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Pancreatic neuroendocrine tumors: classification and TNM staging 

Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of relatively 

rare neoplasms whose yearly incidence is 1 case/100,000 people and represent 

approximately 1-2% of all pancreatic tumors [1]. Although uncommon, they represent a 

disease with growing incidence and high prevalence [2]. This phenomenon probably 

reflects either a higher knowledge of this tumor type by the pathology or the wider 

availability of suitable and efficient radiological and nuclear medicine diagnostic tools 

[3]. The incidence in relatively old autopsy studies has been reported as high as 1.5%, 

even if in these reported series the tumors were clinically unrecognized, often 

asymptomatic and usually small (<1 cm in size) lesions. 

PanNETs show no significant gender predilection and occur at all ages, with a 

peak incidence between 30 and 60 years [4-6]. Although most PanNETs occur 

sporadically, approximately 5-10% of these neoplasms have a hereditary background 

and they may be a part of two main hereditary syndromes: MEN-1 syndrome (Multiple 

Endocrine Neoplasia, Type 1) and VHL syndrome (Von Hippel Lindau).  

Since the beginning of the last century, when the first report of a tumor believed to 

originate from the endocrine pancreas was published [7], several investigators have tried 

to elucidate the clinico-pathological and molecular characteristics of these neoplasms. 

Because different methodological approaches have been used to classify these tumors, a 

variety of nomenclatures have been proposed and they often created some 

misunderstanding  among pathologists and clinicians [8]. 

Clinically, the most used classification of PanNETs is based on the 

presence/absence of abnormal hormone production and this approach identifies two 

broad categories of functioning or nonfunctioning tumors. Nearly 30-40% of PanNETs 

are not hormone-producing and are classified as “nonfunctioning ” and are typically 

diagnosed when their sizes cause compression or invasion of adjacent organs or when 

they give rise to liver or lymph node metastases. Conversely, the remaining 60-70% of 

PanNETs are classified as “functioning” and include preferentially insulinomas, 

glucagonomas, somatostatinomas, gastrinomas and VIP-omas (Table 1). 
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Table 1. Functional Classification of PanNETs [1] 

In 1995, a group of endocrine pathologists [9] proposed a revised classification of 

neuroendocrine tumors of the lung, gut and pancreas. The purpose of this classification 

was to identify clinical and morphological features that were helpful in delineating 

categories of tumors with different prognoses. The criteria proposed by the international 

group of pathologists in 1995 together with various more reliable prognostic parameters 

identified in the last years [10-16], represented the basis for the 2010 WHO 

classification of PanNETs [17].  

Currently, the general histological classification of PanNETs comprises the two 

major categories of well/moderately differentiated and poorly differentiated PanNETs. 

Although several clinico-pathological features (presence and type of the endocrine 

syndrome, tumor size, invasion of nearby tissue,  pattern of growth with prevalence of 

broad solid areas, presence of necrosis, cellular atypia, high proliferative index, vascular 

invasion, and presence of bands forming fibrosis) have been demonstrated to correlate 

with tumor aggressiveness and patients’ prognosis, in the more recent WHO 

classification of PanNETs they are divided into three main categories on the basis of the 

mitotic count and Ki67 proliferative index [18].  PanNET G1 are characterized by low 

mitotic and proliferative status (< 2 mitoses X 10 HPF, and < 2% Ki67 index), PanNET 

G2 by mitotic count between 2 and 20 mitoses X 10 HPF and Ki67 index between 3% 

and 20%. Poorly differentiated neuroendocrine carcinomas, now simply defined as 

neuroendocrine carcinomas (NEC, G3), show a high proliferation including > 20  

mitoses X 10 HPF and > 20% Ki67. From a morphological point of view, PanNET G1 

and G2 are characterized by tumor cell monomorphism, absent or mild nuclear atypia, 

together with the frequently observed trabecular structure. NECs show a mostly solid 

 %   Type   Behavior   
5 - 10   Nonfunctioning, clinically silent   Mostly benign   
50   Insulinomas   90% benign   
20   Other functioning tumors: gastrinoma,  

glucagonoma, somatostatinoma,  
carcinoid, Cushing’s tumors, etc   

50 - 90% malignant   
low grade   

20   Nonfunctioning, locally   symptomatic  
tumors   

70 - 80% malignant   
low grade   

1 - 5   Small cell carcinoma with poor endocrine  
differentiation   

All malignant, high grade   
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structure either organized in large, poorly defined aggregates often with central 

necrosis, or diffuse sheets of cells with multiple minute foci of necrosis. They are highly 

invasive, invariably presenting with  metastases to lymph nodes, liver and distant organs 

(Figure 1). 

 

    A     B 

 

Figure 1: A) Glucagonoma of the pancreas: tumor cells are well differentiated and form trabecular 
structures. B) Poorly differentiated endocrine carcinoma of the pancreas composed of cells with severe 
nuclear atypia forming solid sheets. On the left top an area of necrosis is well evident. 
 

In addition to the WHO classifications, a TNM staging must be included in routine sign 

out of PanNETs (Table 2).  A TNM staging system for neuroendocrine neoplasms of the 

pancreas was proposed for the first time in 2006 by the European Neuroendocrine 

Tumor Society (ENETS) [19]. More recently, the International Union for Cancer 

Control developed a TNM staging system, which is now endorsed by both the American 

Joint Cancer Committee and the World Health Organization (UICC/AJCC/WHO 2010 

TNM) [17, 20, 21]. Table 2 summaries T and stage definitions according to ENETS and 

to UICC/AJCC/WHO. The presence of two different TNM systems raised concerns of 

potential confusion in patient management [22, 23]. Recently, Rindi et al. suggested the 

ENETS TNM staging is superior to the UICC/AJCC/ TNM staging system and support 

its use in the clinical practice [24]. 
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Table 2. T and stage definitions in the European Neuroendocrine Tumor Society 
(ENETS) and the International Union for Cancer Control/American Joint Cancer 
Committee/World Health Organization (UICC/AJCC/WHO) 2010 TNM staging system 
[24] 

 
Legend:  NA= not applicable 
  

Definitions ENETS TNM UICC/AJCC/WHO 2010 TNM 
T definition   
T1 Limited to the pancreas, < 2 cm Limited to the pamcreas, <=2 cm 

in greatest dimension 
T2 Limited to the pancreas, 2-4 cm Limited to the pancreas, >2 cm in 

greatest dimension 
T3 Limited to the pancreas, >4 cm or 

invading duodenum or bile duct 
Beyond the pancreas but without 
involvement of the superior 
mesenteric artery 

T4 Tumor invading adjacent organs 
(stomach, spleen, colon, adrenal 
gland) or the wall of large vessels 
(celiac axis or the superior 
mesenteric artery) 

Involvement of the celiac axis or 
the superior mesenteric artery 
(unresectable tumor) 

Stage definition  NA 
Stage I T1, N0, M0 NA 

Stage IIa T2, N0, M0 NA 
Stage IIb T3, N0, M0 NA 
Stage IIIa T4, N0, M0 NA 
Stage IIIb Any T, Any N1, M0 NA 
Stage IV Any T, Any N, M1 NA 
Stage IA NA T1, N0, M0 
Stage IB NA T2, N0, M0 
Stage IIA NA T3, N0, M0 
Stage IIB NA T1-T3, N1, M0 
Stage III NA T4, Any N, M0 
Stage IV NA Any T, Any N, M1 
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Molecular genetics of sporadic PanNETs 

Genetic abnormalities have been investigated to elucidate the pathogenesis of PanNETs 

as well as to identify new biological markers with diagnostic and clinical value.  

For hereditary PanNETs, alterations of MEN1, VHL, TSC2 and NF1 are the main factors 

that drive tumorigenesis. The genetic defect causing each of these inherited PanNET 

syndromes has been elucidated and considerable advances have been made in 

understanding the cellular roles of the various altered proteins [25].  

In contrast, the genetic alterations involved in the onset and progression of 

sporadic PanNETS are poorly understood, although in recent years several studies have 

been carried out to gain insights into the genetic basis of these tumors. To date, two 

main approaches have been used to study sporadic PanNETs: 1) mutation analysis of 

the susceptibility genes associated with hereditary PanNETs or screening of the most 

commonly mutated genes in pancreatic ductal adenocarcinomas (PDACs); 2) study of 

chromosomal gains and losses to identify candidate loci involved in the development of 

these tumors. In Table 3 we summarize a comprehensive review of the papers so far 

published on this subject. 

