

Università degli Studi dell’Insubria
Dottorato in Scienze Fisiche e Matematiche

Matematica del Calcolo
XXV ciclo

Algorithmic variations on the theme of structured matrices,

with applications to graphs and imaging

Candidate
Pietro Dell’Acqua

Supervisors
 Prof. Marco Donatelli
 Prof. Claudio Estatico

Contents

The cue iii

I The minimum cost flow problem 1

1 The multi-iterative idea 3

1.1 Multigrid methods . 6

1.2 Ghost node . 9

1.3 Smoothers . 9

1.4 Projectors . 11

2 Graph operators theory 13

2.1 Theoretical results . 14

2.1.1 A note on the FWO operator 19

2.2 Minimum operators . 21

3 Projection operators 25

3.1 Relationships with preconditioning 27

3.1.1 Inverse projection . 27

3.1.2 Dense projection . 29

3.2 Strength-based aggregation operators 30

3.3 Strength-based AMG operators . 33

3.4 Combinatorial operators . 34

4 Computational results 37

4.1 List of methods . 38

4.2 Comments and comparisons . 39

II The image restoration problem 49

5 Optimal preconditioning 51

5.1 The role of boundary conditions in the restoration problem 53

5.1.1 Reflective boundary conditions 53

i

ii

5.1.2 Anti-reflective boundary conditions 55
5.2 Theoretical results on optimal preconditioning 59

5.2.1 One-dimensional case . 60
5.2.2 Two-dimensional case . 64

5.3 Computational results . 67

6 Z variant 75
6.1 The idea . 76

6.1.1 Z-Landweber method . 77
6.1.2 Z-LR and Z-ISRA . 81

6.2 Z built by a coarsening technique 82
6.2.1 Computational results relative to Z built by the coarsening

technique . 86
6.3 Z built by filtering techniques . 89

6.3.1 Z variant meets regularizing preconditioning 91
6.3.2 Computational results relative to Z built by filtering tech-

niques . 95
6.4 Deblurring problems with zero boundary conditions 97

6.4.1 Form and substance . 97
6.4.2 Computational results . 99
6.4.3 A note on projection . 102

6.5 Deblurring problems with accurate boundary conditions 103
6.6 A general Z algorithm . 107

6.6.1 Zero BCs . 108
6.6.2 Accurate BCs . 111

6.7 Direct regularization methods . 113
6.8 Merits of Z variant . 115

7 ν acceleration 117
7.1 Projection . 119
7.2 Connection between Landweber method and statistical methods . 120
7.3 About convergence . 122
7.4 Computational cost . 123
7.5 Computational results . 123

8 Banach spaces and Meinel acceleration 127
8.1 Meinel acceleration . 128
8.2 Acceleration by map . 129
8.3 Landweber method in Banach spaces 131
8.4 Computational results . 133

The pocket 137

The cue

As suggested by the cover, the title of this thesis is a pun that involves math
and music, while its content concerns the fruits of research activity carried out
during the PhD period. We have gathered here all the work done under the
aegis of structured matrices, which is a wide and interesting field that includes
the two main threads of our investigation. In the first one we have dealt with
the minimum cost flow problem and the matrices have structure of graph,
while in the second one we have dealt with the image restoration problem,
in which space invariance leads to strong algebraic structures in the system
matrix; depending on the boundary conditions enforced in the discretization,
we find circulant, Toeplitz or even more complicated structures. Since we do
not intend to bore the rare and precious reader, we have devoted only a few
pages to introduce or recall known results or techniques available in literature
and we have concentrated on describing our original contribution, based on
the papers cited at the end of this introduction.

More in detail, in Part I we consider multigrid type techniques for the
numerical solution of large linear systems whose coefficient matrices show
the structure of (weighted) graph Laplacian operators. We combine ad hoc
coarser-grid operators with iterative techniques used as smoothers. We show
that the most effective smoothers have to be of Krylov type with spanning
tree preconditioners, while the projectors, which define the coarser-grid op-
erators, have to be designed for maintaining as much as possible the graph
structure of the projected matrix at the inner levels. Some necessary and suf-
ficient conditions are proved: in this framework it is possible to explain why
the classical projectors inherited from differential equations are good in the
differential context and why they behave unsatisfactorily for unstructured
graphs. We report the outcome of several numerical experiments showing
that our approach is effective even in very difficult cases where the known
approaches are rather slow. However the main advantage of the proposed
approach is the robustness, since our multigrid type technique behaves uni-
formly well in all cases, without requiring either the setting or the knowledge
of critical parameters, as it happens when using the best known precondi-

iii

iv

Figure 1: Graph of the thesis on a billiard table.

tioned Krylov methods. This first Part is organized as follows. In Chapter
1 we introduce the minimum cost flow problem and we describe in general
terms the multigrid procedure. Chapter 2 is devoted to the theoretical char-
acterization of the family of projectors that preserve the graph structure at
all steps of the multigrid chain, thereby allowing combined use of multigrid
and combinatorial preconditioning. Chapter 3 is devoted to the presenta-
tion of several classes of projectors with the right properties, either newly
proposed or drawn from the relevant literature. Finally Chapter 4 is de-
voted to the presentation of a large set of numerical experiments comparing
preconditioned Krylov methods and accelerated multigrid methods.

As we said, Part II is devoted to image deblurring problem, which is
an important task with many applications. The blurring of images may
be caused by object motion, calibration errors of imaging devices, random
fluctuations of the medium, for instance atmosphere. We are interested in
restoring images that have been contaminated by blur and noise. To do this,
we have to solve a linear system, usually of very large size and very sensitive
to data error, due to the ill-posed nature of the continuous problem. Thus
in Chapter 5 we introduce the image restoration problem, highlighting the
importance of boundary conditions, and then, inspired by the theoretical re-

v

sults on optimal preconditioning stated by Ng, R. Chan, and Tang in the
framework of Reflective boundary conditions, we present analogous results
for Anti-Reflective ones. In both cases, the optimal preconditioner is the
blurring matrix associated to the symmetrized point spread function. Com-
putational results show that the preconditioning strategy is effective and it
is able to give rise to a meaningful acceleration. In Chapter 6, once recalled
that classical iterative deblurring algorithms that use the conjugate trans-
pose AH of the coefficient matrix A show usually a slow convergence, we
propose a variant which replaces AH with a new matrix Z. This approach,
which is linked with preconditioning theory and reblurring processes, can be
applied to a wide set of iterative methods. Computational tests show that
this strategy leads to a significant improvement of the convergence speed of
the methods. Moreover it can be naturally combined with other widely used
acceleration techniques. And precisely to that topic is devoted Chapter 7,
in which we present a particular acceleration technique, that is nothing but
the application of the so-called ν-method, conceived for speed up Landweber
method, in the new framework of statistical methods. Computational results
show the effectiveness of this strategy, which gives rise to remarkable accel-
eration factors, evaluated by comparing accelerated methods with classical
ones. In Chapter 8 we describe a map acceleration for statistical methods
inspired by theory on Landweber method in Banach spaces and we show the
link between it and Meinel acceleration, which consists in the introduction
of an exponent in the iterative formulas. Furthermore we propose a gener-
alization of this Banach technique in order to overcome the difficulties that
this strategy displays when it is compared with classical (Hilbert) Landweber
method. Numerical results highlight the goodness of our proposals, both in
terms of stability and velocity.

In summary, both Part I and Part II concern various techniques to im-
prove speed and stability of iterative methods, employed to gain an approxi-
mated solution for linear systems that have large size. Another links between
the two parts are the full weighting operator and more in general multigrid
theory, which are mainly used in the first one, but are also utilized in the
second one, in particular in Chapter 6, to illustrate a coarsening technique
for building Z. This is the starting-cue; the overall structure of the thesis is
drawn in Figure 1; finally the pocket is devoted to conclusions, open issues
and further ideas for future research.

vi

Papers

P. Dell’Acqua, A. Frangioni, S. Serra Capizzano
Accelerated multigrid for graph Laplacian operators
Numerical Algorithms, submitted.

P. Dell’Acqua, A. Frangioni, S. Serra Capizzano
Computational evaluation of multi-iterative approaches for solving graph-
structured large linear systems
Applied Numerical Mathematics, submitted.

P. Dell’Acqua, C. Tablino Possio, S. Serra Capizzano.
Optimal preconditioning for image deblurring with Anti-Reflective boundary
conditions
BIT Numerical Mathematics, submitted.

P. Dell’Acqua, M. Donatelli, C. Estatico
A unifying variant for deblurring algorithms
Journal of Computational and Applied Mathematics, submitted.

P. Dell’Acqua, M. Donatelli, C. Estatico
A general Z variant for iterative and direct regularization methods
In preparation.

P. Dell’Acqua
Automatic acceleration for EM method is not the best
In preparation.

P. Dell’Acqua, C. Estatico.
A connection between Banach spaces and Meinel acceleration
In preparation.

Part I

The minimum cost flow
problem

1

Chapter 1

The multi-iterative idea

Large linear systems with (weighted) graph-structured matrices can be found
in several applications where a network structure is present (e.g. [35] and
references therein). Even restricting to the symmetric case, with matrices
arising from graph Laplacian operators, these linear systems can be found,
among the others, in Web searching engines [86], general Markov chains
[39], consensus algorithms [96] and optimization problems in networks [2,
10]. All these different problems exhibit three main issues: a) the large size
of the considered linear systems; b) the sparsity and the graph structure
of the involved matrices; c) the potential ill-conditioning, as a function of
the matrix dimension and/or of other critical parameters. These features
should immediately refrain from recommending direct solvers. For instance,
the methods based on factorizations [62], such as Gaussian LR, QR or real
Cholesky LLT , do not exploit the structure and in particular the sparsity of
the matrices, so that the cost will become unacceptably high both in space
and time [29], and the precision unacceptably poor in case of ill-conditioning.
On the other hand the use of iterative solvers has the immediate advantage
that the matrix vector product can be done with linear work in case of
sparsity.

The specific application motivating our research is the solution of linear
systems arising at all iterations of Interior Point (IP) techniques for the
Minimum Cost Flow (MCF) problem. We start by recalling the definition of
node-arc incidence matrix of a directed graph.

Definition 1.1 Let G ≡ Gn = (Un,Vn) be a directed graph with n nodes
Un = {u1, . . . , un} and m arcs Vn = {v1, . . . , vm}; its node-arc incidence
matrix E ≡ En = E(Gn) is the n×m matrix such that Eij = 1 if vj emanates
from ui, Eij = −1 if vj terminates at ui and Eij = 0 otherwise. Hence E
has exactly two non-zero elements (a 1 and a −1) in every column.

3

4

Given a directed graph G, the linear MCF problem [10] is the Linear Program
(LP)

min
{
cTx : Ex = d , 0 ≤ x ≤ u

}
(1.1)

where E is the node-arc incidence matrix of G, c is the vector of arc costs,
u is the vector of arc upper capacities, d is the vector of node deficits and x
is the vector of flows. The flow conservation constraints Ex = d express the
fact that the flow has to travel in the graph from sources (nodes with di > 0)
to destinations (nodes with di < 0), while for the remaining transhipment
nodes (with di = 0) the total inbound flow must equal the total outbound
flow. This problem has a huge set of applications, either in itself or, more
often, as a submodel of more complex and demanding problems [2]. Without
loss of generality we can restrict our analysis to connected graphs, as the
general case of more than one connected component can be traced back to
this case (basically there is a separate LP for each one).

We study graph matrices coming from the application of IP methods,
which have grown a well-established reputation as efficient algorithms for
large-scale problems. In these methods, at each step we have to solve linear
systems of the form

EΘETx = b , (1.2)

where E is fixed, while b ∈ Rn and the m×m diagonal positive definite matrix
Θ depend on the IP iteration; as we will not consider (possible) strategies for
re-use of information between two different IP iterations, we will disregard
this dependence, thus focusing our attention to the solution of (1.2) at any
one fixed iteration. Since each diagonal element of Θ is associated to a specific
arc of G, we can consider G as a weighted graph, with Θ specifying the arc
weights. In the following we will often use the shorthand L = EΘET , also
disregarding the fact that L actually depends on Θ. As the following remark
shows, L is closely tied to other well-known graph matrices.

Remark 1.2 Let G ′ = (U ,V ′) be the undirected graph obtained from G by
ignoring the orientation of the arcs. G ′ also is a weighted graph, the weight
wuv of each edge {u, v} ∈ V ′ being the sum of the weights of all arcs of G
which “collapse” in {u, v} (note that multiple parallel arcs are allowed in
(1.1), as they can have different cost and capacity). Then let A(G ′) be the
symmetric (weighted) adjacency matrix of G ′, such that Auv is the weight of
the edge {u, v} if it belongs to V ′ and 0 otherwise. Further let D(G ′) be the
n× n the diagonal matrix with Duu =

∑
v∈U Auv (du is the node degree of u

in the unweighted case). The Laplacian of G ′ is

L(G ′) = D(G ′)− A(G ′) ,

5

and it is easy to show that

L(G ′) = E(G)Θ(G)E(G)T .

Hence, topological information about the original directed graph G is con-
tained in E(G) as well as in L(G ′). The Laplacian of a graph has very many
applications in such diverse fields as graph theory, statistics and combinato-
rial optimization [31, 78, 89].

In most general-purpose LP solvers, the linear systems (1.2) are solved
by means of direct methods, typically the Cholesky decomposition preceded
by a heuristic reordering of the columns of E aimed at minimizing the fill-
in. For very large, sparse networks this approach is inefficient, as disastrous
fill-in (e.g. [29]) may occur which renders the iteration cost unbearable. One
thus has to revert to iterative methods instead, but these approaches can be
competitive only if the rate of convergence is sufficiently high. This motivates
studies of the extreme singular values of E and of the spectral behaviour of
L, since the convergence rate of iterative methods largely depends on the
conditioning µ(·) of the matrix [61]. In the first IP iterations, the matrix Θ is
close to the identity and the spectral difficulties are mild: µ(L) ≤ cn2, with c
absolute constant and the bound attained up to lower order terms in the case
of linear graphs [61]. However in the last IP iterations the matrix Θ becomes
highly unbalanced and the conditioning of L is essentially described by the
wild conditioning of Θ. This phenomenon is analysed in [94] for the case
of linear graphs and this analysis is particularly relevant for the numerical
solution of (1.2) through a preconditioned conjugate gradient (PCG) method.
Most PCG-based IP algorithms employ support-graph preconditioners [119,
12, 18, 19] of the form

LS = ESΘSE
T
S ,

where ES and ΘS denote the restriction of E and Θ respectively, on the arcs
of a “simple” subgraph S of G. Basically there are two possible choices for
S. The first is to aim at minimizing the computational burden of inversion
(factorization) of LS , which boils down to choosing it as a spanning tree or
some other chordal-type graph [90, 58, 59], so that the corresponding node-
arc incidence matrix of is in triangular or block triangular form and LS can
be factorized without fill-in. Computationally spanning trees are the most
effective choice in all but the most difficult cases, due to the fact that S can
be chosen as an (approximate) Minimum Spanning Tree in O(m), e.g. with
the Prim algorithm. The other choice is instead to aim at selecting S in such
a way to obtain the best possible provable improvement of the conditioning
of the preconditioned system. This usually reduces to appropriately (recur-
sively) partitioning the graph into “weakly interacting” clusters [112, 81].

6

Alternatively (or in addition) Steiner preconditioners [63, 80] allow to sim-
plify the task of choosing the right subgraph at the cost of introducing “fake”
nodes in the graph (“do not care equations”) and therefore solving a slightly
larger problem.

While theoretically sound and supported by a sophisticated analysis, the
status of “complex” support-graph preconditioners from the computational
standpoint is not yet very clear, as some of the hidden constants in the
complexity results may be large. This is even more relevant insomuch actual
implementations of the corresponding approaches are complex and not widely
available, while “simple” PCG approaches using tree or tree-like subgraphs
can be implemented with minor modifications of standard solution methods.
Yet, while these preconditioners often work quite well, there are some cases
where the convergence rate is slow. Along the lines of [82, 42, 43], our ob-
jective is therefore to evaluate whether “simple” tree-based PCG approaches
can be complemented with ideas from the algebraic multigrid (AMG) field
[102, 115] — and in particular from multi-iterative techniques [107] — to
yield methods that combine a relatively simple implementation and robust-
ness, in the sense of uniformly delivering good performances without the need
of complex parameter tuning.

1.1 Multigrid methods

Let L = LT ∈ Rn×n be a positive definite matrix, b ∈ Rn be the right-hand-
side and, l ∈ (0, n) (most often l ≈ log n) be the number of levels. Fix integers
n0 = n > n1 > n2 > . . . > nl > 0, take R i

i+1 ∈ Rni+1×ni full-rank matrices
and consider a class Si of iterative methods for ni-dimensional linear systems.
The related V-cycle method [117] produces the sequence {x(k)}k∈N according
to the rule x(k+1) = MGM(0, x(k), b), with MGM recursively defined as
follows:

x
(out)
i :=MGM(i, x

(in)
i , bi)

if(i = l) then Solve(Llx
(out)
l = bl)

else 1 ri := Lix
(in)
i − bi

2 bi+1 := R i
i+1ri

3 Li+1 := R i
i+1Li(R

i
i+1)T

4 yi+1 :=MGM(i+ 1, 0ni+1
, bi+1)

5 x
(int)
i := x

(in)
i − (R i

i+1)Tyi+1

6 x
(out)
i := Sνi

(
x

(int)
i

)

7

Step 1 calculates the residual of the proposed solution. Steps 2, 3, 4, 5 define
the recursive coarse grid correction by projection (step 2) of the residual, sub-
grid correction (steps 3, 4) and interpolation (step 5), while step 6 performs
some (ν) iterations of a “post-smoother”.

By using the MGM as an iterative technique [102], at the k-th iteration,

we obtain the linear systems Lix
(k)
i = b

(k)
i , i = 0, . . . , l, where the matrices

Li = LTi ∈ Rni×ni are all positive definite. Only the last one is solved
exactly, while all the others are recursively managed by reduction to low-
level system and smoothing. The procedures Si are most often standard
stationary iterative methods [122], such as Richardson, (damped) Jacobi,
Gauss-Seidel etc., with prescribed iteration matrix Si ∈ Rni×ni , i.e.

Si(x(int)
i) = Six

(int)
i + (Ini − Si)L−1

i b
(k)
i , xi ∈ Rni , i = 0, . . . , l − 1 .

If we recursively define the multigrid iteration matrix of level i = l− 1, . . . , 0
as MGMl = 0nl×nl

MGMi =Sνii

[
Ini−

(
R i
i+1

)T (
Ini+1
−MGMi+1

)
L−1
i+1R

i
i+1Li

] , (1.3)

then x
(out)
i = MGMix

(in)
i + (Ini −MGMi)L

−1
i bi, so in the finer grid we have

x(k+1) = MGM0x
(k) + (In0 −MGM0)L−1

0 b, x(r) = x
(r)
0 ∀r,

and MGMi depends on i but not on any of the x
(k)
i and b

(k)
i . For each

i = 0, . . . , l−1, the algorithm has essentially two degrees of indetermination:
the choice of the projectors R i

i+1 and the choice of the smoothers Si. The
former, as well as the calculation of the Li matrices, are performed before
the beginning of the V-cycle procedure (pre-computing phase). While this is
not necessary in the general multi-iterative approach, we will only consider
convergent smoother iterations. Moreover, if the smoother is convergent in
the L-norm (‖x‖2

L = xTLx, L symmetric and positive definite), then the
multigrid iteration matrix has L-norm smaller than that of the smoother. In
other words, the multigrid iteration is never worse than the smoother alone
[107, 64].

Two further modifications can also be applied: using a pre-smoother, i.e.
adding a step 0 similar to step 6 where a further stationary iterative method
is employed; allowing, in steps 6 (and 0), the number of smoothing iterations
to depend on the level i. This corresponds to the matrix in (1.3) being
multiplied on the right by a further iteration matrix, i.e.

MGMi = S
νi,post
i,post

[
Ini−

(
R i
i+1

)T (
Ini+1
−MGMi+1

)
L−1
i+1R

i
i+1Li

]
S
νi,pre
i,pre ,

8

where the number of smoothing steps νi,pre and νi,post depend on the level i.
In practice (cf. [5, 108] and the references therein) the application of the pre-
smoother accelerates the global convergence substantially, but the explana-
tion of this phenomenon falls outside the convergence theory of the algebraic
multigrid and indeed pertains to multi-iterative methods [107]. For instance,
looking just at the two-grid method, in the case of the d-dimensional discrete
Laplacian, it is easy to prove that the post-smoothing given by the Richard-
son iteration with ω = ω1 ≡ 1/4d is strongly converging in the subspace
of the high frequencies and that the coarse grid correction strongly reduces
the error in the low frequencies subspace. Therefore, the combination of
the two complementary iterations, which separately are slowly convergent
on the global space Rn, leads to a fast convergent two-grid method. However
a finer analysis tells us that the global error is now essentially localized in the
middle frequencies: the iteration again given by Richardson but with with
ω = ω2 ≡ 1/2d is not smoother, but it is fast convergent just in the mid-
dle frequencies subspace. Therefore its further use in step 6 (or equivalently
in step 0) increases very much the “spectral complementarity”, so that we
obtain a real multi-iterative method whose spectral radius is really small.
We call an iteration having a spectral behaviour complementary to both the
coarse grid correction and the smoother an “intermediate iteration”; an ex-
ample is the Richardson iteration with ω2 = 2ω1 in the case of the discrete
Laplacian. As for the level-dependent number of smoothing iterations [108],
it can be easily shown that a polynomial growth with i does not affect the
global cost, that remains linear for banded or sparse structures, only changing
the constants involved in the big O. This strategy, together with sophisti-
cated preconditioners in the smoothing phases, was the key for developing
very effective multigrid solvers for very ill-conditioned Sinc-Galerkin matri-
ces [93], where, like in the case of weighted Laplacians, there is the presence
of a positive diagonal matrix whose conditioning is extremely high (in fact
exponential as the size of the matrix in the Sinc-Galerkin setting). However,
while in the standard differential setting there is a gain in using an increasing
νi = νi,pre + νi,post, for problems with a smaller ill-conditioning (regularized
Laplacian in [46]) the method that achieves the smallest theoretical cost and
that minimizes the actual CPU times for reaching the solution with a preas-
signed accuracy is the simplest V-cycle with only one step of post-smoothing
given by a classical damped Jacobi.

Since several possible choices exist in the implementation of the MG ap-
proach, in the remainder of this section we will briefly discuss some initial
computational tests, performed in the context of MCF problems, that pro-
vide a guidance about how to choose at least the two main components:
projectors and smoothers.

9

1.2 Ghost node

Let e = e(n) be the all-ones vector of length n. It is immediate to realize
that eTE = 0T and therefore eTL = 0T , i.e. rank(L) = n − 1. However
eTd = 0 as well (for otherwise (1.1) cannot have any feasible solution [2]),
and this property is transmitted to the right-hand sides b. Hence by the
Rouché-Capelli Theorem the linear system (1.2) has ∞1 solutions of the
form x(α) = x̂ + αe for α ∈ R. Thus, let E ′ and b′ be obtained by E and
b respectively by erasing any one row and L′ obtained by E ′ as usual. A
solution to (1.2) can be obtained by solving the cut system

L′x′ = b′ (1.4)

and setting x̂ = (x′, 0). Intuitively this amounts at creating a “ghost node”,
the one corresponding to the deleted row, in the graph, as the columns of
E corresponding to arcs entering (leaving) the ghost node will only have a 1
(−1) without the corresponding −1 (1).

It is well-known that, since L is a semidefinite positive matrix, CG or
PCG approaches (started from the zero vector) solve (1.2) in the least-squares
sense, i.e. find

x̄ = argmin
x∈Rn

‖Lx− b‖2 or equivalently ‖x̄‖2 = min
α∈R
‖x̂+αe‖2 . (1.5)

This is, in general, not true for other methods. Hence using CG or PCG
allows to work on the original graph at all levels but the last one, where
eliminating one row (i.e. passing from (1.2) to (1.4)) to recover L′l is necessary
since a non-singular matrix is required by direct methods. Thus [P]CG can
maintain our graph “sheltered from ghosts” which, as we will see, can have
a positive impact on performances.

1.3 Smoothers

In accordance with the most successful strategies in the differential case, we
tried as smoothers a combination of classical iterations. We recall that the
discrete Laplacian can be viewed as a special instance of a graph matrix. In
addition, by the analysis in [61], all the (unweighted) graph matrices with
Θ = I share the property that the small eigenvalues are related to smooth
eigenvectors. In other words, as in the differential setting, the degenerating
subspace is located essentially in the low frequencies. Therefore we tested
several combinations of pre- and post-smoothers to find the one with better

10

spectral complementarity and therefore performances. The preliminary nu-
merical results were not encouraging especially in the last iterations of the
IP process where the Θ becomes very unbalanced, with very large entries (≈
1e+6) and very small entries (≈ 1e-10).

A similar occurrence was already experienced in [93], where the distri-
bution of the nodes in the Sinc-Galerkin method induced very unbalanced
diagonal entries. In that application, the only successful strategy was the
combination of PCG smoothers with sophisticated and powerful precondi-
tioners, in connection with the classical projection used in the differential
context. Taking inspiration from this setting and from the similarity induced
by the wild behaviour of the diagonal entries, we focused our attention on
more powerful smoothers, that is the PCG family with a large set of special-
ized preconditioners: a) diagonal; b) incomplete Cholesky factorization with
tolerance parameter droptol (non-zero fill-in); c) tree-based preconditioners.
However the problem with general graph matrices is more complicated than
the one in [93], since the graph structure is not nearly as regular as those
arising in the context of differential operators.

Regarding the computational burden, we assume that the cost at every
level of the MG iteration is linear with respect to the dimension (let us say
bounded by O(ni) = γni) plus the recursion part and we assume that the size
is halved at every recursion step. Concerning the number of smoothing steps,
we consider the growth function νi,pre = ik that is we make more smoothing
steps at the inner levels and we assume that the cost of the smoothing itera-
tion is responsible of the linear cost O(ni) = γni. The total work Wi at level
i required to perform a MG iteration is then given by the recursive law

Wi ≤ γni(l + 1− i)k +Wi−1, ni−1 =
ni
2
,

with W0 constant. Therefore, setting n = nl, at the finest level l ≈ log(n)
we have

Wl ≤
l∑

i=1

γ
n

2i−1
ik +W0 < γn

∞∑
i=1

ik

2i−1
+W0 . (1.6)

The rightmost series in (1.6) is convergent; its initial values for k =
0, 1, 2, 3, 4, 5 are respectively 2, 4, 12, 52, 300 and 2164. This estimate
has to be multiplied by 2 when employing both pre- and post-smoother,
as in our case. Preliminary numerical experiments with different values of
k (∈ {0, 1, 2}) clearly showed that k = 0 results in the best performances,
which was therefore the setting used in all the subsequent test.

11

1.4 Projectors

Our initial interest was to verify whether standard operators with good per-
formances in the context of differential equations, such as the very classical
Full Weighting Operator (FWO)

RFWO =
1

4


1 2 1

1 2 1
. . .

1 2 1

 , (1.7)

would perform equally well in the context of general graph matrices. The
preliminary results quickly made it clear that this was not the case: in fact,
the corresponding MGM is not efficient even for these easy graphs and Θ = I,
which is generally the easiest case because it shows a moderate conditioning
[61]. The results are also confirmed by the fact that using more sophisticated
choices, such as quadratic approximation [45] with stencil

1

16
[1, 4, 6, 4, 1]

and even cubic interpolation [117] with stencil

1

32
[−1, 0, 9, 16, 9, 0,−1]

does not lead to better results (actually even to worse ones). Thus the
differential setting is of no help in our graph problem. This is due to the
fact that the matrix at lower levels is far away from a graph matrix and this
destroys the structure which the MGM relies upon.

All this pushed us towards the development of the different operators
described in the following. In particular we quickly focused our attention on
Aggregation Operators (AGO) of the generic form

RAGO =


1 1 1

1 1
. . .

1 1 1 1

 , (1.8)

which preserve the graph structure in the recursion, i.e.

RAGOEΘETRT
AGO = RAGOL(G)RT

AGO = L(G ′)

12

is the Laplacian of a new graph G ′ corresponding to the aggregation of nodes
of the original graph (see Definition 2.1). Similar operators have been used
with good results in different contexts, for example when designing multi-
grid solvers for Markov Chains [39]. Numerical testing clearly showed that
MG approach with a simple structure-preserving projector appeared to be
competitive. Furthermore the tests showed that, for general graphs and arc
weights (such as these of MCF matrices at final IP iterations), the only
effective smoothers are preconditioned Krylov methods. Therefore the only
ingredient that may possibly make the V-cycle competitive is the right choice
of the projectors. Since most of the effective preconditioners for this class
of systems are support-graph, it is interesting to investigate the class of pro-
jection operators that allow preserving the graph structure — and therefore
using support-graph preconditioners — at all levels of the MG approach.

Chapter 2

Graph operators theory

In this chapter we study the conditions under which projection operators
preserve the graph structure of the matrix. We start with some preliminary
definitions.

Definition 2.1 An operator R is called a graph operator if, given any inci-
dence matrix E,

RE = E ′Θ′ , (2.1)

where E ′ is an incidence matrix and Θ′ is an invertible diagonal matrix.

According to (1.2), one has

REΘETRT = E ′Θ′ΘΘ′E ′T = E ′Θ̃E ′ ,

where Θ̃ = Θ′ΘΘ′ is a positive diagonal matrix if Θ is (we do not need
the diagonal entries of Θ′ to be positive). Consequently it is evident that
if the restriction Ri

i+1 in the multigrid method is a graph operator, then
it preserves the graph structure at the lower levels, in the sense that the
projected problem is still a (smaller) weighted Laplacian, thus allowing an
efficient recursive strategy in the MG solver. A weaker notion is:

Definition 2.2 An operator R is called a graph operator for a given matrix
E if (2.1) holds for E, although it may not hold for all possible incidence
matrices.

Definition 2.3 An operator R is called admissible if it does not have any
column with all zero elements and any row with all equal elements.

The rationale for this definition is that an all-zero column means that a
node is “ignored”, so that the projection (ri = (Ri

i+1)T ri+1) cannot produce

13

14

any correction of the error. Symmetrically, a row with all equal elements in
R means that RE has an all-zero row, i.e. E ′ in (2.1) has an isolated node.
Furthermore note that AMG conditions impose that R has to be of full rank,
so that in any case at most only a unique row could have all equal elements.
We remark that Definition 2.3 implies that nnz(R) ≥ n, where nnz(·) denotes
the number of non-zero elements. This leads to the following refinement of
the concept.

Definition 2.4 An admissible graph operator R such that nnz(R) = n is
called minimum.

Of course, any admissible operator with nnz(R) > n is non-minimum, and
the set of graph operators is partitioned between the two subsets. Similar
definition can be given for graph operators w.r.t. a specific matrix E.

2.1 Theoretical results

We now work our way towards a characterization of the set of graph opera-
tors. In this section we will stick to the following notation: A[k] is the k-th
column of a generic matrix A, E is the n ×m node-arc incidence matrix of
the underlying connected graph G (see Chapter 1), for each k = 1, . . . ,m the
tail and head nodes of the corresponding arc (the row indices corresponding
to 1 and −1 in E[k]) are ik and jk respectively, R is a n′ × n operator with
n′ < n (usually n′ ≈ n/2) so that F = RE is a n′ ×m matrix, e′ = e(n′) is
the all-ones vector of length n′.

Definition 2.5 R is a constant column sums (CCS) operator if the sum
of elements of every column is constant, i.e. there exists ρ ∈ R such that
(e′)TR = ρeT .

Definition 2.6 R is a zero column sum (ZCS) operator for E if (e′)TF =
(e′)TRE = 0T (i.e. R conserves the property of E that all columns have zero
sum). R is a ZCS operator if it is a ZCS operator for all graph matrices E.

Theorem 2.7 Let E be an incidence matrix. R is a ZCS operator for E if
and only if R is a CCS operator.

Proof. [⇒] We want to prove that rT = (e′)TR = ρeT for some ρ ∈ R.
Suppose otherwise and let i, j be two indices such that ri 6= rj. Because G
is connected, there exists at least one path in G having the nodes i and j as

15

endpoints. It cannot be that rp = rq for every arc k = (p, q) belonging to the
path, as this would imply ri = rj. Hence there must be k = (p, q) such that
rp 6= rq, which leads to

0 = (e′)TF [k] = (e′)T (RE)[k] = rTE[k] = rp − rq 6= 0

that is a contradiction.
[⇐] For every CCS operator R and for every incidence matrix E we have

(e′)TF = (e′)TRE = ρeTE = 0T .

Corollary 2.8 If R is a ZCS operator for E then it is a ZCS operator.

Proof. Since R is a ZCS operator for E, by Theorem 2.7 R is also a CCS
operator. Now, by the second point of the previous proof, it follows that R
is a ZCS operator.

Remark 2.9 Corollary 2.8 implies that the two forms in Definition 2.6 are
equivalent.

Corollary 2.10 Let E be an incidence matrix. Any graph operator for E is
a CCS operator.

Proof. Since R is a graph operator for E, we have (cf. §1.2)

(e′)TF = (e′)TRE = (e′)TE ′Θ′T ,

i.e. R is a ZCS operator for E. Hence by Theorem 2.7 it is a CCS operator.

Corollary 2.11 Let R be a minimum operator. Then, up to a scalar factor
ρ, R is a binary matrix, i.e. R ∈ {0, 1}n′×n.

Proof. By Definition 2.4 every column of the graph operator R only has one
non-zero element and by Corollary 2.10 (e′)TR = ρeT , hence every non-zero
entry must be equal to ρ.

Definition 2.12 R is a difference operator for a set I = {(i1, j1),
(i2, j2), . . .} of pairs of node indices if for every (ik, jk) ∈ I the vector
R[ik] −R[jk] has either 0 or 2 non-zero elements.

Lemma 2.13 For each k = 1, . . . ,m, F [k] = (RE)[k] = R[ik] −R[jk].

Proof. Immediate by the definition of E.

16

Theorem 2.14 Let R be a CCS operator. R is a graph operator for E if
and only if R is a difference operator for the set I = V of the arcs of G.

Proof. [⇒] Assume by contradiction that R is not a difference operator for
I = V . There exists an arc k = (ik, jk) ∈ V such that R[ik]−R[jk] has neither
0 nor to 2 non-zero elements. This by Lemma 2.13 implies that the same
holds for F [k] = (RE)[k], therefore R is not a graph operator, since (2.1)
cannot hold.
[⇐] If R is a difference operator for V , then for each k = (ik, jk) ∈ V the
column F [k] = R[ik] − R[jk] has either 0 or 2 non-zeroes. Assume the latter
and let p and q be the row indices of the non-zeroes in F [k]. Since R is a
CCS operator, by Theorem 2.7 we have

0 = (e′)TF [k] = Fpk + Fqk ⇒ Fpk = −Fqk .

We can then scale F [k] by using the k-th diagonal entry of Θ′, finally yielding
F = E ′Θ′ where E ′ is an incidence matrix (possibly with “empty arcs”).
Therefore R is a graph operator.

Remark 2.15 It is easy to verify that minimum operators are CCS operators
and difference operators for any set I.

Finally we prove a somewhat surprising result about admissible graph
operators.

Definition 2.16 C ∈ Rn′×n is called a row matrix if each of its rows is a
scalar multiple of eT , i.e. C = ceT for some c ∈ Rn′.

Lemma 2.17 Let A ∈ Rn′×n, s ∈ Rn′ and Q ∈ Rn′×n defined as

Qij =

{
0 if Aij = si
1 otherwise

.

Then for any pair (i, j) the number of non-zero elements of A[i]−A[j] is equal
to the number of non-zero elements of Q[i] −Q[j] plus the number of indices
k such that Aki 6= Akj and Qki = Qkj = 1.

Proof. For any k, denote αk = Aki − sk and βk = Akj − sk. If Qki 6= Qkj, it
means that Qki = 1 and Qkj = 0 or vice-versa; hence αk 6= 0 and βk = 0 or
vice versa. Therefore Aki−Akj = (Aki−sk)−(Akj−sk) = αk−βk 6= 0. When
Qki = Qkj = 0, one has αk = βk = 0, and therefore Aki − Akj = 0. In the
only remaining case Qki = Qkj = 1 one directly counts whether Aki 6= Akj or
not, hence the proof is finished.

