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Introduction

Subdivision schemes are efficient tools for generating smooth curves and surfaces as limit of
an iterative algorithm based on simple refinement rules starting from few control points defin-
ing a polyline (curve case) or a mesh (surface case). The basic ideas behind subdivision are
very old and can be dated back to the papers of de Rham, in which he proposed the so-called
‘corner cutting’ to describe smooth curves [35]. Some years later, the publication of the pa-
pers by Catmull and Clark [14] and Doo and Sabin [48] marked the beginning of subdivision
for surface modeling. In fact, subdivision surfaces are currently extensively used in animated
features, computer-generated animated movies, computer graphics and video games design,
and they have recently started to appear also in the geometric kernels of modeling and CAD
systems. The great success of subdivision schemes is due to the many advantages they offer
such as computational efficiency and freedom in movements and shapes. In fact, only the
initial control points has to be stored and just few iterations are needed to get a ’graphically
smooth’ limit curve or surface. Moreover, using meshes with arbitrary manifold topology we
can include in the limit surface sharp edges, creases, cusps and any desired feature. Recently,
subdivision schemes have become of interest also in biomedical imaging applications, due
to their potential usefulness in efficiently representing active surfaces for the segmentation
of 2D and 3D biomedical images [38]. As a consequence, the widely use in many different
application fields has led to the definition of many different subdivision schemes and to the
development of tools for the analysis of the main properties characterizing the schemes and
the limit curves or surfaces produced. Many of these tools are based on algebra and linear
algebra structures.

Aim of this thesis is to give a complete framework regarding the tools used for the analysis
of subdivision schemes and to exploit them to construct new subdivision schemes improving
many results appeared in literature. In particular, we focus our attention on some linear
algebra structures that allow to give an exhaustive characterization regarding the analysis of
convergence and smoothness of the limit curves and surfaces produced. In fact, it is well-
known that for stationary subdivision surfaces constructed on an arbitrary manifold topology
mesh, the smoothness analysis near extraordinary vertices and faces could be investigated
by studying the eigenproperties of a block-circulant matrix and by applying a block diago-
nalization via a unitary matrix which involves the discrete Fourier transform [112, 117, 138].
Block-circulant matrices form an algebra and represent a subspace of block-Toeplitz used for
their approximation in many numerical methods such as multigrid methods, preconditioned
Krylov methods [33, 80] and, as we will extensively see in Chapter 5, in subdivision analysis.
If the literature gives us all the necessary tools for the analysis of stationary subdivision
surfaces on arbitrary manifold topology meshes, which are all summarized in Section 2.3, no
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Introduction 2

general methods have ever been proposed for the study of non-stationary subdivision surfaces
near extraordinary vertices or faces. In this thesis (cf. Section 3.2.2), we propose general
sufficient conditions to check the convergence of non-stationary subdivision schemes on ar-
bitrary manifold topology meshes, exploiting again the eigenproperties of a block-circulant
matrix.
The design of these linear algebra tools are thus fundamental for the construction and anal-
ysis of stationary and non-stationary subdivision schemes on arbitrary manifold topology
meshes. The use of this kind of meshes, described by triangular or quadrilateral faces, is
extremely important for the application of subdivision surfaces. In fact, using only regular
meshes, we would not be able to design the complex models used in computer aided design as
well as in biomedical imaging segmentation. Moreover, non-stationary subdivision schemes
allow us to design particular shapes such as ellipsoids, tori and cylinders, thanks to their
capability of generating or reproducing not only polynomials, as the stationary schemes, but
also exponential polynomials. Chapters 5 and 6 deeply analyze these topics.
Regarding the univariate setting, the regularity analysis of stationary subdivision curves is
usually developed using algebraic conditions on a Laurent polynomial associated to the subdi-
vision scheme [52, 53, 57]. However, this technique provides only sufficient conditions ensuring
Cr convergence. To work out necessary and sufficient conditions for the Cr continuity of a
subdivision scheme, we should exploit a linear algebra tool that involves the joint spectral
radius of a set of matrices [18, 22, 32, 115, 118, 121]. This technique has been already used
in some papers (see e.g [13, 62, 74]), since it allows to compute the Hölder regularity of the
limit curves. In this thesis, we are not interested in finding the Hölder exponent [20]; on
the contrary, in Section 4.1, we exploit the joint spectral radius technique, to find the exact
ranges of variation of the free parameters that define the refinement rules of a subdivision
scheme.
We now describe in more details the contents of each chapter.

• Chapters 1, 2 and 3 recall the main notions regarding subdivision schemes. In particular,
Chapter 1 gives a classification of subdivision schemes, focusing on the features we will
consider in this thesis and explaining the terminology we will meet in the following
chapters. In Chapter 2, we present stationary subdivision schemes, together with all the
properties and methods proposed in literature for their analysis. Particular attention
is given to the description of the linear algebra technique based on the joint spectral
radius (Section 2.2.1), and to the construction and analysis of the block-circulant matrix
associated to the subdivision scheme (Section 2.3). In a similar way, Chapter 3 contains
the main notions on non-stationary subdivision schemes. We focus our attention on the
first general method to check convergence of non-stationary subdivision schemes near
extraordinary vertices and faces in Section 3.2.2.

• Chapter 4 deals with univariate subdivision. In literature, many algorithms for high
quality curve design have been proposed during the years (e.g. [16, 35, 42, 72, 74, 90]).
In this chapter, we would not present new subdivision schemes, but we show some
generalizations of existent schemes in order to provide a complete framework and to
extend their use for more applications. In Section 4.1, we present a 4-point parameter-
dependent subdivision scheme which results to contain numerous independent schemes
appeared in the last years as special cases [71, 72, 66, 109, 67, 116]. Exploiting the
joint spectral radius technique, we show the complete range of variability of the free
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parameters in order to obtain limit curves of class C2 and C3. This method allows us
to improve the result given in [109]. To require not only high smoothness, but also the
capability of reproducing a large space of polynomials, we need to consider a 5-point
subdivision scheme. In Section 4.2, we study the interpolatory 5-point subdivision
scheme proposed in [136], focusing on the property of convexity preservation, and we
generalize this scheme to the non-stationary setting, thus allowing for the reproduction
of exponential polynomials, i.e. reproduction of conic sections. These properties lead
to the construction of a piecewise-uniform scheme able to produce C2 limit curves
containing segments of curve preserving the convexity of the initial data and segments
reproducing conic sections arcs. The advantages given by the use of non-stationary
rules prompt us to study a generalization of some fundamental families of subdivision
schemes [42, 74, 90] to the non-stationary setting. These extensions are presented in
Section 4.3.

• In Chapter 5, we consider stationary subdivision surfaces defined on arbitrary manifold
topology meshes. The goal is to study how to choose the free weights of the extraordi-
nary stencils in order to obtain limit surfaces of class C1 and with bounded curvature.
In Section 5.1, we study an interpolatory subdivision scheme generalizing the tensor-
product version of the Dubuc-Deslauriers 4-point scheme [42] to quadrilateral meshes
of arbitrary manifold topology. Requiring special conditions on eigenvalues and eigen-
vectors of the block-circulant matrix associated to the scheme (cf. Section 2.3), we find
which conditions have to be satisfied by the stencil weights to produce surfaces with
the desired properties. We also propose a particular choice for these weights to improve
the schemes in [39, 84, 93]. The technique used to find the stencil weights of this par-
ticular scheme could be generalized to be applied to any subdivision scheme, described
on triangular or quadrilateral meshes of arbitrary manifold topology. In Section 5.2,
we propose a general computational strategy for this purpose, focusing on the case of
primal schemes associated to hybrid block-circulant matrices. We apply this strategy to
two schemes improving the properties of well-known Loop’s scheme [95] and we obtain
new ranges of variability for the stencil weights which satisfy the necessary conditions
for C1 continuity and bounded curvature.

• Chapter 6 studies non-stationary subdivision schemes and their application in biomed-
ical imaging segmentation. An important challenge in biomedical imaging is the seg-
mentation of closed 3D structures. Since objects in biomedical images generally have
an ellipsoidal shape, non-stationary subdivision schemes turn out to be useful in this
field. In this chapter, we propose novel explicit definitions of 3D deformable models
based on two different non-stationary subdivision schemes both defined on triangular
meshes. In Section 6.1, we construct a non-stationary subdivision scheme defined on
regular triangular meshes and providing exact reproduction of ellipsoids; while in Sec-
tion 6.2 we propose a non-stationary subdivision scheme defined on arbitrary manifold
topology triangular meshes and able to produce a good approximation of an ellipsoid.
We compare these two proposals, highlighting positive and negative aspects. Tests on
real biomedical images are shown.

• In Chapter 7, we propose a general algorithm to design interpolatory curves and sur-
faces using stationary and non-stationary approximating subdivision schemes. The key
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element of this algorithm is the use of the so-called limit stencil which indicates the
position of the control points at the end of the subdivision process. In the station-
ary case, the computation of the limit stencil is obtained exploiting once again linear
algebra tools; in particular, we use the Jordan decomposition of the so-called local sub-
division matrix. In the non-stationary case, there is not a general method to find the
limit stencil, but we show two different ways to compute it based on linear algebra and
geometrical approaches. Many examples of interpolatory curves and surfaces are shown
using both stationary and non-stationary approximating subdivision schemes.

The papers that supply material for this thesis are the following. For the convergence anal-
ysis of non-stationary subdivision schemes near extraordinary elements see [45], currently in
preparation. For the study of univariate schemes see [103, 105, 106]. For the analysis of
stationary subdivision schemes on arbitrary manifold topology meshes see [46, 104], while for
the use of non-stationary subdivision schemes for biomedical imaging segmentation see [108]
and [6], in preparation. Finally, for the interpolatory algorithm, a first example based on
non-stationary Chaikin’s scheme is presented in [102], while an extended generalization is in
preparation (see [107]).



Chapter 1

Classification of subdivision
schemes

In this thesis we study univariate and bivariate subdivision schemes to design smooth curves
and surfaces. We consider only linear and scalar subdivision schemes, that is subdivision
schemes whose refinement rules are described as a linear combination of points. Thus, we
exclude from this treatment subdivision schemes defined by non-linear or geometrical rules
as well as subdivision schemes applied to vectors (see e.g. [17, 43, 60] and [26, 50, 79]).
Among linear scalar subdivision schemes, we can distinguish between stationary and non-
stationary schemes. Stationary schemes are characterized by refinement rules which are
independent from the subdivision level, thus they are the same at each step of the refine-
ment process. On the contrary, non-stationary schemes have refinement rules that change
with the subdivision level, hence they are level-dependent. As we will see in the following,
non-stationary subdivision could be seen as a generalization of the stationary setting. In this
thesis we study both stationary and non-stationary subdivision schemes.
Another distinction regards the uniformity of the subdivision rules. A subdivision scheme
is called uniform if the same refinement rules are applied to all control points of the initial
polyline or mesh, otherwise it is called non-uniform. In general, in this thesis we consider uni-
form scheme, except for a piecewise-uniform scheme studied in Section 4.2 and the definition
of the so-called extraordinary vertices and faces in the surface case presented in Chapter 5,
since they usually require special refinement rules. Thus, where it is do not explicitly specify,
we imply that the considered scheme is uniform.
Summarizing, in this thesis we focus on subdivision schemes which are

• univariate or bivariate,

• linear,

• scalar,

• stationary or non-stationary,

• uniform or non-uniform.

Since we have talked about extraordinary vertices and faces, in the following we describe in
detail the elements that compose a mesh and their properties.
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Classification of subdivision schemes 6

1.1 Regular and arbitrary manifold topology meshes

In general, a mesh is defined by vertices and polygonal faces identified by the so-called vertex
valence, i.e. the number of edges incident on a vertex, and face valence, i.e. the number of
edges delimiting a face. For a quadrilateral mesh, vertices and faces are called regular if they
have valence 4 (see Figure 1.1 (a)). Differently, for a triangular mesh, regular vertices are the
ones with valence 6, while regular faces have valence 3 (see Figure 1.1 (b)). In this thesis, we
use the term regular mesh to refer to a mesh that contains regular vertices and regular faces
only. The irregular vertices and faces are called extraordinary vertices/faces and, whenever

(a) Regular quadrilateral mesh (b) Regular triangular mesh

Figure 1.1: Regular meshes.

they appear, the mesh is said to be irregular or of arbitrary manifold topology (see Figure
1.2).

(a) Extraordinary face (b) Extraordinary vertex

Figure 1.2: Extraordinary elements in a quadrilateral mesh.
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In literature, there are also subdivision schemes defined on quad/triangle meshes, i.e. meshes
defined both by triangles and quadrilaterals (see e.g. [81, 98]). However, this kind of schemes
are not studied in this thesis.

(a) Binary scheme (b) Ternary scheme

Figure 1.3: Examples of bivariate binary and ternary schemes on triangular meshes.

1.2 Main characteristics of subdivision schemes

There are other common terms to classify subdivision schemes. The arity m ≥ 2 indicates the
rate with which the control polyline or mesh is subdivided. Precisely, a univariate subdivision
scheme of arity m inserts m new vertices in correspondence of an old vertex or edge, while
a bivariate subdivision scheme splits each old polygonal face in m2 new faces, as shown in
Figure 1.3. In this thesis we study binary (m = 2) and ternary (m = 3) subdivision schemes.

(a) Univariate primal scheme (b) Univariate dual scheme

Figure 1.4: Univariate binary primal and dual schemes.

A m-arity univariate subdivision scheme is said to be primal if it retains or modifies the old
vertices and create m− 1 new vertices at each old edge of the control polyline (see Figure 1.4
(a)), while it is said to be dual if it creates m new vertices at the old edges and discards the
old vertices (see Figure 1.4(b)). In a similar way, a bivariate subdivision scheme is said to be
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primal if it performs a face split as explained in Figure 1.5 (a), while it is said to be dual if
it performs a vertex split as shown in Figure 1.5 (b).

(a) Bivariate primal scheme (b) Bivariate dual scheme

Figure 1.5: Bivariate binary primal and dual schemes.

During the subdivision process, for each vertex of the initial control polyline or mesh, a
sequence of vertices corresponding to different subdivision levels is defined. If all the vertices
in the sequence are the same, the scheme is called interpolatory, otherwise it is termed
approximating. In practice, an interpolatory scheme retains all the old vertices and introduces
new ones, so that the limit curve or surface passes through the initial control points see
Figure 1.6 (a). On the contrary, an approximating scheme deletes the old vertices and creates
new ones, thus the limit curve or surface follows the shape of the initial control polyline or
mesh without interpolating the starting vertices, as shown in Figure 1.6 (b).

(a) Interpolatory surface (b) Approximating surface

Figure 1.6: Subdivision surfaces produced by approximating and interpolatory schemes.

We point out that all the interpolatory schemes are primal, since they retain the old vertices.



Chapter 2

Stationary subdivision schemes

This chapter is devoted to recalling the main notions on stationary subdivision schemes:
the formalism and the notation, the important properties that characterize a stationary
subdivision scheme, the main tools used to develop the analysis of the limit curves or surfaces
generated.
A stationary subdivision scheme is denoted by S. The term ‘stationary’ is important to
distinguish this kind of schemes from those studied in Chapter 3, and it underlines that the
refinement rules characterizing the scheme S are the same at each step of the subdivision
process, namely they do not depend on the subdivision level k ∈ N0 = N ∪ {0}. Thus,
a stationary subdivision scheme is an iterative algorithm that generates the refined data
sequence f (k+1) = {f (k+1)

i , i ∈ Zs}, starting from a set of control points f (0) = {f (0)
i , i ∈ Zs},

by applying the same refinement rules at each subdivision step.
When we study a stationary subdivision scheme, we have to pay attention not only to its
refinement rules but also to the set of initial control points and the topology with which they
are connected, especially in the bivariate case. In fact, in the univariate setting (s = 1), the
set of control points f (0) is just a sequence of ordered vertices, connected by edges, and thus
defining a control polyline. The control polyline could be open or close. In the bivariate
setting (s = 2), the control points f (0) define a mesh composed by polygonal faces, vertices
and edges. As we have seen in Section 1.1, we could distinguish between regular or arbitrary
manifold topology meshes defined on quadrilateral or triangular grids. Open polylines and
meshes require special conditions on the boundary, which are not the main goal of this thesis.
Thus, to avoid any problems on boundaries, when an open curve or surface is studied we
consider it as a truncation of a more extended one.
The kind of mesh on which we apply a subdivision scheme S influences the refinement rules
of the subdivision algorithm and the tools useful for the analysis of the limit surface. In
particular, in the univariate setting and on regular meshes, the action of the subdivision
scheme S is described by the subdivision mask

a = {ai, i ∈ Zs}. (2.1)

To emphasize the connection with the subdivision mask, when the subdivision scheme S is a
univariate scheme or a bivariate scheme defined on regular meshes, we refer to it as Sa. In
this case, a stationary scheme Sa is described by the refinement rules

f
(k+1)
i =

∑
j∈Zs

ai−mj f
(k)
j , i ∈ Zs, k ∈ N0, (2.2)

9



Stationary subdivision schemes 10

which generate the sequence of points at level k + 1 starting from the points at level k. In
particular, s = 1 for curves and s = 2 for surfaces, while m indicates the arity of the scheme
(see Section 1.2). The coefficients of the mask in (2.1) define the so-called subdivision symbol

a(z) :=
∑
i∈Zs

aiz
i, z ∈ (C\{0})s, (2.3)

with zi = zi11 z
i2
2 , in case s = 2. Since the schemes we consider have finite support supp(a) =

{i ∈ Zs | ai 6= 0}, the corresponding symbols are Laurent polynomials, namely polynomials
in positive and negative powers of the variables.
On the other hand, in the irregular regions of a mesh, i.e. in the neighborhood of an ex-
traordinary vertex or face, the action of the subdivision scheme S is described by the local
subdivision matrix S (see Section 2.3). Near an extraordinary vertex/face, the subdivision
rules which relates the vertices of the k-th level mesh with those of the next level are encoded
in the rows of the local subdivision matrix S, resulting in

f (k+1) = Sf (k) = S2f (k−1) = . . . = Sk+1f (0). (2.4)

Important properties of subdivision schemes are convergence, polynomial generation and
reproduction, approximation order and regularity of the limit curve or surface. In particular,
in literature there are tools for the study of polynomial generation and reproduction related
only to regular case [19, 25, 91], while regarding convergence and regularity analysis different
methods have been proposed for both the case of regular meshes (see e.g. [52, 53, 57, 62, 74])
and arbitrary manifold topology meshes (see e.g. [112, 111, 117]).
In the following sections we recall the main results regarding these important properties.

2.1 Generation and reproduction of polynomials
We start by denoting with Πs

d the space of s-variate polynomials up to degree d. Polynomial
generation of degree d is the capability of a subdivision scheme Sa to generate the full space
Πs
d, while polynomial reproduction of degree d is the capability to produce in the limit exactly

the same d-degree polynomial from which the data are sampled. To give more details, we
first need to recall the notion of convergence and non-singularity of a stationary subdivision
scheme Sa.

Definition 2.1 A stationary subdivision scheme Sa is called uniformly convergent if, for any
initial data f (0) ∈ `(Zs), there exists a limit function gf (0) ∈ C(Rs) (which is nonzero for at
least one initial nonzero sequence f (0)) such that the sequence of continuous functions F (k)

interpolating the data f (k) at the parameter values i
mk

, i ∈ Zs, converges to gf (0) as k → +∞,
i.e.

gf (0) := lim
k→+∞

Ska f (0) = lim
k→+∞

F (k),

uniformly. The stationary subdivision scheme Sa is called Cr convergent, r ∈ N0, if gf (0) ∈
Cr(Rs).

Definition 2.2 The limit function φ := gδ with initial data

δi =
{

1, i = 0,
0, otherwise, i ∈ Zs (2.5)

is called the basic limit function of the subdivision scheme and it is compactly supported.
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Definition 2.3 [19] A stationary subdivision scheme is called non-singular if it is convergent
and gf (0) = 0 if and only if f (0) is the zero sequence, namely f (0)

i = 0 for all i ∈ Zs.

In particular, the notion of non-singularity is equivalent to the notion of linear independence
of the integer shifts of the correspondent basic limit function [19, Proposition 1.3].
The differences between polynomial generation and polynomial reproduction have been stud-
ied in [25] for the univariate case, and in [19] for the surface case. We underline these
differences in the following definitions.

Definition 2.4 A convergent stationary subdivision scheme Sa generates polynomials up to
degree d if for any polynomial π ∈ Πs

d there exists some initial data f (0) ∈ `(Zs) such that
S∞a f (0) = π.

Many properties of a subdivision scheme do not depend on the choice of the associated
parameter values t(k)

i , i ∈ Zs, to which the data f (k)
i are attached. Thus, these are usually

set to
t(k)

i := i
mk

, i ∈ Zs, k ∈ N0,

which is called the standard parametrization. However, for the analysis of polynomial repro-
duction it turns out that a better parametrization is given by {T(k), k ∈ N0} such that

T(k) =
{

t(k)
i = i + τ

mk
, i ∈ Zs

}
, (2.6)

with a suitable τ ∈ Rs. The sequence {T(k), k ∈ N0} in (2.6) is called the sequence of
parameter values associated with the subdivision scheme.

Definition 2.5 A convergent stationary subdivision scheme Sa with associated parametriza-
tion in (2.6) reproduces polynomials up to degree d if for any polynomial π ∈ Πs

d and for the
initial data f (0) = {π(t(0)

i ), i ∈ Zs} the limit of the subdivision satisfies S∞a f (0) = π.

Another important property of stationary subdivision is the so-called step-wise polynomial
reproduction.

Definition 2.6 A convergent stationary subdivision scheme Sa with associated parametriza-
tion in (2.6) is step-wise polynomial reproducing up to degree d if for any polynomial π ∈ Πs

d

and for the data f (k) = {π(t(k)
i ), i ∈ Zs}

f (k+1) = Saf (k) or, equivalently, π(t(k+1)
i ) =

∑
j∈Zs

ai−mj π(t(k)
j ), i ∈ Zs.

For a non-singular subdivision scheme the concepts of polynomial reproduction and step-wise
polynomial reproduction are equivalent [19, Proposition 1.7].
In [19], sufficient algebraic conditions on the subdivision symbol a(z) of a convergent sta-
tionary subdivision scheme Sa are proposed to guarantee generation and reproduction of Πs

d.
They could be seen as a multivariate extension of the conditions shown in [25]. We denote
with

E := {0, . . . ,m− 1}s, (2.7)
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the set of the representatives of Zs/mZs containing 0 = {0, . . . , 0} and let Ξ be the set

Ξ = {ε = e−i 2π
m
e : e ∈ E}, (2.8)

containing 1 = (1, 1, . . . , 1), while
Ξ′ := Ξ\{1}. (2.9)

Finally, by Dγ we denote the directional derivative along γ = (γ1, . . . , γs) ∈ Ns0, that is

Dγ := ∂γ1

∂zγ1
1
· · · ∂γs

∂zγss
, (2.10)

and |γ| =
∑s
j=1 γj .

Proposition 2.7 A convergent stationary subdivision scheme with symbol a(z) generates
polynomials up to degree d if

Dγa(ε) = 0, ∀ ε ∈ Ξ′ , |γ| ≤ d.

Polynomial generation of degree d implies that the associated refinable function has accuracy
of order d [78], but it is only a necessary condition for the corresponding shift-invariant space
to have approximation order d + 1. Moreover, the condition of polynomial generation is
strictly connected with the notion of sum rules (see e.g. [20]).

Definition 2.8 A stationary subdivision scheme Sa satisfies sum rules of order d+1 if

a(1) = ms and max
|γ|≤d

max
ε∈Ξ′
|Dγa(ε)| = 0.

Proposition 2.9 A convergent stationary subdivision scheme, with symbol a(z) and asso-
ciated parametrization in (2.6) with some τ ∈ Rs, reproduces polynomials up to degree d
if

Dγa(1) = msqj(τ ) and Dγa(ε) = 0, ∀ ε ∈ Ξ′ , |γ| ≤ d,

where

q0(z) := 1, qj(z1, . . . , zs) =
s∏
i=1

ji−1∏
`i=0

(zi − `i), j = (j1, . . . , js).

The results in [91, Proposition 3.5] state that sufficient condition to have approximation order
d+ 1 is given by the polynomial reproduction of degree d.

Proposition 2.10 If a stationary subdivision scheme reproduces Πs
d, then it has approxima-

tion order d+ 1.

Another important property required by a stationary subdivision scheme is the affine in-
variance. If we moved all the control points simultaneously by the same amount, we would
expect the curve or surface defined by these control points to move in the same way as a
rigid object, i.e. the curve/surface should be invariant under distance-preserving transfor-
mations, such as translation and rotation. It follows from linearity of subdivision that if
subdivision is invariant with respect to distance-preserving transformations, it also should be
invariant under any affine transformations. The family of affine transformations in addition
to distance-preserving transformations, contains shears.
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Proposition 2.11 [5, 112] If a stationary subdivision scheme Sa reproduces Πs
1, then it has

the property of affine invariance.

Finally, we consider the particular case of an interpolatory subdivision scheme. If Sa is
interpolatory, then it satisfies∑

j∈J
a(e

2πi
m

jz) = ms, with J = {(j1, . . . , js), 0 ≤ ji ≤ m− 1, ∀i = 1, . . . , s}. (2.11)

Corollary 2.12 Let Sa be an interpolatory subdivision scheme Πs
d-generating. Then Sa is

also Πs
d-reproducing with respect to the parametrization in (2.6).

2.2 Convergence and smoothness analysis of subdivision curves
and surfaces defined on regular meshes

To recall the main notions regarding convergence and smoothness analysis of stationary
subdivision schemes, we first focus on the univariate case (s = 1), and then we study the case
of subdivision surfaces defined on regular meshes (s = 2). Most of the following results are
taken from [52, 53, 57].

2.2.1 Convergence and smoothness analysis of subdivision curves

Let s = 1. If Sa is convergent, than the subdivision mask a in (2.1) satisfies∑
i∈Z

ami+j = 1, for all j = 0, . . .m− 1,

[53, Theorem 1] and thus the subdivision symbol in (2.3) could be factorized into

a(z) = (1 + z + . . .+ zm−1)q(z), q(1) = 1. (2.12)

Theorem 2.13 Let Sa be a stationary subdivision scheme with symbol a(z) and denote by
∆f (0) = {(∆f (0))i = f

(0)
i − f

(0)
i−1 : i ∈ Z}, for f (0) = {f (0)

i : i ∈ Z}. If (2.12) holds, then

∆(Saf (k)) = Sq∆f (k).

∆f (k) is called the divided difference scheme of order 1, with associated symbol given by the
Laurent polynomial q(z) in (2.12). It is clear that if Sa is convergent, ∆f (0) tends to 0 as
k → +∞. The opposite direction is also true.

Theorem 2.14 A stationary subdivision scheme Sa is convergent if and only if for all initial
data f (0)

lim
k→+∞

Skqf (0) = 0. (2.13)
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If (2.13) holds for any initial data f (0), the subdivision scheme Sq is called ‘contractive’ and
the check of the convergence of Sa is equivalent to checking whether Sq is contractive. This
means that, we first compute the symbol

q[L](z) := q(z) q(zm) . . . q(zmL−1),

of the iterated scheme SLq and then check the Cr convergence of Sa showing that there exists
L ∈ N (reasonably L ≤ 10) such that

‖SLq ‖∞ = max
{∑

i

|qi−mLj | : 0 ≤ i < mL

}
< 1, for some L ∈ N. (2.14)

In the following, to simplify the notation, we denote ‖ · ‖ = ‖ · ‖∞.
The smoothness analysis is similar.

Theorem 2.15 Let a(z) =
(

1+z+...+zm−1

2

)r
b[r](z). If Sb[r] is convergent, then S∞a f (0) ∈

Cr(R) for any initial data f (0).

Thus, Cr continuity of the subdivision scheme Sa follows from the convergence of the subdi-
vision scheme Sb[r] and hence from the contractivity of the scheme Sb[r+1] associated to the
symbol b[r+1](z) such that b[r](z) = (1+z+ . . .+zm−1)b[r+1](z), i.e the symbol of the divided
difference scheme of order r + 1 defined recursively as ∆r+1f (0) = ∆(∆rf (0)).

Joint spectral radius

Studying the contractivity of Sb[r+1] , we can derive sufficient conditions ensuring Cr continuity
of the scheme Sa Differently, to work out necessary and sufficient conditions for the Cr
continuity of a subdivision scheme Sa, we can exploit the joint spectral radius approach
introduced in [32]. In particular, we here recall the result in [22, Theorem 4.1].

Proposition 2.16 Assume that b[r+1] has finite support of dimension n ∈ N and let

ρ : = ρ(B[r+1]
0 , . . . , B

[r+1]
m−1 )

= lim sup
`→∞

(
max

{
‖B[r+1]

ε`
· · ·B[r+1]

ε2 B[r+1]
ε1 ‖1/` : εi ∈ {0, . . . ,m− 1}, i = 1, ..., `

})
denote the joint spectral radius (JSR) (see [121]) of the set {B[r+1]

0 , . . . , B
[r+1]
m−1 } of n × n

matrices given by

B[r+1]
ε =

(
b[r+1]
n+i−mj+ε

)
i,j=0,...,n−1

, ε = 0, . . . ,m− 1,

(see e.g. [32, 18, 115, 118]). The subdivision scheme Sa is Cr continuous if and only if it
satisfies sum rules of order r + 1 and ρ ∈ [1,m).

Taking into account that (see, e.g., [89])

max{ρ(B[r+1]
0 ), . . . , ρ(B[r+1]

m−1 )} ≤ ρ ≤ max{‖B[r+1]
0 ‖, . . . , ‖B[r+1]

m−1 ‖}, (2.15)

whenever the upper and lower bounds in (2.15) coincide, we can provide explicit formulas for
the joint spectral radius ρ.
This method will be used in Section 4.1 to determine the complete regions of C2 and C3

continuity of a combined ternary scheme.
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2.2.2 Convergence and smoothness analysis of subdivision surfaces on reg-
ular meshes

The analysis of convergence and smoothness of a bivariate subdivision scheme (s = 2) on
regular meshes could be easily deduced from the univariate case if the symbol factorizes into
univariate smoothing factors. Otherwise, a more complex method involving matrix symbols
is required, as shown in [57].
In the following, we assume to deal with binary subdivision scheme, i.e. m = 2, since the
bivariate subdivision scheme on regular meshes studied in this thesis are all binary schemes.
However, the generalization to any arity m is immediate.
Let us start by considering the easier case of a stationary subdivision scheme Sa with factoriz-
able symbols a(z), and suppose to consider a quadrilateral regular mesh. Necessary condition
for the convergence of Sa is∑

j∈Z2

ai−2j = 1, i = {(0, 0), (0, 1), (1, 0), (1, 1)}.

In contrast to the univariate case (see (2.12)), this necessary condition does not imply a
factorization of the symbol. If the symbol is factorizable, then the two following theorems
state convergence and Cr smoothness of Sa [57, Theorems 4.23 and 4.24].

Theorem 2.17 Let Sa have a symbol of the form a(z) = a(z1, z2) = (1+z1)(1+z2)b(z1, z2).
If the schemes with the symbols a1(z1, z2) = a(z1,z2)

1+z1
, a2(z1, z2) = a(z1,z2)

1+z2
are both contractive,

then Sa is convergent. Conversely, if Sa is convergent, then Sa1 and Sa2 are contractive.

Theorem 2.18 Let Sa have a symbol of the form a(z) = a(z1, z2) = (1+z1)r1(1+z2)r2b(z1, z2).
If the schemes with symbols

ar1,r2(z1, z2) = 2r1+r2a(z1, z2)
(1 + z1)r1(1 + z2)r2

, r1, r2 = 0, . . . , r,

are convergent, then Sa is Cr.

Remark 2.19 The previous analysis applies also to tensor product schemes, but it is not
needed, since a(z1, z2) = a1(z1)a2(z2) is the symbol of a tensor product scheme and thus its
smoothness properties derived from those of the associated univariate schemes Sa1 and Sa2.

A similar analysis could be done also for schemes defined on triangular meshes, where the
correspondent symbols, if factorizable, have the form

a(z1, z2) = (1 + z1)r1(1 + z2)r2(1 + z1z2)r3b(z1, z2).

Theorem 2.20 Let Sa have a symbol of the form a(z1, z2) = (1+z1)(1+z2)(1+z1z2)b(z1, z2).
Then Sa is convergent if and only if the schemes with symbols

a1 = a(z1, z2)
1 + z1

, a2 = a(z1, z2)
1 + z2

, a3 = a(z1, z2)
1 + z1z2

,

are contractive. If any two of these schemes are contractive, then the third is also contractive.
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We can generalize the proposed method for the smoothness analysis of a subdivision scheme
with a factorizable symbol, to the case of non factorizable symbols as shown in [57]. We
proceed as follows. Choose Zr+1 ⊂ {(i, j, `) ∈ N3

0 : i+j+` = r+1} such that #Zr+1 = r+2,
where ` = 0 on quadrilateral meshes and ` ≥ 0 on triangular meshes. If a(z1, z2) satisfies(
(1− z1)i(1− z2)j(1− z1z2)`

)
(i,j,`)∈Zr+1

a(z1, z2) = b[r+1](z1, z2)
(
(1− z2

1)i(1− z2
2)j(1− z2

1z
2
2)`
)

(i,j,`)∈Zr+1

(2.16)
then b[r+1](z1, z2) is the (r + 2) × (r + 2) matrix symbol of the (r + 1)-th order difference
scheme Sb[r+1] . It satisfies

∇r+1 Sa = Sb[r+1] ∇r+1

with ∇r+1 : `(Z2) → `r+2(Z2) consisting of r + 2 independent backward differences of order

r + 1, defined by Zr+1. For instance, when r = 0, ∇ =
(
∇1
∇2

)
and we can alternatively

choose

• Z1 = {(1, 0, 0), (0, 1, 0)} and ∇1c = c − c(· − 1, ·), ∇2c = c − c(·, · − 1), both on
quadrilateral and triangular meshes,

• Z1 = {(1, 0, 0), (0, 0, 1)} and ∇1c = c−c(·−1, ·), ∇2c = c−c(·−1, ·−1), on triangular
meshes,

• Z1 = {(0, 1, 0), (0, 0, 1)} and ∇1c = c−c(·, ·−1), ∇2c = c−c(·−1, ·−1), on triangular
meshes.

The straightforward generalization of the approach in [57] for checking Cr convergence, r ∈
N0, of Sa is based on verifying the contractivity of the (r + 1)-th order difference scheme
Sb[r+1] . This means that, we first compute the symbol

(b[r+1])[L](z) := b[r+1](z) b[r+1](z2) . . . b[r+1](z2L−1),

with z = (z1, z2) ∈ (C\{0})2, of the iterated scheme SLb[r+1] and then check the Cr convergence
of Sa showing that there exists L ∈ N (reasonably L ≤ 10) such that

||SLb[r+1] || = max
i∈[0,2L−1]2∩N2

0

∥∥∥∥∥∥
∑
j∈Z2

|(b[r+1])[L](i− 2Lj)|

∥∥∥∥∥∥ < 1
2r . (2.17)

2.3 Extraordinary vertices and faces
Section 2.2.2 deals with convergence and smoothness analysis of bivariate subdivision schemes
defined on regular meshes. As we have seen, the tools used for these analysis are the subdi-
vision symbol and the contractivity of the divided difference masks. On arbitrary manifold
topology meshes, we need to use different tools to study convergence and regularity of the
limit surfaces at the limit of extraordinary elements of the mesh, that is extraordinary ver-
tices and faces.
First of all, we always suppose that the extraordinary elements are isolated. We focus our
attention on the local configuration of the control points near an extraordinary element, since
it influences the structure of the subdivision matrix S. The subdivision matrix S describes
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the action of the subdivision scheme S near extraordinary elements.
A primal scheme is influenced by the presence of extraordinary vertices. In this case, the
local configuration of the points of the mesh is given by a central vertex of valence n plus
a certain number of vertices lying on rings with increasing radial distance from it (see Fig-
ure 2.1 (a)). Near an extraordinary vertex, primal subdivision algorithms are characterized
by a local subdivision matrix S of size (pn + 1) × (pn + 1), exactly in view of the fact that
their refinement rules involve the central vertex of valence n, and n sectors with p vertices
each coming from the rings around it. A dual scheme is influenced by the presence of an
extraordinary face. The local configuration of the points of the mesh is given by a central
face of valence n surrounded by a certain number of vertices lying on rings with increasing
radial distance from it (see Figure 2.1 (b)). From this configuration it follows that near an
extraordinary face dual subdivision algorithms are described by a local subdivision matrix S
of size pn × pn. In order to keep the matrix size as small as possible, we emphasize that it

f
(0)
0

f
(0)
pn

f
(0)
1

f
(0)
2

f
(0)
p+1

(a) Extraordinary vertex

f
(0)
0

f
(0)
1

f
(0)
3

f
(0)
p+1

f
(0)
2f

(0)
pn−1

(b) Extraordinary face

Figure 2.1: Local configurations of the points near an extraordinary vertex or face in case of
quadrilateral meshes.

is convenient to derive the value of p considering the exact number of rings required by the
subdivision rules. Precisely, for subdivision schemes defined on triangular meshes by r-ring
rules, the number p of points contained in each sector is

p = r(r + 1)
2 , (2.18)

while for quadrilateral meshes we have

p =
{
r(r + 1) for primal schemes,
r2 for dual schemes. (2.19)

Moreover, it is of crucial importance to know that, having labeled both the old and the new
vertices in a symmetric way around the central vertex or face, the structure of the matrix
S changes depending on the ordering of the entries of the vectors f (k) and f (k+1) in (2.4).
Precisely:
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Order 1. Primal scheme: ordering the vertices outwards from the central vertex, that is on
successive rings with increasing radial distance, yields a matrix S that, discarded the
first row and column, is a p×p block-matrix where each block, of size n×n, is circulant;
Dual scheme: ordering the vertices outwards from one of the vertices of the central face,
that is on successive rings with increasing radial distance, yields a matrix S that is a
p× p block-matrix where each block, of size n× n, is circulant;

Order 2. Primal scheme: ordering the vertices starting from the central vertex and outwards
within each sector, before moving on to the next, and labeling compatibly within the
sectors, gives a matrix S that, discarded the first row and column, is a n × n block-
circulant matrix with blocks of size p× p;
Dual scheme: ordering the vertices starting from one of the vertices of the central face
and outwards within each sector, before moving on to the next, and labeling compatibly
within the sectors, gives a matrix S that is a n× n block-circulant matrix with blocks
of size p× p.

Doo and Sabin [48] were the first to show that many properties of the limit surface can be
investigated by studying the eigenproperties of the matrix S. Depending on the ordering of
points that has been chosen, the following different methods have appeared in the literature
to analyze the spectrum of S.

Method 1. Originally presented by Doo and Sabin [48] and successively exploited by Ball and
Storry [7] and by Zorin [137], it applies a similarity transform to S given by the matrix[

1 0
0 Ip ⊗ Fn

]
for primal schemes, and Ip⊗Fn for dual schemes, with Ip denoting the

identity matrix of size p and Fn the Fourier matrix Fn = 1√
n

[
e−

2πij`
n

]n−1

j,`=0
. Then, once

a matrix with diagonal blocks is obtained, a permutation is applied to finally reduce
the local subdivision matrix into a block-diagonal matrix containing one block of size
(p+ 1)× (p+ 1) and n− 1 blocks each of size p× p for primal schemes, or n blocks each
of size p× p for dual schemes.

Method 2. Introduced by Peters and Reif [112], if the scheme is primal, it artificially extends each
block of size p × p by one row and one column such that the local subdivision matrix
assumes a standard block-circulant structure, and then diagonalizes it by applying the
block-Fourier matrix Fn⊗Ip+1, while if the scheme is dual the extension is not necessary
and a diagonalization is obtained by applying the block-Fourier matrix Fn ⊗ Ip.

In Section 5.2, we will show a general strategy for the eigen-analysis of S, while in this
chapter we order the points of the mesh as in Order 2 and we follow Method 2 to study the
eigenproperties of the subdivision matrix, as we show in the following.
If S is a dual scheme, near an extraordinary face the subdivision matrix has the form

S =


M0 M1 · · · Mn−1
Mn−1 M0 · · · Mn−2

...
... . . . ...

M1 · · · Mn−1 M0

 , (2.20)
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whereMi ∈ Rp×p, i = 0, . . . , n−1. Thus S ∈ RN×N with N = np and it has a block-circulant
structure. For short we write S := circ(M0, . . . ,Mn−1). On the other hand, if S is a primal
scheme, near an extraordinary vertex we construct a matrix S̃ of the form

S̃ =


ã b̃T b̃T · · · b̃T
c̃ M̃0 M̃1 · · · M̃n−1
c̃ M̃n−1 M̃0 · · · M̃n−2
...

...
... . . . ...

c̃ M̃1 · · · M̃n−1 M̃0

 , (2.21)

where ã ∈ R, b̃, c̃ ∈ Rp and M̃i ∈ Rp×p, i = 0, . . . , n− 1. Then, following the method shown
in [112, Example 5.14], we transform the matrix S̃ in a block-circulant matrix S of the form

S := circ(M0, . . . ,Mn−1) with Mj =
(
ã
n b̃T
c̃
n M̃j

)
, j = 0, . . . , n− 1. (2.22)

It follows that S ∈ RN×N with N = n(p + 1) and again it has a block-circulant structure.
Without loss of generality, we can thus always assume that the local subdivision matrix S has
a block-circulant structure with blocks of dimension p× p, where p = p if the mesh contains
an extraordinary face and p = p+ 1 if it contains an extraordinary vertex.
Following the notation in [112, 117, 131], we also assume that near an isolated extraordinary
vertex or face the regular subdivision surface r is defined on the local domain Dn = Ω× Zn
and described as r : Dn → R3. If we apply one step of refinement to the local domain Dn, we
obtain a new domain with 4n cells: 3n outer ordinary cells and n inner cells that contain the
extraordinary elements. The restriction r0 of r to the outer cells is called ring. Moreover, r
could be divided into n patches ri, i = 0, . . . , n− 1, and the n parts of the ring corresponding
to the initial patches are called segments. Let us denote with r̃ the inner part of r, that is
r̃ = r\r0. We repeat the refinement process only for r̃ to obtain a second ring r1 and an even
smaller inner part. Hence, iterated refinement generates a sequence of rings {rk, k ∈ N0}
which covers all of the surface except for the central point (limit of the extraordinary vertex
or face), that hereinafter we denote by rc (see Figure 2.2). Precisely, assuming the central
point to be placed at 0 and introducing the notation

Ω0 := Ω\Ω̃, Ωk := 2−kΩ0, Dn,k := Ωk × Zn, k ∈ N0,

by exploiting the refinement process we can represent Ω and Dn as

Ω =
⋃
k∈N0

Ωk ∪ {0}, Dn =
⋃
k∈N0

Dn,k ∪ {0}. (2.23)

In particular, we can explicitly write Ωk = {(u, v) ∈ R2 |u, v ≥ 0 and 21−k ≤ u + v ≤ 22−k}
in the case of triangular meshes while Ωk = {(u, v) ∈ R2 |u, v ≥ 0 and 21−k ≤ max{u, v} ≤
22−k} in the case of quadrilateral meshes (see Figure 2.3).
The segment rik corresponds to the restriction of the patch ri to the set Ωk, i.e.

rik(Ω1) = ri(Ωk), i = 0, . . . , n− 1, k ∈ N0,

as shown in Figure 2.4 (bottom), while the ring rk corresponds to the restriction of the regular
subdivision surface r to the set Dn,k, i.e.

rk(Dn,1) = r(Dn,k), k ∈ N0,
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Figure 2.2: Domains Ω0,Ω1,Ω2 corresponding to three subdivision steps in the case of a
quadrilateral mesh containing an extraordinary vertex.

Figure 2.3: Domain Ω0 in the case of a triangular (left) and a quadrilateral (right) mesh
containing an extraordinary vertex.

(see Figure 2.4 (top)). This implies

ri(Ω) =
⋃

k∈N0,

rik(Ω1) ∪ {rc}, r(Dn) =
⋃

k∈N0,

rk(Dn,1) ∪ {rc},

where rc = r(0) is the central point.
Now, we denote by f (k) ∈ RN×3 the vector of vertices (points in R3) of each ring rk, and
with Φ(u, v) ∈ RN the vector with the associated basic limit functions (see Definition 2.2),
resulting in

rk : Dn,k = Ωk × Zn → R3

(u, v) 7−→ rk(u, v) = (f (k))T Φ(u, v). (2.24)

Remark 2.21 If the subdivision algorithm is convergent, then the N functions collected in
Φ(u, v) satisfy the property of partition of unity, i.e. they sum up to 1 for all values of
(u, v) ∈ R2, namely Φ(u, v)Tx0 = 1 for all (u, v) ∈ R2, with x0 = [1, . . . , 1]T .

Now, exploiting the definition of k-th level ring rk given in (2.24), we can finally introduce
the notion of convergence of a stationary subdivision scheme S in correspondence to irregular
regions of the mesh (see [117] for more details).

Definition 2.22 [117, Definition 2.1] Let S be a stationary subdivision scheme whose action
in correspondence to extraordinary elements of the mesh is described by the matrix S. S is
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Figure 2.4: Ring rk (top), segment rik (bottom) in the case of a quadrilateral mesh with an
extraordinary vertex (figure taken from [112]).

said to be convergent in the vicinity of an extraordinary vertex/face if, for all bounded initial
data f (0) ∈ RN×3, there exists a limit point rc ∈ R3 such that

lim
k→+∞

rk = rc, (2.25)

with rk defined according to (2.24) and

f (k) = Sf (k−1) = ... = Skf (0). (2.26)

If the subdivision scheme S converges, then r =
⋃
k∈N0, rk ∪{rc} is a surface without gap, i.e.

r is a surface which is continuous at all points including rc. We call r the limit surface of the
subdivision scheme S. For r we can provide a weaker definition of C1 continuity at the limit
point rc, called tangent plane continuity, which reads as follows.

Definition 2.23 [117, Definition 2.2] Let n(rc) denote the normal vector at the limit point
rc. A subdivision surface r is called tangent plane continuous at rc if there is a unique vector
n(rc) such that for all sequences of normal vectors {nk := ∂urk∧∂vrk

‖∂urk∧∂vrk‖2
, k ∈ N0, },

lim
k→+∞

nk = n(rc).

2.3.1 Linear algebra tools: Jordan decomposition

The convergence of a stationary subdivision scheme near an extraordinary element is de-
scribed by the formula in (2.26), which leads to the study of Sk. We assume that S ∈ RN×N
has r + 1 different eigenvalues λr, r = 0, . . . , r, 0 ≤ r ≤ N − 1, sorted in decreasing order
according to their magnitude, i.e. |λ0| ≥ |λ1| ≥ . . . ≥ |λr|, and we denote by `r + 1, `r ≥ 0
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the algebraic multiplicity of λr.
In order to study the properties of Sk, it is convenient to use its Jordan decomposition.
Firstly, the Jordan decomposition of S is S = XJX−1 with J = diag(J0, J1, . . . , Jr), where
the r-th Jordan block Jr corresponding to the eigenvalue λr has dimension (`r + 1)× (`r + 1)
and is defined as

Jr =


λr 1 0 · · · 0
0 λr 1 · · · 0
... . . . . . . . . . ...
0 · · · 0 λr 1
0 · · · 0 0 λr

 .

According to the block structure of J , the matrix X is partitioned as X = [X0, X1, . . . , Xr]
with Xr = [x0

r , . . . ,x
`r
r ]. The vectors x`r, r = 0, . . . , r, ` = 0, . . . , `r form the set

{x0
0, . . .x

`0
0 , . . . ,x

0
r , . . . ,x

`r
r } of generalized eigenvectors. Moreover, for any v ∈ RN×3 and

p := X−1v, in view of the structure of X we can write p = [pT0 ,pT1 , . . . ,pTr ]T with pr =
[p0
r , p

1
r , . . . , p

`r
r ]T . Thus, since Sk = XJkX−1 with Jk = diag(Jk0 , Jk1 , . . . , Jkr ) and

Jkr =


λk,0r λk,1r λk,2r · · · λk,`rr

0 λk,0r λk,1r · · · λk,`r−1
r

... . . . . . . . . . ...
0 · · · 0 λk,0r λk,1r
0 · · · 0 0 λk,0r

 (2.27)

where

λk,jr :=


(k
j

)
λk−jr if λr 6= 0 and 0 ≤ j ≤ k,

1 if λr = 0 and j = k,
0 otherwise,

(2.28)

we have

Skv = XJkp =
r∑
r=0

`r∑
`=0

λk,`r

`r∑
i=`
xi−`r pir. (2.29)

Remark 2.24 Note that, the definition of λk,jr in (2.28) implies that, if `r = 0, then λk,0r =
λkr . Moreover, the terms λk,`r , r = 1, . . . , r, decay to zero as k → +∞ (see [112, Section 4.5]).

2.3.2 Sufficient smoothness conditions

In this section, we show that the smoothness properties of the limit surface produced by
the stationary subdivision scheme S near extraordinary elements can be detected from the
leading eigenvalues of the subdivision matrix S and an associated characteristic map Ψ. The
following results are taken from [112, 117, 138].

Theorem 2.25 A stationary subdivision scheme S associated to the subdivision matrix S
converges if 1 = λ0 > |λr|, for all r = 1, . . . , r and x0 = [1, ..., 1]T .

Remark 2.26 It is a well-known fact that a subdivision scheme S is affinely invariant in the
neighborhood of extraordinary vertices if the elements in each row of S sum up to 1 [5].
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The further smoothness properties of the limit surface can be derived from the leading eigen-
values of S and a map Ψ which depends only on the corresponding eigenvectors of S and
the basic limit functions. Therefore, Ψ is called the characteristic map of the subdivision
process.

Definition 2.27 For a stationary subdivision matrix S with 1 = λ0 > λ1 > |λr|, for all
r = 2, . . . , r, with λ1 positive real and double and associated linear independent eigenvectors
x0

1,x
1
1, the characteristic map is defined by Ψ(u, v) := Φ[x0

1,x
1
1]. Ψ is called regular if

det(DΨ(u, v)T ) = det
(
∂uΨ(u, v)T
∂vΨ(u, v)T

)
6= 0, ∀(u, v) ∈ R2

or equivalently sign(det(DΨ(u, v)T )) is constant.

Of course, the characteristic map is subjected to the ambiguity in the choice of the vectors
x0

1,x
1
1, however, all of its crucial properties are well defined as proved in [117, Lemma 3.4]

from which injectivity and regularity of the characteristic map do not depend on the particular
choice of the vectors x0

1,x
1
1. The next theorem gives a sufficient condition for the tangent

plane continuity of a subdivision algorithm.

Theorem 2.28 If 1 = λ0 > λ1 > |λr|, for all r = 2, . . . , r, with λ1 ∈ R+ with algebraic
and geometric multiplicity 2 and if the characteristic map Ψ is regular, then the limit surface
is tangent plane continuous at the limit points of an extraordinary element for almost every
initial vector f (0) of control points.

Requiring the injectivity of the characteristic map we gain the C1 continuity of the limit
surfaces in the limit points of an extraordinary element.

Theorem 2.29 If 1 = λ0 > λ1 > |λr|, for all r = 2, . . . , r, with λ1 ∈ R+ with algebraic
and geometric multiplicity 2 and if the characteristic map Ψ is regular and injective, then
the limit surface is C1 continuous at the limit points of an extraordinary element for almost
every initial vector f (0) of control points.

Method 2 proposes a useful and extensively used strategy (see e.g. [48, 65, 96, 137]) to study
the eigenvalues of the subdivision matrix S which consists in applying a block diagonalization
to S via the discrete Fourier transform Fn ⊗ Ip. It means that starting from the subdivision
matrix S = circ(M0,M1, . . . ,Mn−1), we compute

Ŝν =
n∑
j=0

Mjω
jν , ν = 0, . . . , n− 1, ω = e

2πi
n ,

thus defining the diagonal matrix

Ŝ = diag(Ŝ0, Ŝ1, . . . , Ŝn−1).

