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ABSTRACT 

Aim of this project was to investigate relationships between Rhynchophorus ferrugineus or 

Galleria mellonella and the entomopathogenic nematode Steinernema carpocapsae. In particular, 

the work was focused on the immune response of the insect host either in naïve larvae or in 

larvae infected with entomoparasites. We analyzed different immunological processes: the 

activity and modulation of prophenoloxidase-phenoloxidase (proPO) system, the cell-

mediated encapsulation, the antimicrobial peptides (AMPs) inducible response and finally 

the phagocytosis activity of the host hemocytes. Furthermore, we investigated the immune 

depressive and immune evasive strategies of the parasite. Our results indicated that R. 

ferrugineus has an efficient immune system; however, in the early phase of infection, the 

presence of S. carpocapsae induces a strong inhibition of the host proPO system. In addition, 

the parasite does not seem to be susceptible to the encapsulation by host hemocytes; the 

parasite mimetic properties seem to be related to the structure of its body surface. S. 

carpocapsae, before the release of its symbiotic bacteria (X. nematophila), depresses and elude 

the host immune defenses, with the aim to create a favorable environment for its symbionts 

responsible of the septicemic death of the insect host. Besides, our results have demonstrated 

that X. nematophila is able to inhibit the synthesis and the activity of antimicrobial peptides. X 

.nematophila elude the recognition by hemocytes since it is not engulfed by the host cells. It is 

evident that the nematode and its symbiotic bacteria cooperate to elude and inhibit immune 

responses of the insect host. This study provides data that can help to a better understand of 

the relationships between parasites and their hosts.   
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1 INTRODUCTION 

The research is part of a project for the study, at the physiological, biochemical, 

cellular and molecular level, of some aspects of the immune response in insects. The choice 

of insects as biological models is due to the high impact of these invertebrates on 

environment, health and biotechnology. Many species, particularly insect vectors, may 

represent a concrete threat to human and animal health; moreover, several insect pests 

damage crops and urban green. Then, to study the physiology and immune defense processes 

of these animal models could provide alternative ways to control their diffusion, improving 

biological control methods that could allow a significant reduction of the use of pesticides. In 

many cases, the use of bio-insecticides to control insect species did not provide suitable 

results due to the scarcity of exhaustive studies on the efficacy of the infection by natural 

insecticides related to the defense processes of the host. 

Multicellular organisms, as vertebrates, invertebrates and plants are continually under attack 

by a great variety of pathogens including bacteria, fungi, viruses, protozoa and multicellular 

parasites. 

Generally, the access of these infectious agents into the host body is prevented by physical, 

chemical and biochemical barriers. Once the barriers are breached, pathogens are able to 

spread rapidly and eventually kill the host. In order to survive, they have developed several 

defense mechanisms, including the immune system. Vertebrates have developed two 

interconnected powerful defence mechanisms, known as innate and acquired immunity. The 

acquired immune system is mediated by somatic recombinatory mechanism and clonal 

expansions involved in production of antibodies and T-cell receptors, which give rise to the 

specificity and memory of vertebrate adaptive immunity. Despite the immune responses of 

invertebrates are not based on adaptive immunity, they have a well-developed innate 

immune system that compared with adaptive immunity is more effective and rapid in the 

initial defense. Insect immunity more closely resembles the innate immune system of 
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vertebrates. This system involves rapid, early and relatively not specific responses both 

cellular and humoral (Beckage, 2008). 

 

1.1 The immune system of insects 

 The innate immune system of insects was arbitrarily divided into humoral and 

cellular defenses. Humoral responses refer to soluble molecules such as antimicrobial 

peptides, Reactive Oxygen Species (ROS), Reactive Nitrogen Species (RNS) and the 

complex enzymatic cascades that regulate melanin formation and clotting, compounds that 

are present in the hemolymph; in insects, blood and interstitial fluid are indistinguishable 

and are referred as hemolymph, which moistens all internal tissues, organs, hemocytes, and 

facilitates the transport of nutrients, waste products and metabolites. Cellular defense, in 

contrast refers to hemocyte-mediated immune responses like phagocytosis, nodulation and 

encapsulation (Nappi et al., 2004; Shia et al., 2009; Sideri  et al., 2008).  

Scheme resume the insect immune defences (Brivio MF et al., 2005) 
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1.1.1 Hemocytes 

 Insect hemocytes have historically been identified and classified using morphological, 

histochemical and functional features. The most described blood cells derived from 

Drosophila whose hemocytes are named differently from most other species. Drosophila larvae 

contain three differentiated types of hemocytes in circulation named: plasmatocytes, crystal 

cells and lamellocytes (Lavine and Strand, 2002). Plasmatocytes represent 90-95% of all 

mature hemocytes and are professional phagocytes that engulf pathogens, dead cells and 

other bodies. Crystal cells express components of the phenoloxidase (PO) cascade. 

Lamellocytes are essentially absent in healthy larvae but rapidly differentiate from 

prohemocytes (hemopoietic precursors) when exposed to intruders in order to encapsulate 

parasitoids and other foreign entities. Prohemocytes are small cells that are round or oval (4 

to 10 μm wide by 4 to 22 μm long) (Gupta, 1985; 1991; Brehelin and Zachary 1986; Butt 

and Shields, 1996; Chapman, 1998; Silva et al., 2002; Giulianini et al. 2003). These 

hemocytes are characterized by possessing a relatively large nucleus that nearly fills the 

cytoplasmic space. Other organelles (e.g. smooth and rough endoplasmic reticulum, 

mitochondria, Golgi bodies) are generally low in number. Prohemocytes are often found in 

small groups and constitute 1% to 7% of the population of hemocytes (Gupta, 1985; 1991; 

Brehelin and Zachary 1986; Chapman,1998). 

Differentiated hemocytes in Lepidoptera, Diptera, Coleoptera, Orthoptera, Blattaria, 

Hymenoptera, Hemiptera and Collembola (Lavine and Strand, 2002; Ribeiro e Brehelin 

2006) are usually named granulocytes, plasmatocytes, spherule cells and oenocytoids. In 

Lepidoptera, granulocytes are usually the most abundant cells that strongly adhere to foreign 

surfaces, spread simmetrically and function as the professional phagocytes (Strand, 2008). 

Granular cells include the possession of numerous lysosomes, free ribosomes and well 

developed ER and RER, but only a few mitochondria (Gupta, 1985; Chapman, 1998). The 

nucleus is round or elongate and located centrally. Nardi et al. (2003) showed that these 

cells are diploid. Granular cells may or may not have filopodia (Gupta, 1985). Granular cells 
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comprise over 30% of the hemocyte count and, along with plasmatocytes, are together the 

two most numerous of hemocytes (Chapman, 1998). In Manduca sexta, larger phagocyte-like 

hemocytes called hyperphagocytic cells that differentiate following immune challenge have 

also been described. Plasmatocytes are polymorphic cells of variable size (3 μm to 40 μm) 

(Gupta, 1985; 1991; Götz and Boman, 1985; Brehelin and Zachary 1986; Butt and Shields, 

1996; Chapman, 1998; Silva et al., 2002). While free-floating in the hemolymph, 

plasmatocytes are round or oval. Up on contact with certain surfaces, plasmatocytes attach, 

spread by sending out filopodia, and become very flat. The cytoplasmic space contains many 

organelles, including a well-developed rough endoplasmic reticulum, Golgi bodies, and 

numerous mitochondria. The nucleus is most often positioned centrally. Plasmatocytes are 

among the most numerous of hemocytes and generally comprise between 30% to 60% of 

the total hemocyte count. These hemocytes possess the ability to adhere to foreign surfaces 

and play an important role in wound healing and in the immune responses of phagocytosis, 

nodule formation and encapsulation (Gupta, 1985; 1991; Götz and Boman, 1985; Brehelin 

and Zachary 1986; Chapman, 1998; Lavine and Strand, 2002). Oenocytoids are opaque 

hemocytes that range in size from 16 μm to over 54 μm and have been observed in oval, 

spherical, elongated and crescent shape. They comprise over 5% of the hemocyte count. In 

the Lepidoptera, oenocytoids are the largest in size of all hemocytes (Gupta, 1985; 1991; 

Brehelin and Zachary, 1986; Butt and Shields, 1996; Chapman, 1998). The nucleus is small 

and located eccentrically. Sometimes oenocytoids possess two nuclei. The cytoplasm appears 

homogeneous. In oenocytoids from most insect species observed, the organelles (e.g. 

mitochondria, Golgi bodies, RER) are generally underdeveloped, however, the cytoplasm is 

known to contain numerous free ribosomes. A few oenocytoids have inclusions that are rod, 

filament, needle-like, or crystal in shape. In D.melanogaster, the oenocytoids are referred to 

as crystal cells due to the shape of the inclusions (Gupta, 1985; Götz and Boman, 1995; 

Tepass et al. 1994). Oenocytoids have also been shown to contain pro-phenoloxidase (pro-

PO) which, when released into the hemolymph and activated to phenoloxidase, plays an 

important role in the melanization response associated with wound healing, protein cross-

linking and immunity (Jiang et al., 1997; Gillespie et al., 1997; Hillyer and Christensen, 
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2002; Hillyer et al., 2003; Da Silveira et al., 2003; Kanost et al., 2004). Spherulocytes are 

round or oval and variable in size with diameters from 5 μm to 25 μm (Gupta, 1985; 1991; 

Butt and Shields, 1996; Chapman, 1998). The defining characteristic of these hemocytes is 

the membrane-bound spherules in the cytoplasmic space. The number of spherules varies 

and range in diameter from 1 μm to 5 μm. These spherules appear to enclose some sort of 

granulated material. Histochemical analysis of the spherules has shown that they contain 

mucopolysaccharide and glucomucoproteins (Gupta, 1985; 1991). The cytoplasm also 

contains ribosomes, Golgi bodies, lysosomes, mitochondria and rough endoplasmic 

reticulum. Although many have speculated as to the function of these hemocytes (e.g. silk 

production, melanization, phagocytosis, regulation of clotting and cell adhesion), a definitive 

answer to this question remains elusive (Gupta, 1985; 1991; Brehelin and Zachary 1986; 

Chapman, 1998).  

 

1.1.2 Hematopoiesis 

 The hemocytes described above arise during two stages of insect development. The 

first population oh hemocytesis produces during embryogenesis from head or dorsal 

mesoderm while the second is produced during the larval or nymphal stages in 

mesodermally derived hemopoietic organs. The hematopoietic organs of Drosophila are called 

lymph glands that form bilaterally along the anterior part of the dorsal vessel during 

embryogenesis. By the third instar, each lymph gland consists of an interior primary lobe and 

several posterior secondary lobes. The primary lobe is further divided into a posterior 

signaling center (PSC) that contains PSC cells, a medullary zone containing primarily 

prohemocytes, and a cortical zone containing primarily plasmatocytes (Akai and Sato, 1971; 

Holz et al., 2003; Jung et al., 2005). 
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1.1.3 Sensing infection 

 The mechanisms and molecular effectors of pathogen recognition systems in diverse 

hosts are highly conserved. Both plant and animal recognition of pathogens relies on sensing 

of Pathogen-Associated Molecular Patterns (PAMPs) by Pattern Recognition Receptors 

(PRRs), these factors are able to interact specifically with a broad range of foreign antigenic 

surface compounds.  

The most characterized PRRs are C type lectins, peptidoglycan recognizing proteins 

(PGRP), β- 1,3- glucan recognition proteins, the hemolin and integrins. PAMPs consist of 

various compounds, including oligosaccharides, proteins, glycoproteins, lipids and distinct 

nucleic acid motifs that are unique and essential for microorganism’s survival. An important 

feature of PAMPs is their strongly conserved structures, which are invariant between 

organisms of a given class (Medzhitov  and Janeway, 1997; 2002).  

The name Peptidoglycan Recognition Protein was first introduced by the Ashida’s group 

when working on Bombyx mori (Yoshida et al., 1996). They purified a 19 kDa protein 

present in the silkworm hemolymph that binds Gram positive bacteria and more specifically 

the bacterial PGN. PGRPs have been now identified in mollusks, echinoderms, and in 

several groups of vertebrates (fish, amphibians, birds and many mammals). However, plants 

and lower metazoan, such as nematodes, do not have PGRPs (Li  et al., 2007). 

Drosophila genome contains 13 PGRP genes of which at least one (PGRP-LC) can be further 

diversified by alternative splicing. Family members share a common PGRP domain, which is 

evolutionarily related to the bacteriophage type II amidases, and some members have 

retained this enzymatic activity (these are referred to as catalytic PGRPs). By contrast, other 

PGRPs have lost crucial amino-acid residues that are essential for catalysis and they serve as 

microbial sensors (these are referred to as recognition PGRPs) (Werner et al., 2000). 

The PGRP transcripts are classified into short (S) and long (L) subfamilies and are often 

alternatively spliced to generate up to 19 peptides in flies. All PGRPs across species have at 
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least one C-terminal PGRP domain (165 amino-acid residues) homologous to bacteriophage 

and bacterial type 2 amidases (Kang et al., 1998). This suggests that animal PGRPs and 

prokaryotic type 2 amidases may have evolved from a common primordial ancestor gene. 

PGRP-S are about 200 amino-acids long, have a signal peptide and one PGRP domain, 

whereas most PGRP-L are at least twice as large and possess one or two C-terminal PGRP 

domains. Both PGRP-S and PGRP-L contain an N-terminal sequence that is unique for a 

given PGRP and has no homology with other PGRPs or any other proteins. In almost all 

PGRPs, two closely spaced conserved Cys can be found in the middle of their PGRP domain 

forming a disulfide bond, which is needed for the structural integrity and activity of PGRPs 

(Michel et al., 2001; Chang et al., 2004). Finally, some Drosophila PGRPs, e.g., PGRP-LC 

or PGRP-LF, are transmembrane (Gottar et al., 2002; Maillet et al., 2008) or 

intracytoplasmic (PGRP-LE) molecules (Kaneko et al., 2006), whereas most other PGRPs 

have a signal peptide and are secreted proteins. In Drosophila, PGN and derived 

muropeptides are, so far, the only identified PGRP ligands. PGN is an essential cell wall 

component of virtually all bacteria and is a well-known target for recognition by pattern 

recognition receptors. PGN is a polymer of β-(1-4)-linked N-acetylglucosamine (GlcNAc) 

and N-acetylmuramic acid (MurNAc), cross-linked by short peptide chains, called stem 

peptides. The nature of the third residue of the stem peptide is an important distinctive 

feature of Gram positive versus Gram negative bacteria: whereas most Gram positive 

bacteria have a Lysine in this position, it is replaced by an m-DAP (meso-Di-aminopimelic) 

residue in Gram negative bacteria. The minimum peptidoglycan fragment that binds to 

PGRPs is a muramyl-tripeptide. Crystallographic studies also revealed how PGRPs 

discriminate between the Lys and DAP-type PGN. The only difference between Lys and 

DAP-type is the presence of an additional carboxylate at the carbon 1 of DAP. 

Discrimination between Lys- and DAP-type peptidoglycan is based on three aminoacid 

residues in the peptidoglycan-binding groove of Drosophila PGRPs (Swaminathan et al., 

2006).  



8 
 

In Drosophila melanogaster, the expression of the genes encoding most immune proteins is 

under the control of two NF-kB-dependant signaling pathways. The Toll cascade responds to 

Gram positive bacteria and fungal pathogens while the Immune Deficiency (IMD) pathway 

preferentially recognizes Gram negative bacteria. The Toll signalling pathway involves 

several factors that were initially discovered in the control of dorso ventral patterning in the 

embryo (Moussian and Roth, 2005) and it has some parallels to the mammalian signalling 

cascades downstream of the interleukin-1 receptor (IL-1R) and the Toll-like receptors 

(TLRs). By contrast, the IMD pathway is similar to the tumor-necrosis factor-receptor 

(TNFR) pathway in mammals.  

Recognition of DAP-type Gram negative bacteria 

The D. melanogaster immune system can discriminate between distinct classes of 

microorganisms. Thus, the IMD pathway is preferentially induced by Gram negative bacteria 

(and some Gram positive bacilli) and this pathway controls the host defence against these 

infections. Although lipopolysaccharides (LPS) form the outer cell layer of Gram negative 

bacteria, they do not activate the IMD pathway (Hoffman, 2003; Leulier et al., 2003). 

Beneath the external LPS coat and outer membrane of Gram negative bacteria, 

peptidoglycan (PGN) forms an inner layer of polymeric glycan chains that are cross linked by 

peptidic stems. PGRP-LC and PGRP-LE, two non-catalytic members of the PGRP family, 

mediate the detection of Gram negative bacteria and activation of the IMD pathway (Gottar 

et al., 2002; Takehana et al., 2004). 