17

Theorem 2.18 If R is an admissible graph operator and n′ > 2 then

R = M + C ,

where C is a row matrix and M is a minimum operator.

Proof. Since R is admissible, after a proper reordering of rows and columns
of R, we have R = [R1 | R2] where R1 is a n′ × n′ matrix such that Rii 6= 0
for all i. For minimum operators, without loss of generality, R1 = ρ ·I, where
ρ is a scalar factor and R2 contains only copies of some columns of R1.

We arbitrarily select one column of R — say R[t] — as s and we apply
Lemma 2.17 to R. Since R is admissible, there cannot be an all-zeroes row
in Q, because R does not have any row with all equal elements. Since R
is also a graph operator, (2.1) holds for any graph G. By Theorem 2.14
R is therefore a difference operator for any set I, hence in particular for
I = {(1, t), (2, t), . . . , (n, t)} (the star tree rooted at t). By the definition
of difference operator, in each column of Q there are either 0 or 2 ones.
Moreover, for any pair Q[i] and Q[j] of non-zero columns at least one of the
two non-zeroes must be in the same row. In fact, assume by contradiction
that Q[i] and Q[j] have all their non-zeroes in different positions: this means
that there exists for Q a difference vector Q[i]−Q[j] with 4 non-zero elements
and by Lemma 2.17 the same holds for R, since there is no index k such that
Qki = Qkj = 1.

These two facts imply that we can reorder the rows and columns of Q
(which corresponds to reordering R) by putting the column t as the first one
and all the others appropriately in such a way that Q = [Q1 | Q2], where Q1

is the following n′ × n′ matrix

Q1 =


0 1 1 · · · 1
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


and Q2 contains only copies of some columns of Q1. Now assume that R
has in fact been reordered (if necessary) to match Q, consider the first row
in (the reordered) R and pick any two column indices h 6= j such that Q[h]

and Q[j] are not all-zero; hence Q1h = Q1j = 1 (remind that the columns
in Q2 are copies of these in Q1, hence all the non-zero ones have a 1 in the
first row). We claim that R1h = R1j. We start with the case where the
other two non-zeroes are in different rows, i.e. Qph = 1 and Qqj = 1 for
1 < p 6= q > 1: by Lemma 2.17 we have a difference vector for R with 2 or

18

3 non-zero elements, depending on whether R1h = R1j or not, which proves
our claim since R is a difference operator. The case when p = q easily follows
by transitivity considering one further column h (which must exists) that
has its other non-zero element in a different row: R1i = R1h and R1j = R1h,
so R1i = R1j. Note that the hypothesis n′ > 2 is crucial in this part of the
proof.

Consider now any row i > 1. Needless to say, all entries Rij such that
Qij = 0 have the same value (that of Rik). Therefore we know that R has an
arrangement as R = [R1 | R2], where

R1 =


r1 c1 c1 · · · c1

c2 r2 c2 · · · c2

c3 c3 r3 · · · c3
...

...
...

. . .
...

cn′ cn′ cn′ · · · rn′


and each column R[j] of R2 has the form [c1, c2, c3, . . . , cn′]

T except (possibly)
for one unique element, Rij = rj 6= ci, at the unique row i > 1 (if any)
such that Qij = 1. Consider any two column indices h 6= j such that Qih =
Qij = 1: we claim that, again, Rih = Rij, i.e. that all columns of R2 are
copies of some column of R1 (the one having the non-zeroes in Q in the same
position). This comes from the fact that, being a graph operator, R is also
a CCS operator: (e′)TR[j] = (e′)TR[h] = ρ. Then one has

ρ = (e′)TR[j] =
∑
p 6=i

cp + rj and ρ = (e′)TR[h] =
∑
p 6=i

cp + rh

whence Rih = rh = ρ−
∑

p 6=i cp = rj = Rij. Again from the fact that R is a
CCS operator, we have

ρ = (e′)TR[1] = r1 + c2 +
∑
p>2

cp = (e′)TR[2] = c1 + r2 +
∑
p>2

cp

and similarly for all pairs (i, i + 1) with i < n′, whence r1 − c1 = r2 − c2 =
. . . = rn′ − cn′ . Let us call the common value ri − ci = α: it must be
α 6= 0, for otherwise one would have ri = ci for all i, i.e. R = C = ceT ,
contradicting the hypothesis that R is admissible (each row would have all
equal elements). Hence M = R − C 6= 0. In particular M has exactly one
non-zero per column, no all-zero rows, and all its non-zeroes have the same
value α. Thus M clearly is a minimum operator (cf. Corollary 2.11).

Remark 2.19 The action on an incidence matrix E of any graph operator
R and of the related minimum operator M (see Theorem 2.18) is the same.
In fact, F = RE = ME + CE = ME.

19

Remark 2.20 The hypothesis n′ > 2 in Theorem 2.18 is necessary, as for
n′ = 2 the thesis does not hold. In fact, the conditions which have to be
satisfied are:

i. R1j +R2j = ρ for all j,

ii. R1j = R1k if and only if R2j = R2k for all j and k,
and these do not prevent from choosing all different Rij, so in general R 6=
M + C. An easy counterexample with m = 5 is for instance

R =

(
0.1 0.8 −1 1 0.25
0.9 0.2 2 0 0.75

)
.

Corollary 2.21 Let R be an admissible graph operator. If R is a binary
matrix, then either R = M or R = e′eT − M where M is a minimum
operator.

Proof. By Theorem 2.18 R = M + C. By Corollary 2.11 M is a binary
matrix, up to a scalar factor α. Hence either C = 0 and R = M or C is the
matrix with all entries equal to 1 and R = C −M is the complement of the
minimum operator M (the one having 0 where M has 1 and vice-versa).

We finish this section by noting that if the original graph G is connected
(as is the case in our applications), then so is the “restricted” graph G ′.

Theorem 2.22 Let R be an admissible graph operator for E(G). Then G ′ is
a connected graph.

Proof. By Remark 2.19 F = RE = ME, hence R acts on E as a minimum
operator; these aggregate nodes, which can be adjacent (cf. Definition 3.1)
or not. Clearly contracting nodes in an already connected graph produces a
connected graph: each path in G corresponds to a (possibly non-simple) path
in G ′. In other words, connectivity in G ′ is the same as connectivity in the
graph obtained by adding to G arcs forming cliques within the aggregated
nodes.

2.1.1 A note on the FWO operator

The above results help heuristically in understanding why the full weighting
operator is a good choice for Poisson problems: basically it is a graph oper-
ator for the corresponding very special graph matrix. Recalling its algebraic
expression in (1.7), omitting the constant 1/4, and leaving out the first and
the last column, one immediately notes that the FWO is a CCS operator

20

with constant 2. The fundamental observation now is that the matrix asso-
ciated with the Poisson problem has the EET form with the elimination of
the first and the last row and the first and the last column:

(LPoisson)n =


2 −1
−1 2 −1

−1
.
. −1
−1 2


n×n

= PnEnE
T
nP

T
n ,

where En =



1
−1 1

−1
. . .
. . . 1
−1 1

−1


(n+2)×(n+1)

,

Pn =
(

0 In 0
)
n×(n+2)

.

The incidence matrix E is associated to the linear graph with n + 2 nodes,
in which every node points to the next one, as depicted in Figure 2.1.

n+242 3 ...1 n+1

Figure 2.1: Linear graph with n+ 2 nodes. Nodes colored in grey are related
to the Dirichlet boundary conditions.

Indeed, RFWO — which is clearly an admissible operator — is a difference
operator for the set I = {(2, 3), (3, 4), . . . , (n− 2, n− 1)}, as the difference
vector is 2

−
 1

1

 =

 1
−1

 or

 1
1

−
 2

 =

 1
−1

 .

The exceptions represented by the first and the last column, in which the
difference vector has one non-zero element, do not contradict our results, as
they can be explained by the elimination of rows and columns related to the
Dirichlet boundary conditions. By Theorem 2.14 we conclude that RFWO is
a graph operator for the matrix E of Poisson problems (cf. Definition 2.2),

21

although not a graph operator in general. Moreover, by Theorem 2.22 also
the graph associated to E ′ = En′ is connected; better yet, it is still a linear
graph. In fact,

RFWO(LPoisson)nPFWO =
1

4
(LPoisson)n′ =

1

4
Pn′En′E

T
n′P

T
n′

where PFWO = 2(RFWO)T is the operator of linear interpolation, En′ is the
incidence matrix associated to the linear graph with n′ + 2 nodes, and Pn′ is
defined as above. Thus the FWO projection preserves the Poisson structure
and so it is not surprising that it does work well in the Poisson case. However
for general graphs, the structure of weighted Laplacian is not conserved at
all by the FWO projection and in fact the related multigrid performances are
not good (see the discussion in §1.4). Our heuristic indication is to consider
only projections that preserve the weighted Laplacian structure.

2.2 Minimum operators

Summarizing what we have done, in the previous section we have provided a
characterization of the set of minimum graph operators along the following
lines:

a) any minimum operator is a binary matrix up to a scalar factor;

b) for any admissible graph operator R, R = M + C where C is a row
matrix (each of its rows is composed by all identical numbers) and M
is a minimum operator;

c) for any admissible graph operator R that is also a binary matrix, then
either R = M or R = U −M where M is a minimum operator and U
is the all-ones matrix.

Actually the last two results only hold if R has more than two rows, but this
is clearly not an issue in practice. What these results say is that, basically,
any admissible graph operator that is a binary matrix is either a minimum
operator or the “complement” of a minimum operator. In turn all minimum
operators are binary matrices up to a(n irrelevant) scalar factor, and therefore
restricting to Aggregation Operators (1.8) appears to do very little harm.
Even more so when one considers that, by the above results, the action on
an incidence matrix E of any graph operator R and of the related minimum
operator M is the same.

As discussed in this chapter, the set of non-minimum operators, as a
subset of admissible graph operators, is not empty, although it just contains

22

row matrix “perturbations” of minimum operators. One may then wonder
whether non-minimum operators could be preferable to minimum ones. In
practice, we did not identify any promising way to construct non-minimum
operators. All our attempts with non-minimum operators invariably gave
either equivalent or worse results than these with minimum ones. Therefore
in the following we will concentrate on MG approaches which use minimum
operators only. These operators pick some subset of nodes and “shrink”
them together into a super-node, which inherits all the incident arcs of the
original ones, while arcs between any of the nodes shrank together disappear.
Obviously a fundamental question has now to be answered, i.e. how to select
the subset of nodes to be shrank.

There are many possible ways to approach this question. For instance,
one possibly meaningful observation is that if G were a tree, then (1.2) could
be solved in O(n) [2]. More in general, if G were a chordal-type graph then
(1.2) could be solved in O(m) [58, 59] (this is the idea subgraph-based pre-
conditioners are based upon). A promising approach may be that of choosing
the aggregation in such a way that after a few levels the “shrank” graph is
chordal, so as to pass as quickly as possible to the direct solution step. On
the other hand, it is not clear how effective these aggregations may be in
terms of reducing the overall number of MG iterations. In the following we
will describe some classes of minimum operators that we have devised and
tested to start shedding some light on this intricate issue. For each of them
we describe the restriction operator R ∈ {0, 1}n′×n, where n′ is a fraction of
n (n actually is nk, i.e. the matrix dimension at the k-th level). The value
d = n− n′ is called descent parameter and usually d ≈ n′ ≈ n/2.

We now present a first list of simple aggregation projectors. We call
them oblivious operators, as their form is independent of the matrix to which
they are applied. Oblivious operators are attractive from the computational
viewpoint because they can be computed a-priori, therefore they are as cheap
as they possibly can.

• The First Operator aggregates the first d+ 1 nodes into one:

RFirst =


1 1 · · · 1 1

1
. . .

1

 .

23

• The Last Operator aggregates the last d+ 1 nodes into one:

RLast =


1

. . .

1
1 1 · · · 1 1

 .

• The Extreme Operator aggregates the first and the last (d+1)/2 nodes
into one:

RExtreme =


1 1 1 1 1

1
. . .

1

 .

• The Medium Operator aggregates the d+ 1 “central” nodes into one:

RMedium =


1

. . .

1 1 · · · 1
. . .

1

 .

• The Random Operator is iteratively obtained by randomly selecting a
set R of pairs of nodes (with |R| = d) and aggregating them; formally,
RRandom =

∏
(i,j)∈RR(i, j) where

R(i, j) =



1 i j
1 ↓ ↓

1 1
. . .

1
1

1


is the Pair Operator w.r.t. the pair (i, j).

• The Couple Operator aggregates every node with the following one:

RCouple =


1 1

1 1
.

1 1

 ;

24

in other words, it is the product of ≈ n/2 pair operators corresponding
to pairs (1, 2), (3, 4),

Furthermore it is possible to alternate two or more of these operators along
MGM levels. Clearly the effectiveness of these operators is strongly influ-
enced by the structure of the underlying graph G and the relative perfor-
mances of different oblivious projectors vary wildly as the underlying prob-
lem changes. So it is difficult to choose any fixed oblivious projector whose
performances are predictable and stable enough on a large class of instances.
This suggests that it may be necessary to adapt the projector to the topologi-
cal structure of the graph and maybe to the weights of the arcs too. Therefore
we have to investigate non-oblivious operators, despite the fact that they can
more costly to determine. This is precisely what the next chapter is devoted
to.

Chapter 3

Projection operators

As we have just seen, many different minimal operators can be constructed
by iterating the simplest possible form of aggregation, that is the one given
by the Pair Operator

R(i, j) =



1 i j
1 ↓ ↓

1 1
. . .

1
1

1


w.r.t. the pair (i, j); in other words, by selecting a set R of pairs of
nodes (with |R| = d) and defining RR =

∏
(i,j)∈RR(i, j). For instance

one can define oblivious operators that are independent of the graph they
are applied to, such as the Couple Operator aggregating successive nodes
(R = {(1, 2), (3, 4), . . .}) or the Random Operator where R is randomly cho-
sen. Oblivious operators are attractive from the computational viewpoint
because they can be computed a-priori, therefore they do not require any
setup (precomputing) phase . However their effectiveness is strongly influ-
enced by the structure of the underlying graph G: in order to construct
“robust” operators, adaptive choices must be considered which depend on
the values of the matrix at hand (topological structure of the graph and
weights of the arcs too) despite the fact that they can be more costly to
determine, and therefore that a non-trivial trade-off between increase of the
performances and computational cost have to be struck. In choosing the
rules to determine the elements of R, it is likely a wise choice to preserve as
much as possible the topological structure of the graph.

25

26

Definition 3.1 A graph operator R is a contraction operator for E if it
aggregates exclusively adjacent nodes in G.

Remark 3.2 RFWO is a contraction operator for the matrix E of Poisson
problem.

Contractor operators are intuitively attractive, since they do not “mess
up” with the structure of the graph. Indeed we tested a simple but effective
scheme for choosing the pairs (i, j) to aggregate:

• select i either at random or as the diagonal entry of L with the least
(or the greatest) value;

• select j either at random or as the index of the non-zero off-diagonal
entry in the i-th column with the least (or the greatest) absolute value
(since Lij = −Θij < 0).

Note that, when the process is repeated, the (iteratively) aggregated matrix
R(i, j)LR(i, j)T is looked at instead of the original L. This gives rise to nine
“{x, y}” projectors with x and y chosen between “rand”, “min” and “max”.
Our preliminary results showed that {x,max} projectors substantially out-
perform the corresponding variants where j is selected either at random or
by looking at arcs with small weight. Thus in our experience using contractor
operators turns out to be better then aggregating non-adjacent nodes. Fur-
thermore, as with subgraph-based preconditioners, choosing arcs with large
weight for R appears to be the best option.

It is clear that different, and possibly more sophisticated, choices of R
may exist. For instance, every possible pair (i, j) actually defines the 2 × 2
minor

Lij =

[
Lii Lij
Lji Ljj

]
,

where Lii > 0, Ljj > 0, Lij = Lji < 0 and det(Lij) is positive. Because weak
dominance for rows holds, that is

∑
j 6=i |Lij| ≤ Lii with strict inequality

at least for one index (if R is a graph operator, then this is true at every
MGM level), it follows that |Lij| ≤ min(Lii, Ljj). The choice of j of {x,max}
operators implies that, if we suppose that min(Lii, Ljj) = Ljj, then Lij ≈ Ljj
and

det(Lij) = LiiLjj − L2
ij ≈ (Lii − Ljj)Ljj ,

i.e. if Lii ≈ Ljj then one aggregates a badly conditioned part, whereas
if Lii � Ljj then one aggregates a nicely conditioned part. Hence one
may use quantities related to det(Lij), such as “normalized” versions like

27

det(Lij)/(L2
ii + L2

jj) or det(Lij)/(LiiLjj), which measures how well or badly
conditioned the 2× 2 minor is, to gauge how promising a (i, j) pair is. This
gives rise to max-minor or min-minor operators, depending on whether one
chooses to preferentially aggregate well-conditioned or ill-conditioned minors.

Our experience with these two variants is that aggregating badly condi-
tioned minors is by far the most effective variant. The choice of the (i, j)
pair is done as in the previous case: first i is selected with either one of the
three above strategies, then j is selected in O(n) (O(1) for sparse graphs)
as the one giving the most ill-conditioned minor. Note that it would be
possible to determine the “overall best” minor operator by looking at all
arcs in G, but that would have a O(m) cost. The {x,min-minor} operator
seems to somewhat improve upon the previous {x,max} ones. In particular
its performances seems to be even less dependent by the choice of i, so the
average behaviour is somewhat better. This is especially true when treating
extremely ill-conditioned problems, which therefore makes it our iterative
pairwise minimal projector of choice. In the following we will refer to these
projection techniques respectively as Max and Minor aggregation.

3.1 Relationships with preconditioning

As anticipated in §1.3, PCG with subgraph-based preconditioners is the most
promising class of approaches to serve as effective pre- and post-smoothers
in MG methods. Thus, at least by restricting to contraction operators R,
one actually have to choose two subsets of arcs at each level of the MGM: S
for the preconditioner, R for the projector.

Clearly the two choices are not entirely independent. In particular R
at one level influences the graph and therefore possibly S, at the next. We
therefore aim at exploring more in detail the relationships between the two
choices. In order to do this, we now present and analyse two possible precon-
ditioning techniques which takes into account the effect of projection. In the
following, we denote by S = ESΘSE

T
S the subgraph-based preconditioner.

We assume S positive definite and in fact “easy” to invert, which requires
specific care in the choice of S [58, 59].

3.1.1 Inverse projection

The preconditioned matrix of PCG at the first level of the MG approach
is P = S−1L. At the k-th level, inverse projection uses the preconditioned
matrix

Pk = (RkR
T
k)−1RkS

−1RT
k (RkR

T
k)−1RkLR

T
k , (3.1)

28

where Rk is the cumulative restriction operator after k levels. The analysis of
inverse projection requires the following two lemmas, whose proofs are based
on continuity and density arguments of invertible matrices in the space of all
matrices (see e.g. [14]).

Lemma 3.3 For all A,B ∈ Cn×n the characteristic polynomials of AB and
BA coincide and therefore σ(AB) = σ(BA).

Lemma 3.4 Let A ∈ Cm×n and B ∈ Cn×m with m > n, then for the char-
acteristic polynomials of AB and BA one has pAB(λ) = pBA(λ) · λm−n and
therefore σ(AB) = σ(BA) ∪ {0, . . . , 0} (repeated m− n times).

Theorem 3.5 If σ(P) ⊂ [a, b] then σ(Pk) ⊂ [ak, bk] with ak > a.

Proof. We denote by (a ≤) α1 ≤ . . . ≤ αn (≤ b) the eigenvalues of P
and with β1 ≤ . . . ≤ βnk those of Pk. We single out Qk = RT

k (RkR
T
k)−1Rk

from (3.1). Thanks to Lemma 3.4, Qk has only 0 and 1 eigenvalues (as the
non-zero ones are the same of RkR

T
k (RkR

T
k)−1 = I). Again by Lemma 3.4,

Pk has essentially the same spectrum as S−1QkLQk, which in turn is similar
to S−1/2QkLQkS

−1/2. In other words, its eigenvalues are

0 = λ1 = λ2 = . . . = λn−nk < λn−nk+1 ≤ . . . ≤ λn

where λn−i = βnk−i for i = 0, . . . , nk − 1. We can now apply the MinMax
Theorem to “discover” the first non-zero eigenvalue (λn−nk+1 = β1):

λn−nk+1 = min
dim(U)=n−nk+1

max
u∈U

uTS−1/2QkLQkS
−1/2u

uTu

= min
dim(V)=n−nk+1

max
v∈V

vTQkLQkv

vTSv
, where v = S−1/2u .

Now let X be the nk-dimensional space generated by columns of RT
k . For

every x ∈ X we have Qkx = [RT
k (RkR

T
k)−1Rk]R

T
k x̃ = RT

k x̃ = x. On the
other hand, for every x ∈ X⊥ we have Qkx = 0. Since V is a (n − nk + 1)-
dimensional space and X is a nk-dimensional one, their intersection ZV =
V ∩X must have dimension at least 1. Therefore, we conclude

λn−nk+1 ≥ min
dim(V)=n−nk+1

max
z∈ZV

zTQkLQkz

zTSz
= min

dim(V)=n−nk+1
max
z∈ZV

zTLz

zTSz
≥ α1 ≥ a .

Had the result been [ak, bk] ⊂ [a, b], one would have reached the very sig-
nificant conclusion that the spectral properties of the preconditioned matrix

29

get better and better as the level increases, so have good hopes that the same
holds for the practical behaviour of the PCG. Theorem 3.5 instead only gives
indications about the lower extreme of the interval. However this is the most
important one for PCG convergence, as well emphasized in [8]. Therefore it
should be expected that a good practical behaviour of PCG be observed at
all levels of the MG approach, provided that S has been properly chosen at
the first level.

3.1.2 Dense projection

A different and somewhat simpler approach is the dense projection, that
entails the use of

Sk = RkSR
T
k

as preconditioner at the k-th level. The advantage is that Sk is the subgraph-
based preconditioner on the graph at the k-th level simply obtained by ap-
plying to S the same aggregations applied to G, so it is very inexpensive to
compute. Yet this is dubbed dense since number of non-zero elements can
significantly increase with respect to that of the original subgraph S (chordal
subgraphs are typically fairly sparse), thus causing a relevant growth in the
cost for inverting Sk. It is possible to choose R appropriately so as to avoid
this issue.

Theorem 3.6 Let S be a chordal graph, (i, j) ∈ S and S ′ obtained by S by
aggregating i and j. Then S ′ is a chordal graph.

Proof. Basically it all depends on the fact that aggregating an existing
arc cannot create any new cycle. Assume by contradiction that a cycle C ′
of length k ≥ 4 exists in S ′ which has no chord (an arc joining two non-
consecutive vertices in C ′), thus negating triangularity of S ′. Hence S ′ and
S are as depicted in Figure 3.1, where continuous lines indicate arcs which
are surely present, whereas at least one arc of pairs indicated with dotted
and dashed lines is present. In plain words, p and q are not adjacent in S,
but there exists a path joining them (passing through i or j). Let Y be the
subgraph C ′ \ {i′}, which is a linear graph of order k − 1 belonging both
to S ′ and S: neither i nor j are adjacent to nodes of Y \ {p, q}. Therefore
there exists in S a cordless cycle C = Y ∪ {i} (or Y ∪ {j}) of length k. This
concludes the proof.

Thus, choosing R ⊂ S, the triangular structure is preserved and we avoid
any fill-in effect. It is clear that such a choice severely restricts the set of
available projection operators, possibly unnecessarily so. For instance, it

30

S´ S
i´

p

q

…

…

i

j

p

q

…

…

Figure 3.1: Aggregation in a chordal graph preserves the property.

is easy to realize that if S is a tree, then triangularity is preserved by Rij

not only if (i, j) ∈ S (joining “a father and a son”), but also if i and j
are “brothers”, i.e. they have a common adjacent node in S. Allowing to
aggregate along arcs in V \S may be possible without incurring in fill-in and
any improvement in the flexibility of the approach is in principle desirable.

Exploiting arcs “joining brothers” is precisely the idea behind Brother-
Connected Trees, one of the most effective more-than-tree subgraph-based
preconditioners [58, 59]. Roughly speaking, these are obtained by adding
this kind of arcs to an existing (or being constructed) spanning tree. In
other words, if S were a tree and (i, j) /∈ S were an arc joining brothers
which may be deemed useful to be part of R, then (i, j) could have been
added to S in the first place. It appears that more-than-tree chordal pre-
conditioners may be even more attractive in the context of MG methods (at
least when using minimum operators and dense projection) than they are in
the context of direct application of PCG, since adding arcs to S not only im-
proves its preconditioning capabilities, but also improves the set of available
choices for the projector. Then again, finding the appropriate balance be-
tween the increase in computational cost due to finding and factoring a larger
preconditioner and the corresponding decrease in iterations count is already
rather delicate in the PCG context, even more so in the MGM one. In our
research we have limited ourselves to simpler tree-based preconditioners.

Both inverse projection and dense projection approaches seem to hold
promises for finding the right balance between the selection of the precon-
ditioner and that of the projector. Choosing R and S so as to attain good
convergence results at all levels with an acceptable computational cost re-
mains a significant challenge, which will require further investigation.

3.2 Strength-based aggregation operators

Different projection operators have been defined for different but related
problems. For instance, a series of papers [39, 40, 41, 42, 43] by De Sterck
and his collaborators examine strength-based operators in the context of the

31

solution of problems of the form

Bx = x , x ≥ 0 , ||x||1 = 1 ,

where B a irriducible Markov matrix, which can be rewritten as Lx = 0,
where L = I −B. The techniques proposed in these papers are all based on
the concept of strong dependence; namely, node i strongly depends on node
j if

−Lij ≥ θmax
k 6=i
−Lik

where θ ∈ [0, 1] is strength threshold parameter. This says that the coefficient
Lij is comparable in magnitude to the largest off-diagonal coefficient in the
i-th equation; in other context, the same concept is described “in reverse”
by saying that the node j strongly influences the node i. Let us immediately
remark that this notion is strongly influenced by the choice of the parameter
θ which is far from being trivial, as discussed in the computational section.
Taking into consideration the latter, different aggregation strategies can be
developed based on this notion.

Strength aggregation. The algorithm, presented in [39], is based on
the notion that “important states”, i.e. nodes i that have a large value in the
current iterate x, are good candidate “seed points” for new aggregates and
that states that are strongly influenced by the seed point of an aggregate are
good candidates to join that aggregate. The idea is then simply to choose,
among the unassigned nodes, the one which has the largest value in current
iterate x; a new aggregate is formed, and add all unassigned nodes that
are strongly influenced by that seed point are added to the aggregate. This
process is repeated until all nodes are assigned to one aggregate. In the
original implementation, the algorithm recompute aggregates at every level
of every V-cycle. In our experience this did not lead to good results, while
a similar approach using b instead of x (and therefore run only once before
applying MGM) proved to be competitive.

Neighborhood aggregation. This algorithm, proposed in [121] and
used in [42], is based on the undirected version of strong influence: the
(undirected) pair of nodes {i, j} is considered to be strongly connected if at
least one of the nodes is strongly dependent on the other. This gives rise to
the strong neighborhood Ni of node i — the set of all points that are strongly
connected to i — and to the two-phase neighborhood-based aggregation al-
gorithm. In the first phase, the algorithm assigns entire neighborhoods to
aggregates: for each node i, if none of the nodes of Ni have been assigned
yet, then a new aggregate is formed and all the nodes in Ni are assigned to
the aggregate. This phase terminates with at least one aggregate formed,
and possibly some non-assigned nodes: then in the second phase each of the

32

remaining nodes is assigned to the aggregate it is “most connected” to, i.e.
the one having the largest number of nodes in Ni.

(Double) Pairwise aggregation. This pairwise aggregation algorithm,
proposed in [95] and used in [43], is based on the “directed version” of strong
neighborhoods, i.e. on the sets Di of all the nodes j strongly influenced by
i (upon which i strongly depends). The algorithm chooses the unassigned
node i with minimal cardinality of Di and forms a new aggregate contain-
ing i. Then it looks for the unassigned node j with the strongest negative
connection with i, i.e. with the minimal value of Lij: if j ∈ Di, then j is
also added to the new aggregate together with i, otherwise i is left alone (in
a single-node aggregate). The process is repeated, but the assigned nodes
(i, and possibly j) are removed from the sets Dh they belong to, so that at
each step the selected node is the one with the smallest number of unas-
signed strongly influenced nodes. This approach is therefore similar to these
proposed by us, except that the number of aggregations is not fixed a-priori
but depends on θ and that all aggregations are performed “in parallel” (on
the original matrix). Yet, because the number of aggregations can be too
small, the double pairwise aggregation is also proposed, whereby the pair-
wise aggregation algorithm is run once providing a projector R1, then the
projected matrix L1 = R1LR

T
1 is formed, the pairwise aggregation algorithm

is run again on L1 providing a second projector R2, and the final R is just
the combination of the two R = R2R1. This approach is even more similar
to these proposed by us and it is the one we tested in our computational
experiments.

It has to be remarked that these techniques have been proposed for, and
applied to, methods that are significantly different from the ones we consider.
This is made apparent by the fact that the theoretical results are based on
the estimate of the multiplicative error e of the current iterate x, defined as
the one which solves Adiag(x)e = 0, as well as from the fact the matrix at
the lower level is given by

RAdiag(x)RT ,

i.e. a scaling of the standard restricted system using the current iterate x.
This is motivated by the interpretation of the scaled matrix in Markov con-
text: “for a link in the Markov chain from state i to state j, state i contributes
to the probability of residing in state j in the steady state not just by the size
of the transition probability from i to j but by the product of that transition
probability and the probability of residing in state i” [39]. These modifica-
tions to the standard MG approach are not applicable in our setting (at the
very least they require that b = 0, which is not the case), nor they are any

33

likely to be effective. Indeed [42] reports that “a standard Krylov acceleration
technique cannot be applied, because the spaces involved are not related by a
fixed preconditioner applied to residual vectors”, while according to [43] “in
the case of CG or GMRES acceleration of stationary multigrid cycles (our cy-
cles are non-stationary), excellent convergence properties are often obtained
because the spaces are nested”. In order to obtain an acceleration, ad-hoc
techniques are needed such as the minimization of a functional [42] or the
solution of a two-dimensional quadratic programming problem and repeated
use of W cycles [43]. This is true also for the smoothed version of aggre-
gate operators proposed in [40] on the basis of [23], which necessitate several
ad-hoc interventions (a “lumping procedure” to keep the M-matrix nature
of the coarse-level operators) and may exhibit high memory and execution
time complexity. Our preliminary tests confirmed that smoothing applied
to projectors almost always results in a substantially slower method. Thus,
most of the theoretical results of [39, 40, 41, 42, 43] are largely inapplicable
in our context, although the aggregation techniques can be mirrored.

3.3 Strength-based AMG operators

We remark that the projectors in the previous §3.2 are basically the
“aggregation form” of non-aggregation operators, based on the notion of
strong dependence, proposed for the Algebraic Multigrid Method (AMG) in
[23, 24, 41, 42, 28]. In the AMG parlance, the projection process is denoted
as finding the “C/F splitting”, i.e. deciding which equations will remain in
the coarsened (restricted) system (C) and which ones only belong to the finer
(original) system (F). Once this is is done, the projector R is chosen so as
to satisfy

(cTR)i =

{
ci if i ∈ C∑

j∈C∩Si wijcj if i ∈ F

where Si denote the set of points that strongly influences i (i.e. the “opposite”
of the sets Di above), c is the coarse-level error approximation and the wijs
are the interpolation weights given by [28]

wij = −
Lij +

∑
m∈F∩Si

(
LimLmj∑
k∈C∩Si

Lmk

)
Lii +

∑
r/∈Si Lir

.

While C and F are therefore used in rather different ways than constructing
an aggregation operator, they are found in similar ways as the aggregations
in §3.2. In particular, two heuristic criteria are defined to guide the search
for the C/F splitting:

34

• for each F -point i, every point j ∈ Si should either be in the coarse
interpolatory set C∩Si or should strongly depend on at least one point
in C ∩ Si;

• the set of coarse points C should be a maximal subset of all points with
the property that no C-point strongly depends an another C-point.

Satisfying both criteria is not always possible and typically the first is given
priority over the second if that needs be. The standard heuristics used for
finding the C/F splitting are two-phase greedy algorithms that closely re-
semble the neighborhood aggregation approach of §3.2, except for looking
at the “directed” sets Si and Di rather than to the “undirected” Ni (as the
pairwise aggregation does).

It is worth remarking that the results of [23, 24] were aimed at problem-
atic cases in which “errors missed by standard relaxation processes can vary
substantially along strong matrix connections”. This suggested a generaliza-
tion of the classical AMG so that a number of vectors (prototypes), which are
related to the error components that relaxation cannot break down, are in
the range of interpolation, instead of having only the vector 1 as prototype
as usual in the AMG development. The matrices in our application are very
close to those for which the original AMG was designed. Furthermore the
aggregations operators based on strong connection of §3.2 worked quite well
already. So in our numerical tests we employed the standard AMG approach
[28] rather than the variants of [23, 24, 41, 42], which do not seem to fit our
application. In our setting, these are interesting only as yet another example
of a different possible definition of strength-based operators. Nevertheless
there does not appear to be reason to believe that aggregation operators
based on these principles should dramatically outperform the quite similar
ones of §3.2.

3.4 Combinatorial operators

While all the previous aggregation operators are inherently heuristic, the
combinatorial operators of the recent [82] are based on a sound theoretical
analysis. Interestingly this is grounded on the theoretical results developed
for the study of an apparently unrelated subject, that of Steiner tree and
Steiner support graph preconditioners. The former were introduced in [63],
while [79] and [80] extended the results to the latter.

“Sophisticated” support-graph preconditioners (with guarantees on the
conditioning number of the resulting preconditioned system) can be con-
structed with a process that is based on identifying a partitioning of the

35

graph into “weakly interacting” clusters, selecting the (few) arcs that join
them (which have to be “important” arcs, since their removal disconnects
the graph), and possibly recursively repeating the process within each clus-
ter [112, 81]. Since the clustering process is non-trivial to attain with low
computational cost, the idea of Steiner support graph has been proposed to
simplify it. Basically, once a set of promising vertex-disjoint clusters Vi is
identified (with non-trivial algorithms which provide some appropriate guar-
antees on their quality), a new Steiner node ri is created for each cluster, and
the star trees rooted at ri with leaves corresponding to the vertices in Vi are
added to the preconditioner (which, of course, is defined for the new Steiner
graph comprising all the original nodes plus the new roots). The process can
then be repeated on the quotient graph corresponding to all the roots ri; with
appropriate care, this produces provably good preconditioners [80]. However
in [82] it was realized that the very same process can be used for different
purposes: namely the clusters Vi then become these of an aggregation op-
erator, so that the quotient graph becomes the coarsened graph at the next
level of a MGM. With appropriate choices, the guarantees on the condition-
ing obtained for the Steiner graph preconditioner can be “extended” to the
coarsened system. This suggests the implementation of multigrid-like solvers.
In particular, in [82] a solver running quite sophisticated cycles (more com-
plex than the standard V and W cycles) and employing Jacobi as smoother
obtains promising results for image processing applications. According to the
authors, for the same underlying clustering approach, multigrid-like meth-
ods should almost always be preferable to the direct application of Steiner
support graph preconditioners.

Our computational experience indicated that direct use of the approach of
[82] to our instances did not seem to provide compelling results. This may be
due to the use of “poor” smoothers like Jacobi, that are typically ineffective
in our applications. However nothing prevents to re-use the “core” of the
approach, i.e. the sophisticated choice of the aggregation operator, into a
more standard MGM (accelerated or not) with more powerful Krylov-based
smoothers.

Chapter 4

Computational results

We report a wide set of numerical tests aimed at comparing the computa-
tional behaviour of PCG and MG approaches on instances of (1.2) coming
from real applications, in particular MCF problems. The stopping criterion
used for all the methods was the slightly non-standard

|bi − Lix| ≤ εmax(|bi|, 1) ∀i (4.1)

(with ε = 1e-5), because this is the form typically required by the specific
application [58, 59]. Note that (4.1) is basically a (scaled) ∞-norm stopping
criterion, and therefore more difficult to attain (for the same ε) than more
standard 2-norm stopping criteria.

