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1. Purpose 
 

Antibiotic resistant bacteria and antibiotic resistance genes cause increasing problems in clinical 

setting and are worldwide considered emerging environmental contaminants, but little is known 

about their fate in the receiving environment and how natural microbial populations may be affected. 

In the environment, antibiotic resistant bacteria (e.g. pathogen) may die but their resistance 

determinants may become part of the environmental gene pool via horizontal gene transfer to 

environmental bacteria. From this localization, resistance genes may move back to human and 

animal bacteria via food and drinking water. Natural environment, especially water, is considered a 

“hot spot” for spread of antibiotics resistance in this scenario Aeromonas spp. were considered the 

model of hydric microorganisms exposed to the actions of residual antibiotic compounds and to the 

aquatic resistome, whereas Faecal Coliforms represented the allochthonous population 

contaminating the aquatic environment. In order to investigate how these two bacterial populations 

could be influenced by potential antibiotic pollution, we want to examine the presence, the 

distribution and the transferability of transposons, integrons, and plasmids in Aeromonas spp. and 

Faecal Coliforms isolated from different aquatic environments submitted to a diverse degree of 

antibiotic contamination. In this work, we want to highlight if there are common genetic 

determinants in the two populations and check the potential transferability of these genetic 

determinants. Conjugation, natural transformation and transduction are the three mechanisms of 

horizontal antibiotic resistance genes transfer among bacteria. Additionally, we want to investigate if 

Aeromonas could also be a good donor in mating experiments with other bacteria and if it is able to 

naturally acquired free DNA from the environment and if Aeromonas DNA could be incorporated by 

natural competent bacteria. Finally we want to study lytic and lysogenic bacteriophages of 

Aeromonas spp., investigate the presence of resistance genes on phage DNA and evaluate if phage 

can transfer these resistance genes by transduction experiments.     
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2. Introduction 

2.1. The worldwide problem of antibiotic resistance. 
 

The increase of antibiotic resistance genes, represent a serious threat to public health in the United 

States and in Europe, where it was estimated that 25,000 people die each year due to multi-resistant 

bacteria infections (Blair et al. 2014). “Combating antibiotic-resistant bacteria is a national security 

priority, so there is hereby established the Task Force for Combating Antibiotic-Resistant Bacteria” 

1. This is an extract of an executive order released from the Office of the Press Secretary of Withe 

House. Although discovery of antibiotics was one of the best goal of scientific world, over the last 

year antibiotic resistance become a global problem. The use and mainly the ab-use of antibiotic 

therapy led to development of multi-resistant bacteria that cause diseases very difficult to treat 

(Gillings 2013; Alekshun et al. 2007). In order to fight against these super-bugs the healthcare 

resources will be consumed with a considerable economic loss. The World health organization 

(WHO), the World Organization for Animal Health (OIE) and the European Commission2, as well 

as countries such as the UK, France and the USA are developing a global action to control the 

diffusion of antibiotic resistant bacteria (figure 1). 
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Figure 1 What should be done according World Health Organization in order to prevent infection 

and avoid spread of antibiotic resistance. Hygiene, vaccination and good clinical practical can 

prevent the need of antibiotics. Correct use of antibiotic avoid develop of super-bugs with several 

antibiotic resistances.   

The main goals of the WHO are to elaborate standard strategies for surveillance of antimicrobials 

resistance favoring the collaboration between global networks involved in control and prevention of 

antibiotic resistance; and to make all people aware about the problem, giving a guideline for the 

correct usage of antibiotics (WHO Antimicrobial resistance: global report on surveillance 2014).  

1 http://www.whitehouse.gov/the-press-office/2014/09/18/executive-order-combating-antibiotic-resistant-bacteria. 

2 COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT AND THE COUNCIL (Action plan against the rising threats from Antimicrobial 

Resistance) 

2.2. Swiss situation and strategies  
 

Within a national program of research (PNR49 2001-2006) two centers for antibiotic resistance 

surveillance have been created, Anresis.ch5 and ARCH-Vet6 which were responsible to collect data 

about resistances and antibiotic consumption in human and veterinary medicine. Antibiotics 

consumption in outpatient in Switzerland are the lowest observed in Europe (Czekalski et al. 2015), 

nevertheless the nosocomial infections are about 70,000 for year and 2000 lead to patients decease. 

The percentage of these nosocomial infections, caused by antibiotic resistance bacteria, still 

unknown. On July 2013 the federal department of the interior (DPI) and the federal department of 

economy, training and research (DEFR), have commissioned the federal office of public health 

(OFSP); the federal office of food safety and veterinary practice (OSAV); the federal office of 

agriculture (OFAG) and the federal office of environment (OFEV) to elaborate a global strategy to 

fight against antibiotic resistance in Switzerland. Since antimicrobial resistance genes are present in 

animal and human pathogens or commensals, as well as in microorganism present in the 

environment, they might be eventually transmissible by mobile genetic elements such as plasmids, 

transposable elements and phages, and hence contribute to the emergence and diffusion of 
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antimicrobial resistance in clinical isolates. For this reason the Swiss strategy addressing the issue 

with a one-health approach that recognize linkages among humans, animals and their environments 

in the context of human 

health. The main 

objectives of this strategy 

are: i) implement the 

knowledge about spread of antibiotic resistance favoring research project; ii) increase prevention 

measures and favor alternative therapies in order to decrease antibiotic consumption; iii) enforce the 

directives about the correct use of antibiotic therapy not only in human but also in veterinary and 

agriculture (Figure 2).  

Figure 2 Swiss strategies to fight against antibiotic resistance. One-health                                

approach: linkages among humans, animals and their environments in the                                     

context of human health.   

2.3. Antibiotics as a pollutants 
 

Pollutant is a substance introduced into the environment that has undesired effects, or adversely 

affects the usefulness of a resource. A pollutant may cause damage by changing the growth rate of 

organisms, or by interfering with human health. Pollutants may be classified by various criteria: (1) 

by the origin: whether they are natural or synthetic. (2) By the effect: on an organ, specie, or on 

entire ecosystem. (3) By the properties: mobility, persistence, toxicity. (4) By the controllability: 

ease or difficult of removal3. Before the 1998 the antibiotics were used without restrictions for 

preventing and treating infection in humans, animals and agriculture, for promoting growth of 

livestock and in aquaculture where they were released directly in the water. Now the European 

Union has limited the antibiotics use in veterinary and in agricultural field in order to prevent rise of 

bacteria resistant to antibiotics also used in clinical settings. A large percentage of antibiotics (20-

80%) is excreted by humans and animals (urine and feces) and released in waste water and sewage 

(Andersson and Hughes 2014). Waste water treatment plants reduce the concentration of antibiotics, 

although low concentration of compound are released in the environment. It was been demonstrated 
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that continuous exposure at sub-lethal dose of antibiotics, concentrations found in the environment 

(Gullberg et al. 2011), induce selection of bacteria that are able to survive in this condition (Martinez 

2009a; Gillings 2013; Andersson and Hughes 2014). This selective pressure act by increasing the 

mutation rate and inducing compensatory mutation in the resistome that is a complex of all genes 

involved in phenotype of resistance. In environmental bacteria that naturally have resistance genes, 

the continuous exposure at low concentration of antibiotic contributes to fixation of preexisting 

mutation (Björkman 2000; Andersson and Hughes 2014). According to the above criteria antibiotics 

can be considered environmental pollutants; they are natural or synthetic compounds release in the 

environment and they cause changing in natural microbiome with an impact on humans’ health. 

3http://www.businessdictionary.com 

2.4. The aquatic environment: role in spread of resistance 
 

 

 

 

 

 

 

 

 

Figure 3. Activities involved in environmental spread of antibiotic resistant bacteria and antibiotic        

resistance genes (Andersson and Hughes 2014). 
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The aquatic environment, considered an ideal medium for bacterial life, is divided into four water 

types: freshwater, seawater, sewage and potable water. Freshwater includes: groundwater that is poor 

of nutrient but rich of minerals derived from rocks; and surface waters (rivers and alpine or eutrophic 

lakes) that range from oligotrophic to hypereutrophic states. Superficial waters are influenced by 

human activities such as treated and untreated sewage, hospital waste water, aquaculture and 

agriculture discharges (figure 3). Through these settings different kind of pollutants, including 

antibiotics, reach water environment where affect the natural bacteria population. So water 

environment is a good ecosystem for spread of antibiotic resistance (Baquero et al. 2008; Taylor et al 

2011; Marti et al 2014).  

2.5. Antibiotic Resistance genes and horizontal gene transfer 
 

Antibiotic resistance is a process that allows bacteria to survive in presence of antibiotics. Bacteria 

have become resistant by different mechanism on the basis of the antibiotics target (Van Hoek 2011; 

Blair et al. 2014).  The main mechanisms of resistance are illustrated in figure 4: permeability 

changes in the bacterial cell wall which restricts antimicrobial access to target sites; active efflux of 

the drug through pumps; 

enzymatic inactivation of 

antibiotic (modification and 

degradation); acquisition of 

pathways different from 

those inhibited by the 

antibiotic and modification 

or overproduction of 

targets.   

Figure 4: Main antibiotics classes and mechanisms of resistance                                             

(McManus MC. 1997). 
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Bacteria can be intrinsically resistant to certain antibiotics; this kind of resistance does exist before 

the discovery of antibiotics and is frequent in environmental opportunistic pathogens that have 

adapted themselves to live in their natural habitat. Human consumption of antibiotics has led to a 

selective pressure that is an evolutionary system by which bacteria develop resistance through 

cumulative mutation or horizontal gene acquisition. Mutations are acquired, as result of adaptation, 

during antibiotic treatment or in contact with sub lethal doses, whereas horizontal gene transfer 

(HGT) requires a contact between donor (such as environmental bacteria) and recipient (Martinez 

2009b). Several genes are involved in antibiotic resistance and many are located on mobile elements 

(plasmid, integrons and transposon) and can be spread by HGT. Resistance gene frequently 

associated with mobile element are: aadA gene confers resistance to streptomycin and spectinomycin 

codifying for an adenyltransferase that inactivates the antibiotics (Hollingshead and Vapnek 1985); 

catB gene confers resistance to chloramphenicol by antibiotic modification catalyzed by an 

acetyltransferase (Shaw 1983); betalactamase proteins that inactivate beta-lactam compounds are 

codify by different genes blaSHV, blaCTX-M, blaTEM, blaOXA (Van Hoek 2011); sulI and dfr genes 

confer resistance to sulfamethoxazole and trimethoprim respectively by modification of antibiotics 

targets. sulI gene codify for a drug resistant dihydropteroate syntetase and dfr genes codify for an 

alternative dihydrofolate reductase (Radstrom et al. 1991; Brolund et al. 2010). Horizontal gene 

transfer is a process by which DNA (from one cell of free DNA) is physically moved into another 

cell, this transfer does not required cells division. DNA can be stably integrated into the recipient cell 

by self-replication, homologous or illegitimate recombination, transposition and site- specific 

recombination (Stokes and Gillings 2011). Three mechanisms are involved in HGT (figure 5): 

conjugation, transformation and transduction (Frost et. al 2005). 
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Figure 5 Horizontal gene transfer mechanisms (Alekshun et al. 2007) 

2.5.1. Conjugation  
 

Bacterial conjugation is a mechanism by which a donor can transfer genetic material to a recipient 

with direct contact between the two cells. The conjugation machinery consist of three main 

components: type IV secretion system (transferosome) that allows the formation of conjugative 

pilus; the relaxome that promotes the DNA incorporation at origin of transfer (oriT) and the T four 

coupling protein that keep together the other entities (Filutowicz et al. 2008). Conjugation is mainly 

associated to plasmids acquisition (Thomas and Nielsen 2005).  

2.5.2. Transformation 
 

Transformation is a stable genetic change due to the acquisition of exogenous necked DNA. This 

mechanism not needs the contact between donor and recipient cells but bacteria have to be in a 

particular physiological state called competence (Thomas and Nielsen 2005). Historically first 

transformation experiment was performed by Frederick Griffith (1877–1941) in the 1928. He 

discovered that heat-killed cells of virulent (S) strains of Pneumococcus were able to transform 
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living non-encapsulate (R) strains when they were injected together in a mouse. The animal 

succumbed to the infection and his blood contained virulent strains (McCarty et al. 1944). There are 

two kinds of transformation: artificial and natural. Artificial transformation consists of a chemical 

method for insert foreign DNA, plasmid or ligation products into a bacterial cell (Froger et al. 2007). 

Bacteria are treated with calcium chloride solution and exposed to heat or electric shock. Calcium 

chloride is positive charged so bind DNA on the cell surface then the shock lead to pore formation 

and DNA incorporation (Dagert et al 1979). Some bacterial species are naturally able to bind and 

internalize foreign DNA under specific condition (natural competence); this mechanism is called 

natural transformation and depends on expression of specific proteins (Lorenz et al. 1994). The first 

step is the DNA uptake and involves type IV pili; the passage of DNA through the cytoplasmic 

membrane is aided by membrane-anchored dsDNA binding protein; finally the exogenous DNA is 

incorporated into recipient by homologous recombination (Johnsborg et al. 2007; Seitz et al. 

2013).The competence machinery is not expressed all the time during bacteria life but there are 

specific environmental signals (figure 6). During starvation condition, for example when a culture 

reaches stationary phase of growth, some bacteria die because of decrease of nutrients and release 

DNA that can be “eated” from live bacteria as a source of nourishment. These process could be also 

regulated by quorum sensing that is a cell to cell communication through small molecules that 

bacteria released into the environment when cell density increase. Bacteria that sensing these 

molecules become competent and start to incorporate free DNA. Another situation that leads to 

competent state is genotoxic stress induced by UV light or antibiotics that cause DNA damage that 

could be repaired using external homologous DNA (Solomon and Grossman 1996; Blokesch 2012; 

Seitz et al. 2013). There are few studies on natural competence as a mechanism for acquisition of 

antibiotic resistance genes but must be an explanation for spread of non-conjugative transposon, 

integrons or gene cassettes among different species. Domingues and colleagues demonstrated that 

Acinetobacter baylyi reference strains BD413 is able to acquire integrons and transposons by natural 

transformation. Donor DNA derived from different species: Pseudomonas aeruginosa, Salmonella 

enterica, Citrobacter freundii, Enterobacter cloacae, Eschrichia coli and Escherichia fergusonii and 

transformation frequency was about 10-9 - 10-7 (Domingues et al. 2012). Another natural competent 
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organism also associated with human and animal diseases is Campylobacter jejuni. It was 

demonstrated that this bacteria can acquired erythromycin resistance by natural transformation with a 

high frequency and the transformants maintain the resistance stably also in absence of antibiotic 

(Kim et al. 2006). Natural 

competence could be 

considered an 

evolutionary process that 

allows bacteria to react 

and adapt themselves to 

different stimuli.       

Figure 6 Most frequent 

hints involved in natural 

competence development.                             

Genotoxic stress like UV-irradiation or antibiotics exposure; quorum sensing that allow 

communication between bacteria, depletion of nutrients and use of different carbon source (e.g. 

chitin substrate. All these signals cause up-regulation of genes involved in DNA up-take.  

2.5.3. Bacteriophages  
 

Viruses are non-living genetic element that completely relies on 

their host for replication. They have a nucleic acid that could be 

either DNA (double or single strand) or RNA and that is 

enclosed by a protein shell called capsid. Viral replication cycle 

are divided in five steps: attachment of the virion to host cell 

membrane by specific receptor; injection of viral DNA into the 

host; synthesis of virus nucleic acid and proteins by host 

machinery; assembly of capsid and maturation of new virus 

particles; release of mature virions (lysis). Bacterial viruses are 

named bacteriophages or phages and are classified according to different factors: type of genetic 
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material, life cycles and morphology. Bacteriophages T2, T4; T3, T7; Mu and lambda are the well 

characterized phages and infect well known bacteria such as Escherichia Coli and Salmonella. These 

phages possess an icosahedral head plus a 

helical tail and have linear dsDNA 

genomes. Tailed phages are the most 

abundant and are divided in three main 

morphological families: Myoviridae, 

Siphoviridae, Podoviridae. There are also 

ssDNA and RNA phages (figure 7).   

Figure 7 Main type of bacteriophages: 

DNA and structure (Madiganet al. 2012 

Brock). 

According to their life cycle bacteriophages are divided in virulent and temperate (figure 8): in 

virulent (or lytic) mode phage kills the host and mature virions are released, whereas temperate 

phage (or lysogen) integrates their DNA (prophage) in the host genome and replicates it in 

synchrony during cell division. In certain condition that can be natural (UV light) or of human origin 

(antibiotics), temperate phages may revert to the lytic cycle (Madigan et al. 2012; Orlova 2012; 

Muniesa et al. 2013).  
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Figure 8. Bacteriophages life cycle. Lytic cycle lead to cells distruption and releasing of virions; in 

the  lysogenic cycle phage DNA is integrated in the host chromosome and replicates with it.  

Bacteriophages were first discovered in 1915 by Frederick William Twort in England and in 1917 by 

Felix D’Herelle in France and before the antibiotics era were used as therapeutics against infection 

(Clokie et al.2011). In the last years the increase of multi-resistant and difficult to treat bacteria leads 

to a re-establishment of phage therapy (Kutter et al. 2015) consisting in the use of bacteriophages as 

a biocontrol agents of bacteria (Gill and Hyman 2010). Good results are obtained in the treatment of 

infection caused by Acinetobacter, Pseudomonas aeruginosa and Staphylococcus aureus in wound, 

burn patient and in lungs of patient with cystic fibrosis. Phages are also used in food safety and 

veterinary to prevent food-borne diseases caused by Escherichia Coli, Campylobacter, Listeria, 

Salmonella and Vibrio cholera (Beheshti et al. 2015; Kutter et al. 2015). Phages distribution rely on 

presence of their hosts so they are the most abundant and persistent entities in the environment. 

Phages were found in soil, sea water, fresh and ground water, waste water and sewage and also in 

human and animal faeces (Baggi et al. 2001; Clokie et al.2011; Muniesa et al. 2013), for this reason 

and because of their role in evolution of bacteria genome, phages could potentially be involved in the 

horizontal gene transfer (Muniesa et al. 2011).  

2.5.4. Transduction 
 

Transduction is a horizontal gene transfer mechanism by which genetic material is transfer from a 

donor to a recipient using bacteriophage as a vehicle. Since donor and recipient don’t need to be in 

the same place or in the same time, bacteriophage could potentially transfer DNA among different 

biomes. There are two types of transduction one is generalized transduction that consists in transfer 

of genetic material from donor, previously infected by phage, to recipient. Donor DNA, derived from 

any part of the genome (generalized), is packaged into phage head and when the phage particles 

infect a host, DNA is injected into cytoplasm. Inside the recipient cell, genetic material is stable 

inherited into the chromosome by homologous recombination. The second type is specialized 

transduction in which few genes can be transferred, only those integrated near the prophage 

attachment site. In the generalized transduction both lytic and lysogenic bacteriophages can transfer 
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DNA, on the contrary only temperate phages can do specialized transduction. The size of DNA 

incorporated in phage is limited by the capsid and can reach 100 kb so any kind of DNA can be 

transferred: chromosomal DNA, plasmid, integrons. These genetic elements can carry antibiotic 

resistance genes so bacteriophages could be involved in spread of resistance in the environment. 