Definition 2.30 For any ν = 0, . . . , n− 1, if λi is an eigenvalue of Ŝν we call ν the Fourier
index of λi and we write F(λi) = ν.
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Remark 2.31 If the double eigenvalue λ1 is an eigenvalue of the blocks Ŝ1 and Ŝn−1, i.e.
F(λ1) = {1, n− 1}, and the characteristic map Ψ is regular, then the injectivity of Ψ follows
immediately [112, Chapter 5].

The spectral properties of the subdivision matrix S expressed in Theorems 2.25 and 2.29
regards convergence and C1 continuity. However, to design limit surfaces with higher quality
in correspondence to extraordinary elements, the properties of boundedness of curvature and
of optimal shrinkage of the local configuration of points are also required. All these properties
could be obtaining requiring special necessary conditions on the eigenvalues of S, and could
be written as follows (see [48, 112, 111, 117, 138]).

(I) Requirements for convergence:
Apart from λ0 = 1 which must have Fourier index 0, all other eigenvalues of S have to
be less than 1 in modulus, i.e.

1 = λ0 > |λ1|, with F(1) = 0.

(II) Requirements for tangent plane continuity:
The sub-dominant eigenvalue has to be double, equal to a real positive λ, with Fourier
indices 1, n− 1, and all other eigenvalues have to be less than λ in modulus, i.e.

1 = λ0 > λ := λ1 = λ2 > |λ3|, λ ∈ R+, F(λ) = {1, n− 1}.

(III) Requirements for boundedness of curvature:
The subsub-dominant eigenvalue has to be triple, equal to µ = λ2, with Fourier indices
0, 2, n− 2, and all other eigenvalues have to be not larger than λ2 in modulus, i.e.

1 = λ0 > λ := λ1 = λ2 > µ := λ3 = λ4 = λ5 ≥ |λ6|, F(µ) ⊇ {0, 2, n− 2}.

(IV) Requirements for optimal shrinkage:
The sub-dominant eigenvalue λ has to be equal to 1

m (or the closest possible to 1
m),

where m is the arity of the subdivision scheme.

Now, for any ν = 0, . . . , n − 1, let λνr be the r-th eigenvalue of M̂ν . In this way, properties
(I)-(IV) can be summarized as in Table 2.1.

Conditions required on the eigenvalues of S

(i) λ0
0 = 1, λ0

1 = λ2

(ii) λ1
0 = λ, λn−1

0 = λ

(iii) λ2
0 = λ2, λn−2

0 = λ2

(iv) the modulus of all the other eigenvalues is not larger than λ2

(v) λ = 1
m (m = arity of the subdivision scheme).

Table 2.1: Conditions to be satisfied by the eigenvalues of S.
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2.3.3 Important valences

Extraordinary elements of a triangular mesh with valence less than 5 or greater than 7 are
also problematic for many mesh processing tasks. However, vertices with valence equal to 6
everywhere is most often impossible due to either surface topology or surface feature preser-
vation, that is why 567-meshes are particularly of interest.
Many authors [1, 23, 127, 134, 133] have developed (complex) strategies to either drastically
reduce the number of extraordinary elements of a triangular mesh or at least avoid too irreg-
ular ones (with valences less than 5 or greater than 7). 567-remeshing algorithm, proposed in
[1] and improved in [133], falls in the latter category and has gained particular attention since
it can resolve all issues regarding edge collapse, artifacts and distortion in the limit surfaces.
This algorithm locally retriangulates a mesh containing extraordinary elements of any valence
to obtain a mesh with only valences n = 5, 6, 7 which closely approximates the original mesh
geometrically, e.g. in terms of feature preservation, and has a comparable vertex count as
the original mesh. Thus, thanks to this algorithm any arbitrary manifold topology mesh can
be transformed into a 567-mesh.
The same reasoning could be applied to quadrilateral meshes, thus focusing on the valences
n = 3, 4, 5 and producing a 345-remeshing. However, to the best of our knowledge there are
no results in this field in literature and this topic is not one of the purposes of the thesis.

2.4 Review of some stationary subdivision schemes in litera-
ture

In this section we recall the most famous binary bivariate subdivision schemes proposed in
literature and their main properties. This is not a complete list of all the subdivision schemes
appeared during the years, but we here present only the schemes that will be useful in the
following chapters for comparisons or generalizations. In particular, among the schemes
defined on triangular meshes, we recall Loop’s scheme, firstly proposed in [95], and the
interpolatory Butterfly scheme [54] defined only on regular meshes and then generalized to
the case of arbitrary manifold topology meshes [139]. Among the subdivision schemes defined
on quadrilateral meshes, we recall Doo-Sabin’s and Catmull-Clark’s schemes [48, 14] which
are a generalization of the bi-quadratic and bi-cubic splines, respectively, and Kobbelt’s
interpolatory scheme [84]. Other subdivision schemes not considered in this thesis are for
example the Simplest scheme [110], the

√
3-scheme [85], the 4-8 scheme [132] and the 3-4

scheme [113].

2.4.1 Loop’s scheme

Loop’s scheme is a primal approximating subdivision scheme originally proposed in [95] and
described by the stencils in Figure 2.5, with δ =

(
3
8 + 1

4 cos 2π
n

)2
+ 3

8 . This scheme produces
C2 limit surfaces on regular meshes and C1 in correspondence of extraordinary vertices.
During the years, many variants of Loop’s scheme appeared requiring an adjusted edge-point
stencil to gain the boundedness of curvature at extraordinary vertices [65, 96, 97]. However,
the property of optimal shrinkage is never satisfied in a neighborhood of an extraordinary
vertex. We will study Loop’s scheme and its variants in Section 5.2.
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Figure 2.5: Stencils for the vertex-point rule and the edge-point rule of Loop’s subdivision
scheme at vertices of valence n.

2.4.2 Butterfly scheme and modified Butterfly scheme

The Butterfly scheme is an interpolatory subdivision scheme proposed in [54] defined on
regular triangular mesh. Some years later, Zorin et al. [139] proposed a generalization of
the Butterfly scheme, calling it the modified Butterfly scheme. The rule for the vertex-point
computation is trivial since the scheme is interpolatory, so all the old points are retained in
the new mesh, while the edge-point stencil is shown in Figure 2.6 (a) with

α0 = 1
2 − w, α1 = w, α2 = − 1

16 − w, α3 = 1
8 + 2w,

where w is chosen in [−0.03, 0) to produce C1 limit surfaces (see [73]). The original Butterfly
scheme is obtained with w = 0. Zorin et al. also proposed an extension to meshes with
arbitrary manifold topology with an adjusted rule for the edge-point computation near an
extraordinary vertex described by the stencil in Figure 2.6 (b), with

σ0 = 5
12 , σ1 = σ2 = − 1

12 , if n = 3,

σ0 = 3
8 , , σ1 = σ3 = 0, σ2 = −1

8 , if n = 4,

σj = 1
n

(1
4 + cos 2πj

n
+ 1

2 cos 4πj
n

)
, j = 0, . . . , n− 1, if n ≥ 5.

This scheme produces C1 limit surfaces also at extraordinary vertices, but it has neither
bounded curvature nor optimal shrinkage at extraordinary vertices. In Section 6.1 we will
recall the main properties of the Butterfly scheme and we will propose a new scheme improving
its smoothness and accuracy.
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Figure 2.6: Edge-point stencils of (a) Butterfly subdivision scheme for regular vertices, (b)
modified Butterfly subdivision scheme for extraordinary vertices of valence n 6= 6.

2.4.3 Doo-Sabin’s scheme

Doo-Sabin’s scheme [48] is a dual approximating subdivision scheme whose rules for the
computation of the new points are described by the stencil in Figure 2.7, with

α0 = 1
4 + 5

4n, αj =
3 + 2 cos 2πj

n

4n , j = 1, . . . , n− 1.

When n = 4, the rules reduce to the tensor-product of the quadratic B-spline, thus implying
the C1 continuity of the limit surface on regular meshes. Moreover, this choice of stencil
coefficients guarantees C1 continuous limit surfaces, with bounded curvature and optimal
shrinkage also at extraordinary faces.
Catmull and Clark proposed a variant of this scheme, which is known as the quadratic
Catmull-Clark’s scheme to underline the main difference with the well-known Catmull-Clark’s
scheme based on cubics and recalled in the next section. The stencil coefficients they proposed
are

α0 = 1
2 + 1

4n, α1 = αn−1 = 1
8 + 1

4n, αj = 1
4n, j = 2, . . . , n− 2,

which for n = 4 reduce to the coefficients of the tensor-product quadratic B-spline, thus
implying the C1 continuity of the limit surface on regular meshes.However, these coefficients
do not allow for bounded curvature and optimal shrinkage at extraordinary faces.
A level-dependent variant of Doo-Sabin’s scheme will be studied in Chapter 7 to produce
interpolating limit surfaces after a suitable preprocessing of the initial control mesh.

2.4.4 Catmull-Clark’s scheme

Catmull-Clark’s scheme [14] is a primal approximating subdivision scheme whose rules for
the computation of the new vertex- edge- and face-point are described in Figure 2.8 with

α = 1− 7
4n, β = 3

2n2 , γ = 1
4n2 .
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Figure 2.7: Stencil for the computation of a new vertex of Doo-Sabin’s scheme.

When n = 4, the rules reduce to the tensor-product of the cubic B-spline, thus implying the
C2 continuity of the limit surfaces on regular meshes. At extraordinary vertices, the limit
surfaces are only C1, with neither bounded curvature nor optimal shrinkage. Catmull-Clark’s
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Figure 2.8: Stencils for the computation of (a) the vertex-point, (b) the edge-point, (c) the
face-point, of Catmull-Clark’s subdivision scheme.

scheme will be used in Chapter 7 to produce interpolating limit surfaces.
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Figure 2.9: Stencils for the computation of (a) the face-point, (b) the edge-point, of Kobbelt’s
subdivision scheme.

2.4.5 Kobbelt’s scheme

Kobbelt’s scheme [84] is an interpolatory subdivision scheme. Its stencils for the computation
of the edge- and face-point are shown in Figure 2.9 with

α1 = 5
8 + 1

4n, α3 = α2n−1 = 1
16 −

1
4n, α2j+1 = − 1

4n, j = 2, . . . , n− 2,

β1 = β3 = 45
128 −

9
45n, β2j+1 = − 9

64n, j = 2, . . . , n− 1,

γ2 = 5
16 + 1

64n, γ4 = γ2n = − 5
128 + 1

64n, γ2j = 1
64n, j = 2, . . . , n− 2,

δ2 = δ4 = δ2n−2 = δ2n = 1
36n −

1
144 , δ2j = 1

36n, j = 2, . . . , n− 3.

Since the scheme is interpolatory, the computation of the vertex-point is trivial. When
n = 4, the rules reduce to the tensor-product of the 4-point scheme.This scheme produce C1

continuous limit surfaces with bounded curvature and optimal shrinkage on regular meshes,
but it is only C1 at extraordinary vertices. Improvements of this scheme have been proposed
in [39, 93] which gain bounded curvature and optimal shrinkage also at extraordinary vertices.
These variants will be studied in Section 5.1.



Chapter 3

Non-stationary subdivision schemes

In this chapter we recall the main notions, properties and tools regarding non-stationary
subdivision schemes. A non-stationary subdivision scheme is denoted by {Sk, k ∈ N0}. The
subscript k, with k ∈ N0, and the term ‘non-stationary’ underline the main difference with the
stationary subdivision schemes introduced in Chapter 2, that is the fact that subdivision rules
change with the subdivision level k, namely they are level-dependent. Thus, a non stationary
subdivision scheme is an iterative algorithm that generates the refined data sequence f (k+1) =
{f (k+1)

i , i ∈ Zs}, k ∈ N0, starting from a set of control points f (0) = {f (0)
i , i ∈ Zs}, by applying

refinement rules that depend on the subdivision level.
As in the stationary case, when we study a non-stationary subdivision scheme we have to
pay attention not only to the subdivision rules, but also to set of initial control points f (0), in
particular in the bivariate setting where the control mesh could be regular or could contain
extraordinary elements. In fact, different tools are used to analyze non-stationary subdivision
schemes on regular meshes and on arbitrary manifold topology meshes.
In the univariate setting and on regular meshes, the action of a non-stationary subdivision
scheme {Sk, k ∈ N0} is described by the k-level subdivision mask

a(k) = {a(k)
i , i ∈ Zs}. (3.1)

To emphasize the connection with the k-level subdivision mask when the subdivision scheme
{Sk, k ∈ N0} is a univariate scheme or a bivariate scheme defined on regular meshes, we refer
to it as {Sa(k) , k ∈ N0}. In this case, a non-stationary scheme {Sa(k) , k ∈ N0} is described by
the refinement rules

f
(k+1)
i =

∑
j∈Zs

a(k)
i−mj f

(k)
j , i ∈ Zs, k ∈ N0, (3.2)

which generate the sequence of points at level k + 1 starting from the points at level k. The
coefficients of the k-th level mask a(k) in (3.1) define the so-called k-th level subdivision
symbol

a(k)(z) :=
∑
i∈Zs

a(k)
i zi, z ∈ (C\{0})s. (3.3)

On the other hand, in the irregular regions of a mesh, i.e. in the neighborhood of an ex-
traordinary vertex or face, the action of the non-stationary subdivision scheme {Sk, k ∈ N0}
is described by a sequence of local subdivision matrices {Sk, k ∈ N0}. Near an extraordinary

30
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vertex/face, the subdivision rules which relate the vertices of the k-th level mesh with those
of the next level are encoded in the rows of the local subdivision matrix Sk, resulting in

f (k+1) = Skf (k) = SkSk−1f (k−1) = . . . = S(k+1)f (0), (3.4)

with
S(k+1) = Sk Sk−1 · · ·S0, (3.5)

Important properties of non-stationary subdivision schemes are convergence, exponential
polynomial generation and reproduction, approximation order and regularity of the limit
curves or surfaces. In particular, in literature there are tools for the study of exponen-
tial polynomial generation and reproduction [21] and for the smoothness analysis of the
limit curves/surfaces produced by univariate non-stationary subdivision schemes or bivariate
non-stationary subdivision schemes defined on regular meshes (see e.g. [20, 24, 56]). In the
following, we recall these results and we also show the first proposed method of sufficient con-
ditions to check the convergence of the limit surface produced by a non-stationary subdivision
scheme near extraordinary vertices and faces. The latter is one of the main contributions of
this thesis.

3.1 Generation and reproduction of exponential polynomials

We start by adapting the general definition of the space of s-variate exponential polynomials,
given in [21, Definition 3.1], to the specific context of our interest.

Definition 3.1 Let d ∈ N0. Let also

Γd :=

γ = (γ1, . . . , γs) ∈ Ns0 : 0 ≤
s∑
j=1

γj ≤ d

 , #Γd = (d+ 1)(d+ 2)
2 , (3.6)

Λt :=
{

0, t, −t : t ∈
(

0, m2 π
)
∪ iR+

}
, #Λt = 3 and Θ ⊆ Λt × Λt × . . .× Λt︸ ︷︷ ︸

s times

.

(3.7)
We define the space of bivariate exponential polynomials as

EP s(Γd,Θ) := span{xγeθ·x : x ∈ Rs, γ ∈ Γd, θ ∈ Θ}. (3.8)

Remark 3.2 We underline that EP s(Γd,0) = Πs
d, that is the space of s-variate polynomials of

degree d.

For the analysis of the non-stationary subdivision schemes proposed in the following chapters,
we denote by Wd the subspace of EP s(Γd,Θ) defined as

Ws
d := span{xγ ∈ Rs γ ∈ Γd} ∪ {eθ·x, θ ∈ Θ} ⊂ EP s(Γd,Θ). (3.9)

The definition of convergence of a non-stationary subdivision scheme {Sa(k) , k ∈ N0} is very
close to Definition 2.1.
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Definition 3.3 A non-stationary subdivision scheme {Sa(k) , k ∈ N0} is called uniformly con-
vergent if, for any initial data f (0) ∈ `(Zs), there exists a limit function gf (0) ∈ C(Rs) (which
is nonzero for at least one initial nonzero sequence f (0)) such that the sequence of continuous
functions F (k) interpolating the data f (k) at the parameter values i

mk
, i ∈ Zs, converges to

gf (0) as k → +∞, i.e.

gf (0) := lim
k→+∞

Sa(k+`)Sa(k+`−1) · · · Sa(`)f (0) = lim
k→+∞

F (k), ` ∈ N0,

uniformly. The subdivision scheme {Sa(k) , k ∈ N0} is called Cr convergent, r ∈ N0, if gf (0) ∈
Cr(Rs).

The following definitions stress the difference between the notions of generation and repro-
duction of the space of exponential polynomials EP s(Γd,Θ).

Definition 3.4 A convergent non-stationary subdivision scheme {Sa(k) , k ∈ N0} is said to
be EP s(Γd,Θ)-generating if there exists a parametrization {T(k), k ∈ N0} as in (2.6), such that
for all initial data f (0) = {π(t(0)

i ), i ∈ Zs}, π ∈ EP s(Γd,Θ), we have

lim
k→+∞

Sa(`+k)Sa(`+k−1) · · · Sa(`)f (0) ∈ EP s(Γd,Θ), ∀` ∈ N0.

Definition 3.5 A convergent non-stationary subdivision scheme {Sa(k) , k ∈ N0} is said to be
EP s(ΓL,Θ)-reproducing if there exists a parametrization {T(k), k ∈ N0} as in (2.6), such that
for all initial data f (0) = {π(t(0)

i ), i ∈ Zs}, π ∈ EP s(Γd,Θ), we have

lim
k→+∞

Sa(`+k)Sa(`+k−1) · · · Sa(`)f (0) = π, ∀` ∈ N0.

Note that generation and reproduction properties are independent of the starting level `.
Next, we recall from [21] sufficient conditions on the k-th level symbol of a convergent non-
stationary subdivision scheme that guarantee generation and reproduction of EP s(Γd,Θ). For
Θ as in (3.7) and Ξ′ as in (2.9), in the next propositions we denote by Vk,Θ the subset of C2

defined by

Vk,Θ := {(ν1, . . . , νs) ∈ Cs : νj = εje
−

θj

mk+1 , j = 1, . . . , s
θ = (θ1, . . . , θs) ∈ Θ, ε = (ε1, . . . , εs) ∈ Ξ′}.

(3.10)

Moreover, we denote with Dγ the directional derivative along γ = (γ1, . . . , γs) ∈ Ns0, as in
(2.10).

Proposition 3.6 [21, Proposition 4.2] Let Γd and Θ be the sets in (3.6), (3.7), respectively,
and Vk,Θ be the subset of Cs in (3.10). If a convergent non-stationary subdivision scheme
{Sa(k) , k ∈ N0} has a k-th level symbol a(k)(z) such that

Dγa(k)(ν) = 0, ∀ν ∈ Vk,Θ, γ ∈ Γd, k ∈ N0,

then it is EP s(Γd,Θ)-generating.
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Proposition 3.7 [21, Theorem 4.4] Let Γd and Θ be the sets in (3.6), (3.7), respectively. If
a convergent, non-stationary, subdivision scheme {Sa(k) , k ∈ N0} is EP s(Γd,Θ)-generating and
its k-th level symbol a(k)(z) satisfies

Dγ a(k)(ν) = ms
s∏
j=1

2∏
`=1

ν
τj−γj
j qγ`(τ`), qγ`(τ`) =


γ`−1∏
h=0

(τ` − h) if γ` ∈ N,

1 if γ` = 0

for all ν ∈ {ν ∈ Cs : νj = εje
−

θj

mk+1 , θ ∈ Θ, ε ∈ Ξ}, γ ∈ Γd and k ∈ N0, then it is
EP s(Γd,Θ)-reproducing with respect to the parametrization {T(k), k ∈ N0} in (2.6).

Another important property of non-stationary subdivision schemes is the so-called step-wise
exponential polynomial reproduction.

Proposition 3.8 A non-stationary subdivision scheme {Sa(k) , k ∈ N0} is step-wise EP s(Γd,Θ)-
reproducing if and only if there exists a shift parameter τ ∈ Rs such that

∑
j∈Zs

a(k)
mj+e

( j
mk

)γ′
νmj+e = νmτ−τε−mτ+τ+e

(
mτ − τ − e

mk+1

)γ′

is satisfied for all ν ∈ {(v1, . . . , vs) : vj = εje
−

θj

mk+1 , θ ∈ Θ, ε ∈ Ξ}, k ∈ N0, 0 ≤ γ ′ ≤ γ, γ ∈
Γd, e ∈ E 1.

Remark 3.9 The property of affine invariance of a non-stationary subdivision scheme {Sa(k) , k ∈
N0} is exactly the same of the stationary case, thus if {Sa(k) , k ∈ N0} reproduces Πs

1, then it
is affine invariant (see Proposition 2.11).

Finally, we consider the particular case of an interpolatory subdivision scheme. If {Sa(k) , k ∈
N0} is interpolatory, then it satisfies the interpolation property in (2.11).

Corollary 3.10 [21, Corollary 5.1] Let {Sa(k) , k ∈ N0} be a non-stationary interpolatory
subdivision scheme that is EP s(Γd,Θ)-generating. Then {Sa(k) , k ∈ N0} is also EP s(Γd,Θ)-
reproducing with respect to the parametrization in (2.6) with τ = 0.

3.1.1 The tension parameter t

In the non-stationary setting, the rules of the subdivision schemes depend on a free parameter
t ∈

[
0, m2 π

)
∪ iR+, which defines the exponential space EP s(Γd,Θ) in (3.8). Generally, the

refinement rules are expressed in terms of the parameter sequence {v(k), k ∈ N0} which
contains the parameters t as

v(k) = 1
2
(
e

i t

mk+1 + e
−i t

mk+1
)
, k ∈ N0, (3.11)

1The expression 0 ≤ γ
′

≤ γ, i.e. (0, . . . , 0) ≤ (γ
′
1, . . . , γ

′
s) ≤ (γ1, . . . , γs) means that 0 ≤ γ

′
j ≤ γj for all

j = 1, . . . , s (see [21])
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where m is the arity of the subdivision scheme. In particular, in the binary case (m = 2), we
have that, after choosing an arbitrary v(0) ∈ R+ defined as

v(0) := cos
(
t

2

)
=


cos

(
s
2
)
∈ (0, 1) if t = s, s ∈ (0, π),

1 if t = 0,
cosh

(
s
2
)
∈ (1,+∞) if t = is, s ∈ R+,

(3.12)

we can equivalently compute the value of v(k) in (3.11) via the recursive formula (see [8,
Proposition 2])

v(k+1) =

√
v(k) + 1

2 , ∀ k ∈ N0. (3.13)

In the ternary case (m = 3), choosing an arbitrary v(0) ∈ R+ specifically of the form

v(0) := cos
(
t

3

)
=


cos

(
s
3
)
∈ (0, 1) if s = t, t ∈

(
0, 3

2π
)
,

1 if t = 0,
cosh

(
s
3
)
∈ (1,+∞) if t = is, s ∈ R+.

(3.14)

we can equivalently compute the value of v(k) in (3.11) using the recurrence relation

v(k) = 1
2 Re

(v(k−1) +
√(

v(k−1)
)2
− 1

) 1
3

+
(
v(k−1) +

√(
v(k−1)

)2
− 1

)− 1
3
 . (3.15)

In both the cases, it follows that the parameter sequence {v(k), k ∈ N0} is such that

lim
k→∞

v(k) = 1 and |1− v(k)| ≤ cm−2k, (3.16)

for k →∞ with some constant c > 0 (see [8, Remark 3]).
The parameter t ∈

[
0, m2 π

)
∪ iR+ has a tension role, as shown in [8] and as we will see in

Section 4.2 and in Chapter 7.

3.2 Convergence and smoothness analysis of non-stationary
subdivision schemes

As in the stationary case, we have to distinguish the smoothness properties on regular meshes
from those at extraordinary vertices and faces. We start by recalling the main results regard-
ing regular meshes.

3.2.1 Smoothness analysis of curves and surfaces on regular meshes

The analysis of convergence and smoothness of univariate non-stationary subdivision schemes
and bivariate non-stationary subdivision schemes defined on regular meshes was first studied
in [56] and it is based on the concept of asymptotic equivalence.
Definition 3.11 Let Sa and {Sa(k) , k ∈ N0} be subdivision schemes defined on regular meshes
by the subdivision masks a ∈ `(Zs) and a(k) ∈ `(Zs), k ∈ N0,respectively. If

+∞∑
k=0
‖a(k) − a‖ < +∞, (3.17)

then Sa and {Sa(k) , k ∈ N0} are said to be asymptotically equivalent schemes.
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Theorem 3.12 [56, Theorems 7] Let Sa and {Sa(k) , k ∈ N0} be asymptotically equivalent
subdivision schemes defined on regular meshes by the subdivision masks a ∈ `(Zs) and a(k) ∈
`(Zs), k ∈ N0, respectively. If Sa is convergent, then {Sa(k) , k ∈ N0} is also convergent.

Remark 3.13 From Theorem 3.12 it follows that [56, Lemma 15]

lim
k→+∞

Φk(u, v) = Φ(u, v), uniformly on Rs, (3.18)

where Φ(u, v) is the basic limit function vector of Sa and Φk(u, v), k ∈ N0 the family of basic
limit function vectors of {Sa(k) , k ∈ N0}.

Theorem 3.14 [56, Theorems 8] Let Sa and {Sa(k) , k ∈ N0} be asymptotically equivalent
subdivision schemes defined on regular meshes by the subdivision masks a ∈ `(Zs) and a(k) ∈
`(Zs), k ∈ N0, respectively. If Sa is of class Cr and

+∞∑
k=1

2rk‖a(k) − a‖ < +∞, (3.19)

then {Sa(k) , k ∈ N0} is also of class Cr.

Thus the smoothness analysis of a non-stationary subdivision scheme is checked by com-
parison with a stationary one whose convergence and regularity properties are known. The
conditions required by Theorem 3.12 could be relaxed as proposed in [20, 24].

Definition 3.15 [20, Definition 3] Let Ξ′ be defined as in (2.9), γ ∈ Ns0 and Dγ as in (2.10).
A non-stationary subdivision scheme {Sa(k) , k ∈ N0} is said to satisfy the approximate sum
rules of order r + 1, r ∈ N0, if the sequences {µk, k ∈ N0} and {δk, k ∈ N0} with

µk :=
∣∣∣a(k)(1)−m

∣∣∣ and δk := max
0≤|γ|≤r

max
ε∈Ξ′

m−k|γ|
∣∣∣Dγa(k)(ε)

∣∣∣
satisfy

∞∑
k=0

µk < +∞ and
∞∑
k=0

mkr δk < +∞.

Definition 3.16 [24, Definition 7] A stationary subdivision scheme Sa and a non-stationary
one {Sa(k) , k ∈ N0} are termed asymptotically similar if the sequence of subdivision masks
a(k), k ∈ N0, and a have the same support J ( i.e. a(k)

i = ai = 0 for all i /∈ J ) and satisfy

lim
k→+∞

a(k)
i = ai, ∀i ∈ J .

These two notions allow us to check convergence and smoothness of a non-stationary scheme
by comparing it with a stationary scheme whose convergence, regularity and polynomial
generation properties are known. More precisely, in [20, Corollary 4] the following result is
given.

Proposition 3.17 Assume that the non-stationary subdivision scheme {Sa(k) , k ∈ N0} satis-
fies approximate sum rules of order r+1, r ∈ N0, and is asymptotically similar to a convergent
stationary subdivision scheme Sa whose refinable basic limit function is Cr. Then the limits
of the non-stationary scheme {Sa(k) , k ∈ N0} are Cr.
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The notions of asymptotical similarity and reproduction of exponential polynomials are use-
ful for the study of the approximation order of a non-stationary subdivision scheme [30,
Theorem 20].

Proposition 3.18 Assume that the non-stationary subdivision scheme {Sa(k) , k ∈ N0} re-
produces a d-dimentional space of exponential polynomials and is asymptotically similar to a
convergent stationary subdivision scheme Sa. Then, the non-stationary subdivision scheme
{Sa(k) , k ∈ N0} has approximation order d.

3.2.2 Convergence at extraordinary vertices and faces

As in the stationary case, near an extraordinary vertex or face the convergence analysis
is performed using the subdivision matrix. In the non-stationary setting, the subdivision
scheme {Sk, k ∈ N0} is not associated to one subdivision matrix, but to a sequence of matrices
{Sk, k ∈ N0}, since the subdivision rules depend on the subdivision level k. However, the
construction and structure of the matrices is the same shown in the stationary case. Precisely,
we order the points as explained in Order 2 and thus we construct the k-th level subdivision
matrix Sk as shown in Section 2.3. It results that Sk near an extraordinary elements of
valence n has the form in (2.20) if {Sk, k ∈ N0} is dual, and it is as in (2.21) if {Sk, k ∈ N0}
is primal. In general, we have that, for all k ∈ N0, Sk is a block-circulant matrix of the form

Sk = circ(M0,k,M1,k, . . . ,Mn−1,k) ∈ RN×N .

Near an isolated vertex or face, the regular subdivision surface produced by a non-stationary
subdivision scheme {Sk, k ∈ N0} is denoted by r which is defined on the local domain Dn =
Ω×Zn and described as r : Dn → R3 (see Section 2.3). In this case, we define the ring rk as
the restriction of the regular subdivision surface r to the set Dn,k, i.e.

rk(Dn,1) = r(Dn,k), k ∈ N0,

which implies
r(Dn) =

⋃
k∈N0

rk(Dn,1) ∪ {rc},

where rc = r(0) is the central point.
Let Φk(u, v) ∈ RN be the vector with the associated basic limit functions and let f (k) ∈ RN×3

be the vector of vertices of each ring rk, then

rk : Dn,k = Ωk × Zn → R3

(u, v) 7−→ rk(u, v) = (f (k))T Φk(u, v). (3.20)

Remark 3.19 For all k ≥ 1, Φk(u, v)Tx0 = αk with αk ∈ R. Note that Φk(u, v)Tx0 = 1 for
all k ≥ 1, if and only if the non-stationary subdivision scheme has the property of step-wise
reproduction of constants (see Definition 3.8).

The definition of convergence of a non-stationary subdivision scheme {Sk, k ∈ N0} near an
extraordinary element is the same shown in the stationary case (see Definitions 2.22), where
equation (2.26) changes as in (3.4).
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Remark 3.20 The property of affine invariance of a non-stationary subdivision scheme near
extraordinary elements is exactly the same as in the stationary case, i.e. if the elements of
each row of Sk sum up to 1 for all k ∈ N0, then the non-stationary subdivision scheme
{Sk, k ∈ N0} is affinely invariant in the neighborhood of extraordinary elements (see Remark
2.26).

Let f (0) be the vector with the initial control points defining the local portion of the mesh
in the vicinity of an extraordinary element. The goal is to study the behavior of the se-
quence {f (k+1), k ∈ N0} defined in (3.4) and hence the convergence of the sequence of regular
rings {rk+1, k ∈ N0} where rTk+1 = ΦT

k+1f (k+1) = ΦT
k+1S

(k+1)f (0). The key idea is to write
the product matrix S(k+1) in terms of the level-dependent matrices Sk, k ∈ N0 and of the
stationary matrix S. In particular, we consider two different matrix relations useful for our
purposes.

Proposition 3.21 Let S(0) = I and for all k ∈ N0 let S(k+1) be defined as in (3.5). Then,
for all k ∈ N0

S(k+1) = Sk+1 +
k∑
j=0

Sk−j(Sj − S)S(j). (3.21)

Proof: Using the definition of S(k+1) in (3.5) and assuming
∑k−1
j=0 S

k−j(Sj − S)S(j) to be 0
when k = 0, we can write

Sk+1 +
k∑
j=0

Sk−j(Sj − S)S(j) = Sk+1 +
k−1∑
j=0

Sk−j(Sj − S)S(j) + (Sk − S)S(k)

= Sk+1 + (Sk − S)S(k) +
k−1∑
j=0

Sk−jSjS
(j) −

k−1∑
j=0

Sk−jSS(j)

= Sk+1 + S(k+1) +
k−1∑
j=0

Sk−jS(j+1) −
k−1∑
j=0

Sk−j+1S(j) − SS(k)

= Sk+1 + S(k+1) +
k∑
j=1

Sk−j+1S(j) −
k∑
j=0

Sk−j+1S(j)

= Sk+1 + S(k+1) − Sk+1

= S(k+1).

Proposition 3.22 For all k,m ∈ N0

Sk+m−1 · . . . · Sk = Sm+1 +
m∑
j=0

j−1∏
h=1

Sk+m−h

 (Sk+m−j − S)Sm−j (3.22)

where
∏j−1
h=1 Sk+m−h is assumed to be I when j = 1.
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Proof: We can write

Sm+1 +
m∑
j=0

j−1∏
h=1

Sk+m−h

 (Sk+m−j − S)Sm−j

= Sm+1 +
m−1∑
j=0

j−1∏
h=1

Sk+m−h

 (Sk+m−j − S)Sm−j +
m−1∏
h=1

Sk+m−h(Sk − S)

= Sm+1 +
m−1∑
j=0

j−1∏
h=1

Sk+m−h

Sk+m−jS
m−j −

m−1∑
j=0

j−1∏
h=1

Sk+m−h

Sm−j+1

+
(

m∏
h=1

Sk+m−h

)
−
(
m−1∏
h=1

Sk+m−h

)
S

= Sm+1 +
m−1∑
j=0

 j∏
h=1

Sk+m−h

Sm−j − m∑
j=0

j−1∏
h=1

Sk+m−h

Sm−j+1 +
(

m∏
h=1

Sk+m−h

)

= Sm+1 +
m∑
j=1

j−1∏
h=1

Sk+m−h

Sm−j+1 −
m∑
j=0

j−1∏
h=1

Sk+m−h

Sm−j+1 +
(

m∏
h=1

Sk+m−h

)

= Sm+1 − Sm+1 +
(

m∏
h=1

Sk+m−h

)
= Sk+m−1 · . . . · Sk.

Exploiting the Jordan decomposition in Section 2.3.1, we show the boundedness of ‖Sk‖ for
all k ∈ N0, when convergence of the associated stationary subdivision scheme is assumed.
Note that, here and in the sequel, we use C to refer to any generic finite positive constant.

Proposition 3.23 If a stationary subdivision scheme S is convergent in correspondence to
irregular regions of the mesh, then there exists a finite positive constant C such that its matrix
S satisfies ‖Sk‖ < C for all k ∈ N0.

Proof: We use the Jordan decomposition of Sk to write

‖Sk‖ = ‖XJkX−1‖ ≤ ‖X‖‖Jk‖‖X−1‖ ≤ C‖Jk‖

with C such that ‖X‖‖X−1‖ ≤ C. We consider

‖Jk‖ = max
r=0,...,r

 `r∑
`=0
|λk,`r |

 = max


`0∑
`=0
|λk,`0 |, max

r=1,...,r

 `r∑
`=0
|λk,`r |

 .
Since S is convergent, the largest eigenvalue of S is λ0 = 1 with multiplicity 1 (see Theo-
rem 2.25). Thus

∑`0
`=0 |λ

k,`
0 | = |λk0| = 1. It follows that,

‖Jk‖ = max

1, max
r=1,...,r

 `r∑
`=0
|λk,`r |

 .
Since the terms λk,`r , for r = 1, . . . , r, decay to zero as k → +∞ (see Remark 2.24), and hence
they are limited for all k ∈ N0, the summand

∑`r
`=0 |λk,`r | is limited too for all k ∈ N0. Thus

‖Sk‖ < C for all k ∈ N0.
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The result in the next proposition aims at identifying the crucial assumption to be required on
the sequence ‖Sk−S‖, k ∈ N0 to prove in Theorem 3.25 the convergence of the non-stationary
subdivision scheme in the vicinity of an extraordinary element.

Proposition 3.24 Let {Sk, k ∈ N0} be a non-stationary subdivision scheme whose action in
correspondence to irregular regions of the mesh is described by the matrix sequence {Sk, k ∈
N0}. Moreover, let S be a stationary subdivision scheme that is identified by the subdivision
matrix S in correspondence to irregular regions. If

lim
k→+∞

‖Sk+1 − S‖
‖Sk − S‖

< |λ1|, (3.23)

where λ1 denotes the subdominant eigenvalue of S verifying 1 = λ0 > |λ1| ≥ |λi|, i = 2, . . . , r,
then

(a) limk→+∞ ‖Sk − S‖ = 0;

(b) there exists a finite positive constant C such that ‖Sk+m−1 · · ·Sk‖ < C for all k,m ∈ N0.

Proof: (a) let us consider the series
∑+∞
k=0 ‖Sk − S‖. It converges since hypothesis (3.23)

verifies the ratio criterion. As a consequence limk→+∞ ‖Sk − S‖ = 0.
(b) from Proposition 3.22 we get that, for all k,m ∈ N0,

‖Sk+m−1 · . . . · Sk‖ ≤ ‖Sm+1‖+
m∑
j=0

j−1∏
h=1
‖Sk+m−h‖

 ‖Sk+m−j − S‖‖Sm−j‖.

Proposition 3.23 implies that there exists 0 < C < +∞ such that ‖Sm+1‖ < C for all
m ∈ N0 and ‖Sm−j‖ < C for all m ≥ j ≥ 0. Moreover, from case (a) we also know that
‖Sk+m−j − S‖ < C for all k ∈ N0, m ≥ j ≥ 0. Therefore, for all k ∈ N0,

‖Sk‖ ≤ ‖Sk − S‖+ ‖S‖ ≤ C,

and the claimed result follows straightforwardly.

We are now able to provide sufficient conditions to show the convergence of a non-stationary
subdivision scheme in correspondence to irregular regions of the mesh.

Theorem 3.25 Let {Sk, k ∈ N0} be a non-stationary subdivision scheme whose action in
correspondence to irregular regions of the mesh is described by the matrix sequence {Sk, k ∈
N0}. Moreover, let S be a stationary subdivision scheme that is identified by the subdivision
matrix S in correspondence to irregular regions. If

(i) S is convergent in correspondence to both regular and irregular regions of the mesh,

(ii) {Sk, k ∈ N0} is asymptotically equivalent to S in correspondence to regular regions of
the mesh,

(iii) {Sk, k ≥ 1} and S satisfy

lim
k→+∞

‖Sk+1 − S‖
‖Sk − S‖

< |λ1|,

with λ1 the subdominant eigenvalue of S verifying 1 = λ0 > |λ1| ≥ |λi|, i = 2, . . . , r,
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then, for all bounded initial data f (0), the non-stationary subdivision scheme {Sk, k ∈ N0} is
convergent also in correspondence to irregular regions of the mesh. In particular,

lim
k→+∞

rk+1 = q0 + β0,

where

• qT0 = x̃T0 f (0) with x̃T0 = eT1 X
−1 such that x̃T0 S = λ0x̃

T
0 ,

• β0 ∈ R3 such that lim
k→+∞

yk = x0β
T
0 for yk :=

k∑
j=0

Sk−j(Sj − S)S(j)f (0), and x0 such

that Sx0 = λ0x0.

Proof: Let s ∈ N0. From the definition of yk we can write

‖yk+s−yk‖ ≤
k∑
j=0
‖(Sk+s−j−Sk−j)(Sj−S)S(j)f (0)‖+

k+s∑
j=k+1

‖Sk+s−j(Sj−S)S(j)f (0)‖. (3.24)

Therefore, recalling the boundedness of the initial data as well as the results in Proposi-
tion 3.23 and 3.24(b), we can write

‖yk+s − yk‖ ≤ C

 k∑
j=0
‖Sk+s−j − Sk−j‖‖Sj − S‖+

k+s∑
j=k+1

‖Sj − S‖

 . (3.25)

Now, to bound the first summand in (3.25) we exploit the Jordan decomposition of Sk+s−j

and Sk−j as

‖Sk+s−j − Sk−j‖ = ‖X(Jk+s−j − Jk−j)X−1‖ ≤ C‖Jk+s−j − Jk−j‖ (3.26)

for a finite constant C > 0 such that ‖X‖‖X−1‖ ≤ C. Moreover, recalling that λ0 = 1 is
unique in view of the hypothesis of convergence of S, we have

‖Jk+s−j − Jk−j‖ = max
r=0,...,r


`r∑
`=0
|λk+s−j,`
r − λk−j,`r |

 = max
r=1,...,r


`r∑
`=0
|λk+s−j,`
r − λk−j,`r |


≤ max

r=1,...,r


`r∑
`=0
|λk+s−j,`
r |+ |λk−j,`r |


(3.27)

Now, for all r = 1, . . . , r, let Lr := arg max`=0,...,`r

{
|λk+s−j,`
r |+ |λk−j,`r |

}
, thus

max
r=1,...,r


`r∑
`=0
|λk+s−j,`
r − λk−j,`r |

 ≤ max
r=1,...,r

{
(`r + 1)(|λk+s−j,Lr

r |+ |λk−j,Lrr |)
}

and denoting with r̂ = arg maxr=1,...,r
{

(`r + 1)(|λk+s−j,Lr
r |+ |λk−j,Lrr |

}
, we find

max
r=1,...,r


`r∑
`=0
|λk+s−j,`
r − λk−j,`r |

 ≤ (`r̂ + 1)(|λk+s−j,Lr̂
r̂ |+ |λk−j,Lr̂r̂ |).
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Recalling the definition of λk,`r in (2.28) we have

max
r=1,...,r


`r∑
`=0
|λk+s−j,`
r − λk−j,`r |

 ≤ (`r̂ + 1)
(
|λk+s−j−Lr̂
r̂ |

(
k + s− j

Lr̂

)
+ |λk−j−Lr̂r̂ |

(
k − j
Lr̂

))
.

Since |λr̂| ≤ |λ1| < 1 and
(k+s−j

Lr̂

)
<
(k+s
Lr̂

)
as well as

(k−j
Lr̂

)
<
(k+s
Lr̂

)
, for all k, j, s ≥ 1, we arrive

at

max
r=1,...,r


`r∑
`=0
|λk+s−j,`
r − λk−j,`r |

 ≤ 2(Lr̂ + 1)|λk−j−Lr̂1 |
(
k + s

Lr̂

)
. (3.28)

Combining (3.27) and (3.28) with (3.26), we have that

k∑
j=0
‖Sk+s−j − Sk−j‖‖Sj − S‖ ≤ C|λk−Lr̂1 |

(
k + s

Lr̂

)
k∑
j=0
|λ−j1 |‖Sj − S‖,

Using the ratio criterion and exploiting hypothesis (iii) it is easy to see that
∑k
j=0 |λ

−j
1 |‖Sj−S‖

is convergent as k → +∞. In fact

lim
j→+∞

|λ−j−1
1 | ‖Sj+1 − S‖
|λ−j1 | ‖Sj − S‖

= lim
j→+∞

‖Sj+1 − S‖
|λ1| ‖Sj − S‖

< 1.

Thus,
∑k
j=0 ‖Sk+s−j − Sk−j‖‖Sj − S‖ ≤ C|λk−Lr̂1 |

(k+s
Lr̂

)
≤ C|λk1|

(k+s
Lr̂

)
.

For the second summand in (3.25) we start by applying the following reasoning. Exploiting
assumption (iii) we can write that, for all ε > 0, there exists kε such that

‖Sk+1 − S‖ < |λ1| ‖Sk − S‖, for all k ≥ kε. (3.29)

Now, we consider
k+s∑
j=k+1

‖Sj − S‖ =
s−1∑
m=0
‖Sk+m+1 − S‖

and exploiting (3.29) we have

‖Sk+m+1 − S‖ < |λ1|‖Sk+m − S‖ < |λ2
1|‖Sk+m−1 − S‖ < . . . < |λm+1

1 |‖Sk − S‖,

for all k ≥ kε. Thus

k+s∑
j=k+1

‖Sj − S‖ =
s−1∑
m=0
‖Sk+m+1 − S‖ <

s−1∑
m=0
|λm+1

1 ‖Sk − S‖

where
∑s−1
m=0 |λ

m+1
1 | < C for any s ≥ 1 due to the assumption 0 < |λ1| < 1.

As a consequence, combining the two above results, we arrive at claiming that, for k suffi-
ciently large,

‖yk+s − yk‖ < C

(
|λk1|

(
k + s

Lr̂

)
+ ‖Sk − S‖

)
.
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In light of the fact that by assumption (iii) 0 < |λ1| < 1, we have that both |λk1| and |λk1|
(k+s
Lr̂

)
converges to 0 as k → +∞. Exploiting also Proposition 3.24 (a), we can finally conclude
that, for all ε > 0, there exists kε such that

‖yk+s − yk‖ < ε, for all k ≥ kε, s ≥ 1.

There follows that {yk, k ≥ 1} is convergent as k → +∞. Exploiting the basis of generalized
eigenvectors, its limit y can be written as

y = x0β
T
0 +

r∑
r=1

`r∑
`=0
x`rβ

T
r,`,

for certain coefficients β0,βr,` ∈ R3, r = 1, . . . , r, ` = 0, . . . , `r. To find the explicit expression
of y, we consider

‖Sy− y‖ ≤ ‖Sy− Syk‖+ ‖Syk − yk+1‖+ ‖yk+1 − y‖. (3.30)

In particular,

‖Syk − yk+1‖ =

∥∥∥∥∥∥S
k∑
j=0

Sk−j(Sj − S)S(j)f (0) −
k+1∑
j=0

Sk+1−j(Sj − S)S(j)f (0)

∥∥∥∥∥∥
= ‖(Sk+1 − S)S(k)f (0)‖

and thus, replacing the last equality in (3.30), we obtain

‖Sy− y‖ ≤ ‖S‖‖y− yk‖+ ‖Sk+1 − S‖‖S(k)‖‖f (0)‖+ ‖yk+1 − y‖.

Therefore, using again Propositions 3.23 and 3.24, together with the convergence of {yk, k ∈
N0}, we obtain that the right hand side of the last inequality tends to 0 as k → +∞. This
implies that, as k → +∞, Sy = y, i.e. the columns of y lies in the eigenspace corresponding
to the right eigenvector of S associated to the eigenvalue λ0 = 1 and therefore y must be
of the form y = x0β

T
0 with x0 = [1, ..., 1]T . Exploiting Proposition 3.21 and the fact that

f (k+1) = Skf (k) = ... = S(k+1)f (0), we can finally write

f (k+1) = S(k+1)f (0) =

Sk+1 +
k∑
j=0

Sk−j(Sj − S)S(j)

 f (0) = Sk+1f (0) + yk.

From the last observation we have that yk converges to y = x0β
T
0 as k → +∞, thus

lim
k→+∞

f (k+1) = lim
k→+∞

Sk+1f (0) + x0β
T
0 . (3.31)

As a consequence, to prove the convergence of the sequence {f (k+1), k ∈ N0} we only need to
show the behavior of the term Sk+1f (0) as k → +∞. Using the Jordan decomposition of Sk+1

(see Section 2.3.1) we can write Sk+1f (0) = XJk+1X−1f (0). Hence, introducing the notation
q := X−1f (0) and recalling the fact that λ0 = 1 is unique and |λr| < 1, ∀r = 1, . . . , r, we have

lim
k→+∞

Sk+1f (0) = lim
k→+∞

XJk+1q = X

(
lim

k→+∞
Jk+1

)
q = X


1 · · · 0 0
0 0 · · · 0
... . . . . . . ...
0 · · · · · · 0

q = x0qT0 ,

(3.32)
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with qT0 = x̃T0 f (0). Replacing (3.32) in (3.31), we thus get

lim
k→+∞

f (k+1) = x0(q0 + β0)T .

As a consequence, taking into consideration assumption (ii) and Remark 3.13 we can write

lim
k→+∞

rTk+1 = lim
k→+∞

ΦT
k+1f (k+1) = ΦTx0(q0 + β0)T ,

and, in view of Remark 2.21, we conclude that

lim
k→+∞

rk+1 = q0 + β0.



Chapter 4

Families of stationary and
non-stationary univariate
subdivision schemes

Most of the univariate (s = 1) subdivision schemes proposed in literature are binary and
stationary since these characteristics make it easier to study the mathematical properties
of the limit curve, although they seriously limit the applications of the scheme. In fact, it
is already well-known that passing from stationary to non-stationary schemes we can gain
tension control and conics reproduction (see e.g. [9]), while passing from binary to ternary
subdivision we can improve the smoothness order of the basic limit function without dramat-
ically increasing its support width (see [9, 72]).
In this chapter, we do not present new subdivision schemes, but we show some generalizations
of existent schemes in order to provide a complete framework and to extend their use to more
applications.

4.1 A combined ternary 4-point scheme

In this section we study a 3-parameter combined ternary 4-point subdivision scheme which
provides a unifying framework for several independent proposals of stationary ternary schemes
appeared in the literature. For such a scheme we completely characterize the regions of C2

and C3 convergence, that is the sets of parameters that fulfill the necessary and sufficient
conditions for C2 and C3 convergence, respectively.
As recalled in Section 1.2, in general subdivision schemes are classified as interpolatory or
approximating, depending if the obtained limit shape passes or not through all the points of
the given initial set. However, there also exists a class of parameter-dependent subdivision
schemes, called combined subdivision schemes, that according to the specific values assumed
by the parameters, can be regarded either as a member of the approximating group or of
the interpolatory one. A combined subdivision scheme of arity m is indeed characterized by
a parameter-dependent symbol a(z), z ∈ C\{0}, that satisfies the odd-symmetry property
a(z) = a(z−1) for all choices of the free parameters, while it verifies the interpolation prop-
erty in (2.11) only for some special choices of the free parameters. When passing from an
approximating scheme to an interpolating one, the maximum and minimum power of z in

44
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the symbol a(z) remain unchanged; only the coefficients of a(z) assume different values. This
means that, differently from the so-called primal pseudo-spline schemes (which also blend
approximating schemes with interpolatory ones [25]), the combined subdivision schemes pass
from the approximating to the interpolatory form without modifying the length of the sub-
division mask associated with a(z). Although combined subdivision schemes of any arity
can be constructed, here we focus our attention on combined subdivision schemes of arity
3 and, in particular, on combined ternary 4-point schemes. This choice is motivated by the
fact that the literature on ternary 4-point subdivision schemes is extremely fragmentary and
thus there is a special need of a unifying framework. In particular, we want to show that the
numerous independent proposals appeared in the last fifteen years [71, 72, 66, 109, 67, 116],
can indeed be regarded as special instances of a unique combined ternary 4-point scheme.

4.1.1 Construction of the ternary combined subdivision scheme

We start by considering the refinement rules of the ternary quadratic B-spline scheme
f̃

(k+1)
3i = 1

9f
(k)
i−1 + 7

9f
(k)
i + 1

9f
(k)
i+1,

f̃
(k+1)
3i+1 = 2

3f
(k)
i + 1

3f
(k)
i+1,

f̃
(k+1)
3i+2 = 1

3f
(k)
i + 2

3f
(k)
i+1,

(4.1)

and we define the displacement factor

∆f (k)
i := −(f (k)

i−1 − 2f (k)
i + f

(k)
i+1).

Moving the points f̃ (k+1) provided by the ternary quadratic B-spline scheme in (4.1) to new
positions according to the displacements α∆f (k)

i , −β∆f (k)
i −γ∆f (k)

i+1 and −γ∆f (k)
i −β∆f (k)

i+1,
respectively, we obtain the refinement rules

f
(k+1)
3i = f̃

(k+1)
3i + α∆f (k)

i ,

f
(k+1)
3i+1 = f̃

(k+1)
3i+1 − β∆f (k)

i − γ∆f (k)
i+1,

f
(k+1)
3i+2 = f̃

(k+1)
3i+2 − γ∆f (k)

i − β∆f (k)
i+1.

(4.2)

In this way, the refined data sequence f (k+1) is explicitly defined by
f

(k+1)
3i = (1

9 − α)f (k)
i−1 + (7

9 + 2α)f (k)
i + (1

9 − α)f (k)
i+1,

f
(k+1)
3i+1 = βf

(k)
i−1 + (2

3 + γ − 2β)f (k)
i + (1

3 + β − 2γ)f (k)
i+1 + γf

(k)
i+2,

f
(k+1)
3i+2 = γf

(k)
i−1 + (1

3 + β − 2γ)f (k)
i + (2

3 + γ − 2β)f (k)
i+1 + βf

(k)
i+2,

(4.3)

and thus, when α = 1
9 , the rule associated to the new point f (k+1)

3i reduces to f (k+1)
3i = f

(k)
i ,

i.e. the interpolatory rule. As a consequence, the ternary subdivision scheme defined in (4.3)
is a combined ternary 4-point scheme.

