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4 1. Introduction

Inverse problems play an essential role in every applicative field, whether it be experimental
physics, biology or chemistry, whenever one wants to recover the original state of an evolved
system from its final state. Without attempting to give a precise definition of “inverse problem”,
indeed, we believe that a direct example can be more clarifying and we will describe it later
(see Chapter 4). In this context, it is appropriate to remark how difficult it can be to solve such
problems from the point of view of a numerical analyst. Not dealing with exact data, calculus
complexity and numerical instability are just some of the issues that could adversely affect an
approximated solution, causing it to be very different from what it would be the real solution and
therefore useless. Depending on the model problem, dozens of different methods and techniques
were introduced over the years and new are constantly developed, making it a grueling task even
just trying to enumerate them. In the early stage of our studies, we began to work on some inverse
problems arising from the modeling of certain signals by the use of convolution operators and in
that context we focused on inverse problem regularization techniques of Tikhonov filter type. As
a second crucial step, we searched for applications of our new methods and we came across to
some interesting problems concerning changelling nonlinear diffusion equations. From the very
start we were confronted by some highly nontrivial, but fascinating theoretical problems which
made us temporarily shift from our original goal. It was indeed clear that in order to satisfactorily
solve the inverse problems connected to them we had to deal with those technical issues before-
hand. For example, when dealing with nonlinear equations arising from groundwater filtration
problems, cf. [97], our first attempt to exploit deeper the geometry of the space led us to find in
some sense a lack of theoretical tools. It is still quite a novelty the study of nonlinear/porous type
equations, cf. [109], in a Riemannian setting. Indeed, we were a little surprised to realize that
the Riemannian version of many Euclidean results was still missing, due to the lack of cut-off
functions with a suitable control on the decay rates of their derivatives, whose existence is well
known in Euclidean space.

Because of the aforementioned reasons, the present thesis can be split into two different parts:

• The first part, completely theoretical, mainly deals with the porous and fast diffusion equa-
tions. Chapter 2 presents the porous and fast diffusion equations in the Euclidean setting
highlighting the technical issues that arise when trying to extend results in a Riemannian
setting. Chapter 3 is devoted to the construction of exhaustion and cut-off functions with
controlled gradient and Laplacian, on manifolds with Ricci curvature bounded from be-
low by a (possibly unbounded) nonpositive function of the distance from a fixed reference
point. We stress that we realized it without any assumptions on the topology or the in-
jectivity radius. Along the way we prove a generalization of the Li-Yau gradient estimate
which is of independent interest. Then we apply our cut-offs to the study of the fast and
porous media diffusion, of Lq-properties of the gradient and of the self-adjointness of
Schrödinger-type operators. Most of the results presented in this first part come from [12].

• The second part is concerned with inverse problems regularization, mainly applied to im-
age deblurring. In Chapter 5, we present new variants of the Tikhonov filter method, called
fractional Tikhonov and weighted Tikhonov. Those regularization methods have been re-
cently proposed to reduce the oversmoothing property of the Tikhonov regularization in



5

standard form, in order to preserve the details of the approximated solution. Their regu-
larization and convergence properties have been previously investigated showing that they
are of optimal order. In this chapter we provide saturation and converse results on their
convergence rates. Using the same iterative refinement strategy of iterated Tikhonov reg-
ularization, new iterated fractional Tikhonov regularization methods are introduced. We
show that these iterated methods are of optimal order and overcome the previous saturation
results. Furthermore, nonstationary iterated fractional Tikhonov regularization methods
are investigated, establishing their convergence rate under general conditions on the itera-
tion parameters.
In Chapter 6 we investigate the modified linearized Bregman algorithm (MLBA) used in
image deblurring problems, with a proper treatment of the boundary artifacts. We con-
sider two standard approaches: the imposition of boundary conditions and the use of the
rectangular blurring matrix. The fast convergence of the MLBA depends on a regularizing
preconditioner which could be computationally expensive and hence it is usually chosen as
a block circulant circulant block (BCCB) matrix, diagonalized by bidimensional discrete
Fourier transform. We show that the standard approach based on the BCCB preconditioner
may provide low quality restored images and we propose different preconditioning strate-
gies, which improve the quality of the restoration and save some computational cost at the
same time. Motivated by a recent nonstationary preconditioned iteration, we propose a new
algorithm which combines such method with the MLBA. We prove that it is a regularizing
and convergent method. A variant with a stationary preconditioner is also considered.
Most of the results presented in this second part come from [11] and [23].

Finally, we want to make a remark. Despite the different fields we tried our best to keep an
uniform notation throughout the chapters. In the first part we used some capital letters to indicate
constants or vector fields while in the second part capital letters indicate only operators and sets.
Having said that, we are confident that there is no risk of misunderstandings since the context
will be self explanatory.





The Porous and Fast diffusion equations





Porous and Fast diffusion equations on Rd: a brief introduction.



10 2. PME and FDE

The study of the Porous Medium Equation and the Fast Diffusion Equation (hereafter often
referred to as PME and FDE, respectively) goes back to the first half of the last century and has
been pursued and deeply investigated by several authors in hundreds of papers. Therefore, the
present chapter is not meant to be an exhaustive introduction to the PME/FDE problems, nor to be
even a thumbnail summary of all the main features and last developments, on the subject. Rather,
its goal is to highlight the origin of these and to point out the critical difficulties that prevented to
extend some of the fundamental properties of their solutions to a general Riemannian manifold
setting. We refer any interested reader to the excellent book [109] for an exhaustive and all-
inclusive summary of the PME and FDE problems.

The easiest way to introduce the PME is to look at the flow of a gas inside a porous medium.
Let us consider the following physical equations:

Mass Balance: ε∂tρ +div(ρV ) = 0, (2.0.1a)

where ε ∈ (0,1) is the porosity of the medium, a ratio between the volume of void space inside
the material and the total volume occupied by the , ρ : [0,∞)×R3→ (0,∞) is the density and
V : R3→ R3 is the velocity vector;

Darcy’s Law: µV =−κ∇P, (2.0.1b)

where µ is the viscosity, κ is the permeability of the medium and P : R3→ [0,∞) is the pressure;

State Equation: P = P0ρ
γ , (2.0.1c)

where P0 is the reference pressure and γ is the politropic exponent, with γ = 1 for isothermal
transformations and γ > 1 for adiabatic transformations. Putting together equations (2.0.1a),
(2.0.1b) and 2.0.1c we obtain

∂tρ =C ·div(ργ
∇ρ) =C∆(ρm),

with C = C(ε,κ,P0,γ) and m = γ + 1. The constant C can be scaled out by the means of a
reparametrization, t̂ := C · t, and if we allow m to take values in the range (0,∞), and having
renamed the previous unknown function ρ into u for consistency with the literature, we are lead
to the following equation:

∂tu = ∆um =


PME if m > 1,
heat diffusion equation if m = 1,
FDE if 0 < m < 1,
logarithmic diffusion equation if m = 0.

(2.0.2)

Note that
∆um = m ·div(um−1

∇u),

and defining
a(u) := um−1
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the diffusivity coefficient, then, for 0 < m < 1, a(u) has a singularity at u = 0, namely a(u)
explodes to infinity as the solution u approaches to zero, whence the name fast diffusion. In the
same way, if we let m = 0, then a(u) = u−1 and div(u−1∇u) = ∆ logu, which accounts for the
name logarithmic diffusion.

We recall that the PME is frequently used to model gas flow and groundwater filtration while
the FDE appeared first in the Okudo-Dawson plasma’s diffusion model. For the sake of simplicity
we derived both the PME and the FDE from the gas flow inside a porous medium, but for a
more detailed insight of the FDE from a physical point of view we invite the reader to look at
[82, 10, 47, 9].

Now, to get an idea of the interplay between the geometry of the ambient space and certain
properties of solutions of the PME and FDE equations, and in particular of the technical diffi-
culties which arise trying to extend results valid in Euclidean space to the setting Riemannian
manifold, we are going to focus our attention to the Cauchy problem for the FDE on the whole
space. Let us fix 0 < m < 1 and introduce the FDE-Cauchy problem on Rd ,{

∂tu(t,x) = ∆um(t,x) for x ∈ (0,+∞)×Rd

u(0,x) = u0(x) for x ∈ Rd.
(2.0.3)

By a solution to the problem we mean a curve u : (0,+∞)→ X where the functional space X
depends on the functional class determined by the initial datum u0. In the ensuing discussion
we assume that u0 is in L1

loc(Rd), and we are going to define weak and strong solution to the
FDE-Cauchy problem (2.0.3) as follows (see [65]):

Definition 2.0.1 (weak and strong solutions for the FDE).
Let u(t,x) ∈C([0,+∞) : L1

loc(Rd)) be such that

(i)
u(0,x) = u0, (2.0.4)

(ii)
∂tu = ∆um, in D′((0,+∞)×Rd). (2.0.5)

Then u is called a weak solution to the Cauchy problem of the FDE. If in addition u satisfies

(iii)
∂tu ∈ L1

loc((0,+∞)×Rd), (2.0.6)

then u is called a strong solution. Note that since 0 < m < 1 then um ∈ L1
loc(Rd) as well.

In the by Herrero mentioned above, global existence in time for solutions of the FDE is
proven for any u0 ∈ L1

loc(Rd). We remark that the case of the porous equation m > 1 is quite
different, since it had been realized quite early that the local integrability of the initial datum
does not ensure even short time existence, for which a control of the growth at infinity of the
initial datum is required.
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Going back to the FDE, the global existence of solutions for locally integrable initial data
hinges on a weakened form of the conservation of mass, which we will refer to as the Weak
Conservation of Mass Theorem and which allows to give a lower bound for the extinction time
of a solution for the FDE-Cauchy problem in terms of local quantities related to the initial datum
u0. Indeed, if u0 belong to a suitable Lebesgue space, and for certain exponents m ∈ (0,1), one
shows that there exists a time T = T (u0) such that for every t ≥ T the solution u(t) of the FDE-
Cauchy problem vanish almost everywhere. By the Weak Conservation of Mass Theorem there
exists a critical exponent mc =

d−2
d ∈ (0,1) such that T (u0) = ∞ for every m ∈ (mc,1), and for

such m there is no extinction time. For a deeper understanding about the critical exponent mc
and the extinction time we refer the reader to [108] and to the aformentioned [109].

Because of the techniques used in the proof and the consequences of the above Weak Con-
servation of Mass Theorem, we believe that it is an useful and meaningful example to highlight
some of the deep differences between the Euclidean and the Riemannian setting. Below, we
reproduce the statement and the proof of the Weak Conservation of Mass Theorem pointing out
the steps where geometry comes to play a fundamental role. In particular we divide the proof
into 2 parts: the first part is essentially analytic and it can be adapted without effort to the gen-
eral setting of Riemannian manifolds, while the second part uses crucially the Euclidean distance
function, thus giving rise to not trivial difficulties and preventing a naive adaptation to a manifold
setting. In Section 3.4.2 we will be able to generalize this result on Riemannian manifolds.

Hereafter, we will define
um = |u|m−1u,

allowing u to be not necessarily nonnegative. Indeed, the PME/FME equation can be considered
for functions of arbitrary sign. Whenever a result will be valid only for nonnegative solutions
u≥ 0, it will be highlighted.

Theorem 2.0.2 (Weak conservation of mass, [65, Lemma 3.1]).
Let u,v ∈ C([0,+∞) : L1

loc(Rd)) satisfy condition (2.0.5) and be such that u ≥ v. Then, for all
R > 0, γ > 1 and t,s≥ 0[∫

BR(x0)
[u(t)− v(t)] dx

]1−m

≤
[∫

BγR(x0)
[u(s)− v(s)] dx

]1−m

+MR,γ |t− s| (2.0.7)

where we BR(x0) denotes the ball of radius R centered at x0 ∈ Rd , and where

MR,γ =
C0

(γ−1)
C1

R2 vol(BγR(x0)\BR(x0))
1−m > 0

with the constants Ci > 0 depending only on m and d.

Proof.
Without loss of generality we can fix x0 = o, the origin of axis. Note that this is not generally
true in the Riemannian counterpart of this statement, Theorem 3.4.6.
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• Step I
From (2.0.5), for every nonnegative η ∈C∞

c (0,∞) and ψ ∈C∞
c (Rd) we have that

〈∂t(u− v),ηψ〉 = −〈u− v,∂tηψ〉
q

〈∆(um− vm),ηψ〉 = 〈um− vm,η∆ψ〉

in distributions, that is,

−
∫

∞

0

∫
Rd

∂tηψ(u− v)dtdx =
∫

∞

0

∫
Rd

η∆ψ(um− vm)dtdx.

Thus

−
∫

∞

0
∂tη

(∫
Rd

ψ(u− v)dx
)

dt =
∫

∞

0
η

(∫
Rd

∆ψ(um− vm)dx
)

dt

and this implies the validity of the equality

d
dt

∫
Rd

ψ(u(t)− v(t))dx =
∫
Rd

∆ψ(um− vm)dx (2.0.8)

in D′(0,∞) and in L1
loc(0,∞) as well for every fixed ψ , as a consequence of (2.0.4). Since,

by concavity,
(r|r|m−1− s|s|m−1)≤ 21−m(r− s)m for all r ≥ s,

then (2.0.8) implies

d
dt

∫
Rd

ψ(u(t)− v(t))dx≤ 21−m
∫
Rd
|∆ψ|(u− v)m.

We set g := u− v. By Holder’s inequality, we obtain

d
dt

∫
Rd

ψg(t)≤C(ψ)

[∫
Rd

ψg(t)
]m

, (2.0.9)

where

C(ψ) =

[
2
∫
Rd
|∆ψ|1/(1−m)

ψ
−m/(1−m)

]1−m

.

Since the function fψ(t) =
∫
Rd ψg(t) has weak derivative in L1

loc, it is a.e. equal to an AC
function, and by standard comparison arguments, for all t1, t2 ≥ 0 and every ψ ∈C∞

c (M),[∫
ψg(t2)

]1−m

≤
[∫

ψg(t1)
]1−m

+(1−m)C(ψ)|t2− t1|. (2.0.10)

This will immediately imply the statement, once we prove that C(ψ)≤MR,γ < ∞.
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• Step II
To this end we consider a function ψ = φ b

R ∈Cc(Rd), with

0≤ φR ≤ 1, φR ≡ 1 in BR(o), φR ≡ 0 outside BγR(o),

where γ > 1 and b > 2/(1−m). Moreover, we will assume that φR is radial and

φR(x) = φ(r(x)/R)

where r : Rd → [0,∞) is the Euclidean distance function from the origin o, namely r(x) =(
∑

d
i=1 |xi|2

)1/2
, and φ : R→ R is a C∞

c (R) function such that:

0≤ φ ≤ 1, φ ≡ 1 for 0≤ s≤ 1, φ ≡ 0 for s≥ γ.

Then we have

|∆(ψ(x))|1/(1−m)
ψ(x)−m/(1−m) = φR(x)−bm/(1−m)

∣∣∣b(b−1)φ b−2
R |∇φR|2 +bφ

b−1
R ∆φR

∣∣∣1/(1−m)

≤ [b(b−1)]1/(1−m)
φ
[(b−2)−bm]/(1−m)
R ·

∣∣|∇φR|2 + |∆φR|
∣∣1/(1−m)

,

(2.0.11)
where last inequality follows from the fact that we are considering a radial function 0 ≤
φR(x) = φ(r(x)/R)≤ 1, with b > 2/(1−m). Then we compute

(a.1)
|∇φR(x)|2 = R−2|φ ′(r(x)/R)|2|∇r(x)|2

= R−2|φ ′(r(x)/R)|2

≤ C0

(γ−1)
R−2;

(a.2)
|∆φR(x)|= |R−2

φ
′′
(r(x)/R)|2|∇r(x)|2 +R−1

φ
′
(r(x)/R)∆r(x)|

≤ R−1
(

R−1|φ ′′(r(x)/R)|+ |φ ′(r(x)/R)|(d−1)
r(x)

)
≤ C0

(γ−1)
(d−1)R−2;

where we used the fact that ∆φR is supported in BγR(o)\BR(o) and that the smooth function
φ has bounded derivatives in BγR \BR

|φ ′′(r(x)/R)|+ |φ ′(r(x)/R)| ≤ C0

(γ−1)
.
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An integration over BγR(o)\BR(o) gives:

C(ψ) =

[
2
∫

BγR\BR

|∆ψ|1/(1−m)
ψ
−m/(1−m)

]1−m

≤ C0

(γ−1)
C1

R2 vol(BγR(o)\BR(o)1−m,

with C1 = 21−mb(b−1). This concludes the proof.

Given u0 ∈ L1
loc(Rd) we define the extinction time T (u0) ∈ (0,+∞] of the solution u(x, t)

of the FDE Cauchy problem with an initial datum u0 as the smallest time such that u(x, t) ≡
0 for every t ≥ T (u0) and for almost every x ∈ Rd . As immediate consequence of the Weak
Conservation of Mass Theorem we have the following:

Corollary 2.0.3. If m ∈ (1−2/d,1), then T (u0) = +∞ for every 0≤ u0 ∈ L1
loc(Rd).

Proof. Letting v≡ 0, t = 0, s = T (u0) and R≥ 1, it follows from Theorem 2.0.2 that

T (u0)≥
R2(γ−1)

[∫
BR(x0)

u0 dx
]1−m

C0C1vol(BγR(x0)\BR(x0))1−m

≥
R2(γ−1)‖u0‖L1(B1(x0))

C0C1vol(BγR(x0))1−m

=C(u0)R2−d(1−m),

and, since m > 1−2/d, the right hand side of the above inequality goes to infinity as R→∞.

In Step II of the proof of Theorem 2.0.2 was of utmost importance the existence of cut-
off functions φR ∈C2(Rd) of the metric balls with a specific decay rate of the gradient and the
Laplacian, namely,

(i) φR : Rd → [0,1]

(ii) φR ≡ 1 on BR(x0),

(iii) supp(φR)⊂ BγR(x0),

(iv) supRd |∇φR(x)| ≤CR−1,

(v) supRd |∆φR(x)| ≤CR−2.

As we have seen, in an Euclidean space it is possible to define such cut-offs in terms of the
distance function r, whose key features are

(i) r ∈C∞(Rd \{o}),
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(ii) |∇r(x)| ≡ 1,

(iii) ∆r(x) = d−1
r(x) .

With the exception of (ii) which holds, at least a.e., on every Riemannian manifold, in general
the smoothness condition (i) and the decay rate (iii) are not satisfied by the Riemannian distance.
Building such cut-offs in a Riemannian manifold is a difficult task which we take up in Chapter
3. As a result we will be able to obtain suitable versions of some Euclidean results to solutions
to the PME/FDE equation to manifolds.

2.1 Introduction to Riemannian manifolds
Before proceeding further, here we give a brief introduction to the Riemannian manifold setting
in order to let the remainder of this first part easily understandable and accessible even to readers
not expert of these tools. For any reference, all the definitions and statements that we will provide
can be found on (or rearranged from) the complete and wonderful books [83, 28, 18].

2.1.1 Topological Manifold
Definition 2.1.1 (Topological space). Let X be a set and let T ⊆P(X), where P(X) is the
collection of all the subsets of X. T is called a topology for X if

(i) X ∈T and /0 ∈T .

(ii) Let {Uι}ι∈A ⊆ T be a finite or infinite collection of elements of T , where A is a set of
indexes. Then

⋃
ι∈AUι ∈T .

(iii) Let
{

U j
}n

j=1 ⊆T be a finite collection of elements of T . Then
⋂n

j=1U j ∈T .

The elements of T are called open sets and the pair (X ,T ) is a topological space. Often we will
omit T .

Definition 2.1.2 (II-numerable space). Let (X ,T ) be a topological space and let {Bι}ι∈A⊆T ,
where A is a set of indexes. {Bι}ι∈A is a base for T if

(i)
⋃

ι∈A Bι ⊇ X.

(ii) For every pair Bι1,Bι2 and for every x ∈ Bι1 ∩ Bι2 there exists Bι3 ∈ {Bι}ι∈A such that
x ∈ Bι3 ⊆ Bι1 ∩Bι2 .

If a topological space (X ,T ) admits a countable base {Bι}ι∈A, then we say that (X ,T ) is
II-countable.

Definition 2.1.3 (Hausdorff space). We say that a topological space (X ,T ) is Hausdorff if for
every pair x1,x2 ∈ X, x1 6= x2, there exist open sets U1,U2 ∈T such that

x1 ∈U1, x2 ∈U2 and U1∩U2 = /0.
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Definition 2.1.4 (Chart). Given a topological space X, a homeomorphism ξ of an open set U of
X onto an open set ξ (U) of Rd , is called coordinate map and U is called coordinate neighbour.
If we write

ξ (x) =
[
ξ 1(x) · · · ξ d(x)

]
for each x ∈U, the resulting functions ξ 1, · · · ,ξ d are called coordinate functions of ξ . We call d
the dimension of ξ . Finally, the pair (U,ξ ) is called a chart.
If x0 ∈ X is fixed and there exists a chart (Ux0,ξx0) such that x0 ∈Ux0 , then (Ux0,ξx0) is called
local chart in x0.

Definition 2.1.5 (Locally Euclidean space). A topological space X is said locally Euclidean of
dimension d if for every x0 ∈ X there exists a local chart (Ux0,ξx0) in x0 of dimension d.

Definition 2.1.6 (Topological manifold). A topological space M is called topological manifold
of dimension dim(M) = d if the following properties are satisfied:

(1) X is locally Euclidean of dimension d.

(2) X is Hausdorff.

(3) X is II-countable.

2.1.2 Smooth Manifold
Definition 2.1.7 (C∞ Atlas). Let M be a topological manifold of dimension dim(M) = d. A
family of local charts

I0 = {(Uι ,ξι) : ι ∈ A}
with the property ⋃

ι∈A

Uι = M,

is called topological atlas of M. The atlas I0 is said to be of C∞ class if for every pair ι1, ι2 ∈ A
such that Uι1 ∩Uι2 6= /0 the map

ξι1 ◦ξ
−1
ι2

: ξι2 (Uι1 ∩Uι2)⊆ Rd → Rd

is of C∞ class in the usual sense of analysis, i.e., ξι1 ◦ ξ−1
ι2

has continuous partial derivatives of
any order. The map ξι1 ◦ξ−1

ι2
is called transition function.

Definition 2.1.8 (C∞ differential structure). Let M be a topological manifold of dim(M) = d
which has at least one atlas I0 of C∞ class. In the set

{I : I is an atlas for M of C∞ class} 6= /0,

we introduce the following equivalence relationship:

I ∼ G ⇐⇒ I ∪G is a C∞ atlas.

The equivalence class [I ] which contains the C∞ atlas I is called C∞ differential structure on
M. Hereafter we will avoid the brackets [·] and we will only write I = [I ].
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Figure 2.1: Transition functions and charts.

Remark 2.1.9. I is a C∞ differential structure on M if and only if

(i) I is a C∞ atlas.

(ii) I is maximal, in the sense that if (V,ρ) is a local chart of M such that for every (U,ξ )∈I
with

(a) U ∩V 6= /0,

(b) ξ ◦ρ−1 and ρ ◦ξ−1 are C∞,

then (V,ρ) ∈I .

Definition 2.1.10 (Smooth manifold). We call smooth manifold of dimension d the pair (M,I ),
where M is a topological manifold of dim(M) = d and I is a C∞ differential structure on M.

Example 2.1.11. Let us consider Sd ⊂ Rd+1, defined as

Sd =
{

x ∈ Rd+1 : ‖x‖= 1
}
,
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where

‖x‖=

(
d+1

∑
i=1

(xi)
2

)1/2

for every x =
[
x1 x2 · · · xd+1

]
.

Of course, Sd is connected and compact. Fix

I0 = {(UN,ξN) ,(US,ξS)} ,

where

UN = Sd \{N} with N =
[
0 0 · · · 1

]
, US = Sd \{S} with S =

[
0 0 · · · −1

]
,

and

ξN : UN→ Rd is such that ξN(x) =
1

−xd+1 +1
[
x1 · · · xd

]
,

ξS : US→ Rd is such that ξS(x) =
1

xd+1 +1
[
x1 · · · xd

]
.

I0 is a C∞ atlas and the differential structure I generated by I0 is called standard differential
structure on Sd . Finally,

(
Sd,I

)
is called sphere.

Definition 2.1.12 (Locally finiteness). A collection S of subsets of a space X is locally finite
provided each point of X has a neighborhood that meets only finitely many elements of S .

Let { fι : ι ∈ A} be a collection of smooth functions on a manifold M such that {supp( fι) :
ι ∈ A} is locally finite. Then the sum ∑ι∈A fι is a well-defined smooth function on M, since on
some neighborhood of each point all but a finite number of fι are identically zero.

Definition 2.1.13 (Partition of unity). A smooth partition of unity on a manifold M is a collec-
tion { fι : ι ∈ A} of smooth functions fι : M→ R such that

(i) 0≤ fι ≤ 1 for every ι ∈ A.

(ii) {supp( fι) : ι ∈ A} is locally finite.

(iii) ∑ι∈A fι = 1.

Proposition 2.1.14. For every smooth manifold M, given any open covering {Uι}ι∈A of M there
is a smooth partition of unity { fι : ι ∈ A} subordinate to {Uι}ι∈A, i.e., for every ι1 there exists
ι2 such that supp( fι2)⊂Uι1 .
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Figure 2.2: Sphere representation.

2.2 Tangent Space

Let (M,I ) be a smooth manifold of dim(M) = d. Fix x ∈M and let (U,ξ ) ∈I be a local chart
such that x ∈U , then we denote

Ωx (M) = {γ : (−ε,ε)⊂ R→M : γ is a smooth curve and γ(0) = x,ε > 0} .

We endow Ωx (M) with the following equivalence relationship

∀γ1,γ2 ∈Ωx (M) , γ1 ∼ γ2 ⇐⇒ ∂

∂ t
(ξ ◦ γ1)|t=0 =

∂

∂ t
(ξ ◦ γ2)|t=0 .

Lemma 2.2.1. The equivalence relationship introduced above is independent of the local chart
(U,ξ ).

Definition 2.2.2 (Tangent space). The quotient space

TxM = Ωx (M)/∼

is called tangent space of M in x.
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Figure 2.3: Tangent space.

If we fix a local chart (U,ξ ) ∈I , and define

Fξ : TxM→ Rd Fξ (γ) =
∂

∂ t
(ξ ◦ γ)|t=0 ,

then Fξ endows a vectorial space structure on TxM. If v ∈ TxM we say that v is tangent to M at x.

Lemma 2.2.3. The vectorial space structure introduced by Fξ is independent of the local chart
(U,ξ ).

Definition 2.2.4. Fixed the local chart (U,ξ ) ∈I such that x ∈M, it is defined a natural basis
for TxM induced by the local chart,{

∂
ξ

1|x, · · · ,∂
ξ

d|x

}
=

{(
Fξ

)−1
(e1) , · · · ,

(
Fξ

)−1
(ed)

}
,

where {e1, · · · ,ed} is the canonical base of Rd . We will often drop the apex ξ whenever it will be
easy understandable from the context.
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Definition 2.2.5 (Tangent bundle). Let

T M =
⋃
x∈X

TxM,

that is, the set of all tangent vectors to M. For each x ∈M replace 0 ∈ TxM by 0x, otherwise the
zero tangent vector is in every tangent space. Then each v ∈ T M is in a unique TxM, and the
projection π : T M→M sends v to x. Thus, π−1(x) = TxM.
There is a natural way to make T M a manifold, called the tangent bundle of M. Let v be tangent
to M at some point x ∈M and let (U,ξ ) ∈I be a local chart such that x ∈U. Since v ∈ TxM,
there exists a smooth curve γv such that

γv =
(

Fξ

)−1
(v).

Then, define Ũ = π−1 (U), and ξ̃ : Ũ ⊆ T M→ R2d such that

ξ̃ =
[
ξ 1 ◦π−1 · · · ξ d ◦π−1 ∂

∂ t

(
γv ◦ξ 1)

t=0 · · ·
∂

∂ t

(
γv ◦ξ d)

t=0

]
.

Setting
Ĩ =

⋃{(
Ũ , ξ̃

)
: (U,ξ ) ∈I

}
,

endows the pair
(
T M,Ĩ

)
with a differential structure, dim(T M) = 2d.

Definition 2.2.6 (Vector field). A vector field X ∈X (M) is a smooth section of T M, that is, a
smooth function X : M→ T M such that π ◦X = id. X (M) is a vector space whose basis is given
by {∂1, · · · ,∂d}, where ∂i : M→ T M is the vector field such that ∂i(x) = ∂i|x for every x ∈M.
For every smooth f : M→ R, it holds that

X( f )(x) =
∂

∂ t

[
f ◦
(

Fξ

)−1
(X(x))

]
t=0

.

Moreover, let us define
[X ,Y ]( f ) := X(Y ( f ))−Y (X( f )).

Hereafter we will use the notation F (M) := { f : M→ R : f ∈C∞(M)}.

Definition 2.2.7 (Connection). A connection on a smooth manifold M is a function D : X ×
X →X such that

(i) DVW is F (M)-linear in V .

(ii) DVW is R-linear in W.

(iii) DV ( fW ) = (V f )W + f DVW for every f ∈F (M).

DVW is called covariant derivative of W with respect to V for the connection D.
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2.3 Riemannian Manifold

Definition 2.3.1 (Riemannian manifold). A Riemannian manifold is a pair (M,g) where M is a
smooth manifold and g = gx(·, ·) is a positive definite inner product on every tangent space TxM,
called metric tensor, such that for every vector field X ,Y ∈X (M), the map

x 7→ gx(X(x),Y (x))

is smooth. If we denote gi j(x) = gx
(
∂i(x),∂ j(x)

)
, then the metric tensor g can be expressed by

the matrix

{gi j(x)}=


g11(x) g12(x) · · · g1,d(x)
g21(x) · · ·

...
gd1(x) gdd(x)

 .
We will denote the inverse of the metric as g−1(x) and its component as gi j(x). Finally, we denote
with g(x) = det{gi j(x)}.

From here on, we will use the standard notation of an inner product,

g(·, ·) = 〈·, ·〉.

Definition 2.3.2 (Riemannian volume). Let I = {(Uι ,ξι) : ι ∈ A} be the C∞ differential struc-
ture on the Riemannian manifold M and let {φι : ι ∈ A} be a partition of unity subordinated to
{Uι}ι∈A, as in Proposition 2.1.14. Define the global Riemannian measure dx by

dx := ∑
ι∈A

φι

√
gdξ

1
ι · · ·dξ

d
ι ,

or, equivalently, ∫
M

f dx = ∑
ι∈A

I(φι f ;Uι) ,

with
I( f ;U) :=

∫
ξ (U)⊂Rd

( f
√

g)◦ξ
−1 dx1 · · ·dxd.

Definition 2.3.3 (Length of a curve). Let γ : [a,b]⊂ R→M be a Lipschitz curve. Let us define
the length l(γ) of the curve γ as

l(γ) =
∫ b

a

√
g(γ̇(s), γ̇(s))ds,

where

γ̇(s) =
∂

∂ t
(ξ ◦ γ)|s=t .
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Definition 2.3.4 (Riemannian distance function).
The Riemannian distance function distM : M×M→ [0,∞) is defined as

distM(x,y) = inf{l(γ) : γ : [a,b]→M is such that γ(a) = x, γ(b) = y} .

If M is connected, then (M,g) is a metric space.

Hereafter we will always suppose M to be connected. We define the open metric ball as usual,

BR(x) := {y ∈M : distM(x,y)< R} , R≥ 0,

and the volume of the metric ball as

vol(BR(x)) :=
∫

BR(x)
dx.

Definition 2.3.5 (Shortest path). A curve γ : [a,b]⊂R→M is called shortest path i if its length
is minimal among the curves with the same endpoints, in other words l(γ)≤ l(γ̂) for every curve
γ̂ : [a,b]⊂ R→M.

Definition 2.3.6 (Geodesics and geodesic completeness).
A curve γ : [a,b]⊂R→M is called geodesic if for every t ∈ I there is an interval J⊆ I containing
a neighborhood of t such that γ|J is a shorter path. In other words, a geodesic is a curve which
is locally a distance minimizer.
A Riemannian manifold (M,g) is said to be geodesically complete if the metric induced by its
distance function distM is complete, i.e., every Cauchy sequences converge.

Definition 2.3.7 (Conjugate points). Two distinct points x,y∈M are said to be conjugate points
if there exist two or more distinct geodesic segments having x and y as endpoints.

Proposition 2.3.8. The Riemannian distance function is Lipschitz almost everywhere. Moreover,
for every pair x,y ∈M, the function dist2M(·, ·) is smooth in a neighborhood of (x,y) if and only
if x and y are not conjugate points.

Proposition 2.3.9. Let fix o∈M and r(x) = distM(x,o). Then |∇r(x)| ≡ 1 for almost every x∈M.

Proposition 2.3.10. Given any tangent vector v∈ TxM there exists a unique geodesic γv : Iv→M
in M such that

(i) γ ′v(0) =
∂

∂ t (ξ ◦ γ)|t=0 = v;

(ii) the domain Iv is the largest possible. Hence, if γ̂ : J→M is a geodesic such that γ̂ ′(0) = v,
then J ⊂ I and γ̂ = γ|J .

We call γv inextendible.

Proposition 2.3.11. A Riemannian manifold is geodesically complete if and only if every maxi-
mal geodesic is defined on the entire real line.
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Definition 2.3.12 (Exponential map). If x ∈M, let Bx be the set of vectors v ∈ TxM such that
the inextendible geodesic γv, introduced in Proposition 2.3.10, is defined at least on [0,1]. The
exponential map of M at x is the function

expx : Bx ⊂ TxM→M

such that expx(v) = γ(1) for all v ∈Bx.

Figure 2.4: Exponential map.

Definition 2.3.13 (Cut locus and injectivity radius).
The cut locus of a tangent space TxM is defined to be the set of all vectors v ∈ TxM such that
t 7→ expx(tv) is a minimizing geodesic for all t ∈ [0,1] but fails to be minimizing for t ∈ [0,1+ε)
for each ε > 0. The cut locus of x in M, cut(x), is the image of the cut locus of the tangent space
at x under the exponential map.
The injectivity radius at x, injx, is defined as

injx = inf{distM (x,cut(x))} ,

while the (global) injectivity radius of M is defined as

injM = inf
x∈M

injx.

Proposition 2.3.14 (Levi-Civita connection). With reference to Definition 2.2.7, on a Rieman-
nian manifold (M,g) there exists a unique connection D such that
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(a) [V,W ] = DV −DWV ,

(b) Xg(V,W ) = 〈DXV,W 〉+ 〈V,DXW 〉,
for all X ,V,W ∈X (M). D is called the Levi-Civita connection of M.

Definition 2.3.15 (Riemannian curvature tensor). Let M be a Riemannian manifold with Levi-
Civita connection D. The function Rm : X (M)×X (M)×X (M)→X (M) given by

RmXY Z = D[X ,Y ]Z− [DX ,DY ]Z

is a tensor field on M called the Riemann curvature tensor of M.

A two dimensional sub-space Π of the tangent space Tx(M) is called a tangent plane to M at
x. For tangent vectors v,w define

Q(v,w) = 〈v,v〉〈w,w〉−〈v,w〉2.

Definition 2.3.16 (Sectional curvature). Let Π be a nondegenerate tangent plane to M at x. The
number

K(v,w) =
〈Rmv,wv,w〉

Q(v,w)
is independent of the choice of the basis v,w for Π, and is called Sectional curvature K(Π) of M.

Definition 2.3.17 (Ricci curvature). For any pair v,w of tangent vectors in TxM, the Ricci tensor
RicM evaluated at (v,w) is defined as the trace of the linear map u 7→ Rmu,vw.

Theorem 2.3.18 (Laplacian comparison Theorem). Let M be a geodesically complete Rie-
mannian manifold of dimension dim(M) = d such that

RicM ≥ (d−1)κ,

with κ ∈ R. Fix a pole o ∈M and r(x) = distM(x,o). Then for every x ∈M where r is smooth it
holds that

∆r(x)≤


(d−1)

√
κ cot

(√
κr(x)

)
if κ > 0,

d−1
r(x) if κ = 0,

(d−1)
√
|κ|coth

(√
|κ|r(x)

)
if κ < 0.

On the whole manifold, the Laplacian comparison theorem holds in the sense of distributions.

Theorem 2.3.19 (Bishop-Gromov comparison Theorem). Let M be a geodesically complete
Riemannian manifold of dimension dim(M) = d such that

RicM ≥ (d−1)κ,

with κ ∈R. Let Mκ be the complete d-dimensional simply connected space of constant sectional
curvature κ and Bκ

r (o) the metric ball centered at the pole o and with radius r. Then, the function

f (r) =
vol(Br(o))
vol(Bκ

r (o))

is monotone decreasing.



Laplacian cut-offs and applications



28 3. Laplacian cut-offs

As we already observed in Chapter 2, many analytic results in Euclidean setting require
the use of compactly supported cut-off functions, essentially to localize differential equations
or inequalities or to perform integration by parts arguments. A key feature of d-dimensional
Euclidean space is that it is possible to construct cut-offs {φR} such that φR = 1 on the ball
BR(o), they are supported in the ball BγR(o) and have controlled derivatives up to second order:

|∇φR| ≤
C
R
, |∆φR| ≤

C
R2

where C is a constant depending only on γ and the dimension. Indeed, such cut-offs can be
defined in terms of the distance function r from o, r(x) = (∑i x2

i )
1/2, as

φR(x) = ψ(r(x)/R)

where ψ : R→ [0,1] is smooth, identically 1 in (−∞,1] and vanishes in [γ,+∞), and the prop-
erties of φR listed above depend crucially on the fact that the distance function is proper and
satisfies

|∇r(x)| ≤C, |∆r(x)| ≤ C
r(x)

(
indeed, |∇r(x)|= 1, ∆r(x) =

d−1
r(x)

)
.

A proper function is often referred to as an exhaustion function, and the existence of Euclidean
cut-offs with the above properties is then a consequence of the fact that distance is a well-behaved
exhaustion function on Rd .

While in many instances a control on the gradient of the cut-off suffices, in many other
significant situations it is actually vital to have an explicit uniform decay of ∆φR in terms of R.
We quote, for example, spectral properties of Schrödinger-type operators (see, e.g., [75]), and,
most notably from our point of view, the approximation procedures used in the proof of existence,
uniqueness and qualitative and quantitative properties of solutions to the Cauchy problem for the
porous and fast diffusion equations ([8], [65], [5], [109]), whose properties we have already
shown of an example in Chapter 2 with Theorem 2.0.2.

It follows that the extension of such Euclidean results to the setting of Riemannian manifolds
will often depend on the existence of good families of cut-offs and well behaved exhaustion
functions.

While it is well known that exhaustion functions with a control on the gradient exist under
the only assumption of geodesic completeness (see [50, 52, 102]), uniform bounds on the sec-
ond order derivatives typically require stronger geometric assumptions. For instance, bounded
sectional curvature and a uniform strictly positive lower bound on the injectivity radius allows to
construct exhaustion functions with controlled Hessian, see [46],[101, pg. 61] and [31, Proposi-
tion 26.49]. In a very recent paper, [90], the authors refine the arguments in [31] and show that
the conclusions hold assuming only that the Ricci curvature is bounded and the injectivity radius
is strictly bounded away from zero (see Definition 2.3.13).

On the other hand, it was proved in [57, Theorem 2.2] that one can construct families of
cut-off functions {φR} with a Euclidean like behavior of |∇φR| and |∆φR| in terms of R, provided
the Ricci curvature is nonnegative.



29

Our studies were originally aimed to try to extend the results obtained in [14], by M.Bonforte,
G. Grillo and L. Vazquez, where they consider Cartan-Hadamard manifolds with Ricci curvature
(and therefore sectional curvature) bounded from below, under relaxed geometric assumption. In
doing so it quickly became clear that one of the main tools was indeed the existence of cut-off
functions with an explicit decay rate for the |∇φR| and |∆φR|.

We were thus led to investigate the existence of such cut-offs under more general geometric
conditions than those considered in [14], in particular, avoiding hypotheses on the injectivity ra-
dius. The above mentioned [57, Theorem 2.2] gives a positive answer in the case of nonnegative
curvature, and in [95] it is shown that a good exhaustion function exists if the Ricci curvature is
bounded below by a negative constant. This suggests that this may be extended to the manifolds
case with suitable, not necessarily constant, Ricci curvature lower bounds.

A substantial part of this Chapter is devoted to carry out this program and to produce both
exhaustion functions and sequences of cut-offs on manifolds whose Ricci curvature satisfies the
lower bound Ric ≥ −(d − 1)Gα(r) in the sense of quadratic forms, for a family of possibly
unbounded functions Gα of the distance function r = r(x) from a fixed reference point o, and
with an explicit dependence on α for the bounds on the gradient and of the Laplacian.

We believe that these cut-off functions will be useful in a number of situation and the second
part of the Chapter is devoted to illustrating several instances, mostly coming from fast and
porous media diffusions, where this is indeed the case.

The Chapter is organized as follows. In Section 3.1 we set up notation and give the relevant
definitions.

Section 3.2 is devoted to the the main technical results of the Chapter, the existence of C∞(M)
exhaustion functions, Theorem 3.2.1, and of sequences of Laplacian cut-off under generalized
Ricci lower bounds, Corollary 3.2.4 and 3.2.3. Their proofs depend on several other additional
results, many of independent interest, which we collect in subsection 3.2.1. We mention in
particular Theorem 3.2.5, which generalizes the Li-Yau gradient estimate (see [29, Theorem 7.1])
to functions satisfying a Poisson equation with right hand side depending both on the function
itself and on r(x) and under quite general Ricci curvature lower bound, and Proposition 3.2.8
which provides a lower bound for the volume of balls with fixed radius in terms the distance
of their center from reference fixed point o, as in [95, Proposition 4.3] for manifolds satisfying
suitable Ricci variable curvature lower bounds.

The last two sections are devoted to applications.

In Section 3.3 we present a first direct application of the existence of sequences of Laplacian
cut-offs to obtain a generalization of the Lq-properties of the gradient and the self-adjointness
of Schrödinge-type operators discussed in [102] and [57] to the class of Riemannian manifolds
satisfying our more general Ricci curvature conditions.

Section 3.4 is arguably the second main part of the Chapter. We apply the results of Sec-
tion 3.2 to study uniqueness L1-contractivity properties and conservation of mass for the porous
diffusion equation as well as uniqueness, weak conservation of mass and extinction time prop-
erties for solutions of the fast diffusion equation, which we prove under our usual quote general
geometric assumptions.
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3.1 Basic definitions and assumptions

Throughout the Chapter, (M,〈 ,〉) is a complete noncompact d-dimensional Riemannian mani-
fold, and we will often simply refer to it as M. We denote by r(x) := distM(x,o) the the Rieman-
nian distance function from a fixed reference point o∈M. The gradient and (negative) Laplacian
of a function u on M are denoted by ∇u and ∆, respectively. Recall that, in local coordinates ξ i,
they are given by

∇u = gi j ∂u
∂ξi

∂

∂ξ j , ∆u =
∂

∂ξ i

(
gi j√g

∂u
∂ξ j

)
,

where {gi j} is the matrix of the coefficients of the metric in the coordinates {ξ i}, {gi j} its inverse
and g = det{gi j}.

