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Expression of the L-amino acid oxidase from Rhodococcus 

opacus in Streptomyces, a novel heterologous expression 

system 

 

Abstract 

L-amino acid oxidases (LAAO) are well known enzymes that 

catalyze the strictly enantioselective oxidation of L-amino acids to 

α-keto acids. The LAAO from Rhodococcus opacus (RoLAAO) is a 

broad substrate specificity enzyme that could have important 

applications in biocatalytic processes. These potential applications 

require the overproduction of the enzyme. The heterologous 

expression of RoLAAO was investigated in two species of the 

Streptomyces genus: S. lividans (strain TK24) and S. venezuelae 

(strain ATCC1055). The gene encoding for RoLAAO (AY053450) 

was amplified from the native source and cloned into two different 

expression vectors. The presence of the plasmids containing the 

gene coding for RoLAAO caused a significant impairment in the 

growth of both species. When using the constitutive expression 

vector pIJ86, only a very weak signal could be detected in the 

western blot analysis of  samples from S. lividans. However no 

LAAO activity was detected in these samples. No expression of 

RoLAAO could be detected using the thiostrepton inducible vector 

pGM1190. In conclusion, the Streptomyces genus turned out not to 

be a suitable expression system for the production of L-amino acid 

oxidases in an amount sufficient for its biotechnological 

exploitation. 
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Introduction. 

L-amino acid oxidases (LAAO) are widely distributed homodimeric 

flavoproteins, containing in each subunit a non-covalently bound 

FAD molecule as a cofactor. They catalyze the stereospecific 

oxidative deamination of amino acids to the corresponding α−keto 

acids along with the production of ammonia and hydrogen 

peroxide [60]. 

Usually LAAOs are active on a number of different L-amino acids, 

mainly hydrophobic ones. In particular the enzyme from the 

actinomicete R. opacus  (RoLAAO) exhibits the broadest substrate 

specificity among known LAAOs: it is active on 39 different amino 

acids, mainly apolar and basic, including 17 of the proteinogenic 

ones. For many of its  substrates it possesses a high affinity [76]. 

These features make it an interesting catalyst for enzymatic 

syntheses. 

Preliminary deracemization trials have been performed on D,L-

leucine and D,L-phenylalanine mixtures; after 30 minutes of 

reaction enantiomeric excesses of 99.2 and 99.5 %, respectively, 

were obtained [76]. Moreover, in batch experiments RoLAAO was 

able to fully convert a L-dihydroxyphenylalanine (L-DOPA) 

solution in 150 min [131]. 

In our work, we attempted the heterologous expression of the R. 

opacus L-AAO using a bacterial host. The development of this 

system will allow the introduction of mutations by site-directed 

mutagenesis or directed evolution to change the biochemical 

properties or to elucidate the reaction mechanism on a molecular 

level. 
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Experimental procedures. 

Strains - Rhodococcus opacus strain DSM43250, has been 

purchased from the Deutsche Sammlung von Mikroorganismen 

und Zellkulturen (Braunschweig, Germany). E. coli strain NEB10β 

was purchased by New England Biolabs (Ipswich, MA, United 

States). E. coli strains ETI12567/pUZ8002, Streptomyces lividans 

strain TK24 and Streptomyces venezuelae strain ATCC1055 were 

kindly provided by the laboratory of Microbial Biotechnology of 

the University of Insubria (Varese, Italy). 

 

Cloning - The gene encoding for LAAO was amplified by PCR from 

R. opacus colonies with the primers UP (5’-

GCGCAAGCTTATGGCATTCACACGTAGATCTTTCATGAAGGGCC-3’) 

and DN (5’-

CGTGGCCCAGGAAGCCCACCACCACCATCACCACTGAAAGCTTGCGC-

3’) which allowed the insertion of HindIII restriction sites. The 

amplification was performed using the “touch down” method, in 

the presence of 5 % (final concentration) of DMSO. 

In detail, single R. opacus colonies were picked and placed in 50 μL 

of 100% DMSO, vortexed briefly and stirred for 90 minutes at 100 

rpm at 25 °C; 50 μL (final volume) reaction mixture was as follows: 

2.5 μL cells suspension (5% final DMSO), primers 0.2 μM each, 

dNTPs mixture 0.2 mM each, 1X reaction buffer, 0.5 mM MgCl2, 

1.25 units DreamTaq DNA polymerase (Thermo Scientific). 

