration the pro-angiogenic properties of Natural Killer cells it is important to 

clarify that at the level of developing decidua, in the first trimester of pregnancy, 

Natural Killer cells are converted from "killers" to "builders" [269]. Specifically, the 

CD56superbright CD16- Natural Killer cell subset forms the human immune element 

that predominates in the first trimester of pregnancy [270]. Once the embryo is 

anchored at the level of the uterine mucosa, a crucial event for the correct formation 

of fetus-mother interface is the ability of the embryo to adopt an invasive phenotype 

to induce a vascular remodeling, two crucial steps for the growth of the placenta [271, 

272]. dNK cells display an important regulatory role in the placenta development 

processes during pregnancy: purified dNK cells can produce angiogenic factors such as 

VEGF, PlGF and IL-8 [225]. 

The present work demonstrates that PE-NK cells display an increased expression of 

CD49a decidual NK cell surface marker, were poorly mature (low expression of CD57) 

and yet activated (high expression CD69). NK cells from PE display a higher amount of 

intracellular VEGF if compared to healthy and autologous PB-NK cells; this difference is 

accentuated in tmPE, in which NK cells are predominantly VEGF+, thus pro-angiogenic 
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NK cells. These data, derived from intracellular cytokine staining, are confirmed by an 

in vitro vessel formation assay (Figure 8) that reveals an important ability of tmPE-NK 

cells to induce capillary like structures on HUVECs. 

The results obtained by performing cytotoxicity assays ex vivo and the phenotypic 

analysis of the marker CD69 lead us to hypothesize that the concept of Natural Killer 

cell activation that probably not only includes the establishment of a mechanism of 

cytotoxicity because of the interaction with the appropriate target, but can also be the 

response to different nature stimuli produced by other TUMIC resident cells. These 

phenomena could justify the partial activation and the poor cytotoxicity of analyzed NK 

cells isolated from pleural effusion samples. We can consequently assume that, for the 

full activation of NK cells, more activatory stimuli are needed. 

Unexpected data obtained in this study is the concept that Natural Killer cells isolated 

from inflammatory pleural effusion exhibit features very like those obtained from the 

two type of malignant pleural effusions analyzed: it may be interesting to examine in 

depth, in future experiments, the role of Natural Killer cells in this kind of environment, 

to establish if they differ in some characteristics to those found when in a TUMIC. 

NK cells Isolated from buffy coats from healthy donors, after 7-day culture with IL-15 + 

PE, appear to increase CD56bright CD16- subsets and VEGF production. Moreover, PE 

supernatants can induce a decreased production of IFNγ. It is known that the IFNγ 

produced by Natural Killer cells can enhance the microbicidal activity of macrophages 

and promote the differentiation of lymphocytes into Th1-subtype to ensure an 

effective adaptive response against tumors [273]. In a recent study the levels of 

cytokines, chemokines and angiogenic proteins from human malignant pleural 

effusions were analyzed demonstrating a presence of an up-regulation of pro-

angiogenic proteins in malignant pleural effusions analyzed in comparison of those not 

malignant [239]. If this trend will be validated for our clinical cases, it would confirm 

the effectiveness of using an anti-angiogenic therapy in the treatment of malignant 

pleural effusions. 
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These data reinforce the idea to use the immune system as a weapon to fight tumors. 

If in the tumor microenvironment a change in normal immune protective functions 

occurs, it becomes indispensable to develop drugs that, coupled to the conventional 

chemotherapy/radiotherapy, could re-switch the anti-tumor cytotoxic function of NK 

cell. On the other hand, a good target for cancer immune therapy must be necessarily 

the inhibition of tumor angiogenic process to limit the formation of blood vessels that 

contribute to tumor progression. 

As reported by Carrega P. and colleagues, the fact that different human cancers show 

a lymphocytic infiltrate enriched in non-cytotoxic CD56bright NK cells may represent 

immunoediting process orchestrated by tumor that leads to a defective immune 

surveillance [216]. Therefore, immuno-therapies based on Natural Killer cells could be 

discovered looking at factors that induce CD56bright NK cells to differentiate, in vivo, 

into CD56dim NK cells, or factors that increase the cytotoxic NK cell chemo attraction 

to the tumor. 