We let BR(p) be the geodesic ball of radius R centered at p ∈ M, and with ∂BR(p) and
vol(BR(p)) its boundary and Riemannian volume. When p = o we may omit the center.

We will assume that the Ricci curvature of M satisfies the inequality

RicM(·, ·)≥−(d−1)G(r),

in the sense of quadratic forms where G(r) ∈C0([0,∞)).
We denote with MG the d-dimensional model manifold with radial Ricci curvature equals to

−(d−1)G(r), namely, the manifold which is diffeomorphic to Rd and whose metric in spherical
coordinates is given by

〈·, ·〉G = dr2 +h2(r)dξ
2,

where h(r)is the solution of the problem
h′′(r) = G(r)h(r),
h(0) = 0,
h′(0) = 1.

(3.1.1)

Let VG(r) be the volume of the ball of radius r centered at the pole o of MG so that

VG(r) =C(d)
∫ r

0
hd−1(t)dt, (3.1.2)

so that, by Laplacian comparison,

∆r ≤ (d−1)
h′(r)
h(r)

pointwise in the complement of the cut locus of o and weakly on M, and by the Bishop-Gromov
comparison theorem, for every 0≤ R1 ≤ R2.

vol(BR2)(o)
VG(R2)

≤ vol(BR1)(o)
VG(R1)

, (3.1.3)

Finally, as in [57], we give the following definition
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Definition 3.1.1 (Laplacian cut-off). M admits a sequence of Laplacian cut-off functions, {φn}n∈N⊂
C∞

c (M), if {φn}n∈N satisfies the following properties:

1. 0≤ φn(x)≤ 1 for all n ∈ N, x ∈M;

2. for all compact K ⊂ M there exists n0(K) ∈ N such that for every n ≥ n0(K) it holds
φn|K ≡ 1;

3. supx∈M |∇φn(x)| → 0 as n→ ∞;

4. supx∈M |∆φn(x)| → 0 as n→ ∞.

To indicate constants we will preferably use capital letters A,C,D,E, possibly with subscripts,
which may change from line to line and, whenever necessary, the dependence of the constants
on the relevant parameters will be made explicit.

3.2 On the existence of a sequence of Laplacian cut-off
In this section we collect the technical results which will allows us to prove the existence of
Laplacian cut-off functions under relaxed curvature bounds. As already mentioned, we will use
these cut-offs in Sections 3.3 and 3.4 below in order to extend and further generalize several
different results in functional analysis and PDE’s. The main result is Theorem 3.2.1, where,
following the proof of [95, Theorem 4.2], we construct C∞ exhaustion function r whose gradient
and Laplacian are controlled in terms of explicit functions of the distance function r.

The key ingredients for the proof are Theorem 3.2.5, a generalization of Li-Yau gradient
estimates which permits to obtain a control on the gradient of solutions of a Poisson equation
again in terms of the distance function r and the function G which bounds the curvature from
below, and Proposition 3.2.8 which gives a lower bound on the volume of balls with fixed radius
in terms of the distance of their center from the reference point o. In Corollary 3.2.4 we use
the exhaustion function of Theorem 3.2.1 to construct a sequence {φn}n∈N of Laplacian cut-offs
with support contained in a suitable increasing exhaustion of M. Finally, in 3.2.3 we specialize
the construction to obtain cut-offs supported in geodesic balls and show that, when α = 2, which
corresponds to an almost Euclidean situation, it is possible to construct cut-offs for which, as in
Euclidean space, are equal to 1 on a ball of radius R > 0 and supported in a ball of radius γR with
γ > 1 arbitrarily close to 1. This is obtained using a specific construction modelled on the proof
of [30, Theorem 6.33], which basically hinges on the fact that when α = 2 the Laplacian of the
distance function satisfies ∆r ≤Cr−1 weakly on the whole manifold.

Theorem 3.2.1. Let RicM(·, ·) ≥ −(d − 1) κ2

(1+r2)α/2 〈·, ·〉 in the sense of quadratic forms, with
α ∈ [−2,2] and o ∈M fixed. Then there exists an exhaustion function r : M→ [0,∞), r ∈C∞(M),
and positive constants Di,α such that

• Case α ∈ [−2,2):

(1) D1,αr1−α/2(x)≤ r(x)≤ D2,α max{1;r1−α/2(x)}, for every x ∈M,
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(2) |∇r| ≤ D3,α

rα/2 , for every x ∈M \B1(o),

(3) |∆r| ≤ D4,α
rα , for every x ∈M \B1(o).

• Case α = 2:

(1’) D1,2 max{1+ log(r(x));0} ≤ r(x)≤ D2,2 max{1+ log(r(x));1}, for every x ∈M,

(2’) |∇r| ≤ D3,2
r , for every x ∈M \B1(o),

(3’) |∆r| ≤ D4,2
r2 , for every x ∈M \B1(o).

Proof. Let us observe that r(x) is not necessarily smooth everywhere but it is Lipschitz on all
of M with uniform unitary Lipschitz constant and then it is possible to uniformly approximate
r(x) by a smooth function rε(x) such that |rε(x)− r(x)| ≤ ε and |∇rε(x)| ≤ 1+ε for every x ∈M
and ε > 0 fixed, see [52, Section 2], which is enough for our purpose since every ball with
respect to the Riemannian distance r(x) contains and is contained by a ball with respect to the
approximating function rε(x). Thus, without loss of generality, hereafter we will consider r(x)
to be C∞ on M \{p}.

We first prove the Theorem for α ∈ [0,2). Let ωR : BR(o)\B1/2(o)→ [0,1] be such that


∆ωR(x) =

A2
1C2

rα (x)ωR(x),

ωR|∂B1/2
≡ 1,

ωR|∂BR ≡ 0,

where A1 = (1−α/2)/
√

2 and C > 0 is a constant that is chosen like in Remark 3.2.2. By
the maximum principle, {ωRn} is an increasing and bounded family of functions for every x ∈
M \B1/2(o) as Rn→ ∞, and therefore there exists the point-wise limit function

ω(x) := lim
R→∞

ωR(x).

By Lp and Schauder estimates, there exists a subsequence which converges in C∞(BRn \B1/2) for
every n, so that ω ∈C∞(M \B1/2) and


∆ω(x) = A2

1C2

rα (x)ω(x),

ω|∂B1/2
≡ 1,

0 < ω < 1 on M \B1/2(o).
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Integrating by parts and using ωR|∂BR = 0, we get∫
BR\B1/2

eCr1−α/2(x)
ωR∆ωR =

∫
∂B1/2

ωR
∂ωR

∂η
−
∫

BR\B1/2

〈∇(eCr(x)1−α/2
ωR),∇ωR〉

=
∫

∂B1/2

∂ωR

∂η
−
∫

BR\B1/2

(
(1−α/2)C

rα/2(x)

)
eCr1−α/2(x)

ωR〈∇r(x),∇ωR〉

−
∫

BR\B1/2

eCr1−α/2(x)|∇ωR|2

≤ A2−
∫

BR\B1/2

(
(1−α/2)C

rα/2(x)

)
eCr1−α/2(x)

ωR〈∇r(x),∇ωR〉

−
∫

BR\B1/2

eCr1−α/2(x)|∇ωR|2,

(3.2.1)

where the constant A2 is independent of R by elliptic estimates, since ωR is uniformly bounded
for every R and ωR|∂B1/2

≡ 1. Then,∫
BR\B1/2

A2
1C2

rα(x)
eCr1−α/2(x)

ω
2
R ≤ A2−

∫
BR\B1/2

(
(1−α/2)C

rα/2(x)

)
eCr1−α/2(x)

ωR〈∇r(x),∇ωR〉

−
∫

BR\B1/2

eCr1−α/2(x)|∇ωR|2

≤ A2 +
∫

BR\B1/2

(
(1−α/2)C

rα/2(x)

)
eCr1−α/2(x)

ωR|∇ωR|

−
∫

BR\B1/2

eCr1−α/2(x)|∇ωR|2

≤ A2 +
∫

BR\B1/2

(
(1−α/2)2C2

4rα(x)
ω

2
R + |∇ωR|2

)
eCr1−α/2(x)

−
∫

BR\B1/2

eCr1−α/2(x)|∇ωR|2

= A2 +
∫

BR\B1/2

(1−α/2)2C2

4rα(x)
eCr1−α/2(x)

ω
2
R.
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It follows that ∫
BR\B1/2

A2
1C2

2rα(x)
eCr1−α/2(x)

ω
2
R ≤ A2,

and then, by letting R→ ∞, ∫
M\B1/2

A2
1C2

2rα(x)
eCr1−α/2(x)

ω
2 ≤ A2.

Let x ∈M \B1 and y ∈ B1/4(x)⊂
(
M \B3/4

)
⊂
(
M \B1/2

)
. By the triangle inequality,

r(x)−1/4≤ r(y)≤ r(x)+1/4

and then
A2

1C2eC(r(x)−1/4)1−α/2

2(r(x)+1/4)α

∫
B1/4(x)

ω
2(y)≤

∫
B1/4(x)

A2
1C2

2rα(y)
eCr1−α/2(y)

ω
2(y)

≤
∫

M\B1/2(o)

A2
1C2

2rα(x)
eCr1−α/2(x)

ω
2 ≤ A2,

namely ∫
B1/4(x)

ω
2(y)≤ 2A2(r(x)+1/4)α

A2
1C2 e−C(r(x)−1/4)1−α/2

≤ 2α+1A2rα(x)
A2

1C2 e−2−(1−α/2)Cr1−α/2(x).

By Theorem 3.2.5 and Corollary 3.2.7 applied with

ζ = r, f1(r) =
A2

1C2

rα
, f2(ω) = ω,

G(r) =
κ2

(1+ r2)α/2 , R0 = 1/2,R1 = 3/4, t = 1/8,γ = ∞,

we deduce that
|∇ logω(y)| ≤C3(d,κ,α)

on M \B3/4 ⊃ B1/4(x), and then, letting σ be a geodesic parametrized by arc length connecting
x to y, from the path integral

| logω(x)− logω(y)|=
∫ dist(x,y)

0
|∇ log(σ(s))|ds≤ C3

4
,

we infer that ω(y)≥ e−C3/4ω(x), and that implies

e−C3/2Vol(B1/4(x))ω
2(x)≤ 2α+1A2rα(x)

A2
1C2 e−2−(1−α/2)Cr1−α/2(x),
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namely

ω
2(x)≤ 2α+1A2rα(x)eC3/2

A2
1C2

(
vol(B1/4(x))

)−1 e−2−(1−α/2)Cr1−α/2(x).

By Proposition 3.2.8, and by the fact that rα/2 ≤ A3eA3r1−α/2
, we conclude that

ω(x)≤C4e−C5r1−α/2(x), on M \B1(o), (3.2.2)

with

C4 =

√
2α+1A2A3eC3/2

A2
1C2C̄1

, C5 =
2−(1−α/2)C−C̄2

2
−A3, (3.2.3)

and where C̄1 and C̄2 are the constant that appears in the statement of Proposition 3.2.8.
Extend now ω(x) on all of M fixing ω(x)≡ 1 for every x ∈ B1/2(o) and define

r(x) := (η(x)−1) log(ω(x))+η(x),

with η ∈C∞, η(x)≡ 1 on B1/2(o) and η(x) = 0 on M \B1(o). Observe that 0 < E1 ≤ h(x)≤ E2

on B1(o) and in particular r(x)≥ E1r1−α/2 on B1(o).
Fix x ∈M \B1(o) and let σo : [0,r(x)]→M be a geodesic parametrized by arc length joining

o and x. Then

|r(x)− r(o)|=
∫ r(x)

0
|∇r(σo(s))|ds =

∫ r(x)

1/2
|∇r(σo(s))|ds

=
∫ 1

1/2
|∇r(σo(s))|ds+

∫ r(x)

1
|∇r(σo(s))|ds

≤C6 +
∫ r(x)

1

C7

sα/2 ds

≤C8r1−α/2(x), (3.2.4)

where we used again Theorem 3.2.5 and Corollary 3.2.7 applied with

ζ = r, f1(r) =
A2

1C2

rα
, f2(ω) = ω,

G(r) =
κ2

(1+ r2)α/2 , R0 = 1/2,R1 = s, t = t(s)≡ 1
4
,γ = ∞,

(3.2.5)

(3.2.6)

with t chosen in such a way that (1− t)R1 = (1− t)s > 1/2 = R0, uniformly for every s > 1.
Observe that C6 can be chosen independent of x. Henceforth,

r(x)≤max{E2;(1+C8)r1−α/2} on M. (3.2.7)

On the other hand, since C5− log(C4)> 0 by Remark 3.2.2, from inequality (3.2.2) we have that

r(x) =− log(ω(x))≥C5r1−α/2− log(C4)≥ (C5− log(C4))r1−α/2 on M \B1(o)

≥min{E1;C5− log(C4)}r1−α/2 on M, (3.2.8)
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and putting together the above inequality (3.2.8) with (3.2.7) we conclude that

D1,αr1−α/2(x)≤ r(x)≤ D2,α max{1;r1−α/2(x)} for every x ∈M.

Finally, for every x ∈M \B1(o), we have

(i) |∇r|=
∣∣∣∇ω

ω

∣∣∣,
(ii) |∆r| ≤

∣∣∣∇ω

ω

∣∣∣2 + ∆ω

ω
=
∣∣∣∇ω

ω

∣∣∣2 + A2
1C2

rα (x) ,

and the last statements of the thesis follow one more time by an application of Theorem 3.2.5
and Corollary 3.2.7 with (3.2.5) and (3.2.6).

To conclude, the cases α ∈ [−2,0) and α = 2 can be proven with suitable modifications of
the previous proof. Indeed, observe that for α ∈ [0,2) we used crucially the lower bound estimate
for the volume of ball of fixed radius, vol

(
B1/4(x)

)
, that appears in Proposition 3.2.8. Therefore,

replacing the exponential function eCr1−α/2(x) in the integral (3.2.1) with rC[1+(d−1)(1+
√

1+4κ2)](x),
where C > 0 is chosen big enough, will do the trick for the case α = 2, for example. For the
case α ∈ [−2,0) we need one more remark: the constant C3 has to be replaced by C̃3(r) =
C3(d,κ,α)r−α/2(x). The estimates that follow still hold with suitable changes. In 3.2.3 we have

C̃4(r) =C4e
r−α/2

4 ≤C4er1−α/2
,

and then choosing C big enough such that C5−1 > 0 we still recover an upper bound for ω(x) of
the form of (3.2.2). For the lower bound (3.2.7) instead, the estimate comes directly from (3.2.4)
where now α ∈ [−2,0).

Remark 3.2.2 (On the choice of the constant C in the proof of Theorem 3.2.1.). If C4 and C5 are
defined as in (3.2.3), we choose C big enough such that C5 > 0 and C5− log(C4)> 0. We want to
stress that all constants that appear in the definition of C4 and C5 are independent of the radius
R and consequently this independence carries over to C as well.

Using the exhaustion function of Theorem 3.2.1, it is easy to construct sequences of cut-off
functions with explicitly controlled gradient and Laplacian. In the almost Euclidean case where
α = 2, we actually use a construction inspired by [29] which relies on the fact that the Laplacian
of the distance function satisfies the weak inequality ∆r ≤ Cr−1 globally on M, and allows to
construct cut-offs which are 1 on the ball of radius R and vanish off in a ball of radius γR with γ

arbitrarily close to 1.

Corollary 3.2.3. Let RicM(·, ·) be as in Theorem 3.2.1. Then, for every R≥ 1 when α ∈ [−2,2),
R > 0 when α = 2, and

γ > Γ(α,κ,d)≥

{D2,α
D1,α
≥ 1 for α ∈ [−2,2),

1 for α = 2,

there exist φ : M→ [0,1], φ ∈C∞
c (M), such that
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(i) φ|BR(p) ≡ 1,

(ii) supp(φ)⊂ BγR(o),

(iii) |∇φ | ≤ C1
R ,

(iv) |∆φ | ≤ C2
R1+α/2 ,

with C1,C2 independent of R. If we choose R = n then we have a sequence of Laplacian cut-offs
{φn}n∈N with respect to the metric balls in the sense of Definition 3.1.1.

Proof.

• Case α ∈ [−2,2).

Let r, D1,α and D2,α be the function and the constants that appear in the statement of the pre-
ceding Theorem, respectively. Define Γ =

D2,α
D1,α

, let γ > Γ be fixed and let ψ : R→ [0,1] be such
that

(i) ψ(r)≡ 1 for r ≤ D2,α
D1,α

, 0≤ ψ ≤ 1;

(ii) sup ψ ⊂ (−∞,θ);

(iii) ψ ∈C∞ and |ψ ′|+ |ψ ′′| ≤ A1.

Then, the function defined by

φ(x) := ψ

(
r(x)

D1,αR1−α/2

)
,

is a cut-off with the desired properties.

• Case α = 2.

In order to get a better estimate of the constant Γ, for this case we will not use the exhaustion
function of Theorem 3.2.1.

Define a = (d−1)1+
√

1+4κ2

2 as in Lemma 3.2.14 and fix γ > 1. Then there exists a function
u : (0,+∞)→ R such that

1. u ∈C∞((0,+∞)) and u′′(r)+ a
r u′(r) = 1

γa+1R2 ,

2. u′(r)< 0 on [R,γR],

3. u(R) = 1 and u(γR)=0.
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Observe that u is precisely the function defined in (5.3.17b) with the constant C2 given in (3.2.41).
Now let ω : BγR(o)\BR(o)→ R satisfy

∆ω = 1
γa+1R2 , on BγR(o)\BR(o),

ω|∂BR ≡ 1,
ω|∂BγR ≡ 0,

By Proposition 3.2.13 and Lemma 3.2.12, u satisfies the weak inequality

∆u(r)≥ 1
γa+1R2

and, applying the minimum principle to ω−u, we have that

ω ≥ u on BγR(o)\BR(o). (3.2.9)

Next let x ∈ BγR(o)\BR(o). Then, for every y ∈ B R
2
(x)

r(y)≥ r(x)− R
2
≥ R

2
≥ distM(x,y) = s(y),

and for every y ∈ B R
2
(x)

RicM(∇s(y),∇s(y))≥−(d−1)κ2

1+ r2(y)
≥−(d−1)κ2

1+ s2(y)

and therefore
∆s(y)≤ a

s
in B R

2
(x).

Next consider the problem 
v′′(s)+ a

s v′(s) = 1
γa+1R2

v′(s)> 0,
v(0) = 0,

whose solution is
v(s) = As2, (3.2.10)

with
2A+2aA =

1
γa+1R2 ,

namely

A =
1

2(a+1)γa+1R2 ,

for which

v
(

R
2

)
=

1
8(a+1)γa+1R2 < 1. (3.2.11)

It follows that v(s) satisfies
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(i) ∆v(s)≤ 1
γa+1R2 in B R

2
(x),

(ii) v(s) = (γ−1)2

2(a+1)γa+1R2 < 1 on ∂B R
2
(x).

Let now ω : BγR(o)\BR(o)→ R be a function that satisfies
∆ω = 1

γa+1R2 on BγR(o)\BR(o),

ω|∂BR(p) ≡ 1,
ω|∂BγR(p) ≡ 0.

Similarly, if x ∈ BγR(o) \BR(o) then the function v(y) = v(s(y)) (where s(y) = distM(x,y))
satisfies

∆v(s)≤ 1
γa+1R2 weakly,

and then

∆(ω(y)− v(s(y)))≥ 0 for every y ∈Ω = BγR(o)\BR(o)∩B R
2
(x). (3.2.12)

Setting

∂Ω1 = B R
2
(x)∩∂BR(o), ∂Ω2 = B R

2
(x)∩∂BγR(o), ∂Ω3 = ∂Ω\ (∂Ω1∪∂Ω2),

then, by the maximum principle, we have that

ω(y)− v(s(y))≤max
{
[ω(y)− v(s(y))]|∂Ω1

, [ω(y)− v(s(y))]|∂Ω2
, [ω(y)− v(s(y))]|∂Ω3

}
for every y ∈Ω, and using the fact that s(y)≥ |r(x)− r(y)|, it follows that

ω(y)− v(s(y))≤max
{

1− v(s(y))|∂Ω1; −v(s(y))|∂Ω2; ω(y)|∂Ω3− v(r(x))
}

≤max
{

1− v(|r(x)− r(y)|)|∂Ω1 ; 0 ; 1− v
(

R
2

)}
≤max

{
1− v(r(x)−R); 0 ; 1− v

(
R
2

)}
≤max

{
1− v

(
r(x)−R
2(γ−1)

)
; 0 ; 1− v

(
R
2

)}
= 1− v

(
r(x)−R
2(γ−1)

)
.

Since v(0) = 0, evaluating at y = x, we get

ω(x)≤ 1− v
(

r(x)−R
2(γ−1)

)
for every x ∈ BγR(o)\BR(o). (3.2.13)
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Combining (3.2.9) with (3.2.13) we have that

u(x)≤ ω(x)≤ 1− v
(

r(x)−R
2(γ−1)

)
for every x ∈ BγR(o)\BR(o).

For θ ∈ [0, γ−1
2 ] define

hR(θ) = u((1+θ)R)−1+ v
(
(γ−1−θ)R

2(γ−1)

)

=
1+ γ2−1

2γa+1(a+1)

1− γ1−a

[
(θ +1)1−a−1

]
+

(θ +1)2−1
2γa+1(a+1)

+
(γ−1−θ)2

8γa+1(γ−1)2(a+1)
.

Then hR(θ)= h(θ) is independent of R, monotone decreasing, and, since h(0)= (γ−1)2

2γa+1(2γ−1)2(a+1) ∈
(0,1), there exists θ = θ(d,κ,γ) ∈ (0, γ−1

2 ) independent of R such that

0 <
(γ−1)2

16γa+1(γ−1)2(a+1)
≤ u((1+θ)R)−1+ v

(
r(x)−R
2(γ−1)

)
< 1. (3.2.14)

Finally, let ψ : [0,1]→ [0,1] satisfy

1. ψ|[u((1+θ)R),1] ≡ 1;

2. ψ|[0,1−v((γ−1−θ)R/(γ−1))] ≡ 0;

3. ψ ∈C∞([0,1]) and |ψ ′|+ |ψ ′′| ≤C, with C =C(d,κ,γ) independent of R by (3.2.14),

and define
φ = ψ ◦ω.

Recalling that u(r(x))≤ ω(x)≤ 1− v
(
(γ−1−θ)R

2(γ−1)

)
, we have that

1. φ|(B(1+θ)R\BR)
(x)≡ 1,

2. φ|(BγR\B(γ−θ)R)
(x)≡ 0,

3. ∇φ = ψ ′∇ω ,

4. ∆φ = ψ ′′|∇ω|2 + ψ ′

γa+1R2 .

We extend ψ to all of M by setting it equal to 1 in BR, and note that, since

0 <

(
1+ γ2−1

2(a+1)γa+1

)
[(γ−θ/2)−1]

1− γ1−a +1+
(γ−θ/2)2−1
2γa+1(a+1)

= u((γ−θ/2)R)≤ ω

on B((γ−θ/2)R)\B((1+θ/2)R) independently from R, the required conclusion follows from Theorem
3.2.5, Remark 3.2.6 and Corollary 3.2.7 applied with α = 2, ζ = r, f1(r)≡ 1 and f2(ω) ≡ 1

γa+1R2 .
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In some approximation procedures used in the theory of diffusion, one needs to have se-
quences of cut-off functions whose zero level sets are compact smooth submanifolds. This is
addressed in the next corollary.

Corollary 3.2.4. Let Ric(·, ·) be as in Theorem 3.2.1. Then, for every α ∈ (−2,2] there exists an
increasing exhaustion of M by open relatively compact sets {Fn}n∈⊆NM with smooth boundary
and with F̄n ⊂ Fn+1, and a sequence of functions, {φn}n∈N ⊂C∞

c (M), such that

1. φn ≡ 1 on Fn;

2. 0 < φn < 1 on Fn+1 \Fn;

3. φn ≡ 0 on ∂Fn+1 and supp(φn) = Fn+1;

4. supx |∇φn(x)| → 0, as n→ ∞;

5. supx |∆φn(x)| → 0, as n→ ∞.

The sequence {φn}n∈N is a Laplacian cut-off in the sens of Definition 3.1.1.

Proof. Let r be exhaustion function constructed in Theorem 3.2.1, and let α ∈ (−2,2). Using
(1) in the statement of Theorem 3.2.1, we may write (2) and (3) in the form

|∇r| ≤ C1

r
α/2

1−α/2

, |∆r| ≤ C2

r
α

1−α/2
,

on M \B1(o). Since r ∈C∞(M), by Sard’s theorem we can chose a sequence cn of regular values
of r such that |cn+1

cn
−2| ≤ 1/n. Let Fn := {x ∈M : r(x)< cn}. Then {Fn}n∈N is an exhaustion of

M by relatively compact open sets with smooth boundary, such that F̄n ⊂ Fn+1. For every n, let
ψn : R→ [0,1] be a smooth real function such that

(a) ψn ≡ 1 on (−∞,cn];

(b) 0 < ψn < 1 on (cn,cn+1);

(c) ψn ≡ 0 on [cn+1,+∞);

(d) |ψ ′(s)| ≤ A1
cn

, |ψ ′′(s)| ≤ A2
c2

n
.

Then, φn := ψn ◦h satisfies the requirements. In particular,

|∇ψn(x)|= |ψ ′n(h(x))||∇r(x)| ≤ D1

n
1

1−α/2

n→∞−−−→ 0 for every α ∈ [−2,2),

|∆ψn(x)| ≤ |ψ ′′n (h(x))||∇r(x)|2 + |ψ ′n(h(x))||∆h(x)| ≤ D1

n
1+α/2
1−α/2

n→∞−−−→ 0 for every α ∈ (−2,2).

The case α = 2 is dealt similarly with small changes in the proof.
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3.2.1 Auxiliary results.
In this subsection we collect some results which we used in above constructions. The first one is
an extension of the classical gradient Li-Yau estimate which we establish, under rather general
Ricci curvature lower bounds, for solutions of Poisson equations with right hand side depend-
ing both on the function itself and on the point on the manifold (via an approximate distance
function). We belive that this result is of independent interest.

Theorem 3.2.5. Let RicM(·, ·)≥−(d−1)G(r)〈·, ·〉 on M in the sense of quadratic forms, where,
r = r(x) is the distance function from a fixed point o ∈M.
Let R1 > R0 > 0, γ > 1 and let ω : M \BR0(o)→ R be a C2 function satisfying{

ω > 0 on M \BR0(o),
∆ω = f1(ζ ) f2(ω),

(3.2.15)

where f1, f2 : [0,+∞)→ R are C1 functions and ζ : M→ [0,+∞) is such that |∇ζ (x)| ≤ L for
every x ∈M. Moreover, fix t > 0 such that (1− t)R1 > R0. Then

|∇ω|2

ω2 ≤max

{
Ω1;

4dΩ2 +
√

(4dΩ2)2 +4Ω3

2

}
, (3.2.16)

on BγR1(o)\BR1(o), where

Ω1 := max{ω−1 f1(r) f2(ω) : x ∈ B(γ+t)R1(o)\B(1−t)R1(o)};

Ω2 :=
A1

R1

(
1

R1
+4(d−1)max

{√
Ḡ;

1
R1

})
+

(2+4d)A1

R2
1

+2(d−1)Ḡ

+max{2 f1(r)max{(ω−1 f2(ω)− f ′2(ω));0}+2ω
−1L| f ′1(r)|2λ | f2(ω)| : x ∈ Dγ,t,R1(o)};

Ω3 :=max
{

ω
−1L| f ′1(r)|2(1−λ )| f2(ω)| : x ∈ Dγ,t,R1(o)

}
,

and

Dγ,t,R1(o) := B(γ+t)R1(o)\B(1−t)R1(o), A1 = A1(t), Ḡ := max{G(r) : r ∈ [(1− t)R1,(γ + t)R1]}.

The parameter λ > 0 can be chosen in such a way as to minimize the right hand side of (3.2.16).

Proof. We adapt some of the ideas in the proof of [29, Theorem 7.1]. Let t > 0 be as in the
statement, fix xi ∈ ∂B γ+1

2 R1
(o) and consider the ball B( γ−1

2 +t
)

R1
(xi). Since B( γ−1

2 +t
)

R1
(xi) ⊂

B(γ+t)R1(o) \B(1−t)R1(o) ⊂ M \BR0(o), ω satisfies (3.2.15) on B( γ−1
2 +t

)
R1
(xi), so that, defining

v = logω , we have

|∇v|= |∇ω|
ω

, ∆v =−|∇v|2 + f1(ζ )F2(v), (3.2.17)
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where F2(v) = e−v f2(ev) = ω−1 f2(ω). Set now

Q = ϑ |∇v|2,

where the radial function ϑ : B γ−1
2 R(xi)→ [0,1] satisfies

ϑ(y) = ψ(si(y)) with ψ ∈C∞([0,+∞)), si(y) = distM(y,xi)

ψ|[0, γ−1
2 R1]

(si)≡ 1,

supp ψ ⊂
[

0,
(

γ−1
2

+ t
)

R1

)
,

− A1(t)
R1

√
ψ ≤ ψ

′ ≤ 0 on
[

γ−1
2

R1,

(
γ−1

2
+ t
)

R1

)
,

|ψ ′′| ≤ A1(t)
R2

1
on
[

γ−1
2

R1,

(
γ−1

2
+ t
)

R1

)
,

(3.2.18)
(3.2.19)

(3.2.20)

(3.2.21)

(3.2.22)

and then
ϑ|B γ−1

2 R1
(xi)
≡ 1,

supp ϑ ⊂ B( γ−1
2 +t

)
R1
(xi).

The function Q takes on its maximum at some point qi ∈ B( γ−1
2 +t

)
R1
(xi). For now, consider qi

not to be a cut point of xi. Therefore, at qi we have ∇Q = 0 and ∆Q≤ 0. Thus, at qi,

∇|∇v|2 =−ϑ
−2Q∇ϑ .

and

∆Q = ∆ϑ |∇v|2 +2〈∇ϑ ,∇|∇v|2〉+ϑ∆|∇v|2

= (ϑ−1
∆ϑ −2ϑ

−2|∇ϑ |2)Q+ϑ∆|∇v|2

= (ϑ−1
∆ϑ −2ϑ

−2|∇ϑ |2)Q+2ϑ
(
|Hess(v)|2 + 〈∇∆v,∇v〉+RicM(∇v,∇v)

)
≥ (ϑ−1

∆ϑ −2ϑ
−2|∇ϑ |2)Q+2ϑ

(
|Hess(v)|2 + 〈∇∆v,∇v〉− (d−1)G(r)|∇v|2

)
(3.2.23)

where in the last equality we used the Bochner’s formula. Note that

2ϑ |Hess(v)|2 ≥ 2ϑ

d
(∆v)2

=
2
d

ϑ
−1(−Q+ϑ f1(ζ )F2(v))2. (3.2.24)
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Moreover, for any α,β > 0,

2ϑ〈∇∆v,∇v〉= 2ϑ〈∇(−|∇v|2 + f1(ζ )F2(v)),∇v〉
= 2ϑ〈∇( f1(ζ )F2(v)),∇v〉−2ϑ〈∇|∇v|2,∇v〉
= 2 f1(ζ )F ′2(v)Q+2ϑ

−1〈∇ϑ ,∇v〉Q+2ϑ f ′1(ζ )F2(v)〈∇ζ ,∇v〉
≥ 2 f1(ζ )F ′2(v)Q+2ϑ

−1〈∇ϑ ,∇v〉Q−2ϑL| f ′1(ζ )F2(v)||∇v|
= 2 f1(ζ )F ′2(v)Q+2ϑ

−1〈∇ϑ ,∇v〉Q

−2ϑ
√

L| f ′1(ζ )|(1−λ )|F2(v)|1/2
(√

L| f ′1(ζ )|λ |F2(v)|1/2|∇v|
)

≥ 2 f1(ζ )F ′2(v)Q− ε
−1

ϑ
−2|∇ϑ |2Q− εϑ

−1Q2−ϑL| f ′1(ζ )|2(1−λ )|F2(v)|
−ϑL| f ′1(ζ )|2λ |F2(v)||∇v|2,

whence, taking ε = 1
4d ,

2ϑ〈∇∆v,∇v〉 ≥ 2
(

f1(ζ )F ′2(v)−L| f ′1(ζ )|2λ |F2(v)|
)

Q−4dϑ
−2|∇ϑ |2Q− Q2

4d
ϑ
−1

−L| f ′1(ζ )|2(1−λ )|F2(v)|
Q
2
. (3.2.25)

Inserting (3.2.24) and (3.2.25) into (3.2.23) and multiplying by ϑ yield

2
d
(−Q+ϑ f1F2)

2− Q2

4d
≤
[
−∆ϑ +(2+4d)ϑ−1|∇ϑ |2 +2(d−1)G(r)ϑ

−2( f1F ′2−L| f ′1|2λ |F2|)ϑ
]

Q+ϑ
2L| f ′1|2(1−λ )|F2|. (3.2.26)

If Q≤ 2ϑ f1F2, then |∇v|2 ≤ 2 f1F2 = 2ω−1 f1(ζ ) f2(ω) and (3.2.16) holds. If not,

−Q+ϑ f1F2 ≤−Q/2≤ 0,

and

2
d
(−Q+ϑ f1F2)

2− Q2

4d
≥ Q2

4d
.

In this case, using (3.2.26) and the fact that r(y) ∈ ((1− t)R1,(γ + t)R1), and setting
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Ḡ := max{G(r) : r ∈ [(1− t)R1,(γ + t)R1]} we get

Q2 ≤ 4d
[
−∆ϑ +(2+4d)ϑ−1|∇ϑ |2 +2(d−1)G(r(y))ϑ −2( f1F ′2−L| f ′1|2λ |F2|)ϑ

]
Q

+ϑ
2L| f ′1|2(1−λ )|F2|

≤ 4d
[
−∆ϑ +(2+4d)ϑ−1|∇ϑ |2 +2(d−1)Ḡϑ +2( f1F ′2−L| f ′1|2λ |F2|)ϑ

]
Q

+ϑ
2L| f ′1|2(1−λ )|F2|

= 4d
[
A2(d,κ,α, t)+2(d−1)Ḡϑ +2 f1(ζ )(ω

−1 f2(ω)− f ′2(ω))ϑ +2ω
−1L| f ′1(ζ )|2λ | f2(ω)|ϑ

]
Q

+ϑ
2L| f ′1|2(1−λ )|F2|

≤ 4d
[
A2(d,κ,α, t)+2(d−1)Ḡ+2 f1(ζ )max

{
ω
−1 f2(ω)− f ′2(ω);0

}
+2ω

−1L| f ′1(ζ )|2λ | f2(ω)|
]

Q

+L| f ′1|2(1−λ )|F2|

(3.2.27)
where

A2(d,κ,α, t) =−∆ϑ +(2+4d)ϑ−1|∇ϑ |2 ≤−∆ϑ +(2+4d)A1R−2
1 , (3.2.28)

by (3.2.21). Thus, we have

0≤ Q≤
4dΩ̃2 +

√
(4dΩ̃2)2 +4Ω̃3

2
,

with

Ω̃2 = A2(d,κ,α, t)+2(d−1)Ḡ+2 f1(ζ )max
{

ω
−1 f2(ω)− f ′2(ω);0

}
+2ω

−1L| f ′1(ζ )|2λ | f2(ω)|,
Ω̃3 = L| f ′1|2(1−λ )|F2|.

To conclude it remains to show that A2 is bounded and (3.2.16) will follow. Indeed,

∆ϑ = ψ
′′(si)+ψ

′(si)∆si,
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is not identically zero only for si ∈
(

γ−1
2 R1,(

γ−1
2 + t)R1

)
and since for every

y ∈ B( γ−1
2 +t

)
R1
(xi),

RicM(∇si(y),∇si(y))≥−(d−1)G(r(y))≥−(d−1)Ḡ,

using Laplacian comparison, ψ ′ ≤ 0, (3.2.21) and (3.2.22), we deduce that

∆ϑ ≥ ψ
′′(si)+(d−1)

√
Ḡcoth

(√
Ḡsi

)
ψ
′(si)

≥ ψ
′′(si)+max

{
2(d−1)

√
Ḡ;

4(d−1)
(γ−1)R1

}
ψ
′(si)

≥−A1

R2
1
−4(d−1)max

{√
Ḡ;

1
R1

}√
ψA1

R1

≥−A1

R1

(
1

R1
+4(d−1)max

{√
Ḡ;

1
R1

})
.

The above inequality holds pointwise whenever qi is not a cut point of xi. If qi is a cut point,
in order to have ϑ smooth in a neighborhood of qi, we can use a standard argument by Calabi,
replacing si(y) with its associated upper barrier function si,ε,qi(y) in the definition of ϑ , i.e.,
ϑ(y) = ψ(si,ε,qi(y)), where si,ε,qi(y) = ε + distM(δ (ε),y) = ε + rδ (ε)(y) and δ is the minimum
geodesic joining xi to qi. Since ψ is nonincreasing, then qi is still a maximum for Q and the
above estimates hold again. Hence, we proved that on B( γ−1

2 +t
)

R1
(xi)

ϑ
|∇ω(x)|2

ω2(x)
≤max

{
Ω1,i;

4dΩ2,i +
√
(4dΩ2,i)2 +4Ω3,i

2

}
, (3.2.29)

where
Ω1,i :=max{ω−1 f1(ζ ) f2(ω) : x ∈ B( γ−1

2 +t
)

R1
(xi)};

Ω2,i :=A3(d,κ,γ, t, Ḡ,R1)+max{2 f1(ζ )max{ω−1 f2(ω)− f ′2(ω);0}
+2ω

−1L| f ′1(ζ )|2λ | f2(ω)| : x ∈ B( γ−1
2 +t

)
R1
(xi)},

Ω3,i :=max{ω−1L| f ′1(ζ )|2(1−λ )| f2(ω)| : x ∈ B( γ−1
2 +t

)
R1
(xi)},

and

A3(d,κ,γ, t, Ḡ,R1) :=
A1

R1

(
1

R1
+4(d−1)max

{√
Ḡ;

1
R1

})
+

(2+4d)A1

R2
1

+2(d−1)Ḡ.

Now, by compactness, there exists a finite collection {xi}n
i=1 ⊂ ∂B γ+1

2 R(o) such that

n⋃
i=1

B( γ−1
2 +t

)
R1
(xi)⊃ BγR1(p)\BR1(o).
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Then, choosing Ω1 = max{Ω1,i},Ω2 = max{Ω2,i} and Ω3 = max{Ω3,i}, the thesis follows.

Remark 3.2.6. The constant A1(t) → ∞ as R1 → R0. Moreover, the above theorem can be
extended easily to the case γ = ∞ if supG(r)< ∞ and to the case where ω is defined only on an
annulus BγR(o)\BR(o), R > 1, namely ω : BγR(o)\BR(o)→ R such that{

ω > 0 on BγR(p)\BR(o),
∆ω = f1(ζ ) f2(ω).

In this latter case, the estimate (3.2.16) still holds in any inner annulus of the form
B(γ−θ)R(o)\B(1+θ)R(o), provided 0 < θ < γ+1

2 , and replacing Dγ,t,R1(o) with
Dγ,θ ,R(o) := B(γ−θ/2)R(o) \B(1+θ/2)R(o). Note that in this case Ω2→ ∞ for θ → 0, since now
the A1 = a1(θ)→ ∞ as θ → 0.

Corollary 3.2.7. Let ω as in the previous Theorem 3.2.5 and let G(r) = κ2

(1+r2)α/2 with α ∈
[−2,2]. If

(i) ∆ω = ω

rα ,

or if

(ii) ∆ω ≡ 1
Rα

1
and ω ≥C > 0, with C independent of R1,

then
|∇ω|2

ω2 ≤ A(d,κ,γ,α, t)
Rα

1
.

Proof. Fix f1(ζ ) = f1(r) = 1
rα and f2(ω) = ω , and choose λ = 1

3 and λ = 1
2 for α ∈ [0,2] and

for α ∈ [−2,0), respectively. Then it is just a matter of easy calculations to see that

Ω1 ≤
A1

Rα
1
,

Ω2 ≤
A2

R1+α/2
1

+
A3

R2
1
+

A4

Rα
1
+

A5

R2λ (α+1)
1

≤ A6

Rα
1
,

Ω3 ≤
A7

R2(1−λ )(α+1)
1

,

from which it follows that
4dΩ2 +

√
(4dΩ2)2 +4Ω3

2
≤ A8

Rα
1
.

If f2(ω)≡ 1
Rα

1
instead and ω is uniformly bounded from below by a constant C, then

ω
−1 f2(ω)− f ′2(ω) = ω

−1 f2(ω)≤ 1
CRα

1
,

and the thesis follows from the same estimates of above.
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We next prove a lower estimate for the volume of ball of a fixed (small) radius in terms of
the distance of their center from a fixed point under radial bounds on the Ricci curvature. It
generalizes similar estimates known when the Ricci curvature is bounded below by a constant.
Note that having a variable lower bound on Ricci makes the geometry no longer homogeneous
and therefore requires a significantly more careful analysis.

Proposition 3.2.8. Suppose that

RicM ≥−(d−1)
κ2

(1+ r(x)2)α/2 , α ∈ [−2,2].

Then, for every x ∈M \B1(o), we have

vol(B1/4(x))≥

{
C̄1e−C̄2r1−α/2(x), for α ∈ [−2,2),

C̄1r−[1+(d−1)(1+
√

1+4κ2)], for α = 2.

Proof. We will give a direct proof for α ∈ [0,2) while the case for α = 2 can be recovered by
small modifications of the following considerations.