PGRP-LC is the main transmembrane (type II) receptor of the IMD pathway, whereas 

PGRP-LE is a cleaved, secreted PGN sensor in the hemolymph. During septic (or intestinal) 

infection, bacteria release short PGN fragments as a result of cell-wall remodelling during 

growth and division. These PGN fragments are detected by PGRP-LCx–PGRP-LCa (the 

gene encoding the transmembrane PGN sensor PGRP-LC produces three distinct splice 

isoforms, a, x and y that each code for a distinct extracellular PGRP domain), and possibly 
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PGRP-LCx–PGRP-LE, heterodimers, and these in turn activate the IMD pathway (Mellroth 

et al., 2005). 

As a consequence of this early activation, effectors of the humoral immune response (such as 

AMPs and lysozymes) attack the invading bacteria, and this leads to the release of large 

fragments of polymeric DAP-type PGN that were initially hidden under the LPS outer coat. 

These fragments can then be sensed directly by an array of membrane-bound PGRP-LCx 

receptors. The intensity of the stimulation of the IMD pathway can be modulated by the 

catalytic PGRPs (PGRP-SC1, PGRP-SB1 and PGRP-LB), which cleave the amide bond 

between the muramic acid of the glycan chain and the DAP-containing peptide stem of 

PGN. PGN that has been digested by PGRP-SC1 or PGRP-LB is barely immunostimulatory 

and these catalytic PGRPs thereby function as scavengers PGRP-SC1, PGRP-SB1, and 

PGRP-LB can all cleave DAP-type PGN. It is striking that PGRP receptors can bind the 

PGN of Gram negative bacteria, as PGN is not directly accessible for binding. Two models 

have been proPOse for the immune system to circumvent this apparent difficulty. In the 

first, bacteria could be attacked by hemocytes or by AMPs, which might basally be expressed 

at low levels, and this would result in the release of PGN fragments in the hemolymph. 

Phagocytosis of bacteria by hemocytes could also lead to indirect activation of the IMD 

pathway by an unknown signal. The second postulates that bacteria could release short PGN 

fragments during proliferation and growth as a result of cell-wall remodelling (Lim  et al., 

2006; Zaidman-Rémy  et al., 2006). 

Recognition of Lys-type Gram positive bacteria 

Lys-type Gram positive bacteria are also sensed by members of the PGRP family, namely 

PGRP-SA and PGRP-SD 32,33and by GNBP1, a member of the Gram negative binding 

proteins (GNBPs; also known as β-glucan recognition proteins (βGRP)) family. 

Sensing of Gram positive bacteria (and fungi) results in the activation of proteolytic cascades 

that culminate in cleavage of the cytokine Spätzle, which is the ligand for the transmembrane 

receptor Toll (Michel et al., 2001; Gobert et al., 2003). PGRP-SA binds preferentially to 
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Lys-type PGN in keeping with the absence of the arginine residue that binds specifically to 

the carboxyl group of DAP-type PGN. GNBP1 binds to a more restricted range of Lys-type 

PGN. GNBP1 functions together with PGRP-SA in sensing some Gram positive bacterial 

strains. GNBP1 cleaves PGN into shorter dimeric or tetrameric muropeptides that bind to 

PGRP-SA (Wang et al., 2006). An important property of D. melanogaster pattern-recognition 

receptors (PRRs) is their ability to form many complexes to detect various microbial 

species. The combination of several PRRs can expand the repertoire of microorganisms that 

are detected by the D. melanogaster immune system (Lemaitre and Hoffmann, 2007). 

 

1.2 The Toll and IMD pathways 

 The insect and mammalian innate immune responses exhibit a great deal of 

evolutionary conservation. One of the best examples was provided by the discovery of the 

Toll pathway as a key component of the Drosophila immune response and the subsequent 

identification of the mammalian Toll-like Receptors (TLRs). In addition, the insect immune 

response relies on evolutionarily conserved NF-κB signaling cascades for the control of 

immune-induced gene expression (Hetru and Hoffmann, 2009). 

The Toll pathway responds to Gram positive bacterial and fungal infections. Unlike human 

Toll-like receptors (TLRs), Drosophila Toll does not directly bind pathogens or pathogen-

derived compounds. Toll is a cytokine receptor, activated by the cytokine Spätzle (Aggarwal 

and Silverman, 2008), Spätzle is produced as a pro-protein, with a disulfide-linked dimeric 

structure. In order to activate the Toll pathway, pathogens must first activate serine protease 

cascade that culminates in Spätzle cleavage, liberating the mature Toll ligand (C-terminal 

106 amino acids of Spätzle). Recognition of Gram positive bacteria is mediated through the 

detection of lysine-containing peptidoglycan (PGN) by PGRP-SA and PGRP-SD 

(peptidoglycan receptor proteins) (Bischoff et al., 2004). Bacterial recognition in the Toll 

pathway also requires the serine protease Grass, which is thought to function downstream of 

these PGN receptors. On the other hand, detection of fungal infections relies on two 
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additional detection systems. In one pathway, fungal beta-glucans are recognized by the 

receptor GNBP-3 (Gottar et al., 2006). Another pathway involves a serine protease known 

as Persephone (PSH). Once activated, PGRP-SA/GNBP1, PGRP-SD, GNBP3 or PSH lead 

to Spätzle cleavage by activating serine protease cascades that converge on two 

chymotrypsin-like serine proteases: Spirit and the Spätzle-processing enzyme (SPE) (Jang et 

al., 2006). SPE cleaves Spätzle directly while Spirit is thought to cleave and activate SPE. 

Once cleaved, Spätzle binds the Toll receptor and induces dimerization. This causes the 

recruitment of three intracellular Death domain-containing proteins, MyD88, Tube and 

Pelle. Activation of the Pelle kinase leads to the phosphorylation and ubiquitin/protesome-

mediated degradation of Cactus, the Drosophila IκB homolog. Degradation of Cactus frees 

DIF (and Dorsal) to translocate to the nucleus (Towb et al., 1998; Wu and Anderson, 

1998), and leads directly to the transcriptional induction of many immune responsive genes 

like the antimicrobial peptides genes.  

Whereas activation of the Toll pathway is initiated by interaction of microbial ligands with 

circulating proteins, the Imd pathway is triggered by the direct interaction of the 

transmembrane receptor PGRP-LC (Choe et al., 2002; 2005) with Gram negative bacterial 

peptidoglycan (diaminopimelic peptidoglycan-DAPPGN). The binding of monomeric and 

multimeric DAP-PGN to receptors induces their dimerization or oligomerization and leads 

to signaling (Mellroth et al., 2005; Lim et al., 2006).  

The intracytoplasmic cascade of the Imd pathway starts with the recruitment of the 25 kDa 

death domain protein Imd (of note, the sequence of this particular death domain is closest to 

that of mammalian RIP1 that is TNF-receptor interacting protein) (Georgel et al., 2001; 

Myllymäki et al., 2014). Both the intracytoplasmic domain of PGRP-LC and the adaptor 

protein Imd contain a so-called RHIM domain (for receptor interacting protein [RIP] 

homotypic interaction motif) required for signaling Imd further associates with the 

mammalian homolog of FADD and with the caspase-8 homolog DREDD. Through 

mechanisms not fully understood at present, but which are likely to involve K63 

ubiquitination, this upstream receptor–adaptor complex activates the MAP3 kinase TAK1. 
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TAK1 is associated with the homolog of mammalian TAB2, which has a conserved sequence 

domain known to interact with K63 polyubiquitin chains. Downstream of the TAK1/TAB2 

protein complex, the Imd pathway branches into a signaling cascade, leading to Relish 

activation and, a second, to JNK activation. Once activated by TAK1, the IKK complex 

phosphorylates the NF-kB protein Relish on specific serine residues and phosphorylated 

Relish is cleaved into an amino-terminal transcriptional regulatory domain, which 

translocates to the nucleus where it binds to Relish response elements and directs expression 

of dedicated genes (Hetru and Hoffmann, 2009). 

To date, the Toll and Imd pathways are the sole reported intracellular cascades activated by 

microbial ligands. Recently, bioinformatic analysis has shown that Toll and Imd pathways can 

synergize to increase the levels of induction of some of the immune-response genes, possibly 

via the formation of Dif/Relish heterodimers. Another important aspect of the antimicrobial 

response is the temporal activation of these two pathways. Genes regulated by Imd generally 

show an acute phase profile, whereas Toll target genes exhibit a late and sustained 

expression pattern (Lemaitre et al., 1997). 

The scheme resume Toll and IMD pathways leading to the synthesis of AMPs in insects 
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1.3 Humoral defenses  

 The humoral immune response of insect consists of the processes of melanization, 

hemolymph clotting and wound healing in response to injury. Humoral factors involved in 

insect immunity after infection include lysozyme, lectins and the prophenoloxidase cascade 

and antimicrobial peptides, usually called AMPs (Kavanagh and Reeves, 2004). 

  

1.3.1 ProPO system 

 The main role in humoral defense against a wide range of pathogens is played by 

melanization, also responsible for wound healing as well as nodule and capsule formation.  

The formation of melanin is catalysed by phenoloxidase-monophenyl L-dopa: oxygen 

oxidoreductase (PO) (Soderhall and Cerenius, 1998). Phenoloxidase is found in insects in its 

inactive form pro-phenoloxidase (ProPO) located in the hemocytes as a zymogen. ProPO is 

a polypeptide of approximately 80 kDa and it is released from hemocytes by rupture and is 

either actively transported to the cuticle or deposited around wounds or encapsulated 

parasite. PO catalyses the o-hydroxylation of monophenols and oxidation of phenols to 

quinones which then polymerise non-enzymatically to form melanin (Nappi et al., 2004). 

Melanin is deposited within nodules, composed of aggregated hemocytes and 

microorganism, that form in the hemocoel cavity of heavily infected insects. Deposition of 

melanin coat is also frequently observed in the encapsulation response of insects to parasites 

or in the experimental injection of foreign objects that provoke encapsulation. The melanin 

capsule can block absorption of nutrients by parasites and thus contribute to their killing by 

starvation. In addition, cytotoxic reactive oxygen and nitrogen intermediates formed during 

melanin synthesis may help to kill invading organisms. 

Most reports indicate that proPO is synthetized predominantly by hemocytes. In 

lepidopterans, oenocytoids are identifies as the cell-type producing proPO, whereas crystal 
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cells of D. melanogaster produce proPO, suggesting that oenocytoids and crystal cells may be 

homologous cell types (Cerenius and Söderhäll, 2004). 

The process of melanisation is initiated by soluble PRRs that bind target surfaces thus 

initiating the serine protease cascade leading to cleavage of ProPO to PO and ultimately the 

cross-linking of proteins that produce melanin polymers. This process is frequently referred 

to as the Prophenoloxidase activating system (ProPO-AS). Several hemolymph molecules 

(PRRs) are involved in the proPO system activation pathway, among them β-glucans-

binding proteins (β-GBP) and LPS-binding proteins (LBPs) seem to play a key role as 

receptors, triggering proteases cascade that turn on prophenoloxidase into active enzyme 

(Söderhäll, 1999). In M. sexta and perhaps in many insect species, peptidoglycan and β-1,3 

glucan are more potent stimulators of proPO activation than lipopolysaccharide. It has been 

postulated a model of proPO activating pathway in M. sexta. An initiating protease, called 

hemolymph protease-14 (HP14) is able to trigger proPO system in presence of Gram 

positive bacteria and fungi. HP14 activates a clip domain protease, proHP21, which cleaves 

and activate proPAP-2 (pro proPO activating proteinase-2) and proPAP-3. SPHs (serine 

protease homologs) function together with PAPs to form a functional proPO activator, 

which cleaves proPO to form active PO.  

The activation of this system produces several molecules that could harm the host insect if 

produced in excess. These include proteases that could degrade host proteins, cytotoxic 

quinones, reactive oxygen and nitrogen species. The system is regulated under most 

conditions to produce a local melanization response at a specific site and for a limited time. 

Serine protease inhibitors from several gene families have been identified in hemolymph as a 

regulators of proPO activation. Serpins are a family of 50 kDa proteins functioning primarily 

as a serine protease inhibitors. Three serpins from M. sexta hemolymph (serpin-1J, serpin-3 

and serpin-6) directly inhibit proPO activating proteases. Proteins that directly inhibit PO 

rather than the activating proteases have been identified in a few insect species. A 4 kDa 

peptide from hemolymph of M. domestica is an efficient PO inhibitor; this peptide contains a 
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sequence motif similar to a family of toxins from snails and spiders. It has the unusual 

property of containing a tyrosine residue that is hydroxylated to form DOPA within the 

peptide (Kanost et al., 2004). 

Hemolymph phenoloxidase is found as a proenzyme (prophenoloxidase) that can be converted into its active 
form by a limited proteolysis; the activation of prophenoloxidase to phenoloxidase physiologically requires 
different activators, including microorganism lipopolysaccharides (LPS) and -1,3-glucans  

 

1.3.2 AMPs 

 The last line of defense against the invasion of pathogens is the synthesis of a range of 

anti-microbial peptides (AMPs), which are produced by fat bodies cells (insect’s functional 

equivalent of the mammalian liver) during systemic response against pathogen, and they are 

then released into the hemolymph. Antimicrobial peptides are gene-encoded, ribosomally 

synthetized polypeptides. They usually have common characteristics. They are small peptide 

from 6 amino acid residues to 60 amino acid residues. Peptides often contain the basic amino 

acids lysine or arginine, the hydrophobic residues alanine, leucine, phenylalanine or 

tryptophan and other residues such as isoleucine, tyrosine and valine. They are strong 
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cationic (pI 8.9-10.7), heat stable (100°C, 15 min) and amphipathic molecules. Since 

antibiotic resistance to conventional antibiotics is occurring, there is an increasing interest in 

the pharmacological application of AMPs (Brogden, 2005; Nakatsuji and Gallo, 2012). The 

important advantage of AMPs resides in the global mechanism of their action which is very 

different from that of conventional antibiotics. Since the first AMP Cecropin was discovered 

from Hyalophora cecropia in the 1980s by Boman, more than 200 peptides have been 

identified in insects. Insect AMPs classification could be summarized into major groups based 

on their secondary structure, amino acid sequence and antibacterial activity: linear 

amphipathic α helix-forming peptides (e.g. cecropins), β-sheets or cystine rich and cyclic 

antimicrobial peptides (e.g. defensin), proline rich peptides and glycine rich peptides (e.g. 

drosocin and coleoptericin) (Epand and Vogel, 1999; Bulet and Stocklin, 2005; Hull et al., 

2012). 

Cecropin, an inducible antibacterial peptide, found in the hemolymph of H. cecropia, was the 

first insect peptide discovered. Cecropins are widespread throughout the animal kingdom. In 

insects, however, cecropins have been described only in the orders of Diptera and Lepidoptera. 

Mature cecropin peptides lack cysteine residues, are 35-39 amino acids and form two linear 

α-helices connected by a hinge, which integrate into the acidic cell membranes of bacteria 

leading to their disruption. 

Defensins form a unique family of cysteine-rich cationic polypeptides with three or four 

disulfide bridges. They are mainly effective against Gram positive bacteria and also have 

potent activity against some Gram negative bacteria, fungi, yeast and protozoa (Zasloff, 

2002; Bulet et al., 2004). 