Remark 4.1 When γ = 0, the combined 4-point scheme defined in (4.3) reduces to a com-
bined 3-point scheme and, when β = γ = 0, to a combined 2-point scheme.
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In terms of Laurent polynomials, denoting by

ã(z) = (1 + z + z2)3

9z3

the subdivision symbol of the ternary quadratic B-spline scheme, and by

ã0(z) = 1
9z
−3 + 7

9 + 1
9z

3, ã1(z) = 1
3z
−2 + 2

3z, ã2(z) = 2
3z
−1 + 1

3z
2,

its sub-symbols, we can write the subdivision sub-symbols a(α,β,γ),j(z), j = 0, 1, 2, associated
to the three sub-rules of the scheme in (4.2), as

a(α,β,γ),0(z) = ã0(z) + 9(1− ã0(z))α,
a(α,β,γ),1(z) = ã1(z) + 9(1− ã0(z))(−γz−2 − βz),
a(α,β,γ),2(z) = ã2(z) + 9(1− ã0(z))(−βz−1 − γz2).

Therefore, the symbol of the subdivision scheme in (4.2) is

aα,β,γ(z) = a(α,β,γ),0(z) + a(α,β,γ),1(z) + a(α,β,γ),2(z)
= ã(z) + 9(1− ã0(z))(−γz−2 − βz−1 + α− βz − γz2)

=
(

1 + z + z2

3z

)2

bα,β,γ(z),
(4.4)

with

bα,β,γ(z) = 9γz−3 − 9(2γ − β)z−2 − (9α+ 18β − 9γ − 1)z−1 + (18α+ 18β + 1)
− (9α+ 18β − 9γ − 1)z − 9(2γ − β)z2 + 9γz3.

As can be easily expected, the choice of the three parameters α, β, γ strongly influences
the shape of the limit curves, as illustrated in Figure 4.1. In particular, α controls the
interpolation property: for α = 1

9 the limit curve interpolates the vertices of the starting
polyline; if α is larger than 1

9 the limit curve lies outside the starting polyline; conversely, if
α is smaller than 1

9 , the limit curve is inside the starting polyline and the closer α is to 1
9

the more the limit curve is attracted towards the vertices of f (0) (Fig. 4.1(a)). On the other
hand, β and γ are tension parameters: varying their values the limit curve stays closer or
farther to the starting polyline edges. Thus, as well as allowing the user to obtain a family
of curves interpolating the vertices of the given polyline (Fig. 4.1(b)-(c)), by choosing in a
suitable way the three parameters, the combined scheme allows the user to design also curves
that progressively move from the inside to the outside of the control polyline (Fig. 4.1(d)).
The combined scheme with symbol in (4.4) also generalizes many ternary schemes appeared
in the literature. Precisely, fixing the free parameters α, β, γ as specified below, the combined
scheme reduces to these known ternary schemes:

• The approximating linear, quadratic, cubic and quartic B-spline scheme if (α, β, γ) is
respectively (1

9 , 0, 0), (0, 0, 0), (− 1
27 ,

1
27 , 0) and (− 2

27 ,
5
81 ,

1
81);

• The 2-point, 3-point and 4-point scheme in [66, 67] if (α, β, γ) is respectively
(

1
9 −

1
9θ, 0, 0

)
, (− θ

27 ,
θ
27 , 0) and (− 1

27 −
1
27θ,

1
27 + 2

81θ,
θ
81) with θ a free parameter;
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Figure 4.1: Limit curves obtained by the combined subdivision scheme in (4.3) varying the
free parameters α, β, γ.

• The interpolating 3-point scheme in [71] if (α, β, γ) =
(

1
9 , µ −

1
3 , 0
)

with µ a free
parameter;

• The combined 3-point scheme in [116] if (α, β, γ) =
(

1
9 − ω,− 1

18 , 0
)

with ω a free
parameter;

• The interpolating 4-point scheme in [72] if (α, β, γ) =
(

1
9 ,−

1
18 −

1
6ν,−

1
18 + 1

6ν
)
with ν

a free parameter;

• The combined 4-point scheme in [109] if (α, β, γ) =
(

1
9 −

4
27λ,

1
27 −

1
54(1 − λ)(5 +
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3η), − 1
18(1− λ)(1− η)

)
with λ, η free parameters.

In the following section we analyze how the choice of the free parameters α, β, γ influences
the Cr convergence of the combined subdivision scheme in (4.4).

4.1.2 Cr convergence of the combined subdivision scheme

As recalled in Proposition 2.16, a necessary condition for Cr convergence is given by the
fulfillment of the sum rules of order r + 1, which means that the univariate ternary schemes
having symbol aα,β,γ(z), can be written as

D`aα,β,γ(e
2
3π) = D`aα,β,γ(e

4
3π) = 0, for all ` = 0, . . . , r, (4.5)

(see Definition (2.8)).

Proposition 4.2 The combined ternary subdivision scheme with symbol aα,β,γ(z) in (4.4)
satisfies

• sum rules of order 2 for all (α, β, γ) ∈ R3;

• sum rules of order 3 for all (α, β, γ) ∈ G2 :=
{
(α, β, γ) ∈ R3 : α = −β − γ

}
;

• sum rules of order 4 for all (α, β, γ) ∈ G3 :=
{

(α, β, γ) ∈ R3 : β = 2γ + 1
27 , α = −β − γ

}
;

• sum rules of order 5 for (α, β, γ) = (− 2
27 ,

5
81 ,

1
81).

Proof: It is easy to see that the symbol aα,β,γ(z) in (4.4) satisfies

D`aα,β,γ(e
2
3π) = D`aα,β,γ(e

4
3π) = 0, for ` = 0, 1,

for all α, β, γ ∈ R. Moreover, requiring α = −β − γ, the symbol in (4.4) becomes

a−β−γ,β,γ(z) =
(

1 + z + z2

3z

)3

(27γ+27βz−81γz−54βz2+27βz3+108γz2−81γz3+27γz4+3z2),

and it satisfies

D`a−β−γ,β,γ(e
2
3π) = D`a−β−γ,β,γ(e

4
3π) = 0, for ` = 0, 1, 2.

In addiction, requiring also β = 2γ + 1
27 , we obtain the symbol

a−β−γ,2γ+ 1
27 ,γ

(z) =
(

1 + z + z2

3z

)4

(81γ + (3− 162γ)z + 81γz2),

which verifies

D`a−β−γ,2γ+ 1
27 ,γ

(e
2
3π) = D`a−β−γ,2γ+ 1

27 ,γ
(e

4
3π) = 0, for ` = 0, 1, 2, 3.

Finally, imposing α = − 2
27 , β = 5

81 , γ = 1
81 , the symbol becomes

a− 2
27 ,

5
81 ,

1
81

(z) = 3
(

1 + z + z2

3z

)5

,
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from which we have

D`a− 2
27 ,

5
81 ,

1
81

(e
2
3π) = D`a− 2

27 ,
5

81 ,
1

81
(e

4
3π) = 0, for ` = 0, 1, 2, 3, 4.

The conditions provided by Proposition 4.2 are just necessary conditions for Cr continuity,
r = 1, 2, 3, 4. To find sufficient and necessary conditions, we exploit the joint spectral radius
technique explained in Section 2.2.1. In particular, we look for the conditions that have to
be satisfied by the parameters of the combined subdivision scheme with symbol in (4.4) to
produce limit curves of class C2 and C3.

Proposition 4.3 The combined subdivision scheme with symbol in (4.4) produces C2 limit
curves if and only if (α, β, γ) ∈ C2 where

C2 :=
{

(α, β, γ) ∈ R3, − 1
18 < γ < 1

9 , max
(
2γ, 4γ − 1

9

)
< β < min

(
4γ + 1

9 , 2γ + 1
9

)
, α = −β − γ,

}
.

(4.6)

Proof: In view of Proposition 2.16, the combined subdivision scheme is C2 convergent if
and only if it satisfies sum rules of order 3 and the joint spectral radius ρ of the subdivision
matrices associated with the 3-rd order difference scheme is in [1, 3). From Proposition 4.2 we
already know that the subdivision scheme satisfies sum rules of order 3 for all (α, β, γ) ∈ G2.
Thus, to identify the complete region of C2 convergence, the region G2 has to be made
narrower in such a way that ρ ∈ [1, 3). For the computation of ρ, we consider the 3-rd order
difference scheme having mask b[3] = {b[3]

2 , b
[3]
1 , b

[3]
0 , b

[3]
1 ,b

[3]
2 } where

b[3]
0 = 108γ − 54β + 3, b[3]

1 = 27β − 81γ, b[3]
2 = 27γ.

The associated matrices B[3]
ε , ε = 0, 1, 2, are of the form

B
[3]
0 =


b[3]

2 b[3]
1 0 0

0 b[3]
0 0 0

0 b[3]
1 b[3]

2 0
0 b[3]

2 b[3]
1 0

 , B
[3]
1 =


0 b[3]

0 0 0
0 b[3]

1 b[3]
2 0

0 b[3]
2 b[3]

1 0
0 0 b[3]

0 0

 , B
[3]
2 =


0 b[3]

1 b[3]
2 0

0 b[3]
2 b[3]

1 0
0 0 b[3]

0 0
0 0 b[3]

1 b[3]
2

 .
As a consequence,

‖B[3]
0 ‖ = ‖B[3]

1 ‖ = ‖B[3]
2 ‖ = max{|b[3]

0 |, |b
[3]
1 |+ |b

[3]
2 |}

ρ(B[3]
0 ) = ρ(B[3]

2 ) = max{|b[3]
0 |, |b

[3]
2 |}, ρ(B[3]

1 ) = max{|b[3]
1 + b[3]

2 |, |b
[3]
1 − b[3]

2 |}.

For all β, γ ∈ R, max{|b[3]
1 + b[3]

2 |, |b
[3]
1 − b[3]

2 |} = |b[3]
1 |+ |b

[3]
2 |. Thus,

max{‖B[3]
0 ‖, ‖B

[3]
1 ‖, ‖B

[3]
2 ‖} = max{|b[3]

0 |, |b
[3]
1 |+ |b

[3]
2 |} = max{ρ(B[3]

0 ), ρ(B[3]
1 ), ρ(B[3]

2 )},

from which follows that ρ = max{|b[3]
0 |, |b

[3]
1 | + |b

[3]
2 |}. At this point it is not difficult to see

that 1 ≤ ρ < 3 if and only if(
− 1

18 < γ ≤ 0 ∧ 2γ < β <
36γ + 1

9

)
∨

(
0 < γ ≤ 1

18 ∧ 2γ < β <
18γ + 1

9

)
∨

( 1
18 < γ <

1
9 ∧

36γ − 1
9 < β <

18γ + 1
9

)
.
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Therefore, the combined subdivision scheme is C2 convergent if and only if (α, β, γ) belongs
to the subregion of G2 that we denoted by C2 in (4.6).

Figure 4.2 shows all possible choices of the free parameters for which the combined scheme
in (4.3) is C2.

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

β
α

Figure 4.2: The region C2 (cyan) that guarantees C2 continuity for the scheme in (4.3)
compared to the region in (4.7) (magenta) that was found in [109]: 3D view (left) and top
view (right).

Remark 4.4 The result of Proposition 4.3 provides a great improvement of [109, Theorem 1].
In fact, the parameters constraints given in [109] to guarantee C2 convergence of the combined
scheme, i.e. (0 ≤ λ ≤ 1)∧(1

5 < η < 1
3), coincide with the subset of C2 (see Figure 4.2) defined

by{
(α, β, γ) ∈ R3 : − 2

45 < γ < 0, max
(

3γ + 1
27 ,−γ −

1
9

)
< β <

7
3γ + 1

27 , α = −β − γ
}
.

(4.7)

An additional improvement of our combined ternary scheme over the one proposed in [109]
is given by the fact that, if selecting α, β, γ in a suitable way, we can also obtain limit curves
of class C3, as proved in the following.

Proposition 4.5 The combined subdivision scheme with symbol in (4.4) produces C3 limit
curves if and only if (α, β, γ) ∈ C3 where

C3 :=
{

(α, β, γ) ∈ R3 : 0 < γ <
1
27 , β = 2γ + 1

27 , α = −β − γ
}
. (4.8)

Proof: In view of Proposition 2.16, the combined subdivision scheme is C3 convergent if
and only if it satisfies sum rules of order 4 and the joint spectral radius ρ of the subdivision
matrices associated with the 4-th order difference scheme is in [1, 3). From Proposition 4.2 we
already know that the subdivision scheme satisfies sum rules of order 4 for all (α, β, γ) ∈ G3.
Thus, to identify the complete region of C3 convergence, the region G3 has to be made
narrower in such a way that ρ ∈ [1, 3). For the computation of ρ, we consider the 4-th order
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difference scheme having mask b[4] = {81γ, 3(1 − 54γ), 81γ}. The associated matrices B[4]
ε ,

ε = 0, 1, 2, are of the form

B
[4]
0 =

(
81γ 0
0 81γ

)
, B

[4]
1 =

(
0 81γ
0 3(1− 54γ)

)
, B

[4]
2 =

(
0 3(1− 54γ)
0 81γ

)
.

There follows that

‖B[4]
0 ‖ = ρ(B[4]

0 ) = 81|γ|, ‖B[4]
1 ‖ = ‖B[4]

2 ‖ = max{81|γ|, 3|1− 54γ|},

ρ(B[4]
1 ) = 3|1− 54γ|, ρ(B[4]

2 ) = 81|γ|.

As a consequence,

max{ρ(B[4]
0 ), ρ(B[4]

1 ), ρ(B[4]
2 )} = max{81|γ|, 3|1− 54γ|} = max{‖B[4]

0 ‖, ‖B
[4]
1 ‖, ‖B

[4]
2 ‖},

and thus ρ = max{81|γ|, 3|1 − 54γ|}. It is therefore very easy to see that 1 ≤ ρ < 3 if and
only if 0 < γ < 1

27 . Hence, the combined subdivision scheme is C3 convergent if and only if
(α, β, γ) belongs to the subregion of G3 that we denoted by C3 in (4.8).

Remark 4.6 Denoting by R2 :=
{

(α, β, γ) ∈ R3 : β = −γ − 1
9 , α = 1

9

}
the subregion of

G2 where the interpolation condition α = 1
9 is satisfied, we obtain that the complete set of

parameters that allow the user to define an interpolatory limit curve of class C2, is

I2 := R2 ∩ C2 =
{

(α, β, γ) ∈ R3 : − 2
45 < γ < − 1

27 , β = −γ − 1
9 , α = 1

9

}
. (4.9)

I2 provides exactly the same range found in [72]. Following a similar reasoning, we can see
that the combined ternary 4-point scheme with rules in (4.3) can not provide C3 interpolating
limit curves. In fact, the parameter setting (α, β, γ) = (1

9 ,−
5
81 ,−

4
81), obtained by considering

the subregion R3 of G3 where the interpolation condition α = 1
9 is satisfied, does not lie

in C3, and so R3 ∩ C3 = ∅. Indeed, for (α, β, γ) ∈ C3, the symbol in (4.4) assumes the
non-interpolatory form

aα,β,γ(z) =
(
z2 + z + 1

3z

)4 (
81γz−1 + 3(1− 54γ) + 81γz

)
,

with γ ∈
(
0, 1

27

)
. There follows that, for all values of γ ∈ (0, 1

54), the combined ternary 4-point
scheme contains as a special subcase the class of C3 GP ripplets with dilation 3 [66, 67].

Figure 4.3-left shows the shapes of the regions C2, C3 and G3. Figure 4.3-right shows the
result highlighted in Remark 4.6.

4.1.3 Positive and negative aspects of combined ternary 4-point scheme

The combined ternary 4-point scheme with symbol in (4.4) is able to produce approximating
or interpolatory limit curves with high regularity, but it is not able to reach approximation
order 4. In fact, let us consider the C2 interpolatory counterpart of the combined ternary
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Figure 4.3: Top: the regions C2 (cyan) and C3 (blue) together with the region G3 (red): 3D
view (left) and top view (right). Bottom: the regions C2 (cyan), R2 (green) and I2 (black):
3D view (left) and top view (right).

4-point scheme, i.e. we choose (α, β, γ) ∈ I2 in (4.9). The scheme satisfies sum rules of
order 3 (see Proposition 4.2), which means that it generates the polynomial space Π1

2 (see
Proposition 2.7). It follows from the interpolation condition and Corollary 2.12 that the
scheme also reproduces Π1

2 and thus, from Proposition 2.10, it has only approximation order
3. We can generalize this reasoning in the following proposition.

Proposition 4.7 A ternary subdivision scheme defined by refinement rules involving at most
4 points can not produce limit curves with the properties of interpolation, C2 regularity and
approximation order 4.

Proof: Let us consider a generic subdivision mask of a ternary 4-point scheme, that is

a = [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12].

We first impose the conditions of interpolation and symmetry

a = [0, a1, a2, 0, a4, a5, 1, a5, a4, 0, a2, a1, 0].

Then, we require the necessary condition for convergence, i.e. the coefficients of the mask
sum up to 3, which gives a5 = 1

2 − a1 − a2 − a4 and thus

a =
[
0, a1, a2, 0, a4,

1
2 − a1 − a2 − a4, 1,

1
2 − a1 − a2 − a4, a4, 0, a2, a1, 0

]
.
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A subdivision scheme with this mask generates and reproduces constants. To require the
generation and reproduction of a space of dimension 3, we need to impose two additional
conditions which determine, for example, the values of a4 and a2. It remains only one free
parameter a1 that could be used to enlarge by one the space of generated and reproduced func-
tions, thus incrementing the approximation order, or to gain C2 continuity. Thus, a ternary
4-point subdivision scheme can not achieve the properties of interpolation, C2 regularity and
approximation order 4.

The existing proposals of ternary interpolatory 4-point schemes either satisfy the properties of
C2 regularity (see [72]) or guarantee approximation order 4 (see [9]). To gain the properties
of interpolation, C2 regularity and approximation order 4 we need to consider a ternary
subdivision scheme whose rules involve at least 5 points. We study this kind of schemes in
the following section.

4.2 A piecewise uniform interpolatory ternary 5-point scheme
Another important property often required in many applications is the preservation in the
limit curves of the convexity of the initial control points. Linear subdivision schemes that are
only C1 cannot preserve convexity in general, thus the class of C2 subdivision schemes is con-
sidered of remarkable importance in the design of application oriented algorithms since it con-
tains the subclass of convexity preserving subdivision schemes. The topic of convexity preser-
vation in subdivision has been subject of extensive studies as proven by the publication of sev-
eral papers dealing with such a problem (see, e.g., [2, 3, 4, 11, 55, 69, 86, 87, 88, 129, 130]). In
particular, Kuijt and van Damme were the first to investigate the convexity-preserving prop-
erties of linear interpolatory schemes. Together with Dyn and Levin, in [55] they derived a set
of conditions dependent on the initial data, that the parameter of the interpolating 4-point
binary scheme presented in [58] has to satisfy to preserve convexity. Then, many years later,
after the introduction of the C2 interpolating 4-point ternary subdivision scheme [72], Cai
derived the conditions that the free parameter of such scheme and the vertices of the initial
polyline have to satisfy to preserve convexity [11]. However, the ternary 4-point scheme in
[72] has only approximation order 3. As proven in Proposition 4.7, to gain approximation
order 4 we need to consider ternary subdivision schemes defined by at least five points. In
this section, we study the ternary 5-point subdivision scheme recently proposed in [136] and
we propose a non-stationary generalization that allows for the reproduction of conic sections.

4.2.1 The interpolatory ternary 5-point subdivision scheme

Given the polyline f (0) = {f (0)
i ∈ R2, i ∈ Z}, the interpolatory 5-point ternary subdivision

scheme recursively applies the refinement rules
f

(k+1)
3i−1 = (w − 4

81)f (k)
i−2 + (−4w + 10

27)f (k)
i−1 + (6w + 20

27)f (k)
i + (−4w − 5

81)f (k)
i+1 + wf

(k)
i+2,

f
(k+1)
3i = f

(k)
i ,

f
(k+1)
3i+1 = wf

(k)
i−2 + (−4w − 5

81)f (k)
i−1 + (6w + 20

27)f (k)
i + (−4w + 10

27)f (k)
i+1 + (w − 4

81)f (k)
i+2,
(4.10)

where w ∈ ( 1
324 ,

1
162) to achieve the construction of C2 limit curves (see [136, Section 3.C]).

From the refinement rules in (4.10) we can easily write the mask of the subdivision scheme
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as

T5,w =
[
w, 0, w − 4

81 , −4w − 5
81 , 0, −4w + 10

27 , 6w + 20
27 , 1,

6w + 20
27 , −4w + 10

27 , 0, −4w − 5
81 , w −

4
81 , 0, w

]
,

(4.11)

and hence the associated subdivision symbol is

T5,w(z) = (z2 + z + 1)4

27z7

(
27wz6 − 108wz5 +

(
189w − 4

3

)
z4 +

(11
3 − 216w

)
z3

+
(

189w − 4
3

)
z2 − 108wz + 27w

)
.

(4.12)

Proposition 4.8 The ternary interpolatory 5-point subdivision scheme with symbol in (4.12)
reproduces polynomials up to degree 3 with respect to the parametrization {T(k), k ∈ N0} in
(2.6) with τ = 0 for any choice of w ∈ R that guarantees the convergence.

Proof: It is easy to see that for any w ∈ R,

D`T5,w(e
2πi
3 ) = D`T5,w(e

4πi
3 ) = 0, ∀ ` = 0, . . . , 3,

thus recalling Proposition 2.7, the ternary interpolatory 5-point subdivision scheme with sym-
bol in (4.12) generates Π1

3. Moreover, since the scheme is interpolatory, from Corollary 2.12
we also have the reproduction of Π1

3.

From Proposition 2.10, it also follows that the ternary interpolatory 5-point subdivision
scheme with symbol in (4.12) has approximation order 4.
Following the procedure shown in [136, Section 3.C], the expression of the subdivision symbol
T5,w(z) can be also rewritten in terms of Lagrange fundamental polynomials for interpola-
tion. Precisely, we denote by L0

j,[m,m+d](x), m ∈ Z, d ∈ N, the j-th Lagrange fundamental
polynomial of the space Π1

d := span{1, x, . . . , xd}, defined by the nodes m,m+ 1, . . . ,m+ d,
that is

L0
j,[m,m+d](x) :=

m+d∏
i=m
i 6=j

x− i
j − i

, j = m, . . . ,m+ d. (4.13)

In particular, we consider

L0
−2,[−2,1](x) := − (x+1)x(x−1)

6 ,

L0
−1,[−2,1](x) := (x+2)x(x−1)

2 ,

L0
0,[−2,1](x) := − (x+2)(x+1)(x−1)

2 ,

L0
1,[−2,1](x) := (x+2)(x+1)x

6 ,

and

L0
−1,[−1,2](x) := −x(x−1)(x−2)

6 ,

L0
0,[−1,2](x) := (x+1)(x−1)(x−2)

2 ,

L0
1,[−1,2](x) := −x(x+1)(x−2)

2 ,

L0
2,[−1,2](x) := x(x−1)(x+1)

6 ,

(4.14)
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i.e. the Lagrange fundamental polynomials of the space Π1
3 defined by the nodes −2,−1, 0, 1

and −1, 0, 1, 2, respectively, and

L0
−2,[−2,2](x) := −x(x−1)(x−2)(x+1)

24 ,

L0
−1,[−2,2](x) := −x(x−1)(x−2)(x+2)

6 ,

L0
0,[−2,2](x) := (x−1)(x−2)(x+2)(x+1)

4 ,

L0
1,[−2,2](x) := −x(x−2)(x+2)(x+1)

6 ,

L0
2,[−2,2](x) := x(x−1)(x+2)(x+1)

24 ,

(4.15)

denoting the Lagrange fundamental polynomials of the space Π1
4 corresponding to the nodes

−2,−1, 0, 1, 2. We rewrite the subdivision symbol T5,w(z) as

T5,w(z) = T5,0(z) + wN(z), w ∈ R, (4.16)

with

T5,0(z) = (z2 + z + 1)4

27z4

(
−4

3z + 11
3 −

4
3z
−1
)

and N(z) = z−7(z2 + 1)(z3 − 1)4. (4.17)

The Laurent polynomial T5,0(z) in (4.17) can thus be rewritten in the form

T5,0(z) = z−1

 1∑
j=−2

L0
j,[−2,1]

(
−1

3

)
z−3j

+ 1 + z

 2∑
j=−1

L0
j,[−1,2]

(1
3

)
z−3j

 . (4.18)

Moreover, in light of the fact that all functions in Π1
3 satisfy D4· = 0, we can also write

N(z) = (z−1 + z)
2∑

j=−2
hj z

3j with hj = D4L0
j,[−2,2] = (−1)j

(
4

j + 2

)
, j = −2, . . . , 2.

(4.19)
Summarizing, the interpolatory ternary 5-point scheme is able to produce limit curves of
class C2 and to reproduce Π1

3, thus gaining approximation order 4. The property of convexity
preservation is analyzed in the following.

Convexity preservation of the interpolatory ternary 5-point subdivision scheme

First of all, we recall that a subdivision scheme is said to satisfy the property of strict convexity
preservation if, starting from a strictly convex control polyline, the limit curves produced by
the scheme preserve the strict convexity of the initial data. For an interpolating subdivision
scheme, the property of strict convexity preservation is achieved by simply requiring that,
at each refinement level, the second-order divided differences of the scheme are all strictly
positive. Namely, for a given k-th level sequence of real values {p(k)

j ∈ R, j ∈ Z} placed at
regularly spaced parameter values x(k)

j = j
3k , j ∈ Z, we denote by

d
(k)
j := 1

x
(k)
j+1 − x

(k)
j−1

 p(k)
j+1 − p

(k)
j

x
(k)
j+1 − x

(k)
j

−
p

(k)
j − p

(k)
j−1

x
(k)
j − x

(k)
j−1

 = 32k

2 (p(k)
j−1 − 2p(k)

j + p
(k)
j+1), (4.20)
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the k-th level second-order divided differences of the scheme, and we require that

d
(k)
j > 0, ∀j ∈ Z, ∀k ∈ N0 := N ∪ {0}. (4.21)

To guarantee the fulfillment of (4.21), suitable constraints on the initial control points f (0)

have to be assumed. In fact, without any constraints on the initial control points, the property
of strict convexity preservation does not hold. To provide a counterexample of this fact, we
can consider the strictly convex 2D control polyline defined by the vertices

f
(0)
i−2 = (1, 0.9826), f

(0)
i−1 = (1.1, 0.491), f

(0)
i = (2.01, 0.28),

f
(0)
i+1 = (3, 0.1486), f

(0)
i+2 = (4.8, 0.3927),

see Figure 4.4. If for the two sequences {1, 1.1, 2.01, 3, 4.8} and {0.9826, 0.491, 0.28, 0.1486,
0.3927} (obtained by considering the components of the 2D points separately) we compute
the second-order divided differences d(0)

j , j = i−1, i, i+1, using the formulas in (4.20), we find
that in both cases d(0)

i−1, d
(0)
i , d

(0)
i+1 are strictly positive. However, after applying the refinement

rules in (4.10) with w = 1
200 (such that w ∈ ( 1

324 ,
1

162)) we get

f
(1)
3i−2 = (1.3427, 0.3921), f

(1)
3i−1 = (1.669, 0.334), f

(1)
3i = (2.01, 0.28),

f
(1)
3i+1 = (2.3024, 0.2152), f

(1)
3i+2 = (2.5903, 0.1595).

Thus, when using the refined sequence {1.3427, 1.669, 2.01, 2.3024, 2.5903}, given by the
first components of the obtained 2D points, d(1)

3i and d(1)
3i+1 are not positive anymore, and also

d
(1)
3i < 0 when using the refined sequence {0.3921, 0.334, 0.28, 0.2152, 0.1595} given by the

second components.

Figure 4.4: The given strictly convex control polyline f (0) (dotted line) and the not strictly
convex control polyline f (1) obtained after one application of the subdivision rules in (4.10)
with w = 1

200 (solid line).

The problem of identifying under which constraints on the configuration of the initial data,
a set of refinement rules with a free parameter w can achieve the property of strict convexity
preservation, has been already faced by several authors (see, e.g., [11, 129]). The general idea
pursued in these papers consists in investigating the existence of a constant λ > 1 (which
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depends on the selected value of the free parameter w) such that, if assuming d(0)
i > 0 for all

i ∈ Z, it is verified that

max
i

d
(0)
i+1

d
(0)
i

,
d

(0)
i

d
(0)
i+1

 < λ.

Moreover, the selected value of λ has to guarantee also that, for all k ∈ N,

d
(k)
i > 0, ∀ i ∈ Z and max

i

d
(k)
i+1

d
(k)
i

,
d

(k)
i

d
(k)
i+1

 < λ.

Instead of using the condition max
i

d
(0)
i+1

d
(0)
i

,
d

(0)
i

d
(0)
i+1

 < λ, in [100, Theorem 5.1] Mustafa et

al. proposed to use a different constraint, which unfortunately turns out to be not cor-

rect. In fact, after introducing the notation p
(0)
i := d

(0)
i+1

d
(0)
i

and q
(0)
i := d

(0)
i

d
(0)
i+1

= 1
p

(0)
i

with

d
(0)
i and d

(0)
i+1 defined according to (4.20), they require the initial data to satisfy the con-

dition r(0) := min
i
{p(0)
i , q

(0)
i } > λ, which is totally nonsense. To understand why it is in-

correct, let us denote by i the index for which this minimum is realized and suppose that
r(0) = p

(0)
i

> λ > 1. Thus q(0)
i

= 1
p

(0)
i

< 1. It follows that q(0)
i

< p
(0)
i

, which is in contradiction

with r(0) = min
i
{p(0)
i , q

(0)
i } = p

(0)
i

.

To derive a correct condition that can guarantee the convexity preservation property of the
interpolating 5-point ternary scheme in (4.10), we start writing the refinement rules for the
second-order divided difference scheme as

d
(k+1)
3i−1 = a1d

(k)
i−2 + a4d

(k)
i−1 + a5d

(k)
i + a2d

(k)
i+1,

d
(k+1)
3i = a3d

(k)
i−1 + a6d

(k)
i + a3d

(k)
i+1,

d
(k+1)
3i+1 = a2d

(k)
i−1 + a5d

(k)
i + a4d

(k)
i+1 + a1d

(k)
i+2,

(4.22)

where
a1 = 9w, a2 = −18w, a3 = 18w − 4

9 ,

a4 = 1
3 − 36w, a5 = 2

3 + 45w, a6 = 17
9 − 36w.

(4.23)

Exploiting (4.22), we can reformulate the conditions yielding the preservation of strict con-
vexity as d(k+1)

3i−1 , d(k+1)
3i , d

(k+1)
3i+1 > 0 provided that d(k)

i > 0 for all i ∈ Z. Thus, we proceed by
proving the following result.

Proposition 4.9 Let p(k)
i := d

(k)
i+1

d
(k)
i

, q(k)
i := d

(k)
i

d
(k)
i+1

= 1
p

(k)
i

and r(k) := max
i
{p(k)
i , q

(k)
i }. If the

initial polyline is strictly convex, i.e. d
(0)
j > 0 for all j, then for all w ∈

(
1

324 ,
1

162

)
and

r(0) < λ := −405w+6
243w−8 , the ternary interpolatory 5-point scheme with refinement rules in

(4.10) preserves the convexity of the given data.

To simplify the proof of Proposition 4.9 as much as possible, we first introduce two auxiliary
lemmas in which we provide some inequalities that will be used to show the fulfillment of
condition (4.21). The proofs of these lemmas are skipped since quite straightforward.
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Lemma 4.10 For all w ∈
(

1
324 ,

1
162

)
the coefficients in (4.23) satisfy the inequalities

a1 > 0, a2 < 0, a3 < 0, a4 > 0, a5 > 0, a6 > 0.

Lemma 4.11 Let ai, i = 1, ..., 6 denote the coefficients defined in (4.23) and λ the value in
Proposition 4.9. Assuming w ∈

(
1

324 ,
1

162

)
it follows immediately that λ ∈ (1, 17

13). Moreover,

for all w ∈
(

1
324 ,

1
162

)
the inequalities

(i) a6 + 2a3λ > 0; (ix) a2
λ − (a1 − a5)− a4λ > 0;

(ii) a1
λ2 + a4

λ + a5 + a2λ > 0; (x) a5 + (a2 − a6)λ− a3λ
2 < 0;

(iii) a1+a5
λ + a4 + a2λ

2 > 0; (xi) a3
λ − (a2 − a6)− a5λ > 0;

(iv) a3 − a2λ < 0; (xii) a3 − a1 − a4λ < 0;
(v) 2a3−a1

λ + a6 − a4 − a2 − a5λ < 0; (xiii) a4 + a1λ− a3λ > 0;
(vi) a2 − a3λ > 0; (xiv) a2 − a1λ < 0;
(vii) a4 + (a1 − a5)λ− a2λ

2 < 0; (xv) a1 − a2λ > 0
(viii) a2+a4

λ − (a2 + a4)λ < 0;

are also fulfilled.

Proof of Proposition 4.9 We start by observing that, from the definition of p(k)
i , q

(k)
i and r(k)

i ,
we immediately have r(0) < λ and r(0) > 1

λ as well as p(0)
i , q

(0)
i < λ and −p(0)

i ,−q(0)
i < − 1

λ .
Then, we continue by showing via mathematical induction that, for all k ∈ N, d(k)

i > 0 for
all i ∈ Z and r(k) < λ. Therefore, assuming d(k)

i > 0 for all i ∈ Z and r(k) < λ, the proof
consists in showing that d(k+1)

3i+j > 0 for j = 0, 1, 2 and r(k+1) < λ, namely p(k+1)
3i+j , q

(k+1)
3i+j < λ

for j = 0, 1, 2.
Exploiting the inequalities −p(k)

i ,−q(k)
i > −λ, in view of Lemma 4.10 and Lemma 4.11 (i),

from (4.22) we obtain

d
(k+1)
3i = d

(k)
i

(
a6 − a3(−q(k)

i−1 − p
(k)
i )

)
> d

(k)
i (a6 + 2a3λ) > 0.

Analogously, from (4.22) and Lemma 4.11 (ii) we also get

d
(k+1)
3i+1 = d

(k)
i

(
−a2(−q(k)

i−1) + a5 + a4p
(k)
i + a1p

(k)
i p

(k)
i+1

)
> d

(k)
i

(
a1
λ2 + a4

λ
+ a5 + a2λ

)
> 0,

and, additionally, using condition (iii) the first equation in (4.22) yields

d
(k+1)
3i+2 = d

(k)
i

(
a1q

(k)
i−1 + a4 + a5p

(k)
i + a2p

(k)
i p

(k)
i+1

)
> d

(k)
i

(
a1 + a5
λ

+ a4 + a2λ
2
)
> 0.

Now we prove that r(k+1) < λ. Since

d
(k+1)
3i − λd(k+1)

3i+1 = d
(k)
i

(
a3q

(k)
i−1 + a6 + a3p

(k)
i − a2λq

(k)
i−1 − a5λ− a4λp

(k)
i + a1λp

(k)
i (−p(k)

i+1)
)

< d
(k)
i

(
a6 − a5λ− (a3 − a2λ)(−q(k)

i−1)− (a3 − a1 − a4λ)(−p(k)
i )

)
< d

(k)
i

(
2a3−a1

λ + a6 − a4 − a2 − a5λ
)
,
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then, in view of Lemma 4.10 and Lemma 4.11 (iv),(v),(xii) we have d(k+1)
3i −λd(k+1)

3i+1 < 0, i.e.
q

(k+1)
3i < λ. In a similar way, considering Lemma 4.10 and Lemma 4.11 (vi),(xiii), we get

d
(k+1)
3i+1 − λd

(k+1)
3i = d

(k)
i

(
a2q

(k)
i−1 + a5 + a4p

(k)
i + a1p

(k)
i p

(k)
i+1 − a3λq

(k)
i−1 − a6λ− a3λp

(k)
i

)
< d

(k)
i

(
a5 − a6λ+ (a2 − a3λ)q(k)

i−1 + (a4 + a1λ− a3λ)p(k)
i

)
< d

(k)
i

(
a5 + (a2 + a4 − a6)λ+ (a1 − 2a3)λ2)

= d
(k)
i

1
9(λ− 1) ((8− 243w)λ− 405w − 6) = 0

due to the definition of λ. Thus d(k+1)
3i+1 − λd

(k+1)
3i < 0, i.e. p(k+1)

3i < λ.
Moreover, using Lemma 4.10 and Lemma 4.11 (vii),(viii),(xiv), we obtain

d
(k+1)
3i+1 − λd

(k+1)
3i+2 = d

(k)
i

(
a2q

(k)
i−1 + a5 + a4p

(k)
i + a1p

(k)
i p

(k)
i+1 − a1λq

(k)
i−1 − a4λ− a5λp

(k)
i

− a2λp
(k)
i p

(k)
i+1
)

< d
(k)
i

(
a5 − a4λ− (a2 − a1λ)(−q(k)

i−1)− (a4 + a1λ− a5λ

− a2λ
2)(−p(k)

i )
)

< d
(k)
i

(a2
λ + a4

λ − a2λ− a4λ
)
,

hence d(k+1)
3i+1 − λd

(k+1)
3i+2 < 0, i.e. q(k+1)

3i+1 < λ.
Analogously, considering Lemma 4.10 and Lemma 4.11 (viii),(ix),(xv), we have

d
(k+1)
3i+2 − λd

(k+1)
3i+1 = d

(k)
i

(
a1q

(k)
i−1 + a4 + a5p

(k)
i − a2p

(k)
i (−p(k)

i+1)− a2λq
(k)
i−1 − a5λ− a4λp

(k)
i

+ a1λp
(k)
i (−p(k)

i+1)
)

< d
(k)
i

(
a4 − a5λ+ (a1 − a2λ)q(k)

i−1 + (a2
λ − a1 + a5 − a4λ)p(k)

i

)
< d

(k)
i

(
a2 + a4 − a2λ

2 − a4λ
2) ,

so d(k+1)
3i+2 − λd

(k+1)
3i+1 < 0, i.e. p(k+1)

3i+1 < λ.
Finally, using Lemma 4.10 as well as Lemma 4.11 (vi) and (x), we can write

d
(k+1)
3i+2 − λd

(k+1)
3i+3 = d

(k)
i

(
a1q

(k)
i−1 + a4 + a5p

(k)
i + a2p

(k)
i p

(k)
i+1 − a3λ− a6λp

(k)
i − a3λp

(k)
i p

(k)
i+1

)
< d

(k)
i

(
a4 + (a1 − a3)λ+ (a5 − a6λ)p(k)

i + (a2 − a3λ)p(k)
i p

(k)
i+1

)
< d

(k)
i

(
a4 + (a1 − a3)λ− (a5 − a6λ+ a2λ− a3λ

2)(−p(k)
i )

)
< d

(k)
i

(a5
λ + a2 + a4 − a6 + (a1 − 2a3)λ

)
= d

(k)
i

1
λ

1
9(λ− 1) ((8− 243w)λ− 405w − 6) = 0

due to the definition of λ. Hence, the latter yields d(k+1)
3i+2 − λd

(k+1)
3i+3 < 0, i.e. q(k+1)

3i+2 < λ.
To conclude the proof we consider Lemma 4.10 together with Lemma 4.11 (iv),(v) and (xi),
from which we obtain

d
(k+1)
3i+3 − λd

(k+1)
3i+2 = d

(k)
i

(
a3 + a6p

(k)
i + a3p

(k)
i p

(k)
i+1 − a1λq

(k)
i−1 − a4λ− a5λp

(k)
i − a2λp

(k)
i p

(k)
i+1

)
< d

(k)
i

(
a3 − a1 − a4λ+ (a6 − a5λ)p(k)

i − (a3 − a2λ)p(k)
i (−p(k)

i+1)
)

< d
(k)
i

(
a3 − a1 − a4λ+ (a3

λ − a2 + a6 − a5λ)p(k)
i

)
< d

(k)
i

(
2a3 − a1 + (a6 − a4 − a2)λ− a5λ

2) ,
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so that d(k+1)
3i+3 − λd

(k+1)
3i+2 < 0, i.e. p(k+1)

3i+2 < λ.

Figure 4.5 shows C2 limit curves obtained for different values of w ∈
(

1
324 ,

1
162

)
, when applying

the ternary interpolatory 5-point scheme to initial convex control polylines satisfying the
condition in Proposition 4.9.

Figure 4.5: C2 limit curves obtained by applying the ternary interpolatory 5-point scheme
in (4.10) with w = 5

867 (left), w = 3
500 (center), w = 1

200 (right), to initial convex data that
satisfy the condition in Proposition 4.9.

4.2.2 A non-stationary extension of the interpolatory 5-point ternary sub-
division scheme

As already recalled, the use of non-stationary refinement rules let us gain a tension control
parameter and the capability of reproducing not only polynomials but also exponential poly-
nomials, that is conic sections. To this purpose, in this section we propose a non-stationary
generalization of the interpolating 5-point ternary subdivision scheme in (4.10).

To construct the symbol of the non-stationary interpolatory ternary 5-point scheme we follow
the same procedure shown for its stationary counterpart (see equations (4.18)-(4.19)). First,
when replacing Π1

d by the space of exponential polynomials W1
d−2 in (3.9) represented by

W1
d−2 = span{1, x, . . . , xd−2, etx, e−tx}, t ∈

[
0, 3

2π
)
∪ iR+,

we denote by Ltj,[m,m+d](x), j = m, . . . ,m+ d, the exponential polynomial of the form

Ltj,[m,m+d](x) :=
d−2∑
i=0

βtj,i x
i + βtj,d−1 e

tx + βtj,d e
−tx, (4.24)

whose unknown coefficients βtj,i, i = 0, ..., d are uniquely determined to satisfy the d + 1
conditions

Ltj,[m,m+d](i) = δj,i

with δj,i denoting the Kronecker delta. It is worth emphasizing that, for all m ∈ Z and d ∈ N,
the exponential polynomial Ltj,[m,m+d](x) converges to the degree-d polynomial L0

j,[m,m+d](x)
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when t→ 0.
In particular, we consider

Lt−2,[−2,1](x) := −e
t(2+x) − et(2−x) − x et(e2t − 1)

(et − 1)3 (et + 1) ,

Lt−1,[−2,1](x) := −x (e2t + et + 1) + et

(et − 1)2 + et(2+x) (et + 2)− et(2−x)(e−t + 2)
(et − 1)3 (et + 1) ,

Lt0,[−2,1](x) := x (e2t + et + 1) + e2t + 1
(et − 1)2 + et(1−x)(et + 2)− et(3+x)(e−t + 2)

(et − 1)3 (et + 1) ,

Lt1,[−2,1](x) := et(3+x) − et(1−x) − (1 + x) et (e2t − 1)
(et − 1)3 (et + 1) ,

(4.25)

and

Lt−1,[−1,2](x) := −e
t(1+x) − et(3−x) + (1− x) et(e2t − 1)

(et − 1)3(et + 1) ,

Lt0,[−1,2](x) := −x (e2t + et + 1)− e2t − 1
(et − 1)2 + et(1+x)(et + 2)− et(3−x)(e−t + 2)

(et − 1)3(et + 1) ,

Lt1,[−1,2](x) := x (e2t + et + 1)− et

(et − 1)2 + et(2−x)(et + 2)− et(2+x)(e−t + 2)
(et − 1)3(et + 1) ,

Lt2,[−1,2](x) := et(2+x) − et(2−x) − xet(e2t − 1)
(et − 1)3(et + 1) ,

(4.26)

i.e. the fundamental polynomials related to the exponential space W1
1 defined by the nodes

−2,−1, 0, 1 and −1, 0, 1, 2, respectively, and

Lt−2,[−2,2](x) := x(1− x)et

2(et − 1)2 + (etx − 1)(e2t − et(3−x))
(et − 1)4(et + 1) ,

Lt−1,[−2,2](x) := x(x(et + 1)2 − (e2t + 1))
2(et − 1)2 + e2t(e−tx − 1)(etx(et + 3)− 3et − 1)

(et − 1)4(et + 1) ,

Lt0,[−2,2](x) := (1− x2)(e2t + et + 1)
(et − 1)2 + 3e2t(etx + e−tx − et − e−t)

(et − 1)4 ,

Lt1,[−2,2](x) := x(x(et + 1)2 + (e2t + 1))
2(et − 1)2 + e3t(e−tx − 1)(etx(e−t + 3)− 3e−t − 1)

(et − 1)4(et + 1) ,

Lt2,[−2,2](x) := −x(1 + x)et

2(et − 1)2 + (etx − 1)(e3t − et(2−x))
(et − 1)4(et + 1) ,

(4.27)

that is the fundamental polynomials associated to the exponential space W1
2 defined by the

nodes −2,−1, 0, 1, 2.
Thus, we set

T
(k)
5,0 (z) := z−1

 1∑
j=−2

L3−kt
j,[−2,1]

(
−1

3

)
z−3j

+ 1 + z

 2∑
j=−1

L3−kt
j,[−1,2]

(1
3

)
z−3j

 , (4.28)

and since all functions in W1
1 satisfy the differential equation D4 · −t2D2· = 0, we define

N (k)(z) := (z−1+z)
2∑

j=−2
h

(k)
j z3j with h

(k)
j = D4L3−kt

j,[−2,2]−(3−kt)2D2L3−kt
j,[−2,2], j = −2, . . . , 2.

(4.29)
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At this point, following again the same approach used in the stationary case, we construct
the k-th level symbol T (k)

5,w(k)(z) as

T
(k)
5,w(k)(z) = T

(k)
5,0 (z) + w(k)N (k)(z), w(k) ∈ R. (4.30)

Introducing the notation

v(k) = 1
2
(
e

i t

3k+1 + e
−i t

3k+1
)
, t ∈

[
0, 3

2π
)
∪ iR+,

as in (3.11) we can conveniently rewrite (4.28) as

T
(k)
5,0 (z) = − (z2+z+1)2

3(2v(k)+1)3(2v(k)−1)z5

(
(2v(k) + 2)z2 + (−4(v(k))2 − 4v(k) − 3)z

+(2v(k) + 2)
)(
z4 + 2v(k)z3 + (4(v(k))2 − 1)z2 + 2v(k)z + 1

) (4.31)

and the term w(k)N (k)(z) as

w(k)N (k)(z) = w(k)
(

3−kt

e
3−kt

2 − e−
3−kt

2

)2

z−7(z2 + 1)
(
z6 − 2v(k)(4(v(k))2 − 3)z3 + 1

)
(z3− 1)2.

Incorporating
(

3−kt

e
3−kt

2 −e−
3−kt

2

)2

in the free parameter w(k), we finally obtain

w(k)N (k)(z) = w(k)z−7(z2 + 1)
(
z6 − 2v(k)(4(v(k))2 − 3)z3 + 1

)
(z3 − 1)2, (4.32)

so that T (k)
5,w(k)(z) is nothing but the sum of the Laurent polynomials in (4.31) and (4.32).

Now, expanding T (k)
5,w(k)(z) with respect to z, we find the unknown entries

c
(k)
1 = w(k),

c
(k)
3 = w(k) − 2(v(k) + 1)

3(2v(k) − 1)(2v(k) + 1)3 ,

c
(k)
4 = −2w(k)

(
4(v(k))3 − 3v(k) + 1

)
− 4v(k) + 1

3(2v(k) − 1)(2v(k) + 1)3 ,

c
(k)
6 = −2w(k)

(
4(v(k))3 − 3v(k) + 1

)
+ 1

(2v(k) − 1)(2v(k) + 1)3 + 1
3 ,

c
(k)
7 = 2w(k)

(
8(v(k))3 − 6v(k) + 1

)
+ 2v(k)

(2v(k) − 1)(2v(k) + 1)3 + 2
3 ,

(4.33)

of the k-th level mask

T(k)
5,w(k) = [c(k)

1 , 0, c(k)
3 , c

(k)
4 , 0, c(k)

6 , c
(k)
7 , 1, c(k)

7 , c
(k)
6 , 0, c(k)

4 , c
(k)
3 , 0, c(k)

1 ], (4.34)

and hence the refinement rules of the interpolating 5-point ternary non-stationary subdivision
scheme 

f
(k+1)
3i−1 = c

(k)
3 p

(k)
i−2 + c

(k)
6 f

(k)
i−1 + c

(k)
7 f

(k)
i + c

(k)
4 f

(k)
i+1 + c

(k)
1 f

(k)
i+2,

f
(k+1)
3i = p

(k)
i ,

f
(k+1)
3i+1 = c

(k)
1 f

(k)
i−2 + c

(k)
4 f

(k)
i−1 + c

(k)
7 f

(k)
i + c

(k)
6 f

(k)
i+1 + c

(k)
3 f

(k)
i+2.

(4.35)



Families of stationary and non-stationary univariate subdivision schemes 63

Remark 4.12 Observe that, when k → +∞, then from (3.16) v(k) → 1 and the Laurent
polynomials T (k)

5,0 (z) in (4.31) and N (k)(z) in (4.32) converge to their stationary counterparts
in (4.17). As a consequence, under the conditions v(k) = 1 and w(k) = w, the k-th level
symbol T (k)

5,w(k)(z) reduces to the stationary symbol T5,w(z), and the associated subdivision
rules in (4.35) are brought back to the stationary ones in (4.10).

4.2.3 Properties of the non-stationary interpolatory 5-point ternary scheme

When investigating the support width of the basic limit function of the subdivision scheme
with symbols {T (k)

5,w(k)(z), k ∈ N0}, the setting of the parameter t defining {v(k) ∈ R+, k ∈ N0}
is not crucial. In fact, we must simply select {v(k) ∈ R+, k ∈ N0} and {w(k) ∈ R\{0}, k ∈ N0}
such that convergence is guaranteed. Hence, the next result is obtained.

Proposition 4.13 Let φ be the basic limit function of the subdivision scheme with k-th level
symbol T (k)

5,w(k)(z) in (4.30). Then φ has support [−7
2 ,

7
2 ] for any choice of {v(k) ∈ R+, k ∈ N0}

and {w(k) ∈ R \ {0}, k ∈ N0} that guarantees convergence.

Proof: Let f (0) := {δi,0, i ∈ Z}, and for all k ∈ N0 define by φ(k) the piecewise linear
function interpolating the data f (k), generated by the subdivision scheme, at the parameter
values 3−kZ. We first prove that φ(k) has support [−ξ(k), ξ(k)] with ξ(k) = 1 + 5

2

(
1− 3−k

)
.

We proceed by induction on k. For k = 0, the support of φ(0) is trivially [−1, 1], which
verifies the given statement. Now, we show that the fulfillment of the given statement for
an arbitrary level k implies its validity for the next level too. Indeed, assume that at the
k-th iteration the support of φ(k) is [−ξ(k), ξ(k)] with ξ(k) = 1 + 5

2

(
1− 3−k

)
. Then the last

control point of f (k) with non-zero y-coordinate is placed at x0 = ξ(k) − 3−k. To find the
parameter value of the last control point of f (k+1) with non-zero y-coordinate, we need to
apply to x0 and its four following points (which have zero y-coordinate and are placed at
x1 = ξ(k), x2 = ξ(k) + 3−k, x3 = ξ(k) + 2 3−k, x4 = ξ(k) + 3 3−k), the third formula in (4.35).
This yields

c
(k)
1 x0 + c

(k)
4 x1 + c

(k)
7 x2 + c

(k)
6 x3 + c

(k)
3 x4 = 1 + 5

2(1− 3−k−1)− 3−k−1,

and thus the support of φ(k+1) is exactly [−ξ(k+1), ξ(k+1)] with ξ(k+1) = 1+ 5
2

(
1− 3−k−1

)
, so

concluding the induction proof. Finally, under the hypothesis of convergence, the basic limit
function φ := limk→∞ φ

(k) exists and its support is given by limk→∞[−ξ(k), ξ(k)] =
[
−7

2 ,
7
2

]
.

The same results could be obtained using the method proposed in [44].

