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Chapter 1

Overview: extreme values
in ”shocked” economies

Risk management is nowadays an absolute priority for financial institutions
not only as a consequence of actual market crisis and default warnings but
as a systematic prevention against undesired shortfall of complex speculative
instruments.
Basel 3 as well Solvency 2 international regulatory framework is the main evi-
dence of a generalized interest in loss mitigation and capital protection.

From a technical point of view risk management implies a trade between certain
and uncertain quantities and makes use of advanced asset “insurance” strate-
gies; insurances have a cost depending from the payoff expected by the insurer
to take risks.

In order to assess correctly the costs of risk exposures risk managers make
use of quantitative models based on standard assumptions like log normal dis-
tribution of assets prices; current stressed economy definitively confirms a well
known drawback: this class of models cannot explicitly account for the negative
skewness and the excess kurtosis of asset returns.
Empirical studies show that underlying’s prices distribution is NOT lognormal;
as noted by Jackwerth and Rubinstein [48] ,for example, in a lognormal model
of assets prices, the probability of a stock market crash with some 28% loss of
equity values is 10−160, an event which is unlikely to happen even in the life
time of the universe.
Current working experience in financial institutions definitively confirms that
classical assumptions about the normality of return distribution are inadequate
to represent financial scenarios. For example, functional parameters of inter-
est rates models calibrated on recent historical series, take values out of their
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validity range; again, forcing observations to fit gaussian distribution in Value
at Risk calculations lead to dangerous prociclical effects: to take into account
exceptional occurred events in a normal density estimation we have to stretch
the volatility parameter so that, in the future, the risk will be overestimated and
the related actions will be too cautious and ineffective. Maybe the misleading
financial models are not the cause of economic recession but it is a matter of
fact that wrong beliefs carry distortions in expectations and can compromise
strategic decisions; awareness should be the first remedy for the crisis and mis-
understandings aren’t useful to develop awareness.

My attempt to build an interest rates model well suited for extreme returns is
documented in this PhD dissertation; this attempt is based on well-established
results in Extreme Value Theory, and applies them to stochastic processes
changing the distributional assumptions of the Vasicek model. An experimental
test verifies the effectiveness of this approach. Before any other enquiry this
introductory chapter is dedicated to give some evidence about the relevance of
the topic; fortunately the literature on empirical analysis about the violation of
normality assumptions in financial markets is exhaustive and I can refer to it
without replicate it. From a theoretical perspective it is interesting to under-
stand the reasons why the financial series show a non-normal behaviour; so the
main part of the chapter gives some insight about those reasons and lays basic
concepts preliminary to the more formal exposition of the next chapters.
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1.1 Microstructure models of market returns

Empirical analysis of stock returns exhibit their fat tailed distribution showing
that extreme price movements are frequent while Gaussian distribution under
evaluate them.

The explanation of non-Gaussian returns is a research field that includes famous
contributions from Mandelbrot and Fama and, starting from them, evolves two
main directions in understanding the non-Gaussian shape of the return distri-
bution.

The first direction deal with the mixture-of distributions hypothesis, which
states that return distributions are a mixture of Gaussian distributions with
different variances [13]; under this hypothesis variance changes are induced by
fluctuations in the rate of trade. A second view for the non-Gaussian shape
of the return distribution is the stable Paretian Hypothesis: it argues that re-
turns are drawn independently and identically from a stable or truncated stable
distribution [29], [65].

In what follows an introduction to the stable Paretian and mixture of distribu-
tion hypotheses is given with some comment about their compatibility with the
extreme value approach to interest rates dynamics that I’m going to propose.

Suppose to observe the stream of stock prices pt t = 1, ..., T during a trading

day; the intraday returns are given by: rt = log
(

pt
pt−1

)
.

Under the central limit theorem we are legitimated to expect that the daily
overall return $ =

∑T
t=1 rt is a random variable that follows a normal distribu-

tion.

This intuition is at the basis of the most celebrated quantitative financial models
from the early paper of Louis Bachelier [1] that in 1900 introduced the random
walk model for securities and commodities market in which the innovation terms
of the stochastic process (see further for details) are independent and normally
distributed.

1.1.1 The Stable Paretian hypothesis

In 1963 Benoit Mandelbrot observed that stock returns samples typically contain
so many ”outliers” that normal density fitted to the mean square of price changes
are lower and flatter than the distribution of the data themselves; it means that
the tails of the distribution of price changes are so long that the sample second
moments vary in an erratic fashion.

Starting from this fact Mandelbrot suggests a new model of price behaviour that
replaces the Gaussian distribution with the family of ”stable Paretian” family
of probability laws which were first described by Paul Levy in 1925 [61]; being
the Gaussian a limiting case of the Levy family, the Mandelbrot’s model is a
generalization of Bachelier’s one.

Levy defined and described stable distributions through the characteristic func-
tion.
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If X1 and X2 are independent random variables drawn from a given stable dis-
tribution, then for some real constants c1 c1there must another real constant c
such that c1X1 + c2X2 = cX where X has the same distribution as X1 and X2

Let ϕ (u) =

{
exp

(
iδu+ γα

{
− |u|α + iβu |u|α−1

tan
(
απ
2

)})
exp

(
iδu+ γα

{
− |u|α + iβu 2

π log (|u|)
})

denote the characteristic function, it follows that ϕ (c1µ)ϕ (c2µ) = ϕ (cµ) and
that cα = cα1 + cα1
(because this property, stable distributions are also referred as ”alpha stable”).
Setting α = 2 and β = 0 in ϕ (u) we find the characteristic function of the
normal distribution that is a special member of the stable family, otherwise,
setting α = 1 and β = 0, ϕ (u) becomes the characteristic function of the Cauchy
distribution; inverting it analytically we have the density f (x) = γ

π(λ2+x2) that

has fatter tails than the Gaussian.
Hence, the variation of αparameter varies the tail of the distribution, while the
β parameter, being associated with the relative importance of the two sides of
the distribution, it determines the skewness of the distribution.
Mandelbrot’s proposal, altough its relevance, didn’t obtain a full aknowledge-
ment because the practical shortcoming it is exposed: Levy distributions, not
allowing for the existence of the variance, conflicts with classical quantitative
finance and its standard solutions (e.g. the mean-variance portfolio models).
Furthermore, being unavailable a closed form solution for the density – the char-
acteristic function is in general not analitically invertible – parameter estimation
becomes a critical task, partially overcome by modern computing power that
allows numerical inversion.

1.1.2 The Mixture of Distributions hypothesis

As previously mentioned, an alternative to the stable Parethian hypothesis is
the ”mixture of distributions” hypothesis originally proposed by Clark.
Clark analyzes the arrival rate of events suggesting that information speed is
not constant, there are days on which more news is released than on others and
that are consequenty expected to display greater volatility.
Consider the stochastic process T (t) such that t < s ⇒ T (t) ≤ T (s) with
t ∈ <+and the process for log-price vt = log (pt)

vt = µT (t) + σWT (t)

being WT the standard brownian motion.
Log-price time increments over a time-span ∆ are hence given by:

rt = vt − vt−∆ = µ (T (t)− T (t−∆)) + σ
(
WT (t) −WT (t−∆)

)
With rt ≈ N

(
µIt, σ

2It
)

for It = T (t)− T (t−∆)
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As anticipated, the return on a given time span is function of the amount of
activity, measured by It, that occurred over ∆.

This model is named ”mixture of distributions hypothesis” because each re-
turn is drawn from a different distribution; it has the advantage, compared to
Paretian hypothesis, to work with finite variance, but relaxes the assumption
of stationary distribution of returns against empirical fact noticed on long time
scales.

1.1.3 An alternative hypothesis: market return distribu-
tion is max-stable

The attractiveness of the Paretian hypothesis – remind - comes from its ac-
counting for fat tails having recourse to a stable family of distributions, where
the stability is a sort of closure property with respect to the sum of random
variables representing the progressive market information updating.

Analogous property is obeyed by distributions of maxima as we know from
extreme value theory and is completed with the interesting requirement of fi-
nite variance; this circumstance encouraged me in exploring the relationships
between market return stochastic processes and extreme value distributions as
reported in the remainder of this document.

At the moment, in order to fix preliminary ideas, I introduce only some Extreme
Value theory insight that will be developed further.

The fundamental result of EVT is about the asymptotic distribution of the
maxima of a sample: like the Central Limit Theorem, which ensures that the
sums of random variables are normally distributed, so an important theorem
from Gnedenko [38] firstly ensures that maxima necessarily follow a distribution
that obeys the max stability property, then shows that only three distributions
types are max-stable: Frechet, Gumbel, Weibull.

A non-degenerate distribution G is max-stable iff there exist {an > 0, n ≥ 1}
and {bn ∈ <, n ≥ 1} such that (G (anx+ bn))

n → G (x)

To make explicit the connection between alpha stable distributions and max
stable distributions let’s focus on regularly varying concept.

Definition 1.1.1 A positive measurable function f is called regularly varying
(at infinity) with index α ∈ < if

1. It is defined on some neighborhood [x0,∞) of infinity

2. ∀t > 0 lim
x→∞

f(tx)
f(x) = tα

If α = 0 is said to be slowly varying (at infinity)

The regularly varying property characterizes the membership of a distribution
to specific domains of attraction here defined:
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Definition 1.1.2 We say that the random variable X and its distribution F
belongs to the domain of attraction of the alpha stable distribution Gα if there
exist constants an > 0, bn ∈ < such that

Sn − bn
an

d→Gα, n→∞

holds.

A similar statement defines the maximum domain of attraction:

Definition 1.1.3 The random variable X and its distribution F belong to the
domain of attraction of the max stable distribution H if there exist constants
cn > 0, dn ∈ < such that
Mn−dn
cn

d→H as n→∞

Now are presented here, without proof, the conditions, based on slowly varying
property, to belong respectively to the domain of attraction of an alpha stable
law and to maximum domain of attraction of Φα.
The distribution F belongs to the domain of attraction of an alpha stable law
for some α < 2 if and only if:

F (−x) =
q + o (1)

xα
L (x) , F̄ (x) =

p+ o (1)

xα
L (x) , x→∞

where L is slowly varying and p, q are non-negative constants such that p+q > 0
The distribution F belongs to the maximum domain of attraction of Φα , α > 0,
if and only if F̄ = x−αL (x) for some slowly varying function L.
From these results we can conclude that if X ∈ DA (Gα) for some alpha stable
distribution Gα with α < 2 and P (X > x) ≈ cP (|X| > x), c > 0, as x → ∞
(i.e. this distribution is not totally skewed to the left) then X ∈MDA (Φα)

Alpha-stable and max-stable distributions are hence intimately connected by
the regular variation condition; thanks to this connection a class of max stable
distributions can share with alpha stable laws a fundamental closure property
directly related to the regular variation. In other words, even the Frecht ex-
treme value distribution is invariant under summation and can be regarded as
a valid candidate to represent the market information arrival.
The closure property is as follows:

Theorem 1.1.4 Let X and Y be two independent, regularly varying, nonnega-
tive random variables with index α ≥ 0.
Then X+Y is regularly varying with index α ≥ 0 and P (X + Y > x)∼P (X > x)+
P (Y > x) as x→∞
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Proof:

P (X + Y > x) ≥ [P (X > x) + P (Y > x)] (1− o (1))

from

{X + Y > x} ⊃ {X > x}
⋃
{Y > x}

For 0 < δ < 1
2

{X + Y > x} ⊂ {X > (1− δ)x}
⋃
{Y > (1− δ)x}

⋃
{X > δx, Y > δx}

Implies that

P (X + Y > x) ≥ [P (X > x) + P (Y > x)] (1− o (1))

hence:

1 ≤ lim inf
x→∞

P (X+Y >x)
P (X>x)+P (Y >x) ≤ lim sup

x→∞

P (X+Y >x)
P (X>x)+P (Y >x) ≤ (1− δ)−α

Letting δ ↓ 0 the proof is complete.

The need of non gaussian processes for stock returns is theoretically, historically
and practically well known and opens promising perspectives when oriented to
Extreme Value Theory; what follows would like to be a step in that direction.
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Chapter 2

Stochastic integration

The description of stochastic rate interest models is crucial in this research
and it is related to an important branch of probability theory concerning the
stochastic integration.
In what follows central topics of stochastic integration are recalled so to justify
and correctly use a fundamental tool of stochastic calculus, the Ito’s rule; Ito’s
rule is the differentiation rule of stochastic calculus needed to solve Stochastic
Differential Equations, and it works quite differently from standard differetiation
rules because the special behaviour of Brownian paths.
Brownian paths, as I’m going to show, have infinite variance and, strictly speak-
ing, are not differentiable.
The stochastic integration, hence, can not be intended in a traditional way, and
has to be conceived as an approximation in some probabilistic sense; that sense
is contextualized now.

Definition 2.0.5
Given a finite set Ω and the set F of all subset in Ω, a probability measure P is
a function from F to [0,1] such that:

i) P (∅) = 0 P (Ω) = 1
ii) If A1, A2, ... is a sequence of disjoint sets in F , then

P

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

P (Ak)

Definition 2.0.6 P (A) =
∑
ω∈A P {ω} for A ∈ F

Definition 2.0.7 A σ−algebra is a collection G of subsets of Ω such that:
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1. ∅ ∈ G

2. If A ∈ Gthen its complement AC ∈ G

3. If A1, A2, ... is a sequence of sets in G then
⋃∞

k=1Ak is also in G

Definition 2.0.8 A filtration is a sequence of σ−algebras F0, F1, ...., Fn such
that each of them contains all the sets belonging to the previous σ−algebra

Definition 2.0.9 A random variable is a function mapping Ω into <

Definition 2.0.10 Given F , the σ− algebra of all subset of Ω, and X a random
variable on (Ω, F ) , the σ−algebra A ⊂ < generated by X is the collection of all
sets σ (X), with {ω ∈ Ω;X (Ω) ∈ A}.

