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“If you put your mind on it, you can accomplish everything”. 
(Martie McFly, citing Emmett Lathrop “Doc” Brown, Back to the Future Part I) 

 
 
 

“Quid est tempus? Si nemo a me quaerat, scio; si quaerenti explicare velim, nescio!” 
(S. Agostino, Confessioni, XI, 14) 
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cavaliere, o una dama, o un buffone; io lo facevo muovere dinanzi ai miei occhi e 
m’esaltavo in racconti interminabili. Poi mi prendeva la vergogna di queste fantasticherie 

e scappavo. 
E venne il giorno in cui anche il dottor Trelawney m'abbandonò. Un mattino nel nostro 
golfo entrò una fIotta di navi impavesate, che battevano bandiera inglese, e si mise alla 

rada. (...). Io non avevo visto nulla. Ero nascosto nel bosco a raccontarmi storie. 
Lo seppi troppo tardi e presi a correre verso la marina, gridando: - Dottore! Dottor 

Trelawney! Mi prenda con sè! Non può lasciarmi qui, dottore! 
Ma già le navi stavano scomparendo all' orizzonte e io rimasi qui, in questo nostro mondo 

pieno di responsabilita e di fuochi fatui. 
(Italo Calvino, Il visconte dimezzato) 

 
 
 
 

“Bravu nin, stüdia; perché se ta stüdiat, ta podat fa ul magütt; ma se ta stüdiat mia, ta 
gh’et da fall, e basta.” 

(Giuseppe “Pin” Rigamonti. Ul me nonu. Magütt.) 
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   Introduction 

Allenes: a bit of history 

 
 
The history of allenes in chemistry has relatively recent roots. While chemical theories lose the 

traces of their genesis in ancient Greek’s time1, chemical compounds later known as allenes kept 

nearly sleeping regardless of any scientific or historic event till 1874. At that time, Jacobus van ’t 

Hoff, a Ph. D. student in Utrecht University, accounted for the phenomenon of optical activity by 

assuming that the chemical bonds between carbon atoms and their neighbors were directed 

towards the corners of a regular tetrahedron. This three-dimensional structure perfectly 

accounted for the isomers found in nature, and van ‘t Hoff published his work on the geometry of 

science in his book La chimie dans l'espace in 1874.2 Although initially strongly criticized by the 

scientific community,3 this work was revolutionary, and later became indispensable in Science.  

However, van ‘t Hoff decided to leave the field of pure organic chemistry, going on with 

researches on chemical equilibrium and thermodynamics that would have brought to him the first 

Nobel Prize in Chemistry.4 But some lines of his book were already waking up a new field in 

organic chemistry. 

 

 

Extract from Arrangements of Atoms in Space, 2
nd

 ed. (1898), Longmans, Greene & Co.;  
English translation of La chimie dans l’éspace 

                                                           
1
 G. Lloyd, Early Greek Science: Thales to Aristotle, 1970, London; Chatto and Windus, 45.  

2
 J. H. van ’t Hoff, La chimie dans l’espace, 1875, Rotterdam; P. M. Bazendijk, 29.  

3
 One such critic was the editor of the Journal für praktische Chemie, A. Kolbe, who stated: "A Dr. H. van ’t 

Hoff (…) has no liking, apparently, for exact chemical investigation. He has considered it more comfortable 

to mount Pegasus (…) and to proclaim in his ‘La chimie dans l’espace’ how the atoms appear to him to be 

arranged in space, when he is on the chemical Mt. Parnassus which he has reached by bold flight." 
(www.wikipedia.com) 
4
 Nobel Lectures, Chemistry 1901-1921, Elsevier Publishing Company, Amsterdam. 
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These lines were entirely predictive, van ’t Hoff lacking any experimental evidence. Indeed, he 

was the first to predict the correct core structure of a cumulated diene moiety, as well as their 

axial chirality. Such a particular atomic arrangement was immediately thought by the scientific 

community to be too extreme to be real, and it is quite interesting to note that the first synthesis 

of an allene (pentadienoic acid) was conducted to prove the nonexistence of this class of 

compounds.5 Its failure, or in other words its success, didn’t help spreading the chemical interest 

towards allenes; mainly due to the tedious methods of preparation and the mistaken belief that 

the cumulate double-bond system would prove to be relatively unstable, allenes kept being 

regarded as chemical curiosities for some decades. Moreover, at that time, with the analytical 

tools available, it was almost impossible to distinguish between allenes and the corresponding 

alkynes. Only when IR and Raman spectroscopy were introduced as tools for structural 

investigation it was possible to prove, by its characteristic allenic C-C vibration at about 1950 cm–1, 

that Burton and von Pechmann had indeed synthesized an allenic molecule.5b  

 

The new techniques permitted to turn out as incorrect many assignments of allenic structures, 

revealing them as alkynes or conjugated dienes (Semmler’s6 and Staudinger’s7 works, Figure 1); 

                                                           
5
 (a) S. B. Burton, H. von Pechmann, Chem. Ber. 1887, 20, 145. (b) E. R. H. Jones, G. H. Mansfield, M. L. H. 

Whiting, J. Chem. Soc. 1954, 3208. 
6
 (a) F. W. Semmler, Ber. Dtsch. Chem. Ges. 1906, 39, 726. (b) H. Gilman, P. R. van Ess, R. R. Burtner, J. Am. 

Chem. Soc. 1933, 55, 3461. (c) A. St. Pfau, J. Pictet, P. Plattner, B. Susz, Helv. Chim. Acta 1935, 18, 935. 
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however, they were also able to confirm the allenic structures for previously discovered 

compounds in natural products (Figure 2)8, thus triggering the researches aimed at developing 

synthetic routes to allenes.  

The subsequent set up of more convenient methodologies 

to their obtention together with the proof that natural 

organisms produce “authentic” allenic compounds (the first 

one to be identified was mycocmyicin, a fungal metabolite 

with a high antibiotic activity; Figure 3)9 eventually brought allenes to light, making them reach 

the high importance they had claimed for years and they definitively gained during the past four 

decades in organic synthesis.  

 

 
 

Allene properties 
 
Before explaining the general behavior of allenes, some words again have to be spent onto their 

peculiar geometry. Molecular orbital analysis of the allene molecule correctly state that the most 

stable bonding arrangement involves two mutually perpendicular π bonds, with the central 

carbon atom (sp-hybridized) joined in a straight line to the two terminal carbon atoms (sp2-

hybridized). As a consequence, only one end of the system projects its substituents above and 

below the plane which the rest of the molecule is comprised in (Figure 4, part a), and the two 

bonds don’t show any conjugation effect because they are not coplanar. Conversely, in a 

hypothetical coplanar arrangement, the stabilization by the bonding would be around 2.4 eV 

lower,10 and in such a molecule there would be two unpaired electrons (Figure 4, part b). From 

this point of view, allenes represent the simplest class of odd-carbon cumulenes compounds, 

which reflect this tetrahedral geometry (Figure 4, part c), while even-carbon cumulenes adopt a 

planar configuration. 

                                                                                                                                                                                
7
 (a) H. Staudinger, L. Ruzicka, Helv. Chim. Acta 1924, 7, 212. (b) L. Crombie, S. H. Harper, D. Thompson, J. 

Chem. Soc. 1951, 2906. 
8
 (a) R. Bonnett, A. A. Spark, J. L. Tee, B. C. L. Weedon, Proc. Chem. Soc. London 1964, 419. (b) H. H. Strain, 

W. A. Svec, K. Aitzetmüller, M. C. Grandolfo, J. J. Katz, H. Kjøsen, S. Norgard, S. Liaaen-Jensen, F. T. Haxo, P. 
Wegfahrt, H. Rapport, J. Am. Chem. Soc. 1971, 93, 1823. 
9
 (a) E. A. Johnson, K. L. Burdon, J. Bacteriol. 1947, 54, 281. (b) W. D. Celmer, I. A. Solomons, J. Am. Chem. 

Soc. 1952, 74, 1870. (c) W. D. Celmer, I. A. Solomons, J. Am. Chem. Soc. 1952, 74, 2245. (d) W. D. Celmer, I. 
A. Solomons, J. Am.Chem. Soc. 1952, 74, 3838. 
10

 H. Fischer, The Chemistry of Allenes, 1964, London, S. Patai Ed., Interscience Publishers Inc., 1025. 

•

CO2H
Figure 3. Mycomycin



   Introduction 

 

 

 

Indeed, further geometrical and thermodynamic studies have been focused much more on 

cumulenes as a class than on simple allene compounds, although confirming some general 

features already emerged from the earlier studies onto allenes, such as the decrease of the C-C 

bond length toward the asymptotic limit while the number of bonds in the cumulene chains 

increases.11 Exact dimensions for the allene molecule (C=C = bond angle = 116-118°) were in fact 

determined long ago from spectral studies and by electron diffraction,12 showing a contraction of 

the double bond, relative to that in ethylene (1.33 A), 

which has been considered to indicate the 

occurrence of hyperconjugation (σ-π overlap) 

suggesting a partial triple-bond character (Figure 5).13  

As underlined in the previous chapter, the stereochemical consequences of the bonding in allenes 

were predicted by van ‘t Hoff, who foresaw that molecular symmetry droops if the terminal 

carbon atoms bear two different substituents, leading to optical isomerism. Thus, the mirror 

images in Figure 6 differ even if X = X' and Y = Y'; they become identical only if X = Y (or X' = Y').  

 

Nevertheless, since an experimental 

proof of this prediction lacked, as 

recently as 1930 the suggestion that 

allenes adopted planar configurations 

was still being made,14 witnessing the widespread idiosyncrasy toward van ’t Hoff studies. Since 

then, however, his conclusions have been amply verified in a clear cut way by the identification 

and resolution of many asymmetric allenes. 

                                                           
11

 U. Mölder, P. Burk, I. A. Koppel J. Mol. Structure: TEOCHEM, 2004, 712, 81-89 
12

 (a) B. P. Stoicheff, Can. J. Phys. 1955, 33, 811. (b) A. Almenningen, O. Bastianen, M. Traetterberg, Acta 

Chem. Scand. 1959, 13, 1699. 
13

 (a) H. O. Pritchard, F. H. Sumner, Proc. Roy. Soc. 1956, A235, 136. (b) E. L. Allred, D. M. Grant, W. 
Goodlett, J. Am. Chem. Soc. 1965, 87, 673. 
14

 F. Faltis, J. Pirsch, L. Bermann, Chem. Ber. 1930, 63B, 691. 
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Figure 6. Existence of allenes in enantiomeric forms
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Actually, two general approaches have been adopted in the isolation of enantiomers of optically 

active allenes. The synthesis of racemic mixtures, followed by resolution by standard procedures 

as reaction with optically active acids or bases, is the most obvious and ancient one. However, a 

more direct approach is that of stereoselective synthesis, pioneered by Maitland and Mills in a 

dehydration of an unsaturated alcohol with (+)- or (-)-camphor-10-sulfonic acid, whereby they 

obtained in each case a predominance of one stereoisomer of the tetraarylallene (Figure 7).15  

 

 

 

This second choice has obviously attracted much more attention, and nowadays stereoselective 

synthesis are conveniently able to afford many allenic natural products and pharmaceuticals; 

chirality transfer from propargylic compounds, elimination reactions of allylic compounds and 

synthesis using chiral reagents or auxiliaries are the most developed methods (for a more detailed 

discussion of synthetic methods, see subchapter.16 Some recent examples are shown in Figure 8.17  

 

 

                                                           
15

 (a) P. Maitland, W. H. Mills, Nature 1935, 135, 994. (b) P. Maitland, W. H. Mills, J. Chem. Soc. 1936, 987. 
16

 (a) A. Höffmann-Roder, N. Krause, Angew. Chem., Int. Ed. 2004, 43, 1196. (b) H. Ohno, Y. Nagaoka, K. 
Tomioka, Enantioselective Synthesis of Allenes, in Modern Allene Chemistry, 2004, Vol. 1., N. Krause, S. 
Hashmi, Weinheim, Wiley-VCH.  
17

 (a) H. Liu, D. Leow, K.-W. Huang, C.-H. Tan, J. Am. Chem. Soc. 2009, 131, 7212. (b) V. Kar-Yan Lo, C.-Y. 
Zhou, M.-K. Wong, C.-M. Che, Chem. Commun. 2010, 46, 213. 
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Even so, resolution of mixtures is still a valuable method, in the forms of fractional crystallization, 

chiral columns chromatography and kinetic resolution, although this latter has been overcome by 

dynamic methods which can avoid consumption of half of the allene material.16b  

 

 

 

Allene synthesis 

As anticipated, many synthetic pathways can lead to obtain allene functionalities. Some examples 

of such a great variety are depicted in Figure 9.  

 

 

 

 

Already at a first glance, it is inferable that the earliest preparations involved harsh conditions 

(large excesses of strong bases, hazardous reagents, high temperatures…) and were mainly based 

on the well established methods for introducing a carbon carbon double bond into an organic 

compound that already possessed a bond of this kind.5,18 However, as time went on, newer 

techniques became available which were specific to the synthesis of allenes, notably the first 

seemingly general method being the dehalogenation of gem-dihalocyclopropanes (later known as 

the Doering-Moore-Skattebøl rearrangement),19 developed together with the 1,4 additions to 

vinylacetylenes and the rearrangement of acetylenes 20. Then several other protocols were found, 

                                                           
18

 D. R. Taylor, Chem. Rev. 1967, 67, 317. 
19

 L. K. Sydnes, Chem. Rev. 2003, 103, 1133. 
20

 For selected examples: (a) A. E. Favorsky, J. Prakt. Chem. [2] 1888,382. (b) Y. I. Ginzburg, Zh. Obshch. 

Khim. 1940, 10, 513. 
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such as Claisen and sigmatropics rearrangements, homologation reactions inspired by the Wittig 

reaction or procedures involving β-elimination of suitable leaving groups.21  

Nowadays, an enormously wide plethora of methods is available to the synthetic chemist;22 

primarily, further improvements were eventually brought after the 70s by the upcoming age of 

metal promoted reaction. At first, they were applied to allene synthesis with stoichiometric 

quantities of metal, where copper, mainly involved in Gilman reagents, is the metal of choice for 

what concerns generating allenes by C-C bond forming addition and substitutions reactions of 

multiply unsaturated substrates.23 Later on, the new ability to use metals in catalytic amounts, the 

most used being palladium, opened the route to new interesting processes, where the latest 

results so far have been published by Ma.24 Transition metal catalysis seems particularly attractive 

due to the possibility to obtain axially chiral allenes from achiral precursors by simply using 

catalytic amounts of chiral metal complexes.25 We will focus now on the three methods most 

developed to synthesize allenes, namely a propargylic rearrangement, a Crabbé homologation 

reaction and a hydride transfer with LiAlH4. 

 
 

Allenes from propargyl electrophiles via LiAlH4 

 
A wide area in allene synthesis is covered by the use of aluminum reagents. The use of aluminum-

based Lewis acids for C–C bond formation processes represents the smaller part in this field; 

much more developed is the formation of C–H bonds with aluminum hydrides. Various 

propargylic electrophiles such as alcohols, ethers, halides and oxiranes can give rise to the 

corresponding allenes with the aid of lithium aluminum hydride, diisobutylaluminium hydride 

(DIBAL-H) and other aluminum hydrides. The general mechanism of this reaction claims for a 

initial coordination of the aluminum atom to an oxygen atom, eventually via deprotonation; then, 

a hydride delivery from the aluminum species to the electrophile via an SN2’ intramolecular 

reaction permits the expulsion of the leaving group and results in the formation of a new carbon-

hydrogen bond and a new carbon-carbon double bond (Figure 10).26  

                                                           
21

 For selected examples: (a) D. K. Black, S. R. Landor, J. Chem. Soc. 1965, 5225. (b) W. Oppolzer, C. Chapuis, 
Tetrahedron Lett. 1983, 24, 4665. (c) V. Mouriès, B. Delouvrié, E. Lacôte, L. Fensterbank, M. Malacria, Eur. J. 

Org. Chem. 2002, 1776. (d) Y. Zhang, H.-D. Hao, Y. Wu, Synlett 2010, 905. 
22

 (a) L. Brandsma, Synthesis of acetylenes, allenes and cumulenes: methods and techniques, 2004, Oxford, 
Elsevier. (b) K. M. Brummond, J. E. DeForrest, Synthesis 2007, 795. 
23

 A. Höffmann-Roder, N. Krause, Metal Mediated synthesis of Allenes, in Modern Allene Chemistry, 2004, 
Vol. 1., N. Krause, S. Hashmi, Weinheim, Wiley-VCH.  
24

 J. Kuang, S. Ma, J. Am. Chem. Soc. 2010, 132, 1786.  
25

 M. Ogasawara, Tetrahedron: Asymmetry 2009, 20, 259. 
26

 S. Saito, in Science of Synthesis, 2004, Vol. 7, H. Yamamoto, Stuttgart, Ed. Thieme. 
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This transformation can proceed with either syn- or anti- stereoselectivity depending on the 

nature of the substrate, reducing agent, and reaction temperature.27  

 

 

 

Hydroxyl-directed hydride delivery with LiAlH4, since its development in 1973 by Landor and co-

workers,28 has proven to be a reliable method of allene construction from propargylic moieties 

bearing an ether as leaving group, and this methodology is still widely used today to prepare a-

hydroxyallenes. Indeed, Yoshida and coworkers recently choose this way as a step toward the 

total synthesis of enokipodin A to transform their tetrahydropyranyl propargyl ether into the 

corresponding-hydroxyallene in 83% yield (Figure 11).29  

However, this protocol is not limited to THP-protected substrates, but on the contrary it can be 

applied to other kind of ethers (silyl and methyl substituted30) and oxygenated leaving groups, 

including acetals;31 neither has oxygen necessarily to accomplish this function, since these 

reactions number propargyl chlorides as excellent substrates too. For example, propargyl 

chlorides can successfully be transformed into their allenyl counterparts with LiAlH4 in high yield 

(Figure 12).32  

 

 

 

                                                           
27

 A. Claesson, L.-L. Olsson, J. Am. Chem. Soc. 1979, 101, 7302. 
28

 J. S. Cowie, P. D. Landor, S. R. Landor, J. Chem. Soc., Perkin Trans. 1 1973, 720. 
29

 M. Yoshida, Y.Shoji, K. Shishido, Org. Lett. 2009, 11, 1441. 
30

 (a) M. Lautens, P. Delanghe, J. Am. Chem. Soc. 1994, 116, 8526. (b) M. P. VanBrunt, R. F. Standaert, Org. 

Lett. 2000, 2, 705. 
31

 R. L. Snowden, S. Linder, Helv. Chim. Acta 2005, 88, 3055. 
32

 C. J. Bungard, J. Morris, J. Org. Chem. 2002, 62, 2361. 
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More recent applications of this chemistry include the employment of hydroxyls not only as a 

directing group, but also as a suitable leaving group, provided their removal as an aluminum oxide 

thanks to an alane species33 as in the example described in Figure 13.33a  

 

 

 

This method has frequently been applied in natural product synthesis. Thus, reducing propargyl 

oxiranes with DIBAL-H allowed obtaining allenic carotinoids and terpenoids as the grasshopper 

ketone (Figure 14),34 a synthesis recently adapted by Katsumura.35 Thanks to the precoordination 

of the hydride to the oxygen, these reductions proceed with high syn-diastereoselectivity.  

 

 
                                                           
33

 (a) K. M. Brummond, M. M. Davis, C. Huang, J. Org. Chem. 2009, 74, 8314. (b) M. A. Daniel, C. J. Puglisi, D. 
L. Capone, G. M. Elsey, M. A. Sefton, J. Agric. Food Chem. 2008, 56, 9183. (c) S.-C. Hung, Y.-F. Wen, J.-W. 
Chang, C.-C. Liao, B.-J. Uang, J. Org. Chem. 2002, 67, 1308. 
34

 A. Baumeler, W. Brade, A. Haag, C. H. Eugster, Helv. Chim. Acta 1990, 73, 700. 
35

 N. Furuichi, H. Hara, T. Osaki, M. Nakano, H. Mori, S. Katsumura, J. Org. Chem. 2004, 69, 7949. 
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Crabbé Homologation Reaction 
 

One of the most popular methods for the synthesis of allenes is the SN2’ reaction of propargylic 

derivatives with organocopper reagents.23 Most probably a study published in 1968–69 by Rona 

and Crabbé represents the first example of the Cu(I)-mediated SN2’ reaction of propargylic 

electrophiles giving allenic products.36 Since then, many researchers have used modified 

organocopper reagents with stoichiometric or catalytic amounts of Cu(I) salt, and it was again 

Crabbé to discover a homologation reaction that would have become one of the most useful 

methods for the construction of monosubstituted allenes from terminal acetylenic precursors.37 

Its mechanism consists of a copper-catalyzed addition of a propargylic substrate onto an iminium 

ion formed in situ from a Mannich-type reaction between paraformaldehyde and 

diisopropylamine. Complexation of a cuprous halide to the acetylenic triple bond results in 

formation of a π-complex. Subsequent intramolecular hydrogen transfer from the amine moiety 

to the copper species occurs to afford a hydridocopper(I) complex. The hydride is then delivered 

to the carbon-carbon triple bond in an SN2′ fashion (Figure 15).38 

 

H H

O
R

H
N

+

N

R R

N

H
CuBr

R

NCuH Br

R •

N

+ CuBr

Figure 15. Mechanism of Crabbe's homologation reaction.

OH

CuBr cat.

 

 

This homologation reaction is still investigated, mainly to develop efficient stereoselective 

syntheses and to improve yields and tolerance of various functional groups. Indeed, it allowed the 

preparation of a wide variety of functionalized monosubstituted allenes, such as allene-

substituted alcohols, amides, carbamates and lactams. Crews and co-workers,39 for example, 

                                                           
36

 (a) P. Rona, P. Crabbé, J. Am. Chem. Soc. 1968, 90, 4733; (b) P. Rona, P. Crabbé, J. Am. Chem. Soc. 1969, 
91, 3289. 
37

 (a) P. Crabbé, D. André, H. Fillion, Tetrahedron Lett. 1979, 20, 893. (b) P. Crabbé, H. Fillion, D. André, J.-L. 
Luche, J. Chem. Soc., Chem. Commun. 1979, 859.  
38

 S. Searles, Y. Li, B. Nassim, M.-T. R. Lopes, P. T. Tran, P. Crabbé, J. Chem. Soc., Perkin Trans. 1 1984, 747. 
39

 A. K. Mandal, J. S. Schneekloth, C. M. Crews, Org. Lett. 2005, 7, 3645. 
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recently applied this method to the synthesis of the α-allenyl alcohol in Figure 16. Similarly, 

several groups have screened in the last years different conditions (employing different amines, 

cuprous salts or even utilizing microwaves) that in some cases gave much better yields than the 

original procedure.40 

 

 

 

 

Prototropic rearrangement 
 

A full, atom economic way to obtain the 1,2-

diene substructure features migration of a π-

bond from a non-cumulated π-bond (Figure 17). 

The non-cumulated bond can either be an 

alkyne or a conjugated or isolated diene. Thus, if group X is a hydrogen atom, a 1,3-proton shift 

occurs through deprotonation and protonation sequence, that is what is called a prototropic 

rearrangement (different X substituents could lead to sigmatropic rearrangements). Despite being 

known from the earliest days in allene chemistry,20a this still remains the most important 

isomerization reaction leading to such products, and quite surprisingly, debates on its mechanism 

have not yet come to an end.41 Strictly speaking, equilibrium between the two forms should favor 

the alkyne,42 and indeed the opposite reaction has been fruitfully applied.43However, several 

factors can drive the reaction in both directions, such as a reaction under kinetic control, a 

stoichiometric deprotonation followed by kinetic protonation, or a change of the relative 

thermodynamic stability brought, for example, by substituents. This is what happens for allenyl 

ethers and allenylamines, which are thermodynamically more stable than their propargylic 

counterparts; consequently, a prototropic rearrangement seemed a useful way too to obtain our 

nitrogen containing allenes.  

                                                           
40

 (a) B. M. Trost, A. McClory, Org.Lett. 2006, 8, 3627. (b) J. Kuang, S. Ma, J. Org. Chem. 2009, 74, 1763. (c) H. 
Nakamura, T. Sugiishi, Y. Tanaka, Tetrahedron Lett., 2008, 49, 7230. (d) V. Kumar, A. Chipeleme, K. Chibale, 
Eur. J. Org. Chem. 2008 43. 
41

 V. B. Kobychev, N. M. Vitkovskaya, N. S. Klyba, B. A. Trofimov, Russ. Chem. Bull., Int. Ed. 2002, 51, 774. 
42

 R. Kakkar, R. Garg, P. Chadha, J. Mol. Structure: THEOCHEM 2002, 617, 141. 
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In the case of propargyl substrates substituted with a nitrogen atom, most of the examples use 

potassium tert-butoxide or n-butyllithium as base, exploiting the acidity of the hydrogen at the 

propargyl position. A number of alkyl- and aryl-substituted propargylic amines and amides have 

been in fact obtained in that way,44 occasionally also providing alkynylamines as side products. In 

some cases, such as for the compound in Figure 18, potassium hydroxide and a phase transfer 

catalyst are sufficient.45  

 

 

 

The presence of other base-labile group, such as free hydroxyl, has been evidenced as a problem, 

although in some cases good yields have been obtained with selective deprotection (the same 

happened for competition between amides and amines). On the other hand, rare examples are 

propargylated hydrazines, N-propargylated imines, isonitriles, ammonium salts and azides. 

 
 
Allenamides 
 

Since our research line lies in a long lasting interest toward heterocycles, we focused our efforts 

towards allenes that could bear a heteroatom in order to afford the desired products.  

In spite of the already described synthetic potential of allenes, heteroatom-substituted allenes, 

and in particular allenamines, have received relatively little attention. Conceptually, allenamines 

are synthetically useful because the nitrogen atom can donate its lone pair toward the allenic 

moiety to render them electron-rich and readily activated in the presence of an electrophile. 

However, the same high reactivity also makes them sensitive to hydrolysis, polymerization and 

isomerization even at low temperatures, thereby creating serious difficulties in preparation and 

handling. Conversely, electron-deficient allenamines, such as allenamides, have a diminished 

donating ability. Consequently they are less reactive, but represent a more stable allenic system 
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and have the potential to function as an allenamine-equivalent. For these reasons, allenamides 

have been chosen as appropriate substrates for our studies. 

In particular, since we had no specific necessity to have the nitrogen atom directly substituted 

onto the allenic moiety, we envisaged that the synthesis of not only α- but also β-allenamides 

could be useful to lead to starting materials able to undergo cyclization reactions catalyzed by 

transition-metal complexes. 

The available ways to synthesize α- and β- allenamides are basically the same previously 

described for allene synthesis, and it seems unnecessary to report here specific applications to 

allenamides. It is just worth to mention the historical value of the first examples, since both 

involve the same reactivity brought by base-induced isomerization that we adopted in some of 

our protocols, thus reasserting its efficiency unchanged through years. In fact, to repeat an earlier 

preparation of a propargyl amide en route to oxotremorine, a potent muscarinic agent, Dickinson 

reported in 1967 the first preparation of allenamide from lactam under basic conditions (MeONa 

or NaH, Figure 19).46 The first acyclic allenamide, closer to our substrates, is instead due to Corbel, 

who in 1976 reported the first example of its obtention via the isomerization of N-propargyl 

phosphoramides (Figure 20).47 

 

 

 

 

Allene reactivity 

 

Allenic compounds are able to react in so many different ways and a complete analysis would be 

beyond the scopes of this manuscript. Moreover, in most of cases allenes behave as a double 

alkene system, thus undergoing the wide panorama of reactions typically available to 

functionalize olefinic substrates (Diels-Alder reactions, dipolar cycloadditions, electrophilic 
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attacks, nucleophilic attacks when properly 

substituted…). An overview, though 

inexhaustive, of recent reactivities of alkenes 

is depicted in Figure 21.48,49  

However, since our interest deals mainly 

with transition metal catalyzed cyclization of 

allenes with nucleophiles,49d we will focus 

directly on that subclass, evidencing the 

behavior of the metals we used to investigate such reactivity, i.e. palladium, gold and ruthenium.  

 

Transition-metal catalyzed cyclization of allenes with heteroatomic nucleophiles 

For this kind of reactions, three main and hardly distinguishable mechanisms have been put 

forward. The first one is represented in Figure 22. In the presence of an electrophilic metal 

complex, such as palladium(II), an η2-complex might form with one of the allene double bonds.  

 

 

 

The metal-coordinated double bond is thus activated toward intramolecular nucleophilic attack 

by a nucleophile at either coordinated carbon atom. This reactivity is analogous to that observed 

in the Wacker reaction. Thus four possible σ-complexes, two vinyl and two allyl, could be formed, 
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depending on the double bond attacked, the latter couple being in equilibrium with the same η3-

complex. It is also possible that the η2-complex would react with ligands (such as halides) on the 

metal, leading to other intermediates and pathways. The final reaction products would then come 

from an evolution of the above intermediates, such as reductive elimination (if the metal has a -

bonded ligand), β-elimination, protonolysis or CO insertion. 

A second alternative foresees that the insertion of the allene might then generate an η3-allyl 

complex. This could cyclize by nucleophilic attack on either terminus. In many cases either a η2- or 

a η3- mechanism can be drawn leading to the same product (Figure 23). 

 

 

 

The third alternative is that the metal complex initially interacts with the nucleophilic  group; this 

is followed by insertion and reductive elimination. Insertion may involve either of the allene 

double bonds to generate different ring sizes (Figure 24). 

 

 

 

Palladium 

The use of palladium can enable the synthesis of a variety of heterocyclic compounds starting 

from allenyl derivatives. In all known examples, heterocyclic synthesis can be accomplished when 

allene substrates interact with a palladium(II) complex, which can be directly employed in the 

reaction environment or derive from an in situ Pd(0)-oxidation process. The former protocols can 

furthermore be divided in two subclasses: in the first case, palladium can interact with the allene 
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moiety by forming a π-allyl complex, which is then intramolecularly trapped by nitrogen, as in 

reactions developed by Bäckvall and Alcaide,50 thus giving rise to halopalladation/nucleophilic 

attack sequences (Figure 25). An oxidant is needed to bring the metal to palladium(II) oxidation 

state again. Evidence has been given by isolation of some intermediate π-allyl complexes. 

 

 

 

Alternatively, nitrogen may attack one or the other Pd(II)-activated unsaturations of the allene 

moiety, which behave as isolated double bonds. These reactions historically developed before 

other allene-involving processes, and hydroamination or carbonylation processes are usually 

encountered in this subclass.51 A graphical synopsis of these reactions is given in Figure 26. 