Transduction is a rare event but, the huge number of phage distributed in different environments and 

they capability to survive for a long time, increase the possibility to keep in contact with the hosts 

(Thierauf et al. 2009; Muniesa et al. 2013a; Muniesa et al. 2013b; Balcazar 2014). There are a lot of 

evidences that demonstrates the role of bacteriophages in transfer of resistance genes. Colomer-

Lluch and colleagues have found bla genes in DNA of bacteriophages isolated from urban sewage 

and from rivers; these genes are responsible for the resistance to β-lactamases. (Colomer-Lluch et al. 

2011). Mazaheri et al. have shown that temperate bacteriophages isolated from enterococci can 

transfer resistance gene, conferring tetracycline and gentamycin resistance by transduction (Mazaheri 

et al. 2010). 

2.5.5. Plasmids 
 

Plasmids are circular double-stranded DNA molecules that vary from a few to several kilobases pairs 

in length. They contain the machinery essential for their maintenance and replication into recipient 

cell. Many plasmids contain genes that are useful also to their host (antibiotic resistance genes, heavy 

metal resistance genes, virulence factor). First classification was between F plasmid (fertility) that is 

able to be transmitted and can be integrated in host cell; and R plasmid (resistance) that confers 

resistance to one or more antibiotics and enables the host cell to transfer these resistances to other 

cells (Couturier et al.1988; Meynell et al. 1968). Now the methods for plasmids’ characterization are 

based on their capability to be mobilizable. One method consisted in the incompatibility that is the 

inability of two plasmids to coexist and replicate in the same cell (Couturier et al.1988); second 

method, closely related to the first, is the mobility. Figure 9 shows the relaxase machinery (A) 

involved in the DNA uptake that is composed by relaxase protein, origin of transfer (oriT), T4 

coupling protein (T4CP) and type IV secretion system (T4SS).  Relaxase protein codifying by a 
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group of genes called MOB genes (Smillie et al. 2010) recognizes the oriT and allows the plasmids 

to be transmissible (conjugative or mobilizable) (B). 

 

 

 

 

 

Figure 9 schematic representations of relaxase apparatus All mobilizable                                   

plasmids carried an origin of transfer and a relaxase protein; to be                                           

conjugative they need the T4 coupling protein (T4CP) and type IV secretion                                     

system (T4SS) (Smillie et al. 2010) 

The most important resistance determinants carried by plasmids are: integron, gene cassettes and 

transposons. 

2.5.6.  Integrons and gene cassettes 
 

 

Figure 10 Class 1 integron and 

acquisition of gene cassettes. A. basic 

structure of the class 1 integrons. The 

5’CS region includes the intI1, the attI 

and the promoter region (Pc), while the 

3’CS includes the  qacE∆1 (quaternary 

ammonium resistance) and the sul1 

(sulphonamide resistance) genes. B-C, A 
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class 1 integron after insertion of resistance gene cassettes (R1 and R2) (Zhao and Hu, 2011). 

Integrons are mobile genetic elements composed by two main segments 5’ and 3’ conserved segment 

(CS) separated by a variable region (figure 10). At 5’CS there are the attI site where gene cassettes 

can be integrated by site-specific recombination; the integrase, codified by intI gene that mediates 

the recombination and a promotor Pc; 3’CS region include a partial deleted qac gene (qacE∆1) fused 

to a sul1 gene, that confer resistance to the quaternary ammonium compounds and to sulphonamides 

(Zhao and Hu, 2011). Class I integrons are the most frequently associated to the diffusion of 

resistance genes in humans, animals and natural environment. Gene cassettes consist in a single gene 

followed by a short and specific sequence called 59 base element (59-be) that represents the site of 

recombination. During the gene cassettes incorporation, Integrase catalyzes the recombination 

between attI and 59be. At attI site other gene cassettes can be integrated with no known limit of 

number (Hall and Collis 1998). 

2.5.7. Transposon tn21 and tn21-like 
 

Transposon tn21 family is involved in the world dissemination of antibiotic resistance genes; it could 

be self-replicative or inserted in a plasmid.  

 

 

 

 

 

 

Figure 11. Transposon tn21 structure (Liebert 1999).  
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The basal structure of transposon is composed by class I integron with aadA1 and sulI gene 

cassettes; genes for transposase tnpA and resolvase tnpR and mer genes for resistance to mercury 

(figure 11) (Liebert et al. 1999). Mechanism of replication consists of two steps: the replicative 

integration catalyzed by transposase and the resolution catalyzed by resolvase. In the first steps a 

cleavage of each strand of donor and recipient occurs, so both DNA are single stranded and ligated 

together. DNA replication makes this single stranded region double stranded using existing DNA as 

template. To separate donor and recipient molecules the resolvase executes a site-specific 

recombination at res sites that lead to a new replicon with one copy of the transposon and the 

original donor replicon, which retains its copy (Shapiro et al. 1979).      

2.6. Aeromonas spp. 
 

Aeromonas spp. is gram negative, oxidase-positive and facultative anaerobic bacillus that is 

autochthonous to aquatic environments. It has been isolated from brackish, fresh estuarine, marine, 

chlorinated and unchlorinated waters (Janda and Abbott 2010). Aeromonas spp. is an opportunistic 

pathogen and was also isolated from cold and worm blooded animals including humans (Carnahan 

and Altwegg 1996). Aeromonads belong to natural bacterial population that could be affected by 

antibiotic pollution in the environment.  
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Species Source of the type strain

A.hydrophila Tin of milk with fishy odour
A.salmonicida Salmon
A.sobria Fish
A.media Effluent water from a fish farm
A.veronii Sputum of a drowning victim
A.caviae Epizootic of young guinea pig
A.eucrenophila Freshwater fish
A.schubertii Forehead adscess injury
A.jandaei Faeces of male with diarrhoea
A.trota Human faeces
A.allosacchariphila Diseased eel 
A.encheleia Healthy eel
A.bestiarum Diseased fish
A.popoffii Drinking water production plant
A.simiae Monkey faeces
A.molluscorum Bivalve molluscs (wedge-shells)
A.bivalvium Bivalve molluscs (cockles)
A.tecta Faeces of a child with diarrhoea
A.piscicola Diseased salmon
A.fluvialis River water
A.taiwanensis Burn wound
A.sanarellii Elbow wound
A.diversa Leg wound
A.rivuli Karst water rivulet
A.australiensis Treated effluent used fof irrigation
A.cavernicola Water of a brook cavern
A.dhakensis Faeces of a child with diarrhoea

2.6.1. Taxonomy  
 

The name Aeromonas were proposed in 1936. First classification included only three motile and one 

non-motile species. In the 1981 the modern taxonomy was started and the DNA-DNA hybridization 

technique has allowed the discover of new species. In the nineties molecular method were introduced 

and new Aeromonas taxa were recognized, main molecular technique were: 16S rRNA, AFLP 

(amplified fragment length polymorphism) and sequence analysis of housekeeping genes gyrB, 

rpoD, rpoB, recA, dnaJ, cpn60. Recently a MALDI mass spectrometry analysis was introduced in 

order to discover new Aeromonas species. Table 1 shows the Aeromonas species identified until now 

and their source.  

Table 1. Species included in genus Aeromonas 

(Figuera and Beaz-Hidalgo 2015).     

 

 

 

 

 

 

 

 

 

2.6.2.  Role of Aeromonas spp. in the aquatic environment 
 

Aeromonas spp. could be a good model for monitoring the influence of antibiotic pollution in water 

environment not only for their ability to adapt in different aquatic environment (polluted and 
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unpolluted) but also for the increasing number of resistant strains (Figueira et al. 2011). In the last 

years were isolated, from environment but also from clinical settings, Aeromonas strains resistant to 

one or more antibiotics commonly used in human and animal therapy (Blasco et al. 2008). Most of 

isolates also carried genes of antibiotic resistance located on mobile elements (plasmids) (Alcaide et 

al. 2010; Majumdar et al. 2011; Girlich et al. 2011; Kadlec et al. 2011; Moura et al. 2012). All these 

features confer to Aeromonas the role of reservoir and/or vector of antibiotic resistance in the aquatic 

environment (Figueira et al. 2011). Multi-drugs resistant Aeromonas spp. could be introduced in 

community and affect human health. Possible sources of contamination are: potable water, food, 

animals, and contact with superficial water (Janda and Abbott 2010). Another health problem is the 

transferability of resistance genes from Aeromonas spp. to different pathogenic bacteria also present 

in the environment such as Enterobacteriaceae (Moura et al. 2007). 

2.6.3. Diseases 
 

Aeromonas spp. it has been considered the etiological agent of fish diseases, two major groups of 

illnesses are recognized according to the species that infect the animals. Aeromonas salmonicida 

caused fish foruncolosis that consists in an acute septicemia with small hemorrhages at the bases of 

fins or in a chronical infection of older fishes. Mesophilic species (Aeromonas hydrophila) cause 

motile aeromonas septicemia (hemorrhagic septicemia). The infections cause fishes die-offs with a 

consistent economic loss (Janda and Abbott 2010). Aeromonas spp. is also associated to human 

diseases. 

Figure 12 Possible sources that allow 

humans to get in contact with Aeromonas. 

Aquatic environment (lakes and rivers but 

also swimming pool) and food are the main 

causes of contamination; also animal contact 

could lead to Aeromonas infection.  
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The first type of infection is gastroenteritis caused mainly by Aeromonas hydrophila, veronii and 

caviae; second kind of infection is wound infections following a penetrating or abrasion injury that 

occurs in superficial water on in soil, usually Aeromonas in not the bacteria primarily isolated from 

wound; Aeromonads are also associated to septicaemia mainly in immunocompromised patient with 

mortality of 25-50%; there was a small cases of respiratory infections caused directly by Aeromonas 

although it is not be considered a respiratory pathogen, these infections were caused by inhalation of 

water during swimming; other infections affect eyes, bone and joint (Parker and Shaw 2011).  

2.7. Fecal coliforms 
 

Fecal coliforms are considered the indicator of fecal contamination of water because they are easily 

to isolate. They are gram-negative bacilli, oxidase-negative, able to multiply in the presence of bile 

salts and to ferment lactose with acid and gas production. This group includes bacteria of fecal origin 

(Escherichia Coli) and genera not derived from faces (Enterobacter, Klebsiella and Citrobacter) 

(Doyle and Erickson 2006; Ballesté et al. 2010). Fecal Coliforms were isolated from aquatic 

environment mainly those that are exposed to human activities (waste water treatment plants or 

hospitals waste waters) and also these strains carried genetic determinants of resistance (plasmids 

and integrons) (Moura et al. 2007). In this scenario fecal coliforms represent not only resistant 

bacteria that reach and pollute water settings, but also bacterial population that could acquire 

resistance genes from environmental microbiota.            

  



24 
  

3. References 
 

1. Alcaide E, Blasco MD and Esteve C. 2010. “Mechanisms of Quinolone Resistance in Aeromonas 

Species Isolated from Humans, Water and Eels.” Research in Microbiology 161 (1): 40–5 

2. Alekshun M.N. and Stuart B.L. 2007. “Molecular Mechanisms of Antibacterial Multidrug 

Resistance.” Cell 128 (6): 1037–50. 

3. Andersson D I and Hughes D. 2014. “Microbiological Effects of Sub-lethal Levels of 

Antibiotics.” Nature Reviews. Microbiology 12 (7): 465–78.  

4. Baggi F., Demarta A. and Peduzzi R. 2001. “Persistence of Viral Pathogenes and 

Bacteriophages during Sewage Treatment: Lack of Correlation with Indicator Bacteria.” 

Res Microbiol 152: 743–751. 

5. Balcazar J.L. 2014. “Bacteriophages as Vehicles for Antibiotic Resistance Genes in the 

Environment.” PLoS Pathogens 10 (7) (July): e1004219.  

6. Ballesté E, Bonjoch X, Belanche L and Blanch AR. 2010. “Molecular Indicators Used in the 

Development of Predictive Models for Microbial Source Tracking.” Applied and Environmental 

Microbiology 76 (6): 1789–1795 

7. Baquero F, Martínez JL and Cantón R. 2008. “Antibiotics and Antibiotic Resistance in Water 

Environments.” Current Opinion in Biotechnology 19 (3) (June): 260–5.  

8. Beheshti M.K., Delfan A.S. and Salmanizadeh S. 2015. “Isolation and Identification of 

Two Novel Escherichia Coli Bacteriophages and Their Application in Wastewater 

Treatment and Coliform’s Phage Therapy.” Jundishapur Journal of Microbiology 8 (3).  

9. Björkman J. 2000. “Effects of Environment on Compensatory Mutations to Ameliorate 

Costs of Antibiotic Resistance.” Science 287 (5457) (February 25): 1479–1482.  

10. Blasco M D, Esteve C and Alcaide E. 2008. “Multiresistant Waterborne Pathogens Isolated from 

Water Reservoirs and Cooling Systems.” Journal of Applied Microbiology 105 (2) (August): 469–

75.  



25 
  

11. Blair J.M.A., Webber M.A., Baylay A.J., Ogbolu D.O. and Piddock L.J.V. 2014. 

“Molecular Mechanisms of Antibiotic Resistance.” Nature Reviews. Microbiology 13 (1): 

42–50.  

12. Blokesch M. 2012. “A Quorum Sensing-Mediated Switch Contributes to Natural Transformation 

of Vibrio Cholerae.” Mobile Genetic Elements 2 (5) (September 1): 224–227.  

13. Brolund A, Martin S, Gunnar K and Malin G. 2010 “Molecular Characterisation of 

Trimethoprim Resistance in Escherichia Coli and Klebsiella Pneumoniae during a Two 

Year Intervention on Trimethoprim Use.” PLoS ONE 5, no. 2: 1–5. 

doi:10.1371/journal.pone.0009233. 

14. Carnahan A.M and Altwegg M. Taxonomy. 1996 In: The genus Aeromonas, Edited by 

Austin B., et al. (John Wiley & Sons Ltd, Chichester). 1-38. 

15. Clokie M.Rj, Millard A.D., Letarov A.V. and Heaphy S. 2011. “Phages in Nature.” Bacteriophage 

1 (February): 31–45. 

16. Colomer-Lluch M., Jofre J., and Muniesa M. 2011. “Antibiotic Resistance Genes in the 

Bacteriophage DNA Fraction of Environmental Samples.” PloS One 6 (3) (January): 

e17549. 

17. Couturier M., Bex F., Bergquist P.L., and Maas W.K. 1988. “Identification and 

Classification of Bacterial Plasmids.” Microbiological Reviews 52 (3) (September): 375–

95.  

18. Czekalski N., Sigdel R., Birtel J, Blake M and Bürgmann H. 2015. “Does Human Activity Impact 

the Natural Antibiotic Resistance Background? Abundance of Antibiotic Resistance Genes in 21 

Swiss Lakes.” Environment International 81: 45–55.  

19. Dagert M. Ehrlich S. (1979). "Prolonged incubation in calcium chloride improves the 

competence of Escherichia coli cells". Gene 6 (1): 23–28. 



26 
  

20. Domingues S., Harms K., Fricke W.F., Johnsen P.J., da Silva G.J. and Nielsen K.M. 2012. 

“Natural Transformation Facilitates Transfer of Transposons, Integrons and Gene 

Cassettes between Bacterial Species.” PLoS Pathogens 8 (8) (January): e1002837.  

21. Doyle MP and Erickson MC. 2006. “Closing the Door on the Fecal Coliform Assay.” Microbe 1 

(4): 162–163. 

22. Figueira V, Vaz-Moreira I, Silva M and Manaia CM. 2011. “Diversity and Antibiotic Resistance 

of Aeromonas Spp. in Drinking and Waste Water Treatment Plants.” Water Research 45 (17) 

(November 1): 5599–611.  

23. Figuera MJ ans Beaz-Hidalgo R. Aeromonas infections in humans. In: Aeromonas, Edited 

by Joerg Graf. (Caister Academic Press). 4: 65-108, 2015.  

24. Filutowicz M., Burgess R., Gamelli R.L, Heinemann J., Kurenbach B., Rakowski S., and 

Shankar R. 2008. “Bacterial Conjugation-Based Antimicrobial Agents.” Plasmid 60 (1) 

(July): 38–44.  

25. Froger A., and Hall J.E. 2007. “Transformation of Plasmid DNA into E. Coli Using the 

Heat Shock Method.” Journal of Visualized Experiments : JoVE (6): 253.  

26. Frost L.S., Leplae R., O Summers A., and Toussaint A. 2005. “Mobile Genetic Elements: 

The Agents of Open Source Evolution.” Nature Reviews. Microbiology 3 (9) (September): 

722–32.  

27. Gill Jason J and Hyman P. 2010. “Phage Choice, Isolation, and Preparation for Phage 

Therapy.” Current Pharmaceutical Biotechnology 11 (1): 2–14. 

doi:10.2174/138920110790725311. 

28. Gillings M.R. 2013. “Evolutionary Consequences of Antibiotic Use for the Resistome, Mobilome 

and Microbial Pangenome.” Frontiers in Microbiology 4 (4): 1-10  

29. Girlich D, Poirel L and Nordmann P. 2011. “Diversity of Clavulanic Acid-Inhibited Extended-

Spectrum Β-Lactamases in Aeromonas Spp. from the Seine River, Paris, France.” Antimicrobial 

Agents and Chemotherapy 55 (3) (March): 1256–61. 



27 
  

30. Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D and Andersson DI. 2011. 

“Selection of Resistant Bacteria at Very Low Antibiotic Concentrations.” PLoS Pathogens 

7 (7): 1–9. 

31. Hall R.M., and Collis C.M. 1998. “Antibiotic Resistance in Gram-Negative Bacteria: The Role of 

Gene Cassettes and Integrons.” Drug Resistance Updates : Reviews and Commentaries in 

Antimicrobial and Anticancer Chemotherapy 1 (2) (January): 109–19.  

32. Hollingshead S and D Vapnek. 1985 “Nucleotide Sequence Analysis of a Gene Encoding 

a Streptomycin/spectinomycin Adenylyltransferase.” Plasmid 13, no. 1: 17–30.  

33. Janda J M and Abbott S L. 2010. “The Genus Aeromonas: Taxonomy, Pathogenicity, and 

Infection.” Clinical Microbiology Reviews 23 (1) (January): 35–73.  

34. Johnsborg O., Eldholm V., and Håvarstein L.S. 2007. “Natural Genetic Transformation: 

Prevalence, Mechanisms and Function.” Research in Microbiology 158 (10) (December): 767–78. 

35. Kadlec K, von Czapiewski E, Kaspar H, Wallmann J, Brenner Michael G, Steinacker U and 

Schwarz S. 2011. “Molecular Basis of Sulfonamide and Trimethoprim Resistance in Fish-

Pathogenic Aeromonas Isolates.” Applied and Environmental Microbiology 77 (20) (October): 

7147–50.  

36. Kim J., Carver D.K. and Kathariou S. 2006. “Natural Transformation-Mediated Transfer 

of Erythromycin Resistance in Campylobacter Coli Strains from Turkeys and Swine 

Natural Transformation-Mediated Transfer of Erythromycin Resistance in Campylobacter 

Coli Strains from Turkeys and Swine.” Applied and Environmental Microbiology 72, no. 

2 (2006): 1316–1321. doi:10.1128/AEM.72.2.1316. 