The “touch down” PCR method requests that for the first few 

cycles the annealing temperature has to be lowered by 1 °C per 

cycle; in detail, the reaction was run as follows: 13 cycles (95 °C, 30 
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sec; 65 °C to 53 °C, 30 sec; 72 °C, 3 min), 5 cycles (95 °C, 30 sec; 53 

°C, 30 sec; 72 °C, 2 min 15 sec), 25 cycles (95 °C, 30 sec; 62 °C, 30 

sec; 72 °C, 2 min 15 sec). Agarose-gel purified PCR product and 

pIJ86 expression plasmid were then subject to enzymatic digestion 

with FastDigest HindIII restriction enzyme (Fermentas) for 30’ at 

37 °C and ligated using T4 phage DNA ligase (Roche) overnight at 

4 °C, placing RoLAAO gene under the control of the constitutive 

ermEp* promoter. Correct orientation of the ligated gene was 

confirmed by enzymatic digestion with FastDigest BamHI and XhoI 

restriction enzymes (Fermentas), and the correctness of the insert 

was confirmed by gene sequencing. 

Point mutations were corrected with QuickChange II XL site 

directed mutagenesis kit (Agilent), with primers G496D-for (5’-

CTGCTCGAACCCGTCGACAAGATCTATTTCGCC-3’) and G496D-rev 

(3’-GGCGAAATAGATCTTGTCGACGGGTTCGAGCAG-5’). In detail, 2 

μl of ligation product were used as a template for amplification 

with 2.5 U of PfuUltra HF DNA polymerase (final volume 50 μl) for 

18 cycles (95 °C, 50 sec; 60 °C, 50 sec; 68 °C, 8 min). The reaction 

product was then digested with 10 U/μl of DpnI and the reversal of 

the mutation was confirmed by gene sequencing. 

The insert from the previous ligation was subsequently subcloned 

into the expression vector pGM1190; the LAAO gene and the 

vector were then subject to enzymatic digestion with FastDigest 

HindIII restriction enzyme (Fermentas) for 30’ at 37 °C and ligated 

using T4 phage DNA ligase (Roche) overnight at 4 °C, placing 

RoLAAO gene under the control of the thiostrepton inducible TipA 

promoter. Correct orientation of the ligated gene was confirmed by 



 

132 

 

enzymatic digestion with FastDigest BamHI and XhoI restriction 

enzymes (Fermentas), and the correctness of the insert was 

confirmed by gene sequencing. 

 

Intergeneric conjugation - Since Gram positive bacteria cannot be 

transformed by conventional techniques, pIJ86-RoLAAO and 

pGM1190-RoLAAO plasmids were inserted  Streptomyces lividans 

and venezuelae by intergeneric conjugation mediated by E. coli 

strain ET12567/pUZ8002. In detail, both plasmids were 

transformed into E. coli strain; single colonies were inoculated  in 

LB broth added of  kanamycin (30 μg/ml), chloramphenicol (34 

μg/ml) and apramycin (50 μg/ml) and grown overnight at 37 °C; 

afterwards they were diluted into LB added of the same antibiotics 

and grown at 37 °C to and OD600 of about 0.5 was reached. A total 

of 10 ml of culture was then pelleted, washed three times with 10 

ml of LB without antibiotics and resuspended in 1 ml of LB without 

antibiotics. ≈ 108 S. lividans spores from a glycerol stock were, 

added of 500 μl of 2X YT broth and heat shocked for 10’ at 50 °C; at 

the end of the heat shock 500 μl of transformed E. coli were mixed 

with 500 μl of heat shocked spores and pelleted for 3 min at 

13,000 rpm at room temperature. The pellet was then 

resuspended in 70 μl of 2X YT, plated on two SFM + agar plates (10 

μl and 60 μl, respectively) without antibiotics and incubated 

overnight at 30 °C. The plates were then overlaid with a solution 

containing 0.5 mg of apramycin to select conjugated S. lividans 

colonies and 1 mg of nalidixic acid to kill residual E. coli colonies, 

and incubated at 30 °C for a further 3 days. Single S. lividans 
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colonies were transferred onto SFM+agar plates added of 

apramycin (50 μg/ml) and nalidixic acid (1 mg/ml) and incubated 

at 30 °C for 3 days. Finally, grown colonies were transferred onto 

SFM+agar plates added of apramycin (50 μg/ml) and incubated at 

30 °C for 3 days. The presence of the plasmid in S. lividans was 

confirmed by colony PCR. 

