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Abstract

In this thesis, I have investigated the problem of identiőcation and authentication of
electronic devices through their physical layer intrinsic features or őngerprints. The
concept is that small differences in the electronic components of electronic devices
(e.g., smartphone) leave small but signiőcant traces in the digital output generated
by the electronic device (e.g., digital image or radio frequency emissions). Then, an
analysis of the digital output provides the capability to identify and/or authenticate
an electronic device from its digital output with a degree of accuracy, which is based
on various factors including environmental effects. This research area has become
more prominent in recent times due to the increasing computing power available for
signal processing and analysis, which allows a more efficient and accurate extraction of
the őngerprints. Even if there is considerable research in this area, which has proven
the concept both with theoretical analysis and experimental results, there are still
many aspects to be investigated both for the different types of electronic devices and
for the analysis of the digital output through signal processing and machine learning
techniques. The PhD activities have investigated various novel aspects in comparison
to the existing literature. This thesis describes most of the results and describes the
novelty in comparison to previous research literature. Three speciőc use cases were
considered: identiőcation of wireless devices, microphones and magnetometers.
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Identiőcation and authentication are two important security functions. Identiőca-

tion is the capability to uniquely identify an entity (e.g., user, system or application)

among other entities. Authentication is the capability to prove that an entity (e.g.,

user, system or application) is what it claims to be. Identiőcation and authentication

is extensively used in ensuring the security of Information and Communication Tech-

nologies (ICT) for the access and provision of services. For example, it is critical to

distinguish between legitimate users (who are paying for a service) from other users

(who may use the same services in an illegal way). Identiőcation and authentication

can be based on three main factors: information that an entity knows (such as a pass-

word), something that entity has (a smartcard) or something the entity is (biometric

features). Identiőcation and authentication can be based on each of these elements

or a combination of these elements in the so-called multi-factor authentication, which

is usually stronger than identiőcation/authentication based on a single element.

Each of these elements has its own advantages/disadvantages as it is well known

in literature [1],[2]:

∙ Information that an entity knows has the disadvantage that this information

can be stolen from the entity or the entity can lose this information (e.g., for-

getting it). In addition, many systems require to re-create information when

the identiőcation/authentication system is upgraded or periodically to increase

security (e.g., re-issuing new passwords). The advantage is that this form of

authentication has a relatively simple implementation and usability.

∙ Something that an entity has can also be stolen and used by another entity.

There is also the problem of updating/re-issuing the âĂĲsomethingâĂİ when

the identiőcation/authentication system is upgraded. The advantage is that

this form of authentication has a relatively simple implementation if it requires

the generation and distribution of hardware or digital components (something

to have), which can be cumbersome in some contexts (e.g., entities which do

not have connectivity).

∙ Something that the entity is has the advantage that it cannot be lost as it is an
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intrinsic feature of the entity (e.g., biometric features like a őngerprint). The

disadvantage is that the extraction of the âĂĲsomethingâĂİ or its features can

be a complex operation, which may require sophisticated equipment (e.g., DNA

analysis)

A speciőc context is the identiőcation/authentication of electronic devices, where

an electronic device rather than a person must be identiőed or authenticated. This

context has become increasingly important with Machine to (2) Machine (M2M)

communication and provision of services without human intervention as the elec-

tronic device must be able to be identiőed and authenticated by the rest of ICT

system or devices with which they must interact. The conventional method to iden-

tify/authenticate electronic device is through cryptographic means where the elec-

tronic device receives and stores cryptographic material (e.g., a private key) which is

used to perform various security functions. On the other side, this approach has the

disadvantages described above: the private key must be protected from being stolen

and it is necessary to update it and obtain the associated public key when there is

a change in the overall cryptographic system (e.g., because the algorithm generating

the key is changed), which requires secure connectivity. There are also other poten-

tial threats to cryptographic systems described in the literature (e.g., eavesdropping)

which are out of scope of this thesis.

The goal of this PhD thesis was to investigate an alternative way to identify and

authenticate electronic devices using non-cryptographic means, which is based on the

intrinsic features of the electronic device itself (something that the entity is).

The concept is the electronic devices have very small differences in their hardware

components due to: a) the manufacturing process or b) the different composition of

materials, which can be exploited to uniquely identify the electronic device. These

differences are usually within the constraints of the standards on which the electronic

devices are designed and they are not relevant enough to hamper the correct provision

of the services by the electronic devices, but they can be used to uniquely identify

the device. Some researchers have called these differences âĂŸőngerprintsâĂŹ like

the human őngerprints or Radio Frequency DNA (RF-DNA) [3] in case of wireless
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devices, which produce radio frequency emissions to transmit information on the

basis of a wireless standard. Fingerprints can be identiőed by the digital output

generated by the electronic device either when the device is providing services (e.g.,

radio frequency emission of a UMTS mobile phone when transmitting), or on the basis

of a speciőc input (e.g., sensor patter noise in the pictures taken by a camera). The

characterization of the digital output and the creation of the őngerprints is usually

implemented through statistical analysis of the digital output itself. While there has

been a considerable body of research in recent years on őngerprinting of electronic

devices, there are still many research areas to further investigate and explore, which

was the main focus of the doctoral research activities described in this thesis.

The őngerprints can be used in various applications, which are further described

in Section 1.2:

1. multi-factor authentication where the őngerprints can be combined with con-

ventional authentication methods based on cryptography,

2. őght against counterfeiting of electronic devices where proper and counterfeit

devices can be distinguished on the basis of the őngerprints,

3. forensics analysis where the őngerprints can be used to match evidence from a

crime scene or crime activity,

4. quality control of electronic devices to check if they deviate signiőcantly from a

blueprint.

The study of őngerprinting of electronic devices may require various capabilities

and can involve many different areas of research:

∙ Knowledge of electronic devices to understand what type of meaningful digital

output can be collected or generated on the basis of speciőc stimuli,

∙ signal processing to analyze and evaluate the digital output of an electronic

device and extract the őngerprints,
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∙ machine learning algorithms to classify the őngerprints and use them to distin-

guish the electronic devices,

∙ modeling of environmental effects, which may impact the őngerprint identiőca-

tion. For example, wireless propagation models when the őngerprints are based

on radio frequency digital output because wireless propagation phenomena like

fading or attenuation can impact the classiőcation accuracy.

All these aspects are analyzed in detail in the following sections.

1.1 Problem Definition, operational requirements and

metrics

1.1.1 Problem definition

The problem deőnition is how to identify and authenticate electronic devices on the

basis of their digital output. As reported in the research literature, it is proven that

the digital output (e.g., images from a camera or radio frequency signal of a wireless

device when transmitting) from an electronic device includes speciőc characteristics

(i.e., the őngerprints) related to the physical structure and materials of the device. As

described in various surveys [4], [5], each electronic device including cameras, radio

frequency communication systems, microphones, Inertial Measurement Unit (IMU)

can be identiőed on the basis of the őngerprints. See őgure 1-1 for a pictorial de-

scription of this concept. The őngerprints are generated by the small differences in

the hardware components (e.g., őlters, ampliőers, processors, transducers, generators

and so on), how they are connected and the materials composing the components.

For some sensors, the signal processing software can also generate őngerprints (see [6]

for an example on how the processing software can impact őngerprinting in Global

Navigation Satellite Systems (GNSS) receivers). Then, it is more challenging from a

research point of view to determine the őngerprints related to the hardware compo-

nents, which is the focus of this doctoral thesis.
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As each electronic device has completely different hardware and software compo-

nents, the process of extraction and analysis of the őngerprints from each type of

device or component can be quite different. In theory, it would be possible to model

the behavior, bias and tolerances of each speciőc electronic component (e.g., őlter)

and there is an extensive literature for each component which can be used for this

purpose. On the other side, the complexity of electronic devices is that such a mod-

eling approach has been demonstrated its validity for the creation of the őngerprints

only in very speciőc cases and sensors [5], [4]. In the large majority of cases, an

empirical approach must be adopted for the extraction of the őngerprints. Section 2

on the state of art provides more details on this speciőc aspect.

Radio 

Frequency 

components

Microphone

GNSS 

receiver

Camera

(image/video)

MEMS/IMU

Extraction and 

fingerprints

Analysis

Any electronic device can generate 

fingerprints

Stimulus/

Challenge
Digital output/

Response

Sensors

Figure 1-1: Any electronic device in a mobile phone can generate őngerprints

1.1.2 Operational Requirements

To be of practical use, the extraction of the őngerprints must fulőll a set of operational

requirements and metrics, which are described in the following bullet list. These

requirements/metrics are referred in the following subsections of this thesis.

1. The őngerprints must support a high classiőcation (identiőcation and/or au-
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thentication) accuracy of the electronic devices,

2. The computing time for the generation and testing of the őngerprints must be

limited,

3. Repeatability of the őngerprints: the őngerprints must be stable across differ-

ent digital recordings taken from the electronic device in different times and

environmental settings,

4. The classiőcation accuracy must be robust against environmental effects includ-

ing the ones introduced by the devices used to collect the őngerprints.

The requirements are often linked among themselves, thus generating trade-offs,

which are dependent on the type of electronic device. For example, the computing

time and the accuracy is often a trade-off as őngerprinting techniques which provide an

higher accuracy often require more computing time or memory. Research literature

has investigated various techniques to support the validation of the requirements

identiőed above. During the research activities of the PhD thesis, a number of novel

techniques to improve the state of art in comparison to existing literature have been

investigated and published in peer-review papers. The results are described more in

detail in the following Sections of this thesis (see Sections 3, 4 and 5).

1.1.3 Classification Metrics

Note: The thesis is focused exclusively on supervisioned learning in a closed labeled

set. Then, the metrics for un-supervisioned learning are not discussed in this Section

or the rest of thesis.

In this section we describe the classiőcation metrics used in the rest of the thesis.

If A given class is taken as a reference class (usually called the "positive" class),

then the following quantities are computed:

∙ 𝑇p is the number of true positive matches, where the machine learning algorithm

has correctly identiőed a sample (e.g., a collected Radio Frequency (RF) signal

in our context) as belonging to the positive class;

23



∙ 𝑇n is the number of true negative matches, where the machine learning algorithm

has correctly identiőed a sample as not belonging to the positive class;

∙ 𝐹p is the number of false positive matches, where the machine learning algorithm

has mistakingly identiőed a sample as belonging to the positive class;

∙ 𝐹n is the number of false negative matches, where the machine learning algo-

rithm has mistakingly identiőed a sample as not belonging to the positive class.

The deőnitions above can be extended to the case of multiclass classiőcation to provide

the following classiőcation metrics.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇p + 𝑇n

𝑇p + 𝑇n + 𝐹p + 𝐹n
, (1.1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇p

𝑇p + 𝐹n
, (1.2)

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 =
𝐹p

𝐹p + 𝐹n
, (1.3)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇p

𝑇p + 𝐹p
, (1.4)

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 *𝑅𝑒𝑐𝑎𝑙𝑙/𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙, (1.5)

Another set of metrics is related to binary classiőcation. The Receiver Opera-

tive Characteristics (ROC) is generated by plotting the True Positive Rate (TPR)

(from equation 1.2) vs. False Positive Rate (FPR) (from equation 1.3) in a binary

classiőer system as its discrimination threshold is varied on the basis of the posterior

probabilities (scores).

The Equal Error Rate (EER) corresponds to the condition on the ROC curve

where TPR and FPR are equal. In this thesis, the value of the EER is calculated

for the X-axis (i.e., the FPR). This metric is frequently used as a summary statistic
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to compare the performance of various classiőcation systems. In general, the lower is

EER the better is the classiőcation performance.

Finally, the confusion matrix is also used to show the results of the identiőcation

process. In the confusion matrix, each column of the matrix represents a predicted

class while each row represents the actual class or viceversa as described in the speciőc

őgure.

1.2 Applications areas

1.2.1 Multi-factor authentication coupled with conventional

cryptographic authentication

In this application area, the őngerprints complement cryptographic means of au-

thentication: in addition to the authentication using keys (either with symmetric or

asymmetric cryptography) the őngerprints can be used to add another level of secu-

rity. If cryptographic keys are lost or compromised, őngerprints can be still used to

authenticate the device.

1.2.2 Alternative to cryptographic authentication when it is

not deployed or feasible because the key management

process is expensive or complex

In some contexts, the deployment of a cryptographic infrastructure with deployment

and installation processes (e.g., Public Key Infrastructure) is not a viable solution

because of technical or economic factors. In addition, there are some scenarios where

different systems need to coexist but they are not based on the same cryptographic

infrastructure or not all the systems do have a cryptographic authentication system.

One example is the detection of radio frequency emitters in a cognitive based scenario

[7].
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1.2.3 Fight against distribution of counterfeit products

Counterfeiting of electronic devices has an impact of billions of Euro on the economy

of member states in Europe. Many techniques for the detection and identiőcation of

counterfeit electronic devices are destructive: the electronic device must be opened

and disassembled to understand if the device is counterfeit or it contains counterfeit

components. Instead, the analysis of the digital output can be used to detect coun-

terfeit device and components without dissembling the device because counterfeit

components have lower quality components with different őngerprints from proper

components. As described in a recent study [8], counterfeit parts of an electronic

device, including the integrated circuits (ICs), are not only clones, but also recycled,

overproduced or (different) remarked components. This means that, in many cases,

they are still components coming from the production line or from its suppliers but

with lower quality, possibly posing problems of reliability and security of the devices,

as already reported even in the automotive, aviation and military industry.

1.2.4 Detection of tampering of electronic devices

Electronic devices can be tampered for a number of reasons including infringement

to regulations. For example, an electronic device (e.g., sensor) used to implement

a regulation can be tampered to report false readings, which provide an economic

beneőt to the malicious user. The analysis of the digital output can be used to detect

tampering in the sensor or the replacement of the entire sensor.