 

 

 

Walkup and Gallagher52 reported a palladium-catalyzed 5-exo regioselective cyclization of allenes 

bearing a nucleophile in γ-position in the presence of iodobenzene. This kind of reactivity has 

marked a milestone in palladium catalyzed reaction of allenes; indeed, the authors proposed a 

mechanism that for the first time was not the one historically set up by Cazes and Tsuji about 

intermolecular allenes Pd(0)-carbopalladation, that is, claiming for the formation of a π-allylic 
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complex.53 Instead, an ArPd(II) complex formed in situ is here supposed to coordinate one of the 

double bonds (namely, the internal one) and undergoes a subsequent nucleophilic attack by the 

heteroatom. A reductive elimination of the metal from the vinylpalladium intermediate 

intervenes to yield the product and release palladium in the initial oxidation state (Figure 27).  
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Figure 27. Nucleophilic attack / carbopalladation sequence  

 

While in most of such reactions a clear cut evidence toward the action of a mechanism or another 

lacks, some cases and mostly the first interesting example by Hiemstra54 are example of the 

effectiveness of this idea, because a carbopalladation-amination sequence would fail to explain 

the obtention of products from the allenic lactam (Figure 28).  
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Chiral allenes have also been cyclized with chirality transfer; therefore, this mechanism has been 

indicated as effective, since chiral information would be lost in a planar π-allyl intermediate.55 

However, while this mechanism has been the first to be proposed for the intervention of non-

carbon nucleophiles, a second one analogous to Cazes and Tsuji’s well established intermolecular 

version of allene carbopalladation has been later proposed in palladium catalyzed cyclizations 

onto allenes.56 The coordination of the metal to the double bond, in fact, can also lead to a 

carbopalladation process, which only in a second instance is followed by a nucleophilic attack. In 

this case, the time order between C-C and C-X bond formation is inverted in respect to the 

mechanism described so far. That is the case of reactions developed first by Kang and successively 

mostly by Ma’s group. In particular, Kang first claimed for this mechanism in a paper where he 

was also able to show how hypervalent iodonium salts could be used as aryl moiety deliverers 

leading to the key Pd(II) species (Figure 29).56a  

 

 

 

Following the same mechanistic sequence, that is with the palladation step prior to the 

nucleophile addition one, allylic halides have also been trapped in lieu of aryl moieties;57 

moreover, halides (i.e., bromides) can be also used as suitable leaving groups to form allyl 

dications from bromoallenes, yielding a reactive π-allyl intermediate able to cyclize in presence or 

absence of a Pd(0) species.58  

An interesting and not yet fully explored variation on this theme has been finally discovered by 

Liu, who described a protocol in which the palladium intermediate does not deliver neither a 
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carbon nor a halogen atom onto the central allene carbon, but instead a protonic species, leading 

to a hydroamination procedure affording alkenyl substituted pyrrolidines and piperidines.59  

 

Eventually, palladium can react with nucleophile bearing allenes also in a transmetalation fashion. 

Ma and Sha discovered in fact a curious Pd(0)-Ag(I) cocatalyzed cyclization of α-allenic acids with 

aryl and vinylic halides, where a primarily cyclized silver intermediate is believed to evolve into a 

palladium complex which eventually yields the desired product (Figure 30).60 
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Gold 

Compared to palladium, the golden era of homogeneous catalysis was born much later, nearly at 

the end of 20th century, but could find rapidly a wide application also in allene chemistry. A series 

of five- and six-membered heterocycles can be constructed using the gold-catalyzed annulation of 

allenes with pendant nucleophiles including alcohols, esters, ketones, thiols, amines, 

sulfonamides, amides, and enamines formed in situ.  

The mechanism by which these reactions usually proceed depends on the oxidation state of the 

metal. Some authors seem to evidence the existence of processes where Au(III) or Au(I)-

complexes essentially behave in the same way, thus admitting a formal in situ conversion 

between the two states.61  

However, most of all when dealing with oxygen nucleophiles, a difference between the two states 

can be evidenced, as Au(III) behaves in a more oxophylic way while Au(I) complexes prefer to 

coordinate unsaturated carbon-carbon bonds. Figure 31 depicts a gold-catalyzed 
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cycloisomerization of a bromoallene whose selectivity depends on the oxidation state of the 

catalyst used. While AuCl3 favors the formation of 3-bromofuran likely initiated by the activation 

of the carbonyl group, the lower oxidation state catalyst Et3PAuCl interacts with allene 

preferentially to trigger the carbonyl oxygen cyclization leading to an isomeric bromofuran 

structure.62 

 

 

 

Toste63a and Widenhofer63b independently reported Au(I)-catalyzed intramolecular 

enantioselective hydroamination and hydroalkoxylation of allenes. Both groups utilized chiral 

dinuclear gold–phosphine complexes, which gave excellent enantioselectivities. As in previous 

studies, Toste demonstrated the effectiveness of chiral anionic counterions in the intramolecular 

hydroalkoxylation, hydroamination, and hydrocarboxylation reactions.64 As expected, the two 

strategies can be combined, so as to obtain matched and mismatched pairing effects on the 

asymmetric induction.  

 

 

Ruthenium 

Despite ruthenium catalysts have been mostly used in metathesis reactions of allenes, they have 

recently created their own place also in nucleophilic cyclizations.  

Indeed, Trost and co-workers first reported a ruthenium catalyzed cycloetherification and 

subsequently applied the same protocol to a cycloamination reaction.65 For both variants, two 
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alternative pathways have been postulated. The former involves the formation of a 

vinlylruthenium species and its insertion into the enone, while the second accounts for the 

formation of a ruthenacycle which is subsequently internally trapped by the nucleophilic oxygen 

or nitrogen (Figure 32). The latest studies in this field by Trost’s group describe a similar 

cyclization of allenic carboxylic acids, wherein the hydroxyl group of this function plays the role of 

the nucleophile.40 
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A variation on this theme involves the use of carbon monoxide in lieu of enones. Indeed, it has 

proved possible to intercept the pro-nucleophile with CO prior to cyclization, this resulting in a 

series of γ− and δ-lactones and lactams.66 The mechanism proposed in this occasion involves only 

an oxidative addition of ruthenium to the N-H bond, insertion of the allene followed by that of 

carbon monoxide and a final reductive elimination to complete the sequence (Figure 33). 
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However, in contrast to palladium and gold, ruthenium has never proven able to afford any 

hydroamination product reacting with allenes (see Figure 34). 

 

   Substrates 

Ru-complex and catalytic system 
Inter 

molecular 

Intra 

molecular 
Alkene Alkyne Diene Allene 

[Ru(CO)2(PPh3)(PPh2C6H5C2H3)]/NH4PF6 X   X   

[Ru3(CO)12]/NH4PF6  X  X   

[Ru3(CO)12] or CuI  X  X   

[Ru3(CO)12]/NH4PF6 X   X   

[Ru3(CO)12]/HBF4OEt2 or 

[RuH(PCy3)2(CO)(CH3CN)2]BF4 
X   X   

[Ru-CHCH-C(CH3)2(Cl)(PCy3)2(CO)]BF4 X  X  X  

[Ru(2-methylallyl)2(P-P)]/TfOH X  X    

[Ru(H)Cl(CO)(PPh3)3] X  X    

[Ru(P-P)(2-methylallyl)2] X  X    

[Ru(η6-cot)(dmfm)2] or [Ru3(CO)12]  X  X   

[RuCp(C2H4)(PPh3)2]BF4 X  X    

[Ru3(CO12)]/NH4PF6 X   X   

[Ru3(CO12)] X   X   
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Heterocycles 

Our interest toward nitrogen containing heterocycles brought us soon to investigate new 

synthetic ways toward such structures exploiting allenamides. More precisely, we chose to 

incorporate α-aminoacids or anthranilic acid to the allenamide substrate so as to end up with 

two-nitrogen containing heterocycles such as imidazoles, benzodiazepines and piperazines. A 

brief description of the above heterocyclic structures is reported here below.  

Imidazolidinones (Figure 35) – Although the industrial importance of these compounds is 

restricted to few examples, the attractiveness they show in organic chemistry is undoubtable. 

 

 

 

Structures of this kind are utilized for instance as structural elements in a number of molecules 

with potent anti-HIV or anti-fungal activity.67 In addition, closely related to the compounds we 

were able to synthesize is a certain class of imidazolidinone compounds (also called MacMillan 

organocatalysts) which were demonstrated to be suitable catalysts for many asymmetric 

reactions.68 These catalysts work by forming in situ an activated (low LUMO) chiral iminium ion 

with carbonyl groups of α,β-unsaturated aldehydes (enals) and enones able of transferring a high 

asymmetric induction to the final product. The catalysts have been used in Diels-Alder reactions, 

Michael additions, Friedel-Crafts alkylations, transfer hydrogenations and epoxidations, and they 

are now commercially available. 
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Piperazines (Figure 36) – Piperazines and their keto derivatives are amongst the most important 

backbones in today’s drug discovery. Owing to the high number of positive hits encountered in 

biological screening with this heterocycle and its congeners, and the presence of this moiety in 

complex natural products, the piperazine template too certainly deserves the title of "privileged 

scaffold" in medicinal and drug chemistry.69 Moreover, the ability of these scaffolds to impart 

specific conformational properties and protein-like characteristics to their derivatives, gives them 

also the role of basic skeleton for many peptidomimetic structures.70 Thus, it is no wonder that 

there is an increasing interest in the development of new synthetic methods that allow for the 

fast and efficient assembly of these heterocyclic systems.  

 

 

 

Unfortunately, public opinion has been recently interested on piperazines as they emerged as a 

new ‘family” of drugs for non-medical recreational purposes. BZP (Benzylpiperazine, A2, a.k.a. 

Frenzy or Nemesis), TFMPP (1-[3-(trifluoro-methyl)phenyl]piperazine) and mCPP (meta-

chlorophenylpiperazine, 1-(3-Chlorophenyl)- piperazine) are psychoactive drugs with stimulant 

effects comparable to amphetamines but with a lower potency and differential global scheduling 
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status. Much attention is being deserved to piperazines in Bulgaria, where they are not controlled 

by law neither banned, and they have been sold as a supposed legal alternative to ecstasy.71 

Benzodiazepines – The first benzodiazepine, 

chlordiazepoxide, was synthesized in 1955 by Leo 

Sternbach while working at Hoffmann–La Roche on the 

development of tranquilizers.72 The pharmacological 

properties of the compounds prepared initially were 

disappointing, and Sternbach abandoned the project. Two 

years later, in April 1957, co-worker Earl Reeder noticed a 

"nicely crystalline" compound left over from the discontinued project while spring cleaning in the 

lab. This compound, later named chlordiazepoxide, had not been tested in 1955 because of 

Sternbach's focus on other issues. Expecting the pharmacology results to be negative and hoping 

to publish the chemistry-related findings, researchers submitted it for a standard battery of 

animal tests. Unexpectedly, the compound showed very strong sedative, anticonvulsant and 

muscle relaxant effects. These impressive clinical findings led to its speedy introduction 

throughout the world in 1960 under the brand name Librium. Following chlordiazepoxide, 

diazepam was marketed by Hoffmann–La Roche under the brand name Valium in 1963, and for a 

while these two “mother little helpers”73 were the most commercially successful drugs. The new 

group of drugs was initially greeted with optimism by the medical profession, but gradually 

concerns arose; in particular, the risk of dependence became evident in the 1980s. However, 

although other antidepressants with anxiolytic properties have been introduced, and there is 

increasing awareness of the adverse effects of benzodiazepines, prescriptions for short term 

anxiety relief have not significantly dropped. Only for treatment of insomnia benzodiazepines are 

now less popular than nonbenzodiazepines, which include zolpidem, zaleplon and eszopiclone. In 

spite of the molecular difference between the two classes, they work on the same receptors. The 

main effect of benzodiazepines is to enhance the activity of the neurotransmitter γ-aminobutyric 

acid, which results in sedative, hypnotic (sleep-inducing), anxiolytic (anti-anxiety), anticonvulsant, 

muscle relaxant and amnesic action. These properties make benzodiazepines useful in treating 

anxiety, insomnia, agitation, seizures, muscle spasms, alcohol withdrawal and as a premedication 

for medical or dental procedures. Benzodiazepines are categorized as either short-, intermediate- 

or long-acting. Short- and intermediate-acting benzodiazepines are preferred for the treatment of 
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insomnia; longer-acting benzodiazepines are recommended for the treatment of anxiety. 

Benzodiazepines work by increasing the efficiency of a natural brain chemical, GABA, to decrease 

the excitability of certain types of brain cells called neurons. This reduces the communication 

between neurons and therefore has a calming effect on many of the functions of the brain. 

Quinazolinones (Figure 38) - The name quinazoline was first proposed for this compound by 

Weddige,74 on observing that this was isomeric with the compounds cinnoline and quinoxaline. Of 

the many derivatives of quinazoline system known so far, keto-quinazolines also called as 

quinazolinones, are the most important compounds. The quinazolinone skeleton is a frequently 

encountered heterocycle in medicinal chemistry literature with applications including 

antibacterial, antimalarial, CNS depressant, antiparkinsonism, antiviral and anticancer activities.75 

Little number of quinazolinones was also reported as potent chemotherapeutic agents in the 

treatment of tuberculosis.76  
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1) First cyclization: behavior of aminoallenes under metal-
free conditions 

 

At first, we decided to investigate the feasibility of cyclization processes onto allenes that could 

have been built starting from α-aminoacids, that is, with a pre-introduced chiral information in 

the starting materials able to be kept till the obtention of the final enantiopure products. The 

easiness of the conversion of a carboxylic acid into an amide, and the commercial availability of 

many suitable propargyl amines apt to insert a triple bond further convertible into an allene 

group, supported the choice of these building blocks. We consequently synthesized a series of 

propargylamides 1a-d starting from N-Boc-protected commercially available L-aminoacids and 

methylpropargylamine by treatment with DCC (1.2 equiv.) and 4-(dimethylamino)pyridine (0.02 

equiv.) in dichloromethane at room temperature (Scheme 1).  

 

 

 

Then, chosen propargylamide 1a as the model skeleton for our study, we envisioned a prototropic 

rearrangement as a convenient way to access the desired allene 2a. The outcome of these 

isomerizations is normally strongly dependent on the reaction time. Indeed, basic conditions are 

reported to give rise to an allene intermediate which can either regenerate the starting alkyne or 

evolve to the internal propargylic homologue, thus realizing the so-called “acetylene zipper” 

reaction. Therefore, we initially submitted 1a to different bases and reaction times in order to 

identify the best conditions to favor equilibration to the allene products. In our case, however, a 

further interesting behavior was observed. Indeed, while the formation of allene 2a effectively 

took place, a prolonged exposure to the base afforded this latter along with complex mixtures of 

five- or six-membered heterocyclic products arising from intramolecular attack of the amino 

group on one of the carbon atoms of the internal unsaturation of the allene. 
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With this evidence in hand, we focused our attention on this particular reactivity trying to identify 

efficient conditions to attain a synthetically useful heterocyclization procedure, and we isolated 

allene 2a for this purpose. The cleanest reaction, with limited formation of tarry products, was 

accomplished in the presence of t-BuOK (2.5 equiv. in THF at r. t. for 4 h). We obtained in this way 

the 5-methyl-3,4-dihydro-pyrazin-2-one 3a and 2-ethylydenimidazolidin-4-one 4a in 29% and 32% 

yield, respectively (Table 1, entry 1).  

 

 

 

Entry Substrate R Conditions Yields (%) 

    3 4 5 

1 2a i-Pr r.t., 4h 29 32 - 

2 2a i-Pr MW irradiation, 30 min 95 - - 

3 2b i-Bu r.t., 4h 28 9 25 

4 2b i-Bu MW irradiation, 30 min 89 - - 

5 2c Bn r.t., 4h 36 8 27 

6 2c Bn MW irradiation, 30 min 72 - - 

 

The Z-configuration of compound 4a is consistent with the observed mutual NOE enhancements 

between the N-methyl group and the vinyl hydrogen atom (3.3% and 5.8%). HPLC analysis with 

chiral column of 3a and 4a, achieved in comparison to a sample of racemic mixture, proved an 
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enantiomeric purity better than 99.5%. Heterocyclization also occurred with allenes 2b,c deriving 

from L-Leucine and L-phenylalanine according to a more regioselective process.  

However, despite their structures strictly related to 2a, different ratios of five- and six-membered 

products were obtained. In fact, only small amounts of imidazolidinones 4b,c (9% and 8%, 

respectively) were obtained, while pyrazinones 3b,c were the major products besides their 

isomers 5b,c, so indicating preference for the β-C attack by the nucleophilic nitrogen (Table 1, 

entries 3 and 5). 

These reactions, carried out at room temperature, furnished the heterocyclic products in 

moderate yields, as a high amount of tarry material was also produced. Improved yields could not 

be achieved by refluxing the solution due to the thermal decomposition of the substrates. The 

heterocyclization process was also tested in a microwave reactor.77 Under these conditions, the 

reactions occurred cleanly in shorter times and higher yields giving exclusively the six-membered 

ring products 3 (Table 1, entries 2-4-6). 

Interestingly, whilst extending the scope of the cyclization, a different behavior was observed for 

allenamide 2d, arising from basic treatment of L-phenylglycine. In this case, treatment with t-

BuOK at room temperature gave rise to the formation of the racemic γ-lactam 6 as the sole 

product (Scheme 3). The observed outcome can be due to the higher acidity of the benzylic α-

aminoacidic hydrogen of 2d with respect to 2a–c. Consequently, in the presence of t-BuOK, the 

deprotonation of carbon atom instead of that of the Boc-protected amino group is operative, 

followed by nucleophilic attack of the carbanion species A on the sp-carbon. Such a mechanism 

well justifies the formation of the pyrrolidone derivative in racemic form.  

 

 

 

Eventually, serendipity, as often occurs, drove us toward a further interesting result. Compound 

4a, left in an NMR-tube for some days after the requested analysis were accomplished, was found 

to be transformed to some extent into a different structure which lacked the double bond. 

Assuming this was due to the only other elements present in a deuterated chloroform solution, 

i.e. the residual acidity and traces of water, we made the hypothesis of an acid catalyzed 
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hydration of the double bond. Indeed, treatment of 4a with catalytic amounts of p-TSA in 

THF/H2O gave smoothly and quantitatively the same compound, which was shown to be the 2-

ethyl-2-hydroxy-imidazolidin-4-one 6 (Scheme 4). This process was totally diastereoselective 

involving generation of the R-configurated new stereocenter in 2-position of the imidazolidinone 

ring, as identified by X-ray diffractometric analysis (Image 1). 

 

 

 

In conclusion, we have developed a simple procedure for building monocyclic five- and six-

membered nitrogen containing heterocycles from new allenamides of L-α-aminoacids under basic 

conditions. The moderate yields of the reactions performed at ambient temperature could be 

significantly increased by applying microwave activation. Further investigations, mainly based on 

the use of transition metals, will be described in order to achieve more selective reactions and 

differently substituted products. 

 

 

 

 

2) Second cyclization: a 5-exo-trig reaction through a 
carbopalladation/allylic amination sequence 

 

Although the above results deserve attention as allow a mild and metal-free way to obtain these 

cyclic structures, literature shows that transition metal-catalyzed protocols often allow cleaner 

and efficient reactions. Therefore, we went back onto our initial goal, which consisted in the 

isolation of the allenamides and test of their behavior in presence of a palladium catalyst with the 

aim of obtaining enantiopure imidazolidinone products.  
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After a thorough screening we found that the propargyl-to-allene conversion was best effected 

with reaction times as short as 1 minute. Indeed, exceeding this short time led to a mixture of the 

allenamides along with the aforementioned heterocyclic structures and other tarry products. The 

collection of substrates 1a-e
78, were consequently submitted to this fast prototropic shift, yielding 

the desired allenamides in nearly quantitative yields (Scheme 5).  

 

 

 

We next decided to study the palladium-catalyzed nitrogen addition onto the α-carbon of the 

allene in order to obtain imidazolidinones. As described in the introduction chapter, these 

heterocycles are the object of great interest for organic chemists. Although the TM-catalyzed 

generation of heterocyclic compounds via reactions between allene bearing a nucleophilic 

functionality and organic halides is well established, such a strategy has never been applied to 

allenamides such as 2a-e. Thus, we envisaged to obtain imidazolidinone structures through the 

set up of suitable conditions able to give rise to a pure domino79 carbopalladation-amination 

sequence (Scheme 6).  

 

 

 

After a careful screening using 2a as the starting substrate, we found that a combination of 

Pd(PPh3)4 (2 mol%), potassium carbonate (4.0 equiv.) and iodobenzene (1.5 equiv.) in DMF, as 

reported by Kang,80 was the ideal system to promote the desired transformation.81 These 
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conditions were totally regioselective leading to imidazolidinones 8a and 9a respectively in 55% 

and 16% yield (Scheme 7). 

 

 

The heterocyclization process occurred also with PhBr as arylating agent, although in lower yields, 

and with a Pd(II) source such as Pd(OAc)2, plausibly reduced in situ to Pd(0). The mechanism by 

which we suppose that this reaction occurs is analogous to the one depicted in Figure 29 with an 

aryl halide instead of an iodonium salt (Scheme 8).  

Once again, optimized conditions were applied to all the different allenamides 2b-e previously 

prepared, permitting to obtain a wide panel of imidazolidinone structures (Table 2).  

 

 

 

Entry R 8 (Yield %) 9 (Yield %) 

2b Me 65 12 

2c i-Bu 54 17 

2d Bn 50 19 

2e Ph 52 20 
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The absolute configuration of the major and minor diastereoisomer was assigned after an X-ray 

crystal structure analysis of the minor product 9a (Image 2), which revealed a trans relationship 

between the hydrogen atoms in the stereogenic positions and indirectly proved a cis disposition 

for its diastereoisomer 8a. Analogy of the 1H NMR spectra of compounds 8a and 9a with those of 

8b-d and 9b-d, respectively, allowed the 

assignment of their absolute configuration. The 

constant presence of two rotamers in the 1H and 

13C NMR spectra of the trans diastereoisomers 

9a-e exclusively is the most peculiar feature 

allowing differentiation of the two 

diastereoisomers.  

Moreover, HPLC comparison (Chiralcel ODH 

column) of a sample of 8b with that of a racemic 

sample obtained starting from (±)-valine proved 

an enantiomeric purity better than 99.0%. The 

same analytical procedure on compound 8e 

revealed an ee of 94%.  

 

At this point, we felt that the allene structures we got in hand, combined with phenyl iodide, were 

also suitable substrates to undergo cyclization through insertion of carbon monoxide, permitting 

to achieve new different heterocycles. 

Palladium catalyzed carbonylative transformations involving allenes82 and halides83 are a useful 

tool for the preparation of several heterocycles and aromatic carbonyl compounds.  

However, much less attention has been paid to three-component reactions involving N- or O-

substituted allenes, carbon monoxide and aromatic halides (Scheme 9).84  
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Image 2. ORTEP drawing of compound 9a
at 60% probability level



  Results 

 

 

As a first example, it has been reported that the carbonylation of aryl iodides or bromides in the 

presence of γ-hydroxyallenes and a palladium(0) catalyst affords aryl (tetrahydrofuran-2-yl)-vinyl 

ketones.81a This reaction was supposed to occur by addition of an initially formed aroylpalladium 

intermediate to the allenyl unit of the γ-hydroxyallene to produce a π-allylpalladium species, 

which then undergoes nucleophilic attack by the hydroxyl group to give the product. 

A similar mechanism has been claimed in an analogous reaction starting from allene substituted 

amines, previously restricted to exhibit their nucleophilicity in alkoxycarbonylation procedures.85 

A novel three component carbonylation/N-heterocyclization undergoing onto sulfonylamides 

structures was in fact reported by Kang and coworkers.81b  

However, in that case the tether between the reacting centers did not involve the presence of any 

functional group nor any further heteroatom. On the other hand, the presence of the amide 

group into our substrates represented a highly valuable goal. 

 

Accordingly, submission of 2a-c to the above optimized reaction conditions as described in 

Scheme 8 and running the reactions under CO at atmospheric pressure gave the corresponding 

enoyl imidazolidinones 10a-e. Such a result indicated, as expected, that the initially generated 

PhPd(II)I complex inserted carbon monoxide prior to undergo carbopalladation, to give the new π-

allyl complex B. Again, intramolecular allylic amination gave the final products (Scheme 10). The 

trans-configuration of 10a-e was assigned by comparing their NMR spectra with those of 

compounds 8a-e and is probably due to the bulky effect of CO group in intermediate B. The 

heterocyclization of the isopropyl-substituted substrate 2b took place giving two diastereoisomers 
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in a 6:1 ratio, making possible the isolation the cis-product 11 (7%). To optimize this procedure, 

the reaction was carried out under CO pressure (20 atm), but no improvements in 

diastereoisomeric ratio or time of the reaction were observed.  

 

 

 

Entry R 10 (%) 

2b Me 42 

2c i-Bu 38 

2d Bn 40 

2e Ph 67 

 

Finally, we envisaged to incorporate all the reacting partners into the same reaction step, so as to 

realize a fully intramolecular carbopalladation/amination sequence. Such type of sequence is still 

rare in the literature86 and however limited to build fused-ring systems having six or more atoms 

in the formed cycles. The amination step being already intramolecular, the key point was to 

realize an intramolecular carbopalladation, which could be attained tethering the aryl iodide to 

the allenamide substrate. This was obtained by alkylation of propargylamine with o-

iodobenzylbromide to give the secondary amine 12 (more careful and efficient protocols to avoid 

the formation of overalkylated products seemed unnecessary due to the easiness and rapidity of 

this protocol as well as to the extremely low cost of the reactants). Subsequent treatment with 

the appropriate aminoacids under standard DCC conditions afforded the propargyl amides 13a-c, 

which were isomerized to the corresponding allenamides 14a-c (Scheme 11). 
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H2N

CH3CN,
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Br

I

(2 eq.)

(1 eq.)
N
H

I

12 (40%)

Scheme 11. Synthetic way to access allenamides 14

Boc-AA (1.2 eq.),
DCC (1.2 eq.),
DMAP (2 mol%)

CH2Cl2, 48 h, r.t.

N

IO

R

NHBoc

13a-c

t-BuOK
(2.5 eq)

THF,
1 min

IO

R

NHBoc

14a-c

N

•

Table 4. Yields of the
condensation and of the
propargylic rearrangement
for the different aminoacids.

 

 

 

 

 

 

  

 

 

 

 

 

Subsequent carbopalladation/amination of the latter using Pd(PPh3)4 catalyst and K2CO3 as base 

gave the expected tricyclic products 15a-c (respectively in 54%, 59% and 51% yield) and 16a,b (8% 

and 6% yield) in a 6.5:1 diastereomeric ratio. Comparison of the 1H NMR spectra of these products 

with those of 8a-e allowed assignment of a cis configuration to the former set of major isomers 

and a trans one to the minor ones, which could be isolated only in the case of substrates arising 

from valine and leucine (16a,b).  

The generation of the 1,5,10,10a-tetrahydro-2H-imidazo[1,2-b]isoquinolin-3-ones 15 and 16 can 

be rationalized as depicted in Scheme 12.  

 

 

 

Boc-AA R Yields (%) 

Val i-Pr 13a (90%) 14a (95%) 

Leu i-Bu 13b (81%) 14b (93%) 

Ala Me 13c (79%) 14c (93%) 
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The initial generation of ArPd(II)I complex C by oxidative addition of the iodobenzene moiety to a 

Pd(0) species is followed by intramolecular carbopalladation of the central carbon of the allyl 

group to give the π-allyl intermediate D. At this point, the intramolecular nucleophilic attack of 

the nitrogen on the inside position of the Pd-complex generates the imidazolidinone products 

with concomitant expulsion of the Pd(0) species, able to restart the catalytic cycle.  

Inspection of molecular models of the likely equilibrating diastereomeric η3-allyl Pd complexes D1 

and D2 shows that nitrogen attack from the former one (D1) is relatively easy, whereas that from 

the latter one (D2) experiences a sever steric clash between the aminoacid residue and the allyl 

moiety. As a consequence, the higher reactivity of complex D1 over D2 well accounts for the 

observed stereoselectivity favoring the cis diastereoisomers (Scheme 13). 

 

 

 

In summary, we have developed a new and original approach to enantiopure imidazolidin-4-ones 

and imidazoisoquinolinones by means of a domino carbopalladation/allylic amination process, 

starting from α-amino allenamides of amino acid derivation. In all three protocols developed, the 

vinyl group present in the final products may allow further improvement of the known 

organocatalytic properties of such compounds. Moreover, the results have established the 

feasibility of the above heterocyclization process having an amide group in the tether, without 

any interference of the carbonyl oxygen. Work is now in progress to investigate the ability of the 

newly obtained imidazolidin-4-ones as building blocks for more complex structures87 and as 

organocatalysts in reactions involving R-unsaturated aldehydes.88 
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3) Shifting towards the obtention of 7-membered heterocycles 
 

This part of my thesis has been spent in the laboratories of professor Poli’s group at Université 

Pierre et Marie Curie, in Paris, in the frame of a cooperation agreement. The main goal we 

intended to achieve was a palladium-catalyzed synthesis of benzodiazepines using allene 

substrates. In particular, our interest was devoted to 1,4-benzodiazepin-5-ones, a subset of many 

biologically and pharmacologically active compounds.89 Thus, synthesis of new analogues of this 

structure is highly desirable as it might allow obtaining new compounds showing better 

pharmaceutical activity. Interestingly, the synthesis of simple bicyclic skeletons, which have 

captivated interest as simplified forerunners of active tricyclic systems,90 has not been extensively 

reported as compared to that of other 1,4-benzodiazepinone derivatives. 

In fact, known methods to access these compounds start from substrates such as benzamides91 or 

anilines,92 and require appropriate pre-functionalizations or harsh conditions, or lack in atom 

economy. Aryne nucleophilic substitutions93 also hide limited diversity as a drawback. Better 

results are obtained with supported and solid synthesis.94 More appealing transition-metal 

catalyzed processes have also been developed. However, although some of these reactions have 

been reported to form tricyclic 1,4-benzodiazepin-5-ones,95 just one Pd(II)-catalyzed 

intramolecular route to bicyclic structures is known.96 

To widen this research area, we envisioned allenes as suitable substrates, and herein we 

developed the first synthesis of bicyclic 1,4-benzodiazepin-5-ones via a pure domino Pd(0) 

catalyzed carbopalladation/allylic amination process involving allenes. To the best of our 
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knowledge, such reactivity has never been explored in reactions leading to 7-membered nitrogen 

containing cycles. To obtain such a goal, we forcedly needed an interatomic distance of 6 atoms 

between the two reacting centers, since the new bond we wanted to build would have 

represented the seventh bond of the azepinic ring. The ideal substrate to fruitfully accomplish this 

condition was identified with compound 23a, whose synthesis was projected to undergo in seven 

steps starting from the propargylic alcohol 17. 

Part of the synthesis followed a way already developed into professor Poli’s laboratory for a 

different work on a carbopalladation/alkylation protocol on allenes.97 Namely, the motivation 

leading to the three steps toward compound 19 are completely described into doctor Kammerer’s 

thesis work (Scheme 14).95b 

 

 

 

A significant change was brought in the transformation of 19. Previously adopted protections (i.e., 

benzyl carbonate, benzoate and acetate) all showed some limitations in yield (carbonate) or 

handling (very low volatility of the two ester groups). Since the yields obtained with the two ester 

groups were however higher than what observed with the carbonate protection, we consequently 

chose a different and heavier residue on the ester protection in order to avoid the volatility issue. 

To our delight, the ester 20 resulting from condensation between phenacetyl chloride and allene 

19 was obtained in high yields and did not evaporate to any observable extent at atmospheric 

pressure (Scheme 15).  
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  Results 

 

 

The last reaction was a palladium-catalyzed nucleophilic substitution. Amine 21, previously 

identified as the best partner, efficiently reacted with compound 20 to yield amide 22. After 

deprotection we obtained the desired allenamine 22. Eventually, a simple condensation reaction 

with tosyl-protected anthranilic acid98 afforded the allenyl anthranilic amide 23a with an overall 

yield of 17% after 7 steps (Scheme 16). This latter and 4-iodotoluene (1.2 equiv.) were chosen as 

model coupling partners to test the carbopalladation/amination sequence (Table 5). 