Differently, a correct setting of the parameter t, and hence of the sequences {v(k) ∈ R+, k ∈
N0} and {w(k) ∈ R \ {0}, k ∈ N0} is required to achieve high smoothness order and re-
production of conic sections, i.e. reproduction of the space of exponential polynomials in
W1

1 .
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Smoothness analysis

Since we are not interested in limit curves that are only C0 continuous, we do not explicitly
specify which choices of the parameter sequence {w(k) ∈ R, k ∈ N0} can ensure the conver-
gence of the subdivision scheme defined in (4.35), but we directly point out which parameter
setting can yield its C2-convergence. First of all we observe that, when w(k) = 0, then
the k-th level symbol T (k)

5,w(k)(z) in (4.30) reduces to the k-th level symbol T (k)
5,0 (z) in (4.31).

The latter coincides with the subdivision symbol of the non-stationary ternary interpolatory
4-point scheme in [9], which is of class C1 for any sequence {v(k) ∈ R+, k ∈ N0} (see [9,
Proposition 10]). Hence the parameter setting {w(k) = 0, k ∈ N0} does not yield C2 con-
tinuity. The following proposition provides the conditions to be satisfied by the parameter
sequence {w(k) ∈ R\{0}, k ∈ N0} such that the non-stationary ternary interpolatory 5-point
scheme defined in (4.35) indeed produces C2 limit curves.

Proposition 4.14 Let v(0) ∈ R+ and v(k) be defined as in (3.15) for any k ∈ N. Moreover,
assume that w(k) converges to w ∈

(
1

324 ,
1

162

)
with the rate O(3−2k) as k → ∞. Then the

ternary interpolatory 5-point scheme with symbols {T (k)
5,w(k)(z), k ∈ N0} produces limit curves

of class C2.

Proof: Recalling property (3.16) and in view of the assumption on w(k), the k-th level symbol
T

(k)
5,w(k)(z) is such that

lim
k→+∞

T
(k)
5,w(k)(z) = T5,w(z),

with T5,w(z) the symbol in (4.12). Thus, according to Definition 3.16, the non-stationary
subdivision scheme with symbols {T (k)

5,w(k)(z), k ∈ N0} is asymptotically similar to the sta-
tionary scheme defined by the symbol T5,w(z). Since the basic limit function of the stationary
scheme is stable and C2 for all w ∈

(
1

324 ,
1

162

)
(see Section 4.2.1), if we could show that the

non-stationary scheme satisfies the so-called approximate sum rules of order 3 (see Defini-
tion 3.15), i.e.

(a)
∞∑
k=0

µk <∞ with µk :=
∣∣∣T (k)

5,w(k)(1)− 3
∣∣∣ ,

(b)
∞∑
k=0

32k δk <∞ with δk := max
`=0,1,2

max
ε∈
{
e

2πi
3 ,e

4πi
3
} 3−ks

∣∣∣D`T
(k)
5,w(k)(ε)

∣∣∣ , (4.36)

the claim would follow from Proposition 3.17. Since T (k)
5,w(k)(1) = 3, condition (a) is trivially

verified. Moreover, since

T
(k)
5,w(k)(ε) = D1T

(k)
5,w(k)(ε) = 0 for ε ∈

{
e

2πi
3 , e

4πi
3
}

and
max

ε∈
{
e

2πi
3 ,e

4πi
3
} ∣∣∣D2T

(k)
5,w(k)(ε)

∣∣∣ = max
ε∈
{
e

2πi
3 ,e

4πi
3
} ∣∣∣(1 + ε) (v(k) − 1) f(v(k), w(k))

∣∣∣
with

f(v(k), w(k)) :=
4
(
4(v(k))2 + 6v(k) + 5

)
(2v(k) − 1)(2v(k) + 1)2 − 36w(k)(2v(k) + 1)2,
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in order to prove condition (b) we simply have to show that

max
ε∈
{
e

2πi
3 ,e

4πi
3
} |1 + ε|

∞∑
k=0

∣∣∣(v(k) − 1) f(v(k), w(k))
∣∣∣ <∞.

The convergence of this series easily follows from (3.16) and the assumption on w(k), so
proving the fulfillment of approximate sum rules of order 3 and thus of the claimed result.

Figure 4.6 shows different C2 limit curves that have been obtained modifying the initial
parameter v(0) in the admissible range R+ and choosing the parameter sequence {w(k) ∈
R+\{0}, k ∈ N0} in the respect of the assumptions of Proposition 4.14. As we can see, v(0)

plays the role of a tension parameter since, as far as its value increases, the limit curve stays
closer and closer to the initial control polyline.

Figure 4.6: C2 limit curves obtained by applying the non-stationary ternary interpolatory
5-point scheme with k-th level symbol in (4.30) when setting w(k) = 1

32(8(v(k))3−2v(k)+2) and
choosing v(0) = 0.8 (left), v(0) = 1 (center), v(0) = 3 (right).

Reproduction of conic sections

We conclude this section by investigating the reproduction properties of the C2 non-stationary
ternary interpolatory 5-point scheme.

Proposition 4.15 For all {w(k) ∈ R\{0}, k ∈ N0} satisfying the assumption in Proposi-
tion 4.14, the C2 non-stationary ternary interpolatory 5-point scheme with k-th level symbol
in (4.30) reproduces W1

1 with respect to the parametrization {T(k), k ∈ N0} in (2.6) with
τ = 0.

Proof: Since T (k)
5,w(k)(z) is such that

T
(k)
5,w(k)(ε) = D1T

(k)
5,w(k)(ε) = 0 for ε ∈

{
e

2πi
3 , e

4πi
3
}
,

in view of Proposition 2.7 it is easily shown that the space Π1
1 is generated for any choice of

w(k) as in Proposition 4.14. Moreover, since

T
(k)
5,w(k)(ε e

± t

3k+1 ) = 0, for ε ∈
{
e

2πi
3 , e

4πi
3
}
,
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then from Proposition 3.6 the space {etx, e−tx} is generated for any choice of w(k) as in
Proposition 4.14. Thus the whole space W1

1 is generated. There follows that, being the
scheme interpolatory, the space W1

1 is also reproduced with respect to the parametrization
{T(k), k ∈ N0} in (2.6) with τ = 0 (see Corollary 2.12).

Remark 4.16 Note that, if the initial data are of the form (j, f(j)), j ∈ Z with f ∈ W1
1 ,

then in order to reproduce the function f in the limit, we need to choose t respectively as:

• t = s with s ∈
(
0, 3

2π
)
, if f ∈ span{1, x, eisx, e−isx};

• t = 0, if f ∈ span{1, x, x2, x3};

• t = is with s ∈ R+, if f ∈ span{1, x, esx, e−sx}.

Thus, accordingly, the initial parameter v(0) has to be defined as in (3.14).

Corollary 4.17 In consequence of Proposition 4.15 and in view of Proposition 3.18, we
immediately have that the non-stationary ternary 5-point interpolatory subdivision scheme
has approximation order 4.

4.2.4 Combining convexity preservation with conic reproduction

As already recalled in Section 4.1.3, in literature we cannot find examples of ternary interpo-
latory 4-point schemes satisfying at the same time the properties of C2 regularity, convexity
preservation and reproduction of a 4-dimensional space of exponential polynomials. Thus,
our new proposal provides a great improvement over the 4-point schemes in the literature
since, by means of refinement rules involving only one additional point, it is able to design
limit curves that fulfill all the above three properties. Precisely, in the previous section we
have seen that, when the parameter sequence {w(k) ∈ R+\{0}, k ∈ N0} is defined as in
Proposition 4.14, then the limit curve is C2 for any arbitrary initial polyline. Furthermore,
the subdivision scheme can

• reproduce conics whenever the value of t identifying the parameter sequence {v(k) ∈
R+, k ∈ N0} is properly set and the vertices of the initial polyline f (0) are points on a
conic section corresponding to equally-spaced parameter values (see Proposition 4.15);

• preserve the convexity of the given data whenever the constant parameter sequences
{v(k) = 1, k ∈ N0} and {w(k) = w ∈

(
1

324 ,
1

162

)
, k ∈ N0} are used and the initial

polyline satisfies the assumptions in Proposition 4.9.

The goal of this section is the construction of a piecewise-uniform subdivision algorithm that
allows the user to generate a C2 continuous limit curve including arcs of conic sections as well
as locally convex pieces that preserve the convexity of the corresponding portion of initial
control polyline.
In the following, we first focus on how to construct a limit curve that contains an alternation
of curve pieces generated by the rules in (4.35) with different choices of the parameters
{v(k) ∈ R+, k ∈ N0} and {w(k) ∈ R+\{0}, k ∈ N0}. Then, we show that the limit curve
obtained via this piecewise-uniform scheme is C2 everywhere, that is also in the region in
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which the convexity preserving rules and the conic reproducing rules overlap. Finally, we
show some examples of C2 limit curves obtained by the piecewise-uniform scheme, that both
contain curve pieces reproducing conic sections and curve pieces that preserve the convexity
of the initial data.

f = f
(k)
j+1

f
(k)
j

f
(k)
j+2

(v
(k)

l
, w

(k)

l
)

(v (k)r , w (k)r )

Figure 4.7: Configuration of parameter pairs around the contact point f at the k-th refinement
step.

For the sake of conciseness, in the following we denote by T (k) the C2 ternary interpo-
latory 5-point scheme with symbols {T (k)

5,w(k)(z), k ∈ N0} satisfying the assumptions of
Proposition 4.14. Moreover, we denote the parameter sequences {v(k) ∈ R+, k ∈ N0} and
{w(k) ∈ R+\{0}, k ∈ N0} needed for its construction by V (k) and W (k), respectively. Given
an initial control polyline, we study the problem of including in the limit curve an alternation
of curve pieces obtained using schemes T (k) defined by different choices of the parameters
V (k) and W (k). For this purpose, we associate to each edge of the initial control polyline a
different scheme T (k) and we suppose that edge to be refined using such scheme for all the
subdivision steps. As a consequence, the resulting subdivision method belongs to the class of
piecewise-uniform schemes since, essentially, it consists in using two different refinements to
the left and to the right hand side of a contact point. Since all the schemes that are applied
locally have a finite support, each contact point is influenced only by the schemes applied
in its neighborhood. So we can generalize the previously proposed (uniform) subdivision
scheme to the situation described in Figure 4.7. More precisely, we assume that on the left
hand side of the contact point f the subdivision scheme denoted by T (k)

l , identified by the
parameter sequences V (k)

l := {v(k)
l , k ∈ N0} and W

(k)
l := {w(k)

l , k ∈ N0}, is applied, while
on its right hand side the subdivision scheme T (k)

r , identified by the parameter sequences
V

(k)
r := {v(k)

r , k ∈ N0} and W (k)
r := {w(k)

r , k ∈ N0}, is used.
Denoted by T (k)

f
the combined scheme, we are interested in determining the smoothness of

the limit curves it produces. To this end we can limit ourselves to analyze the behaviour of
the two schemes T (k)

l and T (k)
r in the region around the contact point f . Since both schemes



Families of stationary and non-stationary univariate subdivision schemes 68

are separately C2, away from the contact point f the limit curves are clearly C2. Therefore,
we need to study the regularity of T (k)

f
only in the region where they overlap. To formalize

the application of the combined scheme T (k)
f

in the neighborhood of the contact point f , it
is convenient to write the bi-infinite subdivision matrix

S
(k)
f

=



· · · · · · · · ·
· 0 0 1 0 0 0 0 ·
· c

(k)
1,l c

(k)
4,l c

(k)
7,l c

(k)
6,l c

(k)
3,l 0 0 ·

· 0 c
(k)
3,l c

(k)
6,l c

(k)
7,l c

(k)
4,l c

(k)
1,l 0 ·

· 0 0 0 1 0 0 0 ·
· 0 c

(k)
1,r c

(k)
4,r c

(k)
7,r c

(k)
6,r c

(k)
3,r 0 ·

· 0 0 c
(k)
3,r c

(k)
6,r c

(k)
7,r c

(k)
4,r c

(k)
1,r ·

· 0 0 0 0 1 0 0 ·
· · · · · · · · ·


(4.37)

where for i = 1, 3, 4, 6, 7, the coefficients c(k)
i,l and c(k)

i,r are the ones in (4.33) with parameters
v

(k)
l , w

(k)
l and v(k)

r , w
(k)
r , respectively. Let S∞ := limk→∞ S

(k)
f

denote the stationary counter-

part of the matrix S(k)
f

, and observe that limk→∞ T
(k)
l = limk→∞ T

(k)
r = limk→∞ T

(k)
f

=: T ∞,
with T ∞ denoting the stationary scheme related to the subdivision matrix S∞, which, as
previously recalled, is C2 for w ∈

(
1

324 ,
1

162

)
(see Section 4.2.1). To prove Proposition 4.19,

regarding C2 continuity of the limit curves in the overlapping regions of T (k)
l and T (k)

r , we
exploit the following result which is a straightforward generalization of [56, Theorem 8] to
the m-ary case.

Proposition 4.18 Let {Sa(k) , k ∈ N0} be a non-stationary subdivision scheme of arity m ∈
N, m ≥ 2, and Sa a stationary subdivision scheme of the same arity and support width. If Sa
is of class Cr and if

∑∞
k=0m

`k‖Sa(k) − Sa‖ < ∞ for ` = 0, 1, . . . , r, then the non-stationary
scheme {Sa(k) , k ∈ N0} is also of class Cr.

Hence, C2-smoothness of the piecewise-uniform scheme can be proved as follows.

Proposition 4.19 The combined subdivision scheme T (k)
f

generates C2 continuous limit

curves in the region where T (k)
l and T (k)

r overlap.

Proof: To prove the claim it is sufficient to show that T (k)
f

and T ∞ are asymptotically

equivalent of order 2, namely, in view of Proposition 4.18, they satisfy
∑∞
k=0 3`k||T (k)

f
−

T ∞|| < ∞ for ` = 0, 1, 2, which means that the associated subdivision matrices also satisfy∑∞
k=0 3`k||S(k)

f
− S∞|| <∞ for ` = 0, 1, 2. Since S(k)

f
is built from the rows of S(k)

l , S(k)
r and

the subdivision schemes T (k)
l , T (k)

r are independently known to be C2, it is easy to show that

∞∑
k=0

3`k||S(k)
f
− S∞|| ≤ max

{ ∞∑
k=0

3`k||S(k)
l − S

∞||,
∞∑
k=0

3`k||S(k)
r − S∞||

}
<∞

for all ` = 0, 1, 2, from which the claim is obtained.
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We conclude this section pointing out that the proposed piecewise-uniform subdivision algo-
rithm allows the user to generate a C2 continuous limit curve including arcs of conic sections
as well as locally convex pieces that preserve the convexity of the corresponding portion of
initial control polyline.
Precisely, let n > 6 and assume that the initial polyline is such that the vertices from f

(0)
j to

f
(0)
j+n are points on a conic arc corresponding to equally-spaced parameter values. If

f
(0)
` =


(i) (a cos(`t), b sin(`t)), t ∈

(
0, 3

2π
)

(ii) (`, `2),
(iii) (a cosh(`t), b sinh(`t)), t ∈ R+

` = j, . . . , j + n

and v
(0)
` =


(i) cos( t3), t ∈

(
0, 3

2π
)

(ii) 1,
(iii) cosh( t3), t ∈ R+

` = j, . . . , j + n− 1,

then when setting the parameters w(k)
` , ` = j, . . . , j + n − 1 according to the condition in

Proposition 4.14, the portion of limit curve confined between the vertices f (0)
j+3 and f

(0)
j+n−3

exactly coincides with the conic arc from which they have been sampled, and the adjacent
pieces join C2 continuously.
In a similar way, if the portion of initial control polyline between f (0)

j and f (0)
j+n is locally convex

and satisfies conditions in Proposition 4.9, then provided that, for all ` = j, . . . , j + n − 1,
v

(0)
` = 1 and w(k)

` fulfills the assumptions of Proposition 4.9, the obtained limit curve is strictly
convex between f (0)

j+3 and f (0)
j+n−3, and joins C2 continuously to the neighboring pieces.
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Figure 4.8: Examples of application of the C2 piecewise-uniform subdivision scheme.

Figure 4.8 shows some application examples of the proposed piecewise-uniform subdivision
algorithm in order to generate C2 continuous limit curves including arcs of conic sections
as well as pieces that preserve the convexity of the corresponding portion of initial control
polyline. In case (a), the parameter v(0)

` , ` = 0, . . . , 31 to be associated to the `-th edge of
the control polyline is defined as

[v(0)
0 , . . . , v

(0)
7 , v

(0)
8 , . . . , v

(0)
15 , v

(0)
16 , . . . , v

(0)
23 , v

(0)
24 , . . . , v

(0)
31 ] =

= [cos
(
π
24
)
, . . . , cos

(
π
24
)
, 1, . . . , 1, cos

(
π
24
)
, . . . , cos

(
π
24
)
, 1, . . . , 1],
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and the shape parameter vectors for the successive refinement levels are simply obtained via
the recursive formula (3.15). In contrast, the smoothness parameter w(k)

` to be associated
with the `-th edge of the control polyline is given by w(k)

` = 1
10(2(v(k)

`
)3+3v(k)

`
+12)

.
In a similar way, in case (b) the initial shape parameter vector is chosen as

[v(0)
0 , . . . , v

(0)
8 , v

(0)
9 , . . . , v

(0)
16 , v

(0)
17 ] =

[
1, . . . , 1, cos

(
π

24

)
, . . . , cos

(
π

24

)
, 1
]
,

v
(k)
` is again defined from the corresponding v(0)

` via recurrence (3.15) and
w

(k)
` = 1

7((v(k)
`

)3+20(v(k)
`

)2−v(k)
`

+5)
.

Concerning Figure 4.8 (a), the initial control polyline is locally convex from f
(0)
8 to f (0)

16 as
well as from f

(0)
24 to f (0)

32 ≡ f
(0)
0 ; thus, from f

(0)
11 to f (0)

13 and from f
(0)
27 to f (0)

29 the limit curve
preserves the convexity of the given data. Differently, the initial control points from f

(0)
0 to

f
(0)
8 and from f

(0)
16 to f (0)

24 are uniform samples of the circle of radius 1 and 2, respectively;
hence the limit curve reproduces the corresponding circle arc between f (0)

3 and f (0)
5 as well

as between f (0)
19 and f (0)

21 .
As to Figure 4.8 (b), from f

(0)
0 to f (0)

10 the initial control polyline is locally convex, thus from
f

(0)
3 to f (0)

7 the limit curve is convex too. Conversely, from f
(0)
10 to f (0)

18 ≡ f
(0)
0 the initial

control points are equally-spaced samples of the circle of radius 1.5; thus from f
(0)
13 to f (0)

15
the limit curve coincides with an arc of such circle.

4.3 Families of non-stationary subdivision schemes reproduc-
ing conic sections

In the previous section, we have seen the usefulness of non-stationary subdivision schemes to
design limit curves able to reproduce not only polynomials but also exponential polynomi-
als. This property, together with interpolation and arbitrarily high smoothness, is considered
wished tool both in geometric modeling and image segmentation. As to the latter, we recall
that one of the most used tools for efficient image segmentation are active contours (snakes),
i.e. 2D curves evolving through the image, capable of perfectly outlining elliptic objects and
offering user-friendly models, versatile enough to provide a close smooth approximation of
any closed polyline in the plane [37] (see also Section 6).
In the stationary context, many fundamental families of subdivision schemes have been pro-
posed and studied during the years (e.g. [42, 74, 90]), which are able to produce limit curves
with high smoothness and to generate or reproduce polynomials. However, non-stationary
extensions of these schemes have never been proposed, thus limiting their application.
Among these families of stationary subdivision schemes, there is the Lane-Riesenfeld algo-
rithm [90] which defines the symbols associated to the family of B-spline schemes of order
`, with ` ∈ N. In literature, the use of these symbols as ‘building blocks’ to define both
interpolatory schemes [27] and subdivision schemes with enhanced reproduction capabilities
[74] has been recently shown. In fact, Conti and Romani observed that `-point (with ` even)
Dubuc-Deslauriers schemes [42] are characterized by a symbol containing the factor (z+1)`

2`−1 ,
while Hormann and Sabin noticed that the same factor (with ` ∈ N) is also contained in the
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symbol of the family of subdivision schemes with cubic precision. Moreover, in [39] it has
been also recently illustrated that the first member of the Lane-Riesenfeld’s family and that
of the Hormann-Sabin’s family can be combined together to give rise to a recursive formula
defining the interpolatory 2n-point Dubuc-Deslauriers schemes for all n ≥ 3.
These observations prompted us to propose a non-stationary generalization of these funda-
mental classes. First, we show a level-dependent extension of the Lane-Riesenfeld algorithm,
aimed at providing the symbols of normalized exponential B-splines. These symbols, to-
gether with a non-stationary version of Hormann-Sabin’s kernels, are successively used as
‘building blocks’ to define a family of alternating primal/dual subdivision schemes repro-
ducing conics. The first member of the resulting family, combined with the first one of the
novel Lane-Riesenfeld’s family, is shown to originate a three-term recurrence formula defin-
ing the symbols of the non-stationary interpolatory 2n-point schemes reproducing the space
W2n−3 = span{1, x, ..., x2n−3, etx, e−tx}, where t ∈ [0, π) ∪ iR+ and n ∈ N, n ≥ 3.
In the following, we start with a review of known results in the stationary setting, then we
propose non-stationary generalizations and we analyze the support width, generation and
reproduction capabilities and smoothness properties of the new non-stationary families.

4.3.1 The stationary setting: review of known results

Lane-Riesenfeld algorithm

Refine-and-Smooth algorithms are characterized by a refine step which introduces new points
on the initial control polyline, and a following smoothing step, which modifies the obtained
points using simple local averaging rules. More smoothing steps provide limit curves of
wider support as well as of higher smoothness [13]. One of the simplest Refine-and-Smooth
algorithms is the well-known Lane-Riesenfeld algorithm, which generates polynomial uniform
B-splines of degree (n+ 1) for all n ∈ N0 [90]. We remind that this algorithm is defined using
a smoothing operator described by a symbol of the form

S(z) = z + 1
2 ,

and a refine operator

R(z) = 1 + S(z2)z−1 = (z + 1)2

2z ,

which is well-known to reproduce Π1
1 [13].

The Lane-Riesenfeld algorithm is obtained by applying the smoothing operator S n times,
after one application of the refine operator R. This mechanism provides the symbol

An(z) = z−d
n
2 e
(
S(z)

)n
R(z) = (z + 1)n+2

2n+1zd
n
2 e+1

, n ∈ N0, (4.38)

which is indeed the symbol of the degree-(n + 1) polynomial B-spline. We notice that the
schemes defined by the symbol in (4.38) generate Π1

n+1 = span{1, x, x2, . . . , xn+1}, but re-
produce only Π1

1.

Hormann-Sabin’s family

In order to increase the degree of polynomial reproduction of B-spline schemes from one to
three, the family of stationary subdivision schemes with cubic precision, hereinafter denoted
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by {Fn(z)}n≥2, was proposed by Hormann and Sabin [74]. Its symbol can be written as

Fn(z) = An(z)Kn(z), n ∈ N\{1},

where An(z) = (z + 1)n+2

2n+1zd
n
2 e+1

and Kn(z) = −n+ 2
8z + n+ 6

4 − n+ 2
8 z.

(4.39)

Thus this family is defined by using a convolution of the symbol of the Lane-Riesenfeld’s fam-
ily with some degree-2 polynomials, that they called kernels, tailored to increase the degree
of polynomial reproduction of B-spline schemes from one to three.
We remind that the scheme with symbol F1(z) is the dual three-point scheme which repro-
duces quadratics but not cubics, and hence it is not considered a member of the family. On
the other hand, F2(z), F3(z) and F4(z) are respectively the symbols of the Dubuc-Deslauriers
interpolatory four-point scheme, the dual four-point scheme and a relaxation of the interpo-
latory four-point scheme (see [74]).

The family of interpolatory 2n-point Dubuc-Deslauriers schemes

The interpolatory 2n-point (n ∈ N, n ≥ 1) Dubuc-Deslauriers scheme [42] is identified by the
symbol (see e.g. [27, 62])

I2n(z) = A2n−2(z)
n−1∑
`=0

(−1)` 2−2`
(
n− 1 + `

`

)
(1− z)2`

z`
(4.40)

where
A2n−2(z) = (z + 1)2n

22n−1zn
,

which satisfies the interpolatory condition I2n(z) + I2n(−z) = 2 and reproduces Π1
2n−1.

In [39] it was recently proven that for all n ∈ N, n ≥ 2 the subdivision schemes with symbols
{I2n(z)}n≥2 satisfy the two-term recurrence relation

I2n(z) = I2n−2(z) + (−1)n−1

24(n−1)

(
2n− 3
n− 1

)(
z − 1

z

)2n−2 (
z + 1

z

)
, (4.41)

starting from

I2(z) = A0(z) = (z + 1)2

2z ,

which is also the first member of the Lane-Riesenfeld’s family {A2n−2(z)}n≥1.
From (4.41) the following three-term recurrence relation

I2n(z) = I2n−2(z)− βn
(
z − 1

z

)2 (
I2n−2(z)− I2n−4(z)

)
where βn = 2n− 3

8(n− 1) , (4.42)

defining the symbols of all interpolatory 2n-point Dubuc-Deslauriers schemes with n ≥ 3,
can be also easily worked out [39]. The last recurrence is clearly based on the knowledge of
the first member of the Lane-Riesenfeld’s family, I2(z), and the first one in Hormann-Sabin’s
family, i.e.,

I4(z) = F2(z) = (z + 1)4 (−z2 + 4z − 1)
16z3 .
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4.3.2 A non-stationary Lane-Riesenfeld algorithm

In the stationary setting we looked for a Refine-and-Smooth algorithm capable of defining
the symbols of degree-(n + 1) polynomial B-splines for all n ∈ N0, and we observed that all
the resulting schemes are featured by reproduction of Π1

1. Here, instead of Π1
1, we consider

the 2-dimensional space

span{etx, e−tx}, with t ∈ [0, π) ∪ iR+. (4.43)

Following the stationary case, we define the k-th level symbols of the smoothing and refine
operators as follows.

Definition 4.20 Let v(k) be as in (3.11). For all k ∈ N0 we define

S(k)(z) := z + 1
2v(k) , (4.44)

and

R(k)(z) = 1 + v(k+1)

v(k) S(k)(z2)z−1

to be the k-th level symbols of the smoothing and refine operators, respectively.

Lemma 4.21 The refine operator in Definition 4.20, explicity described by the k-th level
symbol

R(k)(z) := z + 2v(k) + z−1

2v(k) , (4.45)

reproduces the 2-dimensional space in (4.43).

Proof: Since R(k)(z) fulfils the conditions

R(k)(−e
t

2k+1 ) = 0, R(k)(−e−
t

2k+1 ) = 0, R(k)(e
t

2k+1 ) = 2, R(k)(e−
t

2k+1 ) = 2,

then, in view of Proposition 3.7, it reproduces reproduces the 2-dimensional space in (4.43)
with respect to the parametrization {T(k), k ∈ N0} in (2.6) with τ = 0.

The non-stationary Lane-Riesenfeld algorithm, obtained by one application of the refine
operator and n successive applications of smoothing operator, is thus performed by the k-th
level symbol

A(k)
n (z) = z−d

n
2 e
(
S(k)(z)

)n
R(k)(z) = (z + 1)n (z + 2v(k) + z−1)

2v(k) (2(v(k) + 1)
)n

2 zd
n
2 e
, n ∈ N0, (4.46)

where v(k) is the level-dependent parameter in (3.11).

Proposition 4.22 For all n ∈ N0 the subdivision scheme related to the symbols {A(k)
n (z), k ∈

N0} generates W1
n−1 = span{1, x, . . . , xn−1, etx, e−tx} and reproduces the 2-dimensional sub-

space span{etx, e−tx} with t ∈ [0, π) ∪ iR+.
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Proof: We start by observing that, ∀n ∈ N0, A(k)
n (−e±

t

2k+1 ) = 0 and, whenever n ≥ 1,
D`A

(k)
n (−1) = 0 for all ` = 0, . . . , n − 1. Thus, recalling conditions in Proposition 3.6, the

generation of the space W1
n−1 is proven. Moreover, we notice that S(k)(e±

t

2k+1 ) = e
± t

2k+1 ,
while from Lemma 4.21 we have R(k)(e±

t

2k+1 ) = 2. Thus the condition A
(k)
n (e±

t

2k+1 ) =
2(e±

t

2k+1 )τ with

τ =
{

0 if n even,
−1

2 of n odd, (4.47)

are satisfied, too. Hence reproduction of {etx, e−tx} is guaranteed for all values of n ∈ N0.

Remark 4.23 Note that, when v(0) = 1, A(k)
n (z) reduces to the symbol of the degree-(n+ 1)

polynomial B-spline in (4.38), namely, the non-stationary Lane-Riesenfeld algorithm in (4.46)
gets back to its stationary counterpart.

We conclude by observing that the proposed non-stationary extension of the Lane-Riesenfeld
algorithm offers an alternative definition of the symbols of normalized exponential B-splines
recently introduced in [76, 77].

4.3.3 A family of alternating primal/dual subdivision schemes reproducing
conics

We consider the space of exponential polynomials

W1
1 = span{1, x, etx, e−tx}, t ∈ [0, π) ∪ iR+. (4.48)

Using the symbols of the non-stationary extension of the Lane-Riesenfeld’s family we can de-
fine a family of non-stationary subdivision schemes reproducingW1

1 , as shown in the following
proposition.

Proposition 4.24 Let v(k) be defined as in (3.11). The family of non-stationary subdivision
schemes with k-level symbol

F (k)
n (z) = A(k)

n (z)K(k)
n (z), (4.49)

with A(k)
n (z) in (4.46) and

K(k)
n (z) = u(k)

n z + (1− 2u(k)
n v(k)) + u(k)

n z−1, u(k)
n = 1

2(v(k) − 1)
− v(k)

(
v(k)+1

2

)n
2

(v(k))2 − 1
,

reproduces the space W1
1 in (4.48) for all n ∈ N\{1}, with respect to the parametrization

{T(k), k ∈ N0} in (2.6) with τ in (4.47).

Proof: Recalling Proposition 3.6 it can be easily verified that conditions for generation of
W1 are fulfilled for all n ∈ N\{1}. Moreover, for all n ∈ N\{1}

F (k)
n (1) = 2, D1F (k)

n (1) = 2τ, F (k)
n (e

t

2k+1 ) = 2(e
t

2k+1 )τ , F (k)
n (e−

t

2k+1 ) = 2(e−
t

2k+1 )τ ,

with τ in (4.47), thus proving the claim using Proposition 3.7.
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Lemma 4.25 For all n ∈ N\{1} and for all v(0) ∈ R+, the parameter u(k)
n in Proposition 4.24

verifies
lim

k→+∞
u(k)
n = −n8 −

1
4 .

Proof: The claimed result follows from (3.16) and de l’Hôpital’s theorem.

Corollary 4.26 For all n ∈ N\{1} and for all v(0) ∈ R+, the symbol in (4.49) is such that

lim
k→+∞

F (k)
n (z) = Fn(z), (4.50)

with Fn(z) in (4.39). Thus, the non-stationary subdivision scheme with k-level symbol F (k)
n (z)

is asymptotically similar to the stationary scheme with symbol Fn(z).

Proof: The claimed result follows from (3.16) and Lemma 4.25.

Proposition 4.27 Let φn be the basic limit function of the non-stationary subdivision scheme
with k-level symbol F (k)

n (z), n ∈ N\{1} in (4.49). Then the support of φn is Jn =
[
−n+4

2 , n+4
2

]
.

Proof: By definition, the basic limit function φn is obtained as the limit function of the non-
stationary subdivision scheme with k-level symbol F (k)

n (z), when applied to the initial data
f

(0)
i = δi,0, i ∈ Z. Thus, introducing the notation I(k) = { i2k | i ∈ Z}, we have that, at the
initial level k = 0, the restriction of the basic limit function φn to I(0) vanishes everywhere
except at i = 0. Then, by equation (4.49) we get that, at refinement step k = 1, the restriction
of the basic limit function φn to I(1) vanishes outside the interval J (1)

n = [−n+4
4 , n+4

4 ] ⊂ Jn
and, at each successive step k > 1, the width of the interval J (k)

n , where the restriction of
φn to I(k) does not vanish, is obtained by extending the left and right hand side of J (k−1)

n

by a factor of n+4
2

1
2k . Hence, at the N -th subdivision step, the restriction of the basic limit

function φn to I(N) vanishes outside the interval

J (N)
n =

[
−n+ 4

4 −
N∑
k=2

n+ 4
2

1
2k ,

n+ 4
4 +

N∑
k=2

n+ 4
2

1
2k

]

=
[
−n+ 4

2

(
1− 1

2N
)
,
n+ 4

2

(
1− 1

2N
)]

and from the inequality
(
1− 1

2N
)
< 1, it follows J (N)

n ⊂ Jn for all N ∈ N. Since the

support Jn of the basic limit function φn is given by limN→+∞ J (N)
n , the thesis follows

straightforwardly.

In Figure 4.9 we plot the basic limit function φn obtained when varying the value of n ∈ N\{1}
and of the initial tension parameter v(0) ∈ R+. Note that the x-axis has been reduced to
[−4, 4] even if the supports of φ8 and φ18 are larger.

The following proposition analyzes the smoothness properties of the new family of non-
stationary subdivision schemes.
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(c) v(0) = 15

Figure 4.9: Basic limit function of the subdivision scheme having symbol F (k)
n (z) with n =

2, 3, 4, 8, 18 and v(0) = 0.1 (a), 1 (b), 15 (c). In each picture the function with the highest
peak at 0 corresponds to n = 2, and as n increases, the height of the peak decreases.

Proposition 4.28 The family of non-stationary subdivision schemes with k-level symbols
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{F (k)
n (z)}n≥2 in (4.49) has the same integer smoothness as the family described by the sta-

tionary symbols {Fn(z)}n≥2 in (4.39).

Proof: From (4.50) we have that, for all n ∈ N \ {1}, the non-stationary scheme related to
the k-level symbol F (k)

n (z) is asymptotically similar to the stationary scheme with symbol
Fn(z). Moreover, F (k)

n (z) satisfies approximate sum rules of order n. In fact, according to
Definition 3.15, F (k)

n (1) = 2 and, since from (4.46) we also have D`A
(k)
n (−1) = 0 for all

` = 0, . . . , n− 1, we thus obtain

max
`=0,...,n−1

∣∣∣D`F (k)
n (−1)

∣∣∣ = 0, ∀k ∈ N0, n ∈ N \ {1}.

Hence, recalling that for all values of n ∈ N \ {1} the integer smoothness of the subdivision
scheme with symbol Fn(z) is not greater than Cn−1 [74, Theorem 1], in view of Corollary 3.17
the proof is concluded.

For the sake of completeness, we close this section by showing the refinement rules of the
subdivision scheme with k-level symbol F (k)

1 (z) (that we have excluded from the family since
it does not reproduce W1

1 ) and the first three members of {F (k)
n (z)}n≥2 corresponding to

n = 2, 3, 4, in order to connect them to existing results from the literature.

• n = 1: the non-stationary dual 3-point scheme. The subdivision scheme with k-level
symbol F (k)

1 (z) reproduces only W1
0 = {1, etx, e−tx}. In fact

F
(k)
1 (−1) = 0, F

(k)
1 (−e

t

2k+1 ) = 0, F
(k)
1 (−e−

t

2k+1 ) = 0,

F
(k)
1 (1) = 2, F

(k)
1 (e

t

2k+1 ) = 2(e
t

2k+1 )−
1
2 , F

(k)
1 (e−

t

2k+1 ) = 2(e−
t

2k+1 )−
1
2 ,

but

D1F
(k)
1 (−1) = 4(

e
t

2k+1 + e
− t

2k+1
) (

e

t
2k+1

2 + e−
t

2k+1
2

) − 1 6= 0, for all t 6= 0.

The subdivision rules of this scheme are

f
(k+1)
2i = 1

8v(k+1)v(k)((v(k))2−1)

((
(v(k) + 1)(2v(k) − 1)− 2v(k)v(k+1)

)
f

(k)
i−1

+
(
4v(k)(2(v(k))2 − 1)v(k+1) − 2v(k)(v(k) + 1)

)
f

(k)
i

+
(
v(k) + 1− 2v(k)v(k+1)

)
f

(k)
i+1

)
,

f
(k+1)
2i+1 = 1

8v(k+1)v(k)((v(k))2−1)

((
v(k) + 1− 2v(k)v(k+1)

)
f

(k)
i−1

+
(
4v(k)(2(v(k))2 − 1)v(k+1) − 2v(k)(v(k) + 1)

)
f

(k)
i

+
(
(v(k) + 1)(2v(k) − 1)− 2v(k)v(k+1)

)
f

(k)
i+1

)
.
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• n = 2: the interpolatory 4-point scheme reproducing conics. The subdivision scheme
with k-level symbol F (k)

2 (z) coincides with the scheme proposed in [8], having refinement
rules f

(k+1)
2i = f

(k)
i ,

f
(k+1)
2i+1 = 1

8v(k)(v(k)+1)

(
−f (k)

i−1 + (2v(k) + 1)2f
(k)
i + (2v(k) + 1)2f

(k)
i+1 − f

(k)
i+2

)
.

• n = 3: the dual 4-point scheme reproducing conics. F
(k)
3 (z) is the k-level symbol

associated to the subdivision scheme with refinement rules

f
(k+1)
2i = 1

32v(k)((v(k))2−1)(v(k+1))3

( (
2(v(k))2 + 3v(k) + 1− 6v(k)(v(k+1))3

)
f

(k)
i−1

+
(
(12(v(k))2 − 7)v(k)(v(k) + 1)v(k+1) − 4(v(k))2 − 5v(k) − 1

)
f

(k)
i

+
(
2(v(k))2 + v(k) − 1 + 2(4(v(k))2 − 5)v(k)(v(k+1))3

)
f

(k)
i+1

+ (v(k) + 1)(1− v(k)v(k+1))f (k)
i+2

)
,

f
(k+1)
2i+1 = 1

32v(k)((v(k))2−1)(v(k+1))3

(
(v(k) + 1)(1− v(k)v(k+1))f (k)

i−1

+
(
2(v(k))2 + v(k) − 1 + 2(4(v(k))2 − 5)v(k)(v(k+1))3

)
f

(k)
i

+
(
(12(v(k))2 − 7)v(k)(v(k) + 1)v(k+1) − 4(v(k))2 − 5v(k) − 1

)
f

(k)
i+1

+
(
2(v(k))2 + 3v(k) + 1− 6v(k)(v(k+1))3

)
f

(k)
i+2

)
,

which has been recently proposed in [21].

• n = 4: a relaxation of the interpolatory 4-point scheme reproducing conics. The sub-
division rules of the non-stationary scheme with k-level symbol F (k)

4 (z) are

f
(k+1)
2i = 1

32v(k)(v(k)+1)2

(
−(2 + v(k))f (k)

i−2 +
(
4(v(k))2(2 + v(k))

)
f

(k)
i−1

+ 2
(
12(v(k))3 + 24(v(k))2 + 17v(k) + 2

)
f

(k)
i

+
(
4(v(k))2(2 + v(k))

)
f

(k)
i+1 − (2 + v(k))fki+2

)
,

f
(k+1)
2i+1 = 1

8v(k)(v(k)+1)

(
−f (k)

i−1 + (2v(k) + 1)2f
(k)
i + (2v(k) + 1)2fki+1 − f

(k)
i+2

)
.

Thus, it can be interpreted as a relaxation of the interpolatory 4-point scheme in [8],
since they share the same odd-point rule.

Remark 4.29 It is interesting to observe that all members of the family {F (k)
n (z)}n≥2 corre-

sponding to odd values of n, being dual, are characterized by k-level refinement rules involving
the parameters v(k) and v(k+1) =

√
v(k)+1

2 . This is a direct consequence of the definition of
A

(k)
n (z) with n odd.
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4.3.4 A family of non-stationary interpolatory 2n-point schemes

In this section we introduce a non-stationary variant of equation (4.41) and we show that
it provides an explicit formula for the definition of a family of non-stationary interpolatory
2n-point schemes featured by conic precision.

Proposition 4.30 Let I2n−2(z) denote the Laurent polynomial of the (2n− 2)-point Dubuc-
Deslauriers scheme in (4.40). Let also v(k) be as in (3.11) and define the space

W1
2n−3 = span{1, x, x2, ..., x2n−3, etx, e−tx}, t ∈ [0, π) ∪ iR+.

For all n ∈ N, n ≥ 2, the non-stationary subdivision scheme with k-level symbol

I
(k)
2n (z) = I2n−2(z) + (−1)n−1 γ

(k)
n−2

23(n−1)v(k)(v(k) + 1)n−1

(
z − 1

z

)2n−2 (
z + 1

z

)
(4.51)

where

γ
(k)
n−2 =

n−2∑
`=0

2−`
(
n− 2 + `

`

)
(v(k) + 1)`, (4.52)

is interpolatory and reproduces W1
2n−3.

Proof: To simplify notation, we define the Laurent polynomial

G(k)
n (z) := (−1)n−1 γ

(k)
n−2

23(n−1)v(k)(v(k) + 1)n−1

(
z − 1

z

)2n−2 (
z + 1

z

)
, (4.53)

such that I(k)
2n (z) can be simply written as I(k)

2n (z) = I2n−2(z) +G
(k)
n (z). Since G(k)

n (z) verifies
G

(k)
n (z) +G

(k)
n (−z) = 0 and I2n−2(z) fulfills the interpolatory condition in (2.11) I2n−2(z) +

I2n−2(−z) = 2, it clearly follows that I(k)
2n (z) + I

(k)
2n (−z) = 2 and hence the non-stationary

2n-point scheme is also interpolatory.
Moreover, from the polynomial reproduction properties of the (2n − 2)-point interpolatory
Dubuc-Deslauriers scheme we know that

D`I2n−2(−1) = 0, ` = 0, . . . , 2n− 3.

Taking into account that the symbol I2n−2(z) also satisfies

I2n−2(−e
t

2k+1 ) = I2n−2(−e−
t

2k+1 )

= (−1)n−1

22n−3
(e

t

2k+1 − 1)2n−2

(e
t

2k+1 )n−1

n−2∑
`=0

2−2`
(
n− 2 + `

`

)
(e

t

2k+1 + 1)2`

(e
t

2k+1 )`
,

while the Laurent polynomial G(k)
n (z) in (4.53) is such that

D`G(k)
n (−1) = 0, ` = 0, . . . , 2n− 3,

and

G(k)
n (−e

t

2k+1 ) = G(k)
n (−e−

t

2k+1 ) = (−1)n

22n−3
(e

t

2k+1 − 1)2n−2

(e
t

2k+1 )n−1

n−2∑
`=0

2−2`
(
n− 2 + `

`

)
(e

t

2k+1 + 1)2`

(e
t

2k+1 )`
,
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we can conclude that

D`I
(k)
2n (−1) = 0, ` = 0, . . . , 2n− 3,

I
(k)
2n (−e

t

2k+1 ) = 0,

I
(k)
2n (−e−

t

2k+1 ) = 0.

Therefore, in view of Proposition 3.6, the scheme with k-level symbol in (4.51) generates
W2n−3 for all n ∈ N, n ≥ 2, and thus, being interpolatory, it also reproduces W1

2n−3.

Remark 4.31 Since γ(k)
n−2 in (4.52) verifies limk→∞ γ

(k)
n−2 =

(2n−3
n−1

)
, the family of non-stationary

interpolatory 2n-point schemes with k-level symbol (4.51) is asymptotically similar to the fam-
ily of 2n-point interpolatory Dubuc-Deslauriers schemes with symbol in (4.41).

Proposition 4.32 For all n ∈ N the non-stationary subdivision scheme with k-level sym-
bol I(k)

2n (z) has the same integer smoothness as the stationary 2n-point interpolatory Dubuc-
Deslauriers scheme with symbol I2n(z).

Proof: From [42], for all n ∈ N the stationary 2n-point Dubuc-Deslauriers scheme is Cr
continuous with r ≤ n − 1, and from Remark 4.31 the non-stationary scheme with k-level
symbol I(k)

2n (z) is asymptotically similar to I2n(z). Moreover, I(k)
2n (z) satisfies the approximate

sum rules of order n. In fact, I(k)
2n (1) = 2 for all n ∈ N and k ∈ N0 and since, in view of

Proposition 4.30 I(k)
2n (z) generates Π1

2n−3, we have that

max
`=0,...,n−1

∣∣∣D`I
(k)
2n (−1)

∣∣∣ = 0 for all n ∈ N, k ∈ N0.

Thus, from Corollary 3.17, the claim is proven.

As seen in the stationary case, we conclude the section by showing that the first member of
the non-stationary Lane-Riesenfeld’s family, A(k)

0 (z), and that of the corresponding Hormann-
Sabin’s family, F (k)

2 (z), can be used as building blocks to obtain the family of non-stationary
interpolatory 2n-point schemes with k-level symbols {I(k)

2n (z)}n≥2 by means of two- and three-
term recurrence relations.

Lemma 4.33 For all n ∈ N, n ≥ 3, the factors γ(k)
n−2 in (4.52) and

γ
(k)
n−3 =

n−3∑
`=0

2−`
(
n− 3 + `

`

)
(v(k) + 1)`, (4.54)

satisfy the relation

γ
(k)
n−3 = 1− v(k)

2 γ
(k)
n−2 + v(k)

(
v(k) + 1

2

)n−2 (2n− 5
n− 2

)
.
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Proof: After rewriting γ(k)
n−3 in the following equivalent form,

γ
(k)
n−3 =

n−2∑
`=0

2−`
(
n− 3 + `

`

)
(v(k) + 1)` − 2−(n−2)

(
2n− 5
n− 2

)
(v(k) + 1)n−2,

by using the well-known relation
(n−2+`

`

)
=
(n−3+`

`

)
+
(n−3+`
`−1

)
on binomial coefficients, we get

γ
(k)
n−3 =

n−2∑
`=0

2−`
(
n− 2 + `

`

)
(v(k) + 1)` − v(k) + 1

2

n−3∑
`=0

2−`
(
n− 2 + `

`

)
(v(k) + 1)`

− 2−(n−2)
(

2n− 5
n− 2

)
(v(k) + 1)n−2

= γ
(k)
n−2 −

v(k) + 1
2

(
γ

(k)
n−2 − 2−(n−2)

(
2n− 4
n− 2

)
(v(k) + 1)n−2

)

− 2−(n−2)
(

2n− 5
n− 2

)
(v(k) + 1)n−2

= 1− v(k)

2 γ
(k)
n−2 + 2−(n−2)(v(k) + 1)n−2

(
v(k) + 1

2

(
2n− 4
n− 2

)
−
(

2n− 5
n− 2

))
.

Finally, using the fact that 1
2
(2n−4
n−2

)
=
(2n−5
n−2

)
, the claimed result is obtained.

Proposition 4.34 Let v(k) be as in (3.11) and I
(k)
2 (z) = A

(k)
0 (z) = z2+2v(k)z+1

2v(k)z
. For all

n ∈ N, n ≥ 2, the non-stationary subdivision scheme with k-level symbol I(k)
2n (z) in (4.51)

satisfies the two-term recurrence relation

I
(k)
2n (z) = I

(k)
2n−2(z)

+(−1)n−1
(
z − 1

z

)2n−4 (
z + 1

z

)(
z2 − (4(v(k))2 − 2) + 1

z2

)
γ

(k)
n−2

23(n−1)v(k)(v(k) + 1)n−1 ,

(4.55)
where γ(k)

n−2 is defined as in (4.52).

Proof: From equations (4.40) and (4.51) we obtain

I
(k)
2n (z)− I(k)

2n−2(z) = (−1)n−2

24(n−2)

(
2n− 5
n− 2

)(
z − 1

z

)2n−4 (
z + 1

z

)
+G(k)

n (z)−G(k)
n−1(z),

withG(k)
n (z) in (4.53). Introducing the explicit expression ofG(k)

n (z)−G(k)
n−1(z) and simplifying

the result, we have that

I
(k)
2n (z)− I(k)

2n−2(z) = (−1)n−1

23(n−1)

(
z − 1

z

)2n−4 (
z + 1

z

)(
− 1

2n−5

(
2n− 5
n− 2

)

+
γ

(k)
n−2

v(k)(v(k) + 1)n−1

(
z − 1

z

)2
+

8γ(k)
n−3

v(k)(v(k) + 1)n−2

)
.
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Finally, using Lemma 4.33, we can write

8γ(k)
n−3

v(k)(v(k) + 1)n−2 = 4(1− v(k))
v(k)(v(k) + 1)n−2 γ

(k)
n−2 + 1

2n−5

(
2n− 5
n− 2

)
,

and hence the claim is obtained.

The following corollary is a straightforward consequence of the result in Proposition 4.34.

Corollary 4.35 Let

I
(k)
2 (z) = A

(k)
0 (z) = z2 + 2v(k)z + 1

2v(k)z
,

and
I

(k)
4 (z) = F

(k)
2 (z) = (z + 1)2(z2 + 2v(k)z + 1)(−z2 + 2(v(k) + 1)z − 1)

8v(k)(v(k) + 1)z3 .

For all n ∈ N, n ≥ 3, the symbol I(k)
2n (z) of Proposition 4.34 satisfies the three-term recurrence

relation

I
(k)
2n (z) = I

(k)
2n−2(z)− (z2 − 1)2

8(v(k) + 1)z2
γ

(k)
n−2

γ
(k)
n−3

(
I

(k)
2n−2(z)− I(k)

2n−4(z)
)
,

with γ(k)
n−2 in (4.52) and γ(k)

n−3 in (4.54).

Remark 4.36 The subdivision scheme with symbol I(k)
6 (z), obtained from the family {I(k)

2n (z)}n≥1
when setting n = 3, coincides with the interpolatory 6-point scheme proposed in [119, Section
4.1].



Chapter 5

Smoothness analysis near
extraordinary elements

Univariate stationary subdivision schemes could be easily generalized to the bivariate setting,
defining subdivision surfaces on regular meshes. However, stationary bivariate subdivision
schemes defined only on regular meshes can not be used in many applications. In fact in
order to design surfaces of general topology, it is necessary to introduce irregular vertices and
faces in the initial control mesh, together with special valence-dependent refinement rules.
Moreover, to design particular shapes such as spheres, ellipsoids, cylinders and tori, it is
necessary to pass from stationary to non-stationary rules.
In this chapter, we focus on stationary subdivision schemes applied on arbitrary manifold
topology meshes. Since in this case the limit surface and its properties are known away from
a finite number of points corresponding to the extraordinary elements, the analysis of the
subdivision scheme is concentrated at these points. Moreover, we pay particular attention to
the special refinement rules that have to be applied near an extraordinary element in order
to obtain C1 limit surfaces with bounded curvature and optimal shrinkage.
In the first following section, we show how to choose the weights of the extraordinary stencils
in case of an interpolatory subdivision scheme based on quadrilateral meshes. We also propose
a choice for these weights which improves the schemes in [84, 93, 39]. The second section
is devoted to the description of a new general computational strategy based on the block
diagonalization of subdivision matrices via unitary transforms associated with the block-
Fourier matrix that could be used to choose the weights of the extraordinary stencils for any
kind of stationary subdivision schemes. We apply this method to define new extraordinary
weights for binary and ternary Loop’s scheme [96, 97] defined on triangular meshes.

5.1 A quad-based interpolatory subdivision scheme
This section deals with interpolatory subdivision schemes generalizing the tensor-product ver-
sion of the Dubuc-Deslauriers 4-point scheme to quadrilateral meshes of arbitrary manifold
topology. Among these schemes, we can find proposals featured by edge-point rules that,
near an extraordinary vertex of valence n, either involve 2n + 2 vertices from the coarser
mesh or only a subset of n+ 2 of them. The existing schemes falling into the first group (see
[84, 92, 94]), besides more computationally expensive, are C1 smooth with unbounded cur-
vature at extraordinary points. Among these schemes there is also the well-known Kobbelt’s

83
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scheme already recalled in Section 2.4.5. As a matter of fact, dealing with refinement rules
of larger size not only increases the computational costs for generating the limit surface, but
remarkably complicates the tuning of the weights appearing in the affine combination such
that bounded curvature at extraordinary points is hardly satisfied. In light of this, we believe
strategic to restrict our attention to the subclass of interpolatory subdivision schemes for
closed quadrilateral meshes that compute

(i) new edge-points near extraordinary vertices of valence n by means of an affine combi-
nation of n+ 2 vertices from the coarser mesh;

(ii) new face-points near extraordinary vertices of valence n by means of an affine combi-
nation of 2n+ 8 vertices from the coarser mesh.