Being G a sub -σ− algebra of F , X is G-measurabile if every set in σ (X)
is also in G

Definition 2.0.11 A stochastic process is a parametrized collection of random
variables {Xt}t∈t
defined on a probability space (Ω, F, P ) and assuming values in (<n)

Definition 2.0.12 For any set A ⊂ < the induced measure of A is: LX (A)
∆
=P {X ∈ A}

Definition 2.0.13 Given a probability space (Ω, F, P ) a brownian motion B (t, ω) :
[0,∞)× Ω→ <is a stochastic process with the following properties:

1. P {ω;B (0, ω) = 0} = 1

2. B (t) is a continuous function of t

3. if 0 ≤ k ≤ n then ∀k the increments B (tk) − B (tk−1) ∼= N (0, tk − tk−1)
are independent

14



2.1 The Stochastic Integral

To introduce the stochastic integration it is useful to recognize the circumstances
that claim for this mathematical tool and give some evidence about the prob-
lems arising from the brownian motion integration and the solution found to
circumvent it.

Suppose to have an amount X invested in risky assets and that the assets vari-
ation is driven by the following process:

∆X = µX∆t+ σX∆B

In a short time step [t, t+ ∆t]a part of the asset variation is proportional to the
asset amount and to the time step, another part is proportional to the random
quantity σ∆B that represents the stochastic effect of combined market factors.

To evaluate the amount of X(t) at the T instant, subdivide the time lapse
[0,T] in N short intervals ∆t, and sum the increments (or decrements) of X
occurred in each of the intervals; hence, for ∆t = T

N it is:

X (T )−X (0) =

N∑
i=1

X (ti−1) (ti − ti−1) +

n−1∑
i=1

σX (ti−1) (B (ti)−B (ti−1))

with ∀ i = 0, 1, ...,N. ti = i TN

If the limit for N → +∞ exists, the above sums can be written in integral form:

X (T )−X (0) =

∫ T

0

µX (t) dt+

∫ t

0

σX (t) dB (t)

A closer look to this equation shows that the first integral is well defined but
the second one, being the integrand a stochastic function, cannot be interpreted
in the usual way because the limit of the sums

n−1∑
i=1

σX (ti−1) (B (ti)−B (ti−1))

loose its traditional meaning; intuitively it is clear that, having the Brownian
motion unbounded variations, it is not differentiable as will be proved shortly.

Starting from this fact it becomes fundamental to describe the conditions to en-
sure the existence of the stochastic integral; it will be the case after preliminary
considerations.
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2.1.1 Quadratic variation and non-differentiability of brow-
nian motion

To give adequate evidence to the non-differentiability of Brownian motion we
focus on its quadratic variation; the result obtained here will be an essential
part of the Ito’s Lemma proof.

Theorem 2.1.1 Let B(t) be a brownian motion ; in L2:∫ b

a

[B (ti)−B (ti−1)]
2

= (b− a)

[a, b] ⊂ [0, T ]∀b,∀a t.c. b ≥ a

Proof:

Fixed an arbitrary division {t0, t1, ..., tn} of [a, b]

E
[∑n

t=1

[
(B (ti)−B (ti−1))

2
]]

=
∑n
i=1E

[
(B (ti)−B (ti−1))

2
]

=
∑n
i=1E

[
B (ti − ti−1)

2
]

= (ti − ti−1)

V ar
∑n
i=0

[
(B (ti)−B (ti−1))

2
]

=

=
∑n
i=1 V ar

[
(B (ti)−B (ti−1))

2
]

=
∑n
i=1 V ar

[
B (ti − ti−1)

2
]

=
∑n
i=1

{
E
[
B (ti − ti−1)

4
]
− E2

[
B (ti − ti−1)

2
]}

=
∑n
i=1

{
3 (ti − ti−1)

2 − (ti − ti−1)
2
}

from the known relation(
E
[
X4
]

= 3V ar
[
X2
])

Futhermore: ∑n
i=1 (ti − ti−1)

2 ≤ max (ti − ti−1)
∑n
i=1 (ti − ti−1)

lim
max(ti−ti−1)→0

max (ti − ti−1)
∑n
i=1 (ti − ti−1) = 0

i.e. the variance of
∑n
i=0

[
(B (ti)−B (ti−1))

2
]

tends to zero.

The statement: lim
∆t→0

∑n
i=1 [B (ti)−B (ti−1)]

2
= (tt − ti−1), is confirmed.

This result implies the non-differentiability of the brownian motion; if it would
be differentiable, through the application of the average value theorem, we would
obtain:∑n
i=1 (B (ti)−B (ti−1))

2
=
∑n
i=1 |f ′ (t∗i−1)|2 (ti − ti−1)

2

≤ max (ti − ti−1)
∑n
i=1 |f ′ (t∗i−1)|2 (ti − ti−1)
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lim
max(ti−ti−1)→0

∑n
i=1 (B (ti)−B (ti−1))

2

≤ lim
max(ti−ti−1)→0

[
max (ti − ti−1)

∑n
i=1 |f ′ (t∗i−1)|2 (ti − ti−1)

]
=

= lim
max(ti−ti−1)→0

[max (ti − ti−1)]
∫ t

0
|f ′ (t∗i−1)|2 dt = 0

clearly different from the previous result.

Moreover, integrating the Brownian motion with the rules of standard calculus,
the outcome: ∫ b

a

B (t) dB (t) =
1

2

(
B (b)

2 −B (a)
2
)

is incorrect.

Observe that:

B2 (b)−B2 (a) =
∑n
i=1

(
B2 (ti)−B2 (ti−1)

)
=
∑n
i=1 (B (ti)−B (ti−1))

2
+ 2

∑n
i=1B (ti)B (ti−1)− 2

∑n
i=1B (ti−1)

2

=
∑n
i=1

(
B2 (ti)−B2 (ti−1)

)2
+ 2

∑n
i=1B (ti−1) (B (ti)−B (ti−1))

It follows that:∑n
i=1B (ti−1) (B (ti)−B (ti−1)) = 1

2

(
B2 (b)−B2 (a)

)
− 1

2

∑n
i=1 (B (ti)−B (ti−1))

2

= lim
∆t→0

∑n
i=1B (ti−1) (B (ti)−B (ti−1)) = 1

2

(
B2 (b)−B2 (a)

)
− 1

2 (b− a)

because lim
∆t→0

∑n
i=1 [B (ti)−B (ti−1)]

2
= (tt − ti−1)

This result differs from the result obtained from the standard calculus for the
term − 1

2 (b− a).

2.1.2 The Ito integral

Due to the non-differentiability of Brownian motion, its integration has to be
defined out of the rules of the ordinary calculus adopting a strategy that firstly
describes an ”elementary integrand” and then states a sequence of elementary
processes that approximates the general process.
This section shows the construction of the Ito integral and its relevant properties.
Given the Brownian motion B (t) , t ≥ 0 with the following properties:

1. s ≤ t⇒ F (s) ⊆ F (t)

2. ∀tB (t) is F (t)−measurable

3. For t0, t1, ..., tn the increments B (t1)−B (t0) , B (t2)−B (t1) , ..., B (tn)−
B (tn−1) are independent
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and a function δ (t) , t ≥ 0 where:

1. ∀tδ (t) is F (t)−measurable

2. ∀tE
∫ T
o
δ2 (t) dt <∞ i.e. is square-integrable

define the Ito integral as

I (t) =

∫ t

o

δ (u) dB (u) t ≥ 0

If, given a partition of [0, T ] such that 0 = t0 ≤ t1, ...,≤ tn = T , δ (t) = δ (tk)
ti−1 ≤ tk < ti (δ (t) is constant for each sub interval ti−1 ≤ tk < ti) then δ (t) is
called an elementary process

Remark that the Ito integral for an elementary process is a martingale

Theorem 2.1.2 Consider:

I (t) =

k−1∑
j=0

δ (tj) [B (tj+1)−B (tj)] + δ (tk) [B (t)−B (tk)]

tk ≤ t ≤ tk+1

consider also partition points tl and tksuch that s ∈ [tl, tl+1] and t ∈ [tk, tk+1]
with 0 ≤ s ≤ t

I (tk+1) is a martingale: E [I (tk+1) |F (s)] = I (s)

18



Proof:

I (t) =
∑l−1
j=0 δ (tj) [B (tj+1)−B (tj)] + δ (tl) [B (tl+1)−B (tl)] +

+
∑k−1
j=l+1 δ (tj) [B (tj+1)−B (tj)] + δ (tk) [B (t)−B (tk)]

Conditional expectation for the first two terms is:

E

 l−1∑
j=0

δ (tj) [B (tj+1)−B (tj)]

∣∣∣∣∣∣F (s)

 =

l−1∑
j=0

δ (tj) [B (tj+1)−B (tj)]

E [δ (tl) [B (tl+1)−B (tl)]|F (s)] = δ (tl) [E [B (tl+1)|F (s)]−B (tl)]
= δ (tl) [B (s)−B (tl)]

the remaining terms return null value:

E
[∑k−1

j=l+1 δ (tj) [B (tj+1)−B (tj)]
∣∣∣F (s)

]
=
∑k−1
j=l+1E [ [E [δ (tj) [B (tj+1)−B (tj)]]|F (tj)]|F (s)]

=
∑k−1
j=l+1 [E [δ (tj) [E [B (tj+1)|F (tj)]−B (tj)]]|F (s)] = 0

E [δ (tk) [B (t)−B (tk)]|F (s)] = E [δ (tk) [E [B (t)|F (tk)]−B (tk)]|F (s)] = 0

Another relevant property of Ito integral is the Ito isometry:

Theorem 2.1.3

E
[
I2 (t)

]
= E

[∫ t

0

δ2 (u) du

]
Proof

I2 (t) =
[∑k

j=0 δ (tj) [B (tj+1)−B (tj)]
]2

=
∑k
j=0 δ

2 (tj) [B (tj+1)−B (tj)]
2

+
∑
i<j δ (ti) δ (tj) [B (ti+1)−B (ti)] [B (tj+1)−B (tj)]

The cross term average is null because the independence of the Brownian mo-
tions.

E
[
I2 (t)

]
=
∑k
j=0E

[
δ2 (tj) [B (tj+1)−B (tj)]

2
]

=
∑k
j=0E

[
δ2 (tj)E

[
[B (tj+1)−B (tj)]

2
∣∣∣F (tj)

]]
=
∑k
j=0E

[
δ2 (tj) (tj+1 − tj)

]
= E

∑k
j=0

∫ tj+1

tj
δ2 (u) du

= E
[∫ t

0
δ2 (u) du

]
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The construction of the Ito’s integral, once defined the elementary integrand,
comes from the approximation to it, in mean square limit, of the general inte-
grand.

The existence of the Ito’s integral is hence proofed by the existence of such a
limit:

Theorem 2.1.4 Given a function δ (t) , t ≥ 0 where:

1. ∀t δ (t) is F (t)−measurable

2. ∀t E
[∫ T
o
δ2 (t) dt

]
<∞ i.e. is square-integrable

there is a sequence of elementary processes {δn}∞n=1 such that

lim
n→∞

E

∫ T

0

[δn (t)− δ (t)]
2
dt = 0

Proof:
Suppose n and m large positive integers

var (In (t)− Im (t)) =
n→∞

E
(∫ T

0
[δn (t)− δm (t)] dB (t)

)2

= E
∫ T

0
[δn (t)− δ (t)m]

2
dt

= E
∫ T

0
[[δn (t)− δ (t)] + [δ (t)− δm (t)]]

2
dt

≤ 2E
∫ T

0
[δn (t)− δ (t)]

2
dt+ 2E

∫ T
0

[δm (t)− δ (t)]
2
dt

being

(a+ b)
2 ≤ 2a2 + 2b2
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2.2 Ito’s formula

Having the tools to extend integration to stochastic processes, it is possible to
develop the operational set needed to solve Stochastic Differential Equations,
i.e. equations whose unknown function is a stochastic process.

Consider the Ito process:

dY (t) = µY (t) dt+ σY (t) dB (t)

and a function f = f(t,x) = f(t,Y(t)) written on it. Suppose we have to calculate
its derivative; by Taylor’s rule:

df =
∂f

∂x
dY (t) +

∂f

∂t
dt+

1

2

∂2f

∂x2
dY (t)

2
+

∂2f

∂x∂t
dY (t) dt+

1

2

∂2f

∂t2
dt2

Adequately replacing the dY(t) terms:

∂f
∂xdY (t) = ∂f

∂x [µY (t) dt+ σY (t) dB (t)] 1
2

∂2f
∂x2 dY (t)

2
= ∂2f

∂x2

(
1
2µ

2Y (t)
2
dt2 − µ2σ2Y (t)

2
dtdB (t) + 1

2σ
2Y (t)

2
[dB (t)]

2
)

Observing that:

1. (dt)2 or (dt)(dB(t)) terms are negligible

2. (dB (t))
2 ∼= dt

we obtain:

df =

(
∂f

∂x
µY (t) +

∂f

∂t
+

1

2

∂2f

∂t2
σ2Y (t)

2

)
dt+

∂f

∂x
σY (t) dB (t)
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2.3 Feynman-Kac formula

Some classes of solution of PDE have a representation in terms of expected
value; this representation, as well as to be useful for practical purposes, pro-
vides as an important bridge between probability and calculus.

Theorem 2.3.1 Given the PDE:

∂f

∂t
+ µ (x, t)

∂f

∂x
+

1

2
σ2 (x, t)

∂2f

∂x2
= 0

f (x, T ) = ψ (x)

it is: f (x, T ) = E [ψ (XT )|Xt = x]

with dx (t) = µ (x, t) dt+ σ (x, t) dWt

proof:

From Ito’s lemma:

df =

(
µ (x, t)

∂f

∂x
+
∂f

∂t
+

1

2
σ2 (x, t)

∂2f

∂x2

)
dt+ σ (x, t)

∂f

∂x
dWt

∫ T

t

df = f (XT , T )− f (x, t) =

∫ T

t

σ (x, t)
∂f

∂x
dWt

Re-arranging and taking the expected value:

f (x, t) = E [f (XT , T )]− E

[∫ T

t

σ (x, t)
∂f

∂x
dWt

]

but: E
[∫ T
t
σ (x, t) ∂f∂xdWt

]
= 0

hence: f (x, t) = E [f (XT , T )] = E [ψ (XT )] = E [ψ (XT )|Xt = x]
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Chapter 3

Interest rates modeling –
the Vasicek seminal
approach

In 1977 Vasicek wrote one of the earliest papers known about the model for the
risk-free rate of interest [82]; in the same paper, Vasicek also developed a more
general approach to pricing which ties in with what we now refer to the as the
risk-neutral-pricing approach, and this fact has, from a methodological point of
view, the same relevance of the main result itself.