Vacca et al. demonstrated that, upon culture in IL-2, PE-NK cells acquired a potent 

cytolytic activity against both allogeneic and autologous tumor cells and thus, they are 

not functionally impaired. They conclude that a short-term IL-2 activation may offer 

important clues for the development of novel approaches in tumor immunotherapy 

[274]. In the present work, we have confirmed that IL-2 can restore cytotoxicity of PE-

NK cells, but if these cells are cultured in a medium containing IL-2 along with TGFβ or 

autologous PE, this benefic action of IL-2 diminished significantly. This phenomenon 

suggests that in PE there are soluble factors present able to contrast the action of IL-2 

and to maintain NK cells in a non-cytotoxic condition and in a pro-tumor and anti-

inflammatory state. Therefore, it will be of great interest to characterize the soluble 

factors present in tumor pleural fluids and to estimate the amount of TGFβ. To evaluate 

the role of TGFβ in the counteracting the action of IL-2 treatment or in the process of 

NK cells pro-tumor polarization it will be appropriate to neutralize it with anti-TGFβ 

antibodies. A similar strategy might help, in future, to develop a therapy able to make 

NK cells permanently cytotoxic despite the TUMIC stimuli. 
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Furthermore, recent reports have shown that, in some situations, activated NK cells 

can express programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte 

associated antigen 4 (CTLA-4), two immunosuppressive surface molecules, which are 

the target of currently investigated cancer immunotherapeutic drugs (Ipilimumab 

against CTLA-4 and Nivolumab and Pembrolizumab against PD-1) that restore T cell 

activation [275, 276]. These data may suggest that an immunotherapeutic strategy 

using this type of molecules could be designed also for modulation of anti-tumor 

functionality of Natural Killer cells in the context of tumor pleural effusions. In 

conclusion, we think that a better understanding of Natural Killer cell behavior could 

be an important checkpoint for innovative immunotherapeutic approaches for primary 

or metastatic tumors presenting pleural effusion-associated condition. 
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Table 1. 

Characteristics of all healthy controls and patients with pleural effusion analyzed 

(n=77). Healthy Controls (h): n=14 (M: n=8; F: n=6); age: mean±SEM=58,1±3,4. 

Inflammatory Pleural Effusions (iPE): n=18 (M: n=16; F: n=2); age: mean±SEM=72,2±2,2. 

Malignant Pleural Effusions from Primary Tumors (ptPE): n=18 (M: n=9; F: n=9); age: 

mean±SEM=72,8±2,5. Malignant Pleural Effusions from Tumor Metastasis (tmPE): n=27 

(M: n=11; F: n=16); age: mean±SEM=68,7±2,4. 

 

Figure 1. 

Representative dot plots that underlines CD56bright CD16- NK cells population, ex vivo, 

in peripheral blood samples of healthy individuals (hPB) (A), peripheral blood and 

pleural effusion from patients with inflammatory disease (iPB and iPE) (B), peripheral 

blood and pleural effusion from patients with primary tumor (ptPB and ptPE) (C) and 

peripheral blood and pleural effusion from patients with tumor metastasis (tmPB and 

tmPE) (D). 

 

Figure 2. 

Comparative analysis of the percentage of NK cells (within total lymphocytes) found, 

ex vivo, in peripheral blood samples of healthy individuals (hPB), peripheral blood and 

pleural effusion from patients with inflammatory disease (iPB and iPE), peripheral 

blood and pleural effusion from patients with primary tumor (ptPB and ptPE) and 

peripheral blood and pleural effusion from patients with tumor metastasis (tmPB and 

tmPE) (A). Percentage of CD56bright CD16- NK cells (B). Percentage of CD56bright and 

CD16- NK cells separately (C-D). The data are represented as mean±SEM of 64 samples 
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(hPB: n=13; iPB/PE: n=16; ptPB/PE: n=15; tmPB/PE: n=20). * p <.05, ** p <.01, ****p < 

.0001. 

 

Figure 3. 

Comparative analysis of the percentage, evaluated ex vivo, of NK cells CD9+ (A) and 

relative MFI (B) and CD49a+ (C) and relative MFI (D) found in peripheral blood samples 

of healthy individuals (hPB), peripheral blood and pleural effusion from patients with 

inflammatory disease (iPB and iPE), peripheral blood and pleural effusion from patients 

with primary tumor (ptPB and ptPE) and peripheral blood and pleural effusion from 

patients with tumor metastasis (tmPB and tmPE). Data are shown as mean±SEM of 39 

samples (hPB: n=7; iPB/PE: n=9; ptPB/PE: n=11; tmPB/PE: n=12). * p <.05, ** p <.01. 