 

 

 

The system Pd(OAc)2/NaH gave a modest conversion (Table 5, entry 1). On the other hand, the 

use of phosphine-free conditions as previously reported by us95 was more successful (Table 5, 

entry 2). The active species was generated dissolving Pd(CH3CN)2Cl2 (5 mol%) as precatalyst in 

DMSO in the presence of BuLi (10%), 4-iodotoluene (1.2 equiv.) and TBAB (20%); then a solution 

of sodium amidate (obtained through deprotonation of amide 23a by NaH) in DMSO was added. 
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  Results 

When the same experiment was repeated at 90 °C, the yield of 24a could be raised to 82% (Table 

5, entry 3). On the other hand, switching to a carbonate as the base (entries 4, 5 and 6) or 

omitting the base (entry 7) gave no product. 

 

 

 

Chosen the best conditions for 

the reaction, we then 

investigated the reactivity of 

different protecting group on 

the nucleophilic nitrogen. This 

was aimed to obtain 

unprotected 

benzodiazepinones, in order to 

identify another site on the 

vinyl-substituted products that 

could lead to further 

functionalizations. Results are 

summarized in Table 6. 

Entry Catalytic system Base T (°C) Additive Solvent 
Conversion 

(%) 
Yield 

(%) 

1 Pd(OAc)2 (5%) NaH (1.2 eq) 50 - CH3CN 75 27 

2 Pd(CH3CN)2Cl2 (5%), BuLi (10%) NaH (1.2 eq)  r.t.->50 TBAB (20%) DMSO 84 46 

3 Pd(CH3CN)2Cl2 (5%), BuLi (10%) NaH (1.2 eq) 50
 
->90 TBAB (20%) DMSO 100 82 

4 Pd(CH3CN)2Cl2 (5%), BuLi (10%) Cs2CO3 (2 eq) 50 TBAB (20%) DMSO 6 n.i. 

5 Pd(CH3CN)2Cl2 (5%), BuLi (10%) K2CO3 (2 eq) 50 TBAB (20%) DMSO 20 n.i. 

6 Pd(CH3CN)2Cl2 (5%), BuLi (10%) K2CO3 (2 eq) 90 TBAB (20%) DMSO 20 n.i. 

7 Pd(CH3CN)2Cl2 (5%), BuLi (10%) - 90 TBAB (20%) DMSO 0 - 

Entry PG 
Acylation 

yield
a
 

Cyclization 

yield
a
 

Deprotection yield
a
 

1 SES  - - - - 

2 BOC  58% (23b) 48% (24b) - 

3 Nosyl 62% (23c) 80% (24c) traces
b
 

c
 

4 Tosyl 70% (23a) 82% (24a) n.r
d,f

 degradation
e
 

5 H 
Obtained product 26. See discussion in the text and 

notes below Scheme 16 

a) Isolated yield. Deprotection conditions: b) PhSH (1 eq), K2CO3 (1 eq), DMF, r.t., 
4h. c) PhSH (1 eq), K2CO3 (1 eq), DMF, 50°C, 24h d) TBAF, THF, reflux e) Mg, 
MeOH, reflux, 2h f) HCl, microwaves, EtOH/AcOH/H2O. 

Table 6. Evaluation of different nitrogen protecting groups.

N

H
N

O
Bn

Tol

25 (13%)



  Results 

While N-SES protection of anthranilic acid failed (entry 1), the N-Boc protected analogues were 

discarded due to the low cyclization yield (entry 2). Other sulfonyl groups gave better results, due 

to their higher nucleophilicity (entries 3, 4), and they were subsequently studied in the 

deprotection reaction. However, deprotection of the tosyl group failed and that of the nosyl gave 

product 25 only in 13% yield (entry 3). This result was considered far from satisfactory.  

Finally, we decided to remove BOC group from allenylamide 23b to test the cyclization on an 

unprotected substrate. 1H-NMR of the crude product obtained from treatment of 23b with 

TMSCl/NaI revealed the presence of the desired NH2 group. Much to our surprise, purification 

over a silica gel column (entry 5) gave a spontaneous intramolecular hydroamination affording 

product 26. Although literature reports intramolecular hydroamination of allenes promoted by 

bases or metals, such a behavior is unprecedented. As we suspected that the hydroamination 

reaction was triggered by the acidity of silica gel, other acidic conditions were tested. After a few 

trials we found that treatment of the crude product from 23b with p-TSA (1 equiv.) in DMF at r.t. 

gave the hydroaminated product 25 in 92% yield (Scheme 17). 

 

 

 

The above results indicated that the tosyl group was the protecting group of choice to extend our 

protocol (Scheme 18). Thus, using the optimized phosphine-free conditions, the scope of the 

domino sequence was next examined on a 0.1 mmol scale with various aryl iodides.   

Electron-rich 4-, 3- and 2-iodoanisoles all reacted smoothly, affording the expected corresponding 

benzodiazepinones 24d-f in 63%, 63% and 73% respectively. The effect of electron-withdrawing 

substituents was next investigated. Reactions of 4-methoxycarbonyl, 4-nitro and 4-acetyl 

iodobenzene gave satisfactory yields of 61%, 71% and 68% (24g-i).  



  Results 

The use of simple iodobenzene led to the benzodiazepinone 24j, which was isolated in 67% yield. 

Heteroaromatic iodides also gave good yields, as 3-iodopyridine afforded the expected product 

24k in 70% yield. The same protocol was also shown to be able to sustain substitutions onto the 

aromatic ring, since the 3-methyl anthranilic allenylamide 23l afforded the corresponding 

benzodiazepinone 24l in good yield (75%).  
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O
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N
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O

N

N

O
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O
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O
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N
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O

Tos
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O
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N
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O
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PhPh Ph

Ph Ph
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N
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O

Tos

Ph

24d (63%) 24e (63%) 24f (73%)

24j (67%)

NH

N

O

Ts •

Ph N

N

Ph
O

Ar
Ts

R
2) Pd(CH3CN)2Cl2 (5%),
BuLi (10%), TBAB (20%),
ArI (1.2 eq.), DMSO, 90 °C,
2h

1) NaH (1.2 eq.), DMSO,
50 °C, 10 min.

23a,j 24a-j

24g (61%)

24h (71%) 24i (68%) 24k (70%) 24l (75%)

N

N

O

Tos

Ph

24a (82%)

R

 

 

 

The formation of 1,4-benzodiazepin-5-ones can be rationalized according to the mechanistic 

proposal depicted in Scheme 19. At first, a Pd(0) complex is generated in DMSO from 

Pd(CH3CN)2Cl2, by using BuLi as an in situ reducing agent.99 The generation of PhPd(II)I by 

oxidative addition of iodobenzene to Pd(0)-species follows, involving a carbopalladation of the 

central carbon of the allyl moiety that gives π-allyl complex E. The nucleophilic attack of the 
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 a) E. Negishi, T. Takahashi, K. Akiyoshi, J. Chem. Soc., Chem. Commun. 1986, 1338. b) M. Bottex, M. 
Cavicchioli, B. Hartmann, N. Monteiro, G. Balme, J. Org. Chem. 2001, 66, 175. 



  Results 

nitrogen atom on the internal carbon atom closes the pure domino sequence, with generation of 

the benzodiazepinone products and Pd(0)-species, able to restart the catalytic cycle.  

In all the cases studied, the carbopalladation/amination sequence was totally regioselective, 

yielding the desired 1,4-benzodiazepin-5-ones as the sole products. Such an outcome is probably 

due to the major stability of the diazepinic heterocyclic ring with respect to the alternative 9-

membered product. 

N

N

O

Ts

Bn

•

NTs

N

O

Bn

N

N

O

Ts

Bn

•

Pd(CH3CN)2Cl2

[Pd0]ArI

[PdII]

Ar

I

I-

[PdII] I

Ar[PdII]I

R

NH

N

O

Ts

Bn

•

N

N

Ts

O
Bn

E

23a 24a

Scheme 19. Mechanistic pathway toward 1,4-benzodiazepin-5-one 24a

R

base

 

 

We have in this way developed a new and original approach to 1,4-benzodiazepin-5-ones via a 

pure domino carbopalladation/allylic amination process starting from allenylamides of anthranilic 

acid. These results represent the first example of synthesis of 7-membered heterocycles starting 

from allene via carbopalladation. Besides their intrinsic pharmacological interest, the obtained 

scaffolds are an interesting DOS-compatible platform,100 amenable to modular synthesis (via the 

use of differently substituted anthranilic acids), orthogonal protections and easy modifications of 

the vinylic moiety (use of different iodides), still susceptible of further functionalizations. 

Furthermore, this study reports the first example of Brønsted-acid catalyzed intramolecular 

hydroamination of allenes. 
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  Results 

NH2

COOH

NH

COOH

O O

Boc2O

EtOH

NH

O O

O

N
R

H
N

R

DCC (1.2 eq.)
DMAP (1.5%)

CH2Cl2

tBuOK
(2.5 eq.)

THF, 1 min
Ref. 71

28a-g

4) Exploiting the anthranilic scaffold, back to allenamides – 

A) a 6-exo trig carbopalladation/amination reaction 

 

In view of our previous studies using allenamides 2 and using the anthranilic acid fragment as the 

nucleophilic partner for our cyclizations, we logically thought to combine these two moieties so as 

to study the cyclization behavior of anthranilic enamides of type 27. In this case, a 6-exo-dig, a 7-

exo or endo-dig or an 8-endo-dig process would generate quinazolinones, benzodiazepinones or 

benzodiazocinones, respectively (Scheme 20).  

 

NH

O O

O

N
R

•

27

N

N

O

R

Boc

a)

N

N

Boc

O
R

b)

N

N

Boc

O R

a

b

c

Scheme 20. Possible cyclization outcomes deriving from 27

c)

R'

R'

 

  

Accordingly, anthranilic acid was N-Boc protected,101 then transformed into propargyl amide 28a. 

Subsequent base-promoted prototropic rearrangement gave the corresponding desired 

allenamide 27a (Scheme 21). Following a similar protocol, a series of additional 6 anthranilic acid 

enamide precursors was also synthesized (27b-g, Table 7). 
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  Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With these precursors in hand, their submission to the previously mentioned optimized 

conditions (Pd(PPh3)4 (5 mol%), aryl iodide (1.5 equiv.), potassium carbonate (4 equiv.), DMF, 100 

°C) gave the expected styrylquinazolinones 29 in good yields (Table 8).  

 

 

 

As depicted, we obtained a large variety of quinazolinonic products, arising from a 6-exo-dig 

cyclization process. This was achieved by using: 

R Yields (%) R Yields (%) 

Me 28a (76%) 27a (97%) 

 

28e  

(45%) 

27e  

(98%) 

 

28b (54%) 27b (72%) 

 

28f  

(62%) 

27f  

(60%) 

 
28c (28%) 27c (36%) Me (R’= 5-Cl) 

28g  

(73%) 

27g  

(80%) 

Benzyl 28d (50%) 27d (47%)    

R Ar Yield R Ar Yield R Ar Yield 

Me Ph 
29a  

(73%) 
Benzyl Ph 

29d  

(62%) 

Me 

(R’=5-Cl) 
Ph 

29g 

(40%) 

 

Ph 
29b 

(44%) 
 

Ph 
29e  

(43%) 
Me 

4-CO2Et-

C6H4 

29h 

(60%) 

 
Ph 

29c 

(66%) 
 

Ph 
29f  

(50%) 
Me 4-COMe 

29i 

(56%) 



  Results 

i) differently substituted aryl iodides; 

ii) substrates bearing different substitutions on the amidic nitrogen;  

iii) substrates bearing different substitutions on the aromatic ring. 

 

Conversely to what observed in the cyclization of 2, the nature of the halogen atom is crucial to 

attain the formation of styrylquinazolinones, as the replacement of iodine for a less reactive 

bromine atom led only to the recovery of unreacted starting material. The mechanism is expected 

to follow the aforementioned carbopalladation/amination sequence (Scheme 22). 

  

 

 

 

4)  Exploiting the anthranilic scaffold, back to allenamides – 

B) a 6-exo trig hydroamination reaction 

All the cyclized products presented so far show an interesting double bond susceptible of further 

functionalizations. However, the constant presence of a phenyl ring into the vinyl appendage 

somewhat reduces the possibility of obtaining highly differentiated compounds. As a 

consequence, we turned our attention toward variations of this cyclization that allow the 

formation of a vinyl appendage as opposed to a less interesting styryl moiety.  



  Results 

The first envisaged strategy, inspired from recent results of our group,102 was based on a Pd(0)-

catalyzed hydroamination process. However, a preliminary test using allenamide 27a indicated 

that such a process was not satisfactory (Table 9).  

 

 

Entry Conditions Solvent T (°C) Time Outcome 

1 Pd(PPh3)4 (5 mol%), MW Toluene 25-150 °C 2h 30a (10%) 

2 Pd(PPh3)4 (5 mol%), K2CO3 (2 equiv.), MW Toluene 25-120 °C 25 min n. r. + degradation 

3 Pd(PPh3)4 (5 mol%), MW CH3CN 25-100 °C 45 min n. r. + degradation 

4 Pd(PPh3)4 (5 mol%), MW Toluene 25-150 °C 
2h 40 
min 

30a (traces) 

 

Alternatively, a hydroamination reaction of allenes can also be accomplished under a palladium(II) 

catalysis in presence of an oxidant system, as recently demonstrated in studies by Liu and 

coworkers.59 However, also in this case we did not obtain clear cut results, as 

allenes 27 reacted to some extent, but unfortunately were only transformed into 

a compound whose structure is supposed to be 31, although in too low yields to 

be isolated and characterized.103 Therefore, we abandoned palladium catalysis 

shifting to other transition metals.  

Platinum was soon discarded after few trials in light of the unsatisfactory ratio observed between 

the not enthusiastic yields and the cost of the catalyst; on the other hand, prompted by the good 

results obtained by another branch of our group onto gold-catalyzed allene hydroamination 

reactions, 104 we submitted allene 27a to some gold-catalyzed protocols obtaining results 

described in Table 10.  
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  Results 

 

Entry Reagents Solvent T (°C) Time Outcome 

1 AuCl3 (5 mol%) MeCN Reflux 12h Starting material 

2 AuCl3 (5 mol%), AgOSO2CF3 (10 mol%) CH2Cl2 r.t. 12h Starting material 

3 Au(PPh3)Cl (5 mol%), K2CO3 (1.5 equiv.) MeCN Reflux 12h Starting material 

4 AuCl3 (10 mol%), MW toluene 25 to 110 2 h Starting material 

4 AuCl3 (5 mol%) MeCN Reflux 12h 30a (45%) 

5 
Au(PPh3)Cl (7.5 mol%), K2CO3 (1.5 

equiv.) 
MeCN Reflux 12 h Starting material 

5 AuCl3(5 mol%), CaCO3 (1 equiv.) 
CH2Cl2/MeCN 

12:1 
r.t. to 
reflux 

20 h Starting material 

6 
AuCl(PPh3) (7.5 mol%), AgOAc (22.5 

mol%), CuCl2 (5 equiv.) 
CH2Cl2 r.t. 24 h 

Degradation 
products 

 

No cyclized product was obtained either in the presence of gold(I) catalyst or in combination with 

an oxidant. The reaction proceeded only in presence of an Au(III) catalyst (entry 4) and in 

moderate yields. Acetonitrile at reflux was necessary for the cyclization. Once identified the best 

protocol, we applied it to a number of different compound, obtaining the cyclized products 

depicted in Scheme 23. 

 

 



  Results 

Despite the promising results obtained under gold catalysis, we decided to continue our study 

switching to Ru catalysis. This choice was motivated by the low cost of RuCl3 and by the fact that 

Ru-catalyzed hydroaminations of allenes is, to the best of our knowledge, still unknown. Our 

results are shown in Table 11. 

 

 

Entry Catalytic System Solvent T (°C) Time Products 

1 
RuCl3·2.4H2O (1 mol%), dppp (1 mol%), 
K2CO3 (2 equiv.), allylacetate (4 equiv.) 

MeCN 80 °C 20 h 
30a (26%) + 

starting material 

2 
RuCl3·2.4H2O (1 mol%), dppp (1 mol%), 
K2CO3 (2 equiv.), allylacetate (4 equiv.) 

dioxane 
90 °C  
50 °C 

5 h 
24 h 

30a (5%) + starting 
material 

3 
RuCl3·2.4H2O (1 mol%), dppp (1 mol%), 
K2CO3 (2 equiv.), allylacetate (4 equiv.) 

N-Me-
morpholine 

100 °C 24 h 
Degradation 

products 

4 
RuCl3·2.4H2O (1 mol%), dppp (1 mol%), 
K2CO3 (2 equiv.), allylacetate (4 equiv.),  

MeCN 80 °C 48 h 
30a (40%) + 

starting material 

5 
RuCl3·2.4H2O (1 mol%), dppe (1 mol%), 
K2CO3 (2 equiv.), allylacetate (4 equiv.) 

MeCN 60 °C 2 h 30a (80%) 

6 
dppe (1 mol%), 

K2CO3 (2 equiv.), allylacetate (4 equiv.) 
MeCN 60 °C 24 h Starting material 

7 
RuCl3·2.4H2O (1 mol%), K2CO3 (2 equiv.), 

allylacetate (4 equiv.) 
MeCN 60 °C 24 h 30a (tracce) 

8 
RuCl3·2.4H2O (1 mol%), Bu4NCl (1 

mol%), K2CO3 (2 equiv.), allylacetate (4 
equiv.) 

MeCN 60 °C 24 h Starting material 

9 
RuCl3·2.4H2O (1 mol%), dppe (1 mol%), 

K2CO3 (2 equiv.) 
MeCN 60 °C 24 h Starting material 

10 
RuCl3·2.4H2O (1 mol%), dppe (1 mol%), 

K2CO3 (2 equiv.), BQ (4 equiv.) 
MeCN 60 °C 24 h Starting material 

11 
RuCl3·2.4H2O (1 mol%), dppe (1 mol%), 

K2CO3 (2 equiv.), O2 
MeCN 60 °C 24 h 30a (20%) 

12 
RuCl3·2.4H2O (1 mol%), dppe (1 mol%), 
K2CO3 (2 equiv.), CuCl2 (5 mol% equiv.), 

O2 
MeCN 60 °C 24 h 30a (5%) 

13 
RuCl3·2.4H2O (1 mol%), dppe (1 mol%), 

K2CO3 (2 equiv.), CuCl2 (1 equiv) 
MeCN 60 °C 2 h 30a (90%) 

 



  Results 

The conditions reported by Kondo for intramolecular amination reactions on olefins105 furnished 

the hint for undergoing the investigation on our allene substrates We initially screened the 

influence of different solvents (entries 1-3). While dioxane and N-Me-morpholine didn’t give 

satisfactory results, acetonitrile brought to the desired product in a 26% yield. This was 

consequently chosen as the ideal solvent. Prolonging reaction the yield increased (entry 4), 

although conversion was not total yet. This latter condition was accomplished by using a different 

phosphine ligand, which afforded the vinyl quinazolinone 29a in 80% yield. Substitution of allyl 

acetate with copper chloride as oxidant (entries 12 and 13) slightly improved the yield up to 90%; 

the use of several ligands able to stabilize in a different way the ruthenium complex or to 

intervene somehow in the reaction mechanism has not brought so far to better results than the 

ones obtained with entry 5. These results prompt us to look for better conditions; indeed, the 

reaction is still under investigation, as well as its mechanistic pathway, still unclear. However, it is 

possible to infer some key features of this reaction from experimental evidences, that is: a) an 

oxidant is surely needed, as its absence inhibits the cyclization process (entry 9), and b) critical for 

the reaction success are phosphines as ligands for whatever may be the ruthenium species 

involved in the reaction.
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Conclusions 
 

 
We have developed six strategies resulting in the synthesis of novel diheteroatomic nitrogen 

containing heterocyclic scaffolds, exploiting the reactivity of allene compounds. 

 

The first strategy provided useful piperazinonic structures through a metal-free base-catalyzed 

cyclization reaction. The use of a metal, namely palladium, was instead investigated in three 

different protocols which led to the obtention of imidazolidinones, benzodiazepinones and styryl-

substituted quinazolinones. Finally, gold and ruthenium were able to promote an intramolecular 

hydroamination process able to yield vinyl-substituted quinazolinones.  

 

The main reaction which we focused our attention on has been the carbopalladation/allylic 

amination sequence, which has been extensively exploited and applied under different conditions 

(carbonylative conditions, fully intramolecular protocols, phosphine-free catalytic systems). On 

the other hand, the ruthenium catalyzed cyclization, which is still under investigation, is worth of 

interest as it represents the first hydroamination protocol on allenes employing this metal. 



 

Abbreviations 
and Glossary 

 
AA: aminoacid I.R.: Infra-Red 

Ac.: acetyl L: ligand 

Bn: benzyl LG: leaving group 

Boc: tert-butoxycarbonyl Me: methyl 

i-Bu: iso-butyl min: minute 

t-Bu: tert-butyl m.p.: melting point 

Cat.: catalytic nOe: nuclear Overhauser effect 

Cy: cyclohexyle NMP: N-methylpyrrolidinone 

DCC: dicyclohexylcarbodiimide NMR: Nucelar Magnetic Resonance 

DCM: dichloromethane Ns: Nosyl 

DMAP: 4,4’-dimethylaminopyridine Nu: nucleophile 

DMF: N,N-dimethylformamide PG: protecting group 

dppb: 1,4-bis(diphenylphosphino)butane Ph: phenyl 

dppe: 1,2-bis(diphenylphosphino)ethane PTSA: para-toluenesulfonic acid 

dppf: 1,1’-bis(diphenylphosphino)ferrocene i-Pr: iso-propyl 

d.r.: diastereomeric ratio r.t.: room temperature 

e.e.: enantiomeric excess SES: trimethylsilylethanesulfonyl 

equiv.: equivalent TBAB: tetrabutyl ammonium bromide 

Et: ethyl TBDMS: tert-butyldimetylsilyl 

EWG: electron withdrawing group THF: tetrahydrofuran 

h: hour TLC: thin layer chromatography 

HPLC: High liquid pressure chromatography Ts: tosyl 
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 Experimental Section  

1) First cyclization: behavior of aminoallenes under metal-
free conditions 

 

 

 

 

 

 

General procedure for the preparation of propargylamides 1a-e 

 

 

 

DCC (10 mmol), N-methyl-propargyl amine (8.3 mmol) and DMAP (0.125 mmol) in anhydrous 

CH2Cl2 (60 mL), cooled at 0 °C, were slowly added to a solution of the appropriate Boc-protected 

α-aminoacid (10 mmol). The resulting solution was stirred at r.t. for 48 h, then filtered on a path 

of silica gel. The solvent was evaporated under reduced pressure and the crude residue was 

purified by flash chromatography (light petroleum / AcOEt 7:3). 

 
 

(S)-2-(t-Butoxycarbonylamino)-3-methyl-N-methyl-N-propargylbutanamide (1a) 
 

 
 
Yield: 95%. 
Colorless oil.  
IR (nujol): 3304, 3298, 2119, 1703, 1651 cm-1;  
[α]23

D = +29.5 (c = 0.80, CHCl3); 
Rotamers ratio 2.5:1 
 
1H NMR (400 MHz, CDCl3)  
δ: 0.92 (3H, d, J = 6.6 Hz), 0.99 (3H, d, J = 6.6 Hz), 1.45 (9H, s), 1.90-2.05 (1H, m), 2.24 (1H, d, J = 
2.3 Hz), 2.93 (3H, s), 3.75-3.85 (1H, m), 4.15-4.30 (2H, m), 5.33 (1H, d, J = 8.9 Hz) (major rotamer); 
0.66 (3H, d, J = 6.7 Hz), 0.72 (3H, d, J = 6.7 Hz), 1.18 (9H, s), 1.70-1.80 (1H, m), 2.22 (1H, d, J = 2.3 
Hz), 2.76 (3H, s), 3.75-3.85 (1H, m), 4.15-4.30 (2H, m), 5.33 (1H, d, J = 8.9 Hz) (minor rotamer). 
 
13C NMR (100 MHz, CDCl3)  
δ:17.6 (q), 19.5 (q), 28.5 (q), 31.5 (d), 34.7 (q), 36.7 (t), 55.2 (d), 72.6 (d), 78.5 (s), 79.3 (s), 156.0 
(s), 172.3 (s) (major rotamer);  
17.7 (q), 19.8 (q), 28.5 (q), 31.4 (d), 34.7 (q), 39.5 (t), 55.4 (d), 73.6 (d), 78.5 (s), 79.4 (s), 
155.9 (s), 172.4 (s) (minor rotamer).  
 
MS: m/z 268 (M+). Anal. calcd for C14H24N2O3: C, 62.66; H, 9.01; N, 10.44. Found C, 62.41; H, 9.18; 
N, 10.60. 
 

(S)-2-(t-Butoxycarbonylamino)-4-methyl-N-methyl-N-propargylpentanamide (1b) 
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Yield: 96%. 
Colorless oil.  
IR: 3310, 3282, 2112, 1708, 1649 cm-1. 
[α]23

D = +17.5 (c = 0.69, CHCl3)  
Rotamers ratio 2.5:1. 
 
1H NMR (400 MHz, CDCl3)  
δ: 0.95 (3H, d, J = 6.8 Hz), 1.02 (3H, d, J = 6.8 Hz), 1.34-1.51, (11H, m), 1.70-1.80 (1H, m), 2.24 (1H, 
d, J = 2.5 Hz), 3.16 (3H, s), 4.16 (1H, d, J = 17.2 Hz), 4.26, (1H, d, J = 17.2 Hz), 4.60-4.68 (1H, m), 
5.29 (1H, d, J = 8.0 Hz) (major rotamer);  
0.95 (3H, d, J = 6.8 Hz), 1.02 (3H, d, J = 6.8 Hz), 1.34-1.51 (11H, m), 1.70-1.80 (1H, m), 2.34 (1H, d, J 
= 2.5 Hz), 3.03 (3H, s), 3.99 (1H, d, J = 17.2 Hz), 4.46 (1H, d, J = 17.2 Hz), 4.60-4.68 (1H, m), 5.23 
(1H, d, J = 8.0 Hz) (minor rotamer).  
 
13C NMR (100 MHz, CDCl3)  
δ: 22.1 (q), 23.8 (q), 25.0 (d), 28.7 (q), 34.5 (q), 37.0 (t), 42.8 (t), 49.1 (d), 72.6 (d), 78.6 (s), 79.8 (s), 
156.0 (s), 173.1 (s) (major rotamer);  
22.1 (q), 23.8 (q), 25.0 (d), 28.7 (q), 33.9 (q), 39.6 (t), 42.4 (t), 49.0 (d), 73.6 (d), 78.2 (s), 80.6 (s), 
156.0 (s), 173.1 (s)(minor rotamer).  
 
MS: m/z 282 (M+). Anal. calcd for C15H26N2O3: C, 63.80; H, 9.28; N, 9.92. Found C, 63.51; H, 9.38; N, 
10.10. 

 

 

(S)-2-(t-Butoxycarbonylamino)-N-methyl-3-phenyl-N-propargylpropanamide (1c) 

 

 
 

Yield: 94%. 
Colorless oil.  
IR: 3306, 3295, 2121, 1705, 1650 cm-1  
[α]23

D = +38.8 (c = 0.40, CHCl3)  
Rotamers ratio 3:1  
 
1H NMR (400 MHz, CDCl3)  
δ: 1.43 (9H, s), 2.22 (1H, d, J = 2.4 Hz), 2.73 (3H, s), 2.80-3.20 (2H, m), 4.02 (1H, d, J = 17.2 Hz), 
4.21 (1H, d, J = 17.2 Hz), 4.80-4.85 (1H, m), 5.41 (1H, d, J = 7.9 Hz), 7.19-7.30 (5H, m) (major 
rotamer);  
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1.41 (9H, s), 2.27 (1H, d, J = 2.4 Hz), 2.80-3.20 (5H, m), 3.82 (1H, d, J = 17.2 Hz), 3.97 (1H, d, J = 
17.2 Hz), 4.80-4.85 (1H, m), 5.30-5.40 (1H, m), 7.19-7.30 (5H, m) (minor rotamer).  
 
13C NMR (100 MHz, CDCl3) δ: 28.7 (q), 34.4 (q), 36.9 (t), 40.4 (t), 51.9 (d), 72.6 (d), 78.4 (s), 80.0 (s), 
127.3 (d), 128.8 (d), 129.9 (d), 136.6 (s), 155.4 (s), 171.8 (s) (major rotamer); 
28.7 (q), 33.8 (q), 39.4 (t), 40.0 (t), 51.9 (d), 73.7 (d), 78.4 (s), 80.2 (s), 127.3 (d), 129.0 (d), 129.6 
(d), 136.9 (s), 155.4 (s), 171.8 (s) (minor rotamer).  
 
MS: m/z 316 (M+). Anal. calcd for C18H24N2O3: C, 68.33; H, 7.65; N, 8.85. Found C, 68.42; H, 7.50; N, 
8.89. 
 
 

(S)-2-(t-Butoxycarbonylamino)-N-methyl-2-phenyl-N-propargylacetamide (1d) 
 

 
 
Yield: 97%. 
White solid.  
M. p. 78-80 °C.  
IR: 3306, 3289, 2115, 1710, 1648 cm-1 
[α]23

D = +152.2 (c = 0.94, CHCl3)  
Rotamers ratio 2.7:1  
 
1H NMR (400 MHz, CDCl3)  
δ: 1.43 (9H, s), 2.22 (1H, d, J = 2.5 Hz), 2.95 (3H, s), 4.15-4.40 (2H, m), 5.58 (1H, d, J = 7.9 Hz), 5.97 
(1H, d, J = 7.9 Hz), 7.30-7.40 (5H, m) (major rotamer);  
1.42 (9H, s), 2.22 (1H, d, J = 2.5 Hz), 3.05 (3H, s), 3.82 (1H, d, J = 17.5 Hz), 4.12 (1H, d, J = 17.5 Hz), 
5.60-5.65 (1H, m), 6.00-6.05 (1H, m), 7.30-7.40 (5H, m) (minor rotamer).  
 
13C NMR (100 MHz, CDCl3) δ: 28.7 (q), 34.6 (q), 37.4 (t), 55.7 (d), 72.7 (d), 78.3 (s), 80.1 (s), 128.1 
(d), 128.7 (d), 129.4 (d), 137.9 (s), 155.4 (s), 170.3 (s) (major rotamer);  
28.7 (q), 34.0 (q), 39.3 (t), 55.d (q), 73.8 (d), 78.3 (s), 80.1 (s), 128.1 (d), 128.7 (d), 129.4 (s), 137.9 
(s), 155.4 (s), 170.3 (s) (minor rotamer).  
 
MS: m/z 302 (M+). Anal. calcd for C17H22N2O3: C, 67.53; H, 7.33; N, 9.26. Found C, 67.42; 
H, 7.50; N, 9.47. 
 

 

(S)-2-(t-Butoxycarbonylamino)-N-methyl-N-propargylpropanamide (1e) 
 

 
 
Yield: 96%.  
Colorless oil.  
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IR: 3306, 3291, 2122, 1705, 1649 cm-1 
[α]23

D = +9.7 (c = 1.13, CHCl3) 
Rotamers ratio 2.3:1. 
 