For notational convenience and clarity of exposition, we will restrict ourselves
here to one-factor, diffusion models for the short rate, r (t). The approach is,
however, easily extended to multifactor models.

The class of unifactorial models supplies a representation of the term struc-
ture of interest rates.
Formally the term structure - or Yield Curve - is a function of the simply com-
pounded spot interest rates (L (t, T )) and of the annually compounded spot in-
terest rates (Y (t, T )) , so defined:

Definition 3.0.2 .

Let

τ (t, T ) be a year fraction between t and T

r (t, T ) be the value at time t of interest rates for a bond with maturity T

P (t, T ) be the price at time t of a bond with maturity T

Then
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L (t, T ) =
1− P (t, T )

τ (t, T )P (t, T )

Y (t, T ) =
1− P (t, T )

P (t, T )
1/τ (t, T )

− 1

Hence the term structure is the curve of the function:

T 7→
{
L (t, T ) t < T ≤ t
Y (t, T ) T > t+ 1

In unifactorial models the term structure is driven by a single variable,
namely the spot rate; the spot rate evolves in time according to a diffusive
process:

dr (t) = α (rt, t) dt+ β (rt, t) dB

where B is a standard Brownian motion and α (rt, t) and β (rt, t) are character-
istic for each distinct model in the class.

Specific models for r (t) include Vasicek:

dr (t) = α (µ− r (t)) dt+ σdB̃

and Cox, Ingersoll and Ross [19]:

dr (t) = α (µ− r (t)) dt+ σ
√
r (t)dB̃

These processes belong to the set of “mean reverting model”: at each time
step the interest rate value is updated through a partial subtraction of the
current amount of the interest rate value itself, so that the new amount tends
to an equilibrium point µ; this behavior appears to be consistent with interest
rates real market fluctuations and explains the success of Vasicek and CIR
formulations in literature and in professional practice.

Both models give rise to analytical formulae for zero-coupon bond prices and
European options of the same bonds. The CIR model has the advantage that
interest rates stay positive because of the square-root of r (t) in the volatility.

Both are also examples of affine term-structure models: that is, the solution
D (t, T ) of dr (t) can be written in the form

D (t, T ) = exp (A (T − t)−B (T − t) r (t))

for suitable functions A and B.
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3.1 Non arbitrage models

The Vasicek and CIR models are examples of time-homogeneous, equilibrium
models. A disadvantage of such models is that they give a set of theoreti-
cal prices for bonds which will not normally match precisely the actual prices
that we observe in the market. This led to the development of some time-
inhomogeneous Markov models for r (t), most notably those due to Ho & Lee
[44]

dr (t) = φ (t) dt+ σdB̃

Hull & White [46]
dr (t) = α (µ− r (t)) dt+ σ (t) dB̃

and Black & Karasinski [9]

dr (t) = α (t) r (t) [θ (t)− log r (t)] dt+ σ (t) r (t) dB̃

In each of these models all deterministic functions of t are calibrated in a way
which gives a precise match at the start date (say time 0) between theoretical
and observed prices of zero-coupon bonds (Ho & Lee) and possibly also some
derivative prices.
For example, at-the-money interest-rate caplet prices could be used to derive
the volatility function, in the Hull & White model.
Because these models involve an initial calibration of the model to observed
prices there is no arbitrage opportunity at the outset. Consequently these
models are often described as no-arbitrage models. In contrast, the time-
homogeneous models described earlier tell us that if the prices were to evolve in
a particular way then the dynamics will be arbitrage free.
The Ho & Lee and Hull & White models are also examples of affine term-
structure models. The Black & Karasinski model does not yield any analytical
solutions, other than that r (t) is log-normally distributed. However, the BK
model is amenable to the development of straightforward and fast numerical
methods for both calibration of parameters and calculation of prices.
It is standard market practice to recalibrate the parameters and time-dependent,
deterministic functions in these no-arbitrage models on a frequent basis. For
example, take two distinct times T1 < T2. In the Hull & White model we would
calibrate it at time T1 for all t < T1 to market prices; at time T2 we would
repeat this calibration using prices at T2 resulting in the model for t > T2. If
the Hull & White model is correct then we should find the congruence between
the outcomes of the model calibrated at time T1 and the values used to re-
calibrate the same model in T2; in practice this rarely happens so that we end
up treating model parameters as stochastic rather than the deterministic form
assumed in the model.
In 1992 Heath, Jarrow & Morton [42] proposed a framework that represents a
substantial leap forward in how the term structure of interest rates is perceived
and modeled.
Previously models concentrated on modeling of r (t) and other relevant quan-
tities in a multifactor model; the HJM framework instead of focusing on r (t)
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model the instantaneous forward-rate curve, f (t;T ), directly. Given the forward-
rate curve we then immediately get:

D (t, T ) = exp

[
−
∫ T

t

f (t, u)

]
du

Let’s follow the derivation of HJM framework from an Ito process defined as
usual:

dp (t, T ) = r (t) p (t, T ) dt+ v (t, T,Ω) p (t, T ) dB

with:

p (t, T ): Price at time t of a zero-coupon bond with principal 1 maturing
at time T

Ωt: Vector of past and present values of interest rates and bond prices
at time t

v (t, T,Ω): Volatility of P (t, T )

f (t, T1T2): Forward rate as observed at time t for the period between
time T1 and time T2

r(t): Short term risk free interest rate at time t (with P(t1,t2) = er(t1,t2)(t2−t1))

dB: Brownian motion

Apply the Ito’s lemma:

∂ ln (p (t, T ))

∂p (t, T )
r (t)P (t, T ) dt =

1

P (t, T )
r (t)P (t, T ) dt = r (t) dt

∂ ln (p (t, T ))

∂t
dt = 0

∂ ln (p (t, T ))

∂p (t, T )
v (t, T,Ω)P (t, T ) dB =

1

P (t, T )
v (t, T,Ω)P (t, T ) dB = v (t, T,Ω) dB

∂2 ln (p (t, T ))

2∂p2 (t, T )
v2 (t, T,Ω)P 2 (t, T ) dt = − 1

P 2 (t, T )
v2 (t, T,Ω)P 2 (t, T ) dt = −v

2 (t, T,Ω)

2
dt

joining the parts:

d ln [p (t, T )] =

[
r (t)− v2 (t, T,Ω)

2

]
dt+ v (t, T,Ω) dB (t) (3.1)

In order to avoid arbitrage opportunities an investment from t to T2 must have
the same return as two compounded investments from t to T1 and from T1 to
T2 :
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r(T1,T2) =
r(t,T2) (T2)− r(t,T1) (T1 − t)

(T2 − T1)

From the definition of P(t1,t2) it is:

r(t1,t2) (t2 − t1) = ln
[
P(t1,t2)

]
and hence:

f (t, T1T2) =
ln [p (t, T1)]− ln [p (t, T2)]

T2 − T1

From (3.1) we have:

df (t, T1, T2) =

[
v (t, T2,Ω)

2 − v (t, T1,Ω)
2

2 (T2 − T1)

]
dt+

[
v (t, T1,Ω)− v (t, T2,Ω)

(T2 − T1)

]
dB

3.2 Deriving the interest rates PDE

The price of a contract written on interest rates can be derived from the absence
of arbitrage principle that allows the composition of a riskless portfolio Π in an
infinitesimal timestep [t, t+ dt]; the absence of arbitrage principle states the
impossibility to have gain without risk (”no free lunch principle”): all available
investment opportunities that compensate (immunize) their risks have identical
value because – given a set of contracts sharing the same risk level - nobody
accepts to buy less profitable ones.
Let V1 (t, rt)e V2 (t, rt) be the values of two contracts assembled in a portfolio
Π.
On the basis of Ito’s formula the variation of Vi (t, rt) (i = 1, 2) is given by:

dVi (t, rt) =
[
∂Vi(t,rt)

∂t + α (rt)
∂Vi(t,rt)

∂r + 1
2β

2 (rt)
∂2Vi(t,rt)

∂r2

]
dt+

[
β (rt, t)

∂Vi(t,rt)
∂r

]
dB

put:

µt (t, rt)Vi (t, rt) =
∂Vi (t, rt)

∂t
+ α (rt)

∂Vi (t, rt)

∂r
+

1

2
β2 (rt)

∂2Vi (t, rt)

∂r2

σt (t, rt)Vi (t, rt) = β (rt, t)
∂Vi (t, rt)

∂r

it is:
dVi (t, rt) = µt (t, rt)Vi (t, rt) + σt (t, rt)Vi (t, rt) dB

Each contract gives contribution qi to the portfolio Π;Π variations are conse-
quently:

dΠ (t, rt) = [q1µ1 (t, rt)V1 (t, rt) + q2µ2 (t, rt)V2 (t, rt)] dt+

+ [q1σ1 (t, rt)V1 (t, rt) + q2σ2 (t, rt)V2 (t, rt)] dB

Being Π riskless its value increases or decrease at risk free interest rate:
dΠ (t, rt) = r (t) Π (t, rt) dt = r (t) [q1V1 (t, rt) + q2V2 (t, rt)] dt
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or, equivalently :

[q1µ1 (t, rt)V1 (t, rt) + q2µ2 (t, rt)V2 (t, rt)] = r (t) [q1V1 (t, rt) + q2V2 (t, rt)]

[q1σ1 (t, rt)V1 (t, rt) + q2σ2 (t, rt)V2 (t, rt)] = 0

q1V1 (t, rt) (µ1 (t, rt)− r (t)) + q2V2 (t, rt) (µ2 (t, rt)− r (t)) = 0

[q1σ1 (t, rt)V1 (t, rt) + q2σ2 (t, rt)V2 (t, rt)] = 0

from second equation:

q2V2 (t, rt) = −q1V1 (t, rt)
σ1 (t, rt)

σ2 (t, rt)

after substitution in first equation:

q1V1 (t, rt) (µ1 (t, rt)− r (t))− q1V1 (t, rt)
σ1 (t, rt)

σ2 (t, rt)
(µ2 (t, rt)− r (t)) = 0

(µ1 (t, rt)− r (t))

σ1 (t, rt)
=

(µ2 (t, rt)− r (t))

σ2 (t, rt)

The function:

λ (t, rt) =
(µ (t, rt)− r (t))

σ (t, rt)

is named ”price for risk”, from which:

µ (t, rt) = r (t) + λ (t, rt)σ (t, rt)

Replacing µ (t, rt) and σ (t, rt)with their explicit forms it becomes:

1

V

[
∂Vi (t, rt)

∂t
+ α (rt)

∂Vi (t, rt)

∂r
+

1

2
β2 (rt)

∂2Vi (t, rt)

∂r2

]
= r (t)+λ (t, rt)

[
1

V
β (rt)

∂Vi (t, rt)

∂r

]

∂Vi (t, rt)

∂t
+(α (rt)− β (rt)λ (t, rt))

∂Vi (t, ri)

∂r
+

1

2
β2 (rt)

∂2Vi (t, rt)

∂r2
−r (t)Vi (t, rt) = 0

(3.2)

The solution of this PDE with condition V (T, rt) returns the price of a bond
expiring in t = T .
This approach is very instructive from a conceptual point of view, because, mim-
icking the strategy that Black & Scholes adopted to achieve the option pricing
PDE, transforms a stochastic differential equation to a partial differential equa-
tion providing a ”risk immunization” argument that drops out the stochastic
term.
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3.3 Vasicek SDE solution

The process satisfying (3.2) can be obtained from the solution to a general SDE
known as Ornstein-Uhlenbeck SDE:

dXt = a (t)Xtdt+ σ (t) dBt

with X (0) = X0

Suppose: Xt = eA(t)Yt
where A (t) is an opportune deterministic function and Yt is an opportune pro-
cess whose differential is:

dYt = f (t) dt+ φ (t) dBt

Now the task is to determine A (t), f (t), φ (t) so that Xt = eA(t)Yt satisfies the
Ornstein-Uhlenbeck equation.
Deriving Xt = eA(t)Yt it is:

dXt = A
′
(t) eA(t)Y (t) dt+eA(t)dY (t) = A

′
(t)Xtdt+e

A(t)f (t) dt+eA(t)φ (t) dBt

from which:
eA(t)φ (t) = σ (t) , A

′
(t) = a (t) , f (t) = 0

and then:
φ (t) = σ (t) e−

∫ t
0
a(s)ds

Yt =

∫ t

0

σ (τ) e−
∫ τt
0
a(s)dsdBτ + Y0

Xt = e
∫ t
0
a(s)ds

(∫ t

0

σ (τ) e−
∫ τt
0
a(s)dsdBτ +X0

)
This is the general solution of the Ornstein-Uhlenbeck equation.
Turning back to the specific Vasicek SDE:

dXt = θ (µ−Xt) dt+ σdBt

through the substitution:
X∗t = (µ−Xt)

it becomes
dX∗t = θX∗t dt+ σdBt

with:
a (t) = −θ

Applying the general solution just found:

X∗t = X0e
−θ(t−0) + e−θtσ

∫ t

0

e−θτdBτ

Xt = µ+ (X0 − µ) e−θ(t−0) + e−θtσ
∫ t

0
e−θτdBτ

Xt = µ
(
1− e−θ(t−0)

)
+X0e

−θ(t−0) + e−θtσ
∫ t

0
e−θτdBτ
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3.4 Vasicek model calibration

As previously mentioned, Vasicek model is the tool that I’ll use in chapter 5 to
illustrate my analysis on extreme interest rates values; I will discuss here some
technical aspect regarding the estimation of model parameters and the fitting
of the model to real market data (model calibration).