Let x be fixed and define s(y) := distM(y,x). Then, by hypothesis it holds that

RicM(∇s(y),∇s(y))≥−(d−1)
κ2

(1+ r(y)2)
α/2 ≥−(d−1)

κ2

(1+ |r(x)− s(y)|2)α/2 ,

namely
RicM(∇s(y),∇s(y))≥−(d−1)G(s),

with G(s) = κ2/
(
1+ |r(x)− s(y)|2

)α/2. Let h(s) ∈C2([0,r(x)]) be the solution of the problem
h′′(s) = G(s)y(s),
h(0) = 0,
h′(0) = 1,

(3.2.30)

on [0,r(x)], and let ψ(s) ∈C2([0,r(x)]) be the solution of the problem
ψ ′′(s) = κ2

(r(x)−s)α ψ(s),

ψ(0) = 0,
ψ ′(0) = 1,

on [0,r(x)]. The existence of ψ follows from Lemma 3.2.9, and, since κ2/(r(x)− s)α ≥ G(s),
we can apply Lemma 3.2.10 to get

0≤ h(s)≤ ψ(s) on [0,r(x)].
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Since r(x)≥ 1, by Corollary 3.2.11 we have that

vol
(
Br(x)(x)

)
VG(r(x))

≤
vol
(
B1/4(x)

)
VG(1/4)

≤ Ĉ1vol
(
B1/4(x)

)
. (3.2.31)

Now, let βp(t) be a minimizing geodesic parametrized by arc length connecting x to o and fix
ō = β (r(x)−1). Then, ō ∈ S1(o) = ∂B1(o) and for every y ∈ B1(ō) it holds that

distM(y,x)≤ distM(y, ō)+distM(x, ō)≤ r(x),

namely, Br(x)(x)⊃ B1(ō). Since

min
q∈S1(p)

vol(B1(q))≥ Ĉ2 > 0,

we have that

vol
(
Br(x)(x)

)
VG(r(x))

≥ vol(B1(ō))

Ĉ3
∫ r(x)

0 ψ(t)d−1dt
≥ Ĉ2

Ĉ3r(x)1+ (d−1)α
4 eĈ4r1−α

2 (x)
≥ Ĉ2

Ĉ3eĈ5r1−α
2 (x)

, (3.2.32)

where the right hand side inequality comes from Lemma 3.2.9 and the previous observation.
Combining (3.2.31) and (3.2.32) we obtain the required concludion.

Lemma 3.2.9. Let consider the following ODE problem on [0,r), α ∈ [−2,2],
ψ ′′(s) = G(s)ψ(s),
ψ(0) = 0,
ψ ′(0) = 1,

(3.2.33)

with G(s) = κ2

(r−s)α . Then there exists an unique solution ψ ∈C2([0,r)) such that ψ ′ > 0 on [0,r)
and

(i) Case α ∈ [−2,0)

ψ(s)≤C1(r)
2α/2

κ
sinh

(
2κ

2−α

[
(1+(r− s))1−α/2−1

])
+C2(r)

2α/2

κ
cosh

(
2κ

2−α

[
(1+(r− s))1−α/2−1

])
. (3.2.34)

(ii) Case α ∈ [0,2)

ψ(s) =C1(r)
√

r− s I 1
2−α

(
κ

1− α

2
(r− s)1−α

2

)
+C2(r)

√
r− sK 1

2−α

(
κ

1− α

2
(r− s)1−α

2

)
,

(3.2.35)

where Iν(z),Kν(z) are the modified Bessel functions.
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(iii) Case α = 2

ψ(s) =C1(r)(r− s)
1+
√

1+4κ2
2 +C2(r)(r− s)

1−
√

1+4κ2
2 . (3.2.36)

Moreover, for r ≥ 1 it holds that
ψ(r)≤C3rα/2eC4r1−α/2

, α ∈ [−2,0],

ψ(r)≤C3rα/4eC4r1−α
2 , α ∈ [0,2),

ψ(r−1)≤ r1+
√

1+4κ2
√

1+4κ2 , α = 2,

with C3 and C4 constants that depend only on α and κ .

Proof. (i) Case α ∈ [−2,0].

It is not difficult to prove that the right hand side of (3.2.34) is a subsolution of (3.2.33).
From the initial conditions we get that

C1(r) =−
(

1+ r
2

)α/2

cosh
(

2κ

2−α

[
(1+ r)1−α/2−1

])
,

C2(r) =
(

1+ r
2

)α/2

sinh
(

2κ

2−α

[
(1+ r)1−α/2−1

])
,

and then for r ≥ 1 it follows that

ψ(r)≤C3rα/2eC4r1−α/2
.

(ii) Case α ∈ [0,2).

By a change of variable x = r− s, it is easy to check (see [1, pp. 374-379]) that a general
solution of the problem (3.2.33) can be expressed in the form of (3.2.35). Imposing ψ(0) =
0 it gives

C1(r) =−C2(r)
K 1

2−α

(
κ

1−α

2
r1−α

2

)
I 1

2−α

(
κ

1−α

2
r1−α

2

) .

Using the following properties

dIν(z)
dz

(z) =
1
2
(Iν+1(z)+ Iν−1(z)) ,

dKν(z)
dz

(z) =
1
2
(Kν+1(z)+Kν−1(z)) ,

and defining zr =
κ

1−α

2
r1−α

2 , we get

ψ
′(0) =−C1

{
1

2
√

r
I 1

2−α

(zr)+

√
r

2
κr−α/2

[
I 1

2−α
+1 (zr)+ I 1

2−α
−1 (zr)

]}
−C2

{
1

2
√

r
K 1

2−α

(zr)+

√
r

2
κr−α/2

[
K 1

2−α
+1 (zr)+K 1

2−α
−1 (zr)

]}
,
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and since ψ ′(0) = 1,

C2(r) =
1

κ

2 r
1−α

2

{
K 1

2−α

(zr)

[ I 1
2−α

+1
(zr)+I 1

2−α
−1

(zr)

I 1
2−α

(zr)

]
−
[
K 1

2−α
+1 (zr)+K 1

2−α
−1 (zr)

]} .

Making use of the fact that

Iν(0) = 0, Kν(z)∼
( z

2

)ν

Γ(ν +1) for z→ 0,

Iν(zr)∼ Aν ,1
ezr

√
2πzr

for zr→ ∞, Kν(zr)∼ Aν ,2e−zr

√
π

2zr
for zr→ ∞,

where ∼ stands for the asymptotic equivalence, see at the end of Section 5.1, we conclude
that

ψ(r) =C2(r)C5(α)≤C3rα/4eC4r1−α
2 for every r ≥ 1,

since C2(r) is of the same order at infinity of the right hand side.

(iii) Case α = 2.

It is just a matter of easy calculations to verify that ψ satisfies (3.2.36) with

C1(r) =
−r

1−
√

1+4κ2
2

√
1+4κ2

, C2(r) =
r

1+
√

1+4κ2
2

√
1+4κ2

.

Finally, since ψ ′′(s)≥ 0 for every s and ψ ′(0) = 1, then ψ ′ > 0.

The following Sturm-Liouville comparison result, which we state without proof, is at the
basis of all comparison results valid under Ricci curvature lower bounds.

Lemma 3.2.10. Let G be a continuous function on [0,r] and let φ ,ψ ∈C1([0,∞)) with φ ′,ψ ′ ∈
AC((0,∞)) be solutions of the problems

{
φ ′′−Gφ ≤ 0 a.e. in (0,r),
φ(0) = 0,


ψ ′′−Gψ ≥ 0 a.e. in (0,r),
ψ(0) = 0,
ψ ′(0)> 0.

If φ(s)> 0 for s ∈ (0,r) and ψ ′(0)≥ φ ′(0), then ψ(s)> 0 in (0,r) and

(i) φ ′

φ
≤ ψ ′

ψ
,

(ii) φ ≤ ψ .
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Proof. Since ψ ′ > 0, ψ > 0 in a neighborhood of 0. We observe in passing that if G is assumed
to be nonnegative, then iterating the differential inequality satisfied by ψ we have

ψ
′(r) = ψ

′(0)+
∫ r

0
G(s)ψ(s)ds,

so that ψ ′ is positive in the interval where ψ ≥ 0, and we conclude that, in fact, ψ > 0 on (0,∞).
In the general case where no assumption is made on the signum of G, we let

β = sup{t : ψ > 0 in (0, t)}, τ = min{β ,T},

so that φ and ψ are both positive in (0,τ). The function

ψ
′
φ −ψφ

′

is continuous on [0,∞), vanishes in r = 0, and satisfies(
ψ
′
φ −ψφ

′)′ = ψ
′′
φ −ψφ

′′ ≥ 0,

a.e. in (0,τ). Thus
ψ
′
φ −ψφ

′ ≥ 0,

on [0,τ) and dividing through by ψφ we deduce that

ψ ′

ψ
≥ φ ′

φ
in (0,τ).

Integrating between ε and r (0 < ε < r < τ), yields

φ(r)≤ φ(ε)

ψ(ε)
ψ(r)

and since

lim
ε→0+

φ(ε)

ψ(ε)
=

φ(0)
ψ(0)

≤ 1,

we conclude that in fact
φ(r)≤ ψ(r) in [0,τ).

Since φ > 0 in (0,T ) by assumption, this in turn forces τ = T , for otherwise, τ = β < T , and we
would have, φ(β )> 0, while by continuity, ψ(β ) = 0, which is a contradiction.

Corollary 3.2.11. Assume that

RicM ≥−(d−1)G(r(x))

in the sense of quadratic forms with G positive and C1 on [0,∞) and let h be a solution of the
differential inequality 

h′′−Gh≥ 0
h(0) = 0,
h′(0) = 1.
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Then

∆r ≤ (d−1)
h′(r(x)
h(r(x))

pointwise in the complement of the cut-locus of M and weakly on all of M. Moreover, for every
0≤ R1 ≤ R2,

vol(BR2)(o)
VG(R2)

≤ vol(BR1)(o)
VG(R1)

, (3.2.37)

where VG(R) is the volume of the ball of radius R centered at o in the model manifold with radial
Ricci curvature equal to G, namely,

VG(R) = cd

∫ R

0
h(r)d−1ds.

Proof. See [86, Theorems 2.4 and 2.14].

Lemma 3.2.12. Set Ω = M \ ({o}∪ cut(o)), and suppose that

∆r(x)≤ φ(r) pointwise on Ω

for some φ ∈C0([0,+∞)). Let f ∈C2(R) be non-negative and set F(x) =F(r(x)) on M. Suppose
either

i) f ′ ≤ 0, or

ii) f ′ ≥ 0.

Then, we respectively have

i) ∆F ≥ f ′′(r)+φ(r) f ′(r);

ii) ∆F ≤ f ′′(r)+φ(r) f ′(r),

weakly on M.

Proof. See [86, Lemma 2.5].

Proposition 3.2.13. Let RicM(∇r,∇r)≥−(d−1) κ2

1+r2 , then

∆r(x)≤ (d−1)Cκr−1 for every r > 0,

in the sense of distributions on all of M, and with Cκ = 1+
√

1+κ2

2 .

Proof. See [86, Theorem 2.4 and Proposition 2.11].

Lemma 3.2.14. For every fixed R≥ 1 and for every γ > 1, there exists a function u : (0,+∞)→R
such that

(i) u ∈C∞((0,+∞)) and u′′(r)+ a
r u′(r) = 1

γa+1r2 , where
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(ii) u′(r)< 0 on [R,γR],

(iii) u(R) = 1 and u(γR) = 0.

Proof. A general solution of (i) can be written in the form

u(r) =C1 +C2r1−a +
r2

2γa+1R2(a+1)
. (3.2.38)

Since u(R) = 1, then

u(r) =C2(r1−a−R1−a)+1+
r2−R2

2γa+1R2(a+1)
. (3.2.39)

In order to have u′(r)< 0 on [R,γR], C2 has to satisfy

C2 >
1

a2−1
Ra−1. (3.2.40)

But condition u(γR) = 0 is achieved if and only if

C2 =
1+ γ2−1

2(a+1)γa+1

(1− γ1−a)R1−a , (3.2.41)

and putting together equations (3.2.40) and (3.2.41), we get

γa−1

γa−1−1
+

γ2−1
2γ2(a+1)(1− γa−1)

>
1

a2−1
,

that is satisfied for every R ≥ 1 and every γ > 1. Hence, choosing C2 as in (3.2.41), the thesis
follows.

3.3 Applications. Gagliardo-Niremberg-type Lq-estimates for
the gradient and essential self-adjointness of Schroedinger-
type operators

As previously mentioned, in [57, Theorem 2.2], B. Güneysu established the existence of a se-
quence of Laplacian cut-off assuming that the Ricci curvature is nonnegative, and then deduced
a number of deep results using the cut-offs he constructed. All the results in that paper which de-
pend only on the existence of sequences of cut-off functions can be generalized to the geometric
setting we consider. By way of example, [57, Theorem 2.3] on Lq properties of the gradient, can
be extended as follows.
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Let us introduce the space

L2
α(M) :=

{
f : M→ R :

∫
M

| f (x)|2

(1+ r2(x))α/2 dx < ∞

}
,

‖ f‖2,α :=

(∫
M

| f (x)|2

(1+ r2(x))α/2 dx

)1/2

.

Theorem 3.3.1. Let M be like in Theorem 3.2.1, ᾱ := min{α;0} and let

Fᾱ(M) :=
{

f | f ∈C2(M)∩L∞(M)∩L2(M), |∇ f | ∈ L2
ᾱ(M), ∆ f ∈ L2(M)

}
.

Then one has
|∇ f | ∈

⋂
q∈[2,4]

Lq(M) for any f ∈ Fᾱ(M).

More precisely, for all of f ∈ Fᾱ(M) one has

‖∇ f‖2
2 = 〈 f ,−∆ f 〉, ‖∇ f‖4

4 ≤ (2+
√

d)2‖ f‖2
∞

(
‖∆‖2

2 +(d−1)κ‖∇ f‖2
2,ᾱ
)
.

Proof. We give only a sketch of the proof since it can be adapted easily from the arguments
presented in [57]. We also remark that the condition |∇ f | ∈ L2

ᾱ(M) is necessary only for α ∈
[−2,0), since L2(M) ⊂ L2

α(M) for every α ∈ [0,2], and if f ∈ L2(M) and ∆ f ∈ L2(M) then
|∇ f | ∈ L2(M), see [104], from which it can be derived either the global integration by part
identity in the thesis’s statements.

From [56, Lemma 2] we have the inequality∫
M
|∇ f |4 dx≤ (2+

√
d)2‖ f‖2

∞

(∫
M
|∆ f |2 dx−

∫
M

RicM(∇ f ,∇ f )dx
)
.

Inserting into the above inequality the Laplacian cut-offs {φR} of Corollary 3.2.3 and taking into
account the Ricci lower bound, we get

∫
M
|∇(φR f )|4 dx≤ (2+

√
d)2‖φR f‖2

∞

(∫
M
|∆(φR f )|2 dx+(d−1)κ

∫
M

|∇(φR f )|2

(1+ r2)
α/2 dx

)
.

Properties 3. and 4. in the definition of the Laplacian cut-offs and by dominated convergence
imply that

lim
R→∞

∫
M
|∆(φR f )|2 dx =

∫
M
|∆ f |2 dx, lim

R→∞

∫
M

|∇(φR f )|2

(1+ r2)
α/2 dx =

∫
M

|∇ f |2

(1+ r2)
α/2 dx,

and the required conclusion follows.
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In another direction, one can investigate the positivity preserving property of Schrödinger
operators considered by M. Braverman, O. Milatovic and M. Shubin [15, equation (B.4)], and
recently addressed in [57, Section 2.4], namely, assuming that u ∈ L2(M) satisfies

(b−∆)u = ν ≥ 0 in D′(M), (3.3.1)

with b > 0 a positive real number, can one conclude that u ≥ 0 a.e.? Here the inequality ν ≥ 0
means that 〈ν ,φ〉 ≥ 0 for every φ ∈ C∞

c (M), and is equivalent to the fact that ν is a positive
measure. As shown in [15], there is a connection between the positivity preserving property
of Schrödinger operators for certain functional classes and the essential self-adjointness of the
operator, in particular, the essential self-adjointness of b−∆ on C∞

c (M) can be proved using the
fact that the operator is positivity preserving for L2(M) functions. Since it is well know that ∆ is
essentially self-adjoint on C∞

c (M) whenever M is geodesically complete, Braverman Milatovic
and M. Shubin made the following conjecture, [15, Conjecture P],

Conjecture 3.3.2 (Conjecture P). Let M be geodesically complete. Then

u ∈ L2(M) and (b−∆u) = ν ≥ 0⇒ u≥ 0 a.e,

and proved that a sufficient condition for the above Conjecture to hold is that M supports
a sequence of cut-off functions. As mentioned in the introduction they were able to prove the
existence of such cut-offs under the assumption of bounded geometry. It is proved in [57, Section
2.4] that this holds for manifolds with nonnegative Ricci curvature (indeed, it is shown that in
that case the positivity preserving property actually holds for functions in Lq for every q∈ [1,∞]).
As a consequence of our results we are able to further enlarge the class of manifolds for which
Conjecture P holds.

Proposition 3.3.3. Let M ba a complete Riemannian manifold such that

RicM(·, ·)≥−(d−1)
κ2

(1+ r2)α/2 ,

for some α >−2. Then Conjecture P holds on M.

3.4 Applications. The Porous Medium Equation (PME) and
the Fast Diffusion Equation (FDE) for the Cauchy prob-
lem on Riemannian manifolds

Hereafter we consider M to be a geodesically complete manifold of dimension d with

RicM(·, ·)≥−(d−1)
κ2

(1+ r2)α/2 〈·, ·〉 (3.4.1)
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in the sense of quadratic forms and with respect to a fixed reference point o ∈ M, with κ ≥ 0
and α ∈ [−2,2]. Moreover, γ will be a fixed positive real value such that γ > Γ(α,κ,d) as in
Corollary 3.2.3, and we will use the notation um := |u|m−1u.

The Cauchy problem on M{
∂tu(t,x) = ∆um(t,x) for x ∈ (0,+∞)×M
u(0,x) = u0(x) for x ∈M,

(3.4.2)

which is called Porous Medium Equation (PME) when the exponent m > 1 and Fast Diffusion
Equation (FDE) when 0 < m < 1, has been widely studied in the Euclidean setting (see [108]
and [109] for detailed surveys), and, in recent years, several papers studied the properties of the
solutions of those equations in the Riemannian setting, see for example [14], [53], [78], [110]
and [54].

This Section is devoted to extensions and refinements of some results concerning solutions to
the PME and the FDE of the Cauchy problem is the setting of a Riemannian manifold satisfying
condition (3.4.1), mainly through the use of Laplacian cut-offs. The proofs that we propose here
are often adaptations of the original proofs. For example, this is the case, [109, Proposition 9.1]
compared to Proposition 3.4.2 and [65, Lemma 3.1] compared to Theorem 3.4.6, but in order
to make this Chapter reasonably self contained we will reproduce the more relevant details,
whenever appropriate.

In Subsection 3.4.1 we focus on the so called strong solutions of the PME proving L1-
contractivity and conservation of mass properties. In Subsection 3.4.2 we consider instead the
FDE equation and generalize a weak-conservation of mass property, first proved in [65] and then
extended in [14] to the setting of Cartan-Hadamard manifolds with bounded sectional curvature.
We obtain an interesting lower bound on the extinction time T (u0) which depends explicitly on
the lower bound on the Ricci curvature. In particular, when (3.4.1) holds with α = 2 and κ ≥ 0 in
the Ricci inequality (3.4.1) we get a generalization of the critical exponent mc (see [108, Section
5]) below which finite time extinsion occurs, which reduces to the Euclidean value for κ = 0,
i.e., for Ric≥ 0. See Remark 3.4.8 below.

It is worth to point out again that the only geometric assumption we make is geodesic com-
pleteness and the Ricci curvature lower bound (3.4.1). In particular we do not need hypotheses
of topological nature nor to impose conditions on the injectivity radius. In this sense, our results
appear a genuine generalizations of previous results obtained on the PME/FDE-Cauchy problem
posed in a Riemannian setting.

3.4.1 L1 contractivity and uniqueness of the strong solution of the PME.
Consider the Cauchy problem (3.4.2) with m > 1 and with initial datum u0 which belongs to
L1(M).

Definition 3.4.1 (Strong solutions for PME). Let u ∈C([0,∞) : L1(M)) be such that

(i)
u(0,x) = u0; (3.4.3)
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(ii)
um ∈ L1

loc((0,+∞) : L1(M)) and ∂tu,∆um ∈ L1
loc((0,+∞)×M); (3.4.4)

(iii)
∂tu = ∆(um) a.e. in (0,+∞)×M. (3.4.5)

Then u is called strong solution for the Cauchy problem (3.4.2) of the PME, see [109, Definition
9.1]. In view of the next Proposition we will relax the request on um in (3.4.4) asking only that

(ii’) ∂tu,∆um ∈ L1
loc((0,+∞)×M) and∫ t2

t1

∫
{x: n≤r(x)≤γn}

|um(t,x)|dtdx = o(n1+α/2) as n→ ∞, (3.4.4’)

for every 0 < t1 < t2, with a fixed γ > Γ, see [109, Remark p.197].

In accordance with [109, Proposition 9.1], we have the following result.

Proposition 3.4.2. Let u, v be two strong solutions. For every 0 < t1 < t2 we have∫
M
|u(t2,x)− v(t2,x)|dx≤

∫
M
|u(t1,x)− v(t1,x)|dx. (3.4.6)

Proof. By (ii’), ∆um,∆vm ∈ L1
loc((0,+∞)×M) and then it can be applied Kato’s inequality [72,

Lemma A]
−∆ |um− vm| ≤ −sgn(u− v)∆(um− vm),

and by (3.4.5) we get

d
dt
|u− v| ≤ ∆ |um− vm| in D′((0,+∞)×M),

namely,
d
dt

∫
M

φ(x)|u(t)− v(t)|dx≤
∫

M
∆φ(x) |um(t)− vm(t)| dx

for every φ ∈C∞
c (M). Then, integrating with respect to time and choosing φ = φn a Laplacian

cut-off functions as in Corollary 3.2.3, we get∫
M

φn|u(t2)− v(t2)|dx≤
∫

M
φn|u(t1)− v(t1)|dx+

∫ t2

t1

∫
M

∆φn(x) |um(t)− vm(t)| dx

≤
∫

M
φn|u(t1)− v(t1)|dx

+‖∆φn(x)‖∞

∫ t2

t1

∫
{x :n≤r(x)≤γn}

|um(t)− vm(t)| dx.

Letting n→ ∞, the required conclusion follows using (3.4.4’) and the estimate

‖∆xφn‖∞ ≤C/n1+α/2.
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We have an immediate Corollary.

Corollary 3.4.3. Let u,v be strong solutions of the Cauchy problem 3.4.2 with the same initial
data, u0 = v0. Then u = v almost everywhere. Moreover, the map u0 7→ u(t) is an ordered
contraction in L1(M).

Proposition 3.4.4. For every t > 0 we have∫
M

u(t,x)dx =
∫

M
u0 dx.

Proof. We have that
d
dt

∫
M

φu(t)dx =
∫

M
∆φum dx,

in D′(M) for every φ ∈C∞
c (M). Then, taking Laplacian cut-offs φ = φR and integrating in time

the above equation in [0, t], we get∫
M

φRu(t)dx−
∫

M
φRu(0)dx =

∫ t

0

∫
M

∆φRum(s)dxdt

≤ ‖∆φR‖∞

∫ t

0

∫
M
|um(s)|dxdt

≤ tC
R1+α/2‖u

m‖1.

We conclude letting R going to infinity.

3.4.2 Weak conservation of mass of the FDE

Consider the Cauchy problem (3.4.2) with 0<m< 1 and with initial datum u0 in L1
loc(M). We are

finally ready to prove a general extension of Theorem 2.0.2 to Riemannian manifolds which we
used as example to highlight the crucial role of the existence of cut-off functions characterized by
a well-behaved control on the modulus of their Laplacian. Below we report again the definition
of weak and strong solutions for the FDE-Cauchy problem adapted to the Riemannian manifold
setting.

Definition 3.4.5 (weak and strong solutions for the FDE).
Let u(t,x) ∈C([0,+∞) : L1

loc(M)) be such that

(i)
u(0,x) = u0, (3.4.7)

(ii)
∂tu = ∆um, in D′((0,+∞)×M). (3.4.8)

Then u is called a weak solution for the Cauchy problem of the FDE. If moreover u satisfies
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(iii)
∂tu ∈ L1

loc((0,+∞)×M), (3.4.9)

then u is called a strong solution (see, [65]). Note that since 0 < m < 1 then um ∈ L1
loc(M) as

well.

Even if the first part of the proof of the following theorem will be almost identical to Part I’s
proof of Theorem 2.0.2, for the reader’s convenience and since the statement which is going to
be proved is more general and differs in several details, we will report all the passages.

Theorem 3.4.6 (Weak conservation of mass). Let u(t,x),v(t,x) ∈ L1
loc(M). If u(t,x)≥ v(t,x) are

weak solutions of (3.4.2) for the FDE, then for every R ≥ 1 if α ∈ [−2,2), R > 0 if α = 2, and
for every γ > Γα ≥ 1, it holds[∫

BR(o)

(
u(t2,x)− v(t2,x)

)
dx
]1−m

≤

[∫
BγR(o)

(
u(t1,x)− v(t1,x)

)
dx

]1−m

+MR,γ(t2− t1),

(3.4.10)

for every 0≤ t1 ≤ t2, where

MR,γ =
C

R1+α/2 Vol(BγR(o)\BR(o))1−m > 0, (3.4.11)

and where the constant C is independent of u and v but depends only on m,d,κ and γ .
If u(t,x),v(t,x) are strong solutions of (3.4.2) for the FDE, then it holds[∫

BR(o)

∣∣u(t2,x)− v(t2,x)
∣∣dx
]1−m

≤

[∫
BγR(o)

∣∣u(t1,x)− v(t1,x)
∣∣dx

]1−m

+MR,γ(t2− t1),

(3.4.10’)

where MR,γ is exactly again (3.4.11).

Proof. In the following, the constant C can change from line to line and let us focus now on the
first case, namely u(t,x)≥ v(t,x) being weak solutions.

From (3.4.8), for every nonnegative η ∈C∞
c (0,∞) and ψ ∈C∞

c (M) we have that

〈∂t(u− v),ηψ〉 = −〈u− v,∂tηψ〉
q

〈∆(um− vm),ηψ〉 = 〈um− vm,η∆ψ〉

in distributions, that is,

−
∫

∞

0

∫
M

∂tηψ(u− v)dtdx =
∫

∞

0

∫
M

η∆ψ(um− vm)dtdx,
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namely

−
∫

∞

0
∂tη

(∫
M

ψ(u− v)dx
)

dt =
∫

∞

0
η

(∫
M

∆ψ(um− vm)dx
)

dt

and which implies
d
dt

∫
M

ψ(u(t)− v(t))dx =
∫

M
∆ψ(um− vm)dx (3.4.12)

in D′(0,∞) and in L1
loc(0,∞) as well for every fixed ψ , as a consequence of (3.4.7). Since by

concavity
(r|r|m−1− s|s|m−1)≤ 21−m(r− s)m for all r ≥ s,

then (3.4.12) implies

d
dt

∫
M

ψ(u(t)− v(t))dx≤ 21−m
∫

M
|∆ψ|(u− v)m dx.

We set g := u− v. By Holder’s inequality, we obtain

d
dt

∫
M

ψg(t)≤C(ψ)

[∫
M

ψg(t)
]m

, (3.4.13)

where

C(ψ) =

[
2
∫

M
|∆ψ|1/(1−m)

ψ
−m/(1−m)

]1−m

.

Since the function fψ(t) =
∫

M ψg(t) has weak derivative in L1
loc, it is a.e. equal to an AC function,

and by standard comparison arguments, for all t1, t2 ≥ 0 and every ψ ∈C∞
c (M),[∫

ψg(t2)
]1−m

≤
[∫

ψg(t1)
]1−m

+(1−m)C(ψ)|t2− t1|. (3.4.14)

This will immediately imply the statement, once we prove that C(ψ)≤MR,γ < ∞.
Consider a function ψ = φ b

R ∈ C2
c (m), with b > 2/(1−m) and φR as in Corollary 3.2.3,

namely φR : M→ [0,1] is such that

(i) φR|BR(p) ≡ 1,

(ii) supp(φR)⊂ BγR(o),

(iii) |∇φR| ≤ C
R ,

(iv) |∆φR| ≤ C
R1+α/2 ,

where C =C(d,κ,α) is independent of R.



62 3. Laplacian cut-offs

We then have,

|∆(ψ(x))|1/(1−m)
ψ(x)−m/(1−m) = φR(x)−bm/(1−m)

∣∣∣b(b−1)φ b−2
R |∇φR|2 +bφ

b−1
R ∆φR

∣∣∣1/(1−m)

≤ [b(b−1)]1/(1−m)
φ
[(b−2)−bm]/(1−m)
R ·

∣∣|∇φR|2 + |∆φR|
∣∣1/(1−m)

≤ [b(b−1)]1/(1−m)
φ
[(b−2)−bm]/(1−m)
R ·CR−

1+α/2
1−m .

(3.4.15)
An integration over BγR(o)\BR(o), which contains the support of |∇φR| and ∆φR, gives

C(ψ) =

[
2
∫

BγR(p)\BR(o)
|∆ψ|1/(1−m)

ψ
−m/(1−m)

]1−m

≤ C
R1+α/2 (Vol(BγR(o)\BR(o))1−m.

Let now u(t,x),v(t,x) be strong solutions instead. According to (3.4.9), ∆um,∆vm ∈L1
loc((0,+∞)×

M) so that we can apply Kato’s inequality [72, Lemma A] to get

−∆ |um− vm| ≤ −sgn(u− v)∆(um− vm), (3.4.16)

and then, using (3.4.8) and arguing as in [65, Theorem 2.3]

d
dt
|u− v| ≤ ∆ |um− vm| in D′((0,+∞)×M).

The conclusion follows from the same arguments used in the previous steps, and, in particular,
from equality (3.4.12).

Definition 3.4.7 (Extinction Time). Given an initial condition u0 for the FDE Problem 3.4.2,
we call extinction time T = T (u0) the time T ∈ [0,∞), if it exists, such that

u(t,x)≡ 0 for almost every x ∈M

and for every t ≥ T (u0). If there is not such an extinction time T , we set T = ∞. See [108]
and [109]. The same time T can be called blow-up time of the diffusivity coefficient a(t,x) =
um−1(t,x), since

a(t,x)→ ∞ as u(t,x)→ 0.

Remark 3.4.8. Let T (u0) be the extinction time of the solution u(t,x) with initial condition u0(x),
as in the above Definition 3.4.7. Let v(t,x)≡ 0 and s = 0. Then, if α = 2 in (3.4.1), we have

T (u0)≥
R2

C(vol(BγR(o))1−m

(∫
BR(o)

u0(x)dx
)1−m

.
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Now, from the Bishop-Gromov inequality (3.1.3) and (3.1.2) applied with r1 = γR, r2 = 1, we
have

vol(BγR(o))≤CVG(γR) =C
∫

γR

0
hd−1(t)dt,

but since h̃(t) = t
1+
√

1+4κ2
2 is solution of (3.2.33) for G(t) = κ2/t2 ≥ κ2/(1+ t2), then by Lemma

3.2.9 and Lemma 3.2.10 we can deduce that h(t)≤ h̃(t) and get

T (u0)≥ C̄
R2

R

[
1+
(

1+
√

1+4κ2
2

)
(d−1)

]
(1−m)

,

whence, letting R→ ∞, we deduce that T (u0) = ∞ if

2−

[
1+

(
1+
√

1+4κ2

2

)
(d−1)

]
(1−m)> 0,

that is, rearranging, provided

m > mc = 1− 2[
1+
(

1+
√

1+4κ2

2

)
(d−1)

] . (3.4.17)

Note that, if Ric≥ 0, so that we can take κ = 0, we recover the Euclidean constant mc =
d−2

d . On
the other hand, if α ∈ [−2,2), vol(BR(o)) may grow super-polynomially, and, in general we can
not deduce a non-extinction property. Observe that, as stated in [54, section 3 - examples 3.1],
in a model manifold with radial Ricci curvature Ric(∇r,∇r) = −(d− 1) κ2

(1+r2(x))α/2 , α ∈ (0,2),
radial functions satisfy a Sobolev inequality of the form

‖ f‖2σ ≤C‖∇ f‖2, σ ∈ (1,d/(d−2)], (3.4.18)

which is a key ingredient for a proof of finite extinction time. According to [14, Theorem 6.1],
radial strong solutions of the FDE in such model manifolds which satisfy moreover the Poincaré
inequality, i.e., inequality (3.4.18) for σ = 1, vanish in a finite time T (u0) for every m ∈ (0,1),
provided that u0 ∈ Lq(M) with q≥ d(1−m)/2.

From Theorem 3.4.6 and Remark 3.4.8, we get

Theorem 3.4.9. Let u(t,x) ∈ L1
loc(M) be a weak solution of (3.4.2) for the FDE, then for every

R≥ 2 if α ∈ [−2,2), R≥ 1 if α = 2, and for every γ > Γ≥ 1, it holds∫
BR(o)

u(t,x)dx≤ 21/(1−m)

{∫
BγR(o)

u(s,x)dx+
(
MR,γ |t− s|

)1/(1−m)
}
,

for any t,s ≥ 0 and where MR,γ is like in (3.4.11). If there exists an extinction time T (u0), then
it is lower bounded by

T (u0)≥
R1+α/2

C(vol(BγR \BR))1−m

(∫
BR

u0(x)dx
)1−m

.
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Finally, let us observe that inequality (3.4.10) depends on chosen reference point o, in sharp
contrast to the result of Theorem 2.0.2. Thus, in order to prove uniqueness of strong solutions
for every m ∈ (0,1) with the method of [65, Theorem 2.3], the first task is to get rid of that
dependency. But this alone is not enough, since a key tool there is the Mean Value Theorem for
subharmonic functions. Keeping this into consideration, we can prove the following result.

Theorem 3.4.10. Let M be a geodesically complete manifold and let u,v be strong solutions for
the FDE problem (3.4.2) with same initial data, u0 = v0. If

(i) RicM(·, ·) satisfies (3.4.1) with α = 2, then u≡ v for every m > mc, where mc is defined as
in (3.4.17);

(ii) RicM(·, ·)≥ 0, so that (3.4.1) holds with κ = 0, then u≡ v for every m ∈ (0,1).

Proof. From inequality (3.4.10’), we have∫
BR(o)
|u(t)− v(t)|dx≤C

[∫
BγR(o)

|u(0)− v(0)|dx+
vol(BγR(o))

R
2

1−m
t

1
1−m

]
=C

vol(BγR(o))

R
2

1−m
t

1
1−m , (3.4.19)

and observe that the above inequality is valid for both the cases (i) and (ii). From Remark 3.4.8

vol(BγR(o))≤C(o)R
1+
(

1+
√

1+4κ2
2

)
(d−1)

,

and letting R→ ∞ in (3.4.19), the right hand side converges to 0 provided m > mc and the thesis
follows for case (i).

Let us now be in case (ii), namely κ = 0. Then inequality (3.4.19) is true for every o ∈M.
Set

f (t,x) =
∫ t

0
|um− vm|(s,x)ds.

By integrating in time in (3.4.16) we get |u(t)−v(t)| ≤ ∆ f (t,x) in D′(M) for every t > 0. There-
fore, f is subharmonic and from [76, Theorem 2.1] it holds that

f (t, p)≤Cvol(BR(p))−1
∫

BR(o)
f (t,x)dx, (3.4.20)

for every R > 0 and for every o ∈ M, with C = C(d). Moreover, from Hölder inequality and
(3.4.19) we deduce that∫

BR(o)
f (t,x)dx≤C

∫ t

0

∫
BR(o)
|u(t)− v(t)|m dx

≤C
∫ t

0
vol(BR(o))1−m

(∫
BR(o)
|u(s)− v(s)|

)m

ds

≤Cvol(BR(o))1−m
∫ t

0

vol(BγR(o))m

R
2m

1−m
sm/(1−m) ds

≤C(γ)
vol(BR(o))

R
2m

1−m
t1/(1−m),
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and inserting the last inequality into (3.4.20) and letting R→ ∞ we get the required conclusion.

3.4.3 PME with growing initial data.

Finally, we examine now the case when u0 ∈ L1
loc(M). In [5] and [8], the authors provided

necessary and sufficient conditions in Rd on the growth at infinity of the initial data u0 for the
existence and uniqueness of nonnegative solutions of the Cauchy problem (3.4.2) for m > 1.
The issue of finding the optimal class of existence and uniqueness for nonnegative solutions in
the Riemannian setting is still an open problem, see [110, Section 11]. In this Subsection, even
if we will still not provide a full treatment of the problem, which would require much more
attention and time on its own, we will begin to give some preliminary results adapting arguments
used in [8]. In particular, we will extend the validity of inequalities [8, (1.7), (1.8), (1.9) and
(1.10)]. Beside the usual assumption (3.4.1) on the curvature we will request M to satisfy here
the Sobolev inequality

‖ f‖2∗ ≤C‖∇ f‖2, 2∗ =
2d

d−2
for d ≥ 3,

‖ f‖2 ≤C‖∇ f‖1, for d = 2,

(3.4.21)

for every f ∈ H1(M). Before proceeding we need several technical definitions.
Let r and D1,α , D2,α be the exhaustion function and the constants which appear in Theorem

3.2.1, respectively, and let {φR}R≥1 be a family of Laplacian cut-off like in Corollary 3.2.3. Let
us define

γ = Γα +1, Γα =

{D2,α
D1,α

for α ∈ [−2,2),

1 for α = 2,

and let us specify ψ(s) ∈C∞
c (R), 0≤ ψ ≤ 1, such that

ψ(s) =


1 for s ∈ (−∞,Γα ] ,

e−
1

Γα+1−s for s ∈
(

2Γα+1
2 ,Γα +1

)
,

0 for s≥ Γα +1.

(3.4.22)

Then, φR(x) = ψ

(
h(x)

D1,α R1−α/2

)
as in 3.2.3.

Definition 3.4.11 (The Banach spaces X and L(ρβ )). For every r ≥ 1, set the norms

| f |r := sup
R≥r

R−
(

d+ 1+α/2
m−1

) ∫
M

φR(x)| f (x)|dx;

||| f |||r := sup
R≥r

R−
(

d+ 1+α/2
m−1

) ∫
BR

| f (x)|dx.

(3.4.23)

(3.4.24)
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Observe that ||| f |||r ≤ | f |r ≤ Γ
d+ 1+α/2

m−1
α ||| f |||r, that is they are equivalent norms. We define the

space X as
X :=

{
f ∈ L1

loc(M) : ||| f |||1 < ∞
}
,

equipped with the norm |||·|||1.
Fix

ρα,β (x) =
1

(1+ r1+α/2(x))β
,

where α is like in (3.4.1) and β ∈ R. Then we define the weighted space L1(ρα,β ) as

L1(ρα,β ) :=
{

f ∈ L1
loc(M) :

∫
M
| f |ρα,β < ∞

}
,

equipped with the norm ‖ f‖L1(ρα,β )
=
∫

M | f |ρα,β .

Definition 3.4.12 (Class of solutions S ). Let u0,v0 ∈ L1(M)∩L∞(M). Suppose that the solution
map S(u0, t) 7→ u(t), which associate at every initial datum u0 an unique strong solution u(t) for
the PME Cauchy problem (3.4.2), is well defined and that satisfies:

• S(u0, ·) ∈C([0,∞) : L1(M));

• ‖S(u0, t)−S(v0, t)‖1 ≤ ‖u0− v0‖1;

• if u0 ≤ v0 then S(u0, t)≤ S(v0, t);

• −‖max{−u0;0}‖∞ ≤ S(u0, t)≤ ‖max{u0;0}‖∞;

• S(−u0, t) =−S(u0, t);

• ∆S(u0, t)m−1 ≥−C
t in D′(M).

We call this class of solutions S .

We have the corresponding version of [8, Proposition 1.3] for Riemannian manifolds.

Proposition 3.4.13. Let f ∈ L∞(M) be nonnegative, Λ ∈ (0,∞) and

∆ f m−1 ≥−Λ in D′(M). (3.4.25)

Then, there exists a constant C depending only on d and m > 1 such that for 1≤ r ≤ R

1
R1+α/2‖ f‖m−1

L∞(BR(p)) ≤C
(

Λ
λ (m−1)| f |2λ (m−1)/d

r + | f |m−1
r

)
, (3.4.26)

where
λ = d/((m−1)d +2). (3.4.27)
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Proof. Let f satisfies the above hypothesis and let us assume moreover f to be smooth and
strictly positive, so that, in particular, f m−1 is smooth. To drop the smoothness and strictly
positivity assumptions, let us remark that f can be approximated by a smooth positive sequence
{ fi}i∈N such that ∆ f m−1

i ≥ −Λ and fi → f in L∞
loc(M). Indeed, noting that every Riemannian

manifold has locally bounded geometry, this can be done, for example, by means of a smooth
partition of unity and localized standard mollification techniques.

Let φR be the cut-off that appears in equation (3.4.23), then

∆(φR f )m−1 = φ
m−1
R ∆ f m−1 +2〈∇φ

m−1
R ,∇ f m−1〉+ f m−1

∆φ
m−1
R ,

and by (3.4.25)

∆(φR f )m−1 ≥−Λφ
m−1
R +2〈∇φ

m−1
R ,∇ f m−1〉+ f m−1

∆φ
m−1
R . (3.4.28)

Observe that φ θ
R ∈C∞

c (M) for every θ > 0 and that, by Corollary 3.2.3 and (3.4.22), for all a > 1

‖φ a−2
R |∆φR|+φ

a−3
R |∇φR|2‖∞ ≤

C(a,α)

R1+α/2 , (3.4.29)

in particular ∆φ
m−1
R is bounded. Multiplying (3.4.28) by (φR f )p where p > 1 and integrating we

obtain∫
M
〈∇(φR f )p,∇(φR f )m−1〉dx≤ Λ

∫
M
(φR)

m−1+p f p dx−2
∫

M
(φR f )p〈∇φ

m−1
R ,∇ f m−1〉dx

−
∫

M
(φR f )p f m−1

∆φ
m−1
R dx.

(3.4.30)

We have that∫
M
〈∇(φR f )p,∇(φR f )m−1〉dx =

4(m−1)p
(m−1+ p)2

∫
M
|∇(φR f )

p+m−1
2 |2 dx, (3.4.31)

∫
M
(φR f )p〈∇φ

m−1
R ,∇ f m−1〉dx =

(m−1)2

(m−1+ p)2

∫
M
〈∇φ

m−1+p
R ,∇ f m−1+p〉dx

=− (m−1)2

(m−1+ p)2

∫
M

f m−1+p
∆φ

m−1+p
R dx

=− (m−1)2

(m−1+a)2

∫
M

f m−1( f φR)
p

·
[
(m−2+ p)φ m−3

R |∇φR|2 +φ
m−2
R ∆φR

]
dx.

(3.4.32)

Using (3.4.31), (3.4.32) and (3.4.29) in (3.4.30) we get∫
M

∣∣∣∇(φR f )
p+m−1

2

∣∣∣2 dx≤C
[

Λ

∫
M
(φR f )p dx+

1
R1+α/2

∫
M
(φR f )p f m−1 dx

]
. (3.4.33)
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Fix now r ≥ 1 and define

A = sup
R≥r

‖ f‖m−1
L∞(BR(p))

R1+α/2 .

