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H.A. Einstein used to tell the story of his father’s reaction  

when he (H.A.) told him that he was going to make  

the study of sediment transport processes his life’s work.  

His father, the great Albert Einstein, said that  

he himself had thought the same in his youth,  

but had decided that the subject was too difficult  

and that he would stick to nuclear physics. 

  



 

  



 

Abstract 
This thesis focuses on the desiltation of Alpine reservoirs in order to sustain their long-term 

utilization and restore the functioning of the bottom outlets, minimizing at the same time downstream 

environmental impacts of sediment removal operations. Different case studies of controlled sediment 

flushing operations (CSFs) are analysed adopting a multidisciplinary approach. In particular, 

sediment transport and downstream riverbed alteration, ecological impacts on benthic 

macroinvertebrates and fish, and performance indicators were investigated. These indicators include 

the cost of the operations (considering both the loss of hydropower and the expenses connected to 

mechanical excavation) and the flushing efficiency (i.e. the ratio between the volume of evacuated 

sediment and the corresponding volume of water employed). Moreover, the experimental dataset 

acquired before, during, and after a sediment removal operation was used to carry out and calibrate a 

one-dimensional sediment transport model of the monitored event. The CSFs from Cancano and 

Madesimo reservoirs (Lombardy Region, Italy) and the hydraulic dredging from Ambiesta Reservoir 

(Friuli-Venezia Giulia Region, Italy) are reported in detail. Furthermore, the main findings from the 

monitoring campaigns of ten CSFs performed in the Lake Como catchment are discussed. The 

duration of these operations and the average suspended sediment concentration (SSC) in the 

outflowing water were constrained, with the specific environmental objective of limiting the 

downstream fish mortality as predicted by a simple dose/response model. The biomonitoring 

indicated that this model allowed for a first approximation estimate of the impacts on trout. On the 

other hand, similar scenarios of sediment removal in terms of duration and average SSC can be 

identified with analogous predicted impacts on fish but non-negligible differences in flushing 

efficiency. Therefore, site-specific investigation of environmental impacts may be the key aspect for 

upgrading the trade-off between economic and environmental needs in planning further operations in 

the same area. As expected, the monitored riverbed alteration were quantitatively different as a 

function of the grain size of the flushed sediment. In particular, if the sediment removed was fine (i.e. 

silt/clay), the observed deposition was limited, and did not represent a permanent alteration of the 

riverbed substratum. On the contrary, if the sand content in the flushed sediment was relevant, the 

observed deposition was larger and showed longer persistency. In this case, other management criteria 

might be developed to take into account not only the effect of the SSC and the duration of the 

perturbation, but also the riverbed alteration and its dynamics. As ecological impacts, the CSFs had 

severe effects on both the benthic macroinvertebrates and trout populations. However, the benthic 

communities were able to recover to the pre-CSF conditions within few months up to one year after 

the end of the works. A selective pressure on juveniles of the brown trout was detected as well as a 



 

reduction in trout population up to 50%. Regarding the sediment transport modelling, satisfactory 

agreement was found between the computed pattern of deposits and the observed one along the Liro 

River after the CSF at Madesimo Reservoir, despite the adopted simplifications. In conclusion, as the 

control of sediment flushing operations minimizing downstream impacts is only marginally discussed 

in the scientific literature, the reported experiences can support the planning and the monitoring of 

more sustainable flushing operations. It is worth noting that the need to upgrade the management of 

reservoir sediments has increasing global importance, as justified by the aging of existing reservoirs 

and by the hydropower boom expected within the next two decades in developing countries. 
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1 Introduction 

1.1 Upgrading in reservoir management: the importance of sediment 

regime 

Water storage in reservoirs is one of the primary elements for coping with the increasing 

demand of regulated water (White, 2010).  Currently, flow regulation through reservoirs increases 

the naturally available supply for the world irrigation of 40%. Furthermore, ca. 17% of the world 

electricity is produced by hydropower in 2014. The construction of large dams peaked during 1960s 

and 1970s (Wisser et al., 2013) and, following a period of relative stagnation during the past 20 years, 

a boom in hydropower dam construction is expected to increase the global hydropower electricity 

capacity from 980 GW in 2011 to 1,700 GW within the next 10-20 years (Zarfl et al., 2015). This 

future development mainly refers to Southeast Asia, South America and Africa where a total of 3,700 

dams were planned (83%) or under construction (17%) (Zarfl et al., 2015). 

On the other hand, dams disrupt the longitudinal continuity of the river system. They trap all 

bedload sediment (i.e. the coarser part of the sediment load, that moves in intermittent contact with 

the bed by rolling, sliding and saltating) and all or part of the suspended load (i.e. finer sediment that 

is held in the water column by turbulence) depending upon the reservoir capacity in relation to the 

inflow (Brune, 1953). Downstream of reservoirs, the released water has the energy to move sediment 

but has little or no sediment load. This clear water is often referred to as hungry water, because it 

may transport sand and gravel downstream without replacement from upstream, resulting in 

coarsening of the surface layer (i.e. armouring), and thus in incision (Kondolf, 1997). Reservoirs may 

also decrease the magnitude of floods, which transport the majority of sediment, potentially reducing 

the effects of hungry water (Kondolf, 1997). Sediments accumulating in reservoirs are “resources out 

of place”, because these sediments are needed to maintain the morphology and ecology of the 

downstream river system, as well to replenish vital land at the coast (Kondolf, 2014a). Moreover, 

sediment accumulation has relevant negative consequences on the same reservoirs, such as (Palmieri 

et al., 2003): 

- Depletion of storage (reducing flood attenuation capability), 

- Abrasion of outlet structures and mechanical equipment, 

- Blockage of outlets causing interruption of benefits (e.g. irrigation releases or electricity 

generation), 

- Reducing the ability of the dam to pass floods safely (e.g. by blocking emergency outlet gates), 

- Increased loads on the dam. 
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Nevertheless, reservoirs have traditionally been designed based on the “life of reservoir” 

concept. Under this paradigm, the designer estimated the rate of sediment inflow and provided storage 

capacity for 50-100 years of sediment accumulation, thus postponing sedimentation problem and 

ignoring downstream impacts. Currently, the worldwide annual loss of reservoirs storage through 

sedimentation is estimated to be around 0.5% (i.e. more than 33,000 × 106 m3). Even in the Italian 

Alps, where rates of soil erosion are generally low (e.g. Cerdan et al., 2010), the problem is of growing 

importance due to the advanced age of many reservoirs and the practical impossibility of building 

new ones. As it has been pointed out since the nineties (Morris and Fan, 1997), the approach of 

designing and operating reservoirs must be significantly reviewed accounting for an effective 

ecosystem management of the downstream rivers that includes not only flow regime but also sediment 

regime (Wohl et al. 2015). Even if the identification of a suitable sediment management regime must 

be an important part of designing ecologically sustainable flows downstream of dams and water 

diversion structures (Wohl et al., 2015; Gabbud and Lane, 2016), up to now, it is not clear what that 

regime might be (Gabbud and Lane, 2016).  

A notable example of recent research efforts in this direction is provided by the Mekong River 

basin, largely undeveloped prior to 1990, and one of the world most productive and diverse 

ecosystems. The current impulse to massive hydropower development would lead to a dramatic 

contraction of the pre-dam sediment load reaching the river delta, unless existing facilities will be 

modified and new projects are designed and operated to pass sediment downstream (Kondolf et al., 

2014b; Wild and Loucks, 2014). In particular, Wild et al. (2015) recently analysed alternative dam 

siting design and operation to maintain more natural sediment regimes in the Mekong River basin, 

and identified sediment flushing as a main management strategy. Authors pointed out that devising 

“environmentally friendly” sediment management techniques, so as not to affect the many ecological 

features the management efforts attempt to preserve, represents the crucial issue of the upcoming 

advances. In fact, their modelling results suggested that the main priority to conduct sediment 

management in the Mekong is maintaining the ecosystem service related to the natural sediment 

regime rather than preserving storage capacity, at least within a 100 years perspective (see also 

Kondolf et al., 2014b).  

The development of a sound experience in the management of reservoir sediments is even more 

important if the future climate changes are taken into account. In fact, according to the scenarios 

produced by different climate models and the current changes in catchments land use and water uses, 

water resources will become more variable, with more intense floods that may significantly increase 

sediment yields (Lee and You, 2013; Yasarer and Sturm, 2016). 
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1.2 Sediment management strategies in reservoirs 

A life-cycle management approach would be adopted and the potential for converting the 

existing dams into sustainable projects would be investigated (Palmieri et al., 2003). Sediment 

management strategies are not applied in many reservoirs where they could be. Dam operators may 

be not aware of potential management approaches nor under what conditions different methods are 

appropriate (Kondolf et al., 2014a). Palmieri et al. (2003) proposed a model to evaluate the technical 

and economic feasibility of such approaches but the design and implementation as well as the 

economic analysis are generally rather complex (Coker et al., 2009), justifying the need of a more 

thorough bibliography on this subject. 

Different strategies to counteract the effects of siltation and to extend the useful life of 

reservoirs are discussed in literature (Kondolf et al., 2014a; Morris and Fan, 1997; Palmieri et al. 

2003). Recently, Morris (2015) reported a complete classification of sediment management 

techniques. Four major types of activities can be undertaken to deal with reservoir sedimentation: 

1) Approaches to minimize the amount of sediment arriving to reservoirs from upstream, 

2) Methods to route sediment through or around the reservoir to minimize sediment trapping, 

3) Methods to remove sediments accumulated in the reservoirs from upstream, 

4) Actions to combat sedimentation not involving handling sediment (i.e. “adaptive” strategies). 

The first methods address only the reservoir capacity issue but not downstream sediment starvation. 

The second and third methods maintain reservoir capacity and provide sediment to downstream 

reaches. The adaptive strategies do not manipulate sediment so they do not deal with the two 

mentioned problems (i.e. reservoir siltation and downstream sediment starvation). Some case studies 

related to these four activities are reported by Morris and Fan (1997). 

Among sediment management alternatives, sediment flushing has been successfully 

implemented in many dams globally (Kondolf et al., 2014a). It consists in removing sediment by 

opening a low-level outlet to produce hydraulic scour. In particular, free-flow flushing or empty 

flushing (i.e. employing the complete draw-down of reservoirs) can be an effective way to maintain 

the storage capacity of small to medium sized reservoir (i.e. with storage capacity less than 10 × 106 

m3- Graf, 2005) silted by fine sediment (Palmieri et al., 2003). Generally, free-flow flushing has been 

employed at reservoirs having a small hydrologic size (i.e. a capacity to inflow ratio typically below 

0.3-0.4), allowing the reservoir to be quickly refilled after flushing (Morris and Fan, 1997), and/or a 

strongly seasonal flow pattern (White, 2001). Free-flow flushing can be performed during flood 

season or non-flood season. Although both cases have been successfully employed, flushing during 

flood season is generally more effective because it provides larger discharges with more erosive 

capacity (Morris and Fan, 1997). On the other hand, in several cases (i.e. not in the case of recent 
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structures), the management of reservoir sedimentation through flood season flushing can be 

prevented by the lack of bottom outlets of a suitable size. Since flushing flows need to pass through 

the low-level outlet without appreciable backwater, the use of floods exceeding low-level gate 

capacity may be not feasible (Kondolf et al., 2014a). In these cases, mechanical equipment can be 

employed to dislodge sediments deposits into the flushing channel, thereby removing sediment faster 

than it would occur by erosion alone and from an area wider than the flushing channel itself.  

Another sediment management technique is represented by dredging consisting in the 

excavation of material from beneath the water without interfering with normal impounding operation. 

Dredging is expensive, so it is often used to remove sediment from specific areas near dam intakes 

(Kondolf et al., 2014a). In hydraulic dredging the sediment is mixed with water and transported from 

the point of extraction to the point of placement as a sediment-water slurry. Dredged material can be 

discharged into a containment area or in the river downstream of the dam. Hydraulic dredging can 

efficiently handle material up to coarse sand (Morris and Fan, 1997).  

During sediment flushing, as well as during hydraulic dredging carried out discharging 

sediment in the downstream river, the high sediment concentration in the sluiced waters could be 

detrimental for downstream freshwater ecosystems.  

1.3 Downstream environmental impacts and sediment transport 

models 

The most striking consequences of sediment flushing may be fish mortality (Baoligao et al. 

2016) and severe habitat alterations such as pool-filling (Wohl and Rathburn, 2003). In particular, 

sediment flushing can deteriorate the quality of downstream water bodies by increasing sediment load 

and fine sediment deposition in reaches downstream of the dam, contravening national and 

international standards regarding ecological quality and stream habitats (e.g. Water Framework 

Directive -WFD- and Habitats Directive in the European Union -EU). Further problems can be 

connected to the polluting potential of the sediments to be flushed (Frémion et al., 2016; Peter et al., 

2014).  

In general, despite the antidegradation efforts pursued through water resources acts (e.g. the 

WFD in EU and the Clean Water Act in the USA), guidelines specifically setting standards for 

suspended and bedded sediments are still poorly developed (Bryce et al., 2010; Owens et al., 2005). 

This is the consequence of lacking adequate knowledge about the relationships between sediment 

pressures and ecological conditions of impacted freshwater ecosystems (Collins et al., 2011). 

Furthermore, existing thresholds for sediments, both routinely used and being tested, are generally 

unsuitable for flushing management. Examples such as the Total Maximum Daily Loads (TMDLs), 

established on a catchment-specific basis in the USA (Mukundan et al., 2012), usually refer to 
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perturbations due to agricultural practices and urbanization, that last longer and produce lower 

sediment input than sediment flushing through reservoirs. Similarly, suspended sediment/turbidity 

standards for coldwater aquatic habitat appear not adequate for managing sediment release from 

reservoirs (e.g. Crosa et al., 2010; Frémion et al., 2016). Controlling the sediment concentration 

during flushing operations (i.e. Controlled Sediment Flushing - CSF) may constitute a measure to 

minimize such adverse ecological effects (e.g. Espa et al., 2015; Peteuil et al., 2013). Quantitative 

aspects, such as the magnitude, frequency and duration of sediment releases, and the time of the year 

for the operations would ideally be specified after having assessed the potential environmental 

impacts, such as the sedimentation affecting fish and benthic macroinvertebrates (e.g. Wohl and 

Rathburn, 2003; Morris, 2014). Nevertheless, the reliability of sediment flushing is challenged by the 

uncertainties associated with the modelling of the system during the perturbation (i.e. sediment 

transport and riverbed scour and fill) as well as in relation to the ecological response (i.e. potential 

impacts on the biota and its recovery). Analogous perturbations are regularly experienced by river 

biota during floods where biota is adapted in terms of magnitude and timing; however, the flushing 

operations may add further and potentially heavier stress to the river environment. The assessment of 

the flushing impact is especially difficult in mountain streams, where hydraulic conditions and 

structure of the riverbed vary rapidly over short distances (Rathburn and Wohl, 2001). Furthermore, 

the control of the sediment load while flushing a reservoir is operationally challenging (e.g. Espa et 

al. 2015; Peteuil et al. 2013). As highlighted by Rathburn et al. (2013) in the case of a channel 

sedimentation event, the combination of site-specific field data and the comparison with data 

collected elsewhere are especially useful to understand whether the recovery potential of the fluvial 

system is sufficient to adapt to the disturbance. To assess this, sediment transport models play an 

important role in designing CSF, as they support the prediction of downstream changes.  

Sediment transport below reservoirs desilted by flushing has so far received little attention, and 

only in the last years, research on reservoir desiltation has been focused on the downstream 

environmental effects of sediment flushing operations (Morris, 2014). Brandt and Swenning (1999) 

reported a detailed field investigation on the geomorphic effects of a 2-day free-flow flushing 

operation in the Cachí Reservoir in Costa Rica, where a suspended sediment load of over 850,000 t 

was measured, with suspended sediment concentration (SSC) peaks of up to 200 g/l. More recently, 

Liu et al. (2004a, b) reported on two free-flow flushing operations involving two dams in cascade: 

during the coordinated sediment flushing, very fine sediment (i.e., smaller than 0.02 mm in diameter) 

constituted the vast majority of the total load, and a SSC peak of 100 g/l was recorded. The authors 

simulated riverbed dynamics through a one-dimensional (1-D) model, achieving a good agreement 

between numerical data and field measurements of SSC and erosional/depositional patterns. Wohl 
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and Cenderelli (2000) presented the geomorphic effects of a reservoir sediment release on the 

downstream channel, where about 7000 t of silt and sand were deposited mostly in pools. In particular, 

the downstream displacement of the deposit during the following year was surveyed in the field and 

numerically investigated by 1-D sediment transport models (Rathburn and Wohl, 2001; 2003): the 

simulation of the pools’ recovery highlighted the need of detailed field observations to support the 

reliable calibration of the models.  

A wider bibliography is available concerning the application of numerical modeling to 

investigate sediment dynamics inside reservoirs. For instance, 1-D sediment transport models were 

employed to analyze sedimentation and desilting by flushing (Khosronejad, 2009; Ahn et al., 2013), 

with the main focus on predicting the efficiency of different operating rules. More refined three-

dimensional (3-D) numerical models were also employed with analogous purposes (Gallerano and 

Cannata, 2011; Haun and Olsen, 2012a). In particular, the spatial distribution of erosional and 

depositional areas during free-flow flushing operations was investigated by 3-D numerical 

simulations at both the lab scale (Haun and Olsen, 2012b; Esmaeili et al., 2014) and the full scale 

(Haun and Olsen, 2012a; Esmaeili et al., 2015). Overall, these studies pointed out that modeling 

stability and erosion of cohesive sediment banks needs to be advanced to improve the performance 

of the 3-D models. 
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2 Objectives and structure of the thesis 

The primary objectives of this thesis are the following: 

1) To study how sediment release alter or modify sediment transport dynamics in the 

downstream river causing  riverbed alteration, 

2) To evaluate the ecological impacts of sediment release on benthic macroinvertebrate and fish, 

3) To calibration a one-dimensional (1-D) sediment transport model of a monitored event to 

evaluate if the model can be used to forecast the sediment transport dynamics of future 

operations, 

4) To discuss the CSFs performed in the last decade at reservoirs located in the Lake Como 

catchment (Figure 2.2). 

The first two objectives are developed in the Chapter 3, 4 and 5, the third in the Chapter 2 and the 

last one in the Chapter 6 (Figure 2.1).  

 

Figure 2.1. Structure of the thesis including main objectives, the papers published during the PhD and the 

other references used to develop the discussion of Chapter 6. 

In the Chapter 3, 4 and 5, the following case studies are reported and discussed individually: 

- CSFs at Cancano Reservoir (Valtellina, Lombardia Region, Italy, Figure 2.2),  

- CSF at the Madesimo Reservoir (Valchiavenna, Lombardia Region, Italy, Figure 2.2),  

- Hydraulic dredging at the Ambiesta Reservoir (Valle di Verzegnis, Friuli-Venezia Giulia Region, 

Italy, Figure 2.2). 

The Chapter 6 provides an overall discussion of the CSFs including: 

- The CSFs reported in Chapter 3 and 4, 
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- The CSFs at Valgrosina and Sernio reservoirs (Figure 2.2). Results related to these operations were 

previously published in Crosa et al. (2010), Espa et al. (2013;2015) (Figure 2.1)  

 

Figure 2.2. Study area. Investigated reservoirs (R) located (a) in the Lake Como catchment and (b) in the 

Tagliamento River basin. 

Each chapter has been structured as a “paper format”. For this reason, some repetition in the 

“Materials and Methods” sections could be observed. 

The main points discussed in Chapter 6 are: 

-  Methods applied to plan and monitor the CSFs, 

- Cost and efficiency of the CSFs in comparison with other reported in literature, 

- Downstream riverbed alteration as a function of the grain size of the flushed sediment, 

- Biological impacts of the CSFs (the short and long-term impacts on benthic macroinvertebrates 

and fish). 

This chapter may provide useful indication for the planning of more eco-sustainable flushing 

operations developing a sound experience in the management of reservoir sediments. As stated 

previously, this experience has a key role: 

- In preserving the current level of hydropower production ensuring intergenerational equity, 

- In maintaining, and possibly upgrading, the ecological quality of downstream freshwater 

ecosystems, 

- In reducing the downstream riverbed starvation, 

- In dealing with the expected increase in reservoir sedimentation due to climate changes. 
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3 Controlled sediment flushing at Cancano Reservoir 

This chapter reports on the controlled sediment flushing of the Cancano Reservoir, one of the 

largest in the Italian Alps. The main aim of the operation was to restore the proper functioning of the 

bottom outlet, severely buried by a silty deposit of over 15 m of thickness. The CSFs were carried 

out during low flow season (i.e. between February and April) due to technical constraints; the flushing 

was spread out over three years and, within each year, over a relatively long period (40-53 days).  

3.1 Materials and methods 

3.1.1 Study area and monitoring sites 

The Cancano Reservoir (123 × 106 m3) is located in Valtellina (Rhaetian Alps), Northern Italy 

(Figure 3.1). The Cancano Dam was closed in 1956; main elevation data of the project are as follows: 

- - dam crest: 1,902 m above mean sea level (AMSL), 

- - power intake: 1,806 m AMSL, 

- - bottom outlet, a 1.2 m diameter steel pipe: 1,781 m AMSL. 

  

Figure 3.1.Study area. (a) Location in Italy and (b) in the Upper Adda River basin. (c) Main tributaries, water 

ducts (dashed lines), hydropower plants (HPPs e white circles), reservoirs (R.), and monitoring sites (S1- S4). 

The dam impounds the Adda River, the main tributary of Lake Como, 9 km downstream of its 

springs and immediately downstream from the older San Giacomo Reservoir (64 × 106 m3 - Figure 

3.1). The catchment of the Adda River at Cancano Dam only has 20 km2 area. Diversion of 

surrounding streams (Figure 3.1) increases the catchment area up to 370 km2. More than two thirds 

(a) 

(b) 

(c) 
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of this area (275 km2) drain into the San Giacomo Reservoir through the connections to the Spöl, 

Frodolfo, Braulio, and Forcola streams. The Viola Stream (basin area 75 km2) is directly channeled 

to the Cancano Reservoir. 

This basin develops in a mountainous area (3769 m AMSL maximum elevation, 33 km2 glacier 

covered) with minor anthropogenic activities. Natural runoff is driven by snowmelt, with maximum 

values in June-July and minimum in January-February. 

The two mentioned reservoirs can store approximately 60% of the mean annual runoff of the 

total catchment area, providing seasonal water storage in the Upper Adda River basin, mainly for 

peak hydropower. The Cancano Reservoir supplies the Premadio Hydro-Power Plant (HPP) (226 

MW installed capacity, 647 m effective head - Figure 3.1). Water discharged by the Premadio HPP 

is then conveyed to the small Valgrosina Reservoir (1.3 × 106 m3) to supply the Grosio HPP (430 

MW installed capacity, 600 m effective head), the largest in the area (Figure 3.1). From 2007 to 2012 

heavy restoration works took place 17 km downstream from the Cancano Dam, in the river area which 

was affected by a huge rock avalanche mobilizing 34 × 106 m3 of debris in July 1987. These works 

included the setting-up of an instream settling basin, hereafter referred to as the Val Pola Pond (Figure 

3.2). The settling basin was enlarged during the study period, and its surface area ranged from about 

35,000 m2 in winter 2010 to about 55,000 m2 in winter 2011 (final configuration). 

 

Figure 3.2. The instream settling basin (the Val Pola Pond) looking upstream before the 2011 flushing event. 
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The monitored Adda reach develops for approximately 28 km downstream from the Cancano 

Dam. We displayed four sampling sites (S1, S2, S3, and S4 - Figure 3.1 and Figure 3.3, and Table 

3.1) where the following measurements were carried out: 

- - S1: Suspended sediment concentration (SSC), water discharge (Q), benthos, 

- - S2: Q, benthos, trout, 

- - S3: SSC, Q, benthos, trout, 

- - S4: benthos. 

In order to depict the spatial gradient of the perturbation, the sampling stations were 

approximately equally spaced, about 7 km; two of them (S1 and S2) were positioned upstream from 

the Val Pola Pond, and the remaining two (S3 and S4) downstream of the settling basin. Ease of 

access was also a key determinant in the selection of the sampling sections. Moreover, sites were 

mainly located close to hydropower intakes (S1, S3 and S4 - see Figure 3.1), where the flow is 

routinely measured and existing instream structures facilitated the installation and the operation of 

turbidimeters (S1 and S3). 

-  

Figure 3.3. Elevation profile of the monitored Adda River stretch. The junctions with the main tributaries, the 

instream settling basin (the Val Pola Pond), and the monitoring sites (S1-S4) are also shown. 

Monitoring sites S1 S2 S3 S4 

distance from dam - km 6.7 14.2 22.9 28.2 

elevation - m 1216 1110 940 823 

average gradient 0.034 0.011 0.025 0.038 

natural basin - km2 97.5 504.6 598.6 633.5 

mean annual natural flow - m3/s 2.5 12.6 15.0 16.5 

minimum flow - m3/s 0.15-0.25 0.85-1.2 0.90-1.5 0.99-1.6 

Table 3.1.Main hydrological characteristics of the four monitoring sites (S1-S4) on the Adda River. 

The Adda stretch between the Cancano Dam and S1 is mainly enclosed in a steep canyon with 

an average gradient of 0.085, which is not safely accessible for monitoring purposes. The river slope 

is not as extreme below S1, generally ranging between 0.01 and 0.02. The main tributaries, Viola and 

Frodolfo streams, join to the Adda River between S1 and S2 (Figure 3.1 and Figure 3.3). The 

monitored river reach displays substantial hydro-morphological alteration. The three mentioned 
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intakes interrupt its continuity, and the channel is mainly single-thread, incised, and frequently 

embanked. The mesohabitat is mostly composed of riffles approximately 15 m wide at low flow, with 

pools in correspondence with the several grade control structures. The bankfull width generally 

ranges between 20 and 50 m. The substrate is dominated by pebbles (2 < d < 64 mm) and cobbles (64 

< d < 256 mm), with a non-negligible presence of boulders up to 500 mm in diameter. 

