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A#tract

The constantly growing interest in probabilistic systems pushes to the research of more and

more efficient techniques to capture and compare their behavior. In this dissertation we

focus on Segala’s type systems, namely processes with nondeterminism and probability in

the PTS model, and we propose novel techniques to study their semantics, in terms of both

classic behavioral relations and the more recent behavioral metrics.

For what concerns behavioral relations our main contribution is a method for decom-

posing modal formulae in a probabilistic extension of the Hennessy-Milner logic. This

decomposition method will allow us to derive the compositional properties of probabilistic

(bi)simulations.

Roughly speaking, in 2004 Bard Bloom, Wan Fokkink and Rob van Glabbeek noticed

that the definition of the semantic behavior of processes by means of the Structural Oper-

ational Semantics (SOS) framework allows for decomposing the satisfaction problem of a

formula for a process into the verification of the satisfaction problem of certain formulae

for its subprocesses by means of the notion of ruloid, namely inference transition rules

that are derived from the SOS specification and define the behavior of open processes in

terms of the behavior of their variables. Then, they exploited the decomposition of modal

formulae to systematically derive expressive (pre)congruence formats for several behavioral

equivalences (preorders) from their modal characterizations.

We will extend their approach to the probabilistic setting. In particular, to obtain the

decomposition method we will introduce an SOS-like machinery, specifying the behavior

of distribution terms as probability distributions over process terms, that will allow us to

decompose the probabilistic modalities proper of the considered probabilistic extension of

the Hennessy-Milner logic.

We remark that the one presented in this thesis is actually the first decomposition method

proposed for processes in the PTS model.

Then we will focus on behavioral metrics.

First of all we will propose original notions of metrics measuring the disparities in the

behavior of processes with respect to (decorated) trace and testing semantics as expressed

by Marco Bernardo, Rocco de Nicola and Michele Loreti: differently from the original

approach of Roberto Segala in which traces were distributions over traces, they proposed

a trace-by-trace approach for the definition of the linear semantics of processes in the

PTS model which turned out to be compositional and fully backward compatible with the

fully-nondeterministic case. By following their approach, we will obtain behavioral metrics
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Abstract

capturing these linear semantics and whose kernels will enjoy these desirable properties.

In particular, we remark that our metrics for the decorated traces and testing are the first

quantitative version of these semantics ever proposed.

To capture the differences in the expressive power of the novel metrics and the ones

for probabilistic (bi)simulations we will order them by the relation ‘makes processes further

than’. Thus we will obtain the first spectrum of behavioral metrics on processes in the PTS

model. Interestingly, from this spectrum we will derive an analogous one for the kernels

of the considered metrics, ordered by the relation ‘make strictly less identification than’.

Our spectrum of probabilistic relations is the probabilistic generalization of the linear time -

branching time spectrum of van Glabbeek.

Finally we will introduce a novel technique for the logical characterization of both be-

havioral metrics and their kernels, based on the notions of mimicking formula and distance

on formulae. Behavioral relations and modal logics have been successfully employed for

the specification and verification of processes. The former ones provide a simple and el-

egant tool to compare the observable behavior of processes. The latter ones allow for an

immediate expression of the desired properties of processes. Since the seminal work of

Matthew Hennessy and Robin Milner on their namesake logic, these two approaches are

connected by means of logical characterizations of behavioral relations: two processes are

in relation if and only if they satisfy the same formulae in the considered logic. Starting from

this characterization of behavioral relations, in the literature we can find several proposals

of characterizations of behavioral metrics following (mostly) the same approach: in general

logics equipped with a real-valued semantics are used for the characterization, which is then

expressed as d(s, t ) = supϕ∈L |[ϕ](s)− [ϕ](t )|, where d is the behavioral metric of interest, s

and t are two processes, L is the considered logic and [ϕ](s) denotes the value of the formula

ϕ at process s accordingly to the real-valued semantics.

We propose a novel approach that will allow us to obtain the logical characterization of

behavioral metrics starting from boolean-valued logics. The idea is the following: ✶✳ Once

we have chosen a class L of modal boolean-valued formulae suitable for the considered

semantics, for a process s we identify a special formula expressing the relevant properties of

s with respect to the considered semantics, called mimicking formula of s. This is a formula

in L that captures the nondeterministic and probabilistic behavior of the process that is

relevant for the considered semantics. ✷✳ Then, we transform the modal logic L into a metric

space by introducing a notion of syntactical distance on formulae. This is a 1-bounded

pseudometric assigning to each pair of formulae a suitable quantitative analogue of their

syntactic disparities. ✸✳ We conclude by defining a logical distance on processes correspond-

ing to the distance between their mimicking formulae and proving that this logical distance

characterizes the considered metric semantics. This kind of characterization will allow us to

obtain the first example of a spectrum of behavioral distances on processes obtained directly

from modal logics. Moreover, we will show that the kernels of the considered metrics can be

characterized by simply comparing the mimicking formulae of processes.
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”Ford!" he said, ”there’s an infinite number of monkeys
outside who want to talk to us about this script for
Hamlet they’ve worked out.”

Douglas Adams,

The Hitchhiker’s Guide to the Galaxy





&e story so far:
In the beginning the Universe was created.
&is has made a lot of people very angry and
been widely regarded as a bad move.

Douglas Adams,

The Restaurant at the End of the Universe
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Introduction

N
owadays we live surrounded by computing systems: education, healthcare, business,

security, telecommunications, military systems, social interactions, nearly every aspect

of our lives is (or will be soon) closely related to several devices and concurrent systems.

Their purpose is to communicate with the external environment and with other systems

and devices to quickly and properly react to our requests. The growth in the number of

connected systems and of their tasks is inevitably proportional to a dramatic increase in the

size and complexity of these systems. Consequently, to study and analyze their behavior

and verify their correctness we need to abstract away from unimportant details related

to their computation. This means that we need formal notation and models allowing

us to understand the behavior of such systems and thus to develop algorithms for their

analysis, simulation, comparison and verification. For this reason we study formal methods,

namely mathematical theories and techniques aimed at equipping models and specification

languages with a formal syntax and semantics, thus allowing for the specification and

verification of the considered systems also with respect to several application fields.

Classic formal methods are closely related to the functional behavior of systems. Roughly

speaking, we observe system behavior in order to check whether the proposed model fulfills

its computational tasks. However, also due to the increasing complexity of systems, func-

tional behavior alone is not sufficient for a proper and efficient modeling. All these systems

are characterized by a variety of uncertainties which are, moreover, of different natures, as

empirical uncertainties due to incomplete knowledge on system design and probabilistic

uncertainties due to random physical events. Clearly, for a correct system analysis we need

to take all these approximations and uncertainties into account for modeling and verifica-

tion. As an extremely simple example, consider the sender-receiver system constituted by

an Xbox controller and the console itself. More precisely, in this system we have a user, the

player, giving inputs and requests to one device, the controller, which has to correctly react

to the user’s inputs and forward them to another device, the console, which has to output
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Chapter 1. Introduction

the correct answer to the user’s requests. So, by a traditional analysis we will obtain that, for

instance, whenever we move the left stick to the right then Master Chief1 will move to the

right as well. However, knowing whether Chief will react to our command after 0.1 seconds

or after 1 second would make the difference between him finding cover and live to save

Earth or being hit by a plasma blast and let the Covenant conquer the World.

In a more formal and general fashion, we should say that when interacting with any

computing system the user would prefer knowing which is the probability that an error may

occur in the transmission of an input, or how many times a message has to be retransmitted

in order to be delivered correctly, rather than having solely a functional analysis stating

that the system may reach a deadlock state. Therefore, researchers started to look for

techniques for specifying and verifying also extra-functional aspects of systems behavior

like the quantitative aspects of it.

As a result, a wealth of probabilistic, stochastic, real-time and hybrid models have

been proposed (see among others [1, 27, 28, 105, 121, 124, 145, 161]) along with behavioral

relations [10, 29, 51, 56, 70, 109, 123] and logics [2, 57, 59, 66, 68, 129, 134, 140] describing and

comparing their behavior.

Probabilistic systems can be thought of as to discrete time - discrete space Markov Chains.

They have been proved useful to model and study the reliability of systems, their fairness and

to introduce randomization into distributed algorithms, by means of which we can obtain

efficient solutions to problems otherwise unsolvable in a deterministic setting [11, 145]

and that can be also used to introduce additional security measures against information

leakage [46]. Moreover, probabilistic models have been also applied to study security and

privacy issues [5, 9, 45, 47, 76] as well as to evaluate the performance of systems [6, 86, 87].

Stochastic models are mainly obtained as the abstraction of Markov processes, characterized

by a continuous time - continuous state space. Thus, they have been successfully employed

to model physical [71], biological [49, 52] and chemical [39, 40] phenomena along with

performance modeling of computer systems [36, 105] and robotics [113].

Real-time systems are a particular type of stochastic systems in which correctness depends

not only on the logical result of the computation but also on the time at which the results

are produced. These features make them suitable for industrial applications [124].

Hybrid systems combine probabilistic and stochastic models to reduce the state space

explosion problem that affects the later ones. Informally, they consist in identifying the part

of the system that can be approximated by a continuous model while proposing a discrete

abstraction for the remaining part. For this reason they have been successfully applied to

study system performance [35, 36] as well as to model biological systems [88].

In this thesis we will focus on probabilistic models.

1.1 RESEARCH CONTEXT AND CONTRIBUTION

With this thesis we aim to give our contribution to the studies on the semantics of proba-

bilistic reactive communicating concurrent systems, henceforth probabilistic processes.

1All rights reserved (and many thanks) to Bungie and Microsoft Studios for Chief and the Halo Universe.
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1.1. Research context and contribution

To fulfill our purpose we will need to investigate the following four building stones of

concurrency theory and formal methods: ✶✳ Semantic models, expressing the behavior

of processes; ✷✳ Behavioral relations and metrics, allowing for comparing the behavior of

distinct processes; ✸✳ Logical characterizations, allowing for checking whether the process

behaves as requested; ✹✳ Structural Operational Semantics, allowing for the definition of the

semantics of processes and to guarantee compositional reasoning.

A MODEL FOR PROBABILISTIC PROCESSES

In the last three decades, researchers proposed several different semantic models for prob-

abilistic processes. For instance, just to name a few, we recall the reactive, generative and

stratified models (see [161] for a survey on the three of them) constructed as probabilistic

extensions of the classic labeled transition systems (LTS) [111], along with discrete time

Markov chains (MCs) [100, 150], Markov decision processes (MDPs) [107] and so on. In

this thesis we will consider the general semantic model of nondeterministic probabilistic

labeled transition systems (PTSs) [145], which extend classic LTSs and discrete time MCs to

allow us to model the behavior of those processes in which nondeterminism and proba-

bility coexist. In detail, a transition step takes a process to a probability distribution over

processes and for each transition label, modeling a specific kind of action step, a process

may nondeterministically choose among several transitions with that label.

The phenomenon of nondeterminism was introduced in systems modeling to express

the fact that the process reached by another one by performing a nonempty sequence of

transition steps is not necessarily determined. On one hand, this means that the behavior

of a process will depend also on its interactions with the external environment, either it

be another process or a user requesting a particular task to it, and in this case we talk

about external nondeterminism. This phenomenon is usually interpreted as a choice among

executable transitions steps with distinct labels for a process. On the other hand, it means

that there may be some internal computations of the process that are neither observable

nor controllable by the external environment. This is called internal nondeterminism and

it is usually related to the presence of distinct equally labeled transition steps executable

by the same process. Processes in the PTS model are characterized by both internal and

external nondeterminism, whereas the majority of the other semantic models proposed in

the literature present only external nondeterminism, as for instance happens in the cases of

the reactive model and discrete time MCs.

Probability has been introduced in formal methods basically in terms of a probabilistic

choice on possible process behaviors. In the case of PTSs this is modeled by considering

(labeled) transition steps taking a process to a probability distribution over processes. There

has been a long-standing discussion on whether probability could completely substitute

nondeterminism. For instance, in generative models [161] probability controls nondetermin-

ism in the sense that process-to-process transition steps are considered and each process

has a certain probability to execute one of the possible transition steps for it. More in general,

the idea would be to treat nondeterminism as a probability distribution in which the weights

can change at every repetition of the experiment [16]. Our opinion, which is in agreement to

the current interpretation, is that nondeterminism and probability are two distinct concepts

3



Chapter 1. Introduction

obeying their own laws and thus we need to model both of them and in separate ways. For

instance, nondeterminism is fundamental in formal methods in which the main issue is the

functionality of systems, like establishing deadlock-freedom or modeling the independent

behavior of processes in interleaving parallel composition, and although the presence of

probability can certainly lead to a more accurate study of these features it would not justify

the elimination of nondeterminism. A substitution of nondeterminism with probability

would in fact subsume additional knowledge on the system behavior and also impose some

constraints on it. Moreover the abstraction necessary to define process semantics introduces

additional uncertainty about the behavior of the system and thus it is necessary to have an

abstract semantics combining together probabilistic and nondeterministic steps.

For all these reasons we decided to consider the semantic model of PTSs.

BEHAVIORAL RELATIONS AND METRICS

As we have previously outlined, two main objectives of concurrency theory are the specifica-

tion and verification of processes: to specify a process means to define its desired behavior,

whereas verifying it means to prove that the actual behavior of the process is equal to the

one specified for it. For this reason we need to establish a criterion to determine whether the

behavior of two or more processes is the same, or more generally to compare the behavior

of distinct processes.

Behavioral relations have been proposed with this exact purpose: comparing the seman-

tics of processes. They consist of behavioral equivalences and behavioral preorders, where

a preorder is a relation that is reflexive and transitive, while an equivalence is a preorder

which is also symmetric. Equivalences are usually used to establish whether two processes

are indistinguishable for behavior, whereas preorders are mostly used to establish process

refinements with respect to behavior. However, it is clear that to compare the semantics of

processes we need first to observe them and our observational power may depend on our

particular interests as well as on the environment in which they are operating. Hence, in

the literature we can find several notions of behavioral relations based on the observations

that an external observer can make on the process, as (bi)simulations [131], (decorated)

traces [106] and testing [62].

The same wealth of notions can be found, even enriched, in the probabilistic setting

where the choice on how probabilities have to be taken into account and compared play a

fundamental rôle in the definition of equivalences and preorders. We refer the interested

reader to [101] for a survey on the different notions of probabilistic bisimulation proposed

in the literature and to [29, 30] for a spectrum of probabilistic relations containing proba-

bilistic (bi)simulations, probabilistic (decorated) traces equivalences and several notions of

probabilistic testing equivalences.

A common feature to behavioral relations in the non-probabilistic and probabilistic

settings is that they relate processes that behave exactly the same. However, the values of the

probability weights assigned in the PTS usually derive from statistical samplings or measures

on physical systems and thus they are inevitably subject to errors and approximations.

Consequently, one can be interested to know whether the behavior of two processes is similar

up-to some tolerance or, more simply, how far the behavior of two processes is apart. This
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led to the introduction of the so called behavioral metrics [14,53,59,61,64,72,73,96,114,148],

which are 1-bounded distances measuring the disparities in the quantitative properties of

processes with respect to a chosen semantics and have been showed to provide a robust

semantics for probabilistic processes [72, 91, 94, 157]. In particular, bisimulation metrics

are the quantitative analogue to probabilistic bisimulation, namely they are 1-bounded

pseudometrics quantifying the disparities with respect to bisimulation of processes and

whose kernel is probabilistic bisimulation.

Our contribution

The majority of the contributions on metric semantics that we can find in the literature

are focused on the quantitative versions of the probabilistic bisimulation from [123] and

of the probabilistic trace equivalence of [144]. We will propose original notions of metrics

measuring the disparities in the behavior of processes with respect to (decorated) trace and

testing semantics as expressed by [29]: differently from the original approach of [144] in

which traces were distributions over traces, [29] proposed a trace-by-trace approach for the

definition of the linear semantics of processes in the PTS model which, differently from the

approach in [144], turned out to be compositional and fully backward compatible with the

fully-nondeterministic case. By following their approach, we will obtain behavioral metrics

capturing these linear semantics and whose kernels will enjoy the aforementioned desirable

properties. In particular, we remark that our metrics for decorated trace and testing metric

are the first quantitative version of these semantics ever proposed.

To capture the differences in the expressive power of the novel metrics and the ones

for probabilistic (bi)simulations we will order them by the relation ‘makes processes further

than’. Thus we will obtain the first spectrum of behavioral metrics on processes in the PTS

model. Interestingly, from this spectrum we will derive an analogous one for the kernels

of the considered metrics, ordered by the relation ‘make strictly less identification than’.

Our spectrum of probabilistic relations is the probabilistic generalization of the linear time -

branching time spectrum of [159].

The contribution provided by this thesis with regard to behavioral metrics can be then

summarized as follows:

⋆ We provide original notions of behavioral metrics capturing the (decorated) traces

semantics and the testing semantics.

⋆ We compare the expressive power of the proposed metrics and the ones for probabilis-

tic (bi)similarities in the first spectrum of behavioral distances on processes in the PTS

model.

⋆ We prove that the kernels of the proposed metrics satisfy some important properties,

like compositionality and the full backward compatibility with the fully-nondeterministic

and fully-probabilistic cases.

⋆ We order the obtained kernels in a spectrum on probabilistic relations including

(bi)similarities, (decorated) traces and testing semantics.
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LOGICAL CHARACTERIZATIONS

Behavioral relations and modal logics have been successfully employed for the specification

and verification of processes. The former ones provide a simple and elegant tool to compare

the observable behavior of processes. The latter ones allow us to express the properties of

processes and thus their specification.

Since the work in [102] on the Hennessy-Milner logic (HML), these two approaches are

connected by means of logical characterizations of behavioral equivalences consisting in

proving both the fact that the logic is as expressive as the equivalence and the fact that the

equivalence preserves the logical properties of processes. More precisely, a logic is said to be

adequate for an equivalence if two processes are equivalent if and only if they satisfy the

same formulae in the logic, and a logic is said to be expressive for an equivalence if for each

process s we can identify a characteristic formula φs [97] such that the processes equivalent

to s are exactly those satisfying φs . In the literature we can find several examples of logics

that are adequate for probabilistic relations and that consider different semantic models:

the model of reactive probabilistic transition systems in the seminal work [123], probabilistic

automata in [104, 137], PTSs in [32, 66, 68], labeled Markov processes (LMP) in [56, 70]

and continuous-time continuous-space LMP in [129]. Expressive characterizations in the

context of PTSs can be found in [68], while [143] considers probabilistic automata. Notice

that the majority of the classes of formulae used for these characterizations are obtained

as extensions of HML or of the µ-calculus [112] with probabilistic choice modalities or

quantitative versions of the diamond modality, which allow for expressing the quantitative

properties of processes.

When behavioral metrics instead of relations are considered, logical characterizations

proposed in the literature are usually obtained by considering a suitable class of real-valued

formulae and then expressing the considered behavioral metric d in terms of the total

variation distance on the value of formulae at processes, that is

d(s, t ) = sup
φ∈L

| [φ](s)− [φ](t ) |

where L is the considered logic and [φ](s) denotes the value of the formula φ at processes

s accordingly to the real-valued semantics of L. Examples of this kind of logical charac-

terizations can be found in [75, 157] on PTSs, in [59] on Metric Transition Systems (MTS)

and in [61] on deterministic game structures. Along with this general approach to the logi-

cal characterization of metrics, [14] proposed an alternative technique: they consider the

boolean-valued logic LTL and only at a later time they assign a real-valued semantics to it,

based on the quantitative properties of processes.

Our contribution

Our contribution to this topic consists in a novel approach to the logical characterization of

behavioral metrics and their kernels on the PTS model that will be obtained by means of

minimal boolean logics. For what concerns the behavioral metrics our characterization tech-

nique can be outlined as follows: ✶✳ Once we have chosen a class L of modal boolean-valued

formulae suitable for the considered semantics, for a process s we identify a special formula

6
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called mimicking formula of s. This is a formula in L that captures the (nondeterministic and

probabilistic) behavior of the process that is relevant for the considered semantics. ✷✳ Then,

we transform the modal logic L into a metric space by introducing a notion of syntactical

distance on formulae. This is a 1-bounded distance assigning to each pair of formulae a

suitable quantitative analogue of their syntactic disparities. ✸✳ We conclude by defining a

logical distance on processes corresponding to the distance between their mimicking for-

mulae and proving that this logical distance characterizes the considered metric semantics.

We will apply this technique to all the behavioral distances proposed in our dissertation

and thus it will allow us to obtain the first example of a spectrum of behavioral distances on

processes obtained directly from modal logics. Moreover, we will show that the kernels of

the considered metrics can be characterized by simply comparing the mimicking formulae

of processes with respect to a proper notion of structural equivalence of formulae.

Summarizing, our approach to the logical characterization of behavioral metrics and

relations comes with four important features:

⋆ We use the same (proper) boolean-valued logic to characterize both the chosen be-

havioral metric and its kernel. Thus if we have a model checking tool built on that

particular boolean-logic, then we should be able to exploit it to obtain a model check-

ing tool for behavioral metrics. Notice that, up-to our knowledge, no model checking

tool has been developed so far for real-valued formulae.

⋆ The distance between two processes can be obtained by simply looking at their mim-

icking formulae, without analyzing any other formula in the logic. This should favor

the development of new algorithms for model checking as well as for a direct compu-

tation of the behavioral metric.

⋆ To establish whether two processes are equivalent, or related by a preorder, we simply

need to investigate the relation between their mimicking formulae, without analyzing

any other formula in the logic.

⋆ Our approach can be easily generalized to the relations in the probabilistic weak linear

time branching time spectrum and to the metrics expressing them.

STRUCTURAL OPERATIONAL SEMANTICS

Structural Operational Semantics (SOS) [138] is nowadays considered the standard frame-

work to define the operational semantics of processes. Briefly, processes are represented as

terms over a proper algebra, giving the abstract syntax of the considered language, and their

transition steps are derived from a transition system specification (TSS) [138], namely a set

of inference rules of the form
premises

conclusion

whose intuitive meaning is that whenever the premises are satisfied, then the transition step

constituting the conclusion can be deduced. More precisely, the set of transitions that can

be deduced, or proved, from the TSS constitutes the LTS generated by the TSS [160].

7
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Equipping processes with a semantics, however, is not the only application of the SOS

framework. One of the main concerns in the development of a meta-theory of process

languages is to guarantee their compositionality, that is to prove the compatibility of the

language operators with the behavioral relation chosen for the application context. In

algebraic terms, this compatibility is known as the congruence (resp. precongruence) property

of the considered behavioral equivalence (resp. preorder) R , which consists in verifying

whether

whenever ti R t ′i for all i = 1, . . . ,n then f (t1, . . . , tn)R f (t ′1, . . . , t ′n) for any operator f .

Thus, the importance of the congruence property is in that it guarantees that the substitution

of a subcomponent of the system with an equivalent one does not affect the behavior of the

system. The SOS framework plays a crucial rôle in supporting the compositional reasoning

and verification: a rule (or specification) format (see [3] for a survey), is a set of syntactical

constraints over inference rules ensuring the desired semantic properties of the transition

system derived from them. Thus, one can prove useful results, as the (pre)congruence prop-

erty, for a whole class of languages at the same time. Many formats have been developed to

guarantee that a behavioral equivalence (resp. preorder) is a congruence (resp. precongru-

ence) for all language operators defined by inference rules satisfying the considered format.

For instance, the De Simone format [63] ensures that trace equivalence is a congruence,

the GSOS format [34] works for bisimilarity and in [33] the ntyft/ntxt format [98] is reduced

to the ready trace format and its variants to guarantee that decorated trace preorders are

precongurences. In the probabilistic setting, considering only congruence formats proposed

on TSSs generating PTSs, we can find a few generalizations of the most common formats

as the PGSOS format [26] and the ntµfθ/ntµxθ format [55], for both of which probabilistic

bisimilarity has been proven to be a congruence, and in [126] a probabilistic version of the

RBB safe format from [81] for (rooted) branching bisimilarity is proposed.

Disregarding for a while whether probability is considered or not, the main question

that needs to be answered is “How can we derive compositional results for a relation from

a rule format?” One possible answer, the one that will be pursued in this thesis, is to

exploit the logical characterization of the considered relation. In [119, 125] a compositional

proof system for HML was provided. The authors observed that since we want systems

implementations to be correct with respect to their specifications, it would be much easier

to reason in a implementation by contexts fashion: instead of extracting an implementation

for the complete system from the specification, it would be preferable to implement first the

behavior of subcomponents, which is extremely simple if compared to the one of the whole

system and so its verification. Thus, to obtain the correctness of the whole system we need

to establish what properties each subcomponent should satisfy in order to guarantee that

the system in which they are combined (or more generally their context) will satisfy some

given property (by the specification). Since the specification of a system can be expressed in

terms of modal formulae, the above statement can be reduced to establish whether given a

formula φ and a context C there are formulae φ1 . . .φn such that

whenever xi |=φi for each i = 1, . . . ,n then C [x1, . . . , xn] |=φ. (1.1)
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The analogy with the congruence property should be clear and it is in fact the reason why

the technique used to obtain this result has been referred to as a compositional proof system.

Roughly speaking, to obtain it in [119, 125] the authors exploited an SOS machinery used to

specify contexts [118]: by means of action transducers they reformulate a given TSS into a

TSS in De Simone format from which the formulae φi required in (1.1) are derived by means

of property transformers.

Inspired by these works, [33] introduced modal decomposition methods. The underlying

idea is the same: reducing the satisfaction problem of a formula for a process to verifying

whether its subprocesses satisfy certain formulae obtained from its decomposition. This

is obtained by the notions of ruloids [34] (an enhanced version of the action transducers

of [119,125]), namely derived inference rules deducing the behavior of process terms directly

from the behavior of the variables occurring in them, and of decomposition mappings (the

property transformers of [119, 125]) associating to each pair term, formula (t ,φ) the set

of formulae that the variables in t have to satisfy to guarantee that t satisfies φ. But the

contribution of [33] and the subsequent works [80,82–85] is not only related to the definition

of the decomposition methods but also to their application. In fact they show that by

combining the logical characterization of a relation, the decomposition of such a logic

and a rule format for the relation it is possible to systematically derive a (pre)congruence

format for that relation directly from its modal characterization. Briefly, it is enough to

guarantee that the construction of the class of ruloids from the considered TSS preserves

the syntactical constraints of the format. At the same time the modal decomposition has to

preserve the logical characterization, that is formulae in the characterizing class L have to

be decomposed into formulae (equivalent to formulae) in L. Then, from the compositional

result (1.1) related to the modal decomposition, we can immediately derive the congruence

property.

Our contribution

We propose the first extension of the research line of [33, 80, 83, 84] to behavioral relations

defined on the PTS model, that is we provide an SOS-driven decomposition method al-

lowing us to derive (pre)congruence formats for probabilistic equivalences and preoders

directly from their logical characterizations. As an example we will analyze in detail the

case of strong probabilistic (bi)similarities, and we will provide a schema to generalize

our results to the weak case. We will consider (subclasses of) a probabilistic extension of

HML with a probabilistic choice modality which provides an adequate characterization

of probabilistic (bi)similarities [66]. Our decomposition on classic HML operators will be

standard, but to deal with the probabilistic choice modality and its decomposition we will

introduce an SOS-like machinery, called distribution specification, by which we syntactically

represent probability distributions as distributions over terms. Thus, we will provide a class

of ruloids built over PGSOS rules and a class of Σ-distribution ruloids built on this new

distribution specification and we will exploit both of them to define the decomposition of

formulae. The congruence results, stating that probabilistic bisimilarity and ready similarity

are (pre)congruences for all operators defined in a specification in PGSOS format and that

probabilistic similarity is a precongruence for all operators defined in a specification in
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positive PGSOS format, are then derived by combining the modal decomposition with the

logical characterization.

Our contribution can be summarized as follows:

⋆ We present new logical characterizations of probabilistic ready similarity and similarity

obtained by means of two sublogics of the probabilistic extension of HML from [66]

characterizing probabilistic bisimilarity.

⋆ We define an SOS-like machinery for the specification of the probabilistic behavior of

processes, which can support the decomposition of any modal logic for PTSs.

⋆ We develop a method for decomposing formulae equipped with a probabilistic choice

modality.

⋆ We derive (pre)congruence formats for probabilistic bisimilarity, ready similarity and

similarity by exploiting our decomposition method and their logical characterizations.

⋆ We sketch how the proposed decomposition method can be generalized to derive

congruence formats for probabilistic weak semantics.

1.2 ORGANIZATION OF THE THESIS

We conclude this introductive Chapter by briefly describing the contents of the upcoming

Chapters, in which we will develop the contributions presented in the previous Section.

Chapter 2 We dedicate this Chapter to the review of the basic notions and notation that

we will use throughout the thesis along with some simple preliminary results.

Chapter 3 In this Chapter we propose an SOS-based method for decomposing modal

formulae capturing the probabilistic (bi)simulation semantics of processes with nondeter-

minism and probability. In detail, we will consider (subclasses of) a probabilistic extension

of the Hennessy-Milner logic developed in [66] for the PTS model, and therefore equipped

with modalities allowing for the specification of the quantitative properties of processes.

In essence, this means that some formulae are evaluated on probability distributions over

processes. In order to decompose this kind of formulae, we introduce an SOS-like machinery,

called distribution specification, in which we syntactically represent open distribution terms

as probability distributions over open process terms. By our decomposition, we obtain

(pre)congruence formats for probabilistic bisimilarity, ready similarity and similarity.

A preliminary version of this chapter appeared as [42].

Chapter 4 In this Chapter we propose original notions of behavioral (hemi)metrics captur-

ing the ready simulation, simulation, (decorated) trace and testing semantics for processes

with nondeterminism and probability. We study the relations among them and also the

bisimilarity metric and we compare all these metrics with respect to their distinguishing

power thus obtaining the first spectrum of behavioral metrics on processes in the PTS model
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partially ordered by the relation ‘makes processes farther than’. Further, we derive an anal-

ogous spectrum on the probabilistic equivalences and preorders constituting the kernels

of these metrics, which can be in turn partially ordered by the relation ‘makes strictly less

identifications than’.

Chapter 5 In this Chapter we propose a logical characterization of branching metrics

(bisimulation, ready simulation and simulation metrics) on image finite processes, obtained

by the probabilistic variant of the Hennessy-Milner logic considered in Chapter 3 enriched

with variables, whose semantics is defined following the equational µ-calculus approach

[120]. Our characterization is based on the novel notions of mimicking formula and distance

on formulae. The former are a weak version of characteristic formulae and allow us to

characterize also probabilistic (ready) similarity and bisimilarity. The latter are 1-bounded

pseudometrics and hemimetrics on formulae measuring their syntactical disparities. The

characterization is then obtained by showing that the chosen behavioral distance between

two processes corresponds to the distance between their mimicking formulae, called logical

distance, for the considered semantics.

A preliminary version of this chapter appeared as [41].

Chapter 6 In this Chapter we exploit the method introduced in Chapter 5 to obtain a

logical characterization of linear metrics (decorated traces and testing metrics) on image

finite processes. Clearly, by means of mimicking formulae we are also able to characterize

the kernels of these metrics. Moreover, we conclude the Chapter by providing the first

example of a spectrum on behavioral metrics on processes in the PTS model obtained

directly from modal logics. More precisely, this spectrum will be the logical analogous of the

spectrum proposed in Chapter 4: we consider the logical distances on processes introduced

in Chapter 5 and in the first part of Chapter 6 and we order them with respect to the relation

‘makes processes farther than’.

Chapter 7 We conclude our dissertation with this Chapter, in which we briefly summarize

the results we have obtained and we discuss their potential future developments along with

new research objectives.
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Background

I
n this chapter we introduce the basic notions and notation that we will use throughout

the thesis as well as some preliminary results.

Briefly, in Section 2.1 we recall Mathematical notions including fixed points theory,

probability spaces and metric spaces with a special focus on the Kantorovich and Hausdorff

metrics. Then, in the three following Sections, we introduce the main characters of this

dissertation. In Section 2.2 we define the nondeterministic probabilistic transition systems

(the PTS model) [145] along with some references to the Structural Operational Semantics

(SOS) [139] theory required to reason about them. In Section 2.3 we discuss behavioral

equivalences and we introduce the bisimilarity metric [64, 72, 157]. Finally, in Section 2.4 we

recall a few basic notions on logical characterizations of behavioral equivalences along with

the modal logic L, which has been defined in [66] to characterize probabilistic bisimilarity.

2.1 MATHEMATICAL BACKGROUND

COMPLETE LATTICES AND FIXED POINTS

Let X be any set. We denote by P(X ) the power set of X . Let ¹⊆ X ×X be a binary relation

such that the pair (X ,¹) is a partially ordered set. For any X ′ ⊆ X an upper bound is an

element x ∈ X such that x ′ ¹ x for all x ′ ∈ X ′ and x̃ ∈ X is the supremum of X ′ if x̃ is the least

upper bound of X ′, that is x̃ is an upper bound of X ′ and x̃ ¹ x for all upper bounds x of X ′.
Conversely, a lower bound of X ′ is an element x ∈ X such that x ¹ x ′ for all x ′ ∈ X ′ and we

call infimum the greatest lower bound of X ′. Finally, we say that C ⊆ X is a chain in X if for

all x, y ∈C either x ¹ y or y ¹ x.

Definition 2.1. A partially ordered set (X ,¹) is said to be a complete lattice if each subset of

X admits a supremum and an infimum in X .

Let (X ,¹) be a complete lattice. We denote the suprema of the subsets of X by the join
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operator
⊔

: P(X ) → X and we denote their infima by the meet operator
d

: P(X ) → X .

Moreover, we denote by ⊥ the bottom element of X , namely ⊥=
d

X . Dually, we denote by

⊤ the top element of X , namely ⊤=⊔

X .

Definition 2.2. Let (X ,¹X ) and (Y ,¹Y ) be two partially ordered sets and consider a function

f : X → Y . We say that f is monotone if it preserves the order over X , namely whenever

x1 ¹X x2 then f (x1) ¹Y f (x2).

A function f : X → Y is called an endofunction whenever X = Y . For an endofunction f

on (X ,¹) an element x ∈ X is (i) a pre-fixed point of f if f (x) ¹ x; (ii) a post-fixed point of f if

x ¹ f (x); (iii) a fixed point of f if x = f (x).

Knaster-Tarski fixed point theorem ([151]). Let (X ,¹) be a complete lattice and let f be a

monotone endofunction on X . Then the set of fixed points of f is a complete lattice (F,¹) and

the least and greatest fixed points are such that:

l
F =

l
{x ∈ X | f (x) ¹ x} and

⊔

F =
⊔

{x ∈ X | x ¹ f (x)}.

We will use inductive definitions of relations or functions, also known as Kleene chains.

To guarantee their convergence to their fixed points we exploit the Kleene fixed point theorem

and a notion of continuity for functions on complete lattices.

Definition 2.3 (Kleene chain). Let (X ,¹) be a complete lattice and let f be a monotone

endofunction on X . The ascending Kleene chain of f is the chain

⊥ ¹ f (⊥) ¹ f
(

f (⊥)
)

¹ . . . ¹ f n(⊥) ¹ . . .

obtained by iterating f on the bottom element ⊥ of X . Analogously, the descending Kleene

chain of f is the chain obtained by iterating f on the top element of the lattice.

Definition 2.4 (Scott-continuity, [130]). Given two complete lattices X and Y , a function

f : X → Y is Scott-continuous if it preserves the suprema of all nonempty chains in X , that is

if for every chain C in X it holds that
⊔

f (C ) = f (
⊔

C ).

Kleene fixed point theorem. Let (X ,¹) be a complete lattice, and let f : X → X be a Scott-

continuous endofunction. Then the least fixed point of f is the supremum of the ascending

Kleene chain of f .

Remark 2.1. Scott-co-continuity is referred to the preservation of all infima, namely a func-

tion f is Scott-co-continuous if
d

f (C ) = f (
d

C ) for every chain C in X . Therefore, the dual

statement of the Kleene fixed point theorem can be easily obtained for Scott-co-continuous

functions over Kleene descending chains.

METRIC SPACES

For a set X , a non-negative function d : X ×X →R
+ is said to be a metric on X whenever it

satisfies the following axioms:

✶✳ Identity of the indiscernibles: d(x, y) = 0 if and only if x = y , for all x, y ∈ X .
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✷✳ Symmetry: d(x, y) = d(y, x), for all x, y ∈ X .

✸✳ Triangular inequality: d(x, y) ≤ d(x, z)+d(z, y), for all x, y, z ∈ X .

By relaxing these axioms we can obtain several notions of generalized metric. In particular,

in this thesis we will consider the notions of pseudometric and hemimetric. We say that

d : X ×X →R
+ is a pseudometric on X if the identity of the indiscernibles is substituted by

✶✬✳ d(x, x) = 0 for all x ∈ X .

If the symmetry axiom is dropped, d is said to be a quasimetric. Finally, we say that d is a

hemimetric (or equivalently a pseudoquasimetric) on X if it is a non-symmetric pseudomet-

ric.

Given a metric (resp: pseudometric, hemimetric) d on X , the pair (X ,d) is called metric

space (resp: pseudometric space, hemimetric space). Moreover, the kernel of a metric (resp:

pseudometric, hemimetric) d on X is defined as the set of pairs of elements in X which are

at distance 0, namely ker (d) = {(x, y) ∈ X ×X | d(x, y) = 0}.

Finally, to stress the fact that a metric (resp: pseudometric, hemimetric) on a set is

bounded from above, we introduce the l-boundedness property: for l ∈R
+, we say that a

metric (resp: pseudometric, hemimetric) d on X is l -bounded if and only if d(x, y) ≤ l for all

x, y ∈ X . The we say that the metric space (X ,d) is bounded if d is l -bounded for some finite

positive real l .

PROBABILITY SPACES

Let X be a countable set. Probability distributions over X are mappings π : X → [0,1] with
∑

x∈X π(x) = 1 that assign to each x ∈ X its probability π(x). Each element x ∈ X is called

event, the set X is the space of events and the pair (X ,π) is a probability space.

For a probability distribution π over X we denote by supp(π) the support of π, namely

supp(π) = {x ∈ X | π(x) > 0}. By ∆(X ) we denote the set of all finitely supported probability

distributions over X . We let π,π′, . . . range over ∆(X ). We remark that in this thesis we will

consider only probability distributions with finite support.

For x ∈ X we denote by δx the Dirac distribution defined by δx(x) = 1 and δx(y) = 0 for

x 6= y . The convex combination
∑

i∈I piπi of a family {πi }i∈I of probability distributions

πi ∈∆(X ) with pi ∈ (0,1] and
∑

i∈I pi = 1 is defined by (
∑

i∈I piπi )(x) =∑

i∈I (piπi (x)) for all

x ∈ X . Finally, we say that two distributions π1,π2 ∈∆(X ) are equal, notation π1 =π2 if for

all x ∈ X we have π1(x) =π2(x).

A matching for distributions π ∈∆(X ),π′ ∈∆(Y ) is a distribution over the product state

space w ∈∆(X ×Y ) with π and π′ as left and right marginal, namely

⋆ for each x ∈ X ,
∑

y∈Y w(x, y) =π(x), and

⋆ for each y ∈ Y ,
∑

x∈X w(x, y) =π′(y).

We let W(π,π′) denote the set of all matchings for π,π′.
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THE KANTOROVICH AND HAUSDORFF METRICS

Assume a metric space (X ,d). We are interested in defining a distance on the probability

distributions over X . Intuitively, such a distance can be obtained by a proper lifting of d ,

which is usually referred to as the ground distance. In the literature we can find several

proposals for metrics on probability distributions (see [142] for a survey). However, to

study the distances on probabilistic systems, researchers have focused on the Kantorovich

(or Wasserstein) metric [110]. The interest in this particular metric stems from optimal

transport theory [163] and its close relation to linear programming. Roughly speaking,

accordingly to the Monge-Kantorovich formulation of the optimal transport problem, the

optimal transport cost for the shipment of goods from producers to consumers, whose

respective spatial distributions are modeled by probability distributions, is given by the

function

C (π,π′) = inf
w∈W(π,π′)

∑

x,y∈X

w(x, y) · c(x, y)

where c(x, y) is the cost for transporting one unit of mass from x to y . Indeed, in this setting

a matching w ∈W(π,π′) may be understood as a transportation schedule describing the

shipment of probability mass from π to π′. Whenever the function c(x, y) is defined in

terms of the ground distance d , the optimal transport cost function C becomes a distance

over probability distributions on X : the Kantorovich metric. For simplicity, we define the

Kantorovich lifting functional on a generic metric d . However, nothing would change in

considering pseudometrics or hemimetrics.

Definition 2.5 (Kantorovich metric, [110]). Assume a metric space (X ,d). The Kantorovich

lifting of d is the metric K(d) : ∆(X )×∆(X ) → [0,1] defined for all π,π′ ∈∆(X ) by

K(d)(π,π′) = min
w∈W(π,π′)

∑

x,y∈X

w(x, y) ·d(x, y)

For any metric d , we call K(d) the Kantorovich metric.

We remark that accordingly to the original definition, we should have defined the Kan-

torovich metric as the infimum over the matchings for π and π′, for any π,π′ ∈ ∆(X ) and

1-bounded metric d . However, the assumption of having only probability distributions

with a finite support guarantees that this infimum is always achieved, since there can be

only finitely many matchings between the two distributions, and therefore it is indeed a

minimum. As a consequence, the continuity of the lifting functional K is guaranteed [154].

The Kantorovich metric satisfies some desirable properties that are particularly feasible

for its use in computer science. For instance, it can be evaluated in polynomial time [12,

136, 158] and moreover it preserves the properties of the ground distance, as shown in the

following Proposition. We remark that the validity of this result would be trivial on Polish

spaces, namely complete separable metric spaces. However, the (pseudo,hemi)metric spaces

that we will consider in this thesis are not guaranteed to be Polish.

Proposition 2.1. Assume a metric (resp. pseudometric, hemimetric) space (X ,d). Then also

(∆(X ),K(d)) is a metric (resp. pseudometric, hemimetric) space. Moreover, if d is l -bounded

then also K(d) is l -bounded.
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Proof. We present only the proof for the general case of d being a metric. The cases of

pseudometrics and hemimetrics are subcases of it and they can be easily derived. We need

to show that K(d) satisfies the three axioms of metrics.

✶✳ Identity of indiscernibles. Firstly we show that for all π ∈∆(X ) we have K(d)(π,π) = 0.

Notice that the function w̄ defined for all x, y ∈ X by

w̄(x, y) =
{

π(x) if x = y

0 otherwise

is a matching for the pair π,π. Then we have

K(d)(π,π) = min
w∈W(π,π)

∑

x,y∈X

w(x, y)d(x, y)

≤
∑

x,y∈X

w̄(x, y)d(x, y)

=
∑

x∈X

π(x)d(x, x)

= 0

where the last step follows by d(x, x) = 0 for all x ∈ X as d is a metric by hypothesis.

Assume that K(d)(π1,π2) = 0. We need to show that this implies that π1 =π2. Let w̃ be

an optimal matching for π1,π2 with respect to d , namely

w̃= arg min
w∈W(π1,π2)

∑

x,y∈X

w(x, y)d(x, y).

Then we have

K(d)(π1,π2) =
∑

x,y∈X

w̃(x, y)d(x, y)

= 0 iff

w̃(x, y) > 0 iff d(x, y) = 0

iff x = y

where the last condition follows by the fact that d is a metric by hypothesis. Therefore,

as π1 us the left marginal of w̃ and π2 is its right marginal, we obtain that for all x ∈ X

π1(x) =
∑

y∈X

w̃(x, y) = w̃(x, x) =
∑

y∈X

w̃(y, x) =π2(x).

✷✳ Symmetry. First of all we observe that given two arbitrary mappings w,w′ : X ×X →
[0,1] with w(x, y) =w′(y, x) for all x, y ∈ X , it holds that

w ∈W(π1,π2) iff w′ ∈W(π2,π1). (2.1)
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Then we have

K(d)(π1,π2) = min
w∈W(π1,π2)

∑

x,y∈X

w(x, y)d(x, y)

= min
w∈W(π1,π2)

∑

x,y∈X

w(x, y)d(y, x) (d is metric)

= min
w′∈W(π2,π1)

∑

x,y∈X

w′(y, x)d(y, x) (by Equation (2.1))

= K(d)(π2,π1).

✸✳ Triangular inequality. Let us prove that for all distributions π1,π2,π3 ∈∆(X )

K(d)(π1,π2) ≤ K(d)(π1,π3)+K(d)(π3,π2). (2.2)

For simplicity, let I , J , H be three finite sets of indexes s.t. supp(π1) = {xi | i ∈ I },

supp(π2) = {x j | j ∈ J } and supp(π3) = {xh | h ∈ H }. Let w1,3 ∈W(π1,π3) be an optimal

matching for π1,π3, namely

K(d)(π1,π3) =
∑

i∈I ,h∈H

w1,3(xi , xh)d(xi , xh)

and let w2,3 ∈W(π2,π3) be an optimal matching for π2,π3, that is

K(d)(π3,π2) =
∑

j∈J ,h∈H

w2,3(xh , x j )d(xh , x j ).

Consider now the function f : I × J ×H → [0,1] defined by

f (i , j ,h) =w1,3(xi , xh) ·w2,3(xh , x j ) · 1

π3(xh)
.

Then, we have

∑

j∈J

f (i , j ,h) =
∑

j∈J

w1,3(xi , xh) ·w2,3(xh , x j ) · 1

π3(xh)

=w1,3(xi , xh) · 1

π3(xh)

∑

j∈J

w2,3(xh , x j )

=w1,3(xi , xh) · 1

π3(xh)
·π3(xh) (by w2,3 ∈W(π2π3))

=w1,3(xi , xh)

namely the projection of f over the first and third components coincides with the

optimal matching for π1,π3. Similarly, we obtain that

∑

i∈I

f (i , j ,h) =w2,3(xh , x j )
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namely the projection of f over the second and third components coincides with the

optimal matching for π2,π3. Moreover, it holds that

∑

j∈J ,h∈H

f (i , j ,h) =
∑

j∈J ,h∈H

w1,3(xi , xh) ·w2,3(xh , x j ) · 1

π3(xh)

=
∑

h∈H

w1,3(xi , xh) · 1

π3(xh)

∑

j∈J

w2,3(xh , x j )

=
∑

h∈H

w1,3(xi , xh) · 1

π3(xh)
·π3(xh)

=
∑

h∈H

w1,3(xi , xh)

=π1(xi ) (by w1,3 ∈W(π1,π3))

and by similar calculations we obtain

∑

i∈I ,h∈H

f (i , j ,h) =π2(x j )

that is f (i , j ,h) is a matching in W(π1,π2). Therefore,

K(d)(π1,π2)

= min
w∈W(π1,π2)

∑

i∈I , j∈J

w(xi , x j )d(xi , x j )

≤
∑

i∈I , j∈J ,h∈H

f (i , j ,h)d(xi , x j )

≤
∑

i∈I , j∈J ,h∈H

f (i , j ,h)
(

d(xi , xh) + d(xh , x j )
)

(d is metric)

=
∑

i∈I , j∈J ,h∈H

f (i , j ,h)d(xi , xh)+
∑

i∈I , j∈J ,h∈H

f (i , j ,h)d(xh , x j )

=
∑

i∈I ,h∈H

(

∑

j∈J

f (i , j ,h)
)

·d(xi , xh)+
∑

j∈J ,h∈H

(

∑

i∈I

f (i , j ,h)
)

·d(xh , x j )

=
∑

i∈I ,h∈H

w1,3(xi , xh)d(xi , xh)+
∑

j∈J ,h∈H

w2,3(xh , x j )d(xh , x j )

= K(d)(π1,π3)+K(d)(π3,π2)

which completes the proof of Eq. (2.2).

To conclude we need to show that whenever d is l-bounded then also K(d) is l-bounded.

We have

K(d)(π1,π2) = min
w∈W(π1,π2)

∑

x,y∈X

w(x, y)d(x, y)

≤ min
w∈W(π1,π2)

∑

x,y∈X

w(x, y) · l (d is l-bounded)

= l (
∑

x,y∈X

w(x, y) = 1 for all w)
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�

So far, we have seen that given a metric space (X ,d) through the Kantorovich functional

we can lift the ground distance d to a distance on ∆(X ). However, we will be also interested in

evaluating distances between sets of probability distributions. For this reason we introduce

the Hausdorff metric, which allows us to lift the ground distance d to a distance on P(X ).

First of all, we recall the notion of distance function, namely the distance between a point

x and a set Y , given by the distance between x and the element of Y which is closest to it

with respect to the ground distance.

Definition 2.6 (Distance function). Consider a metric space (X ,d). Let Y ⊆ X . Given any

x ∈ X we denote by d(x,Y ) the distance between the point x and the set Y defined by

d(x,Y ) = inf
y∈Y

d(x, y).

The Hausdorff metric between sets X ,Y is then obtained as the maximum between the

supremum over X of the distance functions between any point of X and the set Y , and the

symmetric version obtained by switching the rôles of X and Y . Intuitively, the Hausdorff

metric models the longest distance a player can be forced to travel by an adversary who

chooses a point in one of the two sets, from where they must travel to the other set.

Definition 2.7 (Hausdorff metric). Let d : X ×X →R
+ be a metric. The Hausdorff lifting of d

is the metric H(d) : P(X )×P(X ) →R
+ defined for all X1, X2 ⊆ X by

H(d)(X1, X2) = max

{

sup
x1∈X1

inf
x2∈X2

d(x1, x2), sup
x2∈X2

inf
x1∈X1

d(x2, x1)

}

For any metric d , we call H(d) the Hausdorff metric.

We remark that by convention we assume inf; = supx,y∈X d(x, y) and sup; = 0.

The Hausdorff lifting preserves the properties of the ground distance d . Notice that this

proposition would be trivial on compact metric spaces. However, the (pseudo)metric spaces

that we will consider in this thesis are not guaranteed to be compact.

Proposition 2.2. Assume a bounded metric space (X ,d). Then, given C(X ) ⊆P(X ) set of sub-

sets of X which are closed with respect to the topology induced by d, we have that (C(X ),H(d))

is a metric space. Moreover if (X ,d) is a pseudometric space, then (P(X ),H(d)) is a pseudo-

metric space. Finally, if d is l -bounded then also H(d) is l -bounded.

Proof. We will show only the general case for d being a metric. Although the cases of

pseudometrics and hemimetrics can be easily derived from it, a few remarks are needed.

Firstly, when considering pseudometrics (resp. hemimetrics) we can drop the requirement

on sets to be closed, as this property in necessary only to guarantee the satisfaction of

the identity of the indiscernibles axiom. Moreover, even if d is a hemimetric, H(d) will

be a pseudometric as the symmetry of H(d) is imposed by the definition of the Hausdorff

functional and does not depend on the symmetry properties of d .

✶✳ Identity of the indiscernibles. We recall that closed subsets of a metric space are closed

with respect to converging sequences, which means that they contain all their limit
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points. Thus, as suprema e infima are limit points, we have

H(d)(X1, X2)

= max

{

sup
x1∈X1

inf
x2∈X2

d(x1, x2), sup
x2∈X2

inf
x1∈X1

d(x2, x1)

}

= max

{

max
x1∈X1

min
x2∈X2

d(x1, x2), max
x2∈X2

min
x1∈X1

d(x2, x1)

}

= 0 iff max
x1∈X1

min
x2∈X2

d(x1, x2) = 0 and max
x2∈X2

min
x1∈X1

d(x2, x1) = 0

iff ∀x1 ∈ X1 ∃x2 ∈ X2 st. d(x1, x2) = 0 and ∀x2 ∈ X2 ∃x1 ∈ X1 st. d(x2, x1) = 0

iff ∀x1 ∈ X1 ∃x2 ∈ X2 st. x1 = x2 and ∀x2 ∈ X2 ∃x1 ∈ X1 st. x2 = x1

iff X1 = X2

where the second last step follows by d being a metric.

✷✳ Symmetry. As previously outlined, the symmetry of H(d) is immediate from the

definition of the Hausdorff functional (Definition 2.7) and does not actually depend

on the properties of d .

✸✳ Triangular inequality. We present the proof for the general case in which the subsets

are not necessarily closed, namely we prove that for all sets X1, X2, X3 ∈P(X )

H(d)(X1, X2) ≤ H(d)(X1, X3)+H(d)(X3, X2). (2.3)

For simplicity, we let X1 = {xi | i ∈ I }, X2 = {x j | j ∈ J } and X3 = {xh | h ∈ H }. Firstly, we

notice that clearly

sup
i∈I

inf
h∈H

d(xi , xh) ≤ H(d)(X1, X3) (2.4)

sup
h∈H

inf
j∈J

d(xh , x j ) ≤ H(d)(X3, X2). (2.5)

As a first step, we aim to show that

sup
i∈I

inf
j∈J

d(xi , x j ) ≤ H(d)(X1, X3)+H(d)(X3, X2). (2.6)

By definition of infimum, for each ε1 > 0 we have that

for each i ∈ I there is an hi ∈ H s.t. d(xi , xhi
) < inf

h∈H
d(xi , xh)+ε1 (2.7)

and, analogously, for each ε2 > 0 we have that

for each h ∈ H there is an jh ∈ J s.t. d(xh , x jh
) < inf

j∈J
d(xh , x j )+ε2. (2.8)

In particular given i ∈ I let hi ∈ H be the index realizing Equation (2.7), with respect to

ε1, and let jhi
∈ J be the index realizing Equation (2.8) with respect to hi and ε2. Then

we have

d(xi , x jhi
)
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≤d(xi , xhi
)+d(xhi

, x jhi
) (d is metric)

<
(

inf
h∈H

d(xi , xh)+ε1

)

+
(

inf
j∈J

d(xhi
, x j )+ε2

)

(by Eq. 2.7 and 2.8)

≤
(

sup
i∈I

inf
h∈H

d(xi , xh)+ε1

)

+
(

sup
h∈H

inf
j∈J

d(xh , x j )+ε2

)

from which we gather

inf
j∈J

d(xi , x j ) ≤ d(xi , x jhi
) < sup

i∈I

inf
h∈H

d(xi , xh)+ sup
h∈H

inf
j∈J

d(xh , x j )+ε1 +ε2.

Thus, since i was arbitrary, we obtain

sup
i∈I

inf
j∈J

d(xi , x j ) ≤ sup
i∈I

inf
h∈H

d(xi , xh)+ sup
h∈H

inf
j∈J

d(xh , x j )+ε1 +ε2

and since this relation holds for any ε1 and ε2 we can conclude that

sup
i∈I

inf
j∈J

d(xi , x j ) ≤ sup
i∈I

inf
h∈H

d(xi , xh)+ sup
h∈H

inf
j∈J

d(xh , xi ).

Then, by the inequalities in Equation (2.4) and Equation (2.5) we can conclude that

sup
i∈I

inf
j∈J

d(xi , x j ) ≤ H(d)(X1, X3)+H(d)(X3, X2)

and thus Equation (2.6) holds. An analogous reasoning, given by switching the roles

of i and j in the steps above, allows us to infer

sup
j∈J

inf
i∈I

d(xi , x j ) ≤ H(d)(X2, X3)+H(d)(X3, X1). (2.9)

Finally, we have

H(d)(X1, X2)

= max{sup
i∈I

inf
j∈J

d(xi , x j ),sup
j∈J

inf
i∈I

d(x j , xi )}

≤ H(d)(X1, X3)+H(d)(X3, X2)

where the last relation follows by Equations (2.6) and (2.9).

�

2.2 THE SOS FRAMEWORK

Structural Operational Semantics (SOS) was introduced in [138, 139] as “an operational

method of specifying semantics based on syntactic transformations of programs and simple

operations on discrete data”. Due to its intuitive appeal and flexibility, SOS is nowadays the

standard framework used to equip process algebras and specification languages with an
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s
a b b

1/3 1/6 1/2
 

1

s1 nil s2 s3

Figure 2.1: An example of a nondeterministic probabilistic process.

operational semantics. Roughly speaking, the behavior of a system is modeled as a process

graph, mainly transition systems [111], whose vertices, called processes, are defined as closed

terms over a proper algebra and whose edges, called transitions, are derived from a set of

syntax-driven inference rules, the transition system specification [138].

In this Section we will recall only those notions and results necessary to our dissertation.

We refer the interested reader to [3] for a complete presentation of the SOS framework.

NONDETERMINISTIC PROBABILISTIC LABELED TRANSITION SYSTEMS

As semantic model we consider that of nondeterministic probabilistic transition systems [145]

which combine labeled transition systems (LTSs) [111] and discrete time Markov chains

(MCs) [100, 150], allowing us to model reactive behavior, nondeterminism and probability.

As state space we take a set S , whose elements are called processes, ranged over by s, t , . . .

Definition 2.8 (PTS, [145]). A nondeterministic probabilistic labeled transition system (PTS)

is a triple (S ,A,−→), where: (i) S is a countable set of processes, (ii) A is a countable set of

actions, and (iii) −→⊆S×A×∆(S) is a transition relation.

We call (s, a,π) ∈−→ a transition, and we write s
a−→ π for (s, a,π) ∈−→ whose meaning is

that process s can reach the probability distribution π by the execution of action a. We write

s
a−→ if there is a π ∈∆(S) such that s

a−→π, and s
a−→6 otherwise. Sometimes, we will refer to

s
a−→ as an a-move of s.

We define the set of initials of process s as the set init(s) = {a ∈A | s
a−→} of the actions

that can be performed by s. For each action a ∈A, the set of a-derivatives of process s is

defined as the set der(s, a) = {π ∈ ∆(S) | s
a−→ π} of distributions reachable from s through

action a. We say that a process s ∈S is image-finite if der(s, a) is finite for all a ∈ init(s) [104].

We say that a PTS P = (S ,A,−→) is image-finite if all processes in S are.

Remark 2.2. We would like to point out that although also MCs allow to express both probabil-

ity and nondeterminism, their combination with LTSs actually results into a more expressive

model. In fact, in MCs probability and nondeterminism are independent from each other:

probabilistic choices are determined by a transition probability function which depends

solely on the current process in the graph, whereas nondeterminism is expressed as a set

of labels assigned to each state. Conversely, in PTSs we have that each resolution of non-

determinism for a process in the graph leads to a particular probability distribution over

processes. This means that all the results we will obtain for PTSs can be trivially adapted to

the case of MCs, but the converse is not true in general.
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Remark 2.3. To depict the dual nature of PTSs, in the figures we will use black arrows exiting

from a process to represent its nondeterministic choices, and will use dotted black arrows

to represent the probability distributions that are reached, as shown in Figure 2.1. As an

example, we have represented a process s which can execute action a and then reach process

s1 with probability 1/3. Moreover, to simplify the figures, we represent the Dirac distribution

on the process nil, namely the process which cannot execute any action, as .

TERM ALGEBRAS

In order to syntactically represent the configurations that are reachable by our systems, the

notion of signature plays a central rôle.

Definition 2.9 (Signature, [3]). A signature is given by a countable set Σ of operators together

with rank function rk: Σ→N which assigns to each operator the number of its arguments.

We let f range over Σ and n range over the rank of f . Operators of rank 0 are called

constants, while operators of rank 1 and 2 are called, resp., unary and binary operators.

Given a signature Σ, a Σ-algebra is a pair 〈S,ΣS〉 where S is a set called carrier and

ΣS is a set of functions { fS : Sn → S | f ∈ Σ and rk( f ) = n} called interpretations. A special

interpretation for a signature Σ is its term algebra. This algebra is a purely syntactic object:

the carrier is the set of terms built over symbols in Σ and operators only syntactically

manipulate them.

Definition 2.10 (Process terms, [3]). Assume a signature Σ and a countable set of (process)

variables Vs disjoint from Σ. For a set of variables V ⊆Vs , the set ❚(Σ,V ) of (process) terms

over Σ and V is defined as the least set such that:

✶✳ x ∈❚(Σ,V ) for all x ∈V , and

✷✳ f (t1, . . . , tn) ∈❚(Σ,V ) whenever f ∈Σ and t1, . . . , tn ∈❚(Σ,V ).

By T (Σ) we denote the set of the closed terms ❚(Σ,;). By T(Σ) we denote the set of the open

terms ❚(Σ,Vs).

For a constant c ∈ Σ, the term c() is abbreviated by c. For f ∈ Σ and πi ∈ ∆(T (Σ)),

f (π1, . . . ,πn) is the probability distribution defined by

f (π1, . . . ,πn)(t ) =
{

∏n
i=1πi (ti ) if t = f (t1, . . . , tn)

0 otherwise.

Due to the dual nature of PTSs, we need also syntactic expressions that denote probability

distributions.

Definition 2.11 (Distribution terms, [55]). Assume a countable set of distribution variables

Vd , let V denote the set of process and distribution variables V = Vs ∪Vd , and let µ,ν, . . .

range over Vd and ζ range over V . The set of distribution terms over Σ, Vs ⊆Vs and Vd ⊆Vd ,

notation❉❚(Σ,Vs ,Vd ), is the least set satisfying:

✶✳ {δt | t ∈❚(Σ,Vs)} ⊆❉❚(Σ,Vs ,Vd ),
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✷✳ Vd ⊆❉❚(Σ,Vs ,Vd ),

✸✳ f (Θ1, . . . ,Θn) ∈❉❚(Σ,Vs ,Vd ) whenever f ∈Σ and Θi ∈❉❚(Σ,Vs ,Vd ), and

✹✳

∑

i∈I piΘi ∈❉❚(Σ,Vs ,Vd ) whenever Θi ∈❉❚(Σ,Vs ,Vd ) and pi ∈ (0,1] with
∑

i∈I pi = 1.

We write DT(Σ) for ❉❚(Σ,Vs ,Vd ), i.e. the set of all open distribution terms, and DT (Σ) for

❉❚(Σ,;,;), i.e. the set of all closed distribution terms.

Distribution terms have the following meaning. An instantiable Dirac distribution δt

instantiates to δt ′ if t instantiates to t ′. A distribution variable µ ∈ Vd is a variable that

takes values from ∆(T (Σ)). Case (3) lifts the structural inductive construction of terms to

distribution terms. Case (4) allows us to construct convex combinations of distributions.

By var(t) (resp. var(Θ)) we denote the set of the variables occurring in term t (resp.

distribution term Θ).

PROBABILISTIC TRANSITIONS SYSTEM SPECIFICATIONS

PTSs are defined by means of SOS rules, which are syntax-driven inference rules allowing

us to infer the behavior of terms inductively with respect to their structure. Here we con-

sider rules in the probabilistic GSOS format [25, 54], which allow for specifying most of

probabilistic process algebras [92, 94].

A positive (resp. negative) literal is an expression of the form t
a−→ Θ (resp. t

a−→6 ) with

t ∈T(Σ), a ∈A and Θ ∈DT(Σ). The literals t
a−→Θ and t

a−→6 are said to deny each other.

Definition 2.12 (PGSOS rules, [54]). A PGSOS rule r has the form:

{xi
ai ,m−−−→µi ,m | i ∈ I ,m ∈ Mi } {xi

ai ,n−−−→6 | i ∈ I ,n ∈ Ni }

f (x1, . . . , xn)
a−→Θ

where f ∈Σ, I = {1, . . . ,n}, Mi , Ni are finite indexes sets, ai ,m , ai ,n , a ∈A are actions, xi ∈Vs

and µi ,m ∈Vd are variables and Θ ∈DT(Σ) is a distribution term. Furthermore, it is required

that (i) all µi ,m for i ∈ I and m ∈ Mi are distinct, (ii) all x1, . . . , xn are distinct, and (iii) var(Θ) ⊆
{µi ,m | i ∈ I ,m ∈ Mi }∪ {x1, . . . , xn}.

A PGSOS probabilistic transition system specification (PGSOS-PTSS) is a tuple P = (Σ,A,R),

with Σ a signature, A a countable set of actions and R a finite set of PGSOS rules.

For a PGSOS rule r , the positive (resp. negative) literals above the line are the posi-

tive premises, notation pprem(r ) (resp. negative premises, notation nprem(r )). The literal

f (x1, . . . , xn)
a−→Θ is called the conclusion, notation conc(r ), the term f (x1, . . . , xn) is called

the source, notation src(r ), and the distribution term Θ is called the target, notation trg(r ).

A PGSOS rule r is said to be positive if nprem(r ) = ;. Then we say that a PGSOS-PTSS

P = (Σ,A,R) is positive if all the PGSOS rules in R are positive.

We notice that the constraints (i)–(iii) in Definition 2.12 above, are exactly the constraints

of the nondeterministic GSOS format [34] with the difference that we have distribution

variables as right hand sides of positive literals.
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Chapter 2. Background

Example 2.1. The operators of synchronous parallel composition | and probabilistic alterna-

tive composition +p , with p ∈ (0,1], are specified by the following PGSOS rules:

x
a−→µ y

a−→ ν

x | y
a−→µ | ν

x
a−→µ y

a−→6
x +p y

a−→µ

x
a−→6 y

a−→ ν

x +p y
a−→ ν

x
a−→µ y

a−→ ν

x +p y
a−→ pµ+ (1−p)ν

.

�

A PTS is derived from a PTSS through the notions of substitution and proof.

A substitution is a mapping σ : V → T(Σ)∪DT(Σ) such that σ(x) ∈ T(Σ) if x ∈ Vs and

σ(µ) ∈DT(Σ) if µ ∈Vd . It extends to terms, literals and rules by element-wise application. A

substitution is closed if it maps variables to closed terms. A closed substitution instance of a

literal (resp. PGSOS rule) is called a closed literal (resp. closed PGSOS rule).

Definition 2.13 (Proof, [160]). A proof from a PTSS P = (Σ,A,R) of a closed literal α is a

well-founded, upwardly branching tree, with nodes labeled by closed literals, such that the

root is labeled α and, if β is the label of a node q and K is the set of labels of the nodes

directly above q, then:

⋆ either β is positive and K/β is a closed substitution instance of a rule in R,

⋆ or β is negative and for each closed substitution instance of a rule in R whose conclu-

sion denies β, a literal in K denies one of its premises.

A literal α is provable from P , notation P ⊢α, if there exists a proof from P of α.

We have that each PGSOS-PTSS P is strictly stratifiable [160] which implies that P induces

a unique model corresponding to the PTS (T (Σ),A,−→) whose transition relation −→ contains

exactly the closed positive literals provable from P . Moreover, the existence of a stratification

implies that P is also complete [160], thus giving that for any term t ∈ T (Σ) either P ⊢ t
a−→π

for some π ∈ ∆(T (Σ)) or P ⊢ t
a−→6 , namely the PTS induced by P contains literals that do

not deny each other [34]. In particular, the notion of provability in Definition 2.13 (which is

called supported in [160]) subsumes the negation as failure principle of [50] for the derivation

of negative literals: for each closed term t we have that P ⊢ t
a−→6 if and only if P 6⊢ t

a−→π for

any distribution π ∈∆(T (Σ)).

2.3 HOW TO COMPARE THE BEHAVIOR OF PROCESSES?

Behavioral equivalences and preorders were introduced as a simple and elegant proof

methodology for proving process equivalence and preorder resp., namely for establishing

whether the behavior of two processes cannot be distinguished by an external observer.

In the previous Section 2.2, we have recalled that the behavior of processes is represented

by a process graph, which, in our setting, is defined by the PTS model. It is then natural

to obtain a comparison of the behavior of processes by comparing the respective process

graphs. However, the knowledge of an external observer on the structure of a process

graph should abstract away from the irrelevant information on the way processes compute

and moreover is limited by the observations that they can make on it. Clearly, different
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2.3. How to compare the behavior of processes?

kinds of observations lead to different kinds of behavioral relations (called accordingly

observational relations in [102]) as (bi)simulations [10, 29, 103, 123, 126, 145, 146], (decorated)

traces [29, 31, 144] and testing [29, 31, 51, 69, 95, 164]

A common feature to several notions of behavioral relation so obtained is that they relate

processes that behave exactly the same. However, the values of the probability weights

assigned in the PTS derive from statistical samplings or measures on physical systems and

thus they are inevitably subject to errors and approximations. Consequently, one can be

interested to know whether the behavior of two processes is similar up-to some tolerance

or, more simply, how far the behavior of two processes is apart. For this reason, along with

relations, the so called behavioral metrics [13,14,59,61,72,73,96,114,115,122,148,157], have

been introduced. They are 1-bounded metrics (as well as pseudometrics, hemimetrics,. . . )

quantifying the behavioral distance between two processes.

In this Section, we recall some basic notions on probabilistic bisimulation [123], ready

simulation and simulation [146], and the most studied behavioral (pseudo)metric: the

bisimilarity metric [58, 64, 72, 91–94, 129, 157].

PROBABILISTIC (BI)SIMULATION

A probabilistic bisimulation is an equivalence over S that equates processes s, t if they

can mimic each other’s transitions and evolve to distributions related by the same relation.

Hence, we need to lift relations over processes to relations over distributions.

Definition 2.14 (Relation lifting, [68]). The lifting of a relation R ⊆ S ×S is the relation

R† ⊆ ∆(S)×∆(S) with πR†π′ whenever there is a set of indexes I with (i) π = ∑

i∈I piδsi
,

(ii) π′ =∑

i∈I piδti
and (iii) si R ti for all i ∈ I .

We recall some equivalent definitions to Definition 2.14 which will be useful in our

proofs.

Proposition 2.3 ([66, Proposition 2.3]). Consider a relation R ⊆S×S . Then R† ⊆∆(S)×∆(S)

is the smallest relation satisfying

✶✳ sR t implies δs R
†δt ;

✷✳ πi R
†π′

i
for all i ∈ I , implies (

∑

i∈I piπi )R† (
∑

i∈I piπ
′
i
), for any set of indexes I with

∑

i∈I pi = 1.

Proposition 2.4 ( [68, Proposition 1]). Consider two sets X ,Y , Let π ∈ ∆(X ),π′ ∈ ∆(Y ) and

R ⊆ X×Y . Then πR†π′ if and only if there is a matchingw ∈W(π,π′) (called weight function

in [68]) such that

(i) for each x ∈ X ,
∑

y∈Y w(x, y) =π(x);

(ii) for each y ∈ Y ,
∑

x∈X w(x, y) =π′(y);

(iii) for each x ∈ X , y ∈ Y , whenever w(x, y) > 0 then xR y.

Moreover, we propose another alternative definition equivalent to Definition 2.14, as it

will simplify the reasoning in some of the upcoming proofs.
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Figure 2.2: Processes s, t ∈S are probabilistic bisimilar.

Definition 2.15. Let X be any set. Consider a relation R ⊆ X ×X . Then the lifting of R is the

relation R† ⊆∆(X )×∆(X ) with πR†π′ if whenever π=∑

i∈I piδxi
then π′ =∑

i∈I , ji∈Ji
p ji

δy ji

with
∑

ji∈Ji
p ji

= pi and xi R y ji
for all ji ∈ Ji .

Proposition 2.5. For any set X , the relation R† ⊆∆(X )×∆(X ) defined in Definition 2.15 is

equivalent to the lifting R† defined in Definition 2.14.

Proof. Let us consider the probability distributions π=∑

i∈I piδxi
and π′ =∑

j∈J p jδy j
.

Assume first that πR†π′ in the sense of Definition 2.15. Then from
∑

ji∈Ji
p ji

= pi we

can directly infer that π = ∑

i∈I , ji∈Ji
p ji

δxi
. Summarizing, we have (i) π = ∑

i∈I , ji∈Ji
p ji

δxi
,

(ii) π′ =∑

i∈I , ji∈Ji
p ji

δy ji
, (iii) xi R y ji

for all ji ∈ Ji , i ∈ I , and therefore we can conclude that

πR†π′ in the sense of Definition 2.14.

Assume now that πRπ′ in the sense of Definition 2.14, namely there exists a set of

indexes H such that π=∑

h∈H phδxh
, π′ =∑

h∈H phδyh
and xh R yh for all h ∈ H . Then Defi-

nition 2.15 is satisfied by taking Ji = {h ∈ H | xh = xi } for all i ∈ I . �

Definition 2.16 (Probabilistic (bi)simulations, [123, 145]). Assume a PTS (S ,A,−→). Then:

✶✳ A binary relation R ⊆S ×S is a probabilistic simulation if whenever sR t , for each

s
a−→πs there is a transition t

a−→πt such that πs R
†πt .

✷✳ A probabilistic simulation R is a probabilistic ready simulation if whenever sR t , s
a−→6

implies t
a−→6 .

✸✳ A probabilistic bisimulation is a symmetric probabilistic simulation.

The union of all probabilistic simulations (resp.: ready simulations, bisimulations) is the

greatest probabilistic simulation (resp.: ready simulation, bisimulation), it is denoted by ⊑
(resp.: ⊑r, ∼), it is called probabilistic similarity (resp.: ready similarity, bisimilarity), and is a

preorder (resp.: preorder, equivalence).

Example 2.2. Consider the processes s, t ∈S represented in Figure 2.2. We have that s ∼ t . It

is immediate to verify that processes t1, t2, t3 are all bisimilar to process s1, since they can

execute only b-labeled transitions reaching with probability 1 the process nil, namely the

process which cannot execute any action. As a consequence, we can directly conclude that

δs1 ∼† δt3 . Likewise, it is quite easy to see that the Dirac distribution on s1 can be rewritten as
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2.3. How to compare the behavior of processes?

the convex combination δs1 = 3
4
δs1 + 1

4
δs1 . Hence if we let π= 3

4
δt1 + 1

4
δt2 be the probability

distribution to which process t evolves by executing the leftmost a-labeled transition, from

s1 ∼ t1 and s1 ∼ t2 we can conclude that δs1 ∼† π and thus s ∼ t . �

These equivalences and preorders are approximated by relations that consider only the

behavior of the first k transitions steps.

Definition 2.17 (Up-to-k (bi)simulations, [17, 104]). Assume a PTS (S ,A,−→). Then:

✶✳ The family of the up-to-k simulations ⊑k , for k ∈N, is defined inductively as:

❛✳ ⊑0=S×S ;

❜✳ s ⊑k+1 t iff whenever s
a−→πs there is a transition t

a−→πt such that πs ⊑†
k
πt .

✷✳ The family of the up-to-k ready simulations ⊑r
k

, for k ∈N, is defined inductively as:

❛✳ ⊑r
0=S×S ;

❜✳ s ⊑r
k+1

t iff whenever s
a−→πs there is a transition t

a−→πt such that πs⊑r
k

†πt , and

whenever s
a−→6 then t

a−→6 .

✸✳ The up-to-k bisimulation ∼k is the kernel of ⊑k .

Moreover, we define ⊑ω=
⋂

k≥0

⊑k , ⊑r
ω=

⋂

k≥0

⊑r
k , and ∼ω=

⋂

k≥0

∼k .

Proposition 2.6 ([104]). On image-finite PTSs, the relation ⊑ω (resp.: ⊑r
ω, ∼ω), coincides with

⊑ (resp.: ⊑r, ∼).

BISIMULATION METRICS

The quantitative analogue of the bisimulation game is defined by means of a functional B

over the lattice ([0,1]S×S ,¹). By means of a discount factor λ ∈ (0,1], B allows us to specify

how much the behavioral distance of future transitions is taken into account to determine

the distance between two processes [60,72]. The discount factor λ= 1 expresses no discount,

meaning that the differences in the behavior between s and t are considered irrespective of

after how many steps they can be observed.

Definition 2.18 (Bisimulation metric functional, [64]). Let B : [0,1]S×S → [0,1]S×S be the

function defined by

B(d)(s, t ) = sup
a∈A

{H(λ ·K(d))(der(s, a),der(t , a))}

for d : S×S → [0,1] and s, t ∈S , with (λ ·K(d))(π,π′) =λ ·K(d)(π,π′).

We remark that since the sets der(s, a) and der(t , a) are finite for all a ∈A, s, t ∈S , due to

the image-finiteness assumption, the suprema and infima in the definition of the Hausdorff

pseudometric are always achieved, thus becoming maxima and minima, respectively. Hence,

considering that the lifting functional K is continuous, the continuity of the lifting functional

H is guaranteed [154].
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Figure 2.3: The bisimilarity metric assigns distance dλ(s, t ) = 3
4
λ to processes s, t ∈S .

