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Estimating the galaxy power spectrum

of the VIPERS galaxy distribution

Abstract

The power spectrum is a statistic that describes the clustering of matter in Fourier
space. The shape and amplitude of the power are directly predicted by theory and direct
measurements of the power can constrain cosmological parameters.
The large size of recent surveys has opened new windows in the observation of secondary
features of the galaxy power spectrum such as the Baryonic Acoustic Oscillations (BAO),
which used as standard ruler can infer dark energy properties, and Redshift-Space Dis-
tortions (RSD), which thanks to the anisotropic observed clustering in redshift space
can discriminate between different theories of gravity.
In this thesis, we apply the power spectrum statistic to the VIMOS Public Extragalac-
tic Redshift Survey (VIPERS) distribution of galaxies in order to study the underlying
clustering of matter.
VIPERS is an ongoing spectroscopic survey, composed of two fields, W1 and W4, with
the aim of mapping the spatial distribution of galaxies within a large volume of the
z ∼ 1 Universe. The main properties of VIPERS are the high redshift range surveyed
0.4 < z < 1.2 and the high sampling rate at those redshifts.
Its main goal is the measurement of the anisotropy of the galaxy clustering in redshift
space in order to constrain the growth rate of structure at a mean redshift 〈z〉 ∼ 0.8,
never reached by other surveys.
Even the measure of the galaxy power spectrum at these redshifts is something new.
Our goal is to estimate the clustering of matter in Fourier space constraining the cos-
mological quantities that mainly affect the power spectrum shape such as the matter
density and the baryonic fraction. The approach used to estimate the galaxy power
spectrum is quite classical and has been used in past surveys such as the Two Degree
Field Galaxy Redshift Survey (2dFGRS).
We describe the power spectrum estimator using a novel simulation approach called
“Γ”-simulation, including the main properties of a real survey such as the cone-like ge-
ometry and the density gradient function of the redshift.
The main factor that alters our power spectrum measurement is the window function,
due to the limited size of the sample, which is not negligible even for a box geometry.
We show a method to correctly take into account the window function effects including
it with a three dimensional convolution with the input model of the simulation.
To analyse the potential of the VIPERS sample for extracting cosmological information,
we use a set of VIPERS mock catalogues drawn from the MultiDark simulation. We
analyse all the selection function effects of the survey, such as the sampling strategy and
the decreasing mean density, in our estimation and study their effect on the recovered
power spectrum.
The VIPERS window function is problematic due to the small angular coverage, strongly
suppressing the clustering in Fourier space at large scales and completely damping the
BAO signal. We measure the window function of VIPERS which will be used to perform
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a three dimensional convolution with the theoretical model generated from the tested
cosmology.
RSD also determine the observed clustering and, in the simplest case, their impact
could be divided in two regimes. Small scale effects due to the high non-linear veloc-
ity of galaxies inside virialised structures are corrected with a simple velocity dispersion
model, an empirical prediction of the behaviour of the clustering in redshift space. Large
scale effects due to the linear in-fall of galaxies in high density peaks, which increase the
observed clustering of matter, are included with the Kaiser term dependent on the linear
growth rate of matter. We include these two terms before applying the 3D convolution
of the model with the window function.
Some tests are performed on VIPERS mock catalogues to recover the known cosmolog-
ical information of the simulation with a chi-square technique and, in all cases, we were
able to extract the input cosmology with lower systematics errors than statistical ones.
Finally we apply this approach to the data dividing the full survey into four subsamples,
two redshift bins, 0.6 < z1 < 0.9 and 0.9 < z2 < 1.1, for each field. Despite the different
window functions in each subsample due to small differences in volume and in geometry,
the four measurements are consistent with each other. This is due to the fact that,
at large scales, statistical fluctuations related to cosmic variance are much bigger with
respect to small differences in the window. Even the overall amplitude is similar be-
tween the two redshift bins because the lower amplitude expected for the higher redshift
power spectrum (because structures were less compact in the past) is compensated by
the higher bias factor.
We compare the measured power spectrum from data with some theoretical models in
order to extract the baryonic fraction and the amount of matter density in the Uni-
verse. The probability contours display evidence of a well-known degeneracy previously
observed in other surveys (such as 2dFGRS) between the two recovered parameters in
the determination of the overall shape of the matter power spectrum. Increasing the
matter density of the Universe in fact shifts the power spectrum toward higher modes
enhancing the clustering at the scales sampled by VIPERS. In this case to compensate
the increase of power, the good fit is given by models with high baryonic fraction nec-
essary to suppress the power at those scales. Vice-versa a low-ΩM Universe does not
need a high baryonic fraction. This degeneracy is broken combining the two redshift
bins with a joint likelihood.
Finally, we provide an estimation of the matter density fixing all the other cosmo-
logical parameters to the best known values. We evaluate the matter density to be
ΩM = 0.272+0.027

−0.031 in perfect agreement with Planck (once we rescale the Hubble factor
from the Hubble Space Telescope used for the estimation of ΩM to be consistent with
the Planck one) and with the matter density estimated from the VIPERS Public Data
Release-1 measurements of the clustering ratio.
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Chapter 1
Introduction

1.1 The background Universe

The Copernican principle states that the Universe is homogeneous and isotropic, i.e. it
has the same properties at each position and in each direction we observe it. Under these
assumptions, solving the Einstein’s gravity equations with the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric, one can obtain the Friedman equations, which govern
the expansion or contraction of the Universe and its acceleration

(

ȧ

a

)2

=
8πG

3
ρ− k

a2

ä

a
= −4πG

3
(ρ+ 3p) ,

(1.1)

where p and ρ are respectively the pressure and density of the main components of
the Universe, k = 0, 1, −1 for flat, close or open geometry and a(t) the scale factor
dependent on time.
Galaxies are observed to have a recession velocity proportional to their distance from
us, following the Hubble equation,

v = H0 r . (1.2)

Since through the Copernican principle we are not in a preferred position in the Uni-
verse, we infer that galaxies are apparently receding from each other meaning that the
Universe is expanding. The Hubble parameter H, that at the current epoch coincides
with the Hubble constant H0, is defined as H = ȧ/a and parameterises the expansion
rate of the Universe. The scale factor a(t) describes the dynamics of the Universe and
its time dependence depends on the main density energies. Densities ρi are expressed
with respect to Ωi = ρi/ρc, where ρc, is the critical density defined as ρc = 3H2/8πG.
Assuming that pressure and energy density of each component are related by an equa-
tion of state p = wρ parameterised by w, the evolution of densities follows ρi ∝ a−3(1+wi).

7
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Over the last 20 years, the ΛCDM scenario emerged as the standard cosmological
model supported by independent observations as Cosmic Microwave Background (CMB)
anisotropy (Hinshaw et al., 2013; Planck Collaboration et al., 2013), large-scale struc-
tures (Bernardeau et al., 2002) and the accelerating expansion of the Universe inferred
with distant supernovae (Riess et al., 1998; Perlmutter et al., 1999).
In this picture, the main component of the matter density of the Universe is the Cold
Dark Matter (CDM), which contributes to ∼ 25% of the total energy density and have
a determinant role in structure formation. Dark matter does not emit nor absorb light
or other electromagnetic radiation at any significant level and its existence has been
predicted to explain some gravitational effects in rotation curves of disc galaxies (Rubin
and Ford, 1970), dynamics of the hot gas in clusters (Zwicky, 1937) and weak lensing
(Bartelmann and Schneider, 2001).
The standard matter, baryons, is not sufficient to explain all these observations due to
its lower density ∼ 5%. Since overall matter, dark matter and baryons, is composed
by non-relativistic particles with w = 0, the evolution of its energy density is ρM ∝ a−3

meaning that, due to the expansion of the Universe, it was higher in the past when the
Universe was smaller.
Another contribution to the total energy density is given by radiation, composed of
relativistic particles and photons with a non-null pressure w = 1/3. Its energy density
scales, differently with respect to the matter case, as ρR ∝ a−4: given this different de-
pendence on a, although radiation is today negligible (ΩR ∼ 10−4), there was a time,
called the radiation era, when it was dominant.
The present day relation between the total density and the curvature is Ωtot − 1 = k

H2
0
.

Due to the discovery and analysis of the CMB, relic of the initial Universe, we now know
that the Universe is not far from being flat, i.e. k ≈ 0, implying Ωtot ∼ 1. Summing the
radiation and matter contributions to the total energy density, we obtain a value of the
order of ∼ 30% meaning that we are missing the majority of the density contributing to
the geometry.

In the last decade of the 20th century, it became evident that dark and ordinary
matter were insufficient to describe accurately a variety of cosmological observations.
It was at the end of that decade that the relation between luminosity and distance of
Type 1a supernovae (SNIa) revealed that in the Universe about 70% of the total energy
density comes from an extra component, which dominates the evolution of the Universe
causing the cosmic expansion to accelerate. The simplest model for dark energy is a
cosmological constant Λ with w = −1 whose density is constant in time. This means
that the dark energy component was negligible in the past where the dynamics of the
Universe was dominated by radiation and then by matter.

The study of the clustering of matter is important to infer cosmological quantities
and analyse the evolution of the Universe. To reconstruct the underlying distribution
of matter, we study the distribution of galaxies, which interact gravitationally with
CDM. The distance of a galaxy can be measured from its redshift, z = λobs/λem − 1:
a photon emitted with wavelength λem will be observed with wavelength λobs, shifted
toward redder region of the electromagnetic spectrum due to the stretching of space
caused by the expansion of the Universe. Since the wavelength of the light emitted by
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the galaxy scales as λ ∝ a(t), the redshift could be related directly to the scale factor of
the Universe at the time tem when the light was emitted z = a(tobs)/a(tem)− 1.
Thanks to this, the observed redshift of a galaxy, once we assume a cosmology, can be
associated to its comoving distance. Measuring the redshift of a large number of objects
allows us to reconstruct the three dimensional distribution of galaxies, which could be
associated to the clustering of matter predicted by theory. Statistical tools are needed
to describe the clustering of galaxies (and matter) such as the power spectrum and the
correlation function.

1.2 Power spectrum statistics

Present-day structures of matter have formed by the gravitational amplification of small
density perturbations. These primordial perturbations are thought to be quantum fluc-
tuations in the early Universe that have been brought to cosmological scales by inflation
(Guth, 1981). Under the effect of gravity, density perturbations grow during the evolu-
tion of the Universe forming the structures we observe today in the cosmic web.
The density contrast which measures under- and over- densities with respect to the mean
density of the Universe ρ̄ at the position x is defined as

δ(x) ≡ ρ(x) − ρ̄

ρ̄
. (1.3)

Assuming the field δ(x) to follow a Gaussian probability distribution, at least at early
times, the statistical distribution of matter is completely described by the two-point
correlation function of this field. By definition, the mean value of the matter density
field is 〈δ(x)〉 ≡ 0. The covariance in configuration space is called “correlation function”

ξ(x1,x2) ≡ 〈δ(x1) δ(x2)〉 . (1.4)

The cosmological principle states that the Universe, on large enough scales, is homo-
geneous and isotropic being the properties of the Universe the same for all observers.
From statistical homogeneity and isotropy, we have that

ξ(x1,x2) = ξ(x1 − x2) = ξ(|x1 − x2|) . (1.5)

The correlation function, in terms of a discrete process, can be better understood defining
it as the measure of the excess probability, relative to a Poisson distribution, of finding
two galaxies within two volume elements dV1 and dV2 separated by a distance r

dP12 = n̄[1 + ξ(r)]dV1dV2 , (1.6)

where n̄ is the mean number density of galaxies. Therefore, ξ(r) measures the cluster-
ing in excess (ξ(r) > 0) or in defect (ξ(r) < 0) compared with a random distribution,
for which ξ(r) = 0. Another way to study statistically the distribution of matter is in
Fourier space, analysing the evolution of different wave-modes. The two-point correla-
tion function of the density field in Fourier space is defined as

P(k1,k2) ≡ 〈δ(k1) δ
∗(k2)〉 . (1.7)
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We define the Fourier Transform of a function f(x) from configuration space to the
Fourier one (and vice-versa) as

f(x) =

∫

f(k) e−ik·x dk

2π

f(k) =

∫

f(x) eik·x dx .

(1.8)

Applying the 3D conversion of the density contrast in Fourier space δ(k) =
∫

δ(x) e−ik·x d3x
to 1.7, we obtain

∫

〈δ(x1)δ(x2)〉ei(k1·x1−k2·x2) d3x1 d
3x2

x2=x1+r−−−−−−→
∫

e−i(k1−k2)·x1

∫

〈δ(x1)δ(x1 + r)〉e−ik2·r d3r d3x1
homogeneity−−−−−−−−→

∫

ξ(r)e−ik2·r δD(k2 − k1)(2π)
3 d3r →

P(k2) δ
D(k2 − k1)(2π)

3 ,

(1.9)

where, in the last equality, we define the power spectrum as the Fourier counterpart
of the correlation function. δD is the Dirac delta function, showing that modes are
uncorrelated in Fourier space. Given the isotropy of the Universe, the power spectrum
depends only on the modulus of the vector k and not on its direction,

〈δ(k1)δ
∗(k2)〉 = (2π)3 δD(k1 − k2) P(|k1|) , (1.10)

The correlation function and the power spectrum encode the same information being a
Fourier pair:

ξ(r) =

∫

P(k) e−ik·x d3k

(2π)3

P(k) =

∫

ξ(r) eik·x d3x .

(1.11)

One of the advantage of using the power spectrum analysis, in principle, is that, from
equation 1.10, modes are uncorrelated leading to a diagonal covariance matrix. In
practice this is not true for real surveys where the limited size of the sample leads to a
mixing of modes due to a window function effect. Further, thank to the use of the FFT
algorithm, the estimation of the power spectrum from a galaxy sample is faster than the
one of the correlation function. The importance of the power spectrum is due to the fact
that the linear perturbation theory predicts directly its shape: it encodes information
about the formation of the primordial fluctuations, and especially about how these are
modified according to the matter content of the Universe.

1.3 Cosmology with P(k)

In the ΛCDM standard cosmology, the dark energy component dominates the dynamic
of the Universe only at late epochs when structures have already formed. During the
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matter dominated era, the high energy density of CDM with respect to the other energy
components makes it the major responsible for the evolution of fluctuations at different
scales modelling the shape of the power spectrum.
Although baryons contribute to only 5% of the total energy density, their effect in the
evolution of structures is not negligible leaving some features in the power spectrum.
The concordance ΛCDM cosmological model is described by six free parameters, which
completely determine the shape and amplitude of the matter power spectrum at all
epochs: the Hubble parameter today, H0 (with h the dimensionless Hubble constant,
h = H0/100 [km s−1Mpc−1]), the physical baryon density, ΩBh

2 , the total matter den-
sity, ΩMh2 , the optical depth to reionization, τ , the amplitude of the primordial scalar
density perturbations on scales of k0 = 0.05 hMpc−1, As, and the spectral index of the
primordial power spectrum of density perturbations, ns. Current analyses are trying
to refine this vision of the Universe reducing the statistical errors on cosmological pa-
rameters. Extensions of this cosmological model include extra parameters as curvature
of the Universe Ωk, an equation of state of the dark energy, w different from w = −1,
the mass of the neutrinos,

∑

mν , the scale dependence of the spectral index of the
primordial power spectrum, nrun(=

d lnns
d ln k ), and the amplitude of the primordial tensor

perturbations, r.

1.3.1 Evolution of P(k)

Structures we observe today have formed by gravitational amplification of small pri-
mordial inhomogeneities. Many inflationary models predict that the primordial power
spectrum Pprim obeys a power law with amplitude As and index ns

Pprim(k) ∝ As k
ns . (1.12)

Harrison and Zel’dovich predicted a ns = 1 primordial spectrum assuming that initial
fluctuations of the gravitational potential are scale invariant. Today the overall shape
of the power spectrum is very different from a power-law because of the scale-dependent
evolution of fluctuations.
By structure formation we mean the generation and evolution of the primordial inhomo-
geneities. Structure formation uses a perturbative approach to describe the evolution of
density fluctuations during the various epochs of the Universe.
Scales which are close to horizon size or super-horizon require relativistic perturbation
theory, which is based on General Relativity because we can no more ignore the curvature
of space-time. We just summarise the results of this approach saying that super-horizon
scale fluctuations grow proportionally to the scale factor in the matter dominated era
δk ∝ a and proportionally to the square of the scale factor in the radiation dominated
era δk ∝ a2, with δk the density contrast δ = δρ/ρ̄ in Fourier space.
Fluctuations at sub-horizon scales can be treated with Newtonian perturbation theory
combining the main equations of fluid dynamics (for a perfect fluid) with gravity and
adding, to the background solutions, small linear perturbations as

ρM(t,x) = ρ̄(t) + δρ(t,x) (1.13)
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for the matter density. Considering adiabatic perturbations in a fluid and Fourier ex-
panding the perturbations in terms of plane waves which evolve independently, one can
obtain the final following equation

δ̈k + 2Hδ̇k +

[

c2sk
2

a2
− 4πGρ̄

]

δk = 0 , (1.14)

function of the fluctuations δk = δρk/ρ̄ in Fourier space, with cs = ∂p/∂ρ the sound
speed and the dot standing for time derivative. The equation is solved by the time
evolution of the Fourier amplitudes δk of the perturbation after finding the background
solution for the functions a(t) , H = ȧ/a and ρ̄(t). The term 2Hδ̇k, which accounts for
the expansion of space, is a sort a friction factor and tends to limit the growth of
fluctuations. The nature of the solution strongly depends on the sign of the term inside
the brackets where the intermediate scale, called the Jeans wave number (Jeans found
for a static fluid the same equation but without the term 2Hδ̇k), between the two regimes
is

kJ = a

√
4πGρ̄

cs
. (1.15)

The first term inside brackets in equation 1.14 is related to the pressure gradients that
tend to contrast the compression due to the gravity (second term) generated by density
excess of the fluid δk. If pressure dominates, for fluctuations with scale k > kJ, we should
expect to recover oscillating solution, which stands for sound waves in the density field,
while if gravity dominates the small initial perturbation with k < kJ grows leading to
more compact structures.
During the evolution of the Universe, perturbations with different scales enters the
horizon and the Jeans scale in different epochs when the background fluid density was
dominated by radiation or by matter. Following the evolution of each single mode in the
density field, we can have an idea of how the amplitude of fluctuations has grown during
the evolution of the Universe and predict the shape of the matter power spectrum in
the linear regime.

CDM perturbations

Cold dark matter is believed to be the dominant component in the formation of struc-
tures. Baryons and hot dark matter (neutrinos), in fact, are too few respect to CDM
to have a determinant role, radiation with its high pressure does not form structures
and the dark energy, which dominates in the energy density today, is not far from being
homogeneous. Since CDM is pressure-less (cs = 0), the growth equation (1.14) becomes

δ̈k + 2Hδ̇k + 4πGρ̄Mδk = 0 , (1.16)

meaning that CDM fluctuations, which are always super-Jeans scale perturbations, do
not oscillate.
The horizon scale λH grows with time meaning that larger-scale fluctuations enter the
horizon at later time. The time of equality between radiation and matter, teq, is deter-
minant for the evolution of these density fluctuations fixing a particular scale λH(teq),
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being the size of the horizon at the time of equality. Fluctuations smaller than λH(teq)
enter the horizon during the radiation dominated era at t < teq when the expansion of
the Universe is H2 ∝ ρ̄R ∝ a−4, while larger ones enter during the matter dominated
t > teq era when H2 ∝ ρ̄M ∝ a−3 . Replacing the proper Hubble factor in equation 1.16
and solving for the amplitude of fluctuations with respect to time, we obtain that scale
CDM fluctuations smaller than λH(teq), that have entered the horizon in the radiation
epoch, evolve with

δ(t) = δinitial

(

1 +
3

2

a

aeq

)

, (1.17)

while scale fluctuations larger than λH(teq), that enter during the matter era, grow as

δ(a) ∝ a ∝ t2/3 . (1.18)

When the Universe becomes dark-energy dominated, H2 ∝ const and CDM perturba-
tions stop growing.
From this simple description, we can explain the overall shape of today power spectrum,
composed by two regimes separated by the peak of the power at frequency k = keq, which
is the mode associated to horizon at the time of equality, keq = 2π

λH(teq)
. The largest scale

structures observe today in the cosmic web are in fact the consequence of the initial per-
turbations that, once have entered the horizon in the matter era, have continued to
grow as when they were super-horizon fluctuations. The power at these scales has the
same shape of the primordial one P(k) ∝ kns . Smaller-scale structures, instead, when
entered the horizon in the radiation dominated era, remain more or less frozen since
have growth by only a fraction of 5

3 until the time of equality and start to grow during
the matter epoch. Since the growth of super-horizon fluctuations is proportional to a2,
the ratio at teq between the amplitude of a fluctuation that has entered the horizon in

the radiation epoch and one still growing on super-horizon scales is R ∝
(

aH
aeq

)2
with aH

the scale factor at the time of entering the horizon. Therefore knowing that k ∝ a−1
H ,

we can predict the shape of the power for k > keq

P(k) ∝ kns × R2 ∝ kns−4 . (1.19)

The overall shape of the initial power spectrum, after teq, is shown in figure 1.1 where
the largest scales (k << keq) behave like a power-law function with index ns while small
scales, beyond the peak (k >> keq), decrease following a power law with index ns − 4.

Baryonic perturbations

Although CDM is dominant in structure formation, the baryonic component is not
negligible and most importantly what we can directly observe is the clustering of baryons
within the form of galaxies. In this context, we need to study how perturbations in
the baryonic component evolve. The time of decoupling tdec is determinant in the
evolution of baryonic fluctuations as the time of equality is for CDM structures. Before
tdec, baryons and photons were coupled forming a fluid characterised by the radiation
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pressure. Due to the high pressure of this fluid, baryonic perturbations cannot grow
until the time of decoupling. The Jeans length, defined as the inverse of the Jeans mode
λJ ∼ k−1

J , is in fact comparable to the horizon scale. All baryonic fluctuations that enter
the horizon before tdec are smaller than λJ and consequently evolve as an oscillating wave
in the baryon-photon fluid. These oscillations, known as Baryonic Acoustic Oscillations
(BAO) leave a secondary feature in the matter power spectrum. Perturbations in the
matter density before the time of decoupling modify locally the temperature of photons
〈 δρρ 〉 ∼ 〈 δTT 〉: these oscillating waves leave a strong imprint in the power spectrum of
CMB anisotropies, which has been observed extremely well by Larson et al. (2011) and
Planck Collaboration et al. (2013). After decoupling, the baryon component composed
of hydrogen and helium sees just its own pressure, which is the one of a monatomic gas.
The baryon Jeans length drops after decoupling letting the baryonic fluctuations to grow
as δB ∝ a. Photons are no more affected by the presence of baryons and the study of
CMB anisotropies gives us direct information on fluctuations at the time of decoupling.
If we measure the growth of baryonic structure from the time of decoupling up to now,
we obtain a0/adec = 1 + zdec ∼ 1100 meaning that baryonic structures we observe today
should have a density bigger than a factor of 103 respect to anisotropies observed in the
CMB, 10−5. The density of galaxies, gas clouds and other baryonic structures in the
Universe correspond to a density contrast of the order of δρB/ρ̄ ∼ 10− 100− 1000, far
from the predicted 10−5 × 103 = 10−2. This discrepancy is one of the most accredited
reasons for the existence of dark matter. CDM structures begin in fact to grow earlier
at the time of equality, teq < tdec. At the time of decoupling, baryons, free to evolve
without the support from photon pressure, fall into the CDM gravitational potential
wells, reaching in a short time the density contrast of CDM. This explains why the
observed density contrast in baryonic structures today is so high.

To account for all the changes in the matter power spectrum shape with respect to
the primordial one in the matter dominated era (when perturbations at all scales grow
at the same rate, independently of time), an analytical solution, called transfer function
T(k) and based on various assumptions, is introduced, such that

P(k, z) = T2(k) D2(z) Pprim(k) , (1.20)

where P(k) is the matter power spectrum measured today, Pprim(k) the primordial power
of equation 1.12 and D(z) the growth factor which describes the growth of fluctuations
at different k-modes. As mentioned before, the asymptotic behaviour of the transfer
function is

T(k) = 1 for k << keq

T(k) ∝ k−2 for k >> keq .
(1.21)

Detailed evaluations of the transfer function have been carried out by a number of
authors. The two most important achievements in evaluating an analytical expression
for the transfer function are Bardeen et al. (1986),

T(k) =
ln(1 + 2.34q)

2.34q
[1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]−1/4 , (1.22)
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Figure 1.1: theoretical model power spectra obtained using the transfer func-
tion of Eisenstein and Hu (1998) and a power-law primordial power spec-
trum, varying the matter density. The cosmological parameters are fixed to
ns = 0.95, h = 0.70, Ωk = 0, fB = ΩB/ΩM = 20% expect for ΩM which is set as free with
values ranging from ΩM = 0.1 to ΩM = 1.0 with step ∆ΩM = 0.1.

where q = k/(ΩMh2Mpc−1), for the CDM model alone and the work done by Eisenstein
and Hu (1998) extended to include baryonic effects.
The initial power spectra P(k) ∝ T2(k)× Pprim(k) plotted in figures 1.1, 1.2, 1.3 are
computed with the approximated transfer function calculated by Eisenstein and Hu
(1998) for different cosmological parameters. A detailed calculation including all rele-
vant effects could not be done analytically. There are publicly available computer codes
(such as the one used in this thesis, Code for Anisotropies in the Microwave Background
(CAMB, Lewis and Challinor, 2011)) that evaluate numerically the matter power spec-
trum setting as input the cosmological parameters. The main approximation of this
calculation of the power spectrum (in the analytic solution or in the numerical one) is
the linear perturbation theory which assumes that fluctuations in the density are small
enough to have δρ << ρ̄. This is quite correct for large scale structure which are still
in the linear regime δ < 1. For smaller scales, non-linear effects, as the high velocities
of galaxies inside clusters and groups δv ∼ v or the high density, must be taken into
account. Numerous efforts have been done to include non-linearities in the model us-
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Figure 1.2: theoretical model power spectra obtained using the transfer function of
Eisenstein and Hu (1998) and a power-law primordial power spectrum, varying the
baryonic fraction. The cosmological parameters are fixed to the same values of figure
1.1 expect for ΩM = 0.30 which is now fixed and the baryonic fraction which is set as
free with values ranging from fB = 0% to fB = 45% with step ∆fB = 5%. Notice the
increase of the BAO signal associated to the increase of the baryonic fraction.

ing huge N-body simulations. The code allows the user to select an option to obtain
an approximated non-linear power spectrum, based on the HALOFIT prescriptions de-
scribed in Smith et al. (2003). Figure 1.3 shows the comparison between the linear
power spectrum calculated with the Eisenstein and Hu (1998) formulas and the non-
linear correction based on the Smith et al. (2003) work at different redshifts. Notice that
non-linear and linear power spectra are more consistent with each other at higher red-
shift due to the lower clustering of structures resulting in a lower effect of non-linearities.
The overall amplitude of the power spectrum changes due to the different growth factor
D(z) of structures at different epochs.