Due to requirement (i), the rule for positioning a new vertex on an edge relies only on edge
adjacent vertices and not on face adjacent vertices (see Figure 5.2). This assumption not only
allows the algorithm to reduce the computational costs for generating the limit surface, but
reveals that the subdivision scheme can also be thought of as a subdivision scheme for curve
networks [123]. To the best of our knowledge, the only existing interpolatory subdivision
schemes with the property that the position of new edge points is determined exclusively
by edge adjacent vertices, are the ones proposed by Schaefer-Warren [123], Li-Ma-Bao [93]
and Deng-Ma [39]. All such schemes have been shown independently by their authors to be
suitable for generating limit surfaces that are globally C1 continuous, but while the two most
recent ones (namely [39, 93]) have also both principal curvatures bounded at extraordinary
points, this is not the case for their precursor in [123]. The aim consists in identifying which
constraints are required to be fulfill by the weights appearing in the above stencils in order to
get closed limit surfaces that are C1 continuous at extraordinary points, have both principal
curvatures bounded and at least one of them nonzero.

5.1.1 Edge-point and face-point rules

We consider an interpolatory subdivision scheme on quadrilateral meshes generalizing the
tensor-product of the 4-point Dubuc–Deslauriers scheme [42, 49]. This means that, when the
mesh is regular, that is each vertex has valence n = 4, the rule for computing the edge-point
E4 is nothing but the 4-point scheme applied to the vertices P−1, P1, P0, P5 (see Figure 5.1),
i.e.

E4 = − 1
16P−1 + 9

16P1 + 9
16P0 −

1
16P5, (5.1)

while the rule for computing the face-point F4 is exactly the tensor-product of the edge-point
rule, namely

F4 = 1
256

(
P−3 + P−8 + P−6 + P6

)
+ 81

256
(
P0 + P1 + P2 + P3

)
− 9

256
(
P−1 + P−2 + P−4 + P−5 + P4 + P5 + P7 + P8

)
.

(5.2)

On the other hand, for meshes of arbitrary manifold topology, special edge-point and face-
point rules are defined in the vicinity of extraordinary vertices of valence n 6= 4. Here, we
study subdivision schemes that apply an (n + 2)-point and a (2n + 8)-point stencil respec-
tively for computing edge- and face-points in the neighborhood of an extraordinary vertex



Smoothness analysis near extraordinary elements 85

F4
E4

P0

P−1P−3

P−4

P−5

P−2

P2

P3

P4 P5

P6

P7

P8

P−8

P−6

P1

− 9
256

F4

− 9
256

1
256 − 9

256

− 9
256

81
256

− 9
256

81
256

1
256

− 9
256

− 9
256

1
256

1
256

− 1
16

− 1
16

9
16

9
16

− 9
256

81
256 81

256 E4

Figure 5.1: Edge-point and face-point rules for regular regions.
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Figure 5.2: Edge-point and face-point rules in the neighborhood of extraordinary vertices of
valence n ≥ 5 (top) and n = 3 (bottom).

of valence n 6= 4 (see Figure 5.2). More precisely, the edge-point rule used in presence of an
extraordinary vertex P0 of valence n = 3 is

E3 = − 1
16P−1 + 9

16P0 + α1,3P1 + α3,3P3 + α5,3P5, (5.3)

with α1,3, α3,3, α5,3 ∈ R, while the general edge-point rule to be used when P0 has valence
n ≥ 5 reads as

En = − 1
16P−1 + 9

16P0 +
n∑
j=1

α2j−1,nP2j−1 (5.4)

with α2j−1,n ∈ R for all j = 1, . . . , n. Thus for all n 6= 4 the edge-point rule is defined
by an affine combination involving P−1, P0 and all vertices connected to P0 by an edge.
Analogously, for the face-point rule we consider an affine combination of the four vertices
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identifying the face of insertion (i.e., P0, P1, P2, P3) plus the first ring of vertices around it.
In formulas, the face-point rule for the case n = 3 is given by

F3 = 1
256(P−3 + P−6 + P7) + 81

256P0 −
9

256(P−1 + P−2 + P−4 + P−5)

+ β1,3P1 + β3,3P3 + β5,3P5 + γ2,3P2 + γ4,3P4 + γ6,3P6,
(5.5)

with β1,3, β3,3, β5,3 ∈ R and γ2,3, γ4,3, γ6,3 ∈ R, while for the general case n ≥ 5 it reads as

Fn = 1
256(P−3 + P−6 + P−2n) + 81

256P0 −
9

256(P−1 + P−2 + P−4 + P−5)

+
n∑
j=1

β2j−1,nP2j−1 +
n∑
j=1

γ2j,nP2j
(5.6)

with β2j−1,n, γ2j,n ∈ R for all j = 1, . . . , n. In order to guarantee the symmetry of the scheme
and a good visual quality of the limit surface we require the above coefficients to be such that

|α1,n| > |α2j−1,n|, j = 2, . . . , n,
|β1,n| = |β3,n| > |β5,n| = |β2n−1,n| > |β2j−1,n|, j = 4, . . . , n− 1,
|γ2,n| > |γ4,n| = |γ2n,n| > |γ2j,n|, j = 3, . . . , n− 1.

Taking into account that the regular rules in (5.1) - (5.2) are well-known to generate C1

limit surfaces (see [42, 49]), the goal of this work is to identify the conditions that the
free parameters involved in the extraordinary rules have to satisfy in order to guarantee C1

smoothness also at extraordinary points. To this end, we start by considering the necessary
conditions for convergence, inferred by the requirement that the weights of the edge- and
face-point stencils sum up to 1 [112].

Condition 1.a For all n 6= 4 the necessary conditions for convergence can be shortly written
as

An0 = 1
2 and Bn

0 + Cn0 = 13
16 ,

by introducing the auxiliary notation

An0 :=
n∑
j=1

α2j−1,n, Bn
0 :=

n∑
j=1

β2j−1,n, Cn0 :=
n∑
j=1

γ2j,n. (5.7)

5.1.2 The local subdivision matrix

By ordering the points as explained in Order 2 (see Section 2.3), the subdivision rules in (5.1)-
(5.2) and (5.4)-(5.6) allow one to construct a local subdivision matrix S̃ ∈ R(6n+1)×(6n+1) of
the form in (2.21) where we consider p = 6 points in each sector. In particular, ã = 0, b̃ = 0,
c̃ =

(
9
16 ,

81
256 , 0, 0, 0, 0

)T
and the blocks are

M̃0 =



α1,n 0 − 1
16 0 0 0

β1,n γ2,n − 9
256 − 9

256
1

256 − 9
256

1 0 0 0 0 0
9
16

9
16 0 0 0 − 1

16
0 1 0 0 0 0
0 9

16 0 − 1
16 0 0


, M̃1 =



α3,n 0 0 0 0 0
β3,n γ4,n − 9

256
1

256 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
9
16 − 1

16 0 0 0 0


,



Smoothness analysis near extraordinary elements 87

M̃i =



α2i+1,n 0 0 0 0 0
β2i+1,n γ2i+2,n 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, i = 2, . . . , n−2, M̃n−1 =



α2n−1,n 0 0 0 0 0
β2n−1,n γ2n,n 0 0 0 1

256
0 0 0 0 0 0
0 − 1

16 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

S̃ thus provides a compact representation of a single refinement step restricted to the vertices
within the 2-ring of an extraordinary vertex P0 of valence n ≥ 5. Using the trasformation in
(2.22), we denote

Mj :=
(

1
n 0
c
n M̃j

)
∈ R7×7, j = 0, . . . , n− 1,

we construct the n× n block-circulant matrix

S =



M0 M1 · · · Mn−2 Mn−1
Mn−1 M0 M1 · · · Mn−2

Mn−2
. . . . . . . . . ...

... . . . . . . . . . M1
M1 · · · Mn−2 Mn−1 M0


, (5.8)

and applying a discrete Fourier transform explained in Method 2 (see Section 2.3) to the
blocks Mj , j = 0, . . . , n− 1, we obtain the blocks

Ŝν =
n−1∑
j=0

Mjω
jν , ν = 0, . . . , n− 1 with ω = e

2πi
n ,

defining the block-diagonal matrix

Ŝ =



Ŝ0 0 · · · 0 0
0 Ŝ1 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 Ŝn−2 0
0 · · · 0 0 Ŝn−1


∈ R7n×7n,

for which n− 1 eigenvalues are zero and all the others are exactly the eigenvalues of S̃. For
each rotational frequency component ν = 0, . . . , n − 1 the general block Ŝν ∈ R7×7 is of the
form

Ŝν =



wn0,ν 0 0 0 0 0 0
wn1,ν Anν 0 − 1

16 0 0 0

wn2,ν Bn
ν Cnν −9+9ων

256
−9+ωv

256
1

256
−9+ω(n−1)ν

256
0 1 0 0 0 0 0
0 9

16
9−ω(n−1)ν

16 0 0 0 − 1
16

0 0 1 0 0 0 0
0 9

16ω
ν 9−ων

16 0 − 1
16 0 0


, (5.9)
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where

Anν :=
n∑
j=1

α2j−1,n ω
(j−1)ν , Bn

ν :=
n∑
j=1

β2j−1,n ω
(j−1)ν , Cnν :=

n∑
j=1

γ2j,n ω
(j−1)ν , (5.10)

and

wn0,ν := 1
n

n−1∑
j=0

ωjν = δν,0, wn1,ν := 1
n

n−1∑
j=0

9
16ω

jν = 9
16δν,0, wn2,ν := 1

n

n−1∑
j=0

81
256ω

jν = 81
256δν,0,

(5.11)
with δν,0 denoting the Kronecker delta function.

Remark 5.1 Definition (5.10) implies that Anν , Bn
ν , C

n
ν ∈ C for ν 6= 0. Indeed, we will show

in Section 5.1.3 that choosing Anν , Cnν ∈ R for all ν = 0, . . . , n − 1 we can obtain a local
subdivision matrix S with the desired spectrum.

Now, let λνj , j = 0, . . . , 6 denote the eigenvalues of the matrix Ŝν in (5.9). Furthermore, as
recalled in Definition 2.30, whenever µ is an eigenvalue of Ŝν , we call ν the Fourier index of
µ and we write F(µ) = ν.
The complete spectrum of the local subdivision matrix Ŝ could be written as

Λ[n] =
n−1⋃
ν=0
{λν0 , λν1 , λν2 , λν3 , λν4 , λν5 , λν6}.

Let In denote the n×n identity matrix. To work out the explicit expressions of the eigenvalues
of each block Ŝν we have to compute the roots of the characteristic polynomial det(Ŝν−λ I7).
Using Laplace Expansion Theorem we can write

det(Ŝν − λ I7) =
(
wn0,ν − λ

)
· det(M̂ν − λ I6), (5.12)

where M̂ν is the 6× 6 sub-matrix of Ŝν given by

M̂ν =



Anν 0 − 1
16 0 0 0

Bn
ν Cnν −9+9ων

256
−9+ωv

256
1

256
−9+ω(n−1)ν

256
1 0 0 0 0 0
9
16

9−ω(n−1)ν

16 0 0 0 − 1
16

0 1 0 0 0 0
9
16ω

ν 9−ων
16 0 − 1

16 0 0


. (5.13)

As a straightforward consequence of the factorization in (5.12) we have that the eigenvalue
of the real matrix Ŝ0 that firstly emerges is λ0

0 = wn0,0 = 1. Thus F(1) = 0. In contrast, for
ν = 1, . . . , n − 1, we find λν0 = wn0,ν = 0, so obtaining all n − 1 zero eigenvalues of Ŝ. To
compute the remaining eigenvalues of the matrix Ŝν (i.e. λνj , j = 1, . . . , 6 in our notation),
we have to compute the eigenvalues of its submatrix M̂ν , i.e. the roots of the characteristic
polynomial det(M̂ν − λI6). For this purpose we consider the permutation matrix

P2,3 =



1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


,
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and observe that, applying P2,3 to the left and to the right of M̂ν , we get the block-triangular
matrix

Mν = P2,3M̂νP2,3 =
(

K1 O
K2 K3

)
, (5.14)

where O is the 2 × 2 null matrix, K1 ∈ R2×2,K2 ∈ R4×2 and K3 ∈ R4×4. Hence, the roots
of the characteristic polynomial of M̂ν can be more easily found by computing the roots of
the characteristic polynomial of Mν since the latter can be conveniently factorized as

det(Mν − λI6) = det(K1 − λI2) · det(K3 − λI4).

The six eigenvalues of Mν are indeed the two roots of

det(K1 − λI2) = λ2 −Anνλ+ 1
16 ,

and the four roots of

det(K3 − λI4) = λ4 − Cnν λ3 + gνλ
2 + hνλ+ 1

216 ,

where
gν := −3(3ω2ν − 22ων + 3)

211ων
= − 3

210

(
3 cos

(2πν
n

)
− 11

)
and

hν := −1 + 18ων + 256Cnν ω2ν − 162ω2ν + 18ω3ν − ω4ν

216ω2ν

= 1
215

(
128Cnν − 80 + 18 cos

(2πν
n

)
− 2 cos2

(2πν
n

))
.

Computing the roots of the quadratic polynomial we find

λν1 = 2Anν +
√

4(Anν )2 − 1
4 , λν2 = 2Anν −

√
4(Anν )2 − 1
4 , (5.15)

while computing those of the quartic one we get

λν3 = Cnν
4 − Sν + 1

2

√
−4S2

ν − 2Rν + Tν
Sν
, λν4 = Cnν

4 − Sν −
1
2

√
−4S2

ν − 2Rν + Tν
Sν
,

λν5 = Cnν
4 + Sν + 1

2

√
−4S2

ν − 2Rν −
Tν
Sν
, λν6 = Cnν

4 + Sν −
1
2

√
−4S2

ν − 2Rν −
Tν
Sν
,

(5.16)
where

Rν = 8gν − 3(Cnν )2

8 , Tν = −(Cnν )3 + 4Cnν gν + 8hν
8 ,

∆ν,0 = g2
ν + 3Cnν hν + 3

214 , ∆ν,1 = 2g3
ν + 9Cnν gνhν + 27

216 (Cnν )2 + 27h2
ν −

9
213 gν ,

Qν =
3

√√√√∆ν,1 +
√

∆2
ν,1 − 4∆3

ν,0

2 , Sν = 1
2

√
−2

3Rν + 1
3

(
Qν + ∆ν,0

Qν

)
.

Note that since the blocks Ŝν , ν = 1, . . . , n− 1 come in complex conjugate pairs, i.e. Ŝn−ν =
(Ŝν)∗, ν = 1, . . . , n− 1, then λνj is eigenvalue of Ŝν if and only if λνj is eigenvalue of S̃n−ν , i.e.
F(λνj ) = {ν, n− ν}, ν = 1, . . . , n− 1.
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5.1.3 Constraints

The eigenvalues and eigenvectors of the subdivision matrix S could be exploited to find some
constraints that the stencil weights has to satisfy in order to obtain limit surfaces with the
desired properties.

Constraints inferred from eigenvalues analysis

As previously observed in Section 5.1.2, 1 is an eigenvalue of the local subdivision matrix
S and F(1) = 0. Moreover, in view of Condition 1.a, x0 = 1 is the associated eigenvector.
Thus, provided that all remaining eigenvalues of S are smaller than 1, the subdivision scheme
will be convergent. In the following we identify the constraints to be imposed on the weights
of the extraordinary rules such that this can happen. Moreover, we also require the neces-
sary conditions for C1 continuity, boundedness curvature and optimal shrinkage explained in
Section 2.3 and summarized in Table 2.1. Since the considered scheme is binary, the optimal
shrinkage is obtained setting λ = 1

2 .
As previously emphasized, since Ŝn−1 = (Ŝ1)∗, to identify the conditions regarding the sub-
dominant eigenvalue we can simply focus on the case ν = 1. Thus, we select ν = 1 and
observe that, if setting An1 = 5

8 , from the eigenvalues expressions in (5.15) we can easily get

λ1
1 =

2An1 +
√

4(An1 )2 − 1
4 = 1

2 ,

as desired, and also

λ1
2 =

2An1 −
√

4(An1 )2 − 1
4 = 1

8 .

Hence, analogously, the setting of Ann−1 = 5
8 will provide λn−1

1 = 1
2 and λn−1

2 = 1
8 .

Condition 2.a The constraint

An1 = Ann−1 = 5
8 , for all n ≥ 5,

guarantees the existence of the sub-dominant eigenvalue λ = 1
2 with Fourier index F(λ) =

{1, n− 1}.

Next, we consider ν = 0, 2, . . . , n− 2 and observe that, if setting Anν = 1
2 , then from equation

(5.15) we obtain

λν1 = 2Anν +
√

4(Anν )2 − 1
4 = 1

4 , ν = 0, 2, . . . , n− 2

as well as
λν2 = 2Anν −

√
4(Anν )2 − 1
4 = 1

4 , ν = 0, 2, . . . , n− 2.

Condition 3.a The constraint

Anν = 1
2 , for all ν = 0, 2, . . . , n− 2 and n ≥ 5,

guarantees the existence of the subsub-dominant eigenvalue η = 1
4 with multiplicity m(η) =

2n− 4 and Fourier index F(η) ⊇ {0, 2, n− 2}.
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Finally, we have to find an additional condition that can guarantee that all other eigenvalues
λν3 , λ

ν
4 , λ

ν
5 , λ

ν
6 are such that |λνj | ≤ 1

4 for all j = 3, 4, 5, 6 and ν = 0, 1, . . . , n − 1. Since
the explicit expressions of these eigenvalues exclusively depend on Cnν , as shown in equation
(5.16), to achieve our objective we assume Cnν to be a function within the family of real
functions

fnν,σ : [−1, 1] → R

cos
(2πν

n

)
7→ 25

64 − σ
(
1 + cos

(2πν
n

))
,

(5.17)

whose members are identified by a specific choice of σ.

−1 −0.5 0 0.5 1

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

cos(2π ν/N)

f ν,
σ

 N

 

 
σ = 29/1024
σ < 29/1024
σ > 29/1024

Figure 5.3: The family of functions fnν,σi with σi = 13+4i
210 , i = 0, 1, . . . , 8. The solid thicker

(red) curve identifies fn
ν, 29

210
.

Figure 5.3 shows the behavior of the family members fnν,σ for different values of σ. Plotting
also the behaviour of the eigenvalues λν3 , λν4 , λν5 , λν6 , ν = 0, 1, . . . , n − 1, obtained with Cnν =
fnν,σ, σ ∈ [ 13

210 ,
45
210 ] (see Figure 5.4), we can observe that |λν3 |, |λν4 |, |λν6 | are always smaller than

1
4 , while |λ

ν
5 | is not greater than 1

4 only if Cnν = fnν,σ with σ ≥ 29
210 . Moreover, we notice that

λν5 = 1
4 whenever ν = n

2 since Cnn
2

= fnn
2 ,σ

= 25
64 for all σ ≥ 29

210 .

Condition 4.a Let ν ∈ {0, 1, . . . , n− 1}. Setting

Cnν = 25
64 − σ

(
1 + cos

(2πν
n

))
with σ ≥ 29

210 , (5.18)

we obtain
|λν3 | <

1
4 , |λν4 | <

1
4 , |λν5 | <

1
4 , |λν6 | <

1
4 , if ν 6= n

2
and

|λν3 | <
1
4 , |λν4 | <

1
4 , λν5 = 1

4 , |λν6 | <
1
4 , if ν = n

2 .
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(b) λν4 , ν = 0, 1, . . . , n− 1
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η =
1
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(c) λν5 , ν = 0, 1, . . . , n− 1
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(d) λν6 , ν = 0, 1, . . . , n− 1

Figure 5.4: Behavior of eigenvalues λν3 , λν4 , λν5 , λν6 , ν = 0, 1, . . . , n − 1 when Cnν = fnν,σi and
σi = 13+4i

210 , i = 0, 1, . . . , 8.

Remark 5.2 Conditions 3.a and 4.a imply that the subsub-dominant eigenvalue η = 1
4 has

multiplicity

m(η) =
{

2n− 4, if n odd,
2n− 3, if n even.

Remark 5.3 To guarantee that the local subdivision matrix S has the desired spectrum, we
have no conditions on Bn

ν . Looking at equations (5.13)-(5.14) this can be easily understood. In
fact, Bn

ν appears only in the block K2 which has no influence on the characteristic polynomial
and thus on the computation of the eigenvalues of Mν .

All the constraints inferred from the eigenvalues analysis are summarized in Table 5.1.
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1.
n∑
j=1

α2j−1,n = 1
2 for n 6= 4,

n∑
j=1

(β2j−1,n + γ2j,n) = 13
16 for n 6= 4

2.
n∑
j=1

α2j−1,n ω
(j−1)ν = 5

8 for n 6= 4, ν = 1, n− 1

3.
n∑
j=1

α2j−1,n ω
(j−1)ν = 1

2 for n ≥ 5, ν = 0, 2, . . . , n− 2

4.
n∑
j=1

γ2j,n ω
(j−1)ν = 25

64 − σ
(

1 + cos
(2πν

n

))
with σ ≥ 29

210 for n 6= 4, ν = 0, 1, . . . , n− 1

Table 5.1: Summary of the conditions required on the coefficients α2j−1,n, β2j−1,n, γ2j,n,
j = 1, . . . , n for all valences n 6= 4.

Constraints inferred from eigenvectors analysis

If an interpolatory subdivision scheme with extraordinary stencils in Figure 5.2 fulfills Con-
ditions 1.a, 2.a, 3.a, 4.a, then it is convergent and satisfies the necessary conditions to achieve
also C1 continuity and bounded curvature at extraordinary points of valence n ≥ 5. The
achievement of C1 continuity is subject only to the additional fulfillment of the condition
regarding the regularity of the characteristic map Ψ. In fact, since we already proved that
the Fourier indices of the subdominant eigenvalue λ are 1, n−1, once the regularity has been
proven the injectivity follows immediately (see Remark 2.31). As recalled in Section 2.3,
the characteristic map is a special parametrization that allows one to express the limit
surface around an extraordinary vertex as a differentiable function of two variables. Such
parametrization depends not only on the mesh connectivity, but also on the weights defin-
ing the extraordinary rules, and can be obtained as the planar limit surface generated by
the so-called characteristic mesh, i.e. the control mesh provided by the eigenvectors x1, x2
corresponding to the sub-dominant eigenvalue λ := λ1 = λ2 [7, 112, 117, 138]. This planar
limit surface is made by a ring of regular surface patches of the tensor-product interpolatory
Dubuc-Deslauriers 4-point scheme, and the characteristic mesh contains the control points
for the definition of such patches. By the property of rotational symmetry around the ex-
traordinary vertex, the characteristic mesh can be conveniently decomposed into n segments.
By normalizing the eigenvectors x1, x2 such that the characteristic mesh is centered at (0, 0)
and the furthest corner in the first segment is at (1, 0) of the global (x, y)-coordinate sys-
tem (see Figure 5.5), we can obtain the so-called normalized characteristic mesh. Exploiting
the results presented by Deng-Ma in [39, Appendix A], we here show a standard procedure
which allows one to verify if a bivariate interpolatory subdivision scheme defined by the ex-
traordinary stencils in Figure 5.2 and satisfying Conditions 1.a, 2.a, 3.a, 4.a, has a regular
characteristic map, and is thus of class C1. Before showing the pseudo-code of the procedure,
we underline the fact that the eigenvectors x1 and x2, used to define the characteristic mesh,
must be computed from a local subdivision matrix S̃ ∈ R(42n+1)×(42n+1). This is due to the
fact that, in the univariate case, for the Dubuc-Deslauriers interpolatory 4-point scheme, a
limit curve segment between two consecutive vertices is defined by a set of 6 vertices. For
the class of schemes here considered, a limit surface patch bounded by 4 vertices defining a
quadrilateral face is thus identified by a set of 6× 6 vertices, being a tensor-product surface
patch of the Dubuc-Deslauriers interpolatory 4-point scheme (see Figure 5.5).



Smoothness analysis near extraordinary elements 94

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

1

2

3

4

5

6

7

8
9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

r(1)

r(3)

r(7)

r(13)

r(21)

r(31) u

v

Figure 5.5: First segment of the normalized characteristic mesh: entries of the 7× 6 matrix
V (marked by *) and entries of the first row of V rotated counterclockwise by 2π

n (marked
by +).

Algorithm 1 Pseudo code for verifying the regularity of the characteristic map.

1. Compute the subdivision matrix S̃ ∈ R(42n+1)×(42n+1), where each block M̃` ∈ R42×42

for ` = 0, 1, . . . , n− 1.

2. Following the reasoning in Section 5.1.2, compute the 43× 43 block Ŝ1 and consider its
42× 42 sub-matrix M1.

3. Compute the subdominant eigenvector of M1, that is the eigenvector v ∈ C42 related to
the eigenvalue λ = 1

2 .

4. Re-order the entries vk, k = 1, . . . 42 of v defining a matrix V ∈ C7×6 of the form

(Vi,j) 1 ≤ i ≤ 7
1 ≤ j ≤ 6

=



v1 v3 v7 v13 v21 v31
v2 v4 v8 v14 v22 v32
v6 v5 v9 v15 v23 v33
v12 v11 v10 v16 v24 v34
v20 v19 v18 v17 v25 v35
v30 v29 v28 v27 v26 v36
v42 v41 v40 v39 v38 v37


.

5. Denoting by x := R(V) and y := I(V) the real and imaginary part of V, respectively,
define the x and y coordinates of the points marked by * in Figure 5.5. notice that they
all depend on Bn

1 and Cn1 .

6. Rotating rows and columns of V clockwise and counterclockwise by 2π
n , construct all the

6 × 6 sets of control points defining the 12 surface patches bounded by the vertices of
the quadrilateral faces highlighted in Figure 5.5.
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7. For the surface patch bounded by the four vertices(
R(Vi,j), I(Vi,j)

)
,
(
R(Vi,j+1), I(Vi,j+1)

)
,
(
R(Vi+1,j), I(Vi+1,j)

)
,
(
R(Vi+1,j+1), I(Vi+1,j+1)

)
,

let
(
R(Vm,n) = xm,n, I(Vm,n) = ym,n

)
, m = i−2, . . . , i+3, n = j−2, . . . , j+3 identify

its 6× 6 set of control points. Then compute

cxm = maxn=j−1,...,j+2{|2xm,n − xm,n−1 − xm,n+1|}, m = i− 2, . . . , i+ 3,
∆x
m = max{xm+1,j − xm,j , xm+1,j+1 − xm,j+1}, m = i− 2, . . . , i+ 2,

δxm = min{xm+1,j − xm,j , xm+1,j+1 − xm,j+1}, m = i− 2, . . . , i+ 2,
(5.19)

and verify the fulfillment of

Condition 5.a

(i)
(cxm+1 + cxm)

δxm
< 4 ∀m = i− 2, . . . , i+ 2,

(ii) 1
K
≤

4δxm+1 − (cxm+2 + cxm+1)
4∆x

m + (cxm+1 + cxm) ≤ K ∀m = i− 2, . . . , i+ 1,

(iii) 1
K
≤

4∆x
m+1 + (cxm+2 + cxm+1)
4δxm − (cxm+1 + cxm) ≤ K ∀m = i− 2, . . . , i+ 1,

with K = 3 + 2
√

2.

Remark 5.4 Conditions 5.a.(i),5.a.(ii),5.a.(iii), together with Conditions 1.a, 2.a,
3.a, 4.a, have been proven by Deng-Ma [39] to guarantee the positivity of the x and
y components of the first derivative of a surface patch along the u direction, and thus,
in view of [112, Theorem 5.25] provide sufficient conditions for the regularity of the
characteristic map.

8. Compute the values in (5.19) for the y-coordinates and check if Condition 5.a is satisfied.

9. Repeat steps 7, 8 for all the 12 surface patches contained in the first sector of the
normalized characteristic map.

10. If for all such patches Condition 5.a is verified for both x- and y-coordinates, then the
characteristic map is regular. Conversely, if a patch does not satisfy these equations,
subdivide it into four subpatches and check Condition 5.a for both x- and y-coordinates of
each subpatch. If Condition 5.a is not satisfied within a predefined number of refinement
steps (say 10), then no proof of regularity of the characteristic map is available.

Extraordinary vertices of valence n = 3

The analysis conducted for the case n ≥ 5 can be exploited also for the special case n = 3,
just introducing the following changes when formulating Conditions 1.a, 2.a, 3.a and 4.a.

Condition 1.b The constraints A3
0 = 1

2 , B
3
0 +C3

0 = 13
16 imply that λ0 = 1 with F(1) = 0 and

x0 = 1.
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Condition 2.b The constraints A3
1 = A3

2 = 5
8 imply that λ := λ1 = λ2 = 1

2 with F(λ) =
{1, 2}.

Condition 3.b The constraint A3
0 = 1

2 yields η := λ3 = 1
4 with F(η) = {0}.

Remark 5.5 We thus point out that, when n = 3, the limit surface is not L2-hyperbolic
because both 2 and n−2 do not belong to the Fourier indices of the subsub-dominant eigenvalue
1
4 [112].

Condition 4.b The constraint C3
ν = 25

64 − σ(1 + cos(2πν
n )) with σ ≥ 29

210 for all ν ∈ {0, 1, 2}
guarantees that |λi| < 1

4 for all i ≥ 4.

Finally, to check the regularity of the characteristic map, and thus the C1 continuity of the
scheme in the neighborhood of an extraordinary point of valence n = 3, we can again use
Algorithm 1.

5.1.4 Numerical examples: special weights settings

In this section, we consider interpolatory subdivision schemes from the literature which fall
into the general class studied in this section. Such schemes are featured by

(i) the regular rules in (5.1)-(5.2), obtained from the tensor-product of the Dubuc-Deslauriers
interpolatory 4-point scheme [42, 49];

(ii) the extraordinary rules in (5.4)-(5.6) and (5.3)-(5.5) for the cases n ≥ 5 and n = 3,
respectively.

Moreover, they satisfy the constraints appearing in Conditions 1.a, 2.a, 3.a, 4.a and 5.a for
any n 6= 4, and thus guarantee convergence, C1 continuity and boundedness of principal
curvatures at extraordinary vertices. We thus exclude from our discussion the proposal in
[123] since, although fulfilling requirements (i)-(ii), it fails to satisfy boundedness of curvature.

Li-Ma-Bao’s subdivision scheme

The weights α2j−1,n, β2j−1,n, γ2j,n, j = 1, . . . , n for the extraordinary rules proposed by Li-
Ma-Bao [93] are shown in Tables 5.2 and 5.3 for the cases n ≥ 5 and n = 3, respectively.
For such weights setting we prove that the constraints in Conditions 1.a, 2.a, 3.a, 4.a are all
satisfied for any n 6= 4.

Proposition 5.6 Li-Ma-Bao’s subdivision scheme satisfies the constraints in Condition 1.a
for all n ≥ 5.

Proof: From Table 5.2 we have that

An0 =
n∑
j=1

α2j−1,n = 1
2 + 1

4n + 1
4n

n∑
j=2

cos
(2π(j − 1)

n

)
.

Since
∑n
j=2 cos

(
2π(j−1)

n

)
= −1 for all n ≥ 5, then An0 = 1

2 . In order to compute Bn
0 , we

observe that
3

32n

n∑
j=1

(
1 + cos

(2π(j − 1)
n

)
+ sin

(2π(j − 1)
n

)
+ cos

(2π(j − 2)
n

)
− sin

(2π(j − 2)
n

))
= 3

32 ,
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α1,n
1
2 + 1

4n

α2j−1,n, j = 2, . . . , n 1
4n cos

(2π(j−1)
n

)
β1,n = β3,n

63
256 + 3

32n
(
2 + cos

(2π
n

)
+ sin

(2π
n

))
β5,n = β2n−1,n − 3

256 + 3
32n
(
1 + cos

(4π
n

)
+ sin

(4π
n

)
+ cos

(2π
n

)
− sin

(2π
n

))
β2j−1,n

3
32n
(
1 + cos

(2π(j−1)
n

)
+ sin

(2π(j−1)
n

)
j = 4, . . . , n− 1 + cos

(2π(j−2)
n

)
− sin

(2π(j−2)
n

))
γ2,n

11
32 −

7
64n

γ4,n = γ2n,n − 3
128 −

1
64n
(
3 + 4 cos

(2π
n

))
γ2j,n, j = 3, . . . , n− 1 − 1

64n
(
3 + 4 cos

(2π(j−1)
n

))
Table 5.2: Weights proposed by Li-Ma-Bao for the edge- and face-point rule around extraor-
dinary vertices of valence n ≥ 5.

α1,3 = 7
12 α3,3 = α5,3 = − 1

24

β1,3 = β3,3 = 75
256 +

√
3

64 β5,3 = − 3
128 −

√
3

32

γ2,3 = 59
192 γ4,3 = γ6,3 = − 11

384

Table 5.3: Weights proposed by Li-Ma-Bao for the edge- and face-point rule around extraor-
dinary vertices of valence n = 3.

for all n ≥ 5, and the latter yields Bn
0 = 3

32 + 2 · 63
256 + 2 ·

(
− 3

256

)
= 9

16 . In a similar way we
can compute Cn0 by noticing that

− 1
64n

n∑
j=1

(
3 + 4 cos

(2π(j − 1)
n

))
= − 3

64 , ∀n ≥ 5,

which yields Cn0 = − 3
64 + 11

32 + 2 ·
(
− 3

128

)
= 1

4 . Hence B
n
0 + Cn0 = 13

16 .

For the following propositions we recall that ω = e
2πi
n = cos

(
2π
n

)
+ i sin

(
2π
n

)
.

Proposition 5.7 Li-Ma-Bao’s subdivision scheme satisfies the constraints in Condition 2.a
for all n ≥ 5.

Proof: Since
1

4n

n∑
j=1

cos
(2π(j − 1)

n

)
ω(j−1) = 1

8 , ∀n ≥ 5,

thus An1 = 1
8 + 1

2 = 5
8 for all n ≥ 5. Analogously we can also prove that Ann−1 = 5

8 for all
n ≥ 5.
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Proposition 5.8 Li-Ma-Bao’s subdivision scheme satisfies the constraints in Condition 3.a
for all n ≥ 5.

Proof: In Proposition 5.6 we have already proven that An0 = 1
2 . Thus, we have to prove the

claim for ν = 2, . . . , n− 2 only. Since for all n ≥ 5 and ν = 2, . . . , n− 2

1
4n

n∑
j=1

cos
(2π(j − 1)

n

)
ω(j−1)ν = 0,

then Anν = 1
2 for all n ≥ 5 and ν = 2, . . . , n− 2.

Proposition 5.9 Li-Ma-Bao’s subdivision scheme satisfies the constraints in Condition 4.a
for all n ≥ 5.

Proof: Using the coefficients in Table 5.2 we can compute Cnν for all ν = 0, . . . , n− 1.

• If ν = 0, then Cn0 = 1
4 as it was already shown in Proposition 5.6.

• If ν = 1, we observe that for all n ≥ 5

− 1
64n

n∑
j=1

(
3 + 4 cos

(2π(j − 1)
n

))
ω(j−1) = − 1

32 ,

so that
Cn1 = 5

16 −
3

128
(
ω + ωn−1

)
∀n ≥ 5.

Analogously, we can also show that Cnn−1 = 5
16 −

3
128
(
ω + ωn−1) , for all n ≥ 5.

• If ν = 2, . . . , n− 2, we notice that for all n ≥ 5

− 1
64n

n∑
j=1

(
3 + 4 cos

(2π(j − 1)
n

))
ω(j−1)ν = 0,

thus yielding

Cnν = 11
32 −

3
128

(
ων + ω(n−1)ν

)
∀n ≥ 5 and ν = 2, . . . , n− 2.

Finally, re-writing the above results in the compact form

Cnν =


1
4 if ν = 0;
23
64 −

3
64

(
1 + cos

(
2π
n

))
if ν = 1, n− 1;

25
64 −

3
64

(
1 + cos

(
2πν
n

))
if ν = 2, . . . , n− 2;

we get

Cnν =


fn0, 9

128
if ν = 0;

fn1, 3
64 + 1

32(1+cos( 2π
n ))

if ν = 1, n− 1;

fn
ν, 3

64
if ν = 2, . . . , n− 2.

Since 9
128 >

29
210 , 3

64 >
29
210 and 3

64 + 1
32(1+cos( 2π

n
)) >

3
64 >

29
210 , then for all 0 ≤ ν ≤ n − 1 the

constraints in Condition 4.a are satisfied.
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Remark 5.10 From Table 5.3 we obtain that, when n = 3, Li-Ma-Bao’s scheme satisfies
the constraints in Conditions 1.b and 3.b since A3

0 = 1
2 and B3

0 = 9
16 , C

3
0 = 1

4 , so providing
B3

0 + C3
0 = 13

16 . Additionally, since A3
1 = A3

2 = 7
12 −

1
12 cos

(
2π
3

)
= 5

8 , the constraints in
Condition 2.b are also fulfilled. Furthermore, since C3

0 = 1
4 = f3

0, 9
128

and C3
1 = C3

2 = 43
128 =

f3
1, 7

64
with 9

128 >
29
210 and 7

64 >
29
210 , thus the constraints in Condition 4.b are satisfied too for

all 0 ≤ ν ≤ 2.

Finally, using Algorithm 1, we checked that Li-Ma-Bao’s scheme also satisfies Condition 5.a
for all 3 ≤ n ≤ 50 after 7 refinement steps, thus showing convergence, C1 smoothness and
boundedness of principal curvatures at extraordinary points with these valences.

Deng-Ma’s subdivision scheme

For the subdivision scheme recently proposed by Deng-Ma [39], the weights defining the edge-
point and the face-point stencil are shown in Tables 5.4 and 5.5 for n ≥ 5 and n = 3. As
already shown for Li-Ma-Bao’s subdivision scheme, we now prove that also the coefficients
defining the extraordinary rules of Deng-Ma’s scheme satisfy the constraints in Conditions 1.a,
2.a, 3.a and 4.a.

α1,n
1
2 + 1

4n

α2j−1,n, j = 2, . . . , n 1
4n cos

(2π(j−1)
n

)
β1,n = β3,n

153
512 + 9

128n
(
1 + cos

(2π
n

))
β5,n = β2n−1,n − 9

512 + 9
128n

(
cos

(4π
n

)
+ cos

(2π
n

))
β2j−1,n, j = 4, . . . , n− 1 9

128n
(

cos
(2π(j−1)

n

)
+ cos

(2π(j−2)
n

))
γ2,n

81
256

γ4,n = γ2n,n − 9
256

γ6,n = γ2n−2,n
1

512

γ2j,n, j = 4, . . . , n− 2 0

Table 5.4: Weights proposed by Deng-Ma for the edge- and face-point rule around extraor-
dinary vertices of valence n ≥ 5.

Remark 5.11 Comparing Tables 5.2 and 5.4, we notice that the coefficients α2j−1,n, j =
1, . . . , n are the same for both schemes. Thus, Propositions 5.7 and 5.8 immediately yield that
Deng-Ma’s subdivision scheme satisfies the constraints in Condition 2.a and Condition 3.a.

Proposition 5.12 Deng-Ma’s subdivision scheme satisfies the constraints in Condition 1.a
for all n ≥ 5.
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α1,3 = 7
12 α3,3 = α5,3 = − 1

24

β1,3 = β3,3 = 159
512 β5,3 = − 15

256

γ2,3 = 81
256 γ4,3 = γ6,3 = − 17

512

Table 5.5: Weights proposed by Deng-Ma for the edge- and face-point rule around extraor-
dinary vertices of valence n = 3.

Proof: From Remark 5.11 we have that An0 = 1
2 . Now, in order to compute Bn

0 we observe
that, for all n ≥ 5,

9
128n

n∑
j=1

(
cos

(2π(j − 1)
n

)
+ cos

(2π(j − 2)
n

))
= 0,

so that Bn
0 = 2 · 153

512 + 2 ·
(
− 9

512

)
= 9

16 . Additionally, from Table 5.4 we have that Cn0 = 1
4 so

obtaining Bn
0 + Cn0 = 13

16 .

Proposition 5.13 Deng-Ma’s subdivision scheme satisfies the constraints in Condition 4.a
for all n ≥ 5.

Proof: From Table 5.4 we find that, for all n ≥ 5 and ν = 0, . . . , n− 1,

Cnν = 81
256 −

9
128 cos

(2πν
n

)
+ 1

256 cos
(4πν

n

)
= fn

ν,
10−cos( 2πν

n )
128

,

with
10− cos

(
2πν
n

)
128 >

29
210 .

Then the constraints in Condition 4.a are fulfilled.

Remark 5.14 From Table 5.5 we immediately find that A3
0 = 1

2 , B
3
0 = 9

16 , C
3
0 = 1

4 , so that
B3

0 +C3
0 = 13

16 . Hence Deng-Ma’s subdivision scheme satisfies the constraints in Condition 1.b
and 3.b Additionally, since A3

1 = A3
2 = 7

12 −
1
12 cos

(
2π
3

)
= 5

8 , the constraints in Condition 2.b
are also fulfilled. Furthermore, by the fact that C3

0 = 1
4 = f3

0, 9
128

, C3
1 = C3

2 = 179
512 = f3

1, 21
256

and
9

128 >
29
210 as well as 21

256 >
29
210 , thus the constraints in Condition 4.b are satisfied too.

Finally, we conclude by observing that, using Algorithm 1, Deng-Ma’s scheme also satisfies
Condition 5.a for all 3 ≤ n ≤ 50 with 8 refinement steps, and thus guarantees convergence,
C1 continuity and boundedness of principal curvatures at extraordinary points with these
valences.
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α1,n
1
2 + 1

4n

α2j−1,n, j = 2, . . . , n 1
4n cos

(2π(j−1)
n

)
β1,n = β3,n

81
256

β5,n = β2n−1,n
n−38

512(n−2)

β2j−1,n, j = 4, . . . , n− 1 9
128(n−2)

γ2,n
81
256

γ4,n = γ2n,n − 9
256

γ2j,n, j = 3, . . . , n− 1 0

Table 5.6: New weights proposal for the edge- and face-point rule around extraordinary
vertices of valence n ≥ 5.

A new scheme with simplified face-point stencils

The goal of this part is to show how easily new interpolatory C1 subdivision schemes with
bounded curvature at extraordinary points can be designed by suitably choosing the weights
α2j−1,n, β2j−1,n, γ2j,n, j = 1, . . . , n such that all the constraints previously found are fulfilled.
Keeping the regular rules in (5.1)-(5.2) and the choice of α2j−1,n, j = 1, . . . , n for all n 6= 4
as in Li-Ma-Bao’s and Deng-Ma’s proposal, we focus our attention on the selection of the
weights appearing in the face-point rule only. Our idea is to simplify the expressions of the
coefficients used in the above proposals and to reduce the number of vertices involved. To
this purpose we choose the weights for the face-point stencil as follows

• if n = 3, we set

β1,3 = β3,3 = 79
256 , β5,3 = − 19

256 , γ2,3 = 85
256 , γ4,3 = γ6,3 = − 1

32 , (5.20)

• if n ≥ 5 we choose

β1,n = β3,n = 81
256 , β5,n = β2n−1,n = n− 38

512(n− 2) ,

β2j−1,n = − 9
128(n− 2) , j = 4, . . . , n− 1

γ2,n = 81
256 , γ4,n = γ2n,n = − 9

256 , γ2j,n = 0, j = 3, . . . , n− 1.

(5.21)

All the new weights are summarized in Tables 5.6 and 5.7.
Regarding the new choice of the coefficients β2j−1,n, j = 1, . . . , n we observe that they
have a simpler expression than those proposed by Li-Ma-Bao and Deng-Ma. Moreover, the
coefficients γ2j,n, j = 1, . . . , n are independent of the valence n and only 3 of them are non-
zero. Thus the choice in (5.20) - (5.21) is computationally cheaper since we simplify the
expressions of β2j−1,n and γ2j,n, and reduce the number of vertices involved in the face-point
rule definition.
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α1,3 = 7
12 α3,3 = α5,3 = − 1

24

β1,3 = β3,3 = 79
256 β5,3 = − 19

256

γ2,3 = 85
256 γ4,3 = γ6,3 = − 1

32

Table 5.7: New weights proposal for the edge- and face-point rule around extraordinary
vertices of valence n = 3.

Figure 5.6: Limit surfaces obtained by the new subdivision scheme with weights in Tables
5.6 and 5.7, after 6 steps of refinement.

In the following we show that the new weights fulfill all the necessary conditions required for
C1 continuity and bounded curvature at extraordinary vertices of valence n = 3 and n ≥ 5.

Proposition 5.15 The interpolatory subdivision scheme with coefficients in Tables 5.6 and
5.7 satisfies Conditions 1.b, 2.b, 3.b, 4.b for valence n = 3 and Conditions 1.a, 2.a, 3.a, 4.a
for valence n ≥ 5.

Proof: Since we keep the same α2j−1,n j = 1, . . . , n proposed by Li-Ma-Bao and Deng-Ma,
from Remarks 5.10 and 5.14 we immediately have that for n = 3 Conditions 2.b and 3.b
are verified and, in the same way, from Propositions 5.7 and 5.8 we have that for n ≥ 5
Conditions 2.a and 3.a are fulfilled. Additionally, we can easily see that B3

0 + C3
0 = 13

16 , thus
satisfying Condition 1.b. For n ≥ 5 we notice that

n−1∑
j=2

(
− 9

128(n− 2)

)
= − 9

128 .

It easily follows that Bn
0 = 145

256 and, since Cn0 = 63
256 , we have B

n
0 +Cn0 = 13

16 and Condition 1.a
is verified. Furthermore, by the fact that, for n = 3, C3

0 = 69
256 = f3

0, 31
512

and C3
1 = C3

2 = 93
256 =
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(a) Li-Ma-Bao’s limit surface (b) Closeup view
of (a)

(c) Deng-Ma’s limit surface (d) Closeup view
of (c)

(e) new scheme limit surface (f) Closeup view
of (e)

Figure 5.7: C1 limit surfaces (obtained after 6 steps of refinement) displayed with reflection
lines with closeup views at extraordinary vertices of valence 3 and 6.

f3
1, 7

128
where 31

512 >
29
210 as well as 7

128 >
29
210 , Condition 4.b is satisfied too. In a similar way,

we find

Cnν = 81
256 −

9
128 cos

(2πν
n

)
= fn

ν, 9
128 + 1

256 cos( 2πν
n )

and since 9
128 + 1

256 cos( 2πν
n ) >

29
210 for all 0 ≤ ν ≤ n−1, then for all 0 ≤ ν ≤ n−1 Condition 4.a

is fulfilled.
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(a) Li-Ma-Bao’s limit surface (b) Closeup view of
(a)

(c) Deng-Ma’s limit surface (d) Closeup view of
(c)

(e) new scheme limit surface (f) Closeup view of
(e)

Figure 5.8: C1 limit surfaces (obtained after 6 steps of refinement) displayed with reflection
lines with closeup views at extraordinary vertices of valence 6.

Finally, using Algorithm 1, we have verified that the new interpolatory subdivision scheme
satisfies Condition 5.a for all 3 ≤ n ≤ 50 after 9 refinement steps, and thus guarantees
convergence, C1 continuity and boundedness of principal curvatures at extraordinary points
with these valences.
In Figure 5.6 we show four examples of initial control meshes refined by using the new
interpolatory subdivision scheme. In Figures 5.7 and 5.8 we compare the limit surfaces
obtained by the new extraordinary rules with the ones obtained via Li-Ma-Bao’s and Deng-
Ma’s proposals. Analyzing the behavior of the reflection lines it turns out that the new
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scheme produces limit surfaces of the same quality as Deng-Ma’s and Li-Ma-Bao’s schemes,
but at a reduced computational cost.

5.2 A general computational approach to determine bounds
of extraordinary rule weights

As already shown in Section 2.3, the structure of the subdivision matrix depends on the way
with which we label the old and the new vertices around the central vertex or face. We recall
that usually we can choose between two kinds of ordering, which determine two different
techniques for the spectral analysis of the subdivision matrix. In particular,

Order 1. Primal scheme: ordering the vertices outwards from the central vertex, that is on
successive rings with increasing radial distance, yields a matrix S that, discarded the
first row and column, is a p×p block-matrix where each block, of size n×n, is circulant;
Dual scheme: ordering the vertices outwards from one of the vertices of the central face,
that is on successive rings with increasing radial distance, yields a matrix S that is a
p× p block-matrix where each block, of size n× n, is circulant;

Order 2. Primal scheme: ordering the vertices starting from the central vertex and outwards
within each sector, before moving on to the next, and labeling compatibly within the
sectors, gives a matrix S that, discarded the first row and column, is a n × n block-
circulant matrix with blocks of size p× p;
Dual scheme: ordering the vertices starting from one of the vertices of the central face
and outwards within each sector, before moving on to the next, and labeling compatibly
within the sectors, gives a matrix S that is a n× n block-circulant matrix with blocks
of size p× p.

Given these ordering, two different methods have been proposed for the eigen-analysis

Method 1. Originally presented by Doo and Sabin [48] and successively exploited by Ball and
Storry [7] and by Zorin [137], it applies a similarity transform to S given by the matrix[

1 0
0 Ip ⊗ Fn

]
for primal schemes, and Ip⊗Fn for dual schemes, with Ip denoting the

identity matrix of size p and Fn the Fourier matrix Fn = 1√
n

[
e−

2πij`
n

]n−1

j,`=0
. Then, once

a matrix with diagonal blocks is obtained, a permutation is applied to finally reduce
the local subdivision matrix into a block-diagonal matrix containing one block of size
(p+ 1)× (p+ 1) and n− 1 blocks each of size p× p for primal schemes, or n blocks each
of size p× p for dual schemes.

Method 2. Introduced by Peters and Reif [112], if the scheme is primal, it artificially extends each
block of size p × p by one row and one column such that the local subdivision matrix
assumes a standard block-circulant structure, and then diagonalizes it by applying the
block-Fourier matrix Fn⊗Ip+1, while if the scheme is dual the extension is not necessary
and a diagonalization is obtained by applying the block-Fourier matrix Fn ⊗ Ip.
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We observe that, from a computational viewpoint, Method 2 offers the advantage of requiring
the spectral analysis of matrices whose size does not change with the valence n. However, if
the considered scheme is primal, this method generates n − 1 eigenvalues “in surplus” that
are not necessary to investigate the properties of the subdivision scheme, as we have seen in
Section 5.1. For dual schemes the problem of generating useless zero eigenvalues does not
exist since it is due to the formula in (2.22) with transform the hybrid block-circulant matrix
S̃ into a block-circulant matrix S, which is a characteristic of primal subdivision schemes (see
equations in (2.21)- (2.22)). Therefore, in this section we construct the primal subdivision
matrix S̃ ordering the points as explained in Order 2, but, following the strategy used in
[126], we study the eigenproperties of S̃ by applying a block-diagonalization via the unitary
matrix

F̃n =
[

1 0
0 Fn ⊗ Ip

]
,

which avoid the generation of useless zero eigenvalues. In this way, the block-diagonal matrix

F̃nS̃F̃
∗
n =



S̃0 0 · · · · · · 0

0 Ŝ1
. . . ...

... . . . Ŝ2
. . . ...

... . . . . . . 0
0 · · · · · · 0 Ŝn−1


, (5.22)

with one block S̃0 of size (p+ 1)× (p+ 1) and n− 1 blocks Ŝν , ν = 1, . . . , n− 1, of size p× p,
is directly obtained, so that the eigenproperties of S̃ can be read from the spectrum of the n
blocks.

5.2.1 Block-circulant and hybrid block-circulant algebras

In this section we sketch the main properties of the famous block-circulant algebra, intro-
ducing then the so-called hybrid block-circulant algebra, useful for the spectral study of
subdivision matrices of primal subdivision schemes. Block-circulants form an algebra and
represent a subspace of block-Toeplitz used for their approximation in numerical methods
such as multigrid methods, preconditioned Krylov methods and combination of them: for
the algebraic properties of such algebra see [33]; for the numerical techniques related to these
structures see [80]. In particular such matrices are encountered in signal/image processing
(see the problem of signal reconstruction with missing data [36]), in Markov chain problems
(see [10] and references therein), in the approximation of vector partial differential equations
(PDEs) as the elasticity problem (see [47]), or of scalar PDEs by standard Finite Element
methods [64]. To confirm their pervasive nature, these structures arise in the context of our
approximation problems as described below.
A matrix A of size pn is called block-circulant if its entries aj ∈ Cp×p, j = 0, . . . , n− 1, obey
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the rule A = [a(s−r)modn]n−1
r,s=0, that is

A =



a0 a1 · · · an−2 an−1

an−1 a0 a1
. . . an−2

an−2 an−1
. . . . . . ...