For S. venezuelae the same procedure was adopted, except that no 

heat shock of the spores was necessary and the medium employed 

for the plates was MYM instead of SFM. 

 

Culture conditions and protein expression - Wild-type RoLAAO 

expression was confirmed by R. opacus cultures: 500 μl of glycerol 

stock were inoculated in 20 ml of GYM broth (4 g/l glucose; 4 g/l 

yeast extract; 10 g/l malt extract) and grown overnight at 28 °C. 

Precultures were diluted (5 % v/v) in 100 ml of GYM and grown 

for a further 24 h at 28 °C, after which they were collected. 

Recombinant RoLAAO was expressed in S. lividans in the following 

expression conditions: pre-precultures from 500 μL of glycerol 

stock were grown in 20 ml YEME or BTSB media, added with 50 

μg/mL apramycin, for 96 hours at 30 °C. The pre-precultures were 

diluted (5 % v/v) in 50 ml of the same medium added with 50 

μg/mL apramycin (preculture) and grown for a further 96 hours at 

30 °C. Finally, the preculture is diluted (10 % v/v) in 100 ml of 

different media (BTSB, YEME, 2X YEME, V6) added with 50 μg/mL 

apramycin and grown for up to 240 hours. For clones harboring 

the pGM1190-RoLAAO plasmid, protein expression was induced 
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after 10 hours from the last dilution, with 5 μg/ml of thiostrepton 

(final concentration). 

Recombinant RoLAAO was expressed in S. venezuelae in the same 

expression conditions with the exception of the last dilution, for 

which MYM medium instead of BTSB. For clones harboring the 

pGM1190-RoLAAO plasmid, protein expression was induced after 

10 or 24 hours from the last dilution, with 5 μg/ml, 15 μg/ml or 50 

μg/ml of thiostrepton (final concentration). Every 24 hours, after 

the last dilution in the case of pIJ86-RoLAAO and after thiostrepton 

induction in the case of pGM1190-RoLAAO, 10 ml samples of each 

culture were withdrawn, for the analysis of growth progression 

and protein expression, and divided into two 5 ml aliquots. 

 

Growth curves - One of the two aliquots was transferred to a glass 

tube for setting up growth curves of each culture: in details, the 

aliquots were pelleted for 10’ at 4000 rpm at room temperature; 

the pH of the supernatant was measured with pH test strips 4.5 – 

10.0 (Sigma) while the residual glucose concentration with Diastix 

Strips (Bayer); the production of biomass was tracked by 

measuring the wet and dry weight (obtained after overnight 

incubation at 50 °C) of the pellet, and the volume of the packed 

mycelium (PMV), based on the graduation of the glass tube. the 

other aliquot was used for western blot analysis and activity 

assays. 

 

Western blot analysis - For western blot analysis the 5 ml aliquots 

were pelleted for 10’ at 4000 rpm at 4 °C;  pellets were 
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resuspended in lysis buffer (50 mM Glycine/NaOH, pH 8.6, 10 % 

Glycerol, 40 μM FAD, 0.2 mg/ml PMSF) at a ratio of 5 ml per g of 

cells and lysed by at least 10 cycles of sonication (30 s followed by 

30 s on ice). The supernatant was separated by the insoluble 

fraction by centrifuging for 60 min at 38,500 g at 4 °C. 

Proteins in the culture broths were precipitated by treatment with 

tri-chloro acetic acid (TCA); in details, 1.8 ml of sample were added 

of 0.2 ml of 100 % (w/v) TCA (Sigma), mixed by briefly vortexing 

and incubated for 15 min on ice. To collect precipitated proteins 

the samples were centrifuged for 10 min at 38,500 g at room 

temperature and the supernatant was thoroughly removed. Pellets 

were washed by resuspending in 0.2 ml of 100 % acetone 

(Panreac) and centrifuged for 5 min at 38,500 g at room 

temperature. The supernatant was discarded and the pellets were 

resuspended in 0.1 ml of 1x PBS. 

For activity assays, 238 mg of ammonium persulfate were added to 

5 ml of culture broth and the samples were incubated under gentle 

stirring for 20 minutes at 4 °C followed by sitting for a further 15 

minutes at 4 °C. Samples were then centrifuged at 16.000 g for 1 

hour and protein pellets were resuspended in 100 μl of storage 

buffer (50 mM Glycine, 10% glycerol). 