1.3.2 Shape and amplitude of P(k)

Before comparing the measured power spectrum with a theoretical prediction, we need to
introduce the bias factor due to the relation between the clustering of matter predicted
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Figure 1.3: theoretical model power spectra at different redshifts (z = 0, z = 1 and
z = 2) obtained using the transfer function of Eisenstein and Hu (1998) and a power-
law primordial power spectrum (blue solid lines) showing the behaviour of linear theory
compared to power spectra obtained in the same way but with the inclusion of the
non-linear correction of Smith et al. (2003) (red dashed lines).

by theory and the observed galaxy clustering. To map the underlying dark matter
density field, we use visible tracers as galaxies. A general way of interfacing matter
and galaxy fluctuations has been introduced by Fry and Gaztanaga (1993) via the bias
function F,

δG = F(δM) , (1.23)

which assumes that the bias function is a local mapping between the matter and galaxy
density contrast.
Furthermore they consider that the biasing function F can be expanded in Taylor series,

δG =
∑

n

bnδ
n
M

n!
, (1.24)

where the coefficients bn define the bias function (Fry and Gaztanaga, 1993).
Since the matter density fluctuations are very small at large scales δM << 1, we can
stop the series to the first b0 term with the other contributions negligible. Under this
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assumption, the matter density field is related by a simple normalisation factor to the
galaxy one with the consequent power given by

PG(k) ≈ b20 PM(k) . (1.25)

In the following we adopt a linear b ≈ b0 and scale independent b(k) ≈ b bias term.
Given linear theory (an approximation to non-linearities) and a biasing scheme between
matter and galaxies, a measurement of the galaxy power spectrum leads to constraints
of some cosmological parameters.
Huge future surveys could measure the power at scales k < keq constraining the pri-
mordial amplitude ns since, at those scales, structures have entered the horizon in the
matter dominated era maintaining the primordial shape information.
The amplitude integrated over the whole k-space range is proportional to the primordial
amplitude As. Smoothing the matter density field with a spherical filter of size R gives
a further field with spatial variance

σ2R =
1

2π

∫ ∞

0
P(k)W2(k,R)k2 dk (1.26)

where W(k,R) is the window function for the smoothing, the Fourier Transform of
a sphere. Usually R = 8h−1Mpc because at this scale cosmologists predict that non-
linearities are negligible and damped out with the smoothing. The value σ8 is directly
proportional to the primordial amplitude As. The problem is that we do not have
surveys large enough to measure the power at scales k < keq to directly infer ns and
consequently we cannot perform the integral of equation 1.26 to recover As.
Another cosmological information could be extracted from the wavenumber of the peak
of the power spectrum because is the scale of the horizon at the time of equality,
keq = (2ΩM H2

0 zeq)
1/2, but again this would require sampling very large scales and also

the peak is very broad due to equality not being instantaneous.
The cosmological parameters that mainly affect the shape of the power spectrum are
the matter density ΩM and the baryonic fraction fB = ΩB

ΩM
. The evolution of structures

is strictly dependent on the amount of matter in the Universe. Varying ΩM and fixing
all the other parameters, the shape of the power spectrum changes as shown in figure
1.1. The peak of the power shifts toward higher modes in a Universe with higher mean
density, because the time of equality between radiation and matter happens at higher
redshift, when the horizon scale was smaller.
The power of large scale fluctuations, instead, is not altered by the variation of ΩM

since at k < keq perturbations undergo the same growth. The parameter ns is fixed to
ns = 0.95 in this figure, as suggested by the latest Planck measurements (Planck Col-
laboration et al., 2013).
When adding more baryons with respect to CDM (i.e. increasing the baryonic fraction
fB = ΩB

ΩM
), the damping of power on scales k > keq is stronger. In fact once the fluctu-

ation enters the horizon, baryons remain frozen until the epoch of decoupling because
interact with photons well beyond the equality. After decoupling, they follow the under-
lying gravitational potential generated by CDM that instead were free to grow already
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since the time of equality. Fixing the amount of total matter in the Universe and varying
the baryonic fraction, in the early Universe there was less CDM able to cluster between
tdec and teq and more frozen baryons. This situation would lead to a suppression of the
power for modes that entered the horizon before the time of equality k > keq but keeps
the peak position keq fixed because keq depends on the total amount of matter and not
on the baryonic fraction (figure 1.2). Comparing the measured power spectrum from
a galaxy redshift survey with theoretical models dependent on ΩM and fB provides a
powerful way of constraining these two cosmological parameters.

An important feature in the power spectrum that has been outlined in the last years
are the oscillations visible in figure 1.2 on scales of the order of k ∼ 0.1 hMpc−1. These
are related to the baryonic acoustic oscillations, observed in the CMB spectrum, that
leave an imprint on the matter power spectrum and on the clustering. Increasing the
density of baryons, the BAO signal is stronger as outlined in the figure. The recent
observation of BAO is a proof that baryons are not so negligible in the evolution of
structures as it was thought. The most important part is that the amplitude and
position of these wiggles are related to the size of the sound horizon at decoupling.
Thus BAO provides a measuring stick that measured at different redshift could helping
to measure the expansion rate of the Universe, in a completely independent way from
the supernova technique.

Recently another issue related to the large-scale structure has been pointed out by
Guzzo et al. (2008). Since galaxies are measured in redshift space, the shape of the
power spectrum is altered in an anisotropic way enhancing observed structures at large
scales due to the falling of galaxies in high density peaks along the line-of-sight and a
damping of structures at smaller scales due to the Fingers of God. Instead of looking at
redshift-space distortions as an annoying factor that should be taken into account in the
modelling of the power spectrum, a correct study of the anisotropic clustering introduced
in linear theory (Kaiser, 1987) leads to an estimate of the growth rate parameter. The
growth rate of structure is predicted by the gravity theory and a correct estimate of this
value could prove if the General Relativity is the correct answer to gravity or not.

1.3.3 Surveys

With the cosmological information enclosed in the power spectrum, many projects have
been and are dedicated to the analysis of the distribution of galaxies through the mea-
surements of millions galaxy distances, through their redshifts.
Despite the small number of galaxies and the small volume sampled, the first surveys in
the 1980s and 1990s were determinant to discriminate a Ω 6= 1 Universe meaning that
the matter density is only a part of the total quantity of energy in the Universe. Due to
the advancement of technology, big surveys were started in 1990s, reducing the statistical
error of the matter density and constraining other parameters as the baryonic fraction.
The two most important of such surveys, which significantly improved our vision of the
Universe, are the Two Degree Field Galaxy Redshift Survey (2dFGRS, Colless et al.,
2003) and the Sloan Digital Sky Survey (SDSS, Strauss et al., 2002).
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The 2dFGRS, fully released in 2003, covers an area of approximately 1500 square de-
grees observing∼ 220, 000 reliable redshifts for galaxies in a volume of V ∼ 108 h−3Mpc3.
The 2dFGRS surveys the distribution of galaxies in the local Universe, covering objects
with a median redshift of z = 0.11. The power spectrum of the 2dFGRS survey was first
measured by Percival et al. (2001) with the survey partially completed, at a 70% stage.
The main result of their paper was a constraint on ΩM and fB, with a strong degeneracy
between the two. The study of the power spectrum for the full survey by Cole et al.
(2005) was helpful to break the degeneracy. In addition to the close constraint mea-
sured with the complete 2dFGRS, one of the major achievement of the survey was the
discovery of the BAO signal in the measured power spectrum, providing an important
verification of our fundamental model of structure formation.

The SDSS started observing data in 2000 and is currently being further extended
(Dawson et al., 2013). The first two projects of the SDSS covered the period between
2000 and 2008 sampling the local Universe with a median redshift of z = 0.1, observing
∼ 800, 000 spectra of galaxies over 7,500 square degrees. A subsample of this distribution
of galaxies is represented by a particular class of objects: the Luminous Red Galaxies
(LRG). This sample of 46,748 LRG covers V ∼ 0.72 h−3Gpc3 over 3816 square degrees
and a redshift range 0.16 < z < 0.47, making it, at the time, the best sample for the
study of large-scale structure. Eisenstein et al. (2005) performed a correlation function
analysis detecting the BAO peak at a mean redshift of 〈z〉 = 0.35 and constraining, for
the first time in the large-scale structure approach, the dark energy properties.

Many recent redshift surveys have also been focused on redshift-space distortions to
study the anisotropy of the clustering due to the peculiar velocity of galaxies. These
projects have discarded many theories of gravity but we are not yet able to discriminate
between General Relativity or other theories of modified gravity. The aim of these
modern surveys is to extend the study of the clustering of matter at higher redshift, z ∼ 1
when the Universe was half of its size. Surveys, able to reach very large distances, are
the WiggleZ Dark Energy Survey (Blake et al., 2008) and the current Baryon Oscillation
Spectroscopic Survey (BOSS, Dawson et al., 2013), extension of the SDSS, i.e. SDSS
III.

WiggleZ is an Australian galaxy survey completed in 2011 and composed of ∼ 240, 000
redshifts over an area of 1000 square degrees. The redshift range 0.5 < z < 1, where the
blue emission-line galaxies of WiggleZ are observed, allows to extend these studies on
the clustering of matter up to a mean redshift of 〈z〉 ∼ 0.8. The main goal of the survey
has been the study of the anisotropy of the clustering due to RSD to measure the growth
rate of structure (Blake et al., 2011b) and the analysis of the properties of dark energy
throughout the BAO signal in the power spectrum and correlation function (Blake et al.,
2011a; Parkinson et al., 2012).

BOSS is an extension of the SDSS project at higher redshift (z < 0.7) designed to
recover the length of BAO at different redshifts. The properties of BOSS are impres-
sive, with 10,000 square degrees sampled and ∼ 1.5 million massive galaxy redshifts
measured. Anderson et al. (2012) measured through a power spectrum and correlation
function analysis the BAO imprint on the clustering of matter at a mean redshift of
〈z〉 ∼ 0.57 using a huge volume of V = 2.2 h−3Gpc3.
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The VIMOS Public Extragalactic Redshift Survey (VIPERS, Guzzo et al., 2014;
Garilli et al., 2014) has been developed in this context to extend the study of the
distribution of galaxies to z ∼ 1. Despite the small covering area of ∼ 24 square degrees,
the high redshift extension 0.4 < z < 1.2 restrict in a fairly large sampled volume, makes
VIPERS comparable with the properties of the 2dFRGS and SDSS at z ∼ 0.

The main property of VIPERS is, in fact, its redshift range that allows us to measure
the clustering of matter up to redshift z ∼ 1. The uniqueness of VIPERS is also due to
the highest sampling rate ever tried in a survey at these redshifts. A general introduction
of VIPERS will be given in the next chapter.



Chapter 2
The VIPERS sample

VIPERS is an ongoing ESO Large Program which aims at measuring redshift for
∼ 100, 000 galaxies using the spectrograph VIsible Multi-Object Spectrograph (VIMOS)
at VLT. At the time of writing (november 2014), observations are ∼ 90% complete.
The first Public Data Release (PDR-1), available at http://vipers.inaf.it, occurred in
September 2013 with the survey complete at ∼ 70%.
The main goal of VIPERS is to map the three dimensional distribution of galaxies in
order to push our understanding of galaxy clustering, growth of structure and galaxy
properties at an epoch when the Universe was half its current age, z ∼ 1. To achieve its
goals, VIPERS is an extended redshift survey in which galaxies are observed in a redshift
range between 0.4 < z < 1.2. Such depths inevitably limit the angular size and thus the
volume explored in past redshift surveys such as VIMOS VLT Deep Survey (VVDS, Le
Fèvre et al., 2005), the DEEP2 survey (Coil et al., 2008) and the zCOSMOS survey
(Lilly et al., 2009). However, despite being centred at a mean redshift of 〈z〉 ∼ 0.7, the
most remarkable innovation of VIPERS is its similarity to local surveys like 2dFGRS
and SDSS in terms of volume and number density. All these surveys are characterised
by a high sampling density, compared to the sparser samples of the recent generation of
BAO-oriented surveys (WiggleZ, BOSS).
VIPERS covers an area of ∼ 24 square degrees with a mosaic of 288 VIMOS pointings
corresponding, given the redshift interval, to a volume of 5× 107 h−3Mpc3.
Such a combination of sampling and volume is unique among redshift surveys at z > 0.5.
In this chapter, a simple overview of the VIPERS survey design and strategy is provided.
For a more detailed description, we refer to Guzzo et al. (2014) and Garilli et al. (2014).

2.1 General properties

VIPERS has been designed to cover part of the W1 and W4 fields from the T0005
release of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS, Cuillandre
et al., 2012) Wide photometric catalogue.
CFHTLS Wide is a 5-band photometric survey composed of four fields, W1, W2, W3

22
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and W4, covering a total area of 133 square degrees.
The first attempt to construct a survey at high redshift similar to VVDS, DEEP2 and
zCOSMOS but with a sufficient large volume to measure meaningful cosmological in-
formation was an extension of VVDS, VVDS-Wide (Garilli et al., 2008), which covered
∼ 8 square degrees down to a magnitude iAB = 22.5, but observing all objects (stars
and galaxies). VIPERS was designed to maximise the number of galaxies observed in
the range of interest while at the same time attempting to select against stars.
The star/galaxy classification scheme developed to construct the VIPERS target sam-
ple is particularly important as in a purely magnitude limited sample of objects at
iAB = 22.5 the fraction of stars can be larger than 30%. The method adopted to clas-
sify stars and galaxies for VIPERS uses knowledge of the object size, provided by the
half-light radius rh (i.e. the radius containing half of the object’s flux) and has been
tested for a significant number of objects in both W1 and W4 provided by the VVDS
Deep and Wide surveys. The stellar contamination is found to be only 3.2% meaning
that the methods used to pre-select galaxies are very efficient.
Given the luminosity function of galaxies and results from previous VIMOS surveys such
as VVDS and zCOSMOS, we knew that a magnitude-limited sample with
iAB < 22.5− 23.0 would cover the redshift range out to z ∼ 1.2 and could be assembled
with fairly short VIMOS exposure times (< 1 hour). The redshift range was further iso-
lated through a simple and robust colour-colour selection on the (r-i) vs (u-g) plane, that
allowed to discard z < 0.5 galaxies. We could be confident in advance that this selection
method would efficiently remove galaxies at z < 0.5, while yielding > 98% completeness
for z > 0.6. A precise calibration of this separation method was made possible by the
location of the VVDS-Wide (iAB < 22.5) and VVDS-Deep (iAB < 24) samples within
the W4 and W1 fields of CFHTLS, respectively.

Once objects have been targeted to be observed, redshifts are measured with VIMOS,
a 4-channel imaging spectrograph where each channel (a “quadrant”) covers ∼ 7× 8
arcmin2 for a total field of view (a “pointing”) of ∼ 218 arcmin2. Each channel is a
complete spectrograph with the possibility to insert 30× 30 cm2 slit masks at the en-
trance focal plane, as well as broad-band filters and grisms. The standard lay-out of the
four quadrants on the sky is reproduced in figure 2.1. The electromagnetic spectrum
could not be obtained for all the objects in the photometric catalogue pre-selected with
the colour-colour selection and star/galaxy classification. The Slit Positioning Optimi-
sation Code (SPOC, Bottini et al., 2005) is an algorithm used to select spectroscopic
targets in each quadrant and designed to maximise the number of objects at each point-
ing. Objects selected by SPOC are then observed with the VIMOS spectrograph. The
verification and validation of the measured redshift still require human intervention and
has been centralised in the data reduction and management centre at INAF - IASF
Milano. A quality flag is assigned to each measured redshift based on the quality of the
corresponding spectrum. Here we use only galaxies with flags between 2 and 9, which
correspond to a global redshift confidence level of 98%.
The errors on redshift measurement have been estimated for PDR-1 using 1215 objects
with reliable redshift, observed two times because deliberately re-observed or because ly-
ing at the border of the quadrants where two quadrants overlap. The distribution of the
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Figure 2.1: example of the detailed footprint and disposition of the four quadrants in a
full VIMOS pointing (W1P082 in this case).

differences between the two redshifts of the same object, normalised to the correspond-
ing redshift expansion factor 1 + z, is well described by a Gaussian with a dispersion of
σ = 200 km s−1 which is related to a mean 1σ error of σv = σ/

√
2 = 141 km s−1.

The distributions of galaxies mapped with VIPERS in the two fields, W1 and W4, are
shown in figure 2.2 and 2.3 for PDR-1. PDR-1 consists on ∼ 55, 000 redshifts composed

Figure 2.2: distribution of galaxies for the W1 field in the PDR-1 catalogue.

Figure 2.3: distribution of galaxies for the W4 field in the PDR-1 catalogue.
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mainly of galaxies between 0.4 < z < 1.2. Due to the statistical nature of the colour-cut
selection, the catalogue is contaminated by stars and by galaxies extending outside the
considered redshift range. Additionally, 20% of the redshifts are considered not suffi-
ciently reliable for statistical analysis (flag= 1, ∼ 50% confidence level of being wrong),
and thus will be discarded from the analysis presented here. The remaining catalogue
is then composed of ∼ 45, 000 reliable galaxies, which are suitable for accurate studies
of galaxy clustering.
Current data (november, 2014) reaches ∼ 65, 000 high quality spectra for a total of
∼ 55, 000 galaxies.
Figure 2.4 is showing the distribution of PDR-1 VIPERS galaxies compared to the main
and LRG SDSS samples. The big leap toward higher redshifts taken with VIPERS is
evident.

Figure 2.4: distribution of galaxies for the VIPERS W1 and W4 fields compared to the
spatial distribution of galaxies in the main SDSS and in the LRG SDSS catalogues.

2.2 The VIPERS selection function

The VIPERS angular selection function is the result of the combination of several dif-
ferent angular completeness functions. Two of the VIPERS angular selection functions
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are binary masks: one related to defects in the parent photometric sample (mostly areas
masked by bright stars), while the other is a spectroscopic angular mask due to the
VIMOS footprint, generated by the composition of several pointings on the sky.
The photometric mask, which is known a priori from the CFHTLS catalogue, consist
primarily of patches around bright stars owing to the broad diffraction pattern and in-
ternal reflections in the telescope optics and has a small effect in terms of missing area
on the VIPERS observing fields, ∼ 2.5% for each field.
The spectroscopic mask, called the “Nagoya” angular mask in the internal convention,
generates a particular grid pattern in the sky due to the gaps between quadrants. More-
over, it accounts for secondary features such as the quadrant that may be partly vi-
gnetted by the guide probe arm. The spectroscopic angular mask is computed after the
observations because has to consider, not only the sky pattern due to the four VIMOS
quadrants (which is known a priori), but also the presence of failed pointings.
As shown in figure 2.5 where the distribution of galaxies on the sky is plotted, holes
between quadrants and failed pointings reduce strongly the total area of the parent ob-
serving field. The angular mask corresponding to the PDR-1 catalogue is the version
3.0 with a missing sky area of ∼ 47% for the field W1 and ∼ 36% for W4. With current
data, one more row in the W1 field has been completed while, for the field W4, more
pointings corresponding to old failures have been covered. The most recent spectroscopic
mask related to the current state of observations is the “Nagoya” 4.0 angular mask and
the missing area on the sky is of the order of 30% for W1 and 34% for W4.

Moreover, due to the selection of targets done by the SPOC algorithm, within each
of the four VIMOS quadrants an average of 40% of the observed objects in the photo-
metric catalogue satisfying the selection criteria are actually placed behind a slit and
observed. The ratio between the number of SPOC selected objects respect to the initial
available targets (pre-selected to reduce star contamination and avoid z < 0.5 galaxies),
is defined as the Target Sampling Rate (TSR), a quantity (known before the observa-
tions) which varies with location on the sky due to fluctuations in the surface density of
objects. Since SPOC is designed to maximise the number of spectroscopic targets, TSR
is inversely proportional to the surface density of objects. In high sky density region,
due to the limited size of a slit, objects too close cannot be observed, i.e. we miss a
lot of galaxies (low TSR). Vice-versa, almost all galaxies in less populated region on
the sky are observed because slits do not overlap. In figure 2.6, we show the TSR on a
per-quadrant basis, using the ratio of assigned targets to potential targets.
Another quantity that has to be accounted for in the VIPERS selection function is the
Spectroscopic Success Rate (SSR), defined as the number of reliable redshift measured
with respect to the number of targeted galaxies due to the varying observing conditions
and technical issues. Even in this case, the SSR can be evaluated as a function of VI-
MOS quadrant for the PDR-1 catalogue. It could be noticed, in figure 2.7, the high SSR
level in each quadrant with the majority of regions with SSR > 80%. A few observations
under problematic conditions (either technical or atmospheric) are clearly marked out
by the brown and purple rectangles.
Detailed knowledge of all these contributions to the VIPERS selection function is a
crucial ingredient for any quantitative measurement of galaxy clustering.
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2.3 Clustering investigations with VIPERS

Numerous works on the clustering of galaxies have already been performed using the
PDR-1 VIPERS sample.
The main goal of VIPERS is an accurate measurement of the growth rate of large-scale
structure at z ∼ 1, in order to improve the estimation made by Guzzo et al. (2008) for
the VVDS-Wide sample observing a larger volume to reduce statistical error bars. The
study of the anisotropy of clustering has been carried out by de la Torre et al. (2013)
analysing the dependence of the correlation function on scales parallel and perpendic-
ular to the line-of-sight, including in the estimation of the correlation function all the
selection function effects of VIPERS. Applying the multipoles analysis to the correlation
function of the PDR-1 catalogue, de la Torre et al. (2013) have been able to provide
a measurement of the growth rate fσ8 = 0.47 ± 0.08 at a mean redshift of 〈z〉 = 0.8,
allowing to add a further constraint on gravity, which remains consistent with Einstein’s
General Relativity but does not discriminate between different gravity models.
The PDR-1 catalogue has also been used to measure the clustering ratio ηR, a new ob-
servable introduced in Bel et al. (2014), and defined as the ratio between the correlation
function ξR(r) of a smoothed field on sphere with radius R and its variance σ2R. What
is interesting about this statistic is that, assuming the galaxy and matter densities to
be related by a simple linear biasing scheme on scales R, the clustering ratio is inde-
pendent on the bias factor and insensitive to linear redshift distortions. Verifying the
accuracy and efficiency of this approach using mock catalogues that match the survey
selection process, Bel et al. (2014) applied the ηR method to galaxies in a redshift range
0.65 < z < 1.2 obtaining a best fit for the matter density parameter of ΩM = 0.270+0.029

−0.025,
fixing all the cosmology (expect for the matter density) to the best known prior.
Due to the wide class of galaxies observed by VIPERS, Marulli et al. (2013) used the cor-
relation function approach applied again to PDR-1 to measure the clustering of galaxies
as a function of absolute magnitudes and stellar masses, inferring the galaxy bias as a
function of luminosity, stellar mass and redshift, assuming a flat ΛCDM model to derive
the dark matter two-point correlation function.
The first attempt to measure the clustering of galaxies in Fourier space has been per-
formed in Granett et al. (2012). The 2D angular VIPERS power spectrum measured
from the photometric CFHTLS catalogue has been deprojected, using the redshift distri-
bution of a preliminary VIPERS sample composed of ∼ 14, 000 spectroscopic redshifts,
in order to obtain the 3D power spectrum. The consequent estimation of cosmological
results leads to a measurement of the bias factor b = 1.38 ± 0.05 (σ8 = 0.8) and the
matter density ΩM = 0.30 ± 0.06 within a redshift range 0.5 < z < 1.2, while keeping
other ΛCDM parameters fixed.

Given the redshift range observed, the high sampling rate and the volume sampled,
VIPERS enables broader goals involving galaxy evolution, similarly to the achievements
of 2dFGRS and SDSS, but at z ∼ 0.1. Recent works in that direction are the study
of the non-linear galaxy bias (Di Porto et al., 2014), the analysis of the galaxy stellar
mass functions at intermediate redshift (Davidzon et al., 2013) and the study on the
formation of massive red-sequence galaxies (Fritz et al., 2014).
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Figure 2.5: Top panel : distribution of VIPERS galaxies on the sky as a function of right
ascension and declination for the field W1. The black dots correspond to the PDR-
1 catalogue with the “Nagoya” 3.0 spectroscopic mask while the current stage of the
observations (“Nagoya” 4.0) are represented by black and red points. Grid holes are due
to the observing strategy of VIMOS, missing quadrants represent failed pointings and
random holes (even if not easily visible in figure) are missing part of the photometric
catalogue due mainly to the presence of stars. The big missing part at RA ∼ 37◦

corresponds to the VVDS region. Bottom panel : same as top panel but for the W4
field. The big missing part on the left, at RA ∼ 335◦, corresponds to a border in the
CFHTLS Wide catalogue.
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Figure 2.6: behaviour of the Target Sampling Rate (TSR) as a function of quadrant
for the PDR-1 in both fields. As shown, the average TSR is around 40% while black
quadrants correspond to a failure in the observation with the consequent loss of data.

Figure 2.7: behaviour of the Spectroscopic Sampling Rate (SSR) as a function of quad-
rant. As can be seen, for the majority of quadrants the success rate is larger than
80%.



Chapter 3
Power Spectrum Estimator

In this chapter, we provide a practical guide to measure the power spectrum from a
discrete distribution of galaxies. We construct simple configurations of points, drawn
from Γ simulations of the density field (appendix B) generated from a known input
power spectrum. The advantage of this procedure is that we do not have to deal with
unknown bias factors or non-linear effects. An unbiased estimator should recover the
input power spectrum without any systematic effects. We start with the simplest setting
of particles distributed in a cubical sample with no density gradient. Step by step we
add to the sample more realistic features. First we include the cone-like geometry to the
sample while, in a second moment, a density gradient dependent on redshift (typical of
magnitude-limited surveys) and we discuss how the power spectrum estimator accounts
and corrects these factors.

3.1 Cubical box

3.1.1 Fourier Transform

The Fourier Transform (FT) method, used in several past surveys, starts from the
definition of the power spectrum which is the covariance of the density field in Fourier
space. Let ρ(x) be the matter density field at the position x and ρ̄ is the mean density.
Then the density contrast is defined as

δ(x) ≡ ρ(x) − ρ̄

ρ̄
, (3.1)

and characterises the fluctuations of ρ(x) around its mean ρ̄. The Fourier Transform of
δ(x) can be defined as

δ(k) =

∫

V
δ(x) e−ik·x d3x , (3.2)

where V is in principle an infinite volume. In practise, it corresponds to the size of the
sample. We assume that V is large enough to represent the overall density field of this
toy model.

30
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From the definition of the power spectrum in equation 1.7, the power spectrum
estimator is simply related to δ(k) with the formula

P(k) =
〈|δ(k)|2〉

V
, (3.3)

where 〈...〉 denotes the ensemble average and the volume of the survey V has been
introduced in order to express the power spectrum in units of volume since, from equation
1.11, P(k) ≡

∫

ξ(r) eik·x d3x. However, in any point process we do not observe directly
the continuous density field. It is sampled by a finite number of particles which are used
to trace the underlying fluctuations. The continuous field ρ(x) could be replaced with
a discrete density

n(x) =

NG
∑

G=1

δD(x− xG) , (3.4)

where each particle at position xG has been replaced by a Dirac-δ function and the sum
is performed over the total number NG of objects. This ensures that n̄ = ρ̄. Substituting
equation 3.4 in 3.2, the density contrast in Fourier space becomes

δ(k) = −δK(k− 0) +
1

n̄

NG
∑

G=1

e−ixG·k . (3.5)

The δK is the Kronecker-delta which is equal to 0 if k 6= 0 and 1 if k = 0.
Since no gradient is imposed to the density, n̄ does not depend on position and is
obtained by n̄ = NG/V. The mean density is evaluated directly from the distribution of
particles used to measure the power spectrum. In principle n̄ could be different respect
to the true underlying value. Our inability of knowing a priori the mean density of the
sample leads to systematic effects in the power spectrum estimation, called “integral
constrain”, which we will account for modifying the theoretical prediction of the power
spectrum when we will compare measurements with theory (chapter 4).
The FT procedure evaluates directly the real and imaginary part of the density field in
Fourier space as

δREAL(k) = −δK(k− 0) +
1

n̄

NG
∑

G=1

cos(xG · k)

δIM(k) = −δK(k− 0) +
1

n̄

NG
∑

G=1

sin(xG · k) ,
(3.6)

with the three dimensional power spectrum estimator defined as

P(k) =
δ2REAL(k) + δ2IM(k)

V
− 1

n̄
. (3.7)

The Poisson shot-noise term PSN = 1/n̄ must be subtracted from the power spectrum
estimator. The shot-noise term is due to the self-particle contribution to the statistics
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and it comes from the discreteness of the sample. If particles are randomly distributed,
it could be demonstrated with definition 3.3 and through equation 3.6 that the power
is not 0 but equal to the inverse of the mean density.