To calibrate the Vasicek model the discrete form of the process is used:

x (ti) = c+ bx (ti−1) + δε (ti)

c = µ
(
1− e−θ∆t

)
b = e−θ∆t

ε ≈ N (0, 1)

The volatility of the innovation can be deduced by the Ito isometry:

E

[
σ

∫ t

0

e−θτdBτ

]2

= σ2

∫ t

0

e−2θτdτ = σ2
(
1− e−2θt

) /
2θ

δ = σ
√

(1− e−2θ∆t)
/

2θ

The calibration process is simply an OLS regression of the time series x (ti) on
its lagged form x (ti−1). The OLS regression provides the maximum likelihood
estimator for the parameters c, b and d. By resolving the three equations sys-
tem one gets the following α, θ and σ parameters:

α = − ln (b) /∆t

θ = c/ (1− b)

σ = δ

/√
(b2 − 1) ∆t

/
2 ln (b) (3.3)

b̂ =
n
∑n
t−1 xtxt−1 −

∑n
t−1 xt

∑n
t−1 xt−1∑n

t−1 x
2
t−1 −

(∑n
t−1 xt−1

)2
ĉ =

∑n
t−1

(
xt − b̂xt−1

)
n
(

1− b̂
)

δ̂2 =
1

n

n∑
t=1

[
xi − b̂xi−1 − θ̂

(
1− b̂

)]2
From these estimators, using (3.3) one obtains immediately the estimators for
the parameters α, θ and σ.
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Chapter 4

Extreme Value Theory

The statistical study of maxima plays a central role in this research as declared
introducing its main topic: distributional assumptions of classical quantita-
tive finance are dramatically violated during the current economic crisis, and a
structured knowledge about the fundamentals of extreme value theory is a solid
support in applying its results.

EVT focuses on statistical behavior of Mn = max {a1, ..., an}; in theory the
distribution of Mn can be derived exactly:

Pr {Mn ≤ z} = Pr {X1 ≤ z, ..., Xn ≤ z}
= Pr {X1 ≤ z} × ...× Pr {Xn ≤ z}
= {F (z)}n

In practice this is not helpful since F is unknown; one possibility is estimate
F from observed data and then substitute the estimation in F(z)n but small
discrepancies in estimation of F lead to substantial discrepancies for F(z)n

Starting from this fact the pioneers of EVT field, began to look for approximate
families of models for F(z)n which can be estimated on the basis of extreme
data only; this mission involved, from the twenties of the past century, the
autonomous contributions from top scientists like Fisher [32], Frechet [34], Gne-
denko [38], Gumbel [39], and reached a result that can be thought as the analog
of central limit theorem for the maxima (instead of sums) of a series: the explicit
asymptotic distribution of extreme values.

This result is known as the “Fisher-Tippet theorem”; in the following I’ll expose
it developing its formal justification.

31



4.1 Fisher – Tippett theorem

Observe that F(z)n → 0 as n→∞, so that the distribution of Mn degenerate to
a point mass on z+ (the smallest value of z such that F(z) = 0 )
This drawback is avoided by allowing a linear renormalization of the variable
Mn .

M∗n =
Mn − bn

an

If there exist a sequence of constants an> 0 and bn such that

lim
n→∞

Pr {(Mn − bn) /an ≤ z} = G (z)

for a non-degenerate distribution function G, then G is a member of the GEV
family

G (z) = exp

{
−
[
1 + ξ

(
(z − µ)

σ

)]−1/ξ

+

}
Pr {Mn ≤ z} ≈ G {(z − bn) /an} = G∗ (z)

Note that if this theorem enables approximation of M∗n by a member of GEV
family for large n the distribution of M∗n itself can also be approximated by
a different member of the same family. Since the parameters of the distribu-
tion have to be estimated anyway, it is irrelevant that the parameters of the
distribution G are different from those of G∗

It’s trivial to check thatG (z) summarizes, in parametric form, three distribution
functions:

Frechet

Φα (x) =

{
0,
exp (−x−α) ,

x ≤ 0
x > 0

α > 0

Weibull

ψα (x) =

{
exp (− (−x−α)) ,
1,

x ≤ 0
x > 0

α > 0

Gumbel
Λ (x) = exp (−e−x) x ∈ R

The early versions of the theorem on the asymptotic distribution of maxima
work with these three distinct functions and many contemporary authors con-
serve this approach [59].
To proof the main statement of this chapter would be interesting, to fully ap-
preciate it’s semantic, to present the argumentation originally used by Fisher-
Tippett and subsequently integrated by Gnedenko; nevertheless I preferred repli-
cate the structure proposed by De Haan [22] because it well represents the
standard setup assumed by the modern EVT.
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Figure 4.1: Densities of the standard extreme value distributions with α = 1. - [27],
p. 122

Preliminary to the proof are some reformulations and lemmas introduced here
to make formulas easier to treat.
Let’s begin observing that:

P (max (X1, ..., Xn) ≤ x) = P (X1 ≤ x, ...,Xn ≤ x) = Fn (x)

converges to zero for x < x∗and to 1 for x > x∗

Suppose there exists a sequence of constants an > 0 and bn (n = 1, 2, ...) real

such that max(X1,...,Xn)−bn
an

has a nondegenerate limit distribution as n→∞:

lim
n→∞

Fn (anx+ bn) = G (x)

In what follows the class of distributions F satisfying last condition is derived.

Proceed with trivial transformations:

lim
n→∞

n logF (anx+ bn) = logG (x)

lim
n→∞

− logF (anx+ bn)

1− F (anx+ bn)
= 1

lim
n→∞

n (1− F (anx+ bn)) = − logG (x)

lim
n→∞

1

n (1− F (anx+ bn))
=

1

− logG (x)
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Working with inverse functions makes next steps simpler, so define:

ψ−1 (y) = inf {x : ψ (x) ≥ y}

Lemma 4.1.1 Suppose fn is a sequence of nondecreasing functions and g is a
non decreasing function. Suppose that for each x in some open interval (a, b) -
a continuity point of g - lim

n→∞
fn (x) = g (x).

Let f←n , g← be the left-continuous inverse of fn and g. Then, for each x in the
interval (g (a) , g (b)) - a continuity point of g← - we have

lim
n→∞

f←n (x) = g← (x)

Proof
Let x be a continuity point of g← and consider an arbitrary ε > 0. The goal is
to prove that for n, n0 ∈ N, n ≥ n0: f←n (x)− ε ≤ g← (x) ≤ f←n (x) + ε
For the left-side inequality (the right end is analogous), choose 0 < ε1 < ε such
that g← (x)− ε1 is a continuity point of g. This is possible since the continuity
points of g form a dense set. Because g←is continuous in x, g← (x) is a point of
increase for g; hence g (g← (x)− ε1) < x. Choose δ < x−g (g← (x)− ε1). Being
g← (x)− ε1 a continuity point of g, there exists n0 such that fn (g← (x)− ε1) <
g (g← (x)− ε1)+δ < x for n ≥ n0. Hence f←n (x)−ε ≤ g← (x) for the definition
of f←n .
Let the function U be the left-continuous inverse of 1

(1−F ) .

Recall that lim
n→∞

n (1− F (anx+ bn)) = − logG (x); for the previous lemma this

clause is equivalent to

D (x) = lim
n→∞

U (nx)− bn
an

= G←
(
e−1/x

)
∀ x > 0) (4.1)

Now we have necessary tools to derive the core issue:

Theorem 4.1.2 The class of extreme value distributions is Gγ (ax+ b) with

a > 0, b real, where Gγ (x) = exp
(
− (1 + γx)

− 1
γ

)
, 1+γx with γ real and where

for γ = 0 the right-end side is interpreted as exp (−e−x)

Proof
Consider the class of limit functions D, suppose that 1 is a continuity point of
D and note that for continuity points x > 0

lim
t→∞

U (tx)− U (t)

a (t)
= D (x)−D (1) = E (x)

For y > 0 it is:

U (txy)− U (t)

a (t)
=
U (txy)− U (ty)

a (ty)

a (ty)

a (t)
+
U (ty)− U (t)

a (t)
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lim
t→∞

U(ty)−U(t)
a(t) and lim

t→∞
a(ty)
a(t) exist. Suppose not: then there are A1, A2 B1 B2

with A1 6= A2 or B1 6= B2 where Bi are limit points of U(ty)−U(t)
a(t) and Ai are

limit points of a(ty)
a(t) , i = 1, 2 as t→∞

We have: E (xy) = E (x)Ai +Bi
because:

D(xy)−D(1) = lim
t→∞

U(txy)− b(t)
a(t)

− lim
t→∞

U(t)− b(t)
a(t)

= lim
t→∞

U(txy)− U(t)

a(t)

= E(xy)

For an arbitrary x take a sequence of continuity points xn with xn ↑ x
n→∞; E (xny)→ E (xy) and E (xn)→ E (x) since E is left continuous; hence
E (xy) = E (x)Ai +Bi ∀ x : x > 0, ∀y : y > 0

E (x)A1 +B1 = E (x)A2 +B2

E (x) (A1 −A2) = B2 −B1

E cannot be constant (G is nondegenerate) so we have (A1 = A2) and (B1 = B2):

A (y) = lim
t→∞

a(ty)
a(t) exists and E (xy) = E (x)A (y) + E (y) being

lim
t→∞

U (ty)− U (t)

a (t)
= D (y)−D (1) = E (y)

Writing s = log x t = log y and H (x) = E (ex)
it is: H (t+ s) = H (s)A (et) +H (t) (4.2)

or, equivalently (since H (0) = 0) : H(t+s)−H(t)
s = H(s)−H(0)

s A (et)

lim
s→0

H (t+ s)−H (t)

s
= lim
s→0

H (s)−H (0)

s
A
(
et
)

From the definition of derivative: H
′
(t) = H

′
(0)A (et) (4.3)

Define: Q (t) = H (t)
/
H
′
(0) (4.4)

(note that: Q (0) = H (0)
/
H
′
(0) = 0 and Q

′
(0) =

(
H (0)

/
H
′
(0)
)′

=

(H (0) /k)
′

= H
′
(0)
/
k = 1)

Q(t+ s)−Q(t) =
H(t+ s)−H(t)

H ′(0)

=
H(s)A(et) +H(t)−H(t)

H ′(0)
cfr. (4.2)

= Q(s)A(et)
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A (et) = H′(t)
H′(0) = Q′ (t) (4.5); see (4.3) and (4.4)

hence: Q (t+ s)−Q (t) = Q (s)Q
′
(t)

and analogously Q (t+ s)−Q (s) = Q (t)Q
′
(s)

Q (t+ s) = Q (t) +Q (s)Q
′
(t) = Q (s) +Q (t)Q

′
(s)

grouping by Q (·) and dividing by s : Q (t) Q
′
(s)−1
s = Q (s) Q

′
(t)−1
s

Send to limit and apply once more the definition of derivative;

lim
s→0

Q (t) Q
′
(s)−1
s = lim

s→0
Q (s) Q

′
(t)−1
s

lim
s→0

Q (t) Q
′
(s)−Q

′
(0)

s = lim
s→0

Q(s)−Q(0)
s

(
Q
′
(t)− 1

)
Q (t)Q

′′
(0) = Q

′
(0)
(
Q
′
(t)− 1

)
Q (t)Q

′′
(0) =

(
Q
′
(t)− 1

)
differentiating twice:

Q
′
(t)Q

′′
(0) = Q

′′
(t)

Define:

γ = Q
′′

(0) =
Q
′′

(t)

Q′ (t)
= d

(
log
(
Q
′
(t)
))

consequently: log
(
Q
′
(t)
)

=
∫
γdt = γt and

Q
′
(t) = eγt or, equivalently: Q (t) =

∫ t
0
eγsds

Recalling (4.5):

H (t)

H ′ (0)
=

∫ t

0

eγsds =
1

γ

∫ t

0

eγsds =
eγt − 1

γ

H (t) = H
′
(0) e

γt−1
γ (4.6)

Remembering that: H (x) = E (ex) and that D (x)−D (1) = E (x)

H (t) = E
(
et
)

= D
(
et
)
−D

(
e1
)

Take logarithm and adapt (4.4):

D (t)−D (1) = E (t) = H (log t) = H ′ (0)
eγ log(t) − 1

γ

D (t) = D (1) +H ′ (0)
tγ − 1

γ

Apply the definition of generalized inverse function:

D← (x) =

(
1 + γ

x−D (1)

H ′ (0)

)
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and from (4.1):

D (x) = G←
(
e−1/x

)
; D← (x) = 1

− log(G(x))

merging the latter two it’s finally:

Gγ (x) = exp
(
− (1 + γx)

−1/γ
)
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Chapter 5

A stochastic process for
extreme interest rates:
Vasicek revised

As previously remarked, the aim of my PhD work is the description of a ”mean
reverting” process that represents the behavior of interest rates starting from
non-standard assumptions about the stationary distribution of the process; in
particular, the main result presented here introduces a modification of the Va-
sicek SDE in which the random variable follows an extreme type distribution
and is consequently modeled according to the Extreme Value Theory approach.
The importance of the analysis of financial variables from the EVT point of
view is both theoretic - as important authors showed in recent years – and
practical: during the financial crisis that we are facing, shocks in market move-
ments systematically violate the distributional conditions underpinning classical
quantitative finance.1

Contributions to a so actual topic come from at least two research areas each
of one develops a particular aspect of the approach that I’m going to propose
here; such areas can be – without demand of exhaustiveness - summarized as
follows:

1. The Extreme Values applications to interest rates modeling but without
consideration of stochastic processes

1Extreme value theory is not the first and not the only resource used to model rare events;
a well known tool is represented by jump diffusion models [73] in which a Poisson process
is added to the Ito diffusive process in order to better capture improvise volatility shocks in
real-life rates fluctuations. In jump diffusion models the log-returns run according to the SDE:

r (t) = µt + σW (t) +
∑M(t)
i=1 ln (Yi + 1) where M (t) t ≥ 0 is a Poisson process on (Ω, F, P )

with parameter λ = 0 - For an overview about the Poisson process, the reader is invited to
refer to [15] The theoretical connection between jump diffusion models and EVT models is

examined in [58]; the author proofs that if J =
∑M(t)
i=1 ln (Yi + 1) is in the Maximum Domain

of Attraction of Φα±, a random variable of the type N
(
µ, σ2τ

)
+J is in the Maximum Domain

of Attraction of Φα± again.
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2. the Extreme Values theoretical field extended to stochastic processes but
without explicit applications

The main result presented here can be intended as a previously unexplored link
between these neighbor areas; in next paragraphs I’ll introduce a general view
of both of them to better understand how my bridging idea is inserted and
connected to its supporting sides

5.0.1 Financial applications of Extreme Value Theory

In the last ten years the amount of papers describing financial applications of
Extreme Value Theory is substantially increased under the pressure of recog-
nized anomalies in financial returns distribution. Getting a look to the paper’s
bibliography it’s easy to check the recurrence of various monographs (for exam-
ple [26], [27], [28], [56]) that we can assume as “templates” for the subsequent
researches.