Water flow is highly regulated as a consequence of massive hydropower development. The 

environmental flow prescribed by current law is a seasonally modulated Minimum Flow (MF). At 

least 6% of the natural Mean Annual Flow (MAF) is released downstream of diversions during the 

low-flow season, i.e. between November and April; during the remaining six months, MF is increased 

to 10% of the natural MAF (Table 3.1). In general, water discharge remains close to MF during the 

colder months. On the contrary, from late spring to autumn, because of snowmelt and/or rainfall, the 

streamflow frequently exceeds the MF in the analysed river reach: Quadroni et al. (2014) measured 

on average a doubled water discharge compared to MF at S2, S3 and S4. 

3.1.2 Sediment flushing operations 

The main purpose of the flushing operation was to remove the sediment deposit (approximately 

15 m thick) that buried the bottom outlet of the Cancano Dam and begun to threaten the functioning 

of the power intake. The sediment deposit was fine-grained (about 80% silt and 20% clay), according 

to the removal of coarser fractions by de-sanding at higher elevation intakes and by settling in the 

San Giacomo Reservoir. 

The flushing operation can be schematically divided into two main stages: in the first one, it 

was necessary to remove the deposit burying the bottom outlet; in the second one, it was possible to 

evacuate sediment through the bottom outlet. During the first stage, it was necessary to keep the area 

dry close to the upstream face of the dam in order to operate earth-moving equipment and mudpumps 

(Figure 3.4). The removed sediment was therefore moved to the power intake and by-passed 

downstream from the dam (Figure 3.5). The only possible season to perform such work was between 

winter and early spring, when seasonal storage is at a minimum and temperature is low enough to 

prevent abundant snowmelt. During the second stage, when sediment was flushed through the open 

bottom outlet, it was necessary as well to work in the same low-flow season due to the low capacity 

of the bottom outlet (Figure 3.5). Due to the limited water availability for transport and appropriate 

dilution of the evacuated sediment, the operation was spread out over three consecutive years (2010, 

2011 and 2012) and, for each year, over a fairly long time period (40-50 days). Moreover, the works 

were difficult to carry out due to the low temperatures: the daily minimum temperature at the Cancano 

Dam during the flushing operations was on average -5°C.  
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Figure 3.4. The Cancano Reservoir during the 2010 flushing event: earth-moving equipment working close to 

the upstream face of the dam can be seen on the left side of the photograph, the power intake on the right side. 

A limit on the SSC (average value per consecutive working period) was fixed using the simple 

predictive model by Newcombe and Jensen (1996). This model allows to relate the dose, SSC and 

duration of exposure, to the response, i.e. the effects on fish. These effects are provided through the 

severity of ill effect - SEV - an index ranging from 0 (no effects) to 14 (100% fish mortality). In 

particular, we adopted the regression coefficients indicated by Newcombe and Jensen (1996) for 

juvenile and adult Salmonids and sediment size in the range 0.5-250 mm (Group I). The limit was 

established downstream of the Val Pola Pond, where the SSC control seemed reasonably reliable. 

The SSC threshold of 3 g/l was fixed accounting for 40-50 days duration and accepting a SEV of 11, 

corresponding to a fish mortality of 20-40%. The continuous SSC measurements at S3 were used to 

verify the maintenance of this threshold. SSC monitoring was continuously carried out also at S1, 

mainly to control desilting works by mechanical equipment and to regulate upstream water diversion 

at intakes on tributary streams.  

As an extreme measure to avoid intolerable SSC values (approximately above 50 g/l) in the 

monitored river reach, it was possible to divert the sluiced waters off-stream, conveying them to the 

Valgrosina Reservoir through the intake slightly downstream of S1. This alternative was particularly 

suitable to tackle the turning points of the flushing operation when the SSC was out of control; these 

events are referred to later on as critical phases. 
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Figure 3.5. (a) The bottom outlet of Cancano Reservoir and (b) the River Adda just downstream of the dam 

during the 2012 flushing operation. 

3.1.3 Sediment monitoring 

Optical turbidimeters (Lange Controller SC100®) were installed to continuously gauge SSC at 

S1 and S3. The SSC measurements were carried out only during the flushing operations. Samples for 

a posteriori calibration of the raw turbidimeter output were randomly collected during daytime, as 

close as possible to the probe position, with one liter buckets (n = 294 at S1 and n = 223 at S3). The 

SSC of these samples was measured in the lab using the Standard Method 2540 D-F (APHA et al., 

2005). The raw SSC data (SSCTUR) were correlated to the corresponding lab data (SSCLAB) and linear 

functions, one per year per station, were obtained through standard least-squares fitting (Figure 3.6). 

The raw SSC was finally corrected adopting the mentioned linear functions. The agreement between 

the two measures was generally good and determination coefficients (R2) ranged between 0.81 and 

0.93. The lab-analyzed samples were also used to estimate the time history of SSC in the infrequent 

occasions when the turbidimeters were out of scale (50 g/l at S1 and 25 g/l at S3).  

 

(a) (b) 
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Figure 3.6. Calibration curve for the turbidimeter installed at S1 and S3 using the samples collected during 

the three sediment flushing operations: raw SSC data acquired in the field (SSCTUR) were correlated to the 

corresponding laboratory samples (SSCLAB) using linear functions. 

Sediment mass flowed through S1 and S3 was computed by time integration of the product 

between SSC and Q. At S2, where no SSC measurements were carried out, SSC averaged on each 

flushing event was estimated by mass conservation between S1 and S2, neglecting deposition 

between the two measurement stations. At S4, SSC was considered equal to S3, accounting for 

negligible deposition between the two reaches and negligible difference in water discharge (Table 

3.1). 

The monitored Adda reach was surveyed by visual inspection to roughly check the pattern of 

sediment deposition after each flushing event; in 2011, the riverbed alteration was also measured in 

selected transects. Pre-flushing sampling was performed one month before the 2011 operation; post-

flushing sampling was carried out at one and nine months after the same event. The whole campaign 

was performed in low-flow conditions, i.e. with discharge close to MF. The investigation was 
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conducted between S1 and the Val Pola Pond, i.e. in the river reach where maximum deposition was 

expected. In particular, the four following transects were monitored: 

- - S1A (0.5 km downstream of S1, average slope 0.023, wetted width 14.8 m), 

- - S1B (2.5 km downstream of S1, average slope 0.008, wetted width 7.5 m), 

- - S2A (close to S2, average slope 0.007, wetted width 12.7 m), 

- - S2B (0.6 km downstream of S2, average slope 0.007, wetted width 15.3 m). 

Each transect was sampled in three points, two about one meter from the river edge and one in 

its centre. The content of fine sediment in the uppermost layer of the riverbed was detected through 

a resuspension technique according to Rex and Carmichael (2002). A McNeil corer with a 135 mm 

internal diameter tube was used to collect one liter samples of turbid water. All samples were dry-

sieved, analysed for the content in silt/clay and then extrapolated to the riverbed after measurement 

of the water depth, and therefore of the water volume, in the corer tube. An essentially analogous 

technique was adopted to assess the in-channel fine sediment storage in the Isábena River catchment 

(NE Iberian Peninsula), which experiences naturally large fine sediment loads as a result of the 

presence of highly erodible badland formations (Buendia et al., 2013a, 2014). 

3.1.4 Benthic macroinvertebrate monitoring 

The invertebrate survey was carried out seasonally, from winter 2009 to winter 2013, at the four 

monitoring sites. The samples were collected with a Surber sampler of 0.1 m2 area and 500 mm mesh, 

following the quantitative multi-habitat protocol developed for the computation of the multi-metric 

index STAR_ICMi. STAR_ICMi is the current Italian normative index, recently developed for WFD 

inter-calibration purposes. It is ranked into five quality classes (bad, poor, moderate, good, and high), 

set at 0.24, 0.48, 0.71, and 0.95 respectively (see Espa et al., 2015 for additional detail). According 

to current Italian law, the quality class assigned to a river reach depends on the annual mean of the 

STAR_ICMi seasonal values. Total density and two traditional metrics employed to calculate STAR-

ICMi (total number of families, and Shannon-Wiener index) were analysed as well. 

Temporal and spatial differences in the values of the benthos metrics (i.e. intra-annual 

differences at each monitoring site and inter-site differences within the same year) were detected 

through the Kruskal-Wallis test (XLSTAT 2011 software). Invertebrate data collected in 2009, when 

no flushing works were carried out, were used as reference conditions. 

3.1.5 Trout monitoring 

Brown trout sampling was carried out in spring and autumn, from 2009 to 2012, at S2 and S3. 

A removal method with two passes was performed adopting a backpack electrofishing device 

(ELT60-IIGI 1.3 kW DC, 400/600 V). Trout were counted and measured for total length. Density 
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was calculated taking into account the sampled area (0.14 ha at S2 and 0.12 ha at S3). As well as for 

macroinvertebrate, 2009 data were used as reference conditions. 

At both monitoring sites, fishing is allowed from March to October with constraints on the 

minimum size (24 cm at S2 and 30 cm at S3) and maximum number of caught fish (5 per day). Adults 

are introduced to be fished from March to October; juveniles (Mediterranean stock 50-120 mm) are 

introduced for stocking, mainly in summer. 

3.2 Results 

3.2.1 Sediment flushing operations and sediment monitoring 

The flushing operations were carried out for 46 days in 2010 (from March 9 to April 24), for 

53 days in 2011 (from February 18 to April 11), and for 40 days in 2012 (from February 13 to March 

23). 

As mentioned in Section 3.1.2, during the first stage of the flushing, the bottom outlet remained 

closed, since it was obstructed by a thick silt deposit. This stage lasted throughout the first flushing 

year (2010) and most of the second one (2011). Earth-moving equipment and mud-pumps were 

employed during daytime to dislodge the silt deposit and to bypass it downstream of the dam. This 

activity allowed to properly control SSC in the outflow. The SSC pattern detected downstream 

showed regular daily pulses in response to the dislodging works, while Q varied only slightly. At S1, 

SSC peaked 10-30 g/l during daytime, dropping to 1-2 g/l during night-time. Q usually ranged from 

less than 1-2 m3/s, i.e. 5 to 10 times the MF. At the downstream station S3, Q usually ranged from 3 

to 5 m3/s (about 3-5 times the MF), and SSC was usually over one order of magnitude lower than at 

S1. An example is provided in Figure 3.7. 

46 days after the beginning of the 2011 operation, the silt deposit was cleared sufficiently to 

allow the opening of the bottom outlet. This gave rise to the second stage of the work, i.e. free-flow 

sediment flushing through the bottom outlet. After the opening of the bottom outlet, for the entire last 

week of the 2011 flushing, the SSC control proved to be much more difficult than before. In fact, a 

noticeable increase in the temperature (daily maximum up to 15°C at the Cancano Dam), determined 

the significant increase of the runoff in the Cancano Reservoir. Combined to the recently opening of 

the bottom outlet, this flow increase determined the significant raise of both SSC of the sluiced water 

and mass of evacuated sediment (Figure 3.7). SSC at S1 averaged 20.1 g/l during the last six days of 

the 2011 flushing. The same average measured during the previous 46 days was 6.3 g/l. Similarly, 

almost 65% of the sediment mass flowed through S1 during the 2011 flushing pertains to the last six 

days, corresponding to an increase of the daily rates from about 550 to 7,600 tons evacuated sediment 

per day. The SSC at S1 averaged on the whole 2011 working period, approximately 8 g/l, was affected 
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by this increase, and was the largest if compared to 2010 and 2012 operations (Table 2). During the 

first day after the opening of the bottom outlet, it was necessary to divert the sluiced waters out of the 

Adda River. In this occasion, about 5,000-6,000 tons of sediment were conveyed into the Valgrosina 

Reservoir, thus contributing to a reduction of the SSC peak from approximately 70 g/l at S1 to 6 g/l 

at S3 (Figure 3.7 and Figure 3.8, Table 3.2). 

 

Figure 3.7. Examples of time histories of hourly averaged SSC and streamflow at S1 and S3. (a) (b)During the 

ordinary flushing control, from April 1 to 7, 2010. (c) (d) During the critical phase following the opening of 

the bottom outlet and the simultaneous temperature increase in the study area, from April 3 to 9, 2011. 

Also at the start of the 2012 flushing it was difficult to control the SSC downstream of the 

Cancano Dam. In particular, during the final emptying of the reservoir through its bottom outlet, the 

silt content of the evacuated water was so high that the absolute maximum SSC was measured at both 

S1 and S3 (Figure 3.8 and Table 3.2). This critical phase had a short duration of less than one day, 

and off-stream diversion was deemed unnecessary. After that episode, the SSC was satisfactorily 

controlled for the entire 2012 operation. Both SSC and Q measured at S1 and S3 were comparable to 

those recorded in 2010 and 2011 before the bottom outlet was opened. Nevertheless, at S3, SSC 

averaged 0.8 g/l for all of the 2012 flushing, a value almost three times larger than the corresponding 

ones of 2010 and 2011 (Table 3.2), but still considerably lower than the threshold of 3 g/l fixed before 

the works. 

 

(a) (b) 

(c) (d) 
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Figure 3.8. Time histories of daily averaged SSC (continuous lines) and maximum hourly SSC (dashed lines) 

at S1 (gray) and S3 (black) for the three documented flushing events in 2010, 2011 and 2012. 

 

Year duration Sampling site SSCAVE SSCMAX QAVE MAVE MTOT MSED, S1-S3 
 day  g/l g/l m3/s t/day t % 

2010 46 
S1 3.5 30.2 1.0 320 14620 

69 S2 1.2  2.8   

S3 0.3 3.3 3.4 100 4,570 

2011 53 
S1 7.9 68.9 1.3 1360 70920 

79 (*) S2 3.1  3.4   

S3 0.3 6.1 4.8 250 13940 

2012 40 
S1 5.9 99.2 0.9 650 26060 

54 S2 2.0  2.8   

S3 0.8 38.2 3.4 300 12090 
(*) Calculated subtracting the amount of sediment diverted off-stream (ca. 5000-6000 t). 

Table 3.2. SSC and streamflow values for the three documented flushing operations. At S1 and S3: average 

SSC (SSCAVE), maximum SSC (SSCMAX), average Q (QAVE), average daily flowed mass (MAVE), total flowed 

mass (MTOT), and percentage of mass deposited in the river reach between S1 and S3 (MSED, S1-S3). At S2, where 

only Q measurement was carried out, SSCAVE was estimated by multiplying SSCAVE at S1 for the ratio between 

QAVE at S1 and S2.  
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3.2.2 Estimates of sediment deposition 

A total amount of 110,000 tons of fine-grained sediment flowed through S1 during the flushing 

of the Cancano Reservoir. About 25% of this sediment mass was detected at S3 in the same period, 

thus giving average deposition between S1 and S3 of about 75%, at least in the course of the flushing. 

Comparing the three consecutive years of flushing, a certain variability of the computed percentage 

deposition can be noticed (Table 3.2). 

By far, sediment removal was larger in 2011, when 71,000 tons of sediment flowed through S1 

and about 14,000 tons were detected at S3 (Table 3.2). Indeed, riverbed alteration due to flushing was 

evaluated in this occasion. 

Our visual surveys downstream of the Val Pola Pond led us to exclude significant sediment 

deposition in that river reach. Upstream of the Val Pola Pond, occasional silt deposits of 10-20 cm 

maximum thickness were found. They were typically located outside of the riverbed wetted by the 

MF, presumably in areas characterized by slow flow during the flushing. Furthermore, in some low 

gradient stretches, the riverbed wetted by the MF was covered by a few millimeters thick silt veneer. 

Quantitative riverbed sampling in the reach between S1 and the Val Pola Pond (Table 3.3) 

highlights a moderate increase of the silt/clay fraction, ranging from 0.5 to 1 kg/m2 as transect 

average. Nine months after the 2011 flushing, when the second post-event sampling took place, the 

content of fine-grained sediment was comparable to the pre-flushing one in three of the four 

investigated transects. 
 

section silt/clay content - kg/m2 average difference - kg/m2 
Pre Post1 Post2 Post1-Pre Post2-Pre 

S1A 
0.28 2.00 0.05 

0.81 -0.44 1.00 0.95 0.13 
0.43 1.18 0.20 

S1B 
0.19 1.22 0.09 

1.08 -0.18 0.26 1.35 0.04 
0.24 1.34 0.02 

S2A (*) 
- - - 

0.90 -0.02 0.60 2.95 0.08 
0.88 0.32 1.35 

S2B 
1.30 1.31 2.63 

0.45 0.51 0.28 0.46 0.88 
0.82 1.97 0.41 

mean 0.57 1.37 0.54 0.83 -0.03 
(*) One of the two points close to the river edge was not sampled due to the high water-level. 

Table 3.3. Silt/clay content in the uppermost layer of the riverbed of the four monitored river sections. Pre, 

Post1 and Post2 indicate the sampling respectively carried out one month before, one month after, and nine 

months after the 2011 flushing event. For each transect the sampling point located in the centre of the river is 

reported in the central row. 
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3.2.3 Benthic macroinvertebrate monitoring 

Results of macroinvertebrate survey are provided in Figure 3.9 and Table 3.4. 

In 2009, i.e. during the reference year, STAR_ICMi was on average good at all the monitoring 

sites. Furthermore, a general trend to decrease STAR_ICMi quality as well as density, richness (N 

families), and diversity (Shannon-Wiener), was noticed in summer/autumn samples if compared to 

the winter/spring ones. Inter-site differences were not statistically significant for all the considered 

metrics (Kruskal-Wallis, p > 0.05), and the macroinvertebrate communities were mainly composed 

of the same insect taxa: the Plecoptera Leuctra, the Ephemeroptera Baetis, the Trichoptera 

Limnephilidae and Rhyacophilidae, and the Diptera Chironomidae, Limoniidae and Simuliidae. 

 

Table 3.4. Seasonal and annual average STAR_ICMi from winter 2009 to winter 2013 at monitoring reaches 

S1-S4. Quality classes (poor, moderate, good, and high) are bounded at 0.24, 0.48, 0.71, and 0.95, and are 

respectively evidenced in orange, yellow, green, and blue. Data are not available in 2009 and in autumn 2010 

at S1, in winter 2012 at S2. STAR_ICMi annual average is not available in 2009 at S1, and was calculated 

using only three values in 2010 at S1 and in 2012 at S2. 

During the three flushing years, STAR_ICMi quality was generally lower, dropping to 

averagely moderate at S1 in 2011, at S2 in 2010 and 2011, at S3 in 2012. Comparing the post-flushing 

sampling (spring) to the corresponding pre-flushing one done in winter, the more noticeable drops in 

quality were detected at S2 in 2010, at S1 and S2 in 2011. Furthermore, remarkable density decrease, 

up to 5-10 times, was observed after flushing at all the monitoring sites. Finally, the tendency of 

STAR_ICMi to decrease during summer/autumn was also ascertained during the flushing years, in a 

similar way to what was reported in 2009.  



22 

 

Figure 3.9. Total density, total number of families, Shannon-Wiener and STAR_ICMi index from 2009 

(reference year) to winter 2013 at S1-S4. The dashed arrows indicate the flushing events. Data are not 

available in 2009 and in autumn 2010 at S1, and in winter 2012 at S2. 

The lowest STAR_ICMi score (0.46 - poor status), density (62 ind/m2), and richness (6 

families) were recorded at S1 in summer 2011, after the heaviest flushing took place. In the same 

year, spatial differences in both density and richness were statistically significant (Kruskal-Wallis, p 

< 0.05). Accordingly, the quality at the sites upstream and downstream of the Val Pola Pond was 

markedly different, being the status of S1 and S2 on average moderate while the one of S3 and S4 

good.  
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Nevertheless, for all the considered metrics and for each monitoring site, inter-annual 

differences were not significant (Kruskal-Wallis, p > 0.05), and no taxa loss or addition was detected 

at all the sampling sites during the whole study period. 

3.2.4 Trout monitoring 

Available data concerning trout population are displayed in Figure 3.10 and Table 3.5. 

Typically, a bimodal distribution of the length structure was detected, allowing differentiating 

juveniles (0+ and 1+ fish) from adults according to the threshold of about 170 mm. 

Overall density was mostly in the range 400-600 ind/ha at both the investigated reaches for the 

entire study period. In certain samplings, the number of juveniles and their percentage appear low, 

particularly at S3 in spring 2012 (percentage juveniles below 20%). 

In 2010, 2011, and 2012, spring samples can be considered post-flushing samples, as they were 

collected within two months after the end of the works. At S2, both the overall density (400-500 

ind/ha) and the length distribution (60% below 170 mm, 40% above 170 mm) remained 

approximately constant and comparable to the spring values of the reference year. Similarly, at S3, 

the total density was approximately stable in spring (around 500 ind/ha with the only exception of 

2010 spring), but a significant change of length distribution was observed, with a decrease of juveniles 

from 75% in 2009 to less than 20% in 2012. 

Comparing the post-flushing sample (spring 2010, 2011, 2012) to the previous one 

(respectively autumn 2009, 2010, 2011), a noticeable decrease of the overall density after each 

flushing at both monitoring reaches can be ascertained. This density drop range from about 15% at 

S3 in 2012 to 50% at S2 in 2010. After the 2010 flushing, the density drop estimated as previously 

mentioned is nearly equal at S2 and S3, both in terms of total density (about 50%) and juveniles 

density (about 60%). After the 2011 flushing, a total density drop of 35% was measured at S2, but it 

was due to a noticeable decrease of adults (about 60%), with the juveniles approximately stable. At 

S3, after the same flushing event, the density drop was even larger (approximately 50%), and also in 

this case, adult fish (60% decrease) resulted more affected than juvenile group (25% drop). 

Conversely, at S3 after the 2012 flushing, an overall density drop of about 15% can be evaluated, 

with juveniles (70% drop) markedly more affected than adults (30% increase). 
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Figure 3.10. Length structure of the brown trout populations at S2 and S3 from spring 2009 to autumn 2012. 

Data are not available in 2012 at S2. 

 

Year Season S2    S3   

  Density 

ind/ha 

≤170 mm 

% 

>170 mm 

% 

 Density 

ind/ha 

≤170 mm 

% 

>170 mm 

% 2009 Spring 399 60 40  571 74 26 

 Autumn 1045 68 32  612 68 32 

2010 Spring 515 56 44  335 44 56 

 Autumn 581 41 59  955 38 62 

2011 Spring 378 65 35  506 53 47 

 Autumn 407 38 63  563 45 55 

2012 Spring - - -  490 17 83 

 Autumn - - -  792 46 54 

Table 3.5. Brown trout data at S2 and S3 from 2009 (reference year) to 2012. Percentage of individuals above 

and below 170 mm in length is provided along with total density. Data are not available in 2012 at S2. 
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3.3 Discussion 

3.3.1 Sediment monitoring and management consideration 

This chapter focuses on the sediment flushing works aimed at restoring the functioning of the 

bottom outlet of the 120 × 106 m3 Cancano Reservoir, one of the largest in the Italian Alps. The 

flushing operations were carried out in the cold season, but no reasonable alternative seemed possible, 

due to the peculiarities of the project, particularly the large storage and the small size of the bottom 

outlet. In several cases, the management of reservoir sedimentation through flushing can be prevented 

by the lack of bottom outlets of a suitable size. The past engineering practice, in fact, considered the 

reservoirs as infrastructures with a limited economic life, usually determined by sedimentation, and 

no sediment management strategies were commonly taken into account. For example, the Sanmenxia 

Dam on the Yellow River, China, had to be deeply retrofit to improve the sediment-releasing capacity 

of the bottom outlet structures (Wang et al., 2005). 

On the whole, despite the several difficulties met during the desilting works, a satisfactory 

control of the SSC was achieved: SSC at S3 was maintained significantly below the threshold of 3 

g/l, both in terms of average value per flushing event, and, nearly always, in terms of daily average 

(Figure 3.8). 

In particular, SSC control was good for the large majority of the flushing period (approximately 

140 days on a total of 150 days). On these days, the typical time pattern of SSC was the periodic 

alternation between high values due to daytime desilting works and low values due to night-time 

interruption of the works. Analogous pulses are reported in Espa et al. (2013). 

The same degree of SSC control was not possible at the end of the 2011 flushing and at the 

beginning of the 2012 one. We measured the highest SSCs and the largest mass fluxes through both 

S1 and S3 during these critical phases. The management, the possible prediction, and the planning of 

appropriate strategies to deal with such critical phases may represent key aspects of sediment flushing 

projects, particularly if environmental constrains have to be accounted for. For example, a sharp 

increase of SSC at the start of free-flow flushing operations, i.e. when bottom outlet structures are 

opened, can be generally expected (Crosa et al., 2010; Morris and Fan, 1997). Diverting the evacuated 

water off-stream when SSC cannot be adequately controlled (as it was done in one of the last days of 

the 2011 flushing) is clearly an extreme action that, if feasible, can be of help, but shifts the problem 

elsewhere (in the Valgrosina Reservoir in our example). 