In the first test to introduce the power spectrum estimator, we consider particles
distributed in a cubical box with size L and volume V = L3. We generate a k-space
grid with the same step in all three directions (kx, ky, kz) given by ∆k = 2π/L, with a
minimum frequency kmin = ∆k, and a value for kmax dependent on the smallest scale we
want to reach. kmin is limited by fluctuations with wavelength comparable to the size
of the survey λmax ∼ L or kmin ∼ 2π/L because we cannot analyse modes larger than
the box. kmax instead can be extended up to very small scales. The problem here is
more practical because the increase of kmax is directly proportional to the enhancement
of the computation-time. Since we have to calculate the contribution of each particle
to the density field in each single mode, the number of iterations in the FT method is
proportional to the number of modes in the k-space grid times the number of particles:

Nit ∝ kmax
kmin

3 ×NG. The monopole power spectrum is calculated spherical averaging the
3D power of expression 3.7,

P(|k|) = 1

Nk

∑

k<|k|<k+δk

P(k) , (3.8)

where Nk is the number of modes in the shell.
We apply the FT estimator to Γ realisations with particles distributed in a cubical box
with size L = 486.4 h−1Mpc.
Statistical errors in the power spectrum, under the assumption of Gaussian fluctuations,
are proportional to the volume of the sample V with the variance of the power, called
“cosmic variance”, such that σ2P(k)/P

2(k) ∝ V/Vk where Vk is the volume defined in
Fourier space (Feldman et al., 1994). A number of 30 independent realisations are used
in this analysis in order to reduce cosmic variance and have an idea of statistical errors.
We evaluate the power spectrummeasuring the Fourier Transform of the density contrast
as in equation 3.7. In order to reduce the computation-time, we choose a very sparse
k-space grid with minimum frequency kmin = 2π

L ∼ 0.013 hMpc−1, step ∆k = kmin and
maximum frequency given by kmax = 32 ×∆k ∼ 0.41 hMpc−1. The number 32 is chosen
to reduce the number of points in the k-space grid to a reasonable value of (2× 32)3

where the factor of 2 accounts for negative frequencies. Since the number of particles
in our Γ simulation is very big (NG ∼ 2.2× 106) and the number of FT iterations is
Nit ∝ NG, we also randomly under-sample at 5% level the number of points in each
realisation. The shot-noise factor will increase due to the decreasing of the mean density
but our calculation will speed up by a factor of 20.
The averaged power spectrum over 30 mock catalogues after applying the spherical
average (equation 3.8) is represented in figure 3.1. Statistical errors correspond to the
1σ dispersion of the power spectrum P(k) for all the realisations with respect to the
mean P̄(k),

σ2i =

∑

N

[

P(ki)− P̄(ki)
]2

(N− 1)N
, (3.9)
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with N = 30 the number of catalogues. Errors are bigger at large scales due to cosmic
variance; modes comparable to the size of the cube are less sampled than those at small
wavelength. Due to the limited number of particles used for the computation of the
power, the amplitude of smaller scales is shot-noise limited.
The comparison between the expected input power spectrum and the observed one gives
a perfect match within statistical uncertainties on the whole scale range considered: the
FT approach is a good estimator of the power spectrum. We refer to figure 3.1 as the
“monopole” power spectrum because, from equation 3.8, it depends only on the modulus
of k. Despite the high value for the shot-noise, the PSN correction is working well even at

Figure 3.1: Top panel : comparison between the recovered power spectrum from 30
cubical box (red line) and the input power spectrum of the simulation (black line).
Errors correspond to the 1σ dispersion for all the samples respect to the averaged power.
The dotted blue line correspond to the shot-noise level which is quite dominant at
smaller scales. Bottom panel : ratio between the measured power spectrum and the
input expected one with related statistical errors. The black dot-dashed line shows the
level of the input power spectrum.

small scales (high k-modes) where the shot-noise contribution dominates. The problem
related to this technique is the long computation-time required to perform the Fourier
Transform of the density field.
In modern surveys, the number of observed galaxies is of the order of millions leading to
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the development of faster estimators. The simple three dimensional Fourier Transform
has been replaced by a Fast Fourier Transform method based on a clever and fast
algorithm.

3.1.2 Fast Fourier Transform

In the last 15 years due the the increasing amount of simulated data, power spectra are
typically computed using a Fast Fourier Transform (FFT) algorithm in order to speed
up the computation of the Fourier Transform of the density field δ(x). The high perfor-
mance of the FFT is due to the reduced number of iterations. For the one dimensional
case, computing the discrete FT of N points takes O(N2) arithmetical operations, while
an FFT can perform the same computation in only O(N log N) operations.
As an input of FFT, one must supply the density field regularly sampled on a grid on
which the FFT algorithm will apply periodic boundary conditions. The parameters of
the grid characterise the k-space domain where the power spectrum will be calculated.
The total range L spanned by the grid is related to both the minimum frequency of
the sampled power, kmin = 2π/L, and its resolution, ∆k = kmin. The resolution of the
grid H (distance between two grid points) fixes kmax, the maximum wavenumber. It is
recommended (even if not necessary) to use a cubical geometry for the grid in configu-
ration space: the Fourier counterpart will lead in fact to a regular sampling of the power
with the same steps in all the three directions, ∆kx = ∆ky = ∆kz. The choice of H is
determinant because limits the maximum frequency at which the power spectrum can be
measured. The Nyquist theorem states that a signal can be reconstructed if the sampling
frequency ks is at least double the highest frequency kmax of the signal itself, ks ≥ 2kmax.
This means that if we sample the signal δ(x) with periodicity λs = H (ks =

2π
H ), the high-

est frequency of the signal we can reconstruct is kmax = 2π
H × 1

2 = π/H, which is called
the Nyquist frequency kN.
As said before, to get the Fourier Transform of the density field at each point of the
grid, the number density must be first smoothed in cubical cells with size H,

n(xP) =
N(xP)

H3
, (3.10)

where N(xP) is the number of particles assigned at each point of the grid at the grid-
position xP. This is what we call the Mass Assignment Scheme (MAS). The density
contrast becomes

δ(xP) =
n(xP)

n̄
− 1 , (3.11)

with n̄ defined, under the assumption of no gradient in number density, as the total
number of points divided by the volume of the box, n̄ = NG/V.
We then perform the fast Fourier Transform (FFT) using the publicly available software
fftw3 (Fastest Fourier Transform in the West, Frigo and Johnson, 2012). Applying the
FFT algorithm to δ(xP), we obtain the density field in Fourier space δ(k) sampled on a
grid of values. The monopole power spectrum is then simply obtained by the spherical
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average (equation 3.8) of the 3D power estimator after subtracting the shot-noise term

P̂(k) =
|FFT δ(x)|2

V
− 1

n̄
. (3.12)

As shown by equation 3.10, the measured power spectrum will depend on the chosen
MAS. The contribution of a particle to the density field of a grid point is bigger pro-
portionally to the distance between the two. Mathematically the MAS is a convolution
between the number density of objects n(x) and the window function W(x) of the cell
which quantifies how much a particle contributes to the surrounding grid points

n(xP) =

∫

n(x′)W(xP − x′) d3x′ . (3.13)

In our work, we implement the two most popular MAS which are characterised by
different shapes for W(x): the Nearest Grid Point (NGP) and Cloud-in-Cell (CIC).
The NGP scheme assigns particles to their nearest grid point. Each particle will give a
contribution only to the nearest grid point and 0 to all the others. In one dimension,
the window function would be a top-hat

W(x) =

{

1, if |d| ≤ H/2

0, if |d| > H/2 .
(3.14)

Since a convolution in configuration space becomes a multiplication in Fourier space, this
effect can be easily taken into account simply dividing the density contrast in Fourier
space δ(k) by the Fourier Transform of W(x)

δNGP(x) = [δ ⋆W](x) ⇒ δNGP(k) = δ(k) ×W(k) , (3.15)

with W(k) being

W(k) = sinc

(

πk

2kN

)

. (3.16)

The CIC scheme is more sophisticated than NGP: each galaxy increases the number
density of nearby cells with a weight proportional to the distance between the particle
and the grid point. The window function in configuration space is therefore

W(x) =

{

1− |d|/H, if |d| ≤ H

0, otherwise ,
(3.17)

and its Fourier Transform

W(k) = sinc2
(

πk

2kN

)

. (3.18)

Again to correct for the MAS effect, the measured δ(k) must be divided by the corre-
sponding W(k).
For CIC assignment, when the grid in configuration space is small enough that barely
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enclose the survey, periodic condition must be applied. For instance in a cubical survey
with size L enclosed in a grid with the same size, a galaxy at position (x,x,L) will con-
tribute to the density field of cells at position (x,x,L) and (x,x,0).
The window function, associated to cubical cells, is simply given by the multiplication
of the window in all the three directions

W(x) = W(x)W(y)W(z) . (3.19)

The corresponding Fourier Transform is given by

W(k) =

[

sinc2
(

πkx
2kN

)

sinc2
(

πky
2kN

)

sinc2
(

πkz
2kN

)]p

, (3.20)

where p = 1, 2 for NGP and CIC, respectively.
A well-known effect in Fourier theory is the “aliasing” problem: the Fourier Transform
of a function, which has been sampled at a certain sampling rate, is equal to the sum of
infinitely many copies of the Fourier Transform (“alias”) of the effective signal. When we
perform an FFT analysis, we sample the density contrast at regular grid point assigning
particles with a MAS to cells. The estimated power spectrum P̂(k) of equation 3.12 is
then related to the true one P(k) by equation

P̂(k) =
∑

n

|W(k + 2kNn)|2P(k+ 2kNn) +
1

n̄

∑

n

|W(k+ 2kNn)|2 (3.21)

(demonstration in Jing, 2005) with n an integer vector and the factor W2 introduced
by the convolution of the density field with the smoothing window for the MAS. The
“aliasing” term comes from the contribution to the power from higher order n 6= 0.
Jing (2005) proposed an iterative method to extract from equation 3.21 the true power
spectrum. Both effects of the convolution and the alias are significant near the Nyquist
wavenumber kN. We do not care too much on what is happening around kN because,
given the speed of the FFT, we can push kN to be very high (at uninteresting modes),
decreasing the value of H, where we do not care about any “aliasing” problem. This
is why we choose to correct the estimated 3D power spectrum only for the first term
n = 0 in equation 3.21 simply dividing the estimated power of equation 3.12 by 3.20

P(k) = P̂(kx, ky, kz)×
[

sinc2
(

πkx
2kN

)

sinc2
(

πky
2kN

)

sinc2
(

πkz
2kN

)]−2p

. (3.22)

After correcting for the MAS, the monopole power spectrum is obtained applying the
usual spherical average of 3.8.
The FFT approach is tested considering again 30 realisations constructed with Γ distri-
bution of the density field. Given the efficiency and speed of the FFT algorithm, we do
not need to randomly select points as we did for the FT approach in order to reduce
the high number of objects.
As a first test, we smooth all the NTOT ∼ 2.2 × 106 particles using NGP as MAS
on an FFT grid with the same size of the sample L = 486.4 h−1Mpc and a cell-size
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H = 4× 0.95 h−1Mpc. The maximum mode sampled is given by the Nyquist frequency
and fixed by the cell-size, kN = π

H ∼ 0.83 hMpc−1, while the minimum sampled fre-
quency is given by the largest scale kmin = 2π

L ∼ 0.013 hMpc−1. The number of cells

in the FFT grid is N =
[

L
H

]3
= 1283. Figure 3.2 outlines the difference between the

recovered power spectrum with and without the correction for the MAS applying the
wrong estimator 3.12 in one case and the corrected one 3.22 in the other. Given the
large number of particles, the shot-noise term compared to the FT case is negligible,
even at the smallest considered scales.
The corrected power for the NGP assignment is better recovering the expected power
spectrum respect to the uncorrected one, with a good agreement up to mode k ∼ 50%kN.
Figure 3.3 shows the comparison between the behaviour of the measured power spec-

Figure 3.2: Top panel : test on the robustness of the MAS correction for the NGP
assignment scheme. The black dot-dashed line represents the input power spectrum of
the Γ simulation. The averaged power spectrum over 30 cubical samples is measured
with the FFT technique smoothing the distribution of particles with NGP scheme. The
red line shows the recovered power spectrum without the MAS correction (equation 3.12)
while the blue line corresponds to the power corrected for the effect of NGP (equation
3.22). Errors are plotted only for the corrected case and are calculated as the dispersion
of the power over all the 30 realisations. Bottom panel : ratio between the observed
power and the input one plotted in order to outline the goodness of the correction.
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trum for the two different MAS: NGP and CIC. The parameters of the FFT grid is the
same as for the previous test and both recovered power spectra have been corrected for
the MAS. Since the smoothing of particle density is affecting scales comparable to the
size of the cell H, the effect of choosing one method or the other alters the recovered
power spectrum at modes with k ∼ kN. The CIC scheme is more accurate than the NGP
giving a good match between the observed and expected input power up to frequencies
k ∼ 75%kN respect to the k ∼ 50%kN accuracy of the NGP scheme. This is due to

Figure 3.3: Top panel : comparison between the measured power spectrum with the
number density of particles smoothed with NGP (red line) and CIC (blue line) and
both corrected, as in equation 3.22 for the MAS effect. The input power spectrum,
black dashed line, is over-plotted in order to discriminate between one method or the
other. Bottom panel : ratio between the two measured power spectra and the expected
input one. The CIC procedure works better respect to the NGP recovering the right
amplitude and shape of the power up to higher frequencies.

the fact that the contribution of each particle to the surrounded grid points encodes
information of the relative distance between the grid points and the particle considered.
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3.1.3 FT vs FFT

In order to have a fair comparison between the FT and FFT technique, we measure
the power spectrum from the same distribution of particles for the two techniques and
compare the results with the input power.
Again we consider 30 realisations constructed from a Γ simulation with no gradient
applied to the density and objects distributed into a cubical geometry. We fix for both
methods the same parameters in order to have a fair comparison. The k-space grid for the
FT method is the same as the one used in the previous test with N = (2× 32)3 = 643 grid
points, kmax = kN = 0.41 hMpc−1, kmin = 0.013 hMpc−1 and ∆k = kmin. To obtain the
same grid in Fourier space for the FFT method, we fix the parameters of the FFT grid in
configuration space to L = 486.4 h−1Mpc and cell-size H = 8× 0.95 h−1Mpc, obtaining
the same kmin and kmax(= kN) as for the FT one. In order to reduce the number of
iterations for the FT method, we consider a fraction of 5% of all particles even for the
FFT approach smoothing them with CIC as MAS.
Figure 3.4 plots the two measured power spectra after averaging them over all the 30
realisations. The FT method is able to recover the input power spectrum up to very high
frequencies. The FFT technique with the implementation of the CIC scheme, properly
corrected with 3.22, starts to become inefficient at k ∼ 75%kN ∼ 0.3 hMpc−1, as we
have just tested in the previous subsection. The efficiency of the FT method could
be reached by the FFT choosing a thiner grid and maintaining, at the same time, the
computation-time much lower than the FT method. For instance, halving the cell-size
H = 4× 0.95 h−1Mpc leads to an increase of the maximum frequency, where the FFT
estimator is still working quite well, at k ∼ 75%kN ∼ 0.6 hMpc−1 which is higher than
the maximum frequency of k = 0.41 hMpc−1 (figure 3.5).
In the following of the thesis, we are going to adopt the FFT estimator because of
the fast computation and use the CIC assignment scheme, keeping in mind that the
efficiency of this approach is limited to modes smaller than k ∼ 75%kN once we correct
for the effect of the MAS.

3.2 Cone-like geometry

Surveys such as the 2dFGRS and SDSS have a cone-like geometry with the observer
positioned at the vertex and a big angular extension. The shape of modern surveys as
BOSS, WIGGLEz and VIPERS is a truncated cone more extended along the redshift
direction. To test the impact of the peculiar survey geometry on the recovered power
spectrum and show how the power spectrum estimator should be modified, we consider
cone-like distributions of points.
Our choice of cone-like geometry is motivated by the redshift survey VIPERS. We in-
troduce the VIPERS geometry analysing mock catalogues with the same VIPERS di-
mension and volume drawn from the cubical Γ simulations described in appendix B.
In this section we limit our study on a W1 field geometry with an angular extension
in right ascension between RAmin = 30.1◦ and RAmax = 38.8◦, DECmin = −5.4◦ and
DECmax = −4.15◦ in declination and a redshift range 0.93 < z < 1.1. Fixed the bound-
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Figure 3.4: Top panel : measured power spectrum from 30 cubical simulations recovered
with the FT approach (red line) and with the FFT one (blue line) and compared with
the input power for Γ simulation (black dotted line). Bottom panel : ratio between the
two measured power spectra and the expected one. Note that the difference between
the two spectra is important only at frequencies k ∼ kN.

aries of our samples, we generate 240 independent mock catalogues cut from the 30 boxes
used in the previous section. The large number of mock samples is important to reduce
cosmic variance and outline systematic errors without being affected by statistical ones.
Since we decide to adopt the FFT approach, the discrete distribution of particles has
been firstly smoothed onto a grid. We choose a cubical grid of size L = 500h−1Mpc fix-
ing the minimum frequency to kmin = 2π/800 ∼ 0.008 hMpc−1. The value of the power
measured at such large scales will not give us any information because the grid used is
bigger than the size of the mock. The cell size is H = 4× 0.95 = 3.8 h−1Mpc fixing the
Nyquist frequency to a value of kN = π/3.8 ∼ 0.8 hMpc−1. Objects inside the volume of
the survey are assigned to cells with the CIC scheme. The density contrast is calculated
with equation 3.11 comparing the weighted number of galaxies in each cell with the
mean number density n̄ which, for the moment, is constant. Again n̄ is measured as the
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Figure 3.5: Top panel : same figure as 3.4 with the over-plotting of another averaged
power spectrum (orange line) recovered with the FFT approach, CIC assignment with re-
lated MAS correction and a finer grid with size-cell H = 4× 0.95 h−1Mpc. Bottom panel :
ratio between the measured and input power spectrum. The power calculated with the
finer grid in configuration space recovers the expected power up to k ∼ 0.6 hMpc−1.

ratio between the total number of galaxies with respect to the volume of the survey VS,

VS =

∫

r

∫

ψ

∫

θ
r2 sin θ dψ dθ dr = ∆ψ

[

r3max − r3min

3

] [

sin θmax − sin θmin

]

, (3.23)

where rmin(rmax) is the minimum (maximum) comoving distance associated to redshift
z=0.93 (z=1.1), θ = π/2−DEC and ψ = RA.
The volume of these samples is VS ∼ 5.6 × 106 h−3Mpc3 and the mean constant density
averaged over 240 mock catalogues is of the order of n̄ ∼ 0.003 h3 Mpc−3.
Since the cubical grid is set up on top of the light cone, the assignment scheme is char-
acterised by three regimes: the cell is completely outside the cone, the cell is completely
inside and the cell crosses the cone. In the first case, we assign the value of 0 to the
over-density field δ while, in the second case, we simply calculate the density field as
for the cubical geometry. Cells at the edges of our sample that are partially outside
and partially inside represent a problem. In average, the number of galaxies in those
cells is lower with respect to cells completely inside the sample modifying the observed
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clustering. This will introduce spurious correlation on scales comparable to the distance
between these cells, mainly at scales comparable to the size of the cone.
A quick solution could be to avoid those cells with the consequence of losing information.
Another is to calculate the fraction of the cell-volume inside the survey and weigh each
cell for that value. We decide to follow the literature generating a random unclustered
catalogue with the same geometry of the sample in order to mimic the mean density of
the sample in each cell. The number of galaxies in each cell is compared to the number
of random points in that cell: the number of particles in cells at the boundaries of the
sample are therefore affected in the same way. The number of unclustered objects should
be big enough to cover the whole volume of the survey with high precision: the mean
particle distance λ should be much lower than the size of the cell λ << H.
The estimator of the density contrast sampled at each point of the grid becomes

δ(xP) =
nG(xP)− αnR(xP)

n̄
, (3.24)

where the subscripts G and R stand respectively for galaxy and random points while
α is the ratio between the total number of galaxies and the total number of random
points, α = NG/NR. The number density nG and nR are measured by smoothing the
distribution of mock galaxies and random points with the chosen assignment scheme
(NGP, CIC) into a grid. Once we compute the density contrast with expression 3.24,
the estimator of the power spectrum does not change, following the procedure described
before with the correction for the MAS and the subtraction of the shot-noise term. Due
to the introduction of the random catalogue, the shot-noise term is increased by

PSN =
1 + α

n̄
. (3.25)

Another reason to generate a large number of random objects with NR >> NG is
to minimise the contribution of the random catalogue discreteness to the shot-noise
term. In our case, we construct a random catalogue with 20 times more objects than
the corresponding mock sample enhancing the shot-noise term by only a 5% factor,
PSN ∼ 1+5%

0.003 ∼ 350 h−3Mpc3.
The effect of the W1 cone-like geometry on the averaged power spectrum over 240

mock catalogues, plotted in figure 3.6, is strong at scales comparable with the size of the
survey 0.01 < k < 0.2 [hMpc−1] and negligible at smaller scales k > 0.2 hMpc−1. From
a theoretical point of view, this suppression of the power at large scales is well explained
by the convolution between the input power spectrum and the window function that
accounts for the limited size of the sample

Pobs(k) =

∫

Pinput(k
′)|W(k − k′)|2 d3k′

(2π)3
, (3.26)

with W the window function of the survey (cone) in Fourier space. The decreasing of
the power depends on the peculiar shape of the analysed sample and on the anisotropy
of the distribution of galaxies.
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Figure 3.6: measured power spectrum from 240 mocks with the same VIPERS W1 cone-
like geometry and redshift range 0.93 < z < 1.1 (red line). The black dot-dashed line rep-
resents the input power spectrum of the simulation at a mean redshift of 〈z〉 = 1.02. The
effect of the VIPERS peculiar geometry is clearly visible at large scales k < 0.2 hMpc−1.

Compact surveys with a geometry well extended in all the three directions as the 2dF-
GRS and the SDSS (or simply the cubical box studied before) undergo a negligible
window function effect even at large scales. The VIPERS-like anisotropic geometry
however, very narrow in one direction, leads to an important modification of the recov-
ered shape of the power spectrum. We will discuss more about the window function
problem and how to account for that in chapter 4.

3.3 Radial selection

Magnitude-limited surveys are affected by radial selection effects, which result from the
inability of the survey to detect fainter galaxies at large redshifts. This selection effect
introduces a gradient in the density distribution of surveyed objects. In the following
we are going to explain how this impacts the power spectrum measurements.
Usually the redshift distribution of galaxies is computed dividing the sample in redshift
(or comoving distance) bins and counting the number of galaxies in each bin. The his-
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togram is then smoothed with a Gaussian filtering in order to mix over- and under-
dense regions and recover the true mean density. The scale at which fluctuations should
be mixed up to obtain a good estimator of the mean density at a particular redshift de-
pends on survey properties. The choice of the variance σ in the Gaussian filtering is not
trivial and the power spectrum estimator is very sensitive to this scale. In section 6.2.1,
we will analyse the impact of these free parameter in the power spectrum estimator.
For the moment, our purpose is to improve the power spectrum estimator with the
introduction of a redshift-dependent mean density that we know a priori. We apply
the known radial selection function n̄(r) of figure 3.7 to our set of 240 mock catalogues
removing more galaxies at higher redshift following the input distribution. FKP imple-

Figure 3.7: input radial distribution of galaxies applied to the 240 mock catalogues
constructed with Γ simulation (red line). The grey-filled histogram is the measured
radial density averaged over all the 240 samples with a bin size of ∆r ∼ 25 h−1Mpc.

ment a power spectrum estimator, based on the FT method, to include the non-constant
mean density typical of magnitude-limited sample. We follow the FKP procedure adapt-
ing their method with the FFT algorithm.
Since the unclustered catalogue is used to mimic the mean density and must reproduce
the features of the data, the first step is to generate a random catalogue with the same
geometry of the sample including the mean decreasing density which, in our particular
case, is known a priori. The second step is to introduce a normalisation factor N in the
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denominator of the density contrast (3.24) which accounts for the redshift-dependence
of n̄.
The normalised FKP density field is therefore defined as

δ(x) =
nG(x)− αnR(x)

N
, (3.27)

where the normalisation N is given by

N =

∫

n̄2(x) d3x′ = α
∑

R

n̄(xR) . (3.28)

Again the number density of galaxies nG(x) and random points nR(x) have to be
smoothed onto a grid in order to perform the Fourier Transform of the field with an
FFT.
With the new definition of the density field, the 3D power spectrum estimator sampled
on a k-space grid becomes, as before,

P(k) = |FFT δ(x)|2 − PSN , (3.29)

where the shot-noise term is now given by

PSN =
1 + α

N2

∫

n̄(x) d3x =
(1 + α)NG

N2
. (3.30)

The second equality of equations 3.28 and 3.30 is due to the fact that the unclustered
catalogue mimics the mean density distribution of galaxies, so we use a convenient way
to perform the spatial integrals:

∫

d3x n̄(x)... → α
∑

R ... where the sum is over the
random catalogue which we assume are sufficiently numerous to define n̄.
We measure the power spectrum from the 240 Γ mock catalogues with the VIPERS W1
cone-like geometry, in a redshift range 0.93 < z < 1.1 and the decreasing radial selection
included. The power is estimated with the procedure just described using the FFT-grid
parameters L = 800h−1Mpc and H = 4× 0.95 h−1Mpc and smoothing particles with the
CIC scheme.
Figure 3.8 shows the comparison between the recovered power spectrum before and after
applying the decreasing mean density to the same set of mocks. The power estimated
with the FKPmethod is in good agreement with the power estimated before the inclusion
of the radial selection function, meaning that the FKP estimator perfectly treat the
radial-dependent density of galaxies.
In the next section, we generalise the estimation by taking into account a possible
weighting of the density contrast.

3.4 Weighting galaxies

Suppose each galaxy contributes to the density field with a weight w(x). The power
spectrum estimator should be slightly modified including the weighting scheme. The
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Figure 3.8: Top panel : comparison between the measured power spectrum averaged
over 240 mock catalogues with a mean constant density (red line), the one recovered
from the same set of mocks once a decreasing radial distribution is applied (blue line)
and the input power of the Γ simulation (black dot-dashed line). Bottom panel : ratio
between the power spectrum measured before and after the inclusion of a non-constant
radial distribution.

density field is improved to account the galaxy weight

δ(x) = w(x)
nG(x)− αnR(x)

N
, (3.31)

where nG(x) and nG(x) are still the smoothed number density of the distribution of
particles and random points respectively. The assignment scheme (MAS) to grid points,
necessary for the FFT algorithm, should count each galaxy with w(x) rather than 1.
The normalisation factor N in the denominator of the density field is modified as follows

N =

∫

n̄2(x) w2(x) d3x = α
∑

R

n̄(xR)w
2(xR) , (3.32)
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with the factor α, that accounts for the different number between mock galaxies and
random points, now computed as

α =

∑

G w(xG)
∑

Rw(xR)
. (3.33)

The power spectrum estimator is, as in equation 3.29, the square of the Fourier Trans-
form of the density field minus the shot-noise term redefined as:

PSN =

∑

G w2(xG) + α2
∑

Rw2(xR)

N2
(3.34)

The power spectrum estimator that accounts for different weights for galaxies will be
used to correct the effect on the clustering due to the particular sampling strategy of
VIPERS.
In the next chapter we will also analyse the FKP weighting scheme introduced to min-
imise the variance of the power spectrum estimator.