37. Kutter E.M., Kuhl S.J. and Abedon S.T. 2015. “Re-Establishing a Place for Phage 

Therapy in Western Medicine” 10: 685–688. 

38. Liebert C.R.M.H., and Summers O. 1999. “Transposon Tn21, Flagship of the Floating 

Genome.” Microbiology and Molecular Biology Reviews : MMBR 63 (3) (September): 

507–22.  



28 
  

39. Lorenz M.G., and W. Wackernagel. 1994. “Bacterial Gene Transfer by Natural Genetic 

Transformation in the Environment.” Microbiological Reviews 58 (3) (September): 563–602.  

40. Madigan M., Martinki J., Stahl D., Clark D. 2012. “Viruses and Virology.” In: Biology of 

microorganisms BROCK Thirteen edition, Benjamin cummings publishers: chapter 9 265-282. 

41. Majumdar T, Das B, Bhadra RK, Dam B and Mazumder S. 2011. “Complete Nucleotide Sequence 

of a Quinolone Resistance Gene (qnrS2) Carrying Plasmid of Aeromonas Hydrophila Isolated 

from Fish.” Plasmid 66 (2) (July): 79–84.  

42. Marti E, Variatza E and Balcazar JL. 2014. “The Role of Aquatic Ecosystems as 

Reservoirs of Antibiotic Resistance.” Trends in Microbiology 22 (1) (January): 36–41. 

43. Martinez J.L. 2009a. “Environmental Pollution by Antibiotics and by Antibiotic Resistance 

Determinants.” Environmental Pollution (Barking, Essex : 1987) 157 (11): 2893–902.  

44. Martinez J.L. 2009b. “The Role of Natural Environments in the Evolution of Resistance 

Traits in Pathogenic Bacteria.” Proceedings. Biological Sciences / The Royal Society 276 

(1667) (July 22): 2521–30.  

45. Mazaheri N.F., Barton R.M.D., and Heuzenroeder M.W. 2011. “Bacteriophage-Mediated 

Transduction of Antibiotic Resistance in Enterococci.” Letters in Applied Microbiology 

52 (6) (June): 559–64 

46. Mccarty M. 1944. “Studies on the chemical nature of the substance inducing 

transformation of pneumococcal types” The Journal of Experimental Medicine 79 (6): 

137–58 

47. McManus M.C. Mechanisms of bacterial resistance to antimicrobial agents. Am. J. Health 

Syst. Pharm. 54: 1420–1433 (1997). 

48. Muniesa M., Imamovic L. and Jofre J. 2011. “Bacteriophages and Genetic Mobilization in 

Sewage and Faecally Polluted Environments.” Microbial Biotechnology 4 (6) 

(November): 725–34. doi:10.1111/j.1751-7915.2011.00264.x.  



29 
  

49. Muniesa M., Colomer-Lluch M. and Jofre J. 2013a. “Potential Impact of Environmental 

Bacteriophages in Spreading Antibiotic Resistance Genes.” Future Microbiology: 739–

751.  

50. Muniesa M., Colomer-Lluch M. and Jofre J. 2013b. “Could Bacteriophages Transfer 

Antibiotic Resistance Genes from Environmental Bacteria to Human-Body Associated 

Bacterial Populations?” Mobile Genetic Elements 3 (4) (July 1): e25847.  

51. Meynell E.G, Meynell G., and Datta N. 1968. “Phylogenetic Relationships of Drug-

Resistance Factors and Other Transmissible Bacterial Plasmids.” Bacteriological Reviews 

32 (1) (March): 55–83.  

52. Moura A, Henriques I, Ribeiro R and Correia A. 2007. “Prevalence and Characterization of 

Integrons from Bacteria Isolated from a Slaughterhouse Wastewater Treatment Plant.” The 

Journal of Antimicrobial Chemotherapy 60 (6) (December): 1243–50.  

53. Moura A, Oliveira C, Henriques I, Smalla K and Correia A. 2012. “Broad Diversity of 

Conjugative Plasmids in Integron-Carrying Bacteria from Wastewater Environments.” FEMS 

Microbiology Letters 330 (2) (May): 157–64.  

54. Orlova E.V. (2012). Bacteriophages and Their Structural Organisation, Bacteriophages, 

Dr. Ipek Kurtboke (Ed.), ISBN: 978-953-51-0272-4, InTech, Available from: 

http://www.intechopen.com/books/bacteriophages/bacteriophages-and-their-structural-

organisation- 

55. Parker JL and Shaw JG. 2011. “Aeromonas Spp. Clinical Microbiology and Disease.” The Journal 

of Infection 62 (2) (February): 109–18.  

56. Radstrom P, Swedberg G and Skold O. 1991 “Genetic Analyses of Sulfonamide 

Resistance and Its Dissemination in Gram-Negative Bacteria Illustrate New Aspects of R 

Plasmid Evolution.” Antimicrobial Agents and Chemotherapy 35, no. 9: 1840–1848. 

doi:10.1128/AAC.35.9.1840. 



30 
  

57. Seitz P., and Blokesch M. 2013. “Cues and Regulatory Pathways Involved in Natural Competence 

and Transformation in Pathogenic and Environmental Gram-Negative Bacteria.” FEMS 

Microbiology Reviews 37 (3) (May): 336–63.  

58. Shapiro J. 1979. “Molecular Model for the Transposition and Replication of 

Bacteriophage Mu and Other Transposable Elements.” Proceedings of the National 

Academy of Sciences of the United States of America 76 (4): 1933–1937.  

59. Shaw W V. 1983 “Chloramphenicol Acetyltransferase: Enzymology and Molecular 

Biology.” CRC Critical Reviews in Biochemistry 14, no. 1: 1–46. 

doi:10.3109/10409238309102789. 

60. Smillie C., Garcillán-Barcia M.P., Francia M.V., Rocha E.P.C, and de la Cruz F. 2010. 

“Mobility of Plasmids.” Microbiology and Molecular Biology Reviews : MMBR 74 (3) 

(September): 434–52. 

61. Stokes H.W., and Gillings M.R. 2011. “Gene Flow, Mobile Genetic Elements and the 

Recruitment of Antibiotic Resistance Genes into Gram-Negative Pathogens.” FEMS 

Microbiology Reviews 35 (5) (September): 790–819.  

62. Taylor NGH, Verner-Jeffreys DW and Baker-Austin C. 2011. “Aquatic Systems: Maintaining, 

Mixing and Mobilising Antimicrobial Resistance?” Trends in Ecology and Evolution 26 (6): 278–

284.  

63. Thierauf A., Perez G. and Maloy S. 2009. Generalized transduction. In: Bacteriophages 

methods and protocols, Edited by Martha R.J. Clokie and Andrew M. Kropinski (Humana 

press). 23(1):267-286. 

64. Thomas C.M., and Nielsen K.M. 2005. “Mechanisms Of, and Barriers To, Horizontal 

Gene Transfer between Bacteria.” Nature Reviews. Microbiology 3 (9) (September): 711–

21. 



31 
  

65. Van Hoek, A.H.A.M., Mevius D., Guerra B., Mullany P., Roberts A.P. and Aarts H.J.M. 

2011. “Acquired Antibiotic Resistance Genes: An Overview.” Frontiers in Microbiology 

2 2 (203): 1-27 

66. Zhao W.H., Hu Z.Q. Epidemiology and genetics of VIM-type metallo-b-lactamases in gram-

negative bacilli. Future Microbiology, 6 (3), 317-333, 2011. 

  



32 
  

 

 

 

 

4. First manuscript submitted to the Science to the total environment 
 

 

 

Spread and characterization of genetic determinants involved in antibiotic resistance in 

Aeromonas spp. and Faecal Coliforms isolated from different aquatic environments. 

Alessandro Carnelli#, Federica Mauri#, and Antonella Demarta* 

SUPSI laboratory of applied microbiology via Mirasole, 22A 6500 Bellinzona, Switzerland;  

*Corresponding author Tel: +41 (0)918146076; E-mail: antonella.demarta@supsi.ch 

# These authors contributed equally to the study. 

Keywords 

Aeromonas spp., Faecal Coliforms, integrons, transposons, aquatic environment  



33 
  

Objectives: To characterize and to investigate the presence and the spread of transposons, integrons 

and plasmids involved in the antibiotic resistance of Aeromonas spp. and Faecal Coliforms isolated 

from different aquatic environments 

Methods: Aeromonads and Faecal Coliforms were isolated from different aquatic environment 

(river, hospital waste water, waste water treatment plant and alpine lake), and their resistance 

phenotype and plasmid profile were determined. All strains were screened by Dot blot hybridization 

with specific probes for the presence of integrase, transposase and MOB subfamilies genes. The 

putative plasmid location of these genetic determinants was investigated by Southern blot on plasmid 

extracts. Conjugation experiments were carried out on selected strains.  

Results: We recovered a total of 231 Aeromonas strains and 250 Faecal Coliforms. The majority of 

the strains were resistant to cefoxitin (43%), streptomycin (32%) and sulfamethoxazole (25%). 

Strains carrying plasmids and showing three or more antibiotic resistances were particularly 

abundant in the wastewater treatment plant. The 25% of the plasmids evidenced in Aeromonas 

strains belonged to the MOBP13 and MOBP14 subfamilies. In Faecal Coliforms the majority of 

plasmids belonged to the MOBF12, MOBP12, MOBH11, and MOBH121. Strains carrying the Integrase I 

gene were found in all kind of waters. The majority of intI1-carrying Aeromonas were collected from 

the activated sludge of the wastewater treatment plant (ca. 12% of the strains) whereas intI1-carrying 

Faecal Coliforms from the hospital wastewater (ca. 26%). The aadA1 gene cassette was the most 

frequent resistance gene identified followed by the dfr genes. The tnpA gene was evidenced in the 

14% of the strains. Class 1 integrons, and in a lesser extent Tn21-like transposons, were often 

associated to plasmids which were identified as transmissible by MOB identification. 

Conclusions: Our investigations pointed out that both Aeromonas and Faecal Coliforms populations 

are influenced by the antibiotic contamination of the environment. We confirmed that Aeromonas 

spp. can represent a model for studying the incidence and the diffusion of resistance to antibiotics in 

the aquatic environment, and that they are a reservoir of resistant determinants. 
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4.1. Introduction 
 

Antibiotic resistant bacteria and antibiotic resistance genes are considered as worldwide emerging 

environmental contaminants. They are dispersed mainly in the aquatic environment from hospital 

and community waste water, animal farms, agricultural lands, and waste water treatment plants. 

Their fate in the receiving environment and their effects on natural microbial populations are little 

known and poorly studied. In the environment, antibiotic resistant bacteria (e.g. pathogens) may be 

inactivated but their resistance determinants may become part of the environmental gene pool, may 

spread horizontally, and may move back to human and animal bacteria via food and drinking 

water1,2.  

Aeromonas are oxidase positive, Gram-negative bacilli included in the Gammaproteobacteria that are 

ubiquitous in all aquatic environments (brackish, fresh, estuarine, marine, chlorinated and un-

chlorinated water) worldwide3. Aeromonas are commonly associated to fish diseases but they play 

also a role as opportunistic pathogens in cold and warm- blood animals4. In humans, they can cause 

life-threatening infections5.  The term of Faecal Coliforms is referred to Gram-negative non-

sporulating bacilli, aerobic or facultative anaerobic, oxidase-negative bacteria6. This non taxonomic 

group includes genera of bacteria that originate mainly in human and animal feces. In particular, E. 

coli represents the most specific indicator of faecal contamination of the aquatic environment7.  

The most important genetic elements involved in the spread of resistance gene are class I integrons, 

mobile elements consisting of an integrase gene (IntI) able to integrate gene cassettes by site-specific 

recombination mechanisms (attI)8. The association of integrons with mobile genetic elements such as 

transposons (in particular of the Tn21 subfamily) greatly enhances their diffusion by horizontal gene 

transfer9. 

Transposons belonging to the Tn21 group of the Tn3 family are mobile genetic elements that 

randomly insert into the bacterial genome by the action of the transposase codified by the tnpA 

gene10. The Tn21 transposons group, that can carry integrons as well as other types of resistance 

determinants such as heavy metal resistance operons, are the mobile structures most implicated in the 

global dissemination of antibiotic resistance determinants among bacteria11. 
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Integrons and transposons can be found on the chromosome as well as on plasmids. The 

identification and characterization of a plasmid allow obtaining information on its physiology and 

mode of transmission. The relaxase or MOB is the most informative unit of the plasmid backbone12 

regarding its possible mobilization13; in fact, the relaxase recognizes the origin of transfer (oriT) and 

catalyzes the initial and the final steps in the conjugation process. The MOBs characterization allows 

including in each family plasmids belonging to different incompatibility groups on the basis of their 

relaxase sequence 17. Integrons and transposons can be transferred by conjugation depending on the 

type of plasmid on which they are located 8, 11. 

In this study, bacteria of the genus Aeromonas were considered the model of hydric microorganisms 

exposed to the actions of residual antibiotic compounds and to the aquatic resistome, whereas Faecal 

Coliforms represented the allochthonous population contaminating the aquatic environment. 

In order to investigate how these two bacterial populations could be influenced by potential 

antibiotic pollution, we investigate the presence, the distribution and the transferability of 

transposons, integrons, and plasmids in Aeromonas spp. and Faecal Coliforms isolated from different 

aquatic environments submitted to a diverse degree of antibiotic contamination. 

4.2. Materials and Methods 

4.2.1. Sampling areas and isolation of strains 
 

Water samples were collected in 2011 in five areas located in Ticino (South part of Switzerland) and 

consisted in water of a river before (b-WWTP) and after waste water treatment plant (a-WWTP), 

activated sludge of a waste water treatment plant (WWTP), hospital wastewater (HWW) and water 

from an alpine lake (SW) located at 2000 m.a.s in the Swiss Alps.  

Logarithmic dilutions (from 102ml to 10-2ml) of the water samples were prepared in 0.1% peptone 

water and filtered through 0.45 µm-pore size sterile filter (Millipore) of 47 mm diameter. Filters 

were placed on m-Aeromonas selective agar base (Biolife) supplemented with Ampicillin and on C-

EC Mug agar to isolate Aeromonas spp. and Faecal Coliforms, respectively. Aeromonas spp. 

selective plates were incubated at 30°C for 24h, while Faecal Coliforms C-EC Mug agar plates were 
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incubated at 44°C for 24 hours. Fifty colonies of Aeromonas spp. (yellow colonies) and fifty colonies 

of Faecal Coliforms (blue colonies) from each sample were randomly selected, plated onto blood 

agar (BD BBL) and identified to the species level using MALDI-TOF MS (Matrix Assisted Laser 

Desorption Ionization – Time Of  Flight, Mass Spectrometry)14. 

4.2.2. Antibiotic susceptibility test 
 

All the isolates were tested for antibiotic susceptibility by disk diffusion method according to the 

EUCAST (European Committee on Antimicrobial Susceptibility Testing, 2014) guidelines. The 

antibiotics tested were: cefazolin (30µg), cefuroxime (30µg), ceftriaxone (30µg), cefoxitin (30µg), 

gentamicin (10µg), bactrim (23.75/1.25µg), ciprofloxacin (5µg), meropenem (10µg), polymyxin 

(300unit), chloramphenicol (30µg), nalidixic acid (30µg), amikacin (30µg), ampicillin (10µg), 

tetracycline (30µg), streptomycin (10µg), trimethoprim (5µg), sulfamethoxazole (100µg), aztreonam 

(30µg), tobramycin (10µg), kanamycin (30µg), netilmicin (10µg) (Becton Dickinson AG). 

4.2.3. Dot-blot hybridization 
 

Dot-Blot experiments were performed using the DIG High Prime DNA Labelling and Detection 

Starter Kit I (Roche Applied Science). Integrase, transposase and MOB genes were amplified by 

PCR as previously described 15, 16, 17, purified and labelled with Digoxigenin. Total DNA was 

extracted by Instagene Matrix (BioRad) while plasmids were obtained with the kit Plasmid DNA 

Purification, NucleoBond® PC100 kit (Machery-Nagel). Samples were spotted on a nylon 

membrane, cross-linked at 100°C for 1h and hybridized with the specific probes overnight at the 

optimal temperature of annealing. Immunological detection was performed according to the 

manufacturer instructions.   

4.2.4. Southern blot hybridization 
 

To determine the putative plasmid location of the genetic determinants investigated, plasmid extracts 

were loaded onto a 0.8% agarose gel with 10X gel red and separated by electrophoresis at 100 V for 

2 h. Agarose gel was washed once with sterile MilliQ H2O, put in HCL 0.25M for 30 minutes with 
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soft shaking, and submerged twice for 20 minutes in denaturation solution and twice for 20 minutes 

in neutralization solution, with gentle shaking. The blot transfer was set up as follows: gel was put 

atop three sheets of whatman 3MM paper soaked in SSC 20X buffer. Positively Charged Nylon 

Membrane, was cut to the size of the gel and placed on the DNA-containing surface. Five sheets of 

whatman 3MM paper, a stack of paper towels (4cm) and a 500g weight were added on the top of blot 

assembly. The blot was transferred overnight in transfer buffer (20x SSC). Labelling and detection 

were performed as described above. 

4.2.5. Gene cassettes identification 
 

Gene cassettes identification were made by PCR amplification and sequencing of the Pant-QacE∆1 

region. The PCR mix consisted in 0.75 µL of each primer (Pant F 

GTCGAAACGGATTAAGGCACG; qacED CAAGTCTTTGCCCATGAAGC)15, 12.5 µL Taq PCR 

Master Mix (2.5 U/reaction Taq DNA polymerase; 15 mM MgCl2; 200 µM of each dNTPs. Qiagen), 

1 to 5 µL of samples and water to a final volume of 25 µL. PCR conditions were: 94°C for 3'; 95°C 

for 45'', 60°C for 45'', 72°C for 6' for 31 cycles; 72°C for 7'. 

4.2.6. Conjugation experiments 
 

The choice of bacterial strains to be used in conjugation experiments was made considering the 

presence of plasmids (at least one plasmid for the donors and no plasmids for the recipients) and the 

resistance phenotype. The concentration of antibiotics used for the selection of transconjugants was 

established according to the minimum inhibitory concentration (MIC) reported in the EUCAST 

tables.  

Bacterial strains were grown in 2 mL of Tryptic soy broth (TSB) for 3 hours, and resuspended in 5 

mL of saline solution to obtain a turbidity of 0.5 McFarland. For in solid conjugation, donor and 

recipient were spread on non-selective plates in a 2:1 and 4:1 ratio of donor to recipient and 

incubated for 24 hours at 30°C. After growth on non selective plates (for in solid conjugation), 

colonies were collected in 5 mL of saline solution to reach a turbidity of 3 McFarland. 100 µL of this 

solution were spread on selective, double selective or non-selective LB agar plates and incubated at 
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37°C or 30°C for 24 hours, depending on the recipient strain. For in liquid conjugations the same 

ratio volumes (2:1 and 4:1) were inoculated in 5 mL of LB broth, and incubated for 24 hours at 

30°C. 100 µL of this solution were spread on selective, double selective or non-selective LB agar 

plates and incubated at 37°C or 30°C for 24 hours. Transconjugated bacteria were plated for another 

24 hours at 37°C or 30°C on a double selective LB agar.  