... . . . . . . . . . a1
a1 · · · an−2 an−1 a0


.

Thus, the following spectral decomposition holds

A = (F ∗n ⊗ Ip)Dn(Fn ⊗ Ip),

where ⊗ is the Kronecker product of matrices, F ∗n is the conjugate transpose of Fn, and

Dn = diag(
√
nF ∗na),

is a block-diagonal matrix with a = [a0, a1, . . . , an−1]T denoting the first block-row of the
matrix A.

Remark 5.16 Usually, the block-circulant matrix is defined with a = [a0, a1, . . . , an−1] as
the first block-column instead of the first block-row. Here we use this formulation to meet the
notations used in the context of subdivision schemes.

If we embed the block-circulant matrix A in a structure with this form

Ã =


u vT · · · vT
w
... A
w

 ,

with u ∈ C and v,w ∈ Cp×1 so that Ã ∈ C(pn+1)×(pn+1), we can construct a new algebra of
matrices, the so called hybrid block-circulant algebra, such that

Ã = F̃ ∗nD̃nF̃n,

where

F̃n =
[

1 0
0 Fn ⊗ Ip

]
and D̃n =


u

√
nvT 0 0√

nw
0 Dn

0

 .

5.2.2 Spectral properties of the subdivision matrix and limit surface char-
acteristics

Primal subdivision schemes are characterized by a local subdivision matrix S̃ ∈ R(pn+1)×(pn+1)

of the form shown in (2.21), which belongs to the hybrid block-circulant matrix algebra
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described in Section 5.2.1. As a consequence, it satisfies

F̃nS̃F̃
∗
n =



a
√
nbT 0 · · · 0 0√

nc Ŝ0 0 · · · 0 0

0 0 Ŝ1 0 . . . 0

0 0 0 . . . . . . ...
...

... . . . . . . . . . 0
0 0 · · · 0 0 Ŝn−1


, (5.23)

where the blocks Ŝν , ν = 0, . . . , n − 1, are obtained by the blocks M̃j , j = 0, . . . , n − 1, in
(2.21) applying a discrete Fourier transform

Ŝν =
n−1∑
j=0

ωjνM̃j , ν = 0, 1, . . . , n− 1,

where ω = ei 2π
n . Denoting with S̃0 the (p+ 1)× (p+ 1) block

S̃0 =
[

a
√
nbT√

nc Ŝ0

]
,

we can rewrite the matrix in (5.23) as in (5.22).
It is well-known that, to guarantee that the subdivision surface will lie within the convex hull
of the control mesh, all the entries of S̃ have to be in [0, 1], i.e. all the weights appearing
in the subdivision rules have to be in such interval. Moreover, Table 2.1 summarizes all the
necessary conditions required on the eigenvalues of S̃ in order to obtain a limit surface that
is convergent and tangent plane continuous, with bounded curvature and optimal shrinkage
at the extraordinary vertices.

Remark 5.17 The conditions summarized in Table 2.1 are not sufficient to guarantee the
generation of C1 continuous limit surfaces. In fact, they do not take into account the behavior
of the characteristic map Ψ. Additionally requiring that this map is regular and injective,
we can indeed guarantee that the limit surface produced by the subdivision scheme will be
C1 with bounded curvature, convex hull property and optimal shrinkage [112]. However, as
also previously done in [65, 96], here we focus our attention on the spectral properties of
the subdivision matrix that are essential to obtain C1 limit surfaces with bounded curvature,
convex hull property and optimal shrinkage effect.

5.2.3 Computing bounds for extraordinary rule weights

Exploiting all the notions recalled in the previous sections, we now define a computational
strategy to find the weights of extraordinary stencils in order to obtain limit surfaces with
the desired characteristics. We proceed as follows

• we consider the refinement rules of a primal subdivision scheme which depend on some
free parameters;

• from these rules, we construct the subdivision matrix S̃ as in (2.21);
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• using the discrete Fourier transform, we build a similar block-diagonal matrix as in
(5.23);

• we compute the eigenvalues of each block and we impose on them the necessary condi-
tions for convergence, tangent plane continuity and boundedness of curvature summa-
rized in Table 2.1;

• we set λ = 1
m to guarantee also the optimal shrinkage;

• we find the ranges in which the free parameters defining the subdivision rules could
vary;

• if we want to ensure also the convex hull property, we require that the range of variability
of each parameter is contained in [0, 1].

In the following, we apply this general strategy to two examples of primal subdivision schemes
for triangular meshes, both improving the well-known Loop’s subdivision scheme [95].

In 1987 C. Loop proposed a binary subdivision scheme for triangular meshes, capable of
producing a limit surface that is C2 continuous everywhere except at the extraordinary points
where it is only C1. Although Loop’s limit surface satisfies the convex hull property, neither
boundedness of curvature nor optimal shrinkage are achieved [95]. The vertex-point and
edge-point stencils of this scheme are shown in Figure 2.5, and the corresponding subdivision
rules read as

V = δP0 +
n∑
i=1

(1− δ
n

Pi

)
, with δ =

(3
8 + 1

4 cos
(2π
N

))2
+ 3

8 ,

E = 3
8(P0 + P1) + 1

8(P2 + Pn),
(5.24)

where P0 denotes the central (extraordinary) vertex, P1 the vertex on its right hand side and
Pi, i = 2, . . . , n all the remaining ones ordered counterclockwise. We notice that, while the
vertex-point rule depends on the valence n of the extraordinary vertex, the edge-point rule
is not influenced by n.
During the years different improvements of original Loop’s subdivision scheme have been
proposed to gain boundedness of curvature at extraordinary vertices. The goal has been
reached by considering either a larger edge-point stencil [65, 96] or a suitable transformation
of the subdivision rules into the ternary setting [97]. The resulting innovative schemes in
[96, 97] propose vertex-point and edge-point stencils where the weights assume a specific
appropriate value in order to produce a limit surface of class C1 and with bounded curvature
at extraordinary vertices. However, the property of optimal shrinkage is never reached except
for the regular case n = 6. The goal of this section is to consider the stencils of modified
binary Loop’s scheme as well as of ternary Loop’s scheme, and to apply our theoretical results
in order to determine in which ranges the stencil weights could vary to achieve not only
the boundedness of curvature and the convex hull property, but also the optimal shrinkage
property at extraordinary vertices of valence n ≥ 5, n 6= 6.
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Binary Loop’s scheme: 1-ring rules

In [96], new rules of binary Loop’s scheme near an extraordinary vertex of valence n 6= 6
have been proposed, which are described by the stencils in Figure 5.9. The coefficients
δ, α, βj , j = 0, . . . , n−1 chosen by the author satisfy the necessary conditions for convex hull,
tangent plane continuity and boundedness of curvature at extraordinary vertices, but not the
optimal shrinkage, i.e. the version of Loop’s scheme in [96] satisfies requirements (i)-(iv) of
Table 2.1, but not condition (v).

V E

(a) New Loop’s scheme

1−δ
n

1−δ
n

1−δ
n

1−δ
n

1−δ
n

δ

V

1−δ
n

(b) New Loop’s vertex-point stencil

β1β2

β3

α

E
β0

βn−1βn−2

(c) New Loop’s edge-point stencil

Figure 5.9: Stencils for the vertex-point rule and the edge-point rule of new Loop’s subdivision
scheme at vertices of valence n.

Comparing the extraordinary stencils of the bounded curvature version of Loop’s scheme
in Figure 5.9 with the original ones in Figure 2.5, we notice that the vertex-point rule has
the same structure, while the edge-point rule of the new version of Loop’s scheme involves a
higher number of points than the original one and depends on the valence of the extraordinary
vertex. Moreover, we notice that binary Loop’s scheme is a 1-ring scheme, since both the
vertex-rule and the edge-rule require just the contribution of the points that are on the first
ring around the extraordinary vertex.
In the following, we show the main steps to find new weights for the extraordinary stencils in
Figure 5.9 in order to satisfy not only the properties of convex hull, tangent plane continuity
and boundedness of curvature, but also optimal shrinkage. Since we have a binary scheme,



Smoothness analysis near extraordinary elements 111

the arity is m = 2, so condition (v) is satisfied by setting λ = 1
2 .

First of all, we notice that for the symmetry of the scheme we have

βj = βn−j , j = 1, . . . , n− 1, (5.25)

and

βbn2 c =



1
2

1− α− β0 − 2
bn2 c−1∑
j=1

βj

 , if n odd,

1− α− β0 − 2
n
2−1∑
j=1

βj , if n even,

⇒
n−1∑
j=0

βj = 1− α. (5.26)

Then, we construct the subdivision matrix S̃ of the form in (2.21) with blocks Mi ∈ Rp×p,
i = 0, . . . , n − 1. Since Loop’s scheme has 1-ring rules, from (2.18) we simply have p = 1.
Thus S̃ is a hybrid circulant matrix of the form

S̃ =



δ 1−δ
n

1−δ
n · · · 1−δ

n
1−δ
n

α β0 β1 · · · βn−2 βn−1

α βn−1 β0 β1
. . . βn−2

α βn−2 βn−1
. . . . . . ...

...
... . . . . . . . . . β1

α β1 · · · βn−2 βn−1 β0


.

Then, we apply the discrete Fourier transform obtaining

Ŝν =
n−1∑
j=0

βjω
jν , ν = 1, . . . , n− 1, and S̃0 =

(
δ 1−δ√

n√
nα

∑n−1
j=0 βj

)
. (5.27)

Since p = 1 we have Ŝν = λν0 and, in particular,

λν0 =
n−1∑
j=0

βjω
jν , ν = 1, . . . , n− 1, (5.28)

while for S̃0, thanks to (5.26), we find λ0
0 = 1, λ0

1 = δ − α.

Remark 5.18 Since for j = 1, . . . , n− 1 we have ωjν +ω(n−j)ν = ωj(n−ν) +ω(n−j)(n−ν) and,
for n even, ω

n
2 ν = ω

n
2 (N−ν), from (5.25) and (5.28) it holds

λν0 = λn−ν0 ,

so conditions (ii)-(iii) of Table 2.1 reduce to λ1
0 = λ and λ2

0 = λ2, respectively.

Summarizing, taking into account Remark 5.18, the condition (i) in Table 2.1 is satisfied with

δ − α = 1
4 , (5.29)
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the condition (ii) leads to

n−1∑
j=0

βjω
j = 1

2 , (5.30)

and from condition (iii) has to hold

n−1∑
j=0

βjω
2j = 1

4 . (5.31)

Finally, to gain also condition (iv), we have to check for which ranges of the free parameters
we have |λν0 | ≤ 1

4 , for ν = 3, . . . , n− 3, and if the convex hull property is satisfied, i.e. all the
free parameters are in [0, 1].

Remark 5.19 From (5.29) it is clear that α and δ are strictly related. If we find an expres-
sion for α, then δ = 1

4 +α and, in order to ensure the convex hull property also for δ, we have
to restrict the set of values for α to

[
0, 3

4

]
. On the other hand, if we obtain δ, then α = δ− 1

4

with δ ∈
[

1
4 , 1
]
for the convex hull property for α.

In the following, we show the details of the computation for the cases n = 5 and n = 7 since,
as already recalled in Section 2.3.3, these are considered the crucial extraordinary valences
when dealing with triangular meshes.

Proposition 5.20 Binary Loop’s scheme with extraordinary stencils in Figure 5.9 satisfies
the conditions (i)-(iv) in Table 2.1 and the convex hull property at an extraordinary vertex of
valence n = 5 if

β1 ∈
[√

5
20 ,
√

5 + 5
40

]
≈ [0.1118, 0.1809], (5.32)

and

α =
√

5 + 5
8 − 5β1, β0 = β1 + 15−

√
5

40 , β2 = β1 −
√

5
20 , δ =

√
5 + 7
8 − 5β1,

with β3 = β2 and β4 = β1.

Proof: In case of an extraordinary vertex of valence n = 5, recalling the condition (5.25),
the stencil weights are α, β0, β1, β2 and δ with

β2 = 1
2(1− α− β0 − 2β1), (5.33)

thanks to (5.26). For n = 5, the expressions in (5.27) become

Ŝν = β0 + β1(ων + ω4ν) + β2(ω2ν + ω3ν) and S̃0 =
(

δ 1−δ√
5√

5α 1− α

)
,
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since
∑4
j=0 βj = 1− α. Hence, from (5.30) and (5.33), we have

1
2 = β0 + β1(ω + ω4) + β2(ω2 + ω3)

= 1
2(ω2 + ω3)− α

2 (ω2 + ω3) + β0(1− 1
2(ω2 + ω3)) + β1(ω + ω4 − (ω2 + ω3))

= −
√

5 + 1
4 +

√
5 + 1
4 α+

√
5 + 5
4 β0 +

√
5β1,

where the last equality holds for ω + ω4 =
√

5−1
2 and ω2 + ω3 = −

√
5+1
2 . Similarly, it holds

√
5− 1
4 −

√
5− 1
4 α+ 5−

√
5

4 β0 −
√

5β1 = 1
4 ,

thanks to equation (5.31). From these relations, we find

α =
√

5 + 5
8 − 5β1, β0 = β1 + 15−

√
5

40 ,

and, as a consequence of (5.33), β2 = β1 −
√

5
20 . Moreover, (5.29) gives δ =

√
5+7
8 − 5β1, and

since there are no other eigenvalues, condition (iv) in Table 2.1 is verified too. Now we have
to ensure the convex hull property for all the parameters, that is, by considering Remark 5.19,

α ∈
[
0, 3

4

]
⇔ β1 ∈

[√
5− 1
40 ,

√
5 + 5
40

]
≈ [0.0309, 0.1809],

β0 ∈ [0, 1] ⇔ β1 ∈
[√

5− 15
40 ,

√
5 + 25
40

]
≈ [−0.3191, 0.6809],

β2 ∈ [0, 1] ⇔ β1 ∈
[√

5
20 ,
√

5 + 20
20

]
≈ [0.1118, 1.1118],

and the intersection of these intervals (taking into account, if necessary, that also β1 should
be in [0, 1]) gives (5.32).

Proposition 5.21 Binary Loop’s scheme with extraordinary stencils in Figure 5.9 satisfies
the conditions (i)-(iv) in Table 2.1 and the convex hull property at an extraordinary vertex of
valence n = 7 if, setting cj = 2 cos jπ7 , j = 2, 4, 6,

β1 ∈
[

4+c2+c4−2c2c6
28c2+8c4−36c6+8c2c4−8c4c6

, 36+33c2+10c4−31c6+6c2c4−20c2c6−7c4c6+3c2c4c6
196c2+20c4−216c6+20c2c4−20c4c6

]
≈ [0.1089, 0.2804],

(5.34)

β2 ∈
[
max

{
1+4(c4−c2)β1

4(c4−c6) , 0, 3c2−c4−2c6
4(c2c6+c2c4−6−c4−c6−c2+c4c6) + β1

}
,

min
{

c2−c4
4(c2c6+c2c4−6−c4−c6−c2+c4c6) + β1,

2+2c2−3c6+4(2−4c2+3c4+2c6−c4c6)β1
4(2+3c2+2c4−4c6−c2c4)

}]
,
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and

α = 1
4(c2 − c6) [2 + 2c2 − 3c6 + 4(2− 4c2 + 3c4 + 2c6 − c4c6)β1+ (5.35)

+4(−2− 3c2 − 2c4 + 4c6 + c2c4)β2] ,

β0 = 1
4(c2 − c6) [2c2 − c6 + 4(−2− c4 + c4c6)β1 + 4(2 + c2 − c2c4)β2] , (5.36)

β3 = 1
4(c2 − c6) [−1 + 4(c2 − c4)β1 + 4(c4 − c6)β2] , (5.37)

δ = 1
4(c2 − c6) [2 + 3c2 − 4c6 + 4(2− 4c2 + 3c4 + 2c6 − c4c6)β1+ (5.38)

+4(−2− 3c2 − 2c4 + 4c6 + c2c4)β2] ,

with β4 = β3, β5 = β2 and β6 = β1.

Proof: Following the same reasoning of the previous proof, in case of an extraordinary vertex
of valence n = 7, the stencil weights are α, β0, β1, β2, β3 and δ with

β3 = 1
2(1− α− β0 − 2β1 − 2β2). (5.39)

If n = 7, the formulas in (5.27) become

Ŝν = β0 + β1(ων + ω6ν) + β2(ω2ν + ω5ν) + β3(ω3ν + ω4ν),

and

S̃0 =
(

δ 1−δ√
7√

7α 1− α

)
.

From (5.30) and (5.31), exploiting (5.39), we have

−1
2c6α+

(
1− 1

2c6

)
β0 + (c2 − c6)β1 + (c4 − c6)β2 + 1

2c6 = 1
2 ,

−1
2c2α+

(
1− 1

2c2

)
β0 + (c4 − c2)β1 + (c6 − c2)β2 + 1

2c2 = 1
4 .

These equations give α and β0 as in (5.35)-(5.36), and we obtain β3 and δ in (5.37)-(5.38) as
a consequence of (5.39) and (5.29), respectively. Moreover, from condition (iv) in Table 2.1,
we require |λ3

0|, |λ4
0| ≤ 1

4 . Since Remark 5.18 ensures that λ3
0 = λ4

0, the previous inequality is
verified from (5.28) with ν = 3 if

−1
4 ≤

4(c2c6 + c2c4 − 6− c4 − c6 + c4c6 − c2)(β1 − β2) + 2c2 − c6 − c4
4(c2 − c6) ≤ 1

4 ,

that is

λ3
0 ∈

[
−1

4 ,
1
4

]
⇔ β2 ∈

[3c2 − c4 − 2c6, c2 − c4]
4(c2c6 + c2c4 − 6− c4 − c6 − c2 + c4c6) + β1. (5.40)
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Now we check the convex hull property, by remembering Remark 5.19,

α ∈
[
0, 3

4

]
⇔ β2 ∈

[2− c2, 2 + 2c2 − 3c6] + 4(2− 4c2 + 3c4 + 2c6 − c4c6)β1
4(2 + 3c2 + 2c4 − 4c6 − c2c4) , (5.41)

β0 ∈ [0, 1] ⇔ β2 ∈
[2c2 − c6,−2c2 + 3c6] + 4(−2− c4 + c4c6)β1

4(c2c4 − 2− c2) ,

β3 ∈ [0, 1] ⇔ β2 ∈
[1, 1 + 4c2 − 4c6] + 4(c4 − c2)β1

4(c4 − c6) .

We observe that all the eligible values for β2 in (5.41) and (5.40), for β1 ∈ [0, 1], are contained
in regions of the plane delimited by two parallel lines (see Figure 5.10). The intersection of
such regions, taking into account that also β2 should be in [0, 1] and using the notation
explained in the caption of Figure 5.10, gives rise to

β1 ∈ [(β3)L ∩ (λ3
0)R, (λ3

0)L ∩ (α)R],
β2 ∈ [max{(β3)L, 0, (λ3

0)L},min{(λ3
0)R, (α)R}],

which are written in full in (5.34) and (5.35).

(a) (b)

Figure 5.10: (a): (· · · ) lines demarcating the eligible regions from left, (−) lines demarcating
the eligible regions from right for β2, given in (5.41) and (5.40), with β1 ∈ [0, 1]: in gray is
depicted the intersection of such eligible regions. (b) Zoom of the eligibility region in (a) with
indications about the involved lines: (θ)L and (θ)R are, respectively, the left and the right
demarcating lines of the regions of values for β2 related to θ ∈ {α, β3, λ

3
0}.

Figure 5.11 illustrates the result of the new Loop’s subdivision scheme when applied to
triangle meshes containing only extraordinary vertices of valence n = 5 and n = 7 (initial
data are courtesy of the authors of [1]). The free β parameters have been set accordingly to
the identified bounds.

Ternary Loop’s scheme: 2-ring rules

To gain the boundedness of curvature in the limit surface, another possible modification of
original Loop’s scheme is its ternary version, proposed in [97], whose stencils are shown in
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(a) Initial Mesh (b) Initial Mesh

(c) Refined Mesh (4 steps) (d) Refined Mesh (4 steps)

Figure 5.11: Refined meshes obtained from a 567-mesh using new binary Loop’s scheme with
parameters β1 = 0.112 for n = 5, β1 = 0.14, β2 = 0.02 for n = 7 (left column) and β1 = 0.13
for n = 5, β1 = 0.16, β2 = 0.022 for n = 7 (right column).

Figure 5.12. We notice that, if in the binary case the scheme is defined by 2 stencils, one for
the vertex-point and one for the edge-point, the ternary variant needs 3 different stencils to
define the vertex-point, the edge-point and the face-point, respectively. In the regular case,
n = 6, the stencil weights are

α = 2
3 , β0 = 20

81 , β1 = β5 = 10
81 , β2 = β4 = 2

81 , β3 = 1
81 , δ = 5

9 ,

while near extraordinary vertices the coefficients proposed in [97] are chosen to satisfy con-
ditions (i)-(iv) in Table 2.1 and the convex hull property, but not requirement (v) regarding
the optimal shrinkage effect.
We notice that the ternary Loop’s scheme is a 2-ring scheme, since the vertex-point rule and
the edge-point rule require just the contribution of the points on the first ring around the
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extraordinary vertex, but the face-point rule involves also the points of the second ring.
In the following, we apply the discussed computational strategy to find new weights for the
extraordinary stencils in Figure 5.12 in order to satisfy both the convex hull property and
all requirements (i)-(v) in Table 2.1: since we have a ternary scheme, i.e. the arity is m = 3,
condition (v) is satisfied by setting λ = 1

3 .

V

F

E

(a) Ternary Loop’s scheme

1−δ
n

1−δ
n

1−δ
n

1−δ
n

1−δ
n

δ

V

1−δ
n

(b) Ternary Loop’s vertex-point stencil

β1β2

β3

α

β0

βn−1βn−2

E

(c) Ternary Loop’s edge-point stencil

1
27

8
27

8
27

1
27

1
27

8
27

F

(d) Ternary Loop’s face-point stencil

Figure 5.12: Stencils for the vertex-point rule, the edge-point rule and the face-point rule of
ternary Loop’s subdivision scheme at vertices of valence n.

First of all, for the symmetry of the scheme, we require (5.25) and (5.26). Then, we start
by constructing the subdivision matrix S̃ of the form in (2.21) with blocks Mi ∈ Rp×p,
i = 0, . . . , n − 1. Since ternary Loop’s scheme has 2-ring rules, from (2.18) we have p = 3.
Thus S̃ is a block-circulant matrix as in (2.21) with ã = δ, b̃ =

[
1−δ
n , 0, 0

]T
, c̃ =

[
α, 20

81 ,
8
27

]T
,
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and

M̃0 =

β0 0 0
4
9

1
81

2
81

8
27 0 1

27

 , M̃1 =

β1 0 0
10
81 0 0
8
27 0 0

 , M̃2 =

β2 0 0
0 0 0
1
27 0 0

 ,

M̃i =

βi 0 0
0 0 0
0 0 0

 , i = 3, . . . , n− 2, M̃n−1 =

βn−1 0 0
10
81 0 2

81
1
27 0 0

 .
After applying the discrete Fourier transform we get

Ŝν =


∑n−1
j=0 βjω

jν 0 0
4
9 + 10

81(ων + ω(n−1)ν) 1
81

2
81(1 + ω(n−1)ν)

8
27(1 + ων) + 1

27(ω2ν + ω(n−1)ν) 0 1
27

 , ν = 1, . . . , n− 1,

and

S̃0 =


δ 1−δ√

n
0 0

√
nα

∑N−1
j=0 βj 0 0√

n20
81

56
81

1
81

4
81√

n 8
27

2
3 0 1

27

 .

We consider Ŝν , ν = 1, . . . , n− 1, and we compute the characteristic polynomial pν(λ) which
turns out to be of the form

pν(λ) = 1
2187(27λ− 1)(81λ− 1)

n−1∑
j=0

βjω
jν − λ

 .
Thus, each block Ŝν , ν = 1, . . . , n− 1, has eigenvalues1

λν0 =
n−1∑
j=0

βjω
jν , λν1 = 1

27 , λν2 = 1
81 . (5.42)

In a similar way, we consider S̃0 with characteristic polynomial

p0(λ) = 1
2187(λ− 1)(81λ− 1)(27λ− 1)(α− δ + λ),

and eigenvalues λ0
0 = 1, λ0

1 = δ − α, λ0
2 = 1

27 , λ
0
3 = 1

81 . To find the admissible values of
α, βj , j = 0, . . . , n− 1, and δ, imposing condition (i) in Table 2.1 we find

δ − α = 1
9 . (5.43)

1Note that for n ≥ 7 the eigenvalue
∑n−1

j=0 βjω
jν could be smaller than 1/27 for some ν, i.e. formally

λν0 < λν1 , but, when the conditions in Table 2.1 are satisfied, the ordering of the remaining eigenvalues is not
crucial. Since the general case n > 7 is not treated in detail, we decide to maintain such a notation.
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Remark 5.18 is still valid for the eigenvalues λν0 in (5.42), so conditions (ii)-(iii) in Table 2.1
give rise to

n−1∑
j=0

βjω
j = 1

3 ,
n−1∑
j=0

βjω
2j = 1

9 . (5.44)

Since λ0
2, λ

0
3 and λν1 , λ

ν
2 , ν = 1, . . . , n − 1, are equal to 1

27 or 1
81 , to verify condition (iv) in

Table 2.1, we only need to check that∣∣∣∣∣∣
n−1∑
j=0

βjω
jν

∣∣∣∣∣∣ ≤ 1
9 , for all ν = 3, . . . , n− 3.

Finally, since we require the convex hull property, all the coefficients found have to be in
[0, 1].

Remark 5.22 It is valid a consideration very similar to that in Remark 5.19. From (5.43)
it is clear that α and δ are strictly related. If we find an expression for α, then δ = 1

9 +α and,
in order to ensure the convex hull property also for δ, we have to restrict the set of values for
α to

[
0, 8

9

]
. On the other hand, if we obtain δ, then α = δ − 1

9 with δ ∈
[

1
9 , 1
]
for the convex

hull property for α.

In the following, we show the details of the computations for the special cases n = 5, 7.

Proposition 5.23 The ternary Loop’s scheme with extraordinary stencils in Figure 5.12
satisfies the conditions (i)-(iv) in Table 2.1 and the convex hull property at an extraordinary
vertex of valence n = 5 if

β1 ∈
[

2
√

5
45 ,

7 +
√

5
45

]
≈ [0.0994, 0.2052], (5.45)

and

α = 7 +
√

5
9 − 5β1, β0 = β1 + 10−

√
5

45 , β2 = β1 −
2
√

5
45 , δ = 8 +

√
5

9 − 5β1.

with β3 = β2 and β4 = β1.

Proof: We follow verbatim the proof of Proposition 5.20. The stencil weights involved in the
subdivision rules in case of an extraordinary vertex of valence n = 5 are α, β0, β1, β2 and δ
with

β2 = 1
2(1− α− β0 − 2β1). (5.46)

Formulas (5.44) with (5.46) imply

1 +
√

5
4 α+ 5 +

√
5

4 β0 +
√

5β1 −
1 +
√

5
4 = 1

3 ,

1−
√

5
4 α+ 5−

√
5

4 β0 −
√

5β1 −
1−
√

5
4 = 1

9 ,
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from which we compute

α = 7 +
√

5
9 − 5β1, β0 = β1 + 10−

√
5

45 ,

and, as a consequence of (5.46), β2 = β1 − 2
√

5
45 . Moreover, (5.43) gives δ = 8+

√
5

9 − 5β1,
and since for all ν = 0, . . . , 4 the remaining eigenvalues are equal to 1

27 or 1
81 , condition

(iv) in Table 2.1 is verified too. now we have to ensure the convex hull property for all the
parameters, that is, by considering Remark 5.22,

α ∈
[
0, 8

9

]
⇔ β1 ∈

[√
5− 1
45 ,

7 +
√

5
45

]
≈ [0.0275, 0.2052],

β0 ∈ [0, 1] ⇔ β1 ∈
[
0, 35 +

√
5

45

]
≈ [0, 0.8275],

β3 ∈ [0, 1] ⇔ β1 ∈
[

2
√

5
45 , 1

]
≈ [0.0994, 1],

and the intersection of these intervals (taking into account, if necessary, that also β1 should
be in [0, 1]) gives (5.45).

Proposition 5.24 The ternary Loop’s scheme with extraordinary stencils in Figure 5.12
satisfies the conditions (i)-(iv) in Table 2.1 and the convex hull property at an extraordinary
vertex of valence n = 7 if, setting cj = 2 cos jπ7 , j = 2, 4, 6,

β1 ∈
[

2(4+c2+c4−2c2c6)
9(7c2+2c4−9c6+2c2c4−2c4c6) ,

2(24+34c2+11c4−37c6+6c2c4−13c2c6−7c4c6+2c2c4c6)
9(49c2+5c4−54c6+5c2c4−5c4c6)

]
≈ [0.0968, 0.2238],

(5.47)

β2 ∈
[
max

{
2+9(c4−c2)β1

9(c4−c6) , 0, 2(2c2−c4−c6)
9(c2c6+c2c4−6−c4−c6−c2+c4c6) + β1

}
,

min
{

2(c2−c4)
9(c2c6+c2c4−6−c4−c6−c2+c4c6) + β1,

4+6c2−8c6+9(2−4c2+3c4+2c6−c4c6)β1
9(2+3c2+2c4−4c6−c2c4)

}]
,

(5.48)
and

α = 1
9(c2 − c6) [4 + 6c2 − 8c6 + 9(2− 4c2 + 3c4 + 2c6 − c4c6)β1+ (5.49)

+9(−2− 3c2 − 2c4 + 4c6 + c2c4)β2] ,

β0 = 1
9(c2 − c6) [3c2 − c6 + 9(−2− c4 + c4c6)β1 + 9(2 + c2 − c2c4)β2] , (5.50)

β3 = 1
9(c2 − c6) [−2 + 9(c2 − c4)β1 + 9(c4 − c6)β2] , (5.51)

δ = 1
9(c2 − c6) [4 + 7c2 − 9c6 + 9(2− 4c2 + 3c4 + 2c6 − c4c6)β1+ (5.52)

+9(−2− 3c2 − 2c4 + 4c6 + c2c4)β2] ,

with β4 = β3, β5 = β2 and β6 = β1.
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(a) (b)

Figure 5.13: (a): (· · · ) lines demarcating the eligible regions from left, (−) lines demarcating
the eligible regions from right for β2, given in (5.55) and (5.54), with β1 ∈ [0, 1]: in gray is
depicted the intersection of such eligible regions. (b) Zoom of the eligibility region in (a) with
indications about the involved lines: (θ)L and (θ)R are, respectively, the left and the right
demarcating lines of the regions of values for β2 related to θ ∈ {α, β3, λ

3
0}.

Proof: In case of an extraordinary vertex of valence n = 7, the stencil weights are α, β0, β1, β2, β3
and δ, with

β3 = 1
2 (1− α− β0 − 2β1 − 2β2) . (5.53)

From (5.44) and (5.53), we have

−1
2c6α+

(
1− 1

2c6

)
β0 + (c2 − c6)β1 + (c4 − c6)β2 + 1

2c6 = 1
3 ,

−1
2c2α+

(
1− 1

2c2

)
β0 + (c4 − c2)β1 + (c6 − c2)β2 + 1

2c2 = 1
9 .

These equations give α and β0 as in (5.49)-(5.50), and we obtain β3 and δ in (5.51)-(5.52)
as a consequence of (5.53) and (5.43), respectively. Moreover, to verify also condition (iv) in
Table 2.1, we need to check if all the other eigenvalues are not greater than 1

9 . Since λ0
2, λ

0
3

and λν1 , λν2 , ν = 1, . . . , 6, are equal to 1
27 or 1

81 , we have just to check if |λ3
0|, |λ4

0| ≤ 1
9 . Since

Remark 5.18 ensures that λ3
0 = λ4

0, the previous inequality is verified from (5.42) with ν = 3
if

−1
9 ≤

9(c2c6 + c2c4 − 6− c4 − c6 + c4c6 − c2)(β1 − β2) + 3c2 − c6 − 2c4
9(c2 − c6) ≤ 1

9 ,

that is

λ3
0 ∈

[
−1

9 ,
1
9

]
⇔ β2 ∈

[4c2 − 2c4 − 2c6, 2c2 − 2c4]
9(c2c6 + c2c4 − 6− c4 − c6 − c2 + c4c6) + β1. (5.54)



Smoothness analysis near extraordinary elements 122

now we check the convex hull property, by remembering Remark 5.22,

α ∈
[
0, 8

9

]
⇔ β2 ∈

[4− 2c2, 4 + 6c2 − 8c6] + 9(2− 4c2 + 3c4 + 2c6 − c4c6)β1
9(2 + 3c2 + 2c4 − 4c6 − c2c4) , (5.55)

β0 ∈ [0, 1] ⇔ β2 ∈
[3c2 − c6,−6c2 + 8c6] + 9(−2− c4 + c4c6)β1

9(c2c4 − 2− c2) ,

β3 ∈ [0, 1] ⇔ β2 ∈
[2, 2 + 9c2 − 9c6] + 9(c4 − c2)β1

9(c4 − c6) .

We observe that all the eligible values for β2 in (5.55) and (5.54), for β1 ∈ [0, 1], are contained
in regions of the plane delimited by two parallel lines (see Figure 5.13). The intersection of
such regions, taking into account that also β2 should be in [0, 1] and using the notation
explained in the caption of Figure 5.13, gives rise to

β1 ∈ [(β3)L ∩ (λ3
0)R, (λ3

0)L ∩ (α)R],
β2 ∈ [max{(β3)L, 0, (λ3

0)L},min{(λ3
0)R, (α)R}],

which are written in full in (5.47) and (5.48).



Chapter 6

Subdivision schemes for biomedical
imaging segmentation

As already pointed out at the beginning of Chapter 5, stationary subdivision schemes can
be partially used in many applications since they can not design particular surfaces such
as spheres, ellipsoids, cylinders, etc...Thus, we need to consider non-stationary subdivision
schemes, which are able to generate or reproduce spaces of exponential polynomials, and thus
to produce limit surfaces with these particular shapes.
The design of ellipsoids is especially important in biomedical imaging field, since very often
the analyzed biological objects have an ellipsoidal shape. In fact, an important challenge
in biomedical imaging is the segmentation of closed 3D structures. In the medical field
the segmentation of organs, such as lung and kidney, allows one for a better 3D visualiza-
tion and hence, improves preoperative preparations. In biology, microscopy images often
contain hundreds of cells to be analyzed. Automatic or semi-automatic cell segmentation
facilitates image analysis because manual delineation of each cell is time consuming. Active
surfaces or 3D deformable models (3D generalizations of active contours) provide a conve-
nient framework in image processing for the segmentation of volumetric biomedical images.
They consist in closed flexible surfaces that evolve through a 3D volumetric image, moving
from an initial position (typically specified by the user), toward the boundary of the object to
be segmented. Their evolution is guided by the minimization of an appropriate energy term
[75, 128], suitably defined to approximate the shape of interest. Currently, 3D deformable
models are described implicitly by level sets [12] or explicitly by meshes [51, 34] and param-
eterizations [124]. Therefore, the explicit definition of 3D deformable models can typically
rely either on a discrete (mesh-based) or a continuous (parametric) representation. Moreover,
as recently shown in [38], active surfaces to be used in 3D bioimage segmentation should be
affine invariant and capable of perfectly outlining ellipsoidal objects or versatile enough to
provide a close approximation of any blob-like shape.
In this chapter, we provide novel explicit definitions of 3D deformable models that can com-
bine the advantages of the discrete and the continuous representations. To achieve this
objective, we propose two different subdivision-based 3D deformable models both defined on
triangular meshes. The first proposal consists in an interpolatory subdivision scheme defined
on regular meshes and able to reproduce exact ellipsoids starting from a mesh composed by
28 control points. The second proposal is an approximating subdivision scheme defined on
arbitrary manifold topology meshes and able to produce a good approximation of an exact
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ellipsoid starting from a mesh of 6 control points only. We study the advantages and the
limits of both these proposals.

6.1 A non-stationary interpolatory subdivision scheme exactly
reproducing ellipsoids

In this section we show and analyze a non-stationary interpolatory subdivision scheme which
is affine invariant and exactly reproduces ellipsoids, thus it is useful for the definition of
3D deformable models. The construction of this non-stationary scheme is preceded by the
definition and analysis of its stationary counterpart, which results to be an improvement of
the Modified Butterfly scheme [73, 139] already recalled in Section 2.4.2.

6.1.1 Modified BLISS: a Modified Butterfly-Lengthened Interpolatory Sub-
division Scheme

We start by recalling the main properties of the Modified Butterfly interpolatory scheme
[73, 139], and then we show how we can obtain a stationary subdivision scheme on regular
triangular meshes, which can improve both smoothness and accuracy of the Modified But-
terfly scheme. For the sake of conciseness, hereinafter we refer to the Modified Butterfly
Interpolatory Subdivision Scheme as Modified BISS, whereas we call the Modified Butterfly-
Lengthened Interpolatory Subdivision Scheme, Modified BLISS.

The Modified Butterfly scheme: a short review

Since the Modified BISS is identified by the 10-point stencil in Figure 2.6 (a), the associated
symbol has the following expression

aw(z1, z2) = a(z1, z2) + w
2

z3
1z

3
2

B1,1,1(z1, z2)(1− z1)2(1− z2)2(1− z1z2)2, w ∈ R, (6.1)

with

a(z1, z2) = 1
z3

1z
3
2

(
7z1z2B2,2,2(z1, z2)− 2z1B1,3,3(z1, z2)− 2z2B3,1,3(z1, z2)− 2z1z2B3,3,1(z1, z2)

)
and

Bi,j,`(z1, z2) = 4
(1 + z1

2

)i (1 + z2
2

)j (1 + z1z2
2

)`
, i, j, ` ∈ N0.

It is known that the limit surfaces of the Modified BISS are C1 if the free parameter w varies
in the range [−0.03, 0) (see, e.g., [73, page 34]). To give the widest range of w for which
the Modified BISS enjoys the property of cubic polynomial reproduction, in the following
proposition we point out for which values of w the Modified BISS is convergent.

Proposition 6.1 If w ∈
(
− 1

32 ,
1
32

)
, then the Modified BISS is convergent.

Proof: In order to verify the convergence of the Modified BISS with symbol aw(z1, z2) in
(6.1), we study the contractivity of the first order difference scheme with matrix symbol
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b[1](z1, z2) computed as in (2.16) with Z1 = {(1, 0, 0), (0, 1, 0)}. The associated first order
difference mask b[1] is


(
0 0
0 0

) (
0 0
0 0

) (
0 0
0 0

) (
w 0
0 0

) (
− 1

16 0
0 0

) (
−w 0
0 0

) (
0 0
0 0

)
(

0 0
0 0

) (
0 0
0 0

) (
−w − 1

16 0
0 0

) (
1
16 − w 0

0 w

) (
w + 1

16 0
0 w − 1

16

) (
w − 1

16 0
0 −w − 1

16

) (
0 0
0 −w

)
(

0 0
0 0

) (
−w − 1

16 0
0 0

) (
w + 3

16 0
0 −w − 1

16

) (
5
16 0
0 −3w

) (
3
16 − w 0

0 3
16 − w

) (
w − 1

16 0
0 3w + 1

16

) (
0 0
0 2w − 1

16

)
(
w 0
0 0

) (
w 0
0 −w − 1

16

) (
1
2 0
0 w + 3

16

) (
1
2 0
0 4w + 1

2

) (
−w 0
0 5

16

) (
−w 0
0 −3w + 1

16

) (
0 0
0 −w

)
(
−w − 1

16 0
0 w

) (
w + 3

16 0
0 3w + 1

16

) (
5
16 0
0 5

16

) (
3
16 − w 0

0 −4w + 1
2

) (
w − 1

16 0
0 3

16 − w

) (
0 0
0 w − 1

16

) (
0 0
0 0

)
(
−w − 1

16 0
0 −2w − 1

16

) (
1
16 − w 0

0 −3w + 1
16

) (
w + 1

16 0
0 w + 3

16

) (
w − 1

16 0
0 3w

) (
0 0
0 w − 1

16

) (
0 0
0 0

) (
0 0
0 0

)
(
w 0
0 w

) (
− 1

16 0
0 w − 1

16

) (
−w 0
0 −w − 1

16

) (
0 0
0 −w

) (
0 0
0 0

) (
0 0
0 0

) (
0 0
0 0

)



.

Using (2.17) with L = 1, we find that

||S1
b[1] || = max

{∥∥∥∥∥
(
|w − 1

16 |+ |w + 1
16 |+ |w −

3
16 |+ |w + 3

16 |+ 2|w|+ 3
8 0

0 2|w − 1
16 |+ |4w −

1
2 |+ 2|3w + 1

16 |+ 4|w|

)∥∥∥∥∥ ,∥∥∥∥∥
(
|w − 1

16 |+ |w + 1
16 |+ |w −

3
16 |+ |w + 3

16 |+ 2|w|+ 3
8 0

0 2|w + 1
16 |+ 2|w − 3

16 |+ |2w −
1
16 |+ 2|w|+ 5

16

)∥∥∥∥∥ ,∥∥∥∥∥
(

4|w + 1
16 |+ 2|w|+ 1

2 0
0 2|w − 1

16 |+ 2|w + 3
16 |+ |2w + 1

16 |+ 2|w|+ 5
16

)∥∥∥∥∥ ,∥∥∥∥∥
(

4|w − 1
16 |+ 2|w|+ 1

2 0
0 2|w + 1

16 |+ |4w + 1
2 |+ 2|3w − 1

16 |+ 4|w|

)∥∥∥∥∥
}

= max
{ ∣∣∣w − 1

16

∣∣∣+ ∣∣∣w + 1
16

∣∣∣+ ∣∣∣w − 3
16

∣∣∣+ ∣∣∣w + 3
16

∣∣∣+ 2|w|+ 3
8 , 4

∣∣∣w − 1
16

∣∣∣+ 2|w|+ 1
2 , 4

∣∣∣w + 1
16

∣∣∣+ 2|w|+ 1
2 ,

2
∣∣∣w − 1

16

∣∣∣+ 2
∣∣∣w + 3

16

∣∣∣+ ∣∣∣2w + 1
16

∣∣∣+ 2|w|+ 5
16 , 2

∣∣∣w + 1
16

∣∣∣+ ∣∣∣4w + 1
2

∣∣∣+ 2
∣∣∣3w − 1

16

∣∣∣+ 4|w|,

2
∣∣∣w + 1

16

∣∣∣+ 2
∣∣∣w − 3

16

∣∣∣+ ∣∣∣2w − 1
16

∣∣∣+ 2|w|+ 5
16 , 2

∣∣∣w − 1
16

∣∣∣+ ∣∣∣4w − 1
2

∣∣∣+ 2
∣∣∣3w + 1

16

∣∣∣+ 4|w|
}
,

and thus ||Sb[1] || < 1 if w ∈
(
− 1

32 ,
1
32

)
. As a consequence, in view of the results recalled in

Section 2.2.2, the Modified BISS converges for all w ∈
(
− 1

32 ,
1
32

)
.

Proposition 6.2 For all w ∈
(
− 1

32 ,
1
32

)
the Modified BISS reproduces the space Π2

3 of bivari-
ate polynomials of total degree at most 3 with respect to the parametrization {T(k), k ∈ N0}
in (2.6) with τ = 0.

Proof: From Proposition 2.7 we have that the Modified BISS generates Π2
3 for all w ∈(

− 1
32 ,

1
32

)
. In fact, for such values of the free parameter the subdivision scheme is convergent

(see Proposition 6.1) and the associated symbol satisfiesD(γ1,γ2)aw(ε1, ε2) = 0 for all (γ1, γ2) ∈
Γ3 and (ε1, ε2) ∈ Ξ′ . Thus, being the scheme interpolatory, reproduction of Π2

3 with respect
to the parametrization in (2.6) with τ = 0 follows straightforwardly in light of Corollary 2.12.

In view of Proposition 6.2, we finally get that the Modified BISS has approximation order 4
for all w ∈

(
− 1

32 ,
1
32

)
(see Proposition 2.10).
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The Modified BLISS

We here present an extension of the Modified BISS, that we call Modified BLISS, which
defines a family of quintic polynomial reproducing schemes depending on a free parameter
w. The construction of such a stationary interpolatory scheme is crucial for the smoothness
analysis of the non-stationary subdivision scheme presented in the following section. The
edge-point stencil of the Modified BLISS is obtained by enlarging the 10-point stencil of the
Modified BISS to the 16-point stencil shown in Figure 6.1, where

β0 = 2w+ 9
16 , β1 = −3w− 1

16 , β2 = w, β3 = 3
256−w, β4 = 4w− 3

64 , β5 = 9
128−6w.

(6.2)
Note that the coefficients β0, β1 and β2 have been defined such that (β2, β1, β0, β0, β1, β2)
provides the odd-point stencil of the interpolatory 6-point scheme depending on a parameter
(see [54, page 162]), while the coefficients β3, β4, and β5 have been selected in such a way
that the Modified BLISS reproduces the space Π2

5 of bivariate polynomials of total degree at
most 5 (see Proposition 6.5).

β4β5β4

β0 β1 β2
β0

β3β3

β1

E

β2

β3 β5β4 β4 β3

Figure 6.1: Edge-point stencil of Modified BLISS with coefficients in (6.2).

Remark 6.3 We emphasize that, assuming β2 = w, the remaining entries of the odd-point
stencil (β2, β1, β0, β0, β1, β2) for the univariate 6-point scheme in [54] can be worked out as

β1 = w

σ2
σ1 +

(
1− w

σ2

)
ρ1, β0 = w

σ2

(1
2 − σ1 − σ2

)
+
(

1− w

σ2

)(1
2 − ρ1

)
,

where ρ1 = − 1
16 is the first entry of the odd-point stencil of the Dubuc-Deslauriers 4-point

scheme, i.e. (ρ1,
1
2 − ρ1,

1
2 − ρ1, ρ1), while σ2 = 3

256 and σ1 = − 25
256 are the first two entries

of the odd-point stencil of the Dubuc-Deslauriers 6-point scheme given by (σ2, σ1,
1
2 − σ1 −

σ2,
1
2 − σ1 − σ2, σ1, σ2) (see [42]).

The symbol of the Modified BLISS is thus of the form

cw(z1, z2) = 2
z5

1z
5
2

B1,1,1(z1, z2)
(
r(z1, z2) + ws(z1, z2)

)
, (6.3)

where

r(z1, z2) = 1
r6

(
r1(z8

1z
6
2 + z2

2) + r2(z2)(z7
1z

5
2 + z1z

2
2) + r3(z2)(z6

1z
2
2 + z2

1)

+r4(z2)(z5
1z

2
2 + z3

1z2) + r5(z2)z4
1z

2
2

)
,
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with
r1 = 3,
r2(z2) = −(z2 + 1)r1,

r3(z2) = 3z6
2 − 3z5

2 − 10z4
2 + 4z3

2 − 10z2
2 − 3z2 + 3,

r4(z2) = −(z2 + 1)(3z4
2 − 7z3

2 − 11z2
2 − 7z2 + 3),

r5(z2) = −2(5z4
2 − 9z3

2 − 37z2
2 − 9z2 + 5),

r6 = 256,

and

s(z1, z2) = s1(z2)(z8
1z

4
2 +1)+s2(z2)(z7

1z
3
2 +z1)+s3(z2)(z6

1z
2
2 +z2

1)+s4(z2)(z2z
5
1 +z3

1)+s5(z2)z4
1 ,

with
s1(z2) =

(
z2

2 + z2 + 1
)
(z2 − 1)2,

s2(z2) = −(z2 + 1)s1(z2),
s3(z2) = z2(z2 − 1)4,

s4(z2) = −(z2 + 1)
(
z4

2 − 5z2
2 + 1

)
(z2 − 1)2,

s5(z2) =
(
z6

2 + 2z5
2 − z4

2 − 10z3
2 − z2

2 + 2z2 + 1
)
(z2 − 1)2.

Proposition 6.4 If

w ∈
(

23
3968 −

√
3236974
63488 ,

−2189 +
√

12142829
80896

)
' (−0.0225, 0.0160), (6.4)

then the Modified BLISS converges.

Proof: In order to verify the convergence of the Modified BLISS with symbol in (6.3), we
study the contractivity of the first order difference scheme with matrix symbol d[1](z1, z2)
defined as in (2.16) with Z1 = {(1, 0, 0), (0, 1, 0)}. Computing ||SLd[1] || as in (2.17) and fix-
ing L = 1, we find that ||S1

d[1] || < 1 when w ∈
(
− 3

1024 ,
13

1024

)
. To enlarge this range we

consider L = 2, so obtaining that ||S2
d[1] || < 1 if w ∈

(
23

3968 −
√

3236974
63488 , −2189+

√
12142829

80896

)
'

(−0.0225, 0.0160).

Proposition 6.5 For all w satisfying (6.4) the Modified BLISS reproduces the space Π2
5 of

bivariate polynomials of total degree at most 5 with respect to the parametrization {T(k), k ∈
N0} in (2.6) with τ = 0.

Proof: From Proposition 2.7 we have that the Modified BLISS generates Π2
5 for all w fulfilling

(6.4). In fact, for such values of w the subdivision scheme is convergent (see Proposition 6.4)
and the associated symbol cw(z1, z2) satisfies D(γ1,γ2)cw(ε1, ε2) = 0 for all (γ1, γ2) ∈ Γ5 and
(ε1, ε2) ∈ Ξ′ . Thus, since the Modified BLISS is interpolatory, in view of Corollary 2.12
the reproduction of Π2

5 with respect to the parametrization in (2.6) with τ = 0, follows
straightforwardly.

Recalling the results in Proposition 2.10, Proposition 6.5 implies the following.
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Corollary 6.6 For all w satisfying (6.4) the Modified BLISS has approximation order 6.

Proposition 6.7 The limit functions produced by the Modified BLISS are of class C1 for all

w ∈
(

29−
√

6673
4608 ,

121
384(375 +

√
140383)

)
' (−0.0114, 4.2032 · 10−4).

Proof: To prove that the Modified BLISS with symbol (6.3) generates C1 limits, it suffices
to check that the second order difference scheme with matrix symbol d[2](z1, z2) defined in
(2.16) is such that ‖SLd[2]‖ < 1

2 for some L ∈ N. Fixing L = 2 and computing d[2](z1, z2) with
Z2 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, we find that ‖S2

d[2]‖ < 1
2 if w ∈

(
29−
√

6673
4608 , 121

384(375+
√

140383)

)
.

Thus, for all values of w in this range, the limits of the Modified BLISS are C1.

Now, to simplify the analysis of C2 convergence, we look for a parameter
w ∈

(
29−
√

6673
4608 , 121

384(375+
√

140383)

)
for which the Modified BLISS symbol cw(z1, z2) allows us

to factor out the Box-spline symbol B3,3,3(z1, z2) = 1
128 (1 + z1)3(1 + z2)3(1 + z1z2)3. Indeed,

when w = − 3
1024 we have

c− 3
1024

(z1, z2) = 1
z5

1z
5
2
B3,3,3(z1, z2)m(z1, z2),

with
m(z1, z2) = −1

8 (3z4
1z

4
2 − 9z4

1z
3
2 + 3z4

1z
2
2 − 9z3

1z
4
2 + 18z3

1z
3
2 + 18z3

1z
2
2 − 9z3

1z2 + 3z2
1z

4
2 + 18z2

1z
3
2

−80z2
1z

2
2 + 18z2

1z2 + 3z2
1 − 9z1z

3
2 + 18z1z

2
2 + 18z1z2 − 9z1 + 3z2

2 − 9z2 + 3),

and thus we can easily prove the following result.