Then, by the Sobolev inequality (3.4.21) with d ≥ 3 and by (3.4.33), we have that[∫
M
(φR f )sp+b

]1/s

dx≤C(Λ+A)
∫

M
(φR f )p dx, (3.4.34)

where

s =
d

d−2
, b = s(m−1) =

(m−1)d
d−2

,

which is inequality [8, (1.46)] where we used d in place N for consistency of our notation. From
this point onward, the arguments will be exactly the same as in the original proof [8, Proposition
1.3] with the only difference of defining θ0 =

1+α/2
m−1 +d in equation [8, (1.49)]. Same remark for

the case d = 2.

We want to point out that the left-hand side of inequality (3.4.26) depends on the decay
rate estimates of the Laplacian of the cut-offs while the λ constant that appears in right-hand
side is correlated to the Sobolev constant. Manifolds which satisfy different kind of functional
inequalities may give different estimates in (3.4.26).

Lemma 3.4.14. Let 0≤ u0 ∈ L1(M)∩L∞(M) and u∈S . There are constants C1, C2 and C3 > 0
depending only on d and m > 1 such that if r ≥ 1 and 0≤ t ≤ Tr(u0) =C1/|u0|m−1

r then

(i) |u(t)|r ≤C2|u0|r;

(ii)
‖u(t)‖m−1

L∞(BR)

R1+α/2 ≤ C3
tλ (m−1) |u0|

2λ (m−1)/d
r for R≥ r,

with λ as in (3.4.27).

Proof. The proof is a direct adaptation of [8, Lemma 1.4] using Proposition 3.4.13 combined
again with Corollary 3.2.3. We will skip the details this time.

Lemma 3.4.15. In the same assumptions and notations of Lemma 3.4.14, let u,v∈S with initial
data u0 and v0, respectively. Let r ≥ 1, α as in (3.4.1), β ∈ R and t ∈ [0,min{Tr(u0);Tr(v0)}].
Then

|||u(t)− v(t)|||r ≤ eC1t2λ/d |||u0− v0|||r, (3.4.35)

and
‖u(t)− v(t)‖L1(ρα,β )

≤ eC2t2λ/d
‖u0− v0‖L1(ρα,β )

, (3.4.36)

where C1 depends only on max{|||u0|||r; |||v0|||r}, C2 depends only on max{|||u0|||r; |||v0|||r;β ;r} and
λ is like in (3.4.27).
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Proof. Defining the usual family of Laplacian cut-offs {φR}R≥1 and using the arguments in the
proof of Proposition 3.4.2, we are lead to

d
dt

∫
M

φR|u(t)− v(t)| ≤
∫

M
∆φR |um(t)− vm(t)|

≤ C
R1+α/2

∫
M

max{m|u(t)|m−1;m|v(t)|m−1}|u− v|

≤C max{R−1−α/2‖u‖m−1
L∞(BΓα R)

;R−1−α/2‖v‖m−1
L∞(BΓα R)

}
∫

BΓα R

|u− v|

≤C max{R−1−α/2‖u‖m−1
L∞(BΓα R)

;R−1−α/2‖v‖m−1
L∞(BΓα R)

}
∫

M
φΓα R|u− v|.

(3.4.37)

By multiplying both members of the above inequality by R−[(1+α/2)/(m−1)+d], using (ii) of
Lemma 3.4.14 and integrating in time, we get

|u(t)− v(t)|r ≤ |u0− v0|r +C max{|u0|r; |v0|r}(2λ/d)(m−1)
∫ t

0

|u(τ)− v(τ)|r
τλ (m−1)

dτ,

for 0≤ t ≤C1 min{|u0|1−m
r ; |v0|1−m

r }. We conclude now by comparing t 7→ |u(t)− v(t)|r with

h(t) = |u0− v0|re(D/(1−λ (m−1)))t1−λ (m−1)
,

which is solution of {
h′(t) = Dh(t)t−λ (m−1),

h(0) = |u0− v0|r,

where D =C max{|u0|r; |v0|r}(2λ/d)(m−1) and 1−λ (m−1) = 2λ/d.
To prove inequality (3.4.36) instead, let us introduce the following weight-function

ρ̃α,β (x) :=


1 if x ∈ B1(p),

11+
(

r(x)
D2,α

) 1+α/2
1−α/2

β
if x ∈M \B1(p),

for α ∈ [−2,2) and with β ≥ 0. From (1) of Theorem 3.2.1, it is not difficult to check that

ρα,1 ≤ ρ̃α,1 ≤max
{

2;(D2,α/D1,α)
1+α/2
1−α/2

}
ρα,1 on all over M,
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that is the norm ‖ · ‖L1(ρα,1)
is equivalent to the norm ‖ · ‖L1(ρ̃α,1)

induced by the weight-function
ρ̃α,1. Noticing now that the product function φRρ̃α,1 ∈C∞

c (M), we can then argue like above to
get

d
dt

∫
M

φRρ̃α,1|u(t)− v(t)| ≤
∫

M
∆(φRρ̃α,1) |um(t)− vm(t)| .

Using the estimates in Theorem 3.2.1, the definition of ρ̃α,1 and that r ≥ 1, α ∈ [−2,2) and
supp(|∇φR|+ |∆φR|)⊆ BΓα R \BR, we have∣∣∆(φRρ̃α,1)

∣∣≤ ρ̃α,1|∆φR|+2|〈∇ρ̃α,1,∇φR〉|+φR|∆ρ̃α,1|

≤
C1ρ̃α,1

R1+α/2 +2|∇ρ̃α,1||∇φR|

+
C2ρ̃α,1

1+
(

r
D2,α

) 1+α/2
1−α/2


A1r

2α

1−α/2

1+
(

r
D2,α

) 1+α/2
1−α/2

+A2

(
r
− 1−3α/2

1−α/2 + r
α

1−α/2

)r−α

≤C1
ρ̃α,1

R1+α/2 +C3
ρ̃α,1

R1+α/2 +C2
ρ̃α,1

1+
(

r
D2,α

) 1+α/2
1−α/2

.

For R≤ r(x)≤ ΓαR, we have

|u(t,x)|m−1

1+
(

r(x)
D2,α

) 1+α/2
1−α/2

≤ (ΓαR)1+α/2

1+(Γα)
− 1+α/2

1−α/2 R1+α/2

‖u(t,x)‖m−1
L∞(BΓα R)

(ΓαR)1+α/2 ,

and for r(x)≤ r

|u(t,x)|m−1

1+
(

r(x)
D2,α

) 1+α/2
1−α/2

≤ r1+α/2
‖u(t,x)‖m−1

L∞(Br)

r1+α/2 ,

and it follows then that

sup
x∈M

|u(t,x)|m−1

1+
(

r(x)
D2,α

) 1+α/2
1−α/2

≤C(r)sup
R≥r

‖u(t,x)‖m−1
L∞(BR)

R1+α/2 .

We can then proceed again as from (3.4.37) and conclude thanks to the equivalence of the norms
‖ · ‖L1(ρα,1)

∼ ‖ · ‖L1(ρ̃α,1)
. The case β < 0 and the case α = 2 are done in the same way with

suitable changes.

3.5 Conclusions, open problems and further comments
We believe that some of the techniques we introduced in this chapter, in particular the sequence
of Laplacian cut-offs, will be useful for further applications, such as the extensions of global
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properties of different type of PDE’s to Riemannian manifolds. Nevertheless, there are still
many open problems. For example, it is not clear whether it is possible to obtain a control even
on the Hessian of the cut-offs without imposing a strictly positive injectivity radius.
Moreover, in the spirit of the previous section, it would be interesting to extend the theory of
PME and FDE with growing initial data, i.e., u0 ∈ L1

loc(M). In the Riemannian setting there is
not even an existence result for the FDE, in that sense.
Finally, regarding concrete applications, thanks to the preliminary results obtained in Theorem
3.4.6 and Remark 3.4.8, we are now in the position to begin a reasonable study concerning the
extinction properties of plasma inside toroidal reactors, see [82].
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Introduction to inverse problems regularization: an example
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When we speak about an inverse problem a natural question arises: inverse with respect to
what? If we are dealing with a real world application, for example, we could be interested in
finding the initial state of the system after we observed its actual evolution, solving a backward
problem. Contextualizing this slightly vague example to a concrete one, let us consider an appli-
cation to image deblurring.

Observed image = Blur ∗ True image + Noise

Figure 4.1: Blurring process

Generally speaking, whenever we take a picture of an object the resulting image can be
perturbed due to some (atmospheric) blur and background noise, like measurement errors or data
approximations, over which we do not have any control. In this case we wish to recover the true
image from our observation. From a physical point of view, the blurring process can be modeled
by a convolution operator. Indeed, if we think of an image as a function f that represent the
light and assign at every point of the space (pixel) a number (actually, a triple of numbers) which
encodes the color in the RGB standard, then the blur process can be represented in the following
way,

g(s, t) =
∫∫

Ω

h(s− s′, t− t ′) f (s′, t ′)ds′dt ′+η(s, t), (s, t) ∈Ω⊂ R2,

where f : Ω → R is the true image, g : Ω → R is the observed image and h : R2 → R and
η : R2→ R are called point spread function (PSF) and noise, respectively. Therefore,

g(s, t) = (h∗ f )(s, t)+η(s, t), (4.0.1)

and if we assume that the convolution kernel h is in L2(R2), then the blur operator is a compact
integral operator of the first kind, see Proposition 5.1.14. Solving the above problem 4.0.1 is
challenging, because even if theoretically a solution f exists, practically it would be impossible
to recover it exactly due to the noise affecting the observed data. Indeed, we say that the problem
is ill-posed. A proper definition of ill-posedness will be given later, see Definition 4.0.2, but
to make it clear, small changes on the observed image g greatly affect the recovered solution,
making it distant, in some sense, from the true solution f . Since the noise η can not be canceled
out of the equation, solving strategies which do not take into account with sufficient care the
ill-posedness of the problem would lead to poor approximated solutions.

In order to have a better understanding of what happens when we discretize problem 4.0.1,
we consider the one dimensional case and we suppose that η = 0. Namely,

g(s) =
∫ b

a
h(s− s′) f (s′)ds′, s ∈ [a,b]⊂ R.
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If we define si = a+ iξ , with ξ = b−a
n , n ∈ N fixed, i = 0, · · · ,n, then

g(s j)≈ ξ

n−1

∑
i=0

h(s j− si) f (si) = ξ

n−1

∑
i=0

h(( j− i)ξ ) f (si), j = 0, · · · ,n−1.

Setting
g j := g(s j), h j−i := ξ h(( j− i)ξ ) , fi := f (si),

to simplify notation, the discrete convolution may be rewritten as

g j =
n−1

∑
i=0

h j−i fi,

that is,

g = Hf g, f ∈ Rn, (4.0.2)

with

H =


h0 h−1 · · · · · · h−(n−1)
h1 h0 h−1 · · · h−(n−2)
... . . . . . . . . . ...
... . . . . . . . . . h−1

hn−1 · · · · · · h1 h0

 .
The matrix M is determined by its first row and column, i.e., by 2n−1 parameters. Moreover, it
is constant on all of its diagonal entries (Toeplitz matrix, see Definition 6.1.1). This brings us to
define the stencil vector vPSF,

vPSF =
[
hn−1 · · · h1 h0 h−1 · · · h−(n−1)

]
,

and
j f̃ =

[
f̃ j−(n−1) · · · f̃ j−1 f̃ j f̃ j+1 · · · f̃ j+n−1

]
, for j = 0, · · · ,n−1,

where

f̃i =

{
fi if i = 0,1, · · · ,n−1,
0 otherwise,

from which we can write

g j = 〈vPSF,
j f̃〉

= hn−1 · f̃ j−(n−1)+ · · ·+h1 · f̃ j−1 +h0 · f̃ j

+h−1 · f̃ j+1 + · · ·+h−(n−1) · f̃ j+n−1.

Changing j into j + 1 (or j− 1) would produce a shift to the right (or left) of the elements of
the stencil vPSF, since h0 always acts on f̃ j. To understand the role of h, let us fix n even and
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f = [0, · · · ,1, · · · ,0], i.e., f the unitary vector en/2 with entry 1 in position n/2 and 0 elsewhere.
A natural hypothesis is to assume that the entries of h sum to 1,

n−1

∑
i=−(n−1)

hi = 1,

since the total amount of light which is blurred does not change. A representation of g under the
action of a Gaussian PSF h can be seen in Figure 4.2. We observe that the light, concentrated
in position n/2, is redistributed on the entire interval [a,b]. In this case we implicitly imposed
f ≡ 0 outside [a,b] and one of the consequences of this choice is the Toeplitz structure of H.
Other choices for the boundary conditions would lead to different matrix structures for H as it
will be seen in Chapter 6.

Figure 4.2: Gaussian PSF.

So far we still have not clarified why such a discretized convolution problem (4.0.2) can be
hard to solve. We give the following definition.

Definition 4.0.1 (Condition number). Let A : Cn→ Cn be an invertible linear operator. Define
the conditioning number κ(A) of the operator A as

κ(A) :=

(
sup
v6=0

‖Av‖
‖v‖

)
·

(
sup
u6=0

‖A−1u‖
‖u‖

)
.

Loosely speaking, the condition number measures the continuity of the inverse of an operator
with respect to the continuity of the operator itself. The bigger the condition number and the
worse will be the reconstructed numerical solution if we directly invert the operator. Indeed, as
it has already been said, we do not solve problem (4.0.2) but a modified version of it where the
noise comes into play,

gδ = Hf+η , ‖η‖= δ . (4.0.3)
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If we assume H to be invertible and if we put

fδ := H−1gδ ,

then even for small values of δ , the ratio ‖fδ − f‖/‖f‖ is great. Indeed, the matrix H is ill-
conditioned, i.e. κ(H) is big, and this is an intrinsic property of compact operators, see Chapter
5.1. The Condition number and the consequent sensitiveness of solutions to perturbed data are
related to the concept of discrete ill-posedness for a problem, see [63]. We present here the
(pseudo) definition, due to Hadamard, of ill-posedness for a problem in a continuous setting.

Definition 4.0.2 (Ill-posed problem). We say that a problem is well-posed if the following prop-
erties hold:

(i) a solution exists for all admissible data;

(ii) the solution is unique;

(iii) the solution depends continuously on the data.

We say that a problem is ill-posed if it is not well-posed.

Of course, the definition lacks of precision. In order to make it mathematically precise several
elements should be fixed, such as a definition of what it is considered for solution, what data
are admissible and the topology of the space. Nevertheless, this generality makes it flexible in
different context.

According to the above definition, Problem 4.0.3 is ill-posed and therefore we need to regu-
larize it to compute an approximated and numerically stable solution which could be sufficiently
accurate, where regularizing means to substitute H−1 with a suitable family of continuous op-
erators {Rα} depending on one (or several) parameter α . The choice of the best regularizing
parameter α is of utmost importance, and it reflects in some sense the trade-off between accu-
racy and stability.

Obviously, the image deblurring problem we presented here is just one of the many exam-
ples of inverse problems which could be proposed, but it served us with the purpose to briefly
motivating Chapter 6, where new strategies of preconditioning as regularizer are introduced to
solve inverse problems in the imaging context. Chapter 5 is devoted instead to regularization
techniques of filter type which have been recently studied. In this latter case we will deal with
inverse problems in the more general setting of Hilbert spaces and for this reason we will use
a slightly different notation with respect to the notation used in this chapter and which we will
recall in Chapter 6, where we mostly deal with a discretized model. Therefore, we are confident
that there will be no risk of misunderstandings.
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5.1 Preliminary definitions: best approximate solution and
compact operators theory.

We introduce here the basic theory of compact operators and generalized inverse of operators
which we believe it will be useful here and in the next chapter. For a full treatment of the
subjects we refer the reader to [48], [94] and [34].

Let T : X → Y be a continuous linear operator between Hilbert spaces X and Y (over the
field R or C) with inner products 〈·, ·〉X and 〈·, ·〉Y , and induced norms ‖x‖X =

√
〈x,x〉X and

‖y‖Y =
√
〈x,x〉Y , respectively. We recall that a linear operator T between Hilbert spaces is

continuous if and only if is bounded and that the operator norm ‖T‖ is defined as

‖T‖ := sup
x∈X ,x 6=0

‖T x‖Y
‖x‖X

.

Hereafter we will omit the subscript for the inner product and the norm as it will be clear from
the context. For brevity, we will write T ∈B(X ,Y ), where

B(X ,Y ) := {A : X → Y : A is a bounded linear operator} .

For X = Y , B(X ,Y )≡B(X).
What we said and most of what we will present in this section can be hold in to the more general
setting of Banach spaces, however in this Chapter we will restrict ourselves to the Hilbert case.
We have the following definitions.

Definition 5.1.1 (Least square solution). x ∈ X is called least square solution of the equation
T x = y if

‖T x− y‖= inf{‖T z− y‖ : z ∈ X} .

Definition 5.1.2 (Best approximate solution). x ∈ X is called best approximate solution of the
equation T x = y if x is a least square solution of T x = y and

‖x‖= inf{‖z‖ : z is a least square solution of T x = y}

holds.

Definition 5.1.3 (Moore-Penrose generalized inverse).
Let T̃|Ker(T )⊥ : Ker(T )⊥→ Rg(T ). We define the Moore-Penrose generalized inverse T † of T the
unique linear extension of T̃−1 to

Dom(T †) = Rg(T )uRg(T )⊥

with
Ker(T †) = Rg(T )⊥.

We just want to observe that the above definition is well-defined. Indeed, since Ker(T̃ ) = {0}
and Rg(T̃ ) = Rg(T ), then T̃−1 exists.
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Proposition 5.1.4. Let P and Q be the orthogonal projectors onto Ker(T ) and Rg(T ), respec-
tively. Then Rg(T †) = Ker(T )⊥, and the following equalities hold

T T †T = T, (5.1.1a)
T †T T † = T †, (5.1.1b)
T †T = I−P, (5.1.1c)
T T † = Q|Dom(T †). (5.1.1d)

Proof. See [48, Proposition 2.3].

Proposition 5.1.5. The Moore-Penrose generalize inverse T † has a closed graph Graph(T †).
Furthermore T † is bounded if and only if Rg(T ) is closed.

Proof. See [48, Proposition 2.4].

Theorem 5.1.6. For every T ∈ B(X ,Y ), with X and Y Hilbert spaces, there exists a unique
bounded linear operator T ∗ ∈B(Y,X) such that

〈T x,y〉= 〈x,T ∗y〉

for every x ∈ X and y ∈ Y . Moreover, T ∗ satisfies

‖T ∗‖= ‖T‖

and it is called adjoint of T .

Proof. See [94, Theorem 4.10].

Obviously, in the finite dimensional case T ∗ corresponds to the Hermitian transpose of the
matrix operator T .

Definition 5.1.7 (Self-adjoint operator). A bounded linear operator T : X → X is called self-
adjoint if T = T ∗.

Definition 5.1.8 (Compact operator). Let K : X → Y be a linear operator and let B1 be the
open unit ball in X, namely, B1 := {x ∈ X : ‖x‖ < 1}. K is said to be compact if it satisfies one
of the following equivalent properties:

(i) K(B1) is compact in Y ;

(ii) every bounded sequence {xn}n∈N in X contains a subsequence {xnk} ⊆ {xn} such that
{T xnk} is convergent in Y .

The set of all compact linear operators K : X → Y is denoted with B0(X ,Y ). For X = Y ,
B0(X ,Y )≡B0(X).

A compact operator is obviously bounded and therefore continuous, namely, B0(X ,Y ) ⊂
B(X ,Y ).
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Proposition 5.1.9.

(i) Let {Kn}n∈N ⊂B0(X ,Y ) be a sequence of compact operators and let T ∈B(X ,Y ) such
that ‖Kn−T‖→ 0 as n→ ∞. Then T ∈B0(X ,Y ).

(ii) If T ∈B(X),A ∈B(Y ), and K ∈B0(X ,Y ), then KT and AK ∈B0(X ,Y ).

Proof. See [34, Proposition 4.2].

Definition 5.1.10. An operator T on X has finite rank if Rg(T ) is finite dimensional.

Theorem 5.1.11. If T ∈B(X ,Y ), the following statements are equivalent.

(i) T is compact.

(ii) T ∗ is compact.

(iii) There is a sequence {Tn}n∈N of operators of finite rank such that ‖Tn−T‖→ 0 as n→ ∞.

Proof. See [34, Theorem 4.4].

Proposition 5.1.12. Let K ∈B0(X ,Y ). Then Rg(K) is closed if and only if it has finite rank.

Proof. See [94, Theorem 4.18].

Combining now Proposition 5.1.5 and 5.1.12, it follows

Proposition 5.1.13. Let K ∈ B0(X ,Y ). If dimRg(K) = ∞ then K† is a densely defined un-
bounded linear operator.

It follows an example of compact operator which is related to Problem (4.0.1).

Proposition 5.1.14. If (X ,Ω,µ) is a measure space and k ∈ L2(X×X), then

(K f )(s) =
∫

k(s,s′) f (s′)dµ(s′)

is a compact operator and ‖K‖ ≤ ‖k‖L2 .

Proof. [34, Proposition 4.7].

Definition 5.1.15 (Spectrum). Let T ∈B(X). The spectrum σ(T ) of T is the set of all σ ∈ C
such that the operator σ I−T is not invertible on all of X, where I is the identity operator.

It is trivial to check the set of all the eigenvalues of an operator T is a subset of σ(T ).
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Theorem 5.1.16. Let T ∈B0(X) and let T be self-adjoint. Then σ(T )\{0} ⊂R and it consists
of the sequence of eigenvalues {σm}N

m=1 of T , such that N ∈ N or N = ∞ and with finitely many
|σm| > r for any r > 0. If N = ∞ then limm σm = 0 and 0 ∈ σ(T ). Moreover, there exists a
corresponding orthonormal sequence {vm}N

m=1 ⊂ X such that

T vm = σmvm, for all m = 1, · · · ,N;

Ker(T ) = Span
(
{vm}N

m=1
)⊥

;

T x =
N

∑
m=1

σm〈x,vm〉vm for every x ∈ X .

(5.1.2)

(5.1.3)

(5.1.4)

Proof. See [67, Theorem 4.2.4].

By Proposition 5.1.9 and Theorem 5.1.11, K∗K and KK∗ are compact self-adjoint operators
for every K ∈B0(X ,Y ), and we have the following corollary.

Corollary 5.1.17. Let K ∈B0(X ,Y ). Then it holds

Kx =
+∞

∑
m=1

σm〈x,vm〉um, for every x ∈ X ,

K∗y =
+∞

∑
m=1

σm〈y,um〉vm, for every y ∈ Y,

(5.1.5)

(5.1.6)

with

(i) {σ2
m} the non-ascending and nonzero eigenvalues of K∗K and KK∗, and σm =

√
σ2

m;

(ii) {vm} the orthonormal eigenvectors of K∗K satisfying Kvm = σmum;

(iii) {um} the orthonormal eigenvectors of KK∗ satisfying K∗um = σmvm,

and where the series (5.1.5) and (5.1.6) converge in the L2 norms induced by the scalar products
of X and Y , respectively.

Proof. See [67, Theorem 4.3.1].

Definition 5.1.18 (Singular value expansion).
Let K ∈B0(X ,Y ) and let {σm},{vm},{um} be like in Corollary 5.1.17. The triple (σm;vm,um)m∈N
is called singular value expansion (s.v.e.) of K.

Proposition 5.1.19. Let K ∈B0(X ,Y ), let (σm;vm,um) be its singular value expansion and let
K† its generalized inverse, as in Definition 5.1.3. Then, for every y ∈ Y it holds that

(i) y ∈ Dom(K†) if and only if ∑
∞
m=1

|〈y,um〉|2
σ2

m
< ∞;
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(ii) For y ∈ Dom(K†),

K†y =
∞

∑
m=1

〈y,um〉vm

σm
.

Proof. See [48, Theorem 2.8].

To summarize, if K : X → Y is a compact linear operator between Hilbert spaces then we
indicate with (σm;vm,um)m∈N the s.v.e. of K, where {vm}m∈N and {um}m∈N are a complete
orthonormal system of eigenvectors for K∗K and KK∗, respectively, and σm > 0 are written in
decreasing order, with 0 being the only accumulating point for the sequence {σm}m∈N when
dimension Rg(K) = ∞. If X is not finite dimensional, then 0 ∈ σ(K∗K), the spectrum of K∗K,
namely σ(K∗K) = {0}∪

⋃
∞
m=1{σ2

m}. Finally, σ(K) is the closure of
⋃

∞
m=1{σm}, i.e., σ(K) =

{0}∪
⋃

∞
m=1{σm}.

We propose now another example of compact operator which will be useful later in Section 5.5.
For any reference and proof we invite the reader to look at [2, Section 7.5] and [92, Chapter 4].
Let Ω = [0,2π] and let us define the (fractional) Sobolev space Hs(Ω),

Hs(Ω) =

{
x ∈ L2(Ω) : ∑

m∈Z

(
1+m2)s |xm|2 < ∞

}
, s ∈ (0,∞),

where xm are the Fourier coefficients of the function x : [0,2π]→ C, i.e.,

xm = 〈x(t),eimt〉L2 =
1

2π

∫ 2π

0
x(t)e−imt dtm m ∈ Z.

Hs(Ω) is an Hilbert space provided with the following inner product

〈x1(t),x2(t)〉Hs = ∑
m≥0

(
1+m2)s/2 〈x1(t),x2(t)〉L2 .

Proposition 5.1.20.
Let Js : Hs(Ω) ↪→ L2(Ω), x 7→ Js(x) ∈ L2(Ω), be the embedding operator of Hs(Ω), and let

vm(t) =
(
1+m2)−s/2

eimt, um = eimt, σm =
(
1+m2)−s/2

.

The operator Js is compact for every s ∈ (0,∞), i.e., Js ∈B0
(
Hs(Ω),L2(Ω)

)
, and(

σ2
m;vm,um

)
m∈N is its s.v.e.

Using s.v.e. representation, one may define functions of the compact self-adjoint operator
K ∈B0(X) as

f (K) =
+∞

∑
m=1

f (σm)〈·,vm〉um.

For a general and rigorous treatment of functional calculus for (unbounded) self-adjoint operators
we refer again to [94]. With this notation we have the following theorem.
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Theorem 5.1.21 (Spectral measure). Let K ∈B0(X) be self-adjoint and let x1,x2 ∈ X be fixed
elements. There exists an unique regular complex Borel measure µ on σ(K), depending on K
and x1,x2, such that ∫

σ(K)
f (σ)dµ(σ) = 〈 f (K)x1,x2〉

for all bounded Borel measurable functions f on σ(K). In particular, if x1 = x2 = x, and if f = 1
so that f (K) = Id, we have

µ(σ(K)) = ‖x‖2.

This measure is called spectral measure associated to x1,x2 and K.

Definition 5.1.22 (Spectral decomposition).
Let K ∈B0(X ,Y ) and let (σm;vm,um)m∈N be the s.v.e. of K. We call {Eσ2

m
}σ2

m∈σ(K∗K) the spectral
decomposition of the self-adjoint operator K∗K, where Eσ2

m
is the spectral measure associated

to vm and K∗K.

Let {Eσ2}σ2∈σ(K∗K) be the spectral decomposition of K∗K, where K ∈B0(X ,Y ). From what
stated above, we can write f (K∗K) :=

∫
f (σ2)dEσ2 , where f : σ(K∗K) ⊂ R→ C is a bounded

Borel measurable function and 〈Ex1,x2〉 is a regular complex Borel measure for every x1,x2 ∈ X .
The following equalities hold

f (K∗K)x :=
∫

σ(K∗K)
f (σ2)dEσ2x =

∞

∑
m=1

f (σ2
m)〈x,vm〉vm,

〈 f (K∗K)x1,x2〉=
∫

σ(K∗K)
f (σ2)d〈Eσ2x1,x2〉=

∞

∑
m=1

f (σ2
m)〈y,vm〉〈x,vm〉,

‖ f (K∗K)‖= sup{| f (σ2)| : σ
2 ∈ σ(K∗K)}.

(5.1.7)

(5.1.8)

(5.1.9)

Proposition 5.1.23. Let A and T be two self-adjoint operators. Then, for every bounded Borel
functions f and g, the product f (A)g(T ) commutes if A and T commute.

Proof. See [94, Proposition 12.24].

Finally, let us introduce the following notation for asymptotic equivalence. Given two se-
quence {an}n∈N,{bn}n∈N we say that

an ∼ bn for n→ ∞

if limn→∞ an/bn = 1. Moreover, we will write

an = o(bn)

if limn→∞ an/bn = 0, and
an = O(bn)

if |an| ≤ c|bn| definitely for every n≥ N, with N fixed and c > 0.
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5.2 Introduction to fractional and weighted Tikhonov vari-
ants

We consider linear operator equations of the form

Kx = y , (5.2.1)

where K : X → Y is a compact linear operator between Hilbert spaces X and Y . We say y to be
attainable if problem (5.2.1) has a solution x† = K†y of minimal norm. Since K† is unbounded
when K is compact and has infinite dimensional range by virtue of Proposition 5.1.13, then
problem (5.2.1) is ill-posed in the sense of Definition 4.0.2, and has to be regularized in order to
compute a numerical solution. Generally speaking, problem (5.2.1) is approximated by a family
of neighboring well-posed problems.

Namely, we want to approximate the solution x† of the equation (5.2.1), when only an ap-
proximation yδ of y is available with

‖yδ − y‖ ≤ δ , (5.2.2)

where δ is called the noise level. Since K†yδ is not a good approximation of x†, we approximate
x† with xδ

α := Rαyδ where {Rα} is a family of continuous operators depending on a parameter α

that will be defined later. A classical example is the Tikhonov regularization defined by

Rα = argmin
x∈X

{
‖Kx− yδ‖2

2 +α‖x‖2
2

}
, (5.2.3)

or equivalently,
Rα = (K∗K +αI)−1K∗,

where I denotes the identity and K∗ the adjoint of K, cf. [55].
Using the singular values expansion of K, filter based regularization methods are defined in

terms of functions of the singular values, cf. Proposition 5.3.3. This is a useful tool for the
analysis of regularization techniques [63], both for direct and iterative regularization methods
[59, 64]. Furthermore, new regularization methods can be defined investigating new classes of
filters. For instance, one of the contributions in [73] is the proposal and the analysis of the
fractional Tikhonov method. The authors obtain a new class of filtering regularization methods
adding an exponent, depending on a parameter, to the filter of the standard Tikhonov method.
They provide a detailed analysis of the filtering properties and the optimal order of the method in
terms of such extra parameter. A different generalization of the Tikhonov method was recently
proposed in [66] with a detailed filtering analysis. Both generalizations are called “fractional
Tikhonov regularization” in the literature and they are compared in [51], where the optimal order
of the method in [66] is provided as well. To distinguish the two proposals in [73] and [66],
we will refer in the following as “fractional Tikhonov regularization” and “weighted-I Tikhonov
regularization”, respectively. These variants of the Tikhonov method have been introduced to
compute good approximations of non-smooth solutions, since it is well known that the Tikhonov
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method provides over-smoothed solutions. Finally, a third variant appeared in [69] with the
purpose of exploiting the information carried by the spectrum of the operator itself in order to
refine the tuning of the regularization process. Indeed, that method induces a pseudo-norm on
the solution space X acting as a switch to force the regularization on the noise subspace. Due
to this interpretation we will call that variant “weighted-II method” and we will analyze how a
suitable mixing of weighted-I and weighted-II methods will make use of the good properties of
both providing then a better approximate solution.

In this Chapter, we first provide a saturation result similar to the well-known saturation result
for Tikhonov regularization [48]: indeed, Tikhonov regularization under suitable a-priori as-
sumption and a-priori choice rule, α = α(δ )∼ c(δ )2/3, is of optimal order and the best possible
convergence rate obtainable is

‖xδ
α − x†‖= O(δ

2
3 ).

On the other hand, let Rg(K) be the range of K and denoting by Q the orthogonal projection on
the closure of Rg(K) of the range of K, if

sup
{
‖xδ

α − x†‖ : ‖Q(y− yδ )‖ ≤ δ

}
= o(δ

2
3 ),

then x† = 0, as long as Rg(K) is not closed, and this shows how Tikhonov regularization for an ill-
posed problem with compact operator never yields a convergence rate which is faster than O(δ

2
3 ),

it saturates at this rate. Such result motivated us to introduce the iterated version of fractional
and weighted-I/II Tikhonov in the same spirit of the iterated Tikhonov method. We prove that
those iterated methods can overcome the previous saturation results. Afterwards, inspired by the
works [17, 58] we introduce the nonstationary variants of our iterated methods. Differently from
the nonstationary iterated Tikhonov, we have two nonstationary sequences of parameters. In the
noise free case, we give sufficient conditions on these sequences to guarantee the convergence
and obtaining the corresponding convergence rates. In the noise case, we show the stability
of the proposed iterative schemes proving that they are regularization methods. Finally, few
selected examples confirm the previous theoretical analysis, showing that a proper choice of the
nonstationary sequences of parameters can yield better restorations compared to the classical
iterated Tikhonov with a geometric sequence of regularization parameter according to [58].

The reminder of this Chapter is organized as follows. Section 5.3 recalls the basic defi-
nition of filter based regularization methods and of optimal order of a regularization method.
Fractional Tikhonov regularization with optimal order and converse results are studied in Sec-
tion 5.4, whereas smoothing effects of those methods are studied in the following Section 5.5-
Section 5.6 is devoted to saturation results for both variants of fractional Tikhonov regulariza-
tion. New iterated fractional Tikhonov regularization methods are introduced in Section 5.7,
where the analysis of their convergence rate shows that they are able to overcome the previous
saturation results. A nonstationary iterated weighted-I/II Tikhonov regularization is investigated
in detail in Section 5.8, while a similar nonstationary iterated fractional Tikhonov regularization
is discussed in Section 5.9. Finally, some numerical examples are reported in Section 5.10.
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5.3 Filter method regularization

As described in the previous Section, we consider a compact linear operator K ∈ B0(X ,Y ),
with X and Y Hilbert spaces. Due to the compactness of the operator K we have a spectral
representation of the generalized inverse K†.

By virtue of Proposition 5.1.19, we can give an equivalent definition of the generalized
(Moore-Penrose) inverse K† for compact operators.

Definition 5.3.1 (Generalized Inverse). We define the generalized inverse K† : Dom(K†)⊆Y →
X of a compact linear operator K : X → Y as

K†y = ∑
m:σm>0

σ
−1
m 〈y,um〉vm, y ∈ Dom(K†), (5.3.1)

where

Dom(K†) =

{
y ∈ Y : ∑

m:σm>0
σ
−2
m |〈y,um〉|2 < ∞

}
.

With respect to problem (5.2.1), we consider the case where only an approximation yδ of y
satisfying the condition (5.2.2) is available, where yδ = y+η . Therefore x† =K†y, y∈Dom(K†),
cannot be approximated by K†yδ , due to the unboundedness of K† which is a consequence of
limm σm = 0, and hence in practice the problem (5.2.1) is approximated by a family of neigh-
bouring well-posed problems [48]. The faster the convergence to 0 of the sequence {σm}m∈N the
worse is the ill-conditioning of the problem.

Definition 5.3.2. By a regularization method for K† we call any family of operators

{Rα}α∈(0,α0) : Y → X , α0 ∈ (0,+∞],

with the following properties:

(i) Rα : Y → X is a bounded operator for every α .

(ii) For every y ∈ Dom(K†) there exists a mapping (rule choice) α : R+×Y → (0,α0) ∈ R,
α = α(δ ,yδ ), such that

lim
δ→0

sup
{

α(δ ,yδ ) : yδ ∈ Y,‖y− yδ‖ ≤ δ

}
= 0,

and
lim
δ→0

sup
{
‖R

α(δ ,yδ )y
δ −K†y‖ : yδ ∈ Y,‖y− yδ‖ ≤ δ

}
= 0.

Throughout this Chapter, c is a constant which can change from one instance to the next. For
the sake of clarity, if more than one constant will appear in the same line or equation we will
distinguish them by means of a subscript.
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Proposition 5.3.3. Let K : X → Y be a compact linear operator and K† its generalized inverse.
Let Rα : Y → X be a family of operators defined for every α ∈ (0,α0) as

Rαy := ∑
m:σm>0

Fα(σm)σ
−1
m 〈y,um〉vm, (5.3.2)

where Fα : [0,σ1]⊃ σ(K)→ R is a Borel function such that

sup
m:σm>0

|Fα(σm)σ
−1
m |= c(α)< ∞, (5.3.3a)

|Fα(σm)| ≤ c < ∞, where c does not depend on (α,m), (5.3.3b)
lim
α→0

Fα(σm) = 1 point-wise in σm. (5.3.3c)

Then Rα is a regularization method, with ‖Rα‖= c(α), and it is called filter based regularization
method, while Fα is called filter function.

Proof. First we observe that (5.3.3a) is sufficient for the well-posedness and continuity of the
operator Rα , indeed

‖Rαy‖2 = ∑
n:σn>0

|Fα(σn)σ
−1
n |2|〈y,un〉|2

≤

(
sup

0<σ≤σ1

|Fα(σ)σ−1|

)2

‖y‖2.

To prove point (ii) of Definition 5.3.2 it is sufficient to prove that Rα → K† point-wise as
α → 0, see Proposition 3.4 in [48]. Observe that by (5.3.3b), we have that |1−Fα(σ)| ≤ 1+ c.
Hence, for every fixed y ∈D(A†) it holds that

lim
α→0
‖Rαy−K†y‖2 = lim

α→0
∑

n:σn>0
(|1−Fα(σn)|)2

σ
−2
n |〈y,un〉|2

= ∑
n:σn>0

lim
α→0

(|1−Fα(σn)|)2
σ
−2
n |〈y,un〉|2 (dominate convergence),

and from (5.3.3c) the thesis follows.

For ease of notation we set the following notations

xα := Rαy, y ∈D(K†),

xδ
α := Rαyδ , yδ ∈ Y.

(5.3.4)

(5.3.5)
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Remark 5.3.4. Let yδ = y+η , with ‖η‖ = δ , where η represent the error component in the
observed data yδ and δ is the noise level. Then we can write

xδ
α = Rαyδ = ∑

m:σm>0
Fα(σm)σ

−1
m 〈yδ ,um〉vm

= ∑
m:σm>0

Fα(σm)σ
−1
m 〈y,um〉vm + ∑

m:σm>0
Fα(σm)σ

−1
m 〈η ,um〉vm

= ∑
m:σm>0

σ
−1
m 〈y,um〉vm− ∑

m:σm>0
(1−Fα(σm))σ

−1
m 〈y,um〉vm

+ ∑
m:σm>0

Fα(σm)σ
−1
m 〈η ,um〉vm

= x†− ea + en,

where
ea = ∑

m:σm>0
(1−Fα(σm))σ

−1
m 〈y,um〉vm

is the approximation error and

en = ∑
m:σm>0

Fα(σm)σ
−1
m 〈η ,um〉vm

is the noise error. When σm approaches 0, the noise error norm ‖en‖ increases and the noise
affects with greater impact the approximated solution xδ

α . It is said tha the eigenvectors vm
belonging to small eigenvalues σ2

m generate the noise subspace whereas vm corresponding to δm
close to σ1 generate the signal subspace. The role of the filter function Fα is then to mediate
between the approximation error and the noise error, damping the effects produced by the noise
subspace.

Example 5.3.5 (Classic Tikhonov filter). One of the most studied filter functions is the classic
Tikhonov filter

Fα(σ) =
σ2

σ2 +α
, (5.3.6)

with its associated Tikhonov regularization method

Rαy := ∑
m:σm>0

Fα(σm)σ
−1
m 〈y,um〉vm.

It is trivial to prove that the Tikhonov filter (5.3.6) satisfies conditions (5.3.3a)-(5.3.3c).

We report hereafter the definition of optimal order under a-priori assumption.

Definition 5.3.6 (Optimal order under a-priori assumption).
For every given ν ,ρ > 0, let

Xν ,ρ :=
{

x ∈ X : ∃ω ∈ X ,‖ω‖ ≤ ρ,x = (K∗K)
ν

2 ω

}
⊂ X .
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A regularization method Rα is called of optimal order under the a-priori assumption x† ∈ Xν ,ρ if

∆(δ ,Xν ,ρ ,Rα)≤ c ·δ
ν

ν+1 ρ
1

ν+1 , (5.3.7)

where for any general set M ⊆ X, δ > 0 and for a regularization method Rα , we define

∆(δ ,M,Rα) := sup
{
‖x†− xδ

α‖ : x† ∈M, ‖y− yδ‖ ≤ δ

}
.

If ρ is not known, as it will be usually the case, then we relax the definition introducing the set

Xν :=
⋃

ρ>0

Xν ,ρ

and we say that a regularization method Rα is called of optimal order under the a-priori as-
sumption x† ∈ Xν if

∆(δ ,Xν ,Rα)≤ c ·δ
ν

ν+1 . (5.3.8)

Remark 5.3.7. Since we are concerned with the convergence rate to 0 of ‖x†− xδ
α‖ as δ → 0,

the a-priori assumption x† ∈ Xν is usually sufficient for the optimal order analysis, requiring that
(5.3.8) is satisfied.

We state two preliminary lemmas useful to prove the next Theorem 5.3.10 which will give
sufficient conditions for order optimality.

Lemma 5.3.8. Let K be a compact linear operator and Rα a filter based regularization method
for K. Then

‖KRαy‖ ≤ c · ‖y‖,
where c is a constant that is independent of α and y.

Proof. By definition of a filter based regularization method in 5.3.3, it holds

KRαy = ∑
m:σm>0

Fα(σm)σ
−1
m 〈y,um〉Kvm by continuity of K,

= ∑
m:σm>0

Fα(σm)〈y,um〉um

and by (5.3.3b) the thesis follows.

Lemma 5.3.9. Let K be a compact linear operator and let f : R→ R be a Borel measurable
function. Then

f (K∗K)K∗ = K∗ f (KK∗). (5.3.9)

Proof. Let y ∈ Y . Then

f (K∗K)K∗y = ∑
n

f (σ2
n )〈K∗y,vn〉vn = ∑

n
f (σ2

n )〈y,un〉K∗un = K∗ f (KK∗)y.
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We are now ready to introduce the following theorem which states sufficient conditions for
order optimality, when filtering methods are employed.

Theorem 5.3.10. [77] Let K : X → Y be a compact linear operator, ν and ρ > 0, and let Rα :
Y → X be a filter based regularization method. If there exists a fixed β > 0 such that

sup
0<σ≤σ1

|Fα(σ)σ−1| ≤ c ·α−β , (5.3.10a)

sup
0≤σ≤σ1

|(1−Fα(σ))σν | ≤ cν ·αβν , (5.3.10b)

then Rα is of optimal order, under the a-priori assumption x† ∈ Xν ,ρ , with the choice rule

α = α(δ ,ρ) = ĉ ·
(

δ

ρ

) 1
β (ν+1)

, 0 < ĉ =
(

c
νcν

) 1
β (ν+1)

.