Several studies demonstrated that approximately 20-40% of sporadic PanNETs 

had somatic inactivating mutations in MEN1, which encodes menin, a component of 

histone methyltransferase complex [26-33]. MEN1 mutation was frequently associated 

with gastrinoma and glucagonoma, but was rare in insulinoma and nonfunctioning  

PanNETs. Recently, whole-exome sequencing of PanNETs confirmed that MEN1 is the 

most frequently mutated gene in these tumors [34]. In addition this study demonstrated 

that PanNETs exhibited frequent mutations in other genes involved in chromatin 

remodeling complex such as DAXX (death-domain-associated protein) and ATRX 

(α−thalassemia/mental retardation syndrome X-linked). Overall, somatic mutations in 

PanNETs were identified in MEN1 (44%), DAXX (25%), ATRX (18%), PTEN (7.3%), 

TSC2 (8.8%), PIK3CA (1.4%). Other oncosuppressor genes such as VHL, RB1, BRCA2 

[35-41] and common oncogenes including myc, fos, c-erbB-2 and sis [42-45] have been 

examined in PanNETs but no genetic alterations were observed. 

Exome sequencing of PanNETs demonstrated that there were important 

differences between the genetic landscapes of PanNETs and those of pancreatic ductal 

adenocarcinomas (PDACs). First, there were 60% fewer genes mutated per tumor in 
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PanNETs than in PDACs, with a mean of 16 mutations per tumor among PanNETs. 

Second, the genes most commonly affected by mutations in PDACs (KRAS, TGF-β 

pathway, CDKN2A and TP53) were rarely altered in PanNETs and vice versa. Third, 

the spectrum of mutations in PDAC and in PanNET was different, with C-to-T 

transitions more common in PDACs than in PanNETs and C-to-G tranversions more 

common in PanNETs than in PDACs. This suggests that mutations in PanNETs and 

PDACs arise through different mechanisms, perhaps because of exposure to different 

environmental carcinogens or through the action of different DNA-repair pathways. 
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Table 3. Summary of gene mutations and losses of putative Tumor Suppressor Genes in 
PanNETs.  

MUTATIONAL ANALYSES 
GENE Mutation 

  
Range % References 

MEN-1 gene (11q13) mutation 78/285 (27%) 0-50% [26-34] 
DAXX gene (6p21.3) mutation 37%  [34] 
ATRX gene (Xq21.1) mutation 18%  [34] 
PTEN gene (10q23) mutation 9/101 (9%) 7-13% [34, 46] 
TSC2 gene (16p13.3) mutation 9%  [34] 

PIK3CA gene (3q26.3) mutation 1.4%  [34] 
VHL gene (3p25.3) mutation 0/39 (0%)  [34, 35, 38, 39] 
RB1 gene (13q14.2) mutation 0/39 (0%)  [37] 

BRCA2 gene (13q12-q13) mutation 0/5 (0%)  [40] 
TP53 gene (17p13.1) mutation 2/39 (4%) 0-5% [41, 47-51] 
KRAS (12p12.1) gene mutation 0/80 (0%)  [34, 47, 50-52] 

CDKN2A (9p21) p16 gene mutation 0/14 (0%)  [51, 53-55] 
DPC4/SMAD4 gene (18q21.1) mutation 0/45 (0%)  [51, 56-58] 

TIMP-3 gene (22q12.3) mutation 2/31 (5%) 0-5% [34, 59] 
HDAC II gene (6q21) mutation 0/10 (0%)  [60] 
CDKN2B p15 gene mutation 0/18 (0%)  [61] 

Other common oncogenes myc, fos, c-erbB-2 
  

0% [50, 51, 62] 
CHROMOSOMAL ABNORMALITIES 

CHROMOSOMAL POSITION Loss 
 

 

Range % References 
1p 55/351 (16 %) 4-44% [63-71] 
1q 31/221 (15%) 4-44% [63, 67, 68, 71-73] 

2p-2q 61/372 (17%) 4-44% [63, 65, 67, 68, 70-72] 
3p 215/620 (35%) 5-100% [35-37, 39, 41, 58, 63, 65-68, 70, 72-78] 
3q 24/191 (13%) 4-40% [36, 63, 72, 73, 75, 76] 

4p-4q 10/212 (5%) 0-5% [63, 66, 68, 75] 
5q 2/44 (5%) 0-14% [66, 68, 75, 79] 
6p 16/184 (9%) 5-20% [63, 68, 70, 72, 73, 76] 
6q 110/331 (33%) 6-66% [36, 63, 65, 67-69, 71, 72, 76, 80] 
7q 3/77 (4%) 0-11% [41, 63, 68, 73] 

8p-8q 23/289 (8%) 4-40% [63, 65, 66, 68, 70, 72, 76] 
9p-9q 26/234 (11%) 0-57% [53-55, 61, 63, 67, 68, 70, 73, 75, 81] 

10p-10q 45/278 (16%) 6-44% [46, 63, 66-68, 70, 72, 76] 
11p 54/294 (18%) 4-54% [63, 65, 67-69, 71, 75, 76] 
11q 178/596 (30%) 4-73% [26, 30, 36, 41, 58, 59, 63, 65-67, 69-73, 75, 76, 82, 83] 

12p-12q 10/126 (8%) 0-6% [63, 68, 71, 75] 
13p-13q 8/187 (4%) 0-15% [35, 37, 41, 63, 65, 68, 72, 75] 

15q 22/148 (15%) 0-27% [36, 63, 70-72] 
16p-16q 52/290 (18%) 4-40% [63, 65, 66, 70-72, 75, 84] 
17p-17q 15/85 (18%) 6-35% [41, 63, 66, 67] 
18p-18q 47/395 (12%) 

 
0-27% [41, 56-58, 63, 65-68, 70, 73, 75, 84, 85] 

19p-19q 1/40 (3%) 0-3% [66, 75] 
20q 8/41 (20%) 20-50% [65, 67] 

21p-21q 26/80 (32%) 12-47% [63, 67, 70, 72] 
22p-22q 93/320 (29%) 0-96% [36, 63, 66, 68-73, 75, 86, 87] 

Xp 39/231 (17%) 4-32% [63, 65, 71, 76, 88] 
Xq 35/220 (16%) 4-27% [63, 69, 71, 76] 

Y LOH 22/84 (26%) 7-45% [63, 69, 76] 
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In recent years, comprehensive genome-wide approaches such as Comparative Genomic 

Hybridization (CGH), high resolution allelotyping and gene expression analyses have 

revealed candidate loci for genes involved in the development of PanNETs but these 

have not been substantiated through genetic or functional analyses. 

Most of the genome-wide studies demonstrated that genetic alterations seem to 

accumulate during tumor progression: the total number of genomic changes per tumor 

appears to be associated with both the tumor size and the stage of the disease [69]. 

These results point toward a tumor suppressor pathway impairment and chromosomal 

instability as important mechanisms associated with malignancy in PanNETs. The 

alterations described are not randomly distributed on chromosomes but are particularly 

common in distinct chromosomal regions. Gains are common on 4pq (17% of the 

tumors) 5q (25%), 7pq (41%), 9q (28%), 12q (23%), 14q (32%), 17pq (31%) and 20q 

(27%), whereas genomic losses frequently occur on 1p (16%), 3p (35%), 6q (33%), 

10pq (16%), 11q (30%), Y (26%) and X (17%).  

Loss of heterozygosity studies on PanNETs indicated different chromosomal 

regions such as 1p, 3p, Xp and 6q, whose deletion is associated with more aggressive 

behavior [35, 47, 63, 68, 76]. Allelic deletion on 11q is frequently found in sporadic 

PanNETs [28, 31, 67] and combining data from all studies referred, it appears that the 

LOH rate is usually 2-3 times higher than the frequency of mutations of the MEN1 

gene.  

Some differences have been reported among PanNETs considering both type 

and number of DNA alterations. Insulinomas exhibit a lower number of genomic 

alterations than other PanNETs and they frequently show gain of 9q32 and loss of 

22q13.1, which appear to be early genetic events in these tumors [71]. By contrast, they 

rarely show 3p and 6q losses associated with malignancy [77, 80]. Malignant 

insulinomas, in contrast, harbor a large number of chromosomal alterations similar to 

that seen in other types of malignant PanNETs [49]. In pancreatic gastrinomas, only 

limited chromosomal imbalances are encountered. Losses at 3p and 18q21 occur in 

approximately 33%  and 22% of cases, respectively [65, 69].  

