
UNIVERSITÀ DELL’INSUBRIA
DIPARTIMENTO DI SCIENZA E ALTA TECNOLOGIA

DOCTORAL THESIS

Numerical Iterative Methods For
Nonlinear Problems

Author:

Malik Zaka Ullah

Supervisor:

Prof. Stefano Serra-Capizzano

Thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the program

Mathematics of Computing: Models, Structures,

Algorithms, and Applications

June 2015

UNIVERSITÀ DELL’INSUBRIA
DIPARTIMENTO DI SCIENZA E ALTA TECNOLOGIA

DOCTORAL THESIS

Numerical Iterative Methods For
Nonlinear Problems

Thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the program

Mathematics of Computing: Models, Structures,

Algorithms, and Applications

MALIK ZAKA ULLAH

Supervisor & Coordinator: Prof. Stefano Serra-Capizzano

Signed:

June 2015

UNIVERSITÀ DELL’INSUBRIA

DIPARTIMENTO DI SCIENZA E ALTA TECNOLOGIA

Doctor of Philosophy

Numerical Iterative Methods For Nonlinear Problems

by Malik Zaka Ullah

Abstract

The primary focus of research in this thesis is to address the construction of iter-

ative methods for nonlinear problems coming from different disciplines. The present

manuscript sheds light on the development of iterative schemes for scalar nonlinear

equations, for computing the generalized inverse of a matrix, for general classes of sys-

tems of nonlinear equations and specific systems of nonlinear equations associated with

ordinary and partial differential equations. Our treatment of the considered iterative

schemes consists of two parts: in the first called the ’construction part’ we define the

solution method; in the second part we establish the proof of local convergence and we

derive convergence-order, by using symbolic algebra tools. The quantitative measure in

terms of floating-point operations and the quality of the computed solution, when real

nonlinear problems are considered, provide the efficiency comparison among the pro-

posed and the existing iterative schemes. In the case of systems of nonlinear equations,

the multi-step extensions are formed in such a way that very economical iterative meth-

ods are provided, from a computational viewpoint. Especially in the multi-step versions

of an iterative method for systems of nonlinear equations, the Jacobians inverses are

avoided which make the iterative process computationally very fast. When considering

special systems of nonlinear equations associated with ordinary and partial differen-

tial equations, we can use higher-order Frechet derivatives thanks to the special type of

nonlinearity: from a computational viewpoint such an approach has to be avoided in

the case of general systems of nonlinear equations due to the high computational cost.

Aside from nonlinear equations, an efficient matrix iteration method is developed and

implemented for the calculation of weighted Moore-Penrose inverse. Finally, a variety

of nonlinear problems have been numerically tested in order to show the correctness

and the computational efficiency of our developed iterative algorithms.

Acknowledgements

In the name of Almighty Lord, Who created for us the Earth as a habitat place and

the sky as a marquee, and has given us appearance and made us good-looking and has

furnished us with good things.

I would like to deliberate my special gratitude and recognition to my Advisor

Professor Dr. Stefano Serra Capizzano, who has been a fabulous mentor for me. I

would like also to thank Prof. Abdulrahman Labeed Al-Malki, Prof. Abdullah Mathker

Alotaibi, Prof. Mohammed Ali Alghamdi, Dr. Eman S. Al-Aidarous, Dr. Marco Do-

natelli, Dr. Fazlollah Soleymani, and Mr. Fayyaz Ahmad for their moral support and

advices to pursue my PhD.

A special thank all of my family and to the friends who supported me in writing,

and pushed me to strive towards my goals. In the end, I would like express appreciation

to my beloved wife, who always supported me also in the dark moments of discourage-

ment.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures v

List of Tables viii

1 Introduction 1

2 Four-Point Optimal Sixteenth-Order Iterative Method for Solving Nonlin-

ear Equations 12

2.1 Introduction . 12
2.2 A new method and convergence analysis 15
2.3 Numerical results . 16
2.4 Summary . 16

3 Numerical Solution of Nonlinear Systems by a General Class of Iterative

Methods with Application to Nonlinear PDEs 19

3.1 Introduction . 19
3.2 The construction of the method . 21
3.3 Convergence analysis . 24
3.4 Further extensions . 30
3.5 Comparison on computational efficiency index 31
3.6 Numerical results and applications . 34

3.6.1 Academical tests . 35
3.6.2 Application-oriented tests . 38

3.7 Summary . 40

4 An Efficient Multi-step Iterative Method for Computing the Numerical So-

lution of Systems of Nonlinear Equations Associated with ODEs 42

iii

Contents iv

4.1 Introduction . 43
4.2 The proposed method . 46
4.3 Convergence analysis . 48
4.4 Efficiency index . 53
4.5 Numerical testing . 55
4.6 Summary . 59

5 A Higher Order Multi-step Iterative Method for Computing the Numeri-

cal Solution of Systems of Nonlinear Equations Associated with Nonlinear

PDEs and ODEs 61

5.1 Introduction . 62
5.1.1 Bratu problem . 65
5.1.2 Frank-Kamenetzkii problem 65
5.1.3 Lane-Emden equation . 66
5.1.4 Klein-Gordan equation . 67

5.2 The proposed new multi-step iterative method 69
5.3 Convergence analysis . 72
5.4 Numerical testing . 76
5.5 Summary . 77

6 Higher Order Multi-step Iterative Method for Computing the Numerical

Solution of Systems of Nonlinear Equations: Application to Nonlinear PDEs

and ODEs 82

6.1 Introduction . 83
6.2 New multi-step iterative method . 86
6.3 Convergence analysis . 89
6.4 Dynamics of multi-steps iterative methods 93
6.5 Numerical tests . 94
6.6 Summary . 110

7 An Efficient Matrix Iteration for Computing Weighted Moore-Penrose In-

verse 112

7.1 Introduction . 112
7.2 Derivation . 116
7.3 Efficiency challenge . 119
7.4 Moore-Penrose inverse . 120
7.5 Weighted Moore-Penrose inverse . 123
7.6 Applications . 128
7.7 Summary . 130

8 Conclusions and Future Work 138

Bibliography 139

List of Figures

2.1 Algorithm: The maple code for finding the error equation. 18

3.1 Timings for solving linear systems of different sizes (left) and Timings
for computing the inverse of integer matrices with different sizes (right). 33

3.2 The comparison of the traditional efficiency indices for different meth-
ods (left N = 5, ...,15) and (right N = 90, ...,110). The colors blue, red,
purple, brown and black stand for (3.40), (3.38), (3.3), (CM) and (3.2). . 34

3.3 The comparison of the flops-like efficiency indices for different meth-
ods (left N = 5, ...,15) and (right N = 90, ...,110). The colors blue, red,
purple, brown and black stand for (3.40), (3.38), (3.3), (CM) and (3.2). . 34

3.4 The approximate solution of Burgers’ equation using Finite Difference
scheme and our novel iterative method PM12. 40

3.5 The approximate solution of Fisher’s equation using Finite Difference
scheme and our novel iterative method PM12. 40

4.1 Flops-like efficiency indices for different multi-step methods 55
4.2 solution-curve of the Bratu-problem for α = 1 (left), solution-curve of

the Frank-Kamenetzkii-problem for α = 1, k = 1 (right) 56
4.3 solution-curve of the Lene-Emden for p = 5, Domain=[0, 9] 57
4.4 Convergence behavior of iterative method (4.23) for the Lene-Emden

problem (p = 5, Domain=[0, 9]) . 57
4.5 Convergence behavior of iterative method (4.43) for the Lene-Emden

problem (p = 5, Domain=[0, 9]) . 57
4.6 Absolute error curve for the Lene-Emden problem, left(4.23) and right

(4.43) . 58

5.1 Absolute error plot for multi-step method MZ2 in the case of the Klein
Gordon equation , initial guess u(xi, t j) = 0, u(x, t) = δ sech(κ(x−νt),

κ =
√

k
c2−ν2 , δ =

√
2k
γ , c= 1, γ = 1, ν = 0.5, k= 0.5, nx = 170, nt = 26,

x ∈ [−22, 22], t ∈ [0, 0.5]. 80
5.2 Numerical solution of the Klein Gordon equation , x ∈ [−22, 22], t ∈

[0, 0.5]. 81

6.1 Comparison between performance index of MZ and HM multi-steps
iterative methods. 89

6.2 Newton Raphon with CO = 2, Domain= [−11, 11]× [−11, 11], Grid=
700×700. 94

v

List of Figures vi

6.3 Multi-step Newton Raphon with CO= 3, Domain= [−11, 11]× [−11, 11],
Grid= 700×700. 95

6.4 Multi-step Newton Raphon with CO= 4, Domain= [−11, 11]× [−11, 11],
Grid= 700×700. 95

6.5 Multi-step iterative method MZ with CO = 5, Domain= [−11, 11]×
[−11, 11], Grid= 700×700. 96

6.6 Multi-step iterative method MZ with CO = 8, Domain= [−11, 11]×
[−11, 11], Grid= 700×700. 96

6.7 Multi-step iterative method MZ with CO= 5, Domain= [−3, 3]× [−3, 3],
Grid= 300×300. 97

6.8 Multi-step iterative method MZ with CO= 8, Domain= [−3, 3]× [−3, 3],
Grid= 300×300. 97

6.9 successive iterations of multi-step method MZ in the case of the Bratu
problem (6.1), λ = 3, iter = 3, step = 2, size of problem = 40. 101

6.10 Analytical solution of Bratu problem (6.1), λ = 3, iter = 3, step = 2,
size of problem = 40. 101

6.11 successive iterations of multi-step method MZ in the case of the Frank
Kamenetzkii problem (6.1), iter = 3, step = 2, size of problem = 50. . 102

6.12 Analytical solution of Frank Kamenetzkii problem (6.1), iter = 3, step=
2, size of problem = 50. 102

6.13 successive iterations of multi-step method MZ in the case of the Lene-
Emden equation (6.3), x ∈ [0, 8]. 105

6.14 Analytical solution of Lene-Emden equation (6.3), x ∈ [0, 8]. 105
6.15 Comparison of performances for different multi-step methods in the

case of the Burgers equation (6.4), initial guess u(xi, t j) = 0, u(x,0) =
2γπsin(πx)

α+βcos(πx) , u(0, t) = u(2, t) = 0, α = 15, β = 14, γ = 0.2, nx = 40,

nt = 40, x ∈ [0, 2], t ∈ [0, 100] . 106
6.16 Comparison of performances for different multi-step methods in the

case of the Burgers equation (6.4), initial guess u(xi, t j) = 0, u(x,0) =
2γπsin(πx)

α+βcos(πx) , u(0, t) = u(2, t) = 0, α = 15, β = 14, γ = 0.2, nx = 40,

nt = 40, x ∈ [0, 2], t ∈ [0, 100]. 107
6.17 Absolute error plot for multi-step method MZ in the case of the Klien

Gordon equation (6.5), initial guess u(xi, t j) = 0, u(x, t) = δ sech(κ(x−
νt), κ =

√
k

c2−ν2 , δ =
√

2k
γ , c = 1, γ = 1, ν = 0.5, k = 0.5, nx = 170,

nt = 26, x ∈ [−22, 22], t ∈ [0, 0.5]. 108
6.18 Analytical solution of the Klien Gordon equation (6.5), x ∈ [−22, 22],

t ∈ [0, 0.5]. 108

7.1 The comparison of computational efficiency indices for different methods.132
7.2 The comparison of the estimate number of iterations for different methods.132
7.3 The plot of the matrix A in Test 1. 133
7.4 The results of comparisons in terms of the computational time (right). . 133
7.5 The general sparsity pattern of the matrices in Test 2 (left) and their

approximate Moore-Penrose inverse (right). 134
7.6 The results of comparisons for Test 2 in terms of the number of iterations.134

List of Figures vii

7.7 The results of comparisons for Test 2 in terms of the computational time. 135

List of Tables

2.1 Set of six nonlinear functions . 16
2.2 Numerical comparison of absolute error |xn −α|, number of iterations

=3 . 17

3.1 Results of comparisons for different methods in Experiment 1 using
x(0) = (14,10,10) . 36

3.2 Results of comparisons for different methods in Experiment 2 using
x(0) = (I,2I,1, I, I,3I) and I =

√
−1 37

3.3 Results of comparisons for different methods in Experiment 3 using
x(0) = (2.1, I,1.9,−I1,2) . 38

3.4 Results of comparisons for different methods in Experiment 4 39
3.5 Results of comparisons for different methods in Experiment 5 41

4.1 Comparison of efficiency indices for different for multi-step methods . 54
4.2 Comparison of performances for different multi-step methods in the

case of the Bratu-problem . 58
4.3 Comparison of performances for different multi-step methods in the

case of the Frank-Kamenetzkii-problem (α = 1, κ = 1) 58
4.4 Comparison of performances for different multi-step methods in the

case of the Lene-Emden problem (p = 5, Domain=[0, 9]) 59

5.1 Comparison between multi-steps iterative method MZ2 and HM if num-
ber of function evaluations and solutions of system of linear equations
are equal. 70

5.2 Comparison between multi-steps iterative method MZ2 and HM if con-
vergence orders are equal. 71

5.3 Computational cost of different operations (the computational cost of a
division is three times to multiplication). 71

5.4 Comparison of performance index between multi-steps iterative meth-
ods MZ2 and HM. 71

5.5 Comparison of performances for different multi-step methods in the
case of the Bratu problem when number of function evaluations and
number of solutions of systems of linear equations are equal in both
iterative methods. 77

5.6 Comparison of performances for different multi-step methods in the
case of the Bratu problem when convergence orders are equal in both
itrative methods. 78

viii

List of Tables ix

5.7 Comparison of performances for different multi-step methods in the
case of the Bratu problem when number of function evaluations and
number of solutions of systems of linear equations are equal in both
iterative methods. 78

5.8 Comparison of performances for different multi-step methods in the
case of the Frank Kamenetzkii problem when number of function eval-
uations and number of solutions of systems of linear equations are equal
in both iterative methods. 78

5.9 Comparison of performances for different multi-step methods in the
case of the Frank Kamenetzkii problem when convergence orders are
equal in both iterative methods. 79

5.10 Comparison of performances for different multi-step methods in the
case of the Lane-Emden equation when convergence orders are equal. . 79

5.11 Comparison of performances for different multi-step methods in the
case of the Klein Gordon equation , initial guess u(xi, t j) = 0, u(x, t) =

δ sech(κ(x−νt), κ =
√

k
c2−ν2 , δ =

√
2k
γ , c= 1, γ = 1, ν = 0.5, k = 0.5,

nx = 170, nt = 26, x ∈ [−22, 22], t ∈ [0, 0.5]. 80

6.1 Comparison between multi-steps iterative method MZ and HM if num-
ber of function evaluations and solutions of system of nonlinear equa-
tions are equal. 87

6.2 Comparison between multi-steps iterative method MZ and HM if num-
ber convergence-orders are equal. 88

6.3 Comparison of performance index between multi-steps iterative meth-
ods MZ and HM. 89

6.4 Comparison of performances for different multi-step methods in the
case of the Bratu problem (6.1) when number of function evaluations
and number of solutions of systems of linear equations are equal. . . . 100

6.5 Comparison of performances for different multi-step methods in the
case of the Bratu problem (6.1) when convergence orders are equal. . . 103

6.6 Comparison of performances for different multi-step methods in the
case of the Frank Kamenetzkii problem (6.2) when convergence orders,
number of function evaluations, number of solutions of systems of lin-
ear equuations are equal. 103

6.7 Comparison of performances for different multi-step methods in the
case of the Frank Kamenetzkii problem (6.2) when convergence orders
are equal. 104

6.8 Comparison of performances for different multi-step methods in the
case of the Lene-Emden equation (6.3) 104

6.9 Comparison of performances for different multi-step methods in the
case of the Burgers equation (6.4), initial guess u(xi, t j) = 0, u(x,0) =
2γπsin(πx)

α+βcos(πx) , u(0, t) = u(2, t) = 0, α = 15, β = 14, γ = 0.2, nx = 40,

nt = 40, x ∈ [0, 2], t ∈ [0, 100]. 106

List of Tables x

6.10 Comparison of performances for different multi-step methods in the
case of the Klien Gordon equation (6.5), initial guess u(xi, t j)= 0, u(x, t)=

δ sech(κ(x−νt), κ =
√

k
c2−ν2 , δ =

√
2k
γ , c= 1, γ = 1, ν = 0.5, k = 0.5,

nx = 170, nt = 26, x ∈ [−22, 22], t ∈ [0, 0.5]. 107
6.11 Comparison of performances for different multi-step methods in the

case of general systems of nonlinear equations (6.39), the initial guess
for both of methods is [0.5, 0.5, 0.5, −0.2]. 109

6.12 Comparison of performances for different multi-step methods in the
case of general systems of nonlinear equations (6.39), the initial guess
for both of methods is [0.5, 0.5, 0.5, −0.2]. 110

To my family

xi

Chapter 1

Introduction

Nonlinear problems arise in diverse areas of engineering, mathematics, physics, chem-

istry, biology, etc., when modelling several types of phenomena. In many situations,

the nonlinear problems naturally appear in the form of nonlinear equations or systems

of nonlinear equations. For instance a standard second order centered Finite Difference

discretization of a nonlinear boundary-value problem of the form

y′′+ y2 = cos(x)2 + cos(x), y(0) =−1, y(π) = 1 (1.1)

produces the following system of nonlinear equations

yi+1 −2yi + yi−1 +h2y2
i = h2(cos(xi)

2 + cos(xi)), i ∈ {1,2, · · · ,n}. (1.2)

In real applications, finding the solution of nonlinear equations or systems of equa-

tions has enough motivation for researchers to develop new computationally efficient it-

erative methods. The analytical solution of most types of nonlinear equations or systems

of nonlinear equations is not possible in close form, and the role of numerical methods

becomes crystal clear. For instance, the solution of general quintic equation can not

be expressed algebraically which is demonstrated by Abel’s theorem [1]. In general

it is not always possible to get the analytical solution for linear or nonlinear problems

and hence numerical iterative methods are best suited for the purpose. The work of

Ostrowski [2] and Traub [3] provides the necessary basic treatment of the theory of iter-

ative methods for solving nonlinear equations. Traub [3] divided the numerical iterative

methods into two classes namely one-point iterative methods and multi-point iterative

methods. A further classification divides the aforementioned iterative methods into two

1

Chapter 1. Introduction 2

sub-classes: One-Point iterative methods with and without memory and multi-point it-

erative methods with and without memory. The formal definitions of aforementioned

classification are given in the following.

We can describe the iterative methods with help of iteration functions. For instance

in the Newton method

xi+1 = xi −
f (xi)

f ′(xi)
,

the iteration function is φ(xi) = f (xi)/ f ′(xi). In fact Newton method is a one-pint

method. In general, if xi+1 is determined only by the information at xi and no older

information is reused then the iterative method

xi+1 = φ(xi) ,

is called one-point method and φ is called one-point iteration function. If xi+1 is deter-

mined by some information at xi and reused information at xi−1,xi−2 · · · ,xi−n i.e.

xi+1 = φ(xi;xi−1, · · · ,xi−n),

then the iterative method is called one-point iterative method with memory. In this

case the iteration function φ is an iteration function with memory. The construction

of multipoint iterative methods uses the new information at different points and do not

reuse any old information. symbolically we can describe it as

xi+1 = φ [xi,ω1(xi), · · · ,ωk(xi)] ,

where φ is called multipoint iteration function. In similar fashion one can define multi-

point iterative method with memory if we reuse the old information

xi+1 = φ(zi;zi−1, · · · ,zi−n),

where z j represent the k+1 quantities x j,ω1(x j), · · · ,ωk(x j). Before to proceed further,

we provide the definitions of different types of convergence orders. Let {xn} ⊂ R
N and

x∗ ∈ R
N . Then

• xn → x∗ q-quadratically if xn → x∗ and there is K > 0 such that

||xn+1 − x∗|| ≤ K||xn − x∗||2 .

Chapter 1. Introduction 3

• xn → x∗ q-superlinearly with q-order α > 1 if xn → x∗ and there is K > 0 such

that

||xn+1 − x∗|| ≤ K||xn − x∗||α .

• xn → x∗ q-superlinearly if lim
n→∞

||xn+1−x∗||
||xn−x∗|| = 0 .

• xn → x∗ q-linearly with q-order σ ∈ (0,1) if ||xn+1 − x∗|| ≤ σ ||xn − x∗|| for n

sufficiently large.

The performances of an iterative method are measured principally by its convergence-

order (CO), computational efficiency and radius of convergence, but mainly the first

two issues are addressed, while the third is often very difficult to deal with. Recently

researchers have started to handle the convergence-radius by plotting the dynamics of

iterative methods in the complex plane [4–21]. To clarify the difference between one-

and multi-point iterative methods, we provide some examples. Examples of one-point

iterative methods without-memory of different orders, are:







xn+1 = xn − t1 (2nd order Newton-Raphson method)

xn+1 = xn − t1 − t2 (3rd order)

xn+1 = xn − t1 − t2 − t3 (4th order)

xn+1 = xn − t1 − t2 − t3 − t4 (5th order)

xn+1 = xn − t1 − t2 − t3 − t4 − t5 (6th order),

(1.3)

where c2 = f ′′(xn)/2! f ′(xn), c3 = f ′′′(xn)/3! f ′(xn), c4 = f ′′′′(xn)/4! f ′(xn),

c5 = f ′′′′′(xn)/5! f ′(xn), t1 = f (xn)/ f ′(xn), t2 = c2t2
1 , t3 = (−c3+2c2

2)t
3
1 , t4 = (−5c2c3+

5c3
2 + c4)t4

1 , t5 = (−c5 + 3c2
3 + 14c4

2 − 21c3c2
2 + 6c2c4)t5

1 and f (x) = 0 is a nonlinear

equation. Further examples of single-point iterative methods are the Euler method [3,

22]:







L(xn) =
f (xn) f ′′(xn)

f ′(xn)2 ,

xn+1 = xn − 2
1+
√

1−2L(xn)

f (xn)
f ′(xn)

.
(1.4)

the Halley method [23, 24]:

xn+1 = xn −
2

2−L(xn)

f (xn)

f ′(xn)
. (1.5)

Chapter 1. Introduction 4

the Chebyshev method[3]:

xn+1 = xn −
(

1+
L(xn)

2

)
f (xn)

f ′(xn)
. (1.6)

One may notice that all the information (function and all its higher order derivatives)

are provided at a single-point xn. The well-know Ostrowski’ method [2]:







yn = xn − f (xn)
f ′(xn)

,

xn+1 = yn − f (yn)
f ′(xn)

f (xn)
f (xn)−2 f (yn)

(1.7)

has convergence-order four and it is an example of multi-point iterative method without-

memory. Clearly the information is distributed among different points. The one-point

iterative method without memory (1.3) uses four functional evaluations to achieve the

fourth-order convergence while iterative method (1.7) requires only three functional

evaluations to attain the same convergence-order. Generally speaking, one-point it-

erative methods can not compete with multi-points iterative method due to their low

convergence-order when they use the same number of functional evaluations. The low

convergence-order is not the only bad feature of one-point iterative methods, but they

also suffer from narrow convergence-region compared with multi-step iterative meth-

ods. A valuable information about multi-points iterative methods for scalar nonlinear

equations can be found in [25–42] and references therein. The secant-method:

xn+1 = xn −
xn−1 − xn

f (xn−1)− f (xn)
f (xn), (1.8)

is an example of single-point iterative method with-memory and, in most cases, it shows

better convergence-order than Newton-Raphson method (1.3). Usually the multi-point

iterative methods with-memory are constructed from derivative-free iterative methods

for scalar nonlinear equations [43–54], but some of them are not derivative-free [55–57].

Chapter 1. Introduction 5

Alicia Cordero et. al. [43] developed the following iterative method with-memory:







wn = xn + γ f (xn),

N3(t) = N3(t;xn,yn−1,xn−1,wn−1),

N4(t) = N4(t;wn,xn,yn−1,wn−1,xn−1),

γn =
−1

N′
3(xn)

,

λn =− N′′
4 (wn)

2N′
4(wn)

,

yn = xn − f (xn)
f [xn,wn]+λ f (wn)

,

xn+1 = yn − f (xn)
f [xn,yn]+(yn−xn) f [xn,wn,yn]

,

(1.9)

where N3 and N4 are Newton interpolating polynomials. The convergence-order of

(1.9) is four if we consider it without-memory, but with-memory it shows seventh-order

convergence in the vicinity of a root. The iterative methods without-memory satisfy

a specific criterion for convergence-order. According to Kung-Traub conjecture [58],

if an iterative scheme without-memory uses n-functional evaluations then it achieves

maximum convergence-order 2n−1, and we call it optimal convergence-order. For scalar

nonlinear equations, many researchers have proposed optimal-order (in the sense of

Kung-Traub) iterative schemes derivative-free [59–64] and derivative-bases [65–70].

One of the derivative-free optimal sixteenth-order iterative scheme constructed by R.

Thukral [63]:







wn = xn + f (xn),

yn = xn − f (xn)
f [wn,xn]

,

φ3 = f [xn,wn] f [yn,wn]
−1,

zn = yn −φ3
f (yn)

f [xn,yn]
,

η = (1+2u3u2
4)

−1(1−u2)−1,

an = zn −η
(

f (zn)
f [yn,zn]− f [xn,yn]+ f [xn,zn]

)

,

σ = 1+u1u2 −u1u3u2
4 +u5 +u6 +u2

1u4 +u2
2u3 +3u1u2

4(u
2
3 −u2

4) f [xn,yn]
−1,

xn+1 = zn −σ
(

f [yn,zn] f (an)
f [yn,an] f [zn,an]

)

.

(1.10)

The iterative methods for scalar nonlinear equations also have application in the con-

struction of iterative methods to find generalized inverses. For instance, the Newton

method has a connection with quadratically convergent Schulz iterative method [71] for

Chapter 1. Introduction 6

finding the Moore-Penrose inverse that is written as

Xn+1 = Xn(2I −AXn), (1.11)

where A is a matrix. Consider f (X) = A−X−1 then the Newton iterate to find the zero

of f (X) is the following

Xn+1 = Xn −
(
A−X−1

n

)
X2

n = Xn(2I −AXn). (1.12)

Recently considerable researchers got attention to develop matrix iterative methods to

find the generalized inverses [71–103]. A high-order (twelfth-order) stable numerical

method for matrix inversion is presented in [96]. Actually the iterative method (1.12)

for scalar nonlinear equations is used to develop a higher-order iterative method [96]

(1.12) to compute matrix inverse.







yn = xn −1/2 f ′(xn)
−1 f (xn),

zn = xn − f ′(yn)
−1 f (xn),

un = zn − ((zn − xn)
−1(f (zn)− f (xn)))

−1 f (zn),

gn = un − f (un)
−1 f (un),

xn+1 = gn − ((gn −un)
−1(f (gn)− f (un)))

−1 f (gn).

(1.13)

By applying iterative method (1.13) on matrix nonlinear equation AV − I = O, the iter-

ative method (1.14) is constructed.







ψn = AVn,

ξn = 171+ψn(−28I +ψn(22I +ψn(−8I +ψn))),

κn = ψnξn,

Vn+1 =
1

64Vnξn(48I +κn(−12I +κn)).

(1.14)

A vast research has been conducted in the area of iterative methods for nonlinear scalar

equations, but the iterative methods to solve systems of nonlinear equations are rela-

tively less explored. Some of the iterative methods that are originally devised for scalar

nonlinear equations are equally valid for systems of nonlinear equations. The well-know

Chapter 1. Introduction 7

Newton-Raphson iterative method for the system of nonlinear equations is:







F ′(xxxn)φφφ 1 = F(xxxn),

xxxn+1 = xxxn −φφφ 1,
(1.15)

where F(x) = 0 is the system nonlinear equations. The fourth-order Jarratt [104] itera-

tive scheme scalar version can be written for systems of nonlinear equations as:







F ′(xxxn)φφφ 1 = F(xxxn),

yyyn = xxxn − 2
3φφφ 1,

(3F ′(yyyn)−F ′(xxxn))φφφ 2 = 3F ′(yyyn)+F(xxxn),

xxxn+1 = xxxn − 1
2φφφ 2φφφ 1.

(1.16)

However it is not true that every iterative method for scalar nonlinear equations can

be adopted to solve systems of nonlinear equations. For example in the well-know

Ostrowski method (1.7) the term f (xxxn)/(f (xxxn)− 2 f (yyyn)) does not make any sense for

systems of nonlinear equations. The notion of optimal convergence-order is not de-

fined for systems of nonlinear equations. The iterative methods that use less number

of functional evaluations, Jacobian evaluations, Jacobian inverses, matrix-matrix mul-

tiplications and matrix-vector multiplications are considered to be computationally ef-

ficient. H. Montazeri et. al. [105] constructed an efficient iterative scheme with four

convergence-order:







F ′(xxxn)φφφ 1 = F(xxxn),

yyyn = xxxn − 2
3φφφ 1,

F ′(xxxn)T = F ′(yyyn),

φφφ 2 = Tφφφ 1,

φφφ 3 = Tφφφ 2,

xxxn+1 = xxxn − 23
8 φφφ 1 +3φφφ 2 − 9

8φφφ 3.

(1.17)

The iterative scheme (1.17) uses only one functional evaluation, two Jacobian evalu-

ations, one Jacobian inversion (in the sense of LU-decomposition), two matrix-vector

multiplications and four scalar-vector multiplications. The iterative scheme described

above is efficient because it requires only one matrix inversion. An excellent dissertation

about systems of the nonlinear equations can be consulted in [40, 106–134] and refer-

ences therein. The next step in the construction of iterative methods for systems of the

Chapter 1. Introduction 8

nonlinear equations is the construction of multi-step methods. The multi-step methods

are much interesting in the case of systems of nonlinear equations but for scalar non-

linear equation case they are not efficient. The multi-step version of Newton-Raphson

iterative method is:

NS1 =







Number of steps = m

Convergence-order = m+1

Function evaluations = m

Jacobian evaluations = 1

LU-decomposition = 1

solutions of systems of

linear equations when right

hand side is a vector = m







Base-method →
{

F ′(xxxn)φφφ 1 = F(xxxn),

yyy1 = xxxn −φφφ 1

Multi-step →







for i = 1 : m−1

F ′(xxxn)φφφ i = F(yyyi),

yyyi+1 = yyyi −φφφ i,

end

xxxn+1 = yyym.

(1.18)

The iterative method NS1 is not efficient for scalar nonlinear equations because accord-

ing to Kung-Traub conjecture for each evaluation of a function the enhancement in the

convergence-order is a multiplier of two. In the iterative scheme (1.18) for each eval-

uation, there is an increase in convergence-order by an additive factor of one. But for

systems of nonlinear equations it is efficient as it requires a single Jacobian inversion

(LU-decomposition). H. Montazeri et. al. [105] have already developed the multi-step

version (1.19) of iterative scheme (1.17) which is more efficient than multi-step iterative

scheme (1.18):

Chapter 1. Introduction 9

HM =







Number of steps = m ≥ 2

Convergence-order = 2m

Function evaluations = m−1

Jacobian evaluations = 2

LU-decomposition = 1

Solutions of systems

of linear equations when

right hand-side is a vector = m−1

right hand-side is a matrix = 1

Matrix-vector multiplications = m

Vector-vector multiplications = 2m







Base-method →







F ′(xxxn)φφφ 1 = F(xxxn),

yyy1 = xxxn − 2
3φφφ 1,

F ′(xxxn)T = F ′(yyyn),

φφφ 2 = Tφφφ 1,

φφφ 3 = Tφφφ 2,

yyy2 = xxxn − 23
8 φφφ 1

+3φφφ 2 − 9
8φφφ 3

Multi-step →







for i = 1 : m−2

F ′(xxxn)φφφ i+3

= F(yyyi+1),

yyyi+2 = yyyi+1

−5
2φφφ i+3 +

3
2Tφφφ i+3,

end

xxxn+1 = yyym .

(1.19)

The multi-step iterative methods can also be defined for ordinary differential equa-

tions (ODEs) and partial differential equations (PDEs). The idea of quasilinearization

was introduced by R. E. Bellman, and R. E. Kalaba [135] for ODEs and PDEs. The

quasilinearization [135–142] and its multi-step version for ODEs is written as

ODE →







L(x(t))+ f (x(t))−b = 0

L is linear differential operator

f (x(t)) is a nonlinear function of x(t)

Quasilinearization (CO = 2) →







L(xn+1)+ f ′(xn)xn+1 = f ′(xn)xn − f (xn)+b

or

(L+ f ′(xn))xn+1 = f ′(xn)xn − f (xn)+b

Multi-step (CO = m+1) →







(L+ f ′(xn))y1 = f ′(xn)xn − f (xn)+b

(L+ f ′(xn))y2 = f ′(y1)y1 − f (y1)+b
...

(L+ f ′(xn))ym = f ′(ym−1)ym−1 − f (ym−1)+b.

(1.20)

Chapter 1. Introduction 10

Overview of thesis

The introduction is enclosed in the first chapter. The second chapter deals with the con-

struction of an optimal sixteenth-order iterative method for scalar nonlinear equations.

The idea behind the development of an optimal-order iterative method is to use ratio-

nal functions, which usually provide wider convergence-regions. A set of problems

is solved and compared by using newly developed optimal-order scheme. In the ma-

jority of cases, our iterative scheme shows better results compared with other existing

iterative schemes for solving nonlinear equations. In the third chapter, a general class

of multi-step iterative methods to solve systems of nonlinear equations is developed,

and their respective convergence-order proofs are also given. The validity, accuracy

and computational efficiency are tested by solving systems of nonlinear equations. The

numerical experiments show that our proposals also deal efficiently with systems of

nonlinear equations stemming from partial differential equations. The chapter four and

five shed light on the construction of multi-step iterative methods for systems of nonlin-

ear equations associated with ODEs and PDEs. The distinctive idea was to address the

economical usage of higher-order Fréchet derivatives in the multi-step iterative meth-

ods for systems of nonlinear equations extracted from ODEs and PDEs. The multi-step

iterative methods are computationally efficient, because they re-use the Jacobian in-

formation to enhance the convergence-order. In chapter six, we proposed an iterative

scheme for a general class of systems of nonlinear equations which is more efficient

than the work presented in the third chapter. By plotting the convergence-region, we

try to convince that higher-order iterative schemes have narrow convergence-region. Fi-

nally, chapter seven addresses the construction of a matrix iterative method to compute

the weighted Moore-Penrose inverse of a matrix which is obtained using an iterative

method for nonlinear equations. Several numerical tests show the superiority of our

twelve-order convergent matrix iterative scheme.

Our main contribtion in this research is to explore computationally economical

multi-step iterative methods for solving nonlinear problems. The multi-step iterative

methods consist of two parts namely base method and multi-step part. The multi-step

methods are efficients because the inversion information (LU factors) of frozen Jacobian

in base method is used repeadly in the muti-step part. The burdern of computing LU

factors is over base method and in multi-step part we only solve triangular systems

of linear equations. In order to compute Moore-Penrose inverse of a matrix we use

mutipoint iterative method. Actually the matrix version of algorithm is developed from

Chapter 1. Introduction 11

the scalar version of multipoint method and detailed analysis shows that the proposed

matrix version of iterative method is correct, accurate and efficient.

Papers:

1. M. Z. Ullah, A. S. Al-Fhaid, and F. Ahmad, Four-Point Optimal Sixteenth-Order

Iterative Method for Solving Nonlinear Equations, Journal of Applied Mathemat-

ics, Volume 2013, Article ID 850365, 5 pages.

http://dx.doi.org/10.1155/2013/850365

2. M. Z. Ullah, F. Soleymani, and A. S. Al-Fhaid, Numerical solution of nonlin-

ear systems by a general class of iterative methods with application to nonlinear

PDEs, Numerical Algorithms, September 2014, Volume 67, Issue 1, pp 223-242.

3. M. Z. Ullah, S. Serra-Capizzano, and F. Ahmad, An efficient multi-step iterative

method for computing the numerical solution of systems of nonlinear equations

associated with ODEs, Applied Mathematics and Computation 250 (2015) 249-

259.

4. M. Z. Ullah, S. Serra-Capizzano, and F. Ahmad, A Higher Order Multi-step It-

erative Method for Computing the Numerical Solution of Systems of Nonlinear

Equations Associated with Nonlinear PDEs and ODEs. (under review in Mediter-

ranean Journal of Mathematics)

5. M. Z. Ullah, S. Serra-Capizzano, and F. Ahmad, Higher Order Multi-step Iter-

ative Method for Computing the Numerical Solution of Systems of Nonlinear

Equations: Application to Nonlinear PDEs and ODEs. (under review in Journal

of Applied Mathematics and Computation)

6. M. Z. Ullah, F. Soleymani, and A. S. Al-Fhaid, An efficient matrix iteration for

computing weighted Moore-Penrose inverse, Applied Mathematics and Compu-

tation 226 (2014) 441-454.

Chapter 2

Four-Point Optimal Sixteenth-Order

Iterative Method for Solving Nonlinear

Equations

We present an iterative method for solving nonlinear equations. The proposed iter-

ative method has optimal order of convergence sixteen in the sense of Kung-Traub

conjecture (Kung and Traub, 1974), since each iteration uses five functional eval-

uations to achieve the order of convergence. More precisely,the proposed iterative

method utilizes one derivative and four function evaluations. Numerical experi-

ments are carried out in order to demonstrate the convergence and the efficiency of

our iterative method.

2.1 Introduction

According to the Kung and Traub conjecture, a multipoint iterative method without

memory could achieve optimal convergence order 2n−1 by performing n evaluations of

function or its derivatives [58]. In order to construct an optimal sixteenth-order con-

vergent iterative method for solving nonlinear equations, we require four and eight

optimal-order iterative schemes. Many authors have been developed optimal eighth-

order iterative methods namely Bi-Ren-Wu [143], Bi-Wu-Ren [144], Guem-Kim [145],

Liu-Wang [146], Wang-Liu [147] and F. Soleymani [91, 148, 149]. Some recent ap-

plications of nonlinear equation solvers in matrix inversion for regular or rectangular

matrices have been introduced in [91, 148, 150].