Chapter 4
Window function

In this chapter we focus on the effect of the non trivial geometry (due to the observational
strategy) on the measurement of the power spectrum. In general, the goal is to measure
the galaxy power spectrum in the infinite Universe and to compare it with the predictions
for the matter power spectrum computed from theory. However we are limited by
observation with a distribution of galaxies in a finite volume VS.
The observed density contrast δobs(x) is

δobs(x) = δ(x) ×W(x) , (4.1)

where δ(x) is the true galaxy density contrast of the whole Universe and W(x) is a three
dimensional top-hat function which is equal to 1 if the region we are analysing is inside
the survey (x ∈ VS) and 0 if outside. The window W(x) models the fact that we are
trying to infer cosmological quantities observing only a fraction of the entire Universe.
The problem is enhanced in Fourier space where a simple multiplication becomes a
convolution (appendix A). Therefore the measured power spectrum Pobs(k) differs from
the true PT(k). Formally, equation 4.1 implies that the underlying power and the
window function are related via a convolution (see FKP equation 2.1.6)

Pobs(k) =

∫

PT(k
′)|W(k − k′)|2 d3k′

(2π)3
, (4.2)

where the window function W(k) in Fourier space is simply the Fourier Transform of
the window W(x)

W(k) =

∫

VS

W(x)e−ik·x d3x . (4.3)

Mathematically the convolution is an operation that mixes the amplitude of the power
at different modes. Suppose we want to measure the power at a frequency k: due to
the convolution effect, this value does not only depend on the power amplitude at that
particular mode but also on power at close frequencies with a weight given by the window
function. If the window function is very narrow, the mixing of modes is negligible. In

48
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the ideal case of W(k) = δD(k), the observed power spectrum is the same as the true
one: Pobs(k) = PT(k). Vice-versa if the window is quite extended, the power at that
particular k is affected by nearby frequencies leading to a strong convolution effects.
The extension of the window function is inversely proportional to the size of the survey.
Surveys extended in all three directions have small convolution effects while smaller
surveys, more elongated in one direction, will bring an anisotropic window function
with a relatively strong change in power shape. Theoretically the independence of
modes expressed in equation 4.4 makes the power spectrum analysis a better choice
with respect to the correlation function where bins, at different scales, are correlated,

P(|k1|) (2π)3 δD(k1 − k2) = 〈δ(k1)δ
∗(k2)〉 . (4.4)

This is no longer true with the mixing of modes introduced by the convolution of the
power with the window function.
The term 1

V introduced in the 3.3 estimator to express the power spectrum with the unity
of a volume, could be explained with equation 4.4. The factor

∫

W2... d3k introduces in
fact a normalisation that must be corrected. This term is actually equal to

∫

|W(k)|2 d3k

(2π)3
=

∫

Vsurvey

w2(x) d3x = Vsurvey , (4.5)

and the inverse of this should be included in the power spectrum estimator to correct
the normalisation introduced by the window function.
As a result, the window function introduces on one hand a normalisation and on the
other can introduce spurious mixing of modes. The latter effect modifies the shape of
the power spectrum and in the next sections we will explain how to handle it.

4.1 Computing the window function

To have a fair comparison between the measured power spectrum and a theoretical
model, to extract cosmological quantities, we have to compute the three dimensional
convolution of equation 4.2. Before performing the convolution, we firstly have to focus
on the computation of the window function using the estimator introduced by FKP. We
consider different geometries in order to study how the window depends on the particular
shape of the survey. The window function is the Fourier Transform of a simple top-hat
function with domain extended on the volume of the survey. For simple geometries,
the window function could be calculated analytically as the Fourier Transform of a
three dimensional function equals to 1 inside the box and 0 outside. For complicated
geometries, the analytical computation of the window is no more possible and it is
substituted with a Monte Carlo technique. The first step is the construction of an
unclustered catalogue with the same geometry of the survey and the same selection
function. As in the estimation of the power spectrum, since the Fourier Transform is
performed with the FFT algorithm, we need to enclose the information onto a grid
smoothing random objects with the MAS used for the power spectrum estimation. The
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window function in configuration space at the grid position xP is defined as

W(x) =
N(x)/H3

N
, (4.6)

where N the normalisation factor of equation 3.32 and N(x) the weighted number of
random points in each cell after applying the MAS smoothing. The window function
of equation 4.2 is the Fourier Transform of W(x) which we compute with the FFT
technique.

|W(k)|2 = |FFTW(x)|2 −WSN , (4.7)

where WSN = NR/N
2 stands for the shot-noise term introduced by the discreteness of

the random catalogue. Finally, since we apply the MAS, we correct for the window
introduced by cells (equation 3.20) obtaining

Wobs(k) =
W(k)

[

sinc
(

πkx
2kN

)

sinc
(

πky
2kN

)

sinc
(

πkz
2kN

)]p , (4.8)

where again p=1, 2 respectively for NGP and CIC and the obs subscript stands for
“observed”.

4.1.1 Cubical geometry

To test if our described method of computing the window function is correct, we measure
the window function of a cubical box with size L = 500h−1Mpc and compare it with
the expected analytic solution

W(k) ∝ sin

(

kxL

2

)

sin

(

kyL

2

)

sin

(

kzL

2

)

, (4.9)

with L the size of the cube. We generate an unclustered catalogue with a quite large num-
ber density of points∼ 0.08 h3 Mpc−3 in order to reduce the shot-noise term, WSN ∝ 1/n̄.
The number of unclustered objects should also be big enough to fill all cells in order
to limit stochasticity in the window. Since the number of points in each cell follows a
Poisson distribution with mean λ = NR/L

3 ×H3, the number NR = 107 is large enough
to have a very low probability of finding 0 occurrence cells.
Random points are then assigned using CIC scheme into a large cubical grid,
Lgrid = 4000h−1Mpc, in order to sample the window with high precision (remember that
the resolution of the k-space grid depends on L, ∆k = 2π

L ). The cell size H = 10h−1Mpc
is quite big to limit the FFT iterations to a reasonable value of N = [Lgrid/H]

3 = 4003.
The window is calculated following the estimator of equation 4.7, subtracting the shot-
noise term and correcting for the CIC assignment scheme.
The square of the projection of the window over the three k-directions (kx, ky, kz) is
plotted in figure 4.1. Due to the symmetry of the cubical box, the projected window
function shows the same behaviour along the three directions. In the top panel, we also
outline the perfect match between the measured window function and the analytical
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solution of equation 4.9 concluding that our numerical approach is correct. The lower
panel shows the window function in logarithmic scale to emphasise the odd and even
harmonics related to the size of the survey. Even for the cubical box the window func-
tion is different from a Dirac-δ generating some effects in the recovered power spectrum.
The peaks in the window should mix up the amplitude of the power at different modes.
However, the ratio between the first bump at k=0 and the other peaks is so big that the
contribution of higher harmonics is very small.
In the case of cubical geometry, the main effect of the window function is a normal-

Figure 4.1: Top panel : projected window function along the kx,y,z directions for a cubical
geometry with size L = 500h−1Mpc (red line). Due to the symmetry of a cubical box
the three window functions are completely superposed. The blue line represents the
analytic solution for a cubical geometry window as in equation 4.9. Bottom panel : same
as the top panel in logarithmic scale to outline the harmonics related to the size L.

isation factor to rescale for the limited size of the sample. The mixing of modes is
negligible, as one can notice in figure 3.3 where, even at frequencies comparable to the
size of the survey k ∼ 2π

L , the estimated power spectrum averaged over 30 realisations
is consistent to the input theoretical model of the simulation within statistical errors.
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4.1.2 Box geometry

Another simple geometry to deal with is a box with different size in each direction.
As for the cubical box case, the window could be calculated analytically. However we
perform again the window function numerically filling with random points a volume
of V = Lx Ly Lz = 150 × 250× 350 h−3Mpc3 and smoothing them with the CIC assign-
ment scheme into an FFT grid with values Lgrid = 4000h−1Mpc and H = 10h−1Mpc.
Computed the window as in equation 4.7, we plot the projections along the three main
axes (kx,y,z) in figure 4.2. Due to the asymmetry of the box, the three window func-
tions related to the different directions are not the same as in the case of the cubical
geometry. As said before, narrower is the size of the survey in one direction and more
extended is its window function. The extension of the box along the x-axes is very small
compared to the other sizes causing, as expected, the broadest window. Vice-versa the
size of the box in the z-direction leads to the narrowest window. To observe the effect
of this box window function on the recovered power spectrum, we properly cut the 30
Γ realisations, introduced in section 3.1.1, in order to reproduce the box geometry here
described. The measured power spectrum with CIC assignment and FFT-grid param-
eters L = 1000 h−1Mpc and H = 5h−1Mpc, averaged over 30 realisations, is plotted in
figure 4.3 and compared to the input power of Γ simulations.
The convolution effects due to the mixing of modes are no more negligible even if the
box geometry is very simple. The suppression is stronger at scales k ∼ 2π

Lz
because these

modes are sampled only by the z-direction.

4.1.3 Cone-like geometry

The last step, before studying the sample with the VIPERS W1 cone-like shape, is
to consider the behaviour of a window function for a truncated cone-like geometry.
We suppose to deal with a survey quite extended along the redshift (radial) direction
r = [100 − 800] h−1Mpc and with an angular aperture of 30◦ × 10◦ (figure 4.4).
Our goal is to measure the window function of such a fake survey generating a cone-like
random catalogue with height mimicking the redshift direction. We firstly rotate the
random sample in order to align the cone with the main coordinates, aligning the radial
direction with the z-axes, the angular aperture of 10◦ with the y-direction and the 30◦

angle with x, and then we compress the information on an FFT grid with the same
parameters used for the box. The sizes of the sample, at the distance r̄ that halves the
volume of the sample, are: ∆x ∼ 400 h−1Mpc, ∆y ∼ 100 h−1Mpc and ∆z ∼ 700 h−1Mpc.
The projected windows as a function of the three k-coordinates are plotted in figure 4.5
for the positive domain and in logarithmic scale. Again we notice that the widest window
is the one corresponding to the narrowest y-direction. For this configuration, we cannot
predict the position of higher harmonics because, in each direction, we do not have a fixed
size due to the cone-shape geometry. Oscillations are related to a superimposition of
harmonics where the dominant part is given by frequencies at kn = 2π(n + 0.5)/∆x, y, z.
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Figure 4.2: Top panel : projections along the directions kx,y,z of the window function
related to a box geometry with sizes Lx = 150, Ly = 250, Lz = 350 [h−1Mpc]. The nar-
rowest window is related to the largest z-direction (black line), vice-versa for the x-
direction (red line) and the intermediate case is represented by the y-direction (blue
line). Bottom panel : same windows as in the top panel but in logarithmic scale. Notice
the positions of the harmonic peaks (associated to different scales, Lx, Ly, Lz) which are
now different for the three directions respect to the cubical geometry.

4.1.4 W1 VIPERS geometry

Finally we present the window function for the sample constructed from Γ simulation
with the VIPERS W1 geometry in a high-redshift bin 0.93 < z < 1.1. In this section, we
anticipate what will be the behaviour of the VIPERS window function. Later we will
explore the VIPERS window function for both the W1 and W4 fields in different redshift
bins, including other features as the angular mask. We rotate the 240 samples in order
to align the distribution of particles with the cartesian axes and guess the features of
the window from the 3D survey extension. Figure 4.6 shows the projected distribution
of galaxies in the y-z plane once we apply the rotation aligning the z-coordinate with
the redshift direction of the sample.
The survey sizes at the mean redshift of the sample are ∆x ∼ 60 h−1Mpc,
∆y ∼ 400 h−1Mpc and ∆z ∼ 300 h−1Mpc. The main component of the superimposed
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Figure 4.3: comparison between the input power spectrum of Γ simulation (black dot-
dashed line) and the measured one (red line), averaged over 30 realisations with the box
geometry described in the text.

Figure 4.4: position of particles for the tested cone-like geometry in cartesian coordi-
nates.

harmonic oscillations in the window should be related to these values. Because of the
anisotropy of the survey, the convolution effects are quite strong as result from the
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Figure 4.5: projected window function along the directions kx,y,z for a cone-like geometry
quite extended in redshift and with a small angular aperture. The windows related to
the angles of the sample (blue and red line) are broader respect to the window resulting
from the redshift direction (black line).

suppression of the evaluated power in figure 3.6. The window function in Fourier space
should characterise this anisotropy. We expect a behaviour similar for the y- and z-
direction, where the survey has similar dimensions, and a broader window in the x-
direction. We construct again an unclustered catalogue with the same geometry and with
the same distribution in redshift of the mock catalogues. We align the random sample
with the coordinate axes and measure the number density of random points assigning
particles with CIC as MAS into an FFT grid with H = 5h−1Mpc and L = 2000 h−1Mpc.
The projected window function along the three main axes, correct for the shot-noise

term and for the MAS effect, is plotted in figure 4.7. We recover exactly what we
have predicted: the narrowest x-direction leads to the widest projected window while
the other two directions generate similar windows. Peaks are consistent with higher
order harmonics kn = 2π(n + 0.5)/∆x, y, z even if there are contributions due to different
∆x, y, z because of the cone-like geometry.
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Figure 4.6: distribution of mock galaxies in one of the 240 W1 VIPERS-like samples
projected along the y-z plane.

4.2 Convolving the model

A way to account for the convolution effect is to deconvolve the measured power spec-
trum with the window function of the survey. There are some iterative procedures
such as the “Lucy deconvolution” to address this problem but they are computationally
heavy processes. Even the convolution of the model is computationally time-consuming,
in particular when it has to be performed repeatedly on different models. In real space,
we do not have to perform the 3D integral of equation 4.2 because the operation of the
convolution and the spherical average commute: we can move the operation of spherical
averaging inside the integral obtaining

P(|k|) =
∫

P(|k′|)W2(|k− k′|) d3k′

(2π)3
, (4.10)

which is simpler to compute. In redshift space, this trick is not possible. We have to
perform the whole integral and then spherical average the result. Since we have to deal
with data in redshift space, we choose not to apply the shortcut of equation 4.10 even
for real space simulated data.
Instead of calculating the whole direct convolution, we use the approach of Sato et al.
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Figure 4.7: projected window function along the directions kx,y,z for a W1 VIPERS-
like geometry in a redshift bin 0.93 < z < 1.1 for the positive k-space domain and in
logarithmic scale.

(2011), which takes advantage of the fact that a convolution in Fourier space becomes
a multiplication in configuration space and vice-versa. Fourier transforming equation
4.2 and Fourier transforming back, one can obtain the following relation which is even
faster with the FFT algorithm

Pconv(k) = FFT−1 FFT
[

W2 ∗ PM

]

− IC = FFT−1
[

FFT(W2)× FFT(PM)
]

− IC ,
(4.11)

where PM is the model power spectrum and Pconv the convolved power that should
be compared with the measured one. To perform equation 4.11, we need to create a
k-space grid domain where, at each point, the monopole theoretical power spectrum is
interpolated and the window is calculated.
The subtracting term IC, added in the equation 4.11, stands for “integral constraint”.
It appears when we are observing a limited portion of the Universe where the mean
of the density contrast could not be zero. The zero-mode amplitude of the power
must have a value of zero P(k = 0) = 0 as a result of the definition 〈δ(x)〉 = 0 (because
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δ(k − 0) =
∫

δ(x) d3x). The factor IC is (Percival et al., 2007)

IC =
|W(k)|2
|W(0)|2

∫

P(k)|W(k)|2 d3k . (4.12)

With this correction, the power is forced to be zero at frequency k=0.

4.2.1 Testing the convolution

Box geometry

To test if the convolving method just described is correct, we compare the measured
power spectrum, averaged over 30 catalogues with the box geometry Lx = 150, Ly = 250,
Lz = 350 [h−1Mpc] of section 4.1.2, with the input power of the simulation convolved
with the proper window function. The model power spectrum is corrected including
the window function effect with expression 4.11 and subtracting the integral constraint.
The window function W2 for the box geometry, already computed in section 4.1.2, has
been recalculated changing the FFT-grid parameters to L = 1000 h−1Mpc and cell size
H = 5h−1Mpc (N = 2003 grid points). We adopt the CIC assignment scheme to smooth
the distribution of particles onto the FFT grid used for the computation of the window.
The input power spectrum on the Γ simulation is the model PM of equation 4.11 inter-
polated on a k-space grid with domain kmin = 2π/L, step ∆k = kmin and kmax = π/H.
After the convolution, a spherical average is applied in order to obtain the monopole
convolved power spectrum. The measured power spectrum is the same as plotted in
figure 4.3. Figure 4.8 shows a good match between the corrected model and the aver-
aged power: our approach of measuring the window function and convolving it with the
model is correct up to high modes. The smallest scales with modes comparable to the
Nyquist frequency are again affected by MAS problems.

W1 VIPERS-like geometry

Finally we compare the measured power spectrum of mock in a W1 VIPERS-like ge-
ometry with the convolved input model. The parameters of the FFT grid used to
measure the density contrast and to compute the window function in configuration
space are L = 500h−1Mpc and H = 2h−1Mpc with N = 2503 grid points. The Fourier-
space grid, where we sample the power spectrum, the window function and interpo-
late the monopole input power, has parameters kmin ∼ 0.012 hMpc−1, ∆k = kmin and
kmax ∼ 1.57 hMpc−1. In figure 4.9, we plot the comparison between the measured power,
averaged over 240 realisations, and the input power spectrum of Γ simulation convolved
with the recovered window function related to the W1 VIPERS-like geometry in a red-
shift bin 0.93 < z < 1.1. Again the ratio between the measurements and the corrected
model at scales where the suppression of the window is strong is good within statistical
uncertainties. This test makes us confident that we are able to correctly model the effect
of the survey geometry even for a complicated shape as VIPERS.
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Figure 4.8: Top panel : same as figure 4.3 with the inclusion of the convolved input power
spectrum (red line). Bottom panel : ratio between the measured power spectrum from
the box geometry analysed in the text and the input power convolved with the proper
window function. The good agreement means that the window function is correctly
taken into account in our modelling.

4.2.2 FKP weighting scheme

In addition to the implementation of a new power spectrum estimator able to include
non-constant mean density, FKP calculated theoretically an optimal weight to minimise
the variance of the power estimator under the assumption that fluctuations are Gaussian

w(x) =
1

1 + n̄(x)P(k)
. (4.13)

This weight is the analogue of the “1 + 4πn̄J3” weighting scheme often used in correlation
analysis (Hamilton, 1993). In order to set the weighting scheme, we need to know the
power P(k) which is what we want to measure. However the particular choice of P(k)
should not affect too much the recovered power. We let change this parameter, keeping
it constant, in order to see its impact on the recovered power spectrum. We fix the
FFT-grid parameters as in the previous subsection, smooth with CIC scheme and follow
the procedure for the estimation of the power of section 3.4. The galaxy power spectrum
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Figure 4.9: Top panel : comparison between the measured power spectrum (blue solid
line) averaged over 240 mock catalogues with the W1 cone-like geometry and the input
power (black dashed line) convolved with the window function computed for the W1
cone-like shape (red solid line). Bottom panel : relative error between the measured
power and the model convolved with the window function to show how the window
function correction is working well up to high modes.

averaged over 240 mock catalogues with W1 VIPERS-like geometry, in a redshift range
between 0.93 < z < 1.1 and with different FKP weights parameterised by the constant
value P(k) ≡ PFKP is plotted in the top panel of figure 4.10. The best-fit value for
the weight PFKP in wFKP(x) should be found comparing these different observed power
spectra with the convolution between the input power and the VIPERS window function.
Even the computation of the window should account for the FKP weights: the window
function estimator should slightly change weighting each random point for wFKP(x).
The weighted number density of random objects in each cell becomes

W(x) = w(x)
N(x)/H3

N
, (4.14)

with the normalisation N given by equation 3.32.
The input model convolved with different windows, function of wFKP(x), generates dif-
ferent models, each of them should be compared with the proper observed power. Re-
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sults are shown in the bottom panel of figure 4.10 where the ratio between the measured
power with different FKP weights with the proper input convolved model is plotted.
Different values for the FKP weight slightly change the observed power but the inclu-
sion of this weighting scheme does not seem to improve the estimation of the true galaxy
power spectrum. Even the variance of the power spectrum estimator does not change

Figure 4.10: Top panel : measured power spectra with different FKP weights. The
difference between the spectra seems to be negligible. Bottom panel : ratio between
the power spectra with different FKP weights and the input model convolved with the
proper window function.

significantly as a function of the particular FKP weight considered.



Chapter 5
Clustering estimation on VIPERS mocks

In this chapter we analyse the effects of VIPERS features on the recovered power spec-
trum using VIPERS-like mocks for W1 and W4 fields (de la Torre et al., 2013). We start
analysing a distribution of mock galaxies with the same overall geometry of VIPERS
adding at each step more realistic features to our mocks. In this way we control each
possible source of systematics that could alter the shape and amplitude of the measure-
ments.

5.1 VIPERS mock catalogues

To test the robustness of our clustering estimation we use simulated data which are de-
signed to be a realistic match to the VIPERS sample. de la Torre et al. (2013) created
two set of mock samples based on the Halo Occupation Distribution (HOD) technique.
These two sets only differ by the input halo catalogue that has been used. In the first
set of mock catalogues, he used the haloes extracted from the MultiDark dark matter
N-body simulation (Prada et al., 2012). This simulation assumes a flat ΛCDM cosmol-
ogy with parameters (ΩM, ΩΛ, ΩB, h, ns, σ8 ) = (0.27, 0.73, 0.0469, 0.7, 0.95, 0.82 ).
The large volume of the simulation V = 1h−3Gpc3 covered by N = 20483 particles is
important to select independent mock samples. The haloes have been identified us-
ing a friends-of-friends algorithm with a relative linking length of b = 0.17 times the
inter-particle separation 0.083 h−1Mpc. De la Torre then applied to the complete halo
catalogues the algorithm presented in Carlson and White (2010) to remap halo posi-
tions and velocities in the initial simulation cube onto a cuboid of the same volume
but different geometry. This is done to accommodate a maximum number of disjoint
VIPERS W1 and W4 fields within the volume of the simulation. This process generated
26 and 31 independent light-cones for the W1 and W4 field respectively in a redshift
range 0.4 < z < 1.2. The light-cones are built by considering haloes from the different
snapshots, disposing them according to their distance from the coordinate origin of the
light-cone.
The samples are then populated with galaxies using the HOD technique that has been

62
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calibrated on the first internal release. In this process, each halo has been populated
with galaxies according to its mass, the mean number of galaxies in a halo of a given
mass being given by the HOD. Finally, velocities are added to the galaxies measuring
their redshift-space positions. While to central galaxies are assigned the velocity of
their host halo, satellite galaxies have an additional random component for which each
Cartesian velocity component is drawn from a Gaussian distribution with a standard
deviation that depends on the mass of the host halo. Details about the galaxy mock
catalogues construction are given in de la Torre et al. (2013).

The second set of mock catalogues, described again in de la Torre et al. (2013), is
based on halo catalogues created with the Pinocchio code (Monaco et al., 2002). This
code follows the evolution of a set of particles on a regular grid using an ellipsoidal
model to compute collapse times and identify dark matter halos, and the Zel’dovich
approximation to displace the haloes from their initial position. Due to the Zel’dovich
approximation, the positions and velocities of galaxies suffer of accuracy on scales below
10h−1Mpc. However this approach has the advantage of being very fast and can be
used to generate a large number of independent halo catalogue realisations.
De la Torre created 200 independent halo mock realisations assuming the same cos-
mology as the MultiDark N-body simulation for both fields. The remaining steps in
generating galaxy mock samples are similar to those used for the mocks based on the
MultiDark simulation.

In our work, due to the better accuracy of the MultiDark mock catalogues, we make
use of them to test the method and analyse the clustering of galaxies in VIPERS-
like samples. However the Pinocchio mock catalogues, given the large number, are
still necessary to estimate the correlation matrix in order to infer statistical errors on
cosmological parameters.
The final step in obtaining fully realistic VIPERS mock catalogues is to add the detailed
survey selection function which we are going to include step by step in the next sections.

5.2 The “parent” catalogue

5.2.1 Power spectrum measurements

The first step is to analyse mock catalogues with the VIPERS cone-like geometry for
both fields and study the window function effect on the recovered power spectrum due
to the overall geometry of the survey.
We consider the simplest configuration for the distribution of galaxies with particles
inside the angular boundaries of VIPERS, a magnitude cut of iAB < 22.5 applied and
the effect of the colour selection on the radial distribution.
For the moment we focus on the real-space distribution of particles studying the redshift-
space distortions in a second moment. The conversion between redshifts and distances
has been made considering the true MultiDark cosmology, a flat ΛCDM cosmology with
matter density ΩM = 0.27, and letting the Hubble parameter h equal to 1.
In these first tests we decide to limit the redshift range between 0.6 < z < 0.9 where
most of the galaxies are concentrated. The volume of the survey is of the order of
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V[0.6 < z < 0.9] ∼ 7.1 × 106 h−3Mpc3 for the W1 field and V[0.6 < z < 0.9] ∼
5.8× 106 h−3Mpc3 for W4. Due to the different geometry between W1 and W4 that
leads to different window functions, we must treat the two fields separately.
The mean density as a function of the radial comoving distance is measured dividing
the whole redshift range between 0.4 < z < 1.2 into N = 100 bins, counting the number
of particles for each mock that fall in each bin and dividing by the volume of the bin to
obtain a number density. We repeat this procedure for each mock catalogue and average
over all the distribution of mocks in order to reduce the noise in the radial selection:
an error in the estimation of the mean density leads to systematics in the recovered
power spectrum. To further smooth the histogram, we apply a Gaussian filtering with
σ = 50h−1Mpc. We end up with two redshift distributions (figure 5.1), one for W1 and
the other for W4, which are very similar in shape since the selection of galaxies is done
in the same way for the two observing fields. The difference is in the lower number of
galaxies in the W4 field due to the more limited angular aperture. For even further

Figure 5.1: average radial distribution over 26 mock W1 catalogues (grey his-
togram) and 31 W4 catalogues (orange histogram) measured with a radial bin size
of ∆r ∼ 15 h−1Mpc. The solid red lines correspond to the Gaussian filtering of the his-
tograms with a smoothing scale σ = 50h−1Mpc. The yellow region correspond to the
radial extension used to do the analysis.

smoothing as we will see for data, we can combine the two redshift distributions even if
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it is not necessary for mocks.
Based on these smoothed radial selections, we construct two unclustered catalogues,
one with W1 geometry and the other with W4, to mimic the mean density of our
mock samples. The number of random points is very large compared to the number of
galaxies NR ∼ 75NG to fill all the volume with high precision and reduce the shot-noise
contribution due to the discreteness of the unclustered catalogue.

Following the estimator described in section 3.3, we estimate for each W1 and W4
mock the galaxy power spectrum using an FFT grid with size L = 800h−1Mpc and cell
size H = 2h−1Mpc. Fixing these parameters, the maximum frequency we can sample
is the Nyquist frequency at kmax = kN = π/H = 1.57 hMpc−1 and the minimum corre-
sponds to kmin = 2π/L = 0.008 hMpc−1. Since the size of the grid is much larger than
the size of the survey, modes with frequencies k ∼ kmin are not reliable. The minimum
mode we trust is the one corresponding to a wavelength comparable with the largest size
of the survey λmax ∼ ∆z ∼ 600 h−1Mpc → kmin ∼ 2π/∆z ∼ 0.01 hMpc−1 which could
be at least sampled in the radial direction. We assign particles to the FFT grid using
the CIC scheme, because from our tests results to be the most accurate method, and
setting the FKP weight of equation 4.13 equals to 1 for all particles (PFKP = 0).
The 26 power spectra for the W1 field and 31 for W4 are then averaged over all the
realisations ending with two independent power spectra plotted in figure 5.2. Figure 5.2
also shows a theoretical model plotted in order to outline how much the geometry of
the survey affects the recovered power spectrum for both fields. The theoretical model
is constructed using the CAMB (Lewis and Challinor, 2011) algorithm with HALOFIT
(Smith et al., 2003) in order to include non-linearities which are dominant at smaller
scales. The cosmology used to set the input parameters for CAMB is the MultiDark cos-
mology. The growth rate is computed to the mean redshift of 〈z〉 ∼ 0.73 determined by
averaging the position of galaxies for all mocks. The normalisation of the power is then
corrected accounting for the MultiDark σ8,MD = 0.82: a parameter that unfortunately
cannot be set with CAMB. To account for this, we simply run CAMB two times, one
to generate the model at a certain redshift 〈z〉 with HALOFIT, the other without the
HALOFIT option at redshift 0 to recover the linear power spectrum and consequently
measure the variance σ8,CAMB. We therefore renormalise the theoretical power spectrum
as

Pmodel(k) = PCAMB(k)×
(

σ8,MD

σ8,CAMB

)2

. (5.1)

which is reasonable on large scales, but does change the HALOFIT model. Since we
are dealing with mock galaxies and not dark-matter particles, we fit by eye a linear
and scale-independent bias that should give a good match at smaller scales. A simple
fit by eye at large scales would lead to a mismatch due to the convolution with the
window function. We obtain a value for the bias of the order of b2 ∼ 2 for both the
observing fields because, as expected, the two set of mocks are constructed from the
same underlying density field.