1H- NMR (400 MHz, CDCl3)  
δ: 1.33 (3H, d, J = 7.2 Hz), 1.45 (9H, s), 2.24 (1H, d, J = 2.0 Hz), 3.15 (3H, s), 4.20 (1H, d, J = 17.0 Hz), 
4.37 (1H, d, J = 17.0 Hz), 4.64 (1H, dq, J = 7.2, 7.2 Hz), 5.48 (1H, d, J = 7.2 Hz) (major rotamer);  
1.37 (3H, d, J = 7.2 Hz), 1.45 (9H, s), 2.34 (1H, d, J = 2.0 Hz), 3.04 (3H, s), 3.96 (1H, d, J = 17.0 Hz), 
4.40 (1H, d, J = 17.0 Hz), 4.64 (1H, dq, J = 7.2, 7.2 Hz), 5.41 (1H, d, J = 7.2 Hz) (minor rotamer);  
 
13C NMR (100 MHz, CDCl3)  
δ: 19.1 (q), 28.7 (q), 34.5 (d), 37.1 (t), 46.8 (q), 72.7 (d), 77.8 (s), 79.4 (s), 155.6 (s), 173.1 (s) (major 
rotamer);  
19.5 (q), 28.7 (q), 34.5 (d), 39.5 (t), 46.8 (q), 73.6 (d), 77.8 (s), 79.4 (s), 155.6 (s), 173.1 (s) (minor 
rotamer).  
 
MS: m/z 240 (M+). Anal. calcd for C12H20N2O3: C, 59.98; H, 8.39; N, 11.66. Found C, 60.11; H, 8.22; 
N, 11.43. 
 

 

 

Procedure for the cyclization of 2a: 

 
 
 

Thermal heating: A solution of 2a (100 mg, 0.4 mmol) and t-BuOK (112 mg, 1.0 mmol) in THF (8 

mL) was stirred for 4 h at room temperature. The solution was filtered off through a short silica 

gel path (hexane/AcOEt 4:1 as eluent), and the solvent was evaporated under reduced pressure 

affording 3a (29 mg, 29%) and 4a (32 mg, 32%). 

 

Microwave irradiation: A solution of 2a (100 mg, 0.4 mmol) and t-BuOK (112 mg, 1.0 mmol) in THF 

(5 mL) was heated for 30 min at 50 °C and 250 Watt in a CEM Discover microwave reactor. The 

solution was filtered off through a short silica gel path (hexane/AcOEt 4:1 as eluent), and the 

solvent was evaporated under reduced pressure affording 3a as a colorless oil (95 mg, 95%). 

 
 
(S)-tert-butyl 2-isopropyl-4,6-dimethyl-3-oxo-3,4-dihydropyrazine-1(2H)-carboxylate (3a) 
 

 
 
Yield: 29% (thermal), 95% (MW). 
Colorless oil.  
IR (Nujol): 1684, 1706 cm-1. 

[α]23
D = +103.0 (c = 0.70, CHCl3). 
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1H NMR (400 MHz, CDCl3) 

δ: 0.92 (3H, d, J = 6.7 Hz),0.98 (3H, d, J = 6.7 Hz), 1.47 (9H, s), 1.83 (1H, m), 2.06 (3H, s), 3.02 (3H, 
s), 4.34 (1H, m), 5.47 (1H, s).  
 
13C NMR (100 MHz, CDCl3)  

δ: 18.0 (q), 19.4 (d), 28.3 (q), 28.6 (q), 33.2 (q), 63.8 (d), 81.8 (s), 117.8 (d), 119.7 (s), 153.4 (s), 
166.1 (s).  
 
MS: m/z 268 (M+). Anal. calcd for C14H24N2O3: C, 62.66; H, 9.01; N, 10.44. Found C, 62.51; H, 9.13; 
N, 10.40. 
 
 

(S)-tert-butyl 2-isobutyl-4,6-dimethyl-3-oxo-3,4-dihydropyrazine-1(2H)-carboxylate (3b) 
 

 
 
Yield: 28% (thermal), 89% (MW). 
Colorless oil.  
IR (CH2Cl2): 1681, 1705 cm-1. 

[α]23
D = +203.7 (c = 0.23, CHCl3). 

 
1H NMR (400 MHz, CDCl3) 

δ: 0.95 (3H, d, J = 6.6 Hz),0.99 (3H, d, J = 6.6 Hz), 1.26-1.35 (2H, m) 1.47 (s, 9H), 1.60-1.65 (1H, m), 
2.06 (3H, s), 3.03 (s, 3H), 4.78 (1H, s br), 5.55 (1H, s).  
 
13C NMR (100 MHz, CDCl3)  

δ: 18.0 (q), 19.4 (d), 20.0 (t), 28.3 (q), 28.6 (q), 33.2 (q), 63.8 (d), 81.8 (s), 117.8 (d), 119.7 (s), 153.4 
(s), 166.1 (s).  
 
MS: m/z 282 (M+). Anal. calcd for C15H26N2O3: C, 63.80; H, 9.28; N, 9.82. Found C, 63.76; H, 9.14; 
N, 9.84. 
 
 

(S)-tert-butyl 2-benzyl-4,6-dimethyl-3-oxo-3,4-dihydropyrazine-1(2H)-carboxylate (3c) 
 

 
 

Yield: 36% (thermal), 72% (MW). 
Yellow oil.  
IR (CH2Cl2): 1680, 1708 cm-1. 

[α]23
D = +123.4 (c = 0.87, CHCl3). 
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1H NMR (400 MHz, CDCl3) 

δ: 1.23 (9H, s),2.12 (3H, s br), 2.78 (1H, dd, J = 13.4, 10.9 Hz) 2.93 (1H, dd, J = 13.4, 2.9 Hz), 3.07 
(3H, s), 4.98-5.02 (1H, m), 5.46 (1H, s br), 7.18-7.31 (5H, m) 
  
13C NMR (100 MHz, CDCl3)  

δ: 18.0 (q), 28.2 (q), 33.3 (q), 35.3 (t), 59.9 (d), 81.7 (s), 116.6 (d), 119.3 (s), 127.1 (d), 128.6 (d), 
130.1 (d), 137.1 (s), 152.6 (s), 166.6 (s). 
 
MS: m/z 316 (M+). Anal. calcd for C18H24N2O3: C, 68.33; H, 7.65; N, 8.85. Found C, 68.24; H, 7.59; 
N, 8.99. 
 

 
(S,E)-2-ethylidene-5-isopropyl-3-methyl-1-pivaloylimidazolidin-4-one (4a) 

 

 
 
Yield: 32% (thermal) 
Pale yellow oil.  
IR (Nujol): 1685, 1710 cm-1.  

[α]23
D = +3.7 (c 0.03, CHCl3). 

 
1H NMR (400 MHz, CDCl3)  

δ = 0.89 (3H, d, J = 6.9 Hz), 1.01 (3H, d, J = 6.9 Hz), 1.51 (9H, s), 1.71 (3H, d, J = 7.1 Hz), 2.26 (1H, 
dqq, J = 3.5 Hz, 6.9 Hz, 6.9 Hz), 2.96 (3H, s), 4.26 (1H, d, J = 3.5 Hz), 4.44 (1H, q, 
J = 7.1 Hz).  
 
13C NMR (100 MHz, CDCl3)  

δ: 13.3 (q), 17.3 (q), 19.2 (q), 26.2 (q), 28.6 (q), 32.8 (d), 66.7 (d), 82.3 (s), 89.2 (d), 138.6 (s), 152.7 
(s), 170.5 (s).  
 
MS: m/z 252 (M+). Anal. calcd for C14H24N2O2: C, 66.63; H, 9.59; N, 11.10. Found C, 66.71; H, 9.62; 
N, 11.04. 
 
 

(S,E)-2-ethylidene-5-isobutyl-3-methyl-1-pivaloylimidazolidin-4-one (4b) 
 

 
 

Yield: 9% (thermal) 
Pale yellow oil.  
IR (Nujol): 1683, 1709 cm-1.  

[α]23
D = +13.4 (c 0.05, CHCl3). 

 
1H NMR (400 MHz, CDCl3)  
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δ = 0.97 (3H, d, J = 6.7 Hz), 1.01 (3H, d, J = 6.7 Hz), 1.26-1.35 (2H, m), 1.51 (9H, s), 1.65-1.67 (1H, 
m), 1.73 (3H, d, J = 7.0 Hz), 2.98 (3H, s), 4.28-4.32 (1H, m), 4.48 (1H, q, J = 7.0 Hz).  
 
13C NMR (100 MHz, CDCl3)  

δ: 13.1 (q), 17.2 (t), 17.4 (q), 26.2 (d), 28.6 (q), 29.3 (q), 33.5 (q), 66.7 (d), 82.3 (s), 89.2 (d), 138.6 
(s), 152.7 (s), 170.5 (s).  
 
MS: m/z 266 (M+). Anal. calcd for C15H26N2O2: C, 67.63; H, 9.84; N, 10.52. Found C, 67.70; H, 9.81; 
N, 10.46. 

 
 

(S,E)-5-benzyl-2-ethylidene-3-methyl-1-pivaloylimidazolidin-4-one (4c) 
 

N
N

Me

Me

O

t-Bu

O

 
 

Yield: 8% (thermal) 
Pale yellow oil.  
IR (Nujol): 1688, 1709 cm-1.  

[α]23
D = +10.6 (c 0.04, CHCl3). 

 
1H NMR (400 MHz, CDCl3)  

δ = 1.53 (9H, s), 1.79 (3H, d, J = 7.2 Hz), 2.65-2.81 (2H, m), 3.01 (3H, s), 4.28-4.32 (1H, m), 4.45 (1H, 
q, J = 7.2 Hz), 7.12-7.55 (5H, m). 
 
13C NMR (100 MHz, CDCl3)  

δ: 19.2 (q), 24.5 (t), 26.2 (q), 28.6 (q), 32.8 (q), 66.7 (d), 82.3 (s), 89.2 (d), 127.3 (d), 127.5 (d), 
127.7 (d), 130.4 (s), 138.6 (s), 152.7 (s), 170.5 (s).  
 
MS: m/z 300 (M+). Anal. calcd for C18H24N2O2: C, 71.97; H, 8.05; N, 9.33. Found C, 72.05; H, 8.18; 
N, 9.31. 

 
 

(S)-tert-butyl 2-isobutyl-4-methyl-6-methylene-3-oxopiperazine-1-carboxylate (5b) 
 

 
 

Yield: 25% (thermal). 
Colorless oil.  
IR (CH2Cl2): 1680, 1703 cm-1. 

[α]23
D = +153.7 (c = 0.14, CHCl3). 

 
1H NMR (400 MHz, CDCl3) 
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δ: 0.91 (3H, d, J = 6.6 Hz),0.96 (3H, d, J = 6.6 Hz), 1.47 (s, 9H), 1.50-1.58 (1H, m), 1.90-1.95 (2H, m), 
3.03 (s, 3H), 3.88-3.90 (2H, m), 4.43 (1H, s), 4.59 (1H, s), 4.73-4.77 (1H, m).  
 
13C NMR (100 MHz, CDCl3)  

δ: 18.0 (q), 22.4 (q), 24.8 (d), 28.3 (q), 31.1 (t), 36.2 (q), 62.9 (d), 82.8 (s), 86.8 (d), 142.7 (s), 153.5 
(s), 170.1 (s).  
 
MS: m/z 282 (M+). Anal. calcd for C15H26N2O3: C, 63.80; H, 9.28; N, 9.82. Found C, 63.86; H, 9.15; 
N, 9.86. 

 
 

(S)-tert-butyl 2-benzyl-4-methyl-6-methylene-3-oxopiperazine-1-carboxylate (5c) 
 

 
 

Yield: 27% (thermal). 
Colorless oil.  
IR (CH2Cl2): 1686, 1703 cm-1. 

[α]23
D = +166.4 (c = 0.25, CHCl3). 

 
1H NMR (400 MHz, CDCl3) 

δ: 1.48 (s, 9H), 3.03 (s, 3H), 3.20-3.38 (2H, m), 3.88-3.90 (2H, m), 4.43 (1H, s), 4.60 (1H, s), 4.83-
4.90 (1H, m), 7.29-7.40 (5H, m).  
 
13C NMR (100 MHz, CDCl3)  

δ: 28.3 (q), 35.1 (t), 36.2 (q), 62.9 (d), 82.8 (s), 86.8 (d), 127.2 (d), 127.4 (d), 127.6 (d), 130.1 (s), 
142.7 (s), 153.5 (s), 170.1 (s).  
 
MS: m/z 316 (M+). Anal. calcd for C18H24N2O3: C, 68.33; H, 7.65; N, 8.85. Found C, 68.46; H, 7.65; 
N, 8.86. 

 
 

tert-butyl 1,4-dimethyl-2-oxo-3-phenyl-2,3-dihydro-1H-pyrrol-3-ylcarbamate (6) 
 

 
Yield: 73%.  
Pale yellow oil.  
IR (Nujol): 1697, 1712 cm-1. 
 
1H NMR (400 MHz, CDCl3)  

δ: 1.42 (9H, s), 1.74 (3H, d, J = 1.6 Hz), 3.01 (3H, s), 5.24 (1H, s br, missing after deuteration), 6.24 
(1H, q, J = 1.6 Hz), 7.37 (5H, m).  
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13C NMR (100 MHz, CDCl3):  

δ: 10.9 (q), 24.3 (q), 29.8 (q), 68.1 (s), 80.8 (s), 119.6 (s), 126.2 (d), 129.0 (d), 129.3 (d), 129.5 (d), 
137.5 (s), 154.4 (s), 177.8 (s).  
 
MS: m/z 302 (M+). Anal. calcd for C17H22N2O3: C, 67.53; H, 7.33; N, 9.26. Found C, 67.63; H, 7.28; 
N, 9.34. 
 
 

(2R,5S)-tert-butyl 5-benzyl-2-ethyl-2-hydroxy-3-methyl-4-oxoimidazolidine-1-carboxylate (7) 
 

N
N Me

O

O

O

OH
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t-Bu

 
 

 
Yield: 98%. 
White solid. M.p. 121–122 °C.  
IR (Nujol): 1680, 1709, 3380 cm-1.  

[α]23
D = +7.1 (c = 0.03, CHCl3). 

 
1H NMR (400 MHz, CDCl3) 

δ: 0.93 (3H, X part of ABX3 system, J = 7.5 Hz), 1.00 (3H, d, J = 6.9 Hz), 1.17 (3H, d, J = 6.9 Hz), 1.52 
(9H, s), 2.07 (1H, A part of ABX3 system, J = 14.9 Hz, 7.5 Hz), 2.28 (1H, m), 2.51 (1H, B part of ABX3 
system, J = 14.9 Hz, 7.5 Hz), 2.87 (3H, s), 3.97 (1H, d, J = 4.1 Hz), 4.58 (1H, s br, missing after 
deuteriation).  
 
13C NMR (100 MHz, CDCl3) 

δ: 9.8 (q), 17.5 (q), 20.2 (d), 24.8 (q), 28.7 (q), 30.9 (t), 31.5 (d), 63.6 (d), 82.4 (s), 
100.6 (s), 154.7 (s), 170.6 (s).  
 
MS: m/z 302 (M+). Anal. calcd for C18H26N2O4: C, 64.65; H, 7.84; N, 8.68. Found C, 64.63; H, 7.81; 
N, 8.74. 
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2) Second cyclization: a 5-exo-trig reaction through a 
carbopalladation/allylic amination sequence  

 

 

 

 

 

 

General procedure for the preparation of allenamides 2a-e 

 

 

 

t-BuOK (2.5 mmol) in THF (10 mL) was added to a solution of 3 (1 mmol). The resulting solution 

was stirred at r.t. for 1 min, then filtered on silica gel (AcOEt). The solvent was evaporated under 

reduced pressure and the residue was used without further purification for the next step. 

 
 
 
 
 
 
 
 

(S)-2-(t-Butoxycarbonylamino)-3-methyl-N-methyl-N-(1,2-propadienyl)butanamide (2a) 
 

 
 
Yield: 98%.  
Colorless oil.  
IR: 3301, 1947, 1719, 1648 cm-1  
[α]23

D = +55.4 (c = 0.94, CHCl3)  
Rotamers ratio 1.1:1  
 
1H NMR (400 MHz, CDCl3)  
δ: 0.92 (3H, d, J = 6.8 Hz), 1.00 (3H, d, J = 6.8 Hz), 1.45 (9H, s), 1.90-2.10 (1H, m), 3.14 (3H, s), 4.50-
4.65 (1H, m), 5.25-5.35 (1H, m), 5.43 (2H, d, J = 6.4, Hz), 7.54 (1H, dd, J = 6.4, 6.4 Hz) (major 
rotamer);  
0.90 (3H, d, J = 6.8 Hz), 1.00 (3H, d, J = 6.8 Hz), 1.45, (9H, s), 1.90-2.10 (1H, m), 3.04 (3H, s), 4.50-
4.65 (1H, m), 5.25-5.35 (1H, m), 5.43 (2H, d, J = 6.4 Hz), 6.97 (1H, dd, J = 6.4, 6.4 Hz) (minor 
rotamer);  
 
13C NMR (100 MHz, CDCl3) δ: 17.5 (q), 19.9 (q), 28.8 (q), 31.9 (q), 33.5 (d), 55.7 (d), 80.0 (s), 87.4 
(t), 100.1 (d), 156.2 (s), 171.1 (s), 201.6 (s) (major rotamer);  
17.6 (q), 20.0 (q), 28.8 (q), 31.9 (q), 33.5 (d), 56.1 (d), 80.0 (s), 87.8 (t), 101.3 (d), 156.2 (s), 171.1 
(s), 203.0 (s) (minor rotamer).  
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MS: m/z 268 (M+). Anal. calcd for C14H24N2O3: C, 62.66; H, 9.01; N, 10.44. Found C, 62.37; H, 9.19; 
N, 10.49. 
 
 

(S)-2-(t-Butoxycarbonylamino)-4-methyl-N-methyl-N-(1,2-propadienyl)pentanamide (2b) 
 

 
 
Yield: 92%.  
Yellow oil.  
IR: 3302, 1938, 1709, 1640 cm-1 
[α]23

D = +45.8 (c = 0.72, CHCl3)  
Rotamers ratio 1.1:1.  
 
1H NMR (400 MHz, CDCl3)  
δ: 0.94 (3H, d, J = 6.7 Hz), 1.00 (3H, d, J = 6.7 Hz), 1.44 (9H, s), 1.45-1.55 (2H, m), 1.70-1.80 (1H, m), 
3.11 (3H, s), 4.68-4.78 (1H, m), 5.24-5.26 (1H, m), 5.41 (2H, d, J = 6.4 Hz), 7.49 (1H, dd, J = 6.4, 6.4 
Hz) (major rotamer);  
0.94 (3H, d, J = 6.7 Hz), 1.00 (3H, d, J = 6.7 Hz), 1.44 (9H, s), 1.45-1.55 (2H, m), 1.70-1.80 (1H, m), 
3.11 (3H, s), 4.68-4.78 (1H, m), 5.24-5.26 (1H, m), 5.41 (2H, d, J = 6.4 Hz), 6.93 (1H, dd, J = 6.4, 6.4 
Hz) (minor rotamer).  
 
13C NMR (100 MHz, CDCl3)  
δ: 22.1 (q), 23.7 (q), 25.1 (d), 28.7 (q), 32.0 (q), 43.0 (t), 49.8 (d), 80.0 (s), 87.8 (t), 100.2 (d), 156.0 
(s), 171.9 (s), 202.9 (s) (major rotamer);  
22.1 (q), 23.7 (q), 25.9 (d), 28.7 (q), 33.0 (q), 43.0 (t), 49.4 (d), 80.0 (d), 87.3 (t), 100.9 (d), 155.9 (s), 
171.9 (s), 201.7 (s) (minor rotamer).  
 
MS: m/z 282 (M+). Anal. calcd for C15H26N2O3: C, 63.80; H, 9.28; N, 9.92. Found C, 64.04; H, 9.03; N, 
10.07. 
 
 

(S)-2-(t-Butoxycarbonylamino)-N-methyl-3-phenyl-N-(1,2-propadienyl)propanamide (2c) 
 

 
 
Yield: 95%.  
Yellow oil.  
IR: 3306, 1942, 1701, 1650 cm-1  
[α]23

D = +56.7 (c = 0.63, CHCl3)  
Rotamers ratio 1.4:1  
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1H NMR (400 MHz, CDCl3)  
δ: 1.36 (9H, s), 2.72 (3H, s), 2.90-3.06 (2H, m), 4.83-4.90 (1H, m), 5.30 (2H, d, J = 6.3 Hz), 5.62-5.69 
(1H, m), 7.08-7.35 (5H, m), 7.44 (1H, dd, J = 6.3, 6.3 Hz) (major rotamer);  
1.36 (9H, s), 2.91 (3H, s), 2.90-3.06 (2H, m), 4.90-4.97 (1H, m), 5.25 (2H, d, J = 6.3 Hz), 5.62-5.69 
(1H, m), 6.79 (1H, dd, J = 6.3, 6.3 Hz), 7.08-7.35 (5H, m) (minor rotamer);  
 
13C NMR (100 MHz, CDCl3)  
δ: 28.7 (q), 33.0 (q), 40.2 (t), 52.6 (d), 80.0 (s), 87.6 (t), 100.0 (d), 127.3 (d), 128.8 (d), 129.8 (d), 
136.6 (s), 155.5 (s), 170.6 (s), 202.9 (s) (major rotamer);  
28.7 (q), 32.0 (q), 39.8 (t), 52.2 (d), 80.0 (s), 87.0 (t), 100.9 (d), 127.1 (d), 128.7 (d), 129.8 (d), 136.6 
(s), 155.5 (s), 170.4 (s), 201.7 (s) (minor rotamer).  
 
MS: m/z 316 (M+). Anal. calcd for C18H24N2O3: C, 68.33; H, 7.65; N, 8.85. Found C, 
68.05; H, 7.82; N, 9.09. 
 
 
(S)-2-(t-Butoxycarbonylamino)-N-methyl-2-phenyl-N-(1,2-propadienyl)acetamide (2d) 
 

 
 
Yield: 95%.  
Yellow oil.  
IR: 3306, 1946, 1704, 1644 cm-1  
[α]23

D = +51.3 (c = 0.89, CHCl3) 
Rotamers ratio 1.5:1.  
1H NMR (400 MHz, CDCl3)  
δ: 1.43 (9H, s), 2.91 (3H, s), 5.27-5.42 (2H, m), 5.64 (1H, d, J = 8.0 Hz), 5.95 (1H, d, J = 8.0 Hz), 6.77 
(1H, dd, J = 6.4, 6.4 Hz), 7.25-7.75 (5H, m) (major rotamer);  
1.43 (9H, s), 3.03 (3H, s), 5.27-5.42 (2H, m), 5.70 (1H, d, J = 8.0 Hz), 5.95 (1H, dd, J = 8.0, 8.0 Hz), 
7.25-7.75 (6H, m) (minor rotamer);  
 
13C NMR (100 MHz, CDCl3) δ: 28.7 (q), 33.0 (q), 56.3 (d), 80.3 (s), 88.0 (t), 100.7 (d), 128.1 (d), 
128.8 (d), 129.5 (d), 137.6 (s), 155.4 (s), 168.9 (s), 202.7 (s) (major rotamer);  
28.7 (q), 32.2 (q), 55.8 (d), 80.3 (s), 87.3 (t), 100.2 (d), 128.1 (d), 128.8 (d), 129.5 (d), 137.9 (s), 
154.3 (s), 168.9 (s), 201.6 (s) (minor rotamer).  
 
MS: m/z 302 (M+). Anal. calcd for C17H22N2O3: C, 67.53; H, 7.33; N, 9.26. Found C, 67.49; H, 7.61; N, 
9.42. 
 
 

(S)-2-(t-Butoxycarbonylamino)-N-methyl-N-(1,2-propadienyl)propanamide (2e) 
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Yield: 94%. 
Colorless oil.  
IR: 3306, 1940, 1705, 1649 cm-1 
[α]23

D = +54.5 (c = 1.80, CHCl3)  
Rotamers ratio 1.1:1.  
 
1H NMR (400 MHz, CDCl3)  
δ: 1.37 (3H, d, J = 5.7 Hz), 1.45 (9H, s), 3.11 (3H, s), 4.73 (1H, dq, J = 5.7, 5.7 Hz), 5.40-5.50 (3H, m), 
7.49-7.52 (1H, m) (major rotamer);  
1.35 (3H, d, J = 5.7 Hz), 1.45 (9H, s), 3.04 (3H, s), 4.73 (1H, dq, J = 5.7, 5.7 Hz), 5.40-5.50 (3H, m), 
6.85-6.88 (1H, m) (minor rotamer);  
 
13C NMR (100 MHz, CDCl3)  
δ: 19.4 (q), 28.7 (q), 31.9 (q), 47.3 (d), 79.9 (s), 87.8 (t), 100.1 (d), 155.5 (s), 171.5 (s), 201.6 (s) 
(major rotamer);  
19.2 (q), 28.7 (q), 33.0 (q), 46.9 (d), 79.9 (s), 87.3 (t), 100.9 (d), 155.5 (s), 171.5 (s), 202.8 (s) (minor 
rotamer). 
 
MS: m/z 240 (M+). Anal. calcd for C12H20N2O3: C, 59.98; H, 8.39; N, 11.66. Found C, 60.17; H, 8.12; 
N, 11.50. 
 

 

 

 

 

General procedure for the carbopalladation/amination of allenamides 2a-e: synthesis of 

imidazolidinones 8a-e and 9a-e 

 
 
 
K2CO3 (4 mmol), iodobenzene (1.5 mmol) and Pd(PPh3)4 (2%) in DMF (10 mL) were added to a 

solution of 2 (1 mmol). The resulting solution was heated at 100 °C for 2 h, then was cooled, 

diluted with brine and extracted with AcOEt (3 x 20 mL). The resulting crude was purified by flash 

chromatography to afford the desired products 8 and 9. 

 
 

(2R,5S)-(t-Butoxycarbonylamino)-5-isopropyl-3-methyl-2-(1-phenylvinyl)-2,3-

dihydroimidazolidin-4(5H)-one (8a) 
 

 
 
Yield: 55%.  
Colorless oil.  
IR: 1708, 1671 cm-1 
[α]23

D = +4.9 (c = 0.35, CHCl3)  
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1H NMR (400 MHz, CDCl3)  
δ: 0.72 (3H, d, J = 6.9 Hz), 0.77 (3H, d, J = 6.9 Hz), 1.43 (9H, s), 2.00-2.20 (1H, m), 2.85 (3H, s), 3.76-
3.78 (1H, m), 5.37-5.51 (3H, m), 7.12-7.29 (5H, m). 
13C NMR (100 MHz, CDCl3) δ: 18.5 (q), 20.4 (q), 27.6 (q), 28.6 (q), 32.4 (d), 64.3 (d), 78.8 (d), 81.7 
(s), 120.7 (t), 128.3 (d), 128.5 (d), 128.7 (d), 138.6 (s), 146.3 (s), 155.1 (d), 170.8 (d).  
 
MS: m/z 344 (M+). Anal. calcd for C20H28N2O3: C, 69.74; H, 8.19; N, 8.13. Found C, 69.53; H, 8.28; N, 
8.11. 
 
 

(2S,5S)-(t-Butoxycarbonylamino)-5-isopropyl-3-methyl-2-(1-phenylvinyl)-2,3-

dihydroimidazolidin-4(5H)-one (9a)  
 

 
 
Yield: 16%.  
Yellow oil.  
IR: 1710, 1658 cm-1  
[α]23

D = +33.7 (c = 0.81, CHCl3).  
Rotamers ratio 1.1:1.  
 
1H NMR (400 MHz, CDCl3)  
δ: 0.86 (3H, d, J = 6.9 Hz), 1.14 (3H, d, J = 6.9 Hz), 1.41 (9H, s), 2.60-2.78 (1H, m), 2.90 (3H, s), 3.91-
3.94 (1H, m), 5.44-5.54 (3H, m), 7.12-7.33 (5H, m) (major rotamer);  
0.86 (3H, d, J = 6.9 Hz), 1.11 (3H, d, J = 6.9 Hz), 1.33 (9H, s), 2.25-2.50 (1H, m), 2.80 (3H, s), 3.64-
3.68 (1H, m), 5.44-5.54 (3H, m), 7.12-7.33 (5H, m) (minor rotamer).  
 
13C NMR (100 MHz, CDCl3)  
δ: 16.4 (q), 18.4 (q), 26.7 (q), 28.6 (q), 28.8 (d), 63.6 (d), 79.1 (d), 81.1 (s), 120.7 (t), 121.2 (d), 
127.6 (d), 128.4 (d), 137.5 (s), 145.3 (s), 152.3 (s), 169.5 (s) (major rotamer);  
16.6 (q), 18.5 (q), 28.5 (q), 28.6 (q), 31.1 (d), 63.7 (d), 79.4 (d), 81.7 (s), 121.2 (t), 128.0 (d), 
128.7 (d), 129.1 (d), 137.5 (s), 146.1 (s), 152.3 (s), 169.8 (s) (minor rotamer).  
 
MS: m/z 344 (M+). Anal. calcd for C20H28N2O3: C, 69.74; H, 8.19; N, 8.13. Found C, 69.81; H, 7.93; N, 
8.28. 
 
 
(2R,5S)-(t-Butoxycarbonylamino)-3,5-dimethyl-2-(1-phenylvinyl)-2,3-dihydroimidazolidin-4(5H)-

one (8b) 
 

 
 
Yield: 65%.  
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Yellow oil.  
IR: 1703, 1664 cm-1;  
[α]23

D = +10.4 (c = 0.46, CHCl3)  
 
1H NMR (400 MHz, CDCl3)  
δ: 0.84 (3H, d, J = 6.7 Hz), 1.47 (9H, s), 2.90 (3H, s), 3.99-4.03 (1H, m), 5.41 (1H, s), 5.49 (1H, s), 
5.52 (1H, s) 7.08-7.11 (2H, m), 7.28-7.30 (3H, m)  
 
13C NMR (100 MHz, CDCl3) 
δ: 17.2 (q), 27.0 (q), 28.6 (q), 55.2 (d), 79.2 (d), 81.3 (s), 120.7 (t), 128.3 (d), 128.5 (d), 128.7 (d), 
138.2 (s), 146.2 (s), 153.4 (s), 171.3 (s).  
 
MS: m/z 316 (M+). Anal. calcd for C18H24N2O3: C, 68.33; H, 7.65; N, 8.85. Found C, 68.45; H, 7.51; N, 
9.09. 
 
 
(2S,5S)-(t-Butoxycarbonylamino)-3,5-dimethyl-2-(1-phenylvinyl)-2,3-dihydroimidazolidin-4(5H)-

one (9b) 
 

 
 
Yield: 12%.  
Pale yellow oil.  
IR: 1710, 1658 cm-1  
[α]23

D = +41.1 (c = 0.25, CHCl3). 
Rotamers ratio: 1.2:1  
 
1H NMR (400 MHz, CDCl3)  
δ: 1.35-1.55 (12 H, m), 2.93 (3H, s), 3.50-3.60 (1H, m), 5.45-5.56 (3H, m), 7.09-7.33 (5H, m) (major 
rotamer);  
1.35-1.55 (12H, m), 2.85 (3H, s), 3.70-3.90 (1H, m), 5.45-5.56 (3H, m), 7.09-7.33 (5H, m) (minor 
rotamer).  
 