4.3. Results 

4.3.1. Species distribution in the samples 
 

We recovered a total of 231 Aeromonas strains. The species A. hydrophila represented approx. 21% 

of the 46 isolates from the hospital wastewater. A. media counted for the 57% and 46% of the species 

identified among the 49 strains isolated from the river before the waste water treatment plant outlet 

and the 46 recovered from the river after the WWTP outlet, respectively. This species was 

predominant also in the activated sludge of the waste water treatment plant representing the 51% of 

the Aeromonas species (total strains isolated: 41). The principal species collected from the alpine 

lake was A. salmonicida (88% among 49 strains).  

The most representative species belonging to the Faecal Coliforms, for which 50 colonies were 

obtained from each sample, was Escherichia coli. The recovery of Klebsiella pneumoniae and 

Enterobacter cloacae was also significant in the waste water treatment plant (34% and 20% 

respectively). K. pneumoniae represented the 22% of the species isolated from the river after the 

treatment plant. 

4.3.2. Antibiotic susceptibility 
 

The majority of the strains, regardless of the species and the sampling areas, were resistant to 

cefoxitin (43%), streptomycin (32%) and sulfamethoxazole (25%). Among Aeromonas spp. 

resistance to ciprofloxacin was also frequent (15%). As Aeromonas are generally resistant to 

ampicillin, this antibiotic was tested only for Faecal Coliforms, the 32% of which tested resistant (78 

out of 250). Faecal Coliforms showed low resistance levels in the river before and after the waste 



39 
  

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

CXM CRO FOX SXT CIP RL Te S TMP

%
 o

f r
es

is
ta

nt
 s

tr
ai

ns

Antibiotics

b-WWTP

HWW

WWTP

a-WWTP

SW

A 

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

CXM CRO FOX SXT CIP RL Te S TMP

%
 o

f r
es

is
ta

nt
 s

tr
ai

ns

Antibiotics

b-WWTP

HWW

WWTP

a-WWTP

SW

water treatment plant and in the alpine lake (Figure 1 B). The percentage of resistant strains 

increased in hospital waste water and in the activated sludge. In Aeromonas strains the resistance  

percentages in the river were higher than those in the hospital sewage; the level of resistance 

increased in the waste water treatment plant (Figure 1 A). 
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b-WWTP
 HWW
WWTP

a-WWTP
SW

Aeromonas  spp. Fecal Coliforms

81.63% 96.00%

90.24% 84.00%

97.96% 92.00%

80.00%91.30%

82.00%82.61%

b-WWTP
 HWW
WWTP

a-WWTP
SW

Aeromonas  spp Fecal Coliforms
69.39% 22.00%

2.04% 18.00%

60.87% 28.00%
87.80% 40.00%
73.91% 22.00%

Figure 1. (A) Distribution of Aeromonas resistances in the five different sampling points. (B) 

Distribution of Fecal Coliforms resistances in the five different sampling points. b-WWTP river 

before waste water treatment plant; HWW hospital waste water; WWTP activated sludge of waste 

water treatment plant; a-WWTP river after waste water treatment plant; SW superficial water alpine 

lake. CXM cefuroxime, CRO ceftriaxone, FOX cefoxitin, SXT bactrim, CIP ciprofloxacin, NA 

nalidixic acid, RL sulfamethoxazole, Te tetracycline, S streptomycin, TMP trimethoprim. The 

antibiotics shown in figure are the most representative 

Strains carrying plasmids (Table 1) and showing three or more antibiotic resistances (Table 2) were 

particularly abundant in the wastewater treatment plant (88% for Aeromonas spp. and 40% for 

Faecal Coliforms). Despite the high percentage of strains carrying plasmids in the alpine lake, only 

the 2% and the 18% of the Aeromonas spp. and the Faecal Coliforms, respectively, showed a multi-

resistant profile.  

 

 

 

 

Table 1. Percentage of Aeromonas and Fecal Coliforms carrying plasmids.  

 

             

 

 

Table 2. Strains with three or more resistances. 

 

4.3.3. Plasmids, MOB typing and conjugation experiments  
 

More than 80% of Aeromonas and Faecal Coliforms isolates carried plasmids (Table 1).  
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MOBP13 and MOBP14 subfamilies, comprising mobilizable and potentially transferable plasmids, 

were identified in approx. the 32% of the Aeromonas plasmid extracts whereas mobilizable and 

potentially transferable plasmids belonging to the MOBF12, MOBP12, and MOBH11 were highlighted 

in nearly the 69% of the Faecal Coliforms plasmid extracts. 

MOBP13 was observed in the 17% of the Aeromonas isolated from the wastewater treatment plant 

while plasmids of the MOBP14 were present in the 46% of the same isolates. The MOBF12 was 

detected in the 72% of the Faecal Coliforms isolated from the alpine lake, the MOBP12 was identified 

in the 28% of those isolated from the river before the wastewater treatment plant, and the MOBH11 

was distributed in the 8% of the strains of the river after the treatment plant and in of those from the 

hospital sewage This MOB subfamily was present also in the 14% of the Faecal Coliforms isolated 

from the activated sludge. 

Southern blot analysis using MOB probes, revealed the plasmids which were found to harbor tnpA 

and/or IntI1 genes. In 36% (4/11) of the Aeromonas spp. and 75% (12/16) of Faecal Coliforms 

tested, one or more MOB subfamilies probes annealed on the same plasmid of IntI1 or tnpA (Table 

3). 

Conjugations were performed using as donor 33 Aeromonas spp. carrying one or more resistance 

genetic determinants (integrons and/or transposons) located on plasmids or on chromosome. 

Recipients were Aeromonas spp. and Faecal Coliforms without plasmids and resistances, and the 

strain E. coli J53. None of the Aeromonas tested was able to transfer resistance genetic elements 

through conjugation. 

4.3.4. Distribution and putative location of the IntI1 gene, and characterization of the associated 
gene cassettes. 

 

16 Aeromonas strains (7%) tested positive by Dot Blot for the IntI1 specific probe. There was no 

particular distribution pattern of positive strains in the different environments, excepted that the 

isolates from the sampling of the alpine lake were all negative. Class 1 integrons had a plasmid 

location in the 75% (12 out of 16) of the Aeromonas spp. (Table 3). Aeromonas strains showing 
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plasmids carrying integrons belonged to the species A. media (5 strains), A. hydrophila (3 strains), A. 

sobria (2 strains), and A. caviae (2 strains). 

22 (9%) Faecal Coliforms were positive for the presence of an intI1 gene. An elevated frequency of 

positive strains was highlighted in the isolates from the hospital wastewater (26%) and in a lesser 

extent in those from the river before the treatment plant outlet (16%). 15 (68%) of these strains 

carried integrons on plasmids and, with the exception of two Kl. pneumoniae, all belonged to the 

species E. coli.  

The gene cassettes characterization took place on the strains carrying integrons on plasmids (Table 

3). 

The most common gene cassettes within the class 1 integrons found in Aeromonas strains were 

aadA1 (62.5%), catB8 (37.5%), and catB3 (25%); in Faecal Coliforms the most common gene 

cassettes were aadA1 (63.6%), catB2 (36.4%) and dfrA14 (22.7%). The aadA1 gene, codifying for 

the resistance to streptomycin and spectinomycin, was therefore the most frequent resistant gene 

found in class 1 integrons located on plasmids, followed by the catB, group of genes responsible for 

the resistance to chloramphenicol. The dfr group of genes, codifying for the resistance to 

trimethoprim and sulfamethoxazole, was particularly present on plasmids of the Faecal Coliform 

population. The genes highlighted in the integrons conferred the corresponding resistance phenotype 

to the strains, except for those conferring resistance to chloramphenicol (catB genes) in the 

Aeromonas spp. strains. 

4.3.5. Distribution and putative location of the tnpA gene 
 

The tnpA probe hybridized to approximately 16.5% (38/231) of the isolated Aeromonad and to the 

10% (25/250) of the Faecal Coliforms (Table 3).  

This gene had a putative plasmid location in 11 Aeromonas strains (approx. 29% of the tnpA positive 

strains) and in 4 Faecal Coliforms (approx. 16% of the tnpA positive isolates). The plasmid location 

was not observed in any of the Aeromonas spp. or Faecal Coliforms isolated from the hospital waste 

water. In strains isolated from the other sampling sites, plasmid location of the tnpA gene was 
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highlighted in A. media (from the river before and after the waste water treatment plant outlet and 

from the activated sludge), in A. caviae (from activated sludge and from the river after the waste 

water treatment plant outlet) and in A. hydrophila (from the activated sludge). As far as Faecal 

Coliforms are concerned, plasmid location of tnpA was evidenced only in the E. coli isolated from 

the river before and after the waste water treatment plant outlet. 
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Source Species Resistances
IntI1 
gene

Gene cassettes
Integron putative 

location / plasmid's 
MOB gene 

TnpA 
gene

Trasposon putative 
location / plasmid's 

MOB gene

b-WWTP A.media CZ,CXM,FOX,NA,CIP( - + P

b-WWTP A.media
CZ,CXM,CRO,FOX,NA
,CIP(I)

- + P

b-WWTP A.sobria CZ,SXT,NA,S,RL + dfrB1-aadA1b-CatB2 P + C
b-WWTP A.media CZ,NA,S(I),RL + OXA10-aadA1 P + P / P14
b-WWTP A.sobria CZ,NA,S(I),RL + empty P + C

b-WWTP A.media
CZ,FOX,SXT,NA,S(I),T
MP,RL

+ dfr22 P + P

b-WWTP A.media
CZ,FOX,CIP,C,NA,S(I),
RL,NN

+ CatB3- aadA1 P + C

b-WWTP E.coli SXZ,CZ(I),Te,TMP,RL + dfrA14-aadA1-CatB2 P / F12 + P / F12
b-WWTP E.coli SXT,Te,TMP,RL + dfrA14-aadA1-CatB2 P / F12 + P / F12

b-WWTP E.coli
SXT,AM,CZ(I),TMP,R
L

+ dfrA17-aadA5 C -

b-WWTP K.pneumoniae FOX,AM,S,RL + aadA4a-hypotetical protein C + C
b-WWTP E.coli SXT,CZ(I),Te,TMP,RL + dhfrA14-aadA1-catB2 P / F12 + P / F12
b-WWTP E.coli SXT,Te,TMP,RL + dfrA14-aadA1-CatB2 P / F12 + C
b-WWTP E.coli SXT,Te,TMP,RL + dfrA14-aadA1-CatB2 P / F12 + C
b-WWTP K.pneumoniae AM,S(I),RL + aadA2 P -

HWW A.hydrophila CZ,FOX,NA,RL + CatB8-aadA1 C -

HWW A.hydrophila CZ,FOX,NA,S,RL,NN + CatB8-aadA1 P -

HWW A.hydrophila
CZ,CXM,CRO,GM,CIP,
NA,S,RL,ATM,NN,NE
T

+ aacA4cr-Oxa1-CatB3-aar3 P / H121 + C

HWW A.hydrophila CZ,NA,S(I),ATM(I),RL + CatB8-aadA1 C -

HWW E.coli
CZ,CXM,CRO,SXT,CIP
,C,NA,AM,Te,S,TMP,R
L,ATM,NN(I),K

+ aacA4-aadA1-CatB2 P / F12; H121 + C

HWW E.coli
CZ,CXM,CRO,FOX,CI
P,NA,AM,S(I),RL,ATM

+ aacA4-aadA1-CatB2 P / F12; H121 + C

HWW E.coli CZ,SXT,AM,S,TMP,RL + dhfrA1-aadA1 C -

HWW E.coli CZ,SXT,AM,S,TMP,RL + dfrA1-aadA1 P -

HWW E.coli CZ,C,AM,Te,S,RL +
EstX putative 

esterase/hydrolase
P / F12 + C

HWW E.coli
CZ,CXM,FOX,GM,SXT,
CIP,C,NA,AM,Te,S,TM
P,RL,NN,NET

+ dfrA17-aadA5 P + C

HWW E.coli
SXT,C,AM,Te,S,TMP,R
L

+ dfrA12-OrfF C + C

HWW E.coli
CZ,CXM,CRO,AM,CIP
(I),NA(I),S(I),RL,ATM

+ aacA4-aadA1-CatB2 P / F12 -

HWW E.coli CZ,SXT,AM,S,TMP,RL + dhfrA1-aadA1 P / F12; P12 -

WWTP A.caviae CZ,FOX,NA,S(I),RL - C + P

WWTP A.caviae NA,CIP(I),S,RL + CatB8-Transposase P / P13; P14 + C

WWTP A.caviae CZ,FOX - + P
WWTP A.media CZ,NA,S(I),RL(I) - + P / H121

WWTP A.media
CZ,(FOX),SXT,NA,Te(I
),S,TMP,RL

+ drf-aadA1 P -

WWTP A.media CZ,FOX,GM(I),S(I),RL + aadA2 C + C

WWTP A.hydrophila
CZ,(FOX),CIP,NA,SXT
(I)

+ CatB3-aadA1 P -

WWTP A.hydrophila CZ,NA,S - + P

WWTP A.media
CZ,NA,S(I),TMP,RL(I),
ATM(I)

- + P

WWTP E.coli
SXT,AM,CZ(I),S(I),TM
P,RL

+ dhfrA1-aadA1 C -

a-WWTP A.caviae CZ,NA,Te(I) - + P

a-WWTP A.caviae
CZ,FOX,NA,SXT(I),S(I
),RL

+ CatB8-aadA1 P + C

a-WWTP A.media CZ,NA,CIP(I),S(I),RL + CatB8-aadA2 P + C

a-WWTP A.media CZ,FOX,NA,Te(I),RL +
aacA3-Blaoxa21-CatB3-

aadA16
C -

a-WWTP A.caviae CZ,CIP,NA - + P
a-WWTP A.caviae CZ,CIP,NA,S(I) - + P
a-WWTP A.punctata CZ,CIP,NA,S(I) - + P
a-WWTP A.media CZ,NA,S(I) - + P

a-WWTP
K.pneumonia
e

AM,S + empty P -

a-WWTP E.coli CIP,NA,AM,CZ(I),RL - + P / F12

a-WWTP E.coli
CZ,CXM,CRO,SXT,CIP
,NA,AM,Te,S,TMP,RL,
ATM

+ dfrA17-aadA5 P / F12 -

a-WWTP E.coli
CZ.SXT,CIP,C,NA,AM,
TE,TMP,RL

+ dfrB4 C + C

SW E.coli
CZ,CXM,CRO,FOX,A
M,Te,S,RL,ATM

+ aadA1 C + C

Strains carrying plasmids, integrons, transposons and mobility genes
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Table 3 Aeromonas spp. and fecal coliforms strains carrying plasmids, integrons, transposons and 

mobility genes. CZ cefazoline, CXM cefuroxime, CRO ceftriaxone, FOX cefoxitin, SXT bactrim, 

GM gentamicin, CIP ciprofloxacin, PB polymyxin, C chloramphenicol, NA nalidixic acid, AM 

ampicillin, RL sulfamethoxazole, Te tetracyclin, S streptomacyn, TMP trimetroprim, ATM 

aztreonam, NN tobramycin, NET netilmycin. P plasmidic; C chromosomal. 

4.4. Discussion and Conclusions 
 

In the present study, the prevalence and the characterization of genetic resistance determinants, 

namely plasmids, integrons and transposons, were investigated in two bacterial populations: 

Aeromonas species, representing natural environmental bacteria living in particular in aquatic 

environments and Faecal Coliforms, bacteria contaminating these environments from animal and 

human guts.  

The resistance patterns evidenced phenotypically for Faecal Coliforms correlated with the 

presumptive concentrations of antibiotic compounds in water. The number of resistant strains, and in 

particular of those with three or more resistances, was higher in hospital waste water and in activated 

sludge of the waste water treatment plant, the most antibiotic polluted environments that are 

considered hot spots for the spreading of antibiotic resistance genes18, than in the river and the alpine 

lake. The few multi-resistant Faecal Coliforms isolated from the alpine lake could be due to the 

runoff of sewage derived from cattle grazing on its banks. As far as Aeromonas are concerned, the 

role of the waste water treatment plant in increasing resistance to antibiotics commonly used in 

clinical settings19 was evident. In fact, the majority of multi-resistant Aeromonas species was found 

in this sampling and in the river receiving its depurated waters. These results demonstrate the use of 

this bacterium as a model in studying the diffusion of antibiotic resistances among environmental 

bacteria.  

The phenotypic resistance profiles that we observed in our strains was in some case due to 

mechanisms not necessary linked to integrons and/or transposons. Streptomycin resistance was due 

in some strains to the presence of a single gene on the chromosome (data not shown), and resistance 

to ciprofloxacin, frequent in Aeromonas strains, was caused by mutations in the active site of the 
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gyrase A20. Likewise, the high percentage of resistance to cefoxitin (FOX) was due to the 

chromosomally encoded ampC gene both in Aeromonas strains and in Enterobacteriaceae21. 

More than 80% of both Aeromonas and Faecal Coliforms carried plasmids regardless of their origin. 

The high number of Aeromonas strains carrying plasmids, evidenced in the water of the alpine lake, 

can be explained with the prevalence in this sampling of the species Aeromonas salmonicida, which 

typically harbour three small cryptic plasmids22.  

The characterization of the plasmids through MOBs probes evidenced that many of them were 

transmissible either through conjugation or mobilization. The 25% of the plasmids evidenced in 

Aeromonas strains belonged to the MOBP subfamily, in particular MOBP13 and MOBP14, which is 

frequently found in environmental bacteria13. MOBP13 and MOBP14 bring together the incompatibility 

groups IncL/M, and IncQ2 and IncP-6, respectively. IncL/M plasmids are large, broad host range, 

and self-transmissible replicons most frequently found in bacteria of the family Enterobacteriaceae. 

These plasmids are reported to be able to persist in diverse environments even without an antibiotic 

selective pressure. The IncQ2 family consists mostly of small, broad host range, promiscuous 

plasmids that can be mobilized. These plasmids are spread worldwide in many bacterial species 

including Aeromonas sp. where they are associated with quinolone and tetracycline resistance23. 

Finally, IncP-6 plasmids have been classed as broad-host-range due to their ability to replicate in 

both Escherichia coli (where they are designated IncG) and Pseudomonas species24. 

In Faecal Coliforms the majority of plasmids belonged to the MOBF12, MOBP12, MOBH11, and 

MOBH121. The 32% showed MOBF relaxases which are found in clinically relevant plasmids17.  

MOBF12 contains antibiotic resistant and virulence plasmids of the IncF complex, which are largely 

found in Enterobacteriaceae, and have also been identified in A. salmonicida 17.  Plasmids of the 

IncI1 complex, IncK and Inc9 are members of the MOBP12. IncI1 plasmids carrying blaCMY-2 have 

been reported to spread extensively among clinical E. coli25; an IncK plasmid containing blaKPC-2 has 

been characterized in carbapenem-resistant Serratia marcescens isolates26; Inc9 plasmids are found 

in Gram positive bacteria27. The MOBH11 family groups plasmids of the incompatibility group 

IncHI1, self-transmissible plasmids which can confer a multidrug resistance phenotype to their hosts. 



47 
  

They have been detected in pathogenic isolates of Salmonella enterica and Escherichia coli28. 