It is not hard to show that B is monotone. Then, since ([0,1]S×S ,¹) is a complete lattice,

by the Knaster-Tarski theorem B has the least fixed point. Bisimulation metrics are the

1-bounded pseudometrics being prefixed points of B [64]. The bisimilarity metric is defined

as the least fixed point of B, which is also the least prefixed point, and is a 1-bounded

pseudometric [64]. Hence, bisimilarity metric is the least bisimulation metric.

Definition 2.19 (Bisimulation metric, [64]). A 1-bounded pseudometric d : S×S → [0,1] is

a bisimulation metric if and only if B(d) ¹ d . The least fixed point of B is denoted by dλ and

called the bisimilarity metric.

Example 2.3. Consider the process s ∈S from previous Example 2.2 and the process t ∈S ,

both represented in Figure 2.3. Assume a 1-bounded pseudometric d with d(nil,nil) =
d(s1, t2) = d(s1, t3) = 0. It is then immediate to see that B(d)(s1, t2) = B(d)(s1, t3) = 0 and

B(d)(s1, t1) = B(d)(s1, t4) = 1. Furthermore, let der(t , a) = {π1,π2} with π1 = 3
4
δt1 + 1

4
δt2 and

π2 = 1
2
δt3+ 1

2
δt4 . Then we have that K(d)(δs1 ,π1) = 3

4
by the matchingw1 ∈W(δs1 ,π1) defined

by w(s1, t1) = 3
4

and w(s1, t2) = 1
4

. Analogously, we obtain K(d)(δs1 ,π2) = 1
2

by the matching

w2 ∈W(δs1 ,π2) defined byw(s1, t3) = 1
2

andw(s1, t4) = 1
2

. Then the Hausdorff lifting allows us

to capture the distance between the nondeterministic choices in the sense that, since s has

a unique choice, the nondeterministic evolution of t through the leftmost or the rightmost

branch determines the distance between t and s, namely B(d)(s, t) = max{ 3
4
λ, 1

2
λ} = 3

4
λ.

Hence, the 1-bounded pseudometric d is a bisimulation metric if it satisfies d(s1, t1) =
d(s1, t4) = 1 and d(s, t) ≥ 3

4
λ. Furthermore the bisimilarity metric, as the fixed point of

functional B, assigns to processes s, t the distance dλ(s, t ) = 3
4
λ. �

The kernel of dλ is the probabilistic bisimulation, namely bisimilar processes are at

distance 0.

Proposition 2.7 ([155]). For processes s, t ∈S , dλ(s, t ) = 0 if and only if s ∼ t .

The functional B allows us to define a notion of distance between processes that consid-

ers only the first k trasnsition steps.

Definition 2.20 (Up-to-k bisimilarity metric, [72]). We define the up-to-k bisimilarity metric

dk
λ

for k ∈N by dk
λ
= Bk (0).

Due to the continuity of the lifting functionals K and H, we can infer that also the

functional B is continuous, besides monotone, thus ensuring that the closure ordinal of B is

ω [154]. Hence, the up-to-k bisimilarity metrics converge to the bisimilarity metric when

k →∞.

30



2.4. Logical characterizations

Proposition 2.8 ([154]). Assume an image-finite PTS such that for each transition s
a−→π we

have that the probability distribution π has finite support. Then dλ = limk→∞ dk
λ

.

We also recall the following Lemma from [89], which will be useful in some proofs.

Lemma 2.9 ([89]). Let s and t be two processes such that init(s) 6= init(t ). Then, for all k > 0 it

holds that dk
λ

(s, t ) = 1.

2.4 LOGICAL CHARACTERIZATIONS

Modal logics are another tool that we can use to specify and compare the behavior of

processes as, in particular, they allow for an immediate expression of the desired properties

of processes. The logical characterization of a behavioral relation consists then in proving

both: the fact that the logic is as expressive as the relation and that the relation preserves the

properties of the processes, as expressed by the logic.

As discussed in Chapter 1, one of the contributions of this thesis consists in the definition

of a general approach to the logical characterization of behavioral metrics. However, to

obtain it we must first recall a few base notions on logical characterization of relations, that

will be useful for our dissertation.

ADEQUATE VS EXPRESSIVE CHARACTERIZATIONS

Since the seminal work [102] on the Hennessy-Milner logic, the strategy used to obtain

logical characterizations of behavioral relations has been pretty much always the same:

firstly we identify a process with the properties it enjoys and then we prove the relation

between processes by checking whether they satisfy the same properties. Accordingly to

which method we use to determine the set of properties satisfied by a process, we obtain

two different kinds of logical characterization.

Using the terminology of [141], we say that a characterization is adequate for a behavioral

relation R if we obtain that two processes s, t are related by R if and only if they satisfy the

same formulae in the considered logic.

Conversely, a characterization is said to be expressive for R if for each process s we can

construct a particular formula φs in the logic, called the characteristic formula of s for R [97],

which is such that any process t is in relation R with s if and only if t satisfies φs . Roughly

speaking, the characteristic formula of s for R can be considered as the representative of

the equivalence (or preorder) class of s. Intuitively, the characteristic formula for R may

not express all the properties satisfied by a process, but it subsumes all the properties whose

satisfiability is discriminating with respect to R .

Adequate characterizations are particularly useful in their contrapositive version: when-

ever there exists a formula that is satisfied by process s but not by process t , then we can

immediately conclude that s, t cannot be equivalent (or in the considered preorder). How-

ever, an adequate characterization would potentially require to check for infinitely many

formulae in order to establish the behavioral relation over processes. This is not the case

of expressive characterizations, in which it is sufficient to check for the satisifiability of a
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single formula. Indeed, the construction of characteristic formulae is neither immediate nor

always possible.

THE MODAL LOGIC L

As a logic expressing behavioral properties over terms, we consider the modal logic L of [66],

which extends the Hennessy-Milner Logic [102] with a probabilistic choice modality.

Definition 2.21 (Modal logic L, [66]). The classes of state formulae Ls and distribution

formulae Ld over A are defined by the following BNF-like grammar:

Ls : ϕ ::= ⊤ | ¬ϕ |
∧

j∈J

ϕ j | 〈a〉ψ

Ld : ψ ::=
⊕

i∈I

riϕi

where: (i) ϕ,ϕi ,ϕ j range over Ls, (ii) ψ ranges over Ld, (iii) a ∈ A, (iv) J is an at most

countable set of indexes with J 6= ;, and (v) I is a finite set of indexes with I 6= ;, ri ∈ (0,1]

for each i ∈ I and
∑

i∈I ri = 1.

We shall write ϕ1 ∧ϕ2 for
∧

j∈J ϕ j with J = {1,2}, r1ϕ1 ⊕ r2ϕ2 for
⊕

i∈I riϕi with I = {1,2},

and 〈a〉ϕ for 〈a〉⊕i∈I riϕi with I = {i }, ri = 1 and ϕi =ϕ. Notice that instead of using ⊤ we

could use
∧

;. We decided to use ⊤ to improve readability.

Formulae are interpreted over a PTS.

Definition 2.22 (Semantics of L, [66]). Assume a PTS (T (Σ),A,−→). The satisfaction relation

|=⊆ (T (Σ)×Ls)∪ (∆(T (Σ))×Ld) is defined by structural induction on formulae by

⋆ t |=⊤ always;

⋆ t |= ¬ϕ iff t |=ϕ does not hold;

⋆ t |=
∧

j∈J

ϕ j iff t |=ϕ j for all j ∈ J ;

⋆ t |= 〈a〉ψ iff t
a−→π for a distribution π ∈∆(T (Σ)) with π |=ψ;

⋆ π |=
⊕

i∈I

riϕi iff π=∑

i∈I riπi for a family {πi }i∈I of distributions such that for each i ∈ I

whenever t ∈ supp(πi ) then t |=ϕi .

Dealing with L is motivated by its characterization of bisimilarity, proved in [66] (see

Theorem 2.10 below), bisimilarity metric, proved in [41], and similarity and ready similarity,

proved here (see Theorem 2.11 below).

Theorem 2.10 ( [66]). Assume an image finite PTS (T (Σ),A,−→) and terms s, t ∈ T (Σ). Then,

s ∼ t if and only if they satisfy the same formulae in Ls.

The characterization of ready similarity and similarity requires two subclasses of L.
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Definition 2.23. The class of ready formulae Lr is defined as

Ls
r : ϕ ::= ⊤ | ā |

∧

j∈J

ϕ j | 〈a〉ψ

Ld
r : ψ ::=

⊕

i∈I

riϕi

where ā stays for ¬〈a〉⊤, and the class of positive formulae L+ is defined as

Ls
+ : ϕ ::= ⊤ |

∧

j∈J

ϕ j | 〈a〉ψ

Ld
+ : ψ ::=

⊕

i∈I

riϕi .

The classes Lr and L+ are strict sublogics of the one proposed in [69] for the characteri-

zation of failure similarity and forward similarity [145]. In particular, the logic used in [69]

allows for arbitrary formulae to occur after the diamond modality.

We can show that our sublogics are powerful enough for the characterization of ready

similarity and similarity.

Theorem 2.11. Assume an image finite PTS (T (Σ),A,−→) and terms s, t ∈ T (Σ). Then:

✶✳ s ⊑r t iff for any formula ϕ ∈Ls
r , s |=ϕ implies t |=ϕ.

✷✳ s ⊑ t iff for any formula ϕ ∈Ls
+, s |=ϕ implies t |=ϕ.

Proof. We prove only the first item, namely the characterization of the ready simulation

preorder. The proof for simulation is analogous.

(⇒) Let ϕ ∈Ls
r . We aim to prove that

whenever s ⊑r t and s |=ϕ, then t |=ϕ. (2.10)

We proceed by structural induction over ϕ.

⋆ Base case ϕ=⊤. Then Equation (2.10) immediately follows.

⋆ Base case ϕ= ā. Then, by Definition 2.22, s |= ā gives s
a−→6 . Since s ⊑r t , this implies

that t
a−→6 from which we draw t |= ā. Therefore, Equation (2.10) follows also in this

case.

⋆ Inductive step ϕ=∧

j∈J ϕ j . Then, by Definition 2.22, s |=∧

j∈J ϕ j gives that s |=ϕ j for

each j ∈ J . Hence, by structural induction we obtain that t |=ϕ j for each j ∈ J , thus

implying t |=∧

j∈J ϕ j . Therefore, Equation (2.10) follows also in this case.

⋆ Inductive step ϕ= 〈a〉⊕i∈I riϕi . Then, by Definition 2.22, s |= 〈a〉⊕i∈I riϕi gives that

there exists a distribution πs s.t. s
a−→ πs and πs |= ⊕

i∈I riϕi . Since s ⊑r t , s
a−→ πs
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implies the existence of a distribution πt s.t. t
a−→ πt and πs ⊑†

r πt . Hence, to derive

Equation (2.10) we need to prove that

πt |=
⊕

i∈I

riϕi . (2.11)

From πs |=
⊕

i∈I riϕi we gather that πs =
∑

i∈I riπi for some distributions πi s.t. when-

ever s′ ∈ supp(πi ) then s′ |= ϕi (Definition 2.22). Moreover, by Definition 2.14 and

Proposition 2.3, πs ⊑†
r πt and πs =

∑

i∈I riπi together imply the existence of distribu-

tions π′
i

s.t. πt =
∑

i∈I riπ
′
i

and for each s′ ∈ supp(πi ) there is a t ′ ∈ supp(π′
i
) s.t. s′ ⊑r t ′.

Thus, from s′ ⊑r t ′ and s′ |=ϕi , structural induction over ϕi gives t ′ |=ϕi . Hence, for

each t ′ ∈ supp(π′
i
) it holds that t ′ |=ϕi thus giving Equation (2.11). Therefore, we can

conclude that t |= 〈a〉⊕i∈I riϕi and Equation (2.10) follows also in this case.

(⇐) Assume now that, for any ϕ ∈Ls
r , s |=ϕ implies t |=ϕ. We define the relation

R = {(s, t ) | s |=ϕ implies t |=ϕ for all ϕ ∈Ls
r}.

We aim to show that R is a probabilistic ready simulation.

Let sR t . We aim to prove that

whenever s
b−→6 then t

b−→6 (2.12)

whenever s
a−→πs then there is a transition t

a−→πt with πs R
†πt . (2.13)

Assume first that s
b−→6 . Then, by Definition 2.22, we derive s |= b̄. From sR t we gather t |= b̄

thus giving t
b−→6 and Equation (2.12) follows.

Next, consider any transition s
a−→πs . To prove Equation (2.13) we need to show that there

exists a probability distribution πt s.t. t
a−→πt and πs R

†πt . We recall that by definition of

lifting of a relation (Definition 2.14) we have πs R
†πt iff whenever πs =

∑

i∈I piδsi
, for some

set of indexes I , then πt =
∑

i∈I piδti
for some processes ti s.t. si R ti for each i ∈ I . Since it is

immediate to see that πs =
∑

s′∈supp(πs )πs(s′)δs′ , by Proposition 2.3 to prove Equation (2.13)

we need to show that there exists a probability distribution πt s.t. πt =
∑

s′∈supp(πs )πs(s′)πs′

for a family of probability distributions {πs′}s′∈supp(πs ) s.t. whenever t ′ ∈ supp(πs′) then s′R t ′.
Thus, let us consider the set

Πt ,a = {π | t
a−→π ∧ π=

∑

s′∈supp(πs )

πs(s′)πs′ ∧ ∃ s′ ∈ supp(πs), t ′ ∈ supp(πs′) : s′ 6R t ′}.

Our aim is to prove that there is at least one probability distribution πt ∈ der(t , a) which

does not belong to the set Πt ,a .

By construction, for each π ∈ Πt ,a there are some processes s′π ∈ supp(πs) and t ′π ∈
supp(πs′π) and a ready state formula ϕπ for which s′π |= ϕπ but t ′π 6|= ϕπ. Thus, for each

s′ ∈ supp(πs) we have s′ |=
∧

{π∈Πt ,a |s′π=s′}

ϕπ. Moreover, for each π ∈ Πt ,a with s′π = s′ there is

some t ′π ∈ supp(πs′) s.t. t ′π 6|=
∧

{π∈Πt ,a |s′π=s′}

ϕπ.
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Consider now that ready state formula

ϕ= 〈a〉
⊕

s′∈supp(πs )

πs(s′)
∧

{π∈Πt ,a |s′π=s′}

ϕπ.

Then, it is clear that s |=ϕ thus implying t |=ϕ, as by hypothesis sR t . From t |=ϕ it follows

that there exists a distribution πt s.t. t
a−→πt and

πt |=
⊕

s′∈supp(πs )

πs(s′)
∧

{π∈Πt ,a |s′π=s′}

ϕπ

namely πt =
∑

s′∈supp(πs )πs(s′)π′
s′ for some distributions π′

s′ s.t. whenever t ′ ∈ supp(π′
s′) then

t ′ |=
∧

{π∈Πt ,a |s′π=s′}

ϕπ. Consequently, πt 6∈Πt ,a and hence for all s′ ∈ supp(πs) each t ′ ∈ supp(π′
s′)

is such that s′R t ′. Therefore, from Proposition 2.3 we obtain δs′R
†π′

s′ and consequently

(from the same Proposition 2.3) πs R
†πt , thus proving Equation (2.13). �
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We demand rigidly defined areas of doubt
and uncertainty!

Douglas Adams,

The Hitchhiker’s Guide to the Galaxy
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SOS-based Modal Decomp$ition on Nondeterministic

Probabilistic Processes

O
ne of the main concerns in the development of a meta-theory of process languages is

to guarantee their compositionality, that is to prove the compatibility of the language

operators with the behavioral relation, chosen for the application context. In algebraic

terms, this compatibility is known as the congruence (resp. precongruence) property of the

considered behavioral equivalence (resp. preorder) R , which consists in verifying whether

f (t1, . . . , tn)R f (t ′1, . . . , t ′n) whenever ti R t ′
i

for all i = 1, . . . ,n, for any n-ary operator f .

The SOS framework plays a crucial rôle in supporting the compositional reasoning

and verification: a rule (or specification) format [34, 63, 98, 99, 162], is a set of syntactical

constraints over SOS-rules ensuring the desired semantic properties of the transition system

derived from them. For instance, in [54] it is proved that probabilistic bisimilarity is a

congruence for all operators defined by a transition system specification in PGSOS format

[26] (cf. Chapter 2.2).

Moreover, as outlined in Chapter 1.1, we can combine the SOS framework with the

logical characterization of a behavioral relation to favor the compositional reasoning: modal

decomposition of formulae exploits the characterization of an equivalence to derive the

compositional properties of the system. Roughly speaking, the definition of the semantic be-

havior of processes by means of the SOS framework allows for decomposing the satisfaction

problem of a formula for a process into the verification of the satisfaction problem of certain

formulae for its subprocesses (see [33, 80, 82–85, 125]). The decomposition of a formula φ

with respect to a term t is defined by a set t−1(φ) of decomposition mappings ξ assigning to

each variable x in t a proper formula ξ(x). These are obtained by means of the notion of

ruloid [34], namely inference transition rules that are derived from the SOS specification

and define the behavior of open processes in terms of the behavior of their variables. Then,

in [33, 80, 82, 84, 85], the decomposition of modal formulae is used to systematically derive

expressive (pre)congruence formats for several behavioral equivalences and preorders from
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σ(t ) |=φ

∃ξ ∈ t−1(φ) s.t. σ(x) |= ξ(x)
∀x ∈ var(t )

Decomposition
method

σ′(x) |= ξ(x)
∀x ∈ var(t )

Logical
characterization+Hypothesis

σ′(t ) |=φ

Decomposition
method

∀φ+ Logical
characterization

Figure 3.1: General schema to prove that σ(x)Rσ′(x) for all x ∈ var(t) implies σ(t)Rσ′(t),

by combining a logical characterization of R with the related modal decomposition.

their (adequate) modal characterizations. Informally, it is proved that the construction of

the ruloids preserves the syntactic restrictions imposed by the considered rule format and

thus that the decomposition of formulae in a certain class produces formulae in the same

class. The (pre)congruence result then becomes an immediate consequence of the logical

characterization of the considered behavioral relation, as schematized in Figure 3.1. Further,

in [90] the semantic model of reactive probabilistic labeled transition systems [161] is con-

sidered and a method for decomposing formulae from a probabilistic version of HML [137]

characterizing probabilistic bisimilarity with respect to a probabilistic transition system

specification in the format of [116, 117] is proposed.

The purpose of this Chapter is to extend the SOS-driven decomposition approach to

processes in the PTS model. All modal logics developed so far for the PTS model are equipped

with modalities allowing for the specification of the quantitative properties of processes

(cf. Chapter 2.4). In essence, this means that some modal formulae are (possibly indirectly)

evaluated on distributions. In order to decompose this kind of formulae, we introduce an

SOS-like machinery, called distribution specification, in which we syntactically represent

open distribution terms as probability distributions over open terms. More precisely, our

distribution specification, consisting in a set of distribution rules defined on a signature,

will allow us to infer the expression Θ
q−→ t whenever a closed distribution term Θ assigns

probability weight q to a closed term t . Then, from these distribution rules we derive

the distribution ruloids, which will play a fundamental rôle in the decomposition method.

In fact, as happens for ruloids on terms, our distribution ruloids will allow us to derive

expressions of the form Θ
q−→ t , for an arbitrary open distribution term Θ and open term t ,

by considering only the behavior of the variables occurring in Θ. Hence, they will allow us to

decompose the formulae capturing the quantitative behavior of processes since through

them we can relate the satisfaction problem of a formula of this kind for a closed distribution

term to the satisfaction problem of certain derived formulae for its subterms. We stress

that our distribution ruloids can support the decomposition of formulae in any modal logic

for PTSs and moreover our distribution specification can be easily generalized to cover

the case of models using sub-distributions in place of probability distributions (see for
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3.1. Distribution specifications

instance [115, 126, 127]).

We present the decomposition of formulae from the two-sorted boolean-valued modal

logic L [66] and from its two subclasses of formulae Lr and L+ introduced in Chapter 2.4.

Finally, to show the robustness of our approach we apply it to derive the congruence theorem

for probabilistic bisimilarity with respect to the PGSOS format and the precongruence

theorem for probabilistic ready similarity and similarity with respect to the PGSOS format

and the positive PGSOS format, respectively.

The contribution of this Chapter can be summarized as follows:

✶✳ We present new logical characterizations of probabilistic ready similarity and similarity

obtained by means of two sublogics of L, resp. Lr and L+ (Theorem 2.11).

✷✳ We define an SOS machinery for the specification of the probabilistic behavior of

processes, which can support the decomposition of any modal logic for PTSs.

✸✳ We develop a method of decomposing formulae in L and in its sublogics Lr and L+
(Theorem 3.12 and Theorem 3.14).

✹✳ We derive (pre)congruence formats for probabilistic bisimilarity, ready similarity and

similarity by exploiting our decomposition method on the logics characterizing them

(Theorem 3.15).

ORGANIZATION OF CONTENTS

In Section 3.1 we introduce the SOS-like machinery for the specification of the behavior

of distribution terms and in Section 3.2 we define the two classes of ruloids: the P-ruloids,

built on a PGSOS specification P , and the distribution ruloids, derived from a distribution

specification. Section 3.3 is the core of this Chapter and provides our decomposition method

which allows for the derivation of the (pre)congruence formats for probabilistic bisimilarity,

ready similarity and similarity as shown in Section 3.4. In Section 3.5 we give an hint on

how we can apply our decomposition method to the derivation of congruence formats for

probabilistic weak semantics. Finally we end with some conclusions and discussion of

related and future work in Section 3.6.

3.1 DISTRIBUTION SPECIFICATIONS

In this section we develop an SOS-like machinery consisting of a set of inference rules,

called Σ-distribution rules, through which we syntactically represent open distribution

terms as probability distributions over open terms. Informally, these rules allow us to infer

the expression Θ
q−→ t whenever a closed distribution term Θ assigns probability weight q to

a closed term t . More precisely, the idea behind Σ-distribution rules is as follows: assuming

that the distribution variable µ is characterized as the distribution {µ
qi−→ xi | i ∈ I } and the
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Chapter 3. SOS-based modal decomposition on PTSs

distribution variable ν as the distribution {ν
q j−−→ x j | j ∈ J }, then the Σ-distribution rule

{µ
qi−→ xi | i ∈ I } {ν

q j−−→ x j | j ∈ J }

{µ | ν
qi ·q j−−−−→ xi | x j

∣

∣ i ∈ I , j ∈ J }

allows us to describe the behavior of the distribution term µ | ν as a probability distribution

over the open terms xi | x j . As we will see in Definition 3.1 below the weights and the pattern

of the target terms in the conclusion are chosen accordingly to the syntactic structure of

the distribution term being the source. For this reason, the Σ-distribution specification,

namely the set of Σ-distribution rules on a signature Σ, depends solely on the chosen

signature. We also notice that for each possible interpretation of µ and ν as distributions

we obtain a different Σ-distribution rule having µ | ν as source. However, we will show that

under a suitable notion of provability, the Σ-distribution specification correctly specifies

the semantics of closed distribution terms. Moreover, our Σ-distribution specification will

play a fundamental rôle in the decomposition method. In fact, in Section 3.2 from the

Σ-distribution rules we will derive the Σ-distribution ruloids, which will allow us to derive

expressions of the form Θ
q−→ t for an arbitrary open distribution term Θ and open term

t from the behavior of the variables occurring in Θ. We remark that our Σ-distribution

specification can be exploited also to decompose formulae of any logic offering modalities

for the specification of the probabilistic properties of processes. Moreover, it can be easily

generalized to cover the case of sub-distributions, which are usually considered alongside a

weak semantics for processes [126, 127].

Σ-DISTRIBUTION RULES

A distribution literal is an expression of the form Θ
q−→ t , with Θ ∈ DT(Σ), q ∈ (0,1] and

t ∈ T(Σ). Given a set of (distribution) literals L we denote by lhs(L) the set of the left-

hand sides of the (distribution) literals in L and by rhs(L) the set of right-hand sides of the

(distribution) literals in L.

A set of distribution literals {Θ
qi−→ ti | i ∈ I } is a distribution over terms if

∑

i∈I qi = 1 and

all terms ti are pairwise distinct. This expresses that the possibly open distribution term

Θ ∈DT(Σ) is the distribution over possibly open terms in T(Σ) giving weight qi to ti . Given

an open distribution term Θ ∈DT(Σ) and a distribution over terms L = {Θ
qi−→ ti | i ∈ I } we

denote the set of terms in rhs(L) by supp(Θ) = {ti | i ∈ I } ⊆T(Σ).

Our target is to derive distributions over terms {π
qi−→ ti | i ∈ I } for a distribution π ∈

∆(T (Σ)) (which coincides with a closed distribution term) and closed terms ti ∈ T (Σ) such

that: (i) {π
qi−→ ti | i ∈ I } if and only if π(ti ) = qi for all i ∈ I , and (ii) {π

qi−→ ti | i ∈ I } is obtained

inductively with respect to the structure of π. To this aim, we introduce the Σ-distribution

rules and the Σ-distribution specification.

Let δVs
:= {δx | x ∈Vs} denote the set of all instantiable Dirac distributions with a variable

as term, and ϑ,ϑi , . . . denote distribution terms in DT(Σ) ranging over Vd ∪δVs
. Then, for

arbitrary sets S1, . . . ,Sn , we denote by×n
i=1

Si the set of tuples k = [s1, . . . , sn] with si ∈ Si . The

i -th element of k is denoted by k(i ).
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3.1. Distribution specifications

Informally, to define Σ-distribution rules we adopt a positive GSOS-like format: the

source term can contain at most one operator symbol from Σ and the premises poten-

tially bind the behavior of distribution variables and Dirac deltas occurring in the source.

Accordingly to the term structure of the source, we will distinguish three types of rules:

✶✳ Axioms for Dirac deltas over process variables. In this case, for each x ∈ Vs , δx is

characterized as the distribution assigning probability weight 1 to the process variable

x.

✷✳ Rules having as source a distribution term of the form f (ϑ1, . . . ,ϑn) for f ∈ Σ and

ϑi ∈Vd ∪δVs
for each i ∈ {1, . . . ,n}. In this case, given a particular characterization of

each ϑi in the premises, f (ϑ1, . . . ,ϑn) is characterized as the distribution assigning

a positive probability weight q only to process terms of the form f (x1, . . . , xn) with

xi ∈ supp(ϑi ) for each i ∈ {1, . . . ,n}. The weight q is obtained as the product over

i ∈ {1, . . . ,n} of the probabilities qi with ϑi
qi−→ xi in the premises.

✸✳ Rules having as source a convex combination
∑

i∈I piϑi , with ϑi ∈ Vd ∪δVs
for each

i ∈ I . In this case, given a particular characterization of each ϑi in the premises,
∑

i∈I piϑi is characterized as their convex combination, namely the distribution that

assigns to each x ∈Vs the probability weight q =∑

i∈I piϑi (x).

We are now ready to formally define our Σ-distribution rules.

Definition 3.1 (Σ-distribution rules). Assume a signature Σ. The set RΣ of the Σ-distribution

rules consists of the least set containing the following inference rules:

✶✳

{δx
1−→ x}

for any state variable x ∈Vs ;

✷✳

⋃

i=1,...,n

{

ϑi

qi , j−−→ xi , j | j ∈ Ji

}

{

f (ϑ1, . . . ,ϑn)
qk−−→ f (x1,k(1), . . . , xn,k(n))

∣

∣

∣ k ∈ ×
i=1,...,n

Ji and qk =
∏

i=1,...,n

qi ,k(i )

}

where:

❛✳ f ∈Σ and rk( f ) = n,

❜✳ the distribution terms ϑ1, . . . ,ϑn are in Vd ∪δVs
and are all distinct,

❝✳ for each i = 1, . . . ,n the state variables xi , j ’s with j ∈ Ji are all distinct,

❞✳ for each i = 1, . . . ,n we have
∑

j∈Ji
qi , j = 1;
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✸✳

⋃

i∈I

{

ϑi

qi , j−−→ xi , j | j ∈ Ji

}

{

∑

i∈I

piϑi
qx−−→ x

∣

∣

∣ x ∈ {xi , j | i ∈ I ∧ j ∈ Ji } and qx =
∑

i∈I , j∈Ji s.t. xi , j=x

pi ·qi , j

}

where:

❛✳ I is an at most countable set of indexes,

❜✳ the distribution terms ϑi with i ∈ I are in Vd ∪δVs
and are all distinct,

❝✳ for each i ∈ I the state variables xi , j ’s with j ∈ Ji are all distinct,

❞✳ for each i ∈ I we have
∑

j∈Ji
qi , j = 1.

Then, the Σ-distribution specification (Σ-DS) is defined as the pair DΣ = (Σ,RΣ).

For each Σ-distribution rule r
❉

, all sets above the line are called premises, notation

prem(r
❉

), and the set below the line is called conclusion, notation conc(r
❉

). Then, we name

the distribution term on the left side of all distribution literals in the conclusion of r
❉

as

source of r
❉

, notation src(r
❉

), and the set of the terms in the right side of all distribution

literals in the conclusion as target, notation trg(r
❉

).

Example 3.1. An example of a Σ-distribution rule with source µ | ν is the following:

{µ
1/4−−→ x1, µ

3/4−−→ x2} {ν
1/3−−→ y1, ν

2/3−−→ y2}
{

µ | ν 1/12−−−→ x1 | y1, µ | ν 1/6−−→ x1|y2, µ | ν 1/4−−→ x2 | y1, µ | ν 1/2−−→ x2 | y2

} .

However, we remark that also

{µ
1/2−−→ x1, µ

1/2−−→ x2} {ν
1/2−−→ z1, ν

1/2−−→ z2}
{

µ | ν 1/4−−→ x1 | z1, µ | ν 1/4−−→ x1|z2, µ | ν 1/4−−→ x2 | z1, µ | ν 1/4−−→ x2 | z2

}

is a well defined Σ-distribution rule for µ|ν.

As another example, a Σ-distribution rule for the distribution term 1/3µ+1/2ν+1/6δz

is of the form

{µ
1/2−−→ x, µ

1/2−−→ z} {ν
2/3−−→ y, ν

1/3−−→ z} {δz
1−→ z}

{

1

3
µ+ 1

2
ν+ 1

6
δz

1/6−−→ x,
1

3
µ+ 1

2
ν+ 1

6
δz

1/3−−→ y,
1

3
µ+ 1

2
ν+ 1

6
δz

1/2−−→ z

} .

�

Remark 3.1. We notice that by Definition 3.1.2, the only Σ-distribution rule for a constant

function c ∈Σ is of the form

r
❉

=
c

1−→ c
.

In fact, as the set of arguments of c is empty, we have prem(r
❉

) = ; and moreover, by

convention,
∏

; q = sup(0,1] q = 1.
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All premises in a Σ-distribution rule are distributions over terms. This is immediate for

rules as in Definition 3.1.1, follows by constraints 2c and 2d for rules as in Definition 3.1.2

and follows by constraints 3c and 3d for rules as in Definition 3.1.3. We can show that also

the conclusion is a distribution over terms.

Proposition 3.1. The conclusion of any Σ-distribution rule is a distribution over terms.

Proof. We proceed by a case analysis over the form of Σ-distribution rules.

⋆ For Σ-distribution rules r
❉

= {δx
1−→ x}, for some x ∈ Vs , and r

❉

= {c
1−→ c}, for some

constant function c ∈Σ, the thesis is immediate.

⋆ Consider a Σ-distribution rule r
❉

as in Definition 3.1.2. Then, to prove the thesis we

need to show that
∑

k∈×n

i=1
Ji

qk = 1. We have

∑

k∈×n

i=1
Ji

qk =
∑

k∈×n

i=1
Ji

( n
∏

i=1

qi ,k(i )

)

=
n

∏

i=1

(

∑

j∈Ji

qi , j

)

=
n

∏

i=1

(1)

= 1

where
∑

k∈×n

i=1
Ji

(

∏n
i=1 qi ,k(i )

)

=∏n
i=1

(

∑

j∈Ji
qi , j

)

follows by the distributive property of

the summation with respect to the product and can be formally proved by induction

over n, with inductive step
∑

k∈×n−1
i=1

Ji

(

∏n−1
i=1 qi ,(i )

)

=∏n−1
i=1

(

∑

j∈Ji
qi , j

)

, as follows:

∑

k∈×n

i=1
Ji

( n
∏

i=1

qi ,k(i )

)

=
∑

j∈Jn

qn, j

(

∑

k∈×n−1
i=1

Ji

(n−1
∏

i=1

qi ,k(i )

)

)

=
∑

j∈Jn

qn, j

(n−1
∏

i=1

(

∑

j∈Ji

qi , j

)

)

(inductive step)

=
(

∑

j∈Jn

qn, j

)

·
(n−1

∏

i=1

(

∑

j∈Ji

qi , j

)

)

=
n

∏

i=1

(

∑

j∈Ji

qi , j

)

.

⋆ Finally, consider a Σ-distribution rule r
❉

as in Definition 3.1.3. Then, to prove the

thesis we need to show that
∑

x∈{xi , j | j∈Ji ,i∈I } qx = 1. We have

∑

x∈{xi , j | j∈Ji ,i∈I }

qx =
∑

x∈{xi , j | j∈Ji ,i∈I }

(

∑

i∈I , j∈Ji
s.t. xi , j =x

pi qi , j

)
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=
∑

i∈I

pi

(

∑

x∈{xi , j | j∈Ji ,i∈I }

j∈Ji s.t. xi , j =x

qi , j

)

=
∑

i∈I

pi

(

∑

j∈Ji

qi , j

)

(∀ i ∈ I the xi , j are distinct)

=
∑

i∈I

pi

= 1.

�

REDUCTIONS

The following notion of reduction with respect to a substitution allows us to extend the

notion of substitution to distributions over terms and, then, to Σ-distribution rules. Roughly

speaking, whenever a substitution maps the right-hand sides of two or more distribution

literals in a set L to the same term, then L is reduced to the set L′ in which those literals are

substituted by a single distribution literal whose weight is given by the sum of their weights.

Definition 3.2 (Reduction with respect to a substitution). Assume a substitution σ and a set

of distribution literals L = {Θ
qi−→ ti | i ∈ I }. We say that σ reduces L to the set of distribution

literals L′ = {σ(Θ)
q j−−→ t j | j ∈ J }, or that L′ is the reduction with respect to σ of L, notation

σ(L) = L′, if:

⋆ for each index j ∈ J there is at least one index i ∈ I with σ(ti ) = t j ;

⋆ the terms {t j | j ∈ J } are pairwise distinct;

⋆ for each index j ∈ J , we have q j =
∑

{i∈I |σ(ti )=t j } qi .

A reduction with respect to σ of a distribution over terms is, in turn, a distribution over

terms.

Proposition 3.2. For a substitution σ and a distribution over terms L, the set of distribution

literals σ(L) is a distribution over terms.

Proof. The thesis follows directly by the definition of σ(L). In fact, if we let σ(L) =
{σ(Θ)

q j−−→ t j | j ∈ J }, then the targets t j are pairwise distinct by construction and moreover

we have
∑

j∈J

q j =
∑

j∈J

(

∑

{i∈I |σ(ti )=t j }

qi

)

=
∑

i∈I

qi

= 1 (L is a distribution over terms).

�
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3.1. Distribution specifications

Definition 3.3 (Reduced instance of a Σ-distribution rule). The reduced instance of a Σ-

distribution rule r
❉

with respect to a substitution σ is the inference rule σ(r
❉

) defined as

follows:

✶✳ If r
❉

is as in Definition 3.1.1 then σ(r
❉

) is the Σ-distribution rule

{δσ(x)
1−→σ(x)}

.

✷✳ If r
❉

is as in Definition 3.1.2 then σ(r
❉

) is the Σ-distribution rule

⋃

i=1,...,n

{σ(ϑi )
qi ,h−−−→ ti ,h | h ∈ Hi }

{

f (σ(ϑ1), . . . ,σ(ϑn))
qκ−−→ f (t1,κ(1), . . . , tn,κ(n))

∣

∣

∣ κ ∈ ×
i=1,...n

Hi and qκ =
∏

i=1,...,n

qi ,κ(i )

}

where {σ(ϑi )
qi ,h−−−→ ti ,h | h ∈ Hi } =σ({ϑi

qi , j−−→ xi , j | j ∈ Ji }).

✸✳ If r
❉

is as in Definition 3.1.3 then σ(r
❉

) is the Σ-distribution rule

⋃

i∈I

{σ(ϑi )
qi ,h−−−→ ti ,h | h ∈ Hi }

{

∑

i∈I

piσ(ϑi )
qt−−→ t

∣

∣

∣ t ∈ {ti ,h | i ∈ I ∧h ∈ Hi } and qt =
∑

i∈I∧h∈Hi s.t. ti ,h=t

pi ·qi ,h

}

where {σ(ϑi )
qi ,h−−−→ ti ,h | h ∈ Hi } =σ({ϑi

qi , j−−→ xi , j | j ∈ Ji }).

Example 3.2. Consider the Σ-distribution rule r
❉

for the distribution term µ | ν given in

Example 3.1 and consider the substitution σ with

σ(x1) = x σ(x2) = x σ(y1) = y σ(y2) = nil

where nil denotes the process that cannot perform any action. Then we have that the

reduced instance of r
❉

with respect to σ is given by

σ(r
❉

) = {σ(µ)
1−→ x} {σ(ν)

1/3−−→ y, σ(ν)
2/3−−→ nil}

{σ(µ | ν)
1/3−−→ x | y, σ(µ | ν)

2/3−−→ x | nil}
.

�

Notice that Proposition 3.2 ensures that the premises of σ(r
❉

) are distributions over

terms. We can show that also the conclusion of σ(r
❉

) is a distribution over terms.

Proposition 3.3. Let DΣ be the Σ-DS. The conclusion of a reduced instance of a Σ-distribution

rule in DΣ is a distribution over terms.

Proof. The thesis immediately follows from the definition of reduced instance of a

Σ-distribution rule (Definition 3.3), Proposition 3.1 and Proposition 3.2. �
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Chapter 3. SOS-based modal decomposition on PTSs

SEMANTICS OF DISTRIBUTION TERMS

We conclude this Section by showing that the Σ-distribution specification correctly defines

the semantics of closed distribution terms as probability distributions over closed terms as

outlined in Chapter 2.2.

Definition 3.4 (Proof from the Σ-DS). A proof from the Σ-DS DΣ of a closed distribution

over terms L is a well-founded, upwardly branching tree, whose nodes are labeled by closed

distributions over terms, such that the root is labeled L, and, if β is the label of a node q and

K is the set of labels of the nodes directly above q, then K/β is a closed reduced instance of

a Σ-distribution rule in RΣ.

A closed distribution over terms L is provable from DΣ, notation DΣ ⊢ L, if there exists a

proof from DΣ for L.

Example 3.3. Consider any signature Σ containing the operator of synchronous parallel

composition | and let DΣ be the Σ-DS built on it. We want to show that given a proper closed

substitution σ, the distribution over terms

L =
{2

5

(1

4
δt1 +

3

4
δt2

)

+ 3

5

(

(
1

3
δt3 +

2

3
δt4 ) | δt5

) 1
10−−→ t1,

2

5

(1

4
δt1 +

3

4
δt2

)

+ 3

5

(

(
1

3
δt3 +

2

3
δt4 ) | δt5

) 3
10−−→ t2,

2

5

(1

4
δt1 +

3

4
δt2

)

+ 3

5

(

(
1

3
δt3 +

2

3
δt4 ) | δt5

) 1
5−→ t3 | t5,

2

5

(1

4
δt1 +

3

4
δt2

)

+ 3

5

(

(
1

3
δt3 +

2

3
δt4 ) | δt5

) 2
5−→ t4 | t5

}

is provable from the Σ-DS. To this aim let us consider the following proof structure: the

different instances of the Σ-distribution rules and the arrows between them constitute the

proof tree, and the labels of its nodes are given by the closed substitution σ defined below.

We decided to use as nodes the Σ-distribution rules instead of using solely the distributions

over terms being their conclusions, to improve readability.
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3.1. Distribution specifications

{δx1

1−→ x1} {δx2

1−→ x2} {δy1

1−→ y1} {δy2

1−→ y2} {δz
1−→ z}

{δx1

1−→ x1} {δx2

1−→ x2}






1
4
δx1 + 3

4
δx2

1/4−−→ x1,

1
4
δx1 + 3

4
δx2

3/4−−→ x2







{δy1

1−→ y1} {δy2

1−→ y2}






1
3
δy1 + 2

3
δy2

1/3−−→ y1,

1
3
δy1 + 2

3
δy2

2/3−−→ y2







{µ1
1/3−−→ y1, µ1

2/3−−→ y2} {ν1
1−→ z}







µ1 | ν1
1/3−−→ y1 | z,

µ1 | ν1
2/3−−→ y2 | z







{µ2
1/4−−→ x1, µ2

3/4−−→ x2} {ν2
1/3−−→ w1, ν2

2/3−−→ w2}






2
5
µ2 + 3

5
ν2

1/10−−−→ x1, 2
5
µ2 + 3

5
ν2

3/10−−−→ x2,

2
5
µ2 + 3

5
ν2

1/5−−→ w1, 2
5
µ2 + 3

5
ν2

2/5−−→ w2







Notice that we can assume, without loss of generality, that all the variables occurring in the

Σ-distribution rules above are distinct. Then, we consider the closed substitution σ with

σ(x1) = t1 σ(x2) = t2 σ(y1) = t3 σ(y2) = t4 σ(z) = t5

σ(µ1) = 1
3
δt3 + 2

3
δt4 σ(ν1) = δt5

σ(w1) = t3 | t5 σ(w2) = t4 | t5 σ(µ2) = 1
4
δt1 + 3

4
δt2 σ(ν2) = ( 1

3
δt3 + 2

3
δt4 ) | δt5 .

Therefore, we can conclude that DΣ ⊢ L. �

Since Σ-distribution rules have only positive premises, the set of the distribution over

terms provable from the Σ-DS is unique [160]. The following result confirms that all proba-

bility distributions over T (Σ) can be inferred through the Σ-DS.

Theorem 3.4. Assume a signature Σ. Let π ∈ DT (Σ) be a closed distribution term and

{tm}m∈M ⊆ T (Σ) a set of pairwise distinct closed terms. Then

DΣ ⊢ {π
qm−−→ tm | m ∈ M } ⇐⇒ for all m ∈ M it holds π(tm) = qm and

∑

m∈M

qm = 1.

Proof. (⇒) We aim to prove that

DΣ ⊢ {π
qm−−→ tm | m ∈ M } implies π(tm) = qm for all m ∈ M and

∑

m∈M

qm = 1. (3.1)

We proceed by induction over the length of a closed proof γ of {π
qm−−→ tm | m ∈ M } from DΣ.
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Chapter 3. SOS-based modal decomposition on PTSs

⋆ Base case |γ| = 1. Since the only distributions over terms derivable in one step are

the closed reduced substitution instances of distribution axioms, we have one of the

following two cases:

✶✳ π = δt for some t ∈ T (Σ). The only Σ-distribution rule defining the instan-

tiable Dirac function δt is the distribution axiom r
❉

=
{δx

1−→ x}
(Definition 3.1.1),

which should be reduced by a closed substitution σ such that σ(x) = t , thus

giving σ(r
❉

) =
{δt

1−→ t }
by Definition 3.3.1. Consequently the hypothesis DΣ ⊢

{π
qm−−→ tm | m ∈ M } instantiates to DΣ ⊢ {δt

1−→ t } for which Equation (3.1) is

straightforward.

✷✳ π= c for some constant operator c ∈Σ. From Remark 3.1, the only Σ-distribution

rule defining the behavior of constant operator c is the distribution axiom r
❉

=

{c
1−→ c}

, which is reduced to σ(r
❉

) =
{c

1−→ c}
by Definition 3.3.2, independently

on the substitution σ. Therefore, we can conclude that the hypothesis DΣ ⊢
{π

qm−−→ tm | m ∈ M } instantiates to DΣ ⊢ {c
1−→ c} for which Equation (3.1) is

straightforward.

⋆ Inductive step |γ| > 1. We can distinguish two cases, based on the structure of the

closed distribution term π.

✶✳ π = f (π1, . . . ,πn), for some f ∈ Σ and πi ∈DT (Σ) for i = 1, . . . ,n. Then, the bot-

tom of the closed proof γ is constituted by the closed reduced instance of a

Σ-distribution rule r
❉

∈ RΣ of the form

n
⋃

i=1

{ϑi

qi , j−−→ xi , j | j ∈ Ji }

{

f (ϑ1, . . . ,ϑn)
qk−−→ f (x1,k(1), . . . , xn,k(n))

∣

∣

∣ k ∈
n×

i=1

Ji and qk =
n

∏

i=1

qi ,k(i )

}

(see Definition 3.1.2) with respect to a closed substitution σ with σ(ϑi ) =πi . By

Definition 3.3.2 we get that σ(r
❉

) has the form

n
⋃

i=1

{πi
qi ,h−−−→ ti ,h | h ∈ Hi }

{

f (π1, . . . ,πn)
qκ−−→ f (t1,κ(1), . . . , tn,κ(n))

∣

∣

∣ κ ∈
n×

i=1

Hi and qκ =
n

∏

i=1

qi ,κ(i )

}

where

✯ ti ,h is a closed term in ∈ T (Σ) for all i ∈ I and h ∈ Hi , since σ is closed;

✯ for each i = 1, . . . ,n, the closed terms ti ,h are pairwise distinct for h ∈ Hi ,

since {πi
qi ,h−−−→ ti ,h | h ∈ Hi } is obtained as σ({ϑi

qi , j−−→ xi , j | j ∈ Ji }) and we

apply Proposition 3.3.
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3.1. Distribution specifications

✯ there is a bijection f :×n
i=1

Hi → M with f (t1,κ(1), . . . , tn,κ(n)) = tf(κ) and qκ =
qf(κ) for each κ ∈×n

i=1
Hi .

For each i = 1, . . . ,n there is a proof shorter than γ for {πi
qi ,h−−−→ ti ,h | h ∈ Hi } from

DΣ. By the inductive hypothesis, this implies that

qi ,h =πi (ti ,h) for all h ∈ Hi and
∑

h∈Hi

qi ,h = 1.

In particular, we have that for each κ ∈×n
i=1

Hi

qi ,κ(i ) =πi (ti ,κ(i )) (3.2)

from which we draw

qf(κ) = qκ (by definition of f)

=
n

∏

i=1

qi ,κ(i ) (by definition of qκ)

=
n

∏

i=1

πi (ti ,κ(i )) (by Equation (3.2))

=π( f (t1,κ(1), . . . , tn,κ(n))) (π= f (π1, . . . ,πn))

=π(tf(κ)) (by definition of f).

Summarizing, we have obtained that qm =π(tm) for each m ∈ M . Moreover, we

have that
∑

m∈M

qm =
∑

m∈M

qf−1(m)

=
∑

κ∈×n

i=1
Hi

qκ

= 1 (by Proposition 3.3)

thus giving Equation (3.1).

✷✳ π=∑

i∈I piπi for some πi ∈DT (Σ), pi ∈ (0,1] for each i ∈ I and
∑

i∈I pi = 1. Then,

the bottom of the closed proof γ is constituted by the closed reduced instance of

a Σ-distribution rule r
❉

∈ RΣ of the form

⋃

i∈I

{ϑi

qi , j−−→ xi , j | j ∈ Ji }

{

∑

i∈I

piϑi
qx−−→ x

∣

∣

∣ x ∈ {xi , j | i ∈ I ∧ j ∈ Ji } and qx =
∑

i∈I , j∈Ji s.t. xi , j=x

pi qi , j

}

(see Definition 3.1.3) with respect to a closed substitution σ with σ(ϑi ) =πi . By

Definition 3.3.3 we get that σ(r
❉

) is of the form

⋃

i∈I

{πi
qi ,h−−−→ ti ,h | h ∈ Hi }

{

∑

i∈I

piπi
qu−−→ u

∣

∣

∣ u ∈ {ti ,h | i ∈ I ∧h ∈ Hi } and qu =
∑

i∈I ,h∈Hi s.t. ti ,h=u

pi qi ,h

}
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Chapter 3. SOS-based modal decomposition on PTSs

where

✯ ti ,h is a closed term in T (Σ) for all h ∈ Hi , since σ is closed;

✯ for each i ∈ I the closed terms ti ,h are pairwise distinct for h ∈ Hi , since

{πi
qi ,h−−−→ ti ,h | h ∈ Hi } is obtained as σ({ϑi

qi , j−−→ xi , j | j ∈ Ji }) and we apply

Proposition 3.3;

✯ there is a bijection f : {ti ,h | i ∈ I ∧h ∈ Hi } → M with u = tf(u) and qu = qf(u)

for each u ∈ {ti ,h | i ∈ I ∧h ∈ Hi }.

For each i ∈ I there is a proof shorter than γ for {πi
qi ,h−−−→ ti ,h | h ∈ Hi } from DΣ. By

the inductive hypothesis, this implies that

qi ,h =πi (ti ,h) for all h ∈ Hi and
∑

h∈Hi

qi ,h = 1. (3.3)

Then, we have

qf(u) = qu (by definition of f)

=
∑

i∈I ,h∈Hi , s.t. ti ,h=u

pi qi ,h

=
∑

i∈I ,h∈Hi , s.t. ti ,h=u

pi πi (ti ,h) (by Equation (3.3))

=
∑

i∈I ,h∈Hi , s.t. ti ,h=u

pi πi (u)

=
∑

i∈I

pi πi (u)

=π(u)

=π(tf(u)) (by definition of f).

Summarizing, we have obtained that qm =π(tm) for each m ∈ M . Moreover, we

have that

∑

m∈M

qm =
∑

m∈M

qf−1(m)

=
∑

u∈{ti ,h |h∈Hi ,i∈I }

qu

= 1 (by Proposition 3.3)

thus giving Equation (3.1).

(⇐) We aim to prove that

π(tm) = qm for all m ∈ M and
∑

m∈M

qm = 1 imply DΣ ⊢ {π
qm−−→ tm | m ∈ M }. (3.4)

We proceed by structural induction over π ∈DT (Σ).
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3.1. Distribution specifications

⋆ Base case π = δt for some t ∈ T (Σ). Consider the Σ-distribution rule r
❉

{δx
1−→ x}

(Definition 3.1.1) and a closed substitution σ such that σ(x) = t . By Definition 3.3.1

we get that σ(r
❉

) is of the form
{δt

1−→ t }
, from which we can directly conclude that

DΣ ⊢ {δt
1−→ t }, thus giving Equation (3.4).

⋆ Inductive step π= f (π1, . . . ,πn) for some πi ∈DT (Σ) for each i = 1, . . . ,n and f ∈Σ. For

each i = 1, . . . ,n there is a set of indexes Mi such that:

✶✳ πi (ti ,m) = qi ,m for all m ∈ Mi ,

✷✳

∑

m∈Mi
qi ,m = 1 and

✸✳ the terms ti ,m ∈ T (Σ) are pairwise distinct for each m ∈ Mi .

Let M =×n
i=1

Mi . We have supp(π) = { f (t1,κ(1), . . . , tn,κ(n)) | κ ∈ M } and

qκ :=π
(

f (t1,κ(1), . . . , tn,κ(n))
)

=
n

∏

i=1

πi (ti ,κ(i )) =
n

∏

i=1

qi ,κ(i )

for each κ ∈ M . Hence, to prove Equation (3.4) we need to exhibit a proof of the

distribution over terms { f (π1, . . . ,πn)
qκ−−→ f (t1,κ(1), . . . , tn,κ(n)) | κ ∈ M } from DΣ.

By the inductive hypothesis, for each i = 1, . . . ,n from items (1)–(3) above we get

DΣ ⊢ {πi
qi ,m−−−→ ti ,m | m ∈ Mi }. (3.5)

Consider the Σ-distribution rule r
❉

n
⋃

i=1

{ϑi
qi ,m−−−→ xi ,m | m ∈ Mi }

{

f (ϑ1, . . . ,ϑn)
qκ−−→ f (x1,κ(1), . . . , xn,κ(n))

∣

∣

∣ κ ∈ M and qκ =
n

∏

i=1

qi ,κ(i )

}

as in Definition 3.1.2 and a closed substitution σ with σ(ϑi ) =πi and σ(xi ,m) = ti ,m for

each i = 1, . . . ,n and m ∈ Mi so that the closed reduced instance of r
❉

with respect to

σ is of the form:

n
⋃

i=1

{πi
qi ,m−−−→ ti ,m | m ∈ Mi }

{

f (π1, . . . ,πn)
qκ−−→ f (t1,κ(1), . . . , tn,κ(n))

∣

∣

∣ κ ∈ M and qκ =
n

∏

i=1

qi ,κ(i )

} .

We observe that trg(σ(r
❉

)) = supp(π) and since the premises of σ(r
❉

) are provable

from DΣ (Equation (3.5)) we can conclude that

DΣ ⊢ { f (π1, . . . ,πn)
qκ−−→ f (t1,κ(1), . . . , tn,κ(n)) | κ ∈ M }

thus proving Equation (3.4).

51



Chapter 3. SOS-based modal decomposition on PTSs

⋆ Inductive step π=∑

i∈I piπi for some πi ∈DT (Σ), pi ∈ (0,1] and
∑

i∈I pi = 1. For each

i ∈ I there is a set of indexes Mi such that for each m ∈ Mi such that

✶✳ πi (ti ,m) = qi ,m ,

✷✳

∑

m∈Mi
qi ,m = 1 and

✸✳ the terms ti ,m ∈ T (Σ) are pairwise distinct for each m ∈ Mi .

Let T = {ti ,m | i ∈ I and m ∈ Mi }. We have supp(π) = T and

qu :=π(u) =
∑

i∈I

piπi (u) =
∑

i∈I ,m∈Mi ,ti ,m=u

pi qi ,m

for each u ∈ T . Hence, to prove Equation (3.4) we need to exhibit a proof of {π
qu−−→ u |

u ∈ T } from DΣ.

By the inductive hypothesis, for all i ∈ I by items (1)–(3) above we get

DΣ ⊢ {π
qi ,m−−−→ ti ,m | m ∈ Mi }. (3.6)

Consider the Σ-distribution rule r
❉

⋃

i∈I

{ϑi
qi ,m−−−→ xi ,m | m ∈ Mi }

{

∑

i∈I

piϑi
qx−−→ x

∣

∣

∣ x ∈ {xi ,m | i ∈ I ∧m ∈ Mi } and qx =
∑

i∈I ,m∈Mi s.t. xi ,m=x

pi qi ,m

}

as in Definition 3.1.3 and a closed substitution σ with σ(ϑi ) =πi and σ(xi ,m) = ti ,m for

each i ∈ I and m ∈ Mi so that the closed reduced instance of r
❉

with respect to σ is of

the form:
⋃

i∈I

{πi
qi ,m−−−→ ti ,m | m ∈ Mi }

{

∑

i∈I

piπi
qu−−→ u

∣

∣

∣ u ∈ T and qu =
∑

i∈I ,m∈Mi s.t. ti ,m=u

pi qi ,m

}

We observe that trg(σ(r
❉

)) = supp(π) and since the premises of σ(r
❉

) are provable

from DΣ (Equation (3.6)) we can conclude that

DΣ ⊢ {
∑

i∈I

piπi
qu−−→ u | u ∈ T and qu =

∑

i∈I ,m∈Mi s.t. ti ,m=u

pi qi ,m}

thus proving Equation (3.4).

�
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3.2. Ruloids and distribution ruloids.

3.2 RULOIDS AND DISTRIBUTION RULOIDS.

In this section we introduce the concept of ruloid [33, 34], namely a derived inference rule

with an arbitrary term as source allowing us to deduce the behavior of that source term

directly from the behavior of the variables occurring in it. This feature makes ruloids funda-

mental for the decomposition method. The characterization theorems seen in Chapter 2

(Theorem 2.10 and Theorem 2.11) assert that each formula satisfied by a process captures

a different aspect of its behavior. Hence, the aim of a decomposition method, which we

recall is to reduce the satisfaction problem of a formula for a process to the satisfaction

problem of derived formulae for its subprocesses, can be restated by saying that we need to

find a method to relate the behavior of a process to the behavior of its subprocesses. This

is where ruloids play their rôle: they give us the constraints, expressed as premises of an

inference rule, that the closed instances of the variables occurring in the source term of the

ruloid must satisfy in order to guarantee that the closed instance of the source term behaves

accordingly to the considered formula.

Formally, in this Section we introduce P-ruloids, namely the class of ruloids built from a

PGSOS-PTSS P , and the Σ-distribution ruloids, namely derived Σ-distribution rules allowing

us to infer the behavior of any distribution term directly from the behavior of the variables

occurring in it. We prove that both classes of ruloids are sound and specifically witnessing

[34], that is they completely define the behavior of all open (distribution) terms. More

precisely, with Theorem 3.6 (resp. Theorem 3.10) we will prove that a closed literal α (resp. a

distribution over terms L) is provable from a PGSOS-PTSS P (resp. the Σ-DS) if and only if α

(resp. L) is a closed instance of the conclusion of a P-ruloid (resp. Σ-distribution ruloid).

RULOIDS

Ruloids are a generalization of PGSOS rules that allow us to infer the behavior of all open

terms directly from the behavior of their variables. A ruloid has an arbitrary open term as

source, and positive and negative premises for the variables occurring in that term. Ruloids

are defined by an inductive composition of PGSOS rules. In detail, from a rule r and a

substitution σ, a ruloid ρ with conclusion σ(conc(r )) is built as follows: ✶✳ for each positive

premise α in σ(r ), either we put α among the premises of ρ, if the left side of α is a variable,

or, otherwise, we take any ruloid having α as conclusion and we put its premises among the

premises of ρ; ✷✳ for each negative premise α in σ(r ), either we put α among the premises of

ρ, if the left side of α is a variable, or, otherwise, for each ruloid ρ′ having any literal denying

α as conclusion, we select any premise β of ρ′, we take any literal β′ denying β, and we put

β′ among the premises of ρ.

For a PGSOS-PTSS P = (Σ,A,R), let Lit(P ) denote the set of literals that can be built with

terms in T(Σ)∪DT(Σ) and actions in A.

Definition 3.5 (Ruloids). Let P = (Σ,A,R) be a PGSOS-PTSS. The set of P-ruloids ℜP is the

smallest set such that:

⋆
x

a−→µ

x
a−→µ

is a P-ruloid for all x ∈Vs , a ∈A and µ ∈Vd ;
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⋆ For a PGSOS rule r ∈ R of the form

{xi
ai ,m−−−→µi ,m | i ∈ I ,m ∈ Mi } {xi

ai ,n−−−→6 | i ∈ I ,n ∈ Ni }

f (x1, . . . , xn)
a−→Θ

′

and a substitution σ with σ(xi ) = ti for i = 1, . . . ,n and σ(Θ′) =Θ, the inference rule

⋃

i∈I ,m∈Mi

Hi ,m ∪
⋃

i∈I ,n∈Ni

Hi ,n

f (t1, . . . , tn)
a−→Θ

is a P-ruloid if the following constraints are satisfied:

✯ for every positive premise xi
ai ,m−−−→µi ,m of r

• either σ(xi ) is a variable and Hi ,m = {σ(xi )
ai ,m−−−→σ(µi ,m)},

• or there is a P-ruloid ρi ,m = Hi ,m

σ(xi )
ai ,m−−−→σ(µi ,m)

;

✯ for every negative premise xi
ai ,n−−−→6 of r

• either σ(xi ) is a variable and Hi ,n = {σ(xi )
ai ,n−−−→6 },

• or Hi ,n = opp(pick(ℜP
σ(xi ),ai ,n

)), where:

i. ℜP
σ(xi ),ai ,n

∈ P(P(Lit(P ))) is the set containing the sets of premises of

all P-ruloids with conclusion σ(xi )
ai ,n−−−→ θ for any distribution term

θ ∈DT(Σ), formally

ℜP
σ(xi ),ai ,n

= {prem(ρ) | ρ ∈ℜP and conc(ρ) =σ(xi )
ai ,n−−−→ θ for θ ∈DT(Σ)},

ii. pick: P(P(Lit(P ))) →P(Lit(P )) is any mapping such that, given any sets

of literals Lk with k ∈ K , pick({Lk | k ∈ K }) = {lk | k ∈ K ∧ lk ∈ Lk }, namely

pick selects exactly one literal from each set Lk ,

iii. opp: P(Lit(P )) →P(Lit(P )) is any mapping satisfying opp(L) = {opp(l ) |
l ∈ L} for all sets of literals L, where opp(t ′

a−→ θ) = t ′
a−→6 , and opp(t ′

a−→6
) = t ′

a−→ θ for some fresh distribution term θ, namely opp applied to any

literal returns a denying literal;

✯ the sets of the right hand side variables in Hi ,m and Hi ,n are all pairwise disjoint,

formally rhs(Hi ,h)∩ rhs(H j ,k ) 6= ; for any h ∈ Mi ∪Ni and k ∈ M j ∪N j implies

h = k and i = j .

Notice that P-ruloids having a process variable x as source (first item of Definition 3.5

above) state that the only way to derive x
a−→µ is to directly prove this literal from P .

Example 3.4. From the rules in Example 2.1 specifying the synchronous parallel composition

| and probabilistic alternative composition +p , we derive the following ruloids for term
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x +p (y | z):

x
a−→µ y

a−→6
x +p (y | z)

a−→µ

x
a−→µ z

a−→6
x +p (y | z)

a−→µ

x
a−→6 y

a−→ ν z
a−→ υ

x +p (y | z)
a−→ ν | υ

x
a−→µ y

a−→ ν z
a−→ υ

x +p (y | z)
a−→ pµ+ (1−p)(ν | υ)

.

We describe the construction of the first ruloid.

x
a−→µ

y
a−→6

y |z a−→6
x +p (y |z)

a−→µ

Accordingly to the second PGSOS rule in Example 2.1, whenever the term x makes an a-

move to the distribution variable µ and the term y |z cannot execute action a, then the term

x +p (y |z) makes an a-move to µ. As the left-hand side of the positive premise x
a−→ µ is

already a variable, then there is nothing more to do. Conversely, the left-hand side of the

negative premise y |z a−→6 is a term. By Definition 3.5 we need to consider all the PGSOS rules

having a literal y |z a−→Θ, for some Θ in DT(Σ), as conclusion, namely any proper instance

of the first rule in Example 2.1. Then we need to choose one premise for each of those

rules, for instance the one having y as left-hand side, and deny the ones we have selected.

In our example, from this construction we obtain the single negative premise y
a−→6 whose

left-hand side is a variable and thus concludes the construction of the first P-ruloid for the

term x +p (y |z). �

We can show that if the PTSS is positive then also the derived ruloids are positive.

Lemma 3.5. Let P be a positive PGSOS-PTSS. Then all the P-ruloids in ℜP are positive.

Proof. The proof follows immediately from Definition 3.5 by noticing that since no rule

in P contains negative premises, then the function opp is never applied. Therefore positive

literals are never transformed into negative. �

The following result states that ruloids completely define the behavior of all open terms.

Theorem 3.6 (Ruloid theorem). Assume a PGSOS-PTSS P, a closed substitution σ, a term

t ∈T(Σ) and a closed distribution term Θ
′ ∈DT (Σ). Then P ⊢σ(t )

a−→Θ
′ if and only if there are

a P-ruloid H

t
a−→Θ

and a closed substitution σ′ with σ′(t ) =σ(t ), σ′(Θ) =Θ
′ and P ⊢σ′(H).

Proof. We proceed by structural induction on the term t ∈T(Σ).

Base case : t = x ∈Vs .

(⇒) The thesis follows immediately for the P-ruloid
x

a−→µ

x
a−→µ

and any closed substitution

σ′ with σ′(x) =σ(x) and σ′(µ) =Θ
′.

(⇐) Accordingly to Definition 3.5, a P-ruloid having x as source is of the form
x

a−→µ

x
a−→µ

.

Thus, from σ′(x) = σ(x), σ′(µ) = Θ
′ and P ⊢ σ′(x)

a−→ σ′(µ) we can immediately infer that
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P ⊢σ(x)
a−→Θ

′.

Inductive step : t = f (t1, . . . , tn) ∈T(Σ) for some n-ary operator f .

(⇒) We proceed by structural induction over a closed proof γ of σ(t )
a−→Θ

′ from P .

The bottom of the closed proof γ is constituted by a PGSOS rule r ∈ R of the form

{xi
ai ,m−−−→µi ,m | i ∈ I ,m ∈ Mi }∪ {xi

ai ,n−−−→6 | i ∈ I ,n ∈ Ni }

f (x1, . . . , xn)
a−→ υ

together with a closed substitution ς such that:

✶✳ ς(xi ) =σ(ti ) for each i ∈ I ;

✷✳ ς(υ) =Θ
′;

✸✳ for all i ∈ I and m ∈ Mi there is a proof shorter than γ of ς(xi )
ai ,m−−−→ ς(µi ,m) from P ;

✹✳ for all i ∈ I and n ∈ Ni there is a proof shorter than γ of ς(xi )
ai ,n−−−→6 from P .

Let ς0 be any substitution with ς0(xi ) = ti for each i ∈ I . Considering that ς(xi ) =σ(ti ) =
σ(ς0(xi )), from items (3) and (4) above we get that P ⊢σ(ς0(xi ))

ai ,m−−−→ ς(µi ,m), for i ∈ I and

m ∈ Mi , and P ⊢σ(ς0(xi ))
ai ,n−−−→6 , for i ∈ I and n ∈ Ni .

Consider any σ(ς0(xi ))
ai ,m−−−→ ς(µi ,m). By the inductive hypothesis, there are a P-ruloid

Hi ,m

ς0(xi )
ai ,m−−−→Θi ,m

and a closed substitution σ′
i ,m

with

⋆ σ′
i ,m

(ς0(xi )) =σ(ς0(xi )),

⋆ σ′
i ,m

(Θi ,m) = ς(µi ,m), and

⋆ P ⊢σ′
i ,m

(Hi ,m).

Let us consider now any ς0(xi )
ai ,n−−−→6 . By definition, P ⊢ σ(ς0(xi ))

ai ,n−−−→6 only if P 6⊢
σ(ς0(xi ))

ai ,n−−−→π for any π ∈DT (Σ). By structural induction on ς0(xi ) = ti , this implies that

for all P-ruloids of the form
HΘi ,n

ς0(xi )
ai ,n−−−→Θi ,n

and for all closed substitutions σ′′ with σ′′(ς0(xi )) = σ(ς0(xi )), it holds that P 6⊢ σ′′(HΘi ,n
).

We can distinguish two cases.

a) There is a negative literal αΘi ,n
in HΘi ,n

such that P 6⊢σ′′(αΘi ,n
) for any closed substitution

σ′′ with σ′′(ς0(xi )) =σ(ς0(xi )). Then the completeness of P ensures that there are at least

one positive literal βΘi ,n
denying αΘi ,n

and one closed substitution σ′
i ,n

with σ′
i ,n

(ς0(xi )) =
σ(ς0(xi )) s.t. P ⊢σ′

i ,n
(βΘi ,n

).
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b) The closed instances of negative literals possibly occurring in HΘi ,n
, with respect to all

closed substitutions σ′′ with σ′′(ς0(xi )) = σ(ς0(xi )), are provable from P . In this case,

since the condition P 6⊢σ′′(HΘi ,n
) holds for all closed substitutions σ′′ as above, we can

infer that there is at least one positive literal in HΘi ,n
, say αΘi ,n

, s.t. P 6⊢ σ′′(αΘi ,n
) for

all such closed substitutions σ′′. In detail, if we assume wlog. that αΘi ,n
is of the form

y
a−→ ν for some y ∈ var(ς0(xi )) and ν ∈Vd , then we have obtained that given any closed

substitution σ′′, with σ′′(ς0(xi )) =σ(ς0(xi )), we have P 6⊢σ′′(y)
a−→ π for any π ∈DT (Σ).

By completeness of P , this implies that P ⊢ σ′′(y)
a−→6 . In general, given a literal βΘi ,n

denying αΘi ,n
and any closed substitution σ′

i ,n
with σ′

i ,n
(ς0(xi )) = σ(ς0(xi )), we obtain

that P ⊢σ′
i ,n

(βΘi ,n
).

Therefore, if we consider Hi ,n = ⋃

Θi ,n
βΘi ,n

and we take a closed substitution σ′
i ,n

as

described in the two cases above, then we obtain

P ⊢σ′
i ,n(Hi ,n).

We remark that since we are working with a countable set of variables, we can always

assume that the variables in rhs(Hi ,m) for i ∈ I and m ∈ Mi and the variables in rhs(Hi ,n) for

i ∈ I and n ∈ Ni are pairwise disjoint. Moreover, all those variables are disjoint from var(t ).

Therefore, we can define a closed substitution σ′ as follows:

✶✳ σ′(y) =σ(y) for all y ∈ var(t );

✷✳ σ′(µ) =σ′
i ,m

(µ) for all µ ∈ rhs(Hi ,m), with i ∈ I and m ∈ Mi ;

✸✳ σ′(µ) =σ′
i ,n

(µ) for all µ ∈ rhs(Hi ,n), with i ∈ I and n ∈ Ni .

Then define

H=
⋃

i∈I ,m∈Mi

Hi ,m ∪
⋃

i∈I ,n∈Ni

Hi ,n .

Moreover, let ς1 be a substitution with ς1(xi ) = ti and ς1(µi ,m) =Θi ,m for all i ∈ I and m ∈ Mi .

We can show that the P-ruloid
H

f (t1, . . . , tn)
a−→ ς1(υ)

together with the substitution σ′ satisfies the required properties:

✶✳ First we prove that σ′( f (t1, . . . , tn)) = σ( f (t1, . . . , tn)). This immediately follows from

σ′(y) =σ(y) for all y ∈ var( f (t1, . . . , tn)).

✷✳ Then we prove that P ⊢σ′(H), which is derived from the following considerations:

❛✳ Substitutions σ′ and σ′
i ,m

agree on all variables occurring in
Hi ,m

ς0(xi )
ai ,m−−−→Θi ,m

for all i ∈ I and m ∈ Mi . Indeed, assume any index i ∈ I and m ∈ Mi . Since

var( f (t1, . . . , tn)) =⋃n
i=1

var(ti ) =⋃n
i=1

var(ς0(xi )), and, moreover, σ and σ′ agree

on var( f (t1, . . . , tn)) we obtain that σ′(ς0(xi )) =σ(ς0(xi )) for each i ∈ I . Moreover,
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by construction we have that σ′
i ,m

(ς0(xi )) = σ(ς0(xi )), thus giving σ′(ς0(xi )) =
σ′

i ,m
(ς0(xi )), namely σ′ and σ′

i ,m
agree on var(ς0(xi )). Then, by definition σ′ and

σ′
i ,m

agree on all variables in Hi ,m . Finally, as var(Θi ,m) ⊆ var(ς0(xi ))∪ rhs(Hi ,m)

we can infer that σ′ and σ′
i ,m

agree also on var(Θi ,m).

❜✳ With a similar argument we obtain that σ′ and σ′
i ,n

agree on all variables occur-

ring in
Hi ,n

ς0(xi )
ai ,n−−−→6

for all i ∈ I and n ∈ Ni .

❝✳ By item 2a above, for all i ∈ I and m ∈ Mi σ
′ agrees with σ′

i ,m
on all variables in

Hi ,m , hence P ⊢σ′
i ,m

(Hi ,m) implies P ⊢σ′(Hi ,m). Analogously, by item 2b above,

for all i ∈ I and n ∈ Ni σ′ agrees with σ′
i ,n

on all variables in Hi ,n , hence P ⊢
σ′

i ,n
(Hi ,n) implies P ⊢σ′(Hi ,n). Then, since H=⋃

i∈I ,m∈Mi
Hi ,m ∪⋃

i∈In∈Ni
Hi ,n

we can conclude that P ⊢σ′(H).

✸✳ Finally, we prove that σ′(ς1(υ)) = Θ
′. Notice that the substitutions ς0 and ς1 agree

on var( f (t1, . . . , tn)) thus giving σ(ς0(xi )) = σ(ς1(xi )) for all i ∈ I . Then we have that

σ′(ς1(x j )) = σ′(t j ) = σ(t j ) = ς(x j ) for j = 1, . . . ,n. Moreover, since σ′ and σ′
i ,m

agree

on var(Θi ,m), we can infer that σ′(ς1(µi ,m)) = σ′(Θi ,m) = σ′
i ,m

(Θi ,m) = ς(µi ,m) for

all i ∈ I and m ∈ Mi . As var(υ) ⊆ {x1, . . . , xn}∪ {µi ,m | m ∈ Mi , i ∈ I }, it follows that

σ′(ς1(υ)) = ς(υ) =Θ
′.

(⇐) Assume that there a P-ruloid ρ = H

t
a−→Θ

and a closed substitution σ′ with P ⊢σ′(H),

σ′(t) = σ(t) and σ′(Θ) = Θ
′. We note that the thesis P ⊢ σ(t)

a−→ Θ
′ is equivalent to P ⊢

σ′(t )
a−→σ′(Θ).

Accordingly to Definition 3.5, let r and σ0 be resp. the PGSOS rule and the substitution

from which ρ is built, namely let r be of the form

r =
{xi

ai ,m−−−→µi ,m | i ∈ I ,m ∈ Mi } {xi
ai ,n−−−→6 | i ∈ I ,n ∈ Ni }

f (x1, . . . , xn)
a−→Θ

′′

for I = {1, . . . ,n}, and σ0 be such that σ0(xi ) = ti and σ0(Θ′′) =Θ. Then ρ is of the form

ρ =

⋃

i∈I ,m∈Mi

Hi ,m ∪
⋃

i∈I ,n∈Ni

Hi ,n

f (t1, . . . , tn)
a−→Θ

where:

⋆ For every positive premise xi
ai ,m−−−→µi ,m of r :

✯ Either σ0(xi ) is a variable and Hi ,m = {σ0(xi )
ai ,m−−−→σ0(µi ,m)} = {ti

ai ,m−−−→σ0(µi ,m)}.

Hence from P ⊢σ′(H) we can directly infer that P ⊢σ′(ti )
ai ,m−−−→σ′(σ0(µi ,m)).

58



3.2. Ruloids and distribution ruloids.

✯ Or there is a P-ruloid ρi ,m = Hi ,m

σ0(xi )
ai ,m−−−→σ0(µi ,m)

= Hi ,m

ti
a,m−−→σ0(µi ,m)

. Since P ⊢

σ′(H) implies P ⊢σ′(Hi ,m), by structural induction on ti we can infer that P ⊢
σ′(ti )

ai ,m−−−→σ′(σ0(µi ,m)).

We can therefore conclude that the closed instances with respect to σ′ ◦σ0 of the

positive premises of r are provable from P .

⋆ For every negative premise xi
ai ,n−−−→6 of r :

✯ Either σ0(xi ) is a variable and Hi ,n = {σ0(xi )
ai ,n−−−→6 } = {ti

ai ,n−−−→6 }. Hence from

P ⊢σ′(H) we can immediately infer that P ⊢σ′(ti )
ai ,n−−−→6 .

✯ Or Hi ,n = opp(pick(ℜP
σ0(xi ),ai ,n

)), namely (see Definition 3.5) for each P-ruloid ρ′

such that conc(ρ′) =σ0(xi )
ai ,n−−−→ θ, for any θ ∈DT(Σ), we have that Hi ,n contains

at least one literal denying a literal in prem(ρ′). Hence, since P ⊢σ′(H) implies

P ⊢σ′(Hi ,n), we can infer that P 6⊢σ′(prem(ρ′)). Hence, the structural induction

on σ0(xi ) = ti (case (⇒)) gives that P 6⊢ σ′(ti )
ai ,n−−−→ σ′(σ0(θ)), for any θ ∈ DT(Σ),

thus implying P ⊢σ′(ti )
ai ,n−−−→6 .

We can therefore conclude that the closed instances with respect to σ′ ◦σ0 of the

negative premises of r are provable from P .

We have obtained that all the closed instances with respect to σ′ ◦σ0 of the premises of r

are provable from P and therefore we can infer that there is a proof from P of σ′(t )
a−→σ′(Θ),

which concludes the proof. �

Clearly, an analogous result holds if we restrict our attention to positive PGSOS-PTSSs.