Mechanism of antimicrobial peptides activity 

Different techniques have been used to assess the mechanisms of antimicrobial peptide 

activity. Specific steps must occur to induce bacterial killing. Antimicrobial peptides must 

first be attracted to bacterial surfaces, and one evident mechanism is electrostatic bonding 

between cationic peptides and structures on the bacterial surface. Cationic antimicrobial 
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peptides are likely to first be attracted to the net negative charges that exist on the outer 

envelope of Gram negative bacteria (anionic phospholipids and phosphate groups on 

lipopolysaccharides) and to the teichoic acids on the surface of Gram positive bacteria. Once 

close to the microbial surface, peptides must pass capsular polysaccharides before they can 

interact with the outer membrane, which contains LPS in Gram negative bacteria, and pass 

capsular polysaccharides, teichoic acids and lipoteichoic acids before they can interact with 

the cytoplasmic membrane in Gram positive bacteria (Scott et al., 1999a; 1999b). Different 

models have been proPOsed to explain membrane permeabilization. In the “barrel- stave 

model”, peptide helices from a bundle in the membrane with a central lumen, like a barrel 

composed of helical peptides as the staves. This type of trasmembrane pore is unique ans is 

induced by alamethicin that adopts an α-helical configuration, attaches to, aggregates and 

inserts into bilayers that are hydrated with water vapor. The hydrophobic peptide regions 

align with the lipid core region of the bilayer and the hydrophilic peptide regions form the 

interior region of the pore (Yang et al., 2001). In the “carpet model”, peptides accumulate 

on the bilayers surface. This model explains the activity of antimicrobial peptides such 

cecropin that orientate parallel to the membrane surface. Peptides are electrostatically 

attracted to the anionic phospholipid head groups at numerous sites covering the surface of 

the membrane in a carpet-like manner. At high peptide concentrations, peptides are thought 

to disrupt the bilayer in a detergent-like manner, eventually leading to the formation of 

micelles (Oren and Shai, 1998). In the “toroidal-pore model”, antimicrobial peptide helices 

insert into the membrane and induce the lipid monolayers to bend continuously through the 

pore so that both the inserted peptides and the lipid head groups line the water core. In 

forming a toroidal pore, the polar faces of the peptides associate with the polar head groups 

of the lipids. The toroidal model differs from the barrel-stave model as the peptides are 

always associated with the lipid head groups even when they are perpendicularly inserted in 

the lipid bilayer (Matsuzaki et al., 1996). Although the formation of transmembrane pores, 

ion channels and membrane rupture eventually leads to the lysis of microbial cells, there is 

increasing evidence that antimicrobial peptides have other intracellular targets. For example 

short proline-rich peptides as pyrrhocoricin, drosocin and apidaecin bind specifically to 
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DnaK, a 70 kDa heat shock proteina and nonspecifically to GroEL, a 60 kDa bacterial 

chaperone reducing the ATPase activity of DnaK and altering the refolding of misfolded 

proteins (Otvos, 2000; Kragol et al., 2001). Defensins, proline.arginine rich peptides and α-

helical peptides inhibit DNA, RNA and protein synthesis (Yonezawa and Sugiura, 1992; 

Subbalakshmi and Sitaram, 1998; Patrzykat et al., 2002). 

Microorganisms utilize numerous strategies of resistance to bypass antimicrobial peptide 

killing. In Staphylococcus aureus, products of the dlt operon reduce the net negative surface 

charges by transporting D-alanine from the cytoplasm to the surface teichoic acid (Peschel et 

al., 1999). This increase of positive net charge on membrane repulse antimicrobial peptides. 

Gram negative bacteria reduce their sensibility to antimicrobial peptides by hindering 

peptide attachment to the outer membrane, reducing net negative surface charges by altering 

the Lipid A moiety of the LPS or by reducing the fluidity by increasing the number of 

hydrophobic interactions. The increased hydrophobic interaction retards or abolishes peptide 

insertion and pore formation. Antimicrobial resistance is also associated with the ability to 

either transport antimicrobial peptides into the cell by the ATP-binding cassette transporter 

or to export them by efflux pumps (Groisman, 1994). Bacteria produce proteolytic 

enzymes, which may degrade antimicrobial peptides leading to their resistance. For 

example, LL-37 is cleaved and inactivated by a S. aureus metalloproteinase called aureolysin 

(Sieprawska-Lupa et al., 2004). 
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1.4 Cellular defenses  

 Hemocytes are responsible for a number of defense responses in insects, among 

which phagocytosis, nodulation and encapsulation.  

 

1.4.1 Phagocytosis 

 Phagocytosis of foreign particles is universal throughout the animal kingdom, and, in 

many of the most primitive animals, phagocytosis is predominantly a means of nourishment.  

Since the pioneering research of the Russian biologist Elie Metchnikov in the 1880s, the 

ubiquity of phagocytosis as a means of internal defense has become increasingly well 

documented. Phagocytosis is the process by which cells recognize, bind and ingest small 

particles such as bacteria and this process is probably the oldest defense mechanism against 

microorganism. 

This cellular mechanism initiates with the recognition by phagocytic receptors that activate 

various signaling pathways. These signals lead to a dramatic changes in the dynamics of the 

plasma membrane and the cytoskeleton of specialized cells. The membrane extends 

pseudopods around the particle, forming a cup that moves into the cell. Then the membrane 

closes at the distal end, assembling a new plasma membrane-derived phagosome. The 

membrane of phagosome fuses with other membranous organelles as lysosome or endosomes 

to become a mature phagolysosome. This compartment has an acid environment with highly 

hydrolytic enzyme causing the destruction of the engulfed target. In insects, phagocytosis is 

performed by a subset of hemocytes in the hemolymph (Strand, 2008). Professional 

phagocytes in Diptera and Lepidoptera have also been described as plasmatocytes or 

granulocytes, respectively. Phagocytosis eliminates mainly two types of targets: 

microorganism and particles represented by apoptotic cells, important during tissue 

remodeling and embryogenesis (Lavine and Strand, 2002; Lemaitre and Hoffmann, 2007).  
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The process of phagocytosis in insect and mammals appears to be very similar; in both cases, 

the process is initiated after the interaction of opsonins on the surface of not self with specific 

receptors on the phagocyte membrane. Phagocytosis can also be triggered, in the absence of 

opsonins, through the interaction of phagocyte membrane receptors with specific molecules, 

such as lipids or sugars on the microorganism cell wall (Stuart and Ezekowitz, 2005; 2008). 

Upon invasion with Gram negative bacteria, specific lectins recognize and bind to 

peptidoglycans on the bacterial cell surface facilitating the binding to plasmatocytes and the 

phagocytosis. At the same time the hemolymphatic enzyme, lysozyme, degrades the 

peptidoglycan layer releasing sugars and exposing teichoic acid and lipomannans that are 

recognized by lectins. This process gives the insect the ability to discriminate and engulf a 

range of bacteria despite the changing nature of the exposed bacterial surface.  

To date, phagocytosis has been shown to involve several receptors: scavenger receptor 

family, the EGF-domain protein Eater, the IgSF-domain protein Dscam, proteins related to 

CD36, PGRP family members. Thioester-containing proteins (TEPs) constitute an 

important group of proteins that includes the α2 macroglobulin family of protease inhibitors 

and the C3/C4 complements factors in vertebrates. In insect some of the TEPs are 

upregulated after a bacterial infection and function as opsonins to promote phagocytosis. 

This, therefore, suggests how the cellular and humoral arms of the innate immune system 

co-operate in fighting infection (Lagueux et al., 2000).  

 

1.4.2 Encapsulation 

 Encapsulation is a dramatic defensive response of hemocytes to large targets to 

undergo phagocytosis or nodulation such as both biotic objects (e.g. trematodes, cestodes, 

nematodes, parasitoids, eggs of parasites and parasitoids, fungi and interspecific tissue 

transplants) and inanimate experimental objects (e.g. Sephadex beads, nylon beads, cotton 

thread, glass, nylon, latex) (Götz and Boman, 1985; Götz, 1986). Two types of 

encapsulation are present in insects: cellular encapsulation, mainly described in Lepidoptera, 
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and melanotic humoral encapsulation more typical for Diptera. In contrast to melanotic 

encapsulation, which is always associated with PO activity, cellular encapsulation can occur 

without any sign of melanization. Granulocytes are generally assume to contact a foreign 

target and then release chemotactic components that attract plasmatocytes, which then form 

a multilayered capsule. Within the capsule, the parasite is eventually killed, possibly by the 

local production of cytotoxic products such as ROS and eventually by intermediates of the 

melanization cascade (Nappi et al., 1995). Based on observations from a number of insects 

(Gagen and Ratcliffe, 1976; Peck and Strand, 1996; Lavine and Strand, 2001) generalized 

sequence of events has been constructed: hemocytes contact a foreign object via random 

movement or directed chemotaxis then the granular cells that contact the foreign object 

adhere and degranulate. Material discharged from granular cells binds to foreign surfaces and 

to hemocytes. Substances released from granular cells attract other granular cells and 

plasmatocytes. In fact, granular cells possess a signal that recruits and activates plasmatocytes 

into capsule formation. Plasmatocytes attach to the capsule, spread and flatten, forming a 

multilayer sheath. Granular cells attached to the target object begin to disintegrate and a 

second thin layer of granular cells covers the capsule that may be melanized. 

In 1996, Pech and Strand noted that of all the hemocytes that compose the capsule, only the 

first layer has contact with the target surface, thus the signal that recruits the cells of the first 

layer must be different from the signal that recruits the cells that form the subsequent layers.  

Furthermore, because the capsule does not grow indefinitely, the signal to recruit new 

hemocytes for encapsulation must decrease with each increased capsule size. 

A role for integrins in this process could describe the aggregation of lamellocytes in Diptera 

that is further supported by studies in Lepidoptera (Lavine and Strand, 2003). Two members 

of the Rho GTPase family, Rac1 and Rac2 seem to participate in this process regulating 

many aspects of cytoskeleton remodeling (Williams et al., 2005).  
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1.4.3 Nodule Formation 

 Nodules are aggregates of hemocytes and extracellular coagulum that have 

entrapped large numbers of small-sized foreign entities. The formation of nodules is the 

immune response to high concentrations of non-living particles or microbes such as bacteria, 

fungal spores, yeast cells or protozoa (Götz and Boman, 1985; Guzo and Stoltz, 1987; 

Gillespie, et al, 1997; Chapman, 1998). Nodule formation appears to be typical for most 

Lepidoptera (Ratcliffe and Gagen, 1977). Within 1 minute after injection of heat-killed Bacillus 

cereus in Galleria mellonella, the granules within the granular cells that had randomly 

encountered the bacteria began to swell. These granules migrated out towards the granular 

cells’ periphery and expelled an adhesive substance into the surrounding hemolymph, which 

then entrapped the bacteria. This resulted in an aggregation of granular cells and bacteria 

embedded in an extracellular matrix. By 5 minutes, the forming nodules were 50-100 μm in 

diameter. Granular cells were still undergoing degranulation as the nodule continued to 

enlarge. The aggregation became more compact and depositions of melanin appeared near 

entrapped bacteria. The edges of granular cells lost their integrity, followed by the 

disintegration of the granular cells’ nuclei and other organelles. Two to four hours after 

initiation of nodule formation, plasmatocytes began to attach to the periphery and flatten in a 

manner similar to encapsulation. Nodule formation was complete by 24 hr and nodules 

ranged in diameter between 100-150 μm. The completed nodules were comprised of a 

central flocculent mass consisting of bacteria and the remnants of granular cells and any 

other hemocytes that had become entrapped, all embedded in a melanized matrix and 

surrounded by a multilayer of plasmatocytes. Granular cells and plasmatocytes were the only 

hemocytes observed to play a role in nodule formation; however, one can speculate that 

oenocytoids play an indirect role since this hemocyte type contains pro-PO, essential for 

melanization (Ratcliffe and Gagen, 1977; Götz and Boman, 1985; Gillespie, et al, 1997; 

Chapman, 1998). 
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1.5 Model organisms  

 Model organisms used in this study are, as mentioned above, insects. Insects are the 

most represented species all over the world; they have colonized air, water and soil.  

Among them, lepidopteran and coleopteran represent two classes very important for the 

environment; often they are phytophagous and very harmful for various plant species.  

 

1.5.1 Rhynchophorus ferrugineus 

 The red palm weevil (RPW) Rhynchophorus ferrugineus Olivier (Coleoptera: 

Curculionidae) is one of the major pests of palms in all countries where it has been 

accidentally introduced (Cox, 1993). It is native to southern Asia and Melanesia. This insect 

is reported to attack more than 20 species of palms but the two main species of concern in 

the Mediterranean region are date palm (Phoenix dactylifera) and canary island date palm (P. 

canariensis) (EPPO 2009). Adults are large, being up to 42 mm and 16 mm wide, with a long 

rostrum, characteristic for the weevils. They are reddish-brown in color with variable dark 

markings on the pronotum. Each adult female deposits between 200 to 300 eggs in separate 

holes or cavities on the host plant. Eggs are whitish-yellow, smooth, shiny, cylindrical with 

rounded ends, slightly narrower at the anterior end, and about 3 mm long and 1 mm wide. 

These hatch in two to five days, and larvae bore into the interior of the palms, feeding on the 

soft succulent tissues, discarding all fibrous material. Larvae are legless, with a creamy-white 

body and brown hard head capsule, and grow up to 50 mm in length. The larval period 

varies from one to three months. Pupation occurs in an elongate oval, cylindrical cocoon 

made of fibrous strands, about 40 mm in length. Adult weevils emerge 2-3 weeks after 

pupation. Thus, the life cycle is completed in about 4 months. Early symptoms of attack are 

distinctive but hard to see: egg laying notches; cocoons inserted into the base of the palms; 

an eccentric growing crown; holes at the base of cut palms; symptoms resembling those 

caused by lack of water such as wilting, desiccation and necrosis of the foliage; tunnelling 
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within the stems and trunk. Larvae and adults destroy the interior of the palm tree, often 

without the plant showing signs of deterioration unless damage is severe. Hollowing out of 

the trunk reduces its mechanical resistance, making the plant susceptible to collapse and a 

danger to the public. Pheromone traps, acoustic detection or infrared systems can be used to 

detect this pest (Malumphy and Moran, 2009). Recently has been verified the effect of a 

potential biological control against a wide range of insect pests (Ehlers, 2003), the symbiotic 

complex Steinernema carpocapsae associated with the bacterium Xenorhabdus nematophila.  

 

1.5.2 Galleria mellonella  

 The larvae of the greater wax moth G.mellonella are 1.5-2.5cm in length. Their size 

enables an easy means of inoculation with specific amounts of drug or pathogen via the pro-

leg making G.mellonella more amenable to drug pharmacodynamics studies (Fallon et al., 

2010). It is also feasible to assess phagocytic cell function and immune responses to 

determine the virulence of pathogens (Cotter et al., 2000) and the actions of 

immunosuppressive molecules such as gliotoxin and fumigillin released from the fungus A. 

fumigatus on phagocytic functions (Fallon et al., 2011; Renwick et al., 2007).  

The assessment of hemocyte function gives comparable results to those seen in human 

neutrophils due to the functional homology of phagocytosing hemocytes in G. mellonella 

(Kavanagh and Reeves, 2004). A strong correlation is observed in microbial pathogenicity in 

G. mellonella and mammalian systems (Brennan et al., 2002; Jander et al., 2000). G. mellonella 

are particularly suited as in vivo models as they have a high throughput (Cotter et al., 2000) 

and can be incubated between 30-37°C enabling possible temperature dependent virulence 

factors to be studied (Glavis-Bloom et al., 2012). The evolutionary conservation of several 

aspects of the innate immune response between invertebrates and mammals makes the use of 

these simple hosts an effective and fast screening method for identifying fungal virulence 
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factors and testing potential antifungal compounds (Kavanagh and Reeves, 2004; Arvainitis et 

al., 2013). 

More recently, the larvae have been employed to study the pathology of brain infections 

caused by Listeria which produces a comparable pathology to that observed in humans 

(Mukherjee et al., 2013). 

 

1.5.3 Steinernema carpocapsae and its symbiont Xenorhabdus 

nematophila 

 Insect parasitic nematodes Steinernema carpocapsae are nematocomplexes associated 

with mutualistic bacteria Xenorhabdus nematophila. The basic life cycle of most 

entomopathogenic nematodes consists of several stages: an egg stage, four juvenile stages 

(L1, L2, L3, L4), and a complex adult stage that comprises L5 (early adult stage) and late 

adult. In general, nematodes moult four times during each life cycle with a moult occurring 

at the end of each larval stage (Dillman et al., 2012).  

Therefore, moults separate the first and second larval stages (L1 and L2), the second and 

third larval stages (L2 and L3), the third and fourth larval stages (L3 and L4) and also the 

fourth larval stages and immature adults (L4 and L5). The L5 grows to the size limit of its 

new cuticle. The third juvenile stage (IJ3) of nematodes is known as the “infective juvenile” 

and is the only free-living stage (Womersley, 1993). The IJ3 is capable to survive in the soil 

for extended periods until it is able to find a susceptible host; its function is to locate, attack, 

and infect an insect host (Akhurst and Dunphy, 1993).  

Host infection consists of various steps. Infective juvenile stage enters the host through 

natural body openings (mouth, anus, spiracles), it reaches the hemocoel of the host, and 

later on, it releases bacteria spores by defecation or regurgitation. After release, bacteria 

quickly multiply in the hemolymph; they are mainly responsible for the host mortality 
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because they produce and release exo- and endotoxins to which the insect succumbs by 

septicemia within 24-48 hours of infection, furthermore bacteria secrete antibiotics that 

prevent multiplication of the other microflora. Bacterial cells also express and release 

proteases and lipases that degrade insect host to issues that can be utilized by the parasite as a 

food source. After mating, the females lay the eggs that hatch as first-stage juveniles that 

moults successively to second, third and fourth-stage juveniles and then to males and females 

of the second generation The adults mate and the eggs produced by these second-generation 

females hatch as first-stage juveniles that moult to the second stage. The adult nematodes 

produce hundreds of thousands of new juveniles. The late second stage juvenile ceases 

feeding, incorporates a small fresh group of bacteria in the bacterial chamber, and moults to 

the infective juvenile stage (IJ3). When the host has been consumed, the infective juveniles 

emerge from the exoskeleton of the host, move into the soil and begin the search for a new 

host (Brivio et al., 2005). 