 

Figure 4. 

Ex vivo comparative analysis of the percentage of NK cells CD57+ (A) and relative MFI 

(B) and CD69a (C) and relative MFI (D) found in peripheral blood samples of healthy 

individuals (hPB), peripheral blood and pleural effusion from patients with 

inflammatory disease (iPB and iPE), peripheral blood and pleural effusion from patients 

with primary tumor (ptPB and ptPE) and peripheral blood and pleural effusion from 

patients with tumor metastasis (tmPB and tmPE). Data are shown as mean±SEM of 37 

samples (hPB: n=7; iPB/PE: n=9; ptPB/PE: n=11; tmPB/PE: n=10). * p <.05, ** p <.01. 

 

Figure 5. 

Comparative ex vivo analysis of the percentage of NK cells, displaying NKp30 (A) and 

NKG2D (B) activating receptor and NKG2A inhibitory receptor (C) found in peripheral 

blood samples of healthy individuals (hPB), peripheral blood and pleural effusion from 

patients with inflammatory disease (iPB and iPE), peripheral blood and pleural effusion 

from patients with primary tumor (ptPB and ptPE) and peripheral blood and pleural 

effusion from patients with tumor metastasis (tmPB and tmPE). Data are shown as 

mean±SEM of 18 samples (hPB: n=4; iPB/PE: n=4; ptPB/PE: n=5; tmPB/PE: n=5). 
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Figure 6. 

Spontaneous VEGF and CXCL12/SDF-1 ex vivo production was evaluated after 1h-

incubation with monensin (2mM, BD). Comparative analysis of the percentage of NK 

cells producing VEGF (A) and CXCL12/SDF-1 (B) found in peripheral blood samples of 

healthy individuals (hPB), peripheral blood and pleural effusion from patients with 

inflammatory disease (iPB and iPE), peripheral blood and pleural effusion from patients 

with primary tumor (ptPB and ptPE) and peripheral blood and pleural effusion from 

patients with tumor metastasis (tmPB and tmPE). Data are shown as mean±SEM of 34 

samples (hPB: n=6; iPB/PE: n=8; ptPB/PE: n=10; tmPB/PE: n=10). ** p <.01. 

 

Figure 7. 

Analysis of the capacity of pleural effusion fluid from patients with inflammatory 

disease (iPE), primary tumor (ptPE) and tumor metastasis (tmPE) to induce endothelial 

cell capillary-like morphogenesis on HUVECs, after 6 hours of incubation on matrigel. 

Negative and positive controls (CTRL- and CTRL+) were obtained using a serum-free 

medium and a medium containing 10% of FBS, respectively (A). Total master segments 

length (sum of the length of the detected master segments in the analyzed area) (B) 

and Nb meshes (number of meshes in the analyzed area) (C) are evaluated with ImageJ 

software and Angiogenesis Analyzer Tool. 

 

Figure 8. 

Analysis of the capacity of NK cell supernatant to induce endothelial cell capillary-like 

morphogenesis on HUVECs, after 6 hours of incubation on Matrigel. Supernatants are 

obtained from NK cells isolated from peripheral blood and pleural effusion from 

patients with inflammatory disease (iPB and iPE), peripheral blood and pleural effusion 

from patients with primary tumor (ptPB and ptPE) and peripheral blood and pleural 

effusion from patients with tumor metastasis (tmPB and tmPE), after 6 hours of 

incubation in a serum-free RPMI medium. Negative and positive controls (CTRL- and 
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CTRL+) were obtained using a serum-free medium and a medium containing 10% of 

FBS, respectively (A). Total master segments length (sum of the length of the detected 

master segments in the analyzed area) (B) and Nb meshes (number of meshes in the 

analyzed area) (C) are evaluated with ImageJ software and Angiogenesis Analyzer Tool. 

 

Figure 9. 