The two recovered power spectra are slightly different at large scales because of the
different window functions. The statistical errors plotted in figure 5.2 are measured with
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Figure 5.2: power spectrum measured from the MultiDark VIPERS mock catalogues
in a redshift bin 0.6 < z < 0.9 with only the cone-like geometry and averaged over the
26 and 31 mocks respectively for the W1 (solid red line) and W4 (solid blue line) field.
Errors correspond the the 1σ dispersion over all the mock catalogues. The black dashed
line corresponds to a MultiDark cosmology model generated with the CAMB algorithm
at the mean redshift of the samples, 〈z〉 ∼ 0.73 normalised by the best fitting bias factor
b ∼

√
2.

equation 3.9 as the dispersion of the observed power over all the mock catalogues. From
this first test we notice, as outlined in section 3.3, that the overall shape and geometry
of VIPERS survey strongly suppress the power at large scales affecting the shape and
the amplitude. To account for this, we repeat the procedure of section 4.1.4 analysing
the anisotropy of the window and adding the convolution effect to the model.

5.2.2 “Parent” window function

With this simple cone-like shape related to the overall geometry of VIPERS, the window
function could be calculated analytically as the Fourier Transform of a function which
is 1 inside the “parent” volume and 0 outside.
Since the true VIPERS geometry is more complicated than a simple cone-like geometry,
due to the angular selection of galaxies, and we will not be able to analytically Fourier
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Transform the window function, we prefer to analyse the 3D window function throughout
a Monte-Carlo approach.
Working with an unclustered catalogue with the same geometry of the just analysed
mock catalogues, the same radial selection and composed by a large number of points to
neglect the shot-noise, we evaluate the window function for both the W1 and W4 fields
in a redshift range 0.6 < z < 0.9. Before assigning random particles to grid points using
the usual CIC scheme, we rotate the random sample in order to align the main axis of
the cone-like shape parallel to the cartesian coordinates: the x-coordinate is associated
to right ascension, y with declination and z with redshift. The grid is the same used for
the measure of the power spectrum with H = 2h−1Mpc and L = 800h−1Mpc.

We project the 3D window function over the three directions kx,y,z to have a qualita-
tive idea of the impact of the convolution on the estimated power spectrum. Results are
plotted in figure 5.3 showing similar behaviour for both fields and a strong anisotropy
over the three directions. The most problematic window is the one associated with the

Figure 5.3: Left panel : projected window functions for the field W1 along the Fourier co-
ordinates kx,y,z, counterpart of the main directions of the VIPERS cone in configuration
space. Right panel : same as the left panel but for the W4 field.

narrowest direction (declination). The window associated with the redshift direction
instead is very narrow and will lead to a negligible convolution effect on the power. The
convolution between the theoretical power spectrum generated with CAMB and the 3D
window function is then performed using equation 4.11 and subtracting the integral
constraint of relation 4.12. The good match in the top panel of figure 5.4 between the
convolved model power spectrum and the recovered one from the mock catalogues tells
us how well we can treat the geometry effects for both fields. The excellent agreement
with the measured power is outlined in the bottom panel. Again the highest considered
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Figure 5.4: Top left panel : the solid line represents the theoretical model power spec-
trum generated with CAMB with the MultiDark cosmology, at the mean redshift of
the sample 〈z〉 ∼ 0.73 and increased by a b2 factor. The dot-dashed line is the model
power spectrum convolved with the VIPERS-W1 window function with only the cone-
like shape. The solid red line is the measured power spectrum averaged over 26 mock
catalogues with statistical errors estimated from the dispersion over all the samples.
The inset shows the BAO signal for the considered model power spectrum before (black
line) and after (red line) applying the window. Bottom left panel : ratio between the
measurement and the convolved model. Right panel : same as the left panel but for the
W4 field.

modes are affected by “aliasing” and MAS problems which we choose to not correct
because at those scales we do not trust the modelling of the power spectrum and, cor-
recting the measurement, should not give us more information. Note how the amplitude
of the BAO signal is severely damped, reducing to a few percent (inset).
From this first test, we conclude that, due to the VIPERS geometry, we cannot use par-
ticular features of the power (as BAO) to infer cosmological parameters but the overall
shape could be determinant to set cosmological constraint in particular on the matter
and baryon density.

5.3 The “mask” catalogue

5.3.1 Power spectrum measurements

The VIMOS spectrograph at VLT can observe galaxies in four quadrants. The combina-
tion of different single pointings generates a particular grid pattern on the sky with gaps
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between quadrants (figure 2.1). The effect of this angular selection is a loss of volume
(almost one third in both fields for current data) and consequently an alteration of the
window function.

In order to deal with more realistic mock catalogues, we apply the angular “Nagoya”
4.0 mask to the “parent” catalogues selecting only galaxies that fall inside the quadrants.
We also apply the photometric mask to the angular distribution of mock galaxies in order
to avoid, as in the VIPERS data, galaxies near very bright stars. The photometric mask
does not change the distribution of galaxies cutting only a few percent of all the galaxies.
To test the impact of the new window function introduced by the mask, we measure
again the monopole power spectrum corresponding to these catalogues in a redshift range
0.6 < z < 0.9. The procedure is similar to the measurements of the power spectrum for
“parent” catalogues. We measure the mean density for each field averaging the number
of galaxies in each bin over all the samples and Gaussian filter the histogram to obtain
a smooth function. The shape and amplitude of the mean density of galaxies should
not change respect to the “parent” catalogue because the number of particles which are
not inside the angular mask at each redshift bin is proportional to the loss of volume.
The particular geometry with gaps and quadrants is taken into account considering an
unclustered catalogue with the same feature: we simply take the synthetic catalogue
constructed for the “parent” mocks and apply to it the spectroscopic and photometric
masks. The density contrast of equation 3.27 is calculated on a grid with the same
parameters as for the “parent” catalogue assigning particles to grid points using the
CIC scheme. The Fourier Transform of the density contrast, performed using the FFT
algorithm, squared, corrected for the shot-noise and for the MAS effect, gives the 3D
power spectrum on a k-space grid. The spherical average power spectrum in bins with
size ∆k = 2π

L is plotted in figure 5.5 and compared with the power measured from the
“parent” mock catalogues.
The window function introduced by the loss of volume caused by the angular mask is
strongly suppressing the power at all considered scales. At first sight, the effect is similar
to a normalisation factor that could depend on a wrong correction of the amplitude of
the power for the new volume. However, the decreasing of the power is stronger at
large scales and softer at smaller scales where, increasing the sampled frequency, the
“mask” power approaches the “parent” one. The behaviour of the “mask” power is
compatible with a convolution between the underlying power and a window function
which is broader than the one related to the “parent” geometry.

5.3.2 “Mask” window function

In this case, the window function could not be calculated analytically given the peculiar
geometry introduced by the angular mask. As for the previous “parent” configuration,
we adopt a Monte-Carlo approach generating a random catalogue with the same radial
particle distribution as the “mask” mock catalogues and the same geometry: a cone-like
shape with applied the VIPERS spectroscopic and photometric mask. After rotating
the synthetic sample as usual, the 3D window function is evaluated fixing the same pa-
rameters for the grid as before and with the same procedure. Projections over the three
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Figure 5.5: the dot-dashed black line corresponds to the MultiDark cosmology model
power spectrum constructed with CAMB, while the red and blue dashed lines are the
measured power for respectively the W1 and W4 field with the “parent” geometry.
Solid lines shows the behaviour of the power once we apply to the “parent” samples the
angular selection of galaxies for both field, W1 (red line) and W4 (blue line).

main k-coordinates (associated in configuration space with the main axes of the cone-like
shape) for the W1 and W4 fields are plotted in figure 5.6. Again the most problematic
direction is related to the declination leading to a broader window and consequently to
a strong mixing of modes with the relative suppression of the power.
A comparison in figure 5.7 between the window function related to the W1 cone-like ge-
ometry and the window once we apply the angular mask shows that the angular selection
of galaxies affects the window creating strange bumps features at different frequencies.
The peaks in the window can be explained with the periodic pattern introduced by
the angular mask both in declination and in right ascension. These peaks are quite
broad because the particular angular scale translates into different scales as a function
of redshift in configuration space. Each scale generates harmonics at different modes
broadening the bumps in the window.
Again to include in the model the suppression of the power seen in figure 5.5, we per-
form a 3D convolution between the theoretical model and the 3D window function just
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Figure 5.6: Left panel : behaviour of the window function projected along the coordinates
kx,y,z for the VIPERS W1 sample with cone-like geometry and angular mask applied.
Right panel : same as the left panel but for the W4 field.

calculated. Figure 5.8 shows our ability to model the effect of the window function even
for this complicated configuration. The deviation from the model at the largest scales
is due to “aliasing” and MAS problems.

5.4 Redshift space

The observed redshift of a galaxy zobs, measured from its light spectrum, composed of
the emission of millions of stars, is an estimate of its recession velocity caused by the
expansion of space. Assuming a fiducial cosmology, this quantity could be related to
the comoving distance between us and the corresponding galaxy, zobs = zcosm with zcosm
the redshift uniquely determined by the distance of the object. A complication arises
from the peculiar velocity of galaxies that adds, a priori, an unknown term zpec in the
observed redshift,

zobs = zcosm + zpec . (5.2)

At the cosmological scales we are interested, zcosm is always much bigger than zpec: zobs
is still a good estimate for the distance. The problem is that statistically the peculiar
velocity distorts the clustering at all scales modifying the shape of the power spectrum.
The coherent infall of galaxies towards over-dense regions in fact enhances the observed
clustering in the large scale regime causing an increase of the estimated power. At scales
comparable to clusters and superclusters, the presence of virialized structures with the
consequent random velocities of galaxies suppresses the clustering damping the observed
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Figure 5.7: comparison of the projected window function along the DEC-direction (black
lines) and the RA-direction (blue lines) between a “parent” geometry (dot-dashed lines)
and the “mask” one (solid lines) for the field W1.

power spectrum. The combination of these two effects can be seen in figure 5.9 where
the recovered power spectrum from VIPERS mock catalogues in real space is compared
to the one measured in redshift space. Figure 5.9 shows clearly the predictions in the
two regimes: at large scales the recovered power is increased while at smaller scales the
expected damping is visible.

To analyse the redshift space distortions in the recovered power spectrum, we use
VIPERS mock catalogues with cone-like geometry and the angular (spectroscopic and
photometric) mask applied in a redshift bin 0.6 < z < 0.9. To convert the velocity
of particles in redshift, we start from the definition of the physical distance r in the
comoving frame, r = a(t)χ, with χ the comoving distance. Taking the derivative with
respect to time, we obtain

ṙ = ȧχ+ aχ̇ = Hr + aχ̇ = vH + aχ̇ , (5.3)

where vH = Hr is the Hubble flow velocity. Since the peculiar velocity of a galaxy is
defined as vp = ṙ− vH, the velocity in comoving space will be χ̇ =

vp
a and the variation
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Figure 5.8: Top left panel : the solid line shows the theoretical power spectrum drawn
with the MultiDark cosmology. A comparison between the convolved theoretical power
and the measured one from W1 mock samples with the angular mask applied is also
plotted. Bottom left panel : ratio between the convolved model and the measured one
to outline the good match between measurements and theory. Right panel : same as
the left panel but for the W4 field.

in redshift associated to the peculiar velocity ∆z = zpec = v/c,

zpec =
v‖

c
(1 + zcosm) , (5.4)

where v‖ the line-of-sight component of the velocity.
In order to infer cosmological parameters from the comparison of the power spectrum

of galaxies measured in redshift space with the corresponding theoretical prediction, we
need to include redshift-space distortions in our modelling.

5.4.1 Redshift-space distortions

Since galaxies are measured in redshift space, the theoretical model should account for
redshift-space distortions which alters the isotropy of the power spectrum. The real-
space power spectrum Pr generated with CAMB is corrected using a simple RSD model
considering the linear Kaiser term (Kaiser, 1987) which is dominant in the large scale
regime and a damping term (Peacock and Dodds, 1994, dispersion model) which strongly
affects the shape at smaller scales

Ps(k, µ) = b2 Pr(k)(1 + βµ2)2 exp−(σkµ/2)2 , (5.5)
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Figure 5.9: Top panel : measured power spectrum in real (blue line) and redshift space
(red line) for the W1 VIPERS mock catalogues with the cone-like overall geometry, the
angular mask applied and in a redshift range 0.6 < z < 0.9. Bottom panel : same as the
top panel but for the field W4.

where Ps is the redshift-space power spectrum and µ the cosine of the angle between
the vector k and the line-of-sight. The Kaiser factor, that accounts for the infall of
galaxies toward matter-density peak, has been calculated analytically in linear theory
assuming the plane-parallel approximation and is parameterised by the term β = f/b
combination of the growth rate of structure f and the bias factor b. The z-direction
of the FFT grid in Fourier space (kz) is required to be parallel to the line-of-sight in
order to assume the plane-parallel approximation. Theory predicts a relation between
the growth rate and the matter density: f ≈ ΩγM(a) with the γ index determinant to
select between gravity theories (Steigerwald et al., 2014). Since in this work we are not
interested in determining the right gravity theory, we fix the γ index to the prediction
of General Relativity, γ ≈ 0.55.
The exponential term in equation 5.5 describes empirically the damping of the power
due to the pairwise velocity dispersion of galaxies σv in virialized structures with σ
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expresses in unity of distance (Mpc)

σ = σv
1 + z

H(z)
(5.6)

and accounts for the lower measured density contrast in redshift space due to Fingers-
of-God. Since RSD introduce anisotropies in the power spectrum and given that the
window function is not isotropic (as we have seen in the previous section), the theoretical
model power spectrum Pr has to be corrected for RSD before doing the convolution with
the VIPERS window function

PCONV(k) =

∫

Ps(k
′)|W(k − k′)|2 d3k′

(2π)3
. (5.7)

We test the RSD correction on mock catalogues comparing the measured power spectrum
of figure 5.9 in redshift space with a MultiDark cosmology model generated with CAMB
including RSD as in equation 5.5. The growth rate f is fixed by the MultiDark matter
density and assuming General Relativity while the dispersion velocity σv is unknown a
priori. Even in redshift space, the bias factor b, which is now present not only in the
normalisation of the power (b2) but also in the β factor, is assumed to be linear and
scale independent and again its value is free to vary.

The 3D convolution of equation 5.7 is performed with the same technique as in
equation 4.11. After subtracting the integral constraint (4.12), we calculate the spherical
average in order to obtain the monopole power spectrum. The problem due to the
introduction of RSD is the nuisance parameter σv that affects the power at smaller scales.
We compare in figure 5.10 the measured power spectrum from the set of MultiDark
mocks (with cone-like shape and the angular mask applied) and compare it with models
generated with different dispersion velocity for galaxies. For bigger value of σv, the
random velocity of galaxies in clustered objects is big and consequently the observed
power at smaller scales is strongly damped, vice-versa for lower values of the velocity,
the power is less affected.

The best fit in our modelling, in both W1 and W4 field, is σv = 450 km s−1 for the
dispersion velocity and b ∼

√
2 for the bias factor, which is the same value that we

recovered in the real-space case. Again the inclusion of RSD are well taken into account
in our modelling leading to a good match between the averaged power spectrum from
mock catalogues and the theory.

5.4.2 Gaussian redshift errors

The rms measurement error of VIPERS redshifts has been estimated to be
σz = 0.00047(1 + z) or σcz = 141(1 + z) km s−1 which is of the order of the dispersion
velocity of galaxy (σv/2 ∼ 450/2 km s−1 for mock catalogues). The net effect of red-
shift errors is to smooth the clustering at small scales as the pairwise peculiar velocity
of galaxies, reducing the observed power spectrum. We test the effect of adding to
the redshift of particles in mock catalogues a peculiar velocity along the line-of-sight
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Figure 5.10: Top left panel : measured power spectrum from W1 VIPERS mocks with
cone-like shape and angular mask applied (black solid line) compared with models char-
acterised by different values for σv (dot-dashed lines). The model has been generated
with the CAMB algorithm with the HALOFIT option, mean redshift 〈z〉 ∼ 0.73 and
parameters given by the MultiDark cosmology. RSD with different values for σv are in-
cluded before performing the convolution with the window function. Bottom left panel :
the ratio between the measured power spectrum and the convolved RSD models outlines
the importance of the nuisance parameter σv at large scales. Right panel : same as the
left panel but for the W4 field.

direction with intensity given by a Gaussian probability with mean 0 and deviation
σz. We therefore model the effect of redshift errors in the expression 5.5 by adding in
quadrature the VIPERS rms redshift error to the peculiar velocity dispersion of galax-

ies σTOT = 2×
√

(

σv
2

)2
+ σ2cz(1 + z)−2. We consider the best-fit value for the dispersion

velocity of galaxies calculated in the previous subsection and, adding the value σcz, we
obtain σTOT = 530 km s−1 which we substitute to σv in equation 5.5. In figure 5.11, we
plot the measured power spectrum from redshift-space mock catalogues with the addi-
tion to the position of galaxies a radial displacement drawn from a Gaussian distribution
with the appropriate dispersion.

The comparison is made with the best-fit model of the previous subsection with
σv = 450 km s−1 and a new model that takes into account the redshift error correction
with σTOT = 530 km s−1. The correction is working well recovering the measured power
spectrum up to higher modes respect to the non-corrected σv model.
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Figure 5.11: Top left panel : model power spectrum with (dot-dashed red line) and
without (dot-dashed blue line) the inclusion of the Gaussian error in σv compared with
the measured power spectrum from W1 VIPERS mock catalogues (solid black line).
Bottom left panel : ratio between the measured power and the model to test by eye if
the redshift error correction is working well. Right panel : same as the left panel but for
the W4 field.

5.5 Angular sampling of galaxies

Due to the limited size of the slits, VIMOS can observe only a fraction of galaxies at
each pointing. SPOC is an algorithm used to select a number of spectroscopic targets in
each quadrant of the VIMOS spectrograph. Due to this practical problem, for VIPERS
the fraction of observed galaxies is, in average, of the order of ∼ 40% meaning that in
each quadrant only 40 galaxies over 100 are selected, a priori, to obtain the spectroscopic
data. The number of galaxies selected as a target for spectroscopy respect to those in the
photometric catalogue is the target sampling rate and figure 2.6 shows its dependence
on quadrants for both fields. To account for the angular sampling on mock catalogues
and test the effect on the recovered power spectrum, we select randomly a fraction of
galaxies for each quadrant proportionally to the TSR number. We compare the measured
and averaged power spectrum from this new set of mock catalogues including the TSR
(randomly selected) with the power recovered before correcting for the sampling. There
are no differences in the two power spectra because, as one can suppose, a random
sampling of galaxies should not alter the clustering of matter. This point is deeply
different respect to the sampling of dark matter done by galaxies: since galaxies form
in high density peaks of dark matter the clustering is enhanced by the bias factor while
a random sampling does not statistically change the underlying density of matter.
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The observing strategy of the SPOC algorithm is to maximise the number of objects
in each quadrant. Due to this particular choice, the clustering of matter is altered
because, in percentage, more objects are selected in less clustered regions giving a good
sampling of the field while a lot of galaxies are missing in clustered regions: we lose
angular information from the higher peaks in the density field. In this section we analyse
the impact of galaxy sampling in the recovered power spectrum due to the observing
strategy adopted studying the clustering of galaxies before and after applying the SPOC
algorithm on mock catalogues. To test the effect of SPOC, we consider mock catalogues
with all observational effects drawn from the MultiDark simulation with the VIPERS
cone-like shape in a redshift bin 0.6 < z < 0.9, the angular spectroscopic and photometric
mask applied, in redshift space with the inclusion of Gaussian redshift errors, TSR
included and with particles selected by the SPOC algorithm. We follow again the usual
steps adopted in this work to measure the power spectrum: average, separately for
both fields, the redshift distribution over all the set of mocks to estimate the mean
density as a function of redshift and to evaluate the radial selection, generate a random
catalogue to mimic the mean density of the sample, smooth the particles over a grid
(again L = 800h−1Mpc and H = 2h−1Mpc) with the CIC assignment and measure the
FKP density contrast, FFT the density field, squaring the modulus of the density in
Fourier space and subtracting the shot-noise. The last step is to spherically average the
3D-grid power spectrum in shell with size ∆k = 2π

L to obtain the monopole plotted in
figure 5.12.
The comparison between the averaged power spectrum before and after applying SPOC
to mock catalogues shows a suppression of the power at all considered scales. Since
the selecting algorithm is not affecting the effective volume of the sample, the effect
on the recovered power could not be explained by a window function effect. Even the
modification of the shape is not recognisable with the effect of a window: the suppression
of the power seems to be quite constant at large scales up to k ∼ 0.6 hMpc−1 and
stronger at smaller scales.

5.5.1 SPOC effects

To understand the effect of the SPOC sampling on the observed clustering, we have to
ask ourselves how the selecting algorithm, in practise, is affecting the sampling. The
main effects of this particular sampling are: a loss of angular area due to the size of
the spectrum that covers non-negligible region of the quadrants, the anisotropy of the
spectrum more extended in declination than right ascension and the cut of high density
peak regions. The latter is due to the fact that in high density region fewer galaxies are
selected.

The first issue should be read as a window function problem but more difficult to
treat. We tried to apply SPOC to random catalogues of points in order to include this
effect in the window function without any good results. The cut of regions with high
density in the sky due to the sampling is the cause of the strong power suppression at
smaller scales which are the most influenced by SPOC. We test this effect on simulations
trying to mimic what the particular SPOC strategy is doing, cutting the density field
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Figure 5.12: Top left panel : measured power spectrum before (red line) and after (blue
line) applying the SPOC algorithm to the set of MultiDark mocks in redshift space.
Bottom left panel : ratio between the two power spectra to outline the constant suppres-
sion on the power due to the SPOC strategy. Right panel : same as the left panel but
for the W4 field.

higher than a chosen threshold for the set of MultiDark mock catalogues for W1 and
W4 between 0.6 < z < 0.9, in redshift space with the angular and photometric mask
applied, with the addition of Gaussian redshift error and before applying SPOC to the
samples. We measure the FKP density field of equation 3.31 with the same weight for
all galaxies w(xG) = 1 on a grid with size L = 800h−1Mpc and grid-size H = 2h−1Mpc
and impose δFKP = δ0 when the normalised FKP is greater than a chosen threshold
δFKP > δ0. With this particular test, we modify the three dimensional clustering which,
in principle, is different to the cut of the the projected clustering made by SPOC: however
we expect to observe similar results in the recovered power. We try different values for
δ0 = 0.001, 0.005, 0.008, 0.01 and for each cutting value we estimate the averaged power
spectrum from mock catalogues (plotted in figure 5.13).

The constant shift of the power at large scales and the stronger suppression at smaller
scales is similar to what the selection of SPOC does to the power, meaning that the main
effect of the VIPERS observing strategy is the cut of high density peaks. The theory
behind this is represented by the “clipped” field: ongoing works are trying to clip the
highest density field in order to reduce non-linearities in the sample and deal with a more
linear power spectrum (even for the VIPERS sample, Wilson et al. in preparation). The
main problem related to these works is the choice of the δ0 parameter. We conclude with
this simple test that the SPOC sampling partially clips the 2D projected field making
the clustering more linear.
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Figure 5.13: Top left panel : measured power spectrum from the MultiDark mocks with
the W1 cone-like geometry and the angular mask applied (black line). The coloured
lines represents the behaviour of the power once we clip the density field with different
threshold in order to mimic the effect of SPOC in cutting the highest peak of the
potential. Bottom left panel : the ratio between the measured power without clipping
and with different threshold for the density field shows a similar behaviour on the power
as the one made by SPOC. Right panel : same as the left panel but for the W4 field.

5.5.2 Correcting the angular SPOC selection

One way to correct for the SPOC effect on the power spectrum is to understand the
theory of the “clipped” field and try to associate the cut of high density peaks to a
threshold δ0. Another problem related to this choice is to extend the “clipped” field
theory to the cut of the projected clustering over the sky. And this track is solving only
a part of the problem without considering the loss of volume and the anisotropy due
to the slits. A second solution could be simply correct the observed power spectrum
from data for the constant suppression measured from mocks. This choice depends on
the particular mock samples used and in principle the clustering of matter in mock
catalogues could be different respect to data.

The third solution we consider is to correct the SPOC selection up-weighting galaxies
in regions where the SPOC depletion is bigger. The first trial, as applied in de la Torre
et al. (2013), is to correct for the target selection up-weighting galaxies by the inverse
of the TSR (wSPOC = 1/TSR) for the quadrant in which the galaxy belongs, giving
more weight to galaxies in quadrants where the effect of SPOC is stronger. Using this
approach, we are trying to compensate the missing of selected galaxies in the higher
density field, reconstructing the distribution of galaxies as it was before the selection
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algorithm. The correcting weight is included in the estimation of the power spectrum
following the power estimator of section 3.4.
We consider the final mock catalogues for both fields in redshift space and with SPOC
applied and compare the measured power spectrum before and after applying this weight.
The blue line of figure 5.15 shows that the correction is working in the right direction at
all scales reducing the suppression of the power only by a small quantity. The problem
with TSR computed in a quadrant is that it is an average over 7× 8 arcmin2. Within a
quadrant there are over- and under-densities which are locally sampled differently. We
can hope to get a more precise TSR by simply considering TSR in areas smaller than
quadrants. In this context, Pollo et al. (2005) proposed a small scales weighting scheme
that we call “local” TSR correction. They create a small circle with radius θL in the
angular distribution of galaxies (figure 5.14) for each SPOC target and compare the
number of objects in the photometric catalogue (NPHOTO) with those selected by SPOC
(NSPOC). They define a new weight for each galaxy

wSPOC =
NPHOTO(θ < θL)

NSPOC(θ < θL)
. (5.8)

With this “local” correction one should be able to reconstruct the density field even at
smaller scales. The choice of θL is clearly critical and it should be comparable with the
size of the slit. Keeping in mind that the size of a slit is ∆DEC = 140′′ in declination
and slightly changes in right ascension with mean 〈∆RA〉 ∼ 10′′, we test different choice
for the angular radius θL = 30′′ − 50′′ − 70′′ − 90′′. We calculate the weight for each
SPOC target as the ratio between the number of particles in the circle for the “mask”
samples with respect to those in the SPOC samples. Results are plotted in figure 5.15
only for the best fit with θL = 50′′ − 70′′. Since the spectrum has a rectangular shape
we also try with a rectangle ∆DEC×∆RA = 100 × 60 arcsec2 to compute the weight
for each SPOC selected galaxy (as shown in figure 5.14). The results are encouraging
showing that this choice produces a better corrected power.

The new weighting scheme is working better respect to TSR weight (as a function of
quadrant) at all scales and corrects the power with an uncertainty of some percent up to
scale k ∼ 0.3 hMpc−1. This correction has been tested also for real-space distribution
of galaxies giving the same results. The SPOC effect in data will be corrected using
the “local” TSR weight of equation 5.8 considering the ratio in small rectangles with
size ∆DEC×∆RA = 100× 60 arcsec2 between galaxies in the CFHTLS photometric
catalogue and those observed in VIPERS.