1.2.5 Quality Test

Fingerprints can be used for non-destructive testing as only the digital output can be

analyzed but the testing system does not need to be disassembled. An example is [9]

for ampliőer acceptance testing.
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1.2.6 Monitoring for aging effects

This application uses the őngerprints to detect aging effects in an electronic device,

which can hamper its performance. The analysis of the digital output can show the

ageing of the őngerprints, which in turn can give an indication that the electronic

device can drift away from its functional operating characteristics

1.2.7 Forensics

This is one of the primary applications of the őngerprints concept. As the digital

output of the electronic device contains the őngerprints of the device itself, it is

possible to identify the source of a digital recordings, which is an important function

in forensics studies. For example, a sound recording uploaded to the web can be used

to track down the source of the recording (i.e., the microphone and the associated

mobile phone).

1.2.8 Surveillance. Detection and identification of intruders

in a device network

In a closed and monitored ICT system, it is possible to use the őngerprint concept

to identify and authenticate devices on the basis of their őngerprints and then detect

a foreign device, which does not belong to the authenticated set. For example, the

authentication system of a wireless network can record the őngerprints of all the con-

nected devices. When a malicious device is used to replace an already authenticated

device, a check of the őngerprints can be used to detect the replacement.

1.2.9 Privacy attack when the fingerprints are used to track

an electronic device (mobile phone) and then the person

This is negative aspect on the use of őngerprints, where they are used to track the

device on the basis of the digital recordings. By tracking the device, it is possible

to track also the user of the device, thus creating a privacy threat. For example, a
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wireless device can be tracked in a multitude of other devices even if the user adopts

mitigation privacy techniques like pseudonyms [10].

1.2.10 Identify an electronic device in a network, which is sup-

posed to be covert for security reasons

This is also a negative aspect on the use of őngerprints, which can impact law enforcer

operations. A covert device (e.g., a wireless microphone) could be installed by law

enforcers for surveillance operations. Even if the wireless microphone is masqueraded

as an existing device, its őngerprints will be different and it can be identiőed.

1.3 Structure of the thesis

The structure of the thesis is following:

∙ Section State of Art 2 provides an overview of the state of art on the identiő-

cation and authentication of electronic devices (wireless devices, microphones

and magnetometers) in the research literature. The focus is on the three main

categories of electronic devices as these are the ones investigated in the PhD

use cases.

∙ Section Use Case for Radio Frequency Physical Layer authentication 3 describes

the results related to the őngerprinting of radio frequency wireless devices. This

section also introduces the machine learning algorithms, which are used in the

other use cases.

∙ Section Use Case for microphone identiőcation 4 describes the results related

to the őngerprinting of microphones.

∙ Section Use Case for magnetometer identiőcation 5 describes the results related

to the őngerprinting of mobile phones through magnetometers.

∙ Section Conclusions 6 provides the conclusions of the PhD thesis.
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Chapter 2

State of Art on electronic device

identification
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2.1 Overview

This section provides an overview of the state of art on the identiőcation and au-

thentication of electronic devices for three speciőc types of devices: radio frequency

wireless devices, microphones and magnetometers. In each of these areas, it is pro-

vided a high level description of the novel results produced by the activities in the

PhD thesis in comparison to literature.

2.2 Radio Frequency components

The concept to identify wireless devices through the speciőc characteristics of their

RF emissions has been widely investigated by the research community in recent years.

As described in the Introduction section 1, the concept is based on physical differences

in the hardware components of the wireless communication front end, which gener-

ates small but signiőcant and reproducible features in the RF emissions. Even if such

differences are usually within the boundaries deőned by the wireless standard (e.g.,

802.11) and they do not usually impact the wireless communication performance,

they can be signiőcant enough to identify or authenticate the wireless devices. Dif-

ferent terms are used in literature for the same concept: it is called Speciőc Emitter

Identiőcation (SEI) in [11], RAI in [12] and RF-DNA in [13]. This thesis uses the

generic term PLIA and it is used in a generic way for the other uses cases as well.

The main challenge in this use case is to identify and extract the speciőc features

from the digitized RF emissions and select the ones providing the optimal identi-

őcation or authentication accuracy. Different wireless standards may have slightly

different features, even if common elements are present in most of the wireless stan-

dards (especially if they are based on a similar design like 802.11a for WiFi and

802.11p for DSRC). In literature, this concept was applied to many different wireless

standards including WiFi [14], ZigBee [15], WiMAX [13], GSM [16], DSRC at 5.9

GHz [10] and others.

Many wireless standards (e.g., GSM, UMTS, WiFi, WiMAX, DSRC) share a
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Figure 2-1: GSM Physical Layer representation in Frame, Slots and Burst structure

common aspect. The content transmitted between two or more wireless devices is

transmitted in bursts, which are repeated many times in a second. Regardless of

the content transported by the burst (e.g., voice, data) each burst includes also the

features speciőc to the device. Then, it is possible to use the bursts to identify the

device. The advantage in this use case is that even a short time (e.g., seconds) used to

collect the signal can contain many bursts (the exact number depends on the wireless

standard), which can be used to create a large sampling set for the machine learning

classiőcation. Usually a burst is composed by speciőc segments. To simplify, we show

an example for the GSM wireless standard. Even if it is an old wireless standard, it

represents quite well the concept of the burst structure, which can be present in more

sophisticated wireless communication standards as well.

The burst in the GSM standard is used to transport the information (e.g., voice,

data). There are also signalling GSM bursts used for the management functions of the

GSM network, but they are not used in this use case, because they are transmitted

with less frequency than the information (i.e., voice or data) bursts. One potential

issue for PLIA in this use case, is the presence of content information, which can

introduce a bias in the classiőcation process. The reason is that the classiőcation
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process could classify the content (e.g., what the person is saying at the phone)

rather than the GSM phone itself, which is the main objective.

Two possible approaches are possible:

∙ The speciőc parts of the content (information őeld in Figure 2-1) should be

removed from the collected signal in space. Only the invariant parts like the

midamble and the guards/transients portions of the burst should be used as

they are invariant to content.

∙ The system is conőgured to send only test data: a speciőc sequence of bits,

which is always the same in all the bursts.

While, the őrst option seems complex, it is actually quite straightforward to im-

plement as the burst deőnition is quite precise in the wireless standards technical

speciőcations and it can be extracted easily from the burst. The second option

requires the possibility to control the conőguration of the wireless communication

systems, which is not always possible to achieve. This option would be easier to

implement in local Wireless Local Area Network (WLAN) (e.g., WiFi) or speciőc

Internet of Things (IoT) wireless systems where the researcher can have access to the

conőguration setup.

An example of the őrst option is shown in Figure 2-2, where the content informa-

tion has been extracted from the bursts generated by 12 GSM mobile phones (one

burst from each phone).

From the Figure, it is visually clear that each phone introduces speciőc őngerprints

in the burst and in particular in the transient phase rather than the mid-amble. These

speciőc őngerprints are highlighted by the circles in Figure 2-2. The main reason is

that the transient part of the burst is where the radio frequency components of the

wireless communication device are working out of the normal operative range and the

non-linearities of the components (which are usually correlated to the őngerprints)

appear more frequently in the burst [4] and [17].

In the use case of radio frequency, there is an interesting trade-off between the

use of the different parts of the bursts shown in Figure 2-2. It is noted in [18] that
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12 GSM devices

Time in microseconds

Figure 2-2: Example of a burst signal collected from 12 GSM phones

the capture and digitization of the transient signal requires very high oversampling

rates and sophisticated and expensive receiver architectures. In fact, thanks to the

increasing computing power of the Analog Digital Converter (ADC) circuitry, this

problem has somewhat become less important today. In contrast to the transient

signal, the steady-state signal portion can be much longer than the transient part of

the burst, thus providing more information for classiőcation purposes. Depending on

the wireless standard, the receiver used to collect the signal in space and the shape of

the burst, one of the options can be used. Another factor to take in consideration is

that signal processing techniques also make assumptions on the stationarity or non-

linearity of the signal to be analyzed. As the transients are strongly non-linear, this

aspect imposes an additional constraint on the methodology to process the signals.

For this reason, many authors prefer to use only the non-transient part of the sig-

nal. For example, the authors in [11] have used the Hilbert Huang Transform (HHT),

which is a combination of EMD and Hilbert spectrum analysis. The former is a sifting

process to decompose any signal into an Intrinsic Mode Function (IMF), while the

latter offers the time-frequency distribution, referred to as the Hilbert spectrum, by

performing the Hilbert transform on each IMF. In [11], the authors have demonstrated
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an improved performance of the application of HHT in comparison to 1D Time and

Frequency domains. Another example is the application of Variational Mode Decom-

position (VMD), which is an evolution of Empirical Mode Decomposition (EMD) for

the classiőcation of Internet of Things and DSRC wireless communication devices

using only the non-transient parts in [19].

Since a digitized RF signal is indeed a time series, various strategies have been

used to implement PLIA and many techniques are based on research of time series

classiőcation. The time series obtained for different wireless devices can be com-

pared either directly (e.g., euclidean distance and KNN classiőers) or using other

approaches. A common strategy is to extract statistical features from the RF signal

and then use a machine learning algorithm to classify the obtained set of features and

correlate them to the identity of the wireless device. There is an extensive literature

on the selection of different statistical features for PLIA including variance, entropy,

skewness, kurtosis and others [13], [14]. The extraction of statistical features from

the RF signal has the beneőt of the dimensionality reduction, which improves the

classiőcation time but it may decrease the accuracy if the statistical features are not

selected properly.

The analysis of the state of art has shown that three main areas have received limited

attention. The őrst area is related to the application of Deep Learning to PLIA. The

second area is the analysis of the impact of bias introduced by the signal receiver

(used to collect and process the signal from the devices to be identiőed), which im-

pacts the portability of the őngerprints from one receiver to another. The third area

is the impact of the IQ imbalances of the receiver, which can be caused by aging

effects, on the PLIA performance.

2.2.1 Application of CNN to PLIA

Regarding the őrst area, Deep Learning has been used successfully in recent times

in different domains, it was not applied to this context at the time of the start of

the PhD work. The only known result for the application of Deep Learning to PLIA
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is in [20], where a Deep Convolution Neural Network (CNN) was applied to the

identiőcation of 7 WiFi wireless devices. The authors in [20] apply the CNN to the

time representation (i.e., the original baseband representation) of the digitized signal

in space collected from the transmitting devices by treating the real and imaginary

parts as two separate input channels.

On the other side, CNN has been historically applied to images (see one of the őrst

applications of CNN in 1995 to biomedical images in [21]). Then a logical step was

to investigate the application of methods to transform the original time series of the

signal collected from the wireless devices to images. Such transform has already shown

its advantages in combination to non-Deep Learning machine learning algorithms in

various papers like [22] and [23] where a Gabor transform was used to generate a

time-frequency representation of the signal on which a feature selection process was

implemented. In these papers, the application of machine learning algorithms to the

time-frequency based approach provided substantial better results than the direct

application of the same algorithms to the time representation.

Different transforms and imaging techniques were experimented and the results

are described in section 3 and they were also published in [24]. One category of

imaging techniques was based on the application of Time Frequency Analysis (TFA)

to the original time series thus obtaining a bi-dimensional representation (time and

frequency), which is used as an image to the input of the CNN. Another category of

imaging techniques is to use the concept of Recurrence Plots and similar techniques

as described in the subsequent section of this thesis. The application of these new

transforms was novel in this context and the results show a signiőcant improvement

in comparison to the application of non-Deep Learning machine learning algorithms.

Novel advancement in comparison to literature: the author of the thesis has

applied imaging techniques including time-frequency transforms in combination to

CNN to the problem of PLIA, which was never attempted before. The description of

the application of the approach and the results are described in section 3. The results

of the investigation on this approach have been published in [24].
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2.2.2 Problem of fingerprint portability

Regarding the second area related to the bias introduced by the receiver (i.e., the

device used to collect the signal in space from the wireless devices to be classiőed),

preliminary studies have shown that difference in the receivers have an impact on

the portability of the őngerprints collected from one system to another, which poses

a critical challenge to the practical implementation of PLIA because őngerprints col-

lected with one system could be only used by the same system. The great majority of

the papers addressing PLIA in radio frequency (i.e., RF-DNA, Emitter Identiőcation,

radiometric identiőcation) use the same RF receiver to collect the signal in space both

for training and testing. Only few papers have investigated the issue of portability as

described in the following paragraph.

In [25], the authors analyze the problem that the RF őngerprints generated

through one RF receiver cannot be used to identify the same wireless device by

means of another RF receiver. This phenomenon is due to the fact that each RF

receiver introduces a bias which degrades the RF őngerprints of the emitting device.

As a consequence, RF emissions of the same wireless device taken from different RF

receivers will actually generate different őngerprints for the same wireless devices.

While the authors concluded in [25] that őngerprints are not portable from one re-

ceiver to another, they did not propose a solution to this problem. In a similar way,

the authors in [26] have investigated the portability between high-end and low-end

receivers and they have found out that the portability problem is also present because

of the bias introduced in the low-end receivers. The authors also did not propose a

solution to this problem.

As this is a critical problem for the practical application of őngerprints and no

solution was found at the time of the PhD activities, it was decided to identify and

őnd potential solutions to address the portability issue.

Novel advancement in comparison to literature: the author of the thesis has

deőned and proven with experimental data a new method to mitigate and resolve the
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problem of portability of the őngerprints. The description of the application of the

approach and the results are described in section 3. The results of the investigation

on this approach have been published in [27].

2.2.3 Impact of IQ imbalance to classification accuracy

The third area is related to a speciőc aspect of RF receivers, which can hamper the

practical application of the PLIA. This is based on the IQ imbalance of a RF wireless

device, which can grow considerably with the aging of the device. The focus is on the

IQ imbalance of the RF wireless receiver used to collect the RF signals in space.