IncHI2, plasmids are frequently encountered in clinical enterobacterial strains associated with the 

dissemination of relevant antimicrobial resistance genes17, and IncP7, large conjugative plasmids 

found in Pseudomonas which often carry genes encoding enzymes involved in the degradation of 

man-made and natural contaminants found in polluted environments29. Finally, the MOBH121 family 

covers the incompatibility group IncA/C. IncA/C plasmids were first identified among multidrug 

resistant Aeromonas hydrophila and Vibrio spp. over 40 years ago. Todays, these plasmids 

commonly circulate among Gram negative pathogens bringing with them the ability to encode 

resistances to a large number of antibiotics30.  

Although the predominating MOB families in the two bacterial populations were different, they 

group promiscuous plasmids frequently associated to Enterobacteriaceae, Pseudomonads or 

Aeromonads, that are reported to often carry antibiotic resistance and virulence genes.  

Several studies demonstrate that Class 1 integrons play an important role in the dissemination of 

resistance genes, particularly among Gram negative 9, 31. Moreover, their abundance in 

microorganisms can rapidly change in response to environmental pressures so that they can be used 

as indicators for pollutions originating in human activity32. Strains carrying the Integrase I gene were 

found in all kind of waters analysed. The majority of intI1-carrying Aeromonas were collected from 

the activated sludge of the wastewater treatment plant (ca. 12% of the strains) whereas intI1-carrying 

Faecal Coliforms from the hospital wastewater (26%). The mean frequency of 8% of strains carrying 

Class 1 integrons was less elevated in respect to that found in a slaughterhouse wastewater treatment 

plant, where Moura et al.33 reported in Aeromonas spp. and Enterobacteriaceae a percentage of 31%, 

whereas it was more similar to the 12% found by Mokracka et al. 201234 in Enterobacteriaceae 

isolated at all stages of wastewater treatment. No Aeromonas strains and only the 2% of Faecal 

Coliforms isolated from the alpine lake carried an intI1 gene. These results support that the 

distribution of this genetic structure is strongly linked to the selective pressure imposed by the 

contamination of the environment.  
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Integrons are genetic elements that allow efficient capture and expression of exogenous genes, but 

they are not “per se” mobile elements. When combined with transposons and/or transferable 

plasmids, they can play a major role in the spread of resistance to antibiotics among bacteria35. The 

majority of our strains, i.g. 12 out of 16 Aeromonas, and 15 out of 22 Faecal Coliforms contained a 

plasmid-borne intI1 gene. In these strains, the presence and the characterization of gene cassettes 

was carried out. As reported in many studies33,36,37 the aadA1 gene cassette, codifying for the 

resistance to streptomycin and spectinomycin, was the most frequent resistance gene identified in 

these genetic structures followed by the dfr genes, involved in trimethoprim resistance. Henriques et 

al.36 highlighted that these genes confer resistance to older antibiotics, such as early aminoglycosides 

and trimethoprim, and speculated that this is probably the result of a selective pressure due to 

antibiotics different from those now used in clinical settings. Chloramphenicol, a broad-spectrum 

antibiotic compound, is produced by Streptomyces. After years of limited use as therapy due to a 

number of adverse side-effects in humans, there is a renewed interest in its use due to the lack of new 

antibiotic compounds necessary to treat infections with emerging multi-resistant strains 38,39. The 

oldest and still the most frequent mechanism of resistance to chloramphenicol is the enzymatic 

inactivation by different chloramphenicol acetyltransferases (CAT). The type B cat genes, found 

frequently in our strains, are widely distributed among Gram-negative and Gram-positive bacteria40. 

Several of these genes are part of cassettes and are therefore transcribed from a promoter located in 

the intI1 gene. As a rule, the gene in the cassette closer to the promoter is that strongly expressed39. 

However, gene cassettes may be differently expressed depending on the promoter variant. In a 

population of E. coli clinical strains, the weakest variants were prevalent41. In 50% of integrons 

detected in our Aeromonas strains, catB3 or catB8 were the first genes of the cassette, but did not 

confer resistance to chloramphenicol to the strains. This could be due to a weak promoter or to a 

metabolic condition as that reported in an E. coli strain in which, despite the expression of the 

chloramphenicol acetyltransferase gene, decreased levels of acetyl coenzyme A in the presence of 

chloramphenicol caused the bacterium to be sensitive to this antibiotic42. It has been demonstrated 

that there is an inverse correlation between the strength of the promoter and the integration efficiency 
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of exogenous gene cassettes43, 44. A better aptitude to excise cassettes could in theory improve the 

capacity of the integron to adapt to antibiotic pressure and therefore represent a survival advantage41.  

The Tn21 transposons are considered the transposable elements principally responsible for the 

problem of multiple resistances to antibiotics in Gram negative bacteria45. They have often been 

associated with multi drug resistance plasmids both in Aeromonas46 and in E. coli47. These structures 

were evidenced in the 14% of our strains, a frequency far less important than that of more than 60% 

reported in Gram-negative bacteria isolated from soil 48 but higher than found in bacterial 

communities of marine environments49, where the Tn21 tnpA was evidenced once per 103 or 104 

bacteria. Our result is comparable to a previous report45 describing a total of 19% of unselected 

Gram negative clinical isolates carrying part of the tnpA tnpR or intI1 gene. In a more recent study50 

the prevalence of Tn21 in E. coli was settled to be of 22%.  

Similarly to the distribution of Class 1 integrons, for Aeromonas strains the tnpA gene was mostly 

found in isolates from the activated sludge and from the river waters. Even in the Faecal Coliforms 

that we analysed, the distribution of these transposons was homogeneous in the different sampling 

sites. Thus, the diffusion of the Tn21-like transposons in our sampling seemed submitted to the 

influence of the environment and of the normal human activities rather than to that of clinical setting. 

The genetic linkage between Class 1 integrons and mobile genetic elements increases the potential of 

the former to be disseminated. It has to be noted that a Class 1 integron, called In2, which includes 

the aadA1 cassette51, the most frequent cassette that we found in our strains, is associated to the 

transposons Tn21. Moreover, 11 Aeromonas strains and 4 E. coli carried the tnpA gene on plasmids.  

A physical linkage among the different mobile elements investigated in this study was evidenced in 

many strains. Class 1 integrons, and to a lesser extent Tn21-like transposons, were often associated 

to plasmids which were identified as transmissible by MOB identification and that are known to 

circulate extensively among Enterobacteriaceae. Even if integrons and transposons were located in 

our Aeromonas strains on plasmids of unknown incompatibility groups or of different MOBs than 

those evidenced in Faecal Coliforms, the possibility of a lateral exchange of the resistant plasmids 

found cannot be excluded, as some of them have already been isolated from both types of bacteria. 
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Our investigations pointed out that both Aeromonas and Faecal Coliforms populations are influenced 

by the potential antibiotic contamination of the environment, and that they reacted to this pollution 

following different rules. Aeromonas species are ubiquitous in aquatic environments and are a model 

for environmental bacteria. Multi-drug resistance, intI1 and tnpA genes, and transferable plasmids 

that are frequently identified in the environment were mostly found in Aeromonas sp. isolated from 

the wastewater treatment plant and from the river receiving its depurated waters. On the other hand, 

Faecal Coliforms are allochthonous in natural hydric environments, having their normal habitat in 

the gut of animals; the genetic traits involved in antibiotic resistance were evidenced mainly in 

strains isolated from the hospital waste water and from the activated sludge of the treatment plant. 

Our results did not allow highlighting common genetic determinants in the two populations, and we 

were unable to transfer antibiotic resistances through conjugation. However, the genetic elements 

involved in resistance that we investigated have already been evidenced in both Aeromonas and 

Faecal Coliforms. Moreover, we cannot exclude a lateral transfer implicating others microbial 

partners, since the aquatic environment is particular rich in microorganisms whereof approx. 99% of 

them are uncultivable52.  

In conclusion we confirm that Aeromonas spp. represents a reservoir of antimicrobial resistance 

determinants in the aquatic environment, facilitated by numerous plasmids and integrons which help 

the bacterium to acquire genetic resistance elements. The possibility that these traits are transferred 

by transformation or transduction is under study. 
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5.1. Abstract 
 

Aeromonas sp. is a gram negative bacillus that is found ubiquitously in the aquatic environment. 

Because of its large diffusion in a variety of habitats, such as polluted or unpolluted environments, 

chlorinated and potable waters, oligotrophic or rich in nutrients aquatic environments, it is 

considered a good model for monitoring the impact of antibiotics or heavy metal pollutions on 

aquatic microorganisms. As observed for pathogenic bacteria, the number of Aeromonas strains 

resistant to antibiotics is increasing. We have speculated that transformation might be a mechanism 

of primary importance in the horizontal gene transfer of resistant genes that spread among 

Aeromonas and the different populations of bacteria present in the environment.  

In order to test our hypothesis, we performed intra- and interspecies transformation assays using 

Aeromonas strains isolated from different aquatic environments. The intergeneric transformation 

ability was tested using the naturally competent Acinetobacter baylyi BD413.  

Contrary to other published findings, our strains were difficult to transform and showed frequently 

only phenotypic changes of their antibiotic resistance profiles.  

In the light of our results, lateral gene transfer trough transformation do not seems the preferential 

way of spreading of resistance determinants among bacteria belonging to the genus Aeromonas. 
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5.2. Introduction 
 

Aeromonas spp. are Gram negative, oxidase positive and facultative anaerobic bacilli, primarily 

associated to fish diseases (furonculosis) (1) that may also be a human pathogen causing 

gastroenteritis, wound infections, septicaemias and a variety of others infections (2). Aeromonas may 

be isolated from different aquatic environments, polluted or unpolluted, oligotrophic or 

hypereutrophic such as groundwater, superficial and marine waters, waste water treatment plants, 

hospital and household sewages (3, 4). In the last years environmental and human Aeromonas have 

become more resistant to antibiotics used in human and veterinary therapy (5, 6, 7). Many studies 

have highlighted that these bacteria can carry a large variety of antibiotic resistance determinants 

which are located on mobile elements such as plasmids, transposons or insertion sequences as well 

as on the chromosome (8, 9, 10, Carnelli et al. submitted). Aeromonas are thus considered a reservoir 

of resistance genes (11, Carnelli et al. submitted).  

Conjugation, transduction, and transformation are distinct mechanisms that allow the horizontal 

transfer of genetic elements. Conjugation is generally considered to play an important role in 

horizontal gene transfer (12, 13) but it requires the contact between a donor and a recipient organism. 

Bacteria must therefore be close to one another in order to exchange genetic material. Actually, 

conjugation occurs at higher frequencies between members of biofilm communities rather than when 

they are in a planktonic state (14). Most of the plasmids detected in Aeromonas are broad-host-range, 

capable of conjugative transfer or capable of mobilization. The large majority of these replicons 

carry antibiotic and metal resistance genes or virulence factors, and there are evidences that they are 

transferred by conjugation in natural environments (15). Except Carnelli et al. (submitted) in vitro 

conjugation experiments between Aeromonas strains have been mostly carried out in order to 

demonstrate the transferability of conjugative plasmids (16, 17 and 18).  

In nature, antibiotic resistance genes could also spread via transformation, which refers to the ability 

of bacteria to bind and internalize foreign naked DNA, without the need of contact between a donor 

and a recipient. Bacteria that are able to take up exogenous DNA from the environment are in a 

particular physiological state called competence (19). Generally, competence is induced by high cell 
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density and/or nutritional limitation. The capacity for natural transformation appears to occur in 

many prokaryotic species (20). Huddleston et al. (21) have demonstrated that Aeromonas are capable 

of natural transformation even if at a very low frequency (1.95 × 10−3 transformants/recipient cell) 

and under very specific conditions: during starvation, mutants Aeromonas strains were able to 

acquire genes from donors and therefore to survive in stressing conditions (21, 22). 

In a recent study, we examined the distribution and we characterize the genetic determinants 

involved in antibiotic resistance in 250 Aeromonas strains isolated from different aquatic 

environments (Carnelli et al. submitted). Class 1 integrons, transposons of the Tn21-like family, and 

resistant plasmids were frequently identified, mostly in Aeromonas strains isolated from heavily 

polluted waters, but we were not successful in transferring these antibiotic resistance traits through 

conjugation. 

The aims of this work were therefore to evaluate if Aeromonas strains may acquire resistance genes 

through transformation and if they may act as donors of their resistant determinants to a natural 

competent strain, Acinetobacter baylyi BD413 (23), or to other bacteria of the same genus. 

5.3. Materials and Methods 

5.3.1. Bacterial strains 
 

The Aeromonas strains used in this work are listed in Table 1. The strains are part of a collection 

made up during 2011, and it is composed of isolates from water samples collected in five areas 

located in Ticino (South part of Switzerland), namely water of a river before (b-WWTP) and after a 

waste water treatment plant (a-WWTP), activated sludge of a waste water treatment plant (WWTP), 

hospital wastewater (HWW) and water from an alpine lake (SW) located at 2000 m.a.s in the Swiss 

Alps. during a previous study (Carnelli et al., submitted), the isolates were tested for antibiotic 

susceptibility by disk diffusion method according to the EUCAST (European Committee on 

Antimicrobial Susceptibility Testing, 2014) guidelines; when present, plasmids were characterized 

by MOB typing (24), and strains were screened for the presence of intI1 gene, representative of 

Class I integrons, and tnpA gene, representing transposons of the Tn21-like family, by dot blot; and 
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part of the genes cassettes were sequenced. In order to establish the selective conditions to be used in 

transformations, we set the minimal inhibitory concentration (MIC) for the antibiotics of interest for 

our bacteria following a method previously described (5), and using an absorbance micro-plate 

reader (ELx808 Absorbance Reader-BioTek). 

Acinetobacter baylyi BD413 (strain ATCC 33305/ BD413/ ADP1) was kindly provided by Prof. 

Kaare M. Nielsen, University of Tromsǿ (Norway). 

Source Strains Species Resistance phenotype  
Gene 

cassettes 
tn21 Recipients  

Donors    

b-WWTP 7 FT A.sobria 
CZ,SXT,NA,S,S
p,RL 

dfrB1-
aadA1b-

catB2 
+ 

AC, 18 FT-Aer,  20 FT-Aer, 
21 FT-Aer, 33 FT-Aer, 89 
SG-Aer, 177 FDD-Aer 202 
LC-Aer, 206 LC-Aer,  248 
LC-Aer 

b-WWTP 16 FT A.media CZ,NA,S,RL 
blaOXA10-

aadA1 
+ AC, 206 LC-Aer 

b-WWTP 39 FT A.media 
CZ,FOX,SXT,N
A,S(I),TMP ,RL dfr22 + 

AC, 18 FT-Aer,  20 FT-Aer,  
89 SG-Aer, 177 FDD-Aer, 
206 LC-Aer, 248 LC-Aer 

b-WWTP 42 FT A.media 
CZ,FOX,CIP,C,
NA,S,RL,NN 

catB3- 
aadA1 

+ 
AC, 18 FT-Aer,  20 FT-Aer,  
89 SG-Aer, 177 FDD-Aer, 
206 LC-Aer, 248 LC-Aer 

HWW 52 SG A.hydrophila 
CZ,FOX,NA,RL,
S 

catB8-
aadA1 

- AC 

HWW 57 SG A.hydrophila 
CZ,FOX,NA,S,S
p,RL,NN 

catB8-
aadA1 

- 

AC, 18 FT-Aer,  20 FT-Aer, 
21 FT-Aer, 33 FT-Aer, 89 
SG-Aer, 177 FDD-Aer 202 
LC-Aer, 206 LC-Aer,  248 
LC-Aer 

HWW 77 SG A.hydrophila 

CZ,CXM,CRO,G
M,CIP,NA,S,RL,
ATM,NN,NET,
CTX  

aacA4cr-
blaOXA1-
catB3-

aar3(blaS

HV12) 

- 

AC, 18 FT-Aer,  20 FT-Aer, 
75 SG-Aer, 89 SG-Aer, 177 
FDD-Aer, 206 LC-Aer, 248 
LC-Aer 

HWW 96 SG A.hydrophila 
CZ,NA,S,ATM(I
),RL 

catB8-
aadA1 

- AC 

WWTP 
101 
DG 

A.caviae 
CZ,FOX,NA,S,S
p,RL  

- + 
AC, 18 FT-Aer,  20 FT-Aer,  
89 SG-Aer, 177 FDD-Aer, 
248 LC-Aer 

WWTP 
105 
DG 

A.caviae NA,CIP(I),S,RL 
catB8-
aadA1 

+ AC 

WWTP 
129 
DG 

A.media CZ,NA,S,RL(I) - + AC 

WWTP 
130 
DG  

A.media 
CZ,(FOX),SXT,
NA,Te(I),S,TMP
,RL 

drf22-
aadA1 

- 

AC, 18 FT-Aer,  20 FT-Aer, 
21 FT-Aer, 33 FT-Aer, 89 
SG-Aer, 177 FDD-Aer 202 
LC-Aer, 206 LC-Aer,  248 
LC-Aer 
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WWTP 
135 
DG  

A.media 
CZ,FOX,GM(I),
S,RL aadA2 + AC 

WWTP 
137 
DG 

A.hydrophila 
CZ,(FOX),CIP,N
A,SXT(I),S 

catB3-
aadA1 

- AC 

WWTP 
139 
DG 

A.hydrophila CZ,NA,S - + AC 

a-WWTP 
161 
FDD 

A.caviae 
CZ,FOX,NA,SX
T(I),S,RL 

catB8-
aadA1 

+ 
AC, 18 FT-Aer, 21 FT-Aer, 
33 FT-Aer, 202 LC-Aer, 
206 LC-Aer 

a-WWTP 
167 
FDD 

A.media 
CZ,NA,CIP(I),S,
RL 

catB8-
aadA2 

+ AC 

a-WWTP 
171 
FDD 

A.media 
CZ,FOX,NA,Te(
I),RL,S, NET,C 

aacA3-
Blaoxa21-

catB3-
aadA16 

- AC 

a-WWTP 
198 
FDD 

A.media CZ,NA,S - + AC 

Recipients   

Referenc
e strain 

AC 
Acinetobacter 

baylyi  
R - -   

b-
WWTP 

18 FT A. caviae 
CZ,FOX 

- -   

b-
WWTP 

20 FT A. bestiarum 
CZ 

- -   

b-
WWTP 

21 FT A. media 
CZ 

- -   

b-
WWTP 

33 FT A. sobria 
CZ,NA,Te(I),S(I) 

- -   

HWW 75 SG A. hydrophila CZ,Te(I) - -   

HWW 89 SG A. hydrophila CZ - -   
a-
WWTP 

177 
FDD 

A. bestiarum 
CZ 

- -   

SW 202 LC 
A. 

salmonicida CZ 
- -   

SW 206 LC A. media CZ - -   

SW 248 LC 
A. 

eucrenophila CZ 
- -   

 

Table 1. Source, Name, species and antibiotic resistance profiles (phenotype and genotype) of donor 

and recipient strains used in this work. b-WWTP river before waste water treatment plant; HWW 

hospital waste water; WWTP activated sludge of waste water treatment plant; a-WWTP river after 

waste water treatment plant; SW superficial water alpine lake. In bolt  antibiotic used as selection in 

transformation experiments and genetic determinants related to phenotype. CZ cefazoline, CXM 

cefuroxime, CRO ceftriaxone, FOX cefoxitin, SXT bactrim, GM gentamicin, CIP ciprofloxacin, PB 

polymyxin, C chloramphenicol, NA nalidixic acid, AM ampicillin, RL sulfamethoxazole, Te 
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tetracyclin, S streptomacyn, TMP trimetroprim, ATM aztreonam, NN tobramycin, NET netilmycin, 

R rifampicin     

5.3.2. DNA and plasmid extraction  
 

Total DNA was extracted with a standard phenol chloroform method slightly modified. Briefly, three 

bacterial colonies were boiled at 100°C for 5 minutes in 300 µL of distilled water, and centrifuged at 

2500 x g for 3 minutes (Eppendorf centrifuge 5427 R, rotor FA-45-24-11). The supernatant was 

transferred in a tube containing 2 µL of RNase (10 mg/mL) and 4 µL of proteinase K (8.3 mg/mL). 