All of them have as central point the Value at Risk, a standard in risk evaluation
that measures risk in terms of percentile of a loss distribution.

VaR concerns “extreme” percentiles, so that it seems a natural choice to work
with those distributions, as EVT distributions, that better capture the behavior
of financial variables at the tail of the mass function.

In the study of heavy negative tailed distributions which are encountered during
empirical examination of asset log returns, EVT is a basis for the so-called Peak
Over Threshold Method (POT). The POT method examines the distribution of
excesses over a sufficiently high limit:

Fu (y) = P {X − u = y|X > u}

A “sufficiently high threshold” is a threshold that provides an optimal balance
between the bias of the model which is increased as the threshold becomes lower
and the variance of it which grows as the threshold does due to the lack of data
points; details on its calculation will be discussed later.

According to Pickands, Balkema and De Haan the excess distribution can be
approximated well by a general Pareto distribution as the threshold becomes
large:

lim
z→∞

Fz (x) = Gξ,α̃(z) (x)

with:

Gξ,α̃(z) (x) =
[
1 + ξy

α̃

]−1/ξ

and σ̃ = σ + ξ (z − µ)

A sketch of the proof of this fact is supplied in [14]:

Gn (z) ≈ exp
{
−
[
1 + ξ

(
z−µ
α

)]−1/ξ
}

n logG (z) ≈ −
[
1 + ξ

(
z−µ
α

)]−1/ξ
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a Taylor series expansion entails:

logG (z) ≈ −{1− F (z)}
1−G (z) ≈ 1

n

[
1 + ξ

(
z−µ
α

)]−1/ξ

1−G (z + y) ≈ 1
n

[
1 + ξ

(
z+y−µ
α

)]−1/ξ

Pr {X > z + y|X > z} ≈ n−1[1+ξ(z+y−µ)/α]−1/ξ

n−1[1+ξ(z−µ)/α]−1/ξ =
[

1+ξ(z−µ)/α+ξ(y)/α
1+ξ(z−µ)/α

]−1/ξ

=

=
[
1 + ξy

α+ξ(z−µ)

]−1/ξ

=
[
1 + ξy

α̃

]−1/ξ

for σ̃ = σ + ξ (z − µ)

The GPD parameter estimation is achieved via momentum method as in [41];
estimators are:

ξ = 1
2

[
µ2

σ2 − 1
]

and α̃ = 1
2µ
[
µ2

σ2 + 1
]

As previously announced the use of GPD functional form is legitimated only for
”maxima” i.e. only for values over a threshold, but maxima are defined only in
terms of such a functional form; consequently the threshold selection is made
critical from this self-referential loop.
To exit the loop a criterion of eligibility is given by the “stationarity” of the
model parameters over a threshold: if a GPD is a reasonable model for excesses
over a threshold z0, then excesses of a higher threshold z should also follow a
GPD; the shape parameters of the two distributions are identical.
Denoting by σz the value of generalized Pareto scale parameter for a threshold
z > z0, it is:

σz = σz0 + ξ (z − z0)

so that the scale parameter changes with z unless ξ = 0; this shortcoming can
be remedied by reparametrizing the Generalized Pareto scale parameter as

σ∗ = σz − ξz

which is constant with respect to z. Consequently, estimates of both σ∗ and ξ
should be constant above z0, if z0 is a valid threshold for excesses. Sampling
variability means that the estimates of these quantities will not be exactly con-
stant, but they should be stable after allowance for their sampling errors. This
argument suggest plotting both σ̂∗ and ξ̂∗ against z0 as the lowest value of z
for which the estimates remain near-constant.
Once completed the parameter estimation and fitted the sample, the VaR is the
tail quantile for a given probability p, available inverting the GPD function:

q̂p =
α̃

ξ̂

(
p−ξ̂ − 1

)
This GPD analytic framework is adopted for example by [36] to produce a model
of the extreme movements of Turkish interest rates during the 2001 financial
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Figure 5.1: A QQ-plot (quantile–quantile plot) is a visual tool to examine
whether a sample comes from a specific distribution. Specifically, the quantiles
of a hypothesized distribution are plotted against the quantiles of an empiri-
cal distribution. If the sample comes from the hypothesized distribution, the
QQ-plot is linear. - [36] pag. 555

crisis; the results were remarkable as noted from the authors: “Our estimation
results from the pre-crisis data indicate that every 4 years one could expect
to see a day with overnight interest rates over 1000 percent (simple annual).
In other words, the extraordinary levels observed during the crisis were in the
nature of the economy before they actually materialized.”

5.0.2 Extreme Value in stochastic processes

The probably most complete and referenced source about this topic is in [11]
and related works; in those studies the stochastic processes of extreme values
are examined in a risk management context but, as anticipated, an applicative
framework is not developed.

These works contain a composite set of very interesting results; I give here a
synopsis of the most relevant ones from my current point of view.

As usual we have the diffusion:

dXt = µ (Xt) dt+ σ (Xt) dWt

Associated with it are the scale function s and the speed measure m.

The first one is defined as:

s (x) =

∫ x

z

exp

{
−2

∫ y

z

µ (x)

σ2 (x)
dt

}
dy
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Figure 5.2: Fitting empirical distribution (circles) with GPD (lines) - [36] pag.
556

Figure 5.3: Threshold individuation - [36] pag. 556
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the speed measure is absolutely continuous with Lebesgue density:

m
′
(x) =

2

σ2 (x) s′ (x)

In this situation (xt) is ergodic and its stationary distribution is absolutely
continuous with Lebesgue density

h (x) = m
′
(x)
/
|m|

For any initial value(X0) = y ∈ (l, r) and any ut ↑ r

lim
t→∞

∣∣P y (MX
t ≤ ut

)
− F t (ut)

∣∣ = 0

where F is a df , defined by

F (x) = e−1/(|m|s(x))I(z,r) (x)∀z ∈ (l, r)

from Taylor expansion and the fact that lim
x↑r

s (x) =∞

F̄ (x)∼
(
|m|

∫ x

z

s
′
(y) dy

)−1

∼ (|m| s (x))
−1

Lemma 5.0.3 Let µ and σ2 be differentiable function on (x0, r) for some x0 < r
such that:

lim
x↑r

d
dx

{
σ2(x)
µ(x)

}
= 0 and lim

x↑r
σ2(x)
µ(x) exp

{
−2
∫ x
z

µ(t)
σ2(t)dt

}
= −∞

Then

F̄ (x)∼ |µ (x)|h (x)

where h (x) is the stationary density of Xt

Proof:

s
′′

(x) = −2s
′
(x)

µ (x)

σ2 (x)
x ∈ (l, r)

lim
x↑r

2
∫ x
z
s
′
(y)dy

−s′ (x)µ(x)/σ2(x)
= lim

x↑r
2s
′
(y)

−s′ (x)o(1)−s′′ (x)µ(x)/σ2(x)
= 1 from De l’Hospital

F̄ (x)∼2µ (x) / |m|s
′
(x)σ2 (x)

that compared with scale measure and speed function gives:

F̄ (x)∼ |µ (x)|h (x)
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If we apply this relation to the solution of Vasicek SDE

Xt =
c

d
+
(
x− c

d

)
e−dt + σ

∫ t

0

e−d(t−s)dWs

knowing that Xt∼ N
(

c
d ,

σ2

2d

)
we have F̄ (x)∼ d (x−c/d)2

σ2/2d
H̄ (x)

where H̄ (x) is the tail of stationary normal distribution function.

5.1 Extreme Value Vasicek process

Now it is time to collect together the items described in previous chapters to
write down the process with needed charactheristics; observe that the mathe-
matical device proposed hereafter can be easily generalized so to build processes
that are functions of arbitrarily chosen stationary distributions.

Theorem 5.1.1 .

Let

dxt = −γ (xt − α) dt+ σ (xt) dWt

be the Vasicek model representing the time evolution of the instantaneous interest
rate (with the usual conventions on the meaning of the terms).

If f (x, t) = exp (−e−x − x) is the conditional density of the stochastic process
dxt , then

σ2 (x) = 2

[
(c− kx) ex − exp

(
e−x + x

)(
kΓ
(
0, e−x

)
− h

2

)]

holds with Γ (0, u) =
∫
u−1e−udu
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Proof:

A fundamental PDE from the physics of particles, relates the conditional density
of the stochastic process dxt = µ (xt, t) dt + σ (xt, t) dWt to the drift and the
variance terms of the same process [33] [79].
This PDE is the Fokker-Planck equation; it states that:

1

2

∂2
(
σ2f

)
∂x2

− ∂ (µf)

∂x
=
∂f

∂t

Because the relevance, for this work, of the stationary distribution of the process,

f (x, t) is constant so that it can be derived from 1
2

∂2(σ2f)
∂x2 − ∂(µf)

∂x = 0 through
the following considerations:
Integrating the previous equation it becomes:

∂

∂x

(
σ2 (x)

2
f

)
− µ (x) f =

1

2
k1

it can be rewritten as:

∂

∂x

(
σ2 (x)

2
f

)
− 2µ (x)

σ2 (x)

σ2 (x) f

2
=

1

2
k1

so that it is clear that

s (x) = exp

(
−
∫

2µ (v)

σ2 (v)
dv

)
(5.1)

can be assumed as integrating factor giving:

∂

∂x

(
s (x)σ2 (x) f

)
= s (x) c1

a further integration returns:

f =
c1
∫
s (v) dv + c2

s (x)σ2 (x)

c1 and c2 must be determined so that f – a density – be not negative for whatever
value of x ; a convenient choice is: c1 = 0 and c2 ≥ 0 obtaining:

f =
1

|m| s (x)σ2 (x)

s (x) =
1

|m|σ2 (x) f
(5.2)

But from (5.1) it is known that:
∂

∂x
ln (s (x)) = −2µ (v)

σ2 (v)

and hence that:
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µ (x) = −
σ2 (x) ∂

∂x ln (s (x))

2

substituting s (x) with (5.2)

µ (x) = −
σ2 (x) ∂

∂x ln
(

1
|m|σ2(x)f

)
2

= −1

2
σ2 (x)

(
− ∂

∂x
ln (f (x))− ∂

∂x
ln
(
σ2 (x)

)
− ∂

∂x
ln (|m|)

)
=

= −1

2
σ2 (x)

(
− ∂

∂x
ln (f (x))− ∂

∂x
ln
(
σ2 (x)

))
=

=
1

2
σ2 (x)

(
∂

∂x
ln (f (x)) +

∂
∂x

(
σ2 (x)

)
σ2 (x)

)
(5.3)

The last expression is a linear first order non-homogeneous differential equa-
tion whose solution is:

σ2 (x) = 2e−
∫

∂
∂x ln(f(x))dx

(∫
µ (x) e

∫
∂
∂x ln(f(x))dxdx+ h

)
(5.4)

σ2 (x) = 2e− ln(f(x))

(∫
µ (x) eln(f(x))dx+ h

)
(5.5)

σ2 (x) =
2

f (x)

(∫
µ (x) f (x) dx+ h

)
(5.6)

Focusing the attention on a specific mean reverting interest rate model, properly
the Vasicek model

dXt = (c− kXt) dt+ σ (Xt) dW

define:
µ (x) = (c− kXt)

Furthermore, because a normally distributed random variable belongs to the
domain of attraction of the Gumbel distribution and from the fact that in the
Vasicek process the random variable has normal stationary distribution, it is
verified that

f = exp
(
−e−x − x

)
Hence, recalling (5.3)

σ2 (x) =
2

exp (−e−x − x)

(∫
(c− kx) exp

(
−e−x − x

)
dx+ h

)
σ2 (x) = 2 exp

(
e−x + x

)(
c exp

(
−e−x

)
− k

∫
x exp

(
−e−x − x

)
dx+ h

)
(5.7)
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To solve the last integral in the formula (5.6) proceed integrating by parts after
an opportune substitution:

u = e−x

x = − ln (u)

dx = −1/u∫
x exp (−e−x − x) dx =

∫
ln (u) e−udu = −e−u ln (u) +

∫
u−1e−udu = Γ (0, u)− e−u ln (u) =

= Γ (0, e−x) + x exp (−e−x)

where Γ (0, u) =
∫
u−1e−udu

is the Gamma incomplete function.

After a substitution in (5.7)

σ2 (x) = 2 exp
(
e−x + x

) (
c exp

(
−e−x

)
− k

(
Γ
(
0, e−x

)
+ x exp

(
−e−x

))
+ h
)

that simplified is:

σ2 (x) = 2

[
(c− kx) ex − exp

(
e−x + x

)(
kΓ
(
0, e−x

)
− h

2

)]
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Appendix A.5 – Derivation of the Fokker-Planck equation

Suppose we have an arbitrary smooth function f . Recalling that Ito integrals
have mean 0, it follows from Ito’s lemma that

E [f (Xt)] = E

[
f (X0) +

∫ t

0

(
f
′
(Xu) a (Xu) +

1

2
f
′′

(Xu)σ2 (Xu)

)
du

]
Differentiating with respect to time, we find that

d

dt
E [f (Xt)] = E

[
f
′
(Xu) a (Xu) +

1

2
f
′′

(Xu)σ2 (Xu)

]
Now, setting X0 = x0, the definition of expected value gives:∫
f (x)

∂

∂t
p (x, t|x0, 0) dx =

∫ (
f
′
(Xu) a (Xu) +

1

2
f
′′

(Xu)σ2 (Xu)

)
p (x, t|x0, 0) dx

where the integral is over all nonzero values of p (x, t|x0, 0).