Corollary 3.7. Let P be a positive PGSOS-PTSS. Then P ⊢σ(t )
a−→Θ

′ for t ∈T(Σ), Θ′ ∈DT (Σ)

and σ a closed substitution, iff there are a positive P-ruloid H

t
a−→Θ

and a closed substitution

σ′ with P ⊢σ′(H), σ′(t ) =σ(t ) and σ′(Θ) =Θ
′.

Proof. The proof follows immediately from Lemma 3.5 and Theorem 3.6. �

DISTRIBUTION RULOIDS

Σ-distribution ruloids are a generalization of Σ-distribution rules and define the behavior

of arbitrary open distribution terms. More precisely, they allow us to infer the behavior

of a distribution term as a probability distribution over terms from the distribution over

terms that characterize the behavior of the variables occurring in it. Similarly to P-ruloids,

a Σ-distribution ruloid is defined by an inductive composition of Σ-distribution rules and

the left-hand sides of its premises are the variables occurring in the source, which is an

arbitrary open distribution term. As the Σ-DS is positive, the definition of Σ-distribution

ruloids results technically simpler than that of P-ruloids.
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Definition 3.6 (Σ-distribution ruloids). Let DΣ = (Σ,RΣ) be theΣ-DS. The set ofΣ-distribution

ruloids ℜΣ is the smallest set such that:

⋆ The inference rule

{δx
1−→ x}

{δx
1−→ x}

is a Σ-distribution ruloid for any x ∈Vs ;

⋆ The inference rule

{µ
qi−→ xi | i ∈ I }

{µ
qi−→ xi | i ∈ I }

is a Σ-distribution ruloid for any µ ∈Vd , provided that
∑

i∈I qi = 1 and all variables xi

with i ∈ I are distinct;

⋆ For a Σ-distribution rule r
❉

∈ RΣ of the form

⋃

i=1,...,n

{ϑi

qi , j−−→ xi , j | j ∈ Ji }

{

f (ϑ1, . . . ,ϑn)
qk−−→ f (x1,k(1), . . . , xn,k(n))

∣

∣

∣ k ∈ ×
i=1,...,n

Ji and qk =
∏

i=1,...,n

qi ,k(i )

}

as in Definition 3.1.2 and a substitution σ with σ(r
❉

) of the form

⋃

i=1,...,n

{Θi
qi ,h−−−→ ti ,h | h ∈ Hi }

{

f (Θ1, . . . ,Θn)
qκ−−→ f (t1,κ(1), . . . , tn,κ(n))

∣

∣

∣ κ ∈ ×
i=1,...,n

Hi and qκ =
∏

i=1,...,n

qi ,κ(i )

}

(see Definition 3.3.2), the inference rule
⋃

i=1,...,n

Hi

{

f (Θ1, . . . ,Θn)
qκ−−→ f (t1,κ(1), . . . , tn,κ(n))

∣

∣

∣ κ ∈ ×
i=1,...,n

Hi and qκ =
∏

i=1,...,n

qi ,κ(i )

}

is a Σ-distribution ruloid if for each i = 1, . . . ,n we have that:

✯ either Θi is a variable or a Dirac distribution and Hi = {Θi
qi ,h−−−→ ti ,h | h ∈ Hi },

✯ or there is a Σ-distribution ruloid ρ❉
i
= Hi

{Θi
qi ,h−−−→ ti ,h | h ∈ Hi }

;

⋆ For a Σ-distribution rule r
❉

∈ RΣ of the form

⋃

i∈I

{ϑi

qi , j−−→ xi , j | j ∈ Ji }

{

∑

i∈I

piϑi
qx−−→ x

∣

∣

∣ x ∈ {xi , j | i ∈ I ∧ j ∈ Ji } and qx =
∑

i∈I , j∈Ji s.t. xi , j=x

pi ·qi , j

}
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as in Definition 3.1.3 and a substitution σ with σ(r
❉

) of the form

⋃

i∈I

{Θi
qi ,h−−−→ ti ,h | h ∈ Hi }

{

∑

i∈I

piΘi
qu−−→ u

∣

∣

∣ u ∈ {ti ,h | i ∈ I ∧h ∈ Hi } and qu =
∑

i∈I ,h∈Hi s.t. ti ,h=u

pi ·qi ,h

}

(see Definition 3.3.3), the inference rule

⋃

i∈I

Hi

{

∑

i∈I

piΘi
qu−−→ u

∣

∣

∣ u ∈ {ti ,h | i ∈ I ∧h ∈ Hi } and qu =
∑

i∈I ,h∈Hi s.t. ti ,h=u

pi ·qi ,h

}

is a Σ-distribution ruloid if for every i ∈ I we have that:

✯ either Θi is a variable or a Dirac distribution and Hi = {Θi
qi ,h−−−→ ti ,h | h ∈ Hi },

✯ or there is a Σ-distribution ruloid ρ❉
i
= Hi

{Θi
qi ,h−−−→ ti ,h | h ∈ Hi }

.

Similarly to the case of process variables, the Σ-distribution ruloids having a Dirac delta

or a distribution variable as source (resp. first and second item of Definition 3.6 above) state

that to derive {δx
1−→ x} and {µ

qi−→ xi | i ∈ I } these distributions over terms have to be directly

provable from the Σ-DS.

Example 3.5. Consider the distribution term 2
5
µ+ 3

5
(ν|υ) (which is an instance of the target

of the fourth P-ruloid in Example 3.4). Then, we can build the following Σ-distribution

ruloid:

{µ
1/4−−→ x1 µ

3/4−−→ x2}

{ν
1/3−−→ y1, ν

2/3−−→ y2} {υ
1−→ z}

{ν|υ 1/3−−→ y1|z ν|υ 2/3−−→ y2|z}
{2

5
µ+ 3

5
(ν|υ)

1
10−−→ x1,

2

5
µ+ 3

5
(ν|υ)

3
10−−→ x2,

2

5
µ+ 3

5
(ν|υ)

1
5−→ y1|z,

2

5
µ+ 3

5
(ν|υ)

2
5−→ y2|z

}

.

�

Proposition 3.8. The conclusion of a Σ-distribution ruloid is a distribution over terms.

Proof. As the conclusion of a Σ-distribution ruloid coincides with the conclusion of a

reduced instance of the Σ-distribution rule on which the Σ-distribution ruloid is built, the

thesis follows immediately from Proposition 3.3. �

The inductive construction of ruloids with respect to the structure of distribution terms,

gives the following Lemma.

Lemma 3.9. Any Σ-distribution ruloid H

{Θ
qm−−→ tm | m ∈ M }

is such that:

✶✳ for all µ ∈Vd , µ ∈ var(Θ) iff µ is the left-hand side of a premise in H;
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✷✳ for all x ∈Vs , x ∈ var(Θ) iff δx is the left-hand side of a premise in H;

✸✳

⋃

m∈M var(tm) = rhs(H).

Proof. The proof follows by structural induction over the source term Θ ∈DT(Σ). �

The following result states that Σ-distribution ruloids define completely the behavior of

all open distribution terms.

Theorem 3.10 (Distribution ruloid theorem). Assume the Σ-DS DΣ, a closed substitution

σ, a distribution term Θ ∈ DT(Σ) and closed terms tm ∈ T (Σ) with m ∈ M pairwise dis-

tinct. Then DΣ ⊢ {σ(Θ)
qm−−→ tm | m ∈ M } if and only if there are a Σ-distribution ruloid

H

{Θ
qm−−→ um | m ∈ M }

and a closed substitution σ′ with σ′(Θ) = σ(Θ), σ′(um) = tm for each

m ∈ M and DΣ ⊢σ′(H).

Proof. We proceed by structural induction over Θ ∈DT(Σ).

✶✳ Base case: Θ is a Dirac distribution Θ= δx for some x ∈Vs .

(⇒) The thesis follows immediately for the Σ-distribution ruloid

{δx
1−→ x}

{δx
1−→ x}

and the closed substitution σ′ =σ.

(⇐) By Definition 3.6 the only possible Σ-distribution ruloid for Θ has the form

{δx
1−→ x}

{δx
1−→ x}

.

Thus the thesis follows immediately from DΣ ⊢σ′({δx
1−→ x}) and the choice of σ′.

✷✳ Base case: Θ is a variable µ ∈Vd .

(⇒) The thesis immediately follows for the Σ-distribution ruloid

{µ
qm−−→ xm | m ∈ M }

{µ
qm−−→ xm | m ∈ M }

and the closed substitution σ′ with σ′(µ) =σ(µ) and σ′(xm) = tm for each m ∈ M .

(⇐) By Definition 3.6 the considered Σ-distribution ruloid for Θ has the form

{µ
qm−−→ xm | m ∈ M }

{µ
qm−−→ xm | m ∈ M }

.

Thus the thesis follows immediately from DΣ ⊢σ′({µ
qm−−→ xm | m ∈ M }) and the choice

of σ′.
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✸✳ Inductive step Θ= f (Θ1, . . . ,Θn) for some f ∈Σ and Θi ∈DT(Σ) for i = 1, . . . ,n.

(⇒) First of all, we recall that by Theorem 3.4 we have DΣ ⊢ {σ(Θ)
qm−−→ tm | m ∈ M } iff

σ(Θ)(tm) = qm for each m ∈ M and
∑

m∈M qm = 1. Thus, for the particular choice of

σ(Θ), we have that the closed terms tm are of the form tm = f (t1,m , . . . , tn,m) for some

{ti ,m | i = 1, . . . ,n} ⊆ T (Σ), for m ∈ M , so that ti ,m ∈ supp(σ(Θi )) for each m ∈ M . Next,

let us consider a closed proof γ of {σ(Θ)
qm−−→ tm | m ∈ M } from DΣ. The bottom of γ is

constituted by the closed reduced instance of a Σ-distribution rule r
❉

∈ RΣ of the form

n
⋃

i=1

{ϑi

qi , j−−→ xi , j | j ∈ Ji }

{

f (ϑ1, . . . ,ϑn)
qk−−→ f (x1,k(1), . . . , xn,k(n))

∣

∣

∣ k ∈
n×

i=1

Ji and qk =
n

∏

i=1

qi ,k(i )

}

with respect to a closed substitution ς with ς(ϑi ) =σ(Θi ) for i = 1, . . . ,n. More precisely,

let ς(r
❉

) be the inference rule of the form

n
⋃

i=1

{σ(Θi )
qi ,h−−−→ ti ,h | h ∈ Hi }

{

f (σ(Θ1), . . . ,σ(Θn))
qκ−−→ f (t1,κ(1), . . . , tn,κ(n))

∣

∣

∣ κ ∈
n×

i=1

Hi and qκ =
n

∏

i=1

qi ,κ(i )

}

where

⋆ each set {σ(Θi )
qi ,h−−−→ ti ,h | h ∈ Hi } is the reduction with respect to σ of the corre-

sponding set {ϑi

qi , j−−→ xi , j | j ∈ Ji },

⋆ there is bijection f :×n
i=1

Hi → M with ti ,κ(i ) = ti ,f(κ) for each i = 1, . . . ,n,

⋆ for all i = 1, . . . ,n there is a proof shorter than γ of {σ(Θi )
qi ,h−−−→ ti ,h | h ∈ Hi } from

DΣ.

Let ς0 be a substitution with ς0(ϑi ) = Θi for i = 1, . . . ,n. Considering that ς(ϑi ) =
σ(Θi ) =σ(ς0(ϑi )), we have ς(ϑi ) =σ(ς0(ϑi )) for i = 1, . . . ,n. As a consequence, {σ(ς0(ϑi ))

qi ,h−−−→
ti ,h | h ∈ Hi } for i = 1, . . . ,n, is provable from DΣ with a proof shorter than γ. Hence,

by structural induction over each Θi = ς0(ϑi ), for each i = 1, . . . ,n there are a Σ-

distribution ruloid
Hi

{ς0(ϑi )
qi ,h−−−→ ui ,h | h ∈ Hi }

and a closed substitution σi with

❛✳ σi (ς0(ϑi )) =σ(ς0(ζi )),

❜✳ σi (ui ,h) = ti ,h , and

❝✳ DΣ ⊢σi (Hi ).

Consider a closed substitution σ′ with
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⋆ σ′(ζ) =σ(ζ) for all ζ ∈ var(Θ),

⋆ σ′(rhs(Hi )) =σi (rhs(Hi )) for all i = 1, . . . ,n

and let H=⋃n
i=1

Hi . Moreover, let ς1 be a substitution with ς1(ϑi ) =Θi and ς1(xi , j ) =
ui ,h for some h ∈ Hi accordingly to the reduced instance ς(r

❉

), for all i = 1, . . . ,n and

j ∈ Ji . We recall that σi (ui ,κ(i )) = ti ,κ(i ) = ti ,f(κ) for each i = 1, . . . ,n and we show that

the Σ-distribution ruloid

H

{ f (Θ1, . . . ,Θn)
qκ−−→ f (u1,κ(1), . . . ,un,κ(n)) | κ ∈

n×
i=1

Hi }

together with the substitution σ′ satisfies the required properties:

❛✳ First we prove that σ′(Θ) =σ(Θ). This immediately follows from σ′(ζ) =σ(ζ) for

all ζ ∈ var(Θ).

❜✳ Then we show that DΣ ⊢σ′(H), which is derived from the following considera-

tions:

✐✳ Notice that var(Θ) = ⋃n
i=1

var(Θi ) = ⋃n
i=1

var(ς0(ϑi )). Thus, since σ and σ′

agree on var(Θ) we obtain that σ′(ς0(ϑi )) = σ(ς0(ϑi )) for each i = 1, . . . ,n.

Moreover, by construction we have that σi (ς0(ϑi )) = σ(ς0(ϑi )) for each

i = 1, . . . ,n, thus giving σ′(ς0(ϑi )) = σi (ς0(ϑi )) for each i = 1, . . . ,n. Further,

by definition σ′ and σi agree on all variables in rhs(Hi ). As by Lemma 3.9.3,

rhs(Hi ) =⋃

h∈Hi
var(ui ,h), we can conclude that σ′ and σi agree on all vari-

ables occurring in
Hi

{ς0(ϑi )
qi ,h−−−→ ui ,h | h ∈ Hi }

for each i = 1, . . . ,n.

✐✐✳ As by the previous item we know that σ′ agrees with σi on all variables in

Hi and DΣ ⊢σi (Hi ), we infer that DΣ ⊢σ′(Hi ), for i = 1, . . . ,n. Then, from

H=⋃n
i=1

Hi , we can immediately conclude that DΣ ⊢σ′(H).

❝✳ Finally, we prove that σ′( f (u1,κ(1), . . . ,un,κ(n))) = tf(κ) for each κ ∈×n
i=1

Hi . By

Lemma 3.9.3 we have that var( f (u1,κ(1), . . . ,un,κ(n))) ⊆ rhs(H). In addition, we

have

⋆ var(ui ,κ(i )) ⊆ rhs(Hi );

⋆ σ′ agrees with σi on all variables in rhs(Hi ), for all i = 1, . . . ,n;

⋆ rhs(H) =⋃n
i=1

rhs(Hi ).

Therefore, we have that σ′(ui ,κ(i )) =σi (ui ,κ(i )) = ti ,κ(i ) = ti ,f(κ) for each i = 1, . . . ,n

and for each κ ∈×n
i=1

Hi . Hence, we can conclude that for each κ ∈×n
i=1

Hi we

have σ′( f (u1,κ(1), . . . ,un,κ(n))
)

= tf(κ).

(⇐) We aim to show that DΣ ⊢ {σ(Θ)
qm−−→ tm | m ∈ M }. To this aim it is enough to show

that DΣ ⊢ {σ′(Θ)
qm−−→ σ′(um) | m ∈ M } which, since the closed terms tm are pairwise
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3.2. Ruloids and distribution ruloids.

distinct by the hypothesis, by the choice of σ′ is equivalent to DΣ ⊢ {σ(Θ)
qm−−→ tm | m ∈

M }.

Notice that by the choice of Θ we have that the open terms um are of the form um =
f (u1,m , . . . ,un,m) for some {ui ,m | i = 1, . . . ,n} ⊆ T (Σ) for m ∈ M , so that ui ,m ∈ supp(Θi )

for each m ∈ M .

Accordingly to Definition 3.6, let r
❉

and σ0 be resp. the Σ-distribution rule and the

substitution from which ρ❉ is built, namely let r
❉

be of the form

⋃

i=1,...,n

{ϑi

qi , j−−→ xi , j | j ∈ Ji }

{

f (ϑ1, . . . ,ϑn)
qk−−→ f (x1,k(1), . . . , xn,k(n))

∣

∣

∣ k ∈ ×
i=1,...,n

Ji and qk =
∏

i=1,...,n

qi ,k(i )

}

as in Definition 3.1.2 and σ0 be such that σ0(r
❉

) is of the form

⋃

i=1,...,n

{Θi
qi ,h−−−→ ui ,h | h ∈ Hi }

{

f (Θ1, . . . ,Θn)
qκ−−→ f (u1,κ(1), . . . ,un,κ(n))

∣

∣

∣ κ ∈ ×
i=1,...,n

Hi and qκ =
∏

i=1,...,n

qi ,κ(i )

}

(see Definition 3.3.2) and there is a bijection f :×i=1,...,n Hi → M so that ui ,κ(i ) = ui ,f(κ)

for each i = 1, . . . ,n, and qκ = qf(κ) for each κ ∈×i=1,...,n Hi .

Then ρ❉ is of the form

ρ❉ =

⋃

i=1,...,n

Hi

{ f (Θ1, . . . ,Θn)
qm−−→ um | m ∈ M }

where for each i = 1, . . . ,n we have that:

⋆ Either σ0(ϑi ) =Θi is a variable or a Dirac distribution and Hi = {Θi
qi ,h−−−→ ui ,h |

h ∈ Hi }. Hence from DΣ ⊢σ′(H) we can immediately infer that DΣ ⊢σ′({Θi
qi ,h−−−→

ui ,h | h ∈ Hi }).

⋆ Or there is a Σ-distribution ruloid ρ❉
i
= Hi

{σ0(ϑ)
qi ,h−−−→ ui ,h | h ∈ Hi }

. Since DΣ ⊢

σ′(H) implies DΣ ⊢σ′(Hi ), by structural induction on Θi we can infer that DΣ ⊢
σ′({Θi

qi ,h−−−→ ui ,h | h ∈ Hi }).

Hence, we have obtained that the closed instances with respect to σ′ ◦σ0 of the

premises of r
❉

are provable from DΣ and therefore we can infer that there is a proof

from DΣ of {σ′(Θ)
qm−−→ σ′(um) | m ∈ M }. By the choice of σ′, we can conclude that

DΣ ⊢ {σ(Θ)
qm−−→ tm | m ∈ M }.
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✹✳ Inductive step Θ=∑

i∈I piΘi for some Θi ∈DT(Σ), pi ∈ [0,1] for i ∈ I and
∑

i∈I pi = 1.

(⇒) First of all, we recall that by Theorem 3.4 DΣ ⊢ {σ(Θ)
qm−−→ tm | m ∈ M } iff σ(Θ)(tm) =

qm and
∑

m∈M qm = 1. Thus, for the particular choice of σ(Θ), we have that the closed

terms tm are such that {tm | m ∈ M } =⋃

i∈I supp(σ(Θi )). Next, let us consider a closed

proof γ of {σ(Θ)
qm−−→ tm | m ∈ M } from DΣ. The bottom of γ is constituted by the closed

reduced instance of a Σ-distribution rule r
❉

∈ RΣ of the form

⋃

i∈I

{ϑi

qi , j−−→ xi , j | j ∈ Ji }

{

∑

i∈I

piϑi
qx−−→ x

∣

∣ x ∈ {xi , j | i ∈ I ∧ j ∈ Ji } and qx =
∑

i∈I , j∈Ji s.t. xi , j=x

pi qi , j

}

with respect to a closed substitution ς with ς(ϑi ) =σ(Θi ) for i ∈ I . More precisely, let

ς(r
❉

) be the inference rule of the form

⋃

i∈I

{σ(Θi )
qi ,h−−−→ ti ,h | h ∈ Hi }

{

∑

i∈I

piσ(Θi )
qu−−→ u

∣

∣

∣ u ∈ {ti ,h | i ∈ I ∧h ∈ Hi } and qu =
∑

i∈I ,h∈Hi s.t. ti ,h=u

pi qi ,h

}

where

⋆ each set {σ(Θi )
qi ,h−−−→ ti ,h | h ∈ Hi } is the reduction with respect to σ of the corre-

sponding set {ς(ϑi )
qi , j−−→ ς(xi , j ) | j ∈ Ji },

⋆ there is bijection f : {ti ,h | h ∈ Hi , i ∈ I } → M so that u = tf(u) for each u ∈ {ti ,h | h ∈
Hi , i ∈ I } and

⋆ for each i ∈ I there is a proof shorter than γ of {σ(Θi )
qi ,h−−−→ ti ,h | h ∈ Hi } from DΣ.

Let ς0 be a substitution with ς0(ϑi ) =Θi for each i ∈ I . Considering that ς(ϑi ) =σ(Θi ) =
σ(ς0(ϑi )), we have ς(ϑi ) =σ(ς0(ϑi )) for each i ∈ I . As a consequence, {σ(ς0(ϑi ))

qi ,h−−−→
ti ,h | h ∈ Hi } for each i ∈ I , is provable from DΣ with a proof shorter than γ. Hence,

by structural induction over each Θi = ς0(ϑi ), for each i ∈ I there are a Σ-distribution

ruloid
Hi

{ς0(ϑi )
qi ,h−−−→ ui ,h | h ∈ Hi }

and a closed substitution σi with

❛✳ σi (ς0(ϑi )) =σ(ς0(ϑi )),

❜✳ σi (ui ,h) = ti ,h , and

❝✳ DΣ ⊢σi (Hi ).

So let us consider a closed substitution σ′ with

⋆ σ′(ζ) =σ(ζ) for all ζ ∈ var(Θ),
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3.2. Ruloids and distribution ruloids.

⋆ σ′(rhs(Hi )) =σi (rhs(Hi )) for all i ∈ I

and let H=⋃

i∈I Hi . Moreover, let ς1 be a substitution with ς1(ϑi ) =Θi and ς1(xi , j ) =
ui ,h for some h ∈ Hi accordingly to the reduced instance ς(r

❉

), for all j ∈ Ji , i ∈ I . We

recall that σi (ui ,h) = ti ,h for each h ∈ Hi , i ∈ I . and we prove that the Σ-distribution

ruloid

H
{

∑

i∈I

piΘi
qu−−→ u | u ∈ {ti ,h | h ∈ Hi , i ∈ I }

}

together with the substitution σ′ satisfies the required properties:

❛✳ First we prove that σ′(Θ) =σ(Θ). This immediately follows from σ′(ζ) =σ(ζ) for

all ζ ∈ var(Θ).

❜✳ Then we prove that DΣ ⊢σ′(H), which is derived from the following considera-

tions:

✐✳ Notice that var(Θ) = ⋃

i∈I var(Θi ) = ⋃

i∈I var(ς0(ϑi )). Thus, since σ and σ′

agree on var(Θ) we obtain that σ′(ς0(ϑi )) = σ(ς0(ϑi )) for each i ∈ I . More-

over, by construction we have that σi (ς0(ϑi )) = σ(ς0(ϑi )) for each i ∈ I ,

thus giving σ′(ς0(ϑi )) = σi (ς0(ϑi )) for each i ∈ I . Furthermore, by defi-

nition σ′ and σi agree on all variables in rhs(Hi ). As by Lemma 3.9.3,

rhs(Hi ) =⋃

h∈Hi
var(ui ,h), we can conclude that σ′ and σi agree on all vari-

ables occurring in
Hi

{ς0(ϑi )
qi ,h−−−→ ui ,h | h ∈ Hi }

for each i ∈ I .

✐✐✳ As by the previous item σ′ agrees with σi on all variables in Hi and DΣ ⊢
σi (Hi ), we infer DΣ ⊢σ′(Hi ), for each i ∈ I . Then, from H=⋃

i∈I Hi , we can

immediately conclude that DΣ ⊢σ′(H).

❝✳ Finally, we prove that σ′(u) = tf(u) for each u ∈ {ti ,h | h ∈ Hi , i ∈ I }. By Lemma 3.9.3

we have that var(u) ⊆ rhs(H). Furthermore, we have that

⋆ var(ui ,h) ⊆ rhs(Hi );

⋆ σ′ agrees with σi on all variables in rhs(Hi ), for all i ∈ I ;

⋆ rhs(H) =⋃

i∈I rhs(Hi ).

Therefore, we have that σ′(ui ,h) =σi (ui ,h) = ti ,h for each h ∈ Hi , i ∈ I . Hence, we

can conclude that σ′(u) = tf(u) for each u ∈ {ti ,h | h ∈ Hi , i ∈ I }.

(⇐) We aim to show that DΣ ⊢ {σ(Θ)
qm−−→ tm | m ∈ M }. To this aim it is enough to show

that DΣ ⊢ {σ′(Θ)
qm−−→ σ′(um) | m ∈ M } which, since the closed terms tm are pairwise

distinct by hypothesis, by the choice of σ′ is equivalent to DΣ ⊢ {σ(Θ)
qm−−→ tm | m ∈ M }.
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Accordingly to Definition 3.6, let r
❉

and σ0 be resp. the Σ-distribution rule and the

substitution from which ρ❉ is built, namely let r
❉

be of the form

⋃

i∈
{ϑi

qi , j−−→ xi , j | j ∈ Ji }

{

∑

i∈I

piϑi
qx−−→ x

∣

∣

∣ x ∈ {xi , j | i ∈ I ∧ j ∈ Ji } and qx =
∑

i∈I , j∈Ji s.t. xi , j=x

pi ·qi , j

}

as in Definition 3.1.3 and σ0 be such that σ0(r
❉

) is of the form

⋃

i∈
{Θi

qi ,h−−−→ ui ,h | h ∈ Hi }

{

∑

i∈I

piΘi
qm−−→ um

∣

∣

∣ um ∈ {ui ,h | i ∈ I ∧h ∈ Hi } and qm =
∑

i∈I ,h∈Hi s.t. ui ,h=um

pi ·qi ,h

}

(see Definition 3.3.3). Then ρ❉ is of the form

ρ❉ =

⋃

i∈I

Hi

{
∑

i∈I

piΘi
qm−−→ um | m ∈ M }

where for each i ∈ I we have that:

⋆ Either σ0(ϑi ) =Θi is a variable or a Dirac distribution and Hi = {Θi
qi ,h−−−→ ui ,h |

h ∈ Hi }. Hence from DΣ ⊢σ′(H) we can immediately infer that DΣ ⊢σ′({Θi
qi ,h−−−→

ui ,h | h ∈ Hi }).

⋆ Or there is a Σ-distribution ruloid ρ❉
i
= Hi

{σ0(ϑ)
qi ,h−−−→ ui ,h | h ∈ Hi }

. Since DΣ ⊢

σ′(H) implies DΣ ⊢σ′(Hi ), by structural induction on Θi we can infer that DΣ ⊢
σ′({Θi

qi ,h−−−→ ui ,h | h ∈ Hi }).

Hence, we have obtained that the closed instances with respect to σ′ ◦σ0 of the

premises of r
❉

are provable from DΣ and therefore we can infer that there is a proof

from DΣ of {σ′(Θ)
qm−−→ σ′(um) | m ∈ M }. By the choice of σ′, we can conclude that

DΣ ⊢ {σ(Θ)
qm−−→ tm | m ∈ M }.

�

Example 3.6. Consider the distribution term Θ= 2
5
µ+ 3

5
(ν|υ) and the closed substitution σ

with σ(Θ) = 2
5

( 1
4
δt1 + 3

4
δt2 )+ 3

5

(

( 1
3
δt3 + 2

3
δt4 ) | δt5

)

. Notice that σ(Θ) is the source term of the

distribution over terms L in Example 3.3. Thus, we know that

DΣ ⊢ {σ(Θ)
1/10−−−→ t1, σ(Θ)

3/10−−−→ t2, σ(Θ)
1/5−−→ t3|t5, σ(Θ)

2/5−−→ t4|t5}.

68



3.3. The decomposition method

Consider the Σ-distribution ruloid ρ❉ for Θ given in Example 3.5

{µ
1/4−−→ x1 µ

3/4−−→ x2} {ν
1/3−−→ y1, ν

2/3−−→ y2} {υ
1−→ z}

{2

5
µ+ 3

5
(ν|υ)

1
10−−→ x1,

2

5
µ+ 3

5
(ν|υ)

3
10−−→ x2,

2

5
µ+ 3

5
(ν|υ)

1
5−→ y1|z,

2

5
µ+ 3

5
(ν|υ)

2
5−→ y2|z

}

.

We want to exhibit a proper closed substitution σ′ such that ρ❉ and σ′ satisfy Theorem 3.10

with respect to σ(Θ). Let

σ′(x1) = t1 σ′(x2) = t2 σ′(y1) = t3 σ′(y2) = t4 σ′(z) = t5

σ′(µ) = 1
4
δt1 + 3

4
δt2 σ′(ν) = 1

3
δt3 + 2

3
δt4 σ′(υ) = δt5 .

Then we have

σ′(Θ) = 2

5
σ′(µ)+ 3

5
σ′(ν|υ) = 2

5
(

1

4
δt1 +

3

4
δt2 )+ 3

5

(

(
1

3
δt3 +

2

3
δt4 ) |δt5

)

.

Moreover

σ′(y1|z) = t3|t5 σ′(y2|z) = t4|t5

thus giving that σ′(trg(ρ❉)) = rhs(L). Finally, we remark that

⋆ the proof presented for {σ(µ2)
1/4−−→ t1, σ(µ2)

3/4−−→ t2} with σ(µ2) = 1
4
δt1 + 3

4
δt2 in Exam-

ple 3.3 gives us DΣ ⊢ {σ′(µ)
1/4−−→ t1, σ′(µ)

3/4−−→ t2};

⋆ the proof presented for {σ(µ1)
1/3−−→ t3, σ(µ1)

2/3−−→ t4} with σ(µ1) = 1
3
δt3 + 2

3
δt4 in Exam-

ple 3.3 gives us DΣ ⊢ {σ′(ν)
1/3−−→ t3, σ′(ν)

2/3−−→ t4};

⋆ the proof presented for {σ(ν1)
1−→ t5} with σ(ν1) = δt5 in Example 3.3 gives us DΣ ⊢

{σ′(υ)
1−→ t5}.

We have therefore obtained that DΣ ⊢σ′(prem(ρ❉)) and thus that ρ❉ and σ′ satisfy Theo-

rem 3.10 with respect to σ(Θ). �

3.3 THE DECOMPOSITION METHOD

In this section we present our method for decomposing formulae in the classes L, Lr and L+
introduced in Chapter 2.4. To this purpose we exploit the two classes of ruloids introduced

in Section 3.2. In fact, the idea behind the decomposition of state (resp. distribution)

formulae is to establish which constraints the closed instances of the variables occurring in

a (distribution) term must satisfy to guarantee that the closed instance of that (distribution)

term satisfies the chosen state (resp. distribution) formula. Thus, since (Σ-distribution)

ruloids derive the behavior of a (distribution) term directly from the behavior of the variables

occurring in it, the decomposition method is firmly related to them.

Formally, starting from the class L, the decomposition of state formulae follows those

in [33, 80, 82–85, 90] and consists in assigning to each term t ∈T(Σ) and state formula ϕ ∈Ls,
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a set of functions ξ : Vs →Ls, called decomposition mappings, assigning to each variable x

in t a proper formula in Ls such that for any closed substitution σ it holds that σ(t) |=ϕ if

and only if σ(x) |= ξ(x) for each x ∈ var(t ) (Theorem 3.12). Each mapping ξ will be defined

on a P-ruloid having t as source, P being the considered PGSOS-PTSS.

Similarly, the decomposition of distribution formulae consists in assigning to each distri-

bution term Θ ∈DT(Σ) and distribution formula ψ ∈Ld a set of decomposition mappings

η : V → Ld∪Ls such that for any closed substitution σ we get that σ(Θ) |= ψ if and only

if σ(ζ) |= η(ζ) for each ζ ∈ var(Θ) (Theorem 3.12). Each mapping η will be defined on a

Σ-distribution ruloid having Θ as source.

Finally, as Lr and L+ are subclasses of L, we will show how we can easily derive the

decomposition method for them from the one proposed for L (Theorem 3.14).

DECOMPOSITION OF L

First we need to introduce the notion of matching for a distribution over terms and a

distribution formula, seen as a probability distribution over state formulae [41, 66].

Definition 3.7 (Matching). Consider a distribution over terms L = {Θ
qm−−→ tm | m ∈ M } and

a distribution formula ψ = ⊕

i∈I riϕi ∈ Ld. A matching for L and ψ is a distribution over

the product space w ∈∆(T(Σ)×Ls) having L and ψ as left and right marginals respectively,

that is
∑

i∈I w(tm ,ϕi ) = qm for all m ∈ M and
∑

m∈M w(tm ,ϕi ) = ri for all i ∈ I . We denote by

W(L,ψ) the set of all matchings for L and ψ.

Definition 3.8 (Decomposition of L). Let P = (Σ,A,R) be a PGSOS-PTSS and let DΣ be the

Σ-DS. We define the mappings

⋆ ·−1 : T(Σ) → (Ls →P(Vs →Ls)), and

⋆ ·−1 : DT(Σ) → (Ld →P(V →L))

as follows. For each term t ∈T(Σ) and state formula ϕ ∈Ls, t−1(ϕ) ∈P(Vs →Ls) is the set of

decomposition mappings ξ : Vs →Ls such that for any univariate term t we have:

✶✳ ξ ∈ t−1(⊤) iff ξ(x) =⊤ for all x ∈Vs ;

✷✳ ξ ∈ t−1(¬ϕ) iff there is a function f : t−1(ϕ) → var(t ) such that

ξ(x) =







∧

ξ′∈f−1(x)

¬ξ′(x) if x ∈ var(t )

⊤ otherwise;

✸✳ ξ ∈ t−1(
∧

j∈J ϕ j ) iff there exist decomposition mappings ξ j ∈ t−1(ϕ j ) for all j ∈ J such

that

ξ(x) =
∧

j∈J

ξ j (x) for all x ∈Vs ;
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✹✳ ξ ∈ t−1(〈a〉ψ) iff there exist a P-ruloid H

t
a−→Θ

and a decomposition mapping η ∈Θ
−1(ψ)

such that:

ξ(x) =











∧

x
b−→µ∈H

〈b〉η(µ) ∧
∧

x
c−→6 ∈H

¬〈c〉⊤ ∧ η(x) if x ∈ var(t )

⊤ otherwise;

✺✳ ξ ∈ (σ(t ))−1(ϕ) for a non injective substitution σ : var(t ) →Vs iff there is a decomposi-

tion mapping ξ′ ∈ t−1(ϕ) such that

ξ(x) =











∧

y∈σ−1(x)

ξ′(y) if x ∈ var(t )

⊤ otherwise.

Then, for each distribution term Θ ∈ DT(Σ) and distribution formula ψ ∈ Ld, Θ−1(ψ) ∈
P(V → L) is the set of decomposition mappings η : V → L such that for any univariate

distribution term Θ we have:

✻✳ η ∈Θ
−1(

⊕

i∈I riϕi ) iff there are aΣ-distribution ruloid H

{Θ
qm−−→ tm | m ∈ M }

and a match-

ing w ∈W({Θ
qm−−→ tm | m ∈ M },

⊕

i∈I riϕi ) such that for all m ∈ M and i ∈ I there is a

decomposition mapping ξm,i with

{

ξm,i ∈ t−1
m (ϕi ) if w(tm ,ϕi ) > 0

ξm,i ∈ t−1
m (⊤) otherwise

and we have

❛✳ for all µ ∈Vd , η(µ) =



















⊕

µ
q j−−→x j∈H

q j

∧

i∈I
m∈M

ξm,i (x j ) if µ ∈ var(Θ)

1⊤ otherwise

❜✳ for all x ∈Vs , η(x) =











∧

i∈I
m∈M

ξm,i (x) if x ∈ var(Θ)

⊤ otherwise.

✼✳ η ∈ (σ(Θ))−1(ψ) for a non injective substitution σ : var(Θ) →V iff there is a decompo-

sition mapping η′ ∈Θ
−1(ψ) such that for all ζ ∈ var(σ(Θ)) it holds η′(z) = η′(z ′) for all

z, z ′ ∈σ−1(ζ) and

η(ζ) =
{

η′(z̃) if ζ ∈ var(σ(Θ)) and z̃ ∈σ−1(ζ)

⊤ if ζ 6∈ var(σ(Θ)).

We explain our decomposition method for the diamond modality for state formulae and

for distribution formulae. For the other modalities on state formulae, which do not directly

involve the quantitative properties of processes, we refer to [83].

71



Chapter 3. SOS-based modal decomposition on PTSs

We discuss first the decomposition of a state formula ϕ = 〈a〉ψ ∈ Ls. Given any term

t ∈T(Σ) and closed substitution σ, we need to identify in ξ ∈ t−1(ϕ) which properties each

σ(x) with x ∈ var(t ) has to satisfy in order to guarantee σ(t ) |=ϕ. By Definition 2.22 we have

that σ(t ) |=ϕ if and only if P ⊢σ(t )
a−→π for some probability distribution π such that π |=ψ.

By Theorem 3.6 there is such a transition if and only if there are a P-ruloid H/t
a−→Θ and

a closed substitution σ′ with σ′(t) =σ(t) and (i) P ⊢σ′(H) and (ii) σ′(Θ) |=ψ. The validity

of condition (i) follows if, for each x ∈ var(t ), the literals in H having x as left hand side test

only the provable behavior of σ′(x). More precisely, we need that σ′(x) |= 〈b〉η(µ) for each

x
b−→ µ ∈H, for a chosen decomposition mapping η ∈ Θ

−1(ψ) with σ′(µ) |= η(µ) for each

µ ∈ var(Θ), and that σ′(x) |= ¬〈c〉⊤ for each x
c−→6 ∈H. The decomposed formula ξ(x) is then

defined as the conjunction of such formulae. Moreover, we also add in ξ(x) a conjunct η(x)

to capture the potential behavior of x as a subterm of the target term Θ. Further, the choice

of η and its use in ξ also guarantees that condition (ii) holds.

We discuss now the decomposition of a distribution formula ψ=⊕

i∈I riϕi ∈Ld. Given

any distribution term Θ ∈ DT(Σ) and a closed substitution σ, we need to identify in η ∈
Θ

−1(ψ) which properties each σ(ζ) with ζ ∈ var(Θ) has to satisfy in order to guarantee

σ(Θ) |=ψ. By Definition 2.22 we have that σ(Θ) |=ψ if and only if σ(Θ) =∑

i∈I riπi with t |=ϕi

for all t ∈ supp(πi ). Assume supp(σ(Θ)) = {tm | m ∈ M } and σ(Θ)(tm) = qm . By Theorem 3.4,

this is equivalent to have DΣ ⊢ {σ(Θ)
qm−−→ tm | m ∈M} which, by Theorem 3.10, is equivalent

to say that there are a Σ-distribution ruloid H/{Θ
qm−−→ um | m ∈ M } and a closed substitution

σ′ with σ′(Θ) = σ(Θ) and (i) DΣ ⊢ σ′(H) and (ii) σ′(um) |= ϕi whenever σ′(um) ∈ supp(πi ).

Since the weights qm are univocally determined by the distributions over terms in H and

moreover they already represent the exact probability weights of σ(Θ), we define, for each

µ ∈ var(Θ)∩Vd , the decomposition mapping η(µ) using as weights the q j in the distributions

over terms {µ
q j−−→ x j } ∈ H. Then, to guarantee condition (ii), we define w(um ,ϕi ) to be

positive if σ′(um) ∈ supp(πi ) so that we can assign the proper decomposed formula ξm,i (x)

to each x ∈ var(um) such that σ′(x) |= ξm,i (x). Moreover, since each σ′(um) may occur in the

support of more than one πi , we impose that each x ∈ var(um) satisfies the conjunction of

all the decomposed formulae ξm,i (x). Therefore, also condition (i) follows.

Example 3.7. We exemplify two decomposition mappings in the set t−1(ϕ) for term t =
x +2/5 (y |z), which is the term considered in Example 3.4 with p = 2/5, and the formula

ϕ= 〈a〉ψ, with ψ= 1
2
〈a〉⊤⊕ 1

2
¬〈a〉⊤. As this example is aimed at providing a deeper insight

on the mechanism of our decomposition method, we will choose arbitrarily the ruloids and

the matching for the considered terms and formulae in order to minimize the number of the

mappings involved in the decomposition and improve readability. Let ρ be the last ruloid

for t in Example 3.4, Θ= 2
5
µ+ 3

5
(ν|υ) denote its target, and ρ❉ be the Σ-distribution ruloid

for Θ showed in Example 3.5. By Definition 3.8.4, the decomposition mappings ξ ∈ t−1(ϕ)

built over ρ are such that:

ξ(x) = 〈a〉η(µ) ξ(y) = 〈a〉η(ν) ξ(z) = 〈a〉η(υ) (3.7)

where η ∈Θ
−1(ψ). Consider the matching w ∈W(conc(ρ❉),ψ) for conc(ρ❉) and ψ defined
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3.3. The decomposition method

by

w(x1,〈a〉⊤) = 1

10
w(x2,¬〈a〉⊤) = 3

10
w(y1|z,¬〈a〉⊤) = 1

5
w(y2|z,〈a〉⊤) = 2

5
.

For the terms and the formulae to which w gives a positive weight, we obtain the decompo-

sition mappings in Table 3.1, where ξ3 and ξ4 derive from Definition 3.8.2.

x−1
1 (〈a〉⊤) = {ξ1} ξ1(x1) = 〈a〉⊤, ξ1(x) =⊤ for all other x ∈Vs

x−1
2 (¬〈a〉⊤) = {ξ2} ξ2(x2) =¬〈a〉⊤, ξ2(x) =⊤ for all other x ∈Vs

(y1|z)−1(¬〈a〉⊤) = {ξ3,ξ4}
ξ3(y1) =¬〈a〉⊤, ξ3(z) =⊤, ξ3(x) =⊤ for all other x ∈Vs

ξ4(y1) =⊤, ξ4(z) =¬〈a〉⊤, ξ4(x) =⊤ for all other x ∈Vs

(y2|z)−1(〈a〉⊤) = {ξ5} ξ5(y2) =〈a〉⊤, ξ5(z) =〈a〉⊤, ξ5(x) =⊤ for all other x ∈Vs

Table 3.1: Derived decomposition mappings

Next, we construct the decomposition mappings for the variable ν in Θ with respect

to ρ❉ and w. By Definition 3.8.6a we consider the weights of the premises of ρD having

ν as left-hand side, namely Hν = {ν
1/3−−→ y1, ν

2/3−−→ y2}, and use them as weights of the
⊕

operator. Then for each of the variables y1, y2 in the right side of Hν, we consider the

conjunction of the formulae assigned to it by one decomposition mapping from each

set in the first column of Table 3.1. In detail, by omitting multiple occurrences of the ⊤
formulae in conjunctions, for y1 we consider ξ1(y1)∧ξ2(y1)∧ξ3(y1)∧ξ5(y1) =¬〈a〉⊤ and

ξ1(y1)∧ξ2(y1)∧ξ4(y1)∧ξ5(y1) =⊤, and for y2 we consider ξ1(y2)∧ξ2(y2)∧ξ3(y2)∧ξ5(y2) =
〈a〉⊤ and ξ1(y1)∧ξ2(y1)∧ξ4(y1)∧ξ5(y1) = 〈a〉⊤. Hence the choice between ξ3 or ξ4 generates

two different decomposition mappings in Θ
−1(ψ): by ξ3 we obtain the decomposition

mapping η1 ∈Θ
−1(ψ) with η1(ν) = 1

3
¬〈a〉⊤⊕ 2

3
〈a〉⊤ and by ξ4 we obtain the decomposition

mapping η2 ∈Θ
−1(ψ) with η2(ν) = 1

3
⊤⊕ 2

3
〈a〉⊤. By applying the same reasoning to µ and υ

we obtain

η1(µ) = 1

4
〈a〉⊤⊕ 3

4
¬〈a〉⊤ η1(ν) = 1

3
¬〈a〉⊤⊕ 2

3
〈a〉⊤ η1(υ) = 1(⊤∧〈a〉⊤)

η2(µ) = 1

4
〈a〉⊤⊕ 3

4
¬〈a〉⊤ η2(ν) = 1

3
⊤⊕ 2

3
〈a〉⊤ η2(υ) = 1(¬〈a〉⊤∧〈a〉⊤)

where we have omitted multiple occurrences of the ⊤ formulae in conjunctions. Finally,

we obtain two decomposition mappings in t−1(ϕ) by substituting η with either η1 or η2 in

Equation (3.7), obtaining respectively

ξ1(x) = 〈a〉
(1

4
〈a〉⊤⊕ 3

4
¬〈a〉⊤

)

ξ1(y) = 〈a〉
(1

3
¬〈a〉⊤⊕ 2

3
〈a〉⊤

)

ξ1(z) = 〈a〉
(

1(〈a〉⊤∧⊤)
)
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ξ2(x) = 〈a〉
(1

4
〈a〉⊤⊕ 3

4
¬〈a〉⊤

)

ξ2(y) = 〈a〉
(1

3
⊤⊕ 2

3
〈a〉⊤

)

ξ2(z) = 〈a〉
(

1(¬〈a〉⊤∧〈a〉⊤)
)

.

�

The following Lemma proves that our decomposition method preserves the syntactic

restrictions of the considered modal class, namely that by decomposing formulae in L we

get formulae in L thus preserving the logical characterization of Theorem 2.10.

Lemma 3.11. Assume the terms t ∈T(Σ) and Θ ∈DT(Σ) and the formulae ϕ ∈Ls and ψ ∈Ld.

✶✳ For all x ∈Vs we have ξ(x) ∈Ls for each ξ ∈ t−1(ϕ).

✷✳ For all ζ ∈Vd we have η(ζ) ∈Ld for each η ∈Θ
−1(ψ).

✸✳ For all ζ ∈Vs we have η(ζ) ∈Ls for each η ∈Θ
−1(ψ).

Proof. The proof follows immediately from Definition 3.8. �

The following result confirms that our decomposition method is correct.

Theorem 3.12 (Decomposition theorem). Let P = (Σ,A,R) be a PGSOS-PTSS and let DΣ be

the Σ-DS. For any term t ∈T(Σ), closed substitution σ and state formula ϕ ∈Ls we have

σ(t ) |=ϕ⇔∃ξ ∈ t−1(ϕ) such that for all x ∈ var(t ) it holds σ(x) |= ξ(x)

and for any distribution term Θ ∈ DT(Σ), closed substitution σ and distribution formula

ψ ∈Ld we have

σ(Θ) |=ψ⇔∃η ∈Θ
−1(ψ) such that for all ζ ∈ var(Θ) it holds σ(ζ) |= η(ζ).

Proof. We start with univariate terms. We proceed by structural induction over φ ∈L to

prove that for any univariate t ∈T(Σ), closed substitution σ and φ=ϕ ∈Ls we have

σ(t ) |=ϕ⇔∃ξ ∈ t−1(ϕ) such that ∀x ∈ var(t ) it holds σ(x) |= ξ(x) (3.8)

and for any univariate Θ ∈DT(Σ), closed substitution σ and φ=ψ ∈Ld we have

σ(Θ) |=ψ⇔∃η ∈Θ
−1(ψ) such that ∀ζ ∈ var(Θ) it holds σ(ζ) |= η(ζ). (3.9)

⋆ Base case φ=⊤. Then by Definition 3.8.1 we have that ξ ∈ t−1(⊤) iff ξ(x) =⊤ for all

x ∈Vs . Then Equation (3.8) directly follows from the definition of |= (Definition 2.22).

⋆ Inductive step φ=¬ϕ for some ϕ ∈Ls. We have

σ(t ) |= ¬ϕ
⇔σ(t ) 6|=ϕ

⇔∀ξ ∈ t−1(ϕ) ∃x ∈ var(t ) s.t. σ(x) 6|= ξ(x)

⇔∃ f : t−1(ϕ) → var(t ) s.t. ∀ξ′ ∈ t−1(ϕ) it holds σ(f(ξ′)) 6|= ξ′(f(ξ′))

⇔∃ f : t−1(ϕ) → var(t ) s.t. ∀x ∈ var(t ) it holds σ(x) |=
∧

ξ′∈f−1(x)

¬ξ′(x)
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⇔∃ξ ∈ t−1(¬ϕ) s.t. ∀x ∈ var(t ) it holds σ(x) |= ξ(x)

where the second relation follows by the inductive hypothesis and the last relation

follows by construction of t−1(¬ϕ) (Definition 3.8.2). Hence, Equation (3.8) holds also

in this case.

⋆ Inductive step φ=∧

j∈J ϕ j for some index set J and ϕ j ∈Ls for all i n J . We have

σ(t ) |=
∧

j∈J

ϕ j

⇔σ(t ) |=ϕ j , for all j ∈ J

⇔∃ξ j ∈ t−1(ϕ j ) s.t. ∀x ∈ var(t ) it holds σ(x) |= ξ j (x), for all j ∈ J

⇔∃ξ j ∈ t−1(ϕ j ) for all j ∈ J s.t. ∀x ∈ var(t ) it holds σ(x) |=
∧

j∈J

ξ j (x)

⇔∃ξ ∈ t−1(
∧

j∈J

ϕ j ) s.t. ∀x ∈ var(t ) it holds σ(x) |= ξ(x)

where the second relation follows by the inductive hypothesis and the last relation

follows by construction of t−1(
∧

j∈J ϕ j ) (Definition 3.8.3). Hence, Equation (3.8) holds

also in this case.

⋆ Inductive step φ=⊕

i∈I riϕi for some ϕi ∈Ls, with ri ∈ (0,1] for i ∈ I and
∑

i∈I ri = 1.

Notice that in this case we have φ ∈Ld and therefore we need to show Equation (3.9).

To this aim, we prove the two implications separately.

(⇒) Assume first that σ(Θ) |=⊕

i∈I riϕi . Then, by definition of |= (Definition 2.22), this

implies that there exists a family of probability distributions {πi }i∈I ⊆ ∆(T (Σ)) with

σ(Θ) =∑

i∈I riπi and whenever t ∈ supp(πi ) for some t ∈ T (Σ), then t |=ϕi . Notice that

supp(σ(Θ)) =⋃

i∈I supp(πi ). Let us order the elements of the support of the distribu-

tion σ(Θ) through indexes in a suitable set M , namely supp(σ(Θ)) = {tm | m ∈ M }, with

tm , tm′ pairwise distinct for all m,m′ ∈ M with m 6= m′. We have σ(Θ) =∑

m∈M qmδtm ,

for some qm ∈ (0,1] such that
∑

m∈M qm = 1. In particular, this gives qm = σ(Θ)(tm),

which, by Theorem 3.4, implies that D ⊢ {σ(Θ)
qm−−→ tm | m ∈ M }. By Theorem 3.10,

DΣ ⊢ {σ(Θ)
qm−−→ tm | m ∈ M } implies that there are a Σ-distribution ruloid ρ❉ =

H

{Θ
qm−−→ um | m ∈ M }

and a closed substitution σ′ with DΣ ⊢ σ′(H), σ′(Θ) = σ(Θ) and

σ′(um) = tm for each m ∈ M . Let us show that the rewriting of σ′(Θ) as convex com-

bination of the {πi }i∈I gives rise to a matching for conc(ρ❉) and
⊕

i∈I riϕi . Define

w ∈W(conc(ρ❉),
⊕

i∈I riϕi ) as w(um ,ϕi ) = riπi (σ′(um)), then w is a matching with

left marginal conc(ρ❉), and right marginal the distribution formula
⊕

i∈I riϕi . More

precisely, we have

qm

=σ(Θ)(tm) (by construction of σ(Θ))

=
∑

i∈I

riπi (tm) (by definition of convex combination of distributions)
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=
∑

i∈I

riπi (σ′(um)) (by construction of σ′)

=
∑

i∈I

w(um ,ϕi ) (by definition of w)

and

∑

m∈M

w(um ,ϕi ) =
∑

m∈M

riπi (σ′(um)) (by definition of w)

=
∑

m∈M

riπi (tm) (by construction of σ′)

= ri

∑

t∈supp(σ(Θ))

πi (t ) (by the choice of M)

= ri

∑

t∈supp(πi )

πi (t )

= ri .

We derive that:

✶✳ from σ′(Θ) =σ(Θ) we obtain that σ′(ζ) =σ(ζ) for all variables ζ ∈ var(Θ);

✷✳ whenever w(um ,ϕi ) > 0 it holds that σ′(um) ∈ supp(πi ) and, therefore, we infer

σ′(um) |=ϕi . By the inductive hypothesis we derive that there is a decomposition

mapping ξm,i ∈ u−1
m (ϕi ) such that σ′(x) |= ξm,i (x) for all x ∈ var(um);

✸✳ from DΣ ⊢ σ′(H) we obtain that for all premises {ζ
q j−−→ x j | j ∈ J } ∈H we have

DΣ ⊢ {σ′(ζ)
qh−−→ t ′

h
| h ∈ H }, where {σ′(ζ)

qh−−→ t ′
h
| h ∈ H } is σ′({ζ

q j−−→ x j | j ∈ J }), for

a suitable set of indexes H and proper terms t ′
h

. By Theorem 3.4, DΣ ⊢ {σ′(ζ)
qh−−→

t ′
h
| h ∈ H } iff σ′(ζ)(t ′

h
) = qh and

∑

h∈H qh = 1. Hence we have that

σ′(ζ) =
∑

h∈H

qhδt ′
h

=
∑

h∈H

(
∑

j∈J ,σ′(x j )=t ′
h

q j

)

δt ′
h

(by Definition 3.2)

=
∑

h∈H

(
∑

j∈J ,σ′(x j )=t ′
h

q jδσ′(x j )

)

=
∑

j∈J

q jδσ′(x j ) (the t ′h are pairwise distinct).

We remark that this reasoning holds since we assumed that Θ is univariate, and

therefore there is only one set of distribution premises in H with left-hand side ζ,

for each ζ ∈ var(Θ).

Let η ∈Θ
−1(

⊕

i∈I riϕi ) be the decomposition mapping defined as in Definition 3.8.6

by means of the Σ-distribution ruloid H

{Θ
qm−−→ um | m ∈ M }

and the decomposition

mappings ξm,i as in item (2) above for each m ∈ M and i ∈ I such that w(um ,ϕi ) > 0,

76



3.3. The decomposition method

and ξm,i defined by ξm,i (x) =⊤ for all x ∈Vs for those m, i such that w(um ,ϕi ) = 0. We

aim to show that for this η it holds that σ′(ζ) |= η(ζ) for each ζ ∈ var(Θ). By construction,

η(ζ) =























⊕

{ζ
q j−−→x j | j∈J }∈H

q j

∧

m∈M
i∈I

ξm,i (x j ) if ζ ∈Vd

∧

m∈M
i∈I

ξm,i (x) if ζ= x ∈Vs .

For each variable y ∈ {x j | j ∈ J }∪ {x} and for each m ∈ M and i ∈ I , we can distinguish

three cases:

✹✳ y ∈ var(um) and w(um ,ϕi ) > 0. Then, by item (2) above, we have σ′(y) |= ξm,i (y).

✺✳ y ∈ var(um) and w(um ,ϕi ) = 0. Then by construction ξm,i (y) = ⊤, thus giving

that σ′(y) |= ξm,i (y) holds trivially also in this case.

✻✳ y 6∈ var(um). Then, whichever is the value of w(um ,ϕi ), we have ξm,i (y) =⊤ (see

Definition 3.8) and consequently σ′(y) |= ξm,i (y) holds trivially also in this case.

Since these considerations apply to each m ∈ M and i ∈ I we can conclude that if

ζ ∈ Vd then for all {ζ
q j−−→ x j | j ∈ J } ∈H it holds that for each x j with j ∈ J we have

σ′(x j ) |= ∧

m∈M ,i∈I ξm,i (x j ). Furthermore, by item (3) above, if {ζ
q j−−→ x j | j ∈ J } ∈H

then DΣ ⊢σ′(H) gives σ′(ζ) =∑

j∈J q jδσ′(x j ), from which we can conclude that

σ′(ζ) |=
⊕

j∈J

q j

∧

i∈I ,m∈M

ξm,i (x j ), namely σ′(ζ) |= η(ζ).

Similarly, if ζ= x ∈Vs then

σ′(x) |=
∧

m∈M ,i∈I

ξm,i (x), namely σ′(x) |= η(x).

Thus, we can conclude that for each ζ ∈ var(Θ) it holds that σ′(ζ) |= η(ζ). Since more-

over σ(ζ) =σ′(ζ) (item (1) above), we can conclude that σ(ζ) |= η(ζ) as required.

(⇐) Assume now that there is a decomposition mapping η ∈ Θ
−1(

⊕

i∈I riϕi ) such

that σ(ζ) |= η(ζ) for all ζ ∈ var(Θ). Following Definition 3.8.6, the existence of such

a decomposition mapping η entails the existence of a Σ-distribution ruloid ρ❉ =
H

{Θ
qm−−→ tm | m ∈ M }

with
∑

m∈M qm = 1 (Proposition 3.8) and of a matching w for

conc(ρ❉) and
⊕

i∈I riϕi from which we can build the following decomposition map-

pings:
{

ξm,i ∈ t−1
m (ϕi ) if w(tm ,ϕi ) > 0

ξm,i ∈ t−1
m (⊤) otherwise.

In particular, we have that for each µ ∈ var(Θ)

η(µ) =
⊕

{µ
q j−−→x j |

∑

j∈J q j=1}∈H

q j

∧

i∈I ,m∈M

ξm,i (x j )
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Chapter 3. SOS-based modal decomposition on PTSs

and for each x ∈ var(Θ)

η(x) =
∧

i∈I ,m∈M

ξm,i (x).

We define a closed substitution σ′ such that σ′(ζ) = σ(ζ) for each ζ ∈ var(Θ) and

σ′(x) =σ(x) for each x ∈ rhs(H). Then, the following properties hold:

(a) From σ′(ζ) =σ(ζ) and σ(ζ) |= η(ζ) we derive σ′(ζ) |= η(ζ). In particular we obtain

that σ′(x) |=∧

i∈I ,m∈M ξm,i (x) for each x ∈ var(Θ).

(b) As σ′(µ) |= η(µ) for each µ ∈ var(Θ), by previous item (a), we derive that there

are probability distributions π j such that σ′(µ) = ∑

j∈J q jπ j and whenever t ∈
supp(π j ), for some t ∈ T (Σ), then t |= ∧

i∈I ,m∈M ξm,i (x j ). By Definition 3.8.6a,

the weights of the distribution formula η(µ) coincide with the weights of the

distribution literals in {µ
q j−−→ x j |

∑

j∈J q j = 1} ∈H. Therefore, we have that σ′(µ) =
∑

j∈J q jδσ′(x j ) from which we gather σ′(x j ) |=∧

i∈I ,m∈M ξm,i (x j ), for each j ∈ J .

(c) From σ(ζ) = σ′(ζ) for each ζ ∈ var(Θ) we infer that σ′(Θ) = σ(Θ). Moreover, by

Lemma 3.9.3 we have that rhs(H) = ⋃

m∈M var(tm), so that σ′(x) = σ(x) for each

x ∈ rhs(H) implies σ′(tm) =σ(tm) for each m ∈ M .

From items (a), (b) above and by structural induction we gather σ′(tm) |=ϕi for each

m ∈ M , i ∈ I withw(tm ,ϕi ) > 0. Moreover, fromσ′(ζ) |= η(ζ) for each ζ ∈ var(Θ), item (a)

above, we obtain that DΣ ⊢σ′(H), namely DΣ proves the reduced instance w.r.t, σ′ of

each set of distribution premises {ζ
q j−−→ x j |

∑

j∈J q j = 1} ∈H. This fact taken together

with item (c) above and Theorem 3.10 gives that DΣ proves the reduced instance of

{Θ
qm−−→ tm | m ∈ M } with respect to σ, that is DΣ ⊢ {σ(Θ)

qh−−→ t ′
h
| h ∈ H } for a suitable

set of indexes H and a proper set of closed terms t ′
h

such that for each h ∈ H there

is at least one m ∈ M such that t ′
h
= σ′(tm) and moreover qh = ∑

{m∈M |σ′(tm )=t ′
h

} qm

(Definition 3.2). In addition, by Theorem 3.4 it follows that qh = σ(Θ)(t ′
h

) for each

h ∈ H and
∑

h∈H qh = 1. Since moreover qh ∈ (0,1] for each h ∈ H , this is equivalent to

say that σ(Θ) =∑

h∈H qhδσ′(th ). Finally, we notice that

σ(Θ) =
∑

h∈H

qhδt ′
h

=
∑

h∈H

(

∑

{m∈M |σ′(tm )=t ′
h

}

qm

)

δt ′
h

=
∑

m∈M

qmδσ′(tm ) (t ′h pairwise distinct)

=
∑

m∈M

(

∑

i∈I

w(tm ,ϕi )
)

δσ′(tm ) (
∑

i∈I

w(tm ,ϕi ) = qm)

=
∑

i∈I

(

∑

m∈M

w(tm ,ϕi )δσ′(tm )

)

=
∑

i∈I

(

∑

m∈M

ri
w(tm ,ϕi )

ri
δσ′(tm )

)

=
∑

i∈I

ri

(

∑

m∈M

w(tm ,ϕi )

ri
δσ′(tm )

)
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=
∑

i∈I

riπi

where for each i ∈ I , πi =
∑

m∈M

w(tm ,ϕi )

ri
δσ′(tm ) is a probability distribution as it is

obtained as a convex combination of probability distributions (
∑

m∈M

w(tm ,ϕi )

ri
= 1).

Moreover, the πi are such that whenever σ′(t) ∈ supp(πi ) it holds that σ′(t) |=ϕi . In

fact, we have that whenever w(tm ,ϕi ) > 0, then the only closed term in the support

of δσ′(tm ) is indeed σ′(tm). Furthermore, whenever σ′(tm) 6|= ϕi we are granted that

w(tm ,ϕi ) = 0, thus giving that σ′(tm) is not in the support of πi . Therefore, we can

conclude that σ(Θ) |=⊕

i∈I riϕi as requested.

Hence, Equation (3.9) follows from the two implications.

⋆ Inductive step φ= 〈a〉ψ for some ψ ∈Ld and a ∈A. Notice that in this case we have

φ ∈Ls and therefore we need to show Equation (3.8). To this aim, we prove the two

implications separately.

(⇒) Assume first that σ(t ) |= 〈a〉ψ. Then, by definition of relation |= (Definition 2.22),

there exists a probability distribution π ∈∆(T (Σ)) with P ⊢σ(t)
a−→ π and π |=ψ. By

Theorem 3.6, P ⊢ σ(t)
a−→ π implies that there are a P-ruloid H

t
a−→Θ

and a closed

substitution σ′ with P ⊢σ′(H), σ′(t ) =σ(t ) and σ′(Θ) =π. We infer the following facts:

✶✳ from σ′(t ) =σ(t ) we obtain that σ′(x) =σ(x) for all x ∈ var(t );

✷✳ from σ′(Θ) =π and π |=ψ, we gather σ′(Θ) |=ψ and by the inductive hypothesis

we obtain that there exists a η ∈Θ
−1(ψ) such that σ′(ζ) |= η(ζ) for all ζ ∈ var(Θ);

✸✳ from P ⊢σ′(H) we obtain that whenever x
b−→µ ∈H we have P ⊢σ′(x)

b−→σ′(µ).

Then, if µ ∈ var(Θ), by previous item (2), we get σ′(µ) |= η(µ). Otherwise, if

µ 6∈ var(Θ), we have η(µ) = ⊤ thus giving σ′(µ) |= η(µ) also in this case. Hence,

σ′(µ) |= η(µ) and σ′(x) |= 〈b〉η(µ) in all cases.

✹✳ from P ⊢σ′(H) we obtain that whenever x
c−→6 ∈H we have P ⊢σ′(x)

c−→6 , namely

P 6⊢σ′(x)
c−→ υ for any υ ∈DT (Σ), giving σ′(x) |= ¬〈c〉⊤.

Let ξ ∈ t−1(〈a〉ψ) be defined as in Definition 3.8.4 by means of the P-ruloid H

t
a−→Θ

and

the decomposition mapping η introduced in item (2) above. We aim to show that for

this ξ it holds that σ′(x) |= ξ(x) for each x ∈ var(t ). By construction,

ξ(x) =
∧

x
b−→µ∈H

〈b〉η(µ)∧
∧

x
c−→6 ∈H

¬〈c〉⊤∧η(x).

By item (3) above we have σ′(x) |= 〈b〉η(µ) for each x
b−→ µ ∈ H. By item (4) above

we have σ′(x) |= ¬〈c〉⊤ for each x
c−→6 ∈ H. Finally, if x ∈ var(Θ) by item (2) above

we get σ′(x) |= η(x). If x 6∈ var(Θ) then we have η(x) = ⊤ (Definition 3.8.6b) thus

giving σ′(x) |= η(x) also in this case. Hence, σ′(x) |= η(x) in all cases. Thus, we can
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conclude that σ′(x) |= ξ(x). Since, by item (1) above, σ(x) =σ′(x) we can conclude that

σ(x) |= ξ(x) as required.

(⇐) Assume now that there is a ξ ∈ t−1(〈a〉ψ) such that σ(x) |= ξ(x) for all x ∈ var(t).

Following Definition 3.8.4, we construct ξ in terms of some P-ruloid H

t
a−→Θ

and

decomposition mapping η ∈Θ
−1(ψ). In particular, we have that for each x ∈ var(t )

ξ(x) =
∧

x
b−→µ∈H

〈b〉η(µ)∧
∧

x
c−→6 ∈H

¬〈c〉⊤∧η(x).

We define a closed substitution σ′ such that the following properties hold:

(a) σ′(x) = σ(x) for all x ∈ var(t). As a consequence, from σ(x) |= ξ(x) we derive

σ′(x) |= ξ(x).

(b) As σ′(x) |= ξ(x), by previous item (a), we derive that σ′(x) |= 〈b〉η(µ) for each x
b−→

µ ∈H. This implies that for each positive premise in H there exists a probability

distribution πb,µ such that P ⊢ σ′(x)
b−→ πb,µ and πb,µ |= η(µ). We define σ′(µ) =

πb,µ thus obtaining that for each x
b−→ µ ∈ H we have P ⊢ σ′(x)

b−→ σ′(µ) and

σ′(µ) |= η(µ).

(c) As σ′(x) |= ξ(x), by previous item (a), we derive that σ′(x) |= ¬〈c〉⊤ for each x
c−→6 ∈

H. Therefore, we obtain that P ⊢σ′(x)
c−→6 for each x

c−→6 ∈H.

(d) Since var(Θ) ⊆ var(t)∪ rhs(H), previous items (b) and (c) we obtain that σ′(µ) |=
η(µ) for each µ ∈Vd .

(e) σ′(x) |= η(x) for each x ∈ var(Θ).

From items (d), (e) and structural induction, we gather σ′(Θ) |=ψ. Moreover, items (b)

and (c) give P ⊢ σ′(H). Hence, by Theorem 3.6 we obtain P ⊢ σ′(t)
a−→ σ′(Θ). From

item (a) we have that σ′(t ) =σ(t ) and, therefore, we can conclude that σ(t ) |= 〈a〉ψ.

Hence, Equation (3.8) follows from the two implications.

Finally, let us deal with terms that are not univariate.

Assume first that t is not univariate, namely t = ς(s) for some univariate s and non-

injective substitution ς : var(s) → Vs . Then, σ(ς(s)) |= ϕ iff there exists a decomposition

mapping ξ′ ∈ s−1(ϕ) such that σ(ς(y)) |= ξ′(y), which by Definition 3.8.5 is equivalent to

require that there exists a decomposition mapping ξ′ ∈ s−1(ϕ) such that for each x ∈ var(t )

we have σ(x) |=∧

y∈ς−1(x)ξ
′(y). By defining the decomposition mapping ξ ∈ t−1(ϕ) as ξ(x) =

∧

y∈ς−1(x)ξ
′(y), we obtain the thesis.

Assume now that Θ is not univariate, namely Θ= ς(Θ1) for some univariate Θ1 and non-

injective substitution ς : var(Θ1) →Vd ∪δVs
. Then, σ(ς(Θ1)) |=ψ iff there exists a decomposi-

tion function η1 ∈Θ
−1
1 (ψ) such that σ(ς(z)) |= η1(z), which by Definition 3.8.7 is equivalent to

require that there exists a decomposition mapping η′ ∈Θ
−1
1 (ψ) such that for each ζ ∈ var(Θ)

we have η′(z) = η′(z ′) for all z, z ′ ∈ ς−1(ζ) and, for a chosen z̃ ∈ ς−1(ζ), σ(ζ) |= η′(z̃). By defin-

ing the decomposition mapping η ∈ Θ
−1(ψ) as η(ζ) = η′(z̃), for z̃ ∈ ς−1(ζ), we obtain the
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3.3. The decomposition method

thesis. �

DECOMPOSITION OF Lr AND L+

The decomposition of formulae in Lr and L+ can be derived from the one for L.

Definition 3.9 (Decomposition of Lr and L+). Let P = (Σ,A,R) be a PGSOS-PTSS and DΣ

be the Σ-DS. The mappings ·−1 : T(Σ) → (Ls
r →P(Vs →Ls

r)) and ·−1 : DT(Σ) → (Ld
r →P(V →

Lr)) are obtained as in Definition 3.8 by rewriting Definition 3.8.2 and Definition 3.8.4,

respectively, by

✷✬✳ ξ ∈ t−1(ā) iff there is a function f : t−1(〈a〉⊤) → var(t ) such that

ξ(x) =







∧

ξ′∈f−1(x)

¬ξ′(x) if x ∈ var(t )

⊤ otherwise;

✹✬✳ ξ ∈ t−1(〈a〉ψ) iff there are a ruloid H

t
a−→Θ

and a decomposition mapping η ∈ Θ
−1(ψ)

such that

ξ(x) =











∧

x
b−→µ∈H

〈b〉η(µ) ∧
∧

x
c−→6 ∈H

c̄ ∧ η(x) if x ∈ var(t )

⊤ otherwise.

If P is positive, the mappings ·−1 : T(Σ) → (Ls
+ → P(Vs → Ls

+)) and ·−1 : DT(Σ) → (Ld
+ →

P(V →L+)) are obtained as in Definition 3.8 by removing Definition 3.8.2 and by rewriting

Definition 3.8.4 by

✹✑✳ ξ ∈ t−1(〈a〉ψ) iff there are a positive P-ruloid H

t
a−→Θ

and a decomposition mapping

η ∈Θ
−1(ψ) such that

ξ(x) =











∧

x
b−→µ∈H

〈b〉η(µ) ∧ η(x) if x ∈ var(t )

⊤ otherwise.

The following Lemma shows that our decomposition method preserves the syntactic

restrictions of the considered modal classes, namely that by decomposing formulae in Lr

(resp. L+) we get formulae in Lr (resp. L+) thus preserving the logical characterization of

Theorem 2.11.

Lemma 3.13. Let P be a PGSOS-PTSS and consider the term t ∈T(Σ) and the formulae ϕ ∈Ls
r ,

ψ ∈Ld
r , ϕ′ ∈Ls

+ and ψ′ ∈Ld
+.

✶✳ ⋆ For all x ∈Vs we have ξ(x) ∈Ls
r for each ξ ∈ t−1(ϕ).

⋆ For all ζ ∈Vd we have η(ζ) ∈Ld
r for each η ∈Θ

−1(ψ).
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Chapter 3. SOS-based modal decomposition on PTSs

⋆ For all ζ ∈Vs we have η(ζ) ∈Ls
r for each η ∈Θ

−1(ψ).

✷✳ If P is positive, then

⋆ For all x ∈Vs we have ξ(x) ∈Ls
+ for each ξ ∈ t−1(ϕ′).

⋆ For all ζ ∈Vd we have η(ζ) ∈Ld
+ for each η ∈Θ

−1(ψ′).

⋆ For all ζ ∈Vs we have η(ζ) ∈Ls
+ for each η ∈Θ

−1(ψ′).

Proof. The proofs of items (1) and (2) follow immediately from Definition 3.9. �

Theorem 3.14 (Decomposition theorem II). Let P = (Σ,A,R) be a PGSOS-PTSS and DΣ be

the Σ-DS. Assume the decomposition mappings as in Definition 3.9. Then:

⋆ The results in Theorem 3.12 hold for ϕ ∈Ls
r and ψ ∈Ld

r .

⋆ Moreover, if P is positive, then the results in Theorem 3.12 hold for ϕ ∈Ls
+ and ψ ∈Ld

+.

Proof. The proof of both items can be obtained by following the one of Theorem 3.12

with respect to the decompositions of the two logics (Definition 3.9). In particular, we

remark that in the proof for the diamond modality in L+, we use Corollary 3.7 in place of

Theorem 3.6. �

3.4 CONGRUENCE THEOREMS

To support the compositional reasoning, the congruence (resp. precongruence) property is

required for any behavioral equivalence (resp. preorder) R . It consists in verifying whether

f (t1, . . . , tn) R f (t ′1, . . . , t ′n) whenever ti R t ′
i

for i = 1, . . . ,n. In [54] it is proved that probabilis-

tic bisimilarity is a congruence for all operators defined by a PGSOS-PTSS. We can restate

this result as a direct consequence of the characterization result of [66] (Theorem 2.10)

combined with our first decomposition result in Theorem 3.12 schematized in Figure 3.1.

Then, by our characterization results in Theorem 2.11 and our decomposition results in

Theorem 3.14 we can derive precongruence formats for both ready similarity and similarity.

Theorem 3.15. Let P = (Σ,A,R) be a PGSOS-PTSS. Then:

✶✳ Probabilistic bisimilarity is a congruence for all operators defined by P;

✷✳ Probabilistic ready similarity is a precongruence for all operators defined by P;

✸✳ If P is positive, probabilistic similarity is a precongruence for all operators defined by P.

Proof.

✶✳ Let t ∈T(Σ) and let σ,σ′ be two closed substitutions. We aim to show that

whenever σ(x) ∼σ′(x) for each x ∈ var(t ) then it holds that σ(t ) ∼σ′(t ). (3.10)
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Considering the characterization result ofL for probabilistic bisimilarity (Theorem 2.10),

to prove Equation (3.10) we simply have to show that σ(t ) and σ′(t ) satisfy the same

formulae in L. Assume that σ(t ) |=ϕ, for some state formula ϕ ∈L. By Theorem 3.12,

there is a decomposition mapping ξ ∈ t−1(ϕ) such that σ(x) |= ξ(x) for each x ∈ var(t ).

From Lemma 3.11 we gather that ξ(x) ∈ Ls and moreover by Theorem 2.10 from

σ(x) ∼σ′(x) we obtain that σ′(x) |= ξ(x) for each x ∈ var(t ). By applying Theorem 3.12

once again, we obtain that σ′(t ) |=ϕ, thus proving Equation (3.10).

✷✳ The proof for probabilistic ready simulation is analogous to the one for item 1 by

exploiting Theorem 2.11.1 in place of Theorem 2.10, Theorem 3.14.1 in place of Theo-

rem 3.12 and Lemma 3.13.1 in place of Lemma 3.11.

✸✳ Under the assumption of P positive, the proof for probabilistic simulation is anal-

ogous to the one for item 1 by exploiting Theorem 2.11.2 in place of Theorem 2.10,

Theorem 3.14.2 in place of Theorem 3.12 and Lemma 3.13.2 in place of Lemma 3.11.