5.6 Covariances

The construction of a complete mock catalogues that fully characterise the selection
features of the VIPERS survey is necessary to analyse statistical errors related to the
power spectrum estimate. Statistical errors are calculated using the full covariance
approach due to the strong correlation between bins introduced by the VIPERS window
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Figure 5.14: distribution of particles in the observing field W1 for a MultiDark mock
sample. Black dots are galaxies in the mock catalogue with the angular mask applied
while red circle points are objects selected by the SPOC algorithm. Blue lines correspond
to the contour centred on SPOC galaxies for the circles with θL = 50′′ − 70′′ and the
rectangle with ∆DEC×∆RA = 100× 60 arcsec2 where the correcting weight has been
computed.

function. An unbiased estimator for the covariance matrix is

Cij =
1

Nr − 1

Nr
∑

l=0

[

Pl(ki)− P̄(ki)
][

Pl(kj)− P̄(kj)
]

, (5.9)

calculated over a number of independent realisations Nr with P(k), the measured power
spectrum of one realisation, and P̄(k), the averaged power over all the realisations. Since
the number of bins we are going to deal with is of the order of 10, we should estimate
the covariance matrix using hundreds of mocks in order to reduce the propagation of
the covariance matrix errors up to cosmological parameters (Percival et al., 2014). To
avoid this kind of problems and to work with a smooth covariance without too much
noise, we estimate the correlation matrix rij using 200 Pinocchio mocks for each field
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Figure 5.15: Top panel : ratio between the measured power spectrum before applying
SPOC to W1 mock samples and after applying SPOC without correction (black line),
with the TSR correction (blue line) and with the “local” TSR correction with θL = 70′′

(green line), with θL = 50′′ (light blue line) and ∆DEC×∆RA = 100× 60 arcsec2 (red
line). Errors are related to the dispersion of the power among all samples and are shown
only for the rectangular-shape correction (orange regions). Bottom panel : same as the
top panel but for the W4 field.

instead of considering the limited number of MultiDark mock catalogues

rij =
Cij

√

CiiCjj

. (5.10)

In figure 5.16, we show the correlation matrix for both fields calculated with the fi-
nal Pinocchio mock catalogues including spectroscopic and photometric masks and the
distribution of galaxies in redshift space with Gaussian redshift errors included.

As a first test, we limit the covariance analysis in a k-range between
0.01 < k < 0.3 [hMpc−1] with a binning size of ∆k = 0.01 hMpc−1 for a total of N = 29
bins. As expected, the correlation matrix is not diagonal but strongly correlated due to
the VIPERS window function that mixes power at small modes. The correlation between
bins at higher modes is instead due to non-linearities. Thanks to the big number of mock
catalogues, we can also notice how smooth the correlation matrix is, i.e. without too
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Figure 5.16: correlation matrix for both field W1 and W4 in a k-range
0.01 < k < 0.3 [hMpc−1] for the estimation of the correlation between different modes
computed using 200 complete VIPERS mocks generated with the Pinocchio algorithm.

many statistical fluctuations. The covariance matrix Cij is then evaluated in a second
moment multiplying the Pinocchio correlation matrix with the diagonal errors of the
covariance matrix calculated from the 26 and 31 MultiDark mocks respectively for the
field W1 and W4

Cij = rij,Pin ×
√

Cii,MDCjj,MD . (5.11)

Having tested our modelling of RSD, the impact of the observational strategy of
VIPERS on the power spectrum and finally having a good estimate of the covariance of
data, we are now in position of testing on mock catalogues the cosmological inferences
we expect to get from VIPERS.



Chapter 6
Recovering a known cosmology

In this section we analyse the robustness of our power spectrum estimation with sim-
ulations. Comparing different models with the actual power spectrum measured from
the fully realistic mock samples, i.e. including all the angular masks, we test with a
chi-square technique the goodness of our method in recovering cosmological parameters.

6.1 Likelihood method

The idea is to measure the monopole power spectrum from the final MultiDark mock
catalogues, averaged over all the realisations to reduce noise and cosmic variance and
fit the best theoretical model generated with the CAMB algorithm letting free different
parameters.

For the moment, we limit the redshift range between 0.6 < z < 0.9 calculating an av-
eraged redshift distribution over all the mock samples smoothed with a Gaussian filter of
σ = 50h−1Mpc. The density field is calculated on a grid with size L = 800h−1Mpc and
cell size H = 2h−1Mpc smoothing particles with CIC assignment. Galaxies are weighted
with the inverse of the “local” TSR estimated with a ∆DEC×∆RA = 100 × 60 arcsec2

rectangle on the sky in order to correct for the SPOC selection while the FKP weights
are fixed to 1 for all particles. The theoretical model PM is constructed with CAMB
plus HALOFIT to include non-linearities fixing all the cosmological parameters to the
MultiDark cosmology except for those we want to constrain and the bias factor b. The
bias term is assumed to be linear and scale independent changing the amplitude of the
power by a factor of b2 (since we have fixed σ8 to the MultiDark value and rescaled at
the mean redshift of the sample 〈z〉 ∼ 0.73). The monopole model is interpolated on a
3D k-space grid in order to add the anisotropy of RSD and perform the 3D convolution.

We account for RSD with expression 5.5 adding to the real-space power spectrum
the Kaiser factor for coherent infall of galaxies toward density peaks and the expo-
nential damping for random velocities. The velocity dispersion σv, with the inclusion
of Gaussian redshift errors, is considered as a free parameter in our RSD modelling.
We evaluated the VIPERS window function independently for the W1 and W4 field,

85
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performed the convolution with the theoretical model and subtracted the integral con-
straint.

Finally the resulting spherical average of the convolved 3D power spectrum can be
compared through a likelihood analysis with the measured power from mock catalogues
defining the chi-square as

χ2(p) ≡
∑

ij

[

P(ki)− PM(ki,p)
]

C−1
ij

[

P(kj)− PM(kj,p)
]

, (6.1)

where the quantity C−1
ij is the inverse of the covariance matrix that has been estimated

using a combination of 200 Pinocchio mocks for each field and the same set of catalogues
used to recover the power spectrum, following the procedure of section 5.6. In this anal-
ysis it is important to estimate the full covariance matrix because of the correlation of
modes introduced by the window function. A treatment based only on diagonal covari-
ance matrix would lead to wrong estimation of the errors on cosmological quantities.

For these tests, we use again the mock samples used in the previous chapter to
calculate the covariance matrix: catalogues generated from the MultiDark simulation
with the VIPERS cone-like shape both for W1 and W4, the photometric and spectro-
scopic (version 4.0) angular masks applied and the sampling SPOC selection included
(the SPOC effects have been corrected in the measured power spectrum for each mock).
Even the Pinocchio mocks, used to measure a smooth correlation matrix given their
big number, should include VIPERS properties such as the VIPERS geometry, angular
masks and sampling. For the moment a set of Pinocchio catalogues updated to the
current stage of observations is not available. We can deal with two sets of Pinocchio
mocks: one with the spectroscopic angular mask, version 3.0, and the SPOC algorithm
applied and another with the current version 4.0 angular mask but without SPOC. For
the estimation of the correlation matrix, we choose the second set of mock catalogues.
This choice is justified by the fact that the recovered power spectrum is mainly affected
by a wrong window function (in this case due to the wrong angular mask, 3.0 instead
of 4.0) with respect to the alteration due to the SPOC sampling, even further after
correcting the SPOC effects with the “local” TSR approach. In figure 6.4, we will show
that the absence of fully realistic Pinocchio samples does not affect much the estimation
of cosmological parameters and related errors.

In statistics the likelihood is a function which tells us how likely an event is. This
probability function is determined by the chi-square through equation

L(x|p)∝ exp−1

2
χ2(x,p) , (6.2)

where L defined in statistics as the probability of finding some measurements x given
some models, function of a set of parameters p. In the bayesian statistics, constraints
on parameters are given by the posterior probability distribution P(p|x) through the
Bayes theorem

P(p|x) = L(x|p)P(p)
P(x)

, (6.3)
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where P(x) and P(p) are respectively the probability of observing the data and the prior
probability distribution on parameters p. In case of flat priors for parameters, these two
last terms do not change the posterior contours making the likelihood and the posterior
to contain the same information: L(x|p) ∝ P(p|x).
We sample the parameter space onto a grid over our flat prior. Finally we subtract the
integral constraint and multiply the resulting model by a factor b2.
Percival et al. (2014) proposed an unbiased estimator for the inverse covariance matrix
ψ

ψij = C−1
ij × (1−D) , (6.4)

where the term D = (Nb + 1)/(Ns − 1) dependent on the number of simulation Ns and
the number of bins Nb used to estimate the covariance matrix. In case of limited
number of available mock catalogues with respect to the number of bins, the error in
the estimation of Cij would propagate up to a systematic error in the parameter space
(Taylor et al., 2013; Dodelson and Schneider, 2013). Following the likelihood approach
to estimate the error on parameters, the variance of each parameter should be increased
by a factor which depends on the number of bins Nb, free parameters Np and mocks Ns

by a quantity

m1 =
1 + B(Nb −Np)

1 + A+ B(Np + 1)
, (6.5)

where A and B described in equation 8 of Percival et al. (2014). If the parameter errors
are estimated as the variance from the distribution of best-fit parameter from each mock
catalogue, the correcting factor is

m2 = m1(1−D) . (6.6)

Another important issue that I did not mention up to now is the choice of a fiducial
cosmology that can have a strong impact on the recovered power spectrum.

6.1.1 Correcting for the fiducial cosmology

The choice of the fiducial cosmology used to convert redshifts and angles to physical
coordinates could alter the shape and the amplitude of the recovered power spectrum.
Since the main purpose of this paper is to fit the best power spectrum model in order to
constrain cosmological parameters, the ideal case would be to recompute for each tested
model, the power spectrum and the window function according to the given cosmology,
but this is not computationally feasible.
Eisenstein et al. (2005) showed a practical way to incorporate these distortions in the
correlation function when computed using different cosmologies by rescaling the distance
scale by the factor

α = (α2
⊥α‖)

1
3 . (6.7)

The dilation factor α is a combination of a perpendicular-plane contribution respect to
the line-of-sight

α⊥ =
DA,model

DA,fiducial
, (6.8)
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(with DA the angular comoving distance) times a correction for the parallel direction

α‖ =
Hfiducial(〈z〉)
Hmodel(〈z〉)

, (6.9)

where H(〈z〉) the Hubble rate at the mean redshift of the sample 〈z〉. When we assume
different fiducial cosmologies, comoving distances change. What we want to maintain
fixed are two observables: the angle between two objects in the sky ∆θ which leads to
the rescaling factor α⊥ and their separation in redshift ∆z which leads to α‖ (Alcock
and Paczynski, 1979).
Instead of correcting for each tested cosmology the measurements of the power spectrum,
the window function and the covariance matrix which depends on the assumed fiducial
cosmology, we prefer to rescale the model power spectrum to the fiducial one. In case
of compact survey where an isotropic treatment of the window function could be done,
the rescaling factor for the pair separation r in the correlation function, once one adopts
another cosmology, is 1/α, where α is the infinitesimal volume to the one third of
expression 6.7. Since the power spectrum is the Fourier Transform of the correlation
function, the wave-number of the model power spectrum is multiplied by a factor α
and its amplitude by 1/α3 in order to rescale it to the fiducial cosmology. Due to
the anisotropy introduced by the VIPERS window function and the RSD, instead of
correcting the theoretical monopole power spectrum, we apply the dilation factor both
to the 3D model power spectrum before doing the convolution of equation 5.7 and to
the k-space grid























PM,fiducial =
PM,model

α2
⊥α‖

kx,fiducial = kx,model × α⊥

ky,fiducial = ky,model × α⊥

kz,fiducial = kz,model × α‖ ,

(6.10)

where the z-coordinate is parallel to the line-of-sight direction. We test the modelling for
the fiducial cosmology on the final MultiDark mocks where we know the input cosmol-
ogy of the simulation. We measure the averaged power spectrum of MultiDark mocks
assuming two completely different cosmologies: the input MultiDark one with the mat-
ter density ΩM = 0.27 and one with ΩM = 0.40. We fix again the redshift range between
0.6 < z < 0.9 and the FFT-grid parameters to the values described in the previous sec-
tion. In figure 6.1, we plot the results for the W1 field outlining, in the bottom panel,
the difference in the recovered power spectrum once we assume the wrong cosmology.

This deviation in the shape and amplitude of the power spectrum could be corrected
introducing in the analysis the correction factors just described. The power, measured
assuming a wrong cosmology and corrected to the MultiDark one, is in fact in good
agreement with the power measured assuming the right cosmology of the simulation.
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Figure 6.1: Top left panel : measured power spectrum from the final W1 MultiDark
mocks assuming, as fiducial cosmology, the true one of the simulation (dot-dashed black
line), a wrong cosmology (blue solid line) and the wrong cosmology corrected to the
true one (red solid line) though 6.10. Bottom left panel : ratio between the measured
power spectrum with (red line) and without (blue line) the wrong cosmology correction
respect to the power measured with the true fiducial cosmology. Right panel : same as
the left panel but for the W4 field.

6.2 Study of systematics

6.2.1 Modelling Redshift Distribution

One of the possible cause of systematics, in the estimation of the galaxy power spectrum,
is the measure of the mean redshift distribution which should account for the selection
function of the survey. The main problem is due to the fact that this mean density of
galaxies is calculated directly from the data dividing, in our case, the whole redshift
range of the sample between z = 0.4 and z = 1.2 in a number N of bins. Due to the
noise of the galaxy redshift distribution in VIPERS, we smooth the histogram with a
Gaussian filtering.

Other methods can be used to reconstruct the selection function of the sample such
as the fit of the observed distribution with a smooth template. In general most of the
methods, as the Gaussian filtering or the analytic fitting formula, are parametric and
have to be calibrated. An alternative non-parametric method is the Vmax approach.
This method consists in randomly sampling the maximum volumes Vmax probed by
each galaxy in the survey and it is based on the galaxy luminosity function (Cole, 2011).
de la Torre et al. (2013) applied the three described methods to recover the RD in the
PDR-1 catalogue analysing their impact on the measurement of the projected correla-
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tion function. The difference between the three different approaches is minimal < 5%.
Due to this, we choose to model the RD of our sample with the simplest Gaussian filter-
ing approach testing the impact of the kernel in the measure of the power spectrum of
mock catalogues. The choice of the Gaussian kernel is critical: a big value for σ means
that we mix together too many scales losing information about the mean density at a
certain redshift. If σ is too small, the RD follows the clustering of galaxies which in
principle we want to avoid because the goal is to extrapolate the mean density of the
sample. The modelling of the RD enters, in the estimation of the power spectrum, in
the radial distribution of random points used to mimic the mean density of the sample
and in the normalisation of the power.
We consider a very simple set of 26 W1 MultiDark mock samples with only the spec-
troscopic “Nagoya” version 3.0 mask applied, no photometric mask and without any
sampling selection applied, with galaxies distributed in real space in a redshift range
0.6 < z < 0.9. We also did some tests considering the distribution of galaxies in redshift
space both for W1 and W4 obtaining similar results. The “true” RD has been calculated
putting together all the RDs of the W1 mock catalogues and smoothing with a Gaus-
sian filtering of σ = 50h−1Mpc. The averaged power spectrum over 26 mock samples
measured assuming the “true” RD is taken as reference. To test the impact of the RD
modelling, we consider three Gaussian kernels of σ = 100 − 150− 200 h−1Mpc. Figure
6.2 shows the behaviour of the RD modelled using the three different kernels compared
to the measured distribution of galaxies in radial bins. For each mock, we create the
random catalogue and normalise the recovered power using the proper RD measured
from that particular mock, instead of using the “true” averaged RD. Then we average
all the 26 power spectra calculated smoothing the RD with a particular kernel and plot
the results in figure 6.3. We choose the best value for the Gaussian kernel comparing
the recovered power spectra with the power obtained fixing the same “true” RD for all
the mocks. We notice that the power spectrum depends on the particular RD modelling
only at large scales. As pointed out before, the smallest value considered for the kernel
σ = 100h−1Mpc leads to a suppression of the power because the estimated mean density
is following the clustering of galaxies. On the other hand, σ = 200h−1Mpc is too high
because mixes too many redshift bins: the mean density is less sensitive to the selection
function of the sample. We conclude that the Gaussian filtering with σ = 150h−1Mpc
is a good model to the RD of our survey leading to an unbiased estimate of the power.
The choice of the kernel should not significantly effect the estimation of cosmological
parameters because modes more affected by the RD modelling are also the ones with
the bigger statistical error. To imagine the uncertainties due to cosmic variance, errors
plotted in figure 6.3 should be multiplied by a factor of

√
26 ∼ 5 leading to statistical

fluctuations in the power much bigger than the systematics introduced by RD modelling.

6.2.2 2 parameters: ΩM − b

To analyse systematics in the estimation of cosmological parameters, we constrain the
matter density parameter ΩM from the mock catalogues through a likelihood analysis
and compare it with the known MultiDark value of ΩM = 0.27. As specified before, we
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Figure 6.2: radial distribution of galaxies for one single mock measured counting the
number of particles in each bin (grey histogram). The solid lines represent the Gaus-
sian filtering with kernel σ = 100h−1Mpc (blue line), σ = 150h−1Mpc (red line) and
σ = 200h−1Mpc (green line) while the black dashed line shows the “true” RD averaged
over 26 mock catalogues.

measure the averaged power spectrum over the 26 final MultiDark samples for W1 and
31 for W4 in redshift space between 0.6 < z < 0.9 assuming the MultiDark cosmology
as the fiducial one. We fix all the cosmological parameters to the MultiDark cosmology
except for the matter density ΩM. RSD are included in our modelling before comput-
ing the convolution with the VIPERS window function. The growth rate f in the RSD
Kaiser factor is fixed by the tested value of ΩM at a certain epoch and assuming Gen-
eral Relativity (f = Ω0.55

M (a)). For the moment, the pairwise velocity parameter σv is
fixed to the best fit of figure 5.11: σv = 530 km s−1. The model is then convolved with
the VIPERS window function, rescaled to the MultiDark fiducial cosmology and nor-
malised by a factor b2 where the bias factor b is let free. We compare the measurements
with theory using a chi-square technique. We generate a two dimensional grid-space
parameter with flat priors

0.20 < ΩM < 0.40

1 < b < 2 ,
(6.11)
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Figure 6.3: Top panel : impact of RD modelling on the recovered power spectrum.
The plotted power spectra are related to different kernels in the Gaussian smoothing:
σ = 200h−1Mpc green line, σ = 150h−1Mpc red line and σ = 100h−1Mpc blue line while
the dashed black line represents the power measured with the ‘true” RD. Bottom panel :
ratio between the recovered power spectrum with the RD calculated directly from the
single mock and the reference power with the RD calculated using an averaged over all
the mock catalogues.

where each point of the grid corresponds to a set of parameters ΩM − b with steps
∆b = 0.05 and ∆ΩM = 0.01. The model power spectrum is constructed for each point
of the 20× 20 parameter-space grid. Since the step in the grid is quite large (to reduce
the computational time), each model, after the inclusion of RSD, fiducial cosmology,
bias factor and window function, is interpolated to a finer 1000 × 1000 grid reducing
the step to ∆b = 0.001 and ∆ΩM = 0.0002. The chi-square χ2 as a function of the two
parameters ΩM − b is evaluated at each point of the new grid. Since we want to study
systematics, the variance computed among the mocks is rescaled to obtain the error
on their averaged. As a result, before applying the correction of expression 6.4 to the
inverse of the covariance matrix, we divide each element Cij by the number of MultiDark
mocks.

The fit is performed in a k-range between 0.01 < k < 0.3 [hMpc−1] with a linear
binning step of ∆k = 0.01 hMpc−1.
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The minimum frequency of kmin = 0.01 hMpc−1 is the mode related to the maximum
wavelength sampled in the redshift direction even if its contribution to the estimate of
the chi-square is very small due to the large statistical errors at those scales.
The maximum frequency instead is quite important for the best-fit parameter estimation
because errors are very small at higher modes. We choose a maximum frequency of
kmax = 0.3 hMpc−1, large enough to have a sufficient number of bins Nb = 29 and small
enough to avoid scales strongly affected by non-linearities in the power, non-linear bias
and SPOC sampling. Given the set of Pinocchio mocks Ns = 200 used to estimate the
correlation matrix and the number of bins Nb = 29, the correcting value for the inverse
covariance matrix is of the order of 1−D ∼ 85%. In figure 6.4, we compare the chi-
square contours in the ΩM − b plane for the W1 and W4 field: in one case we measure
the monopole power spectrum from mock catalogues with only the angular mask applied,
while the other two contours are calculated from mocks with also the SPOC sampling
applied to our samples. The difference between the last two is that, in one case we
measure the chi-square from the raw power spectrum while in the other we correct the
power for the SPOC effect using the rectangular “local” TSR.

Figure 6.4: Left panel : contours χ2 = χ2
min + 2.3 and χ2 = χ2

min + 4.61 for the chi-
square, function of two parameters ΩM, b. The red line corresponds to the chi-square
evaluated from W1 MultiDark mocks with the cone-like geometry and the angular mask
applied. The blue and green lines show the case for samples with also the SPOC algo-
rithm applied, respectively with and without the correction of the power for the “local”
TSR (using the rectangular shape for the estimation of the weight). Right panel : same
as the left panel but for the W4 field.

The chi-squares evaluated for the “mask” catalogues and the SPOC samples with the
“local” TSR correction included give similar results for both ΩM and b, meaning that the
SPOC correction of section 5.5.2 is working quite well. The small difference between the
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chi-square contours, in this case, could be related to the “local” TSR correction applied
to the measured power spectrum in SPOC samples, which does not perfectly correct
the power at the highest modes fitted k ∼ 0.3 hMpc−1 (figure 5.15). Another source of
systematic, that could explain this small discrepancy, is the incorrect correlation matrix
estimated using a set of Pinocchio mocks without the SPOC sampling. However, since
we divide the covariance matrix by the number of MultiDark mock samples in order to
study systematics, these small fluctuations of the chi-square in the parameters space will
not have a significant impact in the estimation of cosmological quantities in VIPERS
data.

The difference between the chi-square contours for the SPOC corrected power spec-
trum and the one without correction is in both cases negligible for ΩM and more evident
for the bias. This is easily understood looking at figure 5.12 where the difference between
the two power spectra in the k-range 0.01 < k < 0.3 [hMpc−1] is just a normalisation
factor which is included in our modelling through the bias term. The parameter ΩM is
well recovered within statistical uncertainties in both W1 and W4 field. In figure 6.5,
we focus on the chi-square calculated with the final MultiDark mocks with the selecting
sampling included and with the power corrected for the SPOC effect. In the bottom

Figure 6.5: Top left panel : chi-square contours in the ΩM, b parameter-plane for the
power measured from the final MultiDark W1 mocks corrected for the SPOC effect.
Bottom left panel : marginalised likelihood over the bias with the coloured region repre-
senting the 68% of probability. The best fit is consistent with the value of the MultiDark
matter density shown by the ΩM = 0.27 red-dashed line. Right panel : same as the left
panel but for the W4 field. Even for W4, the matter density is well constrained to the
expected value within statistical uncertainties.

panel, the marginalised likelihood over the bias, calculated from equation 6.12, is plotted
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to analyse systematics in the constraint of ΩM,

L(ΩM) =

∫

L(ΩM,b) db
∫ ∫

L(ΩM,b) db dΩM
. (6.12)

The best value for the matter density is consistent with the value of the MultiDark
simulation within the statistical errors. The error on the ΩM parameter, plotted in
the bottom figure 6.5, has been corrected by a factor of

√
m1 = 1.07 accounting for the

propagation of the error in the estimation of the covariance matrix.
In the following, errors of all estimated parameters will be corrected by the m1 factor
which, in all cases, is very small due to the large number of Pinocchio mock catalogues
used to estimate the covariance matrix with respect to the number of bins and param-
eters constrained.

Monte Carlo Markov Chain

The estimation of the chi-square on a N-dimension parameter grid, when the number
of parameters to be constrained is high, is very time-consuming. In this cases, it is
useful to sample the N-dimensional likelihood surface through a Monte-Carlo technique.
The Monte Carlo Markov Chain (MCMC) is a fast algorithm, often used in statistics, to
collect samples of a target distribution. In our analysis, we use the free software package
CMBeasy MCMC code designed by Doran and Müller (2004).
A simple description of the main algorithm (Metropolis-Hastings algorithm, Metropolis
et al., 1953; HASTINGS, 1970) used to run an MCMC is given here: it works starting
from the measurement of the likelihood L1 of a random point p1 in the parameter space
and then it jumps, with a given step, to another one p2 measuring again the likelihood
L2: if L2/L1 > 1 the new starting point of the chain will be p2 because the set of
parameters in that point are more likely than the ones in p1, while if L2/L1 < 1 there is
a probability proportional to the ratio of the two likelihoods to move to the new point
p2 or maintain the p1 position. With this simple idea the chain tends to sample more
the peak of the likelihood distribution with the quality of the sample improving as a
function of the number of steps. The important part is that, even in the case L2/L1 < 1,
there is a probability different from 0 to move to the new unlikely point giving a true
sampling of the underlying likelihood distribution. Without that condition, the chain
would reach quickly the parameters with the maximum likelihood giving only the best fit
without any errors. One advantage of the MCMC is that the marginalised likelihood for
each parameter is proportional to the number density of points sampled: so we do not
have to perform equation 6.12 for each parameter. For the rest of the work we are going
to use the MCMC algorithm to estimate the likelihood for more than two parameters.
We test the accuracy of the MCMC method constraining the parameters ΩM and b from
the final set of mock catalogues including the SPOC correction in the estimation of the
power spectrum. In figure 6.6 we over-plot to the contours of the chi-square calculated
in the previous section the MCMC points with χ2 < χ2

MIN + 2.3 obtaining a good match
between the two. The bottom panel shows the comparison between the marginalised
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likelihood calculated with equation 6.12 and the number density of points given by the
MCMC in each ΩM-bin.

Figure 6.6: Top panels : same as figure 6.5 but with the chi-square points calculated
with the MCMC technique over-plotted (red points). Bottom panels : same as figure
6.5 with the histogram showing the number density of points in each ΩM-bin evaluated
from the MCMC steps.

6.2.3 3 parameters: ΩM − b− σv

Since for data we will use a Gaussian prior for the pairwise velocity dispersion of galaxies,
we recalculate the chi-square with the MCMC approach for a set of three free parameters:
ΩM, b and σv. We assign to the matter density and the bias the same flat priors of
expression 6.11 while we add, for the σv parameter, a Gaussian prior of the same order
to the one for data. To add the Gaussian prior information on the σv parameter, we recall
the Bayes theorem of equation 6.3. The posterior distribution is no longer proportional
to the likelihood and becomes

L(p|x) ∝ L(x|p) × exp−
(σv−σ̄v)

2

2σ2 , (6.13)

where σ̄v and σ2 are respectively the mean and the variance associated to the Gaussian
prior. For the Gaussian prior mean, we choose the best fit for the pairwise dispersion
velocity obtained in figure 5.11, σ̄v = 530 km s−1 with deviation σ = 30km s−1 to be
consistent with the value found in the work by de la Torre et al. (2013) for the VIPERS
PDR-1 catalogue and mentioned in Bel et al. (2014).
In figure 6.7 for the W1 field and 6.8 for the W4 field, we plot a combination between
the three free parameters in our power spectrum modelling. The matter density is again
well constrained to the MultiDark value within statistical uncertainties in both fields.
However, the pairwise dispersion velocity seems to be higher in the case of W1 reaching
a best fit of σv ∼ 570 km s−1, while in the case of W4 the best fit is again of the order
of σv ∼ 530 km s−1. Figure 6.9 shows a comparison for the chi-square contours in the
ΩM − b plane between the case in which the pairwise velocity is fixed and the one with
Gaussian prior on σv.
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Figure 6.7: best fit for the cosmological parameters ΩM − b− σv showing the 68 per
cent confidence levels calculated using the averaged power spectrum from the 26 fi-
nal MultiDark mocks for the field W1 in a redshift bin 0.6 < z < 0.9 and k-range
0.01 < k < 0.3 [hMpc−1]. The red diamond points show the best fit for the parame-
ters.