Nonfunctioning PanNETs (NF-PanNETs) in general harbor higher numbers of 

chromosomal gains and losses than functioning tumors. These genetic aberrations occur 

in chromosomal loci frequently involved in malignant tumors [73]. In a recent high 
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resolution allelotyping analysis of only NF-PanNETs, Rigaud et al.. [67] underlined the 

existence of two different allelotypes among NF-PanNETs: one aneuploid or multiploid 

with a high degree of large chromosomal allelic deletions and the second, diploid, 

showing a small number of scattered losses with no apparent specific localization. In 

this study, survival analysis showed that no specific chromosomal alteration was 

associated with outcome, whereas ploidy status is an independent factor adding 

prognostic information to that given by the proliferative index evaluated with Ki67 

immunohistochemistry. 
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DNA methylation changes in PanNETs 

Malignant cells show major disruptions in DNA methylation patterns when compared 

with normal cells [89]. The pattern of DNA methylation changes substantially when 

cells became malignant, as a result of two major phenomena. Firstly, global genomic 

hypomethylation has been linked to the induction of chromosomal instability and 

hypothesized to contribute to oncogenesis by activation of oncogenes (such as c-MYC 

and H-RAS), and of latent retrotrasposons [90, 91]. Secondly, hypermethylation of 

tumor-suppressor genes contributes to a selective advantage of the cancer cell and 

therefore may represent one of the steps in the sequence of events leading to 

malignancy. DNA methylation patterns are becoming increasingly attractive tools in the 

management of cancer patients. DNA methylation is being examined as a powerful 

markers for early diagnosis of cancer, and for disease monitoring during and after 

treatment [92-98]. DNA methylation patterns change during the process of 

tumorigenesis and these changes appear to be events contributing directly to the 

transformed phenotype [99]. Promoter hypermethylation has been shown to be 

associated with adverse prognosis in a variety of malignancies, including prostate, 

colon, breast, non-small cell lung cancer, and non-Hodgkin lymphoma [100-103].  

To date very few studies have been published about DNA methylation changes 

in PanNETs and there is no information about the role of gene promoter-specific 

hypermethylation as well as global hypomethylation in the development and 

progression of these tumors.  

Much of what is known today about this subject was gained through studies 

focused on aberrant hypermethylation of single or few candidate genes. Several specific 

CpG-island-associated genes are frequently methylated in PanNETs, namely RASSF1A, 

CDKN2A, HIC1, RARβ, APC, MGMT, ER [78, 79, 104-107]. The cumulative 

methylation frequency ranges from only a few percent to more than 70% for some of 

these genes. These methylation rates often differ substantially depending on the study 

population, tumor histology, and/or methodology used to assess CpG island 

methylation. In table 4 we provide a brief overview of the current literature 

summarizing the panel of genes investigated, the methylation rates and the methods 

used.  
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RASSF1A gene silencing by DNA methylation has been reported as a major event in 

PanNETs with methylation rates ranging from 63% to 100% [78, 79, 104-107]. This 

gene works as tumor suppressor in the RAS pathway, regulating proliferation, inducing 

apoptosis and stabilizing microtubules [108-110]. Ras-association domain family 1 gene 

has seven isoforms produced by alternative splicing and expressed from two different 

promoters. Recently, Malpeli et al.. demonstrated that the isoform RASSF1A is down 

regulated in PanNETs compared to normal pancreas and that the overall extent of 

RASSF1A methylation in PanNETs correlated inversely with its expression [104]. 

Moreover, some authors reported the common occurrence of RASSF1A methylation in 

normal pancreas adjacent to PanNETs suggesting that epigenetic change might arise 

early in the onset of PanNETs [111-113].  

Another gene frequently investigate in PanNETs for methylation status is 

CDKN2A [53, 54, 61, 79, 105, 106, 114, 115], a cyclin dependent kinase 4 inhibitor that 

causes retinoblastoma protein to stay in its active form and arrest the cell cycle at G1-S 

transition. Muscarella et al.. [53] reported the presence of CDKN2A/p16 promoter 

hypermethylation or homozygous deletion in a limited number of pancreatic 

gastrinomas and in nonfunctioning PanNETs (a total of 14 cases investigated). These 

data were confirmed by Lubomierski et al.. [81] who reported loss of expression of at 

least one of the tumor suppressor genes CDKN2A/p16, CDKN2B/p15 and 

CDKN2D/p14 localized as a gene cluster at 9p21. mRNA transcripts of these genes 

were lost most frequently in nonfunctioning PanNETs (57%) and less commonly in 

insulinomas (30%) and gastrinomas (22%). 

Arnold et al.. [79, 107] reported high frequency of epigenetic inactivation of 

HIC-1 (Hypermethylated In Cancer 1) ranging from 83% to 93%. HIC-1 encodes a 

zinc-finger transcriptional factor [116] that regulates p53-dependent apoptotic DNA-

damage response [117]. The role of HIC-1 as a TSG is not completely understood and 

further studies are needed to elucidate its function in the pathogenesis of PanNETs. 

Although most of the analyses of DNA methylation patterns in PanNETs were single-

gene studies, three studies analyzed the methylation status of many genes in order to 

define a methylation profile of these tumors [105, 107, 114]. In the first study, Chan et 

al. [114] analysed the methylation status of 14 genes in 11 PanNETs and in 16 

gastrointestinal neuroendocrine tumors demonstrating different methylation profiles in 
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the two subsets of tumors. House et al. [105] investigated aberrant methylation of 11 

candidate tumor suppressor genes in forty-eight PanNETs and found hypermethylation 

of at least one gene in 87% of PanNETs. In decreasing order of frequency, the five most 

commonly methylated genes were: RASSF1A (75%), CDKN2A (40%), MGMT (40%), 

RAR-β (25%), and MLH1 (23%). Moreover, the authors demonstrated that aberrant 

methylation of 3 or more genes predicted both decreased patient survival at 5 years and 

tumor recurrence within 24 months from the time of surgery. In agreement with these 

results, Arnold et al.. [107] analysed the methylation status of 11 genes in 46 PanNETs 

confirming that hypermethylation of tumor suppressor genes was more common in 

PanNETs with high proliferation index (Ki67>10%) and that a CpG island methylator 

phenotype (CIMP phenotype) [118] showed a trend towards worse survival. 

Besides gene-specific methylation, global hypomethylation in PanNETs and 

gastrointestinal neuroendocrine tumors has been recently investigated [119, 120] using 

LINE-1 methylation status as a surrogate marker for genome-wide methylation. These 

studies showed that LINE-1 hypomethylation is common in neuroendocrine tumors 

compared with normal tissue  and is associated with malignant behavior. 
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Table 4 Review of gene promoter-specific hypermethylation in PanNETs. 

Gene Frequency of gene 
methylation (%) Range Methods References 

RASSF1A 125/161 (77.6%) 63% - 100% M/P [78, 79, 104-107] 

CDKN2A(p16) 32/135 (23.7%) 0% - 75% M [53, 54, 79, 105, 
106, 114, 115] 

HIC1 48/52 (92%) 83% - 93% M [79, 107] 

APC 39/104 (37.5%) 21% - 70% M [79, 105, 107] 

MGMT 33/131 (25.2%) 0% - 40% M/C [79, 105-107, 114] 

MLH1 11/58 (19%) 0% - 23% M [79, 89] 

TIMP-3 8/112 (7.1%) 0% - 44% M [59, 105, 107] 

MEN1 10/55 (18.2%) 11% - 19% M [79, 107] 

CDKN2A(p14) 8/75 (10.7%) 0% - 44% M [105, 106, 114] 

RARb 12/59 (20.3%) 0% - 25% M/C [105, 114] 

CDH1 12/92 (13%) 2% - 23% M [105, 107] 

ER 7/11 (64%) 64% M/C [114] 

P73 8/48 (17%) 17% M [105] 

CDKN2B(p15) 2/18 (11%) 11% P [61] 

COX2 1/11 (9%) 9% M/C [114] 

THBS1 1/11 (9%) 9% M/C [114] 

RUNX 3/46 (7%) 7% M [107] 

VHL 2/35 (6%) 6% M [38] 

GSTp 0/48 (0%) 0% M [105] 

PTEN 0/48 (0%) 0% M [107] 

 
Legend: M: Methylation Specific PCR (MSP); C: COBRA; P: Pyrosequencing 
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The aims of our work were to investigate the occurrence and relevance of gene 

promoter-specific hypermethylation and global hypomethylation in 58 PanNETs in 

order to correlate the methylation profiles with DNA copy number alterations (CNAs) 

and with the clinico-pathologic features of the tumors. 

 

In particular our purposes were: 

1. To study the methylation status of 33 tumor suppressor genes and copy 

number alterations (CNA) of 53 genes in an archival series of formalin fixed 

and paraffin embedded (FFPE) tumor tissues by MS-MLPA (Methylation-

specific multiplex ligation-dependent probe amplification).  