12

Chapter 2. Four-Point Optimal Sixteenth-Order Iterative Method for Solving Nonlinear
Equations 13

For the proposed iterative method, we developed two new optimal fourth and

eighth order iterative methods to construct optimal sixteenth-order iterative scheme. On

the other hand,it is known that the rational weight functions give a better convergence

radius. By keeping this fact in mind, we introduced rational terms in weight functions

to achieve optimal sixteen order.

For the sake of completeness, we listed some existing optimal sixteenth order con-

vergent methods. Babajee-Thukral [151] suggested 4-point sixteenth-order king family

of iterative methods for solving nonlinear equations (BT):







yn = xn − f (xn)
f ′(xn)

,

zn = yn − 1+β t1
1+(β−2)t1

f (yn)
f ′(xn)

,

wn = zn − (θ0 +θ1 +θ2 +θ3)
f (yn)
f ′(xn)

,

xn+1 = wn − (θ0 +θ1 +θ2 +θ3 +θ4 +θ5 +θ6 +θ7)
f (wn)
f ′(xn)

,

(2.1)

where

t1 =
f (yn)

f (xn)
, t2 =

f (zn)

f (xn)
, t3 =

f (zn)

f (yn)
, t4 =

f (wn)

f (xn)
, t5 =

f (wn)

f (zn)
, t6 =

f (wn)

f (yn)
,

θ0 = 1, θ1 =
1+β t1 +3/2β t2

1

1+(β −2)t1 +(3/2β −1)t2
1

−1, θ2 = t3, θ3 = 4t2, θ4 = t5 + t1t2,

θ5 = 2t1t5 +4(1−β)t3
1 t3 +2t2t3, θ6 = 2t6 +(7β 2 −47/2β +14)t3t4

1 +(2β −3)t2
2

+(5−2β)t5t2
1 − t3

3 , θ7 = 8t4 +(−12β +2β 2 +12)t5t3
1 −4t3

3 t1 +(−2β 2 +12β −22)

t2
3 t3

1 +(−10β 3 +127/2β 2 −105β +46)t2t4
1 .

In 2011, Geum-Kim [152] proposed a family of optimal sixteenth-order multipoint

methods (GK2):







yn = xn − f (xn)
f ′(xn)

,

zn =−K f (un)
f (yn)
f ′(xn)

,

sn = zn −H f (un,vn,wn)
f (zn)
f ′(xn)

,

xn+1 = sn −Wf (un,vn,wn, tn)
f (sn)
f ′(xn)

,

(2.2)

Chapter 2. Four-Point Optimal Sixteenth-Order Iterative Method for Solving Nonlinear
Equations 14

where

un =
f (yn)

f (xn)
, vn =

f (zn)

f (yn)
, wn =

f (zn)

f (xn)
, tn =

f (sn)

f (zn)
,

K f (un) =
1+βun +(−9+5/2β)u2

n

1+(β −2)un +(−4+β/2)u2
n
, H f =

1+2un +(2+σ)wn

1− vn +σwn
,

Wf =
1+2un

1− vn −2wn − tn
+G(un,vn,wn),

one of the choice for G(un,vn,wn) along with β = 24/11 and σ =−2:

G(un,vn,wn) =−6u3
nvn −244/11u4

nwn +6w2
n +un(2v2

n +4v3
n +wn −2w2

n).

In the same year, Geum-Kim [153] presented a biparametric family of optimally

convergent sixteenth-order multipoint methods (GK1):







yn = xn − f (xn)
f ′((xn)

,

zn =−K f (un)
f (yn)
f ′(xn)

,

sn = zn −H f (un,vn,wn)
f (zn)
f ′(xn)

,

xn+1 = sn −Wf (un,vn,wn, tn)
f (sn)
f ′(xn)

,

(2.3)

where

un =
f (yn)

f (xn)
, vn =

f (zn)

f (yn)
, wn =

f (zn)

f (xn)
, tn =

f (sn)

f (zn)
,

K f (un) =
1+βun +(−9+5/2β)u2

n

1+(β −2)un +(−4+β/2)u2
n
, H f =

1+2un +(2+σ)wn

1− vn +σwn
,

Wf =
1+2un +(2+σ)vnwn

1− vn −2wn − tn +2(1+σ)vnwn
+G(un,wn),

one of the choice for G(un,wn) along with β = 2 and σ =−2:

G(un,wn) =−1/2
[
unwn(6+12un +(24−11β)u2

n +u3
nφ1 +4σ)

]
+φ2w2

n,

φ1 = (11β 2 −66β +136), φ2 = (2un(σ
2 −2σ −9)−4σ −6).

Chapter 2. Four-Point Optimal Sixteenth-Order Iterative Method for Solving Nonlinear
Equations 15

2.2 A new method and convergence analysis

The proposed sixteenth-order iterative method is described as follows (MA):







yn = xn − f (xn)
f ′(xn)

,

zn = yn − 1+2t1−t2
1

1−6t2
1

f (yn)
f ′(xn)

,

wn = zn − 1−t1+t3
1−3t1+2t3−t2

f (zn)
f ′(xn)

,

xn+1 = wn − (q1 +q2 +q3 +q4 +q5 +q6 +q7)
f (wn)
f ′(xn)

,

(2.4)

where

t1 =
f (yn)

f (xn)
, t2 =

f (zn)

f (yn)
, t3 =

f (zn)

f (xn)
, t4 =

f (wn)

f (xn)
, t5 =

f (wn)

f (yn)
, t6 =

f (wn)

f (zn)
,

q1 =
1

1−2(t1 + t2
1 + t3

1 + t4
1 + t5

1 + t6
1 + t7

1)
, q2 =

4t3
1− 31

4t3

, q3 =
t2

1− t2 −20t3
2

,

q4 =
8t4

1− t4
+

2t5
1− t5

+
t6

1− t6
, q5 =

15t1t3
1− 131

15t3

, q6 =
54t2

1 t3
1− t2

1 t3

q7 = 7t2t3 +2t1t6 +6t6t2
1 +188t3t3

1 +18t6t3
1 +9t2

2 t3 +64t4
1 t3.

Theorem 2.1. Let f : D ⊆ R→ R be a sufficiently differentiable function, and α ∈ D

is a simple root of f (x) = 0, for an open interval D. If x0 is chosen sufficiently close to

α , then the iterative scheme (2.3) converges to α and shows an order of convergence at

least equal to sixteen.

Proof. Let error at step n be denoted by en = xn −α and c1 = f ′(α) and ck =
1
k!

f (k)(α)
f ′(α) ,

k = 2,3, · · · . We provided maple based computer assisted proof in Figure 2.1 and got

the following error equation:

en+1 =−c4c3c2
2(c5c3c2

2 +2c4c2c2
3 −20c4

3 −51c3
3c2

2 +522c2
3c4

2 −2199c3c6
2 +2c8

2

−30c4c3c3
2 +54c4c5

2)e
16
n +O(e17

n). (2.5)

Chapter 2. Four-Point Optimal Sixteenth-Order Iterative Method for Solving Nonlinear
Equations 16

2.3 Numerical results

If the convergence order η is defined as

limn→∞

|en+1|
|en|η

= c 6= 0, (2.6)

then the following expression approximates the computational order of convergence

(COC) [10] as follows

ρ ≈ ln|(xn+1 −α)/(xn −α)|
ln|(xn −α)/(xn−1 −α)| , (2.7)

where α is the root of nonlinear equation. Further the efficiency index is ρ
1

#F.E. , where

#F.E. is total number of function and derivative evaluations in single cycle of iterative

method. A set of five nonlinear equations is used for numerical computations in Table

2.1. Three iterations are performed to calculate the absolute error (|xn−α|) and compu-

tational order of convergence. Table 2.2 shows absolute error and computational order

of convergence respectively.

Functions Roots

f1(x) = exsin(x)+ log(1+ x2) α = 0
f2(x) = (x−2)(x(10)+ x+1)e−x−1 α = 2
f3(x) = sin(x)2 − x2 +1 α = 1.40449 · · ·
f4(x) = e−x − cos(x) α = 0
f5(x) = x3 + log(x) α = 0.70470949 · · ·

TABLE 2.1: Set of six nonlinear functions

2.4 Summary

An optimal sixteenth order iterative scheme has been developed for solving nonlinear

equations. A Maple program is provided to calculate error equation, which actually

shows the optimal order of convergence in the sense of the Kung-Traub conjecture. The

computational order of convergence also verifies our claimed order of convergence.

The proposed scheme uses four function and one derivative evaluations per full cycle

which gives 1.741 as the efficiency index. We also have shown the validity of our

Chapter 2. Four-Point Optimal Sixteenth-Order Iterative Method for Solving Nonlinear
Equations 17

(fn(x),x0) Iter/COC MA BT GK1 GK2

f1, 1.0 1 0.00268 0.00183 0.0111 0.00230
2 2.03e-37 1.71e-37 6.35e-24 5.61e-34
3 2.47e-583 3.53e-582 1.37e-363 1.03e-523
COC 16 16 16 16

f2, 2.5 1 0.04086 0.0639 0.0296 0.00866
2 6.16e-9 650.0 5.35e-14 2.53e-21
3 1.50e-121 divergent 4.79e-201 1.89e-317

COC 16.5 - 15.9 16.0
f3, 2.5 1 0.0000326 0.0000303 0.000497 0.0000677

2 4.87e-73 1.70e-72 1.56e-51 1.14e-64
3 3.11e-1158 1.63e-

1148
1.42e-811 4.52e-

1021
COC 16 16 16 16

f4, 1/6 1 2.79e-7 0.0000864 1.28e-7 0.000167
2 1.00e-109 1.18e-63 2.28e-107 9.28e-57
3 2.80e-1851 1.72e-

1005
2.24e-
1703

7.82e-893

COC 17 16 16 16
f5, 3.0 1 0.0486 0.135 0.0949 0.0133

2 1.95e-22 1.81e-17 1.78e-19 1.11e-35
3 8.46e-349 1.79e-271 6.86e-302 2.61e-563

COC 16.0 16.0 15.9 16.0

TABLE 2.2: Numerical comparison of absolute error |xn −α|, number of iterations =3

proposed iterative scheme by comparing it with other existing optimal sixteen-order it-

erative methods. The numerical results demonstrate that the considered iterative scheme

is competitive when compared with other methods taken from the relevant literature.

Chapter 2. Four-Point Optimal Sixteenth-Order Iterative Method for Solving Nonlinear
Equations 18

FIGURE 2.1: Algorithm: The maple code for finding the error equation.

Chapter 3

Numerical Solution of Nonlinear

Systems by a General Class of Iterative

Methods with Application to Nonlinear

PDEs

A general class of multi-step iterative methods for finding approximate real or

complex solutions of nonlinear systems is presented. The well-known technique

of undetermined coefficients is used to construct the first method of the class while,

the higher order schemes will be attained by making use of a frozen Jacobian. The

’point of attraction’ theory will be taken into account to prove the convergence

behavior of the main proposed iterative method. Then, it will be observed that a

m-step method converges with 2m-order. A discussion of the computational effi-

ciency index alongside numerical comparisons with the existing methods will be

given. Finally, we illustrate the application of the new schemes in solving nonlin-

ear partial differential equations.

3.1 Introduction

In this chapter, we introduce a general class of multi-step iterative methods free from

second or higher-order Frechet derivatives for solving the nonlinear system of equations

F(x) = 0, where F : D ⊂ R
N → R

N is a continuously differentiable mapping. We are

19

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 20

interested in high-order fast methods for which the computational load and efficiency

are reasonable to deal with nonlinear systems.

Let F(x) be differentiable enough and x∗ be the solution such that F(x∗) = 0 and

det(F ′(x∗)) 6= 0. Then, according to [3] F(x) has an inverse G : RN → R
N , where

x = G(y) defined in a neighborhood of F(x∗) = 0. We further consider that x(0) ∈ D is

a starting vector or guess of x∗ and y(0) = F(x(0)).

By approximating G(x) with its first-order Taylor series around y(0), we have

G(y) ≃ G(y0)+G′(y0)(y− y0). As in the scalar case, we can obtain a new approxi-

mation x(1) of G(0) = x∗ by making

x(1) = G(y0)−G′(y0)y0 = x(0)−F ′(x(0))−1F(x(0)). (3.1)

This iteration method leads to the well-known Newton’s method in several variables

x(n+1) = x(n)−F ′(x(n))−1F(x(n)), n = 0,1,2, · · · . (3.2)

Another famous and efficient scheme for solving systems of nonlinear equations is

the Jarratt fourth-order method [154] defined as follows







y(n) = x(n)− 2
3F ′(x(n))−1F(x(n)),

x(n+1) = x(n)− 1
2(3F ′(y(n))−F ′(x(n)))−1

·(3F ′(y(n))+F ′(x(n)))F ′(x(n))−1F(x(n)).

(3.3)

As is known, the scheme (3.2) reaches second order using the evaluations F(x(n))

and F ′(x(n)), while the scheme (3.3) achieves fourth-order by applying F(x(n)), F ′(x(n))

and F ′(y(n)) per computing step.

Such solvers have many applications. For example, Pourjafari et al. in [155] dis-

cussed the application of such methods in optimization and engineering problems. Be-

sides that, Waziri et al. in [156] showed their application in solving integral equations

by proposing an approximation for the Jacobian matrix per computing step in the form

of a diagonal matrix. In this work, we will show the application of such solvers for

nonlinear problems arising in the solution of Partial Differential Equations (PDEs). In-

terested readers may refer to [40], [157], [158], and [159] for further pointers.

In this chapter, in order to improve the convergence behavior of the above well-

known methods and to find an efficient scheme to tackle the nonlinear problems, we

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 21

propose a new one with eighth-order convergence to find both real and complex solu-

tions. The new proposed method only needs first-order Frechet derivative evaluations

and is in fact free from higher-order Frechet derivatives. As a matter of fact, third-

order methods such as Halley’s and Chebyshev’s methods need second-order Frechet

derivative evaluations, which makes the computation process time-consuming [160].

The remaining sections of the chapter are organized in what follows. Section 3.2

provides the construction of a new iteration method. Section 3.6.1 discusses the conver-

gence order of the method using the theory of point of attraction due to [161]. Then in

Section 3.4, we propose a general multi-step nonlinear solver for systems of equations.

Next, Section 3.5 the computational efficiency will be discussed. Numerical results are

included in Section 3.6 to validate the effectiveness of the proposed method in finding

real and complex solutions of nonlinear systems with applications. Ultimately, Section

3.7 draws a conclusion of this study.

3.2 The construction of the method

We here construct a new scheme. Let us first consider the well-known technique of

undetermined coefficients to develop a high order method as follows in the scalar case

(n = 0,1,2, · · ·) 





yn = xn − 2
3

f (xn)
f ′(xn)

,

zn = xn − 1
2

3 f ′(yn)+ f ′(xn)
3 f ′(yn)− f ′(xn)

f (xn)
f ′(xn)

,

wn = zn − f (zn)
q1 f ′(xn)+q2 f ′(yn)

,

xn+1 = wn − f (wn)
q1 f ′(xn)+q2 f ′(yn)

.

(3.4)

As could be seen, the structure (3.4) includes four steps in which the denominator

of the third and fourth steps are considered to be the same on purpose. To illustrate

further, this assumption leads us to improve the order of convergence from the third

step to the fourth one, while the computational burden in order to solve the involved

linear systems and the Jacobian is low. Once we generalize (3.4) to N dimensions, the

Jacobians F ′(xn) and F ′(yn) will be computed once per cycle and the last two sub-steps

will not impose high burdensome load to the technique. Note also that the constructed

method in this way would be different form to the combination of Jarratt method with

the Chord method discussed in [162].

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 22

Now we employ the Computer Algebra System Mathematica [163] to find the un-

known quantities. It should also be remarked that the first two steps of (3.4) is the Jarratt

fourth-order method (3.3). Let us assume e = x− x∗, u = y− x∗, v = z− x∗, t = w− x∗,

ee = xnew − x∗, (without the index n) and d f a = f ′(x∗). Using its Taylor series, the

function can be defined as follows

❢❬❡❴❪ ✿❂ ❞❢❛✯✭❡ ✰ ❝✷✯❡❫✷ ✰ ❝✸✯❡❫✸

✰ ❝✹✯❡❫✹ ✰ ❝✺✯❡❫✺ ✰ ❝✻✯❡❫✻ ✰ ❝✼✯❡❫✼ ✰ ❝✽✯❡❫✽✮✳

Now, according to the first two steps of (3.4), we can write the Taylor expansion in what

follows

✉ ❂ ❡ ✲ ✭✷✴✸✮✯❙❡;✐❡=❬❢❬❡❪✴❢✬❬❡❪✱ ④❡✱ ✵✱ ✻⑥❪ ✴✴❙✐♠♣❧✐❢②❀

✈ ❂ ❡ ✲ ❙❡;✐❡=❬✭✶✴✷✮✯✭✭✸✯❢✬❬✉❪ ✰ ❢✬❬❡❪✮✴✭✸✯❢✬❬✉❪

✲ ❢✬❬❡❪✮✮✯✭❢❬❡❪✴❢✬❬❡❪✮✱ ④❡✱ ✵✱ ✻⑥❪✴✴❙✐♠♣❧✐❢②✳

At this time when we obtain fourth-order convergence (the attained error equation

reveals this fact), we keep going to the third step:

J ❂ ✈ ✲ ❢❬✈❪✴✭K✶✯❢✬❬❡❪ ✰ K✷✯❢✬❬✉❪✮ ✴✴ ❙✐♠♣❧✐❢②✳

Let us now have the coefficients of the fourth and fifth terms in the obtained error

equation

❛✹ ❂ ❈♦❡❢❢✐❝✐❡♥J❬J✱ ❡❫✹❪ ✴✴ ❋✉❧❧❙✐♠♣❧✐❢②

❛✺ ❂ ❈♦❡❢❢✐❝✐❡♥J❬J✱ ❡❫✺❪ ✴✴ ❋✉❧❧❙✐♠♣❧✐❢②✳

To attain sixth-order convergence, we now solve a simultaneous linear system of

two equations using a command in Mathematica as follows:

❙♦❧✈❡❬④❛✹ ❂❂ ✵✱ ❛✺ ❂❂ ✵⑥✱ ④K✶✱ K✷⑥❪ ✴✴ ❋✉❧❧❙✐♠♣❧✐❢②✳

This gives the following results

q1 →−1
2
, q2 →

3
2
. (3.5)

Due to the fact that the correcting factors in the third and fourth steps of our struc-

ture (3.4) are equal, thus we have further acceleration in the convergence rate at the end

of the structure (3.4). Implementing again the Taylor expansion, we obtain

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 23

❡❡ ❂ " ✲ ❢❬"❪✴✭✭✲✶✴✷✮✯❢✬❬❡❪ ✰ ✭✸✴✷✮✯❢✬❬✉❪✮ ✴✴ ❙✐♠♣❧✐❢②❀

Thus, the final asymptotic error constant of our scheme (3.4) can be produced by

applying

❛✽ ❂ ❈♦❡❢❢✐❝✐❡♥"❬❡❡✱ ❡❫✽❪ ✴✴ ❋✉❧❧❙✐♠♣❧✐❢②

We now propose our high-order method for finding real and complex solutions of

the nonlinear systems in what follows







y(n) = x(n)− 2
3F ′(x(n))−1F(x(n)),

z(n) = x(n)− 1
2(3F ′(y(n))−F ′(x(n)))−1

·(3F ′(y(n))+F ′(x(n)))F ′(x(n))−1F(x(n)),

w(n) = z(n)− (−1
2 F ′(x(n))+ 3

2F ′(y(n)))−1F(z(n)),

x(n+1) = w(n)− (−1
2 F ′(x(n))+ 3

2F ′(y(n)))−1F(w(n)).

(3.6)

Per computing step, the new method (3.6) requires to compute F at three different

points and the Jacobians F ′ at two points. In order to prove the convergence order

of (3.6), we need to firstly remind some important lemmas in the theory of point of

attraction.

Lemma 3.1. (Perturbation Theory [160]) Suppose that A,C ∈ L(RN), where L(RN) is

the space of linear operators from R
N to R

N . Let A be nonsingular and ||A−1|| ≤ α,

||A−C|| ≤ µ , αµ < 1, then C is nonsingular and

||C−1|| ≤ α

1−αµ
. (3.7)

Lemma 3.2. [160] Assume that G : D ⊂ R
N → R

N has a fixed point x∗ ∈ int(D) and

G(x) is Frechet-differentiable on x∗ if

ρ(G′(x∗)) = σ < 1, (3.8)

then there exists S = S(x∗,δ) ⊂ D, for any x(0) ∈ S. Thus, x∗ is an attraction point of

x(n+1) = G(x(n)).

Lemma 3.3. [160] Suppose F : D ⊂R
N →R

N has a pth Frechet-derivative and its F(p)

be hemi-continuous at each point of a convex set D0 ⊂ D, then for any u,v ∈ D0, if F(p)

is bounded, that is,

‖F(p)(u)‖ ≤ kp, (3.9)

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 24

then, one has

∥
∥
∥
∥
∥

F(v)−F(u)−
p−1

∑
j=1

1
j!

F(j)(u)(v−u) j

∥
∥
∥
∥
∥
≤ kp

p!
‖v−u‖p. (3.10)

Lemma 3.4. [164] Suppose that C : D ⊂ R
N → R

N and M : D ⊂ R
N → R

N are func-

tional depending on F with C(x∗) = 0 and M(x∗) = x∗ and M and C are Frechet differ-

entiable at a point x∗ ∈ int(D). Let A : S0 → L(RN) be defined on an open neighborhood

S0 ⊂D of x∗ and continuous at x∗. Assume further that A(x∗) is nonsingular. Then, there

exists a ball

S = S(x∗,δ) =
{

‖x∗− x‖ ≤ δ
}

⊂ S0, δ > 0,

on which the mapping

G : S → R
N , G(x) = M(x)−A(x)−1C(x), f orall ,x ∈ S,

is well-defined; moreover, G is Frechet differentiable at x∗, thus

G′(x∗) = M′(x∗)−A(x∗)−1C′(x∗).

Theorem 3.5. (Attraction Theorem for Newton Method) [160] Let F : D ⊂ R
N → R

N

be twice Frechet-differentiable in an open ball S = S(x∗,δ)⊂ D, where x∗ ∈ int(D), and

F ′′(x) be bounded on S. Assume that F(x∗) = 0 and that F ′(x∗) is non-singular, that

is, ‖F ′(x∗)−1‖ = α . Then x∗ is a point of attraction of the iteration defined by Newton

iteration function

N(x) = x−F ′(x)−1F(x). (3.11)

That is, N(x) is well defined and satisfies an estimate of the form

‖N(x)− x∗‖ ≤ λ1‖e‖2, (3.12)

for all x ∈ S1, on some ball S1 = S(x∗,δ1)⊂ S where e = x− x∗.

3.3 Convergence analysis

In this section, we study the convergence behavior of the method (3.6) using point of

attraction theory.

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 25

Theorem 3.6 (Attraction Theorem for the Jarratt Method [161]). Under the conditions

of Theorem 3.5, suppose that F ′′(x) is bounded and F(3)(x) is both bounded and Lip-

schitz continuous. Then x∗ is a point of attraction of the iteration defined by process

z(n) = G4thJM(x(n)). The iteration function is well defined and satisfies an estimate of

the form

‖G4thJM(x)− x∗‖ ≤ λ2‖e‖4, (3.13)

for all x ∈ S2, on some ball S2 = S(x∗,δ2)⊂ S1.

Note that G4thJM and G8thJM are the fourth and eighth order Jarratt-type methods

(3.3) and (3.6), respectively. Similar notations have been used throughout. We begin

the rest of the work by proving two important lemmas.

Lemma 3.7. Let

A(x) =−1
2

F ′(x)+
3
2

F ′(y(x)), (3.14)

wherein y(x) = x+ 2
3(N(x)− x). Under the conditions of Theorem 3.6, we have

||A(x)−F ′(x∗)|| ≤ (
10
27

k3 +λ1k2)||e||2 +
k3λ1

3
||e||3, (3.15)

for all x ∈ S3, on some ball S3 = S(x∗,δ3)⊂ S2. Furthermore A(x)−1 exists and

||A(x)−1|| ≤ α

1− [(10
27αk3 +αλ1k2)||e||2 + αk3λ1

3 ||e||3]
, (3.16)

whenever α
(

10
27k3 +λ1k2

)
δ 2

3 + αk3λ1
3 δ 3

3 < 1.

Proof. Since F(x∗) = 0, we have y(x∗) = x∗ and thus A(x∗) = F ′(x∗). Now

y(x)− x∗ =
x− x∗

3
+

2
3
(N(x)− x∗). (3.17)

Let us find the upper bound of ||A(x)−F ′(x∗)||. By the mean value theorem for inte-

grals, we have

A(x)−A(x∗) = −1
2
(F ′(x)−F(x∗))+

3
2
(F ′(y(x))−F ′(x∗))

= −1
2

∫ 1

0
F ′′(x∗+ t(x− x∗))dt(x− x∗)

+
3
2

∫ 1

0
F ′′(x∗+ s(y(x)− x∗))ds(y(x)− x∗)),

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 26

which, using eq. (3.17), simplifies to

A(x)−A(x∗) =W1(x− x∗)+W2(N(x)− x∗), (3.18)

wherein W1 =
∫ 1

0
∫ 1

0 F ′′(x∗+s(y(x)−x∗))−F ′′(x∗+t(x−x∗))dsdt and W2 =
∫ 1

0 F ′′(x∗+

s(y(x)− x∗))ds. Furthermore, using the bounds on F ′′′, the Schwartz inequality and eq.

(3.17), we have

||W1|| = ||
∫ 1

0

∫ 1

0

∫ 1

0
F ′′′

(

x∗+ t(x− x∗)+w(s(y(x)− x∗) (3.19)

−t(x− x∗))
)

× s(y(x)− x∗)− t(x− x∗)dsdtdw||

≤ k3

∫ 1

0

∫ 1

0
||s(y(x)− x∗)− t(x− x∗)dsdt|| (3.20)

= k3

∫ 1

0

∫ 1

0
||(s/3− t)(x− x∗)+

2s

3
(N(x)− x∗)dsdt||.

Now, by applying the triangular inequality, one may have

||W1|| ≤ k3||x− x∗||
∫ 1

0

∫ 1

0
| s
3
− t|dsdt + k3||N(x)− x∗||

∫ 1

0

∫ 1

0

2s

3
dsdt (3.21)

which reduces to

||W1|| ≤ k3
10
27

||x− x∗||+ k3

3
||N(x)− x∗||. (3.22)

We also have ||W2|| ≤ k2 using the bounds of F ′′. We further could write using eqs.

(3.22) and (3.12):

‖A(x)−F ′(x∗)‖ ≤ ||W1|| ||x− x∗||+ ||W2||| |N(x)− x∗|| (3.23)

≤ 10
27

k3||x− x∗||2 + k3

3
||x− x∗|| ||N(x)− x∗|| (3.24)

+k2||N(x)− x∗||,

and

‖A(x)−F ′(x∗)‖ ≤ 10
27

k3||e||2 +
k3

3
λ1||e||3 +λ1k2||e||2, (3.25)

which proves eq. (3.15). Since ||e|| ≤ δ3 for all x ∈ S3 and ||A(x∗)−1||= ||F ′(x∗)−1||=
α , we have

||A(x∗)−1|| ‖A(x)−F ′(x∗)‖ ≤ α
[10

27
k3 +λ1k2

]
δ 2

3 +α
k3

3
λ1δ 3

3 < 1, (3.26)

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 27

which satisfies our assumption. By the Perturbation Lemma, A(x)−1 exists and its bound

is given by

||A(x)−1|| ≤ ||A(x∗)−1||
1−||A(x∗)−1|| ||A(x)−A(x∗)|| (3.27)

≤ α

1− [(10
27αk3 +αλ1k2)||e||2 + αk3λ1

3 ||e||3]
. (3.28)

The proof is now complete.

Lemma 3.8. Under the conditions of Theorem 3.6,

||F(G(x))−A(x)(G(x)− x∗)|| ≤ k2

2
||G(x)− x∗||2 +[(

10
27

k3

+λ1k2)||e||2 +
k3λ1

3
||e||3]||G(x)− x∗||, (3.29)

for all x ∈ S3 ⊂ S2 and G(x) is any iteration function.

Proof. Using eq. (3.10) with v = G(x), u = x∗ and p = 2 in Lemma 3.1 and eq. (3.15),

we have

||F(G(x))−A(x)(G(x)− x∗)|| = ||F(G(x))−F ′(x∗)(G(x)− x∗)

+(F ′(x∗)−A(x))(G(x)− x∗)||
≤ ||F(G(x))−F ′(x∗)(G(x)− x∗)|| (3.30)

+||A(x)−F ′(x∗)|| ||G(x)− x∗||

≤ k2

2
||G(x)− x∗||2 +[(

10
27

k3 +λ1k2)||e||2

+
k3λ1

3
||e||3]||G(x)− x∗||.

The proof is ended.

Theorem 3.9. Under the conditions of Theorem 3.6, x∗ is a point of attraction of the

iteration defined by process w(n) = G6thJM(x(n)). Thus, the iteration function is well

defined and satisfies an estimate of the form

‖G6thJM(x)− x∗‖ ≤ λ3‖e‖6, (3.31)

for all x ∈ S3, on some ball S3 = S(x∗,δ3)⊂ S2.

Proof. We have M(x) = G4thJM(x) and C(x) = F(G4thJM(x)) which are differentiable

functions at x∗. Also, A(x) is continuous at x∗ for all x∈ S3. All the conditions of Lemma

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 28

3.4 are satisfied. Therefore G′
6thJM

(x∗) = 0 since G′
4thJM

(x∗) = 0 and ρ(G′
6thJM

(x∗)) =

0 < 1. By Ostrowski’s Theorem, it follows that x∗ is a point of attraction of G6thJM(x)

which is well defined in S3. Now, for any x ∈ S3,

||G6thJM − x∗|| ≤ ||A(x)−1|| ||A(x)(G4thJM(x)− x∗)−F(G4thJM)||. (3.32)

Using eqs. (3.16), (3.13) and (3.29), eq. (3.32) simplifies to

||G6thJM − x∗|| ≤ α

1− [(10
27αk3 +αλ1k2)||e||2 + αk3λ1

3 ||e||3]
[

k2λ 2
2

2
||e||8 +(

10
27

λ2k3 +λ1λ2k2)||e||6 +
k3λ1λ2

3
||e||7

]

= λ3||e||6, (3.33)

where

λ3 =
α

1− [(10
27αk3 +αλ1k2)||e||2 + αk3λ1

3 ||e||3]
[

k2λ 2
2

2
||e||2 +(

10
27

λ2k3 +λ1λ2k2)+
k3λ1λ2

3
||e||

]

,

which establish the sixth order convergence. We here note that k2 and k3 are upper

bounds on F ′′ and F ′′′ based on eq. (3.9) for their definitions and defining λ2 as constant

depending on bounds of F ′′ and also the bounds and Lipschitz continuity of F ′′′. This

completes the proof.

Theorem 3.10. Under the conditions of Theorem 3.6, x∗ is a point of attraction of the

iteration defined by process x(n+1) = G8thJM(x(n)). The iteration function is well defined

and satisfies an estimate of the form

‖G8thJM(x)− x∗‖ ≤ λ4‖e‖8, (3.34)

for all x ∈ S4, on some ball S4 = S(x∗,δ4)⊂ S3.

Proof. We have M(x) = G6thJM(x) and C(x) = F(G6thJM(x)), which are differentiable

functions at x∗. Also, A(x) is continuous at x∗ for all x∈ S4. All the conditions of Lemma

3.4 are satisfied. Therefore G′
8thJM

(x∗) = 0 since G′
6thJM

(x∗) = 0 and ρ(G′
8thJM

(x∗)) =

0 < 1. By Ostrowski’s Theorem, it follows that x∗ is a point of attraction of G8thJM(x)

which is well defined in S4. Now, for any x ∈ S4,

||G8thJM − x∗|| ≤ ||A(x)−1|| ||A(x)(G6thJM(x)− x∗)−F(G6thJM)||. (3.35)

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 29

Using eqs. (3.16), (3.31) and (3.29), eq. (3.35) simplifies to

||G8thJM − x∗|| ≤ α

1− [(10
27αk3 +αλ1k2)||e||2 + αk3λ1

3 ||e||3]
[

k2λ 2
2

2
||e||12 +(

10
27

λ2k3 +λ1λ2k2)||e||8 +
k3λ1λ2

3
||e||9

]

= λ4||e||8, (3.36)

where

λ4 =
α

1− [(10
27αk3 +αλ1k2)||e||2 + αk3λ1

3 ||e||3]
[

k2λ 2
2

2
||e||4 +(

10
27

λ2k3 +λ1λ2k2)+
k3λ1λ2

3
||e||

]

,

and it establishes the eighth order convergence.

When dealing with hard nonlinear systems of equations, the computational effi-

ciency of the considered iterative method is important. In what follows, we first try to

simplify the proposed scheme to be computationally efficient. Simplifying the third and

fourth step of (3.6) results in a same correcting factor for these sub-steps and the same

as the second step, i.e.







y(n) = x(n)− 2
3F ′(x(n))−1F(x(n)),

z(n) = x(n)− 1
2(3F ′(y(n))−F ′(x(n)))−1

·(3F ′(y(n))+F ′(x(n)))F ′(x(n))−1F(x(n)),

w(n) = z(n)−2(3F ′(y(n))−F ′(x(n)))−1F(z(n)),

x(n+1) = w(n)−2(3F ′(y(n))−F ′(x(n)))−1F(w(n)).

(3.37)

Now the implementation of (3.37) quite depends on the involved linear algebra

problems. Hopefully the linear system F ′(x(n))Vn = F(x(n)) could be computed once

per step in order to avoid computing the inverse F ′(x(n))−1, and its vector solution will

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 30

be used twice per step as follows







y(n) = x(n)− 2
3Vn,

z(n) = x(n)− 1
2M−1

n (3F ′(y(n))+F ′(x(n)))Vn,

w(n) = z(n)−2M−1
n F(z(n)),

x(n+1) = w(n)−2M−1
n F(w(n)),

(3.38)

wherein Mn = 3F ′(y(n))−F ′(x(n)). Another interesting point in the formulation (3.38)

is that the LU decomposition of Mn needs to be done only once, but it could effectively

be used three times per computing step to increase the rate of convergence without

imposing much computational burden and time. A thorough discussion of this would

be given in Section 3.5.

3.4 Further extensions

This section presents a general class of multi-step nonlinear solvers. In fact, the new

scheme (3.38) can simply be improved by considering the Jacobian Mn to be frozen.

In such a way, we are able to propose a general m-step multi-point class of iterative

methods in the following structure:







ϑ
(n)
1 = x(n)− 2

3Vn,

ϑ
(n)
2 = x(n)− 1

2ρ−1
n (3F ′(ϑ (n)

1)+F ′(x(n)))Vn,

ϑ
(n)
3 = ϑ

(n)
2 −2ρ−1

n F(ϑ
(n)
2),

ϑ
(n)
4 = ϑ

(n)
3 −2ρ−1

n F(ϑ
(n)
3),

...

x(n+1) = ϑ n
m = ϑ

(n)
m−1 −2ρ−1

n F(ϑ
(n)
m−1),

(3.39)

wherein ρn = 3F ′(ϑ (n)
1)−F ′(x(n)). It is fascinating to mention that in this structure,

the LU factorization of the Jacobian matrix ρn would be computed only once and it

would be consumed m− 2 times through one full cycle (we have m− 2 linear systems

with the same coefficient matrix ρn and multiple right hand sides). This fully reduce the

computational load of the linear algebra problems involved in implementing (3.39).

In the iterative process (3.39) each added step will impose one more N-dimensional

function whose cost is N scalar evaluations the convergence order will improved to

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 31

2+O(m−1), wherein O(m−1) is the order of the previous sub-steps. Considering the

well-known Mathematical induction, it would be easy to deduce the following theorem

for (3.39):

Theorem 3.11. The m-step (m ≥ 3) iterative process (3.39) has the local convergence

order 2m using m−1 evaluations of the function F and two first-order Frechet derivative

F ′ per full iteration.

Proof. The proof of this theorem is based on Mathematical induction and is straightfor-

ward. Hence, it is omitted.

As an example, the six-step twelfth-order method from the new class has the fol-

lowing structure:







ϑ
(n)
1 = x(n)− 2

3Vn,

ϑ
(n)
2 = x(n)− 1

2ρ−1
n (3F ′(ϑ (n)

1)+F ′(x(n)))Vn,

ϑ
(n)
3 = ϑ

(n)
2 −2ρ−1

n F(ϑ
(n)
2),

ϑ
(n)
4 = ϑ

(n)
3 −2ρ−1

n F(ϑ
(n)
3),

ϑ
(n)
5 = ϑ

(n)
4 −2ρ−1

n F(ϑ
(n)
4),

x(n+1) = ϑ n
6 = ϑ

(n)
5 −2ρ−1

n F(ϑ
(n)
5).

(3.40)

3.5 Comparison on computational efficiency index

When considering the iterative method (3.38), one has to solve a linear system of equa-

tions MnKn = bi, i = 1,2,3, that is to say, a linear system with three multiple right

hand sides. In such a case, one could compute a factorization of the matrix and use it

repeatedly.

The way that MATHEMATICA 8 allows users to re-use the factorization is really

simple. It is common to save the factorization and use it to solve repeated problems.

Herein, this is done by using a one-argument form of LinearSolve; this returns a

functional that one can apply to different vectors/matrices to obtain the solutions.