The IQ imbalance is a phenomenon appearing in Direct Down Conversion (DDC)

RF receivers, which transforms the RF-signal directly down to base-band. As de-

scribed in [28], due to temperature dependencies, production imperfections and ag-

ing, the analog components in the I-path and Q-path can not be perfectly matched.

The IQ-imbalance is a serious issue, which can degrade the receiver performance and

impact the PLIA because the bias introduced by the IQ imbalance can degrade the

classiőcation performance. In recent literature, IQ imbalances have been used in re-

lation to PLIA only as an instrument to identify and authenticate wireless devices

rather than to assess the impact on identiőcation. In [29] the authors use the IQ

imbalances as the speciőc features of the wireless devices to be identiőed, rather than

as a negative disturbance introduced by the receiver. In a similar way, the authors

of [30] have used IQ imbalances to identify wireless transmitter, and extensive inves-

tigation has been performed using a CNN. The research angle in this PhD thesis is

complementary to papers cited above.

Novel advancement in comparison to literature: the author of the thesis has

investigated the impact of the IQ imbalance in the radio frequency receiver to the

classiőcation accuracy of wireless devices. The description of the application of the

approach and the results are described in section 3. The results of the investigation

on this approach have been published in [31].
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2.3 Microphones

In recent years, the problem of how to identify the source of an audio recording has

been addressed, with a considerable attention to the mobile phone as recording sys-

tem. The authors in [32] proposed a pioneering work in this őeld, where a set of audio

steganalysis-based features to cluster both the microphone and the environment have

been used. This work has been extended in [33], wherein a combination of statistical

features and unweighted information fusion have been employed to improve the accu-

racy in the classiőcation. As for other cases of PLIA, we make a distinction between

inter-model and intra-model classiőcation. In inter-model classiőcation, the devices

to be identiőed belong to different models and brands (e.g., one HTC One mobile

phone and one Samsung S5 mobile phone). In intra-model classiőcation, the devices

to be identiőed are of the same model (e.g., all of type HTC One mobile phone).

In general, intra-model classiőcation is much more difficult than inter-model classi-

őcation because the devices are built with the same component models (e.g., őlter,

ampliőers) and they have the same design, while different models are usually built

with different components and different design, thus improving the discriminating

capability.

In most of the earliest works only the inter-model classiőcation has been con-

sidered. More recently, in [34] and [35] the authors also addressed the intra-model

classiőcation task through the application of K Nearest Neighbor (KNN) and Gaus-

sian mixture model (GMM). Furthermore, a comparison of various features showed

that Mel-Frequency Cepstrum Coefficient (MFCC) provided the best accuracy results

[35].

In [36] the Power Spectrum Density (PSD) of speech-free audio recordings is used

to train a Support Vector Machine (SVM) classiőer for microphone identiőcation of a

mobile phone. The speech-free audio recordings are detected using Audacity software

and the PSD is calculated using a periodogram. The authors in [37], employed MFCC
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coefficients of the non-speech segments of the voice recordings in combination with

SVM and GMMs to classify the microphone. The method exhibited promising results

but it also showed substantial sensitivity to additive noise. In the paper [38] a speech

recording it is used for device recognition based on sparse representation.

Alternatively, in more recent works the microphones were stimulated using non-

voice recordings such as in [39] and [40]. In particular, the authors in [39] found

that the frequency response curve extracted from sample recordings can be a robust

őngerprint to characterize the recording device. The application of SVM is proposed

to perform the classiőcation over 31 mobile phones. In [40], the authors proposed a

speaker-to-microphone authentication protocol by leveraging the frequency response

of a speaker and a microphone from two IoT wireless devices as the acoustic hardware

őngerprint.

The application of Deep Learning to the identiőcation and authentication of mi-

crophones was not attempted in literature on non-voice recordings.

Novel advancement in comparison to literature: the author of this thesis has

investigated the application of CNN to the identiőcation and authentication of a

large set of non-voice recordings based on 34 mobile phones where the phones were

stimulated with a repetition of speciőc sound stimuli. The application of CNN for mi-

crophone identiőcation using non-voice recordings have not been applied in literature

yet. The description of the application of the approach and the results are described

in section 4. The results of the investigation on this approach have been published in

[41].

2.4 Magnetometers

As described in the introduction, the identiőcation of mobile phones through their

built-in components has been extensively investigated by researchers for different elec-
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tronic components: the internal digital camera [42], the RF transmission components

for various communication standards (e.g., GSM, WiFi) as described in [43],[11], the

microphones [44], [45] and the accelerometers [46] and [47].

In recent times, the mobile phones have been equipped with magnetometers of

increasing recording capability. Magnetometers are mainly used as a compass to

measure the direction of an ambient magnetic őeld, in this case, the Earth’s mag-

netic őeld. Then, magnetometers in combination with other sensors can be used to

improve the navigation and localization both outdoor and indoor as buildings do also

contain ferromagnetic material, which is sensed by the magnetometer [48]. On the

other side, the magnetometer has also speciőc characteristics which can be used to

identify and authenticate the mobile phone where it is installed. From this point of

view, the research activity on this őeld is quite limited; presumably because mass

market mobile phones with magnetometers have been recently introduced but also

because magnetometer őngerprints pose speciőc challenges and they are more difficult

to extract in comparison to the őngerprints of other sensors.

The only paper at the time the PhD research activities started in this őeld (i.e.,

2016) was the study performed by the authors in [49] where the authors used the

magnetometers to pair two mobile phones among themselves. As in the similar use

cases described in this PhD thesis, the method exploited the őngerprints in the mag-

netometers for identiőcation and authentication. The authors used a very limited set

of magnetometers and for the speciőc objective of pairing the mobile phones. Instead,

the focus of the PhD research was to focus on the identiőcation and authentication

of the magnetometer and the mobile phone on its own with a speciőc stimulus.

Novel advancement in comparison to literature: the author of this thesis has

investigated the identiőcation and authentication of mobile phones using the built-in

magnetometers, when they are stimulated by a speciőc and repeatable magnetic őeld.

The description of the application of the approach and the results are described in

section 5. The results of the investigation on this approach have been published in [50].
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Note that after the publication of [50], other attempts to identify and authenticate

the magnetometers have also been proposed in the literature. For example, the au-

thor of this thesis together with other researchers have also used another way to

stimulate the magnetometers in [51] while other authors have used magnetometers in

combination with the other IMU sensors in [52] but the earth magnetic őeld was used

(which may be not be applicable for supervised classiőcation because of the absence

of golden truth absolute value of Earth magnetic ŕux density behaviour in the time

of acquisition of time series) instead of a speciőc and repeatable pattern of magnetic

ŕux density. Even more recently, the authors in [53] have used a similar approach to

ours (citing [50]), which shows that the interest in this technique is increasing.
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Chapter 3

Case Study of Radio Frequency

Physical Layer authentication
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3.1 Overview

This use cases focuses on the identiőcation and authentication of wireless devices on

the basis of the radio frequency signal transmitted by the device themselves while

transmitting. As described before in section 2, the identiőcation is possible because

of the small differences in the RF front end of the wireless devices (e.g., ampliőers,

őlters) which are inserted in the signal transmitted in space. In comparison to other

uses cases, wireless propagation effects like noise, fading or the bias introduced by

the RF systems (e.g., a wireless receiver) used to collect the signal transmitted by

the wireless devices can negatively impact the classiőcation performance. The PhD

research activities focused on the novel aspects in comparison to literature identiőed

in section 2.

3.2 Materials

Two sets of wireless devices were used in the research activities and publications: IoT

wireless devices and GSM mobile phones respectively described in section 3.2.2 and

section 3.2.3.

In addition to the wireless devices to be identiőed, receivers were used to collect

the RF signal transmitted by the devices as described in section 3.2.1.

3.2.1 Receivers used to collect the RF signal

The RF signals transmitted by the wireless devices are collected using a low cost

Universal Software Radio Peripheral (USRP) Software Deőned Radio (SDR) receiver

of type N210, equipped with a XCVR2450 front end frequency locked to a Global

Positioning Systems (GPS) disciplined (the SDR receiver was equipped with a u-blox

NEO6Q GPS receiver) 10 MHZ reference to ensure frequency stability and repeata-

bility in the collection of RF observables [54]. The RF signals were sampled by the

SDR with a sampling rate of 5 MHz/sec.

For the study on the portability of the őngerprints on the IoT devices, two ad-
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ditional USRP SDR receivers were used to compare the őngerprints of each speciőc

wireless device among three different receivers (see the deőnition of IoT-DS3 below).

The speciőc details on the test bed and the signal receivers are provided in section

3.6.2.

3.2.2 IoT data sets

The őrst set of composed by eleven(11) nRF24LU1+ devices. The number of devices

used in the test bed is comparable with the number of devices used in literature: 9

ZigBee devices in [55], 8 Noise radars in [56] and 10 Zigbee devices in [57]. This

wireless device is an Ultra Low Power (ULP) device transmitting at 2.4GHz in the

Industrial, Scientiőc and Medical (ISM) band. It includes a 2.4GHz RF transceiver

core, 8-bit CPU, full-speed USB 2.0 device controller, and embedded Flash memory.

These wireless devices have been programmed to build a MySensors network. My-

Sensors is a free and open source DIY (do-it yourself) software framework for wireless

IoT devices allowing devices to communicate using radio transmitters. This data set

was created with the wireless devices transmitting in test mode and repeating the

same data sequence. As a consequence the entire burst could be used for classiőca-

tion because the content is always the same (the test sequence). Three different sets

of data were collected with these devices:

1. One set of data was created with only 9 devices with smaller bursts (burst

length 512). This data set will be called IoT-DS1 in the rest of this thesis.

2. The second set of data was based on all the 11 devices and a longer bursts (burst

length 7104). This data set will be called IoT-DS2 in the rest of this thesis.

3. The third set of data was based on the collection of 11 devices from three

different radio frequency receivers. This data set will be called IoT-DS3 in the

rest of this thesis.
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3.2.3 GSM data set

The second set is composed by the 12 GSM mobile phones. In this case, the GSM

wireless standard was used in normal communication mode with two persons talking

at the phone. Then, the content (e.g., voice) must be removed from the burst before

proceeding to the classiőcation. This data set is called GSM-DS4 in the rest of this

thesis.

3.3 Methodology

The overall methodology workŕow is described in Figure 3-1. This methodology is

generic for the different research activities and the published papers related to this

use case.

Time domain

representationAdding disturbances

(noise, interferences)

Machine Learning

classifier
Machine Learning

classifier
Machine Learning

Classifiers

Optimization

Frequency domain

representation

Segmentation

Overall methodology for 

physical layer authentication

Time Frequency 

representation

Synchronization,

Normalization

Collection of RF signal in 

space

Feature

Selection

Devices

Figure 3-1: Generic Methodology

1. Collection of the RF signal from the IoT wireless devices. The RF signal from

the wireless devices was collected using a SDR USRP type N200 receiver con-

őgured with a sampling rate calibrated for the speciőc data set (e.g., 5 MHz

for the GSM data set (GSM-DS4) and 10 MHz for the three IoT data sets).
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The USRP SDR receiver is equipped with a XCVR2450 front end locked to

the GNSS (with an u-blox NEO6Q GPS receiver) and disciplined to 10 MHz

reference clock to ensure repeatability in the collection of RF observables [54].

2. Synchronization and normalization. The real-valued signal samples were sam-

pled directly in In-phase and Quadrature components (IQ) format and then

synchronized and normalized offline to extract the bursts of traffic associated

to each payload.

3. Signal transformation In this step, the signal is transformed in a way that it

is more convenient for the subsequent step of device classiőcation. Because,

different transform were used in the various activities related to this PhD, the

speciőc section 3.4 describes in detail the speciőc transforms.

4. Classification with Machine Learning. In this step, classiőcation is performed

using different machine learning algorithms based on the samples created in the

previous step. Because different machine learning algorithms have been used,

the speciőc section on machine learning 3.5 is used to describe the different

algorithms.

5. Addition of environmental effects. In this step, environmental effects are added

to the data sets to emulate difficult environmental conditions. The most com-

mon is the addition of Additive White Gaussian Noise (AWGN) as the perfor-

mance of the different techniques is usually compared using decreasing values

of Signal Noise Ratio (SNR) as the presence of increasing level of AWGN make

the őngerprints more difficult to be distinguished. Other effects are described

in the speciőc subsections.

3.4 Signal transforms

In this section, the different transforms used in the results section 3.6 are presented

and discussed.

47



3.4.1 Recurrence Plots

RP is a visualization tool that aims to explore a multidimensional phase space trajec-

tory through a 2D representation of its recurrences. The idea is to identify at which

points some trajectories return to a previous. The concept of RP has been used in

many different domains [58]. RP can be formulated as:

𝑅i,j = 𝜃(𝜖− ‖−→𝑠 i −−→𝑠 j‖), 𝑖, 𝑗 = 1, ..., 𝑁 (3.1)

where N is the number of considered states −→𝑠 i, 𝜖 is a threshold distance, ‖.‖ is a

distance measurement (i.e., Euclidean norm in this case) and 𝜃 the Heaviside function.

3.4.2 Fast Fourier transform

The Fast Fourier Transform for a discrete signal x(k) of N samples is calculated as:

𝑌 (𝑘) =
N
∑︁

j=1

𝑥(𝑗)𝑊N(𝑗 − 1)(𝑘 − 1) (3.2)

where

𝑊N = 𝑒−2jπ/N (3.3)

3.4.3 Short-time Fourier transform

The Short Time Fourier transform (STFT) is used to analyze how the frequency

content of a nonstationary signal changes over time. Because the burst of a wireless

communication system is a nonstationary signal, the STFT can be applied to the

problem of RF őngerprinting.