SSC reduction between S1 and S3 - and consequently the approach of the SSC target at S3 - 

was achieved by managing both water flow in the regulated tributaries and sediment deposition. In 

our case study, sediment deposition along the investigated reach would seem marginal. Even if this 
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result is mostly supported by qualitative evidence (i.e. visual inspection) rather than by detailed 

riverbed sampling, which was performed only on a few transects, it appears congruent with the small 

size of the flushed sediment and with the relatively high channel slope. Conversely, the Val Pola Pond 

played a key role in reducing downstream SSC. The trapping efficiency of the Val Pola Pond can be 

estimated in 70-80% through the classical USBR formula (Vanoni, 1975) adopting the following 

input data: 

- - 35,000-55,000 m2 surface area, 

- - 3-15 m3/s inflow and 

- - 20% clay (d = 2 mm), 80% silt (d = 31 mm) sediment size distribution. 

The sediment mass flowed through S1 and S3 during each investigated flushing allowed to 

compute deposition ratios ranging from 55 to 80% (Table 3.2), which roughly match the previous 

trapping efficiencies. The smaller measured deposition ratio concerns the 2012 event, when no off-

stream diversion took place at very high SSC and, presumably, the pond was partly filled due to the 

previous year flushing. Sediment trapped in an instream basin is generally expected to be scoured and 

transported downstream during subsequent flood events. Alternatively, Morris and Fan (1997) 

proposed to trap sediment in an off-stream settling basin: in this case, the sediment has to be removed 

for restoring the basin capacity, thus increasing the cost of the operation. 

On average, the cost of the sediment removal at Cancano Reservoir may be estimated in about 

45 €/m3 (50 US$/m3), taking into account both the loss of hydropower at Premadio and Grosio HPPs 

and the expenses connected to mechanical excavation and maintenance of the working site. The loss 

of hydropower accounted for about 85% of the sediment removal cost. The cost per unit evacuated 

volume estimated for the Cancano Reservoir flushing is on top of the range reported for controlled 

free-flow flushing works in the Adda River basin (5-50 €/m3, Espa et al., 2013) and it is also 

comparable to the maximum value (50 US$/m3) for dry excavation by conventional earth-moving 

equipment in Los Angeles County reported by Morris and Fan (1997). In contrast, sediment flushing 

is generally considered a rather cheap option for desilting reservoirs (Morris and Fan, 1997). For 

instance, the unit cost sustained in 2012 for the controlled sediment flushing of the 53 × 106 m3 

Genissiat Reservoir (Rhone River, France - Kondolf et al., 2014a; Peteuil et al., 2013) was about 4 € 

per ton, even though a huge staff was engaged to manage and survey the operation, and only a half 

of the estimated cost of the operation was due to the hydropower loss. Nevertheless, sediment flushing 

at Cancano reservoir was expensive and technically difficult. However, it is likely that alternative 

strategies comprising sediment removal (either by dry excavation or dredging), transport (either by 

track or piping), and proper disposal would have been far more costly: in fact, great difficulties in 

transport and in finding suitable disposal sites are typically expected in high-mountain areas. Anyway, 
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when approaching reservoirs desiltation in a framework of improvement of the overall sustainability, 

different sediment management alternatives would have to be quantitatively compared: MCDA 

(Multi-Criteria Decision Analysis) and analogous tools, satisfactorily experimented in the dredging 

industry (Manap and Voulvoulis, 2014, 2015), could provide the necessary basic framework. 

3.3.2 Effects on benthos 

Detectable impact (i.e. drift increase) of the sediment load on macroinvertebrate communities 

may occur at SSC in the order of few hundred mg/l (García Molinos and Donohue, 2011) and 

sediment deposits of few kg/m2 (Larsen and Ormerod, 2010; Larsen et al., 2011). Fine sediment 

infiltration in coarser riverbed substrates revealed key influence on invertebrate also in undisturbed 

catchments, being assemblages detected in sediment-rich locations relatively poor in density and 

diversity (Buendia et al., 2013a, 2014). 

Impairment of benthos was therefore expected after the flushing operations, especially in the 

river reach upstream of the instream settling basin. Furthermore, as will be recalled in the following 

with more detail, noticeable effects of flushing fine sediments were measured on benthic assemblages 

in the same area (Espa et al., 2013). Like most of the benthic communities found in regulated Alpine 

watercourses (Espa et al., 2013, 2015; Monaghan et al., 2005; Yoshimura et al., 2006), the particular 

ones collected in the four monitoring reaches were composed of few resilient taxa, typically subjected 

to seasonal contraction during the high-flow period. 

Sampled data were expected to show: 

- - a spatial gradient of the impact, proportionally to SSC that was larger at the upstream reaches, 

- - a difference, at least on the short-term impact, between the three operations, since the 2011 

CSF was heavier upstream of the Val Pola Pond, and the 2012 flushing was heavier 

downstream of the Val Pola Pond, 

- - a possible cumulative effect, i.e. a progressive decline of the benthic community in the course 

of the three years of flushing. 

These basic hypotheses appear partly confirmed, even if the available data as a whole do not 

seem consistent with a progressive depletion of the benthic assemblage. 

At S1, clear evidence of benthic community impairment due to the flushing operations were 

recorded. The contraction of the macroinvertebrate community in terms of density, richness and 

quality was detected after each flushing event. The benthic contraction connected to the seasonal flow 

increase seems to superimpose on the flushing disturbance: in all the three years of sediment flushing, 

STAR_ICMi was lower in summer than in spring, i.e. immediately after flushing. Furthermore, as 

expected, the most severe impact was detected after the 2011 event, characterized by the highest 

average SSC. Nevertheless, the macroinvertebrate community showed a high resilience and recovered 
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to the pre-CSF condition within the year, reaching good status in all the winter samples. Comparable 

density and richness reductions and similar recovery patterns were recorded after four flushing events 

at the previously mentioned Valgrosina Reservoir (Espa et al., 2013); in that case the duration of each 

flushing was significantly shorter (two weeks), and the average SSC of ca. 3-5 g/l was smaller if 

compared to the one at S1. A similar response to a larger dose might suggest an asymptotic behavior, 

i.e. an analogous response of the benthic assemblage once certain thresholds of SSC and/or duration 

of the operation are exceeded. The comparable recovery can be justified in both cases by moderate 

sediment deposition and good water quality. Conversely, a longer recovery time was observed in the 

Scalcoggia River severely aggraded after a sediment flushing operation, where sand deposition was 

in the order of hundreds of kg/m2 (see Section 4.3.1.4). 

In the downstream monitoring reaches, after each flushing event, a non-taxon-specific and 

relatively short-term density reduction occurred as well, but the response of the macroinvertebrates 

to the flushing disturbance is not as clear as at S1, and the superposition of further pressures cannot 

be ruled out. For example, at S2 a quality drop of one class was measured after all the three flushing, 

but no evident difference between 2010 and 2011 was noticed. 

Downstream of the Val Pola Pond, at sampling reaches S3 and S4, the macroinvertebrate data 

are quite similar, according to nearly equal SSC perturbation. The status of the benthic community 

maintained averagely good after the 2010 and the 2011 flushing events, characterized by the same 

averaged SSC. A more pronounced sensitivity of the benthic assemblage to the flushing perturbation 

was noticed after the 2012 event, when average SSC measured at S3 was approximately triple than 

in the previous years, even if smaller in comparison to S1 and S2. On the other hand, starting from 

summer 2012, STAR_ICMi dropped to moderate at both S3 and S4, up to winter 2013. A possible 

explanation could be found in the release of sediment stored in the Val Pola Pond after flow increase. 

However, our SSC measurements, concerning only the periods when flushing was carried out, prevent 

from supporting such a hypothesis. 

3.3.3 Effects on trout 

A recent meta-analysis on the effects of sediments on a variety of biological endpoints for lotic 

fish (Chapman et al., 2014) supports the general consensus that sediments in both suspended and 

deposited forms have negative consequences on fish feeding behaviour and embryo development and 

survival; whereas, fish abundance was not found to be significantly associated with sedimentation. 

Michel et al. (2013) suggest to consider possible adaptive responses of the Salmonid fish to fine 

sediment pulses (maximum SSC tested of 5 g/l and maximum exposure of 24 days). 

The trout response to the flushing disturbance could be analysed under the same hypotheses 

formulated for the benthos: variability of the impact according to the spatial gradient and the 
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magnitude of the flushing disturbance, possible cumulative effects. A heavier impact on juveniles 

could also be expected, along with an impairment of natural reproduction since in the present case 

study the flushing season overlaps with the period of more marked sensitivity of trout to enhanced 

fine sediment loads (Kemp et al., 2011), i.e. the incubation stage (over winter in the study area). 

In particular, according to the Newcombe and Jensen (1996) (N&J) model, SEVs of about 11 

and 10 can be calculated for each flushing at S2 and S3, thus giving trout mortality in the ranges 20-

40% and 0-20% respectively. Substantial agreement with the N&J model was found in a reach 

unaltered by stocking/fishing by Espa et al. (2013): the authors measured trout density reduction of 

2-52% after flushing events with 10-11 SEV, recording heavier impact on juveniles. 

On one hand, fish data would seem to support a relatively moderate impact of the flushing on 

the trout population. For example, trout populations sampled at S2 and S3 did not change significantly 

in overall density for the whole study period. The measured values, mostly in the range 400-600 

ind/ha, are considered poor/moderate for Alpine watercourses below 1500 m elevation (OFEFP, 

2004), and are comparable to those detected in other regulated Alpine rivers (Ortlepp and Mürle, 

2003; Unfer et al., 2011). 

Moreover, at both sampling reaches, overall density measured in spring remained 

approximately constant and similar to the reference year value. It is worth noting that the spring 

sample is reasonably less influenced by summer stocking than the autumn one and that, in the three 

years when flushing was carried out, the spring sampling may be considered as a post-event one. 

On the other hand, a noticeable decrease of the overall density after each flushing at both 

monitoring sites can be deduced after comparison of the pre-CSF sample (autumn 2009, 2010, 2011) 

to the post-CSF one (spring 2010, 2011, 2012). Interestingly, the total density decreases evaluated as 

mentioned range from about 15% at S3 in 2012 to 50% at S2 in 2010, showing good agreement with 

trout mortality estimated through the N&J model. Nevertheless, the previous hypotheses concerning 

a spatial gradient of the impact, its proportionality to the flushing magnitude, and a more severe 

impairment of juveniles are not fully confirmed. For example, after the 2010 flushing, a nearly equal 

density drop was noticed at S2 and S3. After the 2011 flushing, the total density drop was larger at 

S3 than at S2, and, at both stations, it followed the significant decrease of the adults number while 

the juveniles resulted only slightly perturbed, particularly at S2. 

The forcing of stocking and fishing seems therefore to hide the effect of the flushing on the 

trout population, thus preventing detailed quantitative analysis. It could be concluded that the whole 

fish dataset seems inconsistent with a remarkable alteration of the trout population, at least within the 

limits where the usual practices of stocking and game fishing were carried on during the study period. 
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4 Controlled sediment flushing at Madesimo Reservoir 

This chapter reports on the sediment transport and the in-channel sedimentation after a CSF 

performed from a small hydropower reservoir in the central Italian Alps. This operation was 

performed during three days in the mean flow season. After a short description on the main 

characteristics of this particular CSF, the main findings related to sediment transport and riverbed 

sedimentation (obtained in a 3.6 km reach below the dam before, during, and after the desilting 

operation) were reported. A 1-D sediment transport model was implemented for the investigated CSF 

event. Moreover, the results of the biomonitoring on macroinvertebrates and fish were discussed. 

4.1 Materials and methods 

4.1.1 Study area and monitoring sites 

The Madesimo Dam regulates the Scalcoggia River. The dam is located 6.4 km downstream 

from the river’s main spring and 1.6 km upstream from the confluence with the Liro River (Figure 

4.1). Approximately 14 km downstream from this confluence, the Liro joints the Mera River, in turn 

the second largest tributary of Lago di Como. The Madesimo is a concrete gravity dam and it was 

closed in 1964. The dam crest is at 1,526 m AMSL. The bottom outlet is equipped with a square 

vertical-lift gate that has a side length of 2.6 m and a sill at 1,509 m AMSL. The original gross and 

effective storage capacity of the reservoir were 0.161 × 106 m3 and 0.126 × 106 m3, respectively. At 

the catchment scale, it can be considered a relatively small reservoir: for comparison, the Spluga and 

Isolato reservoirs, which are also shown in Figure 4.1, store 33 and 1.8 × 106 m3, respectively. The 

pre-flushing reservoir bathymetry, carried out in July 2010, indicated a historic loss of storage 

capacity of about 46,000 m3. According to the estimates provided by the company managing 

hydropower in the area, the average annual rate of storage loss at Madesimo reservoir is about 1.6%, 

a high value if compared to surrounding reservoirs (i.e. 0.17% and 0.30% for Spluga and Isolato). 

Sediment trapped in the Madesimo Reservoir is mostly silt and sand, as it will be later described. 

Water resources in the area are massively exploited for hydropower generation. The Madesimo 

Reservoir supplies water to the Isolato-Madesimo hydropower plant (17 MW installed capacity, 8 

m3/s rated discharge - hereafter Q). This plant and the Isolato- Spluga hydropower plant (43 MW 

installed capacity, 7 m3/s rated Q) drains into the Isolato Reservoir. In turn, the Isolato Reservoir 

supplies water to the Prestone hydropower plant (25 MW installed capacity, 18 m3/s rated Q) that 

releases water into the Prestone Reservoir (0.06 × 106 m3) (Figure 4.1). 

The basin of the Scalcoggia River at the Madesimo Reservoir has an area of 25.2 km2 with an 

altitude ranging from 1,500 to 3,200 m AMSL. The land is mostly covered by forest and scarcely 
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vegetated rocks, with 2% of urbanized area. The basin runoff is essentially snowmelt driven, with the 

maximum Q normally observed between late spring and early summer. Mean annual Q at the 

Madesimo Dam is 1.3 m3/s. The basin area of the Liro River at the Isolato Dam is 55.3 km2, with a 

mean annual Q of 3 m3/s. Further downstream, at the Prestone Dam, the catchment area and the mean 

annual Q of the Liro River are 126.5 km2 and 6.4 m3/s, respectively. A minimum flow that equates 

7.6 and 12.9% of the mean annual Q is currently set downstream of the Madesimo and the Isolato 

dams. 

The Scalcoggia River downstream of the Madesimo dam can be divided in three parts: the upper 

one is 1.1 km long, followed by a 180 m drop and a final stretch of about 350 m (Figure 4.2). The 

channel is very steep with 2-5 m bankfull width; it has bedrock morphology and step-pool 

mesohabitat. According to field observations and following the Udden-Wentworth scale, the substrate 

is dominated by cobbles (64< d<256 mm), with a non negligible presence of boulders up to 1,000 

mm in diameter.  

 

Figure 4.1. Location map. (a) Position in the Northern Italy and catchment area of the Scalcoggia River at the 

Madesimo Dam. (b) Monitoring sites and hydropower system with main channelling (white and black lines) 

and hydropower plants (HPPs, white circles). 

(a) (b) 
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Figure 4.2. Longitudinal elevation profile of Liro and Scalcoggia rivers showing the measurement sites (M1, 

M2 and from S0 to S8) and dams. Field surveys performed at each site are specified to the right (i.e. deposit 

thickness measurements with graduated rod -GR, McNeil samples, SSC measurements, collection of suspended 

sediment to characterize the grain-size, benthic and fish sampling) 

The Liro River between the Isolato dam and the Prestone Reservoir is 5.6 km long (Figure 4.2) 

with an average bankfull width of 10-20 m. The substrate is dominated by cobbles (64<d<256 mm) 

with sporadic areas where pebbles (2<d<64 mm) are predominant; boulders up to 500 mm in diameter 

are also present. The Liro River between Isolato dam and the Scalcoggia confluence has a step-pool 

morphology; from the stream junction to the Prestone Reservoir, the channel is 3.6 km long (see 

Section 4.1.3) and develops a plane-bed morphology (as per Montgomery and Buffington, 1997). 

4.1.2 The 2010 Controlled Sediment Flushing - CSF 

Planning and execution of the 2010 CSF were strongly conditioned by the limits imposed by 

the local Authorities to mitigate the downstream environmental impacts. These limits concerned the 

duration of the operation (i.e. max. 3 days) and the maximum SSC acceptable in the Liro River 

downstream from the Scalcoggia confluence. The maximum SSC was set at 10 g/l as the average 

value permitted during the whole operation. This value was based on an estimation of the likely CSF 

effects on the trout community in this stream. This estimate was derived from the N&J model, as 

reported and discussed by Espa et al. (2013) and in the Section 3.1.2 for other CSF in the same area. 

The target evacuation volume of sediment (ca. 15,000 m3) and the freshwater volume (2-2.5 × 106 

m3) allocated in the upstream reservoirs (e.g. Spluga and Isolato, see Figure 4.1) were the variables 

used to keep the SSC within the limits (i.e. to transport and dilute the sediment load in the Liro River). 

The second half of October was selected as the most adequate period to balance technical and 

environmental requirements and to keep the system under control i.e. accounting for water availability 

in the upstream reservoirs and preserving the safety use of earth moving equipment within the 

reservoir. The CSF was carried out after the full drawdown of the reservoir. Mechanical equipment 
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was employed to dislodge the sediments and discharge them into the flushing channel. Excavation 

was performed only during daytime, while during the night water entering the reservoir was left free 

to flow into the flushing channel and released downstream without mechanically incrementing the 

sediment load. Clear water released from the Isolato Reservoir was maximum during the daytime (i.e. 

up to ca. 10 times higher than Q flushed from Madesimo Reservoir), and it was reduced during the 

night (i.e. ca. 3 times higher). 

4.1.3 Sediment monitoring 

Eight and two monitoring sites (Figure 4.1 and Figure 4.2) were surveyed along the Liro and 

Scalcoggia River, respectively; the measurements carried out in each site are indicated in Figure 4.2. 

Sites were selected accounting mainly for variation in channel slope and ease of access.  

Monitoring  Distance Slopes Thickness Thickness 
sections (km) (m/m) (mean, m) (SD, m) 
M1 -1.5 0.123 0.240 0.103 
M2 -0.24 0.340 0.149 0.064 
S1 0 0.021 0.008 0.008 
S2 0.28 0.021 0.009 0.007 
S3 0.41 0.017 0.043 0.013 
S4 1.1 0.013 0.056 0.017 
S5 up 1.55 0.010 0.203 0.066 
S5 down 1.57 0.009 0.040 0.018 
S6 2.34 0.008 0.053 0.025 
S7 2.73 0.012 0.019 0.007 
S8 3.56 0.017 0.010 0.007 

Table 4.1. Distance, mean channel slope and thickness of sediment deposits after the CSF at each monitoring 

sections. The distances of the monitored sections are given from the stream junction of the rivers Liro and 

Scalcoggia; the mean channel slope of the monitored reaches is computed by the thalweg elevations of the two 

surrounding topographic sections; mean and standard deviation (SD) of the sediment thickness are computed 

from 10 graduated rod measurements. 

The topographic survey between S1 and S8 comprises sixteen cross sections, approximately 

250 m spaced; the exact distances and the mean slopes are reported in Table 4.1. Downstream from 

S3 the channel displays substantial morphologic alteration due to alignments and embankments. At 

S5 there is a bridge with an approximately horizontal sill that created a backwater effect during the 

CSF.  

Data collected during the CSF included measurements of Q, SSC and dissolved oxygen (DO). 

Q downstream of the Isolato Reservoir was recorded every 5 minutes, and the same was done for the 

inflow into the Madesimo Reservoir. Downstream, at S5, SSC and DO was continuously recorded, 

by means of an optical turbidimeter (Lange Controller SC100®) installed in one of the pillars of the 

bridge (see Figure 4.1 for location details). The turbidimeter was set to record 5-min average samples 

with 3 Hz sampling frequency. Further downstream, turbidity measurements were conducted at S8 
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by means of a portable turbidimeter (Partech 740®), only during daytime. The aim of this was to 

verify the likely downstream reduction of SSC due to in-channel deposition; there, SSC records were 

also taken at 5-min interval. Water and sediment samples for a posteriori calibration of the 

turbidimeters were collected as close as possible to the probes by means of 1-liter handheld buckets. 

Samples were randomly taken during daytime. Overall, 35 samples were collected in S5 and 37 in 

S8. The sediment concentration of these samples was determined in the laboratory following the 

Standard Method 2540 D-F (APHA et al., 2005). The raw turbidimeter data (SSCTUR) were correlated 

with the corresponding values obtained in the laboratory (SSCLAB), and at-a-site specific calibration 

power functions (SSCLAB = a × SSCTUR
b) were obtained through standard least-squares fitting. The 

raw SSCs values detected in the field were then corrected using these statistical functions. Once the 

full SSC records were compiled, the suspended sediment load was computed by time integration of 

SSC measured at S5 times the flow rate calculated as a sum of Q from the Madesimo and the Isolato 

reservoirs. In particular, the water flow gauged at the Isolato Reservoir was routed to S5 by simply 

adding a constant time shift (30 minutes, based on the average flow velocity until the confluence). 

The flow released from the Madesimo Reservoir did not change significantly in the course of the 

CSF, thus, a constant value of Q = 1.4 m3/s was used. 

Additional samples were collected in S5 and S8 to determine the grain-size of the suspended 

load (i.e. in this work we express this as a daily average). The same procedure described in Espa et 

al. (2013) was adopted. One litre samples were collected during daytime at a rate of 6 per hour. The 

turbid water was poured into an Imhoff cone and allowed to settle for one hour. The clear supernatant 

was then discarded while the remaining sediment and water were stored in a bucket. These samples 

were analysed in the laboratory by dry sieving and gravitational settling. 

Data from turbidimeters is considered representative of the total sediment concentration for the 

silt/clay fraction, whose presence in the riverbed deposits was negligible (see Section 4.2.1.2). 

Therefore, SSC measurements and suspended sediment sampling were basically employed for the 

quantification of the silt/clay fraction of the sediment transported during the CSF. 

The total amount of flushed sediment was assessed through ADCP bathymetric surveys in the 

reservoir carried out before (July 2010) and after (November 2010) the CSF. In order to quantify the 

volume of sediment deposited along the study reach and its spatial variability, we visually inspected 

the sites and performed volumetric riverbed sampling three weeks before (on September 29th, 2010) 

and three weeks after (November 12th) the CSF. The volumetric riverbed sampling was performed 

in S2, S6 and S8 (Figure 4.2) to examine the alteration of the substrate (i.e. fine sediment infilling) 

after the CSF. In order to normalize the measurements between sections only the riverbed wetted by 

the minimum flow (i.e. Q = 0.4 m3/s) was investigated. Each transect was sampled at three points, 
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two of them one meter from the channel edges and one in the centre. In the post-CSF survey, care 

was taken to sample the riverbed in the same points as we did in the pre-CSF campaign; this was 

achieved using a known distance from previously marked points. Sampling was carried out by means 

of a McNeil corer (McNeil and Ahnell, 1964; Lambert and Walling, 1988) with a 135 mm internal 

diameter tube. Water depth at the sampling points ranged from 0.1 to 0.3 m. Particles larger than 32 

mm (i.e. very coarse gravel and even larger) were taken out before sampling the fines in order to limit 

bias caused by large clasts (as per Evans and Wilcox, 2014). The collected samples were dried and 

sieved in the laboratory. Each sample weighed ca. 1.5 kg. As indicated by Rex and Carmichael (2002), 

to take the finer materials into account, one litre of turbid water was also collected after the removal 

of core samples, keeping the corer firmly placed on the streambed and stirring up suspendable 

sediment within the tube, trying to keep the same level of agitation in all the samples. Samples were 

also dried and sieved in the laboratory, analysed for SSC and grain-size, and then extrapolated to the 

corresponding water volume measured in the tube. For each grain-size class, the computed sediment 

mass was added to the corresponding core sample in order to obtain the complete grain-size 

distribution. 

The thickness of fine sediment freshly deposited on top of the coarse surface layer after the CSF 

was determined using a graduated iron rod. At each transect (Figure 4.2), the height of the sediment 

was measured at 10 randomly selected points. At S5, these measurements were performed upstream 

and downstream from the bridge (S5-up and S5-down, respectively). The average deposit thickness 

and the standard deviation (SD) of the 10 measurements were computed for each site. The observation 

error was estimated at ± 1 cm. The volume of deposited sediment related on each stretch (i.e. 

identified by two succeeding transects), was estimated assuming that the deposition changed linearly 

and adopting the average wetted widths. For the Liro River, these channel widths, ranging from 13 

to 29 m, were derived from a steady state flow simulation adopting the mean Q observed during the 

CSF (i.e. 11 m3/s - modelling details are reported in the Section 4.1.5). The total sedimentation 

volume was then obtained by adding the volumes estimated in each reach. On the other hand, the 

estimation of the volume of sediment deposited along the Scalcoggia River was performed with a 

simpler procedure adopting the average value of channel widths (i.e. 3 m); altogether, allowing to 

construct the budget between the released and the deposited sediments. 

4.1.4 Biomonitoring 

The biological survey was carried out at three biomonitoring sites (BSs): M1 on the Scalcoggia 

River, and S0 and S8 on the Liro River (Figure 4.1). These BSs were selected to assess the effects of 

the maximum (M1) and reduced (S8) sediment disturbance, and those of the diluting flows (S0). The 

site S0 is upstream the Scalcoggia confluence; it is characterized by an average slope of 0.055.  
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Routine water quality analyses performed by the local environmental protection agency ruled 

out any significant organic pollution at BSs. These analyses were carried out monthly, from 2009 to 

2011, and did not include the flushing period. According to these analyses, SSC was usually less than 

10 mg/l and DO ranged between 8 and 13 mg/l. 