Proof. Using the notation in equations (5.3.4) and (5.3.5)

‖x†− xδ
α‖ ≤ ‖x†− xα‖+‖xα − xδ

α‖. (5.3.11)

We now study separately the two terms of the right-hand side of the previous inequality.
Observe that a filter based regularization method Rα can be restated as follows:

Rα := F̃α(K∗K)K∗,

where
F̃α(K∗K) = Fα((K∗K)

1
2 )(K∗K)−1 = ∑

n:σn>0
Fα(σn)σ

−2
n 〈·,vn〉vn.

The boundedness of the Borel function F̃α is a sufficient condition for the boundedness of Rα .
Then

‖xα − xδ
α‖2 = 〈xα − xδ

α ,xα − xδ
α〉

= 〈xα − xδ
α ,Rα(y− yδ )〉

= 〈xα − xδ
α , F̃α(K∗K)K∗(y− yδ )〉

= 〈xα − xδ
α ,K

∗F̃α(KK∗)(y− yδ )〉 (by Lemma 5.3.9)

= 〈Kxα −Kxδ
α , F̃α(KK∗)(y− yδ )〉

≤ ‖KRα(y− yδ )‖ · ‖F̃α(KK∗)‖ · ‖y− yδ‖
≤ c1 ·α−β

δ
2, (5.3.12)

where the last inequality follows thanks to Lemma 5.3.8 and (5.3.10a).
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Notice that
x†− xα = ∑

n:σn>0
(1−Fα(σn))σ

−1
n 〈y,un〉vn

= ∑
n:σn>0

(1−Fα(σn))σ
−1
n 〈Kx†,un〉vn

= ∑
n:σn>0

(1−Fα(σn))〈x†,vn〉vn

= (I−Fα((K∗K)
1
2 ))x†.

Then, using the fact that x† ∈ Xν ,ρ by assumption (i), it follows that

‖x†− xα‖= ‖(I−Fα((K∗K)
1
2 ))x†‖

= ‖(I−Fα((K∗K)
1
2 ))(K∗K)

ν

2 ω‖
≤ c2 ·αβ

ν

2 ρ, (5.3.13)

where the last inequality is a consequence of (5.3.10b).
Therefore, combining (5.3.13) and (5.3.12) with (5.3.11), we deduce that

‖x†− xδ
α‖ ≤

√
c1 ·δα

− β

2 + c2 ·αβ
ν

2 ρ,

and the optimal order (5.3.7) is obtained by the choice rule α =
(

δ

ρ

) 2
β (ν+1) .

If instead we are in hypothesis (ii), i.e., x† ∈ Xν without any assumption on ρ , then equation
(5.3.13) becomes

‖x†− xα‖ ≤ c3 ·αβ
ν

2 , (5.3.14)

since there exists ρ̃ > 0 and ω ∈X , ‖ω‖≤ ρ̃ , such that x† = (K∗K)
ν

2 ω . Now, combining (5.3.14)
and (5.3.12) with (5.3.11) in the same way as before, the optimal order (5.3.8) is obtained by the

choice rule α = δ
2

β (ν+1) .

If we are concerned just with the rate of convergence with respect to δ , the preceding theorem
can be applied under the a-priori assumption x† ∈ Xν , adapting the proof to the latter case without
any effort. On the contrary, below we present a converse result.

Theorem 5.3.11. Let K be a compact linear operator with infinite dimensional range and let Rα

be a filter based regularization method with filter function Fα : [0,σ1]⊃ σ(K)→R. If there exist
ν and β > 0 such that

(1−Fα(σ))σ
ν ≥ cα

βν for σ ∈ [c′αβ ,σ1] (5.3.15)

and
‖x†− xα‖= O(αβν), (5.3.16)

then x† ∈ Xν .
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Proof. By (5.3.1) and (5.3.2), it holds

‖x†− xα‖2 = ∑
σm>0

(1−Fα(σm))
2

σ
−2
m |〈y,um〉|2

= ∑
σm>0

(1−Fα(σm))
2 |〈x†,vm〉|2

= ∑
σm>0

[(1−Fα(σm))σ
ν
m]

2
σ
−2ν
m |〈x†,vm〉|2

≥
(

cα
βν

)2
∑

σm≥c′αβ

σ
−2ν
m |〈x†,vm〉|2,

thanks to the assumption (5.3.15). From (5.3.16) we deduce that

lim
αβ→0

∑
σm≥c′αβ

σ
−2ν
m |〈x†,vm〉|2 <+∞.

Finally, if we define ω := ∑σm>0 σ−ν〈x†,vm〉vm, then ω is well defined and (K∗K)ν/2
ω = x†,

i.e., x† ∈ Xν .

Corollary 5.3.12. Let K be a compact linear operator with infinite dimensional range. The
Tikhonov regularization method, Rα , is of optimal order under the a-priori assumption x† ∈ Xν ,ρ ,

with 0 < ν ≤ 2. The best possible rate of convergence with respect to δ is ‖x†− xδ
α‖= O

(
δ

2
3

)
,

which is obtained for α =
(

δ

ρ

) 2
3
. On the other hand, if ‖x†− xα‖= O(α) then x† ∈ X2.

Proof. It is not difficult to prove that the function

Fα(σ)σ−1 =
σ

σ2 +α
,

has a maximum in σ =
√

α and

sup
0<σ≤σ1

∣∣Fα(σ)σ−1∣∣= 1
2
√

α
,

namely, condition 5.3.10 is satisfied for β = 1/2. In the same way, the function

(1−Fα(σ))σ
ν =

ασν

σ2 +α

has a maximum in σ =
√

να

2−ν
for 0 < ν < 2, and it holds

sup
0<σ≤σ1

|(1−Fα(σ))σ
ν |= 2−1

(
ν

2−ν

)ν/2

α
ν/2,
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and condition 5.3.10b is satisfied too. On the contrary, for ν = 2 then

ασ2

σ2 +α

is monotone increasing and therefore

(1−Fα(σ))σ
2 ≥ cα for every σ ∈ [c

√
α,σ1].

Applying Theorem 5.3.11 we conclude.

We will see later in Proposition 5.6.1 that δ
2
3 is a kind of barrier for the convergence rate of

the classic Tikhonov regularization method, namely it never yields a convergence rate which is
faster than O(δ

2
3 ). It is said that the Tikhonov method saturates at that rate.

Finally, the following proposition provides sufficient conditions under which a filter based
method is not of optimal order with the a-priori assumption x† ∈ Xν .

Proposition 5.3.13. Let K be a compact linear operator with infinite dimensional range and let
Rα be a filter based regularization method with filter function Fα : [0,σ1]⊃ σ(K)→ R. If

limsup
n

Fα(σn)σ
−2
n = ∞, (5.3.17a)

liminf
n

(1−Fα(σn)) = c(α)> 0, (5.3.17b)

then, for any ν > 0, Rα is not of optimal order under the a-priori assumption x† ∈ Xν , i.e., for
every choice rule α = α(δ ),

∆(δ ,Xν ,Rα) 6= O(δ
ν

1+ν ). (5.3.18)

Proof. By hypothesis, σn > 0 for every n and σn→ 0 as n→ ∞. Let ν > 0 and δ > 0 be fixed,
and let α = α(δ ) be a generic choice rule. We define

yn := un,

yδ
n := (1+δ )un,

xn
α := Rαyn,

xn,δ
α := Rαyδ

n ,

x†
n := K†yn.

Then x†
n = σ−1

n vn ∈ X
ν ,σ−ν−1

n
⊂ Xν for every n, namely {x†

n}n∈N ⊂ Xν . It holds

xn
α − xn,δ

α = δ ·Rαun = δ ·Fα(σn)σ
−1
n vn, (5.3.19)

x†
n− xn

α = ∑
m:σm>0

(1−Fα(σm))σ
−1
m 〈un,um〉vm = (1−Fα(σn))σ

−1
n vn. (5.3.20)
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By hypothesis, for every fixed δ > 0, α = α(δ ), 0 < ε < 1 and k ∈ N, there exists nk ∈ N such
that for every n≥ nk we find

(1−Fα(σn))> c(1− ε),

Fα(σn)σ
−2
n >

δ
ν−1
1+ν

c(1− ε)
· k,

(5.3.21)

(5.3.22)

where c is the constant c(α) that appears in (5.3.17b). Therefore there exists a subsequence
{σnk}k∈N ⊆ {σn}n∈N depending on δ for which (5.3.21) and (5.3.22) hold for every nk. Without
loss of generality and for the sake of clarity, we may assume that σnk = σn and k = n. Thus we
obtain

‖x†
n− xn,δ

α ‖2 = ‖(x†
n− xn

α)− (xn
α − xn,δ

α )‖2

= ‖x†
n− xn

α‖2 +2〈x†
n− xn

α , xn
α − xn,δ

α 〉+‖xn
α − xn,δ

α ‖2

≥ 2〈x†
n− xn

α , xn
α − xn,δ

α 〉
= 2δ · (1−Fα(σn))Fα(σn)σ

−2
n (by (5.3.19) and (5.3.20))

> 2nδ
2ν

1+ν .

Hence ∆(δ ,Xν ,Rα)>
√

2n ·δ
ν

1+ν , and the thesis follows.

5.4 Fractional variants of Tikhonov regularization
In this section we discuss three recent types of regularization methods that generalize the classical
Tikhonov method and that were first introduced and studied in [66], [73] and [69]. We will
use the notation Fα,· to indicate the new filters, where · will be replaced by the extra parameter
introduced by the respective method. Every method will be studied separately to avoid confusion
and misunderstandings.

5.4.1 Weighted-I and Weighted-II Tikhonov regularization
Definition 5.4.1 ([66]). We call weighted-I Tikhonov method the filter based method

Rα,ry := ∑
m:σm>0

Fα,r(σm)σ
−1
m 〈y,um〉vm,

where the filter function is

Fα,r(σ) =
σ r+1

σ r+1 +α
, (5.4.1)

or equivalently

Fα,r(σ) =
σ2

σ2 +ασ1−r , (5.4.2)

for α > 0 and r ≥ 0. For r = 1 the classic Tikhonov filter is recovered.
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According to (5.3.4) and (5.3.5), we fix the following notation

xα,r := Rα,ry, y ∈ Dom(K†),

xδ
α,r := Rα,ryδ , yδ ∈ Y.

(5.4.3)

(5.4.4)

Definition 5.4.2 ([69]). We call weighted-II Tikhonov method the filter based method

Rα, jy := ∑
m:σm>0

Fα, j(σm)σ
−1
m 〈y,um〉vm,

where the filter function is

Fα, j(σ) =
σ2

σ2 +α

[
1−
(

σ

σ1

)2
] j , (5.4.5)

for α > 0 and j ∈ N. For j = 0 the classic Tikhonov filter is recovered.

With reference to Remark 5.3.4, let us observe that the weighted-II filter Fα, j(σ) is almost
1 when σ belongs to the signal subspace and is almost the standard Tikhonov filter Fα(σ) =

σ2

σ2+α
when σ belongs to the noise subspace. The idea is that in the signal subspace, i.e. when

σ ∼ σ1, where the noise error norm is controlled, the regularization is minimal, bringing to 0 the
approximation error, while the action of the filter function is focused on the noise subspace, i.e.
when σ ∼ 0. Generally speaking, the weighted-II filter acts like a switch for the regularization
to take place. Like above, we fix the following notation

xα, j := Rα, jy, y ∈ Dom(K†),

xδ
α, j := Rα, jyδ , yδ ∈ Y.

(5.4.6)

(5.4.7)

Given an operator W on any Hilbert space, if we consider the semi-norm ‖ · ‖W induced by W ,
i.e. ‖x‖W := 〈Wx,Wx〉, then the weighted-I Tikhonov method can also be defined as the unique
minimizer of the following functional,

Rα,ry := argminx∈X
{
‖Kx− y‖2

W +α‖x‖2} , (5.4.8)

or, equivalently,

Rα,ry := argminx∈X
{
‖Kx− y‖2 +α‖x‖2

W ′
}
, (5.4.9)

where the semi-norms ‖ · ‖W and ‖ · ‖W ′ are induced by the operators
W := (KK∗)

r−1
4 : Y → Y and W ′ := (K∗K)

1−r
4 : X → X , respectively. For 0 ≤ r < 1, W is to be

intended as the Moore-Penrose (pseudo) inverse and that as well applies to W ′ in the case r > 1.
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Looking for a stationary point in equation (5.4.8), we have that

0 = ∇
(
‖Kx− y‖2

W +α‖x‖2)
= ∇(〈Kx,Kx〉W −2〈Kx,y〉W + 〈y,y〉W +α〈x,x〉)

= ∇

(
〈(KK∗)

r−1
4 Kx,(KK∗)

r−1
4 Kx〉−2〈(KK∗)

r−1
4 Kx,(KK∗)

r−1
4 y〉+α〈x,x〉

)
= ∇

(
〈x,K∗ (KK∗)

r−1
2 Kx〉−2〈x,K∗ (KK∗)

r−1
2 y〉+α〈x,x〉

)
= ∇

(
〈x,(K∗K)

r−1
2 K∗Kx〉−2〈x,(K∗K)

r−1
2 K∗y〉+α〈x,x〉

)
= ∇

(
〈x,(K∗K)

r+1
2 x〉−2〈x,(K∗K)

r−1
2 K∗y〉+α〈x,x〉

)
= 2(K∗K)

r+1
2 x−2(K∗K)

r−1
2 K∗y+2αx,

from which we deduce the following expression for the operator Rα,r,

Rα,ry =
[
(K∗K)

r+1
2 +αI

]−1
(K∗K)

r−1
2 K∗y,

=
[
K∗K +α (K∗K)

1−r
2

]−1
K∗y.

(5.4.10)

(5.4.11)

In the same way, the weighted-II Tikhonov method can be defined as the unique minimizer of
the functional

Rα, jy := argminx∈X
{
‖Kx− y‖2 +α‖x‖2

B
}
, (5.4.12)

where the semi-norm ‖ · ‖B is induced by the operator B :=
(

I− K∗K
‖K∗K‖

) j/2
: X → X , and de-

veloping calculations as above, with the only difference that now the weighted norm ‖ · ‖B of X
applies to the second addendum, we can deduce that

Rα, jy =

[
K∗K +α

(
I− K∗K
‖K∗K‖

) j
]−1

K∗y. (5.4.13)

Both the methods can be classified then in the more general contest of weighted generalized
inverse methods, namely

Rαy := argminx∈X
{
‖Kx− y‖2 +α‖x‖2

Λ

}
, (5.4.14)

or again

Rαy = [K∗K +αΛ
∗
Λ]−1 K∗y, (5.4.15)

where Λ is a suitable operator. We will not get into details, for references see [48, Chapter 8].
We just want to observe that if Λ∗Λ and K∗K commute, then indicating with (λn;vn,un)n∈N the
s.v.e. of Λ, the operator (5.4.15) can be expressed in the following way

Rαy := ∑
m:σm>0

Fα(σm,λm)σ
−1
m 〈y,um〉vm, with Fα(σ ,λ ) =

σ2

σ2 +αλ 2 . (5.4.16)
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Now, let f : [0,σ1]→ R be a continuous function and consider the operator f (K∗K), that com-
mutes with K∗K. From equations (5.4.16), (5.4.2) and (5.4.5), it is clear that both the weighted-I
and weighted-II filter methods are of the form (5.4.14) with Λ = f (K∗K) and where f (σ2) =

σ1−r and f (σ2) =

(
1−
(

σ

σ1

)2
) j

, respectively for the weighted-I and weighted-II case. That is

the reason that motivated us to rename the original method of Hochstenbach and Reichel, that
appeared in [66], into weighted-I Tikhonov method and subsequently to rename the method of
Huckle, that appeared in [69], into weighted-II Tikhonov method. In this way it would be easier
to distinguish from the fractional Tikhonov method introduced by Klann and Ramlau in [73].

The optimal order of the weighted-I Tikhonov regularization was proved in [51]. The follow-
ing proposition restates such result, putting in evidence the dependence on r of ν , and provides
a converse result.

Proposition 5.4.3. Let K be a compact linear operator with infinite dimensional range. For
every given r ≥ 0 the weighted-I Tikhonov method, Rα,r, is a regularization method of optimal
order, under the a-priori assumption x† ∈ Xν ,ρ , with 0 < ν ≤ r + 1. The best possible rate of

convergence with respect to δ is ‖x†− xδ
α,r‖ = O

(
δ

r+1
r+2

)
, which is obtained for α =

(
δ

ρ

) r+1
ν+1

with ν = r+1. On the other hand, if ‖x†− xα,r‖= O(α) then x† ∈ Xr+1.

Proof. First, it is easy to check the validity of (5.3.3a), (5.3.3b) and (5.3.3c). Therefore, weighted-
I Tikhonov is a regularization filter method and it remains to prove the optimal order property.
The left-hand side of condition (5.3.10a) becomes

sup
0<σ≤σ1

∣∣∣∣ σ r

σ r+1 +α

∣∣∣∣ .
By derivation, if r > 0 then it is straightforward to see that the quantity above is bounded by
α−β , with β = 1/(r+1). Similarly, the left-hand side of condition (5.3.10b) takes the form

sup
0≤σ≤σ1

∣∣∣∣ ασν

σ r+1 +α

∣∣∣∣ ,
and it is easy to check that it is bounded by αβν if and only if 0 < ν ≤ r + 1. From Theo-
rem 5.3.10, as long as 0 < ν ≤ r+1, with r > 0, if x† ∈ Xν ,ρ then we find order optimality (5.3.7)
and the best possible rate of convergence obtainable with respect to δ is O(δ

ν

ν+1 ), for ν = r+1.
On the contrary, with β = 1/(r+1) and ν = r+1, we deduce that

|(1−Fα,r(σ))σ
ν |= ασν

σ r+1 +α
≥ 1

2
α, for σ ∈ [αβ ,σ1].

Therefore, if ‖x†− xα,r‖= O(α) then x† ∈ Xν by Theorem 5.3.11.

The next proposition provides a proof for the optimal order of weighted-II Tikhonov regular-
ization which instead fails to have a converse result.
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Proposition 5.4.4. Let K be a compact linear operator with infinite dimensional range. For
every given integer j ≥ 0 the weighted-II Tikhonov method, Rα, j, is a regularization method of
optimal order, under the a-priori assumption x† ∈ Xν ,ρ , with 0 < ν ≤ 2. The best possible rate

of convergence with respect to δ is ‖x†−xδ
α, j‖= O

(
δ

2
3

)
, that is obtained for α =

(
δ

ρ

) 2
ν+1

with
ν = 2.

Proof. Even in this case, the validity of (5.3.3a), (5.3.3b) and (5.3.3c) are trivial to check having
as a consequence that the weighted-II Tikhonov is a regularization filter method. Without loss of
generality, we suppose σ1 = 1. The left-hand side of condition (5.3.10b) takes the form

sup
0≤σ≤1

∣∣∣∣∣ α
(
1−σ2) j

σν

σ2 +α (1−σ2)
j

∣∣∣∣∣ ,
which is bounded above by

sup
0≤σ≤1

|αg(σ)| , g(σ) =
σν

σ2 +α (1−σ2)
j .

Let us study the function g(σ). By deriving it, we get that g has a maximum at every point σ∗
which satisfy the following equation

(1−σ
2) j−1 =

(2−ν)σ2

α [2 jσ2 +ν (1−σ2)]
,

if and only if ν ∈ [0,2]. It is not difficult to see that there exist only one σ∗ ∈ [0,1] which satisfies
it, see the following graphic example, Figure 5.1,

Figure 5.1: Graphic solution for σ∗.

and that

σ∗ =
√

α

{
(1−σ2

∗ )
j−1 [2 jσ2

∗ +ν
(
1−σ2

∗
)]

2−ν

}1/2

=
√

αh(σ∗),
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with

h(σ∗) =

{
(1−σ2

∗ )
j−1 [2 jσ2

∗ +ν
(
1−σ2

∗
)]

2−ν

}1/2

.

If we fix α ∈ (0,α0), with α0 < ∞, then necessarily σ∗ ∈ (0,λα0, j), where λα0, j < 1. Since
h(σ∗) = 0 if and only if σ∗= 1, then h(σ∗) is uniformly bounded away from 0, i.e., h(σ∗)∈ [ĉ,1],
with ĉ = ĉ(α0, j,ν)> 0 and independent of α . Henceforth, we can write

σ∗ = cα0, j,ν
√

α = c
√

α,

and then we have

sup
0≤σ≤1

∣∣(1−Fα, j(σ)
)

σ
ν
∣∣= sup

0≤σ≤1

∣∣∣∣∣ α
(
1−σ2) j

σν

σ2 +α (1−σ2)
j

∣∣∣∣∣
≤ sup

0≤σ≤1
|αg(σ)|

= αg(σ∗)

= αg(c
√

α)

=
αν/2

c2 +(1− c2α) j

≤ c−2
α

ν/2, (5.4.17)

which is (5.3.10b) with β = 1/2. Instead, the validity of (5.3.10a) comes again from studying the
function g, having fixed ν = 1. Therefore, from Theorem 5.3.10, as long as 0< ν ≤ 2, if x† ∈Xν ,ρ

then we find order optimality (5.3.7) and the best possible rate of convergence obtainable with
respect to δ is O(δ

ν

ν+1 ), for ν = 2.

Observe that the optimal order for the weighted-II Tikhonov is independent of the auxiliary
parameter j.

5.4.2 Fractional Tikhonov regularization
Here we introduce the fractional Tikhonov method defined and discussed in [73].

Definition 5.4.5 ([73]). We call Fractional Tikhonov method the filter based method

Rα,γy := ∑
m:σm>0

Fα,γ(σm)σ
−1
m 〈y,um〉vm,

where the filter function is

Fα,γ(σ) =
σ2γ

(σ2 +α)γ
, (5.4.18)

for α > 0 and γ ≥ 1/2. For γ = 1 the classic Tikhonov filter is recovered.
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Note that Fα,γ is well-defined also for 0< γ < 1/2, but the condition (5.3.3a) requires γ ≥ 1/2
to guarantee that Fα,γ is a filter function.

We use the notation for xα,γ and xδ
α,γ like in equations (5.4.3) and (5.4.4), respectively. The

optimal order of the fractional Tikhonov regularization was proved in [73, Proposition 3.2]. The
following proposition restates such result including also γ = 1/2 and provides a converse result.

Proposition 5.4.6. The extended fractional Tikhonov filter method is a regularization method of
optimal order, under the a-priori assumption x† ∈ Xν ,ρ , for every γ ≥ 1/2 and 0 < ν ≤ 2. The

best possible rate of convergence with respect to δ is ‖x†− xδ
α,γ‖= O

(
δ

2
3

)
, that is obtained for

α =
(

δ

ρ

) 2
ν+1

with ν = 2. On the other hand, if ‖x†− xα,γ‖= O(α) then x† ∈ X2.

Proof. Condition (5.3.3a) is verified for γ ≥ 1/2 and the same holds for conditions (5.3.3b) and
(5.3.3c). Deriving the filter function, it is immediate to see that equation (5.3.10a) is verified for
γ ≥ 1/2, with β = 1/2. It remains to check equation (5.3.10b):

(
1−Fα,γ(σ)

)
σ

ν =

(
σ2 +α

)γ −σ2γ

(σ2 +α)
γ σ

ν

=

(
σ2

α
+1
)γ

−
(

σ2

α

)γ

(
σ2

α
+1
)γ−1 · ασν

σ2 +α

= h
(

σ2

α

)
· (1−Fα(σ))σ

ν ,

where h(x) = (x+1)γ−xγ

(x+1)γ−1 is monotone, h(0) = 1 for every γ , and limx→∞ h(x) = γ . Namely h(x) ∈
(γ,1] for 0≤ γ ≤ 1 and h(x) ∈ [1,γ) for γ ≥ 1. Therefore we deduce that

γ (1−Fα(σ))≤
(
1−Fα,γ(σ)

)
≤ (1−Fα(σ)) , for 0≤ γ ≤ 1,

(1−Fα(σ))≤
(
1−Fα,γ(σ)

)
≤ γ (1−Fα(σ)) , for γ ≥ 1,

(5.4.19)

(5.4.20)

from which we infer that

sup
σ∈[0,σ1]

∣∣(1−Fα,γ(σ)
)

σ
ν
∣∣≤max{1,γ} sup

σ∈[0,σ1]

|(1−Fα(σ))σ
ν | ≤ cα

ν

2 , (5.4.21)

since Fα(σ) is standard Tikhonov, that is of optimal order, with β = 1/2 and for every 0< ν ≤ 2,
see Corollary 5.3.12. On the contrary, with β = 1/2 and ν = 2, and by equations (5.4.19) and
(5.4.20), we deduce that(

1−Fα,γ(σ)
)

σ
2 ≥min{1,γ}(1−Fα(σ))σ

2 ≥ 1
2

α, for σ ∈ [α
1
2 ,σ1]. (5.4.22)

Therefore, if ‖x†− xα,r‖= O(α) then x† ∈ X2 by Theorem 5.3.11.
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5.5 Smoothing effect

In this section we deal with the oversmoothing property that affects the classical Tikhonov reg-
ularization method. Indeed, it was observed that the approximated solution is smoother than the
true solution, i.e., it lives in a space of higher regularity. We will see that the weighted-I and
fractional filters can overcome the oversmoothing effect for a proper choice of their extra regu-
larization parameters. In order to easily understand this kind of behavior we are going to restrict
our study to the fractional Sobolev spaces Hs of one dimensional functions.

Let Ω = [0,2π] and let Js : Hs(Ω) ↪→ L2(Ω) be the embedding operator of the Hilbert space
Hs(Ω), with s ∈ (0,∞). It was seen in Proposition 5.1.20 that Js is compact with s.v.e. given by

vm(t) =
(
1+m2)−s/2

eimt, um = eimt, σm =
(
1+m2)−s/2

.

Let us consider the following problem

Jsx = y. (5.5.1)

Since Js is compact, and therefore ill-conditioned, we regularize the above problem introducing
a family of filter functions,

xδ
α(t) = ∑

m>0
Fα (σm)σ

−1
m 〈·,um〉vm(t).

The true solution x†, i.e., Jsx† = y, belongs to Hs. We are concerned about the regularity of
the approximated solution xδ

α when we deal with general approximated data yδ ∈ L2. The next
propositions state the Hp spaces in which the approximated solutions live depending on the filter
method.

Proposition 5.5.1. For data yδ ∈L2(Ω), the approximated solution xδ
α,r of the weighted-I Tikhonov

filter for Problem (5.5.1) belongs to Hs(r+1)(Ω).

Proof. We have that

xδ
α,r(·) = ∑

m>0

(
σ r+1

m

σ
r+1
m +α

)
σ
−1
m 〈yδ ,um〉vm(·)

= ∑
m>0

(
(1+m2)−(r+1)s/2

(1+m2)−(r+1)s/2 +α

)
〈yδ ,um〉eim·.

Then, the Fourier coefficients of xδ
α,r are given by

(
xδ

α,r

)
m
=

(
(1+m2)−(r+1)s/2

(1+m2)−(r+1)s/2 +α

)
〈yδ ,um〉,
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from which we can calculate the Hp norm,

‖xδ
α,r‖2

Hp = ∑
m>0

(
1+m2)p

(
(1+m2)−(r+1)s/2

(1+m2)−(r+1)s/2 +α

)2 ∣∣∣〈yδ ,um〉
∣∣∣2

≤ cα ∑
m>0

(
1+m2)p−s(r+1)

∣∣∣〈yδ ,um〉
∣∣∣2 . (5.5.2)

The right hand-side of the above inequality is bounded for every data yδ ∈ L2(Ω) if p ≤ s(1+
r).

Proposition 5.5.2. For data yδ ∈ L2(Ω), the approximated solution xδ
α, j of the weighted-II

Tikhonov filter for Problem (5.5.1) belongs to H2s(Ω), for any j ∈ N.

Proof. The proof is almost identical to the previous one, with the only difference in the filter
function which is applied. Equation (5.5.2) becomes

‖xδ
α,r‖2

Hp = ∑
m>0

(
1+m2)p

(
(1+m2)−s

(1+m2)−s +α [1− (1+m2)−s]
j

)2 ∣∣∣〈yδ ,um〉
∣∣∣2

≤ cα ∑
m>0

(
1+m2)p−2s

∣∣∣〈yδ ,um〉
∣∣∣2 ,

and again, the right hand-side of the above inequality is bounded for every data yδ ∈ L2(Ω) if
p≤ 2s.

Proposition 5.5.3. For data yδ ∈ L2(Ω), the approximated solution xδ
α,γ of the Tikhonov frac-

tional filter for Problem (5.5.1) belongs to H2sγ(Ω).

Proof. Even in this case, the strategy of the proof is the same. Equation (5.5.2) becomes

‖xδ
α,r‖2

Hp = ∑
m>0

(
1+m2)p

(
(1+m2)−s

(1+m2)−s +α

)2γ ∣∣∣〈yδ ,um〉
∣∣∣2

≤ cα ∑
m>0

(
1+m2)p−2sγ

∣∣∣〈yδ um〉
∣∣∣2 .

The right hand-side is bounded for every data yδ ∈ L2(Ω) if p≤ 2sγ .

In Proposition 5.5.1, for r = 1 we recover the classical Tikhonov filter and its oversmoothing
property, i.e., if the true solution x† ∈Hs, then the approximated solution xδ

α ∈H2s. Therefore, the
weighted-I Tikhonov filter undersmooth the approximated solution for every 0< r < 1, compared
to the classical Tikhonov. The same remark goes for the fractional Tikhonov filter with 0 < γ <
1/2, while the weighted-II Tikhonov does not provide any undersmoothing effect for any j ∈ N.
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5.6 Saturation results
The following proposition deals with a saturation property similar to a well known result for
classic Tikhonov, cf. [48, Proposition 5.3]. We generalize it to regularization methods of the
form

Rα, f y := argminx∈X

{
‖Kx− y‖2 +α‖x‖2

f (K∗K)

}
,

or equivalently

Rα, f y = (K∗K +α f (K∗K))−1 K∗y, (5.6.1)

where f : [0,σ1]→R is a bounded measurable function such that the corresponding filter function

Fα, f (σ) =
σ2

σ2 +α f (σ2)

satisfies properties (5.3.3a), (5.3.3b) and (5.3.3c), see the preceding discussion for (5.4.14).
Again, we fix the following notation,

xα, f := Rα, f y, y ∈ Dom(K†),

xδ
α, f := Rα, f yδ , yδ ∈ Y.

Proposition 5.6.1 (Saturation for weighted Tikhonov regularization).
Let K : X → Y be a compact linear operator with infinite dimensional range and Rα, f be the
corresponding family of regularization operators as in equation 5.6.1. Let α = α(δ ,yδ ) be any
parameter choice rule and let

σ2

f (σ2)
∼ cσ

s as σ → 0, (5.6.2)

with c,s > 0. If

sup
{
‖xδ

α, f − x†‖ : ‖Q(y− yδ )‖ ≤ δ

}
= o(δ

s
s+1 ), (5.6.3)

then x† = 0, where we indicated with Q the orthogonal projector onto R(K).

Proof. Define

δm := σ
s+1
m , yδ

m := y+δmum so that ‖y− yδ
m‖ ≤ δm,

αm := α(δm,yδ
m), xm := xαm, f , xδ

m := xδm
αm, f .

By the assumption that K has not finite dimensional range, then limm→∞ σm = 0. According to
5.6.1 we have

xδ
m− x† = Rαm, f yδ

m− x†

= Rαm, f y+δmRαm, f um− x†

= xm− x† +δmFαm, f (σm)σ
−1
m vm
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and hence by (5.4.1)

‖xδ
m− x†‖2 = ‖xm− x†‖2 +2

δmσm

σ2
m +αm f (σ2

m)
Re〈xm− x†,vm〉+

(
δmσm

σ2
m +αm f (σ2

m)

)2

.

Since Fα, f satisfies (5.3.3a), we can deduce that f can not be identically zero in any interval of
the form [0,λ ] and therefore it is possible to divide by f (σ2

m) if we took a suitable subsequence
{σmn} ⊆ {σm}. Without loss of generality, we assume {σm}= {σmn}. Then, we have that[(

δmσm

f (σ2
m)

)− 1
2

‖xδ
m− x†‖

]2

≥ 2
σ2

m
f (σ2

m)
+αm

Re〈xm− x†,vm〉+
δmσm f (σ2

m)

[σ2
m +αm f (σ2

m)]
2

=

 2 f (σ2
m)

σ2
m

1+αm
f (σ2

m)
σ2

m

Re〈xm− x†,vm〉+
δmσ−3

m f (σ2
m)[

1+αm
f (σ2

m)
σ2

m

]2 ,

and passing to the limsup, recalling assumption (5.6.2) and that δm = σ s+1
m , we get

limsup
m→∞

(
δ
− s

s+1
m ‖xδ

m− x†‖
)2
≥ c

{
limsup
σm→∞

[
2δ
− s

s+1
m

1+αmδ
− s

s+1
m

]
Re〈xm− x†,vm〉

+ liminf
m→∞

1[
1+αmδ

− s
s+1

m

]2

 , (5.6.4)

where c is a positive constant.
By 5.6.1,

(K∗K +αm f (K∗K))(x†− xδ
m) = K∗Kx† +αm f (K∗K)x†−K∗yδ

m

= αm f (K∗K)x†−δmK∗um, (5.6.5)

so that
αmx† = δm [ f (K∗K)]−1 K∗um +

(
[ f (K∗K)]−1 K∗K +αmI

)
(x†− xδ

m)

=
δmσm

f (σ2
m)

vm +
(
[ f (K∗K)]−1 K∗K +αmI

)
(x†− xδ

m).

By hypothesis, limσ→0 σ2/ f (σ2)∼ limσ→0 σ s = 0, and by (ii) from Definition 5.3.2

αm ≤ sup
{

α(δm,yδm) : yδm ∈ Y,‖y− yδm‖ ≤ δm

}
−→ 0 as δm→ 0,

namely, {αm} is uniformly bounded. Henceforth,

‖ [ f (K∗K)]−1 K∗K +αmI‖ ≤ c for every m ∈ N,
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and then

αm‖x†‖= O
(

δmσm

f (σ2
m)

+‖x†− xδ
m‖
)
. (5.6.6)

Since δm = σ s+1
m and, again, limm→∞ σ2

m/ f (σ2
m) = cσ s

m, it follows from (5.6.6) that

αm‖x†‖ ≤ c
(

δ

2s
s+1

m +‖x†− xδ
m‖
)
.

Then, if x† 6= 0,
lim

m→∞
αmδ

− s
s+1

m = 0, (5.6.7)

because by assumption, ‖x†− xδ
m‖= o

(
δ

s
s+1

m

)
.

Hence, the second term in the right-hand side of (5.6.4) tends to 1. Since, by assumption, the
left-hand side of (5.6.4) tends to 0, we obtain

0≥ c

{
limsup

m→∞

2

1+δ
− s

s+1
m αm

δ
− s

s+1
m Re〈xm− x†,vm〉+1

}
.

Now, from (5.6.3) we have that ‖xm−x†‖= o
(

δ
s

s+1

)
as well, so that, if x† 6= 0, we obtain, from

(5.6.7) applied to the preceding inequality, the contradiction 0≥ c > 0. Hence, x† = 0.

Note that for f (σ2)≡ 1 (classical Tikhonov) the previous proposition gives exactly Proposi-
tion 5.3 in [48] with s = 2.

For f (σ2) = σ1−r and f (σ2) =
(
1−σ2) j we recover instead saturation results for weighted-

I and weighted-II regularization methods, respectively. Indeed,

σ2

σ1−r ∼ σ
r+1,

σ2

(1−σ2)
j ∼ σ

2 for σ → 0.

We can state then the following corollaries.

Corollary 5.6.2. With the same notation of the preceding Proposition 5.6.1, let Rα,r be the family
of regularization operators as in Definition 5.4.1. If

sup
{
‖xδ

α,r− x†‖ : ‖Q(y− yδ )‖ ≤ δ

}
= o(δ

r+1
r+2 ),

then x† = 0.

Observe that taking a large r, it is possible to overcome the saturation result of classical
Tikhonov obtaining a convergence rate arbitrarily close to O(δ ).

Corollary 5.6.3. With the same notation of the preceding Proposition 5.6.1, let Rα, j be the family
of regularization operators as in Definition 5.4.2. If

sup
{
‖xδ

α, j− x†‖ : ‖Q(y− yδ )‖ ≤ δ

}
= o(δ

2
3 ),

then x† = 0.
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In this case instead, weighted-II Tikhonov saturates at the same level of classical Tikhonov,
independently on the choice of the parameter j.

A similar saturation result can be proved also for the fractional Tikhonov regularization in
Definition 5.4.5.

Proposition 5.6.4 (Saturation for fractional Tikhonov regularization). Let K : X → Y be a com-
pact linear operator with infinite dimensional range and let Rα,γ be the corresponding fam-
ily of fractional Tikhonov regularization operators in Definition 5.4.5, with fixed γ ≥ 1/2. Let
α = α(δ ,yδ ) be any parameter choice rule. If

sup
{
‖xδ

α,γ − x†‖ : ‖Q(y− yδ )‖ ≤ δ

}
= o(δ

2
3 ), (5.6.8)

then x† = 0, where we indicated with Q the orthogonal projector onto R(K).

Proof. If γ = 1, the thesis follows from the saturation result for standard Tikhonov [48, Proposi-
tion 5.3] or Proposition 5.6.1. For γ 6= 1, recalling that

xα,γ − x† = ∑
σm>0

(
Fα,γ(σm)−1

)
σ
−1
m 〈y,um〉vm,

by equations (5.4.19) and (5.4.20), we obtain

‖xα,γ − x†‖> c‖xα,1− x†‖, (5.6.9)

where c = min{1,γ} and xα,1 is standard Tikhonov. Let us define

φγ(y) := ‖xα,γ − x†‖.

Then, by the continuity of φγ , there exists δ > 0 such that, for every yδ ∈ Bδ (y), we find

φγ(yδ )> c ·φ1(yδ ),

with Bδ (y) being the closure of the ball of center y and radius δ . Passing to the sup we obtain
that

sup
{
‖xδ

α,γ − x†‖ : ‖Q(y− yδ )‖ ≤ δ

}
≥ c · sup

{
‖xδ

α,1− x†‖ : ‖Q(y− yδ )‖ ≤ δ

}
. (5.6.10)

Therefore, using relation (5.6.8), we deduce

sup
{
‖xδ

α,1− x†‖ : ‖y− yδ‖ ≤ δ

}
= o(δ

2
3 ), (5.6.11)

and the thesis follows again from the saturation result for standard Tikhonov, see Proposition
5.6.1.

Even in this case, differently from the weighted-I Tikhonov regularization, for the fractional
Tikhonov method it is not possible to overcome the saturation result of classical Tikhonov, even
for a large γ .
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5.7 Stationary iterated regularization
We define new iterated regularization methods based on weighed and fractional Tikhonov reg-
ularization using the same iterative refinement strategy of iterated Tikhonov regularization [17,
48]. We will show that the iterated methods go beyond the saturation results proved in the previ-
ous section. In this section the regularization parameter will still be α with the iteration step, n,
assumed to be fixed. On the contrary, in Section 5.8, we will analyze the nonstationary counter-
part of this iterative method, in which α will be replaced by a pre-fixed sequence {αn} and we
will be concerned on the rate of convergence with respect to the index n.

5.7.1 Iterated weighted Tikhonov regularization
We propose now an iterated regularization methods based on weighted-I/II Tikhonov.

Definition 5.7.1 (Stationary iterated weighted-I Tikhonov). We define the stationary iterated
weighted-I Tikhonov method (SIWT-I) as{

x0
α,r := 0;(
(K∗K)

r+1
2 +αI

)
xn

α,r := (K∗K)
r−1

2 K∗y+αxn−1
α,r ,

(5.7.1)

with α > 0 and r ≥ 0, or equivalently{
x0

α,r := 0
xn

α,r := argminx∈X
{
‖Kx− y‖2

W +α‖x− xn−1
α,r ‖2} , (5.7.2)

where ‖ · ‖W is the semi-norm introduced in (5.4.8). We define xn,δ
α,r as the n-th iteration of

weighted-I Tikhonov if y = yδ .

Proposition 5.7.2. For any given n ∈ N and r > 0, the SIWT in (5.7.1) is a filter based regular-
ization method, with filter function

F(n)
α,r (σ) =

(σ r+1 +α)n−αn

(σ r+1 +α)n . (5.7.3)

Moreover, the method is of optimal order, under the a-priori assumption x† ∈ Xν ,ρ , for r > 0

and 0 < ν ≤ n(r+1), with best convergence rate ‖x†−xn,δ
α,r‖= O(δ

n(r+1)
1+n(r+1) ), that is obtained for

α = (δ

ρ
)

n(r+1)
1+ν , with ν = n(r+1). On the other hand, if ‖x†− xn

α,r‖= O(αn), then x† ∈ Xn(r+1).

Proof. Multiplying both sides of (5.7.1) by
(
(K∗K)

r+1
2 +αI

)n−1
and iterating the process, we

get (
(K∗K)

r+1
2 +αI

)n
xn

α,r =

{
n−1

∑
j=0

α
j
(
(K∗K)

r+1
2 +αI

)n−1− j
}
(K∗K)

r−1
2 K∗y

=
[(

(K∗K)
r+1

2 +αI
)n
−α

nI
]
(K∗K)−1K∗y.
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Therefore, the filter function in (5.3.2) is equal to

F(n)
α,r (σ) =

(σ r+1 +α)n−αn

(σ r+1 +α)n ,

as we stated. Condition (5.3.3c) is straightforward to verify. Moreover, note that

F(n)
α,r (σ) =

(σ r+1 +α)n−αn

(σ r+1 +α)n

=
σ r+1

σ r+1 +α
·

(
∑

n−1
j=0 α j(σ r+1 +α)n−1− j

)
(σ r+1 +α)n−1

= Fα,r(σ) ·

(
1+
(

α

σ r+1 +α

)
+ · · ·+

(
α

σ r+1 +α

)n−1
)
,

from which it follows that
Fα,r(σ)≤ F(n)

α,r (σ)≤ nFα,r(σ). (5.7.4)

Therefore, conditions (5.3.3a), (5.3.3b) and (5.3.10a) follow immediately by the regularity of
the weighted-I Tikhonov filter method for r > 0 and by the order optimality for r > 0. Finally,
condition (5.3.10b) becomes

sup
σ∈[0,σ1]

∣∣∣∣ αnσν

(σ r+1 +α)n

∣∣∣∣ ,
and deriving one checks that it is bounded by αβν , with β = 1/(r+ 1), if and only if 0 < ν ≤
n(r+1). Applying now Proposition 5.3.10 the rest of the thesis follows.