�

3.5 GENERALIZATION

We have proposed a decomposition method that allowed us to derive congruence formats

for probabilistic strong (bi)similarities directly from their modal characterizations. Due to

the presence of probabilistic choice modalities in the characterizing classes of formulae,

the decomposition was made possible by the introduction of an SOS-like machinery for

the specification of the behavior of distribution terms. We claim that our method can be

extended to the other semantics in the probabilistic strong and weak linear time - branching

time spectra (see Chapter 4 for a presentation of the strong spectrum) thus obtaining a class

of ‘Probabilistic Divide and Congruence’ results in the line of [33, 80, 82, 84, 85], proposed in

the fully-nondeterministic setting. To give an intuition on how this can actually be done,

in this Section we sketch the reasoning that would lead to the definition of a congruence

format for probabilistic (rooted) branching bisimilarity starting from specifications in the

PGSOS format. As we will outline, this can be obtained by combining the decomposition

method proposed in this Chapter with the format for (rooted) branching bisimilarity, the

RBB format, defined in [84]. We recall that the RBB format is built on the predicates Λ and ℵ,

where the former marks running processes, namely processes that have already started their

execution, and the latter marks the ones that can start their execution immediately. These

predicates are a refined version of the tame/wild labeling of operators from [34, 81].

DECOMPOSITION METHOD

The first step in the definition of a decomposition method is to identify the class of modal

formulae characterizing probabilistic branching bisimilarity and its rooted version. It’s not

difficult to figure out that this class can be obtained by extending the modal logic charac-

terizing these equivalences in the fully-nondeterministic case with the probabilistic choice
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modality
⊕

. For simplicity let L be such a class of formulae. Then the decomposition of

formulae in L is then defined on our (Σ-distribution) ruloids by combining the decompo-

sition in [84] with the one we have proposed for distribution formulae. We stress that our

notions of ruloids and Σ-distribution ruloids would not need to be changed to obtain the

decomposition theorem.

FORMAT

Interestingly, the RBB format proposed in [84] holds even in our probabilistic setting. More

precisely, the syntactic constraints imposed by the format are enough to obtain, in combi-

nation the decomposition method described above, that probabilistic (rooted) branching

bisimilarity is a congruence with respect to all operators defined by PGSOS rules satisfying

them. This, however, should not be surprising. First of all we notice that both the RBB format

and the PGSOS format do not allow look-ahead. In particular, in the case of the PGSOS

format, the impossibility of testing for two consecutive moves of a process implies that

probability is never involved in the derivation of nondeterministic transitions. Equivalently,

we are guaranteed that Σ-distribution rules (and ruloids) are never used to determine the

provability of a closed literal. Moreover, the constraints on the probability weights in the

definition of behavioral relations do not depend on the syntactical definition of processes

and thus they are independent from the constraints of the rule format. Therefore, to obtain

our probabilistic RBB format we simply need to lift the definition of the predicates ℵ and Λ

on arguments of operators to the arguments of distribution terms and impose on PGSOS

rules the same constraints of the RBB format (see [84, Definition 14]).

THE CONGRUENCE THEOREM

Once we have the decomposition method and the probabilistic RBB format, we can simply

proceed in the classic way to obtain the congruence result. Firstly, since the decomposition

method is not defined in terms of PGSOS rules but of ruloids, we need to guarantee that

the syntactic constraints imposed by the PRBB format are preserved in the construction of

ruloids from PGSOS rules fitting the format. Secondly, to ensure that the decomposition of

formulae in a chosen class preserves the syntactic restrictions of that class, and thus the

logical characterization, we need to show that a formula in L is decomposed into a formula in

L or at least to a formula equivalent to a formula in L. Finally, by applying the same reasoning

schematized in Figure 3.1 we can conclude that probabilistic (rooted) branching bisimilarity

in a congruence with respect to all operators defined by a PGSOS PTSS in probabilistic RBB

format.

3.6 CONCLUDING REMARKS

In this Chapter we developed a modal decomposition of formulae in L and its subclasses

Lr,L+ presented in Chapter 2.4 as adequate logics for, respectively, probabilistic bisimilarity,

ready similarity and similarity. Our decomposition method is novel with respect to the ones
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existing in the literature (see for instance [33, 80, 82–85, 90]) as it is based on the structural

operational semantics of nondeterministic probabilistic processes in the PTS model.

The dual nature of these processes, and of the classes of formulae characterizing them,

enforced the introduction of an SOS framework tailored for the specification of distribution

terms, namely the Σ-distribution specification in which we have syntactically represented

open distribution terms as probability distributions over open terms. Moreover, the Σ-

distribution ruloids, built from it, provide a general tool that can be used to support the

decomposition of any logic with modalities specifying quantitative properties for the PTS

model and they can be easily adapted to models admitting subdistributions [115, 126, 127].

To prove the robustness of our decomposition method we have showed how the con-

gruence theorems for probabilistic bisimilarity, ready similarity and similarity with respect

to the PGSOS format can be restated as an application of our decomposition theorems.

Moreover, we sketched how our method can be generalized to derive congruence formats

for other relations in the probabilistic strong and weak spectra.

To the best of our knowledge, [90] is the only other paper dealing with ruloids for the

specification of probabilistic process calculi. As previously outlined, [90] deals with reac-

tive transition systems, which are less expressive than PTSs as they do not admit internal

nondeterminism. Transitions are of the form t
a,p−−→ t ′, denoting that t evolves by a to t ′

with probability p. Informally, our P-ruloids generalize those in [90] in the same way PTSSs

generalize reactive systems. In fact, to deal with the quadruple t
a,p−−→ t ′, ruloids in [90]

are defined by keeping track of rules and ruloids used in their construction, in order to

assign a proper probability weight to their conclusion. In detail, to guarantee the property

of semi-stochasticity, stating that the sum of the probabilities of all transitions for an action

from a term is either 0 or 1, a partitioning over ruloids is needed in [90]: given a term t the

ruloids in the partition for t related to action a allow one to derive a-labeled transitions

from t whose total probability is 1. To do so, one also has to constantly keep track of the

rules and ruloids used in the construction of the ruloids in a partition, because the exact

probability weight of a transition depends on this construction. This technical expedient

was introduced in [117], in which the SOS framework on which [90] builds was defined.

Here we do not need this technicality, since probabilities are directly managed by Σ-

distribution ruloids and we can use P-ruloids to derive the transitions leading to probability

distributions. More precisely, we should say that given a term t , all ruloids in one partition

for t of [90] are captured by one of our P-ruloids and one Σ-distribution ruloid. The P-ruloid

captures all the requirements that the subterms of t must satisfy to derive the transition

to the desired probability distribution over terms. The proper probability weights are then

automatically assigned to terms by the Σ-distribution ruloid, without necessity of keeping

track of all the rules and ruloids used in the construction.
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‘Is there any point to which you would wish to
draw my attention?’
’To the curious incident of the dog in the
night-time.’
’&e dog did nothing in the night-time.’
’&at was the curious incident,’ remarked
Sherlock Holmes.

Sir Arthur Conan Doyle,

Silver Blaze
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4
A Quantitative Spectrum for Nondeterministic

Probabilistic Processes

W
ith this Chapter we start our studies on behavioral metrics for nondeterministic proba-

bilistic processes. In particular, we propose a quantitative analogue to ready similarity

and similarity and moreover we introduce novel distances measuring the disparities of

processes with respect to the testing and (decorated) trace semantics.

The definition of (ready) similarity metric follows the quantitative characterization of

bisimilarity: we identify a suitable functional expressing the differences related to probability

and nondeterminism of processes that are relevant with respect to the considered semantics,

and we define the desired metric as the least fixed point of this functional.

Indeed, to obtain proper behavioral distances for linear semantics, as those of (dec-

orated) traces and testing, we will follow a different approach. Intuitively, these metrics

should measure the differences in the probabilities that the processes assign to semantic-

specific events, namely sequences of events aimed at capturing the considered semantics.

For instance, we will consider sequences of actions for the trace semantics and sequences

of actions leading to success for the testing semantics. In the literature we can find a

wealth of behavioral equivalences and preorders for theses semantics, based on the class

of schedulers chosen to resolve nondeterminism and on how the probabilities are com-

pared [29–31, 51, 69, 95, 108, 109, 144, 146, 147, 164, 166]. Conversely, little has been studied of

their quantitative analogues. We can find a few proposals for trace metrics [14,43,53,59,148],

but no metric for testing and decorated traces has been proposed so far. One of the main

contributions of this Chapter is to provide those metrics. To this purpose we consider the

resolutions of nondeterminism given by deterministic schedulers [144] that select exactly one

transition among the possible ones. Then, to compare the probabilities of semantic-specific

events we will follow the trace-by-trace approach of [29]: each event is tested on all possi-

ble resolutions of nondeterminism for the two processes and we evaluate the difference

between the best cases, namely between the suprema of the probabilities of performing
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the considered event. The distance between two processes is then given by the suprema of

these differences with respect to all events. By means of this technique we obtain original

metrics for decorated trace and testing semantics and a novel notion of trace metric with

respect to to the literature. In fact, our trace metric generalizes the total variation distance

used in [14, 53] on Markov Chains by capturing the interaction between nondeterminism

and probability proper of PTSs. Moreover, differently from the distance in [43, 148], based

on the trace-distribution approach of [144] and obtained by combining the Kantorovich and

Hausdorff metrics, the trace metric proposed here induces an equivalence relation that is

coarser than bisimilarity (see Section 4.5 for a detailed discussion on this issue).

In the nonprobabilistic case, [159] classified behavioral relations with respect to their dis-

criminating power and mutual relationships, the idea being to help in determining the most

suitable semantics for a given application and also to stress the similarities and differences

among those semantics. Here we obtain a quantitative analogue to the linear time-branching

time spectrum of [159] for the proposed behavioral metrics that will be classified with respect

to their discriminating power on processes in the PTS model. More precisely, we consider

(cf. upper part of Figure 4.1) the bisimilarity metric (dλ) of [64, 72, 157] together with the

novel notions of: ✶✳ ready simulation hemimetric (dr,λ); ✷✳ simulation hemimetric (ds,λ);

✸✳ ready trace hemimetric (d⊑TrR,λ
); ✹✳ ready trace metric (dTrR,λ); ✺✳ readiness hemimetric

(d⊑R,λ
); ✻✳ readiness metric (dR,λ); ✼✳ failure trace hemimetric (d⊑TrF,λ

); ✽✳ failure trace metric

(dTrF,λ); ✾✳ failure hemimetric (d⊑F,λ
); ✶✵✳ failure metric (dF,λ); ✶✶✳ completed trace hemi-

metric (d⊑TrC,λ
); ✶✷✳ completed trace metric (dTrC,λ); ✶✸✳ trace hemimetric (d⊑Tr,λ

); ✶✹✳ trace

metric (dTr,λ); ✶✺✳ testing premetric (d⊑test,λ
); ✶✻✳ testing semimetric (dtest,λ). Then we order

these metrics by the relation ‘makes processes farther than’, represented in the upper part

of Figure 4.1. Here, a blue arrow d → d′ means that d(s, t ) ≥ d′(s, t ) for all processes s, t and,

moreover, there are processes s, t for which d(s, t) > d′(s, t). As far as we know, this is the

first proposal of a quantitative spectrum on the PTS model and, moreover, it comes with

the first definition of metrics capturing the probabilistic testing, decorated traces and ready

simulation semantics, and a novel notion of trace metric.

Another interesting feature of our metrics is in that the equivalences and preorders

induced by them, namely their kernels, satisfy a lot of desirable properties. In Figure 4.1

red dotted arrows connect each distance, on the upper side, with its kernel, on the lower

side, namely the equivalence or preorder that relates precisely the processes at distance

0. In detail, we have probabilistic bisimulation equivalence (∼) and the kernels of our be-

havioral distances: ✶✳ ready simulation preorder (⊑r); ✷✳ simulation preorder (⊑); ✸✳ ready

trace preorder (⊑TrR); ✹✳ ready trace equivalence (∼TrR); ✺✳ readiness preorder (⊑R); ✻✳ readi-

ness equivalence (∼R); ✼✳ failure trace preorder (⊑TrF); ✽✳ failure trace equivalence (∼TrF);

✾✳ failure preorder (⊑F); ✶✵✳ failure equivalence (∼F); ✶✶✳ completed trace preorder (⊑TrC);

✶✷✳ completed trace equivalence (∼TrC); ✶✸✳ trace preorder (⊑Tr); ✶✹✳ trace equivalence (∼Tr);

✶✺✳ testing preorder (⊑test); ✶✻✳ testing equivalence (∼test). Interestingly, the spectrum on

metrics in the upper part of Figure 4.1 together with the kernel properties of these relations,

ensure that each black arrow on the lower side takes a relation to a larger one, giving a spec-

trum of probabilistic equivalences and preorders with respect to the relation ‘makes strictly

less identification than’ which is perfectly consistent with the spectrum on metrics. The

relations obtained from the kernels of our metrics are a slightly coarser version of the ones
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dλ

dr,λ

dTrR,λ d⊑TrR,λ

dR,λ d⊑R,λ

dTrF,λ d⊑TrF,λ

dF,λ d⊑F,λ

dtest,λ d⊑test,λ ds,λ

dTrC,λ d⊑TrC,λ

dTr,λ d⊑Tr,λ

∼

⊑r

∼TrR ⊑TrR

∼R ⊑R

∼TrF ⊑TrF

∼F ⊑F

∼test ⊑test ⊑
∼TrC ⊑TrC

∼Tr ⊑Tr

Figure 4.1: The spectrum of metrics (top) and the spectrum of probabilistic relations (bottom).

An arrow d → d ′ between two distances (top) stands for d(s, t ) ≥ d ′(s, t ) for all processes s, t ,

and d(s, t ) > d ′(s, t ) for some processes s, t . An arrow R → R ′ between two relations (bottom)

stands for R ⊂ R ′. A dotted arrow d · · ·>R between a distance d and a relation R means

that R is the kernel of d.
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proposed in the spectrum in [29, 30] and thus they share some important properties with

them along with some new important feature. We will show that our probabilistic relations

satisfy: (i) compositionality; (ii) full backward compatibility with the fully-nondeterministic

case; (iii) full backward compatibility with the fully-probabilistic case; (iv) they are all coarser

than bisimilarity.

ORGANIZATION OF CONTENTS

In Section 4.1 we briefly recall some well know notions on traces and we justify our choice of

dealing with deterministic schedulers. Then we proceed to define the behavioral metrics:

the ones for ready similarity and similarity in Section 4.2 and those expressing (decorated)

trace and testing semantics in Section 4.3. These metric are then ordered in the spectrum

presented in Section 4.4. In Section 4.5 we study the kernels of the metrics introduced

in Section 4.3 and the relations so obtained are then ordered with (bi)similarities in the

spectrum in Section 4.6. We conclude discussing related work in Section 4.7.

4.1 PRELIMINARY NOTIONS

We delay the discussion of our results to recall first some basic notions necessary to reason

about the (decorated) trace and testing semantics. As the main term of comparison for our

results is the work in [29–31], we decided to keep our notation as much closer as possible to

theirs.

We start with the notion of computation which expresses a weighted sequence a process-

to-process action-labeled transitions for processes in a PTS.

Definition 4.1 (Computation). Let P = (S ,A,−→) be a PTS and s, s′ ∈S . We say that

c := s0

a1

։ s1

a2

։ s2 . . . sn−1

an

։ sn

is a computation from s = s0 to s′ = sn , notation first(c) = s0 and last(c) = sn , if and only if for

all i = 1, . . . ,n there exists a transition si−1
ai−→πi such that si ∈ supp(πi ).

Note that πi (si ) is the execution probability of step si−1

ai
։ si conditioned on the selection

of the transition si−1
ai−→ πi at si−1. We denote by Pr(c) = ∏n

i=1πi (si ) the product of the

execution probabilities of the steps in c.

We say that c is a computation from s if c is a computation from s to some process s′.
Then, c is maximal if it is not a proper prefix of any other computation from s. We denote by

C(s) (resp. Cmax(s)) the set of computations (resp. maximal computations) from s. Given any

C ⊆ C(s), we define Pr(C) =∑

c∈C Pr(c) whenever none of the computations in C is a proper

prefix of any of the others.

We denote by A⋆ the set of finite traces in A and we denote the empty trace with the

special symbol e. We say that a computation is compatible with the trace α ∈A⋆ if and

only if the sequence of actions labeling the computation steps is equal to α. We denote by

C(s,α) ⊆ C(s) the set of computations of s which are compatible with α, and by Cmax(s,α)

the set Cmax(s,α) = Cmax(s)∩C(s,α).
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As one can expect, to capture the (decorated) trace semantics we will need to evaluate

and compare the probability of a particular sequence of events to occur. However, in the PTS

model, this probability highly depends also on internal nondeterministic choices. For this

reason a fundamental decision we need to make is in the choice of schedulers (or adversaries),

namely the functions resolving the nondeterminism for processes. In the literature we can

find several proposals for schedulers (see [95, 144, 164] and the references therein), but

we can regroup them into two main classes: deterministic schedulers and randomized

schedulers [144]. We say that a scheduler is deterministic if for each process it selects exactly

one transition among the possible ones or none of them. Thus, internal nondeterministic

choices are always treated as distinct by this class of schedulers. Conversely, randomized

schedulers allow for a convex combination of the equally labeled transitions. Exemplifying, if

we consider a PTS such that s
a−→π1 and s

a−→π2 are both valid transitions, then a randomized

scheduler can assign to s a transition s
a−→π with π= pπ1+(1−p)π2 for any value of p ∈ [0,1].

Clearly, each resolution of nondeterminism induced by a deterministic scheduler can be

also induced by a randomized one. Still, the result of the interaction of a process with a

deterministic scheduler is a fully probabilistic process (as formalized in Definition 4.2 below),

whereas when randomized schedulers are involved we obtain a fully probabilistic process

with combined transitions [146]. Considering that the main purpose of this Chapter is to

introduce novel notions of behavioral metrics and to study the relations among them, we

decided to consider the resolutions of nondeterminism induced by deterministic schedulers.

In this way, we can reason on classic PTSs and the equivalences and metrics on them, like

the (bi)simulations in Definition 2.16 and the bisimilarity metric in Definition 2.19. We leave

as future work the investigation of a spectrum of metrics and relations on processes with

combined transitions, on which randomized schedulers can be naturally applied.

Definition 4.2 (Resolution). Let P = (S ,A,−→) be a PTS and s ∈ S . We say that a PTS Z =
(Z ,A,−→Z ) is a resolution for s if and only if there exists a state correspondence function

corrZ : Z → S such that s = corrZ (zs) for some zs ∈ Z , called the initial state of Z , and

moreover it holds that:

✶✳ zs 6∈ supp(π) for any π ∈⋃

z∈Z ,a∈Ader(z, a).

✷✳ Each z ∈ Z \ {zs} is such that z ∈ supp(π) for some π ∈⋃

z ′∈Z \{z},a∈Ader(z ′, a).

✸✳ Whenever z
a−→Z π, then corrZ (z)

a−→π′ with π(z ′) =π′(corrZ (z ′)) for all z ′ ∈ Z .

✹✳ Whenever z
a1−−→Z π1 and z

a2−−→Z π2 then a1 = a2 and π1 =π2.

Then, Z is maximal if and only if it cannot be further extended in accordance with the graph

structure of P and the constraints above. We denote by Res(s) the set of resolutions for s and

by Resmax(s) the subset of maximal resolutions for s.

Finally, we recall a notion of CSP-like [106] fully synchronous parallel composition for

PTSs.

Definition 4.3 (Parallel composition). Let P1 = (S1,A,−→1) and P2 = (S2,A,−→2) be two PTSs.

The synchronous parallel composition of P1 and P2 is the PTS P1 ∥ P2 = (S1×S2,A,−→), where
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−→⊆ (S1 ×S2)×A×∆(S1 ×S2) is such that (s1, s2)
a−→ π if and only if s1

a−→1 π1, s2
a−→2 π2 and

π(s′1, s′2) =π1(s′1) ·π2(s′2) for all (s′1, s′2) ∈ S1 ×S2.

Parallel composition of PTSs naturally induces the parallel composition of processes.

Finally, we recall the notion of premetric and semimetric which will be useful to reason

about the quantitative testing semantics.

Definition 4.4. For a set X , a non-negative function d : X ×X →R
+ is said to be a premetric

on X whenever d(x, x) = 0 for all x ∈ X . The non-negative function d is then said to be a

pseudosemimetric if it is a symmetric premetric, namely if it satisfies also the condition

d(x, y) = d(y, x) for all x, y ∈ X .

For simplicity, we will call a pseudosemimetric d on X a semimetric. Hence a semimetric

is a pseudometric that does not necessarily satisfy the triangular inequality.

4.2 BRANCHING HEMIMETRICS

In this Section we present the hemimetrics for ready similarity and similarity, whose con-

struction is analogous to that of bisimulation metrics. More precisely, the quantitative

analogues of the ready simulation and simulation game are defined resp. by means of func-

tionals R and S over the lattice ([0,1]S×S ,¹), the idea being that whenever s ∈S is at some

given distance d from t ∈ S , then t can mimic s transitions and evolve into distributions

that are at distance not greater than d .

We remark that since preorders are asymmetrical relations, their quantitative analogous

should share this property, and thus our distance for (ready) simulation will be actually a

hemimetric. However, in accordance with the usual conventions in the related literature, we

will use the term (ready) simulation metric in place of (ready) simulation hemimetric.

Definition 4.5 ((Ready) simulation metric functional). Let R,S : [0,1]S×S → [0,1]S×S be the

functions defined for all functions d : S×S → [0,1] and processes s, t ∈S by

R(d)(s, t ) =







1 if init(s) 6= init(t )

sup
a∈A

max
πs∈der(s,a)

min
πt∈der(t ,a)

λ ·K(d)(πs ,πt ) otherwise

S(d)(s, t ) = sup
a∈A

max
πs∈der(s,a)

min
πt∈der(t ,a)

λ ·K(d)(πs ,πt ).

Notice that, due to the image-finiteness assumption, maxima and minima in Defini-

tion 4.5 are well-defined. It is not hard to show that R and S are monotone. Then, since

([0,1]S×S ,¹) is a complete lattice, by the Knaster-Tarski theorem R and S have the least fixed

point. Ready simulation metrics (resp. simulation metrics) are the 1-bounded hemimetrics

being prefixed points of R (resp. S). We define the ready similarity metric (resp. similarity

metric) as the least fixed point of R (resp. S).

Definition 4.6 ((Ready) simulation metric.). A 1-bounded hemimetric d : S×S → [0,1] is a

ready simulation metric if and only if R(d) ¹ d . The least fixed point of R is denoted by dr,λ

and called the ready similarity metric. Analogously, a 1-bounded hemimetric d : S×S → [0,1]

is a simulation metric if and only if S(d) ¹ d . The least fixed point of S is denoted by ds,λ and

called the similarity metric.
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Figure 4.2: Processes s, t ,u, v are such that dr,λ(s, t) = λ, ds,λ(s, t) = 0, and dr,λ(u, v) =
ds,λ(u, v) = 1

2
λ.

Moreover, as in the case of the bisimilarity metric, this fixed-point characterization of

the (ready) similarity metric allows us to define a notion of distance between processes that

considers only the first k transition steps.

Definition 4.7 (Up-to-k (ready) similarity metric). We define the up-to-k ready similarity

metric dk
r,λ

for k ∈ N by dk
r,λ

= Rk (0). Analogously, we define the up-to-k ready similarity

metric dk
s,λ

for k ∈N by dk
s,λ

= Sk (0).

Due to the continuity of the lifting functional K we can infer that also the functional R

(resp. S) is continuous, besides monotone, thus ensuring that the closure ordinal of R (resp.

S) is ω [154]. Hence, the up-to-k (ready) similarity metrics converge to the (ready) similarity

metric when k →∞.

Proposition 4.1. Assume an image-finite PTS such that for each transition s
a−→ π we have

that the probability distribution π has finite support. Then

✶✳ dr,λ = limk→∞ dk
r,λ

and

✷✳ ds,λ = limk→∞ dk
s,λ

.

Proof. The proof of both items follows by applying the same arguments used in the

proof of Proposition 2.8. �

Example 4.1. Consider processes s, t in Figure 4.2. We aim to evaluate dr,λ(t , s) and ds,λ(t , s).

We start with dr,λ(t , s). We have dr,λ(t1, s1) = 0 and dr,λ(t1,nil) = 1, thus giving

dr,λ(t , s) = min{λ ·dr,λ(t1, s1), λ ·dr,λ(t1,nil)} = min{λ ·0,λ ·1} = 0.

Similarly, we obtain that ds,λ(t , s) = 0. Let us evaluate now dr,λ(s, t) and ds,λ(s, t). Clearly,

dr,λ(s1, t1) = 0 and dr,λ(nil, t1) = 1, thus giving

dr,λ(s, t ) = max{λ ·dr,λ(s1, t1), λ ·dr,λ(nil, t1)} = max{λ ·0,λ ·1} =λ.

Interestingly, the evaluation of the similarity distance between s and t is different. In fact we

have ds,λ(s1, t1) = 0 and ds,λ(nil, t1) = 0 as well, since nil cannot execute any action and thus

the supremum over the distributions reachable by it trivially becomes 0. Therefore, we get

ds,λ(s, t ) = max{λ ·ds,λ(s1, t1), λ ·ds,λ(nil, t1)} = max{λ ·0,λ ·0} = 0.
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Consider now processes u, v from the same Figure 4.2. We have that dr,λ(u1, v1) =
dr,λ(u1, v2) = dr,λ(u3, v4) = dr,λ(u4, v4) = 0 whereas dr,λ(ui , v j ) = 1 for all other combinations

for i , j ∈ {1, . . . ,4}. Clearly, the leftmost and the rightmost a-branches of u can be matched

resp. by the leftmost and rightmost a-branches of v . Therefore, to evaluate dr,λ(u, v) we need

to match the distribution π1 = 1
2
δu2 + 1

2
δu3 with the distribution in der(v, a) that minimizes

the Kantorovich distance from it. Let π2 = δv1 , π3 = 1
2
δv2 + 1

2
δv3 and π4 = δv4 . We have

K(dr,λ)(π1,π2) = 1

2
dr,λ(u2, v1)+ 1

2
dr,λ(u3, v1) = 1

2
·1+ 1

2
·1 = 1

K(dr,λ)(π1,π3) = 1

2
dr,λ(u2, v2)+ 1

2
dr,λ(u3, v3) = 1

2
·1+ 1

2
·1 = 1

K(dr,λ)(π1,π4) = 1

2
dr,λ(u2, v4)+ 1

2
dr,λ(u3, v4) = 1

2
·1+ 1

2
·0 = 1

2

from which we can conclude that

dr,λ(u, v) = max
{

0,λ ·min{1,
1

2
}
}

= 1

2
·λ.

Notice that dr,λ(v,u) = 1
2
·λ as well, which is obtained by K(dr,λ)(πv2 ,δu1 ) = 1

2
.

By similar calculations we get that ds,λ(u, v) = ds,λ(v,u) = 1
2
·λ. We simply remark that

in this case it holds that ds,λ(u2, v2) = ds,λ(u2, v3) = 1 but ds,λ(v2,u2) = ds,λ(v3,u2) = 0. The

value of ds,λ(v,u) is then due to the fact that the weight assigned to u2 is 0.5, and thus it is

not enough to simulate both v2 and v3, having weight 0.5 each. �

We show now that dr,λ is a 1-bounded hemimetric, thus implying that it is the least ready

simulation metric.

Theorem 4.2. Function dr,λ is a 1-bounded hemimetric on S .

Proof. Firstly, we show that dr,λ is a hemimetric. To this aim we show the stronger

property that

for each k ∈N we have that dk
r,λ is a hemimetric. (4.1)

The thesis will then follow by dr,λ = limk→∞ dk
r,λ

and the linearity of the limit. We proceed by

induction over k ∈N to prove Equation (4.1), namely that for each k ∈N it holds that

✶✳ dk
r,λ

(s, s) = 0, for all s ∈S , and

✷✳ dk
r,λ

(s, t ) ≤ dk
r,λ

(s,u)+dk
r,λ

(u, t ), for all s, t ,u ∈S .

The base case k = 0 is trivial since d0
r,λ

(s, t ) = 0 for all s, t ∈S .

Consider the base case k > 0. The proof of item 1 is immediate from the definition of

dk
r,λ

. Let us prove item 2, namely the triangular inequality. We can distinguish two cases.

(a) init(s) 6= init(t ) and thus dk
r,λ

(s, t ) = 1. Given any process u we have that

⋆ either init(s) 6= init(u), thus implying dk
r,λ

(s,u) = 1,
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⋆ or init(t ) 6= init(u), thus implying dk
r,λ

(u, t ) = 1.

In both cases we obtain that dk
r,λ

(s, t ) ≤ dk
r,λ

(s,u)+dk
r,λ

(u, t ) as requested.

(b) init(s) = init(t ), thus giving

dk
r,λ(s, t ) = sup

a∈A

{

max
πs∈der(s,a)

min
πt∈der(t ,a)

λK(dk−1
r,λ )(πs ,πt )

}

By induction over k −1, we have that dk−1
r,λ

is a hemimetric. Thus, by Proposition 2.1 we

directly gather that

K(dk−1
r,λ )(π1,π2) ≤ K(dk−1

r,λ )(π1,π3)+K(dk−1
r,λ )(π3,π2). (4.2)

Then, by definition of supremum we have that for each ε> 0 there is an action aε ∈A
such that

dk
r,λ(s, t ) < max

πs∈der(s,aε)
min

πt∈der(t ,aε)
λK(dk−1

r,λ )(πs ,πt )+ε (4.3)

Let π̃s ∈ der(s, aε) be the distribution realizing the maximum in Equation (4.3). Given

any process p let

π̃u = arg min
πu∈der(u,aε)

K(dk−1
r,λ )(π̃s ,πu)

π̃t = arg min
πt∈der(t ,aε)

K(dk−1
r,λ )(π̃u ,πt ).

Then we have

max
πs∈der(s,aε)

min
πt∈der(t ,aε)

λK(dk−1
r,λ )(πs ,πt )+ε

= min
πt∈der(t ,aε)

λK(dk−1
r,λ )(π̃s ,πt )+ε

≤λK(dk−1
r,λ )(π̃s , π̃t )+ε

≤λK(dk−1
r,λ )(π̃s , π̃u)+λK(dk−1

r,λ )(π̃u , π̃t )+ε (by Equation (4.2))

= min
πu∈der(u,aε)

λK(dk−1
r,λ )(π̃s ,πu)+ min

πt∈der(t ,aε)
λK(dk−1

r,λ )(π̃u ,πt )+ε

≤ max
πs∈der(s,aε)

min
πu∈der(u,aε)

λK(dk−1
r,λ )(πs ,πu)+

+ max
πu∈der(u,aε)

min
πt∈der(t ,aε)

λK(dk−1
r,λ )(πu ,πt )+ε

≤ dk
r,λ(s,u)+dk

r,λ(u, t )+ε

and since this holds for all ε> 0, it concludes the proof of Equation (4.1).

To conclude, we need to show that dr,λ is 1-bounded. This follows by showing that

for each k ∈N we have dk
r,λ(s, t ) ≤ 1 for all s, t ∈S (4.4)

and the monotonicity of the limit. Equation (4.4) follows by an easy induction over k ∈N. �

Next, we show that ready simulation is the kernel of dr,λ.
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Theorem 4.3. For processes s, t ∈S , we have dr,λ(s, t ) = 0 iff s ⊑r t .

Proof. (⇒) We aim to show that the relation

R = {(s, t ) | dr,λ(s, t ) = 0}

is a probabilistic ready simulation.

Assume that sR t , namely dr,λ(s, t ) = 0. By Definition 4.6, this implies that init(s) = init(t )

from which we can immediately infer that whenever s
a−→6 then also t

a−→6 . Then we notice

that

dr,λ(s, t ) = sup
a∈init(s)

{

max
πs∈der(s,a)

min
πt∈der(t ,a)

λ ·K(dr,λ)(πs ,πt )

}

= 0

iff for all a ∈ init(s)

max
πs∈der(s,a)

min
πt∈der(t ,a)

λ ·K(dr,λ)(πs ,πt ) = 0

iff for all a ∈ init(s), for each πs ∈ der(s, a) there is πt ∈ der(t , a)

K(dr,λ)(πs ,πt ) = min
w∈W(πs ,πt )

∑

s′∈supp(πs ), t ′∈supp(πt )

w(s′, t ′)dr,λ(s′, t ′) = 0

iff for w̃ ∈W(πs ,πt ) optimal

whenever w̃(s′, t ′) > 0 then dr,λ(s′, t ′) = 0.

More precisely, we have obtained that for each a ∈ init(s), for each πs ∈ der(s, a) there are a

distribution πt ∈ der(t , a) and a weight function w̃ such that

⋆ for each s′ ∈ supp(πs) we have
∑

t ′∈supp(πt ) w̃(s′, t ′) =πs(s′),

⋆ for each t ′ ∈ supp(πt ) we have
∑

s′∈supp(πs ) w̃(s′, t ′) =πt (t ′),

⋆ for each s′ ∈ supp(πs), t ′ ∈ supp(πt ) whenever w̃(s′, t ′) > 0 then s′R t ′.

Thus, from Proposition 2.4, we can conclude that for each a ∈ init(s), for each πs ∈ der(s, a)

there is a distribution πt ∈ der(t , a) such that πs R
†πt .

Summarizing, we have obtained that whenever sR t then

for each s
a−→πs there is a πt such that t

a−→πt and πs R
†πt , and

whenever s
a−→6 then t

a−→6 .

Therefore, we can conclude that the relation R is a ready simulation equivalence.

(⇐) Assume now that s ⊑r t . We aim to show that dr,λ(s, t ) = 0. To this aim, we prove the

stronger property that

for each k ∈N, s ⊑r
k t implies dk

r,λ(s, t ) = 0. (4.5)

The thesis will then follow by observing that ⊑r= limk→∞ ⊑r
k

and dr,λ = limk→∞ dk
r,λ

. We

proceed by induction over k ∈N to prove Equation (4.5).
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4.2. Branching hemimetrics

⋆ The base case k = 0 is immediate as ⊑r
0=S×S and d0

r,λ
(s, t ) = 0 for all s, t ∈S .

⋆ Consider now the inductive step k > 0. By definition we have that s ⊑r
k

t if and only

if whenever s
a−→πs then there is a πt with t

a−→πt and πs ⊑r†

k−1
πt and whenever s

a−→6
then t

a−→6 . Clearly these two conditions imply that init(s) = init(t ) and thus

dk
r,λ(s, t ) = sup

a∈init(s)

{

max
πs∈der(s,a)

min
πt∈der(t ,a)

λ ·K(dk−1
r,λ )(πs ,πt )

}

.

Let s
a−→ πs and let πt be any distribution such that t

a−→ πt and πs ⊑r†

k−1
t . By Propo-

sition 2.4 πs ⊑r†

k−1
πt implies the existence of a matching w̃ ∈W(πs ,πt ) such that for

each s′ ∈ supp(πs), t ′ ∈ supp(πt ) whenever w̃(s′, t ′) > 0 then s′ ⊑r
k−1

t ′. By induction

over k −1, s′ ⊑r
k−1

t implies dk−1
r,λ

(s′, t ′) = 0. Thus, we have obtained that there is a

matching w̃ ∈W(πs ,πt ) such that whenever w̃(s′, t ′) > 0 then dk−1
r,λ

(s′, t ′) = 0. There-

fore, we can infer that

K(dk−1
r,λ )(πs ,πt ) = min

w∈W(πs ,πt )

∑

s′∈supp(πs ), t ′∈supp(πt )

w(s′, t ′)dk−1
r,λ (s′, t ′)

≤
∑

s′∈supp(πs ), t ′∈supp(πt )

w̃(s′, t ′)dk−1
r,λ (s′, t ′)

= 0.

Hence, we have obtained that for each πs ∈ der(s, a) there is a πt ∈ der(t , a) such that

λ ·K(dk−1
r,λ

)(πs ,πt ) = 0. Thus, we have

dk
r,λ(s, t ) = sup

a∈init(s)

{

max
πs∈der(s,a)

min
πt∈der(t ,a)

λ ·K(dk−1
r,λ )(πs ,πt )

}

= sup
a∈init(s)

{

max
πs∈der(s,a)

0

}

= sup
a∈init(s)

{0}

= 0.

�

The results for ds,λ are analogous.

Theorem 4.4. Function ds,λ is a 1-bounded hemimetric on S .

Proof. The thesis follows by applying the same arguments used in the proof of Theo-

rem 4.2. �

Theorem 4.5. For processes s, t ∈S , we have ds,λ(s, t ) = 0 if and only if s ⊑ t .

Proof. The thesis follows by applying the same arguments used in the proof of Theo-

rem 4.3. �
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4.3 LINEAR (HEMI)METRICS

In this Section we introduce the behavioral metrics capturing linear semantics as (decorated)

traces and testing.

THE TRACE METRIC

In the fully-nondeterministic case, the trace semantics is mainly based on the capability of

processes to execute particular sequences of events, called traces. Clearly, the same principle

should hold when also probability is taken into account: probabilistic trace semantics should

be based on the evaluation of the probability of a particular trace to be executed by a process.

Intuitively, this should result into a metric semantics expressing the distance between

two processes by quantifying the difference in the execution probabilities of the traces.

However, as we are combining nondeterminism and probability, a few more considerations

are required in order to define a robust trace metric semantics.

First of all, we need to establish what are the events we are considering. Accordingly to the

original idea in [144] an event consists on the execution of an action followed by a probability

distribution over events. Traces are then seen as trace distributions, namely probability

distributions over sequences of actions. In [148] a metric for this semantics was proposed

and in [43] we proposed a logical characterization for it. Besides, this semantics is neither

fully backward compatible with the fully-nondeterministic case [31] nor compositional [144].

More importantly, the distance from [148], due to an overpowered discriminating capability

of schedulers, is incompatible with the bisimilarity metric, that is, denoting the distance

from [148] by dtr, there are processes s, t such that dtr(s, t) > dλ(s, t). For all these reasons

we decided to look for an alternative notion of trace metric that, together with its kernel,

would satisfy these desirable properties. So, we switch to a standard notion of event in the

trace semantics, namely the execution of a certain action, so that a trace is no more than a

sequence of actions, as in the fully nondeterministic case.

Next, we need to deal with nondeterminism. Clearly, a process may execute a given trace

with different probabilities, accordingly to which resolution of nondeterminism for it we

are considering. For instance, process v in Figure 4.2 can execute the same trace ab with

probability 1, 0.5 or 0 with respect to the choice of the leftmost, central or rightmost a-branch

of v by the scheduler. As our trace metric has to quantify the differences in those executions,

we need to establish how they will be compared. We let the fully-nondeterministic case

guide us in this choice: when we compare two fully-nondeterministic processes we simply

check that whenever a trace is executable by a process then also the other process can

execute it. We shall say that only positive information about the execution is considered: if

there is a resolution of nondeterminism for a process in which it can execute a certain trace,

then this information is used in the comparison; conversely if there is a resolution in which

the same process cannot execute such a trace, then this resolution is not taken into account.

The same principle should hold in the PTS model. So when we consider the resolution of

nondeterminism for process v in Figure 4.2 corresponding its central a-branch what we

obtain is that v executes trace ab with at least probability 0.5.

98



4.3. Linear (hemi)metrics

s
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Zs ∈ Res(s)

zs
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0.6 0.4
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b

 

Zt ∈ Res(t )

zt
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zt1 zt2 zt3

b b c

   

Figure 4.3: Processes s, t are such that d⊑Tr,λ
(s, t ) = 0 and d⊑Tr,λ

(t , s) = dTr,λ(s, t ) = 1
10

·λ.

Therefore, our trace metric will express the difference in the execution probabilities of

traces by two processes at their best, namely it will be the difference between the suprema

execution probabilities with respect to all resolutions of nondeterminism for the two pro-

cesses.

Definition 4.8 (Trace metric). Let P = (S ,A,−→) be a PTS and λ ∈ (0,1]. For each trace α ∈A⋆

we consider the function dα
⊑Tr,λ

: S×S → [0,1] defined for all processes s, t ∈S by

dα
⊑Tr,λ(s, t ) = max

{

0,λ|α|−1
(

sup
Zs∈Res(s)

Pr(C(zs ,α))− sup
Zt∈Res(t )

Pr(C(zt ,α))
)

}

.

The trace hemimetric and the trace metric are the functions d⊑Tr,λ
,dTr,λ : S×S → [0,1] defined

for all processes s, t ∈S by

d⊑Tr,λ(s, t ) = sup
α∈A⋆

dα
⊑Tr,λ(s, t )

dTr,λ(s, t ) = max
{

d⊑Tr,λ(s, t ),d⊑Tr,λ(t , s)
}

.

Notice that we also make use of a factor λ ∈ (0,1] which discounts the final distance

with respect to the length of the observed trace minus 1 since the first computation step is

not discounted. This follows the same principle of the discount factor introduced in the

branching metrics “the longer the trace the less the distance should weight” and it will allow

us to properly compose the spectrum of metrics.

Example 4.2. We aim to evaluate the trace distance dTr,λ(s, t ) for processes s, t in Figure 4.3.

Clearly, we have that supZs∈Res(s) Pr(C(zs , a)) = supZt∈Res(t ) Pr(C(zt , a)) = 1. Consider now

trace ab and the resolutions Zs and Zt for resp. s and t in Figure 4.3. We have

sup
Z ′

s∈Res(s)

Pr(C(z ′
s , ab)) = Pr(C(zs , ab)) = 0.6

sup
Z ′

t∈Res(t )

Pr(C(z ′
t , ab)) = Pr(C(zt , ab)) = 0.7

thus giving dab
⊑Tr,λ

(s, t) = 0 and dab
⊑Tr,λ

(t , s) = 0.1 ·λ. Similarly, considering trace ac we get

dac
⊑Tr,λ

(s, t ) = 0 and dac
⊑Tr,λ

(t , s) = 0.1 ·λ. Since there are no other traces executable by the two
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processes we can conclude that

d⊑Tr,λ(s, t ) = 0

d⊑Tr,λ(t , s) = 0.1 ·λ,

dTr,λ(s, t ) = max{d⊑Tr,λ(s, t ),d⊑Tr,λ(t , s)} = 0.1 ·λ.

�

We show that d⊑Tr,λ
(resp. dTr,λ) is a 1-bounded hemimetric (resp. pseudometric) on S .

We delay the discussion on the kernels of these distances and their properties to Section 4.5.

Theorem 4.6. ✶✳ Function d⊑Tr,λ
is a 1-bounded hemimetric on S . ✷✳ Function dTr,λ is a

1-bounded pseudometric on S .

Proof.

✶✳ To prove that d⊑Tr,λ
is a 1-bounded hemimetric it is enough to show that for each trace

α ∈A⋆, the function dα
⊑Tr,λ

is a 1-bounded hemimetric, that is we need to show that

❛✳ dα
⊑Tr,λ

(s, s) = 0 for each s ∈S .

❜✳ dα
⊑Tr,λ

(s1, s2) ≤ dα
⊑Tr,λ

(s1, s3)+dα
⊑Tr,λ

(s3, s2) for each s1, s2, s3 ∈S .

The first item is immediate by Definition 4.8. Let us prove the triangular inequality.

We can distinguish two cases.

⋆ supZ1∈Res(s1) Pr(C(z1,α)) ≤ supZ2∈Res(s2) Pr(C(z2,α)). Hence we have

dα
⊑Tr,λ(s1, s2) = 0 ≤ dα

⊑Tr,λ(s1, s3)+dα
⊑Tr,λ(s3, s2)

for all s3 ∈S .

⋆ supZ1∈Res(s1) Pr(C(z1,α)) > supZ2∈Res(s2) Pr(C(z2,α)). Hence we have

dα
⊑Tr,λ(s1, s2)

=λ|α|−1
(

sup
Z1∈Res(s1)

Pr(C(z1,α))− sup
Z2∈Res(s2)

Pr(C(z2,α))
)

=λ|α|−1
(

sup
Z1∈Res(s1)

Pr(C(z1,α))− sup
Z2∈Res(s2)

Pr(C(z2,α))± sup
Z3∈Res(s3)

Pr(C(z3,α))
)

=λ|α|−1
(

sup
Z1∈Res(s1)

Pr(C(z1,α))− sup
Z3∈Res(s3)

Pr(C(z3,α))
)

+

λ|α|−1
(

sup
Z3∈Res(s3)

Pr(C(z3,α))− sup
Z2∈Res(s2)

Pr(C(z2,α))
)

≤ dα
⊑Tr,λ(s1, s3)+dα

⊑Tr,λ(s3, s2).

The 1-boundedness property follows by λ ∈ (0,1] and

Pr(C(zi ,α)) ≤ 1

⇒ sup
Zi∈Res(si )

Pr(C(zi ,α)) ≤ 1

⇒ sup
Zi∈Res(si )

Pr(C(zi ,α))− sup
Z j∈Res(s j )

Pr(C(z j ,α)) ≤ 1.
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✷✳ dTr,λ being a 1-bounded (pseudo)metric follows by the fact that it is defined as the

maximum between two 1-bounded (hemi)metrics (Theorem 4.6.1).

�

THE DECORATED TRACE METRICS

The idea behind the definition of metrics for decorated trace semantics is the same of the

trace metric: we evaluate the difference in the suprema of the execution probabilities of

a particular event over all possible resolutions of nondeterminism for processes, where

an event changes from a sequence of actions to a sequence of actions and decorations

accordingly to the considered semantics.

The completed trace metric

We start by considering the completed trace metric. Assume a process s ∈ S and consider

any resolution Zs ∈ Res(s) for s. We denote by CC(zs ,α) the set of completed α-compatible

computations from zs , namely CC(zs ,α) = {c ∈ C(zs ,α) | init(corrZs
(last(c))) =;}. For sake of

readability, we say that α ∈A⋆ is a completed trace of process s if there exists a completed

α-compatible computation from zs , for some resolution Zs for s.

Definition 4.9 (Completed trace metric). Let P = (S ,A,−→) be a PTS and λ ∈ (0,1]. For each

trace α ∈A⋆ we consider the function dα
⊑TrC,λ

: S×S → [0,1] defined for all s, t ∈S by

dα
⊑TrC,λ(s, t ) = max

{

0,λ|α|
(

sup
Zs∈Res(s)

Pr(CC(zs ,α))− sup
Zt∈Res(t )

Pr(CC(zt ,α))
)

}

.

The completed trace hemimetric and the completed trace metric are the functions d⊑TrC,λ
,

dTrC,λ : S×S → [0,1] defined for all s, t ∈S by

d⊑TrC,λ(s, t ) = max

{

d⊑Tr,λ(s, t ), sup
α∈A⋆

dα
⊑TrC,λ(s, t )

}

dTrC,λ(s, t ) = max
{

d⊑TrC,λ(s, t ),d⊑TrC,λ(t , s)
}

.

Notice that differently from the trace metric, the discount factor on completed traces is

considered with respect to the total length of the considered completed trace. Informally,

this is due to the fact that to establish whether a trace α is a completed trace or not we also

need to check process behavior at step |α|+1, thus making the exponent of the discount

factor to be (|α| +1)−1 = |α|, where the minus 1 is related to the first computation step

which is not discounted.

Example 4.3. Consider processes s, t in Figure 4.4. Firstly notice that dTr,λ(s, t) = 0 as the

only interesting traces for this case are a,ab and ac and clearly supZs∈Res(s) Pr(C(zs ,α)) =
supZt∈Res(t ) Pr(C(zt ,α)) for all α ∈ {a, ab, ac}. Hence, the completed trace distance between

s and t will be obtained by comparing the probabilities of executing the completed traces.
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Figure 4.4: Processes s, t are such that d⊑TrC,λ
(t , s) = 0 and d⊑TrC,λ

(s, t ) = dTrC,λ(s, t ) = 0.7 ·λ.

We start by evaluating d⊑TrC,λ
(t , s). Clearly, the completed traces for t are ab and ac for

which supZt∈Res(t ) Pr(CC(zt , ab)) = 0.3 and supZt∈Res(t ) Pr(CC(zt , ac)) = 0.7. These values are

matched by the analogous suprema over the resolutions for s: the one corresponding to the

leftmost a-branch for trace ab and the one corresponding to the rightmost a-branch for

trace ac. Thus we get d⊑TrC,λ
(t , s) = 0.

Let us evaluate now d⊑TrC,λ
(s, t). Notice that the trace α= a is a completed trace for s.

Consider the resolutions Zs ∈ Res(s) and Zt ∈ Res(t ) represented in Figure 4.4. We have that

Pr(CC(zs ,α)) = 0.7 whereas Pr(CC(zt ,α)) = 0, since init(corrZt
(zt2 )) 6= ;. It is easy to see that

d⊑TrC,λ
(s, t ) = supα∈{a,ab,ac} dα

⊑TrC,λ
(s, t ) = 0.7 ·λ and thus

dTrC,λ(s, t ) = max{0,0.7 ·λ} = 0.7 ·λ.

�

The failure metric

Next we consider the failure semantics [37, 109] which expresses the safety properties of

processes: it ensures that whenever a particular sequence of events takes place then the

process will refuse with a positive probability to execute the actions from a given set. More

formally, an element f ∈A⋆×P(A) is called a failure pair and it is constituted by a trace

α and a set F called failure set (sometimes called refusal set) containing the actions that

have to be refused. Given a process s ∈ S and a resolution Zs ∈ Res(s) for s, we denote by

FC(zs , f) the set of f-compatible computations from zs : for f= (α,F ), we let FC(zs , f) = {c ∈
C(zs ,α) | init(corrZs

(last(c)))∩F =;} and we say that a process s admits the failure set F if

init(s)∩F =;. This notion is lifted to resolutions via the correspondence function.

For simplicity of notation, we denote a failure pair f = (α,F ) by f = αF . Moreover, we

define the length of the failure pair f=αF as

|f| =
{

|α| if F 6= ;
|α|−1 otherwise.

Clearly, the metric capturing the failure semantics will quantify the difference in the

probabilities of satisfying the same safety properties.
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Definition 4.10 (Failure metric). Let P = (S ,A,−→) be a PTS and λ ∈ (0,1]. For each failure

pair f ∈A⋆×P(A) we consider the function d
f
⊑F,λ

: S×S → [0,1] defined for all s, t ∈S by

d
f
⊑F,λ

(s, t ) = max

{

0,λ|f|
(

sup
Zs∈Res(s)

Pr(FC(zs , f))− sup
Zt∈Res(t )

Pr(FC(zt , f))
)

}

.

The failure hemimetric and the failure metric are the functions d⊑F,λ
,dF,λ : S ×S → [0,1]

defined for all s, t ∈S by

d⊑F,λ(s, t ) = sup
f∈A⋆×P(A)

d
f
⊑F,λ

(s, t )

dF,λ(s, t ) = max
{

d⊑F,λ(s, t ),d⊑F,λ(t , s)
}

.

The choice for the exponent of the discount factor follows, as for the three other up-

coming decorated trace metrics, from the same reasoning applied to the case of completed

traces. In fact, notice that given any failure pair f ∈A⋆×P(A) we have that the distance

with respect to f=αF is discounted with respect to the actual number of computation steps

that are investigated, that is |f|. Notice that whenever F =;, namely we do not investigate

the behavior of processes reached by executing α, then |f| = |α|−1 as happens for traces.

Conversely, if F 6= ;, namely we impose some constraint on the behavior of the processes

reached via α, then |f| = |α| as for completed traces.

Example 4.4. Consider again processes s, t in Figure 4.4. Consider the failure pairs f1 = a{b},

f2 = a{c} and f3 = a{b,c} for which, considering process t and its resolutions, we have

respectively

sup
Zt∈Res(t )

Pr(FC(zt , f1)) = 0.7 sup
Zt∈Res(t )

Pr(FC(zt , f2)) = 0.3 sup
Zt∈Res(t )

Pr(FC(zt , f3)) = 0.

These values can be evaluated on the resolution Zt represented in Figure 4.4. By executing

a process zt reaches zt1 with probability 0.3 and zt2 with probability 0.7. Thus, to evaluate

for instance Pr(FC(zt , f2)) we need to evaluate the probability of zt to reach by executing a

a process whose correspondent in t cannot execute action c. As init(corrZt
(zt1 )) = {b} and

init(corrZt
(zt2 )) = {c}, we have that Pr(FC(zt , f2)) corresponds to the probability of reaching

zt1 , namely 0.3. Consider now the resolution Zs for s represented in Figure 4.4. We have that

init(corrZs
(nil)) =; and init(corrZs

(zs1 )) = {b} and thus both processes admit the failure set

{c}. Hence, Pr(FC(zs , f2)) = 1. By applying a similar argument to process s and its resolutions,

we get

sup
Zs∈Res(s)

Pr(FC(zs , f1)) = 1 sup
Zs∈Res(s)

Pr(FC(zs , f2)) = 1 sup
Zs∈Res(s)

Pr(FC(zs , f3)) = 0.7.

As the considered failure pairs are the only interesting ones for this particular case, the

suprema for s are always greater than those for t . Then, since |f1| = |f2| = |f3| = 1, we get that

d⊑F,λ(t , s) = 0 d⊑F,λ(s, t ) =λ1 ·max{1−0.7, 1−0.3, 0.7−0} = 0.7 ·λ.

Therefore, we can conclude that dF,λ(s, t ) = max{0.7 ·λ, 0} = 0.7 ·λ. �

103



Chapter 4. A Quantitative Spectrum for Nondeterministic Probabilistic Processes

The failure trace metric

We can extend the failure semantics to traces obtaining the failure trace semantics in which

the safety properties of processes are tested in a step-by-step fashion. It is formalized

by means of failure traces, namely sequences F ∈ (A×P(A))⋆∪ (e×P(A)) of pairs (a,F )

of an action and a failure set or the empty trace and a failure set (e,F ). Given a process

s ∈ S and a resolution Zs ∈ Res(s) for s, we denote by FC(zs ,F) the set of F-compatible

computations from zs : for F = (a1,F1) . . . (an ,Fn), we let α = a1 . . . an and FC(zs ,F) = {c ∈
C(zs ,α) | init(corrZs

(zi ))∩Fi = ; for all i = 1, . . . ,n}, where for each i ∈ {1, . . . ,n} we let zi

denote the state reached by computation c after i steps.

For simplicity of notation, we denote a failure trace F = (a1,F1) . . . (an ,Fn) simply by

F= a1F1 . . . anFn . Moreover, we define the length of the failure trace F= a1F1 . . . anFn as

|F| =
{

|a1 . . . an | if Fn 6= ;
|a1 . . . an |−1 otherwise.

We remark that although we are using the same notation FC(zs ,_) to denote the set of

_-compatible computations for both the failure pairs and failure traces, the meaning will

always be clear from the context.

The failure trace metric refines the failure metric by quantifying the disparities in the

probabilities of satisfying the same step-by-step safety properties.

Definition 4.11 (Failure trace metric). Let P = (S ,A,−→) be a PTS and λ ∈ (0,1]. For each

failure trace F ∈ (A×P(A))⋆∪ (e×P(A)) we consider the function dF
⊑TrF,λ

: S ×S → [0,1]

defined for all s, t ∈S by

dF
⊑TrF,λ

(s, t ) = max

{

0,λ|F|
(

sup
Zs∈Res(s)

Pr(FC(zs ,F))− sup
Zt∈Res(t )

Pr(FC(zt ,F))
)

}

.

The failure trace hemimetric and the failure trace metric are the functions d⊑TrF,λ
,dTrF,λ : S×

S → [0,1] defined for all s, t ∈S by

d⊑TrF,λ(s, t ) = sup
F∈(A×P(A))⋆∪(e×P(A))

dF
⊑TrF,λ

(s, t )

dTrF,λ(s, t ) = max
{

d⊑TrF,λ(s, t ),d⊑TrF,λ(t , s)
}

.

Example 4.5. Consider processes s, t in Figure 4.5. Firstly we evaluate d⊑TrF,λ
(s, t ). Consider

the failure trace F= a{d}c{ f }. We have that

sup
Zs∈Res(s)

Pr(FC(zs ,F)) = 1

given by the resolution Zs ∈ Res(s) represented in the same Figure, whereas

sup
Zt∈Res(t )

Pr(FC(zt ,F)) = 0

since t3 can execute f and if we consider the resolution Zt ∈ Res(t) in the same Figure we

have that init(corrZt
(zt2 )) = {c,d} and thus zt2 does not admit the failure set {d}. This implies
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Figure 4.5: Processes s, t are such that d⊑TrF,λ
(s, t ) = d⊑TrF,λ

(t , s) = dTrF,λ(s, t ) =λ2.

that dF
⊑TrF,λ

(s, t ) =λ|F| · (1−0) =λ2. As the distance over all failure traces of length less than 2

is 0, we can immediately infer that d⊑TrF,λ
(s, t ) =λ2. From similar calculations on the failure

trace F′ = a{d}c{e} we get that d⊑TrF,λ
(t , s) =λ2 as well, and thus we can conclude

dTrF,λ(s, t ) = max{d⊑TrF,λ(s, t ),d⊑TrF,λ(t , s)} =λ2.

�

The readiness metric

Almost complementary to failure, we have the readiness semantics expressing the liveness

properties of processes: it ensures that whenever a particular sequence of events takes place

then the process will have a positive probability to execute the actions from a given set.

To define such a semantics we make use of ready pairs, namely elements r ∈A⋆×P(A)

constituted by a trace α and a set R called ready set, which is the set of the actions that

have to be executed. More precisely, we require that the process reached by the trace α,

executes exactly the actions specified in the ready set. Formally, given a process s ∈S and a

resolution Zs ∈ Res(s) for s, we denote by RC(zs ,r) the set of r-compatible computations

from zs : for r= (α,R), we let RC(zs ,r) = {c ∈ C(zs ,α) | init(corrZs
(last(c))) = R} and we say

that a process s admits the ready set R if init(s) = R. This notion is lifted to resolutions via

the correspondence function.

For simplicity of notation, we denote a ready pair r = (α,R) by r = αR. Moreover, we

define the length of the ready pair r=αR as the length of the trace α, namely |r| = |α|.
Dually to failure metrics, the readiness metric will quantify the difference in the probabil-

ities of satisfying the same liveness properties.

Definition 4.12 (Readiness metric). Let P = (S ,A,−→) be a PTS and λ ∈ (0,1]. For each ready

pair r ∈A⋆×P(A) we consider the function dr
⊑R,λ

: S×S → [0,1] defined for all s, t ∈S by

dr
⊑R,λ(s, t ) = max

{

0,λ|r|
(

sup
Zs∈Res(s)

Pr(RC(zs ,r))− sup
Zt∈Res(t )

Pr(RC(zt ,r))
)

}

.
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The readiness hemimetric and the readiness metric are the functions d⊑R,λ
,dR,λ : S×S → [0,1]

defined for all s, t ∈S by

d⊑R,λ(s, t ) = sup
r∈A⋆×P(A)

dr
⊑R,λ(s, t )

dR,λ(s, t ) = max
{

d⊑R,λ(s, t ),d⊑R,λ(t , s)
}

.

Notice that, differently from failure semantics, testing a ready pair r=αR always sub-

sumes that R is tested on the processes reached by performing α. For this reason we let

|r| = |α| for all ready sets R.

Example 4.6. Consider again processes s, t in Figure 4.4. Consider the ready pairs r1 =
a{b}, r2 = a{c} and r3 = a{;} for which, considering process t and its resolutions, we have

respectively

sup
Zt∈Res(t )

Pr(RC(zt ,r1)) = 0.3 sup
Zt∈Res(t )

Pr(RC(zt ,r2)) = 0.7 sup
Zt∈Res(t )

Pr(RC(zt ,r3)) = 0.

By executing a process zt reaches zt1 with probability 0.3 and zt2 with probability 0.7.

Thus, to evaluate for instance Pr(RC(zt ,r1)) we need to evaluate the probability of zt to

reach by executing a a process whose correspondent in t can execute only action b. As

init(corrZt
(zt1 )) = {b} and init(corrZt

(zt2 )) = {c}, we have that Pr(RC(zt ,r1)) corresponds to

the probability of reaching zt1 , namely 0.3. Consider now the resolution Zs for s represented

in Figure 4.4. We have that init(corrZs
(nil)) =; and init(corrZs

(zs1 )) = {b} and thus process

zs1 admits the ready set {b}. Hence, Pr(RC(zs ,r1)) = 0.3. By applying a similar argument to

process s and its resolutions, we get

sup
Zs∈Res(s)

Pr(RC(zs ,r1)) = 0.3 sup
Zs∈Res(s)

Pr(RC(zs ,r2)) = 0.7 sup
Zs∈Res(s)

Pr(RC(zs ,r3)) = 0.7.

As the considered ready pairs are the only interesting ones for this particular case and

|r1| = |r2| = |r3| = 1, we get that

d⊑R,λ(t , s) = 0 d⊑R,λ(s, t ) =λ1 ·max{0.3−0.3, 0.7−0.7, 0.7−0} = 0.7 ·λ.

Therefore, we can conclude that dR,λ(s, t ) = max{0.7 ·λ, 0} = 0.7 ·λ. �

The ready trace metric

By considering the liveness properties in a step-by-step fashion, we obtain the ready trace

semantics. A ready trace is a sequence R ∈ (A×P(A))⋆∪(e×P(A)) of pairs (a,R) of an action

and a ready set or the empty trace and a ready set (e,F ). Given a process s ∈S and a resolution

Zs ∈ Res(s) for s, we denote by RC(zs ,R) the set of R-compatible computations from zs :

for R = a1R1 . . . anRn , we let α = a1 . . . an and RC(zs ,R) = {c ∈ C(zs ,α) | init(corrZs
(zi )) =

Ri for all i = 1, . . . ,n}, where for each i ∈ {1, . . . ,n} we let zi denote the state reached by

computation c after i steps.

For simplicity of notation, we denote a ready trace R = (a1,R1) . . . (an ,Rn) simply by

R= a1F1 . . . anFn . Moreover, we define the length of the ready trace R= a1R1 . . . anRn as the

length of the trace constituting it, namely |R| = |a1 . . . an | = n.
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Also in this case, despite we are using the same notation RC(zs ,_) to denote the set

of _-compatible computations for both the ready pairs and ready traces, the meaning will

always be clear from the context.

The ready trace metric refines the readiness metric by quantifying the disparities in the

probabilities of satisfying the same step-by-step liveness properties.

Definition 4.13 (Ready trace metric). Let P = (S ,A,−→) be a PTS and λ ∈ (0,1]. For each ready

trace R ∈ (A×P(A))⋆∪ (e×P(A)) we consider the function dR
⊑TrR,λ

: S×S → [0,1] defined

for all s, t ∈S by

dR
⊑TrR,λ(s, t ) = max

{

0,λ|R|
(

sup
Zs∈Res(s)

Pr(RC(zs ,R))− sup
Zt∈Res(t )

Pr(RC(zt ,R))
)

}

.

The ready trace hemimetric and the ready trace metric are the functions d⊑TrR,λ
,dTrR,λ : S×

S → [0,1] defined for all s, t ∈S by

d⊑TrR,λ(s, t ) = sup
R∈(A×P(A))⋆∪(e×P(A))

dR
⊑TrR,λ(s, t )

dTrR,λ(s, t ) = max
{

d⊑TrR,λ(s, t ),d⊑TrR,λ(t , s)
}

.

Example 4.7. Consider again processes s, t in Figure 4.5. Firstly we evaluate d⊑TrR,λ
(s, t)-

Consider the ready trace R= a{b,c}c{e}. We have that

sup
Zs∈Res(s)

Pr(RC(zs ,R)) = 1

given by the resolution Zs ∈ Res(s) represented in the same Figure, whereas

sup
Zt∈Res(t )

Pr(RC(zt ,R)) = 0

since t3 can execute f and if we consider the resolution Zt ∈ Res(t) in the same Figure

we have that init(corrZt
(zt2 )) = {c,d} and thus zt2 does not admit the ready set {b,c}. This

implies that dR
⊑TrR,λ

(s, t ) =λ|R| ·(1−0) =λ2. As the distance over all ready traces of length less

than 2 is 0, we can immediately infer that d⊑TrR,λ
(s, t ) =λ2. From similar calculations on the

failure trace R′ = a{c,d}c{e} we get that d⊑TrR,λ
(t , s) =λ2 as well, and thus we can conclude

dTrR,λ(s, t ) = max{d⊑TrR,λ(s, t ),d⊑TrR,λ(t , s)} =λ2.

�

Well-defined distances

The following Theorem formalizes our definitions by proving that all the functions proposed

so far to quantify decorated trace semantics are actually hemimetrics and pseudometrics.

Theorem 4.7. Let x ∈ {TrC,F,TrF,R,TrR}.

✶✳ Function d⊑x ,λ is a 1-bounded hemimetric on S .
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✷✳ Function dx,λ is a 1-bounded pseudometric on S .

Proof. The thesis follows by applying the same arguments used in the proof of Theo-

rem 4.6. �

THE TESTING METRIC

We conclude this Section by defining a metric expressing the probabilistic testing semantics.

To the best of our knowledge, ours is the first proposal for a quantitative version of this

semantics. Since the work in [62], testing semantics expresses the reliability of a process in

different environments, which are modeled by the notion of test.

Definition 4.14 (Test). A nondeterministic probabilistic test transition systems (NPT) is a

finite PTS O = (O,A,−→) where O is a set of processes, called tests, containing a distinguished

success process denoted by
p

with no outgoing transitions. We say that a computation from

o ∈O is successful if and only if its last state is
p

.

Given a test o ∈O, we define the depth of o to be the length of the longest executable

sequence of transitions in o, namely

dpt(o) =







0 if init(o) =;
1+ sup

a∈init(o),π∈der(o,a),o′∈supp(π)

dpt(o′) otherwise.

The behavior of a process in an environment is then determined by means of the inter-

action system of the process and the test modeling the given environment.

Definition 4.15 (Interaction system). Let P = (S ,A,−→) be a PTS and O = (O,A,−→O) be an

NPT. The interaction system of P and O is the PTS P ∥O where

⋆ every (s,o) ∈S ×O is called a configuration and is said to be successful if and only if

o =p
;

⋆ a computation from (s,o) ∈ P ∥ O is successful if and only if its last configuration is

successful.

Notice that since O is finite, then also P ∥O is finite.

The notion of interaction systems of a PTS and an NPT naturally induces the interaction

systems of a process and a test.

Hence, the behavior of a process is given by the probability it has to pass a test, that is the

probability of reaching a successful process in the interaction system. Given an interaction

system s ∥ o and a resolution Zs,o ∈ Res(s,o), we denote by SC(zs,o) the set of successful

computations from the state zs,o . Moreover, given any trace α ∈A⋆ we let SC(zs,o ,α) denote

the set of α-compatible successful computations from zs,o . For sake of readability, we say

that α ∈A⋆ is successful for an interaction system s ∥ o if there is a successful α-compatible

computation from zs,o for some resolution zs,o for (s,o).

Our aim is to define a metric suitable to express the testing semantics. Intuitively, we

shall quantify the disparities in the success probabilities of processes with respect to all
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tests. However, a simple comparison of this kind would not be sufficient. As previously

pointed out in the discussion of trace metric, to avoid unexpected evaluations of success

probabilities, we need to limit the power of schedulers. Thus, inspired by [29], we will reason

in a trace-by-trace fashion also on testing: our testing metric will quantify the differences in

the probabilities of processes to reach success by executing a given trace, with respect to all

traces and tests.

Although only maximal computations may lead to success, considering them alone is

not sufficient to guarantee full backward compatibility of the kernel of our metric with the

fully-nondeterministic case. In [62] a distinction between may testing and must testing is

made: a process may pass a test if at least one of the computations of the interaction system

is successful. Conversely, a process must pass a test if all the computations of the interaction

system are successful. In the literature, we can find several proposals of probabilistic

testing semantics [51, 69, 95, 166] and in particular of may and must testing obtained as a

probabilistic generalization of those in [62]. Briefly, two processes are probabilistic may

(resp. must) testing equivalent if the suprema (resp. infima) of their success probabilities

with respect to all resolutions of nondeterminism are the same. In [31], it has been shown

that these notions are not fully backward compatible with the fully-nondeterministic case.

To guarantee the compatibility for the trace-to-trace approach we need to impose the same

restrictions given by the must testing from [62] on our resolutions. Our testing metric should

quantify the disparities in the trace-by-trace success probabilities and also guarantee that

for each trace α ∈A⋆, whenever all α-compatible maximal computations of a process lead

to failure, then also the other process should fail.

For this reason we introduce a particular subset of resolutions on which we will evaluate

the suprema of success probabilities. Given a process s ∈S , a test o ∈O and a trace α ∈A⋆,

we denote by Resmax,α(s,o) the subset of maximal resolutions Zs,o ∈ Resmax(s,o) such that

Cmax(zs,o ,α) 6= ;, namely the subset of maximal resolutions for s ∥ o having at least one

maximal computation compatible with α.

Interestingly, for any trace α ∈A⋆, parallel composition being synchronous guarantees

that whenever two interaction systems have at least one maximalα-compatible computation

then either both systems will reach a successful process by executing α or they will both fail.

Lemma 4.8. Assume a PTS P = (S ,A,−→) and an NPT O = (O,A,−→O). Then for all s, t ∈ S ,

o ∈O and α ∈A⋆ we have that whenever both Resmax,α(s,o),Resmax,α(t ,o) 6= ;, then

sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α)) > 0 iff sup
Zt ,o∈Resmax,α(t ,o)

Pr(SC(zt ,o ,α)) > 0

Proof. The proof follows by noticing that either there is a successful computation from o

which is compatible with α, and thus Resmax,α(s,o),Resmax,α(t ,o) 6= ; implies that there is

also one such computation in both (s,o) and (t ,o), or there is no computation like that, and

thus no successful maximal computation from (s,o) and (t ,o) can be compatible with α. �

Finally, we remark that the execution probabilities of processes are inevitably modified

by the interaction with a test. Thus, to obtain a metric comparable with the ones proposed

so far, we ought to introduce a normalization factor. To this purpose, notice that for a

process s ∈ S and a test o ∈O, we have that Zs,o is a resolution in Res(s,o) if and only if
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Zs,o = Zs ∥ Zo for some resolutions Zs ∈ Res(s) and Zo ∈ Res(o). Consequently, for each

resolution Zs,o =Zs ∥Zo for (s,o) we have that for all traces α ∈A⋆

Pr(C(zs,o ,α)) =
∑

c∈C(zs,o ,α)

Pr(c)

=
∑

c∈{cs∥co |cs∈C(zs ,α)∧co∈C(zo ,α)}

Pr(cs)Pr(co)

=
∑

cs∈C(zs ,α)

Pr(cs) ·
∑

co∈C(zo ,α)

Pr(co)

= Pr(C(zs ,α)) ·Pr(C(zo ,α))

where c = cs ∥ co denotes that the projection on the first component of the configurations

in c gives cs ∈ C(zs) and the projection on their second component gives co ∈ C(zo). This

implies that

sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α)) = sup
Zs∈Res(s)

Pr(C(zs ,α)) · sup
Zo∈Resmax(o)

Pr(SC(zo ,α))

where the supremum of the success probabilities for the test o is evaluated over maximal

resolutions, since no computation that is not maximal can reach success. Conversely, the

analogous supremum for the process s is evaluated over all possible resolutions for s since

success can be given only by the test and thus we only need to quantify the probability of

executing the trace α.

Now, we have all the ingredients necessary to define our testing metric.

Definition 4.16 (Testing metric). Let P = (S ,A,−→) be a PTS and O = (O,A,−→O) an NPT. Let

λ ∈ (0,1]. For each test o ∈O and trace α ∈A⋆ define

d(s, t ,o,α) = sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α))− sup
Zt ,o∈Resmax,α(t ,o)

Pr(SC(zt ,o ,α))

for all s, t ∈S . Then we define the function do,α
⊑test,λ

: S×S → [0,1] for all s, t ∈S as

do,α
⊑test,λ

(s, t ) =































































λdpt(o)−1 d(s, t ,o,α)

sup
Zo∈Resmax(o)

Pr(SC(zo ,α))
if d(s, t ,o,α) > 0

λdpt(o)−1

sup
Zs,o∈Resmax,α(s,o)

Pr(Cmax(zs,o ,α))

sup
Zo∈Resmax(o)

Pr(C(zo ,α))
if sup

Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α)) = 0∧

∧Resmax,α(t ,o) =;

0 otherwise.

The testing premetric and the testing metric are the functions d⊑test,λ
,dtest,λ : S ×S → [0,1]

defined for all processes s, t ∈S by

d⊑test,λ(s, t ) = sup
o∈O

sup
α∈A⋆

do,α
⊑test,λ

(s, t )

dtest,λ(s, t ) = max
{

d⊑test,λ(s, t ),d⊑test,λ(t , s)
}

.
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Figure 4.6: A test showing that processes s, t from Figure 4.3 are such that dtest,λ(s, t ) ≥ 0.1 ·λ.

The choice for the exponent of the discount factor follows from the same reasoning

applied to the case of trace metric.

Now that we have formally introduced our testing metric, we can discuss in detail the

technical choices that we have made to define it. In particular, given a test o and a trace

α, we will focus on the definition of do,α
⊑test,λ

, which we will explain with the help of a few

examples.

We remark that for all processes s, t , do,α
⊑test,λ

(s, t ) is an asymmetric distance and thus it is

mainly constructed on the properties of process s.

The first case in the definition of do,α
⊑test,λ

(s, t) should be the most intuitive: whenever s

has a positive probability of reaching success by executing α in the interaction with o, then

we consider the same success probability for t and we quantify their difference. If such a

difference is positive, then we normalize it with respect to the success probability of α in o

(which is necessarily non null), and we assign it as value to do,α
⊑test,λ

(s, t ).

Example 4.8. We represent the probability distribution δp, namely the distribution assign-

ing probability 1 to the process
p

, simply as
p

.

Consider processes s, t in Figure 4.3 and their interaction systems with the test o repre-

sented in Figure 4.6. Let α= ab. We aim to evaluate do,α
⊑test,λ

(t , s). Clearly,

sup
Zt ,o∈Resmax,α(t ,o)

Pr(SC(zt ,o ,α)) = 0.35 sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α)) = 0.3

from which we gather d(t , s,o,α) = 0.35−0.3 = 0.05. As supZo∈Resmax(o) Pr(SC(zo ,α)) = 0.5,

we can conclude that

do,α
⊑test,λ

(t , s) =λdpt(o)−1 0.05

0.5
= 0.1 ·λ.

Let us evaluate now do,α
⊑test,λ

(s, t). We have that supZs,o∈Resmax,α(s,o) Pr(SC(zs,o ,α)) > 0 and

d(s, t ,o,α) < 0. Hence, do,α
⊑test,λ

(s, t) = 0. Notice that for β ∈ {a, ac} we have Resmax,β(s,o) 6=
;, supResmax,β(s,o) Pr(SC(zs,o ,β)) = 0 but Resmax,β(t ,o) 6= ; as well and thus d

o,β

⊑test,λ
(s, t) = 0.

Similarly, we derive d
o,β

⊑test,λ
(t , s) = 0. �

Let us focus now on the second case in the definition of do,α
⊑test,λ

(s, t ). Assume that process

s cannot reach success in the interaction with the test o by executing α and that t ∥ o

has no α-compatible maximal computations, namely Resmax,α(t ,o) = ;. In this case we

need to check whether s may fail by executing α. This is to guarantee the fully backward
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Figure 4.7: A test showing that processes s, t from Figure 4.4 are such that dtest,λ(s, t ) ≥ 0.7 ·λ.

compatibility of the kernel of our metric with the fully-nondeterministic case. In fact, as

previously outlined, testing semantics expresses non only success probabilities but also the

possibility of failure. Therefore the metric for testing should also emphasize the differences

of processes related to failure. However, we do not quantify the disparities in the probabilities

of failing a test by executing a particular trace, but simply the possibility of a process to

fail against the impossibility for the other one to fail. Our aim is simply to guarantee that

whenever a process fails then so does the other one, without imposing any constraint on the

probabilities. Those are considered only in quantifying the differences on success.

The probability of s to fail wrt. the execution ofα is given by supResmax,α(s,o) Pr(Cmax(zs,o ,α)),

where maximal computations are considered as success and failure can only be established

on them. This probability is then normalized by supResmax(o) Pr(C(zo ,α)), where instead all

α-compatible computations are considered to avoid the denominator to be 0. In fact, s ∥ o

can execute α only if both s and o can execute it (synchronization is full) but since α is not

successful (supResmax,α(s,o) Pr(SC(zs,o ,α)) = 0) we cannot establish whether the α-compatible

computations from o are maximal or not. In the following example we show that the restric-

tion to Resmax,α(_) and the second case in the definition of do,α
⊑test,λ

are necessary to guarantee

full backward compatibility with the fully-nondeterministic case.