The tests have been performed on matrices L coming from the solution
of randomly-generated MCF instances. Three different well-known random
problem generators have been used: Net, Grid, Goto. These have been
used in several cases to produce (both single and multicommodity) flow test
instances [29, 30, 56, 58, 59, 60]. Each generator produces matrices with
different topological properties, as shown in Figure 4.1. Furthermore the
solution of the MCF instances via an IP methods produces weight matrices
Θ with a different behaviour.

As the pictures show, the graph in Net problems has a random topological
structure; these are the easiest instances to solve with the IP algorithm. Both
Grid and Goto (Grid On TOrus) problems have a grid structure, but the
latter are considerably more difficult to solve than the former, both in terms
of IP algorithm and as the corresponding linear system. The difficulty of
Goto is likely to be related by the structure of the L matrix, which is far
from the block and the banded case. We recall that the latter is the classical
pattern related to standard grid graphs. Under the same conditions (problem
size, IP iteration and preconditioning), generally a Goto system requires an
order of magnitude more PCG iterations than Net or Grid ones.

37

38

Net Grid Goto

Figure 4.1: Structure of L for different problem classes.

4.1 List of methods

For our experiments, we have compared a large number of “pure” PCG ap-
proaches and accelerated multigrid approaches, i.e. PCG algorithm where a
single V-cycle is used as preconditioner. This is because on one hand PCG
approaches have been the method of choice for the solution of this kind of
systems in the context of MCF problems [29, 100, 30, 90, 58, 59] and on the
other hand the most recent developments suggest that accelerated multigrid
is both more effective and efficient than stand-alone multigrid [82, 42, 43].

The preconditioners employed are the diagonal one (D), the incomplete
Cholesky one (IC) with tolerance parameter droptol (non-zero fill-in), the
maximum spanning tree one (T), the “maximum spanning tree + diagonal”
(T+D) one, obtained by summing to the T preconditioner the diagonal of
the non-selected part the matrix. In particular, previous results [58, 59] have
shown that the T+D preconditioner is always preferable to the T precondi-
tioner for Net and Grid matrices, and therefore it is the only one employed in
these cases. Conversely no dominance between T and T+D exist for the more
difficult Goto matrices (with T+D being preferable in the first IP iterations
and T in the last ones) and therefore both are tested in these cases.

All methods showed convergence, which however in some cases was ex-
ceedingly slow; thus we had to resort to setting an a priori upper-bound for
the number of iterations. This was (somewhat arbitrarily) chosen as 1000
iterations for “pure” PCG and at 500 iterations for accelerated multigrid
methods, since the latter have an higher cost per iteration.

We have to remark that providing consistent running times for all the
methods proved to be very challenging, because of the different levels of
optimizations of the available routines. For instance, while all aggregation
operators have similar complexity, only for some of them efficient C imple-

39

mentations (and the corresponding MEX interface routines) were available,
while others were implemented as ordinary (interpreted) m-files. This alone
can produce orders-of-magnitude differences in running times. While highly
sophisticated C++ implementations of support graph preconditioners are
available [58, 59], for uniformity the built-in pcg function of MatLab has
always been used, which, besides being an m-file, does not allow to exploit
some of the relevant structure. Analogously the multigrid approach has been
implemented as an m-file and therefore is far less efficient than what a com-
piled version could be. Furthermore the maximum spanning tree has been
computed with the graphminspantree function of MatLab; this uses an ex-
act ordering rather than an approximated one as in [58, 59] and therefore
is significantly less efficient, despite being a compiled C routine. Moreover
it does not automatically produce the right column ordering which avoids
fill-in in the Cholesky factorization of the preconditioner, thereby making
this step less efficient, too. So the running times in the following tables are
not necessarily indicative of these that a fully optimized C or Fortran version
may obtain. In particular, the times for forming and applying the projectors
has been excluded from the figures, due to the above mentioned issues. Yet
all methods have been implemented with the maximum possible uniformity,
therefore we believe that the figures should be reasonably indicative of the
relative performances of the approaches.

4.2 Comments and comparisons

In a first phase of our experiments we compared the different aggregation
operators among them. Some data is shown in Table 4.1 for Net and Grid

matrices and in Table 4.2 for Goto matrices. Only the case with n = 212 and
density 64 (m ≈ 64n) is shown, but the results are fairly indicative of the
general trends. In the Tables, iteration numbers and total running times are
reported for accelerated multigrid methods employing the different precon-
ditioners. “lev” indicates that the aggregation operator failed to produce a
reasonable number of levels (see below for more details) or that there were
memory issues with the matrices. For CMG Aggregation operators, for in-
stance, this happens occasionally due to the fact that the available implemen-
tation still lacks an appropriate sparsification routine. “**” instead indicates
that the approach could not converge to the required accuracy within the
allotted iteration limit.

The Tables show a rather complex picture. There is no single aggregation
operator that dominates all the others for all matrices, preconditioners and
IP iterations. However, especially when paired with “powerful” precondi-

40

tioners (IC, T+D), all aggregation operators are quite effective, oftentimes
(although not always) performing similarly. However it should be remarked
that the different operators require different amounts of tuning. In particular
all strength-based aggregation operators strongly depend on the parameter θ.
Finding an appropriate value of that parameter is not trivial and bad choices
can lead to extremely poor performances. A few examples of this are shown
in Table 4.3, where (a subset of) the levels produced on the same matrix
by different settings of θ for the Strength Aggregation are reported. In the
matrix, three stacked cells of the form (k, . . . , h)T mean that k− h+ 1 levels
have been generated, the size of each one being just one less than that of
the previous. Thus inappropriate setting of θ can lead to very many levels of
very similar size, quite the opposite of the expected exponential reduction.
Although the number of levels tends to decrease as θ does, the behaviour
is not monotone and can be highly erratic. Note that the AMG operators,
although not aggregation ones, are still strength-based and suffer from the
same drawbacks.

These issues happen much less frequently to the CMG operator, although
sometimes the “descent” in the set of levels is not as smooth as one could
imagine. For instance, for the Grid 16-8 matrix at IP 22 the obtained levels
have size respectively 65535, 16907, 4518, 2461, 2198, 2142, 2122, 2114, 2110,
2104, 2097, 2092, 2087, 2070, 2063, 2061, 2060, 2056, 2011, 1938, 1765, 926,
and 1. By contrast, Max and Minor operators always precisely halve the
number of nodes at each level, therefore are preferable in this respect.

The aggregation operators are not — we underline this — the only part
of the approach which may require tuning. This is also true, in particular,
for the Incomplete Cholesky preconditioner, which requires setting of the
droptol parameter. Finding the appropriate setting is crucial for the overall
performances, but this setting is by far not uniform across all our instances.
This is shown e.g. in Table 4.4, where the performances of the IC PCG
approach are reported for varying droptol for the same basic instance (Goto
14-64) and different IP iterations. In the Table, “it” is the number of PCG
iterations, “time” the total time, and “p.t.” the time spent in solving the
preconditioned system at each iteration. As the Table shows, too large values
of droptol result in “poor” preconditioners, which are very easy to invert but
provide poor convergence and therefore high overall running time. On the
contrary, too small values result in very dense preconditioners, which are
effective but too costly. The right trade-off crucially depends on the IP
iterations and can vary of several orders of magnitude.

We then proceeded at comparing the best PCG variants and the best
aggregation-based multigrid variants, throwing the standard AMG (with the
same set of possible preconditioners) in the mix. The results are shown in

41

Table 4.5, Table 4.6, Table 4.7 for Net, Grid, Goto matrices respectively.
The Tables show that the aggregation based multigrid variants perform

in general better than standard AMG techniques, especially in combination
with D and T + D preconditioners. The comparison with the most com-
petitive PCG is more involved: in fact, while the comparison concerning
the number of iterations (taking into account the cost per iteration) can be
done in fair way, the comparison in terms of CPU time is very complicate
since different parts of the code show different levels of optimization. At any
rate, some conclusions can be extracted. Indeed, while the aggregation based
multigrid variants are always reasonably effective with D (or T +D) precon-
ditioners, the PCG is definitely less robust: in reality, if the paramenters are
not chosen properly (and this is sometimes not trivial), the PCG algorithm
could become unacceptably slow.

In conclusion numerical experiments show that our approach is effective
in a uniform way, independently from the conditioning of the considered
matrices, from the type of the problems, from the IP step in which the
considered matrices arise. We think that this robustness is the most relevant
result obtained in our work.

42

D IC T+D D IC T+D D IC T+D
IP it time it time it time it time it time it time it time it time it time
Net CMG Aggregation Max Aggregation Minor Aggregation
1 lev lev lev lev lev lev 4 0.09 4 0.12 4 0.82 4 0.15 4 0.24 4 1.59
2 lev lev lev lev lev lev 5 0.12 4 0.12 5 0.90 5 0.93 5 1.07 5 2.88
8 10 0.57 8 0.63 6 2.55 17 0.40 9 0.32 6 1.13 15 0.49 8 0.39 6 1.60
17 19 2.13 11 1.68 6 2.19 85 2.16 19 0.99 10 1.45 74 2.15 13 0.96 6 1.45
25 19 2.09 7 1.57 6 2.04 ** ** 11 1.43 14 1.65 494 13.60 10 1.49 14 1.77
32 60 6.25 11 2.05 5 1.91 ** ** 13 1.27 6 1.29 ** ** 11 1.27 5 1.37
33 58 6.08 10 1.90 5 1.98 ** ** 10 1.17 5 1.24 ** ** 10 1.24 5 1.35
Net Strength Aggregation Neighborhood Aggregation Double Pairwise Aggregation
1 4 0.46 4 0.42 4 1.26 4 0.09 4 0.12 4 0.70 4 0.51 4 0.62 4 1.93
2 5 0.15 5 0.21 5 1.27 5 0.12 5 0.18 5 0.99 5 0.63 5 0.73 5 2.04
8 13 0.43 8 0.39 6 1.56 11 0.40 8 0.43 6 1.65 13 1.66 8 1.17 6 2.37
17 19 3.07 9 2.21 6 3.21 59 9.25 23 4.58 11 4.21 90 11.34 17 2.63 9 3.18
25 ** ** 7 1.91 6 2.48 222 34.38 13 3.44 13 4.46 ** ** 11 2.35 9 2.85
32 ** ** 11 2.43 6 2.46 ** ** 172 31.48 12 4.38 ** ** 12 2.41 5 2.19
33 ** ** 11 2.37 5 2.32 ** ** 128 23.52 10 3.77 457 57.42 17 2.99 5 2.23

Grid CMG Aggregation Max Aggregation Minor Aggregation
1 lev lev lev lev lev lev 4 0.11 4 0.12 4 0.87 4 0.71 4 0.76 5 2.65
2 lev lev lev lev lev lev 7 0.15 7 0.20 7 0.99 5 0.17 5 0.21 5 1.32
11 lev lev lev lev lev lev 5 0.12 6 0.18 5 0.93 5 0.84 5 0.98 5 2.91
23 14 1.57 6 1.37 7 2.26 73 1.82 12 1.11 19 1.85 30 0.93 7 1.12 6 1.51
34 18 1.95 12 1.65 7 2.27 145 3.65 21 1.04 17 1.74 86 4.43 13 0.87 8 1.49
44 18 1.90 42 6.27 5 1.88 ** ** 146 6.59 14 1.67 ** ** 166 7.86 4 1.31
45 18 1.95 41 6.09 5 1.91 ** ** 55 3.34 11 1.54 ** ** ** ** 6 1.40

Grid Strength Aggregation Neighborhood Aggregation Double Pairwise Aggregation
1 5 0.15 5 0.22 5 1.23 5 0.49 5 0.54 5 1.54 5 0.59 5 0.73 5 1.96
2 7 0.21 7 0.28 6 1.38 7 0.23 7 0.28 7 1.29 7 0.87 7 0.99 7 2.34
11 6 0.18 6 0.32 5 1.23 5 0.15 5 0.21 6 1.21 5 0.63 5 0.74 5 2.06
23 18 3.35 10 2.99 12 5.03 33 5.01 11 2.93 12 4.32 41 5.03 10 2.09 9 3.07
34 63 10.59 21 4.47 12 4.63 114 16.81 24 4.46 14 4.83 173 20.99 28 4.07 13 3.86
44 ** ** ** ** 13 4.68 ** ** ** ** 15 4.92 ** ** ** ** 16 3.99
45 ** ** 238 47.79 9 4.02 ** ** 426 77.23 10 3.94 ** ** ** ** 14 3.93

Table 4.1: Comparison between aggregation operators for Net and Grid 12-
64.

43

D
IC

T
+

D
T

D
IC

T
+

D
T

D
IC

T
+

D
T

IP
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
C

M
G

A
gg

re
ga

ti
on

M
a
x

A
g
g
re

g
a
ti

o
n

M
in

o
r

A
g
g
re

g
a
ti

o
n

1
8

0.
35

7
0.

39
8

2.
10

**
**

2
0

2
.0

1
1
6

1
.5

9
1
5

3
.9

6
*
*

*
*

1
3

0
.3

2
1
1

0
.3

2
1
1

1
.2

3
*
*

*
*

2
21

0.
40

7
0.

18
6

0.
78

91
3.

93
4
6

1
.0

7
9

0
.3

1
7

1
.0

1
9
3

6
.1

3
2
4

2
.7

6
6

0
.9

5
5

1
.8

4
8
1

1
7
.7

3
24

23
1.

99
16

1.
80

15
2.

82
49

7.
67

4
8
1

1
0
.5

3
2
6

1
.3

5
4
5

2
.6

8
4
2

3
.0

7
4
9
3

1
1
.3

8
2
2

1
.2

1
3
5

2
.3

5
4
1

2
.9

9
47

27
2.

21
31

2.
97

15
2.

94
33

5.
42

2
6
5

6
.1

1
2
6

1
.0

6
2
2

1
.8

0
3
0

2
.8

7
*
*

*
*

2
1

0
.8

8
6
3

3
.6

3
3
1

2
.5

2
71

25
2.

18
16

1.
63

17
3.

10
24

4.
92

*
*

*
*

1
2

0
.7

0
2
3

1
.8

2
2
3

2
.4

1
*
*

*
*

1
2

0
.6

7
2
8

2
.0

9
2
3

2
.2

9
93

21
1.

73
10

1.
04

9
2.

07
16

3.
66

*
*

*
*

7
0
.4

9
1
1

1
.3

4
1
6

2
.0

9
*
*

*
*

9
0
.4

9
1
4

1
.5

1
1
6

1
.7

9
94

20
1.

70
14

1.
40

10
2.

18
13

3.
21

*
*

*
*

7
0
.4

8
1
2

1
.3

5
1
4

1
.9

1
*
*

*
*

1
0

0
.4

9
1
3

1
.4

6
1
4

1
.7

9
S

tr
en

gt
h

A
gg

re
ga

ti
on

N
ei

g
h
b

o
rh

o
o
d

A
g
g
re

g
a
ti

o
n

D
o
u

b
le

P
a
ir

w
is

e
A

g
g
re

g
a
ti

o
n

1
14

1.
46

13
1.

54
14

3.
55

**
**

1
4

0
.8

7
1
2

0
.8

2
1
2

1
.8

1
*
*

*
*

le
v

le
v

le
v

le
v

le
v

le
v

le
v

le
v

2
17

1.
74

6
0.

82
5

1.
59

80
14

.4
9

2
1

1
.4

8
7

0
.6

5
6

1
.3

1
7
6

9
.5

3
1
9

0
.2

9
7

0
.1

8
6

0
.6

0
7
7

2
.4

1
24

23
3.

21
14

2.
79

15
4.

92
46

16
.4

5
2
6

2
.8

3
1
5

2
.2

3
1
3

3
.1

8
4
5

9
.4

8
4
2
7

3
8
.1

5
1
8

2
.0

9
1
4

2
.9

4
4
8

1
0
.7

3
47

23
3.

15
22

3.
60

14
4.

52
33

8.
73

3
1

3
.2

9
2
5

3
.1

8
1
5

3
.6

6
3
2

8
.0

1
*
*

*
*

2
9

3
.1

0
1
5

3
.0

4
3
6

6
.1

1
71

22
3.

10
11

1.
99

13
4.

61
23

8.
25

4
8

5
.1

1
1
2

1
.7

3
1
5

3
.7

9
2
4

7
.2

3
*
*

*
*

1
8

2
.1

0
1
7

3
.3

5
2
4

5
.8

3
93

19
2.

79
11

2.
16

10
3.

99
16

6.
81

8
0

9
.0

3
1
0

1
.4

8
1
8

4
.5

0
1
6

4
.6

6
*
*

*
*

1
2

1
.4

1
1
0

2
.4

0
1
6

4
.2

1
94

17
2.

48
12

2.
40

10
3.

61
13

5.
47

2
8

3
.1

0
1
1

1
.7

0
8

2
.5

7
1
3

4
.0

7
*
*

*
*

1
2

1
.3

7
1
0

2
.3

2
1
3

2
.8

3

T
ab

le
4.

2:
C

om
p
ar

is
on

b
et

w
ee

n
ag

gr
eg

at
io

n
op

er
at

or
s

fo
r
G
o
t
o

12
-6

4.

44

Grid 16-8, IP 11
θ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

65535 65535 65535 65535 65535 65535 65535 65535 65535
35959 34380 32660 30729 28578 26235 23610 20696 17113
20919 18393 15959 13712 11562 9583 7687 5851 4085
13133 10343 7984 6122 4777 3903 3292 2740 2296
8755 6190 4333 3229 2627 2688 2434 882 1
6336 4182 2637 2433 658 6 2 1
4818 3068 1456 11 1
4210 2964 362
4059 975 361
4022 974 360

...
...

...
1 1 1

Net 12-64, IP 1
4095 4095 4095 4095 4095 4095 4095 4095 4095
1567 1567 1567 1567 523 523 523 523 523
1322 1268 1123 796 450 404 332 152 63
1290 1257 1111 689 449 403 331
1284 1255 1110 646 448 402 330
1283 1254 1109 645 447 401 329

...
...

...
...

...
...

...
1 1 1 1 1 1 1

Goto 14-64, IP 1
16383 16383 16383 16383 16383 16383 16383 16383 16383
7417 7418 7418 7404 1409 1394 1368 1288 1089
3686 2914 2158 2080 912 864 757 674 579
2283 2056 1621 1490 685 657 597 562 410
1713 1752 1455 1363 642 581 586 551 405
921 1576 1325 1344 285 242 559 43 397
422 1292 1320 1320 284 241 558 396
388 995 804 1319 283 240 557 395
387 411 1 1318 282 239 556 394

...
...

...
...

...
...

...
378 408 1306 267 220 520 384
1 1 2 1 1 1 1

Table 4.3: Multigrid levels as a function of θ for the Strength Aggregation.

45

IP
2

IP
56

IP
84

IP
11

1
d
ro

p
to

l
it

p
.t

.
ti

m
e

it
p
.t

.
ti

m
e

it
p
.t

.
ti

m
e

it
p
.t

.
ti

m
e

1
e
-
0
2

15
81

0.
23

18
.4

2
**

**
**

**
**

**
**

**
**

1
e
-
0
3

41
5

0.
24

5.
14

19
16

0.
45

25
.9

5
**

**
**

**
**

**
1
e
-
0
4

18
9

0.
39

2.
88

76
0

1.
06

10
.8

8
41

98
0.

50
57

.1
2

**
**

**
1
e
-
0
5

99
24

.8
5

26
.3

4
18

7
12

.6
4

14
.4

9
37

5
0.

82
5.

78
38

75
0.

45
48

.6
0

1
e
-
0
6

48
56

.9
9

57
.9

5
80

38
.6

1
39

.9
9

10
5

5.
38

6.
95

57
4

0.
50

7.
69

1
e
-
0
7

28
0.

90
10

8.
54

46
54

.6
7

55
.6

4
51

27
.2

5
28

.0
9

95
0.

72
1.

98
1
e
-
0
8

**
**

**
21

11
8.

94
11

9.
62

28
48

.2
6

48
.8

0
35

1.
82

2.
30

1
e
-
0
9

**
**

**
**

**
**

17
67

.3
9

67
.8

2
18

13
.6

5
13

.9
4

1
e
-
1
0

**
**

**
**

**
**

**
**

**
12

30
.5

2
30

.7
4

T
ab

le
4.

4:
P

er
fo

rm
an

ce
s

of
IC

P
C

G
as

a
fu

n
ct

io
n

of
d
ro

p
to

l.

46
P

C
G

A
G

O
A

M
G

IP
D

IC
T

+
D

D
IC

T
+

D
D

IC
T

+
D

12
-6

4
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e

1
13

0.
05

13
0.

06
13

0.
64

4
0.

09
4

0.
12

4
0.

70
12

0.
82

12
0.

87
12

3.
44

2
15

0.
03

15
0.

08
15

0.
67

5
0.

12
4

0.
12

5
0.

90
17

2.
13

16
2.

19
15

7.
20

8
59

0.
15

24
0.

12
17

0.
68

11
0.

40
9

0.
32

6
1.

13
19

3.
47

17
3.

33
11

4.
66

17
46

8
1.

21
39

0.
29

25
0.

73
19

2.
13

13
0.

96
6

1.
45

11
1.

62
10

1.
99

6
2.

87
25

**
**

37
0.

67
19

0.
68

19
2.

09
11

1.
43

14
1.

65
13

1.
19

6
1.

88
5

2.
55

32
**

**
19

1
1.

10
11

0.
63

60
6.

25
13

1.
27

6
1.

29
12

1.
76

9
2.

38
5

2.
63

33
**

**
14

8
0.

97
9

0.
62

58
6.

08
10

1.
17

5
1.

24
14

2.
15

8
2.

21
5

2.
48

14
-6

4
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e

1
14

0.
21

14
0.

34
14

5.
21

5
1.

67
5

1.
79

5
7.

41
12

3.
69

11
4.

11
17

26
.8

3
2

18
0.

26
18

0.
42

16
5.

38
5

0.
87

6
1.

34
5

9.
51

19
13

.4
4

21
16

.8
3

18
40

.4
8

11
73

0.
99

21
0.

59
18

5.
49

11
2.

10
6

1.
87

6
11

.8
4

26
15

.8
1

14
10

.0
6

21
30

.4
0

23
47

3
5.

95
20

7
3.

09
23

5.
57

21
3.

07
40

6.
42

10
10

.1
8

12
6.

42
40

22
.8

0
7

17
.0

8
34

**
**

37
2

6.
16

22
5.

50
20

8.
45

38
19

.5
3

8
11

.9
8

15
5.

47
36

18
.5

7
7

15
.4

7
44

**
**

**
**

13
5.

47
26

11
.7

9
**

**
6

10
.7

9
18

8.
48

40
38

.1
8

5
15

.2
8

45
**

**
**

**
13

5.
55

26
11

.7
6

**
**

7
8.

54
16

8.
25

48
40

.9
9

5
14

.9
2

16
-8

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

1
26

0.
40

25
0.

53
25

47
.2

9
9

0.
95

8
1.

10
8

49
.1

0
le

v
le

v
le

v
le

v
le

v
le

v
2

39
0.

57
23

0.
73

24
49

.4
6

9
1.

45
6

1.
66

7
57

.9
3

17
24

.1
3

17
24

.9
9

15
12

8.
15

11
99

1.
43

41
0.

98
24

47
.7

2
16

3.
29

9
2.

83
6

64
.0

5
22

8.
50

18
8.

86
14

85
.2

5
21

30
5

4.
46

12
6

2.
37

21
51

.6
8

38
6.

83
28

6.
39

9
64

.6
9

38
11

.5
7

35
12

.6
0

12
81

.6
6

31
**

**
**

**
23

52
.0

4
36

5.
67

20
8

50
.2

7
8

59
.4

8
14

8.
79

14
1

10
3.

71
6

77
.4

7
40

**
**

**
**

38
58

.6
7

28
9.

92
**

**
21

87
.2

6
15

12
.3

0
**

**
8

89
.4

9
41

**
**

**
**

**
**

27
4.

32
**

**
**

**
15

10
.1

5
**

**
**

**

T
ab

le
4.

5:
C

om
p
ar

is
on

b
et

w
ee

n
al

l
ap

p
ro

ac
h
es

fo
r
N
e
t

m
at

ri
ce

s.

47
P

C
G

A
G

O
A

M
G

IP
D

IC
T

+
D

D
IC

T
+

D
D

IC
T

+
D

12
-6

4
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e

1
13

0.
03

13
0.

06
13

0.
61

4
0.

11
4

0.
12

4
0.

87
12

1.
32

12
1.

62
12

6
.4

5
2

12
0.

03
12

0.
06

11
0.

62
7

0.
15

7
0.

20
7

0.
99

6
1.

59
6

1.
90

6
4
.7

1
11

13
0.

05
13

0.
06

12
0.

62
5

0.
12

6
0.

18
5

0.
93

7
2.

96
7

2.
71

7
7
.7

3
23

12
0

0.
32

15
0.

49
19

0.
67

14
1.

57
12

1.
11

6
1.

51
10

1.
54

6
1.

88
6

2
.9

0
34

60
7

1.
48

51
0.

35
21

0.
68

18
1.

95
13

0.
87

8
1.

49
13

1.
98

10
1.

93
6

2
.9

4
44

**
**

28
1

1.
70

15
0.

63
18

1.
90

42
6.

27
4

1.
31

14
2.

11
28

5.
99

5
2
.6

7
45

**
**

25
7

1.
63

14
0.

64
18

1.
95

55
3.

34
6

1.
40

14
2.

10
32

6.
59

5
2
.6

6

14
-6

4
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e

1
15

0.
20

15
0.

34
16

3.
82

6
1.

04
5

1.
21

5
8.

26
16

15
.0

3
16

18
.1

7
16

5
4
.1

6
2

13
0.

18
13

0.
31

12
5.

07
7

1.
13

7
1.

45
7

9.
70

7
5.

76
7

6.
75

7
3
1
.5

9
8

29
0.

43
17

0.
57

16
5.

17
8

1.
51

6
1.

84
5

10
.9

9
16

9.
93

12
9.

64
15

2
7
.2

3
16

56
7

7.
11

20
5

3.
22

28
5.

53
20

3.
93

27
6.

27
6

12
.1

2
12

6.
24

20
9.

41
6

1
5
.6

6
24

**
**

66
5

10
.9

2
18

5.
36

23
10

.2
0

11
8

18
.9

8
8

8.
97

14
5.

78
52

29
.6

7
6

1
5
.0

8
31

**
**

**
**

20
5.

27
90

38
.6

7
72

61
.1

3
12

11
.3

1
36

13
.7

4
34

48
.6

7
9

1
7
.1

7
32

**
**

**
**

20
5.

33
26

11
.6

6
22

35
.2

0
7

11
.4

6
16

7.
28

12
35

.8
4

39
3
2
.7

9

16
-8

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

1
28

0.
39

28
0.

46
23

17
.2

6
11

1.
13

11
1.

27
9

21
.0

7
le

v
le

v
le

v
le

v
le

v
le

v
2

23
0.

24
16

4.
57

17
34

.2
2

11
1.

24
9

5.
54

9
40

.5
2

9
4.

68
7

8.
78

7
5
1
.4

8
11

34
0.

39
18

7.
19

20
41

.1
2

9
1.

40
6

8.
26

7
56

.4
5

11
7.

41
9

14
.7

8
9

7
3
.6

9
22

43
6

5.
11

10
4

1.
77

24
42

.5
4

17
2.

76
19

4.
07

6
57

.7
6

26
13

.9
7

20
12

.9
6

8
6
7
.1

4
33

**
**

**
**

26
43

.6
8

24
9.

23
19

7
16

8.
66

6
51

.4
6

13
6.

56
14

4
16

2.
81

6
6
4
.6

1
43

**
**

**
**

20
43

.5
0

27
11

.0
6

**
**

7
53

.1
4

14
4.

33
**

**
5

6
5
.5

2
44

**
**

**
**

**
**

30
11

.3
7

**
**

**
**

14
7.

59
**

**
**

*
*

T
ab

le
4.

6:
C

om
p
ar

is
on

b
et

w
ee

n
al

l
ap

p
ro

ac
h
es

fo
r
G
r
i
d

m
at

ri
ce

s.

48

P
C

G
A

G
O

A
M

G
D

IC
T

+
D

T
D

IC
T

+
D

T
D

IC
T

+
D

T
12

-6
4

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

1
30

0.
07

27
0.

07
26

0.
51

80
7

3
.8

6
1
3

0
.3

2
1
1

0
.3

2
1
1

1
.2

3
*
*

*
*

1
7

1
.3

8
1
5

1
.4

0
1
4

2
.6

3
*
*

*
*

2
47

5
1.

03
68

0.
18

43
0.

53
94

0
.8

2
1
9

0
.2

9
7

0
.1

8
6

0
.6

0
7
7

2
.4

1
7

1
.0

6
5

0
.9

6
3

1
.9

5
5
9

1
4
.6

7
24

**
**

41
7

1.
21

47
2

2.
73

69
0
.8

2
2
3

1
.9

9
2
2

1
.2

1
3
5

2
.3

5
4
1

2
.9

9
1
5

1
.8

1
1
2

2
.1

0
1
0

2
.9

6
4
3

1
2
.5

1
47

**
**

82
9

1.
96

89
8

4.
80

54
0
.7

4
2
7

2
.2

1
2
1

0
.8

8
2
2

1
.8

0
3
1

2
.5

2
1
8

2
.0

2
2
2

2
.9

1
1
2

3
.2

1
3
1

6
.7

7
71

**
**

38
1

0.
95

**
**

41
0
.7

0
2
5

2
.1

8
1
2

0
.6

7
2
3

1
.8

2
2
3

2
.2

9
1
6

1
.8

8
1
4

1
.9

6
1
2

3
.3

6
2
5

7
.2

8
93

**
**

36
7

0.
90

**
**

26
0
.6

7
2
1

1
.7

3
7

0
.4

9
1
1

1
.3

4
1
6

1
.7

9
1
6

1
.8

2
1
2

1
.6

5
8

2
.4

6
1
6

4
.5

8
94

**
**

39
8

0.
96

**
**

23
0
.6

3
2
0

1
.7

0
7

0
.4

8
1
2

1
.3

5
1
4

1
.7

9
1
5

1
.7

1
1
1

1
.5

7
9

2
.7

4
1
3

4
.3

5

14
-6

4
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
it

ti
m

e
1

54
0.

62
54

0.
71

51
3.

79
**

*
*

1
5

3
.9

9
1
6

4
.7

4
1
1

1
5
.7

0
*
*

*
*

5
5

5
.9

2
5
6

6
.2

4
6
3

1
5
.7

5
*
*

*
*

2
**

**
18

9
2.

88
27

9
7.

97
37

3
.0

8
4
6

4
.6

1
1
4

3
.1

8
2
7

7
.6

4
2
1

7
.9

0
2
2

2
.8

3
8

2
.8

2
1
0

6
.5

0
2
0

1
0
.0

1
28

**
**

38
4

22
.9

4
**

**
13

7
6
.2

5
3
6

3
.6

9
1
4

1
9
.3

7
2
1

7
.7

8
1
1
2

2
2
.4

3
2
0

2
.9

6
1
2

2
0
.9

3
1
4

9
.9

5
9
9

3
0
.1

7
56

**
**

76
0

10
.8

8
**

**
10

2
6
.2

7
3
4

3
.2

9
1
7

3
.5

7
2
0

8
.4

1
7
8

1
8
.0

3
1
9

2
.6

9
1
3

4
.1

3
1
6

1
0
.6

2
5
8

2
2
.8

6
84

**
**

37
5

5.
78

**
**

73
5
.6

3
3
5

3
.3

5
1
0

2
.4

0
1
8

7
.7

6
5
0

1
4
.4

3
2
2

2
.9

9
8

2
.9

3
1
4

1
0
.2

0
4
7

2
0
.4

3
11

1
**

**
57

4
7.

69
**

**
35

4
.6

3
3
9

5
.1

1
9

2
.6

9
2
7

9
.3

2
1
9

8
.3

4
1
8

2
.3

5
1
0

2
.4

9
1
1

8
.8

9
2
0

1
0
.8

8
11

2
**

**
91

1.
85

**
**

34
4
.4

4
3
9

3
.9

3
8

1
.9

8
1
9

8
.3

1
1
9

8
.8

9
1
9

2
.4

9
5

2
.1

0
1
1

8
.8

6
1
9

1
0
.3

7

16
-8

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

it
ti

m
e

1
76

1.
04

64
0.

95
65

22
.3

5
**

*
*

1
2

1
.0

6
1
1

1
.2

7
1
1

2
5
.6

4
*
*

*
*

1
7

2
.3

2
1
4

2
.7

6
1
3

3
7
.8

3
*
*

*
*

2
**

**
64

4
8.

06
75

3
50

.7
3

66
1
7
.5

0
1
1
6

1
1
.0

9
3
1

4
.3

3
4
3

2
6
.7

5
1
8
2

7
4
.2

4
4
8

6
.9

8
1
7

5
.1

3
2
2

2
4
.1

8
2
6
3

2
5
5
.4

9
10

**
**

92
8

12
.7

7
**

**
38

1
4
.8

6
1
2
4

1
1
.6

0
3
8

6
.2

2
4
8

3
0
.2

6
1
0
2

4
7
.1

1
3
9

4
.9

6
1
9

4
.1

0
2
6

2
1
.4

0
7
6

5
0
.2

4
19

**
**

69
4

11
.1

8
**

**
76

2
4
.5

8
4
4

3
.8

2
1
4

3
.6

1
2
3

3
0
.5

6
9
4

8
3
.7

2
2
8

3
.3

5
1
3

3
.0

4
2
0

2
7
.9

3
2
8
1

1
4
9
.0

1
28

**
**

60
1

8.
70

**
**

30
2
4
.9

1
3
7

3
.4

0
8

1
.7

0
1
3

3
1
.4

4
2
0

3
1
.5

5
2
0

2
.5

1
8

1
.9

9
3
2

3
5
.0

3
1
7

3
9
.4

8
36

**
**

68
1.

62
**

**
20

3
0
.1

5
3
2

2
.7

6
4

1
.7

9
9

2
9
.6

8
1
2

3
5
.2

2
2
4

2
.7

3
4

1
.3

4
7
4

4
6
.6

4
9

4
3
.4

1
37

**
**

68
1.

51
**

**
17

3
4
.9

9
3
2

2
.7

3
4

1
.5

1
9

2
9
.7

6
9

3
9
.1

7
*
*

*
*

4
1
.4

6
3
2

3
7
.6

5
8

4
8
.5

9

T
ab

le
4.

7:
C

om
p
ar

is
on

b
et

w
ee

n
al

l
ap

p
ro

ac
h
es

fo
r
G
o
t
o

m
at

ri
ce

s.

Part II

The image restoration problem

49

Chapter 5

Optimal preconditioning

In the last years important progress were made both in the theory and in
the applications of inverse problems. Several methods for overcoming the
difficulties due to the ill-posedness have been successfully developed. We
remind that the solution of a well-posed problem satisfies the requirements
of existence, uniqueness and continuous dependence on the data. So an ill-
posed problem is a problem whose solution does not exists or is not unique
or does not depend continuously on the data. Image deblurring problem
[13, 53, 70, 71] represents an important and deeply studied exponent into the
inverse problems field. It consists in finding the true image of an unknown
object, having only the detected image, which is affected by blur and noise.
Astronomy and civil or biomedical tomography are only few of the many
scientific areas in which this problem needs to be solved.

We deal with the classical image restoration problem of blurred and noisy
images in the case of a space invariant blurring, which means that the same
blur arises all over the image domain. Under such assumption the image
formation process is modelled according to the following integral equation
with space invariant kernel

b(x) =

∫
h(x− x̃)f(x̃)dx̃+ η(x), x ∈ R2, (5.1)

where f denotes the true physical object to be restored, b is the recorded
blurred and noisy image, η takes into account unknown errors in the col-
lected data, e.g. measurement errors and noise. As customary, we consider
the discretization of (5.1) by means of a standard 2D generalization of the
rectangle quadrature formula on an equispaced grid, ordered row-wise from
the top-left corner to the bottom-right one. Hence, we obtain the relations

bi =
∑
j∈Z2

hi−jfj + ηi, i ∈ Z2, (5.2)

51

52

in which an infinite and a shift-invariant matrix Ã∞ = [hi−j](i,j)=((i1,i2),(j1,j2)),
i.e. a two-level Toeplitz matrix, is involved.