4.1.4.1 Benthic macroinvertebrate monitoring 

The benthic macroinvertebrate survey was carried out seasonally (i.e. on February, May, 

September and November) at S0 and S8, from 2009 to 2011 (overall 12 samples per site), to 

characterize the assemblages before the CSF and to assess the recolonization patterns. A different 

schedule was adopted at M1, where one pre-CSF (one month before the event) and five post-CSF 

(respectively 1, 4, 5, 8 and 11months after the event) sampling campaigns were conducted. Samples 

were collected with a Surber sampler of 0.1 m2 area and 500 μm mesh following the quantitative 

multi-habitat protocol developed for the computation of the multi-metric STAR_ICMi (see Section 

3.1.4). The total density and three traditional metrics employed to calculate the STAR_ICMi [total 

number of families, number of Ephemeroptera, Plecoptera and Trichoptera families (EPT) and 

Shannon–Wiener index] were analysed as well. Temporal and spatial differences in the values of the 

benthos metrics (i.e. pre-CSF/post-CSF differences at each BS and between BSs, inter-annual 

differences at each BS and inter-site differences within the same monitored year) were investigated 

using the Kruskal–Wallis test. The Bray–Curtis index (BCi) was used to quantify the compositional 

dissimilarity between samples. It ranges from 0 to 1, with 0 being complete similarity and 1 being 

complete dissimilarity. To track the flushing response, the BC distances were represented in a two-

dimensional ordination space using a non-metric multidimensional scaling (NMDS). M1 assemblages 

were not included in the NMDS, as they were too dissimilar from those collected at S0 and S8. 

Finally, the analyses of similarities (ANOSIM) was used to test the macroinvertebrate assemblages 

for significant differences between pre-CSF and post-CSF samples within the same BS and between 

BSs, between different years at each BS and between BSs within the same monitored year. The 

Kruskal–Wallis test, BCi computation and NMDS were performed by XLSTAT 2011 software, and 

the ANOSIM was carried out with PAST 3.09 software. 

4.1.4.2 Fish monitoring 

Fish sampling was performed annually (in autumn) at S0 and S8, from 2009 to 2011, using a 

backpack electrofishing device (ELT60-IIGI 1.3kW DC, 400/600 V, removal method with two 

passes). Fish were identified to species level, counted and measured for total length. Population 

densities were calculated taking into account the sampled area (641 and 1,333 m2 at S0 and S8, 

respectively). The length structures of the most abundant populations were depicted. There are 

different rules for recreational fishing in the investigated sites of the Liro River. In particular, at S0 
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fishing is allowed from March to October, with constraints on the size (for brown trout – Salmo trutta 

trutta – 240 mm) and number of individuals that can be fished (max. five specimens per day). Fishing 

is forbidden at S8. Brown trout juveniles (Mediterranean stock 50–120 mm) are restocked every 

summer in the investigated Liro River. 

4.1.5 Numerical simulation 

4.1.5.1 The model 

The 1-D model applied to simulate sediment transport and deposition during the CSF was the 

SRH-1D v.3.0 (Sedimentation and River Hydraulics - One Dimensional; Huang and Greimann, 

2012). This model is habitually used by the US Bureau of Reclamation to simulate flows and sediment 

transport in river networks (e.g. Huang and Greimann, 2012; Ruark et al., 2011). The model can also 

be applied to examine sedimentation in reservoirs, thus providing alternative sediment management 

options. For instance, Morris (2014) reported the application of SRH-1D for predicting the pattern of 

sediment deposition inside the Peligre Reservoir (Haiti) under different operating rules. SRH-1D can 

simulate, within the limits of the 1-D approximation, sediment transport in natural rivers similar to 

those which occurred during the studied CSF (i.e. unsteady sediment transport, unsteady flow with 

possible transition between sub and super-critical flow). 

The model uses a single depth-averaged advection-diffusion equation to simulate transport of 

total load of multiple size fractions. The sediment transport mode (suspended or bed load) is 

determined as a function of the Rouse coefficient Z (Greimann et al., 2008): 

 

where wf = particle fall velocity, k = von Kármán constant and u* = shear stress. 

Particles smaller than 62.5 mm in diameter (i.e. silt and clay) are defined as cohesive sediment and 

they are handled differently from larger ones (i.e. non-cohesive sediments). For non-cohesive 

sediments, the appropriate formula to calculate the sediment transport capacity has to be selected by 

the user (as indicated by Huang and Greimann, 2012). The model takes into account the non-

equilibrium transport by incorporating an “adaptation length” (Ltot) that quantifies the travel distance 

required for a packet of sediment for reaching a new equilibrium concentration, when it moves from 

one reach to another characterized by different shear stress. The adaptation length is computed 

according to Greimann et al. (2008). Three user-defined parameters control Ltot i.e. the suspended 

sediment recovery factor for deposition and for scour (ad and ae, respectively) (Han and He, 1990; 

Ahn and Yang, 2015), and the bedload adaptation length coefficient (bL) (Huang and Greimann 2012) 

(Table 4.2). Ltot is computed as: 
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where f = fraction of the suspended load related to the total load, h = average depth at the cross 

section, Q = flow rate and W = width of the cross section. In particular, SRH-1D assumes that the 

suspended sediment recovery factor is constant, but different values are used for ad and ae, and the 

program automatically selects the correct one (Huang and Greimann, 2012). For cohesive sediments, 

two kinds of erosion (i.e. surface and mass erosion) and deposition (i.e. full and partial deposition) 

are simulated. The bottom shear stress is compared to critical values in order to select which of them 

may occur. The equations used in model deposition are the Krone’s (1962) full deposition formula 

and the van Rijn (1993) partial deposition formula. The model applies a modified version of the 

formula reported by Partheniades (1965) for surface erosion; the mass erosion equation is similar to 

that used for surface erosion (Huang and Greimann, 2012). 

 

Name Symbol Default Benchmark Range Ref. Process/Quality 

controlled Suspended sediment recovery 

factor for deposition 
ad 0.25 0.25 0.05-1 b, f 

Total adaptation 

length (Ltot) 
Suspended sediment recovery 

factor for scour 
ae 1 1 0.05-1 b, f 

Bedload adaptation lenght 

coefficient 
bL 0 0 0-10 c 

Active layer thickness 

multiplier 
nalt 2 0.55 0.5-2 e Bed material 

mixing 
Weight of bedload fractions c - 0 0-1 c, d 

Manning's parameter (s m-1/3) n - 0.04 0.03-

0.05 

4 Riverbed 

roughness Table 4.2. Parameters examined in the sensitivity analysis. Starting left, columns respectively report the 

name of the parameter, the adopted symbol, the default value, the value in the benchmark simulation, the 

investigated range, the main references, and the process/quantity controlled. In the references column, a = 

Arcement and Schneider 1989; b = Han and He 1990; c = Lai and Greimann 2011; d = Ruark et al. 2011; e 

= Huang and Greimann 2012; f = Ahn and Yang 2015 

Bed material mixing is modelled by dividing the bed into an active layer and a series of 

underlying inactive layers; erosion and deposition of sediment can occur only from the active layer 

(Figure 4.3). The active layer thickness is determined as the product of a length scale related to the 

riverbed sediment size (i.e. the geometric mean of the minimum and maximum sizes of the coarsest 

size class), and a user-defined dimensionless parameter (i.e. the active layer thickness multiplier, 

hereafter referred to as nalt, Table 4.2). As part of the bed material mixing module, the user must also 

specify the weight of bedload fractions (c, Table 4.2), which is a parameter that controls the weighing 
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of the bedload grain-size distribution during the transfer of materials between the active layer and the 

underlying layer. If c = 0, the grain-size distribution of the sediment that is transferred to the sub-

layer is equal to the active layer grain-size distribution. If c = 1, the grain-size distribution of the 

sediment that is transferred to the sub-layer is equal to the bedload grain-size distribution (Ruark et 

al., 2011). 

 

Figure 4.3. Conceptual model of bed mixing (Huang and Greimann, 2012) 

4.1.5.2 Boundary conditions and bed material properties 

The Liro River between the Scalcoggia confluence and the Prestone Reservoir (from S1 to S8) 

was modelled using the available topography (see Section 4.1.3) and adding further cross sections 

generated by linear interpolation at a maximum distance of 10 m. The duration of the simulation was 

set in relation to the duration of the CSF operation (i.e. 66 hours), with 1-min time step. Q at S1 (i.e. 

upstream flow boundary condition) was calculated similarly to Q at S5 (see Section 4.1.3) applying 

a constant time shift of 15 minutes for the Q gauged at the Isolato Reservoir. Normal depth (i.e. 

uniform flow depth) was selected as the downstream boundary condition at the end of the modelled 

reach (S8). In fact, the water level at the downstream Prestone Reservoir was low enough to not affect 

flow conditions in S8 during the CSF. For the upstream sediment boundary condition, a temporal 

series of sediment load at S1 was deduced from available measurements as reported later in the paper 

(see Section 4.2.3.1). A constant value of Manning’s roughness coefficient (n = 0.04 s/m1/3) was 

assigned to the whole study reach. The time span between SSC peaks detected between sections S5 

and S8 during the CSF (approximately 15 minutes when Q was maximum) allowed for the estimation 

of the average velocity corresponding to a known Q. Then, in order to calibrate this parameter, the 

model was run under steady flow conditions (for more details see Section 4.1.5.3) matching the 

computed average velocity with the estimated one. The obtained value also agrees with those reported 
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for straight and stable channels with pebble substrate in classic literature (n = 0.03-0.05, Arcement 

and Schneider, 1989). 

Only two layers (i.e. active and inactive) were used to model the riverbed, and just a single size 

class (i.e. pebble 64<d<128 mm) was adopted. This size is approximately the coarsest one observed 

on the riverbed surface along the study reach. Even though this schematization is fairly rough, it 

prevented the simulated riverbed to contribute to sediment transport and deposition. In fact, the 

scouring of riverbed material was not observed after the CSF and the contribution of riverbed material 

to the sediment transport is considered negligible compared to the sediment flushed from the 

reservoir. Therefore, the case study can be considered essentially a depositional case. 

4.1.5.3 Sediment transport parameters and sensitivity tests 

Preliminary steady flow simulations were performed to evaluate the range of Froude number 

and bed shear stress, adopting the riverbed schematization previously described, and with no sediment 

input as the upstream boundary condition. Minimum and maximum Q observed during the CSF (i.e. 

Qmin = 5 m3/s, Qmax = 15.4 m3/s, see Section 4.2.1) were selected for this purpose. For Q = Qmin, the 

calculated Froude number ranged from 0.2 to 1; while for Q = Qmax, the Froude number ranged from 

0.6 to 1.5, with supercritical flow occurring in three reaches, covering about 10% of the channel 

length. In the two simulations, the shear stresses ranged from 5 to 75 N/m2 and from 35 to 140 N/m2, 

respectively. The minimum shear stress was always obtained in S5-up. The deposition of cohesive 

sediment can occur only if the shear stress is lower than the critical shear stress for surface erosion 

that is generally below 1-3 N/m2 (van Rijn, 1993; Yang, 2006). Therefore, there was no need to 

perform a calibration of these parameters since negligible deposition of cohesive sediment was 

expected under the analysed conditions (default values were used).  

Non-cohesive sediment transport was computed by means of Yang’s unit stream power formula 

for sand (1979) and for gravel (1984) which are appropriate owing to the size of the flushed sediment 

and suitable for both subcritical and supercritical flow (Yang, 2006). The Yang’s Sand (1979) 

transport formula is the following: 

 

where Ct = total concentration in parts per million by weight, wf = particle fall velocity, d = sediment 

particle diameter, n = kinematic viscosity of water, u* = shear stress, V = average flow velocity and 

S = energy slope. The Yang’s Gravel (1984) transport formula is: 
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where Vcr = critical average flow velocity at incipient motion. 

Dry specific weight was set to 1.85 ton/m3 for small cobbles, 1.49 ton/m3 for sand and 1.10 

ton/m3 for silt/clay. Non-cohesive particle fall velocity was calculated using classical values 

recommended by the Interagency Committee (1957), assuming a shape factor of 0.7 and water 

temperature of 10°C (i.e. values observed during CSF samplings). 

The sensitivity analysis concerned two sets of parameters (Table 4.2): i) parameters related to 

the bed material mixing (c and nalt); and ii) parameters controlling the total adaptation length (ad, ae 

and bL). Default values of the parameters are the following: ad = 0.25, ae = 1, bL = 0, nalt = 2. There 

was not a default value for c although Lai and Greimann (2011) reported that most sediment transport 

models assume c equal to 0. Our analysis was performed adopting the same range of the parameters 

used by Ruark et al. (2011). These authors developed a method for assessing the influence of 

parameter uncertainty in sediment transport modelling and applied this method to the SRH-1D model 

in two distinct flume experimental cases (one erosional and one depositional). Finally, and although 

in the present study n was evaluated through velocity estimates, its influence on the numerical output 

was also tested, assuming the previously reported standard range for straight and stable channels with 

cobble substrate. The influence of the parameters on the numerical solution was assessed by 

comparing several simulations to a specific one that will be referred to as benchmark simulation 

(Table 4.2). 

4.2 Results 

4.2.1 The sediment flushing operation 

The CSF was performed between the 19th and the 21st of October 2010 for a total of 66 hours 

(Figure 4.4), a relatively short duration if compared with analogous operations performed in the same 

region (Espa et al. 2013, 2015). During the first day, from 6:00 to 8:00 am, the Madesimo Reservoir 

was emptied and, short after, the mechanical removal of bottom sediments started. Earth-moving 

equipment worked from 8:00 am until 6:00 pm, except for the third day (when the work was 

completed at 3:00 pm). 
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Figure 4.4. Madesimo Reservoir. Photos taken the 19th October (a) in the morning and (b) in the evening, (c) 

the 20th October in the morning and (d) 21st October in the morning.  

4.2.1.1 Flow and sediment transport 

Q released from the Isolato Dam (Figure 4.5) ranged approximately from 10 to 14 m3/s during 

daytime and decreased to 4 m3/s during the night. In the last CSF day, after the end of the excavation 

works, Q was maintained at 10 m3/s until 11pm. The water entering the Madesimo Reservoir was 

about 1.4 m3/s during the whole operation. Time series of SSC at S5 and S8 are provided in Figure 

4.6; the transformation of the raw SSC data was carried out by means of the calibration curves 

reported in Figure 4.7. The flow hydrograph at S1 is also reported in Figure 4.6. 

A regular daily pulse (analogous to those described in Espa et al. 2013) is noticeable in the 

observed SSC at S5, with daily peaks between 10 and 15 g/l and nocturnal values below 1 g/l. The 

average SSC for the whole sediment flushing period was 2.9 g/l. The temporal pattern of SSC 

observed in the lowermost downstream section (S8) is analogous to that recorded in S5, except for 

the mentioned time shift (see Section 4.1.5.2). The total suspended sediment load at S5 was 7,800 

tons. The suspended loads for the first, second and third days were 3,700, 2,400, and 1,700 tons, 

respectively. 

 

(a) (b) 

(c) 

(a) 

(d) 
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Figure 4.5. Liro - Scalcoggia River confluence during the CSF 

The grain-size distribution of the suspended load at S5 and S8 (calculated as the average of the 

three daily distributions weighed according to the respective daily flowed masses) is shown in Figure 

4.7. The suspended sediment collected in the two sites was very similar in grain-size: 21% was very 

fine sand (62.5 mm<d< 125 mm), 64% silt (4 mm <d<62.5mm) and 7% clay (d<4 mm). Taking into 

account the silt/clay fraction found in suspension, the total silt/clay load is quantified at 5500 tons. 

 

Figure 4.6. Time series of SSC and Q from 19th to 21st October, 2010. (a) SSC by calibrated turbidimeter (black 

line) and lab samples (white circles) at S5. (b) SSC by calibrated turbidimeter (black lines) and lab samples 

(white squares) at S8. (c) Streamflow at S1 (black line). 

(a) 

(b) 

(c) 
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Figure 4.7. Calibration curve for the turbidimeter (a) installed at S5 and (b) operated at S8 using the samples 

collected during the CSF. Raw SSC data acquired in the field (SSCTUR) were correlated to the corresponding 

laboratory samples (SSCLAB) using a power function. (c) Grain-size distribution of suspended sediment 

collected at S5 and S8. 

4.2.1.2 Riverbed deposits 

Photographs of some monitoring sites before and after the CSF are provided in Figure 4.8. In 

general, deposited sediments were rather uniformly distributed throughout the cross sections between 

S1 and S8. Lateral-accretion deposits thicker than the channel deposits were observed only 

occasionally. The mean thickness of the deposits and their standard deviation, recorded during the 

post-CSF field survey along the Liro River, are given in Table 4.1. Mean values from 0 to 20 cm were 

found. The maximum sedimentation occurred at S5-up (Figure 4.8c); whereas the minimum was 

recorded in reaches where the slope exceeded 0.015 (S1, S2, S7 and S8; Table 4.1). The total volume 

of deposited sediments is estimated at ca. 3,000 m3, corresponding to a mean value of 0.84 m3/m (i.e. 

deposition per unit channel length) and 0.05 m (thickness of the deposit). A similar field evaluation, 

although less detailed, allowed estimating ca. 1,000 m3 of sediment deposited along the Scalcoggia 

River after the flushing operation, with the thickness of its deposits in pools up to 0.3 m. In particular, 

the mean deposit thickness measured at M1 was 0.24 m (SD = 0.103 m, where SD is standard 

deviation). Grain-size distributions of McNeil samples at S2, S6 and S8 are provided in Figure 4.9. 

Collected samples were analysed individually but only two curves per site (before and after CSF) are 

presented in the figure and in Table 4.3 and Table 4.4. They were obtained by summing the weights 

of each sediment size class according to the sampled volume. 

 

(a) (b) (c) 
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Figure 4.8. Photos taken three weeks before and three weeks after the sediment flushing: 8a) S1;8 b) S3; 8c) 

S5- up (upstream of the bridge); (d) S5-down (downstream of the bridge) 

Riverbed samples highlight the increase of sand after the CSF and, consequently, the relative 

decrease of gravels. The characteristic diameter (d50) of the pre-CSF samples was 6-7 mm, while after 

the CSF it decreased to 2 mm in the two downstream sites (S6 and S8). The reduction is less marked 

in S2 (field observations support this low deposition at S2, see Table 4.1). The content of particles 

smaller than 125 mm did not change significantly; deposition of this fraction is very low in the entire 

study reach (Table 4.3). The average proportion of particle size smaller than 2 mm (i.e. sand and 

silt/clay particles) per unit area obtained after the McNeil coring are reported in Table 4.4. This 

proportion varied between 8 and 27 kg/m2 and from 21 to 40 kg/m2 in the pre and post-CSF situations, 

respectively, increasing from 1 kg/m2 at S2 to 30 kg/m2 at S8. Most of the deposited sediment was 

sand, whereas the deposition of silt/clay was low (i.e. from 0.9 to 2 kg/m2 and from 0.5 to 1.2 kg/m2 

in the pre and post-CSF samples, respectively). The average grain-size of the sand deposits was 

estimated summing the weights of each size class for all the pre and post-CSF samples and calculating 

the difference. The proportion of sands in the deposits was the following: 38% very coarse, 34% 

coarse, 22% medium and 6% fine (the proportion of very fine sand was also negligible). 
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Monitoring 

sections 

clay/silt (%) sand (%) gravel (%) <125 mm (%) 
S2     
Before flushing 1.4 21.2 77.5 2.1 
After flushing 1.0 28.0 71.0 1.8 
Difference -0.4 6.9 -6.4 -0.3 
S6     
Before flushing 2.3 21.2 69.0 4.3 
After flushing 1.5 28.0 47.9 2.6 
Difference -0.4 6.9 -21.0 -1.7 
S8     
Before flushing 0.3 12.3 87.4 0.5 
After flushing 0.6 48.1 51.2 2.1 
Difference 0.4 35.8 -36.2 1.6 

Table 4.3. Major grain-size and content of sediment smaller than 125 mm into the McNeil samples at S2, S6 

and S8. 

Monitoring Before flushing After flushing Difference 

sections mean 

(kg/m2) 

SD 

(kg/m2) 

mean 

(kg/m2) 

SD 

(kg/m2) 

mean 

(kg/m2) 

SD 

(kg/m2) S2 20.4 9.0 21.6 7.2 1.2 15.6 

S6 27.0 16.9 40.0 13.4 13.0 30.0 

S8 8.0 2.1 38.3 10.2 30.3 8.2 

Table 4.4. Mass per unit area (average and standard deviation - SD) of sediment smaller than 2 mm. Analyzed 

samples were obtained through McNeil corer at three points in sections S2, S6 and S8, before and after the 

CSF. 

 

Figure 4.9. Grain-size distribution of McNeil samples at S2, S6 and S8. Each curve was obtained summing 

three samples, two collected 1 m from river edges and one in the centre of the stream. Particles larger than 32 

mm were excluded. 
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4.2.1.3 Sediment budget and cost of the operation 

The sediment balance, subdivided between cohesive and non-cohesive sediment, si summarized 

in Table 4.5 The volume of sediment released from the Madesimo Reservoir and estimated through 

bathymetric survey was 16,000 m3. The sediment export downstream from S8 was 12,000 m3, 

according to the estimates of sand deposits in the study reaches (i.e. 1,000 m3
 along the Scalcoggia 

River and 3,000 m3 between S1 and S8 in the Liro River). The mass of sediment that flowed through 

S1 was 20,400 tons (i.e. 5,500 tons of silt/clay and 14900 tons of sand) of which 15,900 tons of 

sediment were transported through S8 in the course of the CSF (calculated from the adopted specific 

dry sediment weights). 

Cross-section Mass flown Reach Deposition 

 Non-cohesive Cohesive Water  Non-cohesive 

 (tons) (tons) (tons)  (tons) 

MD 16,400 5,500 278,000   
    MD-S1 1,490 

S1 14,900 5,500 2,646,000   
    S1-S5 2,920 

S5 11,980 5,500 2,646,000   
    S5-S8 1,550 

S8 10,430 5,500 2,646,000   

Table 4.5. Mass balance of the sediment evacuated in the CSF of the Madesimo Reservoir. MD in the cross-

sections column indicates Madesimo Dam. The mass flown through the reported cross-sections is provided in 

terms of both cohesive (silt/clay) and non-cohesive (sand) sediment. As observed in the field, deposition only 

concerned non-cohesive sediment. 

The cost of releasing a unit volume of sediment was about 6.5 €/ m3, an estimate that takes into 

account the loss of hydropower production at Prestone and Isolato-Madesimo hydropower plants and 

the expenses related to the earth-moving equipment. This unit price sits in the low range of values 

reported by Espa et al. (2013) for controlled free-flow flushing operations in the neighbouring Adda 

River (5-50 €/m3). Sediment flushing efficiency, calculated as the ratio between the volume of 

evacuated sediment and the volume of water used throughout the operation (i.e. including water for 

dilution purposes) was 0.006. 
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4.2.2 Ecological impacts 

4.2.2.1 Effects on benthic macroinvertebrate  

The main results of the macroinvertebrate monitoring are reported in Table 4.6 for M1 and in 

Figure 4.10 and Figure 4.11 for S0 and S8. Figure 4.12 shows the relative abundance of the main 

families in all of the collected samples. 

  Month(s) before/after the flushing event 
  -1 

(Sep ’10) 

1 

(Nov ’10) 

4 

(Feb ’11) 

5 

(Mar ’11) 

8 

(Jun ’11) 

11 

(Sep ’11) 

Density 

(ind.m-2) 

Plecoptera 319 3 28 45 132 70 
Ephemeroptera 144 0 1 6 4 122 
Trichoptera 85 4 17 3 5 55 
Diptera 1918 2 1771 686 1309 544 
Other taxa 13 0 9 148 137 115 
Total 2479 9 1826 888 1587 906 

Metric 

N families 20 6 15 16 17 17 
EPT 9 4 6 8 6 7 
Shannon-Wiener 1.23 1.68 0.25 0.80 1.13 1.99 
STAR_ICMi* 0.92 (G) 0.62 (M) 0.61 (M) 0.63 (M) 0.69 (M) 0.76 (G) 

*Quality classes are reported within brackets: G=good and M=moderate 
Table 4.6. Time evolution (from one month before to eleven months after the flushing event) of the composition 

of the macroinvertebrate community (single taxon and total densities) and of four community structure metrics 

at M1. 

At the three BSs, the density and number of families of the pre-CSF benthic communities were 

similar. Moreover, the same families were mainly detected: the Plecoptera Leuctridae and 

Nemouridae, the Ephemeroptera Baetidae and Heptageniidae, the Trichoptera Limnephilidae and 

Rhyacophilidae, and the Diptera Chironomidae and Simuliidae. However, the community collected 

at M1 in summer 2010 (i.e. the only available pre-CSF sample) was dissimilar from the corresponding 

S0 and S8 ones (BCiM1–S0 = 0.68; BCiM1–S8 = 0.79), which were comparable with each other (BCiS0-

S8 = 0.20). In fact, the community at M1 was dominated by Chironomidae, while the other two were 

mainly composed of Baetidae and Simuliidae. After the CSF (i.e. in autumn 2010), the dissimilarity 

between the three BS communities increased (BCiM1–S0=0.99, BCiM1–S8=0.95, BCiS0–S8 = 0.62) and 

returned to nearly pre-CSF values about 9 months later (i.e. in summer 2011). 

In general, no significant differences in both benthos metrics (Kruskal–Wallis, p>0.01) and 

community composition (ANOSIM, p>0.01) were found before and after the CSF at S0 and S8, nor 

cross-comparing the two BSs. Moreover, for the two Liro sites, neither inter-annual differences nor 

inter-site differences within the same monitored year were statistically significant (Kruskal–Wallis 

and ANOSIM, p>0.01). The post-CSF assemblages collected at M1 were significantly different from 

those of S0 and S8 (ANOSIM, p<0.01). A more detailed description of the time evolution of the 
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benthic communities, with a focus on the comparison between pre-CSF/post-CSF samples, is reported 

in the succeeding text for each BS. 