13C NMR (100 MHz, CDCl3)  
δ: 18.3 (q), 27.1 (q), 28.7 (q), 55.0 (d), 78.8 (d), 81.2 (s), 121.3 (t), 127.8 (d), 128.5 (d), 128.8 (d), 
137.8 (s), 145.1 (s), 152.6 (s), 171.6 (s) (major rotamer);  
17.1 (q), 27.1 (q), 28.7 (q), 55.0 (d), 78.8 (d), 81.6 (s), 120.9 (t), 128.2 (d), 128.7 (d), 129.1 (d), 
137.6 (s), 146.0 (s), 152.3 (s), 171.5 (s) (minor rotamer).  
 
MS: m/z 316 (M+). Anal. calcd for C18H24N2O3: C, 68.33; H, 7.65; N, 8.85. Found C, 68.02; H, 7.89; N, 
8.68. 
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(2R,5S)-(t-Butoxycarbonylamino)-5-isobutyl-3-methyl-2-(1-phenylvinyl)-2,3-

dihydroimidazolidin-4(5H)-one (8c) 
 

 
Yield: 54%.  
Pale yellow oil.  
IR: 1702, 1653 cm-1 
[α]23

D = +11.3 (c = 1.13, CHCl3). 
 
1H NMR (400 MHz, CDCl3)  
δ: 0.70-0.95 (8H, m), 1.49 (9H, s), 1.81-1.86 (1H, m), 2.90 (3H, s), 3.95-4.05 (1H, m), 5.40 (1H, s), 
5.49-5.55 (2H, m), 7.07-7.09 (2H, m), 7.31-7.33 (3H, m).  
 
13C NMR (100 MHz, CDCl3) 
δ: 22.3 (q), 23.4 (d), 24.6 (q), 27.2 (q), 28.7 (q), 43.2 (t), 57.0 (d), 79.2 (d), 81.5 (s), 120.9 (t), 128.4 
(d), 128.5 (d), 129.0 (d), 138.1 (s), 145.9 (s), 153.8 (s), 171.4 (s). 
 
MS: m/z 358 (M+). Anal. calcd for C21H30N2O3: C, 70.36; H, 8.44; N, 7.81. Found C, 70.51; H, 8.32; N, 
8.02. 
 
 
(2S,5S)-(t-Butoxycarbonylamino)-5-isobutyl-3-methyl-2-(1-phenylvinyl)-2,3-dihydroimidazolidin-

4(5H)-one (9c) 
 

 
 
Yield: 17%.  
Colorless oil.  
IR: 1710, 1658 cm-1  
[α]23

D = +50.9 (c = 0.44, CHCl3). 
Rotamers ratio 1.3:1  
 
1H NMR (400 MHz, CDCl3)  
δ: 0.82-0.94 (6H, m), 1.05-2.03 (12H, m), 2.90 (3H, s), 3.60-3.65 (1H, m), 5.44-5.54 (3H, m), 7.09-
7.16 (2H, m), 7.25-7.29 (3H, m) (major rotamer);  
0.82-0.94 (6H, m), 1.05-2.03 (12H, m), 2.82 (3H, s), 3.90-3.93 (1H, m), 5.44-5.54 (3H, m), 7.09-7.16 
(2H, m), 7.25-7.29 (3H, m) (minor rotamer).  
 
13C NMR (100 MHz, CDCl3) δ: 22.6 (q), 23.3 (d), 24.2 (q), 24.6 (q), 27.0 (q), 39.8 (t), 58.0 (d), 79.0 
(d), 81.2 (s), 121.2 (t), 127.6 (d), 128.4 (d), 129.0 (d), 137.9 (s), 146.0 (s), 152.4 (s), 171.9 (s) (major 
rotamer);  
23.1 (q), 23.8 (d), 24.4 (q), 25.1 (q), 27.0 (q), 38.0 (t), 57.9 (d), 79.0 (d), 81.2 (s), 120.8 (t), 128.1 (d), 
128.7 (d), 129.0 (d), 137.6 (s), 145.2 (s), 152.0 (s), 171.9 (s) (minor rotamer).  
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MS: m/z 358 (M+). Anal. calcd for C21H30N2O3: C, 70.36; H, 8.44; N, 7.81. Found C, 70.54; H, 8.20; 
N, 8.04. 
 
 
(2R,5S)-5-Benzyl-(t-butoxycarbonylamino)-3-methyl-2-(1-phenylvinyl)-2,3-dihydroimidazolidin-

4(5H)-one (8d) 
 

 
Yield: 50%.  
Colorless oil.  
IR: 1711, 1650 cm-1 
[α]23

D = -5.2 (c = 0.85, CHCl3).  
 
1H NMR (400 MHz, CDCl3)  
δ: 1.38 (9H, s), 2.30-2.40 (2H, m), 2.90 (3H, s), 4.20-4.25 (1H, m), 5.00-5.50 (2H, m), 5.55 (1H, s), 
7.08-7.38 (10H, m).  
 
13C NMR (100 MHz, CDCl3)  
δ: 27.3 (q), 28.6 (q), 38.8 (t), 60.6 (d), 78.5 (d), 81.8 (s), 120.8 (t), 126.8 (d), 128.6 (d), 130.1 (d), 
138.1 (s), 138.7 (s), 145.7 (s), 153.9 (s), 170.2 (s).  
 
MS: m/z 392 (M+). Anal. calcd for C24H28N2O3: C, 73.44; H, 7.19; N, 7.14. Found 
C, 73.61; H, 7.02; N, 6.86. 
 
 
(2S,5S)-5-Benzyl-(t-butoxycarbonylamino)-3-methyl-2-(1-phenylvinyl)-2,3-dihydroimidazolidin-

4(5H)-one (9d) 
 

 
 
Yield: 19%.  
Yellow oil.  
IR: 1710, 1658 cm-1  
[α]23

D = +101.6 (c = 0.42, CHCl3). 
Rotamers ratio 1.5:1  
 
1H NMR (400 MHz, CDCl3)  
δ: 1.47 (9H, s), 2.60 (3H, s), 3.13-3.15 (1H, m), 3.68-3.70 (1H, m), 4.22-4.24 (1H, m), 4.65 (1H, s), 
5.24 (1H, d, J = 1.6 Hz) 5.43 (1H, d, J = 1.6 Hz), 7.05-7.30 (10H, m) (major rotamer); 
1.45 (9H, s), 2.60 (3H, s), 3.13-3.15 (1H, m), 3.25-3.30 (1H, m), 4.00-4.04 (1H, m), 4.68 (1H, s), 5.24 
(1H, d, J = 1.6 Hz) 5.43 (1H, d, J = 1.6 Hz), 7.05-7.30 (10H, m). 
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13C NMR (100 MHz, CDCl3) δ: 26.7 (q), 28.8 (q), 34.5 (t), 60.4 (d), 79.0 (d), 81.6 (s), 120.9 (t), 127.2 
(d), 127.7 (d), 128.3 (d), 128.6 (d), 129.0 (d), 130.3 (d), 136.5 (s), 137.6 (s), 145.6 (s), 152.3 (s), 
169.8 (s) (major rotamer);  
26.7 (q), 28.7 (q), 36.3 (t), 60.6 (d), 79.0 (d), 121.0 (t), 127.3 (d), 128.1 (d), 128.5 (d), 128.7 (d) 
129.7 (d), 130.2 (s), 136.0 (s), 137.9 (s), 145.1 (s), 152.0 (s), 169.8 (s) (minor rotamer). 
 
MS: m/z 392 (M+). Anal. calcd for C24H28N2O3: C, 73.44; H, 7.19; N, 7.14. Found C, 73.56; H, 7.36; N, 
7.03. 
 
 
(2R,5S)-(t-Butoxycarbonylamino)-3-methyl-5-phenyl-2-(1-phenylvinyl)-2,3-dihydroimidazolidin-

4(5H)-one (8e) 
 

 
 
Yield: 52%.  
Yellow oil.  
IR: 1706, 1649 cm-1;  
[α]23

D = +66.5 (c = 1.20, CHCl3).  
 
1H NMR (400 MHz, CDCl3)  
δ: 1.31 (9H, br s), 2.99 (3H, s), 5.11 (1H, br s), 5.51 (1H, s), 5.52-5.66 (2H, m), 7.02-7.37 (10H, m).  
 
13C NMR (100 MHz, CDCl3) δ: 27.6 (q), 28.4 (q), 62.9 (d), 79.0 (d), 81.2 (s), 121.4 (t), 127.2 (d), 
127.5 (d), 128.0 (d), 128.4 (d), 128.7 (d), 129.4 (d), 136.7 (s), 138.5 (s), 146.3 (s), 154.1 (s), 168.9 
(s).  
 
MS: m/z 378 (M+). Anal. calcd for C23H26N2O3: C,72.99; H, 6.92; N, 7.40. Found C, 73.06; H, 7.07; N, 
7.13. 
 
 
(2S,5S)-(t-Butoxycarbonylamino)-3-methyl-5-phenyl-2-(1-phenylvinyl)-2,3-dihydroimidazolidin-

4(5H)-one (9e) 
 

 
 
Yield: 20%.  
Yellow solid. M. p. 155-157 °C.  
IR: 1703, 1646 cm-1  
[α]23

D = +207.5 (c = 0.26, CHCl3).  
Rotamers ratio 3:1  
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1H NMR (400 MHz, CDCl3)  
δ: 1.08 (9H, s), 2.97 (3H, s), 4.53 (1H, s), 5.57 (1H, s), 5.67 (1H, s), 5.84 (1H, s), 7.20-7.37 (10H, m) 
(major rotamer);  
1.40 (9H, s), 2.88 (3H, s), 4.86 (1H, s), 5.57 (1H, s), 5.67 (1H, s), 5.84 (1H, s), 7.20-7.37 (10H, m) 
(minor rotamer). 
 
13C NMR (100 MHz, CDCl3)  
δ: 27.4 (q), 28.2 (q), 63.5 (d), 79.4 (d), 81.2 (s), 121.9 (t), 126.6 (d), 127.0 (d), 127.8. (d), 128.4 (d), 
128.6 (d), 128.9 (d), 137.8 (s), 138.9 (s), 145.1 (s), 152.3 (s), 169.3 (s) (major rotamer);  
27.4 (q), 28.6 (q), 63.2 (d), 79.4 (d), 81.2 (s), 121.4 (t), 126.6 (d), 127.0 (d), 127.8 (d), 128.4 (d), 
128.6 (d),128.9 (d), 137.8 (s), 138.9 (s), 145.1 (s), 152.3 (s), 169.3 (s).  
 
MS: m/z 378 (M+). Anal. calcd for C23H26N2O3: C, 72.99; H, 6.92; N, 7.40. Found C, 73.18; H, 6.71; N, 
7.61. 

 

 

 

General procedure for the preparation of enones 10a-e and 11 

 
 
 
Pd(PPh3)4 (2%), iodobenzene (1.5 mmol) and K2CO3 (4 mmol) were added to a solution of 2 (1 

mmol) in DMF (10 mL) under CO atmosphere (balloon). The suspension was stirred at 60 °C for 4 

h, then cooled, diluted with brine and extracted with AcOEt (3 x 20 mL). The organic phase was 

dried over Na2SO4 and the solvent evaporated under reduced pressure. The crude mixture was 

purified by flash chromatography to afford 10a-e and, in the case of compound 2a, also 11. 

 

 

(2S,5S)-(t-Butoxycarbonylamino)-5-isopropyl-3-methyl-2-[(1-phenyl)-2-propen-1-on-2-yl]-2,3-

dihydroimidazolidin-4(5H)-one (10a) 
 

N
N

O

Me

i-Pr

O

O
t-Bu O

 
 
Yield: 52%.  
Pale yellow solid. M. p. 130-132 °C.  
IR: 1701, 1675, 1644 cm-1 
[α]23

D = +113.4 (c = 0.28, CHCl3).  
Rotamers ratio 3:1  
 
1H NMR (400 MHz, CDCl3) 
δ: 0.91 (3H, d, J = 7.2 Hz), 1.18 (3H, d, J = 7.2 Hz), 1.38 (9H, s), 2.40-2.50 (1H, m), 2.88 (3H, s), 4.08-
4.10 (1H, m), 5.69 (1H, s), 5.85 (1H, d, J = 4.2 Hz), 6.02 (1H, d, J = 4.2 Hz), 7.42-7.85 (5H, m) (major 
rotamer);  
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0.88 (3H, d, J = 7.2 Hz), 1.21 (3H, d, J = 7.2 Hz), 1.31 (9H, s), 2.40-2.50 (1H, m), 2.82 (3H, s), 4.20-
4.30 (1H, m), 5.68 (1H, s), 5.85 (1H, d, J = 4.2 Hz), 6.02 (1H, d, J = 4.2 Hz), 7.42-7.85 (5H, m) (minor 
rotamer).  
 
13C NMR (100 MHz, CDCl3) δ: 16.7 (q), 18.4 (d), 18.6 (q), 28.5 (q), 31.0 (q), 63.8 (d), 75.3 (d), 81.5 
(s), 128.0 (t), 128.5 (d), 128.8 (d), 130.3 (d), 137.2 (s), 144.5 (s), 153.0 (s), 170.1 (s), 196.3 (s) 
(major rotamer);  
16.1 (q), 18.4 (d), 18.6 (q), 28.5 (q), 31.0 (q), 63.5 (d), 72.5 (d), 82.2 (s), 128.0 (t), 128.5 (d), 128.8 
(d), 130.3 (d), 136.6 (s), 144.4 (s), 153.2 (s), 169.7 (s), 195.2 (s) (minor rotamer).  
 
MS: m/z 372 (M+). Anal. calcd for C21H28N2O4: C, 67.72; H, 7.58; N, 7.52. Found C, 67.74; 
H, 7.36; N, 7.83. 
 

 

(2S,5S)-(t-Butoxycarbonylamino)-3,5-dimethyl-2-[(1-phenyl)-2-propen-1-on-2-yl]-2,3-

dihydroimidazolidin-4(5H)-one (10b) 
 

N
N

O

Me

Me

O

O
t-Bu O

 
 
Yield: 42%.  
Pale yellow oil.  
IR: 1703, 1670, 1646 cm-1 
[α]23

D = +153.5 (c = 0.31, CHCl3).  
Rotamers ratio 3:1 
 
1H NMR (400 MHz, CDCl3)  
δ: 1.24 (3H, d, J = 6.3 Hz), 1.37 (9H, s), 2.83 (3H, s), 4.07-4.13 (1H, m), 5.67 (1H, s), 5.84 (1H, s), 
6.06 (1H, s), 7.28-7.82 (5H, m) (major rotamer);  
1.22 (3H, d, J = 6.3 Hz), 1.30 (9H, s), 2.79 (3H, s), 4.15-4.22 (1H, m), 5.67 (1H, s), 5.81 (1H, s), 6.04 
(1H, s), 7.28-7.82 (5H, m) (minor rotamer).  
 
13C NMR (100 MHz, CDCl3) 
δ: 18.3 (q), 26.0 (q), 27.1 (q), 55.0 (d), 75.2 (d), 81.5 (s), 128.6 (t), 128.7 (d), 130.1 (d), 133.2 (d), 
137.3 (s), 143.8 (s), 153.0 (s), 171.9 (s), 196.5 (s) (major rotamer);  
17.3 (q), 26.0 (q), 27.1 (q), 55.2 (d), 72.9 (d), 82.1 (s), 128.6 (t), 128.8 (d), 130.3 (d), 133.6 (d), 
136.6 (s), 143.8 (s), 153.0 (s), 171.9 (s), 196.5 (s) (minor rotamer).  
 
MS: m/z 344 (M+). Anal. calcd for C19H24N2O4: C, 66.26; H, 7.02; N, 8.13. Found C, 
66.16; H, 6.76; N, 8.35. 
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(2S,5S)-(t-Butoxycarbonylamino)-5-isobutyl-3-methyl-2-[(1-phenyl)-2-propen-1-on-2-yl]-2,3-

dihydroimidazolidin-4(5H)-one (10c) 
 

N
N

O

Me

i-Bu

O

O
t-Bu O

 
 
Yield: 38%. Pale yellow oil.  
IR: 1700, 1673, 1648 cm-1  
[α]23

D = +93.7 (c = 0.31, CHCl3).  
Rotamers ratio 3:1  
 
1H NMR (400 MHz, CDCl3)  
δ: 0.79 (3H, d, J = 5.6 Hz), 1.09 (3H, d, J = 5.6 Hz), 1.37 (9H, s), 1.81-2.03 (3H, m), 2.82 (3H, s), 4.10-
4.20 (1H, m), 5.64 (1H, s), 5.84 (1H, s), 6.04 (1H, s), 7.28-7.56 (3H, m), 7.81-7.83 (2H, m) (major 
rotamer);  
0.79 (3H, d, J = 5.6 Hz), 1.09 (3H, d, J = 5.6 Hz), 1.29 (9H, s), 2.40-2.50 (3H, m), 2.79 (3H, s), 4.27-
4.30 (1H, m), 5.64 (1H, s), 5.81 (1H, s), 6.01 (1H, s), 7.28-7.56 (3H, m), 7.81-7.83 (2H, m) (minor 
rotamer).  
 
13C NMR (100 MHz, CDCl3) δ: 23.1 (q), 24.2 (q), 26.9 (d), 28.7 (q), 40.1 (t), 57.9 (d), 75.2 (d), 81.5 
(s), 128.3 (t), 128.5 (d), 130.2 (d), 133.2 (d), 137.3 (s), 144.1 (s), 153.0 (s), 171.6 (s), 196.5 (s) 
(major rotamer); 
22.6 (q), 23.9 (q), 26.9 (d), 28.6 (q), 38.1 (t), 56.9 (d), 72.8 (d), 81.8 (s), 128.0 (t), 128.5 (d), 128.8 
(d), 130.3 (d), 133.6 (s), 144.4 (s), 153.0 (s), 171.6 (s), 196.5 (s) (minor rotamer).  
 
MS: m/z 386 (M+). Anal. calcd for C22H30N2O4: C, 68.37; H, 7.82; N, 7.25. Found C, 68.56; H, 7.66; N, 
7.43. 
 

 
(2S,5S)-5-Benzyl-(t-butoxycarbonylamino)-3-methyl-2-[(1-phenyl)-2-propen-1-on-2-yl]-2,3-

dihydroimidazolidin-4(5H)-one (10d) 
 

N
N

O

Me

Bn

O

O
t-Bu O

 
 
Yield: 40%.  
Pale yellow oil.  
IR: 1702, 1678, 1646 cm-1  
[α]23

D = +78.7 (c = 0.46, CHCl3).  
Rotamers ratio 3:1  
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1H NMR (400 MHz, CDCl3)  
δ: 1.48 (9H, s), 2.58 (3H, s), 3.19-3.23 (1H, m), 3.42-3.48 (1H, m), 4.46-4.60 (1H, m), 4.85 (1H, s), 
5.77-5.97 (2H, m), 7.13-7.81 (10H, m) (major rotamer);  
1.34 (9H, s), 2.57 (3H, s), 3.19-3.23 (1H, m), 3.69-3.75 (1H, m), 4.46-4.60 (1H, m), 5.02 (1H, s), 
5.77-5.97 (2H, m), 7.13-7.81 (10H, m) (minor rotamer).  
 
13C NMR (100 MHz, CDCl3)  
δ: 24.2 (q), 28.7 (q), 36.3 (t), 60.6 (d), 75.2 (d), 81.9 (s), 127.3 (t), 128.1 (d), 128.5 (d), 128.8 (d), 
130.2 (d), 130.4 (d), 133.2 (d), 136.1 (s), 137.2 (s), 144.0 (s), 152.7 (s), 170.1 (s), 196.3 (s) (major 
rotamer);  
24.2 (q), 28.5 (q), 34.6 (t), 60.4 (d), 72.9 (d), 82.2 (s), 127.3 (t), 128.1 (d), 128.6 (d), 128.7 
(d), 130.1 (d), 130.3 (d), 133.6 (d), 136.2 (s), 137.2 (s), 144.0 (s), 152.0 (s), 170.0 (d), 195.1 (d) 
(minor rotamer).  
 
MS: m/z 420 (M+). Anal. calcd for C25H28N2O4: C, 71.41; H, 6.71; N, 6.66. Found C, 71.56; 
H, 6.46; N, 6.43. 
 
 

(2S,5S)-(t-Butoxycarbonylamino)-3-methyl-5-phenyl-2-[(1-phenyl)-2-propen-1-on-2-yl]-2,3-

dihydroimidazolidin-4(5H)-one (10e) 
 

N
N

O

Me

Ph

O

O
t-Bu O

 
 
Yield: 67%.  
Pale yellow solid. M. p.: 182-184 °C.  
IR: 1708, 1673, 1656 cm-1 
[α]23

D = +131.5 (c = 0.80, CHCl3).  
Rotamers ratio 3:1  
 
1H NMR (400 MHz, CDCl3) 
δ: 0.95 (9H, s), 2.76 (3H, s), 4.89 (1H, s), 5.91 (1H, s), 6.04 (1H, s), 6.37 (1H, s), 7.28-7.80 (10H, m) 
(major rotamer);  
1.26 (9H, s), 2.70 (3H, s), 5.02 (1H, s), 5.75 (1H, s), 6.14 (1H, s), 6.47 (1H, s), 7.28-7.80 (10H, m) 
(minor rotamer).  
 
13C NMR (100 MHz, CDCl3) δ: 27.3 (q), 28.3 (q), 63.7 (d), 77.1 (d), 81.6 (s), 128.4 (d), 128.7 (d), 
128.9 (d), 129.2 (d), 129.6 (t) 130.3 (d), 133.4 (d), 137.5 (s), 138.9 (s), 143.4 (s), 157.8 (s), 169.8 (s), 
196.7 (s) (major rotamer); too weak signals for the minor rotamer.  
 
MS: m/z 406 (M+). Anal. calcd for C24H26N2O4: C, 70.92; H, 6.45; N, 6.89. Found C, 70.66; H, 6.66; N, 
6.73. 
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(2S,5R)-(t-Butoxycarbonylamino)-3,5-dimethyl-2-[(1-phenyl)-2-propen-1-on-2-yl]-2,3-

dihydroimidazolidin-4(5H)-one (11) 
 

N
N

O

Me

i-Pr

O

O
t-Bu O

 
 
Yield: 7%.  
Pale yellow oil.  
IR: 1701, 1683, 1657 cm-1  
[α]23

D = -30.4 (c = 0.28, CHCl3).  
 
1H NMR (400 MHz, CDCl3)  
δ: 1.10 (6H, d, J = 6.8 Hz), 1.38 (9H, s), 2.18-2.25 (1H, m), 2.86 (3H, s), 4.00-4.10 (1H, m), 5.76 (1H, 
s), 5.85 (1H, s), 5.91 (1H, s), 7.28-7.90 (5H, m). 
 
13C NMR (100 MHz, CDCl3)  
δ: 16.8 (q), 18.5 (d), 18.7 (q), 28.6 (q), 31.0 (q), 63.9 (d), 75.5 (d), 81.2 (s), 128.0 (t), 128.5 (d), 
128.8 (d), 130.1 (d), 137.2 (s), 144.6 (s), 153.0 (s), 170.2 (s), 196.3 (s).  
 
MS: m/z 372 (M+). Anal. calcd for C21H28N2O4: C, 67.72; H, 7.58; N, 7.52. Found C, 67.88; H, 7.41; N, 
7.97. 
 

 

 

 

 

 

 

 

 

 

General procedure for the preparation of propargylamides 13a-c 

 

 

 

DCC (10 mmol), 12
106 (8.3 mmol) and DMAP (0.125 mmol) were slowly added to a solution of the 

appropriate Boc-protected α-aminoacid (10 mmol) in anhydrous CH2Cl2 (60 mL) cooled at 0 °C. 

The resulting solution was stirred at r.t. for 48 h, then filtered on silica gel and the solvent was 

evaporated under reduced pressure. The crude residue was purified by flash chromatography 

(EtPe / AcOEt 8:2). 

 

 

 

                                                           
106

 L. Shen, R. P. Hsung, Org. Lett. 2005, 7, 775. 
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(S)-2-(t-Butoxycarbonylamino)-N-(2-iodobenzyl)-3-methy-N-propargylbutanamide (13a) 
 

 
 
Yield: 90%.  
Colorless oil.  
IR: 2924, 1659 cm-1  
[α]23

D = -3.7 (c = 0.25, CHCl3).  
Rotamers ratio 3:2  
 
1H NMR (400 MHz, CDCl3)  
δ: 0.93 (3H, d, J = 6.8 Hz), 0.96 (3H, d, J = 6.8 Hz), 1.42 (9H, s), 1.92-2.01 (1H, m), 2.31 (1H, dd, J = 
2.1, 2.2 Hz), 3.79-3.91 (1H, m), 4.38-4.46 (1H, m), 4.51, 4.87 (2H, AB system, J = 15.9 Hz), 4.54-4.62 
(1H, m), 5.22-5.34 (1H, m), 6.92 (1H, dd, J = 7.4, 7.7 Hz), 7.06 (1H, d, J = 7.7 Hz), 7.22 (1H, dd, J = 
7.4, 7.6 Hz), 7.79 (1H, d, J = 7.6 Hz) (major rotamer);  
0.88 (3H, d, J = 6.8 Hz), 1.00 (3H, d, J = 6.8 Hz), 1.37 (9H, s), 2.04-2.13 (1H, m), 2.21 (1H, br s), 3.79-
3.91 (1H, m), 4.38-4.46 (2H, m), 4.68, 4.71 (2H, AB system, J = 17.1 Hz), 5.22-5.34 (1H, m), 6.97 
(1H, dd, J = 7.5, 7.7 Hz), 7.06 (1H, d, J = 7.7 Hz), 7.29 (1H, dd, J = 7.5 , 7.9 Hz), 7.83 (1H, d, J = 7.9 
Hz) (minor rotamer).  
 
13CNMR (100 MHz, CDCl3) δ: 17.8 (q), 19.8 (q), 28.3 (q), 31.2 (d), 37.2 (t), 53.7 (t), 55.6 (d), 73.3 (d), 
78.3 (s), 79.8 (s), 98.7 (s), 128.0 (d), 128.5 (d), 129.1 (d), 138.2 (s), 139.6 (d), 156.0 (s), 173.0 (s) 
(major rotamer);  
17.8 (q), 19.6 (q), 28.3 (q), 31.5 (d), 34.6 (t), 55.4 (d), 55.5 (t), 72.4 (d), 78.2 (s), 79.5 (s), 98.0 (s), 
127.5 (d), 128.6 (d), 129.6 (d), 137.3 (s), 140.0 (d), 155.5 (s), 172.8 (s) (minor rotamer). 
 
MS: m/z 470 (M+). Anal. calcd for C20H27IN2O3: C, 51.07; H, 5.79; N, 5.96. Found C, 51.18; H, 5.51; 
N, 6.08. 

 

 

(S)-2-(t-Butoxycarbonylamino)-N-(2-iodobenzyl)-4-methyl-N-propargylpentanamide (13b) 
 

 
 
Yield: 81%.  
Colorless oil.  
IR: 2926, 1655 cm-1 
[α]23

D = -3.2 (c = 0.29, CHCl3).  
Rotamers ratio 3:2 
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1H NMR (400 MHz, CDCl3)  
δ: 0.98 (3H, d, J = 6.6 Hz), 1.03 (3H, d, J = 6.6 Hz), 1.46 (9H, s), 1.55-1.86 (3H, m), 2.33 (1H, dd, J = 
2.4, 2.4 Hz), 3.85-3.89 (1H, m), 4.52, 4.92 (2H, AB system, J = 15.9 Hz), 4.55-4.82 (2H, m), 5.13 (1H, 
d, J = 9.1 Hz), 6.97 (1H, dd, J = 7.1, 7.8 Hz), 7.12 (1H, d, J = 7.1 Hz), 7.29 (1H, dd, J = 7.8, 8.2 Hz), 
7.84 (1H, d, J = 8.2 Hz) (major rotamer);  
0.86 (3H, d, J = 6.9 Hz), 0.92 (3H, d, J = 6.9 Hz), 1.41 (9H, s), 1.55-1.86 (3H, m), 2.24 (1H, dd, J = 2.5, 
2.5 Hz), 3.81-3.85 (1H, m), 3.99, 4.42 (2H, AB system, J = 17.3 Hz), 4.55-4.82 (2H, m), 5.17 (1H, d, J 
= 8.8 Hz), 7.02 (1H, dd, J = 6.9, 7.6 Hz), 7.12 (1H, d, J = 6.9 Hz), 7.35 (1H, dd, J = 7.6 , 7.7 Hz), 7.88 
(1H, d, J = 7.7 Hz).  
 
13CNMR (100 MHz, CDCl3)  
δ: 21.8 (q), 23.5 (q), 24.7 (d), 28.3 (q), 37.0 (t), 41.9 (t), 48.9 (d), 54.0 (t),73.4 (d), 78.1 (s), 79.8 (s), 
98.7 (s), 127.4 (d), 128.6 (d), 129.1 (d), 138.1 (s), 139.9 (d), 155.4 (s), 173.6 (s) (major rotamer);  
21.6 (q), 23.4 (q), 24.5 (d), 30.9 (q), 35.0 (t), 42.8 (t), 49.1 (d), 55.4 (t), 72.5 (d), 
78.1 (s), 79.8 (s), 97.8 (s), 127.7 (d), 128.1 (d), 129.5 (d), 138.1 (s), 139.6 (d), 154.8 (s), 173.6 
(s)(minor rotamer).  
 
MS: m/z 484 (M+). Anal. calcd for C21H29IN2O3: C, 52.07; H, 6.03; N, 5.78. Found C, 
51.96; H, 6.31; N, 5.52. 

 

 

(S)-2-(t-Butoxycarbonylamino)-N-(2-iodobenzyl)-N-propargylpropanamide (13c) 
 

 
 
Yield: 79%. 
Colorless oil.  
IR: 2927, 1651 cm-1 
[α]23

D = -4.4 (c = 0.19, CHCl3).  
Rotamers ratio 3:2 
 
1H NMR (400 MHz, CDCl3)  
δ: 1.30 (3H, d, J = 6.7 Hz), 1.44 (9H, s), 2.33 (1H, dd, J = 2.4, 2.4 Hz), 3.88, 4.41 (2H, AB system, J = 
18.5 Hz), 4.53-4.76 (2H, m), 4.88 (1H, d, J = 15.9 Hz), 5.39 (1H, d, J = 7.9 Hz), 6.96 (1H, dd, J = 7.4 , 
7.5 Hz), 7.12 (1H, d, J = 7.5 Hz), 7.28 (1H, d, J = 7.7 Hz), 7.82 (1H, d, J = 7.7 Hz) (major rotamer);  
1.30 (3H, d, J = 6.7 Hz), 1.42 (9H, s), 2.23 (1H, br s), 4.04, 4.32 (2H, AB system, J = 17.3 Hz), 4.53-
4.76 (3H, m), 5.43 (1H, d, J = 7.6 Hz), 7.01 (1H, dd, J = 7.5, 7.7 Hz), 7.07 (1H, d, J =7.7 Hz), 7.34 (1H, 
dd, J = 7.5, 7.8 Hz), 7.86 (1H, d, J = 7.8 Hz) (minor rotamer).  
 
13C-NMR (100 MHz, CDCl3)  
δ: 18.9 (q), 28.3 (q), 37.0 (t), 46.4 (d), 53.9 (t), 73.4 (d), 78.0 (s), 79.8 (s), 98.7 (s), 128.2 (d), 128.5 
(d), 129.2 (d), 138.1 (s), 139.7 (d), 155.3 (s), 173.6 (s) (major rotamer); 19.4 (q), 28.3 (q), 34.8 (t), 
46.7 (d), 55.3 (t), 72.6 (d), 77.9 (s), 79.6 (s), 98.7 (s), 127.1 (d), 128.6 (d), 129.6 (d), 137.1 (s), 140.0 
(d), 154.8 (s), 173.4 (s) (minor rotamer).  
 