2. to validate MS-MLPA results for the methylation status of MLH1, MGMT, 

THBS1, WT-1, CASP-8, and CDKN2A (p16) genes using additional 

independent techniques (methylation specific PCR (MSP), bisulfite 

pyrosequencing and bisulfite cycle sequencing) to test the robustness of MS-

MLPA assay in gene hypermethylation analyses. 

3. To optimize and apply a quantitative bisulfite pyrosequencing assay to 

measure CpG methylation of Long Interspersed Nuclear Elements -1 (LINE-

1) in order to evaluate the occurrence of global DNA hypomethylation in 

PanNETs compared with normal pancreas. 

4. To evaluate whether a Two dimensional unsupervised hierarchical clustering 

can help to define gene promoter specific hypermethylation profiles of 

PanNETs. Moreover we verified if a small subset of hypermethylated 

markers led to identify specific methylation profiles of PanNETs by using 

Receiver Operator Characteristic (ROC) curves. 

5. To correlate DNA hypermethylation clusters with LINE-1 hypomethylation, 

DNA CNAs and with the clinic-pathologic features of the tumors in order to 

define clinic-pathologic and molecular subsets of PanNETs. 
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Case selection 

Surgical specimens of 58 well characterized pancreatic neuroendocrine tumors 

(PanNETs) encompassing all the main histologic and functional types (Table 5) were 

selected from our previously-reported series of 155 tumors [13]. Selection depended on 

the availability of enough material to perform molecular analyses coupled with 

complete clinicopathologic information including age, endocrine and non endocrine 

symptoms, tumor size, mitotic and Ki67 proliferative index, vascular and perineural 

invasion, presence of metastases at the time of diagnosis, evidence of local invasion at 

surgery, perioperative mortality, and evidence of local recurrence or distant metastases 

during follow-up.  Tumor grade and stage were performed according to the ENETS 

scheme [18, 19]. This study was performed in agreement with the clinical standards laid 

down in the 1975 Declaration of Helsinki and its revision in 1983, and according to the 

rules of the Ethics Committee of the Ospedale di Circolo, Varese, Italy. 
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Table 5. Main clinicopathologic features of PanNETs 
Number of cases 58 

Gender  
Male 29 

Female 29 
Age (years)  

Mean 49 
Range 18-79 

Diameter (cm)  
Mean 4.7 
Range 0.3-18 
Site°  
Head 21 
Body 18 
Tail 12 

Genetic  
MEN1 2 

Sporadic 56 
Syndrome  

Nonfunctioning 28 
Insulinoma 23 

Glucagonoma 2 
Zolliger Ellison 2 

VIPoma 2 
Cushing 1 
Grading  

G1 28 
G2 30 
G3 0 

Angioinvasion  
Absent 26 
Present 31 

Neuroinvasion  
Absent 23 
Present 15 

Staging*  
Stage I 7 
Stage II 20 
Stage III 12 
Stage IV 7 

Follow-up^  
AFD 37 
AWD 6 
DOD 12 
DOC 1 

  
°: for 8 cases information regarding site was not available; *: for 12 enucleated tumors lymph nodes were 
not available for histologic evaluation so the pN was not detected; ^ two patients died immediately after 
surgery. MEN 1= multiple endocrine neoplasia syndrome type 1, AFD: alive freed from disease, AWD= 
alive without disease, DOD= dead for disease, DOC= dead for other causes   
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DNA extraction and evaluation of amplifiability 

DNA samples were obtained from FFPE tissues using representative 8-µm sections. 

Three sections of every specimen were treated twice with xylene, and then washed 

twice with ethanol. DNA was extracted using QIAamp® DNA FFPE Tissue kit 

(Qiagen, Hilden, Germany) according to the manufacturer’s protocol. Neoplastic areas 

were manually microdissected for DNA extraction and contained at least 70% of tumor 

cells, to minimize contamination by normal cell. Each DNA sample was evaluated for 

integrity and amplifiability by BIOMED-2 multiplex PCR in order to correlate DNA 

fragmentation with MS-MLPA reproducibility. Briefly, as illustrated in Figure 2 five 

pairs of control gene PCR primers were used to amplify products of exactly 100, 200, 

300, 400 and 600 bp from the following four target genes: TBXAS1 (exon 9), RAG1 

(exon 2), PLZF (exon 1), AF4 (exon 11), AF4 (exon 3). DNA fragmentation and MS-

MLPA reproducibility were correlated (data not shown). Only with at least 200 bp 

fragmentation showed reproducible results and were used in MS-MLPA analysis.  

 

 A                 B 

 

Figure 2: Control multiplex PCR for the assessment of amplifiability and integrity  of DNA samples from 
FFPE tissues. A) Schematic diagram of five control genes and the five primer sets for obtaining PCR 
products of 600, 400, 300, 200 and 100 bp. B) FFPE DNAs (S1-S6) generated PCR products ranging 
from 200 to 300 bps. This result illustrates the average level of amplifiability of FFPE DNAs observed in 
our study. 
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Methylation-specific multiplex ligation-dependent probe amplification 

(MS-MLPA) analysis 

MS-MLPA analysis was performed on all the 58 PanNETs reported in Table 1 using the 

ME001 MS-MLPA Tumor suppressor-1 Kit and the ME002 MS-MLPA Tumor 

suppressor-2 Kit (MRC-Holland, Amsterdam, The Netherlands). Using these two kits a 

total of 33 tumor suppressor genes were analysed for aberrant promoter methylation and 

53 genes for copy number alterations (CNAs). All these genes are frequently silenced 

by methylation in tumors of different sites as well as they harbour frequently genetic 

alterations during tumorigenesis. Table 6 lists all the genes examined for the 

methylation analysis and for copy number analysis and reports their chromosomal 

position, sequence accession number and the amplicon size obtained by MS-MLPA 

analysis.  
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Table 6. List of the genes examined by MS-MLPA analysis 

Legend: All the 53 genes were analyzed for copy number alterations. Gene names in bold highlight the 33 
genes analysed for aberrant methylation. (*): PCR products obtained with ME001- MS-MLPA kit; (**): 
PCR products obtained with ME002- MS-MLPA kit;  Twenty-five genes were examined with at least two 
MS-MLPA probes, due to a partial overlapping between the probe mixes contained in the two kits. For 
these genes a mean value of raw MS-MLPA results was calculated. 

Number Gene Chromosomal position Reference sequence Amplicon size 
1 TP73 1p36.3 NM_005427.2 400*, 238** 
2 MSH6 2p16 NM_000179 328** 
3 CASP8 2q33-q34 NM_001080125.1 265* 
4 FHIT 3p14.2 NM_002012 409* 
5 MLH1 3p22.3 NM_000249 167*, 463* 
6 RASSF1 3p21.3 NM_007182 328*, 382* 
7 CTNNB1 3p21 NM_001904.3 472* 
8 RARB 3p24 NM_000965 193*, 453** 
9 VHL 3p25.3 NM_000551 355*, 265** 

10 CASR 3q21.1 NM_000388.3 483*, 483** 
11 IL-2 4q26-q27 NM_000586 445** 
12 APC 5q21-q22 NM_000038 148*, 337** 
13 ESR1 6q24-q27 NM_000125 373*, 301** 
14 PARK2 6q25.2-q27 NM_4562.2 154* 
15 CDK6 7q21-q22 NM_001259.6 310*, 310** 
16 CFTR 7q31-q32 NM_000492 154** 
17 PAX5 9p13.2 NM_016734 208** 
18 CDKN2A (p14) 9p21 NM_058195.2 161* 
19 CDKN2A (p16) 9p21 NM_058195 427** 
20 CDKN2B 9p21 NM_004936.3 211* 
21 DAPK1 9q34.1 NM_004938 346* 
22 PTCH1 9q22.1-q31 NM_000264 175** 
23 CELF2 10p13 NM_015413.1 364* 
24 CREM 10p12.1-p11.1 NM_181571.1 136*, 136** 
25 PTEN 10q23 NM_000314 292*, 183**, 373** 
26 MGMT 10q26 NM_002412 191**, 346** 
27 CD44 11p13 NM_000610 319*, 462** 
28 WT1 11p13 NM_000378 247** 
29 PAX6 11p13 NM_001604 409** 
30 GSTP1 11q13.2 NM_000852 454*, 273** 
31 ATM 11q22-q23 NM_000051 184*, 160**, 418** 
32 CADM1 11q23.2 NM_014333 427*, 364** 
33 CDKN1B 12p13.1-p12 NM_004064 274* 
34 TNFRSF1A 12p13.2 NM_001065.2 175*, 445* 
35 PAH 12q22-q24.2 NM_000277 229*, 229** 
36 CHFR 12q24.33 NM_001161344 238*, 292** 
37 BRCA2 13q12-q13 NM_000059 301*, 418*, 148** 
38 RB1 13q14.2 NM_000321 319**, 472** 
39 MLH3 14q24.3 NM_014381.2 202*, 202** 
40 THBS1 15q15 NM_003246 355** 
41 PYCARD 16p11.2 NM_013258 398** 
42 TSC2 16p13.3 NM_000548 281*, 281** 
43 CDH1 16q22.1 NM_004360.3 337* 
44 CDH13 16q23.3 NM_001257 436*, 219** 
45 PMP22 17p12 NM_000304 256** 
46 TP53 17p13.1 NM_000546 168** 
47 HIC1 17p13.3 NM_006497.3 220* 
48 BRCA1 17q21.31 NM_007294.3 246*, 140** 
49 BCL2 18q21.3 NM_000633.2 256* 
50 STK11 19p13.3 NM_000455 382** 
51 KLK3 19q13.41 NM_145864 390*, 390** 
52 GATA5 20q13.33 NM_080473 434** 
53 TIMP-3 22q12.3 NM_000362 142* 
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MS-MLPA technique was described by Nygren et al. [121] and the main steps of the 