 

Figure 4.10. (a) Temporal trend (all seasons from 2009 to 2011) of the composition of the macroinvertebrate 

communities (single taxon and total densities) at S0 and S8. Arrows indicate disturbances due to the flushing 

event. (b) NMDS between these communities using the BC distances (circle = S0 sample and square = S8 

sample, white = pre-CSF sample and black = post-CSF sample). 
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Figure 4.11. Temporal trend (all seasons from 2009 to 2011) of four metrics on the structure of the 

macroinvertebrate communities at S0 (circle) and S8 (square). Arrows indicate the flushing event.   
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Figure 4.12. Relative abundance of the main families of the benthic macroinvertebrates collected (a) 

at M1, (b) at S0 and (c) at S8. 

At M1, a total density decrease of 99.6% was recorded 1 month after the CSF. The number of 

families and EPT also decreased by 70.0% and 55.6%, respectively, and the STAR_ICMi quality 

class dropped from good to moderate. The minimum value of Shannon–Wiener was detected 4 

months after the CSF, when the community was dominated by Chironomidae. Except for 

Chironomidae and Leuctridae, the other families recovered slowly in density, and the community did 

(a) 

(b) 

(c) 
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not return to the pre-CSF condition after 1 year from the CSF. Nemouridae and Heptageniidae did 

not reach the pre-CSF density, and no aquatic beetles were found. The density of Naididae increased, 

and freshwater worms belonging to the families Enchytraeidae, Lumbricidae and Lumbriculidae, 

which were not sampled before flushing, were collected. Similarly, the total density, number of 

families and STAR_ICMi values never reached the pre-CSF ones during the monitored period. 

At S0, a total density reduction of 39.1% was recorded 1 month after the diluting flows released 

during the CSF. However, comparable reductions were also observed in other occasions, and the same 

low densities of the first post-CSF sample (i.e. autumn 2010) were also recorded in autumn 2011. 

The NMDS in Figure 4.10b (stress value = 0.116) shows that the community composition was similar 

in all S0 samples, with small differences linked to seasonality. During the 3 years of monitoring, the 

lower EPT and STAR_ICMi values were recorded in summer. 

At S8, a total density reduction of 79.7% and the minimum density were recorded 1 month after 

the sediment flushing (i.e. in autumn 2010). The NMDS in Figure 4.10b emphasizes a considerable 

difference of the post-CSF community composition up to summer 2011. The boom of Limnephilidae 

observed 4 months after the flushing event (i.e. in winter 2011) was also detected by the Shannon–

Wiener index. In the third post-CSF sample (i.e. in spring 2011), Limnephilidae constituted more 

than 50% of the community. In summer 2011, the community approximately recovered to the pre- 

CSF conditions. Only Nemouridae and Heptageniidae had lower densities than before the CSF. 

However, the metrics plotted in Figure 4.11 did not detect the effects of the flushing activities. On 

the contrary, they show a rather regular seasonal trend, with a summer decrease of the number of 

families, EPT and STAR_ICMi, with the last always lowering from high to good. 

4.2.2.2 Effects on fish 

At both S0 and S8, only brown trout and bullhead (Cottus gobio) were sampled in the three 

monitoring campaigns. The results of the fish survey are reported in Table 4.7 and Figure 4.13. 

The trout density was lower at S8 (2,140 ind/ha on average) than at S0 (3,172 ind/ha on average), 

where no specimens longer than 270 mm were caught. At both BSs, the trout length structure usually 

had a bimodal distribution, and a density reduction was observed in the post-CSF sample. At S0, the 

density decrease approximately amounted to 36%, mainly affecting 0+ individuals (i.e. mostly the 

stocked ones). However, a comparable contraction could be noticed when comparing the first and the 

second pre-CSF samples. At S8, the density decrease was larger (i.e. 55%), and mainly concentrated 

on 1+ individuals. 

The bullhead population at S8 was more well-structured, in terms of length classes, and had a 

higher density (547 ind/ha on average) than that at S0 (183 ind/ha on average). The densities recorded 

at both BSs after the CSF were slightly lower than those of the 2010 pre-CSF samples, but higher 
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than the 2009 ones. No 0+-1+ individuals were detected in all of the S0 samples and in the S8 post-

CSF sample. However, at S8, the juvenile density decreased by approximately 70% between 2009 

and 2010 (i.e. before the CSF took place). 

 

Figure 4.13. Length structure of brown trout (a) and bullhead (b) populations sampled in autumn 2009 and 

2010 (pre-CSF samples), and in autumn 2011 (post-CSF sample indicated by an asterisk) at S0 and S8. Age 

classes were identified according to Unfer et al. (2011) for brown trout and Tomlinson and Perrow (2003) for 

bullhead. 

  

S0 

S8 

S0 S8 
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    Density (ind.ha-1) 
  LC 

(mm) 

AC 

(yrs) 

2009 2010 2011* 

Brown trout 

S0 

≤120 0+ 2,018 1,291 699 
≤220 1+ 1,050 2,298 1,572 
>220 2+ 115 283 191 
Total  3,182 3,872 2,461 

S8 

≤120 0+ 529 715 462 
≤220 1+ 1,919 1,016 273 
>220 2+ 480 685 341 
Total  2,927 2,416 1,076 

Bullhead 

S0 
≤60 0+-1+ 0 0 0 
>60 2+ 94 235 219 
Total  94 235 219 

S8 
≤60 0+-1+ 56 15 0 
>60 2+ 410 677 482 
Total  467 692 482 

*Post-CSF sample 
Table 4.7. Density of brown trout and bulhead at S0 and S8 in the three monitoring campaigns (2009-2011). 

Age classes (AC) were determined through length classes (LC), according to Unfer et al. (2011) for brown 

trout and Tomlinson and Perrow (2003) for bullhead. 

4.2.3 Numerical modelling 

4.2.3.1 Model outcomes 

The simplified sedigraph at S1 adopted as the upstream sediment boundary condition is shown 

in Figure 4.14. It was derived from the available experimental dataset. The starting point was a 

simplified time series for silt/clay concentration at S1 (Figure 4.14), deduced from SSC measured at 

S5. The schematization showed variations between night-time and daytime, when excavation in the 

reservoir took place. The concentration of silt/clay during night-time was assumed constant at 0.36 

g/l. Then, three daytime concentrations were computed (one per day) based on the observed silt/clay 

load (2,650, 1,700 and 1,150 tons, respectively; see Section 4.2.1.1). The time series of total sediment 

load was then derived from the previous measurement, assuming a constant percentage of sand. In 

this way, the total mass of sediment that flowed through S1 (20,400 tons; see Section 4.2.1.3) during 

the CSF fulfilled both the total balance and the grain-size distribution of the inflowing sediment (i.e. 

27% silt/clay fraction and 73% sand; see Section 4.2.1.3). Sand was divided uniformly into the 

standard five grain-size classes. According to the observational evidence (see Section 4.2.1.2) the 

fraction of inflowing sediment coarser than sand was set to zero. Sediment load at S1 during daytime, 

was thus set to 20, 12 and 12 g/l respectively for the first, second and third day of the CSF. The 

estimated sediment concentration at M1, S1 and S8 averaged 66.0 g/l, 6.8 g/l and 5.8 g/l over the 

entire operation period. 
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Figure 4.14. Schematic time series of sediment load adopted as the upstream sediment boundary condition for 

the modelling. 

 

Figure 4.15. Comparison of the measured sediment deposit thickness (mean±SD) and the computed pattern, 

as averaged over 100 m long reaches, between S1 and S8. 

A satisfactory agreement between the computed and the observed depositional pattern (Figure 

4.15) was obtained by adopting the default values for the total adaptation length parameters (see 

Section 4.1.5.3) and setting c = 0 and nalt = 0.55 (corresponding to an active layer thickness of 0.05 

m). We therefore adopted this as the benchmark simulation for further comparisons. In particular, the 

simulated sediment mass deposited after the CSF (hereafter Mdep,tot) was nearly equal to the estimated 

value (i.e. 4,470 tons; see Section 4.2.1.3). The largest deposition was obtained in the middle part of 

the study reach, where the elevation profile is characterized by a lower slope (0.008). The average 

grain size of the computed sediment deposits was 35% very coarse sand, 33% coarse sand, 20% 

medium sand, 9% fine sand, and 3% very fine sand; and, as expected, 0% of silt/clay. The coarsest 

deposits were found at S1 (i.e. 49% very coarse sand); whereas the finest were located in S5-up (i.e. 

22% very coarse sand). Such proportions are in the same order of those obtained from the McNeil 

samples (see Section 4.2.1.2). Moreover, the negligible deposition of sediment below fine sand agrees 

with results of riverbed substrate sampling (Table 4.3). 
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4.2.3.2 Sensitivity tests 

The model sensitivity to bed material mixing parameters was assessed through nine simulations 

carried out with nalt = 0.5-1-2 and c  = 0-0.5-1. The parameters controlling the total adaptation length 

were set to default. Mdep,tot increased almost linearly with increasing nalt; conversely, Mdep,tot decreased 

linearly with the increase of c (Figure 4.16). Mdep,tot ranged from 2,000 to 8,000 tons in the mentioned 

intervals of the parameters. Several simulations carried out with different nalt-c pairs were therefore 

capable of reproducing Mdep,tot similar to that estimated from field measurements. For example, the 

benchmark simulation (nalt = 0.55, c  = 0) and the simulation with nalt = 1.60, c  = 1 gave the same 

Mdep,tot. However, the spatial distribution of the deposits showed some differences (Figure 4.16), with 

the benchmark pattern more similar to the observed pattern upstream from S5 and in the final studied 

km. The maximum deposit thickness was 0.2 m for the benchmark simulation and 0.12 m for the 

other one (i.e. nalt = 1.60, c  = 1). The composition of the deposited sediments was affected by the 

variation of c but not by nalt, i.e. with c = 1 the grain-size was coarser than with c = 0 (very coarse 

sand formed 50% of the total deposited sediment, against 35% obtained in the benchmark simulation). 

Anyway, in both cases the deposition of particles smaller than fine sand was negligible. 

 

Figure 4.16. (a) Computed amount of sediment deposition (Mdep,tot) as a function of the parameters nalt and c. 

The horizontal line represents the field estimated value of Mdep,tot. (b) Computed depositional patterns varying 

the values of c and nalt. Note that c was set to 1 (upper limit) and 0 (lower limit) and the associated nalt 

(respectively 0.55 and 1.60) was calibrated to achieve the observed Mdep,tot. 

The model sensitivity to the variation of the next parameters was generally lower; for instance, 

the default value of the recovery factor for deposition ad  was 0.25; if ad is reduced to 0.05 keeping 

the other parameters as in the benchmark simulation, Mdep,tot decreases of about 10% from about 4,500 

to 4,000 tons. Conversely, if ad is set to 1, both Mdep,tot and the spatial depositional pattern are equal 

to those obtained from the benchmark simulation. Varying in the same way both the recovery factor 

parameter for scour ae (from 0.05 to 1 - default value), and the bedload adaptation length coefficient 

bL (from 0 - default value - to 10), did not significantly influence the numerical solution in comparison 

to the benchmark. Finally, the decrease of Manning’s coefficient n resulted, as expected, in a 

(a) (b) 
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reduction of the computed Mdep,tot. In particular, the decrease of n from 0.05 to 0.04 caused a reduction 

in Mdep,tot of about 10%, and the further decrease from 0.04 to 0.03 led to another comparable 

reduction. Worth to notice that the grain-size of the deposited sediment was not affected by the n 

value; in the three tested cases, deposits consisted of about 70% of very coarse and coarse sand. All 

the numerical simulations discussed in this subsection are summarized in Table 4.8, where the 

adopted parameters and the main output Mdep,tot are reported. 

Id 
Parameters Output 

nalt c n ad ae bL Mdep tot Difference 

(-) (-) (s m-1/3) (-) (-) (-) tons % 

Benchmark 0.55 0 0.04 0.25 1 0 4,490  

1 0.5 0 0.04 0.25 1 0 4,390 -2% 

2 1 0 0.04 0.25 1 0 5,530 23% 

3 2 0 0.04 0.25 1 0 7,660 71% 

4 0.5 0.5 0.04 0.25 1 0 2,800 -38% 

5 1 0.5 0.04 0.25 1 0 4,050 -10% 

6 2 0.5 0.04 0.25 1 0 6,820 52% 

7 0.5 1 0.04 0.25 1 0 1,780 -60% 

8 1 1 0.04 0.25 1 0 2,600 -42% 

9 2 1 0.04 0.25 1 0 5,690 27% 

10 1.16 1 0.04 0.25 1 0 4,490 0% 

11 0.55 0 0.05 0.25 1 0 5,070 13% 

12 0.55 0 0.03 0.25 1 0 3,890 -13% 

13 0.55 0 0.04 0.05 1 0 4,070 -9% 

14 0.55 0 0.04 1 1 0 4,410 -2% 

15 0.55 0 0.04 0.25 0.05 0 4,410 -2% 

16 0.55 0 0.04 0.25 1 10 4,460 -1% 

Table 4.8. Comparison between the benchmark simulation and the further sensitivity analysis simulations. The 

parameters varied compared to the benchmark simulation are in red. The reported output is the sediment mass 

deposited in the simulated reach at the end of the simulation (Mdep,tot). Percentage differences are computed 

relatively to the benchmark. Simulations 1-10 concern model sensitivity to the parameters controlling bed 

material mixing. Simulations 11-12 concern model sensitivity to the Manning’s parameter. Simulations 13-16 

concern model sensitivity to the parameters controlling the total adaptation length. 

4.3 Discussion 

4.3.1 Ecological impacts 

4.3.1.1 Characterization of the benthic and fish communities at BSs 

The macroinvertebrate assemblages at the BSs were congruent with those usually detected in 

regulated Alpine watercourses (Robinson et al., 2004; Monaghan et al., 2005; Espa et al., 2013). Most 

of the sampled families have adaptations enabling them to live in a disturbed environment (Matthaei 

et al., 1996). The S0 and S8 assemblages both varied seasonally, showing a summer contraction 

probably associated to insect life cycles and streamflow increase due to snowmelt. This contraction 
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was more prominent at S8, where streamflow during the snowmelt period was higher because of the 

larger residual basin (Quadroni et al., 2014). A similar contraction was recorded in the Alpine Roseg 

River in Switzerland when ice melting was at its maximum (Burgherr and Ward, 2001). 

Brown trout was the dominant fish species at the BSs, displaying densities considered good for 

Alpine water courses below 1500 m elevation (OFEFP, 2004), and larger than those reported for the 

Alpine rivers Spöl (Ortlepp and Mürle, 2003) and Ybbs (Unfer et al., 2011), in Switzerland and 

Austria, respectively. In spite of the fishing ban, the trout density was lower at S8 than at S0, probably 

because of differences in stream morphology (e.g. absence of refugia, such as boulders and pools at 

S8) and trout migration from S8 to the close Prestone Reservoir. The trout length structure was 

congruent with stocking and fishing activities; nevertheless, a bimodal distribution was usually 

recorded in the Ybbs River, where only low-scale catch and release fishery occurred (Unfer et al., 

2011). Beyond trout, bullhead were also caught at both BSs. Bullhead is a bottom-dwelling species 

listed in Annex II of the EU Habitats Directive (92/43/EEC) and is quite rare at the European level 

(Legalle et al., 2005). The larger bullhead density recorded at S8 than at S0 may again be explained 

by the differences in stream morphology (i.e. bullhead prefer riffles than step-pools, Vezza et al., 

2014). Moreover, the differences in stream morphology could have determined the differences in 

sampling efficiency. Comparable bullhead densities were found in the Alpine rivers Adda (Espa et 

al., 2015) and Reppisch (Utzinger et al., 1998), located in Italy and Switzerland, respectively. 

4.3.1.2 Ecological effects of the flushing operations 

Remarkable changes in streamflow and related hydrodynamic forces, sediment transport and 

riverbed morphology occurred at the BSs during and after the CSF from the Madesimo Reservoir. 

All of these physical factors were suggested to significantly influence both macroinvertebrate (e.g. 

Kennen et al., 2010; Jones et al., 2012; McMullen and Lytle, 2012; Buendia et al., 2014; Booker et 

al., 2015) and fish (e.g. Poff and Allan, 1995; Kondolf, 2000; Bilotta and Brazier, 2008; Chapman et 

al., 2014) communities. 

As expected, the impacts on the benthic communities measured at the three BSs were 

quantitatively different, as a response to quantitatively different degrees of stress. A short-term 

density reduction of 40% was observed at S0, which was only subjected to the diluting discharges. 

These effects seemed comparable with those commonly recorded during the seasonal streamflow 

increase due to snowmelt. A higher impairment (i.e. a density decrease of 80% and a change in 

community composition that recovered in about 9 months) was detected at S8, where the disturbance 

due to sediments, both transported and deposited, superimposed that of the diluting flows. However, 

the most severe impairment occurred at the site closer to the flushed reservoir, where almost all of 

the computed metrics dropped after the CSF, and the recovery was slower and still incomplete 1 year 
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after the operations. Although the fish results were more difficult to interpret because of trout fishing 

and stocking and difficulty in bullhead capture, they would seem to indicate the impairment of trout 

juveniles at the BS affected by the sediment increase.  

The flow and sediment effects will be discussed separately in the two following sections. 

4.3.1.3 Flow effects 

The significant reduction of the macroinvertebrate density and the change in the community 

structure after experimental peak flows were documented both in the laboratory channel (Mochizuki 

et al., 2008) and in the field (Robinson et al., 2004). McMullen and Lytle (2012) quantified that 

macroinvertebrate abundance was approximately halved within 10 days from flood events, with no 

substantial difference between natural and managed ones. Buendia et al. (2014) reported that the 

benthic community recovered within a few days after a 1-year flood that mobilized the riverbed of 

the Isabena River in the southern Pyrenees (Spain). Habitat complexity and the availability of low 

velocity microhabitats are key factors that enable both macroinvertebrates and fish to withstand 

floods. According to Wilcox et al. (2008), benthic organisms can better resist high flows in streams 

organized into alternating sequences of steps and pools. Thompson et al. (2011) only detected a slight 

brown trout displacement, mainly of 0+ individuals, after a pulse flow from 0.5 to 18.5 m3/s in a 

bedrock reach of the Silver Creek in California (United States), characterized by a large number of 

flow refugia. All of these findings may explain both the moderate density reduction of benthos and 

the absence of relevant effects on fish at S0, where the diluting flows released during the CSF were 

approximately 25 times larger than MF. For the same reasons, the higher effects of the streamflow 

increase alone can be hypothesized at S8, where the stream morphology was poorer. There, the 

estimated average bed shear stress increased from 12 Pa at MF to 80 Pa during the CSF (estimated 

using the open-channel uniform-flow basic formulae for wide rectangular cross sections with a 

Manning’s coefficient of 0.04 m1/3 s as suggested by Arcement and Schneider (1989) for straight and 

stable channels with cobble substrate). An increase in bed shear stress from 0.1–7 to 40 Pa (i.e. over 

the sediment entrainment threshold) was associated with an average increase in the mayflies drift rate 

(by a factor of 35) on patches of sandy bed material in an upland gravel-bed stream (Ribera Salada) 

in the Catalan Pre-Pyrenees (Spain) (Gibbins et al., 2010). 

4.3.1.4 Sediment effects 

The sediment effects due to the CSF on the benthic community can be schematically divided 

into short term and long-term ones. The former are associated with the significant increase in 

sediment load that can trigger several responses (Jones et al., 2012). The most immediate response is 

an increase in macroinvertebrate drift and a subsequent depletion of the benthos assemblage. The 

long-term effects are associated with the sediment deposition after the CSF, which can determine a 
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reduction in the periphyton food supply (Luce et al., 2013) and persisting habitat alteration (Jones et 

al., 2012), thus tangling the recolonization of the benthic taxa. In our case study, both effects were 

strictly associated to the streamflow increase during the CSF. In fact, as mentioned earlier, the 

streamflow increase could have determined the increase of the benthic drift during the CSF. However, 

the diluting flows reduced both the sediment load and the sediment deposition, and, therefore, their 

negative effects on the benthic assemblage. The detectable impacts of the sediment load on 

macroinvertebrate communities may occur at SCs and deposition considerably lower than those 

reported in this study. García Molinos and Donohue (2011) found that a 3-h pulse of approximately 

0.20 g/l SSC, repeated for 5 consecutive days, determined significant macroinvertebrate drift in a 

headwater stream (River Liffey) in County Wicklow (Ireland). A similar result was obtained by 

Larsen and Ormerod (2010) after the addition of approximately 4–5 kg/m2 of fine sand in two 

headwater tributaries of the Usk River in Wales. In addition, Larsen et al. (2011) found a taxon-

specific response to the addition of 0.6–18 kg/m2 of inert sand to the riverbed. Filter feeders, 

swimmers and k-selected taxa with gill respiration and requiring attachment to the substrate (e.g. 

Baetidae and Heptageniidae) were affected, while fine detritus feeders, burrowers and taxa with 

tegumental respirations and shorter life cycles (e.g. Chironomidae and Oligochaeta) were favoured. 

Accordingly, at M1, after the CSF, some Oligochaeta families appeared or increased in abundance. 

Moreover, at S8, the increase in the sand content in the riverbed substrate probably supplied 

Limnephilidae with the suitable materials for the construction of their cases (Statzner, 2011). 

Commonly drifting taxa (i.e. Chironomidae and Leuctridae) rapidly recovered at both the sediment-

impacted sites, possibly recolonizing via incoming drift. Although at S8 the community recovery was 

faster than at M1, because of the lower disturbance, at both BSs, Nemouridae and Heptageniidae did 

not regain their pre-CSF densities after 1 year from the operations. Espa et al. (2013) found the same 

result for Heptageniidae (Ecdyonurus and Rhithrogena), while the opposite situation was detected in 

the case of Nemouridae (Protonemura). This discrepancy could be ascribed to the higher taxonomic 

resolution adopted by Espa et al. (2013) and highlights the importance of the macroinvertebrate 

identification to species level, as suggested by Monk et al. (2012). 

Fish showed more resistance than benthos to transported and deposited sediments. Chapman et 

al. (2014), in their recent meta-analysis, did not find a significant association between fish abundance 

and sedimentation. Adaptive responses to sediment pulses may prevent fish from dying (Michel et 

al., 2013). However, SC values recorded at S8 could have caused the density reduction of trout 

juveniles. This result agrees with the findings of Espa et al. (2013), which reported the contraction of 

trout juveniles after 2 weeks of 3-4 g/l average SSC in the Alpine Roasco Stream in Italy. Moreover, 

the documented increase of the sand content in the S8 substrate could have interfered with trout 
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spawning. In fact, the proportion of sand in the substrate that is critical for salmonid embryos and 

eggs was estimated at approximately 10–15% (Lapointe et al., 2004; Louhi et al., 2008). 

4.3.1.5 Management consideration 

The EU policy on energy and environment is currently focused on the increase in the use of 

renewable energy sources and on the sustainable management of natural resources. All EU member 

states have to contribute to the increase in the use of renewable energy sources, up to 20% of the 

overall community energy consumption, by 2020 (Directive 2009/28/EC). Additionally, all European 

watercourses must achieve good ecological status or potential (i.e. a slight deviation from a type-

specific reference condition) by 2027 (WFD). 

Sustained long-term preservation of reservoir storage is crucial to maintain the current 

hydropower production in the Alps, where many reservoirs are more than 50 years old. Therefore, 

the current challenge is to tackle reservoir siltation while respecting WFD constraints on the 

ecological quality of the downstream freshwater ecosystems. 

In this case study, clear water releases from the Isolato Reservoir considerably reduced the 

ecological impacts of the CSF from the Madesimo Reservoir on the downstream Liro River. The 

STAR_ICMi stream quality detected at S8 remained high after the CSF. On the contrary, at M1, 

where the sediment stress was markedly higher, a quality decrease from good to moderate was 

measured. 

However, care should be taken when evaluating the ecological stream quality through the 

STAR_ICMi. In fact, as previously observed by Espa et al. (2015), this multi-metric index would 

seem to overestimate the status of the benthic community in certain circumstances. Indeed, it assigns 

a relevant weight to metrics associated with organic pollution, which was not of concern in the 

investigated area. Moreover, it only takes into account the relative abundance of the sampled families; 

for example, the STAR_ICMi quality of the M1 post-CSF sample was moderate, although the total 

density was only 9 ind/m2. A more adequate index should be developed to specifically evaluate the 

sediment pressure in the Alpine context, following the example of Extence et al. (2013). 

4.3.2 Numerical modelling for sediment flushing 

4.3.2.1 Use of numerical modelling 

Sediment dynamics inside reservoirs have been frequently analysed by 1-D sediment transport 

models, including sedimentation and desilting by flushing, with the main focus on predicting the 

efficiency of different operating rules. For instance, pressure flushing operations were simulated in 

the Sefid-Roud Reservoir in Iran (Khosronejad, 2009) and in the Lewis and Clark Lake in the US 

(Ahn et al., 2013). Similarly, Valette and Jodeau (2012) simulated various drawdown scenarios of the 

Tolla Reservoir (France) to predict the resulting sediment loads. 
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More refined three dimensional (3-D) numerical models were also employed with analogous 

purposes (Haun et al., 2012a). The spatial distribution of erosional and depositional areas during free 

-flow flushing operations was investigated by mixing lab-scale experiments and 3-D modelling in the 

Kali Gandaki Reservoir in Nepal (Haun et al., 2012b) and in the Dashidaira Reservoir in Japan 

(Esmaeili et al., 2014). Additionally, full scale 3-D simulations of free-flow flushing operations 

performed in the Angostura (Costa Rica) and in the Dashidaira reservoirs were respectively carried 

out by Haun et al. (2012a) and Esmaeili et al. (2015). The comparison with bathymetrical data 

acquired during the operations highlighted the need for further improvement in the modelling of bank 

stability and erosion of cohesive sediment to increase the accuracy of the results. 