MS: m/z 442 (M+). Anal. calcd for C18H23IN2O3: C, 48.88; H, 5.24; N, 6.33. Found C, 48.98; H, 4.99; 
N, 6.48. 
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General procedure for the preparation of allenamides 11a-c 

 

 

 

To a solution of 10 (1 mmol) in THF (10 mL) t-BuOK (2.5 mmol) was added. The resulting solution 

was stirred at r.t. for 1 min, then filtered on silica gel (AcOEt). The solvent was evaporated under 

reduced pressure. The residue was used without no further purification for the next step. 

 
 
 
(S)-2-(t-Butoxycarbonylamino)-N-(2-iodobenzyl)-3-methyl-N-(1,2-propadienyl)butanamide (14a) 
 

 
 
Yield: 95%.  
Colorless oil.  
IR: 3321, 1650 cm-1 
[α]23

D = +30.8 (c = 0.27, CHCl3).  
Rotamers ratio 1:1  
 
1H NMR (400 MHz, CDCl3)  
δ: 0.94 (6H, d, J = 6.7 Hz), 1.04 (6H, d, J = 6.7 Hz), 1.45 (18H, s), 2.10-2.21 (2H, m), 4.59-4.83 (6H, 
m), 5.05-5.45 (6H, m), 6.87-7.03 (4H, m), 7.24 (2H, dd, J = 7.5, 7.9 Hz), 7.56-7.63 (1H, m). 7.79 (2H, 
d, J = 7.9 Hz), 7.77-7.85 (1H, m).  
 
13C-NMR (100 MHz, CDCl3)  
δ: 17.4 (q), 17.6 (q), 19.6 (q), 28.7 (q), 31.6 (d), 31.9 (d), 54.0 (t), 55.2 (t), 56.1 (d), 56.4 (d), 80.0 (s), 
80.1 (s), 87.7 (t), 88.1 (t), 97.5 (s), 98.3 (s), 99.0 (d), 100.2 (d), 126.8 (d), 126.9 (d), 128.7 (d), 129.0 
(d), 129.4 (d), 129.7 (d), 138.2 (s), 138.7 (s), 139.9 (d), 140,1 (d), 155.7 (s), 156.4 (s), 171.5 (s), 
201.9 (s), 202.8 (s).  
 
MS: m/z 470 (M+). Anal. calcd for C20H27IN2O3: C, 51.07; H, 5.79; N, 5.96. Found C, 51.38; H, 5.59; 
N, 5.73. 
 
 

(S)-2-(t-Butoxycarbonylamino)-N-(2-iodobenzyl)-4-methyl-N-(1,2-propadienyl)pentanamide 
(14b) 
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Yield: 93%.  
Colorless oil.  
IR: 3319, 1655 cm-1 
[α]23

D = -6.1 (c = 0.15, CHCl3).  
Rotamers ratio 1:1 
 
1H NMR (400 MHz, CDCl3)  
δ: 0.98 (6H, d, J = 6.6 Hz), 1.02 (6H, d, J = 6.5 Hz), 1.26 (18H, s), 1.55-1.83 (6H, m), 4.41-4.81 (4H, 
m), 4.51, 4.93 (2H, AB system, J =15.9 Hz), 5.12-5.21 (2H, m), 5.37 (4H, dd, J = 4.9, 4.9 Hz), 6.97 
(1H, dd, J = 6.8, 7.4 Hz), 7.02 (1H, dd, J = 7.4, 7.5 Hz), 7.07-7.19 (2H, m), 7.21-7.53 (4H, m), 7.84 
(1H, d, J = 7.9 Hz), 7.87 (1H, d, J = 7.8 Hz).  
 
13C-NMR (100 MHz, CDCl3)  
δ: 21.8 (q), 23.5 (q), 24.7 (d), 28.3 (q), 35.0 (t), 37.1 (t), 48.9 (d), 54.0 (t), 55.4 (t), 79.8 (s), 87.6 (t), 
98.7 (s), 100.1 (d), 128.1 (d), 128.6 (d), 129.1 (d), 129.5 (d), 129.8 (d), 130.0 (d), 137.3 (s), 138.1 
(s), 139.6 (d), 140.0 (d), 155.9 (s), 173.7 (s), 206.9 (s).  
 
MS: m/z 484 (M+). Anal. calcd for C21H29IN2O3: C, 52.07; H, 6.03; N, 5.78. Found C, 52.28; H, 5.79; 
N, 5.56. 
 
 

(S)-2-(t-Butoxycarbonylamino)-N-(2-iodobenzyl)-N-(1,2-propadienyl)propanamide (14c) 
 

 
 
Yield: 93%.  
Colorless oil.  
IR: 3326, 1655 cm-1  
[α]23

D = +13.6 (c = 0.30, CHCl3).  
Rotamers ratio 1:1 
 
1H NMR (400 MHz, CDCl3)  
δ: 1.19-1.27 (6H, m), 1.43 (18H, s), 4.39-4.87 (6H, m), 5.13-5.22 (4H, m), 5.41 (1H, br s), 5.54 (1H, 
br s), 6.82-7.01 (5H, m), 7.18-7.31 (2H, m), 7.51-7.62 (1H, m), 7.76 (1H, d, J = 7.9 Hz), 7.79 (1H, d, J 
= 7.6 Hz).  
 
13C-NMR (100 MHz, CDCl3)  
δ: 18.9 (q), 28.3 (q), 46.9 (d), 47.1 (d), 53.6 (t), 54.7 (t), 79.8 (s), 87.3 (t), 98.7 (s), 99.2 (d), 126.4 
(d), 128.3 (d), 128.6 (d), 129.3 (d), 129.6 (d), 137.8 (s), 138.2 (s), 139.4 (d), 139.5 (d), 155.3 (s), 
172.5 (s), 201.5 (s), 202.4 (s).  
 
MS: m/z 442 (M+). Anal. calcd for C18H23IN2O3: C, 48.88; H, 5.24; N, 6.33. Found C, 48.61; H, 5.38; 
N, 6.56. 
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General procedure for the preparation of imidazolidinones 15a-c and 16b,c 

 
 
 
K2CO3 (4 mmol) and Pd(PPh3)4 (2%) were added to a solution of 14 (1 mmol) in DMF (10 mL). The 

resulting suspension was heated at 100 °C for 2 h, then cooled, diluted with brine and extracted 

with AcOEt (3 x 20 mL). The resulting crude mixture was purified by flash chromatography to 

afford the desired products 15 and 16. 

 
 

(2S,10aR)-1-(t-Butoxycarbonyl)-2-isopropyl-10-methylene-1,5,10,10a-tetrahydro-

1Himidazo[1,2-b]isoquinolin-3(2H)-one (15a) 
 

 
 

 
Yield: 54%.  
White solid. M. p.: 112-115 °C.  
IR: 1703,1648 cm-1 
[α]23

D = -30.6 (c = 0.21, CHCl3).  
 
1H NMR (400 MHz, CDCl3)  
δ: 0.99 (3H, d, J = 6.9 Hz), 1.03 (3H, d, J = 7.0 Hz), 1.53 (9H, s), 2.10-2.27 (1H, m), 4.23-4.30 (1H, m), 
4.39, 5.16 (2H, AB system, J = 17.4 Hz), 5.35 (1H, d, J = 1.5 Hz), 5.69 (1H, s), 5.77 (1H, d, J = 1.5 Hz), 
7.19 (1H, d, J = 7.1 Hz), 7.25-7.40 (2H, m), 7.66 (1H, d, J = 7.3 Hz).  
 
13C-NMR (100 MHz, CDCl3) δ: 18.9 (q), 19.6 (q), 28.7 (q), 32.2 (d), 42.2 (t), 65.3 (d), 70.7 (d), 82.0 
(s), 110.1 (t), 126.1 (d), 126.8 (d), 127.8 (d), 129.1 (d), 130.7 (s), 131.7 (s), 139.4 (s), 155.6 (s), 
168.8 (s).  
 
MS: m/z 342 (M+). Anal. calcd for C20H26N2O3: C, 70.15; H, 7.65; N, 8.18. Found C, 70.28; H, 7.39; 
N, 8.29. 
 

 

(2S,10aS)-1-(t-Butoxycarbonyl)-2-isopropyl-10-methylene-1,5,10,10a-tetrahydro-1Himidazo[1,2-

b]isoquinolin-3(2H)-one (16a) 
 

 
 
Yield: 8%.  
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Colorless oil.  
IR: 1708, 1655 cm-1  
[α]23

D =+26.2 (c = 0.28, CHCl3).  
 
1H NMR (400 MHz, CDCl3)  
δ: 0.92 (3H, d, J = 6.9 Hz), 1.25 (3H, d, J = 7.1 Hz), 1.45-1.60 (9H, m), 1.98-2.30 (1H, m), 4.03-4.18 
(1H, m), 4.40, 5.22 (2H, AB system, J = 17.6 Hz), 5.10 (1H, br s), 5.47 (1H, s), 5.63-5.70 (1H, m), 
7.19 (1H, d, J = 7.4 Hz), 7.27-7.48 (2H, m), 7.50 (1H, d, J = 7.6 Hz).  
 
13C-NMR (100 MHz, CDCl3)  
δ: 16.0 (q), 18.7 (q), 28.7 (q), 32.8 (d), 42.2 (t), 63.6 (d), 70.3 (d), 81.2 (s), 108.9 (t), 126.2 (d), 126.4 
(d), 127.8 (d), 129.2 (d), 130.2 (s), 133.3 (s), 139.4 (s), 155.6 (s), 168.8 (s).  
 
MS: m/z 342 (M+). Anal. calcd for C20H26N2O3: C, 70.15; H, 7.65; N, 8.18. Found 
C, 69.91; H, 7.82; N, 8.01. 
 
 
(2S,10aR)-1-(t-Butoxycarbonyl)-2-isobutyl-10-methylene-1,5,10,10a-tetrahydro-1Himidazo[1,2-

b]isoquinolin-3(2H)-one (15b) 
 

 
 
Yield: 59%.  
White solid. M. p.: 108-110 °C.  
IR: 1710, 1659 cm-1 
[α]23

D = -52.2 (c = 0.56, CHCl3). 
 
1H NMR (400 MHz, CDCl3)  
δ: 0.95 (3H, d, J = 6.6 Hz), 0.98 (3H, d, J = 6.6 Hz), 1.50-1.70 (2H, m), 1.53 (9H, s), 1.95-2.08 (1H, m), 
4.30-4.52 (1H, m), 4.40, 5.17 (2H, AB system, J = 17.4 Hz), 5.28 (1H, d, J = 1.7 Hz), 5.65 (1H, d, J = 
1.7 Hz), 5.75 (1H, s), 7.18 (1H, d, J = 7.4 Hz), 7.24-7.36 (2H, m), 7.61 (1H, d, J = 7.5 Hz).  
 
13C-NMR (100 MHz, CDCl3)  
δ: 22.6 (q), 22.8 (q), 24.3 (d), 28.4 (q), 32.8 (t), 42.0 (t), 57.8 (d), 70.0 (d), 81.6 (s), 109.0 (t), 125.8 
(d), 126.3 (d), 127.3 (d), 128.8 (d), 130.4 (s), 131.3 (s), 139.6 (s), 154.6 (s), 169.9 (s).  
 
MS: m/z 356 (M+). Anal. calcd for C21H28N2O3: C, 70.76; H, 7.92 N, 7.86. Found C, 70.58; H, 8.05; N, 
7.69. 
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(2S,10aS)-1-(t-Butoxycarbonylamino)-2-isobutyl-10-methylene-1,5,10,10a-tetrahydro-

1Himidazo[1,2-b]isoquinolin-3(2H)-one (16b) 
 

 
 
Yield: 6%.  
Colorless oil.  
IR: 1704, 1658 cm-1  
[α]23

D = +33.0 (c = 0.17, CHCl3).  
 
1H NMR (400 MHz, CDCl3)  
δ: 0.70-2.08 (18H, m), 4.15-4.19 (1H, m), 4.38, 5.22 (2H, AB system, J = 17.4 Hz), 5.15 (1H, d, J = 
1.2 Hz), 5.53 (1H, d, J = 1.2 Hz), 5.65 (1H, s), 7.12-7.65 (4H, m).  
 
13C-NMR (100 MHz, CDCl3)  
δ: 22.4 (q), 22.5 (q), 25.5 (d), 28.0 (q), 31.0 (t), 42.8 (t), 58.2 (d), 71.2 (d), 81.6 (s), 108.0 (t), 125.7 
(d), 126.5 (d), 128.3 (d), 129.4 (d), 131.5 (s), 133.0 (s), 134.7 (s), 152.0 (s), 164.0 (s).  
 
MS: m/z 356 (M+). Anal. calcd for C21H28N2O3: C, 70.76; H, 7.92 N, 7.86. Found C, 70.71; H, 7.67; N, 
7.63. 
 
 

(2S,10aR)-1-(t-Butoxycarbonyl)-2-methyl-10-methylene-1,5,10,10a-tetrahydro-1Himidazo[1,2-

b]isoquinolin-3(2H)-one (15c) 
 

 
 
Yield: 51%.  
Yellow oil.  
IR: 1705, 1655 cm-1 
[α]23

D = -8.8 (c = 0.40, CHCl3). 
  
1H NMR (400 MHz, CDCl3)  
δ: 1.15-1.25 (3H, m), 1.43 (9H, s), 4.27-4.41 (1H, m), 4.40, 5.19 (2H, AB system, J = 17.4 Hz), 5.29 
(1H, d, J = 1.6 Hz), 5.61 (1H, d, J = 1.6 Hz), 5.69 (1H, s), 7.18 (1H, d, J = 7.2 Hz), 7.24-7.37 (2H, m), 
7.59 (1H, d, J = 7.7 Hz).  
 
13C-NMR (100 MHz, CDCl3)  
δ: 19.4 (q), 28.3 (q), 41.2 (t), 56.7 (d), 69.7 (d), 81.4 (s), 109.1 (t), 128.1 (d), 128.9 (d), 130.7 (d), 
131.1 (s), 132.9 (s), 139.6 (d), 140.6 (s), 154.6 (s), 169.9 (s).  
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MS: m/z 314 (M+). Anal. calcd for C18H22N2O3: C, 68.77; H, 7.05; N, 8.91. Found C, 68.48; H, 6.91; N, 
9.17. 
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3) Shifting towards the obtention of 7-membered heterocycles 
 
 
 
 

Protection of allenyl alcohol 19 as phenylacetate 20 (modification of the synthetic steps 

towards amine 22
107) 

 

 
 
Triethylamine (10.7 mL, 76.4 mmol, 3 equiv.) is added to a solution of 18 (2.5 g, 25.5 mmol, 1 

equiv.) in dichloromethane (130 mL). Freshly distilled phenacyl chloride (10.1 mL, 76.4 mmol, 3 

equiv.) is introduced dropwise at 0 °C and the resulting solution is stirred for 16h at r.t. The 

reaction is quenched with saturated NH4Cl and the organic phase is extracted with CH2Cl2. The 

organic phases are washed with saturated NaHCO3, dried over MgSO4 and concentrated under 

reduced pressure. The crude product is purified by column chromatography (pentane/Et2O 95:5). 

 
 
Yield: 80%. 
Pale yellow oil. 
IR (neat): 2984, 2940, 2912, 1972, 1739, 1218 cm-1 
 
1H NMR (400 MHz, CDCl3)  
δ = 1.68 (6H, d, J= 3.0 Hz), 3.64 (2H s), 4.53 (d, 2H, J= 7.0 Hz), 5.08 (1H, m), 7.28-7.32 (5H, m) 
 
13C NMR (100 MHz, CDCl3) 
δ = 20.5 (q), 41.7 (t), 63.9 (t), 85.1 (d), 97.7 (s), 127.4 (d), 129.0 (d), 129.8 (d), 134.4 (s), 171.6 (s), 
203.6 (s). 
 
HRMS (ESI+) Calcd. for C14H16O2Na (M+Na+) 239.2648. Found: 239.1043. 

 

 

 

General procedure for the synthesis of N-protected allenyl amides 23 
 

 

 

To a solution of allenyl amine (187 mg, 1 mmol, 1 equiv.) in THF (9.3 mL, 0,1 M) were rapidly 

added under argon atmosphere the appropriate N-protected-anthranylic acid (1.2 equiv.), DCC 

(248 mg, 1.2 equiv.) and DMAP (6.1 mg, 0.05 equiv.). The resulting mixture was stirred at room 

                                                           
107

 T. Shibata, S. Kadowaki, K. Takagi, Heterocycles 2002, 57, 2261. 
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temperature overnight. The completion of the reaction was verified by TLC. Cyclohexane (28 mL) 

was then added, the mixture was filtered over a celite pad and then concentrated in vacuo. The 

crude was purified by flash chromatography on silica gel eluting with cyclohexane/AcOEt 7:3. 

 
 

N-benzyl-N-(4-methylpenta-2,3-dienyl)-2-(4-methylphenylsulfonamido)benzamide (23a) 
 

NH

N

O

•Ts

 
 
Yield: 70%.  
White solid. M.p.: 107-109 °C.  
IR (neat) 1620, 1597, 1337, 1164, 737 cm-1. 
Rotamers ratio 3.1:1.  
 
1H-NMR: (400 MHz, CDCl3) 

δ: 1.75 (6H, s), 2.20-2.50 (3H, m), 3.13 (2H, s br), 4.64 (2H, s br), 4.73-4.90 (1H, m), 6.70-7.80 (13H, 
m), 8.41 (1H, s br) (major rotamer);  
1.75 (6H, s), 2.20-2.50 (3H, m), 3.96 (2H, s br), 4.17 (2H, s br), 4.85-5.10 (1H, m), 6.70-7.80 (13H, 
m), 8.57 (1H, s br) (minor rotamer). 
 
13C-NMR (100 MHz, CDCl3) 

δ: 20.6 (q), 21.6 (q), 47.0 (t), 47.4 (t), 85.1 (d), 98.7 (s), 124.3 (d), 126.2 (d), 126.9 (s), 127.3 (d), 
127.8 (d), 128.1 (d), 129.1 (d), 129.7 (d), 130.2 (d), 131.3 (d), 134.9 (s), 136.6 (s), 143.7 (s), 153.8 
(s), 170.1 (s), 203.2 (s) (major rotamer);  
20.6 (q), 21.9 (q), 47.0 (t), 47.4 (t), 85.1 (d), 98.7 (s), 123.9 (d), 126.2 (d), 126.9 (s), 127.3 (d), 127.8 
(d), 128.2 (d), 129.1 (d), 129.7 (d), 130.2 (d), 131.5 (d), 134.9 (s), 136.4 (s), 144.8 (s), 153.8 (s), 
167.6 (s), 203.2 (s) (minor rotamer).  
 
HRMS (ESI +): Calcd. for C27H28N2NaO3S (M+Na+): 483.17128, found: 483.17051. 
 

 

tert-butyl 2-(benzyl(4-methylpenta-2,3-dienyl)carbamoyl)phenylcarbamate (23b) 
 

NH

N

O

•Boc

 
 
Yield: 58%.  
White solid (M.p.: 98-100 °C).  
IR (neat) 1728, 1626, 1516, 1157 cm-1.  
Rotamers ratio: 2:1.  



 Experimental Section  

1H-NMR: (400 MHz, CDCl3) 

δ: 1.52 (9H, s), 1.75 (6H, s), 3.74 (2H, s br), 4.80 (2H, s br), 4.85-5.00 (1H, m), 6.80-7.40 (8H, m), 
7.70-8.25 (2H, m) (major rotamer);  
1.52 (9H, s), 1.75 (6H, s), 4.04 (2H, s br), 4.57 (2H, s br), 5.00-5.20 (1H, m), 6.80-7.40 (8H, m), 7.70-
8.25 (2H, m) (minor rotamer).  
 
13C-NMR (100 MHz, CDCl3) 

δ: 20.7 (q), 28.7 (q), 47.4 (t), 48.0 (t), 80.7 (s), 85.4 (d), 98.6 (s), 121.4 (d), 122.3 (d), 124.6 (s), 
126.9 (d), 127.9 (d), 128.4 (s), 129.0 (d), 130.9 (d), 137.2 (s), 153.2 (s), 170.8 (s), 203.0 (s).  
 
HRMS (ESI +): Calcd. for C25H30N2NaO3S (M+Na+): 429.21486, found: 429.21436. 
 
 

N-benzyl-N-(4-methylpenta-2,3-dienyl)-2-(4-nitrophenylsulfonamido)benzamide (23c) 
 

NH

N

O

•Ns

 
 
Yield: 62%.  
Yellow solid. M.p.: 70-72 °C.  
IR (neat) 1619, 1531, 1348, 1170 cm-1.  
Rogtamers ratio: 3.9:1.  
 
1H-NMR: (400 MHz, CDCl3) 

δ: 1.75 (6H, s br), 3.20 (2H, s br), 4.62 (2H, s br), 4.70-4.90 (1H, m), 7.00-8.40 (13H, m), 8.80 (1H, s 
br) (major rotamer);  
1.75 (6H, s br), 3.96 (2H, s br), 4.29 (2H, s br), 4.85-5.05 (1H, m), 7.00-8.40 (13H, m), 9.0 (1H, s br) 
(minor rotamer).  
 
13C-NMR (100 MHz, CDCl3) 

δ: 20.6 (q), 47.0 (t), 47.6 (t), 84.8 (d), 99.4 (s), 124.2 (d), 124.6 (d), 125.1 (d), 126.9 (s), 127.6 (d), 
128.6 (d), 129.3 (d), 130.0 (d), 131.7 (d), 134.6 (d), 135.6 (s), 136.6 (s), 145.2 (s), 150.2 (s), 169.7 
(s), 203.3 (s).  
HRMS (ESI +): Calcd. for C26H25N3NaO5S (M+Na+): 514.14071, found: 514.13935 
 
 

N-benzyl-3-methyl-N-(4-methylpenta-2,3-dienyl)-2-(4-methylphenylsulfonamido)benzamide 
(23l) 

 

NH

N

O

•Ts

 
 
Yield: 60%. 
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White oil. 
IR (neat) 1614, 1451, 1164 cm-1. 
Rotamers ratio 2.5:1.  
 
1H-NMR: (400 MHz, CDCl3) 

δ: 1.74 (6H, d, J = 2.7 Hz), 2.30 (3H, s), 2.33 (3H, s), 3.45 (2H, d, J = 4.7), 4.62 (2H, s), 4.92 (1H, 
dddd, J = 4.7, 4.7, 2.7, 2.7 Hz),7.00 (2H, d, J = 8.0 Hz), 7.01-7.50(m, 8H), 7.54 (2H, d, J = 8.0 Hz), 
7.96 (1H, s br) (major rotamer);  
1.65 (6H, d, J = 2.5 Hz), 2.29 (3H, s), 2.46 (3H, s), 3.96 (2H, d, J = 5.8 Hz), 4.38 (2H, s), 4.99-5.09 (1H, 
m), 7.01-7.50 (m, 10H), 7.75 (2H, d, J = 8.0 Hz), 7.86 (1H, s br) (minor rotamer). 
 
13C-NMR (100 MHz, CDCl3) 

δ: 19.6 (q), 20.9 (q), 21.7 (q), 47.9 (t), 48.3 (t), 85.5 (d), 98.2 (s), 125.4 (d), 126.6 (d),127.2 (d), 
127.9 (d), 128.9 (d), 129.6 (d), 129.7 (d), 133.6 (d), 133.7 (s), 134.0 (s), 136.9 (s), 137.4 (s), 139.8 
(s), 143.7 (s), 170.8 (s), 203.3 (s) (major rotamer); 
19.6 (q), 20.6 (q), 21.9 (q), 45.5 (t), 52.7 (t), 84.6 (d), 96.5 (s), 124.6 (d), 126.9 (d), 127.2 (d), 127.9 
(d), 129.2 (d), 129.6 (d), 129.9 (d), 133.6 (d), 133.7 (s), 134.0 (s), 136.9 (s), 137.4 (s), 139.8 (s), 
144.0 (s), 171.3 (s), 203.7 (s) (minor rotamer).  
 
HRMS (ESI +): Calcd. for C28H30N2NaO3S (M+Na+): 497.18693, found: 497.18587. 
 

 

 

 

 

 

 

 

General procedure for the Pd-catalysed domino carbopalladation/amination towards 

benzodiazepinones 24 

 
 
 
NaH (4.8 mg, 0.12 mmol, 1.2 equiv., 60% dispersion in mineral oil) was added to a solution of the 

appropriate N-protected allenyl amide (0.1 mmol, 1 equiv.) in freshly distilled DMSO (1.6 mL) 

under argon atmosphere. The resulting mixture was stirred at 50°C for 10 min. In another flask, 

BuLi (10 mL, 0.02 mmol, 20 mol%, 2.0 M solution in hexane) was added dropwise to a solution of 

PdCl2(CH3CN)2 in freshly distilled DMSO under Ar. The resulting solution, initially yellow, became 

dark orange. The appropriate aromatic iodide (0.12 mmol, 1.2 equiv.) and TBAB (6.4 mg, 0.02 

mmol, 20 mol%) were added, and the solution containing the deprotonated amide was added via 

cannula. The resulting mixture was stirred at 90 °C. The completion was monitored by TLC (about 

2 h) and the reaction was quenched with saturated NH4Cl. The aqueous layer was extracted with 

CH2Cl2. The organic layers were washed with saturated NaCl, dried on MgSO4 and concentrated in 

vacuo. The crude product was purified by flash chromatography (cyclohexane/AcOEt 8:2).  
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4-benzyl-2-(2-methyl-1-p-tolylprop-1-enyl)-1-tosyl-3,4-dihydro-1H-benzo[e][1,4]diazepin-5(2H)-

one (24a) 
 

N

N

O

Ts

 
 
Yield: 82%.  
Colorless oil.  
IR (neat) 1650, 1351, 1161, 716, 660 cm-1. 
 
1H-NMR: (400 MHz, CDCl3) 

δ: 1.41 (3H, s), 1.80 (3H, s), 2.33 (3H, s), 2.43 (3H, s), 3.06 (1H, dd, J = 15.3, 4.3), 3.33 (1H, dd, J = 
15.3, 12.5), 3.74 (1H, A part of AB system, J = 14.7 Hz), 3.81 (3H, s), 4.62 (1H, B part of AB system, 
J = 14.7 Hz),5.38 (1H, dd, J = 12.5, 4.3), 6.33 (1H, d, J = 8.0, 0.9 Hz), 6.60-6.95 (1H, m), 7.03 (1H, 
ddd, J = 8.0, 7.8, 1.7 Hz), 7.10-7.17 (2H, m), 7.22 (1H, ddd, J = 7.8, 7.8, 0.9 Hz), 7.27-7.37 (7H, m), 
7.42-7.47 (2H, m), 7.54 (1H, dd, J = 7.8, 1.7 Hz), 7.67-7.87 (1H, m); 
 
13C-NMR (100 MHz, CDCl3) 

δ: 19.4 (q), 21.4 (q), 21.9 (q), 22.8 (q), 48.9 (t), 49.5 (t), 64.3 (d), 127.6 (d), 128.2 (d), 128.3 (d), 
128.8 (d), 129.2 (d), 129.8 (d), 130.1 (d), 131.1 (d), 131.3 (s), 133.6 (d), 133.7 (s), 134.1 (s), 134.2 
(s), 136.6 (s), 136.7 (s), 137.0 (s), 143.9 (s), 168.0 (s). 
 
HRMS (ESI +): Calcd. for C34H34N2NaO3S (M+H+): 551.23629, found: 551.23544 
 
 

tert-butyl 4-benzyl-2-(2-methyl-1-p-tolylprop-1-enyl)-5-oxo-2,3,4,5-tetrahydro-1H-

benzo[e][1,4]diazepine-1-carboxylate (24b) 
 

N

N

O

Boc

 
 
Yield: 48%. 
Colorless oil.  
IR (neat) 1725, 1630, 1156 cm-1.  
 
1H-NMR: (400 MHz, CDCl3) 

δ: 1.33 (9H, s), 1.49 (3H, s), 1.69 (3H, s), 2.34 (3H, s), 3.19-3.24 (1H, m), 3.41-3.49 (1H, m), 4.70 
(1H, A part of AB system, J = 14.2 Hz), 5.03 (1H, B part of AB system, J = 14.2 Hz), 5.35-5.42 (1H, 
m), 5.52-5.60 (1H, m), 6.30-6.40 (1H, m), 6.70-7.50 (10H, m), 7.55-7.61 (1H, m). 
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13C-NMR: (100 MHz, CDCl3) 

δ: 21.4 (q), 22.7 (q), 28.5 (q), 49.5 (t), 50.4 (t), 63.1 (d), 80.8 (s), 126.6 (d), 128.2 (d), 128.6 (d), 
128.7 (d), 129.1 (d), 129.2 (d), 130.0 (d), 130.6 (d), 133.4 (s), 136.7 (s), 137.5 (s), 147.5 (s), 156.1 
(s), 168.0 (s).  
 
HRMS: Calcd. For C32H36N2NaO3 (M+Na+): 519.26181, found: 519.26114. 
 
 

4-benzyl-2-(2-methtl-1-p-tolylprop-1-enyl)-1-(4-nitrophenylsulfonyl)-3,4-dihydro-1H-

benzo[e][1,4]diazepin-5(2H)-one (24c) 
 

N

N

O

Ns

 
 
Yield: 80%.  
Colorless oil.  
IR (neat) 1652, 1530, 1350, 1176, 668, 616 cm-1. 
  
1H-NMR: (400 MHz, CDCl3) 

δ: 1.44 (3H, s), 1.87 (3H, s), 2.35 (3H, s), 3.14 (1H, dd, J = 15.5, 4.4 Hz), 3.36 (1H, dd, J = 15.5, 12.3 
Hz), 3.88 (1H, A part of AB system, J = 14.5 Hz), 4.64 (B part of AB system, J = 14.5 Hz), 5.48 (1H, 
dd, J = 12.3, 4.4 Hz), 6.31 (1H, dd, J = 8.1, 1.0 Hz), 6.25-6.50 (1H, s br), 6.60-6.90 (1H, s br), 6.56 
(1H, d, J = 9.0 Hz), 7.06 (1H, ddd, J = 8.1, , 7.8, 1.7 Hz), 7.13-7.18 (2H, m), 7.23-7.41 (6H, m), 7.50 
(1H, dd, J = 7.8, 1.7 Hz), 15.2 (2H, d, J = 8.9 Hz), 8.28 (2H, d, J = 8.9 Hz).  
 
13C-NMR (100 MHz, CDCl3) 

δ: 19.5 (q), 21.4 (q), 22.8 (q), 49.0 (t), 49.8 (t), 65.5 (d), 124.7 (d), 128.4 (d), 128.6 (d), 128.8 (d), 
129.0 (d), 129.3 (d), 129.9 (d), 131.3 (d), 132.2 (s), 132.9 (s), 133.2 (d), 134.2 (s), 136.3 (s), 136.6 
(s), 136.9 (s), 144.7 (s), 150.4 (s), 167.5 (s).  
 
HRMS (ESI +): Calcd. for C33H31N3NaO5S (M+Na+): 604.18766, found: 604.18677. 
 