The STFT of a signal is calculated by sliding an analysis window of length M over

the signal and calculating the discrete Fourier transform of the windowed data.

We deőne the signal in time (the digitized collected signal in space from a RF

emitter) 𝑥(𝑡) and a real even window w(x) whose Fourier Transforms are S(f) and
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W(f) respectively. To obtain the localized spectrum of x(t) at time 𝜏 = 𝑡, multiply the

signal by the window w(x) centered at time 𝜏 = 𝑡, obtaining the following equation:

𝑥w(𝑡, 𝜏) = 𝑥(𝜏)𝑤(𝜏 − 𝑡) (3.4)

if we apply the Fourier Transform (FT) on 𝜏 , we obtain the STFT, represented

by the following equation:

𝐹w
x (𝑡, 𝑓) = ℱτ→f {𝑥(𝜏)𝑤(𝜏 − 𝑡)} (3.5)

3.4.4 Wigner Ville transform

The Wigner-Ville distribution provides a high-resolution time-frequency representa-

tion of a signal.

For a continuous signal x(t), the Wigner-Ville distribution (or transform) is deőned

as:

𝑊𝑉𝐷x(𝑡, 𝑓) =

∫︁ ∞

∞

𝑥(𝑡+ 𝜏/2)𝑥 * (𝑡− 𝜏/2)𝑒−j2πf𝜏𝑑𝜏 (3.6)

while for a discrete signal x(k) of N samples, the Wigner-Ville distribution is

deőned as:

𝑊𝑉𝐷x(𝑛, 𝑘) =
N
∑︁

m=−N

𝑥(𝑛+𝑚/2)𝑥 * (𝑛−𝑚/2)𝑒−j2πkm/N (3.7)

3.4.5 Continous Wavelet Transform

The principle of wavelets is to consider an orthogonal basis of functions that is given

by one shape that is scaled and translated. Wavelets are wave-like transients that

can be interpreted as sinusoids of short duration and they are generally deőned as:

𝜓t,s(𝑡) =
1√
𝑠
𝜓

(︂

1− 𝜏

𝑠

)︂

(3.8)
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Figure 3-2: Shape of the Morlet wavelet

where 𝜏 and s are the translation and scale (dilation) parameters, respectively.

The function 𝜓 is the basis function called the mother wavelet.

For example, the Morlet wavelet is given by the following function:

𝜓 = 𝑒x
2/2𝑐𝑜𝑠(5𝑥) (3.9)

A pictorial description of the Morlet wavelet is shown in őgure 3-2.

The decomposition of a signal on such a basis are called wavelet transforms (WTs)

and they are localized equivalents of the Fourier Transform (FTs). In fact, there is a

fundamental connection between wavelet and Fourier transform: Wavelet can be seen

as a Fourier transform localised in space.

The wavelet transform (WT) is deőned in a similar manner except that the chosen

elementary messages are wavelet instead of sinusoids. Using the wavelets as a basis,

a time domain signal 𝑥(𝑡) can be represented as:

𝑥(𝑡) =
1

𝑐ψ

∫︁ ∞

∞

∫︁ ∞

0

𝜓ψx (𝜏, 𝑠)
1√
𝑠
𝜓

(︂

𝑡− 𝜏

𝑠

)︂

𝑑𝑠

𝑠2
𝑑𝜏 (3.10)
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where the coefficients 𝜓ψx (𝜏, 𝑠) are given by:

𝜓ψx (𝜏, 𝑠) =

∫︁ ∞

∞

𝑥(𝑡)
1√
𝑠
𝜓*

(︂

𝑡− 𝜏

𝑠

)︂

𝑑𝑡 (3.11)

The coefficient 𝑐ψ is a constant, which depends on the wavelet used. 𝜓ψx (𝜏, 𝑠) is

the Continuous Wavelet Transform (CWT) of the signal x(t), which was used in this

study to transform the original digitized signal collected from the radio frequency

emitters.

Wavelets are notoriously good for:

∙ approximating non stationary signal

∙ data compression (image, sound, video)

∙ being computationally efficient

3.4.6 General Linear Chirplet Transform

The General Linear Chirplet Transform (GLCT) is a novel Time-Frequency (TF)

analysis introduced in [59] and it is an extension of the Linear Chirplet Transform

(LCT). GLCT has some speciőc features, which makes it suitable for its application

in physical layer identiőcation and authentication of IoT devices based on transients.

As described in [59], GLCT is able to represent well multi-component signals with

distinct non-linear features (as in the transient of a burst) and it is able to miminize

the sensitiveness to noise. GLCT belongs to the family of the parameterized Time

Frequency Analysis (TFA) methods, which strives to obtain a high TF resolution by

identifying the inherent features (i.e., the őngerprints in this context) of the signal to

be analyzed and constructing the window functions. The original Chirplet Transform

(CT) was initial designed in [60] and it was reőned by other authors to improve its

representation of strongly non-linear signals as in this context (e.g., the transient of

the bursts). In particular, the authors in [61] proposed an adaptive TFA method

to select the best width and chirp rate using the maximum likelihood estimation.

As described in [59], the methods described above and other methods presented in
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literature have still shortcomings for the representation of non-linear signal, and the

authors of [59] proposed a new TFA to address such shortcomings, which is called

GLCT and it is described below. The implementation of the GLCT used in the PhD

studies is based on the STFT. If 𝑠(𝑥) is the initial signal collected in space, the STFT

can be represented as:

𝑠(𝑡′, 𝑤) =

∫︁

𝑤(𝑢− 𝑡′)𝑠(𝑢)𝑒−iwu𝑑𝑢 (3.12)

where w(u-t’) is the window to truncate the signal. to eliminate the inŕuence

of the modulated element, a demodulated operator should be introduced, which is

time-variant in this context of non-linear signals. Then, Eq. (2) becomes:

𝑆(𝑡′, 𝑤) =

∫︁

𝑤(𝑢− 𝑡′)𝑠(𝑢)𝑒−jwu · 𝑒−ic(t′)(u−t′)2/2𝑑𝑢 (3.13)

where 𝑒−ict
′(u−t′)2/2 is the demodulated operator. If the demodulated operator

is consistent with the modulated element, the Instantaneous Frequency (IF) of the

signal will reach its maximum, which will generate a sharp TF representation with

the desiderable properties for device identiőcation (e.g., robustness to noise). Unfor-

tunately, such operator is difficult to identify especially in non-linear signals. One

simpliőcation is to aproximate the operator in the following equation, which is the

LCT:

𝑆(𝑡′, 𝑤) =

∫︁

𝑤(𝑢− 𝑡′)𝑠(𝑢)𝑒−jwu · 𝑒−ic(u−t′)2/2𝑑𝑢 (3.14)

Unfortunately, even in this simpliőed form, the IF characteristics of the the signal

are usually not know a priori (e.g., especially when there are multi-components like

the őngerprints of the device), which makes the term 𝑒−ic(u−t
′)2/2 hard to determine.

The approach proposed by the authors in [59] for the deőnition of the GLCT is to

introduce a parameter 𝛼, which introduces a rotation in the TF plane as:

𝛼 = arctan

(︂

2 · 𝑇s
𝐹s

· 𝑐
)︂

(3.15)
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Then, Eq. (4) can be rewritten as:

𝑆(𝑡′, 𝑤) =

∫︁

𝑤(𝑢− 𝑡′)𝑠(𝑢)𝑒−jwu · 𝑒−itan(α)
Fs

2·Ts(u−t′)2
/2
𝑑𝑢 (3.16)

If the parameter 𝛼 has N values, the TF plan can be divided averagely in 𝑁 + 1

sections using the following expansion:

𝛼 = −𝜋/2 + 𝜋/(𝑁 + 1),−𝜋/2 + 2 · 𝜋/(𝑁 + 1)...

−𝜋/2 +𝑁 · 𝜋/(𝑁 + 1)
(3.17)

For the purpose of using GLCT to obtain an optimal representation of the signal

in the TF space for device identiőcation, two hyperparameters must be empirically

determined: the window w and the parameter N. The optimization of these two

parameters for the speciőc case of IoT classiőcation is described in section 3.6.1.

3.5 Machine learning

3.5.1 Common considerations for optimization

To mitigate the problem of overőtting, a K-fold approach is used in all the machine

learning algorithms. In K-fold, the dataset is divided into k groups or folds of equal

size. The őrst fold is kept for testing and the model is trained on k-1 folds. The

process is repeated K times and each time a different fold or a different group of data

points are used for validation. Depending on the data set, different values of K were

used with (in general K=10).

The following sub-sections describe the speciőc machine learning algorithms used

to produce the classiőcation results. Each machine learning algorithm has a speciőc

set of hyperparameters to tune. As recommended in literature, the hyperparameters

were identiőed for each fold, then the őnal hyperparameters for classiőcation were

chosen to be the mean of the identiőed hyperparameters value or with a majority

rule. See for example section 5 for an example of tuning of the SVM hyperparameters

in the magnetometers classiőcation use case and in particular sub section 5.4.1.
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3.5.2 Classification with Convolutional Neural Networks

This section uses the notation introduced by [62]. CNN has the objective to use the

spatial information between the pixels of an image, thus they are based on discrete

convolution. With appropriate transform, they can also be applied to time series

transformed in images, which is the case where they are used here.

We assume to have a grayscale image deőned as:

𝐼 : 1, ..., 𝑛1 × 1, ..., 𝑛2 → 𝐶 ⊆ ℜ(𝑖, 𝑗) ↦→ 𝐼i,j (3.18)

such that the image I can be represented by an array 𝑛1 × 𝑛2.

Given a őlter 𝐾 ∈ ℜ2h1+1×2h2+1 the discrete convolution of the image I with őlter

K is given by:

(𝐼 *𝐾)r,s :=

h1
∑︁

u=−h1

h2
∑︁

v=−h2

𝐾u,v𝐼r+u,s+v (3.19)

where the convolutional őlter K is an array of 2ℎ1 + 1× 2ℎ2 + 1

There can be different types of őlters. A common type of őlter is the Gaussian

őlter deőned like:

(︀

𝐾G(σ)

)︀

r,s
=

1√
2𝜋𝜎2

𝑒
r
2+s

2

2σ2 (3.20)

where 𝜎 is the standard deviation of the Gaussian Distribution.

A CNN is composed by different layers, which are brieŕy described here:

Convolutional Layer

If we indicated with l a convolutional layer, it accepts 𝑚(l−1)
1 feature maps from the

previous layer. Each map has size 𝑚l−1
2 ×𝑚l−1

3 . For l=1, the layer is the input layer,

which accepts the image I of size 𝑛1 × 𝑛2. The output of a convolutional layer is

simply 𝑚l
1 feature maps of size 𝑚l

2 ×𝑚l
3. The i feature map, which is denoted as 𝑌 (l)

i

is computed by the following formula:
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𝑌
(l)
i = 𝐵

(l)
i +

ml−1
1

∑︁

j=1

𝐾
(l)
i,j * 𝑌

(l−1)
j (3.21)

where 𝐵i is a bias and K is the convolutional őlter, which connects the 𝑗th feature

map in layer (l-1) with the 𝑖th feature map in layer l.

Rectification

If the layer l is the rectiőcation layer, its input includes 𝑚(l−1)
1 feature maps of size

𝑚
(l−1)
2 ×𝑚

(l−1)
3 . Then, the absolute value for each component of the feature maps is:

𝑌
(l)
i =

⃒

⃒

⃒
𝑌

(l)
i

⃒

⃒

⃒
(3.22)

where the absolute value is computed point wise such that the output consists of

𝑚
(l)
1 = 𝑚

(l−1)
1 feature maps unchanged in size.

Pooling

Subsampling from each layer to the next one can be useful to increase robustness

to noise and distortions [63]. In the PhD research activities, it was used a a max

pooling layer to perform down-sampling by dividing the input into rectangular pooling

regions, and computing the maximum of each region. It was also used a stride with

a speciőc step size for traversing the feature maps (and the input for l=1) vertically

and horizontally. The stride is speciőed as a vector of two positive integers [a b],

where a is the vertical step size and b is the horizontal step size. The stride must be

obviously larger than the respective pooling dimensions otherwise the pooling regions

overlap.

Fully Connected Layer

If l is a fully connected layer, the layer expects a 𝑚(l−1)
1 feature maps of size 𝑚(l−1)

2 ×
𝑚

(l−1)
3 as input and the 𝑖th unit in layer l computes:
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𝑦
(l)
i = 𝑓(𝑧

(l)
i (3.23)

with

𝑧
(l)
i =

m
(l−1)
1
∑︁

j=1

m
(l−1)
2
∑︁

r=1

m
(l−1)
3
∑︁

s=1

𝑤i,j,r,s

(︁

𝑌
(l−1)
j

)︁

r,s
(3.24)

where 𝑤i,j,r,s indicates the weight, which connects the unit at position (r,s) in the

𝑗th feature map of layer (l-1) with the 𝑖th unit in layer l.

The objective is to minimize the error function. Different functions can be used.

One of the most common, which has been used in our PhD activities is to the cross-

entropy:

𝐸(𝑤) =
N
∑︁

n=1

𝐸n(𝑤) =
N
∑︁

n=1

C
∑︁

k=1

𝑡n,k𝑙𝑜𝑔(𝑦k(𝑥n, 𝑤)), (3.25)

where 𝑡n,k is 𝑘th entry of the target value 𝑡n.

The objective is to minimize the 𝐸n(𝑤) with respect to the network weights w.

There are different techniques to achieve this. The necessary criterion can be written

as:

𝜕𝐸n
𝜕𝑤

= ∇𝐸n(𝑤) = !
= 0 (3.26)

Due to the complexity of the error 𝐸n, a closed-form solution is usually not possible

and we use an iterative approach. One of the methods is based on the gradient descent,

which is motivated by the idea to take a step in the direction of the steepest descent,

that is the direction of the negative gradient, to reach a minimum.