Only recently, research on reservoir desiltation has been directed at understanding the 

downstream environmental effects of sediment flushing operations (Morris, 2014). An interesting 

attempt to numerically assess the compatibility of sediment flushing was performed by Gallerano and 

Cannata (2011). As a first step, they calculated a target sediment load of 25 g/l by modelling the 

sediment transport in the catchment of the Pieve di Cadore Reservoir in Italy during a 10-year flood. 

Then, they applied a 3-D model to simulate pressure flushing operations in the reservoir, thus 

determining the appropriate discharge to outflow the target sediment load. Authors reported that 

downstream fish population could withstand this sediment load without significant losses according 

to the N&J dose/response model. However, the downstream geomorphic effects of the investigated 

sediment flushing were not explored. 

Only some papers deal with sediment transport downstream of reservoirs desilted by sediment 

flushing, using both numerical and experimental approaches. Brandt and Swenning (1999) reported 

a detailed field investigation on the geomorphic effects of a 2-day free-flow flushing operation in the 

Cachí Reservoir in Costa Rica, where a suspended sediment load of over 850,000 tons was measured, 

with SSC peaks of up to 200 g/l. More recently, Liu et al. (2004a, b) reported on two free-flow 

flushing operations involving two dams in cascade: Dashidaira and Unazuki (Japan). Riverbed 

dynamics were modelled with a 1-D model, and a good agreement was generally found between 

numerical data and field measurements of SSC and erosional/depositional patterns. The study focused 

basically on particles smaller than 0.02 mm in diameter, which accounted for the vast majority of the 

total load, and a SSC peak of 100 g/l was measured downstream of the Dashidaira Dam (i.e. the most 

upstream one) during coordinated sediment flushing. Overall, compared to our study case, the 

flushing operations reported by Brandt and Swenning (1999) and Liu et al. (2004a, b) displayed 

significantly larger Q (100-500 m3/s), and SSC peaks were at least an order of magnitude higher than 

those estimated for the Madesimo CSF. Furthermore, the implementation of mitigation measures and 

the related ecological effects of the flushing operations were not reported. In contrast, for the CSF at 
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the Madesimo Reservoir, the SSC of the sluiced water was controlled, and ecological surveys were 

carried out to assess the impact on downstream biota. Analogous investigations of the downstream 

environmental effects of CSFs from reservoirs located in Lake Como catchment are provided by Espa 

et al. (2013, 2015). In these cases, the efficiency of sediment removal was constrained by the 

environmental measures enforced by regional Authorities, such as the SSC limit, implemented to 

minimize downstream effects (see Section 6.3). Average allowable SSC from 1.5 to 4 g/l were 

basically derived using the N&J model (see Section 6.1), as in case of the Madesimo study. Similar 

limits on SSC were also set to manage the environmentally friendly flushing from the Genissiat Dam 

(France) described by Peteuil et al. (2013) (see Section 6.2). It is worth noting that in our case, SSC 

thresholds did not fully meet the standards for riverine ecosystem protection mainly because of the 

sand (which was detected through turbidity measurements only marginally) that was sluiced from the 

dam.  

In addition to the downstream geomorphic effects occurring shortly afterwards the sediment 

flushing, the time required to recover the pre-release conditions in the perturbed channels was also 

examined. For instance, Wohl and Cenderelli (2000) presented the geomorphic effects of a sediment 

release from the Halligan Reservoir in the US on the downstream pool and riffle channel. About 7,000 

tonnes of silt and sand were deposited mostly in pools and whole runoff of the year after was needed 

to remove them. Moreover, two reaches were surveyed in detail and numerically investigated using 

1-D sediment transport models (Rathburn and Wohl, 2001; 2003); the simulation of the recovery of 

the pools highlighted the need of detailed field observations to perform reliable model calibration. 

4.3.2.2 Modelling of the Madesimo dam flushing event 

Overall the 1-D approximation can be considered adequate to replicate the depositional pattern 

observed after the investigated CSF. In fact, the deposited sediment resulted rather uniformly 

distributed throughout the cross sections. This pattern can be explained by the simple shape of the 

cross sections, approximately rectangular, and by the channel morphology, mostly straight. 

The river’s transport capacity of non-cohesive sediments was computed by Yang’s unit stream 

power formulas for sand (1979) and for gravel (1984). Yang’s unit stream power formulae were used 

by Rathburn and Wohl (2001) to simulate pool scouring (see Section 4.3.2.1), giving satisfactory 

results. More recently, Ahn et al. (2013) used Yang’s sand equation and extended the equation to 

cohesive sediment to numerically model sediment flushing (see Section 4.3.2.1). Yang (2006) found 

that the accuracy of Yang’s unit stream power formulas was less sensitive to the variation of some 

parameters, such as the relative depth, the Froude number and the sediment load, in comparison to 

the other tested formulas. Moreover, they are appropriate for supercritical flows. López et al. (2014) 

tested the predictive power of ten bed load formulas against bed load rates observed in a large 
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regulated river (Ebro River, Spain), where they found that the Yang (1984) formula gave one of the 

best performances and that it was not as sensitive as other formulae to grain-size. 

In the case of the Madesimo study, only a first-approximation scheme was adopted to model 

some elements, particularly the riverbed grain-size distribution. As it is well known (e.g. Bunte and 

Abt, 2001), quantitatively describing river-bed material in gravel- and cobble-bed streams is a rather 

complicated task, and the user is frequently required to make a number of informed decisions that 

depend on the objectives of the study and the conditions of the stream. Indeed, our case study was 

characterized by coarse river bed substrate and sediment transport composed mainly by materials 

finer than gravel, with no observed scouring; the choice was thus to adopt a basic representation of 

the river bed (see Section 4.1.5.2). 

After the calibration of the parameters, we detected significant agreement between the observed 

and the calculated depositional patterns. It is worthy to remark that the volume of sediment deposited 

downstream of the reservoir was estimated through measurements of deposit thickness with a 

graduated rod. Even though this technique has been commonly used to measure the fraction of pool 

volume filled with fine sediments (e.g. Hilton and Lisle, 1993), it only provides basic estimates of the 

actual deposition, thus potentially affecting model calibration. In the case of the Liro River we 

believe, however, that the major source of uncertainty is most likely related to the limited number of 

monitoring sites. Nonetheless in some sites the thickness was only few centimetres and, therefore, 

the uncertainly of the estimates is of the same order of the magnitude of the measurement error. 

Overall, our investigation indicates that the SRH-1D model can effectively support the further 

planning of analogous CSF, provided that a careful calibration of the parameters is performed using 

site-specific data. In particular, the sensitivity analysis highlighted the predominant effect of the bed 

material mixing parameters nalt and c on the numerical solution. Conversely, the parameters 

controlling the adaptation length (i.e. ad, ae and bL) did not influence significantly our numerical 

output, only ad slightly affecting the solution. Moreover, the variation of n, at least within the range 

suited for the study channel, did not affect substantially our computational solution. In contrast, Lai 

and Greimann (2011) ran long-time simulations of a basically erosional case (Tachia River, China, 

downstream of the Shih-Gang Dam) by SRH-1D, finding higher sensitivity of the computed amount 

of eroded sediment to Manning’s coefficient (which was varied in the same range of our simulations) 

than to the parameters nalt and c. A prevailing role played by Manning’s coefficient was also 

underlined by Ruark et al. (2011), who simulated a lab depositional case study by SRH-1D. On one 

hand, this fact could be explained by the relatively wide range considered in the investigation (i.e. 

0.015-0.065). Moreover, the very comprehensive sensitivity analysis performed by those authors to 
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evaluate the effects of varying the model parameters on the computed bed elevation, revealed a 

complex interaction and a comparable influence of nearly all the investigated parameters. 

Finally, it should be underlined that the simulations well reproduced the negligible deposition 

of very fine sediment, i.e. with diameter roughly below 0.1 mm, irrespectively from the parameters 

values. This peculiarity, documented in the field, is a relevant aspect of our investigated CSF: in fact, 

as it has been well established (e.g. Kemp et al., 2011; Owens et al., 2005), streambed clogging by 

very fine sediment can be critical for freshwater habitats, thus justifying the current research efforts 

concerning fine sediment dynamics (Smith et al., 2015). 
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5 Hydraulic dredging from Ambiesta Reservoir 

This chapter reports on the hydraulic dredging of the Ambiesta Reservoir This operation was 

carried out for a total of 68 days during high flow season. The SSC in the downstream river was 

controlled regulating the amount of pumped sediment and the diluting water flow. The hydraulic 

dredging at the Ambiesta Reservoir was expensive; however, it allows restoring the safety operations 

of the bottom outlet without interfering with the normal reservoir operation.  

5.1 Materials and methods 

5.1.1 Study area 

The Ambiesta Reservoir is located in North-Eastern Italy within the southern edge of the Alps 

(Figure 5.1). The Ambiesta Dam was closed in 1959 and impounds the Ambiesta River 6.0 km 

downstream of its springs and 4.8 km upstream its inlet into the Tagliamento River, the last 

morphologically intact river in the Alps (Tockner et al., 2003). The dam crest is at 486.5 m AMSL, 

the power intake at 444.8 m AMSL. The Ambiesta project comprises a surface spillway at 481 m 

AMSL (equipped with a 3 m high and 8 m long flap gate, Figure 5.2) and a 2.5 m diameter bottom 

outlet at 433.2 m AMSL. Both these structures bypass water from just upstream of the reservoir into 

the Ambiesta River by means of few hundreds meter long galleries. A further bottom outlet, a 1.2 m 

diameter pipe, is located into the body of the dam at 432.8 m AMSL. The original gross and effective 

storage capacity of the reservoir were 3.885 × 106 m3 and 3.132 × 106 m3, respectively. A 2011 

reservoir bathymetry indicated a historical loss of gross storage capacity of 0.535 × 106 m3. According 

to the estimates provided by the company managing the hydropower system in the area, the average 

annual rate of storage loss is less than 0.2%.  

The catchment area at the Ambiesta dam is 9 Km2. The diversion of water released from the 

Ampezzo HPP (55 MW installed capacity, 455 m effective head, Figure 5.1) and from numerous 

other intakes located in the surrounding streams (i.e. Lumiei, Tagliamento and Degano rivers) 

increases the catchment area up to 647 km2. The basin develops in the Alpine and pre-Alpine area of 

Friuli that mainly consists of limestone, calcareous flysch and molasse (Tockner et al. 2003) and is 

characterized by minor anthropogenic activities. 

The Ambiesta Reservoir performs the daily regulation of the incoming water volumes, thus 

feeding the Somplago HPP (166 MW installed capacity, 280 m effective head) that drains water into 

Lake Cavazzo (18.75 × 106 m3). This lake has a small catchment (i.e. 9 km2) and is mainly fed by the 

water released by the Somplago HPP. The size of sediment deposited into the Ambiesta Reservoir is 
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mostly fine-grained (80% silt and 20% clay) as a result of the peculiarities of the water supply (water 

is sand trapped at intakes or is provided by the Lumiei Reservoir). 

 

Figure 5.1. Study area. Location in Italy and in the Tagliamento basin. Main tributaries, water ducts (dashed 

lines), hydropower plants (HPPs- red triangles), reservoir (R.) and monitoring sites (S1 and S2). 

 

Figure 5.2. (a) Ambiesta dam and (b) its surface spillway (outside the body of the dam). 

Flow regime is influenced by both spring snowmelt and autumn precipitation, thus showing a 

bimodal flow pattern with peaks in May and October. The mean annual inflow at Ambiesta Reservoir 

is ca. 15 m3/s, 20% of which consists of water discharged by the Ampezzo HPP. No flow is released 

downstream of the dam; the mean annual flow of the Ambiesta River at Tagliamento inlet is 0.4 m3/s 

thanks to the water drained from the residual basin (i.e. 4.7 km2). 

(a) 
(b) 
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The Ambiesta River downstream of the Ambiesta Reservoir flows for approximately 3.3 km 

mainly through a deeply incised canyon characterized by step-pool morphology (Montgomery and 

Buffington, 1997) and average slope of 0.039. Access is rather difficult, except for the final 1.7 km 

where the profile is smoother with average slope of 0.004. This part has a pool-riffle morphology.  

5.1.2 Dredging operation 

The 2014 hydraulic dredging of the Ambiesta Reservoir was planned to remove 25,000-35,000 

m3 of sediments burying the bottom outlets. The dredging area was defined in 5,000-6,000 m2. This 

operation was carried out without interfering with the normal reservoir operation. The hydraulic 

dredges system consisted in a hull equipped with suction pipeline that picked up the sediment 

dislodged by the cutter-head thanks to a submerged ladder pump. The sediment pumped from the 

reservoir bottom were transported towards the surface spillway by means of a polyethylene pipe 

provided with floats (Figure 5.3). The sediment, together with the dilution water flow, were then 

discharged to the Ambiesta River through the bypass gallery. The pumping system was designed for 

discharging 0.04-0.08 m3/s with a solid concentration of 200-300 g/l. The water discharge used for 

dilution purpose and for increasing the downstream transport capacity was fixed in at least 1.6 m3/s.  

 

Figure 5.3. Hydraulic dredging. The sediment mixed with water was discharged through the surface spillway 

to the Ambiesta River. 

The months of October and November were selected accounting for the high water availability 

(see Section 5.1.1) and environmental requirements. In particular, the trout spawning period 

(December-February) and the spring (i.e. when trout are in their early life-stage) were avoided. 

Furthermore, the high flow period in April-May was also excluded for not reducing the water 

availability for the irrigation occurring in the following months. 

As reported for the sediment flushing operations in the previous chapters, an SSC limit was set 

applying the N&J dose/response model. Similarly to the sediment flushing operations at Cancano 

Reservoir (see Section 3.1.2), a SEV of 11 was accepted corresponding to a fish mortality of 20-40%. 
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Accounting for 60 days duration, the SSC threshold was fixed to 1.5 g/l at S2, a Tagliamento River 

reach located 2.7 km downstream of the Ambiesta confluence (Figure 5.1).  

5.1.3 Sediment monitoring 

Optical turbidimeters (Lange Controller SC100®) were installed to continuously record SSC 

and OD at S1 (3.7 Km downstream of the dam) and S2 (Figure 5.1). The turbidimeter was factory 

calibrated with a suspension of Fuller’s earth and provided an SSC output (a mean value each 15 

minutes with 3 Hz sampling frequency). The probe was supported by a steel frame installed on the 

stream bank. Water and sediment samples were collected during the first two days of operation to 

calibrate the turbidimeters in-situ. These samples were randomly taken during daytime as close as 

possible to the probes by means of 1-liter handheld buckets (n=13 at S1 and n=11 at S2). The SSC of 

these samples was measured in the lab using the Standard Method 2540 D-F (APHA et al., 2005). 

The raw SSC data (SSCTUR) were correlated to the corresponding lab data (SSCLAB) and linear 

functions (SSCLAB=A* SSCTUR), one per station, were obtained through standard least-squares fitting. 

The agreement between the two measures was generally good and determination coefficient R2 

typically exceeded 0.96. The coefficients (A) of the linear functions were then used to modify the 

factory calibration curve of the turbidimeters in order to have reliable real-time SSC output. The total 

amount of removed sediment was assessed through ADCP bathymetric surveys in the reservoir 

carried out before and after the dredging operation.  

5.1.4 Riverbed sampling 

The accessible part of the Ambiesta River (see Section 5.1.1 and Figure 5.4) was surveyed by 

visual inspection in order to examine the riverbed alteration one month before and after the dredging 

operation. Riverbed sampling was performed at three transects, approximately 20 m equally spaced: 

S1A, S1B and S1C (from upstream to downstream). The most downstream transect S1C is located 

ca. 100 m upstream of S1. A pebble count (as per Wolman, 1954) was performed between S1A and 

S1C to determine the bed surface grain distribution (Figure 5.4). The representative percentiles D16, 

D50 and D84 were 8 mm, 17 mm and 51 mm, respectively. Each transect was sampled in three points, 

two about one meter from the river edge and one in its centre. The silt/clay content in the uppermost 

layer of the riverbed was detected through the resuspension technique reported in the Section 3.1.3 

by means of a McNeil corer. In the post-dredging survey, care was taken to sample the riverbed in 

the same points as in the pre-dredging survey. Furthermore, volumetric riverbed sampling was 

performed at each transect close to the central point already collected. Sampling was carried out using 

a 0.6 m high cylinder with a 0.5 m diameter. Water depth at the sampling points ranged from 0.1 to 

0.25 m. Particles larger than 31.5 mm were measured and weighted in the field. All three axes were 
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measured and the corresponding sieve diameter was estimated from the particle intermediate and 

shortest axis dimensions (Bunte and Abt, 2001). The remaining subsamples of 4.5-7 kg were dried 

and sieved in laboratory. Overall, the analysed samples weighted 10-25 kg. As indicated by Rex and 

Carmichael (2002), one litre of turbid water was also collected after the removal of core samples to 

take the finer materials into account (see Section 4.1.3).  

    

Figure 5.4. Monitored Ambiesta River just upstream of S1. (a) Photos taken before the dredging at S1 and (b) 

cumulative size distribution from Wolman pebble counts. 

5.1.5 Biomonitoring 

The impact of dredging from the Ambiesta Reservoir on the downstream aquatic ecosystem 

was evaluated through a pre-post monitoring of benthic macroinvertebrates and fish communities at 

S1. Benthic macroinvertebrates were collected one time before the dredging operation (in September 

2014, i.e. pre-dredging sample) and three times after the works (in January, April and October 2015, 

i.e. post-dredging samples). Fish were sampled in September 2014 in a reach of approximately 1,700 

m2 to assess the community before the operations and then were removed to avoid a relevant fish 

mortality. However, to depict the recolonization of the monitored stream reach, fish sampling was 

also carried out after the works (i.e. in April and October 2014). The sampling procedures and data 

analysis were the same adopted for evaluating the sediment flushing effects (see Section 4.1.4).  

5.2 Results 

5.2.1 The hydraulic dredging operation and sediment monitoring 

The dredging operation was carried out between the October 2nd and December 12th 2014, for 

a total of 68 days without affecting the ordinary hydropower production at Somplago HPP. The 

sediment removal was interrupted for two days (November, 5th and 6th) due to heavy rainfall. During 

this event, a daily maximum precipitation of 285 mm was measured at Ambiesta Dam (see Figure 

(a) (b) 
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5.5). The operation allowed to remove a total sediment volume of sediment of 30,600 m3, estimated 

through bathymetric survey.  

 

Figure 5.5. Time histories of daily average SSC at S1 (AVE S1) and S2 (AVE S2), SSC threshold at S2 (LIM 

S2) and daily precipitation height measured at Ambiesta Dam (hprec). 

 

The Q released from the surface spillway of the dam did not change significantly neither during 

the day nor in the course of the dredging operation. In particular, Q generally ranged between 1.7 and 

1.8 m3/s; higher Q were discharged only during the two days that followed the above mentioned 

precipitation with mean and maximum daily value of 2.6 m3/s and 4 m3/s, respectively. 

 

Figure 5.6. Example of time histories of hourly averaged SSC at S1 and S2.  

 

The SSC pattern detected downstream of the dam showed regular daily pulses in response to 

the dredging activities (Figure 5.6). At S1, SSC peaked 2-8 g/l during daytime, dropping to less than 

0.1 g/l during night-time (Figure 5.6). The daily averaged SSC at S1 was lower than 1.6 g/l; the 

maximum hourly SSC was generally 2-6 times higher than the daily averaged SSC (Figure 5.5). The 

SSC averaged on the whole operation was 0.9 g/l at S1. At S2, SSC was usually approximately 2/3 

lower than at S1 with peaks less than 1-2 g/l during the days without precipitation. On the other hand, 

the rainfall clearly influenced the SSC at S2 (Figure 5.5). In particular, the daily average SSC at S2 

during the rainy days was about twice higher than in the sunny days. This relevant SSC increase was 

not recorded at S1 due to the smaller natural catchment (see Section 5.1.1). Comparing the SSC 
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threshold of 1.5 g/l with the daily average SSC at S2, the limit was exceeded only during the two days 

of heavy rainfall when the dredging operation was interrupted (Figure 5.5, see Section 5.1.2). The 

SSC averaged on the dredging days was 0.3 g/l at S2 that is significantly lower than the mentioned 

threshold. In particular, SSC higher than 1.5 g/l was measured ca. 1.5% and 15% of the operation 

time at S2 and S1, respectively (Table 5.1). The SSC average on the whole operation at S1 was 0.9 

g/l. 

 

Figure 5.7. Time histories of daily averaged SSC (continuous line) and maximum hourly SSC (dashed lines) 

at S1 for the 2014 dredging operation. 

 

SSC-g/l 5 4 3 2 1.5 1 0.5 0.1 0.05 0.01 

Dur S1-% 0.5 0.9 2.0 6.4 15.4 37.5 61.8 85.3 95.2 100.0 

Dur S2-% 0.0 0.0 0.2 0.6 1.5 5.7 18.8 72.5 83.2 97.8 

Table 5.1. Duration of SSC at S1 and S2. Duration (Dur) is expressed as percentage of the overall operation 

time. 

 

5.2.2 Riverbed sampling 

Photographs of the three monitored transects (i.e. S1A, S1B and S1C) are provided in Figure 

5.8, Figure 5.9 and Figure 5.10, respectively. Silt/clay deposits were not observed at these sections. 

Occasional silt/clay deposits were found in the rest of the surveyed reach, presumably in areas wetted 

during the flood or characterized by slow flow during the dredging operation. 
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Figure 5.8. Photos taken one month (a) before and (b) after the dredging operation at S1A. 

  

Figure 5.9. Photos taken one month (a) before and (b) after the dredging operation at S1B. 

(a) (b) 

(a) (b) 
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Figure 5.10. Photos taken one month (a) before and (b) after the dredging operation at S1C. 

Grain-size distribution of the volumetric samples are provided in Figure 5.11. The percentage 

of silt/clay in the pre-dredging samples ranged between 0.1% and 0.4%. This percentage increased of 

approximately 1% in two (i.e. S1A and S1B) of the three sampling sampled transects; in the last one 

(i.e. S1C) it remained constant. The silt/clay content (mass per unit area) ranged from 0.11 to 0.35 

kg/m2 and from 0.27 to 1.06 kg/m2, respectively in the pre and post-dredging samples collected with 

the resuspension technique (Table 5.2). The increase per unit area varied between 0.24 and 0.7 kg/m2 

as transect average. 

 

Figure 5.11. Grain size distribution of the McNeil samples at S1A, S1B and S1C. 

  

(a) (b) 
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section 
sample  

position 

Silt/clay content – 

kg/m2 

difference – 

kg/m2 

average difference –  

kg/m2 Pre Post Post-Pre Post-Pre 

S1A 

right 0.14 0.66 0.52 

0.27 center 0.29 0.32 0.03 

left 0.20 0.46 0.26 

S1B 

right 0.28 0.50 0.22 

0.24 center 0.35 0.27 -0.08 

left 0.13 0.73 0.60 

S1C 

right 0.13 0.84 0.71 

0.70 center 0.11 1.06 0.95 

left 0.27 0.73 0.46 

Table 5.2. Silt/clay content in the uppermost layer of the riverbed of the three monitored transects. Pre and 

Post indicate the sampling respectively carried out one month before and one month after the 2014 dredging 

operation. 

5.2.3 Biomonitoring 

The pre-dredging community of benthic macroinvertebrates collected at S1 was composed 

mainly of Coleoptera Elmidae, Plecoptera Leuctridae, Ephemeroptera Baetidae and Diptera 

Athericidae, Limoniidae and Chironomidae (Table 5.3).  In the sample just after dredging, no relevant 

density reduction occurred while a non-negligible decrease in family richness (i.e. N families) and 

diversity (i.e. Shannon-Wiener) was detected (Table 5.4). Indeed, the first post-dredging sample was 

composed of 15 families with the dominance of only two taxa, Elmidae and Trichoptera 

Hydropsychidae (Table 5.3). However, an almost complete recovery of the benthic community 

occurred in spring, when some taxa (i.e. Baetidae and Ephemerellidae) boomed probably due to their 

life-cycle (Table 5.3). The Plecoptera Leuctridae and Diptera Athericidae appear the only taxa that 

did not recover the pre-dredging densities after one year from the monitored event (Table 5.3). 

Although these changes in the benthic communities, the quality, defined through the 

STAR_ICMi, remained good for all the study period (Table 5.4). 

As fish monitoring, before the dredging event the community was mainly composed of brown 

trout (Salmo trutta trutta) and bullhead (Cottus gobio) (Table 5.5). However, in the first post-dredging 

sample a community similar to the pre-flushing one was detected indicating that fish habitat 

conditions were not affected (i.e. that negligible substrate alteration due to sediment deposition 

occurred) (Table 5.5). 

  



79 

  2014 (Pre) 2015 (Post) 

Taxon Family September  January April  October 

Plecoptera Leuctridae 90 7 3 27 
Nemouridae 14 1 8 1 

Ephemeroptera Baetidae 87 0 749 194 
Ephemerellidae 2 0 432 1 

Trichoptera Hydropsychidae 34 157 46 46 
Rhyacophilidae 2 0 14 3 

Coleoptera Elmidae 154 268 186 195 

Diptera 

Chironomidae 70 10 131 52 
Athericidae 90 15 40 31 
Simuliidae 13 0 130 22 
Limoniidae 10 15 33 17 

Oligochaeta Lumbriculidae 11 13 10 6 
Other taxa - 39 10 117 21 

Table 5.3 Composition of the benthic macroinvertebrate communities collected at S1 before and after 

dredging. Density (individuals/m2) is reported for each family sampled. 