We here apply MATHEMATICA 8 due to the fact that it performs faster for large

scale problems. See Figure 3.1 (left and right), in which the comparison among this pro-

gramming package and Maple have been illustrated based on [165] with entries between

10−5 and 105 for the test matrices.

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 32

The iterative method (3.38) has the following cost: N evaluations of scalar func-

tions for F(x), N evaluations of scalar functions for F(z), N evaluations of scalar func-

tions for F(w), N2 evaluations of scalar functions for the Jacobian F ′(x), again N2

evaluations of scalar functions for the Jacobian F ′(y) and two LU decompositions for

solving the linear systems involved.

To be more precise, the computing of the LU decomposition by any of the existing

algorithms in the literature normally requires 2N3

3 flops in the floating point arithmetic,

while the floating point operations for solving the two triangular systems will be 2N2

when the right hand side of the systems is a vector, and 2N3, or roughly N3 as considered

herein, when the right hand side is a matrix.

In computing, flops (for FLoating-point Operations Per Second) is a measure of

computer performance, especially in fields of scientific calculations that make heavy

use of floating-point calculations. Alternatively, the singular FLOP (or flop) is used as

an abbreviation for "FLoating-point OPeration", and a flop count is a count of these

operations (e.g., required by a given algorithm or computer program). We remind that

in Matlab, the flops for solving the two triangular systems is 1.5N2 using High Per-

formance Computing (HPC) challenge instead of 2N2. High Performance Computing

(HPC) aims at providing reasonably fast computing solutions to both scientific and real

life technical problems [166]. The advent of multicore architectures is noteworthy in

the HPC history, because it has brought the underlying concept of multiprocessing into

common consideration and has changed the landscape of standard computing.

There are numerous indices for assessing the computational efficiency of the non-

linear system solvers. We now provide the comparison of efficiency indices for the

method (3.2), the scheme (3.3), the sixth-order method of Cordero et al. (CM) in [154],

which is in fact the first three steps of the algorithm (3.37), the new method (3.38)

and also one method from the general multi-step iteration (3.39), we choose e.g. the

twelfth-order iterative method (3.40). In what follows, we consider two different ap-

proaches for comparing the efficiencies. One is the traditional efficiency index which is

given by E = p
1
c , where p is the order of convergence and c is the number of functional

evaluations and more practically the flops-like efficiency index by E = p
1
C , where C

stands for the total computational cost per iteration in terms of the number of functional

evaluations along with cost of LU decompositions and solving two triangular systems

(based on the flops). So, we considered a same cost for the operations and function

evaluations. It is obvious that the second approach is much more practical in evaluating

the performance of nonlinear equations solvers.

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 33

However, we tried to compare different methods in a same and similar environment

in this work, not in HPC. In fact, herein we consider that the cost of scalar function

evaluation is nearly the same to the cost of doing typical operations in factiorization

of a matrix and they are unity. Note that it is only an assumption and in general the

relation between the cost of scalar function evaluation and the cost of doing operations

are related to the specifications of the computer.

FIGURE 3.1: Timings for solving linear systems of different sizes (left) and Timings
for computing the inverse of integer matrices with different sizes (right).

It is clearly obvious that the new methods (3.38) and (3.40) beat the other schemes

(3.2), (3.3) and (CM), for any N ≥ 2, for both traditional efficiency index and the

flops-like efficiency index. Note that for the traditional efficiency index, we have

T EI(3.2) = 2
1

N+N2 , T EI(3.3) = 4
1

N+2N2 , T EI(CM) = 6
1

2N+2N2 and for the proposed methods

T EI(3.38) = 8
1

3N+2N2 and T EI(3.40) = 12
1

5N+2N2 . And for the flops-like efficiency indices,

we have FEI(3.2) = 2
1

N+3N2+ 2N3
3 , FEI(3.3) = 4

1

N+4N2+ 7N3
3 , FEI(CM) = 6

1

2N+6N2+ 7N3
3 and for

the proposed methods FEI(3.38) = 8
1

3N+8N2+ 7N3
3 and FEI(3.40) = 12

1

5N+12N2+ 7N3
3 .

The comparison of the traditional efficiency index and the flops-like efficiency

index are given in Figures 3.2 and 3.3, respectively. In these figures, the colors blue,

red, purple, brown and black stand for (3.40), (3.6), (3.3), (CM) and (3.2) respectively.

In Figure 3.3, and based on the practical flops-like efficiency index, there is no clear

winner for low dimensional systems, while for higher dimensions, the scheme (3.40) is

the best one. Clearly, higher order methods from the general class of iterative methods

(3.40), will have much better practical efficiencies.

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 34

3.6 Numerical results and applications

We divide this section into two sub-sections, where the first part only contains pure

academical tests, while the second one focuses on application-oriented problems.

6 8 10 12 14

1.005

1.010

1.015

1.020

1.025

1.030

90 95 100 105 110

1.00006

1.00008

1.00010

1.00012

1.00014

FIGURE 3.2: The comparison of the traditional efficiency indices for different methods
(left N = 5, ...,15) and (right N = 90, ...,110). The colors blue, red, purple, brown and

black stand for (3.40), (3.38), (3.3), (CM) and (3.2).

6 8 10 12 14

1.001

1.002

1.003

1.004

90 95 100 105 110

1

1

1

1

1

FIGURE 3.3: The comparison of the flops-like efficiency indices for different methods
(left N = 5, ...,15) and (right N = 90, ...,110). The colors blue, red, purple, brown and

black stand for (3.40), (3.38), (3.3), (CM) and (3.2).

We employ here the second order method of Newton (3.2) denoted by NM, the

fourth-order scheme of Jarratt (3.3) denoted by JM, the sixth-order method of Cordero

et al. CM and the proposed eighth-order methods (3.38) denoted by PM8 in sub-section

3.6.1, and the twelfth-order method (3.40) denoted by PM12, in the subsection 3.6.2

to compare the numerical results obtained from these methods in solving test nonlinear

systems.

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 35

3.6.1 Academical tests

Experiment 1. As a first problem, we take into account the following system of three

nonlinear equations






x3
1 − x4

2 + x3 = 0,

x2
2 − x3x1 = 0,

x2
3 − x1x4

2 = 0.

(3.41)

Due to page limitations, we show the solution of each system herein

up to 20 decimal places. In this test problem the solution is the fol-

lowing vector: x∗ ≈ (1.0000000000000000000, 1.2720196495140689643,

1.6180339887498948482)T .

Experiment 2. In order to reveal the capability of the suggested method in find-

ing complex solutions, we consider the following nonlinear system:







sin(x1)− cos(x3)− x3 + x8
4 + x2

5 − x2
6 = 0,

3x1 + x2x3 − tan(x4)+ x2
6 = 0,

x3
2 − x1 −81xx5

3 −10 = 0,

x1x2 +2x3 − sin(x4) = 0,

x5
3 + exp(x6) = 0,

sin(x1)− xx3
2 +10x4 − x3

6 = 0,

(3.42)

where its complex root is as follows

x∗ ≈















0.39749982364780502837+0.26108554547088111068i

−1.9503599303349781065+3.5327977271774986368i

0.91919518428164788413−0.30271085317212191688i

0.13551997536770926739+0.28832297358589852369i

0.34902615622431383784−1.16057339570295584425i

−0.1638711842606608810+1.5509142363607599627i















. (3.43)

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 36

Experiment 3. We consider the following test problem







1− arctan(x1x2)+ sin(x3)+ exp(sin(x5)) = 0,

xx4
2 − x2

4 −2sin(x5) = 0,

1− sin(x1)+ sin(x4) = 0,

x4
1 + x3

2 + x2
3 − x4 + x5 = 0,

x10
1 − x3

5 −10 = 0,

(3.44)

where its complex solution is as follows

x∗ ≈












1.7823769260571925309−0.0009598583894715211i

1.3869672965337494318+2.2356662518971732430i

−1.2859657551711001939+0.6583636453356390906i

−0.022301196074677766935+0.000201625720320392369i

6.7939198734625295879−0.0125846173983932572i












. (3.45)

In order to have a fair comparison, we let the methods of lower orders perform

a greater number of full cycles. We report the numerical results for solving the Ex-

periments 1-3 in the Tables 3.1,3.2 and 3.3 based on the initial guesses. The residual

norm along with the number of iterations and computational time using the command

AbsoluteTiming[] in MATHEMATICA 8 are reported in Tables 3.1,3.2 and 3.3. An

efficient way to numerically observe the behavior of the order of convergence is to use

the local computational order of convergence (COC) that can be defined by

COC ≈ ln(||F(x(n+1))||/||F(x(n))||)
ln(||F(x(n))||/||F(x(n−1))||) , (3.46)

for the N-dimensional case.

Iterative methods (NM) (JM) (CM) (PM8)
Number of iterations 17 8 7 6
The residual norm 1.32×10−103 4.33×10−97 2.56×10−187 5.98∗10−118

COC 2.00 4.05 6.06 8.19
The elapsed time 0.093 0.070 0.062 0.046

TABLE 3.1: Results of comparisons for different methods in Experiment 1 using x(0) =
(14,10,10)

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 37

Iterative methods (NM) (JM) (CM) (PM8)
Number of iterations Div. 5 4 4
The residual norm − 1.97×10−33 1.27×10−33 2.37×10−76

COC − 3.98 6.00 7.97
The elapsed time − 0.51 0.46 0.50

TABLE 3.2: Results of comparisons for different methods in Experiment 2 using x(0) =
(I,2I,1, I, I,3I) and I =

√
−1

In numerical comparisons, we have chosen the fixed point arithmetics to be 200

using the command SetAccuracy [expr,200] in the written codes. We employ a stop-

ping criterion based on the residual norm of the multi-variate function with tolerance

parameter 1.E − 97, with norm 2. Note that the computer specifications are Microsoft

Windows XP Intel(R), Pentium(R) 4 CPU, 3.20GHz with 4GB of RAM.

Results for Experiment 1 reveals that the proposed method requires less or equal

number of iterations to obtain higher accuracy in contrast to the other methods. Tables

3.2 and 3.3 also reveals the importance of the initial guess. For example, although the

new scheme (3.6) with two corrector steps (the third and fourth steps) per full computing

step is much more better than the schemes NM, JM and CM, a simple line search could

be done in solving nonlinear systems of equations to let the initial guess arrive at the

convergence basin. Robust strategies for providing enough accurate initial guesses have

been discussed in [167] and [168].

Tables 3.1, 3.2 and 3.3 also include the local computational order of convergence

for different methods (by the use of the last three full steps of each scheme) to numer-

ically observe the analytical discussion given in Section on the rate of convergence for

the contributed methods. Note that the elapsed time in this chapter are expressed in

seconds.

We also remind that in case of facing with singular matrices if a badly chosen

initial approximation be chosen, then one might use the generalized outer inverses (see

e.g. [169, 170] and [171]) instead of the regular inverse without losing the convergence.

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 38

3.6.2 Application-oriented tests

This sub-section reveals the application of the new method in solving a nonlinear prob-

lem arising from the discretization of nonlinear PDEs. Generally speaking, when solv-

ing a nonlinear problem such as nonlinear PDEs, it would be reduced to

Iterative methods (NM) (JM) (CM) (PM8)
Number of iterations 10 Div. Div. 7
The residual norm 5.14×10−65 − − 7.67×10−85

COC 2.00 − − 8.02
The elapsed time 0.26 − − 0.31

TABLE 3.3: Results of comparisons for different methods in Experiment 3 using x(0) =
(2.1, I,1.9,−I1,2)

solving a system of nonlinear algebraic equations. Another point is that for such

cases, basically numerical results of lower accuracy in terms of the precision are

needed. Hence, we here try to find the solution using finite difference discretization

with the stopping criterion ||F(x)||2 < 10−8. In the following tests, we consider

u = u(x, t), which is the exact solution of the nonlinear PDE. The approximate solution

is denoted by wi, j ≃ u(xi, t j) at the node i, j on the considered mesh [172]. Here, we

assume M and N be the number of steps along the space and time, and m = M − 1,

n = N −1.

Experiment 4. A simplified model of fluid flow is the Burgers’ equation with

Dirichlet boundary conditions and the diffusion coefficient D:







ut +uux = Duxx,

u(x,0) = 2Dβπ sin(πx)
α+β cos(πx) , 0 ≤ x ≤ 2,

u(0, t) = 0, t ≥ 0,

u(1, t) = 0, t ≥ 0.

(3.47)

To solve this PDE, we use the backward finite difference for the first derivative

along the time (the independent variable t): ut(xi, t j) ≃ wi, j−wi, j−1
k , where k is the step

size, and the central finite difference for the other involved pieces of the equations, i.e.,

ux(xi, t j) ≃ wi+1, j−wi−1, j
2h , and uxx(xi, t j) ≃ wi+1, j−2wi, j+wi−1, j

h2 , wherein h is the step size

along the space (x). We consider α = 5, β = 4, D = 0.05, and T = 1.

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 39

In solving (3.47), the procedure will end in a nonlinear system of algebraic

equations having a large sparse Jacobian matrix, which have been solved and compared

through the tested methods applied in Section 3.6.1. The solution has been plotted

in Figure 3.4. Table 3.4 presents the comparison results for this test. For this test we

have chosen M = N = 21, to obtain a nonlinear system of size 400, with the starting

vector x0 = Table[0.6,{i,1,m∗n}] in the Mathematica environment with the machine

precision.

Iterative methods (NM) (JM) (CM) (PM12)
Number of iterations 4 2 2 1
The elapsed time 5.03 3.78 4.39 3.34

TABLE 3.4: Results of comparisons for different methods in Experiment 4

Experiment 5. An interesting category of nonlinear PDEs is comprised of reaction-

diffusion equation. A fundamental example of such a equation is due to the evolutionary

biologist and geneticist R.A. Fisher. The equation was originally derived to model

how genes propagate. In what follows, consider solving the Fisher’s equation with

homogenous Neumann boundary conditions:







ut = Duxx +u(1−u),

u(x,0) = sin(πx), 0 ≤ x ≤ 1,

ux(0, t) = 0, t ≥ 0,

ux(1, t) = 0, t ≥ 0.

(3.48)

Note that f (u) = u(1− u), implying that f ′(u) = 1− 2u. For solving (3.48) using the

same discretizations as in Experiment 4, we will obtain a system of nonlinear equa-

tions. The greatest difficulty in this case is that, unlike the previous case, for Neumann

boundary conditions, two sets of new nonlinear equations at the grid points will be in-

cluded to the system. That is, the following discretization equations must be added:

ux(0, t j) ≃ −3w0, j+4w1, j−w2, j
2h , and ux(1, t j) ≃ −3wm−2, j+4wm−1, j−wm, j

2h . The numerical com-

parison of solving this test have been given in Table 3.5, while the solution has been plot-

ted in Figure 3.5. In this test, we have chosen M = N = 23, to obtain a nonlinear system

of the size 528, which provides a large sparse Jacobian with x0 = Table[0.,{i,1,m∗n}]
as the starting vector.

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 40

FIGURE 3.4: The approximate solution of Burgers’ equation using Finite Difference
scheme and our novel iterative method PM12.

FIGURE 3.5: The approximate solution of Fisher’s equation using Finite Difference
scheme and our novel iterative method PM12.

3.7 Summary

The contribution of chapter consists in a high-order class of multi-step iterative meth-

ods for finding the solution of nonlinear systems of equations. The construction of

the suggested schemes allow us to achieve high convergence orders using appropriate

computations of the Jacobian and solving few linear systems per full step of the class

(3.39).

We have also supported the proposed iteration by a valid mathematical proof

through the point of attraction theory. This let us to analytically find the eighth order

of convergence for the first method from the proposed class while using mathemati-

cal induction, it will be easy to see the convergence order 2m for an m-step method.

Per computing step, the method is free from second-order Frechet derivative, which is

Chapter 3. Numerical solution of nonlinear systems by a general class of iterative
methods with application to nonlinear PDEs 41

Iterative methods (NM) (JM) (CM) (PM12)
Number of iterations 4 2 2 1
The elapsed time 7.76 5.64 6.73 5.28

TABLE 3.5: Results of comparisons for different methods in Experiment 5

also important and does not restrict the applicability of the scheme in solving hard test

problems.

The computational efficiency of the method has been tested by applying two dif-

ferent types of index of efficiencies and Figures 3.2 and 3.3 attested the good efficiency

of the methods. Besides, some different numerical tests have been used to compare the

consistency and stability of the proposed iteration in contrast to the existing methods.

The numerical results obtained in Section 3.6 confirm the theoretical derivations of the

present chapter.

We have also revealed that the method can efficiently be used for complex zeros.

We here also note that per full step of our class (3.39), and so as to avoid computing

inverse of matrices, we solve linear systems using LU factorization because the left

hand-side matrix is fixed and only the right hand-side vector gets numerical updates

as iteration advances. This was done using the powerful command of LinearSolve,

which allow us automatically to work with large scale and sparse nonlinear systems.

The solution of large-scale linear and nonlinear systems of equations constitutes

the most time consuming task in solving many numerical simulation problems arising

in scientific computing. Hence, in order to motivate our methods and test their appli-

cability, we solved two large-scale nonlinear systems with sparse Jacobian matrices,

originating from the discretization of nonlinear PDEs. Experimental results indicated

that our algorithms perform very well also in such cases.

It should also be remarked that like all other iterative methods in this category, the

new ones should be combined with a method such as line search to find a convergence

basin in order to have appropriate initial points for achieving the convergence rate and

few number of iterations. In summary, we can conclude that the novel iterative meth-

ods leads to acceptable performances in solving systems of nonlinear equations with

applications.

Chapter 4

An Efficient Multi-step Iterative

Method for Computing the Numerical

Solution of Systems of Nonlinear

Equations Associated with ODEs

We developed multi-step iterative method for computing the numerical solution

of nonlinear systems, associated with ordinary differential equations (ODEs) of

the form L(x(t))+ f (x(t)) = g(t): here L(·) is a linear differential operator and

f (·) is a nonlinear smooth function. The proposed iterative scheme only requires

one inversion of Jacobian which is computationally very efficient if either LU-

decomposition or GMRES-type methods are employed. The higher-order Frechet

derivatives of the nonlinear system stemming from the considered ODEs are di-

agonal matrices. We used the higher-order Frechet derivatives to enhance the

convergence-order of the iterative schemes proposed in this chapter and indeed

the use of a multi-step method significantly increases the convergence-order. The

second- order Frechet derivative is used in the first step of an iterative technique

which produced third-order convergence. In a second step we constructed a ma-

trix polynomial to enhance the convergence-order by three. Finally, we freeze the

product of a matrix polynomial by the Jacobian inverse to generate the multi-step

method. Each additional step will increase the convergence-order by three, with

minimal computational effort. The convergence-order (CO) obeys the formula CO

= 3m, where m is the number of steps per full-cycle of the considered iterative

scheme.

42

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 43

4.1 Introduction

In this study, we consider scalar ordinary differential equations of the form:

L(x(t))+ f (x(t)) = g(t) where t ∈ D, (4.1)

where L(·) is a linear differential operator, f (·) is a differentiable nonlinear function

and D is an interval subset of R. The linear operator and the nonlinear function are well

defined over the domain of problem. Furthermore, we suppose that A is the discrete

approximation of the linear differential operator L over a partition {t1, t2, t3, · · · , tn} of

domain D and

xxx = [x(t1),x(t2), · · · ,x(tn)]T . (4.2)

Then we can write (4.1) as follows

F(xxx) = Axxx+ f (xxx)−ggg = 000, (4.3)

F ′(xxx) = A+diag(f ′(xxx)) under the condition det(F ′(xxx)) 6= 0, (4.4)

where diag(f ′(xkxkxk)) is a diagonal matrix whose main diagonal is constructed from

vector f ′(xkxkxk) = [f ′((x1)k), f ′((x2)k) , · · · , f ′((xn)k)]
T , ggg = [g(t1),g(t2), · · · ,g(tn)]T and

000 = [0,0, · · · ,0]T . The quasi-linearization iterative method was constructed to solve

(4.1) [3, 136, 138, 139]. The original idea is to make the linear approximation of non-

linear function f with respect to solution x(t). Let xk+1(t) = xk(t)+ε(t) be the solution

of (4.1):

L(xk+1(t))+ f (xk+1(t)) = g(t), (4.5)

L(xk(t)+ ε(t))+ f (xk(t)+ ε(t)) = g(t), (4.6)

L(xk(t))+L(ε(t))+ f (xk(t))+
d f (x)

dx
ε(t)≈ g(t), (4.7)

(

L+
d f (x)

dx

)

ε(t)≈−(L(xk(t))+ f (xk(t))−g(t)), (4.8)

where t is the independent variable and k is the index for iteration. After elimination of

ε(t) from (4.8), we obtain the following iterative method:

L(xk+1)+ f ′(xk)xk+1 = f ′(xk)xk − f (xk)+g(t), (4.9)

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 44

which is a quasi-linear iterative method to solve (4.1) with convergence-order two. Then

(4.9) can be written as:

Axk+1xk+1xk+1 +diag(f ′(xkxkxk))xk+1xk+1xk+1 = diag(f ′(xkxkxk))xkxkxk − f (xkxkxk)+ggg, (4.10)

xk+1xk+1xk+1 = xkxkxk − (A+diag(f ′(xkxkxk)))
−1(Axkxkxk − f (xkxkxk)+ggg), (4.11)

The Eqn. (4.11) can be written as:

xk+1xk+1xk+1 = xkxkxk −F ′(xkxkxk)
−1F(xkxkxk). (4.12)

This shows that quasi-linearization is equivalent to Newton-Raphson iterative

scheme for systems of nonlinear equations which has quadratic convergence. Multi-

step quasi-linearization methods are constructed in [141, 142], but both methods face

low convergence-order. Many authors [25–28, 34, 64, 107, 173] have investigated the it-

erative methods for nonlinear equations with higher convergence-order. For systems of

nonlinear equations recent advancements are addressed in [37, 40, 109, 154, 174–180].

Recently a multi-step class of iterative methods for nonlinear systems is constructed by

Fazlollah et. al. [37]:







yyy(k) = xxx(k)− 2
3F ′(xxx(k))−1F(xxx(k)),

ttt(k) = 1
2(3F ′(yyy(k))−F ′(xxx(k)))−1(3F ′(yyy(k))+F ′(xxx(k))),

zzz(k) = xxx(k)−ttt(k)F ′(xxx(k))−1F(xxx(k)),

xxx(k+1) = zzz(k)− (ttt(k))2F ′(xxx(k))−1F(zzz(k)).

(4.13)

The convergence-order of (4.13) is six and it requires two evaluations of Jacobian

and their inversions at different points. The multi-step version of (4.13) states that the

inclusion of a further step φφφ (k)−(ttt(k))2F ′(xxx(k))−1F(φφφ (k)) increases the convergence-rate

by two. The efficiency of (4.13) is hidden in the frozen factor (ttt(k))2F ′(xxx(k))−1 which

converts the scheme into an efficient multi-step iterative method. Further improvements

can be achieved by reducing two matrix inversions into one matrix inversion of Jaco-

bian. The previous idea for the enhancement of efficiency has been described in [105].

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 45

The resulting iterative method in [105] is given below:







yyy(k) = xxx(k)− 2
3F ′(xxx(k))−1F(xxx(k)),

ttt(k) = F ′(xxx(k))−1F ′(yyy(k)),

zzz(k) = xxx(k)−
(

23
8 I −3ttt(k)+ 9

8ttt(k)
2

)

F ′(xxx(k))−1F(xxx(k)),

xxx(k+1) = zzz(k)−
(

5
2 I − 3

2ttt(k)
)

F ′(xxx(k))−1F(zzz(k)).

(4.14)

Additional sources of valuable discussions regarding the construction of iterative

methods for systems of nonlinear equations can be found in [109, 174–177]. Most

of the investigated iterative methods are constructed for the general class of systems

of nonlinear equations and they only consider first order Frechet derivatives, because

higher order Frechet derivatives are computationally expensive. There is a classical

method for nonlinear systems, called Chebyshev-Halley’s method [178], which uses

the second-order Frechet derivative and is given by:

xxxk+1 = xxxk −
[

I +
1
2
[I −αPPP]−1PPP

]

(F ′(xxxn))
−1F(xxxn), (4.15)

where PPP = (F ′)−1F ′′(F ′)−1F : for α = 1 the technique in (4.15) is called Chebyshev

method and the second order Frechet derivative is defined as F ′′(xxx)vvv = ∂
∂xxx

(

∂F(xxx)
∂xxx vvv

)

.

The computational cost of the second-order Frechet derivative and of the related matrix

inversion is high so from a practical point of view the considered method is not efficient.

The prime goal of the present chapter is to address the computational cost issue of

higher-order Frechet derivatives for a particular class of systems of nonlinear equations

associated with ODEs L(x(t))+ f (x(t))= g(t) and use the computed Frechet derivatives

for the construction of iterative methods with better rate of convergence. The efficiency

index is also compared with the general iterative method for systems of nonlinear equa-

tions.

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 46

4.2 The proposed method

The ODE (4.1) can be written as

F(xxx) = Axxx+ f (xxx)−ggg = 0, (4.16)

where the symbols have the same meaning as described in (4.11), f (.) is a sufficient dif-

ferentiable function and A could be the function of independent variable ttt. The higher-

order Frechet derivatives can be calculated as:

F ′(xxx) = A+diag(f ′(xxx)), (4.17)

F ′′(xxx) = diag(f ′′(xxx)). (4.18)

Clearly F ′′(xxx) is a diagonal matrix and the count for function evaluations is same

as in f (xxx). The proposed iterative method is:







yyyk = xxxk − (F ′(xxxk))
−1

[

F(xxxk)+
1
2F ′′(xxxk)

(

F ′(xxxk)
−1F(xxxk)

)2]

,

Tk = (F ′(xxxk))
−1F ′(yyyk),

Sk = [3−3Tk +T 2
k](F

′(xxxk))
−1,

zzzk = yyyk −SkF(yyyk),

xxxk+1 = zzzk −SkF(zzzk).

(4.19)

We just require one matrix inversion of Jacobian. For large systems of linear

equations, the matrix inversion is not efficient so one may use LU-decomposition or

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 47

GMRES-type iterative methods [37]. We can rewrite (4.19) in an efficient way:







F ′(xxxk)φφφ k = F(xxxk),

F ′(xxxk)ψψψk = F ′′(xxxk)φφφ k
2,

yyyk = xxxk −φφφ k − 1
2ψψψk,

F ′(xxxk)ϕϕϕk = F(yyyk),

F ′(xxxk)Tk = F ′(yyyk),

Wk = 3−3Tk +T 2
k ,

zzzk = yyyk −Wkϕϕϕk,

F ′(xxxk)λλλ k = F(zzzk),

xxxk+1 = zzzk −Wkλλλ k.

(4.20)

The convergence-rate of the iteration in (4.20) is nine. We can split (4.20) into

component schemes as follows:







F ′(xxxk)φφφ k = F(xxxk),

F ′(xxxk)ψψψk = F ′′(xxxk)φφφ k
2,

yyyk = xxxk −φφφ k − 1
2ψψψk,

(4.21)

and







F ′(xxxk)φφφ k = F(xxxk),

F ′(xxxk)ψψψk = F ′′(xxxk)φφφ k
2,

yyyk = xxxk −φφφ k − 1
2ψψψk,

F ′(xxxk)ϕϕϕk = F(yyyk),

F ′(xxxk)Tk = F ′(yyyk),

Wk = 3−3Tk +T 2
k ,

zzzk = yyyk −Wkϕϕϕk.

(4.22)

The convergence-rates of the methods given in (4.21) and (4.22) are three and six,

respectively. Our proposal for the multi-step iterative methods is the following:

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 48







F ′(xxxk)φφφ k = F(xxxk),

F ′(xxxk)ψψψk = F ′′(xxxk)φφφ k
2,

z1z1z1k = xxxk −φφφ k − 1
2ψψψk,

F ′(xxxk)Tk = F ′(z1z1z1k),

Wk = 3−3Tk +T 2
k ,

F ′(xxxk)λ1λ1λ1k = F(z1z1z1k),

z2z2z2k = z1z1z1k −Wkλ1λ1λ1k,

F ′(xxxk)λ2λ2λ2k = F(z2z2z2k),

z3z3z3k = z2z2z2k −Wkλ2λ2λ2k,

F ′(xxxk)λ3λ3λ3k = F(z3z3z3k),

z4z4z4k = z3z3z3k −Wkλ3λ3λ3k,
...

F ′(xxxk)λm−1λm−1λm−1k = F(zm−1zm−1zm−1k),

xxxk+1 = zm−1zm−1zm−1k −Wkλm−1λm−1λm−1k.

(4.23)

We claim the convergence-order of (4.23) is 3m. It is noticeable that Wk and the

LU-factors of F ′(xxxk) are fixed for each k, which makes the proposed multi-step iterative

scheme computationally very efficient.

4.3 Convergence analysis

In this section, first we will prove that the local convergence-order of the technique re-

ported in (4.20) is nine and later we will establish a proof for the multi-step iterative

scheme (4.23), by using mathematical induction. We used symbolic non-commutative

algebra package of Mathematica software for the symbolic calculation in the con-

structed proof.

Theorem 4.1. Let F : Γ ⊆ R
n → R

n be sufficiently Frechet differentiable on an open

convex neighborhood Γ of xxx∗ ∈ R
n with F(xxx∗) = 0 and det(F ′(xxx∗)) 6= 0. Then the

sequence {xxxk} generated by the iterative scheme (4.20) converges to xxx∗ with local order

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 49

of convergence nine, and produces the following error equation

eeek+1 = Leeek
9 +O(eeek

10), (4.24)

where eeek = xkxkxk − xxx∗, eeek
p =

p-times
︷ ︸︸ ︷

(eeek,eeek, · · · ,eeek) and L = (−2C2C3C2C2
3 + 4C2C3C2C3C2

2 +

12C4
2C2

3 − 120C6
2C3 + 240C8

2 − 24C4
2C3C2

2 − 40C2C3C5
2 + 20C2C3C3

2C3)eee9 is a p− lin-

ear function i.e. L ∈ L

p-times
︷ ︸︸ ︷

(Rn,Rn, · · · ,Rn) and Leeek
p ∈ R

n.

Proof. Let F : Γ⊆R
n →R

n be sufficiently Frechet differentiable function in Γ. The qth

Frechet derivative of F at v ∈ R
n, q ≥ 1, is the q− linear function F(q)(v) :

q-times
︷ ︸︸ ︷

R
n
R

n · · ·Rn

such that F(q)(v)(u1,u2, · · · ,uq) ∈ R
n [154]. The Taylor’s series expansion of F(xxxk)

around xxx∗ can be written as:

F(xxxk) = F(xxx∗+xxxk −xxx∗) = F(xxx∗+eeek), (4.25)

= F(xxx∗)+F ′(xxx∗)eeek +
1
2!

F ′′(xxx∗)eeek
2 +

1
3!

F(3)(xxx∗)eeek
3 + · · · , (4.26)

= F ′(xxx∗)
[
eeek +

1
2!

F ′(xxx∗)−1F ′′(xxx∗)eeek
2 +

1
3!

F ′(xxx∗)−1F(3)(xxx∗)eeek
3 + · · ·

]
, (4.27)

=C1
[
eeek +C2eeek

2 +C3eeek
3 + · · ·

]
, (4.28)

where C1 =F ′(xxx∗) and Cs =
1
s!F

′(xxx∗)−1F(s)(xxx∗) for s≥ 2. From (4.28), we can calculate

the Frechet derivative of F :

F ′(xxxk) =C1
[
I +2C2eeek +3C3eeek

2 +4C3eeek
3 + · · ·

]
, (4.29)

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 50

where I is the identity matrix. Furthermore, we calculate the inverse of the Jacobian

matrix

F ′(xxxk)
−1

=
[
I −2C2eeek +(4C2

2 −3C3)eee
2
k +(−8C3

2 +6C3C2 +6C2C3 −4C4)eee
3
k

+(−12C3C2
2 −12C2

2C3 −12C2C3C2 +8C4C2 +9C2
3 +8C2C4 +16C4

2

−5C5)eee
4
k +(−16C4C2

2 −18C3C2C3 −18C2
3C2 −18C2C2

3 −16C2
2C4

−16C2C4C2 +24C3
2C3 +24C2

2C3C2 +24C2C3C2
2 −32C5

2 +10C5C2

+12C4C3 +12C3C4 +10C2C5 +24C3C3
2 −6C6)eee

5
k +(−24C3C4C2

−24C3C2C4 −27C3
3 −48C3C4

2 +64C6
2 −24C4C3C2 −24C4C2C3

−20C2C5C2 −24C2C4C3 +32C4C3
2 −24C2C3C4 −20C2

2C5

+36C2
2C2

3 +32C3
2C4 −48C2

2C3C2
2 +36C2C3C2C3 −48C3

2C3C2

−48C4
2C3 −48C2C3C3

2 +36C3C2
2C3 +36C3C2C3C2 +12C2C6

+16C2
4 +15C3C5 +15C5C3 +12C6C2 +36C2C2

3C2 +32C2C4C2
2

−7C7 +36C2
3C2

2 +32C2
2C4C2 −20C5C2

2)eee
6
k + · · ·

]
C−1

1 (4.30)

By multiplying F ′(xk)
−1 and F(xk), we obtain φφφ k:

φφφ k = eeek −C2eee2
k +(2C2

2 −2C3)eee
3
k +(4C2C3 +3C3C2 −3C4 −4C3

2)eee
4
k

+(8C4
2 −6C3C2

2 +6C2
3 +6C2C4 +4C4C2 −4C5 −8C2

2C3 −6C2C3C2)eee
5
k

+(−12C3C2C3 −8C2C4C2 −12C2
2C4 −12C2C2

3 +12C3C3
2 −16C5

2

−9C2
3C2 +8C2C5 +9C3C4 +8C4C3 +5C5C2 −5C6 −8C4C2

2 +16C3
2C3

+12C2
2C3C2 +12C2C3C2

2)eee
6
k + · · · . (4.31)

The expression for ψψψk is the following:

ψψψk = 2C2eee2
k +(−8C2

2 +6C3)eee
3
k +(26C3

2 −18C3C2 −20C2C3 +12C4)eee
4
k

+(52C2C3C2 +54C3C2
2 −32C4C2 −76C4

2 +60C2
2C3 −42C2

3 −36C2C4

+20C5)eee
5
k +(120C3C2C3 +86C2C4C2 +102C2

2C4 +116C2C2
3

−150C3C3
2 +208C5

2 +102C2
3C2 −56C2C5 −72C3C4 −72C4C3 −50C5C2

+30C6 +92C4C2
2 −168C3

2C3 −142C2
2C3C2 −146C2C3C2

2)eee
6
k + · · · . (4.32)

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 51

By using (4.31) and (4.32), we obtain

yyyk −xxx∗ = eeek −φφφ k −
1
2

ψψψk = (2C2
2 −C3)eee

3
k +(6C3C2 +6C2C3 −3C4 −9C3

2)eee
4
k

+(12C4C2 +15C2
3 +12C2C4 −6C5 +30C4

2 −22C2
2C3 −20C2C3C2

−21C3C2
2)eee

5
k +(−88C5

2 +20C5C2 +28C4C3 +27C3C4 +20C2C5 −10C6

+63C3C3
2 −48C3C2C3 −42C2

3C2 −46C2C2
3 −39C2

2C4 −35C2C4C2

+68C3
2C3 +59C2

2C3C2 +61C2C3C2
2 −38C4C2

2)eee
6
k + · · · (4.33)

ϕϕϕk and Tk are computed from (4.30), and thus Tk produces:

Wk = I +2C2eeek +3C3eee2
k +(2C2C3 +4C4 −12C3

2)eee
3
k +(6C2C4 −24C2

2C3

−12C3C2
2 +42C4

2 +5C5 −20C2C3C2)eee
4
k +(−18C3C2C3 −28C2C4C2

−40C2
2C4 −42C2C2

3 +48C3C3
2 −72C5

2 −18C2
3C2 +12C2C5 +6C6

−16C4C2
2 +72C3

2C3 +56C2
2C3C2 +58C2C3C2

2)eee
5
k +(−24C3C4C2

−24C3C2C4 −30C3
3 −108C3C4

2 −48C6
2 −24C4C3C2 −24C4C2C3

−36C2C5C2 −62C2C4C3 +64C4C3
2 −70C2C3C4 −60C2

2C5 +116C2
2C2

3

+102C3
2C4 −74C2

2C3C2
2 +112C2C3C2C3 −38C3

2C3C2 −106C4
2C3

−106C2C3C3
2 +66C3C2

2C3 +60C3C2C3C2 +20C2C6 +84C2C2
3C2

+68C2C4C2
2 +7C7 +78C2

3C2
2 +62C2

2C4C2 −20C5C2
2)eee

6
k + · · · . (4.34)

By combining relations (4.33) and (4.34), we find an expression for zzzk, namely

zzzk −xxx∗ = (C2C2
3 +20C5

2 −10C3
2C3 −2C2C3C2

2)eee
6
k +(−204C6

2 +24C3C4
2 +3C2C4C3

+3C2C3C4 −18C2
2C2

3 −30C3
2C4 +36C2

2C3C2
2 −24C2C3C2C3 +60C3

2C3C2

+117C4
2C3 +45C2C3C3

2 −12C3C2
2C3 −6C2C2

3C2 −6C2C4C2
2)eee

7
k +(32C4C4

2

+36C3C2C3C2
2 +72C3C2

2C3C2 +6C2C5C3 +144C3C3
2C3 +6C2C3C5

+9C2(C
2
4)+108C2

2C2
3C2 +56C2

2C4C2
2 +1161C7

2 −382C3
2C3C2

2 +83C2C4C3
2

+36C2
3C3

2 +215C2C3C2
2C3 +128C2C3C2C3C2 −28C2

2C4C3 −54C2
2C3C4

−60C3
2C5 −12C2C3C4C2 −66C2C3C2C4 −48C2(C

3
3)−18C2C4C3C2

−46C2C4C2C3 −12C2C5C2
2 +236C3

2C2
3 −18C2

3C2C3 −36C3C2
2C4 −18C3C2C2

3

+120C3
2C4C2 +192C2

2C3C2C3 +87C2C2
3C2

2 +291C4
2C4 −542C4

2C3C2

−736C5
2C3 −16C4C2

2C3 −252C3C5
2 −330C2

2C3C3
2 −362C2C3C4

2)eee
8
k + · · · .