Virulence factor from S. carpocapsae is the key to the success of this bioinsecticide (Shapiro-

llan et al., 2003); the letality of the complex is attributed to the bacteria, due to their ability 

to excrete toxins and proteolytic enzymes (Forst et al., 1997). Then, symbiotic bacteria 

contribute to the mutualistic relationship actively, by killing insect host, by establishing and 

maintaining suitable conditions for nematode reproduction and by providing nutrients and 

microbial substances that inhibit growth of a wide range of other microorganisms. At the 

same time, the nematode acts as a vector for the symbiotic bacterium. The symbiosis is 

essential for the efficiency of the biocontrol and it enables nematodes to exploit a diverse 

array of insect hosts (Dunphy and Thurston, 1990). We have to consider that the parasite 

does not act simply as a "troian horse" but it must avoid and or suppress the host immune 

responses (Goodrich-Blair, 2007).  

Indeed Vinson (1977; 1990) hypothesized a key role of the body surface of parasites. He 

suggested that in absence of active suppressive mechanisms the lack of encapsulation could 

be due to the acquisition of a coat composed of host proteins (mechanism called molecular 

disguise), the presence of heterophilic antigens or the presence of a not reactive body surface 
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(molecular mimicry). Brivio et al. (2004) confirmed this hypothesis demonstrating a key role 

of the lipids in the interference of the parasite with host defenses. 

Xenorhabdus sp. is a motile gram negative bacteria belonging to the family of 

enterobacteriaceae and is specifically found associated with nematodes of the 

Steinernematidae group but Xenorhabdus can be grown as free living organism under 

standard laboratory conditions. As the bacteria enter the stationary phase of their growth 

cycle, they secrete several extracellular products, including lipases, phospholipases, 

proteases and several different broad-spectrum antibiotics (Forst et al., 1997; Gualtieri et al., 

2009; Massaoud et al., 2010; Richards et al., 2008; Richards and Goodrich-Blair, 2010;Jin et 

al., 2014; Zhou et al., 2013). 

These degradative enzymes break down the macromolecules of the insect to provide the 

developing nematode with a nutrient supply, while the antibiotics suppress contamination of 

the cadaver with other microorganisms. Another property of Xenorhabdus sp. is the formation 

of phenotypic variant forms that can be isolated at low and variable frequencies during 

prolonged incubation under stationary phase conditions. The variant forms or so-called 

phase II cells are altered in many properties and are not found as natural symbionts in the 

nematode. Phase I cells represent the form of the bacteria that naturally associates with the 

infective juvenile nematode (Boemare and Akhurst, 1988; Sicard et al., 2005). 

Insects when infected by bacteria as E. coli and M. luteus usually trigger various cellular and 

humoral defences, as well as nodulation, phagocytosis and more specifically, the production 

of antimicrobial peptides directed to foreign microorganisms (Zasloff, 2002; Nappi et al., 

2004; Strand, 2008). Instead, when Xenorhabdus sp. is released into the hemolymph, seems 

to be not recognized and it overcomes the host immune responses by secreting toxic factors 

and degradative enzymes that affect the physiology of the insect leading to a general 

immunodeficiency (Brillard et al., 2001; Stock and Goodrich-Blair, 2008; Dillman et al., 

2012). Several studies that X. nematophila impairs humoral and cellular processes (Vallet-

Gely et al., 2008) responsible for bacterial clearance. A study described a surface molecule 
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named rhabduscin on the wall of X. nematophila and Photorhabdus luminescens; it is a tyrosine 

derivative with a role as a potent nanomolar-level inhibitor of insect phenoloxidase 

(Crawford et al., 2012). Moreover, LPS of Xenorhabdus act as a hemocyte toxin and may be 

responsible for the fat-body dissociation (Dunphy and Webster, 1988). X. nematophila 

secretions are able to interfere with eicosanoids pathways, impairing nodulation and 

phagocytosis and indirectly, AMPs synthesis even if, in this case, the exact mechanism of 

genes down-regulation remains to be elucidated (Ji and Kim, 2004; Park and Stanley, 2006; 

Aymeric et al., 2010; Hwang et al., 2013). However, in addition to its depressive capability, 

we have to consider that some Xenorhabdus genera seem not to be susceptible to the action of 

host immunocompetent factors (Duvic et al., 2012). Finally, as described by Caldas et al. 

(2002), hydrolytic properties of symbionts secretions (protease II) seem to affect 

antimicrobial peptides. In particular, it reduced 97% of the cecropin A bacteriolytic activity. 

The life cycle of entomopathogenic nematodes (Brivio MF et al., 2005) 

 

 

 



29 
 

1.6 Aims of the project 

In our work we have focused on the study of the relationship between entomoparasites and 

insect host, we have examined both host defenses processes and the evasive/depressive 

strategies of the parasites.  

Below is a summary of the topics discussed experimentally in the project:  

•To study the basic mechanisms of the innate immune recognition against not-self 

•To study physiological and parasites-modulated immune responses in the insect model: 

investigation of constitutive processes such as ProPO system activity and hemocytic 

encapsulation, also considering the recognition process of immune sensing 

•To study depressive and immune evasive strategies implemented by parasites 

(entomopathogen nematodes) 

•To study the host inducible responses, analyzing the antimicrobial activity by biochemical 

and microbiological assays against various bacterial strains 

•To check the effects of host AMPs on the bacterial cell wall by fluorescence microscopy and 

scanning electron microscopy  

•To study the effects induces by EPNs infections on AMPs activity considering the role 

played by live parasites, dead parasites and their symbionts in the tripartite interaction. 

•Finally we have started a study on host phagocytosis processes. 
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2 MATERIALS AND METHODS  

2.1 Reagents and Instruments  

Instruments and reagents were purchased from BioRad Laboratories (Detroit, MI, 

USA), Sigma Chemicals (St. Louis, MO, USA), Millipore Corporation (Billerica, MA, 

USA), Merck (Darmstadt, Germany) and Celbio SpA (Milan, Italy). Centrifugations were 

performed by an Eppendorf MiniSpin® and Eppendorf 5804R (Eppendorf AG, Hamburg, 

Germany). Spectrophotometric measurements were carried out using a Jasco V-560 

(Easton, MD, USA). All materials and buffers were autoclaved.  

2.2 Insects and Parasites  

R. ferrugineus (Coleoptera, Dryophthoridae) late instar larvae were used to study 

relationships between insect hosts and the parasites. Larvae were collected from Canary 

palm trees (Phoenix canariensis), in Agrigento and Palermo area (Italy) and transferred 

(authorization MIPAF prot. 0025254) to our laboratory for experimental tests. RPW at 

various stages were maintained in a climatic chamber at 30 °C, in dark condition, with a 

relative humidity of 75%; insects were fed with a formula based on apple slices and only 

healthy larvae were selected for the experiments. 

G.mellonella (Lepidoptera, Pyralidae) larvae were reared on a sterile mixture of food (wax, 

honey and wholemeal) in a thermostatic chamber, at 27 °C, 70% relative humidity, in the 

dark. Healthy larvae were selected before assays. 

Entomophatogenic nematodes, S. carpocapsae (Nematoda, Steinernematidae) were provided 

by Koppert Biological System (Koppert BV, AD Berkel en Rodenrijs, the Netherlands); 

parasites are available as commercial preparation (Capsanem®) at the infective juvenile stage 

L3, in cryptobiosis. To maintain the parasites in infective stage the preparation was kept at 4 

°C. Before assays, S. carpocapsae were purified from inert material and about 2-3 gr of the 
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formulation (nematode-clay) was dissolved in dechlorinated tap water. The suspension was 

layered on a sucrose gradient (75-50-25%) and centrifuged at 100 X g, for 10 min at room 

temperature; nematodes were recovered at the 25-50% interface then, washed several times 

with sterile tap water to remove contaminants.   

2.3 Isolation and purification of S. carpocapsae cuticles 

Cuticles were obtained from previously washed nematodes (as describe above). 

Processed parasites were suspended in 20 volumes of CEB (cuticle extraction buffer: 

10mmol/L Tris-HCl, 10 mmol/L EDTA, 1 mmol/L PMSF, pH7.2) and subjected to two 

cycles of sonication (150 watts for 30 sec), in a Labsonic-L Ultrasonic processor (B. Braun 

Biotech Inc., Allentown, PA, USA). Parasites body fragments were homogenized using a 

Potter Dounce (B. Braun, pestle B) to remove tissue and body fluids, finally the cuticles 

were washed several times with 10 mmol/L of Tris-HCl pH 7.2, to remove tissue debris 

and contaminants. To verify the purification degree, cuticles fragments were checked by 

light microscopy. 

2.4 Microorganisms to verify effects on host proPO system 

Gram negative bacteria (Escherichia coli C1a), Gram positive bacteria (Bacillus subtilis, 

ATCC 6051) and yeast (Saccharomyces cerevisiae) were used to verify the effects on the host 

proPO system in vitro. Bacterial cultures were grown overnight at 37°C in Luria-Bertani 

broth(1% tryptone, 0.5% yeast extract, 1.0% NaCl) and the bacteria concentration was 

estimated by spectrophotometric reading of absorbance (λ = 600nm). Subsequently the 

cultures were centrifuged at 1700× g for 15 min, the bacterial pellet was washed several 

times with sterile PBS (138mmol/L NaCl, 2.7mmol/L KCl, 10 mmol/L 

Na2HPO4/KH2PO4, pH 7.4), cells were killed (20min at 95°C), then washed with sterile 

phosphate buffer. The bacteria strains were used at a final concentration of 103 cfu/mL. S. 

cerevisiae (0.025 g/L) was inoculated in sterile media (1% yeast extract, 2% D-glucose 

monohydrate, 0.05% peptone) and incubated overnightat 37°C. Cultures were centrifuged 
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at 1700× g for 10min at 20°C, pellets were harvested and washed several times in PBS, 

yeast cells were counted in a Bürker chamber and suspended to a final concentration of 105 

cells/mL. Lastly, yeast cellswereheat-killed (at 95°C for 30 min), centrifuged and washed 

several times insterile buffer, aliquots of all microorganisms were immediately used or 

stored at −20°C. 

2.5 proPO system activity of R. ferrugineus 

proPO system relative activity of RPW larvae was monitored by spectrophotometric 

analysis in hemolymph cell-free samples. The activity was examined in vitro, both in the 

presence of microorganisms (Bacillus subtilis, Escherichia coli, Saccharomyces cerevisiae) and in 

the presence of isolated PAMPs compounds (Lipopolysaccharides, β-Glucan, 

Peptidoglycans). Cell-free fraction (CFF) supernatants were obtained by two low-speed 

centrifugations (200× g, for 10 min, at 4 °C) of whole hemolymph, previously flushed out 

from healthy larvae. Bacteria (2 × 102), yeast cells (2 × 102), lipopolysaccharides (10 μg), 

10 μL of a saturated solution of β-Glucans, or peptidoglycans (10 μg), were added to200 μL 

aliquots of CFF; 30 min after incubation (under nitrogen flow at 25−26 °C) time courses of 

phenoloxidase activity were recorded. All kinetics were done with 5 μL of hemolymph 

added to 1 mL of L-Dopa (8 mmol/L L-Dopa in 10 mmol/L Tris-HCl, pH 7.2) as substrate; 

time courses of absorbance changes were recorded (ΔA 490nm 5 min-1, at 20°C), by 

evaluating the dopachrome formation from L-Dopa substrate. As control, basal activity of 

proPO system was analysed in extracted hemolymph samples without activators. 

2.6 Effects of parasites on host proPO system 

The relative activity of host phenoloxidase was recorded by spectrophotometric 

assays carried out after parasitization (in vivo), or by co-incubation of S. carpocapsae with host 

CFF (in vitro). To investigate the effects of parasites in vivo on host proPO system, 30−50 μL 

of a suspension containing about 20−30 (living or cold-killed) nematodes in PBS were 
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injected into the hemocoelic cavity of R. ferrugineus. The parasitization was carried out by 

microinjection into host larvae in order to establish a "time zero", required for a correct 

kinetic of activation. Injections were performed using micro-syringes Hamilton (mod. Gas-

tight), equipped with thin needles (diameter 0.13 mm internal, 0.26 mm external). Thirty 

minutes after parasites injection, larval hemolymph was collected and the CFF was used for 

spectrophotometric measurements. For in vitro assays, about 30-50 nematodes or cuticles 

fragments, were added to host CFF aliquots (200 μL), after 30 min of incubation under a 

gentle nitrogen flow at 25−26 °C, parasites (or cuticles) were pelleted by centrifugation 

(200× g for 10 min) and the relative activity of phenoloxidase was recorded in supernatants 

as describe above. All kinetics assays were carried out as described in subsection 2.6. As 

controls in all in vivo assays, larvae were injected with sterile PBS. 

2.7 RPW hemocytes primary cultures 

To investigate in vitro the process of cellular encapsulation we established primary 

cells isolated from the hemolymph of R. ferrugineus. Briefly, healthy larvae were sterilized in 

70% ethanol, anesthetized on ice and bled by puncturing the dorsal vessel by a sterile needle. 

Hemolymph was flushed out in a refrigerated sterile Eppendorf tube with anticoagulant 

buffer (98 mmol/L NaOH,145 mmol/L NaCl, 17 mmol/L EDTA, 41 mmol/L citric acid, 

pH 4.5), to avoid undesired cells degranulation. Cells were separated by low speed 

centrifugation (200× g for 10 min at 4°C), humoral fraction was discarded and collected 

hemocytes washed with sterile PBS, the procedure was repeated a few times to avoid any 

contamination by tissues or cells debris. Hemocytes were suspended in a complete culture 

medium (10% fetal bovine serum, 1% antibiotic antimycotic, 1% glutamine in Grace's insect 

medium), and 2 × 105 cells were cultured in 96 microwells plates (Cell cultures cluster, flat 

bottom, Iwaki) and kept at 25−26 °C, in a humidified incubator (Cellstar) without CO2. 
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2.8 Encapsulation assays 

To examine the ability of host hemocytes to encapsulate foreigners such as 

nematodes (live, heat-killed and cold-killed), parasites isolated cuticles and synthetic 

microbeads and we carried out in vitro co-incubations of host primary cells with potential 

targets. Before assays, all the targets samples, were washed in sterile buffer and resuspended 

in Grace's insect medium, after 30 min from the hemocytes adhesion to the substrate, 

targets were added to cells cultures at a concentration of about 10−15 units/well. The 

encapsulation process was examined at two and eight hours after the start of incubation, 

observations were made under an inverted microscope (Olympus I×51) and images were 

acquired by a digital system (Nikon digital camera DXM1200F). For in vivo assays a slight 

modification of the procedure described above was used (cold-killed and heat-killed 

nematodes were suspended in sterile PBS, before injection into larvae); 30 min, or two 

hours, after hosts infection, larvae were bled and extracted nematodes and hemocytes were 

observed by microscopy. 

2.9 Bacterial strains and culture conditions to induce AMPs 

synthesis and verify antimicrobial activity 

Gram-negative (E. coli C1a, Pseudomonas sp. OX1) and Gram-positive (B. subtilis ATCC 

6051, M. luteus ATCC 4698) bacterial cultures were used for larval immunizations and AMP 

activity assays. After inoculation in Luria-Bertani (LB) broth (1% tryptone, 0.5% yeast 

extract, 0.5% NaCl), bacterial cultures were grown overnight (16 h) under shaking at 37°C, 

in a dark room. Bacterial growth was verified by spectrophotometric measurement of 

biomass (λ = 600 nm). Briefly, for immunization assays, cultures were centrifuged at 1700 g 

for 10 min at 20°C, the bacterial pellet was recovered and then cells were killed by heating 

at 65°C for 1 h. Before injections, bacteria were washed several times with sterile PBS 

(138mM NaCl, 2.7mM KCl, 10mM Na2HPO4/KH2PO4, pH 7.4); finally, bacterial strains 
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(a mixture 1:1 of E. coli and B. subtilis) were injected in RPW larvae at a final concentration 

of 105 CFU/ml, or stored at –20°C with glycerol (1:1 v/v). 