 

Protein purification - Samples were harvested by centrifugation 

and lysed as previously described; to attempt purification of 

RoLAAO from the crude extracts, 3.5 ml samples were added of 

NaCl to a final concentration of 1 M and loaded onto a 1 ml HiTrap 

chelating column; attachment of the protein was performed in 
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binding buffer (50 mM Glycine/NaOH, pH 8.6, 10 % Glycerol, 1 M 

NaCl) and elution was performed in a single step from 0 to 100 % 

elution buffer (50 mM Glycine/NaOH, pH 8.6, 10 % Glycerol, 0.5 M 

imidazole) 

 

Enzymatic assay - Enzymatic activity on L-Ala was assayed 

spectrophotometrically using a 4-aminoantipyrine / HRP coupled 

assay. 0.9 mL of reaction mixture (10 mM L-Ala in 50 mM 

Glyicine/NaOH, pH 8.6, 20 μM FAD, 1.5 mM 4-aminoantipyrine, 2 

mM phenol, 2.5 U of HRP) was incubated at 30 °C for 1 minute and 

then added of 100 μl of the protein sample. Absorbance changes 

were recorded at 505 nm for 5 minutes. 

Enzymatic activity on L-Ala was assayed also by PAGE in non-

denaturing conditions; in detail, crude extract sample were added 

of sample buffer without SDS and loaded onto a 7.5 % poly-

acrylamide gel devoid of SDS and electrophoresis was performed 

at 4 °C with 1x TBE as running buffer. To allow color formation, 

the gel is subsequently incubated in development solution (35 mM 

sodium pyrophosphate, pH 8.5, 40 uM FAD, 100 mM L-Ala and 92 

μg/ml INT) at 30 °C until protein bands appeared. 

 

Results and discussion. 

Wild-type RoLAAO - R. opacus strain DSM 43250 was grown for 24 

hours at 28 °C, yielding a biomass of about 15 g of cells per liter of 

culture. Expression of wild-type RoLAAO was investigated by 

PAGE in non-denaturing conditions both in the cytoplasm of the 

cells, which were lysated by sonication with a yield of about 44 mg 
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of proteins per g of cells, and in the culture broth, which was 

concentrated by ultracentrifugation. RoLAAO activity was assayed 

on 100 mM L-Ala as a substrate, and after 3 hours of incubation at 

30 °C the appearance of a specific band could be observed in the 

cytosolic sample, while no signal could be detected in the culture 

broth even after overnight incubation. We thus confirmed the 

intracellular expression of RoLAAO despite the presence of the 

putative secretion signal peptide (Fig. 1). 

Enzymatic activity in the crude extract was quantified by a 4-

aminoantipyrine/HRP coupled assay on 10 mM L-Ala as a 

substrate: an activity of about 0.2 U/ml was measured, 

corresponding to a specific activity of about 24 mU per mg of 

protein, in good agreement  with data in literature (32 mU/mg; 

Geueke and Hummel, 2002). 

 

Recombinant RoLAAO - To achieve overexpression of recombinant 

RoLAAO, two species of Streptomyces genus were employed: S. 

lividans which lacks a system of endogenous endonucleases and 

should therefore be easier to conjugate, and S. venezuelae, which 

should display a faster growth rate. Recombinant clones were 

obtained by intergeneric conjugation from E. coli strain 

ET12567/pUZ8002. We obtained 36 pIJ86-RoLAAO and 20 

pGM1190-RoLAAO S. lividans recombinant clones; when S. 

venezuelae was employed, we obtained 8 pIJ86-RoLAAO and 20 

pGM1190-RoLAAO clones (Table 1). 

Streptomyces lividans and venezuelae consume glucose with a 

similar rate, causing its depletion in about 48 hours. For the rest 
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the growth of the two microorganisms show marked differences: S. 

lividans grows at a much faster rate compared to S. venezuelae, as 

they reach a biomass of 104 grams of mycelium per liter of culture 

after 96 hours after the last dilution, and of 52 grams of mycelium 

per liter of culture after 240 hours after the last dilution, 

respectively (Fig. 2). 

An important aspect that should be pointed out though, is the lack 

of reproducibility in the growth trials: in fact only using S. lividans 

and only in the case reported above, a good growth curve could be 

obtained. 