Proposition 6.8 The limit functions produced by the Modified BLISS with w = − 3
1024 are

of class C2.

Proof: To check that the Modified BLISS with w = − 3
1024 produces limit functions of class

C2 we have to verify that the third order difference scheme with matrix symbol d[3](z1, z2)
defined in (2.16) is such that ‖SLd[3]‖ < 1

4 for some L ∈ N. Working out d[3](z1, z2) with
Z3 = {(1, 1, 1), (0, 2, 1), (2, 0, 1), (2, 1, 0)} and computing ‖SLd[3]‖ as shown in (2.17), we find
that the required inequality is verified with L = 4. Thus, C2 smoothness of the subdivision
scheme with symbol c− 3

1024
(z1, z2) is proven.

6.1.2 The non-stationary Modified BLISS

Thanks to the given preliminary results, we are now in a position to construct and analyze
a non-stationary extension of the Modified BLISS. This non-stationary formulation defines a
family of subdivision schemes depending on a pair of k-th level parameters denoted by v(k) and
w(k), respectively. To define the parameter sequence {v(k), k ∈ N0} we choose t ∈ [0, π)∪ iR+

and we set v(0) as in (3.12). Then, starting from v(0), we compute the successive values of the
sequence {v(k), k ∈ N} via the recursive formula shown in (3.13). The parameter sequence
{w(k), k ∈ N0} is successively defined in terms of the sequence {v(k), k ∈ N0} to increase
the number of exponential polynomials reproduced by the scheme (see Propositions 6.15 and
6.17).
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Construction of the parameter-dependent refinement rules

The non-stationary Modified BLISS is defined by the k-th level 16-point stencil shown in
Figure 6.2, where the k-th level coefficients are of the form

β
(k)
0 = 2(2(v(k))2 − 1)w(k) + (2v(k)+1)2

8v(k)(v(k)+1) ,

β
(k)
1 = −(4(v(k))2 − 1)w(k) − 1

8v(k)(v(k)+1) ,

β
(k)
2 = w(k),

β
(k)
3 = −(2(v(k))2 − 1)w(k) + 2v(k)+1

64(v(k))2(2v(k)−1)(v(k)+1)2 ,

β
(k)
4 = 4(v(k))2(2(v(k))2 − 1)w(k) − 2v(k)+1

16(2v(k)−1)(v(k)+1)2 ,

β
(k)
5 = −2(4(v(k))2 − 1)(2(v(k))2 − 1)w(k) + (2v(k)+1)2

32(v(k))2(v(k)+1)2 .

(6.5)

β
(k)
3β

(k)
5

β
(k)
3

β
(k)
2β

(k)
2

β
(k)
4β

(k)
4β

(k)
3

β
(k)
1 β

(k)
0 β

(k)
0 β

(k)
1

β
(k)
3 β

(k)
4 β

(k)
5 β

(k)
4

E

Figure 6.2: Edge-point stencil of the non-stationary Modified BLISS with coefficients in (6.5).

Mimicking the idea used in the stationary case, to work out the expressions in (6.5) we
have assumed β

(k)
2 = w(k) and we have computed the values of β(k)

0 , β(k)
1 , β(k)

3 , β(k)
4 , β(k)

5
as follows. Exploiting an analogous strategy to the one described in Remark 6.3, assume
ρ

(k)
1 = − 1

8v(k)(v(k)+1) to be the first entry of the k-th level odd-point stencil of the non-

stationary interpolatory 4-point scheme in [8], i.e. (ρ(k)
1 , 1

2 − ρ
(k)
1 , 1

2 − ρ
(k)
1 , ρ

(k)
1 ). Let also

σ
(k)
2 = 2v(k) + 1

64(v(k))3(v(k) + 1)2 and σ
(k)
1 = −

(4v(k) + 1)
(
4(v(k))2 + 2v(k) − 1

)
64(v(k))3(v(k) + 1)2 ,

be the first two entries of the k-th level odd-point stencil of the non-stationary interpolatory
6-point scheme in [119, Section 4.3], namely (σ(k)

2 , σ
(k)
1 , 1

2−σ
(k)
1 −σ

(k)
2 , 1

2−σ
(k)
1 −σ

(k)
2 , σ

(k)
1 , σ

(k)
2 ).

Then, if we define

β
(k)
1 = w(k)

σ
(k)
2

σ
(k)
1 +

(
1− w(k)

σ
(k)
2

)
ρ

(k)
1 ,

and

β
(k)
0 = w(k)

σ
(k)
2

(1
2 − σ

(k)
1 − σ(k)

2

)
+
(

1− w(k)

σ
(k)
2

)(1
2 − ρ

(k)
1

)
,
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the vector (β(k)
2 , β

(k)
1 , β

(k)
0 , β

(k)
0 , β

(k)
1 , β

(k)
2 ) provides the k-th level odd-point stencil of a non-

stationary interpolatory 6-point scheme depending on a free parameter sequence {w(k), k ∈
N0}. Following again the stationary case, we determine the coefficients β(k)

3 , β
(k)
4 and β(k)

5 by
requiring the reproduction of a certain space of exponential polynomials, precisely the one
specified in (3.8) (see Proposition 6.10).
The k-th level symbol of the non-stationary Modified BLISS with edge-point stencil in Fig-
ure 6.2 is

cv(k),w(k)(z1, z2) = 2
z5

1z
5
2

B1,1,1(z1, z2)
(
r(k)(z1, z2) + w(k)s(k)(z1, z2)

)
,

where

r(k)(z1, z2) = 1
r(k)
6

(
r(k)
1 (z8

1z
6
2 + z2

2) + r(k)
2 (z2)(z7

1z
5
2 + z1z

2
2) + r(k)

3 (z2)(z6
1z

2
2 + z2

1)

+r(k)
4 (z2)(z5

1z
2
2 + z3

1z2) + r(k)
5 (z2)z4

1z
2
2

)
,

with

r(k)
1 = 2v(k) + 1,

r(k)
2 (z2) = −(z2 + 1)r(k)

1 ,

r(k)
3 (z2) = r(k)

1 (z6
2 + 1− (z5

2 + z2))− (16(v(k))3 + 8(v(k))2 − 12v(k) − 2)(z4
2 + z2

2)
+(8(v(k))3 + 4(v(k))2 − 8v(k))z3

2 ,

r(k)
4 (z2) = (z2 + 1)

(
− r(k)

1 (z4
2 + 1) + (8(v(k))3 + 4(v(k))2 − 6v(k) + 1)(z3

2 + z2)
+(8(v(k))3 + 4(v(k))2 + 2v(k) − 3)z2

2
)
,

r(k)
5 (z2) = 2

(
(−8(v(k))3 − 4(v(k))2 + 6v(k) + 1)(z4

2 + 1) + (8(v(k))3 + 4(v(k))2

−2v(k) − 1)(z3
2 + z2) + (32(v(k))5 + 48(v(k))4 − 24(v(k))3 − 28(v(k))2 + 6v(k) + 3)z2

2
)
,

r(k)
6 = 64(v(k))2(2v(k) − 1)(v(k) + 1)2,

and

s(k)(z1, z2) = s(k)
1 (z2)(z8

1z
4
2 + 1) + s(k)

2 (z2)(z7
1z

3
2 + z1) + s(k)

3 (z2)(z6
1z

2
2 + z2

1)
+s(k)

4 (z2)(z2z
5
1 + z3

1) + s(k)
5 (z2)z4

1 ,

with

s(k)
1 (z2) = (z4

2 + 1)− (z3
2 + z2) + 2(1− (v(k))2)z2

2 ,

s(k)
2 (z2) = −(z2 + 1)s(k)

1 (z2),
s(k)
3 (z2) = 2(1− (v(k))2)(z6

2 + 1) + (2(v(k))2 − 1)(z5
2 + z2) + 4(1− 2(v(k))2)(z4

2 + z2
2)

+2(4(v(k))4 − 1)z3
2 ,

s(k)
4 (z2) = (z2 + 1)

(
− (z6

2 + 1) + 2(v(k))2(z5
2 + z2) + 2(4(v(k))4 − (v(k))2 − 1)(z4

2 + z2
2)

+2(7(v(k))2 − 12(v(k))4)z3
2

)
,

s(k)
5 (z2) = (z8

2 + 1) + 4(1− 2(v(k))2)(z6
2 + z2

2)− 2(8(v(k))4 − 6(v(k))2 + 1)(z5
2 + z3

2)
+6(8(v(k))4 − 6(v(k))2 + 1)z4

2 .
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Convergence and approximation order

We are interested in studying the reproduction properties and the approximation order of
the non-stationary Modified BLISS. Since the subdivision scheme is parameter-dependent, in
order to identify the widest choice of parameters {w(k), k ∈ N0} yielding such properties, we
look for the conditions that this parameter sequence has to satisfy to guarantee convergence.

Proposition 6.9 Let t ∈ [0, π) ∪ iR+ and {v(k), k ∈ N0} be defined as in (3.12)-(3.13). For
all sequences {w(k), k ∈ N0} such that

lim
k→+∞

w(k) = w ∈
(

23
3968 −

√
3236974
63488 ,

−2189 +
√

12142829
80896

)
' (−0.0225, 0.0160), (6.6)

the non-stationary Modified BLISS with k-th level symbol cv(k),w(k)(z1, z2) is convergent.

Proof: Since limk→+∞ v
(k) = 1, if {w(k), k ∈ N0} behaves as in (6.6), then the non-stationary

Modified BLISS is asympotically similar to the Modified BLISS defined by the symbol in (6.3),
and the latter is convergent (see Proposition 6.4). Next, we prove that the non-stationary
scheme satisfies approximate sum rules of order 1. In fact, µk = 0 and thus we trivially have∑∞
k=0 µk < +∞. Moreover, cv(k),w(k)(ε1, ε2) = 0 for all (ε1, ε2) ∈ Ξ′ and thus it is also δk = 0

which implies
∑∞
k=0 δk < +∞. Hence, approximate sum rules of order 1 are satisfied and the

claim follows from Proposition 3.17.

Once the convergence of the non-stationary Modified BLISS has been established, we can
focus on the analysis of its reproduction properties. For this purpose we introduce the space
of exponential polynomials W2

1 in (3.9), explicitly given by

W2
1 = span{1, x, y, e±tx, e±ty, e±t(x±y)}, t ∈ [0, π) ∪ iR+.

The following proposition shows that the exponential polynomial space W2
1 can be repro-

duced by the non-stationary Modified BLISS for all choices of {w(k), k ∈ N0} that guarantee
convergence.

Proposition 6.10 For all choices of t ∈ [0, π) ∪ iR+ and for all sequences {w(k), k ∈ N0}
satisfying the property in (6.6), the non-stationary Modified BLISS reproduces the space W2

1
with respect to the parametrization {T(k), k ∈ N0} in (2.6) with τ = 0.

Proof: Let t ∈ [0, π) ∪ iR+and

Vk,Θ =
{

(−1, 1), (1,−1), (−1,−1), (−e±
t

2k+1 , 1), (e±
t

2k+1 ,−1), (−e±
t

2k+1 ,−1),
(−1, e±

t

2k+1 ), (1,−e±
t

2k+1 ), (−1,−e±
t

2k+1 ), (−e±
t

2k+1 , e
± t

2k+1 ),
(e±

t

2k+1 ,−e±
t

2k+1 ), (−e±
t

2k+1 ,−e±
t

2k+1 )
}
.

The k-th level symbol cv(k),w(k)(z1, z2) is such that cv(k),w(k)(ν1, ν2) = 0 for all (ν1, ν2) ∈ Vk,Θ.
Thus, according to Proposition 3.6, the generation of span{1, e±tx, e±ty, e±t(x±y)} is proven for
all {w(k), k ∈ N0} that guarantee convergence. Further, if we compute D(1,0)cv(k),w(k)(z1, z2)
and D(0,1)cv(k),w(k)(z1, z2) we find that

D(1,0)cv(k),w(k)(ε1, ε2) = D(0,1)cv(k),w(k)(ε1, ε2) = 0, for all (ε1, ε2) ∈ Ξ′ .
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This additionally proves the generation of {x, y}. Hence we can conclude that the non-
stationary Modified BLISS generates the whole space in W2

1 for all sequences {w(k), k ∈
N0} satisfying the property in (6.6). The reproduction of this space with respect to the
parametrization in (2.6) with τ = 0 follows straightforwardly from the interpolation property
of the scheme, in light of Corollary 3.10.

Remark 6.11 The non-stationary Modified BLISS can reproduce Π2
1 as well as ellipsoids for

all choices of {w(k), k ∈ N0} that behave as in (6.6). This means that the scheme satisfies the
properties of affine invariance (see Remark 3.9) and ellipsoid reproduction required for the
construction of subdivision-based active surfaces [38, 29]. We also point out the fact that, to
achieve the property of ellipsoid reproduction, it is not necessary to handle triangular meshes
with extraordinary vertices, i.e. arbitrary manifold topology meshes. In fact, an ellipsoidal
shape is a 0-genus surface that can be obtained starting from an initial regular control mesh
where the vertices lying on the first and last line are assumed to be topologically identical (so
as to define the ellipsoid poles), see Figure 6.3.

Figure 6.3: First line: initial meshes. Second line: results obtained applying 5 steps of the
non-stationary Modified BLISS.

We finally focus on the approximation order of the non-stationary Modified BLISS. For this
purpose, we assume that the initial data f (0) is given as a set of discrete values of a smooth
function. Precisely, denoting by Cσ∞(R2), σ ∈ N, the space of functions f whose derivatives
Dγf , γ ∈ Γσ = {γ ∈ N2

0 : 0 ≤ γ1 + γ2 ≤ σ}, are continuous and uniformly bounded, we
define f (0) := {f(0)

α = f(2−kα) : α ∈ Z2} for some positive integer k and some function
f ∈ Cσ∞(R2).
Recalling Definition 3.3, we have that, when the non-stationary scheme Sc(`) is convergent,
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its limit function obtained from the initial data f (0) can be written as

Sf (x) :=
∑
α∈Z2

φk(2kx−α) f(0)
α .

The aim of this section is to investigate how the non-stationary Modified BLISS actually
attains the original function f as close as possible. Specifically, we are concerned with finding
the largest σ ∈ N such that

‖Sf − f‖L∞(Ω) ≤ c2−σk

with a constant c > 0 independent of k, where Ω is a compact set in R2. The number σ
becomes the approximation order of the non-stationary subdivision scheme Sc(`) .
In what follows, we show under a suitable condition that the non-stationary Modified BLISS
provides the same approximation order six as its stationary counterpart. An interesting
feature is that it is required for the non-stationary Modified BLISS to reproduce ten linearly
independent exponential polynomials, which is equivalent to the polynomial space Π2

3. To do
this, we denote by V1 := span{ϕ1, . . . , ϕ10} a subspace of the exponential polynomial space
W1, which satisfies dimV1 = dim Π2

3 = 10. Then, we define the function

W [ϕ1, . . . , ϕ10](x) := det W(x)

where the matrix W(x) is given by

W(x) = (Dγϕj(x) : j = 1, . . . , 10, γ ∈ Γ3), x = (x1, x2).

The function W [ϕ1, . . . , ϕ10](x) is the Wronskian of {ϕ1, . . . , ϕ10} on two dimensional case.
Throughout this section, we assume that the space V1 is shift-invariant andW [ϕ1, . . . , ϕ10](0)
is non-zero. Moreover, to simplify the presentation, we use the index set Γ3 and with this
notation we simply write {ϕ1, . . . , ϕ10} = {ϕα : α ∈ Γ3}.
The proof of the approximation order result will be preceded by the following preparatory
lemma.

Lemma 6.12 Suppose that {w(k), k ∈ N0} converges to a value w, that fulfills (6.4), with
the rate O(2−2k) as k → +∞. Let φ be the basic limit function of the stationary Modified
BLISS with parameter w. Then ‖φk − φ‖∞ ≤ c2−2k for some constant c > 0.

Proof: From the definition of v(k) it is immediate to see that |1−v(k)| = O(2−2k) as k → +∞
for all choices of t ∈ [0, π)∪iR+. Since limk→+∞w

(k) = w with the rateO(2−2k) and w satisfies
(6.4), then, by construction, the mask of the non-stationary Modified BLISS converges to the
mask of the corresponding stationary scheme with the rate O(2−2k) as k → +∞. As a
consequence, ‖φk − φ‖∞ = O(2−2k) (see also the proof of [56, Lemma 15]).

Theorem 6.13 Suppose that the non-stationary Modified BLISS reproduces the space W2
1

and let V1 = span{ϕ1, . . . , ϕ10} be a subspace of W2
1 so that W [ϕ1, . . . , ϕ10](x) is non-zero.

Assume further that, as k → +∞, the parameter w(k) converges to a value w which satisfies
(6.4) with the rate O(2−2k). If the given initial data is of the form f (0) := {f(0)

i = f(2−ki) :
i ∈ Z2} with k ∈ N and f ∈ C6

∞(R2), then for any compact set Ω in R2, we have

‖Sf − f‖L∞(Ω) ≤ c 2−6k,

with a constant c > 0 depending on f but not on k.
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Proof: Let x be an arbitrary fixed point in Ω. Since the space V1 is shift invariant, the
shifts ϕα(· −x), α ∈ Γ3, also belong to V1. Then, it will be useful for our proof to define the
function

ψ := ψx :=
∑
α∈Γ3

cαϕα(· − x),

which depends on x, so that ψ equals f at x (not on Ω) in the sense that Dγψ(x) = Dγf(x),
γ ∈ Γ3. In other words, the coefficient vector c̄ := (cα : α ∈ Γ3) is obtained by solving the
linear system ∑

α∈Γ3

cαDγϕα(0) = Dγf(x), ∀γ ∈ Γ3. (6.7)

This condition can be written in matrix form as W(0) · c̄T = f̄(x)T with f̄(x) := (Dγf(x) :
γ ∈ Γ3). The non-singularity of the matrix, i.e. , det W(0) 6= 0, guarantees the existence of
the unique solution of this linear system, implying that ‖c̄‖ ≤ ‖W(0)−1‖‖f‖L∞(Ω). Further,
since Sc(`) reproduces functions in V1 and ψ belongs to V1, it is obvious that

ψ =
∑
i∈Z2

φk(2k · −i)ψ(i2−k).

With this setting, we estimate the difference f(x)− Sf (x) for a given fixed point x ∈ Ω. To
this end, we first note from (6.7) that ψ(x) = f(x). Then it follows that

f(x)− Sf (x) = ψ(x)−
∑
i∈Z2

φk(2kx− i)f(i2−k) =
∑
i∈Z2

φk(2kx− i)
(
ψ(i2−k)− f(i2−k)

)
.

Now, we use a finite Taylor expansion of a bivariate function with remainder. For a positive
integer m, let Tmg be the Taylor expansion up to degree m of a function g around x defined
by

Tmg =
∑
γ∈Γm

(· − x)γDγg(x)/γ!,

where xγ = xγ1
1 xγ2

2 and γ! = γ1!γ2!, and let Rmg be its remainder, that is,

Rmg (s) =
∑

0≤γ1+γ2=m+1
(s− x)γDγg(ξ)/γ!,

for some ξ between x and s. Now, we first consider the case m = 3 for the functions
ψ and f . Due to the condition Dγψ(x) = Dγf(x) for all γ ∈ Γ3, it is immediate that
T 3
ψ(i2−k) = T 3

f (i2−k) for all i ∈ Z2. Therefore, introducing the notation

Γ4,5 := {γ ∈ N2
0 : γ1 + γ2 = 4 or 5},

we have

f(x)− Sf (x) =
∑
i∈Z2

φk(2kx− i)
∑
γ∈Γ4,5

(i2−k − x)γDγ(ψ − f)(x)/γ! (6.8)

+
∑
i∈Z2

φk(2kx− i)(R5
ψ(i2−k)−R5

f (i2−k)).
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Letting φ be the basic limit function of the stationary Modified BLISS Sc reproducing poly-
nomials in Π2

5, i.e., φ = S∞c δ with δ = {δi,0 : i,0 ∈ Z2}, we find from Lemma 6.12 that
‖φk−φ‖∞ ≤ c2−2k. Moreover, using the polynomial reproducing property (up to degree five)
of the basic limit function φ, we obtain∑

i∈Z2

φ(2kx− i)(i2−k − x)γ = 0, ∀i ∈Γ4,5. (6.9)

Now, let Ωx := {i ∈ Z2 : φk(2kx− i) 6= 0}. Since φk is compactly supported, #Ωx ≤ C with
a number C > 0 independent of k and x. Thus, using the fact that φ has the same support
as φk and applying (6.9), we get∑

i∈Z2

φk(2kx− i)(i2−k − x)γ =
∑

i∈Ωx

(
φk(2kx− i)− φ(2kx− i)

)
(i2−k − x)γ .

Since the number of elements in Ωx is finite and

|i2−k − x| ≤ c2−k, ∀i ∈ Ωx, (6.10)

taking into account that ‖φk − φ‖∞ = O(2−2k), we easily obtain∣∣∣ ∑
i∈Ωx

φk(2kx− i)(i2−k − x)γ
∣∣∣ ≤ c2−k(γ1+γ2+2), ∀γ ∈Γ4,5.

Note that (6.10) and the fact that φk is uniformly bounded allow us to obtain the required
bound on the second term in (6.8) (the one containing the Taylor remainder terms), so
concluding the proof.

Under the hypotheses of Theorem 6.13 we can thus claim that the non-stationary Modified
BLISS has approximation order six. The same result easily follows from Proposition 3.18
which, however, appeared later than the result in Theorem 6.13.

6.1.3 C1 regularity and special reproduction properties

In this section we show that, if the parameter sequence {w(k), k ∈ N0} is suitably chosen,
then the limits of the non-stationary Modified BLISS are C1 and a superset of the exponential
polynomial space W2

1 can be reproduced. We start by showing which conditions are required
on {w(k), k ∈ N0} to achieve C1 regularity.

Proposition 6.14 Let t ∈ [0, π)∪ iR+ and {v(k), k ∈ N0} be defined as in (3.12)-(3.13). The
non-stationary Modified BLISS with k-th level symbol cv(k),w(k)(z1, z2) produces C1 limits for
all sequences {w(k), k ∈ N0} such that

lim
k→+∞

w(k) = w ∈
(

29−
√

6673
4608 ,

121
384(375 +

√
140383)

)
' (−0.0114, 4.2032 · 10−4). (6.11)

Proof: Since limk→+∞ v
(k) = 1, under the assumption in (6.11), the non-stationary scheme

having k-th level symbol cv(k),w(k)(z1, z2) is asymptotically similar to the stationary scheme
with symbol cw(z1, z2) which, in view of Proposition 6.7, is of class C1. To prove the claim we
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thus need to show that the non-stationary Modified BLISS satisfies approximate sum rules
of order 2. Note that, since µk = 0, then

∑∞
k=0 µk is trivially convergent. Hence, we need to

prove only that
∞∑
k=0

2k δk < +∞ with δk = max
0≤γ1+γ2≤1

max
(ε1,ε2)∈Ξ′

2−k(γ1+γ2)
∣∣∣D(γ1,γ2) cv(k),w(k)(ε1, ε2)

∣∣∣ .
Recalling Proposition 6.10 we already know that the non-stationary Modified BLISS repro-
duces, and thus generates, the space W2

1 for all choices of t ∈ [0, π)∪ iR+ and {w(k), k ∈ N0}
fulfilling (6.11). This means that the k-th level symbol cv(k),w(k)(z1, z2) satisfies

cv(k),w(k)(ε1, ε2) = D(1,0)cv(k),w(k)(ε1, ε2) = D(0,1)cv(k),w(k)(ε1, ε2) = 0 for all (ε1, ε2) ∈ Ξ′ .

As a consequence, δk = 0 and
∑∞
k=0 2kδk < +∞, that is approximate sum rules of order 2

are satisfied. Therefore the claim follows from Proposition 3.17.

Among all possible sequences {w(k), k ∈ N0} satisfying the property in (6.11) we can choose
two specific expressions such that the non-stationary Modified BLISS reproduces two partic-
ular spaces of exponential polynomials that contain W2

1 as a special subset.

Proposition 6.15 Let t ∈ [0, π) ∪ iR+ and {v(k), k ∈ N0} be defined as in (3.12)-(3.13). If
the k-th level free parameter w(k) is defined as

a)w(k) = − 2(v(k))2 + 5v(k) + 1
128(v(k))2(2v(k) − 1)(v(k) + 1)3 (6.12)

or

b)w(k) = −
(2v(k+1) + 1)3

(
8(v(k+1))3 − 5v(k+1) + 1

)
2048(v(k+1))6 (2(v(k+1))2 − 1

)2 (v(k+1) + 1)3(2v(k+1) − 1)
(
4(v(k+1))2 − 3

) ,
(6.13)

with v(k+1) as in (3.13), then the non-stationary Modified BLISS is C1 convergent and re-
produces the space of bivariate exponential polynomials

a) span{1, x, y, x2, xy, y2, x3, x2y, xy2, y3, e±tx, e±ty, e±t(x±y)} (6.14)
or
b) span{1, x, y, e±tx, e±ty, e±t(x±y), e±

t
2x, e±

t
2y, e±

t
2 (x−y)}, (6.15)

with respect to the parametrization in (2.6) with τ = 0.

Proof: We start by observing that the choices of w(k) in (6.12) and (6.13) guarantee C1

convergence since

lim
k→+∞

w(k) =
{
a) − 1

128
b) − 27

4096
∈
(

29−
√

6673
4608 ,

121
384(375 +

√
140383)

)
' (−0.0114, 4.2032 · 10−4).

Moreover, since from Proposition 6.10 we already know that reproduction of the space W2
1

is ensured, we can limit our attention to show reproduction of all exponential polynomials
in (6.14) and (6.15) which do not already belong to the space in W1. We recall once again
that, since the scheme is interpolatory, it is sufficient to prove only the generation of these
exponential polynomials. In view of Proposition 3.6, the claim is obtained by observing that:
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• when using w(k) in (6.12), we get D(γ1,γ2)cv(k),w(k)(ε1, ε2) = 0 for all (γ1, γ2) ∈ N2
0 such

that 2 ≤ γ1 + γ2 ≤ 3 and for all (ε1, ε2) ∈ Ξ′ ;

• when using w(k) in (6.13), we get cv(k),w(k)(ν1, ν2) = 0

∀(ν1, ν2) ∈ Vk,Θ = {(e±
t

2k+2 ,−1), (−e±
t

2k+2 , 1), (−e±
t

2k+2 ,−1), (1,−e±
t

2k+2 ),
(−1, e±

t

2k+2 ), (−1,−e±
t

2k+2 ), (e
t

2k+2 ,−e−
t

2k+2 ), (−e
t

2k+2 , e
− t

2k+2 ),
(−e

t

2k+2 ,−e−
t

2k+2 ),
(e−

t

2k+2 ,−e
t

2k+2 ), (−e−
t

2k+2 , e
t

2k+2 ), (−e−
t

2k+2 ,−e
t

2k+2 )},

with t ∈ [0, π) ∪ iR+.

6.1.4 C2 regularity and exceptional reproduction properties

In this section we show that the k-th level parameter

w(k) = − 2v(k) + 1
128(v(k))3(2v(k) − 1)(v(k) + 1)3 (6.16)

provides a non-stationary Modified BLISS scheme characterized by C2-regularity and repro-
duction of an even larger superset of the exponential polynomial space W2

1 . To show these
results, we denote by w(k)

∗ the parameter w(k) in (6.16) and observe that the k-th level symbol
c
v(k),w

(k)
∗

(z1, z2) fulfills the very special factorization

c
v(k),w

(k)
∗

(z1, z2) = 1
z5

1z
5
2

B(k)
3,3,3(z1, z2) m(k)(z1, z2)

where

B(k)
3,3,3(z1, z2) = (1 + z1) (1 + z2) (1 + z1z2) (z2

1 + 2v(k)z1 + 1) (z2
2 + 2v(k)z2 + 1) (z2

1z
2
2 + 2v(k)z1z2 + 1)

16(v(k) + 1)3 ,

and
m(k)(z1, z2) =

(
m(k)

1 z2
2 + m(k)

2 z2 + m(k)
1
)
(z4

1z
2
2 + 1)

+
(
m(k)

2 z3
2 + m(k)

3 z2
2 + m(k)

3 z2 + m(k)
2
)
(z3

1z2 + z1)
+

(
m(k)

1 z4
2 + m(k)

3 z3
2 + m(k)

4 z2
2 + m(k)

3 z2 + m(k)
1
)
z2

1 ,

with
m(k)

1 = − (2v(k) + 1)
8(v(k))3(2v(k) − 1)

, m(k)
2 = (2v(k) + 1)2

8(v(k))3(2v(k) − 1)
,

m(k)
3 = − (2v(k) + 1)2

4(v(k))2(2v(k) − 1)
, m(k)

4 = 3(2v(k) + 1)
v(k)(2v(k) − 1)

+ 1.

Proposition 6.16 Let t ∈ [0, π)∪ iR+ and {v(k), k ∈ N0} be defined as in (3.11)-(3.12). The
non-stationary Modified BLISS having k-th level symbol cv(k),w∗(k)(z1, z2), with w(k)

∗ denoting
the parameter w(k) in (6.16), produces C2 limit functions.
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Proof: Since limk→+∞ v
(k) = 1 and limk→+∞w∗

(k) = − 3
1024 , the non-stationary Modified

BLISS having k-th level symbol cv(k),w∗(k)(z1, z2) is asymptotically similar to the stationary
scheme with symbol c− 3

1024
(z1, z2), which we already know to be C2 (see Proposition 6.8).

Therefore, the proof simply consists in showing that the non-stationary Modified BLISS
satisfies approximate sum rules of order 3. First we observe that, since µk = 0,

∑∞
k=0 µk is

trivially convergent. We thus need to prove only that

∞∑
k=0

4k δk < +∞ with δk = max
0≤γ1+γ2≤2

max
(ε1,ε2)∈Z

2−k(γ1+γ2)
∣∣∣D(γ1,γ2) cv(k),w∗(k)(ε1, ε2)

∣∣∣ .
As already shown in Proposition 6.14, the k-th level symbol cv(k),w∗(k)(z1, z2) satisfies

cv(k),w∗(k)(ε1, ε2) = D(1,0)cv(k),w∗(k)(ε1, ε2) = D(0,1)cv(k),w∗(k)(ε1, ε2) = 0 for all (ε1, ε2) ∈ Ξ′ ,

in view of the fact that the non-stationary Modified BLISS reproduces the space W1 for all
sequences {w(k), k ∈ N0} satisfying the property in (6.6) (see Proposition 6.10). Now, if we
consider directional derivatives D(γ1,γ2) such that γ1 + γ2 = 2, we find that

max
(ε1,ε2)∈Ξ′

∣∣∣D(1,1)cv(k),w∗(k)(ε1, ε2)
∣∣∣ = (v(k) − 1)2((v(k))2 + 3v(k) + 1)

(v(k))3(v(k) + 1)

and
max

(ε1,ε2)∈Ξ′

∣∣∣D(2,0)cv(k),w∗(k)(ε1, ε2)
∣∣∣ = max

(ε1,ε2)∈Ξ′

∣∣∣D(0,2)cv(k),w∗(k)(ε1, ε2)
∣∣∣

= 2(v(k) − 1)2((v(k))2 + 3v(k) + 1)
(v(k))3(v(k) + 1)

.

As a consequence

δk = max
0≤γ1+γ2≤2

max
(ε1,ε2)∈

2−k(γ1+γ2)
∣∣∣D(γ1,γ2) cv(k),w∗(k)(ε1, ε2)

∣∣∣
= 4−k 2 (v(k) − 1)2((v(k))2 + 3v(k) + 1)

(v(k))3(v(k) + 1)

and, since v(k) ∈ R+ for all k ∈ N0 and limk→+∞ v
(k) = 1, it is immediate to see that

∞∑
k=0

4k δk = 2
∞∑
k=0

(v(k) − 1)2 ((v(k))2 + 3v(k) + 1)
(v(k))3 (v(k) + 1)

≤


5
∞∑
k=0

(v(k) − 1)2

(v(k))3 if v(k) ∈ (0, 1],

5
∞∑
k=0

(v(k) − 1)2 if v(k) ∈ [1,+∞).

The convergence of the above series follows straightforwardly by recalling the ratio crite-
rion and the fact that limk→+∞

v(k+1)−1
v(k)−1 < 1 for all choices of v(0) ∈ (0, 1) ∪ (1,+∞), and

limk→+∞
v(k)

v(k+1) < 1 for all choices of v(0) ∈ (0, 1), so obtaining

lim
k→+∞

(
v(k+1) − 1
v(k) − 1

)2

< 1
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and

lim
k→+∞

(v(k+1) − 1)2

(v(k+1))3
(v(k))3

(v(k) − 1)2 = lim
k→+∞

(
v(k+1) − 1
v(k) − 1

)2

lim
k→+∞

(
v(k)

v(k+1)

)3

< 1.

Hence, approximate sum rules of order 3 are satisfied and the claim is proven.

The choice of the parameter w(k) in (6.16) not only provides the highest smoothness for
the non-stationary Modified BLISS, but also allows the reproduction of the largest space of
exponential polynomials.

Proposition 6.17 If the free parameter w(k) is defined as in (6.16), then the non-stationary
Modified BLISS reproduces the space of bivariate exponential polynomials

span{1, x, y, e±tx, e±ty, e±t(x±y), xe±tx, ye±tx, xe±ty, ye±ty, xe±t(x−y), ye±t(x−y)}, t ∈ [0, π)∪iR+,
(6.17)

with respect to the parametrization {T(k), k ∈ N0} in (2.6) with τ = 0.

Proof: From Proposition 6.16 we already know that the scheme defined by the parameter
w(k) in (6.16) is convergent and of class C2. Moreover, from Proposition 6.10 we also know
reproduction of the space W2

1 . Therefore we can limit our attention to show reproduction of
all exponential polynomials in (6.17) which do not already belong to the spaceW2

1 . We recall
once again that, since the scheme is interpolatory, it suffices to prove only the generation of
these exponential polynomials. In view of Proposition 3.6, the claim is obtained by observing
that the symbol bv(k),w(k)(z1, z2) with w(k) in (6.16) verifies D(γ1,γ2)bv(k),w(k)(ν1, ν2) = 0 for
all (γ1, γ2) ∈ {(1, 0), (0, 1)} and

∀(ν1, ν2) ∈ Vk,Θ = {(e±
t

2k+1 ,−1), (−e±
t

2k+1 , 1), (−e±
t

2k+1 ,−1), (1,−e±
t

2k+1 ), (−1, e±
t

2k+1 ),
(−1,−e±

t

2k+1 ), (e
t

2k+1 ,−e−
t

2k+1 ), (−e
t

2k+1 , e
− t

2k+1 ), (−e
t

2k+1 ,−e−
t

2k+1 ),
(e−

t

2k+1 ,−e
t

2k+1 ), (−e−
t

2k+1 , e
t

2k+1 ), (−e−
t

2k+1 ,−e
t

2k+1 )},

with t ∈ (0, π) ∪ iR+.

In Figure 6.4 we have used the non-stationary Modified BLISS with w(k) in (6.13) and w(k)

in (6.16) to show the reproduction of some special trigonometric surfaces like the generalized
cylinder and the helicoid.

6.1.5 Positive and negative aspects

As proven in Proposition 6.10, the non-stationary BLISS scheme reproduces W2
1 and thus it

is able to produce exact spheres and ellipsoids as limit of the subdivision process. To gain
this accuracy in the limit surface, we need to consider a high number of control points in
the initial mesh. In fact, as already pointed out in Remark 6.11, to exactly reproduce an
sphere as in Figure 6.3 we have to start from a mesh containing 28 control points, where
some of them collapse in the sphere poles due to the regular topology of the initial mesh.
The involvement of a high number of points makes the subdivision process slow, while the
choice of a regular topology in the control mesh and the fact that many points collapse in the
poles make the use of the limit surfaces as deformable 3D models very complicate. In fact, the
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Figure 6.4: Results obtained applying 5 steps of the non-stationary Modified BLISS with
w(k) in (6.13) (left) and w(k) in (6.16) (right) to the given initial meshes.

segmentation process consists in moving the points toward the boundary of the biomedical
object to be segmented. Thus, if in the poles there are hundreds of points identified in one,
the displacement of these ‘collapsed’ points becomes very difficult, since we have to move
hundreds of points to the same position.
A possible way to overcome these problems is to consider an initial mesh that allows for
extraordinary vertices, thus avoiding numerous collapsing points in the poles. Moreover,
starting the subdivision process on an arbitrary manifold topology mesh we could reduce
the number of initial control points and thus make the subdivision faster. On the contrary,
the use of arbitrary manifold topology meshes does not allow for the exact reproduction of
ellipsoids, thus in the limit we could only obtain an approximation of an ellipsoid.
Finally, depending on the application and on the goal we want to gain, we could choose
between the accuracy given by the non-stationary BLISS scheme applied on regular meshes
or the efficiency obtained using arbitrary manifold topology meshes. In the following section,
we study the latter case.

6.2 A non-stationary subdivision scheme producing optimal
approximations of ellipsoids

In this section, we present a new non-stationary primal subdivision scheme defined on arbi-
trary manifold topology triangular meshes, suitable for the construction of 3D deformable
models. Differently from the BLISS scheme presented in Section 6.1, which is defined only
on regular meshes, we here propose a non-stationary scheme that allows also for extraordi-
nary vertices, thus avoiding the collapse of hundreds of points in the poles, but losing the
capability of exactly generating/reproducing ellipsoids. We start by describing the new non-
stationary subdivision scheme both on regular meshes and on arbitrary manifold topology
meshes. Then, we analyze its main properties and we compare the limit surfaces produced
considering only regular meshes with those ones produced when allowing for extraordinary
vertices. We show that the latter limit surfaces could be used as deformable 3D models and
some examples on real biomedical images are shown.
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6.2.1 Construction of the non-stationary BLOB scheme

In correspondence to the regular regions of a triangular mesh, the action of the subdivision
scheme is described by the k-th level subdivision mask

a(k) =



0 0 0 α
(k)
5 α

(k)
3 α

(k)
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(k)
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0 0 α
(k)
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(k)
4 α

(k)
2 α

(k)
3

0 α
(k)
3 α

(k)
4 α

(k)
6 α

(k)
6 α

(k)
4 α

(k)
3

α
(k)
5 α

(k)
2 α

(k)
6 α

(k)
1 α

(k)
6 α

(k)
2 α

(k)
5

α
(k)
3 α

(k)
4 α

(k)
6 α

(k)
6 α

(k)
4 α

(k)
3 0

α
(k)
3 α

(k)
2 α

(k)
4 α

(k)
2 α

(k)
3 0 0

α
(k)
5 α

(k)
3 α

(k)
3 α

(k)
5 0 0 0


, (6.18)

whose non-zero entries are

α
(k)
1 = 4(v(k))2 + 2v(k) + 1

4(v(k) + 1)2 , α
(k)
2 = 2v(k) + 1

8(v(k) + 1)2 ,

α
(k)
3 = 2v(k) + 1

16(v(k) + 1)3 , α
(k)
4 = (2v(k) + 1)2

8(v(k) + 1)3 ,

α
(k)
5 = 1

16(v(k) + 1)3 , α
(k)
6 = (2v(k) + 1)(4(v(k))2 + 6v(k) + 3)

16(v(k) + 1)3 ,

(6.19)

with v(k) as in (3.11). The associated k-th level symbol is therefore

α
(k)
2 α

(k)
2
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α
(k)
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α
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2

(a) Vertex-point stencil
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3
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α
(k)
6

α
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3

(b) Edge-point stencil

Figure 6.5: Stencils for vertex-point and edge-point rules of the BLOB scheme to be used in
the regular regions of the mesh.

a(k)(z1, z2) =
(1+z1) (1+z2) (1+z1z2) (z2

1+2v(k)z1+1) (z2
2+2v(k)z2+1) (z2

1z
2
2+2v(k)z1z2+1)

16(v(k)+1)3z3
1z

3
2

,

(6.20)
and the resulting refinement rules yield the so-called vertex-point and edge-point stencils
illustrated in Figure 6.5. Indeed, such pictures show the local linear combinations of vertices
of the coarser mesh that must be used to create a new vertex of the finer mesh to be located
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in correspondence to either an old vertex or an old edge. Since the size and structure of
the vertex-point rule is the same as the one used in Loop’s subdivision scheme [95] shown in
Figure 2.5, while the size and structure of the edge-point rule are the same as the one used
in the modified Butterfly scheme [139] shown in Figure 2.6 , the new scheme is named the
BLOB (Butterfly-Loop Optimal Blending) subdivision scheme.
To make the non-stationary BLOB scheme suitable for the construction of 3D deformable
models, we need to allow the starting mesh to contain also extraordinary vertices. In par-
ticular, as will be better explained in the following, we are interested in applying the BLOB
scheme to an initial mesh given by an octahedron, that is a polyhedron made of 8 triangular
faces and 6 vertices all having valence 4. Thus the definition of the regular vertex-point
stencil should be extended to the case when the old vertex is of valence 4, and the definition
of the regular edge-point stencil to old edges where one or both endpoints are extraordinary
vertices of valence 4. These stencils are illustrated in Figure 6.6. The rule for the computa-
tion of the edge-point with both extreme vertices of valence 4 (see Figure 6.6 (c)) is used only
in the first step of the subdivision process. In fact, in the following steps the extraordinary
vertices are isolated, and thus the regular rule (Figure 6.5 (b)) and the one for the case of
the extreme vertices with different valences (Figure 6.6 (b)) are used. In addition, the rule
for the computation of the vertex-point of valence 4 (see Figure 6.6 (a)) is used six times in
each step of subdivision, since the octahedron has six vertices of valence 4, and they are kept
during all the subdivision process.
As a consequence, the k-th level subdivision matrix S̃k describing the action of the BLOB
scheme in the vicinity of an extraordinary vertex of valence 4, has the form in (2.21) with

M̃
(k)
0 =

α
(k)
6 α

(k)
5 α

(k)
3

α
(k)
1 α

(k)
2 α

(k)
3

α
(k)
6 α

(k)
3 α

(k)
4

 , M̃
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β
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5 0 0
α

(k)
2 0 0
α

(k)
6 α

(k)
3 α

(k)
5

 ,

M̃
(k)
2 =

β
(k)
6 0 0
0 0 0
α

(k)
3 0 0

 , M̃
(k)
3 =

β
(k)
5 0 α

(k)
3

α
(k)
2 0 α

(k)
2

α
(k)
3 0 α

(k)
5

 ,
(6.21)

and
ã = β

(k)
1 , b̃ = (β(k)

2 , 0, 0)T , c̃ = (β(k)
7 , α

(k)
2 , α

(k)
4 )T

with
β

(k)
1 = 45(v(k))2 + 18v(k) + 1

48(v(k) + 1)2 , β
(k)
2 = 3(v(k))2 + 78v(k) + 47

192(v(k) + 1)2 ,

β
(k)
3 = (2v(k) + 3)(2v(k) + 1)

8(v(k) + 1)2 , β
(k)
4 = 1

8(v(k) + 1)2 ,

β
(k)
5 = 16(v(k))2 + 18v(k) + 5

32(v(k) + 1)3 , β
(k)
6 = 2v(k) + 5

64(v(k) + 1)3 ,

β
(k)
7 = 32(v(k))3 + 64(v(k))2 + 54v(k) + 15

64(v(k) + 1)3 .

Remark 6.18 The k-th level weights β(k)
3 and β(k)

4 do not appear in the subdivision matrix,
since they are related to the edge-point stencil in case of an edge with both end-point vertices
of valence 4 and thus they are used only in the first step of the subdivision process.
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(a) Vertex-point rule for vertex of valence
4.

0

0

β
(k)
4 E

β
(k)
3

β
(k)
4

β
(k)
3

(b) Edge-point rule for an edge with both end-point
vertices of valence 4.
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(c) Edge-point rule for an edge with one end-point ver-
tex of valences 4 and the other of valence 6.

Figure 6.6: Stencils for vertex-point and edge-point rules involving extraordinary vertices of
valence 4.

6.2.2 Generation and reproduction properties of the non-stationary BLOB
scheme

In this section we start by analyzing the generation and reproduction properties of the BLOB
scheme on regular meshes. This analysis is based on the results recalled in Section 3.1.

Proposition 6.19 The non-stationary BLOB subdivision scheme generates exponential poly-
nomials from the space EP s(Γ1,Θ) in (3.8), that is

EP(Γ1,Θ) = span
{
1, x, y, e±tx, e±ty, x e±tx, y e±ty, x e±ty, y e±tx,

e±t(x+y), e±t(x−y), x e±t(x−y), y e±t(x−y)},
and reproduces linear polynomials from the space Π2

1 with respect to the parametrization
{T(k), k ∈ N0} in (2.6) with τ = 0.
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Proof: We consider the space of exponential polynomials EP 2
(Γ1,Θ), in (3.8) and the set

Vk,Θ =
{
(−1, 1), (1,−1), (−1,−1), (−e

±t
2k+1 , 1), (e

±t
2k+1 ,−1), (−e

±t
2k+1 ,−1), (−1, e

±t
2k+1 ),

(1,−e
±t

2k+1 ), (−1,−e
±t

2k+1 ), (−e
±t

2k+1 , e
±t

2k+1 ), (e
±t

2k+1 ,−e
±t

2k+1 ), (−e
±t

2k+1 ,−e
±t

2k+1 ),
(−e

±t
2k+1 , e

−±t
2k+1 ), (e

±t
2k+1 ,−e

−±t
2k+1 ), (−e

±t
2k+1 ,−e

−±t
2k+1 )

}
.

The k-th level symbol a(k)(z1, z2) in (6.20) is such thatD(γ1,γ2)a(k)(ν1, ν2) = 0 for all (ν1, ν2) ∈
Vk,Θ and (γ1, γ2) ∈ Γ1 = {(γ1, γ2) ∈ N2

0 : 0 ≤ γ1 + γ2 ≤ 1}. Thus, in view of Proposition 3.6,
the BLOB scheme generates EP 2

(Γ1,Θ). On the other hand

a(k)(1, 1) = 4 D(1,0)a(k)(1, 1) = 0 D(0,1)a(k)(1, 1) = 0,

thus, from Proposition 2.9, the non-stationary BLOB scheme reproduces Π2
1.

Exact and approximating ellipsoids

Similarly to the analysis of the non-stationary BLISS scheme in Section 6.1, the generation
of the space W2

1 , subspace of EP 2
(Γ1,Θ), guarantees that the non-stationary BLOB scheme

produces an exact ellipsoid starting from a regular mesh whose vertices are 3D points sampled
from an ellipsoid in correspondence to equally spaced parameter values. Such initial control
mesh is shown in Figure 6.7 (a) and it is the same used for the non-stationary BLISS scheme to
produce an exact sphere (see Figure 6.3). We recall that this regular control mesh is described
by 28 vertices, where the vertices of the first and last line are assumed to be topologically
identical to define the poles. Although the distinct points of the starting mesh are indeed
14, the subdivision rules do not care about the topological identification, and thus they are
indeed applied to the regular control mesh consisting of 28 points.

(a) Initial regular mesh (b) Exact ellipsoid

Figure 6.7: Exact ellipsoid generation via non-stationary BLOB scheme starting from a
regular triangular mesh with poles.

As already pointed out in Section 6.1.5, the use of regular meshes to construct exact ellipsoids
requires more initial control points than those would be effectively needed if we could allow the
starting mesh to contain extraordinary vertices. For instance, if we could start the refinement
process with an octahedron (see Figure 6.8), 6 initial vertices could be sufficient to obtain
an ellipsoidal shape in the limit. This difference in the number of control points becomes
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even more significant if we compare the number of vertices defining the k-th level subdivided
meshes. Precisely, the k-th level mesh obtained from the initial 28-point regular mesh with
poles by applying the regular refinement rules in Figure 6.5 contains 18 · 4k + 9 · 2k + 1
vertices. On the other hand, the number of vertices in the k-th level mesh obtained from the
octahedron by applying the extraordinary refinement rules in Figure 6.6 is only 4k+1 + 2. In
Table 6.1 we compare these two numbers for subdivision levels k = 0, ..., 8.

Level ] Vertices of the ] Vertices of the
k subdivided regular subdivided

mesh with poles octahedron
0 28 6
1 91 18
2 325 66
3 1225 258
4 4753 1026
5 18721 4098
6 74305 16386
7 296065 65538
8 1181953 262146

Table 6.1: Comparison between the number of vertices of the k-th level meshes obtained from
the initial 28-point regular mesh with poles and the octahedron.

Figure 6.8: Octahedrons as initial triangular meshes (first row) and approximating sphere
and ellipsoid (second row) obtained by the non-stationary BLOB scheme with extraordinary
rules.
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Now, let us take the octahedron as initial starting mesh. In particular, Figure 6.8 shows
the approximated sphere and ellipsoid that we obtain from the corresponding octahedrons in
the first row, by applying the non-stationary BLOB scheme with extraordinary refinement
rules and setting t = π

2 . We see that the non-stationary BLOB scheme produces a very
accurate approximation of the corresponding exact sphere and ellipsoid. Moreover, if we
apply the BLOB scheme to a ’distorted’ octahedron (i.e. a polyhedron defined by 6 vertices
not equally-spaced on a sphere or an ellipsoid), we obtain a limit surface with a blob-like
shape (see Figure 6.9).

Figure 6.9: Distorted octahedron as initial triangular meshes (first row) and corresponding
blob-like kimit surfaces (second row) obtained by the non-stationary BLOB scheme with
extraordinary rules.

If we refine the regular octahedron using another bivariate subdivision scheme for triangular
meshes of arbitrary manifold topology, such as the well-known Loop’s scheme [95], the limit
shape that we obtain in the limit is much more distant from the unit sphere that we would
like to recover (see Figure 6.10). We see that the non-stationary BLOB scheme produces a
better approximation. Precisely, let C be the center of gravity of the octahedron, i.e. the
center of the sphere, and #f (k) the number of points defining the subdivision mesh at the
k-th step. For all k ≥ 1, we define

mk = min
i=1,...,#f (k)

|C− f (k)
i | and Mk = max

i=1,...,#f (k)
|C− f (k)

i |.

A subdivision scheme produces a good approximation of a sphere if

errork = Mk −mk, ∀k

is small. The error produced by the non-stationary BLOB scheme starting from the octahe-
dron and after k = 6 steps of refinement is 1.06 · 10−2, while the error produced by Loop’s
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scheme is 8.44 · 10−2. To obtain approximately the same error using Loop’s scheme, we need
to consider a starting mesh with more control points, precisely, a mesh defined by 258 points
(see Figure 6.11), obtaining an approximation error of 1.09 · 10−2. This fact means that to
obtain the same accuracy, the non-stationary BLOB scheme could use less control points
than Loop’s scheme and thus it results to be more efficient.

(a) Initial control mesh (b) BLOB’s scheme limit surface (c) Loop’s scheme limit surface

Figure 6.10: (a) The octahedron as initial control mesh, (b) the approximation of the unit
sphere obtained by using the non-stationary BLOB scheme, (c) the approximation of the unit
sphere obtained by using Loop’s scheme.

(a) Initial control mesh (b) Loop’s scheme limit surface

Figure 6.11: (a) Initial mesh composed by 256 vertices, (b) the approximation of the unit
sphere obtained by using Loop’s scheme.