(4.35)

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 52

From (4.30) and (4.35), we have

λλλ k = (C2C2
3 +20C5

2 −10C3
2C3 −2C2C3C2

2)eee
6
k +(−20C2

2C2
3 −244C6

2 +137C4
2C3

+40C2
2C3C2

2 +24C3C4
2 +3C2C4C3 +3C2C3C4 −30C3

2C4 −24C2C3C2C3

+60C3
2C3C2 +45C2C3C3

2 −12C3C2
2C3 −6C2C2

3C2 −6C2C4C2
2)eee

7
k

+(32C4C4
2 +42C3C2C3C2

2 +72C3C2
2C3C2 +6C2C5C3 +174C3C3

2C3

+6C2C3C5 +9C2(C
2
4)+120C2

2C2
3C2 +68C2

2C4C2
2 +1649C7

2 −462C3
2C3C2

2

+83C2C4C3
2 +36C2

3C3
2 +239C2C3C2

2C3 +128C2C3C2C3C2 −34C2
2C4C3

−60C2
2C3C4 −60C3

2C5 −12C2C3C4C2 −66C2C3C2C4 −48C2(C
3
3)−18C2C4C3C2

−46C2C4C2C3 −12C2C5C2
2 +276C3

2C2
3 −18C2

3C2C3 −36C3C2
2C4

−21C3C2C2
3 +120C3

2C4C2 +240C2
2C3C2C3 +87C2C2

3C2
2 +351C4

2C4

−662C4
2C3C2 −1010C5

2C3 −16C4C2
2C3 −312C3C5

2 −420C2
2C3C3

2

−410C2C3C4
2)eee

8
k + · · · . (4.36)

Finally, by using (4.34), (4.35) and (4.36), we obtain the error equations reported

below and the proof is completed

eeek+1 = (−2C2C3C2C2
3 +4C2C3C2C3C2

2 +12C4
2C2

3 −120C6
2C3 +240C8

2 −24C4
2C3C2

2

−40C2C3C5
2 +20C2C3C3

2C3)eee
9
k +O(eee10

k). (4.37)

Theorem 4.2. The multi-step iterative scheme (4.23) has the local convergence-order

3m, using m evaluations of a sufficiently differentiable function F, two first-order

Frechet derivative F ′ and one second-order Frechet derivate F ′′ per full-cycle.

Proof. The proof is established from mathematical induction. For m = 1 the multi-

step iterative scheme given in (4.23) corresponds to the iterative scheme in (4.21).

The convergence-order of (4.21) is produced in (4.33) which is three. Similarly for

m = 2, 3 the multi-step scheme (4.23) reduced to the iterative schemes (4.22) and

(4.20), respectively. The convergence-orders are calculated in (4.35) and (4.37) which

are 3m = 32 = 6 and 3m = 33 = 9 respectively. Consequently our claim concerning the

convergence-order 3m is true for m = 1, 2, 3.

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 53

We assume that our claim is true for m= s> 3, i.e., the convergence-order of (4.23)

is 3s. The sth-step and (s−1)th-step of iterative scheme(4.23) can be written as:

Frozen− f actor =WkF ′(xxxk)
−1
, (4.38)

zs−1zs−1zs−1k = zs−2zs−2zs−2k − (Frozen− f actor)F(zs−2zs−2zs−2k), (4.39)

zszszsk = zs−1zs−1zs−1k − (Frozen− f actor)F(zs−1zs−1zs−1k), (4.40)

where Frozen− f actor is the product of Wk and F ′(xxxk)
−1 which are calculated just

once in one full-cycle of iterative method. The enhancement in the convergence-order

of (4.23) from (s−1)th-step to sth-step is 3s−3(s−1)= 3 . Now we write the (s+1)th-

step of (4.23):

zs+1zs+1zs+1k = zszszsk − (Frozen− f actor)F(zszszsk). (4.41)

The increment in the convergence-order of (4.23), due to (s + 1)th-step, is ex-

actly three, because the use of the Frozen− f actor adds an additive constant in the

convergence-order[15]. Finally the convergence-order after the addition of the (s+1)th-

step is 3s+3 = 3(s+1), which completes the proof.

4.4 Efficiency index

For the purpose of comparison we write the multi-step extensions of iterative schemes

(4.13) and (4.14) as follows:







yyy(k) = xxx(k)− 2
3F ′(xxx(k))−1F(xxx(k)),

ttt(k) = 1
2(3F ′(yyy(k))−F ′(xxx(k)))−1(3F ′(yyy(k))+F ′(xxx(k))),

zzz(k) = xxx(k)−ttt(k)F ′(xxx(k))−1F(xxx(k)),

www(k) = zzz(k)− (ttt(k))2F ′(xxx(k))−1F(zzz(k)),

xxx(k+1) =www(k)− (ttt(k))2F ′(xxx(k))−1F(www(k)),

(4.42)

and

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 54







yyy(k) = xxx(k)− 2
3F ′(xxx(k))−1F(xxx(k)),

ttt(k) = F ′(xxx(k))−1F ′(yyy(k)),

zzz(k) = xxx(k)−
(

23
8 I −3ttt(k)+ 9

8ttt(k)
2

)

F ′(xxx(k))−1F(xxx(k)),

www(k) = zzz(k)−
(

5
2 I − 3

2t(k)
)

F ′(xxx(k))−1F(zzz(k)),

xxx(k+1) =www(k)−
(

5
2I − 3

2ttt(k)
)

F ′(xxx(k))−1F(www(k)).

(4.43)

Both multi-step iterative schemes (4.42) and (4.43) have convergence-order

eight. Further steps can be added with the inclusion of the frozen factors ζζζ (k) −

(ttt(k))2F ′(xxx(k))−1F(ζζζ (k)) and ζζζ (k)−
(

5
2 I− 3

2ttt(k)
)

F ′(xxx(k))−1F(ζζζ (k)) in (4.42) and (4.43),

respectively, in order to increase the convergence-order. Let us discuss the compu-

tational cost of the considered multi-step iterative schemes. It is well-know that the

LU-decomposition requires 2n3

3 flops and 2n2 flops are needed to solve the two result-

ing triangular systems, when the right-hand side is a vector. If the right-hand side is

a matrix then 2n3, or approximately n3 flops (as taken in this chapter) are required to

solve two triangular systems. The scalar function evaluations in F(xxx), F ′(xxx) and F ′′(xxx)

are n, because, in our setting, the Frechet derivatives are diagonal matrices of order n.

In Table 4.1, we depicted the computational cost and efficiency index of different multi-

step methods. The flops-like efficiency indices of the considered multi-steps methods

are shown in Figure 4.1. Clearly our proposed multi-step method has better flops-like

efficiency index [37] in comparison with others.

Iterative methods (42) (43) (23)
Number of steps (m) 4 4 3
Rate of convergence 8 8 9
Number of functional evaluations 5n 5n 6n
The classical efficiency index 21/(5n) 21/(5n) 21/(6n)

Number of LU factorizations 2 1 1

Cost of LU factorizations 4n3

3
2n3

3
2n3

3

Cost of linear systems 7n3

3 +6n2 5n3

3 +6n2 5n3

3 +8n2

Flops-like efficiency index 81/(7n3
3 +6n2+5n) 81/(5n3

3 +6n2+5n) 91/(5n3
3 +8n2+6n)

TABLE 4.1: Comparison of efficiency indices for different for multi-step methods

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 55

10 15 20 25 30
1

1.0001

1.0002

1.0003

1.0004

1.0005

1.0006

1.0007

1.0008

1.0009

size of system of nonlinear equations

e
ff
ic

ie
n
c
y
 i
n
d
e
x

(20)

(45)

(44)

FIGURE 4.1: Flops-like efficiency indices for different multi-step methods

4.5 Numerical testing

In order to check the validity and efficiency of the proposed multi-step method (4.23),

we select two boundary value and one initial value problem. The first is the Bratu-

problem

x′′(t)+αex(t) = 0, (4.44)

with boundary conditions given by x(0) = 0, x(1) = 0. The second is the Frank-

Kamenetzkii-problem

x′′(t)+
κ

t
x′(t)+αex(t) = 0, (4.45)

with boundary conditions given by x′(0) = 0, x(1) = 0. The closed form solution of

(4.44) [181] and (4.45) for κ = 1 [182] are







x(t) =−2log

[
cosh

(

(t− 1
2)

θ
2

)

cosh

(
θ
4

)

]

,

θ =
√

2α cosh

(

θ
4

)

,

(4.46)

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 56

and







c1 = log
[

2(4−α)±4
√

2(2−α)
]

, x(t) = log

[

16ec1

(2α+ec1 t2)2

]

,

c2 = log

[

4−α±2
√

2(2−α)

2α2

]

, x(t) = log

[

16ec2

(1+2αec2 t2)2

]

,

(4.47)

respectively. More discussion about Bratu and Frank-Kamenetzkii can be found in [5,

6]. The last one is Lene-Emden problem

x′′(t)+
2
t

x′(t)+ xp(t) = 0, 0 < x < ∞, (4.48)

with initial conditions x(0) = 1 and x′(0) = 0. The closed form solution of (4.48) for

p = 5 is

x(t) =

(

1+
x3

3

)−1/2

. (4.49)

We use the Chebyshev pseudo-spectral collocation method [142] for the approxi-

mation of the boundary-value problems (4.44),(4.45) and (4.48). For the verification of

convergence-order, we use the following definition for the computational convergence-

order (COC):

COC ≈ log
[
Max(|xxxk+2 −xxx∗|)/Max(|xxxk+1 −xxx∗|)

]

log
[
Max(|xxxk+1 −xxx∗|)/Max(|xxxk −xxx∗|)

] , (4.50)

where Max(|xxxk+2 −xxx∗|) is maximum absolute error.

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

t

x
H
t
L

,
0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

t

x
H
t
L

FIGURE 4.2: solution-curve of the Bratu-problem for α = 1 (left), solution-curve of
the Frank-Kamenetzkii-problem for α = 1, k = 1 (right)

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 57

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

t

x
H
t
L

FIGURE 4.3: solution-curve of the Lene-Emden for p = 5, Domain=[0, 9]

ææ

àààà
àà
à
à
à
à
à
à
à
à
à
à
àà
ààààà

à
à
à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à
à
ààà

à
à

à

à

à

à

à

à

à

à

à

à

à
à
àà
àààà

à
à
à
à
à
à
à
à
à
à
à
à
à
ààààààààà

àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
ààà
ààà
ààààà
ààààààààààààààààà

ìììì
ì
ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì
ì
ììì
ì
ì
ì
ì
ìì
ììì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ììììììììììììììììì

ììììì
ììììì

ììììì
ìììì

ìììì
ììì

ììì
ììì

ììì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ììì
ììì
ììììì
ììììììììììììììììììì

òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò
òòòòòòòòòòòò

òòòòòòòò
òòòòòòò

òòòòò
òòòòò

òòòò
òòòò

òòò
òòò

òòò
òòò

òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òòò
òòò
òòòòò
òòòòòòòòòòòòòòòòòò

ôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôô
ôôôôôôôôôôôô

ôôôôôôôô
ôôôôôôô

ôôôôô
ôôôôô

ôôôô
ôôôô

ôôô
ôôô

ôôô
ôôô

ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôôô
ôôô
ôôôôô
ôôôôôôôôôôôôôôôôôô

0 2 4 6 8

0.0

0.5

1.0

1.5

t

x
H
t
L

ô Iter = 4

ò Iter = 3

ì Iter = 2

à Iter = 1

æ Initial guess

FIGURE 4.4: Convergence behavior of iterative method (4.23) for the Lene-Emden
problem (p = 5, Domain=[0, 9])

ææ

àààà
àà
à
à
à
à
à
à
à
à
à
à
à
à
à
à
àà
àààà
à
à
à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à
à
àààà

à
à

à

à

à

à

à

à

à

à

à

à
à
à
àààààà

à
à
à
à
à
à
à
à
à
à
à
à
ààààààààà

àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
ààà
àààà
àààààààààààààààààà

ìììììììììì
ììììììì
ì
ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ììì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì
ì
ì
ì
ì
ì
ììììììììììììììììì

ìììì
ìììì

ìììì
ììì

ììì
ììì

ììì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ìì
ììì
ìììì
ìììììììììì

ìììììììììì

òò
ò
ò
ò

ò

ò

ò

ò

ò

ò

ò

ò
ò
ò
ò
òòòòòòòòòòòòòòòòòòòòò

òòòòòòòòò
òòòòòòò

òòòòòò
òòòòò

òòòò
òòòò

òòò
òòò

òòò
òòò

òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òò
òòò
òòò
òòòòò
òòòòòòòòòòòòòòòòò

ôôôôôôôôôôôôôôôôôôôôôôôôôôôôô
ôôôôôôôôôôô

ôôôôôôôô
ôôôôôôô

ôôôôô
ôôôôô

ôôôô
ôôôô

ôôô
ôôô

ôôô
ôôô

ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôô
ôôô
ôôôô
ôôôôôôôô

ôôôôôôôôôôôô

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t

x
H
t
L

ô Iter = 4

ò Iter = 3

ì Iter = 2

à Iter = 1

æ Initial guess

FIGURE 4.5: Convergence behavior of iterative method (4.43) for the Lene-Emden
problem (p = 5, Domain=[0, 9])

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 58

0 2 4 6 8

0

5. ´ 10- 18

1. ´ 10- 17

1.5 ´ 10- 17

2. ´ 10- 17

2.5 ´ 10- 17

t

A
b
so

lu
te

E
rr
o
r

,
0 2 4 6 8

0

5. ´ 10- 41

1. ´ 10- 40

1.5 ´ 10- 40

2. ´ 10- 40

2.5 ´ 10- 40

t

A
b
so

lu
te

E
rr
o
r

FIGURE 4.6: Absolute error curve for the Lene-Emden problem, left(4.23) and right
(4.43)

Iterative methods (42) (43) (23)
α 1 1 1
Size of problem 150 150 150
Number of steps (m) 4 4 3
Number of iterations 2 2 2
Max absolute error 5.29e−117 1.87e−110 3.77e−142
Execution time 29.60 20 19.61
α 2 2 2
Size of problem 200 200 200
Number of steps (m) 4 4 3
Number of iterations 2 2 2
Max absolute error 1.66e−109 3.48e−99 5.33e−127
Execution time 69.41 46.70 46.39
α 3 3 3
Size of problem 150 150 150
Number of steps (m) 4 4 3
Number of iterations 2 2 2
Max absolute error 1.65e−46 8.41e−37 5.50e−47
Execution time 29.49 20.76 20.69

TABLE 4.2: Comparison of performances for different multi-step methods in the case
of the Bratu-problem

Iterative methods (43) (23)
Size of problem 200 200
Number of steps (m) 8 5
Theoretical convergence-order 16 15
Computational convergence-order 16.67 15.51
Number of iterations 3 3
Max absolute error 1.078e−198 1.14e−198
Execution time 97.13 71.80

TABLE 4.3: Comparison of performances for different multi-step methods in the case
of the Frank-Kamenetzkii-problem (α = 1, κ = 1)

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 59

Iterative methods (43) (23)
Size of problem 150 150
Number of steps (m) 3 2
Number of iterations 4 4
Max absolute error at iter 1 1.17994 1.49025

2 1.0978 1.23935
3 0.743812 0.0000128682
4 1.38e−17 2.5e−40

Execution time 15.23 15.02

TABLE 4.4: Comparison of performances for different multi-step methods in the case
of the Lene-Emden problem (p = 5, Domain=[0, 9])

.

In Table 4.2, we compared the numerical performances of different multi-step iter-

ative schemes in the case of the Bratu-problem, for different values of α . The multi-step

iterative scheme (4.42) is computational expensive with respect to (4.43) and the pro-

posed multi-step iterative scheme (4.23). The simulation execution time for (4.43) and

(4.23) are almost the same for the test cases of Bratu-problem. The maximum abso-

lute error produced in the solution curve for Bratu-problem of the proposed multi-step

iterative scheme (4.23) is comparatively better than the other two, in all the considered

cases, by varying also the size of the grids.

For the Frank-Kamenetzkii-problem, we did not consider the iterative scheme

(4.42) due to its extremely high computational cost. In Table 4.3, we took the grid

size 200: we performed three iterations and used different number of steps to produce

higher convergence-order. The maximum absolute error in the solution curve is approx-

imately the same, but the simulation execution time of our proposed iterative scheme

(4.23) is less than that of the iterative scheme (4.43). The successive iteration of conver-

gence behavior for the Lene-Emden problem are shown in Figure 4.4 and 4.5. Table 4.4

shows the superiority our iterative scheme in the case of Lene-Emden problem. A large

domain for the Lene-Emden initial-value problem is selected to analyze the convergence

behavior of iterative schemes (4.43) and (4.23).

4.6 Summary

Usually higher-order Frechet derivatives are avoided in the construction of iterative

schemes for a general class of systems of nonlinear equations, owing to the resulting

Chapter 4. An Efficient Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with ODEs 60

high computational cost. In this study, we have shown that there are interesting classes

of systems of nonlinear equations associated with ODEs where higher-order Frechet

derivatives are just diagonal matrices (of course this is not the case in general). The

computational cost of diagonal matrices is the same as that related to the Jacobian. The

use of second-order Frechet derivative enhances substantially the convergence-order

and the resulting multi-step iterative scheme (4.23) achieved better performance index.

The numerical simulations for the selected boundary value problems have shown the

validity and accuracy of our proposed iterative scheme, in comparison with general

purpose multi-step iterative schemes. However, we have to stress that our iterative tech-

nique is only efficient when the systems of nonlinear equations associated with ODEs

has the special structure considered in this chapter.

Chapter 5

A Higher Order Multi-step Iterative

Method for Computing the Numerical

Solution of Systems of Nonlinear

Equations Associated with Nonlinear

PDEs and ODEs

The main research focus in this chapter is to address the construction of an efficient

higher order multi-step iterative method to solve systems of nonlinear equations

associated with nonlinear partial differential equations (PDEs) and ordinary differ-

ential equations (ODEs). The construction includes second order Frechet deriva-

tives. The proposed multi-step iterative method uses two Jacobian evaluations at

different points and requires only one inversion (in the sense of LU-factorization)

of the Jacobian. The enhancement of convergence-order (CO) is hidden in the

formation of a proper matrix polynomial. Since the cost of matrix vector multipli-

cation is expensive computationally, we developed a matrix polynomial of degree

two for the base method and of degree one to perform the subsequent steps, so

we need just one matrix vector multiplication to perform each further step. The

base method has convergence order four and each additional step enhances the CO

by three. The general formula for CO is 3s− 2 for s ≥ 2 and 2 for s = 1 where

s is the step number. The number of function evaluations including Jacobian are

s+2 and the number of matrix vectors multiplications are s. Regarding the s-step

iterative method, we solve s upper and lower triangular systems, when the right

hand side is a vector, and a single pair of triangular systems, when the right hand

61

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 62

side is a matrix. When considering systems of nonlinear equations stemming from

the approximation of specific PDEs and ODEs, it is shown that the computational

cost is almost the same if we compare the Jacobian and the second order Frechet

derivative. The accuracy and validity of proposed multi-step iterative method is

numerically checked with different examples of PDEs and ODEs.

5.1 Introduction

We are interested in higher order multi-step solvers for systems of nonlinear equations.

Since high order Frechet derivatives can be naturally involved in these methods, we

face a critical computational problem (see [154] for a valuable discussion concerning

Frechet derivatives): here for high order Frechet derivative we mean a Frechet derivative

of order larger or equal to three. However in the following we will show how to avoid

the use of high order Frechet derivatives in the construction of iterative methods for

general systems of nonlinear equations: in particular, for specific classes of systems of

nonlinear equations associated with ODEs and PDEs, we will show that the cost of the

second order Frechet derivative is still acceptable, from a computational viewpoint. To

make things simpler, consider a system of three nonlinear equations

FFF(yyy) = [f1(yyy), f2(yyy), f3(yyy)]
T = 0, (5.1)

where yyy = [y1, y2, y3]
T . The first order Frechet derivative (Jacobian) of (5.1) is

FFF ′(yyy) =







∂ f1
∂y1

∂ f1
∂y2

∂ f1
∂y3

∂ f2
∂y1

∂ f2
∂y2

∂ f2
∂y3

∂ f3
∂y1

∂ f3
∂y2

∂ f3
∂y3






=







f11 f12 f13

f21 f22 f23

f31 f32 f33







(5.2)

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 63

Next we proceed for the calculation of second-order Frechet derivative. Suppose hhh =

[h1, h2, h3]
T is a constant vector.

FFF ′(yyy)hhh =







h1 f11 +h2 f12 +h3 f13

h1 f21 +h2 f22 +h3 f23

h1 f31 +h2 f32 +h3 f33






,FFF ′′(yyy)hhh2 =

∂ (F ′(yyy)hhh)
∂ (y1,y2,y3)

hhh,

FFF ′′(yyy)hhh2 =





h1 f111 +h2 f121 +h3 f131 h1 f112 +h2 f122 +h3 f132 h1 f113 +h2 f123 +h3 f133

h1 f211 +h2 f221 +h3 f231 h1 f212 +h2 f222 +h3 f232 h1 f213 +h2 f223 +h3 f233

h1 f311 +h2 f321 +h3 f331 h1 f312 +h2 f322 +h3 f332 h1 f313 +h2 f323 +h3 f333









h1

h2

h3



 ,

=





h2
1 f111 +h1h2 f121 +h1h3 f131 +h1h2 f112 +h2

2 f122 +h2h3 f132 +h1h3 f113 +h2h3 f123 +h2
3 f133

h2
1 f211 +h1h2 f221 +h1h3 f231 +h1h2 f212 +h2

2 f222 +h2h3 f232 +h1h3 f213 +h2h3 f223 +h2
3 f233

h2
1 f311 +h1h2 f321 +h1h3 f331 +h1h2 f312 +h2

2 f322 +h2h3 f332 +h1h3 f313 +h2h3 f323 +h2
3 f333



 ,

=





h2
1 f111 +h2

2 f122 +h2
3 f133 +h1h2(f121 + f112)+h1h3(f131 + f113)+h2h3(f132 + f123)

h2
1 f211 +h2

2 f222 +h2
3 f233 +h1h2(f221 + f212)+h1h3(f231 + f213)+h2h3(f232 + f223)

h2
1 f311 +h2

2 f322 +h2
3 f333 +h1h2(f321 + f312)+h1h3(f331 + f313)+h2h3(f332 + f323)



 ,

=







h2
1 f111 +h2

2 f122 +h2
3 f133 +2h1h2 f121 +2h1h3 f113 +2h2h3 f123

h2
1 f211 +h2

2 f222 +h2
3 f233 +2h1h2 f212 +2h1h3 f213 +2h2h3(f232 + f223)

h2
1 f311 +h2

2 f322 +h2
3 f333 +2h1h2 f312 +2h1h3 f313 +2h2h3(f332 + f323)






.

(5.3)

Finally, we get the expression for FFF ′′(yyy)hhh2

FFF ′′(yyy)hhh2 =







f111 f122 f133

f211 f222 f233

f311 f322 f333













h2
1

h2
2

h2
3






+2







f121 f113 f123

f212 f213 f223

f312 f313 f323













h1h2

h1h3

h2h3






. (5.4)

Clearly, the computational cost for second-order Frechet derivative is high in the

case of general systems of nonlinear equations. Many systems of nonlinear equations

associated with PDEs and ODEs can be written as







F(y) = L(y)+ f (y)+w = 0,

FFF(yyy) = Ayyy+ f (yyy)+www = 0,
(5.5)

where A is the discrete approximation to linear differential operator L(·) and f (·) is the

nonlinear function. If we write down the second-order Frechet derivative of (5.5) by

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 64

using (5.4) we get

FFF ′′(yyy)hhh2 =












f ′′(y1) 0 0 · · · 0

0 f ′′(y2) 0 · · · 0

0 0 f ′′(y3) · · · 0
...

0 0 0 · · · f ′′(yn)























h2
1

h2
2

h2
3
...

h2
n












(5.6)

and hence the related second-order Frechet derivative is easy to handle from a compu-

tational viewpoint. Now, for the further analysis , we introduce suitable notation. Let

aaa = [a1, a2, , · · · ,an]
T and bbb = [b1, b2, , · · · ,bn]

T be two vectors, the we define the

diagonal of a vector and the point-wise product between two vectors as

diag(aaa) =










a1 0 0 · · · 0

0 a2 0 · · · 0
...

0 0 0 · · · an










, aaa⊙bbb = diag(aaa) bbb = [a1b1, a2b2, · · · ,anbn]
T .

(5.7)

For the motivation of readers we list some famous nonlinear ODEs and PDEs and

their first- and second-order derivatives in scalar and vectorial forms (Frechet deriva-

tives). Let Dx and Dt be the discrete approximations of differential operators in spatial

and temporal dimensions and let u be the function of spatial variables (in some cases

temporal variable is also considered). We also introduce a function h which is indepen-

dent from u, while the symbols It and Ix denote the identity matrices size equal to the

number of nodes in temporal and spatial dimensions, respectively.

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 65

5.1.1 Bratu problem

The Bratu problem is discussed in [183] and it is stated as







f (u) = u′′+λeu = 0, u(0) = u(1) = 0,

d f (u)
du h = h′′+λeuh,

d2 f (u)
du2 h2 = λeuh2,

FFF(uuu) = D2
xuuu+λeuuu = 000,

FFF ′hhh = D2
xhhh+λeuuu ⊙hhh,

FFF ′ = D2
x +λ diag

(
euuu
)
,

FFF ′′hhh2 = λeuuu ⊙hhh2.

(5.8)

The closed form solution of Bratu problem can be written as







u(x) =−2log

(

cosh((x−0.5)(0.5θ))
cosh(0.25θ)

)

,

θ =
√

2λcosh
(
0.25θ

)
.

(5.9)

The critical value of λ satisfies 4 =
√

4λcsinh(0.25θc). The Bratu problem has two

solutions, unique solution and no solution if λ < λc, λ = λc and λ > λc respectively.

The critical value λc = 3.51383071912516.

5.1.2 Frank-Kamenetzkii problem

The Frank-Kamenetzkii problem [182] is written as







u′′+ 1
x u′+λeu = 0, u′(0) = u(1) = 0,

FFF(uuu) = D2
xuuu+ 1

xxx ⊙Dxuuu+λeuuu = 000,

FFF ′hhh = D2
xhhh+ 1

xxx ⊙Dxhhh+λeuuu ⊙hhh,

FFF ′ = D2
x +diag

(

1
xxx

)

Dx +λ diag
(
euuu
)
,

FFF ′′hhh2 = λeuuu ⊙hhh2.

(5.10)

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 66

The Frank-Kamenetzkii problem has no solution (λ > 2), (λ = 2) and two solutions

(λ < 2). The closed form solution of (5.10) is given as







c1 = log

(

2(4−λ)±4
√

2(2−λ)

)

,

c2 = log

(

4−λ)±2
√

2(2−λ)

2λ 2

)

,

u(x) = log

(

16ec1

(2λ+ec1 x2)2

)

,

u(x) = log

(

16ec1

(1+2λec2x2)2

)

.

(5.11)

5.1.3 Lane-Emden equation

The Lane-Emden equation is a classical equation [184] which has been introduced in

1870 by Lane and further investigated by Emden in (1907). Lane-Emden equation

deals with mass density distribution inside a spherical star when it is in hydrostatic

equilibrium. The lane-Emden equation for index n = 5 can be written as







u′′+ 2
x u′+u5 = 0, u(0) = 1, u′(0) = 0,

FFF(uuu) = D2
xuuu+ 1

xxx ⊙Dxuuu+uuu5,

FFF ′hhh = D2
xhhh+ 1

xxx ⊙Dxhhh+5uuu4 ⊙hhh,

FFF ′ = D2
x +diag

(

1
xxx

)

Dx +5 diag
(
uuu4

)
,

FFF ′′hhh2 = 20 uuu3 ⊙hhh2.

(5.12)

The closed form solution of (5.12) can be written as

u(x) =

(

1+
x2

3

)− 1
2

. (5.13)

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 67

5.1.4 Klein-Gordan equation

Klein-Gordan equation is discussed and solved in [185].







utt − c2uxx + f (u) = p, −∞ < x < ∞, t > 0

FFF(uuu) = (D2
t − c2D2

x)uuu+ f (uuu)− ppp,

FFF ′hhh = (D2
t − c2D2

x)hhh+ f ′(uuu)⊙hhh,

FFF ′ = D2
t − c2D2

x +diag(f ′(uuu)),

FFF ′′hhh2 = f ′′(uuu)⊙hhh2,

(5.14)

where f (u) is the odd function of u and initial conditions are







u(x,0) = g1(x),

ut(x,0) = g2(x).
(5.15)

We have calculated the second-order Frechet derivatives of four different nonlinear

ODEs and PDEs. Clearly the computational costs of second-order Frechet derivatives

are not higher than first-order Frechet derivatives or Jacobians. So we insist that the

second-order Frechet derivatives for particular class of ODEs and PDEs are not expen-

sive as they are in the case of general systems of nonlinear equations. The main source

of information about iterative methods is the manuscript written by J. F. Traub [3] in

1964. Recently many researchers have contributed in the area of iterative method for

systems of nonlinear equations [104, 109, 142, 186, 187, 187–191]. The major part of

work is devoted to the construction of iterative methods for single variable nonlinear

equations[103]. According to Traub’s conjecture if we use n function evaluations, then

the maximum CO is 2n−1 in the case of single variable nonlinear equations but for multi-

variable case we do not have such claim. In the case of systems of nonlinear equations

the multi-steps iterative methods are interesting because with minimum computational

cost we are allowed to construct higher-order convergence iterative methods. For the

better understanding we can divide multi-steps iterative methods in two parts : one is

called base method, the other is called multi-steps. In the base method we construct

an iterative method in way that it provides maximum enhancement in the convergence-

order with minimum computational cost when we perform multi-steps. Malik et. al.

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 68

[192] proposed the following multi-step iterative method (MZ1) :

MZ1 =







Number of steps = m ≥ 2

CO = 2m

Function evaluations = m+1

Inverses = 2

Matrix vector multiplications = 1

Number of solutions of systems

of linear equations

when right hand side is matrix = 1

when right hand side is vector = m−1







Base-Method →







FFF ′(xxx)φφφ 1 =FFF(xxx)

yyy1 = xxx− 2
3φφφ 1

W = 1
2

(

3FFF ′(yyy1)−FFF ′(xxx)
)

WT = 3FFF ′(yyy1)+FFF ′(xxx)

yyy2 = xxx− 1
4 Tφφφ 1

(m−2)-steps →







For s = 1,m−2

Wφφφ s+1 =FFF(yyys+1),

yyys+2 = yyys+1 −φφφ s+1,

End

xxx = yyym.

In [37] F. Soleymani and co-researchers constructed an other multi-step iterative

method (FS):

FS =







Number of steps = m ≥ 2

CO = 2m

Function evaluations = m+1

Inverses = 2

Matrix vector multiplications = 2m−3

Number of solutions of systems

of linear equations

when right hand side is matrix = 1

when right hand side is vector = m−1







Base-Method →







FFF ′(xxx)φφφ 1 =FFF(xxx)

yyy1 = xxx− 2
3φφφ 1

W = 1
2

(

3FFF ′(yyy1)−FFF ′(xxx)
)

WT = 3FFF ′(yyy1)+FFF ′(xxx)

yyy2 = xxx−Tφφφ 1

(m−2)-steps →







For s = 1,m−2

FFF ′(xxx)φφφ s+1 =FFF(yyys+1),

yyys+2 = yyys+1 −T 2φφφ s+1,

End

xxx = yyym.

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 69

H. Montazeri et. al. [105] developed the more efficient multi-step iterative methods

(HM):

HM =







Number of steps = m ≥ 2

CO = 2m

Function evaluations = m+1

Inverses = 1

Matrix vector multiplications = m

Number of solutions of systems

of linear equations

when right hand side is matrix = 1

when right hand side is vector = m−1







Base-Method →







FFF ′(xxx)φφφ 1 =FFF(xxx)

yyy1 = xxx− 2
3φφφ 1

FFF ′(xxx)T =FFF ′(yyy1)

yyy2 = xxx−
(

23
8 I −3T + 9

8 T 2

)

φφφ 1

(m−2)-steps →







For s = 1,m−2

FFF ′(xxx)φφφ s+1 =FFF(yyys+1),

yyys+2 = yyys+1−
(

5
2 I − 3

2 T

)

φφφ s+1,

End

xxx = yyym.

5.2 The proposed new multi-step iterative method

We now propose a new multi-step iterative method (MZ2):

MZ2 =







Number of steps = m ≥ 2

CO = 3m−2

Function evaluations = m+2

Inverses = 1

Matrix vector

multiplications = m

Number of solutions

of systems of linear

equations when

right hand side is matrix = 1

right hand side is vector = m







Base-Method →







FFF ′(xxx)φφφ 1 =FFF(xxx)

FFF ′(xxx)φφφ 2 =FFF ′′
(

xxx− 4
9φφφ 1

)

φφφ 2
1

yyy1 = xxx−
(

φφφ 1 +
3
2φφφ 2

)

FFF ′(xxx)T =FFF ′(yyy1)

yyy2 = xxx−
(

7
2 I −6T + 7

2 T 2

)

(

φφφ 1 +
3
2φφφ 2

)

(m−2)-steps →







For s = 1,m−2

FFF ′(xxx)φφφ s+2 =FFF(yyys+1),

yyys+2 = yyys+1 −
(

2I −T
)

φφφ s+2,

End

xxx = yyym.

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 70

We claim that the convergence-order of our proposed multi-step iterative method is

CO =







2 m = 1,

3m−2 m ≥ 2,
(5.16)

where m is the number of steps of MZ2. The computational costs of MZ1 and FS are

high because both methods use two inversions of matrices and hence we will not con-

sider MZ1 and FS methods in our subsequent analysis and discussion. The multi-step

iterative method HM use only one inversion of Jacobian and hence is a good candidate

for the performance comparison. We presented comparison between MZ2 and HM in

Table 5.1 and 5.2. If the number of function evaluations and the number of solutions

of the system of linear equations are equal, then the performance of MZ2 in terms of

convergence-order is better than HM, when the number of steps of MZ2 is grater or

equal to four (see Table 5.1). When the convergence-orders of both iterative methods

are equal then, from Table 5.2, we can see that the computational effort of HM is always

higher than that of MZ2 for m ≥ 2.

The performance index to measure the efficiency of an iterative method to solve

systems of nonlinear equation is defined as

ρ =CO
1

f lops . (5.17)

In Table 5.3 we provided the (multiplicative) computational cost of different matrix and

matrix-vector operations and Table 5.4 shows the performance index as defined in (5.20)

for a particular case, when HM and MZ2 have the same convergence-order. Clearly the

performance index of MZ2 is better than that of HM.

MZ2 HM MZ2 HM MZ2 HM Difference
(m ≥ 2) (m ≥ 2) (m = 2) (m = 3) (m = m1) (m = m1 +1) MZ2 −HM

Number of steps m m 2 3 m1 m1 +1 1
Convergence-order 3m−2 2m 4 6 3m1 −2 2(m1 +1) m1 −4
Function evaluations m+2 m+1 4 4 m1 +2 m1 +2 0
Solution of system
of linear equations when
right hand side is vector m m−1 2 2 m1 m1 0
Solution of system
of linear equations when
right hand side is matrix 1 1 1 1 1 1 0
Matrix vector
multiplications m m 2 3 m1 m1 +1 −1

TABLE 5.1: Comparison between multi-steps iterative method MZ2 and HM if number
of function evaluations and solutions of system of linear equations are equal.

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 71

MZ2 HM Difference
(m ≥ 1) (m ≥ 1) HM−MZ2

Number of steps 2m 3m−1 m−1
Convergence-order 6m−2 6m−2 0
Function evaluations 2m+2 3m m−2
Solution of system
of linear equations when
right hand side is vector 2m 3m m
Solution of system
of linear equations when
right hand side is matrix 1 1 0
Matrix vector
multiplications 2m 3m−1 m−1

TABLE 5.2: Comparison between multi-steps iterative method MZ2 and HM if con-
vergence orders are equal.

LU decomposition
Multiplications Divisions Total cost
n(n−1)(2n−1)

6
n(n−1)

2
n(n−1)(2n−1)

6 +3n(n−1)
2

Two triangular systems (if right hand side is a vector)
Multiplications Divisions Total cost
n(n−1) n n(n−1)+3n
Two triangular systems (if right hand side is a matrix)
Multiplications Divisions Total cost
n2(n−1) n2 n2(n−1)+3n2

Matrix vector multiplication
n2

TABLE 5.3: Computational cost of different operations (the computational cost of a
division is three times to multiplication).

Iterative methods HM MZ2

Number of steps 5 4
Rate of convergence 10 10
Number of functional
evaluations 6n 6n
The classical efficiency
index 21/(6n) 21/(6n)

Number of Lu
factorizations 1 1
Cost of Lu

factorizations n(n−1)(2n−1)
6 +3 n(n−1)

2
n(n−1)(2n−1)

6 +3 n(n−1)
2

Cost of linear systems 4(n(n−1)+3n)+n2(n−1)+3n2 4(n(n−1)+3n)+n2(n−1)+3n2

Matrix vector multiplications 5n2 4n2

Flops-like efficiency

index 101/
(

4n3
3 +12n2+ 38

3 n
)

101/
(

4n3
3 +11n2+ 38

3 n
)

TABLE 5.4: Comparison of performance index between multi-steps iterative methods
MZ2 and HM.