The weight update is:

∆𝑤[𝑡] = −𝛾 𝜕𝐸n
𝜕𝑤[𝑡]

= −𝛾𝐸n(𝑤[𝑡]) (3.27)

In the standard gradient descent algorithm, the gradient of the loss function,

∇𝐸n(𝑤), is evaluated using the entire training set, and the standard gradient descent
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algorithm uses the entire data set at once.

By contrast, at each iteration the stochastic gradient descent algorithm evaluates

the gradient and updates the parameters using a subset of the training data. A

different subset, called a mini-batch, is used at each iteration. The full pass of the

training algorithm over the entire training set using mini-batches is one epoch.

Other optimization algorithms seek to improve network training by using learning

rates that differ by parameter and can automatically adapt to the loss function being

optimized.

The other algorithm used in our activities is the root mean square propagation

(RMSProp). It keeps a moving average of the element-wise squares of the parameter

gradients:

𝑣l = 𝛽𝑣l−1 + (1− 𝛽) [∇𝐸n(𝑤[𝑡])]2 (3.28)

Then the optimization step becomes:

∆𝑤[𝑡] =
𝛾∇𝐸n(𝑤[𝑡])√

𝑣l + 𝜖
(3.29)

where the division is performed element-wise. 𝜖 is a small constant added to avoid

division by zero.

There are different hyperparameters, which can be tuned in the classiőcation

process. The following parameters have been mostly the focus of the optimization.

∙ l number of layers,

∙ optimization algorithm (e.g., RMSProp)

∙ the size of the feature maps 𝑛1 and 𝑛2

∙ stride
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3.5.3 Classification with Support Vector Machines

Support Vector Machines were introduced by Vladimir Vapnik and colleagues [64].

The basic idea is that Support Vector Machine classiőes data by őnding the best

hyperplane that separates all data points of one class from those of the other class.

SVM was originally deőned for binary-classiőcation problems but various techniques

have been proposed to extend it to multiclassiőer problems. The best hyperplane for

an SVM means the one with the largest margin between the two classes, where margin

is the maximal width of the slab parallel to the hyperplane that has no interior data

points. SVM is based on the concept of support vectors, which are the data points

that are closest to the hyperplane and represent the boundaries.

A hyper plane in an n-D feature space can be represented by the following equa-

tion:

𝑓(x) = x
T
w + 𝑏 =

n
∑︁

i=1

𝑥i𝑤i + 𝑏 = 0

Dividing by ||w||, we get
x
T
w

||w|| = 𝑃
w
(x) = − 𝑏

||w||

indicating that the projection of any point x on the plane onto the vector w

is always −𝑏/||w||, i.e., w is the normal direction of the plane, and |𝑏|/||w|| is the

distance from the origin to the plane. Note that the equation of the hyper plane is

not unique.

The n-D space is partitioned into two regions by the plane. Speciőcally, a mapping

function is deőned as 𝑦 = 𝑠𝑖𝑔𝑛(𝑓(x)) ∈ {1,−1},

𝑓(x) = x
T
w + 𝑏 =

⎧

⎨

⎩

> 0, 𝑦 = 𝑠𝑖𝑔𝑛(𝑓(x)) = 1, x ∈ 𝑃

< 0, 𝑦 = 𝑠𝑖𝑔𝑛(𝑓(x)) = −1, x ∈ 𝑁

Any point x ∈ 𝑃 on the positive side of the plane is mapped to 1, while any point

x ∈ 𝑁 on the negative side is mapped to -1. A point x of unknown class will be

classiőed to P if 𝑓(x) > 0, or N if 𝑓(x) < 0.

The learning problem in SVM is that given a set 𝐾 training samples from two

linearly separable classes P and N:
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{(xk, 𝑦k), 𝑘 = 1, · · · , 𝐾}

where 𝑦k ∈ {1,−1} labels xk to belong to either of the two classes it is necessary

to őnd a hyper-plane in terms of w and 𝑏, that linearly separates the two classes.

For a decision hyper-plane x
T
w + 𝑏 = 0 to separate the two classes 𝑃 = {(xi, 1)}

and 𝑁 = {(xi,−1)}, it has to satisfy:

𝑦i(x
T
i w + 𝑏) ≥ 0

for both xi ∈ 𝑃 and xi ∈ 𝑁 . Among all such planes satisfying this condition, it is

necessary to őnd the optimal one 𝐻0 that separates the two classes with the maximal

margin (the distance between the decision plane and the closest sample points).

The goal is to minimize the norm ||w||. Now the problem of őnding the optimal

decision plane in terms of w and 𝑏 can be formulated as:

minimize
1

2
w
T
w =

1

2
||w||2 (objective function)

subject to 𝑦i(x
T
i w + 𝑏) ≥ 1, or 1− 𝑦i(x

T
i w + 𝑏) ≤ 0, (𝑖 = 1, · · · ,𝑚)

Since the objective function is quadratic, this constrained optimization problem

is called a quadratic program (QP) problem. This QP problem can be solved by

Lagrange multipliers method to minimize the following

𝐿p(w, 𝑏, 𝛼) =
1

2
||w||2 +

m
∑︁

i=1

𝛼i(1− 𝑦i(x
T
i w + 𝑏))

with respect to w, 𝑏 and the Lagrange coefficients 𝛼i ≥ 0 (𝑖 = 1, · · · , 𝛼m).

In our studies, a soft margin was used, because the context is such that the two

classes (or more classes) in the PLIA are usually not linearly separable (e.g., due to

noise). Then, the condition for the optimal hyper-plane can be relaxed by including

an extra term:
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𝑦i(x
T
i w + 𝑏) ≥ 1− 𝜉i, (𝑖 = 1, · · · ,𝑚)

For minimum error, 𝜉i ≥ 0 should be minimized as well as ||w||, and the objective

function becomes (for 1-norm soft margin problem):

minimize w
T
w + 𝐶

m
∑︁

i=1

𝜉ki

subject to 𝑦i(x
T
i w + 𝑏) ≥ 1− 𝜉i, and 𝜉i ≥ 0; (𝑖 = 1, · · · ,𝑚)

Here 𝐶 is a regularization parameter (soft margin) that controls the trade-off

between maximizing the margin and minimizing the training error. Small C tends to

emphasize the margin while ignoring the outliers in the training data, while large C

may tend to overőt the training data. C is also called Box Constraint in the rest of

this thesis.

C is one of the hyperparameter which must be optimized in the application of

SVM. The other hyperparameter is based on the kernel representation of SVM as

described in the following paragraphs. The application of the kernel trick means a

transformation of the data into another dimension that has a clear dividing margin

between classes of data.

In our studies, different types of kernels have been applied, but in particular the

Gaussian kernel, which is deőned in the following equation where 𝛾 is the scaling

factor:

𝐾(x, z) = 𝑒−γ||x−z||2

To summarize, the hyperparameters, which are tuned in the classiőcation process

during the PhD research activities were:

∙ hyperparameter linked to the chosen kernel: scaling factor 𝛾 for RBF,

∙ regularization parameter (soft margin) constant C (i.e., box constraint)

60



3.5.4 Classification with KNN

The KNN machine learning algorithm is based on a search algorithm, which lets you

őnd the k closest points in X to a query point or set of points Y. kNN-based algorithms

are widely used as benchmark learning rules because of their relative simplicity, which

makes it easy to compare the results from other classiőcation techniques (like SVM

and CNN used in these PhD studies).

The łclosestž is based on a distance metric, which can be of different types:

Euclidean distance, Hamming distance, Jaccard distance, Chebychev distance and

Minkowski distance.

The hyperparameters, which are tuned in the classiőcation process during the

PhD research activities were:

∙ K factor in the KNN,

∙ distance function. For example euclidean distance, manhanattan distance or

Chebychev distance,

3.6 Results

This section describes the results for the different studies, which were described as

novel in section 2. This section is divided in two main subsections: the application of

CNN to the problem of PLIA, which is conducted separately for the GSM data set

and the IoT data sets.

3.6.1 On the application of CNN to the RF data set

GSM data set

The proposed CNN model for PLIA in the GSM data set GSM-DS4 is illustrated in

Figure 3-4. It is made up of three convolution layers and one fully connected layer

because it achieved the optimal balance between computing time and performance.

Three of the techniques described in section 3.4.5 are used on this data set and
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the results were published in [24] and they are reproduced here. In particular, to

transform the original time series derived from the digitized signals collected from the

GSM wireless devices, it was used the Recurrence Plots (RP) (described in section

3.4.1), the CWT (described in section 3.4.5) and the STFT (described in section

3.4.3). Then, the images were used as an input to the CNN and the techniques

are respectively called RP-CNN, STFT-CNN and CWT-CNN. It is noted that the

original time series is complex (as a modulated wireless communication signal can be

represented as a complex signal). Then, an initial feature analysis process was applied

to verify which parts of the signal were optimal for the classiőcation. The following

combinations were tried: amplitude, phase and amplitude+phase as a complex signal

can be represented as 𝑥(𝑡) = 𝑎 * 𝑒jθ(t). Then, it was found that the amplitude

component provided the best classiőcation accuracy across all the techniques. In a

similar way, some transforms (e.g., CWT) provided a complex output. It was also

empirically found that the amplitude component of the complex transform output

provided the best classiőcation accuracy.

The comparison among the imaging techniques is shown in őgure 3-3. From the

initial representation of the GSM burst with the amplitude, three different images

are generated: the őrst one is based on the application of the recurrence plots, the

second one is based on the application of the CWT and the third one is based on the

application of STFT. As the application of CWT and STFT generates a complex two

dimensional matrix, both the amplitude and phase components are used to generate

the image. As shown in 3-3, the amplitude component of the transform is stacked

above the phase component for CWT and STFT representations.

A description of the CNN architecture used to produce the results in Figure 3-

5 is shown in Figure 3-4. The parameters of the őrst input layer and convolution

layer are adapted to optimize the classiőcation performance of each technique (a

cross-validation on a 4-fold was used). For instance, for RP-CNN, the input size was

114*114, as exempliőed in Figure 3-4. This input is based on the application of the

RP algorithm on the initial time series length (a burst of size 130). For CWT, the

input size was 80*130, while for STFT, the input size was 16*129. The pooling size
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Recurrence Plots

Continuous Wavelet Transform

Short Time 

Fourier Transform

Normalize Burst (Magnitude)

Figure 3-3: Application of the imaging techniques

was set to 4, while the size of the second convolution layer was set to 10*10.
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Figure 3-4: The proposed 3-stage CNN architecture for RP-CNN.
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Figure 3-5: Identiőcation accuracy in the presence of AWGN, as function of SNR.
SNR is expressed in dB.

The results presented in őgure 3-5 show the identiőcation accuracy as a function

of SNR(dB) for all the three representations RP-CNN, STFT-CNN and CWT-CNN.

It is also provided the identiőcation accuracy by applying KNN with K=1 to the

original time series (i.e., amplitude of the GSM burst). It can be seen that CWT-

CNN provides the highest identiőcation accuracy for all the values of SNR.

IoT data set

Building on the results presented in 3.6.1 where CNN has been successfully applied

to the physical layer authentication of wireless devices, more recent TFAs were inves-

tigated in combination with CNN on the IoT data set. In particular, it was explored

the application of TFAs, which are particularly adapt to classify the transients of

the bursts, which are strongly stationary and non-linear. In particular, it was in-

vestigated the application of GLCT, which is described in section 3.4.6 and it was

compared with the application of CWT, which was also used in the GSM data set as

described in section 3.6.1.

As the focus of the research was on the classiőcation of IoT devices using the

transient part of the burst, only the transients sections of the IoT-DS1 were used to
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perform the experimental evaluation. The original transients for the 9 IoT devices

used for classiőcation are shown in Figure 3-6. It can be seen that each IoT device

produce a slightly different transient shape. These differences are the őngerprints,

which can be exploited for the classiőcation. The application of the GLCT to a single

transient from an IoT device (i.e., IoT device 3) is shown in Figure 3-7.
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Figure 3-6: Transients of the bursts for the 9 IoT devices

In particular, the GLCT has been used and compared with other transforms and

the conventional machine learning like SVM and KNN for decreasing values of the

SNR against CWT used in the previous section for the GSM data set.

With a similar convention of the previous GSM data set, the different techniques

are called respectively GLCT-CNN (combination of the GLCT transform with CNN),

CWT-CNN (combination of the CWT transform with CNN), T-CNN (time domain

with CNN), T-SVM (time domain and SVM) and T-KNN (time domain and KNN).

Each of the machine learning algorithms (i.e., CNN, SVM and KNN) have been op-

timized regarding the choice of the value of the hyperparameters described in section

3.5.

For the purpose of using GLCT to obtain an optimal representation of the signal

in the TF space for device identiőcation, two hyperparameters must be empirically

determined: the window w and the parameter N, which is indicated as the number
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Figure 3-7: GLCT of the burst transient (X axis in microseconds)

of used chirplets. The optimal values are identiőed on the metric of the identiőcation

accuracy.

Figure 3-8 presents the classiőcation accuracy by varying the size of the window

(as number of samples) and for different values of SNR in dB by using GLCT-CNN.

The optimal window size w is 30, which is used in the subsequent results.

Then, different values of the parameter N are chosen. It was empirically found

that the value of N does not have a signiőcant impact on the classiőcation accuracy

like the w window size and the SNR related curves are not clear distinguishable.

Then, the classiőcation accuracy for speciőc values of SNR is presented in Figure3-9.

While it is clear that higher values of N provide a better classiőcation accuracy, the

value of 𝑁 = 14 is chosen, because increasing values of N (e.g., N=16) do not present

signiőcantly better results and higher values of N would increase the computation

complexity anyway.
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Figure 3-8: Accuracy results based on the window size of the GLCT and using GLCT-
CNN for classiőcation.
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Figure 3-9: Comparison of the number of used chirplets in GLCT and using GLCT-
CNN for classiőcation.