As expected the red contours, associated with the three free parameter model, are
larger than the two parameter chi-square due to the introduction of a new degree of
freedom. In the W4 field the introduction of a Gaussian prior to σv does not change
too much in the chi-square as function of ΩM and b. In the W1 field, the best fit chi-
square contours slightly move to higher matter density values in order to compensate
the enhancement of the pairwise velocity. The higher value of σv, in fact, increase the
damping of the model power spectrum which could be compensated in two ways: shifting
the power toward higher k-modes or reducing the damping of baryon. The increase of the
matter density has the two effects on the power: shift the keq to higher modes, since the
equivalence between radiation and matter occur before in the evolution of the Universe
at smaller scale for the horizon, and reduce the baryonic fraction (fB = ΩB/ΩM) because,
during all the process, the baryon density is maintained constant to the MultiDark value.

6.2.4 4 parameters: ΩM − fB − b− σv

To anticipate what the power spectrum analysis could constrain from real VIPERS data,
we extract cosmological information from VIPERS simulation on the two parameters
that mostly affect the power spectrum shape: the baryonic fraction fB = ΩB/ΩM and
the matter density ΩM. Since we cannot break the degeneracy between the bias and
σ8 in real measurements, we use the overall shape information to constraint cosmology
marginalising over the amplitude. We fix σ8 to the MultiDark value of σ8 = 0.82 nor-
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Figure 6.8: best fit for the cosmological parameters ΩM − b− σv showing the 68 per
cent confidence levels calculated using the averaged power spectrum from the 31 fi-
nal MultiDark mocks for the field W4 in a redshift bin 0.6 < z < 0.9 and k-range
0.01 < k < 0.3 [hMpc−1]. The red diamond points show the best fit for the parame-
ters.

malising the amplitude of each model to that value rescaled to the mean redshift of the
sample. We impose flat priors on the matter density, baryonic fraction and bias and a
Gaussian prior on the pairwise velocity dispersion

0.01 < ΩM < 0.90

0.01 < fB < 0.50

1 < b < 2

σv =530 ± 30 km s−1 .

(6.14)

Again we measure the averaged power spectrum from the final set of mocks both for
W1 and W4 in a redshift range 0.6 < z < 0.9 and, after correcting for SPOC, compare
it with theoretical models. To perform the comparison between data and theory, we
use an MCMC to sample the likelihood surface, which is a really faster approach than
generate a 4-dimensional parameter space grid. We show for the field W1 and W4,
respectively in figure 6.10 and 6.11, a combination between the chi-square contours on
the ΩM − fB − b parameters. Again errors in the ΩM − b plane are bigger respect to
the two (and three) free parameter case due to the introduction of another degree of
freedom given by fB. The main results plotted in figure 6.12 are the chi-square contours
in the ΩM − fB plane. The results for both fields are consistent between each other with
the same degeneracy. The confidence levels of 68− 90− 98 per cent are larger in the
W4 case due, in part, to the limited angular aperture which translates into a smaller
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Figure 6.9: Left panel : comparison for the field W1 between the 68 per cent confidence
level chi-square in the ΩM − b plane for a modelling of the theoretical power spectrum
with two free parameters (ΩM − b, blue contour) and a model with three free parameters
(ΩM − b− σv, red contour) with the best fit represented by a black diamond point. Right
panel : same as the left panel but for the W4 field.

volume sampled. Further in both fields the expected value of the MultiDark cosmology
ΩM = 0.27 and fB = 0.0469/0.27 is within the 68 per cent confidence level meaning that
we are able to constraint cosmological information from the VIPERS catalogue with
systematic errors lower than statistical ones.

Note that errors plotted in these tests with mocks are a factor of ∼ 5− 6 smaller
that the ones expected for data because, in order to study systematics, the covariance
matrix has been divided by the number of MultiDark mocks.
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Figure 6.10: best fit for the cosmological parameters ΩM − fB − b showing the 68 per
cent confidence levels calculated using the averaged power spectrum from the 26 fi-
nal MultiDark mocks for the field W1 in a redshift bin 0.6 < z < 0.9 and k-range
0.01 < k < 0.3 [hMpc−1]. The red diamond points show the best fit for the parame-
ters.

Figure 6.11: best fit for the cosmological parameters ΩM − fB − b showing the 68 per
cent confidence levels calculated using the averaged power spectrum from the 31 fi-
nal MultiDark mocks for the field W4 in a redshift bin 0.6 < z < 0.9 and k-range
0.01 < k < 0.3 [hMpc−1]. The red diamond points show the best fit for the parame-
ters.
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Figure 6.12: Left panel : 68 − 90 − 95 per cent confidence levels for the chi-square
in the ΩM − fB plane calculated using the power spectrum recovered from the 26 final
MultiDark mocks for the field W1. The best fit is represented by a black diamond point
while the black cross shows the expected value for the MultiDark cosmology. Right
panel : same as the left panel but for the W4 field.



Chapter 7
VIPERS power spectrum

The two independent fields and the redshift depth of VIPERS allow us to split the current
VIPERS data set into four independent volumes, i.e. two redshift bins 0.6 < z1 < 0.9
and 0.9 < z2 < 1.1 with more or less the same volume, in both W1 and W4. These four
data sets will be characterised by two slightly different bias values and growth factors
(at different redshifts) and two slightly different window functions (W1 and W4). We
can handle these differences at best by treating each of them separately. The division
has been made in order to avoid the comparison between the clustering of galaxies
characterised by a strongly different bias since galaxies at smaller redshift have smaller
clustering properties with respect to those more luminous at higher redshifts. We do not
consider data at very low redshifts 0.4 < z < 0.6 due to uncertainties in the colour-cut
galaxy selection. We also avoid the most distant regions of the survey because they are
shot-noise dominated. The mean redshift for the two redshift bins is 〈z1〉 ∼ 0.73 and
〈z2〉 ∼ 0.98.

The number of galaxies used for the estimation of the power spectrum in each sub-
samples and the effective volume is shown in table 7. The redshifts and angles of galax-
ies are converted into physical coordinates with a MultiDark fiducial cosmology with
ΩM = 0.27, ΩΛ = 0.73 and h = 1 since the covariance matrix is estimated using Multi-
Dark mock samples. The redshift distribution has been calculated counting the number
of galaxies in N = 100 radial bins which divide the whole redshift range 0.4 < z < 1.2
in slices of size ∆r ∼ 16 h−1Mpc both for W1 and W4. In order to minimise the noise
of the RD and since the two VIPERS fields select galaxies in the same way, we sum
in each radial bin the number of galaxies observed in W1 with those in W4. We then
divide NW1 +NW4 by the sum of the volume of the bin in W1 with the one in W4 in
order to obtain the mean density of the sample

n̄(r) =
NW1 +NW4

VW1 +VW4
(r) . (7.1)

From tests on mocks, we established that a Gaussian filtering kernel with charac-
teristic size σ ∼ 150 h−1Mpc allows us to recover an unbiased power spectrum with

102
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W1 W4

0.4-1.2 30705 / 1.3 ×107 22622 / 9.5×106

0.6-0.9 18077 / 4.6 ×106 13140 / 3.4 ×106

0.9-1.1 4179 / 4.2 ×106 2637 / 3.1 ×106

Table 7.1: Number of high-quality spectroscopic redshifts and volume in h−3Mpc3 for
each VIPERS subsample in W1 and W4 generated dividing the VIPERS sample in three
redshift bins: the whole redshift range of VIPERS (0.4 < z < 1.2), and two smaller red-
shift bins (0.6 < z1 < 0.9 and 0.9 < z2 < 1.1) used to measure the galaxy power spec-
trum.

σ ∼ 150 h−1Mpc (section 6.2.1). The situation for data is slightly different with respect
to the one tested with mocks. In the course of this work, in fact, the VIPERS sample
improved, passing from the version 3.0 angular mask to the version 4.0, completing more
pointings on the sky with more galaxies selected: more galaxies means less noise in the
radial redshift distribution. Moreover for data, we compute the averaged RD between
the two fields, W1 and W4, as in equation 7.1 reducing the noise by a factor of ∼

√
2

with respect to the test with mocks. Due to these reasons and in order to correctly
account for the VIPERS selection function without mixing too much information from
very far radial bins, we decide to apply a Gaussian filter to smooth the radial distribu-
tion of galaxies with a lower value for the kernel σ = 100h−1Mpc. As shown in figure
7.2, the smoothed mean density is not recovering the radial distribution of galaxies at
very low redshift z ∼ 0.4 but follows well the behaviour of the histogram at the redshift
bins of the two analysed subsamples without being affected too much by the underlying
clustering.

We generate two random catalogues with W1 and W4 peculiar geometries including
the spectroscopic “Nagoya” 4.0 and the photometric mask and with the same redshift
distribution modelled with the Gaussian filtering. The number of unclustered points is
∼ 200 times the number of galaxies in all four regions in order to reduce the random
shot-noise contribution and cover the VIPERS volume with high resolution. We choose
the same FFT grid for each subsample with size L = 800h−1Mpc, big enough to inclose
all the galaxies, and cell size H = 2h−1Mpc. The minimum frequency of the k-space
grid in which we sample the galaxy power spectrum is kmin = 2π

L ∼ 0.008 hMpc−1, the
maximum kmax = π

H ∼ 1.57 hMpc−1 with step ∆k = kmin. The density field in each grid
point is calculated with the CIC assignment and Fourier Transformed with the FFT al-



CHAPTER 7. VIPERS POWER SPECTRUM 104

Figure 7.1: redshift distribution of galaxies in the VIPERS catalogue as a function of
radial distance for both field, W1 (red histogram) and W4 (yellow histogram), measured
dividing the whole redshift range into N = 100 slices, counting the number of galaxies
in each bin and dividing by the volume of the bin to obtain a density.

gorithm. Smoothing the density field with the CIC scheme onto a grid biases the power
spectrum estimator at smaller scales. We adopt equation 3.22 to correct for this partic-
ular choice and then subtract for the shot-noise contribution. The shot-noise term is of
the order of PSN ∼ 250 h−3Mpc3 for the low redshift bin in both fields. Due to the low
number of galaxies at high redshift, typical of magnitude-limited survey as VIPERS, the
shot-noise term (PSN ∼ 800 h−3Mpc3) becomes dominant for the z2 power spectrum at
scales of the order of k ∼ 0.3 hMpc−1. Finally we apply a spherical average to obtain
the monopole power spectrum in linear bins with size ∆k = 2π

L .
The errors in the estimation of the VIPERS power spectrum are calculated as in section
5.6. We estimate the correlation matrix using the final 200 Pinocchio mock catalogues
for each subsample (figure 7.3) and multiplying each element of the matrix, as in equa-
tion 5.11, by the variance evaluated through the final MultiDark mock samples. Again
these mock samples should include all the selection functions of VIPERS data. The set
of Pinocchio mocks available and used to estimate rij does not include yet the SPOC
sampling. We verified that this does not affect much the estimation of cosmological
parameters.
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Figure 7.2: redshift distribution of galaxies in the VIPERS sample averaged as in equa-
tion 7.1 combining the two fields (orange histogram). The red line shows our best
modelling of the mean density distribution obtained Gaussian filtering the radial distri-
bution of galaxies with a kernel of σ = 100h−1Mpc. The coloured regions correspond
to the two redshift bins (0.6 < z1 < 0.9 yellow region, 0.9 < z2 < 1.1 light blue region)
used in the analysis to recover the power spectrum.

The VIPERS galaxy power spectrum is finally shown in figure 7.4 with the diagonal
elements of the covariance matrix

√
Cii plotted as statistical errors. The minimum fre-

quency plotted kmin ∼ 0.01 hMpc−1 is related to the largest scale we are able to sample in
the redshift direction and in each sub-volume corresponding to λmax ∼ ∆z ∼ 600 h−1Mpc.
At k > 0.1 hMpc−1, where the effect of the window function is negligible, the combined
effect of bias/growth is visible, with a slightly larger amplitude for the two higher-z
samples (higher bias due to larger mean luminosity). On large scales (k < 0.1 hMpc−1)
the four power spectra are all compatible to each other within statistical errors, showing
that small differences between the four window functions are smaller than statistical
fluctuations. As we have seen in the previous section, the selection effects due to the
observing strategy and instrumental limitations affect the properties of clustering and
the relative power spectrum.

We correct for the SPOC effect using the “local” TSR weight of equation 5.8 con-
sidering the ratio in small angular rectangle with size ∆RA×∆DEC = 60× 100 arcsec2
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Figure 7.3: four correlation matrix in the two redshift bins in each field (W1 and W4)
measured with the Pinocchio mock catalogues as described in section 5.6. The k-space
range used to estimate rij is between 0.01 < k < 0.3 [hMpc−1] and will be motivated
later in the text.

between galaxies in the CFHTLS photometric catalogue and those observed in VIPERS.
In each subsample, the difference in the recovered power spectrum with and without the
SPOC correction is very small and, contrarily to what we observe in mock samples,
does not seem to show any systematics. The reason could be that in mock samples we
average the power over 26 (W1) and 31 (W4) realisations highlighting the systematic
effect of the SPOC correction while, for one realisation, the statistical fluctuations are
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Figure 7.4: comparison between the four galaxy power spectra measured in each VIPERS
subsample with errors measured from the dispersion of the power in the MultiDark mock
catalogues and plotted for the W4 field in the lower z1 redshift bin.

still dominant. We show in figure 7.5 only the case for the W1 field in the lower redshift
bin z1 where the small difference between the power spectrum with and without the
SPOC correction is outlined in the bottom panel. Also, SPOC may have a larger effect
in mocks due to a slightly different number density of galaxies.

7.1 Cosmological results

Since the total volume of VIPERS is comparable with the 2dFGRS we should be able
to recover similar constraint on cosmological parameters. Except for the BAO signal
observed in the 2dFGRS power spectrum but difficult to detect in VIPERS due to the
anisotropy of the window function (as showed in figure 5.4), we try to constrain the
matter density ΩM and the baryonic fraction fB = ΩB/ΩM as Percival et al. (2001) and
later Cole et al. (2005) did for the 2dFGRS.
Again to compare the four measured power spectra with a model, we need to include
RSD, correct for the assumed fiducial cosmology, convolve with the VIPERS window
function and subtract the integral constraint.

We assume a ΛCDM cosmology with flat curvature Ωk = 0. The theoretical model
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Figure 7.5: Top panel : measured power spectrum in the W1 field and in the first z1
redshift bin with (blue dashed line) and without (red solid line) the inclusion, in the
estimation of the power, of the SPOC correction with the “local” TSR. The weight for
each galaxy has been calculated as the ratio between the number of points in the photo-
metric catalogue respect to those in the VIPERS sample in a rectangular shape with size
∆DEC×∆RA = 100′′ × 60′′ arcsec2 centered at each galaxy selected by SPOC. Bottom
panel : ratio between the recovered power without SPOC correction and the one cor-
rected, plotted in order to outline the small difference between the two contrarily to
what we observe in mock catalogues.

power spectrum is generated with CAMB plus HALOFIT imposing flat priors on the
baryonic fraction between 1% < fB < 50%, the matter density, 0.1 < ΩM < 0.9 and bias
0 < b < 2. The other parameters, as the Hubble constant and the primordial index,
are fixed to the Planck values (Planck Collaboration et al., 2013): h = 0.6711 and
ns = 0.9624. As opposed to the approach adopted for the mocks, where we fix the
amplitude of the power spectrum with the σ8 of the simulation breaking the degener-
acy with the bias, for data we fix the scalar amplitude As to the best-fit Planck prior
(As = 2.21536 × 10−9) because this quantity is well constrained by CMB observations.

Before convolving the model with the VIPERS window function, we interpolate
the monopole theoretical power spectrum on a 3D k-space grid in order to introduce
the anisotropy of RSD. RSD are modelled with the dispersion model of equation 5.5,
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assuming General Relativity for the Kaiser term and letting the β parameter to vary
as a function of matter density and bias. We impose, for the dispersion of pairwise
velocities and redshift errors, the Gaussian prior mentioned in Bel et al. (2014) with
σ̄TOT = 514 km s−1 and deviation σσTOT

= 24km s−1. The σTOT used takes into account
the Gaussian dispersion for redshift errors of the order of σcz = 141(1 + z) km s−1.

For each set of parameters tested, we rescale the model to the MultiDark fiducial
cosmology correcting the amplitude of the power and the k-space grid as in equation
6.10. The four VIPERS window functions have been calculated with four very dense ran-
dom catalogues with the same angular and redshift properties of the analysed VIPERS
subsamples and the same redshift distribution calculated with equation 7.1 to mimic
the mean density of VIPERS 4.0. In figure 7.6, we show the behaviour of the window

Figure 7.6: Left panel : comparison between the projected 3D window function in the
W1 field along the ∼right ascension direction (black line) and the ∼declination one (blue
line). Solid and dashed lines represent respectively the lower redshift bin z1 window and
the higher z2 one. Right panel : same as the left panel but for the W4 field.

functions projected over the main coordinates, after rotating the unclustered catalogue.
The different features in the window at higher modes is due to the particular pattern
introduced by the angular mask (gaps and quadrants) which generates different periodic
scales in the distribution of galaxies dependent on redshift. The overall behaviour of
the windows, however, is very similar for both redshift bins and both fields because the
four VIPERS subsamples are very similar in terms of volume and shape. This explains
why we observe four compatible power spectra in different VIPERS sub-volumes.

The posterior likelihood distribution is estimated running an MCMC on the com-
bined W1 and W4 measurements (accounting for the different window function), but
treating separately the two redshift bins due to the different bias parameter in z1 and
z2. The fit is performed in a k-range between 0.01 < k < 0.3 [hMpc−1] with linear bin-
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ning size ∆k = 0.01 hMpc−1. This choice is explained because we want to use all the
information available in the power spectrum estimation limiting the minimum mode
to the largest possible scale we can sample in the redshift direction and extending the
maximum fitting mode to the frequency k = 0.3 hMpc−1. Higher modes, in fact, are
dominated by shot-noise in the high redshift bin, the power is not properly corrected
for the SPOC effect, we have to deal with strong non-linearities which are difficult to
model and the scale independence of the bias is no more true.

The chi-square in the ΩM − fB plane, estimated with the covariance matrix of figure
7.3, is shown in figure 7.7 with the red contours representing the degeneracy between
the two parameters in the lower redshift bin z1 and the blue ones showing results for
the redshift bin z2. The two redshift bins give consistent results.

Figure 7.7: chi-square contours in the ΩM − fb plane for a combined W1+W4 analysis
in the two redshift bins: red contours are showing the 68% − 90% confidence levels
measured with the recovered power spectrum with galaxies in 0.6 < z1 < 0.9, while blue
contours show the case for 0.9 < z2 < 1.1. The green region corresponds to the joint
likelihood between the chi-squares in the two redshift bins. The cross point is the
position of the best fit calculated with the current analysis while the diamond one
shows the best prior estimated with the Plank analysis.

We also combine the posterior likelihoods in the two redshift bins in order to estimate
the matter density and the baryonic fraction (green region in figure 7.7) obtained from
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the full VIPERS sample. The best fit, estimated with the VIPERS power spectrum,
is consistent with the Planck value of ΩM = 0.3175 and fB = ΩB/ΩM = 0.049/0.3175
(Planck Collaboration et al., 2013) within statistical uncertainties.

A simple explanation for the shape of the chi-square contours between the matter
density and the baryonic fraction could be given considering two points in the parameter
space, one with low ΩM and one with a high value for the matter density. In the low-
ΩM model, the peak at keq is at low modes because the time of equivalence happens
at late time when the size of the horizon is quite large. At the scales sampled by the
VIPERS catalogue, the amplitude at various modes of the power is well constrained by
this kind of model without adding too much suppression due to the baryonic damping
of the power (low fB). If the matter density is quite high, the theoretical model shifts
toward higher modes increasing the power at the VIPERS measured scales. In this
case to compensate the increase of power, the good fit is given by models with high
baryonic fraction necessary to suppress a bit the power. Therefore we have an idea of
what is happening in the ΩM − fB chi-square where the best fit models are the ones
with low matter density and low baryonic fraction and (vice-versa) high ΩM and high
fB. Avoiding the high matter density values, we plot in figure 7.8 only the low-ΩM best
fit. Again the consistency between the chi-square in the two redshift bins is well visible.
We also notice the higher value for the bias in the z2 case which is not so clear in figure
7.4: the amplitude of dark matter structures is in fact lower at higher redshift where
however the effect of the bias is stronger. Accounting for the different growth factor in
the theoretical power spectrum for the two redshift bins, it is possible to extract the
right value for the bias which is higher in z2, since at higher redshift we observe more
luminous, and so more biased, galaxies.

7.1.1 Comparison with 2dFGRS

Since VIPERS and 2dFGRS are very similar in term of volumes, we can combine the
results looking at the VIPERS sample as an extension of the 2dF survey at higher red-
shift. Percival et al. (2001) measured the galaxy power spectrum in the local Universe
with an incomplete 2dF catalogue composed of ∼ 150, 000 galaxy redshifts. The theo-
retical power spectrum has been computed using the transfer function fitting formulae
of Eisenstein and Hu (1998) and convolved with a mono-dimensional window function,
justified by the compactness and isotropy of the 2dFGRS volume. Since the fit has been
performed in a k-range 0.02 < k < 0.15 [hMpc−1], RSD and non-linear effects (as the
non linearity of the bias) could be rightly considered to have a negligible impact on the
power spectrum shape. The likelihood analysis is then performed letting the baryonic
fraction, the matter density and the Hubble factor free. Cole et al. (2005) measured
the galaxy power spectrum of the full 2dFGRS sample using the complete catalogue
with ∼ 220, 000 galaxies constraining the same cosmological parameters but fixing the
Hubble constant to h = 0.72. We run again an MCMC for the two redshift bins fixing
the Hubble constant to h = 0.72 (while the other parameters fixed to Planck) to be
consistent with Cole et al. (2005) and plot the chi-square contours in figure 7.9 where
we rescale the matter density, in the abscissa coordinate, with the Hubble constant in
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Figure 7.8: best fit for the cosmological parameters ΩM − fB − b showing the 68 per
cent confidence level calculated using a combined W1+W4 MCMC analysis in the two
redshift bins (z1 red points, z2 blue points. We avoid in these plots the degeneracy, in
the lower redshift bin z1, for high ΩM values.)

order to have a fair comparison with the 2dFGRS results.
The degeneracy in the ΩM − fB plane, observed in Percival et al. (2001) (and re-measured
by Cole et al. (2005) using the same data of 2001 but with a new methodology and fixing
h, dotted lines in figure 7.10) is similar to what we recover in VIPERS for the lower
redshift bin. In the 2dFRGS, the larger volume analysed for the complete sample allows
Cole et al. (2005) to break the degeneracy as shown by solid lines in figure 7.10. In
VIPERS, the degeneracy is broken, in addition to a strong reduction of statistical er-
rors, thanks to a joint likelihood between the two redshift bins (green chi-square region
in 7.9). The 2dFGRS errors in the ΩM − fB chi-square from Percival et al. (2001) are
similar to our measurements due to a combination of effects. The bigger volume of the
2dFGRS strongly reduces statistical cosmic variance even though the closeness of the
sample, which surveys the local Universe, constrains their fit to a maximum mode of
kmax ∼ 0.15 hMpc−1 to avoid non-linearities. On the contrary, VIPERS is smaller in
terms of volume but the high redshift observed allows us to push the maximum fitting
mode up to kmax = 0.3 hMpc−1 using more information from the power spectrum anal-
ysis. The power spectrum at higher redshift with respect to the local Universe is, in
fact, less affected by non-linearities as shown in figure 1.3.
We compare our measurement (figure 7.7) also with the WiggleZ result in Blake et al.
(2010) where they find a similar behaviour in the chi-square contours between the mat-
ter density and the baryonic fraction (figure 7.11). Blake et al. (2010) performed an
approach in measuring and modelling the galaxy power spectrum similar to our, us-
ing 56,159 redshifts of bright emission-line galaxies at effective redshift 〈z〉 ∼ 0.6 and
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Figure 7.9: chi-square contours similar to figure 7.7 but obtained imposing a value of
h = 0.72 for the Hubble constant. For the abscissa coordinate, ΩMh, we simply multiply
the matter density with the Hubble constant h = 0.72 in order to have a fair comparison
with the 2dFGRS results.

fitting the power at scales kmax < 0.4 hMpc−1 fixing values for the Hubble parameter
h = 0.72, scalar index of spectral fluctuations ns = 0.96 and normalisation σ8 = 0.8, and
vary only the matter density ΩM and the baryon fraction fB. Their confidence contours
are very small due to the WiggleZ enormous volume. Moreover, they can extract the
maximum information from the power spectrum (extending the maximum fitting mode
up to kmax = 0.4 hMpc−1) given the high redshift sample and consequently pushing
non-linearities toward smaller scales.

7.1.2 Consistency with Planck

The power spectrum shape information encoded in the transfer function depends mainly
on the combination of the matter density with the Hubble constant, ΩMh2, as well as
on the combination of the baryonic density and the Hubble constant, ΩBh

2.
Letting free the baryonic fraction is a coherent choice because combination of these two
cosmological parameters: fB = ΩB

ΩM
= ΩBh

2

ΩMh2
. The power spectrum observed today in the

local Universe, or at any other redshift, is also characterised by the growth factor D(z)
(equation 1.20), which depends independently on the matter density and the Hubble
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Figure 7.10: degeneracy between the baryonic fraction and the matter density (times
the Hubble factor) in the power spectrum analysis of the 2dFGRS. The dashed contours
represent the confidence levels re-calculated by Cole et al. (2005) with the intermediate
sample used for the analysis in Percival et al. (2001). Solid lines show the chi-square
levels computed by Cole et al. (2005) with the complete 2dFGRS catalogue.

constant. Moreover, even the growth rate f of structures, which enters in the modelling
of the observed power spectrum through the Kaiser term in redshift-space distortions,
depends on the matter density parameter alone with equation f ∝ ΩγM(a). For these
reasons, we choose to separate the two parameters in ΩMh2 fixing h and constraining
ΩM. The Hubble constant is however fixed to the Planck value, h = 0.6711, a quantity
which is not directly measured by Planck through the angular power spectrum analysis
but inferred assuming the Planck cosmology. We therefore want to understand how
much our result is consistent with Planck, i.e. how the assumption of the Planck best
fit Hubble constant determines our recovered best fit for the matter density and the
baryonic fraction.

We compare again the four measured power spectra, in the two redshift bins (z1
and z2) and for each field (W1 and W4), with different theoretical models through a
chi-square technique to constrain ΩM and fB. Assuming a ΛCDM flat cosmology with a
cosmological constant w = −1 and imposing the scalar amplitude and spectral index to
the Planck best fit, we consider an Hubble constant of h = 0.72 different with respect
to the Planck derived value of h = 0.67.

The resulting chi-square contours combination of the two fields, W1 and W4, and
for each redshift bin are plotted in figure 7.12 and compared to the results obtained
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Figure 7.11: probability contours of ΩM and fB fitting the WiggleZ survey power spectra
in different redshift bins using three different approaches. For the black solid contours,
they have stacked all the monopole power spectra measured in different redshift bins and
in different regions on the sky and deconvolved the result (made simpler by the isotropy
of their window), red dashed contours show the joint likelihood between each single
power spectrum compared with a convolved model, while dot-dashed green contours are
the fit between the 2D power spectrum analysed in the tangential and radial component
of the wavenumber respect to the line-of-sight and a convolved model.

assuming the Planck best fit for the Hubble constant. We plot the 1− 2σ contours as a
function of fB and a combination of ΩM and h, ΩMh2 (obtained simply multiplying the
matter density with the assumed Hubble constant).
It is important to remark here that in linear theory, if distances are measured in unity of
h−1Mpc (and consequently frequencies in hMpc−1), the degeneracy in the ΩM − h plane
roughly develops along the line ΩMh = constant as shown by equation 1.22, where the
transfer function depends on q = k/(ΩMh2Mpc−1) = k[hMpc−1]−1/(ΩMh). The non-
linear power spectrum is, instead, affected by the variance σ28 (equation 1.26) which
depends on the combination ΩMh2 due to the growth factor. Bel et al. (2014) clearly
show, in their figure 16, that the degeneracy between the matter density and the Hub-
ble constant for the power spectrum follows mainly the degeneracy ΩMh2 = constant,
justifying our choice of comparing results as a function of the quantity ΩMh2.
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In both redshift bins, we observe a small, almost negligible, shift of the chi-square con-
tours once we vary the assumed Hubble constant, meaning that the modelling of the
power spectrum shows a small residual dependence on h. In figure 7.13 we plot the
combined chi-square for z1 and z2 showing a good agreement between our result and the
Planck best fit even in the case of h = 0.72, deducing that our measurement of cosmo-
logical parameters depends weakly on the choice of the Hubble constant. We conclude
that our results are totally consistent with the Planck ones without being affected by
the assumed priors.