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 72

5.3 Convergence analysis

In this section, we will prove that the local convergence-order of MZ2 is seven for

m = 3. Later we will establish a proof for the convergence-order of the multi-step

iterative scheme MZ2, by using mathematical induction.

Theorem 5.1. Let F : Γ ⊆ R
n → R

n be sufficiently Frechet differentiable on an open

convex neighborhood Γ of xxx∗ ∈ R
n with F(xxx∗) = 0 and det(F ′(xxx∗)) 6= 0. Then the

sequence {xxxk} generated by the iterative scheme MZ2 converges to xxx∗ with local order

of convergence seven, and produces the following error equation

eeek+1 = Leeek
7 +O(eeek

8), (5.18)

where eeek = xkxkxk − xxx∗, eeek
p =

p-times
︷ ︸︸ ︷

(eeek,eeek, · · · ,eeek) and L = −2060C6
2 − 618C3C4

2 +

260C3
2C4(1/9)+ 26C3C2C4(1/3)− 30C3C2C3C2 − 6C3C2

2C3 − 100C3
2C3C2 − 20C4

2C3 is

a p-linear function i.e. L ∈ L

p-times
︷ ︸︸ ︷

(Rn,Rn, · · · ,Rn) and Leeek
p ∈ R

n.

Proof. Let F : Γ⊆R
n →R

n be sufficiently Frechet differentiable function in Γ. The qth

Frechet derivative of F at v ∈ R
n, q ≥ 1, is the q− linear function F(q)(v) :

q-times
︷ ︸︸ ︷

R
n
R

n · · ·Rn

such that F(q)(v)(u1,u2, · · · ,uq) ∈ R
n . The Taylor’s series expansion of F(xxxk) around

xxx∗ can be written as:

F(xxxk) = F(xxx∗+xxxk −xxx∗) = F(xxx∗+eeek), (5.19)

= F(xxx∗)+F ′(xxx∗)eeek +
1
2!

F ′′(xxx∗)eeek
2 +

1
3!

F(3)(xxx∗)eeek
3 + · · · , (5.20)

= F ′(xxx∗)
[
eeek +

1
2!

F ′(xxx∗)−1F ′′(xxx∗)eeek
2 +

1
3!

F ′(xxx∗)−1F(3)(xxx∗)eeek
3 + · · ·

]
, (5.21)

=C1
[
eeek +C2eeek

2 +C3eeek
3 + · · ·

]
, (5.22)

where C1 =F ′(xxx∗) and Cs =
1
s!F

′(xxx∗)−1F(s)(xxx∗) for s≥ 2. From (6.22), we can calculate

the Frechet derivative of F :

F ′(xxxk) =C1
[
I +2C2eeek +3C3eeek

2 +4C3eeek
3 + · · ·

]
, (5.23)

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 73

where I is the identity matrix. Furthermore, we calculate the inverse of the Jacobian

matrix

F ′(xxxk)
−1

=
[
I −2C2eeek +(4C2

2 −3C3)eee
2
k +(6C3C2 +6C2C3 −8C3

2 −4C4)eee
3
k

+(8C4C2 +9C2
3 +8C2C4 −5C5 −12C3C2

2 −12C2C3C2 −12C2
2C3

+16C4
2)eee

4
k +(24C3C3

2 +24C3
2C3 +24C2

2C3C2 +24C2C3C2
2 +10C5C2

+12C4C3 +12C3C4 +10C2C5 −6C6 −16C4C2
2 −18C2

3C2 −18C3C2C3

−16C2C4C2 −18C2(C
2
3)−16C2

2C4 −32C5
2)eee

5
k +(32C4C3

2 +64C6
2

−48C3(C
4
2)+12C2C6 +16C2

4 +15C3C5 +15C5C3 +12C6C2 −24C4C2C3

−24C4C3C2 −20C2
2C5 −24C2C3C4 −24C2C4C3 +32C3

2C4 −20C2C5C2

+36C2
2(C

2
3)−20C5C2

2 +32C2
2C4C2 +32C2C4C2

2 +36C2(C
2
3)C2

+36C2C3C2C3 +36C2
3C2

2 −7C7 −24C3C2C4 −27C3
3 −24C3C4C2

+36C3C2C3C2 +36C3C2
2C3 −48C2

2C3C2
2 −48C3

2C3C2 −48C4
2C3

−48C2C3C3
2)eee

6
k + · · ·

]
C−1

1 (5.24)

By multiplying F ′(xxxk)
−1 and F(xxxk), we obtain φφφ 1:

φφφ 1 = eeek −C2eee2
k +(2C2

2 −2C3)eee
3
k +(−3C4 −4C3

2 +3C3C2 +4C2C3)eee
4
k

+(−4C5 −6C3C2
2 −6C2C3C2 −8C2

2C3 +8C4
2 +4C4C2 +6C2

3 +6C2C4)eee
5
k

+(−5C6 +12C3C3
2 +16C3

2C3 +12C2
2C3C2 +12C2C3C2

2 −8C4C2
2 −9C2

3C2

−12C3C2C3 −8C2C4C2 −12C2(C
2
3)−12C2

2C4 −16C5
2 +5C5C2 +8C4C3

+9C3C4 +8C2C5)eee
6
k + · · · . (5.25)

The expression for φφφ 2 is the following:

φφφ 2 = 2C2eee2
k +(−8C2

2 +10C3(1/3))eee3
k +(26C3

2 −38C3C2(1/3)−12C2C3

+100C4(1/27))eee4
k +(−364C2C4(1/27)−18C2

3 −416C4C2(1/27)

+116C2
2C3(1/3)+36C2C3C2 +122C3C2

2(1/3)+2500C5(1/729)−76C4
2)eee

5
k

+(−106C2C3C2
2 − (1/3)(298C2

2C3C2)−344C3
2C3(1/3)+1282C2

2C4(1/27)

+140C2(C
2
3)(1/3)+(1/27)(1106C2C4C2)−118C3C3

2 +1364C4C2
2(1/27)

−10664C2C5(1/729)−520C3C4(1/27)−544C4C3(1/27)−12290C5C2(1/729)

+54C2
3C2 +(1/3)(184C3C2C3)+6250C6(1/2187)+208C5

2)eee
6
k + · · · . (5.26)

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 74

The expressions for yyy1, T , yyy2 and yyy3 in order are

yyy1 −xxx∗ =−2C2eee2
k +(10C2

2 −3C3)eee
3
k +(−23C4(1/9)−35C3

2 +16C3C2

+14C2C3)eee
4
k +(−278C5(1/243)−55C3C2

2 −48C2C3C2 −50C2
2C3

+106C4
2 +172C4C2(1/9)+21C2

3 +128C2C4(1/9))eee5
k +(147C2C3C2

2

+137C2
2C3C2 +156C3

2C3 −533C2
2C4(1/9)−58C2(C

2
3)− (1/9)(481C2C4C2)

+165C3C3
2 −610C4C2

2(1/9)+3388C2C5(1/243)+179C3C4(1/9)

+200C4C3(1/9)+4930C5C2(1/243)−72C2
3C2 −80C3C2C3

+520C6(1/729)−296C5
2)eee

6
k + · · · . (5.27)

T = I −2C2eeek −3C3eee2
k +(6C3C2 −4C4 +20C3

2)eee
3
k +(12C3C2

2 +20C2C3C2

+28C2
2C3 −110C4

2 +8C4C2 +9C2
3 +26C2C4(1/9)−5C5)eee

4
k +(−180C3C3

2

−156C3
2C3 −136C2

2C3C2 −134C2C3C2
2 +18C3C2C3 +(1/9)(200C2C4C2)

+24C2(C
2
3)+68C2

2C4(1/3)+432C5
2 +10C5C2 +12C4C3 +12C3C4

+1874C2C5(1/243)−6C6)eee
5
k +(−112C4C3

2 −1456C6
2 +1050C3C4

2

+9788C2C6(1/729)+16C2
4 +15C3C5 +15C5C3 +12C6C2 −24C4C3C2

+3028C2
2C5(1/243)+142C2C3C4(1/9)+184C2C4C3(1/9)−1474C3

2C4(1/9)

+(1/243)(5000C2C5C2)−164C2
2(C

2
3)− (1/3)(454C2

2C4C2)− (1/9)(1220C2C4C2
2)

−144C2(C
2
3)C2 −196C2C3C2C3 −222C2

3C2
2 −7C7 +20C3C2C4(1/3)

−26C3C4C2(1/3)−240C3C2C3C2 −258C3C2
2C3 +562C2

2C3C2
2 +546C3

2C3C2

+624C4
2C3 +690C2C3C3

2)eee
6
k + · · · . (5.28)

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 75

yyy2 −xxx∗ = (−5C3C2 +13C4(1/9)−103C3
2 −C2C3)eee

4
k +(−104C2C4(1/9)

−21C2
3(1/2)−80C4C2(1/9)−148C2

2C3 −100C2C3C2 −109C3C2
2

+937C5(1/243)+666C4
2)eee

5
k +(869C2C3C2

2 +873C2
2C3C2 +954C3

2C3

−1133C2
2C4(1/9)−124C2(C

2
3)− (1/9)(895C2C4C2)+1074C3C3

2

−1114C4C2
2(1/9)−715C2C5(1/27)−238C3C4(1/9)−178C4C3(1/9)

−3575C5C2(1/243)−75C2
3C2 −158C3C2C3 +4894C6(1/729)

−1990C5
2)eee

6
k +(3632C4C3

2(1/3)+420C6
2 −4958C3C4

2 −30616C2C6(1/729)

−404C2
4(1/9)−7343C3C5(1/162)−16001C5C3(1/486)−15620C6C2(1/729)

−1580C4C2C3(1/9)−580C4C3C2(1/9)−18334C2
2C5(1/243)

−761C2C3C4(1/9)−847C2C4C3(1/9)+1074C3
2C4 − (1/243)(19556C2C5C2)

+1118C2
2(C

2
3)−35410C5C2

2(1/243)+(1/9)(8924C2
2C4C2)

+(1/3)(3038C2C4C2
2)+1040C2(C

2
3)C2 +1262C2C3C2C3 +1390C2

3C2
2

+63418C7(1/6561)−919C3C2C4(1/9)−165C3
3(1/2)−589C3C4C2(1/9)

+1331C3C2C3C2 +1542C3C2
2C3 −2678C2

2C3C2
2 −2886C3

2C3C2

−2881C4
2C3 −3871C2C3C3

2)eee
7
k + · · · . (5.29)

yyy3 −xxx∗ = (−2060C6
2 −618C3C4

2 +260C3
2C4(1/9)+26C3C2C4(1/3)

−30C3C2C3C2 −6C3C2
2C3 −100C3

2C3C2 −20C4
2C3)eee

7
k + · · · . (5.30)

Theorem 5.2. The multi-step iterative scheme MZ2 has the local convergence-order

3m− 2, using m(≥ 2) evaluations of a sufficiently differentiable function F, two first-

order Frechet derivatives F ′ and one second-order Frechet derivate F ′′ per full-cycle.

Proof. The proof is established from mathematical induction. For m = 1, 2, 3 the

convergence-orders are two, four and seven from (5.27), (5.29), and (5.30), respectively.

Consequently our claim concerning the convergence-order 3m−2 is true for m = 2, 3.

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 76

We assume that our claim is true for m = q > 3, i.e., the convergence-order of MZ2

is 3q−2. The qth-step and (q−1)th-step of iterative scheme MZ2 can be written as:

Frozen− f actor = (2I −T)FFF ′(xxx)−1
, (5.31)

yyyq−1 = yyyq−2 − (Frozen− f actor)FFF(yyyq−2), (5.32)

yyyq = yyyq−1 − (Frozen− f actor)FFF(yyyq−1). (5.33)

The enhancement in the convergence-order of MZ2 from (q− 1)th-step to qth-step is

(3q−2)− (3(q−1)−2) = 3 . Now we write the (q+1)th-step of MZ2:

yyyq+1 = yyyq − (Frozen− f actor)FFF(yyyq). (5.34)

The increment in the convergence-order of MZ2, due to (q+1)th-step, is exactly three,

because the use of the Frozen− f actor adds an additive constant in the convergence-

order[19]. Finally the convergence-order after the addition of the (q+1)th-step is 3q−
2+3 = 3q+1 = 3(q+1)−2, which completes the proof.

5.4 Numerical testing

For the verification of convergence-order, we use the following definition for the com-

putational convergence-order (COC):

COC ≈ log
[
Max(|xxxq+2 −xxx∗|)/Max(|xxxq+1 −xxx∗|)

]

log
[
Max(|xxxq+1 −xxx∗|)/Max(|xxxq −xxx∗|)

] , (5.35)

where Max(|xxxq+2 −xxx∗|) is the maximum absolute error. The number of solutions of

systems of linear equations are same in both iterative methods when right hand side is

a matrix so we will not mention it in comparison tables. The main benefit of multi-step

iterative methods is that we invert Jacobian once and then use it repeatedly in multi-

steps part to get better convergence-order for a single cycle of iterative method. We

have conducted numerical tests for four different problems to show the accuracy and

validity of our proposed multi-step iterative method MZ2. For the purpose of compari-

son we adopt two ways (i) when both iterative methods have same number of function

evaluations and solution of systems of linear equations (ii) when both schemes have

same convergence order. Tables 5.5, 5.7 and 5.8 show that when we number of function

evaluations and solutions of systems of linear equation are equal and the convergence

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 77

order of MZ2 is higher than ten then our proposed scheme show better accuracy in less

execution time. On the other hand if convergence-order of MZ2 is less than ten then

the performance of HM is relatively better. For the second cases when we equate the

convergence-orders the execution time of MZ2 are always less than that of HM because

HM performs more steps to achieve the same convergence-order. Tables 5.6, 5.9 and

5.10 shows that MZ2 achieve better or almost equal accuracy with less execution time.

We have also simulated one PDE Klein-Gordon and results are depicted in Table 5.11.

As we have commented if the convergence-order is less ten the performance of HM is

better and it is clearly evident in Table 5.11 but the accuracy of MZ2 is comparable with

HM. The numerical error in solution due to MZ2 is shown in Figure 5.1 and Figure 5.2

corresponds to numerical solution of Klein-Gordon PDE. In the case of Klein-Gordon

equation by keeping the mesh size fix, if we increase the number of iterations or either

number of steps both iterative method can not improve the accuracy.

Iterative methods MZ2 HM
Number of iterations 1 1
Size of problem 200 200
Number of steps 32 33
Theoretical convergence-order(CO) 94 66
Number of function evaluations per iteration 34 34
Solutions of system of linear equations per iteration 32 32
Number of matrix vector multiplication per iteration 32 33

λ
Max|xxxq −xxx∗| 1 3.62e−156 7.55e−110

2 4.78e−142 2.31e−98
3 3.91e−50 4.05e−35

Execution time 23.48 24.0

TABLE 5.5: Comparison of performances for different multi-step methods in the case
of the Bratu problem when number of function evaluations and number of solutions of

systems of linear equations are equal in both iterative methods.

5.5 Summary

The inversion of Jacobian is computationally expensive and multi-step iterative methods

can provide remedy to it, by offering good convergence-order with relatively less com-

putational cost. The best way to construct a multi-step method is to reduce the number

of Jacobian and function evaluations, inversion of Jacobian, matrix-vector and vector-

vector multiplications. Higher-order Frechet derivatives are computationally expensive

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 78

Iterative methods MZ2 HM
Number of iterations 1 1
Size of problem 250 250
Number of steps 120 179
Theoretical convergence-order(CO) 358 358
Number of function evaluations per iteration 122 180
Solutions of system of linear equations per iteration 120 178
Number of matrix vector multiplication per iteration 120 179
Max|xxxq −xxx∗|, (λ = 1) 3.98e−235 3.98e−235
Execution time 59.67 70.22

TABLE 5.6: Comparison of performances for different multi-step methods in the case
of the Bratu problem when convergence orders are equal in both itrative methods.

Iterative methods MZ2 HM
Number of iterations 3 3
Size of problem 250 250
Number of steps 3 4
Theoretical convergence-order(CO) 7 8
Computational convergence-order(COC) 6.75 7.81
Number of function evaluations per iteration 5 5
Solutions of system of linear equations per iteration 3 3
Number of matrix vector multiplication per iteration 3 4
Max|xxxq −xxx∗| 8.44e−150 3.92e−161
Execution time 63.75 64.66

TABLE 5.7: Comparison of performances for different multi-step methods in the case
of the Bratu problem when number of function evaluations and number of solutions of

systems of linear equations are equal in both iterative methods.

Iterative methods MZ2 HM
Number of iterations 3 3
Size of problem 150 150
Number of steps 3 4
Theoretical convergence-order(CO) 7 8
Computational convergence-order(COC) 7.39 8.64
Number of function evaluations per iteration 5 5
Solutions of system of linear equations per iteration 3 3
Number of matrix vector multiplication per iteration 3 4
Max|xxxq −xxx∗| 4.21e−126 3.21e−149
Execution time 16.10 16.68

TABLE 5.8: Comparison of performances for different multi-step methods in the case
of the Frank Kamenetzkii problem when number of function evaluations and number

of solutions of systems of linear equations are equal in both iterative methods.

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 79

Iterative methods MZ2 HM
Number of iterations 1 1
Size of problem 150 150
Number of steps 80 119
Theoretical convergence-order(CO) 238 238
Number of function evaluations per iteration 82 120
Solutions of system of linear equations per iteration 80 118
Number of matrix vector multiplication per iteration 80 119
Max|xxxk −xxx∗|, (λ = 1) 6.46e−116 3.95e−99
Execution time 19.89 28.21

TABLE 5.9: Comparison of performances for different multi-step methods in the case
of the Frank Kamenetzkii problem when convergence orders are equal in both iterative

methods.

Iterative methods MZ2 HM
Number of iterations 1 1
Size of problem 100 100
Number of steps 30 44
Theoretical convergence-order(CO) 88 88
Number of function evaluations per iteration 32 45
Solutions of system of linear equations per iteration 30 43
Number of matrix vector multiplication per iteration 30 44
Max|xxxq −xxx∗| 1 1.95e−34 2.64e−37
Execution time 3.01 3.53

TABLE 5.10: Comparison of performances for different multi-step methods in the case
of the Lane-Emden equation when convergence orders are equal.

when we use them for the solution of general systems of nonlinear equations, but for

a particular type of ODEs and PDEs we could use them because they are just diagonal

matrices. The numerical accuracy in the solution of nonlinear systems enhances as we

increase the number of step in MZ2 method. The computational convergence-order of

MZ2 is also calculated in some examples and it agrees with the theoretical study of the

convergence-order.

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 80

Iterative methods MZ2 HM
Number of iterations 1 1
Size of problem 4420 4420
Number of steps 4 4
Theoretical convergence-order(CO) 10 8
Number of function evaluations per iteration 6 5
Solutions of system of linear equations per iteration 4 3
Number of matrix vector multiplication per iteration 4 4

Steps
Max|xxxq −xxx∗| 1 3.24e−1 4.11e−1

2 7.51e−3 2.62e−3
3 2.70e−5 2.63e−5
4 5.59e−7 4.39e−7

Execution time 94.13 80.18

TABLE 5.11: Comparison of performances for different multi-step methods in the case
of the Klein Gordon equation , initial guess u(xi, t j) = 0, u(x, t) = δ sech(κ(x− νt),

κ =
√

k
c2−ν2 , δ =

√
2k
γ , c= 1, γ = 1, ν = 0.5, k = 0.5, nx = 170, nt = 26, x∈ [−22, 22],

t ∈ [0, 0.5].

0

0.1

0.2

0.3

0.4

0.5

−40

−20

0

20

40

−4

−2

0

2

4

6

x 10
−7

t−axisx−axis

E
rr

o
r

FIGURE 5.1: Absolute error plot for multi-step method MZ2 in the case of the Klein

Gordon equation , initial guess u(xi, t j) = 0, u(x, t) = δ sech(κ(x− νt), κ =
√

k
c2−ν2 ,

δ =
√

2k
γ , c = 1, γ = 1, ν = 0.5, k = 0.5, nx = 170, nt = 26, x ∈ [−22, 22], t ∈ [0, 0.5].

Chapter 5. A Higher Order Multi-step Iterative Method for Computing the Numerical
Solution of Systems of Nonlinear Equations Associated with Nonlinear PDEs and
ODEs 81

0
0.1

0.2
0.3

0.4

−40

−20

0

20

40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t−axisx−axis

u
n
u
m

e
ri
c
a
l

FIGURE 5.2: Numerical solution of the Klein Gordon equation , x ∈ [−22, 22], t ∈
[0, 0.5].

Chapter 6

Higher Order Multi-step Iterative

Method for Computing the Numerical

Solution of Systems of Nonlinear

Equations: Application to Nonlinear

PDEs and ODEs

We consider multi-step iterative method to solve systems of nonlinear equa-

tions. Since, the Jacobian evaluation and its inversion are expensive, in order to

achieve best computational efficiency, we compute the Jacobian and its inverse

only once in a single cycle of the proposed multi-step iterative method. Actu-

ally the involved systems of linear equations are solved by employing the LU-

decomposition, rather than inversion. The primitive iterative method (termed base

method) has convergence-order (CO) five and then we describe a matrix polyno-

mial of degree two to design multi-step method. Each inclusion of singlestep in

the base method will increase the convergence-order by three. The general ex-

pression for CO is 3s− 1, where s is the number of steps of multi-step iterative

method. Computational efficiency is also addressed in comparison with other ex-

isting methods. The claimed convergence-rates proofs are established. The new

contribution in our analysis relies essentially in the increment of CO by three for

each added step, with a comparable computational cost in comparison with exist-

ing multi-steps iterative methods. Numerical assessments which justify the theo-

retical results are made: in particular, some systems of nonlinear equations associ-

ated with the numerical approximation of partial differential equations (PDEs) and

82

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 83

ordinary differential equations (ODEs) are built up and solved.

6.1 Introduction

Iterative methods for approximating the solution of systems of nonlinear equations rep-

resent an important research area, widely investigated in the relevant literature [103–

105, 108, 109, 118, 120, 186, 187, 187–190, 193]. Several systems of nonlinear equa-

tions are originated from the numerical approximation of PDEs and ODEs. For in-

stance, we may consider the Bratu problem, the Frank-Kamenetzkii problem [142], the

Lene-Emden equation [184], the Burgers equation [194], and the Klein-Gordon equa-

tion [185], which are stated in order as

y′′(x)+λey(x) = 0, y(0) = y(1) = 0, (6.1)

y′′(x)+
1
x

y′(x)+λey(x) = 0, y′(0) = y(1) = 0, (6.2)

y′′(x)+
2
x

y′(x)+ y(x)5 = 0, y′(0) = 0, y(0) = 1, (6.3)

ut(x, t)+u(x, t)ux(x, t)− γuxx(x, t) = 0, u(x,0) = g1(x),

u(0, t) = g2(t), u(2, t) = g3(t), (6.4)

utt(x, t)− c2uxx(x, t)+ f (u) = p(x, t), −∞ < x < ∞, t > 0, (6.5)

where f (u) is odd function of u and u(x,0) = f1(x) and ut(x,0) = f2(x). For the dis-

cretization of Equations (6.1), (6.2), (6.3), (6.4), and (6.5) we may use any suitable

method in space and time. In this chapter, we employ the Chebyshev pseudo-spectral

collocation method for temporal and spatial discretization. As a consequence, we obtain

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 84

the following systems of nonlinear equations

F(yyy) = D2
xyyy+ eyyy = 0, (6.6)

F(yyy) =
(

D2
x +diag

(

1
xxx

)

Dx

)

yyy+λeyyy = 0, (6.7)

F(yyy) =
(

D2
x +diag

(

2
xxx

)

Dx

)

yyy+λyyy5 = 0, (6.8)

F(uuu) =

(
(

Ix ⊗Dt

)

− γ
(

D2
x ⊗ It

)
)

uuu+diag
(

Dxuuu
)

uuu = 0, (6.9)

F(uuu) =

(
(

Ix ⊗D2
t

)

− c2
(

D2
x ⊗ It

)
)

uuu+ f (uuu) = 0, (6.10)

where Dx, Dt are the differential matrices in spatial and temporal dimension, respec-

tively, yyy = [y1, y2, · · · , yn]
T , xxx = [x1, x2, · · · , xn]

T , f (yyy) = [f (y1), f (y2), · · · , f (yn)]
T

for f (y) = ey or yn, diag

(

1
xxx

)

is a diagonal matrix with main diagonal entries of

1
xxx =

[

1
x1
, 1

x2
, · · · , 1

xn

]T

, uuu = [u11, u12, · · · , u1m, u21, · · · , u2m, · · · , un1, un2, · · · , unm]
T ,

Ix and It are identity matrices of dimensions n and m. We can write the systems of

nonlinear equations (6.6), (6.7), (6.8), (6.9), (6.10) in compact form as

F(zzz) = Azzz+h(zzz) = 000, (6.11)

F ′(zzz) = A+diag(h′(zzz)), (6.12)

where Azzz is a linear part , h(zzz) is the nonlinear part of F(zzz) and F ′(zzz) is first or-

der Frechet derivative or Jacobian of F(zzz). As we are dealing with general systems

of nonlinear equations. Examine F(xxx) = [f1(xxx), f2(xxx), f3(xxx), · · · , fn(xxx)]T = 000, with

f1(xxx), f2(xxx), f3(xxx), · · · , fn(xxx) being coordinate continuously differentiable functions.

Newton-Raphon (NR) is a classical iterative method [3, 191] for systems of nonlinear

equations and it is defined as

xxxq+1 = xxxq −F(xxxq)
−1F(xxxq), q = 0, 1, 2, · · · , (6.13)

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 85

which is quadratically convergent, under suitable regularity assumptions. The multi-

step version of NR can be written as







yyy1 = xxxq −F(xxxq)
−1F(xxxq),

yyy2 = yyy1 −F(xxxq)
−1F(yyy1),

yyy3 = yyy2 −F(xxxq)
−1F(yyy2),

...

xxxq+1 = yyys−1 = yyys−2 −F(xxxq)
−1F(yyys−2).

(6.14)

One cycle of (s− 1)-step NR method (6.14) requires one Jacobian, its inversion and

s-function evaluations at the initial point with convergence-order s. However, quite re-

cently, more efficient multi-step iterative methods, with better convergence-order, have

been designed, by using the same number of Jacobian and function evaluations. As an

example, the multi-step version of H. Montazeri et. al. (HM) [195] is written as







yyy1 = xxxq − 2
3F ′(xxxq)

−1F(xxxq),

W = F ′(xxxq)
−1F ′(yyy1),

yyy2 = xxxq −
(

23
8 I −3W + 9

8W 2

)

F ′(xxxq)
−1F(xxxq),

yyy3 = yyy2 −
(

5
2 I − 3

2W

)

F ′(xxxq)
−1F(yyy2),

yyy4 = yyy3 −
(

5
2 I − 3

2W

)

F ′(xxxq)
−1F(yyy3),

...

xxxq+1 = yyys = yyys−1 −
(

5
2 I − 3

2W

)

F ′(xxxq)
−1F(yyys−1).

(6.15)

A single cycle of HM s-step iterative method requires (s− 1) functions evaluations,

two Jacobian at different points, one inversion of Jacobian at initial guess and its

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 86

convergence-order is 2s for s ≥ 2 and for s = 1, CO = 1. A further multi-step itera-

tive method was developed by F. Soleymani et. al. (FS) [37]







yyy1 = xxxq − 2
3F ′(xxxq)

−1F(xxxq),

W = 1
2

(

3F ′(yyy1)−F ′(xxxq)
)−1

(3F ′(yyy1)+F ′(xxxq)),

yyy2 = xxxq −WF ′(xxxq)
−1F(xxxq),

yyy3 = yyy2 −W 2F ′(xxxq)
−1F(yyy2),

...

xxxq+1 = yyys = yyys−1 −W 2F ′(xxxq)
−1F(yyys−1).

(6.16)

The s-step iterative method (FS) has CO = 2s and computationally needs (s−1) func-

tion evaluations, two Jacobian at different points, two inversion (solution of two sys-

tems of linear equations). Clearly the multi-step FS iterative method is better than the

multi-step NS method , even if the multi-step HM method is computationally more ef-

ficient than both. In [192] M. Zaka and his co-workers proposed an iterative method

to solve systems of nonlinear equations, but computational efficiency is not better than

HM method, because of two Jacobian inversions at different points. In the next section,

we propose our new multi-step iterative method which has better convergence order

than the HM multi-step iterative method, with comparable computational cost.

6.2 New multi-step iterative method

Let us consider a general system of nonlinear equations F(xxx) = 0, with the assumption

that F(xxx) is sufficiently differentiable. Our proposal for the new multi-step iterative

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 87

method (MZ) is the following







yyy1 = xxxq −F ′(xxxq)
−1F(xxxq),

V = (F ′(xxxq))
−1F ′(yyy1),

yyy2 = yyy1 −
(

13
4 I − 7

2V + 5
4V 2

)

F ′(xxxq)
−1F(yyy1),

yyy3 = yyy2 −
(

7
2 I −4V + 3

2V 2

)

F ′(xxxq)
−1F(yyy2),

yyy4 = yyy3 −
(

7
2 I −4V + 3

2V 2

)

F ′(xxxq)
−1F(yyy3),

...

xxxq+1 = yyys = yyys−1 −
(

7
2 I −4V + 3

2V 2

)

F ′(xxxq)
−1F(yyys−1).

(6.17)

The new MZ procedure uses s function evaluations, two Jacobian and one inversion

of Jacobian. We claim that the convergence-order of MZ is

CO = 3s−1, (6.18)

where s is step number. The multi-step HM iterative method is the best candidate

for comparison, since it requires only a unique Jacobian inversion. For s = 2 the

MZ HM MZ HM MZ HM Difference
(s ≥ 2) (s ≥ 2) (s = 2) (s = 3) (s = s1) (s = s1 +1) MZ −HM

Number of steps s s 2 3 s1 s1 +1 1
Convergence-order 3s−1 2s 5 6 3s1 −1 2(s1 +1) s1 −3
Function evaluations s s−1 2 2 s1 s1 0
Solution of system
of linear equations when
right hand side is vector s s−1 2 2 s1 s1 0
Solution of system
of linear equations when
right hand side is matrix 1 1 1 1 1 1 0
Jacobian evaluations 2 2 2 2 2 2 0
Matrix vector
multiplications 2(s−1) s 2 3 2(s1 −1) s1 +1 s1 −3

TABLE 6.1: Comparison between multi-steps iterative method MZ and HM if number
of function evaluations and solutions of system of nonlinear equations are equal.

convergence-orders of HM and MZ are 5 and 4, respectively, and the number of matrix

vector multiplications are equal: however, with MZ, we have one more solution of sys-

tem of linear equations and function evaluation, when compared with the HM method.

The HM(s = 2, 3) is better than MZ(s = 2) because HM(s = 3) uses the same number

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 88

of function evaluations and solution of system of linear equations as that of MZ(s = 2)

with better convergence-order, even though HM(s = 3) requires one more matrix vector

multiplication than MZ(s = 2). The computational cost of one matrix vector multipli-

cation is negligible versus an increment in convergence-order. The multi-step iterative

methods MZ(s = 3) and HM(s = 4) have the same convergence order with same num-

ber of function evaluations, solution of system of linear equations and number of matrix

vector multiplications and this can be seen in the last column of Table 6.1. If in Table

6.1 s1 > 3 then the convergence-order of MZ is better than HM but in the case of MZ we

have to perform s1 − 3 more matrix vector multiplication. Nevertheless, the enhance-

ment in the convergence-order is also s1 − 3, by keeping fixed the number of function

evaluations and solution of systems of linear equations. Table 6.2 shows that, if the

convergence-order is equal for MZ and HM, then we have to perform m steps more for

HM which means we require m−1 more function evaluations and solution of system of

linear equations, but m− 1 less matrix vector multiplications. The computational cost

of m−1 matrix vector multiplication is not higher than m−1 function evaluations and

solutions of systems of linear equations. We conclude that our proposal for multi-steps

iterative method MZ is better than existing multi-steps iterative methods in our literature

review.

MZ HM Difference
(m ≥ 1) (m ≥ 1) HM−MZ

Number of steps 2m+1 3m+1 m
Convergence-order 6m+2 6m+2 0
Function evaluations 2m+1 3m m−1
Solution of system
of linear equations when
right hand side is vector 2m+1 3m m−1
Solution of system
of linear equations when
right hand side is matrix 1 1 0
Jacobian evaluations 2 2 0
Matrix vector
multiplications 4m 3m+1 −m+1

TABLE 6.2: Comparison between multi-steps iterative method MZ and HM if number
convergence-orders are equal.

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 89

If n is the size of system of nonlinear equations and we adopt the definition of

performance index as

ρ =CO
1

f lops , (6.19)

then Table 6.3 shows the performance index in terms of floating-point operations per

second for different number of steps. In Figure 6.1, we compare the performance index

between MZ and HM multi-steps iterative methods. The curve of performance index

related to MZ is better than that associated with the method HM.

Iterative methods HM MZ HM MZ
Number of steps 4 3 5 4
Rate of convergence 8 8 10 11
Number of functional
evaluations 3n+2n2 3n+2n2 4n+2n2 4n+2n2

The classical efficiency
index 21/(3n+2n2) 21/(3n+2n2) 21/(4n+2n2) 21/(4n+2n2)

Number of Lu
factorizations 1 1 1 1
Cost of Lu

factorizations 2n3

3
2n3

3
2n3

3
2n3

3

Cost of linear systems 5n3

3 +6n2 5n3

3 +6n2 5n3

3 +8n2 5n3

3 +8n2

Matrix vector multiplications 4n2 4n2 5n2 6n2

Flops-like efficiency

index 81/(5n3
3 +12n2+3n) 81/(5n3

3 +12n2+3n) 101/(5n3
3 +15n2+4n) 111/(5n3

3 +16n2+4n)

TABLE 6.3: Comparison of performance index between multi-steps iterative methods
MZ and HM.

10 12 14 16 18 20
1.0001

1.0002

1.0003

1.0004

1.0005

1.0006

1.0007

1.0008

size of system of nonlinear equations

e
ff
ic

ie
n
c
y
 i
n
d
e
x

HM(s=5)

MZ(s=4)

20 22 24 26 28 30
1

1

1

1.0001

1.0001

1.0001

1.0001

1.0001

1.0001

1.0001

1.0001

size of system of nonlinear equations

e
ff
ic

ie
n
c
y
 i
n
d
e
x

HM(s=5)

MZ(s=4)

FIGURE 6.1: Comparison between performance index of MZ and HM multi-steps
iterative methods.

6.3 Convergence analysis

In this section, we will prove that the local convergence-order of the technique reported

in (6.17) is eight for s = 3 and later we will establish a proof for the multi-step iterative

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 90

scheme (6.17), by using mathematical induction.

Theorem 6.1. Let F : Γ ⊆ R
n → R

n be sufficiently Frechet differentiable on an open

convex neighborhood Γ of xxx∗ ∈ R
n with F(xxx∗) = 0 and det(F ′(xxx∗)) 6= 0. Then the

sequence {xxxq} generated by the iterative scheme (6.17) converges to xxx∗ with local order

of convergence eight, and produces the following error equation

eeeq+1 = Leeeq
8 +O(eeeq

9), (6.20)

where eeeq = xqxqxq − xxx∗, eeeq
p =

p-times
︷ ︸︸ ︷

(eeeq,eeeq, · · · ,eeeq) and L = (280C7
2 + (1/2)(C2C3C2C3C2)−

(1/2)(3C2(C2
3)(C

2
2)) − 42C3(C5

2) − 30C3
2C3(C2

2) + (1/2)(9C3C2C3(C2
2)) +

14C2C3(C4
2) + 10C4

2C3C2 − (1/2)(3C3(C2
2)C3C2)) is a p-linear function i.e.

L ∈ L

p-times
︷ ︸︸ ︷

(Rn,Rn, · · · ,Rn) and Leeeq
p ∈ R

n.

Proof. Let F : Γ ⊆R
n →R

n be sufficiently Frechet differentiable function in Γ. The ith

Frechet derivative of F at v ∈ R
n, i ≥ 1, is the i− linear function F(q)(v) :

i-times
︷ ︸︸ ︷

R
n
R

n · · ·Rn

such that F(i)(v)(u1,u2, · · · ,ui) ∈ R
n [154]. The Taylor’s series expansion of F(xxxq)

around xxx∗ can be written as:

F(xxxq) = F(xxx∗+xxxq −xxx∗) = F(xxx∗+eeeq), (6.21)

= F(xxx∗)+F ′(xxx∗)eeeq +
1
2!

F ′′(xxx∗)eeeq
2 +

1
3!

F(3)(xxx∗)eeeq
3 + · · · , (6.22)

= F ′(xxx∗)
[
eeeq +

1
2!

F ′(xxx∗)−1F ′′(xxx∗)eeeq
2 +

1
3!