Concerning S. lividans, the control cultures with the wild-type 

organism show much better growth parameters than the 

recombinant clones; this could be due to the synthesis of a very 

small quantity of RoLAAO, which, although below our detection 

limit, could be sufficient to produce an amount of H2O2 that is toxic 

for the cells; or the presence of the plasmid itself could cause a 

significant metabolic burden to the cells. The latter hypothesis 

seems the most plausible, since the effect on the growth has been 

observed in all clones harboring both pIJ86 and pGM1190 

plasmids, independent of the presence of the gene, or of the 

inducer. 

In the case of S. venezuelae no optimal conditions could be 

obtained, in all cases the growth was fragmented, if not completely 

absent, for both the wild-type and conjugated clones (Fig. 3). 

In one case, western blot analysis of a S. lividans clone harboring 

pIJ86-RoLAAO plasmid showed the presence of a faint band at the 

expected molecular weight in the crude extracts of the aliquots 
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withdrawn after 48 h and 72 h; this samples were loaded onto a 

HiTrap Chelating column to attempt purification of RoLAAO. A 

single peak was eluted with 0.5 M imidazole, but following SDS-

PAGE and western blot analysis the presence of the protein in the 

fraction could not be confirmed; moreover, when a 4-

aminoantipyrine / HRP coupled assay was employed, no L-amino 

acid oxidase activity on L-Ala as a substrate could be detected. 

A band at the expected molecular weight was observed also in the 

culture broths of all the aliquots withdrawn after the final dilution 

except T0. In spite of this, following concentration of the protein 

samples and 4-aminoantipyrine / HRP coupled assay, no L-amino 

acid oxidase activity on L-Ala as a substrate could be detected (Fig. 

4). 

Protein expression in S. lividans clones harboring pGM1190-

RoLAAO plasmid was induced with 5 μg/ml (final concentration) 

of thiostrepton, 10 hours after the last dilution; following SDS-

PAGE analysis, in all cases no expression of RoLAAO could be 

detected. 

S. venezuelae clones harboring pIJ86-RoLAAO plasmid showed no 

expression of the protein under any condition. Protein expression 

in clones harboring pGM1190-RoLAAO plasmid was induced with 

5 μg/ml, 15 or 50 μg/ml, (final concentration) of thiostrepton, 10 

or 24 hours after the last dilution but following SDS-PAGE analysis, 

in all cases no expression of RoLAAO could be detected. 

In conclusion, while allowing to circumvent the problem of the 

formation of inclusion bodies, the slow and problematic growth in 

the presence of exogenous plasmids coupled to the very low 
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expression yields make the genus Streptomyces an unsuitable 

alternative to E. coli for the heterologous expression of microbial 

L-amino acid oxidases. 

 

Figures and tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Native PAGE of R. opacus samples. 30 μl 

samples were loaded onto a 7.5 % polyacrylamide gel 
and run at 4 °C. The gel was subsequently incubated in 
the development solution containing 100 mM L-Ala 
and 92 μg/ml INT, until the appearance of the band 

Table 1. Number of Streptomyces clones obtained by intergeneric conjugation 
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Figure 2. Growth curves of A) Streptomyces lividans clone 31 and B) Streptomyces 
venezuelae clone 5. Red = residual glucose (g/L). Black = wet weight (g/L). Blue = 
pH. Green = PMV (%) 

A 
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Figure 3. Comparison of the rate of growth of different Streptomyces clones. Red = 
control S. lividans strain. Green = pIJ86-RoLAAO harboring S. lividans strain. Blue = S. 
venezuelae control strain. Orange = pIJ86-RoLAAO harboring S. venezuelae strain. 

Figure 4. Western blot analysis of Streptomyces lividans samples. In both cases a His 
Probe antibody was used. Exposure time = 30 min. A) Crude extract samples. B) 
Culture broth samples. + = RoLAAO from E. coli inclusion bodies. 
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Discussion
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It is now commonly accepted that the great molecular biodiversity 

of contemporary enzymes has stemmed from their divergent 

evolution from ancestral progenitors, a phenomenon in which 

enzyme promiscuity has played a key role. 

Enzyme promiscuity is defined as the presence of auxiliary enzyme 

activities, in addition to the one for which an enzyme has evolved, 

that are not part of the organism physiology [2]. This ability of 

enzymes to catalyze potentially advantageous functions grants the 

organism the necessary adaptability to face variations of its 

environment, thus enhancing the probability of survival and 

reproduction [132]. 