2.10 AMP synthesis in RPW larvae 

In order to induce the synthesis of AMPs in R. ferrugineus, larvae were infected with 

killed or live microorganisms, or a mix of purified LPS and peptidoglycan (PGN). Fifty 

microlitres of bacterial suspension (105 CFU/ml dead bacteria or 103 CFU/ml live bacteria), 

or 20 mg of LPS/PGN mixture, were injected using Hamilton microsyringes (model gas-

tight) equipped with thin needles (0.13mm internal diameter, 0.26mm outer diameter); 

after 24 h of infection, hemolymph was collected. Immunized and naïve larvae were 

anaesthetized on ice, sterilized with 70% ethanol and bled by puncturing the dorsal vessel by 

a sterile needle. Hemolymph was flushed out in a refrigerated sterile microfuge tube 

containing a few 1-phenyl-2-thiourea crystals to avoid activation of prophenoloxidase 

enzyme. Humoral fractions were collected by increasing centrifugation (200, 400 and 1500 

g for 10 min at 4°C) to remove cells and tissue debris. Whole hemolymph was processed to 

obtain low molecular mass (LMM) fractions (cut-off 30 kDa and 10 kDa) by means of 

centrifugal filter devices after centrifugation at 1500 g for 4 h at 15°C. Total proteins were 

estimated by Bradford protein assay, calibrated on BSA (Bradford, 1976). All samples were 

used immediately or stored at –20°C.  

2.11 Antimicrobial activity in hemolymph of R. ferrugineus larvae 

To evaluate antimicrobial activity in the humoral fraction of RPW hemolymph, 

bacterial cells were grown overnight (as described above) and then diluted with LB broth to 

106 CFU/ml for microbroth dilution assays, carried out in 96-microwell plates. Aliquots (20 

ml) of whole hemolymph or fractioned hemolymph (<30 kDa and 10 kDa), with different 

amounts of AMP, were added to 180 ml of bacterial suspension and then incubated for 3 h at 

37°C under shaking. After incubation, 100 ml of each sample was placed in a well of a 96-
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well microtiter plate, samples were serially diluted with phosphate buffer (61.4mM 

K2HPO4, 38.4mM H2PO4) and finally, they were plated on solid agar and bacteria colonies 

counted after incubation at 37°C for 24 h. The antibacterial activity in hemolymph samples 

was intended as the percentage of bacterial survival compared with the control (bacterial 

suspension incubated without RPW hemolymph). The final concentration of proteins used 

for antimicrobial activity tests were as follows: versus E. coli, whole hemolymph 500 

mg/ml, <30 kDa and <10 kDa fractions, 15, 75, 150 mg/ml; versus Pseudomonas, <30 

kDa and <10 kDa fractions, 75 and 150 mg/ml; versus B. subtilis, <30 kDa fraction, 15, 75, 

150 mg/ml and <10 kDa fraction, 75 and 150 mg/ml; versus M. luteus, <30 kDa fraction, 

75 and 150 mg/ml, <10 kDa fraction, 75 and 150 mg/ml. 

2.12 Effects of lysozyme and lysozyme inhibition on antimicrobial 

activity versus B. subtilis 

Hemolymph fractions from RPW larvae were assayed against B. subtilis in the 

presence of lysozyme or lysozyme inhibitor [L-histidine methyl ester dihydrochloride 

(LHMED)]. Hemolymph samples, 150 mg/ml of either <30 kDa or <10 kDa fractions, 

were incubated with 106 CFU/ml of B. subtilis in the presence of 100mM LHMED or 

lysozyme (2 mg/ml), respectively, for 3 h at 37°C, under shaking in a dark room. Finally, 

antimicrobial activity was evaluated by microbroth dilution assay, as described above. 

2.13 SDS- and 2D-PAGE analysis of larvae hemolymph 

Whole (cell-free) and fractioned hemolymph (<30 kDa and <10 kDa) from non-

immunized and immunized larvae were analysed by monodimensional SDS-PAGE 16% 

(Laemmli, 1970), Tricine-PAGE (Schägger and Von Jagow, 1987) and 2D electrophoresis 

(O’Farrell, 1975).  2D-page was performed using an Ettan IPGphor II Isoelectric focusing 

System unit (GE Healthcare), according to the standard manufacturer’s protocols. Samples 

were focused on an immobiline Drystrip (13 cm; pH 3–10), Isoelectric focusing (IEF) strips 
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were loaded onto a Protean II Cell System (Bio-Rad, Hercules, CA, USA), proteins were 

separated by Tricine-PAGE (16%) and revealed by silver staining. Molecular mass 

determination was carried out following the method of Weber and Osborn (Weber and 

Osborn, 1969). 

2.14 RBC lysis in the presence of RPW hemolymph 

The lysis of human RBCs was checked by recording hemoglobin release into the 

extracellular environment after the incubation of blood cells with whole and fractioned 

hemolymph. Approximately 10 ml whole blood was drawn into K3 EDTA vacuum tubes 

(BD Vacutainer, Becton Dickinson Inc., USA), from healthy volunteers. Blood testing 

solution was prepared by washing 3 ml fresh human blood with 7 ml of pyrogen free PBS 

(137mM NaCl, 2.7mM KCl, 10mM Na2HPO4, 2mM KH2PO4, pH 7.4); the suspension 

was centrifuged at 400 g for 10 min at room temperature (20°C), and washes were repeated 

until the supernatant turned clear. RBC pellets were diluted to 20 ml with PBS, and 180 ml 

of diluted blood was added to 20 ml of whole hemolymph from naïve larvae, <30 kDa 

hemolymph fractions from naïve larvae, and either <30 or <10 kDa hemolymph fractions 

from immunized larvae. All the samples were incubated for 30 min at 37°C under gentle 

shaking. Positive or negative controls were performed by adding to blood samples 20 ml of 

0.2% Triton X-100 or PBS respectively. Samples were centrifuged at 400 g for 5 min and 

100 ml of supernatants were diluted to 1 ml with PBS. Finally, cells lysis was assessed by 

measuring the OD (λ =404 nm) with a JASCO V-530 UV/VIS spectrophotometer. The 

percentage of hemolysis was calculated as follows:  

[(A peptide – A PBS)/(A Triton-X100 – A PBS)] x 100. 
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2.15 Fluorescence microscopy of propidium iodide uptake 

Bacteria from overnight cultures were diluted 1:10 (v/v) with LB and cultured until 

mid-log phase OD 0.6 (λ = 600 nm). Then, AMP samples (hemolymph fractions <30 kDa 

and <10 kDa) were added to cell cultures to a final concentration of 150 mg/ml. All assays 

were performed with 2.5x107CFU/ml of E. coli and B. subtilis, incubated at 37°C in a 

thermomixer, shaken at 800 rpm. Microscope observations were carried on bacteria after 

various incubation times (up to 3 h). Propidium iodide (PI; 5 mg/ml) was added at 20°C 

and samples drops (10 ml) were placed in glass bottom (0.170-mm thick round glass cover 

slip) observation chambers (Okolab, Ottaviano, Italy) and then covered with a small round 

glass cover slip in order to trap cells, reduce their mobility and medium evaporation. 

2.16 SEM 

AMPs treated or not treated with aliquots of E. coli or B. subtilis suspensions (106 

CFU/ml) were fixed with 2.5 % glutaraldehyde in 100mM PBS (pH 7.4) overnight at 20°C, 

and then post-fixed in 1% osmium tetroxide, dehydrated with graded ethanol, dried by the 

critical point method and coated with gold. Observations were made under a SEM LEO-

1430 (Carl Zeiss, GmbH) scanning electron microscope. 

2.17 Isolation of symbiotic bacteria and culture conditions 

Xenorhabdus nematophila was obtained from the hemolymph of G. mellonella infected 

with IJs of S. carpocapsae. About 20 nematodes were surface-sterilized by immersion in 2,5 % 

sodium hypochlorite for 5 to 10 mins after being washed several times in sterile water, they 

were suspended in sterile PBS and  injected into G. mellonella larvae. Dead G. mellonella 

larvae were surface-sterilized in 70% alcohol and hemolymph was streaked onto nutrient 

agar (NBTA) plates and incubated at 28°C for 48 h. Isolation medium (NBTA) consisted of 

Nutrient Agar (0.5% Peptone, 0.3% beef extract/yeast extract, 1.5% agar and 0.5% NaCl) 

supplemented with bromothymol blue (25 mg ml−1) and triphenyl-2,3,5-tetrazolium 
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chloride (4 mg ml−1). To obtain pure cultures, dark blue colonies were selected and 

subcultured onto fresh NBTA plates, from which single colonies were picked and plated 

onto NA. The identity of the bacterial symbiont was confirmed by several morphological and 

microscopic techniques (Boemare and Akhurst, 1988). To ensure the purity of the sample, a 

pure colony was sequenced by BMR Genomics, Padova. X. nematophila has been grown in 

Luria-Bertani broth (1% tryptone, 0.5% yeast extract, 0.5% NaCl) overnight at 28 °C 

under shaking in a dark room; growth has been verified by spectrophotometric measures of 

biomass (λ= 600nm). X. nematophila living, heat-killed (65 °C for 2 h), UV-killed (1 h of 

irradiation), or a mixture of E. coli/B. subtilis (1:1 v/v) heat-killed  at 65°C for 2 h, have 

been used for immune-challenges. Bacteria have been washed several times with sterile PBS 

and immediately used.  

2.18 Infection of RPW larvae with S. carpocapsae nematocomplexes 

or symbiotic bacteria 

To evaluate the interference of S. carpocapsae complex or of isolated X. nematophila 

on the synthesis of antimicrobial peptides in RPW larvae, we have carried out various 

infection assays. Briefly, 30-40 parasites, living or cold-killed (-20°C for 48 h), or 103 living 

or 105 killed symbionts bacteria have been injected into the hemocoelic cavity of RPW 

larvae, using a Hamilton gas-tight syringe (Hamilton, Reno, NE, USA) with 0.21 mm 

needles. 

Twenty-four hours post-infection, host hemolymph samples have been collected in the 

presence of few PTU (1-Phenyl-2-thiourea) crystals to avoid activation of prophenoloxidase. 

Hemolymph samples have been centrifuged several times (500 to 1500 x g for 10 min at 

4°C) to remove cells, tissue debris and bacteria. Humoral fractions have been processed to 

obtain low molecular weight protein pools (LMW, cut-off 30 kDa) by centrifugation at 1500 

x g for 1 h at 15 °C on centrifugal filter devices (Amicon, Merck Millipore Ltd). As positive 

immunization control, a mixture of E. coli/B. subtilis has been injected; moreover, to further 
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evaluate immune stimulation/evasion properties of parasites body-surface, isolated parasites 

cuticles (about 50 fragments) have been injected into RPW larvae. Total protein content has 

been estimated by Bradford protein assay, calibrated on bovine serum albumin. Finally, 

antimicrobial activity in all samples has been evaluated by microbiological assays performed 

vs. E. coli or X. nematophila. 

2.19 Sequential co-infection of RPW larvae with S. carpocapsae and 

exogenous bacteria, or with X. nematophila and exogenous bacteria 

The ability of S. carpocapsae or X. nematophila to modulate  AMPs synthesis in the 

presence of exogenous bacteria (mixture of E. coli/B. subtilis) has been tested by assays of 

double-infection. Briefly, after injections with parasites or X. nematophila, larvae have been 

re-infected (30 min, 2 h, 4 h and 5 h after) with exogenous bacteria mix (105 E. coli/B. 

subtilis). Alternatively, exogenous microorganism infection has been performed before 

injections of parasites or symbionts. After 24 hours , cell free fractions (CFF) samples were 

collected and fractioned by centrifugal filter devices (Amicon, cut-off 30 kDa), protein 

concentration has been determined and microbiological assays vs. E. coli or X. nematophila 

have been carried out. 

2.20 Microbiological assays 

To assess antimicrobial activity in humoral fraction of RPW hemolymph, bacteria (E. 

coli and X. nematophila) have been grown overnight (as described above), then diluted with 

LB broth to 106 CFU/ml for microbroth dilution assays and carried out in 96 microwells 

plates. Aliquots of fractioned hemolymph (150 µg/ml) have been added to bacterial 

suspension, then incubated for 3 h at 37 °C or 30°C under shaking. After incubation, 100 µl 

of each sample has been serially diluted with phosphate buffer (61.4 mM K2HPO4, 38.4 mM 

KH2PO4) and finally, they have been plated on solid agar. Bacteria colonies have been 

counted after incubation at 37°C  or 30°C for 24 h. 
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2.21 Extraction of LPS from symbiotic bacteria X. nematophila 

Phenol/water extracts from bacterial have been isolated by LPS extraction kit 

(iNtRON Biotechnology) according to the manufacturer. Briefly, bacterial cells (1 ml of 109 

CFU/ml of X. nematophila) have been harvested by centrifugation at 10.000 g for 5 min at 

room temperature and pellets washed twice in PBS. 1 ml of Lysis Buffer has been added to 

samples, then vortexed until the cell clump disappeared. After addition of 200 μl 

chloroform, the mixture has been vortexed for 30 s and incubated at room temperature for 

5 min. The mix has been centrifuged at 10.000 g at 4 °C for 10 min, the upper phase (400 

μl) has been transferred to a new test tube. Eight hundred μl of Purification Buffer have been 

added and samples incubated for 10 min at -20 °C. 

After centrifugation (10.000 g at 4 °C for 15 min), pellets have been washed with 1 ml of 

70% ethanol, air-dried and dissolved in 10 mM Tris-HCl buffer (pH 8.0), solubilisation has 

been obtained by sonication (60 °C for 5 min). 

30 μg of purified X. nematophila LPS have been injected into RPW larvae, after 24 hours host 

hemolymph has been collected, then fractioned as described previously and antimicrobial 

activity has been assessed. 30 μg of LPS from E. coli (Serotype 055:B5, Sigma-Aldrich) have 

been injected as control. 

2.22 Tricine-PAGE analysis of hemolymph peptidic pattern from 

RPW larvae and SDS-PAGE analysis of purified lipopolysaccharides 

(LPS) 

With the aim to analyse hemolymph proteins and peptides in naïve or treated-larvae, 

low molecular weights hemolymph samples <30 kDa from RPW larvae have been analysed 

by monodimensional 16% Tricine-PAGE (Schagger and Von Jagow, 1987) in a Mini 
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PROTEAN® 3 Cell (Bio Rad). Electrophoresis has been carried out at 120 V (constant 

voltage) and after separation, proteins have been revealed by conventional silver staining.  

For lipopolysaccharides analysis, 5 µg of LPS purified from X. nematophila have been  

separated on 12% SDS-PAGE and visualized by silver staining method modified by a 

previous oxidation with 7 mg/ml of periodic acid (SIGMA) added to the fixative solution. 

As control, 5 µg of LPS from E. coli (Serotype 055:B5, SIGMA) have been separated and 

stained as described above. 

2.23 Phagocytosis assays 

Larvae of G. mellonella were surface-sterilized with ethanol (70%) and hemolymph 

was collected in eppendorf tubes, by puncturing prolegs of last instar larvae. Hemolymph 

was immediately diluted (1:1, v/v) with anticoagulant buffer ( 20 mM EDTA in PBS buffer) 

and centrifuged at 250×g for 10 min at 4 ◦C, to separate hemocytes and humoral fraction. 

Hemocytes were washed two times with anticoagulant buffer by centrifugations (250×g for 

5min at 4 ◦C). Finally, cells were resuspended in 400 µl of Grace’s Insect Medium (Sigma) 

plus 10% fetal bovine serum, 1% glutamine, and 1% antibiotic/antimycotic solution 

(10,000 units penicillin G, 10mg Streptomycin, 25 g amphotericin B ml-1. 50 µl of 

hemocytes solution were added to 450 µl of Completed Grace Insect medium and cultured 

in microwells (24-well culture plates, Flat Bottom, Corning Inc., Costar) and incubated at 

26 ◦C for 24 h. All preparations and assays were carried out in sterile conditions.  

To evaluate phagocytosis activity, bacterial visibility was enhanced by a conventional FITC 

(fluorescein isothiocyanate) or TRITC (tetramethylrhodamine isothiocyanate ) labeling 

method. Briefly, an overnight bacteria culture were pelletted at 2800×g, for 15 min and 

washed several times with PBS buffer (pH 7.4). E. coli, M. luteus and X. nematophila were 

heat-killed at 65 ◦C for 90 min; then bacteria were centrifuged and washed in PBS buffer.  
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Bacteria were suspended in 0.1 M sodium carbonate-bicarbonate buffer pH 9 with 1mgml-1 

FITC/TRITC in DMSO, incubated in the dark on a shaker for an hour at 25°C. Finally, 

bacteria were washed in PBS buffer to remove unbound FITC/TRITC, then immediately 

used or stored at -20 ◦C. We also have used pHrodo-labeled S. aureus obtained from 

Invitrogen and resuspended according to the manufacturer's protocol. pHrodo is a dye that is 

non fluorescent at neutral pH and bright red in acidic environments (e.g., phagolysosomes). 