protocol are reported in Figure 3. 

  

 

Figure 3 Diagram of the steps of MS-MLPA procedure. The MS-MLPA procedure can be divided in five 
steps: 1. DNA denaturation and hybridisation of MLPA probes; 2. ligation and digestion; 3. PCR; 4. 
separation of amplification products by capillary electrophoresis and 5. data analysis. 
 

According to the manufacturer’s instructions the probe-mix was added to 50-250 ng of 

denatured DNA (98°C for 5 minutes) and allowed to hybridize for 16 hours at 60°C. 

After hybridization of the MLPA probes to the denatured DNA, the reaction was 

equally divided in two tubes. One tube is designed for the detection of the alterations in 

the copy number and the other tube for analyses of the aberrant DNA methylation. 

Ligase mix was added to the first vial, and Ligase-Digestion mix to the second vial. 

Since the MS-MLPA probes contain a motif for the methylation-sensitive restriction 

enzyme HhaI, the DNA methylation status was determined by restriction digestion by 

addition of HhaI to the second tube.  
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Samples were incubated for 30 minutes at 48°C, then the HhaI enzyme is inactivated by 

denaturation at 95°C for 1 minute. Since the unmethylated sequences are cut by the 

restriction enzyme, this process results in the ligation of the methylated sequences only. 

Eight microliters of the two aliquots are then amplified in a 25 µl of PCR reaction using 

a Veriti thermal cycler (Applied Biosystems, Foster City, USA) with this thermal 

protocol: 35 cycles of denaturation at 95 °C for 30 s, annealing at 60°C for 30 s and 

extension at 72°C for 1 min with a final extension of 20 min at 72°C. Aliquots of 2.5 µl 

of the PCR reaction were combined with 0.5 µl TAMRA internal size standard (Applied 

Biosystems, Foster City, USA) and 13.5 µl of deionized formamide. After denaturation, 

PCR products were separated by electrophoresis on an ABI 310 capillary sequencer and 

Genemapper analysis v.4.0 (Applied Biosystems). Values corresponding to peak size 

(base pairs) and peak height were used for further data processing by Coffalyser V7 

software (MRC-Holland). All MS-MLPA reactions were performed at least two times. 

Copy number analysis was performed using MS-MLPA results from undigested 

samples, comparing each tumor sample with three reference DNA samples (normal 

DNA isolated from leukocytes and included in each analysis). The data generated in the 

undigested sample were first normalised intra-sample by dividing the signal of each 

probe by the signal of every reference probe in that sample, thus creating as many ratios 

per probe as there are reference probes. Relative copy number or Dosage Quotient (DQ) 

was obtained by comparing this ratio with the same ratio obtained from reference DNA 

sample (inter-sample normalisation). Since DQ values obtained with normal DNA 

samples were always between 0.7 and 1.3, loss or gain of a specific region was scored 

in tumor DNAs when DQ was <0.5 or >1.5, respectively. 

The methylation profile of a sample was assessed by calculating a Methylation 

dosage Ratio (MR) following this calculation: MR=(Px/Pctrl)Dig/(Px/Pctrl)Undig where 

Px is the peak area of a given target probe, Pctrl is the sum of the peak areas of all 

control probes, Dig stands for HhaI digested sample, and Undig stands for undigested 

sample. Aberrant methylation was scored as a categorical variable using a specific MR 

threshold for each gene corresponding to the highest level of accuracy of the test, as 

previously reported [122]. 
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Validation of MS-MLPA results 

Validation of MS-MLPA results was possible for MLH1, THBS1, MGMT, WT-1 and 

CASP-8 genes using three different methods commonly employed for DNA methylation 

analysis, namely methylation-specific PCR (MSP) [123] , bisulfite pyrosequencing 

[124] and bisulfite cycle-sequencing [125, 126] on tumor samples from different body 

sites. Table 7 summarizes the sequence of the primers used for DNA methylation 

analyses. designed with the PyroMark Software Assay. 

MS-PCR was applied to analyse MLH1 methylation status following the original 

method developed by Herman et al. [123]. Bisulfite modification of genomic DNA (300 

ng) was performed with an EpiTect Bisulfite Kit (Qiagen, Hilden, Germany) according 

to the manufacturer’s recommendations. Bisulfite-converted DNA was amplified 

separately using the primers specific for methylated and unmethylated sequences of 

MLH1 (Table 7). A single round of fluorescent PCR was performed using 5 µl of the 

bisulfite-converted DNA  in a 15 µl reaction containing 1.5 µl of 10X buffer (Roche, 

Mannheim, Germany), 0.3 µM primer pairs, 200 µM dNTPs and 2U DNA polymerase 

(Roche, Mannheim, Germany). Thermal cycling conditions were: 5 min at 95°C, 10 

cycles of 94°C/50 s, specific T annealing/50 s, 72 °C/50 s and 25 cycles of 89°C/30 s, 

specific T annealing/30 s and 72°C/30 s. The fluorescently labeled PCR products were 

electrophoresed on an Applied Biosystems 310 automated DNA sequencer (Applied 

Biosystems, Milan, Italy) and the fluorescent signals from the differently sized alleles 

were recorded and analyzed using Genescan software (version 2.1) (Applied 

Biosystems, Milan, Italy). All MSP data have been obtained from at least two 

independent modifications of DNA and we scored as positive only signals detectable in 

repeated experiments. Bisulfite pyrosequencing and bisulfite cycle-sequencing were 

used to confirm methylation patterns of  THBS-1, WT-1, MGMT and CASP-8 genes 

using primers designed by PyroMark Assay Software (Table 7). 

PCR products for THBS1 and MGMT genes were analysed by pyrosequencing 

using PyroGold reagents on a PyroMark Q96 ID system (Qiagen). The PCR product 

was bound to Sepharose HP (Amersham Biosciences, Uppsala, Sweden) and the 

Sepharose beads containing the immobilized PCR product were prepared for 

pyrosequencing according to the manufacturer’s instructions. Pyrogram outputs were 

analyzed by the Pyromark Q24 software using the Allele Quantification software 
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(Qiagen) to determine the percentage of methylated alleles at each CpG site. Aberrant 

methylation of THBS1 and MGMT was scored when the mean percentage value of 

methylated alleles was higher than 10%. This threshold value corresponded to the mean 

percentage of methylated alleles plus 3 times the standard deviation observed in 10 

normal unmethylated DNA samples. 

PCR products for WT-1 and CASP-8 genes were analysed by cycle-sequencing 

using Big Dye Terminator mix version 1.1, on ABI 310 (Applied Biosystems, CA, 

USA). Sequencing electropherograms were analysed by Sequencing Analysis software 

(version 5.3, Applied Biosystems, CA, USA).  
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Table 7. Validation of MS-MLPA results using methylation-specific PCR (MSP), bisulfite pyrosequencing, bisulfite cycle-sequencing. 