6.2.3 Affine invariance property of the non-stationary BLOB scheme

When the BLOB scheme is applied to regular regions of the mesh, the property of affine in-
variance follows straightforwardly from the capability of reproducing Π2

1, as stated in Propo-
sition 6.19. Near extraordinary vertices, affine invariance is also achieved since the entries in
each row of the k-th level matrix Sk defined in (6.21) sum up to 1.
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6.2.4 Convergence and smoothness properties of the non-stationary BLOB
scheme

In this section, we analyze the convergence and smoothness properties of the BLOB scheme
when applied to triangular meshes containing both vertices of valence 6 and 4. In order to
apply the results recalled in Section 3.2, we need to derive the stationary counterpart of the
non-stationary BLOB scheme, that is obtained by computing the limit of its local rules when
k → +∞. Since limk→+∞ v

(k) = 1 for all t ∈ [0, π) ∪ iR+, it follows that, in correspondence
to regular regions of the mesh, the stationary counterpart of the BLOB scheme is identified
by the mask

a := lim
k→+∞

a(k) =


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128
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128 0
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9
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32

3
128 0 0

1
128

3
128

3
128

1
128 0 0 0


, (6.22)

and the associated symbol is

a(z1, z2) := lim
k→+∞

a(k)(z1, z2) = 1
128 z3

1z
3
2

(z1 + 1)3 (z2 + 1)3 (z1z2 + 1)3. (6.23)

Differently, in the neighborhood of extraordinary vertices, the refinement rules of the station-
ary counterpart of the BLOB scheme are encoded in the subdivision matrix S̃ := limk→+∞ S̃k

of the form in (2.21), where ã = 1
3 , b̃ =

[
1
6 , 0, 0

]T
, c̃ =

[
165
512 ,

3
32 ,

9
64

]T
, and

M̃0 =


39
128

1
128

3
128

7
16

3
32

3
32

39
128

3
128

9
64

 , M̃1 =


39
256 0 0
3
32 0 0
39
128

3
128

1
128

 ,

M̃2 =


7

512 0 0
0 0 0
3

128 0 0

 , M̃3 =


39
256 0 3

128
3
32 0 3

32
3

128 0 1
128

 .
(6.24)

Convergence and smoothness in the regular regions of the mesh

We first consider the application of the non-stationary BLOB scheme to regular regions of
the mesh. In order to exploit Proposition 3.17, we first need the following result.

Proposition 6.20 The stationary counterpart of the BLOB scheme produces C4 limit sur-
faces when applied to regular triangular meshes.

Proof: The claimed result follows by observing that the Laurent polynomial a(z1, z2) in (6.23)
is the symbol of the C4 and Π2

5-generating subdivision scheme proposed in [70, Example 5,
case 3].

In light of Proposition 6.20 we can thus prove the next result.
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Proposition 6.21 The non-stationary BLOB scheme produces C4 limit surfaces when ap-
plied to regular triangular meshes.

Proof: We start by observing that the BLOB scheme is asymptotically similar to the C4

convergent stationary scheme with symbol a(z1, z2) in (6.23). Then, we continue by proving
that the BLOB scheme satisfies approximate sum rules of order 5. Indeed, since µk = 0,∑∞
k=0 µk is trivially convergent. We thus need to prove only that

∞∑
k=0

24k δk < +∞ with δk = max
0≤γ1+γ2≤4

max
(ε1,ε2)∈Ξ′

2−k(γ1+γ2)
∣∣∣D(γ1,γ2) a(k)(ε1, ε2)

∣∣∣ .
Recalling Proposition 6.19 we already know that the BLOB scheme generates the space
EP(Γ1,Θ) in (3.8). This means that its k-th level symbol a(k)(z1, z2) satisfies

a(k)(ε1, ε2) = D(1,0)a(k)(ε1, ε2) = D(0,1)a(k)(ε1, ε2) = 0 for all (ε1, ε2) ∈ Ξ′

Thus, for the computation of δk we can just consider

max
2≤γ1+γ2≤4

max
(ε1,ε2)∈Ξ′

2−k(γ1+γ2)
∣∣∣D(γ1,γ2) a(k)(ε1, ε2)

∣∣∣
which yields

max
2≤γ1+γ2≤4

max
(ε1,ε2)∈Ξ′

2−k(γ1+γ2)
∣∣∣D(γ1,γ2) a(k)(ε1, ε2)

∣∣∣ =


2−4k 3|(v(k)−1)(v(k)−5)|

(v(k)+1)2 if v(k) < 7
3 ,

2−4k 6(v(k)−1)2

(v(k)+1)2 if v(k) ≥ 7
3 .

Focussing first on the case v(k) < 7
3 we find that

∞∑
k=0

24kδk =
∞∑
k=0

3
∣∣∣(v(k) − 1)(v(k) − 5)

∣∣∣
(v(k) + 1)2 .

Thus, recalling the definition of v(k) in (3.11), we can exploit the fact that (see (3.16))

|1− v(k)| ≤ c2−2k, (6.25)

which implies

∞∑
k=0

24kδk =
∞∑
k=0

3
∣∣∣(v(k) − 1)(v(k) − 5)

∣∣∣
(v(k) + 1)2 ≤ c

∞∑
k=0

∣∣∣v(k) − 1
∣∣∣ < +∞,

with c a positive constant. With a similar reasoning we can also show that, when v(k) ≥ 7
3 ,

∞∑
k=0

24kδk =
∞∑
k=0

6(v(k) − 1)2

(v(k) + 1)2 ≤ c
∞∑
k=0

(v(k) − 1)2 < +∞,

with c a positive constant. Hence, the claimed result follows in light of Proposition 3.17.
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Convergence in the vicinity of extraordinary vertices

To prove that the non-stationary BLOB scheme produces limit surfaces that are at least
convergent at extraordinary vertices of valence 4, we first need the following result concerning
the stationary counterpart of the BLOB scheme.

Proposition 6.22 The stationary counterpart of the BLOB scheme is convergent at extraor-
dinary vertices of valence 4.

Proof: The local subdivision matrix S̃ has eigenvalues that, sorted by modulus, verify the
inequalities 1 = λ0 > λ1 = λ2 = 0.3776 > |λi|, ∀i ≥ 3 and x0 = [1, . . . , 1]T . Thus, from
Theorem 2.25 the claim follows.

Now, in light of Proposition 6.22 we can prove the next result.

Proposition 6.23 The non-stationary BLOB scheme is convergent at extraordinary vertices
of valence 4.

Proof: From Propositions 6.20 and 6.22, the stationary counterpart of the BLOB scheme is
C4 continuous on regular meshes and convergent at extraordinary vertices. Hence assumption
(i) of Theorem 3.25 is satisfied. Moreover, the masks of the non-stationary BLOB subdivision
scheme and its stationary counterpart in (6.18) and (6.22) satisfy

lim
k→+∞

‖a(k+1) − a‖
‖a(k) − a‖

= 1
4 .

Thus the two schemes are asymptotically equivalent and assumption (ii) is verified, too.
Finally, using the explicit form of the subdivision matrices in (6.21) and (6.24), we can show
that

‖Sk − S‖ =
∣∣∣∣∣−29(v(k))2 + 14v(k) + 15

24(v(k) + 1)2

∣∣∣∣∣ ,
obtaining

lim
k→+∞

‖Sk+1 − S‖
‖Sk − S‖

= 1
4 < λ1 = 0.3776,

so concluding the proof.

6.2.5 The 3D deformable model obtained from the BLOB scheme and its
applications

The non-stationary BLOB subdivision scheme can be efficiently exploited for the construction
of deformable models with spherical topology. We explicitly model it by the triangular mesh
obtained with the proposed subdivision scheme after 4 iterations (see Figure 6.12 (e)). Specific
subdivision points, not necessary from the 4-th iteration, are used as the parameters of the
model and they allow for a user-friendly interaction. The deformable model can be deformed
manually by locally moving the parameters or automatically through the minimization of an
energy functional [82, 83]. In general, the functional consists in an image energy, which is
based on the information contained in the data (gradient, homogeneity...). This energy term
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(a) Initial points: 6 points (b) Step 1: 18 points (c) Step 2: 66 points

(d) Step 3: 258 points (e) Step 4: 1026 points

Figure 6.12: Illustration of the subdivision scheme that approximates a sphere from an octa-
hedron (a). Blue spheres: initial points; (b)-(e): the four first steps.

E is a function of the parameters Σ of the model and an optimization algorithm is used to find
the optimum σopt, which is described by σopt = arg min E(σ). The use of few parameters
yields to a fast optimization. However, the ability of the model to approximate a shape with
accuracy increases when the number of parameters increases. In practice, a trade off has to
be made between accuracy and fast optimization. Hence, according to the complexity of the
shape of the object of interest, we choose as parameters the initial points (see Figure 6.12(a))
or the subdivision points at step 1, 2, 3 or 4 (see Figure 6.12 (b)-(e)). In the following, we
illustrate the use of the new deformable model based on the non-stationary BLOB scheme
through different applications1.

Manual Segmentation of Caenorhabditis Elegans Embryos

Caenorhabditis elegans are widely used models in the study of metabolic diseases [135]. The
C. elegans embryos shown in Figure 6.13 have blob-like shapes and so have few details. We
manually segment one of them using only the 6 initial points as parameters. Thanks to the
user interaction we adjust the location of the parameters to accurately segment the embryo.
The result of the segmentation is given in Figure 6.13.

1The figures showing the application of our new deformable model on real biomedical images have been
performed in collaboration with Prof. M. Unser and his Ph.D. students A. Badoual and D. Schmitter from
the Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
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Figure 6.13: Segmentation of Caenorhabditis elegans embryos. Right: segmentation of a
C. elegans embryo by manually moving the parameters (blue spheres). Left: zoom on the
segmentation outcome. Photo courtesy of Rahul Sharma, Institute of Cell Biology, University
of Bern, Switzerland.

Automatic nuclei segmentation

Nuclei segmentation is important to characterize their symmetry, mean intensity, or curva-
ture. These characteristics are crucial to diagnose diseases such as neurological disorders
or cancer. We segmented the nucleus of a neuron of a rat in 3D microscopy images [31].
The shape of the nucleus has many details (concavities). Hence, we used as parameters the
66 subdivision points obtained at the 2nd subdivision step. The initialization is shown in
Figure 6.14. We detected the contours using an energy based on gradient information and
we minimized it using a Powell-like line-search method [114]. The outcome is illustrated in
Figure 6.15.

Figure 6.14: Initialization of a nucleus of a neuron.

Automatic brain segmentation

Brain segmentation algorithms are challenging because the brain is a structure with many
concavities such as grooves or lobes. Segmentation algorithms are used in medicine to detect
temporal morphological changes in relation with neurological diseases [125]. We performed a
segmentation on a 3D MRI scan of a human brain using 66 subdivision points as parameters.
We initialized the deformable model with an approximate sphere (see Figure 6.16) and we
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Figure 6.15: Segmentation of a nucleus of a neuron in 3D microscopy images

used the same energy as the one used in Section 6.2.5. The segmentation result is illustrated
in Figure 6.17.

Figure 6.16: Initialization of brain.

Figure 6.17: Segmentation of a brain in a 3D MRI volume

User-interactive modeling

The triangular mesh can be deformed manually by moving subdivision points. For instance,
this allows one to adjust the result of an automatic segmentation. We illustrate how a surface
can manually be modified, starting from an approximate sphere to design a shape of interest.
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The modeling of a bone structure is shown in Figure 6.18 (right). Different steps of this
deformation are shown in Figure 6.18.

Figure 6.18: Deformation of the sphere by user interaction. Blue spheres: parameters.



Chapter 7

Interpolation of quad-meshes via
approximating subdivision schemes

As presented in Section 1.2, subdivision schemes could be classified as approximating or
interpolatory schemes. Interpolatory schemes are widely required in interactive design and
geometric modeling since the vertices of the original control mesh defining the surface are also
points of the limit surface, and thus one can control the surface in a more intuitive manner.
Unfortunately, interpolatory schemes do not produce limit surfaces of good quality because,
since no vertex is ever moved once it is computed, any distortion generated in the early re-
finement steps persists in the limit (see e.g. Figure 7.12). On the contrary, approximating
schemes produce limit surfaces with a better quality than the interpolatory ones. For this
reason, to interpolate a mesh with a higher quality surface, many interpolating methods re-
lying on approximating subdivision schemes were proposed. The easiest method to construct
a limit interpolating curve or surface using an approximating scheme is to compute a new set
of control points by solving a simple linear system, which involves the so-called limit stencil
of the subdivision scheme, in such a way that the approximating scheme applied to the new
control points produces a limit curve/surface that passes through the original control points.
This method is used in [68, 101] to construct interpolating limit surfaces based on Doo-Sabin’s
and Catmull-Clark’s subdivision and in [120] to design interpolating limit curves based on
a non-stationary version of cubic B-splines. Other interpolating methods which exploit the
limit stencil are proposed in [40, 41], and they are based on Doo-Sabin’s and Catmull-Clark’s
subdivision, respectively.
We here present an efficient algorithm for constructing interpolating curves or surfaces start-
ing from any kind of approximating subdivision scheme, that is univariate or bivariate schemes
with stationary or non-stationary rules. As in the previously cited works, the interpolation
is gained exploiting the limit stencil of the approximating subdivision scheme. Notice that,
in the stationary case the computation of the limit stencil is well-known and it is obtained
exploiting linear algebra tools; on the other hand, in the non-stationary case there is no a
general method to find the limit stencil, but it could be computed with both linear algebra
and geometrical approaches. The basic idea of our interpolatory algorithm is to compute a
new control mesh for which the limit surface interpolates the vertices of the original mesh.
This new control mesh is derived from one subdivision step with a modified geometric rule
which involves the computation of the limit stencil. In the following, we refer to this proce-
dure as the preprocessing step, which could be described by a simple formula depending on a

155
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local free shape parameter. Moreover, if we use a non-stationary subdivision scheme we gain
an additional free tension parameter to adjust the shape of the subdivision surface.

7.1 The limit stencil
Since the algorithm we present in this chapter could be applied both to stationary and
non-stationary schemes, we here use the more general non-stationary notation, which easily
reduces to the stationary one if the scheme is level independent.
Let f (0) = {f (0)

i , i ∈ Zs} be a set of initial control points. A convergent symmetric uniform
subdivision scheme {Sk, k ∈ N0}, associated to a local subdivision matrix {Sk, k ∈ N0}, is
described by the refinement rules

f (k+1) = Skf (k) = Sk · Sk−1f (k−1) = ... = S(k+1)f (0), S(k+1) = Sk · · ·S0, (7.1)

which for all k ∈ N0 generate the refined data sequence f (k+1) starting from the initial data
f (0). At the end of the subdivision process, i.e. for k → +∞, the positions of the so-called
limit points f (∞) are described by

f (∞) =

+∞∏
j=0

Sj

 f (0) = S(∞)f (0).

From a practical point of view, in order to find the exact limit position of the control points,
we could not apply the subdivision rules infinity times to the initial data, but we could study
the behavior of the matrix S(∞), whose coefficients define the rule to compute the limit points.

Remark 7.1 In case of a univariate subdivision scheme, we choose an arbitrary ordering of
the initial control points and we write the subdivision rules in a matrix form. The size of
the k-th level subdivision matrix Sk ∈ RN×N depends on how many points are involved in
the subdivision rules, i.e. how many old points give a contribution to compute m new points,
where m is the arity of the scheme. In case of a bivariate subdivision scheme, the k-th level
subdivision matrix Sk ∈ RN×N could be constructed as explained in Section 2.3, where the
dimension N depends on the valence n of the considered vertex or face and on the number of
rings involved in the refinement rules (see equation (2.19)).

To study the behavior of the local limit matrix

S(∞) = lim
k→+∞

k∏
j=0

Sj ,

we could distinguish two cases: Sk depending or not on the level k. We analyze these two
cases separately.

7.1.1 Independence on k: stationary subdivision schemes

If Sk does not depend on the level k, i.e. the rules of the subdivision scheme are stationary,
then Sk = S for all k ∈ N0 and thus

S(∞) = lim
k→+∞

k∏
j=0

S = lim
k→+∞

Sk+1.
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We apply the Jordan decomposition (see Section 2.3.1) to S, such that Sk+1 = XJk+1X−1,
where Jk+1 = diag(J (k+1)

1 , . . . , Jk+1
r ) with each block Jr of the form in (2.27), X is a full

matrix with the generalized right eigenvectors xi of S on the columns and X−1 is a full matrix
with the generalized left eigenvectors x̃Ti of S on the rows. Thus, we have

S(∞) = X

(
lim

k→+∞
Jk+1

)
X−1.

Since we consider a convergent subdivision scheme, it follows that the largest eigenvalue of
S is unique and equal to 1, with all the other eigenvalues less then 1, i.e.

1 = λ0 > |λi|, i = 1, . . . r.

Moreover, the eigenvector associated to λ0 is x0 = [1, . . . , 1]T (see Theorem 2.25). Recalling
Remark 2.24, it follows that

S(∞) = X lim
k→+∞


1 0 . . . 0

0 J1
. . . 0

... . . . . . . ...
0 · · · 0 Jr

X−1 = X


1 0 · · · 0
0 0 · · · 0
... . . . . . . ...
0 · · · · · · 0

X−1 = x0x̃
T
0 =


x̃T0
x̃T0
...
x̃T0

 .

Finally, the row vector x̃T0 is called the limit stencil.

7.1.2 Dependence on k: non-stationary subdivision

On the other hand, if the local k-level matrix Sk depends on the subdivision level, i.e. the
rules of the subdivision scheme are non-stationary or level-dependent, then the computation
of the limit position becomes more complicate. We could proceed as in the stationary case,
with a linear algebra approach, computing the Jordan decomposition of Sk as Sk = XkJkX

−1
k

and studying the behavior of

S(∞) = lim
k→+∞

k∏
j=0

XjJjX
−1
j .

Another possibility is to proceed using a geometrical point of view, studying the behavior of
the points during the subdivision process and following their displacements to find their limit
position, as shown in [120]. In both the cases, we could not propose a general approach: each
non-stationary subdivision scheme has its particular behavior.

7.2 Interpolation algorithm
In this section we present a general algorithm able to produce interpolating curves and sur-
faces as limits of subdivision processes based on an approximating scheme {Sk, k ∈ N0} and
using the so called preprocessing step.
Let a(∞) be the limit stencil computed as in Section 7.1 associated to the approximating
scheme {Sk, k ∈ N0}. Starting from the set of control points f (0), we apply on them a pre-
processing step to compute a new control polyline/mesh. This preprocessing step is a local
process and it is composed by two different parts:
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Part 1. For each point f (0)
i , we construct the 0-level local subdivision matrix S0 ∈ RN×N and

we compute

f̃
(0)
i,j =

∑
h=0,...,N−1

S0(j, h)f (0)
i+h, with j = 0, . . . , N − 1, (7.2)

where S0(j, h) is the element at line j and column h of the matrix S0.

Part 2. We compute the vertices of the new control polyline/mesh g(0), such that for all i

g
(0)
i,j = f

(0)
i + αi(f̃ (0)

i,j − L(f̃ (0)
i,0 )), αi ∈ R, j = 0, . . . , N − 1, (7.3)

where L(f̃ (0)
i,0 ) is the limit point associated to f̃ (0)

i,0 and defined by the limit stencil a(∞),
such that

L(fi,0) =
∑

h=0,...,N−1
a(∞)
h fi,h, with

∑
h=0,...,N−1

a(∞)
h = 1. (7.4)

It follows that from each point f (0)
i of the starting control polyline/mesh, we define N new

points g(0)
i,j . Once the preprocessing step is completed, the interpolating limit curve/surface

is obtained just applying the subdivision scheme Sk to the preprocessed polyline/mesh g(0).

Theorem 7.2 Applying the subdivision scheme Sk to the control points g(0), we obtain a
limit curve/surface that interpolates the vertices of f (0), for all αi ∈ R.

Proof: For each new vertex g(0)
i,0 we compute its limit position, that is, for all i,

L(g(0)
i,0 ) =

∑
h=0,...,N−1

a(∞)
h g

(0)
i,h =

∑
h=0,...,N−1

a(∞)
h

(
f

(0)
i + αi(f̃ (0)

i,h − L(f̃ (0)
i,0 )

)
=

∑
h=0,...,N−1

a(∞)
h f

(0)
i + αi

∑
h=0,...,N−1

a(∞)
h f̃

(0)
i,h − αi

∑
h=0,...,N−1

a(∞)
h L(f̃0

i,0).

Recalling (7.4), we obtain

L(g(0)
i,0 ) = f

(0)
i + αi

∑
h=0,...,N−1

a(∞)
h f̃

(0)
i,h − αiL(f̃ (0)

i,0 ) = f
(0)
i + αiL(f̃ (0)

i,0 )− αiL(f̃ (0)
i,0 ) = f

(0)
i .

This means that in the limit the vertices of g(0) converges to f (0), thus the limit curve/surface
interpolates the vertices f (0).

The procedure described to design interpolating limit curves and surfaces using an approx-
imating subdivision scheme {Sk, k ∈ N0} could be summarized in the following algorithm.

Algorithm 2 INPUT: initial control polyline/mesh f (0) and an approximating subdivision
scheme {Sk, k ∈ N0},

1. compute the set of points f̃ (0) as in (7.2),

2. compute g(0) as in (7.3),

3. apply {Sk, k ∈ N0} to g(0).

OUTPUT: limit curve/surface interpolating f (0).
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7.2.1 The local free parameter αi
In Theorem 7.2 we prove that Algorithm 2 produces interpolating limit curves/surfaces for
all values of αi ∈ R. This free parameter is a local parameter related to the i-th point of
the control polyline/mesh. The choice of αi influences the position of the points g(0) and,
consequently, the behavior of the limit curve/surface. In particular, for some values of αi
the control polyline/mesh g(0) intersects itself and thus the limit curve/surface inherits this
intersection or presents some deformations. In the following we derive sufficient conditions on
αi to guarantee that the limit curve/surface does not present these distortions. We consider
the curve case, since it is more manageable, but we will see that the results in the univariate
case could be easily extended to the bivariate case. We start by noticing that if αi < 0, a

Figure 7.1: Preprocessed polylines and interpolating limit curves obtained with αi = −1, ∀i
(top line) and αi = 2.5, ∀i (bottom line), using stationary cubic B-spline with rules in (7.5).

part of the polyline g(0) falls inside the control polyline f (0), thus to gain the interpolation
property the limit curve has to intersect itself. On the other hand, if αi > 0 it may happen
that two consecutive points of g(0) are exchanged determining self-intersection or distortions
in the limit curve. These behaviors are presented in Figure 7.1, where, in particular, we show
the preprocessed control polylines and the limit curves obtained using the stationary cubic
B-spline scheme with rules  f

(k+1)
2i = 1

8f
(k)
i−1 + 3

4f
(k)
i + 1

8f
(k)
i+1,

f
(k)
2i+1 = 1

2f
(k)
i + 1

2f
(k)
i+1,

(7.5)

and Algorithm 2 with αi = −1,∀i (top line) and αi = 2.5,∀i (bottom line). We see that
these values of αi imply self-intersections and distortions in the limit curves.
To find admissible values for αi, let us consider Figure 7.2 as example, where we suppose
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N = 3. From f
(0)
0 we compute f̃ (0)

0,0 , f̃
(0)
0,1 , f̃

(0)
0,2 using (7.2) and we consider the related limit

point L(f̃ (0)
0,0 ) . In the same way, starting from f

(0)
2 we compute f̃ (0)

2,0 , f̃
(0)
2,1 , f̃

(0)
2,2 with limit

point L(f̃ (0)
2,0 ) (see Figure 7.2 (a)). The dot lines indicate the directions of the displacements

f̃
(0)
i,j − L(f̃ (0)

i,0 ), i = 0, 2, j = 0, 1, 2, on which the points g(0)
i,j lie. Fixing a value of α0 and α2,

and using (7.3), we compute the position of the points g(0)
0,0, g

(0)
0,1, g

(0)
0,2 related to f (0)

0 and the
points g(0)

2,0, g
(0)
2,1, g

(0)
2,2 related to f (0)

2 . If α0 and α2 are ‘too large’ the points g(0)
0,2 and g(0)

2,1 could
be exchanged, i.e. g(0)

0,2 is between g(0)
2,1 and g(0)

2,0 and not between g(0)
0,0 and g(0)

2,1 (see Figure 7.2
(b)). To avoid this, we have to choose α0 and α2 in such a way that

α0|f̃ (0)
0,2−L(f̃ (0)

0,0 )| ≤ 1
2 |f

(0)
0 −f

(0)
2 | cos(φ0,2), and α2|f̃ (0)

2,1−L(f̃ (0)
2,0 )| ≤ 1

2 |f
(0)
0 −f

(0)
2 | cos(φ2,0),

where φ0,2 is the angle between the edge f (0)
0 f

(0)
2 and the segment f (0)

0 g
(0)
0,2 and φ2,0 is the

angle between the edge f (0)
2 f

(0)
0 and the segment f (0)

2 g
(0)
2,1. This condition guarantees that g(0)

0,2

and g(0)
2,1 are not exchanged. But it may happen that they are aligned along the perpendicular

to the edge f (0)
0 f

(0)
2 (see Figure 7.2 (c)). To exclude also this case it is sufficient to require

α0|f̃ (0)
0,2 − L(f̃ (0)

0,0 )| ≤ 1
2 |f

(0)
0 − f (0)

2 | and α2|f̃ (0)
2,1 − L(f̃ (0)

2,0 )| ≤ 1
2 |f

(0)
0 − f (0)

2 |,

thus obtaining two points that are neither exchanged, nor on the perpendicular to the corre-
sponding edge (see Figure 7.2 (d)). This study should be done for each point and each edge.
We generalize the previous reasoning as in the following.

• Given a control polyline f (0) = {f (0)
i , i ∈ Z}, for each point f (0)

i , let f (0)
`1

and f
(0)
`2

be
the two points that are connected with f (0)

i by an edge. We denote

Ei := min
`∈L
‖f (0)
i − f

(0)
` ‖2, with L = {`1, `2} (7.6)

and
Di := max

j=0,...,N−1
‖f̃ (0)
i,j − L(f̃ (0)

i,0 )‖2. (7.7)

If αi satisfies
0 ≤ αi ≤

1
2
Ei
Di
, ∀i (7.8)

then the limit curve is not self-intersecting.

From this reasoning and in light of equation (7.3), it is clear that the local parameter αi
suggests how much distant we move from the control mesh f (0). This will be underlined in
the numerical experiments in Section 7.4. The conditions found in (7.8) are also applicable
in the surface setting with same minor changes, as follows.

• Given a control mesh f (0) = {f (0)
i , i ∈ Z2}, for each point f (0)

i , let f (0)
`1
, . . . , f

(0)
`m

be the
m points that share a face with f (0)

i . We denote,

Ei := min
`∈L
‖f (0)
i − f

(0)
` ‖2, L = {`1, . . . , `m}
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Figure 7.2: Illustrative example on how we should choose αi.

and

Di := max
j=0,...,N−1

‖f̃ (0)
i,j − L(f̃ (0)

i,0 )‖2.

If αi satisfies

0 ≤ αi ≤
1
2
Ei
Di
, ∀i (7.9)

then the limit surface is not self-intersecting.

In Figure 7.3, we propose an example on how we could choose the parameters αi. We consider
a closed polyline defined by the control points f (0)

i , i = 0, . . . , 6 and we display the lengths of
the edges, that is the values ‖f (0)

i −f
(0)
` ‖2 (see Figure 7.3 (left)). In Figure 7.3 (right) we show

the points f̃i,j (blue dots) computed with a step of stationary cubic B-splines with rule in (7.5)
and the limit points obtained exploiting the limit stencil a(∞) =

[
1
6 ,

2
3 ,

1
6

]
(red dots). The

dot lines represent the connections between each point f̃i,j and the correspondent limit point.
The quantities ‖f̃ (0)

i,j −L(f̃ (0)
i,0 )‖2 are indicated. Now, we exploit equations (7.6)-(7.7)-(7.8) to
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Figure 7.3: Left: initial control points f (0)
i and length of each edge. Right: new points

f̃
(0)
i,j obtained with one step of stationary cubic B-spline scheme in (7.5) (blue dots) and
correspondent limit points (red dots).

find αi, i = 0, . . . , 6. We have

E0 = 4.6 D0 = 1.82 α0 ≤ 1.26
E1 = E2 = 2 D1 = D2 = 1.3 α1 = α2 ≤ 0.77
E3 = E4 = 2 D3 = D4 = 1.5 α3 = α4 ≤ 0.67
E5 = E6 = 3 D5 = D6 = 1.12 α5 = α6 ≤ 1.34

Thus, choosing the values of αi satisfying these conditions, any self-intersection or distortion
is avoided (see, e.g. Figure 7.4).

Figure 7.4: Preprocessed polyline and interpolating limit curve obtained with α =
[1.2, 0.7, 0.7, 0.6, 0.6, 1.2, 1.2] and using the cubic B-spline with rules in (7.5). The points
and the coefficients αi are ordered from top to bottom.

7.3 Comparison with other methods

Many methods have been proposed to construct interpolating limit curves/surfaces starting
from an approximating scheme. In general, these methods differentiate for the definition of
the new control points. The methods shown in [40, 41] are similar to our construction of the
new control polyline/mesh. In these works, the authors construct the new control mesh using
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a modified rule based on Doo-Sabin’s and Catmull-Clark’s schemes and exploiting their limit
stencils. However, the geometric rules proposed are strictly connected with the subdivision
scheme used, and not easily generalizable to all subdivision rules. On the contrary, the
algorithm we present is extremely general and could be applied to any kind of subdivision
scheme: univariate or bivariate subdivision schemes, with stationary or non-stationary rules.
In the following, we focus on the comparison with the most immediate method, i.e. the
solution of a linear system, underlying differences and similarities.

7.3.1 Solution of a linear system

The easier way to construct a new control polyline in order to obtain interpolating curves/surfaces
using an approximating scheme is the solution of a linear system of the form

A(∞)h(0) = f (0), (7.10)

where A(∞) is a square matrix with rows defined by the limit stencil a(∞), f (0) is the vector
of the starting control points and h(0) is the new control polyline/mesh. In particular, the
algorithm is defined as follows.

Algorithm 3 INPUT: initial control polyline/mesh f (0) and an approximating subdivision
scheme {Sk, k ∈ N0},

1. solve the linear system in (7.10) to find h(0),

2. apply {Sk, k ∈ N0} to h(0).

OUTPUT: limit curve/surface interpolating f (0).

As already recalled, Algorithm 3 is used in many works in literature (see e.g. [68, 101,
120]). To find the exact solution of the linear system could be very expensive if the initial
polyline/mesh is made of a high number of control vertices. Moreover, it may happen that
the produced limit curve/surface presents some undulations or distortions, thus requiring
a shape fairing. For example, Halstead et al. [68] propose a method for generating fair
Catmull-Clark’s surfaces by first interpolating a set of given mesh vertices, and then fairing
the surface by minimizing a quadratic norm that combines thin plate and membrane energies.
The similarity between our proposal and Algorithm 3 is the use of the limit stencil. However,
we can underline many differences. First of all, we do not require the solution of a linear
system, but we work locally on a few number of vertices. Then, using Algorithm 3 the new
control polyline/mesh is defined by the same number of points of the starting vector f (0),
while the algorithm we propose constructs the preprocessed control polyline/mesh which is
define by N -times the number of the initial control points. Moreover, our definition of the
new control polyline/mesh g(0) in (7.3) allows us to gain a free local parameter αi that could
be used to model the shape of the final limit curve/surface (see Section 7.4), thus avoiding
the need of a shape fairing.
In the following, we present a simple example based on a non-stationary version of cubic
B-spline scheme to show differences and similarities of our interpolating algorithm and the
method in (7.10).
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Interpolation via a non-stationary cubic B-spline scheme

In [120], the authors proposed a non-stationary version of the cubic B-spline with rules f
(k)
2i = βk

8 f
(k)
i−1 +

(
1− βk

4

)
f

(k)
i + βk

8 f
(k)
i+1,

f
(k)
2i+1 = 1

2f
(k)
i + 1

2f
(k)
i+1,

βk = 2
1 + cos

(
t

2k+1

) , t ∈ [0, π) ∪ iR+,

(7.11)
and limit stencil given by[1− γ

2 , γ,
1− γ

2

]
, with γ = cot

(
t

2

)(1
t
− cot t

)
. (7.12)

From the subdivision rules in (7.11), it is easy to see that three old points are involved in
the computation of two new points, thus N = 3. Let us consider a control polyline given
by 5 points (see Figures 7.5 and 7.6). Using Algorithm 2, the preprocessed polyline g(0) is
computed as

g
(0)
i,j = f

(0)
i + αi(f̃ (0)

i,j − L(f̃ (0)
i,0 )), j = 0, 1, 2

i.e. 
g

(0)
i,0 = f

(0)
i + αi(f̃ (0)

i,0 − L(f̃ (0)
i,0 )),

g
(0)
i,1 = f

(0)
i + αi(f̃ (0)

i,1 − L(f̃ (0)
i,0 )),

g
(0)
i,2 = f

(0)
i + αi(f̃ (0)

i,2 − L(f̃ (0)
i,0 )).

Calling f (0)
`1

and f (0)
`2

the two points near f (0)
i , we exploiting the subdivision rules in (7.11)

obtaining 

f̃
(0)
i,0 = βk

8 f
(0)
`1

+
(

1− βk
4

)
f

(0)
i + βk

8 f
(0)
`2
,

f̃
(0)
i,1 = 1

2f
(0)
`1

+ 1
2f

(0)
i ,

f̃
(0)
i,2 = 1

2f
(0)
i + 1

2f
(0)
`2
,

and the limit stencil in (7.12)

L(f̃ (0)
i,0 ) = γf̃

(0)
i,0 + 1− γ

2 (f̃ (0)
i,1 + f̃

(0)
i,2 )

=
[1 + γ

2 + γ
β0
4

]
f

(0)
i +

(
γ
β0
8 + 1− γ

4

)
(f (0)
`1

+ f
(0)
`2

)
.

Combining these formulas, we obtain
g

(0)
i,0 =

[
1 + αi(1− γ)

(
1
2 −

β0
4

)]
f

(0)
i + αi(1− γ)

(
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1
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)
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)
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)
f
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(0)
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)
f
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`2
.

On the contrary, using Algorithm 3, from [120] we have that the new control polyline h(0) is
computed as

h
(0)
i = 1

5

4∑
j=0

f
(0)
i

4∑
`=0

cos(2π`(j − i)/5)
(1− ω`)γ + ω`

, with ω` = 1
2

(
cos

(2π`
5

)
+ cos

(8π`
5

))
,
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and γ as in (7.12). It is clear that the new control polylines g(0) and h(0) are different. If
Algorithm 3 is more intuitive (it is just the solution of a linear system), Algorithm 2 is more
flexible. In fact, the latter allows us to define many different control polylines g(0) depending
on the choice of αi (see Figure 7.5), while Algorithm 3 defines only one control polyline h(0)

and thus one limit curve as shown in Figure 7.6.

Figure 7.5: Preprocessed polylines and interpolating limit curves obtained via Algorithm 2
using the non-stationary extension of the cubic B-spline scheme with rules in (7.11) where t =
π
2 and α = [0.5, 0.5, 0.5, 0.5] (left), α = [0.7, 0.6, 1, 0.6, 0.7] (center), α = [0.2, 0.7, 1.5, 0.3, 0.8]
(right). The points and the parameters αi are ordered from left to right.

Figure 7.6: Preprocessed polyline and interpolating limit curve obtained via Algorithm 3
using the non-stationary extension of the cubic B-spline scheme with rules in (7.11) where
t = π

2 .
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7.4 Numerical applications
We conclude the presentation of the new interpolatory algorithm shown in Section 7.2 with
some numerical examples. As already pointed out, this algorithm could be applied to station-
ary and non-stationary subdivision schemes. We start with a stationary example based on
Catmull-Clark’s subdivision scheme, to show the influence of the local parameter αi. Then,
we propose some examples based on non-stationary subdivision schemes, both for curves and
for surfaces.

7.4.1 Stationary Catmull-Clark’s subdivision scheme

The refinement rules characterizing stationary Catmull-Clark’s scheme are presented in Sec-
tion 2.4 and the relative stencils are shown in Figure 2.8. The limit position of a vertex point
is given by rules [41, 68]

V (∞) =
n2V + 4

∑n
j=1Ej +

∑n
j=1 Fj

n(n+ 5) ,

see Figure 7.7. Thus, ordering the points as [V,E1, F1, E2, F2, . . . , En, Fn] the limit stencil is

a(∞) =
[

n

n+ 5 ,
4

n(n+ 5) ,
1

n(n+ 5) ,
4

n(n+ 5) ,
1

n(n+ 5) , . . . ,
4

n(n+ 5) ,
1

n(n+ 5)

]
.

We apply Algorithm 2 using Catmull-Clark’s subdivision scheme. In particular, in Figure 7.8

V

E2

En

E1

Fn

F1

Figure 7.7: Limit stencil of Catmull-Clark’s scheme.

we show the limit surface obtained by applying Algorithm 2 with αi = 0.7 for all i, compared
with the surface generated with αi = 0.7 for all i except one point with αi = 2. We see that
the parameter αi suggests how much distant we move from the control mesh.

7.4.2 Non-stationary cubic B-spline scheme

In [120], a non-stationary version of the cubic B-spline scheme is proposed with subdivision
rules in (7.11), where the correspondent limit stencil in (7.12) is computed using a geometrical
approach. In Figure 7.5 we already showed some examples of limit curves obtained using
Algorithm 2 with the non-stationary rules of cubic B-spline. We see that the use of local
parameters αi allows us to locally control the limit curve. In particular, the possibility to
choose different parameters results to be very useful when the control polyline has short and
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(a) (b)

(c) (d) (e)

Figure 7.8: (a) Initial control mesh, (b) interpolatory limit surface obtained applying Al-
gorithm 2 with αi = 0.7 for all i via stationary Catmull-Clark’s subdivision scheme, (c)-(e)
Different views of the interpolatory limit surface obtained applying Algorithm 2 with αi = 0.7
for all i except one point with αi = 2 via stationary Catmull-Clark’s subdivision scheme.

long edges. In fact, in this way, since the parameter αi has to satisfy the constraint in (7.8),
we could choose a small αi if the point f (0)

i is the extreme point of a short edge, conversely
we could choose a large αi if f (0)

i is the extreme point of two long edges. The locality of the
parameter let us choose a different αi for each point of the starting control polyline/mesh
f (0).

7.4.3 Non-stationary Chaikin’s subdivision scheme

A non-stationary version of Chaikin’s scheme is identified by the refinement rules [61]

 f
(k+1)
2k+1i

= w(k)f
(k)
2ki−1 + (1− w(k))f (k)

2ki ,

f
(k+1)
2k+1i+1 = (1− w(k))f (k)

2ki + w(k)f
(k)
2ki+1.

(7.13)
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with w(k) = 1
2(1+v(k)) and v(k) = cos

(
t

2k+1

)
, t ∈ [0, π) ∪ iR+ as in (3.11).

To design interpolating limit curves using the non-stationary Chaikin’s scheme, we first need
to find the limit stencil. Here, we show a geometrical approach to solve the problem.

Proposition 7.3 The limit stencil of the non-stationary extension of Chaikin’s scheme with
rules on (7.13) is a(∞) =

[
1
2 ,

1
2

]
.

Proof: We study the evolution of the point f (0)
i and in particular we analyze the behavior

of the sequence of points {f (k+1)
2k+1i

}k∈N0 generated by the rules in (7.13) to find its limit for
k → +∞.
From (7.13) we can rewrite the rule of the new even point f (k+1)

2k+1i
as

f
(k+1)
2k+1i

= w(k)f
(k)
2ki−1 + (1− w(k))f (k)

2ki = f
(k)
2ki − w

(k)D
(k)
2ki

with D(k)
2ki = f

(k)
2ki − f

(k)
2ki−1. Iterating we thus have

f
(k+1)
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= f
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(k)D
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2k−1i

− w(k)D
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(0)
i −

k∑
`=0

w(`)D
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where

D
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2`i = f

(`)
2`i − f

(`)
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= w(`−1)f
(`−1)
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 D
(0)
i .

Thus we find

f
(k+1)
2k+1i

= f
(0)
i − γ

(k)D
(0)
i where γ(k) =

k∑
`=0

w(`)
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(1− 2w(j)). (7.14)

Now, we observe that 1− 2w(j) = 1− 1
1+v(j) = v(j)
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and hence
`−1∏
j=0

(1− 2w(j)) = 1
2`

`−1∏
j=0

cos
(

t

2j+1

) 1`−1∏
j=0

cos
(

t

2j+2

)2 = 1
2`
∏̀
j=1

cos
(
t

2j
) cos2 ( t

2
)`+1∏

j=1
cos

(
t

2j
)2 .

Since
∏̀
j=1

cos
(
t

2j
)

= sin(t)
2` sin

(
t

2`
) , it follows that
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)
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)
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latter implies that
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Finally, since limk→∞ γ
(k) = 1

2 , then from (7.14) we have

lim
k→∞

f
(k+1)
2k+1i

= f
(0)
i −

1
2D

(0)
i = 1

2(f (0)
i−1 + f

(0)
i ),

thus the limit stencil is a(∞) =
[

1
2 ,

1
2

]
.

Applying Algorithm 2 using the non-stationary Chaikin’s scheme with rules in (7.13), we
are able to design interpolating limit curves with different shapes, thanks to the two free
parameters αi and t (see Figure 7.9). In particular, we choose the same value αi for all
the control points f (0)

i in such a way that condition (7.8) is satisfied for all i. We see that
when αi is small, we have less flexibility for the limit shape in order to obtain the property
of interpolation, while if αi is large the limit curve has more space to modify itself to gain
the interpolation property. On the contrary, as we could expect, the parameter t plays as a
tension parameter passing from values of t in [0, π) to values in iR+ we obtain shapes that
are closer and closer to the initial control polyline.

(a) αi = 0.2, t = 3
4π (b) αi = 0.2, t = 0 (c) αi = 0.2, t = 5i

(d) αi = 1, t = 3
4π (e) αi = 1, t = 0 (f) αi = 1, t = 5i

(g) αi = 2, t = 3
4π (h) αi = 2, t = 0 (i) αi = 2, t = 5i

Figure 7.9: Interpolatory limit curves obtained using interpolatory Algorithm 2 with non-
stationary Chaikin’s scheme. From top to bottom: increasing values of αi ∈ R+ satisfying
condition (7.8); from left to right: different values of t ∈ [0, π) ∪ iR+.
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7.4.4 Non-stationary Doo-Sabin’s subdivision scheme

In [63], a non stationary version of Doo-Sabin’s scheme is proposed, described by the rules

f
(k+1)
` = α(k)

n f
(k)
` + β(k)

n (f (k)
`−1 + f

(k)
`+1) + γ(k)

n

n∑
j=1,j 6={`−1,`,`+1}

f
(k)
j , ` = 1, . . . , n, (7.15)

where
α(k)
n = 1 + nvk(1 + vk)

n(1 + vk)2 , β(k)
n = nvk + 2

2n(1 + vk)2 , γ(k)
n = 1

n(1 + vk)2 ,

with v(k) = cos
(

t
2k+1

)
and t ∈ [0, π) ∪ iR+ as in (3.11). To apply the interpolation method,

we need to compute the limit stencil related to this scheme. In the following, we show two
different methods to compute the limit stencil.

Proposition 7.4 The limit stencil of the non-stationary version of Doo-Sabin’s scheme with
rules in (7.15) is a(∞) =

[
1
n ,

1
n , . . . ,

1
n

]
, where n is the face valence.

Proof via a linear algebra approach. We consider the k-level subdivision matrix Sk defined
as

Sk = circ(α(k)
n , β(k)

n , γ(k)
n , . . . , γ(k)

n︸ ︷︷ ︸
n−3 times

, β(k)
n ).

We compute the Jordan decomposition of Sk = XkJkX
−1
k , finding that Xk and X−1

k are
independent on the level k, thus Sk = XJkX

−1. In particular the first column of X is the
vector of ones, i.e. x0 = [1, . . . , 1]T , while the first line of X−1 is given by x̃T0 = 1

n [1, . . . , 1].
Thus, we have
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Finally the limit stencil is

a(∞) =
[ 1
n
,

1
n
, . . . ,

1
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]
.

Proof via a geometrical approach. Introducing the auxiliary notation

α̃(k)
n := (v(k))2

(1 + v(k))2 , β̃(k)
n := v(k)

(1 + v(k))2 , γ̃(k)
n := 1

(1 + v(k))2 ,

we can equivalently rewrite (7.15) as

f
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` = α̃(k)

n f
(k)
` + β̃(k)

n

(
M

(k)
` +M
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with M (k)
` := f

(k)
`−1+f (k)

`

2 and

A(k) := 1
n

n∑
j=1

f
(k)
j = 1

n

n∑
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M
(k)
j . (7.17)
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Then, combining (7.16) with (7.17) we obtain
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`=1

f
(k+1)
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n

n∑
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n f
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(7.18)

and, in light of the fact that α̃(k)
n + 2β̃(k)

n + γ̃
(k)
n = 1, we arrive at showing that

A(k+1) = A(0), ∀k ∈ N0. (7.19)

Exploiting (7.19), (7.16) and (7.18) we start writing
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with Q(k)
` = M

(k)
`

+M(k)
`+1

2 −A(k) and observe that, by definition (see also Figure 7.10), ||Q(k)
` ||2 ≤
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` ||2, ∀k ∈ N0. As a consequence, since α̃(k)
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.

A(k)

M
(k)
ℓ+1f

(k)
ℓ

M
(k)
ℓ

D
(k)
ℓ E

(k)
ℓ

Figure 7.10: Distance between a vertex f (k)
` and its centroid A(k) compared with the distance

between the midpoint of the segment M (k)
` ,M

(k)
`+1 and the same centroid A(k).

Once the limit stencil is computed, we are able to apply the interpolation Algorithm 2. Since
the approximating subdivision used is non-stationary, we have two free parameters, αi and
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t, that allow the user to adjust the shape of the limit surfaces. In Figure 7.11, we show the
interpolating limit surfaces obtained starting from a cube and choosing different values of
the free parameters αi and t. Since all the edges of the cube are all equal, we fix the same
value αi for all the points f (0)

i , satisfying condition (7.9). As in the Chaikin’s example, we

(a) α = 0.5, t = 5
6π (b) α = 0.5, t = 0 (c) α = 0.5, t = 3i

(d) α = 1, t = 5
6π (e) α = 1, t = 0 (f) α = 1, t = 3i

(g) α = 1.5, t = 5
6π (h) α = 1.5, t = 0 (i) α = 1.5, t = 3i

Figure 7.11: Interpolatory limit surfaces obtained via Algorithm 2 and using a non-stationary
version of Doo-Sabin’s scheme with rules in (7.15). From top to bottom: increasing values of
α ∈ R+ satisfying condition (7.9); from left to right: different values of t ∈ [0, π) ∪ iR+.

notice that t plays as a tension parameter, in fact passing from values of t in [0, π) to values
in iR+ we obtain shapes that are closer and closer to the initial control mesh. Regarding
the parameter αi, we see that when αi is small, we have less flexibility for the limit shape in
order to obtain the property of interpolation, while if αi is large the limit surface has more
space to modify itself to gain the interpolation property. In fact, from (7.3), it is clear that
the parameter αi suggests how much distant we are from the control mesh f (0) that we want
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to interpolate.

Remark 7.5 We underline that, the use of non-stationary subdivision rules allow us to gain
the free parameter t that does not appear in the stationary case, and thus we can obtain many
different kind of shapes. In fact, with stationary Chaikin’s scheme [16] and stationary Doo-
Sabin’s scheme (see Section 2.4) we could design only the curve and surfaces in the central
column of Figures 7.9 and 7.11, i.e. the ones related to t = 0, where only αi can be used to
model the limit shapes. With the non-stationary rules we gain an extra parameter an thus
more flexibility in the limit surfaces.

(a) Initial mesh (b) Kobbelt’s scheme (c) Doo-Sabin’s scheme with t =
5
6π and αi = 0.5

(d) Initial mesh (e) Kobbelt’s scheme (f) Doo-Sabin’s scheme with t = i and αi =
0.3

Figure 7.12: Comparison between interpolatory limit surfaces. From left to right: initial
control mesh, Kobbelt’s scheme results, non-stationary Doo-Sabin’s scheme results with our
interpolating algorithm.

The possibility of modeling the limit shape using the two free parameters results in an im-
provement in the quality of the interpolating limit surfaces produces by non-stationary ap-
proximating subdivision schemes via Algorithm 2 in comparison with the surfaces produces
by interpolatory subdivision schemes. In Figure 7.12 we show comparisons between the
limit surfaces obtained using the interpolatory subdivision scheme proposed by Kobbelt (see
Section 2.4.5) and the surface obtained using Algorithm 2 with non-stationary Doo-Sabin’s
scheme. We notice that with a suitable choice of the free parameters, the surfaces obtained
via Doo-Sabin’s scheme have less undulations and imperfections than the limit surfaces obtain
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with Kobbelt’s scheme and the first ones are closer and more faithful to the initial control
meshes.



Conclusion

In the first part of this thesis (Chapters 1-3), we recalled the principal notions regarding
univariate and bivariate, stationary and non-stationary subdivision schemes, together with
the methods to analyze their main properties. These methods have been exploited in the
following chapters to construct and analyze new subdivision schemes or generalizations of
existent subdivision schemes. In particular, Chapter 4 concerned with univariate subdivision
schemes, while Chapters 5 and 6 studied bivariate subdivision schemes in the stationary and
non-stationary setting, respectively. Finally, the property of interpolation of curves and sur-
faces has been analyzed in Chapter 7.
The first goal of this thesis is to provide a complete review of all the techniques appeared in
literature in the last years to analyze convergence, generation and reproduction capabilities,
approximation order and smoothness properties of a stationary or non-stationary subdivision
scheme. Particular attention was given to the linear algebra tools useful for the smoothness
analysis of a subdivision surface described on arbitrary manifold topology meshes. In details,
in Section 2.3, we recalled all the necessary conditions proposed in literature which are re-
quired on the eigenvalues of a stationary subdivision matrix in order to obtain limit surfaces
that are C1 continuous with bounded curvature and optimal shrinkage (see Table 2.1). Re-
garding the non-stationary setting, we showed the first proposal of sufficient conditions to
check the convergence of non-stationary subdivision schemes near an extraordinary vertex or
face (see Theorem 3.25).
After the review of all the techniques useful for the analysis of subdivision schemes, the sec-
ond goal of this thesis is to exploit them for the construction of new subdivision schemes
or generalizations of existent subdivision schemes, in order to iprove further properties of
known schemes in literature. In particular, in the univariate case, the combined 4-point
scheme resulted to be a generalization of many independent schemes proposed in literature;
the stationary 5-point scheme and its non-stationary extension provided a C2 piecewise uni-
form subdivision scheme; the non-stationary version of (i) Lane-Riesenfeld algorithm, (ii)
Hormann-Sabin’s scheme and (iii) Dubuc-Deslauriers 2n-point scheme allowed a more exten-
sive use of these three fundamental families of stationary subdivision schemes, thanks to the
additional capability of generating and reproducing conic sections.
In the bivariate setting, the necessary conditions required on the eigenvalues of a stationary
subdivision matrix have been used to study a strategy to define the free weights of an ex-
traordinary stencil. In particular, a complete analysis of interpolatory schemes generalizing
the tensor-product version of the Dubuc-Deslauriers 4-point scheme to quadrilateral meshes
of arbitrary manifold topology has been developed and it has led to a particular choice for
the stencil weights that improved previous results presented in literature. Moreover, we also
proposed a general computational strategy, applicable to all stationary subdivision schemes
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defined on arbitrary manifold topology meshes, in order to determine the range of variability
of the extraordinary stencil weights which has been tested on variants of Loop’s scheme. In
addition, we showed that the use of non-stationary rules allows us to produce limit surfaces
with particular shapes, such as approximating or exact ellipsoids, that could be used for
the segmentation of biomedical images. Finally, a new general interpolatory algorithm has
been proposed to construct interpolating limit curves and surfaces using stationary or non-
stationary approximating subdivision schemes. This method signed a great improvement in
the design of interpolatory curves and surfaces since it avoids not desired ripples and distor-
tions and thus it produces limit shapes with a higher quality than the ones obtained with
interpolatory subdivision schemes.
From this discussion, it is clear that many open problems remain. First of all, we need to
complete the analysis of non-stationary subdivision scheme defined on arbitrary manifold
topology meshes. In fact, Theorem 3.25 concerns only convergence near an extraordinary
element. This result could be extended, finding sufficient conditions for tangent plane conti-
nuity and boundedness of curvature of a non-stationary subdivision scheme at the limit point
of an extraordinary vertex or face. A second step could be an extension of the notions of
generation and reproduction of spaces of (exponential) polynomials to the case of extraordi-
nary elements. As a consequence, exploiting these two missing results, it could be possible
to define a new subdivision scheme able to produce in the limit exact ellipsoids starting
from meshes with arbitrary manifold topology. This scheme would be used for biomedical
imaging segmentation and would improve both the non-stationary BLISS scheme and the
non-stationary BLOB scheme proposed in Chapter 6.
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