In principle, (5.2) presents an infinite summation since the true image
scene does not have a finite boundary. Nevertheless, the data bi are clearly
collected only at a finite number of values, so representing only a finite region
of such an infinite scene. In addition, the blurring operator typically shows a
finite support, so that it is completely described by a Point Spread Function
(PSF) mask such as

hPSF = [hi1,i2]i1=−q1,...,q1,i2=−q2,...,q2 (5.3)

where hi1,i2 ≥ 0 for any i1, i2 and
∑q

i=−q hi = 1, i = (i1, i2), q = (q1, q2)
(normalization according to a suitable conservation law). Therefore, relations
(5.2) imply

bi =

q∑
s=−q

hsfi−s + ηi, i1 = 1, . . . , n1, i2 = 1, . . . , n2, (5.4)

where the range of collected data defines the so called Field of View (FOV).
Once again, we are assuming that all the involved data in (5.5), similarly

to (5.2), are reshaped in a row-wise ordering. In such a way we obtain the
linear system

Ãf̃ = b− η (5.5)

where Ã ∈ RN(n)×N(n+2q) is a finite principal sub-matrix of Ã∞, with main
diagonal containing h0,0, f̃ ∈ RN(n+2q), b, η ∈ RN(n) and with N(m) = m1m2,
for any two-index m = (m1,m2).

As evident from (5.4), the problem is undetermined since the number of
unknowns involved in the convolution exceeds the number of recorded data.
Boundary conditions (BCs) are introduced to artificially describe the scene
outside the FOV: the values of unknowns outside the FOV are fixed or are
defined as linear combinations of the unknowns inside the FOV, the target
being to reduce (5.5) into a square linear system

Anf = b− η (5.6)

with An ∈ RN(n)×N(n), n = (n1, n2), N(n) = n1n2 and f, b, η ∈ RN(n).
The choice of the BCs does not affect the global spectral behaviour of

the matrix. However, it may have a valuable impact both with respect to
the accuracy of the restored image (especially close to the boundaries where
ringing effects can appear) and to the computational costs for recovering f
from the blurred datum, with or without noise. Notice also that, typically,
the matrix A is very ill-conditioned and there is a significant intersection
between the subspace related to small eigen/singular values and the high
frequency subspace.

53

5.1 The role of boundary conditions in the

restoration problem

Hereafter we summarize the relevant properties of two recently proposed type
of BCs, i.e. the Reflective [92] and Anti-Reflective BCs [106], with respect
both to structural and spectral properties of the arising matrices. Indeed, the
use of classical periodic BCs enforces a circulant structure and the spectral
decomposition can be computed efficiently with the Fast Fourier Transform
(FFT) [37], but these computational facilities are coupled with significant
ringing effects whenever a significant discontinuity is introduced into the
image, since an image usually is not periodic. Thus, the target is to obtain the
best possible approximation properties, keeping unaltered the fact that the
arising matrix shows an exploitable structure. Reflective and Anti-Reflective
BCs more carefully describe the scene outside the FOV and give rise to
exploitable structures. Clearly, several other methods deal with this topic in
the image processing literature, e.g. local mean value [110] or extrapolation
techniques (see [83] and references therein). Nevertheless, the penalty of their
good approximation properties could lie in a linear algebra problem more
difficult to cope with. Hereafter, as more natural in the applications, we will
use a two-index notation: we denote by [fi1,i2]i1=1,...,n1,i2=1,...,n2

the pixels of
the true image and by [bi1,i2]i1=1,...,n1,i2=1,...,n2

the pixels of the recorded image.

5.1.1 Reflective boundary conditions

In [92] Ng et al. analyse the use of Reflective BCs, both from model and
linear algebra point of view. The improvement with respect to Periodic BCs
is due to the preservation of the continuity of the image. In fact, the scene
outside the FOV is assumed to be a reflection of the scene inside the FOV.
For example, with a boundary at x1 = 0 and x2 = 0 the reflective condition
is given by f(±x1,±x2) = f(x1, x2). More precisely, along the borders, the
BCs impose

fi1,1−i2 = fi1,i2 , fi1,n2+i2 = fi1,n2+1−i2 , for any i1 = 1, . . . , n1, i2 = 1, . . . , q2

f1−i1,i2 = fi1,i2 , fn1+i1,i2 = fn1+1−i1,i2 , for any i1 = 1, . . . , q1, i2 = 1, . . . , n2,

and, at the corners, the BCs impose for any i1 = 1, . . . , q1, i2 = 1, . . . , q2

f1−i1,1−i2 = fi1,i2 , fn1+i1,n2+i2 = fn1+1−i1,n2+1−i2 ,
f1−i1,n2+i2 = fi1,n2+1−i2 , fn1+i1,1−i2 = fn1+1−i1,i2 ,

i.e. a double reflection, first with respect to one axis and after with respect
to the other, no matter about the order.

54

As a consequence the rectangular matrix Ã is reduced to a square
Toeplitz-plus-Hankel block matrix with Toeplitz-plus-Hankel blocks, i.e. An
shows the two-level Toeplitz-plus-Hankel structure. Moreover, if the blurring
operator satisfies the strong symmetry condition, i.e. it is symmetric with
respect to each direction, formally

h|i| = hi for any i = −q, . . . , q. (5.7)

then the matrix An belongs to DCT-III matrix algebra. Therefore, its
spectral decomposition can be computed very efficiently using the fast dis-
crete cosine transform (DCT-III) [114]. More in detail, let Cn = {An ∈
RN(n)×N(n), n = (n1, n2), N(n) = n1n2 | An = RnΛnR

T
n} be the two-level

DCT-III matrix algebra, i.e. the algebra of matrices that are simultaneously
diagonalized by the orthogonal transform

Rn = Rn1 ⊗Rn2 , Rm =

[√
2− δt,1
m

cos

{
(s− 1)(t− 1/2)π

m

}]m
s,t=1

, (5.8)

with δs,t denoting the Kronecker symbol. Thus, the explicit structure
of the matrix is An = Toeplitz(V) + Hankel(σ(V), Jσ(V)), with V =
[V0 V1 . . . Vq1 0 . . . 0] and where each Vi1 , i1 = 1, . . . , q1 is the unilevel DCT-
III matrix associated to the ith1 row of the PSF mask, i.e. Vi1 = Toeplitz(vi1)+
Hankel(σ(vi1), Jσ(vi1)), with vi1 = [hi1,0, . . . , hi1,q2 , 0, . . . , 0]. Here, we denote
by σ the shift operator such that σ(vi1) = [hi1,1, . . . , hi1,q2 , 0, . . . , 0] and by J
the usual flip matrix; at the block level the same operations are intended in
block-wise sense.

Beside this structural characterization, the spectral description is com-
pletely known. In fact, let f be the bivariate generating function associated
to the PSF mask (5.3), that is

f(x1, x2) = h0,0 + 2

q1∑
s1=1

hs1,0 cos(s1x1) + 2

q2∑
s2=1

h0,s2 cos(s2x2)

+4

q1∑
s1=1

q2∑
s2=1

hs1,s2 cos(s1x1) cos(s2x2), (5.9)

then the eigenvalues of the corresponding matrix An ∈ Cn are given by

λs(An) = f
(
x[n1]
s1
, x[n2]

s2

)
, s = (s1, s2), x[m]

r =
(r − 1)π

m
,

where s1 = 1, . . . , n1, s2 = 1, . . . , n2, and where the two-index notation
highlights the tensorial structure of the corresponding eigenvectors. Finally,

55

notice that standard operations like matrix-vector products, resolution of
linear systems and eigenvalues evaluations can be performed by means of
FCT-III [92] within O(n1n2 log(n1n2)) arithmetic operations (ops).

5.1.2 Anti-reflective boundary conditions

More recently, Anti-reflective boundary conditions (AR-BCs) have been pro-
posed in [106] and studied [6, 7, 4, 51, 47, 50, 98, 116]. The improvement
is due to the fact that not only the continuity of the image, but also of the
normal derivative, are guaranteed at the boundary. This regularity, which
is not shared with Dirichlet or periodic BCs, and only partially shared with
reflective BCs, significantly reduces typical ringing artifacts.

The key idea is simply to assume that the scene outside the FOV is
the anti-reflection of the scene inside the FOV. For example, with a bound-
ary at x1 = 0 the anti-reflexive condition impose f(−x1, x2) − f(x∗1, x2) =
−(f(x1, x2) − f(x∗1, x2)), for any x2, where x∗1 is the center of the one-
dimensional anti-reflection, i.e.

f(−x1, x2) = 2f(x∗1, x2)− f(x1, x2), for any x2.

In order to preserve a tensorial structure, at the corners, a double anti-
reflection, first with respect to one axis and after with respect to the other,
is considered, so that the BCs impose

f(−x1,−x2) = 4f(x∗1, x
∗
2)− 2f(x∗1, x2)− 2f(x1, x

∗
2) + f(x1, x2),

where (x∗1, x
∗
2) is the center of the two-dimensional anti-reflection.

More precisely, by choosing as center of the anti-reflection the first avail-
able data, along the borders, the BCs impose

f1−i1,i2=2f1,i2−fi1+1,i2 , fn1+i1,i2=2fn1,i2−fn1−i1,i2 , i1 = 1, . . . , q1, i2 = 1, . . . , n2,
fi1,1−i2=2fi1,1−fi1,i2+1, fi1,n2+i2=2fi1,n2−fi1,n2−i2 , i1 = 1, . . . , n1, i2 = 1, . . . , q2.

At the corners, the BCs impose for any i1 = 1, . . . , q1 and i2 = 1, . . . , q2,

f1−i1,1−i2 = 4f1,1 − 2f1,i2+1 − 2fi1+1,1 + fi1+1,i2+1,
f1−i1,n2+i2 = 4f1,n2 − 2f1,n2−i2 − 2fi1+1,n2 + fi1+1,n2−i2 ,
fn1+i1,1−i2 = 4fn1,1 − 2fn1,i2+1 − 2fn1−i1,1 + fn1−i1,i2+1,
fn1+i1,n2+i2 = 4fn1,n2 − 2fn1,n1−i2 − 2fn1−i1,n2 + fn1−i1,n2−i2 .

As a consequence the rectangular matrix Ã is reduced to a square Toeplitz-
plus-Hankel block matrix with Toeplitz-plus-Hankel blocks, plus an addi-
tional structured low rank matrix. More details on this structure in the

56

general case are reported in §5.2. Hereafter, we observe that again under
the assumption of strong symmetry of the PSF and of a mild finite support
condition (more precisely hi = 0 if |ij| ≥ n − 2, for some j ∈ {1, 2}), the
resulting linear system Anf = b is such that An belongs to the AR2D

n com-
mutative matrix algebra [7]. This new algebra shares some properties with
the τ (or DST-I) algebra [17].

Going inside the definition, a matrix An ∈ AR2D
n has the following block

structure

An =



H̃0 + Z1 0T 0

H̃1 + Z2 0
...

...

H̃q1−1 + Zq1 0

H̃q1 τ(H̃0, . . . , H̃q1) H̃q1

0 H̃q1−1 + Zq1
...

...

0 H̃1 + Z2

0 0T H̃0 + Z1


, (5.10)

where τ(H̃0, . . . , H̃q1) is a block τ matrix with respect to the AR1D blocks
H̃i1 , i1 = 1, . . . , q1 and Zk = 2

∑q1
t=k H̃t for k = 1, . . . , q1. In particu-

lar, the AR1D block H̃i1 is associated to ith1 row of the PSF, i.e. h
[1D]
i1

=
[hi1,i2]i2=−q2,...,q2 and it is defined as

H̃i1 =



hi1,0 + zi1,1 0T 0
hi1,1 + zi1,2 0

...
...

hi1,q2−1 + zi1,q2 0
hi1,q2 τ(hi1,0, . . . , hi1,q2) hi1,q2

0 hi1,q2−1 + zi1,q2
...

...
0 hi1,1 + zi1,2
0 0T hi1,0 + zi1,1


, (5.11)

where zi1,k = 2
∑q2

t=k hi1,t for k = 1, . . . , q2 and τ(hi1,0, . . . , hi1,q2) is the

unilevel τ matrix associated to the one-dimensional PSF h
[1D]
i1

previously de-
fined. Notice that the rank-1 correction given by the elements zi1,k pertains
to the contribution of the anti-reflection centers with respect to the vertical
borders, while the low rank correction given by the matrices Zk pertains to

57

the contribution of the anti-reflection centers with respect to the horizontal
borders.

It is evident from the above matrix structure that favorable computational
properties are guaranteed also by virtue of the τ structure in the central
block. Therefore, firstly we recall the relevant properties of the two-level τ
algebra [17]. Let Tn = {An ∈ RN(n)×N(n), n = (n1, n2), N(n) = n1n2 | An =
QnΛnQn} be the two-level τ matrix algebra, i.e. the algebra of matrices that
are simultaneously diagonalized by the symmetric orthogonal transform

Qn = Qn1 ⊗Qn2 , Qm =

[√
2

m+ 1
sin

{
stπ

m+ 1

}]m
s,t=1

. (5.12)

With the same notation as the DCT-III algebra case, the explicit structure
of the matrix is two level Toeplitz-plus-Hankel. More precisely,

An = Toeplitz(V)− Hankel(σ2(V), Jσ2(V))

with V = [V0 V1 . . . Vq1 0 . . . 0], where each Vi1 , i1 = 1, . . . , q1 is a the
unilevel τ matrix associated to the ith1 row of the PSF mask, i.e. Vi1 =
Toeplitz(vi1)− Hankel(σ2(vi1), Jσ

2(vi1)) with vi1 = [hi1,0, . . . , hi1,q2 , 0, . . . , 0].
Here, we denote by σ2 the double shift operator such that σ2(vi1) =
[hi1,2, . . . , hi1,q2 , 0, . . . , 0]; at the block level the same operations are intended
in block-wise sense. Once more, the spectral characterization is completely
known since for any An ∈ Tn the related eigenvalues are given by

λs(An) = f
(
x[n1]
s1
, x[n2]

s2

)
, s = (s1, s2), x[m]

r =
rπ

m+ 1
,

where s1 = 1, . . . , n1, s2 = 1, . . . , n2, and f is the bivariate generating func-
tion associated to the PSF defined in (5.9).

As in the DCT-III case, standard operations like matrix-vector products,
resolution of linear systems and eigenvalues evaluations can be performed by
means of FST-I within O(n1n2 log(n1n2)) (ops). Now, with respect to the
AR2D

n matrix algebra, a complete spectral characterization is given in [7, 4].
A really useful fact is the existence of a transform Tn that simultaneously
diagonalizes all the matrices belonging to AR2D

n , although the orthogonality
property is partially lost.

Theorem 5.1 [4] Any matrix An ∈ AR2D
n , n = (n1, n2), can be diagonalized

by Tn, i.e.

An = TnΛnT
−1
n ,

58

where Tn = Tn1 ⊗ Tn2, T−1
n = T−1

n1
⊗ T−1

n2
, with

Tm =


α−1
m 0T 0

α−1
m p Qm−2 α−1

m Jp

0 0T α−1
m

 and T−1
m =


αm 0T 0

−Qm−2p Qm−2 −Qm−2Jp

0 0T αm


The entries of the vector p ∈ Rm−2 are defined as pj = 1 − j/(m− 1),
j = 1, . . . ,m− 2, J ∈ Rm−2×m−2 is the flip matrix, and αm is a normalizing
factor chosen such that the Euclidean norm of the first and last column of
Tm will be equal to 1.

Theorem 5.2 [7] Let An ∈ AR2D
n , n = (n1, n2), the matrix related to the

PSF hPSF = [hi1,i2]i1=−q1,...,q1,i2=−q2,...,q2. Then, the eigenvalues of An are
given by

• 1 with algebraic multiplicity 4;

• the n2 − 2 eigenvalues of the unilevel τ matrix related to the one-
dimensional PSF h{r} = [

∑q1
i1=−q1 hi1,−q2 , . . . ,

∑q1
i1=−q1 hi1,q2], each one

with algebraic multiplicity 2;

• the n1 − 2 eigenvalues of the unilevel τ matrix related to the one-
dimensional PSF h{c} = [

∑q2
i2=−q2 h−q1,i2 , . . . ,

∑q2
i2=−q2 hq1,i2], each one

with algebraic multiplicity 2;

• the (n1− 2)(n2− 2) eigenvalues of the two-level τ matrix related to the
two-dimensional PSF hPSF .

Notice that the three sets of multiple eigenvalues are exactly related to
the type of low rank correction imposed by the BCs through the centers
of the anti-reflections. More in detail, the eigenvalues of τn2−2(h{r}) and
of τn1−2(h{c}) take into account the condensed PSF information considered
along the horizontal and vertical borders respectively, while the eigenvalue
equal to 1 takes into account the condensed information of the whole PSF
at the four corners. In addition, it is worth noticing that the spectral char-
acterization can be completely described in terms of the generating function
associated to the PSF defined in (5.9), simply by extending to 0 the standard
τ evaluation grid, i.e. it holds

λs(An) = f
(
x[n1]
s1
, x[n2]

s2

)
, s = (s1, s2), sj = 0, . . . , nj, x[m]

r =
rπ

m+ 1
,

59

where the 0−index refers to the first/last columns of the matrix Tm [7]. See
[6, 4] for some algorithms related to standard operations like matrix-vector
products, resolution of linear systems and eigenvalues evaluations with a
computational cost of O(n1n2 log(n1n2)) ops. It is worthwhile stressing that
the computational cost of the inverse transform is comparable with that of
the direct transform and, at least at first sight, the very true penalty is the
loss of orthogonality due to the first/last column of the matrix Tm.

5.2 Theoretical results on optimal precondi-

tioning

In this section we consider in more detail the matrices arising when Anti-
Reflective BCs are applied to the case of a non-symmetric PSF, the aim being
to define the corresponding optimal preconditioner in the AR2D

n algebra.
More precisely, let A = A(h) be the Anti-Reflective matrix generated by the
generic PSF hPSF = [hi1,i2]i1=−q1,...,q1,i2=−q2,...,q2 and let P = P (s) ∈ AR2D

n

be the Anti-Reflective matrix generated by the symmetrized PSF sPSF =
[si1,i2]i1=−q1,...,q1,i2=−q2,...,q2 . We are looking for the optimal preconditioner
P ∗ = P ∗(s∗) in the sense that

P ∗ = arg
P∈AR2D

n

min ‖A− P‖2
F , s∗ = arg

s
min ‖A(h)− P (s)‖2

F , (5.13)

where ‖·‖F is the Frobenius norm, defined as ‖A‖F =
√∑

i,j

|ai,j|2. Indeed,

an analogous result is know in [92] with respect to Reflective BCs: given
a generic PSF hPSF = [hi1,i2], the optimal preconditioner in the DCT-III
matrix algebra is generated by the strongly symmetric PSF sPSF = [si1,i2],
given by

s±i1,±i2 =
h−i1,−i2 + h−i1,i2 + hi1,−i2 + hi1,i2

4
, (5.14)

which is a symmetrization of the original PSF. Our interest is clearly mo-
tivated by the computational facilities proper of AR2D

n algebra, coupled
with its better approximation properties. We preliminary consider the one-
dimensional case in order to introduce the key idea in the proof with a simpler
notation. Moreover, the proof argument of the two-dimensional case is also
strongly connected to the one-dimensional one.

60

5.2.1 One-dimensional case

Let us consider a generic PSF hPSF = [hi]i=−q,...,q. As introduced in §5.1.2,
the idea is to apply an anti-reflection with respect to the border points f1

and fn. Thus, we impose

f1−i = 2f1 − f1+i, fn+i = 2fn − fn−i, i = 1, . . . , q.

The resulting matrix shows a more involved structure with respect to the Re-
flective BCs, i.e. it is Toeplitz + Hankel plus a structured low rank correction
matrix, as follows

A =



v0 uT 0
v1
...
vq B wq

...
w1

0 −(Ju)T w0


(5.15)

with

uT = [h−1 − h1, . . . , h−q − hq, 0, . . . , 0] ,

−(Ju)T = [0, . . . , 0, hq − h−q, . . . , h1 − h−1] ,

vk = hk + 2

q∑
j=k+1

hj, wk = h−k + 2

q∑
j=k+1

h−j,

B = T ([h−q, . . . , hq])−HTL([h2, . . . , hq])−HBR([h−2, . . . , h−q]),

where T ([h−q, . . . , hq]) is the Toeplitz matrix associated to the PSF hPSF ,

T ([h−q, . . . , hq]) =



h0 h−1 · · · h−q 0 · · · 0

h1
. h−q

. . .
...

...
. . . h−q 0

hq
. . . h−q

0 hq
. . .

...
...

. . . hq
. h−1

0 · · · 0 hq · · · h1 h0


,

61

while HTL([h2, . . . , hq]) and HBR([h−2, . . . , h−q]) are respectively the top-left
Hankel and the bottom-right Hankel matrices

HTL([h2, . . . , hq]) =



h2 h3 · · · hq 0 · · · 0

h3 hq 0
...

... hq 0
hq 0
0
...

...
0 · · · . . . 0


,

HBR([h−2, . . . , h−q] =



0 · · · · · · 0
...

...
0

0 h−q

0 h−q
...

... 0 h−q h−3

0 · · · 0 h−q · · · h−3 h−2


.

On the other hand, the Anti-Reflective matrix P ∈ AR1D generated by a
strongly symmetric PSF sPSF = [sq, . . . , s1, s0, s1, . . . , sq], among which the
minimizer P ∗ in (5.13) will be searched, is clearly given by

P =



r0 0T 0
r1
...
rq τ(s) rq

...
r1

0 0T r0


where rk = sk + 2

q∑
j=k+1

sj and τ(s) is the τ (or DST-I) matrix generated by

the PSF sPSF .
The optimality of the Anti-Reflective matrix generated by the sym-

metrized PSF defined as

s±i =
h−i + hi

2
. (5.16)

can be proved analogously as in [92] with respect to the internal part CI =
B − τ(s) and by invoking a non-overlapping splitting argument in order to

62

deal with the external border CB. In fact, we have

‖C‖2
F = ‖CI‖2

F + ‖CB‖2
F

and it easy to show that the minimizer found for the first term is the same
than for the second one.

Notice that ‖uT‖2 and ‖−(Ju)T‖2 are constant terms in the minimization
process. So, as naturally expected, the obtained minimum value will be
greater, the greater is the loss of symmetry in the PSF. Moreover, with the
choice (5.16), the first and last column in CB share the same norm, i.e. again
the most favourable situation. It is worth stressing that the minimization
process of the second term CB allows to highlight as the tuning of each
minimization parameter can be performed just by considering two proper
corresponding entries in the matrix, i.e.

(rp − vp) + (rp − wp) = 0, p = 0, . . . , q

where vp and wp are linear combination of the same coefficients with positive
and negative indices, respectively. Taking this fact in mind, we can now
consider a more geometrical approach to the proof, that allows to greatly
simplify also the proof with respect to the minimization of the internal part.
Moreover this proof can be applied to any type of BCs based on the fact that
the values of unknowns outside the FOV are fixed or are defined as linear
combinations of the unknowns inside the FOV.

Theorem 5.3 Let A = A(h) be the Anti-Reflective matrix generated by
the generic PSF hPSF = [hi]i=−q,...,q. The optimal preconditioner in the

AR1D
n algebra is the matrix associated with the symmetrized PSF sPSF =

[sq, . . . , s1, s0, s1, . . . , sq], with

si =
h−i + hi

2
. (5.17)

Proof. Preliminarly, as shown in Figure 5.1, we simply observe that if we
consider in the Cartesian plane a point R = (Rx, Ry), its optimal approxi-
mation Q∗, among the points Q = (Qx, Qy) such that Qx = Qy, is obtained
as the intersection between the line y = x, with the perpendicular line that
pass through R, that is {

y −Ry = −(x−Rx)
y = x

hence Q∗x = Q∗y = (Rx +Ry) /2. The same holds true if we consider the
swapped point RS = (Ry, Rx), since they share the same distance, i.e.
d(R,Q∗) = d(RS, Q∗).

63

R

R

Q*

s

Figure 5.1: A point R, its swapped point RS, the optimal approximation of
both Q∗.

Clearly, due to linearity of obtained expression, this result can be ex-
tended also to the case of any linear combination of coordinates. Thus, by
explicitly exploiting the structure of A and P , we define as x-coordinate of a
point the entry with negative index and as y-coordinate of the same point the
corresponding entry with positive index. For the sake of simplicity we report
an example for q = 3, in which we put in evidence the x or y coordinate
definition,

C = A− P =

=



ωy0 νx1 νx2 νx3
ωy1 ζy0 ζx2 θx2 θx3
ωy2 ζy1 θ0 θx1 θx2 θx3
ωy3 θy2 θy1 θ0 θx1 θx2 ωx3

θy3 θy2 θy1 θ0 ζx1 ωx2
θy3 θy2 ζy2 ζx0 ωx1

νy3 νy2 νy1 ωx0


−



ω̂y0 0 0 0

ω̂y1 ζ̂y0 ζ̂x2 θ̂x2 θ̂x3
ω̂y2 ζ̂y1 θ̂0 θ̂x1 θ̂x2 θ̂x3
ω̂y3 θ̂y2 θ̂y1 θ̂0 θ̂x1 θ̂x2 ω̂x3

θ̂y3 θ̂y2 θ̂y1 θ̂0 ζ̂x1 ω̂x2
θ̂y3 θ̂y2 ζ̂y2 ζ̂x0 ω̂x1

0 0 0 ω̂x0


,

Here, we set the points

Θi = (θxi , θ
y
i) = (h−i, hi)

Ωi = (ωxi , ω
y
i) = (h−i + 2

q∑
j=i+1

h−j, hi + 2

q∑
j=i+1

hj) =

= (θxi + 2

q∑
j=i+1

θxj , θ
y
i + 2

q∑
j=i+1

θyj)

Ni = (νxi , ν
y
i) = (h−i − hi, hi − h−i) = (θxi − θSxi , θyi − θ

Sy
i)

64

and

Z0 = (ζx0 , ζ
y
0) = (h0 − h−2, h0 − h2) = (θx0 − θx2 , θ

y
0 − θ

y
2)

Z1 = (ζx1 , ζ
y
1) = (h−1 − h−3, h1 − h3) = (θx1 − θx3 , θ

y
1 − θ

y
3)

Z2 = (ζx2 , ζ
y
2) = (h−1 − h3, h1 − h−3) = (θx1 − θSx3 , θy1 − θ

Sy
3)

related to the Hankel corrections. The points Θ̂i, Ω̂i, Ẑi related to the matrix
P are defined in a similar manner, taking into account the strong symmetry
property, i.e. they have the same x and y coordinates. More in general, the
key idea is to transform the original minimization problem in the equivalent
problem of minimizing the quantity

c0d(Θ0, Θ̂0)2 + . . .+ cqd(Θq, Θ̂q)
2 + d(Z0, Ẑ0)2 + . . .+ d(Zm, Ẑm)2

+d(Ω0, Ω̂0)2 + . . .+ d(Ωq, Ω̂q)
2 + d(N1, 0)2 + . . .+ d(Nq, 0)2,

(5.18)
where cj are some constants taking into account the number of constant
Toeplitz entries. Now, by referring to the initial geometrical observation,
we start from points pertaining to the Toeplitz part, that can be minimized
separately, and we obtain the minimizer (5.17). It is also an easy check to
prove the same claim with respect to any other terms, by invoking the quoted
linearity argument.

5.2.2 Two-dimensional case

Let us consider a generic PSF hPSF = [hi1,i2]i1=−q1,...,q1,i2=−q2,...,q2 . As intro-
duced in §5.1.2, the idea is to apply an anti-reflection with respect to the
border points f1,i2 , fi1,1 and fn1,i2 , fi1,n2 , i1 = 1, . . . , n1, i2 = 1, . . . , n2, and a
double anti-reflection at the corners in order to preserve the tensorial struc-
ture. The resulting matrix shows a more involved structure, i.e. it is block
Toeplitz + Hankel with Toeplitz + Hankel blocks plus a structured low rank
correction matrix, as follows

A =



V0 U 0
V1
...
Vq1 B Wq1

...
W1

0 −JU W0


, (5.19)

65

with

U = [H−1 −H1, . . . , H−q1 −Hq1 , 0, . . . , 0] ,

−JU = [0, . . . , 0, Hq1 −H−q1 , . . . , H1 −H−1] ,

Vj = Hj + 2

q1∑
i=j+1

Hi, Wj = H−j + 2

q1∑
i=j+1

H−i,

B = T (H−q1 , . . . , Hq1)−HTL(H2, . . . , Hq1)−HBR(H−2, . . . , H−q1).

where T indicates the block Toeplitz matrix, while HTL and HBR are respec-
tively the top-left block Hankel matrix and the bottom-right block Hankel
matrix as just previously depicted in the unilevel setting

T (H−q1 , . . . , Hq1) =



H0 H−1 · · · H−q1 0 · · · 0

H1
. H−q1

. . .
...

...
. . . H−q1 0

Hq1
. . . H−q1

0 Hq1
. . .

...
...

. . . Hq1
. H−1

0 · · · 0 Hq1 · · · H1 H0


,

HTL(H2, . . . , Hq1) =



H2 H3 · · · Hq1 0 · · · 0

H3 Hq1 0
...

... Hq1 0
Hq1 0
0
...

...
0 · · · . . . 0


,

HBR(H−2, . . . , H−q1) =



0 · · · · · · 0
...

...
0

0 H−q1

0 H−q1
...

... 0 H−q1 H−3

0 · · · 0 H−q1 · · · H−3 H−2



66

and where the block Hj is defined, according to (5.15), as

Hj =



vj,0 uTj 0

vj,1
...

vj,q2 Bj wj,q2
...

wj,1
0 −(Juj)

T wj,0


, (5.20)

with Bj = T (hj,−q2 , . . . , hj,q2)−HTL(hj,2, . . . , hj,q2)−HBR(hj,−2, . . . , hj,−q2).
Refer to (5.10) and (5.11) for the structure of the matrix P related to

a strongly symmetric PSF in which the minimizer P ∗, see (5.13), will be
searched.

Theorem 5.4 Let A = A(h) be the Anti-Reflective matrix generated by the
generic PSF hPSF = [hi1,i2]i1=−q1,...,q1,i2=−q2,...,q2. The optimal preconditioner

in the AR2D
n algebra is the matrix associated with the symmetrized PSF

sPSF = [si1,i2]i1=−q1,...,q1,i2=−q2,...,q2, with

s±i1,±i2 =
h−i1,−i2 + h−i1,i2 + hi1,−i2 + hi1,i2

4
. (5.21)

Proof. The proof can be done by extending the geometrical approach just
considered in the one-dimensional case: we simply observe that if we con-
sider in the 4-dimensional space a point R = (Rx, Ry, Rz, Rw), its optimal
approximation Q∗ among the points Q = (Qx, Qy, Qz, Qw) belonging to the
line L 

x = t
y = t
z = t
w = t

is obtained by minimizing the distance

d2(L, R) = (t−Rx)
2 + (t−Ry)

2 + (t−Rz)
2 + (t−Rw)2

= 4t2 − 2t(Rx +Ry +Rz +Rw) +R2
x +R2

y +R2
z +R2

w.

This is a trinomial of the form αt2 + βt + γ, with α > 0 and we find the
minimum by using the formula for computing the abscissa of the vertex of a
parabola

t∗ = − β

2α
=
Rx +Ry +Rz +Rw

4
.

67

Hence the point Q∗ is defined as Q∗x = Q∗y = Q∗z = Q∗w = t∗. The same holds
true if we consider any swapped point RS, not unique but depending on the
permutation at hand, since they share the same distance, i.e. d(R,Q∗) =
d(RS, Q∗). Again, thanks to the linearity of obtained expression, this result
can be extended also in the case of any linear combination of coordinates.

Thus, by exploiting the structure of A and P , we define a point by refer-
ring to the entry with positive and negative two-index. For instance, points
pertaining to the Toeplitz part are defined as

Θi1,i2 = (θxi1,i2 , θ
y
i1,i2

, θzi1,i2 , θ
w
i1,i2

) = (h−i1,−i2 , h−i1,i2 , hi1,−i2 , hi1,i2),

Θ̂i1,i2 = (θ̂xi1,i2 , θ̂
y
i1,i2

, θ̂zi1,i2 , θ̂
w
i1,i2

) = (s−i1,−i2 , s−i1,i2 , si1,−i2 , si1,i2),

respectively.
As in the unilevel setting, the original minimization problem is trans-

formed in the equivalent problem of minimizing the sum of squared dis-
tances analogously as in (5.18). We start again from points pertaining to
the Toeplitz part, that can be minimized separately, and we obtain the min-
imizer (5.21). It is also an easy check to prove the same claim with respect
to any other couple of points pertaining to Hankel or low rank corrections,
by invoking the quoted linearity argument.

It is worth stressing that this proof idea is very powerful in its generality.
It can be applied to any type of BCs based on the fact that the values of un-
knowns outside the FOV are defined as linear combinations of the unknowns
inside the FOV, so that it may be useful in the future to prove theoretical
results for new proposed BCs.

5.3 Computational results

The problem of noise sensitivity in image restoration is usually addressed
by using regularization methods, where one or some parameters play a key
role in the regularization. In literature several techniques are known — like
Tikhonov direct regularization [65] — but in large-scale problems the main
choice is given by iterative methods, where the parameter is the number of
iterations. A suitable stop prevents from reconstruction of noisy components
in the approximated solution.

A well-known iterative method for solving the image deblurring problem
is Landweber method [84]. A comprehensive description and analysis of it
can be found in [113]. The k-th iteration step of that method is defined by

xk = xk−1 + τAH(b− Axk−1), (5.22)

68

where A is the blurring matrix, b is the recorded image, τ is the descent
parameter, whose convergence interval is 0 < τ < 2/‖A‖2

2; here we set it
equal to one. From now on we will use the more familiar symbol x — leav-
ing f — to denote approximated reconstructions and x̄ to denote the true
image. As one can observe experimentally, the restorations seem to converge
in the initial iterations, before they become worse and finally diverge; this
phenomenon is called semiconvergence. Indeed it is known that Landweber
method is a regularization method [13, 99], where the number of steps k is
the regularization parameter. Moreover it has good stability properties, but
it is usually very slow to converge to the sought solution. Therefore it is a
good candidate for testing the proposed preconditioning technique. Thus we
introduce the preconditioned Landweber method [99]

xk = xk−1 + τDAH(b− Axk−1), (5.23)

where D is the preconditioner. In order to build it, we compute the eigen-
values λj of the blurring matrix associated to the PSF and to periodic BCs
(via FFT) or to the symmetrized PSF and to Reflective BCs (via FCT) or to
the symmetrized PSF and to Anti-Reflective BCs (via FST, see Theorem 5.1
and Theorem 5.2 and comments below), then we apply the Tikhonov Filter

dj =
1

|λj|2 + α
(5.24)

to determine the eigenvalues dj of D; finally the PSF related to D can be
obtained via IFFT or IFCT or IFST (the inverses of the previous transforms,
namely inverse FFT, inverse FCT, inverse FST). In these first numerical
experiments we have set the parameter α manually, so that we have reached
excellent performances both in terms of quality of the restorations and of
acceleration of the method.

Actually in our implementation, which is partially based on the MatLab
Toolbox RestoreTools [91] by James Nagy, we have never worked with AH ,
but always with A′, that is the matrix related to the PSF rotated by 180
degrees. This approach is known in literature as reblurring strategy [47].
The reason behind this choice resides in one of the main problems of Anti-
Reflective algebra AR, i.e. the fact that it is not closed under transposition.
We stress that AH and A′ are always the same thing in case of periodic and
zero boundary conditions, but in general they are different for Reflective and
Anti-Reflective ones.

To test these different BCs and preconditioning techniques, we have taken
into account two test cases: a) the Cameraman deblurring problem of Figure
5.3, in which the PSF is a slightly non-symmetric portion of a Gaussian blur;

69

Figure 5.2: FOV delimited by white lines.

b) the Bridge deblurring problem of Figure 5.6, in which the PSF is an highly
non-symmetric portion of a Gaussian blur. In both cases we have generated
the blurred and noisy data b without imposing any boundary conditions,
but by cutting the border of a bigger image (Figure 5.2) — so simulating
a real recorded image — and then adding about 0.2% of white Gaussian
noise. We have employed BCs in the restoration process, where A and D are
structured matrices associated respectively to periodic, reflective and anti-
reflective BCs. We have chosen to add a low level of noise to emphasize the
importance of boundary conditions, which play a leading role when the noise
is low, while they become less decisive when it grows up. Since we know the
true image x̄, to measure the quality of the deblurred images we compute
the Relative Restoration Error (RRE)

‖x− x̄‖F / ‖x̄‖F , (5.25)

where ‖·‖F is the Frobenius norm and x is the computed restoration. We
report results relative to best restorations, i.e. we stop the iteration method
when it reaches its lowest RRE.