The results are shown in őgure 3-10, where it can be seen that the previous results

for the GSM data set GSM-DS4 are also conőrmed for the IoT data set as the TFA

(both GLCT and CWT) in combination with CNN is signiőcantly more performant

than the basic CNN-time domain combination. In addition, it is demonstrated that

GLCT is slightly more robust than CWT especially for lower values of the SNR

expressed in dB. Then, this transform is preferable to CWT when the classiőcation of
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the wireless devices must be performed in noisy environments. This advantage comes

at a greater computational cost of the GLCT transform in comparison to the CWT

transform.
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Figure 3-10: Comparison of the different techniques using CNN and different trans-
forms for the IoT data set

3.6.2 Bias introduced by the receiver used to collect the RF

signal in space

Analysis of the impact on fingerprints portability due to the bias intro-

duced by the measurement instrument used to collect the signal

Note: Most of the text and őgures of this section are extracted from the published

paper [27], which received the best paper award at IEEE NMTS 2018 conference.

One issue presented in literature and still unresolved before this study is the lack

of portability of the RF őngerprints. In the typical RF őngerprinting scenario, RF

emissions of the wireless devices are collected by one RF receiver (called A), which

converts the emissions in digital format, from where the őngerprints are extracted.

The lack of portability issue is due to the fact that if another RF receiver (called B) is

used to collect the őngerprints, this new receiver introduces a bias, which degrades the

RF őngerprints of the wireless device taken with the őrst receiver A. As a consequence,
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RF emissions of the same wireless device taken from different RF receivers A and B

will generate different őngerprints for the same wireless device. This issue strongly

limits the applicability of RF őngerprinting for security applications, because different

RF receivers cannot be used to perform identiőcation and the őngerprints are not

portable from one receiver A to another receiver B. This thesis proposes a novel

approach to mitigate the portability issue. The approach is based on two techniques:

a) the removal of the bias introduced by RF receivers in the frequency domain through

the use of one golden reference. The golden reference is used to generate a calibration

function, which is then applied to the RF emissions collected by different RF receivers

from any other wireless device. b) the identiőcation of a space in the frequency

domain (i.e., range of frequencies) where the portability issue is less present. This

second technique is implemented by using a sliding window in the frequency domain

and evaluating the impact of the portability issue in each window. The approach is

validated against a set of 10 IoT wireless devices (plus the golden reference) and with

3 RFreceivers. This is the data set IoT-DS3 indicated in section 3.6.1

The experimental evidence demonstrates that this method is able to alleviate

the portability issue at the cost of a minor degradation in identiőcation accuracy.

Two metrics were chosen to evaluate the performance of the approach: the overall

identiőcation accuracy and the average distance among the samples taken from the

three receivers for the same wireless device under test. In an ideal situation, there

should be no impact to the identiőcation accuracy obtained with the single receivers

and the distance among samples of different receivers should be equal to zero for the

same wireless device under test. The approach works in the frequency domain to

identify empirically the segment in the frequency domain where the two metrics are

optimized.

The overall methodology is depicted in 3-11.

1. The őrst step is to collect the RF signal in space emitted by eleven (11) different

Nordic devices and using three different RF receivers (data set IoT-DS3). The

RF emissions are collected in sets of 600 bursts per device.
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Figure 3-11: Overall methodology

2. The second step is to synchronize and normalize the collected bursts.

3. A dimensionality reduction is performed by extracting various statistical fea-

tures (variance, skewness, kurtosis and entropy) from the bursts

4. The synchronized and normalized bursts (expressed using the statistical fea-

tures) for the golden reference from all the three RF receivers are processed to

generate the calibration function.

5. The calibration function is applied to the synchronized and normalized bursts

(expressed using the statistical features) of all the other wireless devices used

in the test bed (i.e., 10 wireless devices).

6. The performance of the calibration function is evaluated using the speciőc met-

rics described below. In particular the distance among the burst is calculated
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and the identiőcation accuracy is also calculated using SVM with a Radial Basis

Function (RBF)

The metrics to evaluate the performance of this approach are:

1. The distance between the frequency domain representation of the bursts for all

the three receivers 𝐷c. The distance is calculated as the sum of all the distances,

which should be minimized because a large distance means that the bursts from

the three RF receivers are easily distinguishable while this should not be the

case because the bursts are taken from the same wireless device. In other words,

a large distance implies a lack of portability.

2. The identiőcation accuracy of the wireless devices among themselves 𝐴𝑐𝑐p. Even

if the portability issue is mitigated and resolved, this result would not be useful

if the resulting accuracy is greatly degraded.

A simpliőed model in the frequency domain of the relation between the signal

received at each receiver, the transmitted signal from the RF device to be identiőed

is described in the following equation:

𝑅i(𝑓) = 𝐻𝑅i(𝑓) * 𝑃ij(𝑓) *𝐻𝐸j(𝑓) * 𝑆(𝑓) (3.30)

where 𝑅i(𝑓) are the digital sequences provided by each receiver i. 𝐻𝑅i are the

transfer function in the frequency domain for each receiver. The transfer function

includes various elements of the a RF receiver like the front end, the ADC, low pass

őlters and so on. 𝑃ij(𝑓) represents the transfer function for the wireless propagation

environment and the antennas between receiver 𝑖 and emitter 𝑗. 𝐻𝐸j represents

the transfer function of the 𝑗th IoT transmitter. 𝑆(𝑓) is the digital signal to be

transmitted, which is always the same series of bits in our case as the IoT device

has been conőgured to transmit the same test sequences. The RF őngerprints are

represented by𝐻𝐸j, which is the quantity we want to determine, but in the portability

problem, the 𝐻𝑅i quantities are unknown, which does not allow to solve the equation

in closed form.
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The main idea for this approach to deőne the calibration function to address the

portability issue is to identify the segments in the frequency domain of the received

signal 𝑅i(𝑓), which are not affected by the bias of the RF receiver or they are at least

constant. The frequency domain is chosen because the bias introduced in the receiver

is usually localized in speciőc regions of the frequency domain representation of the

wireless signal (i.e., the radio frequency spectrum). As a consequence, the approach

tries to resolve a simple optimization problem where the value of metric 𝐷c should

be minimized and the value of metric 𝐴𝑐𝑐p should be maximized.

A sliding window approach is used in the frequency domain to identify the op-

timal segments in the frequency domain. The results (which are described in detail

in [27]) show that the approach is effective in identifying the optimal segment in the

frequency domain where the bias is reduced at the small cost of loss in the identiő-

cation accuracy among the 10 wireless devices due to the fact that only a segment of

the overall frequency representation of the signal is used (98.3% of accuracy instead

of the baseline 99.9677%).

A pictorial description of the positive results of the approach is provided in the

following scatter plot őgures in 3 dimensions, which are chosen to be the most relevant

using the RelieFF selection algorithm ([65]). The clusters in őgure shows the extracted

features from the 400 bursts of a speciőc wireless device (the őrst device in 10 devices

data set used for classiőcation) as łseenž from the three different wireless receivers.

Figure 3-12 is the baseline case where the whole burst in the frequency domain is

used and no segment optimization is applied.

It can be seen that the same wireless device appears as three different separate

clusters (the green, blue and red clouds) because of the bias introduced by the re-

ceivers.

Figure 3-13 is the case where the optimization process has been applied. It can

be seen that the clusters are now confused among others as it should be because it is

the same wireless device, which is analyzed.

The results are more clear when the distance of the centroids of the clusters are

calculated across all the 10 devices in the data set for different portion of the frequency
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Figure 3-12: 3D scatterplots for the baseline case
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Figure 3-13: 3D scatterplot in the optimized case

domain representation of the burst (the segment index). The baseline is when the

entire frequency domain representation is used. The distance among the centroids of

the clusters on the basis of the window index are visible in Figure 3-14, which also

provides the selection of the best segment index Window Index=3 (which is used to

create Figure 3-13). We can see that the distance between the optimal case and the

baseline is signiőcant.
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Figure 3-14: Distance among the clusters with applied calibration and no calibration.
Baseline is also shown in green dotted line

The Figure 3-14 shows that for this speciőc data set the contribution of the cali-

bration is limited even if it is still positive (i.e., where the calibration curve is almost

always below the non-calibration curve). For example, at window sizes 30 and 35, 60,

the calibration provides a signiőcant beneőt. On the other side, for this speciőc data

set, the optimal window is 𝑊 = 3, where the calibration has a positive but limited

impact. Because it is known a priori which window is the optimal one (because it

depends on the location of the őngerprints in the time and/or frequency domain), it

is suggested to adopt both methods to mitigate the portability problem.

Analysis of the impact introduced by the IQ imbalance in the RF receiver

Most of the text and őgures described in this section are extracted from the published

paper [31].

The IQ imbalance is a phenomenon appearing in DDC RF receivers, which trans-

forms the RF-signal directly down to base-band. The RF receiver used in our test bed

(an USRP type N200 receiver) is based on a DDC architecture. For that purpose, the

LO is set to the carrier frequency 𝜔LO = 𝜔RF of the wanted channel. As described

in [28], due to temperature dependencies, production imperfections and aging, the

analog components in the I-path and Q-path can not be perfectly matched. The IQ-
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imbalance is a serious issue, which can degrade the receiver performance and it can

impact the emitter identiőcation process, because both the amplitude and the phase

of the Local Oscillator (LO) signal of the I and Q paths will differ from the optimal

values resulting in phase (𝜙) and gain (g) imbalances, which can be described using

the following equation:

𝑠LO(𝑡) = 𝑔1 · 𝑐𝑜𝑠(𝜔LO + 𝜙1)− 𝑗𝑔2 · 𝑠𝑖𝑛(𝜔LO + 𝜙2) (3.31)

The overall schema of the IQ imbalance with the different paths for 𝐼BB and 𝑄BB

in a DDC are shown in Figure3-15 with the Low Pass Filter (LPF) and the ADC.
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Figure 3-15: Schema of the RF receiver with different paths for I and Q

In this report, we take into consideration different values of 𝑔1 and 𝑔2 for the gain

IQ imbalance and 𝜙1 and 𝜙2 for the phase IQ imbalance. In the initial step, a range

of realistic values on IQ imbalances are used. These range of values are extracted

from literature [30, 29]: IQ imbalance from 1dB to 10dB of Gain imbalance where 𝑔1

is set to a őxed value of 0 and 𝑔2 which progressively changes from 1dB to 10db or

alternatively from -1dB to -10dB (in steps of 1dB), while keeping the phase imbalance

to 0. Then, phase imbalance is modiőed while keeping the IQ gain imbalance to 0: 𝜙1

is set to a őxed value of -5 degrees and 𝜙2 increases incrementally in step of 1 degree

to 5 degrees or alternatively with 𝜙1 set to a őxed value of 5 degrees and 𝜙2, which

decreases to -5 degrees.
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The impact of such increasing values of IQ imbalances on PLIA are evaluated

using different representations of the RF signal using the IoT data set described in

section 3.2. The different representations used in the study were the Time domain

(the original representation of the digitized signal in space), the Frequency domain

(described in section 3.4.2), the CWT (described in section 3.4.5 and the Wigner

Ville transform (described in section 3.4.4). The reason for evaluating different types

of representations was to investigate if the application of a transform could mitigate

the negative impact of the IQ imbalance on the physical layer authentication of the

wireless devices.

For this analysis, we adopted the KNN algorithm for classiőcation (see section

3.5.4 for a description of the KNN algorithm) and it was purposely decided to select

a choice of hyperparameters of K=1 and distance metric equal to Euclidean distance

as the focus on the research was on the evaluation of the impact of IQ imbalance

and the mitigation techniques based on different transforms, rather than the goal to

obtain an optimal classiőcation (which could be obtained with more sophisticated

machine learning algorithms). A 10-fold was used for classiőcation.

Figures 3-16a and 3-16b show the comparison (in terms of identiőcation accu-

racy) of the different representations of the signal (Time Domain, Frequency Domain,

Wigner Ville and CWT) using the KNN machine learning algorithm with 𝐾 = 1 and

the Euclidean distance for the different levels of IQ imbalance. Figure 3-16a shows

the results for the negative values of the IQ imbalance in the range 𝐼𝑄g = −1 : −10

dB and 𝐼𝑄ph = −1 : −10 degrees, while őgure 3-16b shows the results for the positive

values of the IQ imbalance 𝐼𝑄g = 1 : 10 dB and 𝐼𝑄ph = 1 : 10 degrees.

The results show that the positive values of the IQ imbalance (őgures (a)) for

this speciőc data set provides slighter worst accuracy values than the negative values

(őgures (b)). In all cases and as expected, the presence of IQ imbalance degrades the

classiőcation performance, with a loss which can be quite signiőcant for some repre-

sentations. For example, the Time domain representation has a loss in classiőcation

accuracy of 8.9% for 𝐼𝑄g=10 dB and 𝐼𝑄ph=10 degrees.

From all the őgures, it is clear that the CWT representation outperforms the other
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representations for increasing values of the IQ imbalance for all the various sets.

The difference in performance of CWT in comparison to the other representations

increases with the values of IQ imbalances. The results seem to indicate that the

greater amount of information provided by CWT is able to mitigate the effect of IQ

imbalances. The superior performance of physical layer authentication using CWT in

the presence AWGN has also been recently demonstrated in [24]. The Wigner Ville

distribution is quite sensitive to IQ imbalances, and especially to phase imbalances.