To evaluate in vitro phagocytosis activity, hemocytes of G. mellonella were co-incubated with 

E. coli, M. luteus or X. nematophila. Bacteria were added to a final concentration of 5 x105 

ml−1 and incubated for at least 2h. Trypan-blue quenching (2mg ml−1 in Grace medium, for 

20 min) was used to discriminate non-phagocytized bacteria. Phagocytosis activity was 

analized by fluorescence microscope (Olympus IX81) 

2.24 Data processing and statistical analysis 

Statistical analyses were performed using the Student’s unpaired t-test, the Fisher’s 

exact test and the one-way analysis of variance (ANOVA) followed by post-hoc analysis 

Dunnet’s t-test. the Means and SD were calculated in all assays; a P-Value <0.05 was 

considered statistically significant. All experiments were replicated at least five times. Data 

were processed with GraphPad Prism 4 (GraphPad Software, La Jolla, CA, USA) and R 

version 3.0.2 (Free Software Foundation, Boston, MA, USA). 
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3 RESULTS 

3.1 The proPO system of RPW 

To evaluate the activity of phenoloxidase, in the hemolymph of larvae both in 

physiological conditions and in the presence of microorganisms or their PAMPs, 

spectrophotometric analysis was performed.  

As shown in Fig. 1A, the presence of lipopolysaccharides (from E. coli), peptidoglycans 

(from B. subtilis), or β-glucans (from S. cerevisiae), resulted in an evident increase of activity 

(Fig. 1A, LPS, PGN, GLU); absorbance recorded values were, on average, more than twice 

as compared to the control (Fig. 1A, C). 

 
Fig. 1(A). In vitro host proPO system modulation in the presence of various PAMPs. C:control LPS: lipopolysaccharides, 

PGN: peptidoglycans, GLU: β-glucans. (B) In vitro host proPO system modulation in the presence of various 
microorganisms. C: control; Ec: Escherichia coli; Bs: Bacillus subtilis; Sc: Saccharomyces cerevisiae. Mean ± SEM, n = 5. **p< 
0.0001. 
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The proPO system triggered by PAMPs was comparable to that obtained in presence of 

microorganisms (Fig. 1B); graphs Ec, Bs and Sc show an increase of activity in hemolymph 

samples incubated with E. coli, B. subtilis and S. cerevisiae respectively. Since the extraction 

procedures induced a basal activity of the phenoloxidase it was considered as control (Fig. 

1A and 1B, C). 

3.2 Parasite-induced host proPo System modulation 

The effects of S. carpocapsae on ProPo system modulation were assessed by in vitro 

and in vivo assays. Fig. 2 highlights that the presence of whole parasite reduced significantly 

the activity of proPo system compared to the value of basal activity in the hemolymph 

(Fig.2A, C), on the contrary, cuticles do not interfere with the activity of phenoloxidase. 

After the in vitro investigation of the effects of nematodes, in vivo assays were performed by 

injecting viable parasites inside the hemocoelic cavity of host larvae. In the early phase of 

infection (Fig. 2B, Nem 30) a level of inhibition comparable to that recorded in the in vitro 

assay, was observable (Fig. 2B, Nem). After 60 minutes, a marked activation of proPO 

system was observed (Fig. 2B, Nem 60, Nem 120). 

Fig. 2C shows the proPO activity after injection of cold-killed nematodes; in all the analyzed 

periods (Fig. 2C, dNem 30, dNem 60, dNem 120) a weak inhibition was evident when 

compared to the control (Fig. 2C, C). 
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Fig. 2(A): In vitro host proPO system modulation in the presence of parasites and isolated cuticles. C: control; Nem: S. 
carpocapsae; Cut: S. carpocapsae isolated cuticles. Mean ± SEM, n = 5, **: p < 0.0001. (B) In vivo host proPO system 
modulation in the presence of live parasites at various times. C: control, Nem 30’-60’-120’: S. carpocapsae-injected larvae, 
30, 60 and 120 min after infection. Mean ± SEM, n = 5,**, P < 0.0001, *: p < 0.05. (C) In vivo proPO system 
modulation in the presence of cold-killed parasites. C: control, dNem 30’-60’-120’: dead S. carpocapsae-injected larvae, 30, 
60 and 120 min after infection. Mean ± SEM, n = 5, *p :< 0.05. 

 

3.3. Cellular encapsulation of abiotic not self  targets 

We initially evaluated the ability of hemocytes to recognize and encapsulate 

multicellular organisms by performing in vitro interaction assays, so entomopathogenic 

nematodes were co-incubated with viable hemocytes in culture. Main hemocytes 
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populations from late stage larvae of R. ferrugineus are showed in Fig. 3 (A and B), 

granulocytes (G), plasmatocytes (P) and larger oenocytoids (Oe) are clearly observable. 

Granulocytes (Gr) are rounded cells with a small nucleus; in the cytoplasm several granules 

(detected by focusing through the cells) are present. Plasmatocytes (Pl) are also evident; 

they are easily recognized by their spreading behavior. Oenocytoids (Oe) are larger round 

cells, they are generally refractive and occasionally the nucleus in peripheral position can be 

seen. 

Encapsulation properties of RPW larvae hemocytes were assessed in vitro in the presence of 

inert materials, the process was tested versus synthetic microbeads. As shown in Fig. 3, 

RPW immunocompetent cells are able to react against not self. Agarose beads were co-

incubated with hemocytes; after 2 hrs (left), both plasmatocytes and granulocytes move 

towards and surround the bead, in panel right (8 hrs), beads are enclosed by several cellular 

layers and melanin within the capsule is evident.  

 

Fig. 3. In vitro assay with 
Rhynchophorus ferrugineus hemocytes.  

 

(A) Micrographs show main cell 
populations from last instar larvae.                                            
Gr: granulocytes;                               
Pl: plasmatocytes;                            
Oe: Oenocytoids   

(B) Agarose beads were co-incubated 
in vitro with larvae hemocytes. Left (2 
h), hemocytes are close to the bead 
and the encapsulation process begins; 
right, (8 h), various beads are 
enclosed by the cells and melanin 
formation is evident inside the 
capsule. 

20 µm 

100 µm 
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3.4 Cellular response against parasites (in vitro) 

Besides reaction against abiotic targets, we tested the host cellular response against 

live and dead parasites. Co-incubations with S. carpocapsae were very useful to investigate the 

potential ability of the parasite to evade cell immune surveillance, as well as to ascertain the 

role of immunocompetent cells to recognize and to react against not self.  

Fig. 4 shows in vitro incubations of host hemocytes with live and dead S. carpocapsae (left and 

middle). After eight hours of incubation, both live and cold-killed parasites were not 

recognized and not encapsulated. Melanin formation is absent in the culture. In order to 

verify if the presence of parasites affected cell health and functions, nematodes and 

microbeads were incubated concurrently with host hemocytes (right); the presence of cold-

killed parasites did not interfere with hemocytes encapsulation properties since host cells 

were able to encapsulate beads (arrowhead).  

Fig.4. S. carpocapsae living (left) and cold-killed (middle) were incubated in vitro with host hemocytes (right). In both cases 
parasites were not recognized and encapsulation process was not observed, (100x). In right photo, nematodes and 
microbeads were co-incubated, even if in the presence of parasites cells are able to encapsulate agarose beads (arrowhead).  

 

It is therefore evident that the nematode seems to have mimetic abilities and it is not 

recognized by the cells, therefore no encapsulation was observed. The elusive role of the 
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parasite body-surface was further verified by encapsulation assays against isolated cuticles, as 

shown in Figure 5 (left and middle, 2 hours and 8 hours post incubation, respectively), 

cuticles were not detected by host cells, no migration and encapsulation were observed. 

However, when parasite body-surfaces were damaged by heat-treatments, S. carpocapsae 

seems to lose its mimetic properties; as shown in Figure 5 (right), cuticle-damaged parasites 

are recognized and multilayered capsules of host hemocytes surround the structure, host 

cells mainly involved in this process are granulocytes and plasmatocytes. Cell migration 

towards parasites were usually preceded by the formation of several stretched motile 

pseudopodia (Fig.5 left, arrowheads). 

Fig. 5. Immune evasion properties of the parasite body-surface. Isolated cuticles were incubated with host hemocytes for 2 
hours (left) and 8 hours (middle), either at short or long in vitro incubations, cuticles seem to avoid cell recognition. In 
right, heat-induced cuticle damage resulted in the lost of the mimetic properties of the parasite, thus a strong encapsulation 
was observed. Bar= 30µm 

 

3.5 Cellular response against parasites (in vivo) 

The in vivo host-parasite interaction assays were carried out by microinjection of 

nematodes into the host hemocoel (Fig. 6). Cold-killed parasites show mimetic properties 

(Fig. 6, left); the lack of cell responses was comparable to that observed in vitro. In contrast, 

cellular and humoral reactions were faster and stronger respect to in vitro assays when heat-

killed parasites were injected. After 30 minutes and after two hours (Fig. 6, middle and right 
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respectively) is, clearly, visible the formation of dark melanin aggregates around a parasite 

(arrowheads) and hemocytes are enclosed inside the dark capsule. 

 

Fig. 6 In vivo humoral and cellular reaction against S. carpocapsae: cold-killed (left) and heat-killed (middle and right) 
nematodes were injected into RPW larvae hemocoelic cavity, then larvae were bleeded, hemocytes and parasites were 
placed in microwells and observed under a light microscope. In left Figure, cold-killed parasites after 2 hours from injection 
were not encapsulated. Middle and right Figures show assays carried out with heat-killed nematodes 30 min (middle) and 2 
hours (left) after injection, remarkable formation of melanin was evident. Bar= 50µm 

 

3.6 Antimicrobial peptides (AMPs): proteins and peptides analysis 

in RPW hemolymph 

 The occurrence of newly synthesized proteins and peptides was studied by 

electrophoretical methods; the effects of the presence of microorganisms were assessed 

examining the proteins pool before and after injections (examined samples were from naïve 

and immunized larvae).  

In Figure 7, left panel (SDS-PAGE), patterns of samples from naïve larvae, larvae 

immunized with a LPS/PGN mixture of PAMPs and larvae immunized with Gram-

positive/Gram-negative bacteria mix are depicted. Differences in patterns are evident even 

if the SDS-PAGE does not provide a clear resolution of low molecular weights compounds. 

Instead, an analysis by Schagger-PAGE (Figure 7, right panel) shows an evident variation in 
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protein patterns in the region <30. The right-hand panels in Figure 7 (A and B) show 

electrophoretic patterns of hemolymph samples <30 kDa and <10 kDa, respectively.  

New bands are clearly evident in the region between 5 kDa and 20 kDa of immunized 

sample (arrowheads).  

 

 

 

 

 

 

 

Figure 7. Monodimensional PAGE analysis of hemolymph samples from naïve and immunized RPW larvae. Whole and 
fractioned (<30 and <10 kDa) hemolymph from naïve, PAMP-infected and bacteria-infected larvae, were analysed by SDS-
PAGE and Tricine-PAGE. Left: 10% SDS-PAGE of whole hemolymph. S: standard molecular mass; n: whole hemolymph 
from naïve larvae; iP: whole hemolymph from PAMP-injected larvae; iB+/–: whole hemolymph from mixed (Gram-positive 
plus Gram-negative) bacteria immunized larvae. Right: 16% Tricine PAGE of fractioned hemolymph. (A) S: standard low 
molecular mass; n: <30 kDa hemolymph from naïve larvae; iB+: <30 kDa hemolymph from Gram-positive-immunized 
larvae; iB–: <30 kDa hemolymph from Gram-negative immunized larvae; iB+/–: <30 kDa hemolymph from Gram-positive 
plus Gram-negative-immunized larvae. (B) n: <10 kDa hemolymph from naïve larvae; iB+/–: <10 kDa hemolymph from 
Gram-positive plus Gram-negative-immunized larvae. 

 
Figure 8. Bi-dimensional PAGE analysis. Two dimensional-PAGE analysis of proteins and peptides in fractions <30 kDa of 
hemolymph from (A) naïve and (B) bacteria-immunized larvae. IEF first dimension was run on a 3–10 linear pH gradient 
and the second 
dimension was carried 
out on 16% Tricine-
PAGE. Dotted boxes 
refer to areas in which 
new or up-regulated 
spots were observed 
(B). Boxed areas are 
enlarged below the 
panels (A1 and B1); 
circled spots (panel B1) 
indicate newly appeared 
or up-regulated spots. 
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To further investigate the expression of new peptides (putative AMPs) we analysed the 2D-

PAGE proteomes of <30 kDa hemolymph fractions (Figure 8). The first dimensions 

(isoelectric focusing gels) were carried out on linear 3-10 pH gradient gels, followed by a 

second dimension on Tricine-PAGE (16%). Two-dimensional analysis patterns of 

hemolymph samples are observable in Figure 8. More than 70 spots are counted and dotted 

boxes refer to areas in which new or up-regulated spots were observed in immunized 

samples, when compared to naïve sample.  

3.7 Antimicrobial activity assays versus Gram negative bacteria  

 The antimicrobial activity (AMPs) in RPW hemolymph was verified carrying out 

bacteria growth tests on solid agar after serial dilution of bacteria incubated with AMPs. 

Samples assayed were either the whole hemolymph (cell-free) or low molecular weight 

fractions (< 30 kDa and < 10 kDa). Figure 9A shows the effects of whole hemolymph from 

naïve larvae (Hewn), live and dead bacteria-infected larvae (Hei-L and Hei-D) and PAMP 

immunized (Hei-LPS/PGN) larvae against Gram-negative bacteria (E. coli). In all assays with 

immunized larvae bacteria mortality exceeds 99.9% (compared with the control growth, 

Ct3) indicating a drastic antimicrobial activity.  Moreover, in naïve larvae hemolymph 

(Hewn), low activity is present. The high mortality rate was confirmed even in fractioned 

hemolymph samples. Figure 9 (B, C) shows data obtained with <30 and <10 kDa 

hemolymph, respectively. In both cases, the activity of AMPs increased with total protein 

concentration (Hei-15<Hei-75 <Hei-150). The antimicrobial activity of the <30 and <10 kDa 

hemolymph fractions was also assayed on Pseudomonas sp., which seems to be highly 

susceptible to the action of RPW peptides.  
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Figure 9 (A,B,C). Effects of AMPs versus Gram-negative bacteria. Hemolymph (He) from RPW larvae, not fractioned and 
fractioned were assayed against Gram-negative bacteria (E. coli). (A) Whole He (500 mg/ml proteins) was incubated with 
106 CFU/ml E. coli; after 3 h, bacterial survival was evaluated by CFU count. Ct3: control (bacteria); Hewn: bacteria + He 
cell-free fraction (CFF) from naïve larvae; Hei-L: bacteria + He from larvae immunized with live bacteria; Hei-D: bacteria 
+ He from larvae immunized with dead bacteria; Hei-LPS/PGN: bacteria + He from larvae immunized with bacterial PAMPs. 
(B, C) He fractions (<30 kDa and <10 kDa) from RPW larvae were assayed against Gram-negative bacteria (E. coli). (B) 
Fractioned CFF samples (<30 kDa) were incubated with 106 CFU/ml E. coli; after 3 h, bacterial survival was evaluated by 
CFU count. Ct3: control (bacteria); Hen: bacteria + He fraction (<30 kDa; 150 mg/ml) from naïve larvae; Hei-15, Hei-75, 
Hei-150: bacteria + He fraction (<30 kDa, 15, 75, 150 mg/ml, respectively) from immunized larvae. (C) Ct3: control 
(bacteria); Hen: bacteria + He fraction (<10 kDa; 150 mg/ml) from naïve larvae; Hei-15, Hei-75, Hei-150: bacteria + He 
fraction (<10 kDa, 15, 75, 150 mg/ml, respectively) from immunized larvae. Results are expressed as percentage of 
survival compared with the control Ct3 (100% survival). *p<0.05; ***p<0.001 vs naïve sample. 
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Figure 9 (D,E). Effects of AMPs versus Gram-negative bacteria. He from RPW larvae was assayed against Gram-negative 
Pseudomonas sp. (D) Ct3: control (bacteria); Hen: bacteria + He fraction (<30 kDa; 150 mg/ml) from naïve larvae; Hei-75, 
Hei-150: bacteria + He fraction (<30 kDa; 75 and 150 mg/ml, respectively) from immunized larvae. (E) Assays as in (D) 
carried out with <10 kDa fractions. Results are expressed as percentage of survival compared with the control Ct3 (100% 
survival).  ***p<0.001 vs naïve sample. 