On the contrary, if we define β = 1/(r+1) and ν = n(r+1), then we deduce that(
1−F(n)

α,r (σ)
)

σ
ν =

αnσν

(σ r+1 +α)n ≥
1
2n α

n for σ ∈ [αβ ,σ1].

Therefore, if ‖x†− xn
α,r‖= O(αn), then by Theorem 5.3.11 it follows that x† ∈ Xn(r+1).

If n is large, then we note that the convergence rate approaches O(δ ) also for a fixed small r.
The study of the convergence for increasing n and fixed α will be dealt with in Section 5.8.

Definition 5.7.3 (Stationary iterated weighted-II Tikhonov). We define the stationary iterated
weighted-II Tikhonov method (SIWT-II) asx0

α, j := 0;(
K∗K +α

[
I− K∗K

‖K∗K‖

] j
)

xn
α, j := K∗y+α

[
I− K∗K

‖K∗K‖

] j
xn−1

α, j ,
(5.7.5)

with α > 0 and j ∈ N, or equivalently{
x0

α, j := 0

xn
α, j := argminx∈X

{
‖Kx− y‖2

B +α‖x− xn−1
α, j ‖2

}
,

(5.7.6)
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where ‖ · ‖B is the semi-norm introduced in (5.4.12). We define xn,δ
α, j as the n-th iteration of

weighted-II Tikhonov if y = yδ .

Proposition 5.7.4. For any given n, j ∈ N, the SIWT-II in (5.7.1) is a filter based regularization
method, with filter function

F(n)
α, j (σ) =

(
σ2 +α

[
1−
(

σ2

σ1

)2
] j
)n

−

(
α

[
1−
(

σ2

σ1

)2
] j
)n

(
σ2 +α

[
1−
(

σ2

σ1

)2
] j
)n . (5.7.7)

Moreover, the method is of optimal order, under the a-priori assumption x† ∈ Xν ,ρ , for j ∈N and

0 < ν ≤ 2n, with best convergence rate ‖x†−xn,δ
α, j‖= O(δ

2n
1+2n ), that is obtained for α = (δ

ρ
)

2n
1+ν ,

with ν = 2n.

Proof. The first part of the proof mimics Proposition 5.7.2’s proof, but we generalize it for a
wider class of regularization methods. Indeed, let us consider a bounded measurable function
f : [0,σ1]→ R such satisfies conditions (5.3.3a), (5.3.3b) and (5.3.3c), and let us introduce the
following iterated stationary method,{

x0
α0, f := 0,
[K∗K +αn f (K∗K)]xn

αn, f := K∗y+αn f (K∗K)xn−1
αn−1, f

,
(5.7.8)

or equivalently {
x0

α0, f := 0,

xn
αn, f := argminx∈X

{
‖Kx− y‖2 +αn‖x− xn−1

αn−1, f
‖2

f (K∗K)

}
.

(5.7.9)

Multiplying both sides of (5.7.8) by (K∗K +α f (K∗K))n−1 and iterating the process, and using
Proposition 5.1.23, we get

(K∗K +α f (K∗K))n xn
α, f =

{
n−1

∑
j=0

[α f (K∗K)] j (K∗K +α f (K∗K))n−1− j

}
K∗y

= [(K∗K +α f (K∗K))n− (α f (K∗K))n] (K∗K)−1K∗y.

Therefore, the filter function in (5.3.2) is equal to

F(n)
α, f (σ) =

(
σ2 +α f

(
σ2))n−

(
α f
(
σ2))n

(σ2 +α f (σ2))
n .

If we fix

f
(
σ

2)= [1−
(

σ

σ1

)2
] j

,
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then we get the filter function for the SIWT-II, i.e.,

F(n)
α, j (σ) =

(
σ2 +α

[
1−
(

σ

σ1

)2
] j
)n

−

(
α

[
1−
(

σ

σ1

)2
] j
)n

(
σ2 +α

[
1−
(

σ

σ1

)2
] j
)n .

Again, condition (5.3.3c) is straightforward to verify. Moreover, we recover the following rela-
tion

F(n)
α, f (σ) =

(
σ2 +α f

(
σ2))n−

(
α f
(
σ2))n

(σ2 +α f (σ2))
n

=
σ2

σ2 +α f (σ2)
·

(
∑

n−1
j=0
(
α f
(
σ2)) j (

σ2 +α f
(
σ2))n−1− j

)
(σ2 +α f (σ2))

n−1

= Fα, f (σ) ·

1+

(
α f
(
σ2)

σ2 +α f (σ2)

)
+ · · ·+

(
α f
(
σ2)

σ2 +α f (σ2)

)n−1
 ,

from which it follows that
Fα, f (σ)≤ F(n)

α, f (σ)≤ nFα, f (σ).

Therefore, once we substitute in the above inequalities the general function f for
[

1−
(

σ

σ1

)2
] j

,

conditions (5.3.3a), (5.3.3b) and (5.3.10a) follow immediately by the regularity and by the order
optimality of the weighted-II Tikhonov filter method for every j ∈N. Finally, condition (5.3.10b)
becomes

sup
σ∈[0,σ1]

∣∣∣∣∣∣∣∣∣


α

[
1−
(

σ

σ1

)2
] j

σ2 +α

[
1−
(

σ

σ1

)2
] j


n

σ
ν

∣∣∣∣∣∣∣∣∣≤ sup
σ∈[0,σ1]

∣∣∣∣∣∣∣∣∣

 α

σ2 +α

[
1−
(

σ

σ1

)2
] j


n

σ
ν

∣∣∣∣∣∣∣∣∣
= sup

σ∈[0,σ1]

∣∣∣∣∣∣∣∣∣

 ασν/n

σ2 +α

[
1−
(

σ

σ1

)2
] j


n∣∣∣∣∣∣∣∣∣ ,

and then, using the same approach like in (5.4.17), it is easy to check that the last term in the
above inequality is bounded by αβν , with β = 1/2, if and only if 0 < ν ≤ 2n. Applying now
Proposition 5.3.10 the rest of the thesis follows.

5.7.2 Iterated fractional Tikhonov regularization
With the same path as in the previous subsection, we propose here the stationary iterated version
of the fractional Tikhonov method.
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Definition 5.7.5 (Stationary iterated fractional Tikhonov). We define the stationary iterated frac-
tional Tikhonov method (SIFT) as{

x0
α,γ := 0;
(K∗K +αI)γ xn

α,γ := (K∗K)γ−1K∗y+
[
(K∗K +αI)γ − (K∗K)γ

]
xn−1

α,γ ,
(5.7.10)

with γ ≥ 1/2. We define xn,δ
α,γ for the n-th iteration of fractional Tikhonov if y = yδ .

Proposition 5.7.6. For any given n ∈ N and γ ≥ 1/2, the SIFT in (5.7.10) is a filter based
regularization method, with filter function

F(n)
α,γ (σ) =

(
σ2 +α

)γn−
[(

σ2 +α
)γ −σ2γ

]n

(σ2 +α)
γn . (5.7.11)

Moreover, the method is of optimal order, under the a-priori assumption x† ∈ Xν ,ρ , for γ ≥ 1/2

and 0 < ν ≤ 2n, with best convergence rate ‖x†− xn,δ
α,γ‖ = O(δ

2n
2n+1 ), that is obtained for α =

(δ

ρ
)

2n
ν+1 , with ν = 2n. On the other hand, if ‖x†− xn

α,γ‖= O(αn), then x† ∈ X2n.

Proof. Multiplying both sides of (5.7.11) by (K∗K +αI)(n−1)γ and iterating the process, we get

(K∗K +αI)nγ xn
α,γ =

{
n−1

∑
j=0

(K∗K +αI) jγ [(K∗K +αI)γ − (K∗K)γ
]n−1− j

}
(K∗K)γ−1K∗y

=
{
(K∗K +αI)γn−

[
(K∗K +αI)γ − (K∗K)γ

]n}
(K∗K)−1K∗y,

where we used the fact that (K∗K +αI)−γ and
[
(K∗K +αI)γ − (K∗K)γ

]
commute. Therefore,

the filter function in (5.3.2) is given by

Fn
α,γ(σ) =

(σ2 +α)γn−
[(

σ2 +α
)γ −σ2γ

]n

(σ2 +α)
γn ,

as we stated. We observe that

F(n)
α,γ (σ) =

(σ2 +α)γn−
[(

σ2 +α
)γ −σ2γ

]n

(σ2 +α)
γn

=
σ2γ

(σ2 +α)γ
· 1
(σ2 +α)γ(n−1)

·
n−1

∑
j=0

(σ2 +α)γ j [(σ2 +α)γ −σ
2γ
]n−1− j

=
σ2γ

(σ2 +α)γ
·

1+

[
1−
(

σ2

σ2 +α

)γ
]
+ · · ·+

[
1−
(

σ2

σ2 +α

)γ
]n−1

 ,

from which we deduce that
F(n)

α,γ (σ)≤ nFα,γ(σ). (5.7.12)
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Therefore, since Fα,γ is a regularization method of optimal order, conditions (5.3.3a), (5.3.3b)
and (5.3.10a) are satisfied. Moreover, it is easy to check condition (5.3.3c) and so we get the
regularity for the method. It remains to check condition (5.3.10b) for the order optimality.

From equations (5.4.19) and (5.4.20) we deduce that

1−F(n)
α,γ (σ) =

[
(σ2 +α)γ −σ2γ

(σ2 +α)γ

]n

=

[
1− σ2γ

(σ2 +α)γ

]n

=
(
1−Fα,γ(σ)

)n

≤ (max{1,γ})n (1−Fα(σ))n

= c(1−Fn
α(σ)) ,

(5.7.13)

where Fα(σ) is the standard Tikhonov filter and F
(n)
α (σ) is the filter function of the stationary

iterated Tikhonov, i.e., F(n)
α (σ) = (σ2+α)n−αn

(σ2+α)n . Now condition (5.3.10b) follows from the proper-
ties of stationary iterated Tikhonov, with β = 1/2 and 0 < ν ≤ 2n, see [59, p. 124]. By applying
Proposition 5.3.10 we get the best convergence rate, O(δ

2n
2n+1 ).

On the contrary, set β = 1/2 and ν = 2n. First, let us observe that from equations (5.7.13)
and (5.4.19), (5.4.20), we infer that

1−F(n)
α,γ (σ)≥ (min{1,γ})n

(
1−F

(n)
α (σ)

)
.

Then, we deduce that (
1−F(n)

α,γ (σ)
)

σ
ν ≥ c

αnσ2n

(σ2 +α)n

≥ cα
n for σ ∈ [αβ ,σ1].

Therefore, if ‖x†− xn
α,γ‖= O(αn), then x† ∈ X2n by Theorem 5.3.11.

The previous proposition shows that, similarly to SIWT, a large n allows to overcome the
saturation result in Proposition 5.6.4. The study of the convergence for increasing n and fixed α

will be dealt with in Section 5.9.

5.8 Nonstationary iterated weighted Tikhonov regularization
We introduce a nonstationary version of the iteration (5.7.1). We study the convergence and we
prove that the new iteration is a regularization method.

Definition 5.8.1 (NSWIT-I). Let {αn}n∈N,{rn}n∈N ⊂ R>0 be sequences of positive real num-
bers. We define a nonstationary iterated weighted-I Tikhonov method (NSIWT-I) as follows{

x0
α0,r0

:= 0,[
(K∗K)

rn+1
2 +αnI

]
xn

αn,rn
:= (K∗K)

rn−1
2 K∗y+αnxn−1

αn−1,rn−1
,

(5.8.1)
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or equivalently {
x0

α0,r0
:= 0,

xn
αn,rn

:= argminx∈X

{
‖Kx− y‖2

Wn
+αn‖x− xn−1

αn−1,rn−1
‖2
}
,

(5.8.2)

where ‖ ·‖Wn is the semi-norm introduced by the operator Wn := (KK∗)
rn−1

2 and depending on n,
due to the non stationary character of rn.

Definition 5.8.2 (NSWIT-II). Let {αn}n∈N ⊂ R>0 and { jn}n∈N ⊂ N be sequences of positive
real numbers and integers, respectively. We define a nonstationary iterated weighted-II Tikhonov
method (NSIWT-II) as followsx0

α0, j0 := 0,[
K∗K +αn

(
I− K∗K

‖K∗K‖

) jn
]

xn
αn, jn := K∗y+αn

(
I− K∗K

‖K∗K‖

) jn
xn−1

αn−1, jn−1
,

(5.8.3)

or equivalently {
x0

α0, j0 := 0,

xn
αn, jn := argminx∈X

{
‖Kx− y‖2 +αn‖x− xn−1

αn−1, jn−1
‖2

Bn

}
,

(5.8.4)

where ‖·‖Bn is the semi-norm introduced by the operator Bn :=
(

I− K∗K
‖K∗K‖

) jn
and depending on

n, due to the non stationary character of jn.

5.8.1 Convergence analysis
We are concerned about the properties of the sequence {αn} such that the iteration (5.8.1) shall
converge. To this aim we need some preliminary lemmas.

Remark 5.8.3. Hereafter, without loss of generality, we will consider σ1 = 1, namely ‖K‖= 1.

Lemma 5.8.4. Let {tn}n∈N be a sequence of real numbers such that 0≤ tn < 1 for every n. Then

∞

∏
n=1

(1− tn)> 0 if and only if
∞

∑
n=1

tn < ∞. (5.8.5)

Proof. See [92, Theorem 15.5]

Lemma 5.8.5. Let {tk}k∈N be a sequence of positive real numbers and let N > 0. Then

n

∑
k=1

tk ∼ c
n

∑
k=N

tk for n→ ∞.

with c > 0 (in particular, c = 1 when ∑
∞
k=N tk = ∑

∞
k=1 tk = ∞).
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Proof. Obviously, both the series converge or diverge simultaneously due to the Asymptotic
Comparison test. If they converge, the thesis follows trivially. On the contrary, if they both
diverge then we conclude by observing that ∑

n
k=N tk/∑

n
k=1 tk is a monotonic increasing sequence

bounded from above by 1. Indeed, if we set

An :=
n

∑
k=N

tk, Bn :=
n

∑
k=1

tk,

then An+1/Bn+1 ≥ An/Bn for every n and it is easy to see that supn{An/Bn}= 1.

Lemma 5.8.6. For every sequence {tk}k∈N ⊂ (0,∞) such that limk→∞ tk = t ∈ (0,∞], we find

n

∑
k=1

1
tk
∼ c

n

∑
k=1

1
1+ tk

, c > 0.

Proof. If limk→∞ tk = t ∈ (0,∞], then

1
tk
∼
(

1+
1
t

)
1

1+ tk
, (5.8.6)

where 1/t = 0 if t = ∞. Therefore, from the Asymptotic Comparison test for series, both series
converge or diverge simultaneously. When they converge the thesis follows trivially. Assume
then that the series diverge. If we set

Xn :=
∑

n
k=1

1
tk

∑
n
k=1

1
1+tk

,

we want to show that the limit of Xn exists finite and, moreover, that is limn→∞ Xn = 1+ 1/t.
Indeed, for any fixed ε > 0 there exists N1

ε such that for any k ≥ N1
ε it holds that

1
tk
<

(
1+

1
t
+

ε

2

)
1

1+ tk
, (5.8.7)

and for any fixed ε and N1
ε , there exists N2

ε such that for every n≥ N2
ε it holds that

∑
N1

ε

k=1
1
tk

∑
n
k=1

1
1+tk

<
ε

2
. (5.8.8)

Hence, for any n≥max{N1
ε ,N

2
ε }, thanks to (5.8.7) and (5.8.8), we have that

Xn =
∑

n
k=1

1
tk

∑
n
k=1

1
1+tk

<
∑

N1
ε

k=1
1
tk

∑
n
k=1

1
1+tk

+

(
1+

1
t
+

ε

2

)
∑

n
k=N1

ε +1
1

1+tk

∑
n
k=1

1
1+tk

<
ε

2
+1+

1
t
+

ε

2
= 1+

1
t
+ ε.
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On the other hand, there exists N3
ε such that for every k ≥ N3

ε it holds

1
tk
>

(
1+

1
t
− ε

2

)
1

1+ tk
, (5.8.9)

and, by Lemma 5.8.5, for any fixed N3
ε and for any fixed δ < ε

2(1+
1
t −

ε

2)
−1, there exists N4

ε

such that for every n≥ N4
ε it holds

∑
n
k=N3

ε +1
1

1+tk

∑
n
k=1

1
1+tk

> (1−δ ) . (5.8.10)

Hence, fo any n≥max{N3
ε ,N

4
ε }, thanks to (5.8.9) and (5.8.10), we have that

Xn =
∑

n
k=1

1
tk

∑
n
k=1

1
1+tk

>
∑

N3
ε

k=1
1
tk

∑
n
k=1

1
1+tk

+

(
1+

1
t
− ε

2

)
∑

n
k=N3

ε +1
1

1+tk

∑
n
k=1

1
1+tk

>

(
1+

1
t
− ε

2

)
(1−δ )> 1+

1
t
−ε.

Then, choosing n≥max{Ni
ε : i = 1,2,3,4}, the proof is concluded.

We can now prove a necessary and sufficient condition on the sequence {αn} for the conver-
gence of NSIWT-I and NSWIT-II. That will be a consequence of the following, more general,
theorem.

Theorem 5.8.7. Let fn : [0,σ1]→R be a sequence of bounded measurable functions such satisfy
(5.3.3a), (5.3.3b) and (5.3.3c), and let us introduce the following nonstationary method,{

x0
α0, f0 := 0,
[K∗K +αn fn (K∗K)]xn

αn, fn := K∗y+αn fn (K∗K)xn−1
αn−1, fn−1

,
(5.8.11)

or equivalently{
x0

α0, f0 := 0,

xn
αn, fn := argminx∈X

{
‖Kx− y‖2 +αn‖x− xn−1

αn−1, fn−1
‖2

fn(K∗K)

}
,

(5.8.12)

For every x† ∈ X, the above method (5.8.11) converges to x† as n→ ∞ if and only if

n

∑
k=1

σ2

σ2 +αk fk(σ2)

diverges for every σ ∈ σ(K)\{0}.

Proof. Rewriting equation (5.8.1) and reminding that y = Kx†, we have

xn
αn, fn = [K∗K +αn fn (K∗K)]−1 K∗Kx† +αn [K∗K +αn fn (K∗K)]−1 fn (K∗K)xn−1

αn−1, fn−1

=
{

I−αn [K∗K +αn fn (K∗K)]−1 fn (K∗K)
}

x†

+αn [K∗K +αn fn (K∗K)]−1 fn (K∗K)xn−1
αn−1, fn−1

,
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from which it follows that

x†− xn
αn, fn = αn [K∗K +αn fn (K∗K)]−1 fn (K∗K)(x†− xn−1

αn−1, fn−1
)

= (· · ·) iterating the process n−1 times

=
n

∏
k=1

αk [K∗K +αk fk (K∗K)]−1 fk (K∗K)x† (5.8.13)

since for convenience we put x0
α0, f0 := 0. As a consequence, the method shall converge for every

x† if and only if

lim
n→∞

∥∥∥∥∥ n

∏
k=1

αk [K∗K +αk fk (K∗K)]−1 fk (K∗K)x†

∥∥∥∥∥= 0 (5.8.14)

for every x† ∈ X , namely, if and only if

lim
n→∞

∫
σ(K∗K)

∣∣∣∣∣ n

∏
k=1

αk fk
(
σ2)

σ2 +αk fk (σ2)

∣∣∣∣∣
2

d〈Eσ2x†,x†〉= 0 (5.8.15)

for every Borel-measure 〈Ex†,x†〉 induced by x† ∈ X . Since∣∣∣∣∣ n

∏
k=1

αk fk
(
σ2)

σ2 +αk fk (σ2)

∣∣∣∣∣
2

≤ 1

for every n, and since ∫
σ(K∗K)

d〈Eσ2x†,x†〉= ‖x†‖2,

the Dominated Convergence Theorem [92, Theorem 1.34, pag. 26] implies the following equality

limn→∞

∫
σ(K∗K)

∣∣∣∣∏n
k=1

αk fk(σ2)
σ2+αk fk(σ2)

∣∣∣∣2 d〈Eσ2x†,x†〉

‖∫
σ(K∗K) limn→∞

∣∣∣∣∏n
k=1

αk fk(σ2)
σ2+αk fk(σ2)

∣∣∣∣2 d〈Eσ2x†,x†〉.

(5.8.16)

Hence, the method is convergent for every x† ∈ X if and only if

∞

∏
k=1

αk fk
(
σ2)

σ2 +αk fk (σ2)
=

∞

∏
k=1

(
1− σ2

σ2 +αk fk (σ2)

)
= 0, (5.8.17)

for 〈Ex†,x†〉-a.e. σ2 and every induced Borel measure 〈Ex†,x†〉, i.e., for every σ ∈ σ(K)\{0}.
Applying now Lemma 5.8.4 the thesis follows.
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Corollary 5.8.8. For every x† ∈ X, the method (5.8.1) converges to x† as n→ ∞ if and only if

n

∑
k=1

σ rk+1

σ rk+1 +αk

diverges for every σ ∈ σ(K)\{0}.

Corollary 5.8.9. For every x† ∈ X, the method (5.8.3) converges to x† as n→ ∞ if and only if

n

∑
k=1

σ2

σ2 +αk

[
1−
(

σ

σ1

)2
] jk

diverges for every σ ∈ σ(K)\{0}.

Corollary 5.8.10.

(1) If supk∈N{rk} = r ∈ [0,∞), then the NSIWT-I method converges if and only if ∑
n
k=1 α

−1
k

diverges.

(2) Let limk→∞ rk = ∞ monotonically and let us set βn = ∑
n
k=1 α

−1
k . If limn→∞ β

1/rn
n = ∞, then

the NSIWT-I method converges.

Proof.
(1) For every σ ∈ σ(K)\{0}, we observe that

∞

∑
k=1

σ r+1

σ r+1 +αk
≤

∞

∑
k=1

σ rk+1

σ rk+1 +αk
≤

∞

∑
k=1

1
1+αk

≤
∞

∑
k=1

1
αk

. (5.8.18)

If the NSIWT-I method converges then, by Theorem 5.8.7 and by (5.8.18), ∑
∞
k=1

σ
rk+1

σ
rk+1+αk

di-

verges and hence ∑
∞
k=1

1
αk

= ∞. On the other hand, if ∑
∞
k=1 α

−1
k = ∞, then we can possibly have

three different cases: limk→∞ αk ∈ [0,∞), @ limk→∞ αk or limk→∞ αk = ∞. In the first two cases,
σ r+1

σ r+1+αk
9 0 for every σ > 0, and then the corresponding series diverges. In the latter case instead

α
−1
k ∼ cσ ,r

σ r+1

σ r+1+αk
for every σ > 0, and hence the series ∑

n
k=1 α

−1
k and ∑

n
k=1

σ r+1

σ r+1+αk
converges

or diverge simultaneously by the Asymptotic Comparison test. Then, by ∑
∞
k=1 α

−1
k = ∞, we

deduce that ∑
∞
k=1

σ
rk+1

σ
rk+1+αk

diverges for every σ > 0 and the NSIWT-I method converges.
(2) Note that

lim
n→∞

β
1/rn
n = ∞ ⇐⇒ lim

n→∞
σ

rn

(
n

∑
k=1

α
−1
k

)
= ∞ ∀σ ∈ σ (K)\{0},

namely,

lim
n→∞

β
1/rn
n = ∞ ⇐⇒

(
n

∑
k=1

α
−1
k

)−1

= o(σ rn) ∀σ ∈ σ (K)\{0}. (5.8.19)
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We can assume that 0 < σ < 1. For σ = 1 the result is indeed trivial owing to the equivalence
∞

∑
k=1

1
1+αk

= ∞⇐⇒
∞

∑
k=1

α
−1
k = ∞ (see the previous point).

Let us fix σ ∈ (0,1) and for the sake of simplicity let suppose that {αk} admits limit, i.e.,
limk→∞ αk ∈ [0,∞]. We have two cases:

lim
k→∞

αk

σ rk+1 = 0 or lim
k→∞

αk

σ rk+1 ∈ (0,∞].

In the first case, σ
rk+1

σ
rk+1+αk

9 0 for k→ ∞, then the corresponding series ∑
n
k=1

σ
rk+1

σ
rk+1+αk

diverges.
In this case we did not use (5.8.19), but note that

σ
n+1

α
−1
n ≤ σ

n+1
n

∑
k=1

α
−1
k

and then, if limk→∞ αk/σ rk+1 = 0, it holds
(
∑

n
k=1 α

−1
k

)−1
= o(σ rn+1). In the second case, we

have 1
σ

rk+1+αk
∼ cα

−1
k , for k→ ∞. Therefore, there exists N = N(σ) such that 1

σ
rk+1+αk

≥ c
2α
−1
k

for every k ≥ N. Hence, fixed n > N, we have

c
2

σ
rn+1

n

∑
k=N

α
−1
k ≤ σ

rn+1

(
N−1

∑
k=1

1
σ rk+1 +αk

+
c
2

n

∑
k=N

α
−1
k

)
≤

n

∑
k=1

σ rn+1

σ rk+1 +αk
≤

n

∑
k=1

σ rk+1

σ rk+1 +αk
,

where the last inequality stands in virtue of the monotonicity of {rk}. Since, by Lemma 5.8.5,
∑

n
k=N α

−1
k ∼ c∑

n
k=1 α

−1
k then, by the preceding inequalities, the equivalence (5.8.19) implies that

∑
n
k=1

σ
rk+1

σ
rk+1+αk

=∞. Finally, due to the arbitrarily choice of σ , we can conclude that ∑
n
k=1

σ
rk+1

σ
rk+1+αk

diverges for every σ ∈ σ(K)\{0}, and therefore the NSIWT-I method converges. If {αk} does
not have limit, then the proof can be carried out identically but handling with more care the
different cases

liminf
k→∞

αk

σ rk+1 = 0 or liminf
k→∞

αk

σ rk+1 ∈ (0,∞].

Corollary 5.8.10 applies immediately to the stationary case, where αk = α and rk = r for
every k ∈ N, showing that SIWT-I converges. On the other hand, from point (2) of Corol-
lary 5.8.10, given a monotone divergent sequence rk → ∞ we need a sequence αk such that(
∑

n
k=1 α

−1
k

)1/rn → ∞ for n→ ∞ in order to preserve the convergence of NSIWT-I.

Corollary 5.8.11. If ∑
n
k=1 α

−1
k diverges then the NSIWT-II method converges.

Proof. It is just an easy adaptation of the proof of (1) in Corollary 5.8.10, when now we have to
study the series

∞

∑
k=1

σ2

σ2 +αk

[
1−
(

σ

σ1

)2
] jk

.

We leave the details.
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Now, we investigate the convergence rate of NSIWT-I and NSIWT-II.

Theorem 5.8.12. Let {xn
αn, fn}n∈N be a convergent sequence of the general method (5.8.11), with

x† ∈ Xν for some ν > 0, and let {ϑn}n∈N be a divergent sequence of positive real numbers. If

lim
n→∞

ϑnσ
ν

n

∏
k=1

(
1− σ2

σ2 +αk fk (σ2)

)
= 0 for every σ ∈ σ(K)\{0}; (5.8.20a)

sup
σ∈σ(K)\{0}

ϑnσ
ν

n

∏
k=1

(
1− σ2

σ2 +αk fk (σ2)

)
≤ c < ∞ uniformly with respect to n,

(5.8.20b)

then
‖x†− xn

αn, fn‖= o(ϑ−1
n ). (5.8.21)

Proof. From equation (5.8.13), for x† ∈ Xν , we have

lim
n→∞

ϑn‖x†− xn
αn, fn‖= lim

n→∞

∫
σ(K∗K)

∣∣∣∣∣ϑnσ
ν

n

∏
k=1

(
1− σ2

σ2 +αk fk (σ2)

)∣∣∣∣∣
2

d〈Eσ2ω,ω〉

1/2

=

∫
σ(K∗K)

∣∣∣∣∣ limn→∞
ϑnσ

ν
n

∏
k=1

(
1− σ2

σ2 +αk fk (σ2)

)∣∣∣∣∣
2

d〈Eσ2ω,ω〉

1/2

,

by (5.8.20b) and the Dominated Convergence Theorem. Now, from hypothesis (5.8.20a), the
thesis follows.

Contextualizing the above theorem to the cases of NSIWT-I and NSIWT-II, we have the next
corollary.

Corollary 5.8.13. If conditions (5.8.20a) and (5.8.20b) are satisfied for

fk
(
σ

2)= σ
1−rk and fk

(
σ

2)= [1−
(

σ

σ1

)2
] jk

,

then we have, respectively,

‖x†− xn
αn,rn
‖= o(ϑ−1

n ) and ‖x†− xn
αn, jn‖= o(ϑ−1

n ).

The following Corollary 5.8.14 and Proposition 5.8.17 keep investigating deeper the conver-
gence rate of the NSIWT-I method.
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Corollary 5.8.14. We define

βn =
n

∑
k=1

α
−1
k , β̃n =

n

∑
k=1

1
1+αk

.

Let {rk}k∈N be a sequence of positive real numbers, and let x† ∈ Xν for some ν > 0. If

(i) supk∈N{rk}= r ∈ (0,∞),

(ii) limn→∞ βn = ∞,

then

‖x†− xn
αn,rn
‖=


o(β

− ν

r+1
n ) if lim

n→∞
αn = α ∈ (0,∞]

O(β
− ν

r+1
n ) if lim

n→∞
αn = 0 and α

−1
n ≤ cβn−1, c > 0

o(β̃
− ν

r+1
n ) otherwise.

(5.8.22a)

(5.8.22b)

(5.8.22c)

Proof. For the sake of simplicity, let us assume that the sequences {αk}, {rk} admit limits. First,
note that from (i), (ii) and Corollary 5.8.10 it follows that the NSIWT-I method is convergent.
Now, since 1− x≤ e−x ≤ cν ,rx−ν/r+1, and using (i.2), we have

σ
ν

n

∏
k=1

(
1− σ rk+1

σ rk+1 +αk

)
≤ σ

νe
−∑

n
k=1

σ
rk+1

σ
rk+1+αk

≤ σ
νe
−σ r+1

∑
n
k=1

1
σr+1+αk

≤ cν ,rσ
ν

(
1

σ r+1 ∑
n
k=1

1
σ r+1+αk

) ν

r+1

≤ cν ,r

(
n

∑
k=1

1
1+αk

)− ν

r+1

.

Moreover, note that 1
1+αk

∼ c
1+αk/σ

rk+1 . Therefore, conditions (5.8.20a) and (5.8.20b) of Theorem
5.8.12 are satisfied with

ϑn =

(
n

∑
k=1

1
1+αk

) ν

r+1

,

indeed

sup
σ∈[0,1]

σ
ν

(
n

∑
k=1

1
1+αk

) ν

r+1 n

∏
k=1

(
1− σ rk+1

σ rk+1 +αk

)≤ cν ,r,
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and

σ
ν

(
n

∑
k=1

1
1+αk

) ν

r+1 n

∏
k=1

(
1− σ rk+1

σ rk+1 +αk

)
≤

(
n

∑
k=1

1
1+αk

) ν

r+1

e
−∑

n
k=1

σ
rk+1

σ
rk+1+αk

=

(
n

∑
k=1

1
1+αk

) ν

r+1

e
−∑

n
k=1

1
1+αk/σ

rk+1

≤ c

(
n

∑
k=N(σ)

1
1+αk/σ rk+1

) ν

r+1

e
−∑

n
k=N(σ)

1
1+αk/σ

rk+1
,

where N(σ) is chosen such that 1
1+αk

≤ c/2
1+αk/σ

rk+1 for every k ≥ N(σ), and the right hand side

of the last inequality tends to 0 as n→ ∞ for every fixed σ . If limk→∞ αk = α ∈ (0,∞], then
βn ∼ c∑

n
k=1

1
1+αk

for n→ ∞ by Lemma 5.8.6. Equations (5.8.22a) and (5.8.22c) follow. Eventu-

ally, observing that 1− σ
rk+1

σ
rk+1+αk

≤ 1− σ r+1

σ r+1+αk
, equation (5.8.22b) follows instead by a straight-

forward application of [Lemma 1,2,3 and Theorem 1][58].
In the general case where no assumptions are made on the existence of the limits for the

sequences {αk} and {rk}, we can apply the same arguments being careful to study the liminf
and limsup of these sequences.

When r = 1 (classical iterated Tikhonov), equation (5.8.22b) is the result in [58, Theorem 1].
On the other hand, if limn→∞ αn = α ∈ (0,∞], then the convergence rate is improved by the
small “o”.

Remark 5.8.15. As we stated in (5.8.22b), when limn→∞ αn = 0, to obtain a convergence rate of
order O(β

−ν/(r+1)
n ) the sequence {αn} has to satisfy the condition α−1

n ≤ cβn−1 for a positive
real number c > 0. Then, ∑

n
k=1 α

−1
k = βn = O(qn), where q = (1+ c) > 1. To overcome this

bound, choosing sequences {r̂n} and {α̂n} such that r̂n diverges monotonically and β
1/rn
n → ∞

as n→ ∞, we are able to obtain a faster convergence rate, in a sense that has still to be defined.
In the following Proposition 5.8.17 we will give the proof for a specific case.

Definition 5.8.16. Following the approach in [17, (2.3), (2.4) pag. 26], we say that the sequence
{x̂n} converges uniformly faster than the sequence {xn} if

x†− x̂n = Rn(x†− xn), (5.8.23)

where {Rn} is a sequence of operators such that ‖Rn‖→ 0 as n→ ∞.
We say instead that {x̂n} converges non-uniformly faster than {xn} if (5.8.23) holds and

inf
n∈N
‖Rn‖> 0, lim

n→∞
‖Rnx‖= 0 for every x ∈ X .

We are ready to state the following comparison result.
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Proposition 5.8.17. Let {xn
αn
} be the sequence generated by the nonstationary iterated Tikhonov

with αn = α0qn, where α0 ∈ (0,∞),q ∈ (0,1), and let {xn
α̂n,r̂n
} be the sequence generated by

NSIWT-I, where α̂n = 1/n! and r̂n = n, both applied to the same compact operator K : X → Y .
Then, {xn

α̂n,r̂n
} converges, non uniformly, faster than {xn

αn
}.

Proof. Observe that the sequence {xn
αn
} corresponds to a NSIWT-I method {xn

αn,rn
} with rn = 1

for every n. Moreover, both the sequences {xn
αn
} and {xn

α̂n,r̂n
} converge, indeed they satisfy

conditions (1) and (2) of Corollary 5.8.10, respectively. Assuming that x0 = 0 and applying the
same strategy used in Theorem 5.8.7, without any effort it is possible to show that

x†− xn
α̂n,r̂n

=
n

∏
k=1

α̂k

(
(K∗K)

r̂k+1
2 + α̂kI

)−1
x†,

x† =
n

∏
k=1

α
−1
k (K∗K +αkI)(x†− xn

αn
).

Therefore we find

x†− xn
α̂n,r̂n

=

[
n

∏
k=1

α̂kα
−1
k

(
(K∗K)

r̂k+1
2 + α̂kI

)−1
(K∗K +αkI)

]
(x†− xn

αn
) = Rn(x†− xn

αn
).

Since 0 ∈ σ(K∗K), we infer ‖Rn‖> 1 for every n, and hence infn∈N ‖Rn‖ ≥ 1. If we prove that

lim
n→∞
‖Rnx‖= 0,

for every x ∈ X , then the thesis follows. Since

lim
n→∞
‖Rnx‖= 0⇐⇒ lim

n→∞

n

∏
k=1

α̂k(σ
2 +αk)

αk(σ r̂k+1 + α̂k)
= 0⇐⇒

∞

∑
k=1

αkσ r̂k+1− α̂kσ2

αkσ r̂k+1 +αkα̂k
= ∞ ∀σ > 0,

if we substitute the values αn = α0qn, then α̂n = 1/n! and r̂n = n, we obtain

∞

∑
k=1

αkσ r̂k+1− α̂kσ2

αkσ r̂k+1 +αkα̂k
=

∞

∑
k=1

1− σ

α0n!(qσ)n

1+ 1/n!
σn+1

,

and the right hand side of the above equality diverges: indeed

1− σ

α0n!(qσ)n

1+ 1/n!
σn+1

−→ 1 for every fixed q,σ ∈ (0,1) and α0 ∈ (0,∞).
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5.8.2 Analysis of convergence for perturbed data

Let now consider yδ = y+δη , with y∈Rg(K) and ‖η‖= 1, i.e., ‖yδ−y‖= δ . We are concerned
about the convergence of the NSIWT-I/II methods when the initial datum y is perturbed. Again,
we will initially prove a more general statement involving the method (5.8.11), with initial datum
yδ , and then the convergence results for perturbed data in the NSIWT-I/II cases will follow as
corollary. We use the notation xn,δ

αn, fn for the solution of the method (5.8.11) .

Theorem 5.8.18. Under the assumptions of Theorem 5.8.7, let f j : [0,σ1]→ R be such that

max
σ∈[0,1]

∣∣∣∣∣ n

∏
j=1

α jσ

σ2 +α j f j (σ2)

∣∣∣∣∣≤ c, for every n. (5.8.24)

If {δn} is a sequence convergent to 0 with δn ≥ 0 and such that

lim
n→∞

δn ·
n

∑
k=1

α
−1
k = 0, (5.8.25)

then,
lim
n→∞
‖x†− xn,δn

αn, fn‖= 0.

Proof. From the definition of the method (5.8.11), for every given j,n, we find that

x j,δn
α j, f j

=
[
K∗K +α j f j (K∗K)

]−1
(

K∗yδn +α j f j (K∗K)x j−1,δn
α j−1, f j−1

)
=

{
I−α j

[
K∗K +α j f j (K∗K)

]−1 f j (K∗K)
}

x†

+α j
[
K∗K +α j f j (K∗K)

]−1 f j (K∗K)x j−1,δn
α j−1, f j−1

+
[
K∗K +α j f j (K∗K)

]−1 K∗(yδn− y),

namely,

x†− x j,δn
α j, f j

= α j
[
K∗K +α j f j (K∗K)

]−1 f j (K∗K)(x†− x j−1,δn
α j−1, f j−1

)

−
[
K∗K +α j f j (K∗K)

]−1 K∗(yδn− y).

Hence, by induction, for every fixed n we have

x†− xn,δn
αn, fn =

n

∏
k=1

αk [K∗K +αk fk (K∗K)]−1 fk (K∗K)x†

−
n

∑
k=1

α
−1
k

n

∏
i=k

αi [K∗K +αi fi (K∗K)]−1 K∗(yδn− y).
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If we set gk,n(K∗K) = ∏
n
i=k αi [K∗K +αi fi (K∗K)]−1, then we have

‖gk,n(K∗K)K∗y‖2 = 〈gk,n(K∗K)K∗y,gk,n(K∗K)K∗y〉
= 〈gk,n(KK∗)KK∗y,gk,n(KK∗)y〉
= 〈gk,n(KK∗)(KK∗)1/2y,gk,n(K∗K)(KK∗)1/2y〉
= ‖gk,n(KK∗)(KK∗)1/2y‖2,

where we used the fact that gk,n(K∗K)K∗ = K∗gk,n(KK∗) and Proposition 5.1.23. Therefore,∥∥∥∥∥ n

∏
j=k

α j
[
K∗K +α j f j (K∗K)

]−1 K∗
∥∥∥∥∥=

∥∥∥∥∥ n

∏
j=k

α j
[
KK∗+α j f j (KK∗)

]−1
(KK∗)

1
2

∥∥∥∥∥
= max

σ∈[0,1]

∣∣∣∣∣ n

∏
j=k

α jσ

σ2 +α j f j (σ2)

∣∣∣∣∣≤ c,

by hypothesis (5.8.24). It follows that

‖x†− xn,δn
αn, fn‖ ≤ ‖

n

∏
k=1

αk [K∗K +αk fk (K∗K)]−1 fk (K∗K)x†‖+ c
n

∑
k=1

α
−1
k ‖y

δn− y‖

= ‖x†− xn
αn, fn‖+ cδn

n

∑
k=1

α
−1
k ,

and by Corollary 5.8.14 and (5.8.25), ‖x†− xn,δn
αn,rn‖→ 0 for n→ ∞.

Corollary 5.8.19. Under the assumptions of Corollary 5.8.10, if {δn} is a sequence convergent
to 0 with δn ≥ 0 and such that

lim
n→∞

δn ·
n

∑
k=1

α
−1
k = 0,

then the NSIWT-I method with perturbed data is convergent,

lim
n→∞
‖x†− xn,δn

αn,rn‖= 0.

Proof. We apply Theorem 5.8.18 with

f j(σ
2) = σ

1−r j .

Then hypothesis (5.8.24) is satisfied and the thesis follows at once.

Corollary 5.8.20. Under the assumptions of Corollary 5.8.11, let 0≤ αn ≤ 1 for every n. If {δn}
is a sequence convergent to 0 with δn ≥ 0 and such that

lim
n→∞

δn ·
n

∑
k=1

α
−1
k = 0,

then the NSIWT-II method with perturbed data is convergent,

lim
n→∞
‖x†− xn,δn

αn, jn‖= 0.



5.9 Nonstationary iterated fractional Tikhonov 129

Proof. Even in this case, we apply Theorem 5.8.18 with

fl(σ
2) =

(
1−σ

2) jl .

From the proof of Proposition 5.4.4 we know that

sup
0≤σ≤1

∣∣∣∣∣ ασ

σ2 +α (1−σ2)
j

∣∣∣∣∣≤ c
√

α.

Henceforth, if 0 ≤ αn ≤ 1 for every n, then hypothesis (5.8.24) is satisfied and again the thesis
follows at once.

5.9 Nonstationary iterated fractional Tikhonov

Definition 5.9.1 (Nonstationary iterated fractional Tikhonov). Let {αn}n∈N and {γn}n∈N be se-
quences of real numbers such that αn > 0 and γn ≥ 1/2 for every n. We define the nonstationary
iterated fractional Tikhonov method (NSIFT) as{

x0
α0,γ0

:= 0;
(K∗K +αnI)γn xn

αn,γn
:= (K∗K)γn−1K∗y+

[
(K∗K +αnI)γn− (K∗K)γn

]
xn−1

αn−1,γn−1
.

(5.9.1)

We denote by xn,δ
αn,γn the n-th iteration of NSIFT if y = yδ .

Theorem 5.9.2. For every x† ∈ X, the NSIFT method (5.9.1) converges to x† ∈ X as n→ ∞ if

and only if ∑n

(
σ2

σ2+αn

)γn
diverges for every σ ∈ σ(K)\{0}.