GENE Method Primer sequences 
Number of 

samples 
examined 

Overall 
concordance with 
MS-MLPA results 

MLH1 
Methylation-
Specific PCR 

(MSP) 

MET-Fw: 5’HEX-ACGTAGACGTTTTATTAGGGTCGC-3’ 
MET-Rv: 5’-CCTCATCGTAACTACCCGCG-3’ 
UNMET-Fw: 5’FAM- TTTTGATGTAGATGTTTTATTAGGGTTGT-3’ 
UNMET-Rv:  5’-ACCACCTCATCATAACTACCCACA-3’ 

102 95% (97/102) 

THBS-1 Pyrosequencing 
Fw: 5’-GTTTATTGGTAGGAGGAATTTTTAGGAA-3’ 
Rv: 5’ biotin -CCCTAAACTCCCAAACCAACTC-3’ 
Seq: 5’-AGGAATGAGAGAGTTTTTTTAAAAG-3’ 

30 90% 
(27/30) 

MGMT Pyrosequencing 
Fw: 5’biotin-GGATATGTTGGGATAGTT-3’ 
Rv: 5’-AAACTAAACAACACCTAAA-3’ 
Seq: 5’-CCCAAACACTCACCAAA-3’ 

96 96% 
(92/96) 

WT-1 Cycle Sequencing Fw: 5’-GGTTAAGAAGGGGAGGTGG-3’ 
Rv: 5’-AACAACCTCCTCTTCAACC-3’ 30 100% (30/30) 

CASP-8 Cycle Sequencing Fw: 5’-TGGAGTTAGTATAAATGTTTTTTAATAAAG-3’ 
Rv: 5’-ACCCAATTTCCAACCATTCA-3’ 30 100% (30/30) 
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LINE-1 PCR and pyrosequencing 

The methylation status of LINE-1 was evaluated on the 58 PanNETs and eight samples 

of normal pancreas by using bisulfite-PCR and pyrosequencing  LINE-1 assay was 

designed toward a consensus LINE-1 sequence (GenBank accession number M80343.1) 

and allowed to quantify the percentage of 5-methylated cytosines (%5mC) in five 

consecutive CpG sites (Figure 4). PCR was performed in a 50 µl reaction volume that 

included: 2 pmol of forward primer, 2 pmol of reverse biotinylated primer, 5 ul of 

bisulfite-treated genomic DNA, 1.25 Units of GoTaq DNA polymerase, 1X GoTaq 

Flexi Buffer (Promega, Madison, WI, USA), 200 µM dNTPs. Thermal cycling 

conditions were: 3 min at 95°C, 45 cycles at 95 °C/25 s, 50°C/25 s, 72 °C/25 s followed 

by a final extension at 72°C for 5 min.  

Fully methylated and unmethylated DNA (Millipore, Billerica MA, USA) were 

used as positive and negative controls in each experiment. Reproducibility was 

confirmed by analyzing all the samples in duplicate with a maximum of within-sample 

coefficients of variation equal to 5% (range 2%-5%). 

 

 

Figure 4: Diagram of the pyrosequencing assay used to measure LINE-1 promoter methylation in 
PanNETs and samples of normal pancreas. Arrows indicate the sequence and the position of the primers 
used for the bisulfate PCR (145 bp) and pyrosequencing. The percentage of 5-methylated cytosines was 
measured in the five consecutive CpG sites highlighted in red. 
  

LINE-1 5’UTR                                                     3’UTR

6 Kb

AAAAn

TCGTGGTGCGTCGTTTTTTAAGTCGGTTTGAAAAGCGTAA

SEQ.

ORF1 ORF2

GAGTTAGGTGTGGGATATA

AGTTAGGTGTGGGATATAGTT

CCTTTCCCTTAAAAAACTAAAAAC - BIOT

LINE-1 5’UTR                                                     3’UTR

6 Kb

AAAAn

TCGTGGTGCGTCGTTTTTTAAGTCGGTTTGAAAAGCGTAA

SEQ.

ORF1 ORF2

GAGTTAGGTGTGGGATATA

AGTTAGGTGTGGGATATAGTT

CCTTTCCCTTAAAAAACTAAAAAC - BIOT
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Statistical analysis 

Methylation matrix was generated codifying as 1/0 the presence/absence of methylation 

of a specific gene in a specific patient. Then, the final matrix has as many rows as the 

number of patients and as many columns as the number of genes. A two way 

agglomerative cluster analysis (on genes and patients) has been performed on this 

matrix using complete linkage and Jaccard index distance metric. Given the 

dichotomous nature of our data Jaccard index was selected as the best dissimilarity 

measure. Three different groups of patients were emerged from the clustering. Chi-

squared tests were applied to identify possible associations between these groups and all 

the clinical variables. To investigate if these three groups had different survival rates we 

performed univariable and multivariate survival analysis. Specifically in the univariable 

case we used Kaplan-Mayer survival curves estimation followed by the log-rank test, 

while in the multivariate analysis we used the Cox’s proportional hazard model. In both 

cases we found a statistically significant difference among groups. Anova test was 

performed to evaluate the difference in the percentage of CNAs and of LINE-1 

methylation among the three groups. 
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Validation of MS-MLPA 

Validation of MS-MLPA results was possible for MLH1, MGMT, THBS1, WT-1, CASP-

8, and CDKN2A (p16) genes, using additional independent techniques: methylation-

specific PCR (MSP), bisulfite pyrosequencing, bisulfite and cycle sequencing. As is 

evident from the comparative analyses reported in Table 7, there was a good 

concordance between MS-MLPA and the other three methods based on bisulfite 

conversion of DNA. In particular, comparing the MS-MLPA and MSP methods, there 

was agreement between the two approaches in 95 % of the samples (97 of 102 cases). 

All five discordant samples showed methylation of MLH1 using MSP but were negative 

in the MS-MLPA analysis. Bisulfite cycle sequencing confirmed MS-MLPA results in 

100 % of tumor samples analyzed for WT-1 and for CASP-8 methylation. Analogously, 

MS-MLPA and bisulfite pyrosequencing showed good concordance in MGMT and 

THBS1 methylation analysis, confirming the same results in 96 % and in 90 % of cases, 

respectively. The only four discordant cases were included among the five discordant 

samples comparing MS-MLPA and MSP methods: they were MSI tumors, negative for 

the protein expression, methylated using MSP method but negative in MS-MLPA 

analysis.  
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DNA hypermethylation profiling identifies different prognostic 

clusters of PanNETs 

MS-MLPA analysis of the 58 PanNETs reported in Figure 5 demonstrated that a subset 

of 16 PanNETs (28%) was characterized by a concerted hypermethylation at a large 

number of genes (more than 25% of the 33 promoters examined) and that this 

phenotype was positively correlated with poor prognosis (p=0.02). Unsupervised 

hierarchical clustering provided the best performance in subtype classification of 

PanNETs distinguishing three specific methylation profiles that were strongly 

associated with prognosis at univariable analysis (p=0.004; Figure 5). Cluster 3 (20 

patients) was positively correlated with poor prognosis compared to cluster 1 and 

cluster 2 (13 and 25 patients, respectively) and showed significant higher levels of 

methylation in the following genes: DAPK1, TIMP3, PAX5, HIC1, CADM1, PYCARD, 

ESR1, VHL, RARB, WT1 (p<0.001). Samples in cluster 1 displayed a very homogeneous 

profile being almost completely unmethylated, while PanNETs in cluster 2 showed high 

frequency of hypermethylation in few genes, such as CASP8, GSTP1 and RASSF1. Of 

note, these three genes were commonly methylated also in cluster 3. 

Receiver operating characteristic (ROC) curves were generated showing the 

sensitivity versus 1-specificity of all the methylated genes in order to define the genes 

that most significantly distinguished PanNETs in cluster 3 from PanNETs in clusters 1 

and 2. The areas under the ROC curves (AUCs) ranged from 0.96 to 1.00 for the best 

combinations of genes (Figure 6). In particular, hypermethylation of  DAPK1, TIMP-3 

and PAX5 exhibited 100% sensitivity and 100% specificity in identifying PanNETs in 

cluster 3.  