The lysate was incubated at 50°C for 30 minutes, twice the volume of phenol/chloroform (1:1) was 

added, and the mix was spun at 14000 x g for 15 minutes at 4°C. The supernatant was transferred in 

a clean tube, twice the amount of chloroform was added, and centrifugation was made as in the 

previous step. Finally, the supernatant was transferred in a last clean tube. Plasmid extractions were 

made using a midi-prep protocol (Plasmid DNA Purification, NucleoBond® PC100, Machery-

Nagel) or a mini-prep procedure (Plasmid DNA Purification NucleoBond® PC20, Machery-Nagel), 

according to the manufacturer. The DNA concentration was quantified with a spectrophotometer 

(NanoDrop ND-1000). 

5.3.3. PCR detection of specific antibiotic resistance genes 
 

Table 2 summarizes information about primers, size of the amplicon, and reference or accession 

number of published sequences used to design primers for the amplification of some gene cassettes. 

PCR mix consisted in 0.75 µL of each primer (10 µM), 12.5 µL Taq PCR Master Mix (Qiagen), 1 to 

5 µL of DNA (approx. 10 ng) and water to a final volume of 25 µL. PCR conditions were identical 

for each pair of primers, apart from bla genes, and consisted of an initial step of denaturation (94°C 

for 15') followed by 30 cycles of denaturation (95°C for 30''), annealing (56°C for 30''), and 

extension (72°C for 1'). A final extension at 72°C for 7' terminated the amplification of the target 

genes. For bla genes, the PCR mix contained 5x PCR buffer, 0.2 µM of each dNTPs, 10 µM of each 

primers, 2.5 U/reaction of Taq DNA polymerase, 1 to 5 µL of DNA (approx. 10 ng), and water to a 
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final volume of 50 µL. PCR conditions were as following: 95°C for 15' (denaturation); 95°C for 30'' 

(denaturation), 59°C for 1' (annealing), 72°C for 1' (extension) for 30 cycles and 72°C for 10'. 

Gene 
codified 

antibiotic 
resistance 

Primer sequence bp 
Refesence or 

Accession 
number 

          

 dfr22  trimethoprim 
 for 5'CACCGTGGAAACGGATGAAG 3' 

354 AJ628423.2 
 rev 5'TAACCCGATTGGCACCCATG 3' 

catB3 chloramphenicol 
 for 5'CAATATCAAAGTTGGGCGGTACAG 3' 

398 KR338352 
 rev 5'CAACGATAGCGTAAGGCTCCAC 3' 

sulI 
sulfamethoxazol

e 
for  5'GTGACGGTGTTCGGCATTCT 3' 

779 KR338352 
rev 5'TCCGAGAAGGTGATTGCGCT 3' 

aadA 
streptomycin, 
spectinomycin 

for 5'ATTTGCTGGTTACGGTGACC 3' 
533 25 

rev 5'TCAGCCCGTCATACTTGAAG 3' 

tnpA transposon tn21 
for 5'TACTGCCGCGCATCAAGATC 3'      

400 26 
rev 5'AGAAAGTTCGTCCTGGGCTG3' 

blaSHV ESBL 
for 5'ATGCGTTATWTTCGCCTGTGT 3' 

800 27 
rev 5'TTAGCGTTGCCAGTGCTCG 3' 

blaTEM ESBL 

for 5'GTATCCGCTCATGAGACAATA 3' 
100
0 

27 for 
5'TCTAAAGTATATATGAGTAAACTTGGTC

TG 3' 

blaOXA ESBL 
for 5'ATATCTCTACTGTTGCATCTCC 3' 

619 27 
rev 5’AAACCCTTCAAACCATCC 3’ 

blaCTX-

M 
ESBL 

for 5'SCSATGTGCAGYACCAGTAA 3' 
600 28 

for 5'CCGCRATATGNTTGGTGGTG 3' 
 

Table 2. List of primers used for amplification of antibiotic resistance genes. dfr22, catB3, sulI were 

designed on the basis of published sequences; aadA and ESBL primers were previously used by 

Rahmani et al. (25), Dahlberg et al. (26), Colom et al. (27) and Lartigue et al. (28).  

5.3.4. Natural transformation assays 
 

Natural transformation experiments were performed with either the total DNA or the plasmid 

extracts of 19 Aeromonas strains used as donors (Table 1). Acinetobacter baylyi BD413, that is 

spontaneously rifampicin resistant, and 10 Aeromonas strains, sensitive to almost all the antibiotics 
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tested and at least to those employed for selecting transformants, were used as recipients (Table 1). 

When Acinetobacter baylyi BD413 was the recipient strain, assays were performed on nitrocellulose 

filters as previously described (29). In short, 100 µl of a mixture of naturally competent 

Acinetobacter baylyi BD413 and DNA or plasmid extracts (1- 20 µg per reaction) of a donor was 

applied to the centre of a 0.2 µm porosity filter (Whatman®) placed on a nutrient agar plate, and 

incubated at 30°C for 24 h. Filters were then placed in a 50 mL falcon with 4 mL of NaCl 0.9 %. The 

tube was vortexed to remove all the cells from the filter, and serial dilutions were prepared. 100 µl of 

the 10–7 dilution were spread on LB agar without selection to enumerate the recipient, and 100 µl of 

the 10-1 dilution were spread on LB agar with the appropriate antibiotic selection, to enumerate the 

transformants. All plates were incubated 24 – 48 h at 30°C. Transformation frequency was calculated 

as the number of transformants divided by the number of viable cells of recipients.  

Transformation experiments with Aeromonas strains were made in a transformation buffer following 

the method previously describe by Huddleston et al. (21). To induce competence, recipient cells were 

grown in 20% LB broth until when they reached the late stationary phase of growth (OD600 0.45 - 

0.5), that was determined after cell growth experiments. The transformation mixture was composed 

by 100µl of the transformation buffer (53mM Tris pH 7.9, 20mM MgSO4 and 50mM NaCl), 40µl of 

competent cells and approximatively 7 ng/mL of donor DNA or plasmid extracts. Fresh LB medium 

was added and the mixture was incubated for 1.5 h at 30°C. Serial dilutions and spread on selective 

or non-selective agar were performed as described above. 

Selection of the transformants was done in LB agar containing the appropriate antibiotic(s), agreeing 

to the known resistance profile of the donors. A negative control was included in each assay, and 

consisted in the spread of the recipients cells without addition of the donor DNA. This control was 

carried out in order to detect and quantify possibly mutation events. 

5.3.5. Electroporation 
 

Electrocompetent cells of E.coli DH5α were prepared according to standard procedure. 

Electroporation experiments were performed using 1µg of DNA (total or plasmidic) of some donors 
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Aeromonas strains. Cells were pulsed at 1.8 kV/cm in a pre-chilled cuvette, using a Gene Pulser 

electroporator (Bio-rad). The electroporated preparation was mixed with 350 µL of pre-warmed LB 

and incubated at 37°C with shaking for 1 h. Plasmid pUC19 was used as the positive control of 

electroporation. Electroporation using Aeromonas strains as recipients was performed according to 

Fengqing et al. (30). Cells were grown in LB broth and in diluted LB broth (20%) and 

electrocompetence were assessed at early and late stationary phase, determined by growth curves. 

Cells were pulsed at 12.5 kV/cm with 1µg of DNA of the donor. 

5.4. Results and Discussion 
 

Interspecies and intraspecies transformations of ten Aeromonas strains belonging to different species 

were attempted using total DNA and plasmid extract of eight Aeromonas strains selected as donor 

(Table 1). The antibiotics used for selection were chosen among those whose resistance could be due 

to genes that were present in the donor strains, namely streptomaycin and spectynomycin (aadA 

genes), sulfamethoxazole (sulI gene), chloramphenicol (cat genes), and cefotaxime (bla genes). The 

concentrations that had to be reached in the agar plates in order to select transformants were 

determined on the basis of the MIC values obtained for the donors and for the recipients, taking also 

into account of what reported by other authors (16, 23).  

The MIC values for streptomycin and spectinomycin of all the donor Aeromonas strains were 

ascertained to be of 64 mg/L, whereas these of the recipients were comprised between 16 and 32 

mg/L, a level that has been reported by other authors (31). In the first trials of transformation, we 

used a streptomycin concentration of 64 mg/L for selecting transformants. Unfortunately, all the 

recipient strains could grow. Attempts were therefor done using 128 mg/L, but in this case neither 

growth nor transformation occurred. Despite the MIC established for the receivers, the streptomycin 

concentration of 64 mg/L seems to be non-selective. At the successive concentration (128 mg/L), 

receivers were completely inhibited, demonstrating that the transformation assays failed. The same 

experiments, which also ended in no transformations, were carried out with the DNA and the 

plasmid extract of the donors 7FT, 57SG, and 101DG to transform receivers that were selected using 

spectinomycin. Spectinomycin and streptomycin target ribosomes and either prevent translocation of 
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tRNAs during translation or cause errors in selecting the right tRNA, thus inhibiting protein 

synthesis (32). Bacteria can become resistant to these antibiotics trough the production of 

inactivating enzymes, the adenyltransferases largely diffused in Gram negative and present also in 

our Aeromonas donors, but also trough mutations in the 16S rRNA and/or in some ribosomal 

proteins, known to be involved in the binding of both streptomycin and spectinomycin (33). A 

different mechanism might explain our results. Aeromonads are known to have 9-10 rRNA operons 

(The Ribosomal RNA Database: https://rrndb.umms.med.umich.edu/) per genome, so the high 

number of receiving cells and the high number of molecules able to bind these aminoglycoside 

compounds, could have led to the depletion of the antibiotic from the medium and promote growth 

of the strains. When the concentration of the antibiotics has been increased, the receivers couldn’t no 

more grow or form colonies. On the other hand, it has been observed that pre-treatment of E. coli 

with sub-lethal doses of kanamycin or streptomycin induced an adaptive response of the cells that 

increased their antibiotic resistance compared to not exposed cells; this response was related with a 

significant increase in the production of capsular polysaccharide (34). A similar mechanism could 

have happened in our cultures.  

Sulphamethoxazole was used as an alternative selection in natural transformation when the strain 

101 DG acted as the donor. Since the MIC of the receivers was 128 mg/L for this antibiotic, we 

established to select transformants with a concentration of sulphamethoxazole of 256 mg/L. In this 

case too, all the receivers tested were capable of growing. Several resistance determinants have been 

found in Gram negative bacteria that cause resistance to sulfamethoxazole, i.e. spontaneous mutants 

in the dhps genes on chromosome, and the presence of sul1, sul2, and sul3 genes on chromosome or 

associated to integrons and transposons. Other mechanisms can also be involved, such as decreased 

permeability and efflux pumps (35; Podnecky 2013 http://hdl.handle.net/10217/80967). Although 

spontaneous dhps mutants can easily be isolated in the laboratory, we don’t believe that mutations 

alone can explain our result. Adaptive mechanisms such as those indicated for streptomycin and 

spectinomycin resistance are probably involved. 
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Two donors (42 FT A. media and 171 FDD A. media) were resistant to chloramphenicol (MIC 16 

mg/L), and were shown to carry the respective genetic determinant (catB) as an integron cassette. 

The recipients strains were sensitive to this antibiotic having a MIC of 0.025 mg/L, but none of them 

could be transformed. In natural transformation, the transfer of DNA is initiated by the recipient cells 

that have to be in a physiological state called competence. It seems that most naturally transformable 

bacteria regulate expression of the genes involved in competence in response to various cellular 

and/or environmental signals (20). To achieve an efficient transformation “in vitro”, it is essential to 

fulfil the physical and chemical conditions that influence the competence of the receiver strains. For 

Aeromonas cells, these conditions were studied by Huddleston et al. (21). These authors found that 

in vitro competence of transformable strains occurred when Aeromonas were cultivated in dilute 

growth medium and was induced during the late stationary phase of growth. Moreover, cells 

transformation could occur only in the presence of sodium and either magnesium or calcium. Even if 

all the conditions mentioned above were satisfied, not all aeromonads form transformant colonies, a 

behaviour that we also experienced. Furthermore, the same authors suggested that in Aeromonas, 

transformation is under an important genetic control, phylogenetically determined, in both the ability 

to act as DNA donors and the ability to catch DNA. The majority of the Aeromonas they studied 

preferred to accept DNA from close related strains (21). It is possible that the conditions applied in 

that study to induce competence were not adapted to our strains. On the other hand, the negative 

results could also be due to the phylogenetic distance between the donors and the receivers we have 

chosen. Finally, the receiver strains must be able, in addition to take extracellular DNA, to integrate 

and express it. To test this last hypothesis, DNA and/or plasmid extracts of donors were 

electroporated in receiving competent Aeromonas cells. Again, no transformants were obtained, 

indicating either the non-competent status of the cells or their inability to integrate and express 

foreign DNA. 

A further transformation assay was attempted exploiting the MIC value of 16 mg/L for cefotaxime of 

the strain A. hydrophila 77SG, that was used as donor. All the receiving strains had MIC values 

around 0.5 mg/L. The donor strain, isolated from hospital waste water, is multi-resistant (cefazoline, 

cefotaxime, cefuroxime, ceftriaxone, gentamicin, ciprofloxacin, nalidixic acid, ampicillin, 
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sulfamethoxazole, streptomacyn, aztreonam, tobramycin, and netilmycin), possess a Class 1 integron 

with the cassettes aacA4cr-oxa1-catB3-aar3, carried on a plasmid belonging to the MOB family H121, 

and the tnpA gene, indicating the presence of a transposon Tn21-like (Table 2). Moreover, the strain 

possesses a blaSHV gene as established by PCR amplification. After the transformation assays, four 

recipients became cefotaxime resistant (table 3). This phenotypic change was never observed in 

negative controls indicating that it was induced by the exposure to the DNA of the strain 77SG, but 

the genotypic screening (PCR) of the receivers did not highlight the acquisition of any of the known 

resistant determinants of the donor. Nevertheless, the phenotypic resistance to cefotaxime was 

maintained for approximately 100 generations in absence of selection. Domingues and colleagues 

(36) suggested that changes in susceptibility patterns after exposure to bacterial DNA could be due to 

the transfer of resistance determinants not yet known, neither regarding the mechanisms employed 

nor their genetic nature. Another possible explanation of this result could be that receivers had 

undergone some mutational events which can confer low-level resistance. Finally, the receivers cells 

may have reacted to the exposure to cefotaxime with an adaptive response. Adaptive resistance is the 

ability to survive in stressing environmental conditions, as those represented by sub-inhibitory levels 

of antibiotics, thanks to alterations in gene and/or protein expression (37, 38). It has to be underlined 

that adaptive resistance mechanisms are not stable and the phenotype that they give reverts to the 

wild-type upon the removal of the inducer (39). Since our strains continued to show cefotaxime 

resistance for at least 100 generations and the phenotypic change was induced only by exposure to 

DNA, it is unlike that adaptive resistance had played a major role in our case. On the other hand, in 

vivo, Aeromonas strains are capable to adapt and live in different conditions such as polluted or 

unpolluted environments, chlorinated and potable waters, oligotrophic or rich in nutrients aquatic 

environments. These evidences demonstrate that Aeromonas are able to survive in many different 

environments; even when submitted to highly stressing conditions, and therefore that they must have 

and express some adaptive responses. The receivers we tested were grown in diluted medium until 

the late stationary phase before exposition to exogenous DNA. Since these conditions have 

undoubtedly influenced the antibiotic resistance profile of the strains, it could be that our recipients 

have displayed some unidentified responses to survive the antibiotic pressure. 
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Antibiotic 
selection 
(mg/L) 

Donor Donor  
resistance phenotype  

Recipien
t  

Recipients 
resistance 
phenotype  

Resistance 
phenotype of 
transformant 

Acquired 
generic 

determina
nts 

RA, C (50, 
16) 

42 FT 
CZ,FOX,CIP,C,NA,S,

RL,NN 
AC R 

CXM, FOX, CIP, C, 
TMP, R  

na 

CTX (10) 77 SG 
CZ,CXM,CRO,GM,C
IP,NA,S,RL,ATM,N

N,NET,CTX 
AC R 

CXM , FOX, CIP, C, 
TMP, CTX, R 

na 

RA, S (50, 5) 
or RL (256) 

101 DG CZ,FOX,NA,S,Sp,RL AC R S, TMP, RL, R tnpA 

CTX (8) 77 SG 
CZ,CXM,CRO,GM,C
IP,NA,S,RL,ATM,N

N,NET,CTX 

18 FT CZ, FOX CZ, FOX, CTX 

na 75 SG CZ,Te(I) CZ,Te(I), CTX  
206 LC CZ CZ, CTX  
248 LC CZ CZ, CTX  

 

Table 3. Transformation of Acinetobacter baylyi (AC) and of Aeromonas spp. In bold acquired 

antibiotic resistances linked to donors profiles. CZ cefazoline, CXM cefuroxime, CRO ceftriaxone, 

FOX cefoxitin, SXT bactrim, GM gentamicin, CIP ciprofloxacin, PB polymyxin, C 

chloramphenicol, NA nalidixic acid, AM ampicillin, RL sulfamethoxazole, Te tetracyclin, S 

streptomacyn, TMP trimetroprim, ATM aztreonam, NN tobramycin, NET netilmycin, R rifampicin. 

na: not acquired. 

Changes in phenotype profile might be due also to epigenetics modifications (e.g. DNA methylation) 

that regulate gene expression at transcriptional level in response to environmental variations (40), 

which can be represented among other by the presence of naked DNA. It is believed that the 

resistance phenotype acquired by adaptive resistance usually disappears after few generations in the 

absence of antibiotics and that the continuous exposure to these compounds leads to a stable form of 

resistance (39). The phenotypic diversity in a population without significant genotypic variation can 

be due to stochastic differences in gene expression patterns. Under selection, these phenotypes might 

become heritable. The epigenetic inheritance could be due to DNA methylation, chromatin 

modifications, superhelical domain configuration, or other mechanisms (41). In Aeromonas 

hydrophila it has been demonstrated that the overproduction of the DNA adenine methyltransferase 

(DAM) alters the virulence properties of the strains acting on gene expression (42). It is conceivable 

that some DNA methylation mechanisms might also influence the expression of genes involved in 

antibiotic resistance. 
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Intrergeneric transformations were carried out using as receiver the natural competent Acinetobacter 

baylyi BD413. Transformers were the 18 Aeromonas strains reported in Table 1. 