The conclusion of this analysis is that the presence of IQ imbalances in the RF

receiver used to collect the RF signal in space from IoT wireless devices do have a

signiőcant negative effect on classiőcation accuracy. This issue is part of the more

general problem of portability of the RF őngerprints. On the other hand, the provided

results seem to indicate that the adoption of speciőc representations, like CWT, can

mitigate this problem at least for IQ imbalances.
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(a) Range IQg = −1 : −10 dB and IQph = −1 : −10 degrees.

(b) Range IQg = 1 : 10 dB and IQph = 1 : 10 degrees.

Figure 3-16: Comparison of classiőcation accuracy for different representations in the
presence of IQ imbalance. 𝑀𝐹phase = 1.
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4.1 Overview

Note: some of the material presented in this section is extracted from the paper [66].

In this section, we report on the results of the identiőcation/authentication of

smartphones using the intrinsic physical properties of the built-in microphone of the

smartphone. The possibility to identify a microphone on the basis of features ex-

tracted from audio recordings is well known in literature but it is mostly used in

forensics studies and is usually relies on human voice recordings (as described in

section 2.3). Instead, the study conducted in the PhD thesis focused on the identi-

őcation and authentication approach for mobile phones by stimulating the built-in

microphone with non-voice sounds at different frequencies.

The advantage of using microphones for identiőcation/authentication in compar-

ison to other components in the mobile phone like the camera [42] or the voice is the

possibility to control the stimulus, which is applied to the microphone from an ex-

ternal device. In this way it is easier to create an extensive challenge/response space

as described in the Figure 4-1. This is more complex for the other components like a

camera [42], where the recorded image can be totally random (based on the collected

visual context) or the radio frequency őngerprints where the wireless standards may

impose speciőc constraints. In a similar way, the common method (used in forensics)

to identify the microphone on the base of the voice recordings has the similar problem

that it is not possible to create a speciőc stimuli to deőne a challenge/response space.

In this scenario, it is possible to create a wide space of challenges (the external stimuli)

against related responses (the őngerprints in the recordings), where the microphone

(and then the mobile phone) can be uniquely identiőed by the őngerprints. An at-

tacker would need to record the microphone stimuli and the response as well, which is

quite difficult because: a) the sound stimuli degrades signiőcantly with the increasing

distance between the emitter and the microphone, b) the attacker would need to have

access to the audio recordings and know the process to extract the őngerprints (e.g.,

the type of statistical features used).

A potential application scenario is provided in Figure 4-1.
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Figure 4-1: Potential application scenario for microphone based identiőcation

In an initial őrst phase (identiőed with A in the Figure 4-1) the microphone of

a smartphone is stimulated by a sound generator. The sound recording is collected

and stored in a database of őngerprints, which is accessible by a cloud application

which is used in the in-őeld identiőcation and authentication phase (identiőed with

B in the Figure 4-1). In the second phase B, the microphone is stimulated by the

same sound used in the őrst phase A. After that, the audio recording is sent to a

cloud application which uses a CNN algorithm to identify the source microphone in

the őngerprints database in case of identiőcation. In the authentication scenario, a

phone with claimed identity of the phone 𝑃i will be compared with the recording in

the őngerprint database associated to 𝑃i.

4.2 Materials

A set of 34 phones have been used to collect the audio recordings. This dataset is

much larger than other datasets used in most of the literature, and is comparable

in size to the large dataset recently used in [39]. However, compared to [39], our

collection of mobile phones includes a larger number of phones of the same model, so
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Mobile phones Quantity
HTC One 3
Samsung Galaxy S5 3
Samsung ACE 25
Sony Experia 3
Total 34

Table 4.1: List of mobile phones used in our experiments.

as to properly address the more difficult problem of intra-model classiőcation. The

smartphones we used are a mixture of recent and old phones and the list is shown in

Table 5.1.

A tone of 1KHz was generated with MATLAB and ampliőed through a high

quality Onkyo ampliőer. The tone was reproduced 800 times in 8 different days,

while each mobile phone was in recording mode. The recording was stored in Pulse

Code Modulation (PCM) raw format at 44.1 KHz. The microphone sensitivity and

the level of the ampliőer was adjusted to avoid the saturation phenomenon in the

audio recordings. The position of the phones was always the same relative to the

ampliőer. The microphone was placed on a plastic absorber to minimize the impact

of vibrations from the supporting surface.

4.3 Methodology

The goal of this section is to describe the overall methodology of the proposed clas-

siőcation method. The complete workŕow is presented in Figure 4-2, and the single

steps are detailed as follows.

∙ Each of the 34 mobile phones was stimulated by an audio signal with a duration

of 2 seconds at a frequency of 1KHz generated by a sound source and ampliőed

by an ampliőer. The audio signal increases to a maximum value and then

decreases to zero amplitude. As described before, the audio signal was repeated

800 times in different days with a period of 2 seconds, and one second separation

between one audio signal to the next.
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Figure 4-2: Overall methodology for microphone identiőcation using the proposed
CNN-based approach.

∙ The audio recordings from each mobile phone were őrst normalized and then

synchronized using the őrst phone as a reference. In particular, Pearson’s corre-

lation was employed in such a way that the recording of each phone was shifted

and correlated with the recording of the reference phone (i.e., the appropriate

shift value was obtained through the maximum value of the correlation).

∙ AWGN was added to the audio recordings with different values of SNR, in order

to simulate the presence of attenuation due to path loss.

∙ A Fast Fourier Transform (FFT) was applied to the sound recordings to gen-

erate the frequency response of each microphone. The transformation to the

frequency domain was applied because empirical evidence has shown better iden-

tiőcation accuracy over signals in the time domain. These empirical őndings
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are consistent with the recent őndings on microphone authentication described

in [39] and [40].

∙ A tailored CNN was then used for identiőcation. The CNN architecture is

similar to the one used for the RF use case and presented in section 3. Details

on the CNN architecture are shown in sub-section 3.5.2. To make a comparison,

we have also used the SVM and KNN machine learning algorithms as presented

in the RF use case 3 and subsections 3.5.3 and 3.5.4 respectively.

∙ It was empirically found out that not all the segments are relevant for classiő-

cation and that the optimal segment for classiőcation is between 0 to 3000 Hz,

which can be used as input to the network. This optimal segment is based on

the sampling rate of 44100 Hz. With different sampling rates, the boundaries of

the optimal segment should be revised. The (empirically proven) reason is that

most (if not all) of the őngerprints of the microphone electronic components are

in that frequency range.

The scheme of the adopted CNN architecture is shown in Figure 4-3. The opti-

mized values of other hyper-parameters are reported in Figure 4-3 as well and are also

given in Table 4.2. As CNN is usually applied to images, we converted the frequency

representation of the digitized microphone recording just by reshaping the frequency

vector to a matrix. The CNN network is made up of three convolutional layers fol-

lowed by max pooling to reduce the size. All convolutional layers use the rectiőed

linear unit (ReLU) as activation function. A softmax layer with as many units as

the number of microphones to be identiőed (34 in our experiments) is attached. The

softmax layer is aimed at producing the probability of each sample being classiőed

into each class.

4.4 Results

This section presents the results on the application of CNN to the microphone clas-

siőcation and it is divided in two subsections.
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Figure 4-3: The proposed CNN architecture for microphone identiőcation

The őrst subsection is speciőc for the optimization of the hyparameters, while the

second presents the results in presence of AWGN.

4.4.1 Optimization of the hyperparameters for machine learn-

ing

The initial step was to optimize the hyparameters of the three machine learning

algorithms used to perform the classiőcation: CNN, SVM and KNN.

For all algorithms, a 4-fold approach was used for classiőcation, where 25% of

the dataset was used for test, and 75% was used for training and validation (9/10 of

which used for training and 1/10 for validation, so that the validation set is 7.5% of

the entire dataset). The overall classiőcation process was then repeated 20 times, each

time with different training and test sets. For each iteration, the hyperparameters

were identiőed. Then, the őnal hyperparameter used for classiőcation was the average

of the identiőed optimal values or the function (e.g., solver) which scored the opti-

mal classiőcation results. Finally, all parameter optimizations were performed with

𝑆𝑁𝑅 = 50 dB because this is the SNR level for a practical application of microphone

identiőcation.

The KNN algorithm was optimized using the single hyper-parameter 𝐾 (in the

range K=1 to 30) and the distance metrics (among Euclidean distance, Manhattan

distance, Mahalanobis distance and Minkowski distance with d=3).

The SVM algorithm was optimized using the regularization parameter 𝐶, the

kernel function between linear, polynomial and RBF and the associated parameters

(e.g., 𝛾 in RBF) (see section 3.5.3 and the reference [67]).
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The optimization of the proposed CNN was performed on the number of layers

(already described in Figure 4-3), the solver used to train the network and the input

size of the őrst convolutional layer, as these parameters were identiőed as those of

statistical signiőcance. The number of epochs for the CNN was limited to 100 as it

was found out that this number of epochs is enough to make the algorithm converge.

In other words, the epoch when the loss function on the validation set reaches its

minimum is usual below 100.

The identiőed optimal parameters and functions (e.g., distance metric) for CNN,

SVM and KNN are provided in Table 4.2.

Table 4.2: Hyper-parameters used for each machine learning algorithm.

Algorithm Hyperparameters and optimized values
CNN Solver RMSProp, First convolutional layer 24*24, Epochs=100
KNN K=1 Euclidean Distance
SVM RBF with C = 212 and 𝛾 = 26

4.4.2 Classification accuracy in presence of Additive White

Gaussian Noise

In this section, we present the results where we have progressively added AWGN

to the original signals, causing decreasing values of SNR (from 50 dB down to -10

dB). In Figure 4-4 we show the performance accuracy for different values of SNR

and we compare the CNN method with KNN and SVM. Figure 4-4 shows that the

performance of the proposed CNN approach is better than KNN and SVM especially

for lower values (less than 20 dB) of SNR. At 𝑆𝑁𝑅 = 10 dB, it can be seen that

CNN achieves a classiőcation accuracy of 80% against a 40% of SVM and around

10% of KNN. This shows that CNN delivers a more robust classiőcation method in

the presence of noise. It is noted that SVM also provides a very high classiőcation

accuracy (which is consistent with the őndings in [39] and [40]) for high SNR values

(greater than 30 dB). This means that for security applications and scenarios where

the presence of background noise is limited, a SVM based approach could also be
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considered a valid alternative.
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Figure 4-4: Accuracy on the dataset composed by 34 microphones. Comparison
among CNN, KNN and SVM

Because accuracy only provides a limited view of the classiőcation results, the re-

sults in Figure 4-4 are complemented by confusion matrices (in the form of heatmaps)

for different values of the SNR in Figure 4-5. The Figure depicts the proposed pre-

dicted and true labels related to all the 34 evaluated microphones: a) CNN with

𝑆𝑁𝑅 = 15 dB, b) CNN with 𝑆𝑁𝑅 = 0 dB, c) SVM with 𝑆𝑁𝑅 = 15 dB and d)

KNN with 𝑆𝑁𝑅 = 15 dB (results for SVM and KNN at 𝑆𝑁𝑅 = 0 dB are not shown

because the low classiőcation accuracy does not provide meaningful information).
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a) CNN with SNR at 15 dB b) CNN with SNR at 0 dB

c) SVM with SNR at 15 dB d) KNN with SNR at 15 dB

Figure 4-5: Confusion matrices on the 34 microphones obtained by the proposed
CNN method at SNR = 15 dB and SNR = 0 dB (in a) and b) respectively). In the
bottom row SVM and KNN results (in c) and d) respectively) at SNR =15 dB are
reported for comparison. The heatmap values are percentages (e.g., 80 = 80%) of
correct classiőcations for each class on the number of testing samples.
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5.1 Overview

In this use case, it was investigated the identiőcation of mobile phones through their

built-in magnetometers. These electronic components have started to be widely de-

ployed in mass market phones in recent years. As for other components of the mobile

phone (e.g., camera or microphones), they can be exploited to uniquely identify mobile

phones due their physical differences, which appear in the digital output generated by

them. At the time of performing this research activity, there were no other reported

attempts in the research literature to identify the mobile phone using the magne-

tometers. One of the possible reasons is because magnetometers started to appear

only recently in mobile phones.

Even if there are some similarities with other types of sensors or components in

the mobile phone, the magnetometers has some unique characteristics, which requires

special conőgurations. In particular the magnetometer is characterized by an hysteris

loop.

The exploitation of the magnetometer has an identiőcation or authentication sys-

tem can be described by the following őgure 5-1, where a potential application scenario

is shown.

In this scenario, the magnetometer in the mobile phone is stimulated by a speciőc

magnetic őeld. The magnetic őeld stimulus is recorded by the mobile phone using

the Application Programming Interface (API) (e.g., an android API) to access mag-

netometers recordings. An Android application, which performs the same function

can also be used. In our experiments AndroSensor was used but any other android

application can also be used. Then, the magnetic recordings are stored in a storage

area for future comparison, where őngerprints can be extracted. In the identiőca-

tion/authentication phase (or testing phase from a machine learning point of view)

other őngerprints are collected using the same stimulus and they are compared to

the pre-stored őngerprints. As in the other cases of PLIA the objective is to deter-

mine the speciőc őngerprints with optimize the identiőcation/authentication accuracy

and minimize the classiőcation processing time. As in the case of the microphones,
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Figure 5-1: Application scenario for identiőcation and authentication of mobile
phones using the magnetometers

different stimuli can be used to generate the audio recordings and then embed the

őngerprints. Then, it is possibile to create a wide space of challenges (the external

stimuli)/responses (the őngerprints in the recordings), where the magnetometer (and

then the mobile phone) can be uniquely identiőed by the őngerprints. An attacker

would need to record the magnetometer stimuli and the response as well, which is

quite difficult because: a) the magnetic őeld stimuli degrades signiőcantly with the

distance between the emitter and the magnetometer, b) the attacker would need to

have access to the magnetic őeld recordings and know the process to extract the

őngerprints (e.g., the type of statistical features used).