Example 4.9. Consider processes s, t in Figure 4.4 and their interaction systems with the test

o represented in Figure 4.7. Clearly,

sup
Zs,o∈Resmax,ab (s,o)

Pr(SC(zs,o , ab)) = sup
Zt ,o∈Resmax,ab (t ,o)

Pr(SC(zt ,o , ab)) = 0.3

sup
Zs,o∈Resmax,ac (s,o)

Pr(SC(zs,o , ac)) = sup
Zt ,o∈Resmax,ac (t ,o)

Pr(SC(zt ,o , ac)) = 0.7

and thus do,ab
⊑test,λ

(s, t) = do,ab
⊑test,λ

(t , s) = do,ac
⊑test,λ

(s, t) = do,ac
⊑test,λ

(t , s) = 0. Let us consider the

trace α = a. We aim to evaluate do,α
⊑test,λ

(t , s). Since Resmax,α(t ,o) = ;, we can immedi-

ately conclude that do,α
⊑test,λ

(t , s) = 0. Consider now do,α
⊑test,λ

(s, t ). Notice that Resmax,α(s,o) 6= ;,

supResmax,α(s,o) Pr(SC(zs,o ,α)) = 0 and, as already noticed, Resmax,α(t ,o) =;. Therefore, the

conditions of the second case of the definition of do,α
⊑test,λ

are satisfied and we can infer that

do,α
⊑test,λ

(s, t ) =λdpt(o)−1

sup
Resmax,α(s,o)

Pr(Cmax(zs,o ,α))

sup
Resmax(o)

Pr(C(zo ,α))
=λ · 0.7

1
= 0.7 ·λ.
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�

We conclude by showing that d⊑test,λ
(resp. dtest,λ) is a 1-bounded premetric (resp. semi-

metric) on S .

Theorem 4.9. ✶✳ Function d⊑test,λ
is a 1-bounded premetric on S . ✷✳ Function dtest,λ is a

1-bounded semimetric on S .

Proof.

✶✳ To prove that d⊑test,λ
is a 1-bounded premetric it is enough to show that for each

test o ∈O and for each trace α ∈A⋆, the function do,α
⊑test,λ

is a 1-bounded premetric,

that is we need to show that do,α
⊑test,λ

(s, s) = 0 for each s ∈ S , which is immediate by

Definition 4.16.

The 1-boundedness property follows by λ ∈ (0,1] and

d(s, t ,o,α)

sup
Zo∈Resmax(o)

Pr(SC(zo ,α))
≤ 1

sup
Zs,o∈Resmax,α(s,o)

Pr(Cmax(zs,o ,α))

sup
Zo∈Resmax(o)

Pr(C(zo ,α))
≤ 1.

✷✳ dtest,λ being a 1-bounded semimetric follows by the fact that it is defined as the sym-

metrization of the 1-bounded premetric.

�

4.4 A SPECTRUM OF BEHAVIORAL METRICS

In this Section we show that the behavioral distances discussed so far can be partially

ordered in a spectrum by the relation ‘makes processes farther than’, as represented by the

blue arrows in the upper part of Figure 4.1.

More formally, the purpose of this Section is to prove the following Theorem.

Theorem 4.10. The following relations among the proposed behavioral metrics hold:

✶✳ dλ > dr,λ > ds,λ.

✷✳ dr,λ > d⊑TrF,λ
> d⊑F,λ

> d⊑test,λ
> d⊑Tr,λ

.

✸✳ d⊑F,λ
> d⊑TrC,λ

> d⊑Tr,λ
.

✹✳ ds,λ > d⊑Tr,λ
.

✺✳ dr,λ > d⊑TrR,λ
and dr,λ > d⊑R,λ

.

✻✳ dλ > dTrF,λ > dF,λ > dtest,λ > dTr,λ.

✼✳ dF,λ > dTrC,λ > dTr,λ.

✽✳ dλ > dTrR,λ and dλ > dR,λ.
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It is worth noticing the isolation of the metrics for the readiness semantics in the spec-

trum as well as the mutual incomparability of the metrics for testing, completed traces

and similarity. These results may seem odd, especially in comparison with the linear time

branching time spectrum of [159] on fully-nondeterministic processes. However, as we will

detail in Section 4.6, they are due to the close interaction of nondeterminism and probability

in the PTS model.

For each relation d > d ′ in Theorem 4.10 we will prove, in the upcoming Theorems 4.11–

4.19, the non strict version d ≥ d ′. Then, d > d ′ follows from (i) relation d ≥ d ′, (ii) the results

in Section 4.5 showing that the kernel of d (resp. d ′) is the target of the red dotted arrow in

Figure 4.1 originating from d (resp. d ′), (iii) the strict inclusion between the kernels of d and

d ′ that we will prove in Section 4.6. Indeed, (i)–(iii) ensure the existence of processes s, t ∈S
with d(s, t ) > 0 = d ′(s, t ). Moreover, the examples in Section 4.6 showing that certain kernels

are incomparable automatically give that also the corresponding metrics are incomparable.

Theorem 4.11. For each s, t ∈S it holds that dλ(s, t ) ≥ dr,λ(s, t ) ≥ ds,λ(s, t ).

Proof. First of all we notice that whenever init(s) 6= init(t ) then dλ(s, t ) = dr,λ(s, t ) = 1 and

ds,λ(s, t ) ≤ 1 an the thesis holds.

Consider now the case of init(s) = init(t). We proceed by induction over k ∈N to prove

the stronger property that

for each k ∈N, dk
λ(s, t ) ≥ dk

r,λ(s, t ) ≥ dk
s,λ(s, t ). (4.6)

The thesis will then follow by the monotonicity of the limit.

The base case k = 0 is immediate since by definition d0
λ

(s, t ) = d0
r,λ

(s, t ) = d0
s,λ

(s, t ) = 0.

Consider now the inductive step k > 0. We have

dk
r,λ(s, t ) = sup

a∈A⋆

max
πs∈der(s,a)

min
πt∈der(t ,a)

λK(dk−1
r,λ )(πs ,πt )

≥ sup
a∈A⋆

max
πs∈der(s,a)

min
πt∈der(t ,a)

λK(dk−1
s,λ )(πs ,πt )

= dk
s,λ(s, t )

where the inequality follows by induction over k −1 and the monotonicity of K, inf and sup.

Similarly, we have

dk
λ(s, t )

= sup
a∈A

max
{

max
πs∈der(s,a)

min
πt∈der(t ,a)

λK(dk−1
λ )(πs ,πt ), max

πt∈der(t ,a)
min

πs∈der(s,a)
λK(dk−1

λ )(πs ,πt )
}

≥ sup
a∈A

max
πs∈der(s,a)

min
πt∈der(t ,a)

λK(dk−1
λ )(πs ,πt )

≥ sup
a∈A

max
πs∈der(s,a)

min
πt∈der(t ,a)

λK(dk−1
r,λ )(πs ,πt )

= dk
r,λ(s, t )

where the second inequality follows by induction over k −1 and the monotonicity of K, inf

and sup. �
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Theorem 4.12. For all s, t ∈S it holds that dr,λ(s, t ) ≥ d⊑TrF,λ
(s, t ).

Proof. With abuse of notation, given k ∈N we write

dk
⊑TrF,λ(s, t ) = sup

F∈(A×P(A))⋆∪(e×P(A)),|F|≤k

dF
⊑TrF,λ

(s, t ).

Notice that d⊑TrF,λ
(s, t) = limk→∞ dk

⊑TrF,λ
(s, t). Therefore, to prove the thesis, we prove the

stronger property that

for each k ∈N, dk
r,λ(s, t ) ≥ dk

⊑TrF,λ(s, t ). (4.7)

The thesis will the follow by Proposition 4.1 and the monotonicity of the limit. We proceed

by induction over k ∈N.

Consider the base case k = 1. It is easy to check that

d1
r,λ(s, t ) = d1

⊑TrF,λ(s, t ) =
{

1 if init(s) 6= init(t )

0 otherwise

and thus Equation (4.7) directly follows.

Consider now the inductive step k > 0. If dk
⊑TrF,λ

(s, t ) = 0, then there is nothing to prove.

Hence assume that dk
⊑TrF,λ

(s, t ) > 0. Notice that by definition of supremum we have that for

each ε> 0 there is a failure trace Fε ∈ (A×P(A))⋆∪ (e×P(A)), with |Fε| ≤ k s.t.

dk
⊑TrF,λ(s, t ) = sup

F∈(A×P(A))⋆∪(e×P(A)),|F|≤k

dF
⊑TrF,λ

(s, t ) < d
Fε

⊑TrF,λ
(s, t )+ε.

In the following we will prove that dk
r,λ

(s, t) ≥ d
Fε

⊑TrF,λ
(s, t) and that such a result does not

depend on the choice of ε. Therefore, we will get that for all ε > 0 it holds dk
r,λ

(s, t)+ε ≥
dk
⊑TrF,λ

(s, t ) from which Equation (4.7) directly follows.

We ca assume, without loss of generality, that Fε = aFF′ for some a ∈A,F ∈P(A) and

F′ ∈ (A×P(A))⋆∪ (e×P(A)) with |F′| ≤ k −1. Then we have

d
Fε

⊑TrF,λ
(s, t )

=λ|Fε|
(

sup
Zs∈Res(s)

Pr(FC(zs ,Fε))− sup
Zt∈Res(t )

Pr(C(zt ,Fε))

)

=λ|Fε|
(

max
πs∈der(s,a)

∑

s′∈supp(πs )

s.t. init(s′)∩F=;

πs(s′) sup
Zs′∈Res(s′)

Pr(FC(zs′ ,F
′))+

− max
πt∈der(t ,a)

∑

t ′∈supp(πt )

s.t. init(t ′)∩F=;

πt (t ′) sup
Zt ′∈Res(t ′)

Pr(FC(zt ′ ,F))

)

.

Let

π̃s = arg max
πs∈der(s,a)

∑

s′∈supp(πs )

s.t. init(s′)∩F=;

πs(s′) sup
Zs′∈Res(s′)

Pr(FC(zs′ ,F
′)).
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Moreover, for sake of readability, for any distributionπwe let F (π) = {s ∈ supp(π) | init(s)∩F =
;} and we let ¬F (π) = {s ∈ supp(π) | init(s)∩F 6= ;} be its complementary. Then we have

dk
r,λ(s, t )

= sup
a∈A

max
πs∈der(s,a)

min
πt∈der(t ,a)

min
w∈W(πs ,πt )

λ
∑

s′∈supp(πs )

t ′∈supp(πt )

w(s′, t ′)dk−1
r,λ (s′, t ′)

≥ max
πs∈der(s,a)

min
πt∈der(t ,a)

min
w∈W(πs ,πt )

λ
∑

s′∈supp(πs )

t ′∈supp(πt )

w(s′, t ′)dk−1
r,λ (s′, t ′)

≥ min
πt∈der(t ,a)

min
w∈W(π̃s ,πt )

λ
∑

s′∈supp(π̃s )

t ′∈supp(πt )

w(s′, t ′)dk−1
r,λ (s′, t ′)

≥λ
∑

s′∈supp(π̃s )

t ′∈supp(π̃t )

w̃(s′, t ′)dk−1
r,λ (s′, t ′)

=λ

[

∑

s′∈F (π̃s )

t ′∈F (π̃t )

w̃(s′, t ′)dk−1
r,λ (s′, t ′)+

∑

s′∈F (π̃s )

t ′′∈¬F (π̃t )

w̃(s′, t ′′)dk−1
r,λ (s′, t ′′)+

+
∑

s′′∈¬F (π̃s )

t ′∈F (π̃t )

w̃(s′′, t ′)dk−1
r,λ (s′′, t ′)+

∑

s′′∈¬F (π̃s )

t ′′∈¬F (π̃t )

w̃(s′′, t ′′)dk−1
r,λ (s′′, t ′′)

]

≥λ

[

∑

s′∈F (π̃s )

t ′∈F (π̃t )

w̃(s′, t ′)dk−1
r,λ (s′, t ′)+

∑

s′∈F (π̃s )

t ′′∈¬F (π̃t )

w̃(s′, t ′′)+
∑

s′′∈¬F (π̃s )

t ′∈F (π̃t )

w̃(s′′, t ′)

]

≥λ

[

∑

s′∈F (π̃s )

t ′∈F (π̃t )

w̃(s′, t ′)dk−1
⊑TrF,λ(s′, t ′)+

∑

s′∈F (π̃s )

t ′′∈¬F (π̃t )

w̃(s′, t ′′)+
∑

s′′∈¬F (π̃s )

t ′∈F (π̃t )

w̃(s′′, t ′)

]

≥λ

[

∑

s′∈F (π̃s )

t ′∈F (π̃t ), init(t ′)∩F=;

w̃(s′, t ′)λ|F′|
(

sup
Zs′∈Res(s′)

Pr(FC(zs′ ,F
′))− sup

Zt ′∈Res(t ′)
Pr(FC(zt ′ ,F

′))
)

+

+
∑

s′∈F (π̃s )

t ′′∈¬F (π̃t )

w̃(s′, t ′′)+
∑

s′′∈¬F (π̃s )

t ′∈F (π̃t )

w̃(s′′, t ′)

]

=λ

[

∑

s′∈F (π̃s )

t ′∈F (π̃t )

w̃(s′, t ′)λ|F′| sup
Zs′∈Res(s′)

Pr(FC(zs′ ,F
′))−

∑

s′∈F (π̃s )

t ′∈F (π̃t )

w̃(s′, t ′)λ|F′| sup
Zt ′∈Res(t ′)

Pr(FC(zt ′ ,F
′))+

+
∑

s′∈F (π̃s )

t ′′∈¬F (π̃t )

w̃(s′, t ′′)+
∑

s′′∈¬F (π̃s )

t ′∈F (π̃t )

w̃(s′′, t ′)

]

≥λ

[

∑

s′∈F (π̃s )

t ′∈F (π̃t )

w̃(s′, t ′)λ|F′| sup
Zs′∈Res(s′)

Pr(FC(zs′ ,F
′))+

∑

s′∈F (π̃s )

t ′′∈¬F (π̃t )

w̃(s′, t ′′)λ|F′| sup
Zs′∈Res(s′)

Pr(FC(zs′ ,F
′))+

−
∑

s′∈F (π̃s )

t ′∈F (π̃t )

w̃(s′, t ′)λ|F′| sup
Zt ′∈Res(t ′)

Pr(FC(zt ′ ,F
′))−

∑

s′′∈¬F (π̃s )

t ′∈F (π̃t )

w̃(s′′, t ′)λ|F′| sup
Zt ′∈Res(t ′)

Pr(FC(zt ′ ,F
′))

]
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=λ

[

∑

s′∈F (π̃s )

t ′∈supp(π̃t )

w̃(s′, t ′)λ|F′| sup
Zs′∈Res(s′)

Pr(FC(zs′ ,F
′))−

∑

s′∈supp(π̃s )

t ′∈F (π̃t )

w̃(s′, t ′)λ|F′| sup
Zt ′∈Res(t ′)

Pr(FC(zt ′ ,F
′))

]

=λ

[

∑

s′∈F (π̃s )

π̃s(s′)λ|F′| sup
Zs′∈Res(s′)

Pr(FC(zs′ ,F
′))−

∑

t ′∈F (π̃t )

π̃t (t ′)λ|F′| sup
Zt ′∈Res(t ′)

Pr(FC(zt ′ ,F
′))

]

≥λ|Fε|
[

∑

s′∈F (π̃s )

π̃s(s′) sup
Zs′∈Res(s′)

Pr(FC(zs′ ,F
′))− max

πt∈der(t ,a)

∑

t ′∈F (πt )

πt (t ′) sup
Zt ′∈Res(t ′)

Pr(FC(zt ′ ,F
′))

]

=λ|Fε|
[

max
πs∈der(s,a)

∑

s′∈F (πs )

πs(s′) sup
Zs′∈Res(s′)

Pr(FC(zs′ ,F
′))− max

πt∈der(t ,a)

∑

t ′∈F (πt )

πt (t ′) sup
Zt ′∈Res(t ′)

Pr(FC(zt ′ ,F
′))

]

=λ|Fε|
[

sup
Zs∈Res(s)

Pr(FC(zs ,Fε))− sup
Zt∈Res(t )

Pr(FC(zt ,Fε))

]

= d
Fε

⊑TrF,λ
(s, t )

where:

⋆ The second step follows by evaluating the ready simulation distance on a particular

action, namely the action a of Fε.

⋆ The third step follows by choosing π̃s among all distributions in der(s, a).

⋆ The fourth step follows letting

π̃t = arg min
πt∈der(t ,a)

K(dk−1
r,λ )(π̃s ,πt )

w= arg min
w∈W(π̃s ,π̃t )

K(dk−1
r,λ )(π̃s , π̃t ).

⋆ The sixth step follows by noticing that dk−1
r,λ

(s′, t ′′) = 1 whenever init(s′)∩F =; and

init(t ′′)∩F 6= ; or viceversa. Moreover we delete the non negative quantity
∑

s′′∈¬F (π̃s )

t ′′∈¬F (π̃t )

w̃(s′′, t ′′)dk−1
r,λ (s′′, t ′′).

⋆ The seventh step follows by induction over k −1.

⋆ The eighth step follows by |F′| ≤ k −1 and the definition of supremum.

⋆ the ninth step follows by

∑

s′∈F (π̃s )

t ′∈F (π̃t )

w̃(s′, t ′)λ|F′|
(

sup
Zs′∈Res(s′)

Pr(FC(zs′ ,F
′))− sup

Zt ′∈Res(t ′)
Pr(FC(zt ′ ,F

′))
)

=
∑

s′∈F (π̃s )

t ′∈F (π̃t )

w̃(s′, t ′)λ|F′| sup
Zs′∈Res(s′)

Pr(FC(zs′ ,F
′))−

∑

s′∈F (π̃s )

t ′∈F (π̃t )

w̃(s′, t ′)λF′
sup

Zt ′∈Res(t ′)
Pr(FC(zt ′ ,F

′))
)

which can be proved by applying the same arguments used in the proof of Theo-

rem 4.15.
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⋆ The tenth step follows by λ|F′| supZp∈Res(p) Pr(FC(zp ,F′)) ≤ 1 for all processes p ∈S .

⋆ The twelfth step follows by the choice of w.

⋆ The thirteenth step follows by the choice of π̃t .

⋆ The fourteenth step follows by the choice of π̃s .

This gives that dk
r,λ

(s, t ) ≥ d
Fε

⊑TrF,λ
(s, t ) and thus concludes the proof. �

Theorem 4.13. For all s, t ∈S it holds that d⊑TrF,λ
(s, t ) ≥ d⊑F,λ

(s, t ) ≥ d⊑test,λ
(s, t ) ≥ d⊑Tr,λ

(s, t ).

Proof. We start with d⊑TrF,λ
(s, t ) ≥ d⊑F,λ

(s, t ). This directly follows by noticing that each

failure pair f = a1a2 . . . anF can be seen as the failure trace F = a1;a2; . . . anF , for which

moreover we have supZs∈Res(s) Pr(FC(zs , f)) = supZs∈Res(s) Pr(FC(zs ,F)) for any process s ∈S .

Thus we have

d⊑F,λ(s, t ) = sup
f∈A⋆×P(A)

max

{

0,λ|f|( sup
Zs∈Res(s)

Pr(FC(zs , f))− sup
Zt∈Res(t )

Pr(FC(zt , f))
)

}

< max

{

0,λ|fε|( sup
Zs∈Res(s)

Pr(FC(zs , fε))− sup
Zt∈Res(t )

Pr(FC(zt , fε))
)

}

+ε

= max

{

0,λ|Fε|( sup
Zs∈Res(s)

Pr(FC(zs ,Fε))− sup
Zt∈Res(t )

Pr(FC(zt ,Fε))
)

}

+ε

≤ sup
F∈(A×P(A))⋆∪(e×P(A))

max

{

0,λ|F|( sup
Zs∈Res(s)

Pr(FC(zs ,F))− sup
Zt∈Res(t )

Pr(FC(zt ,F))
)

}

+ε

= d⊑TrF,λ(s, t )+ε

where

⋆ The second step follows by definition of supremum which guarantees that for each

ε> 0 there is a failure trace fε ∈A⋆×P(A) s.t d
fε
⊑F,λ

(s, t ) > supf∈A⋆×P(A) d
f
⊑F,λ

(s, t )−ε.

⋆ The third step follows by choosing the failure trace Fε as described above.

⋆ The forth step follows by definition of supremum.

Since the inequality d⊑F,λ
(s, t ) < d⊑TrF,λ

(s, t )+ε holds for all ε> 0, we can conclude that the

thesis for this case follows.

We proceed to d⊑F,λ
(s, t ) ≥ d⊑test,λ

(s, t ). If d⊑test,λ
(s, t ) = 0, then there is nothing to prove.

Hence assume that d⊑test,λ
(s, t) > 0. By definition of supremum, given any ε> 0 there are

oε ∈O and αε ∈A⋆ such that

d⊑test,λ(s, t ) = sup
o∈O

sup
α∈A⋆

do,α
⊑test,λ

(s, t ) < d
oε,αε

⊑test,λ
(s, t )+ε.
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In the following, we will prove that d
oε,αε

⊑test,λ
(s, t) ≤ d⊑F,λ

(s, t) and that this result does not

depend on the choice of ε> 0. Therefore we will get that for all ε> 0 it holds d⊑test,λ
(s, t) ≤

d⊑F,λ
(s, t )+ε from the thesis for this case directly follows.

For simplicity of notation, we let oε = o and αε =α. We can distinguish two cases.

✶✳ Either

do,α
⊑test,λ

(s, t ) =λdpt(o)−1

sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α))− sup
Zt ,o∈Resmax,α(t ,o)

Pr(SC(zt ,o ,α))

sup
Zo∈Resmax(o)

Pr(SC(zo ,α))

=λdpt(o)−1
(

sup
Zs∈Res(s)

Pr(C(zs ,α))− sup
Zt∈Res(t )

Pr(C(zt ,α))
)

=λdpt(o)−1
(

sup
Zs∈Res(s)

Pr(FC(zs ,α;))− sup
Zt∈Res(t )

Pr(FC(zt ,α;))
)

≤λ|α|−1
(

sup
Zs∈Res(s)

Pr(FC(zs ,α;))− sup
Zt∈Res(t )

Pr(FC(zt ,α;))
)

≤ d⊑F,λ(s, t )

where the second step follows by

sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α)) = sup
Zs∈Res(s)

Pr(C (zs ,α)) · sup
Zo∈Resmax(o)

Pr(SC(zo ,α))

for all s ∈ S and the forth step follows by the choice of the failure pair and the forth

step follows from |α| ≤ dpt(o) and λ≤ 1.

✷✳ Or

do,α
⊑test,λ

(s, t ) =λdpt(o)−1

sup
Zs,o∈Resmax,α(s,o)

Pr(Cmax(zs,o ,α))

sup
Zo∈Resmax(o)

Pr(C(zo ,α))

with Resmax,α(t ,o) = ;. Notice that as do,α
⊑test,λ

(s, t) > 0 implies Resmax,α(s,o) 6= ;, we

have that at least one process reached by s through the execution of α cannot synchro-

nize with the processes reached by o through α. Now Resmax,α(t ,o) =; is due to the

fact that either t cannot perform α at all, or there is a set of actions F such that the

processes reached by t through α can always synchronize with processes reached by o

through α on at least one action in F . In the first case let f=α;, whereas in the second

case we let f=αF . Notice that in both cases we are guaranteed that |f| ≤ dpt(o)−1 and

moreover we have that supZt∈Res(t ) Pr(FC(zt , f)) = 0. Then,

do,α
⊑test,λ

(s, t ) =λdpt(o)−1

sup
Zs,o∈Resmax,α(s,o)

Pr(Cmax(zs,o ,α))

sup
Zo∈Resmax(o)

Pr(C(zo ,α))

<λdpt(o)−1
Pr(Cmax(zε′

s,o ,α))+ε′

sup
Zo∈Resmax(o)

Pr(C(zo ,α))
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≤λ|f|Pr(Cmax(zε′
s ,α))+ε′′

=λ|f|Pr(FC(zε′
s , f))+ε′′

≤λ|f| sup
Zs∈Res(s)

Pr(FC(zs , f))+ε′′

=λ|f|( sup
Zs∈Res(s)

Pr(FC(zs , f))− sup
Zt∈Res(t )

Pr(FC(zt , f))
)

+ε′′

≤ d⊑F,λ(s, t )+ε′′

where:

⋆ The second step follows by definition of supremum which guarantees that for

each ε′ > 0 there is a resolution Zε′
s,o ∈ Resmax,α(s,o) such that Pr(Cmax(zε′

s,o ,α)) >
supZs,o∈Resmax,α(s,o) Pr(Cmax(zs,o ,α))−ε′.

⋆ The third step follows by considering Zε′
s,o =Zε′

s ∥Zε′
o with Zε′

s being such that

each maximal computation of Zε′
s,o is projected on a maximal computation of

Zε′
s , and ε′′ =λ|f|ε′/supZo∈Resmax(o) Pr(C(zo ,α)).

⋆ The forth and sixth steps follow by the choice of f.

Since this kind of reasoning holds for all ε′,ε′′ > 0, we obtain that the thesis follows

also in this case.

Finally, we show that d⊑test,λ
(s, t) ≥ d⊑Tr,λ

(s, t). First of all we notice that for each test

o ∈O and for each trace α ∈A⋆ we have that

sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α)) = sup
Zs∈Res(s)

Pr(C(zs ,α)) · sup
Zo∈Resmax(o)

Pr(SC(zo ,α)).

For each trace α ∈A⋆ we let oα be the test consisting in a single successful computation

compatible with a α. Then, we let OA⋆ = {oα ∈O |α ∈A⋆}. Notice that for each α ∈A⋆ we

have that dpt(oα) = |α|. Therefore, we have

d⊑test,λ(s, t ) = sup
o∈O

sup
α∈A⋆

do,α
⊑test,λ

(s, t )

≥ sup
o∈OA⋆

sup
α∈A⋆

do,α
⊑test,λ

(s, t )

= sup
α∈A⋆

d
oα,α
⊑test,λ

(s, t )

≥ sup
α∈A⋆

dα
⊑Tr,λ(s, t )

= d⊑Tr,λ(s, t )

where

⋆ the second step follows by the fact that we are evaluating the supremum over a the

smaller set of tests OA⋆ ;
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⋆ the third step follows by construction ofOA⋆ and by noticing that given a test oα ∈OA⋆ ,

for each β ∈A⋆ we have that

sup
Zo∈Resmax(o)

Pr(SC(zo ,α)) =
{

1 if α=β

0 otherwise.

⋆ the fourth step follows by noticing that given a test oα ∈OA⋆ , for each β ∈A⋆ we have

sup
Zs,o∈Resmax,β(s,o)

Pr(SC(zs,o ,β)) =







sup
Zs∈Res(s)

Pr(C(zs ,β)) if β=α

0 otherwise.

Therefore we get that for each α ∈A⋆

d
oα,α
⊑test,λ

(s, t ) =







































λ|α|−1 sup
Zs∈Res(s)

Pr(C(zs ,α)) if C(s,α) 6= ; ∧ C(t ,α) =;

λ|α|−1
(

sup
Zs∈Res(s)

Pr(C(zs ,α))− sup
Zt∈Res(t )

Pr(C(zt ,α))
)

if sup
Zs∈Res(s)

Pr(C(zs ,α)) >

sup
Zt∈Res(t )

Pr(C(zt ,α))

0 otherwise.

which gives λ|α|−1 supZs∈Res(s) Pr(C(zs ,α)) ≥ dα
⊑Tr,λ

(s, t ).

�

Theorem 4.14. For all s, t ∈S it holds that d⊑F,λ
(s, t ) ≥ d⊑TrC,λ

(s, t ) ≥ d⊑Tr,λ
(s, t ).

Proof. We start with d⊑F,λ
(s, t) ≥ d⊑TrC,λ

(s, t). Accordingly to Definition 4.9 we can

distinguish two cases.

⋆ d⊑TrC,λ
(s, t ) = d⊑Tr,λ

(s, t ). In this case the thesis follows by noticing that each trace α ∈
A⋆ can be seen as the failure pair f=α;, for which we have supZs∈Res(s) Pr(C(zs ,α)) =
supZs∈Res(s) Pr(FC(zs , f)) for any process s ∈S . Thus we have

d⊑TrC,λ(s, t ) = sup
α∈A⋆

max

{

0,λ|α|−1
(

sup
Zs∈Res(s)

Pr(C(zs ,α))− sup
Zt∈Res(t )

Pr(C(zt ,α))
)

}

< max

{

0,λ|αε|−1
(

sup
Zs∈Res(s)

Pr(C(zs ,αε))− sup
Zt∈Res(t )

Pr(C(zt ,αε))
)

}

+ε

= max

{

0,λ|fε|−1
(

sup
Zs∈Res(s)

Pr(FC(zs , fε))− sup
Zt∈Res(t )

Pr(FC(zt , fε))
)

}

+ε

≤ sup
f∈A⋆×P(A)

max

{

0,λ|f|( sup
Zs∈Res(s)

Pr(FC(zs , f))− sup
Zt∈Res(t )

Pr(FC(zt , f))
)

}

+ε

= d⊑F,λ(s, t )+ε

where
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✯ The second step follows by definition of supremum which guarantees that for

each ε> 0 there is a failure trace αε ∈A⋆ s.t d
αε

⊑Tr,λ
(s, t ) > supα∈A⋆ dα

⊑Tr,λ
(s, t )−ε.

✯ The third step follows by choosing the failure pair fε as described above.

✯ The forth step follows by definition of supremum.

Since the inequality d⊑TrC,λ
(s, t) < d⊑F,λ

(s, t)+ε holds for all ε > 0, we can conclude

that the thesis for this case follows.

⋆ d⊑TrC,λ
(s, t ) = supα∈A⋆ dα

⊑TrC,λ
(s, t ). In this case the thesis follows by noticing that each

completed trace α ∈A⋆ can be seen as the failure pair f = αA, for which we have

supZs∈Res(s) Pr(CC(zs ,α)) = supZs∈Res(s) Pr(FC(zs , f)) for any process s ∈ S . Thus we

have

d⊑TrC,λ(s, t ) = sup
α∈A⋆

max

{

0,λ|α|( sup
Zs∈Res(s)

Pr(CC(zs ,α))− sup
Zt∈Res(t )

Pr(CC(zt ,α))
)

}

< max

{

0,λ|αε|( sup
Zs∈Res(s)

Pr(CC(zs ,αε))− sup
Zt∈Res(t )

Pr(CC(zt ,αε))
)

}

+ε

= max

{

0,λ|fε|( sup
Zs∈Res(s)

Pr(FC(zs , fε))− sup
Zt∈Res(t )

Pr(FC(zt , fε))
)

}

+ε

≤ sup
f∈A⋆×P(A)

max

{

0,λ|f|( sup
Zs∈Res(s)

Pr(FC(zs , f))− sup
Zt∈Res(t )

Pr(FC(zt , f))
)

}

+ε

= d⊑F,λ(s, t )+ε

where

✯ The second step follows by definition of supremum which guarantees that for

each ε> 0 there is a failure trace αε ∈A⋆ s.t d
αε

⊑TrC,λ
(s, t ) > supα∈A⋆ dα

⊑TrC,λ
(s, t )−ε.

✯ The third step follows by choosing the failure pair fε as described above.

✯ The forth step follows by definition of supremum.

Since the inequality d⊑TrC,λ
(s, t) < d⊑F,λ

(s, t)+ε holds for all ε > 0, we can conclude

that the thesis for this case follows.

The relation d⊑TrC,λ
(s, t ) ≥ d⊑Tr,λ

(s, t ) follows directly from Definition 4.9. �

Theorem 4.15. For all s, t ∈S it holds that ds,λ(s, t ) ≥ d⊑Tr,λ
(s, t ).

Proof. With abuse of notation, given k ∈N we write

dk
⊑Tr,λ(s, t ) = sup

α∈A⋆,|α|≤k

dα
⊑Tr,λ(s, t ).

Notice that d⊑Tr,λ
(s, t) = limk→∞ dk

⊑Tr,λ
(s, t). Therefore, to prove the thesis, we prove the

stronger property that

for each k ∈N, dk
s,λ(s, t ) ≥ dk

⊑Tr,λ(s, t ). (4.8)
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The thesis will the follow by Proposition 4.1 and the monotonicity of the limit. We proceed

by induction over k ∈N.

Consider the base case k = 1. It is easy to check that

d1
s,λ(s, t ) = d1

⊑Tr,λ(s, t ) =
{

1 if init(s) 6⊆ init(t )

0 otherwise

and thus Equation (4.8) directly follows.

Consider now the inductive step k > 0. If dk
⊑Tr,λ

(s, t) = 0, then there is nothing to prove.

Hence assume that dk
⊑Tr,λ

(s, t ) > 0. We have

dk
⊑Tr,λ(s, t )

= sup
α∈A⋆,|α|≤k

dα
⊑Tr,λ(s, t )

< d
αε

⊑Tr,λ
(s, t )+ε

=λ|αε|−1

(

sup
Zs∈Res(s)

Pr(C(zs ,α))− sup
Zt∈Res(t )

Pr(C(zt ,α))

)

+ε

=λ|αε|−1

(

max
πs∈der(s,a)

∑

s′∈supp(πs )

πs(s′) sup
Zs′∈Res(s′)

Pr(C(zs′ ,β))+

− max
πt∈der(t ,a)

∑

t ′∈supp(πt )

πt (t ′) sup
Zt ′∈Res(t ′)

Pr(C(zt ′ ,β))

)

+ε

=λ|αε|−1

(

∑

s′∈supp(π̃s )

π̃s(s′) sup
Zs′∈Res(s′)

Pr(C(zs′ ,β))+

− max
πt∈der(t ,a)

∑

t ′∈supp(πt )

πt (t ′) sup
Zt ′∈Res(t ′)

Pr(C(zt ′ ,β))

)

+ε

≤λ|αε|−1

(

∑

s′∈supp(π̃s )

π̃s(s′) sup
Zs′∈Res(s′)

Pr(C(zs′ ,β))+

−
∑

t ′∈supp(π̃t )

π̃t (t ′) sup
Zt ′∈Res(t ′)

Pr(C(zt ′ ,β))

)

+ε

=λ|αε|−1

(

∑

s′∈supp(π̃s )

(

∑

t ′∈supp(π̃t )

w(s′, t ′)
)

sup
Zs′∈Res(s′)

Pr(C(zs′ ,β))+

−
∑

t ′∈supp(π̃t )

(

∑

s′∈supp(π̃s )

w(s′, t ′)
)

sup
Zt ′∈Res(t ′)

Pr(C(zt ′ ,β))

)

+ε

=λ|αε|−1

(

∑

s′∈supp(π̃s )

t ′∈supp(π̃t )

w(s′, t ′) sup
Zs′∈Res(s′)

Pr(C(zs′ ,β))+

−
∑

s′∈supp(π̃s )

t ′∈supp(π̃t )

w(s′, t ′) sup
Zt ′∈Res(t ′)

Pr(C(zt ′ ,β))

)

+ε
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=λ|αε|−1

(

∑

s′∈supp(π̃s )

t ′∈supp(π̃t )

w(s′, t ′)
(

sup
Zs′∈Res(s′)

Pr(C(zs′ ,β))± sup
Zt ′∈Res(t ′)

Pr(C(zt ′ ,β))
)

+

−
∑

s′∈supp(π̃s )

t ′∈supp(π̃t )

w(s′, t ′) sup
Zt ′∈Res(t ′)

Pr(C(zt ′ ,β))

)

+ε

=λ|αε|−1

(

∑

s′∈supp(π̃s )

t ′∈supp(π̃t )

(

w(s′, t ′)
(

sup
Zs′∈Res(s′)

Pr(C(zs′ ,β))− sup
Zt ′∈Res(t ′)

Pr(C(zt ′ ,β))
)

+

+w(s′, t ′) sup
Zt ′∈Res(t ′)

Pr(C(zt ′ ,β))
)

+

−
∑

s′∈supp(π̃s )

t ′∈supp(π̃t )

w(s′, t ′) sup
Zt ′∈Res(t ′)

Pr(C(zt ′ ,β))

)

+ε

=λ|αε|−1

(

∑

s′∈supp(π̃s )

t ′∈supp(π̃t )

w(s′, t ′)
(

sup
Zs′∈Res(s′)

Pr(C(zs′ ,β))− sup
Zt ′∈Res(t ′)

Pr(C(zt ′ ,β))
)

+

+
∑

s′∈supp(π̃s )

t ′∈supp(π̃t )

w(s′, t ′) sup
Zt ′∈Res(t ′)

Pr(C(zt ′ ,β))−
∑

s′∈supp(π̃s )

t ′∈supp(π̃t )

w(s′, t ′) sup
Zt ′∈Res(t ′)

Pr(C(zt ′ ,β))

)

+ε

=λ

(

∑

s′∈supp(π̃s )

t ′∈supp(π̃t )

w(s′, t ′)λ|β|−1
(

sup
Zs′∈Res(s′)

Pr(C(zs′ ,β))− sup
Zt ′∈Res(t ′)

Pr(C(zt ′ ,β))
)

)

+ε

≤λ

(

∑

s′∈supp(π̃s )

t ′∈supp(π̃t )

w(s′, t ′) sup
β∈A⋆,|β|≤k−1

λ|β|−1
(

sup
Zs′∈Res(s′)

Pr(C(zs′ ,β))− sup
Zt ′∈Res(t ′)

Pr(C(zt ′ ,β))
)

)

+ε

=λ

(

∑

s′∈supp(π̃s )

t ′∈supp(π̃t )

w(s′, t ′) sup
β∈A⋆,|β|≤k−1

d
β

⊑Tr,λ
(s, t )

)

+ε

=λ

(

∑

s′∈supp(π̃s )

t ′∈supp(π̃t )

w(s′, t ′)dk−1
⊑Tr,λ(s, t )

)

+ε

≤λ

(

∑

s′∈supp(π̃s )

t ′∈supp(π̃t )

w(s′, t ′)dk−1
s,λ (s, t )

)

+ε

=λK(dk−1
s,λ )(π̃s , π̃t )+ε

= min
πt∈der(t ,a)

λK(dk−1
s,λ )(π̃s ,πt )+ε

≤ max
πs∈der(s,a)

min
πt∈der(t ,a)

λK(dk−1
s,λ )(πs ,πt )+ε

≤ sup
a∈A

max
πs∈der(s,a)

min
πt∈der(t ,a)

λK(dk−1
s,λ )(πs ,πt )+ε

= dk
s,λ(s, t )+ε
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where:

⋆ The second step follows by definition of supremum which guarantees that for each

ε> 0 there is a trace αε ∈A⋆, with |αε| ≤ k s.t d
αε

⊑Tr,λ
(s, t ) > supα∈A⋆,|α|≤k dα

⊑Tr,λ
(s, t )−ε.

⋆ The fourth step follows since we can assume wlog that αε = aβ for some β ∈A⋆, with

|β| ≤ k −1, and by construction of resolutions.

⋆ The fifth step follows by choosing

π̃s = arg max
πs∈der(s,a)

∑

s′∈supp(πs )

πs(s′) sup
Zs′∈Res(s′)

Pr(C(zs′ ,β)).

⋆ The sixth step follows by choosing

π̃t = arg min
πt∈der(t ,a)

K(dk−1
s,λ )(π̃s ,πt ).

⋆ The seventh step follows by choosing

w= arg min
w∈W(π̃s ,π̃t )

K(dk−1
s,λ )(π̃s , π̃t ).

⋆ The sixteenth step follows by induction over k −1.

⋆ The seventeenth step follows by the choice of w.

⋆ The eighteenth step follows by the choice of π̃t .

Since the inequality dk
⊑Tr,λ

(s, t ) < dk
s,λ

(s, t )+ε holds for all ε> 0, we can conclude that Equa-

tion (4.8) holds. �

Theorem 4.16. For all s, t ∈S it holds that dr,λ(s, t ) ≥ d⊑TrR,λ
(s, t ) and dr,λ(s, t ) ≥ d⊑R,λ

(s, t ).

Proof. The proof of dr,λ(s, t ) ≥ d⊑TrR,λ
(s, t ) follows by applying similar arguments to the

ones used in the proof of Theorem 4.12.

The proof of dr,λ(s, t ) ≥ d⊑R,λ
(s, t ) follows by applying similar arguments to the ones used

in the proof of Theorem 4.15. �

Theorem 4.17. For all s, t ∈S it holds that dλ(s, t ) ≥ dTrF,λ(s, t ) ≥ dF,λ(s, t ) ≥
dtest,λ(s, t ) ≥ dTr,λ(s, t ).

Proof. We have that

dλ(s, t ) ≥ max{dr,λ(s, t ), dr,λ(t , s)} (by Theorem 4.11)

≥ max{d⊑TrF,λ(s, t ), d⊑TrF,λ(t , s)} (by Theorem 4.12)

= dTrF,λ(s, t ) (by Definition 4.11).
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Then, we have

dTrF,λ(s, t ) = max{d⊑TrF,λ(s, t ), d⊑TrF,λ(t , s)} (by Definition 4.11)

≥ max{d⊑F,λ(s, t ), d⊑F,λ(t , s)} (by Theorem 4.13)

= dF,λ(s, t ) (by Definition 4.10).

Moreover, we have

dF,λ(s, t ) = max{d⊑F,λ(s, t ), d⊑F,λ(t , s)} (by Definition 4.10)

≥ max{d⊑test,λ(s, t ), d⊑test,λ(t , s)} (by Theorem 4.13)

= dtest,λ(s, t ) (by Definition 4.16).

Finally, we have

dtest,λ(s, t ) = max{d⊑test,λ(s, t ), d⊑test,λ(t , s)} (by Definition 4.16)

≥ max{d⊑Tr,λ(s, t ), d⊑Tr,λ(t , s)} (by Theorem 4.13)

= dTr,λ(s, t ) (by Definition 4.8).

�

Theorem 4.18. For all s, t ∈S it holds that dF,λ(s, t ) ≥ dTrC,λ(s, t ) ≥ dTr,λ(s, t ).

Proof. We have that

dF,λ(s, t ) = max{d⊑F,λ(s, t ), d⊑F,λ(t , s)} (by Definition 4.10)

≥ max{d⊑TrC,λ(s, t ), d⊑TrC,λ(t , s)} (by Theorem 4.14)

= dTrC,λ(s, t ) (by Definition 4.9).

Finally, we have

dTrC,λ(s, t ) = max{d⊑TrC,λ(s, t ), d⊑TrC,λ(t , s)} (by Definition 4.9)

≥ max{d⊑Tr,λ(s, t ), d⊑Tr,λ(t , s)} (by Theorem 4.14)

= dTr,λ(s, t ) (by Definition 4.8).

�

Theorem 4.19. For all s, t ∈S it holds that dλ(s, t ) ≥ dTrR,λ(s, t ) and dλ(s, t ) ≥ dR,λ(s, t ).

Proof. We have that

dλ(s, t ) ≥ max{dr,λ(s, t ), dr,λ(t , s)} (by Theorem 4.11)

≥ max{d⊑TrR,λ(s, t ), d⊑TrR,λ(t , s)} (by Theorem 4.16)

= dTrR,λ(s, t ) (by Definition 4.13).
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Similarly, we have

dλ(s, t ) ≥ max{dr,λ(s, t ), dr,λ(t , s)} (by Theorem 4.11)

≥ max{d⊑R,λ(s, t ), d⊑R,λ(t , s)} (by Theorem 4.16)

= dR,λ(s, t ) (by Definition 4.12).

�

4.5 PROBABILISTIC LINEAR RELATIONS

In this Section we characterize the kernels of the metrics introduced in Section 4.3. We will

show that the kernels of our metrics define novel notions of (decorated) trace and testing

relations, which result into coarser versions of the ones presented in [29]. More precisely,

our relations can be considered as the may part of the relations presented in the max-min

partially matching resolution approach in [29]. Roughly speaking, this means that the kernel

of our trace (resp: decorated trace; testing) metric will relate processes s and t if and only

if for each trace (resp: decorated trace; test and trace) the suprema of the probabilities of

executing that trace (resp: decorated trace; trace in the interaction with the test) with respect

to all resolutions of nondeterminism for s and t are the same.

Although the relations derived from our metrics are coarser than those studied in the

literature (see [29–31] and the references therein), they enjoy a lot of desirable properties

that their finer versions may in part lack. First of all, as already noticed in [29, 95], to avoid

questionable estimations of the execution probabilities we need to limit the power of sched-

ulers. This is obtained by the partially matching resolutions approach, allowing to match

any resolution for a process with different resolutions for the other process depending on

the considered semantics-specific event, and by a trace-by-trace analysis of these semantics.

Moreover, this approach also allows us to obtain full backward compatibility with the fully-

nondeterministic and fully-probabilistic cases, also with respect to the testing semantics.

Finally, comparing only the suprema of the execution probabilities instead of the extremal

ones, namely suprema and infima, results into relations that are congruences with respect

to parallel composition (see Example 4.11) and that are, more importantly, coarser than

(bi)similarities.

Summarizing, we will show that our relations satisfy the following desirable properties:

✶✳ compositionality;

✷✳ full backward compatibility with the fully-nondeterministic case;

✸✳ full backward compatibility with the fully-probabilistic case;

✹✳ they are coarser than (bi)similarities.

Finally, in Section 4.6 we will show that these relations can be ordered with respect to

the ordering ‘makes strictly less identifications than’ in the spectrum in the lower part of

Figure 4.1.
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PROBABILISTIC TRACE EQUIVALENCE

We start by characterizing the kernels of the trace hemimetric and the trace metric. Our

proposal is that two processes s and t are related by the trace preorder, s ⊑Tr t , if and only if

for each trace α ∈A⋆ the probability that s performs α is not greater than the probability

that t performs α. Then, the symmetric closure of trace preorder gives the trace equivalence.

Definition 4.17 (Probabilistic trace equivalence). Let P = (S ,A,−→) be a PTS. Given s, t ∈S ,

we write s ⊑Tr t if and only if for each trace α ∈A⋆ it holds that

for each Zs ∈ Res(s) there is a Zt ∈ Res(t ) with Pr(C(zs ,α)) ≤ Pr(C(zt ,α)).

We say that s, t ∈S are probabilistic trace equivalent, notation s ∼Tr t , if and only if it holds

that s ⊑Tr t and t ⊑Tr s.

The following Theorem formalizes the intuition that the proposed trace preorder ⊑Tr

and equivalence ∼Tr constitute resp. the kernels of the trace hemimetric and trace metric.

Theorem 4.20. For all processes s, t ∈S , we have:

✶✳ d⊑Tr,λ
(s, t ) = 0 if and only if s ⊑Tr t , and

✷✳ dTr,λ(s, t ) = 0 if and only if s ∼Tr t .

Proof.

✶✳ We have

s ⊑Tr t ⇐⇒∀α ∈A⋆ ∀Zs ∈ Res(s) ∃Zt ∈ Res(t ) s.t. Pr(C(zs ,α)) ≤ Pr(C(zt ,α))

⇐⇒∀α ∈A⋆ sup
Zs∈Res(s)

Pr(C(zs ,α)) ≤ sup
Zt∈Res(t )

Pr(C(zt ,α))

⇐⇒∀α ∈A⋆ dα
⊑Tr,λ(s, t ) = 0

⇐⇒ sup
α∈A⋆

dα
⊑Tr,λ(s, t ) = 0

⇐⇒ d⊑Tr,λ(s, t ) = 0.

✷✳ We have

s ∼Tr t ⇐⇒ s ⊑Tr t and t ⊑Tr s

⇐⇒ d⊑Tr,λ(s, t ) = 0 and d⊑Tr,λ(t , s) = 0 (Theorem 4.20.1)

⇐⇒ max{d⊑Tr,λ(s, t ), d⊑Tr,λ(t , s)} = 0

⇐⇒ dTr,λ(s, t ) = 0.

�

Definition 4.17 can be seen as a relaxation of the corresponding definition in [29], which

requires that Pr(C(zs ,α)) = Pr(C(zt ,α)) instead of Pr(C(zs ,α)) ≤ Pr(C(zt ,α)). Let ≈Tr denote

the trace equivalence in [29]. Clearly we have ≈Tr ⊆∼Tr. We show now that the inclusion is

strict.

128



4.5. Probabilistic linear relations

s
a

t
a

1 0.5 0.5

s1

b c
t1

b c
t2

b c

      

zs

a

1

zs1

b

 

zt

a

0.5 0.5

zt1 zt2

b

 

c

 

Figure 4.8: Processes s and t are distinguished by ≈Tr, but related by ∼Tr.
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Figure 4.9: Processes s from Figure 4.8 and u are such that s ∼Tr⊔⊓ u but s ∥ v 6∼Tr⊔⊓ u ∥ v.

Example 4.10. Consider processes s, t in Figure 4.8. We have s ∼Tr t and s 6≈Tr t . To see that

s 6≈Tr t , we consider the trace α= ab and we note that the resolution Zt ∈ Res(t ) in Figure 4.8

assigns probability 0.5 to α, namely Pr(C(zt ,α)) = 0.5, whereas the unique resolution for

s assigning positive probability to α is Zs in Figure 4.8 for which Pr(C(zs ,α)) = 1. Hence

no resolution in Res(s) matches Zt on trace α, thus giving s 6≈Tr t . Notice that s ∼Tr t is

essential to have ∼ ⊆ ∼Tr. In fact, we have s ∼ t , which follows from s1 ∼ t1, s1 ∼ t2 and

δs1 ∼† (0.5δt1 +0.5δt2 ). �

In [29] also a notion of trace equivalence on extremal probabilities ∼Tr,⊔⊓ is proposed.

Given processes s, t ∈ S , the idea is to consider, for each trace α ∈A⋆, the subsets Resα(s)

and Resα(t) of the resolutions for s and t that do not contain any maximal computation

corresponding to a proper prefix of α-compatible computations of the process. Then we

compare the extremal execution probabilities of α on this distributions, obtaining that

s ∼Tr,⊔⊓ t if and only if for each α ∈A⋆

sup
Zs∈Resα(s)

Pr(C(zs ,α)) = sup
Zt∈Resα(t )

Pr(C(zt ,α))

inf
Zs∈Resα(s)

Pr(C(zs ,α)) = inf
Zt∈Resα(t )

Pr(C(zt ,α)).

Clearly we have ∼Tr,⊔⊓ ⊆ ∼Tr. In fact we have that s ∼Tr,⊔⊓ t if and only they assign the

same extremal probabilities to all traces, which in particular it means that the suprema

probabilities are the same for all traces and thus s ∼Tr t is guaranteed. We show now that the

inclusion is strict.

Example 4.11. Consider process s in Figure 4.8 and process u in Figure 4.9. It holds that

s ∼Tr,⊔⊓ u. To establish this, it is enough to consider the traces in {a, ab, ac} for which the
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comparison of extremal execution probabilities is immediate. However, if we consider the

parallel compositions of s and u with process v as represented in Figure 4.9, we get that

s ∥ v 6∼Tr,⊔⊓ u ∥ v . To see this, consider trace ac. We have that Resac (s ∥ v) contains only

the resolution corresponding to process s ∥ v itself. Conversely, Resac (u ∥ v) contains the

resolutions corresponding to both a-branches of u ∥ v , as the leftmost one has the maximal

computation u ∥ v
a
։ nil, which is not compatible with any proper prefix of the computation

corresponding to the rightmost branch. Therefore, we have

sup
Zs,v∈Resac (s,v)

Pr(C(zs,v , ac)) = sup
Zu,v∈Resac (u,v)

Pr(C(zu,v , ac)) = 1

inf
Zs,v∈Resac (s,v)

Pr(C(zs,v , ac)) = 1 and inf
Zu,v∈Resac (u,v)

Pr(C(zu,v , ac)) = 0

from which we can conclude that s ∥ v 6∼Tr,⊔⊓ u ∥ v . Besides, one can easily check that s ∼Tr u.

Then s ∥ v ∼Tr u ∥ v follows from Theorem 4.22 below, which is essential to guarantee the

compositionality of ∼Tr. �

Relation ∼Tr is (like ≈Tr) fully backward compatible with the trace equivalence on fully

nondeterministic systems [37], denoted by ∼N
Tr, as well as with the one on fully-probabilistic

systems [109], denoted by ∼P
Tr. Moreover, ∼Tr is preserved by parallel composition.

Proposition 4.21. Assume a PTS P = (S ,A,−→) and processes s, t ∈S . Then:

✶✳ If P is fully-nondeterministic, then s ∼Tr t if and only if s ≈Tr t if and only if s ∼N
Tr t .

✷✳ If P is fully-probabilistic, then s ∼Tr t if and only if s ≈Tr t if and only if s ∼P
Tr t .

Proof.

✶✳ s ∼Tr t ⇔ s ≈Tr t follows since in the fully nondeterminsitic context, the execution

probabilities of the traces are either 0 or 1. Thus, the inequality we use to check the

trace equivalence of processes, in this setting becomes an equality and therefore it

is no further distinguishable from the approach of [31]. Therefore, s ∼Tr t ⇔ s ∼N
Tr t

follows by s ≈Tr t ⇔ s ∼N
Tr t (Theorem 3.4(1) in [31]) and transitivity.

✷✳ s ∼Tr t ⇔ s ≈Tr t follows since in the fully probabilistic context, each process has a

single maximal resolution which is the process itself. Thus, the inequality we use to

check the trace equivalence of processes, in this setting becomes an equality on the

probabilities related to those maximal resolutions for processes and therefore it is no

further distinguishable from the approach of [31]. Therefore, s ∼Tr t ⇔ s ∼P
Tr t follows

by s ≈Tr t ⇔ s ∼P
Tr t (Theorem 3.4(2) in [31]) and transitivity.

�

Theorem 4.22. Assume a PTS P = (S ,A,−→) and processes s, t ∈S .

✶✳ If s ⊑Tr t , then we have s ∥ u ⊑Tr t ∥ u for all u ∈S .

✷✳ If s ∼Tr t , then we have s ∥ u ∼Tr t ∥ u for all u ∈S .
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To prove Theorem 4.22 we need first to recall an equivalent definition to trace equivalence

inspired by [31]. We start by introducing some auxiliary notation. Let X ,Y ⊆A⋆×R(0,1],

a ∈A, α ∈A⋆:

⋆ X 
 (α, q) if and only if either (α, q) ∈ X or q = 0 and (α, q ′) 6∈ X for all q ′ ∈R(0,1];

⋆ X +Y = {(α, q1 +q2) | X 
 (α, q1)∧Y 
 (α, q2)∧q1 +q2 > 0};

⋆ a.X = {(aα, q) | (α, q) ∈ X };

⋆ q ·X = {(α, q ·q ′) | (α, q ′) ∈ X }.

Then we recall the notion of weighted traces.

Definition 4.18 (Weighted traces, [31]). Let P = (S ,A,−→) be a PTS. The set of functions

tracesi : S → 2A
⋆×R(0,1] is defined for each i ∈N inductively as follows:

⋆ traces0(s) = {(e,1)};

⋆ tracesi+1(s) = {(e,1)}∪
⋃

s
a−→π

a.
(

∑

s′∈supp(π)

π(s′) · tracesi (s′)
)

.

We let traces(s) =
⋃

i∈N
tracesi (s).

Moreover, the following two Lemmas from [31] are still valid in our context.

Lemma 4.23 ([31, Lemma 3.6]). Assume a PTS P = (S ,A,−→). For all s ∈S and i ∈N it holds

that tracesi (s) ⊆ tracesi+1(s).

Lemma 4.24 ( [31, Lemma 3.7]). Assume a PTS P = (S ,A,−→). For all s ∈ S , α ∈ A⋆ and

q ∈ (0,1] it holds that (α, q) ∈ traces(s) if and only if there is a resolution Zs ∈ Res(s) with

Pr(C(zs ,α)) = q.

Given processes s, t ∈S , we write that traces(s) ≤ traces(t ) if and only if whenever (α, q) ∈
traces(s) then there is a (α, q ′) ∈ traces(t ) such that q ≤ q ′.

The following theorem is obtained by adapting Theorem 3.8 of [31] to our definition of

trace equivalence.

Theorem 4.25. Assume a PTS P = (S ,A,−→) and consider s, t ∈S . Then s ⊑Tr t if and only if

traces(s) ≤ traces(t ).

Proof. The proof is analogous to the proof of Theorem 3.8 in [31] by exploiting Lem-

mas 4.23 and 4.24. �

We are now ready to prove our Theorem 4.22.

Proof of Theorem 4.22. First of all we notice that the proof of Theorem 4.22.2 is an

immediate consequence of Theorem 4.22.1. In fact, we have that

s ∼Tr t
Def.4.17=====⇒ s ⊑Tr t

Thm.4.22.1=======⇒ (s,u) ⊑Tr (t ,u)

t ⊑Tr s
Thm.4.22.1=======⇒ (t ,u) ⊑Tr (s,u)

Def.4.17=====⇒ (s,u) ∼Tr (t ,u).

Then the proof of Theorem 4.22.1 follows by applying the same arguments used in the proof

of Theorem 3.9 in [31] by exploiting our Theorem 4.25 in place of Theorem 3.8 in [31]. �
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PROBABILISTIC DECORATED TRACE EQUIVALENCES

We proceed to study the kernels of the decorated trace metrics. As one can expect, their

characterization reflects that of kernel of the trace (hemi)metric, accordingly to the chosen

decoration.

Definition 4.19 (Probabilistic completed trace equivalence). Let P = (S ,A,−→) be a PTS.

Given s, t ∈S , we write s ⊑TrC t if and only if s ⊑Tr t and for each trace α ∈A⋆ it holds that

for each Zs ∈ Res(s) there is a Zt ∈ Res(t ) with Pr(CC(zs ,α)) ≤ Pr(CC(zt ,α)).

We say that s, t ∈S are probabilistic completed trace equivalent, notation s ∼TrC t , if and only

if it holds that s ⊑TrC t and t ⊑TrC s.

Definition 4.20 (Probabilistic failure equivalence). Let P = (S ,A,−→) be a PTS. Given s, t ∈S ,

we write s ⊑F t if and only if for each failure pair f ∈A⋆×P(A) it holds that

for each Zs ∈ Res(s) there is a Zt ∈ Res(t ) with Pr(FC(zs , f)) ≤ Pr(FC(zt , f)).

We say that s, t ∈S are probabilistic failure equivalent, notation s ∼F t , if and only if it holds

that s ⊑F t and t ⊑F s.

Definition 4.21 (Probabilistic failure trace equivalence). Let P = (S ,A,−→) be a PTS. Given

s, t ∈ S , we write s ⊑TrF t if and only if for each failure trace F ∈ (A×P(A))⋆∪ (e×P(A)) it

holds that

for each Zs ∈ Res(s) there is a Zt ∈ Res(t ) with Pr(FC(zs ,F)) ≤ Pr(FC(zt ,F)).

We say that s, t ∈S are probabilistic failure trace equivalent, notation s ∼TrF t , if and only if it

holds that s ⊑TrF t and t ⊑TrF s.

Definition 4.22 (Probabilistic ready equivalence). Let P = (S ,A,−→) be a PTS. Given s, t ∈S ,

we write s ⊑R t if and only if for each ready pair r ∈A⋆×P(A) it holds that

for each Zs ∈ Res(s) there is a Zt ∈ Res(t ) with Pr(RC(zs ,r)) ≤ Pr(RC(zt ,r)).

We say that s, t ∈S are probabilistic ready equivalent, notation s ∼R t , if and only if it holds

that s ⊑R t and t ⊑R s.

Definition 4.23 (Probabilistic ready trace equivalence). Let P = (S ,A,−→) be a PTS. Given

s, t ∈ S , we write s ⊑TrR t if and only if for each ready trace R ∈ (A×P(A))⋆∪ (e×P(A)) it

holds that

for each Zs ∈ Res(s) there is a Zt ∈ Res(t ) with Pr(RC(zs ,R)) ≤ Pr(RC(zt ,R)).

We say that s, t ∈S are probabilistic ready trace equivalent, notation s ∼TrR t , if and only if it

holds that s ⊑TrR t and t ⊑TrR s.

The following Theorem formalizes the intuition that the proposed decorated trace pre-

orders and equivalences constitute the kernels of the respective decorated trace hemimetrics

and metrics.
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Theorem 4.26. Let x ∈ {TrC,F,TrF,R,TrR}. For processes s, t ∈S we have:

✶✳ d⊑x ,λ(s, t ) = 0 if and only if s ⊑x t .

✷✳ dx,λ(s, t ) = 0 if and only if s ∼x t .

Proof. The thesis follows by applying the same arguments used in the proof of Theo-

rem 4.20. �

Also in the case of decorated trace semantics, our definitions can be seen as the relaxation

of the corresponding ones in [29], which require the equality of the probabilities on the

same decorated trace, instead of our inequalities. For x ∈ {TrC,F,TrF,R,TrR}, let ≈x denote

the proper decorated trace equivalence from [29]. Clearly we have ≈x ⊆∼x . In the following

example we show that the inclusion ≈x ⊆∼x is strict, for any x ∈ {TrC,F,TrF,R,TrR}.

Example 4.12. Consider processes s, t in Figure 4.8. We have s ∼x t and s 6≈x t for any x ∈
{TrC,F,TrF,R,TrR}. To see that s 6≈x t , we can apply the same arguments used in Example 4.10

to show that s 6≈Tr t directly to obtain the case for x = TrC and by considering in place of the

trace α= ab, respectively

⋆ the failure pair (resp. the ready pair) ab; for the case x = F (resp. x = R);

⋆ the failure trace a;b; for the case x = TrF;

⋆ the ready trace a{b,c}b; for the case x = TrR.

Also in this case, we notice that s ∼x t is essential to have ∼⊆∼x . �

Next, we show that each relation ∼x , for x ∈ {TrC,F,TrF,R,TrR} is (like ≈x ) fully backward

compatible with the corresponding decorated trace equivalence on fully nondeterministic

systems [37, 135], denoted by ∼N
x , as well as with the one on fully probabilistic systems

[108, 109], denoted by ∼P
x . Then, ∼x is preserved by parallel composition.

Proposition 4.27. Assume a PTS P = (S ,A,−→) and processes s, t ∈S . Let x ∈ {TrC,F,TrF,R,TrR}.

✶✳ If P is fully-nondeterministic, then s ∼x t if and only if s ≈x t if and only if s ∼N
x t .

✷✳ If P is fully-probabilistic, then s ∼x t if and only if s ≈x t if and only if s ∼P
x t .

Proof. The thesis follows by applying the same reasoning used in the proof of Proposi-

tion 4.21 and the analogous result in [29]. �

Theorem 4.28. Assume a PTS P = (S ,A,−→) and processes s, t ∈S . Let x ∈ {TrC,F,TrF,R,TrR}.

✶✳ If s ⊑x t , then we have s ∥ x ⊑x t ∥ u for all u ∈S .

✷✳ If s ∼x t , then we have s ∥ u ∼x t ∥ u for all u ∈S .

To prove Theorem 4.28 we need to adapt the notion of weighted traces to the different

types of decorations. Firstly we deal with the cases of completed traces.
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Definition 4.24 (Weighted completed traces). Let P = (S ,A,−→) be a PTS. The set of functions

Ctraces: S → 2A
⋆×R(0,1] is defined inductively as follows:

Ctraces(s) =











(e,1) if init(s) =;
⋃

s
a−→π

a.
(

∑

s′∈supp(π)

π(s′) ·Ctraces(s′)
)

otherwise.

We remark that for each process s ∈S , we have that Ctraces(s) ⊂ traces(s).

Given processes s, t ∈ S , we write that Ctraces(s) ≤ Ctraces(t) if and only if whenever

(α, q) ∈ Ctraces(s) then there is a (α, q ′) ∈ Ctraces(t ) such that q ≤ q ′.

Lemma 4.29. Assume a PTS P = (S ,A,−→). For all s ∈ S , α ∈A⋆ and q ∈ (0,1] we have that

(α, q) ∈ Ctraces(s) if and only if there is a resolution Zs ∈ Res(s) with Pr(CC(zs ,α)) = q.

Proof. The thesis follows by applying the same arguments used in the proof of Lemma 4.24

(Lemma 3.7 in [31]). �

Theorem 4.30. Assume a PTS P = (S ,A,−→) and consider s, t ∈S . Then s ⊑TrC t if and only if

traces(s) ≤ traces(t ) and Ctraces(s) ≤ Ctraces(t ).

Proof. The thesis follows as a direct consequence of Ctraces(s) ⊂ traces(s), Lemma 4.29

and Theorem 4.25. �

Interestingly, the same technique can be applied to obtain the compositionality results

for the readies semantics. To this aim, we also need to slightly modify the auxiliary relation


. Let X ,Y ⊆A⋆×P(A)×R[0,1], a ∈A, α ∈A⋆ A ∈P(A):

⋆ X 
 (α, A, q) if and only if either (α, A, q) ∈ X or q = 0 and (α, A, q ′) 6∈ X for all q ′ ∈R(0,1];

⋆ X +Y = {(α, A, q1 +q2) | X 
 (α, A, q1)∧Y 
 (α, A, q2)};

⋆ a.X = {(aα, A, q) | (α, A, q) ∈ X };

⋆ q ·X = {(α, A, q ·q ′) | (α, A, q ′) ∈ X }.

Notice that in the definition of X +Y we have relaxed the constraint on the summation of

the weights q1, q ′
2 to be non-zero. This is due to the fact that to capture the failure semantics

we need to allow those weights to be 0.

Firstly, we introduce the notion of weighted ready pairs.

Definition 4.25 (Weighted ready pairs). Let P = (S ,A,−→) be a PTS. The set of functions

Rpairsi : S → 2A
⋆×P(A)×R(0,1] is defined for each i ∈N inductively as follows:

⋆ Rpairs0(s) = {(e, init(s),1)};

⋆ Rpairsi+1(s) = {(e, init(s),1)}∪
⋃

s
a−→π

a.
(

∑

s′∈supp(π)

π(s′) ·Rpairsi (s′)
)

.

We let Rpairs(s) =
⋃

i∈N
Rpairsi (s).
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The definition of weighted failure pairs is more technical as, intuitively, we need to

consider all possible failure sets.

Definition 4.26 (Weighted failure pairs). Let P = (S ,A,−→) be a PTS. The set of functions

Fpairsi : S×P(A) → 2A
⋆×P(A)×R[0,1] is defined for each i ∈N inductively as follows:

⋆ Fpairs0(s, A) =
{

{(e, A,1)} if init(s)∩ A =;
{(e, A,0)} otherwise;

⋆ Fpairsi+1(s) = Fpairs0(s, A)∪
⋃

s
a−→π

a.
(

∑

s′∈supp(π)

π(s′) ·Fpairsi (s′, A)
)

.

We let Fpairs(s, A) =
⋃

i∈N
Fpairsi (s, A) and Fpairs(s) =

⋃

F∈P(A)

Fpairs(s, A).

Notice that differently from the previous notions of weighted decorated traces, weighted

failure pairs also consider the failure sets to which a process assigns probability 0.

Given processes s, t ∈S , we write that Rpairs(s) ≤ Rpairs(t ) (resp. Fpairs(s) ≤ Fpairs(t )) if

and only if whenever (α, A, q) ∈ Rpairs(s) (resp. Fpairs(s)) then there is a (α, A, q ′) ∈ Rpairs(t )

(resp. Fpairs(t )) such that q ≤ q ′.

Lemma 4.31. Assume a PTS P = (S ,A,−→). For all s ∈ S ,F ∈ P(A) and i ∈ N it holds that

Rpairsi (s) ⊆ Rpairsi+1(s) and Fpairsi (s,F ) ⊆ Fpairsi+1(s,F ).

Proof. The thesis follows by applying the same arguments used in the proof of Lemma 4.23

(Lemma 3.6 in [31]). �

Lemma 4.32. Assume a PTS P = (S ,A,−→). For all s ∈ S , α ∈A⋆, A ∈P(A) and q ∈ (0,1] it

holds that

✶✳ (α, A, q) ∈ Rpairs(s) if and only if there is a Zs ∈ Res(s) with Pr(RC(zs ,αA)) = q.

✷✳ (α, A, q) ∈ Fpairs(s) if and only if there is a Zs ∈ Res(s) with Pr(FC(zs ,αA)) = q.

Proof. The thesis follows by applying the same arguments used in the proof of Lemma 4.24

(Lemma 3.7 in [31]). �

Theorem 4.33. Assume a PTS P = (S ,A,−→) and consider s, t ∈S . Then

✶✳ s ⊑R t if and only if Rpairs(s) ≤ Rpairs(t ).

✷✳ s ⊑F t if and only if Fpairs(s) ≤ Fpairs(t ).

Proof. The proof is analogous to the proof of Theorem 3.8 in [31] by exploiting Lem-

mas 4.31 and 4.32 in place of, resp., Lemmas 4.23 and 4.24. �

Next, we deal with the case of ready trace equivalence which is obtained by modifying

again the auxiliary relation 
 in order to capture the ready traces. Let X ,Y ⊆ (A×P(A))⋆∪
(e×P(A))×R(0,1], a ∈A, A ∈ (A×P(A))⋆∪ (e×P(A)):
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⋆ X 
 (A, q) if and only if either (A, q) ∈ X or q = 0 and (A, q ′) 6∈ X for all q ′ ∈R(0,1];

⋆ X +Y = {(A, q1 +q2) | X 
 (A, q1)∧Y 
 (A, q2)∧q1 +q2 > 0};

⋆ a.X = {(aA, q) | (eA, q) ∈ X };

⋆ [q, A] ·X = {(eAA, q ·q ′) | (A, q ′) ∈ X }.

Definition 4.27 (Weighted ready traces). Let P = (S ,A,−→) be a PTS. The set of functions

Rtracesi : S → 2(A×P(A))⋆∪(e×P(A))×R(0,1] is defined for each i ∈N inductively as follows:

⋆ Rtraces0(s) = {(e(init(s)),1)};

⋆ Rtracesi+1(s) = {(e(init(s)),1)}∪
⋃

s
a−→π

a.
(

∑

s′∈supp(π)

[π(s′), init(s′)] ·Rtracesi (s′)
)

.

We let Rtraces(s) =
⋃

i∈N
Rtracesi (s).

Given processes s, t ∈ S , we write that Rtraces(s) ≤ Rtraces(t) if and only if whenever

(A, q) ∈ Rtraces(s) then there is a (A, q ′) ∈ Rtraces(t ) such that q ≤ q ′.

Lemma 4.34. Assume a PTS P = (S ,A,−→). For all s ∈S and i ∈N it holds that Rtracesi (s) ⊆
Rtracesi+1(s).

Proof. The thesis follows by applying the same arguments used in the proof of Lemma 4.23

(Lemma 3.6 in [31]). �

Lemma 4.35. Assume a PTS P = (S ,A,−→). For all s ∈ S , A ∈ (A×P(A))⋆∪ (e×P(A)) and

q ∈ (0,1] it holds that (A, q) ∈ Rtraces(s) if and only if there is a resolution Zs ∈ Res(s) with

Pr(RC(zs ,A)) = q.

Proof. The thesis follows by applying the same arguments used in the proof of Lemma 4.24

(Lemma 3.7 in [31]). �

Theorem 4.36. Assume a PTS P = (S ,A,−→) and consider s, t ∈S . Then s ⊑TrR t if and only if

Rtraces(s) ≤ Rtraces(t ).

Proof. The proof is analogous to the proof of Theorem 3.8 in [31] by exploiting Lem-

mas 4.34 and 4.35 in place of, resp., Lemmas 4.23 and 4.24. �

Finally, we consider the case of failure traces. Again, we need to adapt relation 
 to the

considered semantics.

Let X ,Y ⊆A⋆×P(A)⋆×R[0,1], a ∈A, α ∈A⋆, F ∈P(A), F ∈P(A)⋆:

⋆ X 
 (α,F, q) if and only if either (α,F, q) ∈ X or q = 0 and (α,F, q ′) 6∈ X for all q ′ ∈R(0,1];

⋆ X +Y = {(α,F, q1 +q2) | X 
 (α,F, q1)∧Y 
 (α,F, q2)};

⋆ a.X = {(aα,F, q) | (α,F, q) ∈ X };

⋆ q ·X = {(α,F, q ·q ′) | (α,F, q ′) ∈ X };
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⋆ (e,F, q) ·X = {(α,FF, q ·q ′) | (α,F, q ′) ∈ X }.

Definition 4.28 (Weighted failure traces). Let P = (S ,A,−→) be a PTS. The set of functions

Ftraces : S×P(A)⋆ → 2A
⋆×P(A)⋆×R[0,1] is defined inductively as follows:

⋆ Ftraces(s,;) = {(e,;,1)};

⋆ Ftraces(s,F1 . . .Fn) =
⋃

s
a−→π

a.
(

∑

s′∈supp(π)

π(s′) ·Fpairs0(s′,F1) ·Ftraces(s′,F2 . . .Fn)
)

.

We let Ftraces(s) =
⋃

F∈P(A)⋆
Ftraces(s,F).

Given processes s, t ∈ S , we write that Ftraces(s) ≤ Ftraces(t) if and only if whenever

(α,F, q) ∈ Ftraces(s) then there is a (α,F, q ′) ∈ Ftraces(t ) such that q ≤ q ′.

Lemma 4.37. Assume a PTS P = (S ,A,−→). For all s ∈S and F1, . . . ,Fn ,F ∈P(A) it holds that

Ftraces(s,F1 . . .Fn) ⊆ Ftraces(s,F1 . . .FnF ).

Proof. The thesis follows by applying the same arguments used in the proof of Lemma 4.23

(Lemma 3.6 in [31]). �

Lemma 4.38. Assume a PTS P = (S ,A,−→). For all s ∈ S , α = a1 . . . an ∈A⋆, F = F1 . . .Fn ∈
P(A)⋆ and q ∈ (0,1] it holds that (α,F, q) ∈ Ftraces(s) if and only if there is a resolution

Zs ∈ Res(s) with Pr(FC(zs , a1F1 . . . anFn)) = q.

Proof. The thesis follows by applying the same arguments used in the proof of Lemma 4.24

(Lemma 3.7 in [31]). �

Theorem 4.39. Assume a PTS P = (S ,A,−→) and consider s, t ∈S . Then s ⊑TrF t if and only if

Ftraces(s) ≤ Ftraces(t ).

Proof. The proof is analogous to the proof of Theorem 3.8 in [31] by exploiting Lem-

mas 4.37 and 4.38 in place of, resp., Lemmas 4.23 and 4.24. �

We are now ready to prove our Theorem 4.28.

Proof of Theorem 4.28. Let x ∈ {TrC,F,TrF,R,TrR}. First of all we notice that the proof of

Theorem 4.28.2 is an immediate consequence of Theorem 4.28.1. In fact, we have that

s ∼x t
Def.==⇒ s ⊑x t

Thm.4.28.1=======⇒ (s,u) ⊑x (t ,u)

t ⊑x s
Thm.4.28.1=======⇒ (t ,u) ⊑x (s,u)

Def.==⇒ (s,u) ∼x (t ,u).

Then the proof of Theorem 4.28.1 follows by applying similar arguments to those used in the

proof of Theorem 3.9 in [31] by exploiting, in place of Theorem 3.8 in [31], respectively

⋆ Theorem 4.30 for x = TrC;

⋆ Theorem 4.33.1 for x = R;

⋆ Theorem 4.33.2 for x = F;
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⋆ Theorem 4.36 for x = TrR;

⋆ Theorem 4.39 for x = TrF.

�

PROBABILISTIC TESTING EQUIVALENCE

Finally, we deal with the kernel of our testing metric. As argued in Section 4.3, we have

adopted a trace-by-trace view of testing and thus the resulting trace equivalence is based

on the same approach: for each process we consider the probability of passing a given test

with respect to the execution of a single trace and then we compare those probabilities as

done in the trace equivalence. Moreover, we will see that the, apparently, forced control

on the probabilities of α-compatible maximal computations for an unsuccessful trace α,

will actually lead to a testing equivalence which is fully backward compatible with the

fully-nondeterministic case.