We next analysed the clinico-pathological profiles of the three DNA methylation 

clusters and Table 3 summarizes the tumor characteristics in each class. There were no 

statistically significant differences in age, gender, tumor size, proliferation index, degree 

of differentiation among the three clusters. However, consistent with the higher 

mortality of cluster 3 patients, there was a significant difference in the proportion of 

stages IV in cluster 3 compared with cluster 1 and 2 (33% versus 4% of patients, 

respectively; p=0.04) Moreover, cluster 3 included mainly nonfunctioning PanNETs 

and fewer insulinomas compared with cluster 1 and 2 (p=0.08). 
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Figure 5: Unsupervised hierarchical clustering of the 58 PanNETs according to their methylation 
profiles. A) Heatmap with cases orientated along the horizontal axis and genes orientated along the 
vertical axis. B) Kaplan-Meier curve indicating that PanNETs with high levels of gene methylation (more 
than 25% of the 33 promoters examined) show worse prognosis than tumors with low levels of 
methylation (P=0.02). C) Kaplan-Meier curve indicating that Cluster 3 was positively correlated with 
poor prognosis compared to cluster 1 and cluster 2 
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Figure 6: Receiver operating characteristic (ROC) curves were generated to define the genes that most 
significantly distinguished PanNETs in cluster 3 from PanNETs in clusters 1 and 2. Sensitivity, the true 
positive rates, is shown along the y-axis, while specificity, or the false positive rate, is shown along the x-
axis. The calculated AUC is given for each plot in rank order beginning with highest AUC. 
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Table 8. Clinicopathologic features of different cluster tumor groups 

 

 
 No Sex Age  Genetic  Syndrome  Diamerer (cm)  Mit. Ki67 Grading  Staging  Follow-up 
  F/M mean range  MEN1 Sporadic  NF INS GLUC ZES VIP ACTH  mean range    G1 G2 G3  I II III IV  AFD AWD DOD DOC 
                                  
Cluster 1 13 7/6 45 32-65  1 12  5 7 0 0 1 0  3.3 0.3-11  <1 2.9% 8 5 0  1 5 2 0  11 1 1 0 
Cluster 2 25 14/11 50 18-79  1 24  10 12 2 1 0 0  4.8 1.4-18  2.28 4.5% 12 13 0  5 7 7 1  17 4 2 2 
Cluster 3 20 8/12 50 30-76  0 20  13 4 0 1 1 1  5.5 1.5-11  2.4 3.75% 8 12 0  1 8 3 6  9 1 9 1 
                                  
F: female; M: male; NF: nonfunctioning; INS: insulinoma; GLUC: glucagonoma; ZES: Zollinger-Ellison Syndrome; VIP: VIPoma; ACTH: 
Cushing’s syndrome; Mit: mitoses X 10HPF;  AFD: alive free of disease; AWD: alive with disease; DOD: died of disease; DOC: died of other 
cause. 
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DNA hypermethylation clusters and LINE-1 hypomethylation 

We used the quantitative bisulfite pyrosequencing to determine the methylation status of 

LINE-1 repetitive sequences in the 58 PanNETs compared to eight samples of normal 

pancreas (Figure 7). In normal samples little variation in LINE-1 methylation was 

observed. By contrast, PanNETs exhibited a high variability in LINE-1 methylation 

ranging from 44.5% to 70%. Although overall lower levels were observed in tumors 

compared with normal samples (average 60.2 % ± 4.7% versus average 64.3 % ± 0.9 %, 

respectively), differential LINE-1 hypomethylation levels were observed among the 

three hypermethylation clusters of PanNETs as exemplified in Figures 2 and 3. Cluster 

1 was a relatively homogeneous group showing no significant LINE-1 hypomethylation 

compared to normal pancreas. By contrast, both cluster 2 and 3 showed a high 

variability in LINE-1 methylation although important differences were found between 

the two groups. Cluster 2 exhibited the lowest levels of LINE-1 methylation both 

comparing these tumors with normal pancreas (p=0.009) and with PanNETs in cluster 1 

and 3 (p=0.02). Cluster 3 showed on average a modest degree of LINE-1 

hypomethylation. Most tumors in this group showed an increase in LINE-1 methylation 

compared to normal pancreas and only four cases displayed low levels of LINE-1 

methylation similarly to those observed in cluster 2 (Figure 2A). Notably, regardless of 

DNA hypermethylation clusters, decreased levels of LINE-1 methylation were 

significantly correlated with advanced stage (61.7% ± 3.6 in I and II stages versus 

57.4%  ± 5.5 in III and IV stages; p=0.002) and poor prognosis (p<0.0001) (Figure 7B). 

To determine whether LINE-1 methylation status was an independent prognostic factor 

all variables which were significant in univariate analyses, i.e. grading (p=0.01), Ki67 

proliferative index (p=0.02), ENETS Stage (p=0.0002) and DNA hypermethylation 

clusters (p=0.004) were included in the multivariate analysis, which was conducted 

using the Cox proportional hazards model. The analysis revealed that low LINE-1 

methylation status was an independent prognostic factor of poor prognosis (p 0.006), 

instead DNA hypermethylation clusters showed a borderline significance (p=0.08). No 

other independent prognostic factor was found (Table 9). 
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Figure 7: A) Quantitative LINE-1 methylation analysis in normal pancreas and in the three different 
clusters of PanNETs (C1: cluster 1; C2: cluster2; C3: cluster 3). Scatter plot comparison show significant 
lower levels of LINE-1 methylation in cluster 2 compared to normal pancreas (p=0.009) to cluster 1 and 3 
(p=0.02). B) Kaplan Meier surve indicating that decreased levels of LINE-1 methylation are significantly 
correlated with poor prognosis. Patients were stratified into high (H-LINE-1 Meth.) and low (L-LINE-1 
Meth.) groups using 58% as LINE-1 percentage. 

 

 
Table 9. Multivariate analysis for the prognostic significance of clinico-pathologic 

factors and DNA methylation in PanNETs 
Variable HR 95% CI p-value 
LINE-1 methylation 0.18 0.05 - 0.61 0.006 
Methylation clusters 3.00 0.8 - 10.7 0.08 
Ki67 index 1.05 0.9 - 1.2 0.34 
ENETS stage 1.5 0.4 - 5.6 0.50 
Grade 1.2 0.3 – 3.9 0.80 

Legend: CI, confidence interval; HR, hazard ratio 
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Figure 8: Examples of pyrograms for LINE-1 quantitative methylation analysis in three representative 
cases from the three methylation clusters. At each CpG site the proportion of C (%) after bisulfate 
conversion is reported. The overall LINE-1 methylation level was calculated as the average of the 
proportions of C (%) at the five CpG sites. Black arrows point the internal control cytosine residues that 
check for the adequacy of bisulfate treatment in the pyrosequencing analysis. 
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DNA hypermethylation clusters and CNAs 

CNA analysis at 53 different chromosome loci was possible in 47 PanNETs. An 

average of 14 (27%; range 2% to 51%) probes per sample showed abnormal patterns 

and an overview of the distribution of CNAs is shown in Table 10. A significant higher 

frequency of gains was observed compared with losses (mean number of 14 gains 

versus 1 loss per case, p≤0.001). TIMP-3 was the most frequently affected gene, 

followed by CDKN1B, VHL, PTCH1, CHFR, CADM1, CFTR, STK11, THBS1, p14 

CDKN2A, CDKN2B and PAX6. 

Table 10. Copy number Alteration (CNA) profiles at 53 different chromosome loci of 47 PanNETs  

 
Legend: analytic description of presence (black cells) or absence of CNA (white cells). Genes are sorted 
from right to left according to CNA frequency. For each case LINE-1 Methylation percentage and 
hypermethylation cluster are shown. 
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47 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 51 61 2
48 -1 -1 -1 -1 -1 -1 1 -1 1 1 1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 1 -1 1 -1 1 1 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 1 49 61 1
20 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 1 1 1 1 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 47 62 2
30 -1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 47 52 2
1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 -1 -1 1 1 -1 1 1 1 1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 1 1 43 60 3
22 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 1 1 1 1 -1 1 1 -1 1 -1 -1 -1 -1 1 -1 1 1 1 -1 1 1 43 48 2
24 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 1 1 1 -1 1 -1 -1 -1 -1 1 1 1 -1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 43 55 2
49 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 43 60 2
39 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 1 1 1 1 -1 -1 1 1 1 1 1 1 40 59 2
34 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 1 1 -1 -1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 1 1 1 1 1 1 1 1 1 38 62 2
38 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 38 59 2
46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 38 66 3
25 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 34 61 2
27 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 1 1 -1 -1 -1 1 -1 1 1 1 1 1 -1 1 1 1 1 1 1 1 34 60 2
51 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 -1 1 1 1 -1 1 -1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 34 57 2
14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 1 1 1 30 60 3
33 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1 -1 1 1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 1 1 30 62 1
56 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 1 -1 -1 1 1 1 1 -1 1 1 1 1 1 1 1 30 65 1
8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 1 1 -1 1 -1 -1 -1 1 -1 1 1 26 67 3
57 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 1 1 1 1 1 1 1 26 62 1
58 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 1 1 -1 1 1 -1 1 26 64 1
2 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 1 25 64 3
32 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 1 1 1 1 1 1 1 25 54 2
36 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 1 1 1 1 1 1 1 1 1 25 64 2
45 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 1 1 -1 1 -1 1 1 1 1 1 -1 1 25 57 2
4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 1 23 60 3
10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 1 1 23 53 3
16 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 23 57 3
18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1 -1 1 1 1 1 1 1 1 23 61 3
37 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 1 1 -1 23 61 2
5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 -1 -1 1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 21 65 3
11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 1 21 62 3
26 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 21 58 2
28 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 21 61 2
52 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 21 65 1
59 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 1 1 1 1 1 1 1 21 63 1
55 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 1 1 1 1 1 1 19 56 1
3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 1 1 1 1 17 67 3
6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 17 60 3
13 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 17 60 3
29 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 1 1 1 17 59 2
23 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 15 61 1
40 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 1 1 1 1 1 -1 1 15 45 2
35 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 13 61 2
50 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 9 60 1
53 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 6 59 1
17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 2 50 3