As we expected, from Table 5.1 and Table 5.2, we can notice that both
Reflective and Anti-Reflective boundary conditions outperform periodic ones,
which give rise to poor restorations (see the first image of both Figure 5.4
and Figure 5.7). Furthermore by means of Anti-Reflective BCs (see the
third image of both Figure 5.4 and Figure 5.7) we can gain restorations of
better quality compared with ones obtained employing Reflective BCs (see
the second image of both Figure 5.4 and Figure 5.7). From Tables 5.1, 5.2
and Figures 5.5, 5.8 we can see that all these considerations hold also for
D-Landweber method — i.e. Landweber method with preconditioning —
which for a suitable choice of the parameter α is able to reach restorations of
the same quality of the classical Landweber method in much smaller number

70

of steps. In particular the reduction in steps for both Reflective and Anti-
Reflective BCs is around 102 times for the Cameraman deblurring problem
and around 101 for the Bridge deblurring problem.

Figure 5.3: Cameraman deblurring problem: true image, PSF, blurred and
noisy image.

Figure 5.4: Best Landweber restorations, employing periodic, reflective, anti-
reflective BCs.

Figure 5.5: Best preconditioned Landweber restorations, employing periodic,
reflective, anti-reflective BCs.

71

Figure 5.6: Bridge deblurring problem: true image, PSF, blurred and noisy
image.

Figure 5.7: Best Landweber restorations, employing periodic, reflective, anti-
reflective BCs.

Figure 5.8: Best preconditioned Landweber restorations, employing periodic,
reflective, anti-reflective BCs.

We stress that the iteration count — we remind that we stop the iterative
method when it gets its best reconstruction in terms of RRE — reported in
Table 5.2 in the Anti-Reflective row does not have to deceive, because, as
it can be seen from Figure 5.9, if we compare the restorations gained by
Landweber (preconditioned or not) at any given fixed iteration, employing

72

Landweber D-Landweber
RRE IT RRE IT

Periodic 0.2081 60 0.2053 1
Reflective 0.1125 3234 0.1121 20

Anti-Reflective 0.0999 4968 0.0999 50

Table 5.1: Results of the classical and preconditioned Landweber method
related to the Cameraman deblurring problem, employing different BCs.

Landweber D-Landweber
RRE IT RRE IT

Periodic 0.2541 10 0.2535 2
Reflective 0.1983 3880 0.1983 429

Anti-Reflective 0.1868 15545 0.1868 2034

Table 5.2: Results of the classical and preconditioned Landweber method
related to the Bridge deblurring problem, employing different BCs.

Figure 5.9: Bridge deblurring problem: RRE trends of Landweber (on the
left) and D-Landweber (on the right) for different BCs.

Reflective BCs or Anti-Reflective BCs, we see that the latter shows always
equal or better restoration quality. The same remark holds for the Camera-
man deblurring problem (see Table 5.1). In fact Figure 5.9 is very instructive
because it tells to the generic user two things: a) the curves for Reflective
and Anti-Reflective BCs are very flat; b) the approximation obtained when
using Anti-Reflective BCs is always better or equal to that obtained with
Reflective BCs. The combined message of the previous two items is that
we can safely choose the Anti-Reflective BCs, even when we are unable to
estimate precisely the stopping criterion for deciding the optimal iteration:
we notice that this observation does not hold for the periodic BCs where a

73

small error in the evaluation of the optimal iteration leads to a substantial
deterioration of the quality of the resulting restored image.

In the end, from the results reported in this section we can say that our
proposal of the optimal preconditioner in the context of Anti-Reflective BCs
is as effective as the one introduced in [92] for Reflective BCs. Therefore
the present work represents a theoretical and numerical continuation and
strengthening of that line of research.

Chapter 6

Z variant

Recalling the notation introduced in the previous chapter, our aim is to find
(an approximation of) the true image x̄ by solving in some way the following
linear system

Ax = b, (6.1)

where A is the blurring matrix and b = Ax̄ + η is the blurred and noisy
data. There are several techniques in literature to do that, but generally in
real applications, from which arise large-scale linear systems, the choice falls
on iterative algorithms. Usually, instead of (6.1), the associated system of
normal equations

AHAx = AHb (6.2)

is solved in order to find an approximated least squares solution. The main
reason of this choice is that AHA, the matrix coefficient of (6.2), has useful
properties, first of all symmetry and (semi-)positive definiteness, that usually
A does not have. These properties allow to use specific powerful methods —
such as Conjugate Gradient and its generalizations — and to improve the
behaviour of all iterative methods, which generally become more stable when
applied to (6.2) than when applied to (6.1). The least square formulation
(6.2) is often implicitly assumed in several iterative methods, for instance
Landweber method (5.22). On the other hand an iterative method for solving
the equation (6.1) is Van Cittert method [120]

xk = xk−1 + τ(b− Axk−1). (6.3)

In these two methods the step size τ > 0 is fixed, while in Steepest descent
method [13]

xk = xk−1 + τk−1A
H(b− Axk−1) (6.4)

τk−1 is computed at every step by τk−1 = ‖rk−1‖2
2/‖Ark−1‖2

2 with rk−1 =
AH(b − Axk−1), where ‖ · ‖2 is the Euclidean norm. Basically, Van Cittert

75

76

method is fast, but often does not converge and in general gives rise to
stability problems. On the other hand, Landweber and Steepest descent,
which have good stability and convergence behaviours, are very slow. Other
methods we consider are Lucy-Richardson method (LR) [101, 87, 109]

xk = xk−1 · AH
(

b

Axk−1

)
(6.5)

and Image Space Reconstruction Algorithm (ISRA) [36, 38]

xk = xk−1 ·
(

AHb

AHAxk−1

)
, (6.6)

that are well-known “statistical” iterative methods, where the multiplication
operator · and the division operator / have to be read componentwise. Also
these methods have a low convergence rate. Usually to avoid that the denom-
inator has some entries equal to zero, one applies these methods under the
hypothesis that there is a small background signal β, which guarantees that
bj > 0, ∀j, and so the same for Axk−1 and AHAxk−1, since the initial guess
x0 is assumed to be the blurred and noisy data b. Really this assumption is
not necessary, because the term that rules the zeros pattern is xk−1. Hence,
by imposing the denominator equal to one for the entries in which it is equal
to zero, we can overcome this difficulty and remove the hypothesis related to
β.

6.1 The idea

All the algorithms presented here base the update of the iteration on the
“key” quantities

b− Axk−1 or
b

Axk−1

,

which both give information on the distance between the blurred data b
and the blurred iteration Axk−1. All the methods, except (6.3), require the
application of the adjoint operator AH . By an applicative point of view, the
n×n matrix AH can be seen as a reblurring operator, whose role is basically
to help the method to manage the noise.

Our idea is to pick a new n × n matrix Z, which will replace AH . A
forefather of this idea can be located in [47], where some branches, coming
from the reblurring concept, are outlined. This way, (6.2) becomes

ZAx = Zb. (6.7)

77

Pure formally, we can reformulate all the previous iterative methods in the
new Z context. We will place a Z before the name of a method to distinguish
it from the original one. Then, for complex step lengths τ, τk−1 ∈ C, we have
the Z-Landweber method

xk = xk−1 + τZ(b− Axk−1), (6.8)

the Z-Steepest descent method

xk = xk−1 + τk−1Z(b− Axk−1),

τk−1 =
rHk−1rk−1

rHk−1ZArk−1

with rk−1 = Z(b− Axk−1),
(6.9)

the Z-LR method

xk = xk−1 · Z
(

b

Axk−1

)
, (6.10)

and the Z-ISRA

xk = xk−1 ·
(

Zb

ZAxk−1

)
. (6.11)

Van Cittert algorithm (6.3) does not depend on AH , so that it cannot be
directly generalized to Z. However, the Van Cittert idea (that is, not to use
AH) can be applied to LR and to ISRA. This way, in both the LR and ISRA
cases, Van Cittert gives rise to the same method

xk = xk−1 ·
(

b

Axk−1

)
. (6.12)

It is interesting to note that Z-Landweber (6.8) can be seen as a general-
ization of both Landweber method (5.22), where Z = AH , and Van Cittert
method (6.3), where Z = I. The goal of any Z variant is then to find a sort
of “equilibrium” between high convergence speed (such as Van Cittert, i.e.
Z = I, which is fast and unstable), and good quality of the reconstruction
(such as Landweber, i.e. Z = AH , which is slow and stable). We notice that
in principle one can think to choose Z as another operator, not necessarily
related to a blurring process. This might drive to further developments of
the idea proposed here.

6.1.1 Z-Landweber method

Let us first consider the Z-Landweber method, and let x0 = 0 be the initial
guess (this assumption is not mandatory, but it simplifies and improves the

78

readability). For our analysis, we only require that the n×n matrix M = ZA
is diagonalizable as

M = TΛMT
−1 ,

where ΛM = diag(m1, . . . ,mn) is the diagonal matrix of the (complex) eigen-
values of M and the columns of T denote the corresponding eigenvectors.
Following [25], by rewriting (6.8) as xk+1 = τ

∑k
i=0(I − τZA)iZb , we have

that the n×n iteration matrixGk = τ
∑k

i=0(I−τZA)i such that xk+1 = GkZb
can be diagonalized in the same way as follows

Gk = τPk−1(τM) = TΛGkT
−1, ΛGk = τPk−1(τΛM) = diag(g

(k)
1 , . . . , g(k)

n),

for k ≥ 1 , where

Pk(α) =
k∑
i=0

(1− α)i =
k∑
i=0

(
k + 1
i+ 1

)
(−α)i =

1− (1− α)k+1

α

is a k-degree polynomial. Using the last formula, if mj 6= 0 we have

g
(k)
j = τPk−1(τmj) =

1− (1− τmj)
k

mj

, j = 1 . . . n . (6.13)

Now we are ready to study the behaviour of the k-th Z-Landweber iteration
xk. Let t1, . . . , tn be the column vectors of the matrix T and t̂1, . . . , t̂n the row
vectors of the matrix T−1. On one hand T−1xk = ΛGkT

−1Zb and therefore, if

we define the (complex) values βj = t̂jZb, we have t̂jxk = g
(k)
j βj, j = 1 . . . n.

On the other hand, we can define as x† the vector

x† = (ZA)†Zb (6.14)

where we define (ZA)† = TΛ†MT
−1 with Λ†M = diag(m†1, . . . ,m

†
n), being

m†j = m−1
j if mj 6= 0 and m†j = 0 if mj = 0. Note that (ZA)† is just

the Moore-Penrose pseudoinverse if ΛM is invertible or T is unitary. Since
T−1x† = Λ†MT

−1Zb , we have

t̂jx
† =


βj
mj

if mj 6= 0 ,

0 if mj = 0 ,

for j = 1, . . . , n . Thanks to (6.13), we have

∣∣t̂jxk − t̂jx†∣∣∣∣t̂jx†∣∣ =

∣∣∣∣g(k)
j βj −

βj
mj

∣∣∣∣∣∣∣∣ βjmj

∣∣∣∣ = |mj|
∣∣∣∣g(k)
j −

1

mj

∣∣∣∣ = |1− τmj|k if t̂jx
† 6= 0.

(6.15)

79

The rate of decay of this error depends on the value of the parameters τ
and mj. For Landweber with normalized matrices such that ‖ZA‖2 = 1, we
set τ = 1, so that (6.15) only depends on the distance of mj from 1. Now
we give some theoretical results about convergence of Z-Landweber method,
based on the analysis of (6.15). We underline that (6.15) requires that mj 6= 0
and so we will prove convergence under such an assumption.

Theorem 6.1 Let mj = ρje
iθj , j = 1, . . . , n , be the non-zero complex eigen-

values of the n × n global matrix M = ZA. Then a necessary condition for
the convergence of the Z-Landweber iteration (6.8) is that there exists an
angle δ such that

−π/2 < δ + θj < π/2 , j = 1, . . . , n. (6.16)

Moreover, with complex iteration step length τ = ρτe
iθτ , then Z-Landweber

method converges to x† of (6.14) if and only if

0 < ρτ < min
j

[
2 cos(θτ + θj)

ρj

]
. (6.17)

Proof. By virtue of (6.13) and (6.15), we have that t̂jxk → t̂jx
†, ∀j, as

k → +∞, if and only if |1 − τmj| < 1, ∀j . Let τmj = ρτe
iθτρje

iθj = σje
iγj ,

where σj = ρτρj and γj = θτ + θj. The last condition |1− τmj| < 1, since∣∣1− σjeiγj
∣∣2 = (1− σj cos γj)

2 + (σj sin γj)
2 = 1 + σj(σj − 2 cos γj),

is equivalent to σj(σj − 2 cos γj) < 0, ∀j. This yields σj 6= 0, ∀j, which
implies ρτ > 0, since by hypothesis ρj 6= 0, and the latter condition becomes

0 < σj < 2 cos γj, ∀j . (6.18)

To satisfy (6.18), it is necessary that ∀j , cos γj > 0, that is γj = θτ + θj ∈
(−π/2, π/2), which can be satisfied only if (6.16) holds . Finally, (6.18) leads
to (6.17).

We note that, when the necessary condition (6.16) holds, θτ has to be
chosen in such a way as to satisfy θτ + θj ∈ (−π/2, π/2) . If there exists an
index j such that θτ 6∈ (−π/2 − θj, π/2 − θj) , then condition (6.17) on ρτ
cannot be satisfied. In this case, Z-Landweber method will never converge,
independently from the choice of τ ∈ C (on the contrary, we recall that the
classical Landweber method always converge for a right choice of the real
step length). In addition, we consider some corollaries to this theorem.

80

Corollary 6.2 Let Z = AH . Then

−π/2 < θτ < π/2 and 0 < ρτ <
2

‖A‖2
2

are two necessary conditions for the convergence of the Z-Landweber method.

Proof. Once noticed that M = AHA is a symmetric and positive definite
matrix, so that θj = 0 ∀j , these results follow from (6.16) and (6.17), using
the general inequality 2 cos θ < 2 and min 1/ρj = max ρj = ‖A‖2

2.

Corollary 6.3 Let Z = AH . Then the Z-Landweber method converges to
the solution x† of (6.14) if and only if

0 < ρτ <
2 cos θτ
‖A‖2

2

.

Proof. By considering the same argument of the proof of the previous
corollary, the thesis follows straightforwardly from (6.17).

It is interesting to notice that, by Corollary 6.3, if τ ∈ R we reobtain the
well-known convergence interval of the classical Landweber method 0 < τ <
2/‖A‖2

2. Anyway, when τ ∈ C, we highlight that the analogous condition
related to the modulus ρτ is not sufficient, but only necessary.

In some cases (see §6.2), both A and Z have the same base of eigenvectors,
that is

A = TΛAT
−1, ΛA = diag(λ1, . . . , λn), and

Z = TΛZT
−1, ΛZ = diag(z1, . . . , zn),

where the values λi and zi, for i = 1 . . . n, denote the complex eigenvalues
of A and Z respectively and the columns of T denote the corresponding
eigenvectors. This condition allows us to better discuss the basic properties
of the matrix Z. For sake of simplicity, let us consider a global matrix
ZA such that τ = 1 guarantees convergence according to Theorem 6.1 (a
rescaling is often enough to this). Recalling that the classical Landweber
method is an iterative regularization method, in order to have that the new
Z-Landweber method is again a regularization method, zj has to behave so
that |1−mj| = |1− zjλj| is close to 1 when λj is a small eigenvalue — so
the reconstruction is slow in “high frequencies”, typically highly corrupted
by noise — and close to zero when λj is a large eigenvalue — so that the
reconstruction is fast in “low frequencies”, typically slightly corrupted by
noise. From this fact we can deduce that ∀j, zj can be chosen as |zj| ≈ 1/ |λj|
when λj is a large eigenvalue, while |zj| ≈ 0 when λj is a small eigenvalue,
with argument arg(zj) = − arg(λj) (or a suitable approximation). As we will
see in §6.3, these constraints can be satisfied, for instance, by choosing zj by
a means of filtering procedures on λj.

81

6.1.2 Z-LR and Z-ISRA

Now we study the Z variant of the non-linear statistical methods (6.10) and
(6.11). Differently from Z-Landweber, we now do not provide a rigorous con-
vergence analysis, but we show some analogies with classical linear iterative
methods, in order to understand how they work. Anyway, in the following
sections we will see that numerical experiments with (6.10) and (6.11) show
good performances.

Z-ISRA can be rewritten in this way

xk = xk−1 +

(
xk−1

ZAxk−1

)
· Z(b− Axk−1), (6.19)

while Z-LR can be approximated by the following formula

xk = xk−1 + xk−1 · Z
(

(b− Axk−1) · 1

Axk−1

)
. (6.20)

The approximation error for Z-LR, that is the difference between (6.20) and
(6.10), is

xk−1 + xk−1 · Z
(

(b− Axk−1) · 1

Axk−1

)
− xk−1 · Z

(
b

Axk−1

)
=

xk−1 − xk−1 · Z
(

(Axk−1) · 1

Axk−1

)
.

If we define

[K(y)]j =

{
1 if yj 6= 0,
0 if yj = 0,

the error becomes xk−1 − xk−1 · ZK(Axk−1). This approximation error is
zero when [Axk−1]j 6= 0, ∀j. Indeed, under this hypothesis we have xk−1 −
xk−1 · ZK(Axk−1) = xk−1 − xk−1 · Ze = xk−1 − xk−1 · e = 0 when Ze = e,
being e the all-ones vector (we remark that normalized blurring operators Z
with periodic, reflective and anti-reflective BCs always satisfy Ze = e). From
(6.19) and (6.20), we can write this general form

xk = xk−1 + Sk−1ZTk−1(b− Axk−1), (6.21)

where Sk−1 and Tk−1 are diagonal matrices. In particular, for (6.19) we
have Sk−1 = diag(xk−1

ZAxk−1
) and Tk−1 = I, where I is the identity matrix of

order n, while for (6.20) we have Sk−1 = diag (xk−1) and Tk−1 = diag(1
Axk−1

).

The expression (6.21) is interesting since it shows that both Z-ISRA and
Z-LR have analogies with the iterative scheme of the Simultaneous Iterative

82

Reconstruction Techniques (SIRT), in which Sk−1 ≡ S and Tk−1 ≡ T are two
fixed matrices (see [52] for details). Sk−1 and Tk−1 of (6.21) depend on xk−1

and can be viewed as two componentwise adaptive descent parameters of the
methods (they play a role similar to the step length τ of Landweber, which,
on the contrary, is fixed and equal for all the components). The connection
between Landweber method and statistical ones will be analysed in Chapter
7.

6.2 Z built by a coarsening technique

Firstly we consider the case of periodic boundary conditions such that both A
and Z are Block Circulant with Circulant Blocks (BCCB) matrices. Hence
both A and Z have a common eigenvector basis, the 2D discrete Fourier
matrix F [97, 21, 27], and we can write

A = FΛAF
H , ΛA = diag(λ1, . . . , λn), (6.22)

Z = FΛZF
H , ΛZ = diag(z1, . . . , zn), (6.23)

where λi and zi are the complex eigenvalues of A and Z. Therefore, substi-
tuting T with F , the analysis of §6.1.1 can be used in this context.

The issue concerning how to build, in some sense, the “better” Z —
that is, we recall, the better compromise between high convergence speed for
Z = I and good quality of the restored image for Z = AH — goes beyond the
aim of this thesis and it might be the topic for a future research. Here we only
provide some valid roads. The first simple procedure we use to construct Z
from A is a coarsening strategy. We need two ingredients for the projection
operator:

• Downsampling ↓ defined as (↓ X)i,j = X2i,2j for an image X.

• A weighting operator P .

In the following P will be usually chosen as the 2D Full Weighting Operator

FWO =
1

16

 1 2 1
2 4 2
1 2 1

 . (6.24)

On these grounds, by using the original PSF of the deblurring problem
denoted by hPSF in (5.3), we generate the following new smaller PSF wPSF

wPSF : = ν ↓ (P ~ hPSF ~ P) , (6.25)

83

where ~ is the convolution operator and ν a constant such that
∑

j1,j2
wj1,j2 =∑

j1,j2
hj1,j2 , which means that in physical terms the overall light (i.e. the

energy) of the PSF is kept as constant. For instance, for P = FWO we
fix ν = 4. This is the algebraic procedure for defining coarser matrices in
multigrid methods by Galerkin conditions [48]. Thus, the Z-matrix is defined
as Z = V H , where V is the matrix that results from using the wPSF with, in
general, the same BCs of A.

According to the analysis in [48], the projection operator has to be a low-
pass filter in order to obtain a coarser PSF that is again a blurring operator.
Taking P as a weighting operator, this ensures that wPSF has non-negative
entries and is again a blurring operator. The size of wPSF is about one
half the size of hPSF and repeating the procedure recursively we can get
smaller and smaller PSFs. In the following, we will denote by PSF 1/2j the
PSF obtained applying j times the coarsening strategy since its size in each
direction is a factor 1/2j of the size of hPSF .

Unfortunately, it is not sufficient that wPSF is a blurring operator, but it
has to share, and possibly enhance, some properties of A. A dipper spectral
analysis can be performed in the case of periodic BCs and A positive definite.
The latter requires that the PSF is at least quadrantally symmetric (i.e.
symmetric along the two axis). Under these assumptions, the matrix A
has the factorization (6.22) and is associated to a non-negative generating
function f : R2 → R defined by

f(x1, x2) =

q1∑
j1=−q1

q2∑
j2=−q2

hj1,j2e
i(j1x1+j2x2).

The eigenvalues of A are λj = f(2πs1
n1
, 2πs2
n2

), for s1 = 0, . . . , n1 − 1, s2 =
0, . . . , n2−1, j = 1, . . . , n1n2. Moreover, according to the well-known spectral
properties of blurring matrices [71, 48], f has the following property.

Property 6.4 ([48]) Let f be the generating function associated to a pos-
itive definite blurring matrix A. Then f is even, non-negative, 2π periodic
in each variable, and monotone non-increasing in [0, π] × [0, π] along each
direction (f has maximum at the origin and minimum at [π, π]).

Therefore, P should to be chosen such that the generating function obtained
by wPSF has again the Property 6.4. The filter factor analysis in [49] shows
that a multilevel regularization strategy requires that also the generating
function of P satisfies the Property 6.4. For such analysis is crucial the
following result.

84

Figure 6.1: |λj| of A (solid line) for the PSF in Figure 6.4 and |zj| of different
Z variants of the coarsening strategy. The PSF 1/2j are obtained applying
the algorithm (6.25) recursively j times, for j = 1, 2, 3.

Proposition 6.5 ([3]) Let f and p be real trigonometric polynomials asso-
ciated to hPSF and P , respectively. Then, computing wPSF by (6.25), the
generating function associated to wPSF is

fw(x) =
ν

4

∑
y∈Ω(x/2)

f(y)p(y)2,

where Ω(x) = {(x1, x2), (x1, x2 + π), (x1 + π, x2), (x1 + π, x2 + π)} for x =
(x1, x2).

If P is a weighting operator or the identity, then p and hence also fw share
the Property 6.4. For instance, when P = FWO the associated generating
function is p(x) = (1 + cos(x1))(1 + cos(x2))/4.

Here we simply consider only weighting operators that hence automati-
cally generate a function fw which is closer than f to 1 where f is large (close
to the origin) and closer than f to zero where f is small (close to [π, π]).
However, the Proposition 6.5 could be investigated in the future for choosing
p depending on f such that the properties of fw are further enhanced.

A classical PSF that is included in the previous analysis is the Gaussian
blur. However, the following numerical results show that in practice this
approach is robust to small perturbations only. Figure 6.1 shows the trend
of the modulus of the eigenvalues of Z, |zj|, in comparison with the modulus
of the eigenvalues of A, |λj|, for the PSF in Figure 6.4 (i.e. the Satellite
deblurring problem of the next §6.2.1). We note that |zj| is closer to 1
than |λj| for large |λj|, i.e. in the signal space (low frequencies). This way,
zjλj = mj of the Z variant is closer to 1 than |λj|2 of the classical least

85

square approach, so that Z variant is able to speed up the iterative method
in the signal space with respect to the least square approach.

From Figure 6.2, related to PSF 1/8, we can analyse the behaviour of
λj, zj, and mj, in the complex Gauss plane. According to the previous
analysis (Proposition 6.5), for the coarsening technique (6.25) the PSF must
be quadrantally symmetric, and Theorem 6.1 tell us that it is necessary that
all the eigenvalues mj lie in the same half-plane. This is numerically true for
Satellite example, i.e. the PSF is near to be symmetric and the eigenvalues
mj stay basically in a half-plane. Indeed, as we will see in §6.2.1, the use of Z
variant in numerical tests is successful. On the other hand, for a highly non-
symmetric PSF like a motion blur, zj and mj have the “bizarre” behaviour
reported in Figure 6.3. The necessary condition of Theorem 6.1 does not
hold (since there is not any half plane containing all the eigenvalues) and
in this case any Z method proposed in this section fails to converge (these
arguments will be numerically confirmed at the end of §6.4.2).

Figure 6.2: λj (left), zj (center) and mj (right) values in the complex plane
for the Satellite PSF in Figure 6.4.

Figure 6.3: λj, zj and mj values in the complex plane for a motion blur.

Finally we observe that, although Z variant with Z defined by coarsening
(6.25) can be fruitfully applied to very different PSFs, it is mainly conceived
for PSFs which have wide distribution width. This is due to the fact that
the downsampling technique reduces the “size” of the PSF, so that it is more

86

effective if the original distribution is large. Moreover the PSF has to be (at
least numerically) quadrantally symmetric.

6.2.1 Computational results relative to Z built by the
coarsening technique

We use images of 256 × 256 pixels to test the proposed techniques. The
first set of data (Figure 6.4) we consider was developed at the US Air
Force Phillips Laboratory, Laser and Imaging Directorate, Kirtland Air Force
Base, New Mexico, that has been used by several authors with zero BCs
[75, 67, 68, 25]. On the contrary we impose periodic BCs, which is the right
choice. In fact, if we call bp = Ax̄ where A has periodic BCs and bz = Ax̄
where A has zero BCs, then we plot one of the first row of the image, we
have Figure 6.5, whence it is clear that b comes from bp. The problem is
little ill-conditioned (cond(A) ≈ 1.3 · 106) but it has a considerable presence
of noise ‖η‖2 / ‖Ax̄‖2 ≈ 4.5%. By summarizing, in the following tables of
this subsection, we will list the minimum RRE (Relative Restoration Er-
ror, defined in (5.25)) and the corresponding number of iterations (IT) of
different Z methods of §6.2. Since the statistical methods LR and ISRA
compute automatically non-negative approximations, in the numerical tests
for Landweber method and Steepest descent method we employ the projec-
tion on the non-negative cone (see §6.4.3), which can be simply obtained by
setting at zero all the negative values.

Figure 6.4: Satellite data set: true image, PSF, blurred and noisy image.

In Table 6.1, the numerical results for both Landweber (left) and Steepest
descent (right) are reported in the first row, followed by their related Z
variants. Table 6.1 shows that Z matrices of §6.2, although they are not
able to overcome the best RRE of the classical methods in the first row of
the tables, give rise to remarkable acceleration of the convergence speed. In
particular the RRE values of Z-Landweber (left) are similar to the RRE of

87

Figure 6.5: Experimental b (blurred and noisy image) compared with bp
(blurred image related to periodic BCs) and bz (blurred image related to
zero BCs).

the corresponding Z-Steepest descent ones (right), but the iteration numbers
(IT column) show that the Z-Steepest descent methods are better. About
the Van Cittert method, the numerical results of the last row confirm that, as
already remarked, Van Cittert method is unstable, since it starts to diverge
very quickly, so that the quality of its reconstruction is really poor. As
expected, the more the PSF of Z is small (i.e. technique (6.25) is applied
more times), the more the Z-method is fast to obtain its best restoration.
From end to end, we have the Landweber method (Z = AH) on one side,
which is very stable but very low, and Van Cittert method (Z = I) on the
other side, which is very fast but very unstable; as already sketched Z can
be properly chosen in an intermediate way between these two extremes to
inherits the good properties of both (see Figure 6.6 where three corresponding
restorations are shown).

RRE IT
Landweber 0.3278 5358

Z-Landweber 1/2 0.3440 1052
Z-Landweber 1/4 0.3384 357
Z-Landweber 1/8 0.3458 111

Van Cittert 0.5062 12

RRE IT
Steepest descent 0.3278 3009

Z-Steepest descent 1/2 0.3440 520
Z-Steepest descent 1/4 0.3383 153
Z-Steepest descent 1/8 0.3453 36

Van.C.-Steepest descent 0.4985 5

Table 6.1: Z variants of §6.2 applied to Landweber method (left) and Steepest
descent method (right).

Table 6.2 is related to the statistical methods Z-LR (left) and Z-ISRA
(right), with the same organization of Table 6.1. A comparison of Table 6.2
and Table 6.1 shows that in this test statistical methods give restorations

88

Figure 6.6: Restorations made by Landweber (RRE 0.3278, IT 5358), Z-
Landweber 1/4 (RRE 0.3384, IT 357) and Van Cittert (RRE 0.5062, IT 12).

that are worse than Landweber and Steepest descent ones. Specifically, RRE
of Z-LR and RRE of the corresponding Z-ISRA are very close each other.
It is interesting to notice that as the PSF of Z becomes smaller and smaller,
the results of Z-ISRA and Z-LR tend to become more and more similar: this
scenario is expected, since at the end Z = I, so that Van Cittert idea applied
to LR (6.10) and to ISRA (6.11) yields to the exactly the same method (6.12).
Figure 6.7 shows some restorations with Z-ISRA for some choices of Z.

RRE IT
LR 0.3484 2128

Z-LR 1/2 0.3693 591
Z-LR 1/4 0.3588 183
Z-LR 1/8 0.3643 55

Van Cittert-LR 0.5060 6

RRE IT
ISRA 0.3451 1926

Z-ISRA 1/2 0.3672 497
Z-ISRA 1/4 0.3575 172
Z-ISRA 1/8 0.3640 55

Van Cittert-ISRA 0.5060 6

Table 6.2: Z variants of §6.2 applied to LR method (left) and ISRA method
(right).

We have just said that Van Cittert method gives rise to instability and
it is not able to give a good reconstruction. This is true for the blurred and
(highly) noisy data b of Figure 6.4 (right). However the situation deeply
changes if we apply a denoising procedure to b, obtaining first a blurred data
b′ with lower noise. As we can see from Table 6.3, where we consider b′

instead of b in the iterative method, Van Cittert has a huge improvement,
since it gives good restorations in small number of steps. This shows that
Van Cittert method can be used provided that the noise on the blurred data
(and the ill-conditioning on the matrix A) is low, so that its usual instability
does not produce dreadful effects.

As final comment, we now compare different choices of the weighting
operator P in the projector. We can chose P as a small Gaussian blur or

89

Figure 6.7: Restorations made by ISRA (RRE 0.3451, IT 1926), Z-ISRA 1/4
(RRE 0.3575, IT 172) and Van Cittert-ISRA (RRE 0.5060, IT 6).

RRE IT
Van Cittert 0.3532 75

Van Cittert-Steepest descent 0.3521 23
Van Cittert-LR 0.3576 46

Van Cittert-ISRA 0.3576 46

Table 6.3: Van Cittert method with denoised blurred data.

P = I (the identity matrix) instead of the full weighting operator FWO.
In these cases, we have that Z-Landweber with PSF 1/8 gives the following
results: for P = I the RRE is equal to 0.3540 in 88 steps, for P = FWO the
RRE is equal to 0.3458 in 111 steps and, for P equal to a Gaussian the RRE
is equal to 0.3384 in 168 steps. From these results we can appreciate the
higher or lower convergence speed and restoration accuracy of Z-Landweber
method according to the choice of the weighting operator P . In other words,
picking P related to PSFs which have increasing wide distribution width
(I < FWO < Gaussian), we obtain better restorations, but in an higher
number of steps.

6.3 Z built by filtering techniques

On one hand the way to build Z of §6.2, which acts directly on the PSF of A,
has the advantage of being simple and reliable, since it does not require to
set any parameter, and the advantage of preserving the non-negativity of the
elements of the PSF. On the other hand Z of §6.2 has the drawback that ZA
of (6.7) looses the good property of the classical least squares matrix AHA of
having real and non-negative eigenvalues — although the complex eigenvalues
of ZA of §6.2 have usually real part which is non-negative and imaginary part
which is very small — and usually it gives rise to poor restorations in the

90

non-symmetric cases. In short, obviously Z of §6.2 is not always the “best”
choice.

More sophisticated techniques to build Z require to work with the eigen-
values λj of A — available, for instance, by means of FFT of the PSF in the
case of periodic BCs — and to filter them in a proper way. These techniques
based on filtering, as introduced in the following of this section, lead to Z
matrices that have, in some sense, opposite properties of the Z matrices of
§6.2 based on downsampling. Indeed, as we will see, the new Z matrices
require the choice of a proper threshold parameter ζ and unfortunately the
non-negativity of the elements of the PSF is not preserved, Despite that,
the technique of this section is successfully applicable to any PSF and the
imaginary part of any eigenvalue of ZA vanishes.

Basically the simplest procedure to compute Z by filtering is the following.
By considering the decomposition (6.22), chosen a threshold parameter ζ in
a suitable way, we take Z = Fdiag(z1, . . . , zn)FH with any zj defined as

zj =


λ̄j = ρje

−iθj if |λj| < ζ,
λ̄j
|λj|

= e−iθj if |λj| ≥ ζ,
(6.26)

where λj = ρje
iθj denotes any eigenvalue of A. This simple procedure, which

we will refer as VC filtering, for the largest eigenvalues of A employs (a
symmetric generalization of) the Van Cittert approach of using the identity
matrix instead of AH in the normal equations (indeed the modulus of λ̄j/ |λj|
is one if |λj| ≥ ζ , so that ZA can be though as a symmetric approximation
of A for those eigencomponents). On the contrary, for the small eigenvalues
of A, (6.26) gives rise to the classical normal equations approach, since for
those eigencomponents (6.7) is equal to (6.2) (indeed therein the eigenvalues
λ̄j of Z are exactly the eigenvalues of AH).

In addition to the basic technique (6.26), in the following we consider this
filtering approach. Given a real function f : [0,+∞) → [0,+∞), we define
an f filter for Z such that

zj =


λ̄jf(|λj|) = ρjf(ρj)e

−iθj if |λj| f(|λj|) < 1,
λ̄j
|λj|

= e−iθj if |λj| f(|λj|) ≥ 1.
(6.27)

Heuristically, comparing again Z and AH , the function f is conceived with
the aim of modifying the modulus of the eigenvalues of AH with continuity,
as will better explained in the comprehensive §6.3.1. A simple but effective
choice might be f(x) = γx + 1, with γ � 1. This gives rise to a matrix
Z with eigenvalues zj such that |zj| = 1 if the corresponding eigenvalue λj

91

of A is large and such that |zj| is contained in (|λj| , 1) if the corresponding
eigenvalue λj of A is small. To allow us a comparison between the (small)
parameter ζ of (6.26) and the (large) parameter γ for this particular filter
f(x) = γx+1, we calculate the intersection between the line y = 1, related to
the modulus of the largest eigenvalues zj of (6.26), and y = γx2 + x, related
to the largest eigenvalues zj of (6.27) for f(x) = γx + 1, and we impose,
on the ground of heuristic considerations, that this point is (

√
2ζ, 1). So we

have

x =
−1 +

√
1 + 4γ

2γ
≈ 1
√
γ

, which gives γ =
1

2ζ2
.

Before going on, in Table 6.4 we report some first computational results
of Z variant with VC filter (with ζ = 0.01, left side) and f filter (with
γ = (2ζ2)−1 = 5000, right side) for the same Satellite data set used in §6.2.1
(more meaningful results will be given in §6.3.2). The Table 6.4 shows that
performances of Z-Landweber with VC filter (left side) are superior to those
of Z-Landweber 1/2k of Table 6.1, in terms of both quickness and quality
of reconstructions. Furthermore results of Z-Landweber with filter f are
slightly better than those obtained by VC filter.