 

3.8 Antimicrobial activity assays versus Gram positive bacteria 

Hemolymph fractions were also assayed against Gram positive bacteria (B. subtilis, 

Figure 10 A,B  and M. luteus Figure 10 C,D). Fractions <30 kDa possess a dose-dependent 

antibacterial activity either versus B.subtilis (Figure 10A) or versus M. luteus (Figure 10C). In 

addition, a rate of bacteria mortality was also observed in the sample from naïve larvae, 

particularly evident against M. luteus (Figure 10C, Hen). Assays assessed with <10 kDa 
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fractions, versus B. subtilis and M. luteus, show a reduced antibacterial activity either in 

samples from immunized larvae or from naïve larvae (Figure 10B, D). 

  

 

Figure 10 (A,B). Effects of AMPs versus Gram-positive bacteria (B.subtilis). Fractioned cell-free fraction (CFF) samples 
were incubated with 106 CFU/ml B.subtilis; after 3 h, bacterial survival was evaluated by CFU count. (A) Ct3: control 
(bacteria); Hen: bacteria + He fraction (<30 kDa;150 mg/ml) from naïve larvae; Hei-15, Hei-75, Hei-150: bacteria + He 
fraction (<30 kDa, 15, 75, 150 mg/ml, respectively) from immunized larvae. (B) Assays as in (A) carried out with <10 
kDa fractions. Results are expressed as percentage of survival compared with the control Ct3 (100% survival). ***P<0.001. 
Figure 10 (C,D). Effects of AMPs versus Gram-positive bacteria (M.luteus).He fractions from RPW larvae were assayed 
against M. luteus. (C) He fraction <30 kDa; Ct3: control (bacteria); Hen: bacteria + He fraction (150 mg/ml) from naïve 
larvae; Hei-75 and Hei-150: bacteria + He fraction from immunized larvae (75 and 150 mg/ml, respectively). (D) Assays as in 
(C) carried out with <10 kDa fractions. Results are expressed as percentage of survival compared with the control Ct3 
(100% survival). ***p<0.001 vs naïve sample. 
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Figure 10 (C,D). Effects of AMPs versus Gram-positive bacteria (M.luteus).He fractions from RPW larvae were assayed 
against M. luteus. (C) He fraction <30 kDa; Ct3: control (bacteria); Hen: bacteria + He fraction (150 mg/ml) from naïve 
larvae; Hei-75 and Hei-150: bacteria + He fraction from immunized larvae (75 and 150 mg/ml, respectively). (D) Assays as in 
(C) carried out with <10 kDa fractions. Results are expressed as percentage of survival compared with the control Ct3 
(100% survival). ***p<0.001 vs naïve sample. 

 
 

3.9 Role of lysozyme on Gram positive bacteria 

As the antimicrobial activity in the <10 kDa sample was not sustained by 

endogenous lysozyme, we carried out assays adding exogenous lysozyme to the fractioned 

hemolymph. Figure 11 A shows the strong effect of the pure enzyme when added to <10 

kDa naïve larvae hemolymph (Hen). Likewise, when in the presence of AMPs (Hei-150+Ly), a 

further increase in bacteria mortality is observable compared with the <10 kDa fraction 

from immunized larvae (Hei-150).To establish if the mortality observed in samples from naïve 
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larvae could be attributed to the presence of constitutive lysozyme, we repeated the assay 

adding the specific lysozyme inhibitor, LHMED (Figure 11 B). LHMED induced a substantial 

neutralization of the antibacterial effects, clearly evident in samples from naïve larvae 

(Hen+Lin100). Also, the effects were less evident when the inhibitor was added to samples 

from immunized larvae (Hei+Lin100). 

 

Figure 11. Effects of lysozyme and LHMED added to AMP fractions. Hemolymph (He) fractions from RPW larvae were 
assayed against Gram-positive bacteria (B. subtilis). (A) He samples (150 mg/ml of <10 kDa fraction) were incubated with 
106 CFU/ml B. subtilis in the presence of lysozyme (Ly; 2 mg/ml); after 3 h, bacteria survival was evaluated by CFU count. 
(B) <30 kDa fractioned He samples (150 mg/ml) were incubated with 106 CFU/ml B. subtilis in the presence of 100mM 
LHMED. After 3 h, bacteria survival was evaluated by CFU count. Ct3: control (bacteria); Hen: bacteria + He fraction from 
naïve larvae; Hen+Lin100: bacteria + He fraction from naïve larvae + 100mM LHMED; Hei: bacteria + He fraction from 
immunized larvae; Hei+Lin100: bacteria + He fraction from immunized larvae + 100mM LHMED. Bacterial growth was not 
affected by the presence of 100mM LHMED (data not shown). Ct3: control (bacteria); Ct3 + Ly: control bacteria + 
lysozyme; Hen: bacteria + He fraction from naïve larvae; Hen+Ly: bacteria + He fraction from naïve larvae + lysozyme; 
Hei-150: bacteria + He fraction from immunized larvae; Hei-150 + Ly: bacteria + He fraction from immunized larvae + 
lysozyme. Results are expressed as percentage of survival compared with the control Ct3 (100% survival). **p<0.01; 
***p<0.001 vs naïve sample. 
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3.10 Hemolytic activity of RPW hemolymph 

Human erythrocytes were used to test the hemolytic activity in RPW hemolymph 

samples. Hemolymph from naïve and immunized larvae were incubated with human Red 

blood cells (RBCs), and cell lysis was assessed as release of hemoglobin. Figure 12 shows the 

results of the lysis tests: whole and fractioned samples did not possess hemolytic activity 

(Hew, Hen<30, Hei<30, Hei<10) compared with Triton X-100 treatment as positive control.  

 

Figure 12. RBC lysis assays. RBC lysis was checked in presence of whole or fractioned hemolymph (He) samples (150 

mg/ml). Assays were performed by recording the absorbance at λ=404 nm to measure the release of hemoglobin. The 
graph shows the percentage of lysis referred to a 100% lysis positive control (C) obtained by RBC incubation with 0.02% 
Triton X-100. C: control; Hew: RBC + whole He from naïve larvae; Hen<30, RBC +<30 kDa He fraction from naïve 
larvae; Hen<10: RBC +<10 kDa hemolymph fraction from naïve larvae; Hei<30: RBC +<30 kDa hemolymph fraction from 
immunized larvae; Hei<10: RBC +<10 kDa hemolymph fraction from immunized larvae. 

3.11 Bacterial cell wall damage induced by AMPs 

The damage of bacterial walls was evaluated detecting the ability of propidium 

iodide to cross a damaged wall only: bacteria were treated with hemolymph extracted from 

naïve and immunized larvae, and the fluorescence in the damaged cells was visualized. 

Micrographs show the effects of AMPs against E. coli (Figure 13) and B. subtilis (Figure 14) at 

t=0 and 3 h after treatment (t=3). We can see a large number of fluorescent cells for both 

Gram negative and Gram positive bacteria after 3h incubation only with hemolymph 

extracted from immunized larvae.  
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We have also verified the damage of the bacterial cell wall by scanning electron microscopy 

after treatments with AMPs (Figure 15): the changes are visible on both Gram negative and 

Gram positive bacteria. On the E.coli surface many blebs are evident (arrowheads), whereas 

B. subtilis cells appear burst and flattened. 

 

Figure 15. SEM of bacterial wall damage. Micrographs show the alteration of the bacterial wall after AMP treatments (<30 
kDa fraction). Left panels are controls of untreated E. coli (Ecc) and B. subtilis (Bsc), right panels are results after 3 h of AMPs 
treatment against E. coli (Ect) and B. subtilis (Bst).  
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3.12 Steinernema carpocapsae modulates the host antibacterial 

activity 

The inhibitory properties of the parasite nematocomplex on the antimicrobial 

activity of R. ferrugineus were investigated evaluating the bacterial growth of both E. coli and 

X. nematophila treated with hemolymph (<30 kDa) from insect larvae infected with live or 

dead parasites. Fig. 16, panel A, shows that live parasite (PL) interferes with AMPs synthesis, 

as evidenced by microbiological assays. A marked growth of E. coli is observable. Instead, 

when in the presence of dead parasites (PD), RPW larvae show a slight AMPs activity 

probably due to either inflammatory effects of necrotic materials released from nematodes 

corpses or to the inability of dead parasites to interfere with host AMPs synthesis. Since the 

injection of dead parasites results in a slight production of AMPs, microbiological assays 

were also carried out on X. nematophila (Fig. 16, panel B). Host AMPs (PD) seem to be 

ineffective towards symbionts bacteria. As expected, a marked grown is observable after 

incubation with samples from live parasites-treated larvae (PL). 

 

Figure 16. Interference of S. carpocapsae complexes on host antimicrobial activity. Cell-free fractions (<30 kDa) of 
hemolymph from RPW larvae infected with live (P

L
) or dead parasites (P

D
), have been tested against E. coli panel A) and X. 

nematophila (panel B). As controls of bacterial growth, three hours cultures of E. coli and X. nematophila were compared 
(panels A and B, bars C). **p <0.01 vs C.  
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3.13 RPW Antibacterial activity after double infections 

(parasite/exogenous bacteria) 

The ability of live parasites and their symbiotic bacteria to inhibit larvae 

antimicrobial activity has been investigated after a further stimulation with exogenous 

bacteria (mix of E. coli/B. subtilis). Briefly, larvae have been infected with S. carpocapsae and 

with bacteria mix after 30 min, 2 h and 4 h (Fig. 17; PL+B30, PL+B2h, and PL+B4h 

respectively). Twenty-four hours after treatments, fractioned hemolymph samples have been 

tested. As observable, the inhibitory effect of parasites on antimicrobial response seems to be 

time-dependent (Fig. 17, from B30 to B4h) and concurrent with the release and proliferation 

of symbionts bacteria which occurs between 1-2 hours after parasites injection. 

 

Figure 17. RPW antimicrobial activity after sequential infections with live S. carpocapsae and exogenous bacteria. 
Antimicrobial activity of hemolymph fractions (<30 kDa) from RPW larvae injected with parasite complexes followed by 
infections with bacteria mix (E. coli/B. subtilis) at different times: 30 min, 2 h and 4 h. Hemolymph samples were collected 
24 h after parasites infections and tested vs. E. coli. C: E. coli growth control; PL: living parasites; PL+B30: double treatment 
with parasites at t=0 and bacteria t=30 min; PL+B2h: double treatment with parasites at t=0 and bacteria t=2 h; PL+B4h: 
double treatment with parasites at t=0 and bacteria t=4 h.  ** p <0.01 vs C. 
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3.14 Effects of dead parasites and their isolated cuticles on host 

AMPs 

We have valued the interference of dead S. carpocapsae and their isolated cuticles on 

the host antimicrobial activity. As showed in Fig. 18 PD, dead parasites did not completely 

inhibit the immune response. This is further confirmed by a second infection with exogenous 

bacteria that drastically activates the AMPs synthesis (Fig. 18, PD+B30). The injection of S. 

carpocapsae purified cuticles (inset) appears to be neither immunogenic nor inhibitory (Fig. 

18, PC). The inset shows an injected cuticle (arrowheads) recovered from the host  hemocoel 

and some hemocytes are observable nearby the cuticle.  

Figure 18. Antimicrobial activity after injection of dead S. carpocapsae or isolated cuticles. Cell-free hemolymph fractions 
(<30 kDa) from RPW larvae infected, with cold-killed S. carpocapsae or isolated cuticles, have been assayed against E. coli. 
C: E. coli growth control; P

D
: cold-killed parasites; P

D
+B

30
: double infection with parasites (t=0) and bacteria (after 30 

min); PC: isolated parasites cuticles. **p <0.01 vs C. 

 

3.15 Host AMPs activity after injection of isolated parasite 

symbionts X. nematophila 

X. nematophila has been isolated from parasites and tested for their inhibition 

properties on the host antimicrobial activity (Fig. 19, panels A and B). Panel A (test vs. E. 

coli) shows a strong immune stimulation after infection with exogenous bacteria mix, used as 
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positive control (B+/-). Comparable results have been obtained by the injection of X. 

nematophila both heat-killed (XnDH) and UV-killed (XnDUV). Antibacterial activity is strongly 

stimulated by exogenous bacteria or killed X. nematophila, but is completely lacking when 

larvae were infected with live X. nematophila (XnL). Figure 19 panel B (test vs. X. nematophila) 

shows the same experimental approach with microbiological assays carried out with 

symbionts bacteria. All assays confirm the resistance of X. nematophila to RPW antimicrobial 

peptides (Fig. 19, panel B, B+/-, XnD); furthermore, symbionts seem to possess inhibitory 

properties against the antimicrobial response, as observable in Figure 19 panel A (XnL) and 

in Figure 20 (XnL+B5h). 

 
Figure 19. Panels A and B. Antimicrobial activity in hemolymph from RPW larvae infected with live or dead X. nematophila: 
assays vs. E. coli and X. nematophila. Panel A: hemolymph fraction (<30 kDa) from RPW larvae infected with live or dead 
X. nematophila assayed vs. E. coli. C: E. coli control growth; B+/-: Gram positive/negative dead bacteria; XnL: live X. 
nematophila-treated larvae; XnDH: heat-killed X. nematophila-treated larvae; XnDUV: UV-killed X. nematophila-treated larvae. 
Panel B: Assays as in (Panel A) carried out vs. X.nematophila. XnD: dead X. nematophila-treated larvae. **p<0.01 vs C. 
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3.16 Effects of sequential infections of RPW larvae with parasite 

symbionts (X. nematophila) and exogenous bacteria (E. coli/B. 

subtilis)  

We have examined whether sequential infections (X. nematophila and exogenous 

bacteria, or the opposite) could affect the antibacterial response in the RPW larvae. Results 

(Fig. 20) demonstrate that, in both cases, the presence of live symbionts (XnL) strongly 

interferes with the host antimicrobial activity; consequently, bacterial growth is unaffected 

(Fig. 20, XnL+B5h and B+XnL5h).  

Figure 20. Effects of sequential infections with live symbionts X. nematophila and exogenous bacteria. Hemolymph fraction 
(<30 kDa) from larvae infected with X. nematophila and exogenous bacteria mix (E. coli/B. subtilis). Assays vs. E. coli. C: E. 
coli growth control; Xn

L
+B

5h
: live X. nematophila at t=0 plus Gram -/+ mix at t=5 h; B+Xn

L5h
: Gram -/+ mix at t=0 plus 

live X. nematophila at t=5 h. 

 

3.17 Monodimensional PAGE patterns of RPW antimicrobial 

peptides  

Electrophoretic assays (Tricine-PAGE method of Schagger and Von Jagow) have 

been carried out to visualize proteins and peptides of infected and naïve RPW larvae. Briefly, 
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hemolymph samples have been collected from naïve larvae (Fig. 21, He), bacteria mixture-

infected larvae (Fig. 21, HeB+/-), Gram negative-infected larvae (Fig. 21, HeB-) and dead or 

live X. nematophila-infected larvae (Fig. 21, HeXnD and HeXnL, respectively). The figure shows 

that immunizations with both exogenous (HeB+/- and HeB-) and dead X. nematophila (HeXnD) 

stimulate the synthesis of several peptides in the range from 4 to 17 KDa (empty 

arrowheads). These molecules are not observable in naïve larvae (He). Furthermore, 

peptides are also lacking in larvae immunized with live symbionts (HeXnL) together with 

other proteins which decreased in concentration (arrowheads). 

 
Figure 21. Tricine-PAGE of hemolymph (<30 KDa) immunized with exogenous or parasites symbiotic bacteria. St: 
Standard molecular weights marker; He: hemolymph from naive larvae; He

B+/-
: hemolymph from E. coli/B. subtilis-

immunized larvae; He
B-

: hemolymph from E. coli-immunized larvae; He
XnD

: hemolymph from dead X. nematophila-

immunized larvae; He
XnL

: hemolymph from live X.nematophila-immunized larvae. 
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3.18 Effects of the injection of LPS purified from E. coli or X. 

nematophila on RPW larvae: assays of antimicrobial activity  

The immunogenic properties of LPS purified from symbionts bacteria has been 

compared with LPS from Gram negative exogenous bacteria. As shown in the graphs 

(Fig.22), the X. nematophila endotoxins do not trigger the AMPs synthesis while E. coli LPS 

stimulates synthesis at a level comparable to that obtained by bacteria mix infections (Fig. 

19, B+/-).  A silver silver-stained SDS-PAGE separation of LPS samples from E. coli (inset, 

Ec) and X. nematophila (inset, Xn) is visualized at right. 

 

Figure 22. RPW infection with LPS purified from E. coli or X. nematophila: effects on host antibacterial response. Assays vs. 
E. coli. C:  E. coli bacterial growth; EcLPS: hemolymph from RPW larvae injected with E. coli LPS; XnLPS: hemolymph from 
RPW larvae injected with X. nematophila LPS. At right the electrophoretic separation of injected LPS. S: standard Precision 
plus (Bio-Rad); Ec: LPS from E. coli (Serotype 055:B5, 5µg); Xn: LPS from X. nematophila (about 5µg). ** p <0.01 vs C. 