 

 2014 (Pre) 2015 (Post) 

Metric September January April October 

Density (ind/m2) 616 496 1899 616 

N families 28 15 25 24 

EPT 13 10 10 11 

Shannon-Wiener 2.26 1.27 1.89 1.92 

STAR_ICMi 0.89 (G) 0.76 (G) 0.80 (G) 0.79 (G) 

Table 5.4 Metrics relative to the structure of the benthic macroinvertebrate communities collected at S1 before 

and after dredging. 

 

 2014 (Pre) 2015 (Post) 

Fish species September April October 

Brown trout 140 146 82 

Bullhead 170 105 170 

Table 5.5 Main fish species collected at S1 before and after dredging. Density (individuals/ha) is reported for 

each species sampled. 
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5.3 Discussion 

5.3.1 Dredging monitoring and management consideration 

Dredging in lakes and reservoirs is mostly performed to construct and maintain commercial 

navigation. Dredging in reservoirs not used for navigation rarely involves more than 1 × 106 m3 of 

sediment removal per site (Morris and Fan, 1997). This is focused on the cleaning of specific areas 

such hydropower intakes and bottom outlets due to the high costs (Morris and Fan, 1997). These costs 

induced to analyse other cheaper sediment strategies. For example, Ji et al. (2011) studied the 

possibility of replacing dredging at the Nakdon River Estuary Barrage (South Corea) with sediment 

flushing. However, an interesting application of reservoir dredging is the creation of a bottom channel 

in order to facilitate the transfer of turbidity currents during floods (Boillat et al., 2000). 

The hydraulic dredging at the Ambiesta Reservoir was mainly carried out for restoring the 

safety operations of the bottom outlets. The operation was then oriented to the removal of a specific 

volume (i.e. ca. 30,000 m3 of sediment) within a defined area. The Ambiesta Reservoir is an off-

channel reservoir (Kondolf et al., 2014a) and is generally filled with diverted water with low sediment 

concentration of very fine sediment (i.e. silt/clay). Even if dredging is expensive compared to 

sediment flushing operation, it was selected because it allows to maintain the ordinary operation of 

the Somplago HPP that has been the most important source of water for Lake Cavazzo since the dam 

construction. Furthermore, it was not possible to perform a sediment flushing operation during high 

flow season due to the low capacity of the bottom outlets buried by the sediments. The cost of the 

dredging operation may be estimated in ca. 55 €/m3 including the dredging works and the loss of 

hydropower. In particular, the cost of the dredging works accounted for ca. 70% of the sediment 

removal cost. Morris (2014) reported dredging costs of 5-15 $/m3 expected for 2013. This relevant 

difference is likely due to the small amount of sediment removed and the need to release water for 

dilution purpose (i.e. overall 9.9 × 106 m3) for a long period (i.e. 68 days). The ratio between the 

volume of removed sediment and the volume of water used was 0.003. This value is in the range 

found for the CSFs performed in the Lake Como catchment in the last decade (see Section 6.3). 

The SSC in the downstream river could be completely controlled during a hydraulic dredging 

operation regulating the amount of pumped sediment and of water used for dilution. On the contrary, 

SSC control during CSF operations could be difficult in some phases as reported for the Cancano 

CSFs (see Section 3.2.1). In this case study, the SSC limit of 1.5 g/l, fixed at S2 along the Tagliamento 

River, was largely respected (see Section 5.2.1). The SSC averaged on the whole period was 0.3 g/l 

at S2. Using this value, the SEV value computed by the N&J model was 10, reducing the predicted 
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fish mortality to 0-20%. Computed SEV at S1 was ca. 10.6 that corresponds to a fish mortality 

between 0-20% and 20-40%. 

The SSC was calibrated in-situ in order to improve the reliability of the SSC records used for 

managing the dredging operation. For this purpose, the samples collected had a SSC lower than 1.5 

g/l and 0.5 g/l at S1 and S2, respectively. SSCs higher than these values were recorded for the 15-

20% of the overall operation time (Table 5.1). These SSC data were corrected extrapolating the 

calibration curve. Therefore, even if the in-situ calibration of the probe can be useful for the real-time 

management of the operation, further sampling are needed during all the dredging period allowing 

for a posteriori calibration of the probe that avoids extrapolations. 

Riverbed sampling, even if performed only at few transects, seems to indicate a marginal 

sediment deposition. This result can be compared with those found for the 2011 Cancano (see Section 

3.2.2) and the 2008 Valgrosina (Espa et al. 2013) CSFs. In fact, during these operations, silt/clay 

sediment was released and analogous field surveys were conducted in the downstream rivers. The 

range of fine sediment increase found in the Ambiesta case-study is relatively smaller (i.e. 0.3-0.7 

kg/m2) than those found in these study cases. In fact, a range of 0.5-1 kg/m2 and 1-2.5 kg/m2 as 

transect average was reported downstream from the Cancano and Valgrosina reservoirs, respectively. 

This difference may be related to the lower SSC detected at the Ambiesta monitoring site (i.e. 0.9 g/l 

as average) compared with 3.1-7.9 g/l and 3.5 g/l recorded at Cancano and Valgrosina stations. 

However, in all study cases the estimated deposition represent a very low fraction of the evacuated 

sediment.  

The low impact of dredging on benthic macroinvertebrates and the fast recovery of both benthic 

and fish communities observed after the works seem to agree with the relatively low SSCs recorded 

during the event and the negligible fine sediment deposition. No relevant reduction of benthos density 

was observed in the first post-dredging sample as instead occurred after all of the monitored CSF 

operations (see Section 6.5), indicating a less severe effect due to an event (i.e. dredging) that lasted 

longer but showed significantly lower SSCs without high SSC peak. The decision of removing fish 

from S1 allowed to avoid a fish mortality that according to N&J model could be of more than 20% 

(i.e. SEV=10.6).  

In conclusion, the results of this case study indicates that if sediment removal operations are 

performed controlling the SSC in the outflowing water and avoiding SSC peaks, the downstream 

environmental impacts can be effectively limited. 
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6 Overall discussion on CSFs 

The evacuation of large amounts of sediments from reservoirs during sediment flushing 

operations can significantly impair the downstream environments. Only in recent years, the attention 

has been directed not only at maximizing the efficiency of sediment removal but also at developing 

strategies to minimize the environmental impacts that, up to now, limit sediment flushing feasibility. 

Morris (2014) recently identified the following mitigation measures:  

- the use of biological as well as hydrologic criteria in selecting flushing dates (i.e. during high-flow 

periods but not during fish spawning), 

- the availability of tributaries inflow, and thus of clear water releases for dilution and cleaning the 

riverbed after the sediment releases, 

- the planning of more frequent flushing events resulting in smaller sediment releases during each 

event. 

These general indications can be useful but specific approach may be developed taking into 

account site-specific considerations related to technical, economical and ecological constrains. 

Moreover, sediment flushing needs to be controlled limiting the sediment concentration of the sluiced 

water but existing thresholds for sediment concentration (Bilotta and Brazier, 2008) are generally 

unsuitable for flushing management (Crosa et al., 2010).  

The CSFs at Cancano Reservoir (CR, Chapter 3) and at Madesimo Reservoir (MR, Chapter 4), 

along with previous CSFs carried out annually at Valgrosina Reservoir from 2006 to 2009 (VR, Espa 

et al., 2013) and at Sernio Reservoir in 2009 and 2010 (SR, Espa et al., 2015) can be considered as 

pilot case studies for improving the sustainable management of Alpine reservoirs through sediment 

flushing. The location of the investigated reservoirs, the hydropower systems and the monitoring sites 

are showed in Figure 6.1; the main characteristics of the reservoirs and hydropower plants are 

presented in Table 6.1. 

In the following, the main findings from these case studies will be discussed highlighting not 

only the increased eco-sustainability of sediment flushing by controlling the sediment concentration 

in the downstream river but also the limits of the approach and the need of other ecosystem-based 

management criteria.  



84 

 

Figure 6.1 Coloured circles indicate the four flushed reservoirs (R) located in the catchments of the Adda and 

Mera rivers, i.e. the main tributaries of Lake Como, northern Italy. Hydropower systems (dashed lines and 

white circles indicate the main ducts and hydropower plants - HPPs, respectively) and monitoring sites in the 

Liro Stream basin (a) and in the Upper Adda River basin (b). The table reports the distance from the dam of 

the monitoring sites (L) and the field surveys performed at each site. 

Reservoir 

ID 

Cancano 

CR 

Valgrosina 

VR 

Sernio 

SR 

Madesimo 

MR CAP (× 106 m3) 124 1.3 0.7 0.13 
ZTOP (mAMSL) 1901 1210 497 1524 
ATOT

* (km2) 370 712 885 25 
MAR (× 106 m3) 271 533 757 41 
HPP Premadio Grosio Stazzona Isolato-Madesimo 
IC (MW) 226 430 30 17.3 
EH (m) 647 600 88.7 273.5 
QMAX (m3/s) 40 80 40 8 
*ATOT corresponds to natural catchment area (ANAT) for SR and MR, while for CR and VR ANAT is 20 and 60 km2, respectively. 

while ANAT  is 5.4% and 8.4% of ATOT for CR and VR, respectively. 
Table 6.1 Main characteristics of the flushed reservoirs (CAP= capacity, ZTOP= elevation of the top of active 

pool, ATOT= total catchment area, MAR= mean annual runoff) and of the hydropower plants (HPPs) they 

supplied (IC= installed capacity, EH= effective head, QMAX= maximum power station discharge). 
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6.1 Planning phase 

The CSFs performed in the Lake Como catchment in the last decade were planned considering 

the restrictions set by the local Authorities: 

-the respect of SSC thresholds at specific sites downstream of the reservoir, 

-the pre-/post-event monitoring of the ecological status (sensu WFD) of the downstream 

watercourses, that could be only temporarily deteriorated. 

The SSC thresholds as average value over the whole flushing period and the ED were established 

using the N&J model and taking into account site-specific aspects (e.g. the needs of other river 

stakeholders and technical constrains). These limits are reported in the Table 6.2.  

Reservoir 

 

Period 

 

Site 

 

SSCLIM 

(g/l) 

ED 

(days) 

SEV 
CR Feb-Apr C2 3 40-50 11 
VR Aug-Sep V1 4 12-13 10 
SR May-Jul S1 1.5 15* 10 
MR Oct M2 10 3 10 

Table 6.2 Planning of the investigated CSFs: period of flushing, SSCLIM= SSC threshold fixed at a site 

downstream of the flushed reservoir (Figure 6.1), ED= duration of exposure, and SEV= severity of ill effect. 

The other features common to all of the CSFs included: 

- emptying the reservoir and employing mechanical equipment only during daytime, thus releasing 

clear water during night-time, 

- implementing mitigation measures and defining monitoring sites, 

- real-time monitoring of SSC and DO and eventually re-design the on-going activities, 

- surveying the physical effects along the wadeable river downstream of the reservoir (i.e. sediment 

deposition and riverbed substrate alteration), 

- investigating the effects on benthic macroinvertebrates and their recovery, also evaluating the 

ecological status through a specific normative index (i.e. STAR_ICMi, see Section 6.5.3), 

- surveying brown trout populations and comparing the observed effects with those predicted by the 

N&J model. 

The planned mitigation measures mainly consisted in increasing Q in the rivers downstream of 

reservoirs through the regulation of tributaries intakes or the water releases from other reservoirs, 

thus enhancing the dilution and the transport capacity of evacuated sediments. Only for the CSFs at 

CR, these measures also included an instream settling basin for trapping sediment and the possibility 

of diverting the sluiced waters off-stream, conveying them to VR, in case of intolerable SSC (i.e. 

above 50 g/l) (see Section 3.1.2).  

Different seasons were selected to carry out the works, mainly due to the size of outlet facilities 

and the needs of other river stakeholders. In general, the period for performing the CSFs was selected 

avoiding: 
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- the most sensitive period for trout (from December-February, i.e. the spawning period, to spring, 

i.e. when the trout are in their early life-stages), 

- the large seasonal inflow for the safety employment of the earth-moving equipment and, in some 

cases, for the small hydraulic capacity of the bottom outlets (e.g. at VR and CR), with the only 

exception of the CSFs at SR.  

At SR, the CSFs were planned during maximum seasonal runoff, but on non-consecutive days 

to improve the environmental sustainability (Espa et al., 2015). At CR, several technical difficulties, 

such as the degree of silting of the bottom outlet and its low capacity, led to the execution of the 

works between late winter and early spring, with low temperatures and low water flow (Section 3.1.2). 

During the planning phase of CSFs, the N&J model allowed for the estimation of SSC and ED 

through the following five steps. 

1) Selection of target fish species for defining the regression coefficients 

The N&J model has the following formula: 

SEV = A + B × ln(ED) + C × ln(SSC) 

where A, B, C are regression coefficients, ED is the duration of exposure in hours and SSC is the 

suspended sediment concentration averaged on the whole duration in mg/l. Different regression 

coefficients are reported by Newcombe and Jensen (1996) as a function of fish species, thus the most 

adequate for the study context may be selected. The coefficients indicated for Salmonids-all ages (i.e. 

A=1.0642, B=0.6068, C=0.7384) were applied for the reported CSFs as brown trout is the dominant 

species in the study area.  

2) Selection of tolerable SEV 

The tolerable effects on target species may be selected as a function of the ecological status of the 

impacted river and/or the need to protect specific fish species or specific life stages, etc. SEV varies 

between 0 and 14; in particular, SEVs equal to 10,11,12,13,14 correspond to fish mortalities in the 

ranges 0-20, 20-40, 40-60, 60-80, 80-100%, respectively. 

3) Definition of target volume (Vsed) or mass (Msed) of sediment 

It is necessary to quantify the volume to be silted, for example through bathymetric surveys. Then, 

adopting the appropriate bulk density, the volume can be converted in mass. 

4) Selection of season and estimation of available Q 

The season when the CSFs will be perform has to be defined taking into account multiple aspects, 

such as technical constrains, the need to control the amount of flushed sediment, needs of other river 

stakeholders and environmental aspects (e.g. most sensitive period for fish). The selected season has 

to be evaluated by a multidisciplinary team including river ecologist, water resources managers, 

hydropower engineers, and fluvial geomorphologists. The season influences not only the water 
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availability for sediment desilting, downstream dilution and riverbed cleaning but also the costs and 

efficiency of CSFs. Then, the available Q may be reasonably estimated as a function of the selected 

season. On one hand, it is advisable to perform the CSFs during the maximum seasonal runoff (White, 

2001) to preserve the natural distribution of sediment load. On the other hand, the flushing “velocity” 

may have to be limited not only to avoid SSC peaks but also due to other further constraints (e.g. the 

operational feasibility of increasing Q, the need to avoid large Q to limit the carrying capacity of the 

flow, the digging rate of mechanical equipment, safety conditions for working in reservoirs, etc.). 

5) Computation of SSC and ED 

Once Msed and Q are fixed, SSC is only a function of ED; therefore, if SEV is also established, ED 

and SSC are unequivocally determined using the N&J model. An alternative approach is to start from 

an estimate of the available clear water volume to conduct the CSFs; this case is immediately re-

conducted to the previous one, as Q is the water volume divided by ED. 

 

Figure 6.2 Examples of application of the Newcombe and Jensen (1996) model 

The water availability strongly influences the computed flushing scenario. For example, taking 

into account an available Q ranging from 10 m3/s (Case 1) to 12 m3/s (Case 2), a target mass of 15,000 

t and a tolerable SEV of 10, the model identifies the following two extreme scenarios characterized 

by significantly different SSC-ED pairs (Figure 6.2): 

- Case 1: SSC=4 g/l and ED=4.5 days, 

- Case 2: SSC=40 g/l and ED=1.5 days. 
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6.2 SSC peaks and DO reduction: the need of multiple SSC threshold 

approach 

In all of the discussed CSFs, the SSC trends had a similar pattern. In fact, the SSCs were usually 

characterized by regular daily pulses due to the employment of mechanical equipment to dislodge the 

sediments during daytime activities, frequently coupled to an increase of water into the emptied 

reservoir or/and in the downstream river. Observed SSC averaged on the whole operation at sites 

where the thresholds were set, ranged from 0.3 to 4.7 g/l (Table 6.3). With the only exception of M2 

(see Chapter 0 for further details), we assumed that the turbidimeter readings were representative of 

the average SSC at a given cross-section, due to the high turbulence that characterized the flow at the 

monitoring sites. For most of the time, the CSFs could be managed keeping the daily average SSC 

below the threshold. Critical phases (i.e. periods when it was not operationally possible to regulate 

the amount of flushed sediment) occurred during the works at VR and CR. 

At VR, a critical phase occurred at the beginning of the first CSF in 2006. The high peak was 

due to the removal of sediment occluding the outlets (e.g. two pipes of 1.2 m of diameter) that 

remained closed for a long period (at least 10 years up to 2006). This CSF was the only one at VR 

for which the SSC threshold was not respected (Espa et al. 2013) and was useful to acquire experience 

for preventing erroneous operation in the following CSFs. 

Reservoir Year ED 

days 

Site QAVE 

m3/s 

SSCAVE 

g/l 

SSCMAX 

g/l 

MTOT 

103 t 

CR 

2010 46 C1 1.0 3.5 30.2 14.6 
C2 3.4 0.3 3.3 4.6 

2011 53 C1 1.3 7.9 68.9 70.9 
C2 4.8 0.3 6.1 13.9 

2012 40 C1 0.9 5.9 99.2 26.1 
C2 3.4 0.8 38.2 12.1 

VR 

2006 13 

V1 

3.2 4.7 50.0 17.0 
2007 12 4.4 3.0 11.9 14.0 
2008 13 4.6 3.5 13.6 18.7 
2009 13 3.5 4.0 48.2 18.0 

SR 2009 16* S1 70 0.8 6.2 74.9 
2010 6* 60 0.73 3.6 24.0 

MR 2010 3 M2 10 2.6 16.6 21.9 
*non-consecutive days 

Table 6.3 Main results of the physical monitoring of the CSFs (ED= duration of exposure, QAVE= average 

water discharge, SSCAVE= average SSC, SSCMAX= maximum SSC, MTOT = total flowed mass). 

At CR, the low capacity of the bottom outlet buried by more than 15 m thick deposits led the 

works to be operationally difficult with two main critical phases. A first critical phase occurred at the 

end of the 2011 CSF due to the combined effect of the opening of the bottom outlet and the increasing 

of the runoff into the CR (determined by a noticeable temperature increase that caused the rapid 

snowmelt runoff). During the first day of this critical phase, the sluiced water was diverted out of the 
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Adda River, towards the VR, thus allowing for the reduction of the SSC peak (see Section 3.2.1). A 

second critical phase took place at the beginning of the 2012 CSF, during the final emptying of the 

reservoir through its bottom outlet. This critical phase was shorter if compared to the previous one 

(less than one day), and off-stream diversion was deemed unnecessary. Nevertheless, during this 

phase, the absolute maximum SSC was detected at C2 (Table 6.3; Section 3.2.1). 

These experiences highlighted the need of predicting critical phases in regulating the sediment 

release, and of planning specific measures to tackle them. Despite short in time, critical phases may 

spoil the efforts made to increase the sustainability of the operations since a sharp increase of the SSC 

may have strong impacts on the downstream ecosystems. At CR, some efforts were made to manage 

this problem by diverting the evacuated water off-stream. VR case studies indicated that the control 

of flushing operations could be improved by planning periodical removals (Espa et al. 2013).  

The rapid SSC increase can combine with a rapid DO decrease creating critical condition for 

fish. For example, during the 1999 coordinated flushing event from Dashidaira and Unazuki 

reservoirs (Japan), Sumi and Kanazawa (2006) recorded the lowest DO levels (i.e. ca 6 mg/l) in 

correspondence of the SSC peaks (i.e. 161 and 52.1 g/l detected just downstream of the Dashidaira 

and Unazuki dams, respectively). The Authors reported that DO was monitored so as not to fall below 

4 mg/l, i.e. two times the value that poses a risk to fish living in the downstream river (i.e. Kurobe 

River). Other studies reported that during flushing operation the oxygen depletion progresses to 

hypoxia (e.g. Baoligao et al., 2016; Buermann et al., 1995). In particular, recently, Baoligao et al. 

(2016) found a significant relationship between DO and SSC measured in the Yellow River 

downstream of the Xiaolangdi Reservoir (China) during the 2009 and 2010 flushing operations. DO 

decreased (from 8 mg/l at 25°C) to 3 and 1.1 mg/l and SSC increased to 80 and 65 g/l during the 2009 

and 2010 event, respectively. In our case studies, the DO seems not to be a limiting factor. The DO 

levels remained above 10 mg/l (i.e. 90% oxygen saturation) during the CSFs at VR and SR. For the 

VR, this finding can be explained by the low water residence time (1 day), which avoids any 

hypolimnetic water stagnation, with the absence of significant polluting sources in the watershed 

drained by the reservoir water collecting system, and by considering the low water temperatures (daily 

water temperature excursion 7–11°C) (Espa et al., 2013).  On the other hand, DO randomly measured 

during daytime at C1, reached lower levels than at V1 with values kept above 6 mg/l during the 2010 

critical phase. 

If a DO reduction is expected, the Garric et al. (1990) model can represent an alternative 

approach to the N&J model. This model predicts the ED that would not be exceeded by limiting at 

10% the mortality rate of brown trout fry as a function of SSC and DO. However, the investigated 

range of DO is 0-6 mg/l, well below the DO recorded in our case studies. 



90 

For limiting the impact of SSC peaks, the SSC threshold as average value on the whole 

operation may be coupled with a SSC peak threshold. In general, this may be evaluated taking into 

account not only the effect of SSC peaks but also the possible DO reduction. The relationship between 

SSC and DO is site-specific and it is influenced by physical and chemical processes such as the 

absorption and release of organic matter and metal ions oxidation (e.g. Bilotta et al., 2008). For 

instance, a two threshold approach for SSC was applied only for the CSFs at SR. In particular, the 

SSC threshold averaged on the whole working day (i.e. 1.5 g/l) was coupled with an alert threshold 

to adjust the ongoing activity (i.e. 3.0 g/l) (Espa et al., 2015). This approach was used to further reduce 

the environmental impacts in the downstream Adda River reach characterized by a high 

environmental quality in an area of high tourist amenity. In particular, during the first CSF at SR, 

several days were employed in the gradual opening of the gates regulating the pondage outflow, for 

being confident to not exceed the SSC thresholds. A similar approach, with different SSC thresholds, 

was applied for the environmentally friendly flushing at Genissiat Reservoir (France). The sediment 

flushing from this reservoir is scheduled every 3 years for a duration of approximately 10 days fixing 

three different thresholds related to specific durations (Peteuil et al., 2013): 

- the entire operation (SSC threshold equal to 5 g/l), 

- a continuous period of 6 hours (SSC threshold equal to 10 g/l), 

- a continuous period of 30 minutes (SSC threshold equal to 15 g/l).  

Lombardy Region (2006) suggested to avoid SSC peaks higher than 30-40 g/l and proposed a multiple 

threshold approach fixing the SSC threshold as average value on the overall operation, the daily 

averaged SSC and the SSC peak (as average value on two hours). In particular, the daily and the peak 

SSC thresholds would be set at a value equal to two and six times the overall SSC threshold, 

respectively. Recently, Baoligao et al. (2016) proposed an overall SSC threshold equal to 32 g/l for a 

flushing duration of 66 h at Xiaolangdi Reservoir. The proposed threshold resulted from site-specific 

field investigations and laboratory experiments on a target fish (Cyprinus carpio) that can tolerate 

high SSC due to the naturally high SSC characterizing the Yellow River. This value is quite high if 

compared with the other ones previously reported. In conclusion, site-specific studies are crucial to 

evaluate the eco-sustainability of sediment flushing operations.  
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6.3 Cost and efficiency of sediment flushing 

The cost estimated for the analysed CSFs for removing the unit volume of sediment ranged 

from 5 to 45 €/m3. These costs include the loss of hydropower and the expenses connected to 

mechanical excavation. The lowest value is related to the 2009 CSF at SR that was performed taking 

advantage of the large water availability. It is similar to the cost of the 2012 sediment flushing at the 

Genissiat Reservoir (ca. 4 €/t; Peteuil et al., 2013). The 2010 CSF at CR was instead the most 

expensive one, due to the mentioned technical constraints that allowed performing flushing only 

during the low-flow season. This high cost is comparable to the maximum value (50 US$/m3) for dry 

excavation by conventional earth-moving equipment in Los Angeles County reported by Morris and 

Fan (1997).  

 

Figure 6.3 Flushing efficiency (FE). Comparison of the reported CSFOs with other worldwide sediment 

flushing operations. References: Sumi & Kanazawa (2006) for 9 events at Dashidaira Dam from 1995 to 2004, 

Meile et al. (2014) for 10 events at Gebidem Dam from 2004 to 2013, Peteuil et al. (2013) for 2012 event at 

Gebidem Dam, Cohen & Briod (1989) for 13 events from 1945 to 1981 at Verbois Dam. 

The average daily flushed sediment ranged between 300 t/day for the 2010 CSF from CR to 

approximately 7000 t/day for the 2010 CSF from MR. Sediment flushing efficiency (FE) varied 

between approximately 0.001 and 0.006 (Figure 6.3). This parameter was calculated as the ratio 

between the volume of evacuated sediment and the corresponding volume of water employed in the 

CSF (including water for dilution purpose released in the downstream river). Only for the CSF at 

MR, the volume of sediment removed from the reservoir was quantified through bathymetry so, for 

the other case studies, the flowed mass through the most upstream monitoring sites (Table 6.3) was 

adopted for estimating the sediment volume. The density used to convert the sediment mass to a 
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volume was estimated by applying the procedure reported in Yang (2006), i.e. taking into account the 

composition of the reservoir sediment, the reservoir level regulation during normal operating 

conditions and the number of years of operation. 