A well-known example of enzymatic promiscuity is represented by 

the enzymes belonging to the family of flavoproteins, which have 

evolved to perform a wide variety of enzymatic reactions in Nature 

[28]. A paradigmatic example of the capacity of flavoproteins to 

acquire new functions is represented by members of the amino 

acid oxidase group, which have evolved to catalyze an extremely 

wide range of reactions, depending on the organism (or tissue) in 

which they are expressed [44, 60, 65]. This ability, along with their 

remarkable enantioselectivity, makes these enzymes an ideal 

scaffold for the in vitro evolution of novel catalytic activities to 

perform a wide range of biotransformations, such as the resolution 

of racemic mixtures of amino acids. The exploitation of D-amino 

acid oxidases for this purpose is already a well-established 

procedure [43], while the use of LAAOs for the same aim is still 

hampered by the difficulty of their heterologous expression. In 

fact, the most studied members of this class are the enzymes 
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purified from the snake venom, which are extensively 

glycosylated, and thus cannot be expressed in an active form and 

at high levels as recombinant proteins in a prokaryotic expression 

system. 

 

This PhD project has been focused on the identification of novel 

microbial L-amino acid oxidases with the aim to define their 

structure/function relationships and understand the evolutionary 

mechanisms that led to their great diversification and 

specialization, related to their specific physiological role. 

The information obtained in this work will be also useful for the 

successive modification of the biochemical properties of these 

flavoproteins for their employment in biocatalytic processes. 

 

The first enzyme that was investigated was the aminoacetone 

oxidase from the microorganism of the oral-cavity Streptococcus 

oligofermentans (SoAAO). We demonstrated that, differently from 

what previously reported, SoAAO is not a “canonical” LAAO: this 

flavoprotein is not able to stabilize any semiquinone species of 

FAD, it does not react with sodium sulfite and its midpoint redox 

potential (-324 mV) is unusually low in comparison to the one of 

other flavooxidases. From a functional point of view, SoAAO shows 

a low but significant activity (about 0.05 U/mg of protein) on 

aminoacetone (its preferred substrate), while it has only a very 

low promiscuous activity on different L-amino acids. The solution 

of the three-dimensional structure of SoAAO confirmed that this 

protein does not belong to the group of L-amino acid oxidases: in 
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fact, SoAAO is a monomeric enzyme formed by three domains and 

represents a paradigm for a novel class of bacterial flavoproteins. 

The inspection of the 3D structure of SoAAO in complex with the 

substrate analog O-methyl glycine, revealed that the enzyme could 

catalyze the condensation of two aminoacetone molecules to yield 

2,5-dimethylpyrazine, as confirmed also by mass spectrometry 

analysis. We thus propose that, in S. oligofermentans, this 

compound is the actual product of aminoacetone degradation and 

not methylglyoxal as previously suggested [84]. Accordingly, in 

this microorganism SoAAO could act as a scavenger of 

aminoacetone (a prooxidant molecule) thus protecting the cell 

from a ROS-mediated oxidative damage. Its low specific activity 

could be a consequence of the low intracellular levels of 

aminoacetone (about 5.5 ng per mg of cells) [84]. 

 

The second enzyme that was investigated is the L-amino acid 

deaminase from Proteus myxofaciens (PmaLAAD). Unlike SoAAO, 

PmaLAAD is active on several L-amino acids, with a substrate 

specificity that overlaps the one of other canonical LAAOs, both 

microbial (e.g., LAAO from R. opacus) or eukaryotic (e.g., LAAO 

from C. rhodostoma). Its three-dimensional structure was solved at 

a 1.7 Å resolution, both in the free enzyme and in complex with the 

competitive inhibitor anthranilate; it was similar to the one of 

canonical flavooxidases. Nonetheless two main features 

distinguish PmaLAAD from classical LAAOs: first, this flavoenzyme 

is a type II membrane bound protein, with its catalytic site facing 

the periplasmic side of the bacterial membrane, and, second, it 
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does not use molecular oxygen as a direct electron acceptor (i.e. it 