Proof. The proof follows the same steps as in Theorem 5.8.7. Therefore we will omit details.
What follows is that

x†− xn
αn,γn

=
n

∏
k=1

(K∗K +αkI)−γk
[
(K∗K +αkI)γk− (K∗K)γk

]
x†,

and hence

‖x†− xn
αn,γn
‖2 =

∫
σ(K∗K)

∣∣∣∣∣ n

∏
k=1

(σ2 +αk)
γk−σ2γk

(σ2 +αk)γk

∣∣∣∣∣
2

d〈Eσ2x†,x†〉.

Then, the method converges for every x† ∈ X if and only if

lim
n→∞

n

∏
k=1

[
1−
(

σ2

σ2 +αk

)γk
]
= 0

for every σ ∈ σ(K)\{0}. The thesis follows by Lemma 5.8.4.
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Corollary 5.9.3.

(1) Let limk→∞ γk = γ ∈ [1/2,∞). Then the NSIFT method converges if and only if

n

∑
k=1

α
−γ

k = ∞.

More in general, if supk∈N{γk}= s ∈ [1/2,∞) and ∑
∞
k=1 α

−s
k = ∞, then the NSIFT method

converges.

(2) Let limk→∞ γk = ∞. If limk→∞ αk = 0 and limk→∞ αkγk = l ∈ [0,∞), then the NSIFT method
converges.

Proof. (1) It is immediate noticing that

n

∑
k=1

(
σ2

σ2 +αk

)γk

∼ c
n

∑
k=1

(
σ2

σ2 +αk

)γ

n

∑
k=1

(
σ2

σ2 +αk

)γk

≥
n

∑
k=1

(
σ2

σ2 +αk

)s

.

(2) We observe that(
σ2

σ2 +αk

)γk

=

(
1− αk

σ2 +αk

)γk

∼ e
− αkγk

σ2+αk → e−l/σ2
6= 0

for k→∞. Then ∑
n
k=1

(
σ2

σ2+αk

)γk
diverges for every σ > 0 and the NSIFT method converges.

Theorem 5.9.4. Let {xn
αn,γn
}n∈N be a convergent sequence of the NSIFT method, with x† ∈ Xν

for some ν > 0, and let {ϑn}n∈N be a divergent sequence of positive real numbers. If

lim
n→∞

ϑnσ
ν

n

∏
k=1

(
1− σ2γk

(σ2 +αk)
γk

)
= 0 for every σ ∈ σ(K)\{0}; (5.9.2a)

sup
σ∈σ(K)\{0}

ϑnσ
ν

n

∏
k=1

(
1− σ2γk

(σ2 +αk)
γk

)
≤ c < ∞ uniformly with respect to n, (5.9.2b)

then
‖x†− xn

αn,γn
‖= o(ϑ−1

n ). (5.9.3)

Proof. As seen in Theorem 5.8.12, the thesis follows easily from the Dominated Convergence
Theorem.

Corollary 5.9.5. Let {γk}k∈N be a sequence of positive real numbers, γk ≥ 1/2, and let x† ∈ Xν

for some ν > 0. If
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(i) supk∈N{γk}= s ∈ [1/2,∞),

(ii) limn→∞ βn = ∞,

then
‖x†− xn

αn,γn
‖= o(β

− ν

2s
n ) if ∃ lim

k→∞
αk = α ∈ (0,∞],

‖x†− xn
αn,γn
‖= o(β̃

− ν

2s
n ) otherwise,

(5.9.4)

(5.9.5)

where we defined

βn =
n

∑
k=1

α
−s
k , β̃n =

n

∑
k=1

1
1+αs

k
.

Proof. See Corollary 5.8.14.

Theorem 5.9.6. Under the assumptions of Corollary 5.9.3, if {δn} is a sequence convergent to 0
with δn ≥ 0 and such that

lim
n→∞

δn ·
n

∑
k=1

α
−γk
k = 0, (5.9.6)

then, limn→∞ ‖x†− xn,δn
αn,γn‖= 0.

Proof. Here is a sketch of the proof, since it follows step by step from the proof of Theorem
5.8.18. If we set

ψk(K∗K) := [(K∗K +αkI)γk− (K∗K)γk ]

φk(K∗K) := ψk(K∗K) [K∗K +αkI]−γk ,

then from (5.9.1) it is possible to show that

x†− xn,δn
αn,γn =

n

∏
k=1

φk(K∗K)x†−
n

∑
k=1

ψk(K∗K)−1
n

∏
i=k

φi(K∗K)(K∗K)γk−1 K∗(yδn− y),

for every integer n and for every perturbed data yδn = y+δnη . Owing to the equality∥∥∥∥∥ n

∏
i=k

φi(K∗K)(K∗K)γk−1 K∗
∥∥∥∥∥=

∥∥∥∥∥ n

∏
i=k

φi(KK∗)(KK∗)γk−1 (KK∗)1/2

∥∥∥∥∥ ,
we deduce

‖x†− xn,δn
αn,γn‖ ≤ ‖x

†− xn
αn,γn
‖+δn

n

∑
k=1

∥∥ψk(K∗K)−1∥∥
= ‖x†− xn

αn,γn
‖+δn

n

∑
k=1

α
−γk
k .
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Figure 5.2: Example 1 – “Foxgood” test case: (a) the true solution (dashed curve) and the
observed data (solid curve), (b) approximated solutions by SIFT with γ = 0.8 and α = 10−3,
SIWT with r = 0.6 and α = 10−2, and SIWT with r = 1 and α = 10−3.

5.10 Numerical results

We now give few selected examples with a special focus on the nonstationary iterations proposed
in this paper. For a larger comparison between fractional and classical Tikhonov refer to [73, 66,
51]. To produce our results we used Matlab 8.1.0.604 using a laptop pc with processor Intel
iCore i5-3337U with 6 GB of RAM running Windows 8.1.

We add to the noise-free right-hand side vector y, the “noise-vector” e that has in all examples
normally distributed pseudorandom entries with mean zero, and is normalized to correspond to
a chosen noise-level

ξ =
‖e‖
‖y‖

.

As a stopping criterion for the methods we used the Discrepancy Principle [59], that termi-
nates the iterative method at the iteration

k̂ = min
k
{k : ‖yδ −Kxk‖ ≤ τδ},

where τ = 1.01. This criterion stops the iterations when the norm of the residual reaches the
norm of the noise so that the latter is not reconstructed.

To compare the restorations with the different methods, we consider both the visual represen-
tation and the relative restoration error that is ‖x̂− x†‖/‖x†‖ for the computed approximation x̂.
We will focus only on the weighted-I and the fractional Tikhonov methods.
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α Method
r/γ

0.4 0.6 0.8 1 1.2

5×10−2 SIFT 337.09(7) 0.02498(13) 0.03481(19) 0.03752(29) 0.03838(43)
SIWT 0.02589(9) 0.03202(13) 0.03609(19) 0.03752(29) 0.03932(43)

10−2 SIFT 320.85(3) 0.02048(5) 0.02633(7) 0.03731(7) 0.03783(9)
SIWT 0.01697(3) 0.01818(5) 0.03361(5) 0.03731(7) 0.03672(11)

5×10−3 SIFT 423.37(3) 0.02216(3) 0.02190(5) 0.03102(5) 0.03723(5)
SIWT 0.02421(3) 0.01573(3) 0.03186(3) 0.03103(5) 0.03347(7)

10−3 SIFT 402.97(1) 0.02299(1) 0.00698(3) 0.01756(3) 0.02443(3)
SIWT 0.06403(1) 0.02210(1) 0.02528(1) 0.01756(3) 0.02736(3)

5×10−4 SIFT 531.72(1) 0.02119(1) 0.01729(1) 0.02507(1) 0.03119(1)
SIWT 0.10518(1) 0.04506(1) 0.01482(1) 0.02507(1) 0.02086(3)

10−4 SIFT 1012.2(1) 0.07246(1) 0.04229(1) 0.02704(1) 0.01675(1)
SIWT 0.25927(1) 0.13000(1) 0.07213(1) 0.02704(1) 0.01154(1)

Table 5.1: Example 1: relative errors and iteration numbers between brackets for SIWT and SIFT
for different choices of α , r, and γ .

5.10.1 Example 1

This test case is the so-called Foxgood in the toolbox REGULARIZATION TOOL by P. Hansen
[62] using 1024 points. We have added a noise vector with ξ = 0.02 to the observed signal. In
Figure 5.2(a) the true signal and the measured data can be seen.

In Table 5.1 we show the relative errors with different choices of α , r and γ . In brackets we
report the iteration at which the discrepancy principle stopped the method. Note that SIFT with
γ = 1 and SIWT with r = 1 are exactly the classical Tikhonov method and hence produce the
same result. Figure 5.2(b) shows the reconstruction for SIFT with γ = 0.8 and α = 10−3, SIWT
with r = 0.6 and α = 10−2, and SIWT with r = 1 (classical Iterated Tikhonov) with α = 10−3.

From these results, using both fractional and weighted-I iterated Tikhonov, we can see that we
can obtain better restorations than with the classical version. However, in order to obtain such
results, one has to evaluate α very carefully. Indeed α does not only affects the convergence
speed, but also the quality of the restoration: a small perturbation in α can lead to quite different
restoration errors. The nonstationary version of the methods can help also to avoid such a careful
and often difficult estimation.

For the nonstationary iterations we assume the regularization parameter αn at each iteration
be given according to the geometric sequence

αn = α0qn, q ∈ (0,1), n = 1,2, . . . . (5.10.1)

Setting rn = 0.6 and γn = 0.8, Table 5.2 shows that NSIFT and NSIWT-I provide a relative
error lower than the classical nonstationary iterated Tikhonov (NSIT). Finally, since NSIFT and
NSIWT-I allow a nonstationary choice also for rn and γn, in Table 5.2 we report the results for
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α0 Method
q

0.7 0.8 0.9

10−1

NSIFT (γn = 0.8) 0.024453(9) 0.030868(11) 0.028849(17)
NSIWT-I (rn = 0.6) 0.025223(7) 0.027628(9) 0.028534(13)
NSIT 0.035162(9) 0.031627(13) 0.036472(19)
NSIFT (γn in (5.10.2)) 0.032489(9) 0.027974(13) 0.037199(17)
NSIWT-I (rn in (5.10.2)) 0.031493(9) 0.027436(13) 0.036059(17)

10−2

NSIFT (γn = 0.8) 0.014781(5) 0.021687(5) 0.028709(5)
NSIWT-I (rn = 0.6) 0.014503(3) 0.021501(3) 0.028396(3)
NSIT 0.024838(5) 0.030866(5) 0.028835(7)
NSIFT (γn in (5.10.2)) 0.023848(5) 0.030002(5) 0.027636(7)
NSIWT-I (rn in (5.10.2)) 0.023482(5) 0.029638(5) 0.027366(7)

Table 5.2: Example 1: relative errors and iteration numbers between brackets for NSIWT-I and
NSIFT with the nonstationary αn in (5.10.1) and different choices of rn and γn (NSIT is rn =
γn = 1).

the following nonincreasing sequences

rn = γn =

{
1− n−1

100 n < 50,
1
2 otherwise.

(5.10.2)

Again both NSIWT-I and NSIFT are able to get better results than NSIT. Even tough the errors
are not as good as those for the best choices rn = 0.6 and γn = 0.8, the choice (5.10.2) stresses
the robustness of our nonstationary iterations.

5.10.2 Example 2

We consider the test problem deriv2(·,3) in the toolbox REGULARIZATION TOOL by P. Hansen
[62] using 1024 points. For the noise vector it holds ξ = 0.05. In Figure 5.3(a) we can see the
measured data and the true signal. We compare NSIWT-I and NSIFT with the NSIT.

Firstly, αn is defined by the classical choice in (5.10.1). Table 5.3 shows the results for differ-
ent choices of rn and γn. Note that NSIWT-I and NSIFT usually outperform NSIT. Nevertheless,
our nonstationary iterations allow also unbounded sequences of rn and γn. Therefore, according
to Proposition 5.8.17, we set

αn =
1
n!
, rn =

n
10

, γn =
n
2
. (5.10.3)

Table 5.4 shows that the relative restoration error obtained with the unbounded sequences rn and
γn in (5.10.3) is lower than the best one (according to Table 5.3), obtained by NSIT by employing
the geometric sequence (5.10.1) for αn. The computed approximations are also compared in
Figure 5.3(b), where we note a better restoration of the corner for NSIWT-I and NSIFT.
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Figure 5.3: Example 2 – “deriv2” test case: (a) the true solution (dashed curve) and the observed
data (solid curve), (b) approximated solutions.

α0 Method
q

0.7 0.8 0.9

10−1

NSIFT (γn = 0.8) 0.08981(11) 0.09394(13) 0.09445(19)
NSIWT-I (rn = 0.6) 0.08051(13) 0.09181(17) 0.09401(29)
NSIT 0.08502(15) 0.09175(21) 0.09466(37)
NSIFT (γn in (5.10.2)) 0.09428(13) 0.09089(19) 0.09327(29)
NSIWT-I (rn in (5.10.2)) 0.09073(13) 0.08648(19) 0.09199(29)

10−2

NSIFT (γn = 0.8) 0.09114(5) 0.08953(7) 0.08998(9)
NSIWT-I (rn = 0.6) 0.07807(7) 0.09411(7) 0.09183(11)
NSIT 0.08183(9) 0.09174(11) 0.09379(17)
NSIFT (γn in (5.10.2)) 0.07839(9) 0.08721(11) 0.09246(15)
NSIWT-I (rn in (5.10.2)) 0.09399(7) 0.08389(11) 0.08990(15)

Table 5.3: Example 2: relative errors and iteration numbers between brackets for NSIWT-I and
NSIFT with the nonstationary αn in (5.10.1) and different choices of rn and γn (NSIT is rn =
γn = 1).

NSIFT NSIWT-I NSIT
Error 0.054831(9) 0.059211(7) 0.081835(9)

Table 5.4: Example 2: relative restoration errors and iteration numbers between brackets for
NSIFT and NSIWT-I with parameters in (5.10.3) and NSIT with αn = 0.01 ·0.7n.
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(a) (b)
Figure 5.4: Example 3 – “blur” test case: (a) the true image, (b) the measured data.

5.10.3 Example 3
We consider the test problem blur(·,·,·) in the toolbox REGULARIZATION TOOL by P. Hansen
[62]. This is a two dimensional deblurring problem, the true solution is a 40× 40 image, the
blurring operator is a symmetric BTTB (block Toeplitz with Toeplitz block) with bandwidth 6.
This blur is created by a truncated Gaussian point spread function with variance 2. For the noise
vector it holds ν = 0.005. Figure 5.4(a) shows the true image while the observed image is in
Figure 5.4(b).

Firstly, αn is defined by the classical choice in (5.10.1). Table 5.5 provides the results for a
good stationary choice of rn and γn. Note that NSIWT-I and NSIFT usually outperform NSIT.
Table 5.6 shows that the relative restoration error obtained with the unbounded sequences rn and
γn in (5.10.3) is lower than the best one (according to Table 5.5), obtained by the stationary choice
of rn and γn. We note that NSIWT-I and NSIFT are less sensitive than NSIT to an appropriate
choice of α0 and q. In particular using rn and γn in (5.10.3), NSIWT-I and NSIFT do not need
any parameter estimation and the computed solutions have a relative restoration error lower than
NSIT with the best parameter setting (see Table 5.5) and they provide also a better reconstruction,
in particular of the edges, see Figure 5.5.

Finally, note that for the NSIT a nondecreasing sequence of αn could be considered instead
of the geometric sequence (5.10.1), see [38]. Nevertheless, this strategy requires a proper choice
of α0 and this is out of the scope of this paper, but it could be investigated in the future in
connection with our fractional and weighted-I variants. A further development of our iterative
schemes is in the direction of the nonstationary preconditioning strategy in [41], which is inspired
by an approximated solution of the NSIT and hence could be investigated also in a fractional
framework.

5.11 Conclusions, open problems and further comments
We extended recently proposed weighted and fractional versions of Tikhonov regularization to
iterative regularization methods in the spirit of classical iterated Tikhonov regularization. The
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α0 Method
q

0.7 0.8 0.9

10−1
NSIFT (γn = 0.5) 0.19970(9) 0.19526(13) 0.19847(17)
NSIWT-I (rn = 0.2) 0.18936(7) 0.18920(9) 0.19732(11)
NSIT 0.19816(15) 0.21786(20) 0.28703(20)

10−2
NSIFT (γn = 0.5) 0.19398(5) 0.19962(5) 0.19595(7)
NSIWT-I (rn = 0.2) 0.20822(3) 0.19547(3) 0.19109(3)
NSIT 0.19518(9) 0.20531(11) 0.20747(17)

Table 5.5: Example 3: relative errors for NSIWT-I and NSIFT with the nonstationary αn in
(5.10.1).

NSIFT NSIWT-I NSIT
Error 0.19335(10) 0.18765(8) 0.19518(9)

Table 5.6: Example 3: relative restorations errors for NSIFT and NSIWT-I with parameters in
(5.10.3) and NSIT with αn = 0.01 ·0.7n.

(a) (b) (c)
Figure 5.5: Example 3 – “blur” reconstructions: (a) NSIFT and (b) NSIWT-I with parameters in
(5.10.3), (c) NSIT with αn = 0.01 ·0.7n.

analysis uses the well-known technique of filter functions and contains all types of desired re-
sults: the proposed methods are regularizing, they converge, one can prove convergence rates,
and the rates saturate at a known level. Furthermore, numerical examples have been provided
showing that the weighted or fractional variants can be superior with respect to classical iterated
Tikhonov regularization.
It would be interesting to investigate experimentally further the action of the weighted-II Tikhonov
filter as a switch for the regularization in combination with further types of filters. Moreover, ex-
tensions of those filters to generic Banach spaces are still unknown.
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6.1 Preliminary definitions
We begin giving some useful definitions that will be used later in the Chapter.

Definition 6.1.1 (Toeplitz matrix). Let T be an n×n matrix. We say that T is Toeplitz if it takes
the form

T =



t0 t−1 t−2 · · · · · · t−(n−1)

t1 t0 t−1
. . . ...

t2 t1
. . . . . . . . .

... . . . . . . . . . t−1 t−2

... . . . t1 t0 t−1
tn−1 · · · · · · t2 t1 t0


.

It is fully specified by the vector v =
[
tn−1 · · · t1 t0 t−1 · · · t−(n−1)

]
.

If the (i, j) element of the matrix T is denoted by Ti, j, then we have

Ti, j = Ti+1, j+1 = ti− j.

Definition 6.1.2 (Hankel matrix). Let H be an n×n matrix. We say that H is Hankel if it takes
the form

H =



h0 h1 h2 h4 · · · hn−1
h1 h2 h3 · · · · · · hn

h2 h3 · · · · · · ...
...

...
... h2n−4 h2n−3

hn−1 · · · · · · h2n−4 h2n−3 h2n−2


.

If the (i, j) element of the matrix H is denoted by Hi, j, then we have

Hi, j = Ti+1, j−1 = hi+ j−2.

Definition 6.1.3 (Discrete Fourier transform). Let ωn = e−
2πi
n be the nth root of unity, where

i2 =−1. The discrete Fourier transform (DFT) is then expressed in the following way

Fn =



1 1 1 · · · 1 1
1 ωn ω2

n · · · ωn−2
n ωn−1

n

1 ω2
n ω4

n · · · · · · ω
2(n−1)
n

...
...

1 ωn−2
n · · · · · · ω

(n−2)(n−1)
n

1 ωn−1
n · · · · · · ω

(n−1)(n−1)
n


,

with F−1
n = 1

nF∗n .



6.1 Preliminary definitions 141

Definition 6.1.4 (Circulant matrix). Let C be an n× n matrix. We say that C is circulant if it
takes the form

C =



c0 cn−1 cn−2 · · · c2 c1
c1 c0 cn−1 c2

c2 c1 c0 cn−1
...

...

cn−2
. . . cn−1

cn−1 cn−2 · · · · · · c1 c0


.

It is fully specified by the first column vector c =
[
c0 c1 · · · cn−1

]t .
If we define

U∗n =
1√
n

Fn, Un =
√

nF−1
n ,

where Fn is the DFT, then C can be diagonalized by Un. In fact, we have the following relation

C =Undiag(Fnc)U∗n .

The above definitions of Toeplitz, Hankel and circulant matrices can be applied even to block
matrices. For example, a Toeplitz block matrix T has the form

T =



T0 T−1 T−2 · · · · · · T−(n−1)

T1 T0 T−1
. . . ...

T2 T1
. . . . . . . . .

... . . . . . . . . . T−1 T−2

... . . . T1 T0 T−1
Tn−1 · · · · · · T2 T1 T0


,

where every block Tj is a square m×m matrix. A block Toeplitz Toeplitz block (BTTB) is a block
Toeplitz matrix with every block Tj Toeplitz.

Theorem 6.1.5 (Cauchy’s Interlacing Theorem). Let A ∈ Cn×n be an Hermitian matrix, i.e.,
A = A∗, with eigenvalues λn ≤ λn−1 ≤ ·· · ≤ λ1. Let A be partitioned as

A =

[
E B∗

B G

]
,

where E ∈ Cm×m,B ∈ C(n−m)×m and G ∈ C(n−m)×(n−m). Then the eigenvalues θm ≤ θm−1 ≤
·· · ≤ θ1 of E satisfy

λk+n−m ≤ θk ≤ λk.



142 6. Regularization Preconditioners

6.2 Introduction
Image deblurring is the process of reconstructing an approximation of an image from blurred and
noisy measurements. By assuming that the point spread function h (PSF) is spatially-invariant,
the observed image g(x,y) is related to the true image f (x,y) via the integral equation

g(s, t) =
+∞∫
−∞

+∞∫
−∞

h(s− s′, t− t ′) f (s′, t ′) ds′ dt ′+η(s, t), (s, t) ∈Ω⊂ R2, (6.2.1)

where η(s, t) is the noise.
By collocation of the previous integral equation on a uniform grid, we obtain the grayscale

images of the observed image, of the true image, and of the PSF, denoted by G, F , and H,
respectively. Since collected images are available only in a finite region, the field of view (FOV),
the measured intensities near the boundary are affected by data outside the FOV.

Figure 6.1: Field of view. We see what is inside the square box.

Given an n× n observed image G (for the sake of simplicity we assume square images), and a
p× p PSF with p≤ n, then F is m×m with m = n+ p−1. Denoting by g and f the stack ordered
vectors corresponding to G and F , the discretization of (6.2.1) by a rectangular quadrature rule
with uniform grid (for example) leads to the under-determined linear system

g = Af+η , (6.2.2)

where the matrix A is of size n2×m2. When imposing proper Boundary Conditions (BCs), the
image A becomes square n2×n2 and in some cases, depending on the BCs and the symmetry of
the PSF, it can be diagonalized by discrete trigonometric transforms. For example, the matrix A is
block circulant circulant block (BCCB) and it is diagonalizzable by Discrete Fourier Transform
(DFT), when periodic BCs are imposed. See Figure 6.2.

Due to the ill-posedness of (6.2.1), A is severely ill-conditioned and may be singular. In such
case, linear systems of equations (6.2.2) are commonly referred to as linear discrete ill-posed
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problems [59]. Therefore a good approximation of f cannot be obtained from the algebraic so-
lution (e.g., the least-square solution) of (6.2.2), but regularization methods are required. The
basic idea of regularization is to replace the original ill-conditioned problem with a nearby well-
conditioned problem, whose solution approximates the true solution. One of the popular reg-
ularization techniques is the Tikhonov regularization, as we have already seen in the previous
Chapter, and it amounts in solving

min
f
{‖Af−g‖2

2 +µ‖f‖2
2}, (6.2.3)

where ‖ · ‖p denotes the vector p-norm, p ≥ 1, and µ > 0 is a regularization parameter to be
chosen. Compare it to equation (5.2.3). Hereafter, we use ‖ · ‖ ≡ ‖ · ‖2 to denote the `2-norm.
The first term in (6.2.3) is usually refereed as fidelity term and the second as regularization
term. This approach is computationally attractive, since it leads to a linear problem and indeed
several efficient methods have been developed for computing its solution and for estimating µ

[59]. On the other hand, the edges of restored image are usually over-smoothed. To overcome
this unpleasant property, nonlinear strategies have been employed, like total variation (TV) [91]
and thresholding iterative methods [35, 49]. Anyway, several nonlinear regularization methods
have an inner step that apply a least-square regularization and hence can benefit from strategies
previously developed for such simpler model, as we will show in the following.

In this Chapter we consider a regularization strategy based on wavelet decomposition that has
been recently largely investigated [21, 22, 26, 49, 36, 35]. This approach is motivated by the fact
that most real images usually have sparse approximations under some wavelet basis. In particular,
in this Chapter we consider the tight frame systems previously used in [19, 21, 22]. Solving
(6.2.2) in a tight frame domain, the redundancy of system leads to robust signal representation
in which partial loss of the data can be tolerated without adverse effects. In order to obtain the
sparse approximation, we minimize the weighted `1-norm of the tight frame coefficients. Let W ∗

be a wavelet or tight-frame synthesis operator (W ∗W = I), the wavelets or tight-frame coefficients
of the original image f are x such that

f =W ∗x. (6.2.4)

In the following, we will investigate the synthesis approach, but our proposal can be applied also
to the analysis and to the balanced approach described in [22, 99]. Reformulating the deblurring
problem (6.2.2) in terms of frame coefficients

min
x
{µ‖x‖1 +‖x‖2 : AW ∗x = g}, (6.2.5)

a regularized solution of this problem can be obtained by the Bregman splitting [115]. Indeed,
as we will see in Section 6.4, the regularization is made upon equation (6.4.3) (which is equiva-
lent to the above equation (6.2.5) if K is surjective) in the same spirit of iterative regularization
methods like iterated Tikhonov, introduced in the preceding chapter. As for the iterative soft-
thresholding [35, 49] for the unconstrained version of (6.2.5) and the Landweber method for the
least-square solution of (6.2.2), the Bregman splitting converges very slowly for image deblur-
ring problems. Hence a preconditioning strategy is usually employed, obtaining the Modified
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Linearized Bregman Algorithm (MLBA) [21]. The preconditioner is usually chosen as a BCCB
approximation of (AA∗+αI)−1, α > 0, see [21, 22, 99], which is the simplest regularized ver-
sion of the inverse of AA∗ which, also when theoretically available, cannot be computed due to
the severe ill-conditioning of A.

In this Chapter, we show that the BCCB preconditioner used in the literature leads often
to poor restorations when the matrix A has the rectangular n2×m2 structure or is obtained by
imposing accurate BCs, like antireflective BCs [98]. Note that in real applications we have to
take into account the boundary effects to obtain high quality restorations, otherwise the restored
image is severely affected by ringing effects [64, 81]. This topic has been recently investigated
in connection with nonlinear models based on wavelets or TV in [103, 3, 6], but, at our knowl-
edge, this is the first time that it is considered in connection with the MLBA. In this context we
propose and discuss other preconditioning strategies for the MLBA with the synthesis approach.
Our preconditioners are inspired by the experience with least-square regularization where the
regularization preconditioning is studied since a long time, see the seminal paper [61]. In partic-
ular a nonstationary preconditioned iteration suggested by [41] leads to a new algorithm that is
no longer a Bregman iteration.

We investigate the following two strategies to define accurate and computationally cheap
preconditioners:

(1) an approximation of the blurring operator in a small Krylov subspace;

(2) a symmetrization of the original PSF H;

The choice (1) is quite natural and already considered for similar problems (see e.g. [3]), but we
will show that a properly chosen Krylov subspace of small size (say spanned by at most five vec-
tors), with a proper choice of the initial guess, is usually enough to obtain a good approximation.
The choice (2) can be very useful in many applications where the PSF is obtained experimen-
tally by measurements and is a perturbation of a symmetric kernel. In this case the approximated
quadrantally symmetric (i.e., symmetric with respect to each quadrant) PSF leads to a matrix
diagonalizable by Discrete Cosine Transform (DCT).

Following the idea to combine preconditioned regularizing iterative methods for least-square
ill-posed problems with the MLBA, we propose a new algorithm based on the recent proposal in
[37, 41]. The nonstationary preconditioner is defined by a parameter computed by solving a non-
linear problem with a computational cost of O(n2). We observe that this method can be applied
only with square matrices and so only when A is obtained by imposing BCs. The new algorithm
is no longer a Bregman iteration and we cannot apply the convergence analysis developed in
[21] for the MLBA. Therefore, here we prove its convergence and its regularization character.
Furthermore, when a good value for the parameter in the preconditioner is available, we provide
a variant of the algorithm with a stationary preconditioner which can improve the quality of the
restorations even if the previous convergence analysis does not hold any longer.

A large number of numerical experiments in Section 6.7 shows that our proposals not only
outperform the standard MLBA with BCCB preconditioning, but are also good competitors for
other recent methods dealing with boundary artifacts proposed in [3, 6].
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Besides, we mention that the two deblurring models based on the rectangular matrix A and the
imposition of BCs, we have tested also a third strategy based on the enlargement of the domain
to reduce the ringing effects like in [89, 103], but, according to the results in [3], the quality of
the restored images were not better than those obtained with the other two models, while the
CPU time was higher. Hence, we do not discuss further this strategy here.

The Chapter is organized as follows. In Section 6.3, we describe the structure of the blur-
ring matrix A explaining how fast trigonometric transforms can be used in the computations both
for the rectangular matrix and the square matrices arising from the imposition of classical BCs.
Section 6.4 reviews briefly the synthesis approach and the MLBA for solving the correspond-
ing minimization problem. In Section 6.5 we propose possible regularization preconditioners,
combining accurate restorations and a low computational cost. A new algorithm is proposed in
Section 6.6 combining the MLBA with the method in [41]. Section 6.7 contains a large num-
ber of numerical experiments, comparing our proposal with some state of the art algorithms,
for the restoration of images with unknown boundaries. Concluding remarks are provided in
Section 6.8.

6.3 The structure of the blurring matrix
We count mainly three strategies in order to obtain both accurate and fast restorations with re-
duced boundary artifacts. In this Chapter, we just consider two of them: the use of the original
rectangular matrix and the imposition of BCs. As mentioned in the Introduction, we do not con-
sider the third strategy introduced in [89], since from one side it is equivalent to the reflective (or
Neumann) BCs in the case of quadrantally PSF, cf. [45], and from the other side, according to
several tests that we have performed and the numerical results in [3], it does not provide a better
restoration than the other two strategies, while it usually requires a larger CPU time.

In this section we describe the structure of the matrix A and how fast computations with
such matrix, like matrix-vector product or least-square solutions, can be implemented. Firstly
we introduce the rectangular n2×m2 matrix and then the square n2× n2 matrix obtained when
imposing proper BCs.

6.3.1 The rectangular matrix
The fact that this matrix is not square prevents the use of Fast Fourier Transform (FFT). To cope
with this difficulty, one can construct an m2×m2 blurring matrix Abig that is BCCB, and hence,
the FFT can be used. Let M ∈ Rn2×m2

be a masking matrix which, when applied to a vector in
Rm2

, selects only the entries in the FOV, i.e., their rows are a subset of the rows of an identity
matrix of order m2. The rectangular blurring matrix can be written as

A = MAbig. (6.3.1)

Hence the matrix vector Ax can be easily computed by two bi-dimensional FFTs of order m2,
followed by a selection of the pixels inside the FOV. Similarly A∗x = A∗bigM∗x and thus two FFTs



146 6. Regularization Preconditioners

are applied to the zero-padded version of x of size m2. This approach was used in [3] and it is
numerically equivalent to that adopted in [112].

We observe that the matrix M in (6.3.1) leads to a matrix A independent of the BCs used in
the definition of Abig. Thus, when the PSF is quadrantally symmetric, we suggest to use of the
DCT instead of the DFT (see the discussion on reflective BCs in the next subsection).

The structure of the matrix A and its representation in (6.3.1) allow fast computations of the
matrix vector product with A and A∗, but they prevent the use of fast transforms for solving linear
systems with polynomials of AA∗ as coefficient matrix even when A is full-rank.

6.3.2 Boundary conditions
The BC approach forces a functional dependency between the elements of f external to the FOV
and those internal to this area. This has the effect of extending F outside of the FOV without
adding any unknowns to the associated image deblurring problem. Therefore, the matrix A can
be written as an n2× n2 square matrix, whose structure can be exploited by fast algorithms. If
the BC model is not a good approximation of the real world outside the FOV, the reconstructed
image can be severely affected by some unwanted artifacts near the boundary, called ringing
effects [64].

zero Dirichlet Periodic

Reflective Antireflective

Figure 6.2: Examples of boundary conditions.

The use of different BCs can be motivated from information on the true image and/or from the
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Zero Periodic Reflective

0 0 0
0 F 0
0 0 0

F F F
F F F
F F F

Frc Fr Frc

Fc F Fc

Frc Fr Frc

Table 6.1: Pad of the original image F obtained by imposing the classical BCs considered in
[64], with Fc = fliplr(F), Fr = flipud(F), and Frc = flipud(fliplr(F)), where fliplr(·) and flipud(·)
are the MATLAB functions that perform the left-right and up-down flip, respectively.

availability of fast transforms to diagonalize the matrix A within O(n2 log(n)) arithmetic opera-
tions. Indeed, the matrix-vector product can be always computed by the 2D FFT, after a proper
padding of the image to convolve (the resulting image is the inner n×n part of the convolution),
cf. [80], while the availability of fast transforms to diagonalize the matrix A depends on the BCs.
Anyway, the shift-invariant property of the blur leads to a matrix A that can be well approximated
by a BCCB matrix C, which is diagonalized by DFT, because usually in the applications

A−C = R+N, (6.3.2)

where R is a matrix of small rank and N is a matrix of small norm. More precisely, for any ε > 0
there is a constant cε > 0 independent of n and depending only on ε and on the PSF, such that
the splitting (6.3.2) holds with

rank(R)≤ cε ·n, ‖N‖ ≤ ε, (6.3.3)

where rank(R) denotes the rank of R (see [60]). Note that n2 is the size of the matrix A.
In the following we recall common BCs that will be used in the numerical tests. For a

detailed description of zero, periodic, and reflective, refer to [64], while for antireflective BC see
the review paper [44] and the original proposal in [98].

Zero (i.e., Dirichlet) BCs assume that the object is zero outside of the FOV. That is, one assumes
that F has been extracted from a larger array padded by zeros (see Table6.1). This is a
good choice when the true image is mostly zero outside the FOV, as is the case for many
astronomical or medical images with a black background. Unfortunately, these BCs have
a bad effect on reconstructions of images that are nonzero outside the border, leading to
reconstructed image with severe “ringing” near the boundary. The corresponding matrix A
has a block-Toeplitz-Toeplitz-block (BTTB) structure which is not diagonalizable by fast
trigonometric transforms.

Periodic BCs assume that the observed image repeats in all directions. More specifically, one
assumes that F has been extracted from a larger array of the form in Table 6.1. The
corresponding matrix A is BCCB and so is always diagonalized by 2D DFT. Clearly, if
the true image is not periodic outside the FOV the reconstructed image will be affected by
severe ringing effects.
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Reflective (i.e., Neumann or symmetric) BCs assume that outside the FOV the image is a mirror
image of F [81]. That is, one assumes that F has been extracted from a larger array
symmetrically padded like in Table 6.1. The matrix A has a block structure that combines
Toeplitz and Hankel structures, but it can be easily diagonalized by the DCT, when the PSF
is quadrantally symmetric [81].

AntiReflective BCs have a more elaborate definition, but have a simple motivation: the anti-
symmetric pad yields an extension that preserves the continuity of the normal derivative
[98]. They are given by

F(1− i, j) = 2F(1, j)−F(i+1, j), 1≤ i≤ p, 1≤ j ≤ n;
F(i,1− j) = 2F(i,1)−F(i, j+1), 1≤ i≤ n, 1≤ j ≤ p;
F(n+ i, j) = 2F(n, j)−F(n− i, j), 1≤ i≤ p, 1≤ j ≤ n;
F(i,n+ j) = 2F(i,n)−F(i,n− j), 1≤ i≤ n, 1≤ j ≤ p;

for the edges, while for the corners the more computationally attractive choice is to antire-
flect first in one direction and then in the other [40]. This yields

F(1− i,1− j) = 4F(1,1)−2F(1, j+1)−2F(i+1,1)+F(i+1, j+1),
F(1− i,n+ j) = 4F(1,n)−2F(1,n− j)−2F(i+1,n)+F(i+1,n− j),
F(n+ i,1− j) = 4F(n,1)−2F(n, j+1)−2F(n− i,1)+F(n− i, j+1),
F(n+ i,n+ j) = 4F(n,n)−2F(n,n− j)−2F(n− i,n)+F(n− i,n− j),

for 1≤ i, j ≤ p. The structure of the matrix A is quite involved, but it can be diagonalized
by the antireflective transform, when the PSF is quadrantally symmetric [4]. Since A is not
normal the antireflective transform is not unitary, but it can be represented as a modification
of the discrete sine transform, formed by adding a uniform sampling of constant and linear
functions to the eigenvector basis preserving an “almost” unitary behaviour [44].1

Due to the structure of A, the application of A∗ could generate artifacts at the boundary
[42]; consequently it was proposed to replace A∗ by a reblurring matrix A′ obtained by
imposing the same BCs to the PSF rotated by 180◦ [39]. Note that in the case of zero
and periodic BCs A′ = A∗. Furthermore, the MATLAB Toolbox RestoreTools [79] (that
we will use in the numerical results) implements the reblurring approach to overload the
matrix-vector product with A∗, see [39]. Therefore, for the sake of notational simplicity
and uniformity, in the following the symbol A∗ has to be intended as the reblurring matrix
A′ in the case of antireflective BCs.

The reflective BCs will not be considered in the numerical results in Section 6.7 since they
have the same computational properties of the antireflective BCs, e.g., for quadrantally PSF sim-
ply replace the antireflective transform with the DCT, and usually provide restorations slightly

1MATLAB functions for working with antireflective BC (antireflective transform, antisymmetric pad, ecc.) can
be download at http://scienze-como.uninsubria.it/mdonatelli/Software/software.html
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worser or at least comparable with the antireflective BCs, as we have numerically observed ac-
cording to similar results with other regularization strategies [39, 84, 32]. On the other hand, we
have recalled also the reflective BCs to motivate a preconditioner based on the DCT, instead of
the DFT, when the PSF is quadrantally symmetric.

6.4 MLBA for the synthesis approach
For the synthesis approach [21, 49] the coefficient matrix is

K = AW ∗ ∈ Rn2×s, (6.4.1)

where n2 ≤ s, A is the blurring matrix and W ∗ is a tight-frame or wavelet synthesis operator.
Note that using tight-frames W ∗W = I but WW ∗ 6= I [36]. The use of tight-frames instead of
wavelets is motivated by the fact that the redundancy of tight-frame systems leads to robust
signal representations in which partial loss of the data can be tolerated, without adverse effects,
see e.g. [26].

Denote by x the frame coefficients of the image f according to (6.2.4). Let the nonlinear
operator Sµ be defined component-wise as

[Sµ(x)]i = Sµ(xi), (6.4.2)

with Sµ the soft-thresholding function

Sµ(xi) = sgn(xi)max{|xi|−µ, 0} .

Note that for image deblurring problems the singular values of A, and so those of K, de-
cay exponentially to zero and we cannot assume that K is surjective. Therefore, the deblurring
problem can be reformulated in terms of the frame coefficients x as

min
x∈Rs

{
µ‖x‖1 +

1
2λ
‖x‖2 : arg min

x∈Rs
‖Kx−g‖2

}
. (6.4.3)

which is equivalent to (6.2.5) if K is surjective.
The following linearized Bregman iteration{

zn+1 = zn +K∗ (g−Kxn) ,
xn+1 = λSµ(zn+1),

(6.4.4)

where z0 = x0 = 0, was introduced in [115] to solve problem (6.4.3) and later applied to image
deblurring in [21]. A detailed convergence analysis of the linearized Bregman iteration (6.4.4)
was given in [20] when K is surjective, but we report here Theorem 3.1 in [21] that does not
require such assumption.

Theorem 6.4.1 ([21]). Let K ∈ Rn2×s, n2 < s and let 0 < λ < 1
‖K∗K‖ . Then the sequence {xn+1}

generated by (6.4.4) converges to the unique solution of (6.4.3).
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As observed in [20] the convergence speed of (6.4.4) depends of the condition number of K
which, as observed before, is very large for image deblurring and hence the method results to
be very slow. To accelerate its convergence in the case of KK∗ 6= I, in [21] the authors modified
iteration (6.4.4) by replacing K∗ with K†, where K† denotes the pseudo-inverse of K. If K is
surjective K† = K∗(KK∗)−1 since n2 ≤ s. For image deblurring problems they suggested to
replace (KK∗)† with a symmetric positive definite matrix P such that

P≈ (KK∗)† = (AA∗)†. (6.4.5)

Then the MLBA for frame-based image deblurring becomes [21]{
zn+1 = zn +K∗P(g−Kxn),
xn+1 = λSµ(zn+1),

(6.4.6)

where z0 = x0 = 0.

Remark 6.4.2. The MLBA (6.4.6) is the linearized Bregman iteration (6.4.4) for the linear system

P1/2Kx = P1/2g,

which is a preconditioned version of original linear system Kx = g by the preconditioner P1/2.
In fact, by replacing K and g in (6.4.4) by P1/2K and P1/2g, respectively, we obtain (6.4.6).

The previous remark is the key observation used in [21] to prove that the MLBA algorithm
converges to a minimizer of

min
x∈Rs

{
µ‖x‖1 +

1
2λ
‖x‖2 : x = arg min

x∈Rs
‖Kx−g‖2

P

}
, (6.4.7)

where ‖x‖P = 〈P1/2x,P1/2x〉.

Theorem 6.4.3 ([21]). Assume P is a symmetric positive definite matrix and let 0 < λ < 1
‖K∗PK‖ .

Then the sequence {xn+1} generated by the MLBA (6.4.6) converges to the unique solution of
(6.4.7).

The standard choice for P is

P = (KK∗+αI)−1 = (AA∗+αI)−1. (6.4.8)

In such case
‖K∗PK‖< 1

and hence λ = 1 is a good choice according to Theorem 6.4.3. When AA∗+αI is not easily
invertible other choices as P can be explored, but usually the quantity ‖K∗PK‖ becomes hard to
estimate. Therefore, assuming that P is a good approximation of (AA∗+αI)−1, we set λ = 1 in
the algorithm. Anyway, the validity of the assumption ‖K∗PK‖< 1 can be guaranteed choosing
α large enough.
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In conclusion, we consider the following version of the MLBA for the synthesis approach{
zn+1 = zn +WA∗P(g−AW ∗xn),
xn+1 = Sµ(zn+1),

(6.4.9)

stopped by the discrepancy principle as in [21], i.e., at the first iteration n = ñ > 0 such that

‖rñ‖ ≤ γδ < ‖rn‖, n = 0,1, . . . , ñ−1, (6.4.10)

where γ > 1, δ = ‖η‖, and rn = g−AW ∗xn is the residual at the n-th iteration. Here z0 = x0 = 0
and we assume that the noise level δ is explicitly known.