The plasmid extract of A. caviae 101 DG allowed the transformation of naturally competent cells of 

Acinetobacter baylyi BD413, that acquired some resistances property of the donor (resistance to 

streptomycin and sulfamethoxazole) as well as the tnpA gene (table 3). The transformation frequency 

was however low (4*10-8 CFU/mL). The tnpA gene has a plasmid location in the donor, but only the 

gene was detected in the transformant. Again, transformation caused further phenotypical changes in 

the recipient strain without any acquisition of genetic determinants. As in the inter- and intraspecies 

transformation assays, these phenotypic variations occurred only when donor DNA and/or plasmid 

extract were added to the transformation mixture. Furthermore, the phenotypic resistance to 

trimethoprim was a completely new characteristic not linked to the donor, which was sensitive to this 

antibiotic. Domingues et al. (23, 36) supposed that natural competent organisms, such as 

Acinetobacter baylyi, exposed to heterologous DNA could undergo to genetic rearrangements or 

acquisition of small fragments of DNA that affect the antimicrobial susceptibility profile. 

Rearrangements and acquisition of small DNA fragments can create genetic mosaic that is 

undetectable by sequencing, but that can confer new phenotypic characters. 

DNA and plasmid extract of two other strains of Aeromonas (42 FT and 77 SG) induced 

phenotypical resistance changes in Acinetobacter baylyi BD413 (Table 3) that, again, was not 

ascribed to the detectable exchange of genetic determinants. 

In conclusion, horizontal gene transfer trough transformation do not seems, in the light of our results, 

the preferential way of spreading of resistance determinants among bacteria belonging to the genus 

Aeromonas, in disagreement with other authors (21, 22, 43). In fact, Sakai (22) found that a protease-

deficient mutant (NTG-1) of Aeromonas salmonicida was easily transformed not only by DNA 

fragments of the parent strain and intraspecific strain but also by DNA fragments of interspecific A. 

hydrophila, and intergeneric P. fluorescence and V. anguillarum. More recently, Huddleston  et al. 

(21) stated that 73% of the environmental Aeromonas strains they tested were able to act as 

recipients, and 100% were able to act as donors to at least some other aeromonads under optimal 
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assay conditions of transformation. Despite we adopted the same transformation conditions, to the 

better of our efforts we were only able to obtain phenotypic transformants showing an increased 

resistance toward some antibiotics in both intra- and interspecific transformation assays. Possible 

explanations of our unsuccessful attempts are that we were unable to induce competence in our 

receives, that receivers were unable to incorporate and to express the foreign DNA and/or the 

transformers had specific donor DNA preferences that we have not fulfilled.  

On the opposite, we could transform the natural competent Acinetobacter baylyi BD413. This 

demonstrated that at least some Aeromonas strains are able to act as donors of resistant determinants 

that could be express in intergeneric strains.  

Aeromonas is able to live in complex microbial ecosystems, which can be rich in bacteriophages and 

free DNA, and where possession of restriction-modification systems might provide important 

advantages to the host protecting it from genome subversion through any invading foreign DNA. 

Aeromonas are known to code for different restriction endonucleases (44). This characteristic might 

also be taken into account to explain the lack of efficient transformation that we experienced.  
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6.1. Abstract  
 

The increase of antibiotic resistance in (pathogenic) bacteria is a worldwide problem, and studies on 

how antibiotic resistant genes can spread among microorganisms are mandatory. Besides 

conjugation and transformation, it is believed that bacteriophage transduction play an important role 

in the horizontal gene transfer, particularly in those environments rich in phages and bacteria.  

Aeromonas are potentially pathogenic, ubiquitous bacteria that colonize almost all hydric 

environments. Many studies demonstrated the rise of resistance to antibiotics of environmental and 

clinical Aeromonas strains, and attested that these bacteria are a reservoir of genetic determinants of 

resistance.  

In order to investigate if these resistance traits could be transferred horizontally among Aeromonas 

spp., we examined the presence of resistance genes in lytic and temperate Aeromonas bacteriophages 

and we studied the potential transduction of these genes.  

We demonstrated for the first time that lytic and temperate bacteriophages of Aeromonas are able to 

integrate resistance genes from their hosts. Specific bacteriophages can therefore be involved in the 

horizontal gene transfer of resistant determinants among this widespread genus of aquatic bacteria.  
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6.2. Introduction 
 

Antibiotic resistance of pathogenic bacteria is a worldwide problem and the increasing number and 

spread of super-bugs resistant to almost all antibiotics is frightening, particularly in clinical settings.  

Antibiotic resistant bacteria are more and more detected also in the environment, especially water, 

even if at percentages lower than those found in human or veterinary medicine [1]. Resistant 

(pathogenic) bacteria, resistant determinants, and active antibiotic compounds reach the aquatic 

environment through waste water treatment plants, hospital waste waters, agricultural runoff, and 

other human and animal sources, and interact with the resident bacterial populations. Due to the 

strong selective pressure they generate, aquatic ecosystems are considered “hot spots” in the 

spreading of antibiotic resistances [2, 3]. 

Resistance can arise by acquisition of mutations and by exchange of genetic determinants trough 

horizontal gene transfer that is considered the main contributor to the rapid diffusion of antibiotic 

resistances [4]. In fact, resistance genes are often located on mobile genetic elements such as 

integrons, transposons and plasmids, and can be laterally transferred among even distant bacterial 

taxa by conjugation, by natural transformation or by transduction [5]. Transduction is mediated by 

bacteriophages and consists in the transfer of genetic material from a donor, who has been infected 

by a phage, to a recipient, which afterword can express the acquired genetic trait.  

Bacteriophages are divided in virulent phages (or lytics), that lyse their host to release mature 

virions, and temperate phages (or lysogens), that integrate their DNA (prophage) in the host genome, 

replicating it in synchrony with the host cell. Temperate phages may revert to the lytic cycle through 

the action of natural (for example UV radiations) or of human origin (pollutants as some antibiotics) 

inducers [6]. During the infection stage, phages can acquire genetic material from their host, because 

the packaging of bacteriophage DNA is a low fidelity mechanism. These bacterial DNA portions can 

afterwards be transferred to another cell. The huge number of phages distributed in many ecosystems 

and their ability to survive for a long time in the environment [7] should render phage transduction 

an important mode of lateral transfer of DNA, comprising antibiotic resistance genes [8]. Indeed, 
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many studies demonstrate the presence of antibiotic resistance genes in bacteriophages [9, 10, 11, 

12]. 

Aeromonas are good examples of ubiquitous bacteria that can colonize almost all hydric 

environments. The potential of these bacteria to develop resistance to many classes of antibiotics has 

been largely demonstrated [13, 14]. Recently, we characterized the resistance determinants of a 

collection of 231 Aeromonas strains isolated from different aquatic sources. Furthermore, we 

evaluated the potentiality of these strains as vectors of resistance genes disseminated trough 

conjugation and transformation [Carnelli et al. submitted, Mauri et al. submitted]. The aim of the 

present work was to evaluate the role played by bacteriophages in the horizontal transfer of 

resistance genes in this widespread genus of aquatic bacteria. 

6.3. Material and methods 

6.3.1. Bacterial strains 
 

Aeromonas strains were isolated and characterized in a previous work [Carnelli et al. submitted]. 

6.3.2. Lytic bacteriophages  
 

The lytic bacteriophages used in this study are part of a collection used in a phage typing scheme 

[15]. Phages were isolated from sewage effluents collected in our region (Ticino, Switzerland) 

following the enrichment protocol of Adams [16] with some modification. Briefly, a few colonies of 

an overnight culture of an Aeromonas isolate were inoculated in 10 mL of the collected water 

containing 100µL of MgSO4 1M and 1mL of Luria Bertani (LB) broth 10X. After incubation at 30°C 

for 24h, the suspension was centrifuged at 10.000 x g for 10 minutes and filtered on a 0.22µm 

membrane filter (Millipore). 100 µL of phosphate buffer (pH 7.1), 10 µL of MgSO4 1M, 100 µL of 

supernatant and a few colonies of a fresh culture of the same Aeromonas strain were mixed together 

in a glass tube. 3ml of soft agar (LB broth with 0.7% of agarose) were added to the tube, vortexed 

and poured onto a LB agar plate. The presence of visible plaques on the agar surface after over-night 

incubation at 30°C indicated the presence of lytic bacteriophages that were further propagated and 

enumerated (PFU/mL, plates forming units).  
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In order to purify and enrich the bacteriophage suspensions, a single plaque was removed from the 

soft agar layer with a sterile loop, put in 10 mL of LB and incubated at 30°C for 24 h. The 

suspension was then centrifuged, filtered and tested for plaques formation as described above. This 

step was repeated as many times as necessary to obtain a pure phage suspension. The determination 

of the concentration of phage suspensions was performed by the double agar overlay plaque assay as 

described by Kropinski et al. [17]. Briefly, phages suspension were diluted (10-1 – 10-7) in LB broth, 

mixed with soft agar and poured off on agar plates. After incubation the titer of the original phage 

preparation was determined by counting the number of plaques formed, taking into consideration the 

dilutions. 

6.3.3. Induction of lysogenic bacteriophages using mitomycin C 
 

An overnight culture of Aeromonas spp. was diluted 1:100 in LB broth and incubated for 4 h at 

30°C. Mitomycin C (0.5 µg/mL) was added to the growing cultures, that were further incubated for 

approx. 6 h until the lysis of the cells, detected by a decrease of turbidity. The lysates were 

centrifuged at 3000 x g for 12 minutes at 4°C and filtered on a 0.22µm membrane filter [18]. 

6.3.4. Bacteriophage host range 
 

The ability of bacteriophages to lyse different Aeromonas strains was tested by lysotyping (phage 

typing) as following. 1 mL of an overnight culture of Aeromonas sp. was transferred in 2 mL of 

phosphate buffer pH 7.1 with 200 µL of MgSO4 1M, the suspension was poured onto an agar plate, 

excess was eliminated, and plates were let dry at room temperature. One drop of each bacteriophage 

suspension, previously diluted according to its RDT (routine dilution test), was deposited on the 

plate surface. After the drops dried, the plates were incubated (24 h at 30°C), and the lytic reactions 

of each phage were recorded as positive (lysis of the strain) or negative (absence of lysis).  

6.3.5. Phage concentration by PEG/NaCl 
 

To eliminate bacteria and to concentrate the phage suspensions, a PEG/NaCl solution was used 

following the method of Sayers and Eckstein [19] slightly modified. 10 mL of 2% PEG/NaCl (PEG 
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6000 2% w/w and NaCl 2.5M) were added to 50mL of a phage filtrate and the suspension was 

centrifuged 15000 x g for 10 minutes at 4°C. 10 mL of 20% PEG/NaCl (PEG 6000 20% w/w and 

NaCl 2.5M) were added to the supernatant and incubated at 4°C overnight. The phage suspensions 

were then centrifuged 15000 x g for 10 minutes at 4°C. The pellet was resuspended in phage buffer 

(Tris-HCl 10mM pH7.6, NaCl 100mM, MgSO4 1mM and CaCl2 1mM), in PBS 1 x or in NaCl 0.9%, 

depending on the experiments that followed. 

6.3.6. DNA extraction from bacteria 
 

Total DNA was extracted with a standard phenol chloroform method slightly modified. Briefly, three 

bacterial colonies were boiled at 100°C for 5 minutes in 300 µL of distilled water, and centrifuged at 

2500 x g for 3 minutes. The supernatant was transferred in a tube containing 2 µL of RNase (10 

mg/mL) and 4 µL of proteinase K (8.3 mg/mL). The lysate was incubated at 50°C for 30 minutes, 

twice the volume of phenol/chloroform (1:1) was added, and the mix was spun at 14000 x g for 15 

minutes at 4°C. The supernatant was transferred in a clean tube, twice the amount of chloroform was 

added, and centrifugation was made as in the previous step. Finally, the supernatant was stocked in a 

clean tube.  

6.3.7. DNA extraction from bacteriophages 
 

DNA from bacteriophages was extracted with the phenol-chloroform method described by Muniesa 

and Jofre [20]. Briefly, 2.5 µL of RNAse and 0.5 µL of DNAse were added to 500 µL of phage 

suspension and incubated for 2 hour at 37°C. Proteinase K (50 µL) and SDS 10% were added and 

the mix was incubated 1h at 56°C. One volume of phenol, one volume of phenol- chloroform (1:1) 

and one volume of chloroform were added sequentially in the supernatant, the solution was mixed by 

inversion and centrifuged at 10000 x g for 5 minutes each time. Two volumes of cold absolute 

ethanol were added and the solution was incubated for 10 min at -70°C. The mixtures were 

centrifuged at 13500 x g at 4°C for 20 min, supernatants were discarded and the dried pellets were 

resuspended in water. 
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6.3.8. Screening of antibiotic resistance genes by PCR 
 

The presence of resistance genes in bacteria and in bacteriophages was screened by PCR. Table 1 

summarizes information about primers, product sizes, and references or accession numbers of 

published sequences used to design primers. PCR mix consisted in 0.75 µL of each primer (10 µM), 

12.5 µL Taq PCR Master Mix (Qiagen), 1 to 5 µL of DNA (approx. 10 ng) and water to a final 

volume of 25 µL. PCR conditions were identical for each pair of primers and consisted of an initial 

step of denaturation (94°C for 15') followed by 30 cycles of denaturation (95°C for 30''),annealing 

(56°C for 30''), and extension (72°C for 1'). A final extension at 72°C for 7' terminated the 

amplification of the target genes. 

Table 1. List of primers used for amplification of antibiotic resistance genes. dfr22, catB3, sulI were 

designed on the basis of published sequences; aadA and tnpA primers were previously used by 

Rahmani et al. [20] and Dahlberg et al. [21] respectively. ESBL primers were designed by Colom et 

al. [22]. 

Gene 
codified 

antibiotic 
resistance 

Primer sequence Bp 
Reference or 

Accession 
number 

          

 dfr22  trimethoprim 
 for 5'CACCGTGGAAACGGATGAAG 3' 

354 AJ628423.2 
 rev 5'TAACCCGATTGGCACCCATG 3' 

catB3 chloramphenicol 
 for 5'CAATATCAAAGTTGGGCGGTACAG 3' 

398 KR338352 
 rev 5'CAACGATAGCGTAAGGCTCCAC 3' 

sulI sulfamethoxazole 
for  5'GTGACGGTGTTCGGCATTCT 3' 

779 KR338352 
rev 5'TCCGAGAAGGTGATTGCGCT 3' 

aadA 
streptomycin, 
spectinomycin 

for 5'ATTTGCTGGTTACGGTGACC 3' 
533 20 

rev 5'TCAGCCCGTCATACTTGAAG 3' 

tnpA transposon tn21 
for 5'TACTGCCGCGCATCAAGATC 3'      

400 21 
rev 5'AGAAAGTTCGTCCTGGGCTG3' 

blaSHV ESBL 
for 5'ATGCGTTATWTTCGCCTGTGT 3' 

800 22 
rev 5'TTAGCGTTGCCAGTGCTCG 3' 

blaOXA ESBL 
for 5'ATATCTCTACTGTTGCATCTCC 3' 

619 22 
rev 5’AAACCCTTCAAACCATCC 3’ 
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6.4. Results 

6.4.1. Host range of lytic bacteriophages 
 

In order to determine their host range, 21 lytic bacteriophages, prevalently isolated on Aeromonas 

caviae, A.hydrophila and A.media as propagator strains, were used at a RDT of approx. 103 in the 

phage typing of 231 Aeromonas strains of environmental origin. Eleven phages were able to infect 

almost one of the strains tested, aside from the original host. Overall, 16% (36/231) of the 

Aeromonas sp. could be lysed by at least one phage, and almost all phages were able to infect more 

than one Aeromonas species (table 2). 

Table 2. Species and number of Aeromonas spp. strains used for phage amplification and phage 

typing results of the eleven lytic bacteriophages those were able to form plaques on our strains 

(number and species). 

Lytic Phages Aeromonas strains used for 
phage amplification (species)  

Aeromonas strains that support 
plaques formation (species) 

1 6.84 (A.hydrophila) 156-FDD (A.hydrophila) 

3 6.84 (A.hydrophila) 
156-FDD (A.hydrophila) 

160-FDD (A.caviae) 

5 11.88 (A.hydrophila) 

5-FT, 77-SG, 147-DG, 157 FDD, 
164 FDD (A.hydrophila) 

32-FT, 177-FDD (A.bestiarum) 

105-DG, 109-DG, 123-DG, 178-
FDD, 192-FDD (A.caviae) 

116-DG, 166-FDD, 169-FDD, 171-
FDD, 206-LC (A.media) 

205-LC, 229-LC (A.salmonicida) 

18 18 (A.media) 30-FT (A.bestiarum) 
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34-FT, 43-FT, 115-DG, 166-FDD, 
169-FDD (A.media) 

164-FDD (A.hydrophila) 

42 42 (A.media) 43-FT, 169-FDD (A.media) 

43  43 (A.caviae) 

30-FT, 32-FT (A.bestiarum) 

164-FDD (A.hydrophila) 

34-FT, 115-DG, 169-FDD, 176-FDD 
(A.media) 

45-a 45 (A.caviae) 

18-FT, 24-FT, 26-FT, 105-DG, 123-
DG (A.caviae) 

30-FT, 32-FT (A.bestiarum) 

34-FT, 43-FT, 166-FDD, 169-FDD, 
176-FDD (A.media) 

164-FDD (A.hydrophila) 

229-LC (A.salmonicida) 

50-a 50 (A.caviae) 

137-DG (A.hydrophila) 

154-FDD, 167-FDD, 181-FDD 
(A.media) 

94 Ca 94 (A.bestiarum) 

64-SG, 73-SG, 81-SG 
(A.salmonicida) 

114-DG (A.hydrophila) 

135-DG (A.media) 

94 pla 94 (A.bestiarum) 
64-SG, 73-SG, 81-SG 

(A.salmonicida) 
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6.4.2. Antibiotic resistance determinants in the DNA of lytic bacteriophages  
 

We analyzed by PCR the DNA extracted from phages to detect the presence of the resistant 

determinants (genes, transposons or integrons) carried by the Aeromonas strains in which the phage 

had a lytic cycle. 

Five of the 21 bacteriophages acquired at least an antibiotic resistance determinant from their hosts 

(Table 3). We were unable to find acquired genetic determinants by the phage 50-a. Phage 5 

acquired catB3 and sulI from the strain A. media 171-FDD-Aer but it was unable of taking one of the 

many determinants present in strain A. hydrophila 77-SG-Aer. The more frequently antibiotic 

resistance determinants detected in our phages were sulI and tnpA. 

Table 3. Genetic determinants acquired by lytic bacteriophages.  

Aeromonas 
spp. host  Species 

Genetic 
determinants of 

hosts  

Lytic 
bacteriophages  

Genetic determinants 
acquired by 

bacteriophages 

         
105-DG A.caviae aadA, sulI, tnpA 45-a aadA, sulI, tnpA 
171-FDD A.media catB3, sulI 5 catB3, sulI 
34-FT A.media tnpA 18, 43, 45-a tnpA 

123-DG A.caviae tnpA 45-a tnpA 

154-FDD A.media tnpA 50-a na 
167-FDD A.media aadA, sulI, tnpA 50-a na 

77-SG A.hydrophila 
catB3,sulI, tnpA, 

blaSHV, blaOXA 5 na 

   na not acquired 

6.4.3. Host range of lysogenic bacteriophages 
 

All the 231 Aeromonas strains were induced with mitomycin C in order to detect lysogenic 

bacteriophages. On the basis of the turbidity decrease observed in the Aeromonas cultures after the 

addition of mitomycin C, prophages were successfully induced in 17 of the 231 Aeromonas strains. 