 

4-benzyl-2-(1-(2-methoxyphenyl)-2-methylprop-1-enyl)-1-tosyl-3,4-dihydro-1H-

benzo[e][1,4]diazepin-5(2H)one (24d) 
 

N

N

O

Ts

O
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Yield: 63%.  
Colorless oil.  
IR (neat) 1651, 1466, 1351, 1159, 718, 658 cm-1.  
Rotamers ratio 1.1:1.  
 
1H-NMR: (400 MHz, CDCl3) 

δ: 1.43 (3H, s), 1.80 (3H, s ), 2.43 (3H, s), 3.07 (1H, dd, J = 15.3, 4.0 Hz), 3.34 (1H, dd, J = 15.3, 12.5 
Hz), 3.52 (3H, s br, minor rotamer) 3.70-3.85 (1H, m), 3.94 (3H, s br, major rotamer), 4.63 (1H, d, J 
= 14.7 Hz),5.39 (1H, dd, J = 12.5, 4.0 Hz) 5.90-6.10 (1H, m), 6.35-6.40 (1H, m), 6.78 (1H, dd, J = 7.8, 
1.8 Hz), 7.00-7.25 (5H, m), 7.27-7.57 (9H, m) 
 
13C-NMR (100 MHz, CDCl3):  

δ: 19.3 (q), 21.9 (q), 22.8 (q), 48.9 (t), 49.5 (t), 55.5 (q, minor rotamer), 55.8 (q), major rotamer), 
64.1 (d), 127.6 (d), 128.2 (d), 128.4 (d), 128.8 (d), 129.2 (d), 129.8 (d), 130.1 (d), 131.2 (d), 131.3 
(s), 133.5 (d), 133.6 (d), 134.0 (s), 134.1 (s), 136.6 (s), 137.0 (s), 141.0 (s), 144.0 (s), 168.0 (s).  
 
HRMS (ESI +): Calcd. for C34H34N2NaO4S (M+Na+): 589.21315, found: 589.21208 
 

 

4-benzyl-2-(1-(3-methoxyphenyl)-2-methylprop-1-enyl)-1-tosyl-3,4-dihydro-1H-

benzo[e][1,4]diazepin-5(2H)-one (24e) 
 

N

N

O

Ts

O

 
 
Yield: 63%.  
Colorless oil.  
IR (neat) 1651, 1351, 1159, 718, 658 cm-1.  
 
1H-NMR: (400 MHz, CDCl3) 

δ: 1.40 (3H, s), 1.80 (3H, s), 2.42 (3H, s), 3.11 (1H, dd, J = 15.8, 4.5 Hz), 3.15 (3H, s), 3.49 (1H, dd, J 
= 15.8, 12.3 Hz), 3.66 (1H, A part of AB system, J = 14.7 Hz), 4.56 (B part of AB system, J = 14.7 Hz), 
5.40 (1H, dd, J = 12.3, 4.5 Hz), 6.09 (1H, d, J = 8.1), 6.56 (1H, d, J = 9.0 Hz), 6.90-7.50 (m, 14H), 7.56 
(1H, d, J = 7.6 Hz).  
 
13C-NMR (100 MHz, CDCl3) 

δ: 19.5 (q), 21.9 (q), 22.8 (q), 48.9 (t), 49.5 (t), 54.8 (q), 64.6 (d), 110.6 (d), 121.4 (d), 127.6 (d), 
128.1 (d), 128.3 (d), 128.5 (s), 128.7 (d), 128.9 (d), 129.1 (d), 129.7 (d), 130.1 (d), 130.5 (s), 131.1 
(d), 131.3 (s), 133.7 (d), 134.1 (s), 134.6 (d), 134.7 (s), 136.9 (s), 137.2 (s), 143.8 (s), 157.3 (s), 
168.2 (s).  
 
HRMS (ESI +): Calcd. for C34H34N2NaO4S (M+Na+): 589.21315, found: 589.21202. 
 
 



 Experimental Section  

4-benzyl-2-(1-(4-methoxyphenyl)-2-methylprop-1-enyl)-1-tosyl-3,4-dihydro-1H-

benzo[e][1,4]diazepin-5(2H)-one (24f) 
 

N

N

O

Ts

O

 
 
Yield: 73%.  
Colorless oil. 
IR (neat) 1651, 1509, 1350, 1244, 1172 cm-1.  
 
1H-NMR: (400 MHz, CDCl3) 

δ: 1.41 (3H, s), 1.80 (3H, s), 2.43 (3H, s), 3.06 (1H, dd, J = 15.3, 4.3), 3.32 (1H, dd, J = 15.3, 12.4), 
3.75 (1H, A part of AB system, J = 14.7 Hz), 3.81 (3H, s), 4.62 (1H, B part of AB system, J = 14.7 
Hz),5.38 (1H, dd, J = 12.4, 4.3), 6.20-6.60 (2H, m), 6.41 (1H, dd, J = 7.9, 1.1 Hz), 6.80-7.10 (1H, m), 
7.09 (1H, ddd, J = 7.9, 7.6, 1.7 Hz), 7.11-7.15 (2H, m), 7.23 (1H, ddd, J = 7.6, 7.6, 1.1 Hz), 7.27-7.37 
(6H, m), 7.42-7.47 (2H, m), 7.55 (1H, dd, J = 7.6, 1.7 Hz). 
 
13C-NMR (100 MHz, CDCl3) 

δ: 19.4 (q), 21.9 (q), 22.8 (q), 48.9 (t), 49.5 (t), 55.7 (q), 64.3 (d), 127.6 (d), 128.2 (d), 128.4 (d), 
128.8 (d), 129.2 (d), 129.8 (d), 130.1 (d), 131.2 (d), 131.8 (s), 132.0 (s), 133.3 (s), 133.6 (d), 134.1 
(s), 134.2 (s), 136.6 (s), 136.9 (s), 144.0 (s), 158.9 (s), 168.0 (s).  
 
HRMS (ESI +): Calcd. for C34H34N2NaO4S (M+Na+): 589.21315, found: 589.21188 
 
 

Methyl 4-(1-(4-benzyl-5-oxo-1-tosyl-2,3,4,5-tetrahydro-1H-benzo[e][1,4]diazepin2-yl)-2-

methylprop-1-enyl)benzoate (24g) 
 

N

N

O

Ts

O
O

 
 
Yield: 61%.  
Colorless oil. 
IR (neat) 1722, 1651, 1276, 711, 659 cm-1.  
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1H-NMR: (400 MHz, CDCl3) 

δ: 1.38 (3H, s), 1.81 (3H, s), 2.43 (3H, s), 3.10 (1H, dd, J = 15.3, 4.2), 3.34 (1H, dd, J = 15.3, 12.5 Hz), 
3.79 (1H, A part of AB system, J = 14.7 Hz), 3.94 (3H, s), 4.61 (1H, B part of AB system, J = 14.7 Hz), 
5.39 (1H, dd, J = 12.5, 4.2 Hz), 6.29 (1H, d, J = 8.0 Hz), 6.52 (1H, s br), 7.02 (1H, ddd, J = 8.0, 7.6, 1.7 
Hz), 7.10-7.15 (2H, m), 7.22 (1H, ddd, J = 7.7, 7.6, 1.0 Hz), 7.27-7.37 (5H, m), 7.40-7.47 (2H, m), 
7.54 (1H, dd, J = 7.7, 1.7 Hz), 7.50-7.85 (2H, m), 8.05-8.35 (1H, m).  
 
13C-NMR (100 MHz, CDCl3) 

δ: 19.4 (q), 21.9 (q), 22.7 (q), 48.9 (t), 49.5 (t), 52.4 (q), 64.0 (d), 127.6 (d), 128.3 (d), 128.6 (d), 
128.9 (d), 129.0 (s), 129.2 (d), 130.1 (d), 130.2 (d), 131.4 (d), 132.1 (s), 133.1 (s), 133.2 (d), 133.8 
(s), 134.0 (s), 136.3 (s), 136.8 (s), 144.2 (s), 144.9 (s), 167.4 (s), 167.9 (s).  
 
HRMS (ESI +): Calcd. for C35H34N2NaO4S (M+Na+): 617.20806, found: 617.20659 
 
 

4-benzyl-2-(2-methyl-1-(4-nitrophenyl)prop-1-enyl)-1-tosyl-3,4-dihydro-1H-

benzo[e][1,4]diazepin-5(2H)-one (24h) 
 

N

N

O

Ts

N+
O–

O

 
 
Yield: 71%.  
Colorless oil. 
IR (neat) 1652, 1518, 1346 cm-1. 
  
 
1H-NMR: (400 MHz, CDCl3) 

δ: 1.39 (3H, s), 1.81 (3H, s), 2.44 (3H, s), 3.12 (1H, dd, J = 15.3, 4.2 Hz), 3.33 (1H, dd, J = 15.3, 12.6 
Hz), 3.82 (1H, A part of AB system, J = 14.7 Hz), 4.61 (B part of AB system, J = 14.7 Hz), 5.39 (1H, 
dd, J = 12.6, 4.2 Hz), 6.30 (1H, dd, J = 8.0, 1.0 Hz), 6.38-6.95 (1H, m), 7.05 (1H, ddd, J =8.0, 7.6, 1.6 
Hz), 7.11-7.15 (2H, m), 7.21-7.45 (6H, m), 7.40-7.45 (2H, m), 7.57 (1H, dd, J = 7.6, 1.6 Hz), 7.59-
8.65 (3H, m)  
 
13C-NMR (100 MHz, CDCl3) 

δ: 19.5 (q), 22.0 (q), 22.8 (q), 48.8 (t), 49.6 (t), 63.9 (d), 127.6 (d), 128.3 (d), 128.7 (d), 128.9 (d), 
129.3 (d), 130.2 (d), 130.4 (d), 131.4 (d), 132.3 (s), 132.8 (d), 133.1 (s), 133.7 (s), 134.1 (s), 136.0 
(s), 136.7 (s), 144.4 (s), 147.3 (s), 167.7 (s).  
 
HRMS (ESI +): Calcd. for C33H31N3NaO5S (M+Na+): 604.18766, found: 604.18638. 
 
 
 
 
 



 Experimental Section  

2-(1-(4-acetylphenyl)-2-methylprop-1-enyl)-4-benzyl-1-tosyl-3,4-dihydro-1H-

benzo[e][1,4]diazepin-5(2H)-one (24i) 
 

N

N

O

Ts

O

 
 
Yield: 68%.  
Colorless oil. 
IR (neat) 1682, 1650, 1350, 1158, 714, 660 cm-1.  
 
1H-NMR: (400 MHz, CDCl3) 

δ: 1.39 (3H, s), 1.81 (3H, s), 2.43 (3H, s), 2.62 (3H, s), 3.11 (1H, dd, J = 15.2, 4.2 Hz), 3.34 (1H, dd, J 
= 15.2, 12.5 Hz), 3.79 (1H, A part of AB system, J = 14.6 Hz), 4.61 (1H, B part of AB system, J = 14.6 
Hz), 5.39 (1H, dd, J = 12.5, 4.2 Hz), 6.26 (1H, dd, J = 8.1, 0.9 Hz), 6.40-6.75 (1H, br s), 6.99 (1H, ddd, 
J = 8.1, 7.6, 1.7 Hz), 7.13 (2H, m), 7.22 (1H, ddd, J = 7.6, 7.6, 0.9 Hz), 7.27-7.38 (5H, m), 7.41-7.46 
(2H, m), 7.55 (1H, dd, J = 7.6, 1.7 Hz), 7.55-7.80 (2H, br s), 7.80-8.30 (1H, s br).  
 
13C-NMR (100 MHz, CDCl3) 

δ: 19.4 (q), 21.9 (q), 22.7 (q), 27.0 (q), 48.9 (t), 49.5 (t), 64.0 (d), 127.6 (d), 128.3 (d), 128.6 (d), 
128.9 (d), 129.2 (d), 130.1 (d), 130.2 (d), 131.2 (d), 132.1 (s), 133.1 (d), 133.8 (s), 134.1 (s), 136.0 
(s), 136.3 (s), 144.2 (s), 145.2 (s), 167.8 (s), 198.2 (s).  
 
HRMS (ESI +): Calcd. for C35H34N2NaO4S (M+Na+): 601.21315, found: 601.21187. 
 
 
4-benzyl-2-(2-methyl-1-phenylprop-1-enyl)-1-tosyl-3,4-dihydro-1H-benzo[e][1,4]diazepin-5(2H)-

one (24j) 
 

N

N

O

Ts

 
 
Yield: 67%.  
White oil.  
IR (neat) 1651, 1351, 1160, 703, 658 cm-1.  
 
1H-NMR: (400 MHz, CDCl3) 

δ: 1.40 (3H, s), 1.82 (3H, s), 2.43 (3H, s), 3.08 (1H, dd, J = 15.3, 4.2), 3.35 (1H, ddd, J = 15.3, 12.4, 
0.8), 3.75 (1H, A part of AB system, J = 14.7 Hz), 4.62 (1H, B part of AB system, J = 14.7 Hz), 5.40 
(1H, dd, J = 12.4, 4.2 Hz), 6.30 (2H, dd, J = 8.1, 1.1 Hz), 6.45 (1H, s br), 6.90-7.05 (1H, m), 7.03 (1H, 
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ddd, J = 8.1, 7.6, 1.7 Hz), 7.11-7.16 (2H, m), 7.18-1.25 (1H, m), 7.21 (1H, ddd, J = 7.6, 7.6, 1.1),7.27-
7.37 (5H, m), 7.42-7.60 (4H, m), 7.54 (1H, dd, J = 7.6, 1.7 Hz);  
 
13C-NMR (100 MHz, CDCl3) 

δ: 19.4 (q), 21.9 (q), 22.8 (q), 48.9 (t), 49.5 (t), 64.2 (d), 127.0 (d), 127.6 (d), 128.2 (d), 128.8 (d), 
129.2 (d), 129.8 (d), 130.1 (d), 131.2 (d), 131.4 (s), 133.5 (d), 133.8 (s), 134.0 (s), 136.6 (s), 137.0 
(s), 139.7 (s), 144.0. (s), 168.0 (s).  
 
HRMS (ESI +): Calcd. for C33H32N2NaO3S (M+Na+): 559.20258, found: 559.20159. 
 

 

4-benzyl-2-(2-methyl-1-pyridin-2-yl)prop-1-enyl)-1-tosyl-3,4-dihydro-1H-benzo[e][1,4]diazepin-

5(2H)-one (24k) 
 

N

N

O

N

Ts

 
 
Yield: 70%. 
Colorless oil.  
IR (neat) 1651, 1351, 1159, 712, 658 cm-1.  
 
1H-NMR: (400 MHz, CDCl3) 

δ: 1.40 (3H, s), 1.81 (3H, s), 2.43 (3H, s), 3.10 (1H, dd, J = 15.3, 4.2), 3.25-3.33 (1H, m), 3.86 (1H, A 
part of AB system, J = 14.7 Hz), 4.59 (1H, B part of AB system, J = 14.7 Hz), 5.34-5.40 (1H, m), 6.32 
(1H, s br), 7.08-7.14 (3H, m), 7.17-7.40 (8H, m), 7.41-7.48 (2H, m), 7.51-7.58 (1H, m), 7.60-8.40 
(1H, m), 8.52 (1H, d, J = 4.3 Hz).  
 
13C-NMR (100 MHz, CDCl3) 

δ: 19.5 (q), 21.9 (q), 22.9 (q), 48.7 (t), 49.6 (t), 63.9 (d), 127.6 (d), 128.3 (d), 128.2 (d), 128.8 (d), 
129.1 (s), 129.3 (d), 130.2 (d), 130.3 (d), 130.4 (d), 131.2 (s), 131.5 (d), 132.8 (s), 133.0 (s), 133.7 
(d), 134.0 (s), 134.4 (s), 136.1 (s), 136.7 (s), 144.3 (s), 167.8 (s).  
 
HRMS (ESI +): Calcd. for C32H31N3NaO3S (M+Na+): 560.19783, found: 560.19650. 
 
 

4-benzyl-9-methyl-2-(2-methyl-1-p-tolylprop-1-enyl)-1-tosyl-3,4-dihydro-1H-

benzo[e][1,4]diazepin-5(2H)-one (24l) 
 

N

N

O

Ts
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Yield: 75%.  
Colorless oil.  
IR (neat) 1651, 1351, 1162, 700, 658 cm-1. 
 
1H-NMR: (400 MHz, CDCl3) 

δ: 1.48 (3H, s), 1.57 (3H, s), 1.95 (3H, s), 2.32 (3H, s), 2.46 (3H, s), 3.00 (1H, dd, J = 15.2, 3.7), 3.18 
(1H, A part of AB system, J = 14.9 Hz), 3.59 (1H, dd, J = 15.2, 12.2 Hz), 4.69 (1H, A part of AB 
system, J = 14.9 Hz), 5.36 (1H, dd, J = 12.2, 3.6 Hz), 6.40-6.80 (1H, m), 6.90-7.05 (2H, m), 7.10-7.15 
(2H, m), 7.16-7.22 (1H, m), 7.23-7.35 (6H, m), 7. 38 (2H, d, J = 8.2 Hz), 7.50-7.55 (1H, m), 7.63 (2H, 
d, J = 8.2 Hz)  
13C-NMR (100 MHz, CDCl3) 

δ: 18.7 (q), 20.2 (q), 21.4 (q), 21.9 (q), 23.6 (q), 48.8 (t), 49.8 (t), 64.6 (d), 128.1 (d), 128.4 (d), 
128.5 (d), 128.7 (d), 129.1 (d), 130.2 (d), 132.3 (s), 133.8 (s), 134.1 (s), 134.6 (d), 135.0 (s), 136.1 
(s), 136.8 (s), 137.0 (s), 143.5 (s), 144.1 (s), 168.5 (s).  
 
HRMS (ESI +): Calcd. for C35H36N2NaO3S (M+Na+): 587.23388, found: 587.23221 
 
 
Synthesis of 4-benzyl-2-(2-methylprop-1-enyl)-3,4-dihydro-1H-benzo[e][1,4]diazepin-5(2H)-one 

(26) 
 

N

H
N

O  
 
To a solution of NH-Boc derivative XY (1 equiv.) in CH3CN were added chlorotrimethylsilane (2 

equiv.) and sodium iodide (2 equiv.) at room temperature. After complete disappearance of 

starting material (TLC plate, about 3 hours), methanol was added (4 equiv.). The reaction mixture 

was stirred for 2 hours, filtered on a celite pad and the volatile compounds were removed under 

reduced pressure. Purification over silica gel column (pentane/diethyl ether 6:4) or treatment of 

the crude product in acidic conditions (see text in the article) gave product XY in yields varying 

from 75% to 92%. 

 
Yellow oil.  
IR (neat) 3323, 1617, 1478, 749, 701 cm-1.  
 
1H-NMR (400 MHz, CDCl3) 

δ: 1.47 (3H, d, J = 1.3 Hz), 1.66 (3H, d, J = 1.3 Hz), 3.14 (1H, dd, J = 15.0, 3.4 Hz), 3.42 (1H, dd, J = 
15.0, 9.6 Hz), 3.60 (1H, s br), 4.16 (1H, ddd, J = 9.6, 9.6, 3.4 Hz), 4.61 (1H, A part of AB system, J = 
14.7 Hz), 5.03-5.08 (1H, m), 5.06 (1H, B part of AB system, J = 14.7 Hz), 5.06 (1H, m), 6.63 (1H, d, J 
= 8.0 Hz), 6.91 (1H, ddd, J = 8.0, 7.8, 0.8 Hz), 7.24 (1H, ddd, J = 8.0, 8.0, 1.6 Hz), 7.28-7.42 (m, 5H), 
7.85 (1H, dd, J = 7.8, 1.6 Hz).  
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13C-NMR (100 MHz, CDCl3) 

δ: 18.2 (q), 26.0 (q), 50.4 (t), 51.8 (t), 58.7 (d), 120.2 (d), 120.3 (d), 123.6 (s), 123.7 (d), 127.9 (d), 
128.8 (d), 129.0 (d), 132.1 (d), 132.5 (d), 136.0 (s), 137.6 (s), 143.8 (s), 170.2 (s).  
 
HRMS: Calcd. For C20H23ON2 (M+H+): 307.18049, found: 307.17991. 
 
 
Synthesis of 4-benzyl-2-(2-methyl-1-p-tolylprop-1-enyl)-3,4-dihydro-1H-benzo[e][1,4]diazepin-

5(2H)-one (25) 
 

N

H
N

O  
 
To a solution of 23c (1 equiv.) in DMF (0,1 M) were added PhSH (1.2 equiv.) and potassium 

carbonate (3 eq.) at room temperature. The reaction mixture was stirred at 40°C overnight. The 

mixture was treated with brine and extracted twice with ethyl acetate. It was then concentrated 

in vacuo and purified over silica gel column (pentane/diethyl ether 6:4).  

 
Yield: 13% 
White oil.  
IR (neat) 3320, 1613, 751, 700 cm-1.  
 
1H-NMR (400 MHz, CDCl3) 

δ: 1.43 (3H, s), 1.63 (3H, s), 2.27-2.32 (1H, m), 2.29 (3H, s), 3.14 (1H, dd, J = 14.9, 2.6 Hz), 3.46 (1H, 
dd, J = 14.9, 10.3 Hz), 4.62 (1H, d, J = 10.3 Hz), 4.69 (1H, A part of AB system, J = 14.8 Hz), 4.93 (1H, 
B part of AB system, J = 14.8 Hz), 6.18 (1H, d, J = 7.8 Hz), 6.73-6.81 (3H, m), 7.03-7.10 (3H, m), 
7.27-7.45 (5H, m), 7.77 (1H, dd, J = 7.8, 1.6 Hz).  
 
13C-NMR (100 MHz, CDCl3) 

δ: 19.8 (q), 21.4 (q), 22.9 (q), 50.0 (t), 51.9 (t), 60.9 (d), 119.0 (s), 119.3 (d), 121.6 (s), 121.9 (s), 
127.9 (d), 128.8 (d), 129.1 (d), 129.4 (d), 129.7 (d), 132.3 (d), 133.0 (s), 135.3 (s), 136.4 (s), 136.8 
(d), 137.6 (s), 170.0 (s), 172.0 (s).  
 
HRMS: Calcd. For C27H29ON2 (M+H+): 397.22744, found: 397.22648. 
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4) Exploiting the anthranilic scaffold, back to allenamides – 
A) a 6-exo trig carbopalladation/amination reaction  

 

 

 

 

 

General procedure for the preparation of propargylamides 28a-f 

 

 

 

DCC (10 mmol), N-propargyl amine (8.3 mmol)108 and DMAP (0.125 mmol) were added to a 

solution of Boc-anthranilic acid (10 mmol) in CH2Cl2 (60 mL, 0 °C). The mixture reacted for 2 d at 

r.t., then was filtered on a silica gel path. The solvent was removed under reduced pressure and 

the crude purified by flash chromatography (light petroleum/AcOEt 7:3). 

 
 

tert-butyl 2-(methyl(prop-2-ynyl)carbamoyl)phenylcarbamate (28a) 
 

NH

N

O

OO

t-Bu

Me

 
 
Yield: 76%. 
Yellow solid. M. p. 76°C 
IR: 1715, 1640 cm-1 
 
1H-NMR (400 MHz, CDCl3)  

δ: 1.50 (9H, s), 2.34 (1H, s), 3.12 (3H, s), 3.95-4.50 (2H, m), 7.03 (1H, ddd, J = 1.0, 7.2, 8.1 Hz), 7.36-
7.41 (2H, m), 7.96 (1 H, b), 8.13 (1H, d, J = 8.4 Hz) 
 
13C-NMR (100 MHz, CDCl3)  
δ: 28.2 (q), 33.8 (t), 54.0 (q), 75.0 (d), 78.1 (s), 80.4 (s), 120.9 (d), 121.9 (d), 122.8 (s), 127.3 (d), 
130.9 (d), 137.4 (s), 152.8 (s), 170.0 (s). 
 
MS: m/z 288 (M+). Anal. calcd for C16H20N2O3: C, 66.65; H, 6.99; N, 9.72. Found C, 66.59; H, 7.01; N, 
9.75. 
 
 

 

 

 

 

                                                           
108

 Except for commercial N-methyl-propargyl amine, all other amines were prepared according to: E. M. 
Beccalli, A. Bernasconi, E. Borsini, G. Broggini, M. Rigamonti, G. Zecchi J. Org. Chem. 2010, 75, 6923. 
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tert-butyl 2-((naphthalen-2-ylmethyl)(prop-2-ynyl)carbamoyl)phenylcarbamate (28b) 
 

 
 
Yield:54%. 
Brown oil. 
IR: 1713, 1641 cm-1 
 
1H-NMR (400 MHz, CDCl3)  
δ: 1.53 (9H, s), 2.01 (1H, s), 3.12 (2H, d, J = 7.2 Hz), 4.94 (2H, s), 7.03 (1H, ddd, J = 1.1, 6.5, 7.6 Hz), 
7.36 – 7.41 (3H, m), 7.44 – 7.48 (2H, m), 7.74 (1H, br s), 7.79 – 7.82 (4H, m), 8.13 (1H, dd, J = 0.4, 
8.2 Hz). 
 
13C-NMR (100 MHz, CDCl3)  
δ: 28.3 (q), 29.7 (t), 52.4 (t), 71.9 (d), 78.3 (s), 80.6 (s), 117.0 (d), 121.5 (d), 122.4 (d), 123.6 (s), 
125.5 (d), 126.2 (d), 126.4 (d), 126.9 (d), 127.7 (d), 127.8 (d), 128.8 (d), 131.1 (d), 133.0 (s), 133.3 
(s), 137.2 (s), 148.0 (s), 153.0 (s), 170.4 (s). 
 
MS: m/z 414 (M+). Anal. calcd for C26H26N2O3: C, 75.34; H, 6.32; N, 6.76. Found C, 75.49; H, 6.41; N, 
6.73. 
 
 

tert-butyl 2-(prop-2-ynyl(thiophen-2-ylmethyl)carbamoyl)phenylcarbamate (28c) 
 

NH

N

O

OO

t-Bu

S

 
 
Yield: 28% 
Brown oil. 
IR: 1718, 1645 cm-1 
  
1H-NMR (400 MHz, CDCl3)  
δ: 1.53 (9H, s), 2.37 (1H, s), 4.02 (2H, s), 4.94 (2H, s), 6.95-6.98 (1H, m), 7.04-7.08 (2H, m), 7.26-
7.38 (1H, m), 7.39-7.42 (2H, m), 7.80 (1H, br s), 8.10 (1H, d, J = 8.6 Hz). 
 
13C-NMR (100 MHz, CDCl3)  
δ: 28.3 (q), 36.9 (t), 46.6 (t), 72.0 (d), 78.3 (s), 80.4 (s), 121.4 (d), 122.3 (d), 123.6 (s), 126.1 (d), 
126.7 (d), 126.9 (d), 127.5 (d), 131.1 (d), 137.2 (s), 138.3 (s), 152.9 (s), 170.0 (s). 
 
MS: m/z 370 (M+). Anal. calcd for C20H22N2O3S: C, 64.84; H, 5.99; N, 7.56. Found C, 64.80; H, 5.91; 
N, 7.70. 
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tert-butyl 2-(benzyl(prop-2-ynyl)carbamoyl)phenylcarbamate (28d) 
 

NH

N

O

OO

t-Bu

 
 
Yield: 50%. 
Yellow solid (M. p. 95°C) 
IR: 1720, 1640 cm-1 
 
1H-NMR (CDCl3)  
δ: 1.53 (9H, s), 2.35 (1H, s), 3.95 (2H, s), 4.83 (2H, s), 7.05 (1H, d, J = 6.8), 7.03-7.42 (7H, m), 7.87 
(1H, br s), 8.10 (1H, d, J = 8.4) 
 
13C-NMR (CDCl3)  
δ: 28.3 (q), 36.9 (t), 51.9 (t), 72.3 (d), 78.2 (s), 80.6 (s), 121.5 (d), 122.3 (d), 123.5 (s), 126.8 (d), 
127.9 (d), 128.5 (d), 128.8 (d), 131.0 (d), 136.4 (s), 137.1 (s), 152.9 (s), 170.0 (s). 
 

MS: m/z 364 (M+). Anal. calcd for C22H24N2O3: C, 72.50; H, 6.64; N, 7.69. Found C, 72.61; H, 6.71; N, 
7.52. 
 

 

tert-butyl 2-((4-methylbenzyl)(prop-2-ynyl)carbamoyl)phenylcarbamate (28e) 
 

 
 
Yield: 45%. 
Brown oil 
IR: 1700, 1650 cm-1 
 
1H-NMR (CDCl3)  
δ: 1.27 (1H, s), 1.52 (9H, s), 2.32 (1H, s), 4.30 (2H, s), 4.85 (2H, s), 7.00-7.04 (2H, m), 7.12-7.14 (3H, 
m), 7.35-7.39 (2H, m), 7.85 (1H, br s), 8.10 (1H, d, J = 8.3). 
 
13C-NMR (CDCl3)  
δ: 21.1 (q), 28.3 (q), 38.7 (t), 47.0 (t), 73.5 (d), 78.3 (s), 80.4 (s), 121.4 (d), 122.3 (d), 123.7 (s), 
126.6 (d), 128.0 (d), 129.5 (d), 130.9 (d), 132.5 (s), 137.1 (s), 137.5 (s), 152.9 (s), 170.1 (s). 
 
MS: m/z 378 (M+). Anal. calcd for C23H26N2O3: C, 72.99; H, 6.92; N, 7.40. Found C, 72.92; H, 6.96; N, 
7.50. 
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tert-butyl 2-((4-methoxybenzyl)(prop-2-ynyl)carbamoyl)phenylcarbamate (28f) 
 

 
 
Yield: 62%. 
Colorless oil 
IR: 1703, 1651 cm-1 
 
1H-NMR (CDCl3)  
δ: 1.52 (9H, s), 2.34 (1H, s), 3.59-3.72 (2H, m), 3.81 (3H, s), 4.50-4.78 (2H, br s), 6.87 (2H, d, J = 8.5 
Hz), 7.03-7.42 (5H, m), 7.83 (1H, br s), 8.10 (1H, d, J = 8.4 Hz). 
 
13C-NMR (CDCl3)  
δ: 28.3 (q), 30.9 (t), 55.2 (q),64.4 (t), 73.5 (d), 78.3 (s), 80.5 (s), 114.2 (d), 121.4 (d), 122.3 (s), 126.9 
(d), 130.9 (d), 137.1 (s), 152.9 (s), 159.3 (s), 170.1 (s). 
 
MS: m/z 394 (M+). Anal. calcd for C23H26N2O4: C, 70.03; H, 6.64; N, 7.10. Found C, 69.95; H, 6.76; N, 
7.12. 
 
 

tert-butyl 4-chloro-2-(methyl(prop-2-ynyl)carbamoyl)phenylcarbamate (28g) 
 

NH

N

O

OO

t-Bu

MeCl

 
 
2-amino-5-chloro-N-methyl-N-(prop-2-ynyl)benzamide109 (3.15 mmol) was dissolved in EtOH (15 

mL). (Boc)2O (14 mmol) was added and the reactino was stirred at 50 °C for 6 d. The solvent  was 

then evaporated under reduced pressure and the residue was purified by flash column 

cromatography (light petroleum/EtOAc 4:1). 