The advantage of using magnetometers for identiőcation/authentication in com-

parison to other components in the mobile phone like the camera [42] or the RF

wireless components is the possibility to control the stimulus, which is applied to the

magnetometer from an external device. In this way it is easier to create an extensive

challenge/response space. In this sense, the advantages are similar to the microphone

described in the use case 4 with the additional advantage that a noisy environment

from the acoustic point of view would not impact the magnetometers stimulus. A

91



related disadvantage is also true: the presence of speciőc magnetic őelds (e.g., pro-

duced by an electric engine) can have an adverse effect. The magnetic őeld generated

by the earth is relatively weak and stationary to signiőcantly impact the magnetic

őeld stimulus. The possibility to generate a large challenges/response space is more

complex and difficult for the other components like a camera [42], where the recorded

image can be totally random (based on the collected visual context) or the radio

frequency őngerprints where the wireless standards may impose speciőc constraints.

There are different ways to stimulate the magnetometer. In this use case, the

magnetometer was stimulated with a very simple movement of the mobile phone

against a magnetic material. Materials and test bed set-up is described in subsection

5.2. The author has also investigated with other researchers the case where the

magnetic stimulus was created with a speciőc magnetic őeld generator in [51], but in

this thesis only the őrst case is described as it is simpler to implement (any magnetic

object can be used and the stimulus can be created by sweeping the magnetometer

in front of it). The output of the research of this use case has been published in [50].

5.2 Materials

Portions and őgures of this section are extracted from the paper [50] published by

the author in MDPI Sensor.

The test bed is made up of a platform which rotates the mobile phone under

test, and a őxed magnet positioned on the edge of the rotating platform. When

the mobile phone passes in front of the őxed magnet, the built-in magnetometer is

stimulated and its digital output is recorded and analyzed. For each mobile phone,

the experiment is repeated over six different days to ensure consistency in the results.

A total of 10 phones of different brands and models or of the same model were used in

our experiment. This test bed conőguration has been created to simulate a practical

scenario where an user can pass the mobile phone in front of a magnetic őeld. In this

scenario, for simplicity the magnetic őeld is static and the stimuli is created by the

motion of the mobile phone where the magnetometer is located.
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A rotating platform is used for the deőnition of the motion pattern. The test

setup is illustrated in Figure 5-2, where a mobile phone is installed on a cost-effective

rotating platform and a magnetic element (an iron cube) is positioned at one ex-

treme of the test bed. The rotating platform rotates the mobile phone with a speciőc

motion pattern. The built-in magnetometer is stimulated by the magnetic element

when it passes over it. The magnetic perturbation is collected and analyzed using an

android application installed in the mobile phone. As described before, in this exper-

iment, we have used the AndroSensor application but any other application, which

can record the digital output from the magnetometer can be used. The application

was conőgured to record the magnetometer digital output with a sampling time of

0.05s. The motion pattern used in our experiment is conőgured as follows: +120rpm

then -120rpm for 4s, +150rpm then -150rpm for 3s, +180rpm then -180rpm for 2s.

The mobile phone is kept for 60 seconds before the start of the motion pattern in a

őxed position in front of the magnet. Each mobile phone was subject to this motion

pattern. A total of 10 mobile phones were used in the experiments. Table 5.1 shows

the brand and models of the phones used in the experiment. We note that three

phones were of the same brand and model (i.e., HTC One) while the other phones

were of different brands and models.

In each measurement campaign, each mobile phone is subject to 25 repetitions of

the motion pattern. This experimental campaign was executed during six different

days (even at the distance of a week), so as to ensure that the őngerprints are stable

over time. As a consequence, we have a total of 25*6 = 150 motion patterns or

responses.

5.3 Methodology

The process to collect the magnetic őeld recordings and extract the őngerprints is

based on the following steps:

1. Each mobile phone is mounted on the test bed platform and submitted to the

rotations as described in the Section 5.2.
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Mobile phone model Number of devices
Sony M4 Aqua 1
Huawei P8 1
Sony Xperia X 1
Samsung Galaxy S7 1
Huawei Mate 8 1
HTC One A9 1
LG G4 1
HTC One 3

Table 5.1: List of Mobile Phones used in our experiment.

Figure 5-2: Image of the test setup used to collect the data.

2. Data is synchronized and normalized. This is an important step, since unsy-

chronized/unnormalized data can introduce a severe bias in the classiőcation.

After synchronization, the data are normalized. The normalization is carried

out by applying the Root Mean Square (RMS) to each single response for each
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individual mobile phone.

3. Statistical features are extracted from the magnetic recordings. The statistical

features are based on similar features used in the literature for dimensionality

reduction in PLIA. Table 5.2 shows the statistical features (the number rep-

resents the identiőer of the feature) used in the experiment. These features

are applied both in the time domain and the frequency domain after a FFT is

applied. We note that another hyperparameter is the direction of the axis of

the magnetometer, which is identiőed as X,Y and Z.

4. SVM machine learning algorithm is used to classify the mobile phones on the

basis of the extracted statistical features (see Section 3.5.3 for a description of

the SVM machine learning algorithm). Classiőcation performance is evaluated

using 3-fold cross validation. Each collection of statistical őngerprints (one for

each mobile phone) is divided into three blocks, each having 50 őngerprints

per block. Two blocks from each device are used for training and one block is

held out for classiőcation. The training and classiőcation process is repeated

three times until each of the three blocks has been held out and classiőed.

Thus, each block of statistical őngerprints is used once for classiőcation and

twice for training. Final cross-validation performance statistics are calculated

by averaging the results over all folds.

5. As described in Section 3.5.1, the optimization process was repeated for each of

the three folds on the training set only. Finally, the overall process was repeated

50 times. While, this can be a time consuming process, it mitigates the risk of

high variance in the results, and provides a good evaluation of the relevance of

the statistical features. The results of the optimization are shown in Section

5.4.

95



Feature Name Time Domain Frequency do-
main (Phase)

Frequency do-
main (Ampli-
tude)

Shannon Entropy 1 7 13
Log Energy Entropy 2 8 14
Variance 3 9 15
Standard Deviation 4 10 16
Skewness 5 11 17
Kurtosis 6 12 18

Table 5.2: Statistical features and the related identiőer used for PLIA

5.4 Results

5.4.1 Optimization of the hyperparameters for machine learn-

ing

As described in Section 3.5.3 and from literature in [67], the SVM algorithm must

be optimized on the 𝐶 parameter (the so-called box constraint parameter), allowing

the SVM user to control the weight of the classiőcation errors during training, and

the Kernel function, which is used to deőne the shape of the computed hyperplane.

Various kernel functions are available in the literature including linear, polynomial

and RBF. A comparison was performed among linear, polynomial and RBF and RBF

provided the best results. As described in Section 3.5.3, the 𝛾 parameter in RBF must

be optimized as well.

Various techniques can be used to optimize these values. In this paper, we adopt

the grid approach with a set of exhaustive exponential values to the base 2, from 20

to 26 for the scaling factor 𝛾, and from 20 to 211 for the parameter 𝐶.

These values were calculated for the magnetomer in the X axis.

This process was repeated for all the 50 repetitions and the three folds. The őnal

result of the SVM parameter optimization effort is shown in Figure 5-3 for parameter

𝛾 and in Figure 5-4 for parameter 𝐶. In the őgures, the three different colors represent

the three different folds.

On the basis of the selected features and the identiőed optimal values for 𝐶 and
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Figure 5-3: Histograms of the recurrence of the best performing scaling factor 𝛾 for
50 repetitions and three folds. The three colors represent the three folds.

Figure 5-4: Histograms of the recurrence of the best performing box constraint pa-
rameter 𝐶 for 50 repetitions and three folds. The three colors represent the three
folds.

𝛾, the machine learning classiőcation with SMV was performed and the results are

provided in the next subsection.
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5.4.2 Classification results

It was investigated both the identiőcation scenario where it is estimated the proba-

bility of identifying one phone among others and the authentication scenario where a

phone is compared against another phone.

Both SVM and KNN have been used to perform the classiőcation and the results

are presented in table 5.3.

Machine Learning algo-
rithm

Overall
Accuracy

SVM (X direction) , 𝛾 = 23

and 𝐶 = 29
70.61 %

KNN with Number Neigh-
bours = 3 (optimal value in
a range from 1 to 10)

66.39 %

Table 5.3: Comparison among the different machine learning algorithms for the digital
output generated by the Magnetometer on the 𝑋 axis. Accuracy values have been
averaged over the 50 repetitions.

As it can be seen, SVM provides a better identiőcation accuracy in comparison to

KNN, but it is relatively low in comparison to the results obtained in the other use

cases (microphones and radio frequency őngerprints). This may due to the simpler

design of the magnetometers in comparison to the microphones and radio frequency

components, which allow the generation of less complex and distinguishable intrinsic

features.

It was investigated if inter-model accuracy is higher than intra-model accuracy

as it should be expected because the components are more distinguishable among

models.

The inter-model accuracy is calculated as the average classiőcation accuracy when

including only one HTC mobile phone (i.e., phone identiőers from 1 to 8). The intra-

model accuracy is computed when operating only with the data set of three HTC

mobile phones (i.e., phone identiőers from 8 to 10).

Table 5.4 shows the identiőcation for inter-model and intra-model for the three

different axis using SVM using the optimal values identiőed in the previous section.
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Inter-Model
Magnetometor Axis Overall Accuracy
𝑋-axis 82.52 %
𝑌 -axis 89.35 %
𝑍-axis 94.32 %

Intra-Model
Magnetometor Axis Overall Accuracy
𝑋-axis 48.37 %
𝑌 -axis 48.10 %
𝑍-axis 53.5 %

Table 5.4: Average overall accuracy for inter-model and intra-model classiőcation
using SVM for different axis of the magnetometer.

Even if a simpliőcation is applied because, the optimization was conducted only for

the X axis, it can be justiőed by the consideration that the intrinsic features (i.e.,

őngerprints) in the magnetomer are always physically the same for all the three axis.

From this result, it can be seen that the inter-model classiőcation is quite high

and it can be used for a practical application of the mobile phone identiőcation using

magnetometers when the phone are of different brands and models.

Then, it was evaluated the possibility to combine the signals from the three dif-

ferent magnetometers axis to obtain an higher classiőcation accuracy.

By combining all the three axis together, it was obtained a resulting overall iden-

tiőcation accuracy of 85.08 %, with an inter-model accuracy of 98.07 %, and an

intra-model accuracy of 54.15 %. These accuracy values are higher than considering

each axis in isolation. Speciőcally, there is a signiőcant improvement (almost 4%)

for inter-model accuracy, as compared to the best result of the single axis (magne-

tometer in the 𝑍 direction Ð see Table 5.4), and a slight improvement in intra-model

accuracy.

The results for identiőcation accuracy can also be conőrmed by performing bi-

nary classiőcation (i.e., authentication) separating two phones of different models

(inter-model authentication) and two phones of the same model (intra-model authen-

tication).

Figure 5-5 shows the binary classiőcation between one Sony Experia X and one
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Samsung Galaxy S7 where it can be seen that an high classiőcation accuracy is ob-

tained for inter-model scenario. In particular, the Y axis provides the best authentica-

tion accuracy among all the three axis. On the other side of the coin, the combination

of all axis provides an even higher authentication accuracy (and consequently a lower

EER), which conőrms the previous results for identiőcation accuracy.
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Figure 5-5: ROC achieved by SVM in binary classiőcation between Sony Experia X
and Samsung Galaxy S7. Results have been averaged over the 50 repetitions.

Figure 5-6 shows the binary classiőcation between one HTC One 2 and one HTC

One 3 where it can be seen that the classiőcation accuracy is lower for the intra-

model case than the inter-model case as expected. In this case, the combination of all

axis does not provide a signiőcant gain in comparison to the results for each speciőc

axis. This result is also consistent with the previous result for the identiőcation

accuracy, where the combination of all axis did not provide a signiőcant improvement

in comparison to the identiőcation obtained for each axis.

In a practical application of mobile phone identiőcation based on the őngerprints

of the built-in magnetometers, it is well possible that the distance between the mobile

phone and the magnetic element stimulating the magnetometer can vary. Changes

in distance and orientation will deőnitely impact the SNR. Different distances and

different values of SNR can be simulated by adding AWGN to the collected magne-
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Figure 5-6: ROC achieved by SVM in binary classiőcation between HTC One 2 and
HTC One 3. Results have been averaged over the 50 repetitions.

tometers responses.

Figure 5-7 shows the ROCs for binary classiőcation between Sony Xperia X and

Samsung Galaxy S7 for decreasing values of SNR. The associated value of the EER

is shown in the legend. As expected, a low value of SNR results in almost random

choice identiőcation (e.g., the green curve) because the machine learning algorithm

is not able to leverage very noisy signals.
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Figure 5-7: ROC achieved by SVM in binary classiőcation between Sony Experia X
and Samsung Galaxy S7 using the 𝑋-axis for decreasing values of SNR. Again, these
curves are obtained after averaging over 50 repetitions.
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Chapter 6

Conclusions
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This thesis has investigated the physical layer authentication of electronic devices

for three different types of electronic devices using different techniques both at the

level of signal processing and machine learning. In all cases, only supervised learning

has been investigated as this area alone presented numerous topics for novel investi-

gation in comparison to literature. An extensive literature review has been conducted

and speciőc gaps have been identiőed to propose novel results in different areas includ-

ing the analysis of the bias introduced by the system (e.g., RF receiver) collecting the

signal, the novel combination of speciőc signal processing techniques together with

Convolutional Neural Networks and the application of physical layer authentication

to new types of electronic devices like the magnetometers. The results of the PhD

activities have been proposed and accepted for publication in journals in the Science

Citation Index Extended (SCI-E) and IEEE conferences.
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