Figure 7.12: Left panel : combined 1 − 2σ chi-square contours in the ΩM − fB plane
evaluated with the measured power spectra in the lower redshift bin z1 for the field W1
and W4. The blue region corresponds to chi-square measured fixing the Hubble constant
to the Planck value of h = 0.67, while the red region shows the same contours but with
the Hubble constant fixed to h = 0.72 (same prior used by Cole et al. (2005)). Right
panel : same as the left panel but for the higher redshift bin z2.

7.1.3 Varying the maximum fitting mode

The minimum mode kmin = 0.01 hMpc−1, related to the largest scale sampled with the
VIPERS distribution of galaxies and chosen for the fit, does not affect the chi-square
contours and the best fit since errors introduced by cosmic variance at those scales are
big. In this subsection, we analyse the dependence of the cosmological parameters con-
strained with the VIPERS power spectrum from the maximum mode sampled. The
value chosen for the maximum frequency kmax used for the fit of the measured power
spectrum could alter the estimation of the matter density and the baryonic fraction due
to the tiny errors recovered at small scales.
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Figure 7.13: same as figure 7.12 but with the chi-square in the two redshift bins com-
bined. Note the consistency with the Planck best fit even when we evaluate the chi-
square fixing the Hubble constant to a different value respect to the one recovered by
Planck.

We want to estimate how robust is our choice of kmax = 0.3 hMpc−1 considering two
other maximum frequencies, kmax = 0.2 hMpc−1 and kmax = 0.25 hMpc−1. The fit has
been estimated with the same minimum frequency as before and the same step in k-
space ∆k = 0.01 hMpc−1 obtaining N = 19 bins for kmax = 0.2 hMpc−1 and N = 24 for
kmax = 0.25 hMpc−1.
Results for the 68% − 95% chi-square confidence levels are plotted in figure 7.14 con-
sidering separately the two redshift bins. When kmax is lower, the errors increase since,
decreasing the maximum mode fitted, the information is lower. Further, for smaller
kmax the chi-square contours are shifting toward higher ΩM best fit. The estimation of
ΩM and fB seems to be more robust for the high redshift bin with the best fits consistent
with each other within statistical uncertainties. This could be explained by the fact
that the power spectrum, at higher redshift, is linear up to smaller scales because the
clustering of matter was less strong in the past. The mode where the power becomes
dominated by non-linearities increases at higher redshift giving, for the high redshift
bin, a more reliable modelling of the power in linear theory. Moreover, the shapes of
the chi-square contours in the ΩM − fB plane are similar in both redshift bins and for all
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the kmax considered except for the case z1 and kmax = 0.3 hMpc−1: at the increase of
the value of ΩM does not correspond an increase of the baryonic fraction in the high ΩM

regime (a similar behaviour has been observed by Percival et al. (2001) in the 2dF sur-
vey, figure 7.10). This could be again due to non-linearities which are stronger at lower
redshift z1 and at smaller scales kmax. In this case, our modelling of non-linearities is far
from being correct in particular for higher values of the matter density: the shift of the
model power spectrum toward higher k-modes, due to the increasing of ΩM, is no more
compensated by an increase of fB but by an insufficient correction for non-linearities.
The combination of the chi-square estimated in the two redshift bins is plotted in figure
7.15. Despite the shift toward higher matter density related to the decreasing of the
maximum mode where the fit has been performed, the best fits are consistent between
each other. A possible explanation for the discrepancy between chi-square contours as-
sociated to the maximum fitting mode could be the assumption of the galaxy bias to be
constant which is not true once we study very small scales.

Figure 7.14: Left panel : 68%− 95% confidence levels for the chi-square estimated, in
the first redshift bin 0.6 < z1 < 0.9 and for both fields (W1 and W4), varying the max-
imum mode where the fit has been performed. The green contours are associated to a
maximum fitting mode kmax = 0.3 hMpc−1, the blue ones to kmax = 0.25 hMpc−1 and
red to kmax = 0.2 hMpc−1. Right panel : same as the left panel but with the power
measured in the second redshift bin 0.9 < z2 < 1.1.

7.1.4 Estimating ΩM

Given the big degeneracy between the baryonic fraction and the matter density in the
determination of the overall shape of the matter power spectrum, we decide to extract
only the ΩM parameter fixing the fB quantity to known prior. For the estimation of
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Figure 7.15: same as figure 7.14 but with a joint likelihood between the two redshift
bins.

ΩM, we run an MCMC for each redshift bin, z1 and z2, combining the chi-square of the
two fields. We assume a ΛCDM cosmology with the the accelerated expansion caused
by a cosmological constant term with w = −1 and flat space Ωk = 0. We allow to vary,
in our power spectrum modelling, some cosmological parameters fixing Gaussian prior
to the best available estimation as the spectral index, ns = 0.9616 ± 0.0094, and scalar
amplitude, ln(1010As) = 3.103 ± 0.072, from Planck results (Planck Collaboration et al.,
2013), the Hubble constant h = 0.738 ± 0.024 from the measurements of the Hubble
Space Telescope (HST, Riess et al., 2011) and the baryonic matter density parameter
ΩBh

2 = 0.0213 ± 0.0010 from the Big Bang Nucleosynthesis (BBN, Pettini et al., 2008).
The bias is again considered linear and scale independent and we assume a Gaussian prior
even for the effective pairwise dispersion velocity σ̄TOT = 514 ± 24 km s−1, as estimated
from the VIPERS data themselves.
The marginalised likelihood for the matter density estimated in z1 and z2 is plotted
in figure 7.16: results are consistent between the two redshift bins. A joint likelihood
between the two redshift bins has been done in order to measure the best fit with the
related 1σ error for the matter density obtaining ΩM = 0.272+0.027

−0.030 perfectly in agreement

with the result of ΩM = 0.270+0.029
−0.025 obtained with the VIPERS clustering ratio in Bel

et al. (2014) and with the WMAP7 determination of ΩM = 0.267 ± 0.029 (Larson et al.,
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2011).
The difference between our measurements and the Planck one for the matter density is
due to the different prior assumed for the Hubble parameter. Rescaling our ΩM best fit
with the Planck Hubble constant of h = 0.6711, we obtain:
ΩM = 0.272 ×

[

0.738
0.6711

]2
= 0.329+0.032

−0.036 consistent now with the Planck best fit of
ΩM = 0.3175 (the rescaling factor is justified by the dependence of the power spectrum
on ΩMh2 described in section 7.1.2). Best-fit parameters with the 1σ error are shown in
table 7.1.4 for a joint likelihood between the two redshift bins. In all cases, the measured
parameters are consistent with the Gaussian prior. The bias factor is, as expected from
the previous estimation, slightly higher in the z2 sample.

Figure 7.16: Top panel : number density in each ΩM-bin computed with a combined
chi-square for the two fields, W1 and W4, for the matter density in the two redshift
bins: 0.6 < z1 < 0.9 black histogram, 0.9 < z2 < 1.1 red histogram. Bottom panel : joint
number density combining the results in the two redshift bins. The shaded area corre-
sponds to the 68% confidence level measured with this analysis while the dashed blue
lines correspond to the results obtained with the clustering ratio technique.
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ΩM Ωbh
2 h ns ln(1010As) σTOT [km s−1] b (z1 / z2)

prior 0.1 − 0.9 0.0213 ± 0.0010 0.738 ± 0.024 0.9616 ± 0.0094 3.103 ± 0.072 514 ± 24 0− 2

best fit 0.272+0.027
−0.031 0.0211+0.0010

−0.0004 0.735+0.018
−0.016 0.9630+0.0054

−0.0088 3.096+0.046
−0.057 522+16

−18 1.13+0.21
−0.18 / 1.25+0.20

−0.15

Table 7.2: Gaussian, flat prior and best fit for the parameters used in the estimation of
the matter density.



Chapter 8
Conclusions

The power spectrum statistic is important to extract cosmological information from the
three dimensional distribution of galaxies. A lot of cosmological quantities can be ex-
tracted from the power spectrum such as the total amount of matter and baryons in the
Universe which strongly affect its shape. The BAO signal associated with oscillating
features in the monopole power spectrum and a detailed study of the anisotropic clus-
tering can lead respectively to constraints on dark energy and theory of gravity. The
modelling of the power spectrum is not simple being affected by non-linear evolution,
bias and redshift-space distortions. These effects complicate the relation between the
observations and the predictions of linear perturbation theory, making the interpreta-
tion of these measurements in terms of constraints on cosmological parameters more
difficult.
In the last 10 years, numerous surveys have been constructed to sample larger and larger
volume of the Universe in order to reduce statistical errors related to the estimation of
cosmological quantities and to improve our modelling of the power spectrum.
Even the measurement of the galaxy power spectrum is complicated because it has to
account for all the selection effects of the survey.

In this thesis, we apply the power spectrum analysis to the VIPERS sample, a spec-
troscopic survey that has been designed to analyse the clustering of the z ∼ 1 Universe.
In the estimation of the galaxy power spectrum, the shape and volume of a survey have
a dominant role. Specifically, VIPERS has a small angular aperture along the declina-
tion, even more at the current stage. We fully characterised and corrected the effect
of the window function using the suite of 26 and 31 (respectively for the W1 and W4
field) VIPERS mock samples built from the MultiDark simulation and described in de
la Torre et al. (2013).
A number of other tests have been performed to include the VIPERS sampling strategy
and other subtleties, with excellent results. This makes us confident that we are able
to correctly model the effect of the survey geometry and sampling and thus extract
cosmological information from the measured power spectrum.
Another important question to deal with, is the inclusion of redshift-space distortions in

122
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our modelling. The theoretical model has been corrected for RSD effects before perform-
ing the convolution with VIPERS window function. This approach is usually avoided
in literature because of the 3D-convolution which is time-consuming.
To test the robustness of our approach, we fit the measured power spectrum from each
of the VIPERS mock catalogue with a model using the standard chi-square technique.
We measure the averaged power spectrum for both W1 and W4 field, in redshift space.
We vary the matter density parameter and the bias factor (assumed to be linear and
scale independent), and fix all the other parameters to the known MultiDark values.
The covariance matrix has been divided by the number of mocks for each field in order
to evidence systematic biases in our analysis. In all cases we were able to recover the
true value ΩM of the MultiDark simulation within statistical errors.
The power spectrum analysis has been applied to four subsamples of the current VIPERS
data set, which has been divided into four independent volumes, two redshift bins
0.6 < z1 < 0.9 and 0.9 < z2 < 1.1 for each field W1 and W4. The four measured power
spectra are very similar since the different effect of each window function is negligible
compared to statistical fluctuations introduce by cosmic variance. Even the normali-
sation is of the same order between the power spectra at each redshift bin due to a
compensation between the growth of perturbations (lower at z2) and the bias factor
(higher at z2).
With a chi-square technique, we decide to follow the literature constraining the cosmo-
logical parameters that mainly affect the power spectrum shape, as the matter density
ΩM and the baryonic fraction fB. We impose flat priors on the baryonic fraction, the mat-
ter density and the bias, Gaussian prior to the pairwise dispersion velocity of galaxies,
while fixing the other cosmological parameters to Planck values (Planck Collaboration
et al., 2013). In order to estimate the marginalised (over the bias) posterior likelihood
distribution, we run an MCMC on the combined W1 and W4 measurements (accounting
for the different window function), but treating separately the two redshift bins, given
the different bias parameters. Applying a chi-square statistics, with the covariance ma-
trix measured using a combination of 200 Pinocchio mock catalogues for each field and
26 (31) MultiDark mocks for W1 (W4), we compare the four measured power spectra
with theoretical models generated with the CAMB algorithm and corrected for redshift-
space distortions and window function effects. Fixing the cosmology to the Planck best
fit except for the matter density and the baryonic fraction and varying the bias fac-
tor, assumed linear and scale independent, we obtain consistent results between the
two redshift bins for the chi-square contours in the ΩM − fB plane once we marginalise
over the bias factor. As expected, we find a slightly higher value for the bias in the
higher redshift samples once the growth of structures is fixed by the cosmology. We
observe a well-known degeneracy (2dFGRS, WiggleZ) between the matter density and
the baryonic fraction with the same probability for a high ΩM and fB Universe as for
low ΩM and fB values. Combining with a joint likelihood the two redshift bins, we are
partially able to break the degeneracy and drastically reduce statistical errors. Our best
fit is consistent with the Planck results, even assuming an Hubble constant of h = 0.72,
different from the Planck best fit of h = 0.67. We checked also how much our estimate
depends on the choice of the maximum k-mode used for the fit. We found that the
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particular choice of the maximum mode slightly changes the chi-square contours in the
ΩM − fB plane in the lower redshift bin because more affected by non-linearities, while
in the higher redshift bin the chi-squares, function of kmax, are more consistent. Once
we combine the two redshift bins, we observe that varying the maximum mode fitted
does not change significantly the best fit.
Moreover we estimate the matter density alone fixing the other cosmological parameters
to the best available known Gaussian prior: the spectral index and the scalar amplitude
to Planck, the baryons density to the Big Bang Nucleosynthesis and the Hubble parame-
ter to the best Hubble Space Telescope prior. The ΩM likelihood obtained marginalising
over the set of parameters and combining z1 and z2 gives a best fit with 1σ errors of
ΩM = 0.272+0.027

−0.031 in perfect agreement with the value measured from the VIPERS clus-

tering ratio, ΩM = 0.270+0.029
−0.025, and with the Planck result once we rescale the Hubble

factor of HST to the Planck best fit.

8.1 Future works

In the near future the VIPERS catalogue will be complete with the full data sample
available for a new measurement of the galaxy power spectrum. The increase of the
volume will lead to a lower cosmic variance reducing statistical errors in the estimation
of the matter density and the baryonic fraction and a smaller window function effect.
The increase of the number of galaxies observed will also limit the noise in the observed
redshift distribution and reduce the shot-noise term which, for the moment, is not
completely negligible for the higher redshift bin.
New mock catalogues (∼ 400 for each field) generated by Sylvain De la Torre will also be
available very soon. This will allow us to estimate an unbiased covariance matrix without
using two different sets of mock catalogues, based on the Pinocchio code and on the
MultiDark simulation, to estimate first the correlation matrix and, in a second moment,
rescale it to the power spectrum variance measured with the MultiDark catalogues.

Future possibilities implying the use of the galaxy power spectrum could include
the analysis of clustering for different class of galaxies. The power spectrum estimator
could, in fact, be applied to galaxies with different magnitude cut and different colours
in order to study, fixing the cosmology to break the degeneracy between b and σ8, the
bias associated to each class of objects (a similar work, in configuration space, has been
done in Marulli et al. (2013) with the correlation function approach).

A parallel work to de la Torre et al. (2013) could be carried out exploring the
anisotropy of the clustering due to RSD in Fourier space. A measurement of the power
spectrum multipoles will allow us to set a constraint on the growth rate of structure at
a mean redshift of z ∼ 0.8, never reached by other surveys, and confirm the main result,
for which VIPERS has been designed, found by de la Torre et al. (2013).

Since it has been shown that neutrinos are massive (Lesgourgues and Pastor, 2012)
and given the improvement of simulation with the inclusion of massive neutrinos, an
accurate study of the shape of the VIPERS measured power spectrum could also give
some additional constrains on their mass.



Appendix A
Convolution

The observed density contrast δV(x) at the position x in a survey with volume V is
equal to

δV(x) = δT(x)× w(x) , (A.1)

where w(x) is the window function of the survey meaning that the true density contrast
δT(x) could be measured inside the volume of the survey where w(x) = 1 and not outside
where w(x) = 0. This simple multiplication in configuration space becomes a convolution
in Fourier space. The power spectrum measured in a volume V is

〈δV(k1)δ
∗
V(k2)〉 =

∫ ∫

w(x1)w
∗(x2) e

ik1·x1 e−ik2·x2 〈δT(x1) δ
∗
T(x2)〉 d3x1 d3x2 x2≡x1+r−−−−−−→

∫ ∫

w(x1)w
∗(x1 + r)ei(k1−k2)·x1e−ik2·r〈δT(x1)δ

∗
T(x1 + r)〉 d3x1 d3r ,

(A.2)

where we substitute the variable x2 with x1 + r.
Given the homogeneity of the Universe the term 〈δT(x1)δ

∗
T(x1 + r)〉 corresponds to the

definition of the correlation function ξ(r), which is the Fourier Transform of the power

spectrum, ξ(r) ≡
∫

P(k′)e−ik′·r d3k′

(2π)3
.

Fourier transforming the window function as w∗(x1 + r) =
∫

w∗(k′′)eik
′′·(x1+r) d3k′′

(2π)3
, equa-

tion A.2 becomes
∫ ∫ ∫ ∫

w(x1) e
i(k1−k2+k

′′)·x1 e−i(k2−k
′−k

′′)·rw∗(k′′) P(k′) d3x1d
3k′ d3k′′ d3r =

∫ ∫

w(x1) e
i(k1+k

′)·x1 P(k′)w∗(k′ + k2) d
3x1 d

3k′ .

(A.3)

where the last equality is due to the fact that
∫

eik·xd3x = δD(k) (2π)3.

Fourier transforming again the window function as w(x1) =
∫

w(k′′)eik
′′·x d3k′′

(2π)3
, we finally

obtain

〈δV(k1)δ
∗
V(k2)〉 =

∫

W(k1 + k′)W∗(k2 + k′)P(k′)
d3k′

(2π)3
. (A.4)

125



APPENDIX A. CONVOLUTION 126

Since in Fourier space modes associated to the density contrast are uncorrelated, equa-
tion A.4 becomes

PV(k) =

∫

|W(k+ k′)|2P(k′)
d3k′

(2π)3
. (A.5)

The observed power spectrum PV(k) is therefore a convolution between the true one
P(k) with the Fourier Transform of the window function w(x).



Appendix B
Γ-simulation

To construct a distribution of particles in a cubical box with a well known power spec-
trum in order to evaluate how good our estimator is, we want to match the one-point
distribution probability of δ fluctuations, which is not Gaussian.
However, generating a Gaussian field with a known power spectrum is a simple task.
We divide the whole process in two steps.
In the first step, we generate a stochastic field Φk onto a grid in Fourier space. Assum-
ing the density field δ(x) to be Gaussian, the probability distribution of Φk(k) is still
Gaussian. We generate a general field at each point k of the grid, Φk = αk + iβk with αk

and βk two random variables Gaussian distributed with mean and variance respectively
〈α〉 = 〈β〉 = 0 and σ2α = σ2β = P(k). As a result, the stochastic field Φk is Gaussian with
mean equal to zero and variance equal to the power spectrum which depends on the
fiducial cosmology we assume for our simulations. Then we Fourier Transform back Φk

to recover the Gaussian density field Φ in configuration space with variance given by
σ2Φ =

∫

PΦ(k)d
3k.

In the second step, we locally transform the field Φ to match the one-point distribution
of VIPERS galaxies. We define another field δ̂ related to Φ with a local transformation
δ̂ = F(Φ). The function F should satisfies this condition

P(δ̂) dδ̂ = G(Φ) dΦ . (B.1)

It is therefore defined as

∫ +δ̂

−1
P(δ̂′) dδ̂′ =

∫ +Φ

−∞
G(Φ′) dΦ′ , (B.2)

where P(δ̂) and G(Φ) are respectively the one-point probability distribution for the field
δ̂ and the Gaussian distribution for Φ. With the expression B.2, while Φ is defined
between [−∞; +∞], the values for the stochastic field δ̂ ranges between [−1;+∞].
Usually simple simulations are generated with log-normal transform meaning that the
relation between the two field is δ̂ = eΦ − 1 or inversely, to be consistent with the name,
Φ = ln(1 + δ̂). In our Γ-distribution, we simply assume the probability distribution of
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the new field δ̂ to be a Γ-distribution. This choice is motivated by the fact that in
VIPERS the probability distribution of galaxies is well fitted by a Γ-function (Bel et
al., in preparation). Since we apply a local transform to the initial field Φ to obtain the
field δ̂, the covariance in Fourier space associated to the two fields is slightly different
meaning that the power spectrum associated to δ̂ is no more equal to the input power
spectrum we wanted to apply to our simulation. Therefore we should associate the true
power spectrum to the new field δ̂. To account for this, we write down the covariance
in configuration space for δ̂, which is the correlation function

〈δ̂1δ̂2〉 =
∫

δ̂1δ̂2 P(δ̂1; δ̂2) dδ̂1dδ̂2 , (B.3)

where we know the probability distribution P(δ̂) but we do not know the joint probability
P(δ̂1; δ̂2). To overcome this last part, we substitute in equation B.3 the joint probability
P(δ̂1; δ̂2) dδ̂1dδ̂2 with G(Φ1; Φ2) dΦ1dΦ2 which is a bivariate Gaussian. Equation B.3
becomes

〈δ̂1δ̂2〉 =
∫

F(Φ1)F(Φ2)G(Φ1; Φ2) dΦ1dΦ2 , (B.4)

where G(Φ1; Φ2) depends on the mean 〈Φ〉 which is equal to 0 and the covariance

C =

(

σ21 ξ1,2
ξ2,1 σ22 .

)

(B.5)

For the assumption of homogeneity, the variance of the field Φ is the same at each point
of the Universe σ21 = σ22 and for simplicity we choose σ2Φ = 1. Moreover the non-diagonal
terms of the covariance are the correlation function which again are equals ξ1,2 = ξ2,1.
Equation B.4 gives us a simple relation between the correlation function associated to
the field δ̂ and to the field Φ or in Fourier space between the two power spectra. For
instance, in log-normal simulation the expression B.3 becomes simply ξδ̂ = eξΦ − 1 while
in Γ-simulation the relation is evaluated numerically.
The idea therefore is to assume a fiducial cosmology with an input power spectrum,
Fourier Transform the power to obtain the correlation function ξδ̂ and with relation B.4
calculate the correlation associated to the field Φ. The next step will be to Fourier
Transform ξΦ to obtain the unphysical power spectrum PΦ(k) and generate the initial
Gaussian field Φk onto a k-space grid with variance PΦ(k). Then Fourier back Φk

in configuration space to deal with the unphysical density field Φ and transform the
obtained scalar field with F in order to have the field δ̂ = F(Φ). The field δ̂, defined
onto a grid and with probability distribution given by a Γ-distribution, is limited in a
range [−1;+∞] as the true density field δ and its covariance in Fourier space is equal
to the true power spectrum of the cosmology we adopt.
Fixing a required mean density of particles N̄, we can transform the density contrast at
each position of the grid into an expected number of galaxies Λ = N̄(1 + δ̂). However,
this quantity is not an integer yet. We assign to each cell a number N of particles
extracted from a poisson distribution with expectation value Λ at the same position.
We populate randomly each cell with the number of particles N. Due to this last step,
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we do not expect clustering on scales smaller than the size of the cell.
In our work using this technique, we simulates 30 boxes with size L = 486.4 h−1Mpc
and cell size H = 0.95 h−1Mpc. The mean number of particles is fixed to the highest
mean density in the redshift distribution of VIPERS mock catalogues. The chosen
input cosmology is the MultiDark one. Finally, to obtain VIPERS-like distribution of
particles, we cut the 30 boxes in order to have a cone-like W1 geometry.
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Bernardeau F., Colombi S., Gaztañaga E., Scoccimarro R., 2002, Phys. Rept., 367, 1

Blake C., et al., 2008, Astronomy and Geophysics, 49, 19

Blake C., et al., 2010, MNRAS, 406, 803

Blake C., et al., 2011a, MNRAS, 415, 2892

Blake C., et al., 2011b, MNRAS, 415, 2876

Bottini D., et al., 2005, PASP, 117, 996

Carlson J., White M., 2010, ApJS, 190, 311

Coil A.L., et al., 2008, ApJ, 672, 153

Cole S., 2011, MNRAS, 416, 739

Cole S., et al., 2005, MNRAS, 362, 505

Colless M., et al., 2003, ArXiv Astrophysics e-prints

Cuillandre J.C.J., et al., 2012, in Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, vol. 8448 of Society of Photo-Optical Instrumentation En-
gineers (SPIE) Conference Series

Davidzon I., et al., 2013, A&A, 558, A23

130



BIBLIOGRAPHY 131

Dawson K.S., et al., 2013, AJ, 145, 10

de la Torre S., et al., 2013, A&A, 557, A54

Di Porto C., et al., 2014, ArXiv e-prints

Dodelson S., Schneider M.D., 2013, Phys.Rev.D, 88, 063537

Doran M., Müller C.M., 2004, Journal of Cosmology and Astroparticle Physics, 9, 003

Eisenstein D.J., Hu W., 1998, ApJ, 496, 605

Eisenstein D.J., et al., 2005, ApJ, 633, 560

Feldman H.A., Kaiser N., Peacock J.A., 1994, ApJ, 426, 23

Frigo M., Johnson S.G., 2012, FFTW: Fastest Fourier Transform in the West, Astro-
physics Source Code Library

Fritz A., et al., 2014, A&A, 563, A92

Fry J.N., Gaztanaga E., 1993, ApJ, 413, 447

Garilli B., et al., 2008, A&A, 486, 683

Garilli B., et al., 2014, A&A, 562, A23

Granett B.R., et al., 2012, MNRAS, 421, 251

Guth A.H., 1981, Phys.Rev.D, 23, 347

Guzzo L., et al., 2008, Nature, 451, 541

Guzzo L., et al., 2014, A&A, 566, A108

Hamilton A.J.S., 1993, ApJ, 417, 19

HASTINGS W.K., 1970, Biometrika, 57, 97

Hinshaw G., et al., 2013, ApJS, 208, 19

Jing Y.P., 2005, ApJ, 620, 559

Kaiser N., 1987, MNRAS, 227, 1

Larson D., et al., 2011, ApJS, 192, 16

Le Fèvre O., et al., 2005, A&A, 439, 845

Lesgourgues J., Pastor S., 2012, ArXiv e-prints

Lewis A., Challinor A., 2011, CAMB: Code for Anisotropies in the Microwave Back-
ground, Astrophysics Source Code Library



BIBLIOGRAPHY 132

Lilly S.J., et al., 2009, ApJS, 184, 218

Marulli F., et al., 2013, A&A, 557, A17

Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E., 1953, , 21,
1087

Monaco P., Theuns T., Taffoni G., 2002, MNRAS, 331, 587

Parkinson D., et al., 2012, Phys.Rev.D, 86, 103518

Peacock J.A., Dodds S.J., 1994, MNRAS, 267, 1020

Percival W.J., et al., 2001, MNRAS, 327, 1297

Percival W.J., et al., 2007, ApJ, 657, 645

Percival W.J., et al., 2014, MNRAS, 439, 2531

Perlmutter S., et al., 1999, ApJ, 517, 565

Pettini M., Zych B.J., Murphy M.T., Lewis A., Steidel C.C., 2008, MNRAS, 391, 1499

Planck Collaboration, et al., 2013, ArXiv e-prints

Pollo A., et al., 2005, A&A, 439, 887

Prada F., Klypin A.A., Cuesta A.J., Betancort-Rijo J.E., Primack J., 2012, MNRAS,
423, 3018

Riess A.G., et al., 1998, AJ, 116, 1009

Riess A.G., et al., 2011, ApJ, 730, 119

Rubin V.C., Ford Jr. W.K., 1970, ApJ, 159, 379
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