Lysogenic strains belonged mostly to the species A.caviae, A.media, A.bestiarum, and A.hydrophila. 

Phage typing was performed using only the temperate phages whose host possessed at least one 

known determinant of resistance. Bacteriophage 19-L, which was induced in A. caviae, had a lytic 
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cycle in 12 Aeromonas strains belonging to the species A.caviae, A.salmonicida, A.hydrophila, and 

A.eucrenophila. For phage 39-L, induced from an A. media, only one propagation host belonging to 

the species A.hydrophila was found, whereas phage 34-L, obtained from an A. media, infected 30 

different strains of Aeromonas, particularly of the species A.salmonicida, but also of species 

A.media, A.hydrophila, and A.eucrenophila. 

6.4.4. Antibiotic resistance determinants in the DNA of lysogenic bacteriophages 
 

Three lysogenic strains, 19FT-Aer (A. caviae), 34FT-Aer (A. media), and 39FT-Aer (A.media), 

carried at least one of the following genetic determinants: the tnpA gene, suggesting the presence in 

the cells of a transposon of the Tn21-like family, and the dfr22 gene, encoding a trimethoprim-

resistant dihydrofolate reductase. As demonstrated by PCR, these genes were acquired by the 

respective temperate bacteriophages (table 4). 

Table 4. Genetic determinants acquired by lysogenic bacteriophages  

Lysogenic 
Aeromonas strains 

(species) 

Genetic 
determinants of 
resistance on the 
lysogenic strain 

Lysogenic 
bacteriophages  

Genetic determinants 
acquired by temperate 

bacteriophages 

19FT-Aer (A.caviae) tnpA 19-L tnpA 

34FT-Aer (A.media) tnpA 34-L tnpA 

39FT-Aer (A.media) tnpA, dfr22 39-L tnpA, dfr22 

 

6.4.5. Morphology 
 

Transmission electron microscopy (TEM) images of suspensions of phages 45-a and 39-L were 

taken at the Geneva University (Barja F.) allowing an initial characterization of these two 

bacteriophages (Figure 1 A and B). Both bacteriophages belong to the order Caudovirales, which 

groups phages with icosahedral heads and tails. Phage 45-a, that shows a strong resemblance with 

phage T4, is most probably a member of the Myoviridae family that comprises phages characterized 

by an icosahedral head, a contractile tail, and a base plate with tail fibres.  
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Fig. 1 Electron micrograph of phages particles 45-a (A) and 39 L (B). Scale bar (100nm). 

 

 

 

 

 

 

6.5. Discussion and conclusions 
 

To contribute to the evaluation of the role played by bacteriophages in the transfer of resistance 

genes among bacteria in aquatic environments, we studied a collection of lytic and temperate specific 

phages of Aeromonas strains. Aeromonas spp. were considered a model of natural aquatic bacterial 

populations owing to their large diffusion in all kind of waters, polluted or unpolluted, oligotrophic 

or hypereutrophic. Due to their ecology, Aeromonads are submitted to the selection that arise in 

aquatic environments, and have become more and more resistant to antibiotics [1, 23, 24]. 

Aeromonas bacteriophages are known since many years, and a number of them have been identified 

and characterized [25]. The lytic bacteriophages that we used in the present work came from a 

collection of Aeromonas phages made in the late eighties for being used to type clinical and 

environmental Aeromonas strains [15]. The abundance of bacteriophages being connected to the 

abundance and activity of their bacterial hosts [26], our bacteriophages, as well as those described by 

other authors [27 28, 29], were isolated from aquatic environments charged in Aeromonas strains 

such as fish farm water and sediments, sewage, waste water treatment plants, and rivers.  

Temperate bacteriophages were induced by mitomycin C in 271 Aeromonas strains. Despite 

lysogeny appears to be widely spread in nature and some bacterial strains can release up to five 

different type of temperate phages [16], our results revealed that only 7% of the Aeromonas sp. were 

lysogenic. This percentage was slightly more elevated than that found by Beilstein and 

100nm 

A 

100nm 

B 
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Dreiseikelmann [30], who were able to induce by UV radiation the 2% of 74 Aeromonas isolated 

from surface waters. 

The electron microscopy imagines of some of our phages showed the typical structure of the tailed 

bacteriophages, indicating that they belong to the order Caudovirales that groups phages with 

icosahedral heads and tails. The length and contractile abilities of the tail differentiate among the 

families Myoviridae, with long and contractile tails, Podoviridae, short non contractile tails, or 

Siphoviridae, the larger family composed by virus with long tails that are not contractile. We did not 

investigate further the phages particles nor their genome but the majority of the Aeromonas specific 

phages reported in literature, belongs to the family Myoviridae and resembles to the T4-like phages, 

which infect several species of Enterobacteriaceae as well as distant bacterial genera such as 

Aeromonas, Vibrio and cyanobacteria (29). The phage 45-a is highly similar to the T4 phages and 

could therefore belong to the Myoviridae. 

Although our lytic bacteriophages were active on a little fraction of the Aeromonas sp. tested, 

infecting only the 16% of the strains, the majority showed a wide host range. In fact, nine phages 

were polyvalent, being able to display a lytic cycle on different Aeromonas species. A similar 

observation can be made for the temperate bacteriophages we could induce from the 231 Aeromonas 

strains. Polyvalent bacteriophages act better in spreading horizontally genetic determinants, due to 

their ability to transduce among different strains, species and even genera [31, 32]. On the contrary, 

in phage therapy it is preferable to select the bacteriophages for the pathogenic bacterial species or 

even for the single strain in order to not interfere on the equilibrium among the many bacterial 

populations of the system treated.  

Recent studies have emphasized the role of bacteriophages in the emergence and spread of antibiotic 

resistance genes, highlighting the presence in the genomes of bacteriophages isolated from activated 

sludge, rivers, urban sewages, and animal faecal waste of genetic determinants for resistance to 

antibiotics such as chloramphenicol, tetracycline, kanamycin, gentamycin, methicillin, beta-lactams 

and others [9, 10, 11, 12]. To our knowledge this is the first time that bacteriophages specific for 

Aeromonas sp. have been screened for the presence of antibiotic resistance genes. Resistance genes 
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or resistance markers were found in all of the temperate bacteriophages, probably reflecting their 

ability to integrate into the bacterial genome, and in some lytic phages. All the antibiotic resistance 

genes present in the donor strains could be detected in our phages, namely aadA (genes conferring 

resistance to streptomycin and spectinomycin), catB (chloramphenicol resistance), sulI 

(sulfamethoxazole resistance) and dfr (trimethoprim resistance). The tnpA genes, genetic markers of 

the transposons Tn21-like that are involved in the spread of antibiotic resistances [33], were also 

acquired by our phages. Conversely, we were unable to find resistance determinants in phages 

propagated on some donors. In particular, phage 5, that was able to capture catB3 and sulI from the 

strain A. media 34FT-Aer, was found incapable of transduce the many resistance determinants of the 

strain A. hydrophila 77SG-Aer.  

To our knowledge, this is the first finding of antibiotic resistance genes and genetic elements 

involved in the spread of resistance to antibiotics in lytic and temperate bacteriophages specific for 

Aeromonas spp. This result reinforces the role that bacteriophages might play in the aquatic 

environment in the horizontal gene transfer of resistance genes.  
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7. Transduction 
 

Transduction is the horizontal gene transfer mechanism by which genetic material from a donor cell 

is transfer to a recipient by means of a bacteriophage. Two principal mechanisms are known: 

generalized transduction, which consists in transfer of any fragment of the genome of the donor, and 

specialized transduction, in which only specific genes, which are located adjacent to the prophage 

attachment site, are transferred [1]. Both lytic and lysogenic bacteriophages can transfer any piece of 

DNA (general transduction); on the contrary only temperate phages can do specialized transduction 

[2].  

It is reported that transducing particles represent generally 1% of the total phages particles and that 

transduction is a rare event, occurring approximately only once every 107–109 phage infections. 

Moreover, abortive transduction, in which the DNA of the transducing particle is injected into the 

cell but it is not integrated and it is lost, is also reported to be frequent and to occur in the 90% of the 

recipient cells [3, 4]. 

To overcome these known difficulties in the experimental evaluation of phage transduction, some 

critical points have to be considered in planning of in vitro investigations.  

In the population of bacteriophages to be used, transducing particles have to be present and the more 

they are the more the transducing efficiency is high. It has been showed that some chelating agents, 

such as EDTA and sodium citrate, can increase the number of gene copies of the bacterial donor in 

the DNA of phages, thus resulting in an enrichment of transducing particles [5]. 

Transduction depends on different conditions such as the physical interactions between phage and 

host, an adequate physiological condition of the host and the characteristics of the environment in 

which interactions occurred [6]. The presence and the concentrations of certain ions (Ca++ and 

Mg++) are particularly important due to their capacity to facilitate the adsorption of phage particles 

to the host cells. On the other hand, their concentration has to be controlled (by means of chelating 

agents) in order to prevent subsequent reinfection [7]. 
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The multiplicity of infection (m.o.i.) is defined as the ratio of infectious virions to cells in a culture. 

In other terms, m.o.i. is roughly the average number of phages per bacterium, assuming that all 

phages are infectious, that all cells are susceptible and that the phages infecting each bacterium has a 

random distribution. In most virus infections, however, there are uninfected cells and bacteria that 

are infected with multiple virus particles [8]. As the m.o.i. increases, the percentages of cells infected 

with at least one phage particle also increases: for a m.o.i of 1.0, 63.2% of the cells are infected with 

at least one phage, whereas with a m.o.i of 5 this percentage increases to 99.3%. 

The m.o.i is therefore an important parameter that influences the effectiveness of transduction; the 

m.o.i. should be comprised between 0.01 and 1 in order to infect a recipient bacterium with no more 

than one phage particle [9]. In fact, if the infecting particle is a transducing phage, one has to avoid 

the lysis of the transductants.  

To allow the spread of genetic determinants into a microbial niche, the transduced genetic material 

have to be stable retained and expressed into the recipient host. The genes acquired by 

bacteriophages could be check for their integrity (by PCR and sequencing) and for their ability to be 

expressed in the recipient (inserting the phage DNA by electroporation into bacterial competent 

cells).  

The choice of the recipient bacterial strain is another critical point in transduction experiments. The 

recipients must be able to evidence that the transformation has occurred successfully. Transducing 

particles behave like a bacteriophage, thus adsorbing on the cell surface of their specific host and 

injecting their DNA into the cell cytoplasm. The outcome of the adsorption and injection steps is 

dependent of the bacterial host. If transductants are not able to integrate the DNA, this last will be 

lost causing an abortive transduction [3, 4]. Since transducing particles are defective, they are unable 

to undergone both the lytic and the lysogenic cycle and they cannot promote plaque formation. 

Therefore, it should be considered that a “silent transfer”, that is the transduction of DNA to bacterial 

strains that the phage cannot parasitize, could occur [10]. To investigate this kind of transduction, 

that can represent an important way for spreading resistant determinants, many different strains, of 

the same as well of different species and even genera, has to be checked [11]. 
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7.1. Preliminary attempts for the demonstration of phage transduction between Aeromonas 
strains 

7.1.1 Material and methods 
Transduction was tested accordingly to the following three methods using both lytic and lysogenic 

phages lysate. Phages lysate were prepared as previously described [12, 13] using a m.o.i. value of 

10 for the infection of donor strains. i) One milliliter of a high titer phage suspension (1010 PFU/mL) 

was added to 9 mL of an overnight recipient culture in LB broth (109 CFU/mL) and incubated 1h at 

30°C (m.o.i.: 1). Bacterial cells were then washed twice with LB broth, resuspended in 1mL of LB 

broth with sodium citrate 20 mM and incubated 2 h at 30°C. 100 µL of the suspension were plated 

on selective LB agar plates, containing the antibiotic for which the transfer of the corresponding 

resistance gene was checked [14]. ii) Two or three colonies of the recipient Aeromonas were 

resuspended in 200 µL of phage buffer with 200 µL of a phage suspension (m.o.i.: 1). The mix was 

incubated at 30°C for 30 minutes; 100 µL were then plated on a selective LB agar plate (Corvaglia 

AR, personal communication). iii) Lytic phages particles were further enriched as following: 10 µL 

of an overnight culture of the Aeromonas strain that was a possible donor of the resistant gene were 

added to 1mL of LB broth containing 0.2% of glucose and 5mM of CaCl2. The culture was incubated 

until it reached the early exponential phase (about 2 h). 10 µL of the specific lytic phage suspension 

(about 108 PFU/mL) were added to the culture and the mix was incubated again for 3 h at 30°C. 100 

µL of chloroform were added, the suspension vortexed and centrifuged at 13000 rpm for 1 minute at 

4°C; supernatant was transferred in a clean tube and stored at 4°C. For transduction, few colonies of 

a recipient culture were inoculated in 1mL of LB broth and incubated O/N at 30°C. Cells were 

centrifuged at 13000 rpm for 30 seconds and the pellet was resuspended in 500 µL of CaMg (5nM 

CaCl2 + 10mM MgSO4). Different amounts of the phage preparation were added to 100 µL of the 

recipient cells and leaved at room temperature for 30 minutes, whereupon 1mL of LB was added and 

each tube was incubated for 1 h at 30°C. (m.o.i. 0.01-1). The mix was centrifuged as described above 

and pellet was resuspended in 1mL of LB with 20mM sodium citrate. Finally 100 µL were plated on 

selective agar and incubated at 30°C for 24-48 h [7]. 
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7.1.2 Preliminary Results. 
 

Transduction experiments were carried out with phages 45-a, 5, 39-L, 34-L, and 19-L. Each phage 

suspension was tested to confirm the presence of the genetic resistance element of the propagator or 

lysogenic original host. Antibiotics used for the selection of transductants were streptomycin, 

spectinomycin, trimethoprim, sulfamethoxazole or chloramphenicol according to the genetic 

determinants detected in the bacteriophage suspensions and the original host. Recipient strains were 

sensitive to these antibiotics and were propagators for the infecting phage (Table 1). None of the 15 

recipients were able to express phenotypically the resistance trait of the original host and detected in 

the phage DNA by PCR.  

Table 1. Donor and recipient bacterial strains, phages and antibiotic selection used in transduction 

experiments 

Propagator 
or lysogenic 
host (species) 

Genetic 
determinants 

of the 
original host 
present on 
the phage 

DNA 

Phage used as 
transducer Recipient host (species) Antibiotic 

selection (mg/L) 

19-FT tnpA 19-L 218-LC, 244-LC S, Sp (128) 

34-FT tnpA 34-L 218-LC, 244-LC S, Sp (128) 

39-FT dfr22 39-L 110-DG 
TMP (2), RL 

(256) 

105-DG aadA1 
45-a 

18-FT, 24-FT, 26-FT, 32-
FT, 123-DG, 164-FDD, 176-

FDD 180-FDD 
S, Sp (128) 

5 5-FT, 32-FT, 123-DG S, Sp (128) 

171-FDD catB3 5 109-DG, 147-FDD, 206-LC C (2) 
S streptomycin; Sp spectinomycin; TMP trimethoprim; RL sulfamethoxazole; C chloramphenicol 

7.1.3. Outlooks for the future. 
 

Future transduction experiments will take into consideration the critical experimental points 

highlighted above. First of all, in order to ensure a transfer of genetic material, transducing particles 

will be enriched. Much attention will be devoted to the choice of the recipients strains and the 

antibiotic selection, since previous data (Mauri et. al., submitted) have demonstrated that 
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streptomycin and sulfamethoxazole, two of the antibiotics used for selecting transductants, induce 

adaptability in our Aeromonas strains, namely the exposure of a sensitive strain to the minimal 

inhibitory concentration of these antibiotics did not inhibit its growth.  
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8. Conclusions 
 

Since the end of the last century, antibiotic resistant bacteria and antibiotic resistance genes are 

considered as worldwide emerging environmental contaminants; microorganisms are developing 

resistance not only to single antibiotic families but also to several of them (multiresistance). Most 

resistant organism and their associated genes are dispersed in the aquatic environment that is 

considered a vast reservoir of antibiotic resistance. Little is known about the influence of 

environmental antibiotic resistance on natural microbial populations and about its clinical impact. In 

the environment, antibiotic resistance determinants may become part of the environmental gene pool, 

may spread horizontally, and may move back to human and animal bacteria via food and drinking 

water. Our investigations have confirmed that bacteria, also human related pathogens, isolated from 

different aquatic environment with different degrees of pollution, are affected by selective pressure 

of antibiotics. Aeromonas species that are ubiquitous in aquatic environments and Faecal Coliforms 

that are allochthonous in natural hydric environments, having their normal habitat in the gut of 

animals are differently influenced by potential antibiotic contamination of the environment. 

Although, the genetic elements involved in resistance that we investigated have already been 

evidenced in both Aeromonas and Faecal Coliforms, our results did not allow highlighting common 

genetic determinants in the two populations and resistant strains are not distributed in the same 

aquatic environments. Multi-drug resistance profile and plasmids were mostly found in Aeromonas 

sp. isolated from the wastewater treatment plant and from the river receiving its depurated waters; on 

the other hand the genetic traits involved in antibiotic resistance were mainly evidenced in Faecal 

Coliforms strains isolated from the hospital waste water and from the activated sludge of the water 

treatment plant. In this study we used Aeromonas spp. multi-resistant strains as donors in mating 

experiments and sensitive Fecal Coliforms and Aeromonas as recipients but we were unable to 

transfer antibiotic resistances through conjugation.  

We decided to study other two mechanisms of horizontal gene transfer (HGT): natural 

transformation and transduction, in order to explain the high number of antibiotic resistant 

Aeromonas strains found in the environment and their possible role as vectors of antibiotic resistance 
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genes. Our study on natural competence has pointed out that Aeromonas spp. is able to adapt 

and survive under antibiotics selective pressure especially during starvation of nutrients and 

when exogenous DNA was put in contact with recipient strains. These results gave to us 

several insights for future outlooks especially on epigenetics that could affect resistance 

profile by genes modifications at transcriptional level. Our results suggest that horizontal 

gene transfer trough transformation do not seems the preferential way of spreading of 

resistance determinants among bacteria belonging to the genus Aeromonas. Possible 

explanations of our unsuccessful attempts are that we were unable to induce competence in 

strains, that recipients were unable to incorporate and express the foreign DNA and/or that 

the transformers had specific donor DNA preferences that we have not fulfilled. On contrary 

natural transformation (intergenic transformation) could be the mechanism by which 

Aeromonas spp. spreads resistance genes among competent bacteria such as Acinetobacter. 

Finally our preliminary results suggest the possible role of Aeromonas bacteriophages in 

spread of antibiotic resistance because of their ability to acquired antibiotic resistance genes 

from hosts. 

Since the spread of antibiotic resistance is a worldwide problem, monitoring the presence 

and diffusion of resistance determinants is crucial. Aeromonas spp. are considered a 

reservoir of antibiotic resistance genes and, in our opinion, represent a good model for 

monitoring antibiotic influences on bacterial populations of aquatic environments.    
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