 

 

 



 

69 

 

3.19 Effects of exogenous and symbionts bacteria on hemocytes 

phagocytosis activity 

Finally, to investigate the effect of X. nematophila on the phagocytic competence of 

the host hemocytes, we examined their ability to perform phagocytosis in vitro on dead 

exogenous bacteria (E.coli, M.luteus and S.aureus) or dead X.nematophila. We used, as a model, 

G. mellonella hemocytes. Hemocytes, in particular granulocytes cells, show the ability to 

detect the presence of exogenous bacteria (Fig. 23 A, C, D) which when co-incubated are 

rapidly engulfed. One hour after the addition of exogenous bacteria is clearly visible a 

cellular response. Cells that have ingested bacteria are identified by fluorescence issued by 

FITC or TRITC fluorophores linked to the bacterial wall.  

 
Figure 23: G. mellonella hemocytes culture. Epifluorescence micrographs show phagocytosis by hemocytes at 1 hour after 
challenge. (A) FITC- conjugated dead E.coli; (B) FITC- conjugated dead X. nematophila; pHrodo red dye conjugated- S. 
aureus; (D) TRITC- conjugated dead M. luteus.  Bar=10 µm 

A 

C 

B 

D 
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Preliminary experiments (data not shown) have monitored a time course E.coli-FITC 

phagocytosis showing that cells migrate toward not-self early and subsequently starts to 

phagocyte. Conversely, X. nematophila is not phagocytosed rapidly (Fig. 23 B).   

Moreover, experiments with double infection (Fig. 24 A, B) have shown that 

exogenous bacteria (green) are quickly engulfed whereas X. nematophila (red) is not 

recognized. Meanwhile, X. nematophila does not prevent the engulfment of the other bacteria. 

Therefore, the symbiotic bacterium seems not directly inhibit phagocytosis in general but it 

seems that some membrane components could not be recognized by immunocompetent cells 

in a short time.  

Figure 24: G. mellonella hemocytes culture. Epifluorescence micrographs show phagocytosis by hemocytes at 1 hour after 
challenge. (A) FITC- conjugated dead E.coli and TRITC-conjugated dead X. nematophila; (B) FITC- conjugated dead M. 
luteus and TRITC-conjugated dead X. nematophila. Bar=10 µm 

 

Afterwards, we have monitored the phagocytosis and we have observed that about 12 

hours after challenge with dead X. nematophila, immunocompetent cells start to engulf 

symbiotic bacteria (Fig.25 B, arrowhead). In Figure 25 A, granulocytes have phagocytosed so 

much exogenous bacteria that it is impossible to discriminate single entities inside the 

cytoplasm. Now, it is not clear which is the mechanism that slows down this immune 

process. 

B 
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Figure 25: G. mellonella hemocytes culture. Epifluorescence micrographs show phagocytosis by hemocytes at 12 hour after 
challenge. (A) FITC- conjugated dead E.coli (B) FITC- conjugated dead X. nematophila. Arrowhead shows cells that have 
phagocytosed X. nematophila Bar=10 µm 
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4 DISCUSSION 

In our work we have focused on the study of the relationship between entomoparasite S. 

carpocapsae and insect host (R. ferrugineus and G. mellonella), we have examined both host 

defenses processes and the evasive/depressive strategies of the parasites. To date, few 

studies have been published about both host immunological responses and evasive strategies 

of S. carpocapsae (Manachini et al., 2013; Mazza et al., 2011; Thomas and Nair, 2010). Most 

of the published articles are based on the study of insectides to control the insect pest 

(Güerri-Agulló et al., 2011;Dembilio et al., 2010 , Llacer et al., 2009). From previous 

results obtained in our laboratory, we had obtained that parasite cuticle of a different 

nematode (Steinernema feltiae) was responsible of molecular disguise strategies and cause host 

immune suppression. Lipids of S. feltiae interacted and removed humoral components from 

the host hemolymph causing the observed disguise, resulting from the covering of the 

parasite with host antigens (Mastore and Brivio, 2008). Moreover the removal of host 

factors down- regulated antimicrobial peptides synthesis, inhibited proPO system and 

affected encapsulation and phagocytosis of host hemocytes (Brivio et al., 2004; 2010; 

Mastore and Brivio, 2008). 

Our results show that interaction between R. ferrugineus and S. carpocapsae  is in part different 

compared to S. feltiae- G. mellonella.  We have observed  as  Balasubramanian et al., 2009 and 

Toubarro et al., 2009; 2010 that  immune depressive strategies of living  S. carpocapsae 

culminating in rapid inhibition of host proPO system. This phenomenon was evident in the 

early phase of parasitation (30 min). The delayed activation of proPO system could be to 

release of toxins by symbionts (X. nematophila) into the hemocoel. (Song et al., 2009). Our 

results confirmed that immediately after entry, parasites are able to neutralize different 

immune responses carried out by the host (Dunphy and Webster 1987; Brivio et al., 2005; 

2010). 

As described above with S. feltiae, the early inhibitory effect of S. carpocapsae did not seem be 

mediated by cuticles because only living parasites show inhibitory effects. These effects are 

probably induced by parasite secretions as serine proteases (Toubarro et al., 2013; 
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Balasubramanian et al., 2010; 2009) and not to the cuticle properties. According to the 

literature (Gaugler and Kaya, 1990) the variety of the effects observed depends on different 

parasites and different hosts that are infected. This could be the reason why we had observed 

the variety of effects  when S. feltiae and S. carpocapsae infected different hosts. Furthermore, 

cold- killed parasites do not inhibit host proPO system demonstrating that active secretions 

are involved in inhibition processes that are carried out by living parasites. 

Once verified the depressive ability of parasites on host proPO system, we had analyzed 

proPO system both in physiological conditions and in presence of exogenous microorganism 

(E. coli, B. subtilis and S. cerevisiae) and their PAMPs (LPS, PGNs and β-Glucans). Our data 

indicate that naïve larvae possess a basal activity of phenoloxidase but at the same time the 

proPO system is strongly triggered by microorganisms and their PAMPs confirming that this 

enzymatic system is reactive against not self targets. On the contrary, parasites can modulate 

the phenoloxidase activity, surviving and assuring its symbiont the suitable environment for 

their growth.  

A further immune response involved in the not- self recognition is carried out by 

immunocompetent cells as granulocytes and plasmatocytes. These hemocytes usually 

participate in capsule formation around multicellular organisms or apoptotic cells (Strand, 

2008; Castillo et al., 2012) When abiotic beads were co-incubated with RPW hemocytes, 

beads were surrounded by a multilayered cellular structure and melanin intrapped inside the 

targets. 

Even if the body surface of S. carpocapsae did not seem to interfere with humoral response of 

RPW , a main role of the cuticle has been ascertained to avoid cellular recognition. Alive and 

cold-killed parasites were not recognized by immunocompetent cells. Recognition and 

cellular encapsulation are completely lacking against S. carpocapsae. Cuticles isolated from 

nematodes are not identified confirming the involvement of the body surface in mimetic 

strategies. Furthermore, the absence of recognition is not due to a cellular damage by an 

active release by nematodes because when were co-incubated with agarose beads, abiotic 
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materials were usually encapsulated. This mimetic role of body surface is particularly evident 

when heat-treated S. carpocapsae were injected in vivo into RPW larvae. The cellular response 

was strongly elicited and melanin formation was very rapid and strong. 

Subsequently, we have investigated the inducible immune response of RPW larvae to 

evaluate the presence of antimicrobial peptides using either biochemical analyses or 

microbiological assays. The principal purpose is to investigate physiological responses in 

inducible immunity by the synthesis ex novo of antimicrobial molecules. RPW larvae, when 

immunized with microorganisms, up-regulate the expression of peptides into the 

hemolymph. AMPs act in synergy against both Gram positive and Gram negative bacteria. 

Viable and killed microorganisms and even PAMPs (e.g. LPS, PGN) stimulate the onset of 

AMPs. We carried out electrophoretical analyses of hemolymph to verify the inducibility of 

ex novo synthesis of peptides. We detected almost 14 spots in the range between 5 and 10 

kDa and in the basic area. These are typical characteristics of antimicrobial peptides (Epand 

and Vogel, 1999). About microbiological assays, we have detected a strong activity of whole 

hemolymph against E. coli from challenged larvae. To determine the range of AMPs activity 

we  performed microbiological assays on both Gram negative (E. coli, Pseudomonas sp.) and 

Gram positive (B. subtilis, M. luteus). Hemolymph < 30 kDa revealed a marked dose-

dependent efficacy against both Gram negative and Gram positive bacteria. The activity of 

fraction < 30 kDa could be due to the presence of lysozyme whose activity acts in a synergic 

way with antimicrobial peptides (Hultmark, 1996; Kalfa and Brogden, 1999; Zdybicka-

Barabas et al., 2012). Meanwhile, hemolymph fraction < 10 kDa (no presence of lysozyme) 

showed a lower activity against B.subtilis compared to Gram negative bacteria and M. luteus . 

Gram negative bacteria are less sensitive to lysozyme activity due to their bacterial wall 

structure that does not present the multilayered peptidoglycans. It is well known that 

lysozyme is present constitutively in naïve larvae (Stanley, 2014) and it is confirmed by our 

data against M. luteus in hemolymph from unchallenged  larvae. The fraction < 30 kDa, in 

which lysozyme is present only constitutively, showed a strong activity against M. luteus. The 

synergyc role of lysozyme to improve the efficacy of AMPs was confirmed by our results. 
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Indeed, the additional of purified lysozyme in <10 kDa fraction strongly increased the 

mortality of B.subtilis and conversely, when we added lysozyme inhibitor (LHMED) to the 

<30 kDa fraction, AMPs activity was reduced and bacterial survival increased. Antimicrobial 

peptides are composed of 10–50 amino-acid residues, and arranged in different groups 

depending on the amino-acid composition, size, and conformation. The classic action 

mechanism of AMPs involves their ability to cause cell membrane damage. AMPs can 

interact with microorganisms by electrostatic forces between their positive amino acid 

residues and negative charges exposed on cell surfaces. More recently, it has been proposed 

that AMP driven microbial death can be caused by others mechanisms in addition to 

membrane disruption, followed by cell lysis. Many evidences indicate that some AMPs can 

interact with intracellular targets inducing cell damages, such as the inhibition of cell wall, 

DNA, RNA, and protein synthesis (Brogden, 2005; Straus and Hancock, 2006). We have 

confirmed, by our results, the action of RPW peptides on bacterial walls evaluating the 

uptake of propidium iodide. As observed by fluorescence microscopy, DNA intercalating 

agent inside bacteria confirmed the presence of damages on the bacterial surfaces. 

Furthermore, SEM observations suggest that RPW AMPs trigger the formation of breaches 

and blebs on the bacterial cell walls.  

Later, we have concentrated on the modulation of the antimicrobial activity by S. carpocapsae 

and its symbionts. Some papers describe a down regulation of the humoral response due to 

the presence of parasites and symbionts (Ji and Kim, 2004; Duvic et al.,2012; Bisch et al., 

2015). S. carpocapsae is not only considered as a vector of X. nematophila since after the entry 

into hemocoelic cavity, parasite implements series of strategies intended to halt the immune 

system to establish the environment for the bacterial growth. We have previously 

demonstrated that S. carpocapsae is able to elude cellular encapsulation and inactivate proPO 

system. As known, the presence of exogenous targets into the hemocoelic cavity can trigger 

the AMPs synthesis. Our data show in  larvae infected with living S. carpocapsae, 

antimicrobial activity was strongly reduced. As, antimicrobial activity was detected after 

infection with dead parasites, we supposed that inhibition of antimicrobial activity could due 
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to the release of symbionts starting from 5 hours after entry into host. In addition, the lack 

of interference of the nematode is clearly evident when the larvae were injected with 

isolated cuticles. This result suggests that body surface of parasite does not activate AMPs 

pathways. The cuticle seems to behave as a disguising structure that lets the nematode 

disguises in the early infection stage; effectively neither proPO system activation  nor 

cellular encapsulation have been observed. So we have focused on the study of the effects 

induced by isolated symbionts. Live X. nematophila injected into RPW larvae do not 

stimulate the AMPs synthesis, as observed after sequential injections with exogenous 

bacteria. A further evidence is given by analytical electrophoresis and the absence of low 

molecular bands in hemolymph sample infected by X. nematophila confirming a possible 

interference with Toll and IMD pathways. Bacteria, damaged by heat treatments or by UV 

irradiation, lack the interference with the antimicrobial peptides synthesis. The host, in this 

case, is able to produce efficiently AMPs to counteract and survive to the infection  Also, the 

presence of AMPs is confirmed by electrophoretic patterns. X. nematophila is a Gram 

negative bacteria and it is well known that LPS of the outer membrane is a potent 

immunogenic complex  either in invertebrates or in vertebrates (Medzhitov and Janeway, 

2002; Kanost et al., 2004). LPS acting as a PAMPs interacts with host PRRs to trigger all the 

immune processes. LPS isolated from X. nematophila is thought to be cytotoxic to hemocytes 

of the G. mellonella and S. exigua insects. Live X. nematophila suppress nodulation in S. exigua 

and  M. sexta. X. nematophila suppress antimicrobial induction in S. exigua (Ji and Kim, 2004) 

and has suppressive qualities to proPO system (Dunphy and Webster, 1988; 1991). The 

virulence repertoire of X. nematophila include factors that kill and unstick hemocytes, as well 

as protease that destroy insect antimicrobial peptides and a secreted factors that inhibit insect 

phospholipase A2 activity (Shrestha and Kim, 2007). In addition, X. nematophila produces a 

large number of protein insecticidal toxins that are active against a wide range of insects 

(Eom et al., 2007). In this work, we observed that LPS did not stimulate the humoral 

defences since antimicrobial activity is completely missing. Instead, LPS from E. coli strongly 

elicited the AMPs pathways.  
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Symbionts seem, moreover, to be resistant to antimicrobial peptides. AMPs assayed against  

X. nematophila do not interfere with bacterial growth as already described by Duvic et al. 

(2012) in S. frugiperda.  

Now,  the present work is focused on the study of a possible modulation, by X. nematophila, 

of phagocytosis. As an infection model, we used G. mellonella because the wax moth has 

several advantages over other invertebrates. The low cost and ease of maintenance of the 

larvae also allow large experimental groups to be used. We have identified four types of 

hemocytes in the last larval instar of G. mellonella: Plasmatocytes, Granulocytes, Oenocytoids 

and Spherulocytes. Granulocytes are the main cells able to phagocyte and the first cells to 

come into contact, in small numbers, with a foreign body at the beginning of capsule/nodule 

formation. When in contact with the foreign body, they release their granular content 

(Ratcliffe and Gagen, 1977 and Schmit and Ratcliffe, 1977). According to most authors, this 

exocytosis of typical inclusions by granular hemocytes serves to attract plasmatocytes 

(Gillespie et al., 1997) or at least helps plasmatocytes to build the capsule or nodule (Pech 

and Strand, 1996). This exocytosis of opsonin-like material is another main function of 

granular haemocytes. The in vitro phagocytosis assay used here was suitable for the 

demonstration of variation in phagocytic capacity of G. mellonella hemocytes when incubated 

with dead exogenous bacteria (E. coli, M. luteus and S. aureus) and dead X. nematophila. To 

optimize incubation time for in vitro phagocytosis, time courses were determined. Starting 

from 30 minutes from incubation, it is possible to observe some granulocytes engulfed 

exogenous bacteria achieving the maximal efficiency in 2 hours. X. nematophila, instead, was 

slightly engulfed after about 12 hours from incubation. Assuming that dead X. nematophila is 

not able to release toxins, we supposed that this result could be due to the presence of 

structures (e.g. LPS) on the cellular membranes that prevent their engulfment by 

hemocytes.  Also, live X . nematophila do not preclude phagocytosis of bacteria exogenous. 

Experiments in order to understand this evidence are ongoing in our laboratory.  

 

 



78 
 

5 CONCLUSIONS  

The obtained data, altogether, confirm the efficacy of the parasite complex to control insect 

pests. The nematode strategy, in the early phase, is based on sequential actions achieved by 

the evasive properties of the parasites (by means of released of proteases and the disguising 

properties of the cuticle) followed by, in the late infection phase, the immune depression 

induced by symbionts leading to septicemia and host death.  

This data provide further knowledge to understand approaches carried out by the parasite to 

elude and inhibit the insect immune system. This knowledge of host-parasite relationship 

could provide a basis to optimize pest control with the aim to eliminate or reduce the use of 

chemical pesticides in agriculture and urban environment. 
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