Compared with sediment flushing from Dashidaira Dam (Japan), Gebidem and Verbois dams 

(Switzerland) and Genissiat Dam (France) (Figure 6.3), our case studies had a lower flushed sediment 

volume (less than 100,000 m3). On the other hand, the water volume used for the CSFs at CR and SR 

was of the same order of magnitude of those used for all of these events with the only exception of 

the Genissiat flushing that was characterized by the highest water volume. However, the FE of the 

Genissiat flushing sits in the range found for our CSFs. The low FE of our CSFs as well as of the 

Genissiat flushing is strictly linked to the SSC thresholds applied for limiting the environmental 

impacts. If the N&J model is considered, the FE of CSFs could be estimated by the ratio between the 

SSC threshold and the density of sediment deposited in reservoir. Thus, accounting for a density 

varying between 1,000 and 1,500 kg/m3, a range of FE values could be found for each SSC threshold 

as showed in the Figure 6.4. In particular, if SEV limit is fixed at 11 and ED ranges between 3 and 

53 days (as in our case studies), FE would be lower than 0.005-0.01 (Figure 6.4). 

 

Figure 6.4 How SEV influences FE for the range of ED (i.e. 3-53 days) of the CSFs. 

Morris and Fan (1997) reported that FEs vary widely and are heavily influenced by ED, but the 

range of values reported by the Authors is generally higher (i.e. up to 0.13) than that of our case 

studies. Furthermore, Sumi (2005) found that FE of different sediment flushing around the world 

ranged between 0.01 and 0.15 and suggested that it is necessary to limit it to approximately 0.05 or 

less for limiting environmental impacts. Although, the values of FE found in our CSFs and in the 

2012 Genissiat sediment flushing are approximately one order of magnitude lower than those reported 

by Sumi (2005), non-negligible environmental impacts were detected (Section 6.5). Therefore, even 
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if the SSC thresholds and, as a consequence the FE, would be fixed taking into account site-specific 

conditions, the FE threshold value proposed by Sumi (2005) probably is still not enough conservative 

to ensure the control and the mitigation of the environmental impacts of sediment flushing. 

6.4 Riverbed alteration 

6.4.1 Flushing of silt/clay material 

After the 2011 CSF at CR, only a slight increase of the silt/clay content was found in the 

riverbed wetted by MF, ranging from 0.5 to 1 kg/m2 (average values computed for each transect). 

Similarly, after the 2008 CSF at VR, the samples of each transect showed an average increase of 1 

and 2.5 kg/m2. During these two CSFs, most of the sediment was transported in suspension and the 

deposition was limited (Espa et al., 2013; Section 3.2.2). Moreover, the deposition, as estimated with 

McNeil samples only in the riverbed wetted by MF, appeared to represent a very low fraction of the 

evacuated sediment and the increases of fines after flushing seemed not to represent a permanent 

alteration of the streambed substrate (Espa et al., 2013; Section 3.2.2). However, it should be noted 

that just few transects (i.e. two and four transects downstream of VR and CR, respectively) were 

surveyed and caution should be exercised in interpreting the results. 

The maximum silt/clay content detected after the 2011 CSF at CR and the 2008 CSF at VR was 

3.0 kg/m2 and 4.3 kg/m2, respectively. These values are comparable with the maximum ones (i.e. 3.9 

kg/m2) found by Piquè et al. (2014) for the Isàbena River (Spain) that naturally drains highly erodible 

badlands, and with the values found by Collins and Walling (2007) that examined 29 sites in the 

Frome and Piddle catchments (UK) (2.6 and 4.3 kg/m2, respectively). Recently, Duerdoth et al. (2015) 

investigated depositional patches at 12 sites characterized by different substrate composition across 

different area of England and Wales, using an effective methodology for producing reach-scale 

estimates of deposited fine-grained sediment. They found surface sediment mass up to approximately 

7 and 2 kg/m2 at sites with coarse and moderate substrate, respectively, while the total surface mass 

varied up to more than 10 kg/m2. 

6.4.2 Flushing of silt/clay and sand material 

After the CSF at MR, the content of particles smaller than 2 mm in the riverbed increased from 

1 to 30 kg/m2 (average values computed for three transects). The silt/clay content did not show a 

remarkable change, with mean values of approximately 1 kg/m2. The grain size of sand deposits was 

mostly coarser than 250 µm. This fraction was not detected in suspension and thus it was mostly 

transported as bed load. The thickness of the deposits above the coarse surface layer was measured 

with a graduated iron rod at eight sites (Section 4.1.3). Mean values from 0 to 20 cm (i.e. up to 300-
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450 kg/m2) were found. Evans & Wilcox (2014), investigating the riverbed infiltration of 

contaminated fine sediment (< 2 mm) released after a dam removal, did not found these sediments 

within the bed material. The Authors suggested that, in natural systems, high sediment supply and 

mobile bed may limit seal formation and persistence. Even if further field surveys are needed, these 

results may indicate that the investigated deposition along the Liro River may be shortly reworked 

and transported downstream. However, the post-CSF habitat alteration affected the macroinvertebrate 

community (see Section 6.5.2). 

6.5 Biological impacts 

6.5.1 Short-term effects on benthos 

The short-term effects of CSFs can be associated with the significant increase in streamflow 

and sediment concentration. Flood peaks can exert a particularly strong influence on the benthic fauna 

(McMullen and Lytle, 2012). Moreover, high SSC peaks can cause acute effects on benthos (Jones et 

al., 2012). Both the physical disturbances of the flowing waters (i.e. increased shear stress and river-

bed overturn) and of the sediment load (i.e. abrasion by transported particles) probably contributed 

to impair the benthic communities during the CSFs by increasing the drift, and thus depleting the 

assemblages. Indeed, in the first post-CSF samples, collected within one month from the end of the 

works, a contraction of the benthic community, in terms of both density and richness, was detected 

at the monitoring sites (Figure 6.5). 

In most cases, the decrease in density observed after CSFs exceeded 70% and family richness 

fell by 10-60%. In the case of density, a similar response to different doses might suggest an 

asymptotic behaviour, i.e. an analogous response of the benthic assemblage once certain SSC 

thresholds are exceeded. In fact, detectable impacts of SSC on invertebrate communities usually occur 

at values of few hundreds mg/l (Doeg and Milledge, 1991; García Molinos and Donohue, 2011), i.e. 

values considerably lower than those recorded during the CSFs. The lowest density reductions 

showed in Figure 6.5 were usually detected when the density of the pre-CSF sample was already low 

(e.g. the 2010 pre-CSF sample at SR; Espa et al., 2015). The correlation (R2= 0.26, p= 0.02) between 

sediment dose and richness reduction led us to interpret this as taxon-specific response to this kind of 

perturbation, as discussed in the following Section 6.5.2. 
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Figure 6.5 Percentage reduction of macroinvertebrate density and richness after CSFs as a function of the 

sediment dose. Percentage reduction was computed by comparing the first post-CSF sample to the 

corresponding pre-CSF one. The dose was computed according to Newcombe and Jensen (1996) as the natural 

logarithm of the average SSC (g/l) times the ED of the flushing event (days). Different symbols indicate the 

four analysed sites: square= V1, diamond= C1, circle= M1, triangle= S2.  

6.5.2 Log-term effects on benthos 

The long-term effects of CSFs can be mainly associated with the sediment deposition, which 

can determine persisting habitat alteration (Jones et al., 2012), thus tangling the recolonization of the 

benthic taxa. The time employed by the macroinvertebrate communities to re-gain previous density 

and richness after CSFs was different in the various case studies (Figure 6.6). For example, at V1 the 

benthic assemblages recovered in both density and richness within three months after the end of the 

works, while at C1 they recovered after approximately 250-300 days. At M1 nor density neither 

richness recovered to the pre-CSF values within a year after the CSF. These differences might be 

justified by different factors: 

- the persisting riverbed alteration, 

- the recolonization potential of a site, that is strictly dependent on its position in the fluvial landscape, 

- the proximity of the flushing period to the high-flow season, that is known to cause a benthos 

contraction in Alpine rivers (Espa et al., 2015). 
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Figure 6.6 Temporal evolution of the density and richness of the benthic communities after the CSFs. Density 

and richness are expressed as ratios of the current value to the value detected in the corresponding pre-CSF 

sampling. Data related to the most upstream sites were used: V1, C1, M1, S2 (Figure 6.1). 

At M1, in fact, a relevant sediment deposition was detected three weeks after the CSF (Section 

4.2.1.2), while at the other investigated sites the deposition was considerably lower (i.e. 

approximately two orders of magnitude). At C1, the high-flow season, short after the CSF, could have 

delayed the benthos recovery. 

The sampled data showed also a spatial gradient of the impact, proportionally to SSC that was 

larger at the upstream reaches. At the downstream sites (i.e. M3 and C2, Figure 6.1) a faster recovery 

was generally observed. For example, at M3 the recovery occurred within nine months. However, in 

all of the cases showed in Figure 6.7 a considerable change in community composition was observed 

immediately after the CSFs (i.e. between pre- and I post-CSF samples), while assemblages collected 

after one year from the end of the works (i.e. II post-CSF samples) nearly approached the pre-CSF 

ones. 
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Figure 6.7 NMDS (stress value= 0.089) using Bray-Curtis distances of the macroinvertebrate assemblages 

collected at V1 (squares), C1 (diamonds), M1 (circles) and S2 (triangles). Pre-CSF, I post-CSF (i.e. samples 

collected within a month after flushing) and II post-CSF (i.e. samples collected after one year from the end of 

the works) samples are indicated in white, black and grey, respectively. 

In Figure 6.8 the average composition of the macroinvertebrate communities of the pre-, I post- 

and II post-CSF samples is reported. Like most of the benthic communities found in regulated Alpine 

rivers (e.g. Monaghan et al., 2005; Yoshimura et al., 2006), the ones collected at the biomonitoring 

sites before the CSFs were composed of few resilient taxa. Just a few weeks after the CSFs, 

Leuctridae, Naemouridae, Baetidae, Rhyacophilidae and Chironomidae were detected in the benthos 

samples, while no or few specimens of Heptageniidae and Limnephilidae were collected. On these 

occasions, overall densities were very low, with Baetidae, Chironomidae and Naemouridae making 

up more than 50% of the community, demonstrating high resilience to the flushing disturbances 

probably due to their rapid reproduction and high tendency to drift (Matthaei et al., 1996). 

Thus, the occurrence of CSF appears to temporary modify the macroinvertebrate community, 

allowing species with a fast life cycle and good colonizing ability to re-establish, and disadvantaging 

taxa that need stable environments to complete their life cycles. However, no cumulative effects, i.e. 

a progressive decline of the benthic community in the course of the years, were detected (Espa et al., 

2013). The ability of lotic macroinvertebrate communities to recover from ecosystem disturbances is 

extensively documented in literature and it is confirmed by our field evidences. In particular, as 

observed in case of pulsing events, such as floods (e.g. Robinson et al., 2004) or pesticide applications 

(e.g. Crosa et al., 2001), the recovery can be relatively rapid, i.e. few months. Buendia et al. (2013a, 

2013b, 2014) reported that in a mountainous river (i.e. Isábena River, Spain) naturally affected by 
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high suspended sediment loads, both invertebrate assemblage composition and patterns of turnover 

in assemblages were influenced by seasonal and habitat-specific rates of sedimentation. Assemblages 

appeared to exhibit resilience after high-flow events that removed the fine material (Buendia et al., 

2014). 

 

Figure 6.8 Average composition of the pre-CSF (i.e. pre), I post-CSF (i.e. post I) and II post-CSF (i.e. post II) 

samples collected at V1, C1, S2 and M1. 

6.5.3 STAR_ICMi index for ecological quality 

Currently, in the investigated area, sediment flushing would be carried out respecting WFD 

constraints on the ecological quality of the downstream freshwater ecosystems (see Section 6.1). In 

our case studies the ecological quality was evaluated through the application of the benthos based 

normative index, STAR_ICMi (Espa et al. 2015; Section 3.1.4). 

As showed in the Figure 6.9, the response of this index to CSFs differed between sites. As 

expected, at M1 the quality decreased from good to moderate just after the CSF and slowly recovered, 

probably following the riverbed recovery. On the contrary, at C1 the index did not show the expected 

quality drop just after flushing but its reduction was mainly influenced by other factors (i.e. 

perturbation due to high flow in summer) as discussed in Section 3.2.3. Moreover, also within the 

same site the response to similar flushing events markedly differed, as detected for V1. However, 

only a temporary deterioration of the ecological status of downstream watercourses resulted from the 

CSFs as required by the Authorities (see Section 6.1). 
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Figure 6.9 Temporal evolution of the STAR_ICM index. Data related to the most upstream sites were used: 

V1, C1, M1, S2 (Figure 6.1).The quality classes associated to the STAR_ICM index are reported: H= high, 

G= good, M= moderate, P= poor, B= bad.  

As reported by Espa et al. (2015), care should be taken when evaluating the ecological stream 

quality through the STAR_ICMi since it would seem to overestimate the status of the benthic 

community in certain circumstances. Although assemblage composition, density, and diversity values 

could suggest a rather poor state of the benthic community, the STAR_ICMi frequently ranked among 

good quality class. This discrepancy is likely to be explained by the relatively high weighting assigned 

to the metric associated to organic pollution (e.g. Average Score Per Taxon; Sandin and Hering, 

2004), which is not of concern at the monitoring sites. Moreover, the STAR_ICMi does not take into 

account the sample density that is markedly influenced by CSFs (Figure 6.5). Indexes developed to 

evaluate sediment pressure, like the Proportion of Sediment-sensitive Invertebrates (Extence et al., 

2013) used in UK, consider both the sensitivity of the benthos taxa to the specific perturbation and 

the abundance of each taxon within a sample. Thus, a similar index would be developed for the Alpine 

benthic fauna and could represent an useful and adequate tool for flushing management. 

6.5.4 Effects on trout and suitability of the N&J model 

The total density of the brown trout populations decreased after almost all of the CSFs, with the 

largest reductions of approximately 50% (Table 6.4). Moreover, a selective pressure of the CSFs on 

juveniles (i.e. 0+) was demonstrated by the different responses to the CSFs of different age classes 

(Table 6.4). The CSFs at CR were carried out in the period of more marked sensitivity of trout to 

enhanced fine sediment loads (Kemp et al., 2011), i.e. the incubation stage (over winter in the study 

area). Furthermore, at M3, the average sediment deposition of approximately 30 kg/m2 could have 

interfered with trout spawning since the proportion of sand in the substrate that is critical for 

Salmonids embryos and eggs was exceeded (Section 4.3.1). 
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In some cases, the density drops predicted using the N&J model underestimated the observed 

ones (Table 6.4). However, at C2, the density reductions of adults (i.e. ≥2+) could have been 

overestimated due to the fishing activity occurring at this site. In general, the results of the trout 

monitoring demonstrated that the N&J model can support the planning of sediment evacuation 

through CSF, providing a first estimate of the impact of flushing on fish fauna. Taking into account 

the complexity of the biological effects under study, this model can be indeed considered adequate 

for predicting the order of magnitude of the impacts of CSFs on the trout populations in the 

investigated sites. However, the application of the SEV model for the investigated CSFs can be 

questioned as discussed in the following.  

Site Year Observed DR (%) Expected 

DR (%)   0+ 1+ ≥2+ Total Total 
V1 2006 69 30 (-60) 31 20-40 
 2007 78 35 10 54 0-20 
 2008 14 (-14) (-8) (-3) 20-40 
 2009 35 8 5 19 20-40 
C2 2010 96 25 0 45 0-20 
 2011 75 29 52 47 0-20 
 2012 100 (-9) 23 13 0-20 
M3 2010 75 40 45 52 0-20 

Table 6.4 Percentage density reduction (DR) of trout after the CSFs. The observed values (total population 

and subdivided into three age classes) are compared to the ones computed according to the Newcombe and 

Jensen [1996] model (calculated adopting the formula for Salmonids - all ages). The monitored sites are: V1, 

C2 and M3 (Figure 6.1). Brown trout surveys were performed few weeks before and after the CSFs.  

First, the N&J model predicts the same SEV for short ED and high SSC and for long ED and 

low SSC. For example, a SEV equal to 11 is predicted for SSC=4 g/l and ED=5.5 day (Case 1) and 

for SSC=40 g/l and ED=1.5 days (Case 2) (see Section 6.1 and Figure 6.2). In the Case 1, the effect 

of the high SSC could have a relevant short-term effect due for example to gill abrasion. In the Case 

2, the long-term effects could instead to be more significant than in Case 1. If there are no technical 

constrains, a shortest operations may be preferred. Nevertheless, the model does not take into account 

the possible reduction of DO level (see Section 6.2). Recently, Baoligao et al. (2016) highlighted that 

the computed SEV values underestimates the fish mortality rates detected in laboratory experiments 

on a target fish (Cyprinus carpio). In fact, in experiments with SSCs higher than 89 g/l and ED less 

than 1 hours, the model predicted SEV smaller than 9 but fish mortality rates were of 100% due to 

the combined effect of the DO reduction with the SSC increase. Furthermore, the SSC used for SEV 

estimation is averaged on the whole operation but CSFs with similar average SSC and different SSC 

peaks may cause very different impacts. Therefore, a particular attention would be given to select the 

flushing scenario and to manage SSC peaks (see Section 6.2). 

Second, several alternatives (i.e. different pairs SSC-ED) could be found with similar predicted 

impacts on fish but non-negligible differences in the amount of flushed sediment. For example, if the 
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CSF is planned for 50 days duration and a SEV ranging between 10 (0-20% mortality) and 11 (20-

40% mortality) is accepted, the SSC threshold may vary from ca. 0.5 g/l (Case A) to 2 g/l (Case B) 

(Figure 6.10). On the other hand, in the Case B the flushed sediment may be four times larger than in 

the Case A. Therefore, the model may be applied for a pre-assessment of different scenarios that may 

be then evaluated taking into account site-specific considerations. The environmental impacts found 

after the first CSF may allow changing the thresholds, balancing the need to improve flushing 

efficiency and limit the environmental impacts (see Section 6.2). Environmental factors, such as the 

availability of suitable habitat or food, may indeed determine different response to the same dose.  

Finally, the site where the SSC threshold is fixed may be carefully evaluated including 

ecological aspects and technical constrains. The SSC generally decreases moving downstream due to 

water dilution and sedimentation. The SSC reduction was especially relevant downstream of the CR 

(Section 3.2.1). As a consequence, the predicted impact at C1 (i.e. the upstream site, Figure 6.1) is 

much heavier than at C2 (Figure 6.10). 

 

Figure 6.10. N&J model for Salmonids (all ages) and computed SEV values for CSFs from CR at C1 and C2 

Ecosystem-based management criteria that include not only the effect of SSC and ED of the 

perturbation but also the riverbed substrate alteration are especially needed if the sand fraction of the 

flushed sediment is relevant. The riverbed alteration may indeed reduce the recovery capacity of 

macroinvertebrate community (Section 4.2.2.1 and Section 6.5.2) and the availability of trout 

spawning habitat. 
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7 Conclusion 

7.1 Planning CSFs and sediment monitoring 

The N&J model seems to be useful to guide the planning of sediment flushing operations 

towards a framework of environmental sustainability as it provides a first estimate of the impact on 

fish, thus allowing to fix SSC thresholds. On the other hand, low SEV variations result from 

significantly varying the input parameters of this formula. Consequently, it is possible to identify 

several alternatives with similar SEV values but with different flushing efficiency and operational 

cost. Furthermore, its application requires special caution if the operation is characterized by high-

predicted SSC. If the target sediment volume to be removed is set, a short operation requires a higher 

water discharge and higher SSC, and other potential perturbations, such as hydropeaking effects and 

DO reduction, would be carefully evaluated. Furthermore, the duration of the operation and the water 

discharge might be defined taking also into account the needs to deal with critical phases in 

controlling the amount of flushed sediment. Therefore, the planning phase could be very complex, 

balancing conflicting interests (e.g. FE maximization and environmental impact mitigation), and 

remaining some aspects basically undetermined. Finally, the accurate monitoring of the 

environmental impacts of flushing operations would be the key element for getting improved site-

specific and flushing-specific SSC thresholds. Studying sediment transport and environmental 

impacts of floods in the same area could be also useful for a comparison with the effects of CSFs. 

Controlling the sediment concentration while flushing a reservoir is operationally difficult. The 

raw SSC data, continuously measured by means of turbidimeters, were used to control the operations 

and eventually re-design the on-going activities. Suspended sediment samples were generally 

exploited for the a posteriori calibration of the raw SSC data. The correction of the raw SSC was 

strictly linked with the grain size of the suspended sediment, it was site-specific and, for the same 

site, it may change for different CSF events.  

7.2 Downstream riverbed alteration and sediment transport modeling 

A relevant difference in the downstream riverbed alteration was found as a function of the size 

of the flushed sediment. When flushed material was primarily silt and clay (i.e. CR and VR case 

studies), deposition rates of few kg/m2 were measured in the riverbed wetted by minimum flow. 

Otherwise, deposits up to 450 kg/m2 were detected when an important fraction of the flushed 

sediments was sand (i.e. MR case study). These results suggest that, if the sediment in the reservoir 

are expected to be mainly sand, it might be important to evaluate not only the short-term effect of the 

SSC but also the long-term effect of the riverbed alteration.  
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If the amount of sand in the flushed sediment is relevant, the sediment monitoring would be 

improved for allowing the quantification of the total load by means of depth-integrated samplers and 

bed load samplers performed during CSFs. Moreover, these samples could provide an important 

dataset for the validation of the sediment transport model, such as the SRH-1D model already 

calibrated through the MR case study. The performed simulations suggest that, after proper 

calibration, sediment transport modelling can offer the necessary support to plan CSFs aimed at 

minimizing environmental effects. In fact, the computed pattern of deposits was in good agreement 

with the measurements carried out in the downstream Liro River after the CSF, both in terms of 

average deposit thickness and grain-size of deposited sediment. Nevertheless, the analysed scenarios 

as well as the model outputs need to be carefully evaluated from a multidisciplinary perspective (river 

geomorphology and ecology, catchment hydrology and water resources, hydropower engineering and 

operational costs) to ensure adequate efficiency of the desilting operation while minimizing 

downstream effects. Moreover, the calibrated model could be usefully applied for studying the 

sediment transport dynamics occurred in the downstream river after the CSFs for evaluating the 

channel recovery. 

7.3 Ecological impacts and eco-hydraulic models 

As the ecological impacts, we found that CSFs had severe effects on both the benthic 

macroinvertebrate communities and trout populations. However, the benthic communities were able 

to recover to the pre-CSF conditions within few months up to one year after the end of the works, if 

a considerable riverbed alteration (i.e. sediment deposition) did not occur. Effects on trout were 

considerable, especially for juveniles. However, brown trout repopulation programs, based on the use 

of hatchery-reared fish for maintaining good recruitment levels are currently carried out in the study 

area and could be further improved after the CSFs.  

The planning of eco-sustainable sediment flushing operations is currently hampered by the lack 

of an adequate set of reference study cases and reliable eco-hydraulic models to predict the flushing 

effects on the downstream aquatic ecosystem and the time required for their recovery. An attempt to 

cover this knowledge gas was done through the discussed CSFs. This dataset needs to be enlarged 

and the biomonitoring improved to develop eco-hydraulic criteria specific for such a complex 

perturbation. For example, the field surveys could be upgraded adopting a before/after and 

control/impact (BACI) approach (Underwood, 1992) and identifying the benthic macroinvertebrates 

to species level for evaluating the most sensitive taxa. Moreover, the biomonitoring of benthic 

macroinvertebrates and the sampling of the riverbed sediments may be coupled for a better 

assessment of the geomorphic changes on the benthic fauna. Riverbed sediments may be then sampled 

as close as possible to the benthos sampling points. 
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Symbols and abbreviations 

AMSL Above mean sea level 
ANOSIM Analyses of similarity 
BCi Bary-Curtis Index 
bL Bedload adaptation length coefficient (SRH-1D model) 
BS Biomonitoring Sites 
CR Cancano Reservoir 
CSF Controlled sediment flushing 
DO Dissolved Oxygen 
ED Duration of exposure 
EPT Plecoptera and trichoptera families 
FE Flushinf efficiency 
HPP Hydropower plant 
Ltot Adaptation length (SRH-1D model) 

MAF Mean annual flow 
MCDA Multi-Criteria Decision Analysis 
Mdep,tot Total mass of deposited sediment 
MF Minimum flow 
MR Madesimo Reservoir 
Msed Mass of sediment 
n Manning’s roughness coefficient 
nalt Active layer thickness multiplier (SRH-1D model) 
N&J Newcombe and Jensen 
NMDS Non-metric Multidimensional Scaling 
Q Water discharge 
R2 Determination coefficient 
SC Sediment concentration 
SD Standard deviation 
SEV Severity of ill effect 
SR Sernio Reservoir 
SRH-1D Sedimentation and River Hydraulics-One Dimensional 
SSC Suspended sediment concentration 
STAR_ICMi Standardisation of River Classifications_Intercalibration Multimetric Index 
TMDLs Total maximum daily loads 
VR Valgrosina Reservoir 
Vsed Volume of sediment 
WFD Water Framework Directive 
ad Suspended sediment recovery factor for deposition (SRH-1D model) 
ae  Suspended sediment recovery factor for erosion (SRH-1D model) 
c Weight of bedload fraction (SRH-1D model) 