does not produce H2O2). Instead, we demonstrated that the activity 

of PmaLAAD results into the reduction of a membrane-associated 

cytochrome b, suggesting a possible electron flow from PmaLAAD 

to this membrane protein. Indeed, b-type cytochromes usually 

interact with flavin containing oxidoreductases forming large 

membrane complexes, such as, for example, the respiratory 

complex I [133]. In the case of membrane-bound flavoprotein 

Hydrogenase 1 from E. coli, a transfer of electrons to a cytochrome 

b mediated by four iron-sulphur centers of the flavoprotein was 

demonstrated [134]. However we cannot exclude that in vivo 

transfer of electrons from the flavin of PmaLAAD to the heme of 

cytochrome b could be mediated by a non-proteic partner, such as 

ubiquinone (as proposed for P. mirabilis in [37] and [59]). In any 

case, the proposed final electron acceptor of this reaction chain is a 

cytochrome oxidase, which would, in turn, reduce molecular 

oxygen through a one-electron transfer [37]. This could explain the 

need for O2 in order for PmaLAAD to be fully active. PmaLAAD is 

an example of the ability of some flavoproteins to accept two 

electrons from the substrate and transfer them one by one to a 

suitable membrane acceptor. We propose that PmaLAAD is 

involved in catabolic utilization of free exogenous L-amino acids: it 

catalyzes their oxidative deamination, and transfers the reducing 

equivalents to the electron-transfer chain of Proteus membrane. 

 

In conclusion, our research allowed us to identify and characterize 

two novel flavoproteins which, from a biochemical point of view, 
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are quite different from one another. As an example, concerning 

the catalyzed reaction, SoAAO is able to directly reduce molecular 

oxygen by a two electron transfer with the concomitant 

production of H2O2, while PmaLAAD uses cytochrome b as electron 

acceptor. 

Enantiomeric amino acids oxidases have evolved a three points 

system to bind their substrates. The αCOOH of the amino acid 

binds to an arginine residue via a salt bridge and is further 

stabilized by a hydrogen bond with a tyrosine residue (e.g., Arg90 

and Tyr372 in CrLAAO or Arg285 and Tyr223 in DAAO from R. 

gracilis), while the αNH2 group is usually hydrogen bonded with 

the main chain carbonyl of a small residue (e.g., Gly464 in CrLAAO 

or Ser335 in RgDAAO). The substrate specificity is determined by 

the side chains of the residues, positioned above the isoalloxazine 

ring, which interact with side chain of the substrate. 

The architecture of the active site of PmaLAAD reveals a common 

evolutionary origin with canonical LAAOs. In the three-

dimensional structure of the complex with anthranilate, the 

αCOOH of the inhibitor molecule is hydrogen bonded with Arg316 

and Gln100 (as it happens in RoLAAO with Gln228). Interestingly, 

if we consider the aminoacidic sequence, during evolution these 

two residues switched their positions, but the spatial disposition of 

their side chains and their interactions with the αCOOH of the 

substrate were preserved: Gln100 occupies the position of Arg90 

of CrLAAO, while the Arg316 of PmaLAAD overlaps the tyrosine 

residue at position 372. Moreover, in analogy with other LAAOs, 

the NH2 of anthranilate is stabilized by a main chain carbonyl of 



 

149 

 

the protein. Concerning substrate specificity, the specific residues 

which interact with the side chain of the substrate acid are not 

conserved (with the exception of a tryptophan on the side of the 

pyrimidine moiety - Trp439 in PmaLAAD, Trp467 in RoLAAO, and 

Trp465 in CrLAAO), but the hydrophobicity of the specificity 

pocket is retained (Fig. 14).  

 

 

 

 

 

 

 

 

Comparison of the structure of PmaLAAD in the free form and in 

complex with anthranilate showed that Arg316 undergoes a 

drastic conformational change upon the binding of the ligand, 

causing the insertion of its side chain into the active site cavity. 

Similarly, the microbial flavoprotein RgDAAO also possesses a 

residue which shifts its conformation following ligand binding, 

namely Tyr238 [135]. We propose that this conformational change 

could favor the binding (by electrostatic interactions) and correct 

positioning (in a catalytically competent orientation) at the active 

site. In addition, the flexibility of Arg316 could provide a broad 

substrate specificity by fine-tuning the substrate binding mode 

according to the size of its side chain. These features could 

increase the efficiency of PmaLAAD to oxidize different type of 

A B C D 

Figure 14. Detail of the active site cavity of A) PmaLAAD. B) CrLAAO. C) RoLAAO. D) 
SoAAO. All the structures were resolved in complex of the substrate analog 
anthranilate (A, B, C) od O-methyl glycine (D). Protein backbone is shown as gray 
ribbons. FAD cofactor (orange), ligand (purple) and the side chains of relevant 
residues of the protein (pink) are shown as sticks 
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AAs, granting its native organism the ability to grow on L-amino 

acids as the main carbon and nitrogen sources. 