We can hence integrate the right-hand side by parts:∫
f (x) ∂

∂tp (x, t|x0, 0) dx

=
∫
f (x)

(
− ∂
∂x (a (x) p (x, t|x0, 0)) + 1

2
∂2

∂x2

(
σ2 (x) p (x, t|x0, 0)

))
dx

and conclude that the transition density satisfies:

∂

∂t
p (x, t|x0, 0) = − ∂

∂x
(a (x) p (x, t|x0, 0)) +

1

2

∂2

∂x2

(
σ2 (x) p (x, t|x0, 0)

)
Quantitative finance offers a famous example of explicit derivation of the volatil-
ity term from density through the Fokker-Planck equation in Dupire’s analysis
of volatility smiles [24].

Dupire overcomes the limits of constant volatilities in classical Black-Scholes-
Merton model making the volatility term stochastic and sensitive to the price
level; he compensates the distorsive effects of costant model volatility extracting
a volatility convex function from Fokker-Planck equation, that is:

σ (K,T ) =

(
2∂C∂t (K,T )

K2 ∂2C
∂K2 (K,T )

) 1
2

where:

T : expiration time of a call option C written on a not-specified underlying
security

K: strike price of the call option C

σ (K,T ): volatility of the call option C
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Chapter 6

Implementation issues

6.1 Euler scheme application

To test the quality of the EVT interest rates model against experience, the
experimental section of this research requires the simulation of values from the
same model.
To explain the simulation approach with an adequate level of generality, take
the usual process dXt = µ (t,Xt) dt+ σ (t,Xt) dWt or, better, take a discretized

version
{
X̂h, X̂2h, ..., X̂mh,

}
of it where m is the number of time steps, h is

a constant and mh = T. The smaller the value of h, the closer our discretized
path will be to the continuous-time path we wish to simulate.
Of course this will be at the expense of greater computational effort.
While there are a number of discretization schemes available, I will illustrate
the simplest and perhaps most common scheme, the Euler scheme.
The Euler scheme is intuitive, easy to implement and satisfies

X̂t = X̂(t−1) + µ
(
t, X̂(t−1)

)
h+ σ

(
t, X̂(t−1)

)√
hZ

where the Z ’s are IID N (0; 1).

To estimate Xt using the Euler scheme, then for a fixed number of paths, n,
and discretization interval, h, we have the following algorithm:

for j = 1 to n
set t = 0; X̂ = X0

for k = 1 to T/h = m
generate Z∼ N (0, 1)
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set X̂t = X̂(t−1) + µ
(
t, X̂(t−1)

)
h+ σ

(
t, X̂(t−1)

)√
hZ

set t = t+ h
end for
set fj = f (x̂)

end for
set θ̂n = (f1 + ...+ fn) /n

set σ̂2
n =

∑n
j=1

(
fj − θ̂n

)2

/ (n− 1)

set Confidence Limit = θ̂n ± zα σ̂n√n

Clearly the procedure is affected by a discretization error related to the size of
discretization step.

The discretization error may be defined by D =
∣∣∣XT − X̂T

∣∣∣ and it is very

important when simulating SDE’s to ensure that D is suffciently small.
A common method of controlling discretization error is as follows:
Let be X̂m

T our estimator of XT when we use m discretization points. We first

compute X̂m and X̂2m for a reasonably large value of m. If
∣∣∣X̂m − X̂2m

∣∣∣ is

sufficiently small then we can assume that 2m is a sufficiently large sample size
to guarantee a negligible discretization error.

6.1.1 Improving the Euler scheme: the Milstein scheme

To improve the precision of the Euler scheme we could include higher-order
terms in a Taylor-like expansion of µ (X (t)) paying attention to its compatibility
with the rules of Ito calculus rather than ordinary calculus.
Rewrite the Ito process in integral form:

X (t) = X (0) +

∫ t

0

µ (X (u)) du+

∫ t

0

σ (X (u)) dW (u)

The Euler scheme results from the approximations∫ t+h

t

µ (X (u)) du ≈ µ (X (t))h

and ∫ t+h

t

σ (X (u)) dW (u) = σ (X (t)) [W (t+ h)−W (t)] (6.1)

that approximate the integrands over [t, t+ h] by their value at t.
Now we improve the approximation of σ (X (u)) improving its accuracy over an
interval [t, t+ h].
Ito’s formula gives:

dσ (X (u))=
[
σ
′
(X (t))µX (t) + 1

2σ
′′

(X (t))σ2 (X (t))
]
dt+ σ

′
(X (t))σX (t) dW (t)

52



Applying the Euler approximation to the process σ (X (t)) t ≤ u ≤ t+ h

σ (X (u)) ≈ σ (X (t)) + dσ (X (u))

= σ (X (t)) +
[
σ
′
(X (t))µX (t) + 1

2σ
′′

(X (t))σ2 (X (t))
]

[u− t]
+σ

′
(X (t))σX (t) [W (u)−W (t)]

Dropping the higher-order term yields the approximation σ (X (u)) ≈ σ′ (X (t))σX (t) [W (u)−W (t)].
Having this approximation at our disposal, we can replace (5.7) with:∫ t+h

t
σ (X (u)) dW (u)

≈
∫ t+h
t

(
σ (X (t))σ

′
(X (t))σ (X (t)) [W (u)−W (t)]

)
dW (u)

= σ (X (t)) [W (t+ h)−W (t)]

+σ
′
(X (t))σ (X (t))

(∫ t+h
t

[W (u)−W (t)] dW (u)
) (6.2)

Integral in (6.1) can be written as:∫ t+h
t

[W (u)−W (t)] dW (u) =∫ t+h
t

W (u) dW (u)−W (t)
∫ t+h
t

dW (u)
= Y (t+ h)− Y (t)−W (t) [W (t+ h)−W (t)]

(6.3)

with

Y (t) =

∫ t

0

W (t) dW (t)

and

dY (t) = W (t) dW (t)

The solution to this SDE is, as argued in chap. 2:

Y (t) =
1

2
W (t)

2 − 1

2
t

Making this substitution in (6.2) and simplifying, we get∫ t+h

t

[W (u)−W (t)] dW (u) =
1

2
[W (t+ h)−W (t)]

2 − 1

2
h

that is, using it in (6.2):∫ t+h
t

σ (X (u)) dW (u)
≈ σ (X (t)) [W (t+ h)−W (t)]

+ 1
2σ
′
(X (t))σ (X (t))

(
[W (t+ h)−W (t)]

2 − h
)

This approximation affects X(t + h); the one-step Euler approximation is hence
refined in this way:

X (t+ h) ≈ X (t) + µ (X (t))h+ σ (X (t)) [W (t+ h)−W (t)]

+ 1
2σ
′
(X (t))σ (X (t))

(
[W (t+ h)−W (t)]

2 − h
)
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The simulation algorithm becomes:

X̂t = X̂(t−1) + µ
(
t, X̂(t−1)

)
h+ σ

(
t, X̂(k−1)h

)√
hZ

+ 1
2σ
′
(
t, X̂(t−1)

)
σ
(
t, X̂(t−1)

)
h
(
Z2 − 1

)
This solution is due to Milstein and known as “Milstein scheme” [54].

6.1.2 Variance reduction

Variance reduction techniques are useful in reducing a big amount of compu-
tational resources in numerical simulations; they attempt to limit algorithmic
redoundancies making use of statistical properties of the modeled domain.

The method of control variates is among the most effective and broadly appli-
cable techniques for improving the efficiency of Monte Carlo simulation. [37]

It exploits information about the errors in estimates of known quantities to
reduce the error in an estimate of an unknown quantity. To do so, it carries out
in parallel two simulations using the same random number streams and the same
timestep; the first is used to obtain an estimate f∗A of the unknown quantity,
while the second is used to obtain an estimate f∗B of the known quantity, used,
via the comparison with the theoretical quantity f∗A, to evaluate the theoretical
gap between fA and fB .

A better estimate fA of the quantity A is then calculated using the formula:
fA = f∗A−f∗B+fB where fB is the true known value of B deducted analytically.

Turning back to our model with stochastic interest rates, we consider bonds as
the underlying assets of an interest rate model so to take bond prices as a source
of control variates.

Given the short rate ri, a bond maturing at time T has initial price

B (0, T ) = E

[
exp

(
−
∫ T

0

r (u) du

)]

Because B (0, T ) is known, we can assume exp
(
−
∫ T

0
r (u) du

)
as control variate.

Using

exp

(
− 1

n

n∑
i=1

r (ti)

)

in a control variate estimator could entail some bias related to the partition
size of [0, T ]; nevertheless when an exact joint simulation of r (ti) and its time

integral Y (ti) =
∫ ti

0
r (u) du is allowed, it provides a bias-free control variate

because E [exp (−Y (ti))] = B (0, T ).
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6.2 Model calibration

In chapter 3 I gave an illustration of the Vasicek model and the technicalities
related to its parameters calibration.

The maximum-likelihood rationale underpinning that context is basically trans-
ferable to the EVT – Vasicek model examined here except the need for a nu-
merical procedure in estimating model parameters; EVT – Vasicek model differs
from classical-Vasicek in the volatility term that is not a constant but a function
that makes least squares unfeasible with closed forms.

For this reason optimization tasks get critical relevance in performing calibration
so that a look through the optimization tool can help in understanding and
adjusting model outcomes.

6.2.1 The Levenberg-Marquardt algorithm

In fitting a function ŷ (t;w) of an independent variable t and a vector of n
parameters w to a set of data points (ti, yi), it is customary and convenient to
minimize the sum of the weighted squares of the errors (or weighted residuals)
between the measured data y (ti)

and the curve-fit function y (ti;w). This scalar-valued goodness-of-fit measure
is called the chi-squared error criterion.

χ2 (w) =
∑m
i=1

1
2

[
y(ti)−y(ti;w)

σi

]2
= 1

2

(
Y − Ŷ (w)

)T
S
(
Y − Ŷ (w)

)
= 1

2Y
TSY − Y TSŶ + 1

2 Ŷ
TSŶ

(6.4)

The value wi is a measure of the error in measurement y (ti). The matrix S is
diagonal with Sii = 1

/
σ2
i

If the function ŷ is nonlinear in the model parameters w, then the minimization
of χ2 with respect to the parameters must be carried out iteratively. The goal
of each iteration is to find a perturbation h to the parameters w that reduces
χ2.

The steepest descent method is a general minimization method which updates
parameter values in the direction opposite to the gradient of the objective func-
tion. It is recognized as a highly convergent algorithm for finding the minimum
of simple objective functions.

For problems with thousands of parameters, gradient descent methods may be
the only viable method.

The gradient of the chi-squared objective function with respect to the parame-
ters is:

∂
∂wχ

2 =
(
Y − Ŷ (w)

)T
S ∂
∂p

(
Y − Ŷ (w)

)
= −

(
Y − Ŷ (w)

)T
S
[
∂Ŷ (w)
∂w

]
= −

(
Y − Ŷ (w)

)T
SJ
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where the n × m Jacobian matrix ∂Ŷ
∂w represents the local sensitivity of the

function Ŷ to variation in the parameters w. For notational simplicity J will be

used for ∂Ŷ
∂w .

The perturbation h that moves the parameters in the direction of steepest de-
scent is given by

h = −
(
Y − Ŷ (w)

)T
SJ

where the positive scalar α determines the length of the step in the steepest-
descent direction.
The Gauss-Newton method is a method of minimizing a sum-of-squares objec-
tive
function. It presumes that the objective function is approximately quadratic in
the parameters
near the optimal solution. For more moderately-sized problems the Gauss-
Newton method typically converges much faster than gradient-descent methods.
The function evaluated with perturbed model parameters may be locally ap-
proximated through a first-order Taylor series expansion.

Y (w + h) ≈ Ŷ (w) +

[
∂Ŷ (w)

∂w

]
h = Ŷ (w) + Jh

Substituting the approximation for the perturbed function, Ŷ (w) +Jh for Ŷ in
equation (5.1),

χ2 (w + h) =
1

2
Y TSY − Y TSŶ +

1

2
Ŷ TSŶ −

(
Y − Ŷ

)T
SJh+

1

2
hTJTSJh

This shows that χ2 is approximately quadratic in the perturbation h, and that
the Hessian of the chi-squared fit criterion is approximately JTSJ .

The perturbation h that minimizes χ2 is found from ∂χ2

∂w = 0.

∂

∂w
χ2 (w + h) ≈ −

(
Y − Ŷ (w)

)T
SJ + hTJTSJ

and the resulting normal equation for the Gauss-Newton perturbation is:[
JTSJ

]
h = JTS

(
Y − Ŷ (w)

)
The Levenberg-Marquardt algorithm adaptively varies the parameter updates
between the gradient descent and Gauss-Newton update,[

JTSJ + λI
]
h = JTS

(
Y − Ŷ (w)

)
(6.5)

where small values of the algorithmic parameter λ result in a Gauss-Newton
update and large values of λ result in a gradient descent update. At a large
distance from the function minimum, the steepest descent method is utilized
to provide steady and convergent progress toward the solution. As the solution
approaches the minimum, λ is adaptively decreased, the Levenberg-Marquardt
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method approaches the Gauss-Newton method, and the solution typically con-
verges rapidly to the local minimum.

The outlined algorithm has the disadvantage that if the value of λ is large, the
calculated Hessian matrix is not used at all; in such cases the second deriva-
tive deliveries an information useful to scale each component of the gradient
according to the curvature. This should result in larger movement along the
directions where the gradient is smaller ; for this reason Marquardt replaced
the identity matrix in (6.4) with the diagonal of the Hessian resulting in the
Levenberg-Marquardt update rule.

[
JTSJ + λdiag

(
JTSJ

)]
h = JTS

(
Y − Ŷ (w)

)
In practical implementation Jacobian is numerically evaluated using backwards
differences,

Ji,j =
∂ŷi
∂wj

=
ŷ (ti;w + δwj)− ŷ (ti;w)

‖δwj‖

where the j-th element of δwj is the only non-zero element and is set to εw =
(1 + |wj |).
If in an iteration χ2 (w) − χ2 (w + h) > εhT

(
λh+ JTS (y − ŷ)

)
then p+h is

sufficiently better than w, w is replaced by w+h, and λ is reduced by a factor of
ten. Otherwise λ is increased by a factor of ten, and the algorithm proceeds to
the next iteration. Convergence is achieved if max (|hi/pi|) < εh, χ2/m < εy,

or max
(∣∣∣JTW (

Y − Ŷ
)∣∣∣) < εz. Otherwise, iterations terminate when the

iteration number exceeds a pre-specified limit.