VC filter (ζ = 0.01) RRE IT
Z-Landweber ζ 0.3313 130

Z-Steepest descent ζ 0.3311 52
Z-LR ζ 0.3580 32

Z-ISRA ζ 0.3416 62

f filter (γ = 5000) RRE IT
Z-Landweber f 0.3298 128

Z-Steepest descent f 0.3297 49
Z-LR f 0.3439 53

Z-ISRA f 0.3407 62

Table 6.4: Z variants with VC filter (6.26) and with f filter (6.27) for the
example in Figure 6.4.

6.3.1 Z variant meets regularizing preconditioning

In this section we will illustrate the link between Z variant and classical
preconditioning described in literature. By considering again the decompo-
sition (6.22) and taking into account (6.15), if we attempt to reduce the
distance of mj from 1 in the most intuitive way, i.e. by trying to do a kind
of inversion, just considering zj ≈ λ−1

j , we meet the classical preconditioning
framework developed for Landweber. Basically, the least squares problem
(6.2) is replaced by the following linear system

DAHAx = DAHb. (6.28)

Without deep details, the preconditioner D is basically a regularized ap-
proximation of (AHA)−1 whose aim is to speed up the convergence of the

92

components with low noise (i.e. the so called signal space). We can notice
that the adjoint operator AH is first applied to (6.1), which stabilizes but
also slows down the restoration of all the components related to the small
singular values of A, and then the circulant preconditioner D is applied to
(6.2) to speed up the convergence in the signal space. In other words, in the
classical regularizing preconditioning, the preconditioner D has to speed up
the slowing down produced by AH . On these grounds, Z can be seen as a
single preconditioning operator with the aim of obtaining a preconditioned
system ZAx = Zb such that iterative methods become stable (as well as
usually obtained through the normal equations involving AH) without slow-
ing the convergence in the signal space (so that no subsequent accelerating
operator D is needed). Therefore a natural question arises: which are the
differences and the connections between the preconditioning (6.28) based on
D and the proposed preconditioning of §6.3 based on Z?

To give an answer, in the context of D = Fdiag(d1, . . . , dn)FH precondi-
tioning, called λj the eigenvalues of A, dj the eigenvalues of D, we first can
itemize the following filtering procedures:
• f Filter

dj =

{
f(|λj|) if |λj| f(|λj|) < 1
1/|λj| if |λj| f(|λj|) ≥ 1

(6.29)

• p Low Pass Filter

dj =

{
0 if |λj| < ζ

1/ |λj|p if |λj| ≥ ζ
(6.30)

• p Hanke Nagy Plemmons Filter [69]

dj =

{
1 if |λj| < ζ

1/ |λj|p if |λj| ≥ ζ
(6.31)

• p Tyrtyshnikov Yeremin Zamarashkin Filter [118]

dj =

{
1/ζ if |λj| < ζ

1/|λj|p if |λj| ≥ ζ
(6.32)

• Tikhonov Filter

dj =
1

|λj|2 + α
(6.33)

• q Tikhonov Filter

dj =

(
1

|λj|2q +mq

)1/q

(6.34)

93

where mq = mean
j

(|λj|q) is the arithmetic mean.

On the other hand, in the context of Z = Fdiag(z1, . . . , zn)FH variant,
recalling the basic example (6.26), by using each filter we can define the
eigenvalues of Z as

zj = λ̄jdj

(indeed, (6.26) corresponds to the HNP filter (6.31) with p = 1).
This way, the answer of our question about differences and connections

between D of (6.28) and Z of (6.7) is now given: in the case of periodic BCs,
in which A is BCCB, using filters with Z or D, both BCCB, is completely
equivalent, since Z = FΛZF

H , where the diagonal matrix ΛZ is formed by the
eigenvalues zj = λ̄jF(λj), F denoting the filter, and DAH = FΛDΛAHF

H ,
where the diagonal matrix ΛD contains the eigenvalues dj = F(λj). So in
both the two cases (6.8) and (5.23), the methods become

xk = xk−1 + τFΛFH(b− Axk−1),

where Λ = ΛZ = ΛDΛAH . This is no more true if we have zero BCs and the
reason is that Toeplitz matrices are no longer an algebra. We will analyse
this matter in §6.4, devoted to the zero BCs case, in which we will show how
Z variant can improve the traditional circulant preconditioning.

We note that the first filtering technique (6.29) has been defined here
in (6.27), while the others, for p = 2, come from preconditioning literature;
p variants and q variants are our proposals, based on heuristic consider-
ations which are in some sense linked to the recent regularization theory
on Lp Banach spaces. According to the classical regularization theory, the
key parameter of most of these filters is the threshold parameter ζ > 0: in
the noise space (i.e. eigencomponents with |λj| < ζ) high filtering effects
arise, while in the signal space (i.e. |λj| ≥ ζ) there is low or null filtering.
Analogously, the key parameter of the Tikhonov filter is the regularization
parameter α. Regarding our proposal of q Tikhonov filter (6.34), with q > 0
(usually 1 ≤ q ≤ 2), the regularization parameter becomes q, since the clas-
sical Tikhonov parameter α is now replaced by mq, which depends on q. In
this case, the convergence speed of iterative method increases as q approaches
0, and in general the quality of the restoration does the opposite. The in-
troduction of the p-filters (6.31) and (6.32) (with 1 ≤ p ≤ 2) is an attempt
to create a link, for example, between VC filter (6.26) (for p = 1) and the
classical Hanke Nagy Plemmons filter (6.31) (for p = 2, see [69]) and, at the
same time, to generalize them. The speed of iterative method increases as p
approaches 2, and in general the quality of the restoration do the opposite.

On these grounds, we can say that the action of these different filters can
be unified in the framework of the two leading ideas of reblurring and inver-

94

Figure 6.8: Values of |λj| on the x-axis vs |zj| on the y-axis (black: regular-
izing inversion preconditioner; white: regularizing reblurring preconditioner;
gray: slow down the convergence of Landweber).

sion. More specifically, looking at Figure 6.8, where we have the modulus of
the eigenvalues λj of a blurring matrix A (normalized as ‖A‖2 = 1) on the
abscissa and the corresponding modulus of the eigenvalues of the matrix Z
on the ordinate, we have drawn three areas:

a) the black one, over the horizontal line of ordinate equal to 1 (this line
corresponds to the Van Cittert method, where Z = I, so that all the
eigenvalues are equal to 1);

b) the white one, between the horizontal line and the bisecting line (this
line corresponds to the Landweber method, where Z = AH , so that
|λj| = |zj|);

c) the grey one, under the Landweber method line.

We will talk of regularizing inversion preconditioner if |zj| lie in the black
area, while we will talk of regularizing reblurring preconditioner if |zj| lie in
the white area. Taking into account that any |λj| ≤ 1, in the first case the
role of Z is close to an inversion, since |zj| ≥ 1, while in the second case, the
role of Z is close to a blurring, since |zj| ≤ 1 as well as |λj|. The first case
should give a strong, and often unstable, acceleration of the convergence;
the second case — which we are interested in — should give a convergence
speed greater than the slow classical Landweber method, without loosing
its stability properties. In the grey area, any iterative methods based on
the Z variant equation (6.7) is even slower than the corresponding method
based on the normal equation (6.2), since |zj| < |λj|, as used in the theory
of regularizing preconditioning for strongly ill-posed problems [54].

95

More generally, the relationships between (6.7) and (6.28) can be eas-
ily understood by considering the case which A is symmetric and positive
definite. Taking into account the basic convergence behaviour of the sim-
plest stationary method (5.22), since λj(A

HA) = [λj(A)]2 � λj(A), if λj(A)
is small, we have that the iterative method based on the normal equation
AHAx = AHb are much slower than the same iterative method based on the
original equation Ax = b for all the components related to small eigenvalues
of A. Thus, if this improves the regularization capabilities (the components
related to small eigenvalues usually lie in the noise space), often the conver-
gence speed is too much low, so that the inversion preconditioners D (which
approximates the inverse of AHA) is applied to quicken. As already briefly
sketched, our proposal can be summarized as follows: instead of slowing down
with AH (to obtain stability) and then speeding up via the preconditioner
D (to obtain again quickness), we adopt a single preconditioner operator Z,
which try to simultaneously give rise to stability and quickness.

Finally, before analysing the zero BCs case, we have to complete the
arguments for the periodic BCs case, by giving computational results in the
next subsection. We also discuss if and how it is possible to use the previous
filters for the statistical iterative methods (6.10) and (6.11).

6.3.2 Computational results relative to Z built by fil-
tering techniques

As shown in §6.3.1, for periodic deblurring problems the preconditioners D
and Z lead exactly to the same analytical method, so that both have to give
the same results, net of rounding errors. The aim of this section is to provide
a comparison of performances of the filters (6.29)–(6.34). In Table 6.5 we list
the results of Z-Landweber for the Satellite deblurring problem (ζ = 0.013,
α = 0.005, q = 1). We can argue that the proposed q Tikhonov filter (6.34)
gives a better compromise between speed and quality, as shown in the last
row of left side where RRE = 0.3369 within only 7 iterations and in Figure
6.9, where three different restorations can be evaluated. Moreover the results
of the right side of Table 6.5, all related to different choices of the value of p
of the filters (6.30), (6.31) and (6.32), show that, in general, the p strategy
can bring a meaningful enhancement of the restored image.

If we use the previous filters for the statistical methods LR and ISRA,
we obtain the results reported in Table 6.6 and Table 6.7. We remark that,
while filters coming from reblurring idea (i.e. f filter and the other three in
the column of p = 1) still work well, the others need a quite difficult setting
of parameters and sometimes give rise to convergence issues (see Table 6.6).

96

RRE IT
f filter 0.3298 128

Low pass 0.3504 5
H.N.P. 0.3504 5
T.Y.Z. 0.3496 5

Tikhonov 0.3320 27
q Tikhonov 0.3369 7

p = 2 p = 1.5 p = 1
RRE IT RRE IT RRE IT

p Low pass 0.3504 5 0.3367 35 0.3311 250
p H.N.P. 0.3504 5 0.3367 36 0.3307 251
p T.Y.Z. 0.3496 5 0.3346 30 0.3360 85

Table 6.5: Results of the Z-Landweber method with Z built by filtering
techniques of §6.3.1 (ζ = 0.013, α = 0.005, q = 1) for the example in Figure
6.4.

Figure 6.9: Restorations made by Z-Landweber with f filter (RRE 0.3298,
IT 128), with Hanke, Nagy, Plemmons filter (RRE 0.3504, IT 5) and with q
Tikhonov filter (RRE 0.3369, IT 7).

RRE IT
f filter 0.3439 53

Low pass 0.4655 1
H.N.P. 0.4655 1
T.Y.Z. 0.4654 1

Tikhonov 0.3474 12
q Tikhonov 0.3473 12

p = 2 p = 1.5 p = 1
RRE IT RRE IT RRE IT

p Low pass 0.4655 1 0.3664 5 0.3582 32
p H.N.P. 0.4655 1 0.3664 5 0.3580 32
p T.Y.Z. 0.4654 1 0.3645 5 0.3614 32

Table 6.6: Z-LR with Z built by different filters (ζ = 0.01, α = 0.005,
q = 1.5) for the example in Figure 6.4.

RRE IT
f filter 0.3407 62

Low pass 0.3603 1
H.N.P. 0.3603 1
T.Y.Z. 0.3602 1

Tikhonov 0.3505 1
q Tikhonov 0.3588 3

p = 2 p = 1.5 p = 1
RRE IT RRE IT RRE IT

p Low pass 0.3603 1 0.3441 11 0.3416 62
p H.N.P. 0.3603 1 0.3441 11 0.3416 62
p T.Y.Z. 0.3602 1 0.3442 10 0.3534 40

Table 6.7: Z-ISRA with Z built by different filters (ζ = 0.01, α = 0.0002,
q = 0.52) for the example in Figure 6.4.

97

Choosing ζ = 0.05, we can obtain a quite good restoration for T.Y.Z. filter
(RRE 0.3568, IT 105), while for Low pass filter and H.N.P. filter we are able
to get only poor reconstructions also for higher values of ζ.

6.4 Deblurring problems with zero boundary

conditions

So far we have studied a first applications of the Z variant in the simple
context of deblurring problems with periodic boundary conditions, i.e. when
both the matrices A and Z are BCCB. This BCCB assumption is useful to
simplify the theoretical analysis, since both A and Z belong to the same
algebra, so that the link between the matrix Z and the classical regularizing
preconditioner D can be easily derived, as described in § 6.3.1.

From now on, we will consider deblurring problems with zero bound-
ary conditions, so that A is a Block Toeplitz with Toeplitz Blocks (BTTB)
matrix, which is the classical assumption for isolate objects on a black back-
ground. Our aim is to improve classical BCCB preconditioning techniques
for BTTB matrices by using Z variants defined again by filtering procedures
in the BCCB algebra like those in §6.3. Differing from the case of periodic
BCs for A discussed in the previous section, now the two matrices Z of (6.7)
and DAH of (6.28) are really different because DAH is not longer BCCB.
Before going on, we can just observe that any iterative method based on
the inversion preconditioned system DAHAx = DAHb requires the BTTB
matrix-vector product with AH plus the BCCB matrix-vector product with
D in the same place where the corresponding method based on the reblur-
ring preconditioned system ZAx = Zb requires only the BCCB matrix-vector
product with Z. Recalling that the BTTB matrix-vector product is more in-
volving than the BCCB one, with Z variant we have a significant reduction
of computational costs. These comments show that Z is different from DAH

not only in the form, but also in the substance.

6.4.1 Form and substance

Since A is a BTTB matrix (and so its eigenvalues are not directly available
by the FFT of the PSF), instead of the eigenvalues of AHA, we now consider
the eigenvalues of ÃHÃ, where Ã is a BCCB approximation of A (for example
the T. Chan optimal approximation [33], see [54] for references and details).
In other words, if we want to obtain a BCCB preconditioner for a BTTB
problem, we have only to replace the eigenvalues of A, λj, with the eigenval-
ues of Ã, say κj, in all the filters and the techniques used to create Z and

98

D. The idea behind the classical inversion filters, such as (6.30)-(6.34) with
p = 2, consists in choosing eigenvalues of D (resp. Z) close to eigenvalues of(
AHA

)−1
(resp. A−1), so that DAHA (resp. ZA) is “near” to the identity

matrix. The reason of inverted commas is that, as we described in §6.3.1,
this is done only in the signal space, i.e. where |λj| ≥ ζ, being ζ the threshold
parameter, or with the introduction of the regularization parameter α, asso-
ciated with Tikhonov filter. In addition, differently from the periodic BCs
case, D and AHA (resp. Z and A) are no longer in the same algebra. Thus,
using eig to indicate the eigenvalues of a matrix, once we have arranged the
eigenvectors of AHA (resp. A) according to the Fourier basis, whose vectors
are the eigenvectors of D (resp. Z), we have (see [123] for the approximation
of the eigenvectors of Toeplitz matrices by means of the Fourier vectors)

eigj(DA
HA) ≈ eigj(D)eigj(A

HA) = |κj|−2 |λj|2 , (6.35)

eigj(ZA) ≈ eigj(Z)eigj(A) = |κj|−2 κ̄jλj. (6.36)

Therefore, with regard to the comparison between Z variant and inversion
preconditioning, the point is to evaluate if (6.36), which comes from Z ap-
proach, is closer to one than (6.35), which is related to D approach.

Regarding (6.36), we have

dist(1, |κj|−2 κ̄jλj) = |1− θ |λj| / |κj|| , (6.37)

where θ = (κ̄jλj)/(|κj| |λj|) and its value depends on how good is the approx-
imation of the angle of the complex eigenvalue λj made by κj. Regarding
(6.35), we have

dist(1, |κj|−2 |λj|2) =
∣∣1− (|λj| / |κj|)2

∣∣ = t · |1− |λj| / |κj|| , (6.38)

where t = 1 + |λj| / |κj| and its value depends on how good is the approxi-
mation of the modulus of the complex eigenvalue λj made by κj. We notice
that if the angle of κj is near to the angle of λj, then θ ≈ 1, hence

dist(1, |κj|−2 |λj|2) ≈ t · dist(1, |κj|−2 κ̄jλj), (6.39)

where t > 1 (t ≈ 2 if also the approximation of the modulus is close to
be exact). So by comparing (6.37) and (6.38), we can summarize that the
reblurring preconditioner Z gives the possibility to manage and control the
angle θ (which is basically fixed for D) between its eigenvalues and the cor-
responding eigenvalues of the system matrix. Figure 6.10 (left) shows that
for θ = 1, Z variant beats D preconditioning everywhere, since the distance
(6.37) (dotted line) is always lower than (6.38) (solid line). As θ goes away

99

Figure 6.10: Plot, for θ = 1 (left) and θ ≈ 1 (right), of the distance (6.38) in
solid line, and for the distance (6.37) in dotted line, with the ratio |λj| / |κj|
on the x-axis.

from 1, the interval in which (6.38) is lower than (6.37) spreads slowly, as
shown by Figure 6.10 (right). From this simple analysis we may argue to
really reach an improvement of the performance of preconditioned iterative
methods by using the proposed Z strategy for the more involving zero BCs
too.

6.4.2 Computational results

To test BCCB preconditioning and Z variant for BTTB systems, we take
into account the Saturno deblurring problem of Figure 6.11. The PSF is
created as a uniform sampling of 101 points in the domain [−5, 5] × [−5, 5]

of the Gaussian kernel e−
√
x2+y2 of 101 points in [−5, 5]× [−5, 5] (as in [48]).

Figure 6.11: True image, PSF, blurred and noisy image.

We have generated the blurred and noisy data b, adding about 4% of white
Gaussian noise. First we compare the performances of D-Landweber method
(5.23) against the Z-Landweber method (6.8), both using q Tikhonov filtering
(6.34). In this case, the top side of Table 6.8 shows some improvements given

100

q Tikhonov filter
q = 1 q = 2 q = 3 q = 3.5

RRE IT RRE IT RRE IT RRE IT
D-Landweber 0.5964 1 0.2275 2 0.1645 32 0.1424 104
Z-Landweber 0.1522 3 0.1426 27 0.1400 80 0.1394 111

p T.Y.Z. filter Reblurring filters
p = 2 p = 1.5 p = 1 VC filter f filter

RRE IT RRE IT RRE IT RRE IT RRE IT
D-Landweber 0.3372 1 0.2023 4 0.1542 42 0.1799 16 0.1793 16
Z-Landweber 0.1414 57 0.1413 60 0.1426 67 0.1506 35 0.1472 38

Table 6.8: Results for D-Landweber and Z-Landweber, with D and Z built
by different filters for example in Figure 6.11.

by Z variant. As intermediate result of the q = 3.5 column, we have that
D-Landweber needs 93 steps — so the preconditioning influence is weak —
to reach the same quality that Z-Landweber reaches after 27 iterations for
q = 2. Z-Landweber is preferable both in terms of speed (i.e. number
of iterations) and accuracy (i.e. RRE). We enforce this comment on the
computational time, by reminding that one single iteration of Z-Landweber
is even cheaper than one single iteration of D-Landweber. In Figure 6.12,
some restorations relative to the top side of Table 6.8 are shown, highlighting
the difference between the two strategies. For the same level q = 2, the Z-
Landweber restoration (center) is better than the D one (left). By comparing
a number of iteration similar to the Z one, for D-Landweber we show the
restoration with q = 3 on the right, where again a lower reconstruction
of the details appears. In Figure 6.13 we report the related convergence
histories, that is, the RRE vs the iteration index, for q = 2 (left) and q = 3
(right). We notice that Z approach and D approach walk together for the
initial iterations, then D-Landweber (solid line) starts to diverge, whereas
Z-Landweber (dashed–dotted line) continue its iterative process going to an
valuable better approximated solution. This behaviour of Z is useful since it
simplifies the choice of the stopping iteration.

The bottom-right side of Table 6.8 concerns the VC filter (6.26) and
the reblurring filters of type (6.27) (ζ = 0.01, γ = 5000). The difference
between the D-Landweber and Z-Landweber methods is again strong, and
the Z restorations is better in terms of RRE. The same fact can be observed
for the p Tyrtyshnikov Yeremin Zamarashkin filter, with ζ = 0.05, reported
in the bottom-left side of Table 6.8. The D-Landweber suffers often from
convergence problems: if we pick a lower ζ value (ζ = 0.01), D-Landweber
does not converge at all for any value of p, while our Z-Landweber works

101

Figure 6.12: Restorations by q Tikhonov filter: D-Landweber restoration
with q = 2 (RRE 0.2275, IT 2), Z-Landweber restoration with q = 2 (RRE
0.1426, IT 27), D-Landweber restoration with q = 3 (RRE 0.1645, IT 32).

Figure 6.13: Convergence history of D-Landweber (solid line) and Z-
Landweber (dashed–dotted line) with q Tikhonov filter: RRE vs iteration
number, for q = 2 (left) and q = 3 (right).

fine, since it gives RRE = 0.1675 after 5 steps for p = 1.5, and RRE = 0.1580
after 26 steps for p = 1. Anyway, a similar negative influence starts to affect
also Z-Landweber as p becomes greater, even if in a less dramatic way.

Finally we report also here the Z-Landweber method presented in §6.2,
which has the great advantage that it does not need any parameter setting.
For Z-Landweber 1/4 we get an RRE equal to 0.1470 after 60 steps, which is
a quite good result compared to ones reached by sophisticated filters, which,
on the contrary, require the tuning of the threshold parameter.

As already remarked, the efficiency of Z variant by filtering techniques of
§6.3 does not depend on the symmetry of the PSF. This is important since,
differing from the D preconditioning (which is always applied to the normal
equation with the symmetric matrix AHA), the preconditioner Z is applied
to possibly non-symmetric matrix A. To evaluate this fact, we consider a

102

test having the same true Saturno image but a highly non-symmetric linear
motion blur as PSF. The resulting Saturno deblurring problem has about
3.6% of white Gaussian noise (see the blurred and noisy image on the left of
Figure 6.14). We remind that the simple coarsening technique introduced in
§6.2 fails in the non-symmetric case, while D-Landweber and Z-Landweber
exhibit now a behaviour similar to one showed in the symmetric case, i.e.
they still work and Z is again better than D. In Figure 6.14, we report two
restorations made by those methods with q Tikhonov filter, where q = 1.5.
Z-Landweber restoration (right) is good enough, while D-Landweber one is
still blurred (center) and shows stains along the borders.

Figure 6.14: Blurred and noisy image, D-Landweber restoration (RRE
0.1771, IT 7), Z-Landweber restoration (RRE 0.1352, IT 14), with q
Tikhonov filter, where q = 1.5.

6.4.3 A note on projection

Since our PSFs and images are non-negative, as usual, all our numerical tests
consider the projected variant of our methods, i.e. we apply the projection
P on the non-negative cone (c1 = 0 and c2 = +∞)

[P(x)]j =


c1 if xj < c1,
xj if c1 ≤ xj ≤ c2,
c2 if xj > c2,

(6.40)

after any step of the iterative method. To be more precise, instead of the
basic iteration xk of any iterative method, we take xk := P(xk). We no-
tice that statistical methods do not need the projection on the non-negative
cone, because they act pixel by pixel, hence they naturally preserve non-
negativity. About BCCB preconditioning of BTTB problems, we have to
make an interesting remark. As just said, usually projection P is applied in
this manner xk = xk−1 + τDAH(b− Axk−1), xk := P(xk), and so we have

103

done in our computational tests. Nevertheless in this particular case we have
experimentally found that the following new projection strategy

xk = xk−1 + τDAH(b− Ax+
k−1), x+

k−1 = P(xk−1), (6.41)

can improve the performances of the method. The new strategy (6.41) con-
sists to do an iteration step with simultaneously both projected and non-
projected iterations xk−1 and finally to pick x+

k as computed solution. In
particular, we have numerically tested that this strategy is able to reduce
instability. This behaviour can be seen in the convergence history of Figure
6.15, related to the new iteration (6.41), which can be compared with the
corresponding of Figure 6.13 (left) of the classical iteration. Both the figures
Figure 6.13 (left) and 6.15 are related to the same q Tikhonov filter (q = 2)
for Saturno deblurring problem. Furthermore, even though general consid-
erations on the superiority of Z variant are still valid, this new projection
technique brings performances of D-Landweber with reblurring filters close
to those of Z-Landweber.

Figure 6.15: Convergence history of D-Landweber (solid line) and Z-
Landweber (dashed–dotted line) with q Tikhonov filter, employing the new
projection strategy (6.41): RRE vs iteration number, for q = 2.

6.5 Deblurring problems with accurate

boundary conditions

We recall that, when we build a BCCB preconditioner D for A BTTB, we
make use of a circulant approximation (in our case the T. Chan optimal
approximation [33]) Ã of A, that is

A = Ã+N +R, (6.42)

104

where N is a low norm correction and R is a low rank correction. This means
that we can employ the same idea and so use Z and D both BCCB, if the
matrix A, having other boundary conditions, can be written in this form.
This is what happens for instance with Reflective and Anti-Reflective BCs.
We stress that for these accurate boundary conditions, the matrix-vector
product with AH could be unavailable or computationally expensive. Hence
instead of AH one usually considers A′, which is the matrix related to the
PSF rotated by 180 degrees (see Chapter 5). So in this context the use of
Z instead of DAH could be very useful, since it avoid to resort to AH or to
replace it with A′.

To test BCCB preconditioning for problems with reflective BCs, we take
into account the Cameraman deblurring problem of Figure 6.16. The PSF
is a strongly non-symmetric portion of a Gaussian blur. We have generated
the blurred and noisy data b, adding about 2% of white Gaussian noise.
Numerical results are reported in Table 6.9, while some restorations are re-
ported in Figure 6.17. We note that for Z-Landweber the regularization
parameter affects only the speed of convergence, while for D-Landweber a
wrong estimation of the regularization parameter leads to a poor computed
approximation. Such behaviour is clearly shown in Figure 6.18, where we can
see that the restoration error for Z-Landweber remains stable also for small
values of the regularization parameter. Of course, for small values of the
regularization parameter the method converges faster and a good restoration
can be computed within few iterations. To test BCCB preconditioning for
problems with anti-reflective BCs, we take into account the Bridge deblurring
problem of Figure 6.19. The PSF is a strongly non-symmetric portion of a
defocus blur. We have generated the blurred and noisy data b, adding about
0.75% of white Gaussian noise. Numerical results are reported in Table 6.10,
while some restorations are reported in Figure 6.20. In these tests we have
considered only strongly non-symmetric PSFs, since if the PSF is near to
be symmetric, one usually takes the reflective (resp. anti-reflective) blurring
matrix associated to the symmetrized PSF as preconditioner, as shown in
Chapter 5.

As one could expected, even if what we said in the beginning of this section
is true, circulant preconditioning for deblurring problems with reflective or
anti-reflective BCs show lower efficacy than one exhibited for problems having
zero BCs. In particular filters parameters are very difficult to set and some
filters, like Low Pass filter or Hanke, Nagy, Plemmons one, do not work well,
i.e. for some values of the threshold parameter they give poor restorations
and for other values they do not meaningfully speed up the method (as
preconditioning should do). As observed before, also for these boundary
conditions Z variant is able to be more stable than classical preconditioning

105

Figure 6.16: True image, PSF, blurred and noisy image.

Figure 6.17: Employing Tikhonov filter, D-Landweber restorations for α =
0.3 (RRE 0.1632, IT 137), α = 0.25 (RRE 0.1876, IT 24), and Z-Landweber
restoration for α = 0.03 (RRE 0.1656, IT 15).

Tikhonov filter
α = 0.3 α = 0.1 α = 0.03

RRE IT RRE IT RRE IT
D-Landweber 0.1632 137 0.3638 1 0.8198 1
Z-Landweber 0.1650 144 0.1651 48 0.1656 15

T.Y.Z. filter
ζ = 0.5 ζ = 0.3 ζ = 0.13

RRE IT RRE IT RRE IT
0.1629 227 0.3185 1 0.7119 1
0.1649 239 0.1649 143 0.1649 62

Table 6.9: Cameraman deblurring problem: D-Landweber and Z-Landweber
with D and Z built by different filters.

Tikhonov filter
α = 0.45 α = 0.4 α = 0.12
RRE IT RRE IT RRE IT

D-Landweber 0.1520 198 0.2023 29 0.3361 1
Z-Landweber 0.1611 184 0.1611 163 0.1607 46

f filter
γ = 150 γ = 80 γ = 12
RRE IT RRE IT RRE IT

0.3804 1 0.3339 1 0.2306 8
0.1663 40 0.1685 77 0.1645 255

Table 6.10: Bridge deblurring problem: D-Landweber and Z-Landweber
with D and Z built by different filters.

106

Figure 6.18: RRE vs regularization parameter (α or ζ) for example in Figure
6.16 and Tikhonov filter (left) and T.Y.Z. filter (right).

Figure 6.19: True image, PSF, blurred and noisy image.

Figure 6.20: Employing Tikhonov filter, D-Landweber restorations for α =
0.45 (RRE 0.1520, IT 198), α = 0.4 (RRE 0.2023, IT 29) and Z-Landweber
restoration for α = 0.12 (RRE 0.1607, IT 46).

107

and so to give rise to an higher acceleration when it is applied to an iterative
method. The only drawback of Z variant is that the quality of the restoration
is sometimes slightly worse than one obtained by classical preconditioning
(see first column of Table 6.10). This may be caused by the fact that, since
Z is chosen BCCB, we are imposing periodic BCs, so we completely lose
information on the boundary, while DA′ keep this information thanks to A′,
which is a reflective (resp. anti-reflective) blurring matrix. Indeed in the
third image of Figure 6.17 and of Figure 6.20 we can notice that the errors
are mainly placed along the borders (right and bottom border in the case of
Bridge reconstruction). As delineated in the next section, it is possible to
avoid this by constructing Z with the same BCs of A.

6.6 A general Z algorithm

We remind that till now we have compared D BCCB with Z BCCB, so have
put Z and D, in the wide matter of preconditioning, on the same footing.
Nevertheless, since the original idea is to replace AH with Z, the logical
consequence is that Z has to inherit its BCs from A. This means that it is
possible to go along another course, i.e. to use circulant algebra only to apply
filters and then to come back and to employ the original BCs of the problem,
no more only periodic BCs as in the circulant preconditioning theory. In
other words, for any BCs, we can perform the next Algorithm. In the
sequel we will indicate with Cn2 the BCCB matrix associated with (hPSF ,
‘periodic’) of size n × n and with cj its eigenvalues, while FFT and IFFT
will denote respectively the two-dimensional Fast Fourier Transform and its
Inverse.

Z ←− Algorithm(hPSF , BCs)

———————————————————–

· get {cj}n
2

j=1 by computing FFT of hPSF
· get zj by applying a filter to cj

· get wPSF by computing IFFT of {zj}n
2

j=1

· generate Z from (wPSF , BCs)

We highlight that this algorithm is consistent, in fact if the filter is identity,
i.e. there is no filtering, we have Z = AH . Here we present the algorithm for
building Z, but clearly, since the filters for Z are related with those for D,
an analogous algorithm can be applied to create the preconditioner D. We
underline that the filters can be chosen whether of inversion or of reblurring
type.

108

6.6.1 Zero BCs

When boundary conditions are the zero one, it is quite natural to seek a link
between the proposed algorithm and Toeplitz preconditioning. We briefly
present the preconditioner proposed in [32, 67], that we call Chan, Ng pre-
conditioner. For simplicity, we do this in the one-dimensional case. Given
the Toeplitz matrix A, associated to the PSF of the problem

A =



h0 . . . h−q 0 0 0 0
... h0 h−q 0 0 0
hq h0 h−q 0 0
0 hq h0 h−q 0
0 0 hq h0 h−q

0 0 0 hq h0
...

0 0 0 0 hq . . . h0


n×n

,

for our algorithm we simply consider the circulant matrix associated to the
same PSF

Cn =



h0 . . . h−q 0 0 hq . . .
... h0 h−q 0 0 hq
hq h0 h−q 0 0
0 hq h0 h−q 0
0 0 hq h0 h−q

h−q 0 0 hq h0
...

. . . h−q 0 0 hq . . . h0


n×n

.

Then, denoting by −F the inversion made by the filters, we choose D =
(Cn)−F . Chan, Ng consider a circulant embedding of A

C2n =

(
A R
R A

)
2n×2n

, (C2n)−F =

(
C1 C2

C2 C1

)
2n×2n

(6.43)

and choose D = C1, that is the n×n leading principal submatrix of (C2n)−F .
In pratice, both techniques try to approximate 1/f , where f is the generating
function of the Toeplitz matrix A.

One-dimensional test

We test these different approaches for the one-dimensional blurring problem
reported in Figure 6.21, having a level of noise that is about 1.6%. As
always we compare the results of preconditioning techniques with those of

109

Figure 6.21: True signal, PSF, blurred and noisy signal.

Figure 6.22: Chan restoration (RRE 0.1849, IT 6) and Z Chan restoration
(RRE 0.1424, IT 85).

the basic Landweber method, with non-negative projection, which reaches an
RRE equal to 0.1397 in 4086 iterations without preconditioning. We employ
Tikhnov filter for all the available possibilities, including T. Chan optimal
preconditioner [33]

ck =
(n− |k|)hk + |k|hk−n

n
, − n < k < n (6.44)

and its Z variant, which are circulant matrices. Table 6.11 confirm again the
strength of Z strategy, which converges when other approaches fail and gets
always low RREs. Moreover, as already observed, the improvement given
by Z variant in the case of circulant preconditioning is huge (see Figure
6.22). Also Chan, Ng Toeplitz preconditioner improves the performances of
Chan circulant preconditioner, in particular it gives rise to computational
results analogous to ones gained by our D Toeplitz preconditioner, which is
generated by the algorithm presented in this section, the same algorithm of
Z.

Two-dimensional test

To test BTTB preconditioning — where both D and Z are created by the
proposed algorithm — for restoration problems having A BTTB, we take into
account the Saturno problem of Figure 6.11. We report Table 6.12, that has
to be compared with Table 6.8 in §6.4.2 (we have chosen the regularization

110

Tikhonov filter
α = 0.001 α = 0.02 α = 0.04
RRE IT RRE IT RRE IT

Chan 0.2121 1 0.1849 6 0.1577 44
Z Chan 0.1581 4 0.1424 85 0.1412 168

Chan, Ng 0.3222 2 0.1424 84 0.1414 166
D 0.3222 2 0.1424 84 0.1414 166
Z 0.1568 4 0.1425 84 0.1414 167

Table 6.11: Landweber method with different preconditioners and Z variants.

parameters in the same way). We can observe that the distance between
D-preconditioning approach and Z variant one is higher for q = 1 and p = 2.
About p Tyrtyshnikov Yeremin Zamarashkin filter (6.32), if we pick ζ = 0.01,
D-Landweber converges to an acceptable restoration only for values of p near
to 1, for p = 1 it reaches an RRE equal to 0.1614 after 23 steps, while Z-
Landweber reaches an RRE equal to 0.1670 after 5 steps for p = 1.5 and an
RRE equal to 0.1578 after 26 steps for p = 1. About VC filter, if we pick
ζ = 0.02, D-Landweber reaches an RRE equal to 0.1472 in 56 steps, while Z-
Landweber reaches an RRE equal to 0.1414 in 68 steps. More in general, once
left out the instances in which D-Landweber shows instability, we can notice
that the two strategies give similar results both in terms of best restoration
and of iterations number. Nevertheless we remind that one iteration of an
iterative method that employs Z-variant has a computational cost which
is lower than one iteration of a method that employs D-preconditioning.
Therefore Z variant is again preferable.

q Tikhonov filter
q = 1 q = 2 q = 3 q = 3.5

RRE IT RRE IT RRE IT RRE IT
D-Landweber 0.7259 1 0.1504 12 0.1396 87 0.1390 121
Z-Landweber 0.1512 3 0.1421 29 0.1398 86 0.1392 120

p T.Y.Z. filter Reblurring filters
p = 2 p = 1.5 p = 1 VC filter f filter

RRE IT RRE IT RRE IT RRE IT RRE IT
D-Landweber 0.4157 1 0.1403 61 0.1421 68 0.2773 4 0.1470 37
Z-Landweber 0.1480 41 0.1411 60 0.1422 68 0.1501 35 0.1463 39

Table 6.12: D-Landweber and Z-Landweber with D and Z (both BTTB)
built by different filters.