6.5 On the choice of the preconditioner P

In this section we explore possible choices of P 6= (AA∗+αI)−1 which are computationally
attractive. Let A be the rectangular, anti-reflective or BTTB matrix depending on the chosen
treatment of the boundary of the image, and let C be the BCCB obtained from the same PSF.
Since the matrix P in Theorem 6.4.3 serves as a preconditioner to accelerate the convergence, in
this section we describe some preconditioning strategies, in order to combine fast computations
with accurate restorations achievable when P≈ (AA∗+αI)−1. The first proposal in Section 6.5.1
is the classical approach already used in the literature, cf. [21, 22, 99]. The second proposal in
Section 6.5.2 is an approximation strategy considered for similar methods, c.f. [3], but this is
the first time that it is explored with MLBA. The third proposal is inspired by a similar approach
used with numerical methods that require symmetric matrices, see [60, 81].

6.5.1 BCCB preconditioner
Let C be the matrix obtained imposing periodic BCs. As described in Section 6.3.2, the matrix
C is diagonalizable by DFT. Hence, the matrix-vector product with the matrix

P = (CC∗+αI)−1

can be efficiently computed by FFT and its use was previously proposed in [21].

Algorithm 1. {
zn+1 = zn +WA∗(CC∗+αI)−1(g−AW ∗xn),
xn+1 = Sµ(zn+1).

(6.5.1)

We suggest to replace the DFT with the DCT, in the case of a quadrantally symmetric PSF
like the Gaussian blur. The latter choice not only is motivated by computational considerations,
since the complex DFT is replaced by a real transform (DCT), but also by the quality of the com-
puted approximation. Indeed, using the DCT the matrix C can be seen as an approximation of
A by imposing reflective BCs instead of periodic BCs, which results usually in a better approx-
imation and so provides better restorations. The same expedient will be used for the following
preconditioners as well.
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Note that ‖(CC∗+αI)−1‖< ‖(AA∗+αI)−1‖ is a sufficient condition to apply the Theorem
6.4.3 with λ = 1. This assumption could be hard to be satisfied in practice. Nevertheless, it is
expected that

‖K∗(CC∗+αI)−1K‖< 1 (6.5.2)
if α is large enough.

In the literature regarding preconditioning of Toeplitz matrices by circulant matrices, several
strategies have been proposed to compute the matrix C, cf. [25]. In this Chapter we simply
consider the matrix obtained imposing periodic BCs, which corresponds to the natural Strang
preconditioner, since we have not observed numerical differences, when using other strategies
like the optimal Frobenius norm approximation preconditioner [27]. Roughly speaking, this
follows from the fact that the entries of A depend on the value of the pixels of the PSF according
to the shift invariance structure. In particular the central coefficient of the PSF belongs to the
main diagonal of A and the pixels near the center of the PSF belongs to the central diagonals of
the central blocks. Finally, the PSF is almost centered in the middle of a n×n image and hence
every pixel is distant at most n/2 pixels in every direction (usually much less due to the compact
support). Hence the block band and the band of each block of A are at most n/2.

6.5.2 Krylov subspace approximation
The preconditioner in the previous section is essentially defined as an approximation of the op-
erator A in the Fourier domain. Another strategy, useful also for more general matrices, is to
employ orthogonal or oblique projections into subspaces of small dimension. A common choice
is a proper Krylov subspace.

The matrix vector product tn = (AA∗+αI)−1rn can be computed solving the linear system

(AA∗+αI)tn = rn, (6.5.3)

whose solution can be approximated by few iterations of conjugate gradient (CG) since AA∗+αI
is symmetric and positive definite. One or few steps of CG to approximate the vector (AA∗+
αI)−1rn is a common strategy, see e.g. [3]. Here we explore the use of a good preconditioner
associated with a proper choice of the initial guess and the stopping criteria. We solve (6.5.3) by
preconditioned CG (PCG) with preconditioner the matrix (CC∗+αI)−1 introduced in Section
6.5.1. This is equivalent to solve the linear system

(CC∗+αI)−1/2(AA∗+αI)(CC∗+αI)−1/2yn = (CC∗+αI)−1/2rn, (6.5.4)

with yn = (CC∗+αI)1/2tn.
The Krylov subspace of size j generated by the matrix B and the vector v is defined by

K j(B,v) = span{v,Bv, . . . ,B j−1v}, j ∈ N.

We denote by yn
βn

the vector that minimizes the energy norm of the error of the linear system
(6.5.4) into the Krylov subspace

Kβn := Kβn

(
(CC∗+αI)−1/2(AA∗+αI)(CC∗+αI)−1/2, (CC∗+αI)−1/2rn

)
.



6.5 On the choice of the preconditioner P 153

Therefore, defining

tn
βn

= (CC∗+αI)−1/2yn
βn

the following algorithm can be sketched.

Algorithm 2. {
zn+1 = zn +WA∗tn

βn
,

xn+1 = Sµ(zn+1).
(6.5.5)

Of course a large βn is not practical and also the convergence of the Algorithm 2 could fail
if tn

βn
is not a good approximation of tn in (6.5.3). However, in practice βn can be taken very

small and the PCG converges very rapidly assuring also the convergence of the Algorithm 2
as numerically confirmed by the results in Section 6.7. This follows from discussion at the
beginning of Section 6.3.2 and the well-conditioning of the coefficient matrix of the linear system
(6.5.3). Indeed, all the eigenvalues of AA∗+αI are in [α, c], with c constant independent of n and
usually c = 1+α , because A arises from the discretization of (6.2.1) and, thanks to the physical
properties of the PSF (nonnegative entries and sum of all pixels equal to one), its largest singular
value is bounded by one. If follows that the BCCB preconditioner CC∗+αI is very effective
since the spectrum of (CC∗+αI)−1/2(AA∗+αI)(CC∗+αI)−1/2 is clustered at 1, with O(n)
outliers according to equations (6.3.2) and (6.3.3), while n2 is the total number of eigenvalues
(see [60, 24]).

Moreover, we observe that if the Algorithm 2 is converging then, in the noise free case, the
residual is going to zero (otherwise stagnates around δ ) and hence also the solution of the linear
system (6.5.3) approaches the zero vector. This has two interesting consequences. First, a good
initial guess for the PCG is the zero vector since it is a good approximation of the solution of the
linear system (6.5.3), at least for n large enough. Second, the size of the Krylov subspace Kβn

should decreases when n increases reaching the same fixed accuracy in the approximation of tn

(see the following discussion on βn).
Note that the computation of tn

βn
requires βn matrix-vector products with AA∗+αI and with

CC∗+αI. Nevertheless, according to the previous discussion, a small βn, e.g., βn ≤ 5, is enough.
In the numerical results in Section 6.7 we fix

βn = min{5,βtol}, (6.5.6)

where βtol is the number of PCG iterations required for reaching the tolerance 10−3 in terms of
the norm of the relative residual in the linear system (6.5.4). We observe that in our numerical
results, βn decreases quickly obtaining βn = 1 for all n > n̄, with n̄ small.

Finally, we note that the preconditioner P obtained by the PCG approximation is not station-
ary and changes at each iteration of the MLBA. Therefore, Theorem 6.4.3 cannot be applied.
Nevertheless, Algorithm 2 with the condition (6.5.6) has been convergent in all our numerical
experiments confirming that tn

βn
is a good approximation of tn, at least for n large enough.
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6.5.3 Preconditioning by symmetrization
The preconditioner in Section 6.5.1 is related to a different boundary model, namely periodic
BCs, but the deblurring problem and in particular the PSF are the same. Unfortunately, periodic
BCs lead to poor restorations for generic images and for more accurate models, like reflective or
antireflective BCs, the matrix A cannot be diagonalized by fast trigonometric transforms when
the PSF is not quadrantally symmetric. Therefore, in this section we use a different strategy:
the preconditioner is defined by a different PSF that leads to fast computations with an accurate
deblurring model.

We consider a simple implementation of this strategy that can be useful when the PSF is
experimentally measured. Indeed, in some applications, the PSF is nonsymmetric even if it is
just a numerical perturbation of a Gaussian-like blur, cf. Example 1 and [60]. Recalling that for
the reflective and antireflective BCs fast transforms (cosine and antireflective, respectivelly) can
be implemented only in the quadrantally symmetric case, a quadrantally symmetric PSF H̃ can
be obtained from the original PSF H by defining

H̃(i, j) =
H(i, j)+H(−i, j)+H(i,− j)+H(−i,− j)

4
, i, j = 1, . . . ,n.

Note that H̃ is the optimal Frobenius norm approximation of H in the set of quadrantally sym-
metric PSFs, see[81]. Therefore, we consider the matrix Q obtained imposing reflective BC to H̃
when A is the BTTB or the rectangular matrix, while for A antireflective, Q is defined imposing
antireflective BCs as well. In this way

P = (QQ∗+αI)−1

can be diagonalized by DCT or by antireflective transform and the MLBA becomes

Algorithm 3. {
zn+1 = zn +WA∗(QQ∗+αI)−1(g−AW ∗xn),
xn+1 = Sµ(zn+1).

(6.5.7)

In analogy to Algorithm 1, ‖(QQ∗+αI)−1‖ < ‖(AA∗+αI)−1‖ is a sufficient condition to
apply Theorem 6.4.3 with λ = 1. It is expected that

‖K∗(QQ∗+αI)−1K‖< 1

if α is large enough.

6.6 Approximated Tikhonov regularization instead of precon-
ditioning

In this section we propose an approach to approximate K† different from the use of the matrix P
in (6.4.5) as suggested in [21]. Motivated by a very recent preconditioning proposal in [37, 41],
we replace the whole matrix K† by a regularized approximation obtained by C.
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In [37] the authors suggest to solve the preconditioned linear system

ZAf = Zg,

where Z is a regularized approximation of K†, by a Van Cittert iteration [33], instead to solve
a preconditioned Landweber iteration. Unfortunately, ZA is not symmetric and the convergence
analysis, based on the complex eigenvalues of ZA, is hard to generalize. Differently, the non-
stationary preconditioned iteration proposed in [41] results in a similar iteration, but an elegant
convergence analysis is provided under a minor approximation assumption.

For P = (AA∗+αI)−1, the correction term K∗P(g−Kxn) in the MLBA (6.4.6) can be seen
as the Tikhonov solution, with parameter α , of the error equation. In detail, zn+1 in the iteration
(6.4.6) can be rewritten as

zn+1 = zn +pn, (6.6.1)

where
pn = K∗P(g−Kxn)

= K∗(KK∗+αI)−1(g−Kxn)

= (K∗K +αI)−1K∗(g−Kxn),

since (AA∗+αI)−1 = (KK∗+αI)−1 and K∗(KK∗+αI)−1 = (K∗K +αI)−1K∗. Note that the
correction pn is the solution of the Tikhonov problem

min
p∈Rs
{‖Kp− rn‖2 +α‖p‖2},

which is a regularized approximation of the error equation

Ken = rn (6.6.2)

in the noise free case, i.e., δ = 0, where en = x−xn denotes the error at the current iteration.
In real applications δ 6= 0 and so equation (6.6.2) is (only) correct up to the perturbation in

the data. Taking this into account, one may as well consider instead of the error equation (6.6.2)
the “model equation”

Len = rn , (6.6.3)

where L is an approximation of K, possibly tolerating a slightly larger misfit. Solving (6.6.3) by
means of Tikhonov regularization, we find

p̃n = (L∗L+αI)−1L∗rn

=WC∗(CC∗+αI)−1rn,

where we have choosen
L =CW ∗. (6.6.4)

Using p̃n in (6.6.1) to replace pn we obtain a new algorithm.
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Algorithm 4. {
zn+1 = zn +WC∗(CC∗+αI)−1(g−AW ∗xn),
xn+1 = Sµ(zn+1).

(6.6.5)

As before, the matrix C is chosen as a BCCB in general or diagonalizable by DCT (i.e., the
reflective BC matrix), when the PSF is quadrantally symmetric. Unfortunately, this precondi-
tioning strategy cannot be applied to the rectangular matrix approach because, in such case, C
should have the same size of A, but this condition prevents the possibility of computing p̃n by
fast trigonometric transforms.

Remark 6.6.1. The iteration (6.6.5) uses the preconditioned linear system

WC∗(CC∗+αI)−1Kx =WC∗(CC∗+αI)−1g, (6.6.6)

to update an aproximation inspired by the linearized Bregman iteration (6.4.4), but without re-
sorting to the normal equations.

Clearly, Algorithm 4 is no longer a MLBA and so a different convergence analysis is required.
Unfortunately, classical results for convex optimization cannot be applied since the coefficient
matrix WC∗(CC∗+αI)−1K in (6.6.6) is not symmetric positive definite. An alternative conver-
gence proof could be very hard because also the complex analysis convergence in [37] cannot be
easily combined with the Bregman splitting and soft-thresholding.

Therefore, accordingly to [41], we consider a nonstationary choice of α that allows to provide
a convergence analysis of the resulting algorithm and avoid the a-priori choice of α . On the other
hand, if a good estimation of α is available, then Algorithm 4 can provides better restorations
and hence it is also considered in the numerical results in Section 6.7.

Assumption 6.6.2. Let A,C ∈ Rn2×n2
and W ∈ Rn2×s, n2 ≤ s, such that

‖(C−A)v‖ ≤ ρ‖Av‖, ∀v ∈ Rn2
, (6.6.7a)

and
‖CW ∗(u−Sµ(u))‖ ≤ ρδ , ∀u ∈ Rs, (6.6.7b)

with a fixed 0 < ρ < 1/2, where δ = ‖η‖ is the noise level.

The Assumption (6.6.7a) is the same spectral equivalence required in [41]. Let L be defined
in (6.6.4), then equation (6.6.7a) translates into

‖(L−K)u‖ ≤ ρ‖Ku‖, ∀u ∈ Rs. (6.6.8)

Instead, the Assumption (6.6.7b) was not present in [41] and it is equivalent to consider the
soft-threshold parameter µ as a continuous function with respect to the noise level δ , i.e., µ =
µ(δ ), and such that µ(δ )→ 0 as δ → 0. This is a common request in many soft-thresholding
based methods, see for instance Theorem 4.1 in [35]. Nevertheless, in this Chapter we will not
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concentrate on µ and will not give any specific δ -dependent rule to compute it. Let us just
observe that Assumption (6.6.7b) can be restated in the equivalent way

µ ≤ ρδ

|||CW ∗|||
,

where here we defined

|||K|||= sup
‖x‖∞≡1

‖Kx‖2, with K : (Rs,‖ · ‖∞)→
(
Rn2

,‖ · ‖2

)
and ‖x‖∞ = max

j=1,··· ,s
{|x j|}.

Indeed, it follows easily from the fact that ‖u−Sµ(u)‖∞ ≤ µ for every u ∈ Rs.

Algorithm. 4–NS. Let z0 be given and set r0 = g−KSµ(z0). Choose τ = 1+2ρ

1−2ρ
with ρ from

(6.6.7a), and fix q ∈ (2ρ,1).
While ‖rn‖> τδ , let τn = ‖rn‖/δ and let αn be such that

αn‖(CC∗+αnI)−1rn‖= qn‖rn‖, qn = max{q,2ρ +(1+ρ)/τn}, (6.6.9a)

compute {
zn+1 = zn +WC∗(CC∗+αnI)−1(g−AW ∗xn),
xn+1 = Sµ(zn+1).

(6.6.9b)

Note that the iteration (6.6.9b) is the same of Algorithm 4 where a nonstationary α is chosen
at every iteration according to (6.6.9a). In Corollary 6.6.6 we will prove that, if δ > 0, then
Algorithm 4–NS will terminate after n = nδ ≥ 0 iterations with

‖rnδ ‖ ≤ τδ < ‖rn‖, n = 0,1, · · · ,nδ −1, (6.6.10)

which is the discrepancy principle (6.4.10) with ñ = nδ and γ = τ = (1+2ρ)/(1−2ρ).
The parameter q in Algorithm 4, like in [41], is meant as a safeguard to prevent that the

residual decreases too rapidly. Our theoretical results do not utilize this parameter.

Remark 6.6.3. It is not difficult to see that there is a unique positive parameter αn that satisfies
(6.6.9a). This parameter can be computed with a few step of an appropriate Newton scheme [48].
Accordingly, parameter αn, and therefore Algorithm 4–NS, are well defined.

We define
hn = L∗(LL∗+αnI)−1(g−KSµ(zn)), (6.6.11)

such that (6.6.9b) can be compactly rewritten as{
zn+1 = zn +hn,
xn+1 = Sµ(zn+1).

For the purpose of the subsequent convergence and regularization results, when δ > 0, even if
it will be always the case, we will highlight by the subscript δ (for instance {xn

δ
}) the sequences
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generated by Algorithm 4–NS, starting from initial data gδ = Af+η affected by noise, whereas
we avoid the subscript (for instance {xn}) for the sequences generated starting from exact initial
data g = Af, i.e., δ = 0.

For the following analysis, instead of working with the error en
δ
= x− xn

δ
, it is useful to

consider the partial error with respect to zn
δ

, namely

ẽn
δ
= x− zn

δ
. (6.6.12)

Proposition 6.6.4. Assume that the assumptions (6.6.7) are satisfied for some 0 < ρ < 1/2. If
‖rn

δ
‖> τδ and we define τn = ‖rn

δ
‖/δ , then it follows that

‖rn
δ
−Lẽn

δ
‖ ≤

(
ρ +

1+2ρ

τn

)
‖rn

δ
‖< (1−ρ)‖rn

δ
‖, (6.6.13)

where ẽn is defined in (6.6.12).

Proof. In the free noise case we have g = Kx. As a consequence

rn
δ
−Len

δ
= gδ −Kxn

δ
−L(x− zn

δ
)+Lxn

δ
−LSµ(zn

δ
)

= gδ −g+(K−L)en
δ
+L(zn

δ
−Sµ(zn

δ
)).

Using now assumptions (6.6.7), in particular (6.6.8), and ‖gδ −g‖ ≤ δ , we derive the following
estimate

‖rn
δ
−Len

δ
‖ ≤ ‖gδ −g‖+‖(K−L)en

δ
‖+‖L(zn

δ
−Sµ(zn

δ
))‖

≤ ‖gδ −g‖+ρ‖Ken
δ
‖+ρδ

≤ ‖gδ −g‖+ρ(‖rn
δ
‖+‖gδ −g‖+δ )

≤ (1+2ρ)δ +ρ‖rn
δ
‖.

The first inequality in (6.6.13) now follows from the hypothesis δ = ‖rn
δ
‖/τn. The second in-

equality follows from ρ + 1+2ρ

τn
< ρ + 1+2ρ

τ
.

We are going to show that the sequence {xn
δ
} approaches x as δ → 0. The proof combines

Proposition 6.6.4 with suitable modifications of the results in [41].

Proposition 6.6.5. Let ẽn
δ

be defined in (6.6.12). If the assumptions (6.6.7) are satisfied, then
‖ẽn

δ
‖ of Algorithm 4–NS decreases monotonically for n = 0,1, . . . ,nδ − 1. In particular, we

deduce

‖ẽn
δ
‖2−‖ẽn+1

δ
‖2 ≥ 8ρ2

1+2ρ
‖(CC∗+αn)

−1rn
δ
‖‖rn

δ
‖. (6.6.14)
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Proof. We have

‖ẽn
δ
‖2−‖ẽn+1

δ
‖2 = 2〈ẽn

δ
,hn〉−‖hn‖2

= 2〈Lẽn
δ
,(CC∗+αnI)−1rn

δ
〉−〈rn

δ
,CC∗(CC∗+αnI)−2rn

δ
〉

= 2〈rn
δ
,(CC∗+αnI)−1rn

δ
〉−〈rn

δ
,CC∗(CC∗+αnI)−2rn

δ
〉

−2〈rn
δ
−Lẽn

δ
,(CC∗+αnI)−1rn

δ
〉

≥ 2〈rn
δ
,(CC∗+αnI)−1rn

δ
〉−2〈rn

δ
,CC∗(CC∗+αnI)−2rn

δ
〉

−2〈rn
δ
−Lẽn

δ
,(CC∗+αnI)−1rn

δ
〉

= 2αn〈rn
δ
,(CC∗+αnI)−2rn

δ
〉−2〈rn

δ
−Lẽn

δ
,(CC∗+αnI)−1rn

δ
〉

≥ 2αn〈rn
δ
,(CC∗+αnI)−2rn

δ
〉−2‖rn

δ
−Lẽn

δ
‖‖(CC∗+αnI)−1rn

δ
‖

= 2‖(CC∗+αnI)−1rn
δ
‖
(
‖αn(CC∗+αnI)−1rn

δ
‖−‖rn

δ
−Lẽn

δ
‖
)

≥ 2‖(CC∗+αnI)−1rn
δ
‖
(

qn‖rn
δ
‖−
(

ρ +
1+2ρ

τn

)
‖rn

δ
‖
)

≥ 8ρ2

1+2ρ
‖(CC∗+αnI)−1rn

δ
‖‖rn

δ
‖,

where the relevant inequalities are a consequence of equation (6.6.9a) and Proposition 6.6.4. The
last inequality follows from (6.6.9a) and τn > τ = (1+2ρ)/(1−2ρ) for ‖rn

δ
‖> τδ .

Corollary 6.6.6. Under the assumptions (6.6.7), there holds

‖ẽ0
δ
‖ ≥ 8ρ2

1+2ρ

nδ−1

∑
n=0
‖(CC∗+αnI)−1rn

δ
‖‖rn

δ
‖ ≥ c

nδ−1

∑
n=0
‖rn

δ
‖2 (6.6.15)

for some constant c > 0, depending only on ρ and q in (6.6.9a).

Proof. The following proof is almost the same as Corollary 3 in [41], but we include it to make
the Chapter self contained.

The first inequality follows by taking the sum of the quantities in (6.6.14) from n = 0 up to
n = nδ −1.

For the second inequality, note that for every α > qn‖C‖2

1−qn
and every σ ∈ σ(C) ⊂ [0,‖C‖2],

with σ(C) being the spectrum of C, we have

α

σ2 +α
≥ α

‖C‖2 +α
= (1+‖C‖2/α)−1 > qn,

and hence,
α‖(CC∗+αI)−1rn

δ
‖> qn‖rn

δ
‖,

as ‖rn
δ
‖> 0 for n < nδ . This implies that αn in (6.6.9a) satisfies 0 < αn ≤ qn‖C‖2

1−qn
, thus

‖(CC∗+αnI)−1rn
δ
‖= qn

αn
‖rn

δ
‖ ≥ (1−qn)

‖C‖2 ‖r
n
δ
‖.
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Now, according to the choice of parameters in Algorithm 4-NS, we deduce
1−qn = min{1−q,1−2ρ− (1+ρ)/τn}, and

1−2ρ− (1+ρ)/τn =
1+2ρ

τ
− 1+ρ

τn
>

1+2ρ

τ
− 1+ρ

τ
=

ρ

τ
.

Therefore, there exists c > 0, depending only on ρ and q such that 1− qn ≥ c‖C‖2
(

8ρ2

1+2ρ

)−1
,

and

‖(CC∗+αnI)−1rn
δ
‖ ≥ c

(
8ρ2

1+2ρ

)−1

‖rn
δ
‖ for n = 0,1, · · · ,nδ −1.

Now the second inequality follows immediately.

From the outer inequality of (6.6.15) it can be seen that the sum of the squares of the residual
norms is bounded, and hence, if δ > 0, there must be a first integer nδ < ∞ such that (6.6.10) is
fulfilled, i.e., Algorithm 4-NS terminates after finitely many iterations.

Remark 6.6.7. Recalling that the soft-threshold parameter µ is taken as a continuous function
with respect to the noise level δ such that µ(δ )→ 0 as δ → 0, then the operator g 7→ zn is
continuous for every fixed n.

In the next theorem we are going to give a convergence and regularity result.

Theorem 6.6.8. Assume that z0 is not a solution of the linear system

g = AW ∗x, (6.6.16)

and that δm is a sequence of positive real numbers such that δm → 0 as m→ ∞. Then, if As-
sumption 6.6.2 is valid, the sequence {xn(δm)

δm
}m∈N, generated by the discrepancy principle rule

(6.6.10), converges as m→∞ to the solution of (6.6.16) which is closest to z0 in Euclidean norm.

Proof. We are going to show convergence for the sequence {zn(δm)
δm
}m∈N and then the thesis will

follow easily from the continuity of Sµ(δ ) and Remark 6.6.7, i.e.,

lim
m→∞

xn(δm)
δm

= lim
m→∞

Sµ(δm)(z
n(δm)
δm

) = Slimm→∞ µ(δm)( lim
m→∞

zn(δm)
δm

) = lim
m→∞

zn(δm)
δm

.

The proof of the convergence for the sequence {zn(δm)
δm
} can be divided into two steps: at step one,

we show the convergence in the free noise case δ = 0. In particular, the sequence {zn} converges
to a solution of (6.6.16) that is the closest to z0. At the second step, we show that given a
sequence of positive real numbers δm → 0 as m→ ∞, then we get a corresponding sequence
{zn(δm)

δm
} converging as m→ ∞.

Concerning the first step of the proof, we will not give details since it can be just copied
from [41][Theorem 4]. Indeed, if δ = 0, from Remark 6.6.7 it follows that rn

δ
= rn, and the

sequence {zn} coincides with the one generated by algorithm 1 in [41]. We just say that the
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main ingredients are the convergence of the sequence ‖en‖ granted by Proposition 6.6.5 and the
convergence to 0 of the sequence ‖rn‖‖(CC∗+αnI)−1rn‖, since general term of a converging
series from Corollary 6.6.6. Moreover, in the free noise case the sequence {zn} will not stop,
i.e., n→ ∞, since the discrepancy principle will not be satisfied by any n, in particular nδ → ∞

for δ → 0.
Hence, let x be the converging point of the sequence {zn} and let δm > 0 be a sequence of

positive real numbers converging to 0. For every δm, let n = n(δm) be the first positive integer
such that (6.6.10) is satisfied, whose existence is granted by Corollary 6.6.6, and let {zn(δm)

δm
} be

the corresponding sequence. For every fixed ε > 0, there exists n = n(ε) such that

‖x− zn‖ ≤ ε/2 for every n > n(ε), (6.6.17)

and there exists δ = δ (ε) for which

‖zn− zn
δ
‖ ≤ ε/2 for every 0 < δ < δ , (6.6.18)

due to the continuity of the operator g 7→ zn for every fixed n, see Remark 6.6.7. Therefore, let
us choose m = m(ε) large enough such that δm < δ and such that n(δm) > n for every m > m.
Such m does exists since δm→ 0 and nδ → ∞ for δ → 0. Hence, for every m > m, we have

‖x− zn(δm)
δm
‖= ‖ẽn(δm)

δm
‖

≤ ‖ẽn
δm
‖

= ‖x− zn
δm
‖

≤ ‖x− zn‖+‖zn− zn
δm
‖ ≤ ε,

where the first inequality comes from Proposition 6.6.5 and the last one from (6.6.17) and
(6.6.18).

6.7 Numerical results
In this section, we will show the numerical results for image deblurring using our proposed
Algorithms 1–4. We compare them with some available deblurring algorithms, which implement
a proper treatment of the boundary artifacts. In particular we consider two of the algorithms
proposed in [3], namely FA-MD for the Frame-based analysis model and TV-MD for the Total
Variation model, and the Algorithm [6] called here FTVd since, in the case of nonsymmetric
PSF, it reduces to an implementation of the algorithm in [114] with the trick described in [89].
The codes of the previous algorithms are available at the web-page of the authors and we use the
default parameters and stop conditions. The regularization parameter is chosen by hand in order
to provide the best restoration (see the following discussion). All the images are in grayscale
intensity with values range in [0,1], where 0 is black and 1 is white.

Our tests were done by using MATLAB 7.11.0 (R2010b) with floating-point precision about
2.22 · 10−16 on a Lenovo laptop with Intel(R) Core(TM) i2 CPU 2.20 GHz and 2 GB memory.
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Assuming that the noise level is available or easily estimated, we stop all Algorithms 1–4 using
the discrepancy principle (6.4.10) with γ = 10−15. Algorithm 4–NS is stopped according to the
modified discrepancy principle (6.6.10). Moreover, for the Algorithm 4–NS we set

q = 0.5 and ρ = 10−4.

Therefore, q and ρ do not need to be estimated.
The accuracy of the solution is measured by the PSNR value, which is defined as

PSNR = 20log10
255 ·n
‖f− f̃‖

,

with f and f̃ being the original and the restored images in the FOV, respectively. The initial guess
of each algorithm is set to be the zero vector.

To estimate µ and α , since they are mutually dependent and they are related to the precon-
ditioner, we fix a possible µ (usually the results are not very sensible varying µ if α is properly
chosen) and then the optimum α , which gives the largest PSNR, is chosen by trial and error.
Possible strategies to estimate α will be investigated in future works. Only for Algorithm4–NS
we pay a slightly more attention in the choice of µ since this is the only parameter of the method.
Similarly, for all the other methods considered for comparison, the regularization parameter is
chosen by trial and error, as the one leading to the largest PSNR.

We take only the more appropriate BCs for each example. In particular, if the image has a
black background, like in astronomical imaging, we consider zero BCs, while when the image
is a generic picture we use antireflective BCs. In the following the “Algorithm x” is denoted
by “Alg-BCx” and “Alg-Rectx”, when A is obtained imposing BCs or is the rectangular matrix,
respectively. We recall that Algorithm 4 is available only for the BC approach.

Finally, the last remark. Some of the PSFs look small (e.g. Figure 6.5 (b) and Figure 6.6 (b)),
but we note that both PSFs have not a small support. Pixels far from the center of the PSF are
very small, hence they look black in the image, but greater than zero.

6.7.1 Linear B-spline framelets
The tight-frame used in our tests is the piecewise linear B-spline framelets given in [21]. Namely,
given the masks

b0 =
1
4
[
1 2 1

]
, b1 =

√
2

4
[
1 0 −1

]
, b2 =

1
4
[
−1 2 −1

]
,

we define the 1D filters of size n×n by imposing reflective BCs

B0 =
1
4


3 1 0 . . . 0
1 2 1

. . . . . . . . .
1 2 1

0 . . . 0 1 3

 , B1 =
1
4


1 −1 0 . . . 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 . . . 0 −1 1

 ,
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(a) true image (b) PSF image (c) observed image (d) Alg-BC1 (e) Alg-BC3

(f) Alg-Rect2 (g) Alg-Rect3 (h) Alg-BC4–NS (i) TV-MD (j) FTVd

Figure 6.3: Example 1: true image, PSF, observed image and restored images.

and

B2 =
1
4


−1 1 0 . . . 0
−1 0 1

. . . . . . . . .
−1 0 1

0 . . . 0 −1 1

 .
The nine 2D filters are obtained by

Bi, j = Bi⊗B j, i, j = 0,1,2,

where ⊗ denotes the tensor product operator. Finally, the corresponding tight-frame analysis
operator is

W =


B0,0
B0,1

...
B2,2

 .
Throughout the experiments, the level of the framelet decomposition is 4 like in [21] and the

level of wavelet decomposition is the one used in FA–MD.

6.7.2 Example 1: Saturn image
The first example is 256×256 Saturn image in Figure 6.3 (a) while the astronomical PSF is taken
from the “satellite” test problem in [80] Figure 6.3 (b). We add a 1% of Gaussian white noise to
obtain the observed image in Figure 6.3 (c). We assume zero BCs.
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Algorithm PSNR Iter. CPU time(s) Regular. parameter
Alg-BC1 30.97 322 200.99 α = 0.045
Alg-BC2 31.60 9 18.18 α = 0.0004
Alg-BC3 31.56 10 7.07 α = 0.0005
Alg-Rect1 30.95 493 948.94 α = 0.07
Alg-Rect2 31.62 8 22.20 α = 0.0003
Alg-Rect3 31.61 7 13.50 α = 0.0003
Alg-BC4 31.49 29 16.56 α = 0.0018
Alg-BC4–NS 31.25 15 10.32 µ = 6
FA-MD 30.87 90.85 λ = 0.001
TV-MD 31.17 47.61 λ = 0.01
FTVd 30.50 1.75 1/α = 0.0013

Table 6.2: Example 1: PSNR, number of iterations, and CPU time in seconds for the best regu-
larization parameter (maximum PSNR) reported in the last column. For our algorithms µ = 10
except for Alg-BC4–NS.

(a) Alg-BC1 (b) Alg-Rect3 (c) Alg-BC4 (d) FA-MD (e) TV-MD

Figure 6.4: Example 1: residual image g−Af̃, where f̃ is computed by different algorithms.

Note that Alg-BC3 and Alg-Rect3 use the DCT for the preconditioner, while Alg-BC4 like
Alg-BC1 and Alg-Rect1 use FFT, since the PSF is not quadrantally symmetric.

Table 6.2 reports the PSNR and the CPU time for the different algorithms. Note that Algo-
rithm 1 provides a poor and time consuming restoration. Moreover, it requires a larger value
of the parameter α with respect to the algorithms 2–4, which is necessary to satisfy condition
(6.5.2) and assure the convergence. The algortihms 2 and 3 have the largest PSNR with rea-
sonable CPU time, in particular Alg-Rect3 seems to be a good choice and Alg-BC3 gives a
comparable restoration in about half time. Algorithm 4 gives a slightly lower PSNR even if the
computed restorations are better than Algorithm 1 and the other algorithms from the literature,
keeping also a low CPU time.

The algorithms in [3] (FA-MD and TV-MD) in this example lead to a larger CPU time,
while the FTVd is very fast but the computed restoration is the worst. Figure 6.3 shows the
corresponding restored images. To test the quality of the restorations, Figure 6.4 shows the
residual images defined as g−Af̃, where f̃ is the restored image.
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(a) true image (b) PSF image (c) observed image (d) Alg-BC1 (e) Alg-BC3

(f) Alg-Rect3 (g) Alg-BC4 (h) Alg-BC4–NS (i) FA-MD (j) FTVd

Figure 6.5: Example 2: true image, PSF, observed image and restored images.

6.7.3 Example 2: Galaxy image

We consider another astronomical example with the 256× 256 image in Figure 6.5 (a) cor-
rupted by oblique Gaussian blur taken from the “GaussianBlur422” test problem in [80], see
Figure 6.5 (b). We add a 2% of Gaussian white noise to obtain the observed image in Fig-
ure 6.5 (c). We impose zero BCs and the computational properties of the different algorithms are
the same as in Example 1.

Table 6.3 shows that Alg-BC4 is the best algorithm, since it obtains about the same PSNR of
Algorithm 2, but with about 1/4 of the CPU time. The variant Alg-BC4–NS with a nonstationary
choice of the preconditioner results to be very effective and comparable with the other algorithms
based on the BC model avoiding the choice of parameter α . Differently, the rectangular approach
gives a slightly lower PSNR with a larger CPU time. Concerning the other methods, the same
observations reported for Example 1 still apply. Figure 6.5 shows some of the corresponding
restored images.

6.7.4 Example 3: Boat image

To set up a scenario of unknown boundaries, the observed image of size 196× 196 is obtained
convolving the full (256×256) image by the nonsymmetric 61×61 PSF in Figure 6.6(b), using
arbitrary BCs (periodic, for computational convenience) and then keeping only the pixels in the
FOV 196× 196 (i.e., those not depending on the BCs). The FOV is denoted by a black box in
the true image in Figure 6.6 (a). 1% of white Gaussian noise is added to the 196× 196 blurred
image.

We impose antireflective BCs owing to the generic structure of that picture. Hence the pre-
conditioner in Alg-BC3 is diagonalized by the antireflective transform, according to the structure
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Algorithm PSNR Iter. CPU time(s) Regular. parameter
Alg-BC1 25.02 21 16.57 α = 0.04
Alg-BC2 25.07 12 22.88 α = 0.008
Alg-BC3 25.05 27 17.58 α = 0.02
Alg-Rect1 24.91 25 42.14 α = 0.06
Alg-Rect2 24.98 12 28.21 α = 0.007
Alg-Rect3 24.96 21 36.18 α = 0.01
Alg-BC4 25.06 12 6.21 α = 0.008
Alg-BC4–NS 25.01 29 17.10 µ = 4
FA-MD 24.50 77.05 λ = 0.02
TV-MD 24.55 68.91 λ = 0.09
FTVd 24.62 1.51 1/α = 0.027

Table 6.3: Example 2: PSNR and CPU time for the best regularization parameter (maximum
PSNR). For our algorithms µ = 10 except for Alg-BC4–NS.

(a) true image (b) PSF image (c) observed image (d) Alg-BC1 (e) Alg-BC2

(f) Alg-Rect3 (g) Alg-BC4 (h) Alg-BC4–NS (i) FA-MD (j) TV-MD

Figure 6.6: Example 3: true image, PSF, observed image and restored images.



6.7 Numerical results 167

Algorithm PSNR Iter. CPU time(s) Regular. parameter
Alg-BC1 29.43 97 34.26 µ = 20, α = 0.37
Alg-BC2 30.11 11 17.21 µ = 20, α = 0.025
Alg-BC3 30.09 10 4.03 µ = 20, α = 0.022
Alg-Rect1 27.19 74 32.63 µ = 200, α = 0.03
Alg-Rect2 27.10 74 45.95 µ = 200, α = 0.03
Alg-Rect3 27.22 74 33.14 µ = 200, α = 0.03
Alg-BC4 30.17 13 3.67 µ = 20, α = 0.03
Alg-BC4–NS 29.77 60 19.57 µ = 30
FA-MD 29.61 15.95 λ = 0.04
TV-MD 29.87 16.74 λ = 0.1
FTVd 28.95 0.73 1/α = 0.0069

Table 6.4: Example 3: PSNR and CPU time for the best regularization parameter (maximum
PSNR).

of the matrix A. Alg-Rect3 uses the DCT as usual, while Alg-BC4 like Alg-BC1 and Alg-Rect1
use FFT since the PSF is not quadrantally symmetric.

Table 6.4 shows the PSNR and the CPU time for the best restorations shown in Figure 6.6.
Note that our algorithms with the rectangular matrix are less effective than the antireflective BC
approach, leading to a lower PSNR. To obtain reasonable restorations in the rectangular case we
need a large µ and so we take a different µ for the two deblurring models (BC and rectangular
matrix). The best algorithm results to be Alg-BC4, since it combines a good restoration with a
low CPU time.

6.7.5 Example 4: Cameraman with Gaussian blur
In this example we consider the classical Cameraman image 256× 256 distorted by a 31× 31
Gaussian blur with standard deviation 2.5 and a 2% of white Gaussian noise (see Figure 6.7).
The size of the observed image is 226×226 according to the support of the PSF.

The PSF is quadrantally symmetric and hence, following our discussion in Section 6.5.1,
Algorithm 1 is implemented using the DCT instead of FFT. Clearly H̃ = H and so Alg-Rect3
reduces to Alg-Rect1 (they are really the same algorithm). We impose antireflective BCs and
hence Alg-BC3 is the standard MLBA (6.4.9) with P = (AA∗+αI)−1, but recalling that we
are using the reblurring approach where A∗ is replaced by A′. On the other hand Alg-BC2 is no
longer useful since the matrix-vector product with the matrix P= (AA∗+αI)−1 can be computed
by two antireflective transforms without requiring the PCG: in fact, the use of preconditioning
would represent an unnecessary increase of the CPU time without increasing the PSNR with
respect to Alg-BC3. Finally, Alg-BC4 is implemented by DCT like Alg-BC1.

Table 6.5 shows that all the compared methods in this example provide comparable results.
Nevertheless, it is interesting to observe that Alg-BC4 gives a slightly better restoration with a
lower CPU time than the standard MLBA, i.e., Alg-BC3. TV-MD computes again a comparable
restoration, but with more than a double CPU time. Figure 6.7 shows the restored images.
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(a) true image (b) PSF (31×31) (c) observed image (d) Alg-BC1 (e) Alg-BC3

(f) Alg-Rect1 (g) Alg-BC4 (h) Alg-BC4–NS (i) TV-MD (j) FTVd

Figure 6.7: Example 4: true image, PSF, observed image and restored images.

Algorithm PSNR Iter. CPU time(s) Regular. parameter
Alg-BC1 23.67 51 20.19 α = 0.05
Alg-BC3 23.74 17 6.03 α = 0.01
Alg-Rect1 23.59 24 12.44 α = 0.02
Alg-Rect2 23.64 17 16.49 α = 0.009
Alg-BC4 23.76 17 5.60 α = 0.01
Alg-BC4–NS 23.53 39 14.78 µ = 40
FA-MD 23.44 14.10 λ = 0.01
TV-MD 23.55 13.37 λ = 0.11
FTVd 23.10 0.89 1/α = 0.0088

Table 6.5: Example 4: PSNR and CPU time for the best regularization parameter (maximum
PSNR). For our algorithms µ = 40.
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(a) Alg-BC1 (b) Alg-BC4 (c) Alg-BC4–NS (d) TV-MD (e) FTVd

Figure 6.8: Example 4: North-East corner of the residual images.

To test the ability of the different algorithms in dealing with the boundary effects, Figure 6.8
shows the North-East corner of the residual images. We can see that Alg-BC1 and FTVd have
some ringing effects at the boundary (in Figure 6.8 (e) the apparent constant error in the central
area is due to the grayscale rescaling), while Algorithm 4 and TV-MD do not show any particular
distortion at the boundary.

6.8 Conclusions, open problems and further comments
In this Chapter, we have investigated several regularization preconditioning strategies for the
MLBA applied to the synthesis approach with accurate restoration models, for image deblur-
ring and unknown boundaries. Our numerical results show that Alg-BC4, which combines the
favorite BCs (depending on the problem) with an approximated Tikhonov regularization precon-
ditioner, represents a robust and effective algorithm. Indeed, it provides accurate restorations in
all our examples with a reduced CPU time, also in comparison to the state of the art algorithms
[3, 6] and the standard MLBA when available, cf. Example 4.

We have investigated only the synthesis approach, but the same preconditioning strategies can
be applied to the analysis and the balanced approach [22, 99] as well. Moreover, possible future
investigations could consider the use of a preconditioner obtained by a small rank approximation
of the PSF as in [70], strategies for estimating the parameter α , and nonstationary sequences to
approximate the best α avoiding its estimation as done in [68].
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Proper studies on several different topics were carried on and presented in this work, which
from the beginning was not intended to be a wholly comprehensive treatment of just a specific
subject. Many results were provided as much many other open problems and possible future de-
velopments arose, which we have already extensively talked about at the end of every preceding
chapter. Nevertheless, with reference to possible future works, in particular a fascinating inter-
lacing problem is given by some studies in the ‘70’s regarding plasma diffusion inside toroidal
reactors, see [82, 10]. The strict interplay between the geometry of the space and the time ex-
tinction of FDE solutions, which was highlighted in Chapter 3.4.2, calls out for an in depth study
on the natural inverse problems which come from it and that will be investigated in a near future.
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