6.2.2 Bayesian parameters inference

Least square approach to inference is well known to be affected by overfitting:
the training sample could be not representative of the full population’s behav-
ior and too detailed models have the shortcoming to tradeoff a low in-sample
approximation error with high variance – i.e. not acceptable out-of-sample (pre-
diction) error.

Maximum likelihood criterion is reliable only when observed samples are the
most likely; it is the most probable circumstance, but it is not certain. Con-
versely, a way to take into account parameters’ uncertainty is to consider the
maximum probability of parameters given data, parameters themselves follow-
ing a distribution law.

Bayesian learning is based on this idea deriving posterior parameters distribu-
tion from the Bayes rule; given:
P (y|w)= the likelihood of the model output ygiven the set of model parameters
w

P (w)= the prior probability of the model parameters w

the probability of parameters given the observation (the “right” way to think
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about parameter estimation) is:

P (w| y) =
P (y|w)P (w)∫
P (y|w)P (w)

In models calibration bayesian approach integrates predictions from all possible
weights vectors over the posterior parameter distribution rather than use a single
“optimal” set of network weights.
With integration a parameter vector that fits the data only slightly better than
others will contribute only slightly more to prediction without exclusion of al-
ternative models:

ŷn+1 =

∫
y (xn+1, w)P (w| (x1, y1) , ..., (xn, yn)) dw

Here with the notation(xi, yi) is represented the pair model input vs. observed
values used to calibrate the model.
Integral involved in Bayesian prediction is generally hard – if not impossible -
to evaluate analytically; numerical methods, namely Montecarlo methods, are
available for this purpose.
The fundamental idea is to approximate

∫
y (x,w)P (w|x, y) with the corre-

sponding expected value E [y (x,w)] ≈ 1
n

∑n
i=1 y (x,wi) where wi represents a

sample of weight vectors generated from the distribution P (w|x, y).

Metropolis Algorithm

This basic computation is inadequate for standard practical applications due
to the multi – dimensionality and multi – modality in the posterior probability
density for w; Metropolis algorithm [74] is an effective way to arrange for the
distribution of weight vectors to correspond to P (w|x, y).
Metropolis Algorithm generates candidate steps from Markov chains:

wnew = wold + ε

but reject a proportion of the steps which lead to a reduction in the value of
P (w|x, y) . This must be done with great care, however, in order to ensure
that resulting sample of weight vectors represents the required distribution.
1

1The proof of convergence of Metropolis Hasting algorithm is far beyond the scope of this
work; nevertheless it is possible to share an insight about the heuristic of the algorithm. The
essential condition to generate samples from a target distribution is given by the “stationary
balance” requirement; it means that, after a warm-up period, the random sequence reach the
following state: N(x)p(x →y) = N(y) p(y →x) where:
N(x), N(y) = target distribution
p(x→y), p(y→x) = transition probability
The transition probability, due to the algorithm construction, is given by:
p(x →y) = a (x →y) acc (x →y)
p(y →x) = a (y→x) acc (y →x)
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In the Metropolis algorithm this is achieved by using the following criterion:

If P (wnew|x, y) > P (wold|x, y) Then accept

Else accept with probability P (wnew|x,y)
P (wold|x,y)

A critical point in Metropolis Algorithm and in any other MCMC samplers
is the number of initial steps until the chain approaches stationarity; being that
number related to the distance of starting value from the distribution’s mode,
the length of so named “burn-in period” can be reduced using gradient descent
information to speed-up convergence.

where:
a (x →y), a (y →x) = probability of candidate y (x in the opposite case) coming from x (y in
the opposite case)
acc (y→x), acc (x→y) = probability of “acceptance” of candidate x (y in the opposite case).
Choosing a (x → y) = a (y →x) the stationarity condition becomes:
N(x) acc (x→y) = N(y) acc (y→x)
that is:
acc (y→x) / acc (x→y) = N(x)/ N(y).
Now, because the “acceptance rule” of the algorithm:
If N(x)>N(y) then acc (y→x) = 1, acc (x → y) = N(y)/ N(x),
hence the stationarity condition is confirned; the same holds in the opposite case:
If N(x)<N(y) then acc (y→x) = N(x)/ N(y), acc (x → y) = 1
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Chapter 7

Simulation results

The compulsory need of a model that describes a mean reverting process whose
stationary distribution is designed to represent extreme values, comes from the
failure of standard models in capturing the shocked dynamics of current reces-
sional markets. Due to the relevance of public expectations in prices evolution, it
is plausible that not only the financial crisis compels new mathematical tools but
that obsolete models, driving misleading choices, compromise economic equilib-
rium.

Obviously, algorithms will not save the world but an honest enquiry about the
conditions of their application could reveal useful insights about the relativity of
classical economic “truths” first of all the assumption of invariance of economic
rules or the dangerous idea of tendential infinite growth.

The forecasting of interest rates plays a fundamental role in global financial
institutions investment strategies so as in central government macroeconomic
interventions; to have a dimension of the importance of interest rates modeling,
consider that specialized international companies earn millions of dollars selling
“only” tables of numbers (interest rates curves) to professional investors.

A professional investor could be no so interested in the fact that predictions
are good but that are the same on which its competitor takes crucial decisions:
ideally, if all the market makers take the same decision, “predictions” become
“prescriptions”. So, “standard” models work well because they are standard un-
til strong “structural” black outs (for example a pathologic money concentration
that mismatches demand and offer) radically change the market scenarios.

A first (and reiterate) attempt to interpret market stresses - inspired by the
silent “axiom” of economic rules invariance – is to force classical model param-
eters to include strong market anomalies; unfortunately, by this way, the model
is tuned to expect exceptions as if they were normal facts so that the identifica-
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tion of critical market periods is arbitrarily performed from the analyst during
the calibration step rather than reached by a good model.

To test the usefulness of the model I’m proposing, I’ll measure its success in
elaborating VaR limits. I’ll adopt an hypothesis test currently used in VaR
evaluation to verify the effectiveness of the VaR limits obtained with the ex-
treme value model and I’ll compare the outcomes with those obtained from a
traditional Vasicek approach.

7.1 Data

A real-world data panel is used for models testing, namely the Euribor Eur001M
short rates assumed as a proxy of instantaneous rates; the choice of a five-years
overall period (01/01/2007-31/12/2011) comes from a compromise between the
need of a range wide enough to show radical changes in financial scenarios (in
particular the 2008 drawdown) and the attempt to stay focused on an homoge-
neous frame, whose driving forces could be comparable under a macroeconomic
point of view.

In order to evaluate the annual value at risk, the calibration dataset is segmented
in windows of 252 observations each, and the outcomes of resulting model are
“back tested” with 252 following observations not involved in calibration step.

Descriptive statistics of data
sample

2007 2008 2009 2010 2011 2012
n. of ob-
servations

255 256 257 257 257 227

mean 0,0396 0,0405 0,0074 0,0048 0,0102 0,002
std. devi-
ation

0,0022 0,0054 0,0048 0,0015 0,0021 0,0014

7.2 Size of historical series

A central point in calibration task is the determination of the “right” portion of
historical data that can be used to ensure a “good” prediction; so, we need to
clarify univocally what the meaning of “good” in this context and how a data
set could be theoretically “right” in order to support a prediction quantitatively
marked as “good”.

To assess the quality of a prediction the most intuitive thing to do is the mea-
surement of the distance between the predicted values and the observed ones,
as assumed by R2, a common index belonging to the family of “goodness of fit”
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Figure 7.1: 2007-2012 Eur001M curve - Source: Bloomberg L.P. Professional Services

measures:

R2 = 1−
n∑
i=1

(yi − f (xi))
2

(yi − ȳ)
2

Here yi is the observed value, ȳ is the average of observed values and f (xi) is

the predicted value; the prediction error (yi − f (xi))
2

is hence “normalized” on
sample’s standard deviation.

This seems a correct practice to evaluate the model error when the values we
attempted to forecast are observable and comparable with predictions; but what
do we know about the quality of the model “before” the “new history” happens
? What is the model’s parameters set up that minimizes R2 ?

A partial answer to these questions is embedded in the maximum likelihood
criterion: if we maximize the probability of observed data given parameters, as
in ML, we are reasonably confident to find representative parameters or, better,
parameters are representatives if observed data are indeed the “most likely”.
But if no information about the parameter distribution is available, there is
no indication about model generality and about its accuracy out of calibration
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sample; to calibrate models taking into account parameter uncertainly we have
to find the probability of parameters given the data through the Bayes rule:

P
(
θ̂
)

= P (θ| y) ≈ P (y|θ)P (θ)

The probability of a value P (y) is, in coherence with the premises, given by
the marginalization of many different likelihoods weighted for the respective
probabilities:

P (y) =

∫
P
(
θ̂
)
P (y|θ) dθ

Suppose to define:

g (θ) = log
(
P
(
θ̂
)
P (y|θ)

)
⇔ P

(
θ̂
)
P (y|θ) = exp g (θ)

expand g (θ) in Taylor series about the maximum g (θ0):

g (θ) ≈ g (θ0) + g′ (θ0) (θ − θ0) + 1
2g
′′ (θ0) (θ − θ0)

2
=

= g (θ0) + 1
2g
′′ (θ0) (θ − θ0)

2

(the first derivative is null due to the fact that it is evaluated at the maximum
of the function)
Turning back to the definition of P (y):

P (y) =
∫

exp
(
g (θ0) + 1

2g
′′ (θ0) (θ − θ0)

2
)
dθ

= exp (g (θ0))
∫

exp
(

1
2g
′′ (θ0) (θ − θ0)

2
)
dθ

trasforming:

g′′ (θ0) = − 1

σ2
⇔ σ = −

√
1/g′′ (θ0)

from the definition of Gaussian distribution it is immediate that:

P (y) = eg(θ0)
∫
e

1
2 g
′′

(θ0)(θ−θ0)2 = eg(θ0)
∫
e−

(θ−θ0)2

2σ2 = Nσ
√

2π

= −
√

1/g′′ (θ0)
√

2π =
√

2π
−g′′(θ0)

hence:

P (y) = exp (g (θ0))

√
2π

−g′′ (θ0)

This result offers a closed form approximation of the integral involved in P (y)
calculation; the method is due to Laplace.
Taking the logarithms and remembering previous definitions:

log (P (y)) = logP (θ0) + logP (y|θ0) +
1

2
log
(√

2π
)
− 1

2
log (g′′ (θ0)) (1)
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The last term in this equation reveals further details: the likelihood function in
g (θ) = log (P (θ)P (y|θ)), can be written as P (y|θ) =

∏n
i=1 P (yi|θ), being the

product of likelihood functions evaluated on ni.i.d. observations; it means that:

g′′ (θ0) =
∂2 log(P (θ0)

∏n
i=1 P (yi|θ0))

∂θ0
∝

∑n
i=1 ∂

2 logP (yi|θ0)

∂θ0
∝

∝ E
{
∂2 logP (yi|θ0)

∂θ0

}
n

and that:
1

2
log (g′′ (θ0)) =

1

2
log k +

1

2
log n

Substituting in (1) and discarding O (1) factors it’s clear that:

log (P (y)) = logP (y|θ0)− 1

2
log n

This approximation is called the Bayesian information criterion (BIC), and was
first derived by Schwarz [81]; it can be used as a measure of the bias-variance
tradeoff in model calibration and, for our purposes, offers a tool to estimaten,
the recommended size of historical series intimately related to the sampling
error.

Figure 7.2: BIC measures for each annuity

Observing the BIC values related to the sample sizes for each of the year in
scope, it becomes clear that along an under-sampling window the indicator
decreases till a minimum that is the starting point of an over-sampling frames;
it means that the information gain progressively induced by the sample growth,
compensates only partially the increase in overall volatility.
The estimation period is then fixed from the starting time to the last time step
before the BIC value restart growing; in all the data samples the estimation
period is quite similar – around 100 observations – so that I preferred, with
an acceptable simplification, to work with a size of 100 observations for each
sampled year.
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7.3 Parameters optimization

Parameters calibration is achieved through least square method implemented
with the Levenberg-Marquardt optimization algorithm (see chapter 6 for a re-
view); convergence outcomes related to the in-sample error are plotted.

Figure 7.3: In-sample fitting error

The values of estimated parameters are reported in conjunction with respective
confidence intervals; to compute standard error the distribution of each of the
model parameters is simulated numerically as follows.
After the parameters have been estimated – call these “master” parameters -,
simulate a sample path of length equal to the historical sample from the model
configured with those parameters. For this sample path one then estimates the
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best fit parameters as if the simulated path were the historical one, and ob-
tains a new sample of the parameters. Then again, iterating simulation from
the “master” parameters, one goes through this procedure and obtains other
samples of parameters; doing so, one builds a random distribution of each pa-
rameter, all starting from the master parameters.

Table: EVT-Vasicek parameters statistics

k c h
2007 mean 1,25727E-09 3,59202E-12 4,4E-07

st.dev 2,27018E-09 5,38853E-12 3,84E-07
2008 mean 3,04897E-08 1,19074E-09 3,3E-06

st.dev 6,9729E-08 2,92584E-09 2,99E-06
2009 mean 5,39532E-06 5,89557E-07 0,000172

st.dev 2,11523E-05 1,76916E-06 0,000176
2010 mean 1,34248E-12 4,55811E-15 6,48E-09

st.dev 5,02212E-12 1,65444E-14 5,74E-09
2011 mean 1,5289E-09 8,03523E-12 3,54E-07

st.dev 2,08204E-09 1,09603E-11 2,97E-07
2012 mean 5,49374E-08 6,793E-10 4,09E-06

st.dev 8,63231E-08 1,25389E-09 3,25E-06

7.4 Simulation outputs

After model’s parameters estimation model’s outcomes are finally obtained.
The set of following figures depicts, for each annuity:

1. Montecarlo rates paths diffusion for classical Vasicek model

2. Montecarlo rates paths diffusion for revised EVT- Vasicek model

3. In sample & out of sample fitting of the calibrated model

4. Empirical distribution of rates at the end of the simulation period for both
models.

The empirical distribution of rates is represented here to compare Vasicek and
revised EVT-Vasicek models in terms of extreme loss forecasting, what risk
management pratictioners fundamentally need to prevent portfolio crashes; this
kind of model assessment is analytically developed through the Kupiec Test.