111

D-Landweber Z-Landweber
RRE IT RRE IT

Reflective 0.1107 18 0.1031 5
Anti-Reflective 0.0995 25 0.0999 4

Table 6.13: Results of D-Landweber and Z-Landweber method, related to
the Cameraman deblurring problem, employing different BCs.

6.6.2 Accurate BCs

Now we study our proposal of §6.6 applied to Reflective and Anti-Reflective
boundary conditions. We recall that for both these BCs the optimal precon-
ditioner is associated to the symmetrized PSF, as shown in Chapter 5. To
make tests we use the same two data set of §5.3, i.e. Cameraman and Bridge
ones. As done in that section, we consider Landweber method and Tikhonov
filter, for which we set the regularization parameter α manually, in order to
obtain excellent performances both in terms of RRE and of number of steps.
Table 6.13 (Cameraman) and Table 6.14 (Bridge) clearly show that this new
preconditioner D gives rise to computational results which are better (see in
particular the IT column) than ones gained by the optimal preconditioner,
reported in Table 5.1 and Table 5.2. As expected, the distance between the
two strategies is huge in the case of strongly non-symmetric PSF, since our
proposal can manage directly non-symmetric structures, differently from op-
timal preconditioning, which is based on symmetrization. In this situation
Z variant represents a further improvement, which allows to obtain a more
powerful acceleration than D and often also better restorations; see in par-
ticular the Cameraman restoration problem for Reflective BCs (first image
of Figure 6.23 and Figure 6.24). For this example in Figure 6.24 we observe
that, from the point of view of the human eye, maybe Reflective restoration
may be preferable to Anti-Reflective one, since it does not have the annoying
ringing effect along the upper border which is present in the other one. This
is caused by the fact that Anti-Reflective BCs are more accurate but they
are more sensitive to non-symmetry of the PSF and to noise. A low level of
noise — we remind that for both these problems it is about 0.2% — com-
bined with slightly non-symmetric PSF, is sufficient to produce unpleasant
ringing phenomenon along the borders. Finally we can say that, since for a
suitable choice of the parameter α we have that Z-Landweber converges in
few steps, one can think to apply Z variant also in the framework of direct
regularization method. To this topic is devoted the next section.

112

Figure 6.23: Best D-Landweber restorations, employing reflective and anti-
reflective BCs.

Figure 6.24: Best Z-Landweber restorations, employing reflective and anti-
reflective BCs.

D-Landweber Z-Landweber
RRE IT RRE IT

Reflective 0.1982 2 0.1922 1
Anti-Reflective 0.1868 311 0.1858 1

Table 6.14: Results of D-Landweber and Z-Landweber method, related to
the Bridge deblurring problem, employing different BCs.

Figure 6.25: Best D-Landweber restorations, employing reflective and anti-
reflective BCs.

113

Figure 6.26: Best Z-Landweber restorations, employing reflective and anti-
reflective BCs.

6.7 Direct regularization methods

In this section we outline the possible use of Z variant for direct regularization
methods. Here we examine Tikhonov regularization, but all the considera-
tions made for it can be extended to other similar regularization methods,
like those conceived by Hanke, Nagy, Plemmons [69] and by Tyrtyshnikov,
Yeremin, Zamarashkin [118]. For discrete ill-posed problems, Tikhonov regu-
larization in general form leads to the solution of the minimization problem

min
{
‖Ax− b‖2

2 + α ‖x‖2
2

}
, (6.45)

where the regularization parameter α > 0 controls the weight given to mini-
mization of the regulation term; ‖x‖2

2 is usually called the penalty term. An
alternative formulation of (6.45) is

(AHA+ αI)x = AHb (6.46)

whose solution is unique and it is given by

x = A†αb, (6.47)

where A†α = (AHA + αI)−1AH . This matrix A†α is called the Tikhonov gen-
eralized inverse. In literature there are fundamentally three cases in which
this approach can be applied:

a) if BCs are periodic, solve (6.46) by FFT (in other words we can compute
A†α since we are in the Circulant algebra);

b) if BCs are reflective and the PSF of the problem is strongly symmetric,
solve (6.46) by FCT (in other words we can compute A†α since we are
in the Reflective algebra);

114

c) if BCs are anti-reflective and the PSF of the problem is strongly sym-
metric, solve (6.46) by FST (in other words we can compute A†α since
we are in the Anti-Reflective algebra).

We remind that really, since we employ reblurring strategy, we solve
(A′A+µI)x = A′b, where A′ is the matrix related to the PSF rotated by 180
degrees. Making use of Z variant, A†α is replaced by Zα, i.e.

x = Zαb (6.48)

and we have Z-Tikhonov regularization. We underline that an important dif-
ference between this strategy and Z-Landweber method is that for the last,
since it is an iterative method, the regularization parameter is the number of
steps k, while for Z-Tikhonov regularization the key parameter is α. How-
ever, if we consider Z-Landweber method, in which the initial guess is chosen
equal to zero and τ is chosen equal to one, and for which Z is built using
Tikhonov filter (with the same α employed in the Tikhonov regularization),
we can observe that its first step

xk = xk−1 + τZ(b− Axk−1) = Zb (6.49)

is equivalent to Z-Tikhonov regularization. Therefore, inspired by general
Z variant utilized in §6.6 for iterative methods, instead of (a), (b), (c), we
have only: for any BCs and for any PSF, create Zα by the algorithm
presented at the beginning of §6.6 and find the solution by (6.48). Clearly
this strategy, if BCs are periodic, is the same of (a). If BCs are reflective or
anti-reflective, with strongly symmetric PSF, it gets reconstructions very near
to those gained by (b) or (c). On the other hand, in all the remaining cases,
it represents a new technique that allows to have always at our disposal an
approximation of A†α and so it permits to us to solve the linear systems related
to Tikhonov regularization by (6.48). We remind that for zero, periodic,
reflective, anti-reflective boundary conditions there is an algorithm, based on
Fast Fourier Transform, for the matrix vector product, so the computational
cost is O(n2 log(n)). Also the algorithm that generates Zα requires only one
FFT and one IFFT. Therefore the overall cost consists only in few FFTs.

To have a picture of the situation, we report the results relative to four
restoration problems, having the same true image and for which we have
imposed reflective BCs, related to four different defocus blur, all with similar
level of noise (about 2%). We compare the best restoration performed by
the classical Landweber method, typically in one hundred or two hundred
iteration steps, with Z-Tikhonov regularization, for which we picked α =
0.005 for the first problem and α = 0.008 elsewhere. Also in this case we
employ non-negative projection.

115

Landweber 0.1609 0.1493 0.1466 0.1272
Z-Tikhonov 0.1659 0.1542 0.1511 0.1329

Table 6.15: Z variant of Tikhonov regularization vs Landweber method.

Table 6.15 shows that in all instances Z-Tikhonov regularization reaches
an RRE that is only about 0.5% worse than the one gained by Landweber
method. Furthermore, as we have advanced, the RRE of Z-Tikhonov regu-
larization in the first column, i.e. the strongly symmetric case, is very close
to that obtained by approach described in (b), since it is different only from
the four decimal digit. Finally we can assert that also in the field of di-
rect methods, Z variant represents a valid way to strengthen regularization
techniques, releasing them by ties represented by BCs and symmetry of the
PSF.

6.8 Merits of Z variant

After this general survey on Z variant for iterative and direct methods, we can
make some comments concerning the obtained results and stress the merits of
Z variant. Despite the closeness sometimes observed between performances
of methods withD-preconditioning and with Z variant, the former has several
disadvantages. The more important ones that we have singled out are the
next three:

a) DAH loses the matrix structure, while Z preserves it;

b) computational cost of Z variant remains fundamentally the same of the
standard iterative method to which variant is applied, while the cost
of a preconditioned method is in general higher than the standard one;

c) for all filters Z variant shows an higher stability, and with this word
we mean that iterative methods compute a good restoration also when
regularization parameters ζ and α are very small.

Finally we provide an example that shows as our Z approach gives an
acceleration of the speed of convergence higher than whose provided by clas-
sical acceleration techniques widely used in the literature. Concerning the

116

RRE IT
LR aut acc 0.3646 83

Z-LR 0.3643 55
Z-LR aut acc 0.3587 17

Table 6.16: Convergence history of LR with automatic acceleration (solid
line), Z-LR without any acceleration (dashed line), Z-LR with automatic
acceleration (dotted line).

LR method, at our knowledge, the most popular acceleration technique is
that introduced in 1997 by Biggs and Andrews [16], called automatic ac-
celeration by the authors. It exploits a vector extrapolation to determine
the point on which the LR iteration has to be applied, thus it introduces a
little computational overhead at each iteration of the LR method (for de-
tails see Chapter 7). Recalling the Satellite problem of Figure 6.4, created Z
by applying three times the coarsening technique of §6.2, Table 6.16 shows
that in this case Z variant overcomes automatic acceleration. Nevertheless,
a more important fact is that by using automatic acceleration and Z variant
together we get an acceleration which is more powerful than both ones (see
third row and dotted line). In conclusion, beyond the intrinsic strength of Z
approach, it can be naturally combined with other acceleration techniques.
Future developments will be focused in these directions. For the moment,
in the next chapters we will leave the preconditioning and reblurring field in
order to analyse thoroughly acceleration techniques.

Chapter 7

ν acceleration

In literature there are many papers, more or less recent, that deal with ac-
celeration techniques for LR method or analogous ones [16, 88, 1, 72, 76,
15, 85, 111, 20, 11]. At this time, to the best of our knowledge, the most
popular is described in [16]. It is a form of vector extrapolation that predicts
subsequent points based on previous points. In detail:

yk = xk + αk(xk − xk−1),

αk =
(gk−1)Tgk−2

(gk−2)Tgk−2

,

gk−1 = xk − yk−1,

gk−2 = xk−1 − yk−2,

xk+1 = it.method(yk),

where α1 = 0, α2 = 0, 0 ≤ αk ≤ 1, ∀k. It is worth to note that it.method
indicates a very general iterative method. In fact, as written in [16], “ac-
celeration can be applied when the restoration changes slowly between each
iteration and also if the algorithm is insensitive to the changes introduced”.
These are both properties of several iterative methods, for instance LR and
Landweber method. The extrapolation, consisting in a shift along the direc-
tion given by the difference between the current iteration and the previous
iteration (see Figure 7.1, taken from [16]), introduces a little computational
overhead. The cost per iteration of the method is only slightly larger than
it.method without acceleration. The goodness of this technique — called au-
tomatic acceleration by the authors, since it is exactly automatic, i.e. there
is no parameter that needs to be set — is known. Indeed it is included in the
LR implementation of Image Processing MatLab toolbox (see the function
‘deconvlucy’).

In this chapter we present a “new” acceleration, which actually is not

117

118

Figure 7.1: Conceptual difference between the unaccelerated and acceler-
ated method (up) and vector diagram illustrating the acceleration method
in geometric terms (down).

properly new, since it exists in another context. We are talking about ν-
method [22, 66], which is a semi-iterative method that speed up the classical
Landweber method. The so-called ν-method is defined as follows

xk = µkxk−1 + (1− µk)xk−2 + ωkA
H(b− Axk−1), (7.1)

where the coefficients µk and ωk are given by

µk = 1 +
(k − 1)(2k − 3)(2k + 2ν − 1)

(k + 2ν − 1)(2k + 4ν − 1)(2k + 2ν − 3)
, (7.2)

ωk =
4(2k + 2ν − 1)(k + ν − 1)

(k + 2ν − 1)(2k + 4ν − 1)
, (7.3)

for k > 1, and with µ1 = 1, ω1 = 1. We notice that µk and ωk do not depend
on A, b, xk, related to the particular restoration problem, but they depend
only on the choice of ν and on the step k, so they are, in this sense, quite
general. Figure 7.2 shows the trend of µk and of ωk, which grow rapidly in
the first steps and then approach their respective limit value. In particular

lim
k→∞

µk = 2 , lim
k→∞

ωk = 4 , lim
k→∞

ωk
µk

= 2 ,

119

independently from the value of the acceleration parameter ν. We remark
that the ratio ωk

µk
converges to its limit value more quickly both than µk and

ωk.

Figure 7.2: Trend, for ν = 1, of µk, ωk and of ωk/µk.

We notice that ν-method is based on the fact that the k-th iteration of
Landweber method can be written as xk−1 + updatek−1. Therefore, to use
the same idea — from now on we call it ν acceleration — for LR, we rewrite
(6.5) in this way

xk = xk−1 +

[
xk−1 · AH

(
b

Axk−1

)
− xk−1

]
,

whence, by a formal usage of (7.1), we write

xk = µkxk−1 + (1− µk)xk−2 + ωk

[
xk−1 · AH

(
b

Axk−1

)
− xk−1

]
= (µk − ωk)xk−1 + (1− µk)xk−2 + ωk

[
xk−1 · AH

(
b

Axk−1

)]
.(7.4)

An analogous formula holds for ISRA (6.6)

xk = (µk − ωk)xk−1 + (1− µk)xk−2 + ωk

[
xk−1 ·

(
AHb

AHAxk−1

)]
. (7.5)

7.1 Projection

Statistical methods do not need the projection on the non-negative cone,
because they act pixel by pixel without any subtraction, hence they naturally
preserve non-negativity whenever the matrix A and the initial guess x0 are

120

non-negative. This is not true any more for the accelerated versions (7.4)
and (7.5), so that, for keeping non-negativity and obtaining again functioning
methods, is of fundamental importance to apply the projection P on the non-
negative cone (6.40) after any step of the iterative method, i.e. instead of
xk we take xk := P(xk) as iteration k. In the end, (7.4) and (7.5) become
respectively

xk = P
{

(µk − ωk)xk−1 + (1− µk)xk−2 + ωk

[
xk−1 · AH

(
b

Axk−1

)]}
,

xk = P
{

(µk − ωk)xk−1 + (1− µk)xk−2 + ωk

[
xk−1 ·

(
AHb

AHAxk−1

)]}
.

Moreover, inspired by what we have observed in §6.4.3, we propose a new
projection strategy

xk = (µk − ωk)xk−1 + (1− µk)xk−2 + ωk

[
x+
k−1 · A

H

(
b

Ax+
k−1

)]
,

xk = (µk − ωk)xk−1 + (1− µk)xk−2 + ωk

[
x+
k−1 ·

(
AHb

AHAx+
k−1

)]
,

where x+
k−1 := P(xk−1), which consists to do an iteration step with both

projected and non-projected xk−1 and finally to pick x+
k as computed so-

lution. We remark that a similar idea can be used also for automatic ac-
celeration, since the standard method provides yk := P(yk) and xk+1 =
it.method(yk), then we can introduce the next alteration, that is y+

k = P(yk)
and xk+1 = it.method(y+

k); this means that acceleration algorithm works
with non-projected yk, while projection occurs only when we have to move
from acceleration routine to iterative method. We will indicate these two
alternative types of projection for ν acceleration and automatic acceleration
by the symbol Q, while for the standard projection we will use the symbol
P .

7.2 Connection between Landweber method

and statistical methods

To justify the proposed approach, following the lines drawn in §6.1.2, we
show the link between Landweber method (5.22) and LR (6.5), ISRA (6.6),
from which follows the link between ν-method (7.1) and ν-accelerated LR
(7.4), ISRA (7.5). LR can be approximated by the following formula

xk = xk−1 + xk−1 · AH
(

(b− Axk−1) · 1

Axk−1

)
. (7.6)

121

The difference between (7.6) and (6.5) is xk−1−xk−1 ·AH
(

(Axk−1) · 1
Axk−1

)
.

If we define

[K(y)]j =

{
1 if yj 6= 0,
0 if yj = 0,

it becomes xk−1 − xk−1 · AHK(Axk−1). Clearly it is zero when [Axk−1]j 6= 0,
∀j, in fact under this hypothesis, denoting by e the all-ones vector, we obtain

xk−1 − xk−1 · AHe = xk−1 − xk−1 · e = 0. (7.7)

We notice that (7.7) holds for periodic, reflective and anti-reflective BCs,
while it does not hold for zero BCs, for which AHe 6= e. When the stated hy-
pothesis falls down, for example in the case of images with black background
— i.e. images with many zeros — we have to consider the next result.

Proposition 7.1 If BCs are periodic, then xk−1 · AHK(Axk−1) = xk−1.

Proof. K(Axk−1) is equal to 1 in some areas, whose position and extent
depend on xk−1 and on A, while is equal to 0 elsewhere. Since BCs are
periodic, by direct calculation we get

[
AHK(Axk−1)

]
j

=

{
1 if [xk−1]j 6= 0,

vj if [xk−1]j = 0,
(7.8)

where vj is a certain value, that do not interest us. The thesis is a direct
consequence of (7.8), so the proof is concluded.

Example 7.2 Some pictures that illustrate Proposition 7.1.

xk−1 PSF K(Axk−1) AHK(Axk−1)

We remind that white color corresponds to one, while black color corresponds
to zero. By comparing the figures relative to xk−1 and to AHK(Axk−1) with
the formula (7.8), we can really see that AHK(Axk−1) has value equal to
one (white) where xk−1 is higher than zero (non-black). Therefore xk−1 ·
AHK(Axk−1) = xk−1.

122

Therefore, from (7.4) and (7.6), for LR with ν acceleration we have

xk = µkxk−1 + (1− µk)xk−2 +

+ωk

[
xk−1 + xk−1 · AH

(
(b− Axk−1) · 1

Axk−1

)
− xk−1

]
= µkxk−1 + (1− µk)xk−2 + ωkyk · AH((b− Axk−1) · zk), (7.9)

where yk = xk−1 and zk = 1
Axk−1

.

Similarly for ISRA the following formula holds

xk = xk−1 +

(
xk−1

AHAxk−1

)
· AH(b− Axk−1), (7.10)

so, from (7.5) and (7.10), for ISRA with ν acceleration we can write

xk = µkxk−1 + (1− µk)xk−2 +

+ωk

[
xk−1 +

(
xk−1

AHAxk−1

)
· AH(b− Axk−1)− xk−1

]
= µkxk−1 + (1− µk)xk−2 + ωkyk · AH(b− Axk−1). (7.11)

where yk = xk−1

AHAxk−1
.

In other words, in the classical ν-method yk and zk are always equal to
e, while here they can be viewed as dynamic descent parameters, point by
point. From an intuitive point of view, yk and zk, as well as the ratios in (6.5)
and in (6.6), vary according to the more or less closeness of xk−1 to the sought
solution, and since it is unknown, this is made by comparing Axk−1 with b.
For each pixel, if Axk−1 is smaller than b, than the action of parameters will
increase the value of that point, on the contrary if Axk−1 is higher than b,
that point will be decreased by the action of parameters.

7.3 About convergence

First of all, we highlight that, as far as we know, no convergence proof of
automatic acceleration is available. For ν-accelerated ISRA, from (7.11) we
have

xk = µkxk−1 + (1− µk)xk−2 + ωkA
H(b− Axk−1) +

+ωk(yk − e) · AH(b− Axk−1)

= xν−method
k + ωk

[
xk−1

(
AHb

AHAxk−1

)
− (xk−1 + AH(b− Axk−1))

]
= xν−method

k + ωk(x
ISRA
k − xLandweber

k) (7.12)

123

and from (7.9) and by Proposition 7.1, for ν-accelerated LR we have

xk = µkxk−1 + (1− µk)xk−2 + ωkA
H(b− Axk−1) +

+ωk
[
yk · AH((b− Axk−1) · zk)− AH(b− Axk−1)

]
= xν−method

k + ωk

[
xk−1 · AH

(
b

Axk−1

)
− (xk−1 + AH(b− Axk−1))

]
= xν−method

k + ωk(x
LR
k − xLandweber

k), (7.13)

where xit.method
k indicates the approximated solution that one gets doing one

step of it.method, having xk−1 as “initial guess”. Therefore, even if these
formulas do not represent a formal proof of convergence, we can say that LR
(resp. ISRA) with ν acceleration in a certain sense inherits convergence prop-
erties from ν-method (see [66]), Landweber method and LR (resp. ISRA).
In fact, given xk−1, all these methods make an iteration in order to approach
the sought solution, so ν-accelerated LR (resp. ISRA), which is a linear
combination of those iterations, should have similar convergence properties.
We stress that a rigorous proof of this fact cannot be obtained by using the
same techniques of [66]. More in general, such a proof (if it exists) is not
straightforward, since non-negative projection is an indispensable ingredient
of ν acceleration and in literature, as far as we know, there is absence of
effective mathematical tools for investigating the convergence of projected
methods.

7.4 Computational cost

We underline that the cost per iteration of an accelerated method is only
slightly larger than the same iterative method without acceleration. This is
true for automatic acceleration, as we said at the beginning of this chapter,
and also for ν acceleration. In fact the only additional costs are due to the
computation of µk and ωk, that can be done with few operations by their
formulas, and to the sum of the three vectors (µk − ωk)xk−1, (1 − µk)xk−2

and ωk

[
xk−1 ·

(
AHb

AHAxk−1

)]
(or ωk

[
xk−1 · AH

(
b

Axk−1

)]
) which compose the

accelerated iteration.

7.5 Computational results

To test the algorithms we have used images of 256 × 256 pixels and we
have considered problems with periodic BCs. Several problems — having
different true images, PSFs, level of noise — have been tested. Here we

124

report an example — the Satellite restoration problem of Figure 6.4 — which
is representative of the general behaviour of the methods and of the relations
among them.

To estimate the level of acceleration gained by methods that employ an
acceleration technique, we compare their performances (Table 7.2 and Table
7.3) with those of classical methods (Table 7.1) by calculating the Accelera-
tion Factor (AF). AF is defined as the ratio between the number of iterations
that are necessary to the original method to get a reconstructed image with
some RREAF (see Relative Restoration Error (RRE) defined in (5.25)) and
the number of iterations that are necessary to the accelerated method to do
the same thing. In particular, if we call RRE1 the best RRE related to the
first method and RRE2 the best RRE related to the second one, we pick
RREAF = max(RRE1, RRE2) to compute AF. We report in Figure 7.3 an
example of this. We remind that the symbol P is related to the standard
projection on the non-negative cone, while Q is related to the alternative
type of projection described in §7.1. We point out that ISRA with auto-
matic acceleration and Q projection has errors mainly placed around the
shape of the satellite, while ISRA has errors mainly placed along the edges
of the figure. This is the reason why the former restoration seems to have
more inner details and the latter appears more clear in the outer part. We
make a list of the different methods and their best RRE.

RRE IT
LR 0.3484 2128

ISRA 0.3451 1926

Table 7.1: LR and ISRA.

Figure 7.3: ISRA (RRE 0.3560, IT 912), ISRA with automatic acceleration
and Q projection (RRE 0.3560, IT 109).

Recalling what we said at the beginning of this chapter, Table 7.2 and Ta-

125

ble 7.3 confirm the effectiveness of ν acceleration and tell us that automatic
acceleration is dethroned by it. ν acceleration overcomes automatic acceler-
ation both in terms of AFs gained (for all three ν values) and of restorations
performed (for ν equal to 1 and 2). Really for ν = 2 it reaches an RRE that
is even lower than one gained by classical LR or ISRA (Table 7.1). If we
compare these two acceleration techniques looking at charts of Figure 7.4,
where ν is taken equal to 1, we see that they have similar behaviour with
regard to convergence speed; the huge difference of AF values is mainly due
to the fact that ν acceleration reaches a lower RRE.

ν acc
aut acc ν = 0.7 ν = 1 ν = 2

RRE IT AF RRE IT AF RRE IT AF RRE IT AF
LR P 0.3646 83 10.1 0.3650 51 16.4 0.3526 69 20.4 0.3472 95 24.7
Q 0.3555 123 9.9 0.3601 55 18.2 0.3478 70 32.2 0.3471 95 25

Table 7.2: LR with automatic acceleration and ν acceleration.

ν acc
aut acc ν = 0.7 ν = 1 ν = 2

RRE IT AF RRE IT AF RRE IT AF RRE IT AF
ISRA P 0.3695 75 7.5 0.3840 24 15 0.3484 62 21.1 0.3443 89 23.8

Q 0.3560 109 8.4 0.3539 47 21.1 0.3458 65 24.9 0.3442 89 23.8

Table 7.3: ISRA with automatic acceleration and ν acceleration.

Figure 7.4: LR and ISRA with automatic acceleration and ν acceleration.

Modified projection Q always allows accelerated methods to reach a little
better reconstructed image. Nevertheless, in the case of ν acceleration, as
shown by Figure 7.5, in which we have plotted the non-zeros pattern of
the computed approximated solution, using traditional projection P we get

126

Figure 7.5: ν acceleration with P projection and Q projection.

RRE IT AF
Landweber 0.3278 5358

Landweber aut acc 0.3284 179 24.4
Landweber ν acc 0.3280 107 44.2

Table 7.4: Landweber method with automatic acceleration and ν accelera-
tion.

non-zeros elements only in proximity to the true object, while using our
proposal we obtain an image that has non-zero values almost everywhere.
For automatic acceleration instead, the non-zeros pattern related to each
projection is similar, and it is near the true object.

Finally it is worth to note that it is also possible to use automatic accel-
eration for Landweber method. For the Satellite problem we obtain results
reported in Table 7.4, which reaffirm the goodness of ν acceleration (ν is
chosen equal to 1). The only drawback of this strategy, that on the contrary
is totally absent in automatic acceleration, consists in the choice of ν. Even
though here it does not appear to be a big problem, if we use acceleration for
an iterative method that already employs acceleration techniques, like those
based on preconditioning (see Chapter 5 and Chapter 6) or on Banach spaces
(see Chapter 8), we might run into a different scenario.

Chapter 8

Banach spaces and Meinel
acceleration

We highlight that the contents of this chapter are ideas in the early stages,
which seem to be nice and effective, but which need to be analysed and
studied in depth from the theoretical point of view. We want to investigate
the acceleration of LR method gained by the introduction of an exponent,
proposed in 1986 by Meinel [88] and recently reconsidered in [111]. Using
this technique, LR method becomes

xk = xk−1 ·
[
AH
(

b

Axk−1

)]p
, (8.1)

while ISRA becomes

xk = xk−1 ·
[

AHb

AHAxk−1

]p
, (8.2)

where the selection of the exponent p (usually 1 < p < 3) has to be done
manually by hit and trial. This strategy — that from now on we will call
Meinel acceleration — has two fundamental drawbacks. The first is that we
obtain an improvement in the convergence rate at the expense of a lack of
stability in the convergence. To remedy this, in [111] the authors proposed
a dynamic choice of the parameter p, which consequently becomes pk, and
they called Adaptively Accelerated Lucy-Richardson (AALR) the resulting
method. This accelerated LR method emphasizes speed at the beginning
stages of iterations by forcing pk around 3. As steps increase, the algorithm
forces pk toward the value of 1, which leads to stability of iteration. Moreover,
in order to avoid instability at the start of iteration, pk is fixed equal to 1 for
the first two steps. The second drawback is that this technique, compared
for instance with automatic acceleration described in Chapter 7, reduce the
number of steps in a less important way; generally it cannot even halve it.

127

128

8.1 Meinel acceleration

We start noting that the basic schemes (6.5) and (6.6) can be rewritten in
this general form

xk = xk−1 · αk (8.3)

and the same can be done for the Meinel variants (8.1) and (8.2)

xMeinel
k = xMeinel

k−1 · (βk)p . (8.4)

We remark that, even though αk and βk are defined by the same formula —

AH
(

b
Axk−1

)
in the case of LR method and AHb

AHAxk−1
in the case of ISRA — we

have to use different symbols to denote them, since they depend respectively
on xk−1 and on xMeinel

k−1 , which are different. In the following we will consider
p as an integer, but the same argument can be used for real p, and we
set q = p−1. Moreover we will use RRE(x) = ‖x− x̄‖2 / ‖x̄‖2 to measure
the goodness of restored images and the acronym BR to denote the best
restoration gained by the algorithm we are examining.

Recalling the semiconvergence behaviour, suppose that the algorithm
(8.3) converges to its BR in n steps, that is

RRE(x0) ≥ RRE(x1) ≥ . . . ≥ RRE(xn)

RRE(xk) > RRE(xn),∀k > n

and the algorithm (8.4) does the same in m steps. Then we can express the
BRs performed by (8.3) and (8.4) in this manner

xn = b · α1 · . . . · αn,

xMeinel
m = b · (β1)p · . . . · (βm)p ,

since here the initial guess is always assumed to be the blurred and noisy
data b, i.e. x0 = xMeinel

0 = b. We know that algorithm (8.3) is in general very
slow to converge, so chosen p and n′ in a suitable way, we have that, ∀k > n′,
α(k−1)p+1 ≈ . . . ≈ αkp. Thus the idea that lies behind Meinel acceleration is
that, for any k, the product α(k−1)p+1 · . . . ·αkp can be approximated by (βk)

p.
If this is true, we get

xn = b · α1 · . . . · αn ≈ b · (β1)p · . . . ·
(
βbqnc

)p
= xMeinel

bqnc ,

which means that the number of steps of (8.4) is equal to bqnc and its BR is
close to that of (8.3). We introduce this concept formally through the next
two definitions.

129

Definition 8.1 Fixed p, an accelerated algorithm is called stable if it con-
verges to its BR in bqnc steps, where q = p−1.

Definition 8.2 An accelerated algorithm is called ε-accurate if

RRE(xAcc
m)− RRE(xn) < ε,

where xn and xAcc
m are the iterations related to the BR of the basic algorithm

and of the accelerated algorithm respectively.

In plain words, Definition 8.1 tell us that algorithm maintains the same
stability properties of (8.3), whereas Definition 8.2 tell us that the error
introduced by the approximation done by βk is, in some sense, negligible.
Therefore if (8.4) is stable and accurate, we get a restoration of the same
quality of (8.3) in a lower number of steps. The sore point is that, as we said
at the start of the chapter, while for p near to 1 Definitions 8.1 and 8.2 hold,
moving away from 1 this becomes soon untrue.

Remark 8.3 Numerical tests show that the two definitions are strongly
linked, i.e. if we want that the algorithm is ε-accurate — with small ε, in
particular we pick ε = 10−4 — then it must be stable.

8.2 Acceleration by map

Here we present a new acceleration scheme — which is a further variant of
Meinel one — based on a map, so we call it map acceleration. Similarly to
(8.3) and (8.4), chosen a suitable value p > 0, we define the iterations as
follows

x̌Map
k = x̌Map

k−1 · γk, (8.5)

xMap
k = Jp(x̌

Map
k),

where x̌Map
0 = Jq(x

Map
0), q = p−1 and in general Js is the (non-linear) map

Js(x) = ‖x‖1−s
s+1 x

s, (8.6)

which has to be read componentwise. As before, γk denotes AH
(

b
Ax̌k−1

)
in

the case of LR method and AHb
AHAx̌k−1

in the case of ISRA. Even if at the first

look it seems to be very dissimilar to Meinel acceleration, it can be rewritten
in this way

xMap
k = xMap

k−1 · ck(γk)
p, (8.7)

130

where the constants ck are given by this formula

ck =


∥∥∥xMap

k−1

∥∥∥
q+1∥∥∥x̌Map

k

∥∥∥
p+1


p−1

. (8.8)

In fact, since x̌Map
k−1 = Jq(x

Map
k−1) and (1− q)p = p− 1, we have

x̌Map
k = x̌Map

k−1 · γk = Jq(x
Map
k−1) · γk =

∥∥∥xMap
k−1

∥∥∥1−q

q+1
(xMap

k−1)q · γk,

xMap
k =

∥∥∥x̌Map
k

∥∥∥1−p

p+1

∥∥∥xMap
k−1

∥∥∥(1−q)p

q+1
xMap
k−1 · (γk)

p =


∥∥∥xMap

k−1

∥∥∥
q+1∥∥∥x̌Map

k

∥∥∥
p+1


p−1

xMap
k−1 · (γk)

p.

Comparing (8.7) with (8.4), we notice that the only difference (very impor-
tant one) is that while in the former each ck is suitably computed by (8.8),
in the latter ck are all equal to 1. As before, it is possible to express the
restoration performed by (8.7) after m steps in this manner

xMap
m = b · c1 (γ1)p · . . . · cm (γm)p ,

since xMap
0 = b.

The key point is that, differently from (8.4), (8.7) has a wider range of
p values in which the properties of Definitions 8.1 and 8.2 hold, as we will
appreciate in §8.4. In particular we think that it can be useful to report here
the chart related to ck values, for Meinel acceleration and map one, both
having q = 1/3, that is p = 3, in the first one hundred iterations of a test
that involves LR (see Test 1 in §8.4).

We can notice that ck → 1 as iteration number grows, becoming very
near to Meinel values, even though the most important work is done by ck in
the initial steps. Furthermore from this we can affirm that AALR approach,
which emphasizes speed at the beginning stages, setting p near to 3, and then,
as iterations increase, forcing it to 1 for stability, is not the best possible. So
in our shy adaptive attempts we will do the opposite: p, starting from 1, will
be chosen according to some increasing sequence. Note that, while usually
ck curve is smooth, in Figure 8.1 there is a jump. This can be explained by
the fact that for q = 1/3 instability starts to reveal itself and then, for lower
values of q, its influence becomes more dramatic, as we will see in §8.4.

131

Figure 8.1: (Test 1) ck for Meinel acceleration and map acceleration.

8.3 Landweber method in Banach spaces

The technique described in §8.2 is inspired by duality map — whose role is to
associate in a proper way the elements in a Banach space B to the elements
in its dual space B∗ — used for Landweber method in Banach spaces [104].
In this field, to develop all the theory, which requires a solid background in
functional analysis, one considers a continuous linear operator

A : X → Y (8.9)

associated to the linear problem (6.1). In the classical case, X and Y are
Hilbert spaces and, if we denote by ∗ dual spaces and dual operator, we have

A∗ : Y ∗ → X∗ (8.10)

where X = X∗ and Y = Y ∗; the duality map is identity.
Now, if we move to Banach spaces, for p > 0, we consider X = Y = Lq+1

so that X∗ = Y ∗ = Lp+1, and we get Landweber method as follows

x̌0 = Jq(x0), Jq : X → X∗,
x̌k = x̌k−1 + τA∗Jq (b− Axk−1) , Jq : Y → Y ∗,
xk = Jp(x̌k), Jp : X∗ → X.

(8.11)

where J is the same map introduced in (8.6), Jq : Lq+1 → Lp+1 and
Jp : Lp+1 → Lq+1. We call (8.11) Landweber Banach method (LB), in op-
position to classical Landweber method (5.22) in Hilbert spaces that we call
Landweber Hilbert method (LH). It is known that often LB allows to gain
restorations of higher quality than LH ones. Unfortunately, if we consider
the version of LH and LB with the projection P on the non-negative cone
(6.40), i.e. at each step xk := P(xk), this in general is not true any more.

132

In particular, we give this experimental conjecture (i.e. that is based on
computational experience) about the incapacity of LB to get restored images
that are better than LH ones.

Conjecture 8.4 Let rq the RRE of the best restoration made by Landweber
Banach method (8.11) in Lq+1. If a > b (0 < a, b ≤ 1), then ra < rb.

The obvious consequence of this conjecture is that the best restoration is
performed by LH (r1). To realize the closeness of this statement to the
truth, have a look at §8.4. It is worth to note that statistical methods
naturally preserve non-negativity, because they act pixel by pixel without
any subtraction, so they do not need any projection.

Deviating from the main furrow of this chapter, now we propose a mod-
ification of the strategy described in this section, in order to increase its
effectiveness. Instead of the classical LB method (8.11), we consider the
following modification

∆k−1 = AH (b− Axk−1) ,
x̌k = Jq(xk−1) + τJq (∆k−1) , Jq : X → X∗,
xk = Jp(x̌k), Jp : X∗ → X.

(8.12)

Thus, in the first step of the algorithm we suppose that X and Y are both
Hilbert spaces, so A and A∗ can act directly, without needing any duality
map. In that case we use the notation AH instead of A∗. Then we work with
X = Lq+1 and its dual. We call (8.12) Modified Landweber Banach method
(MLB). One possible way to obtain theoretical results about this method is
to study the intersection of spaces L2 and Lq+1, but for the moment we are
not able to provide results in that direction.

One can think to further generalize this approach in the next fashion

∆k−1 = Ju
[
AHJv (b− Axk−1)

]
,

x̌k = Jq(xk−1) + τJq (∆k−1) ,
xk = Jp(x̌k),

(8.13)

where v = u−1, Jv : Lv+1 → Lu+1 and Ju : Lu+1 → Lv+1. We notice that
if we pick v = q and u = p, as Jq(Jp(x)) = x, we obtain again LB (8.11)
and if we pick v = u = 2, we obtain MLB (8.12). We call (8.13) Generalized
Landweber Banach method (GLB). Finally we state the next experimental
conjecture, which expresses the fact that the best RRE is no longer related
to LH, as in Conjecture 8.4, but to MLB for a suitable value of q < 1.