Definition 4.29 (Probabilistic testing equivalence). Assume a PTS P = (S ,A,−→) and an NPT

O = (O,A,−→O). Given s, t ∈ S , we write s ⊑test t if and only if for each test o ∈O and trace

α ∈A⋆ it holds that

for each maximal resolution Zs,o ∈ Resmax,α(s,o) there is a maximal resolution

Zt ,o ∈ Resmax,α(t ,o) such that Pr(SC(zs,o ,α)) ≤ Pr(SC(zt ,o ,α)).

We say that s, t ∈S are probabilistic testing equivalent, notation s ∼test t , if and only if it holds

that s ⊑test t and t ⊑test s.

The following Theorem formalizes the intuition that the proposed testing preorder and

equivalence constitute the kernels of the respective testing premetric and semimetric.

Theorem 4.40. For processes s, t ∈S we have:

✶✳ d⊑test,λ
(s, t ) = 0 if and only if s ⊑test t , and

✷✳ dtest,λ(s, t ) = 0 if and only if s ∼test t .

Proof.

✶✳ We have

s ⊑test t

⇐⇒∀o ∈O ∀α ∈A⋆ ∀Zs,o ∈ Resmax,α(s) ∃Zt ,o ∈ Resmax,α(t ,o) s.t.

Pr(SC(zs,o ,α)) ≤ Pr(SC(zt ,o ,α))

⇐⇒∀o ∈O ∀α ∈A⋆ sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α)) ≤ sup
Zt ,o∈Resmax,α(t ,o)

Pr(SC(zt ,o ,α))

⇐⇒∀o ∈O ∀α ∈A⋆ do,α
⊑test,λ

(s, t ) = 0

⇐⇒ sup
o∈O

sup
α∈A⋆

do,α
⊑test,λ

(s, t ) = 0

⇐⇒ d⊑test,λ(s, t ) = 0.
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Figure 4.10: We have that s 6∼test t due to the restriction to Resmax,α.

✷✳ We have

s ∼test t ⇐⇒ s ⊑test t and t ⊑test s

⇐⇒ d⊑test,λ(s, t ) = 0 and d⊑test,λ(t , s) = 0 (by Theorem 4.40.1)

⇐⇒ max{d⊑test,λ(s, t ), d⊑test,λ(t , s)} = 0

⇐⇒ dtest,λ(s, t ) = 0.

�

In the following Example we give a further intuition on the necessity of the restriction on

the class of resolutions used in Definition 4.29 (as those in [31]) to guarantee full backward

compatibility with the fully-nondeterministic case.

Example 4.13. Consider processes s, t and the test o represented in Figure 4.10. Intuitively,

the test o should discriminate s and t , since t will always pass the test o, whereas the

maximal computation (s,o)
a
։ (nil,o1) does not reach success. Hence, if in Definition 4.29 we

considered resolutions in Resmax instead of Resmax,α, then the probability Pr(SC(zs,o , a)) = 0

would be matched by the maximal resolution for (t ,o), thus giving s ⊑test t and s ∼test

t . Conversely, the restriction to resolutions in Resmax,a allows us to distinguish the two

processes with respect to their interaction with the test o. Indeed, we have Resmax,a(s,o) 6= ;
and Resmax,a(t ,o) =;, which directly gives s 6⊑test t . �

Again, Definition 4.29 can be seen as the relaxation of the corresponding definition

in [31], which requires that Pr(SC(zs,o ,α)) = Pr(SC(zt ,o ,α)) instead of Pr(SC(zs,o ,α)) ≤
Pr(SC(zt ,o ,α)). Let ≈test denote the testing equivalence in [31]. Clearly we have ≈test ⊆∼test.

The following Example show that the inclusion is strict.

Example 4.14. Consider again processes s, t in Figure 4.8. We argue first that s ∼test t . We

start with noticing that, since s1, t1 and t2 execute exactly the same actions, then no test can

distinguish them. Then, t ⊑test s is due to the fact that for each test o the probability of (t ,o)

to execute ab or ac will always be matched by a resolution for (s,o). Conversely, s ⊑test t

follows since whenever o tests trace ab (resp. ac) then there is a resolution for (s,o) assigning

probability 1 to such a trace. Then, since both t1 and t2 pass the test of trace b (resp. c)

we are guaranteed that it will be always possible to choose a resolution for (t ,o) assigning
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o
a

1

o1

bp cp

test

(s, o)
a

1

(s1, o1)
b

( ,
p

)

c

( ,
p

)

(t , o)
a

0.5 0.5

(t1, o1)
b c

(t2, o1)
b c

( ,
p

)( ,
p

)( ,
p

)( ,
p

)

interaction systems

zs,o

a

1

zs1,o1

b

( ,
p

)

Zs,o ∈ Res(s,o)

zt ,o

a

0.5 0.5

zt1,o1 zt2,o1

b

( ,
p

)

c

( ,
p

)

Zt ,o ∈ Res(t ,o)

Figure 4.11: A test showing that s 6≈test t for s, t in Figure 4.8.

probability 1 to trace ab (resp. ac). However, we get s 6≈test t by the NPT test o in Figure 4.11.

In fact, if we consider the resolution Zt ,o ∈ Res(t ,o) in Figure 4.11 for the interaction system

(t ,o), we have that Pr(SC(zt ,o , ab)) = 0.5. The only resolution for (s,o) assigning non-zero

success probability to the trace ab is resolution Zs,o represented in Figure 4.11, for which

Pr(SC(zs,o , ab)) = 1. Thus, resolution Zt ,o ∈ Res(t ,o) cannot be matched by any resolution

for (s,o), thus giving s 6≈test t . Finally, we note that it is essential that s ∼test t to have ∼⊆∼test,

since, as shown in Example 4.10, processes s, t in Figure 4.8 are probabilistic bisimilar. �

Relation ∼test is (like ≈test) fully backward compatible with the testing equivalence on

fully nondeterministic systems [62], denoted by ∼N
test, as well as with the one on fully proba-

bilistic systems [51], denoted by ∼P
test. Then, ∼test is preserved by parallel composition.

Proposition 4.41. Assume a PTS P = (S ,A,−→) and processes s, t ∈S .

✶✳ If P is fully-nondeterministic, then s ∼test t if and only if s ≈test t if and only if s ∼N
test t .

✷✳ If P is fully-probabilistic, then s ∼test t if and only if s ≈test t if and only if s ∼P
test t .

Proof.

✶✳ s ∼test t ⇔ s ≈test t follows since in the fully nondeterministic context, the execution

probabilities of the traces are either 0 or 1. Thus, the inequality we use to check the

testing equivalence of processes, in this setting becomes an equality and therefore it

is no further distinguishable from the approach of [31]. Therefore, s ∼test t ⇔ s ∼N
test t

follows by s ≈test t ⇔ s ∼N
test t (Theorem 5.4(1) in [31]) and transitivity.

✷✳ s ∼test t ⇔ s ≈test t follows since in the fully probabilistic context, each process has

a single maximal resolution which is the process itself. Thus, the inequality we use

to check the testing equivalence of processes, in this setting becomes an equality on

the probabilities related to those maximal resolutions for processes (and tests) and

therefore it is no further distinguishable from the approach of [31]. Therefore, s ∼test

t ⇔ s ∼P
test t follows by s ≈test t ⇔ s ∼P

test t (Theorem 5.4(2) in [31]) and transitivity.

�

Theorem 4.42. Assume a PTS P = (S ,A,−→) and processes s, t ∈S .
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Figure 4.12: s, t ,u cannot simulate each other but s ∼Tr t ∼Tr u, s ∼test t and s 6∼test u 6∼test t .

✶✳ If s ⊑test t , then we have s ∥ u ⊑test t ∥ u for all u ∈S .

✷✳ If s ∼test t , then we have s ∥ u ∼test t ∥ u for all u ∈S .

Proof. The proof of both items follows by applying the same arguments used in the

proof of Theorem 5.5 in [31] the idea being that given any test o ∈O the interaction systems

(s ∥ u,o) and (t ∥ u,o) can be rewritten respectively as (s,u ∥ o) and (t ,u ∥ o), namely as a test

for s and t . �

4.6 A SPECTRUM OF PROBABILISTIC RELATIONS

In this section we show that the behavioral equivalences and preorders discussed so far can

be partially ordered in a spectrum by the relation ‘makes strictly less identifications than’, as

represented in the lower half of Figure 4.1. Notice that part of this spectrum follows from the

well-known relations on branching semantics ∼⊂⊑r ⊂⊑.

Theorem 4.43. ✶✳ ⊑r ⊂⊑TrF ⊂⊑F ⊂⊑test ⊂⊑Tr.

✷✳ ⊑F ⊂⊑TrC ⊂⊑Tr.

✸✳ ⊑⊂⊑Tr.

✹✳ ⊑r ⊂⊑TrR and ⊑r ⊂⊑R.

✺✳ ∼⊂∼TrF ⊂∼F ⊂∼test ⊂∼Tr.

✻✳ ∼F ⊂∼TrC ⊂∼Tr.

✼✳ ∼⊂∼TrR and ∼⊂∼R.

Given any relation R ⊂ R ′ in Theorem 4.43, the non strict version R ⊆ R ′ follows

by combining the quantitative analogous results in Section 4.4 giving the spectrum in the

upper half of Figure 4.1, with the results in Sections 4.2 and 4.5 showing that each red

dotted arrow in Figure 4.1 originating from a hemimetric (resp. pseudometric, premetric,
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semimetric) in the upper half in Figure 4.1 leads to the preorder (resp. equivalence) in

the lower half being its kernel. Then, the strict version R ⊂ R ′ follows from: (i) the non

strict version R ⊆ R ′, (ii) the full backward compatibility with the nondeterministic case

(Propositions 4.21, 4.27, 4.41), (iii) the same and well-known result on fully-nondeterministic

processes. However, by means of the processes in Figure 4.12, in the following examples

we show that fully-probabilistic processes suffices to witness the strictness of most of these

relations. In detail, Example 4.15 considers the relations in items 1–4 of Theorem 4.43

and Example 4.16 those in items 5–7 of Theorem 4.43. Moreover, Example 4.17 shows the

isolation of similarity ⊑ with respect to the testing semantics and the decorated traces

semantics. Example 4.18 shows the isolation of the completed trace equivalence ∼TrC

with respect to the testing equivalence ∼test. Finally, Example 4.19 deals with ready trace

equivalence and ready equivalence by showing that they are isolated in the spectrum, with

the only exceptions of ready similarity and bisimilarity given resp. by Theorem 4.43.4 and

Theorem 4.43.7.

Proof of the non strict version of Theorem 4.43.

✶✳

s ⊑r t

dr,λ(s, t ) = 0

Thm. 4.3

Thm. 4.12

d⊑TrF,λ
(s, t ) = 0

s ⊑TrF t

Thm. 4.26

Thm. 4.13

d⊑F,λ
(s, t ) = 0

s ⊑F t

Thm. 4.26

Thm. 4.13

d⊑test,λ
(s, t ) = 0

s ⊑test t

Thm. 4.40

Thm. 4.13

d⊑Tr,λ
(s, t ) = 0

s ⊑Tr t

Thm. 4.20

✷✳

s ⊑F t

d⊑F,λ
(s, t ) = 0

Thm. 4.26

Thm. 4.14

d⊑TrC,λ
(s, t ) = 0

s ⊑TrC t

Thm. 4.26

Thm. 4.14

d⊑Tr,λ
(s, t ) = 0

s ⊑Tr t

Thm. 4.20

✸✳

s ⊑ t

ds,λ(s, t ) = 0

Thm. 4.5

Thm. 4.15

d⊑Tr,λ
(s, t ) = 0

s ⊑Tr t

Thm. 4.20

✹✳

s ⊑r t

dr,λ(s, t ) = 0

Thm. 4.3

Thm. 4.16

d⊑TrR,λ
(s, t ) = 0

s ⊑TrR t

Thm. 4.26

s ⊑r t

dr,λ(s, t ) = 0

Thm. 4.3

Thm. 4.16

d⊑R,λ
(s, t ) = 0

s ⊑R t

Thm. 4.26
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s

a a

0.5 0.5  

s1 nil

b c

  

t
a a

0.5 0.5

t1 nil

0.5 0.5

nil t2

b c

  

Figure 4.13: Processes s, t are such that s 6⊑F t and s ∼test t .

✺✳

s ∼ t

dλ(s, t ) = 0

Prop. 2.7

Thm. 4.17

dTrF,λ(s, t ) = 0

s ∼TrF t

Thm. 4.26

Thm. 4.17

dF,λ(s, t ) = 0

s ∼F t

Thm. 4.26

Thm. 4.17

dtest,λ(s, t ) = 0

s ∼test t

Thm. 4.40

Thm. 4.17

dTr,λ(s, t ) = 0

s ∼Tr t

Thm. 4.20

✻✳

s ∼F t

dF,λ(s, t ) = 0

Thm. 4.26

Thm. 4.18

dTrC,λ(s, t ) = 0

s ∼TrC t

Thm. 4.26

Thm. 4.18

dTr,λ(s, t ) = 0

s ∼Tr t

Thm. 4.20

✼✳

s ∼ t

dλ(s, t ) = 0

Prop. 2.7

Thm. 4.19

dTrR,λ(s, t ) = 0

s ∼TrR t

Thm. 4.26

s ∼ t

dλ(s, t ) = 0

Prop. 2.7

Thm. 4.19

dR,λ(s, t ) = 0

s ∼R t

Thm. 4.26

�

Example 4.15. Consider Figure 4.12. Firstly, we notice that neither s ⊑ t nor t ⊑ s, thus

implying s 6⊑r t and t 6⊑r s. In fact, process s1 can be (ready) simulated by neither t1 nor t2

and, analogously, s1 cannot (ready) simulate any of those two processes. Conversely, we

have s ∼x t , for all x ∈ {Tr, test,TrC,F,TrF,R,TrR}. To see s ∼Tr t it is enough to notice that

both s and t assign probability 1 to the (subtraces of) trace ab, and 0.5 to traces abc and

abd , thus being indistinguishable by the trace semantics. Moreover, abc and abd are the

only completed traces of s and t , thus giving s ∼TrC t . To derive that the equivalence holds

also with respect to the testing semantics and the remaining decorated traces semantics,

we can observe that on one hand no test can distinguish the b-action performed by s1 from

the b-actions performed by t1 and t2, and, moreover, the maximal probability of executing

trace abc or trace abd in the two processes is always the same. On the other hand, we have

that whenever processes s2 and s3 are distinguished by a decoration on the trace ab then

t3 and t4 would be distinguished as well and consequently the probability assigned to the

decorated trace by s and t will always be 0.5. Summarizing, we have obtained that
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⋆ s 6⊑r t and s ∼TrF t , namely ⊑r ⊂⊑TrF;

⋆ s 6⊑r t and s ∼R t , namely ⊑r ⊂⊑R;

⋆ s 6⊑r t and s ∼TrR t , namely ⊑r ⊂⊑TrR;

⋆ s 6⊑ t and s ∼Tr t , namely ⊑⊂⊑Tr;

and we also remark that s 6⊑ t but s ∼TrC t and s ∼test t .

Next, let us study the relations between process s and process u. Since s and u assign

probability 1 to the (subtraces of) trace ab and 0.5 to traces abc and abd , we conclude that

u ∼Tr s. However, we have that u 6⊑x s for any x ∈ {test,TrC,F,TrF,R,TrR}. To see u 6⊑test s

we consider the interaction systems of the two processes with the test o in Figure 4.12. We

have that Resmax,ab(u,o) 6= ;, whereas Resmax,ab(s,o) =;. For u 6⊑TrC s it is enough to notice

that ab is a completed trace for u but not for s. To obtain u 6⊑F s (resp: u 6⊑TrF s; u 6⊑R s;

u 6⊑TrR s) we consider the failure pair ab{cd} (resp: the failure trace a;b{cd}; the ready pair

ab{cd}; the ready trace a{b}b{cd}) to which u assigns probability 0.5, whereas s assigns to

it probability 0 (we recall that although the probabilities of the traces are evaluated on the

resolutions of nondeterminism for the two processes, the decorations are tested directly on

the processes). In particular, we have obtained that

⋆ u 6⊑test s and u ∼Tr s, namely ∼test ⊂∼Tr;

⋆ u 6∼TrC s and u ∼Tr s, namely ∼TrC ⊂∼Tr.

Consider now processes s, t in Figure 4.13. We have s 6⊑F t . In fact, if we consider the failure

pair f= a{b,c} and the resolution Zs for s corresponding to its rightmost a-branch, we get

Pr(FC(zs , f)) = 1. However, whichever resolution of nondeterminism Zt we select for t we

get that Pr(FC(zt , f)) = 0.5. Next we notice that s ∼test t . The only meaningful tests for s and

t are those testing the traces a, ab and ac. Moreover, the structure of the two processes

guarantees that for each test o we have Resmax,α(s,o) 6= ; if and only if Resmax,α(t ,o) 6= ; for

any α ∈ {a, ab, ac}. It is then clear that the success probabilities assigned to this traces by the

interaction systems of the two processes with the tests are always the same. Thus, we have

obtained that

⋆ s 6⊑F t and s ∼test t , namely ⊑F ⊂⊑test.

The remaining strict inclusions ∼TrF ⊂∼F and ∼F ⊂∼TrC follow from the analogous relations

in the fully nondeterministic spectrum [159]. �

Example 4.16. We show only the strictness of the relations involving bisimilarity. The others

trivially follow by the same arguments used in Example 4.15 on the corresponding preorders.

To this aim, consider processes s, t in Figure 4.12. We have already argued in Example 4.15

that s ∼TrF t , s ∼R t and s ∼TrR t . Moreover, we showed that s and t cannot simulate each

other, thus implying that s 6∼ t . Therefore, we can immediately conclude that:

⋆ s 6∼ t and s ∼TrF t , namely ∼⊂∼TrF;

⋆ s 6∼ t and s ∼R t , namely ∼⊂∼R;
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s

a a

1 1

s1 s2

b c

  

t
a

1

t1

b c

  

o

a

1

o1

bp

Figure 4.14: Processes s, t are such that s 6⊑test t and s ∼TrC t .

⋆ s 6∼ t and s ∼TrR t , namely ∼⊂∼TrR.

�

Example 4.17. Consider first processes s, t in Figure 4.10. Clearly, it holds that s ⊑ t , but, as

shown in Example 4.13, we have that s 6⊑test t and moreover it holds that s 6⊑TrC t , s 6⊑R t and

s 6⊑TrR t . These immediately follow by noticing that the trace α= a is a completed trace for

s but not for t and thus also the ready pair (resp. trace) a; distinguishes them. Consider

now processes s, t in Figure 4.12. As shown in Example 4.15, we have that s 6⊑ t and t 6⊑ s

whereas it holds that s ∼test t and s ∼x t for x ∈ {TrC,TrF,R,TrR}. These, together with the

already established relations in the spectrum, allow us to conclude that

⋆ ⊑ and ⊑test are incomparable;

⋆ ⊑ and ⊑x are incomparable for x ∈ {TrC,F,TrF,R,TrR}.

�

Example 4.18. Consider processes s, t in Figure 4.13. In Example 4.15 we showed that

s ∼test t . However we have that s 6∼TrC t . In fact, if we consider the completed trace α= a, the

resolution corresponding to the rightmost a-branch of s assigns probability 1 to it, whereas

all the resolutions for t assign at most probability 0.5 to α. Finally, consider processes s, t

in Figure 4.14. Clearly, we have that s ∼TrC t . However, we also have that s 6∼test t . If we

consider the interaction systems of processes s, t with the test o in the same Figure, we

get that Resmax,a(s,o) 6= ; and Resmax,a(t ,o) =;, from which we can directly conclude that

s 6∼test t . Therefore we can conclude that

⋆ ∼TrC and ∼test, are incomparable.

�

The major difference between our spectrum and the linear time - branching time spec-

trum of [159] is in the isolation of the two readiness semantics, as already pointed out in [29].

This distinction is mainly due to the close interaction of nondeterminism and probability

typical of the PTS model. In the fully-nondeterministic case it holds that ⊑N
TrR ⊂⊑N

R [159], the

intuition being that whenever there is a sequence of processes reachable from a process s

such that s admits the ready trace a1R1 . . . anRn , then we are automatically guaranteed that s
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Figure 4.15: Processes s, t are such that s 6∼TrR t and s ∼R t , whereas u, v are such that u 6∼R v

and u ∼TrR v.
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Figure 4.16: The four processes show the isolation of the readies semantics with respect to the

other decorated traces semantics and testing semantics.

admits the ready pair a1 . . . anRn as well as any process t such that s ⊑N
TrR t will do. When also

probability is taken into account this relation between the two readiness semantics does not

hold anymore, since as shown in the following Example 4.19, from the comparison of the

probabilities of all the ready traces related to the trace a1 . . . an and a ready set Rn , we cannot

derive any information on the result of the comparison of the probabilities assigned to the

ready pair a1 . . . anRn in which the probabilities of the aforementioned ready traces maybe

summed up or not depending on nondeterminism. Analogously, the coexistence of non-

determinism and probability isolates the two readiness semantics for the other decorated

trace semantics in the spectrum.

Example 4.19. Consider first processes s, t in Figure 4.15. We have that s 6∼TrR t . If we

consider the ready trace R = a{b,c}c{e} we have that s has a resolution executing it with

probability 1, whereas t cannot execute it. However, we have that s ∼R t as for the ready

pair semantics a trace is executed and the ready set is checked only at the end of it. More

precisely, we have that both processes have resolutions assigning probability 1 to the ready
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pairs r1 = a{b,c}, r2 = a{c,d}, r3 = ac{e} and r4 = ac{ f }. Consider now processes u, v in

the same Figure. We have that u 6∼R v . If we consider the ready pair r = ab{ f } we have

that u has a resolution assigning probability 1 to it, whereas the resolutions for v assign at

most probability 0.5 to it. However, we have that u ∼TrR v since the presence of action c

allows us to distinguish the b-move performed by u1 from the b-move performed by u2. In

particular we have that the probability assigned to the ready trace R1 = a{b,c}b{ f } is 0.5 in

both processes and the probability assigned to the ready trace R2 = a{b}b{ f } is 0.5 in both

processes. Summarizing, we have obtained that

⋆ ∼TrR and ∼R are incomparable.

Next, consider processes s, t in Figure 4.16. We have that neither s ∼TrR t nor s ∼R t . In

fact if we consider the ready trace R = a{b,c} (resp. the ready pair r = a{b,c}) then there

is a resolution for t assigning probability 1 to it, whereas all the resolutions for s assign

probability 0 to it. However, it is immediate to verify that s ∼TrF t . Finally, consider processes

u, v in the same figure. We notice that u 6∼Tr v . If we consider the trace α = ab we have

that there is a resolution for u assigning probability 1 to α, whereas the resolutions for v

assign at most probability 0.5 to it. However we have u ∼TrR v and u ∼R v . This is due to the

presence of action d , which allows us to distinguish the b-move performed by u1 from the

one performed by u2. In conclusion, from these considerations and the already established

relations in the spectrum, we get

⋆ ∼TrR and ∼x are incomparable for x ∈ {Tr, test,TrC,F,TrF};

⋆ ∼R and ∼x are incomparable for x ∈ {Tr, test,TrC,F,TrF}.

�

4.7 CONCLUDING REMARKS

We have proposed a spectrum of behavioral distances on the PTS model (upper part of Fig-

ure 4.1), considering the bisimilarity metric [64, 72, 157] and novel notions of (hemi)metrics

capturing the ready similarity, similarity, testing and (decorated) trace semantics.

We remark that ours is the first proposal of a quantitative analogue to the ready simula-

tion, testing and decorated traces semantics. Moreover, our trace metric is novel with respect

to existing ones [14, 43, 53, 59, 148] and its kernel, i.e. our probabilistic trace equivalence,

satisfies several desirable properties as compositionality, full backward compatibility with

the fully nondeterministic and the fully probabilistic cases and the compatibility with the

(bi)simulation semantics. The same good properties hold also for our decorated trace and

testing equivalence and, in fact, we have also shown that when we consider the kernels of the

discussed (hemi)metrics, we obtain a probabilistic analogous of the linear time-branching

time spectrum of [159] (lower part of Figure 4.1).

Ours is the first proposal of a spectrum for distances on PTSs.
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Chapter 4. A Quantitative Spectrum for Nondeterministic Probabilistic Processes

In [77] a spectrum of distances defined as the generalization of a chosen trace distance is

proposed. It is obtained by applying to LTSs the theory of quantitative Ehrenfeucht-Fraı̈ssé

games. However we remark that our results on PTSs cannot be obtained from the ones

in [77] since the metric semantics considered are quite different and, moreover, the well-

behavedness property assumed for the metrics in [77] does not hold for distances on PTSs.

In [59] distances for trace, simulation and bisimulation semantics on Metric Transition

Systems (MTSs) have been proposed and ordered in a spectrum. Differently from PTSs, MTSs

consist of a process-to-process transition relation and a set of atomic propositions which are

evaluated on processes. Hence, all metrics in [59] are defined on a ground distance, called

propositional distance, which quantifies the maximal distance on processes with respect to

the evaluation of atomic propositions at them. Thus, this propositional distance depends

on the metric that has been designed to measure the differences in the evaluation of atomic

propositions. We also notice that, although our trace metric is technically different from the

linear distances of [59], defined as the asymmetric Hausdorff distance on the propositional

distance on traces, the idea behind their definition is quite similar. Moreover, it is worth

noticing that by exploiting some properties of the (asymmetric) Hausdorff metric we can

prove that it coincides with the (asymmetric) total variation distance (see [43] for a proof of

this fact) by means of which we have defined our trace (hemi)metric.

In [14, 53] trace metrics on Markov Chains (MCs) are defined as total variation distances

on the cones generated by traces. Our definition can be seen as a generalization of theirs:

in MCs the transition probability function depends only on the current process and not on

its nondeterministic properties. Thus, our quantification over resolutions would become

trivial on MCs, resulting in a total variation distance over traces.

For what concerns the probabilistic relations, we have already compared them with the

ones in [29–31] and the related spectra.

We recall that in [69] probabilistic similarity is shown to be equivalent to probabilistic

may testing, in which the supremum success probabilities with respect to all resolutions of

nondeterminism and to all tests are compared. Here, we have obtained an opposite result as

we have proved that the two semantics are incomparable. This discrepancy is mainly due to

the disparity between our testing semantics and the may testing of [69]. Although in both

cases the suprema success probabilities are compared, in our semantics these are related

to the execution of a single trace per time. Moreover, we have to deal with the additional

requirements guaranteeing the full backward compatibility with the fully-nondeterministic

case, which are too demanding for the simulation semantics.
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5
Logical Character"ation of Branching Metrics

T
he aim of this Chapter is to propose a novel approach for the logical characterization

of both behavioral distances and behavioral relations. In particular, we will focus on the

branching part of the spectrum presented in Chapter 4, that is on (bi)similarity metrics and

relations. Our targets are the following: ✶✳ We aim to provide a characterization technique

that can be easily generalized to other behavioral metrics and relations proposed in Chap-

ter 4 and in the literature. This will be obtained by identifying for each process a special

formula, called mimicking formula, expressing the relevant properties of it with respect

to the considered semantics. Then, we transform the modal logic into a metric space by

defining a syntactical distance on formulae. Finally, we define a logical distance on processes

as the distance between their mimicking formulae: this logical distance characterizes the

considered metric semantics. ✷✳ We aim to use a simple boolean-valued modal logic to char-

acterize both the behavioral relations and the (hemi)metrics related to them. Boolean-logics

are preferable to the real-valued ones as they will allow for an easy generalization of our

characterization technique. ✸✳ We aim to establish whether two processes are related by a

given behavioral relation by inspecting only a finite number of formulae. To this purpose,

we will show how by comparing the mimicking formulae of two processes s and t for a

particular semantics, one can infer whether s and t are related by the behavioral relation for

that semantics.

Technically, in order to deal with (possibly) infinite execution sequences of processes,

we follow the approach of [4,120,143], known as equational µ-calculus. Informally, a chosen

class of formulae is enriched with recursion, namely a set of variables which allow for a

recursive specification of modal properties. Then, an appropriate interpretation to each

variable (called model in [120]) is provided as the solution of a system of equations defined

using endodeclarations, namely functions mapping each variable into an arbitrary formula

of the logic. More specifically, we will use endodeclarations to implicitly define a system of
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equations of the from

γ(X ) = JE(X )Kγ (5.1)

whose solution will correspond to the proper variable interpretation for the formula: the

interpretation γ is a solution for the system (5.1) if the semantics of X under γ corresponds

to the interpretation of the formula assigned to X by the endodeclaration E .

For our purposes, we will consider the boolean-valued modal logic LS obtained by

extending the logic L, introduced in Chapter 2.4, with a family of variables, one for each

process in the set S .

In [4] the equational µ-calculus is used as a general framework for the construction of

characteristic formulae for behavioral equivalences and preorders in the non probabilistic

setting. More precisely, it is proved that whenever a behavioral relation is obtained as the

fixed point (equally greatest or least) of a monotone endofunction over the complete lattice

of binary relations over processes, then the greatest interpretation of an endodeclaration

expressing that endofunction can be viewed as the characteristic formula for its fixed-point

(Theorem 2.16 [4]). In [143] this technique is applied in the probabilistic setting to obtain

characteristic formulae for some behavioral relations on probabilistic automata. Here we

use the equational µ-calculus to define a proper semantics for formulae in LS , but we

propose a different approach to obtain the characterization results.

In the case of the bisimilarity metric, the idea is the following: ✶✳ For a process s we

consider its mimicking formula, which captures the ability and the inability of s to execute

any action and describes also its probabilistic behavior. Mimicking formulae will be defined

as the images of the variables corresponding to processes through a particular endodeclara-

tion M on LS , called mimicking endodeclaration. ✷✳ Then, we transform the modal logic

into a metric space by introducing a notion of syntactical distance on formulae. This is a

1-bounded pseudometric assigning to each pair of formulae a suitable quantitative ana-

logue of their syntactic disparities. In particular, we define the distance between distribution

formulae as the Kantorovich lifting of the distance on the state formulae in their supports

and the distance between conjunctions as the Hausdorff lifting of the distance on the state

formulae in the two conjunctions. ✸✳We conclude by defining a logical bisimulation distance

on processes corresponding to the distance between their mimicking formulae and proving

that this logical distance characterizes the considered metric semantics.

Up to our knowledge, this is the first characterization of bisimilarity metric given by

means of a boolean-valued logic and of a distance on the logic. Moreover, notice that the

distance between two processes can be obtained by simply looking at their mimicking

formulae, without analyzing any other formula in the logic.

Our results go even further. Along with mimicking formulae we introduce the simulation

characteristic formulae of processes , namely the negation-free version of their mimicking

formulae, defined through a proper endodeclaration C on LS , called simulation endodec-

laration. Then we show that by slightly modifying the notion of distance on LS , we can

characterize also the branching hemimetrics introduced in Chapter 4, namely the ready

simulation metric and the simulation metric. More precisely, firstly we relax the distance

on conjunctions to the asymmetric version of the Hausdorff lifting. Secondly, we define

the logical ready simulation distance on processes as the modified distance between their
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mimicking formulae and we define the logical simulation distance on processes as the

modified distance between their simulation characteristic formulae. Through these, we

characterize the branching hemimetrics: the logical (ready) simulation distance coincides

with the (ready) similarity metric. Being ready similarity metric new, ours is the first charac-

terization for it. Moreover, to the best of our knowledge, this is the first characterization of

similarity metric given by means of a boolean-valued logic and of a distance on the logic.

Our approach can be easily extended to other notions of behavioral (hemi)metrics by tun-

ing the notion of distance on formulae on a proper class of formulae. This will be further

investigated in Chapter 6.

To strengthen our results, we show that the logic LS is weak expressive for probabilistic

bisimilarity, meaning that two processes are probabilistic bisimilar if and only if their mim-

icking formulae are equivalent under a proper definition of structural equivalence over LS .

We cannot refer to this characterization of probabilistic bisimilarity as to an expressive one

since the single mimicking formula of a process is not powerful enough to capture the whole

equivalence class of the process, namely it is not its characteristic formula for probabilistic

bisimilarity. We remark that the fully expressive characterization of bisimulation of [68]

requires a logic much richer than LS (see Section 5.7 for a comparison). Finally, we show

that the logic LS is expressive for probabilistic ready similarity, meaning that the mimicking

formula of a process is its characteristic formula for this preorder, and that LS is expressive

also for probabilistic similarity, meaning that the simulation characteristic formula of a

process is its characteristic formula for probabilistic similarity. Up to our knowledge, this

is the first paper in which a single logic is used to characterize both (bi)simulation metrics

and classic notions of equivalence and preorders. As we will discuss in detail in Section 5.6,

this is a great advantage since a modification in the expression of the considered behavioral

metric would not affect the characterization of its kernel. Roughly speaking, there is no need

of modifying the characterizing class of formulae, as conversely it would happen in the case

of real-valued logics, but only the metric defined on it.

Summarizing, by means of our mimicking formulae for processes and logical distances

on them we get:

✶✳ Characterization of bisimilarity metric: we define a distance on formulae and we prove

that the bisimulation distance between two processes equals the distance between

their mimicking formulae (Theorem 5.24).

✷✳ Characterization of (ready) similarity metric: by slightly relaxing the distance on

formulae, we prove that the ready simulation distance between two processes equals

the modified distance between their mimicking formulae (Theorem 5.33) and that

the simulation distance between two processes equals the distance between their

simulation characteristic formulae (Theorem 5.37).

✸✳ Weak expressive characterization of probabilistic bisimilarity: we establish whether

two processes are probabilistic bisimilar by simply comparing their mimicking formu-

lae (Theorem 5.13).
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✹✳ Expressive characterization of ready probabilistic similarity by means of mimicking

formulae (Theorem 5.14) and probabilistic similarity by means of simulation charac-

teristic formulae (Theorem 5.17).

ORGANIZATION OF CONTENTS

In Section 5.1 we introduce the class of I-indexed logics LI, which includes LS , and we

proceed with some preliminary results on endodeclarations and on the equivalence of

formulae (Section 5.2). In Section 5.3 we present mimicking formulae of processes and in

Section 5.4 we use them for the characterization of probabilistic bisimilarity and (ready)

similarity. In Section 5.5 we introduce the distance on LS through which we obtain the

characterization of the bisimilarity metric which is then adapted in Section 5.6 to derive

the characterizations of the ready similarity and similarity metrics. We end with some

conclusions in Section 5.7.

A preliminary version of this chapter dealing with these characterizations of bisimulation

metrics, probabilistic bisimilarity and (ready) similarity on finite processes, i.e. image finite

process with finite execution sequences, can be found as [41].

5.1 THE MODAL LOGIC

In this Section we present the modal logic that we will use to characterize the (bi)simulation

metrics and their kernels on image finite processes, for which we allow for infinite execution

sequences, in a PTS (S ,A,−→).

We extend the modal logic L introduced in Chapter 2, which allows one to characterize

probabilistic bisimilarity [66] and bisimilarity metric for finite processes [41], to the modal

I-indexed logic LI, which considers also an I-indexed family of variables {Xi | i ∈ I} allowing

for a recursive specification of formulae.

Definition 5.1 (Modal I-indexed logic LI). Let I be a set of at most countable many identi-

fiers. The classes of modal I-indexed state formulae Ls
I and of modal I-indexed distribution

formulae Ld
I over A are defined by the following BNF-like grammar:

Ls
I : ϕ ::= ⊤ | Xi | ā |

∧

j∈J
ϕ j | 〈a〉ψ

Ld
I : ψ ::=

⊕

i∈I

riϕi

where: ✶✳ i ∈ I; ✷✳ a ∈A; ✸✳ J is an at most countable set of indexes; ✹✳ for each j ∈ J it

holds ϕ j 6=
∧

i∈Iϕi for any set of indexes I with |I| > 1 and ϕ j 6= Xi for any i ∈ I; ✺✳ I is a

finite set of indexes, ri ∈ (0,1] for all i ∈ I and
∑

i∈I ri = 1.

We note that the constraints in item (4) may be avoided by using a more complicated

grammar. For sake of simplicity and readability, we opted for this formulation.

We shall write ϕ1∧ϕ2 for
∧

j∈J ϕ j with J = {1,2}, r1ϕ1⊕r2ϕ2 for
⊕

i∈I riϕi with I = {1,2},

and 〈a〉ϕ for 〈a〉⊕i∈I riϕi with I = {i }, ri = 1 and ϕi =ϕ. Notice that instead of using ⊤ we

could use
∧

;. We decided to use ⊤ to improve readability.
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As usual, the semantics of a state (resp. distribution) formula is embodied in the set

of processes (resp. distributions) which satisfy it. However, formulae in LI may contain

variables which could be satisfied potentially by any process. Thus the meaning of formulae

in LI is subject to variable interpretations, namely functions of the form γ : I → P(S)

mapping each identifier i ∈ I into the set of processes which are presumed to satisfy the

variable Xi. Since each variable is univocally determined by an identifier in I, to improve

readability we abuse of notation and write γ(Xi) in place of γ(i). In what follows, we let ΓI
be the set of variable interpretations defined from I to P(S). The elements of ΓI can be

ordered by means of the ordering ¹ induced by set inclusion, namely γ1 ¹ γ2 if and only if

γ1(Xi) ⊆ γ2(Xi) for all i ∈ I.

Lemma 5.1. The set (ΓI,¹) of variable interpretations is a complete lattice.

Proof. The proof follows by applying the same arguments used in the proof of Lemma

2.9(2) in [4]. �

Since the ordering over ΓI is defined by means of set inclusion over P(S), we have that

the join is defined by means of set union, namely
(

⊔

h∈H γh

)

(Xi) =
⋃

h∈H γh(Xi), for all i ∈ I.

Similarly, the meet is given by set intersection, that is
(d

h∈H γh

)

(Xi) =
⋂

h∈H γh(Xi), for all

i ∈ I.

Next, we introduce the relation |=γ which asserts when a process s (resp. distribution π)

satisfies the state formula ϕ (resp. distribution formula ψ) under a given variable interpreta-

tion γ.

Definition 5.2 (Satisfiability). Assume a PTS (S ,A,−→). For each variable interpretation

γ ∈ ΓI, the satisfaction relation |=γ⊆ (S×Ls
I)∪ (∆(S)×Ld

I) is defined recursively as:

⋆ s |=γ ⊤ always;

⋆ s |=γ Xi iff s ∈ γ(Xi);

⋆ s |=γ ā iff s
a−→6 ;

⋆ s |=γ

∧

j∈J
ϕ j iff s |=γ ϕ j for all j ∈J ;

⋆ s |=γ 〈a〉ψ iff s
a−→π for a distribution π ∈∆(S) such that π |=γ ψ;

⋆ π |=γ

⊕

i∈I

riϕi iff π=
∑

i∈I

riπi for a family {πi }i∈I ⊆∆(S) of distribution such that, for all

i ∈ I , whenever s ∈ supp(πi ) then s |=γ ϕi .

Example 5.1. Assume γ ∈ ΓI. Consider a process s ∈ S with der(s, a) = {π}, where π =
1
2
δs1 + 1

2
δs2 . Assume that, for the chosen variable interpretation, it holds that

s1 |=γ 〈b〉⊤ s1 |=γ ā s2 |=γ 〈b〉⊤ s2 |=γ 〈a〉⊤.

Consider the formula ϕ ∈Ls
I defined, for a given index i ∈ I, as

ϕ= 〈a〉
(2

3
Xi⊕

1

3

(

〈a〉⊤∧〈b〉⊤
))

.
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We have that s |=γ ϕ if and only if {s1, s2} ⊆ γ(Xi). In fact we have that s2 is the only process in

the support of π that satisfies the formula 〈a〉⊤, thus implying that to have s |=γ ϕ we need

the convex combination

π= 2

3

(3

4
δs1 +

1

4
δs2

)

+ 1

3
δs2

such that

⋆ for each process s′ in the support of 3
4
δs1 + 1

4
δs2 it holds that s′ |=γ Xi;

⋆ for each process s′ in the support of δs2 it holds that s′ |=γ 〈a〉⊤∧〈b〉⊤.

Therefore, to guarantee that s |=γ ϕ we should guarantee that for each process s′ in the union

of the supports of δs1 and δs2 it holds that s′ |=γ Xi, that is it must be the case that both

s1 |=γ Xi and s2 |=γ Xi, namely {s1, s2} ⊆ γ(Xi). �

The meaning of a state (resp. distribution) formula is represented by the set of processes

(resp. probability distributions) satisfying it.

Definition 5.3 (Semantics of LI). For each state formula ϕ in Ls
I we define JϕK : ΓI →P(S)

by

JϕKγ= {s ∈S | s |=γ ϕ}

and for each distribution formula ψ in Ld
I we define JψK : ΓI →P(∆(S)) by

JψKγ= {π ∈∆(S) |π |=γ ψ}.

Notice that, in particular, for all γ ∈ ΓI we have

⋆ J⊤Kγ=S ;

⋆ JXi Kγ= γ(Xi) for each i ∈ I;

⋆ J∧ j∈J ϕ j Kγ=⋂

j∈J Jϕ j Kγ;

⋆ J〈a〉ψKγ=⋃

π∈JψKγ{s ∈S | s
a−→π}.

The following result, which proves the monotonicity of the mapping JK w.r.t. variable

interpretations in ΓI, has been adapted from [4] to fit the probabilistic framework.

Proposition 5.2. For any ϕ ∈Ls
I, the mapping JϕK : ΓI →P(S) is monotone. Analogously, for

any ψ ∈Ld
I, the mapping JψK : ΓI →P(∆(S)) is monotone.

Proof. Let γ1,γ2 ∈ ΓI be two variable interpretations such that γ1 ¹ γ2. We prove that

JφKγ1 ⊆ JφKγ2 by structural induction over φ ∈Ls
I∪Ld

I. We show only the inductive step of

the diamond modality, which is the only one that differs from the proof of Lemma 2.9(1)

in [4]. Consider φ= 〈a〉ψ, with ψ=⊕

i∈I riϕi . We have

J〈a〉ψKγ1

= {s ∈S | s |=γ1 〈a〉ψ}

= {s ∈S | s
a−→π and π |=γ1 ψ}
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5.1. The modal logic

= {s ∈S | s
a−→π, π=

∑

i∈I

riπi and for each s′ ∈ supp(πi ), s′ |=γ1 ϕi }

⊆ {s ∈S | s
a−→π, π=

∑

i∈I

riπi and for each s′ ∈ supp(πi ), s′ |=γ2 ϕi }

= {s ∈S | s
a−→π and π |=γ2 ψ}

= {s ∈S | s |=γ2 〈a〉ψ}

= J〈a〉ψKγ2

where the inclusion holds by structural induction. Notice that this case includes also the

proof for distribution formulae. �

As a final remark to this Section, we notice that monotonicity of JK is guaranteed since

no variable can occur in the scope of negation (see Section 5.7 for a further discussion on

this issue and our choice on negation).

INTERPRETATION THROUGH DECLARATIONS

Definition 5.3 states that formulae in LI can be interpreted only with respect to a given

variable interpretation. Thus, our next task is to establish a criterion to obtains suitable

interpretations for variables. To this aim, we follow the equational µ-calculus approach

[4, 120, 143], in which the desired interpretation is provided as the solution of a system of

equations defined using endodeclarations. Informally speaking, an endodeclaration is a

function ascribing a state formula to each identifier, and consequently to each variable.

Definition 5.4 (Endodeclaration). An endodeclaration on LI is a mapping E : I→Ls
I.

As for variable interpretations, for sake of readability we abuse of notation and write

E(Xi) in place of E(i). Moreover, we remark that since variables belong to the syntactic class

of state formulae, then also the formulae assigned to them by endodeclarations are required

to be state formulae.

The meaning of an endodeclaration is a mapping from variable interpretations to vari-

able interpretations.

Definition 5.5 (Semantics of endodeclarations). For an endodeclaration E : I → Ls
I, we

define 〈〈E〉〉 : ΓI → ΓI as the mapping such that, for all i ∈ I and γ ∈ ΓI, we have

(〈〈E〉〉γ)(Xi) := JE(Xi)Kγ.

In order to duly interpreting variables, we consider the interpretations of the formulae

assigned to them by the endodeclaration. More specifically, we will use endodeclarations to

implicitly define a system of equations

γ(Xi) = JE(Xi)Kγ for i ∈ I (5.2)

whose solution will correspond to the proper variable interpretation for the formula: γ ∈ ΓI

is a solution for the system (5.2) if the semantics of Xi under γ (namely JXi Kγ, which, by

definition, is γ(Xi)) corresponds to the interpretation of the formula E(Xi).
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Notice that a variable interpretation γ ∈ ΓI being fixed point of 〈〈E〉〉 guarantees that

JXi Kγ= JE(Xi)Kγ

for all i ∈ I, and is therefore a good candidate to be used as variable interpretation.

It is now necessary that the set of fixed points of 〈〈E〉〉 is not empty. We show that 〈〈E〉〉 is

monotone, then, since (ΓI,¹) is a complete lattice (Lemma 5.1), we will conclude that 〈〈E〉〉
has the least and greatest fixed points.

Proposition 5.3. The function 〈〈E〉〉 is monotone and thus it has the least and greatest fixed

point.

Proof. The proof follows by applying the same arguments used in the proof of Lemma

2.12 in [4]. �

The variable interpretation that we will use to interpret formulae is the greatest fixed

point of 〈〈E〉〉, denoted by νE .

Next, we propose an alternative inductive characterization of νE , which will be useful to

prove some of the results in the following sections.

As first step, we show that the function 〈〈E〉〉 is Scott-co-continuous (see Remark 2.1).

Proposition 5.4. The function 〈〈E〉〉 is Scott-co-continuous.

Proof. Let H be an arbitrary set of, at most, countably many indexes. Let {γh}h∈H be a

descending chain on ΓI. We aim to show that

〈〈E〉〉
l

h∈H

γh =
l

h∈H

〈〈E〉〉γh

which by the definitions of 〈〈E〉〉 (Definition 5.5) and
d

over ΓI is equivalent to

for each i ∈ I : JE(Xi)K
l

h∈H

γh =
⋂

h∈H

JE(Xi)Kγh . (5.3)

To prove Equation 5.3 we proceed by structural induction over E(Xi). Here we present only

the case for the diamond operator, since the proofs for the other cases are immediate from

the definition of JK.

Let E(Xi) = 〈a〉⊕i∈I riϕi . We proceed by showing the two inclusions separately. By the

monotonicity of JK (Proposition 5.2) we can immediately infer that

J〈a〉
⊕

i∈I

riϕi K
l

h∈H

γh ⊆
⋂

h∈H

J〈a〉
⊕

i∈I

riϕi Kγh (5.4)

Let us show now that

⋂

h∈H

J〈a〉
⊕

i∈I

riϕi Kγh ⊆ J〈a〉
⊕

i∈I

riϕi K
l

h∈H

γh . (5.5)

Consider any s ∈⋂

h∈HJ〈a〉⊕i∈I riϕi Kγh , namely s ∈ J〈a〉⊕i∈I riϕi Kγh for each h ∈ H . This

implies that for each h ∈ H there exists a probability distribution πh such that s
a−→πh and
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πh = ∑

i∈I riπ
h
i

for some πh
i
∈ ∆(S) such that for each t ∈ supp(πh

i
) it holds that t ∈ Jϕi Kγh .

Since H is a countable set and der(s, a) is finite, we can infer that there is a probability

distribution π ∈ der(s, a) which satisfies the formula
⊕

i∈I riϕi w.r.t. γh for countably many

indexes h ∈ H . Moreover, considering that π has finite support, we have that for each i ∈ I

we can define the set Si = {t ∈ supp(π) | t ∈ Jϕi Kγh for countably many h ∈ H }. As {γh}h∈H

is a descending chain on ΓI we obtain that t ∈ Jϕi Kγh for countably many h ∈ H implies

t ∈ Jϕi Kγh for all h ∈ H , that is t ∈⋂

h∈HJϕi Kγh for each t ∈ Si . By structural induction over

the ϕi , this implies that each t ∈ Si is such that t ∈ Jϕi K
d

h∈H γh . Hence, to conclude we

need to show that we can rewrite π as
∑

i∈I riπi where the support of each distribution πi is

given by the related set Si . This can be easily derived by defining the family of probability

distributions {πi }i∈I satisfying π=∑

i∈I riπi and πi (t) > 0 implies t |=ϕi as the solution of

the following linear system of equations, for each i ∈ I :



























πi (t ) = 0 if t 6∈ Si

πi (t ) = π(t )

ri
if t ∈ Si and t 6∈ S j for each j ∈ I , j 6= i

πi (t ) = 1

ri

(

π(t )−
∑

j∈I , j 6=i

r jπ j (t )
)

otherwise.

By construction I is finite, so let C1 be the cardinality of I , analogously supp(π) is finite and

let C2 be its cardinality. Notice that the system above has C2 equations for each i ∈ I , and

therefore we have a total of C1 ·C2 equations. We have that the number of unknowns in our

system is also C1 ·C2. In fact for each i ∈ I we need to establish the value of πi (t) for each

t ∈ supp(π). Finally, notice that we can rewrite all equations of the system in the general

form πi (t ) = 1

ri

(

π(t )−
∑

j∈I , j 6=i

r jπ j (t )
)

. Then our system is correct since for each t ∈ supp(π)

we have

∑

i∈I

riπi (t ) =
∑

i∈I

ri ·
1

ri

(

π(t )−
∑

j∈I , j 6=i

r jπ j (t )
)

=
∑

i∈I

(

π(t )−
∑

j∈I , j 6=i

r jπ j (t )
)

=C1 ·π(t )− (C1 −1) ·
∑

i∈I

riπi (t )

from which we gather C1 ·
∑

i∈I

riπi (t ) =C1 ·π(t ), thus giving

∑

i∈I

riπi (t ) =π(t ).

Moreover, for each i ∈ I we have supp(πi ) = Si and thus whenever t ∈ supp(πi ) then t ∈
Jϕi K

d
h∈H γh . We can therefore conclude that π ∈ J⊕i∈I riϕi K

d
h∈H γh and thus that s ∈

J〈a〉⊕i∈I riϕi K
d

h∈H γh . Since s is arbitrary, Equation (5.5) follows.

Equation (5.4) and Equation (5.5) taken together give the thesis. �
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Consider now γ̃ as the top element of the complete lattice ΓI, namely γ̃ is the variable

interpretation assigning the whole set of processes S as interpretation to each variable. For

n ∈N, we define the variable interpretation γn as follows:

γn :=
{

〈〈E〉〉0γ̃= γ̃ if n = 0

〈〈E〉〉nγ̃= 〈〈E〉〉γn−1 if n > 0.

Moreover, we define γω :=
d

n∈N〈〈E〉〉nγ̃=
d

n∈Nγn .

Notice that {γn}n∈N is the descending Kleene chain of 〈〈E〉〉. It follows that γω is the

greatest fixed point of 〈〈E〉〉, namely γω = νE .

Proposition 5.5. γω is the greatest fixed point of 〈〈E〉〉, namely νE = γω.

Proof. Since 〈〈E〉〉 is Scott-co-continuous (Proposition 5.4), we can apply the Kleene

fixed-point Theorem to the descending Kleene chain {γn}n∈N. �

5.2 AN EQUIVALENCE RELATION ON FORMULAE

In this Section we introduce a structural equivalence on formulae in LI defined as the

greatest fixed point of a monotone function over relations on formulae. Equivalence on

formulae can be defined either in terms of their semantics or in terms of their syntax.

As we will see, structural equivalence of formulae will imply their semantic equivalence

(Theorem 5.11), which is defined in the classic way.

Definition 5.6 (Semantic equivalence). Given an endodeclaration E , we say that the state

formulae ϕ,ϕ′ ∈ Ls
I are semantically equivalent if JϕKνE = Jϕ′ KνE , and the distribution

formulae ψ,ψ′ ∈Ld
I are semantically equivalent if JψKνE = Jψ′ KνE .

Given some index i ∈ I, we say that the variable Xi is guarded in a formula ϕ ∈Ls
I (resp.

ψ ∈Ld
I) if all occurrences of Xi appear in ϕ (resp. ψ) in the scope of the diamond modality.

An endodeclaration E is then said to be guarded if it maps variables into formulae in which

the occurring variables are all guarded. From now on, all the considered endodeclarations E

are guarded, if not differently specified.

Moreover, we recall that we are considering only processes that are image finite. For this

reason the I-indexed logic LI is too rich to characterize them. In particular, we can simply

consider an image finite version of the conjunction operator.

Definition 5.7 (Image finiteness). We say that a state formula of the form ϕ = ∧

j∈J ϕ j is

image finite if the number of the state formulae ϕ j of the form ϕ j = 〈a〉ψ j , for some ψ j ∈Ld
I,

occurring in ϕ is finite for each a ∈A.

Then, we say that an endodeclaration E is image finite if for each i ∈ I the variable Xi is

mapped by E into an image finite formula.

Henceforth we consider only endodeclarations that are image finite, if not differently

specified.
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Definition 5.8. Let E : I → Ls
I be a guarded endodeclaration on the logic LI. We define

FE : P(Ls
I×Ls

I) →P(Ls
I×Ls

I) as the function such that for all relations R ∈P(Ls
I×Ls

I) we

have that FE (R ) is the greatest relation satisfying:

✶✳ ϕFE (R ) ϕ;

✷✳ ϕ2 FE (R ) ϕ1 iff ϕ1 FE (R ) ϕ2;

✸✳ XiFE (R ) ϕ iff E(Xi)FE (R ) ϕ, for any i ∈ I;

✹✳

∧

j∈J
ϕ j FE (R )

∧

j∈(J \I)

ϕ′
j for some I 6= ;,I ⊂J iff

⋆ for each j ∈J \I we have ϕ j FE (R ) ϕ′
j
,

⋆ for each i ∈ I we have ϕi FE (R ) ϕ′
ji

for some ji ∈J \I ;

✺✳

∧

j∈J
ϕ j FE (R )

∧

i∈I
ϕi iff there is a bijection f : J → I with ϕ j FE (R ) ϕ f ( j ) for all j ∈J ;

✻✳ 〈a〉ψ FE (R ) 〈a〉ψ′ iff ψR†ψ′.

Example 5.2. Assume the relation R ⊆ Ls
I×Ls

I given by R = {(ϕ1,ϕ2), (ϕ1,ϕ3), (ϕ2,ϕ4)}.

Then the distribution formulae ψ1 = 1
2
ϕ1 ⊕ 1

2
ϕ2 and ψ2 = 1

4
ϕ2 ⊕ 1

4
ϕ3 ⊕ 1

2
ϕ4 are such that

ψ1R
†ψ2. Therefore we can infer that

〈a〉
(

1

2
ϕ1 ⊕

1

2
ϕ2

)

FE (R ) 〈a〉
(

1

4
ϕ2 ⊕

1

4
ϕ3 ⊕

1

2
ϕ4

)

.

�

Lemma 5.6. The function FE is monotone with respect to inclusion.

Proof. We need to show that R1 ⊆ R2 implies FE (R1 ) ⊆FE (R2 ) for arbitrary relations

R1 , R2 ∈ P(Ls
I×Ls

I). Hence, we assume ϕ FE (R1 ) ϕ′ for arbitrary ϕ,ϕ′ ∈ Ls
I and prove

ϕFE (R2 ) ϕ′. To infer ϕFE (R1 ) ϕ′, we apply the rules (1)–(6) in Definition 5.8 n times, for

some n ≥ 1. We prove ϕFE (R2 ) ϕ′ by induction over n.

The base case n = 1 has two subcases, namely either we infer ϕFE (R1 ) ϕ′ by applying

rule (1) or by applying rule (6). In the former case we have ϕ′ =ϕ, which immediately gives

ϕFE (R2 ) ϕ′ by the same rule (1). In the latter case we have ϕ= 〈a〉ψ and ϕ′ = 〈a〉ψ′ with

ψR1
†ψ′. By the monotonicity of operator _† we get ψR2

†ψ′. Then, by applying rule (6) we

get ϕFE (R2 ) ϕ′.
Consider now the inductive step n > 1. The last rule in Definition 5.8 applied to infer

ϕFE (R1 ) ϕ′ is one of the rules in the set (2)–(5). Let (r ) be that rule. To apply such a rule (r )

it is necessary to have a set of pairs of formulae that are already in FE (R1 ), namely we need

a set R ⊆FE (R1 ) such that each pair of formulae (ϕ1,ϕ2) ∈ R is such that (ϕ1 FE (R1 ) ϕ2) is

derived by applying the rules (1)–(6) in Definition 5.8 at most n −1 times. By the inductive

hypothesis we infer that (ϕ1 FE (R2 ) ϕ2) for all (ϕ1,ϕ2) ∈ R , namely R ⊆FE (R2 ), which then

gives ϕFE (R2 ) ϕ′ by rule (r ). �
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Since FE is monotone over the complete lattice (P(Ls
I×Ls

I),⊆), by the Knaster-Tarski

fixed point Theorem it admits the least and the greatest fixed point.

Definition 5.9 (LI-equivalence under E). The LI-equivalence under an endodeclaration E

is the greatest fixed point of FE and will be denoted with ≡E .

We devote the remaining of this section to an alternative inductive definition of ≡E . First

we show that if the endodeclaration E is guarded and image finite, then the function FE is

Scott-co-continuous.

Proposition 5.7. For a guarded and image finite endodeclaration E the function FE is Scott-

co-continuous.

Proof. We have to show that for each descending chain of subsets R0 , R1 , . . . of

P(Ls
I×Ls

I) it holds that FE (
⋂

n∈N Rn ) = ⋂

n∈NFE (Rn ). More precisely, we need to show

that for arbitrary ϕ,ϕ′ we have

ϕFE (
⋂

n∈N
Rn ) ϕ′ if and only if ϕ

⋂

n∈N
FE (Rn ) ϕ′

Assume first ϕ FE (
⋂

n∈N Rn ) ϕ′. By the monotonicity of FE (Lemma 5.6) we get

ϕ FE (Rn ) ϕ′ for all n ∈N, which gives ϕ
⋂

n∈NFE (Rn ) ϕ′.

Assume now ϕ
⋂

n∈NFE (Rn ) ϕ′, namely ϕFE (Rn ) ϕ′ for all n ∈N. We aim to show

ϕFE (Rn ) ϕ′ for all n ∈N implies ϕFE (
⋂

n∈N
Rn ) ϕ′.

This is proved by structural induction over ϕ. The interesting cases are the base case for the

diamond operator and the non-trivial inductive step related to conjunction.

⋆ Base case ϕ = 〈a〉⊕i∈I riϕi . By Definition 5.8, ϕFE (Rn ) ϕ′ for each n ∈N requires

that ϕ′ = ∧

h∈H〈a〉ψh with ψh(Rn )† ⊕

i∈I riϕi for all h ∈ H. We consider only the

case of |H| = 1, since the general case for |H| > 1 directly follows from it. Hence,

ϕ′ = 〈a〉⊕ j∈J r jϕ j . Then from 〈a〉⊕i∈I riϕi FE (Rn ) ϕ′ for each n ∈N, we obtain by

Proposition 2.5 that ϕ′ = 〈a〉⊕ i∈I
hi ∈Hn

i

r n
hi
ϕn

hi
with

∑

hi∈H n
i

r n
hi

= ri and ϕi Rn ϕ
n
hi

for all

hi ∈ H n
i

. As J is finite, for each i ∈ I there is a set of indexes Ji ⊆ J s.t. ϕi Rn ϕ ji
for

countably many n ∈N, for each ji ∈ Ji . In particular, for each i ∈ I there is an Ni ∈N

s.t. for all n ≥ Ni it holds that ϕi Rn ϕ ji
for each ji ∈ Ji . Let N = maxi∈I Ni . Then,

ϕ′ = 〈a〉
⊕

i∈I , ji∈Ji

L ji
ϕ ji

where L ji
= r N

hi
for hi ∈ H N

i
s.t. hi = ji . We remark that by the

choice of N , we have that H N
i
= Ji . Therefore, from 〈a〉⊕i∈I riϕi FE (RN ) ϕ′ we obtain

that
∑

ji∈Ji
L ji

= ri and moreover, by construction of Ji it holds that ϕi Rn ϕ ji
for all

ji ∈ Ji , for each n ≥ N. Furthermore, {Rn }n∈N is a descending chain on P(Ls
I×Ls

I)

and thus ϕi Rn ϕ ji
holds also for all n ≤ N . Hence we can conclude that ϕi Rn ϕ ji

for all ji ∈ Ji , for all n ∈N thus implying ϕi
⋂

n∈N Rn ϕ ji
from which we gather that

〈a〉⊕i∈I riϕi FE (
⋂

n∈N Rn ) ϕ′. We have therefore obtained that

〈a〉
⊕

i∈I

riϕi

⋂

n∈N
FE (Rn ) ϕ′ ⇒ 〈a〉

⊕

i∈I

riϕi FE (
⋂

n∈N
Rn ) 〈a〉

⊕

i∈I
ji ∈Ji

r ji
ϕ ji

.
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⋆ Inductive step ϕ=∧

j∈J ϕ j , with ϕFE (Rn ) ϕ′ for all n ∈N given by Definition 5.8.(5).

Notice that ϕ′ ∈Ls
I is fixed and it is of the form ϕ′ =∧

i∈Iϕi for some set of indexes I .

Then,
∧

j∈J ϕ j FE (Rn ) ϕ′ for all n ∈N implies that for each n ∈N there is a bijection

f n : J → I with ϕ′ =∧

j∈J ϕ f n ( j ) and ϕ j FE (Rn ) ϕ f n ( j ) for all j ∈J . Intuitively, each

bijection f n can be seen as a simple reordering of the state formulae in ϕ′ in order

to match the corresponding formulae in
∧

j∈J ϕ j . By definition of the functional

FE (Def. 5.8) whenever ϕ j is of the form ϕ j = ⊤ or ϕ j = ā, for some a ∈ A, then

ϕ j FE (Rn ) ϕ f n ( j ) iff ϕ f n ( j ) =
∧

h∈Hϕ j for some set of indexes H. Moreover whenever

ϕ j = 〈a〉ψ j then ϕ j FE (Rn ) ϕ f n ( j ) iff ϕ f n ( j ) = 〈a〉ψ f n ( j ) with ψ j R
†
n ψ f n ( j ). Since we

are considering image finite formulae only, we can infer that for each ϕ j , for j ∈J ,

there is a formula ϕi , for some i ∈ I , s.t. ϕi =ϕ f n ( j ) for countably many n ∈N. In fact,

by definition of image finiteness (Def. 5.7), there is only a finite number of formulae

in ϕ′ that can be related to each formula ϕ j . In particular, for each j ∈ J there is

an N j ∈ N s.t. f n( j ) = f N j ( j ) for all n ≥ N j . Let N = sup j∈J N j . Then we have that

ϕ j FE (Rn ) ϕ f N ( j ) for all n ≥ N . Furthermore, {Rn }n∈N is a descending chain on

P(Ls
I×Ls

I) and FE is monotone (Lemma 5.6), and thus f N is a bijection such that

ϕ j FE (Rn ) ϕ f N ( j ) also for all n ≤ N . We have therefore obtained that there exist a bijec-

tion f : J → I s.t. ϕ j FE (Rn ) ϕ f ( j ) for all n ∈N, j ∈J , that is ϕ j
⋂

n∈NFE (Rn ) ϕ f ( j )

for all j ∈J . By induction, this implies that ϕ j FE (
⋂

n∈N Rn ) ϕ f ( j ) for all j ∈J , thus

giving
∧

j∈J ϕ j FE (
⋂

n∈N Rn )
∧

i∈Iϕi . Therefore, we can conclude that
∧

j∈J
ϕ j

⋂

n∈N
FE (Rn )

∧

i∈I
ϕi ⇒

∧

j∈J
ϕ j FE

( ⋂

n∈N
Rn

) ∧

i∈I
ϕi .

�

Definition 5.10 (Approximated LI-equivalence). Let E be an endodeclaration on the logic

LI. We define the family of relations ≡n
E
⊆Ls

I×Ls
I, for n ∈N, as follows:

≡n
E
=

{

Ls
I×Ls

I for n = 0

FE (≡n−1
E

) for n > 0.

Notice that {≡n
E

}n∈N is defined as the descending Kleene chain of FE . By the Scott-co-

continuity property of the function FE it follows that ≡ω
E

coincides with the greatest fixed

point of FE , namely ≡E .

Proposition 5.8. For any guarded and image finite endodeclaration E , ≡ω
E

is the greatest fixed

point of FE , namely ≡ω
E
=≡E .

Proof. Since function FE is Scott-co-continuous (Proposition 5.7), we can apply the

Kleene fixed-point Theorem to the descending Kleene chain {≡n
E

}n∈N. �

Now we show that all ≡n
E

and ≡
E

are equivalence relations.

Proposition 5.9. All ≡n
E

with n ∈N and ≡ω
E

are equivalence relations.

Proof. By Definition 5.8.(1) and Definition 5.8.(2) we can immediately infer that ≡n
E

is reflexive and symmetric for each n ∈ N. Hence, we only have to prove the transitivity
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Chapter 5. Logical characterization of branching metrics

property, namely that whenever ϕ1 ≡n
E
ϕ2 and ϕ2 ≡n

E
ϕ3 we have ϕ1 ≡n

E
ϕ3, to conclude that

all ≡n
E

are equivalences.

To this aim, we proceed by induction over n ∈N.

(I) The base case n = 0 is immediate since by definition ≡0
E
=Ls

I×Ls
I.

(II) Consider now the inductive step n > 0. We proceed by structural induction over ϕ1.

The interesting cases are those of conjunction and of the diamond modality.

⋆ Inductive step ϕ1 =
∧

j∈J ϕ j . We distinguish two cases.

❛✳ ϕ1 ≡n
E
ϕ2 for ϕ2 of the form

∧

j∈(J \I)ϕ
′
j

with ϕi ≡n
E
ϕ′

ji
for some ji ∈J \I

for all i ∈ I and ϕ j ≡n
E
ϕ′

j
for all j ∈J \I . We distinguish two cases.

✐✳ ϕ2 ≡n
E
ϕ3 for ϕ3 of the form

∧

j∈(J \I)\Hϕ′′
j

with ϕ′
h
≡n
E
ϕ′′

jh
for some

jh ∈ (J \I)\H for all h ∈H and ϕ′
j
≡n
E
ϕ′′

j
for all j ∈ (J \I)\H. Then we

have

ϕ3 =
∧

j∈(J \(I∪H)

ϕ′′
j

and by structural induction we obtain that for each k ∈ I∪H ϕk ≡n
E
ϕ′′

jk

for some jk ∈J \ (I∪H). Therefore we can conclude that ϕ1 ≡n
E
ϕ3 as

required.

✐✐✳ ϕ2 ≡n
E
ϕ3 for ϕ3 of the form

∧

k∈Kϕ′′
k

and there exists a bijection f : (J \

I) →K with ϕ′
j
≡n
E
ϕ′′

f ( j )
for all j ∈ (J \I). Therefore we can rewrite

ϕ3 =
∧

j∈(J \I)

ϕ′′
f ( j ).

Moreover, by structural induction we obtain that for each i ∈ I we have

that ϕi ≡n
E
ϕ′′

f ( ji )
and for each j ∈J \I we have that ϕ j ≡n

E
ϕ′′

f ( j )
. There-

fore, we can conclude that ϕ1 ≡n
E
ϕ3 as required.

❜✳ ϕ1 ≡n
E
ϕ2 for ϕ2 of the form

∧

i∈Iϕi and there exists a bijection f : J → I

with ϕ j ≡n
E
ϕ f ( j ) for all j ∈J . We distinguish three cases.

✐✳ ϕ2 ≡n
E
ϕ3 for ϕ3 of the form

∧

i∈(I\H)ϕ
′
i

with ϕh ≡n
E
ϕ′

kh
for some kh ∈

I \H for all h ∈H and ϕi ≡n
E
ϕ′

i
for all i ∈ I \H. Since f is a bijection we

obtain

ϕ3 =
∧

f −1(i )∈(J \ f −1(H))

ϕ f −1(i )

and by structural induction we obtain that ϕ f −1(h) ≡n
E
ϕ′

kh
for all h ∈H

and ϕ f −1(i ) ≡n
E
ϕ′

i
for all i ∈ I \H thus giving ϕ1 ≡n

E
ϕ3 as required.

✐✐✳ ϕ2 ≡n
E
ϕ3 for ϕ3 of the form

∧

k∈Kϕk and there exists a bijection g : I →
K with ϕi ≡n

E
ϕg (i ) for all i ∈ I. Since f is a bijection, the last relation

can be rewritten as ϕ f ( j ) ≡n
E
ϕg ( f ( j )) for all j ∈J . Thus, by structural in-

duction over each triple ϕ j ,ϕ f ( j ),ϕg ( f ( j )), we obtain that ϕ j ≡n
E
ϕg ( f ( j ))

for each j ∈J . Moreover, h : J →K defined by h( j ) = g ( f ( j )), for j ∈J ,

is a bijection as composition of bijections. Therefore, we can conclude

that
∧

j∈J ϕ j ≡n
E

∧

k∈Kϕk , namely ϕ1 ≡n
E
ϕ3.
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⋆ Inductive step ϕ1 = 〈a〉⊕i∈I riϕi . By definition ϕ1 ≡n
E
ϕ2 if it is of the form

ϕ2 = ∧

j∈J 〈a〉ψ j with ψ j (≡n−1
E

)† ⊕

i∈I riϕi for all j ∈ J . However we consider

only the case of |J | = 1, since the general case for |J | > 1 directly follows from it.

Hence let us consider ϕ2 = 〈a〉⊕ i∈I
ji ∈Ji

r ji
ϕ ji

where for each i ∈ I ,
∑

ji∈Ji
r ji

= ri and

ϕ ji
≡n−1
E

ϕi for all ji ∈ Ji . Moreover, ϕ2 ≡n
E
ϕ3 if ϕ3 if ϕ3 = 〈a〉⊕ i∈I

ji ∈Ji
h ji

∈H ji

rh ji
ϕh ji

where
∑

h ji
∈H ji

rh ji
= r ji

and ϕh ji
≡n−1
E

ϕ ji
for all h ji

∈ H ji
. Therefore, we gather

❛✳ ri =
∑

ji∈Ji
r ji

=∑

ji ∈Ji
h ji

∈H ji

rh ji
;

❜✳ from ϕi ≡n−1
E

ϕ ji
for all ji ∈ Ji and ϕ ji

≡n−1
E

ϕh ji
for all h ji

∈ H ji
, the induc-

tive hypothesis gives ϕi ≡n−1
E

ϕh ji
for all h ji

∈ H ji
, ji ∈ Ji .

From items (i) and (ii) we obtain ϕ1 ≡n
E
ϕ3 as required.

Finally, since the intersection of equivalence relations is indeed an equivalence relation we

conclude that also ≡ω
E

is an equivalence. �

It follows that also ≡E is an equivalence relation.

Corollary 5.10. For any guarded and image finite endodeclaration E the LI-equivalence

under E ≡E is an equivalence relation.

Proof. By Proposition 5.8 and Proposition 5.9. �

Structural equivalence of formulae implies their semantic equivalence, as formalized

in the following Theorem. We also notice that the converse implication does not hold in

general. In fact, as a trivial counterexample, we can consider the formulae ϕ= 〈a〉⊤∧ ā and

ϕ′ = 〈b〉⊤∧ b̄. Clearly, for any endodeclaration E we have JϕKνE = Jϕ′ KνE =; but ϕ 6≡E ϕ′.

Theorem 5.11. JϕKνE = Jϕ′ KνE for all formulae ϕ,ϕ′ ∈LI such that ϕ ≡E ϕ′.

Proof. We proceed by structural induction over ϕ.

⋆ Base case ϕ = ⊤. By definition ϕ ≡E ϕ′ if ϕ′ is of the form
∧

j∈J ⊤, namely ϕ′ is

a conjunction of an arbitrary number of formulae ⊤. Then, by definition we have

J⊤KνE =S and J∧ j∈J ⊤KνE =⋂

j∈J J⊤KνE =⋂

j∈J S =S , thus giving the thesis.

⋆ Base case ϕ = ā for some a ∈ A. By definition ϕ ≡E ϕ′ if ϕ′ is of the form
∧

j∈J ā,

namely ϕ′ is a conjunction of an arbitrary number of formulae ā. Let S ā ⊆ S be the

subset of processes that do not perform an a move. Then, by definition we have

Jā KνE = S ā and J∧ j∈J ā KνE =⋂

j∈J Jā KνE =⋂

j∈J S ā = S ā , thus giving the thesis.

⋆ ϕ=∧

j∈J ϕ j . We can distinguish two cases.

✶✳ ϕ ≡E ϕ′ with ϕ′ = ∧

j∈(J \I)ϕ
′
j

with ϕi ≡E ϕ′
ji

for some ji ∈J \I for each i ∈ I

and ϕ j ≡E ϕ′
j

for each j ∈J \I . We have that

J
∧

j∈J
ϕ j KνE =

⋂

j∈J
Jϕ j KνE

163



Chapter 5. Logical characterization of branching metrics

=
⋂

j∈(J \I)

Jϕ j KνE ∩
⋂

i∈I
Jϕi KνE

=
⋂

j∈(J \I)

Jϕ′
j KνE ∩

⋂

i∈I
Jϕi KνE (by induction over ϕ j )

=
⋂

j∈(J \I)

Jϕ′
j KνE ∩

⋂

i∈I
Jϕ′

ji
KνE (by induction on ϕi )

=
⋂

j∈(J \I)

Jϕ′
j KνE ∩

⋂

ji∈J \I

Jϕ′
ji
KνE

=
⋂

j∈(J \I)

Jϕ′
j KνE

= J
∧

j∈(J \I)

ϕ′
j KνE

✷✳ ϕ ≡E ϕ′ with ϕ′ =∧

i∈Iϕi and there is a bijection f : J → I with ϕ j ≡E ϕ f ( j ), for

all j ∈J . We have that

J
∧

j∈J
ϕ j KνE =

⋂

j∈J
Jϕ j KνE

=
⋂

j∈J
Jϕ f ( j ) KνE (by structural induction)

= J
∧

j∈J
ϕ f ( j ) KνE

⋆ Inductive step ϕ = 〈a〉⊕i∈I riϕi . By definition ϕ1 ≡E ϕ2 if it is of the form ϕ2 =
∧

j∈J 〈a〉ψ j with ψ j (≡E )† ⊕

i∈I riϕi for all j ∈J . However we consider only the case of

|J | = 1, since the general case for |J | > 1 directly follows from it. Hence let us consider

ϕ′ = 〈a〉
⊕

i∈I , ji∈Ji

r ji
ϕ ji

with
∑

ji∈Ji

r ji
= ri and ϕ ji

≡E ϕi for all ji ∈ Ji .

From s |=νE ϕ, we infer that s
a−→π for a probability distribution π ∈∆(S) with π |=νE

⊕

i∈I riϕi , namely there are some distributions πi ∈∆(S) such that π=∑

i∈I riπi and,

for all i ∈ I , s′ |=νE ϕi for all states s′ with πi (s′) > 0.

By structural induction, s′ |=νE ϕi implies that s′ |=νE ϕ̃ for each ϕ̃ ≡E ϕi . In particular,

this implies that s′ |=νE ϕ ji
for each ji ∈ Ji . Moreover,

π=
∑

i∈I

riπi =
∑

i∈I

(
∑

ji∈Ji

r ji
)πi =

∑

i∈I

(
∑

ji∈Ji

r ji
πi ) =

∑

i∈I

(
∑

ji∈Ji

r ji
π ji

)

where π ji
=πi for all ji ∈ Ji .

Hence, we have obtained that there is a probability distribution π ∈ der(s, a) such

that π = ∑

i∈I

∑

ji∈Ji
r ji

π ji
, for some distributions π ji

, and moreover for each s′ ∈ S

such that π ji
(s′) > 0 we have s′ |=νE ϕ ji

. We can then conclude that π |=νE

⊕

i∈I
ji ∈Ji

r ji
ϕ ji

,

namely s |=νE ϕ′.