7.4.1 Kupiec Test

VaR backtesting requires a method to verify the reliability of model outputs
when the model is applied on samples selected outside the calibration domain.
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Figure 7.4: 2007 simulation output

Being VaR the worst loss in a time horizon for a given confidence limit, the
Kupiec test [57] is an hypothesis test that assesses the compatibility of the
number of realized VaR violations with that limit.
More formally:
Let be x the effective number of threshold crossing (failures) on n values and c
the confidence level; the null hypothesis is that frequency of failures is equal to
the predicted failure rate p of the model.
Generally the probability of x violations out of n total trials is a function of the
possible combinations of violations:

P (X = x) =

(
n
x

)
px (1− p)x−n

The log-likelihood ratio statistic is an index of the gap between the theoretical
amount and the observed one of the VaR violations:

LR = −2 ln
[
(1− p)x−n pn

]
− 2 ln

[
(1− x/n)

x−n
(x/n)

n
]
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Figure 7.5: 2008 simulation output

Figure 7.6: 2009 simulation output
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Figure 7.7: 2010 simulation output

Figure 7.8: 2011 simulation output
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Figure 7.9: 2012 simulation output
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Its distribution, for n→∞ and under the null hypothesisp = x
n , is a chi-squared

with one degree of freedom.
The acceptance regions for the confidence level c are derived from the chi-
squared percentiles: {x : LR ≤ c}
If the statistic LR overlays the acceptance limit the null hypothesis p = x

n is
rejected: the VaR cannot be confirmed. In what follows the Kupiec test outputs
are displayed.

Table: Kupiec test (p-value = 0,1 - critical value = 2,705)

2007 2008 2009 2010 2011 2012
Failures Vasicek 22 31 7 136 0 6
Failures EVT

Vasicek
0 0 0 127 9 0

LR Vasicek 37,179 61,679 5,4380 473,36 1,1102 4,0060
LR EVT

Vasicek
1,1102 1,1102 1,1102 431,49 8,670 1,1102

p-value Vasicek 1,08E-
09

4,04E-
15

0,0197 5,9E-
105

0,2920 0,0453

p-value EVT
Vasicek

0,2920 0,2920 0,2920 7,68E-
96

0,0032 0,2920

As we could expect the Vasicek model is severely penalized by the market turbu-
lence and only in one time window leads to null hypothesis acceptation.Revised
Vasicek works better in all the sessions except the 2011 forecast where 9 vio-
lations occur and the likelihood ratio passes the critical value causing the hy-
pothesis rejection; the only further macroscopic failure of the revised model is
in the year 2010, whose market dynamics are evidently hard to capture.The
anomalous behavior of these dynamics implies now expensive financial troubles
but can be an interesting source of new information about the microstructure
of hazardous economic scenarios.

72



Chapter 8

Conclusions

The market crash started (revealed) in 2008 is the definitive check point for stan-
dard financial quantitative models; they indubitably fall in capturing adverse
scenarios and neglect extreme events because they are based on distributional
hypothesis that are systematically violated in the real life.
On the other hand, if a model, or a set of models, is inadequate to represent
market movements, there is a low chance to make profitable business avoiding
fatal losses: the risk underestimation increases the default probability.
From a practical point of view it is hence necessary to adopt new financial
models that relax structural constraints related to the distribution of observed
prices; this requirement leads to the theoretical enquiry about the relationship
between the characteristic of a stochastic process and the distribution of the
random variable subject to that process.
My research applies standard results of extreme value theory to stochastic pro-
cesses in order to modify the distributional assumptions of a classical interest
rate model and to adapt it to the representation of extreme returns; while this
is the main task of this work, it can inspire most general considerations and con-
tributions as I will suggest later, after a comment on the experimental results
obtained in the previous chapter.

8.1 Notes about the outcomes

The main risk embedded in my research is due to the disproportion between the
importance of the topic – the market data behavior in stressed economic scenar-
ios – and the resources – necessarily limited – I have at my disposal to analyze
the same topic; this risk consists of a misevaluation of the problem because the
partiality of the solution I propose, while it should be useful to empower the
effort on the analysis to compensate the imperfection of my analysis.

At a first glance, looking at the test on VaR threshold violation, it seems con-
firmed the appropriateness of an approach that takes into consideration the
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fatness of distribution tails and pays a particular attention to the volatility
dynamics: this real market challenge of the EVT-Vasicek model is quite encour-
aging, and the model is currently adopted for experimental purposes from the
model validation unit of an Italian top insurance group.

We could criticize that the model works well during economic recessions but
the alert about an upcoming crisis should be the output of the model, not a
working condition; in other words the model must work well in every set of cir-
cumstances, being able to modify its output so to anticipate real dangers. The
adjective “real” is not pleonastic here, it recalls the fact that warnings about
“false” dangers have to be avoided, and that the augmentation of false positive
to reduce the false negative is not a best practice; so, what I planned to achieve
is a satisfactory “reactivity” of the model, its attitude to increment VaR only
when market is deteriorating (a model that increases VaR in an indiscriminate
way is simply the classical model with inflated variance).

In EVT-Vasicek approach, the volatility of the process is a function of the in-
terest rate; this characteristic makes the same process sensitive to the updated
market level, as I intended.

The experimental session I ran to reach these results persuaded me about the
“price” we have to pay to increase the reactivity in the sense just mentioned: a
factual renounce to model adherence to distributional central values.

The particular structure of the sigma function I derived imposes a tradeoff
between a good drift fitting and a good volatility fitting: if parameters are op-
timized to follow the central tendency, the model presents a too strong het-
eroskedasticity; conversely, when calibrated with respect to volatility – and
adapted to theoretic drift constraints – the model minimizes the drift contribu-
tion. The analysis of this tradeoff could be developed in terms of bias-variance
balance and included in an upcoming research plan related to this first explo-
ration.

8.2 Further developments

The most obvious direction of next research steps, implicit in the current re-
search activity, concerns a more comprehensive set of tests regarding interest
rates models – not only the Vasicek approach – but, due to the strong analogies
with the aspects treated in the previous chapters, specifications can be omitted
here as superfluous; more interesting insights come, instead, from an higher level
of generality of the approach I’m proposing.

Despite the fact that the model I experimented here is specialized on inter-
est rates given a specific stationary distribution, the result described in chapter
5 can be referred as “general”: it is derived independently from the detail of
the distribution and of the process used to build a model adapted to a real
market situation; that result, offers a tool to write down the SDE of a process
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given it’s stationary distribution. This tool could hence represent a resource
to inspect the perspective from which it could be possible to overcome the lim-
its imposed to the quantitative finance by unrealistic distributional assumptions.

The two mainstreams of possible improvements of this research are related to
the two “degree of freedom” admitted in specializing the general result: we can
work on the distributional foundations to find and justify appropriate probabil-
ity laws, or, on the other side, we can work on many stochastic processes related
to many financial dynamics and, potentially, to every standard financial model.

8.2.1 Loss distribution and market microstructure

The choice of an adequate probability law to represent a random variable distri-
bution should derive from an arguable theory about market information arrival
and price formation.
As introduced in the first chapter, there are paradigmatic examples in Fama,
Mandelbrot, Clark, about the analysis of market behavior in order to explain
the price (or return, or losses) distribution.
Let me quote some sentences in Fama [29]:
“The random walk theory is based on two assumptions: 1) price changes are
independent random variables, and 2) the changes conform to some probability
distribution. . .
This paper will be concerned with the nature of the distribution of price changes.
. . . the usual assumption, which we shall henceforth call the Gaussian hypothesis,
was that the distribution of price changes in a speculative series is approximately
Gaussian or normal. . .
If the price changes from transaction to transaction are independent, identically
distributed, random variables with finite variance, and if transactions are fairly
uniformly spaced through time, the central-limit theorem leads us to believe
that price changes across differencing intervals such as a day, a week, or a
month will be normally distributed since they are simple sums of the changes
from transaction to transaction.
. . . it has been found that the extreme tails of empirical distributions are higher
(i.e., contain more of the total probability) than those of the normal distribution.
. . . the stable Paretian hypothesis, makes two basic assertions: 1) the variances
of the empirical distributions behave as if they were infinite, and 2) the empirical
distributions conform best to the non-Gaussian members of a family of limiting
distributions which Mandelbrot has called stable Paretian. . .
The property of stability or invariance under addition is responsible for much
of the appeal of stable Paretian distributions as descriptions of empirical distri-
butions of price changes”

This citation sketches some elements that are useful to setup the analysis of
market microstructure: in brief, Mandelbrot needs to take into account big
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deviations from normality while preserving the idea of price changes as “sum-
mation of price changes from transaction to transaction” and hence the property
of “stability or invariance under addition” for the price distribution.
The Paretian distribution both represents fat-tails and satisfies the stability
need, but its infinite variance has been considered a shortcoming from subse-
quent authors that proposed alternative hypothesis as the mixture distribution
hypothesis met in the first chapter.
In those pages, I highlighted the max stability property of the Extreme Val-
ues distribution family, analogous to the alpha-stability property of Paretian
distribution; in particular it can be proved that if a random variable is in the
maximum domain of attraction of a Frechet type extreme value distribution,
then it is in the domain of attraction of a Gaussian distribution that, for the
central limit theorem, is stable under addiction.
This fact makes the Frechet distribution a good candidate as limit distribution
for market information; it fulfills both the basic requirements previously indi-
cated as essential for such a distribution: the closure with respect to the sum
and fat tails without the drawback of infinite variance.

8.2.2 Standard models revised

The analysis of market microstructure can guide us in selecting the most ap-
propriate probability law for market information; given an appropriate law we
have the opportunity to describe processes related to specific models we need.
A second research area interested by the change of distributional assumption of
financial stochastic models is hence more applicative and – in its widest sense –
involves all the traditional milestones of quantitative finance.
The Black & Scholes option pricing model – Nobel prize in 1997 - is the archetype
for many of successive contribution to quantitative finance; its reinterpretation
under changed distributional hypothesis represents an interesting applicative
example and opens a valuable scenario with respect to current business priori-
ties.
As I observed about the Vasicek model extensions (cfr. chapter 5), even for
Black & Scholes updating I didn’t find specific researches treating the explicit
link between stochastic processes and extreme value theory; nevertheless there
are some works that can be reputed affine to the topic discussed here and can
support its comprehension.
An instructive paper from Moriconi [76] proposes an abstraction of the Black &
Scholes pricing formula derived independently from distributional constraints;
this result is influenced by a previous contribution from L.Borland [12] in which
price fluctuations in the option pricing model follow a nonlinear Fokker-Planck
equation which maximizes the Tsallis nonextensive entropy.
A martingale-equivalent approach to an extreme-values variation of the Black &
Scholes model is developed by Markose and Alerton [68]; their paper preliminar-
ily illustrates a wide repertory of different methods used to vary distributions
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implied in option pricing models that have arisen since the early works, but,
curiously, falls to remember the famous intervention of Merton [73].
Merton, whose name is strictly associated with Black & Scholes for merits in
option pricing studies and for the default estimation models we’ll see further,
has, himself, released the most quoted application of jump-diffusion processes
to option pricing formula.
The Black & Scholes formula is fundamental not only for its pricing purpose
but, at least, for two more reasons: the first is historical, it made the Ito’s
calculus the standard for the quantitative finance; the second is connected with
a current and urgent problem to solve, the problem to know effectively a market
counterparty and its actual solvency profile.
In 1974 R.C. Merton [72] proposed an enhancement of the Black & Scholes for-
mula arranged to estimate the default probability of a public company through
the price of its equity; at present, such a tool – adapted to the existing distri-
butional constraints – offers a valid alternative to the official ratings supplied
by agencies, whose judgment can be affected by clash of interest.
To complete the exemplification of the possible extensions of standard mod-
els, the Merton model will be sketched here in its extreme value version, i.e.,
assuming a GEV pdf as stationary distribution of the option price stochastic
process.
In Merton’s model an equity of a public company is considered as an option
written on the company’s assets. Therefore if the asset value in t is lower than
the liabilities amount at the same timestep, the company goes bankrupt and
must repay the debts; the investor, instead, loses, at worst, the entire invested
capital.
The equity E in time T has value:

ET = max (VT −D, 0)

where:
VT is the assets value at T
D is the liabilities value at T

Applying the EVT modified Black & Scholes formula (see [68]), it is:

ET = e−r(T−t)
{
Vt

(
(1− µV + σV /ξ) e−H

−1/ξ

− σV
ξ

Γ
(

1− ξ,−H−1/ξ
))
−Ke−H

−1/ξ

}
(8.1)

with:

H = 1 +
ξ

σV

(
1− D

Vt
− µV

)
Γ (α, x) is the incomplete Gamma function
µV = the assets mean
σV = the assets standard deviation
ξ = GEV shape parameter

e−H
−1/ξ

= P (K|K < V ) is the company’s default probability.
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Be aware of Ei (ξ) is function of Vi but it isn’t directly observable; for this reason
Vi for i > 0 is recursively obtained as follows: Vi = Vi−1 + Ei

∂E/∂V
being

∂E

∂V
= e−Q

−ω
Q−1−ωK

V

(
V (1− µ+ ωσ)−K

V σ
− ωQ

)
−σωΓ

(
1− 1

ω
,Q−ω

)
+e−Q

−ω
(1− µ+ ωσ) ,

ω =
1

ξ
,Q = 1 +

(1−K/V − µ)

ωσ

The value of V0 must be initialized recurring to a further informative condition
derived by the assets process dV = µV V dt+ σV V dW through the Ito’s lemma:

dE =

(
1

2
σ2
V V

2 ∂
2E

∂V 2
+ µV V

∂E

∂V
+
∂E

∂t

)
dt+ σV V

∂E

∂V
dW

V0 is hence deducted from the diffusion term σEE0 = ∂E
∂V σV V0
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