F ′(xxx∗)−1F(3)(xxx∗)eeeq
3 + · · ·

]
, (6.23)

=C1
[
eeeq +C2eeeq

2 +C3eeeq
3 + · · ·

]
, (6.24)

where C1 = F ′(xxx∗) and Cs =
1
s!F

′(xxx∗)−1F(s)(xxx∗) for s ≥ 2. From (6.21), we can compute

the Frechet derivative of F :

F ′(xxxq) =C1
[
I +2C2eeeq +3C3eeeq

2 +4C3eeeq
3 + · · ·

]
, (6.25)

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 91

where I is the identity matrix. Furthermore, we calculate the inverse of the Jacobian

matrix

F ′(xxxq)
−1

=
[
I −2C2eeeq +(4C2

2 −3C3)eee
2
q +(−8C3

2 +6C3C2 +6C2C3 −4C4)eee
3
q

+(−12C3C2
2 −12C2

2C3 −12C2C3C2 +8C4C2 +9C2
3 +8C2C4 +16C4

2 −5C5)eee
4
q

+(−16C4C2
2 −18C3C2C3 −18C2

3C2 −18C2C2
3 −16C2

2C4 −16C2C4C2 +24C3
2C3

+24C2
2C3C2 +24C2C3C2

2 −32C5
2 +10C5C2 +12C4C3 +12C3C4 +10C2C5

+24C3C3
2 −6C6)eee

5
q +(−24C3C4C2 −24C3C2C4 −27C3

3 −48C3C4
2 +64C6

2 −24C4C3C2

−24C4C2C3 −20C2C5C2 −24C2C4C3 +32C4C3
2 −24C2C3C4 −20C2

2C5 +36C2
2C2

3

+32C3
2C4 −48C2

2C3C2
2 +36C2C3C2C3 −48C3

2C3C2 −48C4
2C3 −48C2C3C3

2

+36C3C2
2C3 +36C3C2C3C2 +12C2C6 +16C2

4 +15C3C5 +15C5C3 +12C6C2

+36C2C2
3C2 +32C2C4C2

2 −7C7 +36C2
3C2

2 +32C2
2C4C2 −20C5C2

2)eee
6
q + · · ·

]
C−1

1

(6.26)

By multiplying F ′(xxxq)
−1 and F(xxxq), we obtain:

F ′(xxxq)
−1F(xxxq) = eeeq −C2eee2

q +(2C2
2 −2C3)eee

3
q +(4C2C3 +3C3C2 −3C4 −4C3

2)eee
4
q

+(8C4
2 −6C3C2

2 +6C2
3 +6C2C4 +4C4C2 −4C5 −8C2

2C3 −6C2C3C2)eee
5
q

+(−12C3C2C3 −8C2C4C2 −12C2
2C4 −12C2C2

3 +12C3C3
2 −16C5

2

−9C2
3C2 +8C2C5 +9C3C4 +8C4C3 +5C5C2 −5C6 −8C4C2

2 +16C3
2C3

+12C2
2C3C2 +12C2C3C2

2)eee
6
q + · · · . (6.27)

From (6.27) we have

yyy1 −xxx∗ =C2eee2
q +(−2C2

2 +2C3)eee
3
q +(3C4 +4C3

2 −3C3C2 −4C2C3)eee
4
q +(4C5

+6C3(C
2
2)+8C2

2C3 +6C2C3C2 −8C4
2 −4C4C2 −6C2

3 −6C2C4)eee
5
q

+(5C6 +8C4(C
2
2)+12C3C2C3 +9C2

3C2 +12C2(C
2
3)+12C2

2C4 +8C2C4C2

−16C3
2C3 −12C2

2C3C2 −12C2C3(C
2
2)−12C3(C

3
2)+16C5

2 −5C5C2

−8C4C3 −9C3C4 −8C2C5)eee
6
q + · · · . (6.28)

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 92

The expression for V is

V = I −2C2eeeq +(6C2
2 −3C3)eee

2
q)+(−16C3

2 +10C2C3 +6C3C2 −4C4)eee
3
q

+(−5C5 +8C4C2 +14C2C4 −18C2C3C2 +9C2
3 +40C4

2 −15C3(C
2
2)

−28C2
2C3)eee

4
q +(−6C6 +10C5C2 +12C4C3 +12C3C4 +18C2C5

−24C3C2C3 −24C2C4C2 +72C3
2C3 +48C2

2C3C2 +42C2C3(C
2
2)

+36C3(C
3
2)−96C5

2 −24C4(C
2
2)−12C2

3C2 −30C2(C
2
3)−40C2

2C4)eee
5
q

+(−52C2
2C5 −42C2C3C4 −40C2C4C3 −30C2C5C2 −15C3C4C2

−33C3C2C4 −15C3
3 +224C6

2 −24C4C3C2 −40C4C2C3 −176C4
2C3

−120C3
2C3C2 −108C2

2C3(C
2
2)−96C2C3(C

3
2)+68C4(C

3
2)−84C3(C

4
2)

+22C2C6 +16C2
4 +15C3C5 +15C5C3 +12C6C2 +24C2

3(C
2
2)

+60C3(C
2
2)C3 +33C3C2C3C2 +64C2

2C4C2 −7C7 +104C3
2C4

+84C2
2(C

2
3)+42C2(C

2
3)C2 +72C2C3C2C3 +64C2C4(C

2
2)

−30C5(C
2
2))eee

6
q + · · · . (6.29)

Finally, we provide the expression for yyy2 −xxx∗ and yyy3 −xxx∗, by skipping some steps:

yyy2 −xxx∗ = (−3C3(C
2
2)(1/2)+(1/2)(C2C3C2)+14C4

2)eee
5
q +(C2C4C2 +C2(C

2
3)

−9C2
3C2(1/4)−3C3C2C3 +55C3(C

3
2)(1/2)+19C2C3(C

2
2)+(1/2)(41C2

2C3C2)

+28C3
2C3 −2C4(C

2
2)−140C5

2)eee
6
q + · · · . (6.30)

yyy3 −xxx∗ = (280C7
2 +(1/2)(C2C3C2C3C2)− (1/2)(3C2(C

2
3)(C

2
2))−42C3(C

5
2)

−30C3
2C3(C

2
2)+(1/2)(9C3C2C3(C

2
2))+14C2C3(C

4
2)+10C4

2C3C2

− (1/2)(3C3(C
2
2)C3C2))eee

8
q + · · · . (6.31)

Theorem 6.2. The multi-step iterative scheme (6.17) has the local convergence-order

3s−1, using s(≥ 1) evaluations of a sufficiently differentiable function F and two first-

order Frechet derivatives F ′ per full-cycle.

Proof. The proof is established via mathematical induction. For s = 1, 2, 3 the

convergence-orders are two, five and eight from (6.28), (6.30), and (6.31), respectively.

Consequently our claim concerning the convergence-order 3s−1 is true for s = 2, 3.

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 93

We assume that our claim is true for s=m> 3, i.e., the convergence-order of (6.17)

is 3m−1. The mth-step and (m−1)th-step of iterative scheme(6.17) can be written as:

Frozen− f actor =

(

7
2

I −4V +
3
2

V 2

)

(F ′(xxxq))
−1, (6.32)

yyym−1 = yyym−2 − (Frozen− f actor)F(yyym−2), (6.33)

yyym = yyym−1 − (Frozen− f actor)F(yyym−1). (6.34)

The enhancement in the convergence-order of (6.17) from the (m − 1)th-step to the

mth-step is (3m−1)− (3(m−1)−1) = 3 . Now we write the (m+1)th-step of (6.17):

yyym+1 = yyym − (Frozen− f actor)F(yyym). (6.35)

The increment in the convergence-order of (6.17), due to (m+ 1)th-step, is ex-

actly three, because the use of the Frozen− f actor adds an additive constant in the

convergence-order [37]. Finally, after the addition of the (m+ 1)th-step, we observe

that the convergence-order is 3m−1+3 = 3m+2, which completes the proof.

6.4 Dynamics of multi-steps iterative methods

Here we analyze the dynamics of classical and newly developed multi-step iterative

methods. Actually dynamics of iterative solvers for nonlinear problems shows the re-

gion of convergence and divergence. In order to draw the convergence and divergence

regions, we select two simple systems of nonlinear equations

P1 =







x2

16 +
y2

4 = 1

y−4sin(x) = 0,
(6.36)

P2 =







y− x2 −1 = 0

y+ x2 −1 = 0.
(6.37)

The P1 problem has six roots and P2 has only two roots. Regarding the dynamics plots,

we start with an initial guess and iterates it with a given iterative method. If iterations

show convergence to a root we assign a specific color (different from black) to that ini-

tial guess. Otherwise, in case of divergence, we employ the black color. Notice that

the nonlinear curves of P1 and P2 are also plotted in black color in all figures which

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 94

has no connection with divergence. In Figures 6.2, 6.3, 6.4, we plotted the convergence

and divergence regions of classical Newton Raphson iterative methods, with different

convergence orders for problem P1. The multi-step iterative method MZ dynamics is

shown in Figures 6.5, 6.6 for problem P1 and in Figures 6.7, 6.8 for problem P2. As

we increase the convergence-order of an iterative method, the figures clearly show that

its region of convergence around the roots shrink. Generally specking all higher order

methods are sensitive to initial guess because of their narrow convergence regions. Fig-

ure 6.6 corresponds to multi-step iterative method MZ(s = 3, CO = 8) and has more

dark region than that in Figure 6.2. It means that, as expected, our multi-step iterative

method is more sensitive to the initial guess than classical Newton Raphson.

FIGURE 6.2: Newton Raphon with CO = 2, Domain= [−11, 11]× [−11, 11], Grid=
700×700.

6.5 Numerical tests

For the verification of convergence-order, we use the following definition for the com-

putational convergence-order (COC):

COC ≈ log
[
Max(|xxxq+2 −xxx∗|)/Max(|xxxq+1 −xxx∗|)

]

log
[
Max(|xxxq+1 −xxx∗|)/Max(|xxxq −xxx∗|)

] , (6.38)

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 95

FIGURE 6.3: Multi-step Newton Raphon with CO = 3, Domain= [−11, 11] ×
[−11, 11], Grid= 700×700.

FIGURE 6.4: Multi-step Newton Raphon with CO = 4, Domain= [−11, 11] ×
[−11, 11], Grid= 700×700.

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 96

FIGURE 6.5: Multi-step iterative method MZ with CO = 5, Domain= [−11, 11]×
[−11, 11], Grid= 700×700.

FIGURE 6.6: Multi-step iterative method MZ with CO = 8, Domain= [−11, 11]×
[−11, 11], Grid= 700×700.

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 97

FIGURE 6.7: Multi-step iterative method MZ with CO = 5, Domain= [−3, 3]×
[−3, 3], Grid= 300×300.

FIGURE 6.8: Multi-step iterative method MZ with CO = 8, Domain= [−3, 3]×
[−3, 3], Grid= 300×300.

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 98

where Max(|xxxq+2 − xxx∗|) is the maximum absolute error. In the introduction section

we have listed three ODEs and two PDEs problem. The analytical solution of (6.1),

(6.2), (6.3), (6.5) can be found in [154], [183], [184], [185], respectively. The close

form solution of (6.4) is not known: in this case we can check the norm of F(xxx). The

proposed iterative methods are designed for general systems of nonlinear equations.

Hence we choose a small system of nonlinear equations for checking the computational

order of convergence and accuracy of multi-step MZ method:







x2x3 + x4(x2 + x3) = 0,

x1x3 + x4(x1 + x3) = 0,

x1x2 + x4(x1 + x2) = 0,

x1x2 + x1x3 + x2x3 −1 = 0.

(6.39)

For the purpose of testing accuracy, we give here thirty digits accurate solution of (6.39)







x1 = 0.577350269189625764509148780502,

x2 = 0.577350269189625764509148780502,

x3 = 0.577350269189625764509148780502,

x4 =−0.288675134594812882254574390251.

(6.40)

The initial and boundary conditions for PDEs (6.4) and (6.5) can be found in the

caption of Tables 6.9 and 6.10. For the purpose of comparison we adopted two ways:

either (i) both multi-step iterative methods MZ and HM use the same number of func-

tion evaluations or (ii) the convergence-order is forced to be equal. In some cases we

just perform one iteration and increase the number of steps. Otherwise, we perform

more iterations with different number of steps. When we perform a single iteration of

multi-steps methods, by increasing the number of steps to achieve better accuracy, we

pay minimum computational cost because, in this case, we have to perform just one

LU-factorization of a single Jacobian and have to reuse the factors for the solution of

system of linear equations. The first problem which we try to solve is the Bratu prob-

lem (6.1). In Table 6.4, we use 200 grid points to discretize the domain of the problem

[0, 1] and each grid point corresponds to a nonlinear equation. In this we way the sys-

tem of nonlinear equations has size 200. We performed one iteration and select 32,

33 steps for MZ and HM method so that both methods have same number of function

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 99

evaluations and solutions of systems of linear equations. For different values of the pa-

rameter λ for Bratu problem in Table 6.4, results shows that MZ performs better than

HM in terms of execution time and achieved accuracy. In Table 6.4 we solved Bratu

problem for different values of parameter λ for fix number of steps. One may observe

that if we increase the value of λ there is degradation in accuracy for fixed number of

steps. Actually for different values of parameter Bratu problem has different solutions

and we solve all the problem with same initial guess and achieve different accuracies

in the numerical solutions for fixed number of multi-steps. The dynamics of iterative

method for different problems is different so same initial guess for all problems may

provide different accuracy. For the better comparison of execution time of the methods

MZ and HM, we select different number of steps such that both methods have the same

convergence-order. Table 6.5 depicts the execution time of MZ, which is less than that

of the HM method. The reason why is that the HM procedure requires a larger number

of steps to achieve equal convergence-order as MZ and for each step we solve one sys-

tem of linear equations and one function evaluation. It is true that MZ uses more matrix

vector multiplications than HM, but more function evaluations and solutions of systems

of linear equations are performed by the HM solver. The successive iterations of MZ

method for Bratu problem is given in Figure 6.9 and the analytical solution is plotted

in Figure 6.10. The successive iterations and solution of Frank Kamenetzkii problem is

shown in Figures 6.11, 6.12. In Table 6.6 we also calculated the COCs for both MZ and

HM methods and they verify the claimed theoretical convergence-orders. The results

of Table 6.7 also confirm the fast convergence of the MZ method. The first two prob-

lems were boundary value problems, while the third one is the initial value problem

Lene-Emden, having infinite. For numerical experimentation we select a reasonable

closed interval [0, 8] to integrate the problem. In Table 6.8 we execute two iterations by

fixing the function evaluations and solution of system of linear equations. The results

show that the execution time is more or less the same, but the resulting accuracy of the

MZ method is better than that of the HM method. Figure 6.13 and 6.14 present the

numerical treatment of Lene-Emden equation. For the numerical solution of Burgers

equations we select nx = 40 grid points in spatial dimension and nt = 40 in the tempo-

ral dimension so that the size of the resulting system of nonlinear equations becomes

1600. Table 6.9 tells that MZ achieved O(10−14) in the 2−norm of F(xxx) of Burgers

equations, while HM got the same accuracy in three iterates and consumed more time.

Error in the ||F(x)||2 of Burgers equation and approximated numerical solution can be

visualized in Figures 6.15 and 6.16. The largest system of nonlinear equations is con-

structed for the Klein-Gordon equations. In Table 6.10 we iterate MZ and HM methods

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 100

one single time and both consume almost the same execution time: however the MZ

procedure got better maximum absolute error than HM. The absolute error plot related

to the analytical solution of Klien-Gordon can be seen in Figures 6.17 and 6.18. Since

we have mentioned that our proposed multi-step iterative method is designed for gen-

eral systems of nonlinear equations, in (6.39) we picked a general system of nonlinear

equations and in (6.40) a thirty digits accurate solution of it is also supplied. The results

of Table 6.11 confirms the COCs for both methods and because the convergence-order

of MZ is higher than HM, by using the same number of function evaluations, the result-

ing accuracy is also better than HM. Table 6.12 shows the successive iterations for both

methods.

Iterative methods MZ HM
Number of iterations 1 1
Size of problem 200 200
Number of steps 32 33
Theoretical convergence-order(CO) 95 66
Number of function evaluations per iteration 32 32
Solutions of system of linear equations per iteration 32 32
Number of Jacobian evaluations per iteration 2 2
Number of Jacobian LU-factorizations per iteration 1 1
Number of matrix vector multiplication per iteration 62 33

λ
Max|xxxq −xxx∗| 1 4.66e−161 7.55e−110

2 2.24e−140 2.31e−98
3 8.41e−48 4.05e−35

Execution timeλ = 1) 23.72 22.31

TABLE 6.4: Comparison of performances for different multi-step methods in the case
of the Bratu problem (6.1) when number of function evaluations and number of solu-

tions of systems of linear equations are equal.

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 101

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Spatial axis

S
u

c
c
e

s
s
iv

e
 i
te

ra
ti
o

n
s
 y

q
(x

)

Initial guess

Iteration=1

Iteration=2

Iteration=3

FIGURE 6.9: successive iterations of multi-step method MZ in the case of the Bratu
problem (6.1), λ = 3, iter = 3, step = 2, size of problem = 40.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Spatial axis

A
n

a
ly

ti
c
a

l
s
o

lu
ti
o

n
 y

(x
)

FIGURE 6.10: Analytical solution of Bratu problem (6.1), λ = 3, iter = 3, step = 2,
size of problem = 40.

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 102

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spatial axis

S
u

c
c
e

s
s
iv

e
 i
te

ra
ti
o

n
s
 y

q
(x

)

Initial guess

Iteration=1

Iteration=2

Iteration=3

FIGURE 6.11: successive iterations of multi-step method MZ in the case of the Frank
Kamenetzkii problem (6.1), iter = 3, step = 2, size of problem = 50.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Spatial axis

A
n

a
ly

ti
c
a

l
s
o

lu
ti
o

n
 y

(x
)

FIGURE 6.12: Analytical solution of Frank Kamenetzkii problem (6.1), iter = 3,
step = 2, size of problem = 50.

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 103

Iterative methods MZ HM
Number of iterations 1 1
Size of problem 250 250
Number of steps 121 181
Theoretical convergence-order(CO) 362 362
Number of function evaluations per iteration 121 180
Solutions of system of linear equations per iteration 121 180
Number of Jacobian evaluations per iteration 2 2
Number of Jacobian LU-factorizations per iteration 1 1
Number of matrix vector multiplication per iteration 240 181
Max|xxxq −xxx∗|, (λ = 1) 3.98e−235 3.98e−235
Execution time 65.51 71.00

TABLE 6.5: Comparison of performances for different multi-step methods in the case
of the Bratu problem (6.1) when convergence orders are equal.

Iterative methods MZ HM
Number of iterations 3 3
Size of problem 150 150
Number of steps 3 4
Theoretical convergence-order(CO) 8 8
Computational convergence-order(COC) 7.77 8.65
Number of function evaluations per iteration 3 3
Solutions of system of linear equations per iteration 3 3
Number of Jacobian evaluations per iteration 2 2
Number of Jacobian LU-factorizations per iteration 1 1
Number of matrix vector multiplication per iteration 4 4
Max|xxxq −xxx∗| 5.12e−149 3.21e−149
Execution time 16.44 16.81

TABLE 6.6: Comparison of performances for different multi-step methods in the case
of the Frank Kamenetzkii problem (6.2) when convergence orders, number of function

evaluations, number of solutions of systems of linear equuations are equal.

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 104

Iterative methods MZ HM
Number of iterations 1 1
Size of problem 150 150
Number of steps 121 181
Theoretical convergence-order(CO) 362 362
Number of function evaluations per iteration 121 180
Solutions of system of linear equations per iteration 121 180
Number of Jacobian evaluations per iteration 2 2
Number of Jacobian LU-factorizations per iteration 1 1
Number of matrix vector multiplication per iteration 240 181
Max|xxxk −xxx∗|, (λ = 1) 6.46e−148 3.95e−149
Execution time 30.15 35.45

TABLE 6.7: Comparison of performances for different multi-step methods in the case
of the Frank Kamenetzkii problem (6.2) when convergence orders are equal.

Iterative methods MZ HM
Number of iterations 2 2
Size of problem 150 150
Number of steps 7 8
Theoretical convergence-order(CO) 20 16
Number of function evaluations per iteration 7 7
Solutions of system of linear equations per iteration 7 7
Number of Jacobian evaluations per iteration 2 2
Number of Jacobian LU-factorizations per iteration 1 1
Number of matrix vector multiplication per iteration 12 8

Iter
Max|xxxq −xxx∗| 1 0.50 0.68

2 4.77e−32 1.18e−17
Execution time 13.33 13.12

TABLE 6.8: Comparison of performances for different multi-step methods in the case
of the Lene-Emden equation (6.3)

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 105

0 1 2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Spatial axis

S
u

c
c
e

s
s
iv

e
 i
te

ra
ti
o

n
s
 y

q
(x

)

Initial guess

Iteration=1

Iteration=2

FIGURE 6.13: successive iterations of multi-step method MZ in the case of the Lene-
Emden equation (6.3), x ∈ [0, 8].

0 1 2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spatial axis

A
n

a
ly

ti
c
a

l
s
o

lu
ti
o

n
 y

(x
)

FIGURE 6.14: Analytical solution of Lene-Emden equation (6.3), x ∈ [0, 8].

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 106

Iterative methods MZ HM
Number of iterations 2 3
Size of problem 1600 1600
Number of steps 4 5
Theoretical convergence-order(CO) 11 10
Number of function evaluations per iteration 4 4
Solutions of system of linear equations per iteration 4 4
Number of Jacobian evaluations per iteration 2 2
Number of Jacobian LU-factorizations per iteration 1 1
Number of matrix vector multiplication per iteration 6 5

Iter
||F(x)||2 1 0.47 2.19

2 7.86e−14 3.50e−11
3 1.02e−13

Execution time 0.14 0.19

TABLE 6.9: Comparison of performances for different multi-step methods in the case
of the Burgers equation (6.4), initial guess u(xi, t j) = 0, u(x,0) = 2γπsin(πx)

α+βcos(πx) , u(0, t) =
u(2, t) = 0, α = 15, β = 14, γ = 0.2, nx = 40, nt = 40, x ∈ [0, 2], t ∈ [0, 100].

0

50

100

0

0.5

1

1.5

2
−4

−2

0

2

4

6

x 10
−14

temporal axisspatial axis

F
(x

)

FIGURE 6.15: Comparison of performances for different multi-step methods in the
case of the Burgers equation (6.4), initial guess u(xi, t j) = 0, u(x,0) = 2γπsin(πx)

α+βcos(πx) ,
u(0, t) = u(2, t) = 0, α = 15, β = 14, γ = 0.2, nx = 40, nt = 40, x ∈ [0, 2], t ∈ [0, 100]

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 107

0

50

100

0

0.5

1

1.5

2
−4

−2

0

2

4

temporal axisspatial axis

N
u

m
e

ri
c
a

l
s
o

lu
ti
o

n
 u

(x
,t

)

FIGURE 6.16: Comparison of performances for different multi-step methods in the
case of the Burgers equation (6.4), initial guess u(xi, t j) = 0, u(x,0) = 2γπsin(πx)

α+βcos(πx) ,
u(0, t) = u(2, t) = 0, α = 15, β = 14, γ = 0.2, nx = 40, nt = 40, x ∈ [0, 2], t ∈ [0, 100].

Iterative methods MZ HM
Number of iterations 1 1
Size of problem 4420 4420
Number of steps 3 4
Theoretical convergence-order(CO) 8 8
Number of function evaluations per iteration 3 3
Solutions of system of linear equations per iteration 3 3
Number of Jacobian evaluations per iteration 2 2
Number of Jacobian LU-factorizations per iteration 1 1
Number of matrix vector multiplication per iteration 4 4

Steps
Max|xxxq −xxx∗| 1 11.76e−2 4.11e−1

2 3.01e−4 2.62e−3
3 7.92e−7 2.63e−5
4 4.39e−7

Execution time 71.69 71.79

TABLE 6.10: Comparison of performances for different multi-step methods in the case
of the Klien Gordon equation (6.5), initial guess u(xi, t j)= 0, u(x, t)= δ sech(κ(x−νt),

κ =
√

k
c2−ν2 , δ =

√
2k
γ , c= 1, γ = 1, ν = 0.5, k = 0.5, nx = 170, nt = 26, x∈ [−22, 22],

t ∈ [0, 0.5].

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 108

0

0.1

0.2

0.3

0.4

0.5

−30
−20

−10
0

10
20

30

0

2

4

6

8

x 10
−7

Tem
pora

l a
xis

Spatial axis

A
b

s
o

lu
te

 e
rr

o
r

FIGURE 6.17: Absolute error plot for multi-step method MZ in the case of the
Klien Gordon equation (6.5), initial guess u(xi, t j) = 0, u(x, t) = δ sech(κ(x − νt),

κ =
√

k
c2−ν2 , δ =

√
2k
γ , c= 1, γ = 1, ν = 0.5, k = 0.5, nx = 170, nt = 26, x∈ [−22, 22],

t ∈ [0, 0.5].

0

0.1

0.2

0.3

0.4

0.5

−30
−20

−10
0

10
20

30

0

0.5

1

Tem
pora

l a
xis

Spatial axis

A
n

a
ly

ti
c
a

l
s
o

lu
ti
o

n
 u

(x
,t

)

FIGURE 6.18: Analytical solution of the Klien Gordon equation (6.5), x ∈ [−22, 22],
t ∈ [0, 0.5].

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 109

Iterative methods MZ HM
Number of iterations 3 3
Size of problem 4 4
Number of steps 7 8
Theoretical convergence-order(CO) 20 16
Computational convergence-order(COC) 20.1 16.1
Number of function evaluations per iteration 7 7
Solutions of system of linear equations per iteration 7 7
Number of Jacobian evaluations per iteration 2 2
Number of Jacobian LU-factorizations per iteration 1 1
Number of matrix vector multiplication per iteration 12 8

Iter
Max|xxxq −xxx∗| 1 8.51e−142 7.13e−1

2 3.56e−277 5.61e−190
3 3.32e−5569 1.93e−3057

Execution time 0.02 0.03

TABLE 6.11: Comparison of performances for different multi-step methods in the case
of general systems of nonlinear equations (6.39), the initial guess for both of methods

is [0.5, 0.5, 0.5, −0.2].

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 110

Iterative methods MZ HM
Number of iterations 1 1
Size of problem 4 4
Number of steps 30 31
Theoretical convergence-order(CO) 89 62
Number of function evaluations per iteration 30 30
Solutions of system of linear equations per iteration 30 30
Number of Jacobian evaluations per iteration 2 2
Number of Jacobian LU-factorizations per iteration 1 1
Number of matrix vector multiplication per iteration 58 30

Steps
Max|xxxq −xxx∗| 1 0.01 0.02

2 1.91e−4 6.77e−4
3 3.05e−6 3.67e−5
5 5.603−10 8.43e−8

10 1.363−19 1.26e−14
15 2.463−29 1.44e−21
20 3.93e−39 1.46e−28
25 5.88e−49 1.40e−35
30 8.44e−59 1.29e−42
31 5.01e−44

Execution time 0.02 0.02

TABLE 6.12: Comparison of performances for different multi-step methods in the case
of general systems of nonlinear equations (6.39), the initial guess for both of methods

is [0.5, 0.5, 0.5, −0.2].

It is worth mentioning that when we solve 1-D problem, we always use high prce-

sion floating point arithmetic but for 2-D problems we use double precision. In 2-D

problems, It is hard to achieve accuracy higher than double.

6.6 Summary

The main benefit of multi-steps methods is to provide computationally efficient itera-

tive methods, which use a minimal number of Jacobian evaluations and related inver-

sions. The single iteration of a good multi-step iterative methods uses only one inversion

(in terms of LU-factorization) of the Jacobian, which is computationally efficient: the

multi-step idea is employed for enhancing the convergence order. The key fact related

to better performances of the MZ method is hidden in the increment of convergence-

order by three, for each step, and obeys the formula 3s−1 where s is the step number.

Chapter 6. H. O. Multi-step Iterative Method for Computing the Numerical Solution of
Systems of Nonlinear Equations: Application to Nonlinear PDEs and ODEs 111

Three ODEs, two PDEs and one small general system of nonlinear equations are pre-

sented and numerical results confirm the convergence-order, accuracy and validity of

MZ multi-step iterative method. We also found that spectral collocation methods offer

a good accuracy, which helped us to verify our claimed convergence-orders, when using

our MZ multi-step iterative method.

Chapter 7

An Efficient Matrix Iteration for

Computing Weighted Moore-Penrose

Inverse

The goal of this study is threefold. In order to calculate the weighted Moore-

Penrose inverse, we first derive a new matrix iteration for computing the inverse

of non-singular square matrices. We then analytically extend the obtained results

in order to compute the Moore-Penrose generalized inverse of a non-square ma-

trix. Subsequently, these results will again be theoretically extended to find the

weighted Moore-Penrose inverse. The computational efficiency of the presented

scheme is rigourously studied and compared with the existing matrix iterations, to

show its computational efficiency. Some applications are given as well.

7.1 Introduction

The introduction and importance of weighted Moore-Penrose inverse for an arbitrary

matrix has been made in [196], [197], and [198]. For an arbitrary matrix A ∈C
m×n, and

two Hermitian positive definite matrices M and N of orders m and n, respectively, there

is a unique matrix X satisfying the relations

I) AXA = A, II) XAX = X , III) (MAX)∗ = MAX , IV) (NXA)∗ = NXA. (7.1)

112

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 113

The matrix X ∈ C
n×m is known as the weighted Moore-Penrose inverse of A, de-

noted by A†
MN and the relation (7.1) is called as weighted Penrose equations. In partic-

ular, when M = Im×m and N = In×n, the matrix X is called the Moore-Penrose inverse

or the generalized pseudo-inverse and is denoted by A†, while (7.1) reduced to the well-

known Penrose equations originally attributed to [199] in what follows

i) AXA = A, ii) XAX = X , iii) (AX)∗ = AX , iv) (XA)∗ = XA. (7.2)

Algorithms for computing the (weighted) Moore-Penrose inverse of a matrix are

a subject of current research (see, e.g., [200], [201] and [85]). Greville’s partition-

ing method for numerical computation of generalized inverses was introduced in [202].

Wang in [203] generalized Greville’s method to the weighted Moore-Penrose inverse.

Many numerical algorithms for computing the (weighted) Moore-Penrose inverse lack

of numerical stability. The Greville’s algorithm requires more operations and conse-

quently it accumulates more rounding errors. Furthermore, it is widely known that the

Moore-Penrose inverse is not necessarily a continuous function of the elements of the

matrix. The existence of this discontinuity provides more efforts in its computation

[196].

It is therefore clear that cumulative round-off errors should be totally eliminated,

which is possible only by means of the symbolic implementation. In this case, variables

are stored in the "exact" form or can be left "unassigned", resulting in no loss of accuracy

during the calculation. Anyway, by increasing the dimension of the input matrix, the

computation of its (weighted) Moore-Penrose inverse by the symbolic implementation

will take too much time, This made some numerical analysts to suggest and rely on

numerically stable matrix methods.

The fundamental method for finding the weighted Moore-Penrose inverse is based

on the weighted singular value decomposition (WSVD) discussed originally in [204]

given in what follows. Assume that A ∈ C
m×n and rank(A) = r. There exist U ∈ C

m×m

and V ∈ C
n×n, satisfying U∗MU = Im×m and V ∗N−1V = In×n, such that

A =U

(

D 0

0 0

)

V ∗. (7.3)

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 114

Then, the weighted Moore-Penrose inverse A†
MN could be expressed by

A†
MN = N−1V

(

D−1 0

0 0

)

U∗M, (7.4)

where D = diag(σ1,σ2, . . . ,σr), σ1 ≥ σ2 ≥ . . . ≥ σr > 0, and σ2
i is the nonzero eigen-

value of N−1A∗MA. Furthermore,

‖A‖MN = σ1, ‖A†
MN‖NM =

1
σr

. (7.5)

We denote throughout this chapter A# = N−1A∗M as the weighted conjugate transpose

matrix of A.

The restrictions of computing the weighted Moore-Penrose inverse using the

WSVD encouraged some researchers to develop iteration methods for this purpose. In

2006, Huang and Zhang in [205] developed the quadratically Schulz iterative method

[71] (sometimes called as Hotelling inverse-finder [206]) as follows

Xk+1 = Xk(2I −AXk), k = 0,1,2, · · · , (7.6)

for finding the weighted Moore-Penrose inverse.

This scheme has interesting features of being based exclusively on matrix-matrix

operations, which is quite fast in parallel machines. The Schulz iteration has poly-

logarithmic complexity and is numerically stable [78]. Note that though (7.6) was first

suggested to find the inverse of square matrices, it had successfully discussed in [207]

that it is also so interesting in finding the Moore-Penrose inverse.

The idea of matrix iterations (Schulz-type iterative methods) was then developed

by Sen and Prabhu in [208] to present matrix iterations of arbitrary orders of conver-

gence for finding the pseudo-inverse.

The perception and reason of constructing higher order matrix iterations is that

the low order ones, such as (7.6) are too slow at the beginning of the process and it

might take many cycles to arrive at the convergence phase. That is, the scheme (7.6)

is even linearly convergent at the beginning of the process. Söderström and Stewart in

[78] indicated that (7.6) requires almost the following number of iterations in machine

precision to converge

s ≈ 2log2 κ2(A), (7.7)

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 115

where κ2(A), is the condition number of the input matrix A in ‖ · ‖2.

This made the construction of higher order matrix iterations (only the efficient

ones) meaningful as will be discussed further in Section 7.3. For example, the cubically

Chebyshev’s method [209] could be presented by

Xk+1 = Xk(3I −AXk(3I −AXk)), k = 0,1,2, · · · , (7.8)

while a high-order method [209] to reach the convergence order nine can be deduced

as

Xk+1 = Xk(I +Yk(I +Yk(I +Yk(I +Yk(I +Yk(I +Yk(I +Yk(I +Yk)))))))), k = 0,1,2, · · · , (7.9)

where Yk = I −AXk.

It must be noted that in such constructions and as also discussed in [210], the

convergence order p could be attained using p times of matrix-matrix products.

Generally speaking, the construction of different iterative methods for matrix in-

version is based on applying a nonlinear equation solver (see e.g. [211]) on the matrix

equation

AX = I, (7.10)

wherein I is the identity matrix of the appropriate dimension.

In this chapter, we seek for a new matrix iteration at which, we obtain a high con-

vergence order p with less number of matrix-by-matrix products than p. This would

make the method quite efficient in contrast to the existing iterative methods of the same

type for this purpose. Toward this aim, we first in Section 7.2, derive a new method

and discuss under which condition, it could converge for non-singular square matrices.

Then, in Section 7.3 we infer that the new method is computationally economic. Next,

Section 7.4 contains the proof of converegence Moore-Penrose inverse. The main con-

tribution will then be presented by extending the novel method for finding the weighted

Moore-Penrose inverse in Section 7.5. Section 7.6 is devoted to the application of the

new method to some numerical tests. The chapter ends in Section 7.7, wherein a con-

clusion will be drawn.

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 116

7.2 Derivation

In this section, we contribute and construct a new iterative method for matrix inversion.

In fact, we construct a high order method whereas the number of matrix-matrix products

is lower than that of the corresponding method (here the scheme (7.9)) produced by the

general ways of [210] and [209]. To this purpose, we apply the following new rational

iteration function







yk = xk − f (xk)
2 f ′(xk)

(

2+ f ′′(xk) f (xk)
f ′(xk)2

)

,

zk = yk − f (yk)
f ′(yk)

,

xk+1 = yk −
(

f (yk)− 1
5 f (zk)

f ′(zk)

)(

1− 4
5

f (zk)
f (yk)

)

, k = 0,1,2, · · · ,

(7.11)

on equation f (x) = 0. The iterative method (7.11) solves nonlinear equation of sin-

gle variable and it has local ninth order of convergence for finding the simple ze-

ros of nonlinear equation. In fact, it reads the following error equation: en+1 =

− 1
25

(
4c2

2 −25c3
)(

2c2
2 − c3

)3
e9

n +O(e10
n), wherein c j =

1
j!

f (j)(α)
f ′(α) , j ≥ 2 and α is the

simple zero of a nonlinear equation.

The equivalent version of iterative method (7.11) for (7.10) could be obtained

Xk+1 = − 1
25 Xk(3I +AXk(−3I +AXk))(−79I +AXk(3I +AXk(−3I +AXk))(87I

+AXk(3I +AXk(−3I +AXk))(−37I +4AXk(3I +AXk(−3I +AXk)))))

= 1
25 Xk(237I −1020AXk +2644(AXk)

2 −4626(AXk)
3 +5814(AXk)

4

−5460(AXk)
5 +3924(AXk)

6 −2169(AXk)
7 +901(AXk)

8 −264(AXk)
9

+48(AXk)
10 −4(AXk)

11), k = 0,1,2, · · · .

We now re-write the obtained iteration as efficiently as possible to reduce the number

of matrix-matrix multiplications in what follows







ψk = AXk,

ζk = 3I +ψk(−3I +ψk),

υk = ψkζk,

Xk+1 =− 1
25Xkζk(−79I +υk(87I +υk(−37I +4υk))), k = 0,1,2, · · · .

(7.12)

The iterative method (7.12) falls within the domain of Schulz-type methods for ma-

trix inversion. It requires an initial matrix to start the process and can rapidly converge,

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 117

which is an advantage over the existing methods. Below, we first give a mathematical

analysis to observe that under what condition, (7.12) converges.

Theorem 7.1. Let A = [ai, j]n×n be a nonsingular complex square matrix. If the initial

approximation X0 satisfies

‖I −AX0‖< 1, (7.13)

then, the iterative method (7.12) converges with ninth order to A−1.

Proof. We assume that (7.13) is true and the matrix E0 = I −AX0, is the initial residual

matrix. Also let that Ek = I −AXk = I −ψk. We obtain

Ek+1 = I −AXk+1

= I −A(− 1
25Xk(3I +ψk(−3I +ψk))(−79I +ψk(3I +ψk(−3I +ψk))(87I

+ψk(3I +ψk(−3I +ψk))(−37I +4ψk(3I +ψk(−3I +ψk)))))

= I − 1
25 [237ψk −1020ψ2

k +2644ψ3
k −4626ψ4

k +5814ψ5
k −5460ψ6

k

+3924ψ7
k −2169ψ8

k +901ψ9
k −264ψ10

k +48ψ11
k −4ψ12

k]

= 1
25(−I +ψk)

9(−25I +4ψk(3I +ψk(−3I +ψk)))

= − 1
25(I −ψk)

9(−21I −4I +12ψk −12ψ2
k +4ψ3

k)

= 1
25(I −ψk)

9(21I +4(I −ψk)
3)

= 1
25E9

k (21I +4E3
k).