Spontaneous perforin ex vivo production was evaluated after 1h-incubation with 

monensin (2mM, BD). Comparative analysis of the percentage of CD56dim CD16+ NK 

cells producing Perforin (A) and relative MFI (B) found in peripheral blood samples of 

healthy individuals (hPB), peripheral blood and pleural effusion from patients with 

inflammatory disease (iPB and iPE), peripheral blood and pleural effusion from patients 

with primary tumor (ptPB and ptPE) and peripheral blood and pleural effusion from 

patients with tumor metastasis (tmPB and tmPE). Data are shown as mean±SEM of 34 

samples (hPB: n=6; iPB/PE: n=8; ptPB/PE: n=10; tmPB/PE: n=10). * p < .05, ** p <.01. 

 

Figure 10. 

Ex vivo analysis of CD56dim CD16+ CD107a+ NK cells after 4h in vitro stimulation with 

the human erythroleukemia K562 tumor cell line target. Comparative analysis of the 

percentage of CD56dim CD16+ cytotoxic NK cells that express CD107a surface marker 

(A) and relative MFI (B) found in peripheral blood samples of healthy individuals (hPB), 

peripheral blood and pleural effusion from patients with inflammatory disease (iPB and 

iPE), peripheral blood and pleural effusion from patients with primary tumor (ptPB and 

ptPE) and peripheral blood and pleural effusion from patients with tumor metastasis 

(tmPB and tmPE). Data are shown as mean±SEM of 38 samples (hPB: n=6; iPB/PE: n=10; 

ptPB/PE: n=11; tmPB/PE: n=11). * p <.05, ** p <.01, ***p < .001. 

 

Figure 11. 

Analysis of CD56dim CD16+ CD107a+ NK cells after 4h in vitro stimulation with the 

human erythroleukemia K562 tumor cell line target, ex vivo and after 3-day in vitro 
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treatment with IL-2 (100 U/ml), IL-2+TGFβ (10 ng/ml) and IL-2+autologous PE (33% of 

culture media). CD56dim CD16+ CD107a+ NK cells from A: patients with inflammatory 

diseases; B: patients with primary tumors; C: patients with tumor metastasis. D: 

CD56dim CD16+ CD107a+ NK cells from healthy donors, ex vivo and after 3-day in vitro 

treatment with IL-2 (100 U/ml), IL-2+TGFβ (10 ng/ml) and IL-2+iPE, IL-2+ptPE and IL-

2+tmPE (PE: 33% of culture media). Data are shown as mean±SEM of 38 samples (hPB: 

n=6; iPB/PE: n=10; ptPB/PE: n=11; tmPB/PE: n=11). * p <.05, ** p <.01, ***p < .001. 

 

Figure 12. 

Comparative analysis of the percentage of CD56bright CD16- NK cells (A) on total NK 

cells purified from 13 buffy coats of healthy donors and treated for 7 days with IL-15 

(10 ng/ml), IL-15 with pleural effusion from patients with inflammatory disease (IL-

15+iPE), IL-15 with pleural effusion from patients with primary tumor (IL-15+ptPE) and 

IL-15 with pleural effusion from patients with tumor metastasis (IL-15+tmPE). Each kind 

of PE used is a pool of 10 supernatants derived from 10 different patients and it is 

placed in the culture medium not diluted, constituting the 33% of culture media. 

Percentage of CD56bright and CD16- NK cells separately (C-D). The data are 

represented as mean±SEM of 13 buffy coat samples treated with different pool of PE 

supernatants (IL-15: n=13; IL-15+iPE: n=13; IL-15+ptPE: n=13; IL-15+tmPE: n=13).  
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Figure 13. 

Comparative analysis of MFI of VEGF produced by NK cells (A) from buffy coats of 

healthy donors treated for 7 days with IL-15 (10 ng/ml), IL-15 with pleural effusion from 

patients with inflammatory disease (IL-15+iPE), IL-15 with pleural effusion from 

patients with primary tumor (IL-15+ptPE) and IL-15 with pleural effusion from patients 

with tumor metastasis (IL-15+tmPE) (A). IL-15 was used at the concentration of 10 

ng/ml and the pool of PE supernatants constituted the 33% of the culture media. 

Percentage of CXCL12/SDF-1+ (B) and IFNγ+ (C) NK cells with same treatments. The data 

are represented as mean±SEM of 13 buffy coat samples (IL-15: n=13; IL-15+iPE: n=13; 

IL-15+ptPE: n=13; IL-15+tmPE: n=13). * p < .05, ** p <.01. 
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Table 1.B. 
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Table 1.C. 
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Table 1.D. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Figure 11. 
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Figure 12. 
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Figure 13. 
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