⋆ Inductive step ϕ= Xi, for some i ∈ I. By definition, Xi ≡E E(Xi). Moreover, s ∈ JXi KνE
if and only if s ∈ νE (Xi) and, by definition of νE , νE (Xi) = JE(Xi)KνE . Therefore, the

thesis follows from the previous cases.
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�

5.3 MIMICKING FORMULAE OF PROCESSES

In this Section we introduce the notion of mimicking formula of a process which will allow

us to obtain the characterizations of probabilistic bisimilarity, ready similarity and similarity

(Section 5.4) and those of their quantitative versions (Sections 5.5 and 5.6).

We consider the logic LS , which allows us to associate a variable Xs to each process s ∈S .

Then we introduce the notion of mimicking formula of a process s ∈S as a formula capturing

the branching and probabilistic features of s, and we define the mimicking endodeclaration

M on LS such that M(Xs) is the mimicking formula of s.

Definition 5.11 (Mimicking formula). For a process s ∈ S , the mimicking formula of s is

denoted with ϕs and is defined by

ϕs =
∧

(s,a,π)∈→
〈a〉

⊕

s′∈supp(π)

π(s′)Xs′ ∧
∧

b 6∈init(s)

b̄.

Then the mimicking endodeclaration M : S →Ls
S

is defined for all processes s ∈S by

M(Xs) =ϕs .

Intuitively, ϕs characterizes the branching structure of s by specifying which transitions

are enabled for s as well as all the actions that it cannot perform. Moreover, as states evolve

to distributions, the mimicking formula of s captures the probabilistic behavior of s by

associating to each process s′ in the support of π, for each π ∈ der(s, a), its own mimicking

formula ϕs′ weighted by π(s′).

Remark 5.1. Notice that all the variables occurring in the mimicking formulae are guarded,

so that the mimicking endodeclaration M is guarded. Moreover, since the processes in

S are image finite, we infer that all mimicking formulae are image finite and so is the

mimicking endodeclaration M. Furthermore, we remark that to simplify reading and

presentation we have written the mimicking formulae as a nested conjunction of state

formulae, although non allowed in LS (see Definition 5.1). However, mimicking formulae

can always be expressed without nested conjunctions, as showed in Example 5.3.

Example 5.3. Assume A = {a,b,c}. Let us consider the process s ∈ S represented in Fig-

ure 5.1. Then the mimicking formula of s is obtained by the following assignments:

M(Xs) = 〈a〉
(1

4
Xs1 ⊕

1

4
Xs2 ⊕

1

2
Xs3

)

∧〈a〉1Xs4 ∧ b̄ ∧ c̄

M(Xs1 ) = 〈a〉1Xs1 ∧ b̄ ∧ c̄

M(Xs2 ) = 〈a〉1Xnil ∧〈c〉1Xnil ∧ b̄

M(Xs3 ) = 〈b〉1Xnil ∧ ā ∧ c̄

M(Xs4 ) = 〈c〉1Xs4 ∧ ā ∧ b̄

M(Xnil) = ā ∧ b̄ ∧ c̄.
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s
a a

0.25
0.25

0.5 1

s1 s2 s3 s4

a a c b c1 1

   

Figure 5.1: An arbitrary image finite process.

�

As expected, each process s satisfies its own mimicking formula ϕs .

Theorem 5.12. For any process s ∈S , s ∈ νM(Xs).

Proof. By Proposition 5.5 we have νM = γω, where, by definition, γω =
d

n∈Nγn , for the

variable interpretations γn defined as

γn :=
{

γ̃ if n = 0

〈〈M〉〉γn−1 if n > 0

where γ̃ is the top element of the complete lattice ΓS , namely the variable interpretation

assigning S as meaning to each variable. Since νM(Xs) = γω(Xs) = ⋂

n∈N γn(Xs), to prove

the thesis we show that

for all n ∈N, s ∈ γn(Xs). (5.6)

We prove Equation (5.6) by induction over n.

Consider the base case n = 0. Then s ∈ γn(Xs) follows immediately by γ0(Xs) =S .

Consider now the inductive step n > 0: we assume that for each t ∈S it holds t ∈ γn−1(X t )

and we show that under this assumption we have s ∈ γn(Xs), for each s ∈S . We have

γn(Xs) =
(

〈〈M〉〉γn−1

)

(Xs) = JM(Xs)Kγn−1 = Jϕs Kγn−1

and by definition of mimicking formula (Definition 5.11) we have

ϕs =
∧

(s,a,π)∈→
〈a〉

⊕

s′∈supp(π)

π(s′)Xs′ ∧
∧

b 6∈init(s)

b̄.

Hence, we need to prove that s ∈ Jϕs Kγn−1, namely

s |=γn−1

∧

(s,a,π)∈→
〈a〉

⊕

s′∈supp(π)

π(s′)Xs′ ∧
∧

b 6∈init(s)

b̄. (5.7)

It is immediate to see that for all action types b such that s
b−→6 we have s |=γn−1 b̄.

Thus to complete the proof of Equation (5.7), we need to show that for each distribution

π ∈∆(S) we have

s
a−→π implies s |=γn−1 〈a〉

⊕

s′∈supp(π)

π(s′)Xs′ . (5.8)
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To prove Equation (5.8) it is enough to prove that for each distribution π ∈∆(S) we have

s
a−→π implies π |=γn−1

⊕

s′∈supp(π)

π(s′)Xs′ . (5.9)

We have π=
∑

s′∈supp(π)

π(s′)δs′ and moreover by inductive hypothesis s′ ∈ γn−1(Xs′) for each

s′ ∈ supp(π), which gives π |=γn−1

⊕

s′∈supp(π)π(s′)Xs′ and, then, Equation (5.9). �

5.4 LS -CHARACTERIZATION OF PROBABILISTIC RELATIONS

In this Section we present our characterizations of probabilistic bisimilarity, probabilistic

ready similarity and probabilistic similarity.

By means of mimicking formulae we are able to characterize probabilistic bisimilarity

in a weak expressive fashion: two processes are probabilistic bisimilar if and only if their

mimicking formulae are LS-equivalent under M (Theorem 5.13). Moreover, we will prove

that the mimicking formula of a process coincides with the characteristic formula of that

process with respect to ready similarity thus allowing for an expressive characterization of

that preorder: a process t satisfies the mimicking formula of process s, that is t ∈ νM(Xs),

if and only if t ready simulates s (Theorem 5.14). Finally, we define the simulation endo-

declaration C on LS from which we obtain the characteristic formulae for simulation from

the negation free subformulae of the mimicking formulae, thus obtaining an expressive

characterization of similarity: a process t satisfies the simulation characteristic formula of

process s, that is t ∈ νC(Xs), if and only if t simulates s (Theorem 5.17).

LS -CHARACTERIZATION OF PROBABILISTIC BISIMILARITY

We obtain the characterization of probabilistic bisimilarity through the comparison of

mimicking formulae of processes. Informally, we exploit LS-equivalence: two processes are

bisimilar if and only if their mimicking formulae are LS-equivalent under M.

Theorem 5.13. Given any processes s, t ∈S , Xs ≡M X t if and only if s ∼ t .

Proof. (⇐). Assume first that s ∼ t . We have to show that Xs ≡M X t . To this aim, we

prove a stronger result, namely that

for all n ∈N s ∼n t implies Xs ≡n
M

X t . (5.10)

Since processes are image finite, the thesis will then follow from Equation (5.10) by ∼=
⋂

n∈N ∼n and ≡M =⋂

n∈N ≡n
M

. We prove Equation (5.10) by induction over n ∈N.

The base case n = 0 is immediate since by Definition 5.10 we have ≡0
M

=Ls
I×Ls

I.

Consider now the inductive step n > 0. Let s ∼n t . By Definition 5.10 we have Xs ≡n
M

X t

iff M(Xs) ≡n
M

M(X t ), i.e. ϕs ≡n
M

ϕt , where by Definition 5.11 we have

ϕs =
∧

(s,a,πs )∈→
〈a〉

⊕

s′∈supp(πs )

πs(s′)Xs′ ∧
∧

b 6∈init(s)

b̄
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ϕt =
∧

(t ,a,πt )∈→
〈a〉

⊕

t ′∈supp(πt )

πt (t ′)X t ′ ∧
∧

b 6∈init(t )

b̄.

From the assumption s ∼n t with n > 0, it follows init(s) = init(t), thus giving that there is

a bijection f : init(s)c → init(t )c (which is actually given by the identity function) such that

given any b 6∈ init(s) we have that b̄ ≡n
M

¯f (b) is obtained by applying Definition 5.8.(1).

To prove that ϕs ≡n
M

ϕt it remains to show that for each a ∈ init(s) there is a bijection

ga : der(s, a) → der(t , a) such that

〈a〉
⊕

s′∈supp(πs )

πs(s′)Xs′ ≡n
M

〈a〉
⊕

t ′∈supp(ga (πs ))

ga(πs)(t ′)X t ′ . (5.11)

Consider an arbitrary transition s
a−→πs . Since s ∼n t , there exists a probability distribution

πt such that t
a−→ πt and πs ∼†

n−1 πt . By Definition 2.17 we have πs ∼†
n−1 πt iff whenever

πs =
∑

i∈I piδsi
then πt =

∑

i∈I piδti
and si ∼n−1 ti for all i ∈ I . By the inductive hypothesis,

si ∼n−1 ti implies that Xsi
≡n−1
M

X ti
. Therefore,

⊕

s′∈supp(πs )

πs(s′)Xs′ =
⊕

i∈I

pi Xsi
(≡n−1

M
)†

⊕

i∈I

pi X ti
=

⊕

t ′∈supp(πt )

πt (t ′)X t ′

from which we get (by Definition 5.8.(6))

〈a〉
⊕

s′∈supp(πs )

πs(s′)Xs′ ≡n
M

〈a〉
⊕

t ′∈supp(πt )

πt (t ′)X t ′ . (5.12)

Analogously, for any t
a−→πt there is a transition s

a−→πs such that Equation (5.12) holds.

Hence by combining Definition 5.8.(4) and Definition 5.8.(5) we obtain the bijection ga we

were looking for. Briefly, whenever a distribution πs ∈ der(s, a) is related to more than one

distribution in der(t , a), we can use Definition 5.8.(4) to add to ϕs as many occurrences of

the formula 〈a〉⊕s′∈supp(πs )πs(s′)Xs′ as the number of distributions in der(t , a) to which πs

is related. By applying this reasoning to all distributions in der(s, a) and der(t , a), we obtain

the bijection ga satisfying Equation (5.11) as πt = ga(πs) if and only if πs ∼†
n−1 πt . Then

ϕs ≡n
M

ϕt is obtained from Definition 5.8.(5) and the transitivity of ≡n
M

.

(⇒). Assume now that Xs ≡M X t . We aim to show that s ∼ t . To this aim, it is enough to

prove that there is a probabilistic bisimulation relating s and t . To this purpose, we prove

that the relation

R := {(s, t ) | Xs ≡M X t }

is a probabilistic bisimulation relation. Let sR t . We aim to prove that

whenever s
a−→πs there is a transition t

a−→πt with πs R
†πt . (5.13)

Consider any transition s
a−→πs . By definition, we have Xs ≡M X t if and only if M(Xs) ≡M

M(X t ), namely ϕs ≡M ϕt . Moreover, from Theorem 5.12 s |=νM ϕs and t |=νM ϕt , where,

by definition of mimicking formula (Definition 5.11), we have

ϕs =
∧

(s,a,πs )∈→
〈a〉

⊕

s′∈supp(πs )

πs(s′)Xs′ ∧
∧

b 6∈init(s)

b̄
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s t

a a a1 1

 

Figure 5.2: Processes s, t are not probabilistic bisimilar but s ∈ νM(X t ).

ϕt =
∧

(t ,a,πt )∈→
〈a〉

⊕

t ′∈supp(πt )

πt (t ′)X t ′ ∧
∧

b 6∈init(t )

b̄.

Fromϕs ≡M ϕt and s
a−→πs we get that there is a distributionπt with t

a−→πt and 〈a〉ψπs ≡M

〈a〉ψπt , where ψπs =
⊕

s′∈supp(πs )πs(s′)Xs′ and ψπt =
⊕

t ′∈supp(πt )πt (t ′)X t ′ . To derive Equa-

tion (5.13) it is enough to prove that πs R
†πt . From 〈a〉ψπs ≡M 〈a〉ψπt we derive ψπs (≡M

)†ψπt , which by Definition 2.15 implies that

if ψπs =
⊕

i∈I

riϕi , then ψπt =
⊕

i∈I , ji∈Ji

r ji
ϕ ji

with
∑

ji∈Ji

r ji
= ri and ϕi ≡M ϕ ji

. (5.14)

Moreover, we notice that by definition of mimicking formula (Definition 5.11), for all i ∈ I

and ji ∈ Ji the formulae ϕi and ϕ ji
in Equation (5.14) have to be the S-indexed variables for

some appropriate processes si ∈ supp(πs) and t ji
∈ supp(πt ), namely

ϕi = Xsi
for all i ∈ I and ϕ ji

= X t ji
for all ji ∈ Ji and i ∈ I .

Therefore, from ϕi ≡M ϕ ji
we infer Xsi

≡M X t ji
. By definition of R , from Xsi

≡M X t ji
we

get si R t ji
. Hence we have (i) πs =

∑

i∈I
ji ∈Ji

r ji
δsi

; (ii) si R t ji
for all i ∈ I and j ∈ Ji ; (iii) πt =

∑

i∈I
ji ∈Ji

r ji
δt ji

, thus giving πs R
†πt as required.

Summarizing, we have shown that the transition s
a−→ πs is matched by a transition

t
a−→πt such that Equation (5.13) holds. With the same argument it can be shown that

whenever t
a−→πt there is a transition s

a−→πs with πt R
†πs .

Therefore we can conclude that R is a probabilistic bisimulation as required. �

A consequence of Theorem 5.13 is that it is enough to inspect two formulae to establish

whether two processes are equivalent. This is a weak form of expressive characterization

since, as discussed in Chapter 2.4, the classic expressive characterization result states that to

check whether two processes are equivalent with respect to a given behavioral relation it is

enough to verify that one of the two satisfies the characteristic formula of the other process

(see for example [68, 133, 149]). This is due to the fact that mimicking formulae are slightly

less expressive than characteristic formulae, as shown in the following example.

Example 5.4. Let A= {a,b} and consider processes s and t in Figure 5.2. We have

M(Xs) = 〈a〉Xs ∧〈a〉(ā ∧ b̄)∧ b̄

M(X t ) = 〈a〉X t ∧ b̄.

Clearly s ∈ νM(X t ), but s 6∼ t since nil, reached by s via the rightmost a transition, cannot

simulate t . �
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LS -CHARACTERIZATION OF PROBABILISTIC READY SIMULATION

Mimicking formulae capture all possible resolutions of nondeterminism of processes as

well as their inability to perform a specific action. Consequently, they give us enough power

to expressively characterize ready similarity: the mimicking formula of a process s is the

characteristic formula of s with respect to ready similarity.

Theorem 5.14. Given any processes s, t ∈S , t ∈ νM(Xs) if and only if s ⊑r t .

Proof. (⇐) Assume first that s ⊑r t . We have to show that t ∈ νM(Xs). We recall that

by Proposition 5.5 we have νM = γω, where, by definition, γω =
d

n∈Nγn , for the variable

interpretations γn defined as

γn :=
{

γ̃ if n = 0

〈〈M〉〉γn−1 if n > 0

where γ̃ is the top element of the complete lattice ΓS , namely the variable interpretation

assigning S as meaning to each variable. Since processes are image finite, we have νM(Xs) =
γω(Xs) =⋂

n∈N γn(Xs) and ⊑r=
⋂

n∈N ⊑r
n . Therefore, to prove the thesis it is sufficient to show

the stronger property that

for all n ∈N s ⊑r
n t implies t ∈ γn(Xs). (5.15)

We prove Equation (5.15) by induction over n ∈N.

The base case n = 0 is immediate since by definition we have that γ0(Xs) =S .

Consider now the inductive step n > 0. Since s ⊑r
n t , by Definition 2.17 we have that

whenever s
a−→πs for some action a ∈A and probability distribution πs ∈∆(S), then there

exists a probability distribution πt such that t
a−→ πt and πs ⊑r†

n−1 πt . This implies (i) πs =
∑

s′∈supp(πs )πs(s′)δs′ ; (ii) for each s′ ∈ supp(πs) there is a t ′ ∈ supp(πt ) such that s′ ⊑r
n−1 t ′;

(iii) πt =
∑

s′∈supp(πs )πs(s′)δt ′ .

By the inductive hypothesis, s′ ⊑r
n−1 t ′ implies t ′ ∈ γn−1(Xs′), namely t ′ |=γn−1 ϕs′ . Hence,

we have that πt =
∑

s′∈supp(πs )πs(s′)δt ′ for some processes t ′ with t ′ |=γn−1 Xs′ . By Definition

5.2 this gives thatπt |=γn−1

⊕

s′∈supp(πs )πs(s′)Xs′ and thus that t |=γn−1 〈a〉⊕s′∈supp(πs )πs(s′)Xs′ .

Since a and πs are arbitrary, we can conclude that

t |=γn−1 〈a〉
⊕

s′∈supp(πs )

πs(s′)Xs′ for each (s, a,πs) ∈→ . (5.16)

Moreover from s ⊑r
n t , by Definition 2.17 we have that init(s) = init(t). Hence we can

immediately infer that

t |=γn−1 b̄ for each b 6∈ init(s). (5.17)

From Equations (5.16) and (5.17) we obtain that

t |=γn−1

∧

(s,a,π)∈→
〈a〉

⊕

s′∈supp(πs )

πs(s′)Xs′ ∧
∧

b 6∈init(s)

b̄

namely t |=γn−1 M(Xs), that is t ∈ JM(Xs)Kγn−1 = 〈〈M〉〉γn−1(Xs) = γn(Xs), thus concluding

this part of the proof.
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(⇒) Assume now that t ∈ νM(Xs). We have to show that s ⊑r t . To this aim, it is enough

to prove that there is a ready probabilistic simulation relating s and t . Hence, we will prove

that the relation

R : = {(s, t ) | t ∈ νM(Xs)}

is a ready probabilistic simulation. Let sR t . We aim to prove that

whenever s
a−→πs there is a transition t

a−→πt with πs R
†πt (5.18)

whenever s
b−→6 we have t

b−→6 . (5.19)

Consider any transition s
a−→ πs . From the hypothesis we have that t ∈ νM(Xs), thus im-

plying t |=νM M(Xs), namely t |=νM ϕs , where, by definition of mimicking formula for s

(Definition 5.11), we have

ϕs =
∧

(s,a,π)∈→
〈a〉

⊕

s′∈supp(πs )

πs(s′)Xs′ ∧
∧

b 6∈init(s)

b̄.

Hence, for any transition s
a−→πs we have that t |=νM 〈a〉⊕s′∈supp(πs )πs(s′)Xs′ . By definition

of relation |=νM (Definition 5.2), this implies that there exists a distribution πt such that

t
a−→πt and πt |=νM

⊕

s′∈supp(πs )πs(s′)Xs′ . To derive Equation (5.18) it is now enough to prove

that πt is such that πs R
†πt . From πt |=νM

⊕

s′∈supp(πs )πs(s′)ϕs′ and the definition of relation

|=νM (Definition 5.2) it follows that for all s′ ∈ supp(πs) there is some distribution πs′ such

that πt =
∑

s′∈supp(πs )πs(s′)πs′ and for each t ′ ∈ supp(πs′) it holds that t ′ |=νM Xs′ , thus giving

s′R t ′. From Proposition 2.3 it follows that δs′R
†δt ′ and, by the same Proposition 2.3, we

gather δs′R
†πs′ for all s′ ∈ supp(πs) and thus that

∑

s′∈supp(πs )

πs(s′)δs′R
†

∑

s′∈supp(πs )

πs(s′)πs′ ,

namely πs R
†πt , which completes the proof of Equation (5.18).

Consider now Equation (5.19). From the hypothesis t |=νM Xs , namely t |=νM ϕs and by

definition of mimicking formula for s (Definition 5.11)

ϕs =
∧

(s,a,π)∈→
〈a〉

⊕

s′∈supp(πs )

πs(s′)Xs′ ∧
∧

b 6∈init(s)

¬b̄

it follows that whenever s
b−→6 we have t |=νM b̄. By definition of relation |=νM (Definition 5.2)

this implies t
b−→6 , which gives Equation (5.19).

Hence both Equations (5.18) and (5.19) have been proved and the proof is complete. �

LS -CHARACTERIZATION OF PROBABILISTIC SIMULATION

We notice that whenever a process t satisfies the mimicking formula ϕs of process s, we are

guaranteed that all transitions performed by s are mimicked by transitions by t . Thus, the

following soundness results with respect to similarity is natural.

Theorem 5.15. Given any processes s, t ∈S , if t ∈ νM(Xs) then s ⊑ t .
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Proof. It is enough to prove that there is a probabilistic simulation relating s and t .

Hence, we will prove that the relation

R : = {(s, t ) | t ∈ νM(Xs)}

is a probabilistic simulation. Let sR t . We need to prove that

whenever s
a−→πs there is a transition t

a−→πt with πs ⊑† πt . (5.20)

Equation (5.20) can be proved as done for Equation (5.18) in the proof of Theorem 5.14. �

The distinguishing power of mimicking formulae is too strong to obtain completeness:

a process s with init(s) =; is simulated by any process t , but the mimicking formula of s,

ϕs =
∧

a∈A ā, is satisfied only by those t with init(t ) =;. However, if we consider the negation

free subformula of a mimicking formula then we obtain the simulation characteristic formula

of a process (Theorem 5.17).

Definition 5.12 (Simulation characteristic formula). For a process s ∈ S , the simulation

characteristic formula of s is denoted with ϑs and is defined by

ϑs :=
∧

(s,a,π)∈→
〈a〉

⊕

s′∈supp(π)

π(s′)Xs′ .

Then the simulation endodeclaration C : S →Ls
S

is defined for all processes s ∈S by

C(Xs) =ϑs .

As expected, each process s satisfies its own simulation characteristic formula ϑs .

Theorem 5.16. For any process s ∈S , s ∈ νC(Xs).

Proof. The same reasoning used in the proof of Theorem 5.12 applies. �

Theorem 5.17. Given any processes s, t ∈S , t ∈ νC(Xs) if and only if s ⊑ t .

Proof. (⇐) Assume first that s ⊑ t . We have to show that t ∈ νC(Xs). We recall that

by Proposition 5.5 we have νC = γω, where, by definition, γω =
d

n∈Nγn , for the variable

interpretations γn defined as

γn :=
{

γ̃ if n = 0

〈〈C〉〉γn−1 if n > 0

where γ̃ is the top element of the complete lattice ΓS , namely the variable interpretation

assigning S as meaning to each variable. Since processes are image finite, νC(Xs) = γω(Xs) =
⋂

n∈N γn(Xs) and ⊑=⋂

n∈N ⊑n , to prove the thesis we show the stronger property that

for all n ∈N s ⊑n t implies t ∈ γn(Xs). (5.21)

Equation (5.21) is then proved by induction over n ∈N with the same arguments used to

prove Equation (5.15) in the proof of Theorem 5.14.
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(⇒) Assume now that t ∈ νC(Xs). We have to prove that s ⊑ t . To this aim, it is enough to

prove that there is a probabilistic simulation relating s and t . Hence, we will prove that the

relation

R : = {(s, t ) | t ∈ νC(Xs)}

is a probabilistic simulation. Let sR t . We need to prove that

whenever s
a−→πs there is a transition t

a−→πt with πs ⊑† πt . (5.22)

Equation (5.22) can be proved as done for Equation (5.18) in the proof of Theorem 5.14. �

As a final remark to this Section, we notice that our characterizations of probabilistic

ready similarity and similarity are not simple consequences of the results in [143]. In fact

the examples of characterizations presented in [143] are built on a two-sorted modal logic

which is quite different from LS . Their logic allows for the occurrence of conjunctions of

distribution formulae in the scope of the diamond modality and moreover the quantitative

properties of processes are not captured through the probabilistic operator
⊕

but by means

of an alternative version of the quantitative diamond modality in [123]: they say that a

probability distribution π satisfies the distribution formula Lpϕ if and only if the total

probability weight that π assigns to processes satisfying ϕ is at least p.

5.5 LS -CHARACTERIZATION OF BISIMILARITY METRIC

In this section we present the logical characterization of bisimilarity metric. To this aim, we

introduce a suitable notion of distance between formulae in the S-indexed logic LS . Our

distance is defined inductively over the structure of formulae and will allow us to capture the

syntactic and probabilistic disparities between formulae. Then, we characterize bisimilarity

metric as the distance between the mimicking formulae of processes (Theorem 5.24).

DISTANCE ON LI

We take a generic logic LI and an image finite and guarded endodeclaration E . Then we

propose a notion of up-to-k distance under E for formulae for each k ∈N, and we define the

distance under E as the limit of the up-to-k-distances.

Definition 5.13 (Up-to-k distance under E). Given an image finite and guarded endodecla-

ration E on LI, the up-to-k distance under E for k ∈N is defined over state formulae as the

mapping dλ
k
E

: Ls
I×Ls

I → [0,1] such that

✶✳ dλ
0
E

(ϕ1,ϕ2) = 0 for all ϕ1,ϕ2 ∈Ls
I,

173



Chapter 5. Logical characterization of branching metrics

✷✳ dλ
k+1
E

(ϕ1,ϕ2) =



















































0 if ϕ1 =⊤=ϕ2 or ϕ1 = ā =ϕ2

λ ·Dλ
k
E

(ψ1,ψ2) if ϕ1 = 〈a〉ψ1 and ϕ2 = 〈a〉ψ2

H(dλ
k+1
E

)({ϕ j | j ∈J }, {ϕi | i ∈ I}) if ϕ1 =
∧

j∈J
ϕ j and ϕ2 =

∧

i∈I
ϕi

dλ
k+1
E

(E(Xi),ϕ2) if ϕ1 = Xi for some i ∈ I
dλ

k+1
E

(ϕ1,E(Xi)) if ϕ2 = Xi for some i ∈ I
1 otherwise

and on distribution formulae as the mapping Dλ
k
E

: Ld
I×Ld

I → [0,1] such that

⋆ Dλ
k
E

(ψ1,ψ2) = K(dλ
k
E

)(ψ1,ψ2).

Notice that since distribution formulae are probability distributions over state formulae,

the Kantorovich metric is well defined on them. Moreover, we recall that the Hausdorff

metric is used in the definition of bisimulation metrics to capture nondeterministic choices

(Definition 2.7). Here, we use it to quantify the distance between conjunctions of formulae,

which is natural since in mimicking formulae the conjunction is used to capture nondeter-

minism. The close relation between our distance on LI and the Hausdorff and Kantorovich

metrics will be crucial in the characterization of bisimilarity metric (Theorem 5.24).

Example 5.5. Let us consider the state formulae

ϕ1
1 = 〈a〉

(1

2
〈b〉⊤⊕ 1

2
〈c〉⊤

)

ϕ2
1 = 〈a〉〈b〉⊤ ϕ3

1 = b̄

ϕ1
2 = 〈a〉

(1

4
Xi⊕

3

4
〈c〉⊤

)

ϕ2
2 = 〈a〉

(5

6
〈b〉⊤⊕ 1

6
〈c〉⊤

)

ϕ3
2 = b̄

and, for for J = {1,2,3} = I , define

ϕ1 =
∧

j∈J
ϕ

j
1 and ϕ2 =

∧

i∈I
ϕi

2.

We aim to evaluate dλ
k
E

(ϕ1,ϕ2) for all k ∈N and any guarded endodeclaration E on LI.

For k = 0, Definition 5.13 directly gives dλ
0
E

(ϕ1,ϕ2) = 0.

Let us consider now the case k = 1. It is immediate to see that dλ
1
E

(ϕ3
1,ϕ3

2) = 0 and that

dλ
1
E

(ϕ3
1,ϕi

2) = 1 for i 6= 3 and dλ
1
E

(ϕ
j
1,ϕ3

2) = 1 for j 6= 3. Next, we aim to evaluate dλ
1
E

(ϕ1
1,ϕ1

2).

By Definition 5.13 we have

dλ
1
E (ϕ1

1,ϕ1
2) =λ ·Dλ

0
E

(1

2
〈b〉⊤⊕ 1

2
〈c〉⊤,

1

4
Xi⊕

3

4
〈c〉⊤

)

=λ ·K(dλ
0
E

)
(1

2
〈b〉⊤⊕ 1

2
〈c〉⊤,

1

4
Xi⊕

3

4
〈c〉⊤

)

= 0

where the last equality follows from the definition of dλ
0
E

. Analogously we obtain dλ
1
E

(ϕ1
1,ϕ2

2) =
dλ

1
E

(ϕ2
1,ϕ1

2) = dλ
1
E

(ϕ2
1,ϕ2

2) = 0. Then we have

dλ
1
E (ϕ1,ϕ2) = H(dλ

1
E )({ϕ

j
1 | j ∈J }, {ϕi

2 | i ∈ I})

174



5.5. LS-characterization of bisimilarity metric

= max
{

sup
j∈J

inf
i∈I

dλ
1
E (ϕ

j
1,ϕi

2), sup
i∈I

inf
j∈J

dλ
1
E (ϕ

j
1,ϕi

2)
}

= max{0, 0} = 0

where the second equality follows since for each j ∈J (resp. i ∈ I) there is at least one i ∈ I
(resp. j ∈J ) such that dλ

1
E

(ϕ
j
1,ϕi

2) = 0.

Let us deal with the case k = 2. As in case k = 1 we have

dλ
2
E (ϕ3

1,ϕi
2) =

{

0 if i = 3

1 otherwise
and, analogously, dλ

2
E (ϕ

j
1,ϕ3

2) =
{

0 if j = 3

1 otherwise.

Next, we evaluate dλ
2
E

(ϕ1
1,ϕ2

2). To this aim, let ψ1
1 =

1
2
〈b〉⊤⊕ 1

2
〈c〉⊤ and ψ2

2 =
5
6
〈b〉⊤⊕ 1

6
〈c〉⊤.

Then we have

dλ
2
E (ϕ1

1,ϕ2
2) =λ ·K(dλ

1
E )(ψ1

1,ψ2
2)

=λ · min
w∈W(ψ1

1,ψ2
2)

∑

φ∈supp(ψ1
1),φ′∈supp(ψ2

2)

w(φ,φ′) dλ
1
E (φ,φ′). (5.23)

As supp(ψ1
1) = {〈b〉⊤,〈c〉⊤} = supp(ψ2

2), for all φ ∈ supp(ψ1
1) and φ′ ∈ supp(ψ2

2) we have

dλ
1
E (φ,φ′) =

{

0 if φ=φ′

1 otherwise.

It is not hard to see that the matching w̃ ∈W(ψ1
1,ψ2

2) defined as

w̃(〈b〉⊤,〈b〉⊤) = 1

2
, w̃(〈b〉⊤,〈c〉⊤) = 0, w̃(〈c〉⊤,〈c〉⊤) = 1

6
, w̃(〈c〉⊤,〈b〉⊤) = 1

3

realizes the minimum in Equation (5.23). More precisely, we gather

(5.23) =λ ·
(1

2
dλ

1
E (〈b〉⊤,〈b〉⊤)+ 1

6
dλ

1
E (〈c〉⊤,〈c〉⊤)+ 1

3
dλ

1
E (〈c〉⊤,〈b〉⊤)

)

=λ ·
(1

2
·0+ 1

6
·0+ 1

3
·1

)

= λ

3
.

We have obtained that dλ
2
E

(ϕ1
1,ϕ2

2) =λ/3. In a similar fashion we obtain dλ
2
E

(ϕ2
1,ϕ2

2) =λ/6.

To conclude we need to evaluate dλ
2
E

(ϕ1
1,ϕ1

2) and dλ
2
E

(ϕ2
1,ϕ1

2). These values will depend on

the endodeclaration E . In fact, if we denote ψ1
2 =

1
4

Xi⊕ 3
4
〈c〉⊤ we have

dλ
2
E (ϕ1

1,ϕ1
2) =λ ·K(dλ

1
E )(ψ1

1,ψ1
2)

=λ · min
w∈W(ψ1

1,ψ1
2)

∑

φ∈supp(ψ1
1),φ′∈supp(ψ1

2)

w(φ,φ′) dλ
1
E (φ,φ′). (5.24)

We have supp(ψ1
2) = {Xi,〈c〉⊤} and each optimal matching w̃ ∈W(ψ1

1,ψ1
2) with respect to

Equation (5.24) should be such that w̃(〈c〉⊤,〈c〉⊤) = 1/2, thus implying w̃(〈c〉⊤, Xi) = 0 and

therefore w̃(〈b〉⊤, Xi) = 1/4. Consequently, we obtain w̃(〈b〉⊤,〈c〉⊤) = 1/4. Then we have

(5.24) =λ ·
(1

2
dλ

1
E (〈c〉⊤,〈c〉⊤)+ 1

4
dλ

1
E (〈b〉⊤,〈c〉⊤)+ 1

4
dλ

1
E (〈b〉⊤, Xi)

)
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=λ ·
(1

2
·0+ 1

4
·1+ 1

4
dλ

1
E (〈b〉⊤, Xi)

)

= λ

4

(

1+dλ
1
E (〈b〉⊤, Xi)

)

= λ

4

(

1+dλ
1
E

(

〈b〉⊤,E(Xi)
)

)

.

We have therefore obtained that

dλ
2
E (ϕ1

1,ϕ1
2) =

{

λ
4

if E(Xi) ≡E

∧

h∈H〈b〉ψh for any ψh ∈Ld
I

λ
2

otherwise.

In a similar fashion we obtain that

dλ
2
E (ϕ2

1,ϕ1
2) =

{

3λ
4

if E(Xi) ≡E

∧

h∈H〈b〉ψh for any ψh ∈Ld
I

λ otherwise.

To conclude, if E(Xi) ≡E

∧

h∈H〈b〉ψh for any ψh ∈Ld
I, then we have

dλ
2
E (ϕ1,ϕ2)

= H(dλ
2
E )({ϕ

j
1 | j ∈J }, {ϕi

2 | i ∈ I})

= max
{

sup
j∈J

inf
i∈I

dλ
2
E (ϕ

j
1,ϕi

2), sup
i∈I

inf
j∈J

dλ
2
E (ϕ

j
1,ϕi

2)
}

= max
{

max
{

dλ
2
E (ϕ1

1,ϕ1
2),dλ

2
E (ϕ2

1,ϕ2
2)

}

,max
{

dλ
2
E (ϕ1

1,ϕ1
2),dλ

2
E (ϕ2

1,ϕ2
2)

}}

= max

{

max

{

λ

4
,
λ

6

}

,max

{

λ

4
,
λ

6

}}

= λ

4
.

If, conversely, E(Xi) 6≡E

∧

h∈H〈b〉ψh for any ψh ∈Ld
I, then

dλ
2
E (ϕ1,ϕ2)

= H(dλ
2
E )({ϕ

j
1 | j ∈J }, {ϕi

2 | i ∈ I})

= max
{

sup
j∈J

inf
i∈I

dλ
2
E (ϕ

j
1,ϕi

2), sup
i∈I

inf
j∈J

dλ
2
E (ϕ

j
1,ϕi

2)
}

= max
{

max
{

dλ
2
E (ϕ1

1,ϕ2
2),dλ

2
E (ϕ2

1,ϕ2
2)

}

,max
{

dλ
2
E (ϕ1

1,ϕ1
2),dλ

2
E (ϕ2

1,ϕ2
2)

}}

= max

{

max

{

λ

3
,
λ

6

}

,max

{

λ

2
,
λ

6

}}

= λ

2
.

Finally, let us deal with the case k ≥ 3. First of all we notice that if E(Xi) 6≡E

∧

h∈H〈b〉ψh

for any ψh ∈Ld
I, then dλ

k
E

(ϕ1,ϕ2) = dλ
2
E

(ϕ1,ϕ2) = λ
2

for all k ≥ 3. If E(Xi) ≡E

∧

h∈H〈b〉ψh for

any ψh ∈ Ld
I, we obtain that dλ

3
E

(ϕ1,ϕ2) ≥ dλ
2
E

(ϕ1,ϕ2) = λ
4

, with dλ
3
E

(ϕ1,ϕ2) = dλ
2
E

(ϕ1,ϕ2),
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if E(Xi) ≡E 〈b〉⊤, and dλ
3
E

(ϕ1,ϕ2) > dλ
2
E

(ϕ1,ϕ2), otherwise. Then we have dλ
k
E

(ϕ1,ϕ2) =
dλ

3
E

(ϕ1,ϕ2) for all k > 3. For instance, consider the evaluation of dλ
3
E

(ϕ1
1,ϕ1

2). From previous

considerations we gather

dλ
3
E

(ϕ1
1,ϕ1

2) =λ ·K(dλ
1
E )(ψ1

1,ψ1
2)

=λ · min
w∈W(ψ1

1,ψ1
2)

∑

φ∈supp(ψ1
1),φ′∈supp(ψ1

2)

w(φ,φ′) dλ
2
E (φ,φ′)

=λ ·
(1

2
dλ

2
E (〈c〉⊤,〈c〉⊤)+ 1

4
dλ

2
E (〈b〉⊤,〈c〉⊤)+ 1

4
dλ

2
E (〈b〉⊤, Xi)

)

=λ ·
(1

2
·0+ 1

4
·1+ 1

4
dλ

2
E (〈b〉⊤, Xi)

)

= λ

4

(

1+dλ
2
E (〈b〉⊤, Xi)

)

= λ

4

(

1+dλ
2
E

(

〈b〉⊤,E(Xi)
)

)

(5.25)

where

dλ
2
E

(

〈b〉⊤,E(Xi)
)

=















0 if E(Xi) ≡E 〈b〉⊤
λ if E(Xi) 6≡E 〈b〉⊤ and E(Xi) ≡E

∧

h∈H〈b〉ψh

1 otherwise.

Therefore we obtain that

dλ
3
E

(ϕ1
1,ϕ1

2) =















λ
4

if E(Xi) ≡E 〈b〉⊤
λ
4

(1+λ) if E(Xi) 6≡E 〈b〉⊤ and E(Xi) ≡E

∧

h∈H〈b〉ψh

λ
2

otherwise.

In particular this implies that for E(Xi) 6≡E 〈b〉⊤ and E(Xi) ≡E

∧

h∈H〈b〉ψh we have

dλ
2
E (ϕ1

1,ϕ1
2) = λ

4
≤ λ

4
(1+λ) = dλ

3
E

(ϕ1
1,ϕ1

2).

Finally we notice that if E(Xi) 6≡E 〈b〉⊤ and E(Xi) ≡E

∧

h∈H〈b〉ψh then dλ
2
E

(〈b〉⊤,E(Xi)) =λ

independently from the structure of the distribution formulaψ, thus giving dλ
k
E

(〈b〉⊤,E(Xi)) =
λ for all k ≥ 2. Therefore we can conclude that dλ

k
E

(ϕ1
1,ϕ1

2) = dλ
3
E

(ϕ1
1,ϕ1

2) for all k > 3. �

We show now that each mapping dλ
k
E

is actually a pseudometric bounded by 1.

Proposition 5.18. All mappings dλ
k
E

with k ∈N are 1-bounded pseudometrics.

Proof. We prove first that each dλ
k
E

is a pseudometric, namely that we have:

✶✳ dλ
k
E

(ϕ,ϕ) = 0, for all ϕ ∈Ls
I,

✷✳ dλ
k
E

(ϕ1,ϕ2) = dλ
k
E

(ϕ2,ϕ1), for all ϕ1,ϕ2 ∈Ls
I,

✸✳ dλ
k
E

(ϕ1,ϕ2) ≤ dλ
k
E

(ϕ1,ϕ3)+dλ
k
E

(ϕ3,ϕ2) for all ϕ1,ϕ2,ϕ3 ∈Ls
I.
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The proofs of the three properties are by induction over k ∈ N and over the structure of

formulae. The interesting case is property 3, where the base case k = 0 of the inductive

reasoning follows immediately by dλ
0
E

(ϕi ,ϕ j ) = 0 for all i , j ∈ {1,2,3}, and the proof of the

inductive step k > 0 is by structural induction over ϕ1. In particular we notice that the proof

for the case of the distance on conjunctions of formulae follows from its definition through

the Hausdorff functional and Proposition 2.2. Similarly, the proof for the case of the distance

between diamond operators follows from the definition of the distance on distribution

formulae in terms of the Kantorovich functional and Proposition 2.1.

To conclude, we need to show that for all k ∈ N the pseudometric dλ
k
E

is 1-bounded,

namely dλ
k
E

(ϕ,ϕ′) ≤ 1. This can be done through a simple induction over k ∈N and over the

structure of formulae. �

As expected, (dλ
k
E

(ϕ,ϕ′))k∈N is a non decreasing sequence of distances.

Proposition 5.19. For all k ∈N and ϕ,ϕ′ ∈Ls
I, we have dλ

k+1
E

(ϕ,ϕ′) ≥ dλ
k
E

(ϕ,ϕ′).

Proof. The proof is by induction over k ∈N and over the structure of formulae. �

Being all dλ
k
E

1-bounded, the sequence (dλ
k
E

(ϕ,ϕ′))k∈N has a limit in [0,1].

Proposition 5.20. For all ϕ,ϕ′ ∈Ls
I, limk→∞dλ

k
E

(ϕ,ϕ′) ∈ [0,1].

Proof. Since dλ
k
E

is a 1-bounded pseudometric (Proposition 5.18), for all k ∈ N we

have dλ
k
E

(ϕ,ϕ′) ≤ 1. Then, by Proposition 5.19 we have dλ
k
E

(ϕ,ϕ′) ≤ dλ
k+1
E

(ϕ,ϕ′). Hence

(dλ
k
E

(ϕ,ϕ′))k∈N is a 1-bounded non decreasing sequence. This ensures that limk→∞dλ
k
E

(ϕ,ϕ′)

exists and limk→∞dλ
k
E

(ϕ,ϕ′) ∈ [0,1]. �

Hence we can define the distance under E between formuale as the limit of their up-to-k

distances under E .

Definition 5.14 (Distance under E). Given an image finite and guarded endodeclaration E on

LI, the distance under E is defined over state formulae as the mapping dλE : Ls
I×Ls

I → [0,1]

such that

dλE (ϕ,ϕ′) = lim
k→∞

dλ
k
E

(ϕ,ϕ′).

By Proposition 5.20 we are guaranteed that dλE is well defined. Now we show that dλE is

a 1-bounded pseudometric.

Proposition 5.21. The mapping dλE is a 1-bounded pseudometric.

Proof. By Proposition 5.20 we already know that dλE (ϕ,ϕ) ≤ 1 for all ϕ ∈Ls
I. To prove

that dλE is a pseudometric we need to show the following properties:

✶✳ dλE (ϕ,ϕ) = 0, for all ϕ ∈Ls
I,

✷✳ dλE (ϕ1,ϕ2) = dλE (ϕ2,ϕ1), for all ϕ1,ϕ2 ∈Ls
I,

✸✳ dλE (ϕ1,ϕ2) ≤ dλE (ϕ1,ϕ3)+dλE (ϕ3,ϕ2) for all ϕ1,ϕ2,ϕ3 ∈Ls
I.
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Since by definition dλE (ϕ,ϕ′) = limk→∞dλ
k
E

(ϕ,ϕ′), the three properties follow by Proposi-

tion 5.18 and the linearity of the limit. �

We show now that the kernel of the distance dλE is given by the LI-equivalence under E ,

namely ≡E .

Proposition 5.22. Given ϕ,ϕ′ ∈Ls
I, we have dλE (ϕ,ϕ′) = 0 if and only if ϕ ≡E ϕ′.

Proof. (⇒). Assume first dλE (ϕ,ϕ′) = 0. To prove ϕ ≡E ϕ′ we can proceed by structural

induction over ϕ. The interesting cases are the inductive steps of conjunction and diamond

operator.

⋆ Inductive step ϕ=∧

j∈J ϕ j . Consider ϕ′ =∧

i∈Iϕi . Then

0 = dλE (ϕ,ϕ′)

= dλE (
∧

j∈J
ϕ j ,

∧

i∈I
ϕi )

= max{sup
j∈J

inf
i∈I

dλE (ϕ j ,ϕi ), sup
i∈I

inf
j∈J

dλE (ϕ j ,ϕ j )}

iff sup
j∈J

inf
i∈I

dλE (ϕ j ,ϕi ) = 0 and sup
i∈I

inf
j∈J

dλE (ϕ j ,ϕi ) = 0

iff for all j ∈J there is an i j ∈ I such that dλE (ϕ j ,ϕi j
) = 0

and for all i ∈ I there is a ji ∈J such that dλE (ϕ ji
,ϕi ) = 0.

By structural induction on ϕ j and ϕ ji
, this implies that ϕ j ≡E ϕi j

and ϕ ji
≡E ϕi .

Hence, if we define a function f : J → I as f ( j ) = i j and a function g : I →J as g (i ) =
ji then we obtain that ϕ j ≡E ϕ f ( j ), for all j ∈J , and ϕi ≡E ϕg (i ), for all i ∈ I . Next, we

note that if f is not injective then we can reduce J modulo LI-equivalence under E

in order to make it so. In detail, assume that there are two indexes j1, j2 ∈J such that

f ( j1) = f ( j2), from which we draw ϕ j1 ≡E ϕ f ( j1) = ϕ f ( j2) and ϕ j2 ≡E ϕ f ( j2) = ϕ f ( j1).

Hence, by transitivity of ≡E , we obtain ϕ j1 ≡E ϕ j2 . Thus, we can consider the formula
∧

j∈(J \{ j2})ϕ j ≡E

∧

j∈J ϕ j (by Definition 5.9). We can repeat this way of reasoning until

we obtain a set of indexes J ′ ⊆J such that ϕ ≡E

∧

j∈J ′ϕ j and f : J ′ → I is injective.

With an analogous reasoning, we obtain that there exists a set of indexes I ′ ⊆ I such

that ϕ′ ≡E

∧

i∈I ′ϕi and g : I ′ →J is injective. Moreover, we note that given j ∈J ′,
by construction, we have f ( j ) = i j , which implies dλE (ϕ j ,ϕi j

) = 0. Thus, j = ji j
that

is j = g (i j ). Furthermore, if we restrict the co-domain of f to I ′, by construction we

have that i j is unique modulo ≡E and for all i ∈ I ′ there is a j in J ′ such that i = f ( j ).

Hence we gather that f : J ′ → I ′ is also surjective. Since a similar argument holds for

g , we can conclude that f is a bijective function with g as inverse. Therefore, we have

that there is a bijective function f : J ′ → I ′ such that ϕ j ≡E ϕ f ( j ) for all j ∈J ′. Hence

we have

∧

j∈J
ϕ j ≡E

∧

j∈J ′
ϕ j (by construction of J ′)

≡E

∧

i∈I ′
ϕi (by the choice of f and Definition 5.9)
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≡E

∧

i∈I
ϕi (by construction of I ′).

⋆ Inductive stepϕ= 〈a〉⊕i∈I riϕi . By definition, dλE (ϕ,ϕ′) < 1 only ifϕ′ ≡E 〈a〉⊕ j∈J r jϕ j .

Let ψϕ =⊕

i∈I riϕi and ψϕ′ =⊕

j∈J r jϕ j . We have

0 = dλE (〈a〉
⊕

i∈I

riϕi ,〈a〉
⊕

j∈J

r jϕ j )

=λ ·DλE (
⊕

i∈I

riϕi ,
⊕

j∈J

r jϕ j )

=λ min
w∈W(ψϕ,ψϕ′ )

∑

i∈I , j∈J

w(ϕi ,ϕ j )dλE (ϕi ,ϕ j ).

For each i ∈ I and j ∈ J we can distinguish two cases:

✯ either w(ϕi ,ϕ j ) = 0,

✯ or w(ϕi ,ϕ j ) > 0, implying dλE (ϕi ,ϕ j ) = 0. By induction we get ϕi ≡E ϕ j .

For each i , let Ji be the set of indexes ji for which w(ϕi ,ϕ ji
) > 0 and, symmetrically,

for each j let I j be the set of indexes i j for which w(ϕi j
,ϕ j ) > 0. So we have

ϕ′ ≡E 〈a〉
⊕

j∈J

(
∑

i∈I

w(ϕ j ,ϕi )
)

ϕ j

≡E 〈a〉
⊕

j∈J

(
∑

i j∈I

w(ϕ j ,ϕi j
)
)

ϕ j

≡E 〈a〉
⊕

j∈J , i j∈I

w(ϕ j ,ϕi j
)ϕi j

≡E 〈a〉
⊕

j∈J , i j∈I , j ′
i j
∈J

w(ϕ j ′
i j

,ϕi j
)ϕ j ′

i j

≡E 〈a〉
⊕

i∈I , ji∈J

w(ϕ ji
,ϕi )ϕ ji

≡E 〈a〉
⊕

i∈I

(
∑

ji∈J

w(ϕ ji
,ϕi )

)

ϕi

≡E 〈a〉
⊕

i∈I

(
∑

j∈J

w(ϕ j ,ϕi )
)

ϕi

≡E ϕ.

(⇐). Assume now that ϕ ≡E ϕ′. To prove dλE (ϕ,ϕ′) = 0 we can proceed by structural

induction over ϕ. The interesting case is that of the diamond operator.

Consider the inductive step ϕ= 〈a〉⊕i∈I riϕi . By definition, ϕ′ ≡E 〈a〉⊕i∈I riϕi would

imply ϕ′ =∧

j∈J 〈a〉ψ j for an arbitrary set of indexes J 6= ; so that ψ j (≡E )† ⊕

i∈I riϕi for all

j ∈J . We consider only the case of |J | = 1, since the general case for |J | > 1 directly follows

from it. Hence let us consider ϕ′ = 〈a〉⊕ i∈I
ji ∈Ji

r ji
ϕ ji

with
∑

ji∈Ji
r ji

= ri and ϕ ji
≡E ϕi for all

ji ∈ Ji . Let ψϕ =⊕

i∈I riϕi and ψϕ′ =⊕

i∈I
ji ∈Ji

r ji
ϕ ji

. Then

dλE (〈a〉
⊕

i∈I

riϕi ,〈a〉
⊕

i∈I , ji∈Ji

r ji
ϕ ji

)
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=λDλE (
⊕

i∈I

riϕi ,
⊕

i∈I , ji∈Ji

r ji
ϕ ji

)

=λ min
w∈W(ψϕ,ψϕ′ )

∑

i∈I , jh∈Jh

w(ϕi ,ϕ jh
)dλE (ϕi ,ϕ jh

)

≤λ
∑

i∈I , jh∈Jh

w̃(ϕi ,ϕ jh
)dλE (ϕi ,ϕ jh

)

=λ
∑

i∈I , ji∈Ji

r ji
dλE (ϕi ,ϕ ji

)

=λ
∑

i∈I , ji∈Ji

r ji
0 (by structural induction over ϕi )

= 0

where the inequality follows by observing that function w̃ defined by

w̃(ϕi ,ϕ jh
) =

{

r ji
if h = i

0 otherwise

is a matching in W(ψϕ,ψϕ′). �

LOGICAL DISTANCE BETWEEN PROCESSES

Let us focus now on LS and on the mimicking endodeclaration M. By exploiting the

distance between formulae under M and the close relation between processes and their

own mimicking formulae, we define a distance between processes. All distances between

probabilistic processes proposed so far take into account the disparities in their branching

structures as well as the differences between the probabilistic choices, in order to conciliate

behavioral equivalence with quantitative properties. By construction, each mimicking

formula is univocally determined by the process and in turn the branching and probabilistic

structure of the process are univocally captured by the mimicking formula. Hence, we define

the logical distance on processes as the distance between their mimicking formulae.

Definition 5.15 (Logical bisimulation distance). Let λ ∈ (0,1]. For any k ∈ N, the up-to-k

logical bisimulation distance over processes ℓk
λ

:S×S → [0,1] is defined, for all s, t ∈S , by

ℓk
λ(s, t ) = dλ

k
M

(Xs , X t ).

Then the logical bisimulation distance over processes ℓλ : S ×S → [0,1] is defined, for all

s, t ∈S , by

ℓλ(s, t ) = dλM(Xs , X t ).

Notice that both ℓk
λ

and ℓλ are well-defined since M is image finite and guarded.

Notice also that ℓλ(s, t ) = limk→∞ℓk
λ

(s, t ) (see Definition 5.14).

We give now the characterization result for up-to-k-bisimilarity metric.

Theorem 5.23. For all k ∈N and for all processes s, t ∈S we have

ℓk
λ(s, t ) = dk

λ(s, t ).
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Proof. We proceed by induction over k.

The base case k = 0 is immediate, since both dλ
0
M

and d0
λ

equal the zero function 0.

Consider now the inductive step k > 0. To simplify reasoning we exploit the nesting of

conjunctions in the definition of mimicking formulae. However, we remark that the proof

can be written without nesting the conjunctions but the presentation of results and general

reasoning would turn out to be technically heavier.

For any process s, we define

φs =
∧

(s,a,πs )∈→
〈a〉

⊕

s′∈supp(πs )

πs(s′)Xs′ and θs =
∧

b 6∈init(s)

b̄

so that the mimicking formula of s can be rewritten as ϕs =φs ∧ θs . Hence, for any pair of

processes s, t ∈S we have

dλ
k+1
M

(Xs , X t ) = dλ
k+1
M

(ϕs ,ϕt )

= dλ
k+1
M

(φs ∧ θs ,φt ∧ θt )

= max























max

{

min{dλ
k+1
M

(φs , φt ), dλ
k+1
M

(φs , θt )}

min{dλ
k+1
M

(θs , φt ), dλ
k+1
M

(θs , θt )}

}

max

{

min{dλ
k+1
M

(φs , φt ), dλ
k+1
M

(θs , φt )}

min{dλ
k+1
M

(φs , θt ), dλ
k+1
M

(θs , θt )}

}























= max























max

{

min{dλ
k+1
M

(φs , φt ), 1}

min{1, dλ
k+1
M

(θs , θt )}

}

max

{

min{dλ
k+1
M

(φs , φt ), 1}

min{1, dλ
k+1
M

(θs , θt )}

}























= max{dλ
k+1
M

(φs ,φt ),dλ
k+1
M

(θs ,θt )}

where the second last equality follows by

dλ
k+1
M

(φs ,θt ) = dλ
k+1
M

(

∧

(s,a,πs )∈→
〈a〉

⊕

s′∈supp(πs )

πs(s′)Xs′ ,
∧

b′ 6∈init(t )

b̄′

)

= max















sup
(s,a,πs )∈→

inf
b′ 6∈init(t )

dλ
k+1
M

(

〈a〉
⊕

s′∈supp(πs )

πs(s′)Xs′ , b̄′
)

sup
b′ 6∈init(t )

inf
(s,a,πs )∈→

dλ
k+1
M

(

〈a〉
⊕

s′∈supp(πs )

π(s′)Xs′ , b̄′
)















= max
{

sup
(s,a,πs )∈→

inf
b′ 6∈init(t )

{1}, sup
b′ 6∈init(t )

inf
(s,a,πs )∈→

{1}
}

= 1

and, analogously, dλ
k+1
M

(θs ,φt ) = 1.

Summarizing, we need to show that

dk+1
λ (s, t ) = max{dλ

k+1
M

(φs ,φt ),dλ
k+1
M

(θs ,θt )}. (5.26)
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5.5. LS-characterization of bisimilarity metric

To prove Equation (5.26) we distinguish two cases: either init(s) 6= init(t) or init(s) =
init(t). Consider the case init(s) 6= init(t). Assume wlog. that b̂ ∈ init(s) \ init(t). The case

b̂ ∈ init(t ) \ init(s) is analogous. Under this assumption, we have

dλ
k+1
M

(θs ,θt ) = max{ sup
b 6∈init(s)

inf
b′ 6∈init(t )

dλ
k+1
M

(b̄, b̄′), sup
b′ 6∈init(t )

inf
b 6∈init(s)

dλ
k+1
M

(b̄, b̄′)}

≥max{ sup
b 6∈init(s)

inf
b′ 6∈init(t )

dλ
k+1
M

(b̄, b̄′), inf
b 6∈init(s)

dλ
k+1
M

(b̄,
¯̂
b)}

= max{ sup
b 6∈init(s)

inf
b′ 6∈init(t )

dλ
k+1
M

(b̄, b̄′), 1} = 1

where the second last equality follows from b̂ ∈ init(s). Hence Equation (5.26) instantiates as

dk+1
λ (s, t ) = max{dλ

k+1
M

(φs ,φt ),dλ
k+1
M

(θs ,θt )} = max{dλ
k+1
M

(φs ,φt ),1} = 1

which holds by init(s) 6= init(t) and the following result from [92] (Proposition 2.16): Let

s, t ∈S be two processes with init(s) 6= init(t ). Then, for all k > 0 it holds that dk
λ

(s, t ) = 1.

The second case is init(s) = init(t). We prove first that dλ
k+1
M

(θs ,θt ) = 0. From init(s) =
init(t ) it follows that for each b ∈A we have s

b−→6 if and only if t
b−→6 . Hence we have

dλ
k+1
M

(θs ,θt ) = max{ sup
b 6∈init(s)

inf
b′ 6∈init(t )

dλ
k+1
M

(b̄, b̄′), sup
b′ 6∈init(t )

inf
b 6∈init(s)

dλ
k+1
M

(b̄, b̄′)}

≤ max{ sup
b 6∈init(s)

dλ
k+1
M

(b̄, b̄), sup
b′ 6∈init(t )

dλ
k+1
M

(b̄′, b̄′)}

= max{ sup
b 6∈init(s)

0, sup
b′ 6∈init(t )

0} = 0.

Therefore, Equation (5.26) becomes

dk+1
λ (s, t ) = dλ

k+1
M

(φs ,φt ) (5.27)

which follows by

dλ
k+1
M

(φs ,φt )

= dλ
k+1
M

(
∧

(s,a,πs )∈→
〈a〉

⊕

s′∈supp(πs )

πs(s′)Xs′ ,
∧

(t ,a,πt )∈→
〈a〉

⊕

t ′∈supp(πt )

πt (t ′)X t ′)

= max















sup
(s,a,πs )∈→

inf
(t ,a,πt )∈→

dλ
k+1
M

(

〈a〉
⊕

s′∈supp(πs )

πs(s′)Xs′ ,〈a〉
⊕

t ′∈supp(πt )

πt (t ′)X t ′

)

sup
(t ,a,πt )∈→

inf
(s,a,πs )∈→

dλ
k+1
M

(

〈a〉
⊕

s′∈supp(πs )

πs(s′)Xs′ ,〈a〉
⊕

t ′∈supp(πt )

πt (t ′)X t ′

)















= max















sup
a∈A

sup
(s,a,πs )∈→

inf
(t ,a,πt )∈→

λDλ
k
M

(

⊕

s′∈supp(πs )

πs(s′)Xs′ ,
⊕

t ′∈supp(πt )

πt (t ′)X t ′

)

sup
a∈A

sup
(t ,a,πt )∈→

inf
(s,a,πs )∈→

λDλ
k
M

(

⊕

s′∈supp(πs )

πs(s′)Xs′ ,
⊕

t ′∈supp(πt )

πt (t ′)X t ′

)















= max











sup
a∈A

sup
(s,a,πs )∈→

inf
(t ,a,πt )∈→

λ min
w∈W(ψπs ,ψπt )

∑

s′,t ′∈S
w(Xs′ , X t ′)dλ

k
M

(Xs′ , X t ′)

sup
a∈A

sup
(t ,a,πt )∈→

inf
(s,a,πs )∈→

λ min
w∈W(ψπs ,ψπt )

∑

s′,t ′∈S
w(Xs′ , X t ′)dλ

k
M

(Xs′ , X t ′)










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= max











sup
a∈A

sup
(s,a,πs )∈→

inf
(t ,a,πt )∈→

λ min
w∈W(ψπs ,ψπt )

∑

s′,t ′∈S
w(Xs′ , X t ′)dλ

k
M

(M(s′),M(t ′))

sup
a∈A

sup
(t ,a,πt )∈→

inf
(s,a,πs )∈→

λ min
w∈W(ψπs ,ψπt )

∑

s′,t ′∈S
w(Xs′ , X t ′)dλ

k
M

(M(s′),M(t ′))











= max











sup
a∈A

sup
(s,a,πs )∈→

inf
(t ,a,πt )∈→

λ min
w∈W(ψπs ,ψπt )

∑

s′,t ′∈S
w(Xs′ , X t ′)dλ

k
M

(ϕs′ ,ϕt ′)

sup
a∈A

sup
(t ,a,πt )∈→

inf
(s,a,πs )∈→

λ min
w∈W(ψπs ,ψπt )

∑

s′,t ′∈S
w(Xs′ , X t ′)dλ

k
M

(ϕs′ ,ϕt ′)











= max











sup
a∈A

sup
(s,a,πs )∈→

inf
(t ,a,πt )∈→

λ min
w∈W(ψπs ,ψπt )

∑

s′,t ′∈S
w(Xs′ , X t ′)dk

λ(s′, t ′)

sup
a∈A

sup
(t ,a,πt )∈→

inf
(s,a,πs )∈→

λ min
w∈W(ψπs ,ψπt )

∑

s′,t ′∈S
w(Xs′ , X t ′)dk

λ(s′, t ′)











= max











sup
a∈A

sup
(s,a,πs )∈→

inf
(t ,a,πt )∈→

λ min
w∈W(πs ,πt )

∑

s′,t ′∈S
w(s′, t ′)dk

λ(s′, t ′)

sup
a∈A

sup
(t ,a,πt )∈→

inf
(s,a,πs )∈→

λ min
w∈W(πs ,πt )

∑

s′,t ′∈S
w(s′, t ′)dk

λ(s′, t ′)











= max











sup
a∈A

sup
(s,a,πs )∈→

inf
(t ,a,πt )∈→

λK(dk
λ)(πs ,πt )

sup
a∈A

sup
(t ,a,πt )∈→

inf
(s,a,πs )∈→

λK(dk
λ)(πs ,πt )











= dk+1
λ (s, t )

where

⋆ ψπs =
⊕

s′∈supp(πs )πs(s′)Xs′ ;

⋆ ψπt =
⊕

t ′∈supp(πt )πt (t ′)X t ′ ;

⋆ the fifth equality follows by Definition 5.13;

⋆ the sixth equality follows by definition of the mimicking endodeclaration M;

⋆ the seventh equality follows by the inductive hypothesis;

⋆ the eight equality holds since each matching w for mimicking distribution formulae

ψπs ,ψπt is indeed a matching in W(πs ,πt ). In fact the functions w×Ls
S
×Ls

S
→ [0,1]

and w′×S ×S → [0,1] with w(ϕs′ ,ϕt ′) =w′(s′, t ′) for all s′, t ′ ∈ S , are such that w ∈
W(ψπs ,ψπt ) if and only if w′ ∈W(πs ,πt ), which is equivalent to have both

∑

ϕ∈Ls
S

w(ϕs′ ,ϕ) =πs(s′) if and only if
∑

t ′∈S
w′(s′, t ′) =πs(s′)

∑

ϕ∈Ls
S

w(ϕ,ϕt ′) =πt (t ′) if and only if
∑

s′∈S
w′(s′, t ′) =πt (t ′)
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5.6. LS-characterizations of branching hemimetrics

which follow immediately from w(ϕs′ ,ϕt ′) =w′(s′, t ′) for all s′, t ′ ∈S .

�

From the characterization result for the up-to-k-bisimilarity metrics we derive that for

the bisimilarity metric.

Theorem 5.24. For all processes s, t ∈S we have

ℓλ(s, t ) = dλ(s, t ).

Proof. By definition ℓλ(s, t) = dλM(Xs , X t ) = dλM(ϕs ,ϕt ) = limk→∞dλ
k
M

(ϕs ,ϕt ) and

dλ(s, t ) = limk→∞ dk
λ

(s, t ). Moreover, by Theorem 5.23 for each k ∈N it holds that dλ
k
M

(ϕs ,ϕt ) =
dk
λ

(s, t ). Then the thesis follows by the uniqueness of the limit. �

We infer that two processes are bisimilar if and only if they are at logical bisimulation

distance 0.

Corollary 5.25. For all processes s, t ∈S we have

s ∼ t if and only if ℓλ(s, t ) = 0.

Proof.

s ∼ t iff dλ(s, t ) = 0 (by Proposition 2.7)

iff ℓλ(s, t ) = 0 (by Theorem 5.24).

�

Moreover, the mimicking formulae of two processes are LS-equivalent under M if and

only if those processes are at logical bisimulation distance 0.

Corollary 5.26. For all processes s, t ∈S , we have

Xs ≡M X t if and only if ℓλ(s, t ) = 0.

Proof.

Xs ≡M X t iff s ∼ t (by Theorem 5.13)

iff ℓ(s, t ) = 0 (by Corollary 5.25).

�

5.6 LS -CHARACTERIZATIONS OF BRANCHING HEMIMETRICS

We have defined the metrics dλE and DλE as the exact transposition of the Hausdorff and

Kantorovich lifting functionals over the elements ofLs
I andLd

I, respectively. This is one of the
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Chapter 5. Logical characterization of branching metrics

key features that allowed us to obtain the characterization of bisimulation metric. However,

we need to answer to the natural question that may arise: what happens if we change one or

both lifting functionals in the definition of bisimilarity metric (Definition 2.18)? In this case,

the metric of Definition 5.13 would not be useful for the characterization result. However the

ideas exceeding the technical definition would be still valid, thus confirming the robustness

of our approach: to obtain the logical characterization, we have to define the logical distance

between processes as a suitable distance between the mimicking formulae. Hence, if in

the definition of bisimulation metric the Kantorovich lifting functional K is substituted

by another lifting functional P , then we should modify the distance between distribution

formulae as Dλ
k
E

(ψ1,ψ2) = P (dλ
k
E

)(ψ1,ψ2). If conversely the Hausdorff lifting functional H

is changed with another lifting functional, then we would have to modify the definition of

dλ
k
E

on the boolean operator
∧

accordingly.

Notice that no change would need to be done on the class of formulae characterizing the

kernel of the metric. This means that the logical characterization obtained for the kernel of

the metric would be still valid. In this case of real-valued logics, a variation in the definition

of the metric would imply syntactic and semantic modifications to the class of formulae and

thus the characterization of the kernel would have to be proven again.

As an example, we consider the two branching distances for probabilistic ready similarity

and probabilistic similarity introduced in Chapter 4, and we characterize them using the

same approach of previous Section 5.5.

LS -CHARACTERIZATION OF READY SIMILARITY METRIC

We exploit the logical characterization of ready similarity obtained in Section 5.4 and we

slightly modify the distance on formulae defined in Section 5.5 to obtain a logical distance

on processes characterizing the ready similarity metric. More precisely, given a generic logic

LI and an endodeclaration E on LI, for each k ∈N, the up-to-k ready simulation distance

under E is the mapping dr,k
λ,E

: Ls
I×Ls

I → [0,1] obtained from dλ
k
E

by modifying the distance

on conjunction as follows

dr,k
λ,E

(
∧

j∈J
ϕ j ,

∧

i∈I
ϕi ) = sup

j∈J
inf
i∈I

dr,k
λ,E

(ϕ j ,ϕi ).

The up-to-k ready simulation distance under E overLd
I is then the mappingDr,k

λ,E
: Ld

I×Ld
I →

[0,1] defined by

Dr,k
λ,E

(ψ1,ψ2) = K(dr,k
λ,E

)(ψ1,ψ2).

Proposition 5.27. All mappings dr,k
λ,E

and Dr,k
λ,E

with k ∈N, are 1-bounded hemimetrics.

Proof. The proof follows by applying the same arguments used in the proof of Proposi-

tion 5.18 and noticing that since dr,k
λ,E

is asymmetric on conjunction, then neither dr,k
λ,E

nor

Dr,k
λ,E

can be symmetric. �

We define the ready simulation distance under E over LI, notation dr
λ,E

, as the limit of

the up-to-k ready simulation distances under E . As in previous Section 5.5, the existence of

such a limit is guaranteed by the monotonicity and 1-boundedness of the distances.
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5.6. LS-characterizations of branching hemimetrics

Proposition 5.28. For k ∈N and ϕ,ϕ′ ∈Ls
I, we have dr,k+1

λ,E
(ϕ,ϕ′) ≥ dr,k

λ,E
(ϕ,ϕ′).

Proof. The proof follows by applying the same arguments used in the proof of Proposi-

tion 5.19. �

Proposition 5.29. For all ϕ,ϕ′ ∈Ls
I, limk→∞dr,k

λ,E
(ϕ,ϕ′) ∈ [0,1].

Proof. The proof follows by applying the same arguments used in the proof of Proposi-

tion 5.20. �

Hence we can define the ready simulation distance under E between formulae as the

limit of their up-to-k counterparts.

Definition 5.16 (Ready simulation distance under E). Given an image finite and guarded en-

dodeclaration E on LI, the ready simulation distance under E is defined over state formulae

as the mapping dr
λ,E

: Ls
I×Ls

I → [0,1] such that

dr
λ,E (ϕ,ϕ′) = lim

k→∞
dr,k
λ,E

(ϕ,ϕ′).

By Proposition 5.29 we are guaranteed that dr
λ,E

is well defined. Now we show it is a

1-bounded hemimetric on Ls
I.

Proposition 5.30. The mapping dr
λ,E

is a 1-bounded hemimetric on Ls
I.

Proof. The proof follows by applying the same arguments used in the proof of Proposi-

tion 5.18. �

We can now lift the ready simulation distance on formulae to a logical ready simulation

distance over processes.

Definition 5.17 (Logical ready simulation distance). Let λ ∈ (0,1]. For any k ∈N, the up-to-k

logical ready simulation distance over processes ℓk
r,λ

: S×S → [0,1] is defined for all s, t ∈S
by

ℓk
r,λ(s, t ) = dr,k

λ,M
(Xs , X t ).

Then, the logical ready simulation distance over processes ℓr,λ : S×S → [0,1] is defined for

all s, t ∈S as

ℓr,λ(s, t ) = dr
λ,M(Xs , X t ).

Notice that both ℓk
r,λ

and ℓr,λ are well defined since M is image finite and guarded.

Notice also that ℓr,λ(s, t ) = limk→∞ℓk
r,λ

(s, t ).

Proposition 5.31. ✶✳ For any k ∈N the mapping ℓk
r,λ

is a 1-bounded hemimetric.

✷✳ The mapping ℓr,λ is a 1-bounded hemimetric.

Proof.

✶✳ Directly by Proposition 5.27.

✷✳ Directly by Proposition 5.30.
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�

We can now formalize the characterization result for the up-to-k ready simulation metric.

Theorem 5.32. For all k ∈N and processes s, t ∈S we have ℓk
r,λ

(s, t ) = dk
r,λ

(s, t ).

Proof. The proof follows by applying the same arguments used in the proof of Theo-

rem 5.23. �

From the characterization result for the up-to-k ready similarity metrics we derive that

for ready similarity metric.

Theorem 5.33. For all processes s, t ∈S we have

ℓr,λ(s, t ) = dr,λ(s, t ).

Proof. By definition ℓr,λ(s, t) = dr
λ,M

(Xs , X t ) = dr
λ,M

(ϕs ,ϕt ) = limk→∞dr,k
λ,M

(ϕs ,ϕt ) and

dr,λ(s, t ) = limk→∞ dk
r,λ

(s, t ) (by Proposition 4.1). Moreover, by Theorem 5.32 for each k ∈N it

holds that dr,k
λ,M

(ϕs ,ϕt ) = dk
λ

(s, t ). Then the thesis follows by the uniqueness of the limit. �

As an immediate consequence of Theorem 5.33 we obtain that ready similarity is the

kernel of the logical ready similarity distance.

Corollary 5.34. For all s, t ∈S we have that s ⊑r t if and only if ℓr,λ(s, t ) = 0.

Proof.

s ⊑r t iff dr,λ(s, t ) = 0 (by Theorem 4.3)

iff ℓr,λ(s, t ) = 0 (by Theorem 5.33).

�

LS -CHARACTERIZATION OF SIMILARITY METRIC

We exploit the logical characterization of similarity obtained in Section 5.4 and the ready

simulation distance on formulae to obtain a logical distance on processes characterizing

the similarity metric. More precisely, as distance on formulae we consider exactly the ready

simulation distance under an endodeclaration. Then the logical simulation distance is

obtained by choosing the proper endodeclaration: the simulation endodeclaration C.

Definition 5.18 (Logical simulation distance). Let λ ∈ (0,1]. For any k ∈N, the up-to-k logical

simulation distance over processes ℓk
s,λ

: S×S → [0,1] is defined for all s, t ∈S by

ℓk
s,λ(s, t ) = dr,k

λ,C
(Xs , X t ).

Then, the logical simulation distance over processes ℓs,λ : S ×S → [0,1] is defined for all

s, t ∈S as

ℓs,λ(s, t ) = dr
λ,C(Xs , X t ).
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Notice that ℓs,λ(s, t ) = limk→∞ℓk
s,λ

(s, t ).

Proposition 5.35. ✶✳ For any k ∈N the mapping ℓk
s,λ

is a 1-bounded hemimetric.

✷✳ The mapping ℓs,λ is a 1-bounded hemimetric.

Proof.

✶✳ Directly by Proposition 5.27.

✷✳ Directly by Proposition 5.30.

�

We can now formalize the characterization result for the similarity metric. We start from

the characterization of the up-to-k similarity metrics.

Theorem 5.36. For all k ∈N and processes s, t ∈S we have ℓk
s,λ

(s, t ) = dk
s,λ

(s, t ).

Proof. The proof follows by applying the same arguments used in the proof of Theo-

rem 5.23. �

We are now ready to derive the characterization result for the similarity metric.

Theorem 5.37. For all processes s, t ∈S we have

ℓs,λ(s, t ) = ds,λ(s, t ).

Proof. By definition ℓs,λ(s, t) = dr
λ,C

(Xs , X t ) = dr
λ,C

(ϑs ,ϑt ) = limk→∞dr,k
λ,C

(ϑs ,ϑt ) and

ds,λ(s, t ) = limk→∞ dk
s,λ

(s, t ) (by Proposition 4.1). Moreover, by Theorem 5.36 for each k ∈N it

holds that dr,k
λ,C

(ϕs ,ϕt ) = dk
s,λ

(s, t ). Then the thesis follows by the uniqueness of the limit. �

As an immediate consequence of Theorem 5.37 we obtain that similarity is the kernel of

the logical similarity distance.

Corollary 5.38. For all processes s, t ∈S we have s ⊑ t if and only if ℓs,λ(s, t ) = 0.

Proof.

s ⊑ t iff ds,λ(s, t ) = 0 (by Theorem 4.5)

iff ℓs,λ(s, t ) = 0 (by Theorem 5.37).

�

5.7 CONCLUDING REMARKS

In this Chapter we have proposed modal characterizations of branching (hemi)metrics, as

bisimilarity and (ready) similarity metric, on image finite nondeterministic probabilistic

processes. To obtain them, we have introduced the novel notions of mimicking formula
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of a process and distance on a class of formulae. More precisely, we have proved that the

bisimilarity (resp. (ready) similarity) metric coincides with the logical bisimulation (resp.

(ready) simulation) distance on processes, that is the bisimilarity (resp. (ready) similarity)

distance between two processes is equal to the bisimulation (resp. (ready) simulation) dis-

tance between their mimicking formulae defined on the S-indexed logic LS . This modal

logic has been obtained by extending the probabilistic version of HML from [66] with a

family of variables, one for each process in S , allowing for the recursive specification of

formulae. Following the equational µ-calculus approach of [4, 120, 143] we have provided an

appropriate interpretation to each variable as the solution of a system of equations defined

using endodeclarations, namely functions E mapping each variable into an arbitrary for-

mula of the logic. As solution we have considered the variable interpretation corresponding

to the greatest fixed point of the system. The mimicking formula of a process s is defined as

the image of the variable corresponding to s through a particular endodeclaration M on LS ,

called mimicking endodeclaration, and it captures all possible resolutions of nondetermin-

ism for the process by also exactly specifying the reached probability distributions. These

properties allowed also for a weak expressive characterization of probabilistic bisimilarity:

two processes are bisimilar if and only if their mimicking formulae are LS-equivalent under

M. Moreover, we have proved that the mimicking formula of a process s coincides with

the characteristic formula of s with respect to probabilistic ready similarity, thus obtaining

an expressive characterization of this preorder. Finally, we have showed how to derive the

characteristic formula of a process with respect to probabilistic similarity by means of an en-

dodeclaration C mapping each variable into the negation free subformula of the mimicking

formula of the process.