The active site entrance of different LAAOs is quite different. In 

RoLAAO the active site is a cleft of the surface of the protein, and 

its entrance is very large. Similarly, the active site of PmaLAAD is a 

quite broad cavity, although its entrance is partially delimited by 

the additional α/β subdomain. In  eukaryotic LAAOs the active site 

is further less accessible; in fact, in these proteins the active site 

entrance is a narrow funnel formed by an additional α-helical 

domain. Interestingly, superimposition of the 3D structure of 

PmaLAAD and CrLAAO, shows that this domain is placed in a 

position that almost completely closes the access to the active site 

of PmaLAAD. It is thus tempting to propose a potential 

evolutionary route from prokaryotic to eukaryotic LAAOs, in which 

the shift from a general metabolic function to a more specific role 

has been achieved by the (subsequential?) implementation of 

additional domains. 

The higher accessibility of the FAD cofactor of PmaLAAD (which is 

quite exposed to the solvent) might be explained by the necessity 

of PmaLAAD to directly interact with cytochrome b.  

A direct comparison between the structures of SoAAO and 

canonical LAAOs cannot be performed, due to their highly different 

general and active site architecture. In the case of SoAAO, the 

arginine residue which should bind the carboxyl group of the 

substrate is present in the active site region (Arg102), but it is 

shifted outwards of about 5 Å, thus preventing the binding of L-

amino acids in a catalytically competent way. Instead, Arg102 is 



 

151 

 

proposed to be involved (with Arg49) in the orientation of a 

second aminoacetone molecule to favor the condensation reaction. 

Furthermore, in SoAAO the active site cavity is very small: in fact, 

large part of the space above the isoalloxazine, which should be 

occupied by the substrate side chain, is occupied by Phe333. These 

features explain the almost absent activity of SoAAO on L-amino 

acids. It is plausible that the ancestor of SoAAO could be a 

canonical LAAO in which the aminoacetone oxidase activity 

represented a promiscuous activity. During evolution, the 

introduction of few mutations dramatically decreased the LAAO 

activity and, at the same time, slightly enhanced the reactivity on 

aminoacetone, possibly in response to the “appearance” of this 

toxic compound in the metabolome of the cells. Given the wide 

structural differences of SoAAO, we expect that this divergence 

event has happened very early in the evolution of LAAOs. 

Interestingly, the recruitment of novel domains by both SoAAO 

and PmaLAAD could represent the necessity of these proteins to 

interact with other protein partner(s), namely some putative 

aminoacetone “sensor” or a cytochrome b, respectively. Thus these 

proteins represent also an example of molecular evolution by the 

addition (e.g., through gene shuffling) of new existing domains to a 

“Rossman fold” scaffold (i.e. modular evolution). A significant 

degree of similarity between SoAAO and PmaLAAD is observed 

only in the regions involved in the FAD binding (in fact both belong 

to the GR2 subfamily of flavoproteins), while no sequence 

conservation is apparent in other parts of the protein (Fig. 15). 

Similarly, a very low degree of identity is observed with eukaryotic 
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LAAOs (e.g., from snake venom or unicellular algae). Also in this 

case, the only conserved region is represented by the FAD binding 

domain, thus providing further evidence for the hypothesis of the 

addition of existing domains to a Rossman fold scaffold [136]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Comparison of PmaLAAD and SoAAO. A) Sequence alignment between 
PmaLAAD and SoAAO. The FAD binding domain is shown in yellow. The regions with 
the highest degree of similarity are highlighted in red and the alignment is shown. 
Gaps in the alignment are shown as white interruptions. B) Ribbon representation of 
SoAAO and PmaLAAD. In red are the regions with the highest degree of similarity in 
the alignment. In pink are the overlapping regions of the two proteins with a lower 
degree of similarity. The FAD cofactor is shown in stick representation. 
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The Rossman fold motif, like other nucleotide binding motifs such 

as the P-loop [137], is present in a very high number of 

functionally unrelated proteins. Both of these motifs are involved 

in the binding of the phosphate backbone of mono and 

dinucleotides [138]. 

Thus, it can be proposed that the putative last universal common 

ancestor of all flavoproteins was a small peptide possessing a 

Rossman fold-like structure, with the ability to bind nucleotides, 

which diverged from other nucleotide binding peptides in the 

early stages of the evolution of proteins, and that originated, by 

divergent evolution, the impressive structural, functional and 

biological diversity of the members of this enzymatic family we see 

today. 
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