CNA % 0 0 0 0 0 2 4 6 6 6 6 6 9 9 9 9 11 13 13 13 13 15 17 19 19 19 21 23 23 23 23 26 26 26 28 28 34 34 34 38 47 51 55 57 57 60 60 64 66 70 72 81 87
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We evaluated the CNA percentages in the three hypermethylation clusters and found 

that cluster 2 PanNETs exhibited significant higher levels of CNAs with respect to 

cluster 1 and 3 tumors (Figure 9A; p=0.02). In particular, CNAs at six specific loci were 

more frequently observed in cluster 2 than in cluster 1 and 3 and included RB1 

(p=0.0002), CADM1 (p=0.0002), PAX6 (p=0.005), PTCH1 (p=0.01), CHFR (p=0.02) 

and THBS1 (p=0.04) (Figure 9B). 

High CNA percentages were positively associated with tumor size (p=0.02), G2 

grading (p=0.02) and Ki67 Index (p=0.04). No other association with clinico-pathologic 

features was observed. 

A) 

 
B) 

 
Figure 9: Copy number alterations (CNA) analysis in PanNETs. A) Scatter plots show significant higher 
CNA percentage in cluster 2 (C2) compared with cluster 1 and 3 (C1 and C3, respectively). B) The 
histogram shows the six chromosomal regions at wich significantly higher CNA frequencies were 
observed in cluster 2 compared to cluster 1 and  3. 
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This is the first work addressing DNA methylation profiling of PanNETs and its 

correlation with CNAs. For this purpose, we chose to study a well-characterized series 

of PanNETs previously examined [13], in order to correlate their clinicopathologic 

profiles and follow up data with specific patterns of both DNA aberrant methylation and 

CNAs. 

 Firstly, our study demonstrates that the simultaneous methylation analysis of a 

large number of tumour suppressor genes with a broad spectrum of cellular functions 

and frequently affected by de novo methylation in cancer is a powerful method for 

classification of PanNETs and allows the identification of specific methylation profiles 

related to different clinical behaviour. In particular, we found that a subgroup of 

PanNETs was characterized by a concerted hypermethylation at multiple loci, 

reminiscent of the CpG island methylator phenotype (CIMP) described in colorectal 

cancers [118]. Even if this phenotype was associated with worse prognosis in our series 

(p=0.02), unsupervised hierarchical clustering analysis provided the best performance in 

subtype classification of PanNETs, resulting in a clear separation into three 

prognostically and biologically different groups. Cluster 1 showed almost complete 

absence of gene methylation while PanNETs in cluster 2 showed high frequency of 

hypermethylation in few genes, such as CASP8, GSTP1 and RASSF1. By contrast, 

cluster 3 displayed a hypermethylated profile compared with the other two groups and 

showed significant higher frequencies of methylation in a large number of genes, 

namely DAPK1, TIMP-3, PAX5, HIC1, CADM1, PYCARD, ESR1, VHL, RARB, WT1 

(p<0.001). Especially in combination, these markers were able to distinguish reliably 

this subset of PanNETs from Cluster 1 and Cluster 2 tumors. In particular, combining 
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DNA hypermethylation of DAPK1, TIMP-3 and PAX5 resulted in both sensitivity and 

specificity of up to 100% in the detection of this specific profile.  

PanNETs in cluster 3 exhibited a more aggressive clinical behaviour than tumours in 

cluster 1 and 2 because they were associated with advanced stage (p=0.04) and poor 

prognosis (p=0.004). Moreover, cluster 3 included mainly nonfunctioning PanNETs and 

fewer insulinomas compared with cluster 1 and 2 (p=0.08). Overall these results 

strongly suggested a role of de novo DNA methylation in the progression of PanNETs 

through simultaneous involvement of multiple genes governing cell differentiation, 

apoptosis and invasion. In line with our results a positive association of gene 

hypermethylation with adverse clinical behaviour in PanNETs has been reported in a 

small number of studies analysing single or few candidate genes [114],[38, 79, 107]. 

Moreover, recent data support the hypothesis that the impairment of epigenetic 

pathways is involved in the pathogenesis of these tumours. Recently, whole-exome 

sequencing of PanNETs demonstrated that the most frequently mutated genes, i.e. 

MEN1, DAXX and ATRX, specify proteins implicated in chromatin remodelling 

suggesting that a primary aberration of epigenetic mechanisms may be a major event in 

PanNETs [34]. Consistent with this concept are reports showing that specific epigenetic 

changes, including hypermethylation of RASSF1A gene and DNA methylation changes 

of the IGF2 Differentially Methylated Region 2, are early and common events in 

PanNETs [127, 128]. Here, we confirm this observation reporting hypermethylation of 

RASSF1A, CASP8 and GSTP1 in most of the tumours examined and we suggest that 

aberrant DNA methylation may be crucial both to development and to progression of 

PanNETs.  
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Besides gene-specific methylation, global CpG methylation has also been characterized 

in the same tumour set providing a link between DNA methylation profiles and CNAs 

in PanNETs.  

 Recent studies showed global hypomethylation in pancreatic and intestinal 

neuroendocrine tumours compared with normal tissue using LINE-1 as a surrogate for 

genome-wide methylation [119, 120]. Although several studies reported that DNA 

hypomethylation correlates with chromosomal instability in a variety of cancers [50, 51, 

129, 130], at present it is poorly understood whether these two alterations are linked in 

PanNETs. A second important and unsolved question is whether genome-wide 

hypomethylation and gene specific hypermethylation are two independent events or if 

they are mechanistically linked in cancer. Attempts to answer this question resulted in 

contradictory findings, with some groups supporting [62, 131, 132] and other refuting 

[133, 134] a link between the two alterations. 

In our study we found a group of highly hypomethylated PanNETs that largely 

overlap with the cluster 2 tumours exhibiting low levels of gene hypermethylation. 

Notably, these cases showed the highest degree of CNAs with six chromosome regions 

more frequently involved in this group compared with the other two clusters. By 

contrast, in average a modest degree of LINE-1 hypomethylation was observed in 

cluster 1 and 3 tumors, most of which showed low levels of CNAs.  

 These findings confirm previous data reported for other cancer sites [135-138] 

and demonstrate that a significant fraction of PanNETs may arise through a possible 

mechanism linking DNA hypomethylation to subsequent chromosomal alterations, due 

the propensity of undermethylated DNA to recombine with a higher frequency than 

normal [139, 140]. Moreover, our results suggest that PanNETs may arise from two 
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main distinct progression pathways: one through a progressive accumulation of 

epigenetic demethylation errors resulting in a variety of chromosomal rearrangements 

and the other one under pressure to de novo methylation of both CpG island promoter 

and repetitive elements and the other. However, overlap in both processes sometimes 

occurs, as observed in four PanNETs in cluster 3 (8% of cases), indicating that a cross-

talk between DNA demethylation and de novo methylation may be hypothesized [132].  

 Regardless of the underlying mechanisms, our results demonstrate that LINE-1 

hypomethylation may increase the malignant potential of PanNETs and is strongly 

associated with shorter survival. Interestingly, multivariate analysis including well-

known clinico-pathologic factors for PanNETs, showed that LINE-1 hypomethylation 

was the only independent significant predictor of outcome. Although this association 

needs to be validated in additional tumor cohorts as well as in large scale clinical 

studies, our results demonstrate that DNA hypomethylation may be considered as an 

additional powerful marker for prognostication of PanNETs. 

In conclusion, our study shows that the combination of global DNA 

demethylation and gene hypermethylation analyses allows to define biologically and 

prognostically distinct subsets of PanNETs. Both alterations can be found in these 

tumors and each one can promote tumorigenesis by independent processes. Further 

delineating the nature and timing of epigenetic hits, which are in principle reversible, is 

potentially highly relevant for epigenetic therapy of PanNETs, and perhaps for tumor 

prevention.
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