In [4, 143] the equational µ-calculus has been employed to provide a general framework

for the definition of characteristic formulae for a wide class of behavioral equivalences

and preorders. However the S-indexed logic LS is not powerful enough to allow for the

construction of characteristic formulae for probabilistic bisimilarity. For instance, in [68]

expressive characterizations of strong and weak probabilistic (bi)simulations for image-

finite processes are provided by constructing the characteristic formulae of processes by

means of the probabilistic µ-calculus, which is reacher than LS since it allows arbitrary

formulae to occur in the scope of the diamond modality. The extension of LS with that

feature would have certainly allowed for an expressive characterization of probabilistic

bisimilarity. Nevertheless, this would have implied a much more technical definition of our

distance between formulae, which we recall is defined on the structure of formulae, thus

making the characterization of the bisimilarity metric more complex.

Another difference with respect to [68] relies on negation. In [68], to guarantee the

monotonicity of the function JK, variables are allowed to occur only in the scope of an even

number of negations. We could have applied the same idea to LS . However, as we have

shown, to characterize the chosen probabilistic relations and the bisimilarity metric the

negation expressed as formulae ā is sufficient. Hence, we decided to consider only this form

of negation, thus also simplifying to some extent the presentation of some technical results.

The one proposed in this Chapter is not the first logical characterization of a behavioral
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metric over processes, but it is indeed the first one based on a boolean-valued logic and

a proper distance on formulae. Characterizations of bisimilarity metric based on real-

valued logics are given in [14, 58, 61, 72, 75, 155, 157]. In detail, in [72] the authors define

a metric between labeled Markov processes (LMP) by giving a real-valued semantics to a

probabilistic modal logic. Roughly speaking, boolean and modal operators are translated

into functional expressions and the satisfaction relation is interpreted as integration. Then,

the distance between two processes is defined as the maximal disparity between functionals

distinguishing them, obtaining that probabilistic bisimilar processes are the ones at distance

0. Later, in [156, 157] the authors proved that the logic in [72] coincides with the bisimilarity

metric based on the Kantorovich lifting and defined co-inductively.

With a similar approach, in [58] the characterization of two classes of behavioral metrics

is proposed. They consider Metric Transition Systems (MTS), namely transition systems in

which the atomic propositions, at each state, take values in a bounded metric space. They

define four metrics characterizing as much system relations: an asymmetric linear distance

generalizing trace inclusion and its symmetric version for trace equivalence; simulation

is characterized by asymmetric branching distance whereas bisimulation is the kernel of

the symmetric branching distance. Then, they exploit the Quantitative µ-calculus of [60] to

characterize the branching distances. The same logic is used in [61], for stochastic game

structures, to characterize their a priori metric, defined as the distance between the expected

payoffs of the players.

Finally, in [75] a real-valued logic is proposed for the characterization of a state-based

bisimulation metric which coincides with the one of [64] and of a distribution-based bisim-

ulation metric which is directly defined over distributions without using any lifting func-

tional [67, 79, 103]. Many metrics for distribution-based bisimulations have been recently

proposed along with some logical characterizations for them (see for instance [78, 165] and

the references therein). However, they all follow the (standard) approach of [75]: the consid-

ered logic is real-valued and the metric is characterized as the total-variation distance on the

values of formulae. Notice that our approach can be easily modified to capture also the case

of distribution-based bisimulations. It would suffices to lift the transition relation and the

semantics of formulae on distributions, as in [69, 128, 137]. By applying our characterization

method to this Kleisli-like construction we obtain the characterization of the metrics for

distribution-based bisimulations.

The originality of our notion of distance on LS relies on the fact that it is not defined

in terms of any ground distance between processes. As a matter of fact, our distance on

formulae is independent from the metric properties of the process space. A first proposal

of a distance between formulae can be found in [122], related to the study of approximate

reasoning principles for both discrete-time (DMPs) and continuous-time Markov processes

(CMPs) with continuous state space. The authors provide their solution to the problem of

relating the behavior of approximations to the limit behavior of the system itself. Roughly

speaking, given a sequence of processes {sk }k∈N approximating a given system s, one wishes

to know whether it is possible to infer that the limit of such a sequence meets the specifica-

tion of s and, viceversa, whether one can infer that the specification of s agrees with the limit

specification of the approximants. To this aim they introduce the property of dynamical
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continuity for a pseudometric: a metric is dynamically continuous if it allows to identify con-

vergent sequences of processes or formulae. Then, they define a metric space for the Discrete

Markovian Logic (DML) and the Continuous Markovian Logic (CML) [129] by considering

as distance between formulae the Hausdorff distance on the sets of processes satisfying

them. In this way, they are able to topologically characterize the logical properties induced

by a dynamically continuous metric for both DMPs and CMPs. Moreover, the identify the

requirements necessary to guarantee that parallel sequences of formulae and processes

converge to give satisfaction in the limit.

We have already argued that we defined the distance between formulae with the exact

purpose of simulating the Hausdorff and Kantorovich lifting functionals on which the

bisimilarity metric is defined. Despite this kind of reasoning may seem too restrictive at

first glance, we believe that having a distance between formulae instead of a real-valued

semantics for the logic turns out to be an advantage in case one wishes to modify the lifting

functionals in the definition of (bi)similarity metric (cf. first part of Section 5.6).

Finally, to prove the robustness of our approach, in the next Chapter we apply it to obtain

logical characterization of the (decorated) trace metrics, testing metric and their kernels

introduced in Chapter 4.
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Let’s think the unthinkable,
let’s do the undoable.
Let us prepare to grapple with the ineffable
itself, and see if we may not eff it a$er all.

Douglas Adams,

Dirk Gently’s Holistic Detective Agency
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6
Logical Character"ation of Linear Metrics

T
his Chapter generalizes the characterization method proposed in previous Chapter 5

to the linear semantics. In detail, we provide a logical characterization of (decorated)

trace and testing metrics as well as of their kernels. These characterizations are defined on

modal logics consisting in two classes of formulae, the linear formulae expressing traces

and the decorations on them, and the probabilistic formulae associating a probability to

each linear formula. The main difference with respect to Chapter 5 is in the expressive

power of mimicking formulae of processes. Probabilistic linear semantics are based on

the comparison of the probabilities of semantic-specific events to occur during process

execution. Thus, mimicking formulae of processes for these semantics will capture such

probabilities rather than the ability or impossibility of a process to perform a particular

computation step. By means of these mimicking formulae we obtain weak expressive

characterizations of the kernels of the considered linear metrics, in the sense of Chapter 5:

to establish whether two processes are related we simply need to compare their mimicking

formulae. Due to the simpler structure of the modal operators in the considered classes, in

place of the structural equivalence of formulae, we introduce an ordering over probabilistic

formulae obtained by comparing the probabilities assigned to the same linear formulae.

This ordering will allow us to compare the mimicking formulae of processes.

Our characterization method is mainly based on two ingredients, the mimicking for-

mulae and the metric over a proper class of formulae, by means of which we can define a

logical distance on processes. The characterizations of behavioral metrics obtained with

this approach state that our logical distances are as expressive as the corresponding behav-

ioral distance. Therefore, the logical distances measure the disparities in the behavior of

processes with respect to the chosen probabilistic semantics and moreover they are defined

solely in terms of a modal logic. Consequently, these logical distances could be used to

capture the desired quantitative semantics of processes in place of behavioral metrics. Thus,

we order them in a spectrum of logical distances on processes with the purpose of empha-
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sizing the differences in their distinguishing power, so that one can choose the most suitable

logical distance with respect to the intended application context. As ordering relation we

consider the same used in Chapter 4 to define the spectrum of behavioral metrics, namely

the relation ‘makes processes further than’. Interestingly, this spectrum is obtained directly

by combining the logical characterizations of branching metrics, investigated in Chapter 5,

and the ones on linear metrics, that we will present in this Chapter, with the Theorems

and technical results in Chapter 4 that allowed for the construction of the spectrum on

behavioral metrics. We remark that ours is the first example of a spectrum of metrics on

processes obtained solely from modal logics.

As briefly outlined in Chapter 5, our characterization approach differs from the ones

proposed in the literature in that, in general, logics equipped with a real-valued semantics

are used for the characterization, which is then expressed as

d(s, t ) = sup
ϕ∈L

|[ϕ](s)− [ϕ](t )| (6.1)

where d is the behavioral metric of interest, L is the considered logic and [ϕ](s) denotes the

value of the formula ϕ at process s accordingly to the real-valued semantics [59,61,72,73,75].

However, we notice that with this approach to obtain a spectrum of logical distances similar

to ours, one would be forced to prove the semantic inclusion of the considered classes of

modal formulae, to guarantee the suprema of the distances on these classes to be ordered.

With our approach these inclusions, which furthermore are not true in general, are not

needed: each class of formulae expresses the proper semantic properties of processes and

the logical distances, capturing the disparities in the satisfaction of such properties, are then

ordered in terms of their distinguishing power.

The contributions of this Chapter can be summarized as follows:

✶✳ We provide a logical characterization of linear metrics such as ❛✳ trace (hemi)metric;

❜✳ completed trace (hemi)metric; ❝✳ failure (hemi)metric; ❞✳ failure trace (hemi)metric;

❡✳ readiness (hemi)metric; ❢✳ ready trace (hemi)metric; ❣✳ testing (pre)metric.

✷✳ We provide a weak expressive characterization of the kernels of linear metrics such

as ❛✳ trace preorder and equivalence; ❜✳ completed trace preorder and equivalence;

❝✳ failure preorder and equivalence; ❞✳ failure trace preorder and equivalence; ❡✳ readi-

ness preorder and equivalence; ❢✳ ready trace preorder ad equivalence; ❣✳ testing

preorder and equivalence.

✸✳ By combining the characterization results from Chapter 5 with those in this Chapter,

we obtain the first example of a spectrum of metrics on processes obtained solely from

modal logics that comprehends:

❛✳ logical bisimulation distance (ℓλ);

❜✳ logical ready simulation distance (ℓr,λ);

❝✳ logical simulation distance (ℓs,λ);

❞✳ logical ready trace pre-distance (ℓ⊑TrR,λ);
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❡✳ logical ready trace distance (ℓTrR,λ);

❢✳ logical readiness pre-distance (ℓ⊑R,λ);

❣✳ logical readiness distance (ℓR,λ);

❤✳ logical failure trace pre-distance (ℓ⊑TrF,λ);

✐✳ logical failure trace distance (ℓTrF,λ);

❥✳ logical failure pre-distance (ℓ⊑F,λ);

❦✳ logical failure distance (ℓF,λ);

❧✳ logical completed trace pre-distance (ℓ⊑TrC,λ);

♠✳ logical completed trace distance (ℓTrC,λ);

♥✳ logical trace pre-distance (ℓ⊑Tr,λ);

♦✳ logical trace distance (ℓTr,λ);

♣✳ logical testing pre-distance (ℓ⊑test.λ);

-✳ logical testing distance (ℓtest,λ).

ORGANIZATION OF CONTENTS

In Section 6.1 we introduce the modal logic expressing the (decorated) trace semantics whose

characterization is then proposed in Section 6.2. In Section 6.4 we present the analogous

results for testing semantics based on the modal logic defined in Section 6.3. Section 6.5

contains the spectrum of logical distance obtained by combining the characterizations

proposed in this Chapter and those in Chapter 5. We conclude with the discussion of related

work in Section 6.6.

6.1 A MODAL LOGIC FOR DECORATED TRACES

In this Section we present the modal logic L that will allow us to characterize the trace metric

as well as its decorated versions and their kernels. Interestingly, we can use a single logic to

characterize all these semantics because of the expressing power of mimicking formulae.

They identify, and isolate, the properties characterizing the particular semantics to which

they are related and thus we do not need to distinguish different classes of formulae for

different semantics.

The logic L can be seen either as a simplified version of the modal logic L presented in

Chapter 2.4, or more naturally as a probabilistic version of the general class of formulae of

which the logics characterizing (decorated) trace semantics in the fully nondeterministic

case are subclasses (cf. [33]). More precisely, L consists of two classes of formulae: the class

Ll of linear formulae, which are constituted by (finite) sequences of diamond operators

and that will be used to represent traces and the decorations on them, and the class Lp of

probabilistic formulae, which will be used to capture the quantitative properties of processes.
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Definition 6.1 (Modal logic L). The classes of linear formulae Ll and of probabilistic formu-

lae Lp over A are defined by the following BNF-like grammar:

Ll : Φ ::= ⊤ |
∧

j∈J
ā j ∧Φ |

∧

j∈J
〈a j 〉⊤∧Φ | 〈a〉Φ

Lp : Ψ ::= rΦ |
∧

i∈I
Ψi

where: (i) Φ,Φ j range over Ll, (ii) Ψ,Ψi range over Lp, (iii) a, a j ∈A; (iv) I ,J are at most

countable sets of indexes, (v) in the formula
∧

j∈J ā j ∧Φ, the a j are pairwise distinct for all

j ∈J and Φ 6=∧

i∈I āi ∧Φ
′ for any set of indexes I with |I| ≥ 1 and for all Φ′ ∈Ll, (vi) in the

formula
∧

j∈J 〈a j 〉⊤∧Φ, the a j are pairwise distinct for all j ∈J and Φ 6=∧

i∈I〈ai 〉⊤∧Φ
′ for

any set of indexes I with |I| ≥ 1 and for all Φ′ ∈Ll, (vii) r ∈ [0,1], (viii) for each i ∈ I it holds

Ψi 6=
∧

j∈J Ψ j for any set of indexes J with |J | > 1.

We shall write
∧

j∈J

ā j and
∧

j∈J
〈a j 〉⊤ as a shorthand for resp.

∧

j∈J
ā j ∧⊤ and

∧

j∈J
〈a j 〉⊤∧⊤.

Moreover, we recall that ⊤ stands for
∧

;.

The notion of depth of formulae is standard and expresses the length of the longest

sequence of diamond operators in the formulae.

Definition 6.2 (Depth). The depth of probabilistic formulae in Lp is defined as

⋆ dpt(rΦ) = dpt(Φ) and

⋆ dpt(
∧

i∈I
Ψi ) = sup

i∈I
dpt(Ψi )

where the depth of linear formulae in Ll is defined by induction on their structure as

⋆ dpt(⊤) = 0;

⋆ dpt(
∧

j∈J
ā j ∧Φ) = max{1,dpt(Φ)};

⋆ dpt(
∧

j∈J
〈a j 〉⊤∧Φ) = max{1,dpt(Φ)};

⋆ dpt(〈a〉Φ) = 1+dpt(Φ).

Formulae are interpreted over PTSs.

Definition 6.3 (Semantics of Ll). Given any process s ∈S , the satisfaction relation |=⊆S×Ll

is defined by structural induction over linear formulae in Ll by

⋆ s |=⊤ always;

⋆ s |=
∧

j∈J
ā j ∧Φ iff s

a j−−→6 for all j ∈J and s |=Φ;

⋆ s |=
∧

j∈J
〈a j 〉⊤∧Φ iff s

a j−−→ for all j ∈J and s |=Φ;
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⋆ s |= 〈a〉Φ iff s
a−→π for some π such that s′ |=Φ for some s′ ∈ supp(π).

We say that a computation c from process s is compatible with the linear formula Φ,

notation c ∈ Ct(s,Φ), if |c| = dpt(Φ) and s |=Φ is obtained by verifying |= on the processes

reached by s through c. Moreover, given any resolution Zs for process s we say that z |=Φ if

and only if corrZs
(z) |=Φ.

Definition 6.4 (Semantics of Lp). The satisfaction relation |=⊆S×Lp is defined by

⋆ s |= rΦ if and only if there is a resolution Zs ∈ Res(s) such that Pr(Ct(zs ,Φ)) = r.

⋆ s |=
∧

i∈I
Ψi if and only if s |=Ψi for all i ∈ I .

A DISTANCE ON L

To obtain the logical characterization of metric semantics we need to transform the modal

logic into a metric space. For this reason, we propose a syntactical distance on formulae in L.

To obtain it, we introduce an auxiliary distance, denoted by Kδ, that acts like the Kronecker

delta function on formulae of the form ā and 〈a〉⊤.

Definition 6.5. Let Ā denote the set of formulae {ā | a ∈A} and 〈A〉 denote the set of formu-

lae {〈a〉⊤ | a ∈A}. The function Kδ : (Ā× Ā)∪ (〈A〉×〈A〉) → {0,1} is defined for all a,b ∈A
as follows:

Kδ(ā, b̄) =
{

1 if a 6= b

0 otherwise.
Kδ(〈a〉⊤,〈b〉⊤) =

{

1 if a 6= b

0 otherwise.

Moreover, to correctly quantify the distances on conjunctions of linear formulae we

need to consider them up-to reordering. This means that, in what follows, we subsume that

whenever Φ1 is of the form
∧

i∈I〈ai 〉⊤∧∧

j∈J ā j ∧Φ, with Φ not containing any conjunction,

then Φ1 is considered up-to reordering, namely Φ1 =
∧

j∈J āi ∧
∧

i∈I〈ai 〉⊤∧Φ.

We are now ready to formally introduce a distance on L.

Definition 6.6 (Distance on L). Let λ ∈ (0,1]. The function Dl : Ll×Ll → [0,1] is defined by

structural induction over Ll as follows:

Dl(Φ1,Φ2) =























































































0 if Φ1 =Φ2 =⊤

max

{

H(Kδ)({ā j | j ∈J }, {āi | i ∈ I}),

Dl(Φ′
1,Φ′

2)

}

if Φ1 =
∧

j∈J
ā j ∧Φ

′
1

and Φ2 =
∧

i∈I
āi ∧Φ

′
2

max

{

H(Kδ)({〈a j 〉⊤ | j ∈J }, {〈ai 〉⊤ | i ∈ I}),

Dl(Φ′
1,Φ′

2)

}

if Φ1 =
∧

j∈J
〈a j 〉⊤∧Φ

′
1

and Φ2 =
∧

i∈I
〈ai 〉⊤∧Φ

′
2

Dl(Φ′
1,Φ′

2) if Φ1 = 〈a〉Φ′
1 and Φ2 = 〈a〉Φ′

2

1 otherwise.
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The function D
p

λ
: Lp×Lp → [0,1] is defined over Lp as follows:

D
p

λ
(r1Φ1,r2Φ2) =

{

max
{

0,λdpt(Φ1)−1(r1 − r2)
}

if Dl(Φ1,Φ2) = 0

1 otherwise

D
p

λ
(
∧

i∈I
Ψi ,

∧

j∈J
Ψ j ) = sup

i∈I
inf
j∈J

D
p

λ
(Ψi ,Ψ j ).

Notice that since dpt(
∧

j∈J ā j ) = dpt(
∧

j∈J 〈a j 〉⊤) = 1, the choice of the exponent for the

discount factor follows from the same arguments used in Chapter 4.3.

Proposition 6.1. The function Dl is a 1-bounded metric over Ll.

Proof. The proof follows by an easy induction over the structure of linear formulae. �

Proposition 6.2. The function D
p

λ
is a 1-bounded hemimetric over Lp.

Proof. The proof follows by an easy induction over the structure of probabilistic formu-

lae. In particular, the base case Ψ= rΦ follows by applying the same arguments used in the

proof of Theorem 4.6. �

We now present the kernel of D
p

λ
which can be characterized in terms of an ordering

relation ≤ over formulae in Lp. For the linear formulae Φ1,Φ2 ∈ Ll we write Φ1 = Φ2 if

they are syntactically indistinguishable, with the equality of conjunctions considered up-to

reordering. Then we introduce the relation of ordering on formulae ≤ as follows.

Definition 6.7 (Ordering of formulae in Lp). The relation ≤ : Lp×Lp is defined inductively

over the structure of probabilistic formulae as follows

⋆ (r1Φ1,r2Φ2) ∈≤ if and only if Φ1 =Φ2 and r1 ≤ r2.

⋆ (
∧

i∈I
Ψi ,

∧

j∈J
Ψ j ) ∈≤ if and only if for each i ∈ I there is a j ∈J such that (Ψi ,Ψ j ) ∈≤.

To simplify notation, we write Ψ1 ≤Ψ2 in place of (Ψ1,Ψ2) ∈≤. As for linear formulae,

the equality of conjunctions is intended up-to reordering. More precisely, we have that

Ψ1 =Ψ2 if and only if Ψ1 ≤Ψ2 and Ψ2 ≤Ψ1. Notice that due to the syntactical simplicity of

the class of probabilistic formulae, their equality defined as a symmetric ordering relation

coincides with their structural equivalence.

Finally, we prove that the kernel of D
p

λ
coincides with the relation ≤ over formulae in Lp.

Proposition 6.3. For all Ψ1,Ψ2 ∈Lp, we have that D
p

λ
(Ψ1,Ψ2) = 0 if and only if Ψ1 ≤Ψ2.

Proof. The proof follows by an easy induction over the structure of Ψ1 ∈Lp. �

6.2 LOGICAL CHARACTERIZATIONS OF (DECORATED) TRACE SEMANTICS

In this section we apply the same technique proposed in previous Chapter 5 for the char-

acterizations of branching relations and metrics to obtain original characterizations of the

(decorated) trace relations (Theorem 6.5) and metrics (Theorem 6.8) defined in Chapter 4.
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6.2. Logical characterizations of (decorated) trace semantics

L-CHARACTERIZATIONS OF (DECORATED) TRACE RELATIONS

We start by studying the characterizations of (decorated) trace relations. To this aim we need

to introduce the mimicking formulae of processes for these semantics. Each mimicking

formula has to express the properties of the process that are relevant for the considered

semantics, namely the probabilities assigned to traces and their decorated versions. Hence,

we need to identify the linear formulae capturing these traces and decorations.

Definition 6.8 (Trace formula). Given any trace α ∈A⋆ we define the trace formula of α,

notation Φα ∈Ll, inductively on the structure of α as follows:

Φα =
{

⊤ if α= e

〈a〉Φα′ if α= aα′,α′ ∈A⋆.

Definition 6.9 (Completed trace formula). Given any trace α ∈A⋆ we define the completed

trace formula of α, notation Φ
C
α ∈Ll, inductively on the structure of α as follows:

Φ
C
α =







∧

a∈A
ā if α= e

〈a〉ΦC
α′ if α= aα′,α′ ∈A⋆.

Definition 6.10 (Failure formula). Given any failure pair f ∈A⋆×P(A) we define the failure

formula of f, notation Φf ∈Ll, inductively on the structure of f as follows:

Φf =







∧

b∈F

b̄ if f= eF

〈a〉Φf′ if f= af′, f′ ∈A⋆×P(A).

Definition 6.11 (Failure trace formula). Given any failure trace F ∈ (A×P(A))⋆∪ (e×P(A))

we define the failure trace formula of F, notation ΦF ∈Ll, inductively on the structure of F

as follows:

ΦF =



























∧

b∈F

b̄ if F= eF

〈a〉
∧

b∈F

b̄ if F= aF

〈a〉(
∧

b∈F

b̄ ∧ΦF′) if F= aFF′,F′ ∈ (A×P(A))⋆∪ (e×P(A)).

Definition 6.12 (Ready formula). Given any ready pair r ∈A⋆×P(A) we define the ready

formula of r, notation Φr ∈Ll, inductively on the structure of r as follows:

Φr =







∧

b∈R

〈a〉⊤ if r= eR

〈a〉Φr′ if r= ar′,r′ ∈A⋆×P(A).
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Definition 6.13 (Ready trace formula). Given any ready trace R ∈ (A×P(A))⋆∪ (e×P(A))

we define the ready trace formula of R, notation ΦR ∈Ll, inductively on the structure of R

as follows:

ΦR =



























∧

b∈R

〈b〉⊤ if R= eR

〈a〉
∧

b∈R

〈b〉⊤ if R= aR

〈a〉(
∧

b∈R

〈b〉⊤∧ΦR′) if R= aRR′,R′ ∈ (A×P(A))⋆∪ (e×P(A)).

We are now ready to extend our concept of mimicking formula of a process to capture

the (decorated) trace semantics.

Definition 6.14 (Mimicking formulae for decorated trace semantics). Let s ∈S .

⋆ The mimicking formula for trace equivalence of s is denoted by Ψ
Tr
s and defined by

Ψ
Tr
s =

∧

α∈A⋆

(

sup
Zs∈Res(s)

Pr(C(zs ,α))

)

Φα

where for each trace α ∈A⋆, Φα is the trace formula of α.

⋆ The mimicking formula for completed trace equivalence of s is denoted by Ψ
TrC
s and

defined by

Ψ
TrC
s =Ψ

Tr
s ∧

∧

α∈A⋆

(

sup
Zs∈Res(s)

Pr(CC(zs ,α))

)

Φ
C
α

where Ψ
Tr
s is the mimicking formula for trace equivalence for s and for each trace

α ∈A⋆, ΦC
α is the completed trace formula of α.

⋆ The mimicking formula for failure equivalence of s is denoted by Ψ
F
s and defined by

Ψ
F
s =

∧

f∈A⋆×P(A)

(

sup
Zs∈Res(s)

Pr(FC(zs , f))

)

Φf

where for each failure pair f ∈A⋆×P(A), Φf is the failure formula of f.

⋆ The mimicking formula for failure trace equivalence of s is denoted by Ψ
TrF
s and

defined by

Ψ
TrF
s =

∧

F∈(A×P(A))⋆∪(e×P(A))

(

sup
Zs∈Res(s)

Pr(FC(zs ,F))

)

ΦF

where for each failure trace F ∈ (A×P(A))⋆∪(e×P(A)), ΦF is the failure trace formula

of F.

⋆ The mimicking formula for readiness equivalence of s is denoted by Ψ
R
s and defined by

Ψ
R
s =

∧

r∈A⋆×P(A)

(

sup
Zs∈Res(s)

Pr(RC(zs ,r))

)

Φr

where for each ready pair r ∈A⋆×P(A), Φr is the ready formula of r.
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6.2. Logical characterizations of (decorated) trace semantics

⋆ The mimicking formula for ready trace equivalence of s is denoted by Ψ
TrR
s and defined

by

Ψ
TrR
s =

∧

R∈(A×P(A))⋆∪(e×P(A))

(

sup
Zs∈Res(s)

Pr(RC(zs ,R))

)

ΦR

where for each ready trace R ∈ (A×P(A))⋆∪ (e×P(A)), ΦR is the ready trace formula

of R.

Clearly, each process satisfies its own mimicking formula for the desired semantics.

Theorem 6.4. Let x ∈ {Tr,TrC,F,TrF,R,TrR}. For each s ∈S , it holds that s |=Ψ
x
s .

Proof. The proof is immediate by Definition 6.14. �

By means of mimicking formulae we obtain the L-characterizations of (decorated) trace

semantics for image finite processes. Given x ∈ {Tr,TrC,F,TrF,R,TrR}, we have that s ⊑x t if

and only if the mimicking formulae of s and t for the semantics x are related by the relation

of inequality of formulae. When equivalences are considered, the characterizations are

derived from the equality of mimicking formulae.

Theorem 6.5 (L-characterizations of (decorated) trace relations). Let x ∈ {Tr,TrC,F,TrF,R,TrR}.

✶✳ For all s, t ∈S we have that s ⊑x t if and only if Ψ
x
s ≤Ψ

x
t .

✷✳ For all s, t ∈S we have that s ∼x t if and only if Ψ
x
s =Ψ

x
t .

Proof. By Theorems 4.20 and 4.26 we have that s ⊑x t if and only if d⊑x,λ
(s, t) = 0 and

s ∼x t if and only if d x,λ(s, t ) = 0. Therefore, the thesis follows by Definition 6.15, Theorem 6.8

and Proposition 6.3. �

L-CHARACTERIZATIONS OF (DECORATED) TRACE METRICS

In this section we present the logical characterization of (decorated) trace metrics (The-

orem 6.8). We obtain it by lifting the distance on L defined in Section 6.1 to a distance

on processes by exploiting the mimicking formulae introduced in Section 6.2: the logical

distance on processes is defined as the syntactical distance on their mimicking formulae.

Definition 6.15 (Logical decorated trace distances). Let λ ∈ (0,1].

⋆ The logical trace pre-distance on processes ℓ⊑Tr,λ : S ×S → [0,1] is defined, for all

s, t ∈S , by

ℓ⊑Tr,λ(s, t ) =D
p

λ
(ΨTr

s ,ΨTr
t ).

The logical trace distance on processes ℓTr,λ : S×S → [0,1] is defined, for all s, t ∈S , by

ℓTr,λ(s, t ) = max{ℓ⊑Tr,λ(s, t ),ℓ⊑Tr,λ(t , s)}.
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⋆ The logical completed trace pre-distance on processes ℓ⊑TrC,λ : S×S → [0,1] is defined,

for all s, t ∈S , by

ℓ⊑TrC,λ(s, t ) =D
p

λ
(ΨTrC

s ,ΨTrC
t ).

The logical completed trace distance on processes ℓTrC,λ : S×S → [0,1] is defined, for

all s, t ∈S , by

ℓTrC,λ(s, t ) = max{ℓ⊑TrC,λ(s, t ),ℓ⊑TrC,λ(t , s)}.

⋆ The logical failure pre-distance on processes ℓ⊑F,λ : S ×S → [0,1] is defined, for all

s, t ∈S , by

ℓ⊑F,λ(s, t ) =D
p

λ
(ΨF

s ,ΨF
t ).

The logical failure distance on processes ℓF,λ : S×S → [0,1] is defined, for all s, t ∈S ,

by

ℓF,λ(s, t ) = max{ℓ⊑F,λ(s, t ),ℓ⊑F,λ(t , s)}.

⋆ The logical failure trace pre-distance on processes ℓ⊑TrF,λ : S×S → [0,1] is defined, for

all s, t ∈S , by

ℓ⊑TrF,λ(s, t ) =D
p

λ
(ΨTrF

s ,ΨTrF
t ).

The logical failure trace distance on processes ℓTrF,λ : S×S → [0,1] is defined, for all

s, t ∈S , by

ℓTrF,λ(s, t ) = max{ℓ⊑TrF,λ(s, t ),ℓ⊑TrF,λ(t , s)}.

⋆ The logical readiness pre-distance on processes ℓ⊑R,λ : S×S → [0,1] is defined, for all

s, t ∈S , by

ℓ⊑R,λ(s, t ) =D
p

λ
(ΨR

s ,ΨR
t ).

The logical readiness distance on processes ℓR,λ : S×S → [0,1] is defined, for all s, t ∈S ,

by

ℓR,λ(s, t ) = max{ℓ⊑R,λ(s, t ),ℓ⊑R,λ(t , s)}.

⋆ The logical ready trace pre-distance on processes ℓ⊑TrR,λ : S×S → [0,1] is defined, for

all s, t ∈S , by

ℓ⊑TrR,λ(s, t ) =D
p

λ
(ΨTrR

s ,ΨTrR
t ).

The logical ready trace distance on processes ℓTrR,λ : S ×S → [0,1] is defined, for all

s, t ∈S , by

ℓTrR,λ(s, t ) = max{ℓ⊑TrR,λ(s, t ),ℓ⊑TrR,λ(t , s)}.

Our logical (pre) distances are well-defined (hemimetrics) pseudometrics on S , as for-

malized in the following Proposition.

Proposition 6.6. Let x ∈ {Tr,TrC,F,TrF,R,TrR} and λ ∈ (0,1].

✶✳ The mapping ℓ⊑x ,λ is a 1-bounded hemimetric on S .

✷✳ The mapping ℓx,λ is a 1-bounded pseudometric on S .

Proof.
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✶✳ The proof follows immediately by Proposition 6.2.

✷✳ The proof follows immediately by Proposition 6.6.1.

�

From our L-characterization of decorated trace relations (Theorem 6.5) we obtain the

following characterization of the kernels of our logical (pre) distances.

Theorem 6.7. Let x ∈ {Tr,TrC,F,TrF,R,TrR} and λ ∈ (0,1]. For all processes s, t ∈S we have

✶✳ ℓ⊑x ,λ(s, t ) = 0 if and only if s ⊑x t .

✷✳ ℓx,λ(s, t ) = 0 if and only if s ∼x t .

Proof. We present only the proof for trace preorder and trace equivalence, namely the

case of x = Tr. All remaining cases follow by the same arguments.

✶✳

s ⊑Tr t iff ΨTr
s ≤Ψ

Tr
t (by Theorem 6.5.1)

iff D
p

λ
(ΨTr

s ,ΨTr
t ) = 0 (by Proposition 6.3)

iff ℓ⊑Tr,λ(s, t ) = 0.

✷✳

s ∼Tr t iff s ⊑Tr t and t ⊑Tr s

iff ℓ⊑Tr,λ(s, t ) = 0 and ℓ⊑Tr,λ(t , s) = 0 (by Theorem 6.7.1)

iff max{ℓ⊑Tr,λ(s, t ), ℓ⊑Tr,λ(t , s)} = 0

iff ℓTr,λ(s, t ) = 0.

�

Finally, we obtain the logical characterization of the decorated trace (hemi)metrics.

Theorem 6.8 (L-characterization of (decorated) trace (hemi)metrics). Let x ∈ {Tr,TrC,F,TrF,R,TrR}

and λ ∈ (0,1]. For all s, t ∈S we have

✶✳ d⊑x ,λ(s, t ) = ℓ⊑x ,λ(s, t ).

✷✳ dx,λ(s, t ) = ℓx,λ(s, t ).

Proof. We present only the proof for trace preorder and trace equivalence, namely the

case of x = Tr. All remaining cases follow by the same arguments.
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✶✳ First of all, we notice that whenever Dl(Φ1,Φ2) = 0, then

max{0,λdpt(Φ1)(r1 − r2)} ≤ 1 for all r1,r2 ∈ [0,1]. (6.2)

This is due to the fact that λ≤ 1 and r1,r2 ∈ [0,1]. Therefore, we have

ℓ⊑Tr,λ(s, t ) =D
p

λ
(ΨTr

s ,ΨTr
t )

=D
p

λ

(

∧

α∈A⋆

(

sup
Zs∈Res(s)

Pr(C(zs ,α))
)

Φα,
∧

β∈A⋆

(

sup
Zt∈Res(t )

Pr(C(zt ,β))
)

Φβ

)

= sup
α∈A⋆

inf
β∈A⋆

D
p

λ

(

(

sup
Zs∈Res(s)

Pr(C(zs ,α))
)

Φα,
(

sup
Zt∈Res(t )

Pr(C(zt ,β))
)

Φβ

)

= sup
α∈A⋆

max

{

0,λdpt(Φα)−1
(

sup
Zs∈Res(s)

Pr(C(zs ,α))− sup
Zt∈Res(t )

Pr(C(zt ,α))
)

}

= sup
α∈A⋆

max

{

0,λ|α|−1
(

sup
Zs∈Res(s)

Pr(C(zs ,α))− sup
Zt∈Res(t )

Pr(C(zt ,α))
)

}

= sup
α∈A⋆

dα
⊑Tr,λ(s, t )

= d⊑Tr,λ(s, t )

where the fourth step follows by Equation (6.2).

✷✳

dTr,λ(s, t ) = max{d⊑Tr,λ(s, t ), d⊑Tr,λ(t , s)}

= max{ℓ⊑Tr,λ(s, t ), ℓ⊑Tr,λ(t , s)} (by Theorem 6.8.1)

= ℓTr,λ(s, t ).

�

Notice that differently from the total-variation approach used in the literature, which

requires to evaluate the disparities of processes in the evaluation of every single formula

in the considered logic, our approach considers only mimicking formulae that capture all

the relevant semantic properties of processes and thus the ones necessary to measure their

behavioral distances.

6.3 A MODAL LOGIC FOR TESTING

We introduce the modal logic Lp which refines L to deal with tests. More precisely, we refine

the class Ll to the class of linear formulae Llp by adding two particular modalities capturing

the successful process and termination without success.
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Definition 6.16 (Modal logic Lp). The classes of linear formulae Llp and probabilistic for-

mulae L
pp over A are defined by the following BNF-like grammar:

Llp : Φ ::= p | ⊥ | 〈a〉Φ
L

pp : Ψ ::= rΦ |
∧

i∈I
Ψi

where: (i) Φ ranges over Llp, (ii) Ψ ranges over L
pp, (iii) a ∈A, (iv) r ∈ (0,1], (v) I is an at most

countable set of indexes, (vi) for each i ∈ I it holds Ψi 6=
∧

j∈J Ψ j for any set of indexes J

with |J | > 1.

The notion of depth of formulae can be naturally derived from Definition 6.2 by adding

the two following cases:

⋆ dpt(
p

) = 0 ⋆ dpt(⊥) = 0.

Since we work with finite tests, it is enough to consider linear formulae of finite depth.

Given Φ ∈ Llp we say that last(Φ) = p
(resp. last(Φ) = ⊥) if Φ = 〈a1〉 . . .〈an〉

p
(resp. Φ =

〈a1〉 . . .〈an〉⊥) for some n ∈N.

Formulae in Lp are interpreted over PTSs and the semantics of L
pp and Llp naturally

follow from, respectively, Definition 6.4 and Definition 6.3 in which we add the following

constraints for the satisfaction of the novel diamond modalities:

⋆ s |=p
iff s =p

.

⋆ s |=⊥ iff s 6= p
and init(s) =;.

A DISTANCE ON Lp

We introduce a syntactical distance on Lp that we will use to characterize the testing

(hemi)metric. The distance on linear formulae simply measure the disparities in the labels

of diamond operators.

The distance on probabilistic formulae is technically more complicated. As discussed in

Chapter 4.3, when considering testing semantics, processes can be distinguished by both

their probability to reach success and the possibility of failure. This discriminating power

has to be transferred to the formulae expressing this semantics. Therefore, accordingly to

the trace-by-trace approach we have applied to testing, the distance between probabilistic

formulae r1Φ1 and r2Φ2 should depend on: ✶✳ the distance between Φ1 and Φ2, ✷✳ the last

modality occurring in the two linear formulae, ✸✳ the comparison of the weights r1 and r2.

Firstly, we need to compare the behavior of processes on the same trace and thus if the

distance between Φ1 and Φ2 is not 0 then the distance between r1Φ1 and r2Φ2 can be directly

set to 1. Conversely, if Φ1 and Φ2 express the same trace, and thus their distance is 0, then we

need to investigate whether this trace leads to success or not. If the answer is positive, namely

we have that last(Φ1) = last(Φ2) =p
, then the distance between r1Φ1 and r2Φ2 should follow

from the comparison of r1 and r2, that is by setting it to r1 − r2 if this difference is positive

and to 0 otherwise. In the opposite case having last(Φ1) = last(Φ2) =⊥ the value of r1−r2 > 0
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is significant only if r2 = 0. This is due to the fact that to guarantee the compatibility with

testing semantics in the fully-nondeterministic case, a positive probability of failure has to

be matched by a positive probability of failure (cf. Chapter 4.3). Let us consider now the

mixed cases. If last(Φ1) =⊥ and last(Φ2) =p
, then there is no need to compare r1 and r2 and

the distance is set to 0 (Lemma 4.8 in Chapter 4.3 and the upcoming definition of mimicking

formula for testing Definition 6.21 ensure that a comparison of two such formulae may

occur only if r1 = 0). Symmetrically, if last(Φ1) =p
and last(Φ2) =⊥ then the distance is set

to r1 since the “success probability” of Φ2 is 0.

The following Definition formalize the intuitions discussed above.

Definition 6.17 (Distance on Lp). Let λ ∈ (0,1]. The function D
l : Llp×Llp → [0,1] is defined

by structural induction over Llp as follows:

D
l(Φ1,Φ2) =















0 if dpt(Φ1) = dpt(Φ2) = 0

D
l(Φ′

1,Φ′
2) if Φ1 = 〈a〉Φ′

1 and Φ2 = 〈a〉Φ′
2

1 otherwise.

The function D
p

λ
: L

pp×L
pp → [0,1] is defined over L

pp as follows:

D
p

λ
(r1Φ1,r2Φ2) =















































0 if Dl(Φ1,Φ2) = 0 and last(Φ1) =⊥, last(Φ2) =p

or last(Φ1) = last(Φ2) =⊥ and r2 > 0

max
{

0,λdpt(Φ1)−1(r1 − r2)
}

if Dl(Φ1,Φ2) = 0 and last(Φ1) = last(Φ2) =p

λdpt(Φ1)r1 if last(Φ1) = last(Φ2) =⊥ and r2 = 0

λdpt(Φ1)−1r1 if Dl(Φ1,Φ2) = 0 and last(Φ1) =p
, last(Φ2) =⊥

1 otherwise

D
p

λ
(
∧

i∈I
Ψi ,

∧

j∈J
Ψ j ) = sup

i∈I
inf
j∈J

D
p

λ
(Ψi ,Ψ j ).

Proposition 6.9. The function D
p

λ
is a 1-bounded premetric over L

pp.

Proof. The proof follows by an easy induction over the structure of probabilistic formu-

lae. In particular, the base case Ψ= rΦ follows by applying the same arguments used in the

proof of Theorem 4.9. �

Also in this case, we can characterize the kernel of the distance on formulae in terms of

an ordering relation ≤ over formulae in Lp.

Definition 6.18 (Ordering of formulae inLlp). The relation ≤ : Llp×Llp is defined inductively

over the structure of probabilistic formulae as follows

⋆ (⊥,
p

) ∈≤;

⋆ (〈a〉Φ1,〈a〉Φ2) ∈≤ if and only if (Φ1,Φ2) ∈≤;

⋆ (Φ,Φ) ∈≤ for all Φ ∈Llp.
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To simplify notation, we write Φ1 ≤Φ2 in place of (Φ1,Φ2) ∈≤. Relation ≤ coincides with

the kernel of Dl.

Proposition 6.10. For all Φ1,Φ2 ∈Llp, we have that Dl(Φ1,Φ2) = 0 if and only if Φ1 ≤Φ2.

Proof. The proof follows a simple induction analysis over the structure of Φ1 ∈Llp. �

The ordering relation on linear formulae can be exploited to define that on probabilistic

formulae.

Definition 6.19 (Ordering of formulae inL
pp). The relation ≤ : L

pp×L
pp is defined inductively

over the structure of probabilistic formulae as follows

⋆ (r1Φ1,r2Φ2) ∈≤ if and only if Φ1 ≤Φ2 and

✯ either last(Φ1) = last(Φ2) =p
and r1 ≤ r2;

✯ or last(Φ1) = last(Φ2) =⊥ and r2 > 0;

✯ or last(Φ1) =⊥ and last(Φ2) =p
.

⋆ (
∧

i∈I
Ψi ,

∧

j∈J
Ψ j ) ∈≤ if and only if for each i ∈ I there is a j ∈J such that (Ψi ,Ψ j ) ∈≤.

To simplify notation, we write Ψ1 ≤Ψ2 in place of (Ψ1,Ψ2) ∈≤. As for linear formulae,

the equality of conjunctions is intended up-to reordering. More precisely, we have that

Ψ1 =Ψ2 if and only if Ψ1 ≤Ψ2 and Ψ2 ≤Ψ1.

Finally, we prove that the kernel of D
p

λ
coincides with the relation ≤ over formulae in L

pp.

Proposition 6.11. For all Ψ1,Ψ2 ∈Lpp, we have that D
p

λ
(Ψ1,Ψ2) = 0 if and only if Ψ1 ≤Ψ2.

Proof. The proof follows a simple induction analysis over the structure of Ψ1 ∈Lpp. �

6.4 LOGICAL CHARACTERIZATION OF TESTING SEMANTICS

In this Section we propose our characterizations of testing equivalence and metric obtained

on the logic Lp.

Lp-CHARACTERIZATION OF TESTING EQUIVALENCE

The characterization of probabilistic testing preorder and equivalence is obtained from the

mimicking formulae for testing. First of all we introduce the notions of (un)successful trace

formulae expressing trace formulae ending with the (un)success formula.

Definition 6.20 (Trace formulae in Llp). Consider any trace α ∈A⋆ and let x ∈ {
p

,⊥}. We

define the formula Φα,x ∈Llp, inductively on the structure of α as follows:

Φα,x =















x if α= e

〈a〉x if α= a

〈a〉Φα′,x if α= aα′.
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Then the formula Φα,
p is called the successful trace formula of α. Analogously, the formula

Φα,⊥ is called the unsuccessful trace formula of α.

In the testing equivalence and metric defined in Chapter 4, the success probabilities

are evaluated on the interaction systems of processes with tests. Thus, in place of the

mimicking formula of a process for testing semantics, we introduce mimicking formulae of

interaction systems. They are defined by following the trace-by-trace approach and moreover

they exploit the normalization introduced to define the testing metric. The reason why we

need normalization is the same discussed in Chapter 4.3: ensuring the comparability of

the upcoming logical testing distance with the logical distances proposed do far. Besides

normalization, the definition of the mimicking formulae for testing is built on the same

intuitions that led us to the definition of testing metric. Briefly, consider a process s, a test

o and a trace α. Assume first that α is successful for (s,o). Then the mimicking formula

on α for (s,o) will be defined as the probabilistic formula assigning to the successful trace

formula of α the (normalized) supremal probability of (s,o) to reach success by executing

α, with respect to all resolutions of nondeterminism. Notice that α is successful for (s,o)

if and only if it is successful for o and there is a computation from s that is compatible

with it. Conversely, if α is not successful for (s,o) then the mimicking formula will be

defined as the probabilistic formula assigning to the unsuccessful trace formula of α the

(normalized) supremal probability of (s,o) of executing a maximal computation compatible

with α. This case corresponds to the second case of Definition 4.16 and it captures the

maximal probability of the interaction system to fail by executing the trace α.

Definition 6.21 (Mimicking formula for testing). Assume a PTS P = (S ,A,−→) and an NPT

O = (O,A,−→O). Let s ∈S and o ∈O. For each α ∈A⋆ we define the mimicking formula on α

for (s,o) as

Ψ
α
s,o =











































sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α))

sup
Zo∈Resmax,α(o)

Pr(SC(zo ,α))
Φα,

p if sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α)) > 0

sup
Zs,o∈Resmax,α(s,o)

Pr(Cmax(zs,o ,α))

sup
Zo∈Resmax(o)

Pr(C(zo ,α))
Φα,⊥ otherwise.

Then we define the mimicking formula for testing of the interaction system (s,o), notation

Ψs,o ∈Lpp, as the probabilistic formula

Ψs,o =
∧

α∈A⋆

Ψ
α
s,o .

We remark that the construction of the mimicking formula on a trace, guarantees that for

each trace α ∈A⋆ in the mimicking formula for the interaction system s ∥ o occurs either the

successful trace formula of α or its unsuccessful version. This property will be fundamental

for the characterization result. Moreover, mimicking formulae satisfy the following feature.

Lemma 6.12. For any s ∈S ,o ∈O,α ∈A⋆ we have Ψα
s,o = 0Φα,⊥ iff Resmax,α(s,o) =;.
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Proof. (⇒) From the assumption Ψ
α
s,o = 0Φα,⊥ and Definition 6.21 we can infer that

sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α)) = 0 sup
Zs,o∈Resmax,α(s,o)

Pr(Cmax(zs,o ,α)) = 0.

Therefore, we can conclude that there is no maximal computation from (s,o) which is

compatible with the trace α, that is Resmax,α(s,o) =;.

(⇐) As Resmax,α(s,o) =; implies that no maximal computation from (s,o) is compatible

with α, we can immediately infer that

sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α)) = 0 sup
Zs,o∈Resmax,α(s,o)

Pr(Cmax(zs,o ,α)) = 0

thus giving (by Definition 6.21) that Ψα
s,o = 0Φα,⊥. �

By means of mimicking formulae we obtain the Lp-characterizations of testing seman-

tics. We obtain that s ⊑test t if and only if for all tests o the mimicking formulae of the

interaction systems of s and t with o, Ψs,o and Ψt ,o , are related by the relation of ordering

of formulae. When testing equivalence is considered, the characterization is derived from

pointwise equality of mimicking formulae with respect to all tests.

Theorem 6.13. Assume a PTS P = (S ,A,−→) and an NPT O = (O,A,−→O).

✶✳ For all s, t ∈S we have that s ⊑test t if and only if for all o ∈O we have Ψs,o ≤Ψt ,o .

✷✳ For all s, t ∈S we have that s ∼test t if and only if for all o ∈O we have Ψs,o =Ψt ,o .

Proof. By Theorem 4.40 we have that s ⊑test t if and only if d⊑test,λ
(s, t ) = 0 and s ∼test t if

and only if dtest,λ(s, t ) = 0. Therefore, the thesis follows by Definition 6.22, Theorem 6.16 and

Proposition 6.11. �

Lp-CHARACTERIZATION OF TESTING METRIC

To obtain the characterization of testing metric, we lift the distance on formulae to a distance

on processes.

Definition 6.22. Let λ ∈ (0,1]. Assume a PTS P = (S ,A,−→) and an NPT O = (O,A,−→O). The

logical testing pre-distance on processes ℓ⊑test,λ : S×S → [0,1] is defined, for all s, t ∈S , by

ℓ⊑test,λ(s, t ) = sup
o∈O

D
p

λ
(Ψs,o ,Ψt ,o).

The logical testing distance on processes ℓtest,λ : S×S → [0,1] is defined, for all s, t ∈S , by

ℓtest,λ(s, t ) = max{ℓ⊑test,λ(s, t ),ℓ⊑test,λ(t , s)}.

Our logical (pre) distance is a well-defined (premetric) semimetric on S , as formalized

in the following Proposition.

Proposition 6.14. Let λ ∈ (0,1].
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✶✳ The mapping ℓ⊑test,λ is a 1-bounded premetric on S .

✷✳ The mapping ℓtest,λ is a 1-bounded semimetric on S .

Proof.

✶✳ The proof follows immediately by Proposition 6.9.

✷✳ The proof follows immediately by Proposition 6.14.1.

�

From our Lp-characterization of testing equivalence (Theorem 6.13) we obtain the

following result.

Theorem 6.15. Let λ ∈ (0,1]. For all processes s, t ∈S we have

✶✳ ℓ⊑test,λ(s, t ) = 0 if and only if s ⊑test t .

✷✳ ℓtest,λ(s, t ) = 0 if and only if s ∼test t .

Proof.

✶✳

s ⊑test t iff ∀o ∈OΨs,o ≤Ψt ,o (by Theorem 6.13.1)

iff ∀o ∈O D
p

λ
(Ψs,o ,Ψt ,o) = 0 (by Proposition 6.11)

iff sup
o∈O

D
p

λ
(Ψs,o ,Ψt ,o) = 0

iff ℓ⊑test,λ(s, t ) = 0

✷✳

s ∼test t iff s ⊑test t and t ⊑test s

iff ℓ⊑test,λ(s, t ) = 0 and ℓ⊑test,λ(t , s) = 0 (by Theorem 6.15.1)

iff max{ℓ⊑test,λ(s, t ), ℓ⊑test,λ(t , s)} = 0

iff ℓtest,λ(s, t ) = 0.

�

Finally, we obtain the characterization of the testing metric.

Theorem 6.16 (Lp-characterization of testing (pre)metric). Let λ ∈ (0,1]. For all s, t ∈S we

have

✶✳ d⊑test,λ
(s, t ) = ℓ⊑test,λ(s, t ).

✷✳ dtest,λ(s, t ) = ℓtest,λ(s, t ).
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6.4. Logical characterization of testing semantics

Proof.

✶✳ First of all we notice that for all Φ ∈Llp

max{0,λdpt(Φ)−1(r1 − r2)} ≤ 1 for any r1,r2 ∈ [0,1] (6.3)

λdpt(Φ)−1r1 ≤ 1 for any r1 ∈ [0,1]

λdpt(Φ)r1 ≤ 1 for any r1 ∈ [0,1].

This is due to the fact that λ≤ 1 and r1,r2 ∈ [0,1]. Therefore, we have

ℓ⊑test,λ(s, t ) = sup
o∈O

D
p

λ
(Ψs,o ,Ψt ,o)

= sup
o∈O

D
p

λ
(

∧

α∈A⋆

Ψ
α
s,o ,

∧

β∈A⋆

Ψ
β
t ,o)

= sup
o∈O

sup
α∈A⋆

inf
β∈A⋆

D
p

λ
(Ψα

s,o ,Ψ
β
t ,o)

= sup
o∈O

sup
α∈A⋆

D
p

λ
(Ψα

s,o ,Ψα
t ,o)

where the last step follows by Equation (6.3). To prove the thesis we will prove that for

all s, t ∈S it holds that

ℓ⊑test,λ(s, t ) ≤ d⊑test,λ(s, t ) (6.4)

d⊑test,λ(s, t ) ≤ ℓ⊑test,λ(s, t ). (6.5)

Proof of Equation (6.4).

By definition of supremum we have that for each ε> 0 there are a test oε and a trace

αε such that ℓ⊑test,λ(s, t ) <D
p

λ
(Ψ

αε
s,oε

,Ψ
αε
t ,oε

)+ε. Hence, to prove Equation (6.4) we need

to show that for all ε> 0 we have

D
p

λ
(Ψ

αε
s,oε

,Ψ
αε
t ,oε

) ≤ d⊑test,λ(s, t ). (6.6)

Let ε> 0 and, for simplicity of notation, let o = oε and α=αε. We proceed by a case

analysis to prove Equation (6.6).

❛✳ Assume first that Resmax,α(s,o) =;. Then we have 0 =D
p

λ
(Ψα

s,o ,Ψα
t ,o) ≤ d⊑test,λ

(s, t ).

In fact by Lemma 6.12, Resmax,α(s,o) = ; implies that Ψα
s,o = 0Φα,⊥, and thus

Ψ
α
s,o ≤Ψ

α
t ,o whichever the structure of Ψα

t ,o is. Hence, by Proposition 6.11 we can

conclude that D
p

λ
(Ψα

s,o ,Ψα
t ,o) = 0.

❜✳ Assume now that Resmax,α(s,o) 6= ;. Accordingly to Definition 6.21, we can

distinguish two cases:

✐✳ Ψ
α
s,o =

(

supZs,o∈Resmax,α(s,o) Pr(SC(zs,o ,α))/supZo∈Resmax,α(o) Pr(SC(zo ,α))
)

Φα,
p.

Then we can distinguish two cases:
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⋆ Resmax,α(t ,o) =;. In this case, we have that

sup
Zt ,o∈Resmax,α(t ,o)

Pr(SC(zt ,o ,α)) = 0

Ψ
α
t ,o = 0Φα,⊥.

Therefore we have

D
p

λ
(Ψα

s,o ,Ψα
t ,o) =D

p

λ







sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α))

sup
Zo∈Resmax,α(o)

Pr(SC(zo ,α))
Φα,

p,0Φα,⊥







=λdpt(Φα,
p)−1

sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α))

sup
Zo∈Resmax,α(o)

Pr(SC(zo ,α))
.

Notice that dpt(Φα,
p) = |α|. If |α| = dpt(o) then we have

do,α
⊑test,λ

(s, t )

=λdpt(o)−1

sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α))− sup
Zt ,o∈Resmax,α(t ,o)

Pr(SC(zt ,o ,α))

sup
Zo∈Resmax,α(o)

Pr(SC(zo ,α))

=λdpt(o)−1

sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α))

sup
Zo∈Resmax,α(o)

Pr(SC(zo ,α))

by which Equation (6.6) directly follows. Conversely, if |α| < dpt(o) then

let o′ be the test obtained from o by eliminating all transitions that make

dpt(o) > |α|. Then we have

sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α)) = sup
Zs,o′∈Resmax,α(s,o′)

Pr(SC(zs,o′ ,α))

sup
Zo∈Resmax,α(o)

Pr(SC(zo ,α)) = sup
Zo′∈Resmax,α(o′)

Pr(SC(zo′ ,α))

and thus

do′,α
⊑test,λ

(s, t )

=λdpt(o′)−1

sup
Zs,o′∈Resmax,α(s,o′)

Pr(SC(zs,o′ ,α))− sup
Zt ,o′∈Resmax,α(t ,o′)

Pr(SC(zt ,o′ ,α))

sup
Zo′∈Resmax,α(o′)

Pr(SC(zo′ ,α))

=λdpt(o′)−1

sup
Zs,o′∈Resmax,α(s,o′)

Pr(SC(zs,o′ ,α))

sup
Zo′∈Resmax,α(o′)

Pr(SC(zo′ ,α))
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=D
p

λ
(Ψα

s,o ,Ψα
t ,o)

by which Equation (6.6) follows as well.

⋆ Resmax,α(t ,o) 6= ;. By Lemma 4.8, accordingly to the structure of Ψα
s,o ,

this implies that supZt ,o∈Resmax,α(t ,o) Pr(SC(zt ,o ,α)) > 0 and thus

Ψ
α
t ,o =

sup
Zt ,o∈Resmax,α(t ,o)

Pr(SC(zt ,o ,α))

sup
Zo∈Resmax,α(o)

Pr(SC(zo ,α))
Φα,

p.

Then, we have

D
p

λ
(Ψα

s,o ,Ψα
t ,o) = max











0,λdpt(Φα,
p)−1 d(s, t ,o,α)

sup
Zo∈Resmax,α(o)

Pr(SC(zo ,α))











and, by reasoning as in the previous item, if |α| = dpt(o) then

do,α
⊑test,λ

(s, t ) = max











0,λdpt(o)−1 d(s, t ,o,α)

sup
Zo∈Resmax,α(o)

Pr(SC(zo ,α))











by which Equation (6.6) directly follows, whereas if |α| < dpt(o) then we

choose o′ as above for which

sup
Zs,o∈Resmax,α(s,o)

Pr(SC(zs,o ,α)) = sup
Zs,o′∈Resmax,α(s,o′)

Pr(SC(zs,o′ ,α))

sup
Zt ,o∈Resmax,α(t ,o)

Pr(SC(zt ,o ,α)) = sup
Zt ,o′∈Resmax,α(t ,o′)

Pr(SC(zt ,o′ ,α))

sup
Zo∈Resmax,α(o)

Pr(SC(zo ,α)) = sup
Zo′∈Resmax,α(o′)

Pr(SC(zo′ ,α))

and thus

do′,α
⊑test,λ

(s, t ) = max















0,λdpt(o′)−1 d(s, t ,o′,α)

sup
Zo′∈Resmax,α(o′)

Pr(SC(z ′
o ,α))















=D
p

λ
(Ψα

s,o ,Ψα
t ,o).

Thus, Equation (6.6) follows as well.

✐✐✳ Ψ
α
s,o =

(

supZs,o∈Resmax,α(s,o) Pr(Cmax(zs,o ,α))/supZo∈Resmax(o) Pr(C(zo ,α))
)

Φα,⊥.

Then we can distinguish two cases:

⋆ Resmax,α(t ,o) =;. In this case, we have that

sup
Zt ,o∈Resmax,α

Pr(Cmax(zt ,o ,α)) = 0
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Ψ
α
t ,o = 0Φα,⊥.

Therefore we have

D
p

λ
(Ψα

s,o ,Ψα
t ,o) =D

p

λ







sup
Zs,o∈Resmax,α(s,o)

Pr(Cmax(zs,o ,α))

sup
Zo∈Resmax(o)

Pr(C(zo ,α))
Φα,⊥,0Φα,⊥







=λdpt(Φα,⊥)

sup
Zs,o∈Resmax,α(s,o)

Pr(Cmax(zs,o ,α))

sup
Zo∈Resmax(o)

Pr(C(zo ,α))
.

Notice that dpt(Φα,⊥) = |α|. Moreover, since the testing distance is de-

termined by the compatibility with the fully-nondeterministic case,

we have that dpt(o) ≥ |α| + 1. Hence, if the equality holds, namely

dpt(o) = |α|+1 then it is enough to consider

do,α
⊑test,λ

(s, t ) =λdpt(o)−1

sup
Zs,o∈Resmax,α(s,o)

Pr(Cmax(zs,o ,α))

sup
Zo∈Resmax(o)

Pr(C(zo ,α))

for which Equation (6.6) holds. Otherwise, let o′ be the test obtained

from o by deleting all the transitions that make dpt(o) > |α|+1. Then we

have

sup
Zs,o∈Resmax,α(s,o)

Pr(Cmax(zs,o ,α)) = sup
Zs,o′∈Resmax,α(s,o′)

Pr(Cmax(zs,o′ ,α))

sup
Zt ,o∈Resmax,α(t ,o)

Pr(Cmax(zt ,o ,α)) = sup
Zt ,o′∈Resmax,α(t ,o′)

Pr(Cmax(zt ,o′ ,α))

sup
Zo∈Resmax,α(o)

Pr(C(zo ,α)) = sup
Zo′∈Resmax,α(o′)

Pr(C(zo′ ,α))

and thus

do′,α
⊑test,λ

(s, t ) =λdpt(o′)−1

sup
Zs,o′∈Resmax,α(s,o′)

Pr(Cmax(zs,o′ ,α))

sup
Zo′∈Resmax(o′)

Pr(C(zo′ ,α))

for which Equation (6.6) holds.

⋆ Resmax,α(t ,o) 6= ;. By Lemma 4.8, accordingly to the structure of Ψα
s,o ,

this implies that supZt ,o∈Resmax,α(t ,o) Pr(SC(zt ,o ,α)) = 0 and thus

Ψ
α
t ,o =

sup
Zt ,o∈Resmax,α(t ,o)

Pr(Cmax(zt ,o ,α))

sup
Zo∈Resmax(o)

Pr(C(zo ,α))
Φα,⊥.
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Then, by Definition 6.17 we have

D
p

λ
(Ψα

s,o ,Ψα
t ,o) = 0

for which Equation (6.6) holds.

Proof of Equation (6.5).

By definition of supremum we have that for each ε> 0 there are a test oε and a trace αε

such that d⊑test,λ
(s, t ) < d

oε,αε

⊑test,λ
+ε. Moreover we notice that in this case, for each ε> 0,

oε is guaranteed to give the supremal testing distance with respect to αε. This implies

that either dpt(oε) = |αε|, for d
oε,αε

⊑test,λ
(s, t ) defined as in the first case of Definition 4.16,

or dpt(oε) = |αε|+1, for d
oε,αε

⊑test,λ
(s, t) defined as in the second case of Definition 4.16.

Hence, to prove to prove Equation (6.5) we need to show that for all ε> 0 we have

d
oε,αε

⊑test,λ
(s, t ) ≤D

p

λ
(Ψ

αε
s,oε

,Ψ
αε
t ,oε

). (6.7)

Equation (6.6) follows by the same case analysis used to prove Equation (6.6).

✷✳

dtest,λ(s, t ) = max{d⊑test,λ(s, t ), d⊑test,λ(t , s)}

= max{ℓ⊑test,λ(s, t ), ℓ⊑test,λ(t , s)} (by Theorem 6.16.1)

= ℓtest,λ(s, t ).

�

6.5 A SPECTRUM OF LOGICAL DISTANCES

In this Chapter and in previous Chapter 5 we have proposed a novel method for the logical

characterization of behavioral metrics. Briefly, we have considered boolean logics and for

each process we have identified a special formula, called mimicking, expressing all the

properties of the given process that are relevant with respect to the considered semantics.

Then we have transformed the logic into a metric space by defining a distance on formulae

measuring their syntactical disparities. Finally, we have proved that the distance between

the mimicking formulae of two processes equals the distance of the two processes with

respect to the considered semantics.

Interestingly, this kind of characterization gives that the distance on formulae is as

expressive as the behavioral metric. As a further evidence of this fact, in this Section we

combine the logical characterizations of branching metrics presented in Chapter 5 with

those of this Chapter to obtain the first example of a spectrum of behavioral distances on

processes obtained solely by means of modal logics. More precisely, we order our logical

distances, obtained as the distance on the mimicking formulae of processes, by the relation

‘make processes farther than’.

This is formalized in the following Theorem.
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ℓλ

ℓr,λ

ℓTrR,λ ℓ⊑TrR,λ

ℓR,λ ℓ⊑R,λ

ℓTrF,λ ℓ⊑TrF,λ

ℓF,λ ℓ⊑F,λ

ℓtest,λ ℓ⊑test,λ ℓs,λ

ℓTrC,λ ℓ⊑TrC,λ

ℓTr,λ ℓ⊑Tr,λ

Figure 6.1: The spectrum of logical distances. An arrow ℓ→ ℓ′ between two logical distances

stands for ℓ(s, t ) ≥ ℓ′(s, t ) for all processes s, t , and ℓ(s, t ) > ℓ′(s, t ) for some processes s, t .

Theorem 6.17. Let λ ∈ (0,1]. For each s, t ∈S it holds that:

✶✳ ℓλ > ℓr,λ > ℓs,λ.

✷✳ ℓr,λ > ℓ⊑TrF,λ > ℓ⊑F,λ > ℓ⊑test,λ > ℓ⊑Tr,λ.

✸✳ ℓ⊑F,λ > ℓ⊑TrC,λ > ℓ⊑Tr,λ.

✹✳ ℓs,λ > ℓ⊑Tr,λ.

✺✳ ℓr,λ > ℓ⊑TrR,λ and ℓr,λ > ℓ⊑R,λ.

✻✳ ℓλ > ℓTrF,λ > ℓF,λ > ℓtest,λ > ℓTr,λ.

✼✳ ℓF,λ > ℓTrC,λ > ℓTr,λ.

✽✳ ℓλ > ℓTrR,λ and ℓλ > ℓR,λ.

Proof. Each relation follows from the corresponding one in Theorem 4.10 and from the

proper logical characterization ℓx,λ = dx,λ given in Chapters 5 and 6. �

6.6 CONCLUDING REMARKS

In this Chapter we have extended the logical characterization method of branching met-

rics proposed in Chapter 5 to the linear metrics defined in Chapter 4. In detail, we have

considered the probabilistic version of the class of formulae characterizing the (decorated)
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trace relations in the fully-nondeterministic case [33] and a minimal boolean logic, ob-

tained by extending the class of formulae characterizing trace equivalence in the fully-

nondeterministic case with special modalities capturing the successful process and failure,

to characterize testing metrics and relations. The presence of the modality capturing failure

is fundamental to preserve the full backward compatibility of our testing relations with

the fully-nondeterministic case. The formulae in this classes express the semantic-specific

events and thus the mimicking formulae of processes for the considered semantics specify

the supremal probabilities of semantic-specific events to be performed by the related pro-

cess. We remark that there was no need to introduce recursion in this logic since (decorated)

trace semantics are defined in terms of (decorated) traces of finite length. Thus the logical

characterization of linear metrics results technically simpler in this Chapter but equally

effective to that in Chapter 5.

We have already noticed that our characterization method differs from the total-variation

distance approach considered in the literature [59,61,72,73,75]. However, we notice that the

disparity in the two characterization techniques diminishes if we consider trace metric only.

In fact, due to the simple syntactic structure of formulae in L, our logical trace distance can

be easily translated into a total-variation distance on a real-valued version of the subclass of

Ll

Ll
t :: Φ :=⊤ | 〈a〉Φ.

We can define the real-valued semantics of a formula Φ in Ll
t in process s as

[Φ](s) ::= sup
Zs∈Res(s)

Pr(Ct(zs ,Φ)).

Then our logical trace distance would become

ℓTr,λ(s, t ) := sup
Φ∈Ll

t

| [Φ](s)− [Φ](t ) | .

A similar approach would hold for the other decorated trace metrics. Nevertheless, notice

that our approach is more general and it allowed for the construction of the spectrum of

logical distances on processes. Moreover, we remark that while the total-variation approach

requires to evaluate the disparities of processes in the evaluation of every single formula

in the considered logic, our approach considers only mimicking formulae that capture all

the relevant semantic properties of processes and thus the ones necessary to measure their

behavioral distances. Admittedly, this does not hold for the testing semantics for which we

have a mimicking formula for each interaction of the process with a test.

In [59] the authors consider Metric Transition Systems (MTS), namely transition systems

in which the atomic propositions, at each state, take values in a bounded metric space. They

define an asymmetric linear distance generalizing trace inclusion and its symmetric version

for trace equivalence and they show that by means of the Quantitative Linear-Time Temporal

Logic (QLTL), it is possible to characterize those distances. Linear-time properties are also

studied in [13], in order to capture approximate reasoning on Stochastic Markov Models

(SMMs). SMMs are a generalization of CTMCs in the sense that exit-time probabilities

follow generic distributions on the positive real line. Then, for the specification of SMMs
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properties, they proposed the Metric Temporal Logic (MTL), built on implication and the

temporal operators next and until. The authors defined several equivalent distances on

SMMs, one of which was the MTL-variation pseudometric, defined as the total variation

distance on the probability measure on the measurable space of timed paths. As this

variation pseudometric is neither computable nor can be approximated (see also [53] for

a discussion on the approximation of total variation distances), an over approximation is

proposed which is obtained as a convex combination of the total variation distance on the

exit-time probabilities and the Kantorovich distance on transition probability functions. In

[14] it is proved that the trace metric on Markov Chains (MCs) can be characterized in terms

of the probabilistic LTL-model checking problem. Roughly speaking, a characterization as

in (6.1) is obtained from the boolean logic LTL by assigning a real-valued semantics to it,

defined by exploiting the probabilistic properties of the MC: the value of a formula ϕ ∈ LTL

at state s is given by the probability of s to execute a run satisfying ϕ.
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God’s final message to its creation:
‘We apolog0e for the inconvenience.’

Douglas Adams,

So Long and Thank for All the Fish
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7
Conclusions

I
n this thesis we have discussed new techniques to study and compare the semantics of

processes with nondeterminism and probability, as in Segala’s PTS model [145], in terms

of both classic behavioral relations and the more recent behavioral metrics.

In detail we have provided a method for decomposing modal formulae equipped with

a probabilistic choice operator that allowed us to derive the compositional properties of

probabilistic strong branching relations. To obtain the decomposition method we have in-

troduced an SOS-like machinery specifying the behavior of distribution terms as probability

distributions over process terms.

Then we focused on behavioral metrics: we have proposed original notions of metrics

measuring the disparities in the behavior of processes with respect to (decorated) trace and

testing semantics. To capture the differences in the expressive power of the novel metrics

and the ones for probabilistic (bi)simulations we have ordered them by the relation ‘makes

processes further than’. Thus we have obtained the first spectrum of behavioral metrics on

processes in the PTS model. Interestingly, from this spectrum we derived an analogous one

for the kernels of the considered metrics, which have been ordered by the relation ‘make

strictly less identification than’. Our spectrum of probabilistic relations is the probabilistic

generalization of the linear time - branching time spectrum of [159].

Finally we have introduced a novel technique for the logical characterization of both

behavioral metrics and their kernels, based on the notions of mimicking formula and dis-

tance on formulae. In the case of behavioral metrics, the idea is the following: ✶✳ Once

we have chosen a class L of modal boolean-valued formulae suitable for the considered

semantics, for a process s we identify a special formula expressing the relevant properties of

s with respect to the considered semantics, called mimicking formula of s. This is a formula

in L that captures the nondeterministic and probabilistic behavior of the process that is

relevant for the considered semantics. ✷✳ Then, we transform the modal logic L into a metric

space by introducing a notion of syntactical distance on formulae. This is a 1-bounded
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pseudometric assigning to each pair of formulae a suitable quantitative analogue of their

syntactic disparities. ✸✳ We conclude by defining a logical distance on processes correspond-

ing to the distance between their mimicking formulae and proving that this logical distance

characterizes the considered metric semantics. This kind of characterization allowed us to

obtain the first example of a spectrum of behavioral distances on processes obtain directly

from modal logics. Moreover, we have showed that the kernels of the considered metrics

can be characterized by simply comparing the mimicking formulae of processes.

We conclude by proposing some directions for future work related to the topics addressed

in this dissertation.

Modal decomposition We will investigate the application of our decomposition method

to the classes of modal formulae characterizing different behavioral semantics for nonde-

terministic probabilistic processes, as convex (bi)similarity semantics [146]. We will also

consider the weak semantics [10, 126, 127], and we will derive robust (pre)congruence for-

mats for them from their modal characterizations, as done in the non probabilistic setting.

Our claim is that in the case of weak (bi)simulations the congruence results can be obtained

by simply combining the formats in [33, 80, 82, 84, 85] and our method of decomposing the

probabilistic modalities. A sketch on how we can achieve this purpose has been presented

in Chapter 3.5.

Moreover, it would be interesting to combine our decomposition method with the general

rules and ruloids recently introduced in [82] and the characterizations of behavioral metrics

that we have provided in Chapters 5 and 6. Inspired by those result, we aim to start a new

research line, that is deriving the compositional properties of behavioral metrics from the

modal decomposition of formulae characterizing them. As the metric semantics provide

notions of distance on processes, the formats for them guarantee that a small variance in

the behavior of the subprocesses leads to a bounded small variance in the behavior of the

composed processes (uniform continuity [91,92,94]). Then, we aim to use the decomposition

method to re-obtain the formats for bisimilarity metric proposed in [94] and to automatically

derive original formats for the (ready) simulation, trace and testing semantics presented in

Chapter 4, as well as for weak metric semantics [73, 115] and metric variants of branching

bisimulation equivalence [10, 126, 127].

Logical characterizations We have already argued in Chapter 5 that we defined the dis-

tance between formulae with the exact purpose of simulating the Hausdorff and Kantorovich

lifting functionals on which the bisimilarity metric is defined. Despite this kind of reasoning

may seem too restrictive at first glance, we believe that having a distance between formulae

instead of a real-valued semantics for the logic turns out to be an advantage in case one

wishes to modify the lifting functionals in the definition of (bi)similarity metric (cf. first

part of Chapter 5.6). Thus, we aim to extend our results to other lifting functionals, like the

generalized Kantorovich lifting functional KV [44].

Moreover, we will apply our characterization approach to various behavioral metrics as

convex (bi)simulation metrics [146] and weak (bi)simulation metrics [73]. We aim also to ap-
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ply the approach to the notion of ǫ-bisimulation [7, 8, 74], for which a modal decomposition

of formulae characterizing the compositional results in [152, 153] can be given.

Further, it would be interesting to extend our results to the decorated trace and testing

distribution equivalences defined in [29, 144, 145] and to the metrics capturing them. A

first attempt in this direction has been done in [43] where we have proposed a logical

characterization of a revised version of the trace metric from [148] by means of the notions

of mimicking formula and logical distance.

Behavioral metrics We aim to investigate the behavior of the metrics defined in Chapter 4

and related kernels in the interaction with other types of schedulers, like the randomized

ones from [144], the probabilistic ones from [51] and also their balanced versions, in terms

of distinguishing power, from [95, 164]. Furthermore, we aim to extend the spectrum of

metrics to distribution-based distances, like the trace metric in [148], and to compare the

derived spectrum of kernels with its analogous from [30].

Following [92, 94], we are also interested in studying the compositional properties of

the behavioral metrics introduced in Chapter 4, like non-extensiveness, non-expansiveness

and (Lipschitz) continuity. Furthermore, we aim to define uniform continuity specification

formats for them.

Finally, we would like to investigate novel applications for the metric semantics and

their logical characterizations. For instance, we can study a quantitative analogue to the

probabilistic barbed bisimulation from [65]. Barbed bisimulation was introduced in [132] to

uniformly describe the observable behavior of process calculi equipped with a reduction

semantics. Thus, barbed bisimulation metric could be exploited to equip process calculi for

wireless sensor networks, mobile ad hoc networks and cyber-physical systems with a robust

semantics.

Another possible application of behavioral metrics is related to biological systems mod-

eling. Many process algebras have been introduced to model these systems (see for in-

stance [19, 20, 22, 23, 38, 48, 49]) and recently also some probabilistic algebras have been

proposed [15, 18, 21, 24]. Metric semantics could be used in this setting to strengthen the

expressive power of these models, thus obtaining more effective representations.

We would also study efficient ways to express and verify privacy properties in concurrent

and interactive settings. To this purpose we will consider the bisimulation distance for

differential-privacy [76]. We will study efficient ways to compute such distance by consider-

ing the formulation of the Kantorovich lifting in terms of the transportation problem, and

we will exploit the fact that differential-privacy has strong separation properties to reduce

the space of possibility in the minimization process. We will also explore a logic for charac-

terizing the bisimulation distance for differential-privacy, in the style of the probabilistic

Hennessy-Milner logic L [66].
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