Subsequently, one has

Ek+1 =
1
25

[21E9
k +4E12

k]. (7.14)

Taking a generic matrix operator norm from both sides of (7.14), we obtain

‖Ek+1‖ ≤
1

25
[21‖Ek‖9 +4‖Ek‖12]. (7.15)

In addition, since ‖E0‖ < 1 (due to (7.13)), by relation (7.15) and using mathematical

induction, we attain

‖E1‖ ≤
1

25
[21‖E0‖9 +4‖E0‖12]< 1. (7.16)

Now, if we take into consideration ‖Ek‖< 1, then

‖Ek+1‖ ≤
1

25
[21‖Ek‖9 +4‖Ek‖12]≤ ‖Ek‖9. (7.17)

Besides, we get that

‖Ek+1‖ ≤ ‖Ek‖9 ≤ ·· · ≤ ‖E0‖9k+1
< 1. (7.18)

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 118

That is I −AXk → 0, when k → ∞, and thus Xk → A−1, as k → ∞. Now, one part of

the proof is remained. We must manifest that the ninth order of convergence can be

obtained for the sequence {Xk}k=∞
k=0 . To this end, we take into consideration that

εk = A−1 −Xk, (7.19)

is the error matrix in the iterative procedure (7.12). Moreover, Aεk = I−AXk = Ek. This

implies

Aεk+1 = Ek+1 =
1

25
[21E9

k +4E12
k] =

1
25

[21(Aεk)
9 +4(Aεk)

12]. (7.20)

One has now that

εk+1 =
1
25

[21εk(Aεk)
8 +4εk(Aεk)

11]. (7.21)

By taking a generic matrix operator norm, we obtain

‖εk+1‖ ≤ (
1

25
[21‖A‖8 +4‖A‖11‖εk‖3])‖εk‖9. (7.22)

That is, by considering ξk = (1
25 [21‖A‖8 + 4‖A‖11‖εk‖3]), the error inequality, which

reveals at least local ninth convergence order is

‖εk+1‖ ≤ ξk‖εk‖9. (7.23)

The proof is finished.

In the above analysis, we have investigated that the new scheme (7.12) is conver-

gent for nonsingular square complex matrices provided that a good initial approxima-

tion is available. Hence, it is of great importance to achieve the convergence by a valid

initial value X0.

Pan and Schreiber in [207] considered that the approximations Xk share singular

vectors with A∗, and both the largest (σmax) and the smallest singular values (σmin) of A

are available, then for a general matrix A, one can choose

X0 =
2

σ2
min +σ2

max
A∗. (7.24)

This is reported as the best general initial choice for X0, which is also called as the

optimal initial choice.

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 119

Another interesting initial matrix was introduced and developed by Ben-Israel and

Greville in [196] as follows

X0 = αA∗, (7.25)

where 0 < α < 2
||A||22

. Because of the fact that, the computation of matrix norm || · ||2,

is difficult for large matrices, an alternative bound for α could be considered in what

follows

0 < α <
2

σ2
max

, (7.26)

where σmax can be computed by the Arnoldi algorithm. We refer the reader to [212] for

observing more interesting initial choices.

7.3 Efficiency challenge

The performance of an algorithm depends on many aspects. In matrix iterations for

finding the inverses, some important aspects are in focus to rate the efficiency of an al-

gorithm by considering the fact that the Schulz-type methods are asymptotically stable.

These factors are the local convergence order, number of matrix by matrix multiplica-

tions, the stopping criterion, etc. Here, we try to answer that: "is the computational

complexity of the new inverse-finder (7.12) reasonable?"

As discussed in Section 7.1, the most general ways for producing higher-order

inverse-finders construct the matrix iterations of local convergence order p using p

times of matrix-matrix products, while the method (7.12) possesses ninth order of con-

vergence using only seven matrix-matrix multiplications. Traub in the Appendix C of

[3] proposed an index, named as the computational efficiency index, by considering all

the imposing costs of an algorithm as follows:

CEI = p
1
C , (7.27)

whereas C stands for the total computational cost of an algorithm.

It is clear that the governing cost per cycle of each Schulz-type method is the

matrix-matrix products. Let us assume that this cost is unity. On the other hand, and

similar to (7.7) in the same environment, an iteration method of order p will almost

require the following number of iterations to converge [84]

s ≈ 2logp κ2(A). (7.28)

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 120

Therefore, the computational efficiency index of a p-th order matrix iteration with

η times of matrix-matrix products per cycle, is

CEI ≈ p
1

η(2logp κ2(A)) . (7.29)

The index tries to make a balance between some important factors of an iteration

process to give an output indicating the efficiency of an algorithm. Using (7.29) the

iterative methods (7.6), (7.8), (7.9) and (7.12), which are denoted throughout this work

by "Schulz", "Chebyshev", "KMS" and "PM", respectively, are compared in Figure 7.1

in terms of the computational efficiency index. Figure 7.1, reveals that by increasing

the condition number and under the same conditions, the new matrix iteration is more

economic than the other competitors in the literature, since the convergence order 9 is

attainable using 7 matrix-matrix products. Figure 7.2 also reveals the estimate number

of iterates by increasing the condition number for different methods.

Up to now, we have derived a new iteration for matrix inversion when the complex

matrices are square and nonsingular, and we have analytically found that it is economic

in terms of the computational efficiency index to tackle matrix inversion problems. By

considering this as the first contribution of this work, we extend the obtained results for

finding the Moore-Penrose and the weighted Moore-Penrose inverses in the forthcoming

Sections 7.4 and 7.5, respectively.

7.4 Moore-Penrose inverse

Let us now extend the contributed method (7.12) for calculating the generalized pseudo-

inverse A†. That is, we must analytically reveal that the sequence {Xk}k=∞
k=0 generated

by the iterative Schulz-type method (7.12), for any k ≥ 0, tends to the Moore-Penrose

inverse as well.

Using mathematical induction, it would be easy to check that the iterates produced

at each cycle of (7.12) satisfies the following relation:

(AXk)
∗ = AXk, (XkA)∗ = XkA, XkAA† = Xk, A†AXk = Xk. (7.30)

The forthcoming theorem best addresses convergence conditions for the high-order

iteration (7.12), when dealing with Moore-Penrose inverse.

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 121

Theorem 7.2. For the complex matrix A ∈ C
m×n, and the sequence {Xk}k=∞

k=0 gener-

ated by (7.12), for any k ≥ 0, using the initial approximation (7.25), the sequence is

converged to the pseudo-inverse A† with at least ninth order of convergence.

Proof. Considering Ek = Xk − A†, as the error matrix for finding the Moore-

Penrose inverse. We have

AEk+1 = AXk+1 −AA†

= AXk+1 − I + I −AA†

= −Ek+1 + I −AA†

= − 1
25 [21E9

k +4E12
k]+ I −AA†

= 1
25(21(AEk)

9 −4(AEk)
12),

(7.31)

wherein the following identities have been used

(I −AA†)t = (I −AA†), t ∈ N, (7.32)

and

(I −AA†)AE= 0. (7.33)

Clearly, we have ‖AEk+1‖ ≤ 1
25(21‖AEk‖9 +4‖AEk‖12). Let us now denote P = AA†,

and S = I −AX0. Then, P2 = P and

PS = AA†(I −AX0)

= AA† −AA†AX0

= AA† −AX0

= AA† −AX0AA†

= (I −AX0)AA†

= SP.

(7.34)

On the other hand, Stanimirović and Cvetković-llić in [213] showed that for P ∈ C
n×n

and S ∈ C
n×n such that P = P2 and PS = SP, one has

ρ(PS)≤ ρ(S). (7.35)

Consequently, using (7.34) and (7.35), we attain

ρ(A(X0 −A†)) = ρ
(

A
(

αA∗−A†
))

≤ ρ (I −αAA∗) = max
1≤i≤r

|1−λi(αAA∗)|, (7.36)

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 122

wherein r denotes the number of singular values. Now, by using an appropriate value

for α as given in (7.26) (e.g. α = 1
σ2

max
), we conclude that

max
1≤i≤r

|1−λi(αAA∗)|< 1. (7.37)

It is also known that there exists a positive constant ε and a matrix norm ‖ · ‖, such that

‖A(X0 −A†)‖ ≤ ρ
(

A(X0 −A†)
)

+ ε < 1. (7.38)

(7.38) implies that ‖AE0‖ < 1, and by a similar reasoning as in (16)-(19), one may

obtain

‖AEk+1‖ ≤
1
25

[21‖AEk‖9 +4‖AEk‖12]≤ ‖AEk‖9 ≤ ‖A‖9‖Ek‖9. (7.39)

We now find the error inequality of the new scheme (7.12), when finding the

Moore-Penrose inverse, as follows:

‖Xk+1 −A†‖= ‖A†AXk+1 −A†AA†‖ ≤ ‖A†‖‖AXk+1 −AA†‖= ‖A†‖‖AEk+1‖. (7.40)

And subsequently using (7.39) and (7.40), we have

‖Ek+1‖ ≤ ‖A†‖‖A‖9‖Ek‖9. (7.41)

Thus, ‖Xk −A†‖ → 0, i.e. the obtained sequence of (7.12) converges to the Moore-

Penrose inverse as k →+∞. This ends the proof. �

Note that we used the proof of the square nonsingular case in the proof of the

Moore-Penrose inverse. Hence, it would be more appropriate to do the generalization

step by step instead of expressing the most general case and then deducing the simple

cases.

It must be remarked that the order of convergence and the matrix-matrix products

are not the only factors to govern the efficiency of an algorithm in matrix iterations.

Generally speaking, the stopping criterion (or in other words the number of full steps)

could be reported as one of the important factors, which could indirectly affect the

computational time of an algorithm in implementations, specially when trying to find

the (weighted) Moore-Penrose inverse.

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 123

To be more precise, in the floating point arithmetic, the following stopping criterion

might be used

max{‖AXkA−A‖◦,‖XkAXk −Xk‖◦,‖(AXk)
∗−AXk‖◦,‖(XkA)∗−XkA‖◦} ≤ ε, (7.42)

where ‖ · ‖◦, denotes the appropriate norm of a matrix. This is a safe strategy to tackle

Moore-Penrose inverse numerically, because it guarantees that the prescribed tolerance

(ε) of the user has been achieved.

This shows the importance of reduction in the number of iterations as well. Since,

the computation of (7.42) is too much burdensome due to further matrix multiplications

and matrix norms per computing steps, which makes the method of lower orders with

large number of iterations, to be not economic in terms of the computational time, while

the higher order methods such as (7.12) would be better, since fewer number of itera-

tions must be computed to achieve the prescribed tolerance, and consequently fewer

matrix-matrix products.

Note that an alternative remedy could be the following stop termination, which is

somewhat unsafe, though it significantly has lower burden than that of (7.42):

||Xk+1 −Xk||◦ ≤ ε. (7.43)

7.5 Weighted Moore-Penrose inverse

This section contains the third contribution of the present study by showing that how

the new method (7.12) and under what conditions it could be applied for finding the

weighted Moore-Penrose inverse A†
MN .

The most important change when applying the new iterative method (7.12) for the

weighted Moore-Penrose inverse is related to the the initial matrix. Here, the initial ma-

trix X0 plays a very crucial significance to provide convergence, since it must be chosen

as if the convergence to the weighted Moore-Penrose inverse happens. Accordingly, we

must apply the following initial matrix

X0 = βA#, (7.44)

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 124

where A# = N−1A∗M is the weighted conjugate transpose matrix of A and

β =
1

σ2
1

. (7.45)

The reason of selection β in this way will be proven in Theorem 7.5. Here, σ1 stands

for the largest eigenvalue of the matrix N−1A∗MA.

In order to validate the applicability of the new scheme for the weighted Moore-

Penrose inverse, we now first show that how the iterates produced by (7.12) satisfy some

certain equations and then show a relation between (7.12) and (7.4).

Lemma 7.3. For the sequence {Xk}k=∞
k=0 generated by (7.12) with the initial matrix

(7.44), for any k ≥ 0, it holds that

(MAXk)
∗ = MAXk, (NXkA)∗ = NXkA, XkAA†

MN = Xk, A†
MNAXk = Xk. (7.46)

Proof. We will prove the conclusion by induction on k. For k = 0 and X0, as in

(7.44), the first two equations can be verified easily, and we only give a verification to

the last two equations using the facts that (AA†
MN)

= AA†
MN and (A†

MNA)# = A†
MNA, in

what follows

X0AA†
MN = βA#AA†

MN = βA#(AA†
MN)

= βA#(A†
MN)

#A# = β (AA†
MNA)# = βA# = X0,

(7.47)

A†
MNAX0 = βA†

MNAA# = β (A†
MNA)#A# = β (A#(A†

MN)
#A#) = β (A(A†

MNA)# = βA# = X0.

(7.48)

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 125

Assume now that the conclusion holds for some k > 0. We now show that it continues

to hold for k+1. Using the iterative method (7.12), one has

(MAXk+1)
∗ = (MA(− 1

25 Xk(3I +ψk(−3I +ψk))(−79I +ψk(3I +ψk(−3I +ψk))(87I

+ψk(3I +ψk(−3I +ψk))(−37I +4ψk(3I +ψk(−3I +ψk))))))
∗

= 1
25 [237(Mψk)

∗−1020(Mψ2
k)

∗+2644(Mψ3
k)

∗−4626(Mψ4
k)

∗+5814(Mψ5
k)

∗

−5460(Mψ6
k)

∗+3924(Mψ7
k)

∗−2169(Mψ8
k)

∗+901(Mψ9
k)

∗−264(Mψ10
k)∗

+48(Mψ11
k)∗−4(Mψ12

k)∗]

= 1
25 [237Mψk −1020ψ∗

k
1ψ∗

k M∗+2644ψ∗
k

2ψ∗
k M∗−4626ψ∗

k
3ψ∗

k M∗

+5814ψ∗
k

4ψ∗
k M∗−5460ψ∗

k
5ψ∗

k M∗+3924ψ∗
k

6ψ∗
k M∗−2169ψ∗

k
7ψ∗

k M∗

= 1
25 [237Mψk −1020Mψ2

k +2644Mψ3
k −4626Mψ4

k +5814Mψ5
k −5460Mψ6

k

+3924Mψ7
k −2169Mψ8

k +901Mψ9
k −264Mψ10

k +48Mψ11
k −4Mψ12

k]

= MA(− 1
25 Xk(3I +ψk(−3I +ψk))(−79I +ψk(3I +ψk(−3I +ψk))(87I

+ψk(3I +ψk(−3I +ψk))(−37I +4ψk(3I +ψk(−3I +ψk)))))

= MAXk+1,

which uses the fact that (Mψk)
∗=Mψk, M is Hermitian positive definite (M∗=M), and

also e.g. (Mψ2
k)

∗ = (Mψkψk)
∗ = ψ∗

k (Mψk)
∗ = ψ∗

k (Mψk) = ψ∗
k M∗ψk = (Mψk)

∗ψk =

Mψkψk =Mψ2
k . Thus, the first equality in (7.46) holds for k+1, and the second equality

can be proved in a similar way. For the third equality in (7.46), using the assumption

that XkAA†
MN = Xk and the iterative method (7.12), we could write down

Xk+1AA†
MN = 1

25 Xk(237−1020ψk +2644ψ2
k −4626ψ3

k +5814ψ4
k −5460ψ5

k

+3924ψ6
k −2169ψ7

k +901ψ8
k −264ψ9

k +48ψ10
k −4ψ11

k)AA†
MN

= 1
25(237XkAA†

MN −1020XkψkAA†
MN +2644Xkψ1

k ψkAA†
MN

−4626Xkψ2
k ψkAA†

MN +5814Xkψ3
k ψkAA†

MN −5460Xkψ4
k ψkAA†

MN

+3924Xkψ5
k ψkAA†

MN −2169Xkψ6
k ψkAA†

MN +901Xkψ7
k ψkAA†

MN

−264Xkψ8
k ψkAA†

MN +48Xkψ9
k ψkAA†

MN −4Xkψ10
k ψkAA†

MN)

= 1
25(237Xk −1020Xkψk +2644Xkψ1

k ψk −4626Xkψ2
k ψk

+5814Xkψ3
k ψk −5460Xkψ4

k ψk +3924Xkψ5
k ψk −2169Xkψ6

k ψk

+901Xkψ7
k ψk −264Xkψ8

k ψk +48Xkψ9
k ψk −4Xkψ10

k ψk)

= 1
25 Xk(237−1020ψk +2644ψ2

k −4626ψ3
k +5814ψ4

k −5460ψ5
k

+3924ψ6
k −2169ψ7

k +901ψ8
k −264ψ9

k +48ψ10
k −4ψ11

k)

= Xk+1.

Consequently, the third equality in (7.46) holds for k+1. The fourth equality can

similarly be proved, and the desired result follows. �

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 126

Lemma 7.4. Considering the condition of Lemma 5.1, it holds that

(V−1N)Xk(M
−1(U∗)−1) =

(

Tk 0

0 0

)

, (7.49)

where Tk is diagonal, and U ∈ C
m×m, V ∈ C

n×n, U∗MU = Im×m, V ∗N−1V = In×n, and

A =U

(

D 0

0 0

)

V ∗ =UΣV ∗.

Proof. Let T0 = βD, where D = diag(σ1,σ2, . . . ,σr), σ1 ≥ σ2 ≥ . . .≥ σr > 0, and

σ2
i is the nonzero eigenvalue of N−1A∗MA. Hence

Tk+1 :=ϕ(Tk)=
1
25

Tk(237I−1020DTk+2644(DTk)
2−4626(DTk)

3+5814(DTk)
4−5460(DTk)

5

+3924(DTk)
6 −2169(DTk)

7 +901(DTk)
8 −264(DTk)

9 +48(DTk)
10 −4(DTk)

11).

(7.50)

We now prove this lemma using mathematical induction. For the initial case, we have

(V−1N)X0(M
−1(U∗)−1) =β (V−1N)A#(M−1(U∗)−1)

=β (V−1N)N−1A∗(MM−1(U∗)−1)

=β (V−1N)N−1V

(

D 0

0 0

)

U∗(MM−1(U∗)−1)

=

(

βD 0

0 0

)

.

Moreover, if (7.53) is satisfied, then by (7.12), we have

(V−1N)Xk+1(M−1(U∗)−1) = − 1
25 [(V

−1N)Xk(M−1(U∗)−1)](3I +A[(V−1N)Xk(M−1(U∗)−1)]

(−3I +A[(V−1N)Xk(M−1(U∗)−1)]))(−79I

+A[(V−1N)Xk(M−1(U∗)−1)](3I +A[(V−1N)Xk(M−1(U∗)−1)](−3I

+A[(V−1N)Xk(M−1(U∗)−1)]))(87I +A[(V−1N)Xk(M−1(U∗)−1)](3I

+A[(V−1N)Xk(M−1(U∗)−1)](−3I +A[(V−1N)Xk(M−1(U∗)−1)]))(−37I

+4A[(V−1N)Xk(M−1(U∗)−1)](3I +A[(V−1N)Xk(M−1(U∗)−1)](−3I

+A[(V−1N)Xk(M−1(U∗)−1)]))))).

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 127

And now, by considering

A =U∗MU

(

D 0

0 0

)

V ∗NV, (7.51)

we obtain

(V−1N)Xk+1(M
−1(U∗)−1) =

(

ϕ(Tk) 0

0 0

)

, (7.52)

which establishes that (7.50) is diagonal. The proof is ended. �

Theorem 7.5. Assume that A is an m×n matrix whose weighted singular value decom-

position is given by (7.4). Let furthermore that the initial matrix could be constructed

by (7.44). Define the sequence of matrices X1, X2, . . ., using (7.12). Then, this sequence

of iterates converges to A†
MN .

Proof. In view of (7.4), to establish this result, we only now need to verify that

lim
k→∞

(V−1N)Xk(M
−1(U∗)−1) =

(

D−1 0

0 0

)

. (7.53)

It follows from Lemmas 7.3 and 7.4 that {Tk}= diag(τ(k)1 ,τ
(k)
2 , . . . ,τ

(k)
r), where

τ
(0)
i = βσi, (7.54)

and
τ
(k+1)
i = − 1

25τ
(k)
i (3I +σiτ

(k)
i (−3I +σiτ

(k)
i))(−79I

+σiτ
(k)
i (3I +σiτ

(k)
i (−3I +σiτ

(k)
i))(87I

+σiτ
(k)
i (3I +σiτ

(k)
i (−3I +σiτ

(k)
i))(−37I

+4σiτ
(k)
i (3I +σiτ

(k)
i (−3I +σiτ

(k)
i))))).

(7.55)

Now, the sequence generated by the above formula is the result for applying (7.12)

for computing the zero σ−1
i of the function φ(τ) = σi − τ−1, with the initial value τ

(0)
i .

It is seen that this iteration converge to σ−1
i provided 0 < τ

(0)
i < 2

σi
, which results the

condition on β (so the choice in formula (7.45) has been proved). Thus, {Tk} → Σ−1,

and the relation (7.53) is satisfied. Clearly, {Xk}k=∞
k=0 → A†

MN , when k → ∞. The proof is

complete. �

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 128

7.6 Applications

This section addresses issues related to the numerical precision of the matrix inverse

finders, using Mathematica 8 built-in precision, [214]. For numerical comparisons in

this section, we have used the methods (7.6) denoted by "Schulz", (7.8) denoted by

"Chebyshev", (7.9) denoted by "KSM", and (7.12) denoted by "PM". As the programs

were running, we measured the running time using the command AbsoluteTiming[] to

report the elapsed CPU time (in second) for the experiments. The computer specifica-

tions are Microsoft Windows XP Intel(R), Pentium(R) 4, CPU 3.20GHz, with 4GB of

RAM.

We present three different types of tests. Test 1 dedicates to the application of

such methods in providing approximate inverse preconditioners for square matrices.

Test 2 is devoted to compare the schemes for finding the Moore-Penrose inverse of

some randomly generated large sparse matrices. And Test 3 gives some comparison

for finding the weighted Moore-Penrose inverse of some randomly generated dense

matrices.

Test 1. In order to compare the preconditioners obtained from the new

method with the preconditioners of the literature resulted from Incomplete LU

factorizations [215], we pay heed of solving the linear sparse systems Ax = b,

of the dimension 841 using GMRES. The matrix A has been chosen from Ma-

trixMarket database as A= ExampleData[”Matrix”,”YOUNG1C”], while the right

hand side vector is b = (1,1, ...,1)T . The solution would then be (−0.0177027 −
0.00693171I, ...,−0.0228083−0.00589176I)T . Figure 7.3 denotes the plot of the ma-

trix A (note that this matrix is not tridiagonal).

The left preconditioned system using X5 of (7.6), X2 of (7.8), and X1 of (7.9) and

(7.12), along with the well-known preconditioned techniques ILUT and ILUTP have

been tested, while the initial vector has been chosen for all the cases automatically by

the command of LinearSolve[] in Mathematica 8. The results of time comparisons

for different tolerances (residual norms) have been listed in Figure 7.4. The numerical

results reveal that by increasing the tolerance the consuming time increase, however the

preconditioner X1 attained from the method (7.12) has mostly the best feedbacks. For

this test, we used the initial matrix due to Grosz [216] as follows

X0 = diag(1/a11,1/a22, · · · ,1/ann), (7.56)

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 129

where aii is the ith diagonal entry of A.

Remark 1. Note that after a few iterations, the computed preconditioner of the

Schulz-type methods may be dense. We must choose a strategy to control the spar-

sity of the preconditioner. This here can be done by setting the Mathematica command

Chop[Vi,10
−5], at the end of each cycle for these matrices. Also notice that for high or-

der methods such as (7.12), mostly one full cycle is enough to be used as an approximate

inverse preconditioner.

The most important application of Schulz-type methods is in finding the (pseudo-

)inverse of large sparse matrices which possess sparse inverses, [217]. This is the con-

tent of the next test problem.

Test 2. This experiment evaluates the applicability of the new method for finding Moore-

Penrose inverse of 15 random sparse complex matrices (possessing sparse pseudo-

inverses) of the size m×n = 2200×2500 as follows:

♠ ❂ ✷✷✵✵❀ ♥ ❂ ✷✺✵✵❀ ♥✉♠❜❡* ❂ ✶✺❀ ❙❡❡❞❘❛♥❞♦♠❬✶✷✸✹✺✻❪❀

❚❛❜❧❡❬❆❬❧❪ ❂ ❙♣❛*:❡❆**❛②❬④❇❛♥❞❬④✹✵✵✱ ✶⑥✱ ④♠✱ ♥⑥❪ ✲❃ ❘❛♥❞♦♠❬❪ ✲ ■✱

❇❛♥❞❬④✶✱ ✹✵✵⑥✱ ④♠✱ ♥⑥❪ ✲❃ ④✸✳✶✱ ✲❘❛♥❞♦♠❬❪⑥✱

❇❛♥❞❬④✲✻✵✱ ✶✵✵✵⑥❪ ✲❃ ✲✵✳✵✷✱ ❇❛♥❞❬④✲✶✵✵✱ ✺✵⑥❪ ✲❃ ✰✶✳⑥✱

④♠✱ ♥⑥✱ ✵✳❪❀✱ ④❧✱ ♥✉♠❜❡*⑥❪❀

E❤*❡:❤♦❧❞ ❂ ✶✵❫✲✶✵❀

To save memory space and obtain acceptable computational times, there is no need in

full saving of the matrix entries, and we must apply the command SparseArray[], when

working with sparse matrices. Note that herein I =
√
−1.

In this example, the initial approximate for the Moore-

Penrose inverse is constructed by X0 = Conjugate Transpose

[A[j]]∗ (1./((SingularValueList[A[j],1][[1]])2)) in our written Mathematica codes,

i.e. using (7.26), for each random test matrix. We also defined the identity matrix by

Id= SparseArray[{{i_,i_}−> 1.}, {m,m},0.]. We consider the stopping criterion

||Xk+1 − Xk||∞ ≤ 10−10, and a threshold to keep the sparsity features of the output

inverses using the command Chop[exp,threshold], in our written codes. Figure 7.5

gives the plots of the sparsity pattern of these test random matrices and the approximate

Moore-Penrose inverses.

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 130

The results are compared in Figure 7.6 in terms of the number of iterations and

Figure 7.7 in terms of the computational time. They show a clear advantage of the new

scheme in finding their Moore-Penrose inverse.

Test 3. In this test, we compute the weighted Moore-penrose inverse of 10 ran-

domly generated dense m×n = 200×210 matrices as follows

♠ ❂ ✷✵✵❀ ♥ ❂ ✷✶✵❀ ♥✉♠❜❡* ❂ ✶✵❀ ❙❡❡❞❘❛♥❞♦♠❬✶✷❪❀

❚❛❜❧❡❬❆❬❧❪ ❂ ❘❛♥❞♦♠❘❡❛❧❬④✶⑥✱ ④♠✱ ♥⑥❪❀✱ ④❧✱ ♥✉♠❜❡*⑥❪❀

where the 10 different Hermitian positive definite matrices M and N (which have also

been constructed randomly) are in what follows

❚❛❜❧❡❬▼▼❬❧❪ ❂ ❘❛♥❞♦♠❘❡❛❧❬④✷⑥✱ ④♠✱ ♠⑥❪❀✱ ④❧✱ ♥✉♠❜❡*⑥❪❀

❚❛❜❧❡❬▼▼❬❧❪ ❂ ❚*❛♥9♣♦9❡❬▼▼❬❧❪❪✳▼▼❬❧❪❀✱ ④❧✱ ♥✉♠❜❡*⑥❪❀

❚❛❜❧❡❬◆◆❬❧❪ ❂ ❘❛♥❞♦♠❘❡❛❧❬④✸⑥✱ ④♥✱ ♥⑥❪❀✱ ④❧✱ ♥✉♠❜❡*⑥❪❀

❚❛❜❧❡❬◆◆❬❧❪ ❂ ❚*❛♥9♣♦9❡❬◆◆❬❧❪❪✳◆◆❬❧❪❀✱ ④❧✱ ♥✉♠❜❡*⑥❪❀

The results of comparisons using the stopping criterion ||Xk+1 − Xk||∞ ≤ 10−10

are reported in Table 1, wherein IT stands for the number of iterations. Although the

methods perform slightly the same in terms of the computational time, the proposed

method (7.12) is mostly again superior to its competitors.

Using a different stop termination as ||Xk+1 −Xk||2 ≤ 10−10, we report the results

of comparisons for the test matrices of Test 3, in Table 2. The results fully show that

the new method is superior than its competitors.

7.7 Summary

In this chapter, we have presented a new method for matrix inversion. We have also

discussed how the proposed method could converge for Moore-Penrose inverse and

extended the attained results for finding the weighted Moore-Penrose inverse.

We have also theoretically discussed the computational efficiency of the method.

The new scheme reaches a local convergence order equal to nine, by using only seven

matrix-matrix products, which makes it efficient in finding the generalized inverses.

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 131

Some numerical experiments have also been carried out for showing the efficacy

of the contribution for three different types of tests. The numerical results upheld the

theoretical conclusions.

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 132

æ

æ
æ

æ
æ æ æ æ æ æ æ æ æ æ æ æ

à

à

à
à

à
à

à à à à à à à à à à

ì

ì

ì
ì

ì
ì ì ì ì ì ì ì ì ì ì ì

ò

ò

ò

ò
ò

ò
ò

ò ò ò ò ò ò ò ò ò

0 5000 10000 15000

1.010

1.015

1.020

1.025

1.030

1.035

1.040

The growth of condition number

C
o
m
p
u
ta
ti
o
n
a
l
e
ff
ic
ie
n
c
ie
s

ò PM

ì KMS

à Chebyshev

æ

FIGURE 7.1: The comparison of computational efficiency indices for different meth-
ods.

æ

æ

ææ

æ

æææ

æææ

æææææ

æææææææ

æææææææææ

ææææææææææææææ

æææææææææææææææææææ

æææææ

à

à

à

ààà

ààààà

àààààààà

ààààààààààààààà

ààààààààààààààààààààààààà

ààààààààààà

ìì

ìììì

ììììììììììììì

ìì

ììììììììììì

òò

òòòò

òòòòòòòòòòòòò

òò

òòòòòòòòòòò

0 10000 20000 30000 40000 50000 60000 70000

0

5

10

15

20

25

30

The growth of condition number

T
h
e
e
st
im

a
te

n
u
m
b
e
r
o
f
it
e
ra
ti
o
n
s

ò PM

ì KMS

à Chebyshev

æ Schulz

FIGURE 7.2: The comparison of the estimate number of iterations for different meth-
ods.

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 133

1 200 400 600 841

1

200

400

600

841

1 200 400 600 841

1

200

400

600

841

FIGURE 7.3: The plot of the matrix A in Test 1.

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ò

ò

ò

ò

ò

ò

ô

ô

ô

ô

ô

ô

ç

ç

ç

ç

ç

ç

10-10 10-9 10-8 10-7 10-6 10-5

1.0

2.0

3.0

1.5

The tolerance

T
im

e
Hi
n
se
co

n
d
sL

ç PM

ô ILUTP

ò ILUT

ì KMS

à Chebyshev

æ

FIGURE 7.4: The results of comparisons in terms of the computational time (right).

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 134

1 500 1000 1500 2000 2500

1

500

1000

1500

2200

1 500 1000 1500 2000 2500

1

500

1000

1500

2200

1 500 1000 1500 2200

1

500

1000

1500

2000

2500

1 500 1000 1500 2200

1

500

1000

1500

2000

FIGURE 7.5: The general sparsity pattern of the matrices in Test 2 (left) and their
approximate Moore-Penrose inverse (right).

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

ì

ì
ì

ì

ì

ì ì

ì

ì
ì

ì

ì

ì

ì

ì

ò

ò
ò

ò

ò

ò ò

ò

ò
ò

ò

ò

ò

ò

ò

2 4 6 8 10 12 14

0

5

10

15

20

25

30

35

Matrices

N
u
m
b
e
r
o
f
it
e
ra
ti
o
n
s

ò PM

ì KSM

à Chebyshev

æ Schulz

FIGURE 7.6: The results of comparisons for Test 2 in terms of the number of iterations.

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 135

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à
à

à

à

à

à

à

à

à

à

à

à

à

à

ì

ì
ì

ì

ì

ì ì

ì

ì

ì

ì

ì

ì

ì

ì

ò

ò

ò

ò

ò

ò ò

ò

ò
ò

ò

ò

ò

ò

ò

2 4 6 8 10 12 14

0.0

0.5

1.0

1.5

2.0

2.5

Matrices

C
o
m
p
u
ta
ti
o
n
a
l
T
im

e
Hs
e
c
o
n
d
s
L

ò PM

ì KSM

à Chebyshev

æ

FIGURE 7.7: The results of comparisons for Test 2 in terms of the computational time.

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 136

Table 1. Results of comparisons for Test 3 using the stopping criterion ||Xk+1 −Xk||∞ ≤ 10−10.

Matrices Schulz Chebyshev KMS PM

#1 IT 68 43 22 22

Time 1.093 1.031 1.281 1.031

#2 IT 69 44 23 22

Time 1.109 1.046 1.343 1.015

#3 IT 67 43 22 22

Time 1.062 1.015 1.265 1.015

#4 IT 71 46 24 23

Time 1.140 1.093 1.390 1.062

#5 IT 72 46 24 23

Time 1.140 1.093 1.406 1.078

#6 IT 72 46 24 23

Time 1.140 1.093 1.390 1.062

#7 IT 66 42 22 21

Time 1.062 1.000 1.281 0.968

#8 IT 78 50 26 25

Time 1.234 1.171 1.500 1.140

#9 IT 64 41 21 21

Time 1.015 0.968 1.218 0.964

#10 IT 69 44 23 22

Time 1.109 1.046 1.328 1.015

Table 2. Results of comparisons for Test 3 using the stopping criterion ||Xk+1 −Xk||2 ≤ 10−10.

Chapter 7. An efficient matrix iteration for computing weighted Moore-Penrose
inverse 137

Matrices Schulz Chebyshev KMS PM

#1 IT 68 43 22 22

Time 2.546 1.984 1.734 1.609

#2 IT 69 44 23 22

Time 2.484 1.937 1.953 1.468

#3 IT 67 43 22 22

Time 2.359 1.890 1.906 1.609

#4 IT 71 46 24 23

Time 2.578 2.062 1.875 1.546

#5 IT 72 46 24 23

Time 2.609 2.000 2.031 1.671

#6 IT 72 46 24 23

Time 2.593 2.015 2.031 1.531

#7 IT 66 42 23 21

Time 2.406 2.015 1.734 1.531

#8 IT 78 50 26 25

Time 2.799 2.218 2.187 1.656

#9 IT 63 41 21 21

Time 2.140 1.718 1.796 1.640

#10 IT 69 44 23 22

Time 2.515 2.000 1.812 1.468

8. Conclusions and Future Work

Higher-order iterative methods to solve nonlinear problems play a significant role in the

solution of complex problems. The iterative schemes for a scalar nonlinear equation

could help to construct the matrix iterative scheme to compute pseudo-inverses, for ex-

ample Moore-Penrose inverse and weighted Moore-Penrose inverse of a matrix. Not all

but some nonlinear iterative schemes have a natural generalization to construct iterative

methods for the systems of nonlinear equations, but it is not always true that they are

efficient too.

The multi-step iterative methods are computationally efficient because the LU fac-

tors of Jacobian at the initial guess are used in the multi-step part to solve system of

linear equations. The multi-step iterative methods are not only computationally effi-

cient, but they also enhance the rate of convergence that in turn offer fast convergence

towards a root of a system of nonlinear equations. Usually, higher order Frechet deriva-

tives are prohibited for a general class of systems of nonlinear equations, but there exist

some particular cases where we can use them efficiently. The systems of nonlinear

equations stemming from ODEs and PDEs have higher-order Frechet derivatives that

show the same computational cost as for the Jacobian, owing to the specific structure

of the problem. Thus we use higher-order Frechet derivatives to construct higher-order

multi-step iterative methods. In the last published article, we achieved a higher order

multi-step iterative method for a general class of systems of nonlinear equations that is

very efficient. In our future work, we would like to construct iterative methods for sys-

tems of nonlinear equations associated with ODEs and PDEs, showing discontinuous

nonlinearities. The derivative-free iterative methods with-memory for systems of non-

linear equations represent in our opinion good candidates for these future researches.

138

Bibliography

[1] N. H. Abel. Beweis der unmöglichkeit, algebraische gleichungen von höheren

graden als dem vierten allgemein aufzulösen. Journal fur die reine und ange-

wandte Mathematik, 1826:65–84, 2009.

[2] A. M. Ostrowski. Solution of equations and systems of equations, academic

press, new york. 1966.

[3] J. F. Traub. Iterative methods for the solution of equations, prentice hall, new

york. 1964.

[4] F. I. Chicharro, A. Cordero, and J. R. Torregrosa. Drawing dynamical and pa-

rameters planes of iterative families and methods. The Scientific World Journal,

2013:11 pages, 2013.

[5] A. Douady and J. H. Hubbard. On the dynamics of polynomials-like mappings.

Annales Scientifiques de l’École Normale Supérieure, 18:287–343, 1985.

[6] J. Curry, L. Garnet, and D. Sullivan. On the iteration of a rational function:

computer experiments with newton’s method. Communications in Mathematical

Physics, 91:267–277, 1983.

[7] P. Blanchard. The dynamics of newton’s method. In Proceedings of the Symposia

in Applied Mathematics, 49:139–154, 1994.

[8] N. Fagella. Invariants in dinàmica complexa. Butlletí de la Societat Catalana de

Matemàtiques, 23:29–51, 2008.

[9] J. L. Varona. Graphic and numerical comparison between iterative methods. The

Mathematical Intelligencer, 24:37–46, 2002.