Conjecture 8.5 Let rq the RRE of the best restoration made by Modified
Landweber Banach method (8.12) in Lq+1. Let ri = min0<j≤1 rj. Then
i < 1.

133

8.4 Computational results

To test the algorithms we have used images of 256× 256 pixels and we have
considered problems with periodic BCs. The set of data for Test 1 is Satellite
of Figure 6.4. For Test 2 — that is Moon deblurring problem — we have
generated b by a motion blur, adding about 1.4% of white Gaussian noise
(see Figure 8.2). We make a list of the different methods and their best RRE.
To estimate the level of acceleration we use AF, defined in §7.5.

Figure 8.2: (Test 2) True image, PSF, blurred and noisy image.

We report the results relative to LR and ISRA with Meinel acceleration
or with map acceleration proposed by us. The symbol ‘–’ means that there
is no acceleration. As we said, from Test 1 (Table 8.1 and Table 8.2) it
clearly comes out that, while Meinel acceleration becomes instable very soon,
map acceleration converges to a solution of the same quality of classical
LR, gaining an AF that is around 3. In other words, the interval in which
Definitions 8.1 and 8.2 hold is much wider for (8.7) than for (8.4). If we
choose q adaptively, in a way opposite to AALR, performances of Meinel
acceleration get better. In fact we are able to gain results near to those of map
acceleration for q = 1/2, namely IT 1073, RRE 0.3484, but nothing more.
The same holds for ISRA, for which we have IT 989, RRE 0.3451. If we try
to obtain an higher AF by this adaptive choice of q, we meet again instability.
In Test 2 (Table 8.3 and Table 8.4) performances of map acceleration and
Meinel one are very similar and both start to display stability problems when
q is equal to 1/2 for LR and even before for ISRA. In this example it can be
useful to use an adaptive strategy not only for Meinel acceleration, but also
for map acceleration. In particular, choosing the increasing sequence in two
different manners, for LR we have the results reported in Table 8.5.

As observed in Chapter 7, LH is linked with statistical methods. So
we guess that it can exist a parallelism between the acceleration gained by
the introduction of an exponent in that context and this approach based

134

Figure 8.3: Best ISRA restoration (RRE 0.3484) for Test 1.

map acc Meinel acc
RRE IT AF RRE IT AF

q = 1 0.3484 2128 0.3484 2128
q = 3/4 0.3484 1596 4/3 0.3484 1596 4/3
q = 1/2 0.3484 1064 2 0.5656 7 2.2
q = 1/3 0.3484 709 3 0.6440 1 4
q = 1/4 0.5043 10 4 0.6661 1 2
q = 1/5 0.5720 2 7 0.7301 1 –

Table 8.1: LR for Test 1.

map acc Meinel acc
RRE IT AF RRE IT AF

q = 1 0.3451 1926 0.3451 1926
q = 3/4 0.3451 1445 4/3 0.3451 1445 4/3
q = 1/2 0.3451 963 2 0.6458 1 2
q = 1/3 0.3451 642 3 0.6831 1 –
q = 1/4 0.4701 18 3.6 0.8114 1 –
q = 1/5 0.5472 4 5 0.9766 2 –

Table 8.2: ISRA for Test 1.

Figure 8.4: Best LR restoration (RRE 0.0974) for Test 2.

135

map acc Meinel acc
RRE IT AF RRE IT AF

q = 1 0.0974 76 0.0974 76
q = 3/4 0.0974 57 4/3 0.0974 57 4/3
q = 1/2 0.0975 38 2 0.0976 38 2
q = 1/3 0.1768 3 2 0.1867 2 2

Table 8.3: LR for Test 2.

map acc Meinel acc
RRE IT AF RRE IT AF

q = 1 0.1090 178 0.1090 178
q = 3/4 0.1090 133 4/3 0.1090 133 4/3
q = 1/2 0.1144 51 2 0.1485 15 2
q = 1/3 0.2185 2 – 0.2222 1 2

Table 8.4: ISRA for Test 2.

map acc Meinel acc
RRE IT RRE IT

0.0995 24 0.1006 22
0.1086 14 0.1093 13

Table 8.5: LR with two adaptive strategies for Test 2.

on Banach spaces. From LB row of Table 8.6 and Table 8.7, related to
Test 1 and Test 2 respectively, we can notice that this Banach technique,
differently from our proposal for statistical methods, has a very small range
of q values in which the iterative method gets a RRE equal to the one of LH,
then the quality of the restoration gets gradually worse as q approaches zero
(see Conjecture 8.4). On the other hand, called n the number of iterations
of LH, that of LB is near to qn, when q is very near to 1, then in Test 1 it
gradually decreases as q approaches zero (Figure 8.5) — therefore displaying a
behaviour in line with Definition 8.1 given for statistical methods with Meinel
acceleration and map acceleration — whereas in Test 2 it has a more irregular
trend (Table 8.7). In Test 1 and Test 2 MLB seems to be preferable to LB
both in terms of restorations performed and of acceleration factors gained.
In particular in Test 2 LB is not able to get any acceleration, while MLB can
do that (for q = 0.5). As we just said for Conjecture 8.4, we highlight that
numerical results also confirm the Conjecture 8.5 stated in §8.3. Finally we
say that, in the context of Landweber method, adaptive choice of q seems
to be able to bring only small improvements of performances, so we do not
report any results in that direction.

In conclusion, the two drawbacks of Meinel acceleration, which are par-
tially cured by the map acceleration proposed here, are instability and the

136

q = 1 q = 0.9 q = 0.75 q = 0.5 q = 0.3 q = 0.2 q = 0.1
IT 5358 4843 3984 2411 1202 680 1

LB RRE 0.3278 0.3278 0.3283 0.3311 0.3361 0.3398 0.7731
AF 1.1 1.1 1.4 2 3.1 –

IT 5358 3999 2529 1006 600 585 5
MLB RRE 0.3278 0.3271 0.3271 0.3326 0.3374 0.3779 0.5877

AF 1.6 2.5 3 3.9 1.3 7.4

Table 8.6: LB and MLB for Test 1.

q = 1 q = 0.9 q = 0.75 q = 0.5 q = 0.3 q = 0.2 q = 0.1
IT 182 171 151 96 2 1 1

LB RRE 0.1058 0.1068 0.1089 0.1125 0.2247 0.2383 0.2343
AF – – – – – –

IT 182 162 130 124 2 2 1
MLB RRE 0.1058 0.1067 0.1092 0.1034 0.2260 0.2549 0.2588

AF – – 2.1 – – –

Table 8.7: LB and MLB for Test 2.

Figure 8.5: (Test 1) Iterations of LB (solid line), with q on the x-axis, com-
pared with qn (dashed line), where n is the number of iterations of LH.

fact that, compared with other acceleration techniques, it reduces the num-
ber of steps in a less important way; notice that these are also drawbacks
of Banach spaces technique for Landweber method. Taken note of this, one
could think in principle to seek other tools which can further improve the
stability and the strength of that type of acceleration, or more realistically
to set aside those techniques. Nevertheless they can be again useful if we
make use of them together with other more efficient strategies, for instance
preconditioning (see [26]). Future developments will be focused in this direc-
tion.

The pocket

In this bitter ending, that is the black hole in which all the contents are
sucked into, we summarize them before they sink into oblivion.

In Part I we have considered multi-iterative techniques of multigrid type
for the numerical solution of large linear systems with (weighted) structure
of graph Laplacian operators. We have combined efficient coarser-grid oper-
ators with iterative techniques used as smoothers, by showing that the most
effective smoothers typically are Krylov type with subgraph-based precon-
ditioners, while the projectors have to be designed for maintaining as much
as possible the graph structure of the projected matrix at the inner levels.
Some necessary and sufficient conditions have been proved. As a guiding
principle, we have observed that coarse-grid operators that preserve the fine-
level structure work satisfactorily, otherwise the performances are degraded.
Interestingly enough, this framework is useful for explaining the reason why
the classical projectors inherited from differential equations are good in the
differential context and why they behave unsatisfactorily for unstructured
graphs. Several numerical experiments have been conducted showing that
our approach is effective in a uniform way, independently from the condi-
tioning of the considered matrices, from the type of the problems, from the
IP (Interior Point) step in which the considered matrices arise. We think that
this robustness is the most relevant result obtained in our work. In fact, while
very sophisticated PCG techniques exist that often work quite well, there are
some cases where the convergence rate is slow. Along the lines of [82, 42, 43],
the objective of our work has been to integrate “simple” tree-based PCG
approaches with multigrid type algorithms: as already mentioned, the re-
sulting methods combine a relatively simple implementation and robustness,
in the sense of uniformly delivering good performances without the need of
complex parameter tuning. Several research lines seems to be worth future
investigation. From the theoretical viewpoint, it would be very interesting to
obtain a rigorous characterization of the convergence speed of the proposed
multigrid techniques with varying pre- and post-smoothers and choices of the
projector. Regarding the latter, a better understanding of the effect of the

137

138

projection step on the spectral properties of the matrices at lower level would
be required to design more effective approaches to choosing R, possibly si-
multaneously taking into account a selection of an appropriate subgraph for
preconditioning techniques. Another important challenge would be the ex-
tension of our proposal to a non-symmetric setting, as it occurs when dealing
with the Google problem [86].

Part II has been devoted to several techniques to improve speed and sta-
bility of iterative methods in the context of image deblurring problem. In
Chapter 5, inspired by the theoretical results on optimal preconditioning
stated in [92] for the Reflective BCs, we have presented analogous results for
Anti-Reflective BCs. In both cases the optimal preconditioner is the blurring
matrix associated to the symmetrized PSF. We stress that our proof is based
on a geometrical idea, which allows to greatly simplify the job. Moreover
that idea is very powerful in its generality and it may be useful in the future
to prove theoretical results for new BCs. Computational results have shown
that the proposed preconditioning strategy is effective and it is able to give
rise to a meaningful acceleration both for slightly and highly non-symmetric
PSFs. On the other hand, symmetrization is efficient when we have a PSF
that is near to be symmetric and it becomes more and more ineffective as
the PSF departs from symmetry. In this case, other techniques, like those
described in §6.6, which can manage directly non-symmetric structures, can
gain better performances. In Chapter 6 we have presented iterative methods
based on a variant of the normal equations approach, called Z variant, and
we have analysed its features and its similarities with classical regularizing
preconditioning. We have proposed two strategies for defining Z: by coars-
ening of the PSF and by filtering of its eigenvalues. Since the latter approach
requires the spectral decomposition of Z, this is chosen in the BCCB alge-
bra. The blurring matrix A has been first taken BCCB (periodic BCs) for a
simple theoretical analysis. Afterwards, the use of zero, reflective, and anti-
reflective BCs for A has highlighted that our Z variant provides accurate
restorations with a computational cost lower than regularizing precondition-
ing and without requiring an accurate estimation of the threshold parameter.
We remark that this good behaviour is opposed to the one of classical reg-
ularizing preconditioning, where an accurate estimation of such parameter
is crucial for obtaining good restorations. As a natural continuation of the
work done in the circulant environment, we have explored the potential of
Z variant idea by giving a general algorithm which allows to choose Z as a
blurring matrix with the same BCs (so with the same matrix structure) of
the blurring operator A. Moreover the use of the Z variant idea proposed
here can be successfully employed for direct filtering methods, like Tikhonov.
In Chapter 7 we have used ν acceleration, that is nothing but the application

139

of ν-method, conceived for speed up Landweber method, in the framework
of statistical methods. Numerical results have highlighted the effectiveness
of this strategy, which, compared with automatic acceleration, gives rise to
higher acceleration factors and better restorations. In Chapter 8 we have
introduced a map acceleration for statistical methods, inspired by theory on
Landweber method in Banach spaces, and we have shown the link between
it and Meinel acceleration. We have illustrated the relation between the
number of steps performed by accelerated and non-accelerated LR method.
Moreover we have experimentally observed that also Landweber method in
Banach spaces follows a similar behaviour. We emphasize that the contents
of Chapter 7 and Chapter 8 are ideas in the early stages, which work well
from the computational point of view, but which need to be analysed and
studied in depth from the theoretical one.

A future line of research may consist in analysing how to combine the
different acceleration techniques inspected here in a suitable way. A further
idea which goes in this direction and whose main aim is not to speed up
the methods, but to improve the quality of the restoration, is the following
iterative denoising. With these terms we mean that we want to solve the
linear system

By = b′, (8.14)

where b′ = Bb = B (Ax̄) + Bη, to find an approximation of b̄ = Ax̄, the
blurred image without noise. So for this problem the definition of RRE be-
comes

∥∥y − b̄∥∥F /∥∥b̄∥∥F . There are several possible choices of B, for instance
B = A. Once found y, instead of (6.1) the restoration problem becomes

Ax = y. (8.15)

As a final greeting, we report an example relative to Satellite problem of
Figure 6.4. For iterative denoising we make use of ν-method (see Figure 8.6
and Figure 8.7) and then we employ Z-LR and Z-ISRA with ν acceleration
to compute high quality restorations (see Table 8.8 and Figure 8.8).

140

Figure 8.6: Original level of noise (dashed line) and iterative denoising made
by ν-method, with ν = 1.5 (solid line).

Figure 8.7: Original blurred and noisy image (RRE 0.0451) and the same
data after iterative denoising (RRE 0.0091).

RRE IT
Z-LR 1/4 0.3172 57

Z-ISRA 1/4 0.3181 59

Table 8.8: Z-LR and Z-ISRA with ν acceleration (ν = 1.5).

Figure 8.8: Z-LR restoration and Z-ISRA restoration.

Bibliography

[1] H. M. Adorf, R. N. Hook, L. B. Lucy, F. D. Murtagh. Acceler-
ating the Richardson-Lucy restoration algorithm. In 4th ESO/ST-ECF
Data Analysis Workshop, 99–103, 1992.

[2] R.K. Ahuja, T.L. Magnanti, J.B. Orlin. Network flows: theory,
algorithms and applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[3] A. Aricò, M. Donatelli. A V-cycle multigrid for multilevel matrix
algebras: proof of optimality. Numer. Math. 105, 511–547, 2007.

[4] A. Aricò, M. Donatelli, J. Nagy, S. Serra Capizzano. The
anti-reflective transform and regularization by filtering. Special volume
Numerical Linear Algebra in Signals, Systems, and Control., in Lecture
Notes in Electrical Engineering, Springer Verlag., Vol. 80, 1–21, 2011.

[5] A. Aricò, M. Donatelli, S. Serra Capizzano V-cycle opti-
mal convergence for certain (multilevel) structured linearsystems. SIAM
J. Matrix Anal. Appl. 26–1, 186–214, 2004.

[6] A. Aricò, M. Donatelli, S. Serra Capizzano. The Antireflec-
tive Algebra: Structural and Computational Analyses with Application
to Image Deblurring and Denoising. Calcolo 45–3, 149–175, 2008.

[7] A. Aricò, M. Donatelli, S. Serra Capizzano. Spectral analysis
of the anti-reflective algebra. Linear Algebra Appl. 428, 657–675, 2008.

[8] O. Axelsson, G. Lindskög. The rate of convergence of the precon-
ditioned conjugate gradient method. Numer. Math. 52, 499–523, 1986.

[9] O. Axelsson, M. Neytcheva. The algebraic multilevel iteration
methods – theory and applications. Proc. of the 2nd Int. Coll. on Nu-
merical Analysis, D. Bainov Ed., Plovdiv, Bulgaria, 13–23, 1993.

[10] M.S. Bazaraa, J.J. Jarvis, H.D. Sherali. Linear programming and
network flows. Wiley, New York, NY, 1990.

141

142

[11] F. Benvenuto, R. Zanella, L. Zanni, M. Bertero. Nonnegative
least-squares image deblurring: improved gradient projection approaches.
Inverse Problems 26–2, 025004, 2010.

[12] M. Bern, J. Gilbert, B. Hendrickson, N. Nuygen, and
S. Toledo. Support-graph preconditioners. SIAM J. Matrix Anal. &
Appl. 27–4, 930–951, 2006.

[13] M. Bertero, P. Boccacci. Introduction to inverse problems in imag-
ing. Institute of Physics Publ., Bristol, 1998.

[14] R. Bhatia. Matrix Analysis. Springer Verlag, New York, 1997.

[15] D. S. C. Biggs, M. Andrews. Conjugate gradient acceleration of
maximum-likelihood image restoration. Electronics Letters 31, No. 23,
1985–1986, 1995.

[16] D. S. C. Biggs, M. Andrews. Acceleration of iterative image restora-
tion algorithms. Applied Optics 36, No. 8, 1766–1775, 1997.

[17] D. Bini, M. Capovani. Spectral and computational properties of band
symmetric Toeplitz matrices. Linear Algebra Appl. 52/53, 99–125, 1983.

[18] E.G. Boman, D. Chen, B. Hendrickson, S. Toledo. Maximum-
weight-basis preconditioners. Numer. Linear Algebra Appl. 11, 8-9, 695–
721, 2004.

[19] E.G. Boman, B. Hendrickson. Support theory for preconditioning.
SIAM J. Matrix Anal. Appl. 25–3, 694–717, 2003.

[20] S. Bonettini, R. Zanella, L. Zanni. A scaled gradient projection
method for constrained image deblurring. Inverse Problems 25–1, 015002,
2009.

[21] R. N. Bracewell. The Fourier transform and its application. New
York, MacGraw-Hill, 1965.

[22] H. Brakhage. On ill-posed problems and the method of conjugate gra-
dient. In: H. W. Engl, C. W. Groetsch, eds., Inverse and ill-posed prob-
lems. Academic press, Boston, New York, London, 165–175, 1987.

[23] M. Brezina, R.D. Falgout, S. MacLachlan, T.A. Manteuf-
fel, S.F. McCormick, J. Ruge. Adaptive smoothed aggregation (SA)
multigrid. SIAM Review 47–2, 317–346, 2005.

143

[24] M. Brezina, R.D. Falgout, S. MacLachlan, T.A. Manteuf-
fel, S.F. McCormick, J. Ruge. Adaptive algebraic multigrid. SIAM
J. Sci. Comput. 27–4, 1261–1286, 2006.

[25] P. Brianzi, F. Di Benedetto, C. Estatico. Improvement of
space-invariant image deblurring by preconditioned Landweber itera-
tions. SIAM J. Sci. Comput. 13, 1430–1458, 2008.

[26] P. Brianzi, F. Di Benedetto, C. Estatico. Preconditioned itera-
tive regularization in Banach spaces, submitted.

[27] W. L. Briggs, V. E. Henson. The DFT. SIAM, Philadelphia, 1995.

[28] W.L. Briggs, V.E. Henson, S.F. McCormick. A multigrid tuto-
rial. SIAM, 2nd edition, 2000.

[29] J. Castro A specialized interior-point algorithm for multicommodity
network flows. SIAM J. Opt. 10, 852–877, 2000.

[30] J. Castro, A. Frangioni. A parallel implementation of an interior-
point algorithm for multicommodity network flows. in Vector and Parallel
Processing – VECPAR 2000, J.M. Palma, J. Dongarra and V. Hernandez
eds., Lecture Notes in Computer Science Vol. 1981, Springer-Verlag,
301–315, 2001.

[31] A. Cayley. A theorem on trees. Quart. J. Math. 23, 376–378, 1889.

[32] R. H. Chan, K. P. Ng. Toeplitz preconditioners for hermitian Toeplitz
systems. Linear Algebra Appl. 190, 181-208, 1993.

[33] T. Chan. An optimal circulant preconditioner for Toeplitz systems.
SIAM J. Sci. Comput. 9, 766–771, 1988.

[34] D. Cherubini, A. Fanni, A. Frangioni, A. Mereu, C. Mur-
gia, M.G. Scutellà, P. Zuddas. A Linear Programming Model for
Traffic Engineering in 100% Survivable Networks under combined IS-
IS/OSPF and MPLS-TE Protocols. Computers & Operations Research
38–12, 1805-1815, 2011.

[35] D. Cvetkovic, M. Doob, H. Sachs. Spectra of Graphs. Academic
Press, New York, 1979.

[36] M. E. Daube-Witherspoon, G. Muehllehner. An iterative image
space reconstruction algorithm suitable for volume ECT. IEEE Transac-
tions on Medical Imaging MI-5, 61–66, 1986.

144

[37] P. J. Davis. Circulant Matrices. Wiley, New York, 1979.

[38] A. R. De Pierro. On the convergence of the iterative image space re-
construction algorithm for volume ECT. IEEE Transactions on Medical
Imaging MI-6, 174–175, 1987.

[39] H. De Sterck, T.A. Manteuffel, S.F. McCormick,
Q. Nguyen, J. Ruge. Multilevel adaptive aggregation for Markov
chains, with application to web ranking. SIAM J. Sci. Comput. 30–5,
2235–2262, 2008.

[40] H. De Sterck, T.A. Manteuffel, S.F. McCormick, K. Miller,
J. Pearson, J. Ruge, G. Sanders. Smoothed aggregation multigrid
for Markov chains. SIAM J. Sci. Comput. 32–1, 40–61, 2010.

[41] H. De Sterck, T.A. Manteuffel, S.F. McCormick, K. Miller,
J. Ruge, G. Sanders. Algebraic multigrid for Markov chains. SIAM
J. Sci. Comput. 32–2, 544–562, 2010.

[42] H. De Sterck, T.A. Manteuffel, K. Miller, G. Sanders. Top-
level acceleration of adaptive algebraic multilevel methods for steady-
state solution to Markov chains. Advances in Computational Math. 35,
375403, 2010.

[43] H. De Sterck, K. Miller, G. Sanders, M. Winlaw. Recursively
accelerated multilevel aggregation for Markov chains. SIAM J. Sci. Com-
put. 32–3, 1652–1671, 2010.

[44] G. Del Corso, A. Gulĺı, F. Romani. Fast PageRank computation
via a sparse linear system. Internet Math. 3–2, 259–281, 2005.

[45] M. Donatelli. An algebraic generalization of local Fourier analysis for
grid transfer operators in multigrid based on Toeplitz matrices. Numer.
Linear Algebra Appl. 17, 179–197, 2010.

[46] M. Donatelli, M. Semplice, S. Serra Capizzano. Analysis
of Multigrid preconditioning for implicit PDE solvers for degenerate
parabolic equations. SIAM J. Matrix Anal. Appl., 32–4, 1125–1148, 2011.

[47] M. Donatelli, S. Serra Capizzano. Anti-reflective boundary con-
ditions and re-blurring. Inverse Problems 21, 169–182, 2005.

[48] M. Donatelli, S. Serra Capizzano. On the regularizing power of
multigrid-type algorithms. SIAM J. Sci. Comput. 27, No. 6, 2053–2076,
2006.

145

[49] M. Donatelli, S. Serra Capizzano. Filter factor analysis of an
iterative multilevel regularizing method. Electron. Trans. Numer. Anal.
29, 163–177, 2007/2008.

[50] M. Donatelli, C. Estatico, A. Martinelli, S. Serra Capiz-
zano. Improved image deblurring with anti-reflective boundary condi-
tions and re-blurring. Inverse Problems 22, 2035–2053, 2006.

[51] M. Donatelli, C. Estatico, J. Nagy, L. Perrone, S. Serra
Capizzano. Anti-reflective boundary conditions and fast 2D deblurring
models. Proceeding to SPIE’s 48th Annual Meeting, San Diego, CA
USA, F. Luk Ed, 5205, 380–389, 2003.

[52] T. Elfving, P. C. Hansen, T. Nikazad. Semi-convergence and re-
laxation parameters for projected sirt algorithms. Electronic Transac-
tions on Numerical Analysis 37, 321–336, 2010.

[53] H. W. Engl, M. Hanke, A. Neubauer. Regularization of inverse
problems. Kluwer Academic Publishers, 1996.

[54] C. Estatico. A classification scheme for regularizing preconditioners,
with application to Toeplitz systems. Linear Algebra and its Applications
397, 107–131, 2005.

[55] C. Estatico. Regularization processes for real functions and ill-posed
Toeplitz problems. Operator Theory: Advances and Applications 160,
161–178, 2005.

[56] A. Frangioni, G. Gallo A bundle type dual-ascent approach to linear
multicommodity Min Cost Flow problems. INFORMS J. Comput. 11,
370–393, 1999.

[57] A. Frangioni, B. Gendron 0-1 reformulations of the multicommodity
capacitated network design problem. Disc. Appl. Math. 157, 1229–1241,
2009.

[58] A. Frangioni, C. Gentile. New Preconditioners for KKT Systems
of Network Flow Problems. SIAM J. Opt. 14, 894–913, 2004.

[59] A. Frangioni, C. Gentile. Prim-based BCT preconditioners for Min-
Cost Flow Problems. Comput. Opt. Appl. 36, 271–287, 2007.

[60] A. Frangioni, A. Manca. A Computational Study of Cost Reopti-
mization for Min Cost Flow Problems. INFORMS J. On Comput. 18–1,
61–70, 2006.

146

[61] A. Frangioni, S. Serra Capizzano. Spectral analysis of (sequences
of) graph matrices. SIAM J. Matrix Anal. Appl. 23–2, 339–348, 2001.

[62] G.H. Golub, C.F. Van Loan. Matrix computations. North Oxford
Academic, 1983.

[63] K. Gremban. Combinatorial Preconditioners for Sparse, Symmetric,
Diagonally Dominant Linear Systems. PhD Thesis, Carnegie Mellon
University, CMU CS Tech Report CMU-CS-96-123, 1996.

[64] A. Greenbaum. Analysis of a multigrid method as an iterative tech-
nique for solving linear systems. SIAM J. Numerical Anal. 21–3, 473–
485, 1984.

[65] C. W. Groetsch. The theory of Tikhonov regularization for Fredholm
equations of first kind. Research Notes in Mathematics 105, Pitman
Publishing, 1984.

[66] M. Hanke. Accelerated Landweber iterations for the solutions of ill-
posed equations. Numer. Math. 60, 341–373, 1991.

[67] M. Hanke, J. Nagy. Inverse Toeplitz preconditioners for ill-posed
problems. Linear Algebra Appl. 284, 177–192, 1998.

[68] M. Hanke, J. Nagy, C. Vogel. Quasi-Newton approach to nonneg-
ative image restorations. Linear Algebra Appl. 316, 223–236, 2000.

[69] M. Hanke, J. Nagy, R. Plemmons. Preconditioned iterative regu-
larization for ill-posed problems. Numerical Linear Algebra. Proceedings
of the Conference in Numerical Linear Algebra and Scientific Computa-
tion, Kent, Ohio, March 13-14 1992, de Gruyter, 141–163, 1993.

[70] P. C. Hansen. Rank-deficient and discrete ill-posed problems. SIAM,
Philadelphia, 1998.

[71] P. C. Hansen, J. G. Nagy, D. P. O’Leary. Deblurring images:
matrices, spectra and filtering. SIAM, Philadelphia, 2006.

[72] T. J. Holmes, Y. H. Liu. Acceleration of maximum-likelihood image
restoration for fluorescence microscopy and other noncoherent imagery.
Journal of the Optical Society of America A 8, No. 6, 893–907, 1991.

[73] R. Horn, S. Serra Capizzano. A general setting for the parametric
Google matrix. Internet Math. 3–4, 385–411, 2008.

147

[74] G. Horton, S.T. Leutenegger. A multi-level solution algorithm for
steady-state Markov chains. Proceedings of the Acm Sigmetrics Con-
ference on Measurement and Modeling of Computer Systems, 191–200,
1994.

[75] J. Kamm, J. Nagy. Kronecker product and SVD approximations in
image restoration. Linear Algebra Appl. 284, 137–156, 1998.

[76] L. Kaufman. Implementing and accelerating the EM algorithm for
positron emission tomography. IEEE Transactions on Medical Imaging
6, No. 1, 37–51, 1987.

[77] H.B. Keller. Numerical methods for two-points boundary-value prob-
lems. Blaisdell, London, 1968.

[78] G. Kirchhoff. Uber die Auflosung der Gleichungen, auf welche man
bei der Untersuchung der linearen Verteilung galvanischer Strome ge-
fuhrt wird. Ann. Phys. Chem. 72, 497–508, 1847.

[79] I. Koutis. Combinatorial and algebraic algorithms for optimal mul-
tilevel algorithms. PhD Thesis, Carnegie Mellon University, CMU CS
Tech Report CMU-CS-07-131, 2007.

[80] I. Koutis, G.L. Miller. Graph partitioning into isolated, high conduc-
tance clusters: theory, computation and applications to preconditioning.
Symposiun on Parallel Algorithms and Architectures SPAA, 2008.

[81] I. Koutis, G.L. Miller. A linear work, O(n1/6) time, parallel algo-
rithm for solving planar Laplacians. Proceedings of the eighteenth an-
nual ACM-SIAM symposium on Discrete algorithms, SODA ’07, 2007.

[82] I. Koutis, G.L. Miller, D. Tolliver. Combinatorial Precondition-
ers and Multilevel Solvers for Problems in Computer Vision and Image
Processing. International Symposium of Visual Computing, 1067–1078,
2009.

[83] R. L. Lagendijk, J. Biemond. Iterative Identification and Restora-
tion of Images. Springer-Verlag New York, Inc., 1991.

[84] L. Landweber. An iteration formula for Fredholm integral equations
of the first kind. Amer. J. Math. 73, 615–624, 1951.

[85] R. G. Lane. Methods for maximum likelihood deconvolution. Journal
of the Optical Society of America A 13, 1992–1998, 1996.

148

[86] A. Langville, C. Meyer. A survey of eigenvector methods for WEB
information retrieval. SIAM Review 47–1, 135–161, 2005.

[87] L. B. Lucy. An iterative technique for the rectification of observed
images. The Astronomical Journal 79, No.6, 745–754, 1974.

[88] E. S. Meinel. Origins of linear and non-linear recursive restoration
algorithms. Journal of the Optical Society of America A 3, No. 6, 787–
799, 1986.

[89] B. Mohar. Some Applications of Laplace Eigenvalues of Graphs.
Graph Symmetry: Algebraic Methods and Applications, G. Hahn and
G. Sabidussi eds., NATO ASI Ser. C 497, Kluwer, 225–275, 1997.

[90] R.D.C. Monteiro, J.W. O’Neal, T. Tsuchiya. Uniform bounded-
ness of a preconditioned normal matrix used in interior-point methods.
SIAM J. Opt. 15–1, 96–100, 2004.

[91] J. G. Nagy, K. Palmer, L. Perrone. Iterative Methods for Image
Deblurring: A Matlab Object Oriented Approach. Numer. Algorithms
36, 73–93, 2004.

[92] M. K. Ng, R. H. Chan, W. C. Tang. A fast algorithm for deblurring
models with Neumann boundary conditions. SIAM J. Sci. Comput. 21,
no. 3, 851–866, 1999.

[93] M. Ng, S. Serra Capizzano, C. Tablino Possio. Multigrid pre-
conditioners for symmetric Sinc systems. ANZIAM J. 45–E, 857–869,
2004.

[94] D. Noutsos, S. Serra Capizzano, P. Vassalos. The conditioning
of FD matrix sequences coming from semi-elliptic Differential Equations.
Linear Algebra Appl. 428–2/3, 600–624, 2008.

[95] Y. Notay. An aggregation-based algebraic multigrid method. Electronic
Trans. Num. An. 37, 123–146, 2010.

[96] R. Olfati-Saber, R.M. Murray. Consensus problems in networks of
agents with switching topology and time-dealays. IEEE Trans. Automatic
Control 49–9, 1520–1533, 2004.

[97] A. Papoulis. The Fourier integral and its application. New York,
MacGraw-Hill, 1962.

149

[98] L. Perrone. Kronecker Product Approximations for Image Restoration
with Anti-Reflective Boundary Conditions. Numer. Linear Algebra Appl.
13–1, 1–22, 2006.

[99] M. Piana, M. Bertero. Projected Landweber method and precondi-
tioning. Inverse Problems 13, 441–464, 1997.

[100] L.F. Portugal, M.G.C. Resende, G. Veiga, J.J. Jùdice. A
truncated primal-infeasible dual-feasible network interior point method
Networks 35, 91–108, 2000.

[101] W. H. Richardson. Bayesian-based iterative method of image
restoration. Journal of the Optical Society of America 62, No. 1, 55–
59, 1972.

[102] J.W. Ruge, K. Stüben. Algebraic multigrid. in Multigrid methods,
vol. 3 of Frontiers Appl. Math., SIAM, Philadelphia, 73–130, 1987.

[103] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS, Boston,
1996.

[104] F. Schopfer, A. K. Louis, T. Schuster. Nonlinear iterative meth-
ods for linear ill-posed problems in Banach spaces. Inverse Problems 22,
311-329, 2006.

[105] J. Schwartz, A. Steger, A. Weissl. Fast Algorithms for Weighted
Bipartite Matching. in Experimental and Efficient Algorithms, Lecture
Notes in Computer Science 3503, 476–487, 2005.

[106] S. Serra Capizzano. A note on anti-reflective boundary conditions
and fast deblurring models. SIAM J. Sci. Comput. 25–3, 1307–1325,
2003.

[107] S. Serra Capizzano. Multi-iterative methods. Comput. Math.
Appl. 26–4, 65–87, 1993.

[108] S. Serra Capizzano, C. Tablino Possio. Multigrid methods for
multilevel circulant matrices. SIAM J. Sci. Comput. 26–1, 55–85, 2004.

[109] L. A. Sheep, Y. Vardi. Maximum likelihood reconstruction for emis-
sion tomography. IEEE Transactions on Medical Imaging MI-1, No. 2,
113–122, 1982.

150

[110] Y. Shi, Q. Chang. Acceleration methods for image restoration prob-
lem with different boundary conditions. Applied Numerical Mathematics,
Volume 58, Issue 5, 602-614, 2008.

[111] M. K. Singh, U. S. Tiwary, Y. H. Kim. An adptively accelerated
Lucy-Richardson method for image deblurring. EURASIP Journal on
Advances in Signal Processing, 365021, 2008.

[112] D.A. Spielman, S.H. Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. Proceed-
ings of the 36th Annual ACM Symposium on Theory of Computing,
81–90, 2004.

[113] O. N. Strand. Theory and methods related to the singular-function
expansion and Landweber’s iteration for integral equations of the first
kind. SIAM J. Numer. Anal. 11, 798–825, 1974.

[114] G. Strang. The Discrete Cosine Transform. SIAM Review 41–1, 135–
147, 1999.

[115] K. Stüben. A review of algebraic multigrid. J. Comput. Appl.
Math. 128, 281–309, 2001.

[116] C. Tablino Possio. Truncated decompositions and filtering meth-
ods with Reflective/Anti-Reflective boundary conditions: a comparison,
in Matrix methods: theory, algorithms, applications. Dedicated to the
Memory of Gene Golub, V. Olshevsky, E. Tyrtyshnikov Eds., World
Scientific Publishing, 382–408, 2010.

[117] U. Trottenberg, C. Oosterlee, A. Schuller. Multigrid. Aca-
demic Press, 2001.

[118] E. E. Tyrtyshnikov, A. Y. Yeremin, N. L. Zamarashkin. Clus-
ters, preconditioners, convergence. Linear Algebra Appl. 263, 25–48,
1997.

[119] P. M. Vaidya. Solving linear equations with symmetric diagonally
dominant matrices by constructing good preconditioners. Unpublished
manuscript. A talk based on the manuscript was presented at the IMA
Workshop on Graph Theory and Sparse Matrix Computation, Min-
neapolis, 1991.

[120] P. H. Van Cittert. Zum einfluss der Spaltbreite auf die Intensi-
tatsverteilung in Spektrallinen II. Z. Phys. 69, 298, 1931.

151

[121] P. Vanek, J. Mandel, M. Brezina. Algebraic multigrid on unstruc-
tured meshes. Technical Report X, Center for Computational Mathemat-
ics, Mathematics Department, 1994.

[122] R.S. Varga. Matrix Iterative Analysis. Prentice Hall, Englewood
Cliffs, 1962.

[123] N. L. Zamarashkin, E. E. Tyrtyshnikov. Distribution of eigen-
values and singular values of Toeplitz matrices under weakened condi-
tions on the generating function. Russian Acad. Sci. Sb. Math. 188,
1191–1021, 1997.