 
Yield: 73%. 
White solid. M.p. 147 °C.  
IR:  1705, 1658 cm-1 
 
1H-NMR (CDCl3)  
δ: 1.51 (9H, s), 2.37 (1H, s), 3.13 (3H, s), 3.90-4.50 (2H, m), 7.20-7.37 (2H, m), 7.85 (1H, br s), 8.11 
(1H, d, J = 9.0) 
 

                                                           
109

 G. Broggini, G. Molteni, A. Terraneo, G. Zecchi, Tetrahedron, 1999, 55, 14803. 
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13C-NMR (CDCl3)  
δ: 28.4 (q), 37.0 (q), 42.0 (t), 73.2 (d), 79.5 (s), 80.9 (s), 122.4 (d), 124.2 (s), 127.1 (d), 130.9 (d), 
134.0 (s), 136.1 (s), 152.7 (s), 168.7 (s). 
 
MS: m/z 322 (M+). Anal. calcd for C16H19ClN2O3: C, 59.54; H, 5.93; N, 8.68. Found C, 59.66; H, 5.87; 
N, 8.71. 
 
 

 

 

 

 

 

 

General procedure for the preparation of allenamides 27 

 

 

 

t-BuOK (2.5 mmol) in THF (10 mL) was added to a solution of 28 (1 mmol). The resulting solution 

was stirred at r.t. for 1 min, then filtered on silica gel (AcOEt). The solvent was evaporated under 

reduced pressure and the residue was used without further purification for the next step. 

 

 
tert-butyl 2-(methyl(propa-1,2-dienyl)carbamoyl)phenylcarbamate (27a) 

 

NH

O

OO

Me

t-Bu

N

•

 
 
Yield: 97% 
Yellow oil. 
IR:  1701, 1652 cm-1 
 
1H-NMR (400 MHz, CDCl3):  
δ: 1.52 (9H, s), 3.13 (3H, s), 5.40 (2H, d, J = 6.3 Hz), 6.78 (1H, br s), 7.04 (1H, ddd, J = 1.2, 6.5, 7.9 
Hz), 7.28 (1H, dd, J = 1.5, 7.7 Hz), 7.39 (1H, ddd, J = 1.6, 6.2, 7.9 Hz), 7.90 (1H, br s), 8.16 (1H, dd, J 
= 1.0, 8.4 Hz)  
 
13C-NMR (100 MHz, CDCl3):  
δ: 28.3 (q), 30.3 (q), 80.6 (s), 87.3 (t), 103.3 (d), 115.8 (s), 121.0 (d), 121.7 (d), 128.7 (d), 131.3 (d), 
137.9 (s), 152.8 (s), 168.4 (s), 200.1 (s). 
 
MS: m/z 288 (M+). Anal. calcd for C16H20N2O3: C, 66.65; H, 6.99; N, 9.72. Found C,66.71; H, 6.97; N, 
9.67. 
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tert-butyl 2-((naphthalen-2-ylmethyl)(propa-1,2-dienyl)carbamoyl)phenylcarbamate (27b) 
 

 
 
Yield: 72%. 
Orange oil.  
 
1H-NMR (400 MHz, CDCl3)  
δ: 1.51 (9H, s), 5.08 (2H, s), 5.30 (2H, s), 7.06 (1H, br s), 7.42 – 7.54 (5H, m), 7.77 – 7.85 (5H, m), 
8.04 (1H, br s), 8.18 (1H, d, J = 8.1 Hz) 
 
13C-NMR (100 MHz, CDCl3)  
δ: 28.3 (q), 48.0 (t), 80.6 (s), 87.6 (t), 102.5 (d), 117.2 (d), 121.3 (d), 122.0 (d), 125.1 (d), 125.9 (d), 
126.2 (d), 127.0 (s), 127.3 (d), 127.7 (d), 127.8 (d), 128.4 (d), 129.5 (s), 131.4 (d), 132.7 (s), 133.4 
(s), 134.5 (s), 152.9 (s), 168.3 (s), 200.6 (s). 
 
MS: m/z 414 (M+). Anal. calcd for C26H26N2O3: C, 75.34; H, 6.32; N, 6.76. Found C, 75.45; H, 6.37; N, 
6.70. 
 
 

tert-butyl 2-(propa-1,2-dienyl(thiophen-2-ylmethyl)carbamoyl)phenylcarbamate (27c) 
 

NH

O

OO

t-Bu

N

•
S

 
 
Yield: 36% 
Yellow oil 
 
1H-NMR (400 MHz, CDCl3)  
δ: 1.53 (9H, s), 5.02 (2H, s), 5.45 (2H, d, J = 6.3 Hz), 6.70 (1H, br s), 6.95 – 7.05 (3H, m), 7.23 – 7.32 
(2H, m), 7.39 – 7.43 (1H, m), 7.95 (1H, br s), 8.13 (1H, d, J = 8.4 Hz)  
 
13C-NMR (100 MHz, CDCl3)  
δ: 28.3 (q), 42.5 (t), 80.5 (s), 88.2 (t), 101.6 (d), 121.2 (d), 121.9 (d), 125.5 (d), 126.4 (d), 127.4 (d), 
128.4 (d), 129.0 (s), 131.4 (d), 137.7 (s), 139.0 (s), 152.8 (s), 168.0 (s), 200.1 (s). 
 
MS: m/z 370 (M+). Anal. calcd for C20H22N2O3S: C, 64.84; H, 5.99; N, 7.56. Found C, 64.96; H, 5.85; 
N, 7.70. 
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tert-butyl 2-(benzyl(propa-1,2-dienyl)carbamoyl)phenylcarbamate (27d) 
 

 
 

Yield: 47%. 
Yellow oil. 
  
1H-NMR (400 MHz, CDCl3)  
δ: 1.53 (9H, s), 4.90 (2H, s), 5.29 (2H, d, J = 6.1 Hz), 6.73 (1H, br s), 7.00 – 7.42 (8H, m), 7.97 (1H, br 
s), 8.15 (1H, d, J = 8.2 Hz)  
 
13C-NMR (CDCl3)  
δ: 28.3 (q), 47.7 (t), 80.6 (s), 87.6 (t), 102.4 (d), 121.3 (d), 126.6 (d), 127.3 (s), 127.8 (d), 128.5 (d), 
128.6 (d), 128.8 (d), 131.3 (d), 137.1 (s), 137.6 (s), 152.8 (s), 168.4 (s), 200.5 (s). 
 
MS: m/z 364 (M+). Anal. calcd for C22H24N2O3: C, 72.50; H, 6.64; N, 7.69. Found C, 72.54; H, 6.67; N, 
7.61. 
 
 

tert-butyl 2-((4-methylbenzyl)(propa-1,2-dienyl)carbamoyl)phenylcarbamate (27e) 
 

 
 
Yield: 98% 
Brown oil 
 
1H-NMR (CDCl3) 
δ: 1.54 (9H, s), 2.34 (3H, s), 4.86 (2H, br s), 5.30 (2H, d, J = 6.0 Hz), 6.71 (1H, br s), 7.04 – 7.42 (7H, 
m), 7.97 (1H, br s), 8.14 (1H, d, J = 8.3 Hz)  
 
13C-NMR (CDCl3)  
δ: 21.1 (q), 28.3 (q), 47.7 (t), 80.5 (s), 87.5 (t), 102.4 (d), 121.2 (d), 122.0 (d), 126.8 (s), 127.8 (d), 
128.5 (d), 129.0 (d), 131.3 (d), 134.1 (s), 136.9 (s), 137.7 (s), 152.8 (s), 168.3 (s), 200.5 (s). 
 
MS: m/z 378 (M+). Anal. calcd for C23H26N2O3: C, 59.54; H, 5.93; N, 8.68. Found C, 59.66; H, 5.87; N, 
8.71. 
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tert-butyl 2-((4-methoxybenzyl)(propa-1,2-dienyl)carbamoyl)phenylcarbamate (27f) 
 

 
 

Yield: 60% 
Yellow oil 
 
1H-NMR (400 MHz, CDCl3) 
δ: 1.51 (9H, s), 3.79 (3H, s), 4.83 (2H, br s), 5.32 (2H, d, J = 6.3 Hz), 6.55 – 7.45 (7H, m), 7.94 (1H, br 
s), 8.13 (1H, d, J = 8.3 Hz)  
 
13C-NMR (100 MHz, CDCl3)  
δ: 28.3 (q), 47.1 (t), 55.2 (q), 80.5 (s), 87.5 (t), 102.3 (d), 113.9 (d), 121.2 (d), 123.0 (d), 128.5 (d), 
129.4 (d), 131.3 (d), 137.6 (s), 152.8 (s), 158.8 (s), 168.3 (s), 200.5 (s). 
 
MS: m/z 394 (M+). Anal. calcd for C23H26N2O4: C, 70.03; H, 6.64; N, 7.10. Found C, 70.12; H, 6.71; N, 
7.21. 
 
 

 

General procedure for the carbopalladation/amination of allenamides 26a-h: synthesis of 

quinazolinones 29a-h 

 
 
 
K2CO3 (4 mmol), the appropriate aryl iodide (1.5 mmol) and Pd(PPh3)4 (2%) in DMF (10 mL) were 

added to a solution of 2 (1 mmol). The resulting solution was heated at 100 °C for 2 h, then was 

cooled, diluted with brine and extracted with AcOEt (3 x 20 mL). The resulting crude was purified 

by flash chromatography to afford the desired products 29. 

 

 

 

tert-butyl 3-methyl-4-oxo-2-(1-phenylvinyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (29a) 
 

 
 

Yield: 73%. 
White solid. M.p.: 165°C 
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1H-NMR (400 MHz, CDCl3)  
δ: 1.41 (9H, s), 3.27 (3H, s), 5.03 (1H, d, J = 1.4 Hz), 5.24 (1H, d, J = 1.7 Hz), 6.67 (1H, br s), 7.16-
7.22 (4H, m), 7.27-7.29 (3H, m), 7.36 (1H, ddd, J = 1.6, J = 7.2, 8.8 Hz), 8.01 (1H, dd, J = 1.1, 7.8 Hz)  
 
13C-NMR (100 MHz, CDCl3)  
δ: 28.0 (q), 33.9 (q), 70.7 (s), 82.7 (d), 116.6 (t), 123.6 (s), 124.4 (d), 124.9 (d), 127.0 (d), 127.3 (d), 
127.9 (s), 128.1 (d), 131.7 (d), 137.0 (s), 139.0 (s), 143.9 (d), 145.5 (s), 163.1 (s). 
 
MS: m/z 364 (M+). Anal. calcd for C22H24N2O3: C, 72.50; H, 6.64; N, 7.69. Found C, 78.45; H, 6.22; N, 
5.65. 
 
 

tert-butyl 3-(naphthalen-2-ylmethyl)-4-oxo-2-(1-phenylvinyl)-3,4-dihydroquinazoline-1(2H)-

carboxylate (29b) 
 

N

O

OO

t-Bu

N

 
 

Yield: 44%. 
Brown oil.  
 
1H-NMR (CDCl3)  
δ: 1.01 (9H, s), 4.80 (1H, br s), 5.18 (1H, d, J = 1.7 Hz), 5.24 (1H, d, J = 1.4 Hz), 5.91 (1H, br s), 6.62 
(1H, br s), 7.07 – 7.09 (2H, m), 7.24 – 7.27 (4H, m), 7.40 – 7.54 (5H, m), 7.82 – 7.85 (4H, m), 8.12 
(1H, d, J = 7.6 Hz) 
 
13C-NMR (100 MHz, CDCl3) 
δ: 27.9 (q), 48.8 (t), 82.2 (s), 102.5 (d), 116.9 (t), 119.0 (d), 123.5 (s), 124.2 (d), 124.8 (d), 126.2 (d), 
126.3 (d), 126.5 (d), 127.3 (d), 127.7 (d), 127.8 (d), 127.9 (d), 128.1 (d), 128.8 (d), 132.2 (d), 133.1 
(s), 133.4 (s), 134.2 (s), 135.0 (d), 137.1 (s), 139.4 (s), 143.8 (s), 150.9 (s), 163.0 (s). 
 
MS: m/z 490 (M+). Anal. calcd for C32H30N2O3: C, 78.34; H, 6.16; N, 5.71. Found C, 78.45; H, 6.22; N, 
5.65. 
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tert-butyl 4-oxo-2-(1-phenylvinyl)-3-(thiophen-2-ylmethyl)-3,4-dihydroquinazoline-1(2H)-

carboxylate (29c) 
 

N

O

OO

t-Bu

N

S

 
 

Yield: 66%. 
Brown oil.  
 
1H-NMR (400 MHz, CDCl3)  
δ: 1.53 (9H, s), 4.35 (1H, br s), 5.07 (1H, d, J = 1.4 Hz), 5.22 (1H, s), 5.75 (1H, br s), 6.70 (1H, br s), 
6.98 – 7.07 (2H, m), 7.11 – 7.14 (3H, m), 7.22 – 7.26 (2H, m), 7.27 – 7.35 (2H, m), 7.41 – 7.47 (2H, 
m), 8.06 (1H, d, J = 7.2 Hz) 
 
13C-NMR (100 MHz, CDCl3)  
δ: 27.6 (q), 44.0 (t), 68.4 (d), 82.3 (s), 116.9 (t), 120.0 (d), 121.3 (d), 124.2 (s), 124.8 (d), 126.6 (d), 
127.3 (d), 127.6 (d), 127.9 (d), 128.5 (d), 136.7 (s), 137.0 (s), 138.1 (s), 143.7 (s), 151.0 (s), 162.9 
(s). 
 
MS: m/z 446 (M+). Anal. calcd for C26H26N2O3S: C, 69.93; H, 5.87; N, 6.27. Found C, 69.95; H, 5.92; 
N, 6.34. 
 
 

tert-butyl 3-benzyl-4-oxo-2-(1-phenylvinyl)-3,4-dihydroquinazoline-1(2H)-carboxylate (29d) 
 

N

O

OO

t-Bu

N

 
 
Yield: 62% 
Yellow oil.  
 
1H-NMR (400 MHz, CDCl3)  
δ: 1.17 (9H, s), 3.94 (1H, br s), 5.13 (1H, d, J = 1.6 Hz), 5.24 (1H, s), 5.80 (1H, br s), 6.49 (1H, br s), 
7.06-7.09 (2H, m), 7.22 – 7.28 (5H, m), 7.34 – 7.44 (6H, m), 8.08 (1H, d, J = 7.6 Hz)  
 
13C-NMR (100 MHz, CDCl3)  
δ: 27.6 (q), 44.0 (t), 68.4 (d), 82.3 (s), 116.9 (t), 120.0 (d), 121.3 (d), 124.2 (s), 124.8 (d), 126.6 (d), 
127.3 (d), 127.6 (d), 127.9 (d), 128.5 (d), 128.9 (d), 132.1 (d), 136.7 (s), 137.0 (s), 138.1 (s), 143.7 
(s), 151.0 (s), 162.9 (s). 
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MS: m/z 440 (M+). Anal. calcd for C28H28N2O3: C, 76.34; H, 6.41; N, 6.36. Found C, 76.41; H, 6.51; N, 
6.19. 
 
 
tert-butyl 3-(4-methylbenzyl)-4-oxo-2-(1-phenylvinyl)-3,4-dihydroquinazoline-1(2H)-carboxylate 

(29e) 
 

N

O

OO

t-Bu

N

 
 

Yield: 43%. 
Yellow oil. 
  
1H-NMR (CDCl3)  
δ: 1.47 (9H, s), 2.36 (3H, s), 3.87 (1H, br s), 5.12 (1H, d, J = 1.6 Hz), 5.23 (1H, s), 5.73 (1H, br s), 6.47 
(1H, br s), 7.07-7.12 (3H,m), 7.18-7.30 (8H, m), 7.65 (1H, d, J = 2.6 Hz), 8.08 (1H, d, J = 7.7 Hz) 
 
13C-NMR (CDCl3)  
δ: 21.1 (q), 28.3 (q), 48.0 (t), 68.2 (d), 82.2 (s), 116.9 (t), 123.5 (s), 124.1 (d), 124.8 (d), 126.8 (s), 
127.3 (d), 127.6 (d), 127.9 (d), 128.1 (d), 128.6 (d), 129.3 (s), 129.5 (d), 132.1 (s), 133.6 (s), 137.0 
(s), 137.6 (d), 152.1 (s), 162.9 (s). 
 
MS: m/z 454 (M+). Anal. calcd for C29H30N2O3: C, 76.63; H, 6.65; N, 6.16. Found C, 76.71; H, 6.72; N, 
6.13. 
 
 

tert-butyl 3-(4-methoxybenzyl)-4-oxo-2-(1-phenylvinyl)-3,4-dihydroquinazoline-1(2H)-

carboxylate (29f) 
 

N

O

OO

t-Bu

N

OMe  
 

Yield: 50%. 
Yellow oil. 
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1H-NMR (400 MHz, CDCl3, 50 °C)  
δ: 1.23 (9H, s), 3.70-3.90 (2H, m), 3.81 (3H s), 5.11 (1H, d, J = 1.2 Hz), 5.20 (1H, d, J = 1.2 Hz), 6.57 
(1H, br s), 6.89-7.43 (11H m), 8.05-8.09 (1H, m). 
 
 13C-NMR (100 MHz, CDCl3, 50 °C)  
δ: 27.6 (q), 55.3 (q), 68.1 (t), 116.9 (t), 124.8 (d), 127.6 (d), 127.7 (d), 127.9 (d), 128.0 (d), 128.9 
(d), 129.3 (d), 129.9 (d), 130.0 (s), 137.0 (s), 143.8 (s), 159.4 (s), 162.8 (s) 
 
MS: m/z 470 (M+). Anal. calcd for C29H30N2O4: C, 74.02; H, 6.43; N, 5.95. Found C, 74.10; H, 6.51; N, 
5.88. 
 
 
tert-butyl 6-chloro-3-methyl-4-oxo-2-(1-phenylvinyl)-3,4-dihydroquinazoline-1(2H)-carboxylate 

(29g) 
 

 
 

Yield: 40%. 
Yellow solid. M.p.: 115°C  
 
1H-NMR (400 MHz, CDCl3)  
δ: 1.40 (9H, s), 3.28 (3H, s), 5.01 (1H, d, J = 1.8 Hz), 5.29 (1H, d, J = 1.8 Hz), 6.68 (1H, br s), 7.17-
7.35 (6H, m), 7.98 (1H, d, J = 7.1 Hz), 8.01 (1H, dd, J = 1.1, J = 7.8 Hz)  
 
13C-NMR (CDCl3)  
δ: 28.0 (q), 34.0 (q), 70.0 (d), 83.1 (s), 116.9 (t), 124.6 (s), 125.8 (d), 126.8 (d), 126.9 (d), 128.1 (d), 
128.6 (d), 130.5 (s), 131.7 (d), 135.5 (s), 138.0 (s), 143.8 (s), 152.5 (s), 162.0 (s). 
 
MS: m/z 398 (M+). Anal. calcd for C22H23ClN2O3: C, 66.24; H, 5.81; N, 7.02. Found C, 66.30; H, 5.80; 
N, 7.11. 
 
 
tert-butyl 2-(1-(4-(ethoxycarbonyl)phenyl)vinyl)-3-methyl-4-oxo-3,4-dihydroquinazoline-1(2H)-

carboxylate (29h) 
 

 
Yield: 60%. 
Orange solid. M.p.: 146°C 
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1H-NMR (CDCl3)  
δ: 1.40 (9H, s), 1.40 (3H, t, J = 7.1 Hz), 3.29 (3H, s), 4.39 (2H, q, J = 7.1 Hz), 5.10 (1H, s), 5.34 (1H, s), 
6.67 (1H, br s), 7.22-7.28 (4H, m), 7.32-7.42 (1H, m), 7.96-8.01 (3H, m) 
 
13C-NMR (CDCl3)  
δ: 14.3 (q), 28.0 (q), 33.9 (q), 61.0 (t), 82.9 (s), 92.2 (d), 117.9 (t), 123.5 (s), 124.4 (d), 125.0 (d), 
126.9 (d), 127.4 (d), 129.4 (d), 130.0 (s), 131.8 (d), 136.8 (s), 142.7 (s), 143.5 (s), 155.0 (s), 163.0 
(s), 166.2 (s). 
 
MS: m/z 436 (M+). Anal. calcd for C25H28N2O5: C, 68.79; H, 6.47; N, 6.42. Found C, 68.66; H, 6.42; N, 
6.60. 
 
 
tert-butyl 2-(1-(4-acetylphenyl)vinyl)-3-methyl-4-oxo-3,4-dihydroquinazoline-1(2H)-carboxylate 

(29i) 
 

 
 

Yield: 56%. 
Orange solid. M.p.: 140°C. 
 
1H-NMR (400 MHz, CDCl3)  
δ: 1.41 (9H, s), 2.61 (3H, s), 3.30 (3H, s), 5.12 (1H, d, J = 1.8), 5.36 (1H, s), 6.68 (1H, br s), 7.21-7.39 
(5H, m), 7.88-7.90 (2H, m), 8.01 (1H, dd, J = 1.3, 7.8 Hz)  
 
13C-NMR (100 MHz, CDCl3)  
δ: 26.6 (q), 28.0 (q), 39.9 (q), 82.9 (s), 96.2 (d), 114.9 (s), 118.0 (t), 123.1 (s), 123.5 (d), 124.4 (d), 
125.1 (d), 127.4 (d), 128.2 (d), 131.8 (d), 136.5 (s), 136.8 (s), 143.0 (s), 143.3 (s), 163.0 (s), 197.5 
(s). 
 
MS: m/z 406 (M+). Anal. calcd for C24H26N2O4: C, 70.92; H, 6.45; N, 6.89. Found C, 70.95; H, 6.42; N, 
6.80. 
 
 
 
 

 

 
 



 Experimental Section  

4) Exploiting the anthranilic scaffold, back to allenamides – B) a 
6-exo trig hydroamination reaction 

 

 

 

 

 

 

 

General procedure for the Au-catalyzed hydroamination 

 
To a solution of 26 (0.48 mmoli) in MeCN (8 mL) add AuCl3 (0.029 mmoli). Let the mixture react 

under stirring for one night (60 °C). 

Evaporate the solvent under reduced pressure. The crude mixture is purified by silica gel flash 

column chromatography. 

 
 

Procedure for the Ru-catalyzed hydroamination 

 
Dissolve 26 (0.21 mmol) in MeCN (2 mL). Add RuCl3•2.4 H2O (0.002 mmol), dppe (0.002 mmol), 

K2CO3 (0.42 mol) and CuCl2 (0.21 mmol). Leave the mixture under stirring at 60°C for 2h. 

Evaporate the solvent under reduced pressure. 

 

 

tert-butyl 3-methyl-4-oxo-2-vinyl-3,4-dihydroquinazoline-1(2H)-carboxylate (30a) 
 

 
 

Yield: 45% (Au), 90% (Ru). 
White solid (M.p.: 122 °C) 
 
1H-NMR (400 MHz, CDCl3)  
δ: 1.50 (9H, s), 3.15 (3H, s), 5.20 (2H, dd, J = 0.7, 6.8 Hz), 5.64-5.73 (1H, m), 6.11 (1H, d, J = 3.7 Hz), 
7.18 (1H, ddd, J = 1.0, 6.8, 7.7 Hz), 7.43 (1H, ddd, J = 1.4, 6.8, 8.2 Hz), 7.50 (1H, d, J = 6.0 Hz), 8.01 
(1H, dd, J = 1.0, 7.7 Hz)  
 
13C-NMR (100 MHz, CDCl3)  
δ: 28.2 (q), 32.9 (q), 70.9 (d), 83.0 (s), 118.6 (t), 122.4 (s), 123.7 (d), 124.5 (d), 127.7 (d), 131.6 (d), 
132.2 (d), 137.5 (s), 155.0 (s), 162.3 (s). 
 
MS: m/z 288 (M+). Anal. calcd for C16H20N2O3: C, 66.65; H, 6.99; N, 9.72. Found C, 66.70; H, 6.81; N, 
9.81. 

tert-butyl 6-chloro-3-methyl-4-oxo-2-vinyl-3,4-dihydroquinazoline-1(2H)-carboxylate (30b) 



 Experimental Section  

 

 
 
Yield: 41%. 
White solid (M.p.: 120 °C)  
 
1H-NMR (400 MHz, CDCl3)  
δ: 1.53 (9H, s), 3.15 (3H, s), 5.15-5.21 (2H, m), 5.66 (1H, ddd, J = 3.6, 10.3, 15.5 Hz), 6.05 (1H, br s), 
7.38 (1H, dd, J = 2.5, 8.7 Hz), 7.50 (1H, d, J = 6.3 Hz), 7.97 (1H, d, J = 2.8 Hz)  
 
13C-NMR (100 MHz, CDCl3)  
δ: 28.2 (q), 33.1 (q), 70.0 (d), 83.4 (s), 118.9 (t), 123.7 (s), 125.2 (d), 127.5 (d), 130.2 (s), 131.3 (d), 
131.9 (d), 136.0 (s), 151.4 (s), 161.3 (s). 
 
MS: m/z 322 (M+). Anal. calcd for C16H19ClN2O3: C, 59.54; H, 5.93; N, 8.68. Found C, 59.62; H, 5.81; 
N, 8.71. 
 
 

tert-butyl 3-(naphthalen-2-ylmethyl)-4-oxo-2-vinyl-3,4-dihydroquinazoline-1(2H)-carboxylate 

(30c) 
 

 
 
Yield: 40%. 
Brown oil. 

 
1H-NMR (400 MHz, CDCl3)  
δ: 1.20 (9H, s), 4.12 (1H, br s), 5.15-5.24 (2H, m), 5.68-5.76 (1H, m), 5.74 (1H, br s), 6.12 (1H, d, J = 
5.3 Hz), 7.23 – 7.27 (1H, m), 7.44 – 7.49 (5H, m), 7.79 – 7.83 (4H, m), 8.11 (1H, dd, J = 1.3, 7.7 Hz)  

 
13C-NMR (100 MHz, CDCl3)  
δ: 27.6 (q), 48.2 (t), 79.8 (s), 82.5 (d), 118.7 (t), 122.4 (d), 123.5 (s), 124.6 (d), 126.1 (d), 126.5 (d), 
127.3 (d), 127.7 (d), 127.8 (d), 127.9 (d), 128.1 (d), 128.8 (d), 129.8 (d),  131.8 (d), 133.1 (s), 133.4 
(s), 137.7 (s), 151.1 (s), 162.3 (s), 164.0 (s). 
 
MS: m/z 414 (M+). Anal. calcd for C26H26N2O3: C, 75.34; H, 6.32; N, 6.26. Found C, 75.36; H, 6.41; N, 
6.17. 

 

 

 

tert-butyl 3-benzyl-4-oxo-2-vinyl-3,4-dihydroquinazoline-1(2H)-carboxylate (30d) 



 Experimental Section  

 

 
 
Yield: 54%. 
Yellow oil.  
 
1H-NMR (400 MHz, CDCl3)  
δ: 1.34 (9H, s), 3.90 (1H, br s), 5.17-5.21 (2H, m), 5.59 (1H, br s), 5.70 (1H, ddd, J = 5.4, 8.9, 16.8 
Hz), 6.05 (1H, br s), 7.21-7.25 (2H, m), 7.31-7.37 (4H, m), 7.47 (1H, ddd, J = 1.6, 6.0, 7.5 Hz), 7.60 
(1H, br s), 8.07 (1H, dd, J = 1.5, 7.8 Hz) 
   
13C-NMR (100 MHz, CDCl3)  
δ: 27.9 (q), 47.7 (t), 68.3 (d), 82.6 (s), 118.6 (t), 122.0 (d), 123.6 (s), 124.5 (d), 127.8 (d), 128.1 (d), 
128.8 (d), 129.8 (d), 131.8 (d), 132.3 (d), 136.6 (s), 137.6 (s), 152.0 (s), 164.9 (s). 
 
MS: m/z 364 (M+). Anal. calcd for C22H24N2O3: C, 72.50; H, 6.64; N, 7.69. Found C, 72.47; H, 6.71; N, 
7.71. 

 

 

tert-butyl 3-(4-methylbenzyl)-4-oxo-2-vinyl-3,4-dihydroquinazoline-1(2H)-carboxylate (30e) 
 

 
 

Yield: 63%. 
Brown oil. 
  
1H-NMR (400 MHz, CDCl3)  
δ: 1.34 (9H, s), 2.33 (3H, s), 2.41 (3H, s), 3.88 (1H, br s), 5.16-5.20 (2H, m), 5.56 (1H, br s), 5.64-
5.75 (1H, m), 6.03 (1H, br s), 7.13-7.33 (4H, m), 7.45 (1H, d, J = 7.3 Hz), 7.59 (1H, br s), 8.05 (1H, d, 
J = 7.6 Hz) 
 
13C-NMR (100 MHz, CDCl3)  
δ: 18.3 (q), 27.9 (q), 47.7 (t), 68.3 (d), 82.6 (s), 118.6 (t), 122.0 (d), 123.6 (s), 124.5 (d), 127.8 (d), 
128.1 (d), 128.8 (d), 129.8 (d), 131.8 (d), 132.3 (d), 136.6 (s), 137.6 (s), 152.0 (s), 164.9 (s). 
 
MS: m/z 378 (M+). Anal. calcd for C23H26N2O3: C, 72.99; H, 6.92; N, 7.40. Found C, 73.04; H, 6.81; N, 
7.52. 

 

 

 

tert-butyl 3,8-dimethyl-4-oxo-2-vinyl-3,4-dihydroquinazoline-1(2H)-carboxylate (30f) 



 Experimental Section  

 

 
 

Yield: 52% 
Colorless oil 
 
1H-NMR (400 MHz, CDCl3)  
δ: 1.52 (9H, s), 3.79 (3H, s), 4.54-4.62 (1H, m), 5.14-5.20 (1H, m),5.59-5.64 (1H, m), .95-6.02 (1H, 
m),6.85 – 7.42 (6H, m), 8.04 (1H, d, J = 1.2 Hz), 8.38-8.43 (1H, m) 
  
13C-NMR (CDCl3) 
δ: 27.4(q), 54.8 (q), 59.9 (t), 67.8 (d), 113.9 (d), 118.0 (t), 119.2 (d), 120.7 (d), 124.1 (d), 126.9 (d), 
127.6 (d), 128.8 (d), 129.4 (d), 131.8 (d), 170.5 (s).  
 
MS: m/z 394 (M+). Anal. calcd for C23H26N2O4: C, 70.03; H, 6.64; N, 7.10. Found C, 70.07; H, 6.71; N, 
7.01. 

 

 

tert-butyl 3-(4-methoxybenzyl)-4-oxo-2-vinyl-3,4-dihydroquinazoline-1(2H)-carboxylate (30g) 
 

 
 

Yield: 59% 
Colorless oil 
 
1H-NMR (400 MHz, CDCl3)  
δ: 1.52 (9H, s), 3.79 (3H, s), 4.54-4.62 (1H, m), 5.14-5.20 (1H, m),5.59-5.64 (1H, m), .95-6.02 (1H, 
m),6.85 – 7.42 (6H, m), 8.04 (1H, d, J = 1.2 Hz), 8.38-8.43 (1H, m) 
  
13C-NMR (CDCl3) da verificare 
δ: 27.4(q), 54.8 (q), 59.9 (t), 67.8 (d), 113.9 (d), 118.0 (t), 119.2 (d), 120.7 (d), 124.1 (d), 126.9 (d), 
127.6 (d), 128.8 (d), 129.4 (d), 131.8 (d), 170.5 (s).  
 
MS: m/z 394 (M+). Anal. calcd for C23H26N2O4: C, 70.03; H, 6.64; N, 7.10. Found C, 70.07; H, 6.71; N, 
7.01. 
 
 
 
 
 