[10] S. Amat, S. Busquier, and S. Plaza. Review of some iterative root-finding meth-

ods from a dynamical point of view. Scientia, 10:3–35, 2004.

139

Bibliography 140

[11] J. M. Gutiérrez, M. A. Hernández, and N. Romero. Dynamics of a new family

of iterative processes for quadratic polynomials. Journal of Computational and

Applied Mathematics, 233:2688–2695, 2010.

[12] G. Honorato, S. Plaza, and N. Romero. Dynamics of a higher-order family of

iterative methods. Journal of Complexity, 27:221–229, 2011.

[13] F. Chicharro, A. Cordero, J. M. Gutiérrez, and J. R. Torregrosa. Complex dy-

namics of derivative-free methods for nonlinear equations. Applied Mathematics

and Computation, 219:7023–7035, 2013.

[14] S. Artidiello, F. Chicharro, A. Cordero, and J. R. Torregrosa. Local convergence

and dynamical analysis of a new family of optimal fourth-order iterative methods.

International Journal of Computer Mathematics, 90:2049–2060, 2013.

[15] M. Scott, B. Neta, and C. Chun. Basin attractors for various methods. Applied

Mathematics and Computation, 218:2584–2599, 2011.

[16] C. Chun, M. Y. Lee, B. Neta, and J. Dzunic. On optimal fourth-order iterative

methods free from second derivative and their dynamics. Applied Mathematics

and Computation, 218:6427–6438, 2012.

[17] B. Neta, M. Scott, and C. Chun. Basin attractors for various methods for multiple

roots. Applied Mathematics and Computation, 218:5043–5066, 2011.

[18] A. Cordero, J. G. Maimo, J. R. Torregrosa, M. P. Vassileva, and P. Vindel. Chaos

in king’s iterative family. Applied Mathematics Letters, 26:842–848, 2013.

[19] R. L. Devaney. The mandelbrot set, the farey tree, and the fibonacci sequence.

The American Mathematical Monthly, 106:289–302, 1999.

[20] Y. I. Kim. A triparametric family of three-step optimal eighth-order methods for

solving nonlinear equations. International Journal of Computer Mathematics,

89:1051–1059, 2012.

[21] A. Cordero, J. R. Torregrosa, and P. Vindel. Dynamics of a family of chebyshev-

halley-type method. Applied Mathematics and Computation, 219:8568–8583,

2013.

[22] A. Melman. Geometry and convergence of euler’s and halley’s methods. SIAM

Review, 39:728–735, 1997.

Bibliography 141

[23] M. Davies and B. Dawson. On the global convergence of halley’s iteration for-

mula. Numerische Mathematik, 24:133–135, 1975.

[24] E. Halley. A new exact and easy method of finding the roots of equations gener-

ally and without any previous reduction. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 18:136–148, 1694.

[25] F. Soleymani, M. Sharifi, and B. S. Mousavi. An improvement of ostrowski’s and

king’s techniques with optimal convergence order eight. Journal of Optimization

Theory and Applications, 153:225–236, 2011.

[26] F Soleymani P Sargolzaei. Accurate fourteenth-order methods for solving non-

linear equations. Numerical Algorithms, 58:513–527, 2011.

[27] F. Soleymani, S. K. Khattri, and S. K. Vanani. Two new classes of optimal jarratt-

type fourth-order methods. Applied Mathematics Letters, 25:847–853, 2012.

[28] F. Soleymani. Regarding the accuracy of optimal eighth-order methods. Mathe-

matical and Computer Modelling, 53:1351–1357, 2011.

[29] N. Razmjooy, B. S. Mousavi, and F. Soleymani. A real-time mathematical com-

puter method for potato inspection using machine vision. Computers and Math-

ematics with Applications, 63:268–279, 2012.

[30] F. Soleymani and S. K. Vanani. Optimal steffensen-type methods with eighth

order of convergence. Computers and Mathematics with Applications, 62:4619–

4626, 2011.

[31] F. Soleymani, S. K. Vanani, M. Khan, and M. Sharifi. Some modifications of

king’s family with optimal eighth order of convergence. Mathematical and Com-

puter Modelling, 55:1373–1380, 2012.

[32] F. Soleymani and V. Hosseinabadi. New third-and sixth-order derivative-free

techniques for nonlinear equations. Journal of Mathematics Research, 3:107–

112, 2011.

[33] M. Sharifi, D. K. R. Babajee, and F. Soleymani. Finding the solution of nonlin-

ear equations by a class of optimal methods. Computers and Mathematics with

Applications, 63:764–774, 2012.

Bibliography 142

[34] F. Soleymani, S. K. Vanani, and M. J. Paghaleh. A class of three-step derivative-

free root solvers with optimal convergence order. Journal of Applied Mathemat-

ics, 2012:15 pages, 2012.

[35] F. Soleimani and S. Shateyi. Some iterative methods free from derivatives and

their basins of attraction for nonlinear equations. Discrete Dynamics in Nature

and Society, 2013:10 pages, 2013.

[36] F. Soleymani. Revisit of jarratt method for solving nonlinear equations. Numer-

ical Algorithms, 57:377–388, 2010.

[37] F. Soleymani, T. Lotfi, and P. Bakhtiari. A multi-step class of iterative methods

for nonlinear systems. Optimization Letters, 8:1001–1015, 2013.

[38] F. Soleymani, S. K. Vanani, and A. Afghani. A general three-step class of optimal

iterations for nonlinear equations. Mathematical Problems in Engineering, 2011,

2011.

[39] F. Soleymani and M. Sharifi. On a general efficient class of four-step root-finding

methods. International Journal of Mathematics and Computers in Simulation, 5:

181–189, 2011.

[40] D. K. R. Babajee, A. Cordero, F. Soleymani, and J. R. Torregrosa. On a novel

fourth-order algorithm for solving systems of nonlinear equations. Journal of

Applied Mathematics, 2012:12 pages, 2012.

[41] F. Soleymani. On a bi-parametric class of optimal eighth-order derivative-free

methods. International Journal of Pure and Applied Mathematics, 72:27–37,

2011.

[42] F. Soleymani. Concerning some sixth-order iterative methods for finding the

simple roots of nonlinear equations. Bulletin of Mathematical Analysis and Ap-

plications, 2:146–151, 2010.

[43] A. Cordero, T. Lotfi, P. Bakhtiari, and J. R. Torregrosa. An efficient two-

parametric family with memory for nonlinear equations. Numerical Algorithm,

68:323–335, 2014.

[44] M. S. Petkovi, J. Dzuni, and L. D. Petkovi. A family of two-point methods

with memory for solving nonlinear equations. Applicable Analysis and Discrete

Mathematics, 5:298–317, 2011.

Bibliography 143

[45] J. R. Sharma, R. K. Guha, and P. Gupta. Some efficient derivative free methods

with memory for solving nonlinear equations. Applied Mathematics and Com-

putation, 219:699–707, 2012.

[46] J. Dzunic, M. S. Petkovic, and L. D. Petkovic. Three-point methods with and

without memory for solving nonlinear equations. Applied Mathematics and Com-

putation, 218:4917–4927, 2012.

[47] J. Dzuni. Modified newton’s method with memory. Facta Universitatis, Series

Mathematics and Informatics, 28:429–441, 2013.

[48] M. S. Petkovic, B. Neta, L. D. Petkovic, and J. Dzunic. Multipoint methods for

solving nonlinear equations. A survey, Applied Mathematics and Computation,

226:635–660, 2014.

[49] T. Lotfi, F. Soleymani, S. Shateyi, P. Assari, and F. K. Haghani. New mono- and

biaccelerator iterative methods with memory for nonlinear equations. Abstract

and Applied Analysis, 2014:8 pages, 2014.

[50] X. Wang, J. Dzunic, and T. Zhang. On an efficient family of derivative free

three-point methods for solving nonlinear equations. Applied Mathematics and

Computation, 219:1749–1760, 2012.

[51] T. Lotfi and E. Tavakoli. n a new efficient steffensen-like iterative class by ap-

plying a suitable self-accelerator parameter. The Scientific World Journal, 2014:

9 pages, 2014.

[52] J. A. Ezquerro, M. Grau-Sánchez, and M. A. Hernández. Solving non-

differentiable equations by a new one-point iterative method with memory. Jour-

nal of Complexity, 28:48–58, 2012.

[53] J. Dzunic, M. S. Petkovic, and L. D. Petkovic. Three-point methods with and

without memory for solving nonlinear equations. Applied Mathematics and Com-

putation, 218:4917–4927, 2012.

[54] A. Feldstein and J. F. Traub. Asymptotic behavior of vector recurrences with

applications. Mathematics of Computation, 31(137 pages):180–192, 1977.

[55] X. Wang and T. Zhang. A new family of newton-type iterative methods with and

without memory for solving nonlinear equations. Calcolo, 51:1–15, 2014.

Bibliography 144

[56] X. Wang and T. Zhang. High-order newton-type iterative methods with memory

for solving nonlinear equations. Applied Mathematics and Computation, 19:91–

109, 2014.

[57] M. S. Petkovi, J. Dzuni, and B. Neta. Interpolatory multipoint methods with

memory for solving nonlinear equations. Applied Mathematics and Computation,

218:2533–2541, 2011.

[58] H. T. Kung and J. F. Traub. Optimal order of one-point and multipoint iteration.

Journal of the Association for Computing Machinery, 21:643–651, 1994.

[59] F. Soleymani1 and S. Shateyi. Two optimal eighth-order derivative-free classes

of iterative methods. Abstract and Applied Analysis, 2012:14 pages, 2012.

[60] F. Soleymani. On a new class of optimal eighth-order derivative-free methods.

Acta Universitatis Sapientiae, Mathematica, 3:169–180, 2011.

[61] M. Matinfar and M. Aminzadeh. A family of optimal derivative free iterative

methods with eighth-order convergence for solving nonlinear equations. Journal

of Mathematical Extension, 6:49–61, 2012.

[62] S. K. Khattri and R. P. Agarwal. Derivative-free optimal iterative methods. Com-

putational Methods in Applied Mathematics, 10:368–375, 2010.

[63] R. Thukral. New sixteenth-order derivative-free methods for solving nonlinear

equations. American Journal of Computational and Applied Mathematics, 2:

112–118, 2010.

[64] F. Ahmad and M. Z. Ullah. Eighth-order derivative-free family of iterative meth-

ods for nonlinear equations. Journal of modern methods in numerical mathemat-

ics, 4:26–33, 2013.

[65] R. Thukral and M. S. Petkovic. A family of three-point methods of optimal

order for solving nonlinear equations. Journal of Computational and Applied

Mathematics, 233:2278–2284, 2010.

[66] F. Soleymani. Novel computational iterative methods with optimal order for

nonlinear equations. Advances in Numerical Analysis, 2011:10 pages, 2011.

[67] F. Soleymani, S. K. Vanani, H. I. Siyyam, and I. A. Al-Subaihi. Numerical solu-

tion of nonlinear equations by an optimal eighth-order class of iterative methods.

Annali Dell’Universita’ DI Ferrara, 59:159–171, 2013.

Bibliography 145

[68] J. P. Jaiswal and S. panday. An efficient optimal eight-order iterative method for

solving nonlinear equations. Universal Journal of Computational Mathematics,

1:83–95, 2013.

[69] I. A. Al-Subaihi. Optimal fourth-order iterative methods for solving nonlinear

equations. International Journal of Mathematical Trends and Technology, 13:

13–18, 2014.

[70] M. Z. Ullah, A. S. Al-Fahid, and F. Ahmad. Four-point optimal sixteenth-order

iterative method for solving nonlinear equations. Journal of applied mathematics,

2013:5 pages, 2013.

[71] G. Schulz. Iterative berechnung der reziproken matrix. ZAMM - Journal of

Applied Mathematics and Mechanics, 13:57–59, 1933.

[72] H. Chen and Y. Wang. A family of higher-order convergent iterative methods for

computing the moore-penrose inverse. Applied Mathematics and Computation,

218:4012–4016, 2011.

[73] D. S. Djordjevic and P. S. Stanimirovic. Iterative methods for computing gen-

eralized inverses related with optimization methods. Journal of the Australian

Mathematical Society, 78:257–272, 2005.

[74] F. Huang and X. Zhang. An improved newton iteration for the weighted moore-

penrose inverse. Applied Mathematics and Computation, 174:1460–1486, 2006.

[75] M. Z. Nashed and X. Chen. Convergence of newton-like methods for singular

operator equations using outer inverses. Numerische Mathematik, 66:235–257,

1993.

[76] V. Y. Pan and R. Schreiber. An improved newton iteration for the generalized

inverse of a matrix, with applications. SIAM Journal on Scientific and Statistical

Computing, 12:1109–1131, 1991.

[77] X. Sheng and G. Chen. The generalized weighted moore-penrose inverse. Jour-

nal of Applied Mathematics and Computing, 25:407–413, 2007.

[78] T. Söderström and G. W. Stewart. On the numerical properties of an iterative

method for computing the moore-penrose generalized inverse. SIAM Journal on

Numerical Analysis, 11:61–74, 1974.

Bibliography 146

[79] Y. Wei, H. Wu, and J. Wei. Successive matrix squaring algorithm for parallel

computing the weighted generalized inverse. Applied Mathematics and Compu-

tation, 116:289–296, 2000.

[80] W. Li and Z. Li. A family of iterative methods for computing the approximate

inverse of a square matrix and inner inverse of a non-square matrix. Applied

Mathematics and Computation, 215:3433–3442, 2010.

[81] H. S. Najafi and M. S. Solary. Computational algorithms for computing the in-

verse of a square matrix, quasi-inverse of a nonsquare matrix and block matrices.

Applied Mathematics and Computation, 183:539–550, 2006.

[82] F. Toutounian and A. Ataei. A new method for computing moore-penrose inverse

matrices. Journal of Computational and Applied Mathematics, 228:412–417,

2009.

[83] R. Penrose. A generalized inverses for matrices. Mathematical Proceedings of

the Cambridge Philosophical Society, 51:406–413, 1955.

[84] F. Soleymani. On finding robust approximate inverses for large sparse matrices.

Linear Multilinear Algebra, 62:1314–1334, 2014.

[85] L. Weiguo, L. Juan, and Q. Tiantian. A family of iterative methods for computing

moore-penrose inverse of a matrix. Linear Algebra and its Applications, 438:47–

56, 2013.

[86] Y. Wei. Recurrent neural networks for computing weighted moore-penrose in-

verse. Applied Mathematics and Computation, 116:279–287, 2000.

[87] P. Stanimirovic and M. Stankovic. Determinantal representation of weighted

moore-penrose inverse. Matematicki Vesnik, 46:41–50, 1994.

[88] F. Soleymani, E. Tohidi, S. Shateyi, and F. K. Haghani. Some matrix iterations

for computing matrix sign function. Journal of Applied Mathematics, 2014:9

pages, 2014.

[89] F. Soleymani, P. S. Stanimirovic, S. Shateyi, and F. K. Haghani. Approximating

the matrix sign function using a novel iterative method. Abstract and Applied

Analysis, 2014:9 pages, 2014.

Bibliography 147

[90] M. Z. Ullah, F. Soleymani, and A. S. Al-Fhaid. An efficient matrix iteration for

computing weighted moore-penrose inverse. Applied Mathematics and Compu-

tation, 226:441–454, 2002.

[91] F. Soleymani. A rapid numerical algorithm to compute matrix inversion. Inter-

national Journal of Mathematics and Mathematical Sciences, 2012, Article ID

134653:11 pages, 2012.

[92] A. R. Soheili, F. Soleymani, and M. D. Petković. On the computation of weighted

moore-penrose inverse using a high-order matrix method. Computers and Math-

ematics with Applications, 66:2344–2351, 2013.

[93] F. K. Haghani and F. Soleymani. On a fourth-order matrix method for comput-

ing polar decomposition. Computational and Applied Mathematics, pages 1–11,

2014.

[94] F. Soleymani, M. Sharifi, and S. Shateyi. Approximating the inverse of a square

matrix with application in computation of the moore-penrose inverse. Journal of

Applied Mathematics, 2014:8 pages, 2014.

[95] A. S. Al-Fhaid, S. Shateyi, M. Z. Ullah, and F. Soleymani. A matrix iteration

for finding drazin inverse with ninth-order convergence. Abstract and Applied

Analysis, 2014:7, 2014.

[96] F. Soleymani and F. K. Haghani. A new high-order stable numerical method for

matrix inversion. The Scientific World Journal, 2014:10, 2014.

[97] F. Soleymani, M. Sharifi, S. K. Vanani, and F. K. Haghani. An inversion-free

method for finding positive definite solution of a rational matrix equation. The

Scientific World Journal, 2014:5, 2014.

[98] F. Soleymani, M. Sharifi, S. Shateyi, and F. K. Haghani. An algorithm for com-

puting geometric mean of two hermitian positive definite matrices via matrix

sign. Abstract and Applied Analysis, 2014:6, 2014.

[99] F. Soleymani, H. Salmani, and M. Rasouli. Finding the moore-penrose inverse

by a new matrix iteration. Journal of Applied Mathematics and Computing, 24:

1–16, 2014.

[100] A. R. Soheili, F. Toutounian, and F. Soleymani. A fast convergent numerical

method for matrix sign function with application in sdes. Mathematical Intelli-

gencer, 282:167–178, 2015.

Bibliography 148

[101] F. Soleymani, S. Shateyi, and F. K. Haghani. A numerical method for computing

the principal square root of a matrix. Abstract and Applied Analysis, 2014:7,

2014.

[102] F. K. Haghani and F. Soleymani. An improved schulz-type iterative method for

matrix inversion with application transactions of the institute of measurement

and control. Transactions of the Institute of Measurement and Control, 36(8):

983–991, 2014.

[103] F. Soleymani. An efficient and stable newton-type iterative method for computing

generalized inverse. Numerical Algorithms, pages 1–10, 2014.

[104] P. Jarratt. Some fourth order multi-point iterative methods for solving equations.

Mathematics of Computation, 20:434–437, 1996.

[105] H. Montazeri, F. Soleymani, S. Shateyi, and S. S. Motsa. On a new method for

computing the numerical solution of systems of nonlinear equations. Journal of

Applied Mathematics, 2012:15 pages, 2002.

[106] A. M. Ostrowski. Solutions of equations and systems of equations, academic

press, new york-london. 1966.

[107] F. Soleymani, M. Sharifi, S. Shateyi, and F. K. Haghani. A class of steffensen-

type iterative methods for nonlinear systems. Journal of Applied Mathematics,

2014:9 pages, 2014.

[108] M. A. Noor and M. Waseem. Some iterative methods for solving a system of

nonlinear equations. Computers and Mathematics with Applications, 57:101–

106, 2009.

[109] J. R. Sharma, R. K. Guha, and R. Sharma. An efficient fourth-order weighted-

newton method for systems of nonlinear equations. Numerical Algorithms, 62:

307–323, 2013.

[110] F. Awawdeh. On new iterative method for solving systems of nonlinear equations.

Numerical Algorithms, 54:395–409, 2010.

[111] D. K. R. Babajee, M. Z. Dauhooa, M. T. Darvishi, A. Karamib, and A. Barati.

Analysis of two chebyshev-like third order methods free from second derivatives

for solving systems of nonlinear equations. Journal of Computational and Ap-

plied Mathematics, 233:2002–2012, 2010.

Bibliography 149

[112] M. N. Bahrami and R. Oftadeh. Graphic and numerical comparison between

iterative methods. Applied Mathematics and Computation, 215:37–46, 2009.

[113] J. Biazar and B. Ghanbary. A new technique for solving systems of nonlinear

equations. Applied Mathematical Sciences, 2:2699–2703, 2008.

[114] A. Cordero, E. Martínez, and J. R. Torregrosa. Iterative methods of order four and

.ve for systems of nonlinear equations. Journal of Computational and Applied

Mathematics, 231:541–551, 2009.

[115] M. T. Darvishi. A two-step high order newton-like method for solving systems

of nonlinear equations. International Journal of Pure and Applied Mathematics,

57:543–555, 2009.

[116] M. T. Darvishi. Some three-step iterative methods free from second order deriva-

tive for finding solutions of systems of nonlinear equations. International Journal

of Pure and Applied Mathematics, 57:557–573, 2009.

[117] M. T. Darvishi and A. Barati. A third-order newton-type method to solve systems

of nonlinear equations. Applied Mathematics and Computation, 187:630–635,

2007.

[118] M. T. Darvishi and A. Barati. A forth-order method from quadrature formu-lae

to solve systems of nonlinear equations. Applied Mathematics and Computation,

188:257–261, 2007.

[119] M. T. Darvishi and A. Barati. Super cubic iterative methods to solve systems

of nonlinear equations. Applied Mathematics and Computation, 188:1678–1685,

2007.

[120] M. Frontini and E. Sormani. Third-order methods from quadrature formulae for

solving systems of nonlinear equations. Applied Mathematics and Computation,

149:771–782, 2004.

[121] M. E. Gordji, A. Ebadian, M. B. Ghaemi, and J. Shokri. On systems of nonlinear

equations. arXiv:0904.3460v1 math.DS, 2009.

[122] C. Grosan and A. Abraham. A new approach for solving nonlinear equations

systems. IEEE Transactions on Systems, Man, and Cybernetics Society, 38:698–

714, 2008.

Bibliography 150

[123] J. L. Hueso, E. Martínez, and J. R. Torregrosa. Third and fourth order it-erative

methods free from second derivative for nonlinear systems. Applied Mathematics

and Computation, 211:190–197, 2009.

[124] J. L. Hueso, E. Martínez, and J. R. Torregrosa. Third order iterative methods

free from second derivative for nonlinear systems. Applied Mathematics and

Computation, 215:58–65, 2009.

[125] D. Kaya and S. M. El-Sayed. Adomian.s decomposition method applied to sys-

tems of nonlinear algebraic equations. Applied Mathematics and Computation,

154:487–493, 2004.

[126] J. Kou. A third-order modification of newton method for systems of nonlinear

equations. Applied Mathematics and Computation, 191:117–121, 2007.

[127] J. Kou, Y. Li, and X. Wang. Efficient continuation newton-like method for solv-

ing systems of non-linear equations. Applied Mathematics and Computation,

174:846–853, 2006.

[128] J. J. Moré. A collection of nonlinear model problems, in: E.l. allgower, k. georg

(eds.), computational solution of nonlinear systems of equations, in: Lectures in

applied mathematics. American Mathematical Society, 26:723–762, 1990.

[129] G. H. Nedzhibov. A family of multi-point iterative methods for solving systems

of nonlinear equations. Journal of Computational and Applied Mathematics,

222:244–250, 2008.

[130] M. A. Noor, K. I. Noor, and M. Waseem. Applications of quadrature formula for

solving systems of nonlinear equations. International Journal of Modern Physics

B, 2012.

[131] W. C. Rheinboldt. Methods for solving systems of nonlinear equations, siam,

philadelphia. 1998.

[132] B. C. Shin, M. T. Darvishi, and C. H. Kim. A comparison of the newton krylov

method with high order newton-like methods to solve nonlinear systems. Applied

Mathematics and Computation, 217:3190–3198, 2010.

[133] I. G. Tsoulos and A. Stavrakoudis. On locating all roots of systems of nonlinear

equations inside bounded domain using global optimization methods. Nonlinear

Analysis: Real World Applications, 11:2465–2471, 2010.

Bibliography 151

[134] Vahidi A.R., Babobian E., Cordshooli G.A., and Mirzaie M. Restarted ado-

mian decomposition method to systems of nonlinear algebraic equations. Applied

Mathematical Sciences, 3:883–889, 2009.

[135] R. E. Bellman and R. E. Kalaba. Quasilinearization and nonlinear boundary-

value problems, elsevier, new york, ny, usa. 1965.

[136] R. Krivec and V. B. Mandelzweig. Numerical investigation of quasilinearization

method in quantum mechanics. Computer Physics Communications, 138:69–79,

2001.

[137] V. B. Mandelzweig. “quasilinearization method and its verification on exactly

solvable models in quantum mechanics. Journal of Mathematical Physics, 40:

6266–6291, 1999.

[138] V. B. Mandelzweig and F. Tabakin. Quasilinearization approach to nonlinear

problems in physics with application to nonlinear odes. Computer Physics Com-

munications, 141:268–281, 2001.

[139] V. B. Mandelzweig. Quasilinearization method: nonperturbative approach to

physical problems. Physics of Atomic Nuclei, 68:1227–1258, 2005.

[140] S. S.Motsa and P. Sibanda. Some modification of the quasilinearization method

with higher-order convergence for solving nonlinear bvps. Numerical Algo-

rithms, 63:399–417, 2013.

[141] S. S. Motsaa, P. Sibandab, and S. Shateyi. On a new quasi-linearization method

for systems of nonlinear boundary value problems. Mathematical Methods in the

Applied Sciences, 34:1406–1413, 2011.

[142] E. S. Alaidarous, M. Z. Ullah, F. Ahmad, and A.S. Al-Fhaid. An efficient higher-

order quasilinearization method for solving nonlinear bvps. Journal of Applied

Mathematics, 2013, Article ID 259371:11 pages, 2013.

[143] W. Bi, H. Ren, and Q. Wu. Three-step iterative methods with eighth-order con-

vergence for solving nonlinear equations. Journal of Computational and Applied

Mathematics, 225:105–112, 2009.

[144] W. Bi, Q. Wu, and H. Ren. A new family of eighth-order iterative methods for

solving nonlinear equations. Applied Mathematics and Computation, 214:236–

245, 2009.

Bibliography 152

[145] Y. H. Geum and Y. I. Kim. A multi-parameter family of three-step eighth-order

iterative methods locating a simple root. Applied Mathematics and Computation,

215:3375–3382, 2010.

[146] L. Liu and X. Wang. Eighth-order methods with high efficiency index for solving

nonlinear equations. Applied Mathematics and Computation, 215:3449–3454,

2010.

[147] X. Wang and L. Liu. Modified ostrowski’s method with eighth-order convergence

and high efficiency index. Applied Mathematics Letters, 23:549–554, 2010.

[148] F. Soleymani. On a fast iterative method for approximate inverse of matrices.

Communications of the Korean Mathematical Society, 28:407–418, 2013.

[149] D. K. R. Babajee and R. Thukral. On a 4-point sixteenth-order king family of

iterative methods for solving nonlinear equations. International Journal of Math-

ematics and Mathematical Sciences, 2012, Article ID 979245:13 pages, 2012.

[150] F. Soleymani. A new method for solving ill-conditioned linear systems. Opuscula

Mathematica, 33:337–344, 2013.

[151] F. Soleymani. On a new class of optimal eight-order derivative-free methods.

Acta Universitatis Sapientiae, Mathematica, 3:169–180, 2011.

[152] Y. H. Geun and Y. I. Kim. A family of optimal sixteenth-order multipoint meth-

ods with a linear fraction plus a trivariate polynomial as the fourth-step weighting

function. Computers and Mathematics with Applications, 61:3278–3287, 2011.

[153] Y. H. Geum and Y. I. Kim. A biparametic family of optimally convergent

sixteenth-order multipoint methods with their fourth-step weighting function as

a sum of rational and a generic two-variable function. Journal of Computational

and Applied Mathematics, 235:3178–3188, 2011.

[154] A. Cordero, J. L. Hueso, E. Martinez, and J. R. Torregrosa. A modified newton-

jarratt’s composition. Numerical Algorithms, 55:87–99, 2010.

[155] E. Pourjafari and H. Mojallali. Solving nonlinear equations systems with a new

approach based on invasive weed optimization algorithm and clustering. Swarm

and Evolutionary Computation, 4:33–43, 2012.

Bibliography 153

[156] M. Y. Waziri, W. J. Leong, M. A. Hassan, and M. Monsi. A low memory solver

for integral equations of chandrasekhar type in the radiative transfer problems.

Mathematical Problems in Engineering, 2011:12 pages, 2011.

[157] B. H. Dayton, T. Y. Li, and Z. Zeng. Multiple zeros of nonlinear systems. Math-

ematics of Computation, 80:2143–2168, 2011.

[158] M. J. Hirsch, P. M. Pardalos, and M. G. C. Resende. Solving systems of nonlinear

equations with continuous grasp. Nonlinear Analysis: Real World Applications,

10:2000–2006, 2009.

[159] A. R. Soheili, F. Soleymani, and M. D. Petković. On the computation of weighted

moore-penrose inverse using a high-order matrix method. Computers and Math-

ematics with Applications, 69:2344–2351, 2013.

[160] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in

several variables, academic press, new york. 1970.

[161] D. K. R. Babajee. Analysis of higher order variants of newton’s method and their

applications to differential and integral equations and in ocean acidification, ph.d.

thesis, university of mauritius. 2010.

[162] D. W. Decker and C. T. Kelley. Sublinear convergence of the chord method at

singular points. Numerische Mathematik, 42:147–154, 1983.

[163] S. Wagon. Mathematica in action, third edition, springer, berlin, germany. 2010.

[164] D. K. R. Babajee and M. Z. Dauhoo. Convergence and spectral analysis of

the Frontini-Sormani family of multipoint third order methods from Quadrature

Rule. Numerical Algorithms, 53:467–484, 2010.

[165] http://www.wolfram.com/mathematica/new-in-8/new-and-improved-core-

algorithms /index.html.

[166] C. Tadonki. High performance computing as a combination of machines and

methods and programming, universite paris sud. 2013.

[167] V. S. Semenov. The method of determining all real non-multiple roots of systems

of nonlinear equations. Computational Mathematics and Mathematical Physics,

47:1428–1434, 2007.

Bibliography 154

[168] I. G. Tsoulos and A. Stavrakoudis. On locating all roots of systems of nonlinear

equations inside bounded domain using global optimization methods. Nonlinear

Analysis: Real World Applications, 11:2465–2471, 2010.

[169] F. Soleymani, P. S. Stanimirović, and M. Z. Ullah. On an accelerated iterative

method for weighted moore-penrose inverse. Applied Mathematics and Compu-

tation, 222:365–371, 2013.

[170] F. Soleymani and P. S. Stanimirović. A higher order iterative method for com-

puting the drazin inverse. The Scientific World Journal, 2013:11 pages, 1998.

[171] F. Toutounian and F. Soleymani. An iterative method for computing the approx-

imate inverse of a square matrix and the moore-penrose inverse of a non-square

matrix. Applied Mathematics and Computation, 224:671–680, 2013.

[172] T. Sauer. Numerical analysis, pearson, 2nd edition, usa. 2012.

[173] M. Z. Ullah, A. S. Al-Fhaid, and F. Ahmad. Four-point optimal sixteenth-order

iterative method for solving nonlinear equations. Journal of Applied Mathemat-

ics, 2013:5 pages, 2013.

[174] A. R. Sharma and P. Gupta. An efficient fifth order method for solving systems

of nonlinear equations. Computers and Mathematics with Applications, 67:591–

601, 2014.

[175] A. R. Sharma and R. Sharma. Some third order methods for solving systems of

nonlinear equations. World Academy of Science, Engineering and Technology,

60, 2011.

[176] J. R. Sharma and H. Arora. Efficient jarratt-like methods for solving systems of

nonlinear equations. Calcolo, 51:193–210, 2014.

[177] H. Arora J. R. Sharma. A novel derivative free algorithm with seventh order

convergence for solving systems of nonlinear equations. Numerical Algorithms,

67:917–933, 2014.

[178] V. Candela and A. Marquina. Recurrence relations for rational cubic methods ii:

The chebyshev method. Computing, 45:355–367, 1990.

[179] V. Kanwar, S. Kumar, and R. Behl. Several new families of jarratt’s method for

solving systems of nonlinear equations. Applications and Applied Mathematics:

An International Journal, 8:701–716, 2013.

Bibliography 155

[180] J. R. Torregrosa, I. K. Argyros, C. Chun, A. Cordero, and F. Soleymani. Iterative

methods for nonlinear equations or systems and their applications. Journal of

Applied Mathematics, 2013:2, 2013.

[181] G. Bratu. Sur les equations integrales non-lineaires. Bulletins of the Mathemati-

cal Society of France, 42:113–142, 1914.

[182] D. A. Frank-Kamenetzkii. Diffusion and heat transfer in chemical kinetics.

plenum press, new york. 1969.

[183] G. Bratu. Sur les equations integrales non-lineaires. Bulletins of the Mathemati-

cal Society of France, 42:113–142, 1914.

[184] S. S. Motsa and S. Shateyi. New analytic solution to the lane-emden equation of

index 2. Mathematical Problems in Engineering, 2012:19 pages, 2012.

[185] T. S. Jang. An integral equation formalism for solving the nonlinear klein–gordon

equation. Applied Mathematics and Computation, 243:322–338, 2014.

[186] J. M. Gutiérrez and M. A. Hernández. A family of chebyshev-halley type meth-

ods in banach spaces. Bulletin of the Australian Mathematical Society, 55:113–

130, 1997.

[187] M. Frontini and E. Sormani. Some variant of newton’s method with third-order

convergence. Applied Mathematics and Computation, 140:419–426, 2003.

[188] H. H. H. Homeier. A modified newton method with cubic convergence: the

multivariable case. Journal of Computational and Applied Mathematics, 169:

161–169, 2004.

[189] A. Cordero and J. R. Torregrosa. Variants of newton’s method using fifth-order

quadrature formulas. Applied Mathematics and Computation, 190:686–698,

2007.

[190] M. G. Sánchez, À. Grau, and M. Noguera. Ostrowski type methods for solving

systems of nonlinear equations. Applied Mathematics and Computation, 218:

2377–2385, 2011.

[191] C. T. Kelley. Solving nonlinear equations with newton’s method, siam, philadel-

phia. 2003.

Bibliography 156

[192] A. S. Al-Fhaid M. Z. ullah, F. Soleymani. Numerical solution of nonlinear sys-

tems by a general class of iterative methods with application to nonlinear pdes.

Numerical Algorithms, 67:223–242, 2014.

[193] A. Cordero, J. L. Hueso, E. Martínez, and J. R. Torregrosa. Increasing the conver-

gence order of an iterative method for nonlinear systems. Applied Mathematics

Letters, 25:2369–2374, 2012.

[194] N. M. L. Romeiro C. A. Ladeia. Numerical solutions of the 1d convection-

diffusion-reaction and the burgers equation using implicit multi-stage and finite

element methods. Integral Methods in Science and Engineering, pages 205–216,

2013.

[195] S. Shateyi H. Montazeri, F. Soleymani and S. S. Motsa. On a new method for

computing the numerical solution of systems of nonlinear equations. Journal of

Applied Mathematics, 2012:15 pages, 2012.

[196] A. Ben-Israel and T.N.E. Greville. Generalized inverses, springer, 2nd edition.

2003.

[197] M. E. Gulliksson, P. A. Wedin, and Y. Wei. Perturbation identities for regularized

tikhonov inverse and weighted pseudo inverse. BIT, 40:513–523, 2000.

[198] W. Sun and Y.Wei. Inverse order rule for weighted generalized inverses. SIAM

Journal on Matrix Analysis and Applications, 19:772–775, 1998.

[199] R. Penrose. A generalized inverses for matrices. Mathematical Proceedings of

the Cambridge Philosophical Society, 51:406–413, 1955.

[200] M. D. Petković, P. S. Stanimirović, and M. B. Tasić. Effective partitioning

method for computing weighted moore-penrose inverse. Computers and Mathe-

matics with Applications, 55:1720–1734, 2008.

[201] S. K. Sen, H. Agarwal, and S. Sen. Chemical equation balancing: An integer

programming approach. Mathematical and Computer Modelling, 44:678–691,

2006.

[202] T. N. E. Grevile. Some applications of the pseudo-inverse of matrix. SIAM

Review, 3:15–22, 1960.

[203] G. R. Wang. A new proof of grevile’s method for computing the weighted mp

inverse. Journal of Shangai Normal University, 3, 1985.

Bibliography 157

[204] C. F. Van Loan. Generalizing the singular value decomposition. SIAM Journal

on Numerical Analysis, 13:76–83, 1976.

[205] F. Huang and X. Zhang. An improved newton iteration for the weighted moore-

penrose inverse. Applied Mathematics and Computation, 174:1460–1486, 2006.

[206] H. Hotelling. Analysis of a complex statistical variable into principal compo-

nents. Journal of Educational Psychology, 24:498–520, 1933.

[207] V. Y. Pan and R. Schreiber. An improved newton iteration for the generalized

inverse of a matrix, with applications. SIAM Journal on Scientific and Statistical

Computing, 91:1109–1131, 2012.

[208] S. K. Sen and S. S. Prabhu. Optimal iterative schemes for computing moore-

penrose matrix inverse. International Journal of Systems Science, 8:748–753,

1976.

[209] E. V. Krishnamurthy and S. K. Sen. Numerical algorithms - computations in

science and engineering, affiliated east-west press, new delhi. 2007.

[210] E. Isaacson and H. B. Keller. Analysis of numerical methods, wiley, new york.

1966.

[211] J. M. McNamee and V. Y. Pan. Efficient polynomial root-refiners: A survey and

new record efficiency estimates. Computers and Mathematics with Applications,

63:239–254, 2012.

[212] V. Y . Pan. Newton’s iteration for matrix inversion, advances and extensions.

matrix methods: Theory, algorithms and applications. pages 364–381, 2010.

[213] P. S. Stanimirovic and D. S. Cvetkovic-wllic. Successive matrix squaring algo-

rithm for computing outer inverse. Applied Mathematics and Computation, 203:

19–29, 2008.

[214] M. Trott. The mathematica guide-book for numerics, springer-verlag. 2006.

[215] Y. Saad. Iterative methods for sparse linear systems, 2ed., siam, usa. 2003.

[216] L. Grosz. Preconditioning by incomplete block elimination. Numerical Linear

Algebra with Applications, 7:527–541, 2000.

[217] B. Alpert, G. Beylkin, R. Coifman, and V. Rokhlin. Wavelet-like bases for the

fast solution of second-kind integral equations. SIAM Journal on Scientific Com-

puting, 14:159–184, 1993.

